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PREFACE 

I t  is with great satisfaction that we present the Proceedings of the 32nd Karpacz 
Winter School of Theoretical Physics. It was our intention that  the programme of 
the school should cover topics in condensed matter  physics ranging from quantum 
mechanics to technology - a broad field, indeed. In practice semiconductors, super- 
conductors and spin systems were emphasized, reflecting the scientific interests of the 
Wroctaw physical community; other topics connected with the subject of the school 
were Mso treated, but to a lesser degree. We were aware of the risks contained in 
such a generM formula; the usual Karpacz meeting is something between a school and 
a conference and it was possible that some of the lectures might be too general for 
specialists or too involved for other participants. However, it seemed to us that  there 
was a need for a school that would provide a forum of discussion for several aspects 
of condensed matter physics. The success of the 32nd Karpacz School confirmed that 
the right formula was chosen for the meeting. 

These proceedings contMn contributions that are outstanding both in their impor- 
tance and for their timeliness. Therefore, we must express, first of all, our gratitude to 
the authors of these reports for their collaboration. We also thank the invited speak- 
ers who regretfully did not send their manuscripts in time and J. Villain who was 
not able to attend the school but nonetheless submitted his lecture notes, which are 
included in the proceedings. 

The 32nd Karpacz School was organized jointly by three Wroctaw Institutes: the 
Institute of Theoretical Physics of University of Wroctaw ( J e r z y  P r z y s t a w a ) ,  the 
Institute of Physics of the Wroclaw Technical University (Luc ian  J a c a k )  and the In- 
stitute of Low Temperature and Structure Research of the Polish Academy of Sciences 
( J6ze f  Sznajd) .  

The school was attended by 120 participants from 15 countries and the programme 
comprised 30 invited lectures and poster contributions. 

It  is a pleasure to thank all of the participants who in spite of the sometimes 
heated discussions and disputes about physics helped to create the warm and informal 
atmosphere characteristic of the Karpacz Schools. 

We are most obliged to Dr. Czestaw Oleksy who took upon himself the burden 
of finacial matters and to members of the Organizing Committee: Wojciech Gafieza, 
Bogdan Grabiec, Marek Mozrzymas and Mirostaw Pruchnik for their assistance. 

Further, we should like to express our deep gratitude to Mrs. Anna Jadczyk for 
her skillful work in preparing the camera-ready manuscript of the book. 

It  would have been impossible to organize the school without financial support 
from our sponsors: the German Stiftung fiir Deutsch-Polnische Zusammenarbeit,  the 
German Physical Society via WE-Heraeus-Stiftung, the Polish Ministry of National 
Education (MEN), the International Science Foundation, the State Committee for 
Scientific Research (KBN), and the Physics Committee of the Polish Academy of 
Sciences. In this respect, the efforts of Professor Werner Riihl of Kaiserslautern and 
Professor Jan Stankowski of Poznafi should especially be acknowledged. 

Wroctaw, August 1996 Jerzy Przystawa and J6zef Sznajd 
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Theory of Dense Hydrogen: Proton Pairing 

N. W. Ashcroft 

Laboratory of Atomic and Solid State Physics, Clark Hall, 
Cornell University, Ithaca 
NY 14853-2501, U. S. A. 
and 
New Zealand Institute for Industrial Research 
Lower Hurt 
NZ 

Abs t rac t :  Dense hydrogen, a dual Fermion system, possesses a Hamiltonian 
of high symmetry and especial simplicity. As a consequence of the latter its 
ground state energy satisfies general scaling conditions, independent of phase. 
Electron exchange is an important contributor, and its role in proton pairing 
(so evident at low densities) can be argued as a persistent feature. In the single 
particle description instabilities associated with band-gap closure can be seen 
as incipient charge density waves but in pair coordinates. This gives rise to a 
notion of higher pairing within which there can be an associated broken sym- 
metry in electron density (consistent with the observed infrared activity). The 
persistence of exchange driven pairing under conditions where temperatures 
approach characteristic vibron energies is discussed in the context of recent 
reports of the metallization of hydrogen by dynamic methods. 

1 Introduction 

In first quantization the non-relativistic problem of N protons and N electrons 
is described by the spin-independent Hamiltonian 

N 

- -  ,2 i = 1  (:) 

The index a differentiates between electrons ( e , ~ : l )  and protons (p ,a=2) ,  
whose corresponding one-particle density operators are 

N 
(2) 

/=1 
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The two-particle density operators appearing in (1) are defined by 

 22, = ),¢>,(,, ') - (3)  

and are obviously linked to pairwise Coulomb interactions (¢, = e 2 / I r -  r ' l ) .  
Though (1) holds for any choice of N, in the approach to the thermodynamic 
limit it is convenient to regroup the terms as 

N 

= E(-h /2me)V , 
i = 1  

1 ,.,r ^(2),. ,, ) ~ + ~ 2 }  (4a) 
q . , .  t , ' , , "  , -  

N 

j = l  
1 , ^(2) , 

This has been achieved by supplying for the electron system a rigid uniform 
compensating background charge density e ( N / V )  = ep, and one of opposite 
sign for the protons. Then (4a) and (4b) constitute a pair of well-defined and 
separate problems, but in very different limits of mass, and, for given densities, 
entirely different forms for their ground state densities, (p!l)(r) = (~!l)(r)) and 
(p(1)(r) = (#(1)(r))). If the average density fi is recorded by the standard pa- 

4~_3_3 = h2/mee2), then for r, 1, the ground-state of rameter r, (-5-r, uo = fi-1; ao "~ 
the uniform interacting electron gas is usually taken as a normal paramagnetic 
Fermi liquid, though states with off-diagonal long range order have also been 
proposed [1,2]. The proton problem, represented by (4b) and taken at compa- 
rable densities is well into the Coulomb (Wigner) crystal regime, and possibly 
antiferromagnetie in its spin character. 

Since the interactions in (1) or (4) are entirely Coulombic, the ground state 
energy E = (/2/)o must conform to the general constraints of the virial theorem. 
In addition, however, some general properties for the ground state are implied 
by the simplicity of (1) (or (4)). First, independent of phase the ground state 
energy has a scaling form, consequences of the Hellman-Feynman theorem and 
the virial theorem together. As shown by Moulopoulos and Ashcroft [3 ] the 
general form for E is 

E = N f ( m e r , ;  mpr , ) / r , .  (5) 

Second, if the protons are held fixed (or viewed in the adiabatic approxima- 
tion), the electronic density p!l)(r ) evaluated at any proton (designated here by 
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o) satisfies the cusp-condition [4,5], namely 

op!l)(r )/0rio = (-2/ao)p~l)(r)to (6) 

and is valid for any N. Third, for a one-component Fermion system, with an as- 
sumed pairwise interaction v, the canonical partition function Z = Tr exp(-j3[-I) 
can be written as a coherent-state functional integral where, for chemical poten- 
tial #, the corresponding action S takes the form [6] 

s = f "dd f ° -  - 

+ 

where f dx = ~ s  f dr. A Hubbard-Stratonovich transformation then introduces 
new (collective) fields {A, A*} and correspondingly a new action S, quadratic 
in the gr's. A Gaussian integration can therefore be carried out leading to 

Z = (coast) f D[~*]D[~]exp(S/h) 

where 

1 / dld21A(12)l~/v(1 _ 2) (7) = Tr ln(A/2) + 

and where 1 - SXT. In (7) the operator .A is 

A(12) = ( 5 ( 1 -  2)[h ° + c ( - i h V ) -  .]  A(12) ) 
A*(12) 6(1 - 2)[ho~ + ¢(- ihV)  - p] " 

These procedures, which have a straightforward parallel for the two-component 
electron-proton problem, are exact. Extremization of S with respect to the choice 
of the A's, is imposed after a stationary phase approximation; it leads to 

A(12) = -v(12)Tr[fi-l(12)(Ol O0)], 

and immediately to 

A(k) = - E v(k - k' )(A(k'  ) /2E(k'  ))tanh(~E(k' )/2), (8) 
k '  

after Fourier transformation and a summation over Matsubara frequencies. (Here 
E2(k) = ~2(k) + (¢(k) - ~)~.) 

Equation (81, the BCS gap equation for pairing states, is therefore obtained 
by a compact route which as shown by Moulopoulos and Ashcroft [7] has an 
immediate and direct parallel for the two - component Fermion problem rep- 
resented by Hamiltonian (1). The corresponding structure of S (and then S) 
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admits, as might be expected, of 4 gap equations (p - p, p - e, e - p, and e - e) 
in which the effective interactions between like-particles are always less repul- 
sive than the direct Coulomb interactions. The important, and intuitive point, 
is that in a dense phase of hydrogen, a breaking of the symmetry of (1) (or (4)) 
is expected in a persistence of proton pairing [7]. It is the generalization of the 
Iteitler London molecular states to be discussed below, and the extraordinary 
lack of variation of the principal vibron, (only ~ 2% change in over 10 fold 
compression) is ample testimony to it. However, the same arguments suggest 
that electron-order is also anticipated at high density and low temperature. The 
expected channels are charge-density waves (diagonal long-range order) and su- 
perconductivity (off-diagonal long-range order), the latter following for itinerant 
electron states from the two-component extension of the steps just outlined. 

2 P a i r e d  P r o t o n  S t a t e s  

The general characteristics just described result from the symmetry and sim- 
plicity of the many-body IIamiltonian ((1) or (4)). By action of pressure the 
average density (~ in (4)) can be very considerably altered, either dynamically 
[8] or statically [9]. Yet, although static compressions P/Po approaching 12 are 
now reported, the pairing of protons remains robustly evident. It is therefore 
useful to consider the physics of the paired proton state both in the molecu- 
lar limit, and the limit of a pair of protons in an otherwise uniform interacting 
electron gas at a chosen density r, (/:/~g =/;/~g(r,) as in (4a)). 

The well known four-particle problem constituting the hydrogen molecule is 
described by (1) with the choice N = 2. For fixed protons the solution for the 
ground state of the two electrons, a spin antisymmetric state, is known from the 
definitive work of Kolos and Wolniewicz [10] to a high level of accuracy. Figure 
1 shows the one electron density [11] 

and it is compared there with densities corresponding to uniform, but dense 
electron systems. (For the sake of comparison, ~ for the valence bands of Be and 
A1, corresponds respectively to rs = 1.87 and 2.07.) The evident inhomogeneity 
is also typical of the emerging solid-hydrogen problem and is an important issue 
in both ordering and energetics. 

Within the IIeitler-London approximation the one-particle density for inter- 
proton separation R is 

p~i)(r) = {p(t)(r) + p(al>([R - rl) + 2SR[p(i)(r)p(i)(]R - rl)]½ }/(1 + S~) (9) 

where 
p(~l)(r) = (Aa/ra0 a) exp(-2Ar/a0), Sn = (1 + ~RI~o + ½A2R~Ia~) exp( -ARlao) ,  
and A is a variational parameter. From this it is apparent that the contribution 
to the one-particle density originating with exchange is significant (it integrates 
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Fig. 1. One-electron density for the hydrogen molecule [11], compared with uniform 
state electron densities in highly metallic states of Hamiltonian (4b). Note that the 
valence state average electron density of trivalent aluminum corresponds to r8=2.07. 

to a fraction S~/(1 + S~)). As is very well known it contributes in an essential 
way to the overall strength of bonding of the hydrogen molecule. If we describe 
this bonding by the pair-function O(2)(R), then for later purposes the nature of 
the bonding can be equally well elucidated by examining the Fourier transform 
• (2)(k) = f dRe-i~R~(2)(R). Figure 2a shows the Fourier transform of the 
Kolos-Wolniewicz [10] interaction, and its interesting form is readily understood 
by examination of the basic Heitler-London result. In this the dominant terms, 
apart from normalization, are 
(a) the direct electrostatic contribution 

J dr J d r ' ( 6 ( r )  - p2) ( r ) ) (6 ( r  ' - R)  - pO) ( r  ' - R))¢~(R - r - r ') (10) 

whose Fourier transform is 

47re2 {1 - (2A/ao)4 }2 
ks (k~ + (2~1ao)2) 2 

(11) 
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0 4 8 12 16 
I I I I 

0.I ~HL(k) 

-0.I 

-0.3 

-0.5 

-0.7 

O) 

I I 
0 2 4 

0 

-0.25 

-0.50 

-0.75 

- 1 . 0 0  

Fig. 2. (a) Fourier transform of the Kolos-Wolniewicz [10] effective intra-molecular 
interaction. 
The strongly negative region at small k is attributable to electron exchange as can 
be seen from corresponding contributions within the Heitler-London approximation. 
(b) Fourier transform of Heitler-London effective interaction (except for normalizing 
denominators - see text). 

and 
(b), the electrostatic contribution [12] originating with exchange 

--4(e212ao))~SRe-)'R/a°(1 + )~Rlao) 

whose Fourier transform is 

(12) 

-8zre2(2A/ao) 3 (k4 + 6k2(2A/a°)2 + 21(2A/a°)4) (13) 
(ks + 

It is the combination of (8) and (10) (shown in Figure 25) that  mainly account 
for the characteristics of the Kolos-Wolniewicz interaction in reciprocal space. 
The exchange term is crucial to this behavior, and this will remain the case 
below (especially in the comparison to linear screening) when two protons are 
introduced into an interacting electron gas whose density, though high, is small in 
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comparison to local densities about the protons and is typified by the horizontal 
lines of Figure 1. In assessing the likelihood of ionic character in the electronic 
density, it may be observed that  possible admixtures in the two-electron wave 
function can be inferred by noting that  hydrogen molecule can be constructed by 
(i) bringing together two neutral hydrogen atoms, (ii) bringing up a lone proton 
to the stable two-electron ion H - ,  and (iii) bringing up a lone electron to the 
stable H + molecule. The internal electronic structure of the ensuing molecule 
leads to a considerable average linear polarizability a = (a± + all ). In units of 

3 it has the value 5.6; separately a± 3.72a a and all 6.49a 3. a o ~ ~ .  

3 P r o t o n s  Adr i f t  in a Fermi  Sea  

The problem of a single proton (fixed at the origin) in an interacting electron 
gas is described by the Hamiltonian 

~I = [t~g - i v  drt~!')(r)¢~(r) (14) 

where /:/~g is given in equation (4a). Studies of (11) using density-functional 
theory indicate that  a bound state sets in for rs ~> 1.9 [13]. At all densities the 
cusp theorem ensures that  this density will have the ground-state atomic form 
for values of r close to the origin (r < a0). To describe such a feature, repeated 
scattering of electrons from the proton must be included; it is therefore essential 
to proceed beyond linear response. In what follows we will assume that  densities 
are high enough that  the states are unbound and if so, that  for small enough 
wave vectors the induced electronic density) will take the form 

p!')(k) = ko /(k  + k 

where ko can be fixed by the compressibility sum rule for the interacting electron 
gas. On the other hand, for large wave-vector p!l)(k) must reflect the cusp in 

p!l)(v) (i.e.,p~l)(k) .,, (4~/ao)/(k 2 + (2,~/a0)2))~). Accordingly the simplest 
form which incorporates these limits is [14] 

(2a/ao)' 
p!')(k) = (k4 + 2k (2:,/ao) a2 + 

where a 2 = (A/kr)~(2kF/ko)~/2. The two important length scales implied by 
the Hamiltonian (1), namely ao, and kF 1, are both embodied in this form. If 
conditions are chosen so that  a < 1, then Fourier inversion gives 

} V ( l  + a2)12 . (15) 
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Fig. 3. (a) Form of electronic charge density expected for a pair of protons (separation 
R) embedded in an interacting electron gas. 
(b) and (c) Respectively the direct and linear response proton - proton interactions 
for Hamiltonian (16). (d') and (e') respectively the lowest order ladder and exchanges 
diagrams the former leading to Van der Waals type attraction [15]. 

If this is added to a background density (say rs >- 1), and the cusp condition 
applied, then values of ,~ close to unity emerge. This follows because in an average 
spin picture the electron density can be approximated by 

3 3 pe(r) = ()~3e-2;~r/a° 4- 3/4r,)/~rao 

so that  the cusp condition then reads 

)¢ = ~3 + 3/4r~ 

which has an approximate solution 

= 1 + 3 / 2 ¢ ( 1  + 4 ( 1  + 9/r~). 

whose values are close to unity for typical metallic densities. The locM value of 
rs at the proton in a single hydrogen atom is 0.909, and even at this density 
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rises only to a value 1.38. For background densities typical of ordinary metals 
the rate of decline of the electron density in the vicinity of the proton is very 
little affected. In the above the assumption a2 < 1 corresponds to rs 5 1.9, 

and for background densities lower than this the solution for p!l)(r) passes at 
long range from oscillatory to exponential (confirming with this model what is 

expected for a bound state transition). In either case the form of p!l)(r) for 
small r is completely dominated by atomic-like behavior. Note, however, that 
the discussion has been given within a paramagnetic view of the electron gas. 

Turning now to a pair of protons fixed at separation R (see Figure 3), Equa- 
tion (14) becomes 

(16) 

If E(R) is the energy of the pair in the ground state of the electron gas, then 
from the Hellman-Feynman theorem we have 

OF~OR = -e2/R + f dr(~(')(r))n(-O/cgR)¢c(r - R), 

and the possibility of stabilization (OF~OR = 0) at all such electron densities 
(all densities leading to unbound states) is immediately raised, and is anticipated 
on general grounds as noted above. Once again, the situation is very different 
from the predictions of linear response, where the effective interaction between a 
proton pair is given by 47re2/k~c(k), with c(k) being the static dielectric function 
of/?/eg- Figure 4 shows the Fourier transform (1/87r a) f dke-ikl:t[47re2/k2c(k)] 
for rs = 1.5 and for a choice of e(k) satisfying the compressibility sum rule of the 
interacting electron gas. The location and depth of the first minimum are actu- 
ally both on the scale of the corresponding minimum predicted by the Fourier 
transform of (8) (i.e. just the Hartree view of the hydrogen molecule); both prop- 
erties are quite far from what is expected when both repeated scattering and 
exchange are included. (The evident oscillatory behavior is a reflection of the 
Friedel structure.) 

Long-range attractive behavior is, however, expected on far more general 
grounds. For example, as shown by Maggs and Ashcroft [15 ], the lowest order 
ladder diagrams already lead at long range to modified Van der Waals attraction 
[16]. These diagrams are given in Figure 3 along with two of the dominant 
exchange diagrams which are important at short range. It is worth noting again 
that repeated scattering of electrons from protons is important in this problem 
(terms that are omitted, for example, in the treatment given by Ferraz and 
March [17]). 

The linear response view of the problem of dense hydrogen proceeds by as- 
sociating a coupling constant I (0 < I < 1) with electron-proton and proton- 
proton interactions so that 
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Fig. 4. Typical form of screened (linear response) proton-proton interaction at high 
densities (eF = 50.1/r~eV). The scale of attraction is very much less than is typical of 
Heitler-London bonding where exchange (of Figure 3e and 3e') plays such an important 
role. 

N 

n(~) = ~ - ~ ( - h 2 / 2 . , . ) V ~ ,  
i=1  

+~ /v dr Iv d r ' ¢ c ( r - r  ){Pee (r,r') 2p!U(r) f i+  v } (17a) 

N 

+ Z(-~V2,~,,(.~))vJ~ 
j = l  

--)~/vdrJvdrt(~c(p--Tt)lp!l)(Tt)--pllp(pl)(~)--pl ( 1 7 c )  

where rap(A) = mp/A. 
To illustrate the remarkably different states encountered in the progression 

0< A <1, we may start with (17a) and an r, value of, say 1.72, corresponding 
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as it happens to average densities actually somewhat higher than are found 
in the valence bands of the elemental metal Be. This situation is depicted in 
Figure 5; it is associated with ~ = 0, and the ground state is of deeply metallic 
character. Keeping the average electron density fixed, now imagine aggregating 
the background charge into units of the fundamental charge, endowing each with 
mass rap, and spin 1/2, i.e., just the progression envisioned in (175) and (17c). 

The result of this elementary construction is dense hydrogen, (Fig. 5), and 
it is not at all necessary to guess at its states. For the chosen density actually 
corresponds to near 6-fold compression, and under these conditions experiment 
appears to have accurately revealed the state of hydrogen. In the first place 
it is not a metal; it is an insulating crystal [18], though one that is far from 
static. Next, the protons are strongly paired, tenaciously retaining the 4-particle 
molecular problem referred to above, a grouping that very much reflects the 
importance of intra-molecular exchange (with near adiabatic adjustment of the 
electrons in response to the motion of the protons). Finally, the pairing implies 
an associated proton dynamics, the primary manifestations being vibrononic 
motion and orientational motion, the latter including the possibility of com- 
plete rotational excitations [19]. Though the structure is not known at higher 
densities, the pairing character (via the measured vibron excitation) appears 
established to a solid compression of about a factor of 11. Even at these com- 
pressions (corresponding to r, ,,~ 1.41) there seems little evidence for any ground 
state metallic character even though band-theory has indicated otherwise. The 
role of exchange in stabilizing the pairing of protons which self-consistently un- 
derlies the evident preference for the insulating state can be seen as starting 
with the Heitler-London description. Per proton the contribution to the overall 
energy from exchange related one-body terms (i.e., the difference arising from 
the choice of Hartree and Heitler-London two-electron states) is just 

where x = AR with A a variational parameter. For small interproton spacing 
R this difference vanishes quadratically, and at large separation it also declines 
rapidly. Maximum exchange benefit to the energy of pairing occurs at z = 1.45 
and is at the level of 0.13Ry per proton for A = 1. In a condensed phase, with 
Figure 1 as a guide, the presence of an overall background density will lead 
through the consequences of the cusp theorem to values of A > 1. When due 
account of the direct interaction is also included, a corresponding decline in 
the stabilizing pair separation is therefore indicated by the above form of the 
exchange benefit. It is worth repeating that in hydrogen this benefit is very much 
tied to the rapidity with which p~(r) declines in the vicinity of each proton. 

But dense hydrogen appears to be a system where effects going beyond the 
single-particle description seem to be unusually important. It is useful to note 
that the energy scale associated with the free-molecular vibron is hwv ~ 1 / 2 e V ,  

and this will eventually be carried into the condensed state as an optical band. If 
at this point the electron energy bands are wide (say er),  as they are predicted 
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Fig. 5. Coupling constant development of the Hamiltonian representing dense hydro- 
gen (equations 4 and 17) starting with the interacting electron gas (upper,)~=0) in 
a uniform background and progressing to a two component system of electrons and 
protons (lower,)~=1). 

to be at high pressure, then an electron-phonon coupling is expected to be scaled 
by {hW.CF}½ which, at r, ~ 1.5 is already ,,- 4 e V .  This result was important 
in the early suggestion [20] that metallic hydrogen might be a high temperature 
superconductor for monatomic states, but also for states based on H + which is 
also quite strongly bound and which, on account of its spin, might also be paired. 
However, as will be seen, a range of different orderings (including those involving 
spin) is open to hydrogen, each owing its possible origin to strong many-body 
effects. 

4 B a n d s ,  B a n d - O v e r l a p ,  a n d  t h e  M e t a l l i c  T r a n s i t i o n  

A quite general approach to the expected density driven metallic transition in 
hydrogen can be formulated by augmenting (1) to include the presence of a static 
but spatially independent vector potential A. It is to be chosen to always satisfy 
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V x A = 0, and if the macroscopic volume V is now taken as a torus, then A will 
be associated with a magnetic flux permeating the exterior region, these regions 
being inaccessible to protons and electrons. The Hamiltonian corresponding to 
(1) now becomes 

N 

r - t - ~ - ' ( - 1 )  ~+~' dr dr '¢c ( r  - ' ~(~) 

where P~i = (h / i )Va i .  It was noted earlier that  independent of phase, the ground 
state energy E of (1) satisfies scaling relations; the same is true here [21], and 
in addition the dependence of E on any total current J = (J} that might be 
established is given by 

- r ~ d / d r ~ ( E / N )  = ( (T) + E ) / N  - ( V / N ) J . A / c ,  

where 
a - :  ( J )  = + 

a' i  

Then so far as the energy is concerned, it follows that for insulating states ( J  = 0) 
there can be no dependence on A with the specified form. Following Kohn [22], 
this can be taken as general criterion for the persistence of the insulating phase 
of hydrogen. A non-vanishing dependence on A will then signify a transition to 
the metallic state, for the dual system of protons and electrons, the equivalents 
of (5) for such a state are [21] 

E = N f ( m , r ,  ; mpr, ;Ars ) / r , ,  

and 
E = gg(e2rs;  A2r,) /r~.  

Though perturbative treatments may be possible [21], general solutions for the 
hydrogen problem have not yet been established. However, some qualitative argu- 
ments can be advanced to suggest that  the metallic transion will occur at values 
of r~ lower than 1.5 (but leaving open still the possibility of further ordering pre- 
ceding the progression to a metallic state). They begin by first appealing to the 
dimensional implications of electronic structure of an isolated hydrogen molecule. 
The Coulomb interactions in (1) are then manifested, for example, in the static 
dipole polarizability it is a tensor with components all = 6"49a3, c~± = 3.72a 3, 
and equivalent as stated above to a spherically symmetric object with aver- 
age polarizability a = 5.6a 3. If a static charge -e is brought to within r of 
such an object then the mutual  energy is - ( e2 /2ao) (a /a3) / ( r /ao)  4. A sec- 
ond measure of the internal structure of the molecule is the ionization energy 
El(e2/2ao) = 1.1351(e2/2ao). Imagine therefore a possible balance of energies 
involved in removing an electron from one molecule and then inserting it in a 
crystal of hydrogen at a distant location. (This may be likened to the process 
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of electron detachment and solvation that accompanies solution of, say, Li, in 
anhydrous ammonia.) Since the free radical H~- is actually unbound, the sym- 
metric choice for localizing this electron will be an interstitial site. If the crystal 
has high symmetry (for example, face centered cubic with lattice constant a) the 
energy gain arising from polarization is, in a simple semi-classical approximation 

(a /2ao)4  -- 

where C ={6 + 2 r / v ~ } .  Here the first term in C originates with immediate near 
neighbors, and the second from all others, but treated as a continuum. Note the 
conversion (a /2ao)  1 r,  = (4 r / 3 )~ r ,  where is still taken as a convenient measure 
of the density. It follows that an approximation to the polarization energy is 
just - 7 / r ~ R y ,  with 7 taking the value ,,~ 7.9. Because an electron has been 
localized in an interstitial region there is a kinetic energy ~/ r  2 Ry, where ~ is 
easily seen to be of order unity. The assumption being made is that  electronic 
timescales internal to the molecule are shorter than those associated with the 
localized electron. It now appears that  a density can be found where an electron 
can be detached from a molecular unit and located without energy penalty at a 
distant interstitial site. The condition for this is approximate equality of Ex and 

4 2 7/rs  - 6 / r  s . The solution is r~ ,~ 1.45 corresponding to about 9-fold compression. 
This estimate is not greatly altered by inclusion of the effects of what may be 

considered a distant surrounding dielectric on the ionization energy of the atom 
concerned. To take the case of a hydrogen atom it can be imagined that  within 
the coordination shell of neighbors the potential seen by an electron is - e 2 / r ,  
but  beyond is - e 2 / e r  where e is the dielectric constant of what is now taken as a 
continuum. Perturbation theory then asserts that the ionization energy becomes 

But c itself is determined by the level structure of the atoms as expressed 
by the average linear polarizability a of the distant distribution. For example, 
at the level of the Clausius-Mossotti approximation, c = 1 + (4~r/3)~a/(1 - 
4~r~a/3). Again, for the hydrogen atom the excited levels will penetrate far 
more into the surrounding continuum dielectric than will the ground state wave 
function. Merely to obtain an estimate we can take all states to penetrate equally; 
then we have a scaling a = e3OtH, which can be used as a first correction to 
the constant polarizability models of dielectric divergence. These corrections do 
not significantly affect the prediction that at compression corresponding to a 
reduction by about 50% in the separation of near neighbor molecular centers, an 
electronic instability is anticipated. The same prediction emerges from the more 
traditional application of the Hertzfeld criterion [23]. 
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In the argument just given it is important to note that H + has a spin, (and 
in a suitable background is therefore itself susceptible to exchange driven pair- 
ing), and also internal dynamics very different from H2 (the principal vibron has 
an energy ,,~ 0.25 eV). Further, as noted the linear polarizability of H2 is very 
anisotropic. From this it can be concluded that in the presence of transferred 
charges it is aligned states that may take preference as indicated above. More- 
over, transferred charges in significant numbers will be subject to electrostatic 
redistribution (assured by energies of a Madelung character), and also of course 
to band-broadening. The expectation therefore is of an eventual state of a charge 
density wave type, that is, of a self-sustaining electronic distortion as envisaged 
by, for example, Onsager [24]. 

With this hint of impending electronic instability, dense hydrogen can now 
be considered from the pragmatic viewpoint of a perfect crystalline state, and 
therefore from the standard mean-field approach to the electronic problem. As 
is well known this leads to paramagnetic Bloch waves and energy-bands c,~k, the 
solutions to 

{-2~m2eV2 + V(r)}¢nk = ~n~¢n~ 

with V(r) as the best self-consistent approximation to the one- and two-body in- 
teractions and to the required overall antisymmetry of the original many-electron 
problem. For paired proton states an integral number of bands can be exactly 
filled providing an overall band-gap exists. The magnitude of this gap depends 
on density, on structure (particularly the orientation of proton pairs) and on the 
quality of approximation in the construction of V(r). 

The proposition that dense hydrogen could achieve a metallic state with 
pairing of protons retained was put forward in 1968 by the author [20], and 
by Ramaker et al. in terms of zone occupancy [25] (and also by Friedli and 
Ashcroft [26] for a quite specific band structure). The underlying physics rests 
with the observation that the pairing of protons is very much driven by exchange 
arising with a density reflecting the cusp structure, and this changes little when 
electrons are driven from localized to itinerant with rs in the range r, ,-~ 1. The 
reduction of the gap in this process (the gap is generally indirect) is confirmed 
by most band-structure calculations, those being largely carried out nowadays 
within the local approximation of density functional theory [27-31]. Since it is 
precisely the closing of a gap which is the issue here, it is actually necessary 
to go beyond this local approximation to decide the question. The study by 
Chacam and Louie [31] achieves this within hexagonal structures; they confirm 
for hydrogen the general rule that the local approximation under-estimates gaps 
in a one-electron band-structure. 

Residual many-particle effects are also particularly important to this mat- 
ter of projected band gap closure. On generM grounds it is known that a gap 
cannot close continuously [32]; residual many-electron effects lead to the possi- 
bility of instabilities, for example the condensation of excitons, or the formation 
of charge density waves. For the latter it may be anticipated that if the valence 
band maximum and conduction band minimum are separated in reciprocal-space 
by ko (Figure 6), then a change density-wave accompanying the closure of the 
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associated gap will reflect this basic dimension. As has already been noted [33}, 
distortions in molecular coordinates can now arise as a consequence, and given 
the importance of exchange it can be seen that  a relative shift in intermolecu- 
lar separation can be compensated by an exchange energy lowering. All that  is 
required for this is an associated asymmet ry  in the charge within a molecular 
pair (Figure 7). The inference is clear; at a density close to where a single- 
particle gap is predicted to close, broken electronic symmet ry  in electron charge 
should develop. This is observed, for r~ < 1.45, in recent total  energy calcula- 
tions of progressively densified hydrogen (Edwards and Ashcroft [34]). Locally 
a molecule possesses a multipole structure now including a dipole. It  is known 
that  structures of a fi lamentary kind can often occur with assemblies of dipoles. 
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Fig. 6. (a) Typical single-particle band structure of dense hydrogen for average densi- 
ties ~less than a characteristic density Pc at which an indirect energy gap (EG) vanishes. 
(b) For situations where structure is maintgalned increase in pressure to p < pc results 
in a band overlap metallic state, with hole and electron pockets separated by a charac- 
teristic wave-vector ko. In the presence of many electron effects gap closure is expected 
to result in a molecular charge density wave. 

5 L i q u i d  M e t a l l i c  H y d r o g e n  

The tenacity of (electron) exchange driven pairing of protons in dense hydrogen 
may have ramifications in conditions that  begin to approach classical. In a recent 
experimental  advance utilizing dynamic compression techniques, Weir et al. [8] 
report  the observation of metallic conductivity in a liquid phase of dense hydro- 
gen at a relative compression ~/~o --, 9 and at a tempera ture  T --~3000K (note 
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that  this temperature has not reached the equivalent energy of the intramolec- 
ular vibron). The experiment measures conductivity directly and its values at 
these densities is typical of other liquid metals if projected to the temperatures 
characteristic of the experiment. From analysis of the progression of tempera- 
ture under dynamic loading it is reported that  very little translational energy 
has been expended in, for example, significant rupturing of proton pairs. If this 
is accepted then it follows that  a metal has been fleetingly formed in hydrogen 
that  remains largely paired, evidently a legacy of exchange under these very 
extreme conditions. 

The detailed nature of this state is not completely clear but a possibility 
based on the expected high average coordination of the presumed fluid phase 
presents itself (as is well known, in simple systems the average change in near 
neighbor coordination on melting is small). On the assumption that  the system 
remains above the melting curve, we have a situation where it is reasonable to 
assume the diffusional time scale to be far longer than rotational. An isotropic 
solid phase which, in the sense of orientational disposition, best mimics both 
the high coordination and rotational averaging characteristics of the liquid is 
the Pa3 structure. Both the total energy and band-structure of hydrogen in this 
arrangement can be determined by the methods outlined above. Moreover it is 
straightforward to show [33] that  the lower bands in such a structure can be 
represented by an equivalent face-centered cubic description where 

Vlll --~ (3/4~rva~aao)S(111)v(111) (18) 

and 
1/200 = (3/4rrr3a3)S(200)v(200). (19) 

Here So is the structure factor per proton, and is given by 

So(l, m, n) = ~ cos 27rc~(/+ m + n) +(_/)~+m cos 27r~( - /+  m + n) 

+ ( - 0  m + -  e o s  - m + n )  ( 2 0 )  

+(_ l ) .+ t  c o s  2 -o,(t + m - 
J 

with c~ = d(rs)/x/~a (2a being the separation, on average, between protons). In 
(18) and (19), the quantity v(K) is the Fourier transform of potential presented 
by a single proton and associated electron response. Accounting for effective mass 
rescaling (originating with the higher bands) an elementary condition signalling 
the onset of band gap closure can be determined in this picture (33), and once 
again it corresponds to rs ,-~ 1.5. 

This picture can be used to examine, in an approximate way, the role of 
temperature as it is expected to influence the disposition of hydrogen in a fluid 
phase. A common expectation is that  kinetic effects associated with large tem- 
perature rise will lead to dissociation of the proton pairs. Indeed this matter  
is discussed at length, for example, by Saumon and Chabrier [35] whose main 
contention is that  at high densities H2, H, H + etc. can be given a well defined 
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meaning as separate physical entities entering a fully statistical description. But 
at r8 = 1.5, for example, the one-electron bands are already very wide (the 
free electron estimate is 50/r ,2eV) which means that  there must be significant 
overlap between the orbitals assigned to these entities. Now it has already been 
observed [33] that  beyond densities corresponding to r8 = 1.76, the long-range 
contributions to the interaction potentials associated with neutral entities can- 
not be defined. Further, as an alternative to complete dissociation there will be 
processes where a given pair is simply promoted to a state of high vibron excita- 
tion resulting in large amplitude spatial fluctuation, but not in overall diffusion. 
Accordingly, on the issue of the origin of electronic charge at high density and 
temperature,  it may be more profitable to pursue the energy-band route, where 
it is well known that  for low levels of excitation a standard Debye-Waller factor 
reduction of energy gaps is expected. 

X X X ~4 X 

(a) 

x x x )( 

(b) 

)( X 

Fig. 7. (a) One-dimensional representation of the normal pairing state in hydro- 
gen, itself originating with a Peierls type distortion from a monatomic arrangement. 
(b) Higher pairing that results [36] from the charge-density wave associated with the 
gap closure in Figure 6(b); note the possible charge asymmetry within pairs. 

To gauge the general effect of fractional pair extension, we may take the Pa3 
structure as a guide, but  simply extend one of the four pairs, that  is to assign it 
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a separation 2d'(2d ~ > 2d) different from the three remaining basis pairs which 
are kept at their values for r ,  = 1.5. Protons are therefore being driven towards 
what was previously an interstitial region. Figure 8 shows the consequent change 
in the energy per proton (obtained by density functional theory within the local 
density approximation for exchange and correlation [36]). On the same scale, 
the reported temperatures at which metallization has been achieved correspond 
to k s T  ~- 0.019 (Ry). From Fig. 8 this is seen to associate with a significant 
possible excursion of the separation of a pair (a tendency towards dissociation). 
However, this will be in competition with kinetic processes in which energy is 
accepted into rotational degrees of freedom, and even vibrational. Further with 
respect to the origin of charge carriers in the reported metallic state [8], there is 
a further consequence of increasing the separation between protons of a fraction 
of the pairs; this is an additional lowering of the gap. 
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Fig. 8. Energy per proton as a function of separation (2d') of a single proton-pair, the 
others held fixed in a Pa3 structure at their minimising values (when d' = d). Here the 
average density corresponds to r, = 1.5 . The recent shock experiment of Weir et al 
[8] reports metallization for a dense fluid state at a temperature k B T  ~-- 0.019 Ry. 

To see this, suppose in a Pa3 structure that three of the pairs maintain their 
separations at 2d, but  the fourth has its associated separation increased to 2d', 
as in the exercise underlying Fig. 8. Then from (20) we see that  the structure 
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factor per proton becomes 

1 ! 
S(I, m, n) = So(l, rn, n) - -~sinrr(cr - c~)(l + m + n)sinTr(a' + a)( l  + m + n) (21) 

and is therefore reduced when a pair is extended. In consequence (see (18) and 
(19)) the tendency towards band-gap closure will be accelerated by any kinet- 
ically induced extensions in bond-lengths. These processes will make it more 
propitious for electrons to be promoted into conducting states and whether 
dissociation occurs in significant amounts remains therefore a matter  directly 
connected with the persistence of the exchange driven bonding. For, at a given 
density this bonding leads within an adiabatic framework to the small oscilla- 
tions problem associated with the vibron spectrum. There are some 13 levels of 
excitation for the free molecule; this number is expected to decrease upon com- 
pression. The acceptance of energy exceeding the highest vibron (or the highest 
part of an associated band) could be taken as the signature of the onset of disso- 
ciation. Little is known about the progressive decline with pressure of the total 
number of vibron levels (or bands), but estimates have indicated [37] that  at re 
= 1.5 the number could still be quite significant. Save for entropic effects, this 
suggests that at kBT  ~- 0.019 Ry the tendency towards dissociation is not large 
and that  the origin of the itinerant electrons rests more with a rapidly declin- 
ing band gap associated with increasing vibronic and rotational excitation. The 
scale of resistivities reported for liquid metallic hydrogen is interesting. A useful 
comparison can be made with the resistivity p expected of a monatomic phase 
of liquid hydrogen. In the first Born approximation, solution of the Boltzmann 
equation for this system leads to [38] 

47r 3 12 ~ f l  
(22)  

where p~ = aoS/e 2 =_ 21.7#$2cm is the atomic unit of resistivity. In (22), 
y = q/2kF, and v(q) is the Fourier transform of the screened electron-proton 
interaction scaled to its long-wave length limit ( 2 5eF) in linear screening. Further 
the average structure of the proton assembly under specified thermodynamic con- 
ditions is given in the static structure factor S(q) = ( 1 / N ) ( ~ p ( q ) ~ p ( - q ) ) -  N6qo. 
For reasonable models of S(q), typical values of the resistivity (at r,  ~ 1.5, for 
example) are about 15pf2cm [37]. But as reported by Weir, et al., the state of 
liquid metallic hydrogen is f a r  from monatomic. 

The estimate just given corresponds to a static structure for the fluid state 
which is typical of conditions just above melting. The experiment of Weir et al. 
is likely to correspond to conditions well above melting where S(q) begins to 
lose the features normally associated with a highly correlated fluid. Since kinetic 
energy is now playing such a prominent role, it is useful to consider the opposite 
limit, i.e., S(q) = 1. Then with Thomas-Fermi screening, the resistivity in this 
limit becomes 

p = poSero{tOg( , + - 1}/9(r  + 
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4 1 where ro = (97r /4)~ = 6.03. This leads to resistivities in the vicinity of 4Opl2cm, 
notably far below the reported 200 - 500pl2cm. However, these values can be 
partially accounted for by a picture in which the persistence of exchange driven 
pairing, which plays such a prominent role in the above, actually carries into 
the high temperatures states (temperatures which still only begin to reach the 
vibron excitations). The states, now extended, retain the character of the band- 
overlap phase, in which the high electron density close to the protons persists 
and continues to favor proton pairing. On the other hand a mobility edge has 
been crossed, and the phase is conducting. As shown by Louis and Ashcroft 
[39] the remnants of the band overlap situation typical of the crystal leads to a 
situation quite different from the monatomic fluid state, and to conductivities 
that  are also very much lower. 

The notion of a possible state of dense hydrogen in which electrons are coop- 
eratively but incompletely bound to proton (or deuteron) pairs has been intro- 
duced earlier [40], and its consequences with respect to a paired low temperature 
liquid phase have also been partly investigated. The experiments of Weir et al. 
indicate that  this concept of the persistence of proton pairing endures in tem- 
perature regimes that  appear high, but are still modest on the scale of proton 
zero point energies. They also indicate that  further experimental and theoretical 
pursuit of the paired metallic phase, and its competition with ionic distortion 
(including spin ordering [41]) remains now of considerable interest. 
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A b s t r a c t :  Quantum dots are reviewed, with emphasis on the theory of elec- 
tron correlation. A brief survey of dot fabrication and experimental results is 
also given. The theoretical model of a dot as a 2D system with parabolic con- 
finement and Coulomb interaction is explained and numerical results for spin 
polarised dots are presented to illustrate the physics in a typical case. When 
a dot is placed in a magnetic field a series of transitions occurs in which the 
ground state angular momentum increases with field. The angular momentum 
values that are selected form a sequence of magic numbers that is characteris- 
tic of the electron number and total spin. The ground state transitions affect 
most physical properties of dots and generally cause magnetic field dependent 
oscillations. The sequence of magic numbers is related to the symmetry of 
the classical minimum energy configuration and an approximation technique, 
based on a harmonic expansion about the classical minimum, is shown to give 
a good account of dot physics in the high angular momentum limit. Future 
prospects for studies of coupled dots are briefly discussed. 

1 I n t r o d u c t i o n  

Quantum dots are semiconductor nanostructures that are capable of confining 
very small numbers of electrons. One of the original motivations for studying 
them was the possible application to novel electro-optic devices [1]. Rapid ad- 
vances in fabrication technology have subsequently led to a large number of 
experimental and theoretical studies of dot physics and uncovered some quite 
novel effects [2, 3] such as the Coulomb blockade and magic numbers. Very 
recently there has been renewed interest in applications and a quantum dot 
memory device that operates at room temperature has been demonstrated [4]. 
The present work is a tutorial review of recent progress with emphasis on the 
theory of correlation in dots that contain less than about 10 electrons. 

The general plan of this work is first to describe some basic properties of 
dots and then to discuss some of the underlying principles. In keeping with the 
tutorial aim, the discussion centres on the simplest system, a dot containing just 
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two interacting electrons, which is treated in detail. The general properties of 
dots are detailed in Section 2 which covers dot fabrication, experimental results 
and theoretical models. Following this the two electron system is treated in 
Section 3. This begins with an examination of the classical two electron system 
and shows how some features of dots have classical origins, while others are 
definitely not classical and can be traced back to the Pauli exclusion principle. 
After the basic ideas have been developed for the two electron system they 
are applied to more electrons in Section 4 and finally some future prospects 
are discussed in Section 5. This work is solely concerned with quantum dots. 
A discussion of electron correlation in related nanostructures such as quantum 
rings and quantum wires can be found in the literature [5, 6, 7]. 

2 G e n e r a l  O v e r v i e w  

Most dots are fabricated by applying a lateral confining potential to a two di- 
mensional electron system. Typically, the two dimensional system is in the form 
of a heterojunction [8] or a quantum welt [9] and the dot is made by applying a 
confining potential in the plane of the two dimensional layer. One way of doing 
this is to etch away part of the system but a more common alternative is to use 
a modulated gate electrode [10]. A small part of the gate is in the form of a 
cap which is further away from the two dimensional electron layer that  the rest. 
When a negative voltage is applied to the gate the electrons in the regions clos- 
est to the gate are fully depleted but a few electrons remain in the region under 
the cap, which forms the quantum dot. Typically, the region that  confines the 
electrons is about 50-100am in diameter and the number of electrons can be in- 
creased from zero upwards by changing the gate voltage. Many experiments have 
been done with dots of this kind. A third and more recent fabrication technique 
is self-organised growth of InAs dots on GaAs substrates [11]. 

Experimental studies of dots include work on transport through dots, charg- 
ing of dots and spectroscopy. Early work showed that the far infra-red (FIR) 
absorption spectrum of dots containing more than one electron is very similar 
to the absorption spectrum of a single electron in a dot [10, 12]. The similarity 
of the observed spectra to the single electron spectrum provides strong evidence 
that  the confining potential is nearly parabolic. If it was ezactly parabolic the 
centre of mass motion (CM) would separate from the relative motion (RM). 
Because the dipole matrix element for optical absorption only depends on the 
centre of mass co-ordinate this means that FIR absorption only depends on the 
centre of mass motion and hence is unaffected by electron-electron interactions 
- a result known as the generalised Kohn theorem [13, 14]. The observed form of 
the experimental spectra is evidence that the confining potential of the real dots 
is nearly parabolic. However the experimental spectra do contain some interest- 
ing splittings which are attributed to residual mixing of CM and RM states by 
a small non-parabolic component of the confining potential. There have been 
a number of detailed studies of this effect which is still only partly understood 
[15, 16]. Optical studies of dots continue to advance and recently it has become 
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possible to do optical experiments on single dots [17]. 
Studies of transport through dots and charging of dots are closely related. 

Both make use of the Coulomb blockade to control tunnelling of electrons into 
and out of a dot [3]. In each case the dot is constructed so that  electrons can tun- 
nel into and out of it from a reservoir with electrochemical potential #. The dot 
is defined by a system of gates whose potentials Vi can be adjusted. The electro- 
chemical potential of the dot #(N + 1; {1//}) = E(N + 1, O; {~}) - E(N, O; {V/}) 
is the energy required to add the (N + 1)th electron to the dot and depends 
on the gate voltages, V/, as well as the details of the confinement and interac- 
tion potentials. Here E(N, 0; {~})  is the ground state energy of the N-electron 
dot and it is assumed that  electrons tunnel into and out of the ground state. 
When the dot is at low temperature the number of electrons is fixed at N if 
IS(N + 1, {¼}) > # > IS(N, {¼}). However an electron can tunnel into the dot 
when IS(N + 1, {V~)) = is. This resonance condition can be set for different val- 
ues of N by changing the voltage of a gate and leads to a series of conductance 
peaks in transport of electrons through the quantum dot as a function of the 
gate voltage [18, 19, 20, 21, 22, 23, 24]. A recent development is the study of 
photon assisted single electron tunnelling [25, 26]. An elegant and alternative 
way of probing the resonance condition is to measure the charge in the dot di- 
rectly. This is done by integrating the dot and a field effect transistor on the 
same substrate so that  the whole system functions as a sensitive electrometer 
which enables the charge in the dot to be measured [9, 27]. 

The current theoretical model of a dot is that  of a system in which elec- 
trons are constrained to move in two dimensions, are confined by a parabolic 
potential and interact via the Coulomb interaction. This is sufficient to describe 
the physics of dots semi-quantatively but it is becoming apparent that  a more 
detailed model is needed to treat real dots accurately [28]. For example, it has 
already been mentioned that the confining potential is not exactly parabolic 
[15, 16]. In addition, the electron motion is not exactly two dimensional and 
there are corrections to the Coulomb interaction [29]. A further complication is 
that  the ionised donor density is spatially non-uniform in systems with modu- 
lated gate electrodes [30]. At present, the combined effect of all these corrections 
is not understood and most theoretical studies have been done with the 2D 
parabolic confinement model. 

One of the most useful tools for theoretical work on electron correlation in 
dots is exact diagonalization of the Hamiltonian. This was pioneered by Bryant 
[31] who studied interacting electrons in small quantum boxes. Subsequently, 
Maksym and Chakraborty [14] considered dots with 2D parabolic confinement 
in a perpendicular magnetic field, B. In this case the ttamiltonian of an N- 
electron dot is 

N [ 1 ( _ ,  , , ~ , 1  ,w2r~] 

i----1 (1) 
1 / l  i,K.....,~ ~ x N N 1 

+ + g* pBBSz, 
j t i  
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where the first term is the one electron term, the second term is the Coulomb 
interaction term and the last term is the Zeeman energy. The confinement energy 
is hw0, m* is the effective electron mass, g* is the effective g-factor and c is the 
dielectric constant. The circular gauge has been used so the magnetic vector 
potential, A = (B/2)(]¢ x r ) .  The eigenstates of non-interacting electrons with 
2D parabolic confinement are the Fock-Darwin states [14]. They have the form 

1 [ n, ] ' ( a )  
( n ¥ l t l ) !  

with energies given by 

IZl 
I (r2/2A 2) exp(- r2/4A 2) exp(-il¢), 

(2) 

= + 1 + Itl)h  - gh  /2, (3) 

where I and n respectively are angular momentum and radial quantum numbers, 

the L~ I are associated Laguerre polynomials, ~ = h/(2m*~2), g22 = ~ + w~/4 
and wc is the cyclotron frequency, eB/m*. The parameter $ is a measure of 
the length scale of the system and it is important  to note that  it decreases 
with magnetic field. In addition, the length scale is also affected by the angular 
momentum and the typical radius of the Fock-Darwin states is given by 

R 2 ~ 2)t2(2n + Ill + 1). (4) 

The basis for exact diagonalization of the Hamiltonian in Eq. 1 is constructed 
from Slater determinants of Fock-Darwin states. After the Hamiltonian has been 
expressed in this basis standard numerical procedures such as the QR algorithm 
or the Lanczos method can be used to diagonalize it. Calculations for upto about 
6 interacting electrons are relatively easy to do on modern workstations but 
beyond that  the size of the basis grows rapidly and method becomes prohibitively 
expensive. 

A particularly interesting aspect of correlation in quantum dots is the way 
the magnetic field affects the ground state. The ground state energy as a function 
of magnetic field [28] is shown in Fig. 1 for the case of 3 spin polarised electrons 
in a GaAs dot with hw0 = 2meV (solid line, upper frame). 

The contributions of the one electron energy, the Coulomb energy and the 
Zeeman energy have been calculated by taking the ground state expectation 
value of the Hamiltonian and are also shown in the figure. It can be seen that  
the ground state energy is a fairly smooth function of field but  the one electron 
and Coulomb terms have discontinuities. The one electron energy first decreases 
with increasing field, then increases. The initial decrease is a consequence of the 
decrease in the length parameter,  ~. Physically, it occurs because shrinkage of 
the wave function puts the electrons closer to the centre of the dot where the 
confinement potential has a minimum. The increase of one electron energy at 
higher fields is due to the increasing zero point energy of the cyclotron motion. 
The shrinkage of the wave function also affects the Coulomb energy which ini- 
tially increases with field as the electron separation shrinks, but this process 
does not continue indefinitely. Because the length scale increases with angular 
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Fig. 1. Ground state energy of 3 interacting, spin-polarized electrons (upper frame) 
and effective radius (lower frame) as a function of magnetic field. 

momentum (Eq. (4)) the system is able to decrease its Coulomb energy by in- 
creasing the total angular momentum quantum number, J. At certain critical 
magnetic fields the increase of one electron energy that results from an increase 
in J becomes less than the corresponding decrease in the Coulomb energy. The 
system then undergoes a transition to a new ground state which has a higher 
value of J. The cycle then repeats with increasing B and this leads to the oscil- 
lations in the Coulomb energy and the step-like increase of one electron energy 
which can be seen in Fig. 1. 

The ground state transitions are accompanied by abrupt expansions of the 
effective dot radius, R~/I. This can be estimated by calculating the radius 
of the circle that contains 95% of the charge, that is, R~II is defined by 

27r f /~Js ne(r)rdr = 0.95N, where n~(r) is the electron density. The lower frame 
of Fig. 1 shows the abrupt expansions superimposed on top of a decreasing ra- 
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Fig. 2. Ground state energy of 2 interacting, spin-polarized electrons (upper frame) 
and angular momentum quantum number (lower frame) as a function of magnetic 
field. The classical minimum energy and total zero point energy are also shown. 

dius and indicates that  actual values of J for each magnetic field region. Both 
the increase of J and the behaviour of the radius have a classical origin and it 
is shown in the next section that the classical orbits of two interacting electrons 
have similar properties. The real quantum behaviour lies in the actual ground 
state J values. The ground states only have certain J values, which are char- 
acteristic both of the number of electrons and the total spin. These values are 
known as the magic numbers. For example, the ground state magic numbers 
for 3 spin polarised electrons are multiples of 3 as indicated in Fig. 1. Roughly 
speaking, the magic numbers are a consequence of the Pauli exclusion principle: 
without the exclusion principle, some spatial symmetry is associated with the 
state that  minimises the total energy and the magic J values are the only ones 
where this spatial symmetry is compatible with the anti-symmetry imposed by 
the Pauli principle. However, as explained in Section 4, this is an oversimplifica- 
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tion because it is necessary to transform to a moving frame to find the spatial 
symmetry. 

Almost all physical properties of quantum dots are affected by the ground 
state transitions. For instance, they are predicted to cause oscillations in ther- 
modynamic properties such as the electronic heat capacity [14] and magneti- 
sation [32, 33]. In addition, calculations have shown that they affect transport 
[34, 35], luminescence [36], optical properties [15, 37, 38] and the chemical po- 
tential [39, 40, 41]. There is evidence that some of the transitions have been 
observed [27, 39]. 

3 T w o  I n t e r a c t i n g  E l e c t r o n s  

3.1 Class ical  T r e a t m e n t  

In the minimum energy configuration of two classical electrons in a 2D parabolic 
dot the electrons move in circular orbits and remain diametrically opposite each 
other. The centre of mass is at rest and the Hamiltonian for the relative motion 
is 

L 2 e 2 vn.a2~2 ~c 
He, = ~ + 8~'¢e0-------~ ÷ + --~n, (5) 

where a is the orbit radius and L is the total angular momentum. Minimising 
Hcl leads to the following equation which determines a as a function of L and 
B: 

( L ) 2  e2 1 D 2 = 0 "  (6) 
+ 8~'eC-"'~ 2rn*a 3 

This can be solved numerically to find a for any arbitrary value of L but to 
explore the physics it is sufficient to look at the large L limit. In this case a is 
approximately given by 

o=,z  v 2m.e , ( 7 )  

and the minimum energy in the same approximation is 

+ + o 

The first term is similar to the energy of a Fock-Darwin state, while the second 
is a Coulomb correction. Clearly this term increases with ILl while the Coulomb 
energy decreases and this behaviour is the same as that of the quantum one 
electron and Coulomb terms described in the previous section. The optimal L 
value minimises the energy. To compare with the quantum case it is convenient 
to put L = - h J  (the J quantum number used in Fig. 1 is defined such that  the 
total angular momentum is - h  J). The J value, J*, that  minimises E0 is given 
by 

j , 3 / 2  = 1 ~ (9) 
16re¢o ~3/2(j~ _ we~2 ) " 
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This is a monotonically increasing function of B so the classical J value increases 
in the same way as the quantum one. The limiting behaviour of the orbit radius 
can be found from the high field limit of Eq. 9, which can be written in the form: 

m. e2 
B = - -  J*. 

e 167reeo h3/2w~] 
(lO) 

This shows that J* is linear in B and hence a approaches a constant as B 
becomes large. However in the quantum case the values of J are restricted to 
integers and the optimal J value is either [J*] or [J*] + 1 where [J*] is the integer 
part  of J*, depending on which of these integers gives the lowest value of E0. 
With this restriction, a series of transitions occurs in which the J value increases 
in a step like way and a has the oscillatory behaviour shown in Fig. 1. It is clear, 
then, that  the ground state transitions have a classical origin while quantum 
mechanics is required to explain the J values that are selected. 

The classical treatment also gives some insight into the physics of the transi- 
tions. In the classical picture a transition occurs when two orbits with different 
angular momenta have the same energy, that is when Eo(J, B) = Eo(J + 1, B), 
or approximately when OEo/OJ = O. This is just the condition that defines J* 
so the transition fields in the high field limit can be found from Eq. 10. This 
shows that the transition field is proportional to J and therefore the transitions 
are regularly spaced in the high field limit. This behaviour is quite peculiar. It 
only occurs for special types of potential and the combination of r 2 confinement 
and 1/r interaction is one of them. It is easy to repeat the classical t reatment  
for a general confinement potential of the form rq and an interaction of the form 
r -p .  In this case the approximate transition fields in the high field regime are 
given by 

m* [ e 2 v / - m - ; - ] - 2 / 3 ( j . ) ~ .  (11) 
B = e 16~eeo h3/2wS] 

and it is clear that the linear J dependence only occurs when p+q = 3. A possible 
use of this result is to probe the form of the interaction potential in real dots. 
Because the confinement is nearly parabolic, measurements of the transition 
fields in the high field regime could be used to determine the exponent in the 
interaction potential and hence to probe screening effects [29]. 

3.2 Q u a n t u m  T r e a t m e n t  

In the quantum treatment CM and RM co-ordinates are defined by R = (r  1 -'[- 
r2 ) /2  and r = ( r l  - r 2 ) / 2  respectively, where r l  and r2 are the individual 
electron co-ordinates. The Hamiltonian then separates into 

H = HeM + HRM, (12) 
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where 

I (PCM + 2eA(R))2+m*w~R2, (13) HCM = 4m-"--: 

1 ( . (14) HRM : ~m* \PRM + + 

These equations describe a system which is sometimes called quantum dot helium 
and serves as the simplest example of electron correlation in quantum dots. It 
has been studied extensively by exact diagonalization, Hartree-Fock and analytic 
approximation methods [33, 42, 43, 44, 45]. The quantum states of HCM are the 
Fock-Darwin states given by Eq. 2. The states of HRM are eigenstates of the RM 
angular momentum and have the form exp(--iJRMX)¢(r) where JRM is the RM 
angular momentum quantum number, X is a polar angle and ¢(r) is the radial 
function for the RM motion. This function and the energy of the RM motion, 
E, are determined by the equation: 

[ 4m* rd-~ r + ~ + m*Y22r~ + 8re¢0-----~ + ¢(r) = EC(r), (15) 

where, L = - h  JaM. The derivative in this equation can be simplified by putting 
u(r) = x/7¢(r) which leads to 

4m* dr ~ + L 4m'r2 + m*~22r2 + 8~r~¢0------~ + u(r) = Eu(r). (16) 

Except for the -h2/(16m*r 2) correction to the centrifugal potential, the po- 
tential energy in this equation is identical to Hcz. One method of solving the 
equation approximately is to expand the potential about the classical minimum. 
The zeroth order term is exactly the classical energy (Eq. 5) and is unaffected by 
the correction to the centrifugal potential which is of order 1/IL 1. The harmonic 
term gives the energy of vibrations about the classical minimum. The higher or- 
der terms are of order 1/IX/~ or smaller so the harmonic approximation should 
describe the physics reasonably well in the large angular momentum limit. The 
approximate ground state energy is 

EGS : ECM + Ed + Eo, (17) 

where E C M  ---- hi'-2 is the CM ground state energy, E~I is the classical energy of 
the potential minimum and E0 is the RM ground state energy relative to Ecz. In 
this approximation, the total ground state energy is just the sum of the classical 
energy and quantum zero point energy associated with the RM and CM motion. 

When the spatial quantum states are combined with spin states the possible 
values of J are restricted. The total J value is the sum of JCM and JRM but 
JCM is always zero for the ground state of the two electron system. The electron 
state is required to be anti-symmetric and this forces spatial asymmetry when 
the system is spin polarised. Because the RM wave co-ordinate is antisymmetric 
this restricts the J values of the spin polarised system to odd integers. Similarly, 
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even J values occur when the system is spin unpolarised. These are the magic 
numbers for the two electron system. 

Fig. 2 (upper frame) shows the approximate and exact ground state energies 
for two spin polarised electrons, with parameters as used for the calculations 
leading to Fig. 1. The solid line shows the results of the harmonic approxima- 
tion and the diamonds give the results of the exact numerical diagonalization. 
The remaining lines show the classical energy and the sum of the classical and 
quantum zero point energy. It is clear that the exact and approximate energies 
agree well even in the small angular momentum regime. The lower frame of 
Fig. 2 shows the ground state J value. Again, it is clear that  the classical and 
quantum calculations agree well. In addition, the spacing of the transition fields 
is nearly regular, in agreement with the general discussion after Eq. 10. Using 
this equation and allowing for the fact that the J step height is 2 gives 3.22T 
while the numerically calculated spacing is 3.2 :t: 0.IT.  

4 M o r e  E l e c t r o n s  and  M o r e  M a g i c  N u m b e r s  

For systems with more electrons it is not possible to identify the magic numbers 
from the Pauli principle alone. The two electron system is exceptional in this re- 
spect and a simple connection between spin and orbital angular momentum does 
not occur for larger numbers of electrons. For example, in the 3-electron system 
spin polarised states are allowed to occur at every angular momentum yet the 
magic numbers are multiples of 3. To understand why these particular numbers 
occur it is necessary to identify a class of states that are energetically favourable 
and then to ask whether these states are compatible with anti-symmetry. 

From the 2-electron example, it is reasonable to suppose that  the ground 
state in the high angular momentum limit is localised about the classical mini- 
mum. However the classical minimum is not well defined in the laboratory frame 
because the electrons move in circular orbits. To see a time independent mini- 
mum one has to transform to a rotating frame, for example, with suitable choice 
of frame the optimal positions of two electrons would be diametrically opposite 
each other on the x axis. This raises the question of a suitable frame for the gen- 
eral N-electron ease. Whenever a moving frame is used Coriolis forces appear 
and this leads to a Hamiltonian in which co-ordinates and momenta  are coupled. 
It is desirable to have a frame in which this coupling is minimised and a suitable 
choice is the Eckardt frame which has long been used to study the vibrational 
states of molecules [46, 47]. The Eckardt frame is chosen so that  the angular 
momentum associated with vibrations about the classical minimum vanishes to 
first order in displacements. This leads to the Eckardt condition, 

ai × r~ = 0, (18) 
i 

where the ai  are the equilibrium positions that  minimise the classical energy, 
the r~ are positions relative to the CM and all vectors are in the Eckardt frame. 
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With normal co-ordinates used as dynamical variables, the classical Eckardt 
frame Hamiltonian is 

2 N - 3  
1 wc 

1 L~)2 + E P} + V + -~'LnM, (19) H R M  = -~ ]~( L RM - -  

k = l  

where LRM is the RM angular momentum, L~ = ~ k  ZkPk, Zk = ~ij(Qij  x 
Qik)" ]¢Qj and # = lo/(Io + m* ~ i j  ai'Qij Qj)2. Here Pj is the momentum con- 
jugate to Q j, Io is the equilibrium moment of inertia, the Qij are elements of the 
matr ix  that relates cartesian and normal co-ordinates and V is the total poten- 
tial (including confinement and interaction terms together with a term quadratic 
in the magnetic vector potential). The quantity L~ is an angular momentum as- 
sociated with vibrational motion and it involves products of co-ordinates and 
momenta.  Physically, the coupling occurs because of Coriolis forces and the spe- 
cial feature of the Eckardt frame is that  the coupling term is of second order 
in the displacements from the equilibrium positions. In quantum mechanics the 
Eckardt frame Hamiltonian is similar to the classical one except for a small extra 
term which is called the Watson term and is analogous to the correction to the 
centrifugal potential that appears in Eq. 16. The RM Hamiltonian defined by 
Eq. 19 depends only on 2N - 3 co-ordinates although 2N - 2 co-ordinates are 
needed to describe the relative motion. The final RM co-ordinate is an Euler 
angle, X, that  gives the orientation of the Eckardt frame. The transformation to 
the Eckardt frame is an exact transformation of the RM Hamiltonian hut it is 
usually followed by a harmonic expansion of the potential to find the classical 
vibrational frequencies. 

Before applying the harmonic expansion of the Eckardt frame Hamiltonian 
to study the magic numbers it is necessary to consider the possibility of quantum 
tunnelling. There are actually N! equilibrium configurations, each correspond- 
ing to a different permutation of the electrons. Some of these configurations 
are connected by rotations but others are not. For example, equilateral trian- 
gular configurations of 3 electrons with vertices labelled (123) and (312) can be 
rotated into each other but it is not possible to rotate (123) into (213). The 
configurations that  cannot be rotated into each other are called symmetrically 
equivalent. A harmonic expansion can be done about each symmetrically equiv- 
alent configurations and the resulting quantum states are degenerate. In reality 
tunnelling breaks the degeneracy but this effect is small in the large angular 
momentum limit and the magic numbers can be identified by considering a state 
localised about any one of the symmetrically equivalent minima. In the harmonic 
approximation these states take the general form 

= ¢CM exp(--iJRMX)fJ,M,n,...n~N_3(Q1..., Q2N-3)¢spin(S~), (20) 

where ¢CM is the CM wave function, f is a vibrational wave function, 
rtl, . . . n 2 N - 3  are the numbers of quanta in each vibrational mode, ¢spi,~ is the spin 
function and Sz is the z component of the total spin, S. The key question now is 
whether these states can be anti-symmetrized. Applying the anti-symmetrization 
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operator to k~ either results in an anti-symmetric state or zero. The important  
point is that the anti-symmetrization operator operates on the laboratory frame 
co-ordinates. Because of the Eckardt condition, Eq. 18, there are some permuta- 
tions that  are equivalent to spatial rotations. Their effect is to rotate the Euler 
angle X and to rotate and permute the Eckardt frame displacements. The clas- 
sical minimum has definite point symmetry and the corresponding symmetry  
group determines how the vibrational states transform under the permutations 
that  are equivalent to spatial rotations. The question of whether k~ can be anti- 
symmetrized can be decided by considering the effect of these special permu- 
tations and because of their equivalence to rotations it is possible to relate the 
magic numbers to the symmetry of the classical minimum. This requires some 
group theory but the physics can be illustrated with the special case of the 3- 
electron, spin-polarised ground state which can be treated without resort to the 
general procedure. In this case the classical minimum energy configuration is 
equilateral triangular and the special permutations are equivalent to three-fold 
rotations, for example (123). The vibrational ground state is symmetric under 
these rotations while the CM ground state and spin state are symmetric under all 
permutations. The symmetry properties are therefore determined solely by the 
angular momentum factor exp(--iJRMX). The permutations that  are equivalent 
to three-fold rotations have even parity so the angular momentum factor must 
be invariant under them if the ground state is anti-symmetric. Because JCM ~- 0 
in the ground state, this immediately restricts the JRM values to multiples of 3 
as shown in Fig. 1. A detailed group theoretical analysis [47, 48, 49, 50] gives all 
the magic numbers that  are found in numerical calculations for electron numbers 
up to 7 and it is remarkable that  exactly the same magic numbers emerge from 
a composite fermion treatment [51]. 

When the number of electrons becomes large there is the possibility that  
the ground state can be influenced by tunnelling between inequivalent minima. 
That  is, there can be competing classical minima which have different symmetry  
but very similar energies. Approximate quantum states can be found that  are 
localised about each of these minima. However if the states localised on minima 
of different symmetry have the same quantum numbers tunnelling between the 
minima is allowed and the ground state is best described as a state of mixed 
symmetry.  The intuitive picture of the system when tunnelling between inequiv- 
alent minima is forbidden is that  of a "molecule" while the mixed symmetry  
state might be called a "liquid". Systems of parabolically confined classical elec- 
trons have been studied in detail [52, 53, 54] and it is known that  competing 
ground states first occur when the electron number is 6 and the two competing 
symmetry  types in this case are a six-fold ring and a five-fold ring with an elec- 
tron at the centre. The global minimum energy occurs in the five-fold case. The 
symmetry  analysis for spin polarised electrons shows that  five-fold rings occur 
when the JRM = 5k and six-fold rings occur when JRM = 6k + 3, where k is an 
integer. Mixing can take place when JRM = 15, 45, 75... When these J values are 
converted to filling factors [55] with the aid of the expression u = N ( N  - 1) /2J  
the resulting sequence of filling factors is v = 1, 1/3, 1/5... In other words the 
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"liquid" states of the 6-electron system occur at exactly the same odd denom- 
inator filling factors as fractional quantum Hall liquids. An open question is 
whether tunnelling between symmetrical ly inequivalent states only takes place 
at odd denominator  filling for an arbi trary number of electrons. 
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Fig. 3. Pair correlation function P(r ,  r0) for 6 interacting, spin-polarized electrons at 
B -- 17.5T. Pair correlation functions for the lowest energy state at the indicated 
angular momenta are shown. The black spots denote vo. The x and y unit is 1.89nm. 

The intuitive picture of "molecular" and "liquid" states is consistent with 
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numerical calculations of the pair correlation function [47]. This function has 
proved extremely useful in characterising quantum dots. For spin polarised elec- 
trons it is defined as the ground state expectation value: 

(2~r*~) ~ 
P ( r ,  r0) - N-~- - -  1) <~-'~ ~(r, - v)~(r I - r0)>. (21) 

The vector r0 is fixed while r is varied so the resulting function of r is pro- 
portional to the probability of finding an electron at r given that there is one 
at r0. Roughly speaking, use of this function enables rotational motion to be 
"frozen" which allows the angular distribution to be "seen". Fig. 3 shows pair 
correlation functions for various states of 6 spin-polarised electrons. Each frame 
shows P ( r ,  r0), with r0 on the x axis and r0 determined from the radius of the 
corresponding classical ring, for various quantum states at B = 17.5T. Each 
state is the lowest energy state at the indicated angular momentum. The pair 
correlation function has very sharp peaks when J = 40, J = 50 and J = 51 and 
these cases correspond to five-fold and six-fold molecular states. In contrast, 
when J -- 45 the structure is less sharp corresponding to a liquid-like state. 
This can be seen by comparing the J = 45 correlation function with the others: 
clearly the structure on the ring is weaker at Y = 45 and the peak in the centre is 
present (in contrast to J = 40 and J = 50) but less well defined than at J -- 51. 
Molecular states have been predicted to occur in quantum boxes as well as in 
quantum dots [56, 57, 58]. 

5 F u t u r e  P r o s p e c t s  

Electron correlation in quantum dots is fairly well understood although many 
details remain to be investigated. Many physical properties of quantum dots have 
been calculated but the corresponding measurements have not yet been done. In 
addition, the current theoretical model of dots needs to be refined so that  it is 
can be used for detailed analysis of experimental data. Beyond this, an emerging 
area is the study of coupled dots. Transport [26] and optical [59] studies of these 
systems have recently been reported and there is increasing theoretical interest in 
electron correlation in coupled dots [60, 61, 62]. It has been shown that  there new 
magic numbers that characterise strong inter-dot correlation in vertically coupled 
dots and in addition, the generalised Kohn theorem is violated in asymmetric 
vertically coupled dots [62] so FIR absorption is sensitive to electron correlation. 
It seems that coupled dot systems will be particularly interesting subjects for 
further experimental and theoretical study. 
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A b s t r a c t :  
The electronic states of a parabohc quantum dot in a magnetic field are 

studied with the spin-orbit interaction included. The analytical formulae for 
the ground-state energy of the interacting system are derived. The spin-orbit 
interaction introduces a new feature into the far infra-red absorption spectrum, 
namely a splitting of the two principal modes. This conclusion is compared with 
the charging experiments of Ashoori et M. and the far infra-red absorption 
measurements of Demel et M. 

A model of an exciton confined in a quantum dot is also analyzed. At a 
critical dot-size, an additional strong line in the photo-luminescence spectrum 
appears, a consequence of the occurrence of a meta-stable weakly excited state. 

1 Spin-orbit interaction in t h e  q u a n t u m  d o t  

The spin-orbit coupling in a quasi two-dimensional quantum dot is included in 
an ana logous  way to the  many-e l ec t ron  a tom,  i.e. v ia  the  s ingle-par t ic le  po t en t i a l  

VLs = ~ l  . ¢ ,  (1) 

where I and  ~r are  the  o rb i t a l  and  spin a n g u l a r - m o m e n t a  of  an electron,  re- 
spect ively .  T h e  coupl ing  cons tan t  ~ is re la ted  to  the  average sel f -consis tent  field 
< 6U > ac t ing  on the  e lect ron v ia  the  re la t ion  

=/~ < 6u >, (2) 

where the  d imens ionless  p a r a m e t e r  fl is 

fl = \ he ] "~ ]-~ (3) 
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for a Z-electron atom. In the case of a quantum dot,/3 will be treated as a fitting 
parameter,  while the magnitude of the field < 5U > will be estimated from the 
electronic structure of the dot. 

The complete many-electron hamiltonian in the effective-mass approxi- 
mation, including the kinetic energy in the perpendicular magnetic field B, 
parabolic confinement of strength w0, spin-orbit coupling as above, Zeeman split- 
ting for the effective g-factor and electron-electron Coulomb interaction screened 
by the dielectric constant e is 

c / ] 1 e A 1 . 2 2  
7-~ = ~ V i  + i + WOri + olliffi -- g p B a i B  

1 e 2 

i#j 

1 e 2 

=-- E (gB)i + 2 E elri - r j  I" (4) 
i i¢ j  

In the above h is the Planck constant, rn* is the effective mass, ri  are the 
positions, Ai  = ½ B ( y i , - x i ,  O) are the vector potentials in the symmetric gauge, 
l and a are the projections of the orbital angular-momentum I and spin cr on to 
the plane of motion. 

In the tIartree-Fock (HF) approximation, the equation for the HF wavefunc- 
tions ¢ is 

[HB + V/]¢i(va) + E f d r '  = (5) 
O,I d 

where HB is the hamittonian of a single (non-interacting) electron in the field B 
defined in Eq. (4), Vi denotes the Hartree potential 

with 

Vi = - -  dr '  
tV-7 t '  

n,(r) = E 2' 
j 

and Ai is the Fock correction, viz. 

e2 .-_., e;(r'~')~j(r~) 
~,(r~,r'~') = ---~°'°2_.~ ~ - - 7 1  

J 

Introducing the exchange operator G, 

a,¢,(r~) = Z Jd,.',a,(,.~, r'~')e,(r'~'), 
O-I 

(6) 

(7) 

(8) 

(9) 
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the HF equations, Eq. (5), can be written in compact form, namely 

[~B + ~ + a~] ¢ ~ ( ~ )  = c~¢~(~). (10) 

Following the work of Shikin et al. [1] for the charge density within the 
parabolic dot (of confining frequency w0), we use the approximate form valid 
in the classical regime and therefore applicable to case of a large number of 
electrons N, i.e. 

n(0)~x/R 2 - r 2 for ," ~ R n(7") (11) [ Ofor r > R ' 

where the charge density in the centre is n(O) = 3N/2~R  2. The dot radius R for 
the classical system [1] will be calculated from the minimum energy condition in 
order to take into account the quantum corrections. Using Eq. (11), the tIartree 
potential is 

37rNe2 1 -  (12) 
Vn(r) - 4 c ~  2 - ~  

(we also take this form for r > R). Neglecting for the moment the exchange 
term, which will be included later as a perturbation, we obtain the set of Hartree 
equations, 

[HB + Vn] ¢i(rer) = ei¢i(ra) ,  (13) 

parametrized by the dot radius R, 

1.1 In  t h e  a bs e nc e  o f  a m a g n e t i c  f ield 

Consider first the case of zero magnetic field. The explicit form of Eq. (13) is 

h 2 
- U ~  / ¢i(r~),  (14) 

where the effective frequency, renormalized by the Hartree term Eq. (12), is 

3~rNe 2 
~ 2  = w0 2 4~rn* R 3" (15) 

Eq. (14) can be solved analytically to obtain the eigenstates 

el(re  0 = ¢ ,m~(ra)  = Cm(O)R~m(r)X~, (16) 

where the spin eigenfunction Xo (with eigenvalue ~r = :l=h/2), the angular wave- 
function of the angular-momentum eigenvalue m, is 

1 ira0 (17) era(0) = ~ 

and the orbital wavefunction is 

R,m(~) = -~o ( ~  + Iml)! .~ . (18) 
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In the above, L/m. I are Laguerre polynomials, i.e. 

1 _,~ z d  '~" 
L~l (z )  = ~-~.T z ' 'e d-~-~-(z'~+l'~le-Z), (19) 

and 16 = ~ is a characteristic length; n = 0, 1, 2 , . . . ,  the principal quan- 
tum number, m, the azimuthal quantum number (]m] < n and the parity of m 

~-Iml is the radial quantum number. and n is the same), and nr = 2 
The eigenenergies of the eigenfunctions Cnmo are 

3 r N e  2 
¢.rno = hl2~o(n + 1) + o~ma + 4e---'-R- (20) 

In the absence of a spin-orbit interaction (a = 0), they form degenerate shells 
labelled by n. A non-vanishing ~ splits these shells into doubly degenerate sub- 
levels. 

The complementary Fock-Darwin representation, 

¢,(rcr) = Cn+ ,_ , ( r a )  = ¢,~+,_ (r)X~, (21) 

with n+ = 0, 1, 2 , . . . ,  is often used. The two sets of quantum numbers In, m] and 
[n+, n_] are connected by the simple relations n = n+ + n_ and m = n+ - n_.  
The orbital part of @ is 

1 (a+)"+(b+)"- e_r~/~,;~, (22) 
Cn+n_(r) = V/~-~l ~ V/-~+!n_! 

where the raising operators a + and b + are 

a + _ _  _ 

1 [ x - i y  
b+ = 3 z6 

The eigenenergies labelled by n+ and a are 

1 1 
~.+._~ = ~+(n+ + 3) + ~_(n_ + 3) + - -  

where ~+ = 12~ + ~ .  

, 0  

3~rNe 2 

4 e R  

(23) 

, (24) 

The ground state energy of the system written in terms of the N lowest 
Hartree eigenenergies ci, where i stands for the composite index In, m, cr], is 

Eo= ~ _ c i - - -  dr d," (25) 
, = 1  2 ,  ' 

the second term removes the double counting of the direct Coulomb energy 
from the summation of the Hartree energies el. We introduce the Fermi energy 
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cF which separates the occupied and unoccupied Hartree energy-levels in the 
ground state and calculate the self-interaction 

3rrN2e2 (26) 
£o = ~ O ( e F  - e l ) e l  lOeR ' 

i 

where ~9 is the Heaviside function. The Fermi energy is determined by a condition 
on the number of electrons N, i.e. 

N = E 6k(ZF - c{). (27) 
i 

We now determine the magnitude of the spin-orbit coupling constant a. It 
follows from Eq. (2) that  we need to estimate the average self-consistent field 
< 6U > experienced by an electron. The energy of a classical particle moving 
on an orbit of radius r in the two-dimensional potential ~,,~1 ~._0o,2~2, is 

1 • ,~ 2 1 , (28) 6U = -~m 12 o r  + 712o I . 

Replacing the classical variables by their respective operators and averaging diU 
first over the quantum state [n, m, a], 

1 i < nmolSUinm~ > =  -~h12o(n + m + 1), (29) 

and then over all occupied states, 

< 6 u > = l-1--l~ h121o ~-~ O ( e F -- e~ ,~ o ) ( n + m + l ) , (30) 
71rn(7 

we find that  [2] 
1 

(31) 

The details of the calculation of the Hartree energy Co, defined by Eq. (26), 
have been given elsewhere [2] and we shall only present the final result, viz. 

S o -  97rN2e2 ~ i l  132N (32) 
20e--""~  + N3/2512t° - 36 

The radius of the dot R can now be determined from the minimum condition 
Ogo/OR = 0 which is equivalent to 

,00o ( 
w02 = 4eR3m. 1 277rR 1 -  , (33) 

where aB ---- eh2/m*e 2 is the effective Bohr radius. Restricting our consider- 
ations to the case of a large number of electrons, we can solve this equation 
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perturbatively with respect to the small parameter a e / R  << 1. The zeroth order 
approximation R0 can be written as 

3~rNe 2 
R0 ~ _ 4 ~ m * w °  ~ (34)  

and coincides with the classical result [1]. Assuming the first-order approximation 
is of the form R = R0(1 + 5), the correction, 6, is 

6-811rR0100a------~B (1 - - ~ - )  " (35) 

Neglecting higher-order corrections (non-linear in 6), we calculate the effective 
confining frequency Y2~ from its definition Eq. (15), i.e. 

where 
~o 2 _ lOOaB (37/ 

Finally, we have an expression for the ground-state energy in the Hartree ap- 
proximation, viz. 

91rN2e2 lh~20 (1 ~ 6 ) N  3/~ . (38) 
£0 - 20eR---~ + 

The first term in this equation [1] is the classical energy of N interacting electrons 
confined to a parabolic well, i.e. 

97r N2 e 2 = d r n ( r ) ,  lrn*w.r2 + dr dr' (39) 
2 7 = 7 [  " 

The second term is the quantum correction and decomposes into the energy of 
an oscillator with frequency, J20, given by 

1 . - 2  h~°N3/2 = E O(~F -- ¢i) -~rn ~2 o < iir2[i >, (40) 
i 

and the spin-orbit interaction. 
We now include perturbatively the exchange interaction, which has been 

hitherto neglected in the Hartree approximation. We shall calculate the first- 
order correction Ag as the average value of the exchange operator G, Eq. (9), 
in the Hartree ground state, neglecting, however, the spin-orbit interaction 

Ag = E O(SF -- ei) < i[Gili >[Z=o' (41) 
i 

This correction [2] is 

4x/~ 4Q-N3) NT/4e2"ct~o - A ~ _  1 ----~----(1 - 50), (42) 
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where ~0 = ~i(fl = 0). Thus we have obtained the total ground state energy S, 
including the kinetic energy, the direct and exchange Coulomb interaction, and 
the spin-orbit coupling, 

E = ~o + hE ,  (43) 

of a system of N electrons confined to a parabolic well. In Fig. 1 we show the 
average ground state energy per electron ¢ = E/N as a function of the number 
of electrons N. The two curves corresponding to the parameter /? equal 0.3 
and 0.6 are a reasonable interpolation between the classical result of Shikin et 
al. [1] and the experimental data of Ashoori et al. [3]. We now consider the 

80 

70 .2 
~ 5 0  

~ 5o 

u~ 

G a A s  /~:o~ 

Y ~ ~=0.6 

. . . .  I . . . .  I 1 ' ' ' 1 . . . .  

