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Preface 

These notes are based on a series of lectures I gave in Lausanne and Geneva in 

January and February of 1981in the framework of the "Troisi~me Cycle de la Physique 

en Suisse Romande". A preliminary version of these notes was preprinted by the 

"Troisiame Cycle". Compared to that version numerous changes and corrections have 

been made. In particular an erroneous proof of the combinatorial Corollary 3.9 has 

been replaced by a simpler and (I hope) correct one. I am grateful to many people, 

in particular Christian Borgs, Krzysztof Gawgdzki , Konrad Osterwalder and Simon 

Ruijsenaars for pointing out various errors in the earlier version and for suggesting 

some improvements. I am also much indebted to Ricardo Neves da Silva for his help 

in preparing the manuscript. 

Most of all I am indebted to the people who collaborated with me in the rigorous 

study of gauge quantum field theories, namely David Brydges, Jbrg Fr~hlich and Konrad 

Osterwalder. I also owe a great deal of my understanding of high- andilow-temperature 

expansions to discussions with them; the third section would look rather horrible, I 

think, without their help (maybe it still does, but that is not their fault). 

Furthermore my thanks go to Jean-Pierre Eckmann, G~rard Wanders and the "Commis- 

sion Scientifique du Troisi~me Cycle de la Physique en Suisse Romande" for their kind 

invitation that made these lectures possible. 



INTRODUCTION 

The construction of quantized gauge theories is still in an embryonic stage in 

spite of their universally acknowledged importance in contemporary particle physics. 

In the meantime one is trying to obtain insight into the physical content of the 

theory (assuming its existence) by other methods, First there is renormalized pertur L 

bation theory which is quite well developed [1,2,3]. For the analysis of non-pertur- 

bative phenomena such as the presumed confinement of quarks the study of semiclassi- 

cal approximations to the theory has enjoyed rather great popularity. Its successes, 

in my opinion , so far lie more in the realm of the classical theory, which is a 

beautiful mathematical subject in its own right, than in the understanding of the 

quantized theory; this is not meant to deny that this approach has produced many fas- 

cinating ideas and some insights(see [4] and references given there). In any case, 

in these lectures I will not be concerned with these two approaches. Instead I will 

concentrate in the first half on a different nonperturbative method : The lattice ap- 

proximation. Since the invention of lattice gauge theories by Wegner [5] and in particu 

lar since Wilson [6] (apparently unaware of Wegner's paper) introduced them into par- 

ticle physics as a way to analyze specific physical questions, there has been tremen- 

dous activity in that field and it will be impossible to give a complete review of 

all the results, quasiresults and ideas that have been produced. I will therefore 

concentrate on rigorously established results of physical relevance; all of them are 

the fruit of the observation that the lattice approximation makes gauge theories into 

some kind of classical statistical mechanics and interesting questions can be tackled 

with the highly developed machinery of that field of research. 

Lately some people advocated taking this statistical mechanics aspect more lite- 

rally and using lattice theories as models for the statistical mechanics of defects 

in ordered media [7]. This might yet turn out to Be the most realistic area of appli- 

cation of these models as the particle physics interpretation of the results achieved 

so far still has a somewhat metaphoric character. 

But the lattice approach is also important for another reason : It provides a 

tool for the construction of continuum models. In spite of a certain awkwardness it 

has provided the most successful road for the construction of continuum theories. In 

the second part of these lectures I will describe in some detail the arduous journey 

along this road to the construction of the two-dimensional Higgs model (Landau - 

Ginzburg modeD and two-dimensional quantum eleetrodynamics (QED2). I will also at 

least briefly discuss some other programs that are under way or, in some cases, have 

been completed some time ago. Even though for the Higgs model Wightman's axioms have 

been verified, it seems that in particular for confining theories they do not provide 

the most natural framework. So at the end of these lectures I will discuss a frame- 

work that is dealing with fields not "living On points" but rather on curves or 

loops; thereby it is possible to avoid state spaces with "indefinite metric" that are 



used in the perturbative approach and also in the axiomatic framework proposed for 

instance by Strocehi [8]. 

The geometric aspects of gauge theories will not play a central rSle in these 

lectures. But since it is useful to have the geometric interpretation in the back of 

one's mind and since I will sometimes use the geometric language, I give a very 

brief and informal description of the concepts, mainly intended as a glossary in an 

appendix. For a more detailed discussion see [88,89] or the beautiful review by 

Eguchi, Gilkey and Hanson [4]. 



I. LATTICE GAUGE THEORIES 

Lattice gauge theories were first studied by Wegner [5] under a different name 

(for the gauge group ~2 ) . He was interested in generalizations of the Ising model 

which possess phase transitions without a local order parameter. In this paper the 

relevant "order" and "disorder" observables which are today known as "Wilson loop" 

and "'t Hooft loop" are introduced and their behavior in different regimes (area- 

or perimeter law, respectively) is studied. A few years later Wilson [6] introduced 

a rather general class of lattice gauge theories in order to understand the permanent 

confinement of quarks. He formulated what is today known as "Wilson's criterion" : 

A gauge theory confines quarks if the appropriate loop observable ("Wilson loop") 

obeys the area law. We will discuss the meaning and proof of this criterion as well 

as its limitations and possible alternatives below. 

There are two review articles on the subject, one by Drouffe and Itzykson [9], 

the other one by Kogut [i0]. Both contain a lot of useful information and are extre- 

mely valuable introductions into the subject but they do not cover most of the more 

mathematically rigorous work in the field. In some sense my presentation here will 

be complementary to theirs. 

I will restrict the discussion to the properties of lattice gauge theories at 

temperature zero which simply means that the full thermodynamic limit will be taken 

instead of keeping a finite size in time direction with periodic boundary conditions. 

There is interesting physics in these finite temperature gauge theories, in particu- 

lar the presumed existence Of a critical temperature in 4 dimensions above which 

quarks cease to be confined [84, 85] , but in the interest of keeping the size of 

these notes manageable I will not go into this subject. 

The major physical problem which can be studiedin the framework of lattice 

gauge theories is still the one that originally motivated Wilson [6] to invent them: 

The permanent confinement of quarks at zero temperature. In spite of all the effort 

put into the analysis of this problem it can still not yet be said that confinement 

has been proven, not even in the sense of Wilson's criterion, for four-dimensional 

non-abelian models of arbitrary coupling. But many partial results have been obtained 

and a physical picture has emerged that gives support to the idea that the vacuum of 

a confining theory resembles a magnetic superconductor and thereby squeezes the color 

electric field by a "dual" Meissner effect into tubes between the charges, thus pro- 

ducing a force between them that is essentially independent of their distance. It 

turns out that this confinement mechanism only applies to charges that transform 

nontrivially under the center of the gauge group. Therefore for other nontrivial 

charges (for instance those having the quantum numbers of gluons) a different mecha- 

nism is believed to operate that screens their charge; in the end all physical 

states are believed to be color neutral. This mechanism also provides an explanation 



for the "saturation of forces" that manifests itself for instance in the fact that 

there are no confining forces between objects made from three quarks. 

The Wilson criterion for confinement only talks about the pure Yang-Mills theory; 

there is no such simple criterion for models that contain matter fields transforming 

nontrivially under the center of the gauge group, such as Quantum Chromodynamics 

(QCD). It should he stressed that confinement means more than just the absence of 

states with nonvanishing color charge : It would be a disaster for the confinement 

dogma if quarks managed to screen their color and thereby escaped the confining force. 

For a good discussion of the physical picture of confinement and screening I 

recommend [86]. we will return to the issues raised here at various points in these 

lectures. 

I. THE SCHEME OF LATTICE GAUGE THEORIES 

The heuristic background which should be kept in mind is the euclidean version 

of the Feynman path integral that has led to considerable successes in Constructive 

Quantum Field Theory (see [ii, 12, 80] for a review and references). 

There the idea is to use the classical action S(~) , where ~ symbolizes the 

fields of the model, to construct a probability measure on the space of "field confi- 

gurations" hy the prescription 

I e-S (~) 
X 

Here H d~(x) stands for the (nonexisting) Lebesgue measure on the fields and 
X 

Z is a normalization factor to be chosen to ensure f d~ = I . Lattice versions 

of this formula have been employed in the case of scalar field theories with great 

success since they allowed to use methods of statistical mechanics [13, 14]; the 

continuum limit could actually be controlled in 2 and 3 dimensions [13, 14]. 

In the case of a gauge field A , its geometrical meaning should be remembered 

before introducing a lattice. A , as explained in the appendix~are the relevant 

components of a connection form in a principal bundle, expressed in a particular 

coordinate system (which includes a local trivialization of the bundle). A E A dx ~ 

is a 1-form with values in the Lie algebr~ ~ of the chosen gauge group G (assumed 

to be a compact Lie group) telling you in which way you have to move in internal 

symmetry space when you move in a certain direction in the base space (= euclidean 

space-time). It induces (for a given local trivialization E "gauge") a map from 

curves C starting at x and ending at y into the gauge group G itself by 
xy 

the well known prescription 



g(Cxy) ~ P exp _[C A~dx ~ (I.I) 
xy 

where P stands for "path ordering". The right hand side is the well-known product 

integral (cf. [15]) and the physicist's notation employed here conveys its meaning 

very clearly. 

Going from euclidean space-time IR d to a simple cubic lattice e ~d (or any other 

lattice if that is desired) we understand by the gauge field now a map from 

the oriented "links" or nearest neighbor pairs <xy> of the lattice into the group G 

<xy> ~ gxy E G 

obeying 
-i 

gxy = gyx 

Sometimes it will be useful to think of gxy 

gauge field by a prescription such as (I.i). 

(1.2) 

(1.3) 

as arising from an underlying continuum 

By our construction it is clear what we understand by a gauge transformation of 

<xy> ~ gxy : It will be described by a map from the sites into G 

x ~+h (l.4a) 
X 

-i 
and change gxy into hxgxyhy (l.4b) 

The next goal is to define a lattice version of the continuum action of the 

gauge field which is given by 

Sy.M.(A) ~ 12 S Tr(FA*F) 
2g o 

I I 2 
- '2frrF F IIFII2 ~ ~ 2 (1.5) 

4g o 2g o 

I 
where F E dA + ~ [A,A] is the curvature 2-form associated with A (taking values 

in 9 ) and the trace is to be taken in any locally faithful representation; • F is 

the Hodge dual of F . 

Wilson's lattice version of (1.5) is obtained as follows : Let X be any cha- 

racter of G belonging to a locally faithful representation. The lattice gauge field 

associates to any closed oriented loop C a conjugacy class [gc] of G by simply 

multiplying the group elements gxy corresponding to the links in C , starting at 

any point and using the order given by the path C . In particular the elementary 

squares ("plaquettes") P ~r rather their boundarie~ of the lattice will be mapped 

into conjugacy classes [g~p] 



We define now: 

I 
Sy.M.W.({gxy )) - 2 pE X(ggp) • (1.6) 

2g o 

where the sum is over all oriented plaquettes. The justification for this definition 

lies in the fact that 

4 
x(g~p) = X(~) + ~ x(F~F~v)+0(c 6) (1.7) 

whenever the lattice gauge field arises from a (sufficiently smooth) continuum gauge 

field. 

Of course (1.6) is by no means unique; there are many alternatives that formally 

correspond to the same continuum limit. It is an important question whether the true, 

nonformal continuum limit will be independent of the choice of lattice approximation; 

the answer seems actually to be "no" in general as we will see below. We will take a 

pragmatic point of view with regard to this question and choose our lattice action 

by convenience; the choice should be justified by its success. 

Note that even (1.6) is not unambiguously defined because it depends on the 

choice of the character X • This will turn out to be very relevant in connection 

with the confinement problem. In the standard case of G = SU(N) we will insist on 

using the fundamental representation because it represents ~he center ~N faithfully. 

It is curious that the formal continuum theory does not have this dependence. But it 

seems that the continuum limit of the lattice theory will depend crucially on the way 

in which the center is represented. 

We want to mention one alternative to (1.6) which presumably has the same con- 

tinnum limit, which we call "Villain-Polyakov action" (because it generalizes Villain's 

form of the plane rotator model [16]) and which was studied by Drouffe [17]. 

For a compact semisimple Lie group G it is given by 

2 
go 

exp(-gy.M.g.)({gxy}) =- ~ E exp(--~-CT)x~(g~p)d T 
Pi 

( l .g )  

Here the sum is over all inequivalent irreducible (unitary) representations U T of 

, , = is the eigenvalue of the quadratic Casi- G xT(g) = tr UT(g) d T XT(1) and C r 

mir operator in the representation T , i.e. if XI,...X is an orthonormal basis 

of the Lie algebra g with respect to the Killing form k(X,Y) E tr Uadj(X)Uadj(Y) 

then n 

C = - i=l Z tr UT(Xi )2 

2 

go )x~(gh,1) This means that El exp(--~- C is the kernel of the heat operator 
12 T 

exp~ go ~ where AB is the Laplace-Beltrami operator with respect to the Killing 



metric on G . For non-semisimple G we may define Sy.M.V. 

metric on G and using the corresponding heat kernels. 

Note the formal continuum limit : 

log 

2 
go 

Z exp(- -~- CT)dTxT(g~p) 
T 

2 
go 

Z exp(- -~- C )dTxT(1) 
T 

2 
go 

4 X exp(- -~- CT)dTxT(F F u) 
T E6 

2 2 +0( ) 
go Z exp(- ~- C )dTx (I) 

T 
2 

go C)d2c T 4 E exp(- -~- 
E 

= T Xadj (Flj,~F!a,0) + 0(C6) 
exp(- g2 ° CT)d ~ 

T 

by using any invariant 

[ ^ I X -.(F F ) for g2 small L o 

go I 
~Cld I exp(- -~- Cl) d-~d j Xadj(F F ) for g~ large 

where Xadj stands for the trace in the adjoint representation, dad j is the dimen- 

sion of the adjoint representation, C I is the smallest Casimir eigenvalue and d I 

the dimension of the corresponding representation space. 

It is fairly straighforward to introduce matter fields into the system. They 

come in two basic varieties : 

(i) Scalar Higgs fields 

(2) Spinor fields (corresponding to quarks and/or leptons). 

The Higgs fields as well as the spinor fields "live" on the sites of the lat- 

tice; they are coupled to the gauge fields by a lattice version of the standard 

"minimal coupling"; the Higgs fields will in addition have some suitable self-coupling. 

To avoid too cluttered formulae we set now ~ = I ; it is easy to reinsert e when 

needed. 

A lattice Higgs field configuration is a map ~ from the sites x of the 



lattice into some finite dimensional unitary (or euclidean) vector space 

a unitary (or orthogonal) representation U H of the gauge group G . 

V H carrying 

: x~¢(x) C V~ 

Sometimes we will restrict the values of ¢ to lie in a sphere of a fixed 

radius R in U B , i.e. t1~(x) tl = R for all x 

The lattice Higgs action is 

SH({~(x)},{gxy}) ~ -I/2( E 
<xy> 

(¢(x),UH(gxy)¢(y))) + E V(ll¢ (x) II) • 

x 

(1.9) 

Here V is an even polynomial of degree ~ 4 with positive leading coefficient and 

the first sum is over oriented links <xy> . To become truly "Higgsian", V will 

have to have a deep absolute minimum far away from zero. 

A lattice spinor field configuration is a map ~ from the sites of the lattice 

into a subset of the set of orthonormal frames of a fermionic vector space V F . 

V F has the following structure : 

VF= Vs " V G 

where V S 

defined by 

YiTj 

through hermitean matrices. V G 

tary representation U F of the gauge group G . 

The field configuration ~ is required to "respect" the decomposition of V F 

into tensorial factors, i.e. we require it to be of the form 

: x~+ {$~a(X)} ~=I ..... dim % 

a=l,...,dim V G (1.12) 

~a(X) = e~(x) ~ fa(X) , e E % , fa £ VG 

where ~ labels "spin" and a "internal" degrees of freedom. 

Next we pick an antiunitary map I from V G into an isomorphic copy ~G ; 

correspondingly we will have a field configuration ~ = (~ × I)~ : 

(I. 10) 

("spin space") is a representation space for the Dirac-Clifford algebra 

+ ?j~i = 2~ij (i,j = 0,i .... d-i) (I.ii) 

("gauge space") is a unitary space carrying a uni- 



: x ~ {~a(X) }~,a 

-i 
On ~G a unitary representation U~ = IUFI 

naturally induced. Note that if 

of G 

(1.13) 

which is conjugate to U F is 

UF~ a = (UF)ab~b , then 

U~a= IUF~ a " (UF)ab~b = (UFl)bTb 

We now regard the orthonormal vectors {~a(X),~a(X)___ ) as generators of the 

exterior algebra over x~(VF ~F) where VF = VS ®VG ; thereby we can construct 

functions from spinor field configurations into that exterior algebra by forming 

polynomials (in the sense of exterior multiplication). For instance the fermionic 

action is 

SF({~=,a (x) ,~,a (x) }, {gxy}) -= 

~2 E T~a87a(x)rXY(UF)ab~b(y) + 
<xy> 

I -- + ~ ~ a ( X ) r a ~ S a  (x) 

(1.14) 

The naive choice F E M and 

F xy E 

i 7~ if <xy> points in the positive ~-direction 

-y~ if <yx> points in the positive ~-direction 

leads to a proliferation of fermion degrees of freedom in the continuum limit 

[i8,51,92]. 

This is avoided by the following two-parameter family of choices 

i075 
F 0 E M - rde 

i875 

I re +y~ if <xy> 

r~ y ~ ° 

lrelOY5-7~ i f  <yx> 

points in the positive 

points in the positive 

~-direction 

~-direction 

(0 < r < 1) . 

For O = O , r = i this is Wilson's action [18] , for 0 -~ , r = I , it is the 

action proposed in [19]. (Y5 is the conventional notation for a hermitian matrix obeying 
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2 ̧  
75 = i , 757i + Ti75 = O for i = O,l,...,d-I 

and it exists if the dimension of the chosen representation of the Clifford algebra 

is high enough). 

Remark : We want to stress the (well known) fact that with this choice (1.14) is no 

longer invariant under the chiral transformation 

is75~ -- _ iaY 5 
~->e , ~+~e 

even for M = 0 ; this leads to the well known axial anomalies in the continuum limit 

(see [81]). 

A related fact is the following : The continuum limit formally seems to be e 

independent. A more careful analysis [95] (see Section 5) shows, however, that often 

the angle @ is remembered in the continuum. The corresponding 8-dependent states 

are known as "8-vacua"; in a different context we will encounter them in Section 4a . 

Let us now assume that we are working on a finite chunk A of our lattice. 

This makes our somewhat formal definitions Sy.M.,SH,S F sensible. We define a field 

algebra A A as the Grassmann algebra generated by {~ua(X) , ~ea(X)}xEA with 

coefficients that are bounded continuous functions of the bosonic fields {gxy} , 

{~(x)} A A may be viewed as a map from field configurations into the Grassmann 

algebra 

G A~A((~ v F) + (o vF)) 
xEA x£A 

On AA we define a norm I1"11 as follows : The exterior algebra 

poses into a direct sum of homogeneous linear subspaces : 

G A decom- 

_(n) 
G A = ~ Anc(@v F) + (~F)) ~ z ~A 

n>o x x n>o 

Each of the subspaces G (n) inherits a positive definite inner product and a norm 
-A 

I1" II from V F ; for A C G we have the decomposition A = Z A (n) with A (n) £ -A~(n) 

and we define IIAII ~ Z IIA(n) II • With this definition we have IIABII ~liAII IIBII • 
n>o 

To obtain a norm on A A we only have to replace the complex numbers which 

play the r$1e of scalars in G A by the bounded continuous functions of the bosonic 

fields, normed by the sup-norm. So if F = E F (n) is the decomposition of F £ A A 
n>o 

into homogeneous elements in the fermion variables, we define 



II 

IIF 11 Z sup llF(n)ll . Again we have IIFG II e IIF II fIG II 
n>o {~(x),gxy } 

Finally an expectation value is defined as a linear functional <'> on A A 

as follows (hased on ~8]): First we define a 'rdecoupled" expectation <.> as a 
O 

linear functional on A A by requiring 

(a) <P> = O whenever P is an element of less than maximal degree in the 
A,O 

exterior algebra 

(b) 

x EA 

O 
where d~A is the following positive measure 

d~A° = <xy>EH Ax~ gxy xEA ~ e-V(l¢ (x)l)de(x) 

with dg (normalized) Haar measure on G and d~ Lebesgue measure in V H . It is 

easy to see that l<F>ol ! IIFII const. Finally we define for F E A A : 

o o 

I -SH-Sy.M.-SF -SH-Sy.M.-SF 
<F> A E ~A <F e >A,o ' ZA E <e >A,o 

o 

S H stands for the Higgs action with V replaced by O . 

Note that both the functional <'> and the functional <'> 
A,o A 

invariant" in the sense that they do not change if we replace 

-I 
gxy by hxgxyhy 

(x) by UH(hx) ~ (x) 

are "gauge 

(x) by U F(hx) ~(x) 

~(x) by ~(X)UF(hxl) 

simultaneously. 

The appropriate modifications needed if some of the fields are absent are obvious. 

A final remark : For the lattice theories we may relax the requirement that G is a 

compact Lie group; G may be any compact group. 

So what we have gotten by our lattice approximation looks a lot like statistical 

mechanics of more conventional lattice systems, except for the somewhat unfamiliar 

Grassmann nature of the fermion fields. We will see that a typical problem of statis- 
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tical mechanics, namely the thermodynamic limit, will be tackled by methods lifted 

right out of the conventional toolkit; the same is true of a number of other questions 

of interest. 

It should also he pointed out that we "integrate" over all field configurations, 

including gauge equivalent ones. Unlike the formal continuum case there is no need 

"to fix the gauge" introducing strange beings like Faddeev-Popov ghosts - even though 

it could be done if desired (cf. [19, 20]). 

2. FUNDAMENTAL PROPERTIES 

Here we will describe and prove a few basic properties of lattice gauge theories 

that do not involve more refined methods such as expansions or "integral equations". 

a) Osterwalder-Schrader Positivity and Consequences. 

This property, often known as reflection positivity, has been known and used 

for certain lattice systems for quite a while [21,22]. It is not to be confused with 

the positivity of the bosonic measure d~ A introduced above (which comes under the 

heading "Symanzik,Nelson positivity" in the context of Euclidean quantum field theory). 

O.S. positivity is true even under the inclusion of fermions; it is a useful property 

for "technical" purposes, but its fundamental meaning comes from the fact that it 

allows to construct a quantum mechanical state space with positive definite scalar 

product; this property will also be inherited by any reasonable continuum limit. 

O.S. positivity for lattice gauge theories was proven in [19], cf. also [23]. 

We will restrict ourselves to the following two situations : 

(I) Our finite lattice A c ~d is symmetric with respect to a hyperplane ("t = 0 

hyperplane") lying halfway between lattice hyperplanes: 



' 18  

+'1~'~ I, l o  

. . . . .  -4 4-0 

A 

(2) Our finite lattice A is wrapped around a torus (or cylinder); more specifically 

we will identify points 

(no,n I , .... nd_ I) 

and 

(no+2N,n I ..... nd_l) etc. 

If fermions are present, they will have to obey so-called antiperiodic boundary con- 

ditions 

~(no,n I ..... nd_ I) = -~(no+2N,n I .... ,nd_ I) (2.1) 

while the bosonic fields will obey ordinary periodic b.c. (If (2.1) sounds incompa- 

tible with the identification proposed just before, you may replace it by ordinary 

periodic b.c. and a modification in the fermionic action : The sign of the terms 

coupling positive and negative times "on the back", i.e. involving "times" N and 

-N has to be flipped. It is a little exercise to show that equivalently one may 

choose an~other time layer). 

In both situations (I) and (2) there is a natural decomposition 

A = A+ U A ; A+ fl A_ = O (2.2) 

and a map r ("reflection at the t = 0 plane") 

r : A+ + A~ 

This reflection induces an antilinear map 8 

ing to A by requiring 

of the field algebras 

(2.3) 

A A belong- 
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(a) 8F({~(x)}) = F({~(rx)}) 

8G({gxy}) = G({grx,ry}) 

(b) e~(x) = ~(rx)¥ ° 

8~(x) = yo~(rx) 

(c) 8(AB) = (SB)(SA) 

It is clear how requirements (a), (b), (c) uniquely specify 

map from A A to A A with the additional property 

e[AA+ = A A 

We can now formulate 

8 as an antilinear 

(2.4) 

Theorem 2.1 : (O.S. positivity, first proven in [19]; but the proof given there 

contains a slight inaccuracy). For F £ A A , 
+ 

<FSF> A ~ 0 

Proof : First assume that F is either even or odd. Note that 

<FSF> . = I<F> , 12 > 0 o,n = <F>o,A+<SF>o,A o,n+ -- 

n 

The elements of the form i=IZ c.F. eF.z l i ' ci -- > 0 ' Pi £ AA+' F.z even or odd (i=l,...,n) 

form a "multiplicative cone" P , i.e. products (and of course linear combinations 

with positive coefficients) are again of that form. 

Therefore exp(FSF) will belong to that cone for F E AA+ , F even or odd. Now 

o 

-S ~ -(SH+Sy.M.+SF) 

can be written as the sum of three terms : 

with -S 
+ 

terms in 

exp(-S c) 
belong to 

-S = -S+-eS+-S c 

E AA+ -S+ collects all terms "living" entirely in A+ ; -8S+ all 

A_ and the rest contains everything that couples A+ and A_ . Now if 

belonged to the cone P we would be done because then FSF e -S would 

P . Unfortunately exp(-S c) is not in P as it stands, but we can use 
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the gauge freedom to get it there : We postpone the integration over all gxy with 

x 6 A+ , y E A_ or vice versa. This corresponds to a "conditional expectation" 

<.>{gx,rx}, A . We claim that for F that are either gauge invariant or do not depend 

on those "dangerous" variables gx,rx ' 

<F>{gx,rx}, A = <F> A (2.5) 

(which justifies the term "conditional expectation"). The proof is by inspection : 

<F>r ~ A has to be a gauge invariant function of its variables, but there is a 
tgx,rxX, 

gauge in which they are all equal to I . So the left hand side of (2.5) is actually 

independent of {gx,rx } and the final integration over these variables has no effect. 

In particular we have 

<F> A = <F> (2.6) 
{gx,rx = I},A 

But the right hand side of this is simply obtained from the left hand side by repla- 

cing all the gx,rx in -S by I c • exp(-Sc({gx,rx = I})) belongs to P as can 

be seen by close inspection (see [92] for more details). Now we realize that the 

restriction requiring F to be even or odd is irrelevant since there are no cross 

terms. So the proof is complete. [] 

A direct consequence is the existence of a quantum mechanical Hilbert space 

Let N ~ {F 6 A A J<FeF> A = O} . Then A A /N carries a positive definite scalar 
+ + 

product given by <FeF> A . Its completion will be defined to be H : 

H : 

Another straightforward consequence is the existence of a positive transfer 

matrix : Let us assume that we dan construct the thermodynamic limit at least in 

"time '[ direction and that it is time translation invariant. Zf then F E AA+ 

denote by ~F the same function but of the fields shifted by 2 units in positive 

time direction. Now clearly <~NFe!~A is bounded uniformly in N . By iterating 

the Schwarz inequality 

For 

I<~FeF>A I 2 1/2 1/2 ! <~F)eF> A <FeF> A ! 

2 n 2-n 
! <(~ F)eF> A <FeF> -2 nl 

n ÷ ~ the first factor goes to i , so we obtain 

I<'TFeF>AJ ~ <FeF> A (2.7) 
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This shows that ~ induces a well defined contraction T 

AA+/N and therefore on H . Also clearly <(TF)eF> A ~ 0 

on H . 

on the equivalence classes 

, so we obtain O < T < i 

Remarks : 

i. L~scher [24] has shown in a somewhat different (and more restricted) setting that 

actually T > O . 

2. In [23] a slightly more general version of O.S. positivity is proven which requires 

the introduction of some auxiliary fields ("half gauge fields"). 

A third well known consequence of O.S. positivity are the so-called chessboard 

bounds (see [22,25] and many references given in [23]). In our framework they can 

be stated as follows: 

3 
from (d~l ~" • r j  3)x 

3=o 
of F : 

x 

Let F be a "local" function of the fields. By this we mean that F may 
x x 

depend on the matter fields at site x . Furthermore let for a pair of sites 

x,y : oj = (y~-x i)~ ~ . Also let rj , 0j be the reflections with respect to the hyper- 

plane x. = 0 (lying halfway between two lattice planes) and z the translation 
xy 

to y . Let F(xy ) be the following shifted and reflected copy 

v-I ~. 
F(xy ) -= Zxy((jE ° Oj 3)F x) 

Then for (anti)periodic b.c. we have 

Theorem 2.2 : 

I 

E<EF >-~ I< E Fx>AI <-- (xy) A 
x£A x6A y6A 

The proof involves essentially an infinitely repeated application of Schwarz's inequa- 

lity. This is systematized in [22,25]. D 

Extensions to include functions of the gauge field are possible [23]. 

b) Some Observables and Their Meaning 

O.S. positivity also allows to give physical interpretation to two types of 

popular observables : Wilson loops and 't Hooft loops (vortices, monopoles). We 

assume that the thermodynamic limit has been performed and so we have a non-negative 

transfer matrix. 
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First notice that the physical Hilbert space H is automatically gauge invari- 

ant : two elements of hA+ that are related by a gauge transformation differ only 

by an element of the null space N because of the gauge invariance of the expecta- 

tion (exercise!). 

It is possible, however, to construct a larger Hilbert space ~ on which time 

independent gauge transformations act as nontrivial unitary operators. It is obtained 

as follows: 

Let ~A be the algebra of functions of fields in A+ in the "temporal gauge" 
+ 

(that means after setting all gauge fields in "time" direction equal to I) . Expec- 

tations <-> in the temporal gauge are defined by also replacing the gauge 
t.g. 

fields in time direction in the action by ~ . It is straightforward to see that 

<~8~>t.g" > 0 for ~ 6 ~A ' 
+ 

SO we can define ~-~ /N as before. 
A+ 

Finally we note that if F is a gauge invariant element of 

corresponding temporal gauge object, <F> = <~> 
t.g. 

ding of H in 

A A and F the 

. T h i s  l e a d s  t o  a n a t u r a l  i m b e d -  

Now consider a state ~ E ~ and let V(hx) be the unitary operator induced 

on ~ 5y the time-independent gauge transformation symbolized by h x (x is a 

fixed arbitrary point in the "spatial" lattice ~d-l) . V(hx)~ has a Fourier 

decomposition into irreducible components : 

where 

V(hx)¢ = Z V (hx)~T 
T T 

~T = fdhxV(hx) X'r (hxl) dT~ 

Vy(h x) = S dgxV(gx)X~(gxlhx)dT 

We say that ~T has charge T at the point x . 

The strange thing about ~ is the fact that the decomposition obtained in this 

way 
co 

n=o Xl~ • . . ,x n TE 1 

TXI~ 'TE n 

,-.-~T x 
n 

(sum only over nontrivial T's) 
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is a decomposition into infinitely many superselection sectors characterized by the 

location of the charges and invariant under the action of the transfer matrix 

(exercise!). 

For this reason one speaks of infinitely heavy external charges. It is doubtful 

whether there are covariant sectors corresponding to them in the continuum theory. 

A particularly simple and interesting type of state are the "string states" : 

Select a path Sxy starting at x and ending at y in A+ ; let 

gs = P ~ gx'y' (P stands for path ordering). 
xy <x',y'>ES 

xy 

ab "S ) having charge T at Then UT(g S )ab will correspond to a state ~TxTy £ xy 

x and ~ at xy Y . 

Now a little computation shows that 

(ab_ 
~x~y 

cd ' Tt ~T ) E <W (C _)>6 6, .d -2 
xTy T xy,E me DU T 

where W~(Cxy,t) is a Wilson loop observable, i.e. 

W(Cxy,t) = ×T(P n gxy) 
<xy>ECxy,t 

and Cxy,t is a closed path obtained by running first through Sxy 

up in time, then running backward through a shifted mirror image of 

down in time to the starting point. 

, then straight 

S and straight 
xy 

t 

The loop Cxy,t 

Starting with a straight "horizontal" string S 
xy 

loop. 

t~Q 

we obtain a rectangular Wilson 



19 ̧  

-2HQ 
If we define a Hamiltonian H by T = e where Q is the projection 

onto the complement of the null space of T , we can express the "potential" between 

static charges as follows : 

Let 

YT ~ (S) E inf spec H ~b T (S x ) 
xy xy Y 

i.e. the lowest energy present in ~ab T T (Sxy) Then o 

xy 

I V~ --~ (Sxy) = - lim -~ log W~(Cxy,t) 
x y t-~ o 

(Sxy is assumed to be the shortest path from x to y ). 

If the Wilson loop now has "area decay", i.e. 

<Wr(C)> _< const exp(-eA(C))___ , where aT > 0 

and A(C) is the number of plaquettes in the minimal surface bordered by C , we 

-- (Sxy) > e dist(x,y) , i.e. the "potential" grows linearly with the obtain V~ 'r -- 
xy 

distance. This gives some motivation for Wilson's confinement criterion. 

Next we want to define a disorder operator analogous to the one introduced by 

't Hooft in a slightly different framework. Let T be a set of (oriented) links in 
o (T) A+ , ~ an element of the center Z of G ; then we define a linear operator B 

on A+ by mapping a function f({gxy}) into f({~xy(T)gxy}) where ~xy(T) = 
-I 

if T contains <xy> with the right orientation and ~xy(T) = ~ if T contains 

<yx> with the right orientation. 

Locally, for instance for single link, this amounts to a gauge transformation. 

In general, however, there will be plaquettes that are affected; the operation is 

therefore sometimes called a "singular gauge transformation'. We denote the set of 

plaquettes in A+ where the effects of B (T) do not cancel by T' (it will be 

a subset of the "cohoundary" ~T of T , cf. [48]). Then we define 

B (T') ~ exp(-~2 ~ x(g~p)(X(~p) o 
2g ° PET' X(~) - i)} B (T) 

-i 

Z xCg3p)(l - X-~--)} = B (r)exp{ .I, 
2g ° P6T' 
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where  ~P = n+(aPNT)-n_(aPNT) , n+(~PNT) (n_(aPNT)) is the number of links of T 

occurring in ~P with the right (wrong, orientation . B(T') depends really only 

on T' ; it is defined in such a way that it preserves the physical scalar product 

and therefore gives rise to a unitary operator on the physical Hilbert space 

which we denote by the same symbol B (T') . (To see this, use the uncoupled expecta- 

tion <.>o) . 

A computation shows that 

B I(T')B 2(T' ) = B I~2(T') 

so that these operators form a unitary representation of the center Z . 

Typically in d = 3 , T' will be chosen to be the set of all plaquettes dual 

(~ orthogonal) to a string s running from a point x to a point y , both situa- 
xy 

ted in the plane t = O and in the dual lattice. An example is shown in the picture: 

~my 

i I~I ,,i /i / ,,I / ~ I 

, I : ' ; .... ',,i Jl il I I I I I s 

W 

The indicated links form T , the indicated plaquettes T' . To denote the 

dualit F relationship between T' and S we write T' = kS • The endpoints x 
xy xy 

and y can be interpreted as "vortices". T can be described as dual to a sheet 

that is bordered by S and a line in the t = 0 plane. 
xy 

In d = 4 , T' will typically consist of all plaquettes dual to a surface 

S C in the dual lattice intersecting the t = O plane in a closed loop C (a "vortex 

line"). T will be dual to a volume bordered by S C and a surface in the t = 0 

plane. 

't Hooft [26] found interesting topological commutation relations between Wilson 

loops and disorder operators that help to interprete them in terms of each other: 

In d = 3 consider a string ~T' starting and ending in the t = O plane. 

T will then be dual to a sheet in A+ bordered by ~T' . Let WT(C) be a Wilson 

loop in A+ • Then 
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B (T')WT(C) = XT(~nTC)wT(C)B (T ') , 

where nTC is the oriented intersection number of C with T , or equivalently the 

winding number of C around *T'U(*Tfl {t=O}) 

In d = 4 consider a surface *T' c A+ starting with a closed loop C' in 

the t = 0 hyperplane and strectching upward in "time" direction. T will be dual 

to a 3-dimensional volume in A+ bordered by eT' . Let W (C) again be a Wilson 

loop in A+ . Then again we have the commutation relations given above; nTC is 

again the oriented intersection number of C with T but can also be interpreted as 

the linking number of C with *T' U (*T fl {t=O}) . 

Since W~(C) in a plane t = const, can be said to measure magnetic flux, the 

commutation r e l a t i o n s  s t a t e  t h a t  B (T ' )  i s  a c r e a t i o n  o p e r a t o r  f o r  magnet ic  f l u x .  

Similarly one may say that WT(C) creates electric flux along C and B (T') 

measures i t .  

Related but slightly different is the Wegner-'t Hooft disorder observable. It 

can be introduced as the dual of the Wilson loop in abelian models [5]. For that 

reason in d = 4 it is interpreted to he related to the potential between monopoles 

and antimonopoles in the same way as the Wilson loop is related to the potential 

hetween charges. A direct definition in d = 4 is as follows : 

Let C be a closed loop in the dual lattice, S a sheet with ~S = C . A 

modified partition function ZA(~,C) is defined by replacing g~p by g~p~ on 

each plaquette in *S , the dual of S . Gauge invariance shows that actually only 

C , not S , matters. The 't Hooft loop expectation is then given by 

EA(~,S) 
<D~(S)> A = ~  

We get the same result if we interprete D (S) 

(of. [5]) : 

as an ordinary observable, namely 

1 Z x(g~p) -X(1) - 1)} D (S) = exp{ 2 
2g ° P¢*S 

The monopole - antimonopole interpretation can also be carried through in an 

analogous way as the charge-pair interpretation for the Wilson loop : Taking a 

rectangular loop in the Ol plane and slicing in the t = const, hyperplane that 

contains just a horizontal piece we discover a picture like this : 
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where the drawn plaquettes are all modified by m . This means that the "Bianchi 

identity" is violated at the endpoints, i.e. the magnetic flux through the surface 

of a cube enclosing one of the endpoints is no longer zero (this interpretation is 

somewhat metaphoric for a non-abelian gauge theory). Therefore one identifies the 

endpoints as positions of a monopole-antimonopole pair. 

c) "Di.amagnetic" inequality. 

The diamagnetic properties of bosonic systems are well known, at least for 

nonrelativistic systems. General proofs have been given by Simon [27, 29] and Hess, 

Schrader and Uhlenbrock [28], based on Kato's inequality or ItS's stochastic inte- 

grals, respectively (the latter method goes back to a remark by Nelson as quoted in 

[29]). For an overview of these and related facts see Hunziker [30]. 

