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FOREWORD

Richard Bellman, a most prolific and renowned mathematician of the United States,
has made major contributions in pure mathematics and in numerous areas of applica-
tions : engineering, economics, medicine, energy, water resources, mathematical
physics, operations research, management sciences, psychology and sociology. This
breadth of interests and this ability to contribute to so many fields at such a high
level is rare indeed. Throughout his years in science, he had a large number of
scientific friends, students and followers. Among them, after Professor Bellman has
passed away, a group of scientists of the United States attempted to preserve his
Schoal. As a mechanism for achieving this goal, they suggested an annual or biennial
workshop : the Bellman Contimuum. This workshop was envisioned as being interdisci-
plinary in nature, as the achievement of Richard Bellman was.

The first meeting was held at the University of Michigan, Ann Arbor, Michigan,in
1985 and the second was hosted by the Georgia Institute of Technology, Atlanta,
Georgia, in 1986. They correspond to a formative stage : they attracted a few scien-
tific friends of Richard Bellman and some scientists whose work has connections with
his School.

The third Bellman Continuum, sponsored by IFAC and AFCET (french NMO of IFAC),
has been organized by the Institut National de Recherche en Informatique et en Auto-
matique {I.N.R.I.A.) and the University Paris 7, on June 13-14, 1988, at the INRIA
Research Center of Sophia-Antipolis, on the french Riviera, 6 miles North-West
Antibes. It immediately followed the INRIA Eight International Conference Analysis
and Optimization of Systems, held at the Palais des Congrés of Antibes on June 8-10,
1988, and it immediately preceeded the third International Symposium on Oifferential
Games and Applications, held at INRIA-Sophia on June 16-17, 1988.
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The program included invited and contributed lectures in the following areas
where research is very active and promising :

- Deterministic Approach to the Control of Uncertain Dynamical Systems.
- Control and Non-Linear Filtering of Quantum Mechanical Processes.

- Models and Control Policies in Economics.

- Models and Control Policies for Biological Systems and Ecosystems.

Key-note speakers were Prof. G. Leitmann, University of California, Berkeley, U.S.A.,
and Prof. S.K. Mitter, Massachusetts Institute of Technology, U.S.A.

The areas above correspond to the four main sections of this book. An additio-
nal section has been devoted to computational bearings. They have in common the fact
that they all deal with uncertain systems.

The third Bellman Continuum was attended by 73 participants and observers from
17 different éountries (Austria, Brazil, Canada, Finland, France, FRG, Great-Britain,
Hungary, Israél, Italy, Japan, the Netherlands, Poland, Switzerland, U.R.S.S., U.S.A.,
Yugoslavia) and has bcen considered very successful in highlighting the current trend
and perspectives of the new questions set forth in its program. The interdiscipli-
nary exchange of ideas was much in the honor and spirit of Richard Bellman.

The papers collected here speak for themselves; there is no point in attempting
to summarize their content. However it is, perhaps, appropriate to briefly outline
the main scientific directions defined by the choice of the above topics, whose
unifying scheme is the modelling and control of uncertain systems.

Many systems in the “real” world are subject to human intervention and control.
The first step in devising a control policy or strategy for the accomplishment of a
desired end is the abstraction of the perceived salient features of the actual
(physical, chemical,engineering, biological, economic, etc ...) system. Such an
abstraction is usually embodied in a mathematical model, e.g., ordinary differen-
tial equations, finite difference equations, partial differential equations, and
so on. Mathematical models are wuncertain, partly because they are approximations
involving unknown or partially known elements, and partly because they include
elements which model uncertain effects in the real world.
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Two avenues are open to the system analyst dealing with such uncertain mathema-
tical models, a statietical approach and a deterministic one.

Part I of this book is devoted to the latter. It is centered on the determi-
nistic approach to uncertain dynamical systems initiated by G. Leitmann : on the
basis of known nominal model and bounds on uncertainties, feedback schemes are
determined which force the system output to track a given signal. The operative
controllers are obtained via a constructive use of Lyapunov functions. In this
book, the subject matter has been more specifically oriented towards the most recent
results concerning robustness, 1.e., the ability of a system to retain certain
performance measures in the presence of perturbations, systems with two time secale
structure and related treatment utilizing singular perturbation analysis.

Physics literature is a rich source of interesting mathematical questions. In
connection with system theory we have seen in the past few years a growing realiza-
tion of the interconnections between estimation theory and quantum physics, between
stochastic models and quantum mechanical ones, between Hamilton-Jacobi theory,
stochastic control and the evolution in time of quantum systems, etc ... "This
reunification suggests that what we have seen so far may be just the initial part
of a long term trend".1

Part II is mainly concerned with systems in which uncertainty comes out through
quantum mechanical rules. It owes its origin to a work of S.K. Mitter highlighting
the analogy between quantum physics and mathematical problems of nonlinear filtering.

It collects papers in stochastic control, nonlinear filtering, and in the new
area of quantum filtering and control approached from different points of view and
with different mathematical techniques.

1
Borrowed from R.W. Brockett, Ricerche di Automatica, Vol X, Dec. 1979, n°® 2.
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A quantum mechanical control system is a quantum mechanical system with a time
varying part considered as a perturbation. Different kinds of problems can be
studied : one can be interested in the time varying part as a signal to be extracted
from the measurements on the system. This is the quantwn filtering problematic,
usually associated with the concept of non demolition measurements. Also the time
varying part can be considered as a purposeful control on the system, a control
problem stricto sensu.

Quantum mechanical control theory is an essential step on the way from quantum
physics to quantum technology.

One of the fields of applications of the mathematical theory of systems is in the
overlapping areas of mathematical economics, econometrics, soctal sciences, and mana-
gement science. The papers of Part III report recent results in mathematical econo-
mics, in the framework of dynamic optimization, continuous or sequential, with finite
or infinite horizon, and in uncertain stochastic environment. The wide area of diffe-
rential-game theoretical approaches has been more specifically and extensively
explored in the third International Symposium on Differential Games and Applications
which immediately followed the third Bellman Continuum. Its Proceedings are being
published by SPRINGER-VERLAG in the same Series.

Beginning in the 1960's, Bellman recognized that many biological systems display
a number of characteristics similar to those of the decision processes to which he had
devoted much attention. He then turned his talents towards developing models and
control policies for these systems. He published many excellent papers in this field
and achieved recognition as one of the pioneers in bringing the strength of mathe-
matics and computer science into the medical area. His original motivation was the
cancer problem. Part IV is along the line of this part of Bellman's work.

Part V collects papers which do not partain to one of the categories above but
which are attached to several of them through Bellman's general approach to system
science and related computational bearings.

The third international workshop of the Bellman Continuum could not have taken
place without the technical and financial assistance of INRIA to whom we express our
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gratitude. In particular I would like to take this opportunity to thank his
President Professor Alain Bensoussan and the Director of the INRIA-Sophia Antipolis
Research Center Professor Pierre Bernhard.

We are indebted to the staff of the Public Relations Department of INRIA for
the job they have carried out in the organization of the workshop. 1 personnally
address special thanks to Thérése Bricheteau who, at the head of this Department,
took care of all the myriad details of organization so efficiently and ably. We
are most grateful to the expert assistance of Catherine Juncker and her staff who
took care of the organization at Sophia and of the local arrangements.

The workshop was financially supported by the organizing Institutions : INRIA
and the University Paris 7, and by the following national and intergovernmental
Organizations : AFCET (France), CNRS (France), ERO United States Army (U.S.A.), the
french Ministaries of Affaires Etrangéres, Education Nationale, and Recherche et
Enseignement Supérieur, UNESCO. Additional fellowships to the participants were
provided by various organizations 1isted separately, to whom, as well as to the
above mentioned organizations, we express our gratitude.

We also would like to extend our gratitude to :

- the participants who have shown their interest in this workshop,

- the many referees who have accepted the difficult task of selecting papers,

- the chairpersons for the different sessions,

- our colleagues of the Organizing Committee,

- Gilbert Mallet and his staff who, at INRIA, produced preprints of the conference,

- Professor M. Thoma who has accepted to publish the Proceedings of the workshop
in the Series : Lecture Notes in Control and Information Sciences,

- Mr. Albrecht von Hagen, Engineering Editor,

- the Publisher SPRINGER-VERLAG.

Austin Blaquiére

Workshop Chairman



PREFACE

Richard Bellman, un des mathématiciens les plus féconds et les plus renommés
des ftats-Unis, a apporté des contributions majeures aux mathématiques pures et a de
nombreux domaines d'applications : sciences de 1'ingénieur, &conomie, médecine,
énergie, gestion des ressources en eau, physique mathématique, recherche opération-
nelle, sciences de la gestion, psychologie et sociologie. Une telle variété des
domaines abordés et des moyens mis en oeuvre pour approfondir ces domaines avec une
telle pénétration se rencontre rarement en science. Tout au long du développement
de son oeuvre, i1 eut un grand nombre d'amis, d'éléves et de correspondants portés
vers lesmémes centres d'intérét. Parmi eux, aprés la disparation du Professeur
Bellman, un groupe de scientifiques des Etats-Unis s'est efforcé de perpétuer son
Ecole. Dans ce but ils ont proposé d'organiser un Colloque annuel ocu bi-annuel :
le Bellman Continuum. Ce Colloque devait &tre de nature interdisciplinaire, comme
1'&tait 1'oeuvre de Richard Bellman.

Le premier congrés s‘est tenu & 1*Université du Michigan, Ann Arbor, Michigan,
en 1985 et le second a &té accueilli par 1'Institut de Technologie de Georgie,
Atlanta, Georgie, en 1986. Ces efforts préliminaires ont réuni quelques scientifigues,
amis de Richard Bellman ou dont le travail présente des liens avec son Ecole.

Le troisiéme Bellman Continuum, patronné par 1'IFAC et 1'AFCET (OMN frangaise
de 1'IFAC) a été organisé par 1'Institut National de Recherche en Informatique et en
Automatique (I.N.R.I.A.) et 1'Université Paris 7, les 13 et 14 Juin 1988, au Centre
de Recherche de 1'INRIA & Sophia-Antipolis, sur la Cote d'Azur, A une dizaine de
kilométres au Nord-Ouest d'Antibes. I1 succédait & la huitieme Conférence Interna-
tionale Analyse et Optimisation des Systémes de 1'INRIA, tenue au Palais des Congrés
d'Antibes les 8-10 Juin 1988, et précédait le troisiéme Symposium International sur
les Jeux Différentiels et leurs Applications, tenu & INRIA-Sophia les 16 et 17 Juin
1988.
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Le programme comportait des conférences sur invitation et des rapports destinés
4 la présentation de travaux récents, dans les domaines suivants ol la recherche est
trés active et en expansion :

- Approche déterministe de 1a commande des systémes dynamiques incertains.
- Commande et filtrage non-linéaire des processus en Mécanique quantique.
- Modélisation et commande en Economie.

- Modélisation et commande des systémes biologiques et des écosystémes.

Les conférenciers d'ouverture de sessions é&taient le Prof. G. Leitmann,
University of California, Berkeley, U.S.A., et le Prof. S.K. Mitter, Massachusetts
Institute of Technology, U.S.A.

Les domaines mentionnés ci-dessus correspondent aux quatre parties principales
de ce livre. Une cinquiéme partie a &té réservée 3 I'aspect calcul. Elles ont en
commun le fait qu'elles traitent toutes de systémes tncertains.

Le troisiéme Bellman Continuum a réuni 73 participants et auditeurs de 17 pays
différents (Autriche, Brésil, Canada, Finlande, France, Grande-Bretagne, Hongrie,
Isradél, Italie, Japon, Pays-Bas, Pologne, R.F.A., Suisse, U.R.S5.S., U.S.A.,
Yougoslavie) et a atteint son objectif avec succés : celui de mettre en lumiére les
orientations et les perspectives des questions nouvelles mises en avant par son
programme, et de susciter des échanges d'idées de nature interdisciplinaire dans
1'esprit et & 1'honneur de Richard Bellman.

Les papiers réunis ici sont suffisamment explicites pour qu'il n'y ait pas lieu
d'analyser leur contenu. Peut-&tre, cependant, sera-t-il utile d'indiquer dans leurs
grandes lignes les orientations scientifiques définies par le choix des sujets
traités, dont le théme unificateur est la modélisation et la commande des systémes

incertains.

De nombreux systémes du monde réel sont sujets a 1'intervention humaine, et sont
commandés. La premiére étape dans ]1‘élaboration d'un systéme de commande est
1'établissement d'un modele mathématique, abstraction qui résume 1'information jugée
intéressante pour 1'Gtude proposée, utile au mathématicien : systémes d’'équations
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différentielles ordinaires, d'équations aux différences finies, d'équations aux
dérivées partielles, etc ... Les modéles mathématiques sont <ncertains, en partie
parce qu'ils sont tributaires d'approximations diies & une Connaissance imparfaite
des données, en partie parce qu'ils contiennent des &léments représentant des
facteurs aleatoires du monde réel.

Deux types de méthodes s'offrent & 1'analyste : une approche statistique et
une approche déterministe.

La premiére partie du livre est consacrée & cette derniére. L'accent y est mis
sur 1'approche déterministe des systémes dynamiques incertains introduite par
G. Leitmann : la connaissance du modéle nominal et des bornes sur les incertitudes
permettent de déterminer une rétroaction qui force la sortie du systéme & suivre un
signal donné, rétroaction obtenue par la construction d'une fonction de Lyapunov.
Dans ce livre, le sujet a &té plus particuliérement orienté vers les résultats les
plus récents relatifs 3 la robustesse : aptitude d'un systéme d conserver certaines
performances en présence de perturbations, aux systémes d deux échelles de temps et

aux perturbations singulidres.

La Physique est une riche source de questions mathématiques intéressantes. En
Tiaison avec la théorie des systémes, nous avons vu au cours des années passées une
prise de conscience de plus en plus nette des interconnexions entre la théorie de
T'estimation et la Physique quantique, entre les modéles stochastiques et ceux de
la Mécanique quantique, entre la théorie d'Hamilton-Jacobi, la commande stochastique
et 1'&volution au cours du temps des systémes quantiques, etc ... "Cette réunifica-
tion suggére que ce que nous avons vu jusque 13 est peut-étre le signe précurseur
d'une tendance & long terme" .l

La deuxiéme partie du livre est plus particuliérement concernée par les systémes
dans lesquels les incertitudes sont d'origine quantique. Elle doit son origine & un
travail de S.K. Mitter qui met en lumiére 1'analogie entre la Physique quantique et

1 R.W. Brockett, Ricerche di Automatica, Vol. X, Dec. 1979, n° 2.
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certains problémes mathématiques de filtrage non-linéaire. Elle rassemble des papiers
en commande stochastique, filtrage non-linéaire, et dans le domaine nouveau du
filtrage et de 1a commande quantiquesexaminés de différents points de vue et avec
différentes techniques mathématiques.

Un systéme de commande en Mécanique quantique est un systéme quantique ayant une
partie variable au cours du temps, considérée comme une perturbation. On peut
s'intéresser & la partie variable au cours du temps en tant que signal a extraire
d'un ensemble de mesures. C'est le probléme du filtrage quantique. On peut aussi
considérer cette partie variable comme une commande appliquée & dessein et se
proposer de la déterminer en fonction du but recherché. C'est le probléme inverse
du précédent, c'est un probléme de commande stricto sensu.

La théorie de la commande en mécanique quantique est une étape essentielle sur

le chemin menant de la physique quantique a la technologie quantique.

L'un des champs d'application importants de la théorie mathématique des systéemes
est celui ol se recouvrent en partie les domaines de 1'Economie mathématique, 1'Econo-
métrie, les Sciences sociales, la Recherche opérationnelle. Les papiers de la
troisiéme partie présentent des travaux récents en Economie mathématique, dans le
cadre de 1'optimisation dynamique, continue ou séquentielle, en horizon fini ou
infini, et dans un environnement incertain. Le vaste domaine des approches théoriques
reposant sur les jeux différentiels a été exploré de fagon plus étendue et plus
spécifique dans le troisiéme Symposium International sur les Jeux Différentiels et
leurs Applications venant juste 3 1a suite du troisiéme Bellman Continuum. Nous
reportons le lecteur & ses actes publiés par SPRINGER-VERLAG dans la méme Série.

Dés le début des années 60, Bellman a reconnu que des systémes biologiques trés
divers présentent un certain nombre de traits caractéristiques semblables & ceux des
processus de décision auxquels i1 avait consacré une partie importante de son oeuvre.
Ceci le conduisit & orienter ses efforts et son talent vers le développement de
modéles et de 10is de commande pour ces systémes. 11 a publié plusieurs excellents
papiers sur ces questions, qui 1'ont fait reconnaitre comme 1'un des pionniers ayant
introduit la puissance des mathématiques et de la science des machines a calculer
dans le domaine médical. Sa motivation premiére &tait le probléme du cancer. La
quatriéme partie du livre est dans le droit fil de cette partie de 1'oeuvre de
Bellman.
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La einquiéme partie rassemble des papiers qui n'appartiennent pas & 1'une des
catégories ci-dessus mais qui se rattachent & plusieurs d'entr'elles dans la ligne
des méthodes générales de Bellman en science des systémes. Elle est plus particu-
Tigrement consacrége & 1'aspect calcul.

Le troisiéme Colloque International du Bellman Continuum n'aurait pu avoir lieu
sans le soutien technique et financier de T1'INRIA & qui nous exprimons notre gratitude.
En particulier, qu'il me soit permis de remercier ici son Président le Professeur
Alain Bensoussan et le Directeur du Centre de Recherche de 1'INRIA-Sophia Antipolis
1e Professeur Pierre Bernhard.

Nous tenons & remercier les personnes du Service des Relations Extérieures de
1'INRIA qui ont organisé ce Colloque. J'adresse personnellement des remerciements
tout particuliers & Thérése Bricheteau qui, & la téte de ce Service, a pris soin si
efficacement de la multitude des problémes d'organisation, et nous a fait profiter de
sa grande expérience. Nous sommes trés reconnaissants a Catherine Juncker qui a pris
en main de fagon experte 1'organisation du congrés & Sophia et son implantation sur
le site, ainsi qu'aux personnes de son Service.

Ce Colloque international a regu le soutien financier de 1'INRIA et de 1'Univer-
sité Paris 7 qui 1'ont co-organisé, et des organismes nationaux et intergouvernementaux
suivants : AFCET (France), CNRS (France), ERO United States Army (U.S.A.), Ministére
des Affaires Etrangéres (France), Ministére de 1'Education Nationale (France),
Ministére de la Recherche et de 1'Enseignement Supérieur (France), UNESCO. D'autres
subventions ont été attribuées aux participants par divers organismes mentionnés
séparément, auxquels, comme aux organismes cités dans cette préface nous exprimons
notre gratitude.

Nos remerciements s'adressent &galement :

- aux participants qui ont manifesté leur intérat pour ce Colloque,

- aux nombreux experts qui ont accepté la difficile tiche de sélectionner les
communications,
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aux présidents de sessions,
3 nos collégues du Comité d'Organisation,

3 Gilbert Mallet et aux personnes de son Service qui, & 1"INRIA, ont publié
les actes provisoires de la conférence,

au Professeur M. Thoma qui a accepté de publier les actes définitifs du Colloque
dans la série qu'il dirige : Lecture Notes in Control and Information Sciences,

& Mr. Albrecht von Hagen, Engineering Editor,
d 1'éditeur SPRINGER-VERLAG.

Austin Blaquiére

Président du Colloque
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CONTROLLING SINGULARLY PERTURBED UNCERTAIN DYNAMICAL SYSTEMS1

G. Leitmann

College of Engineering, University of California
Berkeley, California 94720, USA

INTRODUCTICON

The prototype for the class of systems considered in this chapter is depicted in
Figure 1 and consists of a dynamical process P (imperfectly known) controlled by a
(judiciously designed) feedback law (operator F) acting on state data generated by
sensor S and implemented via actuator A,

—i ACTUATOR A ———{> UNCERTAIN PROCESS P |——[3 SENSOR S

FEENBACK OPERATOR F k3

Figure 1. Prototype System

We assume (realistically) that the sensor and actuator are dynamic elements of
the feedback loop; furthermore, we adopt the viewpoint that these dynamics are
"fast" relative to those of the process P to be controllied. If this is not the
case, then, at the modelling stage, the sensor and actuator should be explicitly
incorporated as an integral part of the process to be controlled.

We recognize, of course, that in the context of nonlinear systems, the concept
of “fastness" is difficult to quantify. Here we use the term loosely to indicate
that the overall system exhibits a “two time scale” structure as described in the

next section.

THE FULL-ORDER SYSTEM

The ahove prototype typifies a general class of singularly perturbed uncertain
systems which can be decomposed, by means of a scalar parameter p, into two coupled

1Based on research supported by the NSF and AFOSR. This paper deals with a special
case of the problem considered in [8] and [9].
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subsystems which henceforth will be referred to as the "slow" subsystem (with state
x{t)) and the "fast" subsystem (with state y(t)). The parameter u, henceforth
referred to as the singuliar perturbation parameter, can be interpreted as some
measure of the ratio of characteristic times of the fast and slow subsystems.

We model this general class of systems by the following coupled pair of dif-

ferential equations.

X(t) = x(t,x(t),y(t),u(t)), x(t)eR", ult)eR" (12)

uy(t) = Y(t,x(t),y(t),u(t),u), y(t)eRP, ue(0,») (1b)

with measured output

2(t) = Sx(t) + Ty(t), z(t)eRr" (1c)

where X and Y are uncertain functions with the following structure:

X(t,x,y,u) = Appx + Alzy + Bju+ gl(t,x,y,u) (2a)
Y(t.X..Y’U,u) = c(t)[AZIX +y+ Bzu] + gz(t.X.y,U,u) . (Zb)
Aij' Bj» S and T are known constant real matrices; C is an uncertain measurable

matrix-valued function; 9 and g, are uncertain Caratheodory functions (i.e.
measurable in their first argument, continuous in their other arguments and

integrably bounded on compact sets).

Note that we require that the dimension of the output space coincides with the
dimension of the slow subsystem state space. We refer to system (1)-(2) as the

full-order system (a dynamical system on Rn+p).

Now suppose that the dynamics of the fast subsystem are neglected, i.e. suppose
that p is set to zero, in which case {1b) reduces to an algebraic constraint on
(la). This procedure yields the reduced-order system {a dynamical system on R™.
Suppose further that a feedback strategy is designed which guarantees some stabhility
property P for the uncertain reduced-order system. (One such design is proposed in
§5 and analysed in §6, using the deterministic framework developed in e.g. [1-7]).
Then the essential question to be addressed is that of structural stability of pro-
perty P with respect to sinqular perturhation, i.e. does property P persist when the
fast dynamics are re-introduced? More usefully, does there exist a calculable
threshold value u* > 0 such that property P persists for all values of the singular

*
perturbation parameter in the interval (0, )?

Our objective is to answer such questions affirmatively, under additional
hypotheses on the full-order system. The first of these is an assumption which
ensures that a well-defined reduced order system results from setting u = 0 in {1b).



Assumption Al

{i} C{+) = €y * AC(-), where Co € RPXP is known with spectrum o(Co

open left half complex plane) and aC: R + RP*P is an unknown measurable function

with known bound Ke (sufficiently small), viz. for all t,1aC(t)y <

1/2|PI’1, where P > 0 (symmetric) solves the Lyapunov equation PCo + CZP +1=0

(11) gz(')')')‘)0)=0-

THE REDUCED-ORDER SYSTEM

Solving the algebraic equation Y(t,x,y,u,0) = 0 for y (uniquely in
Assumption Al) determines the function

(x,u) » H{x,u) 4. [A21x + Bzu] .

The reduced-order system associated with (1) is now defined as

x(t) = X (t,x(t),u(t)),  x(t)eRr"

with output
z2(t) = Sx(t) + TH(x(t),u(t)), z(t) eR"
where

Xr(t,x,u) 4 X(t,x,H{x,u),u) = Ex + Bu + g(t,x,u)

and

xéa

>

Fda - AL, T(tx,u) &gy (tixHx,u),0) .

1 - P2t
At this stage, we loosely define our preliminary goal as that of re
feedback, some acceptably small compact neighborhood of the zero state

bally attractive. Thus, it is not unreasonable to require the followin
nominal linear system pair (7\_,-8):

Assumption A2
(i) (X,B) is a stabilizable pair,

(ii) § - TA21 is non-singular.

Now, let (Q,YO)ER"X" x R

the properties (1)Q is symmetric and positive definite (ii) yp> 0 if o

}C € (the

<
K¢

view of

(3)

(4a)

(4b)

(%a)

(5b)

ndering, by
of (4) glo-
g of the

(R+ 4 [0.=)) be a pair of design parameters with

®¢ e .
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These properties, in conjunction with A2, ensure that the Riccati equation
KR+ ATK + 0 - 2y KBB'K = 0 (6)

admits a unique real positive-definite symmetric solution K > 0. Hence, for
example, in the absence of uncertainty (g = 0) and if S =1 and T = 0, the output

feedback law u = - YOETKz renders the zero state of (4) asympstotically stable.
We now impose some additional structure and bounds on the system uncertainty.

Assumption A3

There exist known non-negative real numbers Cp» €95 C3s and unknown Caratheodory
function e: R x R" x R™ + R™ such that:

(i) 9 = Be;
and, for all (t,x,u) € RxR"xR™ ,
(i1) 1e(t,x,u)r < €y *+ Cop Ixk + CyauUl

In the familiar terminology, the uncertainty is assumed to be matched and cone-
bounded. The more general case of unmatched and non-conebounded uncertainty is con-
sidered in [8] and [9], albeit at the expense of a considerably more complicated
controller design.

nxn

NDefine A: R + R and Fy, TpC Ras follows:

Aly) é A21 - yazﬁTK (7a)
[X, =); c; =0

e 8 v 12 -y + e (7b)
(x, »)}; cp>0

Ty 8 v | S - TA(Y) | # 05 kly) < (1 - 2 0P1)/20PCH1 + 2x1PY)) (7c)

where

etr) & viB,BTK(S - TA(IT' . (7d)

Then the following additional assumption is required.

Assumption A4

* 4
r r,nr, + 8.



PROBLEM FORMULATION

Suppose a (time-dependent) output feedback control function (t,z) » q(t,z) is
designed which guarantees that the feedback-controlled reduced-order system
(viz, u{t) = - q(t,z(t)) in (4)) possesses some desired stability property P, then
the basic question to be addressed is that of robustness of P with respect to singu-
lar perturbation, where the singularly perturbed system is defined by (1) with
u{t) = - gq{t,z{t}); in particular, does there exist a (calculable) constant u* >0
such that the full system (1), under output feedback control u(t) = - q(t,z(t)),
possesses property P for all values;xe(o,u*)?

Here, we take the desired property P to be the existence of a compact set § C R"

(respectively § € RMP) containing the origin which is a global uniform attractor
for the reduced-order system (respectively, the full-order system) in the following
sense.,
Definition 1
A compact set 2 crdis a global uniform attractor for the system
W(t) = =(tw(t)), w(t)eRI ™)

if the following properties hold:

(i)  Existence and continuation of solutions: For each pair (to,w%E R x RY

there exists a solution w: [to,tl) + RY (absolutely continuous function satis-

fying (*) almost everywhere) with w(to) = w® and every such solution can be

extended into a solution on [t ,=);

(i1)  Uniform boundedness of solutions: For each r > 0 there exists R(r) > 0
such that 1w(t)s < R(r) for all t on every solution w: [t ,») + R of (*) with

lw(to)l <r, where t €R is arbitrary;

(ii1) Uniform stability of J: For each d > 0 there exists D(d) > 0 such that

w(t)e] + dB for all t on every solution w: [t ,=) » R of (*) with

w(to)e{ + D(d)B where to is arbitrary (note, B denotes the open unit ball in

RY and, for & > 0, § + 6B denotes the set {o + p: g € §; ¥p1 < 6});
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{1v) Global uniform attractivity of J: Ffor each d > 0 and r > 0 there exists
1(d,r) > 0 such that w(t)e] + rB for all t > t, + t(d,r) on every solution

w: L'to,-) + R of (*) with w(to)ez + d B, where t e R is arbitrary.

In the next section, we construct a feedback strategy which ensures property P
for the reduced-order system (4),
NONLINEAR QUTPUT FEEDBACK

Choose €11+ €5 > 0; these are design parameters and can be chosen arbitrarily
small, Define p: RxR" + R™ as

p(t,x) & p (x) + p(x) . (8a)

The function P, is linear and is given by

=T
Po(X) 6 1,8 'Kx (8b)
where YIER+ satisfies
*
YIEI‘ . (8c)

The function Py is nonlinear and bounded and is given by

=T
pltpl(pl B'Kx) if T =20 or BZ =0

p,(x) & (8d)
0 otherwise

where ple R+ satisfies

py 2> (1 - c3)ey (8e)

and ¢,: f™ + R™ is any smooth (C!) function which satisfies

OIS SN N T Yve " (8¢)

and which has bounded derivative Npy; i.e., there exists ko€ R* such that
|D¢1(v)| < Ky for all v€R™. The proposed output feedback control function

q: RxR" + R™ is now defined by

att,2) & p(t, [5-TA(y,)172) . (9)

Loosely speaking, the linear component (8b) of the control stabilizes (if
necessary) the nominal linear system and counteracts part of the uncertainty e while
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nonlinear component (8d) (when active) counteracts the remaining part of e.

As an example of a function $1» satisfying the above requirements, consider the
function

$1 VPIVE + sl]'lv
for which (8f) clearly holds, and moreover, 4 is c1 with ang {v)r < el-l for all
v eRM,
A COMPACT ATTRACTOR FOR THE OUTPUT FEEDBACK CONTROLLED REDUCED-ORDER SYSTEM

for the reduced-order system (4), it may be verified that q{t,z{t)) = p{t,x(t)).
Hence, setting u{t) = - q(t,z(t)) in (42) yields the system

x(t) = F (t.x(t)), x(t) € R" (10a)
with
F{t.x) Ly Y Bp(t,x) + g{t,x, ~ p{t,x)). (10b)
As shown in [9], system (10) possesses stability property P .
To this end, we define V: R" -+ R (a Lyapunov function candidate) by
Vix) & <x,kx . (11)
Theorem 1,

There exists a closed ellipsoid

zroé xer™: v(x) < rdy

where o is defined in [ 9], which is a global uniform attractor for system (10).

OQur next objective is to show that property P is not destroyed by the re-
introduction of the fast dynamics.

A COMPACT ATTRACTOR FOR THE OQUTPUT FEEDBACK CONTROLLED FULL-ORDER SYSTEM

Define

h(x) & H(x, = p(t,x)) = = Aly)x + Bypy(x). (12)
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Our final assumption is now made,

Assumption A5
(1) For all (t,x),

19, (t,x,y,-q(t,5x+Ty;)) - 93 (t,%,y,,-0(E,5x+Ty, D)0 < Aay-yp0  ¥y.y,

where A » 0 is a known constant;
(ii) for all (t,x,y) and u » 0 ,
lgz(t.XnY.‘Q(t.SX"‘Ty).u)l < u[Klly—h(X)I + Kzlxl + K3]

where Kis Koy K3 2 0 are known constants,

White Assumptions 1 to 5 might appear somewhat esoteric, it is stressed that the
class of systems which satisfy these hypotheses is far from trivial; for example,
the assumptions hold for a class of uncertain systems with parasitic actuator and
sensor dynamics considered in [10],

Let functions F: RxR"xRP + R™ and G: RxR"xRPxR* + RP be given by

Fltany) & A x + Ay - Bialt,Sx+Ty) + g, (t.x,y,-q(t,Sx+Ty)) (13)
= F(t.x) + Ajoly-h(x)] + B, [p(t,x)-q(t,Sx+Ty)]

+ 9, (t.x,y,-q(t,Sx+Ty)) - g;(t,x,h(x),-p(t,x))

Gt x,y,m) & C(E)AL X + y = Byq(t,5x¢Ty)] + g,(t,x,y,-q(t,Sx+Ty) i) (14)
= C(t)[y-h(x)] + C(t)B,[p(t,x)-a(t,Sx+Ty)] + gy(t,x,y,-q(t,Sx+Ty),u) .

Then the problem under consideration reduces to that of determining a threshold
value u* > 0 (if such exists) such that the system (two coupled subsystems):

x(t) = F(t,x(t),y(t)) (15a)
py(t) = 6(t,x(t),y(t),u) (15b)
possesses stability property P for all pe€ (O,u*). We resolve this question via an

analysis akin to that of [11].

As stated in [8] and shown in [9], the following theorem establishes property P
for the full order system under output feedback control.

Theorem 2.

* *
There exists a y > 0 such that, for all ye(0,u ), a certain ellipsoid is a
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global uniform attractor for system (15); the value of u* and the definition of the
attracting ellipsoid are given in [8] and [9]. Moreover, the reduced order dynami-
cal behavior is recovered as u + 0,2

EXAMPLE: UNCERTAIN SYSTEM WITH ACTUATOR AND SENSOR DYNAMICS

Consider the uncertain system

x(t) = Ax(t) + [B + aB(t)]y () + d(t,x(t)),  x(t) e R" (16a)
with actuator dynamics

uy () = [C) + 8C (1)](yy(t) = u(t)), y (t), u(t) € A" (16b)
and sensor dynamics

uy,(t) = [C, + 8C(t)](y,(t) = x(t)), y,(t) & R (16¢)

where the known nominal system matrices A, B, Cl' C2 satisfy the following:

H1

(i) (A,B) is a stabilizable pair;
(1) el(c)) c ¢

(i) o(C)ce.

The uncertain functions aB(-) and d(-,) are assumed to satisfy

H2
(i) AB(+) = BE(+), where E(-)(unknown) is measurable with sE(t)n < 8 < 1 ¥t;
(ii) d(-,*) = Bg(-,+}, where g(-,*) is a Caratheodory function with

gty Xl < ayltxll + g ¥(t,x) and where a;, a,,8 are known

1t

constants.

Let P (symmetric and positive definite) denote the unique solution of

P + P+1=0. (17)

---------------------

2L005e1y speaking, in the sense that the projection of the attracting ellipsoid
onto R" approaches the attracting ellipsoid {roof the reduced order system.
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Then the uncertain functions Acl(-) and ACZ(') are assumed to satisfy

H3

1

Idiag(Acl(t), ACZ(t)}I C kg < /211~ Vt, where k. is a known constant.

The above can be interpreted in the context of system (1)-(2) by making the
following identifications:

N
y= € Rp, p=E=m+n (18a)
Y2
0
Ap=A Ap=[8:01, A= (18b)
-1
] .
By =0, B,= ol » S=0,T=00:1] (18¢)
c(t) = co+Ac(t) , co = diag{cl, cz}, ac(t) = diag{Acl(t), ACZ(t)} (18d)
g;(t,x,y,u) = d(t,x) + BE(t)(I : Oly (18e)
g,=0. (18f)

In view of H1{ii),(iii) and H3, it is clear that Assumption Al holds for this
system.

Now,
A=Ay - Ay = Ay = A (19a)
B = By - AjpBp = = A58, = B (19b)

and hence, in view of H1{1i}, it follows that Assumption A2 holds.

Also,

Hix.u) = = Chyyx + 801 = [4] (20)
and

glt,x,u) = gj(t,x,H(t,x),u) = Be(t,x,u) (21a)
where (21b)

e(t,x,u} = g(t,x) + E(t)u .
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Thus, in view of HZ, 1t is clear that Assumption A3 holds with ¢y = B.

Proceeding,
Ay) = A, - YB,B'K = YK (22a)
¥ 21 =~ Y% -1
S-TAY) =1, «(y) = v18TKa (22b)
-1 .T, -1
rl = (-=, (l-ZKCIPI)(ZIP Col + 2:c|P|) IBKYyT)CR, (22¢c)
Assumption A4 now reduces to the following:
Moy < (I-ZKclPI)(1+2'<CIPI)'1|BTK1'1 .

9 =

Finally, it is readily verified that Assumption AS{ii) holds trivially (since
0) and AS5(i) holds with x» = BiBy.

A specific example of this subclass of systems is considered in detail in [9].

OTHER METHODS

An approach, differing from the one proposed here, can be found in [12-15]. 1In

these references, the design procedure requires the sequential construction of
controllers which assure existence of global uniform attractors for (1) an approxi-
mation of the reduced order (“slow") subsystem, and (ii) the "fast" subsystem under

the

influence of the slow uncertainties. The controller for the full system is then

obtained as the sum of these subsystem controllers.
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On Robust Control of Uncertain Lincar Systems In the Absence of Matching Condittons
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ABSTRACT

We establish a general robust control result for linear time-invariant uncertain systems using the Lyapunov approach
initiated by Leitmann and Gutman. We show that systems satisfying matching conditions are handled by this result.
We give necessary and suflicient conditions for the existence of a robust sliding mode controller. We show that its ex-
istence implies the existence of a robust linear controller. A counter examnple is provided to establish that the converse

does not hold. The feedback controllers treated are functions of the coinplete state without any dynasnic compensation.

1. INTRODUCTION

The Lyapunov approach to uncertain systems reccived an initial thrust by Leitmann and Gutman, {1] - |7}, for systems
satisfying matching conditions. They are joined by numerous authors ( e.g. (8] - (33]) in exlcnding the Lyapunov ap-
proach to handle more general systems since it is well suited for addressing structured uncertainty. Our work hercin fo-
cuses on applying the Lyapunov approach to systems which have constant uncertainties but do not necessarily satisfy
the matching conditions. It builds on the work of (9], {14], and [20] - [33]. Our main objective is to establish a robust
control result based on the Lyapunov approach which generalizes some of the past work on linear uncertain systems
with constant uncertainties. We specifically consider lincar and sliding mode controllers and give necessary and sufficient
conditions for their existence. We prove that the existence of a robust stabilizing sliding mode controller implies the
existence of a robust stabilizing linear controller. The converse does not hold. We provide a counter example showing
the existence of a robust lincar controller in the absence of such a sliding mode controller. Hercin, we usc the term sta-

bility to mean that the poles are in the left-half plane, i.e., asymptotic stability or, equivalently, that the characteristic
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polynomial is Hurwitz. We say that a controller is robust if it asymptotically stabilizes the system for all uncertainties.

We treat both the scular input and the multi-input problems.

We investigate the robust control of linear time-invariant uncertain systems that are not required necessarily to satisfied

matching conditions:

x = AW)x + By)u, yeT n

where A(y) is a nxn uncertain matrix, B(y) is an nxm uncertain matrix with full rank (n < n) and y belongs to a set
of uncertainties I where I is a simply connected, compact subset of p-dimensional Euclidean space £?. We assume that
Afy) and B(y) are continuous with respect to the uncertainty argument y ¢ I" . In this paper we consider only full state
feedback controllers w(x), i.e., those which are functions of the state x only. That is, we do not address dynamic com-

pensation as part of the feedback controller. We require that system (1) satisfy the controllability assumption:

ASSUMPTION L. Foreachy ¢ I' the pair (A{y), B(y)) is controllable.

The controllability assumption is equivalent to the assumption that closed-loop poles caf be arbitrarily placed by a

suitable gain matrix. We state this equivalent assumption:

ASSUMPTION I'. For each y & I and prescribed eigenvalues A(y) = (4,(y), .- , 4,(y)) in which imaginary eigenvalues

occur in complex conjugate pairs there exists a real gain matrix X(y) such that the closed-loop matrix

A = 40 - By k) 2

has the prescribed eigenvalues A(y).

For arbitrarily prescribed eigenvalues A(y),y ¢ I, we can rewrite (1) as

2 = A@)x + By)lKg)x + ul 3

where K(y) is the corresponding gain matrix and 4 (y) satisfies (2).
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‘The next assumption makes it possible to define a control law with which to stabilize (1) in the presence of uncertainties

yel.

ASSUMPTION II. For each y ¢ T there exist an mxn gain matrix X(y), an invertible mxm matrix R(y) and an nxn

symmetric, positive definite matrix Q(y) such that

) A@) = A@y) = B@y) K(y) is asymptotically stable
@ F = R'(y) B'(y) P(y) is a constant mxn matrix where P(y) is the

symmetric, positive definite solution of Lyapunov equation

PG AW + A7) P) + Q) = 0
We make the following assumption on the mxm matrix R(y) which is defined in Assumption I1.

ASSUMPTION III. Fory ¢ I' the matrix ®(y) defined as

r
o) = 2O ;- R(y)

is positive definite and has the square root form

o) = ST)S)

where 8(y) is invertible, The following upper bound cxists and is finite

o= ma[ISTO IS™0) R7ON]

In Sections 2-4 and 6 we show how to use the constant matnix F in establishing a robust controller.

4

(54)

(56)

©
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2. MAIN ROBUST CONTROL RESULT

Assumptions I - I1I permit the development of a robust control law that is discontinuous in nature. This is established

in the next theorem.

THEOREM I: If system (1) satisfies Assumptions I - III then the discontinuous controller

Fx
= =X , F 0
u(x) ib p(x), Fx # ]
stabilizes (1) for all y ¢ I" where p(x) satisfies
p(x) = A Inax 1K () ! 8

The scalar 4 is given by (6) and the gain matrix K(y) is defined in Assumption II.

PROOF: Fory e I let K(y), R(y), Xy), P(y) and F be the matrices described in Assumption Il Define the Lyapunov

function

Vi) = xT Payx ®

It has the time derivative

Vo) = —x"00)x + 2LBTmPo)x1T [KG)x + ul (10)
Using property (if) of Assumption II this derivative becomes

Vi = —x"00x + 2LFx1" R7(n) [KOx + uix)] (1
We show that the control law (7) yields

Vo) € -x"Qx, yeT (12)

Since Qfy) > 0 (i.., positive definite) it suffices to show that W(y) is nonpositive:

W) = 2AF)"RTIKGIx + u)] < 0 (13)

Consider a control law of the form (7) in which the scalar function p(x) is defined by (8). substitution of (7) into (13)

yields

W) = 2Wy) — 2W450G) < 0 (14)

where
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wiy) = [Fx1"RT) KQ)x

W) = [ETRT-E2 ), Fx # 0

i
Eq. (15b) can be rewritten as

W) = LEx1T00) 1B o)

or, equivalently as,

S(y) x
=)
where ®(y) and S(y) are defined by (5) and (6). Making the vector definition

Wy = [SmExl” o(%)

) = S) Fx
Eq. (17) becomes

)

Wayly) = T

P(x)
Eq. (15a) can be rewritten as

Wit = »"0a)

where
) = SlemI™ RTe) Ko
Inequality (14) is met provided
Wiy) £ Way)

In tenms of (19) and (20) this inequality is given by

»T0W)

T,
yy) < 2]

p(x), Fx #0
This inequatity is met provided

At
Izl = ) p(x), Fx #0

Taking the norm of (21) yiclds

Bl < 1S~ RTN Bk
Multiplying both sides by the norm ||S-'(y)|| gives

1SN ) < p(x)
Observe that

IEx = 1T OSHFA < IS0 o

(154)
(156)

(16)

)

(18)

(19)

(20

@n

22

23

29

29)

(26)

@n
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from which it follows that

-1
1 g B OIbOI %‘cﬁ“’(’)", Fx# 0 @8)
Multiplying both sides by p(x) yields
s—l
o0 s EILPO ), px s 0 )
The inequalities (26) and (29} yield
el < L o, Fx %0 (30)

This verifies (24) which establishes (12). By the theory of Lyapunov, the control law (7) stabilizes (1) for each uncer-
tainty y ¢ I,

3. ROBUST CONTROL IN THE PRESENCE OF MATCHING CONDITIONS

Systems which satisfy the matching conditions of linear uncertain systems, |2| - [7), satisfy Assumptions I - I, This

result is given by the next theorem.

THEOREM 2: Let system (1) satisfy the following matching conditions: There exist an nxn matrix A and an nxm

matrix B and for each y ¢ I' there cxist an mxn gain matrix D(y) and an invertible mxm matrix I1(y) such that

@ Ay = 4 + BD().
(b)  BG) = BII().
(c) (A, B) is a controllable pair

(d) d(y) is an mxm positive definite matrix where

T,
op) = M._ztﬂy_)_ o

Then Assumptions I - 111 are met. As a consequence of Theorem 1, there exists a robust stabilizing control law of the

form

= _ Ix
u= —Kx+ TFad p(x) (32)

such that
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A = A-BK (33
is asymptotically stable and such that

F=238"p (34)

where P is the symmetric, positive definite solution of the Lyapunov equation

PA+AP+Q =0 (3%)
in which @ > 0 is arbitrarily chosen,

PROOF: Conditions (a) - (c) imply that (4(y), B(y)) is controllable for y ¢ I". Controllability is invariant under linear
feedback and coordinate transformation on the input, {34]. Thus Assumption I is met. Since (A, B} is controllable there

exists a gain matrix K such that 4 of (33) is asymptotically stable. Define the uncertain gain matrix

K@) = 7' Do) + K] (36)

Using conditions (a) and (b) we find 4 () of condition (i) of Assumption ! reduces to
Ay) = A - BK a7

and is, therefore, asymptotically stable for y ¢ I". Select any @ > 0. Let P be the solution of (36) and let ¥ be defined
by (34). Fory e I' define

Ry) = ') (38)

The matrix F of condition (i) of Assumption II and that of (34) are identical. That is, (34) can be rewritten as

F = m7yisngl™r (39)

which, in view of condition (b) and {18), is equivalent to

F = R'nB'nr (40)

Thus, condition (i} of Assumption II is met with

Py)y = P @

Condition (d) implies Assumption III since B(y) is continuous and I" is compact. That is, 4 exists and is finite. Since

all conditions of Theorem 1 are met, the existence of the stabilizing control law (32) follows with

plx) = h maglK)] @

where K(y) is defined by (36).
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4. ROBUST CONTROL IN THE ABSENCE OF MATCHING CONDITIONS: SCALAR INPUT

We show that the robust control assumptions presented in [29] for scalar control satisfy the assumptions of Theotrem 1.

Consider system (1) with scalar control. The input matrix B(y) is a column vector. The work in [29] assumcs that the

system (1) is controllable, Assumption I. Under this assumption there is a unique coordinate transformation T(y)

z = Tyx (43)

of (1) to the following controllable companion form, |34],

z = djfa(y))z + B u(x) (44)
where
~ai(y) — @) . —a ) —an)
1 0 0 0
Afaly)) = (439
0 1 0 0
0 0 1 0
Afak)) = THANT'G) (4sb)
and
B, = [1,0,0,..,0]7 (46q)
B, = T{) B (46b)
The vector aly) = {a,(y), - , afy)) is the coefficient vector of the open-loop characteristic polynomial:
a(s) = detlsl — A(y)] “n

We need the following definition in order to introduce the next assumption of [29}-[31].

DEFINITION 1: The row vector P, = (Py, Py, ., P,,) is said to be n— 1 stable provide P, > 0 and the polynomial

Pd™ P+ L+ P, =0 (48)
is Hurwitz (i.e., all eigcnvalues are in lefi-half plane).
ASSUMPTION IV: There exist an uncetain yoe I” and an #— 1 stable row vector Py(y,) such that

Piiy) = Py Tho) T'() “9)
isn—1stableforallyel”
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The concept of a vector being n— 1 stable is fundamental in the asymptotically stable solution of Lyapunov equation.

This result is presented in the next lemma. Its proof is given in [30].

LEMMA L. Leta = (a;,..,a,). Define 4(a) to be in the controllable companion form (45). Let P be the solution to

the Lyapunov equation

PA@ + AT@P+Q =0 (50)
where @ > Oand @ = Q7. Then A(a) is stable if, and only if, P, is n — 1 stable where P, is the first row of P.
PROOF: See [30}.

The next lemma is a consequence of Lemma 1.

LEMMA 2. Suppose Assumption IV holds. For each y ¢ I" define O(y) > 0, Q(y) = Q7(y). Then for each y, there is

a unique stable coeflicient vector d(y} satisfying Lyapunov equation

P)A@) + AT@ENPY) + Q6) = 0 O
where Py(y), the first row of P(y), is prescribed under Assumption IV. That is, 4(a(y)) is stable for y e I".
The above lemmas are used in the next theorem to establish a stabilizing controller for system (1).

THEOREM 3. If Assumptions I and 1V hold then there is a stabilizing controller for system (1) having the form

Fx
u=m —=2p(x), Fx#0 52
T p(x) (52

where F is a constant row vector and p(x) is a nonncgative scalar function of the state x.

PROOF: Since system (1} is controllable for each uncertainty yeI it can be transformed to the controllable companion
form (44). Assumption IV implies there is a stable coefficient vector a(y) for y ¢ I' such that (51) is satisfied. Define
a(y) to be the difference between the stable coefficient vector d(y) and the open-loop characteristic polymonial coeflicient

vector a(y) of System (1)

o(y) = a(y) — aly) (53)
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Note that the negative of a(y) is contained in the first row of (45). Substitution of (53) into (44) yields
i = 4,00z + B La)Tr)x + u(x)] (54)

after making use of (43). We use the symmetric, positive definite solution P(y) of (51) to construct the Lyapunov func-

tion

Viy) =27 P()z (55)
Taking its derivative gives
Vo) =~z" Q)z + 2LEx)Laty) TO)x + u(x)] (56)
where F satisfics
F = Py(yo)T(y) (57a)
and as a consequence of Assumption IV we have
F = P(nT(y) (57b)
or, equivalently,
F = BJP()T() (579

where P(y) satisfies ($1) and T(y) satisfies (43). Any admissible control law u(x) satisfying

u(x) < -lyn‘a;s[o(y)T(y)x] v Fx>0 (58a)
u(x) = 1;13.)([0(7)7'(7#] » Fx<0 (589)

stabilizes (1) since for such a control law

Y s~2'0mz, yel (59)

The maxima of (58) exist since I" is compact and since the functions o(y) and 7(y) are continuous on I'. An admissible

control law satisfying (58) is (52) where

plx) = maxlo(y) T0) (60)
ye

and F is given by (57). In the next theorem we establish that a system satisfying Assumption 1V also satisfies Assumption
11

THEOREM 4: If the system (1) satisfies Assumptions I and IV then Assumptions I and 1II are met.
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PROOF: We make the following identifications

Ay = T7'0) @) T) (61a)
Poy = ') PO) Tt (616)
20 = T o Tw (61c)

K@) = o(n) T(y) (61d)

where T(y) is defined by (43), where P(y), Q(y)andA(a(y)) are defined by (51) and where o(y) is defined by (53). The
matrix A(d(y)) is asymptotically stable. This follows from Lemma 2 and the fact that eigenvalues are invariant under

coordinate transformation. From (44), (45), (53) and (54) it follows that

A = A() — BO) K@) (62)

so that condition (i) of Assumption 111 is met. The vector F of (57) satisfies
F=8"0)P(y) (63)

where P(y) is the solution of the Lyapunov equation

PAm + ATM P + 00 = 0 (64)

which shows that condition (ii) of Assumption II is met. lere, the scalar R = 1. Thus Assumption II is also met.

Theorems 3 and 4 establish that Assumption 1V implies Assumption I1. The converse need not hold. Thus Assumption
IV is a stronger assumption. Assumption IV admits a sliding mode controller (52). From the next theorem we see that

it also admits a stabilizing lincar controller.

THEOREM 5; If Assumption I and 1V hold then there exists a stabilizing linear control

u=-ckx (65)

where F is defined as in Theorem 3 and the scalar ¢ satisfies

¢ > S maxl™ O max Ko’ (86)

where Ofy), y £ T, is defined as in Lemma 2 and where K(y) is given by {61d).

PROOF: See [31).
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The maxima of (66) exist since K(y) is continuous, I" is compact and the matrices O(y) are chosen in a continuous

manner. Usually (y) is set to be the identity I or it is computed from

om =T 277'0) (67)

where Q is a prescribed symmetric, positive definite matrix. The next result gives an equivalence between Assumption

IV and a minimum phase condition on the system.

THEOREM 6: Assuraption IV is met if, and only if, there is a row vector F such that

FIsi—AMT" By), yeT (68)

is minimum phase with n-1 transmission zeros where I is the nxn identity matrix. That is, the determinant

A@)—sl  B(y)
det =0 yel (69)
F 0
is Hurwitz.
PROOF: From (49) of Assumption IV
Piy) = FT'g), v e (0

where P\(y) is n-1 stable with polynomial Eq. (48) can be rewritten as
Pl s 1) =0 an
where s = ¢ + jo = 1. Multiplying (70) on both sides by [s*!s=2...s 117 gives
gty s 117 =0 72
The open-loop characteristic polynomial a(s), (47), is given by

a() ="+ q@s" + o + g () + 40) =0 (13

Since 4,(a(y))andB, are in the controller companion form (45) and (46) we have the following identity from linear system

theory, [34]:

("ot 51T
a,(s}

(st~ Afay)) '8, = (74)

Substitution from (45b) and (46b) into (74) gives
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[s»~1gn-2 1]

- -1 = 75
TO)Lst — AT Bly) e )
Multiplying both sides by F7-(y) yiclds
1 n=-1.n—2 T
FLst = a8y = Pl (76)

a,($)

after making use of (72). The transmission zeros, {35] , of (76) are the n-1 stable eigenvalues of the (n-1) stable Py(y)

row vector of (70). This proves that (68) is minimum phase. l'rom (76) we have

detlsl - A(y)] FLsI-A()1'BG) = 0 (m
A reciprocal form of (77) is given by, [34],

st—Ay) B@)
det =0 (78)
-F 0

which yields (69). Since P(y) is n-1 stable it follows that (71) is Ilurwitz. Thus (69) is Hurwitz.

Conversely, if there exists an F such that (69) is Hurwitz then the vector Py(y) defined by (70) is n-1 stable and As-

sumption IV is met. From the above theorem we have the corollary.

COROLLARY 1. A necessary and sufficient conditions for the existence of a stabilizing sliding mode controller

Fx
um——2_p(x), Fx # 0 9,
IIPXIIP() (719)

of (1) is the existence of a row-vector F such that (69) is 1Iurwitz for all yel".

The existence of a stabilizing linear controller

u=—Kx (80)

does not imply the existence of a stabilizing sliding mode controtler (79). Before this is illustrated by an example we give

necessary and sufficient conditions for the existence of a linear controller (80).
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THEOREM 7: A necessary and sufficient condition that there exist a stabilizing linear controller (80) of system (1) is

that there exists a row vector K such that the following determinant is Hurwitz:

[;1 —A®) B(v)]
det =0 yel 81

~K 1

PROOF: Suppose there is a row vector K such that (80) asymptotically stabilizes (1}. The feedback matrix
ALy) = A} ~ BOK, y T (82

is asymptotically stable and the determinant

g9 = deilsI- 4] = © (83)
is Hurwitz. Eq. (83) can be written as the following series of identities, [34],
) = derflsl - A1 [1 + [sT - AT Bk T} (84a)
4(s) = a9 detfl + [sf — 46)17' BK] (84)
a(s) = a9 [1 + KIst - 4A0T'Bi)] (849)

where a,(s) is the open-loop characteristic polynomial (47). The reciprocal form of (81) is (84c), {34]. That is, (81) and
(84c) are identities. Therefore, (81) is Hurwitz if, and only if, (83) is Hurwitz. Eq. (84¢c) can be used to prove Theorem
5. If (76) is Hurwitz then with
K=cF (85)
Eq. (84c) becomes
&) = a1+ cFLsf — 40T 'B)] @)

which is Hurwitz for sufficiently large ¢. That is, in view of (71 -(76), Eq. (86) can be rewritten as

a,f(s) =5+ 4:!’,(yv)|:.s""1,."'_2 s I]T+ {ay(s)—:"] (87

in which the last term is an n-1 order polynomial that is dominated by the middle term for large c.  The first two terms
give a Hurwitz polynomial for sufficiently large c. As a consequence, the existence of a robust stabilizing sliding mode
controller (52) implies the existence of a robust stabilizing linear controller (65). In general, the converse does not hold

as is illustrated by the following example.
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5. EXAMPLE OF ROBUST LINEAR CONTROLLER WITHOUT SLIDING MODE CONTROLLER

Consider the uncertain system

where I' = [ —M, M) and where M is a positive scalar greater than 1

M2z
The determinant of the controllability matrix [B(y), AB(y)] is given by y* + | which satisfics the equality

72 4+ 150 Vye(—o0,0)

(88)

(89)

(90)

The system (88) is controllable for all uncertainties y. Thus Assumption I is satisfied. The requirement for the existence

of a stable sliding mode surface

Fx=0
depends on (69) being Iurwitz. For our example systern (88) Eq. (69) reduces to the first order polynomial

(Fiy + F)A + WF,~-F)=0
which is ITurwitz for y ¢ I” provided the coefficients are positive
Fy+F>0, yel
yB—-F >0 yel
Evaluating the first inequality at y = 1 and the second at y = — 1 give the contradicting inequalities
F>-F

F2<"'F|

©on

(92)

93a)

(938)

(944q)

(945)

That is, there exists no F = (I, F,) satisfying (69) for ye[ ~1, 1] which is a subset of . Consequently, there is no stable

sliding mode surface (91) on which a robust sliding mode controller (52) can be designed for ye[ -1, 1].

The requirement for the existence of a robust stabilizing linear feedback controller (80) is that (81) is ITurwitz. The

characteristic polynomial of (81) is given by
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2 aqi+ afy) = 0

where robustness follows from positiveness of the coeflicients
a(y) = Ky + 9K >0, yel

Q) = K- K +1>0, yeF
The following gain vector K = (K, K;) provides a robust lincar controller (80)

K =0

-t
M+ e

K
where £ > 0. Substitution of the gain vector (97) into (96) gives

K>0, yeF

y> —-(M+q), yeF

95

(96a)

(965)

(97a)

(978)

(984)

(985)

The inequalities (96) are met. Thus (81) is Hurwitz which implies that the linear controller defined by (97) robustly

stabilizes (88). Consequently, (88) has a robust stabilizing linear controller but no stabilizing sliding mode controller.

6. ROBUST CONTROL IN THE ABSENCE OF MATCHING CONDITIONS: MULTI-INPUT

The multi-input case parallels that of the scalar case, Section 4, We consider a condition similar to (69) and show that

it leads to necessary and sufficient conditions for the existence of a sliding mode controller (7).

In this section

B(y).y ¢ [, is an nxm uncertain matrix with full rank (< #) We consider system (1) for which Assumption 1 bolds.

Qur main result for a robust sliding mode controller is given in the next theorem.

THEOREM 8. A robust stabilizing sliding mode controller (7) exists for systemn (1) in which Assumption 1 holds if,

and only if, the following determinant is Hurwitz:

det,

[A(v) —sl B(v)]
=0, yel

0

PROOF: The reciprocal form of (99) is

(99



31

a(s) det Flsl - AT 'Bp)] = 0, yeT (100)

where a(s), defined by (73), is the determinant of [s/ — 4(y)] which is the open-loop charactenistic polynomial of

A(y). Since Assumption I holds there is a coordinate transformation T{y)

z = T(y)x (101)

which takes (1) into a controllable companion form, [34,

z = Afa(y))z + Bp(x) (102)

where
Afaly)) = TGV AR T7'() (103a)
Byy) = T(y) B(y) (1035)

The mxm matrix B,(y) is formed from m columns of the nxn identity matrix. The dependence of B,(y) on the uncertainty
y follows from the fact that the sclection of the m columns may depend on yel™. The nxn matrix 4,(a(y)) is in block
controllable companion form. Such companion forms are described in [32]-[34). In view of the Transformation (101)

we can rewrite (100) as

det[[FT7'0)] a,() To)sl — 40)T'BO)] =0 (104)
Consider the last two factors
a(9) [TMLs! - 417" Bk)] (105)
which in z-coordinates is given by
a9 [[sf = AtatN] ™' B0)] (106)
which is equivalent to
Adj[ sl — A (a(y)]B,(y) (107

where Adj is the matrix adjoint operation. Consider the definition of an nxn symmetric, positive definite matrix P(y) and

the definition of an mxm symmetric, positive definite matrix R(y) such that

RTMBIPWTO) = F. y el (108)
That is, P(y) must be such that

RTWB]Py) = FT'(), y el (109)
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Furthermore, consider the Lyapunov equation

PMALSH) + ATGONPD) + Q) = 0, yeT (110)

where () > 0 and Q(y) = Q7(y), ¥ ¢ I'. A necessary and sufficient condition that 4,(a(y)) be asymptotically stable and
P(y) be symmetric, positive definite and satisfy the constraint (109) is that the determinant of the following mxm matrix

(111a) be Hurwitz and that the following mxm matrix (111b) be positive definite , [32}:

BIO)POIA sl ~ 4,0)1B6). y e T (111a)

BIp)PMBL) >0, yeT (1118

From (104), (107), (109) and (111) it follows that (99) is necessary and sufficient in order that for cach yel™ there exist a
symmetric, positive definite P(y) satisfying (109) and a stable 4,(a(y)) such that the Lyapunov equation {110) is satisfied.

The theorem now follows from Theorem §. Define o(y),y ¢ T

o) = BI(n[4[a0)) - 4436)) (112)
By the canonical form of 4, and 3, it follows that

4,@60)) = Afaly))~ Bly)o(y) (113)
Define K(y),y ¢ T, as

K@) =o()T(y) (114)

Transforming (113) from z-coordinates to x-coordinates using (101) yiclds the following asymptotically stable matrix.

Ay) = AG) — BOKG) (115)

Thus condition (i) of Assumption Il is met. Transforming (108) from z-coordinates to x-coordinates using (101) gives

F = R™'0B PG (116)

where F(y) satisfies the Lyapunov equation which is transformed from (110)

Poydw) + AmPe) + 30)=0, yeT (17

where
Py =TTw)POTE) (118a)

Ty =T"1EWTH) (1185)
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Thus condition (ii) of Assumption I is met. Consequently all conditions of Theorem | are satisfied. The existence of

a robust sliding mode controller (7) now follows.

The existence of a robust stabilizing sliding mode controller implies the existence of a robust linear controller. This result

is given in the next theorem which parallels the scalar result, Theorem 7:

THEOREM 9: The existence of a stabilizing sliding mode controller (7) for systcm (1) implies the existence of a robust
stabilizing linear controller

u = —Kx (119)

PROOF: A necessary and sufficient condition for the existence of a robust stabilizing linear controller is that the de-

terminant

[:1 - A B(v)]
det =0 yel (120)
-K I

is Hurwitz where [, is the mxm identity matrix. Paralleling the developement (81) - (84) the determinant (120) is Hurwitz

if, and only if, the mxm matrix

&) = afs) detld,, + K [sl — AT B)], y el (121

is Hurwitz. If a robust stabilizing sliding mode controller (7) exists then there exists an mxn matrix I such that (99) is

Hurwitz. Consequently, (100) is Hurwitz. For an arbitrary mxm matrix C define the gain matrix

K = CF 122

substitution of (122) into (121) gives

&) = afs) dali, + CFUsl - 417 B, yeT {123)

In view of (73) we can rewritc (123) as
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q(s) = detl2l, + CF Adlst — AW)] BO) + (afs) = 1) 1p), yeT (124)

Since the mxm matrix (100) is Hurwitz, it follows that there exists an mxm matrix C with sufficiently “large elements”
such that (124) is Hurwitz, [33]. The last term is dominated by the second term. The control law (119) robustly stabilizes

(1) for a * sufficiently large” C matrix in (122).
7. SUMMARY

A linear time-invariant uncertain system is investigated for robust stabilization. The uncertainties belong to a compact
subset of multi-dimensional Euclidean space. The dynamics and input matrices are continuous functions of uncertainty.
The system is controllable for each uncertainty, Assumption I. In Assumption 11 two general conditions are stated which
involve an uncertain Lyapunov equation. The first condition deals with the existence of an uncertain gain matrix for
stabilizing the system. ‘The sccond dcals with the existence of a constant I matrix which has the appearance of a Riccati
gain matrix. F is the product of three uncertain quantities one of which is the uncertain solution P(y) of the Lyapunov
equation. Another is the R(y) matrix which is assumed in Assumption III to form a positive definite matnx when added

to its transpose.

A general robustness result is established in Theorem [. It states that a robust stabilizing sliding mode controller exists
under the general Assumptions I - III. In Theorem 2 we prove that the matching conditions of uncertain systems satisfy

the Assumptions I - 1L

Robust control in the absence of matching conditions is examined in Theorems 3, 4 and 5 for scalar control input. For
such systems necessary and sufficient conditions are given for the existence of robust stabilizing sliding mode controllers.
In Theorem 4 we show that systems satisfying such conditions also meet Assumnptions 1 - [1l. Theorem 5 goes one step
further and shows the existence of a robust lincar control for such systems. The existence of a robust sliding mode
controller is shown to depend on a minimum phase condition, Theorem 6. In Section 5 we give an example of a simple

system which admits a robust linear controller but no robust sliding mode controller that stabilizes the system.

In Section 6 we investigate robust control in the absence of matching conditions for multi-input systems. In Theorem
8 we show that a certain determinant being Hurwitz is necessary and sufficient for the existence of a sliding mode con-

troller. A similar condition is stated in Theorem 9 for the existence of a robust linear controller.



35

REFERENCES

1. GUTMAN, S. and LEITMANN, G., “On a class of Linear Differential Games”, Journal of Optimization Theory
and Applications, Vol. 17, Nos 5-6, pp. 511-522, 1975,

2. LEITMANN, G., “Stabilization of Dynamical Systems under Bounded Input Disturbance and Parameter Un-
certainty,” Proceed. of 2nd Kingston Conference on Differential Games and Control Theory 11, M. Dekker, New York,
1976.

3. GUTMAN, S. and LEITMANN, G., “Stabilizing Feedback Control for Dynamical Systems with Bounded Un-
certainty,” Proceedings of IEEE Conference on Decision and Control, 1976.

4. LEITMANN, G,, “Guaranteed Ultimate Boundedness for a Case of Uncertain Linear Dynamical Systems,” IEEE
Transactions on Automatic Control, Vol. AC-23, No. 6, 1978.

5. GUTMAN, 8., "Uncertain Dynamical Systems - A Lyapunov Min-Max Approach,” IEEE Transactions on Au-
tomatic Control, Vol. AC-24, No. 3, pp. 437-443, June 1979.

6. LEITMANN, G., “Guaranteed Asymptotic Stability for Some Linear Systems with Bounded Uncertainties,” J.
Dynamic Systems, Mcasurcmcnl and Control, Vol. 101, No. 3, pp. 212-216, 1979.

7. LEITMANN, G., “On the Efficacy of Nonlinear Control in Uncertain Lincar Systems,” Dynam. Syst., Meas.
Cont., Vol. 102, No. 2, pp. 95-102 1981.

8. CORLESS, MJ. and LEITMANN, G. “Continuous State Feedback Guaranteeing Uniform Ultimate
Boundedness for Uncertain Dynamic Systems,” IEEE Transactions on Automatic Control, Vol. AC-26, No. 5, pp.
1139-1144, October 1981.

9, BARMISI, B.R. and LEITMANN, G., “On Ultimate Boundedness Contro] of Uncertain Systems in the Ab-
sence of Matching Assumptions,” IEEE Transactions on Automatic Control, Vol. AC-27, No. 1, pp.153-158, February
1982.

10. GUTMAN, S. and PALMOR, Z., “Properties of Min-Max Controllers in Uncertain Dynamical Systems,” SIAM
J. Control and Optimization, Vol. 20, No. 6, pp. 850-861, November 1982.

11. BARMISII, B.R., CORLESS, M. and LEITMANN, G., "A New Class of Stabilizing Controllers for Unccrtain
Dynamical Systems,” SIAM J. Control and Optimization, Vol. 21, No. 2, pp. 246-255, March 1983.

12.  LEITMANN, G., “Deterministic Control of Uncertain Systems,” The Fourth International Conference; Math-
ematical Modeling in Science and Technology, Zurich, August 1983.

13.  BARMISII, B.R,, PETERSEN, LR. and FEULR, A., “Lincar Ultimate Boundedness Control of Uncertain
Dynamical Systems,” Automatica, Vol. 19, No. §, pp. 523-532, September 1983,

14.  BARMISH, B.R., “Necessary and Sufficient Conditions for Quadratic Stabilizability of an Uncertain System*,
Joumal of Optimization Theory and Applications, Vol. 46, No. 4. pp. 399-408, August 1985.

15. PETERSEN, LR., *Structural Stabilization of Uncertain Systems: Necessity of the Matching Coudition,” Pro-
ceed. of 20th Allerton Conference on Communication, Control, and Computing, 1982, also in SIAM J. Control and
Opimization, Vol. 23, No. 2, pp. 286-296, March 1985.

16.  GALIMIDI, Alberato R. and BARMISII, B.Ross, “The Constraincd Lyaponov Problein and its Application to
Robust Output Feedback Stabilization®, IEEL Transactions on A.C., Vol. AC-31, No. §, pp. 410-418, May 1986.

17. PETERSEN, LR, “Quadratic Stabilizability of Uncertain Linear Systems: Existence of a Nonlinear Stabilizing
Control Does Not lmply Existence of a Linear Stabilizing Control,” IEEE Transactions on Automatic Control, Vol.
AC-30, No.3, pp. 291-293, March 1985.

18. PETERSEN, LR, “Nonlinear Versus Linear Control in the Direct Output Feedback Stabilization of Lincar Sys-
tems,” IEEE Transactions on Automatic Control, Vol, AC-30, No. 8, pp. 799-802, August 1985.

19. STALFORD, H.L., “Necessary and Sufficient Conditions for Matching Conditions in Uncertain Systcms: Scalar
Input,” Proceed. of the 1987 American Control Conference, pp. 879-903, June 10-12, 1987.

20. SINGII, S.N. and COELHO, A.A.R. "Ultimate Boundedness Control of Set Points of Mismatched Uncertain
Linear Systems,” Int. J. Systems SCI., 1983, Vol. 14, No. 7, pp.693-710.



36

21. SINGH, S.N. and COELI1O, A.A.R., “Nonlinear Control of Mismatched Uncertain Linear Systems and Appli-
cagonl to Control of Aircraft,” Journal of Dynamic Systems, Measurement, and Control, September 1984, Vol. 106, pp.
203-210.

22.  LEITMANN, G, RYAN, E.P. and STEINBERG, A., “Feedback Control of Uncertain Systems: Robustness
with respect to neglected actuator and sensor dynamics,” Int. J. Control, Vol. 43, No. 4, pp. 1243-1256, 1986.

23.  SCHMITENDORF, W.E. and BARMISIH, B.R., “Robust Asymptotic Tracking for Linear Systems with Un-
known Paraneters,” Automatica, Vol. 22, No. 3, pp. 355-360, 1986.

24. CHEN, Y.H. and LEITMANN, G., “Robustness of Uncertain Systems in the Absence of Matching Conditions,”
Int. J. Control, Vol. 45, No. 5, pp. 1527-1542, 1987.

25. SCHMITENDORF, W.E. and BARMISI], B.R., “Guaranteed Asymptotic Qutput Stability for Systems with
Constant Disturbances”, ‘I'ransactions of the ASML, Vol. 109, pp. 186-189, June 1987.

26. STALFORD, H. and GARRETT, F. Jr., "Robust Nonlinear Control for High Angle-of-Attack Flight,” I're-
sented at the AIAA 25th Acrospace Sciences Meeting, Reno, Nevada, paper A1AA-87-0346, January 12-15, 1987.

27.  STALIFORD, H., "On Robust Control of Wing Rock Using Nonlinear Control,” Proceed. 1987 American Con-
trol Conference, Minneapolis Minnesota, June 10-12, 1987.

28. STALFORD, H., “Tracking at High « Using Certain Robust Nonlinear Controllers,” Proceed. AIAA Guidance,
Navigation and Control Conference, Monterey, California, August 17-19, 1987,

29. STALFORD, IL L., “Robust Control of Uncertain Systems in the Absence of Matching Conditions: Scalar In-
put,” 1987 Confercnce on Decision and Control, Los Anpeles, California, Deccinber 8-10, 1987,

30. STALFORD, H.L. and CHAQ, C.-H., “Necessary and Sufficient Condition in Lyapunov Robust Control,” sub-
mitted for publication, December, 1987.

31. STALFORD, L. and CHAOQ, C.-11,, “On the Robustness of Lincar Stabilizing Feedback for Lincar Uncertain
Systems,” submitted for publication, December, 1987.

32. STALFORD, . L. and CHAO, Chien-Hsiang, “A Necessary and Sufficient Condition in Lyapunov Robust
Control: Multi-Input,” Submitted for possible presentation at the 27th IEEL Conference on Decision and Control,
Austin, Texas, December 7-9, 1988.

33.  CHAO, Chien-lisiang and STALFORD, H. L., “On the Robustness of Linear Stabilizing Feedback Control for
Linear Uncertain Systems: Multi-Input,” submitted for possible presentation at the 27th IEEE Conference on Decision
and Control, Austin, Texas, December 7-9, 1988.

34. KAILATH, T., “Linear Systems”, Prenctice-Hall, Inc., New Jersey, 1980.

35. DAVISON, EJ. and WANG, S.H., "Properties and Calculations of I'ransmission Zcros of Linear Multivaniable
System,” Control System Design by Pole-Zero Assignment , F. Fallside, Editor, Academic Press, New York, pp. 16-42,
1977.




SINGULARLY PERTURBED UNCERTAIN SYSTEMS AND
DYNAMIC OUTPUT FEEDBACK CONTROL

E P Ryan and Z B Yaacob

School of Mathematical Sciences
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ABSTRACT

A dynamic output feedback strategy is proposed for a class of uncertain systems. Using a
singular perturbation approach, a threshold measure of “fastness™ of the feedback dynamics, to ensure
overall system stability, is derived, This threshold is calculable in terms of known bounds on the
system uncertainties but may be conservative in practice. To circwnvent this drawback and w0 allow
for bounded uncertainties with unknown bounds, an adaptive version of the strategy is then
developed.

1, Introduction

We address the problem of design of dynamic output feedback controls for a class of uncertain nonlincarly
perturbed linear multivariable systems. The approach is similar in concept to that of [1], and fundamentally
stems from the detemministic theory developed in, for example, {2-8] (see also bibliographies therein).

Initially considering a hypothetical output y* for the system, a (generally unrealizable) stabilizing static output
feedback control is established. This static control is then approximated by a realizable compensator (with
parameter g 2 0) which filters the true system output y. Physically, the parameter g is a measure of "fastness”
for the fitter dynamics; analytically, g plays the role of a singular perturbation parameter. Using a singular per-
turbation analysis akin to that of [9,10], a threshold measure ;1' of "fastness” of the compensator dynamics, to
ensure overall system stability, is then derived. The threshold is explicitly calculable from known system data
but corresponds to a "worst-case” value and consequently may be conservative. To counteract this inherent
conservatism (and to allow for bounded uncertainties with unknown bounds) an adaptive version of the com-
pensator is also developed by an approach which is essentially that of [11] (sce also {12-16)] and related work
in {17-23)).