1 5  2 0  2 5  3 0  3 5  

n u m b e r  o f  elecfrons 

Fig. 1. The average ground state energy per electron as a function of the number of 
electrons in the dot. The classical result is taken from Ref. [1], the experimental result, 
from Ref. [4], and the two curves in between are obtained within our model for two 
values of the spin-orbit coupling constant fl (GaAs, hw0 = 5.4 meV). 

selection rules for optical transitions of the system in the presence of far infra- 
red (FIR) radiation. The absorption of FIR light, which results in an excitation 
of the electron droplet, has been a powerful tool in the experimental studies of 
quantum dots [4, 5]. 

Since the wavelength in the FIR region is much larger than the radius of the 
dot, we can use the dipole approximation to describe the interaction between 
light and the electrons. The probability of an optical transition between the 
initial, (i), and final, (f) ,  state is proportional to the squared matr ix  element of 
this interaction, i.e. 

d~i ~ b< fl eE" ~-~O(¢F --¢i)rili > 12, (44) 
i 
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where E, the electric field, is uniform over the volume of the dot. The dipole 
matrix element, dli, vanishes unless there is a pair of HF states, one in the 
initial and the other in the final many-electron state, with equal spins, each of 
the orbital quantum numbers [n, m] differing by unity, i.e. 

~I  = ~ ,  I~ J - ~ l  = 1, Imf - "¢1 = 1, (45)  

and with all the other HF states identical in the initial and final state. In other 
words, the absorption of a FIR photon leads to the excitation of a single electron 
from its (initial) HF state to another (final) HF state with the same spin a and 
the orbital quantum-numbers changed according to Eq. (45). Translating these 
selection rules to the Fock-Darwin representation, we have 

]4_ i q - i ,  n f = n  i CrY ~ 0 "i rl -~ rt+ 

or crY = a i, n !_ = n i_ + l, nf+ = ni+, (46) 

i.e. the excited electron changes one of its orbital quantum-numbers [n+, n_] by 
unity. 

These selection rules lead to a splitting of the resonance energy 

- S i = e +  = h12~o : l : 1  , (47) £! 

where the magnitude of the splitting, ~, depends on the number of electrons 
according to Eq. (31). 

1.2 In  t h e  p r e s e n c e  o f  a magne t ic  field 

The procedure for minimization of the Hartree energy with respect to the dot 
radius R with the later perturbative inclusion of the exchange interaction, as 
sketched in the previous section for the case of zero magnetic field, has been also 
carried out for nonzero fields. The explicit form of the Hartree equations with a 
nonzero perpendicular magnetic field present, Eq. (13), is 

( _ 2 ~ 7 A  1 . + -~m (12~ + lw~)  r 2 -  l hwcl-  gpscrB + al~r) el(re r) 

(el 3~Ne~ 
4oR(B)] ¢i(ra) ,  (48) 

where wc = eB/m*c is the effective cyclotron frequency and the zero-field radius 
R appearing in the definition of 12~ (15) is now replaced by R(B). We shall also 
denote the total confining frequency by f2 ~2 = ~2~ +w~/4, and its corresponding 
characteristic length by I = V"-h/rn* ~2'. 

The eigenfunctions of Eq. (48) are of the same form as Eqs. (16) and (21), 
with the characteristic length replaced by I. The corresponding eigenenergies are 

37rNe2 (49) 
~ m ~  = h a ' ( n  + 1) - h ~ . ~  - g ~ B ~ B  + ~ - ~  + 4 ~ R ( B )  
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or, in the other representation, 

1 1 3~rNe2 (50) 
~,~+~_o = e+(n+ + -~)+e_(n_ + -~)-g#BaB+ 4e----~' 

with ~+ = (2~) + (hwc/2 + c~a). Since the Zeeman splitting is rather small for 
1 yielding glib ,,~ 0.05 meV/T),  the most common material used for GaAs (g -.~ 

quantum dots, we shall neglect it in our further considerations. 
The inclusion of a magnetic field leads to the possibility of crossings between 

different energy levels el. Whether the two close levels el and c2 actually cross, 
or whether such a crossing is forbidden, depends upon the vanishing of the off- 
diagonal matrix element of the operator describing the change of the hamiltonian 
due to a small change of the field. Thus the condition for the permitted level- 
crossing is 

OH 
< 11~-~12 >_-- O. (51) 

The operator OH/OB commutes with the spin and inversion (v --* - r )  opera- 
tors. Commutation with the angular momentum operator requires the already 
assumed circular symmetry of the confining potential. Thus for states with un- 
equal quantum numbers n and a, we have condition Eq. (51) guaranteed; for 
a pair of states differing only in m, it is, in general, no longer true. This leads 
to the anti-crossing of levels that  can be taken into account by changing the 
formulae for the eigenenergies to 

I1 h olo" 3~rNe2 (52) ¢,~m~, =h~ ' (n+l )+m ~ w~+ + 4 e R ( B ) "  

We have to modify analogously the definition of the energies ¢+ and ¢_, appear- 
ing in Eq. (50), to ~+ = (2~ ± [hw~/2 + ota I. 

Following a similar procedure to the zero magnetic-field case, we can estimate 
the spin-orbit coupling constant, now a function of the field, 

~(S)  = ~ - f l f B h ~ v ~ ,  (53) 

with the renormalizing function 

( f ,  = x/l+ z2/N \1 

At low fields, the function fB tends to unity; for B ~ ¢c, it decays to zero 
fB "~ 1 /x /~ .  To a good approximation, we can therefore replace ~ by a~0, 
defined by Eq. (37), in the definition of lB. 

The Hartree energy of the system can be now expressed as [2] 

£o(B)- 9~rN2e2 2 ( 3~rNe2 "~l/2 i fl2f~N (55) 
20eR-----~ + N3/2h w~uB 4em.R(B)3) 1 36 ' 
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UB = I + (Wc/2~O)2 1 ( z --41_z)Z ) z_f;~.f~N/36._ (56) 

Analogously to the previous section, the ground state radius of the dot R(B) 
can be found from the minimum energy condition 

OE0(B) _ 0 (57) 
an(B) 

which resolves into the equation 

- 4em.R(B) 3 1 + 277rR(B) 1 36 ] J  " 

In the zeroth order approximation, we obtain 

37rNe 2 1 3 
= - - R 0 ,  (59) R°(B)3 = 4em*w2ouB UB 

where Ro is given by Eq. (34). The first order correction 6(B), defined as R(B) = 
n0(B)(1 + 5(B)), is 

6 ( B ) =  100aB ( /32y~N~ (60) 
81 a0(B) 1 ] .  

Finally, the ground state energy in the Hartree approximation can be written in 
the form 

97rN2e 2 lug, 3bOo 2./ 1 . (61) 
C0(B) - 20eR0(B) + 3 36 ] 

Calculating the correction due to the exchange energy in the Hartree ground- 
state is far more complicated for the case of a non-zero magnetic field. Therefore 
we assume that dependence of the exchange energy on the number of particles 
is not affected by the presence of the field [6] and obtain 

NT/4e ~ 
A£(B) - -  4 v ~ (  1 9 v ~  4 - ~ N ) ~  ( 1 - 5 ° ( B ) ) '  (62) 

for the exchange energy, where 5o(B) = 5 (B;/3 = 0). The total ground state 
energy within our approach is 

£(B) = g0(B) + A£(B). (63) 

In Fig. 2 we show the magnetic field evolution of the average ground-state 
energy per electron e(B) = E(B)/N. The three frames correspond to the pa- 
rameter /3 equal 0.0 (no spin-orbit coupling), 0.3 and 0.6. We find qualitative 
agreement between our curves and the data reported by Ashoori et hi., obtained 
in a single-electron capacitance spectroscopy (SECS) experiment [3]. Comparing 
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Fig. 2. The average ground-state energy per electron as a function of the magnetic 
field and number of electrons. The three frames correspond to a spin-orbit coupling 
constant fl equal to 0.0, 0.3 and 0.6 (GaAs, hw0 = 5.4 meV). 

the curves in the three frames, one can conclude that the inclusion of the spin- 
orbit interaction brings the model  curves fairly close to the measured behaviour 
(the agreement is particularly good for/3 = 0.3). 

We now discuss FIR absorption in the presence of a magnetic field. Since 
the magnetic  field does not affect the structure of the HF wavefunctions, the 
selection rules, Eq. (45), remain unchanged and the transition energies are 

g1(B) - gi(B) = c+ = hS2' ~ l~hwc + ~a(B)[ (64) 

and we have four resonance branches. 
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In Fig. 3, we compare the dependence of the FIR resonance energies ob- 
tained within our model with that  reported by Demel et al. [4]. Assuming that  
the experimentally observed higher mode is due to the spin-orbit interaction as 
presented here, we again find good agreement for /3 = 0.3. In particular, the 
zero-field lower resonance energy (,,~ 2.8 meV), the magnetic field at which the 
anti-crossing occurs (,~ 1 Tesla), and the energy of this crossing (,,, 3.9 meV), 
seem to be fit very well. A gap separating the anti-crossing levels, observed in 
the experiment, is probably due to a slight anisotropy of the confining potential. 
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Fig. 8. FIR absorption spectra of a quantum dot containing 25 electrons. Squares - 
experiment of Demel et M. [4], lines - model (GaAs,/3 = 0.3, hwo -- 7.5 meV). 

2 E l e c t r o n - h o l e  p a i r  i n  a q u a n t u m  d o t  

We consider an electron and a valence-band hole (an exciton) confined to a 
quantum dot and described within the effective-mass approximation. Since the 
electron is assumed to be confined, the hole is repelled by the bare potential of 
the dot as a particle of the opposite charge. Modelling the lateral potentials by 
Gaussians, the single-exciton hamiltonian is of the form 

h 2 h 2 e 2 
H -  ~2rn I A ~  - V°e-r~/L2 2mh A h  + V°e-r~/L~ elr~ -- rhl ~- Eg, (65) 
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where re and rh are the electron and hole positions, me and rnh their effective 
masses, V0 and L define the bare lateral potentiMs, and Eg is the energy gap of 
the underlying semiconductor. 

Within the single-particle approach, we postulate the form of an exciton 
wavefunction to be the product of electron and hole wavefunctions, viz. 

¢(~e, ~h) = ¢e(~e)¢h(~h). (66) 

Using this form of the wavefunction ¢, the eigenequation of H resolves into the 
pair of equations 

h ~ 
( 2me,hAe,h+ Ve,h)Ce,h(re,h) 

where the two self-consistent fields are 

Ve,h(re,h) = TVoe-~ ' ,  ~/L~ - - -  

and the total energy of the pair is 

E = Eg + 6e,h -b drh,e Ch,e(rh,e) ' 2mh,e 

= ~,h¢.,~(~.,h), (67) 

~2 f iCh,e(~h,~)12 -- dvh,e - - - - - - ,  
E ]re,h - - rh , e l  

(6s) 

- - - - A h , ~  + Voe - ~ , ° / L  ¢h,e(rh ,e) .  

(69) 
The system of equations Eq. (67) is treated perturbatively. In the zeroth- 

order approximation the electron motion is solved in the absence of the hole 
attraction and with the bare lateral-potential simplified to its expansion trun- 
cated at second order, i.e. 

1 2 2 v?)(r) = -v0 + ~r-e~r,  (70) 

where we is V0 : 1 2~2 h/rnewe and the ~mewe~ . Introducing the length scale A2~ = 
dimensionless parameter ~ = hwe/Vo (0 < g < 1), the zeroth-order electron 
(bound) ground-state energy and corresponding wavefunction are 

1 2 2 g!0) ~--- ~ e ( 1  -- - 1 ) ,  ¢!0)(r) ---- ~ e - r  /2X~ (71) 
v ~  

For a fixed curvature of the lateral potential we (and, consequently, also A~), i.e. 
a fixed Vo/L 2, the parameter t¢ determines the potential depth V0 and, hence, 
the radius L of the whole structure. 

Using the charge distribution of the electron and solving Eq. (67), the hole 
state in the zeroth-order approximation can be calculated. After integrating the 
interaction term, we have 

+ v°~-~2/L; v ~ e  -~2/~I°(r2/2~e))~ ¢(2)(~) 
~2 

(72) 
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where I0 is a Bessel function. Since this equation is axially symmetric, the an- 
gular part separates and the hole wavefunction can be written as 

¢(°)(r)--  ---~ei '~eR(r),  (73) 

where m is the orbital angular-momentum. The radial function satisfies 

( d2 l d m2 2mh" (°) ) (74) 
+ ,- d,- ,-~ + - - U t a h  - v~ °)) n(,-)  = O. 

Before we solve this equation, it is helpful to note that the potential Vh (°), whose 
curvature defines the frequency Wh, i.e. 

' ~ " ~ -  '~v~°)d,-~ ~=o ' (75) 

has a smooth minimum at r0. Since most of the hole charge resides near the 
minimum, the parabolic approximation holds, i.e. 

1 2 ro)2, (76) v~(°)(~) ~ u0 + ~ ,nh~h(~  - 

and we can assume a radial function R of the form 

R(r) = Ae -~(r-~°)2/2~, (77) 

where A2h = h/mhWh gives the length scale for the hole, 7 is a variational param- 
eter, and A is a normalization constant. Minimization of the hole energy with 
respect to the parameter 7 gives 3' ~ 1 [7] and leads to the zeroth-order hole 
wavefunction 

¢i°)(v) = A - ~ - ( ~ - r ° ) : / 2 ~  (78) 
Vr~  ~ 

with A ,.~ (v~roAh ) -d~. 
We now calculate the next correction to the electron state. Taking into ac- 

count the interaction with a hole in the state ¢(0) the electron potential is 

A2e2 / e- ( / - r ° )2 / '~  
V(1)(r) = --V°e-~/L~ 2 r e  dr '  (79) 

For Ir-rol >~ Ah, the above is very well approximated by the intuitive expression 

[7] V(1)(r) ~, -Vo exp[-r2/L 2] - e2/elr - ro[. The characteristic shape of the 

potential V O) is presented in Fig. 4 for three values of the parameter t¢. The 
potential is axially symmetric with two minima; one in the centre of the dot, 
originating at the minimum of the confining potential V, and the other one at 
a finite radius (forming a ring), due to the attractive potential of the hole. The 
attraction of the hole to the centre of the dot and, hence, the disappearance of 
the ring-like minimum in the effective electron potential V O) is forbidden by the 
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repulsive core Vo exp[-r2/2L 2] acting on the hole. The relative depths of the 

two minima in V~(1)(r) depend on the strength of this core, parametrized here 
by n. As shown in Fig. 4, there are situations in which either the two minima 
are equally deep or one of the minima is significantly deeper than the other. 

In order to solve for the two lowest eigenstates of the electron motion in the 
two-well potential V~ (1), the wavefunction is assumed to be of the form 

¢(~)(r) = c~¢L(r) + e~¢~(r) ,  (8o) 

where the indices L and R correspond to the left (central) and right (outer) well. 
The two states eL and CR are the ground states calculated for the simplified 
single-well potentials 

1 2 2 Vi(r)  = vL + -~rn~wLr (81) 

1 2 vR(r) = vR + ~ m ~ R ( r  - rR) ~, (82) 

where VL and vR are the two minima of V (1) at rL = 0 and rR, respectively, and 
WL and ¢oR are the curvatures of V~ (1) at these minima. Defining 

= fdr  (83) Q 

and el = eL + OcR, c2 = OCL -k- CR, we can write the equations for the coefficients 
eL and eR and the two eigenenergies e~ as 

ca(EL -- ¢! 1)) + e2ILR = O, 

ClIRL + cz(ER -- e (1)) = 0. (84) 

The symbols EL and ILR stand for the integrals 

) EL = d,  ¢L(r) \ - ~ - : ~  + Y~ ~) CL(~) - 0¢R(~) 
1 0 5 ' 

ILR = dr ¢L(r) ~--2-~m~ + V~(1) ¢R(r)l -- 02geL(r)' (85) 

while the second pair, En  and IRL, can be obtained upon the interchange of the 
indices L ~-+ R. 

Using the condition for the vanishing of the determinant in Eq. (84), we can 
express the two lowest electron eigenenergies as 

¢!I) EL + E R  I ( E L  4 E n )  2 
-- 2 -4- - + ILRIRL .  (86) 

The corresponding electron wave-functions ¢~11) and ¢0),e2 multiplied by the 

hole state ¢(h °), are the two lowest electron-hole pair states in our approximation 
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Fig.  4. The effective self-consistent potential V, acting on the electron in a quantum 
dot containing one exciton, together with the corresponding approximate absorption 
spectra I ,  as a function of the parameter ~, i.e. the dot size L for (a) large n = 3, (b) 

1 2 medium n = ~ and (c) small dot ~ = g. 

¢1 and ¢~. The  explicit formulae for these states and their energies are given 
elsewhere [7]; as i l lustration, we shall only present the energies calculated for 
three different values of  n corresponding to the three frames in Fig. 4. All of the 
numbers  given in the table below are in units of  5w~ = 5.4 meV. 
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1 2 

E1 -2 .154 -1 .292 -1.301 

E2 -1 .024 -1 .073 -0 .812 

E 2 -  E1 1.130 0.219 0.489 

A crucial property of the pair of electron-hole states ¢1 (the ground state) 
and ¢2 (the first excited-state) is the vanishing of the dipole-matrix element 
between them, i.e. 

d12= fa . + = 0. (S7) 

Since they are both axially symmetric (in these states, neither the electron nor 
the hole carry a non-zero orbital angular momentum).  As a result, an opti- 
cal transition (via absorption/emission of a far infra-red photon) between these 
states is forbidden and the excited state ¢2 is meta-stab]e. The occurrence of 
a meta-stable state should be observed directly in the photo-luminescence ex- 
periments, where, at low temperatures, in the absence of any efficient relaxation 
mechanisms, a radiative recombination from the excited meta-stable state would 
lead to the appearance of an additional strong peak in the emission spectrum. 
As follows from the above table, the energy splitting E2 - E1 between the two 
major peaks depends strongly on ~, reaching a minimum around ~ ,,~ ½, cor- 

responding to a situation in which the two minima in the potential V (1) have 
roughly the same depth. Increasing ~ above ½ or decreasing it below ½ (i.e. in- 

troducing an asymmetry between the two minima in V (U) leads to an increase 
of the separation E2 - El .  

The ratio of the radiative recombination intensities 11 and 12, at temperature 
T, can be estimated using 

/2 exp - , (88) 
I1 k e T  ] 

thus, we expect a strong enhancement of the second peak in the emission spec- 
trum. Using the above formula for T = 5 K and the confinement hw, = 5.4 meV, 
we obtain 

I2 J' 10 -6 for ~¢ = 1, 

~ / 10 -1 for ,¢ : ½, (89) 
3 ×  10 -3 f o r t e -  2 

Similarly, we estimate the widths of the two peaks 7"1-1 and r2 --1 to be 

321 for ~ = ½, 

~~-~ 1 ¢ ~ 2 ( r ° ) 1 ~  - ~ ( 9 0 )  ~.~_~ ~ i ¢ ~ ( , . o ) l  ~ - 0 . 8  f o r  ,~ - ~, 
84 for ~ = ~. 
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where r0 is the approximate radius of the hole orbit. Clearly, the enhancement 
of the second peak coincides with a decrease of its width. Around n = ½, the 
widths of the two lowest peaks are of the same order of magnitude. 

Since the parameter n is closely connected with the diameter of the dot, 
the characteristic evolution of the emission spectrum as a function of ~, i.e. the 

1 and the decay and smearing out appearance of a doublet of peaks at ~ ~ 
of the higher energy peak at both lower and higher values of n, seems to be a 
general property of quantum dots around a certain critical size (depending, e.g., 
on the curvature of the confining potential, effective mass etc.). A number of 
experiments have been reported in which we think this effect has been already 
seen [S]. 

The influence of the magnetic field on the above properties of the photo- 
luminescence spectrum of the dot is very interesting. A detailed analysis of this 
problem will be published elsewhere [9] and here we shall only note that  the 
magnetic field enhances the confinement of both the electron and the hole. As 
a result, a double well can also appear in the effective potential of the hole. 
Combined with a pair of electron states this gives a set of four exciton states (a 
ground state and three meta-stable states), and, consequently, four distinct peaks 
in the PL spectrum. The double wells, and hence also the additional PL peaks, 
disappear at high magnetic fields and for very small dots. Similar behaviour has 
actually been observed in experiment [10]. 

3 C o n c l u s i o n s  

A self-consistent theory of a many-electron quantum dot including the electron- 
electron (Coulomb) and spin-orbit interactions has been developed. The incor- 
poration of quantum corrections into the ground-state energy of the system im- 
proves the classical result of Shikin et al. and compares well with the experiment 
of Demel et al. and Ashoori et al. The spin-orbit interaction has a strong effect on 
the electronic structure of the system, e.g. leading to a splitting of the resonance 
energy in the far infra-red (FIR) absorption. A predicted anti-crossing of the 
FIR absorption modes in a magnetic field describes very well similar behavior 
reported by Demel et al. 

An electron-hole pair (exciton) confined in a quantum dot has also been 
studied within the effective mass approximation. For certain sizes of the dot, a 
special form of the effective potential acting on the hole (a combination of the 
electron-hole Coulomb attraction and the repulsive potential of the dot) leads to 
the occurrence of a weakly excited meta-stable exciton state. Correspondingly, 
an additional strong peak in the photo-luminescence spectrum appears, a peak 
that  we think has already been observed in experiment. 
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Quantum Single Electron Transistor 
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Abstract :  We describe the basic physics of a Quantum Single Electron 
Transistor (QSET). The QSET is a quantum dot (QD) connected to two leads 
and a central electrode. The effect of the central electrode, electron-electron 
interaction, and a magnetic field on electron droplets in the QSET is studied 
using the Hartree-Fock approximation and exact diagonalization techniques. In 
a strong magnetic field, the central electrode induces electronic spin and charge 
transitions in the spin-polarized droplet. We show how these spin-related tran- 
sitions can be observed in transport and coherent resonant tunnelling through 
the QSET. 

PACS numbers:73.20Dx,71.50÷t,71.45Gm 

1 I n t r o d u c t i o n  

A field effect transistor (FET) is a three-terminal device in which a source, 
drain, and a gate are contacted separately. The flow of charge from the source 
to the drain is classical and is a continuous function of the number of electrons 
in the base. A single electron transistor (SET) is a small, two-terminal device 
in which the flow of electrons is no longer a continuous function of the number  
of electrons in the electron gas. In a SET the current flow is sensitive to the 
number  of electrons under the gate due to the finite charging energy U, or 
finite capacitance C. These are all classical concepts related to the electrostatic 
potential  of the gate. A small metallic grain or a relatively large active area, 
of the order of microns (104_~), in a FET is a good example of a SET. In a 
much smaller (submicron) SET, the kinetic energy of the electrons is quantized, 
their mutua l  interaction and correlation energy is large, and quantum mechanics 
governs the physical properties of a Quantum SET. The active region of a QSET 
is a quantum dot (QD) with a relatively small number  of electrons. This QD can 
be thought  of as an artificial atom. While studies of QDs are numerous [1], only 
very recently [2] have a t tempts  been made at realizing a true QSET, i.e. a very 
small three terminal device. We describe here some basic electronic properties 
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of the quantum dot and of the effect of the central electrode on the operation of 
a QSET. 

Our work [3] is motivated by two recent experimental developments, namely 
the work by Klein et al. [4] who undertook a very systematic study of the relation- 
ship between transport through a submicron QD with N ~ 30 electrons and its 
electronic properties, and by the work of Feng et al. [2]. Feng et al. incorporated 
an additional submicron electrode into electrostatically defined quantum dots 
and wires formed in a two dimensional electron gas. This additional electrode 
creates an attractive or repulsive impurity with tunable strength in the strongly 
interacting electron droplets [5, 6] with a well controlled number of electrons N 
(N ~ 10 - 50). The electron droplets in a QD present diverse many-electron 
effects, changing from chiral Luttinger liquid behaviour [7, 8, 9] in the Integer 
Quantum Hall regime to the incompressible liquids familiar in the context of the 
Fractional Quantum Hall Effect [10]. This behaviour is due to the competition of 
the electron-electron interactions, Zeeman, and kinetic energy [11, 12, 13]. The 
competing interactions in these artificial atoms are tunable in the applied mag- 
netic field [8, 11, 12, 13] and lead to a series of incompressible ground states with 
"magic angular momentum" values. This in turn controls the thermodynamic 
[11], transport [14, 15] and optical properties [16, 17, 18] of the quantum dots. 

We will discuss some essential concepts in transport and coherent resonant 
tunnelling, single-particle and collective excitation spectra, and results of Hartre- 
Fock calculations. We will show that the introduction of an attractive/repulsive 
electrode in a droplet induces electronic spin and charge transitions. These spin- 
and charge-related transitions modify the chemical potential # of the dot and 
therefore can be observed in resonant tunnelling experiments. We limit our con- 
siderations to a spin-polarized, compact droplet because: a) this incompressible 
state is known exactly in the strong magnetic field [8]; b) the addition spectrum of 
this state is featureless [4], allowing for clear identification of electrode-induced 
effects; and c) recent theoretical [19, 20] and experimental [21] work predicts 
exotic spin-related excitations in a spin-polarized two-dimensional electron gas 
(2DEG) in a strong magnetic field. 

2 T h e  m o d e l  

The QSET shown in Fig. 1 consists of a two-dimensional QD, weakly connected 
to a left and right electrode via tunnelling barriers. The central electrode is 
attached to the centre of the dot. We first neglect coupling of the dot to the 
leads and consider it as an isolated system. 

In our model, the QD [121 contains N electrons confined by an effective 
parabolic potential with a characteristic energy ~VN. The frequency ~ N  has a 
contribution from the externally imposed potential and from a positive charge 
+Ne at a distance d away from the plane of the dot. The central electrode is 
characterized by a potential U(r), which we assume to have cylindrical symme- 
try. The QSET is placed in the magnetic field B normal to the plane of the dot. 
The positive charge assures the charge neutrality of the dot and plays the role 
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Fig. 1. A schematic picture of a model of a QSET and of the initial and final states in 
the tunnelling process. 

of the gate. The single-particle Hamiltonian corresponds to a particle moving 
in a parabolic potential in the presence of the magnetic field. It is diagonal- 
ized [12, 18] by a transformation into a pair (a and b) of lowering and rais- 
ing harmonic oscillator operators. The a and b oscillators evolve into the inter- 
and intra-Landau level oscillators with increasing magnetic field B. The single- 
particle energies are Era, = 12+(n + ½)+ 12_ (m + ½); the eigenstates for spin ~, 

Im, n;cr > =  4~.~,(a+)m(b+)nlO, O;cr >, and the two harmonic frequencies are 

12+ = [12-4-we]~2 (h = 1 for the rest of this work), wc is the cyclotron energy, 
l0 = 1/(rnw~) 1/2 the magnetic length, m the effective mass, and 12 = V/w~ + 4w 2. 
The kinetic energy ~ 12_ decreases with the magnetic field, while the Coulomb 
energy increases with the magnetic field. The Coulomb energy is measured in 
units of the exchange energy E0 = Ryv/-~ao/lefr, where Ry is the effective Ry- 
dberg, a0 the effective nohr radius, and lcf~ = 4 / (1  + 4w2o/w~c) 1/4 is the effective 
magnetic length. 

We restrict the Hilbert space to single particle states Im, 0; ~ > originating 
from the lowest Landau level [7, 8]. The electrode potential U only shifts the 
single particle energies Em by < mlUlm > without changing the single particle 
states Im >. We model our electrode as a parabolic potential characterized by 
a characteristic frequency 12i, an effective radius mi, and effective charge a,  viz. 
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< mlUlm >= ~ a , ( m , - m ) ,  where ~2i = [X/w~ + 4w~rkw¢]/2, and m <_ mi. This 
is illustrated in Fig. 2, where the single particle energies em = Era+ < mlUIm > 
+6E~ are shown for B = 3T, WN = 2.1 meV, and wi = 3.0 meV (6E~ is the 
Zeeman energy, 023 raeV/T for GaAs). The electrons are either attracted to, 
or repelled from, the centre of electrode, depending on the effective charge 4. 

After denoting the creation (anihilation) operators for electrons in states 
Im; a > by c+,~,(cm,~), the Itamiltonian can be written as 

H = Z emac+~em~ + 

+ + , ( 1 )  1/2 Z <ml- - l 'm2+l[Vlm2ml>e"~-h 'e '~+ t~''c~°c'~l'' 
l r n l m 2 a a  t 

where < ml - l, m2 + llVlm2ml > are the two-body Coulomb matrix elements 
defined in Refs. [7, 8, 20]; the summation over I is restricted to include only 
positive integers. 

3 C o h e r e n t  r e s o n a n t  t u n n e l l i n g  

There have been a number of attempts at the description of transport through 
a quantum dot [23, 24, 25]. Most of these theories are fairly complicated due to 
the mixing of electron states in the dot with the states in the lead. This mixing 
results in Kondo resonances in the leads. These theories can be summarized by 
a simple formula [24] which relates the current through the QD to the density 
of states, i.e. the spectral function A(w) ~ [raG(w), viz. 

t 

J = -2e/h ] - ( 2 )  

where G(w) is the energy dependent Green's function of the dot, F is the tun- 
nelling matrix, and fL/R(w) is the equillibrium distribution function of the 
left/right lead. Note that Eq. (2) depends not on the current-current correla- 
tion function but directly on the single-particle density of states. We do not 
completely understand all of the steps leading to Eq. (2), and so we will settle 
here on a simpler but transparent derivation of the coherent resonant tunnelling 
from the point of view of spec t roscopy.  

Let us consider a simple model of coherent resonant tunnelling (CRT). We 
start from three uncoupled systems as shown in Fig. 1: (a) the left electrode (L) 
with NL electrons, (b) the quantum dot (D) with No electrons and (c) the right 
electrode (R) with Nit electrons. We neglect the electron-electron interaction in 
both electrodes but the QD states are treated exactly. The eigenstates of the 
noninteracting system can be characterized by the complete set of "intermedi- 
ate" quantum numbers {i} for a fixed number of particles, INn >i, [No >i and 
[NR >i. 

We now switch-on the coupling of the dot to the left (right) lead with single 
particle states kL, i.e. F LD = ~ FLD,~ (d+ L cm +e + dkL)- This allows the electrons 
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Fig. 2. A schematic picture of the single particle energies E(m) of the states Irn > in 
the dot as a function of the angular momentum m in the the presence of an electrode. 
E0 is the exchange energy. 

to move coherently from left to right as shown in Fig. 1. We use Fermi 's  golden 
rule to calculate the transition probability, T-1, for the electron in the left lead 
to move to the right lead in response to the coupling £ = /,LD + FRD. Since 
each coupling moves an electron from one of the leads to the dot, the process of 
moving an electron from the left lead to the right lead is second order in £ ,  i.e. 

r -1 = 2 ~ s ×  

N 1 i ~ ~ ~ I CNL,ND,NR,t I< R+ ,ND,NL--11I'INL,ND,NR>,,<NI~,Np,NL[FINL,ND,NR>o 12 
. . . .  Eo(NL ,ND ,NR)-E,(N~L ,N~D ,N~)+ie 

8(Eo(NL, ND, NR) -- Ey(NL - 1, No, NR + 1)). 

(3) 

The summat ion  is over all of the final states {f} with the proper number  of 
electrons. The effective mat r ix  element involves all intermediate states {i}. We 
can now express the transition probabili ty in terms of the QD operators c, c +, 
exact QD states and energies, as 
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, , i , t N . f < N R + I , N D , N L - 1 I I ' [ N L , N D , N R > i i < N R , N D , N L I F I N L , N D ,  R > o  V "  

Z-.,N t ,N'D,N' R ,i Eo( NL ,ND ,lVn )- E,( N' L ,g' D ,N'R )+i, 

= )-~rn,n 1 - L D  r R D  T , + ~ i l N D - - I > , i < N D - - 1 1  ~ 
l kL,rnl  kR,n.f  < IVDlCrn E o D ( N D ) _ E D ( N D _ I ) _ e ~ + i e e n  IVD >0  (4) 

~'~ [ND+I>i i<ND+I[  4- , ~r 
+/ < NDICn . . . . .  2v~ EoD(ND)_ED(ND+I)_e~+ie~rn l  JJ > 0  • 

Here e~ are the o c c u p i e d  single particle states of the left lead and e f  are 
the e m p t y  single particle states of the right lead. The first term involves a 
summat ion  over all of the states of the ND - 1 electron dot. This te rm describes 
the t ransport  of holes from right to left. The second te rm involves summat ion  
over all states of the No + 1 electron dot and describes the t ransport  of electrons 
from left to right. The denominators which control the strength of the resonances 
can be written in terms of the chemical potentials p and excitations 5E, namely 

E D ( N D )  -- E D ( N D  -- 1) - -  e ~  = p D ( N D  -- 1) - -  p R  _ 3 E D ( N D  _ 1) - -  3e~ ¢ 

E2(ND) - E3(Nz) + 1) - e~ = ~,D(N.) - #L _ 6ED(ND + 1) + 5e~. (5)  

We see that  the "hole" term is resonant when # D ( N  D -- 1) ~ #R and the "elec- 
tron" te rm is resonant when #D(ND) ..~ #L. In both cases the transition involves 
the creation and annihilation of electrons in single particle states n, m. 

It  is very illuminating to follow the s tandard approach from other resonant 
processes, such as resonant electronic Raman  scattering, and approximate  the 
summat ion  over intermediate states as 

] < NDic" ~ i  !No + 1 >ii  < ND + II c+lND >0 
E D ( N D ) -  ED(No + ~ - -  -ef'+ ie 

'~ I < No[ e n ~ i  IgD + 1 >i i < ND + lie+miND 
pD(ND)-- pR + ie >0 

I < YDle,~e+lYo >0 (6) 
# D  ( N D  ) __ # R  + i¢ 

We assumed a weak resonance between excited states of the dot and neglected 
them altogether. This permits  the summat ion  over all intermediate states to be 
performed and the tunnelling probabili ty to be expressed as a product  of the 
resonant te rm and a charge fluctuation term, viz. 
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2 
T - 1  ~-~ [DD(ND)_IZR+ie]2 X 

E ]  ]I < ND]Em,,  LD aD + 12 F~,mF~R,,c,c,,]ND >0 

5(EI(ND) - Eo(ND) + 6e~ + 6e~ - 5,  LR) 
(7) 

7-1(w) ~ ~ l  I~D(ND)--gR+iel2 

~ 1  II < NDI ~,n CmCm+z+ IND >0 125(El(No)- Eo(ND)+w). 

The operator Pl = ~ c,nc++z entering the transition probability is simply the 
charge-fluctuation operator. Hence, the tunnelling probability is determined by 
the spectrum of the collective charge density fluctuations, with resonant enhance- 
ment whenever the chemical potential of the electrode is close to the chemical 
potential of the dot. The spectral window w is related to the bias through the 
difference in the chemical potentials, 6 f t  L R  , of the left and right electrodes. The 
tunnelling matrices give effective angular momentum selection rules. This is a 
simple and intuitive result. A tunnelling electron passes through the dot and po- 
larizes the QD electrons via excitation of charge or spin fluctuations. The cross 
section is proportional to the spectrum of collective exci ta t ions.  This is to be 
contrasted with Eq. (2) which expresses transport via the single particle spectral 
function. 

To summarize, we must calculate the chemical potential of the QSET, its 
spectral function and the spectrum of collective excitations in order to under- 
stand the operation of the QSET. 

4 S i n g l e - p a r t i c l e  a n d  c o l l e c t i v e  e x c i t a t i o n s  

We start by investigating the excitation spectrum of the quantum dot. The 
ground state IG > is given by a single Slater determinant of all the lowest 
single particle states I m >  with spin c~ down, i.e. IG >=  ~m<m.,.x C+dl 0 >' 
(m,na~ = N - 1). The excitation spectrum of the dot corresponds to the 
charge-density excitations Imp, mh >¢d= c+,ac,~h,d[O > and spin-flip excitations 
Ime, mh >SF = C+,uCmh,dlO >. Note that charge-density excitations involve the 
removal of an electron from an occupied state [rnh > to the outside of the droplet 
(M > 0); while spin-flip excitations allow for the excited electron to move in- 
side the electron droplet (M < 0 and M > 0 branches). The magneto-exciton 
picture used here can be related to the chiral bosonisation scheme [9, 27] where 
one defines chiral boson operators, B+M, in terms of the electron-hole pair oper- 
ators B + = Em~=0 CM+rn,dCm, d. + The magneto-excitons corresponding to charge 
fluctuations can be related to the reconstruction of the charge density of the QD 
and we shall call them edge magneto-rotons (EMR). 
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Since the Hamiltonian conserves the total angular momentum, the angu- 
lar momentum of the excitation M = mr - m h  is a good quantum number. 
For each M, the true excitations IP, M > of the system are a linear combi- 
nation of electron-hole pair excitations IP, M > =  ~"~mh APrnh Imh  -f" M, m h  > .  

We diagonalize the Hamiltonian, Eq. (1), in the space of electron-hole pair 
states [me, mh > for a fixed value of M = me - mh. The matr ix  elements 
< m~,, cr~, m~h, OJhlHIme, ~re, mh, Crh >, describing the mixing of EMR, are given 
by 

< rn~e,a~e,m~h,Cr~hlHlme, ae, mh,ah > =  
! 8m,,,-.£ &~¢~.&.;,.. 8O'hO'h{< m~lUIm~ > - < mhlUImh > "l'-SHFrnc a,~ _ ~',HFrnh a h  J]" 

! ! 
+ < m'~mhlVIm,m'h > 6,,.,,~-- < m,  mhlVImhm~ > .  (8) 

The first two terms are the kinetic energy difference in promoting an electron 
from the state m h to the state Im~ > in the potential of the electrode. The re- 
maining terms are contributions due to electron-electron interactions, the differ- 
ences in the Hartree-Fock energies of the initial and final states and the mixing 
of magneto-excitons via Coulomb interactions (vertex corrections). Note that  
the vertex correction includes a diagonal term and contributes to the magneto- 
exciton energy. 

To calculate the spectral function of the QSET, we calculate not only the 
one but also the two-pair excitation spectrum of a QD [18, 26]. This calculation 
is rather cumbersome and will not be described here in any detail. The spectral 
function A(w) = Im(G(w)) is divided into a "hole" term and an "electron" term. 
The "hole" term corresponds to the removal of an electron from the ground state 
of the N electron QSET, i.e. 

A<(w) = Z I  < N + l l Y ~  cmlN >° 125 (E l (N-  1 ) - E o ( N ) + w ) ;  (9) 
y m 

the electron part corresponds to the addition of one electron to an N electron 
QSET, i.e. 

A>(~) = ~ /  < N + 1] ~)'-]c+lN >o 1:5(E/(N + 1) - Eo(N) - w ) .  
] m 

(10) 

In Fig. 3 we show the collective excitation spectrum of an N = 1 0 - 1  electron 
droplet and a hole spectral function of an N = 10 electron dot in a magnetic 
field of B = 2T. The ground state is a compact droplet. The excitation spectrum 
shows a low lying branch of edge magneto-rotons (EMR). The magneto-roton 
nature is visible in the softening of the dispersion for intermediate angular mo- 
menta. The higher energy excitations describe the interaction of pairs of EMRs. 
The removal of a hole couples strongly to collective excitations as is seen by the 
large peak in the density of states in the energy sector of EMR. This is not the 
case for electrons. 
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Fig. 3. The collective excitation spectrum and hole spectral function of an N=10 elec- 
tron dot at B=2T. 

In Fig. 4 we show the total  spectral function of an N=10 electron dot. First, 
we see tha t  there is a gap A across the Fermi level. The gap is related to the 
energy of adding/subtract ing an electron to / f rom an N=10 electron droplet. The 
density of states is strongly modulated.  The first excited states are the Centre 
of Mass (CM) excitations with energy ~2_ broadened by EMR. For the addition 
of electrons this interaction is weak but for holes a very strong enhancement of 
the density of states is present due to the large overlap of a single hole excitation 
with a many-body  state. Therefore measurements of the density of states should 
concentrate on the hole part  of the spectral function. A good spectroscopic tool 
is the recombination of acceptors [18]. We now turn to spin excitations and larger 
dots. 

Let us examine the effect of a central electrode in larger dots with N ~ 30. 
We first s tudy the stability of a compact  droplet against the electrode potential.  
This stability is determined by spin-flip (SF) excitations. In Fig. 5a we show the 
spin-flip excitation (SF) spectrum of a compact  dot at B = 3T as a function 
of M,  for N = 27 electrons on a disk with N = 54 states. The general shape 
of the excitation spectrum and the origin of the low lying excitations, can be 
understood by considering the removal of an electron either from the edge of 
the droplet or from the centre. The softening of the positive branch of the SF 
excitations around M = 8 is due to the loss of exchange as the electron is being 
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Fig. 4. The spectral function of an N=I0 electron dot at B=2T. 

removed from the dot. Note the dark areas in the figure; they correspond to 
peaks in the density of excited states. In Fig. 5b we show the effect of an attrac- 
tive electrode on the SF excitation spectrum. An attractive electrode generates a 
soft mode in the negative M branch for M = 5. The soft mode indicates a tran- 
sition from a spin-polarized droplet to a spin-density state which can be crudely 
characterized as an excess of spin and charge in the centre of the dot, accom- 
panied by a hole in the spin down ground state. For larger electrode strength, 
the excess of spin and charge in the centre of the dot grows. This can only be 
treated approximately using HF. 

5 H a r t r e e - F o c k  c a l c u l a t i o n  

The direct and exchange interaction of a large number of electrons can be treated 
in the Hartree-Fock approximation (HF) [7, 8, 18]. Because of the limited Hilbert 
space, the Hartree-Fock wavefunctions are exactly the same as the single particle 
wavefunctions Im >. The ttartree-Fock method is, therefore, equivalent to the 
minimization of the total HF energy ~-tot in the space of HF configurations, ~ H F  
given by a set of single particle occupations {fro,o}, with fm,o restricted to 0 or 
1, i.e. 
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where 

H F  m 

(11) 

(12) 
is the tIF Coulomb matr ix  element and the factor of 1/2 corrects the overcount- 
ing of pair interactions. 

Once the ground-state configuration is found, the HF quasiparticle energies 
EHF(mG) can be easily calculated using 

: em,o + < > fm o,. (la) 
~ 2 0  "S 

Fig. 6 shows the dispersion of HF energies EHF(mG) for a droplet of N=27 
electrons and different values of the magnetic field. The energies are plotted in 
units of the exchange energy E0. The thick bars correspond to energies of the 
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n = 0 states while the thin lines show the HF energies of the second Landau 
level (n = 1). The black squares denote the occupied states. For B < 1T, the 
droplet consists of a small spin-up droplet and a larger spin-down droplet. The 
increasing of the magnetic field increases the role of the Coulomb energy and 
shrinks the spin-up droplet as the spin-down droplet grows. At B = 3T the 
droplet is spin-polarized with all electrons occupying the lowest single-particle 
states. There is only a single state (configuration) IG > in the spin-polarized 
Hilbert subspace corresponding to this value of the total angular momentum; 
this state is an exact state of the interacting system [8]. As the magnetic field 
increases to 4T, the spin-polarized droplet breaks down to reduce its Coulomb 
energy, forming a ring and a small droplet. 

This droplet reconstruction [3, 8, 7] is analogous to transitions between 
"magic" angular momentum states in few-electron droplets [11, 12, 8, 13]. Be- 
cause the exchange splitting between spin-down and up states, of the order of 
E0, is comparable with the kinetic energy splitting ~2+, the restriction of the 
Hilbert space to the lowest Landau level appears to work quite well here. 

We now focus on the effect of the electrode on the compact spin-polarized dot. 
In Fig. 7, we show the distribution functions fu/d(m), for a strongly attractive 
electrode ("~i = 10 meV ). The f(rn) clearly show the formation of an excess 
of charge and spin in the centre of the dot, surrounded by a ring of holes, in 
a spin-polarized state. The situation is different for a repulsive electrode. The 
centre of the dot is empty and electrons form a ring of spin-polarized electrons. 
The electrode is, however, surrounded by a small ring of electrons with reversed 
spin. 

Such electrode induced transitions should be observable in resonant tun- 
nelling experiments. The tunnelling experiment in the Coulomb blockade regime 
measures the chemical potential, tu(N), of the dot [4, 13, 24]. In Fig. 8 we show 
the evolution of the chemical potential (the shift of the position of the conduc- 
tivity peak) as a function of B in the absence of an electrode and as a function 
of electrode strength, wi, for both attractive and repulsive electrodes at the fixed 
magnetic field B = 3T [3]. Fig. 8a shows the evolution of the chemical potential 
as a function of the magnetic field in the absence of an electrode. The oscilla- 
tory character for B < 2T (1 < u < 2) corresponds to electrons flipping their 
spin while the spin-down droplet grows at the expense of the shrinking spin- 
up droplet. From B = 2 to B = 3.4T, the droplet is a spin-polarized compact 
droplet with an almost uniform charge density; for B > 3.4T, it enters the Frac- 
tional Quantum Hall regime, breaking down into inhomogeneous and strongly 
correlated parts. This breakdown corresponds to the introduction of holes into 
the compact droplet. The small number of holes immersed in the homogeneous 
droplet condense into highly correlated states in a way similar to a small num- 
ber of electrons [22]. Since our main interest at the moment is in the effect of 
electrode, we concentrate on a well characterized compact droplet at B = 3T. 
Fig. 8b shows the chemical potential (the shift of the Coulomb blockade peak) 
as a function of electrode strength for a repulsive (attractive) electrode. For a 
repulsive (attractive) electrode, we expect the coulomb blockade peak to move 
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to higher (lower) energies (gate voltages). The shift of the chemical potential  
takes place in steps. These steps correspond to the discrete number of holes and 
spin-reversed electrons created in a compact  droplet. The holes can come from 
the edge, or from the bulk, of the droplet. Both the spin-reversed electrons and 
holes can restructure as a function of the electrode strength, leading to additional 
structure in the charging curve (see, e.g., ~i > 4 region in Fig. 8b). 
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6 C o n c l u s i o n s  

In summary,  we have studied the effects of the electron-electron interactions on 
the single-particle and collective excitations of a QSET. We concentrated on 
the addition to and subtraction from the dot of electrons by calculating the 
spectral function and on the coherent resonant tunnelling as a spectroscopy of 
the collective excitations. In particular, we have examined the effect of a tunable 
electrode on the ground and excited states of a strongly interacting electron 
droplet in a QSET. The effect of the electron-electron interactions in the droplet 
is tuned by the magnetic field and by the central electrode. We showed tha t  both  
the magnetic  field and the electrode induce spin and charge transitions in the 
ground state of the electron droplet. These transitions lead to structure in the 
chemical potential  of the dot, and hence to shifts of the Coulomb blockade peak. 
The distinct structure of these shifts corresponds to a finite number  of holes 
and spin reversed electrons created in the dot. This in turn should modula te  the 
t ransport  through the QSET. 
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At the  Limit of  Device  Miniaturizat ion 
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Abstract :  Some striking quantum phenomena discovered in small conduc- 
tors, insulators and capacitors over the recent years are described. It is argued 
that while these phenomena may render further miniaturization ofthe present 
electronic devices difficult, they may constitute the principle of operation of 
the next generation of devices. 

1 I n t r o d u c t i o n  

It is widely appreciated that  we witness an information revolution. The major 
driving force behind it is the enormous and steady progress in device miniatur- 
ization. Miniaturization increases the storage density of information, reducing 
simultaneously the price and time to access and process it. Indeed, today's mi- 
croprocessors (#P) can execute one billion instructions per second (1 GIPS), 
and 100 million transistors packed on one 2 cm 2 chip of dynamic random access 
memory (DRAM) store 64 Mb of information- about 4 000 printed pages. Ac- 
tually, according to Moore's law, which has been obeyed over the last 30 years, 
the storage density has increased by a factor of 2 every 18 months, as shown in 
Fig. 1. At the same time, scaling recipes which say how device parameters (sup- 
ply voltage, gate thickness etc.) have to be changed with the overall transistor 
size, have successfully been employed down to the present critical dimension of 
0.35 #m. 

The natural question arises of when a breakdown of the Moore and scaling 
laws is to be expected or, in the other words, what will be the main constraints 
that  may slowdown device miniaturization in the future. Of course, there are 
many kinds of such constraints identified by now: psychological (a barrier to be 
accustomed to ...), legal (copyrights, censorship against sex and violence, ...), fi- 
nancial (cost of a present-day DRAM factory is over 2 G$), technical (software, 
electrodiffusion, cross-talking, lithography resolution,....). While each of these 
issues is of potential importance, in the present paper we discuss still another 
constraint. We address the question of whether there exist physical phenomena 
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Fig. 1. Illustration of Moore's law: time evolution of the design rule for #Ps and 
DRAMs together with the bit capacity of DRAM (dynamic random access memory). 

that  may limit further progress in the miniaturization of the devices. Since, with- 
out a doubt, the principal electronic device is the field effect transistor (FET),  
we describe the physics of its main building blocks, that  is, the physics of small 
conductors, insulators, and capacitors. The results which we are going to present 
show that  there exist indeed many novel phenomena in small structures. These 
phenomena may preclude the further miniaturization of today's devices. How- 
ever, they may constitute the principle of operation of future devices. 

2 Smal l  conductors  

The presence of many (10 s ) transistors on one chip raises the question about 
statistical fluctuations of the conductance from one nominally identical small 
conductor to another one. According to the Bol tzmann-Drude theory, in the 
absence of phonon scattering, the conductance G (inverse resistance) is inversely 
proportional to the number of defects in the structure, N. Of course, in the 
nominally identical structures the distribution and the actual number of defects 
undergo statistical fluctuations. For instance, in submicron wires of modulation- 
doped GaAs/A1GaAs heterostructures with the extremely high electron mobility 
of the order of 10 6 cm2V/s there can be no defects at all (ballistic transport)  or 
one or two defects (quasi-ballistic transport). In most cases, however, N >> 1, 
so that  the mean free path g is much smaller than the conductor length L, and 
the transport  becomes diffusive. For such a case the mean square root dispersion 
of N is AN = N1/2, and thus A G / G  = N -1/2. Hence, for a conductor in the 
form of a cube of volume L d, for which G o¢ L d-2, we arrive at A G  o¢ 1/L 2-d/2. 
We see that  in the framework of the Drude-Boltzmann theory, the statistical 
fluctuations of the conductance has the property of self averaging: AG --* 0 for 
L --* oc. 
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In view of the above discussion it was a surprise, when the independent 
diagrammatic quantum calculations of the conductance by Altshuler [1] and Lee 
and Stone [2] predicted that in any conductor 

A G  ~ 0.5e2/h, (1) 

independent of the material, space dimension d, and conductor size L. These 
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Fig. 2. Aperiodic conductance changes (in units of e2/h) as'a function of the magnetic 
field in wires of Si MOS-FET [5], hu  film [6], GaAs/A1Gahs heterostructure [7], and 
HgCdMnTe bicrystal (two traces document the reproducibility of the fluctuations) [8]. 

remarkable properties of the variance AG explain why the phenomena are ref- 
ereed to as universal conductance fluctuations (UCF). There are two quantum 
effects that  account for the UCF. One is the interference of the de Broglie waves 
corresponding to different possible paths of the Fermi level electron through 
the disordered medium. Interference effects are not taken into account in the 
essentially classical Drude-Boltzmann description of the conductivity. The in- 
terference term contains detailed information on the impurity distribution in 
a given sample, and is responsible for large conductance fluctuations from one 
potential realization to another. Moreover, the interference contribution to the 
conductance can by varied in one sample by changing the wavelength of electrons 
at the Fermi level by, say, the gate voltage, or the magnetic field, as the vector 
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potential affects the electron phase. The second effect, which must be consid- 
ered to explain the universality of the UCF amplitude, is associated with the 
quantum repulsion between energy levels of the random systems. This repulsion 
leads to the so-called Wigner distribution of the energy levels, discussed in detail 
by Dyson [3] in the context of nucleus scattering spectra. The above theoretical 
suggestions [1, 2, 4] are confirmed by a number of experimental results, a few of 
them [5, 6, 7, 8] being displayed in Fig. 2. 

The natural question arises of why these effects are not seen in large sam- 
ples but only in nanostructures. There are two mechanisms accounting for 
the decrease of the UCF amplitude with L [4]: (i) thermal broadening of the 
electron distribution around the Fermi energy and (ii) inelastic scattering by 
phonons, other electrons etc. It is easy to show that the interference effect be- 
gins to be washed out once L becomes greater than thermal diffusion length 
LT = ( h D / k B T )  1/2 and the inelastic scattering length L~ = [Dr¢(T)] 1/2, where 
re(T) is the inelastic scattering time (it tends to infinity for T ---+ 0). Experi- 
mental findings [9] which confirm these expectations are shown in Fig. 3. It is 
seen that  indeed rather small structures and low temperatures are necessary to 
observe the UCF. 

It has been suggested [10] that a strong sensitivity of the conductance to 
interference could be used in the design of devices with a large transconduc- 
tance. In such devices the gate voltage would not control the electric current by 
changing the electron density. It would rather affect the transmission probabil- 
ity by changing the phase difference between electron waves travelling by two 
conducting channels, as shown in Fig. 4. 

3 Small  insulators 

The key requirement imposed on a logic device is a large contrast between its 
two states. In the case of FETs, this corresponds to a large resistivity difference 
for the two extreme values of the gate voltage. It has, however, been found 
[11] that  on reducing the transistor length to the submicron range, the contrast 
in question tends to decrease. In particular, according to results presented in 
Fig. 5, even in the off-state, i.e. when the Fermi level is in the band-gap region, 
a small MOS-FET transistor can conduct current for some values of the gate 
voltage. It is now generally accepted that each sharp peak of the conductance in 
the off-region results from electron tunnelling between the source and the drain 
contacts via a defect that has a state in the band gap of the semiconductor. 
To contemplate the physics involved, note that the transmission coefficient Tr 
for electron tunnelling is exponentially small in both the heights of the energy 
barrier and the distance between the electrodes L. If, however, the electron 
energy becomes equal to that of a localized state, resonant tunnelling is possible. 
For such a process, the transmission probability is no longer determined by L but 
by ILd, -- Lddl, where Ld~ and Lad are the distances of the defect to the source 
and drain, respectively [12]. We see that T~ = 1 for a defect that happens to 
be exactly in the middle of the structure. Thus, such a defect completely short- 
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Fig. 3. Aperiodic resistance fluctuations as a function of the magnetic field for two 
wires of n-CdTe with different widths (2 #m and 0.3 #m, respectively) but with the 
similar ratio of the length to the width and thickness (about 10). The temperature 
dependence of the resistance fluctuations is shown in the lower panel for the smaller 
wire (after [9]). 

circuits an insulator, provided that  the energy of its states coincides with the 
Fermi level and, at the same time, its lifetime broadening F is greater than the 
thermal  spread of electron energies, kBT. For the state in question G decreases 
exponentially with L/2, hence the observation of the effect requires either small 
samples or rather low temperatures.  

A manmade  structure, the so-called resonant hot-electron transistor (RHET) ,  
is presented schematically in Fig. 6 [13]. It  consists of a GaAs source, drain, and 
well regions separated by AIGaAs barriers. The two-dimensional state in the well 
serves as a resonant level for the electrons emitted by the source. It is known that  
such good quality layered structures with sharp and defect free interfaces can 
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Fig.4.  Scheme of a field effect transistor (a) whose transconductance (b) is driven 
by the effect of the gate voltage on the interference of electron waves in two channels 
(afterlO). 

be obtained by crystal growth at appropriately low temperatures, for instance, 
by molecular beam epitaxy (MBE) or metal organic chemical vapor deposition 
(MOCVD). This device has several interesting features, among them its char- 
acteristics exhibit three, not two, well-defined states, making simplifications of 
the logic-gate architecture possible. In addition, RHET seems to be a suitable 
device for chips, in which elements could be packed layer by layer, i.e. three di- 
mensionally, not only in one plane. As shown in Fig. 7 [14], the current-voltage 
characteristics, specific to resonant tunneling, are visible even at room temper- 
ature in high quality structures. 
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Fig. 5. Conductance of a small Si MOS-FET as a function of the gate voltage (after 
[11]). 

4 Small  capacitors 

It is known that the equilibrium charge Q of a capacitor is determined by the 
competition between the positive energy of the Coulomb repulsion between accu- 
mulated charges, Q2/2C, and a negative energy of the charge in the electrostatic 
potential, - Q V .  By minimizing the total energy, 

E(Q) - Q 2 / 2 C -  QV, (2) 

with respect to Q we arrive to the text book conclusion that  the accumulated 
charge increases linearly with the capacitor voltage, Q = CV. 

Since, however, the charge is quantized we may suspect that  the actual charg- 
ing process does not proceed in a continuous way but in steps of the elementary 
charge e [15]. The charging of a capacitor plate which contains N electrons by 
a new electron will occur for such a voltage that E[(N + 1)el = E(Ne). This 
condition gives V = (N + 1/2)e/C, and shows that if an increase of the voltage 
AV is too small, AV < e/C, charging is not at all possible. This phenomenon 
is known under the name of Coulomb blockade. For a small plate-air-capacitor 
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Fig. 6. Scheme for a resonant hot electron transistor (RHET), its current-voltage char- 
acteristics and implementation as exclusive-NOR gate (after [13]). 

with the surface S = 0.1 mm 2 and the distance between the plates d = 10 nm, 
respectively, we evaluate C = eoS/d ~ 0.1 fF, and thus e / C  to be as large as 2 
mV. 

An example of the structure, in which the Coulomb blockade has been 
readily observed [16] is schematically presented in Fig. 8. The capacitor plates 
are formed by the back gate and the two-dimensional electron gas at the 
GaAs/A1GaAs interface. An additional gate, just at the top of the electron gas, 
is patterned in such a way that  it permits the total depletion of the electron gas, 
except for a small dot-like region and the pads to it. The process of charging is 
probed by measuring the current through the dot, i.e. the dot conductance as 
a function of the capacitor voltage. A small voltage that  drives the current as 
well as the negative potential of the upper gate are kept constant during this 
experiment. As shown in Fig. 9, the conductance shows a periodic multi-peak 
structure. According to the discussion above, each of the peaks marks the ap- 
pearance of a new electron in the dot. The conductance modulation vanishes at 
higher temperatures T > e2/kBC, where thermal broadening of the distribution 
function means that  the electrons to have energies sufficiently high to overcome 
the Coulomb barrier. 

Several applications have been proposed for these artificial atoms - dots with 
a controlled number of electrons. A single electron transistor (SET), electrom- 
eter, and primary thermometer  [17] constitute the most commonly discussed 
examples of possible devices. The Coulomb interaction belween the charged dots 
has also been suggested as a basis for computer logic [18]. 
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Fig. 7. Room temperature current voltage characteristics of resonant tunnelling struc- 
ture of GaAs/A1GaAs (after [14]). 

5 Concluding remarks 

A traditional method that  is employed in order to evaluate the lifetime of devices 
is to carry out degradation studies as a function of temperature well above room 
temperature  and then to extrapolate the results downwards. In the physics of 
quantum devices we proceed other way around. Indeed, the examples discussed 
in the present paper demonstrate that  a number of striking phenomena show 
up in the mesoscopic regime which is reached by decreasing the temperature 
and/or  the sample size. Thus, we can find out at which level of integration 
these new phenomena might perturb the operation of the nowadays devices by 
extrapolating from the subkelvin region up to room temperature. In the same 
way we can evaluate the upper limit for the size at which the device whose 
principle of operation involves one of the newly discovered phenomena would 
work at room temperature.  For instance, it is easy to show that the critical 
dimension of a room-tempera ture  single-electron-transistor should be between 
5 and 8 nm. The question of whether such small devices could be fabricated 
by advanced lithography, by direct deposition methods or by atom or molecule 
manipulation is under vigorous studies in the present time [19]. 
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Fig.  8. Scheme of metallic gates deposited below and above two dimensional electron 
gas at GaAs/A1GaAs interface in order to study the effect of charging of a small 
capacitor (after [16]). 
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Fig.  9. Conductance of a function of the gate voltage for structure of Fig. 8 (after [16]). 
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A b s t r a c t :  The Boltzmann equation in the relaxation time approximation 
is used to calculate formal expressions for the local electrical, thermal and 
thermoelectric transport coefficients of a strictly 2D, elastically scattered, free 
electron gas. The terminal transport coefficients for the same gas confined in 
a quantum wire are also calculated using the Landauer-Buttiker formalism. 
Both calculations are valid in a quantum wire structure when its width w 
is much greater than the Fermi wavelength and its length ~ is much greater 
than the classical mean free path. Comparison shows that the sum of all the 
transmission coefficients through the system at the Fermi energy e is therefore 
given by T(e) = (w/g)~/Ae where Ae = h/r(e) is the uncertainty in e arising 
from the classical relaxation time r(e). A new way of calculating T(e) using 
wave functions is outfined. Numerical results for both T(e) and scattering wave 
functions are presented for two nanonstructures: (i) a quantum wire with one 
hard wall finger pushed in and (ii) a quantum wire with two hard wall fingers 
pushed in so as to create a quantum dot. 

1 I n t r o d u c t i o n  

The  approach  to electron t ranspor t  th rough  the classical Bo l tzmann  equat ion 
has had m a n y  successes in collision domina ted  systems [1,2]. In the last decade 
a great  deal of  a t tent ion has also been payed to non-interact ing 2D electron 
gases (2DEGS)  which are often a lmost  collision free so tha t  the mot ion  of  the 
electrons is quasi-ballistic. To unders tand their behaviour  it is then necessary 
to use Schrodingers equation.  The  resulting q u a n t u m  mechanical  formulae for 
the electrical and thermal  conductances  and the thermoelectr ic  coefficients are 
easily obta ined  [3,4]. 

In these lectures we concentrate  on non-interact ing free electrons in nanos- 
t ructures  with two terminals  and suppose tha t  there is no magnet ic  induct ion 
field applied. We show tha t  the classical and quan tum-mechan ica l  formulae have 
a lmost  identical structures.  In the classical formulae the zero t empera tu re  con- 
duc tance  when the Fermi level is c is denoted by ~r(c). I t  contains all the relevant 
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classical mechanics and determines all the classical transport  coefficients. In the 
quantum-mechanical formulae c~(c) is replaced by G(c) = (2e2/h)T(c) where 
T(c) is the sum of all the transmission coefficients from any mode in one termi- 
nal to any mode in the other. The Landauer-Buttiker conductance G(~) contains 
all the relevant quantum mechanics and determines all the quantum- mechanical 
transport  coefficients. 

The similarity between the classical and quantum- mechanical formulae arises 
from the assumptions made in both calculations that  the electrons move inde- 
pendently and are conserved. In some cases both methods of calculation are 
valid. A simple example is a rectangular 2DEG of width w, length ~, and having 
a classical relaxation time r(c) produced by elastic scattering. Quantum me- 
chanics is always appropriate to this system. Classical mechanics is also valid 
provided that t >> ~c, the classical mean free path, and w >> ~, the de Broglie 
wavelength at the Fermi level ¢. We may therefore relate T(¢) to r(¢). The re- 
sult is T(¢) = (w/L)¢/A¢ where Ac = li/r(¢) is the width of the Fermi level 
produced by the elastic scattering. 

We give a brief account of Boltzmann transport theory for a 2DEG in Section 
2. Section 3 is devoted to the simple quantum-mechanical case of a 2D quantum 
wire in which there are no scattering centres. Then we may immediately derive 
the quantisation formula in the absence of a magnetic field: G(c) = N(2e2/h) 
where N is the number of modes which can propagate in the wire at the Fermi 
level. It is also easy to understand that, if a fraction R of the particle current 
in a particular mode in one terminal is reflected by an obstacle into backward 
travelling modes, then its contribution to G(¢) will be reduced by a factor 1 - R  = 
T, where T is the total transmission coefficient (for the mode considered) into 
the other terminal. Summing over all the modes gives the Landauer-Buttiker 
formula quoted earlier: G(~) = (2e2/h)T(¢), where T(~) is the sum of all the 
transmission coefficients from every mode on one side of the obstacle to every 
mode on the other side. We broaden out this intuitive discussion in Section 
4 so as to write down the quantum- mechanical formulae for all the terminal 
transport  coefficients. 

Finally, in Section 5 we describe a new way to calculate G(~) [5,6] which also 
yields scattering wave functions. Results are given for a quantum wire with a 
hard wall finger pushed into it and for a quantum wire with two adjacent hard 
wall fingers push in. In the second case the space between the fingers forms a 
quantum dot which is accessed through the spaces above the fingers. We present 
numerical results for G(c) and scattering wave functions in both cases. 

2 B o l t z m a n n  T r a n s p o r t  T h e o r y  

We consider a strictly two-dimensional electron gas (2DEG) between parallel 
hard potential walls spaced a distance w apart. For a steady state situation 
Boltzmann's equation for the distribution function f (k ,  r) of the 2DEG is [1,2] 

e 
v .  - V k f  = - ( / -  fo)/  (1 )  
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In this equation all the vectors lie in the xy-plane and fo is the Fermi-Dirac 
function: 

fo = [exp {(¢k - tL ) / kBT}  + 1] -1 (2) 

where ~ is the electron energy at wave vector k , #  is the chemical potential 
(assumed constant) and T is the temperature which we suppose varies along 
the wire in the x-direction. On the right-hand side of Eq. (1) we have used the 
familiar relaxation time ansatz [1,2] for the rate of change of f due to collisions. 
The relaxation time is assumed to be a function of sk only and, in what follows, 
we consider free electrons in the lowest 2D subband with ek = h 2 k 2 / 2 m  *. 

To solve Eq. (1) we suppose that  E = (E, 0) and V T  = (OT/Ox,  0) in the 
(x, y)-plane and assume that both E and cOT/cOx are small. Then we may write 
f = fo + f l  where f l  is also small. Consequently, to first order in small quantities, 
the solution of Eq. (1) is given by 

I'1 = ~ rye, eE  + Ox 

The densities of electric current and heat flux along the wire are, respectively, 

-e / (4a) J = ~ dk~dky f l  v~ 

and 
1 

J /1 v (E- Q = 2r2 
(4b) 

where v~ = h k x / m *  is the group velocity of an electron in the x direction 
Elementary manipulations allow us to carry out the angular integrations in Eqs. 
(4) immediately. We may also introduce the electron energy E = h 2 k 2 / 2 m  ~ as 
the remaining integration variable. The final results are: 

cOT 
J = a E + L cOx (5a) 

cOT 
Q = M E + N cO-x (hb) 

where 

dfo dc (6a) iT(C) 

is the electrical conductivity. 
In Eq. (6a) a(e) = n(e)e2r(~) / rn  * denotes the conductivity when T - 0 and 

the chemical potential is set equal to ~ [1]. The quantity n(c) = m * v / r h  2 is 
easily identified as the total 2D density of electron states in the lowest subband 
of the 2DEG with energy less than ~ [5]. The remaining transport coefficients 
L, M and g are obtained from Eq. (ha) by multiplying ~(¢) by (¢ - I~)/eT, 
(c - #) /e  and - (~  - / ~ ) 2 / j T  respectively. Thus we find that  

f d/o (E ) (6b) L = -  ~ -.Ire.l. de 
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dfo ( e -  p) de M =  ~ or(v) e (6c) 

and 

f dfo ( ¢ -  I~) 2 de N =  (6d) 

The coefficients in eqs.(5) and (6) are appropriate when we measure electric 
and heat current densities together with electric fields and temperature gradi- 
ents. The quantum mechanical formulae involve the voltage drop AV = Et ,  the 
temperature drop A T  = i .dT/dx and the total fluxes ,IT = w J  and QT = wQ of 
electric current and heat along the quantum wire which we suppose has length 

and width w. In terms of these quantities Eqs. (5) become 

J T  = O ' T A V  @ L T  A T  (7a) 

and 
QT = MT A V  + NT A T  (7b) 

where O'T, LT, MT and NT are obtained by multiplying the coefficients in Eq. 
(5) by w / L  so that  

W 
(aT, LT, MT, NT) = -[(o', L, M, N)  (8) 

3 E l e c t r o n  T r a n s p o r t  i n  a Q u a n t u m  W i r e  

We consider a perfect 2D quantum wire with hard walls at y = 0 and y = w and 
zero potential energy between the walls. The wave functions then take the form 

¢(x,  y) = (21w) 11~ s in ( r ry lw)e  ~kx (9) 

where r is a positive integer and we have normalised the mode functions 
(21w) 1/2 s in ( r ry lw)  to unity. It is convenient (for counting states) to introduce 
a length ~ in the x-direction over which we apply periodic boundary conditions. 
Then the values of k are s 2 r l t  where s is an integer. Consequently the density 
of states per unit energy, per unit length, for one mode is: 

1 Ak 1 1 
N ( O  = 7 2~I t  " A--~ -- hv~ (10) 

where Ak is a small increment of k, Ae is the corresponding increment of ¢ and 

1 de hk 
Vx ..~. --  - -  ~ h dk m i 

is the group velocity. The corresponding density of current is 

2e 
Jd = - 2 e  N(c)  vx - - h 

(11) 

(12) 
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where -e is the electron charge. The factor of 2 in Eq. (12) allows for spin 
degeneracy (we ignore spin splitting throughout these lectures). 

We see that  Jd is equal to a constant involving only the fundamental quan- 
tities e and h. This is the origin of the quantisation of G(¢) in quantum wires 
(and, more generally, in two terminal structures when B = 0). To identify the 
conductance of the mode being considered we suppose that current is fed into 
the wire from ideal reservoirs at either end, both of which have T = 0, but also 
have chemical potentials which differ by Ap. Then the total current carried by 
the mode is JdA#. Moreover the voltage drop in the direction of current flow is 
AV = - A # / e .  Hence the conductance of the mode is 

Jdz~_______~_ 2 e  2 (13) 
--AtLle h 

and, if P modes can propagate at the Fermi level E, the total conductance is 

2e 2 
a = P - -  (14) 

h 

Equation (14) obviously gives the maximum conductance that  P propagating 
modes can have. As we argued in the introduction, the presence of any obstacle 
in the waveguide will mean that  P is replaced in Eq. (14) by T(c) which is the 
sum of all the transmission coefficients through the obstacle from all propagating 
modes on the left-hand side to all propagating modes on the right-hand side (or 
vice versa, the two methods of calculation yield the same result when B = 0). 
Thus we have 

2e2 T(e) (15a) = 

where 

= F_, (15b) 
a 

in which TR/3,Lc~ is the transmission coefficient from mode c~ on the left to mode 
/3 on the right. We note that the initial state L~ and the final state R/3 have the 
same energy in Eq. (15b) because the scattering is assumed to be elastic. More 
formal derivations of this result are given in references [3,4,5]. 

Equations (15) are the result of a calculation made at absolute zero. When 
the temperature is not zero we must weight the initial mode a in Eq. (15b) 
with the probability that  it is occupied. This is just the Fermi function (2) with 
T = T L  and p -- #L, the temperature and chemical potential of the reservoir 
feeding in electrons from the left. Similarly, the final mode f~ on the right in Eq. 
(15b) must be weighted with the probability that  it is empty. This is just one 
minus the Fermi function (2) with T = TR and p = pn.  Finally, we suppose 
that  the chemical potential and temperature differences between the terminals 
are both small. Then we easily arrive at the final linearised transport equations: 
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J = G(VL - VR) + L(TL - TR) (16a) 

Q -- M ( V L  - VR) + N ( T L  - TR) (16b) 

where J and Q flow from left to right. The coefficients G, L, M and N are given 
by Eqs. (6) with cr(~) replaced by G(~) in Eq. (15) and the derivative of the 
Fermi function appears as a result of the linearisation of the theory. 

4 T h e  R e l a t i o n  B e t w e e n  T ( e )  a n d  t r ( e )  w h e n  T ~ 0 

Consider a 2D free electron gas with T = 0 in a wire of length g and width w and 
suppose that the electron scattering is elastic. Then the quantum theory worked 
out in the previous section is applicable and the conductance at Fermi energy 
is G(c) = 2e2T(¢) /h  with T(e) given by EQ. (15b). Moreover, if the length g of 
the wire is many times the mean free path at the Fermi level and the width w 
of the wire is many times the Fermi wavelength then the classical treatment in 
Section 2 is also applicable. The conductance of the wire is therefore also given 
by O" T in Eq. (8) which yields 

,~T = w o/~ = w n ( ~ )  e ~ ~ ( ~ ) / r " *  e 

= w ~ r  e2~ . ( c ) / e  ~ a2 

where we have used the result quoted just after Eq. (6a). Hence we have 

(17) 

i.e. 

__2e2T(¢) _ w e e  2 r(¢) 
h g r h  2 

(18) 

where 

w c r p [  ~ 

l t E ~ -  e Ac (19)  

h 
~-(~) 

is the uncertainty in ¢ associated with the elastic scattering. 

(20)  

5 C a l c u l a t i o n s  o f  G ( e )  a n d  t h e  S c a t t e r i n g  W a v e  F u n c t i o n s  

The calculation of G(E) involves a consideration of the scattering matrix of 
the nanostructure. In complicated 2D nanostructures the preferred numerical 
method has been a recursive Green's function approach [6-9]. It provides a good 
way to calculate G(c) but is not appropriate for calculating the scattering wave 
functions which provide additional insight into the behaviour of nanostructures. 
Recently a new method of calculation has been developed which is based en- 
tirely on wave functions [10,11]. In the terminals a general wave function can 
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be written down immediately involving both incident and reflected propagating 
modes and evanescent modes which fall off away from the nanostructure. In each 
terminal an interface is specified which separates the terminM regions from the 
interior of the nanostructure which we refer to as the "cavity". The cavity may 
take many different forms in different nanostructures and consequently there is 
no general analytical way of dealing with it. Numerically, however, it does not 
present a serious problem. A set of "cavity functions" is calculated each one of 
which extends a particular terminal mode function continuously into the cavity 
and vanishes on the rest of the cavity boundaries including all the interfaces in 
other terminals. This makes it possible to set up a cavity wave function which is 
automatically continuous with any wave function in the terminals. The relation- 
ship between the amplitudes of reflected waves and damped evanescent waves 
to the amplitudes of the incident waves is determined by minimising the mean 
square discontinuity of the normal derivative of the wave function averaged over 
all the interfaces. The scattering matr ix and the conductance matr ix can then 
be determined by eliminating the evanescent modes. 

The method has complete generality and can deal with nanostructures having 
any number of terminals. So far it has been used to study two two-terminal 
systems. The first is a quantum wire with one rectangular hard wall finger pushed 
in [10] and the second has two rectangular hard wall fingers pushed in with the 
space between them forming a quantum dot [11]. We describe below some of the 
results obtained. 

L 

¢ 
I 
I w 

TERMINAL I 
1 iw 

CAVITY 

t 

TERMINAL 
2 

Fig. 1. The first nanostructure considered in the calculations. The dotted curve is a 
semicircular hard-wall cap. 
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The first structure and its terminal planes (dashed lines) are shown in Fig. 
1 which illustrates the notation used for the dimensions of the structure. The 
dashed curve on the top of the finger shows a semicircular top for which calcu- 
lations are also discussed in [10] but which are not included here. Fig. 2 shows 
a plot of G(~) against 2w/A  where A is the de Broglie wavelength at the Fermi 

0 
0 

w - - - -  

/ - J  p . . . .  J ,,. . . . . . . . . . . . .  

5 10 1'5 

16 
_C 

Oq 

Lt5 

/'3 

2 W l h  

Fig. 2. The dependence of the normalized conductance g12 on 2w/A, where A is the 
de Broglie wavelength, for a flat-topped finger when d = 0.4w and w' = w (full line), 
0.3w (dashed line) and 0.1w (dotted line). 

level which is defined by ¢ = (h212m*)(27r/A) ~. The full line is for h = 0. It  
shows the quantisation of G(~) for the empty  quantum wire which was discussed 
in Section 3. The dashed line is for the ease d = O.4w and w ~ = 0.3w. It  shows 
the quantisation in the presence of the finger which was originally investigated 
by Stone and Szafer [12]. The dotted line is for the case when d = 0.4w and 
w ~ = 0.1w. Figs. 3 and 4 show contour plots of the squared magni tude of a scat- 
tering wave function for the eases when w ~ = 0.3w and d = 0.4w when 2w/A  = 2 
(no transmission) and 2w/) ,  = 5 (first plateau). In both cases the mode with the 
lowest cut-off energy is incident from the left. 

The second structure and its dimensions are shown in Fig. 5. Two hard wall 
fingers are present and the space between them may be regarded as a quan tum 
dot. In Fig. 6 the dashed line is a copy of the dashed line in Fig. 2 for d = 0.4w 
and w ~ = 0.3w. The full line shows the result of the interference produced by 
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F i g .  3. Wave function contours when d = 0.4w, w'  = 0.3w and 2w/A = 2 (no trans- 
mission). 

. 

y fL  

O ° 

0 , 0  0 , 3  

. I  i I 

0 . 6  0 , 9  

x / L  

F i g .  4. Wave function contours when d = 0.4w, w'  = 0.3w and 2w/)~ = 5 (first plateau).  
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TERMINAL 1 
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I 
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d 
TERMINAL 2 

Fig. 5. A sketch of the second nanostructure giving the notation used for its dimensions. 
The full hnes axe hard potential walls. 

the presence of two fingers spaced by s = 0.467w. We see that  there are no 
resonant peaks produced by the quantum dot below the transmission threshold. 
One would expect to find some. Their absence can be traced to the very thick 
fingers (d = 0.4w) assumed in the calculations. The resonance peaks exist but  
are so narrow when d = 0.4w that  we could not find them even when 2w/~ was 
steadily increased by one in the third decimal place. When d is reduced to 0.1w 
the resonance peaks shown in Fig. 7 appear  below threshold as expected. 

We see that  the resonant values of 2w/)t decrease with decreasing h/w. This 
was initially puzzling because we had expected the dot to behave like an open 
ended organ pipe which would mean that  the resonant values of 2w/)t should 
increase as h/w is reduced. The reason for this unexpected behaviour is clear 
from the contour plots of the resonant wave function ampli tudes shown in Figs. 
8 and 9. In Fig. 8: 2w/)~ = 2.214 which is at the centre of the lowest resonant 
peak when h/w = 0.7 in Fig. 7 (i.e. the second curve from the left). On the 
contour interval chosen the wave function magni tude outside the quantum dot 
region is too small to register in Fig. 8. We see that  the wave function spills over 
the top of the finger and that  its m a x i m u m  is below the tops of the fingers. In 
Fig. 9 we show a similar contour plot when h/w = 0.533 for 2w/A = 1.89 which 
is the centre of the first resonant peak for these short fingers. We see tha t  the 
wave function spillage over the tops of the fingers is much greater than it is in 
Fig. 8. Moreover, this results in the peak of the wave function moving up to a 
point well above the fingers. The spillage of the wave function above the fingers 
is what  controls the behaviour of the resonant value of 2w/A as the finger height 
varies. 
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F i g .  6. A plot of conductance above the nominal  threshold against 2w/,X when 
d/w --- 0.4, h/w = 0.7, s/w = 0.467 and w'/w = 0.3. The  full curve is calculated 
for the  s t ruc ture  shown in figure 5. The  dashed curve is for the case when one finger is 
removed.  
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F i g .  7. The  dependence of the resonance peaks on finger height for high fingers. The  
curves are drawn for d/w = 0.1, s/w ----- 0.467 and h/w = 0 . 8 ( - - ) ,  0.767(--  - -  - -) ,  
0.733(- --), 0.700(-----) and 0.667(----) .  
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F i g .  8. Contours  of I¢I ~ for the s t ructure  described in figure 5. The  contours  are drawn 
for 2w/A = 2.214, i.e. the centre of the first resonance peak in Fig. 7 when h/w = 0.700 
(second peak from the left). 
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contours are drawn for 2w/A = 1.89 which is at the centre of the first resonance peak 

in this case. 
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The close similarity between the structure of the formulae for the transport  co- 
efficients for systems which behave classically and those which behave quantum 
mechanically is surprising at first sight. It comes about because the structure 
of the equations is dominated by the independent particle model used in both 
cases together with particle conservation. It should also be noted that the clas- 
sical equations are local: they involve electric fields and temperature gradients. 
Since these quantities cannot be measured inside nanostructures they are re- 
placed by voltage and temperature differences between the electron reservoirs 
which are imagined to be connected to the terminals. Moreover or(c) in the clas- 
sical formulae is replaced by G(~) = (2e~/h) T(¢) in the quantum mechanical 
formulae. Nevertheless, it remains easy to show that  the Weidermann-Franz law 
is still valid in the quantal situation [3]. In an open quantum wire T(E) increases 
by unity every time a new mode begins to propagate. The Mott law for ther- 
mopower: S ,-, c~-l(c)dc~(e)/d¢ becomes S ",~ G-l(v)dG(¢)/de in a quantum 
wire. Consequently, when T ---* 0, S is small in between the steps in G(¢) and, 
has 6-function peaks whenever ¢ passes through the threshold of a new mode. 
For finite T the 6-functions are thermally broadened to a width in the order of 
kBT. Similar behaviour is to be expected in quantum point contacts in which 
new modes switch on over small energy ranges. It has been observed in some 
beautiful experiments carried out by the Delft group [13, 14]. Further experi- 
mental  work aimed at calibrating the temperature differences which arise in this 
work would be very valuable. 
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Kinetic Confinement of Electrons in Modulated 
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Abs t rac t :  A new type of electron confinement in modulated semiconductor 
systems is proposed. The confinement occurs when the effective mass of elec- 
trons in the central region of the structure is higher than that in the outside 
regions. This results in a 'kinetic well' produced by the transverse free motion. 
The calculated density of confined states is similar but not identical to that of 
the potentially bound 2D states. It is shown that the presence of an external 
magnetic field parallel to the growth direction stabilizes and controls the ki- 
netically confined states. The resulting levels are strongly nonlinear functions 
of magnetic field intensity. We discuss specific structures in which the kinetic 
confinement of electrons would be possible. 