Here we are dealing with essentially relativistic systems that may also contain 

fermions (spinors). The inequality to be proven below expresses a joint effect of the 

diamagnetic behavior of bosons and the paramagnetism due to the spin, hence the quo- 

tation marks. It is truly remarkable that these two opposite effects produce inequa- 

lities of the same kind in this field theoretic context. 

The "diamagnetic" inequalities deal with partition functions in an external 

gauge field : Let <'>o,A,{g_ } be the "conditional matter expectation" (no inte- 

gration over {gxy } ) ; then ~y 
o 

<e-SH-SF>o,A,(gxy} (2.8) 
ZA({gxy}) 

The inequality says simply 

IZA({gxy})l < ZA({I}) (2.9) 

There are proofs of varying generality depending on whether G is abelian or non- 

ahelian and whether fermions are present or not (see [23,31]). 

The most "natural" proof of (2.9) would go through showing that the left hand 

side is of positive type in {gxy} or at least expressible as a polynomial in Wilson 

loops withpositive coefficients. Unfortunately this does not seem to be true in the 

presence of fermions. So in the most general framework we only have a rather restric- 

ted result : 

Theorem 2.3. • Let A be a hypercube with (anti-) periodic boundary conditions. Then 

the "diamagnetic" bound (2.9) holds. 



23 

Proof : Let C E sup IZA({gxy})[ 

{gxy} 

Since the space of {gxy} is compact and 

assu~111e 

Z A is a continuous function on it we may 

C = {ZA({gxy}) I (2.10) 
o , 

Let ~ he any pair of antipodal hyperplanes lying midway between "fixed time" lattice 

hyperplanes. As discussed in the proof of Theorem 2.1, we may choose a gauge such 

that {gxy} does not contain any group elements different from I on the links 

crossing ~ . This produces 

-SH-SF -S+ -~+ -S C 
e = e 8M(e )e 

with S C of the form 

-s Gi0MG I , G icAA÷ 
I 

(here 8 M is defined like 8 but does not operate on the gauge field). 

Now the expectation <'> is trivially O.S. positive with respect to 
o,A,{gxy} 

8 M and we can use the following 

Lemma 2.4 : If <'> is O.S. positive, F,G i E AA+ (for all i ) , then : 

EG. 8 .G! 
{<FSMF, e i m I>{ ! 

! <FSMF eEGieMGi>i/2 <F'eM F'eEG'ieMG~>I/2 

Proof : The left hand side is 

i <FeMF,Gil. " .G~ { z ~ .G e.(G! . .  )>{ < 
• " ~n ~ ii In -- ii,-..,i n 

n 

< i <FeMF G . . . .  Gi )>1/2 
E n--[ 11 "GineM(Gil'" 

il,...,i n n 

n 

1 / 2  x <F'8~' G~ ...GI 8 (G' ...G! )> 
11 i n M i I i n 

< ( El I <F,SMF ,G! ...G 1%M(G ~ ...G! )>)I/2 × 
-- il 'in n{ iI m I i ,... m 
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x ( Z 

Jl . . . . .  Jm 

i 
m-~- <F'OMF'Gj i ...G~ O. (G~ ...Gf )>)1/2 

Jm ~ Jl Jm 

which equals the right hand side. 

Cor. 2.5 : Let gxy 1 for xy crossing ~ . Then 

-S+ -S+ Gi6MGi>I/2 
LzA({gxy})1 ! <e eMe e × 

-S_ -S_ E(eMG')G~>I/2 = 
x <OMe e e 

Zfi({gSy0g~y}) I/2 Z({(Ogxy)gxy})I/2 

+ + ÷ 
Here g~y stands for the part of gxy living in A- , gxy 

÷ A+ gauge field consisting of gxy in and its reflection in 

+ 

0gxy_ , etc. is the 

A 

Proof : This is a direct application of the lemma. 

+ + 

Now observe that gxy 0gxy 

tes bisected by 

is trivial (gauge equivalent to 1 ) on all plaquet- 

Using (2.10) we obtain 

o o+ 

IZA({gxy})li ZA({g~y egxy}) (2.11) 

o 
Assume now that gxy is already trivial on N plaquettes. If we manage to choose 

N 
our pair of hyperplanes z in such a way that A+ contains more than ~ of those 

o+ o+ 

trivial plaquettes gxy 0gxy will contain at least N+I trivial plaquettes. If that 

is not possible, a little thought shows that applying (2.11) once will make the 

distribution of trivial plaquettes unsymmetrical so that in the next step N may be 

increased. 

Applying this argument a finite number of times we see that ZA({gxy}) can be 
oo oo 

bounded by ZA({gxy}) where (gxy} has only t r i v i a l  p l a q u e t t e s .  Because our p e r i o d i c  

lattice contains nontrivial ~oncontractible) loops this does not yet quite imply that 
OQ 

gxy i s  gauge e q u i v a l e n t  to ~ . But by r e f l e c t i n g  about  hyperp lanes  in  a l l  d d i -  

r e c t i o n s  of the lattice and using (2.11) we will obtain a completely trivial gauge 

field. This finishes the proof of Theorem 2.3. 
D 

If we are dealing with purely bosonic matter and if the representation U H 

fulfils a certain condition (R) (see below), a more general result holds : 
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Theorem 2.6 : Let A be any finite lattice (not necessarily part of a regular 

lattice). If U H obeys the condition (R) , (2.9) holds. 

Remark : A finite lattice is nothing hut a finite graph, i.e. a collection of sites 

(vertices) and links (lines) with an incidence relation between them. 

Next we define the condition (R). 

®N 
Definition 2.7. Let N o be the smallest integer - if it exists - such that U H o 

(the N fold symmetric tensor product) i s  the t r i v i a l  r ep resen ta t ion ,  otherwise 
o 

we set N O = ~ . We say that U H has the property (R) iff either U H is a real 

representation and for any ¢ 6 U H with ]I¢ II = i 

N ( 0 if 

f dh E (UH(h)#)a. = t i=l x const 

N is odd 

E ~6 

pairings aiap(i) 
{i,p(i) } 

for N even 

(2.12) 

o_~r U H is a complex representation and for any 

N,M < N 
o 

N M 

f dh K (UH(h)O)ax ~ (UH(h)¢)b. = 
i=l " j-I 3 

¢ 6 U H with 

N 
i 

El N--~. H 6aib (i) ~NM permutations i=l  

n 

N *It -- 1 and for 

(2.13) 

(We chose the name because property (R) allows to "route" representations and Wilson 

loops through vertices). Let us give two classes of examples for property (R) : 

Lenmla 2.8 : (I) If 

(R) . 

(2) If G= SU(N) 

G is abelian, any irreducible representation has the property 

, the fundamental representation has the property (R). 

Proof of Lemma 2.8 : (I) We may restrict ourselves to the groups 2Z and 
n 

since everything else can be obtained by forming direct products of these. 

u(1) 

a) m 
n 

: Let the representation U H be given by 

• 2~ 2~i 
x-- k 

UH(e n) = e n 

It is real if n = 2k ; in this case property (R) is trivial. If n # 2k (2.13) can 
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be easily checked. 

b) U(1) : It suffices to consider complex representations; (2.13) is trivial. 
[] 

Proof of (2) : The fundamental representation of SU(N) is complex. Let 

N M 

V E S dh E (UH(h)¢)ax 3El(UH(h)~) b 
al'''''aN i=l " "= j 

bl,...,b M 

Obviously this can be interpreted as a map from the symmetric subspace of 
N 

to the symmetric subspace of ® V H . 
j=l 

S 
On each of thesespaces an irreducible representation U N or 

i~t operating and 

uNS(g)V = vuS(g) . 

M 

V H 
j=l 

S respectively, U M 

This implies already that V = 0 unless M = N (Schur's lemma). But for M = N we 

S and is therefore a multiple of the identity. The see that V commutes with U N 

multiplying factor can be determined by taking the trace. o 

We leave it as an exercise to show that the fundamental representations of 

O(N) have the property (R) in the form (2.12). One has to use the decomposition of 

the symmetric tensor product into irreducible representations and Schur's len~na. 

Proof of Theorem 2.6 : 

o 

-S H 
ZA({gxy }) = ~ e E dp ( [¢ (x )  I) (2.14)  

xCA 

where dp(]~l) = e-V([¢[)d¢ 

If we expand the exponential we obtain 

z^({gxy)) = 
n 

z n 1 - / - -  S (¢ (x ) ,UH(gxy)¢(Y) )  xy × 
(nxy) <xy> nxy! 

We claim 

× ~ d0(l¢(x)l) 
X 

(2.15) 

Lemma 2.9 : If U H has the property (R) 
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n 

~ (¢(x),UH(gxy)¢(y)) xy II dp(l¢(x) I) = 
<xy> x 

= Z c L ~ x~(P H cgxy ) 
L CEL = <xy> 

(2.16) 

w h e r e  c L ~ 0 and P 

{c I ..... ClL I} in A ; 

u. 

is a path ordering symbol. L labels systems of closed loops 

XH stands for the character belonging to the representation 

Corollary 2.91 : If G is abelian, Z({gxy]) is of positive type in {gxy) • 

We note that Lemma 2.9 and eq. (2.15) immediately give the diamagnetic bound 

(2.9). 

Proof of Lemma 2.9 : Consider the following expression arising as a generic factor 

Qf the left hand side of eq. (2.16) : 

N 

~ (¢ (xi) ,UH(gx.x)¢ (x)) x 
i=l 

M 

x ~ (¢(x),U_(g )¢(yj))dp(l¢(x) [) 
j=l ~ xyj 

because of the invariance of the measure dp this can be rewritten as 

N 

~dh ~ g (¢(xi),UH(gx.x)UH(h)¢(x)) x 
i=l 1 
M (2.17) 

x j~I(UH(h)¢ (X),UH(gxyj)¢(yj))dp (I¢ (x) l) 

By property (R) either (2.12) or (2.13) holds; in the first case the expression 

(2.17) can 5e written as 

N+M 

const, pairingsZ i=iE (¢(xi)'UH(gxixgxxp(i))¢(xp(i))) × 

{i,p(i)} 

× f dp(t)t N+M 

(2.18) 

(if N+M is even, otherwise we obtain O), where we put 

XN+ j = yj (j = I ..... M) 

In the second case (2.17) becomes for N = 
o 
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Z ~I ($(xi),UH(gxixgxyw(i))#(Y~(i))) x S dp(t) t2N (2.19) ~NM ~6SN 

Inserting (2.18) or (2.19), respectively into the left hand side of (2.16) we 

obtain an expression of the form asserted in Lemma (2.16). Actually the coefficients 

c[ could be computed explicitly, but in any case they are clearly nonnegative. The 

modifications necessary for N < ~ are straightforward. 
o D 

Remark : For fermionic matter it is not clear whether anything as general as Theorem 

2.6 is true. In particular the analogue Of Lemma 2.9 does not seem to hold. There are 

actually simpl e closed loops that give a negative contribution [32]. The "diamagnetic" 

bound for spinors seems to be of a much subtler nature; it depends on the fact that 

"on the average" the paramagnetic effect of the spin dominates the diamagnetism that 

is also present. Note in this connection that the nonrelativistic "paramagnetic con- 

jecture" [33] was shown to fail for Aharonov-Bohm like fields [34]. 

d) Correlation Inequalities. 

Correlation inequalities of a sufficiently general type have only been found for 

abelian gauge theories with purely bosonic matter. 

For Wilson's or Villain's form of the action they follow rather directly from 

Ginihre's general results (see [35,36]). In [23] analogous inequalities were proven 

for a Gaussian action for the gauge field. The inequalities are of the general form 

where A,B 

and 

<AB> A - <A>A<B> A ~ <A;B> A sO 

belong to the multiplicative cone generated by 

 l¢(x)l c A) 

{cos(Z mx8 x + E fxyAy)} 
x <xy> 

arg O(x) , Ay E arg gxy ' m is integer valued; f is where we defined 0 x x xy 

integer valued if we are dealing with the Wilson or Villain actions, real valued for 

the Gaussian action. 

We summarize some consequences of these and some related inequalities that are 

of importance for the continuum Higgs 2 model to be discussed in the second part of 

these lectures : 

Theorem 2.10 : Let <'> 
C, (A) 

measure for the gauge field 

be the expectation of an abelian Higgs model where the 

A is Gaussian with covariance C . 
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Then 

(i) <el~I2(g)eiA(f)> C is decreasing in C 

(2) <e-l~I2(g)e A(f)> is increasing in C 
C 

(3) <e[~I2(g)eiA(f)>c,A is increasing in A 

(4) <e-]~I2(g)eA(f)>c, A is decreasing in A 

where l~12(g) = Z ]~(x) 12g(x) , g t 0 , Axy = arg gxy 
X 

For details of the proof which is elementary but lengthy and patterned after 

Ginibre's proof [35] we refer to [23]. 

We remark that these correlation inequalities can be used to deduce some mono- 

tonicity properties of the potential between "infinitely heavy quarks" of opposite 

charge [31]. But since thi~ refers to an abelian theory it is not all that relevant 

for the confinement problem. 

We close this section by mentioning two problems that are worthy of further 

investigation (exercises, if you like) : 

(i) Give a more general proof of the "diamagnetic" inequality, both for Higgs matter 

in an arbitrary representation and for fermions. 

(2) Find sufficiently strong correlation inequalities for non-abelian groups. 

3. EXPANSION METHODS. 

The method of high and low temperature cluster expansions is one of the best 

known techniques in statistical mechanics. Knowing that I will be bringing coal to 

Newcastle I will nevertheless give a general and self-contained exposition with some 

personal twists in it and then focus on applications in lattice gauge theories. 

Gruher and Kunz [37] showed that a general class of lattice systems can be 

mapped into a polymer system of the kind they studied in detail. That this was a 

useful point of view for lattice gauge theories was pointed out by Gallavotti et al 

[38] (this short paper is, however, very sketchy in the discussion of the combinato- 

tic aspects). How to map lattice systems into polymer systems can be learned from 
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the very neat paper by Gallavotti, Martin-LSf and Miracle-Solg on the low temperature 

expansion of the Ising model [39]. This is the approach we will follow here. The 

treatment of the combinatorics is very much inspired by Malyshev's work [42]. 

The idea is the following : In the "high temperature region", that is the 

region of parameters where the coupling between different sites or different links, 

respectively, is weak, it is reasonable to write 

I 
--~x(g~p) 
2g o 

e = I + p~p 

~(x)ur¢(y) 
2 

e = I + k<xy> 

(¢ (x) ,U(g2~y)) 
e = I + ~<xy> 

and expand the expectation value of an observable A in the small parameters pSp , 

%<xy> ' ~<xy> (for the Higgs action we will see that there is a modification possi- 

ble that gives a much wider range of convergence - this is the so-called Higgs mecha- 

nism in disguise). Therehy we obtain decoupled expectations of the form 

<A H PsP H ~ k<xy > H P<xy>> (3.1) 
PEYp <xY>tyH <xY>Ey F O,A 

where yp is a set of plaquettes, YH a set of Higgs links, YF a set of Fermion 

links. We call yp U yH U YF a set of bonds. Now the expectation <AB>o, A factorizes 

into <A>o, A <B>o, A whenever A and B depend on disjoint sets of variables. We 

call a set y of bonds that does not break up into subsets corresponding to disjoint 

sets of field variables a polymer (roughly this means that y has to be connected 

geometrically, but for instance two plaquettes touching at a corner are not considered 

connected). Of course we have to take the variables occurring in A into account, 

so a polymer y occurring in (3.1) may be connected just through the "support" of 

A • We call 

ZA(Y) E <A H ~y>Ey~<xy>> 
PCy p~P ~ k<xy> <xy>ty < 

the activity of the polymer y . So we obtain an expansion in activities of polymers 
o o 

for both <A exp(-SH-SF-Sy.M.)>O,A and for Z A = <exp(-SR-SF-Sy.M.)>O,A 

The art of the game is 

(i) to use the techniques of formal power series that were first brought into this 

context by Ruelle [40] in order to form the quotient expressing the full expectation 
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o 

I -SH-SF-Sy.M. 
<A> A =~A<A e >O,A 

and 

(2) to show that the expansion has a finite domain of convergence independent of the 

volume A . The thermodynamic limit can then be performed term by term which is 

easy. One obtains a unique thermodynamic limit (independent of boundary conditions) 

and also exponential clustering, "confinement" and other desirable results. 

The same technique can also be applied to the "low temperature" region which is 

typically given by gl small, ~ and K small. But in this case the polymers will 

correspond to "defects", i.e. sets where g~p # ~ (also called vortices) and the 

sets of Higgs and Fermi links connected to them in an appropriate way. It is clear 

that this can only work for discrete groups G ; for G =~2 this was first carried 

out by Marra and Miracle-Sol~ [41]. The word "defect" is not chosen arbitrarily; in 

fact lattice gauge theories with discrete gauge group have been proposed as realistic 

models for defects in ordered media [7]. 

There are other types of expansions, such as the i/d expansion (see for 

instance [82,83]) which will not he discussed here. 

My treatment of the expansions is certainly not original (this would probably 

he impossible !), but it is not quite identical to any treatment I found in the lite- 

rature. In particular Itried to keep separate as much as possible purely combinato- 

rial facts and estimates depending on the special structure of the lattice (in par- 

ticular its dimensionality), very much in the spirit of Malyshev [42]. 

a) General algehraic formalism for, polymers 

Here we develop the theory of cluster expansions for polymers abstractly, using 

the method of formal power series; the presentation is very much inspired by [39]. 

Let r ° be a (finite) set whose elements YI,Y2,... 
assume that a function 

are called polymers. We 

g : r xF + {O,-I} 
O O 

is given such that g(y,y) = -i for all 7 6 r ° . We say that 7,7' are compatible 

iff g(7,7') = O and incompatible otherwise. 

For each y 6 F there is an "activity" z(y) which is sometimes interpreted 
O 

as an indeterminate and sometimes as a complex number; from the context it will be 

clear which interpretation is assumed. 
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Def. 3.1. : 

Z({z(v)}ero) : z n z(~) 
rer ycr 

o 

is called partition function. 

~(F) ~ n n (l+g(yi,Yj)) 
ycr i<j 

Ti,Tj 6r 

.n. (l+g(yi,Yj)) 
i< 3 

Tj ,~j6r 

(3.2) 

(3.3) 

is called Boltzmann factor. 

we will denote by X, Y etc. functions 

define 

X z - n z (~)x(~) 

r£r 
o 

to be the corresponding monomial. 

F +~ , i.e. multi-indices and we 
o 

( 3 . 4 )  

x! ~ ~ x(~)! ; n(X) ~ z x(~) . 
r £r ° y ~r ° 

If X! ffi I we may identify 

Tf we define 

X with the subset 

r x = {~ e ro]X(~) = l} 

[#(rX) if X! = I 

~(X) z 

if X! > i 

we can write therefore 

Def. 3.2 : Let 

z = Z z X ~ ( x )  

X 

fl ' f2 be functions from the set of multiindices into 

(fl*f2)(X) ~ Z fl(Xl)f2(X2) 
XI+X2fX 

(3.5) 

. Then 

( 3 . 6 )  
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Remark : If we interprete fl ' f2 as coefficient sequences of formal power series 

then this definition makes fl * f2 the coefficient sequence of the product. 

Def. 3.3 : #T(x) - (Log #) (X) 

is called "Ursell function", where for any function f , 

(Log f)(X) = 

n > l  

(-l)n+l(f-l)*n(x) ; 
n 

1(x) = 

I i if X = 0 

0 otherwise 

Prop. 3.4 : log Z = E ~T(x)zX- - 
X 

Proof : This follows from the remark after Def. 3.2. 

we now prove an explicit formula for #T(x) given by Gallavotti, Miracle-Sol~ 

and Martin-L~f [39] and that is familiar from the theory of the Mayer expansion. 

Lemma 3.5 : , 

where 

=I ~T(x) ~ a(X) (3.7) 

a(X) = Z (-I) £(C) (3.8) 
C=~(X) 

Here G(X) is the graph with vertices 71,...,Tn(X ) (take X ( 7 )  copies of each 

7 ) and a line connecting Y , 7' (7 # 7') whenever g(7,7') = -i ; the sum is over 

connected subgraphs C having the same vertices, £(C) the number of lines in 

C . 

Proof : 

( x )  = K (l+g(Ti,Tj)) 
i<j 

X(Ti),X(Tj)>O (3.9) 

G {i,j}6 G 

where the sum is over all graphs on N = {l,2,...,n(X)} , i.e. all sets of two- 

element subsets of N (note that such graphs have at most one line between any 

two vertices). Let (yl,...,Yn(X)) be such that there are X(y) copies of each 
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in it. Define for M c N : 

g(M) = I 

Z ~ g(yi,Yj) 
C M i<j 

i,j EM 

if IMI t2 

I if IMI = 1 

0 if M= 

(3.10) 

(Z is over all connected graphs on M , i.e. with vertex set M ). Then 
C M 

@(X) = V.' g(Ni)...g(Nm) 
m 
Z Ni=N 

i=l 

(3.n) 

(Z' means sum over different partitions of N into NI,...N m ; for given 

i n(X)! of those). 
I II ..... [Nml there are m, iNll,.l ml , 

~e define also 

i ..... {i 

cg(yi,~j) if N ~ 2 
(i,j} E 

if N= i 

if N = 0 

(3.12) 

(E is over all connected graphs on yl,...,yN) 
C 

In order to figure out (Log ~)(X) = #T(x) it is useful to represent the for- 

mal power series for Z in a slightly different form : 

n 
I 

Z = K n-'[. Z K z(y i) ~ (l+g(yj,y£)) (3.13) 
n=o 71 .... 'Yn i=l j <g 

(s~m over ordered sequences 71,...,y n ) . Using (3.11) this becomes 

Z ffi r n'-[ Z ~ z(yi) Z g(Nl).., g(Nm) (3.14) 
n=o yl,... ,T  n i=l Z Ni= n 

We now reorder this sum by first summing over 

corresponding to NI,...,N m , keeping the sizes n I 

o b t a i n  

7's that make up the "clusters" 

= [Nil ..... n m = INml fixed. We 
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Z = 
I i n! 

E ~ E E m! ni!'"nmI 
n=o m=o nl,...,n m 

n.=n 
l 

n n. 

II ( Z g(Yl ..... Yn. ) ~I z (~'j) 
i=l YI''''Yn. i j=l 

1 

or 

~ k 
I i z(yj))m 

Z = Z ~-[.I (k~ I ~ Z g(71 ..... yk ) 
m=° YI' .... Yk j i 

This means that 

k 
i 

log Z = E k--[ Z g(Yl ..... Yk ) ~ z(yj) 
k=l y l , . . . , y  k j=l  

Comparing coefficients with log Z = E zX@T(x) we obtain 

I 

@T(x)= ~ g(Yl . . . . .  Yn(X) ) 

where (71, .... Yn(x)) contains exactly X(y) copies of each y 

definition (3.12) this gives (3.7) and (3.8). 

Now we have to estimate the graph theoretic expression 

a(G) E E (-i) £(c) 
Cc G 

(sum over connected subgraphs with the same vertex set V as 

content of 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

. Looking at the 

(3.19) 

G) . This is the 

Theorem 3.6 : la(G) l ~ IT(G) I where T(G) is the set of trees of G (i.e. trees 

with the same vertex set V as G and contained in G ). 

Remark : The proof of this theorem is in its essence due to Rota [43] ; I learned 

it through Malyshev's work [42] . In both references it is, however, buried in the 

rather heavy formalism of ~6bius functions which we will not need here. A proof can 
also be found in Penrose's work [43]. 

Proof : We order the lines of the graph G any way we want and keep this order fixed. 

This induces an ordering of the loops (= elementary 1-cycles) of the graph : A loop 

- ..,~. ) such that L can be considered as an ordered sequence of lines : L .-(%ii,.. 

i I < i 2 <''' <i k . We then say that ~ ~ L if the last 11ne or NL l~as an index 
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•k ~ This can be made into a complete ordering of the loops by i k LI,...,L s g 

proceeding lexicographically (backward).  

Def. 3.7 : A broken loop is a loop minus its highest line. 

Note that a loop L can be unambiguously reconstructed from the corresponding 

broken loop L' since there is never more than one line between two vertices. We 

order the broken loops L{,...,L~ according to the order chosen for the loops. 

The idea of the proof if now to reduce the sum over connected graphs (3.19) by 

successively excluding broken loops until there are only trees left. 

Without loss of generality assume IVI ~ 3 . Let 

R i. E set of connected subgraphs of G of j lines, not containing 
3 

.. ' ... ,L~) LI,' .,L i' (i.e. not containing the lines of L I 

R~ 'A E set of connected subgraphs of 
J 

! v L 1 , . . . , L i _  1 , bu t  c o n t a i n i n g  L i 

G of j lines, not containing 

R~ 'B E set of conneated subgraphs of G of j lines, not containing 
J 

L{,.. v .,Li_ I , but containing LI I , not however L i 

(A connected subgraph of G is always understood to have the same vertex set as G ). 

Clearly this gives a decomposition of R i-I : 
J 

We now claim : 

For i = 0,I,... 

a(G) = Z ~ (-I)JlR~I- (3.21) 
j>_2 J 

by definition. Assume it is proven for i-i . Then by (3.20) This is true for i = 0 

+ j+l'" (3.22) 
j>_2 

_i,A Now K2 = @ because there are no loops of two lines; furthermore a bijection 
_i,A from R7 'B to K~+ I is easily constructed by adding the line L. ~L~ (notice that 

' since the this cannot violate any one of the conditions concerning L{,...,Li_ I 
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I ! added line has a higher index from any line in LI,...,Li_ I) . 

So (3.21) is established. We use it now for i = ~ : R? 
J 

trees; hence all its elements have IVl -I lines and we obtain 

from which Theorem 3.6 follows. 

consists only of 

(3.23) 

Let now cG(y) be the numher of lines of G incident with the vertex 

Then we have 

Theorem 3.8 : Ir(c)  l ! R CO(Y) 
y£V 

Proof : It suffices to construct for each tree T 

V into the set £(T) = {lines of T} such that 

#T ~ ~T' for T # T' . 

a map ~T from the vertex set 

~T(y) is incident with Y and 

This is accomplished most easily by first defining an injective map ~T : 

L(T) ÷ V as follows : 

We order the lines of T such that ~m+l shares one vertex with at least one 

of the lines ~l,...,£m , whereas its other vertex is not contained among the end- 

points of £i,...,£m " ~T is then defined inductively : ~T(£1) is any endpoint of 

£I ; ~T(~m+l ) is the endpoint of £mel shared with another line in (£I .... '£m } ' 

provided that it did not yet occur among ~T(£1) .... ,~T(£m) ; if that is the case we 

take the other endpoint. 

Now we can define 

i 
~l(y) if defined 

any line of T incident with y otherwise 

The image @T(V) clearly consists of all lines of T , hence different trees give 

rise to different maps ~T and the theorem follows. 

We have thus obtained the following estimate for a(X) (eq. (3.8)) : 

Cot. 3.9 : Let cX(y) = -E X(y')g(y,y')-i 
y' 

i.e. the number of lines incident with the vertex y in the graph 

(3.24) 

G(X) correspond- 
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ing to X. Then 

la(X)[ < ~ cX(y) X(Y) 

V 

Proof : Obvious. u 

(3.25) 

Remarks : (I) To check how sharp Cor. 3.9 is we may look at a system containing 

exactly one polymer y with activity z . This has partition function Z = l+z , 

log Z = E (-i) n-I i z n = E i 
n=l -n- ~'a(x)zX 

from which one reads off 

a(X) = (n(X)-l)!(-l) n(x)~l 

The corresponding graphs are so-called complete graphs (all possible line drawn) 

and Cor. 3.9 gives 

la(X) l ! (n(X)-1) n(x) 

which is too large by about a factor e n(X) 

(2) Cor. 3.9 is the best estimate we could find in the abstract combinatorial set- 

ting. In the next subsection we will consider polymers living on finite dimensional 

lattices; in that situation the number of polymers that can be incompatible with a 

given one is limited. This will lead to the sharper bounds of Theorems 3.12 and 

3.13 which then allow to prove convergence of cluster expansions uniformly in the 

volume. 

b) Application of the formalism to lattice ~au~e theories : Convergence 

We will describe now how the computation of expectation values in lattice gauge 

theories can be done using the general formalism just developed. We explained the 

general idea already at the beginning of this chapter. Let us describe the procedure 

in a more precise way. 

First consider again the "high temperature" expansion. A useful thing is to 

express expectation valuesby "partition functions", for instance 

o 

d log<(l+~A)e-S>o,A 
<A> A =~-~ I= 0 

°H ~ i. • 
where = S_+S_+S.. M if all the fields are present, otherwise we simply omit the 
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corresponding terms. 

Similarly we can express truncated expectations, for instance 

<A;B> A : <AB> A - <A> A <B> A 

2 o 

= .  B log< (I+~A+SB) e-S>o, A i 
~=~ o~=B=O 

So it is sufficient to study "modified partition functions" like 

o 

ZA(A) -- <A e-S>o, A 

Now as explained above e has the form E (l+p b) where 
bEB A 

of "bonds" (links and plaquettes on which fields are coupled). 

B~ 

(3.27) 

(3.2s) 

is the set 

Expanding the product 

(l+Pb) = E E Pb 
bEB A Bc B A bEB 

and breaking each product up into "connected" factors corresponding to polymers 

y (depending of course on A ) we obtain 

ZA(A) ffi Z E <An(Y) E Pb>o 

Fc FA, A yEF bey 

x .~o (l+g(yi,Yj)) 
1<j 

Yi,yjE r 

(3.29) 

where 

n(y) = 

Ii if y connects to the support of 

otherwise 

A 

Of course there will be at most one such y 

tible, if we define any two polymers y ,y' 

variable in common with A . 

in a set of polymers F that is compa- 

as incompatible whenever both have any 

In (3.29) we recognize the general form (3.2) if we make the identification 

ZA(T) - <An(Y) ~ Pb>o 
bey 

(3.30) 
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Using the formalism of the previous section we can write 

and hy (3.26) 

x a(x) (3.31) log ZA(A) = E z A X! 
X 

d X , a(X) 
= ] , or <A> A E ~ Z A XI 

X ~=O 

a(x) 
<A> A = Z' ~ (X) = Z' z~ X! (3.32) 

where ' is summation over the terms linear in A . Similarly 

<AI;A2; ;An> A E' X a(X) "'" = ZAl'''An X! (3.33) 

where the sum E' is over the terms linear in AI...A n 

temperature cluster expansions on standard observables• 

• (3.32) and (3.33) are high 

There is another kind of observable that is important : The so-called disorder 

variables, which for the case of gauge theories are known in d = 3 as "monopoles" 

and in d = 4 as "'t Hooft loops" (both kinds were introduced by 't Hooft [26] ; 

see Chapter 2.b). One way to introduce them is the duality transformation; in this 

way they are defined as the duals of order variables ("spin" in d = 3 , Wilson loop 

in d = 4). In Chapter 2.b we gave a direct definition which we recall : 

Select a set of plaquettes *S that is dual to a curve joining two points x,y 

in d = 3 or to a "sheet" bordered by a closed loop in d = 4 (in d ffi 2 *S may 

be any set of plaquettes). 

The set *S for d = 3 

Modify the building blocks in the Yang-Mills action corresponding to these 

plaquettes by replacing 

x(g~p) by x(~g~p) = X(~)x(gBp)/X(I ) 

(~ 6 Center of G ) 
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on these plaquettes. Define the modified partition function 

Then define the "expectation' of the disorder variable 

(~,S)  by 

ZA(~,S) 

<D(S)> h ~ ZA 

A cluster expansion can be written down immediately for log<D(S)> 

notice that the only difference between the expansions for ZA(W,S) and 

in the activities of certain polymers : So we write z ,S(~) 

explicit. We obtain (of. [38]) : 

Zh(~,S ) accordingly. 

D (S) c o r r e s p o n d i n g t o  

(3.34) 

if we 

ZA(1,¢)  i s  

to  make t h i s  dependence  

~ a(x) 
= ~ (z  ,¢ )  x! l°g<Dm(S)>h X ' s - Z  (3.35) 

Finally, let us make some remarks about the "low temperature" expansion in 

'tdefects" (called "vortices" in d = 3 , "vortex sheets" in d = 4). Let us assume 

that G is discrete; since we only consider compact groups this means in fact that 

G is finite. We call a defect network a set S of plaquettes that are assigned non- 

trivial values g~p # I , together with those values g~p (actually it would be 

better to write g~P,x because the starting point x will matter). 

This information is equivalent to giving all holonomy operators g(C x) for 

all closed loops C starting at any point x . 
x 

A partition function or modified partition function is then expanded into 

contributions with fixed defect networks D : 

Z A = E Z (D) (3.36) 
D A 

_(D) 
W i t h i n  each  te rm ~h we have to  expand the  Higgs and Yermion a c t i o n s  as 

b e f o r e .  The f a c t o r i z a t i o n  p r o p e r t i e s  d i c t a t e  the  polymer s t r u c t u r e  : A polymer h 

w i l l  c o n s i s t  of  a c o - c o n n e c t e d  ( c o n n e c t e d  on t he  dua l  l a t t i c e )  s e t  of  d e f e c t s  t o g e -  

t h e r  with a set of Higgs and Fermions bonds "linked" to it in the following way : 

Gauge invariance shows that only closed loops of links occur (provided the represen- 

tations of G that occur have the property (R)); since defects form lines in d = 3 

and sheets in d = 4 the usual linkage relation applies. For the d = 3 Higgs model 

with G =~2 all this has been worked out in [41]. The cluster expansions (3.33) 

and (3.35) can be interpreted as low temperature expansions as well; of course the 

definitions of polymers and their activities are different now. 
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I 
A polymer in the "low temperature region" (d = 3) 

Finally we want to show that the cluster expansions converge uniformly in the 

volume, provided the activities are small enough. This could not have been done in 

the general (dimension-independent) framework of the preceding section, but the di- 

mension enters in an essential way only in one place : The number of polymers that 

can be mutually incompatible ("overlapping") which occurs in the estimate of a(X) 

(Cot. 3.9). 

Def. 3.10 : By ]7] we denote the number of bonds in the polymer Y , considered 

as a geometric object (i.e. subset of ~d ) 

Lemma 3.11 : Let Y be given. The number of polymers of size s that are incompa- 

tible with Y is bounded by 171Cs where C depends on the dimension and the 

type of polymer considered. 

Proof : This is well known; it follows for instance from the solution of the Kbnigs- 

berg bridge problem: 

A polymer y' is a set of bonds, connected in some sense, and picking a bond 

in 7 as a starting point we can move through 7 in a path that hits each bond at 

most twice. The number of such paths of length L is bounded by C L/2 < C s . The 

factor 171 comes from the freedom to choose a starting point. 
D 

Theorem 3.12 : (cf. Malyhshev [42]) : There is a constant 

that 
K ZlyIX(y) 

cX(y) X(Y) < X! e Y 

Y 

K ! 4/e + log C such 

Proof : We set, writing n for n(X) : 
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X(y) - n 
{y i.=r r 

n 

Z -!-r r - d 
n 

r 

(the "mean size" of the polymers in X ). Furthermore 

r ~ infly I 
O 

Y 

The previous len~na says 

- E g(y,y') < {Y' { Cr 
l l=r 

and therefore 

Z cX(y) < -E g(y,y')X(y') < ndC r 

[yI=r y' - -  

i l=r 
Now by the arithmeti~geometric mean inequality 

b(X) - r. X(y)log cX(y) -Z X(y)log X(7) 
Y Y 

cX(y) 
= ~ n z X(Y) log x(y) 

r>r r n r 
- o l l=r 

< ~ n r log E l---cX(y) 
- ° Iyi=r nr 

ndC r 
< Z n log- 
- r>r r n 

-- O r 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

where we used (3.40) in the last step. Rewriting this we get 

n 
i b(X) < log C + log d I nr r 
n-d -- d - ~ E ~- log ~- 

r>r 
o 

Since 

log X! > -n + EX(y)10g X(y) 

(3.42) 

(3.43) 

what we have to estimate is 
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I 
~ n-~ sup (El X(y)log cX(7) - log X!) 

n,d fixed y 

n n 
I 

< sup .~u_/~+ log C - 
r r 

--n,d fixed ( d d r>rZ -~- log-~-) (3.44) 
--O 

This reduces to an entropy estimate for an ideal Bose gas. We have to maximize 

the entropy per particle 

n n 

S - - r ~ log-/-r 
n n 

T>r 
--o 

under the constraints 

i 
Z n = n , -- Zrn = d 

r n r 

(d plays the role of internal energy per particle). 

llt is well known and easy to see that this leads to a Gibbs distribution 

n -B(r-ro) 
_~r = e (1-e -b ) 
n 

which gives 

-b 
be 

S =- log(1-e -b ) + l_e-b 

-b 
e 

d=r + - -  

o l_e-b 

(3.45) 

(3 .46)  

This leads very easily to the estimate (using r ° ~ I) 

2 
S/d <- 

-- e 

[If we want to get better constants we need a little more work : 

S is a concave function of d (the specific heat is non-negative) 

/ 

/ / / / / /  

F % a 
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S ro+log(l_e-8) Therefore S/d is maximal when the "free energy" F = d - ~ = 
-r 

vanishes, i.e. for 8 = 8 ° = -log(l-e o) ; 

r r r 
r e °-(e °-l)log(e °-I) -r 
O O 

sup S/d = < r e 
r -- o 
o 

e +r -i 
O 

-r -r 

-(l-e °)log(l-e o) ] 

Looking at (3.44) and using 1+1o 9 d < 
d -- e 

we see that we can choose (for r > i) 
O -- 

K =4+ log C 
e 

Remark : This proof shows that for r > I 
O -- 

smaller than log C 

K can be chosen smaller, but never 

Theorem 3.12 implies the following convergence result : 

_ , = 2+K+log C X Theorem 3.13 : Let Iz(y)[ < exp(-bl7 [) b > b ° ' o 

set of polymers 

Then there is a constant 

IXol ° ~ IYl 
yEX 

0 

c such that 

where 

E' z x a(X) le-b -~-,! tiE o 
X 

Z' is the sum over all X such that Z g(y,yo)X(y) # 0 

Yo £X 

Proof : By Theorem 3.12 

Z, z X a(X) Z, e(K-h) IyIX(y) 

X Xy 

We rewrite this as 

a fixed 

E Z' 

£=I YI'" ""Y£ 

= Z S' 

£>_I YI ..... YZ 

i £ -(b-K)nilYil 
Z--[ E K e 

n I ..... n£>_l i=l 

1 e -(b-K) IYil 

£! -(b-K) IYil 
l-e 
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I < Z ~ " - ( 1 - e K - b )  -£ E 

£>_i ~ 1  ' " " " '?(~,  

-(b-K)[Yil 
e 

where E' is the sum over all ordered sequences yl,...,y£ 

YI,...,Y~ 

E E g(yi,Yo ) # O 
YoEXo i=l 

(and of course yl,...,y£ correspond to a connected graph). 