2. The system

We consider uncertain nonlinearly perturbed linear systems of the form
(1) = Ax(#) + Blu(t) + g(t.x(8),.u(®))], x(¢) € R*, u(t) e R™ m

for which the only available state information is provided by the output
y(£) = Cx(t), y(t) e R, mSpsSn. )

The triple (C,A4,B), which defines the nominal linear system, is assumed to satisfy the following.
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Assumption 1:  (A,B) is a controllable pair and rank B = m.

Assumption 2:

There exist known integer r 2 1 and known matrices Fy,F3.* - *.F, € R™®, such that
. r
@fori=12, - r-1, imCA~'Bc n kerF; ;
Jmiet

moreover, the matrix C, := FyC + F,CA + -+ - + F,CA"™! is such that

(i) |C,8] %0, and

(iii) the transmission zeros of the m-input m-output linear system (C,,A,B) lic in €~ (lhe open Icft half com-
plex plane).

0
100
Example 1: If A= . B=10}, C= [0 0 l] , then the above assumptions hotd with
1

[~~~
oo -
[~ -]

r=2,F, =0 1land F, = [1 O}

Finally, we impose some structure on the uncertain function g.

Assumption 3:

&: RxR"xIR™ — IR™ is (i) Carathéodory, with (i) |lg(+.x.8)|| S allx)] + pllul for all (¢,x,u), where a
and B are known constants with # < 1, and (iii) if » 2 2, then g is uniformly Lipschitz in its final argument
(with known Lipschitz constant 1), i.e. (if r 2 2) there exists known 4, independent of (¢,x), such that, for all
uand v, jjg(t.x.u)—g(t,x, V)|l S Afju—v].

The outline of the paper is as follows:

Firstly, the problem of designing a (dynamic) output feedback compensator for sysiem (1,2) is addressed. This
is accomplished by initially considering system (1) with hypothetical output

Y =Cax )]

where C, is as in Assumption 2. Note that, if » = 1 then y*(2) = F,y(#) and hence is realizable; however, if
r 2 2 then y*(1) is unavailable to the controller, hence the qualifier "hypothetical”. For the system (1,3) so
defined, (ii) and (jii) of Assumption 2 in essence play the role of "relative degree one” and "minimum phase”
conditions on the hypothetical nominal linear system triple {C, ,4,B). Under such conditions, it is known {sec,
for example, [11-13]) that the zero state of system (1,3) can be rendered globally uniformly asympiotically
stable by static output feedback; this is reiterated in Theorem 1. However, with the exception of the case
r = 1, such static output feedback is unrealizable in the context of the true system (1,2). Therefore, in §3, a
realizable dynamic compensator is constructed for the cases » 2 2, which filters the actual output y. This filter
can be interpreted as providing a realizable approximation to the static hypothetical output feedback; moreover,
it is shown in Theorem 2 that global uniform asymptotic stability of the zero state of (1,2) is guaranteed pro-
vided that the filier dynamics are sufficiently fast (a calculable threshold measure of fastness is provided).

Sccondly, in §4, an adaptive version of the dynamic compensator is developed, which counteracts conservatism
(induced by crude estimates in the analysis) inherent in the non-adaptive filter and which also dispenses with
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the requirement that the uncentainty parameters a, g and 4 in Assumption 3 be known (however, the assump-
tion that 8 < 1 remains in force and, moreover, if » 2 2 then g is assumed to depend linearly on x).

3. Stabilizing static output feedback control for hypothetlcal system
Let 7y € R ™>* be such that ker T, = im B, then

with inverse 77! = [$, * B)

T,
T=lwarc,

is a similarity transformation which takes system (1,3) into the form

o) = Apx(0) + Apd(t) . 2(1) e R (d2)

F(O) = A (1) + Ay §(0) + u(®) + F(X(D.J(O.u()) , F(t) € R™ (4b)

FG.2,5.u) = g(t,.5,2+8Y,u) (4c)
with output

¥ = (C.BG) . &)

Note that the eigenvalues of A,; coincide with the transmission zeros of (C,,A,B); thus, by virtue of Assump-
tion 2(iii), o(A,y) € €.
Let P, > 0 be the unique positive definite solution of the Lyapunov equation

PiAy +AfP +1=0 )

then we state our first result.

Theorem 1:

Define x°* := [[Ay |l + allBl + § [[P1Ajz+AD f+aliS; 1 , then, for each fixed & > x"(1-8)71, the static
output fecdback

u(t) = —-R(C,B)"'y*(t) = -# 3(t) O]

renders the zero state of the hypothetical system (1,3) globally uniformly asymptotically stable.
Progf: Let V: (2.9) > } (£,P,2) + 3[i§]|%, then a straightforward calculation reveals that, along solutions
(). J() of (4,5,7) (equivalent to (1,3,7)), the following holds almost everywhere

£ V.51 < U500

where

Ui - <[||2||] [uﬂl]) 1 (1P A +AL [+alis; 1)
ED =N L[ M Lisw ) 70 M= | -11PAg+AT I+allS, 1] 20R(1-B)1Ax [-allBH]

Noting the M is positive definite, the result folows. 0O
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In the context of the true system (1,2), if » = 1, then the static feedback (7) is realizable as
u(t) = ~R(C,B)'Fyy(t) ®

whence:-

Corollary 1:

Let £ be as in Theorem 1, If r = 1 then the static output feedback (8) renders the zero state of the true system
(1,2) globally uniformly asymptotically stable.

However, in all other cases (r 2 2), the feedback (7) is unrealizable for the true system (1,2); in its place, we
will develop a realizable dynamic compensator in the next section.

4. Cases r 2 2: Stabilizing dynamic output feedback for the true system (1,2)
In view of Assumption 2(i), we note that
YHO = Cx(0) = Fiy(d) + Fy(d) + -+ - + Fy¢ ()
which can be interpreted in the frequency domain as
7 (s) = [F+N&IF(S)
where
N(G)=sFp + - +5"'F,

is physically unrealizable. Our approach is to replace N(s) by a physically realizable transfer matrix (filter) of
the form H,(s)N(s) with appropriately chosen H,(s). To this end, let d; < r—1 denote the degree of the
highest-degree polynomial in the ith row of N(s). Let constants @/ > 0, j=2,- - *,d;, be such that

4 41

m()=s"+ajs 4+ 4afs+1, i=12,m

is Hurwitz (i.e. with all its roots lying in the open left half complex plane €7). For {= 1,2, --- ,m, define

h¥(s), parameterized by u > 0, as

O =

which, interpreted as a transfer function, has minimal realization (c¢J, u~'A;, #~'b)), where

0 1 0 --- 0
o 0 1 ... 0

[~ =
[~

A=l bt T D JeRYY, p=|ileRrR%, ¢= e R%
00 0 - 1 0 0
-1 -2} —af -+ -} 1 0

We now introduce the transfer matrix

H,(s) := diag{h}())
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which clearly has minimal realization (C*, p™'A", u~'B"), where

m
A’ = diag (A;}) € R™9, B® = diag {b;} e R"™, C° =diag (]} € R™7, withq := ¥d; .

i=]
We note, in passing, that 6(A") ¢ €~ and that C*(A*)'B* = —I.

Let x° be as in Theorem 1, then, for fixed £ > x*(1-5)"", the proposed physically realizable compensator
(which filters the actual output y) for system (1,2) is parameterized by u, and has frequency domain characteri-
zation:

G () = —R(C,BY " [Fy+H,()N(5)] . o
For notational convenience we introduce functions @, f;, f5, Af; and f3, defined as follows.
9: (R.9.2) = —£(C,B) ' [F,C8,%+By) + C°7]
it (BB AT + ARy
it (L) B AR + Apy - RY + §(1,2,5,-K9)
Afy: (1,2.7.0) b BF + p(2.7.D) + §(1.%.7.9(2.9.D) — §(1.2.7.-£5)
fi: (0.9.2) = A2+ B*[ C,By-F,C[5,%+B]] .

Then it is readily verified that, in the time domain and under state transformation T, the differential equations
goveming the dynamic output feedback controlled system may now be expressed in the form:

) = [1(XW).FW) . X() € R™™ (102)
() = f(6.2(0).9(0)) + Afz(1.2(2),9(1).2()) , §(r) € R™ (10b)
() = [(X(0).9().58) , 2(1) € RY . (10c)

In analysing the stability of this system, we regard u# as a singular perturbation parameter. Recalling that
C*'(A"y'B* = -1, we note that system (4) with control (7) is recovered on seiting = 0 in (10); thus, in the
usual terminology [9,10,24], system (4,7) may be interpreted as the reduced-order system associated with the
singularly perturbed system (10). The ensuing approach is akin to that of [9,10], our objective being to deter-
mine a threshold value g” > 0 such that, for all g e (0,u"), the zero state of system (10) is globally uni-
formly asymptotically stable.

Recalling that 6(A") ¢ €, let P* > 0 be the unique symmctric positive definite solution of the Lyapunov
equation

PA* + (AP  +1=0, an
Define W: R ™XR™XR? — [0,20) by
W(2.7.9) = § (w(X,9.0), P 'W(2,9.D)) (122)
where
w(x.9.2) := 7 + (A"Y"'B" [ C,By-F,C[S,%+By1)
=AY L350 . (12b)

We now establish some preliminary lemmas.
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The first is implicit in the proof of Theorem 1.
Lemma 1:

(VgV(f-Y)-ﬁ(f-Y)) + (VyV(i’-Y)Jz(‘-f-Y)) s 'aoV(f-Y) where oy = ["M-l “[“Pl "+1]]-1 > 0.

Lemma 2: {V,W(%,9.2).f3(£.9.2)) S —fW(Z.9.7) where f = IP')I™' > 0.

PfOOf.' (V,W(f,y,i), fS(leIZ)> = (P‘W(f-yvf)- fa(i’-Y-Z)’»

= {P'w(X.7.), A"w(R.9.D)
= -} w(2,9,9))?
$-IP'I'wayn . O

Clearly, the function {If, ]| is bounded above by a calculable scalar multiple of the function Vi In view of
Assumption 3(ii), llf2 [l is also bounded above by a calculable scalar multiple of Vi, By Assumption 3(iii),  is
uniformly Lipschitz in its final argument (with known Lipschitz constant 1); hence,

1Af£G.2.9.D) S A+ MR Y + o(R.9.D1  forall (+,2.9.9)

and, since # § + p(X,7,2) = —R(C,BY"1C w(Z,7.2), it follows that [JAf; ]| is bounded above by a calculable
scalar multiple of W1, Therefore, we may conclude:

Lemma 3:

There exist calculable constants 8y, y;, v, and ng such that, for all (¢,%,3,2),

O (V,WE5.2, L(E9) S VIEnHWiEy.D,

(i) (V,W(2.9.D), f(t2.9) + Af(1L29.D) S yWEID + pVEHWiEs.n,
i) (VaV(2.9), Af(62.9.0) < noVix.gWhE.g.0) .

The next thecorem demonstrates that system (10) is asymptotically stable for all 4 > 0 sufficiently small.

Theorem 2:

Let x° be as in Theorem 1 and define u° := ag folagwy+n0(Bp+y2)™' > 0. Then, for each fixed
2> x"(1=p)" and fixed u € (O,y'), the zero state of system (10) is globally uniformly asymptotically
stable.

Proof: Define the positive definite quadratic form (Lyapunov function candidate) % by

M5, = VEI) + (Go+val noW(2.9.9)
then, invoking Lemmas 1, 2 and 3, the following holds almost everywhere along solutions (¥(*),§(+).Z(*)) of
(10):

I ORIO) ] [ Vi), ]>

d _
o MEDIDED) < ( [wiu(z).y(:).z(r» W), 90, 2(1)
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where

% =7

-np (47" o—wiXGotva) g | -
Noting that 2f is positive definite, the result follows. 3

In practice, the component H,(s)N(s) of the proposed compensator is realized by constructing a total of mp
filters of the form n,-,-(s)h{‘(s), where n; denotes the ij-th element of N. It follows that H,(s)N(s) has a state
space realization in the form of a p-input, m-output linear system I, = (F;(x), F2(u), #~'4, p~'B) with
state dimension g = pg for which () < €~ and the pair (¥,(#), F2(u)) determines the output map,
F(u) being a feedforward operator. Therefore, the overall controlled system has the structure shown below.

The goveming equations {(equivalent to (10)) can be expressed as

() = Ax(2) + Blu(?) + g(6,x(2),.u(2))}, x(t) e R" (13a)
HEQE) = Az(0) + By(n), 2() e RY, p<yu’, (13b)
y(2) = Cx(z) € R? (13¢c)
u(t) = =R(C,BY ' [Fiy(1) + F1(u)y() + F(w)z()) e R™ , > x"(1-5)" . (13d)

Clearly, the threshold values x* and u" are central to this design. Since these values are determined via a
"worst-case” analysis, it is to be expected that, in practice, the compensator will be conservative. In the next
section, a stabilizing adaptive version of the compensator is developed: however, in the case r 2 2, this is
achicved at the expense of imposing further structure on the uncertain function g.

5. Adaptive compensator

5.1Casel: r=1

If Assumption 2 holds with r = 1 then, by Corollary 1, system (1,2) is asymptotically stabilized by the static
output feedback (8) with £ > x*(1-B)"! provided, of course, that F, and C,8 arc known and that sufficicnt a
priori information is avilable to compute the (conservative) gain threshold «°(1-8)". We now consider the
case for which the latter information is unavailable, i.e. we only assume knowledge of Fy and C,B and, in
particular, the constants ¢ and § < 1 in Assumption 3 may be unknown. All other assumptions remdin in

force.
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Replace fixed £ in (8) by variable x (1) to yield

u(t) = ~x(1)(C, B F1y(1) (142)
and let x(¢) evolve according to the adaptation law

£(0) = (C,BY ' FyI? (14b)
then:-

Theorem 3:

For all initial data (#y.x(%),x (1)) € RXR"x[0,c<), the adaptively controlled system (1,2,14) exhibits the fol-
lowing properties:

@) ll_i:r: x(t) exists and is finite;

@ lim Jx(n)]l = 0.

Proof: For fixed (but unknown) £ > x‘(l—p)“ and under the similarity transformation 7, system (1,2,14)
may be expressed as

£() = Ay () + A4129() (152)
F(1) = AuR(1) + An9 (1) — #9(1) — [k(D)=R1F (1) + F(2.3(1).9(2),—x ()F(2)) (15%)
&(1) = Ig(oN* . (150)

Let U and V be as in the proof of Theorem 1 and define the positive definite (since g < 1) function
V: (1.3.5) B VAP + Jxc-R)P -4 f(x-R) | x—R| .
Then, along solutions (£(-),¥(*),x(-)) of (15), the following holds almost everywhere

;‘i’;m(r).y(r).x(r» < =U@E®).5() = BRIFOI? = (x(D)~DUFDN? + BeOIFDN?
+ [(x()=R)-B| x()-R N[5 (DI

S —U(X().5(1) . (16)

Since U is positive definite, we conclude that 1 3 (¥(1),5(f),x(¢)) is bounded and since ¢ +> () is also
monotonic, assertion (i) of 1ihe theorem follows. Furthermore, in view of (16), we have
I‘: UR(),y(D)dt s N x(15,5(%).x(15)) < = and hence, since U and V are positive definite quadratic forms,
L:V(f(t),y(t))dt < o, MOrcover, V(x(-).y(-)) is essentially bounded from above. Therefore, we conclude
that V(x(1),§(2)) — 0 as t — o (see Lemma 6.3 of {22]), whence assertion (ii) of the theorem. O

S52Casell: r22

Before describing the adaptive strategy in this case, it is remarked that the argument used in establishing
Theorem 3 cannot be carried over directly. Instead, we will base our approach on that of M3rtensson [11].
For this reason, further conditions are imposed on the uncertain function g. In particular, Assumption 3 is now
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replaced by:

Assumption 3’:

There exist a bounded continuous function AA: R — IR™*", a Carathéodory function g,: RxR™ — R™
which is uniformly Lipschitz in its second argument, and a constant 8 < 1 such that

() g(t.x,u) = AA()x + g,(r,u), forall (¢,x,u),

i) liga(eodll < Bliull, for all (¢,u),

and

(iii) (C,A+BAA()) is uniformly completely obscrvable in the scnse of [25].

Note that, if Assumption 3’ holds, then Assumption 3 holds g fortiori with & = sup {AA(D] provided tha e,

p and the Lipschitz constant for g,(¢,*) are known. However, knowledge of these constants is not required
here.

Example 2: With (C,A,B) defined as in Example 1 of §2, Assumption 3°(i) holds for any bounded continuous
AA: t 1 (Aay(1).Aay(1).Aas (D).

Now replace fixed & in (13d) by variable «(f) > O and replace fixed g in (13b) by (Jx(t))"‘. where 6 > 0 is
a constant (design parameter) and let x(t) evolve according to the adaptation law (other adaptation laws may
be feasible, as discussed in [20])

#(0) = by + Bzl .

x(t) u(t) y(#)
*l = [z(:)]' W= [z‘(z)]' Yo = [’(‘)]'

then the overall adaptively controlled system may be expressed in the form

Writing (as in [11])

27 = AYOxt) + BHut(e) + gteut()], x'() e R, (17a)

v = Clxt() e RPT a7

ut()) = -k (K (e ()Yt () e R™T (17¢)

HOES VUG (e (17d)
where

At = [MB:A(') g], Bt = [g ?] ct:= [g ?] (17e)
and

(C.BY (Fy+F,((86)™") (C,BY ' F((5x)™) 8a(t1)
KY(x) = [ _53 P ] gteeu®) = [ 0 ] a7
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The stability of system (17) will now be investigated. We first require the following lemma (essentially a non-
autonomous version of Mirtensson’s lemma [11]).

Lemma 4
Let xt: R > R™7 satisfy
iy = at@xto + BV + gy
where v: R — R™7 is measurable. Then, there exist constants ¢, 7 > 0 such that, for all ¢,

Uy ol + Iv(ol?) ds .

4
-

Ix*)N% s ¢

Proof: Let ®(-,-) denote the state transition matrix function generated by A+BAA(-) and define the observabil-
ity Gramian for the pair (C,A+B8AA(")) in the usual manncr, that is,

(t,5) := f(br(a,s)CTC(D(a'.s) do .

Now, for some constants &, and @, we have [lexp At]| < ke® and, since AA(*) is bounded (by assumption),
there exists constant k; such that [BAA(0|] € k;. By standard perturbation theory, we conclude that

NN S ke foran o5,
Clearly, the state transition matrix function ®'(-,+) generated by Aty is given by

+ o(t,5) O
()] (t,s) = G ¥ »

whence
DYt )8 S ¢, (t—s) foralls,s, (18a)
where
i 6 1+ ke (18b)

The observability Gramian for the pair (C*,A%(-)) is given by

T(ts) 0
) ’[ 0 (t-s)l]'

and, since {C,A+BAA(*)) is uniformly completely obscrvable (by assumption), we may conclude (sce [25])
that there exist positive constants 7, ¢; and ¢; such that, for all ¢,

alfl? < & . T S alll® V(e R™T. a9
Now define the measurable function vt: ¢ s v(£)+g?(s,v(1) and note that flvi (O < 1+8)|lv()ll. Then,
) = -0t -0 + [ 0N)BVI() ds
whence
I OI? S 2 -0 (-l + 20[_ 0" (1.8 (s) dsl®

< 24l G-I + 2051+ 8P 1BT P vl @00)
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wherein (18) has been used, and
oy i=c}@), 5= I(:clz(s) ds , (20b)
Also, invoking both (18) and (19),
ixf (=02 < et (P (-0 D=0t (1-1))
=ci' [l 1y'@-ct[ o' s.008M o) do I? ds
< 25 [ [ Iy'olids + cer(+pICHIZUBY 2 [ Ivis)h%as] Q1a)
where
cs = [ [ cd(o)do ds . Q1b)

Combining (20) and (21) yields the requircd result. a

Theorem 4.
For all initial data (m,x*(ro).x(co)) e RxR*"Tx(0,%), system (17) exhibits the following properties:
(i) lim x(¢) exists and is finite;

{—y00

@Gi) lim Jx*(ny=0.
I—bos

Proof: Seeking a contradiction to (i), suppose that the monotonically increasing function z 13 x(f) is
unbounded. Then, for some ¢, € [0,00), K(fg+1;) = £ > k" (1-8)" and (Sx(fo+4)) ' = g < u*. Now, an
argument similar to that used in the proof of Theorem 2 can be adopted to establish that x(-) (and hence
¥(*) = Cx(*)) must ultimately tend exponentially to zero (and hence are square integrable on [#,)). Since
o(A) c €~, we may conclude from (13b) that z is bounded and so there exists constant ¢ such that
x(f) € x(t)+co(t—g) for all t21. Let K (with inverse K~!') denote the monotonic function
t I‘: ox(s)ds. It is readily verified that the function y(K"(-)) ultimately  saisfics
Iy(K= (5N < cyexp(c;—(cF +c35)) for some positive constants c;, and so is square integrable. Solving
(13b), we have

2(1) = expCAK(z(i) + [ exp(AK()-s)By(K™(s)) ds

from which we may conclude that z(+) is square integrable on [f9,%9). Thus xt: [1g,00) = R™¥ and a Jortiori
ytare square integrable which, in view of (17d), contradicts our supposition that the function x is unbounded.
This establishes assertion (i) of the theorem.

It remains to show that xT(1) = 0 as ¢ = . Clearly, (i) ensures that y' is square integrable on {f,%0) and,
in view of (17c), that u' is a bounded linear transformation of y!. Thus, we may conclude that ut is also
square integrable. Now, by Lemma 4, we have

I OI? < c [ Lyt + luts)?) ds
= cf Uy @I+l O ds = ¢ [ Uy I+ @) ds .

Therefore, |x()] = Oast 5 . 0O
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6. Discontinuous feedback

In this final section, some possible generalizations of the proposed compensators are briefly discussed. In [23)
and for the case r = 1 only, a wider class of uncertain functions g is studied; specifically, Assumption 3 (ii) is
replaced by the cordition

fe(t.x,w)ll < allxlj + Bllull + ¥5(Cx) for all (¢,x,u)

with a and B < 1 as before and where y is a constant (assumed known in the non-adaplive case) and £ is a
known continuous function. Thus, loosely speaking, in [23] a non-cone-bounded component of uncertainty is
allowed but this is required 10 be bounded by a function of the system output y. In the context of this more
general class of systems, the assertion of Corollary 1 of the present paper remains true for fixed
£ > (1-8)""max [x",y) if (8) is replaced by the generalized feedback

u(0) € R [(C,BY ' Fiy (1) + EQ(ONN(y ()] (22a)

where the set-valued map y > A(y) € R™ in essence modcls a discontinuous control component and is
given by

(IKC,BY Ry~ (C,B)Y 'Fyy): Fiy#0
N = | (v ol < 13; Fiy=0, @20)

and the overall controlled system is consequently interpreted in the generalized sense of a controlled differcn-

tial inclusion [26]. Furthermore, the assertions of Theorem 3 of the present paper remain true if (22) is
replaced by the adaptive control

(1) € —x(D[(C,BY ' Fyy + EGNN(Y(1)]
where x(¢) evolves according to (14b).

In the cases r 2 2, preliminary investigations indicate that again a non-cone-bounded component of uncertainty
(although considerably less general than that of the preceding paragraph) can be tolerated in g and counteracted
by augmenting the compensator (13d) (or its adaptive counterpart implicit in (17¢,d)) with an appropriately
chosen set-valued map (again essentially modelling a discontinuous control component). However, the
requisite structural conditions on the non-cone-bounded uncertainty are, as might be expected, of a rather res-
trictive and technical nature (akin to those in [10]) and are not detailed here.
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CONTROL OF UNCERTAIN MECHANICAL
SYSTEMS WITH ROBUSTNESS IN THE
PRESENCE OF UNMODELLED FLEXIBILITIES

Martin Corless
School of Aeronautics and Astronautics
Purdue University
West Lafayette, Indiana 47907
USA

ABSTRACT
We consider a class of uncertain mechanical systems containing flexible elements and subject to
memoryless output-feedback controllers. The damping and stiffness properties of some of the flexible
elements are parameterized linearly in ™ and 12, respectively, where j1 > 0 and these components become
more rigid as L approaches zero, We propose a class of "stabilizing” controllers for a system model in which
the above components are rigid. Subject to a "linear growth condition,” the controllers also stabilize the
model in which the components are flexible, provided y > 0 is sufficiendy small. The results are illustrated

by an example.
1. INTRODUCTION

The effect of the flexibility of mechanical elements is becoming more significant in engineering
applications, e.g., light high-speed robotic manipulators and flexible space structures. We consider here the
problem of obtaining memoryless, stabilizing, feedback controflers for a class of uncertain mechanical
systems with flexible elements. These elements are not rigid and can deform. The uncertainties are
characterized deterministically rather than stochastically. An example of a system with a delerministic
uncertainty is one which contains an uncertain disturbance input or an uncertain parameter about which the
only information available is an upper bound on its magnitude.

In general, if one models some of the flexible elements as rigid components, a simpler model results
and controller design is simplified. However, one should then assure that the stability properties of the
feedback-controlled system are robust in the presence of the previously unmodelled flexibilities,

t Based on research supported by the U.S. National Science Foundation under grant MSM-8706927.
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In this paper, we present "stabilizing” controllers whose designs are based on a model of the
mechanical system in which some of the flexible elements arc modelled as rigid components. These
controllers also have the following robustness property. Consider a model of the system in which the above
components are treated as flexible components whose damping and stiffness properties are parameterized
linearly in ™ and 2, respectively, where 1> 0 and these components become more rigid as | approaches
zero. Then the controllers also "stabilize” this model, provided p is sufficiently small.

Controller design is based on the constructive use of Lyapunov functions; see, e.g., [1-5, 9-15].

The results are illustrated by a simple example in Section 6.

2. PROBLEM STATEMENT
Consider a mechanical system which at each instant of time te R is subject t0 a control input
u(t)e R™. Suppose the system contains certain flexible components (hercafter called the neglected
components) whose flexibilities are neglected in the design of a feedback controller generating u(t), i.e., they
are modelled as rigid components for controller design.
Leuing q(t) € R denote a vector of generalized coordinates which describe the configuration of the
mechanical system at t, we assume that, when modelled as rigid bodies, the neglected components give rise to

a linear constraint
Sq=0 @n

where S& RPN has rank L < N; see the example in Sec. 6. Also, we suppose that these are no other possible
kinematical constraints on the system.

We model all uncertainty in the system by a lumped uncertain element ®. The only information
assumed available on w is the knowledge of a non-empty set Q to which it belongs.

Letling

a2 94
q(t) a ®,
we suppose that the kinetic energy of the system is equal to™®
1 )i
2 q q

where the system mass matrix M(w) € R™¥ is symmetric and positive definite,

(1) Sometimes we omit arguments.
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Modelling the neglected components a Ia [6], the motion of the system can be described by
M(w)j = x(t,q,4,u, ) + STA @2

where STA represents the sum of the generalized forces exerted by the neglected components and 7 represents
the sum of all the other generalized forces, We assume that for each we €, x(,0): RXR'<RN<R™ — R™
is continuous. We suppose that the measurement vector z(t) € R’ available for feedback control is given by

z=D(1,q,4. ©) 23)

where D(*,0) is continuous.
Consider first the situation in which the neglected components are modelled as rigid bodies. Then (2.1)
holds. Without loss of generality, we suppose that the coordinates have been chosen so that

S=[01], Q4)

ie., (2.1) can be written as

where

m =q @s)

wih6e RV, ¢ e Rﬁ. and N 4 N-L, Utilizing (2.2), (2.3), this model can be described by

M, (@) =X,(t, 6, 6.,0) (2.63)
z=D(t, 4,4, 0) (2.6b)
with
2t6.6.0.0 2 40 6.0, .0 uw), i=1,2 @.78)
D(t 6.6, 0) 2 D(t, (4,00, (4, 0), ) @.7b)
where M, () € R®N and
[Mu Mlz] [Xl] _
My My| “M- [y =% (28)
Also, A is given by
A =My (@) - X2, 6.0, u,0) . @2.9)

Although the mode! described by (2.6) may contain other flexible elements we shall, for convenience, refer to
itas the "rigid"” model.
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Suppose now the neglected components are considered flexible, i.e., they are not rigid and can deform;
hence constraint (2.1) no longer holds. Following [6] and assuming the components to be linear, their effect

on the system can be represented by letting

A=-CS8q-KSq
=-C-K8 (2.10)

in (2.2). The matrix K € R™L, which is assumed symmetric and positive definite, represents the stiffness
properties of the components and Ce R™, which is assumed positive definite, represents the damping

properties of the components. For robustness considerations we shall let
K=p?K°, C=p’'cCe, @.11)

where 1> 0, and consider behavior for sufficiently small f. Substituting (2.10), (2.11) into (2.2)-(2.3), the

system is now described

M(w)4 = %(t, q, g, u, @) - K~*STC°sq - wsTK"sq, (2.12a)
z=D(,q,4,0) . (2.12b)

We shall refer 10 (2.12) as the flexible model.

The following assumption is made.

Assumption A1.? For each we Q, there is a real number k 20 such that for all te R, ¢, e RN,
ue R™%;

®

I, "3Xa" < k[1+llpll+ gl +lall), i=1,2,

5, ||%—?u < k{1 +llgll+11glly,

2y a"‘ ua"‘ |a°u 12

%

(i) forall @', 62, 6!, 6%¢ R,

Diisk i=1,2
%

It (6,6), (6,67, u, @) - %i(t, (0,8, (6.8"), u, )l < klle*— oMl + 826", i=1,2,
ID( (¢, 62), (§, 6%, ) - D(t, (6,6"), (4,61, @)l s k(llo*~6'll + >8I} .

(2) If a derivative appears in a condition, this implicitly that the derivative exists,
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Note that the above assumption is readily satisfied by a linear system whose time-varying coefficients
are bounded and have bounded derivatives.
We shall consider the control u(t) to be given by a memoryless feedback controller p: RxR' — R™

operaling on z(Y), i.e.,
u(t) = p(t.z@) . (2.13)

Roughly speaking, the problem we wish to consider is as follows. Ulilizing only the information
available on the “rigid” model, obtain a feedback controller p whose utilization assures that

(i) the feedback-controlled "rigid” model is "stable” about zero, and

(ii) the feedback-controlled flexible model is "stable" about zero, provided y1 > 0 is sufficiently small,

Ideally "stable" means asymptotic stability. However, for systems with uncertain disturbance inputs,
asymptotic stability may not be achievable, so, we content ourselves with "stable” behavior which is close to
asymptotic stability.

To obtain a more precise problem statement, we introduce state vectors

xé[ﬂ . gé[j ) 2.14)

The "rigid” model is described by

x=F{tx,u,0), (2.15a)
z=d(t,x,), (2.15b)
where
_ A P
Fl.x,0) = [M..(m)"il(w. b, m)]' (2.163)
dt.x. )2 D(t.6.6.0); (2.16b)
the flexible model is described by
é = F(tv gi u, IJ-- m) ’ (2-178)
z2=d(LE,0), 2.17b)
where
FLE up, )2 4 ’] 2.183)
(.50 0= Moy e, 0,6, 0, @) - priSTCoS -pr2STK S q)) (2184

(.t ) 2 D(t,q,4,0) . 2.18b)
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The feadback-controlled "rigid" model is described by
x = F(t.x, p(t, d(t, x, 0)), ©) (2.19)

and the feedback-controlled flexible model is described by

E=F(LE p(tdLE 0).10) . (2.20)

The problem is as follows. Using only the information available on the "rigid" model, obtain a function
p: RxR' - R™ which assures that

(i) system (2.19) asymptotically tracks®™ 0 to within a bounded set, and

(ii) system (2.20) asymptotically tracks 0 to within a bounded set, provided p is sufficiently small.

3. PROPOSED CONTROLLERS
The following assumption yields a-"stabilizing™ controller for the "rigid" model.
Assumption A2, There exists a continuous function p: RXR! — R™ such that for some symmetric,
positive-definite matrices® P, Q € IR™* and non-negative numbers® a, b,

XTPE(t, x, p(t. d(t, x, @), @) S —||x||3 +allxllg+b @3G.1)

forallte R,xe R, and we .,

Roughly speaking, the following theorem states that any function p which assures satisfaction of A2 is
a "stabilizing” controller for the "rigid" model.

Theorem 3.1. Consider an uncertain "rigid" model described by (2.6) or (2.15), satisfying Assumption
A2, and subject to feedback control given by (2.13) where p assures A2,

Then, the feedback-controlled "rigid" model, (2.19), asymptotically tracks 0 to within the set

B2 (xeR 1 lkl,<g) 62)
where®
42 Do QPN P02+ (%4 + 1Y), 63
Proof. The proof proceeds by considering the function V: R® — R, given by
@nf20N-1)

(5) If Q€ R™ is symmetric and positive-definite and x € R®, lIxllg 8 <TQx)'2.
(6) If all the cigenvalues of M € IR™™ are real, A, iy (M) is the maximum (minimum) eigenvalue of M.
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V(x)=x"Px, (3.4)
as a candidate Lyapunov function for (2.19). Utilizing (3.1), it follows that along any solution of (2.19),

Lg:(_t))_ <-2lx(®)lig+ 2allx(®llg+ 2b.

Thus, E!E%Ql < 0 for all t such that

lix(vllg > a2 + (a%4+b)"2;

<0 for all t satisfying

hence V&)
dt

V@) > .

Standard arguments in Lyapunov theory complete the proof; see, e.g., [5].
Remark. If Assumption A2 is satisfied with

then the corresponding controller yields a feedback-controlled "rigid” model which is globally uniformly
asymptotically stable about 0.

In order to obtain a controller which is also stabilizing for the flexible model, the following assumption
is introduced.

Assumption A3. Assumption A2 is assured with a function p which, for some non-negative number k,
satisfies

lip(e, 21, ||%% @2l < k(1 +1zll), (.58)
||%xz)-(t,z)|| <k (3.5b)

forallte R,ze R,
A proposed feedback controller is any function p which assures satisfaction of Assumptions A2, A3.

4. ROBUSTNESS IN THE PRESENCE OF UNMODELLED FLEXIBILITIES
The following result assures us that a controller whose design is based on satisfying the requirements of
Assumptions A2 and A3 for the "rigid" model will also "stabilize” the flexible model, provided Assumption
Al is satisfied and p is sufficiently small.
Theorem 4.1. Consider an uncertain flexible model described by (2.12) or (2.17) where M(w), K° are

symmetric and
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M(w), C,K°>0. 4.1)

Suppose Al is satisfied and the corresponding "rigid” model satisfies A2 and A3 with a controller p.

Then, there exists >0 such that if pw<p', the feedback-controlled flexible model (2.20)
asymptotically tracks O to within a bounded neighborhood.

Proof. See [8].

5. EXAMPLES OF PROPOSED CONTROLLERS
In this section, we consider a specific class of uncertain mechanical systems whose "rigid" models
satisfy Assumptions A2, A3. For these systems, we exhibit "stabilizing" controllers which are robust in the
presence of unmodelled flexibilities. Two main characterizations of the "rigid" models treated here are that
the number of independent scalar control inputs is the same as the number of coordinates and the complete
state is available for feedback.

5.1 A Specific Class of Uncertain "Rigid" Models
Consider an uncertain mechanical system whose "rigid” model is described by

My (@) = U(t, 6, ¢, ) + Wu (5.13)
with measurement vector
z=[$T " (5.1b)

where te R, de Rﬁ, ue Rﬁ; the uncertain element @ belongs to a known set 2; M) (0)e RV g
symmetric; W e Rﬁ"ﬁ; and, for each we €, the function U(*, 0); Rx]Rﬁleﬁ-a RV is continuous.

The following assumption is satisfied.

Assumption B1.

(a) W is nonsingular.

(b) There exist real numbers B, § > 0 such that for all e Q

Amin My (@)} 2B, (5.2a)
M My(@)1 5B, (5.2b)
and
UG, ¢, 6, o)l < BL1+ light + ligl} (5.2c)
forallte R,¢€ R¥, e RY,

To demonstrate that B1.implies A1-A2, we present some controllers which assure satisfaction of Al-
A2; see [8).
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5.2 Examples of Proposed Controllers

Choosing any nonsingular matrix T e RMNgng defining
x2 [T ¢
the "rigid" model can be described by (2.15) with

F(t, x,u, ®) = Ax + B[h(t, x, 0) + G(0)TTWu]
E(:. X,0)=Xx,

ol el

h(t,x, ©) £ TM,,(0) UL 6.6, 0) ,
G() 2 (1M, (@)TT .

where

A proposed controller is any function p: RxRN — RN of the form

pt,2) = (TTW)[p°(t.2) + p*(@)]

(5.3a)
(5.3b)

(5.3¢)

(5.3d)
(5.3¢)

(54)

where p® is specified below and p° is any function satisfying requirements (3.5) of A3; p° is chosen to reduce

the magnitude of the uncertain term

e(t, x, ) £ h(t, x, ) + G(@)p°, %) .

(5.5)

5.2.1. Construction of p®. First choose any positive definite symmetric matrix Qe R™, n 4 2N, and

any positive real number o and solve the Riccati equation

PA + ATP-20PBBTP +2Q=0

for a positive definite symmetric Pe R™®; since (A, B) is controllable such a solution exists.

Choose any non-negative numbers ¥, p, x which, for all we Q, satisfy

Y2 M)l + % Bi(@)?,

p 2 Mw)By(w) ,
x2 P (w),

where A(@), B.(@), By (@), G, are chosen to satisfy
Aa[T™ (@) T} S M),
et x, o)l < Bo(w) + By(@)lixlly

(5.6

(5.79)

(5.7v)
(5.7¢)

(5.7d)

(5.7¢)
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g20 if Bi(@)=0
o>0 if B(w)#0 .70
Part (b) of B1 guarantees the existence of the above bounds.

Now, for any £>0, let s: RV RN be any differentiable function with bounded derivative which
satisfies

Inlls(n) = lls(m)lin, (5.82)

Iz e=> lstll 2 1 - Ini-e, (5.8b)
forne RN,
Then

p'(z) & <YBPz— ps(xB™P:) . 69

As an example of a function satisfying the above requirements on s, consider

so) = {Imll+¢)7n. (5.10)

6. AN ILLUSTRATIVE EXAMPLE
Consider a system consisting of two rotors B and B, connected by a massless shaft 8 5; see Figure 1.

8

Figure 1. The system considered in the example.

Relative to inertial reference frame e, the System is constrained to rotate about a line L parallel to &;; I}, 1,> 0
are the moments of inertia of B, B, respectively, about L. Rotor B, is subject to a control moment u(t)2,.
Rotor B is subject to an unknown disturbance torque w(t)2,; the only information assumed available on © is
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an upper bound on lw(t)l, i.e.,
lo)tsp Y teR 6.1)

where B is known. The system configuration can be described by ¢ and 0, the angular displacements of B,
relative to e and B, relative to B ,, respectively; thus

qleer. 62)

We shall treat B 4 as a neglected component; when it is rigid, 6 = 0.
The kinetic energy of the system is

3 T+ 20,00 + 1,97,

where It a I1+15; hence,

Il
MQLzJ. 6.3)

2
Utilizing Newtonian mechanics, the motion of the system can be described by

Iié+ L0 =u+ ot), 64
lz$ + 126 =u+)~ .

where A2, and A2, are the torques exerted by B, on B, and B, respectively.
As measurements available for feedback, we shall consider ¢ and ¢ +6; hence

22810 6+6)T . (6.5)

With B, rigid. the "rigid” model is
ILb=u+ o), (6.63)
z=[¢ ¢I. (6.6b)

Modelling B as a parallel combination of a linear torsional spring of spring constant 2 and a linear
torsional damper of damping coefficient p~!,

A=-plo-p0, 6.7)
and the flexible model is given by

1o +L8=u+w), (6.82)
Lo +L=—p'0-pu20+u,
z=[¢ $+6]T. (6.8b)
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Clearly, (6.6) and (6.8) are in the form of (2.6) and (2.12) respectively.
We also note that the “rigid" model is an example of the type of system considered in Section 5; (6.6) is
in the form of (5.1) with

My (w) =1,
Utd.d0) =0, W=1.
Assumption B1 is satisfied; let
B=k. B=max(iyB}.

Choosing T =1, p° = 0 in (5.4), and utilizing (5.3), (5.5), one obtains
01 0 y
A=lool - B=ly|+ dtx@)=Kww;

hence inequalities (5.7) can be satisfied by choosing ¥, p, ¥ such that

v2lio, p2B, x25'B.

Now choose any a;, &, > 0 which satisfy

of-o >0
and let
at 0
Q= 0 of-oy’ o=1
Solving Riccati equation (5.6) for P > 0 yiclds
BP={o a,].

Choosing any € > 0 and utilizing (5.9), a "stabilizing” controller is given by
u(®) = p*@() ,
P(2) = —v(oyz; + 02 — ps[x(oyz, + @271

where s: R — R is any differentiable function with bounded derivative which satisfies (5.8).
The significance of parameters o, a, is as follows. If

o)=0, p=0, y=If,

the resulting, undisturbed, linear, feedback-controlled “rigid" model is given by
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$+a¢$+al=0.

7. APPENDIX
Consider any system described by

y=Y({y) a1

where te R, ye RY, Y: RxR%— R%and let B be a set containing 0€ RY,
Definition 7.1. System (7.1) asymptotically B-tracks O or asymptotically tracks O to within B iff it has
the following properties.
(i) Existence of solutions. Given any t,€ R, y,€ R9, there exists a solution y(*) of (7.1) with y(t,) = y,.
(i) Indefinite extension of solutions. Every solution y(*): [t,t;) — R3 of (7.1) has an extension over

(tei>).
(iii) Global uniform boundedness. Given any bound re R,, there exists a bound d(r) € R, such that
for any t € R and any solution y(*) of (7.1),

llygllse => lly®llsdx) W txt,.

(iv) Given any neighborhood B, of B , there exists a neighborhood B 5 of 0 such that for any t, € R and
any solution y(*) of (7.1),

y(tde By => y(he B, ¥ t2t,.

(v) Global uniform attractivity of B. Given any bound re R, and any neighborhood B, of B, there
exists T(r, B,) € R, such that for any t,e R and any solution y(*) of (7.1),

Ilylise = yeB, V¥ tzt,+TrB,).
Remark 7.1, If (7.1) satisfies the requirements of the above definition with B = (0}, then it is globally
uniformly asymptotically stable about zero.
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OUTPUT FEEDBACK CONTROL OF UNCERTAIN
SYSTEMS IN THE PRESENCE OF
UNMODELED ACTUATOR AND SENSOR DYNAMICS
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ABSTRACT

This paper analyzes the performance of output feedback controllers for a class of
uncertain time-varying nonlinear systems in the presence of unmodeled actuator and
sensor dynamics. In particular, on the basis of known nominal model and bounds on
the uncertainties, and initially neglecting actuator and sensor dynamics, high-gain out-
put feedback schemes are determined which force the output to track a given signal.
Then, the effects of actuator and sensor dynamics are investigated on the performance
of the tracking system.

KEY WORDS: Nonlinear systems, Qutput feedback, Uncertain systems, Singular
perturbations.

1. INTRODUCTION

Recently, major progress has been made in the analysis and design of nonlinear
control systems. Different approaches have been proposed (Utkin, {1], {2], Corless and
Leitmann (17|, Hunt et al. [5], Su et al. {6], Glad [22], (23], Bauman and Rugh [19],
DeCarlo et al. [10], Isidori {15], Walcott and Zak (8], Steinberg and Corless [12]). An
important property of control systems is their robustness, i.e. the ability of the system
to retain certain performance measures in the presence of perturbations. Or in other
words; “‘the ability of a control system to function even when the actual system differs
from the model used for designing the controller” (Glad [22]). The system model used
by the designer may differ from the controlled system because of model uncertainties or
neglected high-frequency dynamics. Specifically, when devising a model of the plant,
small time constants corresponding to actuator and/or sensor dynamics are neglected.
Furthermore, it is often impossible to measure directly all the components of the state
or output vectors. In order to restore them additional sensors are used which lead to
motions different from the motions predicted by the plant model.



66

The problem of controlling a system in the presence of unmodeled actuator and
sensor dynamics has received recently the attention of many researchers. In particular
Bondarev et al. {7], and Zak et al. [25] studied the influence of neglected high-frequency
dynamics on the variable structure control systems. Leitmann et al. [8] studied the
robustness with respect to neglected actuator and sensor dynamics of state feedback
controllers for uncertain systems. Glad [23] considered the sensitivity of the system to
variations in gain at the input, corresponding to nonideal behavior of the actuators.
The problem of the robustness of various output feedback control algorithms based on a
reduced-order model with neglected high-frequency dynamics was investigated by
O'Reilly [18] and Vostrikov et al. [24] using singular perturbation techniques.

The purpose of this paper is to analyze the effect of neglected high-frequency
dynamics on various output feedback control designs for nonlinear uncertain systems.
Our approach is inspired by Marino [4], Utkin {2}, and Vostrikov et al. [24]. The tools
we use in this paper are the high-gain output feedback and Lie derivatives.

The paper is organized as follows. Section 2 is devoted to the description of the
class of nonlinear systems we consider along with the problem statement. ‘The next sec-
tion presents some background material and preliminary results. The following sections
discuss different high-gain output feedback control schemes. Then the effects on the
performance of the closed-loop system of unmodeled actuator and sensor dynamics are
investigated. Finally, Section 8 contains concluding remarks.

2. PROBLEM STATEMENT

In this paper we consider a class of dynamical systems governed by the following
equations

¥(t) = b(x) , (21)

where x€R®, u€ER™, yEIR™, and £(+) RxIR®*~—IR™ is the lumped uncertain element.
We assume that the norm of the uncertain element is bounded by a known bounded
nonnegative function; that is for all (t,x)ERxR"

”f(tvx)” = p(t’x) ’
o
where p(*) : RxIR®—IR,, and ||| is the Euclidean norm i.e,, ||x}| = (%} Ix; lz)x/z.

im=l

x(t) = f(t,x) + G(t,x) [u(t) + E(t,x)]}

Note that the only information assumed about the uncertain vector is its maximum
possible energy. If the uncertainties &(t,x) enter structurally into the state equations as
in (2.1) then we say that the matching condition is satisfied [17].

The function f{*) is 2 continuous single-valued vector-function and G() is a con-
tinuous single-valued matrix function with rank G = m. Furthermore, we require that
f(t,0) =0 for all t. The output vector function h(*) is continuously differentiable and
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h{0) = o.

In this paper we analyze two different output feedback control strategies. The first
is the high-gain output feedback stabilization scheme. In the synthesis of this control
law we utilize a nonlinear transformation which brings the original system into the
“regular form” ([20]) from where the design is performed.

The aim of the second control law is to ensure the tracking property of the output
of some given reference signal.

For both control strategies we wil] investigate the effects of the unmodeled actuator
and sensor dynamics on the performance of the closed-loop systems.

3. PRELIMINARY RESULTS
LIE DERIVATIVES

Time-Invariant Lie Derivatives

Let f: R®—IR"® and g: R*—IR® be C*™ vector fields on IR®. The Lie bracket is
defined by

[fvglg%g_%xg'fy

where of and % are the Jacobian matrices of f and g, respectively. Using an alterna-

ox Ox

tive notation, one can represent the Lie bracket as follows
[f,g] = (ad'f,g) -
Also, define
(ad®f,g) = [f,(ad*"'1,g)] ,
where, by definition
(ad’f,g) =¢ .

Next, consider a C* function h : IR®*—IR. Let dh = V'h be the derivative of h
with respect to x, where Vh is the gradient of h with respect to x. Then the Lie deriva-
tive of h with respect to f is defined by

Lth = Ly(h) = <dh,f> = VThef.
The following notation is employed throughout this paper
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L{h =h
L}h =Lsh

Lfh = Lg(Lf'h) .

The Lie derivative of dh with respect to the vector field f is defined by
_ | 8@m? of
L¢(dh) [ Ox f} 4+ (dh) Fl

One may easily verify that these three Lie derivatives obey the following so-called Leib-
nitz formula

Lit,gh = <dh,{f,g]> =LiLth = LiLgh .
Furthermore, the following relation is valid
dL¢h = L¢(dh) .

Time-Varying Lie Derivatives

Suppose now f and g are C™ time-varying vector fields, i.e. f(-) : RxR®*—IR",
g(*) : RxIR®~—R®. Then the time-varying Lie bracket is defined by

(M) & (ad'te) - &,
and
(T*t,g) = (C'1,(I*'5,g))
where
(Tf,g) Ag.

Next consider a C* function h(*) : RxIR®*—IR. Then the time-varying Lie derivative
of h with respect to { is defined by

Zh=L(h) ALk + i,g% .
We define
Zhah,
ZF¥h & Zy(LF'h) = Ly(ZF 'h) + f-f'f—;tlh— .

The time-varying Lie derivative of dh with respect to the time-varying vector fleld f is
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defined by
_ (2 ox ., 8
Zydh = T [ |+ (dh) o + 5 (db).
Note that
d%h = &;(dh) .

One may verify that the above defined time-varying Lie derivatives obey the following
formula

<dh,(If,g)>
= Lirir,gh =LgLeh — LeLgh —~ L3R

=L¢&th — ZfLgh .

MARKOV PARAMETERS

The affine Markov parameters are defined as the elements of the matrix resulting
from the product of the observability and controllability matrices of an affine nonlinear
system described by the following equations

x = f{t,x) + g1(t,x)uy + ... + gm(tiX)um

¥y =h(x) = [b1(x) , -, Bp(x)]T (3.1)

where £,2),.-,8n ¢ RXxR®*—R" and h: R®—IRP are C* vector fields.

The observability matrix of such a system is defined by the following (np)xn
matrix
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i
dh,

dh,
Z4(dh;)

.<£,(;ih,,) (3.2)

£p71(dhy)

.ff;'-‘(dhp)J
The controllability matrix is defined by the following nx(nm) matrix
€= [g1, 80, (P66 (T8 o (T ) (P ). (3.3)
So the elements of the matrix € have the form
(£Hdhy)) (Plge) = <Zi(dhy), (T1gq)>
= <d%}hy, (D,g,)>
= Lri,g,) £1h; (3.4)
for i,j =1,..,n—1, a=1,..,m, 3=1,..,p, and are referred to as the affine Markov

parameters.

Theorem 3.1: If there exist constants ¢y, k = 0,1,... such that the Markov parameters
satisfy

Lirit,g.) £ths = ¢ = ciuj (3.5)
then
Lrir,g,)Lihs = Lg, £i*hy = const = ¢y .

Proof: Repeated application of the definitions of Lie derivatives and condition (3.5)
yields the following

L(l“f,;,,)g;hﬁ = <d$;h5 ’ (rf’(ri—lf’ga))>

= L(pi-lflsa)fff-?}hg - fffL(ri—lr"a)ff'}hg
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= L(ri-xf.‘a).ifi“ hg — Zrcitj

= Lir+ig,e) L1t hy
Continuing in this manner we find that
L(r‘-g,‘a).‘t’}hg =Lg, £ithg = const = ¢;y; .
O

For further information about Markov parameters for nonlinear time-invariant sys-
tems the reader is referred to [11] and [14].

Consider now a plant modeled by (3.1}, where p = m, and the high gain control
law

u = k s(x) (3.8)

where k > 0 is a scalar and the function s(+) : IR®-—IR™ is continuously differentiable.
Assume that detSG # 0, where

Os
S= v and G = [g1,82,+Ba] -

Then we have

Theorem 3.2 ([2],[21}):
If

(i) the functions f(t,x), G(t,x)s(x), and fo =f — G(SG)~'Sf satisfy Lipschitz condi-
tions for all x

(ii) the system

ds
— = (SG
a — (5G)s
is uniformly exponentially stable, that is there exist positive A = 1 and « such

that
lls(x)ll < Alls(x(0))lle™*,
then for any positive A, and T there exists a positive kg such that
lIs(x(t)ll < A

for k > ko and to +t; <t < T on the solutions of (3.1) with the control
u = ks(x), and klim t; =0.
—00
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4. THE OUTPUT REGULATION PROBLEM
Consider the nominal system, that is the system without uncertainty as described

by
% = f{t,x) + G(t,X)U} (4.1)

y =h(x).

First we define the decoupling indices for the system (4.1). We consider each of the
m output channels separately. So considering the first output channel we form the fol-
lowing row vector which we will call the decoupling vector for channel one

[Lg, by, Lg,hy, e Lg by . (4.2)
If this row vector is not identically equal to zero, then we define the decoupling index of
the first channel to be zero, or d; = 0.

However, if the row vector is identically equal to zero we proceed to form the fol-
lowing decoupling vector

[Lg,Lehy, Ly, @by, o, Lg Zihy) .

Again we determine if it is identically equal to zero, or not. If it is not we stop and
define d; = 1. If it is zero we proceed further by forming

[Lg,g?hh Lge_»'(ffzhl y "ty Lgm-(ffzhl] H
and so on.
So the decoupling index of channel 1, is equal to the smallest integer d; for which
the decoupling vector,

' d
Ly, Z5'hy, L &7y , oy Ly, £8'h],

is not identically equal to zero.
Similar procedure for the other output channels yields a set of m parameters, d; for
i=1,2,..m.

The decoupling indices are an indication of what the lowest derivative of each out-
put channel needs to be utilized for an output control to be effective. By taking the
time derivative of the i*} output channel we obtain

oh; ,
Vi=—Fx=

%= 2T (f+g1ur + o + Entin),

hence
Yi =Lehi + [Lghi s -y Lg,hi] u.

Thus if [Lg hj, Lg,hi 4 ..., Lg hi] = [0] then u has no effect on the output y;, so we
need to form ¥; where
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¥i = 73-x_l—x =$¥hi + [L“.?gh‘, y ey L‘mgfhi]u .

Again if [Lg, Zrhi, Lg, Zrhy , o, Lg Zrhi] = [0], then u has no effect on the output
and we need to take higher derivatives of y; in a similar fashion as before.

Now that we have obtained the set of decoupling indices, we consider all the out-
put channels together to form the following matrix

Lo £{'hy .. Lg i'hy
N=| i : . (4.3)
dm ¢ dm
L, £i™hy . Lg #f"hy

We will assume that the matrix N is nonsingular and we will further assume that
the Markov parameters of the system (4.1) are constant. Hence by the virtue of
Theorem 3.1 the matrix N is constant.

With the N matrix constant and nonsingular, we proceed to construct a high-gain
output control which will regulate the output to zero.

We will consider two cases. The first case is when all decoupling indices are equal
to zero, and the second case when some, or all, decoupling indices are not equal to zero.

For a rigorous treatment of the decoupling problem for nonlinear time-invariant
systems the reader is referred to {3], [14], [18].

Case 1: For this case the N matrix will have the following form
Lghy oo Lghy

N=1] ! : =
Le,hy oo Lg hp

5h
5 G =HG, (4.4)

where g—% is the Jacobian matrix of h and G = [g},...,&n ]

If we employ the following diffeomorphic state variable transformation
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X3 = ¢y (t,x)

5.‘-2 = ¢2 (trx)
Faeme1 = by (x)[

Xy = hg(x),

where the ¢;’s are chosen such that

L‘jqb, =0, j=1,.,m forall i=1,..,n—m,

X, AT
- 2f¢n—m
Xp—m
in—m-t-l L¢hy Lthl LSmhl
: = H + :
- L¢hg L“hm Lgmhm

u= —1— K°h(x)

X, L

2! ¢n-—m

x o—m

then the system (2.1) in the new coordinates will have the followinz form

(u+8).

We will now employ the high gain output feedback control as given by

(4.5)

(4.8)

{(4.7a)

(4.7b)

(4.8)

where ¢ is a small constant and K° is an mxm constant matrix. Under the influence of
this control, the system equations become

(4.9a)
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;n-m-i-l thl
o= ¢ |+ ¢ NKeh(x)+NE. (4.9b)
Libg

Xna

We see that the application of this control decouples the system into the slow and

fast subsystems. The dynamics of the slqw subsystem are given by
3

Xy AT
o $f¢n—m
Xp—-m
- . (4.10)
Xp—m+1
y =h(x) = i =0,
Xa
whereas by invoking the following change in the time variable,
t=e€r, (4.11)
the equations describing the dynamics of the fast system are given by
d ;n-m-i-l gf hl
I : =¢€ i |+ NK°h{x) + eN§, (4.12)
fn gfhm
and for sufficiently small ¢, the above equations simplify to
d i’n—m-c-l ;‘-n-m-i-l
s = NK°%(x) = NK° : . (4.13)
Xa Xy
Observing that the part of our transformation in (4.5) is ¥ = [Ka—ms1 » = » Xa] s
we can rewrite the above equation as
& NKey. (4.14)

dr

Note that by an appropriate choice of the matrix K® the fast subsystem can be
made uniformly exponentially stable. Thus if J is the required uniformly exponentially
stable matrix then,
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K° =N"1J, (4.15)
and K° can be evaluated since N is assumed to be nonsingular.

By invoking Theorem 3.2 we see that the stability of the fast subsystem will result
in the trajectories of the system (4.7) converging to the A-vicinity of the manifold
y(x) = 0. Thus the output is regulated to zero. Within the A-vicinity of the manifold,
the system will be governed by equation (4.10) which represents the dynamics of the
slow subsystem. From equation {4.10), we notice that we do not kave any influence on
the internal stability of the slow subsystem when the output is regulated to zero. We
assurme however that the slow subsystem is asymptotically stable. The stability of the
slow subsystem is a structural property of the plant. This subject requires further
research.

Although Theorem 3.2 was stated for nonlinear systems without uncertainties, it
also applies to our particular case. This is because the uncertainties in the system (2.1)
are bounded by a known bounded function.

Case 2: Let us first reorder the output channels so that they are ordered in ascending
values of their decoupling indices. Thus y, is assigned to the channel with the smallest
d;, and yp to the one with the largest d;.

We then employ the following diffeomorphic state variable transformation

& (tyx)
‘.52 (tf x)

b (x)

]
I

g4ty |, (4.16)

T
£ih

| by, |
where the ¢,’s are chosen such that
L =0 j=1,.,m,.

The system (2.1) in the new coordinates will have the following form
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"‘-l = fl(t’i) (4 17)

% = £,(6%) + N(u + &),

where X' €ER*>™™, X’€R™, and N is given by (4.3). The existence conditions of the
transformation (4.16) can be deduced from the results of (5], [20], {26}, [27].

Note that
—2 di .
X; = }'5 ) ;y i=1,.,m,
where ( )U) denotes the j-th derivative of () with respect to t. The control law will have
the form

d,
kiawyi +.0 kl.d.-u}'(x )

u=L Nt

y (4.18)

dn
ke 1¥m + o + km,dm+1y£n )
In the new coordinates the closed-loop system (4.17), (4.18) is decoupled into the slow
and fast subsystems. The slow subsystem is governed by the equations

x! = fi(t,X)

y=0. (4.19)
As in the previous case, we have no influence on the stability of the slow subsystem.
Therefore for the controller to be effective we have to assume that the system (2.1)

without uncertainties is asymptotically stable when restricted to the manifold y =0
which is equivalent to requirement that the system (4.19) is asymptotically stable.

As with regard to the fast subsystem we utilize a change in the time variable
t = ¢ 7 to obtain

d,
y(ldx'*'l) kl,l}'l + ..+ kl,d,-i-ly(l )
— e(fy + NE) + : . (4.20)
dn
yar! ka,1¥m + o + K1Y a”

If we now choose kj; in such a way that the simplified fast subsystem
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d
yia+d) kpays + o + kpaeayi )
y m)

d
$m+l) km,ly,,. + ..+ km,dmi-lygn

is uniformly exponentially stable then by the virtue of Theorem (3.1) the closed-loop
system is asymptotically stable.

The above output feedback stabilization schemes are quite restrictive. Their
effectiveness depends on the stability of the nominal system (x ==f{ + Gu) when res-
tricted to the manifold y =h(x) =0. In the following section we provide a more
effective control scheme. Before that however, we will analyze the effect of unmodeled
actuator dynamics on the performance of the closed-loop systemn with the high-gain out~
put feedbacks.

SYSTEMS WITH FAST UNMODELED MOTIONS

We now investigate the effects of the introduction of uncertain actuator dynamics
on the performance of the system (2.1) with high gain output feedback controllers.

Case 1: We will assume that the actuator dynamics is modeled by the following equa-
tion

Mor=Lr+Mu, u=Nr+Ru, u=cK%%, (4.21)

where r€EIRY, @ 2 m, L is a Hurwitz matrix, g, is a positive constant that reflects the
“fastness’' of the actuator, the matrices L, M, R, and N satisfy the condition

R—NL"'M=1I_,and c = —i— is a large constant.

Proposition 4.1: If the matrix L is Hurwitz, (the fast subsystem described by (4.21) is
exponentially stable) then as u, approaches 0, the motion of the slow subsystem is
described by (2.1) with u = u = ¢ K°y.

Proof: The fast subsystem is described by (4.21). Replacing u by its value yields

Mot =Lr + cMK°y . (4.22)
Let 7 = uJ't, hence (4.22) becomes
:—; =Lr + MK . (4.23)

Since L is a Hurwitz matrix, then as 7 approaches infinity we have y = constant and
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lim r = —cL"'MK®y,
F—el0
hence
u = Nr + ¢cRK°y = [~ NL!M + R|cK°y = cK°y . (4.24)

The expression for u as per (4.24) can also be found by setting u, = 0. Hence the slow
subsystem is described by (2.1) and (4.24).
(]

Case 2: If the actuator dynamics for this case is also described by (4.21) with

d
Kiy, + + Kl,d.+1)"| )

a4 =cN! : ,
m,y. T+ Kmd +1Ym
then using a similar argument as in the previous case we conclude that the slow subsys-
tem is described by (2.1) with u = u.

In conclusion, for a sufficiently fast actuator the proposed control schemes will sta-
bilize the output.

6. THE TRACKING PROBLEM

Our goal now is to design a controller such that the output of the system (2.1) will
track a given reference signal.

A sufficient condition for the output y to track the reference signal uAt) is
d
3 ¥~ =Vly - f)] £F(,uUL) (5.1)

where V is a Hurwitz matrix. If 1(t) = constant, then (5.1) becomes y = V{y — 1.

We require that the closed-loop system (2.1 be asymptotically stable with respect
to the time-varying manifold

Q=fx: h(x(t) — At) = ¥(t) — 4t) = 0} .
The projection of the overall system on this manifold is
7(t) — i{t) = Hi — ift)
=Hf + HG(u + &) — {t) .
Using equation (5.1) and solving for u, we obtain the following control law
& = (HG)™ [F(y, At) — HE + i{t)] — £ . (5.2)

In order to implement the control law (5.2), we would have to have the exact knowledge
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of the uncertain vector £(t,x). Hence this control strategy is impractical. In what fol-
lows we propose a practical control algorithm which approximates the controller {(5.2).
Consider the following control strategy
u=K[V(y —ft)) - (y — AL, (5.3)
where K is the matrix of gain coefficients, K = cK®, and ¢ is a scalar large factor. At

the present time, we will assume that y can be measured exactly. Later, we will investi-
gate the case in which y is measured by a sensor.

To analyze the behavior of the system (2.1) with the control law (5.3) in the pres-
ence of unmodeled actuator and sensor dynamics we will employ the arguments of Vos-
trikov et al. {24] used for systems without uncertainties.

Along the trajectories of the motion of the dynamical system (2.1), y is given by
y = Hi(t,x) + HG(t,x}(u + £(t,x)) - (5.4)

Proposition 6.1: If det(I + cHGK®) > 0, and det(HG) # 0, then
(@) Jim S by — U0l =FOuo),
(6) lim u = (HG)™ [F(y, (1) — I + (1) — HGE).

Proof: In what follows we shall utilize the arguments of Vostrikov et al. [24].
We first prove part (a). Recall that

y=Hx,x=f+GK[F - (y - )] +§),

thus, we have
y =Hf + HGK(F —y + /) + HGE,

regrouping the y terms leads to

(I + HGK)y = Hf + HGK(F + ) + HGE,
Hence, for K = cK°, we have

¥ = (I + cHGK®)"}(Hf + HGS) + (I + cHGK®)'¢cHGK®(F + ) .

Taking lim y, the first term approaches zero, while the second term approaches F + I,
therefor:;—mo

limy=F+ 0.

¢—+00

We now prove part (b).
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We have
u=K[F —(y—)], y=Hf +HG(u + ¢§),
therefore
u =K[F —Hf —HG(u + £§) + ] .

Regrouping the u terms leads to

(I + KHG)u =K|[F — Hf — HGE + 4,
hence, for K = cK®, we have

u = (I + cK°HG)™1¢K® [F — Hf — HGE + ¢ .

Thus

cl-i.’?e u = (HG)"![F — Hf — HGE + I} .

SYSTEMS WITH FAST UNMODELED MOTIONS

We will now investigate the effects of the neglected actuator dynamics on the per-
formance of the system {2.1) with the control law (5.3).

Suppose that the actuator dynamics is modeled by the following equation
paf =Lr+Mu,u=Nr,u=K(F -y + 1), (5.5)

where t€RY, q = m, L is a Hurwitz matrix, g, is a positive constant that reflects the
"fastness” of these dynamics, and the matrices L, M, N satisfy the condition
—NL™'M =1

The system described by (2.1), and (5.5) may be studied by the methods of the
theory of differential equations with small parameters in some of the derivatives [24].

For such systems, the overall motion can be decoupled into the fast and slow com-
ponents [21] [24]. The method of decoupling motions is advantageous in systems involv-
ing high-gain feedback and/or singular perturbations. The main idea behind the theory
is to decouple the system into two subsystems of lower dimensionality. The equations
of the slow motions and the convergence conditions for the fast motions are examined in
[21] and [24].

In the following proposition we investigate the effects of the actuator dynamics on
the performance of the system (2.1).
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Proposition 5.2: If the matrix (L. — MKHGN) is a Hurwitz matrix, then as c—oc the

motion of the slow subsystem will be deseribed by (2.1) with u =u.

Proof: As u,—0, the slow subsystem is described by the following equations
x=f+Gu+¢§), u=u=KF —y+1).

We now examine the condition for the stability of the fast subsystem.

The fast subsystem is described by equation (5.5). Replacing u by its value yields

it = Lr + MK(F — Hf — HGNr — HGE + 1) . (5.6)
Let 7 = ug't, hence equation (5.6) becomes
% = (L — MKHGN)r + MK(F — Hf —~ HGE + 1), (5.7)

where x = constant, t = constant.
If the matrix (L. — MKHGN) is Hurwitz, then

lim r = — (L — MKHGN)"!MK(F — Hf — HGE + 1) .

r—Q
Applying twice the following matrix identity know as the matrix inversion lemma
(A + AizAgpAn) ™ =AR — ATTAL(AL AT A + AR )T A AT,
and the condition — NL™'M = I, we obtain

lim N(L — MK°(cHG)N)~!cMK®

L

= lim cK°[- Iy + (K° + (cHG)!)"'K"}

C—00
= — (HG)™!. (5.8)
Hence

lim u= lim Nr=(HG)™'[F —Hf + ] — €.

C—e2C Coomr O

INFLUENCE OF SENSOR DYNAMICS

To implement the control law (5.3), the vector y has to be measured by a sensor
(approximate differentiator). Suppose that the approximate differentiator is modeled by
the following equation
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UsZ = Az + Dh(x)
(5.9)

5'=le

where z€RY, y€R™, ¢ = m, and 4, is a "small” parameter that reflects the "fastness"”
of the approximate differentiator, ¥ is the estimate of y, A is a Hurwitz matrix, and the

matrices P, A, and D satisfy the condition — PA~'D =1I. We shall also use ¥ instead of
¥ in the control law (5.3). Therefore, we have

¥ =Pz = u;'P(Az + Dh(x)) .
Again, to examine the system (2.1) with the control strategy (5.3) and the approxi-
mate differentiator (5.9), we shall refer to the theory of decoupling motions ([21], [24]).

If we denote
s = Az + Dh(x) = t42 , (5.10)

then the method of decoupling motions described in [21] is suitable for the resulting sys-
tem. We now examine the condition for the convergence of the fast motions to the
manifold s = 0.

The projection of the overall system on the manifold s is given by
s =Az + Dy
= Az + DHx
= ApTls + DHIf + G(u + £)] .
Replacing u by its value yields
$ = (A — DGHKP)u;'s + DH(f + GKF + GK/ + G§) . (5.11)

If we now multiply both sides of the above equation by iy, and let t = u,7, we get
% =y, %% = (A — DHGKP)s + 14,DH(f + GKF + GE + GKi) ,

where x = constant, t = constant. If the matrix {A — DHGKP] is Hurwitz then

lim s = — 4, {A — DHGKP|™!DHf + DHGK(F + ) + DHG{] .

T=—e00

Using twice the matrix inversion lemma and the condition — PA™!D = I, we obtain

lim (A — DHGKP)™!

C—+Q
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= lim P~'P(A — D(cHG)K°P)"!

C=+00

= lim P!l — (K° + (cHG)™!)"!K°|PA™!
C~+0

=+ P 1(HGK)™'PA~! .
Hence

lim s = u,P~YF + 1),
oo

or u;'Ps = F + 0, which gives

y - =F(y,0).

(5.12)

To derive the equation of the slow motions, we let 1, equal to zero. Hence using

equation (5.9) we get
z =— A"'Dh(x),
y=Pz=—PA !Dh(x).
Using the fact that — PA™!D =, we obtain

y=v.
Hence the equation of the slow motions is given by
x =f{+GK(FF,v) -7 +1) +¢§

where

u =KFG) — 7 +0) =KFFH) ~7 +5).

Remark 5.1: Note that for large but finite values of the K-matrix, the value of the

control signal u remains finite (as shown in Proposition 5.1 part (b)).

INFLUENCE OF NOISE

We now investigate the influence of noise on the behavior of the system (2.1) with
the control law (5.3). Assume that the output vector y is corrupted by the continuously

differentiable noise r{t), thus

§'=Y+r(t))

We now find values for ¥, ¥, and u. We assume that det(I + HGK) # 0.

(5.13)
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(a) Reeall

y =H[f + GIK(F(7,4) —¥ + {1) + €],
using equation (5.13) we get
y=Hf+GKF —y—-r+)+).
Solving for y we obtain
¥y = (I + HGK)™! [Hf + HGKF — HGKr + HGKV + HG¢| . (5.14)
(b) For the controller u,
u =KF -7 +)
=KF —-y~r+1),
substituting y = Hf + HGu + HG¢, we get
u=K(F —Hf —HGu —HGES ~r + 1),
solving for u yields
u=(l +KHG)"!K(F —Hf —r ~HGS + 1} . {5.15)

(¢} The derivative of the output vector with noise is
§ =Hf + HGu + HGE,
using u = K(F — i + ) we obtain
; = Hf + HGK(F —5"' + 0) + HGE,
solving for i yields
; = (I + HGK)~!(Hf + HGKF + HG¢ + HGKY) . (5.16)

In the limit the equations (5.14), {5.15), and (5.16) become
(i) u=(HG)'[F - Hf —r —HGE + I},

(i) § —i=F@v).

In part (i) above we can see that for an actual system, in the limiting case, the noise r(t)
is fully "repeated” in the output. As for the controller u, apart from the "basic" control
law u = (HG)™}(F ~ Hf — HG{ + ), we have an additional component due to the

additive noise.
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6. CONCLUDING REMARKS

In this paper, we discussed the robustness of high-gain output feedback control
designs for nonlinear time-varying uncertain models to unmodeled high-frequency
dynamics. Our approach followed on the papers by Vostrikov et al. [24], and Utkin [2].

Two different control strategies were analyzed. The first one was concerned with
the output regulation. To facilitate the synthesis we utilized a diffeomorphic state vari-
able transformation of the given model into the regular form. This regular form was
found very useful in the design. However the problem of constructing a transformation
which brings the system into this form requires further investigation.

The aim of the second output feedback control design was to ensure the tracking
by the output of a given reference signal. The proposed control algorithm involved the
output vector derivative. Following Vostrikov et al. [24], we suggested a sensor estimat-
ing the output derivative. One may argue that using differentiating filters is impracti-
cal. However one has to recognize that the essential information about a given process
has significant spectral components only at low frequencies [13 p. 227]. Hence if we use
an approximate differentiator which is sufficiently fast then the system will hardly feel
the difference between the ideal and approximate differentiators. Thus, this approxi-
mate differentiator acts as an ideal one and its gain levels off or decreases at higher fre-
quencies. In this paper we attempted to prove that the approximate differentiator is a
viable tool in the synthesis of control algorithms.
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ROBUST MODEL TRACKING FOR A CLASS OF SINGULARLY PERTURBED
NONLINEAR SYSTEMS VIA COMPOSITE CONTROL

F. Garofalo and L. Glielmo

Dipartimento di Informatica e Sistemistica
Universita’ degli Studi di Napoli

1. Introduction

Typical problems encountered in the design of a control system are the
presence of parameter uncertainties and the coexistence of slow and
fast dynamics in the plant to be controlled. When the uncertainties are
described assigning their range of variation and these variations
belongs to appropriate subspaces, the so called deterministic control
of uncertain systems (Leitmann, 1980; Corless-Leitmann, 1981)
represents an useful tool for the design of controllers capable of
guaranteeing certain performance no matter what the realization of the
uncertainties is. The rigorous treatment of systems with two-time scale
behavior can be done utilizing singular perturbation theory (Kokotovic
et al.; 1986). The simultaneous use of these two methods for the
control of uncertain two-time scale systems has recently received some
attention (see Leitmann (this volume) and its references).

In this paper we use a composite control technique in conjunction with
the robust design of controllers for uncertain systems to synthesize a
nonlinear controller which forces a class of two-time scale nonlinear
system to follow a two-time scale 1linear reference model. The
controllers that are used in the two phases of the design are obtained
via a constructive use of Lyapunov functions (Kalman-Bertram, 1960).
The same Lyapunov functions are successively combined (as suggested by
Saberi-Khalil, 1984) for obtaining the proof of ultimate boundedness of

the model tracking error.
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2. Problem Statement

We consider a two-time scale nonlinear system described by the

following equations

X(€) = A (x(E))X(E)+A, (x(£))Z(E)+B, (x(E)Iu(t)+a (x(E));

(2.1a)

pz(t) = A, (x())R(£)+A (x(£))Z(£)+B, (x(t))u(t)+a, (x(t));
(2.1b)
x(to) - x; (2.1c)
z(to) -2 (2.14d)

where x(t:)eRn ) z(t)eRT represent the state of the system, u(t:)eRP is
the control input, al(x(c)) and az(x(c)) are nonlinear vectors, ue(0,«x)
is the singular perturbation parameter, and A“(-) and Bi(-), i=1,2,
j=1,2 are matrices of appropriate dimensions.