1 Introduct ion 

Potential confinement of charge carriers on the quantum scale, made possible by 
new fabrication technologies, has revolutionized semiconductor physics in recent 
years. The potential wells responsible for the confinement have been convention- 
ally created by the differences in the energy gaps and charge transfer (in het- 
erostructures), as well as by external voltages (in metal-insulator-semiconductor 
structures). Various parts of a heterostructure are often characterized by differ- 
ent effective masses of charge carriers and this fact has been accounted for in 
existing theories. The purpose of this lecture is to show that properly tailored 
difference of the effective masses in a double heterostructure causes in itself the 
kinetic confinement of charge carriers. In fact, the mass difference can confine 
carriers even in the region of a higher potential. The effect of an external mag- 
netic field on such a heterostructure is described in some detail. We also consider 
examples of real systems, in which the kinetic confinement of electrons or holes 
can take place (Kubisa and Zawadzki, 1992). 
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2 Kinetic confinement: theory 

Let us consider electrons in a double heterostructure  shown in Fig. 1. The  outside 
regions on both  sides are characterized by the effective mass ml  and the potent ia l  
V = 0, the middle region of the width a by the mass m~ and V = V0. The  
Schrgdinger equat ion for the system reads 

~2 a 
-2m--~- x72¢ = E ¢ for Izl > 

h 2 V2 a ) -2-~m2 + V0 ¢ = E ¢ for Izl < 7 

(1) 

Looking for a solution in the form ¢ = exp(ik~,x + ikuy) f (z) ,  one obtains  

li 2 d 2 h2k~)  a 
2ml dz 2 + -~(-ml / f = E f for Izl > 

h ~ d 2 h2k~ ) a 
2,-,,~d~ + ~ +V° . f = E f  for Izl< 

(2) 

where k~_ 2 2 = k~:+ky. The  solutions of Eqs. (2) mus t  ma tch  at z = +a/2, according 
to Ando  and Mori (1982) the boundary  conditions are 

f~ 
IEl z 

f f  iC 
2 rri~ v0 

~ 1  m 2  i D ~  1 k / 
± i \I 

- O . S a  0 0 . S a  z 

Fig.  1. The proposed double heterostructure for kinetic confinement. A larger effective 
mass in the central region (m2 > ml ) produces a 'kinetic well', related to the transverse 
free motion (schematic). 
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= (+ f ( ~ - ~ a , + )  f - )  

(3) 

m---7 d'-7 f ~ -2 '+)  - m~ dz f :t=-~a,q: . 

We are looking for bound states along the z direction. They exist for the energies 
(see Fig. 1) 

h~k~- h~k~- (4) 
v° + -ggT~, < E < 2-.--7 

For V0 < 0 there always exists at least one bound state. For V0 >_ 0 the bound 

states exist for ~ > V0(~ - 1), where rl = m2/m~ The bound solutions have 2rn~ 
the general form 

a 
I ( z )  = Ae "z for z < - ~  

a 
= Be i~'~ + Ce -i~z for lzl ~ ~ (5) 

a 
= De-':* for z > + ~  

where h2()~ 2 + k~)/2m2 + Vo = E and h2(-~ ~ + k~)/2ml = E. This gives 

h 2 h 2 
2m--7(~ 2 + k~,) + V0 = g~-7~ ( - ~  2 + k~,). (6) 

The boundary conditions (3) lead to a set of linear equations for A, B, C and 
D. The condition for a non-trivial solution gives 

)~2 _ q2~2 
(7) cot(ha) - 2q~)~ 

subject to the relation (6) between ~ and ~. The energies of the bound states 
a r e  

E, = Vo + h-  (:,; + k l )  (8) 
2m2 

for l = 0, 1, 2 . . . ,  where ~z is the lth root of Eq. (7). This equation is equivalent 
to 

~?~ = +)~ tan()~a/2) (9a) 

~ = - ~  cot (~a/2) .  (9a) 

The roots of Eq. (9a) give the energies of the even states (1 = 0, 2, 4 , . . . ) ,  while 
Eq. (9b) gives the energies of the odd states (1 = 1, 3, 5 , . . . )  with respect to the 
z = 0 axis. 

Equations (9) are generalizations of the well-known formulae for the energies 
of bound states in a finite rectangular well. The generalization accounts for the 
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different masses at both sides of each interface. In our case the well is formed 
by the energy components of the transverse free motion. It  follows from Eqs. (6) 
and (9) that  At itself is a function of k.t, so that  the subband energies Et given 
by Eq. (8) are non-parabolic functions of k±. This is in contrast to the case of 
potential  confinement, illustrating the general property of our system, in which 
the longitudinal motion is strongly coupled to the transverse motion. 

Figure 2 shows subband energies as functions of k±a, calculated for 7/ = 
m2/ml = 2 and V0 = 0. The broken curve indicates the parabola  E = h2k~12ml 
(cf. Fig. 1). It  can be seen that  for V0 = 0 there always exists at least one bound 
state. As k± increases and the kinetic well becomes deeper, a second bound state 
appears, then a third, and so on. One can see that  the Et(k±) dependences are 
indeed non-parabolic. The inset shows the calculated wavefunctions of two lowest 
bound states for kza = 10, demonstrat ing that  kinetic confinement really takes 
place. Our system is like a moving bicycle: the kinetic forward mot ion gives it a 
lateral stability. 
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Fig. 2. Energies of the bound states (in units of Ea = h2z2/2m2a~) resulting from 
the kinetic confinement (full curves) versus k±a. The calculations were carried out for 
rn2/rnl = 2 and V0 = 0. The broken curve indicates the parabola E = h2k~/2ml (cf. 
Fig. 1). The inset shows the wavefunctions of the ground state and the first excited 
state, calculated for k.ta = 10. 
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Next we calculate the density of two-dimensional states (DOS) for a given 
subband, according to the formula Pl (E) = (kx/~r)(dk±/dE), and the total DOS 
p(E) = 2:pl(E). The results are shown in Fig. 3 (again for 7/= m2/ml = 2 and 
V0 -- 0). The total DOS exhibits a step-like behaviour, demonstrating that  we 
are dealing with a true 2D system. The striking feature is that  the DOS 'jumps' 
to a finite value as soon as the energy E is non-zero. This is due to the fact that  
for V0 = 0 the lowest bound state exists for any energy E > 0. When a given 2D 
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1 

f 

0 J I i I i I L 

0 10 20 E/Ea  40 

Fig. 3. The density of states for the kinetic subbands shown in Fig. 2 (in units 
po = ml/lrh 2 versus electron energy. 

state appears, its initial step-like contribution to the DOS is pt (E) = ml/~rli 2, 
since the state is widely spread (predominantly over both rnl regions). Thus we 
deal with the standard DOS for 2D system characterized by the mass ml .  With 
increasing energy, pl(E) asymptotically approaches the value of m2/rh 2, since 
the wavefunction is progressively confined in the region of m2 (cf. also Fig. 5). 

For V0 > 0 it turns out that,  in agreement with intuitive expectations based 
on Fig. 1, bound states appear as soon as the 'kinetic well' related to the mass 
difference overcomes the effect of the potential 'anti-well'. This takes place for 
sufficiently large k± values (and the corresponding energies E).  

3 E f f e c t  o f  m a g n e t i c  f i e l d  

We consider the structure shown in Fig. 1 in the presence of an external magnetic 
field B parallel to the z direction. The effect of a magnetic field is of interest since 
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it quantizes the transverse motion of the carriers. The above calculation can be 
directly used for the magnetic case, replacing h2k2/2m2 by hw2(n + 1/2). Here 
n = 0, 1, 2 , . . .  is the Landau quantum number and ~2 = eB/m2 is the cyclotron 
frequency (the spin is omitted).  The kinetic well shown in Fig. 1 is now controlled 
for a given n by the value of B. 

In Fig. 4 we show the resulting energies, calculated for r 1 = m2/ml = 2 
and V0 = 0. The broken curves indicate the energies hwl(n + 1/2), where wl = 
eB/ml .  These define the upper edges of the 'kinetic well' (cf. Fig. 1). It can 
be seen that  there is always at least one bound state In, 0 >, attached to any 
given value of n. As B increases and the well becomes deeper other bound states 
appear, their energies detaching themselves from the values of hwl(n + 1/2). In 
Fig. 4 this is seen for the I1, 1 > and 12, 1 > levels. 

30 

20  

10 

0 
0 

i I i I t ,I , /  
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Fig. 4. Energies of the kinetically confined states (full curves) versus magnetic field 
(in units (heB/m2)/E¢,). The values of (heB/ml)(n + 1/2), which represent the upper 
edges of the 'kinetic well' for n = 0, 1, 2, . . .  (cf. Fig. 1) are indicated by the broken 
C U l ' v e s .  

It can also be seen that  the energies of the bound states are strongly nonlinear 
functions of B, in contrast to the 3D Landau levels and the 2D Landau levels 
of potentially confined electrons. This nonlinearity is related to the fact that  
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at low B values the state is spread predominantly over the ml regions, so that 
the slope of the magnetic field dependence is governed by heB/ml ,  while at 
higher fields, as the state is progressively confined in the m2 region, the slope 
is governed by heB/m2. The confinement is illustrated in Fig. 5. The nonlinear 
B dependence of the energies is probably the most striking signature of the 
kinetic confinement. This feature can be investigated in the cyclotron resonance 
experiments, for example between 10,0 > and I1,0 > states. 
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Fig. 5. The wave functions of the kinetically confined ground state 10, 0 > for different 
magnetic fields. As the field increases, the state is progressively confined in the m2 
region. 

In this connection we briefly consider intraband magneto-optical transitions 
between kinetically confined states. The vector potential of the magnetic field 
B]]z is taken as A = ( -By ,  0, 0). The wavefunctions have the general form: 
¢,~j = exp(ik~:z)~n[(y - yo)/L]fj(z) where q~n is the harmonic oscillator func- 
tion, Yo = k~:L 2, the magnetic radius is L = (h/eB 1/2 and j numerates the 
kinetic subbands. The electron-photon interaction Hamiltonian reads 

(eA_~ a H R =  \ , ~ , ]  a . P  for Izl > 

a 
H R =  \ , ~ ]  a . P  for Iz t< 

(10) 
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where A~ and a are the amplitude and polarization of the radiation vector 
potential, and P = p + eA  is the generalized momentum. The scalar products 
can be factorized in the usual way: a - P = a+P_ + a_P+ + a~Pz, where a+ = 
(a~ + iau)/v/2. We consider the cyclotron resonance active light polarization 
a_. Since P+ = ( - h / L ) a  +, where a + is the raising operator for the harmonic 
oscillator functions, the matr ix element for the optical transition is 

(¢n,j,IH~]¢,~j) = - (eA~o)(h/L) v/-~+ 1 5k, k~ 5,~,,~+1 

X ml  fJ, fs dz + - -  Is' Is dz + -  fs' fs dz 
m s  1711 

--oo - - a / 2  o -i-a/2 

(11) 

In the standard case of m2 = ml the expression in the round brackets is 
non- zero only for f -- j ,  i.e. the light polarizations a_ and a+ cannot induce 
intersubband transitions. These can be excited only by a~ polarization. 

However, in our case of ms > ml the round bracket expression is in general 
non-zero, which illustrates again the strong coupling between transverse and 
longitudinal components of the motion. Still, in a perfectly symmetric kinetic 
well, as shown in Fig. 1, the adjacent subbands differ in parity, so that  the 
matr ix element (11) will vanish for f = j + 1. One can break this selection rule 
by producing an asymmetric kinetic well, e.g. by having two somewhat different 
masses in the outside regions. More generally, an asymmetric structure with 
three different masses would produce interesting new effects. 

4 P o s s i b l e  s y s t e m s  f o r  k i n e t i c  c o n f i n e m e n t  

Materials forming the heterostructure in question should have similar conduction 
band symmetries, otherwise it is difficult to match the periodic Luttinger-Kohn 
amplitudes at the interface. On the other hand, according to the kp theory the 
electron effective mass is proportional to the gap value. Consequently, in order 
to have a sizable difference between the electron masses one needs a system with 
a corresponding gap difference, in which almost all of the band offset occurs in 
the valence band. 

Zhang and Kobayashi (1992) studied ZnSe/GaAs quantum wells and showed 
that  almost all bandgap discontinuity occurs in the valence band. Bertho et 
al. (1991) showed theoretically that in the ZnSe/ZnS system, although the gap 
difference for the two materials is around 1 eV, the conduction band offset is 
near zero. 

Very promising systems are combinations of III-V compounds. As follows 
from diagrams of the conduction band energy versus lattice constants for III-V 
solid solutions, a system of GaAsl_~Sb~ for about x ~ 0.2 has the same lattice 
constant and the conduction band energy as Gal_f ln~As for x ~ 0.2. Also the 
All_~[n~As system for x ~ 0.7 can be matched both in lattice constant and the 
conduction band energy with GaAsl_~Sb~ alloy for x ~ 0.7. 
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The offset at the interface of two semiconductors results from the gap differ- 
ence and from the electric dipole related to dielectric properties. This dipole can 
be influenced by foreign atoms of both materials placed at the interface. It has 
been shown by Brabina et al. (1992) that one can match the conduction bands 
of GaAs and AlAs by placing a fraction of a monolayer of Ge or Si atoms at the 
interface between the two materials. Thus the offset can be tailored. 

In a lower symmetry crystal having the conduction band in the form of an 
ellipsoid in k space, one could create the mass difference by growing the same 
material in two different crystal directions. 

The situation for hole confinement is basically different since the valence band 
behaviour is in general determined by the heavy-hole dispersion (large density 
of states), which is much less sensitive to the gap variation. There exist systems, 
for example CdTe-Cd0.9Zn0.1Te (Tuffigo et al. 1991), in which almost all band 
discontinuity occurs in the conduction band, but the heavy-hole masses in each 
material do not differ much. 

However, interesting possibilities are provided here by the presence of biaxial 
strMn, which occurs at the interfaces due to the lattice mismatch (cf. the re- 
view of Reilly (1989)). In tetrahedral semiconductors under biaxial tension the 
hydrostatic strain component reduces the average bandgap, while the axial com- 
ponent splits the degeneracy of the valence band maximum and introduces an 
anisotropic valence band structure, with the higher band being light along the 
strain axis (k.L), and relatively heavy perpendicular to that axis (kll). Under bi- 
axial compression the average gap increases and the valence splitting is reversed, 
so the higher band is now heavy along the strain axis (kj.) and relatively light 
in the perpendicular direction (kH). 

It is possible to create the confinement in the presence of a magnetic field 
not only by different effective masses but also by different spin g-values. The 
latter control the spin splitting, so that for spin-up or spin-down states one 
could create different energies in different parts of the system, which would lead 
to confinement. Semimagnetic materials of HgMnTe or CdMnTe type would 
be particularly suitable for such structures since by adding Mn paramagnetic 
ions one can strongly influence the spin g-values without much affecting the 
conduction (or valence) band edges at B = 0. 

It should be mentioned that the kinetic confinement can be also realized in 
one material (rather than a heterostructure) possessing a strongly nonparabolic 
energy band. The electron can then change its effective mass by being further 
or closer to the band edge during its motion, which leads to the confinement, 
such system has been proposed and realized by Doezema and Drew (1986) using 
MOS structures on InAs, cf. also Radantzev et al. (1986). 

This idea was further developed and applied to accumulation layers by 
Slinkman et al. (1989), V. Zhang et al. (1991) and A. Zhang et al. (1991). 

Finally, different effective masses were proposed for 'mass superlattices' (cf. 
Sasaki, 1984, and Milanovic et al., 1986). We do not discuss these developments 
since in the above lecture we have been mostly concerned with the confinement 
effects. 
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The Scaling Theory 
of the Integer Quantum Hall Effect 
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A b s t r a c t :  
A brief review is given of the present understanding of the transitions be- 

tween integer quantized plateaus of the Hall conductivity in two-dimensional 
disordered systems in a strong magnetic field. The similarity to continuous 
thermodynamic phase transitions is emphasized. Results of numerical simula- 
tions for non-interacting electrons are presented and compared to experiment. 
The role of the Coulomb interactions at the integer quantum Hall transitions 
is studied. 

1 I n t r o d u c t i o n  

Two-dimensional electron systems at low temperatures have rather peculiar 
transport  properties. These systems occur at the interfaces of semiconductor 
heterostructures or in field-effect transistors. When the amount  of disorder in 
the samples and the temperature are low enough, the Hall resistance shows a 
series of plateaus as a function of magnetic field or carrier concentration. The 
Hall resistance on these plateaus is quantized to a very high accuracy to values 
of/~i  = (h/e2)/i, with integer i [1]. In fact, the accuracy of this quantization 
surpasses that  of every other known resistor so that  the national metrological 
laboratories use this integer quantum Hall effect as the standard of resistance. 
At the same time that  the Hall resistance becomes quantized, the longitudinal 
resistance, measured in a four-probe geometry, vanishes. More precisely, at finite 
temperatures it becomes exponentially small and would vanish at zero temper- 
ature. 

For systems with an even lower amount of disorder additional plateaus appear 
in the Hall resistance [2]. The Hall resistance is still quantized, but i is no longer 
an integer but  a simple rational fraction with odd denominator, such as 1/3, 2/5, 
2/3. This fractional quantum Hall effect is related to the occurrence of correlated 
groundstates due to the Coulomb interaction between the electrons. 

One of the most remarkable aspects of the quantum Hall effect is the obser- 
vation of the dissipationless state with quantized Hall resistance in a disordered 
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system. While the origin of the quantization can be understood in the absence of 
disorder, the disorder is essential for the observation of the quantization [3, 4]. 
Without disorder there would be no plateaus in the Hall resistance. To show 
the quantization of the Hall resistance it is necessary to assume that  the Fermi 
energy lies in a spectral gap of the system. For the integer quantum Hall effect 
this gap is the cyclotron gap between successive Landau levels. In the fractional 
quantum Hall effect this gap is the excitation gap of the correlated ground state. 
The quantization argument therefore holds only for very special values of the 
Fermi energy and a small change in parameters like the magnetic field or the car- 
rier density moves the Fermi energy out of the spectral gap and the quantization 
argument no longer holds anymore. But if the Fermi energy moves into a region 
where all the states at the Fermi level are localized due to disorder then they 
do not contribute to the transport and the Hall resistance remains quantized. 
Furthermore the longitudinal conductivity will vanish for these states. 

While this localization scenario explains the occurrence of plateaus in the 
Hall resistance, it does not yet provide a consistent picture. If all the states were 
localized by the disorder, then the system would be an insulator and would not 
show any Hall effect. In fact, the scaling theory of the disorder-induced metal- 
insulator transition states that  in two-dimensional systems in the absence of 
spin-orbit interactions all states are localized [5]. To reconcile this result with 
the observation of the quantum Hall effect, we thus have to assume that  in the 
presence of the strong magnetic field most states are localized but some states 
remain delocalized and give rise to the quantized Hall resistance. When the 
Fermi energy moves through the region of delocalized states the Hall conductivity 
can change and the longitudinal resistance is finite. We can thus identify these 
regions with the transition regions between the different quantized Hall plateaus. 
These simple ideas cannot answer the question of the width of this transition 
region. Experimentally, the widths of the transition regions become smaller with 
decreasing temperature and seem to vanish for zero temperature [6]. As we 
will see this is also compatible with numerical simulations and follows from 
theoretical arguments [7]. In contrast to the Hall conductivity, the longitudinal 
conductivity is solely determined by the properties of the states at the Fermi 
energy. When the Fermi energy lies in the plateau regions where the states are 
localized, the longitudinal conductivity e~x necessarily vanishes. Since the Hall 
conductivity ay~ is finite, this leads to the somewhat surprising result that  the 
longitudinal resistivity px~ = a ~ / ( c r ~  + a ~ )  vanishes, too. 

The transitions between successive quantum Hall plateaus share many fea- 
tures with thermodynamic phase transitions. At zero temperature the transi- 
tions take place at a singular energy. The regions in parameter space that  are 
separated by the transitions are characterized by quantized values of the Hall 
resistance. But the analogy goes farther than this. Below we will see that  the 
transitions are associated with a diverging length scale, the localization length, 
that  plays the role of the correlation length in thermodynamic phase transitions. 
This localization length diverges with the distance from the transition as a power 
law. Close to the transitions physical quantities show scaling behaviour with the 
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localization length as the single relevant length scale. 
An understanding of the integer quantum Hall effect is thus incomplete with- 

out an understanding of the influence of disorder. In a sense the interplay of a 
strong magnetic field and disorder in a two-dimensional system gives rise to the 
series of plateaus that are the central feature of the quantum Hall effect. At 
present there exists no analytical theory of the quantum Hall effect that ex- 
plains the quantization and allows the calculation of the scaling properties near 
the plateau transitions [8]. I will therefore present the results of numerical simu- 
lations that show that the picture sketched above indeed seems to be correct and 
that allow to calculate critical exponents and scaling functions. Most of these 
calculations are done for non-interacting electrons. While these calculations pro- 
vide quantitative agreement with experiment for some quantities, they fail for 
others. This failure shows that the Coulomb interaction between the electrons 
can not completely be neglected even when it is weak compared to the disorder 
potential. 

The rest of the paper is organized as follows. First a model for the integer 
quantum Hall effect is developed that is suitable for numerical simulations. Next 
results of these simulations are presented and analyzed in terms of single param- 
eter scaling theory. The critical exponents obtained from this analysis are then 
compared to experimental results. Finally, the Coulomb interaction is consid- 
ered and incorporated into the simulations within a self-consistent Hartree-Fock 
approximation. A fuller account of the topic of this paper has been published by 
the author [9]. For further reading a few books on the quantum Hall effect are 
suggested [10, 11, 12]. 

2 R a n d o m  L a n d a u  M a t r i x  

Our model for the integer quantum Hall effect will be non-interacting electrons 
confined to a two-dimensional plane and subject to a strong perpendicular mag- 
netic field B and a disorder potential V(r). Later we will discuss the influence 
of the Coulomb interaction. The system is thus described by the Hamiltonian 

H = 2 ~  (p - cA)2 + V(r), (1) 

where the first term is the kinetic energy in a magnetic field. In the absence 
of disorder the kinetic energy is quantized, En -- (n + 1/2)hwc, n = 0, 1, 2, . . . ,  
and wc = eB/m is the cyclotron frequency. Each of these Landau levels is highly 
degenerate with the degeneracy per unit area given by the number of flux quanta 
4)o = h/e per unit area, 

n .  = B/ 0 =  B/h = 1/2 Z . (2) 

The length scale lc defined by the magnetic field is called the magnetic length. 
A set of eigenfunctions of the kinetic energy for the Landau gauge A = Bx~u 
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and for a system of width L~ and periodic boundary conditions in y-direction 
are the Landau states 

where 

l__L_e-i  v / 

- to / '  
(3) 

X,~(x) = (2'~n!x/~) - ' /2  H,~(x)e -~/~ (4) 

are the harmonic-oscillator eigenfunctions, and H,~ (x) are Hermite polynomials. 
The degeneracy of the Landau levels reflects the fact that the eigenenergies do 
not depend on the quantum number k describing the eigenfunctions. Due to the 
periodic boundary conditions, k is an integer multiple of 2~r/Ly. 

It is advantageous to exploit the quantization of the kinetic energy by the 
magnetic field. This is done by expanding the Hamiltonian in terms of the Lan- 
dau states (3). As a major simplification the kinetic energy part of the Hamil- 
tonian becomes diagonal in this basis and gives only additive contributions to 
the energies. The disorder potential V(r) is transformed into a random ma- 
trix (nklVIn'k'). In the limit of strong magnetic field, relevant to the quantum 
Hall effect, the matrix elements between different Landau levels will be much 
smaller than the matrix elements within each Landau level. It is then natural to 
adopt a single Landau level approximation where only matrix elements within 
the Landau level that contains the Fermi energy are considered. 

The random Landau matrix elements (nklYlnk') can now be calculated for 
a given realization of the disorder potential V(r), i.e. 

( klvl k') = f (5) 

For numerical purposes this expression is not the most suitable. It is faster to 
directly generate matrix elements with correct statistical properties. We charac- 
terize these properties by correlation functions and assume that only the lowest 
order correlation functions are relevant for the critical behaviour. In particular, 
let us assume that the average V(r) of the potential vanishes, since a finite value 
would only shift the whole energy scale. Here, the overbar denotes the average 
with respect to the distribution of disorder. The strength and the range of the 
potential are determined by the two-point correlation function V(r)V(r'). We 
will assume gaussian correlations of the potential, 

= v :  exp \ 2 : 2 '  (6) 

where V0 is a measure of the strength of the potential and c~ the correlation 
length or the range of the potential. 

For a given correlation function of the disorder potential, it is possible 
to calculate the corresponding correlation function of the matrix elements 
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<nflellVln2kJ(nakalVln4k4) using the explicit form Eq. (3) of the eigenfunc- 
tions. For the lowest Landau level and our gaussian potential it is 

v0 exp (_½(kl _ 0 (0hlVI0&J(0&alYl0&a) = 6,1-k2,k,-k3 x/2~rlcZy/3 

2 2  1 exp ( - ~ ( k l -  k4)Ic-~ff ) , (7) 

where/32 = (e2 + l~)/l~ is a dimensionless measure of the range of the potential. 
The matrices formed by the elements (0klVI0k') constitute a random matrix 
ensemble but with statistical properties that set it quite apart from the more 
familiar Wigner-Dyson ensembles [13]. Unlike the latter the matrices under con- 
sideration, which we will call random Landau matrices, are bounded due to the 
exponential in eq. (7) involving kl - k2, and their elements are correlated along 
the diagonals. These correlations survive even in the limit cr ~ 0 where the real- 
space potential becomes 6-correlated. They have so far also spoiled at tempts to 
obtain analytical results about the random Landau matrices. 

A closer inspection of Eq. (7) tells us how to generate matrix elements with 
the proper statistical properties directly. Remembering that  the Hamiltonian 
and hence the matrix (nklVInk') is hermitian we see that the real and imaginary 
parts of the matrix elements on each diagonal form two mutually uncorrelated 
series of numbers with gaussian correlations. In terms of uncorrelated, complex 
random numbers Uo(X, k) satisfying 

u0(x, k)u0(x', k') = (8) 
the matrix elements can then be expressed as 

(Okl,V,OkJ = Vo e x p ( ( k l - k 2 ) ~ 1 2 c / 3 2 )  
( v ~ l e L y C )  1[2 

/ 7r212 \ 
( _  "" .¢ i2| × exp \ ] '  (9) 

i 

with 
/ 71-212 N 

- 2 -  "c i s S:Eexp ~ L~/3 2 ). (I0) 
i 

The limits on the summation over i can be chosen such that  the influence of the 
neglected terms is less than the statistical fluctuation due to disorder. 

In closing this section, it should be mentioned that similar expressions can be 
found for arbitrary Landau levels and correlations of the disorder potential. In 
principle the influence of higher order correlation functions should be considered. 
However, as will become apparent soon, even the form of the two-point correla- 
tion function is irrelevant for the critical behaviour of the model. The strength 
of the potential only sets the energy scale in the one Landau level approximation 
and the range of the potential enters only as an irrelevant parameter. 

This approach to the random Landau level problem was developed by Huck- 
estein and Kramer [14] and Mieck and Weidenmiiller [15, 16, 17, 18]. A more 
detailed discussion is presented in Ref. [9]. 
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3 S i n g l e  P a r a m e t e r  S c a l i n g  

A central problem of any numerical study of critical behaviour is the extrapola- 
tion of results for finite systems to infinite system size. If there is a quantitative 
analytical theory for the phase transition than it is possible to compare numerical 
results to analytical predictions. For the plateau transitions in the quantum Hall 
effect no such theory exists. In its absence we will use an approach that  turned 
out to be extremely useful in thermodynamic phase transitions: finite-size scaling 
theory [19]. In many cases, scaling theory can be justified by a renormalization 
group treatment of the problem. For the quantum Hall transitions no renor- 
mMization group analysis exists. We therefore take the pragmatic approach and 
assume that  the finite-size scaling relations hold and check whether or not the 
numerical data are compatible with this assumption. The result of this analy- 
sis is that  the data do indeed show universal single parameter scaling with the 
localization length entering as the only relevant length scale. The localization 
length diverges at the critical points in the eentres of the Landau levels with a 
universal exponent u = 2.35 + 0.03. However, special care must be taken in order 
to consider the influence of irrelevant scaling fields. 

At this point it is important  to find the most suitable quantity for a finite- 
size scaling analysis. It should be as easy to calculate as possible but still be 
sensitive to the phase transition. A quantity that  satisfies both conditions is the 
localization length of a finite system. The most suitable geometry for such a 
calculation is the cylinder geometry: a long strip with periodic boundary condi- 
tions in y-direction. We now exploit the fact that the Landau states ¢ , k ( r )  are 
localized in the x-direction at the cyclotron centre coordinates X(k )  = kl~. 
Since our geometry is quasi-onedimensional all states in the system are ex- 
ponentially localized [5]. The modulus of the single-particle Green's function 
G(r ,  r ' ;  E) = ( r l ( E -  H) -1 It ') will therefore decrease, on average, exponentially 
with the distance r - r ' .  Since our system is periodic in one direction, the only 
direction where this distance can become very large is the x-direction along the 
cylinder. If we average the Green's function over the width L u of the system 
for fixed x and x ', we get the Green's function in k-space of a Landau level 
G(k, k'; E) = (kl(E- H)-Xlk'),  where x = kl~ and x' = k'12~. We thus can di- 
rectly calculate the Green's function as the inverse of the matr ix E - H without 
the need to calculate the real-space matr ix elements. 

A final problem that  we face is related to the phase coherence of the system. 
Similarly to the universal conductance fluctuations in metallic systems [20, 21], 
the average Green's function fluctuates strongly, making it rather cumbersome 
for numerical purposes. On the other hand, we can define a localization length by 
considering the average of the logarithm of the modulus of the Green's function 

1 
A(E) -~ : -  lim , [G(k,k';E)l.  (11) 

I k - k ' l ~  I k -  k'] In 

This quantity does not fluctuate strongly and is self-averaging, i.e. it takes on 
the same value for almost all realizations of the disorder. It is therefore sufficient 
for numerical calculations to consider only a few realizations of the disorder and 
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use these to estimate the error in the numerical value for ~ due to the finite 
distance k - k I in the numerical simulation. 

The random Landau matr ix elements and hence the Green's function and 
the localization length ~(E) depend on the width Ly of the system. ~(E)  is 
thus really a function of two variables ~(E; Ly). We will now assume that,  close 
to the critical energy Ec in the centre of each Landau level, the localization 
length ~(E) = limL~__.~ ~(E; Ly) of the infinite two-dimensional system diverges 
according to a power law, 

~(E) = ~0 , (12) 

where Fcx  V0 is a measure of the disorder broadening of the Landau level. The 
essence of finite-size scaling is that close to Ec, physical quantities that  show 
single parameter scaling, depend on E and Ly only through the ratio Ly/~(E).  
The scaling ansatz for the quasi-one dimensional localization length is thus 

A(E; ny) - L~A (L~/~(E)) ,  (13) 

where A(x) is a dimensionless scaling function. Since A(E¢; Ly) diverges as Ly 
cx~ and approaches ~(E) for E :~ E¢, one expects the asymptotic behaviour 
A(x) --~ const, for x ---* 0 and A(x) ---* 1/x for x ---* ~ .  

Numerical results for different disorder potentials in the two lowest Landau 
levels are in fact compatible with the assumption of single parameter scaling 
as expressed in Eqns. (12) and (13). As an example, data for the lowest Lan- 
dau level and zero correlation length of the potential are presented in Fig. 1. 
The corresponding scaling function is shown in Fig. 2 exhibiting the expected 
asymptotic behaviour. In order to obtain reliable results a statistical test of the 
assumed scaling behaviour has to be performed [22]. Such a test can discriminate 
which data are compatible with scaling behaviour and which are not due to too 
small a system size or an energy too far away from the critical point. The data 
that  pass the test are depicted by the dotted area in Fig. 1. The fitted value for 
the localization length exponent u can be read off from the slope of the lines in 
the inset of Fig. 2 and is given by u = 2.35 :h 0.03. 

Fig. 2 shows that  not only the data from Fig. 1 fall onto the scaling curve but 
also data for n = 0, a = 1¢, and n = 1 , ~ =  4,  as well as data from the network 
model of Chalker and Coddington [23] that corresponds to the semi-classical 
limit o'/4 ---* oo. All of these data are described by the same scaling function 
and the same exponent L,, strongly supporting the notion of universal critical 
behaviour in the integer quantum Hall effect. On the other hand, this notion has 
been questioned based on results for 6-correlated disorder in the first Landau 
level similar to those in Fig. 3. In this case no single parameter scaling behaviour 
is observed close to the critical energy [24]. For larger energies a strong energy 
dependence of the localization length is observed and has been interpreted as 
a failure of universal single-parameter scaling. However, the observed behaviour 
can be reconciled with universal single-parameter scaling by considering the 
influence of irrelevant scaling fields. Besides the relevant, i.e. diverging, length 
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Fig. 1. Normalized localization length AM/M in the lowest Landau level for 
/~-correlated potential as a function of system width M (in units of v '~ lc )  for en- 
ergies 0.01 (.), 0.05 (v), 0.07 (A), 0.1 ([3), 0.18 (o), 0.30 (*), 0.5 (o), and 1.0 (.) (in 
units of F) (after [33]). 

scale ~(E), there are other irrelevant length scales in the problem that  depend 
on details like the range of the disorder potential or the Landau level index, 
but that  are finite at the plateau transition. In the thermodynamic limit these 
length scales are negligible compared to ~(E), and hence are irrelevant, but for 
finite size systems they might be noticeable in numerical simulations. A scaling 
ansatz taking into account one irrelevant length ~irr(a) depending on the range 
~r of the potential is 

~(E; Ly; cr) = L~A (L~/~(E), Ly/~irr(a)). (14) 

Precisely at the critical energy Ec this leads to single parameter scaling as a 
function of Ly/~irr(ff) which is the behaviour observed in Fig. 4 where data  for 
a between 0 and 4 and different width Ly are fitted to a single scaling curve. 
Remarkably, the irrelevant length scMe ~irr increases by four orders of magnitude 
when the correlation length of the disorder potential is reduced from 0.84 to 0. 
For ¢ = 0, it is thus much larger than the system width presently accessible to 
numerical simulations. The data in Fig. 3 do not reflect the asymptotic scaling 
behaviour described by the localization length exponent v but the corrections to 
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Fig. 2. The scaling function ~M(E)/M = A(L~/~(E)) (from [24]). 

scaling due to irrelevant scaling fields. Close to the critical point, the corrections 
are characterized by an irrelevant scaling index Yirr, 

A(O, Ly/~irr(O-)) = A* + aLYirr~irr. (15) 

The numerical value of this scaling index is Yirr = -0.38 4- 0.04 [25]. 

4 C o m p a r i s o n  w i t h  E x p e r i m e n t  

Not only in numerical simulations but also in experiments has single-parameter 
scaling been observed. It has been observed as a function of size of the systems, 
the temperature, and the frequency. In each case the broadening of the peaks 
in the longitudinal resistance due to the finite size, temperature or frequency is 
studied. For transport measurements the same information is obtained from the 
maximum slope of the Hall resistance curves between two plateaus. 

The experiments that are most easily interpreted are the finite-size scaling 
experiments [26], where the underlying ideas are the same as in the numeri- 
cal simulations described above. It is found that below a certain temperature, 
the width of the transition region between successive plateaus is temperature 
independent but depends on the size of the samples. According to our scaling 
ansatz, this width is given by the condition that ~(AB) ~ L, where AB is the 



120 B. Huckestein 

/~M 

M 

10 

5 

2 

1 

0.5 

0.2 

0.1 

0.05 

0.02 

0.01 

0.005 

U I I I I I I I I 

o • ~ ~ O 

o -k 
0 

0 
~ 0"--" 

-k 

o 

o 

O 

0 

m 

m 

I I I I I I I I I 
0.5 1 2 4 8 16 32 64 128 

M 

Fig. 3. Normalized localization length )~M/M in the second (n = 1) Landau level for 
uncorrelated potentiM (a = 0) as a function of system width M (in units of v/~lc)  for 
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distance to the critical point as function of magnetic field and L is the system 
size. Hence, the width of the transition region scales like L -1/~.  The experiments 
show u -- 2.4 + 0.1 for different transitions as long as the spin splitting of the 
orbital Landau levels is resolved. This result is in very good agreement with the 
numerical result u = 2.35 + 0.03. 

Frequency-dependent scaling was observed in the microwave absorption in 
a planar transmission line on the sample surface [27]. Here the width of the 
transition region scales with the microwave frequency as w~ with ? = 0.41 +0.04 
for spin-split Landau levels. To understand this result we have to generalize our 
scaling ansatz to dynamical responses. At finite frequencies a second diverging 
scale becomes important,  the relaxation time r (B) .  Its divergence at the critical 
magnetic field Bc in the centre of the Landau band defines a new exponent, the 
dynamical critical exponent z, r ( B )  o¢ ~(B)  z oc IB - Ben -"~.  The generalized 
scaling ansatz is then 

e 2 
c ~ ( L ,  f )  = -ff S ~ x ( L / ~ ( B ) , w r ( B ) ) .  (16) 

For sufficiently high frequencies f ,  the width of the transition region is deter- 
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mined by the second argument of the scaling function S** and we can identify 
the exponent 7 = 1/uz ,  The observed value of 7 is compatible with the experi- 
mentally and numerically observed values of u only if z ~ 1. We will come back 
to the significance of this result in the next section, when we discuss the influence 
of the electron-electron interactions. 

Historically, scaling behaviour was first observed experimentally as a function 
of temperature [6]. The width of the transition region was found to scale as T ~, 
with ~ = 0.42 + 0.04. Within the framework of the scaling ansatz Eq. (16) there 
are two interpretations of this result. On the one hand, one can argue that at 
finite temperature inelastic processes lead to a phase coherence length L~ o¢ 
T - v / 2  that  acts as an effective system size. The exponent ~ is then identified 
as n = p /2u .  On the other hand, at a finite temperature T excitations with 
frequencies up to w = k B T / h  exist in the system. This leads to the identification 
n = 1 / zu .  In this case, as for the frequency scaling, we are led to conclude that 
z ~ l .  
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5 C o u l o m b  I n t e r a c t i o n s  

While values of the localization length exponent v agree well between experiment 
and numerical simulations for non-interacting electrons, the experimental value 
of the dynamical critical exponent z ~ 1 cannot be reconciled with the picture of 
non-interacting electrons. To see this, we need to understand the meaning of the 
dynamical critical exponent. The dynamic scaling ansatz Eq. (16) introduces a 
new time scale, r,  and with it a new energy scale, r -1, into the problem. The 
relation r o¢ ~z thus establishes a relation between the characteristic energy and 
length scales of the problem. But such a relation is exactly what the density of 
states D(E) describes. It relates the characteristic length scale, the system size 
L, to the characteristic energy, the mean level spacing A, 

1 
D(E)-  ALd, (17) 

where d = 2 is the dimension of the system. For non-interacting electrons in 
a disorder potential, the density of states is always non-critical, i.e. D(E) is a 
smooth non-zero function near Ec [28]. If we identify hT -1 with the mean level 
spacing corresponding to a system size ~, from Eq. (17) we get z = d = 2, in 
contrast to the experimental result. 

A simple classical argument shows that this discrepancy can be remedied 
by considering the influence of the Coulomb interactions between the electrons. 
To see this it is important  to remember that  all states in a Landau level are 
exponentially localized except for those at the critical energy. Efros and Sklovskii 
pointed out that in an insulator the classical electrostatic energy leads to the 
appearance of a gap in the density of states at the Fermi energy [29]. In two 
dimensions the density of states at the Fermi energy is proportional to the inverse 
linear size L -1 of the system. If these arguments hold for the quantum Hall 
system then from Eq. (17) it follows immediately that the dynamical critical 
exponent is changed to z = 1. Note that  this effect is classical by nature and 
not related to the phase transition at the centre of the Landau level. In fact, 
the appearance of the Coulomb gap in the single particle density of states was 
indeed observed in numerical simulations [30]. In these calculations the Coulomb 
interactions was treated in a self-consistent Hartree-Fock approximation. 

With the dynamical critical exponent changing due to Coulomb interaction, 
the question of the behaviour of other exponents like the localization length 
exponent arises. There are basically two possible answers to this question: yes, 
Coulomb interactions are relevant and change critical exponents; no, besides 
the change of the dynamical critical exponent due to the appearance of the 
Coulomb gap the interactions are irrelevant [31]. While no definite answer to 
the question exists, recent self-consistent Hartree-Fock calculations support  the 
latter possibility [32]. In these numerical simulations no change was observed in 
the localization length exponent, the generalized dimension characterizing the 
inverse participation ratio, and the Thouless number estimate of the critical 
conductivity. 
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6 Conc lus ion  

We have argued that  the transitions between successive plateaus in the Hall resis- 
tance of disordered two-dimensional electron systems in a strong magnetic field 
can be described by a scaling theory similar to thermodynamic phase transitions. 
The theory shows one relevant length scale, the localization length ~, with an as- 
sociated critical exponent u. Numerical simulations for non-interacting electrons 
were presented that  are in quantitative agreement with experimental results. In 
addition to the localization length exponent, the dynamical critical exponent 
z characterizes the dynamical response of the system at finite frequencies and 
temperatures. We have shown that  the theory of non-interacting electrons can- 
not explain the experimentally observed value of z ,,~ 1, making necessary the 
inclusion of Coulomb interactions between the electrons. 
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Single Particle v e r s u s  Collective Electronic 
Excitations 

Philip B. Allen 

Department of Physics, SUNY, 
Stony Brook, NY 11794, USA 

Abs t r ac t :  As a first approximation, a metal can be modelled as an electron 
gas. A non-interacting electron gas has a continuous spectrum of electron- 
hole pair excitations. At each wavevector Q with IQI less than the maximum 
Fermi surface spanning vector (2kF) there is a continuous set of electron-hole 
pair states, with a maximum energy but no gap (the minimum energy is zero.) 
Once the Coulomb interaction is taken into account, a new collective mode, the 
plasmon, is built from the electron-hole pair spectrum. The plasmon captures 
most of the spectrM weight in the scattering cross-section, yet the particle- 
hole pairs remain practically unchanged, as can be seen from the success of 
the Landau Fermi-liquid picture. This article explores how even an isolated 
electron-hole pair in non-interacting approximation is a form of charge density 
wave excitation, and how the Coulomb interaction totally alters the charge 
properties, without affecting many other properties of the electron-hole pairs. 

1 I n t r o d u c t i o n  

The low-tying excitations of a non-interacting electron gas are simple rearrange- 
ments  of the occupancy of the single electron plane-wave orbitals. Because real 
metals,  according to Landau theory, have a lot in common with non-interacting 
quan tum electron gases, this subject is well known to all who study solids. If  
we neglect band structure, the electron orbitals (labeled by quantum numbers 
k = (k, a))  have energy ek = h2k2/2m. The ground state has all orbitals oc- 
cupied which lie inside the Fermi surface, with wavevectors obeying [kl < k r  
and energies obeying ek < eF, where k r  and eF are the Fermi wavevector and 
energy. The simplest excitation, known as an electron-hole (e-h) pair, consists 
of moving an electron out of a state k below the Fermi surface, putt ing it into a 
state k + Q above. This is shown in Fig. (1). 

The Coulomb interaction is numerically not smMl, but  Landau theory argues 
that  nevertheless, the consequences of the Coulomb interaction are less drastic 
than one might suppose. However, one drastic effect certainly happens, namely, 
out of the e-h pair excitation spectrum, the Coulomb interaction creates a new, 
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Fig. 1. An electron-hole pair excitation, denoted ]k, k + Q >, in a non-interacting 
electron gas. 

collective excitation, the plasmon. This typically lies at quite a high energy. 
Fig. (2) shows the spectrum predicted in random phase approximation (RPA) 
for sodium metal. The plasmon has an energy hwp(Q) which starts at ~6 eV 
at Q = 0 and disperses upwards in energy. Also shown in this picture is the 
continuous spectrum of e-h pairs. This spectrum is easily understood from Fig. 
(1). At any fixed value of Q with [Q[ < 2kF, it is possible to find orbitals k 
just below the Fermi surface such that the corresponding orbital k + Q lies just 
above the Fermi surface. This means that pair excitations exist with arbitrarily 
small excitation energies for Q < 2kF, whereas for larger Q, a gap exists to 
the lowest single pair excitation. For any Q there is also a maximum energy 
e-h pair which can be created, namely when the hole state k lies just below 
the Fermi surface in the direction of Q, and the corresponding electron state 
then lies as far as possible outside the Fermi sea. This excitation has energy 
h2(kF + Q)2/2m - h2k2F/2m. This formula gives the upper edge of the e-h pair 
continuum shown in Fig. (2). Surprisingly, in spite of the totally new plasmon 
found in RPA, nevertheless, the spectrum of e-h pairs is not altered from the 
free electron value in RPA. 

This subject has been understood for more than 30 years. Nevertheless, the 
standard treatments in solid state and most many-body texts [1] do not discuss 
certain aspects which I find paradoxical. This article is intended as pedagogical, 
aiming to state and then to explain these paradoxes as clearly as possible. Of 
course, there is no actual paradox in the existing theory, which provides suc- 
cessful approximate methods for calculating many properties of metals, but the 
most popular approaches use language in which these interesting paradoxical 
issues are never apparent. 

The paradoxes are forcefully apparent in two very interesting experimental 
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Fig. 2. The plasmon dispersion curve and the e-h pair spectrum as calculated in RPA 
using parameters appropriate to metallic sodium in free electron approximation. The 
wavevector is in units of .~-1. 

studies of Raman scattering by electronic excitations, by Contreras, Sood, and 
Cardona [2]. The opening paragraph of the first of these papers reads: 

"Metals and heavily doped (degenerate) semiconductors can scatter light either 
through single-particle or collective excitations of free carriers. The single-particle 
excitations correspond to charge-density fluctuations and, as such, they are screened 
at low frequencies in a self-consistent manner by the electrons themselves. Thus, in 
simple, free-electron-like carrier systems, no low-frequency scattering is observed. 
Instead, a peak at the plasma frequency is seen." 

The "single-particle" excitations referred to above are just the e-h pair excita- 
tions. How close is this "correspondence" of e-h pairs to charge-density fluctua- 
tions? In my own ease, the closeness was hard to appreciate at first. After all, the 
charge density difference between an excited e-h pair state and the ground state 
(elaborated later) must be just 6p = ICk+@ 12- tCk 12, which is zero for plane-wave 
states. I shall show later that the correspondence is actually perfect. To nuclear 
physicists this correspondence is quite familiar. Referring to excitations of the 
nucleus, Brown [3] says 

"... we wish to talk about vibrations, which are density fluctuations or - in quantum- 
mechanical language - particle-hole excitations ..." 

To summarize, the apparent paradoxes are these: 
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1. How can an e-h pair excitation be equivalent to a charge-density fluctuation? 
2. If screening (by the Coulomb interaction) eliminates nearly all the low- 

frequency scattering of light in favor of collective plasma oscillations, how 
can it be that the low-lying (e-h pair) spectrum remains unaltered in other 
experiments (specific heat, susceptibility, conductivity) and in Landau the- 
ory? 

2 H i s t o r y  a n d  S t a n d a r d  I n t e r p r e t a t i o n  

Electron density oscillations were suspected in electrical discharges in gases, and 
this subject was elucidated, both experimentally and theoretically, by Tonks 
and Langmuir [4]. Apparently the corresponding effect for electrons in metals 
was seen experimentally before being understood theoretically. Experiments by 
Ruthemann [5] and Lang [6] stimulated Kronig, Korringa, and Kramers to rec- 
ognize the connection to the classical plasma oscillations seen by Tonks and 
Langmuir. Slater [7] has summarized the history. Bohm and Pines then wrote 
a series of papers which recognized the importance of the collective plasma de- 
grees of freedom for understanding the interacting electron gas problem. In a 
review article, Pines [8] coined the term "plasmon", and ever since, the solid 
state texts have recognized the plasmon as one of the elementary excitations, or 
quasiparticles, of solid state physics. 

The standard derivation of the frequency of plasma oscillations, appearing in 
all the texts, is identical to an argument from Tonks and Langmuir [4]. Consider 
a slab of thickness D and infinite transverse size, embedded in an infinite sample 
of metal with electron density n. Imagine that the electrons in this slab are 
all displaced by the same small amount u in the direction normal to the slab 
(call this the "upward" direction.) Then a thin layer of charge of thickness u 
and surface charge density c~ = -neu  accumulates at the upper surface of the 
slab and +neu at the lower surface. Therefore there is a capacitor-type E-field 
of magnitude 47ro" = 4rneu in the upward direction inside the slab. This field 
exerts a force - e E  in the downward direction on every electron in the slab. This 
is a restoring force - K u  proportional to the displacement of each electron. This 
causes each electron in the slab to oscillate at frequency x/(K/m),  namely, 

2p = 47rne2/m (1) 

The plasmons in metals are quantized versions of these classical oscillators, with 
energy hwp. 

The other standard textbook result is that the frequency of plasma oscilla- 
tions is best understood or calculated by looking for the zero of the real part 
of the complex dielectric function el (Q,w)+ ic2(Q, ~). Even better, the Fourier 
transform S(Q, ~) of the density-density correlation function < p(r, t)p(r ~, O) >, 
gives the spectrum of density oscillations in a material. Van Hove showed that 
in Born approximation, the inelastic scattering cross section for particles (like 
x-rays and electrons) which couple to electron density is given by S(Q, ~), which 
is also called the inelastic structure factor. Finally, the same function, S(Q, ~), 
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is directly proportional to Im(-1 /e(Q,w))  = c2/(c~ + e~). Thus the zeros of 
¢1(Q, w) correspond to peaks in S(Q,~v) and to peaks in the inelastic scattering 
cross section, provided the damping, given by c2(Q, w) is small. When e(Q, ~) is 
calculated in RPA, the zeros of c1 give the plasmon dispersion shown in Fig. (2). 
The boundaries of the e-h continuum coincide with the region of (Q, ~) where e2 
differs from zero. In that region, plasmons are very heavily damped, and merge 
smoothly into the e-h pair spectrum. 

The best test of the ideas of collective plasmon excitations is experiment. In 
the past, inelastic electron scattering away from Q = 0 and also inelastic x-ray 
scattering with energy resolution better than leV have both been difficult. Re- 
cently, synchrotron x-ray sources have made the latter experiment much easier, 
and we can expect many new results on collective electron behavior [9]. A good 
example is the measured dispersion curve of plasmons in Na, as determined by 
inelastic electron scattering by vom Felde et al. [10] and shown in Fig. (3) These 
results demonstrate that  at least in certain simple metals, sharp plasmons ex- 
ist, and that the RPA is at least qualitatively very successful in explaining the 
spectrum. 
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Fig. 3. Plasmon dispersion for sodium measured in Ref. [10]. The vertical bars are the 
measured widths of the plasmon resonances. Q is measured in units .~-1. The solid 
curve marks the edge of the e-h pair spectrum as given in Fig. (2). The datum at the 
largest Q had such a broad lineshape that no sensible width could be assigned. 
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3 C h a r g e  D e n s i t y  o f  a n  E l e c t r o n - H o l e  P a i r  

Contreras et al [2] state that an e-h pair is a charge-density wave excitation. The 
simple truth of this statement does not emerge in any of the textbook treatments 
I know. Let us establish some notation. In a non-interacting gas, the ground state 
can be written as 

o c c  

10 >= I-[ cllvac > .  (2) 
k 

Here I am using the notation k as a shorthand for all the quantum numbers of 
the orbital, that is, the wavevector k as well as the spin quantum number and 
(in a real material) the band index. An e-h pair excitation is denoted by 

{k, k + Q >= c'~+oc~ l0 > (3) 

This state vanishes unless the orbital k is occupied in the ground state, and the 
orbital k + Q is empty. 

The charge density is - e  times the electron density. I will leave out the factor 
- e  and refer to it as charge density anyway. To find the charge density of the 
e-h pair state, one would calculate the expectation value of the charge density 
operator, 

~(r, t) = ¢ ' ( r ,  t)¢(~, t) (4) 

where the field operator ¢ can be represented in terms of the one electron states 
a s  

~(~, t) = ~ ¢~(~)c~(t) (5) 
k 

In a one-electron approximation, or else in the "interaction representation", ck (t) 
has the form exp(-iekt/h)ck. In the ground state, the particle density is 

p0(~,t) = <  01~(r,t)10 > = <  0l ~-~¢;(~)¢p,(~)c;(t)~p,(t)lO > (6) 
p,p' 

Only the diagonal terms p = p' which are occupied give a non-zero contribution 
to this sum, and we get the familiar result, independent of time, 

o c t  

p0(~) : ~ l¢~(~){ ~ (7) 
P 

Repeating the calculation for the e-h pair state Ik, k + Q >, we get the same 
answer except that the list of occupied states is different. If we look at the change 
in the charge density between the ground state and the e-h pair state, we get 

~p(,,, t) = l¢~+o(~)l ~ - lCk(,'){:. (8) 

For free electrons, the orbitals Ck(r) are plane waves exp(ik, r), and ~p vanishes. 
For the Bloch states of a real metal, the orbitals are plane waves modulated by 
periodic functions uk(r). For small Q, the periodic function uk+Q is almost the 
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same as u~, so the change in charge density vanishes as Q goes to zero. There is 
no evidence of a charge-density wave. 

Nevertheless, Contreras et al. [2] are right. There is a charge-density wave 
hidden in the pair state. The way to see it is to consider what would happen if a 
small amount  of e-h pair excitation were mixed with the ground state. In other 
words, consider the state 

]k~k,k+Q > ~  IO > -+-~]k, k + Q > =  (1 + ~c*k+ack)lO > (9) 

where r/ is  a small complex number, and it is assumed that  the pair excitation 
does not vanish, i. e. that  k is inside the Fermi distribution and k + Q outside. 
The calculation now yields (to first order in the small parameter t/) 

@ = ( , )e  + c.c. (lO) 

where c.c. stands for "complex conjugate." For small Q, the electron-hole pair 
energy (¢k+Q -- ek)/h is Q 'vk  where vk is the group velocity, &k/Ok. At the 
same level in smallness of Q, we can write the product of wavefunctions as 

¢~+Q(r)¢k(r )  = Iek(r)12e iQ" (11) 

This is just  the zeroth order result of a "k.p" perturbation theory. Substituting 
these changes into Eq. (10), we get the result 

6p(r,t)  = 21 11¢ (r)1 cos[Q. ( ,  - v t) + ¢1 (12) 

where ¢ is the phase of r 1. Now we see that  the e-h pair excitation, relative to the 
ground state, is a charge-density wave! The propagation direction is of course 
given by Q, and the phase velocity is the component Q-v~ of the electron group 
velocity in the direction of Q. The group velocity, however, is vk. The simple 
cosine oscillation of electron density is very reminiscent of a phonon. However, 
unlike phonons which have 3 branches for each atom in the cell, the number of 
e-h pairs at a fixed Q is a macroscopic number. Specifically, for free electrons 
with Q > 2ky, the number of pairs with wavevector Q is the same as the number 
of occupied electron states, whereas for Q < 2ky, the number is reduced by a 
factor (3/2)(Q/2kF)[1- (Q/2kF)2/3]. 

It is evident from the electrostatic argument of Tonks and Langmuir that  once 
the Coulomb interaction is taken into account, there will be a large additional 
restoring force on the charge oscillation, and the result will be that  the charge 
density will oscillate at the plasma frequency rather than the non-interacting 
frequency Q • vk. This will be shown explicitly in the next section. One should 
pause to ask what property of the medium permits wave propagation (Eqn. 
(12)) of electron charge before the Coulomb interaction is turned on. If there is 
no interaction, a classical gas does not support propagating waves. The answer is 
the Fermi degeneracy, which forces an energy cost if the local density is altered. 
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4 I n f l u e n c e  o f  C o u l o m b  I n t e r a c t i o n  o n  C h a r g e  

o f  t h e  e - h  P a i r  

It is convenient to formulate this as a linear response problem. This way we 
expect the Coulomb interaction to enter nicely as a dielectric screening. There- 
fore, we want a perturbing field which will create the e-h pair and which can be 
represented as a term in the Hamiltonian. The following operator does the trick: 

g '  = hrlc~+qekS(t ). (13) 

This inserts an electron-hole pair at time zero. The dimensionless strength of 
the insertion field, 7, will be taken to be a small number. Linear response theory 
provides formal answers for the alterations of system properties which can be 
measured at a later time, to first order in 7/. In this section, we explore the 
resulting charge-density response, that is, the expectation value of the operator 
/~ of Eqn. (4). Later we look at the current response. 

Standard techniques of linear response theory [11] tell us that  the response 
is 

1 f t  
8p(r, t) = -~ J-oo dt'(Ol~(t)H'(t') - H't(t')~(t)lO). (14) 

This is a standard Kubo-type formula, except that  since the Hamiltonian H '  
is not Hermitean, so the commutator is replaced by a slighly more complicated 
form. Inserting Eqn. (13) for H' ,  the charge density response is 

8p(r, t) = 2Ira {nD(t)} O(t) (15) 

O(t) = <  0lT~jS(r, t)c~+qcklO > (16) 

where /9(t) is 1 if t > 0 and zero otherwise. D is a type of two-particle Green's 
function, and can be evaluated perturbatively in powers of the Coulomb in- 
teraction by standard Feynman methods using time-ordered Green's functions. 
The time-ordering operator 7 ~ has been inserted into Eqn. (16). Since ultimately 
we only need to know D for positive times, this doesn't change anything but 
facilitates the perturbation theory. 

First, evaluate the charge response function without any Coulomb interac- 
tions, Do. By standard methods one gets 

ff - D0( t )  = 
OO 

i ( fk(1 - / k + q )  fk+Q(1 -- f~) D0(w) 
) 

(17) 

(18) 

For positive t, the contour is closed in the lower complex w plane, and only the 
first term in D0(w) contributes. The answer is 

6p(r, t) = 2171 sin(Q - r - Q .  vkt  + ¢)lCk(r)12fk(1 -- fk+Q) (19) 
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This is just the same as the previous result for the charge density change which 
occurs when an e-h pair is present with amplitude ~ at all times, Eqn. (12), 
except for a phase change of 7r/2. This is because our earlier pair oscillator 
started at time zero with given amplitude r/ whereas the present oscillator at 
time zero was given "velocity" by the impulsive insertion. The present version 
also contains explicitly the Fermi factors fk and (1 -  fk+Q) which are zero or one 
depending on whether the orbital is within or without the Fermi distribution. 

The Coulomb interaction has the form 

1 
9 = 5 ~ _ Q , v ( Q ' ) ~ Q ,  (20) 

Q, 

where the operator p(Q) is the Fourier transform of the charge density operator 
Eqn. (4). For free electrons this is just 

~Q = Z c~+Qck (21) 

To evaluate the response function D exactly in the presence of Coulomb in- 
teractions is of course impossible. Diagrammatic perturbation theory allows a 
classification of the correction terms. The RPA is a standard approximation 
which keeps an infinite set of leading diagrams (which contain the leading small 
Q divergence, or the long-range part of the Coulomb interaction). The result at 
RPA level is 

DRpA(t) = e iQ" --/_" dw Do(w)e -i~' (22) 
1 - 

where X0 is the usual non-interacting susceptibility "bubble" diagram, and the 
subscript T indicates that it is the "time-ordered" rather than the usual "re- 
tarded" or causal response function X0R that is needed. The factor v(Q) is 
4~re2/Q 2, and the denominator 1 -  v(Q)xo is the dielectric function e(Q,¢o). 
These formulas are written for the uniform electron gas with no background of 
actual atoms. Generalizing to real electrons interacting with a crystalline array 
of atoms is not hard, but complicates the notation because of the matrix nature 
of c. At this stage it is also easy to include the dominant impurity effects, simply 
by including them in e. If the mean free path / = vFv is short enough that 
Q! << 1, the standard Drude result applies, 

2 

up (23) cR(Q,¢o) = 1 w(~z +i /r )  

It is important to convert this to the retarded form, which can be done using 
the general relations 

Rex,(w) = ReXT(W) (24) 

ImxR(a~)=tanh ~ ImXT(CO) (25) 
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At low T, the hyperbolic tangent is ~ ±1 and to convert a retarded function to 
a time-ordered function, one just changes the sign of the imaginary part when 
w < 0. To a good approximation the Drude response function can be written 

- 2,,,,, + i/2 - - CJ/T:/2 -j (26)  

Because wp >> l / r ,  the first term of Eqn. (26) is only important when w > 0 
and the second term is only important when w < 0. Therefore this is converted 
into a time-ordered response function by the simple approximate expedient of 
taking the complex conjugate of the second term, 

1 [ ] 
cw -- 2--WWp ~ -wp + i /2r  -- w + w p - i - / 2 r J  (27) 

Putt ing this into Eqn. (22) and closing the contour in the lower half of the 
complex w plane, the result is 

DRPA (t) = ei(Q'r-wpt)e-t/2r (fk -- h +Q ) /2  

+ ei(Q"-Qt 'k t ) fk(1--  fk+Q)× O ( Q v F  or 1 / r ]  2 (28) 
\ O$p / 

For simplicity, the Bloch wavefunction ICk 12 has been dropped. Only free electron 
results are given for the remainder of this section. The second term of Eqn. (28) 
is negligible compared to the first at small Q. Therefore, using Eqn. (15), the 
result for the charge disturbance after accounting for the long range Coulomb 
field is 

6p(r, t) = Ir/I sin(Q • r - wpt)e-t/eT (f~ - fk+q). (29) 

This is almost what one would have naively guessed. The amplitude is reduced 
by 2, and the frequency is now the plasma frequency, wp, as expected, with 
only a negligible component left oscillating at the original frequency Q • vk. 
Compensating for what looks like an arbitrary reduction by half of the amplitude 
is a new effect, coming from the difference between the factors fk(I  - fk+Q) and 
(fk - fk+Q). In the interacting system, it is possible to insert an electron-hole 
pair even when the state k is above the Fermi surface (fk = 0) and the state 
k + Q is below (fk+q = 1). The factor fk(1 - fk+Q) of the non-interacting 
response is zero, but the factor (fk - fk+Q) of the interacting system is -1 (the 
density disturbance has a phase shift of z.) Where does this new term come from? 
The Coulomb interaction Eqn. (20) continuously creates "vaccuum fluctuations" 
which are pairs of electron-hole pairs of equal and opposite momentum Q' and 
- Q ' ,  as shown in Fig. (4). Thus there is the possibility that  an electron with 
k > kF and a hole with k + Q < kr  are already present at time zero because 
of a vaccuum fluctuation (which also created a pair k' < kF and k' + Q > kF). 
Then the "insertion" operator e~+Qek removes the already present electron-hole 
pair, leaving its mate k',k' + Q. This process has equal amplitude as the simpler 
insertion process, but each is reduced by 2 compared to the non-interacting case. 
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Fig.4. A typical vacuum fluctuation, consisting of two e-h pairs with momentum Q 
and -Q.  

5 C u r r e n t  D e n s i t y  o f  a n  E l e c t r o n - H o l e  P a i r  in  a M e t a l  

It is also interesting to ask what is the current density associated with an 
electron-hole pair excitation. The current density operator, analogous to Eqn. 
(4), is 

The ground state carries no current. To first order in the amplitude 7/, the current 
density in the state ]~k,k+Q > (Eqn. 9) is 

h 
6 j (~)  = ~--~i ~ [¢~(~) ( v c k + ~ ( ~ ) )  - ( v ¢ ~ ( ~ ) )  ¢~+Q(~)] e - i("+~-¢~)~/~ + c.c. 

(31) 
Because the wavevector Q is small, the factor inside the square brackets of Eqn. 
(31) can be written as 

5 
2mi [ ] = eiQ'"Jk(v) (32) 

h * V  V *  jk(r)  = ~ [ ¢ k (  C k ) -  ( Ck)¢k] (33) 

where jk( r )  is the current density associated with the single particle Bloch state 
¢~(v). Since the corresponding density I¢~(r)l 2 is time-independent, the vector 
field jk(r)  must be divergenceless. The spatial average of this current density 
is vk/g2 where vk is the group velocity of the state and f2 is the volume of the 
crystal. Thus we get 

~j(~)  = 21~lJk(~) cos[Q, (r - vkt) + ¢ ]h (1  - h + ~ )  (34) 

The electron-hole pair conserves charge while it propagates, that is V .  j + c3p/Ot 
is zero. However, Eqs. (12) and (34) do not rigorously obey this law, since the 
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current jk is not equal everywhere to vk ]¢k t 2, only on average. The more exact 
forms (10) and (31) are rigorously charge-conserving. The derivatives V .  j and 
Op/Ot are first order in ]QI, whereas j and p are zeroth order. Since Eqs. (12) 
and (34) throw away terms first order in IQ[, they also lose some first order 
parts of their derivatives, even though they are correct to the order that  they 
are written. 

It is interesting that the current density is not in general longitudinal. It 
is polarized in a direction whose spatial average is the direction of the group 
velocity vk, which is normMly not parallel to Q. The transverse part of the 
current contains new information which cannot be deduced from the density 
alone. 

6 I n f l u e n c e  o f  C o u l o m b  I n t e r a c t i o n  o n  C u r r e n t  

o f  t h e  e - h  P a i r  

The same linear response proceedure used earlier for the charge can be general- 
ized for the current. Analogous to Eqns. (15, 16) we get 

5j ( r ,  t) = 2Im {,TJ(t)} O(t) 

Ja(t) - <  t)c~+qcklO > 

When this is evaluated without Coulomb interactions, the result is 

(36) 

$i(r) = 210lJk(r)sin[Q. (r - vkt) + ¢]fk(1 - A+Q), (37) 

analogous to Eqn. (19). 
When Coulomb interactions are accounted for by perturbation theory, we 

discover that transverse and longitudinal parts of the current are treated very 
differently. Sums over k' occur in which there are factors of the type 

(vk,z + vk'll) × F(ek,, ck,+Q). (38) 

The velocity vk, has been split into a transverse part (perpendicular to Q) and 
a longitudinal part. The transverse contribution vanishes, because it is always 
possible, for free electrons or for band electrons as long as Q has high enough 
symmetry, to find two states k ~ which have identical values of ek,, ek,+O and Vk'll 
and opposite values of Vk,±. Therefore, all Coulomb corrections to the transverse 
current cancel, and the transverse current continues to oscillate at its unrenor- 
malized frequency. 

The longitudinal part of the current gets screened in RPA the same way the 
charge does. A diagrammatic analysis yields the result 

Q. J(t) = e iQ" j (39) 
1 - v(Q)x0r (Q, 
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example of what chemists call a "configuration interaction" calculation. The 
eigenfunctions obey 

/tle_h[A > =  A[A > (43) 

which is equivalent to 

(ek+Q -- ek - A)Ak = - v (Q)  E Ak, (44) 
k '  

Solving for Ak =const xv(Q)/(ek+Q - ek - A), we compute ~ k  Ak and find the 
self-consistency condition 

1 = - v (Q)  E fk(1 --fk+Q) (45) 
k ek+Q--ek--A 

This is equivalent to the secular equation det(/:/le_ h - A}) = 0. 
The nature of this equation can be appreciated by considering the form of 

the right hand side for a small system with a discrete spectrum of e-h pairs of 
energy ek+Q -- ek. Between every adjacent two pair energies, a root A of Eqn. 
(45) is found, but the largest root A = h~TD is split off to higher energy as 
illustrated in Fig. 5. This root is the collective electronic excitation in Tamm- 
Dancoff approximation. Its wavefunction is 

Cv(Q) tk, k + Q > (46) 
1~ > =  E 5WTD _ (ek+ Q - o k )  

k 

Because hWTD lies above the energy of the pair spectrum, all the coefficients 
in Eqn. (46) are positive. This coherent sum has a large oscillating charge at 
t ~ 0, and looks quite a lot like a plasmon. The other eigenstates of Eqn. (42) 
are orthogonal to (46), which means that  at t ~ 0 the charge must largely cancel 
out. These other states account for the persistence of non-interacting properties 
in the e-h pair spectrum of the electron gas with Coulomb interactions. 

Unfortunately, the Tamm-Dancoffapproximation, as is well-known in nuclear 
physics, does not yield an accurate answer for the collective mode spectrum. 
The RPA answer, which is apparently surprisingly accurate, is equivalent to a 
modified secular equation 

1 = - v ( Q ) E  h ( 1  - f k + Q ) -  h + q ( 1  - fk) (47) 
k e } + Q - e } - ) ~  

which is found by setting the real part of the RPA dielectric function to zero. 
Eqn. (45) is tantalizingly close to Eqn. (47). However, the additional term which 
occurs in Eqn. (47), having the factor fk+Q(1 -- fk) in the numerator, is quite 
foreign to the Tamm-Dancoff approximation, because it seems to refer to states 
]k, k + Q > where the hole state k is above the Fermi surface and the electron 
state k + Q is below. 

The pair creation operator ct+qck operating on the non-interacting ground 
state cannot create anything if k is above the Fermi surface and k+Q below, but if 
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it acts on the interacting ground state with vaccuum fluctuations included, then 
the pair creation operator can destroy a pair of net momen tum - Q  by destroying 
a vir tual  electron in state k and a virtual hole in state k + Q. This effectively 
releases a pair s ta te  in some other state (k' ,  k' + Q) as shown in Fig. 4, which 
had previously been part  of the same vaccuum fluctuation as the destroyed pair. 

5 .0  

2 .5  

0 .0  

-2 .5  
-3 0 

] 

L 
3 6 9 

Energy  

Fig. 5. Finding the roots of the secular equation. The curve is the right hand side of 
Eqn. (45). The vertical lines mark the energies of e-h pair states, with a root pinned 
between each two neighboring e-h states. One root (which becomes the plasmon) splits 
off to higher energy. 

In order to produce the modified secular Eqn. (47) in place of Eqn. (45) 
from our wavefunction argument,  we need an enlarged subspace that  includes 
e-h pairs where the hole is above and the electron below the Fermi level. The 
kinetic energy part  of the Hamiltonian will have the same form e~+Q - ek on the 
diagonal in both  the previous and the new parts  of the subspace, whereas the 
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potential energy term must have the form 

v(Q) v ( Q ) . .  
~(Q) v ( Q ) . .  

: 

~re_ h ~ 
- v ( Q )  - v ( Q )  . . 

- v ( Q )  . . 

- v ( Q )  - v ( Q )  . .  

- v ( Q )  - v ( Q )  . , 

v(Q) v(Q) 
v(Q) v(Q) 

(48) 

where the second set of rows and columns refers to the new states with k above 
and k + Q below the Fermi level. One way to begin building this is to redefine 
the pair states given in Eqn. (3) by a first-order perturbative improvement of 
the ground state or vaccuum, 

< mllkl0 > (49) 
[0 >---* [0 > + y ~  [ m >  E o - E , ~  

m 

where [m > is short for any state (consisting of two e-h pairs of opposite momenta 
Q~, -Q~) which can be created in the non-interacting vaccuum by the Coulomb 
interaction Eqn. (20). The original subspace Hamiltonian matrix Eqn. (42) is 
preserved to zeroth order in v(Q), and to first order, there are new matrix 
elements of the kinetic energy operator which couple an e-h pair (k, k + Q) with 
k below the Fermi level to a state with k ~ above. Unfortunately, the coupling 
matrix element is not just the term - v (Q)  appearing in Eqn. (48), but instead 

ck+Q - ck (50) 
- v(Q) x (ck+Q - ek) - (ek,+Q -- ek,) 

It will require going to infinite order in perturbation theory to fully correct 
the Tamm-Dancoff approximation and recover the RPA answer by this route. 
The Tamm-Dancoff approximation is equivalent to a diagrammatic perturbation 
theory for the dielectric function which keeps only one e-h pair propagating 
forward in time, and neglects the backward-in-time propagation which enters 
the usual Dyson series when the vaccuum fluctuations are included properly 
in the same order of perturbation theory. The full RPA treatment can have 
arbitrarily many additional vaccuum fluctuations with wavevectors (Q, - Q ) ,  but 
our approximate improvement allows at most one vaccuum fluctuation term. It 
might be nice to find explicitly the formula for the plasmon wavefunction which 
corresponds properly to the RPA formula, but I have not done this• The subject 
is treated in texts [1], [3] on the nuclear many-body problem. 

8 C o n c l u s i o n  

The apparent paradoxes now seem largely answered. The answers did not involve 
any new physics, but instead required thinking about the problem in a way fa- 
miliar to nuclear physicists but less familiar to solid state physicists. An e-h pair, 
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even before adding the Coulomb interaction, is seen to carry a charge density 
wave, once the interference between the pair and the ground state is considered 
in the wavefunction. The Coulomb interaction totally alters the charge-carrying 
part  of this state, but does not affect the transverse part of the current. In the 
effort to find approximate eigenstates of the interacting problem, the Tamm- 
Dancoff proceedure, even though ultimately inaccurate, offers a nice way of see- 
ing how a single plasmon-like mode can split off from the e-h continuum, leaving 
the rest of the continuum largely unaltered. 

When this paper was presented in Karpacz, C. P. Enz commented that  his 
instinct was that  there was still more to this subject than had been uncovered 
so far. This seems to me true of all enquiries. Unfortunately I am not able to 
suggest the next questions which should be asked. 
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Review of the Physics 
of High-Temperature Superconductors 

Charles P. Enz 

Dgpartment de Physique Th$orique, Universit~ de Gengve 
1211 Geneva 4, Switzerland 

A b s t r a c t :  For a better appreciation of the revolutionary aspect of the dis- 
covery in 1986 of the first high-temperature superconductor, the main stations 
in the 80 years old history of superconductivity are revisited. It is emphasized 
that the first breakthrough in this history came only in its 5th decade when 
Bardeen, Cooper and Schrieffer succeded in formulating a microscopic the- 
ory of this phenomenon. The progress made in the following 3 decades then 
is described mentioning the names of Little, Ginzburg, Bednorz and Mfiller 
who were among the few physicists who had the optimism to consider another 
breakthrough possible. After Bednorz and Mfiller's discovery, progress leaped 
forward and produced an avalanche of publications which can be faced only by 
being selective. Thus after presenting the main characteristics of the different 
cuprate families of the new superconductors the main theoretical models are 
presented, which all make explicit use of the fact that the strongly correlated 
mobile holes in the copper-oxygen layers carry most of the interesting physics. 
Some of the new ideas like the separation of spin and charge of the holes and 
the possible existence of a "spin liquid" instead of a Fermi liquid are consid- 
ered. Also discussed are the main pairing mechanisms proposed to describe 
the superconducting state and, in particular, the alternative of s- versus d- 
wave symmetry. Finally, possible explanations of the strange linear resistivity 
as function of the temperature observed parallel to the layers in the normal 
state and the technical applications in the form of wires, squids and filters for 
medicine and the communications industry are reviewed. 

1 The early history of superconductivity 

In  1908 Kamer l ingh  Onnes succeeded in liquefying helium at a t empera tu re  of  
4.2 degrees Kelvin (K), tha t  is at - 2 6 8 . 9 C .  Three years later he discovered tha t  
at  this t empera tu re  mercury  completely lost its electrical resistance [1]. In the 
course of  the years m a n y  other metals  were discovered to be superconductors  
namely,  by increasing a tomic  number,  AI; Ti, V, Zn, Ga; Zr, Nb, Mo, Tc, Ru, 
Cd, In, Sn; La; H f, Ta, W, Re, Os, Iv, Hg, TI, Pb; Th, Pa, U. 
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It turned out, however, that zero resistance is not a sufficient condition for 
superconductivity. In 1933 Meissner and Ochsenfeld discovered that  a magnetic 
field H is expelled from a metal when it is in the superconducting state, i.e. 
when its temperature T is below the critical temperature To, provided that  H is 
also smaller than a critical field He. The two situations of expulsion are shown 
in Fig.1 [1]. 

Fig. 1. Field expulsion from a superconductor. Above: T < Tc 
and H = 0 ~ Hc > H > 0. Below: Hc > H > 0 and T > Tc ---, T < T~. ----*: 
perfect conductor; ==*: superconductor. 

The explanation of this "Meissner effect" is that  an external magnetic field 
H < Hc induces a surface current distribution j perpendicular to the field, j ,  
in turn produces a field that exactly compensates H in the interior, i.e. B = 0, 
leading to perfect diamagnetism, X = -(47r) - I -  The existence of a critical field 
Hc is then understood to be due to a critical value of the surface current density, 
above which superconductivity breaks down. 

While phenomenological understanding increased steadily [1], the breakthro- 
ugh in the microscopic theory came only in 1957 with the famous work of 
Bardeen, Cooper and Schrieffer (BCS) [2]. The idea of the BCS theory is that  
electrons form pairs with zero momentum (and also zero angular momentum),  
and these "Cooper pairs" condense at Tc into the superconducting state. This 
condensation of Cooper pairs is analogous to the Bose-Einstein condensation of 
"bosons" (see below), e.g. helium atoms [1]. The difference, however, is that  in 
BCS theory condensation occurs simultanously with pairing and the diameter 
of the pair, i.e. the coherence length ~, is large compared to the average distance 
between electrons. 
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Pairing requires an attractive force between the electrons which in BCS the- 
ory is mediated by the interaction of the electrons with the vibrations of the 
crystal lattice, the phonons [see, e.g. Section 1 of Ref. [3]]. The resulting effective 
electron-electron interaction V determines the critical temperature according to 
the equation [2] 

T~ = 1.14we -1/N(°)v. (1) 

Here w is a limiting phonon frequency (Debye frequency) and N(0) the density 
of states at zero energy, counted from the filling level (Fermi energy) of the 
electrons. Tc and o; are measured in energy units. 

Since phonon frequencies vary with the ionic mass M as M -1/~, Eq. (1) gives 
the same M-dependence for To. As noted by BCS, this explains the isotope effect 
which had been discovered 7 years earlier [4]. It was soon realized, however, that 
the M-dependence of Tc is considerably more complicated because not only w in 
Eq. (1) but also V depend on the ionic mass. This latter dependence essentially 
comes from the Coulomb repulsion which was not mentioned above while the 
part of V mediated by the phonons is practically independent of M. 

Pair breaking requires an energy 2A where A(T) is the order parameter 
which depends on the temperature, and `50 = ,5(0) is the gap in the excitation 
spectrum. BCS theory gives the following relations for ,5(T) near T¢ and at 
T : 0 :  

,5(T) : 3.06T~(1 - T/Tc) 1/2, ,5° : 1.76T~. (2) 

2 T h e  s e a r c h  f o r  n e w  s u p e r c o n d u c t o r s  

The obvious interest of superconductivity, namely to allow electrical currents 
without loss, as well as the intrinsic interest led to a competitive search for ma- 
terials with ever higher Tc's and/or higher H~'s. After the elements many alloys 
were tested, among which NbTi became of particular importance for cryogenic 
applications. But besides alloys, interest turned to compounds with precise sto- 
ichiometry, first binaries then ternaries and quaternaries and beyond. 

The most important binary superconductors were the so-called A15 com- 
pounds discovered in 1954, namely V3Si with a Tc of 17K and Nb3Sn which has 
Tc -- 18K [5]. Apart from the mentioned alloy NbTi, Nb3Sn has been the main 
material from which wires were produced. Nb3Ge which had the highest T¢ of 
23.2K until the recent discovery of the "high-To superconductors" (see below), 
had proven too difficult to be produced on an industrial scale. 

Two classes of ternary compounds were subsequently found to contain some 
interesting superconductors among their members, first the "Chevrel phases" 
named after the French discoverer of this class. The first superconductors in 
this class were discovered by Matthias in 1972 [6], namely M~Mo6Ss with M - 
Cu, Ag, Zn, Sn, Pb. While the T~'s are all lower than 15K, some of the Chevrel 
superconductors such as PbMo6Ss have the highest H~'s, as is seen in Fig. 2 [7] 
which reviews the materials discussed so far. 

The upper critical field H¢2 refered to in Fig. 2 is the field at which super- 
conductivity breaks down. However, already at a lower critical field H¢1 < He2 
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non-superconducting cylindrical regions in the field direction start to penetrate 
into the superconductor forming a mixed stale. This behaviour is characteristic 
of type H superconductors for which the coherence length ~ is smaller than a 
critical value [see, e.g. Section 27 of Ref. [3]]. 

I 

I 

=) 

L') 

~00 v 

"1" 

100 

Pb Mo 6 S 8 

Nb 3 Sn ,,,, 
Nb-Ti 

0 2 4 6 8 I0 t?. I/, 16 18 20 22 

T (K)  

Fig. 2. Upper critical field He2 versus T for the most interesting "old" superconductors. 

The second class of ternaries are the " heavy-fermlon compounds", so called 
because they have a linear electronic specific heat at low temperatures [3] 

c~ = "/T (3) 

with a "/-value 100 to 1000 times larger than for other metals, indicating an 
anomalously large effective mass of the conduction electrons. The first supercon- 
ducting heavy fermion compound CeCu2Si2 was discovered in 1979 [8]. However, 
it has a Tc of only about 0.5K. 