If we prescribe the sizes k I = IyiI ..... k£ = I~£I there are by Lemma 3.11 

at most 

Z k. (l+log C)i~ I k i 

IXol ~(i~il ki) C ! ~' ~IXol e 

such that 

such sequences. So we obtain 

_ (l+K+log C-b) E k i 

E ~ E (l-e K-b) ~e i=l i z ,  z x a(x) 
X! ! )Xol £>I k I ..... kg~l 

l+K+log C-b 
-~ e )~ 

IXol E (l-e K-b) £(i e 'l+K+l°g C-b 
~>i 

-I ~, (bo-b) 

< [Xol Z ~(le l_cl-ie-2 )~ -- ~>i e- I .... e 
< 

-b +b 
< const, e o o 

Theorem 3.13 suffices to give convergence of the cluster expansion (3.35). 

For (3.33) some small additional argument is needed. Sinqe there one of the polymers 

- call it YA - will consist of a number of ordinary polymers together with the 

support of A , we need an estimate of the number of such configurations, given 
I I 

IyAl . This is easily seen to be bounded by IAI C IYAI . Then we may proceed as 

before. We note the essential consequence of this : 

COT. 3.13' : Let Iz(~)] ! e -blY[ , b large enough (b > 41e+2+2 log C) . Then 

the cluster expansions (3.33) and (3.35) converge absolutely and uniformly in A 

The limit A,,~]R d exists and is independent of boundary conditions and the result 

is analytic in the basic coupling constants in the domain that makes the assumed 

bound on z(y) true. 

Proof : Standard and fairly trivial at this stage. [] 
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Note added in proof. 

After completion of the revised version of this manuscript a University of Rome 

preprint by C. Cammarota appeared ("Decay of Correlations for Infinite Range Inter- 

actions in Unbounded Spin Systems", tO appear in Comm. Math. Phys.), which follows a 

strategy similar to the one used here for proving convergence of cluster expansions; 

his handling of the combinatorics is in som e way more efficient. Therefore I want to 

outline his method, as applied to our situation. 

Instead of using our Theorems 3.12 and 3.13 one may proceed as follows : First 

sum over all multi-indices (clusters) X giving rise to a fixed (connected) graph 

and then sum over the graphs. This sum over connected graphes may be replaced by 

first summing over all graphs containing a given tree T and then summing over trees, 

provided we correct for overcounting by dividing by IT(G(X)I (cf. Thm. 3.6). 

So we obtain 

a(X) z X i a(G(X)) 
~' ~ = g ~ X-7 IT(G(X)) I X T X:G(X) mT 

X 
Z 

and by Theorem 3.6 therefore 

IZ' ~a(X) zXI' _< Z Z' 1..A:,_~r, lzXl. = 
X T X:G(X) DT 

E ~.v Z m(T n) 
n>l " T -- n 

where Z is over all trees on n vertices and 
T 
n 

m(T n) ~ Z ~ l z X l  
X:G(X) ~T 

n 

It is convenient to rewrite this as 

n 

~(T n) = ~ I ~ z(Yi) 1 
yl,...,yn i=l 

G(y I ..... ,yn ) mT n 

Recall that Z' means that one of the y's has to be incompatible with the 

fixed set of polymers X ° ; we may therefore estimate m(T n) by assuming that it is 

YI and multiplying by n . Recall that by Lemma 3.11 

i E Jz(y) I < (ce-b) kE e k 

]-~g(y,yo)=_ I 

Inserting this we obtain 
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n k. n Tn 
l k C (yi)-I ~(T n) <_ nZ lEo] ~ ~ n 

k I ,... ,kn>l i=l i=l l 

Now we use the following bound that holds for e < e -I : 

Z ~k pl~ < p! 
-- l-e 

k>l 

to obtain 

n 

m(T ) < 
n -- i=l 

, . c )n x in (cTn(vi)-l). t~ I o 

By Cayley's formula the number of trees on {71,...,7n} with fixed 

C%(7 i) 5 d i ~ i l,...,n is 

(n-2) i 

(dl-l)! .... (dn-l) t 

and by another simple combinatoric estimate the number of sequences 
n 

with E d. = 2n-2 (as has to be the case here) is bounded by 
l=l i 

2n-3 
2 

dl,-..,d n 

Putting everything together we obtain 

n(n-2)[ 4n-I (~_E)nlXol = 
Z ~! TZ m(T n) ! Z n! 

n>l n>l 

4e) 
= - ~_~ IXol log(1 - y_~ 

and hence convergence of the cluster expansion, provided 
I < 5 , or 

b > log C + log 5 

This is a considerable improvement over the bound given in Cor. 3.13' and again it 

may be improved even more by taking advantage of a minimal polymer size r > I . 
O 
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c) Results : Consequences of Cluster Expansion Convergence 

The convergence of cluster expansions allows to deduce upper and lower bounds 

on expectations of various types of observables such as Wilson loops, 't Hooft loops 

and others from bounds on polymer activities. We find various regions in which diffe- 

rent types of expansions converge and the qualitative behavior of the expectation 

values is often different. This suggests phase diagrams for the various models which 

we give at the end of this chapter. We first focus on pure Yang-Mills theories. 

TheOrem 3.14 : In a pure lattice Yang-Mills theory there is a "high temperature" 

phase (go2 large enough) which has the following properties : 

(i) Tree graph decay (cf. [44]) 

I<AI;...;An> [ < C(]IAIII ..... llAnl[ )exp(-mt(A I ..... An)) 

where C(.,...,.) depends on some translation invariant norms of AI,...,A n 

t(Al,...,An) is the length of the smallest tree connecting AI,...,A n . 

(2) The Wilson loop follows the area law if it belongs to a representation of G 

that does not represent the center of G trivially. More explicitly let C be a 

closed loop, [gc ] the conjugacy class of the corresponding holonomy operator, XT 

a character with nontrivial dependence on the center of G , A(C) the minimal number 

of plaquettes of a surface having C as its boundary. 

Then 

-= A(C) 
t<x~(gc)>t ~ l<W~<C)>l ! const e T (s T > O) . 

(3) The 't Hooft loop in d = 4 follows the perimeter law, i.e. 

I<D~(C)>I L const exp(-8 ICI) ; 

in d = 3 , ]<D (Sxy)> I ~ const. > 0 

(4) If the representation T appearing in the Wilson loop and the represent@tion 
n --n 

appearing in the action are such that for some n 6 ~ T × ~ x ~ contains the 

trivial representation, then the Wilson loop follows the perimeter law 

[<We(C)> [ ~ eonst e (d ~ 3) 
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(Example : G = SU(3) , c the fundamental representation, T the octet representa- 

tion). 

Remarks : 

(2) was noted already by Wagner [5] for G =ZZ 2 and stated more generally (without 

the qualification referring to the center) by wilson [6]; a proof was given in 

[19]. 

(3) was stated by 't Hooft [26]; for G = ~2 already by Wegner [5]. 

(4) was stated by Glimm and Jaffa [45]. 

(I) expresses of course the existence of a mass gap. 

(2) expresses "confinement of quarks" as explained earlier. 

(3) expresses nonconfinement of magnetic monopoles in d = 4 and some kind of "con- 

densation ol defects" in d = 3 . 

(4) expresses the fact that for instance external gluon sources are screened by the 

dynamical gluons; it is believed that this color shielding mechanism works to prevent 

physical gluons from being seen (cf. Mack [86]). 

The leading behavior of m (the "mass"), ~ (the "string tension") and 

can be easily computed : m , ~ are 0(log Re g~2) , B is 0(Re g~2) . 

I 
M'~nster [46] has calculated ~ up to 7th order in --~ 

go 

Proof : We give the proof for the Wilson action; the generalization to other actions 

is straightforward. 

(I) follows from the remark made after eq.(3.33) expressing the fact that in the 

cluster expansion (3.33) only multi-incides X contribute that have X(y) > 0 at 

least for a 'ttree" of polymers connecting the supports of AI,...,An and the obser- 

vation that 

IZ~l,. I < exp{-bAl ..... An E X(Y) IYI} ' ..A n -- 

with bAl ..... An = 0(1)go ' together with Theorem 3.13. 

(2) follows by the same method from 



51 

Left.ha 3.15 : (I) z W (C~(y), ffi 0 
T 

unless Y contains a surface having 

(2) [ZwT(c)(Y)] ! exp(-bA(C)) 

Proof : (i) follows from 

I H w(c) H 9 SP <xy>dgxy 
P£y 

Y unless 

[47]) 

where G 

ment 

C as its boundary. 

ffi O (3.48) 

i s  as s p e c i f i e d .  To prove (3,48) we use the fo l lowing  s imple formula (c f .  

fcdg F(g) = ~Gdg fzd~F(~g) 

is any group and Z its center. So (3.48) follows from the stronger state- 

f H 0p(~pg3p)XT(~C) H d~ ffi O (3.49) 
PEy <xy> xy 

unless y is as specified. 

We insert the Fourier expansion of 

tion on the center of G IYI . We obtain 

form 

H pp(~pgp) E R(~) considered as a func- 

Pqy a linear combination of terms of the 

f x X ( ~ )  It x (~b) H dm 
PEy Tp or b£C T <xy> xy 

which vanish unless each link contributes the trivial representation. 

If we define the "boundary" ~y to be the set of links where 

H (~) $ i , 
p XTp 

<xy>£P 

we see that 

(3.50) 

("Stokes' theorem"). 

11 ( H ×Tp (m<xy>) ) 
<xy>£~ P 

Y 
<xy>£P 
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We see that (3.50) can only be different from O if By = C , from which (i) 

follows. 

(2) follows again from [Zw(c)(y) I ~ exp(-bly I) and (i) . 

End of proof of Lemma 3.15. 

Remark : This shows also that = = ~ if • represents the center nontrivially but 
T 

the representation ~ occurring in the action represents it trivially. 

We continue the proof of Thm. 3.14 : 

To prove (3) we have to use the expansion (3.35). consider d = 3 , S =*S<xy > 

a set of plaquettes as indicated in the picture (x,y are sites in the dual lattice). 

2%. 

........... pp:, 

We write in self-explanatory notation 

<xy> = ~S<xy > 

(i.e. the pair <xy> is the boundary of the string S<xy>) . Notice that the change 

g~P -~ ~g3P for P E~<xy> can be produced by multiplying some link variables gxy 

by ~ provided y does not intersect the coboundary of *S (consisting of the 
<xy> 

elementary cubes centered at x and y ). So by the invarianee of the Haar measure 

for such a polymer y 

z , s ( - r )  = z l , ¢ ( y )  • 

Therefore the leading contributions to (3.35) will come from multi-indices ("clust- 

or 8 that vanish everywhere except on a single polymer Yx or yy consis- 
ers") 8yy x YYY 

ting of the elementary cube dual to x or y , respectively; 8yyx(Yx) = i and 

8yyy(yy) = I . 

So the leading terms have the asserted behavior. To get a lower bound, we need 

a little result about the remainder. 
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1 
Let Re 2 be large enough. Then 

go 

x x a(x) 
R ~ I z %,s-sl,¢ ) - / r . ,  I 

X # ~ ,8 
YYx YYy 

-b 1 < 
IZm' YYx ' YYx 

__ S ( S  ) - z  I ~ ( ~  ) I c e  

(b = 0 ( R e  log g : 2 ) )  . 

Proof : This is a simple variation of the proof of Theorem (3.13). We only have to 

note one thing : Let ~p = ~ for P £*S and m = I for P ~S . Then 

Z , s ( y ) - z l , ~ ( ~ )  : 
I i 

(e 2g~X(1) x(g~p)X(m~p) -'-~x(gap) 
= fdg[ K -I) - H (e 2g° -i)] 

P6y PCy 

We now telescope the difference of products and use the fact that for 

there is a c > I such that 

i ~(m) I 
x(g)" X(1) 2 x(g) 

l e 2g° -1[ ! c[e 2g° -1 

2 
go 

(3.51) 

large 

to obtain 

s6r) - Zl, s6r) I < ]z 

1 
---~ x(g~p,) 

< c cl~ls dg H le 2g° -1 1 x 
--PC*Sfly P ' £y 

p'#p 

I I 
2 X(g~p)X(~p)/X(1) 2 x(g~p) 

x le 2g° -e 2g° l i 

_< const I-r11211~I (1 - x--¢~- ) × ( ~ )  
go 

< const' I~ g-~'i ~' I~I ( I  - ~ ) 
- , z  o,  x ( D  " 
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S i n c e  I=,sCeyy x) - zl,¢(6yyx)l ffi O (g ;  6) , 

we conclude 

Iz , s (y )  - z l , ¢ ( y )  I <__ 

const I~1 -21¥l+6lZ~,s(6Yyx) - z, ,¢(~yy) lc lYI  ( 3 . 5 2 )  

X X 
To estimate z , s - z|,~ 

we have to telescope once more : the result is 

2 
x x go - z xCY)lYl 

IZ ,s -Z l ,¢ l  ~ const I~1 Y 

×Iz,s(~y~x)-Zl,¢(~yyx) I (3.53) 

This c a n  be fed into Theorem 3.13 and produces the assertion of Prop. 3.16. 

Prop. 3.16 ensures that the leading terms are really leading uniformly in the 

size of S , so the three-dimensional version of Theorem 3.14, (3) is proven. 

Fer d ffi 4 the situation is quite analogous, only the geometry is a little 

more complicated. The leading terms come now from polymers that are elementary cubes 

dual to links in C and there are 0(ICI) of them. The remainder can be estimated 

as before. 

To prove (4) we use the same technique. Under the assumption made there, there 

will be a leading polymer y consisting of a torus containing C , so IT] = 0([CI) 

- - - - -  - - - - / ~ ' ~ 2 "  ~ '  
1 1 1 1 1 1 1 1 1 1 1 2 "  

and the leading contribution will be of the form 

remainder, one has to show that for y' D y , 

[z w (~')1 <_ Izw ~Y)1(--~2) IYl-I~'t 
T T 2g ° 

exp(-STICl) . To estimate the 

(3 .541  
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This is clearly true if we arrange for p~p ~ 0 by subtracting a suitable 

constant from the action, because then 

(note that 

z W (y') = f ~ p~u H dg < II ~ z W (Y) T FEy ~ PEy'~yO~P -- PSP[I~ Pqy'~y T 

2 
go has to be taken real here). 

This concludes the proof of Theorem 3.14. 

We now turn to the "low temperature" region of pure Yang-Mills theories. 

Theorem 3.17 : In a pure lattice Yang-Mills theory with a finite gauge group G 
g~2 

there exists a "low temperature" phase (Re lar~enough) with the properties : 

(I) Tree graph decay 

I<AI;'--;An>I ! C(ll AIII ..... H All )exp(-mt(A I ..... An)) 

(see Thm. 3.14 for notation). 

(2) The Wilson loop follows the perimeter law, i.e. 

-Bicl 
l<x(gc)>l ~ I<w(c)>t ~eonst e , in d>3 . 

(3) The 't Hooft loop in d = 4 has area law decay, i.e. 

-aA(C) 
<D(C)> > O) I [~conste , (% 

where A(C) denotes the number of plaquettes in the dual lattice in the minimal 

surface bordered by C . In d ffi 3 point defects cluster exponentially (vortices 

are massive). 

Remarks : (2) was noted for G =~2 by Wegner [5] and also discussed as a possibili- 

ty by Wilson [6]; a proof for d ffi 3 and G =~2 was sketched by Gallavotti et al 

[38]. (3) was stated by 't Hooft [26]. For abelian G it has been known for a while 

that Theorem 3.17 follows by a duality transformation from Theorem 3.14 (el. [5]). 

This is hard to carry out, however, for a nonabelian group (possibly impossible). 

The interpretation of (2) and (3) is : quarks are not confined, but monopoles are. 

Finiteness of G is not really essential, only discreteness; but for infinite 

discrete G the expansions have to be reorganized somewhat (cf. Section 4c). 
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Proof : We only give some general ideas since the details are similar as in the 

proof of Theorem 3.14. 

(i) is essentially identical 

(2) The leading polymers in d = 3 

Mack [48], Gbpfert [96]): 

are Vortex lines winding around the loop (cf. 

C 

If we use the type of cluster expansion exemplified in (3.35) for the 't Hooft loop, 

that is, we expand 

x x a(x) 
log ZA(W~)-Iog Z A = E(z W -zl) X! (3.55) 

X -~ - 

There are 0(IC I) leading terms; the estimation of the remainder proceeds as in the 

proof of part (3) of the previous theorem (actually it is even easier here since no 

integrations are involved). 

(3) We have to adapt the expansion of the type (3.32) for the disorder parameter : 

d 
<D (S)> A = ZA(~,S)/Z A =~ Iog(ZA+~ZA(~,S)) I (3.56) 

ZA(~,S) has an expansion in terms of defects similar to ZA(I,S) = Z A but the 

constraints are different at the boundary 8S due to the singular nature of the 

"gauge transformation" ~ . In particular there will always be a defect y having 

the same boundary as S . 

Expanding the logarithm in (3.56) and differentiating we obtain 

= Z' z x a(X) 
<D~(S)>A X ~,S X! (3.57) 

where the sum Z' is over multi-indices X having the following property : 

There is a distinguished polymer (defect) Yo having X(Yo) = i that is 

obtained from an ordinary allowed defect by the singular gauge transformation 

all other defects y with X(y) > O have to obey the unmodified constraint (i.e. 

they have to be obtainable from a gauge field). 

The distinguisheddefect produces a factor 
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where 

go 
,s(Vo) l <_ e 

in d= 4 

in d ffi 3 

so we obtain an area law in 

, [Vo [ tA(C) ; (c= ~s) 

, [7o[ ~dist(x,y) ; (<xy> = ~S) 

d : 4 and exponential clustering in d ffi 3 as asserted. 
[] 

Now we want to include matter fields. First we consider Higgs models (no fer- 

mions) with so-called complete breakdown of symmetry. This means that the stability 

grQup of a point ~o that minimizes V(I~I ) is trivial. We also make the simplify- 

ing (not essential) assumption that UH(G) acts transitively on that space of minima. 

Examples for this situation are 

G = U(1) , ~(x) E ¢ , ~ transforming under the fundamental representation. 

G = SU(2) , ~ in the fundamental representation. 

( i )  

(2) 

(3) G = SO(3) , ~ consists of a pair of fields in the vector representation; 

the potential assumes its minimum for an orthogonal pair. 

For simplicity let us formally take a limit of V that means restricting our- 

selves to fields ~ of fixed length (say I~I = i) . This is not essential but 

reduces technical complications (see [19] for a more general discussion). Then we 

have the following result. 

Theorem 3.18 : In a Higgs model with complete symmetry breakdown and [~[ = i , 

the "high temperature" cluster expansion converges in a region {X,g~I% and g~2 
2 

small enough or Xgo large enough} 

In this regionwe have 

(I) Exponential clustering. 

(2) Area law decay of the 't Hooft loop in d = 4 , exponential clustering of 

defects (monopoles) in d = 3 for ~ > O . 

(3) Perimeter decay of the Wilson loop for % > O . 

Remarks : (I) The most remarkable feature is the extension of the region of conver- 
2 

gence of the cluster expansion to small go ' provided % is large. This is a sign 
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of the Higgs mechanism. It was proven in [19] and discussed afterwards in [49]. 

(2) Due to the presence of the Higgs field the disorder variables depend on the whole 

set S on which the plaquette variables are modified, not only on its coboundary. 

So the "'t Hooft loop" depends actually on a sheet bordered by the loop. 

Proof : The "complete breakdown of symmetry" plus our transitivity assumption mean 

that the space where the Higgs fields live becomes homeomorphic to G and we may 

replace the field # by a field taking values in G . 

(Fix a #o E U H ; this determines uniquely a h x 6 G such that UH(hx)#o = #(x)). 

Now the Higgs field can be eliminated completely by going to the so-called 

U-gauge : This means that we make the gauge transformation 

gxy ÷ hxlgxyhy 

~(x) ~ UH(h~l)~(x) = ~o " 

In terms of the transformed variables the Higgs action is (up to a constant) 

sE({gxy}) = ~ z (1-(~o,UH(gxy)+o)) (3.58) 
<xy> 

Now l-(#o,UH(gxy)4o) > 0 and = 0 only for g = I which means that the Higgs 

action has the effect of increasing the weight of the neighborhood of I in the 

space of gauge fields similar to a magnetic field in a spin system. This serves to 
2 2 

effectively increase go ' hence the mass generation even for small go " 

-S H 
Note that S H does not couple different links; therefore we can include e 

in the decoupled expectation and perform the cluster expansion only with respect to 

the Yang-Mills action. Define a probability measure 

1 ~((¢o'U~(g)~o )-l) 
d~(g) = ~ e dg 

and 

<A>o, A = S A H d=(gxy) 
<xy> 

• I e-Sy.M.> 
<A>A =~A <A o,A 

(3.59) 

(3.60) 

may then be expanded as before (see eq. (3.32)). The polymers are now just connected 

sets of plaquettes and the activities are 
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ZA(y) = <A H P~P>o,A 
PEy 

(3.61) 

The convergence condition is according to Theorem 3.13 

with b 

I<A H p~p>o,Al <__ e -blYj 
P£y 

sufficiently large. Now by H~Ider's inequality 

(3.62) 

J fA ~ ~ do(gxy) I ! 
PEy p~P <xy> 

IYJ (3.63) 

p~=[ ~ d~(g )) ! i i A l [ o ( f l  r r 
o~ <xy>EP xy 

Here r is a number counting how many different plaquettes can share a link and it 

is crucial that this number is fixed and does not increase with JYI 

Now it is not hard to see that 

SIP~p Ir ~ d~(gxy) 
<xy>EP 

is 0(i/g~ r) for g~ large, X small 

2 -r 
and O((go %) for % large. 

which proves the convergence condition stated in the theorem. 

For the disorder variables we proceed as in the proof of Theorem 3.14, but now 

the activities z ,S( Y)_ are defined as 

z ,S(Y) E ~ Sd~(gxy) 
<xy> PEy 

P~*S 
1 
2 x(g~P m) 

x ~ (e 2g° -I) 

PEyN*S 

1 
2 x(g~p) 

2g o 
(e -I) × 

Since d~(g) ~ do(~g) for % > 0 it is no longer true that only for polymers y 

intersecting the coboundary of *S z ,S(Y) ~ z1,o(Y) . So there will be two kinds 

of polymers giving leading contributions : First, as in the pure Yang-Mills case, 

elementary cubes in the coboundary ~*S of *S , second single plaquettes P E *S . 

The second kind of polymers certainly give a negative contribution proportional 
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to the area IS[ to the cluster expansion of log<D (S)> because 

z ,{p}({P}) < z1,0({P} ) . 

To see this, use the Fourier expansion 

1 
2 x(g~p) 

2 g  o 
e - 1  = 

where 

z a ( 1 ) x ~ ( g a p )  

T go 
1 

a t ( - -2 ) _> O and 

go 
1 • ~((~o'U~(g)~o )-1) 

c(~) e = Z T r  Az(A)UT(g) 
T 

where A (~) > 0 . So 
T 

1 
z ,{p}({P}) = ~: XT(~o)aT(--~-)~ x 

-r go 
T I ,... ,z 4 

4 

x fxT(glg2g3g4)iHl Tr A (~)UT.(gi)dgi 
"= ~i I 

which equals 

Zx (~)~ (~)Tr 
T T z. T 

T go 

with ~_(%) >__ 0 . This last expression clearly has its maximum at ~ = I e 

go 

So the leading terms give an area law; to see that the nonleading terms do not 

destroy that-we have to make a similar argument as in the proof of Theorem 3.14 (3) 
[] 

There is also a "low temperature" regime that can be analyzed : 

Theorem 3.19 : In a Higgs model with finite gauge group G (not necessarily with 

complete symmetry breaking) the "low temperature" cluster expansion converges in a 
2 

region {A,g~IA small and go small } 

In this region we have 

(I) Exponential clustering 

(2) Perimeter decay of the Wilson loops 

(3) Area law decay for the 't Hooft loop in d = 4 ; exponential clustering of 

defects in d = 3 . 
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Remark : (I) was proven for d = 3 , G =~2 by Marra and Miracle-Sol~ [41]. 

Proof : This is almost routine by now. The polymers consist of connected defect net- 

works in the dual lattice embellished by sets of links in the original lattice wind- 

ing around them as described earlier. 
D 

Sometimes there is a third region : 

Quasi-Theorem 3.20 : In a Higgs model with a gauge group that need not be discrete, 

in which a discrete subgroup H contained in the center remains unbroken, there is 

a convergent "low temperature" expansion in the region {%,g~l%g~ large enough, 

large } . 

In this region there is 

(I) Exponential clustering 

(2) Perimeter decay of the Wilson loops 

(3) Area decay of the 't Hooft loop in d = 4 , exponential clustering of defects 

in d = 3 . 

Theorem 3.20' : Under the same conditions as in Quasi-Theorem 3.20 there is a conver- 

gent "high temperature" expansion in the region 

{~,g~l~ and g~2 small} 

showing for ~ > 0 : 

(i) Exponential clustering 

(2) Perimeter decay for Wilson loops representing the subgroup H trivially, area 

decay for all others ("confinement of fractional charges") 

(3) In d = 4 perimeter decay for 't Hooft loops corresponding to ~ £ H , for 

those corresponding to ~ ~ H area decay; analogous behavior of defects in 

d = 3 . 

Remarks : This means that under this "partial breakdown of symmetry' the region of 

Theorem 3.18 breaks up into a "confinement region" (Theorem 3.20') and a "Higgs 

region' (Quasi-Theorem 3.20). This is more or less known tO the experts (see [54] 

for some numerical evidence) hut a detailed proof for Quasi-Theorem 3.20 is still 

missing. We give an outline of a proof below. 
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Proof of Theorem 3.20' : Essentially a combination of the proofs of Theorem 3.14 and 

3.18. 

Sketch of a proof of Quasi-Theorem 3.20 : We use the "unitary gauge" again. Here the 

Higgs field lives in the eoset space (factor group) F = G/H ; a measure d~(g) can 

still be defined as before, but instead of favoring the vicinity of the identity 

6 G , it favors the vicinity of H . 

We break up G accordingly into a number of subsets : First we choose a suffi- 

ciently small neighborhood U of the identity; U has to be invariant under con- 

jugation and we require hU D h'U = # for any h,h' 6 H , h # h'. E ~ G ~ U hU 

is called the exceptional set. h6H 

To define polymers we first have to partition the field configurations coarsely 

according to the partition of G . We characterize classes of field configurations 

by 

(a) The set of links <xy> for which gxy £ E . 

(b) The set of "H-defects" characterized by the set of plaquettes for which g~p lies 

in one of the sets hU for h # I . We assume that U is so small that a plaquet- 

te P cannot belong to an H-defect if all four link variables g<xy> (<xy> E P) 

are in the same set hU 

For any plaquette P not belonging to the set of H-defects exp( 12 X(gp)) 

will he likely (with respect to d~) to be near i , so we make the 2g° usual 

"high• temperature" expansion for these plaquettes. The crucial point is to understand 

the factorization properties that arise. 

Let us look at "empty" regions of the lattice, that is regions in which all 

"near" H and the integrand exp(-~i2 X(gp)) is replaced by i . Let us 
g<xy> 

are 

2g o 
denote by hxy the element of H that is near gxy (i.e. gxy £ hxyU ) . In our 

empty region the configuration {hxy} is determined up to H-gauge transformations. 

We can fix this H-gauge in anarhitrary way without affecting anything. This shows 

that contributions from two sets that are separated by an "empty" region factorize. 

We should stress that a set in order to qualify as an "empty region" has to be 

a face-connected set of cubes in d = 3 and a face-connected set of hypercubes in 

d=4 . 

A polymer is then given by a co-connected set of H-defects (i.e. their duals 

are connected)together with a set of plaquettes that are not separated by an empty 

region. 
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It is clear that the region of parameters is defined in such a way that the 

polymers acquire a small activity. So the proof of Quasi-Theorem 3.20 should go 

through without any difficulty. But it would be useful to work out the proof in full 

detail; we leave it here as an exercise to the reader. 

Remark : This kind of combined low and high temperature expansion is reminiscent of 

the mean field expansion of Glimm, Jaffe and Spencer [50], but of course it is much 

simpler in this lattice system. 

In the following chapter we will come back to the Higgs models and discuss in 

more detail the abelian models, including the notion of 0-states. 

We close this discussion of Higgs models with pictures of the expected phase 

diagrams for finite gauge group G : 

(i) d=2 

th~ 

(2) 

Complete Breakdown 

d>3 

Partial Breakdown 

i A 

Complete breakdown Partial Breakdown 

I V//.r 
V /  
V 

Shaded regions : Convergent expansions 

Solid lines : Expected phase transitions 

Crosses : Critical points 
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Remarks : The "spoke" in the left picture ending in a critical point is suggested 

by numerical results for the d = 3 , G =~2 model [54]. 

The use of duality can enlarge the shaded regions somewhat in abelian theories 

(d = 3 ) .  

For certain models (d = 3 , G =~n ' n~ 5) 

become an intermediary Coulombic phase [61,87]. 

the phase boundaries widen to 

Last but not least, let us turn to fermion models. From the point of view of 

physics they are of course the most interesting ones. The results obtained so far 

by expansion methods leave a larger part of parameter space uncharted, however, and 

a deeper understanding would certainly be desirable. 

Theorem 3.21 : In a Fermion-gauge model (such as lattice QCD) with a faithful repre- 

sentation UF2 of G , the "high temperature" cluster expansion converges in a 

region {K, go l g~ large and < small } . 

In this region there is 

(I) Exponential clustering 

(2) Perimeter decay of the Wilson loops 

(3) Area decay of the 't Hooft loops in d = 4 ~ exponential clustering of defects 

in d = 3 . 

Remarks : 

(I) A similar convergent expansion was discussed by Gaw~dzki [52] and by Challifour 

and Weingarten [53] (their criterion for quark confinement does not seem to be 

appropriate, however). 

(2) The perimeter law for the Wilson loop should not be interpreted as breakdown of 

quark confinement but rather as a sign of "hadronization" : A widely separated 

pair of external charges will polarize the vacuum to create quark-antiquark 

pairs that subsequently form hadrons; one pair is used to shield the external 

charges. This means that the Wilson loop does not give a criterion for confine- 

ment when the external charges can be screened by matter fields. Unfortunately 

we do not have a replacement for this criterion of comparable simplicity. 

Note added : A criterion has been proposed recently by Mack and Meyer [94]. 

(3) The smaller domain of convergence compared to Theorem 3.18 is due to the non- 
2 

existence of a "unitary gauge" that decouples the expectation at go = ~ 
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Proof : This is straightforward. The polymers will be connected sets of plaquettes 

and links. For a detailed proof it is useful to use the norms for fermion functions 

introduced in Section 2. In order to get a good region of convergence, it is probably 

essential to do the integration over the gauge field first, when one computes the 

activity of a polymer, because the orthogonality of different representations will 

produce cancellations in expressions like 

It would be worthwhile to check the estimates numerically in order to see whether 

convergence can be shown for IKI > K C , where ~C corresponds to mass zero for the 

free lattice fermion field. This would show a mass generation by the coupling to the 

gauge field and be a hint of confinement. 
D 

Theorem 3.22 : In a Fermion-gauge model with discrete gauge group G the "lowtempe- 

21~ and 2 rature" cluster expansion converges in a region {~'go go small} 

In this region we have 

(I) Exponential clustering 

(2) Perimeter decay ofthe Wilson loop 

(3) Area decay of the 't Hooft loop (i.e. confinement of external monopoles) in 

d = 4 ; exponential clustering of defects in d = 3 . 

Proof : Essentially identical to the proof of Theorem 3.19. 

we summarize the situation again in a picture: 

"l:h 

~L 

 It3 . t 

' th K:¢ 

Fermion gauge model with discrete gauge group 
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The phase boundaries are even more hypothetical than in the Higgs model; the only 
2 

sure thing is that for go = ~ , i.e. the free fermion field, there is a critical 

point at ~ = ~C (=~r -I for 8 = 0 ) and that there is a critical gauge coupling 

go = gc for ~ = O . 

Note added : An extensive discussion of the expected phase structure of fermion gauge 

theories can be found in Kawamoto's work [97]. 

There are two important things that are insufficiently understood : 

(I) Which criterion can replace the Wilson criterion as a signal of confinement ? 

The first thing coming to mind, namely the 't Hooft loop, does not seem to contain 

more information : In the presence of matter fields it has the fatal tendency to al- 

ways follow the area law just as the Wilson loop always tends to show the perimeter 

law. (See however Mack and Meyer [94] for a proposal of a disorder parameter to dis- 
tinguish phases). 

Of course the "confinement dogma" says : "Check whether the pure Yang-Mills 

theory shows area decay for the Wilson loop; if so, the full theory will confine 

quarks". This may be true but it would be nice to know. 

2 
(2) Does the theory produce a mass gap for IKl>l~cl provided go is large ? This 

seems necessary for the confinement of light quarks. Understanding this would also 

shed more light on the difference between Higgs and Fermion models and thereby on 

the difference between "screening" (or "bleaching") and confinement (see [86] for 

a discussion of these concepts). 

4. FURTHER DEVELOPMENTS 

In this section we describe a selection of results of some physical interest 

that have been obtained by various people. 

The selection is necessarily subjective; in part it is also dictated by the 

limited space (and time) available. So I cannot discuss in detail the very interest- 

ing and sophis£ieated work by Durhuus and FrShlich [66]; see however the remarks 

made in Section 4f ("roughening"). 

Another important development not treated here is the beautiful work of GSpfert 
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and Mack [93] that has appeared after these lectures were given. They prove that the 

U(1) model in dimension 3 (with Villain action) shows confinement in the sense of 

Wilson at all couplings and, maybe more surprisingly, that the ratio of string ten- 

sion to mass gap ("glueball mass") goes to = when the coup•~ing go goes to 0 . 

The proof uses a remarkable combination of renormalization group ideas with techniques 

originating in Constructive Quantum Field Theory. 

a) Abelian Higgs Models in Two Dimensions : 8-Vacua, Phase Transition and Confine- 

ment of Fractional Charges. 

As theseheadlines indicate , two-dimensional ahelian models show some of the 

fancier features that are believed to be essential in four-dimensional nonabelian 

theories. One reason for this analogy is of a topological nature : Two-dimensional 

abelian theories may have a nontrivial topological charge, namely the first Chern 

class,whereas four-dimensional nonabelian theories may have a non-trivial second 

Chern class (cf. appendix). The "confinement of fractional charges" in two dimensions 

is, however, due to a much simpler mechanism (namely an unscreened linear Coulomb 

potential) than the phenomenon of the same name in four dimensions. 

We consider a U(1) Higgs model; because of the abelian nature of the model we 

can use a Gaussian action for the gauge field (a possibility not discussed in Section 

i). For the coupling of Higgs and gauge fields we use a Villain type action. So the 

total action is S o = Sy.M.G. + S H 

2 1 2 2 
Sy.M. g E I E ~p + ~ E ~xy (4.1) 

2 p <x,y> 
2g o 

- ~ 2 

S H ~ - E log{ E e ~ (~xy+2~nxy) (4.2) 
<xy> n 

xy 

where we parametrized the elements of the gauge group U(1) by angles ~xy in an 

obvious way. The mass term in (4.1) is a provisional "infrared cutoof"; it may be 

safely removed later. Formally 2 = 0 corresponds to the Villain action (1.8) for 

the gauge field since the Gaussian might as well be periodized when it is integrated 

against periodic functions. To understand the action S H (4.2) one should note that 

S H behaves qualitatively like %<xy> cos ~xy (and has the same formal continuum 

limit); this last expression would be the standard U(1) Higgs action for a Higgs 

field of modulus I in the unitary gauge (cf. (1.9) and the discussion in the proof 

of Theorem 3.18). Those wo do not like the Gaussian action may instead work with a 

conventional lattice action; it is essential for the effects to be discussed, how- 

ever, that the Higgs action has a shorter period (i.e. higher charge) than the Yang- 

Mills action ((4.1) has "infinite period"). 
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Definition 4.1 : The 8-states are defined as thermodynamic limits of the states 

corresponding to the action 

+ i8 E S 8 E S ° ~p 
P 

(where the sum is of course over all plaquettes in a consistently chosen orientation 

and one should use free boundary conditions, i.e. all variables corresponding to the 

finite lattice A are integrated over). 

Remark : The point of this definition is of course that the states actually depend 

on 8 , in fact in a periodic way as we will see. The 8-states may be interpreted 

as having a background electric field. By Stokes' theorem the 8-states are seen to 

arise from wrapping an "infinitely large Wilson loop" around the system. 

To see the effect of the 8-term it is best to look at a correlation of point 

"defects" obtained by shifting the plaquette variables ~PI and ~P2 by X and 

-X , respectively. We denote the corresponding expectation value by 

<Dx(P I) D_x(P2)>8,A. 

To evaluate it we use a duality transformation [55,56] . For this purpose we 

note that up to an irrelevant constant factor 

i ~)'q)+2~n'2 o 2 
--- - 2" n . 

Z e 20 ~ Z e e l~n (4.3) 

n£ = n£ 

-S O 
The formula (4.3) can be used to Fourier transform e and to carry out the inte- 

grations over the angles ~ in <Dx(P I) D_x(P2)>@, A . By a computation one obtains 

<Dx(P I) D_x(P2i>8, A = 

2 

iX(nPl-nP2) _ go E (np + )2 I E n 2 
I E e e "~ P e- 2"-I <x,y> xy 

Ze,A {np} 
(4.4) 

where nxy =2np-np, with P,P' being the plaquettes sharing the link <xy> and 

the limit ~ + O has been taken already. (The boundary conditions will be O-Diri- 

chlet if we start with free ones in the original model. This simply means that 

np = 0 outside of A ). (4.4) clearly shows the physical content of the model : It 

is in fact a model of integer spins with nearest neighbor ferromagnetic coupling. 

e enters the single spin distribution in a periodic way, it is analogous to a mag- 

netic field. Furthermore we see that for 8 = ~ the maximum of the single spin 

distribution is degenerate (np = O or I) . 
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For l small a standard low temperature expansion shows the coexistence of 

two phases with exponential clustering, very much like in the low temperature region 

of the Ising model (cf. [57,58]). Of course the coexistence of two phases may be 

seen by the standard Peierls argumen t. Presumably there will be a critical point in 

(depending on g~) at which there is no exponential clustering. This can be 

interpreted as "breakdown of the Higgs mechanism". 