The reference model specifying the state behavior expected from the

controlled plant is described by the linear, time-invariant system

&ty - A Rk 2eored ey (2.2a)
Beey - R Rk 2eord by (2.2b)

Q(co) - Qo; (2.2¢)

A A

z(to) -2 (2.24d)

where Q(C)GR? and Q(C)ERF is the state and G(t)eR? is a reference

signal.

The following assumptions define the class of nonlinear plants

considered here.

Assumption 1. There exist full rank matrices Bx’ i=1,2 such that, for

all xeR”, the following decomposition holds:
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B(x) =B + BE (x), i=1,2,
a (x) = B d (x), i=-1,2 ,
vhere Ex(') (resp. di(')) is a matrix (resp. a vector) of appropriate

dimensions, continuously differentiable with respect to x.

The relationship between the system (2.1) and the reference model
represented by equations (2.2) 1is precised by the following

assumptions.

Assumption 2. For all xeR" the following equalities hold

A —
Au(x)-AU - Bic“(x) , i,j - 1,2
B = Bc , i=1,2

i1

where Cu(x) are continuously differentiable matrices.
Moreover, the singularly perturbed model is assumed in standard form,
i.e.,

Assumption 3. Matrix ﬁ}z is full rank.

Defining

R é A A-1A
[} 11 12 22 21

>

(2.3)

we hypothesize that
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Assumption 4. The pairs (ﬁo,gl) and (ﬁzz,iz) are controllable.

Assumption 5. The matrices A“(x), Bi(x), ai(x), for i=1,2 and j=1,2,

are norm bounded in R". In particular we define
h = su lc 0,
S - S

K = sup "E (x)",
i xERn i

v, = = 14,00l

Moreover ", <1, i=1,2.
Finally we make the following

Assumption 6. The input reference signals G(-) are such that there

exist finite positive constants

k = sup |8 (0],
telt ,=)
0
k! - sup "Gt(t)"'
te[to,“)

where Ga(t) and Gt(t) represent the slow and the fast time scale
components of G(t) and G(c)QG‘(c)+G£(c). Corresponding to these
signals, there exists a positive constant ; such that, for pE(O,;) the
state variables of the reference model are uniformly bounded by known

constants:

kA = sup "Q(t)",
teft =)

pe(0, 1)



93

pe(0, 1)

Remark 1. Assumption 1 is the so called "matching assumption" and
defines the manner in which the nonlinearities enter the plant, The
equalities in Assumption 1 and 2 are the so called "model matching
conditions” and determine the class of model that can be tracked by the

nonlinear system under consideration.

Remark 2. System (2.1) belongs to the class of singularly perturbed
nonlinear system with slow nonlinearities considered by Chow-Kokotovic
(1981). Note, however, that for design purposes, it is not strictly
necessary to know the nonlinearities affecting the system but only a
nominal linear behavior and an evaluation of the maximum deviation from
this behavior as precised in Assumption 5. The composite control design
for the practical stabilization of a similar class of plants is also

considered by Garofale (to appear).

The objective of the control is to synthesize a feedback control
function guaranteeing that the plant tracks the model to within a
bounded neighbourhood of the zero state tracking error.1

The procedure we propose for the synthesis of the controller is based
on the separate design of controllers guaranteeing tracking of the
slow approximation and of the the boundary layer approximation of the
reference model. On the basis of these control laws the composite
control is constructed which guarantees tracking of the model for

sufficiently small values of the singular perturbation parameter u.

1A formal definition can be found in Corless (1987) or in Appendix 1.
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3. Slow Time Scale Control

Following Kokotovic et al. (1986) the slow approximation of the
behavior of the reference model is obtained considering u=0 in (2.2b)

and substituting the resulting value for variable =z in (2.2a),

obtaining
A AA A
R (£) = Aaxs(t)+ﬁou‘(t), (3.1)
where
B A8 448, (3.2)
o - 1 12 22 2

and the subscript s stands for slow time-scale approximation.

In order to design the controller for tracking the slow component
(3.1) of the reference model, we need an approximation of system (2.1)
in the slow time scale. To this end, we assume that z variable has a
nominal behavior z which is exactly the one that £ variable takes in

the reference model, that is
. A A A A
pz (t) = Azlx(t)+Azzzn(t)+ﬁzu(t). (3.3)

Correspondingly, the approximate model of slow dynamics neglects the

nominal fast transients, 1.e.,2
X = All(x')x'+A12(xa)zn+BI(x‘)u‘+a1(x‘), (3.4a)
0-4 x+A z+B0Q, (3.4b)

21ls 22 n 2 s

2Somet:imes, when no confusion is likely to occur, we delete the time

argument of the functions.
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which gives

z - f*(x.,G') 8RR x + B0 (3.5a)
and

is - Ao(xs)xs+Bl(x5)u'-A12(xs)ﬁ;; zGs+a1(x’), (3.5b)
with

Ao(x‘) 2 ALx) - Alz(xa)ﬁ;:azl' (3.8
Define now the slow time scale tracking error as

£ 2 x4 . (3.7)

On the basis of (3.1), (3.2), (3.5) and (3.6) the slow time scale

tracking error dynamics can be written as
E' - sts + Blus + BlEl(x')us + Bl[Hl(xs)+Ks]E' +
+ B_[H (x )% -H (x )3 +d (x )] (3.8)
llsszxsusls' '

where Fs £ Ao-ile, K'eRmm is a matrix which makes matrix F'
asymptotically stable with specified eigenvalues (which 1is always
possible by virtue of Assumption 4), and

1>

H (x,) [Cll(x')-clz(x')ﬁ-la 1, (3.9a)

22 21

1>

A-1

H(x) [eI+C12(x.)Azzﬁz] ) (3.9b)
From the knowledge of matrices C11(x) and C1z(x) (given in
Assumption 2), and matrices Réz' ﬁ;l and ﬁz’ we can compute the

following constants
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A 3
ke = sup_ "Hl(x)+Ks", (3.10a)

5 XeR

4a A A
kd1 - }s(gn | (X)X -H (x)U +d, (x) I. (3.10b)
t:E[t:D , )

He(0,u)

Consider now the nonlinear feedback control law

(Ambrosino-Celentano-Garofalo, 1985; Garofalo-Glielmo, to appear)
(€)2 4B (3.11a)
ps s -73 178”8’ : a
where P is the solution of the Lyapunov equation
FP +PF = -Q, Q positive definite, (3.11b)
s s s 8 8

and

v vl ]
y =y (e ly 22l il 55 (3.11c)
: "Blpsfs" + 63

This feedback control has the tracking capabilities described in the

next theorem.

Theorem 1. Consider the slow approximation (3.4) of system (2.1)
subject to the feedback control law in (3.11). If constants T, i=1,2,

in (3.11c) are chosen so as to satisfy

T E T (3.12a)

3Notlce that the suprema can always be replaced by upper bounds.
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v =z 2 (3.12b)

then system (3.5b) tracks the slow approximation (3.1) of the reference
model (2.2) to within a spherical neighbourhood of f'-O whose radius
can be made arbitrarily small by a suitable selections of constants

¥ i=1,2, and/or of constant 6' in (3.11lc).

si’

Proof. The proof of the theorem can be found in Appendix 2.

4. Fast Time Scale Control

The boundary layer approximation of the reference model (2.2) is given
by (Kokotovic et al., 1986)

A
dz: A A 84
I ~ A%, t Bu, (4.1)

where r=t/p, Gz represents the fast component of the reference signal,

and

-ty -2+ A7 Q+ﬁzﬁ ). (4.2)
The fast time scale approximation of system (2.1) 1is obtained
substituting the slow control expression (3.1lla) in equation (2.1b) and
approximating variable x'(t) by x(t) and Qs(t) by Q(t). So doing we
obtain

Bz - AZI(x)x--y‘Bz(x)E:P'E + A0z + B, (x)uta (x), (4.3)

A A
where u, is the fast component of the control law and § = x-X.
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Defining
A S A A-1,A A
z, =z - I‘(x,u.) -z + Azz(Az1x+ﬁzus)' (4.4)

the boundary layer model of the system can be written as

dz
3;‘ - Aéz(x)z!+Bz(x)u2-7.Bz(x)ﬁzPsf
+B6 (x)x+B,6,(x)8 +8.a,(x), (4.5)
with
A A-1A
Gl(x) = [Cn(x) - sz(x)AzzAle' (4.6a)
A A-1
¢, (x) 2 -[62+czz(x)Aﬁzﬁz}. (4.6b)

The fast time scale tracking error can be defined as

4, .2 .7

and, on the basis of (4.1) and (4.5), its dynamics can be written as

d("

& - tht + Bzuz + Bzﬁ'.z(x)ur + Bz[czz(x) + Kt]gt-x»
- =T
+ Bz[Gl(x) - 73(1p + Ez(x))BlPs]f
= A A A A
+ Bz[Gl(x)x + sz(x)z: + Gz(x)u’ - Cu + dz(x)] .

(4.8)

where F: 4 ﬁzz-ﬁzxt and K:eR‘”mI is a matrix which makes matrix Fr

asymptotically stable with specified eigenvalues (see Assumption 4).

On the basis of Assumptions 1, 2, 5 and 6, we can evaluate the finite
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constants

A A A A A
k = sup_ "Gl(x)x + sz(x)z! + Gz(x)u‘ -84+ dz(x)",

% %xER 21z

te[tof’)

pe(0,p)

(4.9a)
k 2 sup Jo () + K| (4.9b)
¢ xegn 22 e’ '
A =T

k€ s ,’;Z‘én []Gl(x)- 7'(1p + Ez(x))BlP‘[I, (4.9¢)

In the fast time scale the variables x and € can be considered
constants, and the fast control law we propose for making the boundary

layer system track the boundary layer reference model has the form
p(c) & -y Blp g (4.10a)
£t £z2ef :
where P! is the solution of the Lyapunov equation
T .
szz + P!F! - 'Qz' Q: positive definite, (4.10b)

and

v, v, 0 I+, 4]l
f1 £2 £ £3 (4.100)

A
= vl &

| + s
2 £t 4

We can state the following

Theorem 2. Consider the boundary layer approximation (4.5) of system
(2.1) subject to the feedback control law (4.10). If constants Yoo

i=1,...,3 are chosen so as to satisfy
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kd
v, = 1_'2‘ , (4.11a)
1
k
7, 2 —15—;- , (4.11b)
1
Ke
T T 1ig (4.11c)

1
then system (4.5) tracks the boundary layer reference model (4.1) to
within a spherical neigbourhood of {r-O whose radius can be made
arbitrarily small by a suitable selection of constants Vot i=1,...,3

and/or constant 6: in (4.10c).

Proof. The proof can be found in Appendix 2.

5. Guaranteed Performance of the Composite Control

The composite control is obtained as the sum of the slow and the fast

control law with wvariable §£ replaced by (-[P(i,G)+P(Q,G)] =7 +

ﬁ;:ﬂni. and E' by itd approximation £, obtaining
=T =T =T A-1A
e < -1IBIPS€ ) TrBzPrc ) 7rBzPrAézA21€’ (.1)

where { 4 (Z-Q).

For this control law we can establish the following theorem.

Theorem 3. Consider system (2.1) subject to the control law (5.1). The
closed loop system tracks the reference model to within a spherical
neighbourhood of the zero state tracking error, 1f the following
conditions are satisfied.

i) The constant L satisfies the inequality:
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k 1
dl
1,217 % (5.2)
1
with
k'8 sup JHOOR - H(0d + a0, (5.3)
d n 2 1
1 XeR
tE[to;m)
pe(0,p)

and the constant 7 _satisfies the inequality (3.12b);
82 y

ii) the constants 7m' 3=1,2,3 in the control law (5.1) are
chosen so as to satisfy inequalities (4.11);
iii) constant L besides satisfying (4.1lc), satisfies

by «g)

< min
Te3 2P T sup B, (x)]
* xer® !

(5.4)

iv) the singular perturbation parameter is such that 0<y<p*

L]
where p is a constant whose value can be a priori computed.

Proof. The proof of Theorem 3 and the expression for the upper bound of

paramerer p are given in Appendix 3.

6. Conclusions

The robust model tracking control presented here is designed using the
approach of deterministic control of uncertain systems, together with
the composite control technique developed for singularly perturbed
systems. This enables the designer to guarantee the model following
within a spherical neighbourhood of the zero error, in the presence of

"slow" nonlinearities. It must be pointed out that this technique does
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not require the knowledge of the form of the nonlinearities, but just

the possible range of their variations.

Appendix 1

Some definitions and a useful lemma.

Consider the equation of a model tracking error dynamics in the form
€ = oe,t) , e(t)m=e, (Al.1)

where teR, ecR, and ¢:RPxR+R’ We say that the system tracks the
reference model to within a spherical neighbourhood of radius R of =0
(indicated with B(R)) iff the following properties are satisfied:

i) Existence of the solution. Given any (eo,to)eRpxR there exists a
solution e(-):[to,tl)-va, e >t of (Al.1).

ii) Indefinite extension of solution. Every solution e(~):[t°,t1)-*Rp
of (Al.l) has an extension over [to,w).

iii) Global uniform boundedness. Given any bound reR+, there exists a
bound d(r)eR such that if c(-):[to,tl)—vRP is a solution of (Al.l) with
"eo"sr, then [e(t)]sd(r) for all tefc ,e).

iv) Local boundedness within B(R). There exists a sphérical
neighbourhood B(Ro) of e=0 such that if e(-):[to,tl)—vRp is a solution
of (Al.1) with eoeB(RD) then e(t)eB(R) for all tG[to,tl).

v) Global uniform ultimate boundedness within B(R). Given any bound
reR# there exists T(r)eR+ such that if e(-):[to,tl)—oRp is a solution of
(AL.1) with | |sr, then e(t)eB(R) for all ezt +T(r).

The listed properties of the solution e(-):[to,tl)—oRp can be stated
with the aid of the following lemma (for the proof see
Corless-Leitmann, 1981).
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Lemma. Given system (Al.l) suppose p(0,t)=0 for all teR., If there
exists a C' function L defined on |ef=s and teR, and if there exist

class KR functions X, and X, and a class K function X, such that
x,(lesice, er=x (el (Al.2a)
9 1e, 0049 L(e, ) 5 -x. (e (A1.2b)
FTSa e Ve X Lei) '

then for all [le|2s and teR the system tracks the reference model to

within any spherical neighbourhood B(R) of €=0 with E>x:bx2(s).

Appendix 2

Proofs of Theorems 1 and 2.
Consider as Lyapunov function candidate for system (3.8) with the
feedback control (3.11) the following

vee) B elre (a2.1)

Evaluating the derivative along the solutions of the closed loop system
by virtue of (3.9), (3.10), (3.11), (3.12) and Assumption 5, we have

(1/2)"’(65) = '(1/2)€:Q'€' -Y.E:P.Elﬁ.;P'f‘
- 1s€:PsE1E1(xs)§:Ps€s + €:P5E1H1(xn)xn
- e:psiluzma)ﬁ_ + £:P‘§1d1(x‘) + e:p‘ilx'e

S (/2606 - v IBIR€ [1P-k) + B £ H (x )+k [l |

1 s8°s

+ ||_B:P’£!||||Hl(xs)Q'-Hz(x')Gs+dl(xs)||
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s -(/DEQE - Gt e DABREN - 6 ) en)
+ [ER ¢ s, )+ e |

+ IIEIPBESII||H1(x‘)§s-ﬂz(xs)ﬁa+dl(xs)||

A

S(L/27Q8, + K, 5+ K, 8 e |
1

= (172 [-v [l %+ v le | + v,) (A2.2)

A A A
where v= Amm(Q.), v, = 2k€'6', and v, = 2kd16..
At this stage the application of the lemma reported in Appendix 1

proves the statement of the Theorem 1.

The proof of Theorem 2 proceeds exactly in the same way. We define as
Lyapunov candidate for system (4.5) subject to the feedback control
(4.10)
AT

wig) =¢pe, . (A2.3)
The derivative along the solutions of the closed 1loop system,
considering x constant in the fast time scale, can be proved to satisfy
the following inequality

wig) = v lle I* + v s Il +w (A2.4)

A A A, ” A
with w= 2 (Q), v~ 26£k€, and w =w! + w3||5|| = 26zkaz+28zk€"€"'
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Appendix 3

Proof of Theorem 3.

The proof of the theorem is based on the combined use of two Lyapunov
functions, one for each component of the model reference tracking
error.

For the first component we can write

é = Au(x)x+A12(x)z-1'Bz(x)§iP‘€-1zBl(x)E:Pig

AN A A
+ + - -
1, B (x)Bsz = 21E a (x)- A RS A1zz élu

s 1 8

- — - . =
- (F&-yBBPE-yBE (x)BP E+B [H (x)+K ]+

+B [H (x)%-H (x)u+d ()1} -1 B (x)B P [§+A w3

A-1A
+A12(x) [g'+A22

= AL AA
A, €]+B C (%) [Z'P(X,U) ] (A3.1)
The terms within braces are exactly the same as in the slow model
(3.8), taking apart the substitution of Q' and {\1’ with % and §. on the
basis of Assumptions 5 and 6, and recalling (4.10c), it is possible to

find constants a, i=1,3 and a, i=1,3 such that

I-v3, (x)B.P [;+A "3
(%) [¢+A A ,E1-B.C (x)[z rd, 1l

= a [¢]+a Js+A0R ¢ll+a, (3.2a)

22 21
; =T =T
&l = "Au(x)x+A12(x)z-1’Bl(x) BP&-7B (X)BPS

AAAARAA
- B (x)Bth 2 1§+a1(x) -A X-A Z- 1uﬂ

s a’ ||§]]+a [¢+472A

s 215 J+a; . (A3.2b)
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For the second component of the model tracking error we simply rewrite

equation (4.8) as

u = [F, B(x)BPI(§+A £)

22 21

1

+ B [C (x)+K ](g+ 22 -

&
+ B,[6,(x)-v, (1 +E,(x))BP ]¢

+ §2[Gl(x)§+czz(x)fz\:+cz(x)\/\x'-ezmAx£+d2(x) ]. (A3.3)

Consider the function

1
22 21

w0 2172 (AR o' (§+A £), (A3.4)

22 21

and evaluate the derivative along the solutions of the closed loop
tracking error system (A3.1l), (A3.3). One obtains

W, o) = -(+R7R o Tp AR &+ (cATR o) Pc

22 21 £ 22 21 22 21

1

/\
< [PATA MehTR elta: el lc+ATR ¢]+a?
/\ A

+ 2 L llehiR el + v lohiR el

-(— - a )||c+fi22 W€+ aleRR ellel

; Y3
+(a +—)||g+A22 1+ lel (A3.5)
Consider now the function
v(e) £ 172 €' g, (A3.6)

and evaluate the time derivative along the solutions of the closed loop
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tracking error system (A3.1), (A3.3). In view of (A3.2a), and
conditions (5.2) and (5.3), we have

We) = v el el s2lp Nlelta lelea lehTA. ela)

& v 2a e Dlel® + b el + b lellc+R el + v,

(A3.7)

We can choose as Lyapunov candidate for the closed loop tracking error
system (A3.1), (A3.3) the following

T
L(fc)A[ ¢ ]P()[ ¢ ] (A3.8)
2 - - c - ’ .
C+ﬁz:ﬁz1s C+ﬁz:£z1€
where
A (l-¢c)P 0
P(c) = ® , Osc=1, (A3.9)
4] cP

In view of (A3.5) and (A3.7) the time derivative of (A3.8) along the

solutions of the closed loop tracking error system satisfies

L) [ lel ]’ ” )[ Il ]
, S - c
lc+A72R ¢ fc+R72R ¢

22 21 22 21
. ¢l -

+ m(c) A-1A + m, (A3.10)

";+A22A215"
where
(1-c)(v.-2a_||P | -1/2(ca +(l-c)b
M(c) 2 { 1. S 2| (A3.11a)
-1/2(cai+ (1-c)b2 c(;1- az)
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A s Y2

m(c) = [(l-c)b£+c;— c(as+;—)], (A3.11b)
and

- A w'

m = v (l-c) + P (A3.11c)

v

1
Provided that a;%m§:y (which 1is guaranteed by condition (5.4)), the

upper bound pp of parameter u which guarantees the definite positivity
of matrix M(c) is given by (see Saberi-Khalil, 1984)

. - (v, -2a |2 v,
P (v1-2a1"P‘||)a2 + alb2

(A3.12)

Chosen p* - min(;,pp), for each 0<p<p. the application of the lemma
contained in Appendix 1 completes the proof of the Theorenm.
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CONTROL OF UNCERTAIN DYNAMICAL SYSTEMS :
SIMULTANEQUS STABILIZATION PROBLEMS

Bijoy K. GHOSH
Hashington University
Saint-Louis, Missouri 63130, U.S.A.

In the last decade, significant progress have been witnessed in the
design of a robust compensator for a family of multi input multi output
systems, The main objective is to construct a dynamic compensator which
simultaneously stabilizes a family of plants and satisfies various other
design restrictions. The motivation is to extend various classically well-
known compensator design methods. for a single plant to a family of plants.
Such a family of plants may occur as a result of parameter uncertainty or
parameter variation in the plants and the goal is to construct a compensator
which {s insensitive to these parametric changes.

To begin with, we consider the "simultaneous gtabilization problem"

described as follows:

Given a r tuple Gl""'cr of pxm proper transfer functions, does there
exist a compensator K(s) such that the closed loop systems Gl[I +

KGI]-I,..., Gr[I + l((}r]-1 are internally stable?

This problem arises in reliable system design where 62""' G_ represent a

r
plant Gl operating in various modes of failure and K(s) is a non-switching

stabilizing compensator. It also arises in the stability analysis and
design of a plant which can be switched into various operating modes. It
has been shown in [1] that

The integer max(m,p) 18 the critical number of plants below which the
simultaneous stabilization problem is solvable almost always i.e.

generically (in a suitable topology) by a compensator of McMillan degree 9

where 9 is the smallest integer satisfying

r

qq[mex(m,p) + l-r] = Y. n, -max(m,p) (1)
i=1
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In the above formula, n; is the McMillan degree of the plant G; for

i=1,...,r respectively. 1In fact, if min(m,p) = 1 then the formula (1) also
computes the minimum order of the generically stabilizing compensator. It
may be remarked that the minimum order compensator problem is a classically
unsolved problem and in [1] the problem is solved for the special case
min(m,p) = 1.

However, beyond saying that the simultaneous stabilization problem is
solvable for certain classes, it is of great interest to parameterize all
those cases where the problem is indeed solvable. Moreover, for ease of

computation, such a parameterization has to be explicit. This question is
parameterizing the set of r tuples of plants (Gi,...,G;) is addressed in

(2] and one of his main results is a considerable conceptual breakthrough,
since to check simultaneous stabilizability using this result one only needs
to know which path component (Cl""’ Gr) lies in; i.e. the problem is

reduced to the problem of analyzing big pieces of the space of r tuples of
systems rather than individual r-tuples. Similar results on simultaneous
stabilization and pole assignment for a parameterized family of plants by a
parameterized family of compensators is also obtained by Dr. Ghosh and is
reported in {2]. To my knowledge, use of semialgebraic geometric methods
for the purpose of parameterizing stabilizable or unstabilizable path
components has been done for the first time in [2].

Considering more than max(m,p) plants for the purpose of simultaneous
stabilization (is quite a reasonable objective in robust system design), but
unfortunately in particular in {3] it is shown that, "Pairs of
simultaneously stabilizable single input single output plants of bounded
McMillan degree may not have simultaneously stabilizing compensators of

apriori bounded McMillan degree."

It is shown by Dr. Ghosh in [3] that there exists a sequence of pairs of
simultaneously stabilizable plants of degree one for which the minimum
degree of the stabilizing compensator is arbitrarily large. A consequence
of the above proposition is that a simultaneously stabilizing compensator
cannot be constructed by solving a set of simultaneous equations or
inequalities in the coefficients of a parameterized family of compensators
of a given McMillan degree. Stated differently, if r > max(m,p), the
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classically known algebralc and semialgebraic geometric methods are
inapplicable since the compensator space is not finite dimensional and in
particular, any numerical computation of the associated compensator needs to
use a more appropriate transcendental method proposed by Dr. Ghosh in [4].
Also in [4] a new ‘partial pole placement’ problem is proposed which arises
from a more practical design requirement to place an arbitrary number of
self conjugate poles in the closed loop while restricting the remaining
poles in the region of stability. The following result is shown:

The problem of simultaneously stabilizing three single input single
output plants chosen generically is equivalent to the problem of partially
pole placing one single input single output plant by a stable minimum phase

compensator.

Use and application of a stable, minimum phase compensator is introduced in
[4) for the first time. Furthermorea folklore example

s<4.6  25-2.6  4.Bs-24.6
of a triplet of simultaneously unstabilizable plants that are stabilizable
in pairs is constructed by Dr. Ghosh [4]. These results to multi input
multi output problems are further generalized in [4#] to show that

"If r min(m,p) < m+p, the simultaneous partial pole assignment problem
may be analyzed via interpolation methods and one obtains a semialgebraic
parameterization of the partially pole assignable r-tuples of plants. If r
min{m,p) > m+p, the simultaneous partial pole assignment problem is to be
analyzed via transcendental methods introduced in [4]."

The above result, therefore, characterizes the “"degree of difficulty" and in
particular asserts the existence of certain cases (say for example m=p, rz3)
vhen interpolation methods are inapplicable in the simultaneous
stabilization problem.

We have seen so far that transcendental methods are useful when the
degree of the compensators under consideration is not apriori bounded.
Frequently in system identification and control, it is of interest to study
a family of plants for which the McMillan degree is not fixed. 1In

particular the degree may degenerate to a lower value. Thus rather than
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fixing the McMillan degree of a plant, it is useful to parameterize plants
of McMillan degree s n for some n, We ,therefore, pose the following

question --

"Parameterize the seat nn of plants of degree < n (possibly as a
semialgebraic subset of an algebraic set) such that every p in n“ has an
open neighborhood N(p) of p in nn such that N(p) is simultaneously

stabilizable by a compensator of degree < q for some q."

Note that this question poses robust stabilization as a parameterization
problem. In [5] an explicit parameterization of a, is obtained as a

subset of IRIPZM’1

particular we show that --

for the single input single output systems and in

"Assume m=p=l, then nn is a semialgebraic, open, connected and dense

subset of IRTPML w

More surprisingly we show that

", is a trivial vector bundle over a circle. In particular nn is

diffeomorphic ta S1 b IR2“."

The space a, has been parameterized for a multi input multi output

plant in (6] as a vector bundle over a Grassmanian, a well known object in

algebraic geometry. We argue that nn and not rat n (the space of

strictly proper single input single output transfer functions of a given

n
degree) or Z (the space of pxm transfer functions of degree n) is a

m,p
more natural space for system identification and control. Various
properties of this space has been reported in (8].
The geometry of nn is useful in the study of a structured family of

plants wherein the degree is apriori bounded. In practice, however, one is
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also interested in the study of a family of plants possibly with some
unmodelled dynamics, For example, under the presence of a high frequency
"parasitics” it is unreasonable to assume that the McMillan degree of a
family of plants is bounded by n. In [6] we, therefore, construct the
space @I as a direct limit of the spaces 01 C 02 C ... where Q_ is a

subspace of IR”. Of course two points in Q_ can model the same dynamical

system and one therefore considers the quotient space ﬁw where two points

in Q_ are equivalent if they correspond to the same dynamical system.
Various properties of ﬁm are being studied. In particular, we show that

in ﬁu there exists arbitrary small open neighborhood N with the

following property--

There exists a sequence 60' 61"" of plants Iin N such that the

minimum degree of the stabilizing dynamic compensator for the plants
corresponding to €0' {1.... increases arbitrarily.

This fact in particular implies that

"There exists p € IE® such that every open neighborhood N of p in
ﬁm cannot be stabilized even by an adaptive controller of arbitrary large

degree q."

Thus we obtain a major limitation of the adaptive controllers that are
currently of interest in system theory, viz. open neighborhoods of points in

ﬁm that cannot be robustly stabilizable even by an adaptive controller.

The structure of ﬁm also enables us to define a hybrid family of plants,

(i.e. a family of plants with structured and unstructured uncertainty). In
particular in [6] we characterize (for the first time in the literature)
hybrid families of plants that can be stabilized simultaneously by an
adaptive controller,
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The proposed hybrid parameterization has many advantages over the
currently existing graph parameterization due to Vidyasagar. In fact the
hybrid parameterization is graded by the degree of the dynamical systems and
each one of the graded space is diffeomorphic to an Euclidean space if ths
plant is strictly proper. The Euclidean structure is of particular
importance in system identification. Furthermore, the sequence of plants
for example

n
-]

fal®) = o T

n+2

converges to as n+* in the graph-topology. Thus in graph

i
s
parameterization, arbitrary close to a plant of a given degree there exists
plants of arbitrary large degree which is clearly a deficiency from the
point of view of robustness and obtaining an apriori bound on the complexity
of the compensators. Hybrid parameterization does not suffer from these
disadvantages and therefore appears to be a good parameterization for system
identification and adaptive control.

In [7) we study the problem of simultaneous stabilization of a family
F of plants described as follows --

A n-1 { n-1
F = (g(s): g(s) = [120 a;s’) /| Zo b;s

i + sn],
aitlnln 191]. b1£[711 61]: als ﬂi
e < Si, i=0,..., n-1, deg g(s) = n}

We prove the following rather surprising result

"A necessary and sufficient condition that every plant in F {is
simultaneously stabilizable by a feedback gain k is that eight plants in
F (suitably chosen) is simultaneously stabilizable by a feedback gain k.,"

We find the above result quite surprising. Indeed it asserts the existence
of a suitable family of uncountably many plants, stabilizability of which
can be asserted via the simultaneous stabilization problem of a finite
number of plants. This we consider is a major conceptual breakthrough.

The main idea of the preceding paragraph can be generalized to include

dynamic compensation as well. In fact one can obtain a sufficient condition



117

which can be made asymptotically necessary by increasing the computational
complexity of the algorithm. Roughly speaking one therefore concludes the
existence of a computational technique to construct a robust compensator
which can be asymptotically improved by considering increased computational
load. This in my view is a computational breakthrough and in particular
such a sequence of algorithms did not exist in the literature previously.

For the purpose of constructing a compensator with an apriori bounded
McMillan degree it is important to consider to following problem.

"Given a family F of linear dynamical systems that can be stabilized
simultaneously by a fixed non-switching compensator. Does there exist an
apriori bound on the degree of the compensator which simultaneously
stabilizes F."

In general the above problem is unsolved. However for a 1 parameter

family of plant we have a surprising result: Let xl(s)/yl(s) and
xz(s)/yz(s) be a pair of proper but not strictly proper plants. Consider a
1 parameter family F of plants described as follows
F = {g)(s): gy(s) = [Ax) + (1-2)x,]1/[Ay, + (1-Q)y,]
A € [0, 1}, deg gk(s) <=nVa).
Let a3y e.., 8 denote the zeros of XY,y - XY in the open left half of
the complex plane. Let

bJ - x2/x1(a1) if the multiplicity of aj as a common zero of Xy, X,
is =< multiplicity of a; as a common zero of Y10 ¥y

= ¥,/y,(ay) otherwise.

for i-1, ..., t. Let s; = (a;-1)/(a;+l) and z; = (Jsi-l)/(Jsi-l) where

the branch cut for the square root is taken to be the non-positive real
axis. Furthermore let k be the largest real number such that

[l - kzzin]/[l - sisj]i' 4=1

is non-negative definite. The main result is now described as follows
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"The following three statements are equivalent.

1. F 1is simultaneously stabilizable by some dynamic compensator.

2. F 1is simultaneously stabilizable by some dynamic compensator of
degree < 3n-2.

3. k>1

We find that the above result is quite surprising. In fact, where as
the conjecture - "pairs of simultaneoulsy stabilizsble plants of bounded
McMillan degree have simultaneously stabilizing compensators of bounded
McMillan degree” - is false, the conjecture that "simultaneously
stabilizable linear l-parameter family of plants of bounded McMillan degree
have simultaneously stabilizing compensators of bounded McMillan degree" is
indeed true. Of course it is unknown if similar results would continue to
be true for multiparameter family of plants. It appears however, in view of
the above result, that the problem of stabilizing a discrete r-tuple of
plants (in particular a pair of plants) simultaneously is a much harder
problem to solve compared to simultaneously stabilizing a continuous family
of plants. This fact indeed appears to be quite contrary to our original
expectation - in fact the problem of simultaneous stabilization of a pair of
plants was originally used with an idea of simplifying the robust
stabilization problem of a family of plants,

In order to arbitrary tune the closed loop frequencies of a plant, it
is necessary to consider the simultaneous pole assignment problem. 1In [6])
we analyze the pole placement problem as an intersection problem and apply
Schubert enumerative calculus to compute (under appropriate cases) the
number of complex dynamic compensators that would place the closed loop
poles of a set of r-plants in a given set of self-conjugate complex numbers.
We compactify the space of compensators and define a set of points known as
'base locus’ and a set of points known as ’critical points.’ Roughly
speaking, we assert in [6]) that a compensator has to avoid the base locus
and the critical points for otherwise the closed loop response of the
control system would either be sensitive or would fail to be robust with
respect to changes in the parameters. An explicit parameterization of these
points also open up some new restrictions in the compensator design problem

previously unknown in system theory.
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To summarize, we maintain that the use of semialgebraic geometric,

algebraic geometric and transcendental methods are three distinct

foundational techniques that have been applied in robust system design.

Extensions of these methods to parameterization, design, identification

problems, and adaptive control would be useful and are currently being

explored. These techniques are also being extended to nonlinear and time

varying systems.
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ABSTRACT

Modelling of systems is generally done by frequency response methods or state
variable methods. It is our object to show how frequency domain robustness results
can be extrapolated to their state space counterpart. Using properties of input-
output relations of systems and different compatible norms we will show how a
corresponding frequency response ;obustness result can be applied. The method can be
used to solve a certain class of non linear equations. It can apply to the control
of non linear multivariable systems in order to better stability, sensitivity as well
as decentralized control results. It can also apply to assess the state feedback, the

output feedback and the observer with regard to the robustnees problem.
1. INTRODUCTION

Multivariable control theory evolved in the sixties, using the state variable
approach. This approach together with growing computer technology gave rise to
tremendous research. Interesting results on system stability, controlability,
observability, reachability and detectability were develéped. This was a sharp
contrast to the single input-single output frequency response approach involving

polynomial approaches, Nyquist criterium, and root locus methods.

However, many of the answers given by state space methods lack the suppleness of
multivariable methods as they apply to well defined models with no modelling
uncertainty. Adaptive control is a partial response for the modelling uncertainty
problem as far as parametric uncertainty is concerned. Clearly, in any state space
representation (A, B, C, D), there is no way to predict the behaviour of eigenvalues
whenever the matrix representation is modified to (A+2A,B,C,D). On the other hand,
frequency response methods apply better to the uncertainty problem: in the case of a
single input single output Nyquist diagram for instance, a Nyquist plot could be
replaced by some Nyquist band representing the modelling uncertainty at each

frequency.
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Multivariable frequency response methods such as the inverse Nyquist area (1], the
multivariable Nyquist criterium [2], and the multivariable root 1locus [3] are
concerned mainly with system stability. However, the input output approach to
systems [4,5,6,7,8] which apply to any normed algebraic representation of systems fit
particularily to the frequency response setting. Such an approach allows us to
handle the problem of modelling uncertainty. It is our purpose to show how multiva-
riable frequency response uncertainty methods can be extrapolated to the

multivariable state space uncertain models case.
2. Mathematical notations

We shall consider frequency responses defined in Hardy spaces, namely space H3,,
HD, and HE . Hﬂe is the space of n x n matrices of frequency responses in Hie, i.e.
frequency responses which are holomorphic and bounded in some right half plane
Re(s)¥a, > 0, o, > 0. HE is the space of n X n matrices of elements in HI, i.e.
frequency responses which are holomorphic and bounded in the open right half plane
Re(s) > 0. HE is the space of n- tuple vectors whose elements u; = 1,2,..n are in
K&, i.e. frequency responses which are holomorphic and bounded in Re(s} > O.

Frequency responses in Hﬂ will be normed as follows:
ol =2, Il w,li3
lle, = I:| ui(jw)lzdw i=1,2,...n
We underline the fact that the Hy norm is equivalent to the L; norm, i.e.

o 2
oglly = 71 v (0]

Functions T in H" are normed as follows

fl Tufl2
Il = sup
u#0 " u "
2

I, = sgp 5 xcau)
where o(.) represents the maximal singular value of the matrix T(jw).

We introduce the matrix G{T} whose elements are "Tij"N and a new norm

g(T) = o (G(T)}.

It has been shown [9] that such a norm is compatible with the H, norm, i.e.

Itll, < & () < n |7,
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We shall extend this new norm to any matrix A in which an induced L; norm is

introduced for each of its elements aj4s i.e.

g(a) = 5 {G(4))

3. Multivariable frequency response uncertainties

Given an n x n matrix of frequency responses P(s) in H,, we shall considar the unity
feedback system with a series compensator C(s) in HJ (figure 1). We shall assume
that the matrix uncertainty AP(s) is in HD and that the feedback system is altered by
the following additive H; perturbations: input plant perturbation w(s), external

output perturbation d(s), and sensor noise perturbation w(s).

FIGURE 1

For simplicity, we omit the (s) and deduce:

v=Ce+w

Pv +d (1)

<
]

e=u-~-y-n

y (Pc) (I + Pe)"! (1 +Pc)!  -pc(1 + Pc)"!  pc(r + pC)-1 u
El= | -(1 + pc)~! “(1+pc)’! (1 +pC)! -p(I + pC)"1 d| @)
v -c(1 + PC)~1 c(r+pc)! -c(x+prc)! 1-cP(T+pc)l| |w

Transmissions from e and v to u, n and w are related to the "internal stability"
of the system, while transmission from y to d refer to the output disturbance
effects. Whenever P is replaced by P + AP where AP represents the modelling
uncertainty, quantitative measures of feedback quality can be performed, with

respect to external disturbances and plant uncertainty.
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We shall focus our attention solely on the effect of feedback on plant
uncertainty AP.

3.1 Stability

Stability concerns itself with the holomorphicity and the boundedness of the

transmissions (2).

Qur first concern is to ensure the stability of these transmissions whenever P is
replaced by P' = P + AP, Small gain and positivity conditions permit us to
derive stability criteria. Defining

e= (I + Pc)"lu = Eu

(3)
y = B¢ (I + Pc)"lu = Tu
and
e'= (I + P'C) lu = E'u
(4)
y = P'C (I + p'c) 1y = T'u
it can be shown that
E' = E - EAPCE [T + aPCE]™! (5)

Whenever the original nominal transmissions (3) are stable, E' will be stable if
[|aBCElj<l. Moreover, T' will be automatically stable as E' + T' = I. Similarily,
whenever (I + PC) or (I + P'C) is n positive definite, it follows that the
transmissions E' and T' are stable. n positivity refers to positivity within a

finite margin n.

3.2 Sensitivity

It is not sufficient to require that the transmissions E or E' be stable, i.e.
holomorphic and bounded in the right half plane. Indeed E represents the trans-
mission between output and output additive external disturbances d and it is

desirable to reduce the effect of such disturbances.

Norms restricted on a given bandwidth lwl<w1, such as maximal singular values
over a given bandwidth [f(.} can be introduced. We therefore require
lEll,; < € and J|E']},3 < €' where £, &' are positive constants which are less than

unity.
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Assuming the nominal plant satisfies [[E||,; <e, designing the compensator C such
that [|aPCE[|,; < a where a s {(e-e')/e} < 1 ensures that [[B'||,; < {e/(1-a)} = €'.

Such a design has been proven to be feasible [10,11].

3.3 Decentralized control

The problem of decentralized control is to attain some diagonal closed loop
transmission, i.e. each input of the feedback controls one ouptut of the feedback

system regardless of the cross-coupling of the plant.

A model of this situation involves a multivariable plant P with n input-output
pairs (vq, y4, i =1, 2 ...n) and a controller C which has access to both inputs

and outputs of P. (Fig. 1) In others words, C is a n x n matrix compensator.
Assumming (I + PC) has an inverse, our aim is to diagonalize- the closed loop

transmission T = PC (I + PC)~L.
Using the relation E + T = I, we deduce

Iflw; €1+ [Ellwy <1 + €
I flwy s 1+ JB'Jlwy <1 + €

i.e. sensitivity reduction is linked to decentralized control over a frequency

band of interest.

4. Multivariable state space uncertainty

Given the state space system representation

#=Ax+Bu
y=Cx+Du

We are interested in studying the system performance whenever systems dynamics
change to A" = A + A A, i.e.

¥’=A' x' +Bu

y'=Cx'+Du

Any change in the matrix A involves changes in the eigenvalues defined by
(sI-A) = O for the nominal system and (sI - A') = 0 for the perturbed system.

However, we cannot predict in which "direction" these eigenvalues are changing.
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One way of checking the stability of tha perturbed system ig to study the class
of disturbances AA = A' - A which preserve the stability of the matrix (sI - A').
Assuming for example, that (sI-A) is invertible in H} , the condition
“AA(sI-A)'I“ < 1 would ensure the stability of the perturbed system.

4.1 Correspondance between multivariable frequency responses and state space
models

Given state space models (A, B, C, D) and (A', B, C, D), it is possible to assign
to each model multivariable frequency responses T(s) and T'(s) such that

T™(s) =C (sI -A)1B+D (5)
T'(s) =C (sI -A') B+ D

These relations apply also to matrix entries, i.e.

i,j= 1, 2,..n

£, 4(s)={G (s - o ls+ D} |

(6)

ti j(s) = {G(sI - A') B + D} i, = 1,2,..n

i,j
Assuming the entries of the matrix {aij) change to {a'ij} = {aij + Gaij}' it is
possible to relate changes AA to changes in the individual entries using the norm
g{aA).

Assuming (sI - A) and (sI - A - AA) are invertible, and that gl{(sI - ALl a
it can be shown that

glc(sT - AY' B) p(an) glc(st - aY! ] N
1 - gl(sI - A1) gan)

glT'(s) - T(s)] s

The upper bound for g [T'(s) - T(s)] as a function of g (8A) is represented in
figure 2. If such a bound can be related to one of the many robustness results
developed in the frequency response framework [11,13,15,16, 17,18}, we may then
consider their use in the state space framework. Any change in the matrix A will
be normed by g (AA) and it will be possible to verify that the corresponding
frequency response bound g(T'(s) - T(s)] respects some frequency response

robustness performance result.

Similarily, any frequency response robustness results can be found to hold on
some state space distributed model A + AA. The bound on the norm of 4A can be
deduced graphically and be related to variations of the norms of the entries of

the matrix AA.
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sfr - 1.0]

g(8A)

4.2 State Feedback, output feedback and observers

Assuming a state space model (A, B, C, D) in which the pair (A, B) is
controllable, it has been shown [21] that a stabilizing state feedback involving
a matrix compensation K leads to a robustness bound assymptotic to the critical
value g(aA) = 1/{g(sI - A + BK)'I}. Similarily, assuming the pair (A, B)
controllable and the pair (A, C) is observable, a stabilizing output feedback
controller involving a matrix conpensation H leads to a robustness bound
assymptotic to the critical value g(aA) = 1/[g(sI - BHC - A)713.  These two
robustness bounds show that high gain state feedback or high gain output feedback

reduce the output variations due to plant perturbation.

Moreover, it can be shown that in the case of a system with observer gain G

and control gain K, conresponing to a stable system model

% A+BK - BK x
0 A+GC e

e

where e is the error signal existing between the real state and the estimated
state, uncertainty in the plant dynamics AA leads to a robustness bound which is
an increasing functions of a (AA) and which is also proportionnal to the initial
value of the error signal, i.e. the error in the estimation of the initial

state. Such a conclusion can be drawn after rewriting (8) as

x = -(sI -~ A-8A - BK)~1 Bke
9)
e = (sI - A-8A -GC)"1 e,
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The robustness uncertainty due to the choice of initial conditions can be
optimized by choosing the initial value of the estimated state to be C+y° where
Yo is the initial measurement value and ct is the pseudo inverse of C[22].

5. Conclusion

The correspondances shown in section 4 can be extrapolated to multivariable
results involving robustness, sensitivity, decentralized control and applied to
perturbed state space models. These models are derived from differential
equations with varying coefficients. The effect of such variations (which can be
non linear provided that they can be adequatly normed, such as in the case of
conic/sector non linearities [19,20,9]) on the stability of the solutions may be

deduced from the bounds of the frequency response counterparts.
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Introduction

We are concerned here with the Hamilton-Jacobi equation

av

-8 v mt,z, -2 =0, viL,)=0 Y

arising in optimal control.

It is well known that in general it does not admit classical (C") solutions, even when the
data are smooth. This led to several weaker notions of solutions (see for instance [5]-[9], [12], [17)
and bibliographies contained therein). We do not have the ambition here to provide the reader
with a complete overview of existing definitions of solutions, but we shall compare few of them
having their origins in Nonsmooth Analysis.

The importance of HIB (Hamilton-Jacobi-Bellman) equation for the investigation of proper-
ties of dynamical systems and, in particular, of control systems was recognized a long time ago.

One may see that the value function of an optimal contro! problem verifies {1) whenever it is
smooth. This allows in some (very restrictive) cases to obtain a short proof of Pontriagin’s
necessary conditions for optimality, to prove some sufficient conditions for optimality and to con-
struct optimal feedbacks [11}.

Let us emphasize that the value function arising in control theory is nondecreasing along all
trajectories of the system and is constant along optimal trajectories. This leads to a verification
technique in optimal control (see {19] for a complete discussion and references). However, “com-
puting” the value function from its definition is a very difficult task.

On the other hand if we are able to find a solution of (1) having the cornerstone properties
of the value function, then we may hope to use it for the same purposes.

One can seek for instance to define the solution of HJB equation in such a way that the
value function is the unique solution to (1). The notion of viscosity solution introduced in (8], [9],
(17] (see also [10] for bibliographical comments) fulfills that objective, but only partially: the
uniqueness results are proved up to now only for continuous solutions on open sets. Although a
large class of free end point optimal control problems have a locally Lipschitz value function, it is
well known that for the target problem and, more generally, for problems with state constraints,
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the value function i8 not continuous and very strong controllability conditions are needed to
prove its continuity. Controllability conditions exclude however from consideration a large

number of control problems,

A different approach was developed in [5]-[7], where a solution of HIB equation associated to
the target problem:

minimize g(z(1))
2=f(t,z,ut)), u(t) € Uis measur.able (2)

2(0) = 25, z(1) e K

was defined in such a way that it is locally Lipschitz and nondecreasing along trajectories of the
control system (2). Naturally this led to apply the verification technique to functions which may
be different from the value function. Such a generalized solution is not uniquely defined, but it
allows to consider a broader class of control problems, to adapt the verification technique to
problems with discontinuous value function and to get some necessary and sufficient conditions
for optimality ([6], [7]).

Another important property of smooth value function is the possibility to construct optimal
feedback laws. When the value function is the unique locally Lipschitz viscosity solution of (1) it
allows as well to associate feedback laws to the solution of HJB equation. This feature fails
whenever the value function is discontinuous. Generalized solutions of (1} defined in [6] enjoy
more regularity than the value function does and for the very same reason are only far relatives
of this last one:

It is impossible to associate the optimal feedback law with an arbitrary generalized solution
of (1). A counter example was constructed in [4].

One would wonder which way to choose. Clearly, we cannot expect from the solution of
HJB equation to be unique, locally Lipschitz and at the same time to be equal to the value func-
tion.

In this paper we show that a necessary and sufficient condition for a function
V:[0,1] x R® — RU{ % oo} to be nondecreasing along all trajectories of the control system
(2) is:

Jup Dy (=V) (¢, 2)(Lf(, zp)) <O 6

where Dy (~ V) (t, z) is the contingent epiderivative of the function — V at (¢ , z) (see Section 2
for precise definitions).

Such a necessary and sufficient condition leads to a verification technique. Then we investi-
gate necessary and sufficient conditions for a function V:[0,1] x R® — R[J {* oo} to have
the following property:
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for all (t,£) €[0,1] x R" with V(t, £) # £ oo there exists a solution £: [t , 1] — R" of the

control system

{z' =f(s,z,u(s)), u(s) € Uis measur-able
z(t) =¢

such that the function s — V(s , Z(s)) is nonincreasing.

In this way we obtain the second contingent inequality

Jnf Dy v, z)(L,f(t, zu)) <0 (4)

We also observe that a function V verifying (3), (4) and such that V(1 ,:) = g{-) is a viscosity
solution to (1).

In this way solutions of contingent inequalities (3), (4) form a subset of viscosity solutions
containing the value function. Let us emphasize that the value function of the target problem is
equal to + oo at every point (¢,zp) for which there is no solution z of (2) satisfying
z(tg) = zg , z(1) € K. This creates an additional difficulty to define the solution of (1) properly.

In the example given in Section 5 we show why it is rather hopeless to expect uniqueness in
the discontinuous case. In a nutshell, the function V verifying (8), ({) allows to narrow the class of
admussible controls and to get some information about optimal feedback laws and above all, by
accepting as solutions extended funciions, can be used in control problems with state constrasnts.

The outline of the paper is as follows. In Sections 1, 2 we derive contingent inequalities (3)
and {4). Section 3 is devoted to the optimal feedback laws, In Section 4 we prove that solutions
of (3), (4) are viscosity solutions of (1) and discuss their relationship. Section 5 compares viscos-
ity solution of HJB equation and solutions in the sense of Clarke. We do not provide here com-
plete proof of many results. They may be found in [12], [13].

1. Monotone behaviour of V.
We consider a dynamical system described by a differential inclusion.

Let F be a set-valued map from [0, 1] X R" to R™. We associate with it the differential

inclusion
z € F(t, 1) (1.1)

A function z€ WY (¢, T), T2t (the Sobolev space) is called a trajectory of the
differential inclusion (1.1) if for almost all s € (¢, T, z’(s) € F(s , z(s)). The set of all trajec-
tories of (1.1) defined on the time interval [t, T| and starting at £, (z(t) = £) is denoted by
Se, 1(€)-

Let B denote the closed unit ball in R". Throughout the whole paper we assume that for
all(t,z)e0,1 x R"
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(H,) F(t, z) is a nonempty compact set,

that for all z € R"

(H,;) F(-, z) is continuous on [0, 1]

and

(H;) F is locally Lipschitzian in z, in the sense that for every (t;, zp) € [0, 1] x R™ there
exists a neighborhood N in [0, 1] x ™ and a constant L such that for all (¢ ,z),(t,y) €N

F(t,z)CF(t,y)+Llz—y | B (1.2)

Differential inclusion (1.1) is a convenient expression of laws governing a dynamical system.
Many systems arising in control theory may be reduced to (1.1). For instance consider the closed

loop control system
z'(t) = f(t, z(t) , u(t)) , t € [0, 1] (1.3)
u(t) € U(z(t)) (1.4)
where f:[0,1] x R” x R™ — R" is a continuous function and U : R™ =3 R™ is a continu-
ous control map with nonempty compact images. Admissible controls are measurable functions
on [0, 1] satisfying (1.4).
Forall (t,z) e R x R" set

F(t,2)={f{t,z,u):ue U)} (1.5)

Clearly every trajectory of (1.3), (1.4) is a trajectory of the differential inclusion (1.1) with F
defined as in (1.5). Conversely, with every trajectory z € S|y y; of differential inclusion (1.1) we
can associate a measurable selection u(t)€ U(z(t)) such that (1.3) holds true almost everywhere
in [0,1]. This follows from Lusin’s theorem exactly by the same arguments as in (1, p. 91| (see
also [6, pp. 111-112]).

The implicit control system

f(t: (t)$ ’(t):"(t))=0s tE[O,l]
[u(t); U ’ (1.6)

where f:[0,1] x R” x R” x R™ — RF is continuous and U is a compact metric space may
be also reduced to (1.1) by setting
Fit,z)={v:0€f(t,z,v, U} (L.7)

In {14] it was shown that solutions of (1.6) and (1.7) do coincide. For further discussion and
applications of differential inclusions in control theory see bibliographies contained in {12], [14].

For all teR, T>t and (ER™ set

R(T 1) €= {=(T) : 2 € Sy, 71(6)) (1.8)
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This is the so-called reachable set of (1.1) from (t , £) at time T.

When F is sufficiently regular the set co F(t, £) is the infinitesimal generator of the semi-
group R(- , t) &

Theorem 1.1. [12]. Assume that the assumptions (H) - (Hj) are verified. Then for every
(to. &) € (0,1 x R™and all (¢, €) near (¢, &) and small & > 0

R(t+h,t)E=¢+ hcoF(ty, &) + o(t, €, h) (1.9)
where
li h=0
L flo(t,&,h) ]/
A — 0+

Remark. Equality (1.9) means that
R(t+h,t)6CE+hcoF(ty, &)+ || ot,€,h) || Band
E+hCOF(tO$60)CR(t+h1t)£+ " °(‘af,h) “ B

Definition 1.2 (contingent epiderivative). Let X be a subset of R™, 0 : X — R | {£ o0} be a
given function and z; € X be such that p(zg) # % co. The contingent epiderivative of ¢ at z is
the function Dy p(zp) : R™ — R | {& 00} defined by: for all u € R™

Dy p(zo) u = oy 1920 ) = plzg) |/ b

limin,
(u’ ’::,)+_Au" é‘x

The contingent epiderivative Dy ¢ (zq) u is defined only for those u € R™ for which there
exists at least one sequence (u,, , h,) — (u , 0+) satisfying z, + h,u, € X.

The epigraph of DT ©(zg) is equal to the contingent cone to the epigraph of ¢ at
(g » ©(zp)). If for all u € R™, DT ©(zo)u > — oo then D, ©(z) is positively homogeneous and
lower semicontinuous (see [2, Chapter 7|).
Theorem 1.3. Let V:[0,1] x R" — R |J {% oo} be a given function and assume that for
every trajectory z € Whi(t , T), T > t of (1.1) the function [t , T| 3 s — V(s , z(s)) is nonde-
creasing. Thenforallt € [0, 1], z € R" satisfying V(t, z) # £ oo

e SR D=V D0, <0 (1.10)

Proof. Fixte [0,1],2z¢€ R" with V(t,z) #+ co and u € coF(t, z). By Theorem 1.1 there
exist uy € coF(t , z) such that A limo u, = u and z + hu, € R(t + h, t)z. By the assumption
— 0+

onV, V(t+ h,z + hy,) > V(t, z). Hence

V(t,z) - V(¢ + h,z+ hyy) <o

Dy{(=V)(e . )1, u) £ Jim int .
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Since u € coF(t , z) is arbitrary we end the proof. O

To prove that {1.10) is as well a sufficient condition for monotonicity of V along trajectories

of (1.1) it is necessary to require some regularity of ¥ and F.

Let Dom V denote the domain of V, i.e. the set
Dom V:={(t,z)e[0,1) x R®: ¥(t,z) #+ o0} .

For aset L C R™ and z € L we denote by Ty(z) the contingent cone to L at z, i.e.
L

T = R™ : liminf M___o
L(z)={ve piminf A }

The following result is a slight generalization of [12, Theorem 2.1].

Theorem 1.4 Let L C [0,1] x R™ be a closed set and V: L — R | J{z oo} be an upper sem-

icontinuous function such that

V(t,z)€Dom V,t <iwehave(l,F(t,z))C Ty(t,z) &
weFl, ) Di(=W)t, )1, u) <0 (1.11)

Assume that F is locally Lipschitz in both variables. Then for every trajectory z € Slf,ll
satisfying graph z C Dom V, the function s — V(s , z(s)) is nondecreasing on [t , 1].

Proof. Consider the closed set K = epi(- V). By |2, p.418], epi Dy(- V)(s , z) is equal to the
contingent cone Ty(s,z,— V(s,z)), and, by (1.11), for all s€[0,1], (s,z) € Dom V,
¢=2-V(s,2)

(1,F(s,2),0)C Tg(s,2,— V(s,2)) C Tg(s,2,9q) (1.12)

Fix a trajectory z € 5| y),t €0, 1] such that (s, z(s)) € Dom V and consider the function
g:(t,1] — R defined by

g(s) = distg(s , z(s}) , —V{t, z(t)})
Observe that g(t) = 0.

Step 1. We claim that g =0 on [t,1]. Indeed assume for a while that for some
Te(t,1],g(T)>0. Foralls €[t,1],let n(s) € K be such that

g(s) = Il (s, 2(s) , —V(t,=(t))) - =(a) |l (1.13)

By continuity of g there exist ¢t < t; < t; < T such that g(¢5) =0, g > 0 on J¢;, ;] and for all
5€]¢ty,t)

n(s) =(§,7,q))forsomesec[0,1,||7—z(s) || <1,9>—-V(5,9). (1.14)

To end the proof of Step 1 we verify that g = 0 on [£,,t,]. Indeed g being a Lipschitzian function,

by Gronwall's inequality, it is enough to show that for a constant L>0
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g(s) < Lg(s) @ e.infty,t;) {1.15)

Let L be the Lipschitz constant of F on the set {(s,z(s) + B):s € [0,1]}. By the
Rademacher theorem g is differentiable almost everywhere. Let s € [ty , t,] be a point where the
derivatives ¢g°(s) and z°(s) € F(z (s)) do exist. Since z(s + h) = z(s8) + hz’ (s) + o(h), applying
the inequality of [1, p.202] we obtain that g°(s) < dist ((1, z°(s) ,0) , Tg(n(s))). Thus by
(1.14), (1.12) for some € [0, 1] , 7 €z (s) + B

g'(s) < dist ((1,2°(s) ,0), (1, F(F,9),0) < Ll #— s 12+ || 2(s) — 5 12)/2 < Lg(s)

and (1.15) follows. O

When the function V considered in Theorem 1.4 is locally Lipschitz then the assumption
(1.11) may be relaxed.

Theorem 1.5 Let L C [0,1] X R™and V : L — R be a locally Lipschitz function satisfying
Vue€ F(t,z)with (1,u) € Ty(t,z),D(-V)(t,2)(1,u) <0

Then for every trajectory z : [t , 1] — L of (1.1), the function s — V(s , z(s)) is nondecreasing

on|t,1).

Proof Fix z € S 1} with graph z C L. The function s — p(s} : = = V{s, z(s}} is absolutely

continuous. Let s € | £, 1| be such that p’(s) and z’(s) € F(s , z(s)) do exist and h; — O+ be
such that

D SN0 ) = i LS )+ Vi o)

Then ¢’(s) < 0 and, consequently,  is nonincreasing.

We study next the target problem of optimal control: Let z, € R™, the subset X ¢ R" and
the function g : R®™ — R be given.

Consider the problem:

minimize {g(z(1)) 1 z € Sio, 1){z0) » (1) € K} (1.16)

The set K is the target of the problem (1.16).

Theorem 1.6 Let LC |0, x R®, V:L — Ry {t oo}, F:[0,1] x R® — R" satisfy all
the assumptions of Theorem 1.4 or 1.5 and the boundary condition

g(z) whenz € K

V(,z)= + 0o otherwise

(1.17)
Further assume that for every z € Slo, 1 with z(1) € K we have graph z C DomV. Ifz € S[o 1
is such that £(0) = zp and V(¢ , Z(t)) = const # =+ oo, then £ is an optimal solution of the prob-
lem (1.16).



138

Proof. Observe that (1) € K. By Theorem 1.4 or 1.5 for every trajectory z € Sjg | 1)(zo) satisfy-
ing z(1) e K ¢

V(0, ) < V(1,2(1)) = g(=(1)) .
Since
V(0, z0) = V(0, £(0)) = V(1, 2(1)) = ¢(z(1)) < g(z(1))

the result follows. O

Remark The dynamical programming approach associates with the target problem its value

function
V(t, €& =inf {g(z(1)):z € Sie, g {¢),z(1)e K}

where V(t, £) = + co when there is no z € Sy ) (£) verifying z(1) € K. Clearly V is nonde-

creasing along trajectories of (1.1), hence it verifies the inequality (1.10).

2. Existence of “constant” trajectories.

Let V:[0,1] x R" — R | {+ oo} be a given function. In this section we investigate
sufficient conditions for: V(t,§) € Dom V there exists a trajectory z € Sy, yj(£) verifying
graph z € Dom V and such that the function s — V(s , z(s)) is nonincreasing on [¢ , 1]. This
condition together with the results of Section 1 will infer that V(s , z(s)) = const along at least
one trajectory of (1.1) defined on [t , 1] with z(t) = £.

Theorem 2.1 Assume that for some (t,€) € DomV,7>0, there exists a trajectory
z€ WHl(t,t + 1) of (1.1) with z(t) = £ and such that the function s — V(s , z(s)) is nonin-

creasing. Then
3 u € coF(t, €) such that Dy V(t, €)(1,u) <0 (2.1)
Proof. By Theorem 1.1 for all small s > 0

z(t + 8) € €+ 5 coF(t, &) + o(s)

z(t+s;)—
where lim _2&-2)_ =0. Let 5; — 0+, u € coF(t, z} be such that lim —( )¢ =u

s — 04 t — 00 S.

Then

V(t+h,£+}’:u‘)— V(£ < fim inf Vit +5;,z(t +5) - V(t,§) <0

lim inf
- i — 0o S

h—0+,u —_u

This ends the proof. ©

To get the statement opposite to Theorem 2.1, we have to require more regularity of V.
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From now until the end of the section we assume that for some a >0 and all
telo,1),ze R"

sup { {lull : w € F(t, 2)} < afllz] +1) (2:2)

and that F has convex images.

Theorem £.2. Let P:[0,1] = R" be a set valued map with nonempty images and closed graph
and let V : graph P — R be a continuous function satisfying the inequality:

forallt € [0, 1], z € P(¢) there exists u € F(¢ , z) such that D, V(t,z){1,u) <0O. (2.3)

Then for every (t,¢) cgraph P we can find z€ Sit, 1)(€) such that the function
8§ — V(s , z(s)) is nonincreasing on [t , 1).

Proof.

Step 1. Fix (t , €) € graph P with t <1,z > V(t, ) and let h > 0 be such that t + h < 1.
Set K =epi V,

Fy(s,z)={1} x F(t + s, z) x {0}

Fi(s,z)fors <h
Fss2) =\g(ryh , z) U {0}) for s = b
Then F is upper semicontinuous on {0, h] x R™
Consider the viability problem
v E P(s , y) , y(s) €eK (2‘4)
!/(0) = (t » €, 20)
Fix 0<s<h,(t+s,z,2) €K and let u€ F(¢ + s, z) be such D; V(t +s,2)(1,u) <0.
Then (L,u, Dy V(t+s,2)(1,u)) € Tg(t +5,2,2) and we proved that
Fla,2) \ Tilt +3,2,2) #6.
For s = h we have 0 € P(s , z) for all z. Thus P verifies the viability condition on K. By the

Haddad viability theorem ({1]) there exists 0 < T < h and a trajectory y: {0, T [ — R" of the
differential inclusion

y‘EF(s,y),y(O)=(t,E,zo)

satisfying y([0, T{) C K. Since y’(-) is essentially bounded (thanks to {2.2), definition of F and
the Gronwall lemma), y may be extended on the whole interval [0, T].

Using that K is closed we obtain that y(|0, T]) C K. Since (t, £, zy) € K is arbitrary,
using the assumption (2.2) we prove that y may be extended on the whole time interval [0, A].
Let w(s) € R",yp(s) € R be such that y(s) = (¢t + s,w(s), yo(s)). By definition of
F,yo(s) =V (¢, €). Setting z(¢ + s) = w(s) we obtain that z € Si¢, ¢+ »)(€) and



140
V(t+h,2(t +h) < V(E, §) = yolh)

Step £ Fix (t,f)€ P, t<1,t=¢4<..< <t 1<..<{ =1 Set z(ty) = £ By Step 1
there exists z, € S, | tea) (%i(t;)) such that for alli > 0
V(tigr s ziltin)) < V(5 5(8))

Hence there exists z € S| ;)({) such that Vi=0,...,k -1, Vit s z(t40)) < V(4 2(2,)-
Step 8. Let {¢;}; > o be a dense subset of [t,1]. Fix j > 0. By Step 2 there exists 7; € S“ , 1](E)
such thatfor ally ,r € {0,..., 5}

<t = V(t,, zj(tr)) < Vg, zj(ti))

Since F has convex images and satisfies the growth condition (2.2), the sequence {z,} has a
subsequence converging uniformly to some z € S“ , 1](f). Then forall¢,r >0

tu' < tr = V(tr 1 z(tr)) < V(ti ) Z(t'-))

Fix t<r<s<1andlet {t",'} , {t,-'} be subsequences converging to 7 and s respectively. Then

for all large j and r
VL, , 2(8)) < VI, #(8)

Using continuity of V and taking the limit in the above inequality we get
V(r, z(r)) < V(t, 2(¢t)). Hence V is nonincreasing along z. O

Theorems 1.4 and 2.2 yield

Corollary 2.8 Let V and P be as in Theorem 2.2. Further assume that for every
(t,z) € graph P, t < 1 wehave (1, F(t, z)) C Ty, p(t , ) and

o3 3 Di(-V)(t,2z)(1,u) <0

If F is locally Lipschitz in both variables then for every (t, ¢) € graph P there exists
z€ 8, 1](5) such that V(s , z(s)) = const on [¢, 1].
From Theorems 2.2 and 1.5 we also deduce
Corollary 2.4 Let V and P be as in Theorem 2.2 and assume that V is locally Lipschitz on graph
"P and for all
(t,z) €graph P ,Vue F(t,z)with(1,u) € Tyunp (¢, 7)),
DT(‘ V)(t ’ I)(l ’ “) <0

Then for every (t,&) €Egraph P there  exists z€ Sie, l](E) such  that
V(s , z(s)) = const on [t , 1.
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Theorem 2.5 Let 1 C R be an open set and V:[0,1] x 2 — R be a continuous function
such thatforallt€[0,1],z€430

Jim V(t,z) =+ o0

5 —nZz
Further assume that for every t € [0, 1{, z€ 0

Ju€ F(t, 7) such that — M(|| z|| + 1) < D, V(t,z)(1,u) <0

where M does not depend on (t,z). Then for every (t,€) €]0,1] X 2 there exists
z € Sy, 1/(€) such that the function s — V(s z(s)) is nonincreasing on [t , 1].
The above result and Theorem 1.4 imply

Corollary 2.6. Under all assumptions of Theorem 2.5 assume that F is locally Lipschitz in both
variables and for every t € [0,1[ ,z € 01
Dy(~V)(t,z)(1,u) <O

W 1=V, 2)(1,u) <
Then for every (¢,£)€(0,1)x Ml there  exists z€ Se, 1](5) such  that
V(s , z(s)) = const on [t , 1],
Proof of Theorem 2.5.Set K = graph V,Fy(s,z) = {1} x F(t + s, z) x[M(}} z}} + 1) 0], define
F in the same way as before. Then K is closed. Fix (t,€ €[0,1] x N. By the same argu-
ments we obtain the existence of a trajectory y : [0, T} — R" of (2.4) satisfying y([0, T]) C K.
Let z(s) , yp(s) be such that y(s) = (t + s, 2(s) , yo(s)).
Then yo(T) # + oo and thus 2(T) € 0. Using the same arguments as above we prove the
existence of a trajectory T: [t, 1] — R™ of (1.1} such that s — V(s , Z(s)) is a nonincreasing

function.

3. Optimal Feedback

Observe that if V and z are as in Corollary 2.3 (or 2.4, or 2.6) then for all s € |t , 1] and all
small >0, V(s +h,z(s + h)) = V(s,z2(s)}. Thus D; V(s, 2(s)) (1,2°(s)} <O whenever
the derivative 2°(s) does exist. For all (s ,zj € R x R" sct

G(s,z)={u€F(s,z): Dy V(s,z)(1,u) <0} (3.1)

and consider the differential inclusion
z' € G(s,z) (3.2)
Under all assumptions of Corollary 2.3 (or 2.4, or 2.6) for every (¢, £) € [0, 1] X R" there exists
a solution z of (3.2) with z(t} = £ and such that V(s, z(s)) = const on [t , 1. A natural ques-

tion arises if for every trajectory z€ WY'(t,1) of (3.2) the function
s — V(s,z(s)) = conston |t ,1].
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Definition 8.1. The set-valued map G :{0,1] x R™ — R" is called an optimal feedback low
associated to V if

(a) V(t, &) € Dom V there exists a solution z of (3.2) defined on |t , 1] such that z{t} = ¢
(b) For every solution z € Wh1(t , 1) of (3.2), the function s — V(s , z(s)) = const on ¢ , 1].
Theorem 8.2. Let P:[0,1] — R™ be a set-valued map with nonempty images and closed
graph and V : graph P — R be a locally Lipschitz function satisfying (2.3) and such that
¥(t, z)€ graph P,V u € F(t, z) with (1, 4) € Tprapn p (¢, 3) ,
DT(—V)U ,2)(1,8) <0

If F has convex images and verifies the growth condition (2.2) then the map G defined by (3.1) is
an optimal feedback low.

Proof. By Corollary 2.4 the requirement (a) of Definition 3.1 is satisfied. Pick a solution
z € Whl(t, 1) of (3.2). Then the function s — V(s , 2(s)) is absolutely continuous.

Let s be so that ©’(s) , z'(s) € F(s, 2(8)) do exist and h; — 0+ be such that

§ y ) h.’ -V y 2
Dy Vi, ()1, #(a)) = _ lim V(s + b, 2(s +h' )) = Vis , 2(s))

Thus v’(s) = Dy V(s , 2(s))(1, 2°(5)) < 0 and p is nonincreasing. By Theorem 1.5, p is also
nondecreasing. Thus p = const. O

Exactly the same arguments yield
Theorem 3.8. Let (1 be an open subset of R™ and V:[0, 1} x 1 — R be a locally Lipschitz
function satisfying all the assumptions of Corollary 2.6. If F has convex images and satisfies
{2.2) then the map G defined by (3.1) is an optimal feedback low.
Remark: In the above theorem we may avoid the assumption of Lipschitz continuity of V with
respect to ¢, if instead we assume that for every (t; , zp) € Dom V there exist L > 0, € > 0 such
that for all (t,z)€(tg—e€,to+€fN[0,1] x (zg+¢€B), V(t,:) is L-Lipschitz on
{z:(t,z) € graph P (| {t} x (2o + €B)} and restrict our attention only to those solutions
z € Whi(t, 1) of (3.2) for which s — V(s , z(s)) is absolutely continuous.
We apply the above results to the target problem considered at the end of the first section.
Theorem 3.4 Let V be as in Theorem 3.2 or as in Theorem 3.3 and verifies the boundary condi-
tion (1.17). Then every trajectory z € WL1(0,1) of (3.2) (with G defined by (3.1)) satisfying
z(0) = z, is an optimal solution of the target problem. Moreover if F has convex images and

verifies (2.2), then (3.2) has at least one solution starting at z,.



143

4. Viscosity solutions of Hamilton-Jacobi-Bellman equation and contingent inequali-
ties.

We associate with F its Hamiltonian H defined by
Vit,z)e[0,1x R" ,Vge R" H(t,z,q)=sup {<q,e>:e€F(t,z)} (41)
Our aim is to show that for any open set 1 C [0, 1] X R”" every solution of the problem

veatte, g VA 020, (0 €8

Dy(-V)(t,2)(1,u) <0,(t,2)en (4.2)
ce i D=V (E2) (1, u) <0, (¢, 2) €
is the viscosity solution of Hamilton-Jacobi equation
- vviH(it,z, -2 V=0, (t,7)en (43)
at ! ' az 1 1

(see Crandall-Lions [8], and Crandall-Evans-Lions [9}]). Some related results can be found in [18].
We recall first

Definition {.1 (super- and subdifferentials). Let 11 ¢ R™ be an open set, © be a function from N
to R and z5 € 1.

The superdifferential of p at z; is the set

Oy wl(z0) = {p :limsup [ 0(2) — wlz) = <prz=2>]/ 2= 2| <0}

The subdifferential of © at z; is the set

3_s0(zo)={p=iin_1}';£[s0(z)—v(zo)—<P,=—zo>l/llz—zoll20}-

The super and subdifferentials are closed, possibly empty, convex sets.

Definition 4.2 (viscosity solution). A function V: 1 — R is called a viscosity solution of the
equation (4.3) if for every (¢ , z) € 2 we have

a) forall p = (pg,-.., p,) € 8, V(¢ ,2)
—P0+ H(t T 1—(p1 IRRER] pn)) 50

{viscosity subsolution).

b) for all p = (pg ,..., p,) €_ V(t, 1)
—po+ H(t ,z,—(py,..., p,)) 2 0.

(viscosity supersolution).

Lemma 4.9. (12| Let 0 be an open set and © : 1 — R. Then
a_p(zg) ={p:VreR™ , D p(z)r 2 <p,r>} (4.4)

9, 0(zg) ={p:YVreR™ , D (-p) (o) r 2 < —p,r>}=-0_(-p)(z) (4.5)
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Theorem 4.4. If a function V : — R verifies relations (4.2), then V is a viscosity solution to

Hamilton-Jacobi equation (4.3).

Proof. By (4.4), (4.2)forall (p,q)€a_ V(t,z)C R x R

~H(t,z,—¢q)= inf yu>) < inf D, V(t, 1,u4)<0
P ( z q) chz}(t,z)(p+<q v>) ch:)rIl"(t,z)T ( z)( u)

Thus for all (p, ¢) €3_ V(t, z)
-p+H(t,z,-q)20 (4.6)
On the other hand by (4.5), (4.2) for all (p, q) € 8, V(t, z)

- —q) = —p — — 0.
p+ H{t ,z,—q) uefc?(t,z)(p <q,u>)$“€csot?(>t’z}DT( Vi(t,z)(1,u) <

The very definition of viscosity solution ends the proof.

Hence solutions of (4.2) form a subset of viscosity solutions of (4.3). Since contingent deriva-
tive is not convex, in general a viscosity solution of (4.3) does not verify (4.2). For this reason
results of Sections 1,2,3 do not apply to an arbitrary viscosity solution.