A quite different type of superconductor was discovered in 1980, namely 
an organic compound of quasi-linear structure with the abbreviated name of 
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( T M T S F ) 2 P F s  [9]. Although this substance becomes superconducting only un- 
der high pressure, some 12kbar, and with a Tc of about 1K, this discovery showed 
for the first time that  superconductivity is not restricted to ordinary metals. This 
is all the more important  in view of the "high-To superconductors" discovered 
since and also because many other quasi-linear organic substances have been 
found to be superconducting at atmospheric pressure. 

The suggestion that organic molecules could be superconducting, however, 
is much older. Indeed, in 1964 Little [10] discussed a model molecule consisting 
of a spine to which many side chains are attached. Based on BCS theory he 
concluded that such a system had a phonon spectrum allowing T¢'s much higher 
then room temperature! Unfortunately, his work did not obtain the at tention it 
is retrospectively thought to have deserved. 

During three decades the barrier of Tc ~ 23K had not been broken, in spite 
of considerable efforts worldwide. This barrier thus became psychological, and 
various theoretical at tempts were made to make plausible that  there was an 
intrinsic limit. The history of this question is discussed in the books by V.L. 
Ginzburg [11] who emphasized, however, that theory allowed for much higher 
values of To. He therefore should be considered the pioneer of high-temperature 
superconductivity. 

But it still came as a shock when in 1986 J. G. Bednorz and K. A. Miiller 
from the IBM Zurich laboratory announced the discovery of a Ba - La - C u  - 0 

compound with a Tc of some 30K [12], close enough to the barrier to be credible[ 
The next decisive step came less than a year later when the group of C. W. Chu 
from the University of Houston (Texas) and of M. K. Wu from the University of 
Alabama discovered the Y - Ba  - Cu  - 0 compound with T~ ,-, 93K [13]. This 
meant superconductivity above the boiling point of nitrogen ( -195 .8C)  which 
now could be substituted for the expensive helium as a coolant. 

3 T h e  n e w  " h i g h - t e m p e r a t u r e "  s u p e r c o n d u c t o r s  

The new materials discovered by Bednorz and Miiller [12] and by Chu and his 
group [13] are quaternaries whose crystal structure is built up from unit cells 
which are elongated along the c-axis and have an essentially quadratic base in the 
a - b plane perpendicular to the c-axis. The first class consists of the lanthanum 
compounds L a 2 - , M ,  C u 0 4  or L S C O  with variable impurity content x < 0.15 
and M = Ba,  Sr ,  while the second is Y B a 2 C u 3 0 6 + ,  or Y B C O  with variable 
oxygen content x < 1. Many more have been discovered since [14, 15, 16]. All 
have as a basic structure pairs of pyramids pointing in the positive and negative 
c-direction with an O-atom in each corner and a Cu-a tom at the center of their 
base. In some cases (the La-compound and the Ca-compounds  with n = 1 in 
the chemical formulae (4) below) the two pyramids touch to form an octahedron 
with one Cu in the center (see Figs. 3 and 4). 

The following is a non-exhaustive list of the cuprale famil ies  whose outstand- 
ing common feature are the CuO2-1ayers in the a - b planes [14, 15, 16]: 
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La2_~M~Cu04 ; M = Sr, Ba, Ca ; Tc <_ 35K 
YBa2Cu306+~ ; Tc <_ 95K 
Bi2Sr2Ca,~-lCunO4+2n+~ ;n = 1 ,2 ,3 ,4  ;T~ _< 110K 
TlBa2Can-lCu,~O3+2n+~ ; n = 1, 2, 3, 4 ; T~ <_ 125K (4) 
HgBa2Can-lCunO2+2n+~ ; n = 1, 2, 3 ;To _< 135K 
R2-~:-yCe~SryCu04 ; R = Nd, Pr,  Gd, Sin; Tc <_ 24K.  

All these families are hole conductors, with the exception of the last one which 
for y = 0 is an electron conductor. 

As shown, e.g. in Fig. 1 of A.W. Hewat et al. on p. 221 of Ref. [17], T~ in- 
creases with the number n of CuO~-layers per unit cell. This dependence has 
been explained in the framework of Ginzburg-Landau theory [see, e.g. Section 
26 of Ref. [3]] as a relation T~ c( (n/c)2/3 where c is the lattice constant along 
the c-axis [see T. Schneider on p. 351 of Ref. [17]]. 

In many materials there is a structural phase t ransi t temperature far above Tc 
and which has no obvious connection with superconductivity. In the lanthanum 
compounds the transition, with decreasing temperature,  is from tetragonal to 
orthorhombic, as shown in Fig. 3 [18], in Y B C O  it is the reverse, as seen in 
Fig. 4 [19]. 

Sr) 

Fig. 3. Unit cells of tetragonal (left) and orthorhombic (right) Lal.as Sro.ls Cu04. 

Since Cu + ~ 3d 1° and 0 5 -  ,,, 2p 6 are closed atomic shells one would expect 
the undoped compounds La2Cu04 and YBa2Cu306  to be insulators. However, 
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Fig.4.  Unit cells of orthorhombic (left) YBa2CuaOT and tetragonal (right) 
YBa2 Cua08. 

La and Ba respectively, act as aceeptors forming holes Cu~ + with spin ~ =T or 
1. Without  the strong correlation of these holes to the copper ions this would 
lead to a half-filled band, i.e. to a perfect metal, which is exactly what the 
first band calculations predicted [15, 20]. Experimentally however, the undoped 
compounds are indeed found to be insulators. Since they cannot be ordinary 
band-gap insulators they must be insulators by correlation, i.e. Mott insulators 
[3]. In addition, it is observed that  at low temperature the spins of the copper 
holes show a 3-dimensional antiferromagnetic (AF) order [21]. 

Free carriers are created either by doping, indicated by the index x in the 
chemical formulae of (4) or by oxygen disorder which implies changes in the 
valence of the metal ions [see the conclusion of A.W. Hewat et al. on p. 224 of 
Ref. [17]]. Doping gives rise to a phase diagram as shown for the La-compound in 
Fig. 5 [22] [see also Fig. 2 of K. Kitazawa on p. 202 and in Fig. 1 of M. Kataoka 
on p. 357 of Ref. [17]]. 

For La~_~:Ba~:Cu04 this means, e.g. that the antiferromagnetism of the un- 
doped system rapidly disappears at x ,~ 0.01 and, after a spin-glass-type inter- 
mediary phase, is followed at x --, 0.02 by superconductivity. YBa2Cu306+~:, 
on the other hand, contains chains of oxygens along the b-axis which act as 
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Fig. 5. Phase diagram of La2_~M#Cu04, M = St, Ca, Ba. 

dopants, the value x = 1 corresponding to filled chains. There exists also a mod- 
ification YBa2Cu40s with filled oxygen chains along both, the a- and b-axes 
and Tc ~" 76K. Contrary to the former 123-compound the latter 124-version of 
Y B C O  is stable against oxygen loss [23]. The phase diagram of YBa2Cu306+x 
is similar to that of La2-x Ba+ Cu04 showing an antiferromagnetic domain which 
disappears at x + 0.4 and an onset of superconductivity around x -,+ 0.5 
[see, e.g. Fig. 3 of J. Rossat-Mignot et al. on p. 77 of Ref. [24] and Fig. 2 of 
J.M. Tranquada on p. 424 of Ref. [25]]. 

4 T h e o r e t i c a l  m o d e l s  

The antiferromagnetic state mentioned earlier means that  the spins of Cu~ + in 
the square lattice of the a - b planes alternate, as shown in Fig. 6, and there is 
also an alternation in the consecutive a - b planes [21]. 

The CuO2-planes may then be described by a one-band Hubbard model [see, 
e.g. Section 33 of Ref. [3]] 

u .  = -+ c+<.c. + v Z ,  n , + . .  (5) 
<ij>,a  i 

where nia = c+~ci~ and < ij > means nearest neighbour sites i, j .  Strong on-site 
repulsion, U >> t, then splits the half-filled metallic band into the filled lower 
and the empty upper Hubbard bands [see Fig. 5 of K. Kitazawa on p. 204 of 
Ref. [17]] and the metal becomes an insulator with no double occupancy. 

At half-filling, charge neutrality then implies that  the charged holes Cu~ + 
on all the sites i are replaced by neutral spins. Thus the antiferromagnetism 
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Fig. 6. Antiferromagnetic spin arrangement of the Cu - 0 lattice in the a - b p|~nes. 

in the CuO2-planes (see Fig. 6) may be described by a 2-dimensional spin-l /2 
Heisenberg model 

n s  : J ~ - ,  " ' i ,  (6) 
<ij > 

where o" is the vector of Pauli matrices and J > 0. According to the Mermin- 
Wagner theorem this model cannot order antiferromagnetically at finite temper- 
ature [26] so the groundstate must have spin-flip fluctuations. This led Anderson 
to propose the resonating valence bond (RVB) groundstate in which MI spins are 
randomly paired into singlets but such that on average the antiferromagnetic or- 
der is maintained [Ref. [27], see also Ref. [28]]. However, the existence of a true 
N4el groundstate is still under debate. 

Doping has the effect of adding a hole on some sites i which nominMly trans- 
forms a Cu~ + into a singlet Cu 3+, i.e. the spin is replaced by a charge. Physically 
the doping holes, instead of being localized on the copper sites, will rather be 
distributed on the four neighbouring oxygens [29]. In the limit U ) )  t the Hub- 
bard repulsion in Eq. (5) then is equivalent to the Heisenberg term Eq. (6) with 
J = 4 t2 /U,  thus giving rise to the t - J model [29, 30] 

~ j  = -t ~ c+oc, + J ~ ~, .~ j .  (7) 
<ij>,a <ij> 

In this model the limit U >> t now implies that all the sites i are occupied either 
by a spin or by a charge. Describing the creation of a spin or a charge at site 
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i by operators a+~, or b +, respectively, the occupation of all sites gives rise to a 
local conservation law 

a+,,a,,, + b+b, = 1 ;al l  i (8) 
ff  

and the creation of a doping hole on a charge-site i is described by the operator 

= (9)  

This so-called slave-boson description [31] therefore exhibits explicitly the sep- 
aration between spin and charge: the operators a+~ and b + create spinons and 
holons obeying Fermi and Bose statistics, respectively [27] (note that  formally, 
the statistics may also be interchanged). As in electrodynamics, this local con- 
servation law Eq. (8) gives rise to a local gauge group and hence to a gauge field 
acting as a Lagrange multiplier. 

5 Fermi liquid versus spin liquid 

In the above description using spinons and holons, there are no longer any holes 
and hence no Fermi liquid of holes but instead there is a spin liquid [Ref. [27], see 
also P.W. Anderson in Ref. [32]]. This is a fundamental change in the description 
which must he tested experimentally. 

The most stringent test is provided by high-resolution angle-resolved pho- 
toemission in the vicinity of the Fermi energy [15, 33, 34]. Such measurements 
were done on cleaved surfaces of single crystals of Bi2Sr2CaCu208 (this com- 
pound is known for its stability against oxygen loss). The results are consistent 
with band structure calculations and strongly suggest the existence of a Fermi 
liquid. In addition, comparison of the data taken above and below the transition 
temperature Tc clearly show the opening of a gap of the order A ~ 4kBTc as 
compared to the weak-coupling (BCS) value 1.76kBT¢ [33, 34]. 

Nuclear magnetic resonance, on the other hand, indicates that the Fermi 
liquid still possesses antiferromagnetic correlations [35]. Furthermore, optical and 
transport properties in the normal state show universal anomalies which may 
be fitted by a particular form of the polarizability. This semi-phenomenological 
description goes under the name of "marginal" Fermi liquid [36]. 

On the other hand, the rich symmetry content of the Hubbard model has been 
argued to provide a sensitive test of the validity of this model for the description 
of the cuprates [37]. No experimental realisation of this test is known, however. 

Alternate theoretical models either assume mobile Cu-holes in an AF back- 
ground hopping via the O-neighbours [38]-[41] or mobile O-holes hopping via 
neighbouring Cu-sites [42, 43] or band holes interacting with the commensurate 
spin density wave (SDW) [3] describing the AF spin arrangement shown in Fig. 6 
[44]. In all of these models superconductivity requires a pairing mechanism in 
order to obtain boson-like objects from the holes which are fermions. 
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6 T h e  s u p e r c o n d u c t i n g  s t a t e  

The most striking feature of the new superconductors, apart from the high To- 
values are the short coherence lengths ~ t a  ... ~btb ~ 6, ~clc ~ 0.2 [aef. [45] 
and G. Deutscher in Ref. [17]]. This means that the hole pairs are rather local- 
ized, particularly along the c-axis, i.e. they resemble more Schafroth pairs (local 
bosons) than extended Cooper pairs [see Section 20 of Ref. [3]]. Hence, these 
superconductors are strongly type II (see above) and resemble a Bose fluid. The 
latter similarity is manifest in their scaling properties and in the fact that at 
T = 0, Tc is a function of the carrier density n [46]. Such a Tc - n relation 
had been derived in an effective extended Hubbard model with on-site ("nega- 
tive U") and intersite attraction in mean-field approximation [47] but also in a 
boson exchange model in strong-coupling approximation [41]. 

In the models based on the assumption of hopping Cu-holes, two different 
pairing mechanisms have been proposed. In the first, the AF background acts 
like a "spin bag" which preferentially attracts two holes with opposite spin on 
nearest-neighbour sites and thus leads to pairing. In this case superconductivity 
is obtained by a conventional BCS formalism [38, 39]. 

The second type of model makes use of the fluctuating valence reaction [19, 
40, 41] 

c  t-o2- c¢-o.  - c , ~  n =,. ° - c , , ~  + ( l O )  

which also explains the oxygen loss mechanism because of the neutral oxygen. 
This reaction leads to a coupling between the two holes on the Cu 3+ and the 
two holes on 0% Approximating the latter by a doubly charged spin-zero boson, 
the zero-momentum projection of this interaction has the form [40, 41] 

7ti~t = W ~ a+,a+•lb + herin.conj. (11) 
k 

Here aka + is the creation operator for a hole of momentum k and b the annihilation 
operator for the doubly charged boson on the O-site. The coupling constant W 
may be expressed in terms of an extended Hubbard model in which the O-ions 
are explicitly taken into account. Treated in the strong coupling approximation 
this model yields a T¢ which, in contradistinction to most of the other proposals, 
does not have the exponential upper bound inherent in all of the expressions of 
the type of Eq. (1) [41]. 

In Emery's model [42, 43], pairing of the hopping O-holes is obtained from 
the attraction resulting from the exchange of a hole between two neighbouring 
O-ions via the intermediate Cu site which here is assumed to be delocalized [42]. 
This process is in a certain sense the reverse of the fluctuating valence reaction 
Eq. (10). It may indeed be written as the 2-step process 

- -  C ~  o, - 
0 2 -  C u ~  + 0 ~ = * 0  2 -  a +  0 2 - 2 +  0 2 - - - - C u  u : *  O j  - ( 1 2 )  

where, however, Cu ~+ is supposed to be delocalized [29]. Again the coupling 
constant for this reaction follows from an extended Hubbard model [42]. But 
superconductivity is derived in the framework of conventional BCS theory. 
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Pairing of the band-holes in Schrieffer's model is again based on the mech- 
anism of spin bag attraction [44]: An added hole interacts with the SDW men- 
tioned earlier by creating its own spin bag which then attracts a second hole. 
Again superconductivity is derived along the lines of BCS. 

In view of the still open question of the mechanism of superconductivity in 
the cuprates, the information that the superfluid phase consists of carrier pairs 
is most important. The detection of trapped flux in a ring of YBCO has clearly 
demonstrated quantization in units of h/2e [see Fig. 1 of C.E. Gough on p. 145 
of Ref. [25]] thus demonstrating the existence of pairs. 

7 s- v e r s u s  d - w a v e  p a i r i n g  

More recently, indications have been accumulating that the energy gap may 
depend on the wavevector in the a - b plane, A(k~, ky). Such a dependence was 
predicted by Bickers, Scalapino and collaborators already in 1987 [48]. Their 
result was that the holes pair in a d-state, and not as in BCS theory in an 
s-state, the explicit dependence being 

A(k~,ky)=Ao[cos(k~a ) -cos(kva)] .  (13) 

This expression, which changes sign at the nodal lines Icy =t: k~ = 0 is represented 
in Fig. 7. An interesting pairing mechanism leading to an order parameter with 
d-wave symmetry is the exchange of antiferromagnetic spin fluctuations [49]. 

Experimental hints of an anisotropic A are numerous but contradictory since 
some experiments confirm the d-state dependence Eq. (13), while others favour 
of an anisotropic s-state pairing without nodal lines [50, 51]. Because of this 
situation the idea of the simultaneous presence of both, s- and d-wave order 
parameters but only one transition temperature Tc seems quite natural [52]. 
Models with mixed s- and d-wave order parameters have also been discussed 
elsewhere, e.g. in Refs. [53] and [54]. 

An alternative to the paramagnon exchange mechanism of Ref. [49] may be 
obtained as follows: The short coherence lengths and the proximity of a Mott 
transition suggest the picture of hole pairs in real space (CuO2-planes) described 
by a pair wavefunction of the size of the coherence length, that is, essentially, 
by considering only nearest neighbour pairings which, however, must respect the 
square symmetry of the CuO2-1attice. This situation corresponds to the local 
charge transfer mechanism of Eq. (10) and is described by coupling the hole 
pair to a doubly charged local boson as in Eq. (11) but now generalized to a 
square-symmetric form [55]. 

The Fourier-transformed pair wavefunction then is found to be 

~k=~,k+~dh (14) 

where 

} = {:;} [cos(ks.) ± cos(kya)] (15) 
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Fig. 7. Constant A-contours of the d-state gap function Eq. (13). 

and the coefficients us, Old may be chosen to be real. Writing the singlet pair 
operator associated with the wavefunction Eq. (14) as [see Section 20 of Ref. [3]] 

= + + ( 1 6 )  ~ o k - q / 2 a k T a  q - k  I , 
le 

the effective attraction between holes giving rise to such pairs is obtained by 
elimination of the local boson field in the usual way [see Section 20 of Ref. [3]], 

= - g  sq (17) 
q 

where g = IWl2/,.Qo and ~o, the energy of the local boson, is assumed to be 
large compared to the band energy of the holes. As in BCS theory ~/att~ then 
determines gap equations whose solutions are the order parameters A.k  = ~o,~A 
(# = s, d) with s- and d-wave symmetry, and the d-wave order parameter is seen 
to have the form of Eq. (13). This result is self-consistent in the sense that  the 
wavefunction defining the pair operator Eq. (16) also determines the symmetry 
of the order parameter. 

8 The resistivity problem of the normal state 

In view of the difficulty of understanding the mechanism of superconductivity 
in the cuprates much effort has been directed to the normal properties above 
To. While much of this activity concerns effects due to a magnetic field we here 
concentrate on the ordinary resistivity. For a review of normal properties of the 
cuprates see Ref. [56]. 
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The temperature dependence of the resistivity is one of the puzzling normal 
state properties of these new materials since in the a - b plane it is found uni- 
versally to follow a linear law Pab c¢ T over large temperature intervals above T¢ 
[see Ref. [57] for a short review]. This contrasts with the fact that  in an ordinary 
Fermi liquid, the carrier-carrier interaction gives rise to a low-temperature resis- 
tivity p o¢ T 2 in 3 dimensions and to p o¢ T21nT in 2 dimensions [see Ref. [58] 
and Section 17 of Ref. [3]]. 

Along the c-axis the resistivity is much less universal, decreasing in general 
strongly with increasing temperature as in a semiconductor but may also be 
parallel to Pab [see, e.g. Fig. 2 of Ref. [57]]. The anisotropy ratio P¢/P~b may 
vary between ~ 102 for Y B C O  to .-~ 105 in the bismuth compounds [see Fig. 2 
of Ref. [59]] for which the corresponding ratio of the effective masses in the 
Ginzburg-Landau equation is m¢/m~b ~.. 103 [60]. 

The obvious explanation of the linear law Pab ct T is based on a high- 
temperature expansion of the Bloch-Griineisen law due to electron-phonon scat- 
tering [see, e.g. Section 16 of aef. [3]], 

T 5/O/T x5dx 
pph = c°ns t ( -~)  jo e ~ = ]  (18) 

Here O is defined in terms of the Debye temperature OD by the relation that  
(O/20D) 3 is the number of carriers per unit cell per spin. Indeed, for O / T  << 1 
the integrand in Eq. (18) may be developed in powers of z and yields a linear 
T-dependence. Since carrier concentrations in the cuprates are small, O may 
be substantially lower than 80 and quite comparable with the high Tc's. The 
problem, however, arises in the case of the low-To compound of Ref. [59] where 
this expansion is no longer justified. 

As can be seen from Eq. (18), the development of the integrand actually is a 
development of the Bose distribution function of the phonons, 

no(wq) ~- 1 + no(Wq) ~-- - -  
k B T 1  ( W q )  
wq 2 + O  ~ > > 1 .  (19) 

It is characteristic of this development that the constant (second) term is neg- 
ative and hence may simulate an unphysical residual resistivity. This is what 
one finds in the case of YBa2Cu40s  [see Fig. 4 of Ref. [23]], where a Bloch- 
Gr~neisen curve fits perfectly [see Fig. 2 of Ref. [61]]. But the high-temperature 
expansion Eq. (19) is valid not only for phonons but for any zero-mass boson 
emitted and absorbed by the holes. Examples are spin fluctuations, photons and 
gauge bosons. While photon exchange is always negligible, gauge bosons, i.e. the 
quanta of the field associated with the local conservation law Eq. (8) are thought 
to be the explanation of the linear law in Refs. [62] and [63]. More realistic is the 
exchange of antiferromagnetic spin fluctuations which indeed gives a crossover 
Pab ¢x T '~ from a > 1 at low T to a _ 1 in a large temperature interval [49, 64]. 
However, the most natural explanation of the linear law would seem to be in 
terms of the distortive electron-lattice interaction discussed in Ref. [54]. 
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Another qualitatively correct crossover mechanism is obtained in a model of 
two bands separated by a small gap [65]. The contribution of the two bands to 
the conductivity may be written as 

i 2 t i r' (20) 
i-----1,2 k 

Taking the Fermi energy in the lower band / = l, one has Iv~l = vr but (v~) 2 o¢ 
T, corresponding to diffusion. Assuming a Fermi-liquid dependence r i c¢ T -~ for 
both bands one then finds at low temperatures so that band 2 is empty, ¢r o¢ T -2. 
At higher temperatures, however, where band 2 fills up, the latter contributes a 
term o¢ T-1 which eventually dominates. 

9 Technical applications of high-Tc superconductors 

The discovery of Y B C O  in 1987 [13] with a critical temperature of up to 95K 
brought a tremendous impulse to the technical applications of superconductivity. 
The reason was that  it now became possible to replace expensive liquid helium 
(boiling point ~ 4K) as a coolant by liquid nitrogen whose boiling point is at 

77K. For a while the enthousiasm was so great that magnetically levitat- 
ing trains and superconducting long-distance power lines were thought to be 
just around the corner. However, the cuprate families (4) turned out to be not 
only difficult to understand theoretically but also very hard to be produced in 
sufficiently high quality. While in the beginning the preparation of LSCO and 
Y B C O  was so easy that most third world laboratories were able to take part 
in this great adventure, the increasing demands for quality both in basic and 
in applied research unfortunately left laboratories with modest equipment and 
restricted funds out in the cold. 

It was particularly hard to produce wires of these materials because the latter 
resemble more granular and brittle insulators than smooth metals like copper. 
Therefore, wires are produced today by pressing the cuprate powder on ribbons 
or into tubes of a metal like silver [66]. Due to the granularity of these materials, 
another serious problem has been the inability to obtain sufficiently high current 
densities, because of the resistivity between the grains. 

Another problem stems from the fact already mentioned that  all cuprates are 
strongly of type II. The consequence is an extra resistivity caused by the motion 
of the magnetic flux lines in the mixed state of the superconductor where the 
magnetic field penetrates by forming a network of these flux lines. In spite of 
these obstacles the production of wires for magnets and power lines is progressing 
steadily [66]. 

More spectacular is the progress in the thin film technology and in the elec- 
tronics applications for communications systems, medical instrumentation and 
radar. An important example is provided by the so-called squids which are instru- 
ments for ultrasensitive measurements of magnetic fields and electric potentials. 
Here an important application is the magneto-encephalography of the brain. To- 
day squids made of Y B C O  have attained the quality of those fabricated with 
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conventional superconductors. Other applications are rf or microwave filters for 
cellular telephones and radar. For more details see Ref. [67]. 
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Abst rac t :  In this lecture we present some interesting issues that arise 
when the dynamics of the charge carriers in the CuO~ planes of high tempera- 
ture superconductors is considered. Based on the qualitative picture of doping, 
set by experiments and some previous calculations, we consider the strength 
of the various inter- and intra-cell charge transfer susceptibilities, the ques- 
tion of Coulomb screening and charge collective-modes. The starting point is 
the usual p-d model extended by the long-range Coulomb (LRC) interaction. 
Within this model it is possible to examine the case in which the LRC forces 
frustrate the electronic phase separation, the instability which is present in 
the model without a LRC interaction. While the static dielectric function in 
such systems is negative down to arbitrarily small wavevectors, the system is 
not unstable. We consider the dominant electronic charge susceptibilities and 
possible consequences for the lattice properties. 

1 I n t r o d u c t i o n  

A decade of experimental and theoretical research has indeed showed that  the 
physics of the high temperature copper-oxide superconductors is both complex 
and intriguing. A major  source of complexity lies in the fact that  the elec- 
tronic correlations in these materials are strong. Antiferromagnetism in undoped 
LaCuO4 and YBa2Cu306 is clear evidence of this. A second source may be 
found in experiments which suggest that  the electron-phonon interaction may 
be strong as welt. As far as the effects of the strong electron-electron interactions 
on the electronic properties of doped superconducting materials are concerned, 
two different viewpoints exist. From the one point of view, the spin correlations, 
although much weakened upon doping, still predominantly determine the car- 
rier dynamics. From the other point of view, the superconducting cuprates are 
doped charge transfer insulators, in which the tendency towards spin ordering 
may be an important ,  but still secondary, effect. This second approach focusses 
on the charge degrees of freedom and charge fluctuations, and on the effects 
that  they may have on superconductivity [1, 2], the electronic properties in the 
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metallic phase, and the crystal lattice dynamics [3]. Some of these issues are the 
subject of this lecture. We consider the dominant static charge susceptibilities, 
the collective modes and the dielectric properties of a three dimensional system 
of copper-oxide planes. The features that emerge are related to the properties 
of these materials observed in experiments, in particular, the anomalies found 
in the modes of oscillations of in-plane oxygen atoms, the apex oxygen position 
and movement and the incommensurate and commensurate deformations in the 
direction parallel to the planes. In this lecture, we consider a system that is close 
to the doped charge transfer insulator. However, some of the conclusions remain 
qualitatively valid away from this regime. In particular, this is true for the dis- 
cussion related to the oxygen-oxygen charge transfer modes and the discussion 
regarding the frustrated phase separated instability. 

2 T h e  p - d  m o d e l  w i t h  l o n g - r a n g e  C o u l o m b  i n t e r a c t i o n  

The presence of CuO~ planes is the major feature of all cuprate high temper- 
ature superconductors. The electronic hopping between the planes is relatively 
small. The 'insulating' layer between the planes may be composed of atoms of 
various elements. Another generic feature, as shown by many experiments (e.g. 
EELS, X-ray absorption, photoemission), is that upon doping the excess holes 
predominately populate the p,,~ - a orbitals of the in-plane oxygen atoms. These 
orbitals further hybridize with the, mainly d ~ _ ~ ,  orbitals on the copper atoms. 
Together with the fact that correlation effects are important for the in-plane 
dynamics of the electrons, this constitutes the basis of the p-d model. 

The original p-d model [5, 1] consists of a tight-binding part and a part 
accounting for the short range Coulomb interaction, 

Hpd :- Hotba -t- HSRC. (1) 

In the tight-binding part, the orbital energy levels (¢d, Cp, Apd ---- Cp -- Cd) are 
specified and various hybridization terms (copper-oxygen, to, oxygen-oxygen, t I, 
etc.) included. HsRc  contains the terms describing the Coulomb repulsion on the 
copper, Ua, and oxygen site, Up, as well as the terms describing the interaction 
between electrons on neighbouring sites (copper-oxygen Vpd, the oxygen-oxygen 
Vpp, etc.) 

In this lecture we will consider an extension of this model which includes 
long-range Coulomb forces. This extension is necessary in order to examine the 
ability of the strongly correlated electrons to participate in the screening and to 
determine the effects that strong local forces have on the electronic plasmon. A 
second reason for the inclusion of the long-range Coulomb forces is to stabilise 
the system against phase separation, an instability that occurs in a part of the 
parameter space of the original p-d model. 

The introduction of long-range Coulomb forces into the p-d model is relatively 
straightforward. However, a few points should be emphasized. Firstly, as soon 
as long-range Coulomb forces are considered, it is natural to extend the model 
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from one plane to a three-dimensional collection of parallel planes. The electron- 
electron interaction is described a by 

1 R '  aa , )n f (R ' )  Hcou, = -~ y ~  n,~(R) Vaa,(n + ac~ - - 
l ~ R l ~ o t ~  ot I 

(2) 

where R = (RII , R j . )  represents the cell index and a denotes the orbital of the 
a tom positioned at a~ with respect to the origin of the unit cell. The potential  
V~f(/~ + a~ - a f ) ,  describes the interaction of electrons on different a toms in 
unit cells separated by R.  It is proportional to 1 / I R  + a~ - azl  at long distances 
and reflects the relative position and charge distribution in the orbitals at short 
distances. The Fourier transform, V~,,f(k) = ~ r t  V,~f(R + ac, - a f t )exp( ikR)  _-- 
V,~f(k) e x p ( - i k a ~  - ika ,~)  behaves as 1/k 2 at long wavelengths, while the short 
wavelength dependence reflects the structure and strength of the local forces. 
This may  be emphasized by writing t)~f(k) in the form 4 

47re 2 
~'c~,~(k) - (a2d±coo)k 2 + Golf(k) (3) 

where a2d± is the volume of the unit cell (a is the lattice constant of the CuO2 
plane and dj. is the distance between neighbouring planes). The high frequency 
atomic screening is included through coo. The terms C,~z(k) have finite values 5 
at k = 0 .  

As usual, the k = 0 term of the 1/k  2 part  of the Hamiltonian cancels out 
because of the neutrali ty of the crystal. Further, the 'passive'  orbitals on the ions 
with fixed valence may  be excluded from the electronic Hamiltonian,  leaving only 
the active orbitals in the copper oxide planes of the model. 6 

The Coulomb part  of the p-d model, with the long-range forces included, is 

1[,, ,_,o ] 
~EB.Z.,a,fl k,O) a3k2 

(4) 

3 As in the original p-d model, we neglect the lock terms. Physically, this is correct 
for the long-range, but not necessary correct for the short range Coulomb forces. 

4 A somewhat more complicated, but less suggestive form would be preferable for large 
k, close to the zone boundary. For example, an additional exp(-k2a 2) factor may be 
introduced in order to make the cutoff at the zone boundary soft. Also, it is possible 
to replace k 2 by ~,=x,y,z [2 - cos(kgd,)]/d~ in order to have zero derivatives at the 

zone boundaries. 
5 It is an instructive exercise to reformulate the calculation of the Madelung energy of 

a pure ionic crystal following the outlined procedure. The contribution of the 1/k 2 
terra explicitly cancels out due to the neutrality of the crystal, ~ n~ = 0, and the 
Madelung energy per unit cell takes the form EM/N = (1/2) ~ , ~  C~,a(O)nan~. 

6 The terms neglected should be kept in mind as the source of a shift, presumably 
small, of the energy levels of the active orbitals with doping. More importantly, 
these terms reappear as the electron-phonon coupling terms when lattice movement 
is considered. 
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where fi~(k) o¢ E R  n ~ ( R ) e x p ( - i k R -  ika~) and the dimensionless parameter 
w = e~/d±to¢oo, measuring the strength of the long-range Coulomb interaction 
is introduced. The approximate value of w for the cuprate superconductors may 
be estimated by taking d± ~ 12/~, ¢o0 "~ 3, to ~ 1.3eV. This gives w .-. 0.25. 

In the following, we will consider the cases with and without the 1/k 2 term 
in the Hamiltonian. In the latter case, C~(k)  corresponds to the Ud, Vpd, Vpp 
usually used in the literature. Physically, they represent the effective, screened 
electron-electron interaction. In the case where 1/k 2 is explicitly included we 
continue to use the notation Ud, Vpd, Vpp, etc., although the physical meaning 
of the Cat~'s in this case is somewhat different. They represent the local field 
corrections to the 1/k 2 interaction, presumably large for short distances. 

3 Q u a l i t a t i v e  f e a t u r e s  o f  t h e  e l e c t r o n i c  s p e c t r u m  

o f  t h e  d o p e d  c h a r g e  t r a n s f e r  i n s u l a t o r  

Various estimates of the local Coulomb terms in the p-d model emphasize the 
large repulsion on the copper site, Ug ~ l0 eV. The limit Ug ---* oo is frequently 
considered in the literature, and we will work in this limit as well. The na _< 1 con- 
straint forced by the infinite Ud is often dealt with by introducing the auxiliary 
(slave) boson field b and the auxiliary fermion field f in terms of which the real 
electron operator on the copper site becomes the composite object, dR = btfR.  
The next step is usually to consider the mean field approximation for the bo- 
son field (the saddle point approximation in the partition function/path integral 
language). Usually, the corrections beyond the mean field (the Gaussian fluctu- 
ations around the saddle point) are also considered. While rigorous justification 
for this procedure is normally sought in the 1/N expansion of the generalised 
model (i.e. N spin components instead of two), its physical appeal comes from the 
fact that it captures several major physical features. In particular, this applies 
to related models [4], that may be more accurately investigated by other means 
(for instance, the appearance of the Abrikosov-Suhl resonance in the Anderson 
model). For the p-d model, this procedure qualitatively reproduces some basic 
experimental facts in the cuprates, for instance the appearance of the in-gap 
resonance [6] and the large Fermi surface [7] upon doping. A pedagogical survey 
of the method and some of its results may be found in Ref. [8]. 

What basically happens at the mean field level [9] for the slave boson in the 
p-d model with large Ua is: a) the boson field b acquires a static component 
B0 (with ffd = 1 -- IB0[ ~ < 1) and an oscillatory component at the frequency 
A; b) A also represents the shift of the copper orbital energy on changing from 
the original electron to auxiliary fermion fields, e! = ed + A; the copper-oxygen 
hybridization in the auxiliary fermion Hamiltonian is reduced with respect to 
the original hybridization, t = t0B0. 

The band that occurs at e ~ ¢! (f-band) in the auxiliary fermion density 
of states becomes the in-gap resonance when the real electronic spectrum is 
considered. Quite simply, the majority of the spectral weight for the copper site 
that lies in the auxiliary fermion f-band is transfered back [10, 4] to original 
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energy Cd = e :  - A upon calculating the auxiliary fermion - auxiliary boson 
convolution in the real electron Green function ( - i ) ( T ( b t f o ) ( t ) ( f  t b)(0)). The 
spectra are illustrated in Fig. 1. 

Ep 

Ef 

Ed 

~4-26](26B2o) 
r (26)[26+B~] 

[111 
- - -  (,:,) 

~4"4-26)[4126 
~("2"6) [ 2] (2- 26) 

(b) 

Fig. 1. a) The mean-field density of states in the doped p-d system, b) The density of 
states for the auxiliary fermions. The htbels (p)[t](d) indicate the total weight of the 
particular part of the spectrum [t] and the shares (p) and (d) of the oxygen and the 
copper orbitals, respectively. The resonance at e ~ ~/ in (a) and the corresponding 
band in (b) are approximately half filed for small doping level 5. of the oxygen (p) and 
the copper (d). 

The Fermi energy stays in the resonance. The Fermi surface states are pre- 
dominant ly  comprised of oxygen orbitals, especially in the doped charge transfer 
insulator (CTI)  regime (Avd >> to). In that  regime the mean field value B0 van- 
ishes when the doping 6 (measuring the hole concentration with respect to the 
level of one hole p e r  cell) goes to zero, B02 o( 6. The renormalized auxiliary 
fermion bandwidth W e( B02, being also the effective width of the resonance, 
and the number  of states in the resonance are also proportional to doping level 
6. 

It  will be useful to keep this qualitative picture 7 in mind when the results 
for the charge susceptibilities are discussed. 

4 Charge transfer susceptibilities and Coulomb screening 

The results for the charge susceptibilities that  we present are calculated upon 
taking into account the first fluctuation correction beyond the mean field approx- 
imation. While for large Ud, the slave boson approach is used, for other, smaller 
Coulomb terms we use the Hartree s approximation [8, 12] as the mean field ap- 
proximation.  The fluctuation correction for the long-range Coulomb interaction 

This picture may be refined by a calculation of the auxiliary field propagators beyond 
the saddle point level [4, 8, 11] and a calculation of the electronic spectrum beyond 
the decoupling approximation, leading to a simple convolution. 

s The Hartree approximation and the RPA fluctuation correction does not seem to 
provide an adequate treatment of the short range Coulomb interaction terms as is 
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corresponds to the usual random phase approximation (RPA). Fig. 2 reflects the 
simple structure of our calculations. The charge transfers that  we will consider 

Fig. 2. Corrections beyond the saddle point and Hartree approximations. 

may  be expressed in terms of the copper and the oxygen site charges rid, n~:, ny .  

The combinations reflecting different charge transfer symmetr ies  and different 
physics are n p =  n ,  + ny (the charge on oxygen sites), npp = n , -  n~ (the charge 
transfer between inequivalent oxygen sites), npd = n p -  nd (the copper-oxygen 
charge transfer) and nn  = np + nd (the total  charge in the cell). The suscepti- 
bilities X,~ = ((fi,~fic~)), a = d, p, pp,  pd ,  n will be considered. We will distinguish 
the susceptibilities X ° of the tight-binding fermions with the mean field renor- 
malized band parameters;  the susceptibilities X s calculated for the model with 
short range forces; the susceptibilities X calculated for the model in which the 
long-range Coulomb forces are included as well. 

In Figs. 3 various static charge transfer susceptibilities are shown as a func- 
tion of the wave vector k = (k, 0, 0) (hereafter we will use the bare copper-oxygen 
hybridization energy to as the unit of energy and the CuO2 plane lattice con- 
stant  a as the unit of distance in order to simplify the notation).  From these 
figures the following may be noted: 

a) The inclusion of the fluctuation of the slave boson field, corresponding to 
Ud = ~ ,  suppresses the charge fluctuation on the copper sites for all wavevec- 
tors, i.e. X ° >> Xd s.  The copper-oxygen charge transfer susceptibility is also 
diminished. It  can be also seen that  the Fermi surface enhancement 9 seen in 
X ° a t k ~ 0 A r i s l o s t i n x  s.  

b) The fluctuation of the oxygen charge np is not too greatly affected by the 
auxiliary boson fluctuations. However, the Fermi surface effect disappears in 
X s as well. 

c) The inclusion of the long-range Coulomb forces further suppresses the total  
charge fluctuations at small wavevector, Xn << X s. While this is expected 
to happen,  it is impor tant  to realize that  the charge fluctuations on the 

the Vpd term. However, we will really consider only some qualitative features that 
this interaction brings in. These features are expected to remain present even if some 
more adequate treatment like the full Hartree-Fock approximation is used. 

9 Several types of the Fermi surface enhancements of the static susceptibilities in the 
two dimensional tight-binding model occur at k ,~ 0 and k ~ (-I-Tr, +r ) :  van Hove 
effects, as well as the  nesting or the s/iding Fermi surface effects, if some fiat parts of 
the Fermi surface exist. The degeneracy of these effects for the square Fermi surface 
is lifted for some more complicated Fermi surface shapes. 
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Fig. 3. Static charge susceptibilities for Apd = 4, ~ = 0.1 as functions of the wavevector, 
k = (k, 0, 0). The displayed susceptibilities reflect the transfers of a) the total cell 
charge, b) total oxygen charge in the cell, c) the copper charge and d) the intracell 
oxygen-oxygen charge transfer. 

oxygen sites are mostly affected. This implies that  the holes on the oxygen 
orbitals predominantly participate in the Coulomb screening and that  their 
dynamics determines the dielectric properties of the system. This issue will 
become more clear when we consider the charge fluctuation spectra. 

d) The pp susceptibility related to the charge transfer between inequivalent 
oxygen atoms (x and y) in the unit cell is unaffected both by the long-range 
Coulomb interaction and by the slave boson fluctuations. The reason lies in 
the particular symmetry of the pp charge transfer. In particular, the Fermi 

s and " contrast to the their absence surface effects are pronounced in Xpp Xpp, m 

s and Xv related to the total oxygen charge. In fact, in the susceptibilities Xv 
all van Hove and nesting enhancements present in the tight binding's X ° 
remain in )~vp whereas they are suppressed in all other channels by the large 
Ud. This, in particular, means that  the k = 0 charge transfer transitions 
[3, 13, 14] and k = (r ,  r )  charge density wave should be searched for mainly 
in the pp channel. A particularly favourable doping level is the one for which 
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the Fermi surface touches the zone boundary. 

The dependence of the static dielectric function on wavevector is shown in 
Fig. 4. The behaviour 1/c(k) 0¢ k 2 --+ 0 as k --~ 0 corresponds to full metallic 
screening. More importantly, it should be noted that the screening distance, 
expressed as 1~ks in Thomas-Fermi language, where 1/¢(k) = k 2 / ( k  2 + k2), is 
of the order of the lattice spacing, in spite of the fact that the concentration of 
doped holes is small (the average distance between them is approximately three 
lattice constants for 6 = 0.1). The doping dependence of the screening length 
shows no drastic changes with doping. This reflects the fact that  the density 
of states of the in-gap resonance i.e. (number-of-states)/(resonance-width) does 
not change very much with doping, even in the doped CTI regime. 
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Fig.4.  The figure on the left shows the dielectric function for (a) Vpa = 0 and (b) 
Vpd = 1.25. The second case (as discussed in section 6.) is rather close to the border 
of the 'normal' (Vpd < 1.15) and FEPSI (Vpd > 1.15) situation. The figure on the 
right shows the total charge susceptibility in the unstable Vpd = 1.25 system without 
long-range forces, X,s(0) < 0. Other parameters are Apa = 4, ~ = 0.1 and Vpp = O. 

5 D y n a m i c  c o r r e l a t i o n  f u n c t i o n s  a n d  c o l l e c t i v e  m o d e s  

More detailed information on the charge dynamics is obtained upon considering 
the dynamic charge correlation-functions. They further clarify which orbitals 
participate in the various intra and inter-cell charge transfers and how they 
are affected by the short- and long-range Coulomb forces. Some aspects of the 
spectrum of charge fluctuations for the system with large Ud were considered 
by Kotliar, Castellani and coworkers [8, 15]. They discussed the appearance of 
a high frequency exciton collective mode (~ = Wpd) as well as the zero sound 
mode in the large Ud p-d model. The spectrum of the oxygen charge-fluctuations, 
Fig. 5, shows the appearance of these modes in the spectrum together with 
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F ig ,  5. Left: The spectrum of fluctuations of the charge on the oxygen orbitals, 
np = n~ + n~. The full line corresponds to the case without a long-range interac- 
tion. The inter-cell and the intra-cell (Cu-O) charge fluctuations, corresponding to the 
zero sound mode and the Cu-O exciton mode, may be distinguished. The long-range 
Coulomb interaction changes the zero sound to the intraband plasmon mode, push- 
ing its frequency to finite frequency at low wavelengths. Right: In the intra-cell oxy- 
gen-oxygen charge fluctuation spectrum, npp = n~ - n y ,  there are no collective modes 
present. The strength of the interband contribution to Xpp is large relative to those in 
other spectra. Parameters as before, namely Vpa = 0, k / r  = (0.11, 0, 0). 
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Fig .  6. Left: The spectrum of charge fluctuations on the copper site. The Cu-O exciton 
mode and the interband excitations are pronounced. Right: The total  charge fluctuation 
spectrum as seen through 1 / e ( k ,  w).  The intraband plasmon and the intra-cell dipolar 
excitation, which lie within the interband continuum, dominate the spectrum. 

the  i n t r a b a n d  and  i n t e r b a n d  cont inua .  Fig.  5 also shows the  effect of  the  long-  
range  C o u l o m b  in te rac t ion  on the  spect ra .  I t  is in teres t ing  to  note  t h a t  the  
f requency of  the  exci ton  mode  is not  affected at  long wavelengths .  Th i s  shows 
the  q u a d r u p o l a r  charac te r  of the  cor responding  charge exc i ta t ions .  On the  o the r  
hand ,  the  zero sound  m o d e  changes to  the  i n t r a b a n d  p l a smon  m o d e  wi th  the  



170 E. Tutii et al. 

dispersion w~(k) 2 2 2 = w~vkll/(kll + k~) usual for quasi-2d systems with negligible 
inter-plane hopping. The frequency (as well as the strength of the corresponding 
pole in the density-density correlation function) vanishes for the wave vector 
directed perpendicular to the planes. The frequency wzv of the long-wavelength 
in-plane oscillations increases with increasing strength of the long-range Coulomb 
interaction w, but always remains in the gap. The dependence on w may be 
understood through a simple equation for the Coulomb collective modes in a 
two (infinitely narrow) band system, 

1 12~ 12~ 0. (5) 
~2 w~ _ Ap~f -- 

Here Apf = Q --cp measures the renormalised gap while S2~ and 12~ are products 
of the Coulomb factor w cx e 2 and the intraband and the interband oscillator 
strengths, respectively. 12z, reflecting the intraband charge transfer oscillator 
strength, assumes a particularly simple doping dependence 12~ oc 5 in the doped 
CTI regime. This is indeed expected from the picture that  we have developed 
up until now. 

The second solution of the equation (corresponding to the third collective 
mode in the calculation) represents the intracel] dipolar mode. It starts from 
finite frequency w ~ Apy for small w and becomes the 'big plasmon' as w is 
further increased. However, in our calculations a substantial w > 1 is required 
to push the frequency of this mode above the interband excitation continuum. 

In a more detailed inspection of the spectra x~(k, w) - Imx~,(k,w) of vari- 
ous charge transfer modes, we find that the intraband part of the spectrum is 
suppressed in all channels, except from the pp mode. 1° The zero sound/plasmon 
mode dominates in the low frequency part of spectra of the total charge fluctu- 
ation Xg(k, w) and the oxygen charge fluctuation Xp~(k, w). The strength of this 
mode in the channels related to long-wavelength charge fluctuations on the cop- 
per site is rather small. These spectra are dominated by the interband excitations 
and the quadrupolar exciton mode. The latter is absent from the total charge 
fluctuations at long wavelengths. The imaginary part of the inverse dielectric 
function, n is shown in Fig. 6. 

6 Frustrated electronic phase separation instability 
(FEPSI) 

The dynamics and dielectric properties of the system with frustrated electronic 
phase separation instability is even more interesting to consider. Experimentally, 
the proximity of the phase separation instability (PSI) and superconductivity in 
c9prates and related materials is rather well documented [16]. The possibility 

10 None of the collective modes appears in Xpp(k," w) for k = 0. For finite k their 
strength is negligible. 

11 We extract the 'macroscopic' dielectric function from the matrix of charge suscepti- 
bilities by considering the coupling of the system to an external potential. 
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for a PSI in a model with a strong electron-electron interaction was addressed 
by several authors. In particular, V.J. Emery and S.A. Kivelson considered the 
case of a lightly doped antiferromagnet and discussed the possible consequences 
of FEPSI on the normal state properties and superconductivity in the cuprates 
[17]. 

The phase separation instability in the p-d model with short-range forces 
occurs as the copper-oxygen Coulomb term Vpd is increased in the hole doped 
system, as pointed out in Ref. [12]. However, the enhancement of the copper- 
oxygen charge transfer by Vpa, often emphasized by some authors [1, 2], is not 
an important  issue here. 12 13 

The main reason that  a system with strong correlations chooses the phase 
separated phase is to diminish its kinetic energy. The kinetic energy diminishes 
on doping since the frustration of the electron hopping caused by the strong 
coulomb interaction becomes less effective) 4 On approaching the thermody- 
namic instability, the derivative (egg~On) = (0#/05)  (the rate of change of the 
chemical potential with doping) approaches zero and becomes negative in the 
unstable phase. Also, the susceptibility Xs(k  = 0,0o = 0) (as well as all other 
)cS's) diverges at this point, 1/x~(k  = O,w = O) = (C3l~/c3n). An example of 
1/xS(k)  in the unstable system is shown in Fig. 4. 

Of course, once the long-range Coulomb interaction is introduced into the 
model, the true phase-separated state is not likely to appear because of the huge 
costs in the Coulomb energy. Speculating on this issue, various authors stop at 
this point and suggest that  the charge density wave (CDW) state will replace the 
phase separated state (i.e. that  the instability will be observed as a divergence 
of X,~ at finite wavevector instead of at k - 0). However, the pure electronic 
CDW (assuming that  the lattice is too rigid to participate in the formation of 
the CDW) corresponds to an unrealistically weak value of the Coulomb force 
for the cuprate superconductors, namely w << 1. We find that  the stable FEPSI 
state with 1/Xa(k) > 0 and homogeneous electronic density is more probable. 
However, the static dielectric function, 

1 1 

- 1 + ( 4 . w / k 2 ) x . s ( k l , )  ' 
( 6 )  

is negative in FEPSI  systems at long wavelengths since X s (k), which accounts 
for the local forces, turns negative, 1/X~(0) o¢ (O#/On) < 0, as shown in Fig. 4. 

12 The value of Vpa for which the significant enhancement of the copper-oxygen charge 
fluctuation takes place (possibly related to the softening of the corresponding exciton 
mode) is much larger than the value required for PSI. For example, in our calculations 
for Apa = 4to, PSI occurs already at Vpa = 1.15t0, while a value approximately two 
times larger is required for the cooper-oxygen charge transfer instability to occur. 

13 The p-d model in the parameter range (Ua - Ava) << Apa << Ua exhibits the phase 
separation instability[10] even for Vpd = 0. 

~4 V.J. Emery originally discussed and repeatedly emphasized this issue in the frame- 
work of the lightly doped t-J model. 
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The figure suggests the following formula to describe the dependence of the 
dielectric function on the wavevector, 

1 1 ( k 2 k__22b "~ 
= + k, l + J '  (7) 

with 1~ks2 << ks2 (1/k~2 is at least of the order of a few lattice constants in the 
CuO2 plane) and b < 1. The formula resembles the Thomas-Fermi formula, but 
has two characteristic wavevectors instead of one. In order to get a qualitative 
feeling for the system, one may try to play with a three-dimensional toy model 
with a dielectric function of the form Eq. (7). The feature that  readily emerges is 
the overscreening of the test charge at distances 1/k,1 followed by the complete 
screening at distances beyond 1~ks2. This implies the attraction of two equal test 
charges down to distances 1/k,2. Also, the limit 1/e ~ 0 as k ~ 0 accounts for 
the total metallic screening. It is easy to see that a piece of the material exposed 
to the static electric field behaves just like an ordinary metal, developing a finite 
surface charge in order to ensure E = 0 in the bulk. 

Returning to our quasi-two dimensional FEPSI metal, we examine its static 
charge susceptibility. It is given in a form that may be easily analysed (see again 
Fig. 4), 

1 4rrw 1 
x . ( k )  - k + + (8) 

The most pronounced features (see Fig. 7) are the maximum at finite kll = kc 
(not related to any particular Fermi surface wave vector - kc decreases with 
decreasing w) for kj. = 0, and the increase of X, towards the k± = ~r/d± zone 
boundary. It may be noted here that  the divergence ofxn(kll = kc) for sufficiently 
small w is the usually mentioned CDW instability which comes as the alternative 
to the homogeneous FEPSI in the CuO2 plane. This instability corresponds to 
the softening of the intraband plasmon branch at kll = kc. However, the Cu-O 
exciton mode is not affected at this point. 

7 Lattice properties and the stability of FEPSI systems 

Finally, we may turn to the question of the stability of the FEPSI system, con- 
sidering in particular the influence of the electron gas on the ionic lattice (which 
was considered infinitely rigid up to now). First, the question of the total com- 
pressibility of a FEPSI system may be addressed. It may be shown in a number 
of ways that  the short-range forces between the ions stabilize the system. One 
way is to consider the longitudinal sound velocity and the corresponding fre- 
quency w2(k) = c2k 2 = e2k 2 Jr ~'~2,ion/eel(k ) consisting of the contribution of 
the short-range forces between the ions and the long-range forces screened by 
the electrons. For FEPSI systems, the second term is negative. In terms of the 
total bulk modulus B which determines the sound velocity c ~ = B/p, the con- 
tribution of the second term equals n2(Op/On) < 0. This, however, does not 
jeopardize the stability of the system, since size of the electronic contribution 
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Fig.  7. Left: The dependence of the total charge susceptibility on k±, 
k±/rr = 0(a), 0.1,.., 0.6(g). Right: The possible effect of the large inter-plane charge 
transfer susceptibility on the apex oxygen atoms in systems with CuO2 bilayers, like 
YBa2 Cu3 O7-~. 

is two orders of  magni tude  smaller than  the total  bulk modulus  measured for 
cuprates,  15 B --~ 10 -12dyn /cm 2. The  reason for the small absolute value of  the 
electronic contr ibut ion m a y  ul t imate ly  be traced back to the small density of  
the electron gas. 16 

More interesting than  the compression of the whole sys tem are the phonon  
modes  tha t  couple directly to the charge f luctuations tha t  our model  calculations 
distinguishes as relatively large. In summary ,  17 these are: a) the in-cell oxygen- 
oxygen charge fluctuations,  b) the k± = r inter-plane charge transfer (this be- 
comes kx = 0 when systems with CuO2 bilayers are considered) and c) the in- 
commensura t e  charge density f luctuations inside the CuO2 planes. These modes 

15 A correct order of magnitude for the crystal compressibility may by be obtained 
from simple Madelung calculations. 

as In jellium language, r~ -., 8, if we count one hole per unit cell; counting only doped 
holes we get r, -,~ 16 for 8 = 0.1. At this point, it seems interesting to note that the 
theoretical search for high temperature superconductivity before the discovery of 
cuprate superconductors indeed pointed towards the low density metals [18]. One of 
the basic properties of these systems is the appearance of the negative static dielectric 
function. That  the negative static dielectric function is a feature desirable for the 
electronic mechanism of superconductivity was rather pedagogically explained by 
Littlewood in Ref. [2]. However, as emphasized by Kirzhnits at &l. [18], this is not 
a sufficient condition for superconductivity to occur - the interaction between test 
charges is not the one that enters the gap equation - the local field corrections and 
correlation effects that themselves lead to negative static dielectric function should 
be taken care of, as well. 

17 The possibility of a soft Cu-O charge-transfer exciton is beyond the focus of this lec- 
ture. However, the formalism outhned here is perfectly suitable for its consideration 
since, as already explained, one almost inevitably works 'deeply' inside the FEPSI 
phase. 
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may be expected to become soft, 03~h 2 2 : Wph,O- gepXet, when the electron-phonon 
coupling gep is substantial or lattice instabilities and/or anharmonicities may re- 
sult. 

In this respect it is interesting to note that in several copper oxide supercon- 
ductors anomalies in the lattice modes coupled to the intracell oxygen-oxygen 
charge transfer are observed. For example, in T12Ba2CaCu2Os in the normal 
state the dominant mode for the in-plane oxygen motion is one that couples 
to npp. This kind of oscillation becomes suppressed [19] in the superconducting 
phase. Similar competition between superconductivity and the lattice deforma- 
tion that couples to npp is found [20, 3] in the LTT phase of La~_~BaxCuO4. 

The discussion of the experimental evidence for an in-plane incommensurate 
CDW in related, but non-superconducting compounds, may be found in Ref. [17]. 

Here we would like to point out one possible sign of the FEPSI situation in 
YBa2Cu3OT_x, the compound which contains two CuO~ layers per unit cell. 
From our discussion we expect to find anomalies for ion movements that couple to 
the charge transfer between these layers. The IR-active mode of the apex oxygen 
atoms is a natural candidate for a such coupling. The coupling, being strong 
enough, results in a situation with two equivalent, minimum energy positions 
for the apex oxygen atoms (see Fig. 7 for an illustration). Experimentally, this 
picture, supported by other measurements, first emerged from the analysis of 
the EXAFS [21] in YBa2Cu3OT_~. 

8 C o n c l u s i o n  

The strong short-range Coulomb forces substantially complicate the charge dy- 
namics in doped copper-oxide planes. It is difficult to envisage an effective band 
picture that would simultaneously account for the static (k,) and dynamic (wp) 
screening as well as the Fermi surface effects which we pointed out. Also, the 
strong Coulomb forces may tend to cause an electronic phase separation, the 
vicinity of which was pointed out by several authors as the possible source of su- 
perconductive pairing and the anomalous normal state properties. At this point, 
the introduction of the long-range Coulomb forces into the model seems crucial, 
which we did for the p-d model. We showed that, while the long-range Coulomb 
forces suppress the instability, the negative static dielectric function and, more 
importantly, the rather large total charge susceptibilities in some parts of the 
k-space remain as the characteristic signs of FEPSI systems. Some of these signs 
were found in cuprate superconductors and related materials. While the lattice 
instabilities which may occur in order to exploit the large electronic suscepti- 
bilities probably do not contribute to the appearance of superconductivity, the 
effective electronic interaction which drives FEPSI may be favourable in that 
sense, 
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Coherent Precession and Spin Superfluidity 
in 3He 

Yu. G. Makhlin 

Landau Institute for Theoretical Physics 
2 Kosygin st., 117940, Moscow, Russia 

1 I n t r o d u c t i o n  

Spin (magnetic) superfluidity is an interesting phenomenon having much in com- 
mon with ordinary mass superfluidity. On the other hand, it has a different 
nature which allows, for example, direct measurements of the usually unmeasur- 
able phase of the condensate. In addition, spin super fluidity has some specific 
features which deserve careful study. 

Phase coherence over macroscopic samples is an essential feature of mass 
superfluidity. The corresponding feature of spin superfluids is the coherence of 
the phase of the precession of the magnetization in an external magnetic field, 
the so-called coherent precession. 

The phenomenon of spin (magnetic) superfluidity is related to the possibility 
of spin transport without dissipation, i.e. a spin supercurrent. This phenomenon 
was discovered during a nonlinear NMR-study of spin dynamics in superfluid 
ZHe-B in 1984 by an experimental group at the Kapitza Institute [1] in collabo- 
ration with I. Fomin. 

We begin by briefly recalling the foundations of the physics of superfluid 3He 
(see [3] for a review). Superfluid 3He was the first material for which uncon- 
ventional superfluidity was established. The Cooper pairs of ZHe have angular 
momentum L = 1 and spin S = 1 (triplet state). The superfluid order parameter 
is given by the anomalous spin average 

(1) 

where da = Ao, i]ei is a linear function of the momentum k. The exact form of the 
order parameter Ao, i can be found, e.g., from the BCS equations or Ginzburg- 
Landau theory. In bulk 3He, two different phases in different regions of T - P  
phase diagram are known to be stable, namely the A- and B-phase. 

This spin structure, Eq. (1), results in a new type of magnetic ordering and in 
unusual magnetic properties of the fluid. Consequently the investigation of spin 
dynamics of superfluid 3He is very interesting. Further, these investigations are 
very important for the study of various properties, including the non-magnetic 
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properties, of the liquid, where nuclear magnetic resonance (NMR) is used ex- 
tensively. 

The spin supercurrent leads to the formation of unusual non-uniform precess- 
ing spin structures in NMR experiments and ensures their stability. A number 
of phenomena of spin superfluidity analogous to those of the usual mass super- 
fluidity/superconductivity have been investigated: the Josephson effect, phase 
slippage, the formation of spin vortices etc. 

At very low temperatures in the collisionless regime WL'r >> l, 1 a similar phe- 
nomenon was recently discovered in 3He-4He mixtures and in normal 3He [4]. In 
this case non-dissipative transport of magnetization is also possible due to Fermi- 
liquid effects [5], typical for systems with a significant exchange-interaction. In 
normal Fermi-liquids and superfluids close to To, precessing spin structures in 
the collisionless regime are now under experimental investigation. 

In this lecture we present the idea of spin superfluidity. In Section 2, we 
describe the typical NMR experiment and discuss the case of the hydrodynamic 
regime in the B-phase. In Section 3, the A-phase is discussed. In Section 4, spin 
dynamics and coherent precession in normal Fermi-liquids is considered. Section 
5 deals with the collisionless regime in superfluids near transition temperature. 
We also compare the behaviour of the system in different regimes (hydrodynamic 
and collisionless) and in different phases (A-, B- and normal phases). 

2 Coherent precession in the B-phase: 
hydrodynamic regime 

In order to demonstrate coherent precession, let us consider a typical experi- 
mental situation, namely a magnetic field H applied to a sample in a container 
induces the magnetization parallel to the field. The spin density S is deflected 
by a pulse of a perpendicular field from its "vertical" direction and begins to 
precess about the field (Larmor precession) according to 

OS 
- -  = S x ~ L ,  ( 2 )  & 

where wL = 7H is the Larmor frequency of the external field and 7 is the 
gyromagnetic ratio of a 3He atom. 

Suppose now that  external field is slightly non-uniform (here and later we 
suppose that the magnetic field and its gradient are parallel to the z-axis and 
that  all of the variables are independent of x and y. In this case the Larmor 
frequency depends on the z-coordinate and a difference in phases of precession 
in different points appears. Experimentally the integral of the horizontal magne- 
tization f S.t. dV is measured and the corresponding signal vanishes after a time 
interval tv  "~ 21r/~wL, where ~WL is the characteristic difference in the Larmor 
frequencies in the container. 

1 WL is the Larmor frequency of an external magnetic field, and r is the quasiparticle 
relaxation time. 
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Provided the temperature is not too low, this simple picture agrees with 
experiments in normal 3He [6]; however, in experiments with tv "~ lms in the 
B-phase of superfluid 3He, the detected signal decreases gradually during sev- 
eral hundred milliseconds! Moreover, the frequency of precession is uniform in 
spite of the spatial dependence of the Larmor frequency. This phenomenon is 
usually referred to as a long-lived induction signal (LLIS). Coherent precession, 
when induced by a small horizontal rf magnetic field at some frequency wp,  was 
observed also in the continuous wave (CW) NMR regime 

To understand why the magnetization precesses coherently, let us consider 
the energy of the system. The phenomenological hamiltonian is given by the sum 
[7] 

£ _ 1 7 2 $2 _ 7 S H  + UD {d} + Ev (3) 
2X 

of the internal magnetic energy (X is the magnetic susceptibility), the Zeeman 
energy EZ, the energy Uo of the dipole interaction of the magnetic moments 
of the atoms of aHe, which are ordered due to the spin structure of Cooper 
pairs, and the energy Ev of the inhomogeneity of the distribution of the order 
parameter. The longitudinal component of the magnetization S, is a conserved 
quantity. 2 In addition, it can be shown that  the structures with the equilibrium 
absolute value of the magnetization realize a local minimum of the energy with a 
depth of the order of the dipole energy. Thus we shall consider [S] as being fixed. 
Therefore, to get the stable preeessing state, we should minimize the energy at 
a fixed value of the longitudinal magnetization, or equivalently, to minimize 

[: = g + w p S z  ~ (wp - wL)Sz  + Up + E v ,  (4) 

where w p  is a Lagrange multiplier. 3 The first term on the right-hand-side of 
Eq. (4) is known as the spectroscopic energy E,p. 

For the structure with minimal energy, we have ~ / 6 S  = 0 if we only allow 
the variations $S _1_ S, conserving ISl Therefore, (6£/~fS) + t.Mp I[ S, where 
w p  = WRY'. On the other hand, using the well-known commutation relations for 
the components of the spin 

IS,, = ie,j &, (5) 

we get the equation of motion for magnetization, viz. 

5£ 
= Jig, S] = ~ × S. (6) 

So, S = S x cop, i.e., in a stationary configuration the magnetization should 
precess with a un i form frequency Cop. Let us find this frequency and the corre- 
sponding spin distribution. 

2 can lead to a non-conservation of Sz, but the amplitude of variations is small and, if 
averaged over fast precession of the structure, vanishes. The time of longitudinal spin 
relaxation due to other spin-non-conserving interactions is very long at millikelvin 
temperatures. 

a We h~ve neglected a constant term on the right-hand-side of Eq. (4). 
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In the B-phase the effective dipole energy is [8] 

(1 
s x + cos  E • o ( E  - (7 )  

UDB = 15 72 

where ~2B is the frequency of the longitudinal NMR in the B-phase and E is 
the tipping angle of magnetization, i.e. the angle between the direction of the 
magnetization and the magnetic field. O(l? - I?L) is a step function and the 
Leggett angle is EL = arccos(-1/4) ~ 104 °. In a typical experimental situation, 

E~p << Up << Ez 

o r  

In particular, [wz - ~dp[ << WL. 

Simple considerations show that the minimum of the sum of the dipole en- 
ergy and the spectroscopic energy is given by the following distribution of the 
magnetization: 

E = 0 for ~L > 03p, (8) 

fl -- EL for WL < wP. (9) 

So, a two-domain structure is formed in an inhomogeneous magnetic field (Fig. a), 
the domain wall being situated at the point where WL = wP. These two do- 
mains are referred to as a homogeneously precessing domain (HPD, fl ~ 104 °, 
WL < wP) and a non-precessing domain (NPD, fl = 0, ¢VL > wp), respectively. 
The position of the domain wall is determined by wp in CW NMR and by the 
longitudinal magnetization in pulsed NMR. The gradient energy [3] smoothes 
the abrupt domain wall leading to a thickness of the intermediate layer 

"~ "" \ w p V w L  ' ( 10 )  

where Csp is the spin wave velocity. In this layer the tipping angle of the mag- 
netization changes continuously from 0 to EL. In addition the gradient energy 
ensures that  the phase of precession in the HPD is uniform over the volume of 
the domain. This two-domain spin distribution is stable because it corresponds 
to a local minimum of the energy. As the gradient of the field decreases, V H  ~ 0 
and E~p vanishes, the thickness of the wall ~ ---* oo, i.e. in an almost homogeneous 
field (when ~ exceeds the size of the container) uniform precession is stable. Dis- 
sipation leads to the slow growth of a NPD and determines the life-time of the 
structure. 

It is interesting to interpret this effect as the formation of unusual off-diagonal 
long-range order (ODLRO) [9]. In the usual mass superfiuids, the order param- 
eter describing ODLRO is an expectation value of the annihilation operator 
(¢) ~ 1,51 exp(i¢) where the annihilation operator changes the number of par- 
ticles. In the case of uniform precession, the r61e of the number of particles is 
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played by the longitudinal magnetization Sz, which is a conserved quantity if 
one neglects the very slow longitudinal relaxation, and the creation-annihilation 
operators are S+ = S~:-4-iSy. The absolute value IS+[ = IS±I corresponds to the 
absolute value of superfluid order parameter IAh and the phase of precession 
corresponds to the phase ¢. In this sense the HPD is a "spin superfluid" state 
and the NPD is a "spin non-superfluid (normal)" state. 

ODLRO is possible only if it is supported by the rigidity of the order pa- 
rameter; in ordinary superfluids/superconductors, the gradient energy K(~7¢) 2 
takes the minimum value for uniform distributions of phase. The analogous term 
in spin superfluidity in 3He-B comes from the stiffness of the superfluid order 
parameter. 

This interesting analogy is full of consequences; a number of effects typical 
for mass superfluidity can be observed in spin superfluid systems. 

Consider two containers with a ttPD connected by a narrow channel (weak 
link). In CW NMR experiments, the phases of precession in the two contain- 
ers can be adjusted independently and a phase difference between them can be 
established. This difference leads to a supercurrent which is now spin supercur- 
rent. This simple setup allows the observation of the critical spin supercurrent 
with phase slippage events, stationary (the phase difference is fixed) and non- 
stationary (different precession frequencies in two HPDs) Josephson effects and 
even the formation of a spin vortex [10]. Unlike the usual superfluidity and super- 
conductivity where the phase of the condensate cannot be observed, the phase 
of precession can be directly controlled and adjusted. In experiments on spin 
superfluidity, one can measure the phase difference and distribution along the 
channel and even the position of phase slippage centres, which are unmeasurable 
in mass superfluidity. The experiments are in semiquantitative agreement with 
theory. 

3 C o h e r e n t  p r e c e s s i o n  in  t h e  A - p h a s e  

The difference between the A- and B-phases lies in the different form of the 
dipole energy. In 3He-A, the effective dipole energy is [111 

3 2 (11) UDA-- 1 6 ~  12A COS/3+ 

Here I2A is the frequency of the longitudinal resonance in the A-phase. 
Unlike the case of the B-phase, the dipole energy is not a concave but a convex 

function of the longitudinal magnetization Sz = S cos/3. This leads to tbe very 
different behaviour of the A-phase in NMR experiments. In pulsed NMR, where 
the longitudinal magnetization ("number of particles") is a conserved quantity, 
the uniform precession is unstable to a separation into domains even in a homo- 
geneous external field. A two-domain structure may appear, the magnetization 
in one domain being parallel and in the other being antiparallel to the external 
field (Fig. b). The position of the domain wall is determined by the integral of the 
longitudinal magnetization. The relative position of these domains (which one 
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is "upper") is arbitrary in a homogeneous field, but even a small gradient in the 
magnetic field distinguishes between two structures; the equilibrium domain is 
situated in the region with higher external field. Standard energy considerations 
give XD "- c~p//2A for the length of the intermediate layer. This two-domain 
solution of the equations of spin dynamics has not yet been seen; although the 
initial stage of the decay of a uniform precession has been investigated (see [12] 
and references therein). 

4 C o h e r e n t  p r e c e s s i o n  in  n o r m a l  F e r m i - l i q u i d s  

Recently an analogous LLIS was discovered during NMR measurements in nor- 
mal Fermi-liquids, namely in 3He-4He mixtures and in pure 3He. It was suggested 
by Nunes et al. [13] that a two-domain precessing state is responsible for this 
LLIS. This suggestion has been confirmed in recent experiments by Dmitriev 
and coworkers [4, 14]. 

We know from previous sections that the spin supercurrent plays an impor- 
tant r61e in the formation and stabilization of two-domain structures. It turns 
out that due to Fermi-liquid effects there is an analogue to the spin supercurrent 
in a normal liquid . 

The expression for the spin current in a normal Fermi-liquid, first obtained 
by Leggett [5] from the kinetic equation, is 

where 

gi - l + ia2S 2 ~ - ~S  x ~ + \ Oxi ] S , (12) 

3 
03) 

7 2 t¢ F~/3  - F~ 

1+r  ' 

"O F is Fermi velocity, F~, F1 a, the Fermi-liquid parameters and 7- is the quasipar- 
ticle collision time. The first term in this equation corresponds to an ordinary 
spin diffusion current. 

In the collisionless regime, COLT :>~, 1 corresponding to the just mentioned 
experiments, /~S >> 1 and the main contribution to the spin current is from 
the last two terms in Eq. (12). The leading last term is responsible for a quick 
smoothing of inhomogeneities in the distribution of the absolute value of the 
magnetization [15, 16]. Later we consider this absolute value as uniform in space 
(not necessarily equal to its equilibrium value because of the absence of the 
dipole energy in the normal state). The dynamics of the direction of the spin 
density is governed by the second term in Eq. (12), i.e. 

X w2 
Ji -~ 72 3~--~2 S × ViS .  (14) 
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This term represents a non-dissipative contribution to the spin current. It is this 
term which is responsible for spin superfiuidity in normal Fermi-liquids. 

If one neglects the effects of dissipation, the equation of motion for the spin 
density 

:~ = s × ~L - v i J i  (15) 

can be obtained from the formal hamiltonian 4 

72 $2 ~ w 2 
7-I = ~ - WLS 72 6~S2(ViS) 2 (16) 

and the standard commutation relations Eq. (5) for the spin components. It is the 
well-known Landau-Lifshitz equation in external magnetic field. An interesting 
feature of the hamiltonian Eq. (16) is that  the gradient term is negative (!) 
for t¢ > 0 (as in 3He). Stable spin distributions are the extrema of the formal 
energy Eq. (16) with the additional Lagrange term wpSz.  In the hydrodynamic 
regime (see the previous sections), the stability of the minima of the energy was 
maintained by energy conservation; the system cannot go away from a minimum 
because it would change its energy. Similarly, the maxima are stable due to 
energy conservation. A peculiarity of the collisionless regime is that the effective 
energy (16) has no local minima; one can decrease the energy of an arbitrary 
structure a considerable amount by imposing very low-amplitude and short- 
wavelength spatial variations of the magnetization. 

The maximization of the spectroscopic energy shows that a two-domain struc- 
ture is formed in an inhomogeneous magnetic field (Fig. c). Contrary to the situ- 
ation in the B-phase, a NPD with the equilibrium direction of the magnetization 
is situated in the region of lower external field. In the non-equilibrium domain, 
the magnetization is antiparallel to its equilibrium value (antiparallel domain, 
APD). The domain-wall thickness is A,~ ~ (W2/COp~WL) 1/3. 

Both of these domains are non-superfluid in the sense of spin superfluid- 
ity (S± = 0; see the discussion in Section 2) but the intermediate region is 
spin-superfluid, i.e. the direction of spin density in the domain wall changes 
continuously from its direction in the NPD to its direction in the APD with a 
constant absolute value. In this region the phase of precession is uniform. So, 
this structure also produces a long-lived induction signal and can be used in 
investigations of spin superfluidity. 

The existence of the two-domain structure was predicted theoretically by 
Fomin and was investigated experimentally by Dmitriev et al. [4, 6, 14]. 

5 Coherent precession in superfluid phases: 
c o l l i s i o n l e s s  r e g i m e  

In the previous sections we have studied two different regimes: a) the hydrody- 
namic regime in a superfluid where the main contribution to spin transport is 

4 This hamiitonian is valid in the regime where dissipation is small. It is not related 
to the energy of the system and its value can grow due to dissipation. 
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Fig. 1. Two-domain coherently precessing structures in the hydrodynamic regime in a) 
the B-phase and b) the A-phase and in c) the collisionless regime (normal state, A- or 
B-phases). In the latter case the domain-wall thickness is different in different phases 
(see text). 

due from the spin supercurrent and the dipole energy is essential; and b) the 
collisionless regime in a normal fluid with a Fermi-liquid non-dissipative spin 
current. It was found recently [16, 17] that in the collisionless limit, O~LT >> 1, 
just below Tc (T > 0.85Tc) a new regime exists where the Fermi-liquid spin cur- 
rent prevails (at lower temperatures the spin supercurrent exceeds it) and UD 
plays a r61e. s. Under these conditions a new treatment of the possible precessing 
structures is necessary [16, 17] 

It was shown above that the stable distributions of magnetization in this 
situation are given by the maxima of the effective energy. Contrary to the analysis 
in the hydrodynamic regime, uniform precession in a homogeneous field is stable 
in the A-phase where the dipole energy is a convex function of Sz and unstable 
in the B-phase where this function is concave. 

As a function of fl, the dipole energy in the B-phase has a plateau and 
the position of the minimum (Sec. 2) of the sum Up + Esp changes abruptly 
f rom/3  = 0 at 03 L > U p  to ~ = /~L at 0) L < 0)p.  In the A-phase there is no 
plateau and the position of the maximum changes continuously from 0 to ~" over 
a characteristic length of the order of 3 2 ~n/)~ D > )~n, where Ao ~ vr/[2A is the 
dipole length. As V H  ---* 0, the thickness of the domain wall goes to infinity, i.e. 
the precession becomes uniform. 

In the B-phase the thickness of the intermediate layer is of the order of AD, 
i.e. the position of the maximum changes abruptly from 0 to 7r (cf. Sec. 3). This 
structure should exist even in a homogeneous external field. 

5 If we are not too close to T¢, AD < )~n (see below) or T~ - T > 10-3To. 
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The experimental  situation in this range of temperatures is very complicated. 
A number  of different states of coherent precession have been discovered in 3He- 
B near Tc as well as a number of states were predicted theoretically (taking into 
account the complicated structure of the order parameter ,  i.e. other degrees of 
freedom besides the one described by fl; see, e.g. [8]). Nevertheless, these states 
are not identified yet. 

One should note also that  a new coherently precessing state with an extremely 
long life-time (-~30s) was discovered in 3He-B at ultra low temperatures  T -~ 
0.1To [18]. 
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Abstract :  Condon's theory, predicting the periodic formation and disap- 
pearence of din- and paramagnetic domains in non-magnetic metals under the 
conditions of a strong de Haas-van Alphen effect, is reviewed. Earlier exper- 
iments, evincing domains in silver and supporting the conjecture of domains 
in Be are discussed, and the recently obtained first spectroscopical evidence 
for the domain phase in beryllium is presented. The principle of muon spin 
rotation spectroscopy, used in these investigations, is described in some detM1. 

1 I n t r o d u c t i o n  

The periodic formation and disappearence of dia- and paramagnetic domains in a 
normal, non-magnetic metal in strong magnetic fields at low temperatures, that  
is, under the conditions of the de Haas-van Alphen (dHvA) effect, was predicted 
by Condon [1]. The 'Condon' domains are spectacular manifestations of the col- 
lective behaviour of the electrons in quantized cyclotron orbits (Landau states): 
the effective magnetic field determining the individual Landau orbitals contains, 
besides the applied external field H, the oscillating dHvA-component from the 
responding electron system itself. This 'magnetic interaction' between electrons 
in Landau levels can be observed, in general, by the presence of strong higher 
harmonics in the dHvA signal for the magnetization M(H) and susceptibility t¢ 
('Shoenberg effect' [11, 3]). But when, for a particular orientation of the single 
crystal with respect to H, the amplitude of the dHvA oscillation for t~ becomes 
sufficiently large, the magnetic induction B in the sample shows qualitatively 
new features. In these conditions B as a function of H behaves just like the 
specific volume v of a real (van der Waals) gas as a function of p in the range of 
the gas-liquid equilibrium: some intervals Ij =_ (Bj,1, BL2) for B are forbidden 
and the local value of the induction makes a ' jump' between BlandB2, as H 
varies continuously. Moreover, at a particular geometry and for certain intervals 
of H, uniformly magnetized regions, domains with one of the two fized values 
Bj,1, Bj,2 coexist in the sample, and their relative amount varies with H. In the 
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diamagnetic domains with B = B1 < H, the magnetization M is opposite to H; 
whereas the domains with B = B~ > H are paramagnelic (MIIH). 

Besides the 'thermodynamical' similarity to the gas-liquid equilibrium, the 
domain phase has an even deeper analogy with the mixed state of type 1 super- 
conductors [4]. In both cases the not sufficiently 'flexible' quantum mechanical 
ground state of the electron system comes into conflict with electrodynami- 
cal boundary conditions, and the way out of this situation is the macroscopic 
break-up of the homogeneous state. Here lies the interest in the somewhat exotic 
Condon domains: an example of a 'tunable' many-electron ground state which 
undergoes, at some points, macroscopic 'breaks' while the tuning parameter H 
continuously varies. That the break-up occurs periodically with H, implying a 
recurrence of phase transitions within an extended range of H, where the dia- and 
paramagnetic domains return and subsequently disappear, is a unique property 
of Condon domains. 

In view of these highly interesting features, it may surprise that, until very 
recently, direct evidence for Condon domains could be obtained only in the single 
case of silver (NMR, 1968 [5]). And not for lack of trying: beryllium which, for 
reasons explained in Ch. 3, has been a preferred 'domain'-candidate, was the sub- 
ject of several studies, and a large body of macroscopic data has been collected 
in the dHvA regime (susceptibility, magnetoresistance and thermopower), each 
of them indeed consistent with the hypothesis of domain formation. However, 
spectroscopic studies by the method of NMR failed for Be, since "...the nuclear 
thermalization time of ,~1/2 h and the inherent quadrupole splitting made the 
data collection and interpretation difficult" [5]. 

In Ch. 2 some basic facts about electron orbital magnetism in metals are 
reviewed, with emphasis on the amplitude of the dHvA effect, the key parameter 
in Condon's theory. After discussing the case of Be as candidate for a domain- 
forming metal, in Ch. 3 the principles of Muon Spin Rotation Spectroscopy 
(#SR) and our findings for Be are presented, Ch. 4 contains the conclusions. 

2 O s c i l l a t i n g  o r b i t a l  m a g n e t i s m :  d H v A  e f f e c t  a n d  C o n d o n  

d o m a i n s  

The oscillating magnetic response of a non-magnetic metal, known as the de Haas - 
van Alphen (dHvA) effect, was discovered in bismuth in 1930 and first thought 
to be a mere curiosity, for "...bismuth has always been a black sheep because of 
its anomalous behaviour as regards electrical and other properties..." [6]. Yet, 
it turned out that the effect is present in all metals at sufficiently low tempera- 
tures, and that oscillations appear not only in the magnetization but in all phys- 
ical properties related to conduction electrons, such as resistance, thermopower, 
sound velocities, specific heat. The dHvA effect has become a standard method 
of Fermi surface studies and is a textbook subject; here only a brief review of the 
features relevant for magnetic interaction and domain formation is given ([3]). 
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2.1 T h e  d H v A  osci l la t ions  o f  the  m a g n e t i c  su scep t i b i l i t y  

The physical properties of the electron gas in a magnetic field show oscillations 
(Landau, 1930) [7] due to: 1) the quantization of the helicoidal orbits in planes 
normal to a homogeneous magnetic field H and 2) the existence of a sharply 
defined Fermi surface separating occupied from unoccupied states in wavenumber 
k-space. 