2 
For l large and go > 0 there will be a high temperature phase with a conver- 

gent cluster expansion (cf. Section 3). 

2 
Finally for go = 0 , 0 = 0 the model becomes identical to the Villain form 

of the plane rotator model. This model shows the famous Kosterlitz-Thouless transi- 

tion [59] which has been rigorously proven to occur by Frbhlich and Spencer [60]. 

Now let us turn to the "confinement of fractionalcharges" for 

Theorem 4.2 : Let E(8) E lim^ I ZO,A 
AT Z z ~ x log ZO,A 

i) e(e) is periodic with period 2~ 

• Then 

2) e(8) < 0 ; e(8) < 0 for e * O  mod 2~ 
i8' 

3) J<Ws,(C)>oJ ! e(C(O+8') - e(O))A(C) where Wo,(C) = ~ e2~ ~xy 

is the area enclosed by the loop C . <xy>6C 

G = U(1) : 

and A(C) 

Remark : A somewhat more restricted form of this theorem is proven in [62]; it 

appears essentially in this form in [58]~ 3) expresses confinement of fractional 

charges if we set 0 = O . 

Proof : The 8-states have Osterwalder-Schrader positivity in spite of the complex 

factor appearing in the expectation value. 

Furthermore we can use Osterwalder-Sehrader positivity of the uncoupled expec- 

tation < > to see existence of the limit lim ~ log ZO, A for rectangles 
o A~ 2 

A : Let A be a rectangle of sides L and T and write ZG,LT --- Z@, A . Then 

by Schwarz's inequality it follows (as in the proof of Lena 2.4) that 

1/2 1/2 
ZS,LT ~ ZS,LT I ZS,L(2T-TI) 

(L,T,T 1 odd). 

This means that log ZS,LT is a convex function of T (and L ) and therefore 
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i Z@,LTZs,II 

(L-I)(T-I) log Ze,ITZo,LI 

I is clearly bounded uniformly in is increasing in L and T . Since ~-~ log Z@,LT 

L and T it is seen readily that its limit as L,T ÷ = exists. 

The existence of E(e) is thus proven (the structure of this proof can be 

traced back to Guerra's work [63]). 

e(8) ! 0 is trivial. The periodicity follows by a duality transformation as 

in (4.4). (3) follows by iterating Schwarz's inequality with respect to the O.S. 

inner product. 

I 

<Ws'(C)>2T' --Z < _i 

What's missing so far is the strict inequality in (2). For this we use the cor- 

relation inequalities of 2.d) : First we insert a term Z' K ~Z (K > O) into 
<xy> 

~j 

the action where Z' is over all space-like links. Sending K ÷ +~ decreases the 

covariance and therefore increases <Wo,(C)> 0 by Theorem (2.10) (I). It also eli- 

minates the gauge fields corresponding to space-like links from the system and de- 

couples different "time layers". We increase <W@,(C)> 8 even more by sending the 

coupling constant % of the Higgs action to +~ . This "freezes" the remaining 

gauge field variables to 2~ x integer values. We are left with a "stack" of one-di- 

mensional integer spin models and obtain for a rectangular Wilson-loop of sides 2L' 

and 2T' in a box of sides 2L and 2T 

2~2 (nx+l_nx)2 
--~-- i@(nL_n_L) ie'(nL,-n_L,) = 

E e go e e 

~. e 

m = 

I1 e 
m 

{n } 
X 

2 

go (0+0,+2~m) 2 2L' 
8~ 2 

2 

go (@+2~m)2 
8~ 2 

(4.5) 

(the last step uses Fourier transformation, i.e. the Poisson summation formula (4.3)); 

this implies 

2 2 

_ go (8+2~m)2 go 2 
8~ 2 8~ 2 m 

¢(@) ~ log E e - log E e 
m m 

(4.6) 
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from which the strict inequality in (2) can be read off. 

Remarks : 

(I) Mack [47] gives a simple argument for confinement of fractional charges in two 

dimensions that even works for nonabelian groups. We will get this result in 

subsection d) by a different argument. 

(2) O-states also exist for nonabelian groups; 0 there has to be an element of the 

dual of the center (see for instance [66]). 

(3) O-states in 4-dimensional pure Yang-Mills or Higgs models are hard to find on 

the lattice because there is no natural lattice analogue of the topological 

charge density F A F . If fermions are present, one can use the angle 0 intro- 

duced in Section I (see Section 5 and [95]). 

(4) Similar results are expected to hold for lattice QED 2 . 

We can summarize these results again in a picture: 

th  

j Lw 

0 

I 
KT 

tkV .' 

The shaded surface is a phase boundary ending in a critical line; KT stands for 

the Kosterlitz-Thouless transitionpoint that is also the endpoint of a critical 

line. 

b) The 3-Dimensional Abelian Higgs Model : Phase Structure 

The U(1) Higgs model in three dimensions, also known as the Landau-Ginzburg 

model is of course a very physical one : It is a model of a superconductor. 
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It is therefore quite interesting that for a Gaussian version of the model the 

existence of at least two phases, a "normal" and a "superconducting" one~ can be 

established by the use of correlation inequalities [58] and the existence of the 

Kosterlitz-Thouless transition [60]; in some versions of the model expansions of 

Section 3 do the job. 

The detailed picture depends a little bit on the version of the model studied : 

"Compact" (i.e. Wilsonian) or Gaussian. The least interesting one has complete break- 

down of symmetry (corresponding to the absence of charges smaller than the charge of 

the Higgs field). This requires the use of a periodic action for the gauge field 

such as Wilson's or Villain's form. It probably has no phase transitions except at 
2 

g = 0 where it becomes a plane rotator for which a symmetry breaking (Goldstone) 

transition has been shown to occur in [74]. This model apparently is "always a super- 

conductor". 

If we give a shorter period to the Higgs action, i.e. a multiple n of the 

elementary charge to the Higgs field, we are in the situation of incomplete break- 

down of symmetry with H = ~ as the unbroken subgroup, and we can use Theorem 3.20' 
n 

and Quasi-Theorem 3.20. We discover at least two phases : One is "superconducting", 

with free fractional (with respect to the Higgs field) charges and exponentially 

clustering ~ -vortices; the other is "normal" with confined fractional charges and 
n 

no clustering of vortices. 

The most realistic version uses the Gaussian action described in the previous 
2 

subsection. In d ~ 3 and for ~ small or zero, this action does not easily per- 

mit a high-temperature expansion. This is where correlation inequalities are helping 

out; the string of arguments is similar as in Subsection a): 

Let us consider the expectation value of a fractionally charged Wilson loop 

<Wo(C)> , of rectangular shape, sides L (in the 1-direction) and T (in the 

O-direction). As in a) an upper bound is obtained by eliminating A I and A and 
2 

freezing A ° to integer values. Again the different time layers are decoupled and 

we obtain 

i@(nL-n O) 
I<W@(C)>I ! (<e >V )T (4.7) 

where the expectation on the right hand side is in the 2-dimensional integer spin 

(= dual Villain) model with action 

i Z (nx-ny) 2 , (n ~ 2~) (4.8) 
2 <xy> 

2g o 
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ie(nL-no) c log L 
Now in [60] it is shown that <e >L behaves like e provided 

2 I 
g is large enough (i.e. --~ below the Kosterlitz-Thouless transition point). So 

we obtain go 

<We(C)> ! c' e -cT log L (4.9) 

which gives a logarithmic (i.e. two-dimensional Conlombic) confining potential be- 

tween fractional electric charges. So there is no screening of these charges; this 

is the "normal" phase. By arguments "dual" to this one it can be shown that vortices 

have at most power-like clustering in this phase. 

The existence of a superconducting phase with liberated electric charges (peri- 

meter law for W@ ) and exponentially clustering vortices can be seen by an expansion 

of the kind used to quasi-prove Quasi-Theorem 3.20. 

We close this subsection with some tentative phase diagrams. Note that the cor- 

relation inequalities say that the Wilson loop expectation always increases to the 

right and upward; expectations of vortices go the opposite way. (By these correla- 

tion inequalities it is of course also seen that for the Gaussian model 

-~ T log L) <We(C)> _> e 

th~ 

1 

~ .  p e r -  

Compact 

complete breakdown 

Gotasto.e 
r t~  6 .  

I 

N o r m a l  

Compact 

partial breakdown 
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Gaussian 

1 

"C~'co a d.uctL~S 

c) Guth's Theorem : Existence of a Nonconfining (Coulombic) Phase in the 4-Dimensio- 

hal U(1) Model. 

Guth [64] gave a clever proof that the pure U(1) lattice gauge model in the 

Villain form in 4-dimensions behaves more or less like the continuum model provided 

the coupling is weak enough; in particular there isno confinement. This result is 

of fundamental importance because it shows that "compact" lattice gauge theories 

(with fields taking values in the compact group G ) are capable of capturing some 

of the physical content usually ascribed to the continuum models. It also shows that 

confinement in the sense of Wilson is a subtle phenomenon : 4 is the critical dimen- 

sion and the delicate dividing line may lie between 4-dimensional abelian and nonabe- 

lian models as hoped or anticipated by the physics community. 

I will try to give an essentially complete proof of Guth's theorem, but since 

his paper (in preprint form) had about 50 pages I will have to be brief on some 

details. Many of the ideas and a lot of the formalism used are already in [77]. The 

proof presented here differs in many details from Guth's original one. 

Remark : Guth's theorem is in some sense an analogous result to the proof of the 

Thouless-Kosterlitz transition [60]. FrShlich and Spencer [87] have used the "renor- 

lization group" methods of [60] for an alternate proof. They also prove that even the 

Z n lattice gauge model has a "Coulombie" phase for intermediate coupling provided n 

is large enough, in addition to conventional high and low temperature phases; argu- 

ments for this were given already in [61]. 

First we need some formalism. Throughout we work on a finite lattice A ; we 

will prove a bound independent of A . Again we will take A to be part of the 

simple cubic lattice ~4 , but this is in no way essential. 

We call functions from the sites (O-cells) of A into the integers or reals 

O-chains, functions of links (1-cells) 1-chains, functions of plaquettes (2-cells) 

2-chains etc. (these are used in analogy to differential forms; some people might 

therefore prefer to call them cochains). The spaces of chains carry a natural ~2 

inner product, so there i~ ~ ~,,T~I ~ q ~ = ~  ~ ~ho~o ..~+~ ~ 
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We define a boundary operator ~ from p-chains to (p-l)-chains in the stan- 

dard way : If ~ is a p-chain, 6m assigns for a (p-l)-cell the sum of m evalu- 

ated at all p-cells that contain the (p-l)-cell in question in the right orientation. 

This is the analogue of the divergence operator. 

Example : 

The 

vative. 

42 adjoint of 

6ms = el+e2+~3+m4 

is denoted by d : it corresponds to the exterior deri- 

Example : 

601 

co 3 

i 

dmp = ml+~2+w3+m4 

The notation used here is different from the standard one of algebraic topology : it 

reflects, however, the analogy with differential forms. 

Note that changing the orientation of a cell flips the sign of the corresponding 

chain. 

By going from A to its dual lattice *A we obtain a duality map * from 

p-chains into (4-p)-chains corresponding to the Hodge star operator. Two basic 

facts are 

Lemma 4.3 : 62 = 0 = d2 . 

and 

Lemma 4.4. : 

chain e , a 

such that 

(Hodge decomposition). Let ~ be a p-chain. Then there is a (p+l)- 

(p-l)-chain ~ and a harmonic p-chain h (i.e. obeying ~h = 0 = dh) 

= 6 a + d B + h  (4.10) 
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We do not give a proof of these well known and simple algebraic facts (see for in- 

stance [98]). 

From now on we want to restrict ourselves to topologically trivial lattices A 

for which there are no:harmonic chains. This is equivalent to saying that each 

p-form ~ obeying dm = 0 is of the form m = dB ("Poincar4's lerma") and we say 

that A has trivial (co)homology. This restriction is not necessary but helps to 

simplify the arguments. It is true for instance for a rectangular piece of ~4 with 

the cells in the geometric boundary omitted ("Dirichlet boundary conditions"), or 

its dual. Next we define the Laplacean : 

Definition 4.5 : A E d~+~d (Note the sign convention2). 

Le~ma 4.6 : On p-chains in a 4-dimensional lattice A of trivial cohomology we have 

0 < A < 16 (4.11) 

Proof : The lower bound (wich can actually be shown to be of the order IAI -I/2 

follows from the absence of harmonic chains. The upper bound comes from the fact 

that the lattice provides an ultraviolet cutoff; it is easy to see in the infinite 

lattice by Fourier transformation. The finiteness of A actually makes ~ smaller 

because it means replacing the infinite volume Laplacean A by PA P where P is 

a projection (cf. [64] for a more detailed discussion). [] 

We now turn to the Wilson loop in the U(1) Villain pure gauge model. The 

Wilson loop Wn(C) can be described by a one-chain j taking an integer value n 

on links in C and 0 otherwise (in the Villain version it is not sensible to con- 

sider Wilson loops with nonintegral charge), j may be thought of as a current run- 

ning through C . We have 

<Wn(C)> = ~ E ; dSxy x 
<xy> -~ 

I 
- 2 ((dS)p-2~£e)2 

2g o i(Jxy,@xy) 
x ]I E e ]I e 

P £p <xy> 

(4.12) 

From here on Z will always denote the appropriate normalization factor and may 

change its meaning from line to line. 

9 2 
Theorem 4.7 : (Guth [64]) : For g~ small enough (actually go O.168) < 

a function v-~(go ) such that 

there is 
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and 

-( 2 
g go ) <W (C)> > exp('-- (j,A-Ij)) 

n -- 2 

g(go )2 
lim - i 

2 
Jg->O g 

Remark : This implies a perimeter law for the Wilson loop. 

To prove this theorem one first rewrites <W (C)> in a form given by Banks, 
n 

Kogut and Myerson [65] and closely related to the description given by Glimm and 

Jaffe in [78]. '~' 

Lemma 4.8 : <W(C)> = Ao(C)E(C) where 

2 

A (C) = exp(- go o -2- (J'A-Ij)) 

I 
E(C) : E exp(- 12 (m3,A-Im3)) 

m 3 2g o 

dm3=O 

exp(2~i(m3,A-IdG2)) 

where G 2 is an integer valued 2-chain obeying 

by C ). The sum is over integer valued 3-chains 

2 

Cor. 4.9 : <W (C)> < exp(- go n - -  - T  (~)~'~'A-I~'" 

~G 2 = j 

m 3 • 

(think of a surface bordered 

Proof : Trivial. 
[] 

Remark : Glimm and Jaffe [78] had proven this for Wilson's action. 

Proof of the lem~a : We first fix the gauge for e in (4.12) by selecting a maxi- 

mal tree T of the lattice A on which 0 can be put equal to zero. We write 
! 

fe I de I for the resulting integral over 1-chains e I with values in [-~,~] and 

vanishing on T . Thus 

i(J,@ I) 
I f, <Wn(C)> =~ ~ de I e 

%2 el 

exp(_ Iii dei_2~%211 2) 

2g o 

(4.13) 
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If we denote d42 by m 3 we can write 

42 = 42[m 3] + d£ I 

where 42[m 3] 

replace Z by Z 
42 m 3 

dm3=O 

on the maximal tree T 

gives 

is a particular integer valued solution of m 3 = d£ 2 . We may then 

E' where Z' means that 41 has been set equal to zero 
41 £i 

(to make 41 uniquely defined by d41 = 42-42[m3]) . This 

1 i(j ,@i ) 
<Wn(C)> = ~ Z Z' [' dO I e 

m3 41 @I 
dm3:O 

x exp(- III dOi-2~%2[m3]+2~d£111 2) 
2g o 

(4.14) 

By the Hodge decomposition and the absence of harmonics I = ~A-id+dA-16 and we 

have 

£2[m3] : dA-1642[m3] + 6A-Im3 (4.15) 

hence 

i (j ,@~2z4 I) I Z' ~' 
<W(C)> = ~ Z d@ I e 

m 3 41 @ 
i 

dm3=O 

x exp(- 1211 6A-Im311 2)exp(- 1211 d(@l+2~41+2~A-l~£2[m3])ll 2) 
2g o 2g o 

i(j,~ I) 
= ! Z f' d~ I e exp(- l(m3,A-Im3 )) 

Z m3 Sl 2go 

dm3=O 

2) e-i (j, ~A-12~£2 [m3 ] ) 
× exp(- d iH 

where  we p u t  ~ I  = @1+2~41+2~aA-142[m3 ] ; f '  d~ 1 i s  now o v e r  a l l  r e a l  v a l u e d  

• 1 1-chains vanishing on T . This Gaussian zntegral now can be computed and gives 

(4.16) 
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2 

<W (C)> = exp(- go n -~ (J'A-Ij)) 

I -2~i(J'sg-l£2[m3]) 
× E exp(----~ (m3,A-im3))e 

m 3 2g o 

dm3=O 

(4.17) 

By the definition of G 2 

(jl,~A-l~2[m3 ]) = (G2,dA-16£2[m3])=(G2,£2[m3])-(G2,~A-Im3) (4.18) 

The first term is an integer and does not contribute in the exponential, so we finally 

obtain 

<Wn(C)> = Ao(C) E exp(- 
m 3 

dm3=O 

as asserted. 

12 (m3'A-Im3)) exp(2~i(m3'A-IdG2)) 
2g o 

(4~19) 

Corollary 4.10 : Let a I ~ *A-IdG2 . Then 

i -i + 
---~ (ml,& m I) 2~i(ml,a I) 

2g 0 i 
E(C) ~ ~ e 

m I 

dml=O 

(4.20) 

Proof : Trivial. 

We now bound E(C) from below by a simple Correlation inequality (closely re- 

lated to the inequalities of FrShlich and Park [79]) : 

Lemma 4.11 : Let 0 < A I <_ A 2 ; AI,A 2 operators on p-chains. Then 

i - (mp,Almp) +i (ae,mp) I - (mp'A2mp) +i (ae'mp) 
z~ E e ! z~ E e 

me me 

Corollary 4.12 : 

I 
E(C) >_ E 

m I 

6ml=O 

i i 
2 16g2 ° (ml'ml)+2~i(ml'al) 

F(c) (4.12) 
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Proof of the corollary : This becomes obvious if we replace the constraint ~m I = 0 

by a suitable limit and use Lemma 4.6. 
[] 

Proof of the lemma : Let 

where 

i -(mp,A(k)mp)+i(ap,mp) 

F(X) ~ z-7i7 ~ e 

A(%) = %A 2 + (I-%)A I . We claim that F'(%) ~O : 

i(ae,mp) 
F'(k) = <(me(Ai-A2)me)e >% - 

i(ap,mp) 

- <me,(Ai-A2)me>/<e >% 

I i -(mp,A(k)mp)-(~,A(k)~) 
e 

2 Z(k)2 me 

x[(mp,(Ai-A2)mp)-(~,(Ai-A2)m~)] x 

i(ap,mp) ei(ap,~)) 
X (e 

Introducing 

m+ - mp-+m~ 

we obtain 

I (m+,A(/)m+)- I i - ~ ~ (m_,A(/)m_) 
F'(k) = ~ e 

Z(k) 2 m+,m_ 

(ae,m+) I (me,m_) x (m+,Ai-A2)m)e 2 sin 

Since F'(k) is invariant under m+ ÷ -m+,m ÷ -m_ , we have 

F'(k) = 1 E 
Z(%) 2 m+,m 

-l(m+,A(k)m+)-l(m_,A(k)m ) 
e 

I I × sin ~(ap,m+)sin ~(ap,m_) x 

x (m+,(A2-Al)m_) ~ 0 

The last inequality is true because F'(X) is of the form (~,(A2-AI) ~) and 
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and A 2 ~ A I . [] 

F(C) , defined in (4.21), can be rewritten as the expectation value of a dis- 

order variable (a very nonlocal one) in a plane rotator model at high temperature 

(see [64]). It is, however, simpler to obtain a cluster expansion for log F(C) from 

(4.21) directly by using the low temperature expansion in "defects" (which here 

should be interpreted as magnetic currents). 

So let us put our machine constructed in Section 3 in gear to grind out a lower 

bound on F(C) : We have 

x x a (x )  
log F(C) = XE (zal-Zo) X! 

(4.22) 

(cf (3.35)). As polymers T we take here the possible supports of 1-chains m 1 

with ~m I = 0 , i.e. connected networks of lattice lines without endpoints. The ac- 

tivities are 

- 1211 mlll 2+2~i(al,ml) 
32g o 

z (y) = E e (4.23) 
al ml#O 

on y; 

~m I =0 

Each T can be written as a union of closed loops : 

T = U C. (4.24) 
i l 

and for each closed loop C. we can find a sheet S. bordered by C.. Let 
i 1 l 

S(y) = U S. (4.25) 
i I 

On S , considered as a sublattice, we can find a 2-chain m2[ml] obeying 

~m2[m I] = O for any m I on T with ~m I = O . This can be used to rewrite (4.23) 

in a more "gauge invariant" form. Recall that 

a I = *A-IdG2 . 

Thus 

da I = ~A-IdG2 = *G2-*dA-I~G2 = *G2-*dA-I j (4.26) 

Defining the "electromagnetic field" F 2 generated by the current j by 
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we have 

F 2 E dA-lj 

da I = *G2-*F 2 and 

z (y) = l e 
al ml#O 

on y; 

6ml=O 

(*G 2 drops out because it is integer valued). 

A crucial fact to note is that S(y) 

have the "isoperimetric inequality" 

Is(~)J <-~6-61YI 2 

(4 being "the lattice value of 

1 
32g2 ° JlmlJl 2-2~i(*F2,m2[ml]) 

can be defined in such a way that we 

~"). This gives us a crucial estimate : 

(4.27) 

(4.28) 

(4.29) 

Lerm~a 4.14 : There is a constant K such that 

iZal(Y)_%(y) I < Klzo(y) j j~j2 I]F21J 2 
- . s(~) (4.30) 

2 
where llr2JJ s(~) m 
field of j inside 

Z [F2(P) l 2 
pES(y) 
s(~) " 

; this is the "electromagnetic energy of the 

Proof : 

Now 

Jzal(Y)-Zo(Y)l ! 2~2 Z e 
ml#O 

on y; 

6ml=O 

i 2 
32g~ jlmllj 

l(m2,*F2) J 2 

2 J(m2,,F2) j2 _< llm2Jl 2 IIF21I s(~) 

2 iS(y) l < sup Im212 NF211S(y) 
- m2~S(y ) 

2 
<-. Jlmlil 2 IJF2[I S(y) ~6 !YI2 

(4.31) 
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Using 
1 Iiml ii 2 

E llmlll 2 32g~ e !~ ~ e 

ml#O ml#0 

on y; on y; 

~ml=O 6ml=O 

I 2 
32g2 ° Ilmlli 

2 2 
for go small, (4.30) follows (a possible choice is go < 1/(32 log 8) , 

2 2 
= E m 2 8 -m / E 8 -m ) . 

m#O m#O 

Corollary 4.15 : \ 

(4.32) 

azal_Zol 2 X X _< E zXlTl2Ko IIF211S(7) X(Y) " (4.33) 
7 

Proof : This fo l lows from the l e m a  by t e l e s c o p i n g  the d i f f e r e n c e  and us ing  

l al(Y) L i %(7) 
[] 

The next step is to sum (4.33) over all translates of a given X : 
O 

Lemma 4.16 : 

Proof : 

X 
E I X X o 3Xo(Y ) 2 zal-Zol < K z Ely I I[F211A 

X translate -- o Y 

of X 
0 

2 < 17Oi IIF21L 2 z HF2]I T . 
7 translate 

of To 

Now we only have to note E IyIBx (7) < (EIYlX (Y)) 3 < ace eElTIX°(7) 
Y o -- Y o -- 

> 0 provided a is chosen appropriately; we can then conclude 

Xr Izxl-zXla(x ) < K HF2H 2A a E z X ee YE Iy[x(Y)a(x) 
-- E X60 o 

I 

2 3292 o 
<K' [IF211A e 

any 

with some constant K' 

2 (j ,a-lj) A Since IIF211A = we have proven 

(4.34) 

for 
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i 

32g~ 
log F(C) ~-K' e (j,A-Ij) A (4.35) 

which completes the proof of Theorem 4.7. 

For completeness we should note the following fact concerning the disorder para- 

meter in the U(1) Villain gauge model : 

2 
Theorem 4.7' : For any value of go 

<De(C)> > exp[- 2g2(Jl'A-ljl)]o 

where Jl is an integer valued one-chain on the dual lattice given by 

j l(<xy>) = 

I I : <xy> 6 C 

0 otherwise 

Proof : By definition 

I 
<De(C)> = S~wdexy ~ z e 

<xy> P £p 

12((dO)p-Z~£p-SG P) 
2g o 

where Gp ~ G2(P) and G 2 is an integer valued 2-chain obeying 

duality transformation (= Fourier transformation) we get 

2 
go 

I - 2--- Nm211m-ie(mm'G2 ) ' 
<De(C)> = ~ E e 

m 2 

~m2=O 

dG2 = *Jl . By a 

Now we use (a slight extension of) the correlation inequality of Lemma 4.11 to re- 

place the sum over m 2 by a integral over real valued two-chains m2 : 

2 
go 

- -~- llm 2 II 2'iO(m2,G2) 
> i S e = 

<Do(C) > --3 ~2= o 

= exp[- ~-~(G2,6A-Id G 2) ] 
2g o 

~2 (Jl' A-IoI) 
2g o 

= e 
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So here we have a situation where both loops have perimeter decay. This seems 

to he characteristic for a "Coulombic" phase. 

Remark I : One could play exactly the same game for the plane rotator in two dimen- 

sions, trying to prove the Kosterlitz-Thouless transition. Instead of the Wilson 

loop one would consider a two-point function 

in(Ox-Oy) > 
Sn(x-y) E <e (4.36) 

In this case one has 

I ~Ve(x_y ) 
S (x-y) > e- ~ g F(x-y) , (4.37) 
n 

where 

and again 

V is the lattice Coulomb potential and 
C 

i 
t(x-y) = i 

m 
O 

_ 12 (mo'mo)+2~i(mo'a0) 
8g o 

e (4.38) 

2~i(mo,a o) -2~i(ml,*E i) 
e = e (4.39) 

= and E 1 is the electric field of a change +n with ml[m o] such that m I m ° 

at x and a charge -n at y (defined in such a way that it vanishes outside the 

charge pair). 

But if one cluster expands one encounters a problem : The analogue of (4.29) 

is not true because the length of a string is not controlled by the number of its 

endpoints. This is why the more sophisticated treatment of Fr~hlich and Spencer [60] 

is necessary which does not throw out the Coulomb interaction by a correlation ine- 

quality and uses instead electrostatic methods, together with renormalization group 

ideas to bound the activities. 

Remark 2 : By analogous methods the existence of long range order (spontaneous sym- 

metry breaking) for plane rotator models in d > 3 can be proven (exerciseX). 

In some ways this method is stronger than the infrared bounds of ref. [74] : 

It displays clearly the dominating spin waves (Goldstone modes) and it does not de- 

pend on any regularity of the lattice. 
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d) SU(n) Confines if ~ does. 
n 

This type of result that shows that SU(n) gauge theories go "in the right 

direction" from abelian ~ theories was first proven by Mack and Petkova [67] for 
n 

a modified type of model that was invented for this purpose and soon afterwards by 

Fr~hlich [68] for the standard (Wilson) pure Yang-Mills or Yang-Mills-Higgs models. 

His result also implies the one of Mack [47] mentioned earlier, concerning the two- 

dimensional models. 

We consider a Yang-Mills-Higgs model in which the Higgs representation U H 

represents some subgroup Z ° of the center ~ of SU(n) trivially (in order to 
n 

have a chance for confinement of "fractional charges"); the pure Yang-Mills model 

can be considered a special case of this. 

Integrating out the Higgs field we obtain the partition functions 

Z({gxy}) 

studied in Section 2. Here it should be noted that they are really functions of 

gauge fields with values in SU(n)/Z ° . Also note the simple identity 

dg F(g) = ~ dg f dm F(gm) (4.41) 
G G Z o 

valid for any compact group G and a central subgroup Z O . 

We now consider a Wilson loop W (C) belonging to a representation that 

represents Z ° nontrivially (i.e. corresponding to "fractional charges"). We compute 

<WT(C)>A = g~l fxT(gc)e-Sy.M.({gxy ~) Z({gxy}) ~ = <xy>dgxY 

= ZTIs ~ dg Z({gxy})XT(gc) x 
n <xy> xy 

H S dYxyXT(Yc)e -SY'M'({~xygxy}) 

<xy> Z ° 

(4.42) 

where we employed (4.41). Inserting the concrete form of the Wilson action we obtain 

(using the fundamental representation of SU(n) in the action) : 
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<W T (C) >A = iAf<Kxy>dgxy Z ({ gxy})XT (gc) x 

I X(Y~)p) 
---~ E Re x(g~p) 

X~ (YC) go P 
x II ~ - - e  o dYxy 

<xy> Xx(~) 

(4.43) 

This can be viewed as a Z°-gauge theory with fluctuating coupling constants, a 

point of view that is often useful (cf. [67]). 

We now use the fact that 

i0 
X(T) = e YX(1) (4.44) 

iq 0 
X~(Y) = e x y x T ( l  ) (4.45) 

for some integer qT 

action in (4.43) : 

and some angles % , to rewrite the essential piece of the 
Y 

Re ×(gBp)×(y~p)/×(|) 

= Re x(g~p)COS eBp - Im x(g~p)sin e~p 

-- Jp cos 8~p + ~ cos(SBp + ~) 

where we simplified the notation e to 
Y~P e~p . 

We define a {gxy} -dependent probability measure 

dB({exy})j, K = I H d%(8 ) 
~({gxy}) <xy> xy 

12 (JpCOS 8~p+~Cos(e~p + ~) 

go x ~ e 
P 

where ~ is the obvious normalization and d~(0) 

metrized by e 

(4.46) 

(4.47) 

is the Haar measure of Z ° para- 

The goal is now to get rid of the fluctuating coupling constants Jp,Kp by 

some correlation inequality. The relevant inequality has been provided by Messager, 

Miracle-Sol~ and Pfister [69], and says that for q ~ ~ , ~ E 
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± f c°s(qec+~)d~j, K ! 

I 
Z cos 88p 

I feos(qec)e g,2 p ~, d%({Oxy}) i (4.48) 

provided 

I < I 
-~ (IJPI+IKP I) - g,2 

go 

(4.49) 

(actually to apply [69] one has to write dl(8) as weak limit of z~) e ~ cos mOd0 

for suitable m and ~ ÷ ~) . 

Now (4.49) is true provided 

i 2d 
g,2 ~ 2 ' 

go 

d = X(1) (4.50) 

Inserting (4.48) in (4.43), using (4.46) and (4.47) gives 

I<W (c)>SU(n) I < 2X(|)<cos qe > n 
A,g2 -- c A,g~/2d 

We summarize what we have proven : 

(4.51) 

Theorem 4.17 : In a SU(n) lattice Yang-Mills-Higgs theory of coupling constant g , 

where the Higgs representation acts trivially on a subgroup Z ° contained in the 

center of SU(n) , a fractionally charged Wilson loop has area decay, provided the 

same Wilson loop has area decay in the pure Z ° Yang-Mills theory of coupling 

constant g 
¢2x(I) 

Corollary 4.18 : In two dimensions fractional charges are always confined. 

e) The Interplay of Electric and Magnetic Properties in the Confinement Problem. 

The common view nowadays is that nonabelian gauge theories confine "electric" 

charges because they behave like magnetic superconductors and squeeze the electric 

flux the way a superconductor squeezes the magnetic flux. This qualitative picture 

is supported by some rigorous results which we will discuss here : A confinement 

criterion due to Mack and Petkova [70] shows that "vortex condensation" in connection 

with spreading of magnetic flux leads to confinement. Mack and Petkova [67] also 

showed that introducing a constraint that eliminates monopoles of some kind and makes 
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spreading of magnetic flux more difficult produces confinement of external monopoles 

at weak coupling; we also show that it leads to perimeter decay of a certain type 

of Wilson loop. Finally there is a general electric-magnetic dualitY relation due to 

Hooft [76] that shows that squeezing of flux may occur either for the electric or 

the magnetic kind but not for both - this is, by the way, in agreement with the ex- 

pansion results of Section 3. 

The criterion of Mack and Petkova [70] is inspired by the work of Dobrushin and 

Shlosman [71] on two-dimensional spin systems with continuous sy=~etry. They showed 

that the Mermin-Wagner theorem [72] on the absence of spontaneous magnetization in 

these spin systems can be rederived if one uses the old intuitive idea that long 

Bloch walls (Peierls contours) can be made to cost little free energy by making them 

thick and making the spins change slowly. 

In lattice gauge theories the analogue of Peierls contours are of course the 

defects we have been talking about so much. If the gauge group is continuous our 

low temperature expansions do not work because the defects get fuzzy. This fuzziness 

may lead to an area law for the Wilson loop even for small go (provided the dimen- 

sion is not too large, i.e. < 4 ). 

As possible vortex containers we consider finite regions A of our infinite 

lattice ~d with a "toroidal" topology, i.e. we assume that the boundary 3A is 

homeomorphic to S d-2 × S I . Consider a corresponding partition function ZA(g~A) 

for a pure lattice Yang-Mills theory with given values of the gauge field on the 

boundary. We now want to give a "twist" to these boundary conditions by acting on 

them with a "singular gauge transformation '~ (see Section 2) in such a way that all 

the holonomy operators (= Wilson loops) corresponding to loops that are running 

around A in the "thin" direction (see picture) are multiplied by an element 

of the center of our gauge group G 

C 

/ / 

 llllILr   

7111111-- / 

A 3-d vortex container A linked to a loop C 
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This can be achieved by picking a (d-2)-cycle *T on ~A (recall that 8A 

has a factor S d-2) and multiplying all gauge fields living on its dual T by m . 

The corresponding partition function we denote by ZA, (g~A) . We define a 

"vortex probability" : 

Definition 4.19 : 

PA,g~A(m) ~ ZA,m(g~A)( ~ d~' ZA,m,(g~A)) -I (4.52) 

where dm is the normalized Haar measure on the center Z of G (usually discrete); 

note that ZA,m(g~A) > 0 . 

Also important is its Fourier transform 

PA'g~A(q) ~ ZS dmXq(~)p.~,g~A(m) (4.53) 

(q runs through the dual of Z ). 

Now pick any N vortex containers that are disjoint and are linked to a given 

closed loop C as indicated in the picture. Then we have : 

Theorem 4.20 [70] : 

N 

I<WT(C)>I !XT(~) n sup l#Ai,gSA (q%)l 
i=l g~A. l 

l 

(4.54) 

where q~ is the representation induced by t on the center of G (assumed to be 

irreducible). 

Proof : Let A c E A d ~ N o o U A. where A. is the interior of A. (here considered 
i=l i i z 

as a set of links). Then 

N 

<W~(C)> = <x~(gc):~l ZAi'~(g~Ai)>AC Z c/ZA (4.55) 
A ~= A 

We now make a change of variables on the right hand side of (4.55) corresponding 

to a singular gauge transformation (i.e. leaving all plaquette variables unchanged) 

in A c, and giving a twist ~i to the boundary conditions g~A i (i = I,...,N) ; 

it is easy to see that this is possible. We see 
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N 

(i~l~i) 
<W (C)> = < X~ N ZAi'~i(g~Ai)>Ac A x (1) x (g c) II ZAc/Z A 

T i=l 

Averaging over ml,...,mN we obtain 

<w~(c)> A 
N 

= <i=iE [PAi '-~A.(q~) SdmiZAi,m°(g~Ail )]×T(gc)>A e ZAc/ZA 
i 

Using IxT(gc) I iX (~) and 

(4.56) 

N 

<i=l H ZAi'1(g~Ai)>Ac = ZA/ZAc 

we obtain the assertion from (4.56). 

In order to interprete this theorem we show how it allows to deduce confinement, 

i.e. almost an area law for the Wilson loop, from a property of the free energy of 

vortices (that has not been proven for weak coupling !). 

Let us assume that the free energy per unit length (in d = 3 ) or unit surface 

area (in d = 4) of a vortex container becomes rapidly independent of twists in 

the boundary condition if the thickness increases; more precisely, assume 

ZA, ~(g~A) _ ITle -md 
[log ZA,~(g~A) I < 

where d is the "thickness" of A . Then 

[TI e-md ! ~ with ~ sufficiently small. 

(4.57) 

d can be chosen large enough to obey 

For simplicity let us assume that G = SU(2) . Then there is only one nontrivial 

character Xq and for this q we have 

ZA,~(g~A)-ZA,-~(g~A) 

~A,g~A(q) = ZA,~(g~A)+ZA,,I(g~A ) 
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= I-ZA,-I(gSA)/ZA,I(gsA) 

I+EA,_~(gSA)/ZA,I(gsA) 

By the assumption (4.57) we then get 

e~-i < (e~-l)(e-~+l) = 2 sinh I ̂ (q) l < 
PA,g~A -- e-~_ I -- 

If the Wilson loop C is large enough to aecoa=aodate N vortex containers of the 

required thickness, the theorem says then 

I<WT(C)> I !2(2 sinh ~)N 

(if z is the fundamental representation of SU(2)) . 

The rest is a packing problem. A little thought shows that a rectangular loop 
LT 

of sides L and T can accomodate of the order 2 vortex containers with 
L) 

length ITil and thickness d i obeying T i e " _ ~ for all i . This does not 

quite give the area law, but it corresponds to a potential 

V(L) = 0( L 
(log L) 2) 

which is confining. 

It should be noted that the assumption (4.57) can be proven for strong coupling 

by the cluster expansion quite routinely; this has been done in [73]. 

In [16] Mack and Petkova study a pure lattice Yang-Mills theory with gauge 

group $U(2) that is modified by the harmless looking constraint 

x(g~p) ~ 0 (4.58) 

PC~ C 

for all 3-cells (cubes) C , where × is the character appearing in the action - 

here X is the character of the fundamental representation of SU(2) . (4.58) seems 

to be automatically fulfilled for weak coupling because g~p wants to be near 1 

there; the formal continuumlimit is not affected by (4.58~. But Mack and Petkova 

prove that for d ~ 3 and weak coupling the disorder variables show a drastically 

different behavior due to (4.58); for instance in d = 4 the't Hooft loop shows 

area decay. This is an indication that confinement might break down and we will show 

directly that there is a Wilson loop with perimeter decay in the modified model. 
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This is a warning sign that shows that it is not irrelevant which lattice ap- 

proximation is chosen and it is not enough to check the formal continuum limit (we 

saw already how important the choice of the character occurring in the action is). 