For the target problem considered in Section 1, the value function is nondecreasing along
trajectories of (1.1} and is constant along optimal trajectories. Hence results of Section 3 may be
applied to the value function when it verifies additional regularity requirements. However to find
the value function may be a dliffligult task.

If the HIB equation (4.3).:'has a unique solution V¥ and the value function is a solution of
(4.3) then the results of Section 3 may be applied to V when it is regular enough.

However uniqueness theorems for viscosity solutions concerns (up to now) only continuous
solutions (see [8]-[10]). When the value function is discontinuous, we have to take into considera-
tion contingent inequalities from Sections1,2. When the viscosity solution verifies in addition
these contingent inequalities, then results of Section 3 may be applied.

We provide next an example of the target problem having a Lipschitz viscosity solution
different from the value function. It is obtained thanks to an appropriate choice of the domain of
definition.

Ezample Let U denote the closed unit ball in RZ and consider the set-valued map
F:R x R? — R2 defined by F(t, z) = U. We consider the point target K = (1, 0) and the

function g = 0. The reachable set at time 1 of the inclusion
T € F(t,z),z(0) =z, (4.7)
is equal to
R(1)=z3+ U
It is easy to see that

0 ifflz-(1,0) <11t
vit,z) = + co otherwise



145

Set

0 iffz-1(<1-t,|z|<1-1
W(t,zy,2) = + o0 otherwise

We first observe that V ¥ W and that V(1,-) = W(1,"), i.e. V and W verify the same boun-
dary condition. On the other hand for all (¢, z) € Int Dom W, VW(t,z) =0. Hence Wis a
solution of the Hamilton-Jacobi equation (4.3) on Int Dom W.

Even if we apply the definition of viscosity solution on Dom W from (10}, it is still possible
to check that W solves (4.3) on Dom W. Thus the Hamilton-Jacobi-Beliman equation (4.3) has
at least two solutions verifying the same boundary condition

o ifz={(1,0)
vit,z) = + oo otherwise

Observe that ¥V = W on Dom V and one would wonder if the above negative statements would
be improved if we restricted our attention only to Dom V. However for an arbitrary nonlinear
control system (1.1), the set Dom V may be as difficult to find as the function V itself ( the glo-
bal controllability on nonlinear systems remains an unsolved problem!). Therefore such improve-
ment would be only an illusory one. On the other hand the map W does not verify the second
contingent inequality (2.1) for (¢, £) from the boundary of Dom W with 0 < ¢ < 1. In this way
the function W may be excluded from consideration.

6. Clarke’s verification technique.
In |6), [7] a different approach to the target problem was developed.

Definition 5.1. Let p: R™ — R be a locally Lipschitzian at z function. The epiderivative
©%z) : R™ — R is defined by: for all u € R™

() = lim sup [ (2" + hu) = p(z) | / b
h— o0+

The generalized gradient 8 p(z) is given by
do(z) ={pe R™:Yue R™,<p,u> < %z)u}
Observe that ©%(z) > D; p(z) and therefore
d_ p(z) C dp(z) , 8,(-9)(z) € — 8 p(z) = 3(-p)(2)-

Let 1 C R x R" be an open set. A locally Lipschitz function V : 1 — R is called generalized
solution of Hamilton-Jacobi equation (4.3) if for all {t , z) € 01

(P,q)es?vu,,)[_1’+H(‘,z,—q)}=o
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It was shown in [7] that if z € Wh1{t 1) is a trajectory of (1.1) such that for some € > 0
and all t <8 <1, (s, 2(s) + ¢ B) C 1, then s — V(s z(s)) is nondecreasing on {t, 1]. This
led to a verification technique.

To make a comparison with the results of Section 1,0bserve that for all (t , z) € 01

(p,q)Z“é’vu,,) ,,efo‘;f(’t") —-p+<—q,u>

Tucalt,) (p,oetene,y FTIT0Y

= uecsou(t.z) (-V)°(t,2)(1,u) <0

Hence

su Dy (-V) (t,2)(1,u) <0and,
u € cof(t, )

consequently, V verifies the contingent inequality {(1.10). Hence replacing V by its restriction to
{(s,2(s) + € B): s € [t , 1]} and using Theorem 1.5 we prove that V is nondecreasing along 2.
We provide next a comparison of viscosity and generalized solutions of (4.3).

Theorem 5.1 A locally Lipschitz function V :  — R is a viscosity solution of (4.3) if and only

if V is a generalized solution and
Y(p,q)€d_V(t,z), -p+Ht,z,-q)=0

Proof By the definition of Hamiltonian H, for every t € [0,1] ,z€ R™, H(t , z, ) is convex.
By the assumption on F , H is continuous. Thus [13, Theorem 2.3] ends the proof. O
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1. INTRODUCTION

In recent work [1] we have studied stochastic differential equations related to the free field and (¢%)2-
fields in finite volume following the earlier work of Jona-Lasinio and Mitter [2]. In [3] we have studied
Lattice approximations to these stochastic differential equations and proved a limit theorem when the
lattice spacing goes to zero. We now describe the nature of the results we have obtained.

Let ACR? be a finite open rectangle and S' denote 2/(A) the space of distributions on A and let S
denote the space of tempered distributions on A. Let Cj = (-A+I)"L, i = 1,2 with Dirichlet (resp. free)
boundary conditions on A. Cj, i = 1,2 are covariance operators and for C a covariance operator let
C(-,) denote its integral kernel, C% its atll operator power and let jic denote the centered Gaussian
measure with variance operator C. Consider the following S'-valued stochastic differential equation

do( =-%Cf(p(t)dt +dw(t) (L1

oN=0e 8§, O<e<l

where W(t) is @ Wiener process with covariance Ci'e. It is not difficult to prove that this equation has a

unique solution and has a path continuous version as an H-®-valued process on (0,e<). Moreover (") is

ergodic and has p L 3 it unique invariant measure. The same claims can be made with C; replaced by

C2. This procedure of creating a stochastic differential equation with unique invariant measure a desired
invariant measure is termed stochastic quantization. It is worth observing that the random field ¢(t) for
cach tis a Markov random field and satisfies the Osterwalder-Schrader axioms. A proof of this will
follow from that of Nelson [4]. Note that we cannot take €=0 in equation (2.1), since the transition
probabilities p(t; ¢..) of the process ¢ for different t's are no longer mutually absolutely continuous, a
fact needed to prove ergodicity of the process @(-). The case =1 is excluded since W(t) is then no
longer a genuine Wiener process.

Since the process ¢(:) is ergodic with unique invariant measure "bl’ correlation functions

1This research was been supporied by the Air Force Office of Scicntific Rescarch grant AFOSR-85-0227 and the Army
Research Office under grant DAAL03-86-K-0171 through the Center for Intelligent Control Systems.
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Eucl@;(xl)...(’ﬁ(xn)), ((§) denotes the gaussian random field with covariance Be,) can be computed

by exchanging time and space averages. This is the basic idea behind Monte Carlo calculations of
statistics of the random field.
We study this differential equation in a space of distributions since the invariant measure p~ , can

only be supported in some space of distributions. This is a consequence of the Minlos Theorem. Itcan
be shown that the measure Hey is supported in the space H-1(A), the dual of the Sobolev space HI(A).

In {1] and (3], we have also studied the infinite-dimensional non-linear stochastic differential
equation
_ 1 e le .3
de(®) =- 3 (CoE) +C 7 @():)dt +dw(t) (1.2)

with ¢(0) having initial law i given by:
—dL = cxp(- -i— j :¢4:dx)/z
d”c, A

Z= J‘ cxp(- %J':(p‘:dX) diic, (@)
A

In the above :9(t)3: denotes Wick-ordering with respect to He, and has the explicit definition:

(1.3)

2
Q) = Q- 3(qu¢(t) )(P(t) (1.4)
and is well-defined as an element of Lz(dpcl). Similarly :¢*: denotes Wick-ordering with respect to

. and the integral 'f:(p“:dx is well-defined as an element of L2(duc) via an appropriate limiting
A
procedure. The fact that |t is a well-defined probabability measure is a consequence of Nelson's estimate
[4).
The difficulty of studying equation (1.2) is that since the non-linear drift term :@(1)3: is only defined
in some limiting sense we cannot interpret it in the [1o snese and hence we have to interpret it in a weak
sense. In [1] itis shown that the new measure Pg defined by

He

T T
dP, 1 3 1 J‘ 3 1€ 3
—_— < 5 > .= | < 5, C - ds
D exp(2 J @ (), dw(9)> - ) ¢ PO

+ -i_f 00y ax)/z (1.5)
A
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where Z is a normalizing constant, is a well-defined probability measure. The proof uses both estimates
from quantum field theary and probabilistic arguments (in particular Novikov's criterion for an
exponential super-martingale to be a martingale}.

In[1] a limit theorem at the process level when AT R2is also proved.

2. STOCHASTIC QUANTIZATION AND IMAGE ANALYSIS

Our interest in these problems arose from problems of image analysis. To see this note that the
measure j corresponds to Hamiltonian

H= j [lqu)Iiz +mn g+ ).:q;‘-.]dx @.1)

A
where mg is the bare mass and A the coupling constant (taken both to be 1 in the previous section).

Corresponding to the Hamiltonian we can construct the limit Gibbs measure in the sense of Sinai (cf. {5}
and (4]).
Consider the following problems of Image Analysis.

Problem I.
Let Q C R2 be an open bounded set and let y € L(Q2) be given. We think of y as an observed

noisy image. We wish 1o construct an estimate ¢ € H/(Q) such that

2
I(‘P)=_|'|\y- ol dx+J||V(p||zdx
a a

is minimized.

It is natural to think of J(¢) as a conditional Hamiltonian Ho(¢ly) and construct a conditional
measure H(phy) by making appropriate probabilistic hypotheses on y (for example by associating an
Hamiltonian for y). To construct estimates we would have to compute statistics corresponding to the
measure p(hy) and this would be done using the ideas of stochastic quantization for both @ and y. A

start towards doing this has been made in [6].

EroblemII.
Let QcR2, be bounded and open and let y € L=(Q2). Consider the following variational problem.

Minimize

10.) = f1v-9ix + [ woPax + 5 (D),
Q O
where T'is a closed set with T'cQ and #A(T") denotes the one-dimensional Hausdorff measure. The
interpretation of this functional is that we want to find an estimate ( 3, f) of the observed noisy image y
which preserves the discontinuities of the image, there are not too many discontinuities and f*isan

estimate of the discontinuities. It can be shown that a minimizing solution ( @. f‘) exists [7], (8). A

detailed study of the first variation of J has been done in [9].
It is not clear how 10 give a probabilistic interpretation to this problem. However, if we consider a
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lattice analog, then we can give a probabilistic interpretation by constructing a measure on the lattice
Z2x(Z2)*, where (Z2)* denotes the dual lattice. This was one of the motivations for our work reported
in [3]. Fordetails of this problem in a discrete space setting, see our paper [10] and the references cited
there.

3. RENORMALIZATION GROUP METHODS AND A BELLMAN EQUATION

The main purpose of this section is to describe the renormalization group method of K.G. Wilson for
U-V cut-off removal as formulated by P.K. Mitter [11, 12]. A certain infinite-dimensional Hamilton-
Jacobi-Bellman equation arises in this context which has a natural control-theoretic interpretation.

Consider the linear parabolic equation in R® x(0,T]

dpi(xt) = L:p‘(x,t) + L vy (3.1)
[ 4

pi(x,0) = p§(x) = K cxp(- i— So(x))

»*
Here € >0, Sp(x) > 0, lim0 elnKg =0 and Le is the formal adjoint of the diffusion operator
e

n n
2 2
L= 2 +) fx)= (3.2)
We assume that f is a C™-function with bounded derivatives upto order 3, -V is a C™-function which is
bounded below by zero.

Following, for example, Fleming-Mitter [13], introduce the logaarithmic transformation
S&(x,t) = -€ln pi(x,t). 3.3)
Then S&(x,0) satisfies the Bellman-Hamilton-Jacobi equation

Jal S5(x,0) - £ AS%(x,t) + H(0L,IS(x,0) = 0 (3.4)
t

S¥x,0)=-eln p;(x),
and HE(x,p) = p'fCx) + 7 lIpI2 - V(x,0).

Formally, letting e — 0, we obtain the Hamilton-Jacobi equation

% S(x.t) + HOx,LVS(x,0) =0, (.5)

S(x,0) = S,(x) -
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One can prove that eﬁ—glo € In p&(x,1) = -J(x,t) on compact subsets of R x[0,T], where J(x,t) is the value

function of a deterministic optimal control problem:

t
6 Xy 00 = Syx) + 3 f sy (3.6)
0
subject to
dx
& = fxtsh) +u(9) 31)
x(0) = x,.

Let Uyt = {(x0, u)lxy(0) = xp, xy() = x, ue L2(0,;RM}, and

J(xt) = InflI(E xgwlee, we U, J.

Then finally J satisfies (3.5). Note that this is a minimum energy optimum control problem. In a similar
manner, S€(x,t) has the interpretation of a value function for a Markovian stochastic opitmal control
problem [12].

We now retumn to the ideas of section 1. We consider the random field ¢(x) on R9, d>2 with
measure Jic. The covariance C has a kemel C(x-y) given by the formula (in terms of Fourier

transforms)

1 d 1 iox-y)
C(x-y) = dow e
(21r)‘1 J o?

(the covariance operator is {-A)~1 in contrast to the covariance operator (-A+I)-! in Section 1). Let the

measure jc be defined by giving the kernel
-2

d 5
do i0.(x-
CK(X—Y) = _—d--c—_? cl(D (%)
@2n) o

A computation gives the scaling properties

C (x-y) = x*2C,(x(x-y)), (3.8)

and if ¢ denotes the random field with measure e, given by covariance Cx and & denotes the random

field with measure Ko, given by covariance Cy, then
a2
o) =k > D(Kx). (3.9)
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The measure Ho, is supported on smooth functions. By virtue of the above
d-2

=)

2
E”C‘(qa(xl)...qa(xn)) =x "B, (000)..00x) (3.10)

The problem of studying the behaviour of the n-point correlations for fixed X1,....Xn a5 K — oo is

equivalent to studying the long distance (infinite volume limit) problem at a fixed cut-off.
Let Vo(4) be an even polynomial and consider the new measure with interaction Vo

dh, =dug exp(-Vo(®) @3.11)

and the corresponding characteristic function

2,(0= [ du_expiioco (3.12)
There are two steps in the renormalization group method.
Step 1 (Scaling)

From (3.9),

d-2
du (@) = dy, (D) exp(-vo(x 2 <b(-))) : (3.13)
Set

42
Vo k@) =970
Then

Z (6 =jducl(¢)exp(-a{,"<¢(-)) +<x>(f‘>) (3.14)

L 4
where £ (x) =k 2 f(x x).

Consider the transformation

1—etl, teR,.

We know,
2
o e ia(x-y)
C,(x-y) =I d —— %Y, and hence
2n)°  o?
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-o.\’

=)
< xy) = j ) (3.15)
@)’ mz '
Now C; > G,q | as operators.
h
Let Ct = Gy +CoP. (3.16)

In the above C; is the covariance of the field @ at unit cut-off, G-t 1 the covariance corresponding to

the lowered cut-off and Ct(h) the covariance corresponding to a fluctuating field.
From the (3.16) we have the decomposition @ = ¢(1) + £, { denoting the fluctuating field and ¢(1)

and £ are independent Gaussian field. The covariance kermel of Ct( has exponential decay as

[x-yl =3 oo,
We now integrate out the fluctuating field and scale back.

j di (O) exp(-15(@) = Jduca<¢“’)ducl<h>exp(- %0 +0)

d-2
=J-ducl (¢)duqm, (C)exP[-'tg"(c 2 oEt)+ t;) |-

The renormalization group transformation is defined by

ﬂt
exp(-‘l}f)(tb)) = I dpcm (§)exp|:—'l};)(c 2 o@ety+ C) 3.17
which sends
) ®)
)

1{“) is called the effective potential.

A computation shows that 44 (dropping the superscript k) satisfies the infinite-dimensional
Bellman-Hamilton-Jacobi equation

t

+ (3.18)
3D(x)ED(y) SD(x) BD(y)

82y &v &
. J. d’. ddy K(x-y)| - - - }

where

d 0
Kx-y) = J d (l)d e-xm.(x-y)e-wz.
(2n)
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'JOK) will have parameters which will have to be fixed so that we start at a critical surface. Studying the

fixed point of the renormalization group transformation is equivalent to studying the asymptotic behavior
of the equation (3.18) (at least in the small region).

Equation (3.18) has a stochastic control interpretation as suggested earlier in the section, and 'Vt(“)

has the interpretation of a Bellman Value function. The machinery of non-linear semigroups may be
useful for this purpose.

4. NEW PROBLEMS

We would like to suggest that the ideas of the renonnalization group method as exposed in the
previous section could be generalized to yield a dynamic renormalization group method which would be
relevant to problems of stochastic quantization. A program for this is described below.

We consider the stochastic differential equation (1.1). The solution of this equation for each t gives
us a Gaussian measure in path space. This path space Gaussian measure plays the role of the measure
1 of section 3. Cut-offs can be introduced for this measure and scaling properties analogous to (3.8)
and (3.9) obtained. Note that this Gaussian measure can be obtained via a Girsanov Transformation of
Wiener measure., The interaction measure is now introduced by a second Girsanov transformation as in
(1.5). The proposal is to proceed as in Section 3 where the renormalization group transformation is now
a transformation of Girsanov functionals thercby creating an effective Girsanov functional. The details
of this will be presented elsewhere.
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ABSTRACT

The concept of local controllability is investigated for non-relativistic quantum
systems., Sufficient conditions will be sought such that the solution of the

controlled Schrodinger equation can be guided, over a short time interval, to any
chosen point in a suitably prescribed peighborhood of the solution in the absence of
control. Evolution equations which are linear in the controls but nonlinear in the
quantum state P are considered. Our formulation and analysis will (for the most

part) run parallel to those of Hermes.

I. UCTIO]

In recent years, there has been a growing interest in the system theoretic
problems of filtering and control of quantum mechanical systems. Several note-
worthy efforts exist: (i) Tarn, Huang and Clark [l] and van der Schaft {2] have
explored the formal basis for the modelling of quantum mechanical control systems.
(11) Clark, Tarn and their associates [3-6] have obtained results on quantum
nondemolition filtering problem. (iii) Belavkin [7] has investigated the
measurement and control problem in quantum dynamical systems. (iv) Pierce, Dahleh
and Rabitz [8] have studied the optimal control problem of quantum mechanical
systems. (v) Butkovskiy and collaborators have discussed the control of quantum
objects in broad terms and have set forth general conditions for controllability of
pure quantum states [9-11].

To the authors’ knowledge very little has been published in the way of
mathematically definitive results on the controllability of quantum systems. In [12]
the authors are able to establish a series of global controllability conditions for

the Schrodinger equation which is linear in state and linear in the external
controls by extending the geometric approach as implemented by Sussmann and
Jurdjevic (13,14], Krener [15], Brockett [16], Kunita [17] and others.
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In the present contribution, we shall consider evolution equations which are
linear in the controls but nonlinear in the quantum state; in this case the work of
Hermes [18] is extended to obtain conditions for local controllability along an
unguided reference solution.

II. [0} GE OR

In adapting Hermes' work [18] to our ends, it is convenient to think in terms
of the x representation [19]. Thus the state vector §€H will be represented by

the wave function §£(x) € L2(Rn), where xeR" stands (ordinarily) for the set of

spatial coordinate variables associated with the quantum system. {More generally,
x may stand for any complete set of compatible variables {19] built from the
position and momentum variables. Spin and other internal degrees of freedom can be
incorporated by essentially trivial modifications.) Now, let us define a class of
operators H in H which are supposed to be skew-Hermitian (norm preserving) and

time independent and to have, in the x representation, the mode of action

(HE) (x) = HE|, =~ él £y 1((Hy 1O Ey (G, ). (1)

»q
Here, p, q are some integers, the HA P (A=1,...,p; #=1,...,q) are closed,
L

skew-Hermitian linear operators acting in H, and the mappings fA p: Cl* C1 are

real analytic. (By the last requirement we mean that fA p(w) is a real analytic
function of its argument w, this argument in itself being generally complex, w e

1

C”. Also, in expression (1), fA p(w)fl' p,(w') is to be interpreted as the usual

product of complex functions.) Throughout the current section, the generators
Hy,... H entering the “controlled Schrodinger equation" will be assumed to be of
this more general form. Thus, while Ho,...,Hr are still taken skew-Hermitian, they

need not be linear--although the linear case is certainly included.
We shall further assume that a unique local solution exists for the initial

value problem
d r
b= [+ L @b, b - bl )
posed by the Schrodinger equation so generalized, the admissible controls u, now

being real, analytic, bounded functions of t. To establish that this is a viable
assumption, we note that it is automatically fulfilled within the framework of [12],
provided ¢ belongs to the analytic domain Dw; moreover, in Ref. 20 it has been

shown to be valid for a certain relevant class of partial differential equations.
On the other hand the formulation of geperal conditions on Ho + 2u2H2 for the
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existence of a unique local solution of (2) awaits further mathematical
developments,

Our next task is to specify the Lie bracket appropriate to the (generally)
infinite-dimensional, (generally) nonlinear control problem (2), wherein the
Hk' k=0,...,r are of type (1). First, we appeal to the chain rule to define a sort

of derivative operator, DH, corresponding to an operator H of that type:

((DHE) (x))¢ (x) = xgl Fgl £y,2C0Hy OG0y (6 (0)

£ (U O0NE L (H 66y (. OHEIH, 0@, ()

A, q

where ¢ € # and f'{w) is the derivative of f(w) with respect to its argument.
The Lie bracket of two operators H, K of the indicated class is then specified by

(1H,K]€) (%) - [H-Klflx = ((DHE) (x) I (KE) () - {(DKE) (x))(HEI(R), %)
to apply V §é € # and V x. Again we shall employ the notation adHK = [H,K],

ad;+1
product is obviously consistent with that of [12], for, {f H and K are linear,
[HK] = HK - KH as in [12].

Remark 1. The above definitions and specifications are tenable even if H and

HA b of (1) are pot skew-Hermitian (or even if skew-Hermiticity is not a meaningful

concept). As is well known, skew-Hermiticity of the generators of time displacement

K = (H,ad"K], v = 1, 2,...; also, adgK = K. The prescription (4) for the Lie

is an indispensible requirement in conventional quantum theory, where it is

necessary for the probability interpretation of ¢c. On the other hand, there are
circumstances in which one may be led to drop this requirement, namely, (i) in

approximate treatments of the Schrodinger equation designed to yield simple pictures
of complicated phenomena involving many degrees of freedom, and (i{i) in radical
revisions of conventional quantum theory aimed at a more fundamental description of
the microscopic world. The optical model of nuclear reactions, [21] wherein a
complex potential is introduced to simulate the effects of inelastic processes, is a
good example of circumstance (i}, while the hadronic theory proposed by Santilli
(22] suffices to illustrate possibility (ii). Obviously, in the latter context new
interpretations as well as a new formal apparatus (see, e.g., Ref. 23) must
accompany the enlarged mathematical framework.

Remark 2. The message of this comment is similar to that of Remark 1, except
that the subject is nonlinearity of the generators Ho, ey Hr rather than

violation of their skew-Hermiticity. Conventional quantum mechanics is necessarily
a linear theory, in that the superposition principle is an essential property.
Specifically, linearity of the operators Ho, e Hr is required to maintain this

property. But again one might agree, either (i) in the framework of approximation

methods, or (ii) in fundamental extensions of quantum theory, to sacrifice
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linearity. The Hartree-Fock approximation [19,21] of atomic and nuclear physics
furnishes a prominent example of a nonlinear approximation to the conventional
quantum description. On the other side of the coin, nonlinear quantum theories at
the first-principles level have been considered by a number of authors; for example,
Wigner {24] has suggested that a resolution of the mysteries associated with
“collapse of the wave packet™ might be sought in terms of such a theory. [25]

III. GENERALIZED DECOMPOSITION THEOREM

- r
Consider the system (2), wherein it is assumed that ¢ ¢ D = dom Hk "
k=0

null set. Let Vc(¢) ¢ D denote the solution (evaluated at time t) of the
associated reference problem

4 -

ac e = Hone o+ Mg mé. (5)
This problem corresponds to free evolution of the quantum system, the external
controls being turned off; accordingly n, - Vc(¢) will be referred to as the

ogeneou ence . Treating ¢, rewritten {, as an arbitrary element

of the allowed domain D, we obtain a mapping ¢ - Vc(f), which in general defines a
nonlinear operator. (We note that in the special case that the generator Hy is
linear, Vt(c), which traces an integral curve of the vector field Ho, serves to
define a lipear evolution operator Vt. However, in the nonlinear setting of the

present analysis, we are strictly not allowed to divorce operator from operand,
since an operator of class (1) generally depends on the point of H at which it
acts.) The differential of the mapping ¢ - Vt(f), to be denoted DVt(f). is also

(generally) a nonlinear operator. One may loosely interpret DVc(() as the
derivative of the object Vt(f), a state vector, with respect to its argument, which

is again a state vector., By DVt(;‘)|x we will mean the differential of the (wave

function) -+ (wave function) map {(x) - {lx - Vt(c)lx.

Definition 1. A complex-valued function g: t =+ g(t) = gl(t) + igz(t) is said

to be complex analytic in the variable t, where ¢t ¢ Rl, if the functions gy and
g, are real analytic in t.

Theorem 1. (Generalized Decomposition Theorem (cf. Refs. 18,26)). Let ¢ be
an arbitrary element of the common domain D of the operators HO, ey Hr, and
suppose that (i) the maps t - Vt(;')|x and t = DV _(f)|, are complex analytic in t
for all x and (iif) the differentfal DVt(c) converges in the strong operator

topology to the identity operator id, as t - o*. Then, a sufficient condition for
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Vc(Wc(é)) to provide a solution of the controlled dynamical problem (2), is that

Ht(¢) satisfy

w© 14 r
-t v
See- I S [ad T oumle gomsen. ®)
v=0 0 A=l
If DVt(C) is one-to-one, the stated condition is also necessary.

Proof. A necessary and sufficient condition for Vt(Wt(¢)) to be a solution
r
of (2), glven that VO(W0(¢)) - W0(¢) - ¢, is Hth(Wt(¢)) + 221 UIHIVC(Wt(¢))

- -4 4
ac YeMe@) = 5T Ve ley gy + Ve G Ve @ 7
Since by definition Vt(f) must satisfy the differential equation BVt(g)/at -
Vt(g), where ¢ may be regarded as an independent varjable so far as the time

derivative 1is concerned, the initial terms in the first and last members of (7)
cancel. Thus condition (7) may be distilled to

w4 V@) - [z Uy (O, |V, ) ®)

The cruclal step is to prove that, for all ¢ and for all x,

DV () .,i Can [adH Z ug(om|c1, = [él W(OR] VOl ©
Once property (9) is established, the theorem is in hand; for if Wt(¢) satisfies
(6), 1t will then follow from the sufficiency of (8) that Vt(Wt(¢)) solves problem
).

In order to establish (9), we examine the quantity

go(EiHy) |, = DV () 2 [adH H] - HV (). (10)
Vith ¢ an element of the allowed domain, the maps ¢t = V()] and €~ HpV (9,
are complex analytic by our hypotheses, as is the map t -+ DVt(f)lx. Consequently,

the right-hand side of (10) is complex analytic in t, for all ¢ and for all x.
Therefore it 1is legitimate to evaluate gl<t;H2)[x be means of its Taylor expansion

in t.
To begin with, we know gl(O;Hl)lx = 0, because DVt(C) -+ 1d in the strong

operator topology as t - 0+, and VO(C) « (. Next, conslder that

$0V (€)= DTV (6) = D [HGY,(6)] = D [Ho(V (£))]
= (DHy(V (£))) DV ()}

(The differentials in the first line are all with respect to ¢, as is indicated
explicitly in places where confusion might arise. The differential D§[H0(Vc(§))] is
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computed as the product of the differential of the mapping Vt(f) ~ Ho(Vt(g)) and

the differential of the initial mapping ¢ - vt(g).) In similar vein,

S-[H,V, ()] = SoIH,(V ()] = DH,(V (EDHV () -
Using these last two relations, we may obtain (with the dot indicating time

derivative)

«© v
By(Eily) = DO (VL(ENDVL(6) T == [adﬁoﬂzlc

@ v
-0V T L [ad;;IH,]§ R CAAGY

« v
= DH V() [V, (©) & G5 tadg wgle - v ()

+ [DHG(V (E)HV (§) = DH,(V (£)HQV ()]

cov e 3 L8 faatly )
€ % v dHo 2ic
= Dy (Ve (§)By(EiRy) - By(tiady By an

But we know, from previous argument or its extension, that gt(t;H1)|x and

+ .
gl(t;adHOHl)lx tend to zero as t -+ 0 ; it follows that 82(0;H£)|x = 0 for all ¢

and for all x.
The pattern is now set for an inductive construction of successive time

derivatives of g(t;H‘). In particular, based on the above results we may form
- d .
8y (tily) = So [DHO(V, (§))g,(EiH ] + DHy(V (£))E,(EiHy)

. < ad?
- Dﬂo(vt(c))gz(t.sdﬂoﬂz) + gz(t,adﬂoﬂz) ,

and it follows that gl(t;ﬂl)lx +0as t = 0%, Continuing the process indefinitely,
we arrive at the result that at t = 0 all the time derivatives of gt(t:Ht)lx
vanish, to arbitrarily high order. Thus gl(t;ﬂt)'x is identically 0, for all {, for
all x, i.e.,

© v

-t v -
() T B fadk w01 = By (O

v=0 0

£ =1, ..., r. The desired property (9) ensues upon multiplying this equality by

ul(t) and summing over £.

Corollary 1. Same as Theorem 1, except that "complex analytic" is everywhere
to be replaced by "real analytic". (See Ref. 18)
Proof. Direct observation.
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Iv. G RENCE HOMOGENEOQU

Definition 2. The system (2) is said to be locally controllable along the
golution L Vt(é) of the control-free problem (5) on the manifold M C H if, for

small t > 0, there exists a set of uz(t), 2 =1, ..., r, such that the solution
¢t of (2) can be controlled to a pneighborhood of 7, on M. The precise meaning of
the last phrase is that ¢t can be steered into any direction of the tangent space
TM" of M at the point 7, = Vt(é) e M, for all ¢ ¢ M.
t
We may now formulate the central result of this section.

Theorem 2. Assume that the homogeneous solution of system (2), i.e., the
solution n, = Vt(é) of the uncontrolled system (5), satisfies the hypotheses (1)

and (11) of Theorem 1 for ¢ (and specifically ¢) on a finite-dimensional
submanifold M, McDcH, dim M = m. Assume further that there exist integers

v (with 2 =1, ..., r and j! -1, ..., kf <w, and 0 Y < Vo < ... < Yok )
£

Ijz

v
£)
such that the set ({adHO zﬂzlé) spans the tangent space TMq of M at 1, = Vc(¢)
t

for all ¢ £ M. It follows that system (2) is locally controllable along 7, on M.
(Cf. Theorem 2, Ref. 18.)
Proof. 1If the functions u!j (t), where £ =1, ..., r and j! -1, ..., kz,
2

qualify as admissible controls (real, analytic, bounded functions of t), then so do
the finite linear combinations

k
a, 2 , 1
u, (t) = u t -1, ...
wherein the real coefficients 8594 «.e, 85 , aYe chosen (for convenience) to obey
2
Ky
1 , 4=1, ..., r .

T lagy | =
i1
Let us abbreviate the set ‘alj } simply as a. By generalized decomposition in the
2

multi-input, complex case of the preceding subsection (i.e., by virtue of

a
Theorem 1), the solution of problem (2), with the ul‘e as controls, is given by

vi - vt(w§(¢)). The solution Ei - Q:(¢) of the boundary value problem (6),

a
restated for the controls uzz, evidently obeys the integral equation

a & ot 2e v (s v a
W = I fGu@ I e [adHOHz]wt(qﬁ)
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Thus
2 _ a 3 .a
7oy V(VE(9)) |, 0 = DV (WE(H)) e V() [0
2 2
b4 T -5y v
- 3 (55 uyy 0 CE= asfov o [adh nle (12)
v=0 2 0
where a= 0 means all of the alj are zero. By assumption, we can find a set of
2
integral (or zero) powers » , where 2 =1, ..., r, J, =1, ..., k,,
ljl 2 2
0g Yo < Vs < ... < ulkl' and Voax = max(uljl) < w, gsuch that the set
g ! 2
([adH H2)¢, ey [adH Hzl ¢, 2 =1, ..,, r) spans THW . Then, since (also by
0 0 t

assumption) DVt(¢) ~+ id strongly as t 0+, there must exist a time t > 0 such that

the set

ik,
{Dv (¢)[ad.H H ]¢, cee, DV <¢)[adﬂo ] }

spans THW , over the time interval 0 < t < tl'
t

We now proceed to make a judicious choice of the original functions ulj (t)
2

involved in (12). One can realize admissible controls Elj (t) obeying the
2

conditions
0, for v m v , 0<v<yw + 1,
f (s) -LL ds = 4, max (13)
0 lj
culﬂo, for u-vul ,
where 2 =1, ..., r, j,=-1, ..., k,, and the ¢ are real constants. The
y) 2 43,

connection between the ij and the u will be specified shortly. The power »

2 4,
being integral, inversion of relations (13) is in effect just 3 classical finite-

moments problem. (Note that in the upper range v > Yoax + 1, we have

t v v + 3
1=~ (-8) - max
fo uljl(s) o1 ds = 0 [tl ) ,
since 'Elj | is by assumption bounded. This implies that the higher moments not
2

specified by (13) will be negligible.)
With t 1in the interval [0,:1], we now carry out the change of variable

s = tlh/t in the integral on the left of (13):



169

t v t
1~ {-8) 1iv+l pt -0
J‘o uzjz(s) s - {t ) fo uzjz(tlh/t) o1 dh .

Hence

0, for v o uzjz, 0<v <

£~ (-hyY - t v+l -
fouzjz(tlh/t) v dh [‘1] C’Jz , for v u“l ,

Ynax + 3
O[t ] , for v > Yonax + 1.,

Setting ulj (s) = Glj (tls/t) in (12), we arrive finally at the result

2 2
v +1 v
23 23 v +2]
o gy 5] e g e o (St Y
ljz 241 0
where, for t < t, the last term can be neglected, t) being small. Consequently the

set (avt(w':w))/aa”z, £-1, ..., ¥, 3y =1, ..., k,} spans mﬂt for t in the

interval [0,:1], where ty has been chosen above. This means that we have been

able to choose the controls so that, for small t > 0, the state defined by system
(2) can be steered into any direction of the tangent space on M at the point n, -

Vt(é). Then by definition the system is locally controllable along the reference
solution vt(¢), for all ¢ ¢ M.

Remark 3. Theorems 1 and 2 remain true as stated if the Hk’ k=0, ..., r, are
not skew-Hermitian.

Example 1. The theorems of the present paper are aimed at an infinite-
dimensional space of quantum states. However, the results obtained herein are still
valid (with trivial alterations) for a finite-dimensional state space. As pointed

out in Remark 3, from a mathematical standpoint we may also dispense with the
assumption that the generators Ho, ..., H  are skew-Hermitian.

r
For example, consider a nonlinear control system on Rm, m < «, defined by
Lo x(6) = Alx(t)) + u(©B(X(E)) , x(0) = X (16)
where A and B are real analytic vector fields corresponding to nonlinear
operators of the sort introduced in Section II. Then, as argued in Ref. 18, a
sufficient condition for local controllability along the homogeneous (u - 0)

solution of (14) is rank([adZB]xo, v =0,1,2,...,] =m, This is precisely the

condition which would enter the finite-state-space version of Theorem 2. Problem
(14) does not strictly refer to a quantum-mechanical system; its study is,
nevertheless, illuminating.

While surely of high interest, the identification and analysis of "non-trivial"
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examples of the utility of Theorem 2, meaning examples concerned with novel quantum
control systems characterized by poplinear generators, exceeds the scope of the

present work.

V. SUMMARY AND OUTLOOK

It has been our aim to augment the foundation for the concept of
controllability of quantum-mechanical systems [12]. In the generalized, nonlinear
formulation of the quantum control problem, we were able to determine conditions for
the property of local controllability along a homogeneous (i.e., control-free)
solution, without having to refer to the existence of an analytic domain which was
assumed in the global analysis of {12]. (Our treatment of this case amounts to an
extension of Hermes’ work {18] to a multi-input, complex-state problem.) From the
results obtained herein on the controllability of the solution of nonlinear
Schrodinger equations, one may regain, upon appropriate specialization or
adaptation, certain well-known systems-theoretic results in finite-dimensional state
space (see, in particular, Refs. 13-18).

Clearly, only a modest beginning has been made toward achieving the larger goal
of a comprehensive theory of quantum control. The following problems, among others,
await concerted effort:

i) Adaptation of the notions of observability, identification, realization,
and feedback to the quantum context [27].

(ii) Study of a controlled version of the Schrodinger equation for the time
evolution of the density operator, [19) so as to extend control theory to the realm
of quantum statistical mechanics.

It is evident that powerful mathematical techniques must be invoked to carry
through this program; moreover, one must confront the profound conceptual obstacles

intrinsic to the quantum measurement process [25,28,29].
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§1 Feynman's approach revisited

Feynman left us, recently, and we still have to face the challenge to understand the deep meaning of
his original approach to quantum physics [1]. No serious theoretical physicist doubts that, in a
certain way, Feynman was profoundly right, but one has to admit that this way is still unknown to
us, at least for those of us who think that a good physical theory should be mathematically
consistent.

It has been thought for a long time that the rigorous version of Feynman's path integral approach
is Kac's one, involving Wiener integral and the theory of Brownian motion [2). Although it is
rigorous, there are suspicions that this is not what we need for quantum physics. For example, the
(Euclidean) program of constructive field theory, founded on Feynman-Kac formula, did not
succeed in producing realistic quantum field theories [3]. On the other hand, it is certainly true that
to deal with the heat equation (i.e. the "imaginary time” Schrodinger equation)

20" *
-fis-=HO (1.1

in L2(IR3), for instance, with H the Hamiltonian observable of the system, simplifies considerably
the analysis. This transfer principle from the Schridinger equation

iﬁg%y = HY (1.2)

to the heat equation (1.1) is called the Euclidean point of view. It has proved to be technically very
useful in both non-relativistic and relativistic quantum physics [3], but the theoretical reasons for
this efficiency are lacking,

Another, completely different, Euclidean starting point for quantum physics has been introduced
recently [4-5). It involves a new class of (well defined) diffusion processes, the Bernstein
processes, whose properties differ notably from the properties of the stochastic processes
associated with Feynman-Kac formula. In particular, these processes have dynamical
characteristics very close to the (formal) diffusions underlying Feynman's path integral, including
the time reversibility.
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It is not the first time that time-symmetric diffusion processes are used in relation with
foundational questions of quantum mechanics: this has been done twenty years ago by E. Nelson
{7l. The basic point of his theory ("Stochastic Mechanics”) was to deal directly with the
Schrodinger equation (1.2). The theory that we are advocating here (“Euclidean Quantum
Mechanics” {5]), although it uses some common technical tools, is different and much easier to link
to Feynman’s original strategy. In particular, it shed some new light on Feynman's version of
Least action principle, in a generalization of classical calculus of variation which may be of some
intrinsic interest for the specialists of control theory.

It should also be noticed that Euclidean Quantum Mechanics (EQM) has been inspired by a
forgotten idea of E. Schrisdinger (8.

In the present contribution, we are going to focus on the case of a unit mass and charge particle in
an electromagnetic field, namely a self adjoint Hamiltonian for (1.2) of the form

2 2
= - .ﬁz_ V-if%al +o (1.3)

on L2(IR3), where @ = ?(x) is the vector potential and @ = @(x) is the scalar potential such that the
- -
magnetic and electric fields H and E satisfy

-3
1ot a

_V(p

1.4

md md
[}

Afterwards, the arrows are reserved for electromagnetic data, First, we are going to assume the

existence of a certain IR3-valued diffusion process Z,, tinI = [~ ;— ) -21;] and to describe its

properties. We shall discuss later the question of its existence.
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§2. Action functional and dynamics

-(t-s)H

Let us denote by h(x,t-s,y) the integral kernel of e , @§ an operator in LZ((R3). Even when

the scalar potential ¢ is zero, the Hamiltonian H of (1.3) is such that e'(t's)H

preserving (it is not even reality preserving).

is not positivity

In a Euclidean approach, however, the quantum mechanical momentum P = -iV should become -V
since the time parameter T of the Schridinger equation is analytically continued, T -+ -it. It is
therefore natural to consider, as Euclidean version of (1.3),

ﬁl -I-)2 >
HA='TW+H Al +¢ (1.3

e d -
where A corresponds to ~ia .
Let us consider a positive (smooth) solution o* of Eq. (1.1) for the Hamiltonian H A Let us define

I, (x,0) = ~h log 0¥ (x,1) @.1)

Tt solves the following nonlinear partial differential equation

d, k N ’ -9 - o
a_'EAI* +(VL-A)VL, = 3| VI,-A "+ @+ (VI,-A).A -

*
: V.A 2

[T

Comparing the left hand side with the backward infinitesimal generator of an (R3—valucd diffusion

-
process Zt with diffusion coefficient i and (backward) drift B, = VI,-A, namely the second order

3>:|R-7|R3by

differential operator D, defined for any smooth f:R
0 N
D, f(x,t) = (5; +B,V- EV) £(x,0) 2.3)

we observe that (2.2) reduces to
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1 2 -> h ->
DLy (z,(0),0) = 7D, ZMI" + 9(Z()) + A D, Z(1) - ) V.a 2.2)

Now consider (formally) the classical limit h = O of this expression. Then t » Z(t) has a

continuous strong derivative, and D f(Z(t),t) reduces to -t%f(Z(t),t). In particular, the r.h.s. of (2.2')

is the (Euclidean) Lagrangian of the system and, therefore, the Lh.s. is the derivative of the
(Euclidean) Hamilton's principal function. For h # 0, we call I, defined by (2.1), the backward
Hamiltonian principal function (or simply Action function) associated with the starting Hamiltonian
(1.3"). We also define the Lagrangian L of the system by the right hand side of (2.2'), namely

L(Z1t),D,Z(t)) =3 ID,,,Z(t)I2 + @(Z() + A D,Z(1) - -'21 2.9)

Let us show that these definitions are dynamically consistent. Taking the gradient of (2.2) and

. . . N - <> o - .
using the vector identity V(a.b) = BVa +2Vb +3a xr0t b + b x ot a, we obtain

- -
D,D,Z() = Vg + D,Z() xTot A -2 rot ot A @.5)

This is clearly a generalization of the classical Newton equation for the Lorentz force acting on the
charged particle. The change of sign of the force is natural in a Euclidean description.

The presence of h in the definition of the Lagrangian (2.4) may seem alarming, but it is not. The
conditional expectation of (2.2'), given the future position Z(t) = x, and a time integration, yields

Lx) - B, (2=, -l =

| [}

E_ | D20+ ozemacsk,_, | R,z -EvRa 2
¢ J EDZOE5 +@Z()MdT +E, | A.DyZ(t) -3 V.Alde (2.6)

=T/, T/,

But, according to Itd's calculus {14}, the second term of the right hand side reduces to
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t L
J' - K J' v -
Ex,t {AdZ - 2 Alde
-1/,

..'I‘/2

- -
where f A.dZ and f Ao dZ denote respectively the backward Ito's integral with respect to a
decreasing filtration U (i.e. the sigma algebra generated by Z(u), u 2 t) and the symmetric Fisk-

Stratonovich integral. Therefore the action function can also be expressed as the very classical
looking path integral

{ t
L&O=E,, _[ 41D, Z(@)? + oZ(V)}dt + By _[ AedZ+ B, [L(2(- ;), - ;)1 X))

-T/4 -1/,

Given (2.4), itis natural to call Generalized Potential U = U(Z,D,Z) the function

- he 2
U(ZD,Z) = ¢(Z) + A.D,Z - -2-V.A (2.8)
Observing that
- -+
D*(:TU -%‘- =~ (V<p+D.,ZxrotA--g- rotrot A) 2.9)
the Lagrangian (2.4) reduces to
L(Z,D,Z) = T(D,Z) + U(Z,D,2) (2.10)

for the Kinetic Energy T(D,Z) = ¥ ID*ZJZ.
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It follows from Eqgs. (2.5) and (2.10) that a (stochastic) Euler-Lagrange equation holds

D*(%z) - %: 0. @2.11)

This method of derivation uses only the decreasing filtration F and therefore breaks the natural

time symmetry of quantum theory. But let us observe that we can do the same using an incresing
filtration £, the forward analogue ot (2.3) (for B the forward drift)

DFf(x,t) = (% +B.V +78) f(x1)

and starting from a positive solution of the backward heat equation R g—? =H AO (well defined in

§5). Then, the analogue of Eq. (2.5) becomes

I 1 4
DDZ(t) = Vo + DZ(t) x rot A + 7 TOtTOL A.

In particular, if a unique diffusion Z[ adapted simultaneously to VA and A exists, it solves the time

symmetric Newton equation

% (DDZ(t) + D,D,Z(1)) = Vo + § (DZ + D,Z) x rot A

involving exclusively a natural generalization of the Lorentz force. The §4 will elaborate the
meaning of this remark.

On the other hand, the stochastic differential of the starting action function 1, is also defined by

a
dLy = VI, o dZ+— dt (2.12)

The comparison of this expression with its classical counterpart (when R = Q) suggests to define
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the (backward) Momentum and Energy of the systen: respectively by

oL
Ps B Bz " VI, (2.13)
and
o,
€y = (2.14)

A straightforward calculation using (2.2') shows that
Dye (Z)) =0 (2.15)

In other words, &4 is an ft-martingale, a natural generalization of the classical conservation of

energy in our context.

A very important property of Lagrangian mechanics is the gauge invariance. Suppose that, to the
starting Lagrangian (for example the one of (2.7)), is added the derivative of a smooth function F in
such a way that

t t
T(x9)=E_, j L(ZD,2)ds +E, , J D,F(Zs)ds + Ex'ti*(Z(—;), -;) (2.16)
) -T/2 > ~T/2

or equivalently [(Z,D,Z.S) = L(Z,D4Z) + D,F(Z,S). The explicit form of the supplementary
integrand, according to (2.3), is

oF

D*F = 35

+D,Z.VF - ;AF

It is immediate to verify that, for such a "Lagrangian” D,F, the Euler-Lagrange equation (2.11)
reduces to an identity. This means that, as in classical mechanics, the Euler-Lagrange equation
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(2.11) are invariant under the gauge transformation L - L + D,F.
Clearly, (2.16) corresponds to the following relation between actions,
To(x,0) = Lix,t) + F(x,1) (2.16)

This means that, under the same transformation, the Momentum and Energy (2.13) and (2.14)
become

Px=px+ VF (2.13"
E* = E* +%_I;: (2.14')

as in classical mechanics (up to an "Euclidean” sign).

On the other hand, by 2.1, 1,(x,0 = -h log 0*(x,1) and (2.16") gives the simple relation

By = O4(x,0 e F&D @.17)
It follows immediately that ("3,, solves the heat equation
: n2 > 3. .
—ﬁ-a%-: - (V+F*A- VF) 0,,+((p+%};-)0,, 2.18)

if 0, solves (1.1) for the Hamiltonian H A This is clearly the Euclidean version of a local gauge

transformation in the Schridinger equation (1.2)

The construction if valid for any regular positive solution of (1.1), in particular for its integral
kemel. In this case, the similarity with Feynman path integral is very striking.

The necessity to use a symmetric integral to describe vector potential has been shown by Feynman
is his original paper (1948). If our postulated diffusion process really exists, it has the dynamical
properties we need to construct a natural extension of classical mechanics compatible with
Feynman's ideas.
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§3. Calculus of variation

The validity of (2.11) suggests the existence of a variational calculus in which the action

_’
functionals are of the form (2.7). For A = (0, ¢ = V the following result holds:
Thearem

Let L the (Euclidean) Lagrangian L(q,q) = ¥ I(]I2 + V(q). A smooth diffusion process Z(s),
solution of the Newton equation

D,D,Z(s) = VV(Z(s) --2- <s<t

minimizes the action functional

4
1HZOl= B, _[ L(Z(s)D, Z(s))ds + EL4(Z(~), )
-T/,

on the set of neighbouring processes Z° such that D*Ze(- ;-) = VI*(ZE(— ;), - -}) and Ze(t) = X.

The relevant family of neighbouring diffusions contains IR3-valued :Ts-semimartingales of the

form

d,25s) = BYZ (9).9)ds + 4, W (5) -g<s<t G.1)
Z@=y

for W,(s) an _‘Fs-martin gale, and perturbed drifts defined by
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B}(x,9) = -h [ +eVe.) (x9) 32)
(V]

where g, is smooth, but arbitrary, and € is a small parameter. When €= 0, the process 78 is

the one of §2 (for X = 0) . The proof is elementary, starting from (2.1), I*(Ze(s),s) =-h

log 0'(Z€(s),s) , using the Theorem of variation of a stochastic differential equation with respect
to a parameter, and the inequality

DL I(ZE(s),9) < § BTAZES),5) + VZE() (3.3)

with equality iff €=0.

The point is that the stochastic Hamilton-Jacobi equation (2.2) is an equation of Dynamic
Programming familiar in Optimal Stochastic Control. Eq. (2.1) is a logarithmic transformation in
the sense of W.H. Fleming (Cf. [9], and these proceedings). The idea of a stochastic calculus of
variations of this kind for quantum mechanics (in the context of Nelson theory) is due to K. Yasue
[10L It gave rise to a lot of interesting works (Cf. references in [7] (1985) and [15], for example).

§4. Existence of diffusions

The odd point of the sirategy suggested in §2 is that it is time assymmetric. Clearly, if a
diffusion process can be used to give a meaning to Feynman's path integral approach of quantum
mechanics, it should be a time symmetric diffusion process. Since we are dealing with the heat
equation (1.1), the situation seems hopeless.

The solution of the puzzle was suggested by Schridinger 50 years ago [8] and developed in
(4, 5 and 6]. We summarize here this solution since it cannot be regarded, as yet, as common
knowledge. We say that a Hamiltonian H is in the Schrodinger class if h(s,x,t,y) = h(x,t-s,y) =

kernel fe~9H} 5 jointly continuous in x,y, t-s, and strictly nonnegative.

We observe that
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h(s,x,t,E)h(tEv.y) T T
h(s,x,t.E,v.y) = TEE) -z<s<i< v3< 7 4.1)
xEyin R

is the density of a probability measure with respect to d , called a Bernstein transition {4-5),

A stochastic process Zt 1 Qa IR3 is a Bernstein process iff for any bounded Borel
measurable g,

Elg(Z) |2, 7)) = EigZ)1Z,Z) Vs<t<vinI=[-5= @2)

where a’s is the increasing filtration till s (the “past”) and }‘u is the decreasing filtration from u

(the “future”). This is, in modern terms, the local Markov property, perfectly time symmetric.

The usual construction of diffusion processes starts from the data of an initial probability, a
(forward) transition probability and reconstruct the finite dimensional distributions according to the

.

picture;

V7070 Rt
future
-T72

It is also possible to do it from a final probability and a (backward) transition probability:

past —QQQ)—» time

-1/72

The following Theorem, due to Jamison [11], shows that a joint probability measure and a

Bemstein transition determine a Bernstein process on I = [ -;, -.2£] according to

m_) time
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Theoren

Let H(s,x,t.B,u,y) = J- h(s,x,t,d€,u,y) be a Bemstein transition, - ;< s<t<u< -'-;-. mbea
B

probability measure on the Borel sigma algebra ﬂ(IRS) x ﬂ(IRS) , Then there is a unique
probability measure l"m such that with respect to (2, op Pm) (where o is the sigma-algebra
generated by Zt ,tinl) Z isan IR3-valucd Bernstein process and

8) P(Z.r/,€B,Zy,€By)=mB xBy), B, By in 3R

b) P_(Z€BIZ,Z)=HsZ,tB,u,Z), Bin &R)

c) Pm(Z_T/2 € BS. Ztl € Bl Ztn € Bn . ZT/2 € BE) =

.[ dm(x,y) ‘[H(—T/2, X, t,,dx ,T/2,y)...‘[H(t X ot dx ,T/2,y) .
BBy B, 1™ B, n-1""n~-1"n""'n

The proof can be found in {11] (cf. also [4)). Its key idea is that, for fixed initial position, a
Bemstein transition is a backward Markovian transition probability and, for a fixed final position it
is a forward one.

The resulting Z,, t in I, is obviously not Markovian in general. To get a Bernstein

Markovian one and only one choice of joint probability m is possible, namely
m = M(BxBp) = . .[B 0*_.1. /2(x)h(x,T,y) O /2(y)dxdy 4.3)
s*°E

for any (unspecified) bounded positive measurable 0*_T /2 OT /2 With this choice, the finite
dimensional distributions of Z reduce to

PM(dxl’tl""dx n,t n} = 3j 36*_.1. /2(x)h(x,t1+ T/2, dxl)...h(dx - T/2 -tn,y)QT /2(y)dxdy. 44
R xR
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T T
for-f <t15t25---si.

The data that we are given, actually, are a pair of initial and final probability densities Pt /z(x)dx
and P /z(y)dy . So the marginals of the joint probability M give a system of non-linear
functional equations for 0* . 2 and Op /2 discovered by Schrodinger [8]:

010 j h(x,T,y) O5(y)dy = P_1,9(%)
3
R

01,59 [ 613,260 hx Tiy)ix = D)
3
R

4.5)

The existence theorem for the measure of the Markovian Bernstein process Zt , tin I, usesa
general result of Beurling [12] Cf. also [4-5);

Theorem

For H in the Schridinger class and P.t/2° Ppsz WO strictly positive probability
densities, then positive (not necessarily integrable) solutions {O*_T /20 Or /2} of (4.5) exist and

are unique.

The process Zt is then entirely determined, for tin I. Itis a diffusion process without killing.

For the Hamiltonian (1.3") its (backward) drift and diffusion matrix are, respectively, given by

BL(Z(D)) = (V1 - ) Z(1).0)
C,Z®H =h1 4.6)

where 1 is the 3 x 3 identity matrix, as predicted in §2.

The Bernstein diffusion Zt is time symmetric. For each t in I, its probability density is
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given by
px,tdx = OO*(x,t)dx 4.7

where O* solves the initial value problem (1.1) for 0*(x, -T/2) = 0*_. /o and O solves the
final value problem

L
== Ho

for 0(x, T/2) = GT /z(x) ,and the pair O“_T 72 Op /2 is a solution of the Schrédinger systems

(4.5). For a more accurate summary of the construction cf [16),
§5. Hilbert space approach.

The sense in which the new resulting theory can be regarded as an Euclidean version of
quantum mechanics (EQM) is clarified by the following analytical description. (Cf. [6].)

For H bounded below, the functional calculus enables us to take the analytical continuation
of a solution of the initial value problem for the Schridinger equation (1.2) (for h = 1). Then

O*X(x.t) = (I e_d' dEH(K)x)(x) , 4.8)

where {EH(X)} is the spectral family of H, solves the initial value problem for (1.1) in Lz(le) .

Suppose that % is an analytic vector for H with convergence radius T/2. Then

0, (xt) = ( j et aefon)) 4.9)

is also well defined, for t in I=[-T/2,T/2).
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Observing that

. 2
.[ 050" (x.ndx = Il (4.10)
R

one defines a dense linear subspace of L2(IR3) by

-~

¥ = (000 = ¢y, g in T/ 2y (4.11)

where ‘D(e(T/ 2) H) denotes the dense set of analytical vectors for H with convergence radins T/2.

Define U; 1 : "ff't - D(e(T/ 2)H) by O*x(t) - % and a scalar product in 'Tf't by

(0%, ©10%, ), = <U; 0%, ©1U; 0%, ©,

= <Xy 1%>, - (4.12)

The completion of ;i}t with respect to (- | -)t is an Hilbert space denoted by "l'f"t, and called the

forward Hilbert space. (:Vt , G -)t) can, actually, be identified with (L2,<- ] ->2) because
U: 1 has a unitary extension from ‘V"t onto L2 . In particular, each quantum mechanical operator
on L2(IR3) has its Euclidean analogue: if A : D(A)~ L2(IR3) is an observable, then

F

A-t

~u AU =TT Uy v 9, (4.13)

defines the forward operator associated with A .

So, under proper restrictions on the domains, the Euclidean version of Heisenberg equation
of motion is valid:
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d

F F
- AL = AHE . 4.14)

-
For example, the simplest Hamiltonian (1.3") with A = 0 corresponds here to

=-$P* 1+ 9Q (4.15)

(since iP is the quantum mechanical momentum) and then

F F
dQ( F dr t F.
" Pt e V(p(Qt ) (4.16)

are the {(Euclidean) Hamilton equations.

There is a natural probabilistic interpretation of these Euclidean observables, namely for ¢, %
regular enough and positive such that, according to (4.7), ‘rlx' ‘rl*x(x,t) dx is the probability density
of a Bemstein diffusion Z(t), t € I,

(@ O1Q0%®), = @ ®IUQL U e*w),

=<' Qf y 5
= ElZ(1)] 4.17)

and similarly for the other observables.

Some results of §2 become easier to interpret. For example, (2.13) means that

p* = VI T (4.18)
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where P is the Euclidean momentum. If we regard the Lh.s. of (4.18) as a random variable, using
éa.n,

Elp,] = [ 0P0* dx = (6*()) IPO*(), .
The same is true for the other observables.

Euclidean Quantum Mechanics has a dynamical structure which is notably different from

d

Nelson's Stochastic Mechanics. For example, if one defines a constant of motion Af by T

Af: 0 as suggested by (4.14), one shows easily that the associated random variable

a, = a*(Z(t),t), tinl, isan _'Ft -martingale, i.e. that D,a,(Z(),) = 0. 4.19)

This is an important aspect of the probabilistic structure of EQM, which is without equivalent
in Nelson's theory.

§6. A brief history of Euclidean Quantum Mechanics.

The basic idea of EQM is due to E Schridinger [81. Then S. Bernstein, R. Fortet, A. Beurling
and B. Jamison contributed to the mathematical clarification of Schrodinger’s intuition : cf [11],[12]
and references therein. The relation with quantum dynamics has been discovered in [4]. It was
initially motivated by open problems in Nelson's Stochastic Mechanics. Then, the Euclidean
approach has been developed on its own [5], under the name of “Euclidean Quantum Mechanics”,
and can be regarded as an alternative starting point for a Euclidean program of field theory. In [6]
the Hilbert space approach of the theory is elaborated.
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FROM TWO STOCHASTIC OPTIMAL CONTROL PROBLEMS
TO THE SCHRODINGER EQUATION
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Department of Mathematics and Statistics
Case Western Reserve University
Cleveland, Ohio 44106 (USA)

A. Blaquiere
Universite Paris 7, Laboratoire d’Automatique Theorique
Paris (FRANCE)

1. Introduction

In recent years, interest has developed in the connections between stochastic
control theory, dynamic programming and quantum mechanics (1-4, 7, 12, 13] and (related)
variational approaches [9, 11, 14, 15] to Nelson's stochastic mechanics [10]. 1In this
paper, we will start by considering two stochastic optimal control problems, one
"forward"” in time, one "backward" in time. We show that, if there are solutions to the
extended Hamilton-Jacobi equations associated with the control problems, then there is a
solution of a Schrodinger equation and conversely, if there is a sufficiently
well-behaved solution to a Schrodinger equation, there are solutions to a pair of
extended H-J equations. We note connections with Nelson's stochastic mechanics. The H-J
equations are equivalent to a pair of inhomogeneous "backward" and "forward" heat
equations via a well-known exponential transformation. One may thus pass from these to a

Schradinger equation (and back).

2, Definitions and Notations

We assume a given underlying probability space (Q,F,P). E" denotes n-dimensional
Euclidean space, (tg,t;) an interval in E!. S denotes (tg,t;) x E"; § = [tg.tq] x E™.
Definitions of stochastic process, Brownian motion will be taken from [6] as will other
elements of our framework which will be noted below.

A solution of a stochastic differential equation
d§ = b(t,£(t))dt + a(t,{(t))dw 2.1

with initial data §(s) = x is to be interpreted as in [6] as a solution of the integral

equation

t t

E(t) = £(8) + I b(r,£(xr))dr + J o(x,€é(x))dw(xr) (2.2)
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Here, w is standard Brownian motion of dimension n., With the vector notation

€=(&y,...4n), b=(by...by), we have

n
d€j = by(t,£())dt + § ojg(t,£(t))dwy i=1,...n

-1

The notation CL’Z(S) denotes the class of functions ¢ in C"Z(S) (meaning C1 in t,
Czin x) which satisfy I¢(t,x)l < D(1+lxlk) for some constants D,k, when (t,x) € S.

3. Two Stochastic Optimal Control Problems

We consider first a "forward* stochastic optimal control problem, Problem 1,
in 3.1, then the symmetric "backward" problem, Problem 2, in 3.2. The controls v and
¥ will take values in E".

3.1 Problem 1

Consider the stochastic differential equation
d§ = v(t,£(t))dt + odw (3.1.1)

with initial data £(8) = x ¢ E“, at time s ¢ (tp,ty). Here, w is a standard n-dimensional
Brownian motion, and

o1y = J2D 844

where § is the Kronecker delta, and D is a positive constant. We assume that v belongs

to a class of admissible control functions defined as follows:

Definition 3.1.A [6]. A feedback control law v (the term feedback refers to the fact
that the control is a function of the state £(t)) is admissible if v is a Borel

measurable function from S into En. such that

(a) For each (s,x), tg < s 5 ty, there exists a Brownian motion w such that (3.1.1)
with initial data £(s) = X has a solution £, unique in probability law; and

(b) For each k > 0, Esxlé(t)lk is bounded for s < t =< ty, and

t

1
Egx I [vee, e¢enfk de < »
8

(the bound may depend on (s,x)). The subscript sx refers to the fact that

£(8) = x.
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Either of the following conditions are sufficient for the admissibility of v:
(¢9) For some constant My, lv(t.y)l < M1(1+|y|) for all (t,y) € S. Moreover, for any
bounded Borel set B C E" and typ < t' < ty, there exists a constant K; such that, for all
X,y € Band t5 st 5 ¢t',

Jvee,x) - vie, ] = Ky |x-y]
(K; wmay depend on B,t’; and both M;, Ky may depend on v).

(11) v satisfies a Lipschitz condition on 5. Further, if (i) or (ii) holds, the
Brownian motion w can be specified in advance, which is the case in Problem 1.

Now, for (t,x) ¢ S and v ¢ En. let

L(t,x,v) = % w? + Q(t,x) (3.1.2)

where Q is continuous on S, and let Wy E* - Ry (R4 denoting non—negative real numbers)

be continuous and assunme

lace. )| = ¢ + [x)* (3.1.3)
W (x) £ c(1 + |x])

for some constants C,k.

We define a cost function

t
J(s,x,v) = Egy { I Y L(E.£(0), V(e E(E))dE + W1(€(t1)} .
s

The conditions on Q and W; ensure that J is finite.

Now let the optimal control problem be as follows: Find an admissible feedback
control v*, among all admissible feedback controls, which minimizes J(s,x,v). The
following Verification Theorem'gives sufficient conditions for the existence of a

minimizing v,

Theorem 3.1.B {6]. Let W(s,x) be a solution of the dynamic programming equation

n
- av min QH_ l 2
0-355+ %0, [ pav + 1Z1u1 i R Q(s,x)] (3.1.4)
(s,x) ¢ 8 )

with boundary data

Wity ,x) = W (x), x € E, (3.1.5)
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such that W is in C;'Z(S) and continuous on §. Then,

(a) W(s,x) < J(s,x,v) for any admissible feedback control v and any initial data
(8,X) ¢ S.

(b) If v* is an admissible feedback control such that

n
* L S 2
Daw + 3 vi(s,x) o 4 g m(vH(s,x))? + Qla,x)
n
- :LE“ { paw + 1Z1u1 %g; + % m? + Q(s,x)] (3.1.4)

for all (s,x) ¢ S, then W(s,x) = J(s,x,v*) for all (s,x) e S.
Thus, v* is optimal.

Now let us assume that there exists a W satisfying the hypotheses of the
Verification Theorem, and an optimal control v*. Then, since the controls take values
in En, which is open

*

mv” = - grad W for all (s,X) ¢ S (3.1.6)
and

oW 1 2

38 " " Davw + ”m (grad W)~ - Q (3.1.7)

for all (s,x) ¢ S. Equation (3.1.7) is analogous to the Hamilton-Jacobi equation of

classical mechanics; we shall refer to it as an extended Hamilton-Jacobi equation.

3.2 Problem 2

Now let us introduce another type of admissibility for a feedback control function

as follows:

Definition 3.2.A A feedback control law V is backward admissible if ¥ is such that

F(r,X) = - v(tg+ty-r,x) for all (r,x) ¢ S, and

G is an admissible feedback control law.

We consider the stochastic differential equation

dn = V(r,n(r))dr + J2Ddw (3.2.1)
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where ¥ is a backward admissible feedback control law, and
W(r) = w(tg+ty-r).

We say that n is a solution to (3.2.1) with terminal data n(o) = y ¢ En. with
tg Sr <o s ty, if n satisfies the integral equation

n(r) = n(a) - rwr,n(:))dr - r,/z_ndﬁ(:). (3.2.2)
T T

By making the change of variable

f =ty +ty - ¢,
g =ty +ty - 8,
f=ty+ty ~1r

(3.2.2) becomes
S
n(tg+ty-t) = n(ty+ty-s) - IV(to+t1-l. n(tp+ty-2))(-dL)
8
[ J2D dw(tg+te-2) . (3.2.3)

Define 3(!) - n(tg+ty-~-£L), Now (3.2.3) becomes

neE) = nls) + rGu,Q(z)) ar + rjz—o aw(ey (3.2.4)
8 8
and we have
ns) =y . (3.2.5)
We now define

- N 4 " a Aa - A
J(s,y,9) = Egy {I (7 (Feenen)? + actaniar + Wo(n(t1))}

s
m (o 2 o
- Egy { [’[5 (Fern)? + ez nar + wom(:o))}
0

= Jey. V) (3.2.6)
Here Q is the same as in Problem 1, ﬁoz E" - R; is continuous and

W(y) = 61 + [yD)K, (C,k as in (3.1.3)). Thus, Q(2,n(2)) = Q(to+ty-2, n(to+ty-£)).
We now consider, as in Problem 1, the problem of minimizing (3.2.6). For given

terminal data y ¢ E" at time o ¢ (tg,ty], we shall say that v* is backward optimal if
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¥* is backward admissible, and
J(a,y.¥) = J(a,y,7%)
for all backward admissible ¥.
In view of (3.2.4) - (3.2.6), we have the following version of the Verification
Theorem:
Theorem 3.2.B Let W be a solution of the dynamic programming equation

A A

39  pin A D aw 1 A A
- ALl = 2
0=-35+ 2 [ paw +1Z1u1 ayp P2t (s, ] (3.2.7)

(s,y) ¢S )

with W(ty,y} = ﬁc (y), ye En such that W is in C 2 (S) and continuous on S. Then:

(a) W(s,y) < J(s,y,s) for any admissible feedback control ; and any initial data
(s,y) ¢ S.

(b) If ;* is an admissible feedback control such that

" n = "
I aw 1 Age 2
DaAW + v*s, —— + 7 n{v + s, -
Z Vg + 5 n(F ey + Q)
A (3.2.8)
':“‘ [ DAW + Z "i. -1- mGZ + Q(s,y)]
veE® ay" 2
for all (s,y) ¢ S, then W(s,y) = J(s,y,c*) for all (s,y) € S; v* is optimal
Now suppose there exists a function W satisfying these hypotheses,

and an optimal control G*. Define

E(a,y) = W(tg+ty-0,y) , tg < o S ty

A

aw aw
Then W(to,y) - W(t1 ,y) and =— 30 - " 33 °

We define
V*(a,y) - V*(toﬂ:, -8,y) = — v*(s,y).
Now we have

0=- gg + Dol X ("’f("»Y))—— +3 L w@* .9 + Qo) (3.2.9)
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and, as in Problem 1,

o’ - grad @ (3.2.10)
W = 1 -2
3% - DaW ~ 5 (grad W)~ + Q on 8, (3.2.11)

We have let
W*(s,y) = - F*(totty-s,y) , y € EN.
From (3.2.6) we have

30,7, 9%) = J(s,y,v%). (3.2.12)

1f the Verification Theorem 3.2.B is satisfied, then ¥* is optimal; that is

Ja,y,0) = Jes,y. 0. (3.2.1%)

From (3.2.6) and (3.2.11), (3.2.12) implies

Jo.y,¥) = J(a,y,.¥%). (3.2.14)

for all backward admissible ¥,
Therefore, if G* is an optimal control in the sense of Theorem 3.2.A, then ¥ is a

backward optimal control for Problem 2, and the converse is also true.

4, Extended Hamilton-Jacobi Equations, the Schrodinger Equation
and Inhomogeneous Backward and Forward Heat Equations.

4.1 Extended Hamilton-Jacobi Equations and the Schrsdinger Equation

We have seen, that if there exist W, W, v*, rd satisfying the conditions

of the Verification Theorems, then W is a solution of the equation

2(e,x) - 3= (grad 6(t,x))° + DaG(e,x) + Qe,x) = 0 (4.1.1)

(t,x) € S
with

G(ty,x) = W (%), (4.1.2)
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and W is a solution of the equation

£5(t,%) + 3= (grad (t,10)° - DaG(t,x) - Q(t,x) = O (.1.3)

(t,x) € 5§
with

Gty ,x)y = Wy (x). (4.1.4)

We now show that, when there are solutions G, G of (4.1.1), (4.1.3), then there are

solutions of a Schrodinger equation. From now on D shall denote #/2m.

Proceeding as in [4], with G* = Q%E , H* = gég , we have
g—t (G*-H*) - ;—m (grad(G*-H*))? + Da(G*-H*) + Q = 0 (4.1.5)
o (e + ;7 (grad(G*+H*))2 + DA(G*+H*) - Q = 0 (4.1.6)

Adding and subtracting (4.1.5), (4.1.6) gives

*
o 3= (grad H%? + %; (grad ¢*) 2- pag* - Q = 0 (6.1.7)
*
96+ 1 grad u* grad ¢* - paH* ~ 0 (4.1.8)

Equations (4.1.7), (4.1.8) are equations (19), (20), of [4], except for the potential
Q which was taken to be zero in [4].

At this stage, we make the following observation: if we define

Q=1 (grad 6%? - 2pac* - @ (4.1.9)
then (4.1.7) becomes

*
g% + %.—' (grad HY)? - ;—m (grad G*)% + Dac* + G = 0 (4.1.10)

(4.1.8) is unchanged:

ac* 1 * * * 4.1.8)
Et—+n_|8radﬂ gradG = DAH™ = 0 (4.1.
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1f we now multiply (4.1.10) by i, and subtract (4.1.8), we obtain

1 * * 1 *y2
+ - grad H* grad G™ + %a (grad G™)

Q)IQ)

- (-6*+i4*) = — pan*

- -2% (grad H*)? - iDac* - 1}

or

(-G*+iH*) = {DA(-C*+ili*) + = = (grad(- -G*aiH*))? (4.1.11)

mlm
t

Straightforward differentiation gives us

Proposition 4.1.A. 1If G, G are solutions to (4.1.1), (4.1.3), then

b= exp[—wt] (4.1.12)

is a solution to

2 %\ 2 *
1 3L 2: ap + [(gra;ll 6" Aac* _ Q]é- 6.1.13)

Conversely, suppose we start with the Schradinger equation

1A —“'— -2 mp - P (t,x) ¢§ (4.1.14)

-~ A
with given potential P. Assume there is a solution % of (4.1.14), ¥ » 0, all (t,x), with

u+m] (4.1.15)

b oo (1

and suppcse that M and N are C"2 functions on §. Running the above arguments backwards,

we see
aN 1 2 1 2
3t + 55 (grad n° - % (grad M) + DalMf - P = O (4.1.16)
‘;—iz+i;gradn grad M — DaN = 0 (4.1.17)

The passage from (4.1.14) to the pair of equations (4.1.16), (4.1.17) was used by Louis
de Broglie for introducing his "theorie du guidage® (see [5]; equations (4.1.16),
(4.1.17) are the so-called equations (J) and (C) of Louis de Broglie). Together with
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this pair of equations he defined the quantum potential Q by
Qp = DaM ~ 1= (grad m)® (4.1.18)
P 2m ‘B o
The purpose of the definition (4.1.18) was to reduce equation (4.1.16) to the form

aN 1 2

at * 2 (Brad N)" + Qp - P =0 (4.1.19)
which is the Hamilton-Jacobi equation of classical mechanics for the motion of a mass-
point in the potential P — Qp. As the reader may anticipate, if we next

introduce the "modified potential" Q by

A 2

Q-P-2QP-9-2DM+SEE3—'-‘)— \ (4.1.20)
then

2_(my + ;—m (grad (N+M))2 - Da(N+M) - Q = 0 (4.1.21)

g—t(u-n) - ;—m (grad (M-N))? + Da(M-N) + Q = 0 (4.1.22)

Thus we have

Proposition 4.1.B. If

b = exp [M]

h
is a solution as above to
2 A

m%%-%—w - P, (4.2.12)

then (M-N) is a solution to

ac 1 2 "
3t ~ g (Brad 6)° +DaG +Q =0 , (4.1.23)

and (N+M) is a solution to

aG . 1 =2 - X
St * 5g (8rad 6)° —DaG - Q - 0 . (6.1.24)
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Equations (4.1.23, (4.1.24) are the equations (4.1.1), (4.1.3) with Q replaced by Q,
which is given by (4.1.20) (note that Q is specified once P is given, and N and

M subsequently determined).

Remark 4.1.C

Nelson's Stochastic Mechanics

In [10], Nelson considered a Markov process x(t) with forward and backward
drifts b and b, and diffusion coefficient A/2m as a model for the motion of a
particle of mass m subjected to an external force F. He showed, under assumptions,

that if one defines
1
u - 5(>-5,)

z - %[mb*] ,

then u and z satisfy

du A

3t " Im grad(div z) - grad(z-u) (4.1.25)
22 L F/m - (z9)z + (uV)u + =t su (4.1.26)
at 2m 1.