For free, non-interacting electrons the quantum numbers k, labelling plane- 
wave states, are uniformly distributed. In the presence of a magnetic field H 
the projections of the orbits in a plane normal to H become closed and the 
components of k in this plane cease to be good quantum numbers. The orbital 
energies are 

e,~k. = hwo(n + 1/2) + h2k2z/2m; n = 0, 1,2, ... (1) 

with the cyclotron frequency wo = ell~inc. The degeneracy or multiplicity of 
levels for each n, for an interval of length dkz of the longitudinal wavenumber, 
is 

D = (eV/vl ic) .  H .  (dkz/27r) (2) 

where V is the volume of the system. On increasing H the levels move upwards, 
but their population changes: the electrons 'flow' into lower levels, owing to the 
increased multiplicity. The net result is an oscillation of Etotal(H) and M ( H )  = 
- O E / O H  [3], with a period corresponding to subsequent crossings of the Fermi 
surface by the Landau levels. Between two crossings at kz = 0, according to 
Eq. (1), the quantity eF/(2hpBH) -~ F / H  changes by unity; the magnetic field 
F,  which is the reciprocal of the period P for the variable ( l / H ) ,  is the 'dHvA 
frequency'. This picture, with some modification, remains true also for a non- 
spherical Fermi surface. The allowed orbitals in k-space are, quite generally, such 
that  the areas .4, enclosed by their projection in a plane normal to I t ,  satisfy 
the 'Onsager condition' [8] 

.A(¢, k~) = 2~reH(n + 7)/hc; n = O, 1, 2... (3) 

where the constant 7 <  1, in general, slightly departs from its value 7 = 1/2 for 
a parabolic band. Equation (4) leads to quantized energies for the 'transverse' 
motion like Eq. (1), but with the cyclotron frequency ~¢ = eH/m*c, where the 
'cyclotron mass' belonging to a certain orbit is 

m* = . (4) 

The 'dHvA frequency' F in this general case is 

F = licA¢,t/2~re (5) 

where .A¢,t is a maximum or minimum cross section area of the Fermi surface 
cut by planes normal to H. The eztremal areas determine F since, by varying 
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H, the number of allowed orbits crossing the Fermi surface at .4~t is singularly 
large. 

In all these expressions the homogeneous magnetic field, keeping the electrons 
in cyclotron orbits, has been traditionally denoted by H ([8, 3]). The microscopic 
magnetic field h is, however, position dependent. It can be seen that H in Eqs. (1- 
3) is actually the spatial average h(r)  within the sample, which is by definition 
the induction B. In fact, a cyclotron orbit area A in k-space corresponds to an 
enclosed area Ar = (eH/hc)2.A in real space, and the criterion Eq. (3) can be 
equivalently formulated as ArH =- ~ = hc/e(n + 7): it is the quantization of 
the magnetic flux q~, transversing At, which selects the allowed orbitals; hc/e = 
4.136 • 10-TGem 2 is the universal magnetic flux quantum. But the radius of an 
orbital re = vr/w¢ = hk fc / cH = 6.6. Io-S(kF/H) is, for normal metals and 
even for magnetic fields of 105 G, larger than some thousands of ]t (kF is in 
cm -1, H in G). Thus, the variation of h(r)  on the scale of the lattice constant 
is 'averaged out', leaving the mean value B. From here on the field acting on the 
electrons will consequently be denoted by B, and H will stand for the applied 
field. 

The exact expression for the 'longitudinal' (parallel to H) component M of 
the magnetization M is given by the 'Lifshitz-Kosevich (LK)' formula [9], 

co 
M = -Mo sin(27rF/B + ¢) + E -Mp  sin(2~rpF/S + Cp), (6) 

p----2 

by which the differential susceptibility n = OM/OB is 

oo 
n = no cos(27rF/B + ¢) + E nv cos(2~rpF/B + Cp). (7) 

p=2 
The oscillations are periodic in the variable F/B,  as expected, but the amplitudes 
also vary, though slowly, with B; for n0 one has 

f (  e ~ 1/2 h2 } ( 27r )1/2 ~_.~_B-3,2GsR(T, xD ) 
n ° = 2 7 r F M ° / B 2 =  [\~cc] 47r4m Ae2zt ~ m* 

(8) 
(only the terms rapidly varying with B were differentiated). The amplitudes of 
the higher harmonics have a similar form: n v contains an additional factor of 
p-1/2 and has a multiplier p in the arguments of the 'reduction factors' G, and 
R, 

v ,  = cos( .gm*/(2m)) (9) 

R(T, XD) = {2r2u/sinh(2r2u)} exp(-2r2v); u = kT/hw¢; 

v = k z D / h ~ .  (10) 

Here G, accounts for the two spin directions and R for the phase smearings due 
to a smoothed Fermi edge at temperature T and to the electron relaxation time 
r caused by scattering events; g is the spin-splitting factor for the conduction 
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electrons and the 'Dingle temperature' is Z D : li/(2~rkr). When the Fermi sur- 

face has more than one extremal cross section a(i) normal to the given direction 
of H, the contributions are superposed (this is the case for Be, Sect. 2.4). 

While in usual Fermi surface studies the absolute value of the amplitudes, 
in particular t~0, is less important,  for domain formation precisely t~0 is the key 
factor. By Eq. (8), t~0 is determined by B , T  and z o  and by the parameters 
of the Fermi surface at the extremal cross section normal to H. Besides .4err 
and m*, too depends also on the 'longitudinal' variation of the cross section 
.4" = 0 2 . 4 ~ / O d k  2 (the derivative is taken along H). As Eq. (8) shows, to0 may 
be very large for a Fermi surface which is 'cylinder-shaped' near .4~rt, i.e. varying 
principally in only two dimensions normal to H. The numerical values of so0 will 
be considered in Sect. 2.2. 

Normally, in Eq. (7) for t¢ only the first term has to be retained, since even 
for good crystal qualities (v < <  1), at not too low temperatures and not too high 
fields (that is, unless 27r2kT/hwc < 1), the factors R damp efficiently all p > 1 
harmonics. 

It is important that the argument B of the LK formulae is not a control 
variable (like the applied field H is), it contains also the response of the electron 
system. This leads to curious consequences, discussed in the Sect. 2.2. 

2.2 M a g n e t i c  i n s t a b i l i t y  a n d  f o r b i d d e n  B in te rva l s  

Considering first a long, thin sample, oriented along the homogeneous applied 
field, H does not change on penetrating the sample and the induction B is not 
restricted by boundary conditions. Therefore, within the sample 

OHIOB = 1 - 4~rOM/OB = 1 - 4~rt¢0 cos(27rFIB + ¢). (11) 

Clearly, if the 'amplitude' a = 41r~0 is sufficiently large, 

a = 47r[OM/OBI,,~ = 4rtc0 > 1, (12) 

the derivative OH/OB is negative for the entire range t~ > 1/(47r) within each 
dHvA cycle. A plot of H(B),  Fig. 1, shows that  B becomes a multivaluedfunction 
of H.  However, the states with OH/cgB < 0 are thermodynamically unstable [10] 
and never realized. The inequality OH/OB > 0 is the magnetic analogue of the 
stability condition - d p / d v  > 0, true for any real gas, liquid or solid. It is known 
what happens when the homogeneous phase of the real (van der Waals) gas, for 
T < To, does not satisfy this requirement: the v(p) function is then multivalued 
and, on, e.g., decreasing p, the specific volume v of the real system has a jump 
vziq -~ vg~, (boiling), 'leaving out' the range v~iq < v < vg~, which contains 
the instability interval. Exactly this happens for the long thin sample discussed 
here. Free energy arguments [11] show that, on varying H,  the induction B jumps 
along the straight lines in Fig. 1, leaping over the 'forbidden intervals' with the 
instability range. 

But in contrast to the van der Waals gas, our magnetic system can be de- 
scribed in fairly simple analytical terms. First of all, M and ~ are periodic 
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Fig. 1. Schematic H-B diagram for a long cylinder oriented along H for (a) a < 1 and 
(b) a > 1 [7]. The induction B 'jumps' along the straight lines, connecting B: and B2 
with the same free energy, similarly to the p-v diagram of a real gas. 

functions of 1 /B  (Eqs. (6) and (7)), but for not too large B intervals they are ap- 
proximately periodic also in the variable B. Indeed, by choosing B = Bo < <  F,  
for convenience such that M(So)  = 0 and to(B0) = -~0 ,  the Taylor expansion 
of the phases in the sine and cosine of Eqs. (6) and (7) gives 

M ~ M0 sin{27r(B - B o ) / A H  - Tr}; ~ ~ ~0 cos{2~r(B - B o ) / A H  - 7r} (13) 

where the period for the variable B, 

= B0 /r (14) 

is conventionally denoted by A H  and called the 'dHvA period'. This approxima- 
tion is good for B near B0, i.e. for [B - B0[ = AB0 with A < <  1; this range may 
contain several dHvA cycles. (One sees also that ~o = 27rMo/AH > >  M o / B  in 
this case.) 

The magnetic interaction of the electrons is immediately apparent in the 
structure of Eqs. (6) and (13). Since B = H + 47rM, the equations contain M 
on both sides, expressing the fact that the size of each cyclotron orbit depends 
on the resulting collective dHvA magnetization. In terms of the control variable 
H, Eq. (13) has the form 

M = M0 sin{27r(H - Ho + 4~rM)/AH - 7r} 

since M(Ho)  = 0. This, in the reduced variables [3] 27r(H - H o ) / A H  - 7r = x 
and 87r2M/AH = y becomes 

y = a . s i n ( x + y )  (16) 

to be solved for y = y(z) (in the original variables M = M(H) ) ;  the amplitude of 
the magnetic interaction a is a = 8 r 2 M o / A H  = 47rt¢0, met already in Eq. (12). 
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For a < 1, the exact solution y = y(x) was obtained by Lagrange (1770) [12]; 
in modern notation it is [3] 

o o  

y = Z (2 / v ) J~ , ( va )  sin vx (17) 
Y~---1 

where J~ is the v-th Bessel function. For a > 1 the series is divergent, which is 
not surprising, since together with B(H)  also y -~ 4~rM(H) = B(H)  - H has 
to be multivalued. The result by Eq. (17) is plotted for some a < 1 in Fig. 2a, 
while in Fig. 2b a graphical solution for a > 1 is shown, constructed by shifting 
the abscissa of the point y = a s inx  (i.e. of M = M(B) ,  Eq. (15)) by an amount  
of y to the left. One sees that,  for a > l, M ( H )  is three-valued in periodically 
situated 'critical' intervals. 

y/a 
1.5 

1.0 

O.5 

0.0 

-O.5 

-1.0 

-12 

. Ib  0 

-1 
",4 

-~ 0 ~ 2~ 

X 

0 2 4 6 8 10 12 14 
X 

Fig. 2. Solutions of Eq. (16) for the magnetization y = 8~r2M/AH as a function of the 
applied field x = 2:r(H-Ho)/AH-v;  (a) for a = 0.01, 0.5 and 0.98 (dotted, dashed and 
solid curves, respectively) and (b) for a = 2 [3]. The dashed line q is thermodynamically 
unstable: the magnetization follows the solid line and has a discontinuity at z = 0 [3]. 

One may stop here for a moment and wonder, what was the motivation of 
Lagrange for dealing with Eq. (16), two centuries before the discovery of the 
dHvA effect? No surprise, the physical problem leading to the mathematical  for- 
mulation of Eq. (16) at that time was different. But it was of capital interest 
and related, quite amusingly, also to 'orbits': Eq. (16) is just 'Kepler's equation'  
[12, 13] of astronomy, an implicit relation for the variation of the angular po- 
sition y with time x of a planet along its elliptical orbit of eccentricity e = a. 
More precisely, y = u - 27rt/T, where the 'eccentric anomaly'  u is the angular 
coordinate of the projection M' of the revolving planet M onto the parent circle 
of the ellipse; x = 27rt/T is scaled time and T is the period of revolution. Thus, y 
is the instantaneous advance of the planetary phase u over the phase of a hypo- 
thetical planet m, revolving uniformly on the parent circle of the ellipse with the 
mean angular velocity 27r/T. Kepler's equation is the integral of the equations 
for planetary motion [14], but implicit, and its solution, Eq. (17), was required 
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for the explicit time dependence u = u(t), to predict the position of the planet. 
Since in the astronomical problem a = e < 1, only this case was considered at the 
time. In the solution of Lagrange Jv was given in power series form, constituting 
the first piece of what will be called the literature on Bessel functions. 

Returning to Fig. 2a, y is nearly sinusoidal for a = 0.01: M ( H )  and M ( B )  are 
almost the same. With increasing a, M(H)  becomes more and more asymmetric; 
for a = 0.98 it has almost vertical 'steps'. This triangular shape and the related 
strong higher harmonics in the Fourier expansion of M(H) ,  due exclusively to 
the self-consistent contribution of M to B, is the 'Shoenberg effect' (1962, [11]). 

For a > 1, with increasing H the magnetization opposite to H at M = MR < 
0 suddenly turns: M --~ MQ, becomes parallel to H and begins to decrease again. 
Thus, by the jump MR ~ M O and the corresponding discontinuous change 
B ---, B + 87rMo, the part with paramagnetic differential susceptibility is com- 
pletely 'left out 'of  the dI-IvA cycle. From AB = 87rM O and MQ = Mo sin 87r2Mq 
(Eq. (15) at x = 0) one has 

7rAB/zSH = a . sin(~rAB/AH); a > 1, (18) 

so that  A B / A H  ---, 0 for a --* I and AB approaches A H  for a > >  1. 
Can, in reality, the dimensionless amplitude a = a(T, B) of the magnetic 

interaction be larger than unity? Some estimates for a(T, B) are shown in Ta- 
ble 1 for a monovalent metal, like silver, and for divalent beryllium, in various 
experimental conditions. 

II! (K) ZD(K ) Hm(G) 

0 6 .  10 4 

1 13- 10 4 
0 3 .  10 5 

Ag 

F = 5  - 108G 

a ----- 41r~ 0 

10.0 

2.0 

0.9 

 0001107 Be II rn* = 0.16rn; ~ = 5  

H m ( G )  a = 4 ~ o  

104 1.8 

2 - 104 0.35 

5 .  104 0.16 

Table 1. Expected interaction amplitude a(T, B ) =  4rn0(T, H) of the oscillating sus- 
ceptibility, calculated by the LK formul~ Eq. (8), for Ag and Be. For the given temper- 
ature T, sample purity xn, and the particular field direction determining the 'dHvA 
frequency' F = hcA,~t/27re (Eq. (5)), Hm is the field at which n0 is at maximum, as 
determined by Eq. (8). (For Ag, m = m* and IA"I = 2~ were taken ~nd the anisotropy 
of F was neglected.) 

One realizes that  a > 1 is by no means exceptional for a sufficiently perfect 
single crystal at low temperatures. However, to actually reach these values, all 
other sources of phase smearing, in the first place inhomogeneity of the applied 
field, must be unimportant.  

In conclusion, with growing interaction amplitude a(T, B), the relation M ( H )  
becomes strongly anharmonic (M(B),  by Eq. (13), is always sinusoidal). For 
a > 1 a new phenomenon occurs: M and B make periodical jumps as H varies, 
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some intervals for B become forbidden. It was seen that the geometry of Fermi 
surface for typical common metals a priori allows the condition a > 1 to be 
fulfilled. 

2.3 Dia-  a n d  p a r a m a g n e t i c  d o m a i n s  

The presence of forbidden intervals for a > 1 lead to spectacular consequences 
when additional constraints exist for B. Instead of the long, thin sample, consider 
now a single crystal plate, set normal to H. In this case H does change when 
penetrating the sample: inside one has Hin = H - 4~rnM, where n - n z is the 
demagnetizing coefficient for the field in normal, z-direction. For the 'ideally' 
large, thin plate n = 1, and a uniform induction inside the sample satisfies the 
boundary condition B = H~, (recall that in our notation H~,---H). 

But we can vary H =- IHI continuously, whereas B cannot take values in the 
interval B1 < B < B2! The conflict is clear: by the boundary condition, the 
uniform induction B should always 'follow' the applied H however this varies, 
but the cooperative Landau states resist, forbidding some ranges for B. For 
the electron system, uniformity of B in the plate and the boundary conditions 
together are, therefore, unacceptable. In this situation, similarly to the formation 
of the 'intermediate state' of a type 1 superconductor plate in a perpendicular 
field H < He, the conflict between the boundary conditions for a uniform state 
and the 'inflexible' quantum mechanical ground state is avoided by giving up 
uniformity. In respecting the 'forbidden interval' rules, imposed by the electron 
system, the only possibility is the breaking up of the homogeneous magnetic 
state and formation of a mixture of macroscopic regions with the two different, 
allowed B-values. This mixture should he such that, instead of the uniform 
condition B = H ,  the boundary condition be satisfied for the sample average B,  
in the form B - - H ,  as the continuity of flux requires. 

By virtue of the simplicity of the LK formulae, it is easy to follow the varia- 
tion of M. Assume that  H is tuned upwards from B0; together with it Hi also 
increases. The state of the sample is uniform and diamagnetic (M < 0) until M 
has reached M = M p  (Fig. 2b). At this point Hi,, has just increased up to the 
'critical' value Hi,~ = Her = (B1 +B2)/2 ,  for which x(H~r) = O, and H = B1. By 
tuning H further upwards, Hin = H - 4 ~ r M  remains pinned at Her, and M makes 
the jump MR ~ MQ only in some domains in the sample, within strips with 
walls running parallel to the field lines. The state is no more uniform, dia- and 
paramagnetic strips alternate. The pinning of Hi ,  means that  H - 4~rM = H¢~, 
i.e. the average magnetization must grow linearly from M = - M Q  to -M = MQ, 
as -M = (H - H¢r)/41r. The increase o f f  occurs by the growth of domains with 
paramagnetic ( M = MQ ) polarization, 

= (1 - al j )Mp + a[lMo; with all(H) = (H - B1) / (B2 - B1). (19) 

Here Oql is the volume fraction of paramagnetic domains, increasing linearly with 
H. At H = B2 all diamagnetic domains have disappeared, the magnetic state 
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becomes uniform as it was for H < B1, and B = H can again be locally (and 
not only on the average) satisfied, until H reaches the next forbidden interval in 
the following dttvA cycle. The phase with the dia- and paramagnetic 'Condon 
domains' is drawn schematically in Fig. 3a, which also shows how the average 
boundary conditions are locally realized: domains and field lines are distorted 
in regions near the surface. In Fig. 3b the dependence of M on B is plotted 
for the plate geometry, showing that ~ is constant all through the 'originally' 
oscillating ~ > 0 region. The average domain thickness b can be estimated in the 
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Fig. 3. (a) Dirt- and paramagnetic domains in a single crystal plate for B1 < H < B2 
[15]. Locally, B takes only one of the two values B1, B2, but B = H. In the diamagnetic 
domains M = MR < 0 ,  in the paramagnetic ones M = - M p  > 0 (Fig. 2b). Note the 
inhomogeneous field range and the distortion of domains near the surface. (b) Reduced 
magnetization y = 8 r 2 M / A H  as a function of the induction B for a = 2 [3]. The dashed 
line is never realized, the dotted line shows the average magnetization ~ in the domain 
phase. 

usual way, by minimizing the sum of domain wall and magnetostat ic energies 
of the magnetized regions [3]. For a plate of thickness D, the minimum is at 
b = C ( a ) ( w D )  1/2, the factor C is of the order of unity, except for a - 1 < <  1, 
where it approaches zero. The wall thickness w should be on the scale of the 
cyclotron radius rc (Sect. 2.1). For rc = 10 -4 cm, corresponding to .Aext in Be 
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(Table 1), for H = 104 G and D = 1 mm, one has b ,~ 0.003 cm. Theoretically, 
therefore, the walls are ' thin'  compared to domain size, w < <  b. What  does the 
experiment say? 

2.4 D o m a i n s  in silver.  D o m a i n s  in b e r y l l i u m ?  

By Table 1, a good noble metal single crystal satisfies the domain-forming condi- 
tion a > 1 (Eq. (12)) in fields of the order of H ~ 105 G. Out of the noble metals, 
a large, dominating single oscillation has been observed only for silver [11]. Also, 
unlike copper and gold, Ag nuclei have no electric quadrupole moment (I  = 1/2), 
which makes silver more convenient for a NMR study. In their experiment, Con- 
don and Walstedt [5] tuned H about H0 = 9.104 G at T = 4.2 K, and the NMR 
signal from the skin-depth layer of a single crystal Ag plate was detected. The 
dHvA period at this field is (Eq. (14)) AH = 16.8 G. Within about 2/3 of the 
dHvA cycle two distinct frequencies, that is two values B1 and B2 were resolved; 
the two frequencies did not vary with H, and the line intensities followed the 
predicted linear change, Eq. (19), of the domain volume fractions. This beautiful 
experimental tour de force confirmed the existence of Condon domains in silver, 
showing at the same time the limitations of NMR in this field: for beryllium, 
(1 = 3/2) the experiment was not conclusive, the quadrupole broadening turned 
out to be prohibitively large [5]. 

But Condon domains have been expected in the first place precisely in beryl- 
lium, on the basis of indications from various macroscopic data (magnetization 
and magnetothermal oscillations [1], magnetoresistance [16], susceptibility [17], 
thermopower [18]). The aboundance of data for the magnetic instability in Be 
is due to its particular Fermi surface, making the magnetic interaction observ- 
able already at the relatively low fields of ,-~ 2- 104 G (Table 1.) Consider first 
the experimental information available on a(T, B) = 47r~0. The relevant cross 
sections .Ae,t of the Fermi surface, normal to the hexagonal axis [0001], are 
the 'waist' and the two 'hips' seen in Fig. 4. The difference betweeen F~ and 
Fh, given by Eq. (5), is only about 3%. Therefore ~(B), as a superposition of 
two sine functions (Eq. (13)), has a beating, a sinusoidally modulated amplitude 
~0 with nodes at every F / A F  ,~ 33-th period. This is an example of where, al- 
though the fundamental amplitudes in Eq. (8) are indeed slowly varying with B, 
the amplitude ~0 resulting from two dHvA oscillations changes radically within 
some tens of dHvA periods. The data for ~ [17] at T = 4.2 K, Fig. ha, show 
that  a(T, B) at this temperature and field (H0 ~ 20700 G) is below the critical 
value, a ~ 4~r. 0.023 = 0.29. The picture changes dramatically upon lowering T, 
Fig. 5b. Judging from the minima of ~¢, the largest t~0 at T = 1.4 K has become 
-~ 10 times larger, by a factor of ,~ 2.7 above the critical 1/4r.  However, apart 
from the range near the nodes of to0, the corresponding peaks for t~ > 0 are 
missing, ~ma~ has the constant value 0.075 ~ 1/(4r) along the beat cycle, as if 
the parts of the dHvA cycles with 47rtc > 0.94 were cut down ! This is a strong 
argument for the predicted domain phase: according to Fig. 3b and Eq. (19), 
for a > 1 one has a sinusoidal shape only for ~ < 0, and a constant t~ = 1/47r 
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[0oo,] 

H 

Fig. 4. The Brillouin zone and Fermi surface of Be. The third zone contains the electron 
'cigar', of which the two extremal sections normal to [0001] determine, by Eq. (5), the 
dHvA frequency for the 'hips' Fh = 9.8 - 106 G and the ~3% lower one for the 'waist', 
F~ = 9.5.106 G [16]. 

instead of the sinusoidM ~ > 0 hMf-cycle. The measured temperature depen- 
dence a/(4~r)= ~;0(T) in Fig. 5c indicates that, for the given Be crystal, Condon 
domains can exist only for T < 3 K. 

Similar lineshape analyses for other macroscopic properties of beryllium in 
the dHvA regime added [16, 3, 18] further 'circumstantial evidence' [1] for the 
domain phase. The long expected direct observation of dia- and paramagnetic 
Condon domains in Be has become possible only recently, with the development 
of Muon Spin Rotation spectroscopy. 

3 Direct evidence for domains by Muon Spin Rotation 
(pSR) spectroscopy 

Spectroscopy by p particles, implanted into a solid and 'reporting' about the 
local magnetic fields, is a relatively new technique, exploiting parity violation in 
the ~r and p decay processes. Here only some principal features of the method 
can be presented; for a detailed description, see [19, 20, 21]. 

3.1 P r i n c i p l e s  o f  t h e / ~ S R  m e t h o d  

The possibility of using muons as spectroscopical probes in condensed mat ter  is 
based on the non-conservation of parity in weak interactions. In the decay of a 
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Fig .  5. Differential susceptibility t¢ single crystal Be, HII[0001] [17]. The beating is 
due to the two dHvA frequencies F~ and Fh, see Fig. (4). (a)  For T = 4.2 K the 
dHvA oscillations are symmetrical. (b)  At lower temperature,  T = 1.4 K, the ampli- 
tude too becomes larger, owing to a factor R (Eqs. (8) and (10)) nearer to unity. But 
the t: > 1 /4 r  part  of each cycle is 'cut  short ' ,  as expected by Fig. 3b. (e) Observed 
amplitudes too(T) for t¢ < 0 and t~ > 0. No domain formation is indicated for T > 3 K. 
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7r + particle, 

7r + ~ #+ + uz; Tvi ~ 26 ns (20) 

the emitted p+ is, in the rest frame of ~r +, completely polarized: its spin Su 
points opposite to the direction of motion. Further, in the subsequent decay of 
the muon, 

#+ ~ e + + ue + -0"~; r u ..~ 2.2 ps (21) 

the angular distribution of the positrons is asymmetric: the e + particle is emitted 
preferentially into the instantaneous direction of S u. As a consequence [22], for 
a #+ absorbed in a crystal, the direction of S o is known at the moment of 
incidence; this direction does not change during the time of ~ 1 0 - 9 s  of its 
thermalization in the matter.  The spin direction for the given/t  + becomes known 
again for a second time, at the moment of the #+ decay: it is revealed by the 
asymmetry of positron emission. In loose terms, each implanted muon behaves 
as a magnetized 'torch', only it is not a pencil of visible light but  of energetic 
e + particles (Eq. (21)) emitted preferentially along the axis of the torch, which 
allows us to see the varying orientation of its axis. To 'see' means to detect the 
varying flight direction of the positron emerging from the sample, as a function of 
the time elapsed from 'time zero', the moment the muon stopped (thermalized) 
in the sample. Quantitatively, the probability density W of emitting the e + 
particle, with energy e, into an angle O relative to the p+ spin orientation, is 
[19] 

W~(O)dOde = c,(1 + a~ cos O)dOd~ (22) 

where A is called the 'asymmetry '  of the distribution. Figure 6 shows W for an e + 
emitted with the highest energy em and for the energy average W ~ 1 + A cos 69 

(a| Ibl  

Fig. 6. Polar diagram W(O) of the probability density for the angular distribu- 
tion of emitted positrons in #+ decay [19]; (a) for the most energetic positrons 
W(em~) ",, 1 + cos O, (b) the average over all positron energies, W-,~ 1 + (1/3)cos O. 

observed when positrons of all energies are counted. For ~m (52.8 MeV) the 
'pencil' of emitted e +'s is narrower (Am = 1), but part of the asymmetry persists 
also in the average, A = 1/3. For the asymmetry to be detected, the positrons 
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need to escape from the sample and reach the detectors, but this is what happens, 
since for a mean e + energy of ~ 36 MeV the sample is, as a rule, transparent. 

Clearly,/~SR has many similarities to other methods, in particular to the 'free 
induction decay' in NMR, PAC (perturbed angular correlation) and MSssbauer 
spectroscopies, which are also used to investigate local magnetic fields by ob- 
serving precession of nuclei. Since the implanted/J+ stops at interstices and, as 
a light particle (m u ~ mp/9), may diffuse in the lattice, ttSR is also adequate 
to study classical and quantum diffusion. As compared to NMR,/~SR differs in 
that no field is needed to produce the initial polarization of the probe (this is set 
by the 'elementary' property of Eq. (20)), and also that, ideally, each individual 
#+ decay is detected, making the method very sensitive. At the same time, the 
implanted/~+ modifies its environment, distorts the lattice and perturbs the lo- 
cal electronic structure; this has to be kept in mind when analyzing the results. 
As for the time scale, limited from above by the life-time v~ to < 10 -5 s, it 
extends down to ~ 10 -12 s. In Table 2, some 'elementary' characteristics of the 
p+ particle are shown. The #+ beam is produced at high energy (--. 600 MeV) 

property 
m a s s  m ~  

Icharge 
Ispin I 
Igyromagnetic 
Ilifetime r~, 

vaJue[[ 
206.768. moll 

ratio 7./27r 13.5538 kH/GII 
2.197 /ts[[ 

Table 2. Some properties of the/t + particle, relevant for #SR spectroscopy 

proton accelerators. By hitting a production target, the protons generate 7r- 
mesons, which begin to decay according to Eq. (20). The 'surface muons', best 
adapted for most solid state research, come from those pions stopped in the tar- 
get near its surface; the polarization of surface/t +'s is nearly 100%. The #+ beam 
(E = 4 MeV, p = 29.8 MeV/c) is transported to the sample, surrounded by e + 
detectors covering different directions. The penetration length of surface muons 
is ~ (150 d: 10) mg cm-2/p  for a sample density p; for Be this is ..~ 0.8 mm. 

From the different variants of the ttSR technique [19, 20, 21], only the 'pri- 
mary', time differential - transverse field pSR is of interest here. In this method 
H is (ideally) perpendicular to the incident p+ polarization. Each/z + is (in prin- 
ciple) detected on entering the sample (t = to), a clock is started and the positron 
detectors become ready to count. Within the next ~ 10 -5 s, at t - t o  + At ,  the 
muon decays, and the emitted e + is detected by, say, the i-th detector. The 
signal from the detector stops the clock, and the event is counted in a 'bin', 
labelled by the the time delay At, of a rate-vs-time histogram corresponding to 
the direction i. For a periodic motion of the p+-spin Su(t ) with period T, the 
rate N of events in the bins At and At + T will be statistically identical (when 
corrected for the factor e - t / r . ) :  the precession is manifested by an oscillating 
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N(At )  function. The arrival of a second la + within 10 - 20 ps makes At ambigu- 
ous, therefore the incident muon rate cannot be too high, and standard nuclear 
electronics has to be used to reduce background and spurious counts of diverse 
origin. An experimental set-up is schematically drawn in Fig. 7. To understand 

~1 ¢ Q+ 
deW.tot ® H ~ d e l e ~ r  

II A I7 ' . . . . . . . . . . . .  
s .  [il ~ lil o 11- A k - . Po.~,uo. ] 

I P" 0,0 " " PP ~-0,t 
ta 

I . , . . _~ . , ,~ . . ,  l 0 1 . 2 / 3  4 5 6 7 

Fig. 7. Principle of the time-differential transverse field #SR experiment. At incidence, 
the #+ spin Sv is opposite to the #+ momentum, H is perpendicular to the plane 
of the drawing. Tile precession of S~ about B is seen as a damped oscillatory signal 
(Eqs. (24-27)) in the 'forward' detector (as well as, with different phases 8,, in the 
detectors 'backward', 'up' and 'down', omitted in the figure). 

the form of the #+SR signal, consider first a single #+ subjected to the field B. 
The probability that the decay e + is emitted in the forward, 6~ = 0, direction at 
the moment to + At is, from Eq. (22), 

W ( e  = 0) ~ e - ~ ' / ' . ( 1  + ~ c o s ( ~ . B n t  + ~))  (23) 

since, for this geometry, the angular distance between the precessing S i, and the 
'forward' direction is • = ~r+7uBt. Apart from the lifetime factor, a pure cosine- 
like variation is predicted for the number of positrons counted by the 'forward'  
detector. What  we actually observe is the signal from a statistical ensemble of 
muons. The rate of positrons counted by detector i at t ime t - At is 

N i ( t ) = N o i e - t H , ( l + - A f i G ( t ) c o s ( w s t + 6 i ) ) + b i ;  with w s = 7 , B - ( 2 4 )  

where Noi depends on the beam intensity and on the position, size and efficiency 
of the i-th detector, the ideal asymmetry A -- 1/3 is somewhat reduced by the 
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factor fi < 1 due to incomplete initial polarization and the finite solid angle of 
the detector, ~i is a phase and bi the background. 

In the hypothetical case of a unique B for all muons, Eq. (23) would contain 
the 'whole truth' ,  and for the relaxation function G one would have G(t) = i. In 
reality, even for a constant applied field H, each #+ experiences a different local 
field B, corresponding to its ' random' stopping in a particular magnetic environ- 
ment. Random local field contributions arise from disordered nuclear magnetic 
moments, and in the presence of non-uniform electron magnetism, like flux-lines 
in superconductors and spin density waves. Besides varying spatially, B varies, 
in general, also with time: the muon may diffuse through interstices and 'see' a 
variable environment, but also the dynamics of the neighbouring magnetic mo- 
ments at a given site may become manifest during the #+ lifetime. For the #+ 
ensemble, this random variation in environments means that the amplitude of 
the observed polarization P ( t ) =  2 < S u >, precessing at a frequency wl = TuB, 
decays with the time, since however small the deviations B - B are for the 
individual muons, the result is an increasingly large random phase difference 
7, f (B - -B)dt as time elapses. The function G(t) describes this relaxation due 
to dephasing; G(t = 0) = 1, and G(t) < 1 is determined by the dephasing mecha- 
nisms in the given physical situation. For example, for static, random local fields 
with a normal (Gaussian) distribution the theory gives [23] 

G(t) = exp(-o'2t2/2); with ~r 2 = 7~(B - B)~, (25) 

while for a mobile/~+ with a mean residence time re at a site one has 'motional 
narrowing' with an exponential G-function, 

G(t) = exp(-At); with ~ = cr2rc (26) 

if only c,r¢ < <  1. Though each local static field is the result of a given discrete 
configuration of the neighbouring spins, and therefore the static field distribution 
is certainly not exactly Gaussian, the above expressions for G are in many cases 
sufficiently near to reality. The Fourier transform of N(t)e t /~ , Jr(w), has a peak 
at w = WB, with a width 5w and a shape corresponding to G(t). A Gaussian G 
implies Jr to be also Gaussian with full width of 5w = 2~, while for of exponential 
G, Eq. (26), the peak in Jr is Lorentzian, diw = 2A. 

Apart from the quasi-continuous distribution of fields about a single B, sev- 
eral components with different B's occur when, for example, more than one 
magnetically inequivalent site for the #+ are available, or if domains with dif- 
ferent magnetization coexist in the sample. Then instead of Eq. (24) one has a 
sum for all j = 1, 2, ..., n components, 

~(~)~]-+b.' Ni(t) = Nioe -'/r" ~ {1 +alJ)G(J)(t)cos(uJ(J)t  + i , j  ' ,  

J 

wh re = 1 a n d  = i 
The spectroscopical information, to be unravelled from the observed Ni(t) 

spectrum, is contained in the quantities w(J) and G (j), giving the mean values 

with w (j) = "f~B (j) 

(27) 
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B - ( j )  and the spectral lineshapes for the j - th  'mode' of field distribution, and 
in the 'partial' asymmetries at, revealing the proportion of muons precessing in 
this mode. (A study of 8~J) may also be useful in some problems.) 

3.2 New t*SR resu l t s  for  b e r y l l i u m  

The idea is simple: when Condon domains are formed with B -(1) = B1 and 

B --(2) = B2, two/~+ precession frequencies have to appear, according to Eq. (27), 
just as in the NMR study for Ag. We have seen that  the NMR experiment for 
Be failed mainly because of large line broadening - does #SR any better? 

There are reasons for the answer to be yes, as recognized already some time 
ago [24]. First, even the 'slow' surface muons have a penetration depth of some 
tenths of a millimetre, thus the 'sampling' of the local fields is not restricted by 
the skin depth. Next, because Su = 1/2, the #+ 'test '  particle has no quadrupolar 
moment, unlike most of the nuclei including °Be, and the line broadening comes 
only from the random magnetic fields at the p+ site. Apart from electron orbital 
magnetization, which is the subject under study, the unique sources for such 
fields are the 9Be nuclei (I  = 3/2), with a dipole moment of/IB~ = 0.38. 104hi 
(CGS units). The disordered moments exert a field of ..- 6B .., t t se /r3 u at the 
#+ site, where ri~, is the nucleus-muon distance. For riu ~ 2.5)1 one obtains 
6B .-. 1 G. This corresponds to a line broadening of 6w = 7u6B, which is much 
smaller than w(2) - w(D = 7~AB (we have seen that  AB is comparable to the 
dHvA period which, for H = 27400 G is, by Eq. (14), ~ 78 G ). (The electric 
quadrupole interactions of the Be nuclei modify the precise value of 6B, but they 
do not change this order of magnitude.) Therefore the dia- and paramagnetic 
frequencies should appear distinctly in the /~SR signal if, first, the muons do 
not diffuse out of the domain where they have been stopped, and second, if the 
fraction of muons precessing in a field B in between B1 and B2 is very small. The 
first proviso is not severe, since during the time of some ru the muon is displaced 
at most by some lattice constants. For the second, the muon can observe a field B 
between B1, B2 only if it is stopped in a domain wall, where B changes smoothly 
from B1 to B2. In a spectroscopical method like pSR or NMR, observing two 
distinct frequencies means, therefore, that the ratio of domain wall to domain 
thickness is sufficiently small. 

The estimated value of 6w and the adequacy of the exponential relaxation 
function G at He-temperatures was confirmed by preliminary experiments. How- 
ever, while the above value of H ensures a conveniently large dHvA period, it is 
necessary to modify the set-up of Fig. 7: in high fields perpendicular to v~,, the 
p+ beam becomes strongly deflected. To avoid this, Su, primarily collinear with 
the beam, is turned 'upwards' by an angle of (ideally) 90 o before implantation, 
on passing through a 'spin-rotator' (a region with crossed electric and magnetic 
fields, leaving the velocities unchanged), and H is set parallel to v u. The beam 
is no more deflected, but H is still 'transverse' for Su, and the precession of S u 
is observed now in the 'l' (left) and 'r' (right) detectors, Fig. 8. 
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Fig. 8. Observation of Condon domains by #SR. The scheme in Fig. 7 is modified by 
rotating, before incidence, S~, 'upwards' with respect to the beam direction, and setting 
H parallel to the beam. The precession is observed in detectors 'left' and 'right'. 

For the experiment [25] the Be plate, cut normal to the [0001] direction, was 
set perpendicular to H. The field H was first scanned at T = 0.8 K from 27480 G 
downwards, by steps of 7 G, and the oscillating part of the rates N in detectors 
'l' and 'r' were described by the formula 

Ni = No E ai(J)e-:~i' cos(2~rv(J)t + ~f}i)); (i = l, r) (28) 
j=l,2or j=l  

(this is the oscillating part of Eq. (27) without lifetime factor and constants, 
2Try = w and for G the exponential Eq. (26) was used). One single frequency 
should result for the uniformly magnetized state, and two are expected for the 
domain phase. The tentative use of Eq. (27) with a single frequency (j = 1) 
all over the dHvA cycle gives for the damping rate A, the result plotted in 
Fig. 9. The figure shows what one can call the dHvA oscillations of the #+ 
depolarization rate: the period in A(H) coincides with the dHvA period AH! 
The large, periodic increase of A is what one expects in this 'one-frequency' 
representation, since without introducing a second frequency, the splitting due 
to domains should appear as a large line broadening of the single 'allowed' line. 

Although this 'broadening model' is really adequate only for a Lorentzian line 
shape (like that  observed for the uniform phase), while the 'line' in our case is 
a well resolved doublet for the range A > 0.4ps -1 as seen below, the maximum 
A ~ 0.9~t s -1 gives a qualitatively correct idea of the splitting, Av ~ A/Tr 
0.3 MHz, equivalent to AB ~ At,/(%,/2~r) = 22 G. The exact value is ~ 29 G, 
so that  the interval B1 < H < B2, where the domains exist, is more than one 
third of the period AH.  

The Fourier transform of/Q(t) for the central peak region of Fig. 9 is seen 
in Fig. 10. The field H for the upper spectrum is above Hm, at which A is 
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Fig. 9. Exponential damping rate A of the precessing #+ polarization, as a function 
of H. The periodic sharp rise of A (i.e. of the linewidth Aca ---- 2), at the frequency 
ca = 7~B) marks the onset of line splitting due to the domain phase. For A > 0.4#s -1 
the 'broadened' line turns out to be a well resolved doublet (Fig. 10). The dashed line 
is a best fit to the data by a (truncated) Fourier series with a period of A H  = 76 G. 
This period agrees, within the present accuracy, with the dHvA period AH = 78.2 G 
at H0 = 2.74 T. The in situ measured oscillating thermopower is shown as insert [25]. 

m a x i m u m  in Fig. 9, the spectrum in the middle is at Hm, and the lower one is 
for H < H,~. The position of the doublet lines is stable as H sweeps downwards, 
and the ' t ransfer '  of intensity into the lower line shows how the diamagnet ic  
domains grow while the paramagnetic  ones decrease, Eq. (19). 

The use of Eq. (28), allowing for two oaj's there, where the split t ing is re- 
solved, leads to the result in Fig. 11. This shows the/a + frequency or frequencies, 

together with the normalized asymmetries a(J) -_ a(:)/(a(D + a(2)). Since u = 
(Tu/21r)B, the ordinate is the induction B in MHz units, giving A B  = 28.8 + 
1.4 G at this H0 = 2.740 T. According to Eq. (18), the value A B / A H  = 0.37 
corresponds to a = 47rn0 = 1.27. The normalized asymmet ry  a--(D is just  the 
relative intensity of line 1, equal to the volume fraction ceil of Eq. (19); a --(1) and 

a -(2) = 1 - Oell are seen to vary linearly with H,  as predicted. 
The beats in ~0, a special property of the dHvA effect in beryll ium for 

till[0001 ] shown in Fig. 5, makes it possible to 'scan'  also the interaction param-  
eter a = 47r~0, and see the variation of A B / A H  (Eq. (18)) in a small H-interval .  
The doublet at H0 = 26412 G, situated by ~. 13 dHvA periods lower than previ- 
ously, is shown in Fig. 12a. The splitting of ~ 0.6 Mttz gives A B  ~ 40 G, larger 
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F i g .  10.  Frequency spec t rum data  showing the spli t ted #SR line in the central  peak 
region of Fig. 9 [25]. The  applied field H decreases downwards in the figure. The  posit ion 
of the doublet  lines (Au = 0.39 MHz) is stable, the ampli tude of the higher f requency 
line decreases and that  of the lower increases, as the diamagnetic  domains grow at the 
expense of the paramagnet ic  ones. 
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Fig. 11. Analysis of the central peak region of Fig. 9 [25]. The frequency splitting 
Av = 0.39 4- 0.02 MHz for 27378 G < H < 27405 G corresponds to AB = 28.8 4- 1.4 G 
in the domains. The normalized asymetries a -O) = il, a -(2) = i2 of the lines show the 
relative volumes of para- and diamagnetic regions at the given H; the solid and dashed 
curves are for detectors T and 'r '  of Fig. 8. 

than for the previous, higher field: by decreasing H,  we followed the beat  cycle 
in the direction of increasing no. Here A B / A H  = 0.55, showing that  in this field 
range the domain phase extends over more than a half of the dHvA cycle! This 
value corresponds (Eq. (18)) to an interaction ampli tude of a = 1.75. 

By increasing T for a given H,  47r~0 = a decreases and A B / A H  goes to zero. 
In Fig. 12b, 7uAB is seen to diminish rapidly above ~ 3.5 K, probably disap- 
pearing for T > 4 K. This compares well with the result for the single crystal in 
ref.[17] in Fig. 5c, for which domain formation at 2 .104 G is no more indicated 
above ~3  K. 

4 Conclusions and outlook 

It  was shown how the dHvA effect, due to the periodic populat ion changes in 
Landau levels crossing the Fermi surface, can manifest itself not only as an os- 
cillation but  as a sudden, periodically occurring jump over forbidden intervals 
of the induction B. Condon domains are the collective response of electrons on 
Landau cyclotron orbits, when electromagnetic boundary conditions ' t ry  to en- 
force' B to enter the forbidden interval. Though for a long t ime Condon domains 
had been observed solely in silver, and only very recently also in beryllium, it 
turns out tha t  the condition 47rx > 1 for domain formation has a priori nothing 
exceptional: it is predicted to hold for sufficiently pure single crystals of most 
metals at low temperatures.  The scarcity of data  is due to experimental  difficul- 
ties: 30 p m  thin domains in a typical, 1 m m  thick slab have to be seen in highly 
homogeneous fields of 104 - 105 G, at T ~ 1 K. 

Tha t  is why our knowledge of the Condon phase, even after the spectroscopic 
evidences in Ag and Be, is still rather qualitative. We know that  the domains 
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Fig. 12. (a) Line spfitting at an applied field H --- 26412 G, by ..~ 13 dHvA periods 
lower than in Fig. 10 [26]. The splitting in the doublet is ,.~ 0.6 MHz, corresponding to 
AB = (w2 -- wl)/%, = 40 G. (b) Temperature dependence of AB at the same field H 
as in (a). 

form, as predicted, in phase with the dHvA cycles, and the sharp spectral lines 
in both metals confirmed that w < <  b, the wall regions with inhomogeneous 
B are indeed much thinner than the domains themselves. But how thin: is the 
assumption w ~ re correct? What  is the form of M(r )  in the wall region, as 
function of the parameter a(T, B) = 47rx0(T, H)?  Other questions concern the 
phase transition: how does the diamagnetic domain nucleate near H = B2? 
What  kind of a singularity is at a(T, B) = 1? And more generally, is the phase 
composed of essentially homogeneous, oppositely magnetized strips the most 
favourable configuration based on the LK equation? 

The Condon domains, discussed in some length in these notes, correspond to 
the simplest self-consistent solution of the LK equation. More sophisticated solu- 
tions, like magnetization-density-waves (MDW) may also exist [27, 28], though 
not yet found experimentally. To predict quite generally the stable, periodic 
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magnetic structures M(r )  of Landau orbital magnetism, a s tandard way is to 
start  [29] from a free energy density which, besides the LK equation, accounts 
also for the 'wall energy' from the very beginning. By minimizing the energy 
functional, a variety of domain shapes or domain-like periodic structures have 
been predicted for different intervals o f t  and H; to test these predictions, bet ter  
experimental resolution is needed. 

A new aspect of orbital magnetism has been realized in astronomy: for high 
electron densities, like those occurring in white dwarfs, a self-consistent magnetic 
solution of the LK equation is possible even at zero external  field [30], whith the 
interaction amplitude a(T,  B = H+4~rM) itself generated by M alone. This per- 
manent magnetic state, called Landau orbital ferromagnetism (LOFER),  could 
account for the observed magnetic field in some of these stars, for given ranges 
of density and temperature. 

In view of all the surprising, newly discovered implications of the LK formula, 
this quantum mechanical 'relation' of the venerable Kepler's equation (16), it 
is easy to understand that Condon domains and related structures of Landau 
orbital magnetism are subject of intensive research. Improvements in high mag- 
netic field technology and the use of novel spectroscopical methods, like #SR, 
will make these proposed structures more accessible for the experiment. 
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Abs t r ac t :  A growing crystal or any other object is said to have an instability 
when its surface does not remain planar but instead develops patterns such as 
dendrites. After a short outline of the instabilities in growth from the melt or 
solution or vapour, a detailed analysis is given of the instabilities in molecular 
beam epitaxy (MBE). 

1 Growth instabil it ies 

1.1 D e f i n i t i o n  

Consider a semi-infinite crystal initially limited by a plane perpendicular to the 
z-axis. Suppose that  this crystal is growing under the effect of a t empera ture  
gradient parallel to z, or of an atomic beam of uniform intensity in space and 
parallel to z. If  the surface, instead of remaining smooth,  develops pat terns  of 
well-defined shape, we will say that  there is a growth instability. 

There is some difference between instabilities and roughness. We shall say 
that  a surface is rough when there are small irregularities without characteristic 
length, while instabilities result in macroscopic features with a fairly well-defined 
length scale. 

1.2 E x a m p l e s  

Snowflakes are familiar examples. They grow from a supersaturated vapour. The 
molecules of the vapour diffuse until they meet the solid. If  there are protrud-  
ing parts ,  diffusing molecules go first to the protruding parts  (Fig. 1) because 
it is the shortest way to the growing solid. This is the mechanism of the in- 
stability. In the case of snow, the protruding parts  initially form as a result of 
crystal symmet ry  and the first six branches develop. Then, irregularities arise 
on these branches because of stochastic fluctuations and then increase more or 
less deterministicMly, giving rise to dendrites. 
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Fig. 1. Formation of a snow-flake from the undercooled vapour. In the absence of 
anisotropy, the initial shape would be a circle. The anisotropy first transforms the 
circle into a hexagon. Then, water molecules diffunding from the vapour go preferably 
to the corners of the hexagon, thus transforming them into dendrites. The formation 
of secondary dentrites has a similar origin. 

This mechanism can be implemented by simulations. In the so-called DLA 
model (Diffusion limited aggregation), particles stop moving as soon as they 
meet the solid. This model gives rise to very irregular shapes. More regular 
shapes arise when diffusion at the solid-fluid interface takes place. Very often, 
theorists just neglect stochastic effects and write deterministic equations, more 
precisely the diffusion equation in the fluid, together with appropriate boundary 
conditions at the interface. 

Similar instabilities arise in the growth from a supersaturated solution, or 
from the supercooled melt. Again, diffusion is an essential ingredient. In growth 
from the melt, the diffusing quantity is the impurity concentration or (if the melt 
is really very pure) the energy[l]. Generally, energy diffuses much more rapidly 
than impurities and does not play a great role. 

1.3 I n s t a b i l i t i e s  d u e  to  su r f ace  t e n s i o n  

It is often impossible to grow a material on another material because the ad- 
sorbed molecules do not like to be in contact with the substrate. In more scientific 
terms, the free energy per unit area ~rst (or interface tension) of the substrate- 
liquid or substrate-solid interface is too large. The adsorbate then forms droplets 
(Fig. 2). This type of growth is called Volmer-Weber[2, 3] type of growth, or 
Stranski-Krastanov if a few smooth atomic layers (one, two, three...) form be- 
fore the drops. These types of growth thus correspond to the case when the 
adsorbate does not wet the substrate. 

The quantitative condition for the instability to take place is of course that  
the substrate-vapour interface free energy ~rsv is less than the sum ast + c%t 
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Fig. 2. Vollmer-Weber (a) and Stranski-Krastanov (b) growth 

of the free energies of the substrate-condensed phase interface and the vapour- 
condensed phase interface, i.e. 

~,~ < ~,l  + ~ l .  (1) 

This condition can also be deduced from Young's formula which gives the 
contact angle of a drop with the substrate. Exercise: do that! 

1.4 S u r f a c t a n t s  

Surfactants are impurities which lower the surface tension. If one finds a surfac- 
tant  which lowers c'sl, then one can induce wetting. 

We shall mainly be concerned by the case of a solid adsorbate. In that  case, 
thermodynamic equilibrium is not always easy to reach.. ,  and this is good! Thus, 
it is possible to build objects which are very useful (multilayers, quantum wells, 
etc.) but metastable. Of course, this is only possible if the temperature is not 
too high. Thus, in addition to thermodynamic phenomena, we will be concerned 
with kinetic effects. 

2 M o l e c u l a r  b e a m  e p i t a x y  

The remainder of this review is devoted to instabilities in molecular beam epi- 
taxy. This method is used to grow complex crystals with controlled purity, es- 
pecially multilayers. 

Roughly speaking, molecular beam epitaxy (MBE) is defined as follows (Fig. 3). 
Under ultra-high vacuum conditions, atoms (single or in molecules) are sent onto 
the surface, where they diffuse until they meet a step where they are incorpo- 
rated. These diffusing atoms are called adatoms. Free adatom diffusion clearly 
has a meaning only on a high symmetry terrace (between steps). 

Imagine a crystal delimited by a high symmetry plane, (111) or (001). Sup- 
pose that  this crystal grows by MBE. Atoms land onto the surface from the 
beam, are adsorbed and become adatoms. What  do they do next? 
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Fig. 3. Example of a MBE apparatus 

We have taken care to choose a substrate temperature where surface diffusion 
is effective. Thus, each single adatom wanders about until it finds a good reason 
for halting. 

The good reason might be another adatom. They then form a pair, or dimer, 
which is likely to be stable - that is, not willing to break up into two adatoms 
again - at low enough temperatures. Other adatoms will come to join the dimer, 
which constitutes thus the nucleus of a whole terrace. The same process is go- 
ing on farther away, and terraces continue to form on the surface. When there 
are enough terraces, they will efficiently compete with each other for incoming 
adatoms, no new nucleation will take place, and terraces grow until they coalesce 
to yield a new complete layer. 

If we now increase the substrate temperature, the dimers will no longer be 
stable enough to act as nuclei. It is likely that  trimers will be, until the temper- 
ature becomes too high. At still higher temperature, critical nuclei are clusters 
of many atoms, and the distance between them increases. Eventually, growth 
no longer takes place through nucleation of terraces: rather, adatoms diffuse far 
enough to directly reach pre-existing steps. In fact, any real surface is atomically 
flat only up to a certain typical lengthscale, depending mostly on sample prepa- 
ration condition. Steps are usually present due to an "imperfect" cut (miscu 0 
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away from the high symmetry direction. Their distance rarely exceeds a few mi- 
crons, and is typically around 100 nanometers on a "nominally" high symmetry 
surface. 

Also, steps are unavoidably present when screw dislocations cut the surface. 
Nowadays, macroscopic crystals of silicon or other semiconductors can be grown 
free of dislocations. 

3 T h e  S c h w o e b e l  e f f e c t  

As seen above, atoms from the beam diffuse to a step where they are incorporated[4]. 
Now, a step has a "lower" side and an "upper" side (the surface is assumed hor- 
izontal, the solid being below). Do steps absorb atoms from the upper and the 
lower terrace with the same probability? There is no ground for this assumption[5, 
6], which is in fact seen not to be true in several instances. Fig. 4 a shows the 
potential seen by an adatom[7]. The curve has a maximum which should be over- 
come by adatoms willing to go downstairs and prevents them from easily sticking 
to the down step. One can easily understand this maximum ("Schwoebel bar- 
rier"), since an adatom willing to step down should go through an uncomfortable 
position (Fig. 4 c) where it has few neighbours. This is the intuitive basis Of the 
calculation of Bourdin et al. On the other hand, the energy barrier may be lower 
if the edge atom is pushed away by the incoming adatom (Fig. 4 d) which takes 
its place. Numerical calculations within the eIfective medium lheory (see for in- 
stance the review by Stoltze[8]) show that on the (100) face of metals such an 
"exchange" mechanism has a lower energy than the over-edge "jump" for Au, 
but the opposite is true for Cu, Ag, Ni, Pd and Pt. On the ( l l l )  face the "jump" 
mechanism seems to be always favored. Both barriers are generally higher than 
for diffusion on a flat surface. However, in the only case where ab initio calcu- 
lations have been performed, namely Aluminum, these calculations predict no 
Schwoebel barrier[9]). 

4 T h e  S c h w o e b e l  i n s t a b i l i t y  f o r  a g r o w i n g  s u r f a c e  o f  h i g h  

s y m m e t r y  o r i e n t a t i o n  

As seen in Section 2, if the growing surface has a high symmetry orientation, 
the growth results in the formation of "terraces" of atomic height [10, 3]. Atoms 
landing on these terraces cannot easily step down [5, 6] and therefore nucleate 
new terraces at the top of terraces, and finally towers or "mounds". Such mounds 
have been observed experimentally on Si [11], Cu [12] and Fe [13]. 

One might expect the instability to take place only for a strong Schwoebel 
effect. As a matter  of fact, it takes place even with a weak Schwoebel effect. This 
can be seen from a continuous model in which the local surface current density 
j is assumed to be a function of the local slope m -- Vz. The current density 
contains two terms. 

i)The first term says that the adatoms do not like to go downstairs, which 
implies that  the current is parallel to the slope, with the same sign. For weak 
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t tt  

e 

Fig. 4. a) Theoretical potential felt by an adatom, b) Intuitive reason of the minimum 
minimorum, c,d) Intuitive reason of the maximum maximorum. Scheme (c) corresponds 
to the mechanism considered by Bourdin et al, and scheme (d) to the exchange process 
(see Stoltze's review), e) Interpretation of jumping rates D, D t, D". 

rn,  the current is proportional to m ,  but for larger slopes, there is a saturat ion 
effect and the current even turns out to decrease for large m. 

ii) The second term is a healing term of the form j = - V p ,  which expresses 
the fact that  a toms try to decrease their free energy, i.e. their chemical potential  
/~. The latter is generally assumed to be proportional to the local curvature (this 
is a particular case of the Gibbs-Thomson formula). Finally, one obtains[14, 15, 
16, 17] 
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F£s£cm c92m 
3" = 2(1 + Imle,)(1 + Iml~e~) + K 0 T "  (2) 

This equation should be combined with the conservation law k = - V  • j s .  
A linear stability analysis easily shows that the surface is stable with respect to 
fluctuations of wavelength shorter than the lower limit[17] 

X'c "! = 2r  F£,e ,"  (3) 

The surface is unstable with respect to fluctuations of longer wavelength. 
The instability appears after a time of order 

K 
c - -  ( 4 )  

The equations of motion have "fixed points" which correspond to a periodic 
array of "mounds". These profiles are stable with respect to an amplitude varia- 
tion, but unstable with respect to mound coalescence. The stability with respect 
to amplitude variations results from the following argument: on the right hand 
side of Eq. (2), the second term is stabilizing, while the first is destabilizing. 
The latter is less effective for large slopes, so that the slope has an upper limit. 
However, this limit increases with the wavelength of the modulation, because 
the stabilizing term of Eq. (2) becomes less effective. If large slopes are allowed, 
large amplitudes result, and indeed the amplitude turns out to be proportional 
to the square of the wavelength[16]. 

Now, if coalescence is not too fast, each mound has time to get close to the 
stationary profile corresponding to its radius. Numerical simulations performed 
on a one-dimensional model [18, 17] confirm this property. Therefore, the shape 
of the mounds becomes sharper when coarsening takes place[16, 17]. This is in 
agreement with some simulations and some experiments, but other simulations 
and other experiments suggest a "self-similar" shape, i.e. the mounds have a 
constant "aspect ratio" h(t)/R(t) of height to radius. 

Are there two different regimes? This question is still open. If there is a 
self-similar regime, it seems hard to describe it with the simple equation Eq. (2). 

Simulations are often analyzed in terms of power laws and find R(t) ~ t 1/z, 
where z varies between 3 and 5. Such power laws are generally observed in self- 
similar structures and would therefore be compatible with a constant aspect 
ratio. If h(t) /R(t)  goes to infinity with time, a slower coarsening should be 
expected. 

Of course the aspect ratio cannot really diverge. When it becomes of or- 
der unity, something has to occur. In that limit, the microscopic properties of 
the system or of the model become important. The expected universal-regime 
is h(t) /R(t)  << 1, when the expected universal-equation Eq. (2) holds. Most 
simulations, and some experiments, are in this regime. 



220 C. Duport et at. 

5 T h e  S c h w o e b e l  e f f ec t  for  a v i c i n a l  sur face :  
s t e p  bunching instability 
A vicinal (001) surface, for instance, is a surface which is nearly a (001) surface. 
Vicinus means near in latin (as well as vicino in italian and vecino in spanish). 
Thus a vicinal (or "stepped") surface is a succession of high symmet ry  terraces 
separated by steps. These steps are generally more or less straight. 

Let us assume that  one terrace, A, is broader than the other ones (Fig. 5). 
When the crystal is growing by MBE (Fig. 5 a) the broad terrace A gathers 
more atoms, which preferably go to the upward step edge of B because of the 
Schwoebel effect. Consequently, the width of the broad terrace A decreases. Thus, 
the Schwoebel effect erases the irregularity. 

B / A  
m ~ ] 

B . d  ' ' , . a  

\ 
\ 

B \ , \ A 

/ '  ' , b R LI i 

| 
| 

| 
m 

Fig. 5. Evolution of a broader terrace A when the Schwoebel effect is present. The 
thin line shows the initial profile and the thick line shows the profile at a later time. 
a) During growth, the terrace A gathers more atoms which preferably go to the upper 
ledge B. This ledge proceeds faster, so that the terrace A becomes narrower and the 
regular profile is stabilised, b) During evaporation, the terrace A evaporates more atoms 
which mostly come from the upper ledge B. This ledge recedes faster and catches up 
the next step, thus forming a bunch of two steps. 

For an evapourating (instead of growing) stepped surface, the Schwoebel ef- 
fect has more spectacular consequences. The broad terrace A now evapourates 
more atoms. These a toms predominantly come from the upward step edge of B, 
because the Schwoebel effect is difficult to cross in both  directions. Therefore, 
this step recedes faster than the other ones and the broad terrace becomes even 
broader. The Schwoebel effect is destabilizing during evapouration. Eventually, 
steps form bunches. In contrast, the Schwoebel effect is stabilizing (with respect 
to step bunching) during growth. 

Exceptionally, an inverse Schwoebel effect can occur: a toms prefer to go 
downstairs. It  is easy to prove that  this inverse Schwoebel effect is stabiliz- 
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ing with respect to step bunching during evapouration and destabilizing during 
growth. 

One can wonder whether the instability of an evapourating, regular array of 
steps leads to a stable, less regular array. The step just above the broad terrace 
is caught by the upper step. However, if the broader terrace is initially just a 
little broader, its width will then cease to increase. But this step pairing is not 
the final stage, because all steps will pair[19, 20]. When all steps are paired, the 
system of double steps is again unstable as the system of single step was. Then 
the pairs form pairs, i.e. step quadruplets. Then the quadruplets form pairs of 
quadruplets, which are octuplets, etc. The step bunching process is not limited 
and does not lead to a steady state. However, the formation of large bunches 
may require a long time. 

6 S t e p  m e a n d e r i n g  o n  a g r o w i n g  v i c i n a l  s u r f a c e  

Let us consider more in detail the problem of a growing vicinal surface with 
Schwoebel effect. In the preceding sections, straight steps were assumed. But 
do they remain straight? In order to discuss the stability of a straight step, we 
can assume a weak perturbation to be present and ask whether it increases or 
decreases with time. The perturbation of the step may be a small bump (Fig. 
6). Because of the Schwoebel effect, the adatoms mainly reach the step from the 
terrace ahead. Those which are just in front of the bump will of course mainly 
go to the bump itself, and those which are very far from the bump will not reach 
it. The important point is that the adatoms which are not just in front of the 
bump, but not too far, will preferentially diffuse to the nearest point on the 
step, which lies on the bump. Thus, the bump grows and the straight shape is 
unstable. 

This mechanism is very similar to the formation of snowflakes, addressed in 
section 1, or to the production of fractal aggregates in DLA. 

Thus, a growing vicinal surface with normal Schwoebel effect is unstable with 
respect to step meandering[21]. In the same way, it is easy to prove that 

i) an evapourating vicinal surface with normal Schwoebel effect is stable with 
respect to step meandering; 

ii) a growing vicinal surface with inverse Schwoebel effect is also stable with 
respect to step meandering; 

iii) an evapourating vicinal surface with inverse Schwoebel effect is unstable 
with respect to step meandering. 

7 M i s f i t  d i s l o c a t i o n s  in  m o l e c u l a r  b e a m  h e t e r o e p i t a x y  

A layer of atoms adsorbed on a foreign substrate at equilibrium, is subjected to 
two competing effects, namely the adatom-adatom interaction (described by a 
Hamiltonian 7/an) which favours an interatomic distance a equal to the natural 
distance a0 in a free adatom layer and the adatom-substrate interaction 7/a~, 
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Fig. 6. A sinusoidal perturbation on a step: will the amplitude decrease or increase 
with time? The answer to this question is in the linear stability analysis. Adatoms go 
preferentially to the tips (a), and this effect is destabilizing. Then, in order to minimize 
the interface energy, they can diffuse to the holes after being reemitted (b) or slide along 
the step (c). Effects (b) and (c) tend to stabilize the straight step. They are neglected 
in the standard DLA model. 

which, on the other hand, favours the commensurate structure where the a tomic 
distance a of the adsorbate is equal to the lattice parameter  of the substrate,  b. 
I t  is nearly obvious that,  for a given lattice misfit (ao - b)/b the incommensura te  
structure (a ¢ b) is stabilized by strong ada tom-ada tom couplings, compared to 
the adatom-substra te  interaction; if the latter is the stronger, the commensura te  
(a = b) structure is stable. In this case, we say there is epitaxy. I t  is less obvious 
that  the commensurate  structure is stable even when 7-/~, is weak, provided the 
misfit is small enough. In fact, the adsorbate-adsorbate coupling energy lost by 
letting the interatomic distance vary from a to b is proport ional  to (a0 - b) 2, 
whilst the adsorbate-substrate energy gain is independent of a0 - b. 
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What  happens, at equilibrium, when the first monolayer is commensurate 
and one increases the number h of layers? Clearly, when h becomes very large 
the structure becomes incommensurate - at equilibrium. In fact, the energy gain 
in letting the adsorbate take its natural interatomic distance a is proportional 
to the layer volume, and eventually overcomes the energy loss due to giving up 
commensuration, which is only proportional to the interface area. If the first 
layers nonetheless stay commensurate, the appearance of the incommensurate 
structure requires the introduction of misfit dislocations (see Fig. 7). The crit- 
ical thickness for the appearance of misfit dislocation at equilibrium has been 
investigated in many works, which are reviewed, for instance, by Jesser and van 
der Merwe [22]. 

Fig. 7. Schematic drawing of misfit dislocations. Lines represent lattice planes. Thick 
lines are for the substrate lattice planes, and thin hnes for the adsorbate ones. 

Misfit dislocations are not really an instability in the sense of our definition, 
but  can be the cause of an instability. Moreover, it is also of interest to worry 
about the stability of the commensurate structure, not only of the flat surface. 
For microelectronics, misfit dislocations are not recommended since it is difficult 
to control their regularity and, anyway, they spoil the regularity of the crystal. 

The critical thickness calculated from equilibrium thermodynamics is not 
always in agreement with experiment, especially at low temperatures. This is a 
hint of the importance of kinetic effects, which will be seen in the following in 
other instances. 
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8 The Asaro-Tiller-Grinfeld instability in commensurate  
epitaxial films: thermodynamic analysis for a non-singular 
surface 

We now investigate the stability of a commensurate adsorbate (i.e. without misfit 
dislocations) when its thickness is large. 

We know that the commensurate state is thermodynamically unstable. How- 
ever, misfit dislocations are difficult to form, because they require the movement 
of the atoms inside the solid, and these have a very low mobility. It is easier 
to move the atoms at the surface. As will be seen, surface diffusion of atoms 
does produce an instability, in which the crystal remains commensurate, but  its 
surface does not remain planar. To see that,  we assume a small deviation from 
the planar shape and we ask whether this deviation is amplified or decays at 
later times. 

Thus, the surface will be assumed to be almost a plane perpendicular to the 
z direction, but not quite; there is a small modulation 

6z = h cos(qx). (5) 

It should be clear that this is a modulation of the number of atoms, not an 
elastic strain! The amplitude h will be measured in atomic layers. 

We wish to investigate the linear stability of the planar surface with respect 
to the perturbation Eq. (5). That  is, we want to see whether the free energy 
variation due to Eq. (5) is positive or negative. The substrate thickness will 
be assumed infinite, so that the average atomic distance normal to z is fixed 
within complete layers. However, if some atomic layers are not complete, they 
can expand or shrink. The atomic layers of the adsorbate are happy to do so, 
since their lattice parameter thus gets closer to its natural  value. Therefore we 
can expect them to split through a modulation of the surface (Fig. 8). This is 
the Grinfeld instability [23, 24, 25, 26, 27, 28]. 

The substrate forces on the adsorbate a fixed average strain %.¢° with respect 
to its free state. The calculation may alternatively be done without a substrate, 

0 but  with an external stress p~.~, related to the misfit by the formula 

pO _ E 6a 
1 - ~ a  

A simplified calculation will be presented, introducing an average strain 6e 
(with respect to the flat surface h = 0) instead of the complete strain field. The 
free energy per unit area contains three contributions: 

i) the increase of the surface area produces an increase of the "capillary" 
energy (due to chemical bonds which are broken when forming the surface). If 
the surface tension a is orientation independent, the average capillary energy per 
unit projected area (perpendicular to the z axis) is increased by the modulation 
by a quantity 

d.~'~.p/d.A = crh2 q2 /2; (6) 
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ii) the energy gained due to the relaxation in the modulated region is propor- 
tional to the height h of this region, to the average strain e, and to the external 
stress p0, viz. 

dY~ el,~x / dA ,.~ - h p  ° e ; (7) 

iii) this energy gain is partially compensated by the elastic energy paid to 
the inhomogeneity of the strain. This energy is mainly concentrated below the 
modulated region. Its three-dimensional density is proportional to e 2 through an 
elastic constant C. In order to obtain the energy per unit area in the xy plane, 
one should multiply by the depth of the strained region. It is shown at the end 
of this section that  this depth is of order 1/q. The elastic energy per unit area 
is then 

d.Te,/ d.A ,~ Ce2 / (2q). (8) 

Minimizing the sum of contributions (ii) and (iii) with respect to e yields 

~ hqp°/C 

so that  the variation of the total elastic free energy per unit area resulting from 
the modulation is the sum of the two contributions (ii) and (iii), namely 

to t  dY~t /d~4 ~ -h2p2q/(2C).  (9) 

If q is small enough, the positive term (i) due to surface tension is unable to 
compensate this negative term, so that  increasing the modulation amplitude h 
lowers the free energy. There is an instability. 

We close this section with the proof that the penetration depth of the strain 
(or the displacement which is its primitive) is 1/q. The displacement u(x ,  y, z) 
satisfies the equation of elasticity, which we write in the case of a harmonic solid 
for simplicity, i.e. 

(,~ + I~)V(divu) + I~V2u = O. (lo) 

This equation must be combined with an appropriate equation at the surface, 
which will not be written. We shall only consider the (unphysical) case A+p = 0. 
Then, the general solution of Eq. (10) with wave vector (q, 0, 0) which vanishes 
for z = - c ¢  is clearly u(x, y, z) = uo exp(iqx) exp(qz). The physical case A + p  
0 is a little more complicated and is left as an exercise to the reader. 

In Eq. (9), the stress p0 appears through its square, so that the Grinfeld 
instability is predicted to appear as an effect of either compression or extension. 
As a matter  of fact, in heteroepitaxial films, it is rarely observed in expanded 
systems because shear motion is too easy, so that misfit dislocations, which are 
much more efficient in releasing strains, appear before the Grinfeld instability. 
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9 Thermodynamic instability and kinetic stabilisation 
in commensurate epitaxial films with a high symmetry  
orientation 

9.1 Thermodynamic  instability 

Eq. (6) in the preceding section is strictly correct if the surface tension is isotropic. 
In a crystal, this condition is never fulfilled, but the capillary energy is still pro- 
portional to h2q 2, in qualitative agreement with Eq. (6), in the neighbourhood 
of almost all orientations. The exceptions are called singular. Unfortunately, at 
usual temperatures, the singular orientations are the high symmetry orientations 
(001) and (111), and these are precisely the orientations commonly used in MBE 
growth. 

In the neighbourhood of a singular surface, the excess capillary energy re- 
suiting from a misorientation 0 is proportional to the number of steps, to the 
free energy 3' of a step per unit length (line tension) and to the length L of the 
system. As a result, the average capillary free energy per unit projected area is 

d.Tcap/ dA ..~ 3`lel. (11) 
At a sufficiently high temperature, the line tension 7 can vanish and the 

next order in the surface free energy should be used. This next order is just the 
non-singular formula Eq. (6). The temperature TR at which 3' vanishes and the 
capillary energy becomes analytic is called the roughening transition tempera- 
ture. 

For a sinusoidal modulation of amplitude h, the capillary contribution Eq. (11) 
dominates the elastic energy Eq. (9) for small h, and therefore a planar singu- 
lar surface is stable with respect to small modulations, in contrast with a non- 
singular surface. However, it can be argued that, for large modulation amplitude, 
the calculation of the previous section is still applicable. In other words, there 
is still an instability, but now there is an activation energy. To find this energy, 
one should of course consider a perturbation of finite size instead of a sinusoidal 
modulation. 

The calculation has been done by Tersoff and LeGoues [29] in the case of a 
truncated pyramid (Fig. 9). They obtained the energy barrier as 

3'3(1__~)2 [ , ~ a  4 
w0 ' 

9.2 Kinetic stabilisation 

The calculation of Tersoff and LeGoues is a thermodynamic one, where the free 
energy is minimized. Experimentally, bumps are not always observed, especially 
at low temperature[30]. 

This can be attributed to the fact that the adatoms are incorporated at the 
first step they meet. Let us assume that there are only two levels of steps. The 
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Fig .  8. The Grinfeld instability on a non-singular surface. A commensurate adsorbate 
gains energy by modulating its thickness, because at the top of the waves it can take an 
atomic distance closer to its "natural" one. Even for a vanishingly small modulation, 
there is an energy gain. 

Fig .  9. Misfit instability on a singular surface. The commensurate adsorbate gains 
energy by forming pyramids as in figure 8, but now there is an activation energy 
corresponding to a minimal size of the pyramid. 
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lower level is more sensitive to the substrate, the atomic distance is closer to 
that of the substrate. It is preferable for the adatoms to go to the step of the 
upper level where the atomic distance is closer to the natural atomic distance 
of the adsorbate. However, to go to the upper steps, the atoms which have 
first been incorporated at the lower steps have to detach from those steps. At 
low temperature, they have no time to detach before completion of the lower 
layer and therefore disappearance of the lower step level. Thus, layer-by-layer 
growth is favoured by kinetic effects; the deposition kinetics are faster, at low 
temperature, than the onset of equilibrium. 

9.3 Effect of  morphactants  

The detachment of atoms from steps can presumably be hindered by impurities. 
Such impurities will thus favour layer by layer growth. 

There are indeed impurities which favour layer by layer growth. Preumably, 
they act according to this mechanism. These impurities have been called surfac- 
tants, in analogy with the effect of surfactants addressed in section I. However, 
the mechanism addressed here has nothing to do with surface tension, and the 
word "morphactant" proposed by Eaglesham is certainly preferable. 

10 S t e p  b u n c h i n g  i n s t a b i l i t y  a n d  s t a b i l i s a t i o n  in  

c o m m e n s u r a t e  e p i t a x i a l  f i l m s  w i t h  a v i c i n a l  o r i e n t a t i o n  

The case of a vicinal surface is somewhat similar to that of a high symmetry 
surface, but the calculation is simpler because one does not need to worry about 
the nucleation of new terraces. On a vicinal growing surface, the Asaro-Tiller- 
Grinfeld instability can take place in two ways. The first one is the formation 
of pyramids on the terraces between steps. This is the same effect as before. It 
requires that an activation barrier be overcome; it can therefore be quite slow if 
this barrier is high. The other form of the Asaro-Tiller-Grinfeld instability is step 
bunching. Indeed, at the edge of a high step, the effect of the substate is not too 
strong and the adsorbate can take an atomic distance close to its "natural" one. 
However, the freshly deposited atoms first go to the upper edge of each terrace 
as required by the Schwoebel effect, and this mechanism has been seen to be 
stabilizing. This kinetic stabilisation fails only if the atoms have enough time to 
detach from steps and to find a more favourable step before the incorporation 
of new atoms (Duport et al 1995). 

11 C o m b i n a t i o n  o f  d i s l o c a t i o n s  a n d  b u m p s  

We have seen that two kinds of instabilities may arise in heteroepitaxy: the 
formation of misfit dislocations and the formation of bumps. Actually, they can 
appear simultaneously. The most usual scenario is that misfit dislocations appear 
first. If their distance is smaller than the thickness of the film deposited above 
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the dislocations, the atomic distance at the surface is modulated. Far from the 
dislocations, it is closer to that of the substrate, and just above the dislocations 
it is closer to the natural distance of the adsorbate. Therefore, the new atomic 
layers are preferentially nucleated above the dislocations. 

12 Spontaneous production of quantum dots 

When the misfit between the atomic distances of the adsorbate and the substrate 
is large, it is sufficient to deposit very few atomic layers (say, two) in order to 
get an array of bumps or pyramids. These pyramids form a fairly regular array, 
more regular than expected from available theories. In particular, the dispersion 
of sizes is rather narrow. This kind of deposition has been proposed as a way 
to obtain quantum dots, i.e. semiconductor clusters with well-defined size, and 
therefore well-defined energy levels. 

The failure of available theories is presumably that they underestimate the 
ability of atoms to find thermodynamically favoured configurations. For instance, 
they are assumed to form clusters which are not allowed to move. For a given 
density of clusters of a given size, the minimum of the elastic (free) energy is 
obtained when the clusters are equally spaced. This equal spacing clearly favours 
a narrow size distribution. 

13 Conclusion 

Homoepitaxial growth (Fe/Fe, Si/Si...) is, at low temperature, subject to a ki- 
netic instability resulting from the difficulty of the atoms in reaching their most 
favourable position, which is a step edge. Heteroepitaxial growth, which is of 
course of much greater interest, is subject to the same instability, and in addi- 
tion to an instability which arises from the different lattice constants. The latter 
instability is actually not specific to molecular beam epitaxy. It is a thermo- 
dynamic instability which appears earlier at higher temperature. If one wants 
to avoid the instability, one must therefore choose an appropriate temperature 
window. If the misfit is small, the instability does appear in principle, but only 
at long wavelengths because short wavelength fluctuations are stabilized by the 
surface tension. Moreover, for a high symmetry orientation, there is an activation 
barrier which can in practice provide a good metastability. 

The present review is far from being exhaustive. Little has been said about 
the dynamics. Possible instabilities with respect to twinning, for instance, have 
not been considered. The development of instabilities beyond the initial, linear 
regime has not been addressed. Many of these questions are, in fact, still open. 
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Film Growth  

1 I n t r o d u c t i o n  

There has been a huge resurgence of interest in the mechanisms of thin film 
growth over the last few years. Electron microscopy has, for a long time, been 
the main tool for studying surfaces, but the development of scanning tunnelling 
microscopy (STM) [1, 2] and surface sensitive electron diffraction techniques [3]- 
[5] such as RHEED now allows one to probe surface details at sub-monolayer 
coverages. The theory of film growth [6, 7] was developed largely through the 
sixties and seventies, but the refinements in experiments have sparked a renewed 
interest in the corresponding theory [8]. 

Existing growth theory [6, 7] defines an initial 'transient' regime in which 
the density of monomers (isolated atoms on the surface) increases linearly with 
time. At the end of this period island nucleation is established. Following this, 
the density of islands becomes larger than that of monomers and one is into the 
aggregation regime which is dominated by the capture of diffusing monomers 
by existing islands; new nucleation occurs but more slowly than in the earlier 
period. 

Scaling behaviour is observed in the island size distributions. This has been 
known for some time from computer simulations, but can now be observed ex- 
perimentally for epitaxial growth using STM [2]. There are also predictions that 
averaged quantities like island density or mean island size show power law depen- 
dence in their growth both as functions of substrate coverage and also deposition 
rate. Again there is experimental access [5] to these quantities. 

Following the aggregation regime at about 40% coverage one enters a coales- 
cence phase dominated by the merging of growing islands. The growth properties 
are, of course, fundamentally different when one enters this new regime. 

These lecture notes will review the current understanding of the theory of the 
scaling behaviour and the growth exponents. Rate equations, which are a form 
of mean field theory, have long been popular [6] as a way of studying the growth 
mechanisms. We shall find that they are remarkably good in their predictions of 
the growth exponents but fail dramatically to describe the distribution of island 
sizes. Attempts to go beyond mean field theory will be discussed. 
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2 R a t e  E q u a t i o n  A p p r o a c h  

Let us start by defining the parameters that characterize the growing islands. 
One has first of all the number density N~. This is the number of islands on unit 
area of substrate that  contain s atoms. It will depend on the coverage which 
is proportional to the deposition time and the rate of deposition F (assuming 
evaporation from the surface is negligible). Other quantities of interest are mean 
island size (s), total  density of islands N and density of monomers N1. Another 
important  quantity is the critical island size, i; this is the size above which an 
island is stable and does not dissociate by the loss of monomers. 

The basic rate equations that describe growth in the aggregation regime are 

dN1 
= F -  2K1N~ - N 1 E K ~ N ~  (1) 

dt 
s > 2  

dN~ 
= i x  (Ks- iNs-1  - U s i s )  (2) 

dt 

F is the rate of deposition, and the capture kernels are conveniently written in 
terms of a common constant describing the monomer diffusion, K~ = Dc~. We 
also define the substrate coverage O = Ft and the ratio 9~ = D/F .  The equations 
assume that  i = 1; if i > 1 there are dissociation terms. 

There has been some controversy about the form to use for as. For some time 
it was assumed that  this quantity is independent of s - the so called 'point island' 
model [9]. An alternative model [10] assumed a s ~/~ dependence. It appeared that  
the former predicted a ~R dependence that agreed with computer simulations 
(and experiment) while the latter gave a better account of the O dependence. 
Subsequently it was shown [11] that  using as "~ (Ns) 1/2 resolves these difficulties 
and gives the observed dependence on both 9l and O. Most recently [12] a fully 
self-consistent solution of the rate equations has shown almost exact agreement 
with computer simulations for N, N1 and (s), but very poor agreement for the 
distribution function Ns itself. 

2.1 A o n e - d i m e n s i o n a l  m o d e l  

The breakdown of the theory for the distribution stems from the inadequacy 
of mean field theory. We will explore the origin of this breakdown more fully 
with the help of a one dimensional model. We imagine particles deposited on 
a line (rather than a surface); they are allowed to diffuse and if two meet they 
nucleate to form a trap which remains static, but can capture additional diffusing 
monomers. To avoid the complications of direct impact of particles onto the 
islands, they are not allowed to grow in size, but a record is kept of the number 
of monomers absorbed. We shall refer to this quantity as the trap size. 