The modified model probably has a critical point at nonzero coupling and this seems 

to be in conflict with asymptotic freedom. 

(4'58) has the form of a Bianchi identity for the Z 2 variables sgn x(gap) . 

It prevents thin defects defined by x(gap) < O from branching and thereby spreading. 

(4.58) allows to derive the ~2 valued 2-chain m2 

m2 (P) ~ ~aP = S gn x(gaP) 

from a ~2-valued 1-chain ~i (ml(<xy>) E mxy) - 

gauge transformation. Defining h by 
xy 

given by 

(4.59) 

~I is determined up to a ~2 

gxy = mxyhxy (4.60) 

the Wilson action becomes 

I 
- 2 g map×(hap) (4.61) 

Sy'M'W" go P 

We may compute expectation values by summing over all ~2 gauge fields ml 

and all SU(2) gauge fields {hxy} subjectto the constraint 

x(hap) ~ 0 (4.62) 

for all plaquettes P . 

Let us consider now 

o 
W(C) E ~C = H ~ (4.63) 

<xy>EC xy 

~(C) is gauge invarianto and therefore determined by {gxy} ; it is a ~2 Wilson 

loop (actually W(C) = ~ sgn x(gap) where aS = C) 
PgS 

Lemma 4.21 : 

o 
W(C) has perimeter decay for small 

straint (4,58). 

2 
go in the model modified by the con- 
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Proof : 

where 

o I 

=- ~ ~dhxy0({hxy}){mx E }mC x <W(C) >A ZA <xy> y 

x exp [-~i 2 Z map×(hap)] 

go P 

O({hxy }) = II if x(gap) ~ O 

O otherwise 

, VP 

(4.64) 

If we define the probability measure d~ by 

where 

we have 

dg({hxy}) = const. 0({hxy})~({hxy}) H dhxy 
<xy> 

~({hxy}) = 

I 
--~ Z ~pX(hBp) 
go P 

E e 

{~xy } 

(4.65) 

(4.66) 

where 

lings 

o o 
<W(C)> A = S ~({hxy})<Wc>h, A 

o 
<W > is the expectation value of a ~2 

c h,A 

I x(h~p) ~ • 0 

go 

By the concavity of the logarithm 

( 4 . 67 )  

Wilson loop with random coup- 

o o 
l°g<W(C)> A > S d~({h })log<W >i . (4.68) 

-- xy C n,n 

For the last expression the usual low temperature expansion can be carried out 

as in Theorem 3.14. The activities of defects are not necessarily small for all 
2 

{hxy} but their ~-averages are, provided go is small and convergence is esta- 

blished easily. 

o 

Remarks : (I) This does not prove that the usual Wilson loop <W(C)> = <X(hc)W(C)> 

has perimeter decay. It is quite plausible that larger defects will still sufficient- 

ly disorder the system to produce an area law for it. 
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(2) Mack and Petkova prove the dual statement 

-~ A(C) 
,,i<D(C)>l_<e ~ , % > o  

by a similar method using the chessboard bound (Theorem 2.2) in an essential way. 

Finally let us briefly explain 't Hooft's duality relation [76] for four-dimen- 

sional lattice Yang-Mills models. We discussed already vortex containers (or magne- 

tic flux containers) and the importance of the free energy of magnetic flux. Instead 

of the containers of topology S 2 S 2 × used above it Hooft simply considers a system 

living in a 4-torus Six Six Six S I = T 4 ~ A . Magnetic flux is introduced by sin- 

gular gauge transformations as follows : Pick two factors SI,s I from T 4 , choose 

an element m in the center of G and a plaquette P in SIx S I . Modify 
~v o ~ v 

the action by multiplying g~p by ~v for each plaquette P in T 4 that is map- 

ped onto P by the canonical projection from T 4 to Six S I . This may be done 
o M 

for all pairs (M,v) at the same time and the resulting modified partition function 

ZA({~v}) 

can easily be seen to be independent of the choice of P . We say that 
o 

c a r r i e s  m a g n e t i c  f l u x  m i n  t h e  d i r e c t i o n  * ( ~ , v )  d u a l  to  ( ~ , v )  . 

ZA({~v}) 

Electric flux is introduced in a dual way : Let {XT} ^ be a comple~ set of 

irreducible characters of the center Z of G We define T6Z 

ZA({~ }) ~ S X~ (~ )Z({m }) ~ dm (4.69) 

and we say that ZA({Y}) has electric flux Y in the direction (~,v) . 

To motivate this language one should consider the response of (4.69) to another 

singular gauge transformation ~'~v : it gets multiplied by XT~v(~' )g and this is 

characteristic of electric flux (for instance a Wilson loop shows analogous behavior). 

Now we specialize to G = ~ or SU(n) and look at the possible behavior of 
n 

Z({~ v}) and Z({~ v}) for increasing A . Denote the sides of A by LI,...,L 4 o 

Electric confinement corresponds to a bound 

ZA(TI2) -~TI2LIL2 
cL3L4e 

2A(~) 

(4.70) 
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where = > 0 (the "string tension") and c are independent of 
TI2 

whereas magnetic confinement would mean for instance 

LI,--.,L 4 , 

ZA(m34) -~m34L3L4 
ZA--~-~-- ! c'LIL 2 e (4.71) 

But the left hand side of (4.70) can be expressed in terms of the left hand 

side of (4.71) by (4.69) 

2~iTI2mZA(m)/ZA(~) ^ Ee 
ZA(~12) m 

EA(~) E ZA(m)/ZA(1) 

and assuming (4.71) we get for L3, L 4 ÷ 

(4.72) 

^ 

ZA(~I2) 
- - ÷  i 

which is incompatible with (4.70). Note that (4.70) in fact implies a bound of the 

form 

ZA(mI2) -~LIL 2 
II°gzA(--~-- ! c"LBL 4 e (4.73) 

where ~ = inf = and (4.73) in turn implies a bound of the form (4.70) (with 
T T 

= ~) . Note also that (4.73) exactly corresponds to (4.57) ; it expresses 
TI2 

"spreading of magnetic flux". 

We see again that spreading of magnetic flux is necessary for electric confine- 

ment. The analogy between this argument and the proof of Theorem 4.31 is visible. 

The expansion results of Section 3 actually suggest a stronger version of the 

statement : 

Conjecture : Whenever there is amass gap and magnetic (electric) charges are not 

confined - i.e. the corresponding loop has perimeter decay - then electric (magne- 

tic) charges are confined (cf. 'tHooft [76]). 

It is noteworthy in this connection that the introduction of (electrically) 

charged matter fields destroyed the area lawfor the Wilson loop while producing an 

area law for the't Hooft loop. This suggests again (by interchanging "electric" and 

"magnetic") that some kind of dynamical magnetic monopoles might be essential for 
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f) Some Rough Ideas About Roughening 

Durhuus and Fr~hlich not long ago published an article [66] containing such a 

wealth of ideas and results that we could not do justice to it by trying to present 

its contents in these lectures. They develop a very interesting picture based on 

considering a d-dimensional lattice Yang-Mills theory as a stack of (d-l)-dimensio- 

nal nonlinear G × G o-models with random couplings. The "spins" are the "vertical" 

gauge fields; their random coupling is provided by the "vertical" plaquettes. This 

allows to view the expectationof a Wilson loop as (imaginary) time evolution or 

diffusion of a string which thus traces out a random surface. 

The most interesting aspect is this : For strong coupling the confinement bound 

follows simply from the uniform exponential clustering of the g-models. But for 

d ~ 4 these o-models have a critical point and a phase transition to an ordered 

state. The only way in which confinement can persist is then by wild fluctuations 

of the strings and the sheets they trace out because that leads to cancellations in 

the random phase factors. So a kind of "surfaCe roughening" seems essential to main- 

tain confinement. 

Lately there has been a flurry of papers dealing with ~his presumed roughening 

transition (for instance [75]). Some of them give numerical evidence (breakdown of 

high temperature expansions),others offer intuitive evidence, mostly based on ana- 

logy with theising model. The most convincing argument, I think, has been proposed 

by L~scher [75] in this context - it is well known in the context of the Ising model -- 

and roughly goes as follows : 

At high temperature (strong coupling) the cluster expansion for the Wilson loop 

gives a probability distribution of sheets (i.e. clusters of polymers in our langu- 

age) spanned into the loop; there is a finite surface tension trying to keep the 

sheet from wiggling two much. Now at large coupling it should be reasonable only to 

consider simple sheets that may be described by a ~-valued height function h in 

d = 3 ; in d = 4 , h has to be ~2-valued. The effect of the surface tension 

might be subsumed in an effective action 

K E (hx-hy) 2 
<xy> 

where the sum is over nearest neighbors in 2E 2 (the plane of the Wilson loop). Now 

this is just the action of (the dual of) the Villain version of the plane rotator 

which for K small enough behaves essentially like a Gaussian - this is the famous 

Kosterlitz-Thouless transition [59] recently proven to exist [60]. But this means 



that the mean height fluctuation diverges logarithmically with the size of the loop: 

The surface gets completely delocalized! Actually it never really gets "rough" be- 

cause the surface tension stays finite. 

There can be no doubt that this effect really occurs, and it is a nuisance from 

the point of view of calculations : It probably would produce an essential singulari- 

ty through which one has to pass when going from the well analyzed strong coupling 

region towards the critical point (which for continuous nonabelian group G and 

d ! 4 presumably lies at go = 0 ). And the critical point is where the continuum 

has to be found ! So the sad fact is that there is no easy way to extrapolate the 

high temperature series to weak coupling. But in principle that should still be pos- 

sible as long as there is no natural analyticity boundary in go which seems reaso- 

nable to believe. 

So after these anticlimatic remarks let us turnto the continuum and the little 

that is known about it rigorously. 



II. CONTINUUM GAUGE QUANTUM FIELD THEORIES. 

This should be the main subject of these lectures, but unfortunately it is much 

less developed than lattice gauge theories. We will first describe the main approa- 

ches which fall into three classes : Continuum limits of lattice theories, direct 

continuum constructions and hybrid approaches. For the first two we will illustrate 

how they work in simple examples, namely pure Yang-Mills theory in two dimensions 

and the Schwinger model (massless QED 2 ). The hybrid appoach will concern us through 

much of the rest of these lectures : it is used in the construction of the two-dimen- 

sional abelian Higgs model that will be discussed in some detail and which will be 

shown to be a quantum field theory in the sense of Wightman; we also give an outline 

of the construction of massive QED 2 by this strategy. It will, however, become 

clear that Wightman's axioms are not the most natural framework for gauge theories, 

at least in the nonabelian case. 8o at the end we will discuss a possible alternative 

framework dealing with extended gauge invariant objects such as Wilson loops instead 

of local fields. 

The philosophy behind this is the same that was already behind the lattice 

approximation : To avoid as much as possible to get entangled in the "hinterwelt" 

[I] of ghosts and unphysical degrees of freedom. 

5. APPROACHES TO THE CONSTRUCTION OF CONTINUUM GAUGE QUANTUM FIELD THEORIES 

a) The Sealing Limit. 

This appears to be the most natural approach from a conceptual point of view; 

unfortunately it is hard to carry out in general because it requires detailed infor- 

mation about the behavior of lattice theories near a critical point. A detailed dis- 

Cussion for ~4 models has been given by Schrader [2]. 

A lattice model is characterized by a number of "bare" parameters (coupling 

constants) ~ = (XI,...,Xr) 6M r appearing in the action. Now one tries to find an 

equal number of "physical" parameters to characterize the theory, such as a number 

of masses expressed in physical units like kilograms or GeV's and maybe some dimen- 

sionless physical coupling constants (charges); we denote all these by 

map" 

--~ = (Pl .... ,pr ) EIR r 

The model provides, for given lattice constant 

R(E) : 1~ r ~ G ÷]l r 

renormallzation e , a map, the " 
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R(~)~ - ~(~,~) (5.1) 

Now one wants to send e to zero keeping ~ fixed; this means that all length 

scales measured in lattice units have to go to infinity, i.e. we have to move to a 

critical point. This requires of course some invertibility of the map R(e) which 

is the main concern of Schrader [2] in his study of ~4 models. 

Assuming this is possible and everything is sufficiently smooth, (5.1) implies 

a version of the Callan-Symanzik equations [3] : 

r 8p 

0 =~e p(e,~(e)) = E A i ~. +~e_~(c,~(E))I~ (5.2) 
i=l l 

~. 

where A: = ~ are usually again considered as functions of e and I 

The map R(E) is particularly simple for pure Yang-Mills theories because they 

depend only on one bare parameter go " It is convenient and customary to take as 

the corresponding physical quantity the "string tension" 

~ E - lim I log<W (C)> (5.3) 
A(C).~ e2A(C) 

where A(C) is the area measured in lattice units. 

depends on e explicitly only in the obvious way 
T 

N I 
= --f = (5.3') T T 

where s T depends only on go ' not on e • (5.2) becomes 

d~ 

0 = -2aT-B(g o) 
dg o 

dg o 
where 8 is the "lattice Callan-Symanzik function" 8 = - e~-e 

function of go " 

(5.4) 

considered as a 

The hope is that the scaling limits of expectation values of reasonable functions 

of the fields 

I) exist (this requires of course some action of the scale transformation on the 

fields). 

2) are independent of the choice of physical parameters (within some reasonable 

class) to be held fixed. 
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3) are euclidean invariant and define a relativistic quantum field theory of some 

sort. 

The third point could be established for instance by verifying the Osterwalder- 

Schrader axioms [4] for the expectation values of (local) gauge invariant fields or 

the assumptions on non-local gauge invariants objects formulated in Section 8. 

Warning : The second point is not always true as has been shown for the pure U(1) 

lattice gauge theory in three dimensions in the beautiful work of GSpfert and Mack 

[72]. 

Let us see how these ideas work in the trivial case of pure Yang-Mills theory 

in two dimensions. In order to get simple formulas (no Bessel functions) let us use 

the Villain form (1.8). By direct computation using the Peter-Weyl theorem [5] we 

obtain 

1 2 
<W (C)> = e- ~ go CTA(C) 

T 
(5.5) 

(each link <xy> belongs at most to two plaquettes, so integration over gxy re- 

quires the two adjacent plaquettes to carry the same irreducible representation o 

as long as <xy> ~ C . For free boundary conditions we obtain o = I outside and 

= ~ inside the loop; for other boundary conditions the thermodynamic limit also 

only lets these representations survive). So we have 

1 2 = 2 go cz (5.6) 

1 (_~ c (5.7) ~=~_ )2 T 

and we obtain a scaling limit by requiring 

This corresponds to 

go(t) = ~g (5.8) 

8(go) = -go (5.9) 

(5.8) and (5.9) express the trivial "asymptotic freedom" of this superrenormalizable 

model. 

It is easy to write down the continuum expectation value of any product of non- 

intersecting Wilson loops(the scale transformation acts on the loop observables sim- 

ply by keeping their size fixed in physical units) : 
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N N 
< H W (C.)> = exp[- I g2 
i=l ~i z ~ Z C T A(C i)] (5.10) 

i=l i 

and even overlapping Wilson loops cause no problem except requiring some Clebsch- 

Gordan gymnastics (see [6]). (5.10) is clearly euclidean invariant; of course there 

are no Osterwalder-Schrader axioms to be checked because we do not have expectation 

values of fields living at points, but rather on loops. In the last section I will 

discuss some modification of the Osterwalder-Schrader axioms appropriate for this 

situation. 

Let us return to (5.4) for a moment. It is generally believed that the leading 

behavior (the first two nonvanishing Taylor coefficient)of the 8-function is uni- 

versal, i.e. independent of the way in which the scale or cutoff parameter is defined. 

Assuming this one can use the behavior of 8 as given by the famous computations of 

"asymptotic freedom" [7] in d = 4 that were done in the continuum by standard per- 

turbation theory : 

B(g o) =-c G g3o + 0(gbo ) (5.11) 

where c G is proportional to the quadratic Casimir operator of G in the adjoint 

representation. Its precise value is determined by comparing the normalizations in 

(1.6) and (1.5) (see [8]). 

This allows to predict the weak coupling behavior of the string tension when 

inserted in (5.4) : 

~ = 0(g~ exp 12 ) 

cGg 0 

It is truly remarkable that M. Creutz [8] in his celebrated Monte-Carlo studies 

of lattice Yang-Mills theory actually found at least consistency with this asympto- 

tic behavior with the correct constant c G . This is considered one of the strongest 

pieces of evidence for the soundness of the lattice approximation and for the correct- 

ness of the general belief that QCD confines quarks (a more sceptical view, how- 

ever, seems to be suggested by [73]). 

These discussions show how renormalization group ideas naturally enter into the 

study of the continuum limit. Ba~aban [9] has announced a result that would go a 

long way towards controlling the continuum limit of 3-dimensional models and that 

makes use of the ideas of the renormalization group in an even more essential way, 

inspired by the stability proof for $4 model in 3 dimensions due to Gallavotti and 

friends [i0]. The stability result announced by Balaban has the form 
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l l°g ZAI ! CIAI 

with a constant C that is independent of the lattice spacing ~ . His method is 

based on an iteration of a "block spin transformation" that produces a coarser and 

coarser lattice with increasingly strong coupling which is asymptotic freedom looked 

at from the opposite direction. One then starts this iteration at an increasingly 

fine lattice with smaller and smaller coupling in such a way that after a high enough 

number of iterations one essentially recovers the theory considered in the beginning. 

Since a detailed account is not yet available we will not discuss this approach 

beyond these remarks. 

Note added : In the meantime a preprint [9] appeared in which Balaban describes how 

his method works for a somewhat simpler model. 

b) Direct Continuum Constructions. 

It is sometimes possible to follow the more traditional methods of Constructive 

Quantum Field Theory also in the case of gauge models (see [ii, 12, 69] for more 

information about Constructive QFT ). For instance a version of QED 2 (the massive 

Schwinger-Thirring model) was constructedand established as a Wightman field theory 

already some time ago [13] by these methods. This was done however by a trick : The 

so-called bosonization maps this model into an ordinary scalar selfinteracting field 

theory (the massive Sine-Gordon model) and the standard constructive methods become 

applicable. The gauge aspect, however, is completely obscured by this trick, which 

furthermore has no chance of working in more than two dimensions. 

A more generic approach can be followed for QED 2 (without the Thirring term). 

It is based on the Matthews-Salam formula [14] that proposes to construct the funct- 

ional measure by first "integrating out" the fermion fields. This can be done directly 

in the continuum, provided some care is taken, and has been done successfully for 

Yukawa models [15, 16] (see [12] for more references). There is a little problem, 

however, because in the continuum one usually needs at first a cutoff (replacing the 

lattice cutoff) and these cutoffs have the annoying tendency to spoil either gauge 

invariance or Osterwalder-Schrader positivity. However, one may argue that it is 

sufficient to recover all desired properties in the limit when the cutoff is removed. 

Magnen and S~n~or have announced a partial construction of QED 3 based on this 

strategy [17]. 

The Matthews-Salam formulae can be obtained from the formalism described in 

Section i by integrating out the fermions following Berezin's prescription given 

there and passing to a formal continuum limit. A detailed discussion of this proce- 

dure is contained in [74]. It is convenient to rescale the gauge field A ~ eA . 
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Gauge field expectations are then given by the formal probability measure 

1 e 
d~(A) = ~ det(l + Ipem~ IDdm".M.1 (A) (5.13) 

where dmy.M.(A) is the (formal) continuum Yang-Mills measure. Expectations of fer- 

mion fields are also expressed by d~ ; a typical example is 

ie ~ y Adx' 
<~(x) e x ~ (y)> = 

ieS y Adx' 
= Str e (i~+eA+M)-l(y,x)dmy.M.(A) 

(trace over Dirac and internal indices). 

(5.14) 

In principle (5.13) and (5.14) are as good a heuristic starting point as the 

usual euclidean functional integral; one only has to verify the axioms in the end. 

Osterwalder-Schrader positivity is somewhat nonobvious, but it can be proven by a 

"Hamiltonian" derivation of (5.14) and (5.13) as given (with a correctible error, 

el. [74]) in [18] for a Yukawa model, or it can be deduced by going through the 

lattice approximation in a more careful way; this will be done in the next section. 

The message of (5.13) and (5.14) is the following : One should first study the 

integrands which correspond to external field problems and then worry about inte- 

grating over the gauge fields; in the abelian case we only have to integrate with a 

suitable Gaussian measure (that may contain cutoffs, gauge fixes etc.). First let 

us discuss the determinant in (5.13). It is of the form det(l+eK(A)) where K(A) 

can be taken to be 

K(A) = (p2+M2)-3/4(-i~+M) A(p2+M2)-I/4 (5.15) 

by a formal similarity transformation. We think of K(A) 

H F E L2~R~ d) × V F . For a sufficiently nice external field 

compact operator in iq for q > qo ' where 

as acting on 

A , K(A) 

Iq -= {CIC compact operator on H F ; Tr(C*C) q72 < ~} 

Lemma 5.1,: Let A 6 0 LP0R d) . Then K(A) 6 I for q > d . 
p~l q 

will be a 

Proof : In [19] it is proven that operators of the form C = f(x)g(V) , i.e. multi- 

plication in p-space followed by multiplication in x-space obey the bound 
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llCllq E const llfllq llgll q (5.16) 

where q ~ 2 and IICII ~ (Tr c*cq/2) I/q . Now K(A) may be written as a product 

of unitaries, IAll/2(p 2 ~ M2) -I/4 and its adjoint, respectively, from which the 

assertion follows, m 

The point is that for operators of the form I+K , K E lq (q ~ I) there is 

a well developed theory of modified Fredholm determinants (see [20,74] : 

Definition 5.2 : Let C E I . Then 
q 

p-I i C k 
E ~rr 

det (l-C) ~ det[(l-C)e k=l ] 
P 

(for p > q) . 

Remark : The right hand side is of the form det(l+B) with B E 71 (trace class) 

and therefore is well defined. Formally (or rigorously for IICII < I 
i 

log detp(l-C) = - Z ~ Trck). det has a number of good properties; among them 
k>_p P 

Lena 5.3 : det (l-zC) is an entire function of order p in 
P 

exactly at the inverse eigenvalues of C . 

z ; it has zeros 

Proof : See [20]. m 

Returning to fermion gauge theories, we should restore the terms Tr C k (k< p) 

that were deleted in det as well as possible in order to define a renormalized 
P 

determinant. It is not legitimate to leave them out since this would not correspond 

to local counterterms. Note that Tr K(A) k corresponds to a one-loop Feynman graph 

with external gauge fields at the corners 

Tr K(A) k ~ 

and we know very well how to renormalize these; denote the renormalized expressions 

by TrrenK(A)k . Then we can define 

d k 
= e Trren(_K(A))k ] Definition 5.4 : detren(l+eK(A)) detd+l(l+eK(A))exp[- E ~-- 

k=l 
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Remarks : 

I) It is understood that the renormalization is done in such a way that det is 
ren 

gauge invariant and the subtractions correspond to local counterterms so that 

OsterwalderwSchrader positivity is preserved (all these things should be discussed 

in more detail; see [74]). 

2) With a little work one can arrive at a closed expression for a renormalized deter- 

minant that is in fact based on a classic paper by Schwinger [21]; for instance in 

d = 4 it reads 

logldetren(l+eK(A))I 2 = 

Iog(tA2)Tr(HF(A)e-tHF (A) -tHF(O) 
= S dt -e HF(O)) (5.17) 

o 

Here A is a scale parameter (it has dimension of a mass) and HF(A) 

sional nonrelativistic Pauli-Hamiltonian : 

is a 4-dimen- 

HF(A) = (i~+e~+M)*(i~+e~+M) 

A detailed proof and discussion of (5.17) would lead too for afield here, but formal- 

ly it is quite straightforward to derive (see [74] for a rigorous derivation). 

Let us turn back to the $chwinger model. Its triviality stems from the fact 

that the determinant is so simple. 

Lemma 5.5 : If d = 2 , A 6 L 2 , M = O then 

det4(l+eK(A)) = I 

Corollary 5.6 : The spectrum of K(A) is concentrated at zero, i.e. K(A) is 

quasinilpotent. 

Proof : This follows from the following three facts : 

a) det4(l+eK(A)) is gauge invariant. 

b) det4(l+eK(A)) is even in e , 

c) det4(l+eK(A)) = det4(l+eiY5K(A) ) . 

a) is obvious by construction. 
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b) is the well known theorem of Furry; it is true because the determinant is inva- 

riant under charge conjugation which, however, changes e into -e . 

c) follows from b) : 

det4(l+eK(A)) = det2(l-eK(A)2) I/2 

and K(A) 2 =(iY5K(A)) 2 

Now because of a) we may assume ~ A = O (replace A by A +~ A-I~ A ) . By 
P P P ~ P ~ 

c) and the fact y5 K = i~ with B = ep A we have det4(l+eK(A)) = det4(l+eK(B)) . 

But B is a pure gauge, so by a) det4(l+eK(B)) = det4(1) = I . 
[] 

Remark : This is of course Schwinger's result [24]; this proof is taken from [23]. 

Lemma 5.7 : For d = 2 , A E L 2 , M = 0 : 

2 
e 11ATil 2 detren(l+eK(A)) = exp(- ~ 2 ) 

where A T ~ A +~ A-I~ A is the "transverse" part of A 
p ~ p v ~ 

Proof : This follows from~he standard computation of Tr K(A) 2 
ren 

vacuum polarization), cf. [24]; see also (7.64), (7.65). 

(the second order 

[] 

Remarks : 

I) detren(l+eK(A)) obeys the "diamagnetic" bound of Section Id) . 

2) detre n(l+eK(A)) is not equal to i=l~ (l+eX i) where (Xi)i= I are the eigenva- 

l u e s  o f  K(A) . T h i s  i s  so  e v e n  t h o u g h  no c o u n t e r t e r m  was r e q u i r e d .  

To complete the construction we have to give a meaning to the measure dmy.M. (A), 

This will be a Gaussian measure with a covariance that has at first to contain a 

cutoff. A possibility is to take d~.M.~ with covariance 
kk .2 

I ~ ,)) e - t k  a ~ (k) = i-~ (8~v i-~" . To make dm(A) well defined, we also have to include 
z %  

a temporary space-time cutoff function in K(A) , for instance by replacing A by 
P 

A g where g 6 C~0R2)mu " It is then straightforward to see that 

detren(l+eK(Ag)) 6 LI(d~.M.) 

and 

! detren(l+eK(Ag))d~ M dpt'g ~ Z . . 
t,g 
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is again a Gaussian measure with a covariance 

Dt'g(k ) 

that convergesin the weak sense (i.e. moments and characteristic function converge) 

towards d~ with covariance 

e 2 )-i k k 
DB~ ~ (k2 +'-~- ( ~  7 ') (5.18) 

as t + 0 , g ÷ I . 

e 
If we look at (5.18) we see that there is a free scalar field ~ of mass 

lurking in the background (as everybody knows of course). To see more precisely 

its rSle let us look at the current j~ , determined by coupling in an external 

=0 : vector potential a ~ S0R 2) (Schwartz' test function space) with 8 a 

<eiej~(a )> 

= lim i Sd t 
t+O Zt,g mY'M" detren(l+eK(gA+a)) 
g+l 

2 2 
e 2 e A(a)) 

= S d~ exp(- ~ llall - -~- 

2 
= exp[-~ (f, (-A+ -~-e2)-If "]) 

where f = c 8 ~ ua . So .i behaves like a Gaussian random field defined by 

I 
j~ = ~ E 3 (~+8) (5.19) 

with an arbitrary constant 8 

On the other hand F = ~ 3 A is a Gaussian random field with covariance 

k 2 2 e 2 
C(k) =----~ = I _ e__ (k 2 + )-I (5.20) 

k 2 +e___ 

In a very symbolic way we can write therefore 

F = m - i __e ¢ (5.21) 

where ~ is a white noise field (Gaussian generalized random field with covariance 
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<~(f)~(g)> = S f(x)g(x)dx 2) . (5.21) is simply meant to express the relationship 

between the covariances of F , m and ¢ . It cannot be taken literally, of course, 

because all three random fields are real valued. 

A small surprise arises if we try to interpret F and 

fields : This is not possible because the two-point function 

To see this we compute as before 

<eiej~(a~)+iF(h)> 

2 2 
e 2 e A(a)+iF(h)] = S d~ exp[-~-~ llal I -~-- 

2 e2)_If) e 2 e _ I = exp{-~-~ (f,(-A+~-- 7 (h,(-h)(-h+ ~ )-lh) 

2 e2)_lh) 
+ i e--- (f,(-A+-- } 

j~ jointly as random 

<3~" F> is imaginary .) 

(5.22) 

So F , jB behave like Gaussian random fields as far as the "algebraic" 

structure is concerned, but the would-be covariances are 

i e2)-l(x ) <j (x)jg(x)> = ~ (~ +A-18 8 )(-A+~ - ,y (5.23a) 

2 
<j (x)F(y)> = - i e~ e~v~ (-A+ ~)(x,y) (5.23b) 

<F(x)F(y)> = (-A(-A+e2)-l)(x,y) (5.23c) 

Note that all this information is already encoded in (5.19) and (5.21). 

If we define the axial current 

.5 

we read off the consequence 

.5 ie ~ ]~ --~- F = 0 

which is the well-known axial anomaly relation (cf. [53]). 

(5.24) 

(5.25) 

Another consequence is 

8 F-ieE vj 9 = 8 ~ (5.26) 
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which should be regarded as the quantized version of the inhomogeneous Maxwell's 

equation. The right hand side is only a "contact term" that does not show up in the 

Wightman functions; the i becomes understandable if we remember that F = iE where 

E is the physical electric field. 

Since the equations (5.25) and (5.26) involve already i's and since analogous 

equations have to hold in any gauge theory with fermions (for instance QED 4 or 

QCD 4 ) we have to expect that such models can never be completely described in 

terms of random fields: formally they involve complex measures (I do not want to 

enter into a discussion of whether they can be genuine measures). In the language of 

Constructive Quantum Field Theory : Nelson-Symanzik positivity cannot be expected to 

hold in gauge theories with fermions. 

i 

8-states can be defined by picking a value in (5.19) or, equivalently, by the 

prescription given in Section 4, namely by inserting a factor ~ 

i8 ~Ag ~ Ap _ io ~AF 
e = e 

into the measure and sending A ~  2 . 

Notice that there is no symmetry corresponding to # ÷ ~+ e which would be 

axial U(1) symmetry. The conventional periodicity in e comes from the fact that 

one usually considers periodic functions in # to be naturally generated by the 

fields of the Schwinger model (such as : exp I---- # : corresponding to : ~ei~Ys~ : 
~4z 

in the bosonization scheme). 

I do not want to extend this discussion of a trivial model too much (even though 

"the Schwinger model is inexhaustible" [25]); what I sketched here is only intended 

to convince the reader thatmost of the well known results may be recovered without 

entering any "Hinterwelt" [I]. 

The final strategy to be discussed is a mixed approach treating matter and gauge 

fields in a different way. Matter fields are at first put on a lattice and coupled 

to a continuum gauge field with some regularity properties corresponding to a cutoff 

on the Yang-Mills measure (only in the abelian case do we have a good way of doing 

this). Then we take the continuum limit for the matter fields pointwise in the gauge 

fields (i.e. the gauge fields are treated as external fields). Finally one has to 

remove the gauge field cutoff. 

This procedure appears clumsy but it has proven so far the most flexible one. 

In particular it allows to prove Osterwalder-Schrader positivity and euclidean inva- 
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riance, as well as the rest of the O.S. axioms in two dimensions for abelian models. 

The scheme has been applied by Challifour and Weingarten [26] and Weingarten [27] to 

the massive Schwinger model where it allowed to construct the theory at least in a 

finite volume, as well as to the two-dimensional Higgs (Landau-Ginzburg) model by 

Brydges, FrShlich and myself [28,29]. The latter work will be the maln topic of the 

following t w o  secticnsand we will also remark how o u r  m e t h o d s  work for QED 2 . In 

Section 6 we treat external field problems whereas Section 7 is devoted to the remo- 

val of all cutoffs in the complete theory and verification of the axioms. 

cONVERGENCE TO THE CONTINUUM LIMITIN EXTERNAL OR CUTOFF GAUGE FIELDS. 

External gauge fields coupled to a P(~)2 model were studied by Schrader [30] 
4 

and the analogue for 43 by Potthoff [31]. Their work, while fully satisfactory if 

one is only interested in the external field problem, is however not easily extendable 

to a fully quantized theory because 

I) they do not include terms corresponding to virtual pair creation by the gauge 

field (i.e. the determinants to be studied below) 

2) the selfinteraction of the scalar field which they use depends nonpolynomially on 

the gauge field. 

In Ref. [26] a problem (QED 2) with an external gauge field that is "rough" is 

studied, i.e. the cutoff on the gauge field is removed from the beginning. This 

would be extremely hard in the case of bosonic matter and it is not really needed 

as will become clear. So here we follow Brydges, FrShlich and myself [28] where 

HSlder continuous external gauge fields are used as a first step. 

We show convergence for three types of objects : Covariant Green's functions, 

determinants and, finally, expectation values in a given external field. Finally we 

discuss quantized gauge fields with a cutoff. 

a) Convergence of bosonic Green's functions [28]. 

To a large extent the continuum limit can be reduced to the limit of Feynman 

graphs. Therefore it is important to show convergence for the Euclidean propagators 

(Green's functions). The strategy followed here for Bose matter reduces this to 

termwise convergence of the perturbation series in the external gauge field; this is 

possible because we have a uniform bound on the Green's functions due to diamagne- 

tism and sufficient analyticity in the coupling constant. 



Given a lattice gauge field {g~y} 

defined as an operator on 

£2(~ =HVH) 

or, depending on the context, 

~2(~d 0 A;VH) 

where A is a bounded open set in Rd 
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on ~d the covariant Laplacean A E is 
g 

(6.1) 

(6.2) 

and e~ d is considered imbedded in ~d . 

(6.1) and (6.2) consist of square summable functions from the lattice into the Higgs 

vector space V H A e is determined by the quadratic form 
g 

-(~,A~) = Z ll~(x)-gH(gxy)~(y)ll 2 (6.3) 
<xy> 

(where ~ is a Higgs field of compact support) and taking the Friedrichs extension 

(cf. [33]). 

The Green's function is the kernel of (-A~ + m2) -I , i.e. 

C~(x,y) E (-A~ + m2)-l(x'Y) (6.4) 

which takes values in L(V H) , the linear operators on V H . 

First we note the following simple diamagnetic bound ([32]; Refs [27] through 

[30] of Part I) : 

Theorem 6.1 : Let ~ 6 V H • Then 

< (~,C1(x,y)~) 1(~,C~(x,y)~)l _ 

Proof : This is almost trivial. By (6.1) 

-A e + m 2 = 2d + m 2 - A 
g g 

where A g "couples nearest neighbors" : 

Ag(X,y) = 

if x,y are nearest neighbors 

otherwise 
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Obviously llAgl[ : 2d . So 

A 
(-Ag +m2)-I = (2d+m2)-l(l - g2 

2d+m 

)--l = 

A 
= (2d+m2) -I E ( g 2 )n 

n=o 2d+m 

where the series converges in operator norm. 

NOW A~(x,y) is a sum over paths of length en from x to 

of unitaries (the parallel transporters from x to y ). Hence 

l(~,A~(x,y)~)l : (~,A~(x,y)~) 

from which the theorem follows. 

y of products 

Remark : The analogous statement is false for fermions (due to their paramagnetism): 

Assume it were true. Then, using the notation explained after eq. (6.24), 

~E+RAE~m 
log det Tr log 

~+R +m 
O 

~e+R +m 
O 

= -lim S T dt Tr[(~A~ A ~ +R +m+t) -I (~e+Ro+m+t)-l] 
T->~ o 

would be ~ O . But by Theorem 2.3 it is ! 0 which is only compatible if it vanishes 

which of course does not happen in general. This remark shows that the "diamagnetic" 

inequality (Theorem 2.3) for fermions is really an expression of paramagnetism. 

So for convergence of fermion Green's functions one has to find a different 

method. But because the usual fermion models do not involve direct self interaction 

of the fermions one can use theMatthews-Salam formalism (see above) which only 

involves products of Green's functions with determinants. These products can be 

bounded easily (see [15]); we will come back to this in the subsection about deter- 

minants. 

Next we turn to the analyticity result alluded to before. It is convenient to 

consider a slightly more general class of Green's functions by replacing UH(gxy) 

with arbitrary bounded functions I+A from the links into L(V H) . The correspondin~ 

Green's functions are denoted by 

C~(x,y) (6.5) 
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and we use the norm 

IIAII ~ sup llAxyll (6.6) 
<xy> 

Then we have the following result : 

Lemma 6.2 : Let A,B be bounded L(V H) valued functions of the links of A A e ~d 

and XA the characteristic function of A ^ . Then X.A(X)CAe^~.~(x,y)x-(Y). n is a real 

analytic function of X with values in ~Z((A A e ~d) x (A n E ~d) ; L(VH)) . It 

extends to a function analytic in the strip defined by 

~I Im xl IIBII + .Im X.2 2 

N 

and its extension XACA+%BXA obeys 

Remark : 

N I 
II XACA+~B×AII 2 <- II XACA+ B Re X×A II 2 I '~  

I) C itself is not analytic because of the norms appearing in (6.3). 

2) The norms in (6.7) are Hilbert-Schmidt norms = ~2-norms of the kernels. 

(6.7) 

Proof : The lemma is proven by expanding XACA+xBXA in a power series in Im % ; 

convergence is obtained in the strip described above by essentially routine methods. 

See [28] for more details. ~ o 

The relevance of this lemm~a becomes clearer through 

Corollary 6.3 : Let A ~ be a function of the links of g~d A h taking values in 

the Lie algebra of G . By the exponential map this induces a gauge field {g~y} : 

~ exp ieA E (Here we use the physicists' convention of antihermitian Lie al~e- 
~xy xy 

g (%) E exp i~%A e (X ~ ~) . Then XACg(x)X A is real analy- bra elements). Define gxy xy 

tic in X and extends to a function ~g,A g(%) analytic in a domain defined by 

where 

211m %1 f(e,X,llAgil ) + (Im2X______~)f(e,X, llAgll )2 _ ~ < I (6.8) 
m 

m 

--~ 11m %1 NAell 
I 2 f(~,%,IL A~tt) = ~ e 

x [4(sh(~ Jim X1 lIAe[l ))2 + E2(Re %)211AeH 211/2 
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and obeys the bound 

~,A E llCg(k ) II 2 i II XAClXAI120-0 -1 (6.101 

Remark : Note that the complicated looking region described in (6.8), (6.9) for 

e + 0 reduces to the strip 

2[~m ~l II All + (Im X)____~ 2 i iAl l2 _= ~ < 1 (6.11) 
m 2 ' 

m 

provided limll Ae-AII = 0 and it contains a strip of width independent of 
e->o 

Proof : We use the lemma with 

i~A E 
A E ! (e xy_j) 
xy e 

i~A ~ ieXA E 
B _= i xy T~ e XY(e xy_~) 

The fact that B itself depends on X does not cause any problems (the composition 

of holomorphic functions is holomorphic). To obtain (6.10) we used in addition dia- 

magnetism in the form of Theorem 6.1. D 

Before we state the main result of this subsection we have to make a trivial 

but crucial remark and a definition. 