Then, using the fact that in the derivation of the above equations u was shown to

be a gradient
u = #/m grad R

where R = % log p, the probability density of x(t), and assuming that z is a gradient

also,
z = #/m grad §,

it is shown that, in the case F = -grad V,
¥ = exp(R+1S)

satisfies the Schrsdinger equation

2
3 ~f
lﬁgg--zm—bgbdr\hﬁ.

Conversely, one may start with any (normalized) solution ¥ to a SchrSdinger

equation, writing

¥ = exp(R+1S)

and
u - ] gzad R , z - A g;ad S ,

b = z+u , b* - zeu , p - |¢|2
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The Markov process with forward and backward drifts b and b* and diffusion
coefficient %/2m has probability density p.

Now, if there exist W, W, v*, ¥* satisfying the conditions of the
Verification Theorem, then, letting

=]

-

2

v -

W* and V* are solutions to (4.1.8), (4.1.10), i.e.,
o + L grad v* grad w* - pav* = 0
at m L1 L1

avr

1 wy2 1 *, 2 * .5
TR (grad V*)" - 5m (grad W')  + DaW” + Q = 0,

%y 2
6_15'7%:“_) -%AW*-Q

_uk
6 - exp[ W ;iv*]

is a solution to

2 2
i% [i1] - %E Y + [LEEEQ_Efl_ - g I\ Q] ¥

Then

at n
Letting
w- cgrad W' grad V¥
m m '
b = z+u , b, =z-u '
we have

b - -gr:dw -v*

b _gradw_v*

* m

(4.1.27)

(4.1.18)

This gives an interpretation of the forward and backward drifts of the Markov

process in Nelson’s stochastic mechanics as the optimal controls v* and ¥*,
Also p = |¢|z = exp(-2W*/A) (¥ normalized if necessary).
Taking gradients of (4.1.27), (4.2.28) gives

du
at -Daz -grad(z-u)

g% - 15552—9 - % grad z2 + % grad u? + Dau

(4.1.29)

(4.1.30)
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4f W*, v* are €13 functions, and Q is C' in X. As D = A/2m and u and z are
gradients, these are the same as (4.1.25) and (4.1.26), with F = -grad §.

4.2 Inhomogeneous "backward and forward" heat equations
Now, if we make the exponential transformation
$(t,x) = exp(-G(t,x)/h)
in equation (4.1.1), we have
2 _ . Q¢
3t Dag + %
with
-G(t1 ,x)
#(ty,x) = exp [—-—h—]
Similarly, if

3(t,x) » exp [ lgiﬁ*fl]

is put in (4.1.3), we have

--DA;-&-%Z

@]
ct

with

- -G(tg,x)
¢(tg,x) = exp [—:—x—-]

(4.2.1)

(4.2.2)

(4.2.3)

(4.2.4)

Thus from Proposition (4.1.B) and the above transformation we have the following

Fact I. 1If ¥ given by

¥ - exp [-H;-iN]
is a solution to (4.1.14), as in Proposition 4.1.B, then
i) ¢ = exp [‘iﬂ%ﬁl ] is a solution of

a
2 o pag+ M

(4.2.5)
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11) ¢ = exp [_—(!igl ] is a solution of

R
3 _ a7 - %Z (4.2.6)

A
iii) The square of the modulus of ¥(t,x) 1s given by

[t x)|? = exp(-24/m) = $(t,x) $(t,x) = $*(t,x)

iv) ¢* is a solution of the Fokker-Planck equation

n

.. 5y & J)4*) + Dagh

3t 1§1 3xy (vy(€087) + Dod (4.2.7)
where

vi(t,x) = 22 88L5%) oy g (4.2.8)

#(t,x) axy
(t,x) € 8.

Conversely, let 3, ¢ be the solutions of the equations

g% - Dag - % ¢ in  (ty.ty) x E" (4.2.9)

%% ~ -Dag + % $ 1in  (tp.ty) x E" (4.2.10)
satisfying conditions

#(tg.") = % (4.2.11)

F(ty,) = ¢y (4.2.12)

where R is bounded, continuous on S and satisfies a Holder condition with respect to x,
and 30 and ¢, are non-negative, continuous, and bounded functions on EN. (see [8]

for existence and uniqueness of j, 3). It may be seen, [8], that
;(:,x) > 0, and $(t,x) >0 in 8

provided that neither 30 nor ¢y vanishes identically. Now, defining W, W by

i - exp [:g] (4.2.13)
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3 = exp [% (46.2.14)

we see that W is a solution of

G 1 H

3t " 3a (grad G)” + DaG + R =~ 0 (4.2.15)
with

G(ty,x) = -k log ¢ (4.2.16)

and W is a solution of

G . 1 .2

3¢ * 2g (erad G)° -~ DaG - R -0 (4.2.17)
with

G{tg,x) = -& log §q (4.2.18)

Thus, from Proposition 4.1.A and the above arguments, we have
Fact II. If ¢, § are solutions to the Cauchy problems (4.2.9), (4.2.11) and (4.2.10),
(4.2.12), then

3 = exp [ '(%+ﬁ)2+1§5- 2] - exp [-ﬁ*+1§*]

n )
where

W, 0 5
satisfies

ay —#2 rad((%ﬁ'l)/z] z— Al - R | ¥ (4.2.19)
hgE -+ | 8 7 '
w

Note:

a) the solution ¥ of the Schr3d1nger equation (4.2.19) depends, like W and W, on
the initial and terminal data of the Cauchy problems.
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b)

Be.? - exp [RERLHED) - Gie) Fee,x)

- (e, x) . (4.2.20)
Fact I is obtained in the proof of Theorem 4.3 of [15]; Fact II is more or less implicit

in Theorem 4.4 and Corollary 4.4,1 of [15], however, the arguments here give Fact II
more directly,

Example Homogeneous "backward and forward" heat equations, n =1

The solution of

¥

gc - —Dag on {tg,ty] where 0 < typ <ty < T, 4.2.21)
- 1 -x2
$r(x) = 7?;BYTTETT exp [40(T-t1)] (4.2.22)

is known to be

- 1 -x2
¢(t,x) = 7Z?5?TTET exp [QD(T-c)) tg S t=<t (4.2.23)

Similarly, the solution of

38 _ 3¢
Z-p ﬁ (4.2.24)
io(x) -l exp [—"2——] (4.2.25)
JanDtu 4Dty
is known to be
St ~ =k exp [22 (4.2.26)
) = Fompe ** lave)- 2
Then
W(t,x) ~ —2uD log $(t,x)
m %
= 3 fog * uDlog(T-t) + mDlog 4xD (4.2.27)
= a ¥
W(t,x) = 7 + mDlog t + mDlog 4D . (4.2.28)
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Now,

o~ z 2
W (e,x) = (“—;E)a,x) - “T[J— + £] + T log(t(T-t)) + nblog 4aD

-t t
F*(e,x) = (il:i—ﬁ)(t,x) - “"‘Tz % - -ff—t] + ™2 (log t - log(T-t)) ,
V¥ (t,x) = ;’—x[t(gt)] AW*(t,x) - E%T)' .
e - PR ew - 5

[Px_’[__l_ + .1.] + Zog(t(T-t)) + ublog 101rD]

¥ = exp 4 |T-t  t
[
mx2 { T-2t mD t
+1i [T[t(T—t)] + Tlog['f—t]] (4.2.29)
[
satisfies
3 2
g _ a2 me? (T )°  _aT
L Tl e Al el fygocy =5y ¥ (4.2.30)
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APPENDIX. AN EXISTENCE THEOREM.

Theorem 1.
If Wl : E" R+ , continuous on En, satisfies
wl(x) < C(1+x2)

for some C, and if Q, continuous on S, satisfies

(a'l) 0 <-g—(is-—m’n’-‘l< K for some K, and for all (s,x) € S,

(A'2) Q is uniformly HSlder continuous in (s,x) in compact subsets of §,

then there exists W satisfying the hypotheses of the Verification Theorem 3.1.B.

First note that the exponential transformation has the property stated in

Remark 1.

The following conditions are equivalent
(i) F is a non negative continuous function on S, and F(t,x) < A(l +x2) for some A,
and for all (t,x) € S,

@ii) f is a continuous function on S which satisfies

1 » £(t,x) > M exp(-ox2), (t,x) €5, (¢))
for some constants M, a, with 1 » M> 0, o> 0, and
F
f = exp ( —Eﬁ) .

Proof of Remark 1I.

(1) = (ii)

F continuous on S implies that £ is continuous on S. Further

0 < F(t,x) < A(1+x2), (t,x) €S,
implies that

1> £(6,%) > exp(- hsdexp(- 5hs x2),  (5,x) €F .

We let M = exp(-A/2mD), a = A/2mD.

Since A > 0, we have 1> M> 0, a » 0. Therefore (i) = (ii) is established.
(ii) = (1)
From condition (1) it follows that

f(t,x) >0 for all (t,x) €S .
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Then, £ continuous on S implies that F A, - 2mD Log f 1is continuous on 5.

Further

1> £(t,x) > K exp(~-ax?), (t,x) €T

implies that

0 < F(t,x) < 2mD ax2 - 2uD Log M, (t,x) €S

with =2mD Log M > 0 since 13> M>0 .

Letting A 8 gyp (2mDa, = 2mD Log M) we have

0 < F(t,x) < A(1+x2), (t,x) €5,

so that (ii) = (i) is established.

for

and

Proof of Theorem !.

Let wl : BN - R+ , continuous on En. satisfy

W, (x) < C(1+x?) @
some C, and let Q, continuous on S, satisfy (A'l) and (A'2).
Consider the Cauchy problem

EE E g ~ 5 i n

s Dap + —-g-sz p in [to,tl}xE (3)

W (x)
ZmD

;(tI,X) =p,(x) 4 exp(- ) . %)

From the Theorem of Il'in (8), it follows that there exists a unique continuous

bounded solution p to that Cauchy problem, and further

P(s,x) >0 for (s,x) € 3. (6)]
Define W by ~
P(a,x) = exp (- 1(2—8;'.%2- , (s,x) € S. (6)

Substituting in (3) we obtain

%-—%;(gtadﬁ)2+nl\'ﬁ+q-0. @)
Now, let

v 4 - Tll' grad W for all (s,x) € S. (8)
Since

€M, rzl ﬁ-+nAﬁ+-‘-mv2+Q(sx) 9

38 i1 Vi ax; 2 ’

as a function of v on E" , has a unique minimum for v = V(s,x), and since from (7)
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(8), (9), the value of this minimum is

WL W2 +paAW + q =
35~ 3o (grad W) + DAW + Q = 0 ,

we conclude that :
W(s,x) is a solution of the dynamic programming equation
~ n ~
0=y oin |+ § oo M ol Q(s,x)]. (s,x) €8
3s n . i 3x. 2
vEE iml i
with boundary data

'ﬁ(:l.x) =W, x€ .

ch?

Further, since p is in (S), strictly positive and continuous on s, W is in

C]’Z(S) and continuous on 3.

What remains to be proved is that W satisfies a polynomial growth condition.
For that purpose, we will use an expression of the solution to a Cauchy problem

given in Theorem 5.3, p.148, of A. Friedmant.

By (A'l), (A'2) together with the fact that " is continuous and bounded, the
assumptions of that theorem are satisfied in the case of the Cauchy problem (3),
{4), so that we have

t "~
- 1 Qe,E () -
pls,x) = J p(F, (t)))exp (— j — do)duw) (10)
2 8

with E;x golution of
dE = /2D dw on [s,t.] ,
Ts) = x,

~ 3 [3 I3 . 3 I3 I3
where w is a standard n-dimensional Brownian motion with respect to some probabi-

lity space (2, F,P).

Since, by (A'l), 0 < (Q(s,x)/2mD) < K for some K and for all (s,x) € §, we

have

t, Q(U.Esx(o))
15 exp(— Is S da) > exp(—K(tl—s)) > exp(-K(t]-to)). (11)

t+ A. Friedman, Stochastic Differential Equations and Applications,
Vol. I, Academic Press, New York, 1975,
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Therefore, from (10), (11)
ja p (€, ()P W) > Fle,x) > B [n p(E,, (£))dF (), (12)

(8,x) €S

with 0 < B2 exp (R(e € )) < 1.
Now, by the transformation formula for integrals (see (6}), (l12) rewrites

J n k(S.x;tI.y)pl(y)dy > p(s,x) > B I . k(s,x;tl,y)pl(y)dy (13)
E

E
(s,x) €5, 0<B< 1,
where k is the transition density of Brownian motion.
Further, by (2}, Remark 1 and (4)
1> 0,(y) > ¥ exp(-ay?) , (14)
for some constants M, a, with 1> M>0, a>0.
At last let us prove that (13), (14) imply that
1>0(s,x) > Nexp (-8x?), (£,x) €5, (15)
for some constants N, B, with 1 » N> 0, B> 0.

Remember that

k(s,x;t,y) = [4"D(t'9)]-n/2 exp [_ Z% (t::)z |

The left-hand inequality in (15) is a direct consequence of the left-hand ine-

qualities in (13) and (14), since
I k(s.X;tI.y)pl(y)dy < I k(S.x;tl.y)dy =1.
E E"
Note that it implies that W(s,x) > O for all (s,x) €S .

The right-hand inequality in (15) is a consequence of the right-hand inequa-
lities in (13) and (14). Suppose a > 0 and defivne T > £ by

1 1

" %D T-t. °®
4D T tl

o

so that

M exp(-ay?) = M 73 k(t;,y;T,0) .
[lmD(T-cl)]-n
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Then, from the right-hand inequalities in (13), (14) we deduce

;(S,X) > M /2 IE k(s,X;Cl,Y)k(tl,Y;T:o)dY .

[an(T-tl)]
By Chapman-Kolmogorov formula, this is

BM

—————_7—- k(s,x;T.O).
LamD(T-£ )] 7 2

Further

k(s,x;T,0) = [lmD(T'S)]-n/z exp(~ A xz) >

4D T-s
> [4nD(T-t )]-n/2 exp (- A —EE— ) .
o 4D T—tl
Therefore, the right-hand inequality in (15) is proved with
T-t, n/2 1 )
N‘BM[T—-E: ’ B % T, "%

One can readily verify that ! » N > 0, and we already have 8 > 0.
For o = 0, (15) is trivial with N = BM, B =0 .

At last, by (6), (15), Remark 1, and by the fact that € Cl'z(S) and is

continuous on § :
We C;’Z(S)

and is continuous on §, which concludes the proof of Theorem 1.



GIRSANOV TRANSFORMATION AND TWO STOCHASTIC OPTIMAL CONTROL PROBLEMS.
THE SCHRODINGER SYSTEM AND RELATED CONTROLLABILITY RESULTS.
A. Blaquiére

Université Paris 7, Laboratoire d'Automatique Théorique
Paris (France)

1. INTRODUCTION.

At the begining of Quantum mechanics, two theoretical frames in good agreement
with experimental data emerged, namely the ones attached to the names of Heisenberg
and Schrodinger, During the past say about twenty years, taking advantage of the
evolution of mathematics in some domains as semi-groups, stochastic processes, sto-
chastic control, other theoretical frames have been proposed {13-18) among which
the most widely known is probably the one of Nelson. The fact is that, at the pre-
sent time, we are faced with two kinds of theories deeply different : the older ones
which deal with wave functions, wave equations and all the machinery associated with
them and the more recent ones which deal with stochastic differential equations and
parabolic equations. This has reopened an old debate since, among the theoretical
physicists, there is a robust tradition of resistance to the interpretation of quan-

tum phenomena in terms of classical diffusion processes.

One reason for physicists to reject the interpretation of quantum phenomena in
terms of classical diffusion processes is that diffusion processes are unable to

account for interference phenomena. This is partly true and partly wrong.

This is true in the sense that the theory of diffusion processes is based on a
"superposition principle",‘whose one expresgion is Kac's formula (another one is
the equation of Chapman-Kolmogorov) which does not account for interference pheno-
mena. In contrast, the theory of wave equations such as the Schrddinger equation
is based on another "superposition principle", whose one expression is Feynman's
formula (another one is the principle of Huygens-Fresnel) which does account for

interference phenomena,

This is wrong in the sense that, if one uses the theory of controf of diffusion
processes one is able to account for "interference patterns" without i;troducing
any "interference principle” as an ingredient. Nelson's stochastic mechanics - and
our Proposition 5.3.D - shows that, starting from a given probability distribution
at the initial time, one can control the motion of a random particle in such a way
that the terminal probability distribution coincides with any preassigned "interfe-
rence pattern" (under proper mathematical conditions indeed). The counterpart of

such a description is that the value of the control at a state x and at a time
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t<t; will depend in general on an information given at time ty, say {n the futune
of t. This is a typical situation in optimal control theory and, more generally in
the theory of the decision. One can easily understand that it may hurt physicists,
however we must point out that it is not Quantum mechanics which is implicated,
since the laws of Quantum mechanics are invariant under time reversal, but the ques—

tion of causality at the microphysics scale (which we will not discuss).

Even if the discussions concerning the interpretation of the basic concepts of
Quantum mechanics may seem futile, the fall out of the resurgence of an interpreta-
tion relying on stochastic processes is a partial answer to an important question :
Can one control a Schrodingen equation in onder to obtain a wave-function having
prescnibed propenties at the terminal time, starnting fnom some known initial data ?

We have based our proofs of the main theorems of this paper (Propositions 5.2.B,
5.3.D and 6.B) on properties of the Schnddingen dystem (Sec.5), a result originat-
ed in a paper of Schrddinger (8) published in 1932. Mathematical development of

Schrddinger's idea is due to Bernstein (9) and, later, to a few other authors, in
particular to Beurling (10) and Jamison {11). More recently, Zambrini (16) has re-
turned to Jamison's main theorems and has discussed some of their connections with
Physics. So doing, he has found a number of formulas and results previously obtainm-
ed in Ref. (14). However, whereas Ref. (14) starts from two stochastic optimal
control problems, the work of Zambrini starts from the two parabolic equations al-
ready used by Schrddinger, namely the equation of heat transfer and its adjoint,
The paper of Zambrini much clarifies the connections between the results of Ref.(14)
and the theory of reciprocal processes of Jamison. It also clarifies the relations

between this framework and the version created by Nelson.

In Sec.3, we refer to Problems 1 and 2 of Ref. (20) and we recall the results ob-
tained by performing the exponential change of variables on the generalized Hamilton-

Jacobi equations associated with them.

In Sec.4, we show how, starting from the generalized Hamilton-Jacobi equations
for these problems, one can obtain Kac's formula through the use of Cameron-Martin-
Girsanov transformation. This method is related to one developed by Mitter in Ref.
(7). We derive a version of Kac's formula which enables comparison with Feynman's
formula and, in a way, clarifies a point of divergence between the two sets of ideas

we started with at the begining of this introduction.

2. BASIC DEFINITIONS, NOTATIONS AND FACTS.

Our definitions of a dfochastic process, a n-dimensional Brownian motion {(n > 1),
a sofution o a system of stochastic differential equations, a Matkov procesd are
taken from (1).
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Unless otherwise specified,(ﬂ,F,P) will denote a given underlying probability
space, EP a n-dimensional Euclidean space, B(E™) (or B, when no confusion is possi-

ble) the o -algebra of Borel subsets of E®, [to,tl] a compact interval of E! .

Let the strip § .A__ (to,tl)xEn , and define

& 32f 2 (s,
Dsf(s.x) =A.- 2 aij(s,x) —ﬁf_—;';!:ﬂ + Z bi(s,x) ——,{E:—.x-)— - e(s,x)f(s,x) 2.1
i,j=1 J i=1 i
in E".

Our definition of a fundamentatl solution Y : (s,x;t,y) + Y(s,x;t,y) of the

differential equation

of
35 ¢ Dsf =0 (2.2)

in the strip 5 is taken from {5} (see also the Appendix of (4)).

The following theorem gives sufficient conditions for the existence and unique-

ness of a fundamental solution.

Theorem 2.A(4). Let the differential operator (2.1) satisfy the following con-
ditions :

(i) The coefficients 8ij' by, (i,j=1,...n) and ¢ are bounded and continuous on §

and satisfy a Holder condition with respect to x :
A
Iaij(s,x') - aij(s,x)l < K|x' -x|
Ibj(s,x’) = bi(s,x)| < l(lx'-xlA i,j=1,...n, A>0.
'c (s,x') - ¢ (s,x)] < K]x'-x[x

(ii) The coefficients aij satisfy a HSlder condition with respect to s @
l}\

[agj(s'.x) - aj;(s,@)| < K[s’-s

(iii) There exists a constant Y > 0 such that for all (s,x) € S and any collection

of real numbers Apsesedy @

n n
) ajj (8,515 > ¥ PRI
1,j=1 i=]

Then equation (2.2) has a fundamental solution Y and this solution is unique.

The solution has the following properties :

(iv) For any t°<s<t<t] ’
Y(s,x,t,¥) >0 .
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(v) The following inequalities are satisfied :

Y(s,x36,y) < M(t-s) ™2 exp (-a 1%53139

| aY(s,x t,z | < M(t-s) —(n+ l)/2exp (~a lX__l_)

| PZY_(S_Q_‘_:_‘.J_I < M(t-s) ~(n/2)= lexx)( -« LL_L)

ax ax
| -22£§§5151111 < M(t-s)-(nlz)-]exp (-a l%;gLE)

where M and & are some positive constants,

(vi) If, in S, the derivatives

day s 3%a. . ab,
1] 1] 1 PR

axs ' 9xi:dx: ' Ax: (1,5 = 1,...0)
] 1773 1

exigt, are bounded and continuous, and satisfy a Holder condition in x , then

Y(s,x;t,y) as a function of t,y satisfies the equation :

2
n 3%(a;. (t,y)Y) n 3. (t,y)Y)
E:)_‘c{' ) 3” ) -1 13 - e(t,y)Y . (2.3)
i,j=1 Y1 9 i=1 i

The proof that the two fundamental solutions Y and Y of (2.2) and (2.3), res-

pectively, are equal is given in Il1' in (5).

We now consider again the parabolic equation (2.2) with the terminal condition

£(t.y) = £,(») on E". (2.4)

A solution to the classical Cauchy problem for (2.2), (2.4) is defined to be a
of of

function f on § which is continuous in S, has continuous derivatives 3;— s oo

2
ai ng s (i,i=1,...0), in [to»t )xE", satisfies (2.2) in [to»t )xE" and the ter-

minal condition (2.4) where fl is a given continuous function.

We have the following theorem which, but for a change of variable, is Theorem 2
of Ref.(5) :

Theorem '2.B {5). In [to,tl)xEn there exists a unique bounded solution of the
Cauchy problem for (2.2),(2.4) if the following conditions hold :
(i) The coefficients a; i bs i» ¢ are bounded and continuous in S and satisfy condi-
tions (i), (ii), (iii) of Theorem 2.A, and

(ii) fl is continuous and bounded on E" .
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The solution is given by

fis,x) = I Y(s.x;tl.y)fl(y)dy on [to.tl)xEn . (2.5)
En

Note : Il'in actually considers the equation

g .
2 =D g (2.6)
with initial data n
gt ,x) = g (x) en E , 2.7)
and states that g is given by
8 = [ Et,xiome, s, 2.8
En

where Z is the fundamental solution of (2.6), and 2'(t°,x ;0,y) 1s equal to

Z(o,y;tgy,x) of Il'in. To pass from (2.6), (2.7) to (2.2), (2.4) we make the change
of variable o= tott =8 .

From Theorem 2.B, and the corresponding theorem of Il'in, it is easy to see that,

under the assumptions of these theorems :

f(s,x) = J Y(s,x;t,y)f(t,y)dy, tp <8<t £y (2.9)
En
and
glo,y) = I Z(r,x;q,y)g(r,x)dx , to S T1<0< ¢ty . (2.10)
gD

3. EXPONENTIAL TRANSFORMATION.

We refer to Problems 1 and 2 of Ref. (20). Keeping the same notation, we will
assume that there exist solutioms W, W, v*, v*, satisfying the hypotheses of the

Verification Theorems. Thus

W 1 2

38 DAW + Y (grad W) qQ, (3.1

mv*s - grad N*, (3.2)
for all (s,x) € § ; and

W = _ 1 =2

39 = DAW %2 (grad W) +Q, (3.3)

wmv*= grad W, (3.4)

for all (o,y) €S .

We now perform the exponential change of variable on (3.1), (3.2) ; that is,

we let

+ grad & (a/axl yeses a/an).
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p(s,x) & exp (- %) , (8w €F . (3.5)
(p can be defined on S since W is continuous on §) .
Thus
W, (x) A
p(tl,x) = exp ( - =3 ) S pl(x) . (3.6)

Equation (3.1) becomes
3
a0, (WES, (3.7)

and, from (3.2) we have

* 2D 9p (s,x)
vi(s,x) = p(s,x) 'T‘—i— N (S,X) €S . (3.8)

Further
apl(x)

3 X,
i

(3.9)

* 2D
Vi(tl.x) = E:?§S

if the partial derivatives exist.
Finding a solution to the equation

g—‘s’ = - DAY + (8,x) €8 , (3.10)

2.7
2mD " °
with continuous and bounded terminal data ?l(x), constitutes a Cauchy problem. We

have the following

Proposition 3.1.C. 1If Q satisfies
(Al) Q is bounded in §,
and
' ' A v n
(A2) IQ(s,x )-Q(s,x)] < Mlx —x] , x',x € E,
for some positive constants M, A, then there exists a unique continuous and bounded

solution p to the Cauchy problem (3.10) with

'E'(tl.X) = FI(X)-

This follows from a direct application of Theorem 2.B.

Thus, if we let p denote the fundamental solution of (3.10), then

e = [ plxenFendy, s<e<e . (3.1
En

Since Wl is continuous and non-negative, P given by (3.6) is continuous and

"bounded in E®. It then follows from (3.6) and (3.7) that if (Al), (A2) hold, then

p(s,x) = I p(s,xit,y) p (e,y)dy, s<egt (3.12)
En
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that is
exp (- E%,‘ﬁ‘l) - [ p(s,x3t,y)exp (- E%’,%)-)dy, s<tgt . (3.13)

En

Likewise, we make the exponential change of variable

p(a,y) A exp (- w—%’gl) , (0,y) €5, (3.14)
with _

— _ W ()

Po(y) A p(t ,y) = exp (- "E)T) . (3.15)

Equation (3.3) becomes

30 appp -3 .
30 Dap 2mD P, (o,y) €5, (3.16)
and, from (3.4) we have
(o) = -2 W gy es, (3.17)
i - y.

n(o,y) i

Further _

_ 3p_(y)

vi*(to,y) -2 a° (3.18)
po(¥) i

if the partial derivatives exist,

Again from Theorem 2,B, assuming (Al), (A2) hold, we have the existence and uni-
ot

queness of a continuous and bounded solution p to the Cauchy problem

o
]
2womp-5%, (yeEs, (3.19)

with continuous and bounded initial data
Py =5 (), yeE". (3.20)

Further, if we let p denote the fundamental solution of (3.19), then

Blo,y) = J n Plt,x350,¥) B (1,x)dx , t,KT<0 . (3.21)

E

From the remark following Theorem 2.A, p = p. Thus

p(0,y) -I p(1,%;0,y) B (1,x)dx , tp<T<0 (3.22)
En

Since W; is continuous and non-negative, ;; given by (3.15) is continuous and

bounded in E™. It then follows from (3.15)and (3.16) that if (Al), (A2) hold, then

o(a,y) = I p(T,x;0,y) p (1,%)dx , t,<T<0; (3.23)
En
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that is
exr (- 20 ) | pcermion v ((BG2 Jor, <e<o. o

En

4. SEMIGROUPS DEFINED BY KAC'S FORMULA .

4.1. Cameron-Martin-Girsanov Transformation.

It is usual (see for instance (6)) to associate with the parabolic equation
(2.2) the gsystem of stochastic differential equations
d% = B(r)de + y(r)dw (4.1.1)
n

ij=1

with B(e) £ (b, (£,T(e)), 00 B(e,B())), ¥2(0) = 22y (e, E()))

~, 0 s 3 2 3 2 :
w is a standard n-dimensional Brownian motion with respect to some probability mea-

~
sure P

In the case of equation (3.7) where

n
2 _ Q
D = D — - s
70l T
(4.1.1) reads
dE = /20 dv . (4.1.2)

Now, in Problem 1, we are faced with two systems of stochastic differential

equations, namely (4.1.2) and
dg = v*(t,E(t))de + V2D dw . (4.1.3)
A relation between them is provided by the Cameron-Martin-Girsanov transformation.
A similar discussion holds in the case of Problem 2.

We have assumed that there exists a W satisfying the hypotheses of the Verifi-
cation Theorem, and an optimal control v*, and that Q is continuous and bounded in
§ . Further let W satisfy
(Bl) W is of class Cl’2 (see (1)) ; that is, the partial derivatives W, “xi' Y. x.

- i
are continuous on S . ]

Let us apply the Ito stochastic differential rule {1) to W(t,£(t)) where ¥ satis~
fies (4.1.2). Then

t
W E ) - e, E6) = | B 0,F@)o +
8

n ¢ D ot L,
+ 1 l 2L (0, E(0))dF; () +D ] I :—x% (0,(0))do . (4.1.4)
i=] ‘s 1 i=1 Jg i
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Otherwise we deduce from (3.1)

t t n * 2
[ aw@Tonds =~ [ B o tondo s g5 I [ (& 0Fen) @0
8 s i=1 g1
n t 2
-p I uﬁ (0,E(0))do . (4.1.5)
i-l 8 Bxi

Note that, in view of (Bl) and the continuity of Q on S, {3.1) holds for all
(s,x) €S , so that, in both relations (4.1.4), (4.1.5) we have t, <s<tg tl .

By adding (4.1.4) and (4.1.5) we obtain
t

L Q(0,%(0))do + W(t,T(t)) - W(s,E(s)) =

n ot o not o )2
- I 2 (0, (0) 4o ] I (3?;(“- (a.:(a))) da (4.1.6)
i=s] ‘g 1 i=] ’8 1

from which we readily deduce, by taking the exponentials of both sides after divi-

sion by -2mD ,

i ICRAG)) A
exp ;t(g) - exp ( 2mD ) exp (- I (aifﬂ()a)) da) 4.1.72)
i w(s,E(s)) s
exp (- —TmD—_)
with
t t
;;(e) -[ 8(o)dw(a) - -;-[ [8(o)}2do , and (4.1.8)
S 8
8(t) = 7%.5v*(r.,?;‘(:)) - - = '2D grad w(e.F(0)) . (4.1.9)

Now assuming
(B2) |v*(t,x)] <M for some M, (t,x) € 3 R

we are ready to apply

Theorem 4.1.A {1). Let P be absolutely continuous with respect to P, with

P(dw) = exp cz(e)?(dm) ) t°<s<t<T<tl .
Then

(a) P(Q) = I (hence (Q,F,P) is a probability space).

t
(b) Let w(t) = w(t) - j 8(a)doc . Then w is a standard n-dimensional Brownian
's

motion with respect to P.
(c) Let B =8 +v9 . Then

t t
£(t) - £(s) -[ Blads + [ T(o)avo) .
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Here £ and £ have the same sample functions, but are considered as stochastic

processes with respect to different probability measures P and 7.

From (4.1.2) we have

T(t) - E(s) = V2D (W(t) -W(s)) (4.1.10)
Then, from (b) of Theorem 4.1.A with (4.1.9) and (4.1.10) we deduce
1~ ~ ~ L T P
w(e) = -k @©)-T6)) + Fa) - L A @ E a0 G.1.11)
and
w(s) = W(s) 4.1.12)

At last (4.1.11) and (4.1.12) result in
t
E(e) = E(s) + j v*(0,%(0))do + /ID (w(t) ~w(s)) .
8
This is what condition (c) of the Theorem states since, here, B = 0, Y = V2D I

where I is the nxn unity matrix, and
* ~
B =v (t.E(t)) .

In other words, provided that W and w are related by the condition (b) of Theo-
rem 4.1.A, and provided that the initial data satisfy E(s,0) = E(s,w), for w € Q
a.s.*,then the solutions E and £ of (4.1.2) and (4.1.3) with these initial data,
respectively, are stochastic processes on (Q,F,P) and (Q,F,P), respectively, which
have the same sampfe functions. Note that, here, the Brownian motion w is not giv-
en in advance (in contrast to Sect.3). It arises in the course of changing the

probability measure.

4.2, Kac's Formula.

Now let the initial data associated with (4.1.2) be E(s) = x € E® , at time
s € [to't]) , and denote by ng the corresponding solution. Then, in formula

(4.1.7) we have W(s,?(s)) = W(s,x). From (4.1.7) and (a) of Theorem 4.1.A we ob-

tain ~ ~
W(T,E_ (1)) T Q(o,&_ (o)) ~
exp (- W_g;l.,_x)) = I exp (- ——2%—)exp(-1 ——zm’#— da)dP(m).

Q s
(4.1.13)

to<Ks<T<t .

(4.1.13) is Rac's formula. This formula turns out to be valid for a much larger
class of potentials (see (7)). Here we have nroved (4.1.13) under the assumotions
a1y, (sl), (B2).

+ P or P-almost surely since P < Pand P<P .
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In a restricted case, we shall give formula (4.1.13) another form, sometimes more
suggestive. Now, in addition to the fact that Q is continuous and bounded in § (see
(Al)) let Q satisfy

(B3) Q(t,x) >0 for all (t,x) €5 .

In view of the continuity of E;x on [s,tl] for P - almost every w € 2, and of

the continuity of Q, we have
s+h
exp (- 7%3 J Q(U.E;x(o))do) -]- Qéiﬁll h + o(h,w) (4.1.14)
s

;-almost surely, for h>0 sufficiently small, where lim iﬂ!%fﬂll =0 for w € 2,
hto

Let us first prove that

limI l‘L('L—“)—L d¥ () =0 . (4.1.15)

hio /g

Since, from (Al) and (B3), 0 < (Q(t,x)/2mD) < K for some K, and for all (t,x)ES,

we have

h ~
o< {.-ex,,(- . E* Q(o,Esx(o))dU)} <1 (l-exp(KW)} < K (4.1.16)

From (4.1.14) and (4.1.16) it follows that

o(h,w)
h

-XK< <K,

so that (|o(h,m)|/h) < K, and (4.1.15) follows from the Lebesgue dominated conver-

gence theorem.

Now, from (4.1.13) and (4.1.14) it follows that
W(s+h,E_ (s+h))y _
exp(- Wé:ﬂ.)x)}, (|_ Qé;f;‘) h)[nexp(- +) dP(w)+ a(h) 4.1.17)

W(s+h,T__(s+h)) o
exp (- —52——) ot aF W) -

with
a(h) & I
1]

By the transformation formula for integrals (see (1)), the first term in the
right-hand side of (4.1.17) rewrites

(1 - gézﬁzl h) J exp (- 313%2ﬁ22) k (s,x}s+h,y)dy
n

vhere k is the transition density of Brownian motion+.

t Note that 'i'{?:'sx(:)en} = J dF(w) = JdP*(y) = Ik(S.x;t.y)dy. BEB.

~ B
GROTY
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As concerns the second term, since (B3) implies that L, given by (3.1.2) of Ref.

(20) is non-negative, and since W, is non-negative, the cost function
f1
J(s,%,v) = E_, { [ L{t,&(t),v(t,E(t))dt + Hl(E(tl))}
s

is non-negative and so is the function W, Accordingly p(t,x) a exp (~W(t,x)/2mD)

is bounded on §, so that
a(l:l) < %l [o(h,w) |dF(w) for some A,
Q

and consequently, in view of (4.1.15)

limh%il--o,

hto

Therefore, if (A1), (Bl), (B2) and (B3) hold, then the Xac formula can be

written
exp(—- %:-'?éz-) -JEnexp(- w(;;g’z))(l -9;:6)‘) h +3‘(h)) k (s,x3s8+h,y)dy
(4.1.18)
~ to<s<s+h<tl,
where lim Io(h)l =0,

hto

or, equivalently, by writing k(s,x;s+h,y) explicitely and replacing

1- 20 14 Th) by exp {- 55 @s,10n + 0> (D)),

exp(-———"g]’)x) ) =

- (lurnh)'“/z[ exp(- "—(%‘—’L))exp(— ﬁ[%mith’ﬁ + Q(s,x)h+o' (h)])dY
En

(4.1.19)
C°<S<8+h<tl .
'
where lim -lg(—h)-l- 0.
hto h

A similar discussion, starting from Problem 2, leads to

n
E (4.1.20)
to<tsh<e<e,,
where lim L’-:-(—li'- =0
hio
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These formulas are to be compared with (3.13) and (3.24) . 1In fact, by
Dynkin's theory of G-subprocesses (see (2) and (3]), one can prove that, if (Al),
(B3) hold, then

p(s,xjs+h,y) = (4nDh)™ 2 exp(~ 51 'm—Y—)— + Q(s,x)h+o0" (h)]) . (4.1.21)

In (4.1.13) the functional

t Q(o,E. (o))
& wxgf- [ Em )
8

is an example of contracting, right-continuous, multiplicative functional of the
type of those which occur in the theory of a-subprocesses (see (3)). In such o=~
subprocesses, the trajectories of the original process (here, soclution of (4.1.2))
are terminated in a random matter ; here u: can be shown to be the conditional pro-
bability that a trajectory starting at (s,x) does not terminate during the time in-
terval (s,t], given that all phenomena connected with the process during the time
interval [s,t] are known. From (4.1.14), (4.1.15) it follows that the probability
that a trajectory, starting from x at time s, does terminate during the time inter-
val [s,s+h] is equal to (Q(s,x)/2mD)h up to an o(h). Thus the function Q/2mD is
called the teamination density. Therefore, in (4.1.21), p(s,x;s+h,y) 1is the pro-
duct of the transition density of the Brownian motion (corresponding to Q=0) and of
the non-termination density 1-(Q/2mD)h up to an o(h). This remark gives a simple
intuitive meaning to the formulas (4.1.19), (4.1.20).

4.3. Feynman's Formula.

Formula (4.1.13) is a variant of a result of Kac (17) who was trying to under-
stand Feynman (12). A basic formula in Feynman's theory of paths {integrals (12)
has formal similarities with (4.1.20) (see formula (4~5) on p.77 of (12]). It is,
but for a change of the notation

exp(- B2 -

g )2
.(lmiDh)-n/zI exp(- w(;;l.:ﬁx))exp(- 2m|iD [ %mﬁz-l—:-‘)—--p Q(t,y)h+o"' (h)])dx
£ (4.1.22)

to < t-h<tg t| s
with

We,y) = V(e y) + W (t,y),
where V* and W* are C"2 real valued functions on S ; D = h/2m (h : the reduced

Planck's constant).

The function ¢, given by

vit,y) = exp (- By )

2m1D
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is the wave-function of Quantum mechanics for the motion of a non-relativistic par-
ticle in a field of forces derived from the potential Q .

Except for the underlying idea of semi-group, (4.1.22) is deeply different from
(4.1.20), in spite of the formal gimilarity. Feynman's formula is an expression of
what is called in Physics the principle of inferferences , in contrast with what
physicists call ddssdpative processes.

5. SCHRODINGER SYSTEM AND CONTROLLABILITY RESULTS.

5.1. Schrédinger System.

In this sub-section, we shall continue to assume that there exist pairs of func-
tions (W,v*), (W,v*) satisfying the conditions of the Verification Theorems (i.e.,

v*,v* are optimal controls). As in Ref. (14), define

*
o*(t,%) 2 5l 00 (e,x) = exp (- L2y (5.1.1)
where _
W (e, & HEX) LRGN (t,x) €5 .

A S . = P
Like W, p is in C 'Z(S) and continuous on § ; further, it satisfies the

boundary conditions

W (x) +W(t_,x) _ Wit ,x)
D*(to.x) = exp (' -EL——TEE;—JL——— ) = (x) exp (‘ —_7§5_— ) ,
. ﬁ(tl.x) +Wl(x) W(tl.x)
P (tl.x) = exp (' ——Tmﬁ———) = exp (— W)pl(x) .

Now, assuming (A1), (A2) hold, using (3.13), (3.24), we have

p*(t %) = b, (x) I p(t_,xit;,y)o, (y)dy (5.1.2)
En
* —_
p(t,y) = ol(y) L:“ p(t ,x;t;,y)p (x)dx (5.1.3)
X,y € .

Equations (5.1.2), (5.1.3) are a pair of functional equations which form a

Schrddingen system (8)(16), which we now describe in more generality.

Jamison has proved the following (11).
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Theosrem 5.1.A (Jamison). Suppose M is a g-compact metric space, that u, and w,
are probability measures on its g-field I of Borel sets, and that q is an everywhere
continuous, strictly positive function on MxM, Then there is a unique pair p, W of
measures on IxX for which
(a) w is a probability measure and m is a o-finite product measure.

(b) wu(BxM) = u_ (B), u(MxB) = w, (8), BEXI,
(c) dp/dw = q.

Let M2 E" , £ B and q(x,y) & p(ty,xst),y), (x,y) € E"xE" . It follows from
(c) that

u(Bo xBI) = J p(to,x;tl,y)dﬂ(x,y), Bo,B, €8,
BoxBl
and since n is a o-finite product measure, there exist measures v, and v, on B
such that
u(B, x8)) = J P(to,xit ,y)dv, (x)dv, (y),  Bg.B, € B . (5.1.4)

BoxBI

Obviously, the pair (vo,vl) is not unique : for any pair (ko'kl) or real numbers
with kokl = ], the factor measures kovo . klvl , will produce the same w . In cade
w i3 finite, we can eliminate this inconvenience by normalizing the v,,v;, by the

condition

Javg(x) = fav,(y) = [fdn(x,y1'/2 .

In the general case, by Pubini's theorem, (5.1.4) can also be written

U(BO‘BI) = j d\’o(x) J p(toix;tliy)d\’l(y)i BO'Ble B,
By B)

so that (b) rewrites

¥o(By) = J dv, (x) J Pt xity,y)dv,(y), B,EB, (5.1.5)
B, ER

uI(BI) = J dvl(y) I p(to,x;tl,y)dvo(x) BI €B. (5.1.6)
BI ol

Denote by A the n-dimensional Lebesgue meaaure+. Suppose that p; €1, i = 0,1 .

t The argument can be easily extended to the case where A is any o¢-finite measure.



232

Let £ & du,/dA, g & duj/dX. Since du/d(v xv,) =q, d(vxv))/du=1/q, from which it

easily follows that v; € A, i=0,1. Let %‘ﬁ dvoldA and ?)'1 2 d\)lldl. Then (5.1.5)

and (5.1.6) are equivalent to

20 = 5,00 [ plequmie )y ey 5.1.7)
ED

g(y) = ?;l(y) I P(to”‘;tl’y)?"o(x)dx > (5.1.8)
ER x,y € EM |

Thus, according to (5.1.2), (5.1.3) and (5.1.7), (5.1.8), p_, P, » are solutions

to the Schrddinger system in the case where -
x
£(x) = p (£ ,%) , (5.1.9)
g(x) = p*(t),%) . (5.1.10)

From the definitions of f and g and from the fact that u, and u, are probability
measures, it follows that ffdA = fgdA = 1. Then, from (5.1.%), (5.1.10), (5.1.2)
and (5.1.3), and Fubini's theorem, we see that conditions (5.1.9), (5.1.10) require

that ﬁo and W, be such that

1
on J3°<x)p(:o,x;:,,y)p,(y)dxdy =1
Eann

Now consider p*(t,x). By direct computation using (3.7), (3.8), (3.16)
and (5.1.1), one can readily verify that the function p* satisfies

Ef_.-'zl Ay *) + Dap* (5.1.11

TS 2 5% vi(t,x)p ) + Dap . L.11)
) Wit ,»)

p*(to,~) = exp (- 55% )exp(- 2:9 ) (5.1.12)
Wt ,) ] (5.1.13)

s o (- Tl 1)

where ﬁ; and W, were given at the outset of Problems ! and 2 (not necessarily sa-

tisfying (Cl)) .

5.2. Controllability Problems for a Fokker-Planck Equation.

The Theorem of Jamison motivates us to consider the following

Controllability Problem 5.2.A. Given non-negative bounded continuous initial

data 4 and terminal data ¢l’ satisfying

Jo (x)dx = fo,(y)dy = 1 (5.2.1)
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find ¥ : 5 » E™ such that the equation

n
ia’% -- 7 —a—?; (v;(t,x)9) + DAY (5.2.2)
1 1

has a solution satisfying the initial condition
¢(t°)') = ¢°

and afs0 the terminal condition
¢(tlv') - ¢l-

In the specific case where (Al), (A2) and (Cl) hold, and
- * -
¢, =0 (t )
¢l = P‘(tlv°)
v = v*, the optimal control for Problem 1, is a solution to Problem 5.2.A .

Below, we let Uos ¥y be the probability measures on B defined byT

s Bl €EB.

u () = JB ¢, (x)dx, u(B) = JBl¢,(y)dy: B,
o

We let m be the g-finite product measure associated with Hy» U; by Theorem 5.1.A

with M=E" ,Z=8 ,q= p(to,';tl,-), and A be the n-dimensional Lebesgue measure.
By arguments similar to ones of Jamison in {11), which rely on results of Burling

(10}, one can prove

Proposition 5.2.B. There exists a solution to the Controllability Problem
5.2.A if one of the following conditions holds : ‘

(€2) ¢, and ¢ have compact support.

(C3) There is a factorization of w - say m = voxvp = such that v; <A, i = 0,1,

and the function dv;/dA, i = 0,1, are continuous and bounded.

The proof of Proposition 5.2.B will be given in another publication. It states
that, for £ = ¢, and g = L in (5.1.7), (5.1.8), if one of the conditions : (C2) or
(C3) holds, then the functions h and h given by

h(s,x) ﬁI p(S.x;t,,y)'El(y)dy in [to,tl)xE“ . (5.2.3)
En

h(t,y) -‘-’I p(ty,x36,y)p (0)dx  in  (r ,t,]xE", (5.2.4)
o

t Remember that §, and ¢} are non-negative bounded and continuous.
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with %;, ;l as in (5.1.7), (5.1.8), and h(t;,x) = ;I(X)’ E(to.y) - %o(y), are

solutions to the Cauchy problems

sh .
32 = - Dbh +2—33h . in [t xE",
~ (5.2.5)
h(r),x) =p(x) , inE" ,
&, - E. i n
3t DAL o) h, in (:o,:l]x E ,
(5.2.6)
(e ,y) = () , in E® .
Further, h(s,x) > 0 in [to,:l) xE® , and h(t,y) >0 in (to.tllx e" .
Letting
- 20 ah(t .
V(e - s WEE g, e €S, (5.2.7)
1
¢ (t,x) = h(t,x)h(t,x) , (t,x) €5, (5.2.8)

the proof of Proposition 5.2.B shows that v given by (5.2.7) is a solution to the
Controllability Problem 5.2.A, and that ¢ given by (5.2.8) is a corresponding solu-

tion of (5.2.2) satisfying the given end conditions.

5.3. Controllability Problem for a Stochastic Differential Equation.

Congider the following system of stochastic differential equations

dg = v(t,E(t))dt + V2D dw , t, <t (5.3.1)
with the initial data
E(to) =g, a.s. (5.3.2)
Assume

-~

(D1) The functions v and g%% , (i=1,,.. n), are bounded in S and uniformly
i
Lipschitz continuous in (t,x) in compact subsets of s .

From the stochastic representation of solutions of a parabolic equation (see (6])

we have the following

Theonem 5.3.A. Under the condition (D1), the transition probability function of

the solution of the stochastic differential system (5.3.1) has density, i.e.,

P(Esx(t) €B} = I 4(s,x;t,y)dy (s<t) (5.3.3)
B

for any Borel set B, and 4(s,x;t,y) is the fundamental solution of equation (5.2.2).
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Theorem 5.3.A is a direct consequence of Theorem 5.4, p.149, in Friedman (6), and
of the remark at the end of Theorem 2.A .

Ne have also

Proposition 5.3.B. Let (D1} hold and let g, be independant of F(u(t), t,<t<t),
B|E°|2 <% , Suppose the probability distribution - say u, - of Eo has density ¢,
continuous and bounded. Let ¢ be the solution of (5.2.2) with the initial data ¢°,
and £ be the solution of (5.3.1) with the initial data Ee Then, for any t°<t:<tl,
the probability distribution of E(t) has density, and that density is equal to

$(t,e) .

Proof. From Theorem 3.1, p.109 of (5) we deduce
P{EG)GB}-IP{Etx&)GB}m5u), BEB, to<E<E, L
ED °
Then, from (5.3.3)
E 3
P{E()EB} & P (B) -J [J &‘(to.x;t.y)dy]qso(x)dx
I‘:“ B
for any B € B, t°<|:<tl , where P: denotes the probability distribution of E(t).
By Fubini's theorem, this is also
I [ I ﬁ(to.x;t.y)¢°(x)dx]dy = J $(t,y)dy,
B ol B

which concludes the proof.

Proposition 5.3.B motivates us to consider the following

Contwollability Problem 5.3.C. Let E, be independent of F(w(t) , t°<t<t|)' .
E|5°[2 <« , with given probability distribution ¥, on B, having density ¢, conti- '
nuous and bounded. Let u| be another given probability measure on B, having densi-
ty ¢,- Find v : § » E®, satisfying (D!) such that the solution £ to (5.3.1),
(5.3.2) satisfy the end condition

P{g(c|) €B} = u (B) for all BEB .

As a direct consequence of Proposition 5.3.B, we have

Proposition 5.3.0. 1f v is a function defined on S, solution to the Controlla-
bility Problem 5.2.A with 4,s ¢ as in Problem 5.3.C, and if v satisfies (DI), then

Vv is a solution to Controllability Problem 5.3.C ,

Note : If v is a solution to the Controllability Problem 5.2.A satisfying the
assumptions of Proposition 5.3.D, our agsumption on ¢, requires that the given ¢

be continuous and bounded (by Il'in Theorem of Ref. (5)).
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In the specific case where (Al), (A2) and (Cl1) hold, and
¢O = p*(ton') ’
¢| = p*(tl’.) r

and v = v* (the optimal control for Problem 1) satisfies (D1), then v = v* is a

golution to Problem 5.3.C.

6. A CONTROLLABILITY RESULT FOR THE SCHRODINGER EQUATION.

Fact II of Ref.(20) motivates us to consider the following

Controllability Probfem 6.A. Given non-negative bounded continuous initial
data ¢, and terminal data ¢l, satisfying

f¢°(x)dx = f¢|(y)dy = ] 6.1)
find @* : S~ E| such that the Schrodinger equation

*
B _ . . _Q
3t iDAy + i T ¥ , D e h/2m , (6.2)

has a solution satisfying the initial condition
’ 2
Moce, ol =9,
and afs0 the terminal condition
2
HoCenoll =9, -

For that problem, we have

Proposition 6.B. If one of the conditions : (C2) or (C3) holds, then there

exists a solution to the Controllability Problem 6.A.

Proof. 1lLet Q be arbitrary, continuous on S and satisfying (A1), (A2) (for

_instance let Q = 0).

Solve the Schrddinger system

000 = T 00 [ plexie 0, 0y 6.3)
EP
4, = @ ) I p(to.x;t,,y)75;(X)dx s (6.4)
Bn
for GQ, @°, (with p associated with the given Q) .

Assume one of the conditions : {C2) or (C3) holds.

Then, recalling equations (5.2.3), (5.2.4) with EI =9, %o = GO , the functions
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@ and @ given by
. n
® (s,x) & -{ p(s,xit),y) ©,(¥)dy in le,e ) xE-,
E"
— . n
9 (c,y 4 J p(to.x;f-'Y) 9, (x)dx in (to,tll *E,
En

(6.

5)

(6.6)

with $(tl,x) L] w'(x), $(t°,y) = Go(y), are solutions to the Cauchy problems

W, n
ae DAY + 5= @, in [to,tl)x ER ,

G (tl'x) = ‘D](x) y in En .

o

LI . Q i n
3t DAp 7mp P 0+ iR (to,tl) xE",
o — . n

¢ (to.y) = wo(y) , inE

Further, ®(s,x) > 0 in [t ,t)) xE", and $(t,y) > 0 in (¢, ] %E"
Then, define @, i by

~

a;(ttx) = exp - i‘-‘f_u' ), in [to,tl)XEn,

B(t,x) = exp ('"zzj_n )y in (e .t ] xE" .
Now define T* and & on § by

V= (/@ -,

W= /@ + .

Let

qaq+ 2 [paf* - _2%1_ (grad )21 ,
T2 & exp (ﬁ @t + iﬁ*(c.x»). ons .

Then, by Fact II of Ref.(20), ¥ is a solution of the Schrddinger equation

LR P S
TR I =~

Since
¥R = e, %) § (e,x)
and since 33 is continuous on § and satisfies

Ble X)) B (e %) = ¢ (x)

®e B e,y = 6,00

(6

(6.

(6

(6.

(6.

(6.

(6.

(6.

(6.

(6.

(6.

(6.

(6.

(6

.7)

8)

.9)

10)

1)

12)

13)

14)

15)

16)

17

18)

19)

.20)
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the solution of the Schrodinger equation we have found satisfies the given end

conditions.

Therefore Q* = Q is a solution to the Controllability Problem 6.A.
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APPENDIX I. TRANSITION DENSITY OF AN OPTIMALLY CONTROLLED PROCESS.

(see Paragraph 4.1) .

Under assumption (B 2), exp ;:(e) is a martingalet so that

Elexp ;E(e)lFt] = exp ;:(B), t, <s<t<T<t (1.1)

l »
relative to the probability space (%, F,B). Fe is an increasing family of sub- o~
algebras of J to which W is adapted.

From (a) of Theorem 4.1.A, exp ;:(6) is ?—integrable and from the definition of
E [IFt] we havefT

I E exp ;Z(e)lFt]F(dm) - I exp ;:(eii(dm), BEB , (1.2)
£(t)EB E(t)EB

From (I.1) and (I.2) it follows that
I exp Cz(e)g(dm) = I exp ;:(B)F(dm) (1.3)
g(t)eB ) E(t)€EB

to <s<t<T<t BEB.

l H]
Then, following Fleming and Rishel (Ref.{1),p.143) we let

Bt,y) & Blexp g (0)IB(E) =91,  yeE". (1.4)
For any BE B

P{E(t) € B} = I exp cz(e)?(dm) = J exp c:(e)?(dm) =
g(t)€B £(t)EB

-Iunwﬁ@w.
B

where ?t denotes the distribution of the n-dimensional random vector E(t), defin-
ed by
7, (8) = P(E(e) € B}, BEB.

The left side is nt(B). Therefore L is absolutely continuous with respect to
“t' and

7, (dy) = B(t,y)T (dy) .

+ See for instance : A. Bensoussan, Stochastic Control by Functional Analysis
Methods, North-Holland Pub. Co., Amsterdam, 1982.

++ Remember that & and E have the same sample functions, i.e.,E(',m)=E(-,m) .
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In particular, consider initial data T(s) = E(8) = x . Then ?t has the density
k(s,x;t,+), and accordingly T has the density q*(s,x;t,+), with
q*(s,x;t,y) = B(t,y)k(s,x;t,y) . (1.5)
Therefore, from (I.4),(I.5) and (41.7) we conclude that the process £ governed by
dg = v*(t,g(t))dt + /2D dw relative to (@, F ,P)
has the transition probability densité q* :
q*(s,x;t,y) =
exp (- HE), t Q0,E,, (o))
oD el )

exp (- W§ZBX)) a 2mD

~

Esx(t) = y] k(s,x;t,y). (1.6)

Note, in paragraph 4, one can relax condition (B 2) and make use of the follow-

ing arguments which follow closely ones of Mitter in Ref. (7) :

Relation (4.1.13) holds under assumptions weaker than the ones of paragraph 4.2.
Indeed, since p = exp(- W/2mD) is a solution to the Cauchy problem (3.6), (3.7),

with P continuous and bounded, if Q continuous on S satisfies (Al) and

(A'2) Q is uniformly HSlder continuous in (8,x) in compact subsets of § ,

then according to Theorem 5.3, p.148, of Ref.(6), (4.1.13) holds.
It follows that
I exp £1(6_)P(do) = I, t <s<t<T<t,, (1.7)
Q g 8X o 1

with ~
W(T.ESX(T))
exp (-

——2;1,-—) T Qo,E,,(0))
WG, oxp (‘J Y ) -8
mD

T
exp cNGo_) &
exp (- S ]

and, as in paragraph 4.1, assuming (Bl),

T T

g (6., L 8, (0)du(o) - 5 L |esx(a)| da, (1.9)
1 x, 1 ~

B, (t) = ol (e, (€)) = - =75 grad W(c,g_ () . (1.10)

Here, we suppose that the standard F_ n-dimensional Brownian motion W relative
to @, F,P) is defined on [s,T] , with W(s) =0 .

For each (s,x), let Pgy be absolutely continuous with respect to ?, with
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T a~
Psx(dw) exp cs(esx)P(dw). t,<8<tg T T .
In view of (I.7), for each (s,x), Pax is a probability measure on (Q,F) .
Therefore, by the Girsanov theorem (Ref.(6)), the process LA given by

t

v (e = w(t) - I o, (0)do
8

is a standard n-dimensional Brownian motion (with wsx(s) = 0) with respect to Psx .

By arguments similar to the ones of paragraph 4.1, it follows that
t
~ - e
£ (6) = x+ I v*(0,§, (0))do + V2D w (L) .
s

In other words, the stochastic process E;x’ 8 < t <T, on the probability space

@, F ,Psx) is a solution of
dg = v*(t,g(r))dt + V2D aw__
E(s) = x .

By standard theorems of stochastic calculus, one can prove that, under (Al),
(A'2), (Bl), exp ;:(esx). s St < T, is a martingale. Based on this fact, formula

(I.6) can be obtained by arguments similar to the ones before.

APPENDIX II. NONUNIQUENESS OF THE SOLUTIONS TO PROBLEM 5.2.A.

Proposition 5.2.B gives sufficiency conditions for a solution to Controllabili-
ty Problem 5.2.A to exist. Clearly, the solution we have constructed in paragraph
5.2 under such conditions is non unique since it depends on the function p which,
itself, is (uniquely) determined by the choice of the potential function Q satisfy-
ing (A1), (A2). In other words, there exists a family of such solutions indexed
by Q .

Two questions arise :

1. Does there exist solutions to Problem 5.2.A not belonging to that family ? and
2, If it is the case, why have we priviledged this family ?

An answer to point 1 is readily provided by a remark of Prof. H. Sussmann,

reported by Dr K. Kime.
Assume ¢g» ¢l € Cg(En), b0 ¢l non negative with compact supports Ao' Al. Let
4, () (£1-t) + ¢, (x) (et )

t-
1%

$(t,x) = s (£,x) €5 .
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Now, suppose E" = E3 and find Gi , i =1,2,3, such that

3
.a;t £ - —a— ‘.
sc = DA¢ izl o, (Vi (e, x)9) .

One solution is to look for v of the form v = (31,0,0) ; then

3 (& - -3
Eq (vl(t,x)¢) DA 3t °

The right-hand side is a function continuous with compact support, by the definition
of ¢.
Then b3
3 v ¢
v](t,x)cb(t,x) = V](tna)¢(tna) - [DA¢(Y|t) = 2t (Yrt)]dy .

a
Take a outside AOU Al , then ¢(t,a) =0 .

Provided that ¢(t,x) # 0, we have
x
§y (e = ol L [Dae(y,0) - 32 (y,00)ay .

The solution thus obtained needs not belong to the above family.

Note that if LI ¢] are not Cz, the linear interpolation will not yield a C]'2

function ; if b, ¢ are merely continuous, the argument above can be extended by

constructing some c¢1»2 function ¢ such that 1im ¢(+,t) = ¢ and 1lim ¢(+,t) = ¢] .
t-tg ° tty

We are indebted to Prof. H. Sussmann for his comment.

Concerning point 2, our interest in the family constructed in paragraph 5.2 is
motivated by a connection between Controllability Problems 5.2.A and 6.A, which is
introduced by Fact I and Fact II of Ref. (20). Having in view the study of Problem
6.A, we have been led by Fact I and Fact II to restricting the class of functions ¢
for Problem 5.2.A to those functions which are the product of two functions
Y, © € C]’Z(S), solutions of

X Q_
3t DA+ 75 @

% . Q =
3t BAo- 75 @

for some function Q .



NONDEMOLITION MEASUREMENTS, NONLINEAR FILTERING AND
DYNAMIC PROGRAMMING OF QUANTUM STOCHASTIC PROCESSES

Viacheslav P. Belavkin
Applied Mathematics Department, M.I.E.M.,
B. Vusovski 3/12 Moscow 109028 USSR

The class of continuous nondemolition measurements Vi in quan-
tum stochastic systems is characterized in terms of Hudson-Parthasa-
rathy stochastic calculus. Two types of such measurements of a quan-
tum stochastic process are derived: a Poissonian counting measurement
and a Brownian indirect observation. The corresponding nonlinear fil=-
tering equations are derived in semi-martingal and density-matrix
form, and a posterior Schrodinger equation is found. A quantum conti-
nuous Bellman equation is derived for the solution of the problem of
optimal control of a quantum stochastic process with nondemolition
measurements. The solution of this equation u°(t,u*,5)) together
with the solution of the corresponding nonlinear filtering problem

= ? (wt, v(t)), wt = (ut, vt) defines the optimal control stra-

tegy d°(t, W, v(8)) = ok, i, PoCwt, v(8)))

Quantum nondemolition principle.

The problem of description of continuous observation in quantum
dynamic systems can be effectively solved in the framework of quantum
stochastic calculus of nondemolition processes developed for general
linear boson models in [1 - 3]. The idea of nondemolition quantum mea-
surements which is intensively discussed in physical literature in
connection with the problem of gravitation waves distinction (4,51 ,
can be usually reduced to the condition of consistent measurability
for a given family of physical variables xg related to different
€ ®. The mathematical definition of such self-nondemolishing
, is equivalent to the condition of

times
quentum observation given in [6l
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pairwise commutativeness for corresponding self-adjoint operators Xt
which represent these variables in a certain, generally speaking,ex-
tended Hilbert space J€ . In such a form we can represent any real
random process xt(w) defined on the probability space (Q,}‘, P)
(it is sufficient to take the space L°(S2 ,F,P)as H , and
the operators of multiplication on xt(w ) as X ), and the class
of nondemolition measurements is exhausted by operator representations
of classical random processes in this described narrow sense.

In order to explain the non-commutative generalization of the non-
demolition measurements principle defined in [7 ] by means of a gene-
ral quantum random process with respect to & non-increasing family

th of operator subalgebras ‘ﬂt < N, » t2zs, of the alged-

ra Q)( 3£ ) of all the bounded operators, we consider the indexi-
fied pair X , Y, of Hermitian operators in H .

The process Y = (Yt) is called nondemolishing with rcspect to
the process X = (Xt), if Yt commutates with Xt and with all fu-
ture X, , s>t , for each t€ER . By choosing as ﬂt the operator
slgebra generated by the family {XS, s>t} , we obtain the non-in-
creasing family {"41:} , with respect to which the nondemolition con-

dition can be formulated in the form Y €& ﬂt‘ for all t , where
}‘9{;' = {Xs ’ s)t} ! ig the commutant of the algebra ﬂt (every

operator Yt , commutative with {Xs , 8 zt} , 18 also commutative
with ﬂt ). Such a nondemolition process Y called in{ 7 ]1a process
with respect to A= ( 4 ), can be described by the non-commuta-
tive family {Yt} , if only Y & A, even for a single t. It

is interpreted as a process of subsequent, in general case self-demo-
lishing, indirect mesurements with respect to a non-demolition quan-
tum dynemic system, the present and future of which are described by
the algebras th. We note that the process Y mnon-demolishing with
respect to X can be non-commutative with the past Xs y S<t, even
in case of direct measurements Yt € ﬂ t for all t , when it is
commutative, if only 4. is not generated by the family {Y_,s> t}
for 811 t , as it is in case of self-nondemolition process Yt = Xt
for all t .

Such a weakened notion of nondemolition observation which does
not demand due to the causality principle the measurability (commu~
tativeness) of the present process Yt consistent with the unobser-
vable past Xj , s¢t , permitted to formulate and to solve in the
linear case the simplest problems of the filtering theory and control

in open quantum systems not only in discrete, but also in continuous
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time [3].

The sufficiently general models of continuous quantum observation
obtained in( 9 Jas the limit At - O when discrete subsequent indirect
measurements were considered and which turned out to be nondemolishing
in the weakened sense mentioned above, as well the possibility of their
description [10] within the frames of quantum stochastic calculus {11,
12 ] indicate that it is possible to construct some general stochastic
calculus of nondemolition processes with respect to a given quantum
random process X . Below we give the scheme of such calculus with re-
spect to a quantum Markovian process represented in the Fock space,
then we formulate a problem of nonlinear filtering in continuous time
as a problem of finding a posterior state on the algebra S generated
by unobservable operators Xt for fixed t , and derive the stochastic
differential equation for a posterior density matrix. In the commuta-
tive case this equation coincides with the corresponding equation of
nonlinear filtering for a Markovian process which is described a prior
by the Kolmogorov-Feller equation, in the pure non-commutative case

A= B K ) it is reduced to a nonlinear equation for the proba-
bility amplitude which generalizes the Schrodinger equation. This equa-
tion describes the a postrior density matrix of a Gaussian boson sys-
tem with a linear coherent channel under the Gaussian indirect obLser-
vation which is described by the quantum analogue of the Kalman-Busy
filter obtained for a quantum oscillator in [5, 6]1. We note that quan-
tum a posterior dynamics obtained in such a way which gives the solu-
tion of optimal nondemolition filtration problem for quantum random
processes according to the quadratic criterion coincides for conserva-
tive (Hamiltonian) systems with a prior dynamics described by the
Schrodinger equation. The problem of nondemolition filtration in quan-
tum Hamiltonian systems in the sense of self-nondemolition of the ob-
servable process without the quantum dynamics reduction was conside-

red in {13, 141,

1. Nondemolition observation and a posterior dynamics
of a quantum particle.

Before we develop regorously the quantum stochastic calculus of ge-

nersl nondemolition processes in the Fock space, we consider a special

case of physical interest: namely, & gquantum m-dimensional particle of
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mass M with the potential P (x) in a Boson reservoir modelling

the measurement apparatus, The position of the particle x = (xi) is
observed indirectly together with the white noise by measuring a self-
nondemolition vector process, which satisfies the equations éi =J§Exi+

.

+ Z2Re AI , or in terms of Ito differentials:
dQ; (£)=VZXx (t)at + 2Redal(t),  Q;(0) = O, (1.1)

where X(t) is the vector of coordinate operators in the Heisenberg
picture, ©2Re AI(t) = A;(t) + A;(t)* ia the operator representation of
a standard Win?z vector process in Phe Fock space with the canonical
annihilation AZ(t) and creation AI(t) operator-functions, which
are generalized derivatives of the processes Ai ¥ A; with [.Af(t),
AI(S)J qﬂ@in (t,s). The apparatus effects on a quantum particle by
means of the perturbation forces fi = h{E?rImAI , which are white noi-
ses of the intensity ikna/e, proportional to the_measurement accuracy
A , so that the momentum operators Pi(t) = juﬁl(t) in Ehe Heisenberg
picture satisfy the quantum Newton-Langevian equations Pi + Fi = fi,
F =V , or in the form of quantum stochastic differential equations
(QSDE):

dP, () + P (x())dt = n¥2X Inda} , (1.2)

with initial P;(0) = 1 V,/3, 3=1=1, x*(0) = x*, Ima] =(A7-A2)/2j,
‘P{ = V;p. 4s it follows from the next section, the equations (1.2)
are uniquely possible QSDE for a quantum particle with the Hamiltonian
92/2fl + $(X) to be nondemolished by the measurement of the commu-
tative stochastic process Q defined by (1.1) in the sense of

[p,(s),q(t)] = 0, [X(8), Q)] =0, Vi,ks  s2t.

1t means that the observable in such a way quentum particle is an
open quantum system and its a prior state in the Schrddinger picture
is a mixed state for A > O even if the initial state is purely des-
cribed, i.e. described for the particle by the wave function ¥(x)and
for the reservoir by the vacuum Fock vector.

By taking into account the measurement data, one can obtain a pos-
terior quantum state of the particle which as we shall prove it is a
pure state for a given initial Y eand a vacuum Fock state. This a
posterior state is described by a posterior stochastic wave functi?n

% (t,x), satisfying the new nonlinear stochastic (posterior) Schro-
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dinger equation :
Px)ed 32 100x)- 2 A3xyat X Fx a8
dY(x)+(4 bl n‘P(x) 2ﬂA)‘V(x)dt -G‘V(x)x aQ (1.3)
where X(t) = x - g(t), a(t) =Slx ‘?(t,x)sa dx is a posterior {sto-

chastic) mean wvalue of the position at t>0, and 75 is an innova-
ting process defined as the vector Winer process by the Ito equation:

aQ; (8) = aq; ()-V2R P(tdat, (o) = 0 (1.4)
By using the table dQ,dQ, = Sikdt in the Ito formula
ae(¥) =2 (Frdt + Fe(Fra?H?

A A
for the function f£(Y¥ ) = Pf’z, one obtains the stachastic (poste-
rior) eguation of contlnulty for the stochastic density function

f) = | P03
af o+ T Peas = V2R Peoad, (1.5)

where VI (x) = E7S(x)/ﬂ4 are the velosity functions defined by the
action 8S(t.x) = hArg ?(t,x) satisfying the Hamilton-Jacobi equation:

%s+ WSIZep + P = w24/ r2pp (1.6)

The real equation (1.5) together with (1.6) is equivalent to the comp~-
lex equation (1.3) for %’(x) =¥ ¢ ? (x) exp(bb(x)/ﬁ} , and its non-
linearity due to the dependence of q on p . only is connected with
normalization preserving property ‘Kk x)dx = 1. By multiplying j)(x t)
on the positive process v (t) defined by the equation:

ar(t) = m?(t)ﬁi(ﬂdq«) (1.7)

one obtains the linear stochastic contlnulty equation for non-norma-
lized posterior density R(t,x) = r(t)‘P(t,x)

dR(x) + V(V(X)R(x))dt = V2X R(x)xdQ, (1.8)

corresponding to the following linear stochastic Schridinger equation
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for the normalized by V@~ posterior wave functiod&%¢ﬁ(xf€%xp Js(x) /A

AW Gy (xPs %\P(x)—AQ%)%x)dt =[3;1F(x)xdq (1.9)

By taking into account that a posterior guantum pure state corres-
ponds to a nonnormalized stochastic wave fuaction c(t)W(t,x) wup to
an arbitrary complex stochastic multiplicator ¢ , one should identify
it with the complex velosity vector function:

A
W(t,x) = VY (5,00 = VW30 = U(sx) + 3V (E,%)
satisfying the following system of quasi-linear stochastic equations:
i@ dxr A5G- HTWPEEANGO ) at =V 3 % aq (1.10)

which can be obtained from (1.3) or (1.9) by using the Ito formula for
the logarithm f = 1n.

Let us find the solution of the equation (1.10) in case of linear
potential force F(x) = Mg ~ h®x and the Gaussian coherent initial
wave function:

F = @ ™ e {- o 0%+ gpx/ ]

defined by the mean values g, p eand the dispersion ¢$2 of the wave
packet in the coordinate representation. We find the solution of (1.10)
with the initial condition:

~

W(0,x) = 7 BVIa¥(x) = hlax) i/2p4 &2 + jp /pm (1.11)

o}
J%l

~ ~ . 2
in the linear form W(t,x) = w(t) + w(t)x1l. By inserting VW~ = 2wWW,
A W =0 into (1.10), one obtains the following equations for the co-
efficients w(t) and w(t):

aw + j(g—www)dt =\[§% daQ, w(0) e + ﬂﬁ )3 (1.12)

dew/dt + A/ = § BR/ + w?), w(0) = -8/2¢MS 2 (1.13)

The first equation of this system is a complex linear filtration equa-
tion, while the second is a complex Rickatti equation having the uni-
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que solution:

w(0) + jeolthodlt

w(t) = joL L = B e+ 322 ¢
3L + w(0) thoct . Y}"‘ Ge+ §AY'S (1.14)
satisfying the normalizability condition Re«w < O for the corres-

vonding wave function:
Y (t,x) = exp { fAW(E)x + w(t) x?/2)/ n} .

N
Hence the posterior wave function ‘W(x) = (x)/ fWi hes the
form of the Gaussian wave packet:

q’(t,x)

serp{ 1 (00 (x-80)%/2 + 3B(69) ], (1.15)

where o(t) (2% &2(1:))"“1/4 up to the unessential stochastic pha-~
se multiplier, ée(t) a - f/2 m Reco(t) is a posterior coordinate
dispersion &° = ¢ ~"4“ giving the minimal square error of the posi-
tion estimation, 4§ = -Re @ /Rew 1is a posterior mean coordinate a,
and p = mIn(¥ + @Q) 1is a posterior mean momentum

P -2 [PV P @ax = p [ Ve | Yol Fax.

Note that 4§ satisfies the equation mMU(Q) = thnrfS (Q) = o0,
which defines the maximum of a posterior density S'S (and R ), and
'i) coincides due to linearity ¢f V with the value Jwv(a) = VS(&)
of the classical momentum function WS(x) at x=a , giving the opti-
mal velocity estimation V(g) = /ﬁ(t)//u of the obgervable quantum
particle.

By taking into account thatl W o= jﬁ/l\a -t a, jdf) -p«wda =
G wWw ) =(§th' - (WP + I pme - f2q))dt, one obtains the

following a posterior system of Hamilton-Langevian equations:
pat - mdd = 1 (W2 di/Rew (1.76)
4p + pMgdt = fi(seqdt - VA /2 InwdQ/Rew),

which together with (1.14) define a posterior dynamics of quantum

observable particle in the Gaussian coherent initial state, defined
by ﬁ(o) =p and Q2(0) = q. We note that a posterior momentum disper-
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sion 1‘2 = -p° ,

-

P =n§1VPE Pax =p§ | w02 \w @)% ax |
gives the minimal square error 1r%ﬂ- ﬁr&]&)(t)le/QReCO(t) of the mo—
mentum estimation, satisfying the Heisenberg inequality Q&) Tt (t)>h/4
If ) £ 0, these dispersions have the finite limits:

2 = n/2p Inol = m2p (Ve + 22 - 2 )2 (1.17)

- nloLPp/2mn oL = Blh g (%2 + 22)/2(VaPr 27 - 202,

corresponding to the stationary solution co = Jot .