A modification of the existing mean field to the one- dimensional case consists 
(see below) in setting ~, = 4N, independent of s as expected. The observed 
scaling behaviour in the island size distribution can be expressed by writing 

N,  ,.~ O(s)-2 f ( s / ( s ) )  (3) 
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Using standard scaling theory techniques [10, 11, 13, 14] or asymptotic methods 
[15] together with the above expression for as and restricting ourselves here to 
a critical island size i of 1, gives the following growth exponents 

N ~ 0 1 - z ~  - x  N1 "~ O - f i R  - ~  (s) .., O~ff t  x (4) 

where r = 1/2, z = 3/4,  w = 1/2, x = 1/4. 
The results of a Monte Carlo simulation [16] are shown in Fig. 1. The trap 

density N is shown as a function of O(= F t ) ,  and the rescaled plot demonstrates 
the validity of the derived growth exponents. 
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Fig. 1. Growth simulation in 1D. Trap density N as a function of ({9 = FI)  for three 
values of ~ (0.5 × 105 chain line; 0.5 x 106 broken line; 0.5 × 10 r full line). Second 
group of plots shows the scaled trap density. 

In Fig. 2 the broken lines represent a numerical solutions of the rate equations 
for both N and (s) with cr~ = 4N (the significance of the full lines will emerge 
later) and are to be compared with the data  points which come from the Monte 
Carlo simulations. On a logarithmic scale the slopes of the two are the same 
which is why the exponents are given correctly. However, in terms of actual 
values, it is seen that  there is some discrepancy and it is here that  we begin to 
encounter the breakdown of mean field theory. 
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Fig. 2. Trap density N and mean trap size (s) as a function of O. Data points are from 
Monte Carlo simulations. Lines are from numerical solution of the rate equations with 
(r~ = 4N (broken line) and as = 7.717N (fun hne). 

We need to begin with the argument leading to c% = 4N; an analogous 
development is used in the two dimensional case [12, 17]. The first step is to 
write down a diffusion equation for the monomer  density nl(x) which is actually 
position dependent (its average is N1) 

Cqnl cq2nl 
cgt = D ~ -t- F - D~-2nl  (5) 

where ~ is the average distance a monomer  travels before being captured by an 
island or another monomer.  So that  the equation is consistent with Eq. (1) after 
averaging, we make the identification 

Subtracting Eq. (5) from Eq. (1), and assuming t ime variations in monomer  
density are small, we obtain for the monomer  density as a function of distance 
x from an island, n l (z )  = NI[1 - exp ( -x /~ ) ] .  

The rate of capture of monomers is 2D[dnl/dx]~=o, where the factor of 2 
is included because they arrive from both sides of the trap.  Thus ~r, = 2/~ 
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independent o f s  as expected and, using Eq. (6) and N >> N1 for the aggregation 
regime, we arrive at as = 4N. 

This is a mean field theory result because of the mean free path term in Eq. 
(5). We could alternatively omit that term from the equation and examine the 
monomer density between a pair of traps a distance y apart. Assuming quasi 
static behaviour, the density is given by nl(x) = 9 t - l x ( y -  x)/2, and the total 
number of monomers in the gap is given by y3/129l. If this is averaged over 
all gaps along the line, we can obtain the mean monomer density (the quantity 
denoted by N~): N~ = {y3)N/12fft. The mean gap size is given by (y) = N -~. If 
we introduce scaled variables, Y = y/(y), we obtain 

12N2N19~ = (y3) (7) 

The quantity (y3) contains details about the spatial distribution of traps 
that  is absent from mean field theory. This extra information will have an effect 
on the capture behavionr. The rate of capture of monomers by a trap at x = 0 
is given by 2D[dnl/dx]::=o = Dgl-l(y) ,  where we have averaged over all gap 
sizes. Identifying this with Da, N1, noting that  N = (y)- l ,  and using Eq. (7), we 
obtain an expression for as 

a,  = 12N/(Y a} (8) 

A best estimate of (y3) is 1.555 (see next section). This yields as = 7.717N. The 
rate equations are solved again using this value and the results are shown by the 
full line in Fig. 2. The excellent agreement has been obtained by going beyond 
mean field theory and including information about the spatial distribution of 
islands that  is essentially the pair correlation. 

2.2 A p p l i c a t i o n  to  a coa lescence  process  

Let us now turn to a model that  focuses on growth by coalescence. The coales- 
cence regime that  follows aggregation is complicated by the presence of several 
processes. A simplified computer simulation of coalescence was introduced a few 
years ago by Family and Meakin [18]. The algorithm was stripped bare of all 
but the essentials; no diffusion was included in the model, and the islands re- 
mained circular throughout the simulation. Simply stated, the model consists 
of the deposition of D-dimensional hyperspherical droplets of radius r0 onto a 
plane substrate. When a droplet falls onto an existing droplet, the two become 
one. If the enlarged droplet in turn overlaps with another then these two form 
a single island. Generally, when an island of radius rl merges with another of 
radius r2, a new island is formed at the centre of mass of the two original ones, 
with a radius r given by r = (r D + rD) lID. 

Family and Meakin [18] studied the scaling properties and growth properties 
of this homogeneous growth model. The purpose of this section is to examine a 
form of rate equation appropriate to their model and compare the predictions 
with the simulation. 
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The basic equations that  we propose [19] to describe the homogeneous model 
are the following: 

dN1 1 y ~  Ci j 1 - F - B 1 -  ~--~B, - ~ A , , -  ~ (9) 
s > l  s > l  i,j 

dN~ 1 ~ Alia5 (s - i - j)  - ~ Xsi (10) dt = B . _ ~ - B ,  + ~ 
i,j i> l 

1 1 y ~  Cij, 1 ~ Cijk~ (s - i - j)  + -~ Y ~  Cijk~ (s - i - j - k) - -~ - -~ 
i,j,k ij i,j,k 

where monomer now means the elementary droplet that  falls on the surface, F 
is the rate of deposition of these droplets, and s is the number of elementary 
droplets in a composite droplet. The first terms, B,, represent the probability 
of an incoming droplet making a direct impact on an existing island. We will 
specialise the discussion here to three dimensional islands, so that  the impact 
term can be written: 

Bs = s~/3N~ (11) 

In the units used, purely numerical factors have been incorporated into the 
definition of the basic quantities. 

The second type of term, describes the rate of coalescence of two islands of 
size i and j to form a new one of size i + j.  The derivation of the expression for 
the process essentially follows the lines of Vincent [20] leading to: 

3 Aij  = ~ (il/3 + j l /3 )  N i N j  (12) 

Finally there are terms involving the coalescence of three or more islands. The 
simplest 3-island term arises, for example, when two large island coalesce and, in 
doing so, swallow up a smaller one in their vicinity. This term takes the following 
form: 

Cijk = A i j ( i j ) l / 3 ~ ( i / j ) N k  (13) 

where ~ is a function of the ratio of the sizes of the two islands that  are swallowing 
the third. ~ ( i / j )  is a maximum when i and j are equal. 

Now let us invoke scaling [19] by assuming that  Eq. (3) holds for the process 
described by Eqs. (9) and (10). There is no diffusion in this model so only the 
dynamic exponents are relevant. The most important for the scaling properties 
is z (where (s) ~ tz). Going through the standard procedure [19] yields z = 3, 
which agrees with the behaviour observed [18] in the simulations. 

Now let us turn to the distribution function N,(t) for the coalescence model. 
For many coagulation models, a single peak distribution function appears. Fam- 
ily and Meakin [18] find instead, for the homogeneous model, a bimodal distri- 
bution with the second peak at the s ---, 0 limit. What  process produces this 
behaviour? To explore this matter, we have solved the rate equations (9), (10) 
numerically using a large but finite range of values of island sizes. In practice 
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a hierarchy of 2000 equations was used. The results are shown in Figs. 3 and 
4. For the first figure, terms B and A from Eqs. (11) and (12) are included but 
the C terms from Eq. (13) are excluded; in Fig. (4) all three terms are included. 
In can be seen immediately that  the origin of the bimodal behaviour which is 
present only in the second figure are the three body terms which describe the 
swMlowing of a third island that  can result when the coMescence of a pair takes 
place. 
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Fig. 3, Distribution function at four different times. C terms (see Eq. (13)) omitted. 

The rate equation treatment has thrown light on this particular feature. The 
scaling properties of the distribution function also appear to be much better 
described by this method for the coalescence model [19] than they do for aggre- 
gation models [12, 16]. 

There are two key points to emphasise from our discussions about growth 
exponents in the two regimes (aggregation and coalescence): (i) the mean field 
equations do give a reliable prediction of growth exponents, (ii) the exponents 
are a good way of characterising particular processes [ z is 3/4 (1 for a two dimen- 
sional substrate [10, 11, 13]) for the aggregation model and 3 for the coalescence 
modal]. 
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3 D i s t r i b u t i o n  F u n c t i o n s  f o r  t h e  A g g r e g a t i o n  R e g i m e  

Let now us address the question of the island size distributions for the aggre- 
gation regime of growth. We have already seen in the discussion of the one- 
dimensional model that  it is necessary to include some details of the local en- 
vironment of the trap to describe the behaviour accurately. This becomes even 
more vital when it comes to treating the distribution function. The discussion 
can be developed for the one-dimensional model [16] but, for this lecture, we will 
focus on the two-dimensional case [21, 22]. 
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Fig. 4. Distribution function at four different times. C terms (see Eq. (•3)) included. 

One way of describing the local environment of an island on a two-dimensional 
substrate is via a Voronoi cell construction [21, 22]. This is done by forming the 
perpendicular bisectors of lines joining pairs of islands. The irregular polygons 
formed around each island are the Voronoi cells for those islands, and we postu- 
late that a Voronoi cell is a good approximation to a capture zone. Monomers 
deposited within a particular capture zone will, on average, eventually be trapped 
by the associated island. The rate of capture will be proportional to the area of 
the capture zone. 

Monte Carlo simulations for a homogeneous growth model were performed 
[21] for the deposition, diffusion, nucleation and capture of monomers on a two 
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dimensional substrate. A typical snapshot at four different coverages is shown 
in Fig. 5 with the Voronoi network superposed on the pictures [21]. The critical 
island size was 1 in the simulations, and rearrangement of captured monomers 
on the islands were allowed thus maintaining a compact shape. Simulations that 
excluded rearrangements and resulted in the formation of dendritic islands were 
also performed [21, 22], and also models for heterogeneous growth [21] and for 
other critical island sizes [21, 22] were studied as well. 

v w v 

Fig. 5. Picture of the evolving microstructure in the i=l circular island simulations. 
Coverages are 6~ = 5, 10, 15, 20% starting top left and moving clockwise. 

During the simulations, the evolution of each island was followed. At any 
time, the area of its associated Voronoi cell was monitored thus giving an esti- 
mate  of the rate at which monomers were being absorbed. From this estimate, 
an expected size could be calculated from the cumulative effects of its environ- 
mental  history. The behaviour in the form of both actual and estimated distri- 
bution functions on scaled axes is shown at 5% and 25% coverages in Fig. 6. 
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The integrated frequency is normalised to 1, and the horizontal axis is the ratio 
of the island size to the mean size. The distribution functions for the capture 
zones are also shown and it is seen that  they show reasonable scaling (certainly 
within the statistical noise). It  is also seen that,  not only do the island size 
distributions themselves show convincing scaling behaviour, but the actual size 
distributions and the est imated size distributions show excellent agreement.  This 
demonstrates  that ,  for any realistic theory of island growth that  is to address size 
distributions, one really has to include the details and evolution of the islands' 
local environment.  
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Fig. 6. Actual and estimated island size distributions, and capture zone distributions 
for ~ at 5% and 25% and for i = 1. Data is averaged from 100 simulations. 

Similar plots are shown in Fig. 7 for simulations with a critical island size 
i = 2. The comments  made for the i = 1 case apply, but  it will be noticed that  
the distribution functions for the island sizes are closer to those of the Voronoi 
cells than previously. As the critical island size is increased, the nucleation is 
closer to completion before significant island growth occurs. This means tha t  an 
island's environment has changed less significantly during its evolution than in 
the low i situation. An extreme case of this behaviour is heterogeneous growth 
[22], where there is an initial nucleation and negligible subsequent nucleation 
during growth. For this situation, the island and cell distributions are essentially 
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an exact match [22]. 
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We conclude this section with a comment about the analogous situation in 
one-dimension. A similar discussion to the above about the distributions apply. 
Earlier in this paper, in Eq. (8), we related the capture kernel cr~ to the distri- 
bution in gap sizes, (Y3/. Again this quantity is dependent on a monitoring of 
the local environment for its estimation. An evaluation of (y3) was made during 
one-dimensional simulations analogous to those described above [16]. The result, 
quoted under Eq. (8), comes from those simulations. 

4 C o n c l u s i o n s  

The object of this paper is to show where mean field theory is applicable in 
growth models and where it breaks down - and when it does, why it fails. It is seen 
that  the rate equations, despite neglecting all details about local environment, 
give an excellent account of the growth exponents which themselves provide a 
very effective flag to the occurrence of particular growth processes. The rate 
equations begin to show signs of unreliability when absolute values of quantities 
like N or (s) are required. This is most noticeable in one-dimension [16] and may 
well be much smaller at higher dimensionality [12]. 
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It is with the size distribution functions that mean field theory becomes 
most unreliable. For the aggregation models, certainly, one has to include local 
environment effects. This is done in two dimensions [21, 22] in an elegant fashion 
using the Voronoi construction and resolves the problems encountered in mean 
field theory very effectively. The developments in the one dimensional model 
[16] can be regarded as an equivalent construction. It is still not clear whether 
the problems encountered with the rate equations are peculiar to the model in 
which monomer capture dominates. We considered a coalescence model [18, 19] 
which certainly pointed to the origin of the bimodal distribution occurring in 
the homogeneous growth model. Because of the presence of three body terms 
(in principal, one might need to include higher ones as well), the solution of the 
rate equations is too computationally intensive to reach the stage in substrate 
coverage when a quantitive comparison with simulations is possible. 
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Systems: 

Abst rac t :  A one-dimensional fermion model with bond charge-interactions 
as well as Hubbard-type interactions is investigated exactly. The large distance 
asymptotics of the density-density and pair correlations are calculated. The 
system shows Luther-Emery liquid behaviour with a crossover from a density- 
density dominated regime to one with dominant pair correlations. Further- 
more, the integrable t J  chain is studied at finite temperatures. Some concepts 
for this analysis are introduced, notably the Trotter-Suzuki mapping and the 
quantum transfer matrix. Finally, the specific heat is presented and its struc- 
ture discussed. 

PACS 71.28.+d,74.20.-z,75.10.Lp 

1 Introduct ion 

In this contribution to the Winterschool, I will give a short introduction into 
the physics of one-dimensional quantum chains. I will focus on the study of inte- 
grable systems which succumb to exact treatments, notably by the Bethe ansatz. 
Quite generally integrability imposes strong constraints on the interaction terms. 
Nevertheless, the physical properties of such systems appear to be generic and 
quite representative of other non-integrable systems. 

The most famous examples of integrable models are the spin- l /2  Heisenberg 
chain and the ld  Hubbard model [1, 2, 3]. Here, however, I want to discuss 
fermionic systems with additional interactions different from the on-site Coulomb 
repulsion. In the course of the search for purely electronic mechanisms for high-T~ 
superconductivity a generalized Hubbard model was derived as a more detailed 
tight-binding description of the electronic system of solid mat ter  

Z n' J' (1) 
<i,j> i <i,j> 

with U the on-site Hubbard term, V the nearest-neighbour Coulomb interaction 
and the hopping integral 

ti~ = to - A t ( n ,  _~ + ,~ _ . ) .  (2) 
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Such correlated hopping terms (bond-charge interactions) arise from overlap in- 
tegrals which are different for singly occupied orbitals than for multiply occupied 
orbitals. 

For repulsive electrons, the model parameters in Eq. (1) should be positive 
to, U, V > 0. In particular At > 0 leads to a suppression of the hopping of 
a particle between two sites if one of them is already occupied by an electron 
(with opposite spin). However, the nature of all of these apparently repulsive 
interaction terms is different as revealed by the particle hole transformation and 
sublattice phase shift, cio ~ +c+o [4, 5]. Neglecting a chemical potential term, 
the result on Eq. (1) is a transformation of 

U, V, to --* +U, +V, +(to - 2At ) ,  A t  --. - -A t .  (3) 

Thus, the Hubbard terms U and V are repulsive for holes as for electrons, the 
correlated hopping term, however, becomes attractive for holes. This observation 
was a cornerstone of the concept of hole superconductivity in Refs. [4, 5]. For 
mean-field and Lanczos studies of Eq. (1) the reader is referred to Ref. [6]. 

We are interested in exact results for Eq. (1) obtained in ld. Unfortunately, 
even the dimensional restriction does not generally guarantee exact solutions. For 
Eq. (1), only the special case of the standard Hubbard model is integrable. On 
the other hand, we may add certain interaction terms which keep the physics 
of Eq. (1), but render the mathematics more tractable. If we consider a one- 
dimensional Hamiltonian with correlated hopping terms, Hubbard on-site inter- 
action and pair hopping processes 

H : -  E(c?acj+lankC?+laCja) exp [-~(r]-o''f)nj,-a - ~(rlntgr"[)nj+l,-6" ] 
j,a 

-t- E [Vnj,nj~-t-tp (c?Tc'~Icj_t.I~Cj+IT-~-h.c.) ] , (4) 
J 

we have integrability under the condition [7] 

to = u / 2  = ± [2e-,(cosh cosh 1 . ,  (5) 
where we restrict ourselves to the physical positive sign in the following. As a 
criterion of integrability we may either use the condition of factorizing S-matrices 
[8] or the existence of a classical model satisfying the Yang-Baxter equation [3] 
and leading to Eq. (4) in the Hamiltonian limit. 

The system Eq. (4) shows an apparent left-right asymmetry in the correlated 
hopping term, which however does not affect transport properties of the system. 
In fact, no charge or spin current is imposed by the asymmetry. The asymmetry 
seems to be irrelevant from the physical point of view. Mathematically, however, 
it is essential for integrability and the analytical study. 

The second system I will consider is the one-dimensional t J  model describing 
hopping of electrons from singly occupied lattice sites to empty sites and a 
Heisenberg like spin exchange for nearest-neighbours 

H : - t  E ~i)(4,aeJ+l'a q- c}+1, acj,a)~i) + J E (Sjsj+l -/lJ rtJ+l//4)' (6) 
j,z j 



Low-Dimensional Correlated Particle Systems 247 

Note the projector :P = 1-Ij (1 - n j  t n j l )  which ensures that double occupancies of 
sites are forbidden. At the supersymmetric point 2t = J, the system was shown 
to be integrable [9, 10]. 

In Section 2, the groundstate properties of Eq. (4) will be discussed on the 
basis of a Bethe ansatz for its eigenstates. The concept of Luttinger liquids will 
be introduced whose validity is much larger than the class of integrable one- 
dimensional systems. In Section 3, the finite temperature properties of Eq. (6) 
will be investigated via a combination of a Trotter-Suzuki mapping and an ap- 
plication of the so-called quantum transfer matrix. 

2 Groundstate properties 

The scattering processes for the system Eq. (4) factorize thereby permitting 
a systematic construction of eigenstates in the form of a Bathe ansatz, i.e. an 
appropriate superposition of plane waves in certain fundamental regions of phase 
space [8, 3]. There are two sets of rapidity variables, ,~j and As describing the 
charge and spin degrees of the system. For periodic boundary conditions they 
have to satisfy a set of coupled Bethe ansatz equations 

sin(Aj_ia)] L NI s in (Aj_Aa+iT/2)  
-+ia)J -= H sin (Aj As - - i 7 / 2 ) '  

a '= l  

N NI sin (As - Af~ + i7) (7) 
sin (A,~ - ~j __+ i7/2) _ _ H sin (As AZ -- i"f) ' 

H s in(A,  ;~j i 7 / 2 ) -  
j = l  fl=-i 

where L is the number of lattice sites and a is a constant, 

1 {ln [sinh ½07 + 7)] } 
a = ~ Ls-~nh½(,7-~ -~' ' ( 8 )  

The energy of the corresponding state is given in terms of the particle rapidities 
,~j as 

E = 2 Z cosh 2a - cosh 2---a--- co--s 2Aj ' 
j = l  

For the groundstate the magnetization is zero, requiring N 1 = N/2. Further- 
more, the minimization of the total energy requires a symmetrical distribution of 
Aj rapidities around zero as compact as possible. The N/2 rapidities As always 
fill up the total available space on the real axis from -Tr to r .  This structure 
of the groundstate distribution has important consequences for the excitations; 
see Fig. 1. For generic particle densities we have quasilinear energy-momentum 
excitations of the particle-hole type. The spin system does not allow for such ex- 
citations. The simplest possible excitation in this case is of the hole type which 
turns out to possess a gap; see Fig. 2. 

The existence of a spin gap also implies the existence of a charge gap. Let us 
manipulate the groundstate, which is a perfect singlet for even particle number 
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N, by adding one particle. The cost in energy is given by the chemical potential 
plus the spin gap. If we add two particles we have to pay the chemical poten- 
tial twice, but nothing else. We therefore find a positive binding energy of two 
particles 

Ebindi,g = 2[E0(N + 1) - E0(N)] - [E0(N + 2) - E0(N)] = 2Aspi, > 0, (10) 

which is twice the spin gap. 

--7~ ~ --~ 

Y 
" k  

P 

Fig. 1. Depiction of the distribution of a) charge and b) spin rapidities in the ground- 
state of Eq. (4). Also shown are the elementary charge and spin excitations of the 
system. 

The interesting question to answer is whether or not this binding of particles 
leads to a coherent state with off-diagonal long-range order, which is the criterion 
for superconductivity. Strictly speaking we do not expect such a condensation 
phenomenon to take place in one dimension. Nevertheless, it makes sense to 
look whether we have quasi long-range order, i.e. algebraic decay of the pair- 
correlation functions and whether these correlations are longer ranged than the 
density-density correlations. 

For the long-distance asymptotics of the density-density and pair correla- 
tions, we find 

(p(r)p(O)) ~_ p2 + Air-2 + A~r-" cos(2kFr), 2kF = ~rp, 

+ + , (11) (cr~cdcoicot) ~_ Br-~ 

whereas the one particle functions decay exponentially 

<c+oc0 ) = cos(kr )e . 0 2 )  

These properties, namely spin-charge separation and continuous exponents 
constitute a Luttinger liquid (i.e. a non-Fermi liquid). In fact, the spin excitations 
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are massive, so the system belongs to the Emery-Luther universality class. For 
such systems the momentum distribution function nk is absolutely smooth as it 
is the Fourier transform of the exponentially decaying correlation Eq. (12). 

The concrete calculation of the scaling dimensions x, describing the algebraic 
decay of correlations C~ -~ r -2x, consists of a combination of conformal field 
theory and finite-size scaling of energy levels 

2r  N + N - )  (I3) E~ - Eo = T v ( z  + + 

where L denotes the system size and v the velocity of the charge excitations, N + 
are the numbers of particle-hole excitations at the two Fermi points. The finite- 
size study can be done analytically and one finds an expression with so-called 
Gaussian dimensions 

n 2 .- 
x : + Kin2'2 (14) 

where n : AN/2 and AN is the change in particle number; m is the number of 
particle-hole excitations from one Fermi point to the other one. The parameter K 
characterizes the particular Emery-Luther theory and depends on the interaction 
strengths and the particle density p. 

The parameter K as well as the groundstate energy are determined by various 
integral equations for the density functions of charge and spin rapidities in the 
thermodynamic limit. As the spin system is massive the corresponding degrees 
of freedom may be 'integrated out' leaving for the charge system 

Ao 
2 sinh 2a [ 

27rp(~) = cosh 2a - cos 2~ + J ~(~ - ,)p(p)d#, (15) 
--~,o 

where ¢(~) = 1 + 4  ~,~--1 cos 2n~/(1 + exp(2nT) ) [7]. The parameter ~0 is deter- 
mined by the subsidiary condition for the total density p = N/L of the electrons 

f p(A)dA = (16) p. 

--~o 

Finally, the parameter K is related to the so-called dressed charge ~(A) by 

K = ~()~0)2/2. (17) 

The dressed charge function in turn has to satisfy the integral equation 

Ao 
I *  

= + / - (lS) 

--AO 

This equation can be solved numerically from which the exponents follow via 
Eq. (14). For the correlations in Eq. (11) we obtain 

a = 1//3 = K. (19) 
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Fig. 2. The spin gap of the model for various particle densities and interaction param- 
eters 7/(note that the special case with maximum correlated hopping interaction 7 = 
is considered). 

The model does not show finite off-diagonal long-range order. However, we 
observe a longer range of the pair correlations in comparison to density-density 
correlations for certain regimes of interactions and particle densities; see Fig. 3. 
For all values of the interaction parameters 7/and 7, there is a crossover from a 
regime with dominant density-density correlations (1 < fl < 2) to a regime with 
dominant pair correlations (fl < 1) at a "critical density" Pc. 

Finally, we should like to comment on the relation of the parameter  K charac- 
terizing the Emery-Luther liquid with macroscopic quantities such as the com- 
pressibility and charge stiffness. By combining Eqs. (13) and (14), we obtain 
an explicit expression for the second derivative of the groundstate energy with 
respect to the density of particles 

~ 2 e  71"1) 
a p  2 - 2 K '  (20) 

which is nothing but  (~p~)-i  where J¢ denotes the compressibility. A little more 
involved is the derivation of the charge stiffness resp. the Drude peak D of the 
electrical conductivity at zero frequency 

K v  
D = - - .  (21) 

?r 
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Fig. 3. a) Depiction of the density dependence of the groundstate energy per site E0 
and the exponent/~ of the pair correlation function for values 7 = 0.5, and ~/= 0.6, 1, 
2, 4. b) Similar to a) for ~/= 1, and 7 = 0.1, 0.3, 0.5, 0.7, 0.9. 

For technical details we refer to Ref. [11]. 

3 T h e r m o d y n a m i c s  o f  i n t e g r a b l e  s y s t e m s  

Next we study integrable quantum chains at finite temperature. At first glance, 
the knowledge of the Bethe ansatz equations for the energy eigenstates seems to 
provide the necessary information for calculating the partit ion function. How- 
ever, only low-lying energy states are easily accessible, i.e. the elementary ex- 
citations of the system. A superposition of these excitations even for the low- 
temperature  limit will fail as we have to study states where the number of 
elementary excitations is comparable to the number of sites. In this case the el- 
ementary excitations cease to be independent. The traditional way to deal with 
the residual interaction between the elementary excitations consists of a descrip- 
tion of the rapidity distribution in terms of density functions. The interaction of 
the elementary excitations is due to the Bethe ansatz equations and takes the 
form of non-linear integral equations at finite temperature. In general, however, 
there are infinitely many such equations to be solved [12]. This poses quite a 
numerical problem. In addition, the traditional approach does not provide infor- 
mation for the correlations of the model. 
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In order to face the mentioned problems a different route is taken here [13, 14]. 
Instead of tackling the quantum Hamiltonian at finite temperature directly, the 
system is first mapped to a classical model. Quite generally this is possible for 
d-dimensional quantum systems leading to d + 1-dimensional classical models. 
Here, we sketch the procedure known as Trotter-Suzuki mapping [15] for one- 
dimensional systems with nearest-neighbour interactions hj,j+l. We arrange the 
interaction terms in two groups depending on j being odd or even H = Ho + H~. 
So, each Ho (He) is a sum of commuting terms, non-commutativity appears only 
for two local interactions with odd as well as even indices. Next, we express the 
parti t ion function of the quantum system in terms of exponentials of Ho and H~ 

Z =  T r e x p ( - f l H )  = [exp (--~Ho)exp (--~He , (22) 

which becomes an exact relation for N --~ cx~, i.e. for infinitely many ' t ime slices'. 
The merit of this formula is the simple structure of the right hand side which 
may be interpreted as the product of transfer matrices of a classical system on a 
square lattice with local interactions of spins a, b, c, d around lattice faces giving 
rise to Boltzmann weights 

w(a,b,c,d)=(a,b exp ( - - ~ h )  c, d), (23) 

where h is the local quantum mechanical interaction. 
The further analytic study of the system is greatly simplified by the right 

choice of an adequate transfer matrix. The first idea of taking the row-to-row 
transfer matr ix  proves to be a dead end as this matr ix  has an excitation gap 
of order 1/N and we have to take the limit N --~ cx~. Therefore, all eigenvalues 
of this matr ix  would have to be taken into account for the calculation of the 
parti t ion function. The column-to-column transfer matr ix (also known as the 
quantum transfer matrix) enjoys quite different and more convenient properties 
[16, 17]. First, this transfer matr ix shows a gap persisting in the limit N ---* oo. 
Second, the corresponding transfer direction is identical to the space direction. 
Hence, only the largest eigenvalue of the column-to-column transfer matr ix  is 
needed for calculating the partit ion function; the next-largest eigenvalues give 
the correlation lengths of the static correlation functions. 

For the supersymmetric tJ model the quantum transfer matr ix  can be di- 
agonalized by an algebraic Bethe ansatz [14]. I skip the technical details of the 
derivation, but should like to comment on some aspects of the method. The 
Bethe ansatz equations in the traditional form are difficult to treat in the limit 
N ~ c~. However, they can be transformed into a set of two non-linear integral 
equations which, first, permit the limit N ---, cx~ to be taken analytically and, 
secondly, admit a straightforward numerical solution. 

Now we consider various thermodynamic quantities at arbitrary tempera- 
tures as obtained numerically from the integral equations [14]. Fig. 4 shows the 
specific heat as a function of T for different fixed particle densities. First of 
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all, we note a linear temperature dependence at low T. According to confor- 
real field theory, the coefficient is given by 7r(1/v, + 1 /v¢) /3 ,  where v,  and v¢ 
are the velocities of the elementary spin and charge excitations. Our numerical 
data are consistent with this expression. Furthermore, we observe two maxima 
with changing dominance for increasing particle density n. The nature of this 
structure can be understood from the elementary excitations of the system. In 
the groundstate the particles are bound in singlet pairs with binding energies 
varying from 0 to some density dependent value. There are two types of exci- 
tations. First, there are charge excitations due to energy-momentum transfer 
onto individual pairs. Second, there are excitations due to the breaking of pairs. 
The latter excitation is of a spin type at lower excitation energies, but changes 
character at higher (density dependent) energies to a charge type as it describes 
the motion of single particles [18]. Therefore, the first and second maximum at 
lower densities (Fig. 4a) are caused by charge excitations due to pairs and single 
particles, respectively. At higher densities (Fig. 4b), the maximum at lower tem- 
peratures is dominated by excitations of pairs whereas the second one at higher 
temperatures is caused by spin excitations. For increasing concentration the spin 
contribution becomes dominant as the charge excitations freeze out. This is in 
accordance with the limiting case n = 1 leading to the spin-l /2 Heisenberg chain. 
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Fig. 4. a) Specific heat as function of T for different particle densities n with n _< 0.6. 
b) Similar to a) with n > 0.6. 

4 Conclusion 

I have presented analytical results for one-dimensional correlated fermion sys- 
tems. The low-lying excitations and correlation functions of a model with bond- 
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charge and Hubbard-type interactions have been presented. The properties of 
this system constitute a Luther-Emery liquid with a crossover from a regime 
dominated by density-density correlations to a regime with dominant pair cor- 
relations. Finally, methods for the treatment of the thermodynamical  aspects of 
integrable systems have been presented, pemitting a test of the Luttinger liquid 
picture at finite temperatures. So far, the concept of the quantum transfer ma- 
trix was used for the thermodynamical  potential of the integrable tJ  chain, but  
it is potentially more powerful as it also provides information on the correlations 
at finite temperatures [13]. 
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Abst rac t :  The critical behaviour of two-dimensional (2D) anisotropic sys- 
tems with weak quenched disorder described by an Ising model (IM) with 
random bonds, the N-colour Ashkin-Teller model (ATM) and some of its gen- 
eralizations is studied. In the critical region, these models are shown to be 
described by a multifermion field theory similar to the Gross-Neveu model 
with a few independent quartic coupling constants. Renormalization group 
calculations are used to obtain the temperature dependence near the critical 
point of some thermodynamic quantities and the large distance behaviour of 
the two-spin correlation function. The equation of state at criticality is also 
obtained within this framework. We find that the random models under con- 
sideration belong to the same universality class as that of the two-dimensional 
IM. The critical behaviour of the 3- and 4-state random-bond Potts models is 
also briefly discussed. 
PACS numbers: 05.50.+q, 05.70.Jk, 75.10.Hk, 75.40.Cx 

1 I n t r o d u c t i o n  

The critical properties of two-dimensional random spin systems have been ex- 
tensively studied in the past few years [1],[2],[3]. Two-dimensional (2D)systems 
are particularly interesting for the following reasons: first, there are numerous 
examples of layered crystals undergoing continuous antiferromagnetic and struc- 
tural phase transitions [4], [5]. Perfect crystals are the exception rather than 
the rule, quenched disorder always existing in different degrees. Even weak dis- 
order may drastically affect the critical behaviour. Secondly, the conventional 
field-theoretic renormalization group (RG) approach based on the standard ¢4 
theory in (4-e)-dimensions,  as applied to study properties of disordered systems 
by Harris and Lubensky [6] and Khmelnitskii [7], does not work in 2D due to the 
hard restriction e<<l. Some early exact results concerning the 2D random-bond 
IM with a special type of disorder (where only the vertical bonds are allowed 
to acquire random values, the horizontal bond couplings being fixed) have been 
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obtained by McCoy and Wu [8]. This type of 1D quenched disorder without frus- 
tration was shown to smooth out the logarithmic singularity of the specific heat 
(the frustrated case was considered by Shankar and Murthy [9]). Many years 
ago Dotsenko and Dotsenko [1] initiated some considerable progress in the study 
of 2D random-bond IMs by exploiting the remarkable equivalence between this 
model and the N=0 Gross-Neveu model. For weak dilution, the new tempera- 

T-T, being the ture dependence of the specific heat was found to be lnln 7-, r = T¢ 
reduced deviation from the critical temperature. However, their results concern- 
ing the two-spin correlation function at the Curie point were later questioned 
by Shalaev [10], Shankar [11], and Ludwig [12], [13]. Using the RG approach 
and the bosonization technique these authors showed that the large-distance be- 
haviour of this function at criticality was the same as in the pure case. Some 
arguments in favour of the pure IM fixed point governing the critical behaviour 
of the 2D IM with impurities were given earlier by Jug [36]. Recently, a good 
number of papers devoted to Monte-Carlo simulations of the critical behaviour 
of the impure IM have been published [15]. Most of the Monte-Carlo data are in 
good agreement with the analytical results obtained in [10],[11],[12]. 

Now, there is some scope to extend the previous analysis for the 2D random 
IM to other issues. An interesting possibility is to study critical phenomena in 2D 
dilute anisotropic systems with many-component order parameters. The analysis 
of the critical behaviour of such systems in (4 - e)-dimensions was developed in 
great detail many years ago [16] but cannot be directly applied to the 2D case. 
Therefore it would be interesting and important to study these 2D models. The 
key ingredient of our treatment is that, following Shankar, we map the initial 
Landau Hamiltonian, written in terms of scalar fields, onto a multifermion field 
theory of the Gross-Neveu type with a few independent quartie couplings [17] 
(see also Refs. [18], [19]). This transformation can be done for Hamiltonians 
containing only even powers of each order parameter component, the fourth- 
order term being an invariant of the hypercubic symmetry group. It should be 
stressed that this method is quite general and may be extended to other systems. 

The work presented in this paper is organized as follows. In Section II, we 
consider the 2D IM with random bonds. The transfer matrix formalism is set 
up and the corresponding equations are written down. In Section III, we give a 
description of the critical behaviour of the pure N-colour Ashkin-Teller model, 
as well as the critical properties of two interacting N- and M-colour quenched 
disordered ATM's. The RG method is used to obtain the exact temperature de- 
pendence of the correlation length, specific heat, susceptibility and spontaneous 
magnetization near criticality and the equation of state at the critical point. 
The computation of the two-spin correlation function for pure and impure mod- 
els at criticality is also reviewed. Section IV contains a brief discussion of the 
critical behaviour of random minimal conformal field theory models and some 
concluding remarks. 
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2 T h e  T w o - D i m e n s i o n a l  I s i n g  M o d e l  w i t h  R a n d o m  B o n d s  

The classical Hamiltonian of the 2D Ising model with random bonds defined on 
a square lattice with periodic boundary conditions is 

N 

H = -  E [Jl(i'j)sqso+l + J2(i'j)sijsi+U]' (2.1) 
i,.~l,j=l 

where i , j  label the sites of the square lattice, slj = ±1 are the spin variables, 
Jl(i,j) and J~(i,j) are the horizontal and vertical random independent cou- 
plings, each having the same probability distribution, 

P(x) = (1 - p)g(x - J) + pS(x - J'), (2.2) 

with p being the concentration of impurity bonds, and both J and J ' ,  assumed 
positive so that the Hamiltonian favours aligned spins. Notice that both anti- 
ferromagnetic couplings (creating frustration) and broken bonds (J '  = 0) lead 
to ambiguities in the transfer matrix and must be excluded in this treatment.  
Let us now consider the calculation of the partition function of the model under 
discussion, namely 

Z = E e x p ( - H ) ,  (2.3) 

where H is defined in Eq. (2.1) and the sum runs over all 2 N2 possible spin 
configurations. The partition function is represented as the trace of the product 
of the row-to-row transfer matrices ~bi [20], [21], [22], i.e. 

N 

Z = T r H ~ .  (2.4) 
i--'--1 

The Hermitian 2 N × 2 N matrix ~ rewritten in terms of spin variables [2], [20], 
[21], [22] is 

1 N 
1 ~jl(i , j)tr3(j)a3(j+l))exp(_~EJ;(i,l)tTx(l)),  (2.5) = e x p ( ~  

j----1 I = 1  

where era, a = 1, 2, 3 are the Pauli spin matrices; here J2 and J~ are related by 
the Kramers-Wannier duality relation [20], [21], [22], viz, 

tanh( J~ 2J2- = e x p ( - - y - ) .  (2.6) 

In Eq. (2.5) we have set an irrelevant factor to unity. Since the non-averaged 
operator T~ in Eq. (2.7) is random, the representation in Eq. (2.4) is in fact 
inappropriate for the computation of the partition function. In order to get a 
convenient starting point for further calculations, we apply the replica trick. We 
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introduce n identical "replicas" of the original model labelled by the index a, 
= X, . . . ,n  and use 

1 
P = -T in  Z = - T  lim - ( Z  n - 1), (2.7) 

n - * 0  n 

the well-known identity for the averaged free energy. Substituting Eq. (2.4) into 
Eq. (2.7), one obtains 

n N 

r =  -TlimtT  1-1 1-I T" - (2.8) 
n 

a = l  i=1  

In contrast to the case of random-site disorder, for the random-bond problem, 
the two matrices 7~/~ and Tj~ with different row indices i # j depend on two 
different sets of random coupling constants and commute with each other for 
any a,/3. This allows us to average these two operators independently. After 
some algebra one arrives at 

Z--~ :_ T r ~  "N , 

where the transfer matrix J' of the 2D random-bond IM [2] is given by 

(2.9) 

n 

~ = 1  

= exp log[(1 - p)exp(~ a ~ ( j ) ) o ' ~ ( j  + 1) + (2.10) 
o¢----1 

+ pexp(-~ ~ ( j ) ~ ( j  + 1))] × 
a = l  

N j ,  j , i  
× e x p { ~ l o g [ ( 1 -  p) exp(-~- ~ a ~ ( j ) ) +  pexp(-~- ~ a~(j))]} 

j = l  ~ = I  ~ = I  

Setting p to zero (or J = J~) one is indeed led to the well known expression for 
the T-operator of the pure IM [20], viz. 

j N , 
T =  exp{~ E er3(j)a3(J + 1)} exp{-~- N E o h ( j ) } .  (2.11) 

j = l  j = l  

The T-matrix is known to possess the Kramers-Wannier dual symmetry. In the 
language of spin variables this nonlocal mapping [21],[22] is 

~3(k) -- 1"I ~l(m),  
rn<k 

(2.12) 
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where the operators ra(k) satisfy the very same algebra as the Pauli spin matrices 
c%(n). It is easy to see that if p = 0, 0.5, 1, the T-matrix given by Eq. (2.11) is 
invariant under the dual transformation. The plausible assumption that there is 
a single critical point yields the equation for the Curie temperature T¢, obtained 
by Fisch [23], 

exp(_ 2J') _J 
Tc = tanh(Tc)- (2.13) 

Notice that the point p = 0.5 is not the percolation threshold, because the cou- 
pling constants J and J '  are assumed to take nonzero values with ferromagnetic 
sign. Writing T in the exponential form 

= exp(-ft), 
one obtains the partition function 

(2.14) 

Z = Tr exp(-N/;/),  (2.15) 

where by definition/7/is just the logarithm of the transfer matrix T (the "quan- 
tum" Hamiltonian), which is not a simple local operator. The crucial simplifica- 
tion occurs after taking the y-continuum limit with % ~ 0 (the lattice spacing 
along the y-axis). After setting ay to zero, the logarithmic derivative of T with 
respect to %, the "quantum" Hamiltonian, takes the simple form (for details see 
[2]) 

dln5 b N n 
/7/_ ~ ](a,=0) = - Z{KlO'~(j)o'~(j + 1) + K~ ~ ~ ( j )  

j = l  c t=l  

n 

I Of " Ot " I I  + K4(qa (3)~r3 (3 -t- 1)) 2 + K 4 ( E  ~7(J))2}" (2.16) 

The higher-order terms in the spin operators are known to be irrelevant in the 
critical region, so that they can be dropped in Eq. (2.16). The replicated Hamil- 
tonian, Eq. (2.16), may be converted into the fermionic one by means of the 
Jordan-Wigner transformation [21],[22], i.e. 

m--1 

c"(m) = 1-[ 
j = l  

rrt-1 

cC'+ (m) = tr%(m) H a~(j)O", 
j=l  

1 
ct -1  N 

o °=  YI 1-[ 
jg=l j = l  

c~ = 1, ...,n, 

(2.17) 
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where c~'(rn) and c~'+(m) are the standard annihilation and creation fermionic 
operators that satisfy the canonical anticommutation relations 

{c"(m), c ~+ (n)} = 6~Z6mn, {ca(m), cZ(n)} = 0. (2.18) 

After making the different species anticommute, the Klein factors Q~ drop out 
of H. For each species it is convenient to introduce a two-component Hermitean 
Majorana spinor field [24] 

1 ~ .71" o +  .71" 
¢~(n) ---- ---~-~[c (n )exp( - -z~)+  c (n)exp(,~)] ,  

1 Ice(n) "~ "4 ¢~ (n) - ~ exp(,~) + ~+(n) exp(--, )] 

with standard anticommutation rules 

(2.19) 

{¢7(.), ¢~(m)}  = L 6 ~ 6 b c ~ m ,  c, b = 1, 2 (2.20) 
a x  

where a~ is the lattice spacing along the x-axis. Now let us note that  in the 
vicinity of To, the correlation length ~ goes to infinity and the system "forgets" 
the discrete nature of the lattice. For this reason we can simplify the Hamiltonian 
by taking the continuum limit a~ ~ 0. Performing simple but cumbersome 
calculations, we arrive at the 0(n)-symmetric Lagrangian of the Gross-Neveu 
model ([1]) 

(2.21) L = / d2x[i¢aO¢~ + rn0¢~¢~ + u0(¢~¢~)2], 

where %, = (Tu,O = %Ou,tt  = 1,2,5  = ¢T70 and 

T - Tc ,.~ K '  4 + K~4 '. (2.22) m o  "~ K l  - K 2  "~ T - -  , Uo 
T¢ 

Here m0 and u0 are the bare mass of the fermions and the quartic coupling 
constant, respectively. Note that i f p  << 1, then uo "" p. Provided p = 0.5 and 
T = T¢, we have Uo "~ (J - j ,)2 

3 T h e  n - C o l o u r  A s h k i n - T e l l e r  M o d e l  

The N-colour ATM (introduced by Grest and Widom [27]) is a system of N 2D 
IM models coupled together as in the conventional 2-colour model. The lattice 
Hamiltonian of the isotropic N-colour ATM is 

N N 

H = -  Z { J Z s ~ s ~  + J4[Y~s~s~ ]2}' (3.1) 
< n n >  a = l  a = l  

where s a = + l ,  a = 1, ..., N, < >  indicates that the summation is over all the 
nearest-neighbour sites and J4 is a coupling constant between Ising planes. 
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This model was shown to be the lattice version of a model with hypercu- 
bic anisotropy, describing a set of magnetic and structural phase transitions in 
variety of solids [16], [28]. In particular, in the replica limit the Hamiltonian, 
Eq. (3.1), describes the random-bond Ising model (for J4 < 0). 

By exploiting the operator product expansion (OPE) approach, Grest and 
Widom obtained the one-loop fl-function for Jd- If J4 < 0 and N > 2, the phase 
transition was shown to be continuous and the critical behaviour to belong to 
the 2D IM universality class [27]. 

The exact solution of the multi-colour ATM in the large N-limit was found 
by Fradkin [29], who showed that a second order phase transition with IM crit- 
ical exponents occurs if J4 < 0. As was shown by Aharony [30], the model with 
hypercubic anisotropy, Eq. (3.1), in the large N-limit is appropriate for the de- 
scription of the critical behaviour of the annealed random ]M in accordance with 
the exact solution obtained by Lushnikov [31]. 

In the critical region the N-colour ATM was shown to be equivalent to the 
0(N)-symmetric Gross-Neveu model, Eq. (2.21), where we must set g = n [17] 
(see also [18] and [19]). Note that the discrete hypercubic symmetry of the N- 
colour ATM evolves into a continuous 0(N) symmetry, hidden when the system 
approaches the critical point. 

The one-loop RG equations and its initial conditions are given by 

du ( N  - 2)u 2 dln F (1 - N ) u  
d---t = f l (u)  - r ' dt = -7¢¢  (u) - lr ' 
u( t  = O) = no, F ( t  = O) = 1, (3.2) 

where u is a quartic fermionic coupling constant, f l (u)  is the beta-function, 
3~¢¢(u) is the anomalous dimension of the composite operator each,  t = In 
and a and m are the lattice spacing and renormalized mass, respectively. F is 
the Green's function 

F = ~ - d2xd2y  < ¢ ( x ) ¢ ( y ) ¢ ( O ) ¢ ( O )  > (3.3) 
d r  

at zero external momenta. The solution of these equations gives the temperature 
dependence of the correlation length ~ and specific heat C in the asymptotic 
region t ---* c~ [19], i.e. 

N--I 

u-- - -  F ".t -N-2, 
(N - 2)t' 

= m-1 

C , , ~ / d t F ( t ) 2 , ~  [ln(1)]~-NN. (3.4) 

In order to complete the calculation of the temperature dependence of the other 
thermodynamic quantities, we have to compute the large-distance asymptotic 
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behaviour of the two-spin correlation function at criticality. The most effective 
way of calculating correlation functions for the 2D IM is to use bosonization. Be- 
low we shall give a brief description of this procedure, exploiting simple physical 
arguments. 

Let us now begin with the action 

f 
L = J d2x{/~)a¢ + [m0 + T(X)] I~I~}, (3.5) 

where ¢ is a Majorana spinor and T(X) is a Gaussian distributed field. In fact, 
the action Eq. (3.5) describes free fermions moving in the random potential 
T(X) responsible for spatial fluctuations of a local To(x) introduced by weak 
disorder. After applying the replica trick and averaging over "all" the possible 
configurations of r(x), one arrives at the very same Gross-Neveu Lagrangian 
given by Eq. (2.21). The representation of the square of the two-spin correlation 
function of the pure 2D IM in terms of the path integral over the real bosonic 
field ¢ of quantum sine-Gordon model was found by Zuber and Itzykson [24] 
(see also [25] and [26]) and is 

G(x - y)2 = Z-1 ~2~r2a2 / D¢ sin(x/-4-~r¢(x)) sin(x/~r¢(y)) exp{-S}, 

1 / d2x{(0u¢)2 2m0 
5: = ~ + 7re cos(x/~¢)}, (3.6) 

Z = / De exp{-S}. 

At criticality, rn0 = 0, the path integral is Gaussian and the result of its evalu- 
ation is easily shown to be 

G(x - y) ~-, Ix - yl-{. (3.7) 

The representation of the two-spin correlation function may be extended to the 
dilute system by replacing in Eq. (3.7) the bare mass m0 ~ r with the random 
one m0 + v(~). The averaged correlation function G(x - y) at the Curie point 
may be computed (even without using the replica trick) in two stages: (i) first, 
the square root of G(x, y)2 is formally evaluated by means of an expansion 
in a power series in v(x); (ii) secondly, the resulting expression is integrated 
with respect to r(x) (for technical details of the calculations, see [2], [26]). The 
conventional RG equation for the renormalized averaged correlation function is 

D D 

with # and ~(u) being a renormalization momentum and the anomalous spin 
dimension, respectively, and 

r/(u) = 13(u) dlnZ~(u) 
du 

(3.9) 
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Here the spin renormalization constant Z~(u) and the renormalized correlation 
function are defined in the standard way, viz. 

G(p) -- Z,,(u)GR(p, u, #). (3.10) 
The Kramers-Wannier symmetry was shown to apply to some vanishing terms 
linear in u in the expansions for 0(u) and Z,,(u) [2], that is 

7 Z,,(u) = 1 + O(u2), O(u) = ~ + O(u2). (3.11) 

Given fl(u) and 7}(u), the solution of the Ovsyannikov-Callan-Symanzik equation 
for the two-spin correlation function is quite simple, namely 

C(p) ~ p-r ,  G(R) .., R -¼. (3.12) 

So the Fisher critical exponent has the very same value 7] = ¼ as in the 2D IM, 
irrespective of the value of N. From Eq. (3.12), it follows that the temperature 
dependence of the homogeneous susceptibility and the spontaneous magnetiza- 
tion are described by power-law functions of the correlation length { (without 
logarithmic corrections like In ~), viz. 

7 1 7(~-n 
X "~ ~2-0 ~ r -  ~ [In 7] ,--~w~, 

1 (N- , )  
M -~ ~ -~ (-r)-~[ln ~Z-~]rmz57. (3.13) 

The equation of state at the Curie point may be obtained from the usual scaling 
relation 

.,~ M 15" H .-, M , (3.14) 

Notice that these results are valid only for N > 2 and J4 < 0. If -/4 > 0, the 
discrete 7s symmetry ¢ ---* 7s¢, ¢¢ -+ - ¢ ¢  is spontaneously broken. From the 
75-symmetry-breaking, it follows that < ¢¢ > ¢  0. This means that we have a 
finite correlation length, or, in other words, a first-order phase transition [17], 
[27]. 

Thus equations Eq. (2.22) reproduce the well-known results for particular 
cases, namely N = 0, 1, and co corresponding to the random-bond problem, 
Onsager problem, and IM with equilibrium impurities, respectively. 

The symmetric eight-vertex model (or the Baxter model) is known to be 
isomorphic to the N = 2-colour ATM in the vicinity of the critical line. The 
phase diagram of the 2-colour ATM was shown to contain the ferromagnetic 
phase transition line beginning at the IM critical point and ending at the point 
corresponding to the 4-state Potts model. Along this line the model exhibits 
nonuniversal critical behaviour, the critical exponents varying continuously. In 
this case the above results obviously show the pathology at N = 2 due to the 
factor N-~-2" The system under discussion is described by the 0(2)-symmetric 
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Gross-Neveu model, or, equivalently, by the massive Thirring model, presenting 
nonuniversal critical exponents [17]. Since the N = 3-colour ATM is equivalent 
to the 0(3)-symmetric Gross-Neveu model which is known to be supersymmetric 
([32]), this model should possess a hidden supersymmetry (see for details [17], 
[is]). 

The main conclusion of this Section is that the critical behaviour of the 2D 
N-colour ATM and the random bond IM is governed by the pure IM fixed point. 
This implies that all of the critical exponents of these systems are the very same 
as the 2D IM. Randomness gives rise to the self-interaction of the spinor field 
which leads to logarithmic corrections to the power laws. 

We may also extend our study of the N-colour ATM to two interacting M- and 
N-colour quenched disordered ATM, giving a generalized Ashkin-Teller model 
(the particular case g = M = 1 was studied in [34]). The cumbersome RG 
calculations show that, in contrast to a 2D IM with random bonds, the weak 
quenched disorder is here irrelevant near T¢. Moreover, in the critical region 
the decoupling of the two interacting multi-colour ATM's was found to occur 
even in the presence of quenched disorder. The temperature dependence of the 
main thermodynamic quantities near the critical point, the two-spin correlation 
function and equation of the state at criticality are given by Eqs. (3.4), (3.13) 
and (3.14) (see for details [33]). 

4 C o n c l u s i o n s  

It has been shown that the critical behaviour of a good number of 2D anisotropic 
systems controlled by the IM fixed point is stable in the presence of quenched dis- 
order. This statement was found to hold quite generally for the 2D IM, the multi- 
colour ATM, and some of its generalizations for which randomness is marginally 
relevant. In the case of the 2-colour ATM, or the Baxter model, disorder drasti- 
cally changes the nonuniversal critical behaviour inherent in these models over to 
the Ising-type critical behaviour. Although some of these models exhibit a break- 
down of the Harris criterion, this does not affect, in general, the stability of the 
IM fixed point. It is commonly believed that the type of randomness (random- 
bond, or site-disorder) does not play a role, despite the fact that  random-site 
disorder has not been studied in great detail as yet. 

Basically Monte Carlo simulation results are in a good agreement with the 
analytical results based on RG calculations [15]. For instance, the high-accuracy 
MC simulation results for a 1024 x 1024 Ising lattice with ferromagnetic impurity 
bonds recently obtained by Schur and Talapov [15], show that  the two-spin 
correlation function at criticality is numerically very close to that  of the pure 
model. On the other hand, numerical results obtained by Wiseman and Domany 
[15] somewhat contradict the theoretical predictions. These results for a 256 x 256 
lattice favour a log-type behaviour of the specific heat near Tc for the disordered 
2-colour ATM and 4-state Potts model, and a double-log behaviour of the specific 
heat for the random-bond IM. As was established by Dotsenko and Dotsenko 
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[34], the specific heat of the impure 2-colour ATM should exhibit a double-log 
divergence at the critical point. 

A very interesting problem which remains to be solved is the critical be- 
haviour of the minimal models of a conformal field theory with c < 1 per- 
turbed by a small number of impurities. In accordance with the Harris crite- 
rion, weak quenched disorder is expected to be strongly relevant near criticality 
since the critical exponent o~ of these models is always positive and given by 
c~ = ~ m = 3, 4, [35]. In particular, for the 3- and 4-state Potts model, 

3 ( m - l ) '  " '" 

we have a = ½, (m = 5), and c~ = ~, (m --- co), respectively. The first results 
in this field were obtained in the pioneering papers by Ludwig [36], Ludwig and 
Curdy [37] and Dotsenko, Picco and Pujol [38]. They succeeded in developing 
an approach essentially based on the powerful conformal field theory technique. 
These authors suggested a special kind of e-expansion, with e = c -  ½, to compute 
the critical exponents. Here c is the central charge of the minimal models with- 
out randomness and ½ is the conformal anomaly of the 2D IM. The main result 
of their considerations is that the/?(u) and 7~¢(u) functions coincide with the 
corresponding functions for the 0(N)-symmetric Gross-Neveu model obtained in 
the framework of the minimal substraction scheme combined with dimensional 
regularization. The distinguished feature of this scheme is that these functions 
do not depend on e except for the first term in the/~-function. The three-loop 
results for the critical exponent u for random 3- and 4-state Potts models ob- 
tained in [33] are u(5) = 1.018 and u ( ~ )  = 1.081. The critical exponent ~?(u) 
in the three-loop approximation was obtained in [38]. It turns out that  the nu- 
merical values of ~? are in the close vicinity of the IM value of ~? = 0.25. Thus 
the critical behaviour of the random 3- and 4-state Potts model was shown to 
be described by a new impure fixed point which does not coincide with the IM 
one [38],[36], but the numerical values of critical exponents of weakly-disordered 
minimal models are very close to the critical exponents of the 2D IM. It is in- 
teresting to compare the estimate for the critical exponent of the 4-state Potts 
model based on the 3-loop approximation with the known numerical results. 
For the Baxter-Wu model (equivalent to the 4-state Potts model), Novotny and 
Landau [39] obtained u = 1.00(7). The result of Andelman and Berker [40] is 
given u -- 1.19. Finally, the recent result obtained by Schwenger, Budde, Voges, 
and Pfnur [41] is u -- 1.03(8). 

Thus, the introduction of disorder leads to critical behaviour as characterised 
by the IM fixed point, for the minimal models of conformal field theory this 
Ising behaviour, conjectured in [42] for the 2D Potts models, is actually only 
approximate. The accuracy with which the Ising values of the exponents is ob- 
served, however, justifies the use of the term "IM superuniversality" for all these 
discrete-symmetry models when disordered. 
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Abs t r ac t :  A method for studying critical behaviour in non-integer space 
dimensions is discussed. The critical exponents of several models commonly 
used in the theory of phase transitions are calculated for the case of non-integer 
space dimension. The calculations are performed using a fixed-dimension field 
theoretical approach. The renormalization group functions in the Callan-- 
Symanzik scheme are considered directly in non-integer dimensions. Pertur- 
bation theory expansions are resummed with the use of Pad@-Borel transfor- 
mation. 

1 I n t r o d u c t i o n  

The notion of non-integer space dimension is now common in the theory of 
critical phenomena.  There exist different reasons for introducing this concept: 
on the one hand, the treating of the space dimension (or its deviation from some 
definite fixed value) as a continuous variable and a perturbat ion theory series 
expansion parameter  makes it possible to obtain results for integer d as well. 
Here one should mention not only the famous ~ --- 4 - d expansion [1] whose 
application to the theory of critical phenomena led to the calculation of reliable 
values of the critical exponents for a whole range of 3d models (see [2]- [4] ) 
but also c = d -  1 expansion, introduced for the near-planar interface [5] - [7] 
and droplet [8] models, and the x/if-expansion for the weakly dilute Ising model 
[9, 10], etc. 

On the other hand, continuous variations of the space dimension d by means 
of analytic continuation of hypercubic lattices to non-integer d are used to link 
the results obtained for certain fixed (integer) d to exact ones (if they exist for 
some value of d) or to results of other calculational methods. Further, there exist 
models in which new phenomena appear at some (non-integer) space dimension 
and the problem of the definition of this marginal dimension arises. Thus the 
task of studying the critical behaviour of some model directly at non-integer d 
can occur. In the case of the Ising model such studies have been made using 
various methods [11]- [201. 
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In the majority of the above-mentioned papers, the purely formal character 
of the analytic continuation in terms of dimension d has resulted in an interest 
in the comparison of the critical exponents obtained in this manner with the 
values of the critical exponents of the corresponding spin systems placed on the 
sites of self-similar fractal lattices (see [21, 22], where the non-integer fractal 
dimension can be treated as a purely geometric property. Unfortunately, the 
description of the fractal involves several factors that can vary independently 
of one another. In addition to the fractal dimension they are: the topological 
dimension, ramification, connectivity and lacunarity. It appears that the critical 
exponents strongly depend on these parameters [14] - [16], [23] and only in the 
limit of zero lacunarity is it now believed that the results for spin systems on 
fractal lattices may be interpolated by analytic continuation to non-integer d. 
The question of the correspondence of the critical behaviour on fractal lattices 
to the critical behaviour on interpolated hypercubic lattices is still open [23] - 
[25]. 

This article reviews some of our recent calculations of the universal character- 
istics of the critical behaviour of model spin systems on interpolated hypercubic 
lattices in non-integer d. Our work involves the fixed dimension renormalization 
group approach. Following Parisi [26] who performed calculations directly in 3 
(or 2) dimensions, we consider the renormalization group functions directly in 
an arbitrary non-integer dimension d. This allows us to avoid the e-expansion 
when studying the critical behaviour in non-integer d. As will be seen, for some 
models we can complete the existing data whereas for certain cases the approach 
is the only one way to obtain reliable values of critical exponents in non-integer 
dimension d. 

2 M o d e l s  a n d  t h e  r e n o r m a l i z a t i o n  p r o c e d u r e  

We concentrate here on three models commonly used in the theory of phase 
transitions: the Ising model, m-vector (O(m)-symmetrical) model and m-vector 
model in the presence of weak quenched disorder. This choice enables us both 
to demonstrate the main peculiarities of critical behaviour in non-integer d and 
to show how the method under consideration works in different cases. The Ising 
model has a Hamiltonian which, in the absence of an external magnetic field, is 
given by: 

H=JZS, Sj, (2.1) 
i , j  

where the spins Si take the values -4-1, and the summation is over nearest- 
neighbour sites on the lattice. As is well known [3, 27], one can describe the 
long-distance properties of such a model in the neighbourhood of a second-order 
phase transition in the terms of a continuous Euclidian field theory with the 
Lagrangian: 

1 (2.2) 
c ( ¢ )  = [IV¢12 + + 4! T j ,  
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where m02 is a linear function of the temperature, u0 is the bare coupling, ¢ = 
¢(R) is an one-component field. 

This model can be generalized by introducing into Eq. (2.2) a multiplet of m 
fields forming a representation of the group O(m). In this case the Lagrangian 
reads: 

1 + + ~-.t Iq~ I }, (2.3) c(~) : / d ~ R { ~  [Iv~l ~ m~l~l ~] ~0 , 

where q~ = ~b(R) is the vector field ¢ = (¢1, ¢2 , . . . ,  era). The corresponding spin 
Hamiltonian is the scalar product of m-component vectors S, i.e. 

~ : j Z s ,  s~. (2.4) 
i , j  

The spin system described by the Hamiltonian Eq. (2.4) in the case of weak 
quenched disorder, in which a portion of the sites is empty and the occupied sites 
and randomly distributed are fixed in certain positions, is the so-called quenched 
m-vector model. At small dilution (i.e. far from the percolation threshold), the 
critical behaviour is governed by the Lagrangian, 

2 

c ( ¢ ) =  ddR{7 [iV¢~l ~_~m~,~l~3~_~o ~ u0 a=l 01"/I I J ' ~ l  a=l "~-~'1 ~-"~ ( l ~ a [ 2 - 2 ~ ' a : l  

(2.5) 
where, in the replica limit, n ~ 0 [10]. Again each component ¢~ is a vector 
q~ = (8~,1, ¢~,2 . . . .  , ¢ a,m) and u0 > 0, v0 < 0 are the bare couplings. 

In order to study the critical properties of the field theories Eqs. (2.2), (2.3) 
and (2.5) in a general space dimension d, we use the standard procedure of 
renormalizing the one-particle irreducible vertex function I 

F(L'N)(Pl, ..,PL; kh .., kN; m~, {uo}, d) 

at zero external momenta {pj;kj} and nonzero mass (see [3, 27] for example). 
Asymptotically close to the critical point, the renormalized vertex-functions 

r~N)({k~); m 2, {u}; d) 

satisfy the homogeneous Callan-Symanzik equation [3, 27], i.e. 

m a ~ . , ( { . } ) ~ ,  N }F(N)({kj ,{u};d) (2.6) 2 ~¢({"}) }; m2 = 0, 

where {u} and m are the renormalized conventionally defined coupling constants 
and mass, respectively. At the stable fixed point {u*}, its coordinates are deter- 
mined by the zero of the fl-functions and 7¢ gives the value of the pair correlation 
function critical exponents O. The correlation length critical exponent u can be 

1 Here and below {u0}, {u} stands for the set of couplings; e.g. for the Lagrangian, 
nq. (2.2), {u} = u, whereas for Eq. (2.5) {u} = u, v. 
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calculated upon consideration of the two-point vertex function with a ¢2 inser- 
tion and gives one more 7-function 2~  ({u}) which at the fixed point gives the 
value of the combination 2 - u -1 - ~ (v being correlation length critical expo- 
nent). The other critical exponents can be obtained on the basis of v and 7/using 
the familiar scaling relations. 

3 P e r t u r b a t i o n  t h e o r y  i n  n o n - i n t e g e r  d 

Equation (2.6) may be studied, in principle, for arbitrary non-integer space di- 
mension d [29, 30]. Imposing the zero-momentum renormalization conditions for 
the conventionally defined 2-point and 4-point single-particle irreducible vertex 
functions F~2)(k,-k; m~, {u0}; d), F(4)({ki}; m~, {u0}; d) one obtains the expres- 
sions, shown in Fig. 1 in the three loop approximation. For every internal line 

0 i2 0 is 1 1 il 

1 il i,3 i4 is "in is 

N 
i,~ 

Fig. 1. Graphs of the vertex functions F (2), F (4) in the three-loop approximation and 
the normalized values of the corresponding loop integrals (for the function F (2) (k) the 
value of the derivative O/Ok 2 Ik2=0 is given) 

i there corresponds a propagator (1 + k~), integration over internal momenta is 
imposed and a momentum conservation law is carried out at every point. The 
correspondence between the graphs for the vertex functions F (2), F (4) and the 
numerical values of loop integrals follows from Fig. 1. Expanding the integrals 
il through is in ¢ = 4 - d one passes to the C-expansion technique. Alterna- 
tively one can consider them directly in a space of fixed dimension (for d = 2 
and d = 3, the corresponding values are given in [28]). The simplest way to ob- 
tain the expressions for the numerical procedure for evaluating the integrals il 
through is at non-integer d is to make use of the Feynman parameters method 
(see [27], for example). These expressions, in which the dimension of space is a 
parameter, were evaluated numerically for a general value of d and their values 
are listed in [31]. The dependence of the loop integrals on the space dimension 
d for continuous change of d is shown in Figs. 2 and 3. 

Upon the basis of expansions of the renormalized F-functions, one can obtain 
expressions for the/3 and 7-functions of the field theories Eqs. (2.2), (2.3) and 
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Fig. 2. Two-loop integrals as a function of the space dimension d. 

(2.5) in the three-loop approximation. In the case of the Lagrangian Eq. (2.5), 
they are 2 

f l~ , (u ,v) :_(4_d){u_u2 12 uv +/~(2) + fl(a)+ . . . } ,  (3.1) 
mn + 8  

z~(~,v)=-(4-~){v-v' 2(m+2)~v+~(2)+~(3)+...} (3.2) 
m + 8  

r r  m + 2  2 .  ran+2 v2 
"/¢(u,v)=-4(4-d)~.[(~-;~-~u . ( m n + 8 )  2 + 

2(m + 2) u~]i2 + ~3) }, (3.a) 
(m + 8)(m~ + 8) + 

) m + 2  r a n + 2  . . . } ,  (3.4) 
%=(~,v) = (4 {m+S +m~+S 

where the indices (2) and (3) refer to the two- and three-loop parts of the corre- 
sponding functions: 

8 3 1 
/~(2) = (m + 8) 2 u [(5m + 22)(il - 7) + (m + 2)i2] + (3.5) 

96 u2v[(m+ 5)(il 1 m + 2. ] 
(m + S)(m~ + S) - 7 ) + --g-- '2J + 

2 The convenient numerical scale, in which the first coefficients of the f~-functions are 
-1  and 1, (see [291) for det~Us) is used. 
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24 [ 1 mn+2i2 ] 
(mn + 8) 2 uv2 (mn + 14)(il - ~) + ---~----' , 

8 [(5mn 22)(il 1 ~(~) = ( m .  + 8)~ v3 + - 3 ) + ( m .  + 2)/~] + 

1 i2 96(m + 2) uv ~ [il t " 24(m + 2)u2v[it  -2 + _~] + 
(m+8)~ - (~+8) (m.+  8) ~ + ~ ] '  

24(m + 2) uv] 1 ~ )  [ 12(m___+_2) u2 12(mn + 2) v2 + (il - 

= - L (m + 8)~ + ( m .  + 8)~ (m + 8) (m.  + 8/ 3 ). 

As the explicit expressions for the three loop parts [32] (depending on inte- 
grals il through is) are rather cumbersome, they are not presented here. 

1.00 

0.75 

0.50 

0.25 

0.00 
0.0 

i s  

it 

ir 

i 

1.0 2.0 3.0 4 . 0  

d 

Fig. 3. Three-loop integrals as a function of the space dimension d. 

Setting v = 0 in Eqs. (3.1)-(3.4), one obtains the corresponding data for the 
O(m)-symmetrical  model (Eq. 2.3) [30] while substituting v = 0, m = 1 gives 
the case of the Ising model [33]. Expressions (3.1)-(3.4), the main result of this 
study, are analysed in the next section. 

4 Resul ts  and discussion 

Substituting the values of loop integrals il through is as continuous functions 
of d into Eqs. (3.1)-(3.4), one can extract the dimensional dependence of the 
critical exponents governing the second-order phase transition. These series are 
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known to be asymptot ic  (see e.g. [34] - [38]). To make them convergent we have 
used several resummat ion techniques and present the results below. 
a)  T h e  I s i n g  m o d e l  

In order to study the dimensional dependence of the expressions Eq. (3.1)- 
(3.4) in the case v = 0, m = 1 we have applied [30] a simple Pad~-Borel resum- 
mat ion  technique [35] and then, to improve the results obtained at low dimen- 
sions we imposed Eqs. (3.1)-(3.4) to yield the values of the critical exponents 
of the Ising model for the cases where results are known exactly, i.e. for d = 1 
(u = oo, y = 1, see e.g. [39]) and for d = 2 (u = 1,~ = ¼, [40]). This can be 
done by choosing the highest-order term of the series under consideration as a 
fitting parameter  and setting it so as to obtain the known results. In the case of 
the v-expansion such a procedure was considered in [41]. The results presented 
in this subsection were obtained using the three loop approximat ion with the 
fourth order t e rm as the fitting parameter .  

6.0 

5.0 

O 

4.0 

3.0 n , 

2.0 

1.0 ~ t~ D~o o [~:x] ~ ~ D ~  c~9 B ~ .  g ~ 

J l l l l l l l l l l l L I l | l l l l l l l l l l ~ l l  i , l l l l l l l l l l l ~  | l l l l l l  | l l | l l l  | [ l l l l l l l l l ~  
0.0 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

d 

Fig. 4. The Ising model correlation-length critical-exponent u as a function of the 
dimension d. See the text [or a full description. 

In Fig. 4 we compare our results for the critical exponent v (given by squares) 
with the results of a ~' = d -  1 expansion for the near-planar interface modet 3 (for 
low values of d) and with data, obtained on the basis of a Kadanoff  lower-bond 

3 Strong arguments have been given for the correspondence of the critical behaviour 
of this model to that of the Ising model [5] - [7]. 
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renormalization transformation [11] (asterisks) and by the study of the physical 
branch of the exact renormalization-group equation solution [42, 43] (triangles). 
The value of the critical exponent u for the near-planar interface model is shown 
to first, second, third and fourth orders (dotted, dot-dashed, dashed and solid 
lines) [5]-[7]. 

Fig. 5 shows the comparison of our data for the critical exponent r/(squares) 
with results obtained from a Kadanoff lower-bond renormalization transforma- 
tion [11] (asterisks), from the exact renormalization group equation [42, 43] (tri- 
angles) and with the value of q for the droplet model [8] (solid line). 
b)  O ( m ) - s y m m e t r i c a l  m o d e l  
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Fig. 5. The Ising model pair correlation function critical exponent 71 as a function of 
the dimension d. See the text for a full description. 

In contrast to the Ising model, the O(m)-symmetric model has not been in- 
tensively studied for the case of arbitrary space dimension d. Another reason 
for considering the case m > 1 is that,  in accordance with the Mermin-Wagner- 
Hohenberg theorem, 4 [44, 45] a continuous symmetry can be spontaneously bro- 
ken only if the space dimension is larger than two, 5 whereas for the Ising model 

4 Let us mention here the generalization of the Mermin-Wagner-Hohenberg to the case 
of fractals of continuous symmetry [46]. 
Exact solutions for the 2d classical Heisenberg model for rn = 4 and m = 3 also 
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(m = 1) the lower critical dimension is d = 1. So by means  of  a continuous change 
of  the space dimension d one can t ry  to s tudy the mechanism of disappearance 
of  a phase t ransi t ion near a lower critical dimension. 

Star t ing  f rom the expressions for the /3- and 7-functions, Eqs. (3.1) - (3.4) 
for the case of  v = 0, m = 2, 3,4,  and performing a r e summat ion  procedure 
analogous to the one applied to the Ising model  in the previous subsection (the 
addi t ional  parameters  in the resummat ion  procedure were chosen on the as- 
sumpt ion  tha t  the lower critical dimension is two) one can obtain  informat ion  
abou t  the dimensional  dependence of  the critical exponents.  Table 1 contains 
the three-loop results for the stable fixed point  value u*, the critical exponent  u 
and the magnet ic  susceptibili ty critical exponent  7. Note tha t  while in [48] the 
singular behaviour  of  the critical exponents  in the point  d = 2 was found, one 
of  the results of  [42, 43] shows tha t  the critical exponents at  this point  remain  
analytic.  The  correspondence of this fact to the Mermin-Wagner-Hohenberg  the- 
orem is discussed there and a conjecture is made  tha t  at  d = 2 the ordered state  
in a sys tem with continuous s y m m e t r y  exists only inside the critical region. Our  
results, involving informat ion  about  the location of singulari ty at d = 2, are in 
accordance with [48] for the case of  d close to d = 2 and for d __ 3 agree with 
those obta ined  in [42, 43]. In the case m = oo we recover the exact result for the 
spherical model  [49]. 

Tab le  1. The fixed point coordinate u* and critical exponents v and "r of the 
O(m)-symmetric model as a function of d for m = 2, 3, 4. 

m = 2  m = 3  m = 4  
d u* u 7 u* p 7 u* g 7 

2.0 oo cx~ co oo - oo oo 
2.2 2.0296 1.329 2.540 1.9895 1.512 2.884 1.9464 1.687 3.219 
2.4 1.7907 .971 1.878 1.7604 1.072 2.072 1.7275 1.166 2.253 
2.6 1.6285 .816 1.593 1.6043 .882 1.721 1.5779 .941 1.837 
2.8 1.5041 .725 1.425 1.4841 .770 1.513 1.4623 .810 1.592 
3.0 1.4024 .662 1.310 1.3854 .694 1.371 1.3671 .721 1.426 
3.2 1.3349 .618 1.226 1.3210 .638 1.267 1.3061 .656 1.303 
3.4 1.2644 .580 1.156 1.2534 .593 1.182 1.2419 .604 1.204 
3.6 1.1888 .549 1.095 1.1808 .556 1.110 1.1726 .562 1.123 
3.8 1.1069 .522 1.044 1.1022 .525 1.050 1.0975 .528 1.056 

c) O ( m ) - s y m m e t r i c a l  m o d e l  i n  t h e  p r e s e n c e  o f  q u e n c h e d  d i s o r d e r  
The  critical behaviour  of  dilute m-vector  model  is governed by the Lagrangian  

Eq. (2.5) in the replica l imit  n ---* 0. In this case, the series for the renormal iza t ion 
group funct ions Eq. (3.1)-  (3.4) are a series of  two variables and we have used [29, 

demonstrate the absence of magnetic ordering (see [47] and references therein). 
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51] rational approximants  of two variables (Chisholm approximants  [50]) to make 
an analytical continuation of their Bore[ transforms. In another approach we 
applied a Padd-Borel resummation to the resolvent series (see [52]) constructed 
on the basis of Eq. (3.1)-(3.4.) 

Table  2. The fixed point coordinates u* and v* and critical exponents v and 7 of the 
dilute Ising model as a function of d. 

d u* v* ~, ~' 

2.00 2.0228 -0.20878 0.974 1.845 
2.20 2.0350 -0.29577 0.887 1.704 
2.40 2.0599 -0.38728 0.817 1.587 
2.60 2.1009 -0.48628 0.760 1.488 
2.80 2.1633 -0.59736 0.712 1.402 
3.00 2.2569 -0.72816 0.670 1.327 
3.20 2.4004 -0.89255 0.634 1.260 
3.40 2.6345 -1.11960 0.601 1.200 
3.60 3.0689 -1.48464 0.572 1.143 
3.80 4.0882 -2.23115 0.543 1.087 

For sufficiently large values of m, m > mr, the pure m-vector (u* ¢ 0, v* -- 0) 
fixed point is stable (this is in accord with the Harris criterion [53, 54] which 
predicts new critical behaviour for the dilute system only if the specific heat 
critical exponent c~p~re of the pure system is negative). When the number  of 
order parameter  components decreases, beginning at the marginal  value me, the 
pure fixed-point becomes unstable and a crossover to a mixed fixed-point (u* 
0, v* ¢ 0) occurs. The Harris criterion at d = 2 together with the exact value 
of apure = 0 for the Ising model (see [55] as well) means tha t  me(d = 2) = 1. 
The best theoretical value for mc in the 3d case was obtained in [56] where 
mc(d = 3) = 1.195=t=0.002. For this reason we are mainly interested in the dilute 
Ising model (m = 1) where new critical behaviour is observed for 2 < d < 4. The 
d-dependence of the critical exponent u obtained in the two- [29] and three-loop 
approximations [51] is plotted in Fig. 6 using dashed and solid lines, respectively. 
The resummed three-loop results for the fixed point coordinates u* v* and critical 
exponents v, 7 are given in Table 2. We compare our results obtained on the basis 
of Chisholm-Borel resummation technique with the available da ta  obtained by 
scaling field method for dimensionalities 2.8 < d < 4 [57] (shown by stars). The 
straightforward extrapolation of these results to d = 2 as well as the comparison 
with the most  accurate theoretical value u (d = 3) = 0.6701 [37, 38] (shown 
by a square in Fig. 6) suggests that  the results obtained by a fixed-dimension 
renormalization group approach are preferable in the case of non-integer d. 

At present there are no reliable values of the critical exponents of dilute 
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Fig. 6. The dilute Ising model correlation length critical exponent u as a function of 
the dimension d. See the text for a full description. 

Ising systems obtained with the c-expansion. In this case, v/~ is the expansion 
parameter  [9, 10] and only two terms of expansion have been calculated [58, 59]. 
The results of the application of the Pad~-Borel resummation technique to the 
x/~ expansion for critical exponent v are plotted in Fig. 6 with diamonds. They 
are reasonable only close to d = 4. 

Thus the fixed-dimension renormalization group approach [26] directly ap- 
plied at arbitrary d may be a useful tool for studying critical behaviour in non- 
integer space dimension. As the above analysis has shown, for certain models it 
gives results in reasonable agreement with those obtained by the other methods; 
further there exist cases where it seems to be the only one way to obtain reliable 
values of the critical exponents in the context of the field-theoretical approach. 
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Abst rac t :  The Peierls instability and the flux phase problem are treated in a 
unified way for certain models of strong electronic correlations. The treatment 
relies on an adaptation of the reflection positivity technique valid for certain 
models of itinerant fermions. We discuss three applications: the dia- or para- 
magnetic behavior of annulenes, the instability in a two dimensional Peierls- 
Hubbard model and some properties of coupled polyacetylene chains. 

1 Introduction 

We will discuss two apparently different problems, which are in fact closely re- 
lated. The first one is the Peierls instability and the second the so called "flux 
phase problem". We will make the point that both problems can be viewed and 
treated in a unified way. The Peierls instability is a familiar phenomenon in 
solid state physics which was discovered independently by R. Peierls [1] and H. 
Frbhlich [2] in 1954. It seems that  the original motivation of Frbhlich was a theory 
of one dimensional superconductivity, while that of Peierls was directly related 
to crystalline structure. The fact that certain metals and alloys are more com- 
plicated than the closed packed or body centered lattices led Peierls to study the 
distorsions of a linear chain of atoms. He pointed out that in one dimension the 
instability would be quite generic, but at that  time one dimensional structures 
could not be easily studied experimentally. In recent years however observations 
on real materials have shown that a connection between the mathematical  treat- 
ment and reality exists. See [3] for a nice discussion. Amusingly the flux phase 
problem, which is much more recent, has come into the scene via (gauge field) 
theories of strong electronic correlations, thought to be relevant for high tem- 
perature superconductivity. To my knowledge the problem was first discussed 
in [4], [5] but  many variants exist. For the moment the flux phase problem con- 
stitutes a piece of mathematical  and rather speculative treatments of models of 
strong electronic correlations. It is not yet clear that it has any connection with 
reality. Nevertheless the problem is interesting in its own right because as we 
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will see it is intimately related to the Peierls instability, din- or para-magnetism 
of molecules and Hiickel versus anti-Hiickel behavior of conjugated polymers, or- 
bital magnetism in mesoscopic rings. Moreover there is an underlying non trivial 
mathematical structure that we will explain: "reflection positivity for fermions" 
[14],[15]. We inform the interested reader that the flux phase problem is also 
related to Kasteleyn's theorem in statistical mechanics (see [6] where the first 
mathematical study appeared). 

This note is organised as follows. In paragraphs 1.1 and 1.2 we review briefly 
the basics of the Peierls instability and the flux phase problem. There we set 
up the context and the various model hamiltonians that  are used. In section 
2 the unified formulation of the problems is presented, together with a general 
theorem which gives a partial solution. The underlying mathematical structure 
is explained in section 3 and three applications are presented in section 4. 

1.1 The Peierls instability 

Let us first recall what is the Peierls instability. Consider a one dimensional chain 
of atoms with a uniform spacing a between atoms. We suppose that  this is the 
equilibrium configuration of the potential energy of the chain. If each atom can 
accommodate, say one orbital associated to itinerant electrons, the system is half 
filled (because of electron spin). The states with Ikl < 7r/2a = k I are occupied 
and the states with ]k I > kf are empty. Suppose that we displace all the even 
atoms to the left by a small distance 8 < < a. Then the new configuration has a 
period 2a, and the one-electron spectrum now has a gap above the fermi points 
+ky. This time the lower band is full and the upper band is empty therefore the 
system is an insulator. By second order perturbation theory one can prove that  
the opening of the gap (by the distorsion) lowers the electronic energy by an 
amount of the order -di211n 61 [2]. On the other hand the distorsion costs some 
elastic energy which can be assumed to be proportional to d~ ~ (since ~ < <  a). 
The logarithmic term implies that  the distorsion is favourable. It is generally 
believed that  in one dimension the phenomenon is generic and in particular it 
is not limited to half filling. Indeed one can always find a distorsion with wave 
vector 2kf which will open a gap in the one electron spectrum just above the 
Fermi points :t:k I . In higher dimensions this coincidence is not the general rule 
(except at special densities and for special geometries of the fermi surface) and 
the instability may or may not be favorable. 