Remark : There is a natural imbedding Q~ of lattice £2 into continuum L 2 by 

identifying lattice functions with piecewise constant functions. The adjoint Qe 
2 

maps L into £2 by averaging functions over elementary (hyper-) cubes. Qc is 

an ~sometry, Qe a partial isometry. When we speak about convergence of lattice 

functions to continuum functions we always tacitly assume the use of this embedding. 

Definition 6.4 : A family {g~y} of lattice gauge fields is said to converge to a 

continuum gauge field A as E ÷ 0 iff 
P 

A~(x)- ~ (UH(g~;x+~) - I) (6.12) 
P 

converges to A in L ~ norm (~p is the unit vector in +p direction). A typical 

example of this convergence occurs when the lattice gauge fields are obtained by 

integrating a continuum gauge field. We have the following result : 
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Theorem 6.5 : Assume that the lattice fields {gxy} converge to Ap as e + 0 . 

Then the Green's functions xAC eXA converge t o XACAX A in LP(A x A) for 

d g 
i ! p < ~ in d = 2,3 . C A denotes the continuum Green's function 

(-AA+m2)-l(x,y) . 

Remark : This result probably also holds for d > 3 . A proof would require a gene- 

ralization of Lemma 6.2 with the £2 topology replaced by £P topology (p < ~_a 2) . 

This has not yet been done. 

Proof : 

I) L 2 convergence implies L p convergence trivially for P ! 2 ; for p ~ 2 it 

is also true because of Hb/der's inequality and the fact that ]IC~II is uniforml7 
d ' g  L p 

bounded for e + 0 by the diamagnetic bound, provided p < dj 2 . 

2) Corollary 6.3 tells us that we may assume the gauge field Ag(x) to be arbitra- 
P 

rily small, using an argument parallel to the proof of Vitali's theorem : 

Given ~ > 0 , we can find a %o that brings g(%o ) close enough to I to 

ell < 6 for all E < I (see Corollary 6.3 and (6.12). Suppose we know con- make IIA 

vergenee as e + 0 for these "small" gauge fields. By corollary 6.3 xAC[e(%XAs, 

is analytic in a strip-like region and by (6.10) uniformly bounded. To see conver- 

gence at % = I take a sequence of open disks DI,...,D N , and contained in the 

strip, such that the center of Di+ I is in D i (i = I,...,N-I) and D 1 9 %o ' 

D N 9 1 . Assuming convergence in DI,...,D k we get convergence of the Taylor coef- 

ficients of the expansion around the center of Dk+ I and this gives convergence in 

Dk+ I • 

E in 3) We choose now llA ll so small that the perturbation expansion of XAC EXA 
g 

powers of A e converges in £2 (uniformly in e ). It is easy to see that this 

is possible and that the terms of the series converge to the terms of the perturba- 

tion series for the continuum Green's function. For more details consult [28]. 

D 

There is another nasty little think whose convergence as e ÷ O is needed, the 

so-called re-Wick ordering constant. It is well known that in the continuum the po- 

tential V(I~ I) has to be Wick ordered. This Wick ordering formally corresponds to 

subtracting terms with divergent coefficients such as C(O) . If an external gauge 

field is present it is much more convenient and certainly legitimate to use the 

covariance (= Green's function) C for Wick ordering. This is what Schrader [30] 
A 

and Potthoff [31] did. If we think about "quantizing" the gauge field by integrating 

over it this becomes contrary to the spirit of renormalization theory; in any case 
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it would correspond to a nonlocal nonpolynomial La~rangean and there is little chance 

to verify Osterwalder's and Schrader's axioms. Therefore one has to discuss the re- 

Wick ordering terms 

E 
6C e (x,x) - Cee(x,x) - C~(x,x) (6.13) 

g g 

ans show that they have finite limits as e + 0 . This is true in d = 2,3 : 

Theorem 6.6 : If the family of gauge fields g converges as E -> 0 , then 

S l~cCE(x,x) - 6c ~,(x,x)]Pdx + 0 
A g g 

for e,e' ÷ 0 and i !P ! ~ (d = 2,3) . 

Remark : For d = 4 the re-Wick orderin~ is infinite and some extra renormalization 

is required (this is no reason for concern here because nobody knows how to construct 

a field theory in d = 4 anyhow). Typical divergent graphs that spoil Theorem 6.6 

are 

and they contribute to charge renormallzation. 

Proof : This is quite complicated and we refer to [28] where the case d = 2 is treated 

in detail. Here we only try to give the strateg F. 

To make the cancellations in 6Ce visible we write again gxey(%)__ = exp ie%Axey__ 
g 

and consider 

F (%) E 6C e (x,x) (6.13) 
x ge(%) 

Note that 

l) F (0) = 0 
x 

2) F'(O) = 0 (6.14) 
X 

i) is obvious; 

2) follows from the fact that F is even; 
X 

this can best be seen from an expansion in paths as used in the proof of Theorem 6.1. 
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Here we will have a sum over closed paths beginning and ending at x ; to each path 

there is also its inverse that corresponds to the opposite orientation; taking the 

inverse path has the same effect as replacing ~ by -~ (this is essentially again 

Furry's theorem). 

Because of (6.14) we have 

Fx(1) = ~ d~(1-~)F~(~) (6.15) 

To see what this is, write again 

A~ (~)=l(UH(g¢-iEx (~)) - I) (6.16) 
xy y 

d E E e E gE(l) A~ + W (6.17) 

which can be written symbolically as 

W = i(d*A + A'd) - A*A (6.18) 

(d is the lattice gradient, d* = 6 in the chain notation of Section 4: A can 

be considered as a map from O-chains to 1-chains). 

Now 

d 2 
F"(I) =-- C E (x,x) (6.19) 
x , d~2 g~(%) 

and 

__ C E E dW ~ E dW E E _ E d2W__~ ~ E 
d2 ffi 2 C~ ~-~- C~ ~-- C~ C~ d% 2 C I . (6.20) 
d%2 ge(%) 

Inspection shows that (6.20) does not contain any divergent parts. A little functio- 

nal analysis together with diamagnetism (Theorem 6.1) shows that ~C E ffi F (I) 
g E ( X  ) x 

has a uniformly (in E) bounded L p norm and is a LI-Cauchy sequence for E + 0 . 

This is enough to prove the theorem by H~Ider's inequality. Q 

b) Convergence of determinants. 

The importance of the convergence of determinants became clear already in our 

discussions of the Matthews-Salam formalism in Section 5. It is also important for 

the construction of Higgs models : Formally the measure 
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- ! 1 m211¢i2 2 ~ID¢i2- 
e de(x) 

x 

is identical to the normalized Gaussian measure d~(¢) with covariance 

C A = (-AA+m2) -I , multiplied by a factor that is a multiple of 

2 
-AA+m -1 

det(--?---~-) 
-A+m 

(On the lattice of course all these statements become true). Physically this factor 

contains the virtual pair creation by the gauge field. 

So in this subsection we want to study both boson and fermion determinants. We 

will make use of the formalism of modified determinants and I spaces introduced 
P 

in Section 5. 

We always write the operators of which the determinants are to be taken in the 

form I+K(A) . 

So for bosons we define 

~(A ~) E (C~) I/2 We(C~) I/2 (6.21) 

with 

W e = A e A e ge - I (6.22) 

and 

A e = ~(UH(ge)- I) (6.23) 

For fermions we define in analogy with Section 5 

Here 

and 

~e +R 
A e A e 

~(A e) ~ (C~ ~)3/4(~e+R +M)(~ e -~e+R E-R ) +(C e )1/4 
• ,~ o o A e o A o ~,F 

is the lattice Dirac operator determined by 

M E~+SF = -K E~(~Ae+RAE) ~ 

(6.24) 

e = [(~e+R +M).(~e+R +M)]-I 
C|,F o A e o o 

ieP 
so according to Section I, if we write e ~ for translation by I lattice unit in 
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the +~-direction, g~ for gx,x+e~ , we have for O = 0 

r+T~ U " ~)ei~P~ + E r-T~ -ieP~u, (e) rd 
~e +R = E-~-- Fkg~ -~--e e F g~ - ~- 
A e A e ~ 

(6.25) 

which becomes with the definition 

Ae ~.~lz~ (UF (gE) - ~) (6 .26 )  

=_ i i v~{Aesin~P -sineP (A) } ~ +R i THsin~PH_ ~ y~{A~coseP +coseP (A~)*} - ~ - ~ ~ p 
A ~ A e e 

r r{AesineP +sineP (A~)*) + ir{ A~c°seP -coseP (A~) ~} +-- E(coseP -I) - z ~ ~ ~ 

iey 5 
For e W o we simply have to multiply R and R by e 

A E o 

( 6 . 27 )  

We can now state the following convergence result : 

~ for any p > d as e ÷ 0 , Theorem 6.7 : (A E) and [A ~) converge in Ip 

provided A e converges to A in L = and A is a continuum Yang-Mills field of 

compactsupport. 

Remarks : 

I) All operators are assumed to act on H. E L 2 x V. , i = H,F . 
i I 

2) The compact support requirement can be replaced by sufficiently strong (powe r - 

like) fall-off. Theorem and proof are essentially taken from [28], where however 

only the Higgs case in d = 2 is discussed. See [26] for a related "fermionic" 

result. 

Proof : It is very easy to see that ~,F(A e) are uniformly in Ip (p > d) by 

writing them as a product of operators uniformy in 12p ; again one uses the theorem 

on operators of the form A = f(p)g(x) (multiplication in x-space by g followed 

by multiplication in p-space by f ) used in Section 5 (see [19]) : 

~IAII < const Ilfll IIgll , q > 2 . q-- q q -- 

To get/ Ip convergence it is sufficient to show 12p convergence of 

XA(C~ i )1,2 which is elementary, together with the following len~na : 
,F 

11% -> O ; B a uniformly bounded sequence of operators such Lem~a 6.8 : Let -All p n 

that B + B , B* + B strongly. Then A B -> AB in I . For a proof of this lemma 
n n nn p 
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s e e  [ 2 8 ] .  

These remarks should make sufficiently clear how Theorem 6.7 is proven. 

We are mostly interested in 

Corollary 6.9 : Let A e converge to A in L ~ where A has compact support. Then 

detp(l+K$(Ae)) Converges as e ÷ O for p > d and i = H or F . 

Proof : This follows from the standard result about det asserting that det is 
P P 

Lipschitz continuous on l (cf. [20], [34]). 
P 

So all that is missing is convergence of the low order expressions Tr K~(Ae) q 
1 

q ! d . The best we have to offer for this is explicit computation and renormaliza- 

tion where necessary. This is notoriously tedious - lattice Feynman graphs are no 

fun. It has been carried out in all detail for the second order vacuum polarization 

in QED 2 [26] and Higgs 2 [28]. The results in these cases, which do not require re- 

normalization, agree with those obtained by other gauge invariant regularizations 

such as Pauli-Villars or dimensional regularization. The necessary information for 

QED3, 4 is contained in the careful study of Sharatchandra [77]. 

To rest safely, one should carry out the calculations or give some general ar- 

gument for the nonabelian models in dimension d > 2 . However, there is no funda- 

mental obstacle preventing to make the following a theorem : 

Quasi-Theorem 6.10 : Let d = 4 . There are functions gi(e) 

gi(e) ÷ O as E ÷ O such that 

det(l+K~[Ae)) x exp[--- 
I 

Z (x(g~p)-X(1)] 
gi(g) 2 p 

converges as c ÷ 0 to a nonzero limit 

(i = H,F) with 

detren(l+Ki(A)) 

(which is actually given in Definition 5.4 for fermions), provided A C ÷ A 

sufficiently strong Sobolev topology. Even more straightforward should be 

in some 

Quasi-Theorem 6.10' : In d = 3 

lim det(l+K~(AE)) ~ detren(l+Ki(A)) 
e->o 
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exists for i = H,F and is nonzero, provided A e ÷ A in some sufficiently strong 

Sobelev topology. Finally there is a proven fact : 

E 
Theorem 6.11 : Let d = 2 . Then lim det(l+Ki(A )) exists and is nonzero for 

c÷o 
i = H,F , provided A e ÷ A in the norm 

IIAII + ; dx dy IIA(x)-A(Y)II2 
IIAII ~'~ AxA Ix-yl 2+e 

for some ~ > O . A is the support of A e , A . 

Remark : The stronger topology as compared to Theorem 6.7 is only necessary to make 

the second order vacuum polarization converge. For i = H this is proven in [28], 

for i = F a slightly stronger result occurs in [26] (it is not, strictly speaking, 

stronger since it deals with a random field A and proves convergence only in some 

mean sense; A is, however, allowed to be much rougher, in fact it does not even 

have to be a function but may be a distribution). 

Proof : We gave most of the arguments already. The norm used looks more plausible 

in Fourier space : It has the form 

HAIl ~,~ = IIAII + C a fI~(k) 121kl ~d2k 

and is of course tailored to make f d2k Ae(k)AE(k) x H e (k) converge where ~e 

is the second order vacuum polarization corresponding to the Feynman graphs 

+ ~ for i = H 

for i = F 

Explicit computation shows that Ep~ (k) = 0(loglk I) for large k if i = H and 

0(|) for i = F . 
[] 

This should also give sufficient ideas which Sobolev topology has to be chosen 

in d > 2 . 

The limit detre n does not vanish because det3(l+Ki(A)) is a function that 

vanishes only if Ki(A) has an eigenvalue -I . This would correspond to a zero 

eigenvalue of ~A + M (or -AA+M 2 , respectively) which is impossible because 

(@A+M)*(~A+m) >M 2 > 0 



(see [15] for a more rigorous but less transparent version of this argument). In 

1281 a more refined lower bound is derived. 

Theorem 6.12 : In d = 2,3 

E. 

Idefren(l+~i(~)) '12 1 

for i = H,F , % = -1 , E~ = 1 . 

Proof : This follows directly from the "diamagnetic" inequality Theorem 2.3 by a - 
limiting argument. See also [22]. 

0 

Remarks : 

1) In d = 4 the analogous statement is definitely false due to the counterterm 

that is needed. This must have been known already to Heisenberg and Euler in 1936 

[68] in some form. See [741 for a detailed discussion. 

2) By construction the renormalized determinants are gauge invariant, so they obey 

Ward identities such as 

a a - det (l+Ki(A)) = 0 
11 6AI1 ren 

for a U(1) theory or more generally 

6 DAll(A) - detren(l+Ki(A)) = 0 
"All 

where D,,(A) is the covariant derivative. 

3) By generalizing these determinants, coupling external sources to axial vector 

currents, it is also possible to derive the usual Adler anomalies [53,70,71]. 

4) A related fact is the equivalence of the parameter e introduced in the fermion 
i e action in Section 1 with the 9 of the 0-states defined bv inserting exp -i;; I F 

for OED2 or exp I I Tr F AF for QCD4 into the measure. 
8s 
2 

This follows from 

Theorem 6.13' : Let A€ + A in a topology sufficiently strong for det to con- 
r en 

verge; assume furthermore that A is a continuum gauge field with topological charge 
2 n E Z?, (i. e. I F = 2+n for QED2 or Tr JF A F = 871 n for QCD4) . Then 
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eiendetren(l+KF(A)) = lim detren(l+K~,F(Ae)) 

where K~,F(Ae) is defined like ~ but using an arbitrary angle 

fermion action (cf. Section I) instead of e = O . 

e in the lattice 

For a proof see [71]. 

We promised in the previous subsection that determinantswould help to prove 

convergence of fermion Green's functions. This is easy if we use a little lemma 

about Lipschitz continuity of Green's functions times determinants : 

Leamna 6.13 [34] : (l+K)-Idet (I+K) and more generally 
P 

Ak[(l+K)-l)det (I+K) 
P 

are Lipschitz continuous on I where on the image space we use norm topology. 
P 

Remark : Ak((I+K) -I) is the operator induced by if+K) -I on the k-fold antisymme- 

tric tensor product of the underlying Hilbert space H F . 

Matthews and Salam [14] gave already the (obvious) formulae for Fermion Green's 

functions : 

where G F 

G~(x,y;A) E (~p2+M2)-I/4(I+KF(A))-I 

G~Xl,...,xk;Y I .... ,Yk;A) = 

= Ak[(p2+M2)-I/4(I+KFIA)) -I 

= (i~+M) -1 

-i~.*~ )(x,y) (6.28) 
(p2+M)3/4 

~6.29) 

-i~+M 
(p2+M2)3/4 ](Xl"'''xk;Yl'""Yk) 

~o from Lemma 6.13 and the construction of det we get : 
ren 

Theorem 6.14 : Let A e ÷ A in such a way that the limit of the lattice determinants 

exists and is nonzero. Then the lattice fermion Green's functions 

G~'(Xl,...,xk;Yl,...,Yk;Ae) 

Ak(HF ) also converge in the sense of the norm of operators on (p > d) . 

Proof : Obvious by the remarks made above. D 
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c) Convergence of States (Expectation Values) in External Gauge Fields. 

For fermions this was just discussed at the end of the last subsection; nothing 

more has to be done about fermions at this level. 

For Bose (Higgs) fields life is much harder because of the self-interaction we 

have to allow for them. 

From now on we will consider the (lattice or continuum) Higgs fields as Gaussian 

as follows : For each f 6 L2(~2,V H) we have a Gaussian complex ran- random fields 

dom variable #(f) , depending linearly on f and having mean zero and eovariances 

i Re(f,Ceeg) <Re ~e(f)Re #e(g)> = ~ g 

I Re(f,C~eg ) <Im #e(f)Im ~e(g)> = 

i Im(f,C~gg) <Im ~e(f)Re #e(g)> = 

(6.30) 

which amounts to 

<~e(f)~e(g)> = (f,Ce~g) 
g 

<~(f)~e(g)> = 0 
(6.31) 

(remember the identification of £2(a ~d) with a subspace of L2oRd)) . 

Furthermore we write, after picking an orthonormal basis {e a} in V H 

~(x) ~ ~e(~,a) (6.32) 

where ~ takes the value e at x and zero at all other points of e ~d (here 
x ~ a  a 

we have to assume e > 0 ). 

Next we define Wick ordered (with respect to the free measure) monomials in 
~e by 

IRe #e(f)+~ Im ~e(f) e I Re #e(f)+~ Im ~e(f) × 
: e  : 

g 

x e-I/4(%2+B2)Re(f,C~ f) 

(6.33) 

and Taylor expansion. In particular we are interested in 
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:l¢e(f) 12n: ~ :(Re @(f)2+Im @(f)2)n: (6.34) 
E E 

and 

:I+~(x)I 2n: ~ :(E (Re @~(x)2+Im @aE(X)2")n: c) (6.35) 
a 

Notice the free covariance occurring in the definition (6.33). 

We denote the Gaussian probability measure corresponding to the random fields 

~ by d~E (~) , i.e. d~ is specified by 
g g 

f @~(f)dvC~ = f @e(f)d~e = O (6.36) 
g g 

and 

( 6 . 3 7 )  

From Subsection a) we see immediately that the moments and characteristic functions 

of dvCE converge as E ÷ O ; this is the analogue of the result for fermions mention- 
g 

ed above. 

Our selfinteractions are given in terms of a "potential" V which is an even 

polynomial of degree at least 4 and positive leading coefficient : 

P 2k 
V(r) ~ E a2k r (6.38) 

kffio 

A c~d . Then we Let XA be the characteristic function of a bounded open domain 

define the "interactions in the volume A" by 

V~(@) ~ E d P 12k 
E a2k :I~(x) : XA(X) (6.39) 

x k=o 

After all these definitions it is time for a theorem : 

E 
Theorem 6.15 [28] : Let d = 2 ; assume that the gauge fields g converge to a 

continuum gauge field in the sense of Definition 6.4. Then the probability measures 

where 

E 
1 -VA(¢) 

Z~ (g~------~ e d~gg 
(@) (6.40) 

E 

ZACg ) - I e d~g e(¢) ( 6 . 4 1 )  
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converge as e + 0 in the sense of characteristic functions; all moments converge. 

The limit is independent of the orientation of the lattices. 

Remarks : 

I) Here is is convenient to "index" the random Higgs fields by functions in 

$~2,V H) (Schwartz space) instead of L 2 . 

4 
2) Using the technology developed for proving stability of ¢3 by Glimm and Jaffe 

[35] and others (see for instance [iO] ) and the ingredients assembled here, it 

should be possible to prove this theorem also for the three dimensions. Part of this 

task has been accomplished by Potthoff [31]; the additional problems due to the 

different Wick ordering should be manageable according to the discussions in Subsec- 

tion a). 

Proof of Theorem 6.15 : We break up the proof into several steps. The first and big- 

gest one is 

Lemma 6.16 • Under the assumptions of Theorem 6.15 

e 

-~  V A 
lim S d~gee 
c->o 

exists for all % > O . 

Proof : We may assume % = I . A helpful trick is to consider all the fields ~E 

for different e as being defined on the same underlying measure space; in fact we 

will consider them as functions of a fixed white noise field as follows : 

Let ~ be a VH-Valued white noise field on ~2 and dw the corresponding 

probability measure, i.e. for f,g E SOR2,VH ) 

S dw ¢(f)~(g) = (f,g) 2 

L (6.42) 

dw ~f)~(g) = 0 , etc. 

Let Qe be the averaging operator mapping L 2 onto £2 as discussed earlier, and 

,re* ~e ~e~i/2 
E e m ~ XAUgeXA~ ~ (6.43) 

Then we recognize 

~e = Eg~ (6.44) 



128 

which is symbolic notation for 

~ECf) = ~(EEf) (6.45) 

We can thus consider V~(~ e) as a function ~(~) of $ and S dVgeeXp(-XV~) = 

S dw e x p ( - X ~ )  . 

So to show convergence we estimate 

__~e' _~ _~' 
~VA 

I S dw(e '< -e )1 i f  d w l ~ - ~ ' l  (e A+e A ) <_ 

Ne' -2~AA 112 -2VA )112} 
< (S dw VA-V A 12)I/2{(S dw e ) + (S dw e 

~ . 4 6 )  

First we use diamagnetism to bound the terms in curly brackets : By Theorem 2.6 

e_2~Adet(l + c f dw ~(Ae))-l= S d~ee -2V - Adet(l+~(A~)) i < 

~S dv~ e -2v~ (6.47) 

(the left hand side is just Z({gxy})) . A uniform (in c ) bound on the right hand 

side of (6.47) has first been given by Nelson [36] and has long since become for 

constructive field theorists as basic as Sehwarz's inequality (see also [II]). The 

determinant we had to throw into (6.47) has been controlled in the previous subsec- 

tion, so we are done with the curly brackets. 

To see convergehce to zero of the first factor in (6.46), it is useful to re- 

write V A as a sum of monomials Wick ordered with respect to C ~ ge (these are defined 

by writing C ~ e ) This has been worked out explicitly gg in (6.33) in the place of C I . 

in [37], for instance, but we only need to know that this produces coefficients that 

are polynomials in ~C~g which was discussed in 6.a). So it suffices to show 

lim SdwlPE(~e)-PE'(~')I2 = o (6.48) 
~ , C  ! + O 

where 

( 6 . 49 )  

(6.47) may be further reduced to proving 
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dw pC(pC_pC') ÷ 0 (6.50) 

which in turn will follow from 

dx dy[6CCe(x,x)]J[(E¢)2N(x,y)[~Cee(y,y)lJ 
A×A g g 

~' lj - (ECEe')N(x,y)[~C e,(y,y) ] 
g 

by the rules of Gaussian integration. 

(6.51) 

After telescoping and using a few H~Ider inequalities this reduces to showing 

LP(A × A) convergence of (EeEg')(x,y) (remember Theorem 6.6 showing L p conver- 

gence of 6Cee) . Now 
g 

[(EeEe')(x,y)I2Pdx dy ! 

! (f l(Ee)2(x,Y)[ 2pdx dy)I/2(~ I(Ee')2(x,Y)I 2pdx dY )I/2 

which is uniformly bounded by diamagnetism. So by H~ider's inequality it suffices 

to show L2(fi × A) convergence of the kernel of EeE ~' , which means 12 conver- 

gence of the operators ECE e' ; this in turn follows from ~4 convergence of E e 

Most of Subsection 6.a) was spent proving things like 12 convergence of 

(Ee) 2 . Now it is a fact (proven in [28]) that this implies the desired 14 conver- 

gence of E e . So Lemma 6.16 is true. o 

Next we have to show 

Lemma 6.17 : 

e-V~ lim f d~ > O 
£+o 

Proof : By the convexity of the exponential (Jensen's inequality) it is enough to 

show 

where 

d~geV A < C < 

C is independent of e . This is easy by explicit Gaussian integration. 

D 

To complete the proof of Theorem 6.15 consider 
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_V ~ 
F(~e)e Ad~ g~ (6.52) 

where F is a polynomial or an exponential. Convergence of (6.52) follows from 

Le~na 6.16 and convergence of 

ge (6.53) 

whichis true because Gaussian integration reduces it to convergence of Green's 

functions. So we are done with Theorem 6.15. [] 

We have obtained, after some suffering, the continuum state (i.e. expectation 

value) for two-dimensional fermion or Higgs fields coupled to an external Yang-Mills 

field with some regularity (i.e. H~ider continuity which is essentially equivalent 

) to finiteness of llAll~,e . 

d) Convergence of Expectations in Fully Quantized Theories with Cutoff on the Gauge 

Field. 

The results of the previous subsection easily extend to convergence in fully 

quantized theories provided the gauge field measure is such that the gauge fields 

are Hblder continuous with probability i. The trouble is : 

i) The correct Yang-Mills measure (if we can lay our hands on it) certainly will 

not have this property, so we will have to cut it off in some way. 

2) It is hard to find cutoffs that do not destroy most of the structure of a Yang- 

Mills theory - this was the motivation in the beginning for working with a lattice 

as a cutoff. But for abelian fields there are reasonable continuum cutoffs with the 

right properties and we will use these. 

Theorem 6.18 : Let 

Yang-Mills field A 

> O with probability one. Let 

Then the probability measures 

d = 2 and dm be a probability measure defining a random 

that is essentially uniformly Hblder continuous with some index 

{gxy} be the lattice gauge field induced by A 

--!--1 dm x e-V~detren(l+~(A~))-id~e(~) 
Z~,A g 

converge as E ÷ O in the sense of characteristic functions and moments where 

Z A is the appropriate normalization. 
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Remarks : 

i) Essentially uniformly HSlder continuous means : For 

a constant c A such that 

IAp(x)-A~(Y)I !CAlX-Yl ~ , ~ = O,I 

for (~ebesgue-) almost all x,y . 

m- almost all A there is 
P 

2) Assuming the generalization of Theorem 3.15 to three dimensions this theorem 

also would generalize to d = 3 . 

There is a fermionic analogue : 

Theorem 6.19 : Let dm be as in the previous theorem and d = 2 or 3 . Then the 

probability measure 

I detren(l+~(Ae))dm 
Zc,A 

as well as the,measures 

k E c ~ -i E 
I A (GF(I+~(A)) )detren(l+KF(AE)) 

Z~,A 

take values in L(Ak(HF))) converge as e ÷ O (that 

functions and moments. 

in the sense of characteristic 

Proof of both theorems : This is just Theorem 6.15 (and its trivial fermionic analo- 

gue) together with the dominated convergence theorem. The uniform upper bound comes 

from "diamagnetism" which throws out the coupling between matter and gauge fields. 

We should stress once more that the two theorems sound better than they are 

since for nonahelian theories we do not have the required measures. But for abelian 

theories in d = 2,3 such measures are found easily, due to the following theorem 

due to A.M. Garsia [79] : 

Theorem 6.20 : Let ~(x) be a Gaussian random field on a bounded region A . A 

sufficient condition for its sample paths to be almost surely essentially uniformly 

HSlder continuous with index ~ is that the function 

p(u) ~ sup lul<(~(x)-~(y))2>I/2 

Ix-yl ! 
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be Hblder continuous with index 8 > e at u = 0 . 

We refer to [79] for a proof. The use of this lies in the following 

Corollary 6.21 [28] : Let d be arbitrary, and let 

random field with covariance 

A be the d-component Gaussian 

<A (x)A (y)> ~ D (x,y) 

E Sdk D(k) Ik128 < ~ 

(6.54) 

Then with probability one 

index ~ < 8 

A is essentially uniformly Hbldercontinuous of any 

Proof : A simple exercise in Fourier transformation. 

Example : 

k k _t~2 
D (k) = (~ - k~+~2 ) Z  % I e t > O (6.55) 

k2+k2 

I 
To check (6.54) for this covariance for any 8 < ~ is trivial. (6.55) is the cova- 

riance of a "photon field" with ultraviolet cutoff t only on the spatial momenta, 

infrared cutoff k and some gauge fixing close to the Landau gauge. The main advan- 

tage of the peculiar momentum cutoff is that it preserves Osterwalder-Schrader posi- 

tivity : 

Theorem 6.22 [28] : Let an expectation on a combined gauge field - matter field 

system be given by either 

I -V£ 
lim Z e Adetren(l+~(AE))-I d~(~) 
e->o e ,A 

for a two-dimensional abelian Higgs model or by the measures given in Theorem 6.19 

for two or three-dimensional QED . Then the expectation values are Osterwalder- 

Schrader positive provided A is symmetric about t = 0 . 

Proof : This follows essentially from O.S. positivity on the lattice by taking li- 

mits. To be on safe ground one has to introduce for a moment lattice cutoffs ~' 

for the gauge field and ~ for the matter fields and one sends first ~' and then 

tO zero. See [28]. 
[] 
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This concludes our study of "nice" gauge fields; what remains is to remove the 

ultraviolet cutoff on the gauge field and eventually the volume cutoff and to check 

the axioms of Osterwalder and Schrader. 

7. REMOVAL OF ALL CUTOFFS; VERIFICATION OF AXIOMS IN TWO DIMENSIONS 

The ultraviolet cutoff on the gauge field has been removed in [29] for 2-dimen- 

sional Higgs models and in [26,27] for QED 2 ; for the latter case I am not aware 

of any detailed published study of the infinite volume limit and verification of the 

axioms which have been carried out in [29] for Higgs matter. There is, however, no 

obstacle in principle even in the fermionic case - actually it should be easier - 

and we will mostly discuss both situations in parallel. For the case of QED 2 1 will 

give an outline of a construction of the thermodynamic limit by means of a cluster 

expansion whereas for Higgs 2 a simple argument based on correlation inequalities can 

be used. 

a) The Stability Expansion 

To send the t-cutoff inherent in the gauge field measure (cf. 6.55)) to zero 

it is convenient to use a so-called stability expansion (actually in QED 2 this can 

be replaced by a simpler argument [27] based on [15]). We discuss the Higgs model 

and comment along the way on the appropriate modifications (mostly simplifications) 

for QED 2 . The idea is simply to choose a suitable sequence of cutoffs 

to,tl,t2,... ÷ 0 , telescope (modified) partition functions 

N 

Z(t N) = Z(t o) + E (Z(tk)-Z(tk_l)) (7.1) 
k=l 

and estimate the differences by convergent Feynman graphs. Of course this will only 

work if the appropriate counterterms are inserted. 

To be more specific, let us fix some notation. We denote by 

dmt(A) 

the Gaussian measure on two-component fields 

D t g i v e n  by 
BY 

kk 
~tpv _ (6 v _ k2+X2)~ v (k2+~2)-i 

(~,~ = 0,i) 

A with mean zero and covariance 

e 

(7.2) 

(cf. (6.55)). We also need Gaussian measures with covariances 
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D tk - D tk-I (7.3) 

assuming ~ = to,tl,t2,.., is a monotonically decreasing sequence. We call the mea- 

sures corresponding to (7.3) dm(k)(A) , k = 1,2,... 

with 

We can identify dmtN(A) 

dmt 

with the product measure 
N 
II dm (k) (A) 

k=l 
and dm(A) 

We will also use some interpolating fields to estimate the differences in (7.1), 

namely if A tkJ'" is the random field corresponding to the measure dm(kJ(A)" , we 

define 

£ A(i) A ,s(Z) - l ~Sl...s i (7.4) 
i=l 

(s i E [0,I] ; i = 1,2,3,...) 

This strange looking interpolation is chosen to make the interpolating covariances 

simple. 

There will be a vacuum energy counterterm 

(t) e2~AxAdX dy~Av(x)A (y) x HV (x-y)dmt(A) E A (7.5) 

where ~ is the second order vacuum polarization. Graphically 

I ~ in QED 2 

~ ~ ~ ~ in Higgs 2 

and 

f 
t / e in QED 2 

E A 
in Higgs 2 

Only in Higgs 2 there will be a mass counterterm for the matter field which may be 

chosenrfOr our gauge fixed covariance to be 

Graphically 
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~m 2 = ~ in Higgs 2 
t 

Interpolated counterterms EA,s(£) , 6m~(%) are defined accordingly. 

Finally we denote by dgA(#) the continuum Gaussian probability measure with 

mean zero and covariance CA(X,y) E (-AA+m2)-l(x,y) and define 

z(A) 

i detren(l+KH(A))-i in Higgs 2 

detren(l+~(A)) in QED 2 

The full unnormalized cutoff measure for Higgs 2 is 

2 t 
-VA(~)+ 

ZA,td~A,t(¢,A) ~ dmt(A)z(A)e d~A(¢) (7.6) 

where VA(#) = lim V~(~) (see the previous subsection). For QED 2 one has instead 

to consider the e÷° "i(Hk(AF )) valued measures" 

dmt(A)z(A)Ak(GF(I+~(A))-I) (7.7) 

We denote by ZA, t ("partition function") the integrals of (7.6) and (7.7), respec- 

tively, and by Zp,A, t modified partition functions (unnormalized expectations). 

If P is a polynomial in Higgs and gauge fields 

Zp,A, t E ~ P d~A,t (7.8) 

For QED 2 it is convenient to think of an underlying Grassmann "measure" generating 

the Matthews-Salam formulas. P is then a polynomial in gauge and fermion fields : 

k 
p = ESBk(X I ..... xk;Y I ..... Yk;A) ~ (@(xi)~(y i) 

k i=l 

and 

Zp,A, t m S dmt(A)z(A) x E Tr[BkAk(GF(I+KF(A))-I)] . (7.9) 
k 

Next we use the interpolating fields, the fundamental theorem of calculus and inte- 

gration by parts to obtain an expression for the difference Zp,A,tk-Zp, A ,tk_ I 
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Lemma 7.1 : For Higgs 2 

Zp,A,tk - Ze,A,tk_l = ~ dSl''" ~ as k ~d~s(k)(A,~)Kk..-Kl P 

where KI,...,K k are functional differential operators acting on P . They can be 

represented graphicaLly as 

( !_ av) +~ ~ (~_ f v) 
K%q--=4m- T T aT aT aT a~ 

c~ (7 .10 )  

j 

A A A A A A A 

+ :AH A: 

Remark : We hope that the graphical notation is to a large extent self-explanatory 

to anyone who is familiar with Feynman graphs. The action of functional derivatives 

can be defined purely algebraically since they only act on polynomials (or possibly 

exponentials of polynomials). No sophisticated functional a~alysis is involved. A 

detailed explanation of the notation is given in [28]. 

A' always stands for ~ As(£) , the black box ~ stands for I • - 
w% A A 

am~(%) and A--~TA for its derivative with respect to s% stands of 

course for the free two point function of the Higgs field. 

Sketch of proof : (see [28] for details) : We claim that for £ < k 

Zp,A,tk- Zp,A,tk_l = ~ dSl...~ ds%[~ dP(sl ..... s£,l ..... i) (A) - 

- S d~(s I ..... s%,l ..... l,o)]K%'''Kl P 

This is proven by induction. It is trivial for % = O ; to go from £ to %+1 < k 

we write the difference of the measures appearing in (7.11) as 

dS%+l as%+ 1 ( d ~ ( s l , . . . , S £ + l , 1  ~ . . . .  1) - d~(s I . . . .  , S%÷l , l , . . , , 1 ,O) )  
(7.12) 
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which is true because the difference of measures in (7.12) vanishes at si+ I = 0 

due to the definition (7.4) of interpolating fields. 

The derivative in (7.12) can be worked out : 

Ts£ _ i #)dV(sl' +ld~(sl . . . . .  s +~ . . . .  ) = (E+~¢~-r- + ¢ ~  . . . .  sE+ I . . . .  
(7.13) ) 

A A A 

by differentiating the action. The rest is an exercise in integration by parts in 

Gaussian integrals; this contracts the fields occuring in (7.13) with fields in the 

action. This process is stopped when all the expressions occurringdownstairs give 

only rise to convergent Feynman integrals when contracted with themselves using the 

free Gaussian measure• This is how K£+ I is produced and (7.11) for £+I is proven. 

Finally in the last step £ = k the expression quoted in the len~na appears. 

For a careful justification of the integration by parts see [28] where this is 

done with the help of the lattice approximation. 

There is a fermionic analogue to Lena 7.1 : 

Le~ma 7.2 : For QED 2 

Zp,^,tk_ 1 = % ' " # 0  % 

where %,...,K I are some (non-linear) operators acting on P . Again they are best 

represented graphically and it makes them more transparent if they are expressed 

with respect to the underlying fermion expectation : 

+ :A ~ A : (7.14) K E= ~ : ~ ~ ~: + P %) 
A' A A' 

Proof : Completely analogous to the proof of Lemma 7.1, only simpler. Integration 

by parts with respect to the Berezin "integration" is discussed in [74]. 

From the two lemmas we get 

Corollary 7.3 : For Higgs 2 or QED 2 

N 
= • ZP'A'tN £=IZ ~I O dSl...~lo ds d~s(E)K~• .KiP (7.15 
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with Kr(r E ~+) given by (7.10) for Higgs 2 and by (7.14) for QED 2 . 

Remark : We call (7.15) the stability expansion. 

The point of (7.15) is of course that one can show uniform convergence and 

thereby take the limit N + ~ , provided the cutoff sequence is chosen appropriately. 

Let us first talk about the Higgs case. The necessary estimates are highly 

plausible (even though the detailed proof takes up 20 pages in the preprint of [29]). 