The obtained a posterior quantum dynamics (1.16) helps to reduce
the quantum optimal control problem of this particle by gravitational
strength g=u(t) to the solution of corresponding classical stochas»
tic problem, if one considers only Gaussian coherent initial states
and mean square cost functionals. Due to the linearity of the system
{(1.16) the optimal control strategy w®(t) is a linear function
ul(t) =-L(t)q(t) on posterior position a(t), where the matrix L(t)
is the control matrix for the classical deterministic controlled sys-
tem:

P'J“(.l=oa i’*‘j‘*u=h3@q,

minimizing the corresponding gquadratic cost functional. Such & solu-
tion of the feedback control problem for the indirectly observable
quantum oscillator was found in [61.

2. QND stochastic calculus in Fock space.

Now we shall develop the general gquantum nondemolition (QND) sto-
chastic calculus in the Fock space F = [ ( & ) over the Hilbert spa-
ce £ = aﬂg( R, — C™) of square-integreble complex vector-functions
t > P(t) = (‘fk) k=1,e..,m on > O. As in the previous section, we
shall use the tensor notations in whlch a vector ?tégr is represen-

ted by all the tensors f’¥1""’¥n = (p k1""’ n 114V with
Tyeoey I 1,...,k
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,...,t k ,...,k
<X1e> Z {4...({ x{;'“__,k ‘ftq’___’t dt,...dt,
1&ene

(the sum is taken also over identical co- and contra-variant indexes
ki=’l,...,m).
One should consider ‘¥ as a tensor-valued function T (7T ) on
T = (t,< .. <t ) with P (7)€C™. Let us denote dy the va-
cuunm function 5 T)=0, if TY4¢g , §(¢)— Ty (:F =17 Et and
‘}_t ("(8 ) the Fock spaces over orthogonal subspaces £, =

= {‘P(s):O, ssth cSt {Y’(s):O, s¢ Ir, tJ}’ and FP - ?t over

&ta ét ' so that F=F'® :}—t ® F . in accordance with (£ =
=T e é @ & for all r<t.

Let us deflne the following basic quantum martingals with respect
to the flltratlon (.?t ) and the state-vector 5 s the creation pro-
cesses ar (t), the annihilation processes 2k ~(t) and the preservation
processes A (t), where 1i,k=1,...,m, described on the product func-

tions \P(fr) @ ¥ (t) vy
teT

IMOLECD! SZ;_&T P9 Xis) ® P(Ty)

PROR{CII S A OLERICY (2.7)
[o]
HOMCORPNE S oL PX 1 Y@ P Ty,
SET
where v° = {t,eT 1 tpes}, Ty ={teeT ! ters}, Jff(s) = 0,
s>t, ‘Xti;=§1’ st with -(ék)
By denoting A'(f,,t) = fi‘_ Ae), R0 = 1 Ak(t;), and

~ 2 A -
Ale,t) = ellc Alic (t), where f = (f+) e €™ are m-columns, f =(fk)
€ c™ are m-rows, and e = (el) are complex mxm-matrices, one obtains

.}. ~
the canonlcal commutation relatlons [ 11 Jfor the processes A, A_
and A , which we write in the following compact form

(A(g,t), Aet)) =13 ([£f,8], 1) (2.2)
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of the operator representation in Fock space
~ ~ - A - 2
ACE,E) = AYGeT,e)¢AM (e, 8) + A_(£7,8) + Ale,t) (2.3)

. - - - .
with A_f(f+,t) = £f;t1 for the Lie w#-algebra of block-matrices

0~ £ L [°01\ ,/001 0 £.*r7]
r=[(0e £, f={010|]f{010]=|0ce"*zt* (2.4)
00 0 100 100 00 O

Here f . is a complex multiplier of the identity operator "1\ in

+
the Fock space, f: Yot i‘ ™ = i‘+ is the m-row with f*i; = E}: ,
f*+ = £7* is the m—column with f*l = Ek , and e* =e* is mxm-
matrix with e*f; = 1;*, so f is an opelator and f¥ is a conjugated
one in an indefinite space C'""'*of =( X_y, Xi»  X,) with

the pseudo-scalar product (¥ | ¥ ) = 1_- Y7o+ J(J.-L{JJ + XY+
where ¢~ = \a, ‘f’k = L(k, R A CF_. Due to the so defined con-
jugation one obtains the -property s, t) = R(£* ,t) for the Lie
representation AlLf,t) = A;\ (t), where J),Vé& {- Tyeae,il, +} are
the summation indexes of the 1+m+1-dimensional indefinite space.

The multiplication table for Ito differentisls dﬁr (t) = KX {t+
+dt) - I\" (t) of the processes X+(t) 1, T\+(t), Kk(t) and
A (t) in Hudson-Parthasarathy quantum stochastlc calculus can be wri-
tten simply in terms of A(f dt) = i‘ dA; (t) as:

»~ A~ A
A(f,dt)A(g,dt) = A(fg,dt) | (2.5)
Now let us consider an initial Hilbert space #° =K , denoting

t- Ke T % and %‘t : W t—» :ﬂ’t the corresponding components
of an adapted process i‘(t) -it® 1; » and let us regard the opera-

tors A(t) = At@)l acting in } = KXo F by multiplying each
A (t) on the 1dent1ty operator I in K , so that the quantum sto-
chastlc integral ig defined as in (11] by the

j A (F (s),ds)

sumsz %
t
A) v - L
[ ®,any = (&7 dS+F1dA +F TSR VAN (2.6)
[o (o]

/\k = Aljf for adopted weakly measurable locally square-integrable
i
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. ~3 . 2 .
functions t = Fy(t) with Fz(t) acting in ¥ for de{-,i}, we{k,+},
i,ks4..,m, and F%(t) = O for other indexes X ,v . The Ito formula
{111 defines the product f((t)?(t) of integrals % Ean v

: X(t) = { Dyday

t o)
~ A ~ A
and Y{t) = S F,d}\} in the form of an integralj d(XY) over:
[o) o)
d(ﬁ Ay A ANy AY AM » AN A A ~ oA
Y = (D b I+ XrFy+ D'“Fg )d.A)s dXY +XdY +dXdy |, (2.7)

The unitary quantum stochastic evolution U(t): ¥e ¥ U(t)(Ye¥)
of the combined system consisting of pure states ¥e ' and a Boson re-
servoir is described by the quantum stochastic differential equation
(QSDE) : R

dv (t) = L:, (6)U(E)AA ()= AL(H)U(E),at) (2.8)

with U(0) = I®1 =TI and adopted processes 'f_.?v(t) ='i,t3@'?, (i,z = 0,
if A= + or ¥ = -) satisfying the following conditions.
PHEOREM 1. If U(t) is a unitsry process in the Hilbert space % A
VEYU(E) = T = U(E)U(t)", then SET5 o8 formsa pseudounitary
block-operator 2 = (Z 2) in the indefinite space H® e por
each t : 2%% = o8 = 22*, where §=( 33 ), or in terms of L
li'..*,t + i:, + 'i.*,),_i/:, =0 = 'ﬁb + i*: + 'i.}"i:*’; (2.9)
for all 2, ¥ and t . The conditions (2.9) are not only necessary but
also sufficient for the existence of the unitary solution of (2.6) at
least in cese of local boundedness of the operator-valued functions
s It .
FROOE. (2.9, follows from the Ito formula of (2.8) as u(t)=t’e 1, ,

ut - J::;;pgis ds: J, where Jt( T_» T ’C+) = 8"( TOVY(Tr) is
the isometryaa ‘a{t-—-r KD l“(‘fft), (-f;t is the indefinite space of
square-integrable 1+m+1-~dimensional functions s»(\P:), Na=yTyeseglyt,
with ‘P:‘ = 0 for s>t, " (%r%) is the apace of tensor-valued func-
tions Y(T_, T, T,)=( “Plé’v:::fn)('r_, ) =P(r_,t (¥ ) with the
pseudo-Eucleadian metric de}inedn by the integral:

i) = Sj(_’)[('t’+,’t’_) [ A ) ’t’+)>d'r_d'r+

t, forT=(t<...
(s)as: is the

over the finite subsets 7T _» 1:+<_C0,t] , dT = diq. .ii
kb, JEP(r) = T T.#)AT., and 18P L

%?:
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natural representation on :Kfﬁb[_(f?t) of recursively defined chronolo-
gical products

A ) see A 1 ~ ..3
1 n sh 2 M
( Bireees8 8) = Z S eee8_Je
Vyere Vg ¥ et v 'V1"% (s, n’

Now let us consider the output canon1cal processes B (t) =u(t)*
A (t)U(t) and define the integral j B(F(s),ds) as the integral

(2.6) with F(t) = U(t)F(t)U(t) in the Heisenberg picture:

t t
| Bea)a8) = v(sT] A(E(e) a0) UCR), 1t [8(9), 2 (1)) -0, (2+10)
o o ¥ Y ’ s¢t,

THEOREM 2. The integral (2.10) with adopted F¥(s) can be represented as

the integral (2.6) in the form
| sz,

(o]
where 21 (6) = L) (1) 418}, L(t)= U T(6)UC), s

2¥Fz « I¥FL + I*F + FL + F (2.11)

PROOF. It is a direct consequence oi the Ito formula (2.7).
Let us denote X(t) = X(0) + j A(D(s),ds) a quantum process,
°
defined by the initial operator X(0) = X @ 7 with X€R(X ) and ada-
pted D) (t), and ¥(t) = ¥(0) + St B(F(s),ds) an output self-adjoint

process, defined by the differential:
aY(t) = ACZ(t) ¥F(£)2(t),dt) (2.12)

with F(t)* = F(t), Y(O)*s Y(O), where Zl (t) are asssumed to be
nondemolished by Y(t): [¥(8),Z) (t)] =0 for all s<t,%,¥, as it is
in the case L' )= 1fe@L) , F%=1°Yel, x(o) - et .

THEOR¥M 3. The output process (2.12) is nondemollshed with respect to
the process X(t) iff [x(0),Y(0)] = 0, and

p(t) = z(t)*e()z(t) — X(£)84d , (2.13)

the block operators G(t) = (G (t)) commute with F(t) = (F) (£)) and

all ¥(s)®S = (¥(s) £} ), s <t.
PROOF. It is an appllcatlon of the Ito formula (2.7) to alx(e),¥ ()=

=0 and {dX(t),¥(t)] =
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Now we consider a family {Y (t), i=1y.e.,m} of output self-ad;omt
and nondemolition processes, defined by (2.12) with ¥y (t) = F; (t)
setisfying the following conditions.
THEOREM 4. A family Yi of the processes (2.12) is self-nondemoli=~
tion: [Yi(s),Yk(t)] =0 for all i,k and s,t , iff the Block opera-
tors F,(t) commute [F,(t),F (¢) ) = 0 for all i,k,t and with Yj(s)§
for all s<s%t, j=1,...,m.
PROOF., It is a consequence of the Proof of Theorem 3.

Note, that if the process F, 3 1 (t) commute with 2y (t) as it to-
kes place in case of the operators F 7‘ affiliated mth the algebra

{Y (s)sgt, 1=1,...,m} s ’chen the output 1ntegralsJ' B(F(s),ds)
)

can be represented as in (2.6) by
t t

j ¥las + Fias] + FaB¥ + Elanf (2.13)

ngdBv i?

A
» o k
B = Fk , where B}(t) sre creation, B'(t) are annihilation and Nj(t)=
s B; (t) are preservatlon output processes, defined as

()" = Zi(0)ar + VDUEED) = wi) , ViTZ,
(2.4

ix k i# k., 3 l*k/\J
de = 2,77.dt + z1 *zs dA + 2,.7z3aa3 + 277254

3. Stochastic calculus of gquantum open systems.

Let A =B (K ) be the algebra of bounded operators describing
an open dynamic system by a family 1 =( 1y ) of normel representati-
ons : sf+ B( ':K® F ). We agsume that the famlly 1 is genera-
ted by linear * _continuous maps oLk, B=B LFi T: A->BKeF)
defining a qua tum Ito equation [11,12]:

d4(X) = LE@aAf « pid ]+ Prx)aak + y(xat, (3.1

ey . k
with respect to the standard gauge Alf(t), Bose ennihilation AZ(t)
and Bose creation A‘.;(t) processes in K eoF , the increments of which
satisfy the multiplication table

k .1 k 1 ¢k 1 k. b (K.t k ot ¢k
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with zero products, where I = I® 1 is the identity operator in #.
THEOREM S. Equation (3.1) with the initial condition 14 (X) =Xx& 1
for all X = X* generates an open adapted dynamlc system (R, 1+ ),

1 . (X)= 1300 it’ iff the adapted weakly measurable and locally squa-
re-lntegrable maps tv—aoqk(x), E’tl(x) Pp (X), Y (X) depend on X
in the following way:

N\ ~ ~
oL (0= M) -l (X)),  PD)= FX)Z, - 2y 1, (X)
A% A . (3.2)
>~ A*A ~ .
Te(X)= 2.5 2,07, - 14, (X(5ZZ, + iH) - (EZ 2y - 1H 1L (0
5 -1
Here %, (X) = V&%(X)Vt, V = Vt , Z and H = Ht are defined uni-
quely by gome adapted operator-valued functions Vt = Vt v Dy and I-It
”Ht up to operators 'V‘t, 9‘t and ht from the commutant .;Q't of izt(i‘}):

~ - -~ - - * + ~ A - ~ 4 ~
Vt = ViVy s Zt Vt(Zt Zt) , Hy = H + Im tht + hy | (3.3)
The proof of the theorem is based on the qiuantum Ito formula. Note,

that in the Markovian stationary case oLk £ pt and B"t are the maps
A= ¢ (A4), end Vis 2y Hy can be defined as imeges of some operators

v=v’i, %2 and H = H® from #? :
i i i H ~
Vtk= l’t(‘é)’ Zt = {/t(Z)! Ht = {‘t(H) . (3-4)
Let us regard = quantum process (Y y in ¥, Wthh is adapted

in the sense that Y, = Yt is ei‘flllated w1th Bt)e i , and nondemo-
lishing (QND) with respect to (A,1): XY, = Y X for all t¢s and
X € 4(,3(54). We assume that the process Y is generated by the quantum
Ito equation:

day, = EdA. + 2ReF dA] + G, dt.=E T )+ BLIAT@)F) dAS (+)+G# (3.5)

t Tt

with the corresponding (adapted, local square-integrable) operator-
valued functions tr>E., Ty, Gy~ The following theorem is a conse-
quence of the QND principle and the Ito formula.

THEOREM 6. The adapted process Yy satisfying equation (3.4) is QND
with respect to the system (3.1), iff . .

1) it is QND with respect to the processes Vt’ 24 and Hg up to

'\rt,ztand he 94t, i.e, if
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(Vg,¥.d = 0, ['zs,yt] =0, [H,Y] =0, 82t (3.6)

for the operators V., 2, and Hg, defining (3.2) by (3.3), ¥, = y’i
for ye¢®R , and

A
t;Z + C

* A A ~ ta ~
2) VRV = 8py,  ViFe = 8.2 + byy Gp=Z.8% + 2Reb,Z, g b€ R,
(3.7)

a A ~ *
where a, = &y b, and ¢, = Gt are adapted and commuting with X € th
for all ¢t :

o, X,] =0, [b,,xJ=0, [epxJ=0. (3.8)

Condition (3.6) for the Merkovian case (3.4) can be omitted. The disco-
vered structure (3.6) of QND processes (3.5) allows us to consider the
following three basic types of QND observations:

a QND counting observation Yi({)= Ni(f), where

- . 1 . .* H
dN; = V‘fv{d/\k + 2Re\;ﬁ1dAi + 2.7 at, Nk O (3.9)

A
(a £, ‘? = O,Ec < 0), a QND diffusion observation Yi(t)= Q,{{)’Ql{{)= EReB;&)
where Bj()=Bl@) =B;), ) ,
i i i k -+
aB} = viaat + ztat, aB) - Vjau| + zjat, B@= 0 = B0 (3.10)

@+ o, b 4%, & = 0), and a QD time observation Y = tI (3 = 0,

b =0, ¢ = ). As it follows from the next theorem, the basic QND pro-
cesses Nt&), Qi(!), i are commutative, but not mutually commutative with
the multiplication table for their increments reads

dN;dN; = dNy, d@dN; = dBy, dN,dQ; = dBf, dRQ;dQy = Idt

and zero other products.

THEOREM 7. A family Y = (Y,,...,Y;) of QND processes Y, () satis-
fying Ito equations (3.4) is mutually commutative {Yi(t),Yk(s)) = 0,
iff the operators 'éi, Bi’ Ei defining by (3.7) the coefficients E;,
Fi’ Gi satisfy the QND conditions:

[’éi(s),Yk(t)} = 0, [gi(s),Yk(t)J = 0, [gi(s),Yﬁt)] =0, 8>t (3.11)

A A ~ o~ ~ o~ ~ A ~on bl
B8 = 8y, By = BB, b = byby, T € R, (3.12)
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Moreover, the adapted nondemolished process t in (3.7) defining (3.2)
by (3.3) cen be chosen in such a way that a (t)b (t)=0 for all i and
t . If ;i(t), . (t) and ©, (t) commute W1th z2, for all t , as it
can be done in Markovian case (3.4), then the processes Yi(t) satisfy
the equivalent Ito equation:

in(t) = ai(t)dNt + 2Regi(t)de + ei(t)dt, (3.13)

¥;(0) = y;I with respect to the canonical QND processes (3.9), (3.10).

The famlly Y(t) = (Y1(t),...,Y {t)) of mutually commutatlve QND
processes ( 3.43) is called QND filter, if the operators a (t), b. 1 (8)
and o. (t) are affiliated with the Abellan algebra 63* {Y(s)}&$t
for each t « In that case of a (), (t) and C. (t) defined by the
corresponding functions a; (V ), b. (V ) and c, (v ) on the trajecto-
ry space 17t of the observed values v(s) of Y(s), s<t, we have:

@ S |
8 (t) =Sa-(Vt)L,t EENCER NN ORS EHC S

where JI is the orthogonal identity resolution for I =

= {Y(s)\ s<ﬁ'v The condition €3 (t)f (t) = O weaning either e; (v )=0
or fl(v )=0 decompose a QND fllter on a jumping and continuous ortho—
gonal parts.

t
t t t t
in(vt) = ei(v )dNt(v ) + £5(v7)dt, v’ e 'Q.'
in(vt) = 2Reb.(vt)dB;(vt) + ci(\rt )dt, vtev_l
t t
where t} = L}L} is a measurable disjunction for each i and

t and the 1ncrements dNt(V ), dBg (Vt )y dB, (Vt 5*are defined in
(3.9), (3.10) by the corresponding components of the decompositions:

@ ®
v, = S\r(vt Yo 2y = jz(v" )y Hy = 5H(Vt ).

Note that as it follows from (G12), b (V ) =0 forall i and fi-
xed v provided that a; (V Y #0 for such Vt and some i , and
ai(vt ) = 0 for all i and fixed vP , provided that by (v ) # ¢ for

such v% and some 1 so that the subsets \}“ and 1}i do not depend on t.
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4, QND filtering and optimal control in Fock space.

Let us consider an initial normal state ? on A =EB(JC) and vacu~

um state @ on @(? ), defined by normalized vectors YeX and §¢ET ,
denote by wi, W' the corresponding states onN =$( '}'i),){;—iﬁ( ?; ) and
wt=w5 on _A(*:}/at. The open dynumic system ( $4 ,4 ) defined by a Tamily
4= (4t) of representations ,: A-=B(KoF ) is a quantum stochastic
system with regpect to the filtration { 949‘)[{} y» and the nondemo-
lition process, defined by (3.4)-(3.8) is a regular semimartingal with
respect to {ﬁ@jﬂ‘}. We denote by <X t>t the conditional expectations
on the von Neumann decomposable algebras ﬂtg @t with respect to
their central subalgebras =) , which are defined by projectors Et
on subspaces f}(.tg-'.'K‘Qg'—* £ generated byhthe action of 3517 on ‘f&S{A:

et(x) = E+ Xg, for all geJ{t, and .= e 1, the posterior state
on A , identified with the density matrix due to its normality.
THEQREM 8. Let (#,1, N) be a quantum stochastic process, (3.1) with
counting nondemolition measurement (3.9), and ,<\Zt.;zt>te is invertab~-
le for all t ., Then the posterior mean value q/t = <4t(x)7t satisfies
the following stochastic filtration equation:

a1, (DY, = <§, (XN, aN, + P (X)) at, (41
where dﬁ't = N, - £2;2,0,dt ,

§,(X) = 2y 4,02/ L2f ), - 4,00 . (4.2)

L]

~
In the Markovian case (3.4) the posterior density matrix (?t satisfies
the recursive stochastic equation in Ito sense:

A ~ ~ ¥ A % A % I A ~
d‘f’t + (K, + PpK - 29,2 )dt = (29,2 / 272 - PylaN,, (#.3)
* 2 D ¥ . NIV e
where K=iH + 2"2/2, 2Z*Z= $,(2"2), which has the solution ?.- Y@ Yy
for To= Yet” , if q’t satisfies the nonlinear Ito equation:

a Yo+ (i, %12,./2) ‘T‘tdt - Z, q’tdﬁt/llz ¥, q’o =Y, (4o )

~ ~ —~ ~ * ~
where H, = H- (Y,12*2 $V 2wz, 72 - (Y,\8"2 Yt)"/z.
THEOREM 9. TLet (s ,4,Q) be a quantum stochastic process (3.1) with
diffusion nondemolition measurement Qi = 2ReB, , defined by (3.10).
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g
Then the posterior mean value qt = <4't(X)>t satisfies the following
stochastic filtration equation:

4 {4 (XN = BT, + V(X)) at, (.5)

~
where dQ, = dQ, - <2Rezt>tdt,

@t(x) = 2Rety (X) (2, - {Zy)- (4.6)

In the Markovian case (3.4) the posterior density matrix satisfies the
recursive stochastic equation in Ito sense:

d$t+ (Kclfat +§>tK* - z@tZ’* )it = 2Re(Z - gt)i’tdat ) 4.7)

wEere K=ill + 2%2/2, Zy= t?t(Z), which has a golution ?t = ‘tt@ “r; for

%o = Yey® , if (f’t satisfies the nonlinear Ito equation:

a ~ A ~ ~ A ~ ~

d Yo+ (3, +2.2,/2) Y, at = 2.V .4Q,, Y, =1
where H, = H - ( ¥, \Rez, ¥ )Inz, Z, = 2 - (¥, |Rez, &)).

The linear continuous filtration for the Gaussian ?o and canonical
7Z was considered in [1-3), and the general formulation of quantum non-
linear filtration for a quantum Markovian partially observable control-
led objects in operational approach was given in {167,

Let us consider a quantum controlled process over the algebra A=
= B(I) described by the family of normal representations 1’1;: A~

A J\/'*@ (‘,’*, where Ct is a C*-algebra of continuous functions
‘ut—-;(f, . u\[‘: N3¢ ?’t) for the PFock space 3'{. szt ?/{,f,é rZ'<b<sﬂ (t)
be a Hausdorf space of controlling processes u ‘r ={u(t)\ r¢t<s ¥ such
that GtX U - 94° for all t,s>0, where u(tle UML), U = YLou®
and {[; = Ut 2 uy U=U o+ Ve consider a quintun:t controlled
process Xt(u*) = tt(uf,x) over the algebra H>X, u e U , described
by the Hudson-Parthasarathy dynamic equation:

= R A, + 2ReB,dx,+ Cy(u(t)dt, X = X073, (4.8)

dx o

t

where Ay (f) = o (0O!), Bt = pyooad), oy Gubu)) -

= Tt(X,u(t))(ut) are defined in a standard way (3.2), (3.3) by the
operator-valued continuous adapted functions Vt(u ) = tt(u )V),
zt(u*) = 1, a%2), i (ut) = 4,( B) with unitary Vest , 2 e A and
s elf-adjoint H(u(t))e A . We shall assume that the control process
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a(t) is defined by strategies u, = d (w®,v.) = (el (s,w",v2,v(s))l o>},
where wt=(ut,vt), vie vg s vg = {v(t)\rs t< s} are the results of non-
demolition measurements v(t) on the interval {r,s( , Vi = v: , descri-
bed by a commutative process Y(t) , satisfying the equations either
dY(t) = a(t)dN, + S(t)dt, or AY(t) = 2Re B(t)dB, + C(t)dt with inver-
table a(t,ut), b(t, u®), 2(t,uf)e B = {y(s)issct}” defined by
the corresponding real-valued functions a(wt,v(t)), b(wt,v(t)),
c(wt,v(t)).
Twet us consider the optimal control problem with the operator-valued
risk ueld “':; Rt(u)eﬁqt(u) =4 18(94 ,us)\s?t}” satisfaing the equation
/|
R, ( - | sy ucenar Ry, (2, (#:9)
o
where St(ut,u(t)) = tt(S(u(t)), ut) for a continuous 54 ~valued self-

adjoint function B{u(t)) = S(u(t))*. 'The optimal control strategy ({g
of the extremal problem

{480, Ry (u®y dy(w®,v,))> = int, (4410)

where is an initiel normal state on A , and «w 1is the vacuum state
on A = B (F). This solution can be found by the dynamic program-
ming method as a solution of the following Bellman continuous inverse-
time equation.

THEOREN 10. Let R(t,w", d.) be the averaged A-valued risk uniquely
defined for the strategy dt by

Cpuwy Lo B RS, d))> = (pow , Ry (0% dy(wEiv)))
due to the Markov condition for X, (u®) with respect to w = wlauy, and
;t(wt,dt) = e,t[Rt(ut,dt(wt,vt))J = <$’t(wt)vR(tawt» dt)>

be the posterior risk, corresponding to the strategy dt‘ where ét is
the conditional expectation on .ﬂt\/QBt with respect to the commutative
algebra %t and

§ () = g tyuDEH

be controlled a posterior state on A for a wt = (ut,vt « Then
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A
. t
1nf<(Pt(w ,v(t)zR(t,wt,J.t)> = s(t, %t(wt,v(t)),
t
where the functional s(t,? ) satisfies the following Bellman equation:

-9,s(¢) = i?;g)(q) WBu(t)) + AE),8)s($)D + {p,2*B)As(P) (4.11)

in case of counting observation and

9,54 - inr (§ 15D+ @),$a@) + 34,08 D%@)  (1ar2)

in case of diffusion observation.

Here 9,=0/0t, &§=38/8¢ , As(p) = s(2z"Wp,2"2)) - s(P),
Ay, $)s@) = 3s(@) - 2rek(u(t)) Ss@)
T (u(t), 8 )6($) ~Z8s@)2- 2rek(u(t))'§ s@)
O(§)s($) = 2x0(z -ip 2> T Ss@)

and K(u(t)),K(uCt)f are defined by + iK(u(t)) + 2*%/2 and 4%(wt)

is a posterior state on A for controlled and observed data wh = (u?vt)
satisfying the corresponding nonlinear filtering equations: either
(4.3) or (4.7) written respectively in the form:

ab, + 3 A @ ¢4 an, 5 ady + ¢ F wendt 8,0 aq,

”~
where ¢°=Lj>.

The linear programming for Gaussian ¢ , canonical Z and quadratic
S(u(t)) was considered in{ 3]. The general formulation of quantum dyna-
mic programming for the partially observable controlled quantum objects
in operational approach was given in [16].
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GLOBAL METHODS TO IMPROVE CONTROL AND OPTIMAL
CONTROL OF RESONANCE INTERACTION OF LIGHT AND MATTER.

V.F. Krotov
Institute of Control Sciences
Profsouznaya 65, Moscow, USSR

This paper presents computational methods for optimization of controf, connect-
ed with development and application of an approach in which sufficient conditions
for global minima of functionals in variational calculus and optimal control theory
are used. The first results were given at the beginning of the sixties (1-5), see
also (6,7). The main element which is looked for in this approach is a so called
solving function depending on the state and the argument (time) of the process
under consideration. Having properly chosen this function an optimal solution is
found through maximization of some scalar function of state, control, and time with

respect to first two variables.

Making use of these methods the problem of optimal control for resonance in-
teraction of radiation with a quantum system is being investigated., An iteration
method for solving this problem, applicable to a large dimensional system, is pro-
posed. The author presents the numerical solutions of the following problems :

1) the obtaining of the maximal inverse population of a three level system excited
by three fields with relaxation (dimension of a phase vector is equal to n=9) ;
2) the obtaining of the maximal population of the first oscillating zone of a mole-
cule of a spherical top type, excited by one external field (dimension of a phase

vector equal to n =15202).

1. PROBLEM STATEMENT.

Let us consider a triple of variables t €T, x€X, u€U and pair of functions
v = (x(t),u(t)), v : T-» XxU , The latter is called an admissible controlled pro-

cesg if the following conditions are satisfied :
(t,x(t),ulr)) € v, VEET (1.1)

where V is a given gubset of the direct product TxXxU . A process equation or
equation of motion is satigfied. Two kinds of those equations are conasidered :
a) The multistage (discrete argument) process. Here the set T is a real sequence

{to. t°+l. to+2""’tl} and the process equation has the form
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z(t) w x(t+1) - £[e,x(t),u(t)] = 0 (1.2)

X

t= t t°+l,....t o

l-l'tl' x(0)

where f(t,x,u) is a given function, £ : TxXxU -+ X and X, is a given element

from the set X .

b) The continuous argument process. Here T is an interval [to,tl] of the real
line, X, U are real vector spaces R" and Rr, respectively, and the process equation

has the form :
z(t) = x(t) - £lt,x(t),ult)] =0 (1.3)
t € (to,tl), x(to) =x

where f(t,x,u) is a given vector function.

In the latter case some additional requirements must be imposed on v to satisfy
the equation (1.3). Usually this is piecewise continuity of the function u(t) and
continuity and piecewise differentiability of the function x(t), of measurability

of u(t) and absolute continuity of x(t).

The set of all admissible processes is denoted by D, t is called the process
argument, x the state, and u the control. The function x(t) and u(t) are called
the trajectory and the program control, respectively. To unify the notation we use

t]—l

the sign S which will stand either for the sum z or for the integral J de .
t=t° T
Moreover, we use the notation [to,tl], (to,tl) etc. not only for continuous time
but also for discrete sequences with included or excluded initial and end points,
We also admit the following notation : the superscript denotes the intersection of
a given set with the set of constant values of a given variable, and the subscript
denotes the projection of the set on the subset of this variable. For example V;
is the projection of the intersection of V and the set t =constant on X . Dx is
the set of the admissible process trajectories. The same letters used in multipli-

cation will denote the summation over the repeated argument.
On the set D we define the functional :
I(v) = SE£7(e,x(e)u(e)) + Fx(t))) (1.4)

where fo(t,x,u) and F(x) are given real functions which are continuous when the

continuous case is considered.

We introduce also a set E of processes v with the following properties :
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l. DEE
2. There exists a sufficiently simple algorithm for construction of processes
v€E;

3. A functional p(v) is defined which satisfies the conditions :
p(v) =0 for VvETD
p(v) >0 for VvVEENTD,
and is called the distance between the element v € E and the set D ;

4. A functional J'(v) satisfying J'(v) = J(v) for v € D is defined.

In this paper we define the set E as follows. The pair of functions
v = (x(t),u(t)) € E satisfies restrictions (1.1) but not necessarily (1.2) or (1.3).
Although it is enough in the discrete time, one has to say more about the properties
of the functions x(t) and u(t) in the continuous time case. Namely, we assume that

both functions are piecewise continuous. The distance p is defined as :

i +0
p(v) = slz(v)] + J |x @] |7 (1.5)
t€g,i
wvhere z(t) is as in equations (1.2) or (1.3), and B is the set of arguments in
which the function x(t) jumps. The second element in the sum (1.5) is taken into

account only in the continuous case.

Two subproblems may be associated with the above introduced problem.

(I) Construction of an admissible process. This consists in finding a sequence

{va) c E which converges to D :
p(vs) + 0 (1.6)

This is one of the basic problems in control theory : find a control strategy and
trajectory resulting from it which satisfy the given constraints. In mathematical
language, it is the problem of finding the solution of the open system of diffe-
rential (difference) equations which satisfies the constraints.

It is also often required that during the convergence some criterion is mini-
mized.
{P) Construction of an optimal admissible process. Besides the conditions of sub-

problem (1) it is required that the sequence {vs} < E satisfies :

Jv.) +d = inf J(V) (1.7
8 D

In particular, when a minimum of the functional J(v) exists on D, then it is re-

quired to find a solution V € D such that :
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J(v) = min J{¥) (1.8)
vED
Also approximate variants of those subproblems will be considered. Let us intro-

duce a set De(p) of processes which satisfy the following conditions :
vE€EE, p(v) <¢ . e>0 (1.9)
We call De(p) an c-extension of the set D in the metric p .

The approximate variant of the subproblem (I) is : find an e-extended solution
vE DE(p). In the approximate variant of the subproblem (P) it is required that the
solution is also n-optimal on De(p) :

J(v) -d (p) <n, n >0, d (p) = inf J(v) (1.10)
€ €
D _(p)
€
Also two other variants can be independently considered : ¢ = 0, i.e.,
n - optimality on strict D, and n= 0, i.e., strong optimality on
e — extension of D . In connection with the above definitions arises a question of

the problem correctness, that is whether v € De(p) +v €D when e = 0,

We call a solution to the subproblem (P) an optimal program control in agreement

with one of its parts, i.e., program control u(t).

In control theory a solution in feedback form also plays an important role. Let
us assume that there is given a functiom u(t,x), u: T xX-U. Let us further assume
that there exists a solution x(t) of the system (1.2) or (1.3} with u(t,x) inserted
for u(t) to form a program control u(t) su(t,x(t)) such that v =(x(t),u(t)) € D. We
say that the process v is associated with the control (or feedback policy) function

u(t,x).

Let B be a set of initial conditions (to,xo) and let there exist a family of
optimization problems with an initial condition (to,xo) € B and the rest of the
problem conditions fixed. We ghall include the dependence on the initial conditions
in notation such as D(to,xo) d(to,xo), v(to,xo), etc. For every (t,,x;), let there
exist the unique process v(to,xo) € D(to,xo) associated with u(t,x). Then we

call the latter a control synthesizing functiom or simply a control synthesis.
Let a synthesis u(t,x) satisfy the following conditions :
JG(e ,x)) - dle ,x ) <e, €>0, Ve ,x €B .
The function u(t,x) will be called an e-optimal control synthesis and for e= 0
an optimal synthesis. That means that a construction of an optimal synthesizing

function is equivalent to the solution of a family of optimal program control pro-

blems with an initial condition (to,xo) .
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2. BOUNDING AND SOLVING FUNCTIONS, SUFFICIENT CONDITIONS OF OPTIMALITY.

Let us introduce a class IT of real functions @ (t,x) : (continuously differen-

tiable in the continuous case) such that the following exist :

acplaxi . fi(t:,x,u) - fo(t:,x,u) +3p/at (continuous)

R(t,x,u) = 2.1)
ole+1,£(e,x,u)] - ©(t,x) - £2(t,x,u) (discrete)

G(x) = @(t),x) + F(x) 2.2)
u(t) = sup R(t,x,u), m = inf G(x) (2.3)
(x,u) €Vt x €vE=tl
X
L(@,v) = G(x(t))) = § «R(t,x(t),u(t)) - @(t,,x,) (2.4)
2(9) =m = Seu(e) - @t ,x) (2.5)
7t - Arg max R(t,x,u) (2.6)
{x,u) €Vt
E : v€E, (x(t),u(r)) €V, t€le ,t)), x(t) €Arg min G(x) (2.7)
t=t
vy 1
u(t,x) € U(t,x)= Arg max R(t,x,u) (2.8)
u€Vcx
P(t,x) = sup R(t,x,u) (z2.9)
u€vE

The functions ¢ (t,x) € IT will be called bounding functions.

The above introduced values and variables have some properties which are useful

when analising the problems considered in the paper. They will be reviewed below.

1/ L(e@,v) = J(v), Vo €T, vED . This equation defines a family of func-
tionals J(v) on D . For a given (nonoptimal) process A it is possible to choose
L(&p,vo) in such a way that it is obvious how to improve the process Vo, i.e.,
how to choose a2 v such that L( Posv) = J(v) < J(vgy) = L( wo,vo) and also how to
guess a rule of choosing it. These bounding functions will be called improving
functions. It is possible to comstruct methods for approximate solutionr of the
problem (P) in D by sequential improvements. Besides, L(®,v) is used to define
J(v) on E (outside D) as J'(v) = L(@,v). This is used in the proof of sufficient
optimality conditions and in some algorithms.

2/ JW)» (), WED, p €M, i.e., to any bounding function @ corresponds
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a lower bound for the functional J on D . This inequality can be used to obtain
sufficient optimality conditions and directly to obtain global bounds for the cri-

terion. From these bounds it is possible to find the best :

%= sup I(9), @EM. (2.10)

3/ A sufficient condition of optimality. Assume that there are given a func-

tion @ €N and a process v = {x(t),u(t)} € D, such that

R(t,x(t),u(t)) =~ max R(t,x,u) = p(t), t € [:o,cl) (2.11)
X,u evt
G(x(t)) = mint G(x) =m, t= tl
x EV;
Then
J(V) = min J(v) = (@) = max 2( @) (2.12)
D n

More generally : assume that there exist gequences { ws} el and {vs} cD

such that :

S[R (£, x (t),u (t)) - us(c)] ~0 (2.13)
G(xs(tl)) o 0 (2.14)
Then
J(v.) = inf J(v) = ¢ = lim 2(p ) €2.15)
8 D 8

These conditions of optimality are the basis of the following approach to the
solution of variational problems (the principle of optimality, (2) : for different
bounding functions find solutions ;(c), B(t) of the family of extremal problems
(2.11) with the parameter t and then take @ =@ such that the process ;==(;(t),ﬁ(t))
satisfies the equations (1.2) or (1.3) and the earlier mentioned properties of the
functions x(t), u(t) in the continuous time case. (the satisfaction of the condi-
tion (1.1) is looked for after construction of ;b. The function @ is generally
essentially nonunique and when specified for different subclasses of M it leads to
different methods of solution. The function @(t,x) € N is called a solving func-
tion and the set of all these functions is called Ml. Finding a pair VE D, ® €N

meane that the pair of the dual problems (2.12) has been solved.

4/ According to (2.7) for any function @ € M there exists a process v =
- (;(c),ﬁ(t)) €E (perhaps nonunique) whose distance from the set D is e¢= p(;) .

It is a solution of the ¢-extended problems (I) and (P) where :
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min J'(v) = 2(@), J'{v) =L{yp,v) (2.16)
vED
3
If a sequence { ws} <M is a solution of the dual problem (2.10), then for some
sufficiently weak conditions there hold p(gg) -0, I( ws) +d, i.e., the sequence
{9; } is a solution of the problems (I) and (P). From that numerical algorithms
for computing admissible and optimal processes can be built. They will be consider-~

ed in the sequel.

5/ Let a function u(t,x) implied by ¢ €M through (2.8) be a synthesizing
function on the set B of initial conditions (:o,xo). For example this is always true
in the discrete case if there are no constraints on states: V; =X, t =t0+1,...,tl .

Then for all (to,xo) the following is true, see (4) :

JE( ,x)) - dlt ,x) < A(@) =
0o’’o o’ o (2.17)

= S [sup P(t,x) - inf P(t,x) ] + sup G(x) ~ inf G(x)
vt vt yt=T vy t=T
X X X X

i.e.,the synthesis T(t,x) is e~optimal, ¢ = A(@). Minimizing the functional A( )

it is possible to have it sufficiently small.

A group of numerical algorithms for an approximate optimal solution is based on

this idea. Let there exist a function ¢ (t,x) which satisfies the conditions :

P(t,x) = C(t), Vvt ; ®(ty,x) = - F(x) + C (2.18)

I
where C(t) is a function and Cl a constant. Then, according to (2.17), the synthe-
gis :(t,x) ia optimal. If we take C{t) = O and Cl = {, then the function @ (t,x)
which satisfies (2.18) is the dynamic programming return for an optimal value func—
tion with a negative sign. The equation {2.18) is then the Hamilton-Jacobi or the

dynamic programming equation in respective cases.

6/ The transformation @' = @+ C(t) where C(t) is a differentiable function
does not change the values of functionals I(¢) and L{¢,v) (when v is fixed) nor
the sets E, U(t,x),7¢ . From this it is seen that the bounding function @ can be
defined in such a way that u(t) @ 0, m = 0. Then, the function ¢ is called norma-
lized,

7/ Along the admissible trajectory x(t) € D, a normalized function ¢ (t,x)

is nonincreasing and thus ¢

e (t,x(t)) < @(t,,x,), Ve, Vx(t) €D, .
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8/ 1If the function @ € T is normalized, then all optimal trajectories x(t)
are situated on the surface ¢ (t,x) = constant = (p(to,xo). In particular it means
that the optimal trajectories can not cross this surface, not only in the upper but

also in the lower direction.

The mathematical facts mentioned above are elementary but they imply nontrivial
corollaries. Sufficient conditions of optimality include the basic equalities and
inequalities of variational calculus and optimal control theory like the maximum
principle equations, the Jacobi conditions, and the Hamilton-Jacobi-Bellman equa-
tions. This means that they are quite close to necessary conditions., And in fact,
after some natural additional assumptiouns they become necessary. This observation
made it possible to find new classes of solutions for the variational calculus pro-
blems and also methods of finding them. These facts were the basis for new ideas
of constructing numerical algorithms for computing optimal or simply admissible
processes. The mathematical methods which use the bounding functions and related
constructions were found efficient not only for problems formulated in this paper
but also in many other problems in analysis and synthesis of dynamic system control.
It seems that they are as much adequate for solving global problems as the methods

which use adjoint equations for local problems.

The equations (2.1) - (2.9), the presented mathematical facts, and resulting new
possibilities and nontraditional directions in solving variational calculus and op-
timal control problems were developed in the papers surveyed here, (1-5). But also
earlier papers containing some elements of this theory should be mentioned. The
Hamiltonian-Jacobi method in variational calculus and analytical mechanics can be
regarded as a first application of solving functions. We can also consider that
they are used in Bellman dynamic programming (8) which is a generalization of the
Hamiltonian-Jacobi method to the modern problems of control and, in particular, to
the problems of optimal control of multistage processes. However, these are solv-
ing functions of special types, defined by equation (2.18). They do not cover all
possible applications of this theory. Functions of the solving type were used by
Caratheodory (B, p.335)for examining local conditions of variational calculus. To
those results we can also add the second Lyapunov method for analysis of stability

of motion. In it (7) bounding functions were defined and extensively used.

3. RELATIONS TO OTHER OPTIMALITY CONDITIONS.

The relation of the described optimality conditions to Pontryagin's maximum

principle {10) is obvious from the following necessary extremum conditions (2,11},
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see (1,6,7) :

R, (t,x(t),u()) = ¥+ H(6,¥(0),%(0),T(e) =0 (3.1)
U(t) € Arg max R(t,x(t),u) = Arg max H(r,¥(t),x(t),u) (3.2)
u u
H(t,‘l’,x,u) - ‘l’i fi(t,x,u) - fo
- (3.3)
¥(e) = o (£,%(t)
In the discrete variant the analogous conditions have the form, see (5) :
Rx(tv;(t)»u(t)) = HX [t ’ ‘l’(t'ﬁl),‘i(t).i(t)] - \[I(t) = () (3‘4)
t € (0,7-1}
R (e,x(e),u(t)) = B [e,¥(e+1),x(0),u(c)] = 0 (3.5)

i.e. the maximum principle equations coincide with the maximum conditions given
earlier for the function R(t,x,u). Together with the process equations (1.2),(1.3)
they form a closed system of equations where the solving function ¢ (t,x) is repre-
sented only by its gradient on an optimal trajectory. The analogous coincidence of
equations is true in appropriate extensions of the maximum principle (Dubavitzky-

Milyutin conditions) and for state constraints, see Khrustalev (7, p.120-136].

Equations (2.11) extend this necessary optimality conditions to the global suf-
ficient conditions which depend on functions @{(t,x) such that wx(t,;(t)) = ¥(x) .
Simple conditions of this type can be obtained taking a linear solving function
w(t,x) = ¥(t)x . They were considered in [11). 1In (3,7) differential equalities
for the matrix o(t) = | mxixj (t,x(t)) || were given. Their satisfaction guarantees
the strong or weak relative minimum of the functional. The (necessary and suffi-
cient) Jacobi conditions of variational calculus are equivalent to the existence of
the matrix o(t) in the appropriate cases. Development of these kinds of conditions

for a local optimum is given in the papers by Rozenberg (12) and Zeidan (13).

The Bellman dynamic programming equations (B} and the Hamilton-Jacobi partial
differential equations of variational calculus coincide with the equation (2.18)
which defines a solving function of a special type. Extensive analysis of the re-
lations between the return functions and the solving functions has been done by

Girsanov (14]}.

4. COMPUTER ALGORITHMS BASED ON THE TECHNIQUE OF GLOBAL BOUNDS.

Computer algorithms based on the technique of global bounds can be divided into

3 groups :
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(i) Methods of successive improvements of the sweeping type similar to
the traditional way presented, for example, by Kelley (22), Eneev (23), Krylov and
Chernousko (24), Bryson and Ho (25), However, the choice of an improving function

allows one to optimize not in a local (gradient) direction but in a global one,

(ii) Dual methods which are connected with a construction of sequences of
solving functions { ws} c T maximizing the functional 2{¢) given by {2.5). This
way we get the increasing sequence of lower bounds for the functional J on the set

D which converges under appropriate conditions to inf J(v). Yet a solution to the
D

problem is not this sequence but the sequence {vs} < E which satisfies (1.6) and
(1.7). The role of this sequence is played by {VS} = {;B(t),ﬁs(t) } < Es which
is related to { ws(t,x) } through (2.7). This way we get an approximation to

inf J(v), v € D, by an "outside” approximation of an admissible process. Thus we

solve not only the problem (P) but also the problem (I) .

(iil) Methods where the ¢ —optimal feedback control wu(t,x) is constructed
ugsing the bound (2.17). This leads to minimization of the functional A(¢) until

it is not greater than a given e.

4.1. The methods of successive improvements of control.

We start from a description of the methods mentioned of local improvement of
control in terms of the improving function. Let us assume that we know an admissi-
ble process v, = (xo(t),uo(t)) €D . We want to improve it, i.e. to find a
v = (x(t),u(t)) € D such that J(v) < J(vo) . We replace optimization of the
functional J(v) by optimization of L(v,®) given by (2.4) with a suitably chosen
function @. We shall look for v which is sufficiently close to v, in such a

way that the sign of AJ = J(v) - J(vo) is the same as its main linear part :

8 = 8L = Gx(xo(tl))ax(tl) - S(Rxsx(t) + RuSu(t)) (4.1)

§x = x - x , Su=u-u
o o

It is tacitly assumed above that the functions R(t,x,u) and G are differen-
tiable. The formula for 8L is given to within the function ¢ (t,x). We require

that it complies with the equalities :

R (t,x (€),u (t)) =0 4.2)

G (x(€))) = ¥(t)) + F (x(c)) = 0 4.3)
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These equations contain onrly the gradient of the function ¢ (t,x) on the points
of the trajectory xo(t). The value of ¥(t) = w&(t,xo(t)) and the value of (3.1) and
(3.4) are determined after replacing x(t),u(t) by xo(t),uo(t). This means that the
equations (4.2) and (4.3) are satisfied by the functions of the form @(t,x)= Wi(t)xﬁ
where the vector ¥(t) = {Vi(t) } is determined by (4.2) and (4.3). This function

we call local improving for control. Then :

6J(v ) = 8L(v ,9¥) = 5 R (£,x (£),u (t))Su(t) (4.4)

ol
where Ru(t,xo(t),uo(t)) equalg Hu(t,w(t),xo(t),uo(t)) or Hu(t,?(t+l),xo(t),u°(t))
for continuous and discrete variants of the problem, respectively.

Let there be given a function Su(t) and an infinitely small parameter ¢ such

that :

1. The right-hand side of (4.4) is positive,
t

2. u(t,e) = u, + edu € Vu , t €T,

3. =x(t,e) € V; where x(t,e) is the trajectory determined by the program control
u(t,e), the equation of motion, and the initial conditions,
4. v(e) = (x(t,e),ult,ec)) €D .

Then there exists ¢ > 0 such that

J{v) < Jv), v=v(e) €4.5)

Without gtate constraints, i.e., for V; =X, t€ (0,T]), the improvement of the

given program control uo(t) reduces to the following steps :

(i) Find the trajectory xo(t) by solving the Cauchy problem (1.2) or (1.3)
with u = uo(t), x(0) = X, The program control uo(t) should satisfy
v, = (xo(t),uo(o)) €D .

(11) Find ¥Y(t) and Ru(t,xo(t),uo(t)) by solving the linear Cauchy problem
(4.2) with the initial condition (4.3) which determines a local improv-

ing function @= ¥(t)x .

(iii) Set a variation of the program control &u(t) which makes the right-hand

side of (4.4) positive.

(iv) For different € > 0 solve the problem (I) with u = u, + eSu . The

value of e should be taken in such a way that (6.5) holds.

The basic part of thia algorithm is the "sweeping” solution of the pair of

Cauchy problems : the equation of motion from t, to t. and the adjoint equation
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from t. to t . The consecutive repetition of these operations allows one to find

the improving sequence {v }c D .

The expression (4.4) gives the gradient of the functional in the space of con~
trol functions u(t). The method presented can then be considered as an applica-
tion of the gradient techniques to the above class of problems. A weak point of it
is the local character of improvement which is guaranteed only for small variations
of the control u(t). This 1s not only troublesome because the convergence is slow
but also because the small variations can be unrealizable, for example when the set
Vi is finite. This deficiency can be avoided when the globally improving functions

are used.

It was shown in (26) that the function @ (t,x) is globally improving for a giv~

en process v = (xo(t),uo(t)) € D if it satisfies the following conditions :

R(t,xo(t),uo(t)) = min R(t,x,uo(t)), tE€T “.6

G(xo(t)) = m:x G(x), t= t

A process v = (x(t),u(t)) which is determined by the control E(t,x) = arg max R(t,x,u)
satisfies the inequality J(v) < J(vo) if the process v, is not an optimgl one.
For continuous processes it also holds that :(t,x) = arg mgx H[e, wx(t,x),x,u 1.
That is, when the local improvement was previously realized by a small variation of
control in order to increase the function R(t,xo(t),u), the new control is chosen
as a global maximum of R with respect to u . The condition (4.6) which is satisfied
by an improving function can be slightly weakened
R(t,x (t),u (t)) < R(t,x(t),u (£)), tE€ T

4.7)

Glx, () > G(x(r)))

where x(t) is the trajectory determined by u(t,x) .

To satisfy the equalities (4.6) it is enough to consider improving functions in

the form :

O(e,x) = ¥; (0" + 0y (6) (el (00) Gl (e0)

where the coefficients ¥(t) = {Wi} . oij(t), i,j = T,n, have to be found. It is
easy to see that the equations for ¥(t) implied by (4.6) are the same as (4.2) and
(4.3). Determination of the matrix o(t) is not unique. One possibility is to con—
sider the equations :

Ri j(E,x (E),u (0) = L 16 ij (X (€)) = = 8559 » i,j=T,n  (4.8)
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Here Gij is the Kronecker delta : Gi. =0 for i1#], Gii =] ; n and a are positive
constants. The equations (4.8) form the system of (n+l1)n/2 linear differential (or
difference) gquations with unknowns uij(t) = uji(t) and the given boundary condition
at t=t,. These equations together with (4.2), (4.3) and arbitrary positive n, a
determine the coefficients of the function «(t,x) such that x = xo(t) ig a relative
minimum of R(t,x,uo(t)) and maximum of G(x). Appropriately choosing n we can sa-
tisfy inequalities (4.7) and therefore (4.5). This way we obtain the following al-

gorithm for improving a solution :

(i) Set n» 0, a » 0, and find ¥(t), o(t), @(t,x),a(t,x) by solving the
linesr Cauchy problem (4.2), (4.3), (4.8) from L, to e,

(ii) Find the process v = (x(t),u(t}) = uft,x(t)}]) € D by solving the
Cauchy problem for the equation of motion with u = z(t,x),x(to) =%,

from t, to t, and verify the inequality J(v) < J(vo).

If it is not satisfied, then choose another o, n, and repeat the calculations.
This procedure improves any process which does not satisfy the maximum principle

equations or its discrete equivalent.

Consecutively repeating the above algorithm we find an improving sequence

{vs} < D . However, in general it does not converge to inf J(v), vE D .

Example I (27).
The problem is :

J = - xz(Z) - min

x ey = xl o) + 2000)
2e+1) = - xLen? + x2e) + u2(e), t=0,1
x10) =3, x*©0 =3, lu@l <5 .

The optimal solution is w(0) = ~ 2, u(l) = ¥5, J == 19, For this problem
the Pontryagin maximum principle does not hold. The Hamiltonian H(t,u) =
= Wi(t)fl(t,x(t),u) has for t =0 at u(0) =-2 not the maximum but the minimum.

We take olz(t) = ozz(t) =0, vt, 9 =0 and thus :

P(t,x) = ql<t)xl + wz(t)x2 + u(t)(xl<—x;(t))2/2 .

The functions R and G take the form :
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R(t,x,u) = Wl(t+l)(x+2u) + Wz(:+l)( —x2+x+u2) +
+ 0-5-0(t+1)[xl+2u-x;(t+l)]2 - vi(t)-xi -

- 0-5ea(t)[x'-x) (17,

2

G(x) = - x° + ‘}‘i(2)°xi + 0-5-0(2)[xl-x;(2)]2 )

The adjoint equation and the equation for o(t) are as follows :
Y(0) = ¥ () - 2L (0) sy (erD), WD) =0 g

¥,(6) = ¥,(cH1), ¥(2) = 1,
a(t) = - 2.w2(t+l) + o(t+l) -n, 0(2) = a
The results : Iter. No 1 : u(0) = u(l) =0 ; J =~ 18, Iter. No 2 - optimum .,

We choose a class of nonlinear optimal control problems for which the global
improving function satisfying (4.6) has the form @w(t,x) = ‘{‘i(t)xi . In this case
the algorithm presented above is substantially simplified because there is no need
to adjust the coefficients n, a nor to solve the system of equations (4.8). The
problem functions have now the form :

f(t,x,u) = A(t,u)x + B(t,u) ; F(x) = Ax ; u € vﬁ

(4.9)
fo(t,x,u) = ao(t,u)x + bo(t,u)

An interesting subclass of these problems is connected with the control of quan-
tum systems by the means of a laser radiation. It was investigated and algorithmiz-
ed using the method described above in {28). In a simulated experiment a good con-
vergence and effectiveness of the method was obtained for very big dimensions of

the state vector which reached some ten thousands.

We mention also a class of so called knapsack multivariate problems where the

above method seems to be effective :

N
J(v) = tzl Ceup = min 5 u, € (0,8, ] ; (4.10)
¥ o —
tzl a u <b ; i=Tm ; .1

and u, is integer. Application of the above method to these problems was consider-
ed by the present author together with Feldman. Introducing a sequence (xt} cr",

t=0,1,...,N :
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i i i i i A
Xl ™ % + a, u, s x(1) =0 ; x(NM+1)Kb , i=1,n (4.12)

we can transform the problem (4.10)-(4.11) to the multistage optimization problem

vhere :
to =0, tl =N+l, x= Rn, U-set of integers,
£(t,x,u) = x + a(t)u, £° = C(t)u, v; = R" for t < t) >
vi “{x:x <bl} fort - t)s v . (0,83 .
We have :
0(e,0) = ¥, () + —; o;; (G -xk(e)? o= 00 i%3 .

R(E,x,0) = ¥, (e+1) (x +at (E)u) + -;- aii(t-l»l)(xi+ai(t)u-xi(t+l))2 -
-y oxt - Lo atxlen? - o v

Gx) = v (e x + 4o (e ek (e
Taking n = 0 and solving the equations (4.2), (4.3) and (4.8) we get :

Wi(t) = constant = Wi =0 if xi(tl) < bi and

(> if xiep <l i=TE;

aii(t) = constant = - x. , oy >0

R(t,%,u) = - AC)u?/2 + B(t,x)u + C(t,x)

AG) = oyt ()% >0

B(e,x) = = ojat(e) (xmxk (£41) + ¥,a () - ()

e, ) = ag[x(e+l) - x2(D)] + a b2 (erl) - x22(0)].
The expression for R(t,x,u) satisfies (4.6). The control u(t,x) is taken as an
integer from the interval [O’Bt] which is closest to the value u‘(t,x) =B(t,x)/A(t).

The values a; are chosen in such a way that the improved trajectory satisfies the
inequalities (4.11) .

Example 2 (28) .
The problem is :

J = - [6uI + 4u, + u3] - min

2
B.t. up o+ 2u2 + 3u3 <5
2U1+ U2+ \13<4

u = {0, 1}
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and the optimal solution (see Table) :

U, =4, =1 ; ﬁa =0, J==-10.

1 2
Control Vector o
Iter
Number ul u2 u3 al a, Functional
0 0 0 0 1 1 0
I 1 0 0 1 i -6
2 1 1 0 - 10

Example 3 (30).

The problem is :

J=-[3u, +3u, + 13u3] - min

1 2
s.t. - 3ul + 6u2 + 7u3 <8
6ul - 3u2 + 7u3 <8

0< u, < 5, u_ -~ integer,

t
and the optimal solution (see Table) :

Uy =u, = 0 ; ug = 1, J =~ 13

2
Control Vector a
Iter
Number ul u, u3 oy a, Functional
0 0 0 0 0.3 0.3 0
1 0 0 1 -13

In this the version with the global improving function quadratic in x (26} is

discussed. There exist other versions of this method which are presented in (31}.
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4.2, The methods of successive improvement of the bounding function.

The method is presented according to (32, 33). Let there exist a function
wo(t,x) €M . We give the operation of improving it,i.e, finding a function ¢ € 7
such that 2( @) > 2( wo). We assume that it has the form : ¢ = ©,* Ay , where
A,v(t,x) are a coefficient and a function which should be determined. We introduce
a functional :

£

t=0

6(v) = [r(t,x(t),u(t)) + y(t,x(t)) (4.13)

r(t,x,u) = Yy.* £t
i

We denote by R(t,x,u,), E(A), ete. the appropriate constructions associated with
p=p 4+ Ay, and also Ro(t,x.u)- R(t,x,u,0) etc. Taking into account (4.13) and

(2.5) the increment A% = £(}) - 2, can be written in the form :
A2 = A8(v) + [Lo(v) = 2,) , v EEQ (4.14)
From this it follows that 2(¢) >-1((0°) if at least for one v € E(\)
AS(v) >0 (4.15)

Fitting A and § which satisfy the above inequality will be called an elementary
bound improving operation. In the sequel for simplicity we consider only the case
when the set ¥ contains only one element :(A) - (;(t,l),c(t,l)), i.e. the function
R(t,x,u, ) has only one maximum. We also denote §()\) = 5(;(1)). Under sufficient-
ly general conditions the function §(\) is lower semicontinuous at A = 0. Thus if
we define the function y to satisfy :

§(0) = 8 £(t,%_(8),3 (1)) + v(t,% (©)) :‘ > 0 (4.16)
then for a sufficiently small A > 0 the inequality (4.15) holds and therefore
) > 1((00). We see then that the elementary operation can be done in two
steps. In the first y(t,x) is chosen according to (4.16) and in the second a
A > 0 is taken.

It is easier to interpret the idea of elementary operation when the improving
component is taken in the form y = vi(t)x1 and the functional §(v) in the form :
t t+1l T-1

§(v) -j b3y + T v(D)E(e) 31 v(esDZ(r) 4.17)

to tes t-1 t=0

where Z(t) is related to the process v through (1.2) or (1.3), B is the set of
points of discontimuity of the function ?(t). The first and the second expressions

correspond to the continuous and the discrete processes, respectively.
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It follows from (4.17) that if there exists a value t =T such that ;(1) # 0
or in the continucus time x%{t+0) ~%(t-0) #* O, then the improvement of the function
qh(t.x) can be achieved by adding a linear term y(t,x) = \»i(t)x'1 where the function
v(t) is taken to keep the right hand side of (4.17) positive for 'G’-'G’o('i'o(:),'ao(:)).

The use of y(t,x) in more complicated cases is necessary only when the maximum

of the function Ro(t,x,u) is not unique.

A weak point in this method is the necessity to maximize the function R(t,x,u)
for every t in order to form the process Y= (§(t),3(t)) or more genmerally - the
set E , Therefore the method can be applied only to the problems where this maxi-~
mization can be performed analytically or there exist efficient numerical procedu-

res for doing it.

Repeating consecutively the elementary improving operations we get the sequence

{ws} for which the value £( ) increases.

There exist theorems in which it is shown that under some stronger conditions
for y and A the above aequences ensure a solution to the problem (P) for a wide
class of systems., Namely, the sequence {;;} = {;s(t),qs(t)} corresponding to {y.}
by (2.7) is a generalized solution to the problem (I) in the sense of (1.5) and
(1.6), and to the problem (P) in the sense £( Pg) =+ lim de(p) where ds(p) is given
by (1.10). €0
Exemple 4.

Find a solution to the system :

X = u, x(0) = X, > 0,

x(1) = 0
which minimizes the functional
! 2,2
J= [ (u°+x%)de
o
Here x and u are scalar functions. We look for a solution in the form of a sequence:
(Os = \y(t)x9 'Ys =V X

We have @

_2_.2
Rs(t,x,u) Vsu u” -x" + st
xg = (1/2)¥,

u, - (1/2)\1’B
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~ o~ 2 L2
Hg(E) = R(EX L) = (v + ¥7) /4

1
- ¥, )%, = f w2+ ¥Pae

L =
8
~ ~ ~
Z =x =-u
8 [
o = al s a2
s s 8
LI
As = IO Izsld:
2 ~ ~
ag = x| + lxs(O) - xol

~ ~ 1 ~
85 0xsu) = =y (Dx (1) =v_(0)(x -x(0)) - Io vg(t)z dr
Gs = Gs(xs,us)
Axs - vs/2
Bu, = vs/2
Rs(:,x,u,k) = Rs(:,x,u) + Ars(:,x,u)
rs(:,x,u) =v.u + Gsx
xs(x) =% + AAxs
us(x) = us + Aus .
The value As is taken to satisfy the condition :
68(1) - Gs(xs + AAxs,us + AAus) = 0
which is in this case an elementary improving operation (49). We have :
B () = 8 (x,u)) + A8 (4% ,8u)
Ag = - Gs(;;,us)lﬁs(A;s,AG;)

ws+l ] Ws + Asvs .

The function R(t,x,u) for any ¥ has the unique maximum at X(t), u(t) and thus
the elementary operation is solvable in the class of linear functions y(t,x) =v(t)x
for any ¥ which does not ensure the strict optimum. We provide the specific itera-

tions starting from ¥o,=0.
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Iteration 1,
We have
xo(t) - uo(t) =0

1 2 ~ ~
Ao = 0, A =x = xo(O) =X, z(t) = 0, L, = 0

1
T Guu) == v (0)x + fb vy (8)Z (£)de = = v _(O)x_ .

The condition (4.16) is satisfied for vo(O) = - |, For other values of t the func-
tion vo(t) can be defined arbitrarily. We define it in a simple way : vo(t) ==-1.

We have E; =x ., Ax = o, Bu = - 1/2, Go(Axo,Kzo) = - 1/2, Ao = 2x . Hence

Wl(t) - 0+A°v° - - 2xo. Moreover ;l(t) = 0, El(:) ==Y, Al

1 "% R’l-xﬁ > !'o =0 .

This way in the first iteration the value of | increased but the pair x,u did

not move closer to D, neither in the boundary conditions, i.e. in the norm Az, nor

in the integral norm Al.

Iteration 2,

We have :
1
B = 8,Ghu)) = - v (0) + x jo v, (t)de .

According to (4.16) and requirements of normalization (33) (first way)
vl(O) =-1, vl(t) =1 for t€ (0,1) .
This function is discontinuous and does not comply with the conditions of the ele-

mentary operation. Therefore we take as vl(t) a continuous function from the ap-

proximating sequence {l-2(t—l)k, k=2,4, 6,... }. We choose the function which

is simplest for computing, i.e. vl(t) = l-2(t—l)2 .

We have : 61 = 4/3 X
ax) = 2(1-t) puy = 1/2 = (e=1)?
Gl(Axl,Aul) = - 29 Al = SIISI(AXI,AUI) = 40/87 X

';z(c) = X Au, = B0/87 x_(I-t), '52(:) = 'Elﬂ.lAu = ~1/87 x°[67+40(t—1)2]

The estimate of the distance from D is :

1 2 ~
Al = 10/87 x ™ 1/9 X A2 =X —x2(0) = 7/87 X ™ 7/90 X .

The lower bound is 22 3 xz . Therefore in the second iteration the pair %X, U was
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moved substantially closer to D, approximately 10 times in each criterion.

The above method was applied for developing algorithms for solving integral
assignment, scheduling, traveling salesman problems (34}, different optimization

problems of space maneuvers (35) and distributed parameters systems (36) .

4.3, Methods of e-optimal control synthesis,

We want to find an e-optimal control synthesizing functionm U(t,x). We consider
the case when there are no state constraints including in it also boundary cons-—
traints, i.e. V; =X, Vt, x € TxX . Other problems can be solved by this method
using penalty functions. We showed above that this problem can be solved using the
bounding expression (2.17) and minimizing the functional A( @) until it has the

value A(®) =¢. Then the synthesizing function E(t,x) = arg max R(t,x,u) is
tx
u€v

€ -optimal. The problem of finding an optimal control synthesis is therefore reduc-
ed to the minimization of the functional A(®@). The lower bound for the latter is
zero. This bound is attained when in the class Tl or its above mentioned refine-
ments there exists a solution of the dynamic programming equation (2.18) or a se-

quence which approximates this solution in the sense of A(®) .

There exist numerical algorithms which use this approach. One of these algo-
rithms (4, 6, 37, 38) is the following. The desired function ¢ (t,x) is taken as
an interpolating polynomial in the space X = " . 1Its parameters depend on t and

are determined from the equation :

P(e,x,(6)) = 0 ; Glx,(c))) =0 (4.18)

where {xz} is a given set of interpolation knots, P(t,x) and G(t,x) are given by
(2.9) and (2.2). The equations (4.18) form a system of normal differential (diffe-
rence) equations in the parameters of the function ¢ (t,x) with the given boundary
conditions for t = tl. Solving this system ye get the function @ (t,x), the corres-
ponding control synthesis u(t,x), and the bound A(@). 1If the latter is too big,
then the computations are repeated with a better set. This is reiterated until we

get 4(Y) < ¢ .

A second algorithm which was used in some interesting applied problems (7, ss.
349-357) consists in solving the problem A( @) -+ min by the Ritz method. Then a
class of functions @ (t,x) = £(t,x,a) depending on a parameter a is taken. The
functional A(a) = A(g(t,x,a)) is computed and the minimal value of A(¢) is found

using the mathematical programming method in this class.

The possibilities of using the above methods are limited because of the opera-
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tions sup P(t,x) and inf P(t,x) which are in (2.17). For many specific problems
X X

(39, 40, 41) these operations can be performed analytically. In these cases it is
much easier to realize and justify the algorithms for solving the problem A( ) - min
in the class of the bounding functions which are quadratic in x and moreover to
get exact solutions in the form of minimizing sequences of control synthesizing

functions.

5. OPTIMAL CONTROL FOR RESONANCE INTERACTION OF LIGHT AND MATTER.

5.1. Introduction

At present there exists a vast domain of new techniques based on laser applica-
tion : isotope separation, photochemistry, pure substance production, detecting of
single atoms and molecules and others. This makes the problem of the most effec—
tive utilization of lasers in such processes extremely important and causes the for-
mation of a new type of problem of optimal control theory, namely, control of quan-
tum systems by making use of macroscopic electromagnetic fields. Consideration of
such problem statements is presented in (42). The authors of paper (43), using the
sufficient conditions of optimality, the method of multiple maxima and the
Pontryagin maximum principle, have analytically found the optimal regimes for some
small dimension (dimensionality 2-3) models of photoprocesses in gases. Optimal
excitation of the three level system set up by two resonant fields had been studied
in (56) in the class of constant controls (amplitudes and detuning of resonant
fields, relaxation constants). In this paper the authors describe the solution me-
thod for a given class of nonlinear optimizing problems. This method is practical-
ly applicable to systems of large dimensions, i.e. for a great number of energy le-

vels.

Papers (44, 45, 46) deal with the analysis of some different systems, namely,
optimal laser heating of macroscopic volumes of a substance (i.e. a nonquantum sys-

tem and nonregsonance interaction).

5.2. Statement of the problem.

A quantum system (atom, molecule) is considered to be interacting with a ma-

croscopic electromagnetic vector field E of the following form

P .
E= ¥ ul(texplio.t) , .1
j=1 1

where uJ (t) vary insignificantly in times ~ m}l . Interaction is assumed to be elec-
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trodipole. The state of the system is described by a matrix of demsity X represent-

ing the interaction, which satisfied the kinetic equation

¢ Fk = - 2 19,R1, (5.2)

als

where G = -dE is an operator of the quantum system interaction with a radiation
field, 3 is an operator of a dipole moment in interaction representation, Iis a
linear operator of the quantum system interaction with a dissipating system and
[G,i] = Ux -%v is a commutator of the two operators (47). Assume that one or se-

veral resonance conditions are being fulfilled

Z ni wj =0 + vk . (5.3)
]

where ni are positive integers and Yo 8re naturel frequencies of the system. Then

n 80d lvmnl < hmmn

(an is a matrix element of transition from the state m to n, truncated equations

in resonance approximation and under the condition that |vk| <wy

for the density matrix have the form of 48 ; summation is assumed with respect to

repeated indices) :

ii = A%(c, u)xd : xi(O) = xi s i=1,9
3 ° (5.4)

: ixix i()x
=al + 8 1X2 vu®l e y®2 42 (xy TN

A j julu2 X, Xy Joy

[l

i(2)x.x « «
+ A, 172 culeu? .,
J819y X1 *2
where xi, (is 1,q) are real and imaginary parts of the density matrix components,
related to resonant levels as well as to nonresonant ones strongly connected by re-
vary-

laxation. Xjseess X, are vector indices, varying from | to 3 and Gpseeey O

ing from 1 to p . T:e first term of the right part in equation (4) describe: rela-
xation effects, the second one describes a dynamical Stark shift of the equations,
the third - contribution of one photon processes, the fourth - contribution of
two photon processes and so on. Field amplitudes are assumed as limited ones

0< U: < Mz where Mﬁ are constants. It is quite natural by virtue of resonance
approximation that lenl < hmmn . We are given a period of time (0,T) and a state
of the system at the initial moment of time. M: are considered sufficiently small

for preserving the resonance conditions.

Thus, the interaction of light with matter is described by the components of the
density matrix Xi(t), i.e. the state of the process meeting equations (5.4) with ini-

tial conditions Xg , where amplitudes of the quasimonochromatical field uj(c) are
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limited and play the role of controls. The elements of the set D of admissible

processes are described by the pairs v = (x(t),U(t)). We define the functional

T
I(v) = [ x;£;(e,U)de + x;(T)25 (5.5)
o

This functional, in particular cases includes polarization of the system, popu-
lation of the levels in the moment of time T, their mean values for a period of the
time T and also any linear combinations, for example, an inverse population of the
levels m and n, X, (T) - Xn(T)' Since level population is an important stage in the
development of chemical reactions, controlled by laser radiation (49)as well as a
laser spark and multiphoton ionization (50, 51), the choice of functional type I(v)

includes a significant part of cases interesting from the physical view point.

We are to find the sequence vg on which the functional (5.5) tends to its least
value :
lim I(vs) = inf I(v) (5.6)
8> o= vED
Note some essential features of the formulated problem :
1/ no limits for phase coordinates in the time interval {0,T],
2/ independence of control limits of time and phase coordinates,
3/ linearity of process equations and functional depending on the phase coordinates

with the fixed program of control U(t).

In that case if the modes, utilizing most efficiently the energy applied to a

process are to be found, then the functional is presented in the form : Il(v) =
T I
=-- I(V)/(J; uzluzldt). In this case the optimization problem looses its property
1%

(3), i.e. it becomes nonlinear in the phase coordinates.

It is also possible that there will be limits imposed on power consumption by

controls, then functional (5.5) preserves its form but a new variable *q+l =
xX] X
- “u: uu: is introduced and it is restricted by xq+l(T) < EM where EM is a cons-—

tant. In this statement the optimization problem looses its property 1 .

5.3. Description of the method.

Let us analyse only the case when power consumption in controlling is inessential,
i.e. the functional has the form of (5.5) and process equations can be written (sub/
superscripts omitted) in the following form : x = A(u,t)x + B(u,t), i.e. this pro-

blem has the form (4.9) and its solution requires the application of the control
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successive improvement method. As it has been previously shown, the choice of the
solvable function can be limited for problems of this kind : @(t,x) = Wi(t)'xl. The

corresponding constructions are :

RCEx,u) = [F, + WiA;'(t.u) - fj(t,u)]xj ; (5.7)

T(t,x) = arg max R(t,x,u) ; {5.8)
O<u<H

G(x) = [25(T) + ¥, (T)]ext (5.9

Under the assigned program uo(t) conditions (5.6) are equivalent to the equalities :

¥ A ()Y, - £ (U () = 05 ¥ (D = - 1), (5.10)
j,i =l—v‘-l-

The improvement algorithm has the form :

1/ Assign ¢= wo(t,x) = Wio(t) -xi and from (5.8) find ﬁg(t,x) s

2/ Solving the Cauchy problem for the system (5.4) of the closed control u = u,(t,x)
we find a trajectory xo(t) and the control program uo(t) = E(t,xo(t)). Instead
of item 1, the initial control program uo(t) can be directly assigned,and by vir-
tue of item 2 with u = uo(t) 3

3/ Iterating (5.10) find the vector-function ¥(t) ;

4/ Repeating 1/ and 2/ with @ (t,x) = Wi(t) -xi find the process v = (x(t),u(t)),
satisfying the inequality I(v) < I(vo) 3y, = (xo(t),uo(t)) if the process A

is not the solution of the maximum principle,

Repeating this procedure we obtain the improvement sequence {vk} I(kal) < I(vy).
The procedure of improvement leads to the solution equations of the maximum princi-
ple. The practical signal for completing the iterations is the repetition of the

values I(Vk+l) = I(Vk)-

5.4. Computation features of the method.

100 _pksl)

1) It was proved in (52) that =& +4,+4, . In this problem

2 73
Al =0, A2 » 0 by construction, whereas A3 is equal to

T .
b - j - i - ¢©
b, = L(x(k) Xa1y) (¥ + Ay ¥y - £)de, (.11
A; from (5.4). 1In other words, A3 is equal to the sum of integrals of phase coordi-
nate differences in (K) and (k+1) interations multiplied by an error of integrating

the equations (5.10) on the (kth)-iteration. If integration (5.10) was accurate
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then A3 % 0 while insufficient accuracy of integration A3 may produce a negative

contribution (especially in the neighbourhood of the extremal when Az ig decreas-
ing). Therefore if I(k+|) > I(k) then it is desirable to go back to the (kth)—

iteration and to solve (5.10) with higher accuracy.