The arguments given above disregard at least three essential points. First 
the quantum fluctuations of the lattice are not taken into account. We will not 
discuss this aspect here (except in paragraph 4.1). Second the Coulombic inter- 
actions between the electrons have been neglected. We will include their effect 
at the level of simple Hubbard interaction terms. Finally the configuration space 
of the chain has not been fully explored. In fact only two periodic configura- 
tions have been considered and it is conceivable that the true minimum occurs 
for some other configuration. Therefore the argument tells us that  the period a 
configuration must be unstable, and that the period 2a configuration has less 
energy, but it does not give the true minimum. For some special models one can 
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determine the true minimum and confirm the general intuition. However one can 
also construct counterexamples. 

A famous physical system displaying the instability is the (trans-) polyacety- 
lene chain. A reasonable model for the chain is as follows. The carbon-hydrogen 
groups (CH)  are bonded together by a bonds which form the squeleton of 
the chain (CH)~. They are modelled by an elastic energy term of the form 
~ z  V(uz+l - ut), where uz is the displacement of the l -th C atom with respect 
to its equilibrium position (for the potential energy Vone can have in mind a har- 
monic form but we will not limit ourselves to this case). The 7r electrons coming 
from the delocalisation of the carbon Pz orbitals are itinerant. Since there is one 
such orbital per C the system is half filled. The kinetic energy of the itinerant 
electrons is given by a hopping matrix tz,l+l(ul+l -- ul) which is a function of 
the distance between adjacent C atoms. The resulting hamiltonian corresponds 
to the Hiickel model 

H,, c = t , . ,+ ,  ( u , + l  - + + V(u,+l  - u,) (1.1) 
I,a 1 

If V(u) = ½~2u2 and t(u) = to - au,  where ~, to and a are constants (1.1) is 
known as the Su, Schrieffer, Heeger hamiltonian (SSH)[7] who argued that at half 
filling the ground state is dimerized (see figure la). This means that the optimal 

configuration of C atoms has period two, ul °) = (-1)16, where 6 is a function 
of t0,a and x. A rigorous examination of the SStt model has been performed by 
Kennedy and Lieb [8] who showed that the true minimum indeed has period two. 
One can also define a bond order parameter by Pt,t+l =< c~+l,ocz,v + c~,act+l,~ > 
and show that it also has period two. One says that the ground state is a bond 
order wave. 

Other systems described by H/ickel type of hamiltonians are finite conjugated 
polymers. These are finite molecules constituted of C H  groups, such as Benzene, 
Anthracene, Naphtalene (see figure lb). A relevant question is whether or not 
the bond lengths are distorted and if yes, what is the pattern. Longuet-Higgins 
and Salem [9] where the first chemists to show that a dimerised structure would 
certainly occur in large annulenes (these are like polyacetylene but instead of 
being linear they have the shape of a ring). In the chemistry literature one 
speaks of "bond alternation" (of short and long bonds) which is more natural 
in view of the finite size effects which may occur. Another relevant question 
is whether the molecule is dia- or para-magnetic. This issue was resolved by 
London in the framework of the Hiickel model for annulenes. The result is that 
when the length of the molecule is equal to 0 rood 4 it is paramagnetic and if it 
is equal to 2 rood 4 it is diamagnetic. It will become clear that this is related to 
the flux phase problem. 

The effects of Coulomb interactions are important in conjugated polymers 
and have been much studied. The simplest model for the interaction is an on-site 
interaction U ~ l  ni,Tnz,j. This was first considered by Pariser, Parr, and Pople 
[10], in the chemistry literature. The resulting hamiltonian is commonly called 
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the Peierls-Hubbard hamiltonian in the community of physicist 

l,a I 

"-"(nt,.f 1 1 +U - - 

I 

(1.2) 

Here the interaction is written in a form convenient to exhibit the symmetries 
of H at half-filling and corresponds to a suitable adjustment of the chemical 
potential. For more extensive information on these models the reader can consult 
the review article [11]. 

1.2 T h e  f lux phase  p r o b l e m  

As said before the flux phase problem appeared as an ingredient of "mean field" 
theories of strongly correlated electronic systems. Within these theories it ap- 
pears that  charges moving in a two dimensional magnetic environment, created 
by fluctuations of the spin degrees of freedom, acquire quantum mechanical 
phases. The flux phase is a state corresponding to a special arrangement of 
these phases so that  the ground state energy is minimal. We do not a t tempt  
here to reproduce the mean field treatment but we refer the reader to [4] ,[5] and 
[12]. In the treatment proposed in [5], which is the simplest, one is led from the 
Heisenberg hamiltonian (which becomes the t - J model upon doping) to the 
mean field model 

= x ycL c ,° + J (1.3) 
<xy>,a=T,,L <xy> 

where < xy > are bonds of the two dimensional lattice A, and X~y is a mean 
field associated to the bonds of the lattice 

t c (1.4) X~y =< ct,,Tcyj --k cxA y,l > 

The mean field configuration {X~y} has to be determined by minimising the 
ground state energy of (1.3). 

Let us interpret (1.3)-(1.4). The mean field hamiltonian possesses a gauge 
invariance. Indeed setting X~y - I)~yl exp(i¢~y) we see that  the local transfor- 
mations ct~,o --+ exp(iS~)c~,a, %,o --+ exp(-iSy)%,o, ¢ ~  --+ ¢~y - ( ~  - Oy) leave 
the hamiltonian invariant. Therefore it is natural to interpret the phases ¢ ~  as 
those produced by a (fictitious) magnetic field with a flux CF through the faces 
F of A 

<xy>EF " < x y > E F  

We emphasize that  here the magnetic field is generated by the system itself 
and is a model for taking into account the effects of magnetic fluctuations on 
the motion of charges. The system also generates a "distorsion" of the hopping 
amplitude IX~y I. This costs a certain energy given by the quadratic term in (1.3). 
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It is interesting to note that  there is no energy associated to the magnetic field 
itself since the "elastic energy" in (1.3) depends only on the modulus of ~(~. 

Because of gauge invariance the ground state energy is only a function of 
{IX~yl} and {~F}, E0({IX~l}, {~F}). Essentially two types of mean field solu- 
tions have been studied in the literature [12]. 

H H H H 

(a) 

(b) 

Fig. 1. (a) A dimerised ground state for the polyacetylene linear chain. (b) Anthracene 
molecule. 

The first one is the flux phase. One takes IX,y[ = X uniform and minimises 
only over the configuration of fluxes {¢F}. A minimum with ~ r  ¢ 0 is analogous 
to a Peierls instability, with the important difference that there is no energy 
cost associated to the appearance of the non zero flux. In general time reversal 
invariance can be broken unless ~F = 0 or ~r because then there exist a gauge 
in which the hamiltonian is a real matrix. 

The second type of mean field solution are the valence bond cristals. There 
one sets CF = 0 (i.e. ¢,y = 0) and minimises E0 over the configurations of 
hopping amplitudes {IX,y I}. A comparison with the Hfickel hamiltonian will 
convince the reader that  this is exactly the Peierls problem in higher dimensions. 
If the optimal configuration of hopping amplitudes is non uniform there is a 
Peierls instability, although the modulus of Xzy is not necessarily related to the 
lattice spacing in this context. 

2 A U n i f i e d  F o r m u l a t i o n  

Consider a finite two dimensional graph consisting of a set of vertices A and a 
set of bonds {< z y  >}. the hopping matrix associated to the graph has matrix 
elements tzy = ty~ with t~y ¢ 0 if and only if < z y  > belongs to the graph. In 
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general we have t= u = It=, [ exp(i¢=v). Our general hamiltonian is 

H = Z t=yC~,o%,o + F( I t~ l )  + U _ ~)(n~, 1 1  _ ~)1 (2.1) 
x,yEA,a=T,I x,yEA xEA 

The ground state energy depends on the configurations of {[*~ i} and { ¢ r }  
(due to gauge invariance) where here F denote the faces of A 

E0({lt=vl}, {~F}) = min ($, H~) 
~E.F(A),II~II=I 

(2.2) 

Using particle-hole symmetries one can show that the minimising state if" in 
the Fock space of electrons 9r(A) belongs to the subspace with total number of 
electrons equal to IA[. Therefore when we study (2.2) we are automatically in 
the half filled band. 

The main problem that we consider is that of minimising E0 in the space of 
all configurations of { [t=v[} and {~v}. In some cases we are able to solve partially 
this variational problem. The following theorem describes a general solution for 
a square lattice. 
T h e o r e m  1 
Let A be a square lattice with periodic boundary conditions (so it is a torus) 
and with an even number of sites N1, N2 in the two coordinate directions 1, 2. 
Assume F is bounded below, continuous and increasing at infinity. Then for any 

U the minimum o l e o  is attained for the following configurations of {It(°)[} and 

(i) 4)(~ ) = 7r through all square plaquettes F and ~ o )  = 7r(-~ - 1), i = 1,2 
through the two non trivial loops of the torus. 
5 i )  Let x = (Xl, x~) in coordinate form. We have 

(~ 1+2,X2)(X 1-1-3,~2) [ ' 

It (°) = t (°) (~1,=~)(~,=2+1) (~,=~+2)(~,,~;+3)[, 

I t ( 0 )  _--tlOx{x2+l)(xl+l,x2+l) (~1,~2)(~,+1,~) 

t (°) = t (°) (Xl,X2)(xl,x2+l) (x l-l-l,x~)(x i + l ,x2+ 1) ' 

The same result holds for the maximum of Tr exp ( - f i l l ) .  The theorem tells us 
what is the optimal flux configuration, but not what is the precise value of /0)  ~x y  * 

However it does restrict the search of the true minimum to the configurations 
satisfying the above constraints. The hopping amplitude can take only four values 
t l, t2, t3, t4, geometrically arranged like in figure 2. It is not known if there exist 
other global minima outside of the class described here. On the other hand one 
easily shows that there exist many other local extrema. For a discussion of this 
aspect see [13] 
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Such a theorem was first obtained by Lieb [14] and then an improved proof 
along the lines explained in section 3 was given in [15]. In fact, in these references 
the minimisation is carried on only over the fluxes and the moduli of the hop- 
ping terms are fixed. The extension presented here is straightforward. Similar 
results can be proven for other periodic lattices or finite graphs with appropriate 
symmetries, in two or three dimensions (see [15]). 

3 R e f l e c t i o n  P o s i t i v i t y  f o r  F e r m i o n s  

In this section we present the mathematical  structure that  is hidden behind 
theorem 1. Here we will limit ourselves to present a proof of this theorem, but  
the same ideas are useful in other situations. 

3.1 Ref lect ion positivity: abstract set-up 

Reflection positivity is a notion first introduced in quantum field theory [16] and 
later applied to statistical mechanics in the context of spin systems [17,18,19]. 
While in quantum field theory it is very natural, it is less so in statistical mechan- 
ics where its applicability depends on the particular hamiltonian. For this reason 
here we take the point of view to consider it as a property of the hamiltonian 
itself. 

I I I I I I 
I I I I I I 
I I I I I I 
! I I I I I 

I I I I I I 
I I I I I I 
I I I I I I 
I I I I i I 

i i n g i ~  ~ i U l i ) - -  

Fig. 2. The allowed configurations of It~[ in Theorem 1. The values of tl, t2, t3, t4 are 
associated to the normal, thick, dashed, thick dashed, lines. 

Suppose that  the Hilbert space 7~ can be decomposed as ~'/L @ "]'/R where 
7"/L,R are two copies of a d-dimensional  space. Then ~ / i s  d 2 dimensional. Let 
A, B be d x d hermitian matrices and D (i), i = 1, ..., n real d x d matrices. The 
d x d identity is 1. We set 

AL : A ® I ,  B R : I ® B ,  D(~ ) : D  (i)®1, D~ ) :  I®D (i) (3.1) 



290 N. Macris 

The hamiltonian (acting on 7/) is said to be reflection positive if it has the form 

12 

H(A,B) = AL + B-'R + Z 7'(D(~) - D(R))2 (3.2) 
i = l  

with 7i > 0 for all i = 1, ..., n and the sum over i = 1, ..., n is a symmetric matrix 
in 7"/. In (3.2) BR denotes the matrix obtained by complex conjugation of all the 
matrix elements. A celebrated example of a hamiltonian of the form (3.2) is the 
Heisenberg antiferromagnet. 

Such hamiltonians have two basic properties summarised in the two Lemmas 
Lemma I (positivity of correlation functions) 
Let 0 be a d x d hermitian matrix. We have that 

< OLOR > =  

is non negative 
Zernma 2 (Schwartz inequality) 

TrOLOR exp( -~H(A,  A)) 
Trexp(-[3H(A, A)) 

(3.3) 

A,,) 
(3.4) 

The ground state version of (3.4) is obtained by taking the limit ~ ---, + ~  and 
states that  for the lowest eigenvalue of the hamiltonians we have the inequality 

1 1 
Eo(A, B) > 2E0(A, A) + -~Eo(B, B) (3.5) 

The right hand side of (3.5) is always greater than Min{(E0(A, A), Eo(B, B)}. 
Therefore given a hamiltonian H(A,B) we can construct a new one, either 
H(A, A) or H(B, B), which has lower energy. In its present form Lemma 2 was 
proved in [18] for A and B real and a detailed examination of the ground state 
version appears in [20]. The extension to A, B hermitian presents no problems, 
but it is important to keep D(0 real. 

3.2 Appl i ca t ion  to fermions 

In their standard form the Peierls-Hubbard hamiltonians (1.2) or (2.1) are not 
reflection positive. However there is a definite procedure which transforms the 
hamiltonian into a reflection positive form. Here we outline this procedure which 
was introduced in [15]. 

The first task is to decide what is "~'/L and 7/n. We separate the square 
lattice A in two equal halves by a plane P, not containing any site of A, called 
the reflection plane (see figure 3). The left (L) and right (R) parts of the lattice 
A = L tJ R can be mapped onto each other by geometric reflections through 
P. We let 7/L = Jr(L) and 7/n = Y'(R) be the Fock spaces associated to each 



The Peierls Instability 291 

side of the lattice. Since the hamiltonian acts on IT(A) we first perform the 
transformation 

d~,~ = ct~,oexp(i~rNL), all x E A, NL = ~ ctoc=,o (3.6) 
=EL,a=T,J. 

One easily checks that  the commutation relations are preserved for d~, dy #, if 
(x,y) E L or (x,y) E R, but the operators commute if x E L, y E R or vice 
vera. Moreover in terms of the d #'s the hamiltonian has the same form. Now 
we identify the algebras (d#~,x E L) with IT(L) and (d #~,xE R) with IT(R), and 
consider the hamiltonian as a matrix acting on IT(L) ® IT(R). 

x y ,I 
21 

P 

r(y) 

r(1) 

r(2) 

r(x)  

Fig. 3. The setting used in paragraph 3.3 

The second transformation consists of a particle-hole transformation d t a  --~ 

dx,o, d~,a --* d~, a for all x E R. These two transformations put the hamiltonian 
into the form (3.2) except that the coefficient corresponding to 7i might not have 
the correct sign yet. 

For this reason we perform a third transformation for sites y E R such that  
there exist a bond < xy > with x E L, 

dt,~ -~ exp(igy)dty,o (3.7) 

with {gu} such that  

t~ u = [t~y] exp(i¢~u) ---* t~y - - I t . l l  - -  < xy > MP ¢ 0 (3.8) 

The final result is a hamiltonian of the form (3.2) with 

AL ~ ~ I t t~yd~,~d~,a + U Z ( n ~ , ~  1 1 - 3 )  
x,yEL xEL 

(3.9) 
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BR = ~ (-t~-~-yy)d~,od~,~ + U ~ (n.,T _ 5)(n.,  ~ 1  _ 5)1 (3.10) 
x , y E R  x E R  

ETi(D(~)_D(~))  2 1 1 ~ [t~](dx,a_dy,~)~ 
x~.L,yff R 

(3.11) 
One must also add to these three terms the "elastic" energy (a c-number) 

E 

3.3 Sketch of  t he  P r o o f  of T h e o r e m  1 

Because of the periodic boundary conditions all the planes perpendicular to the 
coordinate axis, and not containing any vertices, are reflection planes P. the 
proof consists of a repeated application of Lemma 2 to the hamiltonian (3.9-11). 
The setting is depicted on figure 3. 

Given a bond < xy >E L we denote by < r(x)r(y) > its geometric reflection 
through P. We note that for any P 

Ex,yeA F(It~y]) = -~ F([t~Yl) + E F(ItxYl) 
x, x , y E R  

+ E F([t'Yl)+ E F([t-yl)] 
xE R,y E L xE L,yE R 

(3.12) 

By applying (3.12) and (3.5) with respect to P one gets a new hamiltonian, 
either H(A, A) or H(B, B), with a lower ground state energy. In H(A, A) we 
include the term in the first bracket on the right hand side of (3.12) and in 
H(B, B) we include the second. For the new hamiltonian we necessarily have 

tlxy ~- t -t~(.).(y) < xy > AP = 0 (3.13) 

Therefore [t~y[ is invariant under a reflection through P. Since the energy is 
lowered by repeated application of Lemma 2 with respect to all other planes P, 
the configuration {]t~y] = It.y]} of the ground state must be invariant under 
reflections through all planes P. This yields the configurations of figure 2. 

Let us examine the consequence of (3.13) on the flux through a plaquette 
intersected by P. If the vertices of the plaquette are denoted by (1, 2, r(1), r(2)) 
we have 

¢~F = arg(tlr(1)tr(1)r(2)tr(2)2t21) ~ ~ ~ = arg(tlr0)tr0)r(2)tr(~)2t21) 

(3.14) 
! ! ] ] ar t t t t = g(] 1,(1)] ~(1)~(2)] ~(~)~](- ~(2)~(1))) = arg(-1) = ~  

This will hold for all plaquettes since all reflection planes are used. The flux 
through the nontrivial loops of the torus is determined similarly. 
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Finally we remark that the conditions that ~ r  = 7r for all plaquettes and 
{Itxyl} invariant under reflections are preserved under further application of 
Lemma 2. If there is another configuration not satisfying these conditions which 
has minimal energy then it must necessarily be degenerate. 

3.4 Remarks  

On a square lattice if It,ll  is invariant under reflections and CF = rr Lemma 1 
implies 

< I I  I I  >>- 0 (3.15) 
xES xEr(S) 

where d-# is the particle hole transform of d #. By translating back to the original 
operators c # we get useful inequalities for certain correlation functions. For ~O" 

example 
c(3)q(3) > >  0 (3.16) ( - 1 )  I~1+1"(~)1 < ,-',e ~(~) _ 

for all fl, U and all ~:, r(x) obtained with any reflection plane. This indicates 
that  the system has a tendency towards antiferromagnetic order. We emphasize 
that  it does not imply LRO, in fact in one dimension (3.16) holds and there is 
no L RO. 

More generally inequalities of the type (3.15) are interesting because they 
give constraints that variational wave functions must satisfy. 

Finally we point out that a system of hard core boson on a square lattice 
with flux zero per plaquette satisfies the same "positivity inequalities" than the 
same fermion system with flux ~r. 

4 Applications 

In this section we give three applications to specific problems. The results are 
rigorous, but the detail of the proofs are not given since they consist of minor 
modification of the method of section 3. Refs. [15] and [21] discuss other appli- 
cations, namely the existence of LRO in the t - V model at low temperatures, 
and the ground states of Falicov-Kimball type models. 

4.1 Orbital  m a g n e t i s m  of  annulenes  

Annulenes are ring shaped molecules belonging to the class of conjugated poly- 
mers. Relevant hamiltonians are of the Hiickel or Peierls-Hubbard type. Here 
we also add the quantum fluctuations of the uz variable, and apply an external 
magnetic field with flux 4~ through the ring. Thus the hamiltonian for a molecule 
of length L is 

L - 1  

g ~ tz,z+l(ul+l /¢'"+~ = - ( c , + l , o c , , o  + c ,oc,+l,o) 
z=l,~=T,l (4.1) 

L ~_, (9 ~ L-1 + g  Z ( " ' , *  - 1 1 1 

I=1 1=1 
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with ~ = ~ L ~ I  Cz,z+l 

For the case U = 0, M = + ~  and periodic boundary conditions, London 
understood as early a 1930 that  if L = 4n + 2 the molecule is diamagnetic 

E0(~) > Z0(~ = 0) (4.2) 

and for L = 4n it is paramagnetic, i.e. the inequality is reversed. With the 
method of section 3 these facts can be justified rigorously and also generalised 
to the full hamiltonian (4.1) for even L. 
Theo~'em 2 
For the hamiltonian (~.1) with periodic boundary conditions, we have Eo(qS) >_ 
E0(¢  = 0) if  L = 2 rood 4, and Eo(~) > Eo(~ = r)  if L = 0 rood 4. 

Since the method of proof is not restricted to one dimension the theorem can 
be generalised to more complicated molecules (or graphs) that  are constituted 
of many adjacent rings. 

The size of the largest annulenes is of the order of 20A and so a flux equal to 
7r through the annulene corresponds to a magnetic field strength of the order of 
10SG, which is not achievable in laboratory. Therefore it could be thought that  
the second inequality is not physically relevant. However there are at least two 
situations where it could be relevant. 

A flux equal to rr is equivalent to a change of boundary conditions from 
periodic to antiperiodic ones. Chemically this could in principle be realised by 
replacing a Pz orbital of one carbon atom by a d orbital. The overlaps of the d 
orbital with the two neighbouring p~ orbitals have opposite signs and therefore 
there is a total effective flux of r .  Such molecules, sometimes called anti-Hiickel 
systems, have not been synthetised but the possibility has been discussed in the 
chemical literature,see [22]. 

Mesoscopic rings have a size much larger than annulenes and therefore a flux 
r corresponds to more realistic magnetic field strengths. Models of Hubbard 
type with spin orbit interactions have been proposed to explain some features 
related to the magnetic susceptibility of these systems. The kinetic energy term 
is of the form 

L 

Z (4.3) 
l=l,a,,O=T,l. 

where Ut,t+l are SU(2) matrices representing the spin orbit coupling (see [23] 
and references therein). Under some conditions on the choice of these matrices 
inequalities like in theorem 2 can be proven. 

4.2 Rigorous results for the P e i e r l s  H u b b a r d  m o d e l  a t  h a l f  f i l l ing 

Kennedy and Lieb [6] showed for the SSH hamiltonian that  the ground state 
is dimerised at half filling. Their proof uses the fact that  one can represent the 
ground state energy as a convex functional. Later this result was extended to 
V 5£ 0, but M = +c~ for (4.1) [20]. I f ~  = 0 and L --= 4 n + 2  or ~5 = 7r and L = 4n 
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the ground state is of the form ut = (-1)t6.  If 6 is non zero then the ground 
state has period two, otherwise it is uniform. The method used in [20] is to map 
the system on a spin chain by using a standard JordamWigner transformation 
and is therefore limited to one dimension. 

All of these results are recovered by the method of section 3 applied to a 
lattice A which is a ring of length L. Theorem 1 also solves a two dimensional 
problem on a square lattice considered by Tang and Hirsch [24] in the case where 
a flux ~r per plaquette is fixed. These authors study the hamiltonian (2.1) in two 
dimensions with the choice 

It , ,I  = t l l  - c , a : , .  ( u .  - (4 .4 )  

and 
K 

v({It: l) = 7 1 , , x  - u , l  2 (4 .5 )  

where e~u is a unit vector along the bond < xy >, and u is the displacement 
with respect to the equilibrium position. Theorem 1 reduces the search for the 
optimal configuration of the displacements to those compatible with figure 1. 

4.3 C o u p l e d  p o l y a c e t y l e n e  cha ins  

Usually polyacetylene chains are coupled between themselves through inter- 
coulombic interactions or interhopping terms. Let us take two infinite chains 
with hamiltonians H1 and H2, coupled by a hopping term t~ = t + ( -1 ) I t  ~. The 
total hamiltonian is 

H -- H1 + H2 + ~ *  { (1)1- (2) (2)]" (1)'~ 
,,o e,,o + ) (4.6) 

with Hi, i = 1,2 equal to (1.2) with the c #'s  replaced by c#(i) and tt,t+l (Ul--Ul4-1) 
by t (0 (ul 0 - ,  (/) 

1,14-1 ~14-11" 
If t '  > t the sign of tz alternates and the flux through a square plaquette is 

equal to 7r. On the other hand if t; < t the sign of tl is constant and the flux is 
zero. Here the flux is not related to an external magnetic field but rather is an 
effective flux coming from chemical bonding. Motivated by some experimental 
observations on the structure of coupled chains, Baeriswyl and Maki [25] argued 
that  in some situations the chains lie in different planes making an angle of 
almost ninety degrees. Then it turns out that  the pz orbitals of carbon atoms 
have a different overlap whether l is odd or even. This may lead to alternating 
signs for tt and therefore to effective flux equal to 7r. 

In this case the methods of section three apply and one can prove that  the 
optimal configuration of bond lengths of the two chains are uniform or alternate 
"out of phase" (see figure 4a). More precisely for (4.6) with t ' > t the optimal 
configuration must satisfy 

= g2) ~(1) g~) (4.7) t}~)4-1 ~14-1,14442' ~l-I-1,14442 ---- ~I,14-1 
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For t '  < t and Hi the SSH hamiltonians one can show by explicit computa- 
tions that  an out of phase configuration of alternating bond lengths has a higher 
energy than the "in phase" configuration (see figure 4b). In this case the general 
methods developed here do not give any rigorous information. 

, / 
" / "...: '  " ,:' "...1 

(a) 

(b) 
Fig. 4. (a) out of phase configuration of two coupled chains. (b) in phase configuration. 

Physical consequences of these configurational properties are discussed in 
[11],[25]. 

Acknowledgments 
The author is grateful to the organisers of the 32 nd winter school in Karpacz, 

Poland, for the invitation to present this work. The analysis presented in section 
3 was developed in collaboration with Bruno Nachtergaele. 

References  

1. R.E. Peierls, Quantum theory of solids, Clarendon, Oxford 1955, p 108. 
2. H. FrShhch, Proc. R. Soc. London Ser A 223, 296 (1954). 
3. R.E. Peierls, More surprises in theoreticalphysics, Princeton University Press. 
4. P. Wiegman, Physica 153 C, 103 (1988). 
5. I. Aflteck and J.B. Marston, Phys. Rev. B 37, 3774 (1988). 
6. E.H. Lieb and M. Loss, Duke Math. J. 71,337 (1993). 
7. W.P. Su, J.R. Schrieffer and A.J. Heeger, Phys. Rev. B 22, 2099 (1980). 
8. T. Kennedy and E.H. Lieb, Phys. Rev. Lett. 59, 1309 (1987). 
9. H.C. Longuet-Higgins and L. Salem, Proc. R. Soc. London Set A 251,172 (1959). 

10. R. Pariser and R.G. Parr, J. Chem. Phys 21,466 (1953); Pople, Trans. Faraday. 
Soc 49, 1375 (1953). 

11. D. Baeriswyl, D.K. Campbell and S. Mazumdar, in Conjugated conducting poly- 
mers, ed. H. Kiess, Springer Series in Solid State Sciences vol 102 (Springer, New 
York) p 7. 



The Peierls Instability 297 

12. E. Fradkin, Field theories of condensed matter systems, Addison Wesley 1991. 
13. N. Macris and J. Ruiz, "On the orbital magnetism of itinerant electrons", preprint 

(1995). 
14. E.H. Lieb, Phys. Rev. Lett. 73, 2158 (1994). 
15. N. Macris and B. Nachtergaele, "On the flux phase conjecture at half filling: an 

improved proof' preprint (1995). 
16. J. Glimm and A. Jaffe, Quantum Physics a functional integral point of view, 

Springer Verlag, New York, 1981, p88. 
17. J. FrShlich, B. Simon and T. Spencer, Comm. Math. Phys 50, 79 (1976). 
18. F.J. Dyson, E.H. Lieb and B. Simon, J. Stat. Phys 18,335 (1978). 
19. J. FrShlich, R. Israel, E.H. Lieb and B. Simon, Comm. Math. phys 62, 1 (1978); 

J. Stat. Phys 22, 297 (1980). 
20. E.H. Lieb and B. Nachtergaele, Phys. Rev. B 51 4777 (1995). 
21. N. Macris, "Periodic ground states in simple models of itinerant fermions inter- 

acting with classical fields" Proceeding of the VI Max Born Symposium, Poland 
(1995), to appear in Physica A. 

22. Dewar, Dougherty, The PMO theory o] organic chemistry, Plenum Press, New 
York, 1975, p106. 

23. S. Fujimoto and N. Kawakami, Phys. Rev. B 48, 17406 (1993). 
24. S. Tang and J.E. Hirsch, Phys. Rev. B 16, 9546 (1988). 
25. D. Baeriswyl and K. Maki, Phys. Rev. B 38, 8135 (1988). 



Fully and Partially Dressed States in Quantum 
Field Theory and in Solid State Physics 

G. Compagno 1, R. Passante ~, F. Persico 1 

1 Istituto Nazionale di Fisica della Materia and Istituto di Fisica dell'Universita', 
Via Archirafi 36, 1-90123 Palermo, Italy 

2 Istituto per le Applicazioni Interdisciplinari della Fisica, 
Consiglio Nazionale delle Ricerche, 
Via Archirafi 36, 1-90123 Palermo, Italy 

1 I n t r o d u c t i o n  

The importance of the cultural links between solid state physics and quantum 
field theory can hardly be overemphasized. They have led to an impressive cross- 
fertilization between these two main traditional branches of physics, which dates 
back to the end of the 50s, when a lively exchange of new ideas was established 
[1] between quantum field theory and condensed matter  physics. 

It is easy to identify some of these ideas: those which come first to our mind 
are symmetry breaking, the renormalisation group and elementary excitations 
[2], although of course the influence of the theory of superconductivity is such 
that  nowadays it deserves a separate chapter in the most modern books on 
quantum field theory [3]. The present review is embedded in the cultural ground 
common to condensed matter physics and quantum field theory, and it is aimed 
at promoting the continued exchange of fundamental concepts. We shall try 
to obtain this result by concentrating on the concept of elementary excitations 
and by pointing out the similarity of some aspects of their dynamics in solid 
state physics and in quantum field theory. In particular, we shall consider the 
interactions of electrons and excitons with lattice phonons, and we shall discuss 
their counterparts in relativistic quantum field theory and in QED. Indeed as an 
exciton or an excited electron moves through a semiconductor, it carries along a 
lattice distortion which changes its physical properties. Such a lattice distortion 
can be described as a cloud of virtual phonons surrounding the mobile charged 
particles [4, 5] by virtue of continuous emission and reabsorption processes. Thus 
one speaks of a dressed electron (or polaron) and a dressed exeiton (or polaronic 
exciton). We intend to insist on the analogy of these objects with the dressed 
nucleon [6], which is a nucleon surrounded by a cloud of virtual mesons, as well 
as the dressed atom [7], that is an atom endowed with a cloud of virtual photons. 
We shall argue that the similarity of the dressing processes may lead to a deeper 
understanding of the dressing phenomenon and may suggest new experiments in 
solid state physics, capable of shedding new light on yet only partially explored 
fundamental processes of quantum field theory and in particular of QED. 
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P a r t  I: F u l l y  D r e s s e d  S t a t e s  

2 V i r t u a l  q u a n t a  i n  g r o u n d - s t a t e  s o u r c e - f i e l d  s y s t e m s  

We shall begin by showing that a nonvanishing number of radiation quanta are 
usually present in the ground state of a source which is coupled with a radiation 
field. 

The Frhhlich polaron 
In a semiconductor crystal it is possible to excite an electron from the valence 

to the conduction band [8]. Disregarding for the moment the Coulomb attraction 
of the excited electron with the simultaneously created hole in the valence band, 
if the crystal possesses a sufficiently ionic character the electron is expected 
to interact mainly with the longitudinal optical phonons, which are capable of 
generating large electric polarization fields. Moreover, if the electron created is 
not too energetic, one can approximate the rigid lattice band as parabolic. In 
these conditions the system can be modelled by the ttamiltonian [9] 

1 

p k 

V = ~ (Vkakct+hkC~, + V:atkctpcv+lik) (1) 
pk 

where m is the effective mass of the slow electron in the rigid lattice, i.e. in 
the absence of phonons. The sum on p runs over the electronic band states of 
wavevector p/h, c~(cn) are Fermi operators which create (annihilate) a spinless 
electron of charge - e  in the band state p. The frequency common to all longitu- 
dinal optical modes is w and a~(ak) creates (annihilates) a longitudinal optical 
phonon with wavevector k. The electron-phonon coupling constant is [10] 

v~ = i \ ~ - - ~ /  ; ~P = ~ ~ 2 - ~ J  ; ~ = c(0) - c(oo) (2) 

where e(0) and ~(oo) are, respectively, the static and the high-frequency dielectric 
constants of the semiconductor. 

In the absence of Vk, the set of eigenstates ] p, {0t,)) of H0 describe an 
electron of momentum p in the crystal with no phonons. The presence of Vk 
introduces changes in these eigenstates, which can be evaluated approximately 
by perturbation theory, if Vk is not too large and provided the kinetic energy of 
the electron is small compared to hw. At first order in Vk the new eigenstates 
are [11] 

I v  = n K ,  {0h})'  =1 p = hK, {0t,}) + ~ yk* p' I = h ( K -  k), lk) (3) 
K 



Fully and Partially Dressed States in Quantum Field Theory 301 

where h K  is the total (electron+phonons) momentum, Ak = (p2 _ p ' ~ ) / 2 m -  
hw and iI, indicates the presence of one phonon with momentum k. A simple 
evaluation of the quantum average of the operator n = ~]j, atat,, corresponding 
to the total number of phonons, over the perturbed state Eq. (3) yields 

~p 
(n) ~_ T (4) 

which is different from zero. We remark that, strictly speaking, the state Eq. (3) 
is not the ground state of H; neverthless is quite near to it if K is small. 

The two-level atom in QED 
Within the electric dipole approximation [12], the interaction of a two-level 

atom (at the origin of the reference frame) with the electromagnetic field is 
described by [7] 

H = Ho + V1 -[- IV2 ; Ho = hwoSz + ~ hwka~jakj; 
kj 

* t * 

kj kj 

where ~0 is the natural atomic frequency, S+(S_)  is the atomic operator which 
raises (lowers) the atom to the upper (lower) level, wk is the frequency of the k j  
mode of the field whose creation (annihilation) operator is atkj (akj), and ckj is 
the atom-photon coupling constant. Moreover I is a constant of modulus 1 which 
we keep in the calculations for diagnostic purposes, since it appears as a factor of 
V2 whose contributions we wish to be able to follow. We label the eigenstates of 
H0 by I {nkj}, T(I)). This indicates a photon distribution {nkj} in the field and 
the atom in the excited $ (ground 1) state. Consider in particular the ground 
state [ {0~,j), l) of H0, with no photons and the atom in its ground state. The 
normalized expression of the perturbed ground state can be shown to be [13] 

I {Oa,~}, 1)' = 

1 1 1 V1 1 (1 - Po) V~ 
1 4-1~o ° _ Ho (1 - Po) V2 + Eo - H--~ (1 - Po) Eo - H----~ 

1 (1 - P0) V2 [ {0~j }, 1)) I ~/2({0kj }, 1 I V2 (E ° _: H0)2 }, 1) (6) 

where E0 = -hwo/2  and P0 is the projection operator onto I {01,j), ~). Using 
this expression it is easy to see that the quantum average of the total number 
of photons n = ~ k j  atja~J over the ground state Eq. (6) of H is 

x-" 12 (n) (7) + 

The essential role played by V2 in this result should be noted, since (n) vanishes 
for l = 0. 
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The polaronic exciton 
If the Coulomb attraction between the excited electron and the hole left 

behind in the valence band of a semiconductor cannot be neglected, one has to 
take into account the existence of levels within the gap separating the conduction 
and the valence band. These levels correspond to bound electron-hole states, 
analogous to the hydrogenic states of a positronium atom [14]. The composite 
electron-hole system is called an exciton. Since both the constituent particles 
(electron and hole) interact in a polaron-like fashion with the lattice, so does 
the exciton leading to the formation of a polaronic exciton [15]. For a two-band 
crystal model, the standard Hamiltonian for a Frenkel exciton can be written as 
[16] 

H = h w o E ( S ~ m ) . - l - ~ ) . - b E J m n S ( m ) s ( n ) " l - E h w k a ~ a l :  
m rnn k 

where the superscript m labels the lattice sites, hw0 is the rigid-lattice ground 
state exciton energy, Jmn is the matr ix element for transfer from site m to site 

n and X~ m) is the (generally complex) exciton-phonon coupling constant. The 
phonons are described by ak operators, where k indicates both wavevector and 
branch index. Realistic polaronic exciton Hamiltonians are more complicated 
and capable of taking into account excitonic states other than the ground state 
[17], but Eq. (8) will suffice for the present, limited purposes. In fact exact di- 
agonalization of H is possible only if we put Jmn = 0, which describes the case 
of a localized exciton. In this case the ground state of the polaronic exciton is 
given by [16] 

I{0k},Tn) ' =  U I{0k},T,)  (9) 

where I {Ok}, ~n) describes an exciton at site n and no phonons, and where U is 
an appropriate unitary operator. The quantum average of the total number of 
phonons over this state turns out to be 

(n> : I ") I . (10)  
k 

The static nucleon 
The simplest possible model for a nucleon interacting with a neutral meson 

field is a static source linearly coupled with a scalar field [6, 18]. In this model, 
which can be solved exactly, the source is fixed at the origin of the reference 
frame and is described by a source density p(~) which is unchanged by the 
interaction with the meson field. The latter consists of a real Klein-Gordon field 
whose Hamiltonian is [19] 

HF = E hw~atkak; wk = c~/k2 + ~2 (11) 
k 
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where g is the Compton wavevector of the meson field. The source-field interac- 
tion is taken of the form 

HSF=--gE 2~V~k (p~ak ÷pka~); pk= /p(x.)eikZd3:~, (12) 
k 

where g is the strong-force nucleon-meson coupling constant and V is the field 
quantization volume. The total Hamiltonian H = HE + HSF can be diagonalized 
with the help of a set of unitary operators 

and the ground state of the nucleon-meson system is given by 

[0 ) '=  H O k  [{Ok)), (14) 
k 

where [ {Ok}) represents the vacuum of the meson field, which corresponds to 
the ground state of HR. A simple calculation yields the quantum average of the 
total number of mesons n = ~ k  atak on I 0)' as 

g~ ~ 1 [Pk[2 (15) 
( n )  = 2 h V  ~ k  - - ~  " 

All the examples considered above lead us to conclude that the occurrence of 
a nonvanishing number of radiation quanta in the ground state of a source-field 
system is far from uncommon. In the next section we shall discuss the physical 
nature of this virtual cloud. 

3 T h e  p h y s i c a l  n a t u r e  o f  t h e  g r o u n d - s t a t e  q u a n t a  

The localization, in the ground state of the system, of quanta in a region near 
to the source can be understood on the basis of energy considerations. In fact at 
zero temperature the quanta of the field which appear in the course of a quantum 
fluctuation, lead to an increase of the energy of the source-field system, if the 
source-field interaction energy is not taken into account. In other words, the 
bare energy E of the source-field system is not necessarily conserved during 
such a fluctuation, and states having a bare energy E ~ ~ E can be excited. The 
magnitude of the energy unbalance ~fE =1 EJ - E J, however, is constrained by 
the Heisenberg uncertainty principle 

~E ~ h/v (16) 

where r is the duration of the fluctuation. In this time v, the energy balances 
again and the extra quanta of the field are reabsorbed. It is important to real- 
ize that here we are discussing fluctuations of a purely quantum nature, which 
take place also at zero temperature. Since these fluctuations take place contin- 
uously, the source can be described as surrounded by a steady-state cloud of 
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virtual quanta continuously emitted into, and reabsorbed from, the field. In con- 
trast with the behaviour of a real quantum, which is emitted during an energy- 
conserving process with E ~ = E, and which in the absence of boundaries can 
abandon the source for ever, a virtual quantum can only at tain a finite distance 
from the source, roughly given by 

hc 
r ~ c r  ,,~ ~fE (17) 

where c is a velocity scale for the quantum. Consequently we should describe 
the source as surrounded by a cloud of virtual quanta and we should expect 
the linear dimensions of the virtual cloud surrounding the source to coincide 
approximately with r given by Eq. (17) for virtual transitions characterized by 
an energy unbalance die [20]. 

We have thus reached the conclusion, in agreement with an early suggestion 
by Van Hove [21], that a quantum mechanical source at zero temperature  can 
be surrounded by a permanent cloud of virtual quanta which constitute a kind 
of dress for the bare source. In this sense we speak here of fully dressed sources. 
The question arises whether these virtual quanta are related to the ground-state 
quanta we have shown to exist in the fundamental state of several source-field 
systems. In order to answer this question we have to look more closely into the 
physical models of the previous section and we have to apply to these models 
the qualitative ideas about dressed sources developed in the present section. 

Considering first the case of a two-level atom, we can at tr ibute the energy 
unbalance diE to the fluctuations induced by the "counterrotating" term V2 in 
Eq. (5). These fluctuations lead the atom from the ground to the excited state 
and also contribute to the number of virtual photons of mode k j  according to 
Eq. (7). For a given fluctuation, the energy unbalance is then diE = li(wo + 

wk) while c in Eq. (17) coincides with the velocity of light. Considering long- 
wavelength photons with wk << w0, Eq. (17) yields r ,~ c /wo  = 1o/27r, where l0 
is the wavelength of the atomic frequency involved in the process. Thus for this 
kind of fluctuations, and disregarding the possibility of two-photon processes, 
one obtains typical dimensions of the dressed atom which are of the order of 
10 -4 -- 10 -~ cm. On the other hand, in the elementary model of the nucleon 
we have considered, the source is rigid. Thus the minimum energy required to 
create a meson from the vacuum is equal to m c  ~, while the velocity scale for the 
bare field is chosen again to be the velocity of light. Introduction of these values 
in Eq. (17) yields r ~ 1.4 • 10-t3crn, which is of the right order of magnitude 
for the experimental mean square radius of the proton and of the neutron [22]. 
In the case of the Frhhlich polaron, the electron should be considered much 
lighter than an atom or a nucleon, and in practice the only mobile particle in 
view of the small group velocity of the optical phonons assumed in Eq. (1). 
Consequently its recoil cannot be neglected, unlike the two previous cases. Thus 
the appropriate value for the energy fluctuations to be substituted in Eq. (17) is 
diE = hw + p : / 2 m .  Moreover, one should expect that  the strongest interaction 
is with phonons of wavelength 1 such that in a time 27r/w the electron travels 
over a distance corresponding to I. In fact this permits the electron to feel a 
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phonon electric field which is always of the same sign. This yields 27rp/mw ,-~ 1, 
or p ,-. r r ~ / k .  Moreover, assuming the velocity acquired by the electron during a 
fluctuation to originate only from overall wavevector conservation in the process 
of emission of the phonon in a one-phonon process (small coupling assumption), 
one has p = l i k ,  which together with p .'., rnw/k  gives p 2 / 2 m  ",. h~z/2. This 
implies that we are dealing with low-frequency electrons, in agreement with the 
assumptions of the previous section, and in addition yields ~E ,,~ 3hw/2  for the 
amplitude of energy fluctuations. The small group velocity of the optical photons 
suggests that for c, appearing in Eq. (17), we should choose the velocity of the 
electron p/rn  ~ V/h-~/m. Substitution in Eq. (17) of this value for c and of the 
value obtained for ~E gives r ..~ ~ ~ / h / w m .  Using the value of the free electron 
mass for m and w ~ 1014 Hz we obtain r ~ 10 -7 cm, in good order of magnitude 
agreement with the polaron radius evaluated from experimental data [23]. For 
the polaronic exciton, we remark that in the Hamiltonian Eq. (8) with Jmn = O, 
the exciton is rigid, in the sense that the interaction with phonons does not 
change its internal state. In this sense one might be tempted to apply the same 
qualitative considerations developed for the nucleon, although the small mass 
of the exciton should be taken into account. As mentioned, however, internal 
states of the exciton possessing higher energy than the ground state do obviously 
exist. In this case processes whereby phonons are exchanged with the lattice 
simultaneously with changes of exciton internal energy might play a role. These 
processes would be described, in the linear approximation, by terms of the same 
form as V1 and V2 in Eq. (5) [24], and their contribution to the virtual cloud 
of the polaronic exciton should resemble that of the dressed atom. Regrettably, 
however, a consistent treatment of the virtual cloud of the polaronic exciton does 
not seem to exist yet. 

Finally, we must spend a few words to dispel an ambiguity in the language 
concerning dressed states as referred to atoms or molecules in QED. In fact, 
the same term is in use in quantum optics to describe the atom-field correlated 
states arising when an atom interacts with a real external quantum field such 
as that generated by a laser [25]. In these lectures we will always use the term 
"dressed atom" in the sense discussed in the present section. 

4 T h e  s h a p e  o f  t h e  g r o u n d - s t a t e  v i r t u a l  c l o u d  

The semiquantitative considerations of the previous section suggest the presence 
of a cloud of virtual quanta surrounding the sources of a field at zero temperature. 
This raises the following questions: 

- Is it possible to identify the ground-state quanta obtained in Section 2 with 
those which belong to the cloud? 

- Can we find a quantitative description of the virtual cloud in terms of a 
space-dependent distribution of fields around the source? 

- Does the presence of this cloud give rise to measurable effects, which depend 
on its detailed shape in space around the source? 
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The first two questions can be answered together, since we shall show in this 
Section that the shape of the virtual cloud can be obtained from the explicit form 
of the ground state of the total source-field system, which we have evaluated in 
Section 2 and which we have shown to be at the origin of the finite number 
of ground-state quanta. We shall henceforth call this state the "dressed ground 
state". The third question will be discussed in the next section. 

Clearly the information on the shape of the virtual cloud, as a function of 
the distance from the source, will be available given an operator functional of 
the field distribution around the source, whose quantum average on the ground 
state of the coupled source-field system can be taken as a reliable measure of the 
form of the virtual cloud. Thus it is likely that  more than one operator  of this 
kind exists, and that  any sensible choice should give equivalent results. 

In the case of the static nucleon coupled to a scalar meson field, an obvious 
choice is the amplitude of the scalar field, defined as [26] 

k 

From Eq. (14) we easily find 

V 1  (p~e,,. + p ~ e _ , ~ . ) .  (19) '(o1¢(~)1o)' = ~v g ,.,.,7 

For a point-like source p(x) = 6(~) and pk = 1. Thus after some algebra it can 
be shown that  

g e - ~  (20) ' (o I ¢ ( ~ )  I o ) ' -  4~,~2 

We see that  the field decays in a Yukawa-like fashion [27] far from the source. The 
divergence at x = 0 is unphysical and depends on the assumption of a point-like 
source, but  we note that the virtual cloud is concentrated within one Compton 
wavelength of the nucleon, in agreement with the semiquantitative considerations 
of the previous section. A cloud of virtual mesons is also an essential constituent 
of more sophisticated models of the nucleon, such as the cloudy bag model [28]. 

For the FrShlich polaron, the operator corresponding to the electric polariza- 
tion created in the lattice by the presence of the phonons is [9] 

k 

Starting from this, and using Eq. (3) for the dressed ground state, we obtain the 
following result for the quantum average ¢(z ,  :re) of the potential  created at :~ 
by the presence of an electron at xe 

cos k .  ( ~  - ~) 
¢(~' ~1 = - ~-V 

k 

- ~ 1 - e x p  - I ~ - ~ 1  • (221 
~ l~ 'e -~ l  



Fully and Partially Dressed States in Quantum Field Theory 307 

Thus at distances from the electron larger than V/h-/2rr~ the polarization po- 
tential is of the normal screened Coulomb type, whereas at smaller distances 
the presence of the virtual phonon cloud eliminates the Coulomb singularity 
[11]. More refined calculations yield results in agreement with Eq. (22) [29]. We 
remark that this result is also in accord with the conclusions of the previous 
section. 

Turning to the two-level atom, quadratic expressions [30, 31] present the 
advantage of possessing a direct physical meaning. For example, E2(z) is pro- 
portional to the electric energy density operator [32] 

nel(Z) = ~ E ~ ( x )  (23) 

A rather nontrivial calculation of the quantum average of 7"/el(~ ) on the dressed 
ground state Eq. (6) yields a complicated result which, however, can be easily 
understood in the two limiting cases of short distances x from the atom (near 
zone) and of large distances (far zone). The near zone is defined for x < c/wo. 
The lifetime of virtual photons with wk > w0 is shorter than w0 -1, so that these 
photons during their lifetime cannot reach distances greater than c/wo from 
the atom. Thus in this region the virtual cloud is dominated by energetic high- 
frequency virtual photons. On the contrary, low-energy virtual photons with 
wk < ~0 have a longer lifetime, and consequently they can reach the far zone, 
where they dominate the energy density due to the scarcity of high-frequency 
photons [33]. In each of the two zones we have approximately [13] 

1 hwk 
' ({0kj},l  t U e l ( Z ) } { 0 k j } , l ) ' -  2 - V Z  2 

kj 

1 2 (1+  3cos 2 0) x -6 (x < c/~zo) 
__ 8¥~21 (24 )  

he-ran (13 m. + x -7 (x > c/w0) 

where V is the quantization volume as usual, ~ is the unit vector along z , / ~ 1  is 
the electric dipole matrix element between the two atomic states, 0 is the angle 
between/~21 and ~ and 

2 (25) 
01ran : ~C~O 

is the static polarizability tensor of the two-level atom [34]. The negative con- 
tribution to the LHS of Eq. (24) is the infinite, spatially uniform energy density 
due to the zero-point electric field of the vacuum modes, which of course is of 
no interest here. The fact that at the approximate boundary of the two zones, 
for x ,~ C/Wo, Eq. (24) presents a decrease in the slope (from x -s  to x -7) is 
in qualitative agreement with the considerations of the previous section. The 
agreement cannot be complete because the calculations described in this section 
take into account two-photon processes, which were neglected in the previous 
section. 

To the best of our knowledge, no realistic evaluation of the shape of the 
virtual phonon cloud has been proposed up to now for the case of the polaronic 
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exciton in 3 dimensions. Some qualitative considerations, however, can be found 
in review papers [35]. 

5 O b s e r v a b l e  e f f e c t s  r e l a t e d  t o  t h e  s h a p e  

o f  t h e  v i r t u a l  c l o u d  

We are now in a position to answer the third question raised at the beginning 
of the previous section, whether the shape of the ground-state virtual cloud can 
be related to observable effects. 

To begin with, it is evident that the terms present in the source-field Hamil- 
tonians discussed hitherto and responsible for the existence of the virtual cloud 
in different systems, are also responsible for energy shifts of a single source cou- 
pled to its own field. Consider first the nucleon-meson system whose Hamiltonian 
is given in Section 2. It is not difficult to show that  all the eigenstates of the 
complete source-field Hamiltonian HE + HSF are shifted by the common amount  

1 2 1 1 [P~ [ s= 1 2 1 / 1 I ptt I s d3k (26) 

k 

with respect to the free Hamiltonian HF [6]. This shift can be regarded as an 
energy renormalization, which could be identified with a mass renormalization 
of the source if we had dealt with a mobile, rather than a fixed, nucleon. As 
for the FrShlich polaron, a simple perturbative calculation yields the electron 
energy in the form h2K2/2m * where [10] 

/71 
m* - (27) 

1 - c~p/6 

This evidently indicates a mass renormalization of the electron, similar in nature 
to the mass renormalization of an electric charge in QED [36]. Finally, for a two- 
level atom, second-order perturbation theory yields the ground-state shift 

I kj 1 
= h( 0 (28) 

kj 

which can be shown to contribute part of the two-level atom Lamb shift [7]. In 
spite of the fact, however, that all the energy shifts above are certainly related 
to the virtual photons, it is clear that they are quantities of a global nature, that  
is they do not depend in an immediate way on the shape of the virtual cloud. In 
what follows we set out to show that the shape of the virtual cloud can actually 
be detected, at least in principle, by the simple trick of using sources in pairs 
rather than one at a time. 

Consider in fact two static meson sources at points 0 and R. The Hamiltonian 
of the system is the same as in Section 2, provided we take p(x) = p l (x)  + 
P2(~). Here PI(~) and P2(X) are assumed to be similarly shaped, sharp and 
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nonoverlapping peaks centred at 0 and R respectively. Thus one can reliably use 

(29) 
the approximation 

pk "" 1 + e - i k R  

Substitution of this into the shift Eq. (26) yields, after some algebra, 

2 1 cosk . R d 3  k = 2A ° -  4---~c ~g A = 2A 0 -- 9 ~ wk 2 (30) 

In this expression A0 is the shift caused by each of the two sources as if the other 
were absent, and it is evidently independent of R. The total shift, however, 
is R-dependent and for this reason yields a Yukawa potential [6, 27] and its 
related Yukawa force which can certainly be measured. Moreover, comparison 
with Eq. (20) shows that 

A = 2A 0 - g'(0 ] ¢(R) ] 0)' (31) 

Thus the shape of the virtual meson cloud Eq. (20) can be obtained by measuring 
the attraction of the two sources as function of the distance R. 

The same principle can be used for the virtual cloud of the Frbhlich polaron 
[37]. In fact second-order perturbation theory yields, for two infinitely massive 
model electrons at 0 and R,  the ground-state shift [38] 

2 12 4 e2  cos . R (32) A = 2 A  0 - ~ - ~ [ V k  c o s k - R = 2 3 0 -  ~ T  
/, k 

where V is the volume of the crystal and A0 has the same meaning as in Eq. (30). 
On the other hand, for massive electrons we can put Ak = hw in Eq. (22), and 
we get 

4re 1 
¢(z,  z~) - eY ~ ~ cos k .  (z~ - z) (33) 

k 

from which we obtain 

A = 230 + ed(z = z~ - R, z~) (34) 

which is the counterpart of Eq. (31). We see that, at least in our simple model, 
we obtain the shape of the virtual cloud in the polaron case by measuring the 
mutual  force acting between two polarons. 

For the atomic ease, we start from the well-known result that the general 
van der Waals potential between two ground state, isotropic and electrically 
polarizable sources T and S at distance R is given by [39] 

V ( R ) = -  4 s 12 [ ° °  
k~ksu4e -2uR 

9~rhcR 2 Y~ I t ~  121 m0 Jo (k~ + u2)(k2 + u2) 
t s  

x d u  " (35) 

In this expression tt T (/zss0) is the electric dipole matrix element between the 
ground state of source T (S) and its t (s) excited state. Moreover, the sum over 
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t (s) runs over all excited states of source T (S), and wt (we) is the frequency of 
the t ~ 0 (s ~-~ 0) transition of the source t(s). The following properties can be 
proved, starting from Eq. (35): 

i) If each source is in the far zone of the other, V ( R )  reduces to 

where 

1 (36) V ( R)  = - 23 R 7 

2 ~ 1 2 1 ]2 (37) 
: : /.tsO 

$ 

are the isotropie static ground-state polarizabilities of the sources. If we smear 
the anisotropy out of the far-zone result Eq. (24) for a two-level a tom by taking 
amn = a/iron, we obtain 

1 hwk _ 23 h c a l  
'({0~ }, + I Uel(~) I {0~ }, +)' - ~ ~ 2 12~ (x > C/030). X' 

~j 
(38) 

It is thus evident that, at least for a pair of two-level atoms, V(R)  in Eq. (36) is 
proportional to the excess energy density created in the far zone by each source 
at the position of the other. Hence the force between the two sources is related 
in a simple way to the quantity we have taken as a measure of the virtual photon 
cloud. 

ii) If source S is in the far zone of T and T is in the near zone of S, the 
general expression Eq. (35) can be shown to yield [40] 

s 1 v(n) =--o~r(¢oS I (t,s)2 I ¢o )~-~ (39) 

where I ¢0 s) is the ground state of source S. If we take into account that  #~1 - 
(~ I #2 I ~) and furthermore if we smear the anisotropy out of the near-zone 
two-level atom result Eq. (24) by taking cos 2 0 = 1/3, we obtain 

1 k~j hwk 1 it2 1 ( c )  '({O~.j}, 1 [7"tel(Z) I {0~,,.), 1) '-~-- y . 2 - 4-~ :(£ I I £ ) ~  • < ~ • 

(40) 
It is thus evident that V(R)  in Eq. (39), at least for a two-level atom, is propor- 
tional to the excess energy density created in the near zone by source S at the 
position of source T. Consequently also in the near zone the energy density of 
the virtual cloud can be related to a measurable interparticle force. We briefly 
mention that  another way of detecting the shape of the virtual cloud has been 
suggested recently [41, 42, 43], which is based on the fact that  the rate of sponta- 
neous emission of real photons by an excited atom is influenced by the presence 
of the virtual cloud. 

We conclude that  in all cases considered (dressed nucleon, FrShlich polaron, 
dressed atom) the details of the space dependence of the virtual cloud can be 
measured, at least in principle. This is rather reassuring, because it shows that  



Fully and Partially Dressed States in Quantum Field Theory 311 

the concept of virtual cloud is a physical one. In Part II we will extend the 
measurability analysis to other physical quantities which are directly or indirectly 
influenced by the presence of the virtual cloud. 

P a r t  I h  P a r t i a l l y  D r e s s e d  S t a t e s  

6 M e a s u r e m e n t s  o n  d r e s s e d  a t o m s  a n d  e x c i t o n s  

Up to this point, the time variable has not played any significant role in our 
treatment. This is to be expected since we have defined the dressed ground state 
as an eigenstate of the total Hamiltonian of the source-field system, and there is 
no time dependence in any of these eigenstates. The role of time, however, be- 
comes evident as soon as we start discussing the quantum theory of measurement 
of a dressed source. 

To see why this is the case, we must introduce briefly the main ideas of the 
theory of measurements of finite duration in the version given by Peres and 
coworkers [44]1 although an earlier version was used for the measurement of the 
electromagnetic field [45]. According to this theory, before the measurement pro- 
cess starts the system to be measured is in a state I ~), the measuring apparatus 
(occasionally called pointer) is in a state I ¢/,  the state of the total system being 
in the uncorrelated state I~)  =1 ¢/ I~/- States I¢ /  and I ~/ are defined in two 
different Hilbert spaces pertaining to two different Hamiltonians HM and HR 
respectively. The eigenstates of HM a r e  denoted by I ek/ and those of HR by 
I ~k/. It is assumed that  one can establish a one-to-one correspondence between 
a given I ~b~) and a given I ~k). 

The measurement process starts at t = 0 and is described in terms of an 
appropriate time-dependent Hamiltonian HMR(t) containing object as well as 
apparatus variables. Thus in this theory the measurement is a quantum mechan- 
ical process describable in terms of a unitary operator U(t) such that  during the 
period of measurement the total state I k~(t)) is given by 

I = u ( t )  I (41) 

The interaction Hamiltonian HMR must be such as to yield correlations between 
the object being measured and the apparatus, in such a way that  

I ~(t)> = ~ ck I ¢k> I ~ >  (42) 
k 

where c~ are c-numbers. The measurement is taken to end abruptly at time 
rm, when an observation takes place which induces a collapse of Eq. (42) into 
one of the possible states I ~bk~ I ~°k/. This observation is a nonunitary process. 
The main difference between the conventional theory of measurement generally 
presented in textbooks and the theory of measurements of finite duration is the 
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distinction which is made in the latter between measurement and observation. 
Thus this theory seems to provide a reasonable generalization of the conventional 
quantum theory of measurement. This generalization is achieved by eliminating 
an objectionable feature of the latter, namely the assumption of instantaneous 
experiments. The preliminary concepts for such a generalization can be found in 
the book by von Neumann [46]; whereas the criteria for an apropriate choice of 
HMR have been discussed more recently [47]. 

In preparation for the application of these ideas to the theory of dressed 
atoms and of polaronic excitons, we assume that the object to be measured is 
an isolated two-level atom at a fixed space-point, described by the Hamiltonian 

HR = hwoS~. (43) 

We model the pointer as a body of large mass M and momentum p, free to move 
in one dimension such that 

1 2 (44) HM = " ~ p  • 

For the atom-pointer Hamiltonian we take the form 

H M R =  g(t)pS~; g ( t ) = - - 1  [O(t) -- O(t -- rm)]; g(t)dt = go (45) 
Tm 

where g(t) is a gate-function. We now proceed to show that HMR is of the 
appropriate form to measure Sz. The latter operator is directly related to the 

1 bare atomic population, since the average values of ~ 4- Sz yield directly the 
occupation numbers of either atomic or excitonic levels. On the basis of the 
general ideas of the theory of measurement of finite duration, one expects that  
in the interval 0, rm the pointer gets correlated with the atom, and one postulates 
that  the wavefunction collapses at t = r,~ as a result of an observation [44]. This 
bare two-level atom problem can be solved exactly. The total Hamiltonian is 

1 2 
H = HM + HR + HMR = - ~ P  + hwoSz + g(t)pSz (46) 

and the equations of motion of the dynamical variables are 

i 1 
(1 = -T[q ,  H] = w P  + g(t)Sz ; 

12 M 
p = O ;  £ = 0 (47) 

where q is the position of the pointer. Thus p and Sz are constants of motion, 
and for t > 7"m integration of Eq. (47) gives 

q(t) = goSz(O) + -~-p(O)t + q(O); 

q2( t ) : lg~+2goS~(O)[~-p (O) t+q(O)]  +  48, 
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Taking quantum averages on a state of the system in which I kP) is such that  
(q(0)) = (p(0)) = 0, and exploiting the assumption that the mass of the pointer 
is large, we have 

(q (~ ) )  = g0(Sz(0)); 

(q2(T,n)) - (q(rm))2 = g2o (~  - (Sz(0))2) . (49) 

These two quantities are the average value and the variance of the function P(q), 
defined as the probability distribution of the pointer positions at the observation 
time rm. Since it is in general true that [~) = a I T) + b l ~), we have 

(q(rm)) -- go (l a '2 - ~ )  ; 

(q2(vm)) - (q(Tm)) 2 = g~ I a ]2 (1-- ] a ]2). (50) 

Moreover, it can be shown [48] that at time Vm there is a perfect correlation 
of q and S~, in the sense that if in a particular measurement the pointer is 
found at position 1 +~g0 (-½g0), the atom is certainly in the upper (lower) level. 
Thus in the general case with ] a [2~ l, the expressions in Sq. (50) are only 
compatible with a two-peaked P(q): one of the two sharp peaks, of intensity 
I a [2, is located at q = +go~2 and the other, of intensity 1 -  [ a [2, is located at 
q = -go~2. Evidently one can deduce the value of [ a [2 from the experiment, 
and consequently one is able to determine the populations in the upper and 
lower state as 

1 i ( 12 ~ ) 
l a  - 

Thus the gedanken experiment modelled by Hamiltonian Eq. (46) is capable of 
measuring the hare atomic population distribution. 

We now perform the same measurement on the atom dressed by the zero- 
point fluctuations of a single-mode field of frequency w. Thus the atom-field 
Hamiltonian, which is derived from Eq. (5) with l = -1 ,  is 

HR = hwoSz + hwat a + eaS+ + e*afS_ -- eatS+ -- e 'aS_ (51) 

and the total Hamiltonian is 

1 2 H = + g(t)S,p + / t .  (52) 

Proceeding as previously, we obtain 

fo' q(t) -- Sz(t')g(t')dt' + p(O)t + q(O) (53) 

where Sz is not a constant of motion and cannot be taken out of the integral. 
The expression for q2(t) can be obtained directly by squaring Eq. (53). For [ ¢) 
we take the same state as previously, and for [ ~) we choose the dressed ground 
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state of the atom, which we find by specializing Eq. (6) to the single-mode case. 
After some algebra, the average value and the variance of P(q) at time r,~ are 
found to be [49] 

= 9 0 ( s z ( 0 ) / ;  

(q2(rm))--(q(v~))2=g2°(l--(Sz(O))2) 2[1--c°s(w°+w)Tm](wo + W)2T~ (54) 

This result for the fully dressed atom should be compared with Eq. (49) for a 
bare atom. In the limit of a "short" measurement, such that  vrn (<: (w0 + w) -1, 
the variance of P(q) given by Eq. (54) coincides with the two-peaked variance 
given by Eq. (49) for a bare atom. Thus the measuring apparatus perceives 
the atom as essentially bare and the measurement is not influenced much by 
the coupling with the single-mode vacuum fluctuations. On the contrary, in 
the limit rm ~ (w0 + ¢0) -1, the variance of the dressed atom vanishes. This 
indicates the presence of a single peak in P(q), rather than of two peaks as 
in the general bare-atom case. This shows that  "long" measurements, such that  
rm ~ (w0 +w) -1, detect a new object, namely the dressed atom. This also shows 
that  long measurements are strongly influenced by the coupling with vacuum 
fluctuations. We remark that at this point time has made its appearance in the 
theory of dressed states, albeit in the form of the parameter r, ,  which brings 
about a time scale, the duration of the measurement. 

The single-mode model just discussed can be generalized to the many-mode 
case described by the Hamiltonian, stemming from Eq. (5) with I = -1 ,  

1 2 H = ~-~p + liwoSz + g(t)Szp+ E hwka~ak 
k 

+ E (~kakS+ + e~a~S_- eka~S+ --~akS-) 
k 

(55)  

From the form of the variance one deduces that a measurement of duration rm 
detects the atom as if it were dressed only by virtual photons of high frequency 
such that  w0 +wk > v,~ 1, since these photons do not contribute to the variance of 
P(q). The low-frequency photons, of frequency such that  w0 +w~ <: vr~ 1, are not 
perceived by the measuring apparatus. Thus it is as if the apparatus perceived an 
atom dressed by the high-frequency photons only or, equivalently, as if the virtual 
cloud around the atom were deficient of the low-frequency components. Since the 

where subscript k stands for kj. We shall report here only the final result, where 
the quantum average is taken on dressed ground state Eq. (6) [48, 50] 

(q(Tm)) = go - + h%oo + ; 

I ek 12 2 [1 - cos(wo + wk)rm] (56) 
(q2(rm))  - = + + 

k 
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low-frequency virtual photons are the main contributors to the energy density 
in the far zone, the atom is perceived as dressed by an incomplete virtual cloud, 
whose external part is missing. The question of the extent at which this model 
can be used to represent the physics of measurement on the polaronic exciton 
will be postponed until the end of Section 9. However the above discussion leads 
us quite naturally to the theory of partially dressed states. 

7 T h e  p h y s i c a l  n a t u r e  o f  p a r t i a l l y  d r e s s e d  s t a t e s  

The concept of a partially dressed source was proposed in clear terms by Feinberg 
in 1966 [51], but the fundamental idea was probably contained in Ginzburg's 
earlier work [52] cited by Feinberg and summarized by Ginzburg in a more 
recent publication [53]. Feinberg's original QED argument can be understood 
even without recourse to the theory of a free electron dressed by virtual photons 
[54]. Indeed a dressed, but otherwise free, electron of momentum p is well known 
to create an electromagnetic field in space whose quantum average, as in classical 
electrodynamics, depends on the angle 0 between p and the observation point 
x [55]. This leads to a dependence on 0 of the energy density, although in the 
latter case interesting differences between the classical and the quantum case are 
found [54]. Thus if the direction o f p  changes abruptly, such as during a scattering 
event, the energy density after this change is different from that  which would 
normally pertain to the new value of/9. In order to attain the new equilibrium 
virtual cloud, real photons must be exchanged with the field in the form of 
Cherenkov radiation [56] and a finite time for the rearrangement of the energy 
density around the electron is necessary. 

It is not difficult to imagine how to make a partially dressed source in the 
context of atomic or molecular physics, although experiments of this kind have 
not yet been performed. Consider, for example, an atom in a local static electric 
field which can be switched on and off. The static electric field influences the 
atomic energy levels, and consequently the structure of the virtual cloud, via 
the Stark shift [57]. Thus the virtual cloud found when the static electric field 
is present, becomes out of equilibrium when the static electric field is turned 
off. Also, it is clear that when an electron is excited from the valence to the 
conduction band in a semiconductor, some time must elapse before the phonon 
virtual cloud is formed around it. During this time we are dealing with an object 
which should be described as a partially dressed electron, or as an incomplete 
polaron. 

In all these examples, the obvious questions to ask are: 
- How does reconstruction of the virtual cloud take place after a more or less 
t raumatic event leading to the formation of a partially dressed source? 

- Is a partially dressed source experimentally observable? 
- Which are its physical properties? 
If we are to answer these questions and to describe the phenomenon of cloud 
regeneration in quantitative terms, it is necessary to limit the scope of the dis- 
cussion and to adopt a model which can be treated mathematically, since it is 
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evident that a great variety of partially dressed states exist even for the same 
source-field system, corresponding to the infinitely many ways in which a virtual 
cloud can be distorted from its equilibrium configuration. 

In order to simplify our task and to make the model amenable to mathemati-  
cal treatment,  we shall find it useful to define an abstract entity which we call the 
"bare source". Generally speaking this entity should be thought of as belonging 
to the same class of abstract concepts such as point mass and point charge. The 
latter are abstractions obtained by a conceptual limiting process of masses and 
charges of smaller and smaller dimensions, but they do not necessarily exist in 
nature, in the sense that they may never be attained in practice. Neverthless 
these abstractions have proved themselves extremely useful, for example, in the 
domain of classical physics. 

Consider now a ground-state hydrogen atom at the centre of a perfect cavity. 
The QED of atoms in a cavity has been well-known for a long time [58, 59] 
and we will not dwell here on the details of the model. We shall rather assume 
that  the cavity is spherical of radius L, to conform to the spherical symmetry  
of a central spinless hydrogen atom, and that it is grounded to zero potential  to 
ensure that its external surface does not bear charges. Then the cloud of virtual 
photons of the atom is confined inside the cavity and its linear dimension is 
also L. Thus the system, with respect to a free-space dressed hydrogen atom 
[60], is deprived essentially of the low-frequency part of the spectrum of virtual 
photons with wavelength larger than L which, as we have discussed, could reach 
out to distances z > L from the atom. We now imagine that  the cavity disap- 
pears suddenly at t = 0. We will not be concerned with the details of the way 
this event takes place, provided the disappearance time is shorter than all the 
inverse frequency scales of the problem [61]. In view of this we will assume that  
disappearance of the cavity walls at t = 0 leaves a well-defined atomic structure, 
a virtual cloud which vanishes for z >_ L and a spectrum of virtual photons 
which is missing of its equilibrium low-frequency part. This is really a partially 
dressed atom, but  it may possibly be considered as effectively bare if viewed 
from a distance z >> L. Such a distance in fact could be attained only by the 
low-frequency photons which are missing. 

It should be noted that in solid state physics all the subtle problems connected 
with the definition of a bare source, that make life difficult in QED, do not 
seem to arise. This is the case for essentially two reasons. First, if we consider 
dressing by virtual phonons, as for the polaronic exciton, the electromagnetic 
force holding the source together is relatively independent of the elastic force 
responsible for the virtual cloud. Thus we can in principle let the exciton-photon 
coupling vanish without destroying the internal structure of the exciton. Second, 
consider, for example, an exciton created by a laser inside the semiconductor gap 
at T = OK. Since the frequency of the laser photons is in the optical range (-~ 
1015Hz), the characteristic time for creating the exciton can be taken of the order 
of 10-1%. Due to the exeiton-phonon interaction, the lattice will tend to readjust 
around the exciton. Such a readjustment, however, cannot take place in a time 
shorter than the inverse of the highest frequency of the lattice normal modes, 
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which is the Debye frequency 6dD, typically of the order of 1013Hz. Consequently, 
although the final result of the readjustment is a polaronic exciton, this final state 
is attained in a time which may be orders of magnitude larger than the time 
necessary to create the bare exciton. Thus it is certainly legitimate to regard the 
exciton as bare at the beginning of this time interval, and as getting partially 
dressed by a virtual phonon cloud in the course of time. 

8 T h e  v i r t u a l  c l o u d  o f  p a r t i a l l y  d r e s s e d  s t a t e s  

In this section we shall investigate the reconstruction of the virtual cloud starting 
from the vacuum for different physical models. In particular we shall assume, in 
agreement with the qualitative considerations of Section 7, that we deal with a 
source which is bare at t -- 0, and we shall follow the dynamics of the virtual 
cloud which develops from the vacuum around the source in the course of time. 

Polaronic exciton 
Here we assume that the Hamiltonian of the system is Eq. (8). The oper- 

ator representing the displacement of the nth lattice site from its equilibrium 
configuration, in a one-dimensional model is 

h e_ikn [a~(t) q_a_k(t)] (57) Un(t) = ~_, 2N~Iwk 
k 

where M is the mass of the site and N the total number of them. The exact 
solutions of the Heisenberg equations for the phonon operators with Jmn = 0 
are 

ale(t) : ak(0)e -i~kt - ( 1 -  e -i~t) ~xLmk ) (s(m'(o)-k 1 ) .  (58) 
m 

For the initial state we take an exciton localized at n = 0 and a quiescent 
undistorted lattice 

[ ¢(0)) =l {0kj}, To). (59) 

The quantum average of un(t) on this state gives [16] 

(¢(o) I I ¢(o)) = 

(60) 
_ N ~ ~  1 -,kn (0),~,,, (S~0)+ - c o s  ~ - e  X_k/~[u,I 1 )  I¢(0))(1 wkt). 

This can be shown to be equivalent to a static distortion around the exciton at 
n = O, plus two elastic pulses moving away from the exciton site with opposite 
velocity +c, where c is the velocity of sound. Thus switching the source on 
at t = 0 in this one-dimensional example yields a dressed localized polaronic 
exciton, in addition to real elastic pulses moving away from the location of the 
dressed source. 



318 G. Compagno et al. 

Static nucleon 
The energy density of a real Klein-Gordon field is [62] 

1 ,¢2c2¢2) (61) n ( = )  = ~ (¢~ + e ~ ( r e )  ~ + 

where ¢(x) is the field amplitude defined in Eq. (18). In the presence of a static 
nucleon, the Hamiltonian is given by Eq. (11) and Eq. (12). The quantum av- 
erage of the energy density on a state which is initially devoid of mesons is 
[38] 

({ok} In(=, t) I {ok}) = 32--~c2g -~ --~ + c2 O-xxOx .~dt' 

+ (62) 

Since / _ _  \ 

= Jr(z,t) = Jo [~cV't ~ -  x2/c 2) O(t - x/c) (63) 

where J0 is the zero-order Bessel function, it is evident that the quantum average 
of the energy density vanishes outside a sphere of radius ct centered on the source, 
which is sometimes called the causality sphere. As t -~ oo expression Eq. (62) 
tends to 

1 ~ 1 (2~2x2 + 2xx + 1) e -2~  (64) ({ok} I~(=) I {ok}> - 32--~2g 

which coincides with its stationary dressed ground state value, obtainable by 
the methods mentioned in Section 4. Thus reconstruction of the virtual cloud 
take place causally. The disappearance at t = 0 of a fully dressed static nucleon 
has also been investigated [63]. In this case the quantum average of the energy 
density outside the causality sphere is unchanged, whereas it decays to zero in 
quite a short time for x < ct. 

Two-level atom 
For a two-level atom coupled to the quantum fluctuations of the electromag- 

netic field, we adopt ttamiltonian Eq. (5). As discussed in Section 4, we describe 
the virtual cloud by means of the electric energy density of the field ~/el(Z, t), 
given by expression Eq. (23). Using the multipolar scheme [64, 65] amounts to 
choosing I = - 1  and [13] 

• /2~rh~k 
~kj = - , V - - V - u 2 1 .  bk~- (65) 

where the polarization vector bkj is taken as real for semplicity. Then the total 
electric field outside the atom coincides with the transverse displacement field 
[31] 

D .L(=)= i  E 2~/'~-~k~ {a eik" atje - i k r )  (66) 

k i 
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Thus we need explicit expressions for akj (t) and a~j (t). The coupled Heisenberg 
equations for field and atom operators can be obtained from Eq. (5) as 

i .  i 
&kj = --iwkakj -- -~kjS_ -- -~l~kjS+ 

i i . 
ekjakjSz -- 2-~1 ~ ,kjakjSz.  (67) 

kj i,j 

These equations are solved keeping terms up to order of c 2 and evaluating the 
quantum averages of all operators quadratic in a(t) and at(t) on the initial state 
[ {0kj }, t t  (i.e. the bare ground state with the atom unexcited and no photons). 
The results are then combined to obtain ({01,j), 1 I n e l ( * , t )  I {0kj}, ~). This 
procedure yields [66, 67] 

({0kj},~lT/el(Z, t )  l { 0 ~ j } , l ) = ~ - ~  h w k -  V . f m " ( k J ) k o + k  

where k0 = Wo/C, f m . ( k j )  = (bt./)l(bkj).~(tJ2a)t(t~21),~ and where we have in- 
troduced the differential operator 

D ~ ,  -~1 (6mn - ~m~,) ~z  2 + (6m, -- a~m~,,) p X ~  

The first contribution on the RHS of Eq. (68) is the usual infinite, space- and 
time-independent zero-point electric energy density of the field, which is of no 
interest here. The 12 term represents the virtual cloud which at t - 0 vanishes 
everywhere, as expected of an initially bare atom. The virtual cloud develops 
causally, as indicated by the presence of the 0-function. In fact it vanishes outside 
the causality sphere of radius ct. Furthermore, the sums in the 12 term can be 
evaluated for t ---* o¢ both in the near (kox << 1) and in the far zone (kox >> 1), 
with results in agreement with the static case Eq. (24). 

We conclude that in all the cases considered in this section (exciton, static 
nucleon, two-level atom), the reconstruction of the virtual cloud, starting from an 
initially bare source, takes place within the causality sphere of radius ct centred 
on the source. The virtual cloud inside this sphere tends more or less rapidly to 
assume the shape of the ground-state virtual cloud discussed in Section 4. 

9 Observable effects related to the reconstruction 
of the  virtual cloud 

In this section we take up the question whether it is possible to detect experi- 
mentally the reconstruction of the virtual cloud. 

Static nucleon 
We consider two localized static meson sources S and T, with S fixed at the 
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origin and T mobile at point R. In our scheme T plays the role of a field detector. 
The idea here is that S is bare and T fully dressed at t = 0, and that  we wish 
to investigate if the motion of T at t > 0 is influenced by the reconstruction of 
the virtual cloud around S. The basic Hamittonian is the same as that  used in 
section 5. We shall not give here the details of the calculations [68] and we only 
mention that the quantum average of the force acting on T is given by 

1 g20 1 0 fot (F(t)) - 4rc2 OR RO-R F(R,t')dt' (70) 

where ~ is the same as in Eq. (63). Thus, in view of the 0-function in 5 r, although 
the initially bare source S starts the self-dressing process immediately after t = 0, 
the force nq. (70) vanishes until t = R/c. After this time (F(t)) has a rather 
complicated behaviour, but it is possible to show that asymptotically it tends to 

0 { 1 2 1 -~R~ (71) 

in agreement with Eq. (30). Thus the motion of T changes upon arrival of the 
front of the virtual cloud of S at t = R/c, and by virtue of this fact T can be 
used as a detector of the recostruction of the virtual cloud of S. 

Two-level atom 
Here S and T are two two-level atoms. The geometry of the system as well as 

the role of S and T in the gedanken experiment are the same as in the preceeding 
example. We assume, however, that each atom is in the far zone of the other. 
In this case the coupling of each source i localized at ~i with the field can be 
described by the Craig-Power Hamiltonian [69] 

g(O ~c~i D±m(xi)D±,(xi) (72) 
i n t  -~  - -  

where D j_ is the transverse part of the electric displacement field, as usual. This 
form of the interaction can be obtained from Eq. (5) by a unitary transformation 
which eliminates the atom-field interaction at first order in the electron charge 
- e ,  and oemn is given by Eq. (25). Only the low-frequency modes of the field 
are adequately taken into account by Eq. (72) [7], but this is sufficient for our 
purposes, given the far-zone assumption. As previously, we take S as bare and 
T as fully dressed at t = 0. The quantum average of the force acting on T at 
t ime t turns out to be [68, 70] 

(F(t)) = ~hc~S ~T {-161"1-~g[ - O(R - ct)] + SC} . (73) 

i o L i ~ r n n ,  In this expression c~ i are spherical averages of C~mn, taken by using i Olrn n --- 

a n d  SC stands for a complicate singular contribution which can be expressed, 
for a point-like source, in terms of 6(R - ct) and of its derivatives up to the fifth. 
This shows that  the force on T vanishes up to t = R/c. After the front of the 
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virtual cloud of S reaches T, the nonvanishing force Eq. (73) sets T in motion. 
This motion can thus be used to detect the reconstruction of the virtual cloud of 
S. Moreover as t ---* c¢, Eq. (73) tends to the usual van der Waals force, which 
can be obtained from Eq. (36) by straightforward differentiation. It should be 
noted, however, that  in any realistic experimental setup that can be implemented 
with present technology, the effects of the force on the test body T are likely 
to be undetectably small [13, 38]. Thus we shall discuss another possible, albeit 
less direct, way of observing the reconstruction of the photon virtual cloud. We 
consider the atomic dynamics during the self-dressing process. Thus the starting 
point is the Hamiltonian Eq. (5) and the initial state of the system is the bare 
state I {0kj), l) with the atom in its bare ground state and no photons in the 
field. From the Heisenberg equations, at second order in e we get [38] 

1 12 12 1 - cos(wo + wk)t (74) ( {%},  $ I &(O I {o,,~ ), ~) = - ~  + 2 g ~ I ~J 
ks (~o + ~k) 2 

We evaluate thus this in the minimal coupling scheme [12, 39, 64] with l -- 1 
and [7] 

£kj --= --Z v ~ " 2 1 "  bkj" (75) 

In this scheme Eq. (74) yields, for wot > 1, 

l 7 ( ~OM coscoot) 
({0kj}, ~ I Sz(t) I {01,j}, ~ / =  - 2  + 12 In ~ - 1 . (76) 

7r~o ~o @002 

In this expression WM is a high-frequency cutoff, and terms oscillating at fre- 
quency WM have been neglected. These terms, in fact, are considered to be an 
artifact of the model and indeed disappear when the electric dipole approxima- 
tion is not performed and the cutoff at WM is not introduced [71]. Furthermore 
7 is the usual spontaneous emission rate [72] 

4 lit21 I ~ ~03 (77) 
7 = 3hc3 

For t ~ ~ ,  the 12 term in Eq. (76) is proportional to the Lamb shift [73]. We 
draw attention, however, to the term which oscillates at frequency ~v0. This term 
is similar to those obtained in the theory of spontaneous decay [74] and is related 
to the reconstruction of the virtual cloud. Moreover, as we have seen in Section 
6, Sz is simply related to the population distribution among atomic levels. Thus, 
if one could detect these population oscillations, one could diagnose the presence 
of self-dressing. 