Len~ma 7.4 : In Higgs 2 

k C2(log tk)2 
- e JZP,A,tk ZP,A,tk 11 < CiIlog tk Ikr ~ t~(k!) p 

- -- j=l J 

(7.16) 

for some constants Cl,C2,~,r,p > O . 

-jY 
Corollary 7.5 : Let tj = const e (O < y < i) for j = 1,2,3 ..... Then (7.16) 

implies absolute and uniform convergence of the stability expansion (7.15). 

Proof of Corollary 7.5 : If t. = exp~j Y) 
J 

{Zp,A,tk - Zp,A,tk_l j <-- 

k 
< ClkYkr exp(- ¢ E jY)kPkexp(C2 k2T) 

j=l 

k+C2k2 Y _ e kY+l} <_ Clexp{ (p+ry)k log y+--- [ 

! C I exp(-C3kY+l) 

for some C 3 > 0 . This is ciearly sunnnable over k i 

o 

To proceed with the proof of Lennna 7.4 one first gets rid of the remaining 

exponential by Schwarz's inequality and diamagnetism : 

I 

J SdVAs(£)C¢)z(A) e K~...KIP j ~ (7.17) 

6m 2 f .j¢j2:i/2 

- -  (I dVAs(£){K &. e z(A)e ) e 
.KiP{2)I/2(f -2VA s(~)JA" Es(&) 

< . , dVAs(~ ) 
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Lemma 7.4 will be a consequence of the following three lemmas and (7.17). 

Lemma 7.6 : E(s I .... ,s%,O,...) !al(lOg t£) 2 

-2VA+~m2SA:I~I2: 
Lemma 7.7 : fdVAZ(A)e ! exp a2(~m2) 2 provided V contains a term 

Xf~)2: , X > O (which we will assume for simplicity). Furthermore 

~m~(~) ! a311og t~l 

Lemma 7.8 : ~dm(A) ~d~AIK£...K1PI 2 ! a~(3glt2)(~!)Pllog.= 

p > O  , r > O  . 

t~l ~r for some ~ > 0 , 

Remark : The assumption in Lemma 7.7 about a positive 4th order term is not really 

necessary; if the highest order term in V is %:(~)2N: , % > O we always get a 

exp a2(~m2)2N/2N-2 which would also give convergence (actually bound of the form 

it would make things better). 

Proof of Lena 7.6 : A simple estimate on the Feynman graphs 

Proof of Lemma 7.7 : By the diamagnetic bound (Theorem 2.6) 

-2VA+~m2~A:I~[2: -2VA+~m2SA:I~[2: 
d~AZ(A)e ! ~ mY o e 

So we only have to estimate a Gaussian integral with the free covariance. If it were 

not for Wick ordering, Lemma 7.7 would follow by taking the maximum of 

-2VA+~m2~A : I~I 2: 
e Because of Wick ordering this is not a bounded function, but the 

probability of it being large is very small. This is the essence of Nelson's stabi- 

lity proof [36] . More concretely, we write (with ~ = ~m 2) 

2VA = VI+V2 + =~A : l~12:dx 

Vl  (sA 2:dx)2 - ~SA:I~I 2:dx 

V 2 = 2~ SA:l~14:dx - l(~A:l~12:dx) 2 

Now clearly 



140 

2 
I 

Vl >- 4 

and by Nelson's stability proof [36] for P($)2 

-V 2 
dv e < 

o 

which proves Lemma 7.7. 

Proof of Lemma 7.8 : This is "just" an estimate of a Gaussian integral that may be 

expressed as a sum of convergent Feynman diagrams. Unfortunately these Feynman dia- 

grams are arbitrarily large and also the combinatorics is not to be neglected (it is 

responsible for the factor (k!) p in (7.16)). 

The technique of estimating large Feynman diagrams in terms of a fixed number 

of "small" ones is quite familiar in constructive field theory. For the case at hand 

it is carried out in [29] not by a "graphological" but by a functional integral 

method. The upshot is that 

k 

If( ~ Ki)PI{ 2 
i=l 

is estimated by 0((k!) p) terms each of which is a product of 0(k) Feynman dia- 

grams chosen from a certain finite set. Each of these diagrams has at least one dif- 

ferentiated (with respect to a parameter s. ) photon line which gives it a "high 
l 

momentum", i.e. t values > t. do not contribute; since we ar e dealing with power 
i 

convergent graphs this gives a small factor of the order t9 . Note that the graphs 
i 

containing the covariant Green's function C A have to be estimated in terms of those 

with the free Green's function. This is not entirely trivial because of the deriva- 

tive coupling, but it is possible (see [29]) and produces the factors flog tkl 

To extract the power t~ in [29] a general power counting theorem is proven. 
i 

Putting everything together gives Lena 7.8 and so completes the convergence 

proof of Higgs 2 . 

Let us turn for a moment to QED 2 . Here we have 

Lea~ma 7.9 : In QED 2 

k CmIlog tkl 
- t~ e IZP'A'tk ZP'A'tk-I I ~ CI j~l (kz)P 

(7.18) 

for some constants Ci,C2,6,p > O . 
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RemArk : The factor (k!) p should not be necessary. The expansion we use is a slight 

overkill, but since we discussed it for Higgs 2 anyway, we do not mind. In [74] I 

describe a much simpler stability expansion for QED 2 that requires, however, 

e/M << I . 

There is no Schwarz inequality for the fermion "measure" and it will not be 

needed because there is no self-interaction. 

We write <'>F,A for the "Gaussian" fermion expectation characterized by 

<~(x)~(y)>F, A = G~(x,y;A) (7.19) 

Then 

IS dm(As(£))Z(As(%))<K£-''KIP>F,A 

! S dm(As(£))I<K£-..KIP>F,A 12 

e J 

E~(~) (7.20) 
e 

which is already a sum~ of Feynman graphs; some of the fermion lines are free (the 

' Unfortunately there is no simple ones coming from K ) , others correspond to G F . 
l 

way to throw out this nonpolynomial A-dependence other than by using 

ll(i~+i~+M)-lll < ! (7.21) 
--M 

which is possible if the kernel functions Bk(X,z;A) appearing in the representation 

k 

p = lSBk(x I ..... xk;Y I ..... Yk;A) E (~(xi)$(yi)) 
k i=l 

(7.22) 

are sufficiently nice (for instance in S) . 

Then one still has to do surgery to cut up the large graphs into small ones; 

it is possible to use the same bosonic functional methods as for Higgs 2 if one esti- 

mates all Feynman graphs involving free fermion lines G F by graphs where G F is 

replaced by the "bosonic" covariance (-A + m2) -I/2 . Of course one can also work 

directly with the graphs. In any case, the bound (7.18) emerges after considerably 

less work then (7.16). 

So the stability expansion converges for 

Remarks : 

1) 

QED 2 too. 

In this form the stability expansion certainly does not work in d = 3 . However 
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it is plausible that a phase cell expansion (cf. [35], [I0]) could be made to work. 

Magnen and Sdndor [17], skeptical about this possibility, propose instead a cutoff 

on the matter field that destroys gauge invariance but helps for stability; in the 

end of course onehas to verify that the usual Ward identities are not violated. 

2) It is of interest to construct the stability expansion for gauge invariant ob- 

jects like P = ~(x)(exp i S~ A)~(y) . This can be accomodated even though the kernel 

functions of this P are not in S 

b) Volume Dependent and Volume Independent Bounds. 

First we will prove bounds of the form 

flog ZAI !c°nst IAI (7.23) 

They are essential for controlling the infinite volume limit, whether that is done 

by a continuum cluster expansion (see [38] and below), or by correlation inequalities 

[29]. 

Then by the chessboard bound and closely related techniques that have along 

history in constructive field theory (see [40-44], [18]) we will obtain uniform 

bounds on expectations of exponentials and polynomials in the fields. 

Depending on the boundary conditions used, some of the bounds (7.23) become 

trivial (at least for rectangles A). 

For instance for free boundary conditions the lower boundcontained in (7.23) 

follows simply from Osterwalder-Schrader positivity : If A has sides L,T 

< zl/2 
ZL,T -- -2L,T (7.24) 

(in obvious notation) and therefore 

log ZL, T 

is convex in L and T separately and 

NM 
ZL, T ~ (Z L T ) (7.25) 

N ' M 

The upper bound becomes easiest with (anti-) periodic boundary conditions : 

Formally one has, denoting the (anti-) periodic partition function by Z (a)p LT : 



143 

-T~ a)p -T~a)P)_ I 
_(a)p = Tr e (rr e (7.26) 
ZLT 

where ~a)p is the Hamiltonian with (anti-) periodic b.c. and ~a)p the corres- 

ponding free Hamiltonian. To prove (7.26) or at least the convexity implied by it 

one has to go through a lattice approximation; actually the argument is somewhat com- 

plicated and requires taking the time continuum limit before the one in space direc- 

tion. For details see [29]. A different proof of (7.23) for QED 2 has been given 

by It8 [75]. 

Note that the left hand side of (7.26) is syn~netric in L and T , whereas 

numerator and denominator on the right hand side are not separately symmetric in L 

and T . The point of (7.26) if of course that 

-r H 
Tr e -TH < (Tr e N )N (7.27) 

and since the denominator in (7.26) can easily be computed explicitly and shown to 

obey 

-T~I~ a) P -~LT 
Tr e > e (7.28) 

for some ~ E ~ , one can conclude from (7.26) : 

(a)p < eeLT (7.29) 
ZLT _ 

(a)p ("Nelson's sygmetry"). by exploiting the symmetry of ZLT 

To complete the proof of (7.23) one uses the fact that a trace of a positive 

operator is bigger than any diagonal element to see that the (anti-) periodic parti- 

tion function essentially dominates all partition functions with other boundary 

conditions, which can be interpreted as expectation values of e -TH in some (not 

normalized) states. So 

c2(L+T)z~; X )p 
ZLT !c I e (7.30) 

where X stands for various boundary conditions. 

The most useful boundary conditions are : 

I) free b.c. (denoted "F" ) which correspond to turning off the .charge of the mat- 

ter field outside the region in question (this is different from the "free boundary 

conditions" used in Section 4 for lattice models). 
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2) Mixed b.c. : O-Dirichlet b.c. with free Wick ordering for the matter fields, free 

b.c. for the gauge field (denoted "D~') . O-Dirichlet b.c. for fermion fields are 

a bit tricky (see [39]). 

3) Mixed b.c. : Free b.c. for the matter fields, O-Dirichlet b.c. for the gauge 

field (denoted "DG"). 

To prove (7.30) for these mixed b.c. requires some care because the "states" 

in which the expectation values of e -TH are taken have infinite norm (like plane 

waves). See [29] for a detailed treatment of this problem for Higgs 2 . It turns out 

that to avoid infinities one should require for instance L,T ~ I . 

A lower bound for mixed b.c. is obtained in a similar way as for free ones; 

again one has to be a little careful because of the infinite norm of the "states" 

appearing there. Formally 

ZLT (nL' nL) (~L' e-T = e x ~L )-I (7.31) 

where ~M , ~M are the appropriate Hamiltonians and nL,~ L "infinite norm 

vectors". Again the denominator is controlled explicitly and one obtains 

DM -cLT 
ZLT ~ e (7.32) 

We collect all these results in 

Theorem 7.10 : For L,T ~ i 

ll°g Z~TI !c°nst LT (7.33) 

where in Higgs 2 X can be p , D M or F and in QED 2 X can be ap , D M or F . 

We will also need upper bounds for modified partition functions. They are easily 

obtained by the "chessboard bound" (see Theorem 2.2) and related arguments. This 

works best for unnarmalized expectations of exponentials. We define 

Definition 7.11 : In Higgs 2 

Z X X :l~12:(g)+F(h)> 
g,h;A ~ ZA <e X,A 

Definition 7.11': In QED 2 

X X 
ZB,h; A ~ Z A <e(~'B@)+F(h)>x, A 
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where g,h are test functions supported in 

V F , so that 

N 

(~,B~) = E ~(gi)~(fi) 
i=l 

with some (spinorial) test functions supported in 

dea~ field strength. We then have 

Theorem 7.12 : In Higgs 2 

for 

for 

A ; B is a finite rank operator on 

A . F = E ~ A~ is the (eueli- 

[Zg,h;LT[ 2 I 2 log X !cLT + a( llgll i + [[g[l 2 ) + ~l[h[[ 2 + b 

X = D M , F or p . In QED 2 

X I I 2 
Iog[ZB,h;LTI ! ceT + ~ HB[[ I + ~ Hhl[ 2 + b 

X = D M , F or ap . 

a,b,c are constants independent of L,T . 

(7.34) 

(7.34') 

and Hh[I 2,% = (h'(l-%2A)-lh) 

Therefore, introduding temporarily an ultraviolet cutoff t 

(7.37) ~ a (h) = h-%2(-A+%2)-lh ; ~ a (h) = O 

where a(h) obeys 

Proof : By the analogue of (7.30) for modified partition functions one sees that it 

is sufficient to consider X = (a)p ; for this case the "chessboard estimate" Theorem 

2.2 or rather a limiting version of it says for Higgs 2 

loglZ~,h;Lr I < fd2x log Z p (7.35) 
\ LT 

where ~x (~x) is the constant function on A with value g(x) (h(x)) . 

I 2 in (7.34) arises from a so-called infrared bound The universal term ~ [[hl[ 2 

(see [32]) : We write 

i 2 

eF(h)dm(A) = j[:[h[[ 2,%dm(A+a(h) ) (7.36) 
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I 2 

e- ~ llhlj 2,% ZPg,h;LT = lim#dmt(A)Z~,LT (A-a(h))eE[T- (7.38) 
t+o 

where Z~,LT(A)= is the matter partition function in the external field A . By the 

diamagnetic bound and its proof (Theorem 2.6 and Lemma 2.9) Z p . ~(A) is the conti- 
g;~ "~A • 1 ~  

nuum l i m i t  o f  f u n c t i o n s  o f  p o s i t i v e  t y p e  i n  t h e  holonomy o p e r a t o r s  e . T h e r e f o r e  

I Sdmt(A) Z~;LT(A-a(h))I ! SZ~;LT(A)dmt(A) (7.39) 

and by (7.38) and the stability expansion 

Note that 

I 2 zp 
JZ~;h;LT] !exp(~ HhJl 2,1 ) g,O,LT 

2 2 
IIhJJ 2,1 ! HhJJ 2 

(7.40) 

To understand where the norms lJgll 2 ' llglJ 1 

look at Lemma 7.7 that estimates the dependence on 

large (e.g. > I ) 

IZ p (A) I < 0 
gx ;LT 

(eCOnst g(x) 2) 

in (7.34) come from one has to 

~m 2 . It says that for g(x) 

If we feed this into the stability expansion we obtain (cf. [29]) for g(x) 2 > i : 

Jz~ I !ee°nst g(x)2LT (7.41) 

gx,O,LT 

where we also used Theorem 7.10 for Z p 
~x,O;LT 

On the other hand it is easy to see that logIZ p 1 
N 

of g(x) and therefore for Ig(x) l ! I (see [29]) gx 'O;LT 

is a convex function 

IZ p J < ee°nstlg(x)[ LT Z p 
-- O,O;LT 

gx,O;L T 
(7.42) 

From these two facts one obtains (7.34). For QED 2 the strategy is similar: 

Lemma 7.13 : Let Z~LT(A) E detren(l+~(A))<exp(~,B~)>F(A) where <.>F(A) denotes 

the expectation with respect to the fermions in the external gauge field (assumed 

to be bounded and HSlder continuous). Then 

I <_ exp(  lIBH 1 ) (7.43) 
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Proof : We write 

Z~LT(A) = detren(l+KF+GFB) 

= detren (I+KF (A)) det (I+KFG~B) 

N 
= detren(l+KF(A))det(l + I giG~fi ) 

i=l 

(7.44) 

The first factor is < i , the second factor is, by the well known inequality 

Idet(l+A) i <_ exp IIATI i (see [20]), bounded by 

N 

exp(  li 11 l) = exp[½ IIfiH  tigill 2] o 

Again we have to feed this into the stability expansion. As in Higgs 2 we get 

I 2 E t 
e- ~ [[h[1 2,%_ap .. r 

ZB,h;LT=~ J dmt(A) EaPB,h;LT(A-a(h))e LT 

By Lemma 7.13 the expression under the lim is bounded by 
t÷o 

t 
_ t I [[B[[I+ELT i HB[[ I ELT 

S dmt (A)eM e = e (7.45) 

Feeding this bound into the stability expansion produces a bound 

I 2 I Hhll 2 +M ilBl[ I +B+cLT ap 
lZf,g,h;LT i ! e (7.46) 

(by also applying Theorem 7.10) which is the bound in Theorem 7.12. 

Next we want to look at the constant c of Theorem 7.10 more closely. The goal 

is to show that c may be chosen to be 

i X X ~a)p 
c = lim ~-~ log ZLT ~ ~ 

L,T->~ 
(7.47) 

For X = (a)p this follows directly from the chessboard bound and the fact that 

(Z~)P) I/LT- is essentially decreasing in L and T . 

For X = F it can be proven by the methods of [18] which are a simple applica- 

tion of Schwarz's inequality with respect to the Osterwalder-Schrader inner product 

(and the Reeh-Schliede~ theorem [47]) and produce what might be called a "free b.c. 

chessboard bound". So we obtain 
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Theorem 7.14 : In Higgs 2 

X u~(LT-I) + 2 I 2 
l°glZg,h;LTl ! a( llgll 2 + llgll 1 ) + ~ llhll 2 + c (7.48) 

In QED 2 

X X I i 2 
loglZB,h;Lr I < ~ (LT-I) + ~ IIBII I + ~ llhll 2 + c (7.48') 

for X = (a)p,F, provided g, B are supported in a unit square A 
N 

of course that gi' fi are supported in A if B = E fi ® gi ) " 
i=l 

• (This means 

This implies a volume independent bound for normalized expectations: 

Corollary 7.15 : In Higgs 2 

1 2 a( llgll 2 llgll 1 ) -=~+e 
I <e:1012l(g)+F(h)>X I < J llhll 2 2 + 

LT -- e e (7.49) 

In QED 2 

I 2 ~IIBIII -~ + c 
(~,B~)+F(h) X -~e z llhll 2 1 

<e ~LT ! e e (7.49') 

for X = (a)p,F; g and B supported in A 

Proof : This follows from Theorem 7.14 and the volume dependent bounds on the parti- 

tion functions. D 

By the same method one obtains 

Corollary 7.16 : In Higgs 2 

2 

l<e:l¢12:(g)+F(h). X~LT II _< Co e2~ IIhll 2 

In QED 2 

I 2 
llhll 2 (~,B~)+F(h) X 

l<e >LT ! c O e 

for X = (a)p,F . 

z (-=~+c) Isupp gl a( 11gll I+ llgll 2) 
e e 

(7.50) 

1 (-=X÷c) Isupp 81 li~li 1 
e e (7.50') 

To eliminate the unpleasant terms involving supports there is a very simple ar- 

gument in the case of Higgs 2 : Consider the function on ~+ = [0,~) 
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2 X 
F(t) -- logJ<e :]~l :(g)t+F(h)>LTl' 

It is straightforward to see that F is continuous and convex on 
I 2 [o,®) , F(O) i T  Ilhll 2 + tog c o , 

I 2 
l i ~  ~ F ( t )  __< a(  Ilgll l + Ilgll 2) 
t4,~ 

These properties imply 

2 1 2 
F ( t )  < t a (  Jlgl[ 1 + HgJJ 2 ) + ~ Ilhll 2 + log  e ° 

If we define 

(7.51) 

(7.52) 

IIIglll ~ z IlgxAII 2 (7 .53)  

(cf. [29]) where 

have proven 

A runs through a paving of ~2 by unit squares, we see that we 

-21 [Ihl] 22+alllg III2+a 
J<e: l~I 2: (g)+F(h) >X 

LT [ <__c o e 

2 
because II[gll[ ~ Ilgll 1 , HIgl[I 2 ~ Ilgll 2 and 1 + IllglJ[ 2 !ma x ( [ l l g l l l  

By an analogous argument one can also eliminate the factor coea . 

(7.54) 

, lllgI112). 

For QED 2 a different argument has to be used. By a Cauchy estimate we can 

infer from (7.50') : 

N N 
-- F(h) X , 

[<i=l ~ ~(giXAi)j~l @(fjxAj ) e >LT i < 

i 2 
N 2 llhll 2 N N 

! Coa e ~ llgixAi[l 2 H llfjxA. I[ 2 
i=l " j=l 3 

e (~'B~) and using By expanding the exponential 

N N 

(~,B~) = Z ~(gi)~(f i) = ~ Z ~(gixA)~(fixA,) 
i=l i i A,A' 

(7.55) 

we obtain 
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l Ilhll 2 
2 2 < (~,B~)+F(h) X I < C e 

>LT -- o 

i n nl x Z -- a Z 
n! ]I n. 

n=° ZniAA '=n i,A,A' IAA' 

1 Ilh]l 2 
2 2 1 = c ° e Z an{," Z 

n=o i,b,A' 

, IlgixAII niA~' Ilfix~ll niAA' 
• 2 2 

[Igi×A[I 2 llfi×A,II 2 )n 

1 I[h[I 2 2 N 
<_% e exp[a ~ [llgi[I l IIIfill[] 

i = l  

with <.> defined in (7.53). 

= 

(7,56) 

So we have obtained finally the following volume independent bounds : 

Theorem 7.17 : In Higgs 2 

l<e:l~12:(g)+F(h)>~ T 

In QED 2 

° 

f o r  X = ( a ) p , F  . 

12 Hhll 22+all[gill2 
< e 

I, , 2 
tlhll 2 N 

e exp[a Z lllgilIl l[IfiIIl] 
i=l 

(7.57) 

(7.57') 

Remarks : 

i) In [29] the bound (7.57) is proven also for X = D M by similar methods plus 

correlation inequalities. It can also be inferred from the proofs given here by 

using a form of the chessboard bound valid for Dirichlet b.c. and the fact that the 

periodic "pressure" ~ dominates all "pressures" ~ with other b.c. (cf. (7.30)). 

2) 

and for 

It is not hard to prove by the same methods for Higgs 2 

i 2 I 
l<e~(f)+~(g)+F(h)>XTl <ee ~llhll 2 + =2 llfll 2 llgll 2 

QED 2 

i llhl I ~+b 2 
llall 2 

j.(a )+F(h) 
~ X 

l<e >LT I <__ e 

(7.58) 

(7.59) 
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where j]/ = : ~-y]/~ : 

3) By Cauehy estimates we obtain from (7.57), (7.57') 

k £ k £ 2 
l<i=iK : I* 12: (gi)j~iF(hjl>XTl.= <-- ck+Z(ktzt)I/2i=l n lllgilll jnl" = llhj II 2 

for Higgs 2 and 

k Z 
- -  X c2k+Z(Zt ) i/2 k 

I< ~ ( ~ ( ~ , ) ~ ( g . ) )  ~ F ( h . ) > . m l  i . n (II f i l l l  lllgilll) 
= i=l j =i i=l ~ z j I 3 ,I 

for 

(7.60) 

2 
llhj II 2 

(7.60') 

QED 2 • 

(7.60), (7.60') give the zeroth Osterwalder-Schrader axiom [4], namely a tempe- 

redness bound and a growth condition (in k,Z) for the Schwinger functions. It 

should be remarked, however, that the reconstruction of a relativistic field theory 

can be based just as well on (7.57), (7.57') directly (cf. [48]). 

4) We note another consequence of (7.58), (7.57') : They allow to prove uniform 

bounds on expectation values of "strings" 

iSA 
C 

S(Cxy) E ~(x) e xy ~(y) (7.61) 

or 
iSA 
c 

S(Cxy) ~ ~(x) e xy ¢(y) (7.61') 

where C is a (piecewise smooth) path from x to y # x . To see this for 
xy 

Higgs 2 is quite straightforward; for QED 2 one has to insert the beginning of the 

perturbation expansion (i.e. iterated resolvent equations) for G~ into the 

Matthews-Salam formulas (6.28), (6.29) : 

G~ = GF+KGF+KGFKGF*(~GF)3+~GF~G~(~GF )2 (7.62) 

where 

= (~+M)-l~ . 

For the first four terms in (7.62) a bound is trivial after all we proved; for the 

last term it is also not hard to see that 
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(~GF~G~(~GF)2) (Xo,Yo)dm(A) 

m 

is the expectation value of ~(fxo,A)~(gyo, A) with fxo,A,gyo, A 

every A and 

in L 2 for almost 

Ilfxo,AIl ~dm(A) , ; IIgyo,Al I ~dm(A) < 

A A 

Graphically fx ,A corresponds to , I ~ , that is 
O X 

O 

fxo,A = S GF(Xo,X') ~(x')GF(X',X)~(x)dx' 

etc. 

In the last section we will describe a reconstruction scheme based on expecta- 

tions of "strings" and similar gauge invariant nonlocal objects. 

c) Thermodynamic Limit; Verification of the Axioms 

There are two general strategies for the thermodynamic limit : One is based on 

monotonicity in the volume (correlation inequalities), the other, more constructive 

one on the cluster expansion. 

For Higgs 2 we are in the lucky situation of having correlation inequalities; 

so far, however, a cluster expansion has not been constructed. This would be very 

useful, but is by no means trivial, at least in the "Higgsian" regime. For QED 2 , 

on the other hand, we do not know any correlation inequalities, but we will sketch 

how in this model a cluster expansion could be constructed. This cluster expansion 

should also work for Higgs 2 in the QED-like regime e/m << I , A/m 2 << I . 

But firstwe have to say something about Euclidean covariance. Our states in 

an external gauge field were euclidean covariant in the sense that they were inva- 

riant under joint euclidean motion of the gauge field and the observables; no lattice 

orientation was remembered as shown in Section 6. 

But Our cutoff measures for the gauge field again violated euclidean ~ovariance 

by singling out a time direction. So we have to show that after the limit t ÷ O 

has been taken this direction is not remembered. 

It is very plausible that this should be true because 
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the violation of euclidean covariance happened only at high momenta 

By the convergence of the stability expansion these high momenta contribute an 

arbitrarily small amount. 

The actual proof is based on this idea : 

Let D t'o be the covariance in which the cutoff direction is rotated by an B~ 
angle O, <'>t,0 the corresponding cutoff expectation value. Then we have 

Theorem 7.19 : For a polynomial or exponential observable P 

lim {Zt,0<P>t, 0- Zt,o<P>t, o} = O (7.61) 
t÷o 

Proof : By introducing an interpolating field A(s) with covariance 

sD O't + (l-s)D 0't we can write the difference in (7.61) as 

S~ ds S dmtCA) fd~ACs)KP (7.62) 

where K looks like in Subsection a). But KP is now a very small observable if 

t is small and (7.62) can be shown to go to zero like t ~ where u > 0 . See 

[29] for more details. [] 

Now to the thermodynamic limit. First we use correlation inequalities to obtain 

Theorem 7.20 : For an arbitrary sequence of rectangles An/~E 2 , f,g E SOR 2) in 

Higgs 2 lim<e: 1~ [ 2 :(g)+F(h)kDM ' ;A exists and is independent of the sequence (A n ) . 
n -~vo n 

Proof : By the correlation inequalities of Section 2.d) <e -:l#12:(g)+F(f) DM is 
>A 

decreasing in A provided g > O . By the bound (7.55) the family of entire funct- 

ions on ¢3 

ZlF(h)+:l~12:(z2g+)-:]~12:(z3g_) D M 

{Fn(Zl,Z2,Z3)} - {<e >A 
n 

is a normal family and, assuming g+ , g_ ~0 , h real, it converges for z 2 ! O , 

z 3 ~ O , z I real. So by Vitali's theorem it converges everywhere (this argument 

is taken from Frbhlich [40]). 

The convergence is uniform on compact sets and the limit is independent of the 

sequence. 
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is euclidean invariant. 

Corollary 7.22 : The infinite volume Schwinger functions 

m n 

Sm+n(gl," ",gm;hl ,h n) - < ~ :I~l 2 • ,... :(gk ) ~ (iF(hj))> 
k:l j =I 

obey all the Osterwalder-Schrader axioms except possibly clustering. 

Proof of Corollary 7.21 : This follows from Theorem 7.19 and the independence of the 

limit of the sequence (A n ) . 
[] 

Proof of Corollary 7.22 : 

O) The zeroth axiom requires some temperedness that is implied by (7.59). 

I) Symmetry is obvious. 

2) Euclidean invariance is Corollary 7.21. 

3) Osterwalder-Schrader positivity follows from the lattice approximation (some 

care is needed for the Gaussian measure; see [2~ ). 

What we have constructed so far does not yet really correspond to Higgs 2 because 

of the "photon mass" ~ that is still present. This can also be removed by correla- 
2 

tion inequalities : As % decreases the transverse part of D increases; the 

longitudinal part is irrelevant due to the gauge invariant coupling between matter 

and gauge fields. 

So by the correlation inequalities of Section 2.d) <e-:,~,2:(g)+F(h)>1 1 
2 

increasing as % ÷ O (for g ~ O) and we only need an upper bound. 

is 

This is not trivial because for %2 ÷ O the covariance D becomes ill-de- 

fined due to a infrared singularity. The reason why an upper bound can be obtained 

is that I) by a correlation inequality one can go into a finite box and 2) there 

the dangerous zero mode of D is isolated and decouples due to a Ward identity 

(i.e. gauge invariance of the coupling). This remarkable fact is a hint of the 

Higgs mechanism that is supposed to generate a mass gap. For details of the slightly 

tricky proof we refer to [29]. We just state : 

~2 Theorem 7.23 : The limits as ÷ O of the Schwlnger functions of Corollary 7.22 

exist and obey all Osterwalder-Schrader axioms except possibly clustering. 
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Remark : A cluster expansion that would reveal the Higgs mechanism in full by showing 

the existence of a mass gap requires (at least in the Higgsian regime) a detailed 

understanding of the role played by classical solutions (instantons) which 

in this case are the so-called vortices [49,50], or at least topological excitations 

lying "close" to these vortices. This is an important problem whose solution might 

shed some light also on the role of classics and topology in other gauge quantum 

field theories. 

Let us now turn to QED 2 and sketch the cluster expansion there. This will give 

the Wightman axioms plus a mass gap for gauge invariant local fields. Continuum 

cluster expansions were pioneered by Glimm, Jaffe and Spencer [38] and applied to 

fermion (Yukawa 2) models for instance by Magnen and S~n4or [46] and by Cooper and 

Rosen [39]. They fit also rather nicely into the general polymer framework developed 

in Section 3 (cf. [51, 52] ). They generally work well for theories that are weak 

perturbations of massive free (i.e. Gaussian) models. 

In the continuum it is not possible to expand in all terms that couple different 

points, links etc. Instead one uses the fact the free expectations are completely 

characterized by Green's functions (covariances); if one replaces these by modified 

ones that decouple different squares (cubes, hypereubes) in a paving of ~d , the 

perturbed Gaussian expectation also decouples. 

This can be achieved for instance by imposingO-Dirichlet boundary conditions 

on the boundaries of squares (cubes, hypercubes). If we symbolize each face of a 

square etc. by a link of the dual lattice it becomes apparent how to imitate the 

cluster expansions of Section 3. The small quantity in which the expansion proceeds 

is the difference between the modified and unmodified Green's functions; polymers 

are connected sets of links in the dual lattice or, equivalently, face-connected sets 

of squares (cubes...) of the original paving. 

To make the activity z(y) of such a polymer y small of the order e-b~y11 1 

(b large), one needs 

~I) the difference between coupled and decoupled expectations to be small, which is 

true if the underlying free theory has large mass, i.e. strong exponential decay, 

(2) the theory to be approximately Gaussian. 

The size of the grid can be adjusted to optimize convergence. 

In QED 2 , (I) and (2) are fulfilled provided e/M << i , where e is the 

charge of the fermion field (i.e. the gauge coupling constant called g or go 



156 

earlier). 

It is convenient to rescale the gauge field : A~-eeA . This moves e from the 

free action into the determinant. We have 

log detren(l+KF(eA) = log det4(l+KF(eA)) - e 2 Trren~(A) 2 (7.63) 

TrrenKF(A) 2 can be computed (see for instance Weingarten and Challifour [26]) : 

I S(~ 9 k k ) x %(k)~(k)T(k2)d2k 
TrrenKF(A) 2 = ~ k 2 

where (with k = ~) 

(7.64) 

T(k 2) = I k ar th k 
k(4M2+k2) I/2 (4M2+k2) I/2 

2 
Note that T(k 2) = k = O(k 4) for k 2 small and 

4M 2 

0 (7.65) 

k 2 2 
T(k 2) = i --~-- log--~ + O(k -4) , for k large. 

k~ M ~ 

We make up a new Gaussian measure dm(F) for the field strength F = c B A 

by absorbing this quadratic term (this is not essential but convenient) : dm(F) has 

mean zero and covariance C(x) given by 

k 2 
C(k) = ~ G(k 2) 

2 
k2+T(k 2) e__ 

(7.66) 

(to arrive at this we set the "photon" mass 1 equal to zero since it is of no use 

here). 

It is easy to see that G(k 2) E C(k 2) is analytic for Ilm k21 < 4M 2 and 

therefore by the Paley-Wiener theorem [33] C(x) will decay essentially like 

k 2 
e -2Mlxl . To make the analytic structure more transparent, we write with 

z = 4M 2 

T(k 2) = I z ~ ar th l+z 

z 

o i÷  iog ÷I z (7.67) 
VT~ +I 

It is now easy to see that G(k 2) is a Herglotz function (i.e. has positive imagi- 

nary part in the upper half plane) and we have a Lehmann-K~ll~n representation with 
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a finite positive measure dp(v 2) : 

G(k 2) = I - S~ dp(v 2) I 
4M 2 v2+k2 

dp obeys the following sum rules 

2 
I~ dp (2) = 
4M 2 

2 
~ dp(v 2) --12 = (I + e )-I 
4M 2 ~ 4#M 2 

which are obtained by looking at the behavior of (7.68) at 

k 2 = ~ and k 2 = 0 . 

F 

measure) but Osterwaider-Sehrader negative when considered as an ordinary scalar 

fieldl This has to be so, of course, because the physical field is E = iF as 

remarked earlier. 

(7.68) 

Note that as in the massless Schwinger model, el. eq. (5.20), the Gaussian ~ield 

with this covariance is "Nelson-Symanzik positive" (i.e. comes from a positive 

According to our scheme we should really carry an ultraviolet cutoff t along, 

but it is easy to see (and essentially shown in [26]) that det 4 can be unambigously 

defined as a dmA-measurable function by taking the limit t + 0 . Our stability 

Actually some arguments are needed to show that the measure dv A defined in 

(7.69) is really the same as the measure dVA defined earlier; this is not particu- 

larly hard to see but we do not want to spend our time with this rather uninteresting 

question here. 

The full measure for F in QED 2 is (in a region A) 

= I det4(l+eK~,A(A))dmA(F) (7.69) dvA(F) ~A 

where KF,A(A) is defined by introducing O-Dirichlet boundary conditions on ~A in 

G F and dm A has the covariance 

C~(x,y) ~ ×A(X)6(x-y) - $4M2 dp(v2)(-A~+V2)-l(x,y) (7.70) 

where (-A~+V2) -I has O-Dirichlet data on ~A 
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L I . Furthermore it is gauge invariance that 

as a function of F . 

As discussed earlier, it is possible to consider gauge invariant "string-like" 

objects involving fermions which are represented here as 

i SeA dx 
C U u 

G~(Cxy;F) -_- e xy G~(x,y;A) 

The electromagnetic current can be obtained as inthe massless Schwinger model 

by introducing an external vector potential a and taking functional derivatives, 

So for instance 

<eieju (au) > 
A = Z~AI Sdet4(l+KF,A(A+a))dmA(F+f) (7.72) 

where f = e ~ a 

' , a nd  I n  ( 7 . 7 1 )  and  ( 7 . 7 2 )  O - D i r i c h l e t  b . c .  o n  3A a r e  t o  be  u s e d  i n  G F , G F 

both (7.71) and the integrand in (7.72) can be understood as functions of F . 

So from now on we will be content with discussing expectations of observables 

that are functions of F . 

To get a cluster expansion we now introduce a paving of A by unit squares A 

and we introduce decoupled Green's functions. To avoid any trouble with gauge inva- 

riance - which could spoil the whole game here - we use O-Dirichlet b.c. on the 

boundaries of our unit squares. Neumann b.c. would be more directly analogous to the 

lattice expansion but they are not as well analyzed as are Dirichlet b.c., in parti- 

cular for fermions (see Cooper and Rosen [39]). 

To set up the expansion we denote by 

Dirichlet b.c. on all links not in the set 

C B B the Green's functions with , G F 

B of links. Furthermore we define 

(l-Sb)C B C(~) E E ~ s b 
FcBA h6B bCB 

(7.73) 

where B A 

GF(~) £ Z H s b ~ (l-Sb)G ~ 
FcBA b6B b£B 

is the set of all links in A 

(7.73') 

Note that C(O) , GF(0)_ decouple all squares, whereas C(1)_ , GF(1)_ are the 
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Green's functions with Dirichlet b.c. only on 3A 

The following formula is an obvious identity (the fundamental theorem of calcu- 

lus) : 

where the sum is over all sets of disjoint polymers (connected sets of links in the 

dual lattice) in A and ~F replaces s b by O for all b not in any y E r . 

There is of course a similar formula for G F . 

If F is a disjoint union of 

factorize : 

n 
Z r = n Z (7.75) 

i=l Yi 

For "modified partition functions" (unnormalized expectations) thesituation 

is analogous except that anything hitting the support of the observable is lumped 

into one polymer (observables involving G F , like (7.71) have to be decoupled too). 

yl,...,yn , the corresponding partition functions 

The activities are now defined as 

z(y) ~ ( E ~ dSb~s~b ) Zy(s_y) 
bey 

and similarly modified activities 

Zp(y) Io ds b Zy(~) 
b6y 

As in Section 3 we now obtain 

a(X) 
<P>A = Z' z~ X! 

X 

(7.76) 

<P> (7.77) 
s --y 

(7.78) 

where the sum E' is over all multi-indices (clusters) connected to P and linear 

in it. 

As we saw in Section 3, for uniform (in 

one only has to check the bound 

A) and absolute convergence of (7.78) 

Ize(y) J ! ce-bIyI (7.79) 
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with sufficiently large b . 