2) Step 2/ of the algorithm in the event when only one-photon transitions, is
L7y 0eD

3 i

deration of the Stark shift level or contribution of the two-photon processes trans-

realized in such a way, if AS!)X . > 0 then X = , and if consi-
ija a a
forms this step of the method into a quadratic programming problem while considera—

tion of the S-photon programming program.

3) Note that this method also guarantees the finding of local minimals only
(Pontryagin's extremals), and therefore multiple iteration with different initial
controls uo(t) is desired to be followed by the selection of the best solution
from the obtained ones. Within the framework of this method, the problem of an ab-
solute minimum remains unsolved. 1Its solution requires either utilization of suffi-
cient optimality conditions with additional defining of ®(t,x) (12),or the analysis
of the group properties of the problem (54). It is possible to use wethod (56)

containing some stronger operation of improvement than in (52).

Example 1.

We shall consider a three level system being excited by three resonance

3 X
fields. The external field E = Z uJ (t)exp(iwlt) 1is assumed to be linearly
j=1

polarized with amplitudes of the quasimonochromatic field ul(t) being limited by

Mj and detunings v, = - w < JT being constant. The maximum population of

Y
level (1) at time T is to be found. At the initial time population of level (3)

is equal to | and levels | and 2 are not populated ; T = 3, (Vid/h)max = 1, relaxa-
tion constant X; = 0.3 . The initial value of the functional (with all the three
controls being maximal) is equal to 0.293 , then at the first iteration it is 0.475,
at the second 0.482 , the third 0.483 , the fourth 0.487 , the fifth 0.492 , the
sixth 0.492 . Optimization in the class of constant controls provides for I =0.303.
The dynamics of functional changes in the iterations of this problem are the follow-
ing : zero : (-0.417), first : (of 0.163), second : (+ 0.254), third : (+ 0.259) .
Note that on the graph for the field 03 the part of a so-called "pseudosliding"

mode is in the beginning and it is characterized by frequent switchings of controls
from maximum to minimum, It is not connected with the existence of a real sliding

mode, since it is the particularity of application of this computational method.
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The experience of this method of application reveals that the greatest improve-
ment is achieved as a rule in the first iteration and the iteration number does not

exced 10,

As is known (55) the population of the levels in a quantum system in a resonance
constant electromagnetic field is exposed to oscillations with the Rabi frequences
(for example,for one photon transitioms in a two-level system “3 s +(dE/h)2 .

In fact we consider the system with the Rabi variable frequencies and control then
by changing the external field amplitudes, trying to compensate the influence of
relaxation effects.

Note as well that since we used the resonance approximation, the obtained con-
trols and phase coordinates should be slightly varying functions in times =~ wgl »
however the periods with instantenuous on/off switchings of the fields are admissi-
ble (55).

Example 2.

As the second example we shall consider the system being excited by one exter-
nal field of a molecule of a spherical top type. Its oscillating rotating spectrum
has a zone structure : each oscillating component has its corresponding rotating
structure, whose component, in its turn, is (2J+l) times degenerated by a magnetic
quantum number m (J is a rotary quantum number). The field is to be considered
linearly polarized and resonant of the transition v=0, v=1 (v is an oscillating
quantum number). The selection rules permit transitions with an increment in
4m = 0, Av =+1, AJ =11}. At the initial time the population levels are defined
by the Boltzmann distribution at a temperature of 100 °Kk, B = |~ (B is a rotating
constant}, E = 103 (E is an energy difference of the first and zero oscillating le-
vels). The control which maximizes the population of oscillating zones v=1 at
time T=10 is to be found. (time is measured in the units equal to the inverted
Rabi frequency of the system (h/dEM), d is a dipole moment of a transition

v=0-+vs=1, E is a maximal value of the external field, with M=1), Relaxation

is neglected and? as a rule it can be always achieved in gases at a sufficiently
low pressure. Dimension of the process equations system is to be determined by a
maximal rotating number JM and it is equal to G -Ji + 4 -JM + 2 . In our computa-
tions n =50 and the system dimension n =15202., In the absence of the external
field the functional value is equal to 0.363. The control in the zero interation
is assumed to be U(t) = 1 and here the functional equals 0.868. The iteration pro-
cess converges in the first iteration and provides for a functional value which is

equal to 1. Note that in four periods the control has a "pseudosliding" form (see
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example 1) and the duration of these periods is sufficiently great. As has been
previously indicated, these periods have corresponding parts of special trajectories

of the system.

It should be also noted that the solution of this problem for systems of such
dimensions involves meeting high requirements of a configuration of an applied com-
puter {for this problem solution 1000 integration steps require 800 Kb of opera-
tional storage, 100 Mb of external storage, 3 hr 15 min of computation time of
EC-1045) .

The above analysis of this problem makes it possible to draw the following

conclusions :

1) Programmed control of the resonance light radiation effecting the quantum

systems allows the essential increase of this effect efficiently.

2) The phase dimension of the corresponding problems of optimal control quickly
increases with the growth of the number of system quantum states. The systems with
several dozens of such states present an applied interest. The problems of optimal

control correspond to such systems with dimensions of several thousands.

3) The described method of solving the problems of optimal control provides for

a regular computation algorithm allowing the solution of such problems.
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ABSTRACT

Consider stochastic linear dynamical systems, dx=Axd!+ Bdw,dy =Cxdt+dv,y(0)=0,x(0) a
given initial random variable independent of the standard independent Wicner noise processes w,v.
The matrices 4,B,C are supposed to be constant, In this paper I consider two problems. For the
first one A, B and C arc supposed known and the question is how to calculate the conditional pro-
bability deasity of x at time  given the observations y(s),0<s<¢ in the case that x(0) is not
necessarily gaussian. (In the gaussian case the answer is given by the Kalman-Bucy filter). The
second problem concerns identification, i.e. the 4, B, C are unknown (but assumed constant so that
dA =0,dB =0,dC =(0), and one wants to calculate the joint conditional probability density at time
1 of (x,4,B,C), again given the observations y(s),0<s<¢. The methods used rely on Wei-Norman
theory, the Duncan-Mortensen-Zakai equation and a “real form” of the Segal-Shale-Weil represen-
tation of the symplectic group Sp,(R).

AMS classification: 93E11, 93B30, 17899, 93C10, 93B35, 93EI12

Key words and phrases: nongaussian distribution, identification, non-linear filtering, DMZ equa-
tion, Duncan-Mortensen-Zakai equation, propagation of nongaussian initials, Wei-Norman theory,
Segal-Shale-Weil representation, reference probability approach, unnormalized density, Kalman-
Bucy filter, Lie algebra approach to nonlinear filtering.

1. Introduction

Consider a general nonlincar filtering problem of the following type:
dx = f(x)}dt + G(x)dw , xeR", weR"™ (L)
dy = h(x)dt + dv , yeR?, vel’? (12

where f,G,h are vector and matrix valued functions of the appropriate dimensions, and the w,» are standard Wiener
processes independent of each other and also independent of the initial random variable x(0). One takes y(0)=0.

The general non-linear filtering problem is this setting asks for (effective) ways to calculate and/or approximate the
conditional density #(x,7) of x given the observations y(s),0<s<; i.e. #(x,?) is the density of x=E[x{)ly(s), 0<s<1]
the conditional expectation of the state x ().

One approach to this problem proceeds via the socalled DMZ equation which is an equation of a rather nice form
for an unnormalized version p(x,?) of #(x,¢). Here unnormalized means that p(x,7)=r(t)n(x,t) for some function r{t)
of time alone. A capsule description of this approach is given in section 2 below. Using this approach was strongly
advocated by Brockett and Mitter (cf. e.g. their contributions in [6]), and initially the approach had 8 number of non-
trivial successes, both in terms of positive and negative results (cf. e.g. the surveys {9] and [4]). Subsequently, the
approach became less popular; perhaps because a number of rather formidable mathematical problems arose, and
because the number of systems to which the theory can be directly applied appears to be quite small. Cf [4] for a dis-
cussion of some aspects of these two points.

1t is the purpose of this paper to apply this approach to two problems concerning linear systems, which do not fall
within the compass of the usual Kalman-Bucy linear filtering theory. More precisely, consider a linear stochastic
dynamical system

Various subselections of the material in this article have formed the subject of various talks at different conferences; e.g. the 2nd confer-
ence on the road-vehicle system in Torino in June 1987, the 24-th Winter school on theoretical physics in Karpacz in January 1988, the
3rd mecting of the Bell i in Valb in Junc 1988, the present one, and the special program on signal p ing of the
IMA in Minncapolis in the summer of 1988. As & result this article may also appesr in the p dings of these i

&
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dx = Axdt + Bdw, xeR", weR™ (1.3)
dy = Cxdt + dv, y, ve®F (14

where the 4,B,C are matrices of the appropriate sizes. The first problem I want to consider is the filtering of (1.3)-
(1.4) in the case that the initial condition x (0) is a non-gaussian random variable. The second problem concerns the
identification of (1.3)-(1.4); i.e. one assumes that the matrices 4,B,C are constant but unknown and it is desired to
calculate the conditional density m(x,4,B,C,t) of the (enlarged) state (x,4,8,C) at time ¢. Technically this means that
one adds to (1.3)(1.4) the equations
dd =0, dB =0,dC =0 1.9

and one considers the filtering problem for the nonlinear system (1.3)(1.5). Strictly speaking this problem is not well
posed. Simply because 4,8,C can not be uniquely identified on the basis of the observations alone. In the DMZ
cquation approach this shows up only at the very end in the form that p(x,4,B,C,¢) will be degenerate in the sense
that p(Sx,SAS~',8B,CS =" ,1)=p(x,4,B,C,¢) for all constant invertible real matrices S. As a result the normalization
factor fp(x,4,B,C,1)dxd4dBdC does not exist, and in fact #(x,4,B,C,!) is also degenerate. One gets rid of this by
passing to the quotient space (finite moduli space) {(x,4,8,C)}/GL,(R) for the action just given and/or by consider-
ing (local) canonical forms. The normalization factor can be calculated by integrating over this quotient space.

Besides the DMZ-equation, already mentioned, the tools used to tackle the two problems described above are
Wei-Norman theory and something which could be called a real form of the Segal-Shale-Weil representation of the
symplectic Lie group Sp,(R). These two topics are discussed in sections 3 and 4 below.

2. The DMZ spproach to nonlinear filtering

Consider again the general nonlinear system (1.1)4(1.2). These stochastic differential equations are to be considered as
Ito equations. Let (x,t) be the probability density of E[x(#)|y(s), 0=<<s5 <], the conditional expectation of x (r). (Given
sufficiently nice f,G and & if can be shown that #(x,) exists.) Then the Duncan-Mortensen-Zakai result [1, 10, 12]is
that there exists an unnormalized version p(x,f) of #(x,t), i.e. p(x,t)=r (t)n(x,1), which satisfies an evolution equation

dp = fpdt + Zhpdyi (1), plx, 0) = Y{x) 2.1
where {{x) is the distribution of the initial random variable x(0) and where £ is the second-order partial differential
equation

aZ
3x,-3xj

8=73
if

Here hy, yi(1), /i are components of h, y(¢) and f respectively and (GG™); is the (i,j)-entry of the product GG of the
matrix G and its transpose.

Equation (2.1) is & Fisk-Stratonovit stochastic differential equation. The corresponding Ito differential equation is
obtained by removing the ~ ZAf¢ term from (2.2).

d ,p- 1
GGy — ?'a;ﬁ 2 %hi'# @)

As it stands (2.1) is a stochaslic partial differential equation. However the transformation

plx,t) = exp(Ehy (xu(O)p(x.0) @3
turns it into the equation
dp = (5 + SEdy, + 5 B 24

where £, is the operator commutator £ =[h;, £]=h,£—£h; and £ =h:, [y, £]). CI. [4] for more details. In (2.4) I have
explicity indicated the dependence of the various quantities on X, to stress that here A (x) should simply be seen as a
known function of x and not as the time function h(x(s)). Equation (2.4) does not involve the derivatives dy;
anymore; it makes sense for all possible paths y (¢), and can be regarded as a family of PDE parametrized by the pos-
sible observation paths y(r). Thus there is a robust version of (2.1) and we can work with (2.1) as a parametrized fam-
ily of PDE parametrized by the y(1). Note that knowledge of p(x,) (and y(¢)) immediately gives p(x,t) and that the
conditional expectation of any function ¢(x (1)) of the state at time ¢ can be calculated by

E[$(x (0 (s), 0<s<1]) = (fp(x, k)™ [ohx)p(x,) dx (29

Possibly the simplest example of a filtering problem is provided by one-dimensional Wicner noise lineary
observed:

dx = dw, x, weR 246)
dy = xdt + d», y, veR, (eX)]
In this case the corresponding DMZ equation is

1d* 3
dp = (T"i—z‘—?‘z pdt + xp dy Qy
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an Euclidean Schrddinger equation for a forced harmonic oscillator.
3, Wei-Norman theory
Wei-Norman theory is concerned with solving partial differential equations of the form
%2;- = ud1p+ - FtUpdup (€R)]

where the A4;,i=1,...,m are linear partial differential operators in the space vasiables x,,...,x,, and the ,i=1,...m
are given functions of time, in terms of solutions of the simpler equations

%‘,l =dp, i=l.m 62
which we write as

pxt) = €49x) , Wx) = p(x, 0) 33)
Originally, the theory was developed for the finite dimensional case, i.e. for systems of ordinary differential equations

t=wd izt FitpAmz (3.4)

where zeR*, and the 4, are k Xk matrices. Both in the finite dimensional case (3.4) and the infinite dimensional case
(3.1) it is well known that besides in the given directions 4p,...,4,,p, the to be determined function or vector can also
move (infinitesimally) in the directions given by the commutators {Ai, AJp=(4;4;—A;4,)p, and in the directions given
by repeated commutators [[4;, 4], 4¢), [[4;, 4;), [4e, 4)]), ete. et

Let Lie(4 1,..,4,) be the Lie algebra of operators generated by the operators 4 |,...,4,. This is the smallest vector
space L of operators containing 4,,..,4, and such that if 4,BeL then also [4,B]:=AB —BAeL. In the finite
dimensional case (3.4) L is always finite dimensional, a subvector space of gl(R), the vectorspace (Lic algebra) of all
kXk matrices. In the infinite dimensional case the Lic algebra gencrated by the operators 4,,...,,4,, in (3.1) can easily
be infinite dimensional and it often is; also in the cases coming from filtering problems via the DMZ equation. Cf. [5}
for a number of examples.

This is the essential difference between (3.1) and (3.4). Accordingly, here I shall assume that the Lie algebra
L= Lie(4,,...,A,,) generated by the operators 4,,...,4,, in (3.1) is finite dimensional. For a discussion of various
infinite dimensional versions of Wei-Norman theory cf. [4]. Hence, granting this finite dimensionality property, by sct-
ting, if necessary, some of the u,(r) equal to zero, and by combining other u;(?) in the case of linear dependence among
the operators on the RHS of (3.1), without loss of generality, we can assume that we are dealing with an equation

%’E = ugAdp+ - - tuAp 3.5)
with the additional property that
[, 4;] = gyf}Ak i) = Laan ()]

for suitable real constants yf; i,j,k = 1,...,n.
The central idea of Wei-Norman theory is now to try for a solution of the form

o) = e 0 LT 10 LTI e&(‘l‘-‘P (38)
where the g; are still to be determined functions of time. The next step is to insert the Ansatz (3.8) into (3.5), to obtain
p= glA e L R e&‘.‘P + e"“g’zA;e‘“‘ - e&-‘-‘P 4 .- 3.9}

+ 8 gb g g ey
Now, for i =2,...,n insert a term

e'&-l‘a-n P e'll‘lellll - e&-l‘:-a
just behind £,4, in the i-th term of (3.9). Then use the adjoint representation formula
e'Be™4 =B + [A;B] + %[A»[A»B]] + %{A»[A»B]ﬂ] +-e (310)

and (3.7)) repeatedly, and use the linear independence of the 4,,...,4, to obtain a system of ordinary differential
equations for the g,...,g, (with initial conditions g,(0)=0=g;(0)=... =g,(0)).

These equations are always solvable for small time, However they may not be solvable for all time, meaning that
finite escape time phenomena can occur.

Let’s consider an example, viz. the example afforded by the DMZ equation (2.8). One calculates that

142 1 _d 1d _t d,_
gzt sl = g laga et gl =
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[i—, =1 [4]=0

2
where A is any linear combination of the four operators %%—%xz,x, _&d;’ 1. Applying the recipe sketched above

to the equation

1 dd o, d

p= (22‘—,-—;:: Yo + xpu(t) + Xpo + 1p0 @G.11)
one finds the equations

g1 = 0, coshig;)g: + sinh(g)g; = u(?), (3.12)

sinh(gy)gz + cosh(g))gs = 0, g4 = g3g2
which are solvable for all time.

This fact and the form of the resulting equations: straightforward quadratures and one set of linear equations
B(t)g=b(t), with B(¢),b(t) known and B(t) invertible, is typical for the case that the Lie algebra L =®R4; spanned
by the A41,...,4, is solvable. This means the following. Let {L,L] be the subvectorspace of L spanned by all the opera-
tors of the form [4,B),4,BeL. It is casily scen that this is again a Lie algebra. Inductively let L™ ={L,L"~ ] be
the subvectorspacc of L spanned by all operators of the form [4,8], 4€L,BeL® 1), L® =L, These are all sub Lie
algebras of L.

The Lie algebra of L is called nilpotent if L™ =0 for # large enough. It is called solvable if {L,L] is nilpotent.
The phenomenon alluded to above, i.e. solvability of the Wei-Norman equations for all time, always happens in case
L is solvable {11). (And it is no accident that these algebras have been called solvable. Though this is not the result
which gave them that name.)

Note that the DMZ equation (2.1) corresponding to a nonlinear filtering problem (1.1)-(1.2) is of the type (3.1)
(with wy(r)=dy,(r)). Thus the Lie Algebra generatcd by the operators £, ky(x),...,h;,(x) occuring in (2.1) clearly has
much to say about how difficult the filtering problem is. This Lic algebra is called the estimation Lie algebra of the
system (1.1)-(1.2) and it can be used to prove a variety of positive and negative results about the filtering problem {4,
5,9)

4. The Segal-Shale-Weil representation and a ‘real form’
0 I,
Let J be the standard symplectic matrix J = [_ L 0 ], where J, the nXn unit matrix. Consider the vector space of
L]
2n X 2n real matrices defined by

PaR) = (M: IM + MTJ = 0}. @1
A B
Writing M as a 2X2 block matrix, M = [C D]' the conditions on the n Xn blocks 4, B,C,D become

BT =8, CT=C D= ~A" “42)
As we shall see shortly below this set of matrices occurs naturally for filtering problems coming from lincar sys-
tems (1.1)-(1.2).
The corresponding Lie group to Sp,(R) is the group of invertible 2n X 2n matrices defined by
Sp.(R) = {SeR»*¥: §TJS = J} @“@.3)
(This is a group of matrices in that if §;, S;€Sp,(R) then also $,S;€S8p,(R) and i €Sp,(R) as is easily verified.)

There is a famous representation of Sp,(R) (or more precisely of its two-field covering group Sp,(R)) in the Hilbert
space L}(R") called the Segal-Shale-Weil representation or the oscillator representation; cf. (8). Here the word
‘representation’ means that to each S €Sp,(R) there is associated a unitary operator Us such that Us g, = Ug, Us, for
all §,,5,€5p,(R).

For the purposes of this paper a modification of it is of importance. It can be described as follows by explicit
operators associated to certain specific kinds of elements of Sp,(R}):

(i) Let P be a symmetric # X# matrix; then to the element
1P
07 ESPPI(R)

there is associated the operator f{x)r exp(x T Px)f (x)
(1) Let A eGL,(R) be an invertible n X» matrix, Then to the element
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A 0
0 (A-I)T EsPn(R)

there is associated the operator

S(x) v Jdet(4)]"2 {4 Tx)
(iii)  let @ be a symmetric #X» matrix. Then to the element

10
oI € Spa(R)

there is associated the operator

S ()5 exp(xTQx)3f(x)

where § denotes the Fourier transform.

(The operator corresponding to the clement

0 I

is in fact the Fourier transform itself).

Except for onc snag to be discussed below, this suffices to describe the operator which should be associated to any
clement S €Sp,(R). Indeed let

S Sz
§= [ss SJd € Spa(R) 4.4)
then there is an s>>0, s€R such that S. +58, is invertible and we have a factorisation
S. s; 1 I Sz(sl +SS:)T |+.)‘32 0 l1 0
S3 84| T |(S3+55XS) +587)7! 1 1 0 ST+ssD| |-s 1 “43)

(It is casily verified that all four factors on the right are in fact in Sp,(R).

Now assign to the operator S the product of the four operators corresponding to the factors on the RHS of (4.5)
according to the recipe (i)(iii) given above. There is a conceivable second snag here in that it seems a priori possible
that different factonisations could give different operators. This in fact does not happen precisely because the
‘representation’ described by (i)-(iii) is a ‘real form’ of the oscillator representation Sp,(R J-,»Aul(Lz(R")) The rclauon
between the oscillator representation and (i)-(iii) above is given by the substitution x;+-»Vix; where i = (Thc
possible sign ambiguity which could come from the fact that the oscillator representation is really a represenlauon of
the covering Sp,(R) rather than Sp,(R) itself also seems not to happen; if would in any case be irrelevant for the
applications dicussed below.)

It remains to discuss the first snag mentioned just above (5.4) and why the words ‘representation’ and ‘real form’
above have been placed in quotation marks. The trouble lies in part (jii) of the recipe. Taking a Fourier transform and
than multiplying with a quadratic exponential may well take one out of the class of functions which are inverse
Fourier transformable. Another way to see this is to observe that the operator described in (iii) assigns to a function
 the value in £ =1 of the solution of the evolution equation

L - Eyodw. o0 = w0 “8)

and if Q is not nonnegative definite this involves anti-diffusion components for which the solution at ¢ =1 may not
exist. Additionally, - but this is really the same snag - applying recipe (i) to a function may well result in a function
that is not Fourier transformable.
What we have in fact is not a representation of all of Sp,(R) but only a representation of a certain sub-semi-group
cone in Sp,(R).
For the applications to be described below this means that we must be careful to take factorizations such that apply-
ing the various operators successively continues to make sense. The factorization (5.5) does not seem optimal in that
respect and we shall for the special elements of Sp,(R) which come from filtering problems use a different one.
Incidentally, one says that two structures over R are real forms of one another if after tensoring with C (= extend-
ing scalars to C) they become isomorphic (over C). It is in this sense that the ‘representation’ described by the recipe
(i)(ii) is a ‘real form’ of the oscillator representation.
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5. Propagation of non-gaussian initials
Now, finally, after all this preparation, consider a known linear dynamical system
dx = Axdt + Bdw, Cxdt + dv, x eR",weR", y,v eRP. [E8))
with a known, not necessarily Gaussian, inilial random variable x(0) with probability distribution {{(x).
The DMZ cquations in this case is as follows

dp = £pd + $(Cx) a0 62)
j =
where (Cx); is the j-th component of the p-vector Cx. The operator £ in this case has the form
=1 T 2t a 1
=3 2BBY)y7—=— — X2~ — Tr{d) — 72(C 5.3
2 I,j( )lJ axjaxj ?},xj ax, HA) 2 ?( X)} ¢3)
Taking brackets of the multiplication operators (Cx); with £ yields a linear combination of the operators
O I
Xk Gmven g b (5.4)

This is a straightforward calculation to check. Moreover, the bracket (= commutator product) of £ with any of the
operators in (5.4) again yiclds a linear combination of the operators listed in (5.4). It follows that for linear stochastic
dynamical systems (5.1) the associated estimation Lic algebra (= the Lie algebra generated by £, (Cx),,...,(Cx),) is
always solvable of dimension <2n +2.

As a mather of fact it is quite simple to prove that the system (5.1) is completely reachable and completely observ-
able if and only if the dimension of the estimation Lie algebra is preciscly 27 +2 so that a basis of the algebra is
formed by the (2n +1) operators of (5.4) and £ itself.

In all cases Wei-Norman theory is applicable (working perhaps with a slightly larger Lic algebra than strictly
necessarily makes no real difference).

Thus we can calculate effectively the solutions of the unnormalized density equation (5.2) provided we have good
ways of calculating the expressions.

a

ety ey, € Fy, ey (5.5

for arbitrary initial data . The last three expressions of (5.5) causc absolutely zero difficulties
(exp(t-é;)\{a = X 1oy Xg - 1, T X) 4150, %,)). Thus it remains to calculate the e'*§ where £ is an operator of the
form (5.3). It is at this point that the business of the Segal-Shale-Weil representation of the previous section comes in.

As a matter of fact the Sepal-Shale-Weil representation itself, not the ‘real form’ described in section 4 above, is a
representation of the Lie algebra spanned by the operators

T
B,0%, ,i=V-—1 (5.6)

and apart form multiples of the identity (which hardly matter) and the occurence of V —1 these are the constituents
of the operators £ in (5.3). It is to remove the factors V —1 that we have to go to a real form. Cf. [3] for more details
on the Segal-Shale-Weil representation itself, and what it, and its real form, have to do with Kalman-Bucy filters.

It is convenient not to have to worry about multiples of the identity. To this end note that if £ = £ + al then
exp(t£ W = exp(ta) exp(t£3), so that neglecting multiples of the identity indeed matters hardly.

The first observation is now that, modulo multiples of the identity operator, if £ and £ are two operators of the
form (5.3) then tPcir commutator difference [£,£'] = ££' — £'£ is again of the same form. (To make this exact replace £
in (5.3) by £ + 5 Tr(4) and similarly for £.) Thus these operators actually form a finite dimensional Lie algebra and
this is, of course, the symplectic Lie algebra sp,(R). The correspondence is given by assigning to £(=£(4,B,C)) the
2n X 2n matrix

. 9 1 R
£ X525, Xy 3—XJ + 3y

—AT -~ CTC]
5.7

£(A,B,C)—> [_BBT A
(If you want to be finicky it is the operator £(4,B,C) + %Tr(A) which corresponds to the matrix on the right of (5.7).)

In terms of a basis on the left and right side the correspondence (i.e. the isomorphism of Lie algebras) is given as
follows. Let Ey; be the n X matrix with a 1 in spot (i, /) and zero everywhere else. Then

& 0 0 5.8
9x,3x; " | -Ey—E; 0 G8
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E; 0
Xy 2 + 3 61_] 24 0 —Eﬂ (59)
X)X 0 0 (5.10)

It is now straightforward o check that this does indeed define an isomorphism of Lie algebras from the Lie algebra of
all operators £(4,8,C) + 3 Tr(4) where £ is as in (5.3) and the algebra sp,(R) described and discussed in section 4
above. For example one has

[l xaxal = 1 5o (511
ax |axz ! ax 1 :
which fits perfectly with
0 0] {0 Ex+Ejy Ey O
N-ep-Exoflo o [IT|o -k (5.12)
1t is precisely the correspondence (5.8) - (5.10) or, modulo multiples of the identity, (5.7), plus the fact that ‘real
form’ described in section 4 of the SSW representation is precisely the way to remove the V—1 factors, plus, again,

the fact that the SSW is really a representation, which makes it possible to use finite dimensional calculations to
obtain expressions for

exp(1(£(4, B.C) + 3 Te(A)W (5.13)

for arbitrary initial conditions.
Basically the recipe is as follows. Take £(4,B,C) + -;'TI(A ). Let Me sp,(R) be its associated matrix as defined by

the RHS of (5.7). Calculate exp(tM)=S(¢). Write S(¢) as a product of matrices as in (i), (ii), (iii) in section 4. Apply
successively the operators associated 10 the factors. The result, if defined, will be an expression for (5.13). One factori-
sation which can be used is that of (4.5) above. It does not, however, scem to be very optimal and it is difficult to
show that everything is well defined.

It is better and more efficient to use a preliminary reduction. Consider the algebraic Riccati equation

ATP + PA - PBBTP + CTC =0 (5.14)
determined by the triple of matrices (4,8,C). It is easy 1o check that for any solution P one has
-T
1 -p 1P -4 0
o 1 |Mlos|= |-psr i (5.15)

where 4 =4 —BBTP. Given this it becomes useful to know when (5.14) has a solution and to know some properties of
the solutions. These will also be important for the next section. In fact the function re(4, B,C) that assigns to the triple
(4,B,C) under suitable conditions the unique positive definite solution of (5.14) is important enough to be considered
a standard named function which should be available in accurate tabulated form much as say the Airy function or
Bessel functions. 1 know of no such tables. The symbol ‘r¢’ of course stands for Riccati.

Let 4* be the adjoint of the complex nXn matrix 4, i.c. the conjugated transpose of 4, o, if 4 is real, 4° =AT.
Consider the equation (algebraic Riccati equation)

A'P + PA = PBB'P - C*C (5.16)
(Here 4 is an nXn matrix, B an nXm matrix, C an p Xn matrix.) Some facts about (5.16) are then as follows:
(5.17)1f (4, B) is stabilizable, i.c. if there exists an F such that 4 — BF has all eigenvalues with negative real part, then
there is a solution of (5.16) which is positive semidefinite (£>0) (and for this solution 4 = A —BB" P is stable).
(So in particular if (4, B) is completely reachable there is a solution of (5.14).)

(5.18)Suppose (5.16) has a solution P >0 and suppose that (4,C) is completely observable. Then P is the only nonne-
gative definite solution of (5.16) and P >0.

(5.19)1f (4,B,C) is co and cr then there is a unique P >0 which solves (5.16).

This last property is the essential one for this section, For the next one we need something better. Let L7, (R) be
the space of all triples of real matrices (4,B,C) such that (4,B) is completely reachable and (4,C) is completely
observable. Let ro(4,B,C) := P be the unique solution P of (5.16) such that P >0 (the matrix P is positive definite
and selfadjoint). Then
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(5.20)The function re(4,B,C) from L7,(R) to the space of selfadjoint matrices is real analytic (and so in particular
C® (= smooth)

Moreover
G2IyA(TAT ™}, TB, €T~y = (T*) '1c(4,B,C)T "}

5.2r(~A"), £C*,+=B") = rc(4,B,C)"!

Property (5.21) is important in section 6; more precisely it will be important when these results are really implemented
for multi-input multi-output systems. The point is that the matrices (4,8,C) are not determinable from the observa-
tions alone, simply because the systems (4,B,C) and (TAT "}, TB, CT ') for TeGL,(R) produce exactly the same
input-output behaviour. For completely reachable and completely observable systems this is also the only indeter-
minacy. Property (5.21) guarantces that the whole analysis of these two section 5 and 6 ‘descends’ to the moduli space
(quotient manifold) L3, (R)/GL,(R).

Having ail this available it is tempting (and natural) to play the trick embodied by (5.15) again, this time using
conjugation by a 2)X2 block matrix with identities on the diagonal, a zero in the upper right hand corner and a Ric-
cati equation solution Q in the lower left hand corner. This, however, is no particular good because this will introduce
both the two factors

g

in the factorisation of S(1)=exp(tM), and at least one will cause difficultics with inverse and direct Fourier
transforms; cf. part (iii) of the recipe of section 4.

Instead, writing

explt -4 % = exp(—id) 0 (5.23)

PO _ppr AT | -gr expltd) )
one uses the faclorisa_t.ion :

-4" o) _ I 0] fexp(—d) 0

| _ppr 4= |- Rexpied”y 1 0 exptd) 6.24)
giving the following total factorisation for S(¢)=exp(tM) }

s 1P I o) {exp(-14) 0 ) (I -P

O=to 1| |-Repeah 1] | 0  expi)| |0 ! 629

Except for possibly the second factor on the right hand side of (5.25) applying the recipe of section 4 is a total trivial-
ity.

As to that second factor observe that
d, p(‘[—i' o] —axp(—tAMT 0
—(ex - = .
@ -BBT 4] |- LR exp(tA)

exp(—td) 0 ) (-4T o
o o o2
from which it follows that
j—’f = —RA" + exp(i4)BBT. 620
As a result
%(R exp(td’) = — RAT exp(td”) + exp(td)BBT exp(tA”) + RATexp(td”) (5:28)

= exp(t4)BBT exp(td )0

and it follows that
Rexp(tA") >0 alls (5.29)

which means that applying part (iii) of the recipe of section 4 (= part (iii) of the definition of the real form of the
SSW representation) just involves solving a diffusion equation (no anti diffusion component); or, in other words that
the inverse Fourier transformation involved will exist. Note also that if the initial condition  is Fourier
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transformable then, if P is nonnegative definite, the result of applying the parts of the recipe corresponding to the
third and fourth factors on the RHS of 5.25 will still be a Fourier transformable function.

This concludes the description of the algorithm for propagating non-gaussian initial densities.

6. Identification
Given all that has been said above, this section can be mercifully short. The problem is the following. Given a linear
system

dx = Axdt + Bdw, dy = Cxdt + dv (3}
with unknown A,B,C, but constant 4,B,C, we want to calculate the joint conditional density (given the observations
¥(s),0<s<r) for A,B,C,x. This can be approached as a nonlinear filtering problem by adding the equations

dA =0,dB =0,dC =0 (6.2)
or, more precisely, the equations stating (locally) that the free parameters remaining after specifying a local canonical

form are constant but unknown. More generally onc has the same setup and problem when, say, part of the parame-
ters of (4, B,C) are known (or, generalizing a bit more, imperfectly known).

The approach, of course, will be the calculate the DMZ unnormalized version of the conditional density p(x,4,8,1)
given the observations y(s), 0<s <. Writing down the DMZ equation for the system (6.1)-(6.2) gives

4

with £ given by (5.3); i.e. exactly the same equation as occurred in section 5 for the case of known 4,B,C. And,
indeed the only difference is that in section 5 the 4, B,C are known, while (6.3) should be scen as a family of equations
parametrized by (the unknown parameters in) the 4,B,C. Thus if p(x,7|4,B,C) denotes the solution of (5.2) and
p(x,4,B,C,t) denotes the solution of (6.3) then

p(x,1|4,B,C) = p(x,4,B,C\t) (6.49)
Now the bank of Kalman-Bucy filters for k parametrized by (4,B8,C)e L, gives the probability density

a(x,1|4,8,C) = r(1,4,B,C)"'p(x,1|4,8,C) (6.5)
5o that the normalization factor r(t,4, B,C) can be calculated as f ox,t,4,B,Chx.
By Bayes

w(x,4,B,C,t) = n(x,1|4,B,C)n(4,B,C,1)) (6.6)

so that the normalization factor r(#,4,B,C) is, so to speak, precisely equal to the difference between the solution of the
DMZ equation (6.3) (or (5.2)) and the bank of Kalman filters producing w(x,7|4, B,C). Le. the marginal conditional
density

7(A,B,C.t) = [n(x,A,B,Ct)dx = [p(x,4,B,C,t)dx / [p(x.A,B,C,t)dxdAdBdC 6.7
is obtainable from the unnormalized version of the bank of Kalman-Bucy filters parametrized by (4,B,C). Given the
relations between this bank of filters described in {13) and briefly recalled in section 7 below this may offer further
opportunitics.

Be that as it may the margjnal density #(d4,B,C,t) which up to a normalization factor is equal to fp(x,4,B,C,t)dx
can be effectively calculated by the procedure of section 5 above with the only difference that P =rco(4,B,C) now has
to be treated as a fuaction. Once m(4,B,C,t) (or in various cases some unnormalized version p(4,B,C,t) is available a
host of well known techniques such as maximum likelyhood become available.

If it is possible (as it will be in many cases) to work with a p(4,B,C,1)=r(1)n(4,B,C,t) there is no (immediate)
need to descend 1o the quotient manifold L357.(R) / GL,(R).

7. On the relation between the ‘real form’ of the SSW representation and the Kalman-Bucy filter

We have seen that the essential difficulty in obtaining the (unnormalized) conditional density p(x,7) lies in ‘solving’
exp(tE}) where £ is the second order differential operator (5.3). Now £ corresponds in a fundamental way with the
2n X2n matnx

[ —4AT ~CT(]

Not very surprisingly this matrix in turn is very much rclated to the matrix Riccati equation part of the Kalman-Bucy
filter. Indeed, consider the matrix differential equation

FHERT
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and, assuming that X (f) is invertible, let
-P =YX\ (1.3)
Then
P=—~¥YX"! + YX"IXX"! = (+BBTX — AV)X"} + YX N —ATX~-CTC)X™)
= +BBT + 4P + PAT — PCTCP
which is the covariance equation of the Kalman-Bucy filter.
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Abstract

We are concerned with a class of problems described in a somewhat imprecisc
way as follows. Consider a linear operator of the form L + V(x), wherc L is the
generator of some Markov process x, and the "potential” V{x) is some real-valued
function on the state space of x;. We arc interested in probabilistic represcntations
for solutions u(tx) of the evolution equation

(m M -Lu+ VX t>0

with initial data at t = 0. The Feynman-Kac formula gives a well-known stochastic
rcpresentation  for u(tx). We seck a different probabilistic rcpresentation for
I =-log u, if u(tx) is a positive solution to (1). In this rcprescntation the opcrator

L is replaced by another generator L, (perhaps time dependent), chosen to solve a

ccrtain stochastic control problem. The dynamic programming equation for this
stochastic control problem is

) 8L = HQY) - V(x), where
H() = -eli(c]).

Another way to view thc change of gencrator from L to t't is by change of
probability measure through conditioning,

Next suppose that the statc spacc of X; is cudidcan R", that

L=L,u=u,I¢=-¢ log u® and
H, () = -c'L (e 1)

Undcr various assumptions it turns out that 1€ - 19ase-0,

lim eH (¢ 1I) = Hy(xT,)
) € O\ 1x

where I, is thc gradient, and that I(tx) is a viscosity solution of the first-order
partial diffcrential equation

& = Hy(uly).
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When x, is a nondegencrate diffusion on R, then L is a sccond order clliptic

partial diffcrential operator. In this casc, the logarithmic transmation provides an
analytical approach to large deviations questions of Ventsel-Freidlin type, and for
more precise results in the form of asymptotic series expansions of I¢ in powers of

€.

The logarithmic transformation tcchnique is also of use to study certain

asymptotic problems in which u®(tx) obeys a nonlinear parabolic partial differential

cquation.
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Abstract

A dynamic decision model is said to be forward-looking if the evolution of the underlying
system depends explicitly on the expectations the agents form on the future evolution itself.
Such models lead to nonstandard stochastic dynamic optimization problems where one has
to take into account the fact that there is a circular (closed) relationship between future
forecasts and future system behavior. In this paper we study a class of such problems where
there is an additional control input designed to make the system track a given trajectory.
This leads to a game-theoretic formulation in which context we consider both finite and
infinite horizon formulations. It is shown that for the finite horizon problem the unique Nash
equilibrium solution requires (fixed size) memory for both agents because of spillover across
stages, whereas for the infinite horizon version no memory is needed.

1. An Introduction to Forward-Looking Models

We refer to a dynamic stochastic model as forward-looking if one of its inputs involves
future expectations of the system trajectory, using (possibly noisy) measurements on the past
realizations. Such decision models find wide-spread use in economics, where they are more
commonly known as rational ezpectations models. A few representative papers in this area
are the works of Lucas (1975), Sargent and Wallace (1975), Barro (1976), Taylor (1977),
Shiller (1978), Blanchard (1979), and Blanchard and Kahn (1980). Perhaps the simplest
such model that captures the salient features of forward-looking behavior is described by the
scalar difference equation

Ye+1 = oYe + bve + €41, (1a)

where a and b are constant parameters, {¢;} is a sequence of independent zero-mean random
variables with finite (positive) variance, and v; is the decision variable chosen at time ¢ under
some “expectation” of the future behavior of the system based on information available at
time 2. If the forecast of interest is n steps into the future, for example, one possibility is to
replace v¢ in {1a) by E¢yetn, the conditional mean of y;;» based on the information available
at time ¢. This information, which we denote by n;, could involve a direct measurement of
all the past values of the system trajectory, that is {y¢, y¢—1,...} =: y*, or involve some nossy
measurement on the state trajectory, 5 = z*, where {2} is a measurement sequence defined
by

t  This work was performed while the author was spending o sabbatical year at INRIA,
Sophia Antipolis, France, and it was also partially supported by the Air Force Office of Sei-
entific Research under Grant No. AFOSR 084-0056, through the University of Illinoss.
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=y + & (18)

with {&;} being another sequence of independent, zero-mean random variables with finite
variance.

A basic question addressed in the literature over the years has been the existence of
a (unique) stochastic process {y.} that satisfies (1a) whenever v; = E;y¢y, and the time
interval is infinite. The answer to this question is that there is, in general, more than one
such solution even in the class of stationary processes. However, as we have recently argued
in Bagar (1987), a better approach towards policy determination in these forward-looking
models would involve the optimization of an appropriate loss function, by carefully taking
into account the informational dependence as well as the correlation of policies across stages.
One such criterion would be

T
7= min D" B{lmlne) — vesal'}o* 0, )]

t=s

where minimization is subject to the dynamic constraint (la), with v¢ = ~:(n:), and uses
the boundary condition v = O for t > T. In the above, [s, T] stands for the time horizon,
which could also be infinite, and p denotes a positive discount factor (0 < p < 1). It has been
shown in Basar (1987) that the dynamic policy optimization problem admits the solution
vt = Etyi41 when n = 1, but for n > 2 the unique solution for the finite-horizon version is
different from E;Yt4+n. For n = 2, for example, the best forecast into the future (by two time
steps), under the criterion (2) and using the information {n, = y'}, is given by

v =7 (¥') = arye + Prve—1, (3a)

for 2 < t < T, where the sequences {a;} and {8;} are determined recursively off-line. For
the noisy measurement case, {n; = z*}, the solution is again unique and is given by

v¢ =7 (2") = arfe + Bevey, (3%)

for 2 < t < T, where the sequences {a;} and {8} are the same as in (3a), and § is a
sequence of estimates generated recursively by a Kalman filter, under the assumption that
the underlying statistics are Gaussian. An interesting feature of the solution is that for the
infinite-horizon version (that is as T — co) the coefficient sequence {8} vanishes for all finite
t, and the solution becomes vi = E;y;..3,thus eliminating the correlation across stages.

In the present paper, we consider a more general formulation than that above, where
now two separate agents, say A and B, have influence on the system trajectory, one of them
{(A) again making a two-step ahead forecast of the trajectory, whereas the other one (B)
trying to drive the trajectory as close to a specific target as possible. For such a scenario, the
system equation would be replaced by

YVet1 = aye + bug + cwe + €441, 4)

where v, = 7,(y*) is controlled by agent A and we = p(y’) by agent B. Taking the time
horizon as [0, T + 1], the two cost functions to be minimized by A and B, respectively, are

T
Jalnn) = Y B{{m(y') - vesa] 1o (5¢)

t=0
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and
T+1

Ia(n ) = ) E{lyesr — Genr]’ + kwi}ob, (56)

where {§:,2 < t £ T+ 2} is the desired trajectory, k is a positive weight on agent B’s control,
P, B are the corresponding discount factors, v := {1, ¥r—1,.» %0} # = {141, BT)s. Bo},
and vp4; = 0, the last identity reflecting the fact that no forecast is made at time t =T+ 1.
Furthermore, we assume that the independent random variables ¢, (1<t<T+2) each have zero
mean and a probability distribution that assigns positive probability to every measurable open
subset of the real line. One such distribution would be the normal (Gaussian) distribution
with positive variance.

Since this is a problem with multiple objectives, several equilibrium solution concepts
would be applicable, with the one adopted here being the noncooperative Nash equilibrium
solution. Therefore, we seek a pair {y*, 4*), preferably unique, satisfying the pair of inequal-
ities

Jaly" w*) € Jalrv,w*); Ie(v"8%) < T (7", 1), (6)

for all admissible v and pu. Other possibilities would have been the Stackelberg solution with
either agent acting as the leader and the Pareto-optimal solution, which, however, we do not
discuss here because of space limitations.

The first question we attack, in section 2, is a “simpler” version of the above, where
agent A’s policy is fixed as vy = Eyet2,t < T, which is in general a suboptimal policy for
A. We obtain the best policy for B under this additional structural restriction, and derive
the corresponding expression for {y;} (see Theorem 1). Furthermore, we study the limiting
behavior of the two policies, for the infinite-horizon problem. Subsequently, in section 3,
we derive the unrestricted Nash solution and prove its (generic) existence and uniqueness
(see Theorem 2), with details of the derivation provided in the Appendix. We also study
the limiting behavior of the solution as T — oo, and analyze the discrepancies that exist
between the two stationary solutions of Theorem 1 and Theorem 2. The paper concludes
with a discussion of the “noisy measurement™ case and some other possible extensions, in
section 4. Throughout the analysis, we take the reference trajectory (to be tracked) as the
zero trajectory, an assumption that does not bring in much loss of conceptual generality but
leads to considerable simplifications in the resulting expressions.

2. The Optimal Tracking Strategy Under Perfect Myopic Forecast

With v, taken as E;y.4+2 (which myopically minimizes each term of (52)), and {%}
taken as the zero trajectory, the dynamic policy optimization problem faced by agent B is
the minimization of FOT'H, where

T+1
FTH =3 B{yd,, +kul}el ™, (7a)

t=»

the dynamic constraint is

Yr+2 = 6Yr4y + owryr + €743,

(78)
Yerr = o +bEyepa Hewe + €040, t<T,

and the information constraint is wy = p(y*). Note that this is not a standard linear-
quadratic stochastic control problem because of the presence of the conditional expectations
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term in (76), which could even make the dynamic constraint nonlinear in the past values of
the trajectory. We will show below, however, that the optimal control is still linear, thus
making the corresponding forecast also linear in the available information. The derivation
entails a recursive approach where the structure of v; is determined alongside the optimal
control at each step of the iterative minimization.
Before presenting the main result of this section, we first introduce two sequences {p,}
and {v;} which are defined recursively by
2
pBa‘kpeyy
=1 ————— =1 8
Pt + cng»l + ’CV‘Z’ PT+2 ’ ( a’)
abky,

—_— =1, 8b
C’pg.',.l + kV‘z' YTH1 ! ( )

Vil = 1-—
Next we define a third sequence {g;} in terms of the other two, according to

ge = —cap..,,l/(c’p,“ + kuf), t<T+1. (8¢c)

We are now in.a position to state the main result, after invoking a condition which generically
holds.

Condition 1. The sequence {v,} generated by (8b) does not vanish for any t < T + 1.

Theorem 1. Let Condition 1 be satisfied. Then, the dynamic policy optimization problem
with myopic forecast admits the unique solution

we=felye) =gy, 05t<THY, (9a)
with the corresponding forecast policy given by

a+ atc
( cg"f'l)( gt) Ye 1= h‘y‘. (gb)
Vig1Ve

vy = Eyera =

The minimum value of F3 *! in (6a) is
FIt! = poE{y3} + Xo, (9)
where Ag is the last step of the backward recursion

Aryy = var(erya),
Ai—1 = ppAe + pevar(ec).

Proof. The proof proceeds by recursively showing that the minimum value of FT+1 ig given,
for each s < T + 1, by

FIH = ((p, — 1)/pB]E{¥3} + M.

The result is trivially true for ¢ = T + 2, where we take Ar; 2 = 0. Let us therefore assume
its validity, along with (9a) and (9%), up to s + 1, and verify the expression, as well as (9a)
and (9b), for s. The minimization problem faced by agent B at time 5 is

n;in[paﬁ'::il + E{yf.‘_; + ku,(v*)*}, (*)
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which is equivalent to
m‘jn E{Pa+ly3+l + sz | y'}v

which uses the dynamic constraint
Yet+1 = a¥s + VE,y,42 + cw + €441, (»)
We also have the relationship

Yotz = (6 + €gsi1)Vatr + b[(a + cg.+2)[a + ¢gat1)/Vat2Vott¥et1 + €22y

where we have explicitly used (9a) and (95), with ¢ replaced by s+ 1. (Of course, ifs = T +1,
the last relationship would not be needed since the conditional expectation term in () would
be missing.) Now, taking the conditional expectation of the last expression with respect to
y’, substituting this into (), taking the conditional expectation of the resulting expression
again with respect to y*, and solving for the resulting E,y,;, in terms of y, and w, we arrive
at the expression

1
anl+l = 'u_[ay: + C!U].
Using this, E,y,+2 can easily be evaluated to be

a+ cg,41 + bh,
E,ya42 = —ig—“:—-—#[ay. + ew), (*+)
]

under which the dynamic constraint becomes equivalent to

1
Yet1 = _[aya + cw] + €441.
Ve

This makes the minimization problem a standard linecar-quadratic one, and hence it readily
follows that the minimizing control is uniquely given by (9a) with ¢ = s, Substitution of this
solution into (») and (##) finally verifies the asserted form for FT+? and the structure of the
forecast policy as given by (95). We should note that Condition 1 has explicitly been used in
the proof, to make sure that one can solve uniquely for E,y,41 and E,¥,42. °

Condition 1, under which the existence and uniqueness of the optimal control {9a) is valid,
holds whenever a and b have opposite signs, regardiess of the magnitudes of the parameters of
the problem. The result follows by inspection, since with ab < 0 and v74; = 1, we have vy > 0
for all t € T + 1. For ab < 0, however, there may exist isolated values for the parameters
for which the condition does not hold for some t. [A more precise statement here would be
that with all but one of the parameters fixed (and ab > 0), there will exist at most a finite
number of different values of that parameter for which Condition 1 is violated. This follows
since for each t, v, is a rational function of the quintuplet (a,5,¢,p5,%).] For example, for
the parameter values a = ¢ = k = 1, b = 2, we have vy = 0, which shows that Condition 1
may fail even for a two-stage problem. However, if we perturb the value of b to b = 2.1, and
take pp = 1, then Condition 1 holds for all values of ¢. In fact, running the coupled recursive
equations (84)-(85) in retrograde time, we find that (for these parameter values) the pair
{ve, pe) converges to (0.504147,1.880960) in 29 steps, within the accuracy of six decimal places.
Hence, in this case, the infinite-horizon version (even with no discounting) admits a unique
optimal stationary control, given by w, = f(y;) = —1.135124 y,. If, in the above, b is instead
taken to be 1, again Condition 1 holds, the pair (v, p¢) converges to (0.694146, 1.787692) in 9
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iterations, and the optimal control policy converges to wy = ji(y:) = —0.787692 y;. As a final
numerical experimentation, reflecting a different set of parameter values, we consider the case
ofa = 2,6 = —3,p5 = 0.8,c = k = 1. For this set, we already know that Condition 1 holds,
since ab < 0. Studying the convergence of the optimal policy to a stationary control, we find
that the pair (¢, pt) converges to (2.796267,1.521150) in 26 iterations, with the resulting
stationary policy being w = [y = —0.325719 y,.

3. The Nash Equilibrium Solution

We now remove the restriction that agent A’s input to the system is a myopic forecast,
and allow him to determine the “best” choice for v; by minimizing the cost function J4.
As we have discussed in section 1, this joint optimization problem can best be treated as
a noncooperative game, and hence we study in this section the Nash equilibrium of the
underlying game, as defined by (6).

There are two general approaches to the derivation of Nash equilibria in such dynamic
games. One would be first to guess (or propose) a structure for the solution in terms of
some parameters, and then to validate the equilibrium property of the asserted structure
and to obtain the corresponding values of the parameters so that the resulting policies are
in Nash equilibrium. A second approach would be to obtain the Nash solution recursively
(by employing the definition of stagewise or feedback equilibrium; see, for example, Bagar and
Olsder (1982)) by solving static games conditioned on the available (common) information,
at each step of the iteration. Note that this would be applicable only if both agents have
identical information {which is the case here), since otherwise stagewise decomposition would
not be possible, Now, two disadvantages of the first method are that (i) one has to guess the
structure of the solution correctly, and (ii) even if the initial guess is correct there is no way
to show (using this method) that the validated Nash solution is unique. The second method,
on the other hand, is capable of answering the uniqueness question, but it only produces
candidate solutions which subsequently have to be checked for their equilibrium property.
What we will, therefore, choose to do in the sequel is to use an appropriate combination of
the two approaches, to generate candidate solutions and verify their existence and uniqueness.
Weshould note in passing that even though the problem may look, at the outset, as a standard
linear-quadratic one, the presence of the two-step delay in the cost function of agent A makes
the game a nonstandard one, thus eliminating the possibility of direct application of results
available on linear-quadratic feedback Nash games (as, for example, covered in Bagar and
Olsder (1982)).

Before presenting the solution in Theorem 2 below, we first introduce some sequences
which will be needed in the characterization of the equilibrium policies. Towards this end,
let {m.}, {f:}, {n:} be three sequences generated by

ak

1 ~ ~
M1 = m{a + Coy -+ bagmg]; mr = m, (100)
~ 1 - ~ ~
me_1 = -i—_—b-’;-‘-[cﬂc + bﬂgmtli mr = 0, (100)
1—bm,)?
ey = pane me) o =1, (100)

T b4 pang(1— bm,)z;
where ay, &, By, Be are defined, for t < T, by

(1 - bme)panem, — b ( .
= 5 » t<T, 11
S P paml b (1 = b =) b (110)
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ok + (bk11,e + kag,)ee—]e

g 1= PEe T t<T+1, (11b)
(1- 5mt)ﬂAﬂem¢¢§t +b(1 - CE‘)
= , <7T,
ﬂ‘ b3 + p,qﬂg(l had bmg)(l - bmg - 77!‘) b= T (120)
~ bk k -
B, = _(bk1e + 12,6)¢B0—1 ’ t<T+1, (126)

k+ czku,g

kll : 4 kll ‘)
K, = ! !
¢ (kﬂ.t k22,

is a 2 x 2 matrix sequence generated by the discrete time Riccati equation

and

Ki = ppAi[Kip1 — Kes1C(C'Kpi C + k) 7' C' K1) A + Q,
Kty = [ka®pp/(k + ¢))|Q,

b b
A= (at‘a‘ /;:), Q:=((])' g), C:= (8) (135)

Finally, let ro¢, rae, 750, 75, be defined by

(13a)

with

cf(1 — bme)pamene — 8]

ot I T pane(l = bme)(1 — b — )’ (14a)
racis _c(bklzn_::;;l-l’:z:.:ﬂ) , (148)
Y pi(::.zlb:n Z):.f)’fi"f b—m’:c— )’ (15a)
R sy

The last four expressions are the coefficient terms in (11e)-(12b), indicating the dependence
of ay, ay¢, Bt and Eg on @i, at, E. and f, respectively. A certain relationship between these
coefficient terms in fact determines the existence of a unique Nash equilibrium solution, as
to be elucidated below.

Condition 2. Forallt < T,

ractat £ 1, et # L (16a)
bmy # 1, (16b)
pAﬂg(l - bm.)(l ot bm, - ﬁl‘) # __b?' (166)

Theorem 2. Let Condition 2 be satisfied. Then, the forward-looking tracking model (4)-(5)
admits a unique Nash equilibrium solution {~},u}}, where agent A’s (best forecast) policy
is
ve = (¥') = awye + BiVie-y, t21
= @pY¥Yo, t=0,

(17)
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and agent B’s (best tracking) policy is

w = p7(y") = Gy + BeFes, 1<t<T
= ~[ac/(k+ *)]yrsr, t=T+1 (184)
= a(IDyO) =0 ’

where the sequence {U;} is generated by

'6‘ == QY + ﬂtgt—h t2>1 (186)
= @oYo, t=0.

Proof. We will first verify the structural consistency of the solution (17)-(18) under the Nash
inequalities (6), and then discuss the existence of the solution. Some details of the derivation,
as well as a proof for the uniqueness of the solution will be given in the Appendix.

Towards verifying the validity of (6}, first consider the second inequality, where agent
A’s policy has been fixed as given by (17). Then, agent B faces a stochastic control problem
with cost function Jp (given by (58) with zero reference trajectory) and state dynamics

vt =(a+bda)ye + 80V +cwe + €y , EST
= ayri1 + cwryr +erys t=T+1,

where the sequence {U,} is generated by (18b) in view of (17). The optimal control at time
T + 1, wryi, can readily be obtained, to be given by the second line in (184). To obtain
the remaining controls, we introduce a new state vector, z, := (y¢, ¥;—1), and reformulate the
problem as one of minimizing Jg under the dynamic constraint

T4l = Ang + Cw; + D€g+1 H D= (1 0)',

where control w; is allowed to depend on zf, t < T. [Note that even though v*~! is not
available to agent B, %°~! is since it is generated by y*~!.] This is the familiar linear-
quadratic optimal control problem, whose unique solution is

we = —(k+ C'Ke41C) ' C' K41 Az, ()

where {K,} is generated by (13a). [Note that the terminal constraint on K, at t = T + 1
is not @ because we have already substituted for the optimal wr4, and have reduced the
cost function Jp to the one where the leading term is now y3,, instead of y2 ,,.] Now, the
optimal control () is clearly linear in y¢ and ¥;_,, at time ¢, and a little algebra shows that
it can be expressed in the form {18a).

We now focus attention on the first inequality of (6), where agent B’s policy is fixed as
given by (18a). Then the problem faced by agent A is one of optimal forecast, where the
cost function is J4 (given by (54)) and the dynamic constraint is

(a+ ey + cﬁt"‘;t-l +hug ey, 15ELT
~[ak/(k + ¢?)lyrs1 + erya, t=T+1
= (@ + clip)yo + bvp + €, t=0.

1l

Ve

Because of the form of the cost function, the available linear-quadratic theory cannot be
directly applied to this problem; nevertheless, a one can employ a dynamic programming type
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argument to construct the optimal solution in retrograde time, as in the proof of Theorem
2.1 of Bagar {1987}, It has been shown in the Appendix that the opiimal solution is unique
(under some conditions which will be specified later), and the optimal policy at time ¢ is a
function of three variables, y,, ¥;—; and v;—;. The precise expression is

ve = 7(y') = v + Beve—1 + Bee_y, 15T
= @Yo, t=0,

(+%)

where

1
T b2+ (1 - bmg)?pan:

~
ay

[pane(1 — bmy)(Mea: + (a + c@e)m,) — bla + e (%)

E _ b
LA Y IR (1 - bm¢)2pan:

1

Be= b2 4+ (1 — bm¢)%pa

™ [pane(1 — bme)(Mep + cﬁ.m,) — befy), (v)

and {m.}, {M:}, {n¢} are generated by (10a}-{10¢c). In writing down these expressions, we
have already assumed the validity of (162) and (16¢), since otherwise m, and 7; would not
have been well defined. We should note, however, that even in the pure forecast problem
discussed in Bagar (1987), a condition similar to (16b) was required for the well-posedness of
the problem.

Now, to complete the derivation, we substitute for e; and S, in () and (ee) from (11a)
and (12a), respectively, and observe that the resulting expression for &, is identical with that
of a;, and also when the resulting expression for B; is added to Bg, the outcome is identical
to B¢; in other words, .

Gr=a; , B+B=8.

When the latter is used in (#*) recursively, it follows that {v.} is generated by the same
sequence (of y,’s) as {¥;}, and hence that (**) admits the simpler representation (17).

This then completes the verification of the existence part of the theorem; more precisely,
of the fact that the policies (17)-(18) constitute a Nash equilibrium pair under Condition 2.
Note that (16a) in Condition 2 simply guarantees that there is a unique solution to the two
pairs of coupled equations {11) and (12), for all ¢, and it may also be referred to as the Nash
condition.

As we have indicated earlier, the uniqueness part of the theorem has been verified sepa-
rately in the Appendix, o

Several observations and remarks would be in order here. Firstly, we note that, as
opposed to the memoryless solution of Theorem 1 (obtained under myopic forecast), the
unique Nash equilibrium solution incorporates memory, for both agents. For agent A, the
“best” forecast policy is a linear function of the most recent measurement and the most recent
decision taken by that agent. [This is true since ¥;_; in (17) can be replaced by v,_j, without
affecting the solution.] For agent B, on the other hand, the “best” tracking policy is a linear
function of the most recent measurement and a linear aggregate of all past measurements,
weighted in an appropriate manner. The solution is characterized in terms of four gain
coefficients (ay, @1, B¢, Bt), which can be computed recursively. Hence, the solution does not
change structurally over time, which makes it feasible to obtain stationary Nash policies for
the infinite-horizon version, provided that the sequences {aT}, {&7T}, {87}, {BT} converge
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for all finite t as T'—00, where the superscript T in the sequences denotes the dependence of
each sequence on the terminal time, taken as a parameter. Even though the computation of
the four critical quantities (a,, 5,,/9,,&.) may look complicated at the outset, the iterations
are in fact quite straightforward, requiring simple algebraic manipulations at each step. The
order one has to follow in the computation is as follows:

Starting at ¢=T, first compute the quadruple (ar,ar,ﬂr,ﬁr) from (112)-(12b), using
the given boundary conditions on Kry1, mr, far and nr. Note that this computation
involves the solution of two pairs of coupled linear equations, at which point we invoke
the Nash condition (16b) to obtain a unique solution. At this stage also condition (16¢)
is invoked, so that (11a) and (12a) are well defined. The next step would be to obtain
the new values for kyy1, m¢, e, ny at t=T + 1, using the iterations (13a), (10a), (105)
and (10c), respectively. At this stage, condition (16a) is invoked so that {10a) and (105)
are well-defined relationships. These new values for K, m, i, n are then used again in
(11a)-(12b) to update the values of the gain coefficients, and this procedure is repeated
until the initial stage t = O is reached.

We should point out that similar to Condition 1 in Section 2, Condition 2 also generically
holds, in the sense that if all but one of the parameter values are fixed, then there is only a
finite number of values for that parameter for which the condition fails.

Even though it is not our intention to provide here a general convergence analysis for the
infinite-horizon problem (this would in fact be quite a challenging task), it would nevertheless
be instructive to study some properties of the stationary solution, assuming that such a
solution exists and Coadition 2 holds for all ¢ of interest. Accordingly, letting

o*:= lim af, & := lim &, B*:= lim AT, f*:= lim BF, n*:= lim nf,
T—roo Tooo T—co T—oo

it readily follows that n*=0. In view of this, we arrive at the stationary Nash policies

ve =7 (¥") = a*ye + B v, (19a)
we=p*(y') = @y + B*%e-n, (195)

where {7)'.} is generated by
U = a*ye + A 01, (19¢)

and the following relationship holds:

l—cﬁ*
b

a+ca*
* *
a* = — , —

; (20)

Now, using these stationary policies in the system equation (4}, we arrive at the result that
the equilibrium trajectory {y}} is generated by

v = (84 ba* + ca*)ye + bB*vi_y + BT, + evnr,

where {v}} and {U}} denote the discrete-time stochastic processes generated by (19a) and
(198), respectively, when y; = y7, ¢ 2 0. Note that, as stochastic processes, they are identical
almost surely, and hence, by also using (20), it can be shown that the equilibrium trajectory
{yt} is generated by the simpler dynamics :

* W
Yeig1 = Veer + €241

e w* % L
ve=oa'yy + v, ,
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which admits the ARMA representation
Vier + B — o'y = @ + Blee. (21)
An important observation that can be made here is that the relationship

Ee vy =vicr

holds, that is we have perfect foresight. Said differently, the stationary Nash solution satisfies
the side condition of myopic foresight introduced in section 2, in spite of the fact that the
two solutions (of Theorem I and Theorem 2) are structurally different. [Compare (20) (or its
stationary version) with (17)-(18).] This clearly implies that the Nash solution is disadvanta-
geous to agent B (at least in the limit as T—o0), since it does not yield the best (optimum)
solution obtainable under the side condition induced by the equilibrium solution itself. A
reason for this snefficsent behavior on the part of B ia that in the analysis of section 3 agent
A is also an active player, whereas in section 2 he was passive. Such features can be observed
even in finite-horizon problems, as the following example demonstrates.

Numerical ezample 1. In our general formulation, let T=0, E[y3] =: oo, and all other
parameter values be unity. Then, the two solutions given in Theorem 1 and Theorem 2 and
the corresponding values of expected costs and trajectory sequences can be computed to be
as follows:

Theorem 1: 1 6 1
wy = fy(n) = ¥ W= fo(yo) = —g¥or Yo = Yo, (224)
a 5 . 5 6
Ja=g Js=g+ oo,

R 2 . 1
0= ;yo+ €; fa2= Egl + €.

Theorem 2:

1 3 1
wy = pi(n) = —g¥, Wo= po(vo) = gV Vo= T w) = v (22b)
.5 5 15
JA=I; J§=§'+ 670
* __ l + e * __ 1 * e
nw= 2110 1 Y2 = 2!11 2.

A number of observations can be made in connection with this example:

1. In both cases above, we obtain perfect foresight (i.e. vo = Eoys ), but the corresponding
trajectories are different. Even though (as we have seen earlier) the Nash solution does
not generally enjoy perfect foresight for the finite-horizon case, here it does, mainly be-
cause the problem involves basically a single stage, thus eliminating the effect of spillover
across consecutive periods.

2. Agent A incurs equal expected costs in both cases, whereas agent B does worse with the
Nash solution. This is, of course, consistent with our earlier comments just preceding this
example, which, even though were made in the context of the infinite-horizon problem,
are equally valid here since the Nash solution satisfies the boundary condition (i.e. perfect
foresight) of the myopic solution.
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3. Since iy = u} is a universally optimal policy for agent B at stage i=1, whichever
equilibrium solution is adopted (even outside the two considered here) the trajectory
will be given by

1
= -y +e
Y2 23/1 2
Y1 = Yo + vo + wo.

Now, if we let vp = Epys, and attempt to solve for vg from the above equations, we first
obtain (since wp = pg(yo) is known to B for each fixed o)

1 1 1 1
= = —E == - - —
vo = Eoyz g Fov1 = 3% + Zvo + Fwo,
from which vg can be solved uniquely to give

vo = Ya(yo) = yo + wo; ,wo = pa(¥o)- (o)

This shows that the actual choice for vg = 4o(yo) (under perfect foresight) depends
explicitly on B’s policy pg, and the two solutions given above are two different manifes-
tations of this dependence. Both (22a) and (220) use (o) as a constraint, but while in
(22a) Jp is minimized subject to (0}, in (225) the choices are determined by the Nash
solution of a game played between the two agents at time ¢=0. One could envision other
scenarios between the two agents which would lead to still different choices for uo (and
thereby 7o), but in all cases the resulting expected cost to A will be the constant 5/4,
independent of ug and oyg. o

We now conclude this section with a second example, which is an extended version of
the previous example with an additional stage. It will serve to demonstrate some additional
features of the solution given in Theorem 2.

Numerical ezample 2. In the general formulation, let T=1, and all parameter values be unity.
Then, the unique Nash equilibrium solution (as presented in Theorem 2) can be computed
to be as follows:

1 3
wy = u3(ys) = gy W= ui(y') = —gn - 0.190478yo,
wo = ug(ye) = —0.746032y,; (23)

3 “
vy = (y') = -gn+ 0.31746y9, vo = 73 (yo) = 0.253968y,.

The corresponding equilibrium trajectory is generated by

v} = 0.5079366y0 + €,
y3 = 0.25y] + 0.126984y, + €2
y§ = 0.53{; + €5

from which it follows that E;y3 = 0.125y} + 0.063492y0 # ~7(¥],yo); that is, the solution
does not lead to perfect foresight at time t=1. However, Epy; = 0.253968yo = 44 (yo); that
is, there is perfect foresight at ¢t=0. This latter result is not a feature of this example only,
but holds for the general solution of Theorem 2 (even though it may be rather difficult to
prove algebraically). Through an indirect reasoning that follows the proof of Theorem 2, as
given in the Appendix, one can conclude that Egys = 45(vo) is a genuine property of the
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general Nash solution since, at the initial stage, the variable vy minimizes an expression that
is a perfect square in y; (see (A.1)} and there is no spillover effect. °

4. Some Extensions

A first extension of the results presented in section 2 and section 3 would be to the more
general case where the reference trajectory is not zers and the cost function {54} contains
additional (time-varying) weights on the deviation from the desired trajectory (i.c. the first
term). The reason why we have not included this in our presentation here is because such
an extension does not entail anything conceptually new, while requiring some additional
notation which would have complicated the resulting expressions considerably. The gist of
the results for the nonzero reference trajectory case is that the statements of both Theorem 1
and Theorem 2 remain essentially intact, with the only difference being that now each policy
includes an additive (bias) term which depends linearly on the desired reference trajectory.
The existence conditions in both cases are identical to the earlier ones. For the case when
there is a time-varying weight in the first term of (5b), the results again remain intact,
with only the additive term 1 in (8a) replaced by this new weight and Q in (13a) adjusted
accordingly.

A second extension would be to the class of problems where the agents do not have
direct access to the trajectory {y¢}, but rather acquire common noisy measurements {z,}, as
defined by (18), where now n¢ = z*. Towards studying this extension, let us assume that {e:}
and {£,} are sequences of independent Gaussian zero-mean random variables with variances
var(e;) =: @ > 0, var{§;) =: ¢; > 0, and that they are independent of ys which is also a
Gaussian zero-mean random variable, with variance 0g. Then, in the formulation of section
2, we interpret the operator E; as the conditional expectation E{+|z},w*~'}. Note that here
we have replaced 5, = z* with #; := (2%, w*™!), without any loss of generality, since w*™! is
measurable with respect to z'~!. Now, letting §, := E.y,, it is a standard result (see, for
example, Bertsekas (1987) or Kumar and Varaiya (1986)) that §, is generated by the Kalman
filter equations:

fr+1 = afir41 + cwr i + 0742/ (0742 + Sri2)lrrye,

24a

fe41 = 69 + bEeyeqpa + cwe + [Feqn/(Feqr + Ge41)lreqr, €T §o1=0, (24a)
Tep1 = Z¢41 — @Y — bE Yy — cwy, (248)

b4 = [a’g,/(&, + (c)]l‘n + @41, o = oo, (24")

where {r;} is a sequence of independent Gaussian random variables, known as the innovation
sequence. In writing down these relationships, we have made explicit use of the fact that
both E,y¢4+2 and w, are z*-measurable.

Now note that the error sequence {¢:}, ¢ = y¢ — i, is generated by

eer1 = aee + €epy — [Oer1/(Fe41 + Se1)lrer; €0 =0, (8)
and that Eie¢y, = 0 for all n > 1. In view of this last property,
Eiwyir2 = Eifeyr + Ereeyn = Erfinya,
and hence (24a) can be rewritten as

ir42 = afryr + cwria + {642/ (6742 + ¢r42)]rr 40,

/AOT 42 25
$e41 = afe + bEfga + cwe + [G041/(Feq1 + Se41)]resr, EST; d-1=0. (29)
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Furthermore, since y¢ = {; + ¢, and §¢ ia orthogonal to e;, the counterpart of (7e) for the
noisy case would be:

T+1 T+1
Fi+l = Z E{§}yq + kwi}og " + Z E{e i1} " (28)
t=s t=s

where the second summation term does not enter the optimization, since the sequence {e;}
generated by (A) is independent of the control sequence {w;}. Hence, the problem faced by
agent B is the minimization of the first term of (26) subject to the dynamics (25), where
w, = p,(§*), which is compatible with the original information %, = (y*,w*"?) since # is
generated by (fjt—1, we—1). Then, the problem is identical with the perfect information case
(apart from a change of notation), in view of the fact that {r¢} is a zero-mean independent
sequence, playing the role of {¢;} in (7b). This shows that the problem (with myopic forecast)
features certainly equivalence, making the statement of Theorem I valid also in the noisy case,
with only y; replaced by §, and (9¢) including an additional positive term due to the second
term of (26). The following theorem summarizes this result.

Theorem 8. Let Condition 1 be satisfied. Then, the dynamic policy optimization problem
with myopic forecast, as formulated in section 2 but with common noisy measurements (1)
for both agents, admits the unique solution

w = fie(ye) = gedey, 0SE<TH1, (27q)

with the corresponding forecast policy given by

(@4 cger1)(a+ cge) B, (270)

ve = B2 = VeptV
t t

where {§;} is generated by (25), and {g¢}, {ve} are as defined by (8¢) and (8b), respectively.
°

Hence, for the noisy case, certainty equivalence holds under myopic forecast, and the
statement of Theorem 1 basically remains intact. For Theorem 2, however, there is no direct
counterpart, and derivation of the Nash equilibrium solution is quite a nontrivial task. We
will not pursue this extension here, since presenting the full details of the derivation of the
Nash equilibrium solution would at least double the length of the present paper. What we
can say at this point, however, is that (guided by the results presented in Bagar (1978b) for a
linear-quadratic nonzero-sum dynamic game with a different type of an information pattern
and a different type of a cost function for one of the agents} the problem will generically
admit a unique Nash equilibrium solution, linear in the available common information. This
solution will not satisfy the certainty equivalence or separation principle of stochastic control,
and thus will have no relationship with the solution presented in Theorem 2. The following
numerical example {which is the “noisy” version of the second example of section 3) should
serve to corroborate this claim and to give some indication as to the intricacies involved in
the derivation of the general solution.

Numerical ezample 3. Consider the second numerical example of section 3, but with noisy
measurement (1) for both agents, and with all parameter values (including the noise vari-
ances) equal to unity. Hence, the cost functions are

Ja=E{(va —ys)* + (vo - 12)°}
Jg = E{y + wl + y3 + v} +y} +vj}),

(28)
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and the dynamic constraints are

ys=y3+ w3+ €3

vi=ntunt+wta (29)

vi = yo + vo + wo + €1,
where w3 = pa(23), w1 = p1(2'), wo = po(20), v1 = M(z'), vo = Y(20); 20 = yo + &o,
z1 = %1 + & and z3 = y2 + &. The first significant difference between the perfect and
the noisy measurement cases appears in the construction of the best uj, which now depends
explicitly on (g1, o) and (71,70). [Recall that in the perfect measurement case covered by
Theorem 2, there was a universally optimal policy for agent B at the terminal stage of the
game,] With the quadruple (73,703 #1, po) fixed, say at (v, u}, the minimization of Jp with
respect to uz becomes a standard quadratic optimization problem,

If‘l‘i’n E{(ys + wa + €3)* + wj|2®, v, p},

whose unique solution is

1
wy = pa(2®, 7, p) = -EE[yzlz’,v, Bl =t ~f2qp- (30)

Here gz, is generated by the Kalman filter:

R R 8 R
$210 = Do + N (") + ma(2') + 'ﬁ(zz = G1mome — N(2') = 11 (2'))

. N 3 .