Polaronic exciton 
Direct detection of the reconstruction of the cloud of virtual phonons start- 

ing from an initially bare exciton has not been discussed so far, to the best of 
our knowledge. However the processes leading to the formation of a polaronic 
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exciton in a semiconductor have been studied both theoretically [75] and exper- 
imentally [76]. The model of Section 2, as well as its more recent versions [77], 
are not capable of describing hybridization of different bare excitonic states due 
to the exciton-phonon interaction. Indeed we see by inspection that,  for a local- 

ized exciton with Jm,~ = 0, the Hamiltonian Eq. (8) yields S! m) = const  and 
consequently cannot give rise to internal dynamics for the exciton of the same 
sort as that leading to Eq. (74) for an atom coupled to the electromagnetic field. 
Thus on the basis of Hamiltonian Eq. (8) one would not expect that  measure- 
ments of the population distribution of a partially dressed exciton bear traces 
of the reconstruction of the virtual phonon cloud. Neverthless hybridization of 
internal polaronic exciton states has recently been shown experimentally to exist 
[78] and should also be expected on theoretical grounds [79]. Thus we are led to 
suggest that a more realistic exciton-phonon Hamiltonian should include terms 
yielding transitions between different internal excitonic states, accompanied by 
absorption and emission of phonons. We now know that  these terms, present 
in the atom-photon Hamiltonian Eq. (5), should lead to an internal dynamics 
of the excitonic population similar to that obtained in Eq. (76) for a two-level 
atom. This opens up the perspective that,  by following the internal dynamics of 
the exciton, one might obtain information on the reconstruction of the virtual 
phonon cloud. Although no theoretical or experimental result is yet available, 
the possibility of ultrafast measurements of exciton population on the femtosec- 
ond scale seems already within experimental reach [80]. Moreover it has been 
shown [48] that it is possible in principle to measure the population distribu- 
tion of a two-level system during the reconstruction of its virtual cloud and, as 
discussed at the end of Section 7, the reconstruction of the virtual cloud of an 
initially bare exciton takes a sizeable time and it should thus be amenable to 
experimental observation. Thus observations of the reconstruction of the virtual 
photon cloud in polaronic excitons seems within reach of solid state experimen- 
talists. Naturally some uncertainty remains, insofar as it is not clear whether the 
atom-photon analogy is valid for the excitonic polaron. We wish to point out, 
however, the importance of measurements of this kind, which would constitute 
a valuable guidance since they would simulate experiments on self-dressing in 
quantum field theory for which direct or indirect measurements are hindered by 
technical difficulties as yet unsurmounted. 

1 0  S u m m a r y  a n d  c o n c l u s i o n s  

In this set of lectures we have exploited the important  cultural tradit ion of cross- 
fertilization between solid state physics and quantum field theory. The main 
idea common to both branches of physics which we have discussed is that  of a 
source interacting with a radiation field. In solid state physics we have assumed 
that  the source is implemented as an elementary excitation such as the polaron 
or the polaronic exciton. In Part I we have shown that  the radiation-source 
interaction leads to a ground state of the source-field system in which the source 
is surrounded by a cloud of virtual quanta of the field which can be described as 
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continuously emitted and reabsorbed by the source. This gives rise to a complex 
object which we have called the dressed source. We have shown that  the virtual 
cloud around the source gives rise to observable effects which depend on its 
detailed structure. We have also shown that this is true for a variety of different 
sources in solid state physics, in hadronic physics and in QED. 

The quantum theory of measurement summarized at the beginning of Part  
II has been the vehicle leading from fully dressed to partially dressed sources. 
We have shown that for measurements of appropriately short duration, even a 
fully dressed source can be detected as dressed by an incomplete virtual cloud, 
and we have defined the quantum mechanical states corresponding to this sit- 
uation as partially dressed states. The quantitative analysis of the properties 
and the time-dependence of these states have led us to suggest that also par- 
tially dressed sources should be experimentally observable. At this point the 
importance of solid state physics becomes evident. In fact observation of the 
controlled reconstruction of the virtual cloud in hadronic physics or in QED 
seems unattainable by the presently available experimental techniques, whereas 
the same phenomenon is probably already within reach of solid state experi- 
mentalists. We hope that this paper will stimulate the necessary theoretical as 
well as experimental steps necessary for a complete investigation of partially 
dressed states in solid state physics. We emphasize that if such a programme 
were successful, it would constitute an important  contribution to the study of 
fundamental  processes in other branches of physics, as well as to the cultural 
cross-fertilization which is at the basis of our present efforts. 
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Density Functional Theory and Density Matrices 
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A b s t r a c t :  Recent investigations of the exchange-correlation potential of the 
Kohn-Sham (KS) scheme, making use of three equations satisfied by density 
matrices, are summarized ~md systematized. They lead to three exact expres- 
sions for the potential in terms of low-order density matrices of the interacting 
system and the KS system, and three approximations for the exchange-only 
potential in terms of the KS matrices. The application of the perturbation the- 
ory of Gbrling and Levy permits the formulation of a computational scheme 
in which the exact exchange potential and consecutive terms of the expanded 
correlation potential can be obtained within an extended KS approach. 

1 I n t r o d u c t i o n  

Density functional theory (DFT) is known to be a powerful computat ional  
method applicable in several branches of physics and chemistry: solids, liquids, 
surfaces, molecules, atoms, nuclei etc. Its basic aim is the determination of the 
ground-state energy and density of many-particle systems, but extensions to ex- 
cited states, time-dependent phenomena, magnetic and superconducting states 
have appeared. In a number of recent monographs on D F T  [1]-[8], the reader 
can find both introductory material and extended elaborations of the various 
aspects of DFT.  A practical computational scheme offered by DFT,  the Kohn- 
Sham equations, requires the knowledge of the exchange-correlation energy Exc 
and potential vxc(r) as functionals of the particle density n(r ) .  Various ap- 
proximate forms have been developed for them, starting from the local density 
approximation and ending with generalized gradient approximations. Since these 
approximations happen to be the main sources of errors in D F T  calculations, 
the improvement of existing or construction of new approximations is a pre- 
requisite for further progress of the theory. The present paper summarizes some 
recent developments in this direction, connected with the essential use of density 
matrices. 
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2 M a n y - e l e c t r o n  s y s t e m  

2.1 H a m i l t  on i an  

Our object of interest is a finite many-electron system, such as an atom, a 
molecule or a cluster, having, for simplicity, a nondegenerate ground state (GS). 
Its N electrons move in a common external potential v(r) (e.g. due to nuclei in 
fixed positions) and are mutually interacting with a pair potential u(rl, r2) (e.g. 
Coulomb 1/Iv 1 - r21). So the Hamiltonian of the system is given by 

7~ = T + / ~ + 9 ,  (1) 

with the kinetic energy operator 

N 

i = 1  

t ( • i )  ~ I 2 -~v~, (2) 

the electron-electron repulsion operator 

N - I  N 

i = 1  j=i 

u(~j, ~i) = u(~i, r~),  (3) 

and the electron-nuclei attraction (external energy) operator 

N 

= Ev(r i ) "  (4) 
/----1 

It will be convenient also to have a notation for a bare one-electron Hamiltonian 

~(r,)  = ~(r,) + v(~,) .  (5) 

Atomic units are used throughout. 

2.2 Densi ty  matrices 

Let 'P(xl, x 2 , . . . ,  XN) be a normalized, antisymmetric wave function. The no- 
tation ~i = (ri, si) for i th  space and spin coordinate is adopted, abbreviated 
further to 1 2 . . .  for Xl, z2 , . . .  • The Nth  order density matrix (N-DM) gener- 
ated by ~ is just the product 

~ N ( 1 2 . . . N ; I ' 2 ' . . . N ' )  -~- ~ . f ( 1 2 . . . N ) ~ * ( I ' 2 ' . . . N ) ,  (6) 

while the p th  order reduced DM (p-DM), for p < N, is obtained from 7N by 
integrating ( N -  p) coordinates, i.e. 

7,(12...p;l'2'...p') = (Npp) f d(p+ l ) . . .dN ~N . (7) 
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Here the abbreviationfdi to fd4zi means integration fd3vi and summation 
over si together with the replacement of z~ by zi in the integrand. For many 
applications, spinless DMs are sufficient, namely 

p p ( 1 2 . . . p ; 1 ' 2 ' . . . p ' ) =  ~ 7p (12 . . . p ; l ' 2 ' . . . p ' ) l s ;  (8) 

The abbreviation 12. . .  means r l , r ~ , . . . .  The diagonal elements of the DMs 
are denoted as 

~p(12. . .p)  : 7 p ( 1 2 . . . p ; 1 2 . . . p ) ,  (9) 
n , (12 . . .p )  = pp(12 . . .p ;12 . . .p ) .  (10) 

From the definition, Eq. (7), the reduction property follows: 

N + 1 - p 7p-1. (11) dzv 7p - P 

The subscript '1' will be often omitted. The basic quantity of DFT - -  the electron 
number density - -  is thus 

n(r) = p(r;r)  = p i ( r ; r ) .  (12) 

3 E q u a t i o n s  s a t i s f i e d  b y  l o w - o r d e r  d e n s i t y  m a t r i c e s  

3.1 E n e r g y  equa t i on  for the  1-DM 

We are going to establish the equations satisfied by the DMs generated from any 
eigenfunction ~' of the system Hamiltonian ~ ,  Eqs. (1)-(4): 

~ P ( 1 . . .  N)  = E~P(1... N ) .  (13) 

After multiplying Eq. (13) by ~P*(I'... N ' )  and integrating over all coordinates 
except 1, the following equation 

E71(1;1') : h(1) 71(1;1') + 2[d2 {h(2) + u(12)} 72(12;1'2') 
J 

(14) 

3 J d2 d3 u(23) 73(123;1'23), + 

is obtained, which is known as the energy equation for the 1-DM (see [9] or [10]). 
This equation provides the basis for our further investigations. 

To find the system energy in terms of the DM, we integrate Eq. (14) over d l  
and then use the reduction property Eq. (11) to obtain 

EN= ( 1 + 2  N ~___~1)fd1~(1)71(1;1,)+(2+3 N Z3._.~2 ) fdld2u(12)~2(12). 
(15) 
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This equation, rewritten in terms of spinless DMs, gives the well known ex- 
pression for the total energy as a sum of the kinetic, external potential and 
interaction energy, viz. 

E= f d1F(1)p1(1;1')11,=1+ f dlv(1)n(1)+ f dl d2u(12)n2(12). (16) 

3.2 Integro-different ia l  equat ion  for the  1-DM 

One eliminates the energy E from Eq. (14) by substituting in its place Eq. (15) 
divided by Y (see Ref. [li  D and finds 

0 = { t'(1) + v(1)} 71(1;1') 

+ 2 / d 2  {[t'(2) + v(2)1172(12;1'2') - 1'71(1;1') 71 (2;2')] + ~t(12) 72(12;1'2)} 

+ 3/d2 d3 u(23) {73(123;1~23) - ½71(1;1') 72(23;23)}. (17) 

This is an exact relation at coordinate pair 11', involving the potentialsv and u, 
and the 1-DM, 2-DM and 3-DM, generated from any eigenfunction of 7/, which 
is expressed in terms of these potentials, Eqs. (1)-(4). The 1-DM enters this 
equation both in the integrand, and in a "free" term in which the differential 
operator t" acts on it - -  this justifies naming Eq. (17) the integro-differential 
equation (IDE) for the 1-DM. 

3.3 Equation of  mot ion for the 1-DM 

After subtracting the hermitian conjugate of Eq. (14) from the original Eq. (14), 
we arrive at (see, e.g., Refs. [12], [13]) 

f 
{ [~'(1) + v(1)] - [t'(l') + v(l')] } 71(1;1') + 2 ] d 2  {u(12) - u(l'2)} 72(12;1'2) 0. 

(18) 
We observe the remarkable cancellation of terms involving E, h(2) and 73. 
Eq. (18) is an exact relation at 11', involving the potentials, 1-DM and 2-DM. 
This is, in fact, an equation of motion (EOM) for the 1-DM, which is coupled 
with the 2-DM due to electron-electron interaction. 

3.4 Differential  virial equat ion  

The two-point 11' dependence in the EOM Eq. (18) can be reduced to a one- 
point dependence by applying to it the operator ½(Vl - ~71,) first and taking 
the limit ,~ + r next (see Ref. [14]), viz. 

Z(rl;[pd) - ¼vlv .(.1) + . ( r l ) v l v ( . 1 )  + 2fd3r2 -2(.1, . 2 ) v 1 . ( . 1 , . 2 )  = 0, 
(19) 
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(the spinless version). Here the vector field z is defined in terms of the kinetic 
energy density tensor 

1 ( 0 2 

aN 

02 ) + r )1,.' ,,- p l ( r  + r ' ; r  " , (20) + 
Or~Or~ = r" = 0 

z~(r;[;~]) = 2 ~ o-~t~(~;[p~]). (21) 

We note that the global kinetic energy - -  the integrated kinetic energy density 
(which is the trace of ta~) - -  

= fd3~ ~t~(r;Lol]), T (22) 
Ot 

is equivalent to that given by the first term of the total energy Eq. (16). 
Eq. (19) is called the differential virial equation (DVE) because, after acting 

on it with the operator fd3r  r l ,  the familiar virial equation is obtained [14] [here 
for Coulomb u(12)], i.e. 

+ Eee = f d 3 r n ( r )  r '  2T Wv(r)  , (23) 

where the interaction energy Eee is given by the third term of the total energy 
Eq. (16). The DVE Eq. (19) is an exact, local (at r l )  relation between gradients 
of the potentials and the DMs n, Pl, n2. 

4 E q u i v a l e n t  K o h n - S h a m  s y s t e m  

As pointed out by Kohn and Sham (KS) [15], for each N-interacting-electron 
system, described in Sec. 2.1, it is convenient, for the purposes of DFT, also to 
introduce an N-noninteracting-electron system, equivalent to the original one in 
that it has the same GS energy E and density n(r) (all quantities specific to 
this new system will be distinguished with traditional index 's' or 'KS'). So, in 
analogy to Eqs. (1)-(4), we have 

~ s  = T +  Vs, (24) 

with 7" given by Eq. (2),/4 absent, and 

N 

fs = ~ Vs(r,), 
i=1 

where the single-particle (effective KS) potential is the sum 

(25) 

Vs(r) -= VKS(r ) ---- V(r )  -k- Vint(r) , (26) 
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in which Vint(r ) accounts for all effects due to interactions among electrons in 
the original system, i.e. 

with 

and 

V i n t ( r )  = Y e s ( r )  + V x c ( r )  

~E,J.] / 
Ves(rl) - (~n(rl) = d3r2u(rl,r2),(r2), 

(27) 

(23) 

Ex~ = Ex + E¢, (35) 

KS 
Ex = dld2u(12) {n 2 (12) -  ½n(1)n(2) }, (36) 

and 

E ¢ = / d l E t ~ , ( 1 ; [ p l - p ~ S ] ) + / d i d 2 u ( i 2 ) { n 2 ( 1 2 ) - n ; S ( 1 2 )  }, (37) 

defined by 

~Exc[n] (29) vxc(r) = ~n(r) 
The GS eigenfunction ¢s of the Schrbdinger equation 

7~stbs = Es4~ (30) 

is a Stater determinant of N lowest-energy KS orbitals Cj(z) - -  the solutions of 
the KS equation 

{ t'(r) + V~s(r ) } Cj(z) = ej Cj(z).  (31) 
KS 

Due to determinantal character of 4's, all of the DMs, 7p , generated from it, 
can be obtained (see, e.g., [1] or [11]) in terms of the I-DM 

N 
KS I * 1 7, (= , ;=, )  : ~ ~ j (= , )  ¢~(= , ) .  (32) 

j=l 

In particular, the noninteracting electron density, identical to the interacting 
electron density, is given by 

N 

n(r) = ET[S(rs;rs) = E E I¢i(rs)12' (33) 
s s j = l  

while the 2-DM is 

KS I I I " KS . I" KS I KS I KS I 

72 ( 1 2 ; 1  2 ) = . (34) ~{71 (1;1)71 ( 2 ; 2 ) - 7 1  (1;2)7]  (2 ;1)}  

The exchange-correlation energy Exc, involved in Eq. (29), is traditionally 
split into its exchange and correlation contributions 
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which induces a corresponding splitting of the exchange-correlation potential in 
Eq. (29), viz. 

6Ex[n] 6E¢[n] (as )  
Vx¢(,)  = v , ( r )  + v¢(~) - ~n(~-----7 + ~.(r-----~ " 

The equations obtained in Sec. 3 can be easily adapted to the noninteracting 
system - -  here we give their spinless versions: for IDE [the analog of Eq. (17)] 

KS 
[7(1) + vKs(1)Jpl (1;1') 

(39) 
KS I I KS I KS I 

+2 d2[t'(2)+VKs(2)]L% ( 1 2 ; 1 2 ) - ½ p l  (1;1)p1 ( 2 ; 2 ) ] = 0 ,  

for the EOM [the analog of Uq. (18)] 

KS 
{ I t ' ( l )  Jr- VKs(X)] -- [t'(l') + VKs(l l)]  } PI ( 1 ; 1 )  = 0, (40)  

and for the DVE [the analog of Eq. (19)] 

KS 
Z(~'I;[J01 ]) -- l V l V 2 ? 1 ( I e l )  Jr- n ( r l ) V 1 1 ) K s ( r l  ) ~- 0 .  (41)  

5 Exchange-correlation potential 
in terms of density matrices 

5.1 R e s u l t s  using DVE 

We solve Eq. (41) for VlVKs(rl), Eq. (19) for VlV(rl),  and next take the dif- 
ference of these results [taking into account Eq. (26)] to obtain 

V l V K s ( T 1  ) - - V l l ) ( r l )  ---- V l V i n t ( r l )  ~--- 

(42) 
{n(~1)}-1{ Z(~l;[pl - p~s]) + 2fd3,, 2 712(~1, r 2 )V~(m,  ~2) }. 

The definitions Eqs. (27) and (28) allow us to rewrite Eq. (42) as 

KS 
V l V x c ( r l )  ---- - - Y x c ( r l ; [  u,  ?1, fll , P l ,  712]) (43)  

with 

S~(,'~) = - {n("l)}-~ i :(,'~;[PI - 
I "  pls]) 

( 4 4 )  

+ 2 d3r2 [n2 ( r l , r 2 ) -  5 n(rl)n(r2)]VlU(rl,r2) . 

Equation (43) may be viewed as a differential equation for the potential Vxc(r). 
The other way around it demonstrates that the force field fx¢(rl)  is conservative. 
Therefore the potential can be calculated as the work in bringing an electron 
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from a reference point (say at infinity) to a given point r against this force field 
(see Holas and March [14]), i.e. 

j~ oo K S  

Vxo(r) = dr:. Ljr:;[, , ,n,p: ,p:,n=]). (45) 

Because of the conservative character of fx¢(r i ) ,  the evaluated integral is in- 
dependent of the particular path chosen for the integration in Eq. (45). The 
arbitrary constant of integration has been fixed by the requirement of the stan- 
dard gauge Vx¢(Oo) = 0. 

Equation (45) represents an exact expression for vx¢(r) as a line integral 
K S  

involving u and the DMs n, Pi , Pi, n2. 

5.2 Results  using IDE 

It is convenient to have the diagonal r~ = ra of Eq. (39), namely 

A K S  I 

t (1)p I (1;1)l: '=i +%s(1)n(X)  

KS I KS l 
+ 2 d2 [t'(2) + VKS(2)][p ~ (12;12) -- ½ n(1) Pi (2;2)] = 0, 

(46) 

and of Eq. (17) (its spinless variant) 

t'(1) pl(1;l ')ll ,=i + v(1) n(1) 

1 p1(2;2')] + u(12) n2(12)} + 2 d2 {[t'(2) + v(2)][p2(12;12') - : n ( 1 )  (4r) 

1 + 3 d2 d3 u(2a) {ha(123) - ~ n(1) n~(23)} = O. 

After subtracting Eq. (47) from Eq. (46) and taking into account Eqs. (26)-(28), 
the resulting equation can be written as 

n(1) vxc(1) -- 

K S  K S  

(48) 
(see Holas and March [I 1] for details concerning Wx¢). This integral equation for 
Vxc(ri) is in a form suitable for iterative solution. It is gauge invariant: if Vx¢(1) 
is a solution, then {Vx¢(1) + C), with arbitrary constant C, is also a solution, as 
follows from the reduction property Eq. (11). 

A solution Vxc(1) of Eq. (48) gives the exact result for this potential obtained 
KS  K S  

from the potentials u and v, and the DMs n, Pl , Pl, P2 , P2, n3. 
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5.3 Results using EOM 

The KS potential can be easily obtained from Eq. (40) as 

K s  t 1 ^ ^ t K S  t 

VKs(1) = V~s(l ' ) -  {Pl (1;1)}- [ t ( 1 ) -  t(1 )]Pl (1;1), (49) 

and, similarly, the external potential from the spinless version of Eq. (18), viz. 

v(1) = v ( l ' ) -  {pl(1;V))-l([t '(1) - t ' ( l ' ) ]  pl(1;V) 

(5o) 
+ 2 / d 2  [u(12)- u(l'2)] p2(12;1'2)}. 

By subtracting Eq. (50) from Eq. (49) and using Eqs. (26)-(28), we get (see 
Holas and March [13]) 

l K S  l 
[t '(1)-}'(l ')]pl(1;l ') [}'(1)-t(1 )]Pl (1;1) 

v×~(X) = v~(l ' )  + pl(1;l') p~s(1;l') 

+ fd2 [u(12) - u(Y2)] f 2p2(12;1'2) 
I. pl(1;P) n(2) j  . (51) 

In order to have the potentials defined uniquely at point r~ in Eqs. (49)-(51), 
! one should choose and fix a reference point r 1 (e.g., at infinity) and a value of 

the potential there (say 0). This freedom reflects the fact that potentials can be 
known only up to an additive constant. 

Thus Eq. (51) provides an exact expression for v~c(ra) in terms of u and the 
K S  

noninteracting and interacting DMs n, Pl , Pl, P2- 

5.4 Dens i ty  funct ional  t heo ry  view of  the  results 

A common feature of all three equations giving vxc - -  Eqs. (45), (48), (51) - -  
is appearance of low-order DMs. But this fact situates these results outside 
the scope of DFT. The only way to return to DFT is to express these DMs 
as functionals of the density. While such expressions are (and apparently will 
remain) unknown in general, some approximations to them may be constructed. 
Then the discussed equations allow for a direct generation of the approximate vxc 
(connected with a particular approximation for the DMs) avoiding the functional 
differentiation in Eq. (29). The last route is used in the case when Ex¢ is known as 
a direct (although approximate) functional of the density. It should be mentioned 
that, despite the high accuracy of Exc achieved by modern approximations, after 
functional differentiation of such Ex¢, as a rule, significant loss of accuracy of 
the resulting v~¢ is observed. 
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5 .5  A p p r o x i m a t e  e x c h a n g e - o n l y  p o t e n t i a l  

As seen in Eq. (37), the correlation energy of the KS approach arises due to 
K S  

differences between the interacting and noninteracting DMs, (Pl - P l  ) and 
K S  

(n~ - n 2 ). Therefore one may expect that by replacing the interacting DMs 
with noninteracting ones in nqs. (45), (48) and (51), the correlation effects are 
removed, leaving thus equations for the approximate exchange-only potentials, 

~,.DV E , J O E  ,~.,E O M 
say v× , v x , v× (see Holas and March in [14], [11], [13], respectively): 

~ 0 0  D V E  
N D V E  
v x ( r ) =  d r l ' / x  ( r z ; [ u , n ,  n2S]) (52) 

with 
DVE 

Ix 
K S  K S  K S  K S  

(rl;[u,n,n2 ])----fxc(rl;[u,n, Pl ,Pl ,n2 ]) 

=_fd3~(2n~s(~''~2) n(r2)) VltL(rl, r2) \ n(~,) 

) J ,vIDE ~o~ {2n~-(~ ,~)  n(~) Vx (r2) 

(53) 

(54) 

KS  
It is worth noting that a combination of n 2 and n, occurring in Eqs. (53) and 
(54), is known as the exchange hole at r2 of an electron at r l  : 

KS  

2n2 (7'1'I"2) //(7"2). (57) px(~l,r~) - -(rl) 
D V E  

The form of the approximate exchange-force field fx  obtained from Eq. (53) 
by rewriting it in terms of the exchange hole Px and Coulomb u, 

Nov~ f (~1 - ~ )  (58) .f× (rl)= d3r2px(rl,r2) lrl_r213, 

-(~2)) [u(~,, ~) - u(~, ~2)]. 
(56) KS  / /dZr2 (2P2 (rl,r2;rl, r2) - 

k Px ( r l ; r l )  

~ I D  I~ KS  KS  

+ 

with 
~ I D E  KS  ; S  K S  K S  K S  KS  KS  

W x ( r l ; [ U , . , .  2 ,T~ 1) ----- Wxc(lr' l;[tL, v , n , p  1 ,Pl ,P2 ,P2 'n3 1)' (55) 

which happen to be independent of the external potential v (see [11] for the 
~ I D E  

explicit form of w x ), and 

, ~ E O M  .,. ,EOM z I \ 

v, ( r l )=  v, t r l )+  
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happens to be identical with the force field proposed by IIarbola and Sahni 
Ref. [16] in their work formalism (for the latest review, see Sahni in [8]). Due to 
the approximate character of this force, the line integral Eq. (52) may be path 
dependent. 

While all three approximations to the exchange potential are different, there 
is no criterion at present to indicate the most accurate one. However, in Sec. 7, by 
applying perturbation theory the correction terms will be established, restoring 
~ 1  _ _ _ . .~o '~  ,..JDE ...~OM _ 
~ne exact value of vx lbr v x , v x , v x , separately. 

Since all of the DMs occurring in Eqs. (52)-(56) can be written in terms 
of the KS orbitals Cj (x) [see examples in Eqs. (32)-(34)], the approximate ~× 
generated by them can be directly used (possibly together with some available 
modern approximation for v¢) within the KS scheme, the explicit dependence of 
~x(r) on n(r) being bypassed. 

6 P e r t u r b a t i o n  t h e o r y  e x p a n s i o n  f o r  d e n s i t y  m a t r i c e s  

Gbrling and Levy [17] proposed to link the interacting system and the equivalent 
noninteracting KS system by a family of intermediate systems having electron- 
electron potential scaled as u~(12) = au(12), 0 < ~ < 1. Then the properties of 
fully interacting system (at c~ = 1) can be viewed as derived from unperturbed 
((~ = 0) KS system by means of a perturbation theory with respect to the 
coupling parameter a. An important constraint is imposed on these systems, 
namely that their GS density be independent of c~, and thus equal to the sought 
after density of interacting system. It is assumed, for simplicity, that all these 
systems are nondegenerate in their GS. 

Each system is described by the Itamiltonian [cf. Eqs. (1)-(4), (24), (25)]: 

~ "  = "T + a/~ + 9 ° , (59) 

with 
N 

9" = (60) 
/----1 

where the effective "external" potential depending on a is 

v"(r) = VKs(r) - V~nt(r). (61) 

Obviously, in order to fit the limiting situations, the identities 

VOnt ( r )  ----- 0 ,  ( 6 2 )  

and 
Vlnt(~) ---- Vint(T ) ---- Ves(T ) -~- Vxc(~ ) (63) 

must hold [see Eqs. (25), (26), (4)]. For arbitrary a, v~n t is given [17] by the series 

Vic~t ( T )  ---- ~ Ol j Vint/j('t'), ( 6 4 )  

j = l  
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with 

vint/l(,) = Yes(') + ~x(') (6S) 

[see Eq. (38) for definition of Vx]. This allows us to rewrite Eqs. (62)-(65) as 

vi~t(r ) = a Ves×(r) + v~(r) ,  (66) 

i.e. in terms of the electrostatic-plus-exchange potential ve~x(r) = ve t ( r )+  Vx(r)  
and the a-dependent correlation potential, commencing at the second order [17] 

v~(,) = ~ ,  a~ yen (,') = ~ a~ V~nt/j(,'), (67) 
j=2 j = 2  

being just the correlation potential, Eq. (38), at full coupling strength v¢ ~ (r) = 

In order to find the GS solution of the intermediate system Schrhdinger 
equation 

( ~  - C ° ) ~  = 0 (68) 

by means of perturbation theory, the leading term 7~/0 of the expanded Hamil- 
tonian 

oo  

~- = ~ aJ ~/~ (69) 
j=O 

is considered to be the unperturbed Hamiltonian, 

N N 

~/o = ~ i , ~ ( , . , )  = ~(~'(,-,) + ,~(,.,)}, (70) 
i : 1  i : 1  

while the sum of remaining terms in Eq. (69) is treated as a perturbation. As- 
suming C ~ and ~ are analytic functions of a in the range [0, 1], we expand 
these quantities in a manner similar to the expansion of 7~ (~ in Eq. (69), i.e. 

cx) 

£~ = E aj £/J ' (71) 
j=O 

(30 

~v. = ~ a~ ~, ,  , (72) 
j = 0  

and insert them into Eq. (68). Thus a set of equations (for each power of a) is 
obtained, viz. 

i 
E( '12 l / t  - E/t)  ~P/j-l = 0 ; j = 0, 1, . . . .  (73) 
l=0 

This set of equations (together with the imposed normalization) can be solved in 
a similar way as in the Rayleigh-Schrhdinger perturbation theory (which must 
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be extended here to include terms of the perturbing Hamiltonian higher than 
linear order in a). 

The resulting partial wave functions gf/j are expanded in a complete set {CA } 
of eigenfunctions of the unperturbed (i.e. KS) Hamiltonian Eq. (70). In this way 
the results for ~ / j  and £/ j  are obtained in terms of the KS eigenenergies ei and 
orbitals ¢i(z) (both occupied, i < N, and virtual, i > N) and matrix elements 
of u(r l , r2) ,  %~,(r), v c / j ( r )  in the basis of these orbitals. Details may be found 
in Ref. [13]; here we give a summary and an example. 

For the application to the equations satisfied by the DMs (which were dis- 
cussed in Sec. 3), we are interested in DMs generataed by means of Eqs. (6)-(10) 
from g'~. The perturbation-theory expansion Eq. (72) for !/~ immediately leads 
to an ~nalogous expansion for the DMs, namely 

72(1...p;l'. . .p') = ~ c~J %/j (1. . .p;l' . . .p') .  
j=o 

(74) 

The 0th-perturbational-order DMs are just the noninteracting KS matrices, 
7p/o =- 7p , see Eqs. (32)-(34). The lst-perturbational-order DMs 7p/1 are ex- 
pressed in terms of Vx (but not vc / j ) .  As an example, we quote [13] 

N 

= "--  < kl~x - v x l i >  ~ _ , ¢ ~ ( r l s l ) ¢ i ( r l s l )  
k = N + l  i=1 ~k --  ~i 31 

+ < il S-vxIIc> (75) 
$1 

AF 
(see also [18] in the case of real orbitals), where v x denotes the Fock exchange 
integral operator [constructed out of the occupied KS orbitals and u(12)] 

j j KS 
(v^: ¢)(2) d3 v× (23) ¢(3) ; v x (23) (76) = - - -u(23)71 (23). 

In general, the DMs 7p/j are expressed in terms of KS orbitals and energies, 
and potentials: u, v int / j ,  Vint/j-1 . . . .  , Vint/1 [see Eqs. (64)-(67)]. 

7 P e r t u r b a t i o n - t h e o r y  a p p r o a c h  t o  e x c h a n g e  

a n d  c o r r e l a t i o n  

7.1 Application to the DVE 

Eq. (19) can be easily adapted to the intermediate system at coupling strength 
a, viz. 

z ( ' r l ; [ p ~ ] ) - - l V l V 2 n ( ~ l ) J t - . ( T 1 ) V l V C t ( T 1 ) - - [ - 2 f d 3 r 2  - - ~ ( ' r l ,  " / ' 2 )Vl  O / U ( r l ,  ' r2)  = 0 .  
(77) 

After substituting Eq. (74) for the DMs p~ and n~, and Eq. (64) for vi~ t of the 
potential v a , Eq. (61), we obtain from Eq. (77) a set of equations (for each power 
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KS 
of ~). Because ~'v/0 -- 7p , the 0th equation is identical with Eq. (41). The 1st 
equation is 

f Ks z ( , ' l ;b l /x ] )  - n ( , ' , lVlvesx(r~)  + 2 e3~2 n2 (,'1, ~2)v1 , , ( , '1 , , '2 )  = 0.  (781 

After subtracting Ves from Ve~x, it can be rewritten as (see Levy and March [18]) 

DYE 
~ ' l V x ( r l )  = - - f x ( r l )  ~- - - { I x  ( r l )  -- z(rl;[fllll])/n(rl)}. (79) 

Thus the second term, depending on P1/1, represents a correction to the approx- 
imate force, Eq. (53), while their sum being an exact exchange force [181, leads 
to the exact potential 

~ OO KS 
Vx(r) = drx. fx(rl;[u,n,% ,pl/1]), (80) 

the evaluation of which therefore must be path independent. 
The j th  equation leads to [18] 

Vc/j(r ) ---- d r  I • ic/j(rl;[u, n, n2/j_l, Pl/j]), (81) 

where 

,el j(r 1) : _ { n ( r l ) } - I  { z ( r  1;(p1/j]) -F 2/d3r2 n2/j- 1(rl,r2)~71u(rl, r2)}.  
(82) 

Being an exact expression for the jth-order correlation potential, the line integral 
Eq. (81) is path independent. 

7.2 Appl ica t ion  to  t he  I D E  

A similar procedure applied to the IDE Eq. (47) (adapted to the c~-system) gives 
at 0th order, obviously, the KS form Eq. (46) of IDE. At 1st order, the integral 
equation for the exchange potential is obtained (see Holas and Levy Ref. [19]), 
i.e. 

v~(~) = - [ d %  px(~,, ~) ~(~) + {-(~,)}-' 
J (83) 

~IDB KS KS 
{W x (r l ; [U,  r t , -2  , "3  ])"Jr-Wxc°r(rl;[n, f l l /1,P2/1])} 

[cf. Eqs. (54), (57)] where 

~x~O~(~) = ~(~) Pl/ l (r l ;r~) l .~__. ,  

(84) P 
-~- j/d3r2 { 2hKs(r2) P2[1(r1, r2;rl, r~) -- .(7"1)t(r2) Pl/l(r2;rt2)}ir;=.., 
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The "free" term w c°r represents such a correction to the approximate term ~ E ,  
that a solution of the integral equation Eq. (83) is an exact Vx(r~). 

The equation found at j th  order, j >_ 2, has a similar structure [19] 

vc/j ( r l )  = -/d3r2 Px (r l ,  r2) v¢/j (r2) 

"~-Iclj(rl ;[U, VKS , V i n t / 1 , . . .  , Vintlj_l, n, n 2 / 1 , . . .  , n2/ j_l ,  n31j_l, Pll j ,  fl21j]) . 
(85) 

The "free" term I~/1 of this integral equation is just  a combination of integrals 
involving the listed functions (see Ref. [19] for details). 

7.3 A p p l i c a t i o n  to  t h e  E O M  

The spinless version of the EOM Eq. (18), adapted to the intermediate system, 

{ [t'(1) + v~(1)] - [t'(l') + v"(l ' )]  } p~(1;l ') 

(86) t *  

+ 2 J d 2  a {u(12) - u(l '2)} p~(12;1'2) = 0, 

leads at 0th order to nq. (40) - -  the KS EOM, and at j t h  order (j  >_ 1) (see 
Holds and March [13]) to 

J 

{ hKs (1) -- hKs(1 ~) } Pllj (1;1 t) -- Z{vint / l (1)  -- Vint/l(ll)} pw/ - l (1 ; l ' )  

t=l (87) 

U/d2 {~(12)- ~(1'2)} p~/~_~(12;1'2) = 0 + 

The last equation can be solved with respect to Vint/j to give [13] for j = 1 

..~OM t 
v×(1) = vx(l') + {v~°~(1) - v x ( 1 ) } +  

(88) 
KS t 1 {pl (1;1)}- [hKs(1) h~s(l')]Pl/l(1;l~), 

and for j _> 2 

v¢/~(1) Ks t 1 vc/j(l')+ {pl (1;1))- {[~Ks(1) hKs(l')]Pl/j(1;l') 

+ 2 / d 2  [u(12) - u(l '2)] p2/j_a(12;l'2) (89) 
j - 1  

-- Z [V in t / t ( 1 ) -  Vint/l(lt)]Pl/j_t(1;l')l. 
t = l  

Eq. (88) demonstrates explicitly in the term depending on Pill the correction to 
.....EO M 

the approximate v x , Eq. (56), with their sum being the exact Vx. 
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8 Discuss ion and conclusions 

The constrained search method allowed GSrling and Levy to define [17] the 
functional of the density n(r) 

F~[n] = snin(Ol¢ +  UlO) = + = T"[n] + ES[n] (90) 

- -  a generalization of the Hohenberg-Kohn (HK) functional for the intermediate 
system. At the GS density n = n~ of the system discussed in Sec. 6, the min- 
imizing O¢~[n] coincides with the GS eigenfunction ~V" of Eq. (68). For a = 0, 
Eq. (90) defines the kinetic energy functional of the noninteracting system 

S ° [ n ] _  Ts[n]. (91) 

Their difference represents the effective interaction energy functional of the a- 
system 

Ei~ t [hi = F ~ [n] - F ° [n], (92) 

having the following expansion 

with 

E~nt[n ] = a (Ees[n] + E,[n]) + E~c[n], (93) 

E?[n] = E (~j E¢/i[n]' (94) 
j=2 

while their functional derivatives 

6E~t[n ] 6E¢/~[n] 
,~(,. ; [n])- ~n(,.~' v¢/~(,';[n])- ~n(,') (95) 

coincide at n = n a with the potentials introduced in Sec. 6. As a result, the 
perturbation theory approach of GSrling and Levy [17] remains within the scope 
of the DFT. However, it must be supplemented by a prescription for the cal- 
culation of the exchange and correlation potentials. In their subsequent paper 
[20], GSrling and Levy proposed to evaluate these potentials by performing the 
functional differentiation in Eq. (95) via a variation of the KS orbitals. The 
derived expressions involve the inverse of the integral operator of the linear den- 
sity response, which makes numerical implementation of this procedure difficult 
and complicated. Three alternative routes ([18], [19], [13]), discussed in Sec. 7, 
are based on the equations satisfied by the DMs. The potentials, Eq. (95), are 
expressed in these approaches in terms of expanded DMs - -  objects directly cal- 
culable by means of perturbation theory [17]. Although all four approaches give 
expressions in terms of the KS orbitals and eigenenergies, they remain within 
the DFT, because these objects, according to the HK theorem applied to the KS 
system, are implicit functionals of the density. 

The total energy functional of the system at a -- 1, in terms of the HK 
functional, Eq. (90), is 

E[n] = (~'l[n]l:T +/~  + --- El[n] + V[n] (96) 
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with 
/ ,  

= ] d l  n(1) v(1). V[n] (97) 

Using the definitions of Eqs. (91)-(94), it can be rewritten as 

E[n] = Ts[n] + V[n] + Ee~[n] + Ex[n] + ~ Ec/j In], (98) 
j = 2  

with the obvious Ts[n] and E~[n], E×[n] given in Eq. (36), and E¢/j[n] terms of 
the expansion, Eq. (94), for E~ = E~, Eq. (37), in the form [17] 

- 1 E ( 9 9 )  

with 

T/j = / d l  ~ t,,(X;[pl/j]); Zee/j = fall  d2 ~(12)n2/i_1(12 ) . (100) 
(3t 

The third form of E¢/j in Eq. (99) is of particular interest, because it involves 
the DM of the (j - 1)th order only. 

The exact GS solution for a given system corresponds to the minimization 
of the functional Eq. (96), i.e. 

E~ = min E[n] = E[no]. (101) 
n-."* N 

But, because its correlation energy is available within perturbation theory, Eq. 
(98), only a limited number of its terms can be taken into account in practice. 
So, instead of Eq. (101), we are forced to look for a solution to the approximate 
GS problem: 

EG {k} = rain E{k}[n] = E{e}[n~ {e}] (102) 
n ~ N  

with 
k 

= Ts[ ] + + Ees[n] + E x N  + N ,  (103) 
j = 2  

corresponding to Ec truncated after the kth term. Assuming good convergence 
of the perturbation expansion, we expect that the solutions {EQ {e}, nG {e}} 
approach {EQ, n o } with increasing k. The error of this approximation can be 
estimated to be 

E G --EG {e} = O ( [ n  G -nG(e)]2)+E¢/e+i[n~]+E¢/e+2[no]+..., (104) 

because, for ~n = n o - no {e}, we have 

E{e}[no {e} + 6 n ] =  E{e}[n~{k}] + f [6E{~}6J~-~{k}] ~n]+O([~n]2), (105) 

with vanishing term linear in 6n since no {e} minimizes Eq. (102). It is inter- 
esting, that an estimate of the leading term of the error, E¢/e+I[nG] can be 
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evaluated as E¢/k+l[n~{k}] within the kth approximation, because it involves 
the DM n2/k [see Eqs. (99) and (100)], available in this approximation. 

It should be noted that the truncated GS problem at k = 1, i.e. the exchange- 
only approximation, is equivalent to the so-called optimized potential method, 
being thus an alternative to this method. 

The computational scheme, leading to the solution Eq. (102), involves itera- 
tions, terminated after achieving selfconsistency. For the initial step, one solves 
the KS equation Eq. (31) using vKs(r ) constructed with the help of any avail- 
able approximate Vxc(r), while for each next step - -  with Vxc(r) constructed in 
the preceding step. A large number of solutions, exceeding significantly the N 
lowest-energy solutions, is necessary for further calculations. (The unavoidable 
truncation to a finite number of solutions, say M, introduces some error, which 
can be always diminished by increasing M.) This allows for a calculation of the 
KS DMs according to Eqs. (32)-(34). Next, using one of Eqs. (80), (83) or (88), 
Vx is determined in the following iterative process. Initially contributions of the 
DMs 7p/1 are neglected. The approximate Vx obtained in this way is used to 
calculate 7p/1 [see, e.g., Eq. (75)], to be used in the next iteration to improve Vx, 
up to convergence for it. Having vx and 7pD, one determines vc/2 in a similar 
way using one of Eqs. (81), (85) or (89), at j = 2. Initially contributions due to 
the DMs 7p/2 are neglected, then the approximate 7p/2 are calculated using the 
approximate v~/2, and so on up to convergence for v¢/2. Similarly v~/j is to be 
obtained for j = 3 , . . . ,  k. Having all these potentiMs determined, their sum is 
used to construct VKs for the next step of iterations. All of the above-described 
evaluations are to be performed again. Steps are repeated until selfconsistency 
(in the density or KS potential). 

The calculational schemes, discussed above, are still only propositions await- 
ing implementation. 
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Abstract: The inherent linearity of quantum mechanics is one of the diffi- 
culties in developing a fully quantum theory of dissipative processes. Several 
microscopic and more or less phenomenological descriptions of quantum dis- 
sipative dynamics have been proposed in the past. Following the successful 
development of classical metriplectic dynamics - a systematic description of 
dissipative systems using a natural extension of symplectic dynamics - we 
discuss the possibility of a similar formulation for quantum dissipative sys- 
tems. Particular attention is paid to the Madelung representation of quantum 
mechanics. 

1 I n t r o d u c t i o n  

Quantum mechanics is an intrinsically linear theory. Careful analysis of its foun- 
dation has led Gisin to the conclusion that all deterministic nonlinear SchrSdinger 
equations are irrelevant [1]. On the other hand several authors, including Gisin 
himself [2], have at tempted to describe the irreversible evolution of quantum sys- 
tems by means of nonlinear generalizations of the SchrSdinger equation; these 
equations have to be considered as a restricted (simplified) versions of more 
general quantum Master equations. This point of view, presented in Ref. [1], is 
complimentary to that discussed by Razavy and Pimpale [3] who have shown, 
following the method of Caldeira and Leggett [4], how the Gisin equation fol- 
lows from the restricted description of the "central particle" coupled to a heat 
bath. The Caldeira and Leggett, or Razavy and Pimpale, description of a quan- 
tum system coupled to a heat bath suffers from the same difficulties as all truly 
quantum many body models. It is therefore tempting to accept the dissipative 
quantum mechanical equation, for example the one proposed by Gisin, as a 
phenomenological equations, akin to Navier-Stokes equations of hydrodynamics.  
The framework within which one can try to use these phenomenological equa- 
tions is the so called metriplectic dynamics, 1 developed in classical statistical 

1 The name metriplectic dynamics was proposed by Phil Morrison. The method was 
previously called mixed canonical-dissipative formulation by Charles Enz. Early at- 
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mechanics and which works remarkably well for many applications ranging from 
the dynamics of low dimensional magnetic systems to relativistic plasma physics 
[5]. 

The plan of this paper is as follows. In Section 2, we shall give a short 
introduction to the metriplectic dynamics of classical systems. In Section 3, we 
will introduce the Madelung representation of the SchrSdinger equation, which 
we find a convenient tool for the interpretation of the Gisin damping. In Section 
4, the quantum mechanical extension of metripleetic dynamics will be given 
and it will be shown how the Gisin equation emerges out of that formulation. 
Section 5 will be devoted to a discussion of the dissipative SchrSdinger equation 
in the Madelung representation. Finally, in Section 6 we shall provide some final 
comments and conclusions. 

2 C l a s s i c a l  M e t r i p l e c t i c  D y n a m i c s  

In classical dynamics of complex systems one often follows the method developed 
for classical particles in Hamiltonian dynamics and describes the system dynam- 
ics in terms of properly chosen (generalized) positions and momenta spanning 
the even dimensional phase space i% Denoting the collection of these coordinates 
and momenta as z A = (ql, q2,. . . ,  Pl, p2, • • .) and making the further assumption 
that the dynamics of the system is governed by Hamilton-like equations of mo- 
tion we can write them as 

O , z  ° = {z A, u}, (1) 

where 7/is  the system hamiltonian and {f, h} denotes the Lie-Poisson bracket, 
an operation which satisfies three requirements, linearity in both arguments, the 
Leibnitz rule and the Jacobi identity. 

Without going into mathematical details, if the Lie-Poisson bracket is defined 
over the space of functions on an even dimensional phase space, then (at least 
locally) 

where 

~- 7c O A f O B h ,  { f ,  h}  AB (2) 

(_0 0, ) 
and I is n x n unit matrix. The matrix ~c is obviously antisymmetric and this 
permits us to generalize the Lie-Poisson brackets to the case of odd dimensional 
spaces. 

tempts to use it can be found in phase transformation literature. 
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We define the Lie-Poisson bracket for an arbitrary dimension space as 

{ f , g }  = 7ABcgAfOBg A = 1 . . . , g ,  (4) 

where 7 is the antisymmetric tensor. As previously, the equation of motion for 
any observable F is 

o , r  = ( r , ~ } ,  (5) 

where 7-I is the system Hamiltonian. 
If in some region of the (generalized) phase space S C F, the matrix 7 has 

N -  2M null eigenvectors 7ABe(~ ) = 0,~ = N -  2M and e(~ ) = OBC(t), then, by 
construction, all of the functions C (0 are constants of motion independently of 
the detailed form of the system Hamiltonian. These functions are called Casimirs 
of the given Lie-Poisson structure. Casimirs play an important r61e in the formal 
structure of generalized symplectic dynamics. The system evolution is restricted 
to the leafs in phase space which correspond to a given value of the Casimirs. 
As we shall see, the Casimirs are also important for a description of dissipative 
processes. Roughly speaking there are two classes of dissipative processes, those 
whose dynamics stay on the (initially assigned) Casimir leaf and those which 
lead to an interleafs transition. 

As is well known, not all interesting physical systems can be described by 
symplectic dynamics. There are wide classes of physically interesting processes 
which are described by so-called metric dynamics. In metric dynamics (a formal 
generalization of the Langevin equation), the system evolution in phase space is 
described by 

~,A -:-_gABOB S 
gAB = y e a ,  (6) 

where S is the potential, and the symmetric matrix gAB is thought to be non- 
singular. 

A well known example of metric dynamics is the van der Waals, Ginzburg- 
Landau, Cahn-Hilliard-Wilson equation for the evolution of the order parameter 
¢ 

ot¢(x,~) = - ~ v  ~ ~ 
~¢(x,t)  ' (T) 

where a = 0, 1 for a nonconserved and conserved order parameter, respectively. 
G is the appropriate thermodynamic potential, usually the Helmholtz or Gibbs 
free energy. Here gAB ._., 9(:r _ y) __ ,k~72a6(X _ y). 

With the help of a symmetric matrix g, we define a metric bracket as 

{{f, h}} = gABoAfOBh.  (8) 
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Using both the symplectic, Lie-Poisson and metric bracket, we can now define 
the metr ip lec t ic  bracket as 

If, h] = {f,h} + {{f,h}} - (7 AB + g A B )  O A f O B h  -- D A B o A f O B h .  (9) 

The equation of motion for a system described by mixed dynamics is 

O~A = [A,.T], (10) 

where 
F = 7-/- 8. 

We do not claim that all dissipative systems can be described by means of 
the above outlined method. In Ref. [5], however, a rather lengthy list containing 
important examples from many branches of physics is compiled. In this section 
we should like to present just two examples important for our application. These 
are the symplectic structure of hydrodynamics and of Heisenberg magnets. 

Recall that in hydrodynamics (Euler representation), the state of the system 
is described by means of the fluid density Q(a~, t) and velocity u(x,  t) (or particle 
current J = Qu). These two fields span the system phase space. The Lie-Poisson 
brackets for these variables are well known [6] and read 

{~(~, t), ~(u, t)} = 0,  
0 

{~(~, t), u°(u, t;}  - 0xo  6(~  - u ) ,  

1 
{ u ~ ( ~ e , t ) , u b ( y , t ) }  -- O ( ~ , t ) e a b c ( V  × u ( ~ , t ) ) ¢ 6 ( x  -- y )  . (11) 

The conventional Hamiltonian 7/ for a fluid consists of the kinetic energy and 
potential energy expressed in terms of the fields ~ and u. The equations of motion 
obtained from 

0 , e  = { e , ~ t } ,  

O,u : { u , 7 / }  (12) 

are the usual Euler equations for inviscid fluid. 
The metric brackets for fluid dynamics leading to the Navier-Stokes equation 

were first given in Ref. [6]. The metric bracket for the density vanishes, as do 
those for the density and velocity field. The only nonvanishing bracket is for the 
velocity field, viz. 

{{u~(z), u b ( y ) } }  -- u ~b = -- (~76~bv2 + (~ + O/3)V~V b) 6(z -- y ) .  (13) 

The other interesting example of metriplectic dynamics is the Gilbert-Landau- 
Lifshitz description of magnetic systems. The Lie-Poisson brackets for the spin 
variable S~ occupying the lattice site i are 

{s~,  s~} = o,5~ ~obc~c~j. (14) 
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The Casimir for this particular bracket is the spin length at a given lattice site 
I Sil 2. Thus this length is conserved independent ly  of the choice of the magnetic 
model ttamiltonian. 

The metric spin bracket [7] is 

I S i l  2 

For an arbitrary magnetic Hamiltonian 7/(S) using the metriplectic union of 
brackets Eqs. (14) and (15), one obtains the Gilbert-Landau-Lifshitz equation 
of motion for the spin, namely 

O,S, --  s ,  x BT:: - AN, x S, x /IS I (16) 

where B~. I !  = - 6 7 - l / 6 S i .  
Since the spin length is conserved automatically in our approach, it can be 

used to construct a fast solver for the molecular dynamics of the spin system. 
Elsewhere such a solver and its implementations were discussed [14]. 

The structure of the metric bracket for a spin variable can easily be gener- 
alized to the case of an arbitrary Lie-Poisson bracket associated with the Lie 
algebra, the structure constants of which will be denoted as c~k. Let wi denote 
the elements of the Lie algebra, then the Lie-Poisson bracket is 

{ w i , w i )  = c~iwk = 7 ' i "  (17) 

Following the standard Lie algebra procedure [9], we can construct from the 
structure constants the metric tensor (Cartan-Killing tensor) with which we 
define the scalar product, and, since it is non singular, its inverse with which to 
raise and lower tensor indices. Explicitly, it is 

G i j  = m n - -Cin  Cmj  , 

G i j G  j ~  = 6'~ . (18) 

It is easy to check that the length of the wi defined by means of this metric 
tensor is the Casimir of the bracket Eq. (17). 

With the use of the Cartan-Killing tensor, we can define the symmetric tensor 

bij = GkmTki'Ymj • (19) 

With these definitions, we generalize the spin metric bracket to 

gij = A ( C a s i m i r s ) b i j  = AGk'~ TkiTmj , (20) 

where the damping coefficient )~ is an arbitrary function of the Casimirs of the 
problem. 

The metric bracket Eq. (20) describes the most general damping consistent 
with the algebraic structure of symplectic dynamics. It preserves the Casimirs, 
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that is the damped motion stays on the (hyper) surfaces in the phase space 
defined by Casimirs, i.e. on the Casimir leafs. 

It is very easy to check that the above proposed metriplectic construction 
is identical to that for spin variables. In the next section we shall show how it 
works in quantum mechanics. 

3 T h e  S e h r S d i n g e r  E q u a t i o n  a n d  M a d e l u n g  

R e p r e s e n t a t i o n .  

We restrict ourselves to the nonrelativistic quantum mechanics of a spinless 
particle moving in an external force field defined by the potential V(z). The 
fundamental equation of the dynamics, which governs the time evolution of the 
wave function ¢(z,  t), is the SchrSdinger equation, i.e. 

/ h 2 \ 
iho, l , tl = ( -  2r,, v2 + i:I ¢ ( ~ , t ) . (21) 

The SchrSdinger equation can be derived within symplectic dynamics by 
defining the Lie-Poisson bracket for the state variables ¢ and ¢* as 

1 
{¢(z), ¢*(Y)} = ~ ( z  - Y). (22) 

Defining the system Hamiltonian as 

:H(¢,¢*) = ddx [V¢I 2 + Y(z)l¢l 2 , (23) 

we can easily check that the "classical" equation 

Ore = {¢,  7/} (24) 

is actually identical to the SchrSdinger equation Eq. (21). 
In 1926 Madelung showed that the SchrSdinger equation can be cast in a 

form which closely resembles the hydrodynamics of a non-dissipative fluid. The 
Madelung representation turned out to be a quite convenient tool for some ap- 
plications, for example it serves as a natural bridge between quantum mechanics 
and quantum hydrodynamics [15]. 

Following Madelung we substitute ¢(r ,  t) --+ ~/p(r ,  t) exp(i¢(r, t)) and then 
separate Eq. (21) into its real and imaginary part. The resulting equations are 

o,p(,., t) = - v .  p(,., t), ,(, . ,  t ) ,  

o , ,o ' ,  t) + ,,(,., t) .  w,( , . ,  t) = -v~,Q(p, vo)  - ± v v ( , . ,  t ) ,  
m 

(2~) 
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where u ( r ,  t) = h / m V ¢ ( r ,  t) is the (potential) velocity field of the "quantum" 
fluid and #Q is the quantum chemical potential. It is this last term which distin- 
guishes the Madelung fluid dynamic equations from the usual Euler equations 
of hydrodynamics. Indeed, 

h 2 
--(V2p- i/2p(Vp) 2) 

# O  - 2mQ 

is the only quantity in Eq. (25) containing the Planck constant, and it mea- 
sures the "internal quantum pressure" responsible for wave-packet spreading. 
Alternatively the gradient of the quantum chemical potential can be written as 
the derivative of the quantum stress tensor a/~ = h2/4mOiOj In(p). Note that 
the dependence of the quantum chemical potential pO on the density and its 
gradients is essentially different from that in the generalization of conventional 
hydrodynamics often used in the theory of phase transitions, where the inho- 
mogeneity of the order parameter (density in van der Waals like theories) is of 
importance [6, 16, 17]. The other important difference between Madelung and 
Euler hydrodynamics is that the value of circulation 

f h 
F = u .  dr = n - -  (26) 

r n  

is quantized. 
The benefits and/or shortcomings of the Madelung formulation of quantum 

mechanics are discussed in Ref. [15] and [18]. 
The Madelung representation of wave mechanics does not require anything 

beyond the Lie-Poisson brackets Eq. (11) and the Hamiltonian, which differs 
from that of a classical fluid by the presence of a quantum pressure term. 

Indeed, using the Hamiltonian 

u(e ,u)  = e ~  7 0 ~  + v0 + ~ ( v ~ )  2 (27) 

and the Poisson bracket relations Eq. (11), we obtain the Madelung equations 
Eq. (25) as in fluid dynamics, i.e. from Eq. (12). 

4 Diss ipat ive  Quantum Mechanics  - The Gisin Equat ion  

As discussed in Section I and in Ref. [1], the nonlinear generalizations of that 
equation should be considered as phenomenological equations describing, for 
example, dissipative systems. Recently Enz [10] has given a comprehensive review 
of the possible quantization procedures for dissipative systems. A particularly 
interesting proposal for the description of quantum dissipative systems was given 
by Gisin [2]. In order to account for the evolution of the quantum state i¢) of a 
dissipative system, Gisin introduced the phenomenological equation 

., 0[¢) ((¢[/ : /[¢ '  / : / ) I ¢ ) -  (1 - iA~)¢) f /¢ ,  (28) ,n--if-  = HIe) + ~ (¢1¢) 



354 L.A. Turski 

in which /:/ is the system Hamiltonian and ~ _> 0 is a dimensionless damping 
constant. The operator Q¢ is the projection operator Q¢ = ] -1¢)(¢1/(¢1¢) - 
1 - / 5 ¢ .  

The structure of the bracketed term on the right-hand-side of the Gisin equa- 
tion ensures that the norm of the state vector is preserved during the system 
evolution. This property distinguishes the Gisin equation from several other dis- 
sipative quantum mechanical "generalizations" of the Schrbdinger equation [11] 
and permits the retention of most of the conventional interpretation of the quan- 
tum mechanics. Another interesting property of the equation, Eq. (28), is that 
the time evolution of the original Hamiltonian eigenstates is conservative (i.e. 
no damping). When the initial wave packet, consisting of several eigenstates, 
evolves in time it will eventually reach a final state which will be the lowest 
eigenstate present in the initial wave packet. This last property has an interest- 
ing implication for the model in which the wave function described by the Gisin 
equation represents a coherent state of a many boson or spin system [12, 13, 14]. 
The system always proceeds towards the ground state. 

The Gisin equation is the only sensible candidate for a dissipative Schrbdinger 
equation. It has been shown in Ref. [3] that this equation can be derived from the 
general Caldeira-Leggett formulation by assuming a proper form of the coupling 
between the so-called central particle (in this case a harmonic oscillator) and a 
heat bath consisting of bosonic oscillators with a given distribution of eigenstates 
and eigenenergies. 

The Gisin equation has been tested on some applications from quantum op- 
tics [2]. In Ref. [7] it was shown that the Gisin equation for a Heisenberg spin 
system is actually equivalent to the quantum Gilbert-Landau-Lifshitz equation 
describing the time evolution of a dissipative spin system for which the magneti- 
zation is conserved. Here the conservation of magnetization is retained by virtue 
of a single lattice site "conservation law", i.e. by the fact that the spin length is 
the Casimir for the symplectic spin bracket. 

The metric bracket for the wave function, which leads to the Gisin equations, 
has the form 

¢(r)¢'(r')) 
- r') 

= 11¢112 (29) 

It is easy to check that the Gisin equation is obtained using the metriplectic 
bracket for the wave functions [¢, ¢*] -- {¢, ¢*} + {{¢, ¢*} } and the Hamiltonian 
Eq. (23). 

5 D i s s i p a t i v e  Q u a n t u m  H y d r o d y n a m i c s  

Having introduced the dissipative Schrbdinger equation, we can now proceed 
with its interpretation via the Madelung, or hydrodynamic, representation. As 
in Section 3, we decompose the wave function ¢ as ¢(~) = X/et~ --) exp(i¢(x)) 
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and substitute it into the Gisin equation Eq. (28). We obtain a set of equa- 
tions describing a damped (it is tempting to say viscous) quantum fluid. The 
momentum equation is the more or less obvious generalization of Eq. (25b), viz. 

O t u + u . V u =  - l v v - v . ( r Q + ~ Q V ~ u + r I Q V ( u . V l o g ( ~ ) )  (30) 
m 

where ?q = hA/2m is the quantum "kinematic" viscosity coefficient. Note that  
Eq. (30) is a Gallilean invariant (u ~ u + U) in contrast to other suggested 
modifications of the SchrSdinger equation for dissipative processes [11] and, fur- 
ther, that  the dissipative terms on the right-hand-side of Eq. (30) are different 
from the Navier-Stokes theory. The Laplacian of the velocity term is present, as 
expected, but the "compressible" part of the Navier-Stokes equation (x ~7~7. u is 
replaced by an essentially different term reflecting coupling between the velocity 
gradient and the density field which is necessary to account for the Heisenberg 
uncertain relation. 

More intriguing is the continuity equation (conservation of probability) that  
follows from the Gisin equation, i.e. 

0# + V • ~u - ~/QV2~ = 

+ --y - + e v  + 2 - C o  • ( 3 1 )  

The left-hand-side of this equation is the usual diffusion equation for the density 
field. The right-hand-side is more complicated. The "source" term conserves the 
probability, in the sense that the integral of (q vanishes identically for V¢. Since 
the wave function can always be normalized, we can assume, without loss of 
essential physics, that  

/ ddxg(x) = 1. (32) 

Similarly, writing 

f 
<H) ~- J ddxT"l(x) = E ,  (33) 

we can rewrite the source ~q as 

~q (34) ¢q = h~/2m [Ee(~) - n(~)]  • 

The bracketed term here is the difference between the energy density evaluated 
by means of the "equipartition" method, i.e. according to the probability den- 
sity at a given point, and the true energy density. Obviously these two energy 
densities lead to the same global energy content, i.e. f daz~Q = O. 

The dissipative Madelung equations can be derived using the metriplectic 
brackets from the same Hamiltonian as the usual Madelung equation, provided 
the metric brackets between the density and velocity field are properly chosen. 



356 L.A. Turski 

These metric brackets are 

= - 

h2/2m fddze(z)J 

) = - . ( 3 5 )  

Note the difference between the velocity-velocity bracket in Eq. (35) and the one 
in the metric bracket for classical liquid, Eq. (13). The density dependence of 
the right-hand-side of the metric bracket Eq. (35b) is again a consequence of the 
uncertainty principle. 

6 F i n a l  C o m m e n t s  

As we have seen from the above presentation the metriplectic formalism can 
equally well be applied to classical physics as to quantum mechanics. The im- 
portant point is that by following the simple-minded idea of combining together 
the symplectic and metric brackets one can describe a variety of different dissipa- 
tive systems using the same algebraic procedure. First, the symplectic structure 
of non-dissipative dynamics is analyzed, the proper Casimirs are found, and then, 
using the general method, the most general metric brackets consistent with the 
Casimirs are constructed. 

How is one to proceed with those systems and/or models in which dissi- 
pation changes the value of the Casimirs, for example in magnetic systems in 
which the magnetization is not conserved? In such cases the geometrical methods 
of constructing most general metric bracket consistent with Casimirs, Eq. (19), 
are of great help. One defines the projection operator acting vertically to the 
hypersurface of constant Casimirs and then constructs another bracket propor- 
tionM to that projector. The new damping constant appearing in this bracket 
corresponds, for example, to the longitudinal damping in NMR theory. 

We should stress again that metriplectic dynamics is a convenient, easy and 
sometimes very powerful description of dissipative systems. It encompasses many 
interesting applications [5] but there are also important dissipative processes 
which have not been formulated within this type of an approach. The most 
attractive property of the metriplectic approach is its close connection with 
the underlying group theoretical structure of the theory. Once the symplectic 
brackets, that is the structure constants C)k for given Lie algebra, are known, 
we can construct the symmetric bracket and subsequently the full metriplectic 
one. This procedure works in the same fashion both in classical and quantum 
theory and, indeed, is based on the geometicM properties of phase space and 
Casimir leafs. One of the most interesting applications of metriplectic dynamic 
is the one which generalizes previous work on Boltzmann-Vlasov plasma [19] to 
that for the coloured plasmas (nonabelian gauge groups) encountered in quark- 
gluon plasma theory. Work along this line is in progress. 
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Quantum Analysis 
and Exponential Product Formulas 
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1 D e f i n i t i o n  o f  q u a n t u m  d e r i v a t i v e  

This paper explains the new concept of quantum analysis, (1-4) namely the non- 
commutative differential and integral calculus with respect to the relevant oper- 
ator itself. The derivative df(A)/dA with respect to the relevant operator A is 
defined by 

dr(A) 5f(A) 
dA 5A 

Here 5A denotes the inner derivation defined by 

(1) 

5AQ = [A, Q] = AQ - QA (2) 

for any operator Q. Since 5f(A) is proportional to 5A for any analytic function 
f (x) ,  the ratio 5](A)/SA in Eq. (1.1) is well defined. The derivative df(A)/dA is 
a hyperoperator mapping an arbitrary operator dA to the derivation (if(A). 

2 S o m e  u s e f u l  f o r m u l a e  

Using the definition Eq. (1.1), we obtain the following formulae: (1-4) 

Formula  1: 

where f(n)(x) denotes the n th derivative of f(x). 

Formula  2: 
d A dr(A) d ~ )  

-~-~(f( ) + g(A)) - ~ + 

Formula  3: 
d df(A(t)) dA(t) 
-~ f (A( t ) )=  dA(t) dt 

(1) 

(2) 

(3) 
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F o r m u l a  4 : 

F o r m u l a  5: 

~---~f(g(A)) = (4) 
dl(g) dg(A) 

dg dA 

d" f (A)  n[ / c  f ( z )  
dA --------W- - 2~ri ( z - A ) ( z - A + 5 1 ) . . . ( z - A + 5 1 + . . . + S n )  dz' (5) 

where J~c denotes an anti-clockwise integration around the contour C and the 
{Sj } are defined by 

~j : (dA) '~ = (dA)J-I(SAdA)(dA) " - j .  (6) 

F o r m u l a  6: Using Formula 5, we can obtain the following formula: 

d"f (A)  
dA" 

n 

- -  -- n [ E  an,k({Sj } ) f ( A  - 51 . . . . .  5k ). 
k=O 

Here the coefficients {an,k} are defined by 

an,o = {~1(51 "]- ~2)(51 -~- 52 "4- 53 ) " " "  (51 "-]-"""-~- 6n)}  -1  , 

(7) 

(s)  

an,  k = 

(-1) ~ 
(51 Jr-'" "~k  )(~2~-"" "~'~k )'" "tk tk-bl (Sk•l q" ~ k -~2 )'"" (Sk Jr1 ~-'" "'~Sn ) 

for l < k < n - l ,  and 

( - 1 ) "  

a,,,,~ = (~1 + + ~,,)(52 + - - - +  5 . ) - . - ( 5 , , - 1  + ~ . ) sn  ' 

F o r m u l a  7 (Operator Taylor Expansion): 

f ( A  + xB)  = f (A)  + En~=l X'* fd dtl f~' dt2 

. . . f ~ ' - i  d t ,~ f ( , ) (A_ t151 . . . . .  tn6,) : B n 

This gives the following Feynman expansion formula: 

i e t ( A + x B )  = e tA  + x n e  tA  dtl dt2. . ,  dt ,  B( t l  
n = l  

where 
B(t) = e- tABe tA = e -t6A • B. 

• . . B ( t , ) ,  

(9) 

(10) 

(11) 

(12) 

(13) 
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3 P a r t i a l  d i f f e r e n t i a t i o n  

3 6 1  

The differential of f ({Aj  )) is defined by 

df({Aj}) = tim ° l [ f ( {Aj  + h d A j ) ) -  f({Aj})]. O) 

The partial derivative Of({Aj })/OAt is defined in 

Of({Aj }) . dA~. (2) 
df({Aj}) = E cgAt 

t 

The partial derivative Of~OAt is a hyperoperator which maps the operator dAt 
to the derivation df({Aj}) for dAj =_ 0 (j 5£ k), and Of/OAt is expressed in 
terms of {Aj} and {SAj} • We have the following. 

Fo rmula  8: 
d Of({Aj(t)}) dAt(t) 

f ( {A j ( t ) } )=  E OAk(t) '" dt (3) 
t 

Formula  9: 
Of({Aj }) aAk (4) 

~ / ( { A j ) )  = E OAt " 
k 

Formula  10: When f({Aj}) is expressed as a convergent non-commutative 
power series of {Aj ), namely 

S(iA;}) ~ 2  " ' "  ' "  ~ '~ '~ '~  ' A ?  ~ = a({t,t})A 1 A2 ...  (5) • " " ~ a  n ax I " 1 

{*s~} 

we have 

Of d_~k A ~k ) . C~Ak : E E a({•jt})Atlxl'''Atjk-'[zltjk+l I,~Xk+l .)N( (6) 
{tsk} J 

Here, we have used the tilde operator ] satisfies the following: 

m 7 - A~ = Aj - ~Ai , (fg)~ "-- g ] ,  ( C I )  ~ ~-- e l ,  ( f  + g)~ = ] + (1 (7) 

for any number c and any operators f and g. 
We define a partial inner derivation 5Q;A~ = 5Q;t by such an inner derivation 

as takes the commutation relation only with respect to the operator At. For 
example, 

5q;t . (AtAj A~) = [Q, Ak]AjA~ + AkAj [Q, A~] (8) 

for j ~6 k. Using this partial inner derivation, we find 

Formula  11: 
ay({A~ } /_  ~1{{a,});tG~. (9) 

OAk 
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4 H i g h e r  p a r t i a l  d e r i v a t i v e s  

M. Suzuki 

Similarly we define higher partial derivatives (1-4) in order to obtain an operator 
Taylor expansion formula (1-4) for the operator f ( { A j  + xBj  }) with respect to 
the parameter x, viz. 

f({Aj + x B j } ) :  ~-~ x" ~ •,,...,J.f!") " " B j, . . . . .  Bin. (1 )  
n=O j x , ' " , J ,  

The hyperoperator f ! n )  - is too complicatedO-4) to write down here explicitly. J31,'",3n 

5 A p p l i c a t i o n  t o  e x p o n e n t i a l  p r o d u c t  f o r m u l a e  

Quantum analysis is useful in constructing exponential product formulae of 
higher order: 

e x ( A + B )  ---- e x t l A e x t : ~ B e x t 3 A e x t ' B . . ,  e x t M A  -~- o(xrn+l). (1) 

It has been shown(s-12) that there exist real parameters {t j}  for any positive 
integer m. In order to determine these values explicitly, we have to solve the 
following inverse problem, namely to find the operator ¢(A, B; {tj}) satisfying 
the relation 

e X t l A  eXt2B eXt3A eX t4B  . . . e x t M A  = e ~ ( A , B i { t j } ) .  (2) 

The condition on the parameters {tj} is given by the requirement that 
~(A, B; {ti}) should agree with x(A + B) up to the order of x" .  In order to 
calculate explicitly up to the required order, we derive an operator differential 
equation for O(A, B; {tj}) ~ ~(x) using the quantum analysis and we solve it 
iteratively.(2) 

More generally we consider the product formula 

e~(A+B) = eCl(~)eC~(~).., eC'(~) + O(x r"+l) (3) 

for some positive integer m. Here, we have the trivial conditions that C1(0) = 
. . . .  Cr(0) = 0 and that 

C~(0) + C~(0) + . . .  + C'r(0) = A +  B (4) 

for some appropriate set of basis operators {Cj (x)}. In order to determine these 
operators, we express the product on the right-hand side of Eq. (5.3) as the 
simple exponential operator 

eCl(~)eC2(~) . . .  eCr(~) = e X ( A + B ) + R ( x ) .  (5) 
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The correction term R(x) can be obtained by solving the equation 

an(z) 
d T  + (A + B) 

dCj(x) 
= A -  l ( z (A  + B) + R(z))  Z exp(6cl(~)). . ,  ezp(6c¢_,{~))A(Cj (z)) dx 

j = l  

(6) 

Here, the hyperoperator A(A) is defined by 

e ~a - 1 
~(A) - & (7) 

with the inner derivation 8A. The above operator differential equation is very 
convenient for obtaining perturbatively with respect to x explicit conditions on 
the basis operators {Cj(x)} satisfying Eq. (5.3) for some given positive integer 
m .  

If we apply the above general formula Eq. (5.6) to the exponential product 
formula Eq. (5.1), then we obtain the relation 

M 

Z et, I~6A 
j = l  

e t2x~s .. .et~-lx6~-ltjCj = A + B (8) 

up to the order of z m-1. Here, we have put Cj(x) = t j xC  j in Eq. (5.3), where 
C2j-1 --- A and C2j = B. The inner derivation 5j is defined by 6j - 5cj (namely 
52j-1 = 6A and 5~j = 6B). This new formulation is much more convenient than 
the previous direct procedures.(~-1~) 

6 Concluding remarks 

Quantum analysis has been applied (2,3) in the derivations of several basic equa- 
tions for the non-equilibrium density matrix p(t) and the entropy operator de- 
fined by o(t) = - logp(t). It can be also used(2,3) to derive fundamental operator- 
differential equations on exponential product formulae, from which the Baker- 
Campbell-Hausdorff formula is easily derived and hybrid exponential product 
formulae are also systematically obtained. (2,3) There are many other applica- 
tions in quantum mechanics and statistical physics. 

Acknowledgments 

The present work is partially supported by the Society of Non-Traditional 
Technology. 



364 M. Suzuki 

References 

1. M. Suzuki, 
2. M. Suzuki, 
3. M. Suzuki, 

Umezawa~s 
4. M. Suzuki, 
5. M. Suzuki, 
6. M. Suzuki, 
7. M. Suzuki, 

submitted to Commun. Math. Phys. 
submitted to J. Stat. Phys. 
Int. J. Mod. Phys. B, Vol.10, Nos.13 & 14 (June 15 & 30, 1996) 
Memorial Issue. 
Proceedings of ICPAM in Bahrain, Nov.19-22, 1995. 
Phys. Lett. A146, 319 (1990); ibid. A165, 387 (1992). 
J. Math. Phys. 32, 400 (1991). 
J. Phys. Soc. Jpn. 61, 3015 (1992). 

8. M. Suzuki, in Fractals and Disorder, edited by A. Bunde (North-Holland, 1992), 
i.e., Physica A191, 501 (1992). 

9. M. Suzuki, Proc. Japan Acad. 69, Ser. B, 161 (1993). 
10. M. Suzuki, Physica A205, 65 (1994), and references cited therein. 
11. M. Suzuki, Commun. Math. Phys. 163, 491 (1994). 
12. M. Suzuki, Rev. of Math. Phys. (World Scientific) (1996) (in press), and references 

cited therein. See also K. Aomoto, On a Unitary Version of Suzuki's Exponential 
Product Formula, Jour. of Math. Soc. Japan (in press). 



Coherent Anomaly Method and Its Applications 
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1 B a s i c  s c h e m e  o f  t h e  C A M  

The present lecture gives a review of the coherent-anomaly method (1-3) (or 
CAM) and its applications to critical phenomena. The basic idea of this method 
is to construct a systematic (or coherent) series of mean-field approximations 
and to evaluate each approximate critical point Tc and the mean-field critical 
coefficient (~ at To. Then, these data {To, (~} give a coherent anomaly, namely 
the mean-field critical coefficient Q diverges as Tc approaches the true critical 
point T*, i.e. 

O(T~) --, ~ a~ Tc ~ T : .  (1) 

More explicitly, we may put 

C 
(2(Tc) = (T¢ - T ; ) ¢  (2) 

with some constant C. The coherent-anomaly exponent ¢ can be estimated from 
the coherent-anomaly data {To, Q}. If the relevant physical quantity Q shows a 
mean-field singularity of the form 

0(To) 
Q m I ( T )  ,,~ (f--~-)¢, (3) 

then the true singularity of Q will be given by 

1 
Q ( T )  ..~ (T  - " ' ¢ + ¢  " (4) lg )  

Therefore, we have only to construct a systematic (or coherent) series of 
mean-field approximations in order to study non-classical critical phenomena. 
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2 E n v e l o p e  t h e o r y  o f  t h e  C A M  

The simplest explanation of the CAM is to make use of the envelope theory. Ac- 
cording to the mathematical theory of envelopes, the tangential points of general 
solutions with a parameter constitute a special solution not included in general 
solutions of the relevant problem. In our problem, the general approximate so- 
lutions are given by 

C 1 
Qm/(T)  ~- (T~ - T~*)¢ (T - T~)¢ (1) 

with some constant C. The tangential points {T} are given by differentiating 
Eq. (2.1) with respect to Tc and by eliminating T¢ both from Eq. (2.1) and from 
the derived equation 

* ¢ + ¢(T¢ - T : ) .  (2) T = T ~ +  ¢ 

Thus, the envelope function is given by 

Qe,~,(T) = C (¢ + ¢)¢+¢ 1 
¢¢¢¢ ( T -  T*) ¢+¢ (3) 

This gives a fractional singularity of the relevant physical quantity Q(T)  in the 
form 

1 
Q(T) ~ Qen~(T) ~ (T  - T*) ~ (4) 

with 

= ¢ + ¢. (5) 

This non-classical value of the critical exponent w is composed of two parts, 
namely the classical part ¢ and the coherent-anomaly part ¢. The second part 
can be easily estimated from the coherent-anomaly data {To, Q} for several sys- 
tematic mean-field approximations. 

In particular, the susceptibility x (T)  is given in the form 

1 
x(T) (6) 

(T  - T;)~ 

with 

7 = ¢ + 1, (7) 

because we have ¢ = 1 for the mean-field susceptibility. The coherent-anomaly 
exponent ¢ is defined by 

1 
~(T~) (T~ - T*)¢" (8) 
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3 CAM scaling 

The physical basis of the CAM is the scaling of correlation functions or 
Fisher's finite-size scaling.(4) The mean-field coefficient Q(Tc) in Eq. (1.3) is 
expressedO-3) in terms of the correlation functions inside of the relevant cluster 
which is used for the construction of each mean-field approximation. Then, the 
scaling form of correlation functions gives the expression 

1 

0(To)  ~ (To - T ; ) ~ - ~  (1) 

near the true critical point. That is, we obtain 

¢ = ~ - ¢, (2) 

namely 
= ¢ + ¢. (3) 

This is called the CAM scaling relation. Many other CAM scaling relations have 
been obtained.(1-3) 

4 Applications 

The first application of the CAM was made to the two-dimensional Ising model 
by Katori and the present author(s) to confirm the validity of the CAM. In fact, 
the value 7 = 7/4 for the susceptibility exponent has been confirmed with very 
high accuracy (four or five-digit accuracy!). Since then, many applications have 
been reported: 

- the Ising-model with long-range interaction by Monroe et al., 
(App. 57, 58) 

- the Blume-Emery-Griffiths model by Chakraborty and by Kolesik, 
(App. 2 and App. 40) 

- the Ising model with four-spin interactions which shows non-universal critical 
behaviour Minami et al. and by Kolesik and Samaj 
(App. 52-55 and App. 38, 39) 

- the Heisenberg model by Ito and Suzuki, by Oguchi and Kitatani, by Mano 
and by Tanaka and Kimura, 
(App. 21, App. 65, App. 48 and App.102) 

- the zero-temperature phase transition by Nonomura and Suzuki, 
(App. 59-64) 

- the KT-transition by Suzuki, by Hu and by Fujiki, 
(App. 93, App. 17, 18 and App. 7) 

- spin glasses by Hatano and Suzuki, by Fujiki and by Kawashima et al., 
(App. 8,9, App. 5 and App. 32) 

- the self-avoiding walk by Hu and Suzuki and by Ishinabe et al., 
(App. 14 and App. 20) 



368 M. Suzuki 

- the percolation problem by Suzuki and by Takayasu et al. and by Lipowski 
and Suzuki 
(App. 84, App. 100, 101 and App. 45) 

- the kinetic Ising model for evaluating the critical slowing-down exponent by 
Katori and Suzuki, 
(App. 25) 

- contact processes by Konno and Katori, and 
(App. 41) 

- other miscellaneous problems 
(App. 10, 15, 19, 27, 29, 30, 34, 50, 51, 67, 69, 70, 71, 72, 85, 87, 88, 89, 93, 
96, 98, 108, 113) 

5 Summary 

The basic idea of the CAM theory has been briefly explained. In the present 
lecture, many applications have been demonstrated explicitly to show how useful 
the CAM is. 

The present work is partially supported by the Society of Non-Traditional 
Technology. 
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