To prove (7.79) one uses integration by parts as in the stability expansion to 

evaluate 

@ Z(sy) <P>s E 8 fdVs(F)P 
8s b _y ~s b --y 

(7.80) 

This gives 

Z(S ) <P> = fd~s(F)~P 
~s b -- s --Y --7 

where in the pictorial language used before 

P 6 ~ ~ ~ + 
Kb'---" ~ "V'N'~'~V + ~ ~- 

+ s~ 6-~ .... N +: " 
F F F F 

(7.81) 

Here stands for ~ b  C(s__~) and ~or ~ G F 

The Wick ordering in the last term refers both to the fermions and the "photons"; 

the fermions are to be Wick ordered with respect to the free Green's function and 

for the "photon" field F one may Wick order with respect to its covariance C or 

the white noise covariance. This Wick ordering arises from the fact that the measure 

involves det 4 and it eliminates all dangerous (divergent or conditionally conver- 

gent) graphs. The fermions in the vertex ~ maybe considered to be Wick ordered 

(formally their Wick subtraction vanishes). 

One important remark has to be made about the vertex ~'~%~F . As 

remarked it stands for : 
f 

: ~ : (~va-l~F) 

and this looks dangerously long range. The reason why it is alright is gauge invari- 

ante : :~7~: will always contract to some other fermions, producing a convergent 

Feynman graph (all possibly dangerous ones are absorbed in the covariance of F) like 
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obeying 

_ f 

= 0  

(7 .82)  

But this means (since we have no harmonics in the Hodge decomposition due to 

our boundary conditions) 

so the suspicious looking A -I in the vertex is always eaten up. Of course its pre- 

sence is essential for obtaining good power counting, i.e. , finite graphs. 

This little consideration shows that gauge invariance in the form of Ward iden- 

tities is crucial for the mass generation in this model. 

The estimation of 

Zp(y) = I d~_ ( ~ ~)P (7.83) 
b~ 

proceeds now in a fashion that is well known in constructive field theory and up to 

a certain point parallels the stability expansion . The derivatives present in 

make (7.83) small in two ways : 

~ ~ GF(~)(x,y ) bEB-~b C(s__y)(x,y) and bEB-~S b 

become exponentially small with IBI and they decay exponentially with the distance 

of the arguments x or y from B 

For the necessary estimates on the differentiated Green's functions that are 

not at all trivial, as well as for the remaining combinatorical estimates we refer 

to the beautiful article [39]. 

A bound of the form (7.79) emerges, provided e is small and M is large. By 
e 

scale covariance it is clear that only the ratio ~ is relevant ~(one has to vary 

the size of the squares in the paving to see this), b will be of the order of 2M 

because our observables are even in the fermion fields. 
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I think I have made clear how the following could be proven : 

Quas~-Theore m 7.24 : In QED 2 for e/M small the fields iF , j~ obey all the 

Osterwalder-Schrader axioms including clustering. There is a mass gap of the order 

2M • 

Remarks : (I) Notice that the expansion does not work near the trivial Schwinger 

limit M ÷ 0 . It would be interesting to find out what is happening there. It seems 

that a different mass generation mechanism takes over. Unfortunately perturbation 

theory in M is rather singular (as opposed to the situation analyzed in [13]) as 

can be seen already by analyzing C : it goes like M 2 log M . 

(2) 0-states can be defined by adding the customary term ie SF to the Lagrangian. 

The dynamics will be e-dependent (cf. [13]). 

(3) Fractionally charged Wilson,loops showarea decay (as can be shown by the 

cluster expansion), whereasfor the massless Schwinger model they show perimeter 

decay. 

(4) The particle structure is not fully clear. Should the branch point present in 

G(k 2) persist for the full two-point function this would suggest that there is no 

confinement but that screened fermions exist as particles. Obviously these questions 

require more study. 

(5) A cluster expansion along these lines also seems to work in Higgs 2 , but only 

in the "non-Higgsian" region where e2/m 2 is small (m 2 is a positive mass term 

for the Higgsfield) and the self-interaction is weak. This leaves again the question 

open what is going on in the Higgs region. The lattice theory does not give any hint 

of a phase transition between the two regions. 

This concludes our study of the construction of continuum gauge theories. As 

became apparent the successes so far are severely limited : The program could be 

pushed through to the end (i.e. the Wightman/Osterwalder-Schrader axioms) only for 

two dimensions and abelian gauge group. We tried to make clear, however, that many 

of the intermediate results are of a more general nature and that work is in progress 

to get at least beyond the flat two-dimensional world [9,16]. 

If one'wants to construct a nenabelian model like QCD in d = 2 or 3 (dare 

I mention d = 4 ?),there is, however, another problem that cannot just be overcome 

by sufficient skill in proving estimates : It is the lack of a sufficient number of 

fields for which the Wightman axioms can be expected to hold. It seems appropriate 

to look for a more general framework that is more adapted to the special features of 

gauge theories. This is the subject of the last section. 
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8. A FRAMEWORK FOR NONLOCAL GAUGE INVARIANT OBJECTS. 

Even though it is possible to show that gauge invariant local fields obey the 

Wightman axioms in some cases, as we have seen, it seems that these axioms do not 

provide the most natural framework for theories like QCD . We saw already in the 

discussion of the scaling limit that is is best discussed for expectations of objects 

llke Wilson loops. It should also be stressed that such nonlocal gauge invariant 

objects are much closer to the expected particle content of confining theories. So 

the gauge invariant string 

ifc A 
S(Cxy) ~ ~(x)P e xy ~(y) 

(represented pictorially by x e ' ~ y  ) 

(8.1) 

seems a natural candidate for creating mesons; of course the Wilson loops would be 

expected to create primarily glueballs (if there are any) and maybe also mesons 

because states S(Cxy)R and W(C)R will not be orthogonal in general. 

There is also a natural candidate for creating baryons in QCD (of course with 

color group sU(3)) : 

B(C ,C ,C ) ~ ~a(Xl)~b(X2)~c(X3) x 
xlY x2Y x3Y 

iSC A iSC A) i~c x3yA (8.2) 

(P e xlY x2Y , (P e 
)aa' (P e bb )cc' ea'b'c' 

where the indices refer to color space. Pictorially 

"star" 

B may be represented as a 

If we assume that we manage to construct euclidean continuum expectations of 

such things, be it as a scaling limit or by solving the Schwinger-Dyson equations 

as advocated by many people or in any other way [54] we have to face the question 

what this means. Does this determine a quantum field theory of some sort ? Can we 

describe scattering of particles this way ? 
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It is this kind of question that is addressed in [55] and we want to give some 

ideas here how these questions are answered in essence positively, provided one is 

willing to make suitable assumptions - that seem at least plausible - about the ex- 

pectation values. 

It should be stressed that this is a general framework that may also be suited 

for other "field theories" of non-local objects such as "dual string theory" [56,57] 

or some "bag models" [58]. 

To keep the notation simple, I will formulate everything explicitly only for 

Wilson loops. Sometimes I will remark on changes that are necessary when dealing with 

"strings" or "stars", but generally everything goes through for these without change. 

a) Assumptions. 

These assumptions are partly of a somewhat complicated technical nature and one 

should keep an open mind about them and not consider them sacred (this is why we do 

not call them axioms). The point is that there are assumptions that are not unreaso- 

nable and that allow to carry out the constructions we are presenting. More general 

assumptions would probably still allow for similar results, but at much higher cost 

in person-hours. 

Wilson loops in principle carry a group representation label • which I will 

suppress. Loops are always assumed to be at least piecewise smooth. We call 

n 

Sn(CI,...,C n) - < n W(Ci)> (8.3) 
i=l 

then-loop Schwinger function. 

The assumptions about 

[4] are 

(so) 

(Sl) 

(s2) 

(s3) 

S that roughly parallel the Osterwalder-Schrader axioms 
n 

Technical assumptions 

Symmetry 

Euclidean Invariance 

Osterwalder-Schrader positivity 

($4) Clustering 
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Remark : If "baryon operators" ("stars") are present, (SI) has of course to be modi-- 

lied according to their Fermi statistics. 

We now want to give the assumptions in more detail and try to explain why we 

consider them plausible : 

(SO) : 

a) S 
o 

b) S n 

such topology for 

= I, S is defined for piecewise smooth loops. 
n 

depends continuously on CI,...,C n in a suitable topology for loops. One 

d = 4 would be the following : 

Define a distance function on pmrametrized loops x(s) by 

d(x(),x'(.)) I[x-x'll 2 + II~-~'II 2 + II~-~'11 2 (8.4) 

where the dot denotes derivative with respect to s and the last term has to be 

interpreted appropriately if the loops have corners (if ~-~' contains a ~-function, 

define d(x(-),x'(.)) to be ~ ). 

If we now identify parametrized loops 

point sets coincide, we see that the sets 

quotient topology makes sense. 

x(-) ~ x'(.) whenever the corresponding 

(x(.)Ix(.) ~ Xo(- )} are closed and the 

Remarks : (I) The reason for choosing this topology is the following : In the free 

electromagnetic field theory in d = 4 (QED4, f) the loops can be studied explicitly; 

formally 

Iog<W(C)> = - SC dx p SC dy~ D(x-y) (8.5) 

To make this well defined it has to be renormalized by subtracting formally an infi- 

nite constant (superficially proportional to ICI ) . But a little inspection shows 

that each corner makes an extra renormalization necessary, depending on the angle 

at the corner. The renormalized version of (8.5) cannot be continuous in a topology 

that allows smooth (C I) loops to converge to loops with corners. (8.4) prevents 

that and it is not hard to see that (8.5) (renormalized) does in fact have the re- 

quired continuity (cf. Polyakov [54], Fr~hlich [55]). 

(2) If one chose a much stronger topology and for instance required S only to be 
n 

continuous in the parameters of rigid euclidean motions of the loops, the resulting 

physical Hilbert space (see below) could become intolerably large (i.e. nonseparable). 

Note that the space of loops is separable with our topology. 
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(3) 

QED4~ f are valid in QCD 4 as well. 

a. 

c) Let C. I be the translate of C. by the amount a. E~ d 
i l i 

a I a 
let dn(C I ,...,Cnn) be the minimal euclidean distance in ~d 

the loops. Then there are constants K n , c n , p such that 

a I a n 
ISn(C I ..... C n )1 ! K  n exp(cndnP) 

Because of asymptotic freedom it is plausible that these considerations for 

(i = I, .... n) ; 

between any two of 

(8.6) 

K n and e n may depend on the loops chosen (but of course not on al,...,a n) ; 

p may not. 

Remark : By looking at QEDd, f and appealing to asymptotic freedom one guesses : 

p = 0 in d = 2 ; p arbitrarily small in d = 3 ; p = i in d = 4 . 

d) Select a direction called "time"; define a temporal distance d t between any 

two loops C, C' by 

dt(C,C') E inf{It-t'II3 (t,~) E c and (t',~') 6 C'} 

~ C 

~ C '  
tl•t(C,C') l ~ 

Then there are "constants" KC, e (i.e. functions of C and E > O) such that 

ISn(C I ..... Cn) l !KcI,~'''KCn,C (8.7) 

whenever dt(Ci,C k) ~ e for all i,k = I .... ,n . 

Remarks : (I) Of course KC, e will blow up as e ÷ O in a way indicated under c). 

(2) (8.7) expresses some kind of "clustering"; the point is really that KC, C does 

not depend on n . 
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(3) (8.7) is of course true on the lattice; if the continuum Wilson loops only re- 

quire individual multiplicative renormalization as expected, (8.7) should be true. 

(4) (8.7) is true for QEDd, f . If one believes in a mass generation mechanism in 

QCD, it should be true there afortiori. 

(5) In a scalar field theory (8.7) would correspond to a very weak form of a ~ - 

bound. It would say that 

e-~H~ (x) e -ell 

is a bounded operator. In all existing models much stronger bounds are true. 

(6) (8.7) is true (trivially) for the two-dimensional models we have discussed. 

There actually KC, E = XT(1) . 

(SI), ($2) need no coment except for the one made already about "stars" B(C) 

obeying Fermi statistics. 

(S3) is well known but we want to give a precise formulation : Let V~ 

tor-subspace of the polynomial algebra ~[{W(C)}] spanned by monomials containing 

only nonintersecting loops. Then the set of Schwinger-functions (S } induces a 
n 

linear functional S on V~ 

Let V+ be the subspace of 

d + ~d I > O) lying in I~+_ -- {(t,x) 6 t < 

V_ reflecting all loops in t = 0 

Then ($3) says 

S(AeA) > 0 for any A 6 V+ (8.8) 

(S4) says simply 

lira S(AB a) = S(A)S(B) (8.9) 
a->~ 

where B a denotes the translate of B by a vector a E I~ d 

b) Reconstruction of a Relativistic Quantum Mechanics. 

This subsection is of a very general nature. It is really a group theoretic 

reconstruction theorem and only depends on ($2), ($3), ($4) (($4) actually could 

be the vec- 

V# spanned by monomials containing only loops 

and let 8 be the antilinear map from V to + 

and taking complex conjugates of the coefficients. 
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even be relaxed). It can easily be generalized to other systems described by Euclidean 

expectations of nonlocal objects (such as bag models, for instance). We use the fol- 

lowing 

Def. 8.1 : A relativistic Quantum Mechanics consists of 

(I) A separable Hilbert space H 

(2) A distinguished vector ~ E H , called vacuum 

(3) A continuous unitary representation of P'+ , the universal covering group of 

the proper orthochronous Poincar4 group, obeying the "spectral condition" (spectrum 

of the generators of translations P in ~+ , the closed forward light cone), 

with ~ as the only invariant vector. 

Then 

To verify this definition in our framework we first have to give 

N E {A ~ V+IS(AeA) = O} 

H v-2  

is a separable Hilbert space. 

H : Let 

(8.9) 

This is of course standard. It is also standard and straightforward (cf. [4]), 

to see by Schwarz's inequality and the bound (8.6) that translations in positive 

time direction induce a semigroup of positive contractions 

{Tt}t> ° on H and that T t = e -tH where H ~ 0 (8.10) 

Furthermore spatial euclidean motions (a,R) (i.e. the subgroup of the euclidean 

motions of ~d that maps the hyperplane t = O into itself) are represented unita- 

rily and continuously (in the strong topology) on H 

So the question is about the boosts. 

Consider the following subspace V of V+ : 

~=O 
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V is the subspace generated by monomials containing only loops in the cone 
S O ~E 

of opening angle ~-2~ , apex at x = (e,O) , which is rotationally symmetric about 
o o 

the time axis (see figure). V corresponds to a subspaee H of H , and the 
~0 ~E ~0 ~E 

fact that {e -tH} extends to a holomorphie semigroup in the right half plane shows 

by a standard argument related to the Reeh-Schlieder theorem [47] that H is 
@o ~E 

dense in H 

Now there is a whole neighborhood U of the identity in E d , the euclidean 

group on Ed , that acts naturally on H and is represented by linear (partly 
~o~E 

unbounded) operators. Let us focus on a one-parameter subgroup H c E d of rotations 

in a 2-plane containing the time axis. We call H a group of imaginary boosts. 

Also let H U ~ H n U . 

Lamina 8.2 : H is represented on H by a strongly continuous local group of symme- 
U 

tric (unbounded) operators {~a}l=l<e defined on H 
o o ~ 

Proof : By the structure of E d and the invariance of S we have for A,B E Vso, : 

S(A eB) = S(A(eB)_ ) = S(AeB ) (8.11) 

where A s denotes the image of A under a rotation by an angle ~ (lel < s ° ) . 

all 

From 8.11 we see that for A £ N N V also A 6 N : if 
~o~E ~ 

B 6 V o,e , then 

S(ASB) = 0 for 

S(A eB) = S(ASB ) = 0 

for all B 6 V 

o 
So the operators P on Hso,~ corresponding to ~ are well defined and by 

(8.11)  they  a re  s y r ~ e t r i c .  

Strand continuity follows irm~ediately from the group property and symmetry of 
o 
P t o g e t h e r  w i t h  t he  c o n t i n u i t y  (SO.b) . 

At this point a remarkable theorem comes in handy that is due to Frbhlich [59] 

in the form used here; actually it can also be deduced from an older result of 

Glaser [60], and a variant of it has also been proven by Klein and Landau [59]. 
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Theorem 8.3 : 

Consider a semigroup 

a separable Hilbert space 

D of H such that 

O O 

{Pt}t>o of (possibly unbounded) linear operators Pt on 

H with the property : There is a dense linear subspace 

O 
(I) For each ~0 E D there is a c(~0) > O such that ~0 is in the domain of Pt 

O 

for all t 6 [O,e(~0)) and s - lim Ptq~ = ~0 
t o 

O O 
(2) If tp E ~ and s,t,s+t E [O,~0(c)) then Psq) is in the domain of Pt and 

0 0 0 

PtPs~0 = Ps+tq) 

O 

(3) Pt is symmetric for each t > O . 

o 
Then these operators Pt have a unique selfadjoint extension Pt 

{Pt}t>o is a semigroup of selfadjoint operators on H 

and 

An immediate consequence is 

Cor. 8.4 : There is a unique group of selfadjoint operators 

{Pa)aEB such that P for l al < a 
O 

O 

is an extension of P 

Remark : The group 

covering group H 

{P } £~ does not represent the subgroup 

(which is isomorphic to ~ ). 

H but its universal 

Now we can of course analytically continue the group {P } . We write 

P E e ~B (8.11) 

(actually FrShlich'sproof goes by the construction of B ) and call B the genera- 
i~B 

tot of a boost in the chosen direction. Unitary boosts are then defined as e 

and to make the direction dependence clear, we write 

e 

itH 
Of course we also have the unitary time translations e , so that we have 

candidates for unitary representatives of each element (a,A) E P+ by taking appro- 

priate products of translations~ rotations and boosts. 
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What is not yet clear at this point is that we actually have a representation. 

It is easy to see that the generators form a self-adjoint representation of the 

Poincar6 Lie algebra, but it is well known that additional conditions have to be met 

so that the exponentials represent the group (cf. [61,62]). These conditions seem 

to be hard to check here. So we follow a different strategy : We know already that 

we have a "mixed local representation" of E d on H , i.e. a full neighborhood of 

I E E d is represented by partly unbounded operators on H with domain V . So 
o . 

the strategy is to analytically continue the group multiplication law to obtaln a 

unitary representation of ~+ . This requires some care because we cannot arbitrarily 

continue in all group parameters. 

We start with the homogeneous part SO(d) 

Let g = O(d) be the real Lie-algebra of 

corresponding to the spatial rotations, and m 

of E 
d 

SO(d) , h = 0(d-l) the subalgebra 

the vector subspace of 9 spanned 

by the generators of the remaining rotations (called imaginary boosts above). Obvi- 

ously 

[~,h] c h , [h,m] c m , Ira, m] c h (8.13) 

Remark : (8.13) means that the pair (g,h,o) where o is -I on m , +I on h 

and linear is a so-called symmetric Lie algebra (cf. [63]). 

The structure (8.13) is necessary for any analytic continuation of representa- 

tions. 

If we replace m by im we get on account of (8.13) another real Lie algebra, 

called g* . In our case it is o(d-l,l) . 

We need a few simple lemmas. 

Prop. 8.5 : Each g E U c SO(d) ~ G where U is a sufficiently small neighborhood 

of I E SO(d) may be (uniquely) written in the form 

g = exp(tY) exp(sX) (8.14) 

with X E h , Y E m . 

Note : We use the mathematician's convention for the Lie algebra here (no i's). 

Proof : If U is small enough, g belongs to precisely one coset (right orbit) 

gH where H = SO(d-l) . 
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G/H is a principal fiber bundle (see appendix) and carries a canonical connec- 

tion [63]; its geodesics are given by {eTYH}ITI<__ e (Y 6 m). If U is small enough 

there will be precisely one geodesic from 0 = ~ H to gH and gH = etYH for 

exactly one t (if we require that e t'Y 6 U for 0 ! t' ! t ). For U small enough 
-tY sX 

e g 6 H may be written (uniquely) as e 

To keep our notation simple we will now blur the distinction between Lie algebra 

elements and the operators on H representing them. 

Prop. 8.6. : ~ E H consists of analytic vectors for m 
~o ~g 

Proof : This follows from the fact that each ~ 6 P is in the domain of 

Y 6 m and t small enough. 

e±tY 

[] 

for 

Prop. 8.7 : There is a dense subspace D' of vectors analytic for all X E g • 

Proof : Let ~ 6 D , • an irreducible unitary representation of H (finite dimen- 

sional since H is compact!) and P the projection in H onto the subspace be- 

longing to that representation. We claim that PT$ is still an analytic vector for 

all Y 6 m : P can be written down explicitly (cf. Section 2.b)) : 
T 

P ~ = d ;H dhxT(h-l)h$ (8.1s) 

where dh is normalized Haar measure on H . 

Therefore 

t k ykp~ XT(~)2 = t k 
Z kT. l[ ]I ! Z ~ IIY~*II : 

k=o k=o 

~ t k 
= Xz(~) 2 Z ~T.f 11((ad h)(y))k~ll 

k=o 

which is finite for small enough t since ~ is an analytic vector for ad h(Y) . 

Pz~ i s  o b v i o u s l y  e n t i r e  a n a l y t i c  f o r  ~ . 
[] 

Now we can start to analytically continue. 

Let {YI' .... Yk } be a basis of m , {XI, .... X£} a basis of h 

Then there is a polydisc P c ~k centered at 0 , such that the maps 

f:p~k 
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expressing the (abstract) group multiplication law 

k 
Z f .Y. l giXi 

ZlYl ZkYk i=l z i i=l 
e .... e = e e 

are holomorphic. 

(8.16) 

For purely imaginary Zl,...,Zk, f will take purely imaginary values and g 

real values, so that (8.16) also expresses the multiplication law of G (the simply 

connected group generated by g*) . 

New we regard {Xi}£i i ' {Yi }k = i=l again as linear operators on H and pick 

~,~ 6 ~' . 

Consider the two functions 

ZlYl ZkYk@) (8.17) 
Fl(Zl, .... ,z k) E (~,e ... e 

k £ 
Z f.Y. Z giXi 

i i i=l 
Fll(Zl,...,z k) E (~,e i=l e $) (8.17') 

At first they are both defined for small real Zl,...,z k and are equal there. 

F I is analytic in each z i in a vertical strip 

S (i)~ E {z i 6 ~{ {Re zil < e} 

if all z for r # i are kept small and real. 
r 

Mapping these strips holomorphically onto horizontal strips 

~(i) E{~. 6 ¢II Im ~i I < 2~} 
g i 

(by composing the maps tan and ar th with suitable scaling) we can use the Mal- 

grange-Zerner-Stein-Kunze theorem [64] to obtain analyticity of F I (and hence 

FII ) in a polydisc ~ around the origin which we may identify with P . 

For (Zl,Z2,0,...,O) E P 

~IYI z2Y 2 
Fl(Zl,Z2,O,...,O) = (e ~, e ~) (8.18) 

and for Zl = iYl ' z2 = iY2 (YrY2 6~) 
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Fl(iYl,iY2,O,...,O) = (e-iYlYl~,eiY2Y2~) = (~,eiYlYleiY2Y2~) (8.19 

I claim that there are holomorphic curves in P obeying 

f(~(t)) = et!(~(O)) (8.20) 

for Re t < O and any real z(O) (continuous up to the boundary). 

Proof : By the Baker-Campbell-Hausdorff formula 

!(~) : ~ + °(Jzl 2) 

So in a neighborhood of O , z + f(z) may be inverted; our curves are then simply 

given by 

~(t) = f_-l(et~(~(0) ) 

Along these curves we may analytically continue F I 

and the fact that for ~,~ 6 D' : 

_ EgiX i 

Fl(~(t)) = (exp( et ~fi(zi(O))Yi)~,ei 4) = Fll(~(t)) • (8.22) 

Picking the curve determined by 

(~) = (iYl,iY2,O,...,O) 

or equivalently 

(8.21) 

= FII , using just Theorem 8.3 

we obtain 

i~(~(O)) = f(iYl,iY2,0 ..... O) 

k 
(~0, exp( r fj(iYl,iY2,0 ..... O)Yj) exp( E gj(iYl,iY2,0 ..... O)Xj)~) = 

j =i j =I 

= (~p, eiY!YleiY2Y2~) (8.23) 

By density we may omit the vectors ~,~ in (8.23) which then proves the crucial 

part of the multiplication law of G ~ (we had to assume YI' Y2 linearly indepen- 

dent, but if they are not everything is trivial anyhow). 
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To obtain the full group multiplication law one still has to show 

e X eiY Y e-X = eiY ad(eX)(Y) (8.24) 

for any X E h , Y E m . This follows easily by analytic continuation. We get the 

full miltiplication law of SO(d-l,l) 

iYlY I X I iY2Y 2 X 2 iY(Yl,Y2;YI,Y 2) X(Yl,Y2;YI,Y2,XI,X2 ) 
e e e e = e e (8.25) 

(where Y(--) , X( ) are the functions given by the abstract multiplication law 

of G* . (8.25) proves the representation property in a neighborhood U of I . It 

is easy to see that it follows then for the whole group (by breaking up "large" group 

elements into suitable small ones in U ). So we have proven : 

Theorem 8.8 : On H there is a unitary representation of the proper ortho- 

chronous Lorentz group (or rather its universal covering group). It is uniquely de- 

termined by the representation of U c E d induced by the ordinary euclidean motions 

on V 
~o~E 

What is still lacking is the covariance of the translations. This is proven in a 

similar way; it is even somewhat easier. We omit the proof here (see [55]). One obtains 

Theorem 8.9 : Denote by 

P =H . 
o 

P (~ = 0 . . . . .  d-l) the generators of the translations; 

Then for any A 6 SO(d-I ,I) 

iZaP i ZaA P 

U(A)* e ~ U(A) = e P'~ (8.26) 

From P ~ H > O and this covarianee one obtains of course the spectral condition. 
o 

The vacuum is given by the function ~ and is clearly invariant; its uniqueness is an 

obvious consequence of (S4) (clustering). So we checked all properties of Def. 8.1 

and we have proven 

Theorem 8.10 : From assumptions (S2~, (S3), (S4) the existence of a relativistic 

Quantum Meehanies follows. 

e) "Wightman Functions" and Their Analyticity. 

To reveal the meaning of assumption (SO d) we look at the following operator 

W(~) (C) on H : Let C be a loop in ~+ that touches the hyperplane t = 0 and 
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has "temporal diameter" d . Let ~0 be given by the monomial 

n n 

W(C i) E V+ , i.e. q0 = [ ~ W(Ci)] 
i=l i=l 

Then 

w (s) (c)~ -- [w(c (s'~)) W(c!d+2c'~))] 
i=l z 

Maybe this is clearer pictorially : 

(8.27) 

C 
O c ,  

C~ 

"t:=O 

w(~)(c)~ 
0 C1 

G c~ 

t-O 

By linearity W(e)(C) can be extended to V+/N . We have now 

L~a 8.11 : llw(~)(c)IL <_Kc,~ 

Proof : This follows easily by iterating Schwarz's inequality : 

i 
I-2 -2n (C),W(E) I (~ ,w(~) (c ) * ) l  ! II • II I I ,  II x ( , , (w (~) (c) )n, )  en 

where the lim sup of the last factor is bounded by KC, ~ by (SO d) as n ÷ 

D 

(Strictly speaking one first has to prove this boundedness on V+ which then permits 

to define W(e)(C) on V+/N = H) . 



Let now 

177 

CI,...,C n be loops that are time-ordered and obey 

dt(C£_l,C £) > 0 , £ = 2,...,n 

it 

~ C3 

We define now a '~ightman function" 

71 7 
W C l , . . . , C n ( Z l , . . . , z  n) ~ Sn(C , . . . , C  n ) 

where 

(8.28) 

= (iZo,~) if z = (Zo,;) 

By the spectral condition WCl,...,Cn(Zl,...,Zn) is analytic in Zl,...,z n as long 

as Im(zi-zi+ I) 6 V+ , i = 1,2,3 .... ,n-I . 

Note that WCI,...,C n does not have simple transformation properties under in- 

dividual homogeneous Lorentz transformations of CI,...,C n . Wilson loops contain all 

(integer) spins (half-integer ones come in when we study "stars" B(C)) . They should 

be considered as operators that create whole Regge trajectories, not just particles. 

There is some joint analyticity of operator valued functions like 

.÷ ~ ia P 
e I~ e @ ~ W(e)(C) 

but it would lead too far afield to analyze that here in detail. 

But there is one more point that is important : W(e)(C) can be boosted unitarily 

without harming the analytlcity of the "Wightman functions" : 

Lemma 8.12 : Let C be a loop lying in the hyperplane t = 0 . Then the following 

bilinear form Q(~,~) corresponds to a bounded operator of norm less or equal to 
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KC, e ' (E' = ee -I~{) : 

"+ ~e_~H W(~) Q(~,~) ~ (eeHe -18 ~, (C) eeHe-i~ Be-~H$) (8.29 

which is defined on H × H 
g,O g,O 

Proof : By the structure of P + +: 

e~He-i8 Be-eH = eCH(e -i8 Be-EHeI8 B)e-i8 B = 

-(coshl~l )eH + (sinhl 8 I) £P- 8 
eH ~ ~i~ 

= e e e 

ee(l-e-I~l)H 
->~ 

= exp{-e sinhlgl(H - g • ~)} e -i88 

The last two factors are bounded, so the lemma follows from the fact that 

e e(l-e-l~l)H W(e)(C) e s(l-e-l~l)H = W(e')(C) (8.30) 

I+I where e v = e- 8 e 

Remark : The bilinear form corresponds to an operator W(e)(C()) where C is 

the loop C boosted (in its own hyperplane) with boost parameter 

This means that we can define "Wightman functions" as before for loops 

CI,...,C n that are lying in arbitrary space-like hyperplanes in Minkowski space. 

d) Boundary Values ('~ightmanDistributions") 

This is now quite routine; we only have to remember to use a smoother test 

function space than S because of the possible strong exponential singularities that 

are allowed by (SO.e). 

Theorem 8.13 : Let CI,...,C n be loops lying in space-like hyperplanes. Then the 

boundary values 
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lim C (xl+inl""'Xn+inn) 
ql,...,~n->O WCI'"'' n 

~i-~i+iEV+ 

i=l,...,n-i 

exist in the sense of Jaffe ultradistributions (with indicator function 

P 

ing like Ixl p+I for Ix[ ÷ ~ , p as in (SO.c)) . 

~(x) behav- 

Remark : We do not want to go into the theory of Jaffe ultradistributions here, all 

that is needed is that they allow strict localization, i.e. for each open set there 

is a test function supported inside. See [65] for more details. 

For a proof see [55]. 

e) Locality and Scattering Theory. 

The following locality result is essentially a direct transfer of the proof by 

Jost [47] that symmetry of the Wightman functions implies locality. Some extra care 

is needed, however, due to the extended nature of the loops. See [55] for details. 

Theorem 8.14 : Let CI, C 2 be two loops, each lying in a spacelike hyperplane, and 

such that their convex hulls C1 ' C2 are spacelike to each other. Then the corres- 

ponding Wilson loops commute. 

Remarks : (i) I suppose it is clear what is meant by the statement even though I 

didn't define all of the words in it properly. 

(2) This locality result is not quite the best one could expect : it does not say, 

for instance, that the following pairs of loops in the t = O hyperplane commute, 

even though they should : 

c, 
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But the locality we proved is sufficient for scattering. 

Idea of proof : By the assumption on C1 ' C2 all points in 

DI2 E {Xl-X21Xl 6 C1 ' x2 6 C 2} 

are Jost points and there is a boost generator 8"B such that 

-> -~ 

eB'B 
e 

6 V+ for e > 0 

£ V for e < 0 

If we consider now a slightly ill-defined looking "Wightman function" 

W ~ N 'cN(Zl''n " "'Zk'O'O'Zk+l'" "" 'zn) El,. ,Ck,Cl,C2,Ck+ I e i 

with Im(zi-zi+ I) ~ V+ , i = l,...,n-I 

and Im z k E V+ , Im Zk+ I 6 V_ 

we see, using some argoments from complex analysis (see [55]), that this is really 

~.~ 
an analytic function by applying e to all arguments and loops. Doing this for 

E > 0 we obtain C I before C 2 , for e < 0 , however, C 2 comes before C I . 
->÷ 

But by Lorentz invarianee the function stays the same under the boost e EB'B 

Sending e to zero and using continuity shows that we can interchange C I and C 2 . 

[] 

As remarked already, the main importance of this locality lies in the fact that 

it leads to strong decay of the truncated Wightman distributions in spacelike direc- 

tions and thereby to strong asymptotic limits ("in" and "out" states) by the Haag- 

Ruelle theory, provided the energy-momentum spectrum contains an isolated one-parti- 

cle hyperboloid ("upper mass gap"). Since this is well known (see [47,66,78] we 

just state 

Theorem 8.15 : If there is an isolated one-particle hyperboloid in the spectrum of 

(H, ~) we obtain strong convergence to the asymptotic states and isometric M~ller 
+ 

operators ~- . The S-matrix ~+ ~-* is in general only a partial isometry. If 

we know that the theory is asymptotically complete, the S-operator is unitary. 

This theorem is of course not too satisfactory but in this respect the situa- 

tion is no worse than in ordinary quantum field theory. Methods to prove the upper 
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mass gap are available [67,76] and can in principle be applied in thls framework 

(maybe it would be useful to try them out on lattice gauge theories). I have nothing 

to say to the question of asymptotic completeness except that I hope the world does 

not resemble the "black flag roach motel" ("the roaches check in, but they don't 

check out"). 

This sketch is just intended to show that gauge invariant extended objects pro- 

vide a framework for dynamics that looks essentially as reasonable as ordinary quan- 

tum field theory. And there is at least some hope that they might be a little easier 

to construct in d = 4 than quantum fields. 



Appendix : The Geometric Setting of Gauge Theories. 

The chamcteristic feature of gauge theories is the fact that at each point p 

of the space-time manifold M we have an internal symmetry space I . I is either 

a Lie group G , the gauge group (if we are dealing with the gauge field itself), or 

a vector space on which G is acting (if we are dealing with matter fields). So if 

we consider an open neighborhood U of a point p 6 M , the space B on which the 

fields live looks like a direct product U × I . This local direct product decomposi- 

tion is called a local trivialization or in the language of physics a choice of a 

gauge. Different patches U , U' require a transition function gU,U' that relates 

the gauge choices in U and U' whenever U N U' # ~ : if p 6 U N U' we consider 

(p,f) E U x I and (p,f') E U' x I to be the same point in B provided f is re- 

lated to f' by the action of gU,U' " A patching (i.e. a covering by open sets) 

of M together with all transition functions defines B as a fiber bundle; I is 

called the fiber, M is called the base manifold. If I = G we speak of a principal 

bundle, if I is a vector space we speak of an associated vector bundle. If M is not 

contractible, for instance if it has the topology of a sphere or a torus, B may turn 

out not to be homeomorphic to M x I ; in this case we say that B is nontrivial. 

In our context this is relevant for the case of the so-called (anti-) periodic 

boundary conditions corresponding to a torus as the base manifold M . 

The concept of a gauge field corresponds geometrically to the concept of a con- 

nection in a principal bundle. A connection gives a prescriptionin which direction 

to move in the bundle B when a certain direction is given in the base space M, or put 

differently : A connection is a prescription to lift curves from M into B provided 

a starting point in B has been chosen. An equivalent description is the following: 

The tangent space of a point in B splits into a direct sum of the tangent space to 

the fiber I (the vertical directions) and its algebraic complement (the horizontal 

directions) which is isomorphic to the tangent space of a point in M ; a connection 

is just a (smooth) choice of horizontal subspace for each point, This horizontal 

subspace can be obtained as the null space of a Lie algebra valued 1-form ~ , the 

connection form. In a local trivialization ~ is determined by a Lie algebra valued 

I- form A = EA dx ~ on M through the equation ~ = g-IAg+g-ldg (g 6 I = G ; 

more precisely g-IAg+g-ldg is the pullback of ~ with respect to the local trivia- 

lization ~ : U × I + B , U ~M ). The components A are known as the Yang-Mills 

vector potential in the language of physics. 

Normally a closed curve C in M will not lift to a closed curve in B . The 

endpoint will however lie on the same fiber as the starting point ~o and thereby 

define an element g~ (C) of G . ~ (C) is called the holonomy operator corres- 

o N o local trivialization (gauge) has been chosen ponding to C and Po " If a 

such that ~o = (Po' I) the suggestive physicist's notation 
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~lYo(C) = P exp;Ac 

(where P stands for path ordering) can be used. 

If g~ (C) is not always the identity ~ we call the connection nontrivial; 

if this is ~° the case for a contractible C we say the connection possesses curva- 

ture. The curvature form is a (horizontal) 2-form with values in the Lie algebra on 

B ; in a local trivialization it is determined by a Lie algebra valued 2-form F on 

M : 
I 

F = dA + ~ [A,A] . 

The components of F are the Yang-Mills field strength tensor. If S(C) is a smooth 

surface bordered by C 

exp ;S(c)F ~ g~o(C) 

in leading order in IS(C) I . g~ (C) = I 6 G for all C 

ality of the principal bundle; on ° the other hand F = 0 

all contractible closed curves C . 

implies F = 0 and trivi- 

implies g~_ (C) = I for 
~o 

Matter fields are given as sections of vector or spinor bundles. A section is 

simply a smooth assignment of a point ~ in B to each p E M such that in a local 

trivialization ~ = (p,f) . So locally a section is just a function from M to ~ . 

An important concept is the notion of topological charge density which is given 

by the mathematical concept of Chern classes. In a simple minded way the Chern clas- 

ses c are defined by [1,90] 
n 

det(l +~ F) = ~nc n 

SO 

i I 
c I =~ tr F , c 2 =-- tr FAF . 82 ' 

It can be shown that fcn is always an integer if M2n is a compact 2n-di- 

M2n 

mensional submanifold of M without boundary (i.e. a 2n-cycle). fc is called 
M n 
2n 

Chern number or topological charge. 

The concepts of principal bundles, connection and curvature can easily be visua- 

lized by the following simple "classical" example : Consider a ball that is allowed 

to roll on a surface M ; assume that there are some patterns on the ball so its 

orientation can be observed. Its configuration space is locally just the direct pro- 

duct of its position space M and the space of orientations. The space of orienta- 

tions may be taken as the space of orthonormal 3-frnmes fixed to the ball and can be 
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identified with S0(3) . So the configuration space may be viewed as a principal 

bundle B with fiber SO(3) and base M . 

A connection is now given by the "rolling" constraint : Moving the ball along 

a given curve will change its orientation in a definite way. This connection is non- 

trivial; the curvature F corresponds to infinitesimalrotations about the axis de- 

termined by the bali's center and the point of contact with M . For a flat surface 

and a 'tnatural" choice of gauge 

i I 
A = ~ (Lldx2-L2dx I) ; F = - ~ L3dxldX 2 

where LI, L 2 , L 3 are standard skew adjoint S0(3) generators and R is the hall's 

radius. We leave it to the reader to work out various holonomy operators in this 

example; unfortunately this example does not allow for non-vanishing Chern numbers. 
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