H190m0 = Yo + vo(z0) + po(zo) + g(zx — $o — Yo(20) — po(z0)) (31)
R 1
Yo = 5'20,

which depends on (v, u) partly directly and partly through §1.,,, = Ely1lz", 70, o). To
obtain the pair (v, u) that is in Nash equilibrium with (30), we follow a procedure quite
analogous (in principle) to the one followed in the proof of uniqueness (for Theorem 2) in
the Appendix, geared towards obtaining a {unique) stagewise equilibrium. Accordingly, the
derivation involves the solution of two static games, one at ¢=1 and the other one at t=0. To
characterize the static game at t=1, we substitute (31} into (28), eliminate the intermediate
variables and take expectation over the statistics of €3, ¢ and &1, to arrive at the reduced
conditional {on z'} cost functions:

1 5 5
1 _pl—_ - 25 2 ]
Ja = B{gglavi = 8(y1 + wi) + 2 + S(m +m))
+ ("0 -y — v - wllzlzl}‘

1
169

1 N
+ 37—6[5(!“ F o+ o)+ 8(y + v + w4 (1 + vi + wi)? + wilet)

In the above, we have made notational simplifications by suppressing the (o, #o)-dependence
of §; and the arguments of (71, p1). This is clearly a static game in the pair (v1,w,), and its
Nash solution can be obtained for each fixed (71, 1) and (4o, po), where we take vo = Jo(z0)-

5, 5
Jp = E{—=0(y1 + v1 + w1) - g9~ 5('71 + m))?
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Differentiating J} with respect to v; and J} with respect to wy, and setting the resulting
expressions equal to zero after conditioning on 2!, we find that the Nash condition is satisfied
and there exists a unique solution to the pair of equations, linear in 7y, g, §1 and 5. Now
requiring consistency in the solution (as in the proof of uniqueness for Theorem 2 in the
Appendix), we set v; = 7;(2!), w; = p1(2'), and solve the resulting pair of linear equations
(in v, and w;) uniquely, to arrive at the policies:

vy = 11(2', 70, o) = —0.5238108; + 1.547619(2o), (32a)

wy = p1(z', 70, po) = —0.285714§, — 0.928571~9(20). (328)

Note that here 49 is yet to be determined.

To complete the solution, we next formulate the game at ¢=0, by substituting (30) and
{32) into (28), again eliminating the intermediate variables and averaging over the statistics
of the random variables involved, to obtain the reduced conditional {on zg) cost functions:

J§ = E{(0.6190483, + 1.208780~0 — 0.029304x0 + 0.648352(vo + wp))?
+ (0.485714vo + 0.29523830 — 0.514286wo + 0.1904777 + 0.80952440)% |20},

1
Jg = E{~(0.619048 — 1.1941395, + 1.384615y,)?

1
+ 2(0.61904870 — 0.424909§; + 0.615385y,)% + (0.619048~, — 0.809524§, + y,)*
+ (0.285714§; + 0.9285717,)% + y? + wd|zo},

where both y; and §; depend on {vo, wp), the latter through 2y, as given in (31).

The procedure here is the same as at #=1: First obtain the Nash solution of (J9,J3)
in terms of (7o, #0), then require consistency (vo="0(2%0),wo=#0(20)) and solve for (vo, wo)
from the resulting equations, which will lead to policies whose argument is zg. At each step
the uniqueness condition is met, and thus the procedure yields the unique Nash equilibrium
policies (at t=0):

vo = 73 (20) = +0.2482275;, (33a)
wo = p3(20) = —0.751773o. (336)

These policies are finally used in (32) and (31) to complete the characterization of the Nash
equilibrium policies:

v = 7} (2') = —0.5238104] + 0.384181o, (34a)
wy = p}(z') = -0.285714§} — 0.2304964j, (34b)
wy = p3(2?) = —0.593, (34¢)
where
' 3 = 0.059102§, + 0.073260§; + 0.6153852,
§1 = 0.198582§, + 0.6z, (35)
fo = 0.52.

An equivalent representation for 7} in (34a) would be

v; = 77 (2!) = —0.523810§] + 1.547619vo,
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which shows explicit dependence on vy. Note that the policies (34) are different from their
counterparts in the noise-free case (i.e. (23)), thus corroborating our earlier remark that the
“noisy version” does not feature certainty equivalence,

The equilibrium trajectory corresponding to the unique Nash solution is generated by

y:s =y3 — 0597 + ¢
y3 = y; — 0.809524§] + 0.153664§n + €3
y{' =Y — 0.503546§0 + €1.

Using these, it is easy to check that, as in the second example of section 3, E,y¥ # 7i(z!),
while Eqy$ = +5(20), which shows that the Nash solution could lead to perfect foresight at
the initial stage, even in the noisy case. As we will discuss in a companion paper, this turns
out to be a general property of the Nash solution for the “noisy version” of the problem of
section 8. ’ °

Appendix

In this appendix, we first complete the proof of the existence part of Theorem 2 by
showing that the policy (#+) given there indeed solves agent A's optimization problem. Sub-
sequently, we establish the uniqueness of the Nash solution presented in Theorem 2.

Ezistence. The optimization problem faced by agent A is the minimization of JJ, where

T
JI'= Z E{(ve — ve+2)*}05 "

under the constraints
yr+3 = [ak/(k + ¢*)]yr+1 + €742

err = (a + &)y + By + bvg+ €041, 15EST
y1 = (a+ cBo)yo + €13
U= awn + BV, ve = n(v’).

We now claim that, for a general ¢,

min JT = min E{panes1(vesr — merr¥irr — BeaFi1)® + (e — ve42)’} + 0 (A1)
(7,}:'=' e (TS ¥ [

where {g:} is a sequence depending only on the variances of the additive stochastic terms ¢,
t < T + 2. Under the validity of this assertion, the optimal policy at time ¢ is obtained by

minimizing the following quantity with respect to the scalar variable vy =:v, for each fixed
t+1
yttis

E{pani+1lv — mepi1(a + c@ep1)yesr — Mes168e410¢ — Mmegprbv — Mo 041 (A.2)
= g1 Ben1Be) + [(a + cEea1) Vet + Bear T + bu — v, ][y}

Being quadratic and strictly convex (in v), this optimization problem admits a unique solution
{for each fixed yy41, %, ve), given by

ver1 = T (V') = Gy + Ber1ve + Beaa B, (A.3a)
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for 0 <t < T — 1, and at the initial stage by

vo = Yo(¥0) = &ovo, (A.38)
where
~ 1 - o ~
&, = Fr = bmtram [pane(l — bm,) (e + (@ + cdig)m,) — bla + edy)]
~ b
B¢

o {1~ bm)}2pan,
_ 1
T b+ (1= bmy)3pan

B

- [pane(l — dm.) (M. + eBimy) ~ befy].

As we have discussed earlier (in the proof of the existence part of Theorem 2), substitution
for a¢ and B¢ (from (11a) and (12a), respectively) into the three expressions above, leads to
the equivalences & = a; and f; + B; = B;. Hence, the optimal solution (A.3) admits the
equivalent representation

ve = aeye+ Bevecr + (B — B)Veor, 1<t<T (A4)
= @oYo ) t=0.

We now turn to verification of the structural form (A.1). The result trivially holds for
t=T, with my = ak/(k + ¢?), Mz = 0. Let us therefore assume the validity of the assertion
for t+1 and prove it for ¢&. Towards this end, we substitute (A.4), with ¢ replaced by t+1,
into (A.2), and arrive (after some rather tedious algebra) at an expression which is a perfect
square in vy, Yy4+1 and ¥

E{ne(ve ~ meyeqr — i) ? |yt t'). (A.5)

Here m,, ft; and n; are defined in terms of m¢4, fig4+1 and neyq as in (10a) through (10¢). [In
fact, it is not difficult to see that the resulting cost should be a perfect square, because (A4.2)
can be made equal to zero by appropriately choosing v¢ and v¢431. With this observation, it
then remains to find the three coefficients n,, m; and f¢.] Now, since the minimum of (A.2)
over v+ is equal to (A.5), we have

min JT, = min B{(ve-1—ve41)’ +pa _min I}

(‘7.}:‘:,-3 i De ) 13 FESERY
= 1."'lvi.n. E{(ve-1 — ¥e41)2pane(ve — meyes1 — Me)?)

+ palge + (14 panepimiy, var(ecsa),
which is in the same form as (A.1), with

qe—1:=palee + (14 PA"t+lm?+:)Wf(¢t+z)]-

This then completes the proof of optimality of () in the proof of the existence part of
Theorem 2.

Uniqueness. It is a well-known fact that dynamic games could admit nonunique Nash equilib-
ria, with each such equilibrium leading to a different cost pair which are in general incompara-
ble (see, for example, Bagar and Olsder (1982)). Thus, “uniqueness” is an important question
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to pose, if the proposed equilibrium is to be of value. As we have discussed extensively in
earlier papers (for example, Bagar(1976}, Basar{1977)), the main source of nonunigueness in
Nash equilibria is the so-called informational nonuniguencas which arises if each agent, in
his one-sided optimization, has the freedom of choosing different representations of the same
policy. What we prove in the sequel is that for the game problem covered by Theorem 2
there is no informational nonuniqueness, and the structural form (17)-(18) is the only form
in which a Nash equilibrium can exist. Furthermore, we show that structural uniqueness is
guaranteed under Condition 2. In the proof, we will not explicitly derive the expressions for
this unique Nash solution, since we have already shown in the first part of the proof that
(17)-(18) exists as a Nash equilibrium.

Towards devising a proof for uniqueness, we first introduce two generic functions quad(:)
and Jin(:), where

quad(-) = a quadratic function of its arguments

lin(:) = a linear function of its arguments.

Furthermore, we introduce a class of nested subgames {G,}, parameterized by s, each one
being a replica of the original game but defined on a shorter time interval, [s,T+1),0< s <
T + 1. More precisely, for the subgame G,, the cost functions are defined by (52)-(56) with
the lower limits changed to t=s—1, and with the action variables being vT := (vp,..,v,41,v,)
for A, and wT+! = (wryy, .., Wet1,w,) for B, where v; = g, (y?), we = % (y*), and a similar
convention as above applying to the policy variables uT+! AT, To be consistent with this
convention, for =0 we extend the limit of the summation to ¢ = ~1 in both J, and Jp,
by adding zero as the incremental cost term at ¢ = —~1. Now let (¥ := /7, := "g"“) be
a Nash equilibrium solution for the original game (Gyg), such as the one given in Theorem
2. Then, it is a well-known property of the Nash solution (called the stagewise equilibrium
property) that for any s, the truncated version of these policies, (77, &7 t1), constitutes a
Nash equilibrium solution for G,, with the past policies {3, ug™") fixed at (557', 5571).

We now develop a procedure for studying the uniqueness of the solutions of these indi-
vidual subgames, First consider the case s = T + 1, where Gry; is not really a game but
a one-sided optimization problem for agent B, since only B is active at t = T + 1. Then, "
clearly the solution is unique, and is given by the second line in {18e). Note that this solution
is both informationally and structurally unique (regardless of the past policy choices), the
former being due to our assumption in section 1 on the structure of the probability distribu-
tion of the additive system noise. Hence, in the study of the second game in the sequence,
Gr, we can take pr4; as in {18a), without any loss of generality. Accordingly, substituting
this pr41, say p1.,,, into both J4 and Jp, eliminating the intermediate variables using the
evolution equation (4) and averaging over the statistics of the random variables by employing
their independence property, we arrive at the structural forms

cost 4(Gr) = quad(yr, vr, wr, vr-1)

(A.6)
costg(Gr) = quad(yr, vy, wr) + quad(wi_,),

which are the costs incurred to A and B, respectively, conditioned on the information available
at time T, i.e. fr=yT. Since the firat cost shows explicit dependence on vr.;, we fix
vr-1 = 7r-1{yT"?), and solve for the Nash equilibrium of the resulting static game. Because
of the quadratic structure of the cost functions, the Nash solution, if it exists, will be linear
in the pair (yr,vr-1); furthermore it will be (structurally) unique under conditions not
depending on yr and vy_y, and Condition 2 precisely serves this purpose. Hence, the static
game defined by (A.6) admits a unique Nash solution, for each fixed 771, given by

vr = Fr(¥") = lin(yr, vr-1) (A.74)
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wyp = ﬁr{yT) = lin{yr,vr-1); (A7)

where vr_y = yr-1{yT~!). The linear functions here are precisely the ones given in (17)
and (18), with vp_; in the latter case replaced by 57_,. The solution is also unique rep-
resentationwise since, because of our nonsingular statistics assumption on the probability
distributions of the random variables involved, yr cannot be expressed in terms of the past
values of the trajectory almost surely (which would have been possible in a purely determin-
istic problem). We now note that the complete {unique) solution to subgame Gr is (A.7)
along with u7 ., which was the unique solution (for agent Bj to subgame Gr,,.

The next game in the sequence, Gr_1, involves the the action variables (vr,vr-,) for
agent A and (wr41,wr,wr—1) for agent B. Since every Nash equilibrium is necessarily a
stagewise equilibrium and since the unique (linear) Nash solution of G does not depend
structurally on vy, and wr-;, it follows that every Nash equilibrium for Gy_; should
match with that of G for policies 741, #r and yr. Hence, the equilibrium solution of
G- will be nonunique only if the last components of the policy sequences, (yr-1, pr-1),
are nonunique at equilibrium. Towards a study of this, we substitute the solution of Gr into
J4 and Jp, with vy in (A.7b) replaced by a general function of y7~!, say ¥r..,(y77}),
since B does not have direct access to vr_;. [It is important to note at this point that if
B had direct access to vr_;, the solution would have been informationally nonunique, for
reasons discussed extensively in Bagar (1978a) for a different class of such games.] Now, after
eliminating the intermediate variables and averaging over the stochastic variables, we arrive
at the following reduced costs for Gy_1, conditioned on the common information available at
time T—1, i.e. y7T~ 1

cost(Gr-1) = quad(yr_1,vr—1, wr_1, vr—2, ¥r-1{y7 "))
costg(Gr-1) = quad(yr_1,vr—1, wr-1,¥7r_1(y7 ')
Here, in addition to the unknown (but fixed) function ¥, we also have vp_z = vp_3{y7 ~2)
fixed by an arbitrary choice of yr—2. Under an appropriate condition which is independent of
¥7_1 and yr-3 (which is also guaranteed by Condition 2), this static game admits a unique
equilibrium for each fixed ¥7-1 and yr_j:

vr—1 = Jr-1(yr-1,v7—2, ¥7r_1{yr—1)) = lin(yr -1, vr_2, ¥r-1(y7-1)) (A.8a)

wr-1 = Br—1{¥r-1,07-2, ¥1r-1(yr_1)} = lin(yr-1, vr—2, ¥r-1{y7-1)), (A.8b)
where vr_g=~7_3(y7 ~%). Next, we impose consistency in the solution for each fixed 7.,
which requires that #r_; = ¢¥r_1. Using this side condition in (A.8a), we arrive at
vr—1 = lin{yr_1,v1-2,v7-1)

T-1 and yr-2)

which, being linear, admits the unique solution (for each fixed y
vr—y = Jr—1 (¥1-1, v7_2) = lin{yr_1,v7_3), (A.8a)

under a nonsingularity condition which is met under Condition 2. Letting ¥7._; = Jp._, in
(A.8%), we finally obtain for wr_; (for each fixed 4r_3):

wr—1 = gr-1{y7-1,v7-2) = lin(yr-1,vr-2) (A.90)

This then completes the verification of the uniqueness of the solution of Gy, for each fixed
4r-2. Note that the complete solution to Gr-, is given by pu3,,, (A.7) and (A.9), with
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vr—y in (A.7b) replaced by the expression in (A.9a). Here we could also have expressed
{A.7a) in terms of yT, instead of (yr,vr—,), by substituting for vr_; from (A.9¢), but this
is not necessary since agent A does have access to his past decision value, and enriching
his information set by also including past decision values does not lead to informational
nonuniqueness.

The important observation here is that, for each fixed 4r_3, the solution of subgame
Gr_;1 (to be denoted (¥r, Yr—1; Er+1, Fr, ir—1) ) is structurally unique, with each strategy
being linear in its arguments. More precisely, we have Jr linear in (yr,vr-1), Jr—) linear
in (yr-1,v7-3), fir+1 linear in yryy, fir linear in (yr,yr—1, 7r-2(y7~?)) and fiz_, linear
in (yr—1,7r—2(y7~?)). Furthermore, the solution is informationally unique because of the
nonsingular statistics of the additive noise in the dynamics (4). Then, in the construction
of the Nash solution for subgame Gr_3, we first substitute for {(yr,vr—1; pr41, BT, BT—1)
from the unique solution of Gr_;, with 1. replaced by a general function ¥r_2, asin the
construction of the solution for Gr—;. Repeating the same procedure as in Gr_1, we can
obtain a linear stagewise Nash solution for Gr_3 for each fixed 413, whose uniqueness is
again guaranteed by Condition 2. Following this procedure in retrograde time, we find that
for each s, the subgame G, admits a unique stagewise equilibrium (for each fixed «,_,), linear
in the available information as well as in ~,_,. Since 4_; is trivially zero, the process halts
at 8=0, leading to the conclusion that the game G admits a unique stagewise equilibrium,
linear in the common information available to the agents. This then establishes uniqueness
of the Nash solution of the original problem (which is identical with Gg), since every Nash
equilibrium is a stagewise equilibrium and we have already proven that the game admits at
least one Nash equilibrium.

We conclude this Appendix by pointing to the fact that the above procedure would have
been an alternative method for the construction of the Nash solution given in Theorem 2, but
alone it would not be sufficient, since a stagewise equilibrium need not be a Nash equilibrium.
°
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Victory and Defeat in Differential Games
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Abstract

We construct the set-valued feedback map wich allow players in a differential game the possiblity
of winning, separately or colletively, or the certainty of winning or loosing and we characlerize
the indicator functions of their graphs as solutions to (contingent) partial differential equations.
Decisions are defined to be the derivatives of the controls of players, and we provide decision rules
Jor each of these set-valued feedback maps allowing the players to abide by them as time elapses.

Résumé

Nous construisons des correspondances de rétroaction qui procurent auz joueurs d’un jeu différentiel
la possibilité de gagner (séparément ou callectivernent), ou la certilude de gagner ou de perdre, ct
nous caractérisons les fonctions indicatrices de leurs graphes comme solutions d’équations aur
dérivées particlles (contingentes). Les décisions sont définies comme les dérivées des controles des
Joueurs, et nous procurons des régles de décision associées & chacune de ces corespondances de
rétroaction permettant de les respecter au cours du temps.

1 Description of the Game

Let our two players Xavier and Yves act on the evolution of the state z{t) € R" of the differential
game governed by the differential equation

(1) 2(t) = h(z(t, u(t),v(t))
by choosing Xavier’s controls

(2) Vt>0, u(t) € U(z(t)

and by choosing Yves’s controls

(3) Vt>0, uft) € V(t)

Here, h, describing the dynamics of the game, maps continuously R" x R? x R? into R", and
U:R"~ RP and V : R™ ~» RY are closed® set-valued maps describing the state-dependent
constraints bearing on the players.

We shall assume that the open-loop controls u(-} and v{-} are absolutely continuous and obey
a growth condition of the type?

(4) i) Jo'(e)) < e(lv(®)) +1)

We shall refer to them as “smooth open-loop controls™, the non negative parameters® p and o
being fixed once and for all. The domain K of the game is the subset of

{ ) @I < el +1)

1This means that the graph of the set-valued map is closed. Upper semicontinuous set-valued mmaps with compact
values are closed, and thus, closedness can be regarded as a weak continuity requirement.

Jone can replace p{||u]| + 1) by any continuous function $(r:) with linear growth.

Jor any other linear growth condition ¢(-} or ¢(-) which makes sense in the framework of a game under investigation.
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(5) (z,u,v) € R" x R? € R? such that
u € Uz) & veV(2)
Roughly speaking, Xavier may win as long as its opponent allows him to choose at each instant
t > 0 controls u(t) in the subset U(2(2)), and must loose if for any choice of open-loop controls,
there exists a time T > 0 such that u(T) ¢ U(2(T)).

Definition 1.1 Let (ug,vo,20) be an initial situation such that initial controls uo € U(z) and
vo € V(20) of the two players are consistent with the initial state zo.
We shall say that

—  Xavier must win if and only if for all smooth open-loop controls u(-) and v() starting at
ug and vg, there exists a solution z(-) to (1) starting at zg such that (2) is satisfied.

— Xavier may win if and only if there exist smooth open-loop controls u(-) and v(-) starting
at uq and vy and a solution z() to {1) starting at zo such that (2} is satisfied.

—  Xawvier must loose ¢f and only if for all smooth open-loop control u(-) and v(-) starting
at ug and vo and solution z(-) to (1) starting at zo, there exists a time T > O such that

u(T) ¢ U(=(T))

—  The initial situation is playable if and only if there exist open-loop controls u(-) and v(-)
starting at up and vy and a solution 2(-) to (1) starting at zo satisfying both relations (2)and (3).

Naturally, if both Xavier and Yves must win, then both relations (2)and (3) are satisfied. This
is not necessarily the case when both Xavier and Yves may win, and this is the reason why we are
led to introduce the concept of playability.

2 The Main Theorems

Theorem 2.1 Let us assume that h is continuous with linear growth and that the graphs of U and
V are closed. Let the growth rates p and o be fized.
There exist five (possibly empty) closed set-valued feedback maps from R” to R? x RY having

the following properties:

~ Ry C U is such that whenever (uo,v5) € Ry(20), Xavier may win and that whenever
(ua,v0) & Ru(20), Xavier must loose

— If h is lipschitzean, Sy C Ry is the largest closed set-valued map such that whenever
{uo,vo) € Sy(20), Xavier must win.

— Sy C Ry CV, which have analogous properties.

— Ryv C Ry N Ry is the largest closed set-valued map such that any inistial situalion
satisfying (uo,vo) € Ryv(20) is playable.

Knowing these five set-valued feedback maps, we can split the domain K of initial situations
into ten areas which describe the behavior of the differential game from the position of the initial
situation.
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{20, o, %) € Graph{Sy) Graph{&y) | K\Graph{Ry) |
Xavier must win Xavier may win Xavier must loose
Gl‘aph(SV)
Yves must win Yves must win Yves must win
Xavier must win | ? ? ? | Xavier must loose
Graph(Ry) ? ?
Yves may win | ? ? ? Yves may win
Xavier must win Xavier may win Xavier must loose
K\Graph(Ry)
Yves must loose Yves must loose Yves must loose

The 10 areas of the domain of the differential game

In particular, the complement of the graph of Ryy in the intersection of the graphs of Ry and
Ry is the instability region, where either Xavier or Yves may win, but not both together.

The problem is to characterize these five set-valued maps, the existence of which is now guar-
anteed, by solving the “contingent extension™ of the partial differential equation*

ad % ad
©) 22 - h(zmn) = ol + 1) |52 - otivt + )| S =0
which can be written in the following way:
o9 a%
— - h{z,u,v) + inf —-.u f —-.v=0
2 MEw) e B Boligollivhry) B

a

We shall also introduce the partial differential equation®
ad ‘6&‘

(7) 55 Mz o) + (el + 1) +o(llvll +1) “%?" =°

du

which can be written in the following way:

3% ad ad
— -h{z,u, v} + sup —-u'+  sup —-v'=0
9z i <aliiai+1) O o'l <o+ 1) OV
The link between the feedback maps and the solutions to the solutions to these partial differ-
ential equations is provided by the indicators of the graphs: we associate with the set-valued maps
Sy, Ry and Ryvy the functions @y, ¥y and ¥ from R® x R? x R? to R4 U {+00} defined by

41f @ is a solution to this partial differential equation, one can check that for any initial situation (2o, uo,w) €
Dom(¢®), there exists a smooth solution (z(:), u(:), u(-}} such that

¢ — O(2(¢t), u(t), u(t}} is non increasing
This property remains true for the solutions to the contingent partial differential equation (9).
50ne can check that if f is lipschitzean and @ is a solution to this partia}l differential equation, for any initial
situation (zy, up, v} € Dom(®), any smooth sofution (z(-}, u(-), u(:}) satisfies

t — &(z(¢), u(t),v(t)) is nou increasing

This property remains true for the solutions to the contingent partial differential equation {10).
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0 if (u,v) € Sy(z2)
+oo if (u,v) ¢ Sy(z)
0 it (u,v) € Ry(z)
+oo if (u,v) ¢ Ry(z)
0 if (u,v) € Ryv(2)
+oo if (u,v) € Ryv(2)

and the functions ¥y and dv associated to the set-valued map Ry and Sv in an analogous way.

These functions being only lower semicontinuous, but not differentiable, cannot be solutions to
either partial differential equations (6) and (7). But we can define the conlingent epiderivatives of
any function ® : R™ x R? x R? —» R U {+o0} and replace the partial differential equations (6)and
(7) by the contingent partial differential equations

i) ®y(z,u,v)

(8) i) Yy(z,u,v) :

1) ¥(z,u,v)

(9) inf D1®(z,u,v)(h(z,u,v),u',0")
) <o(lull +1) (
'l < o(llell + 1)

and

(10) sup D &(z,u,v)(h(z,u,v),u',v')
lu'll < e(llull + 1)
vt < e(llvll + 1)

respectively.

Let 1y and 1y be the indicators of the graphs of the set-valued maps U and V defined by

D M= {9 LSO
(11) B 0 if veV(z)
") Qy(z,u,v) : +oo if v ¢ V(Z)

Theorem 2.2 We posit the assumptions of Theorem 2.1. Then

— Wy 1s the smallest lower semicontinuous solution to the conlingent partial differential
equation (9) larger than or equal to Qy

— Uy is the smallest lower semicontinuous solution to the contingent partial differential
equation (9) larger than or equal to Qy

— W s the smallest lower semicontinuous solulion to the contingent partial differential
equation (9) larger than or equal to max(Qy,0y)

— If h is lipschitzean, ®y is the smallest lower semicontinuous solution to the contingent
partial differential equation (10) larger than or equal to fly

— If h 15 lipschitzean, ®y 1s the smallest lower semicontinuous solution Lo the conlingent
partial differential equation (10) larger than or equal to Qy

If any of the above solutions is the constant 400, the corresponding feedback map is empty.
Proof of Theorem 2.1 — Let us denote by B the unit ball and introduce the set-valued
map F defined by

H(z,u,v) := {h(z,u,9)} x p(||lu] + 1) B x o(||v]| + 1)B

The evolution of the differential game described by the equations (1) and (4) is governed by the
differential inclusion

(2(1),v'(®),v'(t)) € H(z(t),u(t),v(t))
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— Since the graph of U is closed, we know that there exists a largest closed viability dornain
contained in Graph(U) x RY, which is the set of initial situations (zg, g, vo) such that there exists a
solution (2(-),u(-),v(-)) to this differential inclusion remaining in this closed set. This is the graph
of Ry. Indeed, if (to,v0) € Ru(z0), there exists a solution to the differential inclusion remaining
in the graph of U, i.e., Xavier may win. If not, all solutions starting at (2o, %o, vo) must leave this
domain in finite time.

The set-valued feedback map is defined in an analogous way.

—  For the same reasons, the graph of the set-valued feedback map Ryy is the largest closed
viability domain of the set K of initial situations.

—  When h is lipschitzean, so is F. Then the solution-map S(2g, uo, vo) is also lipschitzean
thanks to Filippov’s Theorem®, so that the subset of initial situations such that all the functions
of ${zq, u, vg) remain in a closed subset is also closed. This is the largest closed invariant domain
by F of this closed subset. Then the largest closed invariant domain contained in Graph(U) x R?
is the graph of the set-valued feedback map Sy. D

Proof of Theorem 2.2 — We recall that thanks to Haddad’s viability Theorein, a subset
L CR™ x R* x RY is a viability domain of F if and only if

v (z,u,v) € L, Ti(z,u,v) N H(z,u,v} # @

Let ¥; denote the indicator of L. We know that the epigraph of the contingent epiderivative
D1¥i(z,u,v) of ¥y, is the contingent cone to the epigraph of ¥, at ((z,u,v),0). Since the latter
subset is equal to L x R, its contingent cone is equal to T;(2,4,v) x R, and coincides with the
epigraph of the indicator of T;(z,u,v). Hence the indicator of the contingent cone Ty(z,u,v) is
the contingent epiderivative Dy (z,u,v) of the indicator V;, of L at (z,u,v).

Therefore, the above tangential condition can be reformulated in the following way:

V{z,u,v) € L, 3w € H(z,u,v) such that Dy¥1(z,u,v)(w) = ¥p (suu(w) =0

Since the epiderivative is lower semicontinuous and the iinages of F are compact, this is equiv-
alent to say that

v (z,u,v) € L, we}l{r(l'f:u.v) DY, (z,u,v)(w) =0

By the very definition of the set-valued map F, we have proved that L is a closed viability domain
if and only if its indicator function ¥, is a solution to the contingent partial differential equation

(9).

~— Hence to say that the graph of Ry is the largest closed viability dornain contained
in the graph of U amounts to saying that its indicator Wy is the smallest lower semicontinuous
solution to the contingent partial differential equation (9) larger than or equal to the indicator
Ny of Graph(U} x R?. The same reasoning shows that indicator ¥y of Ry is the smallest lower
semicontinuous solution to the contingent partial differential equation (9} larger than or equal to
{ly and that the indicator ¥ of the graph of Ryy is the smallest lower sernicontinuous solution to
the contingent partial differential equation (9) larger than or equal to the indicator of K, which is
equal to max(fly, Ny).

—  We know that the a closed subset L C R™ x R? x R? is “invariant” by a lipschitzean
set-valued map F if and only if

V (z,u,v) € L, Ty (z,u,v) C H(zu,v)

This condition can be reformulated in terms of contingent epiderivative of the indicator function
¥, of L by saying that

V(z,u,v) €L, sup D¥y(z,u,v){w)=0
wEH (s,u,v)

€See 3, p.120]
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Hence to say that the graph of Sy is the largest closed invariance domain contained in the graph
of U amounts to saying that its indicator ®y is the smallest lower semicontinuous solution to the
contingent partial differential equation (10) larger than or equal to the indicator Qy of Graph(U) x
RY. O

3 Closed-Loop Decision Rules
When the initial situation (20,0, vs) belongs to one of the following subsets:
(12) Graph(Sy) N Graph(Sy) or K\(Graph(Ry) U Graph(Ry))

then the players has nothing to worry about because both of them must either win or loose whatever
the choice of their control.

In the other areas, at least one of the players may win, but for achieving victory, he has to find
open-loop or closed-loop controls which remain in the appropriate set-valued feedback map.

Let us denote by R one of the feedback maps Ry, Ry, Ryv and assume that the initial situation
belongs to the graph of the set-valued feedback map R {when it is not empty). The theorem states
only that there exists at least a solution (z(-),u(-),v(-)) to the differential game such that

Vit 20, (u(t)v(t)) € R(z(t)

To implement these strategy, players have to make decisions, i.e., to choose velocities of controls
in an adequate way:
We observe that playable solutions

Proposition 3.1 The solutions to the game satisfying
Yi>0, (u(t),v(t)) € R(2(t))
are the solutions to the system of differential inclusions

) 2(t) = h(z(),u(t),v(2))
(13) {z’i) (W'(1),9'(1)) € Grl=(t), u(t),v(1))

where we have denoted by Gg the R-decision map defined by
(14) Gr(z,u,v) := DRg(z,u,v)(k(z,u,v))

For simplicity, we shall set G := Gz whenever there is no ambiguity.

Proof — Indeed, since the absolutely continuous function (z{-),u{-),v(:}) takes its values
into Graph(R), then its derivative (2'(-),u’(-),v'(:)) belongs almost everywhere to the contingent
cone

TGraphr)(#(t): u(t),v(8)) = Graph(DR(z(t),u(t),v(t)))

We then replace 2'(t) by A(z(t), u(t), v(t)).

The converse holds true because equation (13) makes sense only if (z(t),u(t),v(t)) belongs to
the graphof R. O

The question arises whether we can construct selection procedures of the decision components
of this system of differential inclusions. It is convenient for this purpose to introduce the following
definition.

Definition 3.2 () We shall say that a selection (&,d) of the contingent derivative of the smooth
regulation map R in the direction h defined by

(15) Y (2,u,v) € Graph(R), é(z,u,v) € DR(zu,v)(h(z,u,v))
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18 a closed-loop decision rule.
The system of differential equations

i) 2t)
(16) i) u'(t)

ii) v'(t)

I

h(z(2), u(?), v(?))
c(2(t), u(t), v(t))
d(2(t), u(t), v(t))

is called the associated closed-loop decision game.

l

Il

Therefore, closed-loop decision rules being given for each player, the closed-loop decision system
is just a system of ordinary differential equations.

It has solutions whenever the maps ¢ and d are continuous (and if such is the case, they will
be continuously differentiable).

But they also may exist when ¢ or d or both are no longer continuous. This is the case when
the decision map is lower semicontinuous thanks to Michael’s Theorem:

Theorem 3.3 Let us assume that the decision map G := Gy is lower semicontinuous with non
empty closed convez values on the graph of R. Then there exist continuous decision rules ¢ and d,
s0 that the decision system 16 has a solution whenever the initial situation (ug,vo) € R(2))

But we can obtain explicit decision rules which are not necessarily continuous, but for which
the decision system 16 has a still solution.
It is useful for that purpose to introduce the following definition:

Definition 3.4 (Selection Procedure) A selection procedure of the regulation map G : R™ ~
R? x R? is a set-valued map Sg : R" ~ R? x R4

17) { i) Vze K, S(G(2)):=Se(z2)NG(z) # 0
it) the graph of Sg is closed

and the set-valued map S(G) : 2z~ S(G(2)) is called the selection of G.
It is said convex-valued or simply, convex if its values are convez and strict 3f moreover

(18) ¥z € Dom(G), Se(z) NG(z) = {d(z)),é(z)}
is a singleton.

Hence, we obtain also the following existence theorem for closed-loop decision rules obtained
through sharp convex selection procedures.

Theorem 3.5 Let Sg be a convez selection of the set-valued map G. Then, for any initial state
(20, %0, v0) € graph(R), there ezists a starting at (zg,ug,vo) to the associated system of differential

inclusions
i) () = h(z(t),u(t),v(t))
(19) i) (w'(t),v'(t)) € S(DR(z(t),u(t), v(e))h(z(t), u(t), v(¢)))
= G(z(t),u(t), v(t)) N Sa((t), u(t),v(t))
In particular, if we assume further that the selection procedure Sg is sharp, then the single-valued
map
(é(z,u,v),d(z,u,0)) := S(G)(z,u,v)
is closed-loop decision rule, for which decision system 16 has a solution for any initial state
(20,“0, Uo) € gra’ph(R)'
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Proof — Weshall replace the system of differential inclusions (13) by the system of differential
inclusions
20 { )2 = ), ul) ()

i) (u'(8),v'(t)) € Sa(z(t), u(t),v(t))

Since the convex selection procedure S has a closed graph and convex values, the right-hand
side is upper semicontinuous set-valued map with nonempty compact convex images and with
linear growth. It remains to check that GraphR is still a viability domain for this new system
of differential inclusions. Indeed, by construction, we know that there exists an element w in
the intersection of G{z,u,v) and Sg{z,u,v). This means that the pair (h{z,u,v), w) belongs to
h{z,u,v) x Sg(z,u,v) and that it also belongs to

Graph(G) := TGrapha(z» u)

Therefore, we can apply Haddad’s Viability Theorem. For any initial situation (25, tg, v}, there
exists a solution (2(-),u(-),v(:)) to the new sysiem of differential inclusions {20) which is viable
in Graph(R). Consequently, for almost all ¢ > 0, the pair (2'{t),u'(t),v'(t)) belongs to the con-
tingent cone to the graph of R at {z(2), u(t),v(t)), which is the graph of the contingent derivative
DR(2(t), u(t), v(t)). In other words,

for almost all ¢t >0, (u'(t),v'(t)) € G(z(t),u(t),v(t))

We thus deduce that for almost all ¢ > 0, (u'(t),v'(t}) belongs to the selection S(G)(z(t),u(t), v(t))
of the set-valued map G(z(t),u(t),v(t)). Hence, we have found a solution to the system of differ-
ential inclusions (19). O

We can now multiply the possible corollaries, since we have given several instances of selection
procedures of set-valued maps.

Example— COOPERATIVE BEHAVIOR

Let 0 : Graph(G) + G be continuous.

Corollary 3.6 Let us assume that the set-valued map G is lower semicontinuous with nonempty
closed convez images on Graph(R). Let ¢ be continuous on Graph{G) and convez with respect to
the pair (u,v). Then, for all initial situation (uo,ve) € R(z0), there ezist a solution starting at
(20,u0,v0) and to the differential game (1)-(4) which are regulated by:

{ for almost all >0, (u'(t),v'(t)) € G{(z(t),u(t),v(t)) and

(21) o(z(t),u(t),v(t),u'(t),v’(t))

= infuecaun.vm o(z(1), u(t), v(t), v, ')
In particular, the game can be played by the heavy decision of minimal norm:
{ (c*(z,u,v),d’(z,u,v)) € G(z,u,v)
le°(z,w, 0)I” + [ld°(z, v, 0)1*) = minuveaaue (9]l + H10'1*)
Proof — We introduce the set-valued map S defined by:
Sa(z) i= {{c,d) € Y | o(2,u,v,c,d) <

. 4 ’
(u'.u')lerg("u'")a(z,u, v,u',v')}

It is a convex selection procedure of G. Indeed, since G is lower semicontinuous, the function

{z,u,v,¢,d} — o{z,u,v,¢,d} + sup  (~ofz,u,v,u',2'))
{u* v}EG{z,u,0)

is lower semicontinuous thanks to the Maximum Theorem. Then the graph of Sg is closed because

Graph(Sg) =
{(z, u,v) | o(z, u,v,¢, d) + sup(u'.u')eG{z,u,u)(_o(zi u,v,u',v')) £ 0}
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The images are obviously convex. Consequently, the graph of G being also closed, so is the
selection §{G) equal to:

inf ofz,u,v,u’,v
{u' v jeG(s,u,v) (Z ))}

S(G){z,u,v) = {{c,d) € G(z,u,v) | o(z,%,v,¢,d) <

We then apply Theorem 3.5. We observe that when we take
o(z,u,v,6,d) := |lel* +[ld|]

the selection procedure is strict and yields the decisions of minimal norm. 0O

Example— NONCOOFERATIVE BEHAVIOR

We can also choose controls in the regulation sets G(z, u,v) in a non cooperative way, as saddle
points of a function a(z,u,v,*,-).

Corollary 3.7 Let us assume that the set-valued map G is lower semicontinuous with nonemply
closed convez images on Graph(R) and that a : R™ x R? X R? — R satisfies

(22) 1) VY(z,u,v,d), ¢ a(z,u,v,c,d) is conver

i) @ is continuous
#11) V(z,u,v,¢), d— a(z,u,v,c,d) is concave

Then, for all initial situation (uo,vp) € R(2g), there ezist a solution starting at (29, uq, %) and lo
the differential game (1)-(4) which are regulated by:

i) (u'(t),v'(2) € G(a(t),ult),v(t)
1) V(v v') € G(z(t),u(t),v(t)),
for almost all ¢t > 0, a(z(t),u(t),v(t),w'(t),v")
< a(z(t),u(t), v(t), u'(t), v'(t))
< a(z(e), u(t), v(t), v',v'(t))

Proof — We prove that the set-valued map S¢ associating to any (z,u,v) € Graph(£) the

subset
Se(z,u,v) := {(c,d) such that

Y(v',v') € G(z,u,v), a(z,u,v,c,v') < a(z,u,v,u,d)}
is a convex selection procedure of G. The associated selection map S{C(-)) associates with any
{2,u,v) the subset

S(G(z,u,v}} = {{c,d} € G(z,u,v) such that
V(u',v') € G(z,u,v), a(z,u,v,c,v') < a(z,u,v,v',d) }

of saddle-points of a(z,u,v,,*} in G(z,4,v). Von Neumann’ Minimax Theorem states that the
subsets S(G(z, u,v)) of saddle-points are not empty since G(z,u,v) are convex and compact. The
graph of Sg is closed thanks to the assumptions and the Maximum Theorem because it is equal to
the lower section of a lower semicontinuous function:

Graph(Sg) = {(z,u,v,¢,d) | sup  (a{z,u,v,¢,v') — a(z,u,v,v’,d)) < 0}
(u0')EC(2,u,0)

We then apply Theorem 3.5. O
Remark — Whenever the subset Ryy(z(t))\Rv(z(t)) is not empty, Xavier may be tempted
to choose a control u(t) such that

(u(t),v(t)) € Ryv(2()\Ry(2(t))
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because in this case, Xavier may win and Yves is sure to loose eventually. Naturally, Yves will use
the opposite behavior.
Hence we can attach to the game two functions

1) ay{z,u,v) := d((u,v), Ryv(2)\Rv(2))
(23) { ) by (e u.v) = d({u.v). Row (2)\Ro(2))

and look for closed-loop controls (ii(z),9(z)) which are Nash equilibria of this game:

{ i) (8(2,9(2)) € Ryv(2)

(24) i) V(u,v) € Ryv(2), au(zi(z),8(2)) < av(z,u,9(2))

& by (2,i(2),9(2)) < by(z,i(z),v) O

Unfortunately, the selection procedure which could yield such behavior are not convex. The
answer to this question remains unknown for the time,
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BARGAINING WITH DYNAMIC INFORMATION

Jukka Ruusunen, Harri Ehtamo and Raimo P. Himaldinen
Espoo, Finland

Abstract : The Nash bargaining solution in a sequential cooperative game with dynamic infor-
mation is studied. The bargaining scheme is applied at each stage, where the gains from the
cooperation are measured by considering the past, the current and the future gains. It is shown
that at each stage the cooperative policy can be selected as if the current contract would remain

in effect over the remainder of the time horizon of cooperation.

1. Introduction

Let us consider a group of decision makers (DMs), who are in a position to choose their policies
cooperatively, It is assumed that there are outcomes that all the DMs prefer to the status quo
outcome. Since the DMs do not in general have the same choice set for the cooperative outcomes,
there is a conflict of interests between the DMs in cooperation. The cooperative outcome is required
to be individually rational such that all the DMs gain from the cooperation. However, depending

on the contract chosen an individual DM can gain more or less.

The Nash bargaining solution, see e.g. Roth (1979), has been developed for games in normal form.
The cooperative outcome is selected by maximizing the product of the DMs’ gains from cooperation.
The gains are measured as differences between the payoffs from a cooperative outcome and the
status quo outcome. In the present study bargaining takes place in a dynamic framework under
future uncertainty. Decision making is described by a cooperative game in an extensive form. Thus

an extension of the Nash bargaining scheme to extensive form games has to be made.

Haurie (1976) has studied a dynamic bargaining game, where at each stage only future gains are
considered in bargaining, and the past is ignored. This kind of an extension was shown to lead to
the sustainability problem: reopening of the negotiations at an intermediate stage would change the
cooperative policy. The solution concept proposed by Tolwinski (1982) is based on the assumption
that rebargaining actually takes place at every stage. A cooperative policy related to a given stage
is constructed by considering only current and future gains relative to the stage. The policies are
constructed according to the principle of dynamic programming assuming that rebargaining will
take place at every future stage. The solution satisfies the axioms of the bargaining scheme in all

of the resulting subgames. However, the axioms are not satisfied in the original cooperative game.
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In this paper we propose a bargaining mechanism that satisfies the rules of fairness of the Nash
bargaining scheme over the whole time interval of cooperation. At each stage the cooperative
policies are functions of the current information. The past history of bargaining relative to a given
stage is described by the DMs’ gains over the past stages. A procedure to construct the bargaining
solution is given. An attractive feature of this procedure is that at each stage the DMs can select
the cooperative policy as if the contract defined would remain in effect over the remainder of the

time interval.

2. A bargaining problem with dynamic information

Consider a group &, = {1,...,M} of M (M > 2) DMs who have joined together to cooperate. The
bargaining takes place over N time periods in a stochastic environment. The uncertainty related
to the environment in period k € 82 = {0,...,N — 1} is described by the random variable & € E;
with probability measure pi(:{Ik—1), where Ix_1 = ({-1, £0,..-, k—1) is the information related
to period k — 1. The first term in the information vector, é_, describes the past behaviour of the
random variable before the initial period k = 0. It is assumed that the actual value taken by && is

known before the decision in period k is made.

The admissible policies are functions of the information vector, i.e. ur = ug{lx} € U C R™,
k € 02. Furthermore, uy is of the form ug = (u},...,uM), where uf € Uf C R™ is the admissible
policy for DM¢, i € #;. The decision ux and the sequence of random variables described by
the information Ix yield a payoff gi(u,/x) for DM{ in period k. The objective of DM is the

maximization of the sum of these payoffs over the time interval of cooperation,

Iy N_l Iy
J' = E g (ur, It). (1)
1=0

The benefits of cooperation are measured from a status quo, which would prevail in the noncoop-

erative situation. The status quo policies are denoted by vy = 8(Ix), k € 82.

The rules of fairness of the Nash bargaining scheme are used to determine the cooperative solution
over the whole time interval of cooperation. Consequently, the time interval is partitioned into the
past and the future relative to each period k € 8;. For given information Ix_,, the past periods
are described by the cumulative benefits for the DMs up to period k

k-1

viuo, ., ukoriTu-1) = I [of(ur, 1) — gf(u( 1)), 1)),
=0 (2)

yé(fo) =0.
The expected future payoffs from period k on are

N-1
Ji(ks s unoiiTe) = gh(ur(Ti), Ie) + Egypy e { Y of(we(D), 1)} (3)
I=k+1
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If the status quo policies were used, these expected future payoffs would become

Di(Ik) = Jl';(vkvu,"N—liIk)o (4)

According to the Nash bargaining scheme, the contract definition problem related to period
k € 8; can be stated as follows: For given y{(ua,...,u;_,;lk_l), I, find an admissible policy
{@ix,...,&n-1} such that

[T [ui (st uioridum) + Ti(@hs-- . Bn—1314) — D(I)]
i€0, (5)
> ] [vh(ud, - ruiosi Tema) + JiCuns- o un—1idi) = Di(I)]
i€t

for all admissible policies {ux,...,un—1} for which

vi(uds ooy ufyi Tom1) + Ji(uky .- un—1; Ix) —~ Di(Jk) >0, Vi€ b,. (6)

3. Computation of the contract

To solve the problem defined by (5) and (6) we need two results; for the proofs of these results see
Ehtamo et ol. (1987). Let U be a set,and Ji: U — R, { € 8;. Define

Fi(u) = J'(u) - D', i€dy, (0
Fu)= [] Fitw), ueu, (8)
€0

where D' € R, i € 8,, are fixed, and consider

max F(u) (9)
subject to F'() >0, f€d;. (10)

Lemma 1: Let u* € U be such that

Z FFu) 2 Y uFiu) YueU, (11)
i€h €6
where
¥ =[[F(u), Fiu*)>0, vied,. (12)
A

Then u* solves (9), (10).
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Lemma 2: Suppose U is a convex set in a vector space X and J¢ , i € 8; are concave functionals
on U. Suppose u* € U solves (9), (10) with Fi(u*) > 0 for all 1. Then (11) holds, where u* is as
in (12).

Lemma 1 is now applied to the contract definition problem (5) and {6). Denote A> = {u €
RM|u® > 0, Vi}. For given [, I; and u € A” let u; = §i(I1, u) solve the maximization problem

: GU' E #gi(u, 1), (13)

and define N
Villk,p) = Beryspen-1{ D 0i(B(lp), 1)}, VE €0, (19)

I=k+1

The bargaining solution {#,...,%n~1} in period k € 8; is defined as follows. Let z € A> satisfy

ﬂi = H [yl,;(u(.)’ﬂ-:u;—ﬁlk—l) +g{(ﬂk(Ikaﬂ))Ik) +V,{(Ik:ﬁ) _Di(lk)]' (15)
1€8
J#
Set @;(IY) = Ai(11, B) for I > k. Then we have

Proposition 1: Let k € 83. For given I and yx{ug,...,u}_;; fk—1) let {@x,...,@N_1} be defined
as above. Then {d,..., %N~} solves (5) and (6).

Proof: Since E{max[-]} > max|[E{-}], we have, using the defininition of the functions 8(I), 1),

h Y8 H{{ TN FYRRTY 4

€h
> Y B0 (uk, ..., un—1: Ii) (16)
ieé,
for all admissible {ug,...,uxy_1}. The result is then implied by (15), (16) and Lemma 1. o

According to Proposition 1 the cooperative policy for the present stage can be selected by assum-
ing that the current contract fi will remain in effect over the remainder of the time interval of
cooperation. At the next stage rebargaining takes place and cooperative actions for that stage are
selected, assuming that the updated contract will remain in effect over the remainder of the time
interval of cooperation, and so forth. Hence, the actual cooperative policy {u},...,u}_,}, where

v} is the policy to be applied at stage k, k € 8, is chosen as follows:
(i) Set k=0, vo(lo) = u, where y satisfies

W= T () +0(Bollo, ), To) + Vi (To, ) - Di(Lo))- (17)
JEBH
i#

Set ug(lo) = Bo(lo,vo(lo))-
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(i1) Suppose u}_,(Jk—1) has been chosen. Set vx(Ix) = u, where u satisfies

p= I Wi(edse s vion Tema) + i (Be(Tns ), In) + Vi (Iow) — DE(I)]. (18)
JEH
J#8

Set ui(Ix) = Be{Tr, va(Ix)).

4. _ Conclusion

A mechanism for sequential bargaining under uncertainty is presented. The cooperative solution
satisfies the rationality axioms of the Nash bargaining scheme over the whole time interval of
cooperation. At each stage the past history of the disturbances is known. It is also assumed that
the actual value taken by the disturbance related to the present stage is known before the decisions
are made. It has been shown that the expected future gains contributing to the current contract

can be computed as if no further contracts will be made in the future.
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1.  Introduction

Economic Agents operating in uncertain, stochastic environments can face a
tradeoff between current period expected reward and accumulation of information of
uncertain value. For example, a firm producing to meet uncertain demand might
produce at the expected current reward maximizing output, based on his current
beliefs about the form of the demand curve, or it might choose to experiment by
varying output, thus taking short term losses in order to sharpen beliefs about the
form of the demand curve. A parametric representation of the agent’s problem is
made by considering the utility function wu(x,y) and the conditional density
f(ylx,ﬂ). Here the random variable y is what the agent is trying to control
(e.g., current period profits) and x is the control variable, The parameters ¢
of the conditional density of y given x are unknown, but the agent has opinions
about 4§ given by a distribution u. The agent attempts to minimize the present
discounted value of the stream of expected losses, EE&tu(xt,yt), where the expec-
tation is taken with respect to current beliefs. The problem is complicated by the
fact that beliefs are updated from period teo period using Bayes Rule; consequently
current period actions can be expected to influence future period beliefs. This
introduces stochastic dynamics into the model.

This paper considers the problem in the case in which the density f(y[x,@) is
a location family. In this case the model can be written y = g(x,8) + ¢, where ¢
is an i.i.d. random variable whose distribution may involve unknown parameters.
When g(x,8) = x‘8 the problem is one of controlling a linear regression process
with unknown parameters over an infinite horizon. Many approximate control rules
for this problem have been proposed, for example sequential least-squares estimation
combined with one-period optimization conditioning on the current estimates. The
analogous policy for the nonlinear model is clear. In practice several policies can

work "well,® though it is possible to compose examples in which the policy men-
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tioned, for example, is easily improved. From an economic modelling point of view,
however, we are interested in the optimal policy, and in the consequences for
convergence of beliefs and policies of following the optimal policy. Will it be
optimal for an agent to learn the parameters '(and thus converge to “rational
expectations”)?

This paper gives general conditions under which the sequence of beliefs
converges to a limit and the sequence of optimal policles converges to a limit.
Under further conditions the limit policy is the optimal one-period policy for limit
beliefs. Conditions under which the limit belief is point mass at true parameter
values, corresponding to consistent parameter estimates are more stringent and are
still under investigation.

Least-squares control rules in the linear regression model have been widely
discussed and studied analytically by Taylor (1974) and Jordan (1985) and experi-
mentally by Anderson and Taylor (1976). Improvements using a Bayesian approach were
suggested by Zellner (1971) and studied by Harkema (1975). The optimal policy in
the linear regression case has been studied by Kiefer and Nyarko (1987), who obtain
results on corvergence of beliefs and policies. convergence in a different class of
models has been studied by Easley and Kiefer (1986), Results on optimal learning
while controlling a stochastic process are collected along with an example in Kiefer
(1988).

Y

2. : cert cie bd

In this section we sketch the general framework we wish to study.

Let fI' be a complete and separable metric space, let J be its Borel field,
and (@', F ,P) a probability space. Define the stochastic process (:t)m on
', :?', P’). The £, are assumed to be independent and identically distributed,
with the common marginal distribution p(:tlf) depending on some parameter, § in
Rh, which is unknown to the agent. We assume that the set of probability measures,
(p(-lf), is continuous in the parameter ¢ (in the weak topology of measures); and
that for any £, [ ¢ p(dc|€) = 0. Let X, the action space, be a compact subset
of Rk. Define 8 = R® x Rh to be the paramster space. If the "true parameter™
is 8 = (8.€) ¢ &, and the agent chooses an action % € X at date t, cthen the

agent observes Yer vhere,
Yo = BB + e (2.1)

and ¢ is chosen according to p(-lf). The function g 1is assumed measurable;
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further restrictions are introduced implicitly through assumptions on the updating
equation (2.2) and the reward function (2.3).
One example is the simple linear regression model with unknown slope and

Intercept and with the ¢, 1independent draws from the normal distribution with

mean zero and variance a? In that example Q' |is Rﬁ, J" 1is the collection ot
Borel sets on R”, and P’ 1is the infinite product of independent univariate
normal distributions with means zero and common variance 02. The parameter £ |is
the variance of ¢, 02. The action space X 1is a closed interval in Rl. The
parameter 8 ¢ Rz consists of the slope and intercept of the regression. The
space O is Rz X Ri.

Let J be the Borel field of 6, and let P(8) be the set of all probability
measures on (8, </ ). Endow P(8) with its weak topology, and note that P(8) is
then a complete and separable metric space (see e.g., Parthasarathy (1967, Ch. II,
Theorems 6.2 and 6.5)). Let Hg € P(6) be the prior probability on the parameter
space, with finite first moment.

The agent is assumed to use Bayes rules to update the prior probability at each
date after any observation of (xt, yt). For example, in the initial period, date
1, the prior distribution is updated after the agent chooses an action %, and
observes the value of ¥y The updated prior, i.e., the posterior, is then
By o= r(xl,‘yl, po), where I:X x Rl x P(8) -+ P(8) represents the Bayes rule
operator. If the prior, By has a density function, then the posterior may be
easily computed. In general, the Bayes rule operator may be defined by appealing to
the existence of certain conditional probabilities, although some care is needed
(see Diaconis and Freedman (1986}). Under some conditions the operator I is

continuoug in its arguments, and we assume this throughout., Any (xt, yt) process

vill therefore result in a posterior process, [”t)' where for all t = 1,2,...,
”t - r(xt' yt- ”t'l) (2.2)
_ n-1 . 1
Let Hn - P(8) x I [X xR x P(8)]. A partial history, hn, at date n is

i=1

any element hn - (po,(xl, T ”1)“"(xn-1' yn—l'”n-l)) ¢ H ; hn is said to be

adnissible if (2.2) holds for all t ~1,2,..., n-l. Let R be the subset of H_
consisting of all admissible partial histories at date n. A policy is a sequence
f = [ﬁt):_l, wvhere for each t 2 1, the policy function ﬁt:Ht + X specifies the

date t action xt - xt(ht)' as a Borel function of the partial history, ht in
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Rt, at that date. A policy function is stationary if xt(ht) - 50‘:) for each t,

where the function g(+) maps P(8) into X.
Define (R, 4 , B) - (8, I, B) X @, F, p). Any policy, x, then

generates a sequence of random variables {(xt(w), yt(u), pt(w)):_l on ({03, F , P

as described above, using (2.1) and (2.2). See Kiefer and Nyarko (1987) for
technical details.

For any n=1,2,..., let :l] be the sub-field of J , generated by the
random variables (h , x ). Notice that x is 5 -measurable but y, ad p_

o

are not J - measurable. Next define 7 =V .
n w n=0" n

Let u:X x Rl -+ Rl be the utility function, so u(xt, yt) is the utility to

the agent when action x, is chosen at date t and the observation Y. 1s made.
The reward function r:X x P(8) - Rl, is defined by

t(xme_y) = Selpuix,, yopdde [€)n _, (d8) (2.3)

The inner integration marginalizes with respect to ¢, given the parameter ¢, the
outer integration is with respect to parameters. Assume that the reward function is
uniformly bounded, continuously, and concave in x for given u. Note that this
assumption restricts g(-,«), U(+,+) and p(-|-).

Let & in {0,1) be the discount factor. Any policy =« generates a sum of

expected discounted rewards equal to

Vo (ug) = J 2 65 e(x (0), m_ | (@))P(dw) (2.4)
t=1

*
where the (xt, yt) processes are those obtained using the policy =x. A policy =

is said to be an optimal policy if for all policies = and all priors Hg in
*
in P(8), V *(po) >V (po). Even though the optimal policy, = (when it exists)
x

may not be unique, the value function V(po) -V *(po) is always well-defined.
x

3. Existence of a Stationa Optimal Polic

Straightforward dynamic programming arguments can be used to show that station

ary optimal policies exist and the value function is continuous.

Theorem 3.1: A stationary optimal policy g:P(8) - X exists. The value
function, V, is continuous on P(8), and the following functional equation
holds:
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V() = max {r(x, p) + §[V(@)p(dc|&)u(dd)} (3.1)

where 4 = I'(x, ¥, #) and ¥y = g(x, B) + ¢, and where the integral is taken over

Rl N

Proof: Let S = {f:P(8) - R l f 1is continuous and bounded}.

Define T:S =+ S by

Tw(p) = max (r(x,s) + §JV(u)p(dc|dIu(as)) (3.2)
xe

One can easily show that for weS, TweS; and that T is a contraction mapping.
Hence there exists a v¢S such that wv=Tv. Replacing w with v in (3.2) then
results in (3.1); and since wveS, v is continuous. Finally, it is immediate that
the solution to the maximization exercise in (3.2) (replacing w with v) results
in a stationary optimal policy function (see Blackwell (1965) or Maitra (1968) for
the details of the above arguments).

4, Convergence of the Process (yt).

In this section we prove that the posterior process converges for P-a.e w in
1, to a well-defined probability measure (with the convergence taking place in a
weak topology).

Note that for any Borel subset, D, of the parameter space ©, if we suppress
the @'s and let, for some fixed o, yt(D) represent the mass that measure yt(w)

assigns to the set D, then

B (D) = E[l(hmljtl (4.1)
Define a measure b, on © by setting, for each Borel set D in 8,
10 = E[1, o] T (4.2)

The measure B is the limiting posterior distribution and is indeed a well-defined
probability measure,

4,.1. The posterior process {u_)} converges, for P-a.e. w in 1,
P P t B

in the weak topology, to the probability measure By

o roof: Use (4.1) above to show that for any Borel set D in @,

yt(D) is a Martingale measure, establish that the sequence of probability
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measures, ut(m), for fixed w, 1s tight using the assumption that the first
moment of p_ is finite, then apply Prohorov’'s Theorem (e.g., Billingsley

(1968, Theorem 6.1)) to deduce that B, is a probability measure.

Note that this result on convergence of beliefs is quite different from the
standard consistency result looked for in econometrics. The Martingale Convergence

Theorem allows us to establish convergence, but the limit measure #, 1is a random

variable, in the sense that it depends on the particular sequence of shocks real-
ized. In a standard estimation problem, the limit result is that beliefs converge
and the limit belief is independent of sample paths, and the limit belief is correct

in the sense that u  assigns point mass to the true parameter value. Standard

results do not hold here because along any sample path for which beliefs converge,

the sequence of actions (xt) may also be converging. But if actions converge too

rapidly, they may not generate enough information to identify all the unknown
parameters. One can construct examples in related problems in which this phenomenon

occurs (see e.g., Kiefer (1988)).

5. Optimization and Limit Beliefs and Actions

In Theorem 4.1, convergence of beliefs was established for an arbitrary (xt)

sequence (i.e., without taking into account the underlying maximization problem).

In this section we ask what action (or actions) X corresponds to the limiting
beliefs B

Theorem 5.1 establishes that the limit action is the action which maximizes

single period reward for limit beliefs.

Theorem 5.1: The limit action x = lim x exists, is unique for given u)

te0

and maximizes the one-period reward, r(x,un), for limit beliefs M.

Proof of Theorem 5.1: Recall from Theorem 4.1 that 1lim By = By exists for
to

all sample paths. The sequence (xt) and (ut) satisfies for each ¢t

(simultaneously, a.e.) the functional equation

Vi) = r(x ) + JV(T(x .y 8 ))P(de]E)p (0). (5.1)

Taking limits along any convergent subsequence gives
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V(s ) = x(%,n.) + 8JV(T(x,y,8_))p(dc|€)p_(a0)

wvhere x 1is a limit point of the (xt) sequence. (In taking the limits one uses
the fact that V is bounded and the integral in (5.1) is E[V(yt)lfyt_ll to apply

Chung (1974, Theorem 9.4.8).) However, from convergence of beliefs (i,y) yields
no information so P(i,y,yu) - p_, and (5.1) becomes V(uo) - r(i,yu) + 5V<"w)-

Now we show that X solves the problem

max r(x.#c) (5.2)
xeX

Suppose on the contrary that there is an Qci such that r(Q,y ) > r(i,y ). Then
by the functional equation

Va) 2 r) + SIVCR.G, 8 ))p(dc]8)p_(d0). (5.3)

But by Blackwell’s Theorem (see e.g., Kihlstrom (1984, Lemma 1, p. 18)), since the

experiment “observe (Q.?)" is trivially sufficient for the experiment "make no

observations," we obtain,

[y u ) e(de|d)u (d0) > Vip ) (5.4)

Hence, from (5.3) and (5.4) V(s ) > r(x,u ) + §V(u ), which is a contradiction.
So x solves problem (5.2); that is, x maximizes the one-period reward r(x,p)
for limit beliefs, p . Since r(-,yw) is strictly concave in X, x must be

unique.

6. Conclusjon
We have considered the decision problem facing an agent controlling a nonlinear

regression process when parameters in the mean function and in the error distribu-
tion are unknown. The agent faces a tradeoff between accumulating information by
varying the values of the regressors and accumulating one-period reward by following
the one-period expected reward maximizing policy. We show that the problem can be
brought into the dynamic programming framework and that the value function satisfies
the usual functional equation. The sequence of beliefs about the unknown parameters
is shown to converge almost surely. Further, the optimal action process converges

to the one-period optimal action under limit beliefs.
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A THREE-MIRROR PROBLEM ON DYNAMIC PROGRAMMING
Seiichi Iwamoto
Department of Economic Engineering

Faculty of Economics
Kyushu University 27, Fukuoka 812, Japan

1. INTRODUCTION

The essence of dynamic programming states that a simultaneous
optimization of real-valued two-variable functions is assured by the
two~stage optimization under both separability and monotonicity bs,

16]. We call these two properties the recusiveness with monotoni-

city — dynamic programming structure [8, 11]. This struc-

ture yields what we call dynamic programmable function [11].

In this paper we focus our attention on both dynamic program-
ming structure and quasililearization for a class of objective fun-
ctions. Given a differentiable strictly increasing convex function

1———» R1, we approximate f(x) by its linear approximation £ (x;h)

1, which is strictly increasing in h for x ¢ R1. Thus,

f : R

1.1

R ¥R =+ R

f(x) is a quasilinearization of f(x;h). The N-times composition of

f(xn;-) generates a dynamic programmable function F(x;h) : RNXR1 —_—

- R1. Similarly, inverse function f_1(y), reverse function f_1(x;k)

which is the inverse function of f(x;h) with respect to h for fixed
*

x, and conjugate function f (y) also generate dynamic programmable

1 e R1, respect-

functions F-1(y;k), F_1(x;k), and F*(y;h) : RVxR
tively. Thus, the function f yields four — main, inverse, reverse,
and conjugate —— optimization problems on RN. These problems are

solved through dynamic programming approach. Some relations between

them are established. Finally we illustrate two interesting examples

from Bellman {1].
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2. PROBLEMS

First of all let us consider the following famous problem [1,
p. 102; 8, p.101; 10, p.18):

X1 x1+x2 X1+...+X

Max e " (1— x1) + e N

(1 - x2)+ st € (1 —- xN)

s.t. -w < X < 1 £nzsN

where h is a real constant. We remark that the N-times iteration of

£(x;h) = (1 — x + h)

yields the objective function

f(x1;f(x2;...;f(xN;h)...))

X

X x X x
= e 1(1 - xl) + e 1[§ 2(1 - xz) + e

2[ .+ e ¥
X[exNH —xy) ¢ exNXh] ]]

(See also [11, p.278; 12, p.285]).

Second we consider the following maximization problem:
2 2 2 2 2
Max (1—2x1 )exp(x1 ) + 2x1(1—2x2 )exp(x1 +x2 ) + 4x1x2
2 2 2 2 2
X(1—2x3 )exp(x1 X, TR, ) + 8x1x2x3(1—2x3 )
Xexp(x12+x22+x32)h

s.t. x1

20, x220, x,20

3

where h 2 0. The three-times iteration of
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2

£(x;h) = (1 — 2%x2 + 2xh)exp(x?)

generates
f(x1;f(x2;f(x3:h)))
= (1-2x,%)exp (x, %) + 2% exp (x,%) [0-2x,%) exp (x,7) + 2w exp (x,7)x
U1—2x32)exp(x32) + 2x3exp(x32)hﬂ].

These two functions are called recursive functions on RN(resp.

Ri) with striet increasingnese ({10, 11]). A function F : RNxR1-——

1 N

- R' 1is called dynamie programmable function on R  1if it is expressed

as follows
F(xX)r%y0000sXyih)

= f1(x1;f2(x1,x2;...;fN(x1,x2,...,xN;h)...))

where fn: RPxR! — R! and fn(x1,x2,...,xn; °): R1 —_— R1 is non-
decreasing for 1 s n 5 N, (x1,x2,...,xn) e R®. Therefore, any re-
cursive function with strict increasingness is a dynamic programmable
function. In the following we are mainly concerned with a class of

recusive functions on X(C.RN) with strict increasingness.

3. MAIN RESULT

First, we prepare the following fundamental lemma. Let X and
Y be two nonempty sets. For each x € X let Y(x) be a nonempty
subset of Y, That is, Y(*) : X ——> 2Y is a point-to-set-valued
mapping, where 2Y denotes the set of all nonempty subsets of Y.

Let

G (¥) = {(x,y)| y & Y(x), x € X} € Xx¥
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be the graph of the mapping Y¥(.). 1In the following it will be clear
from the context whether a notation Y 1is considered the set or the

mapping.

1 1

LEMMA 1 (Maximax Theorem [11; p.268]) Let f : XXR —> R’ be

a function such that £(x;-) s R1 —_ R1

1

is nondecreasing for x ¢

X. Let g : Gr(Y) —> R be a function. If Max f(x; Max g(x,y))

xeX yeY (x)
exists, then Max fix; g{x,y)) exists and both are equal:
{x,y)eG (Y}
Max f(x; Max g{x,y)) = Max fix: g(x,y)).

xeX yeY (x) (x,y)sGr(Y)

REMARK This equality remains valid even if the operator Max
is replaced by the operator min under the same condition as stated

above. Furthermore, as a special case we have

Max f(x; Max g(y)) = Max f(x: g(y)).
—mx <™ —ocy <o —-0<x,y <o
In general we have for v
any differentiable convex contex §

function £ : R! —> R!

f(h) = Max f(x;h) (1)

- <m

where

f(x;h) F(x) + £7(x)h

(2)

F(x) = £(x) — xf~(x).

Thus, £(x;h} 1is the linear approximation of flxz) at h:
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f{x:;h) = £(x) + (h — x)£"(x). (3}
The expression (1) is called a quasilirearization of f(x) ([]; p.135

i 13; 14)).

Furthermore, from Lemma 1, we obtain under f£f”(x) 2 0, =» < x

< @«
f(f(h)} = Max f(x1; Max f(xz; h}})
—wix, <o ~0<X., <®
1 2
(4)
= Max f(x1; f(xz;h)).
-°°<X1 ,x2<m
that is
£(£(h)) = Max [Fix;) + £7(x,) (Max [Fix,) + £ (x,)n])]
-l <® - <o
1 2
{5)
= Max [F(xT) + £7(x,)F(x,) + f’(x1)f‘(x2)h]-

1772

DEFINITION Let £ : R1 —_ R1 be a differentiable increas-

ing (resp. strictly increasing) convex function. Then we define F

N .1 1

: R xR" —» R by

F(x;h) f(x

1 f(xz; e f(xN;h)...))

]

F(x1) + f‘(x1)F(x2) oo+ f’(x1)f’(x2)...f’(xN_1)

XF(xy) + £ (60 €7 (x,) .. £ (x)h (6)

where f(x;h) and F(x) are defined in (2), and x = (x1,x
1

PIRERY

X The function F : R'xR' — R' is the recursive function with

N)l

inereasingnees (resp. striet inereasingness) generated by f or simply
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dynamic programmable function generated by f,

In the following, it will be clear from the context a function
f {resp. F) 1is considered £{x) or f£f{x;h) (resp. F{x) or

F(x;h)).

REMARK The equalities (1) and (4) (or (5)) remain valid
if we replace 'Max'-and 'convex' with 'min' and ‘'concave', respec-
tively. Similarly, a differentiable increasing (resp. strictly

increasing) concave function g : R1 —_— R1 generates the recursive

funetion G : RVxR' —_— R1 with increasingness (resp. strict
inereasingness), which is also called dynamie programmable function

generated by g:

Gly:k) = g(y.l; glyyi eeei g(yN;k)...))

Gly,) + g (y )Gly,) + ... + g7 (y)g7(yy) . e ag vy )
"G(YN) + g‘(y1)g’(y2)...g‘(yN)k (7)
where

Y = (Y-IIYZI--vIYN)I

gly:k) = gly} + (k — ylg~({y)

(8)

Gly) + g7 (y)k,

Gly) = gly) — yg~(y).

Therefore we have the following main result:
THEOREM 1. (i) Let f£f: R1 —_— R1 be a differentiable increas-

ing convex function. Then for h e R1
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£(h) = Max, F(x;h) (9)
XER
* . * [ ®x *
and x; = £ (h), x; = £ 2(h), ..., %y, = £(h), xy = h attains

the maximum, here and in the following f“(h) is the n~times com—

position of f(x):

%) = £(£(ua.f(X)eul))e

1 1

(ii) Let g : R —— R be a differentiable increasing con-

cave function. Then for k € R1

g" (k) = ming Gly:k) (10)
YeR

and 9, = d" ), §, = P00, Ll 9y, = 9k), §y = k attains

the minimum.

4, INVERSION, REVERSION AND CONJUGATION

First we consider the inverse function f-1 to a continuous

strictly increasing function f. We remark that £ : R1 —_— R1 is

an onto differentiable strictly increasing convex function iff f”1

1 1

t R — R is the onto differentiable strictly increasing concave

function. Then we have

1 1

COROLLARY (i) Let £ : R —» R be an onto differentiable

strictly increasing convex function. Then for k e R

£V ) = ming F ' (ysk) (1)
YER

ana §, = £, 9, = 200, L, F, = £k, By, = ko ate-

ains the minimum, where F-1(y;k) is the dynamic programmable fun-
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ction generated by f-1 and f—n(y) is the n-time composition of

f—1:

£y) = £

1 e R1 be an onto differentiable strictly

1

(11) Let g : R

increasing concave function. Then for h e R

-N i -1,..
g (h) = MaxN G ' (x;h) (12)
XER
* ~N+1 * -~N+ * - *
and x1 =g + (h}, Xy, = g 2(h), ooy xN_1 =g 1(h), Xy = h att-

ains the maximum, where G-1(x;h) is the dynamic programmable fun-

ction generated by 9-1.

Here we remark that

F ol (yik) = F-1(y1) + f_1‘(y1)F-1(y2) oot f—1’(y1)f_1’(y2)

Tyg) e £ iy k

(13)

oo £ Ty VF lyy) ¢ £y ) E
where

Fliy) = £ (y) — ye T (y) (14)

1.

and £ is the derivative of the inverse function £ |. Similarly,

6 (x;h) is defined and omitted.

Second we consider the reversion of the linear approximation

f(x;h) of £(x) not the reversion of f(x) itself

as

follows. For any onto differentiable strictly increasing convex

1 1

—>» R, its linear approximation £ : R1><R1 ——--w-R1

function f : R
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defined by (2) or (3) is continuous strictly increasing and linear

in h for x ¢ R1. Therefore, f{x;-) : R1 —_— R1

x € R'. Its inverse function f_1(x;-) : R1 B R1 becomes

is invertible for

_ k
f_,' (x;k) = F_1 (x) -+ f,—(xT

(18) o~k
where y

- x = Eix)
F_(x) = x = w=ry- (16) - 3= | _k

‘fxa) * f?!.)

\~

We call f£_, = f_1 (x;k)

1
the reverse function of
f = f{x;h). As we noted

in (1), we have

e
f(h) = Max f(x;h)
- XD

= Max (F(x) + £ (x)h] (17

_m< Y <o

= Max {f(x) + (h = x)£7{x)]

—0 K <O

*
and x = h attains the maximum. This fact is equivalently trans-

formed to

£(k) = min £ (x;K)

—00 ¥ <o

smin [P (x) + gy (18)

—®< x<o
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k — f(x)
= min [x + = ]
—r<x <o £ (x)

and x = £ '(k) attains the minimum (see ¥ig.2). This fact ref-
lects also the main idear of Newton method from a viewpoint of opti-

mization, Therefore, we have the following reversed form of (9):

1 1

be an onto differentiable
1

THEOREM 2, (i) Let £ : R' —» R

strictly increasing convex function. Then for k & R

£V(k) = ming F_, (x;K) (19)
X€eR
s _ ¢N A _ ~N+1 a - £2 2 = g1
and %, = f "(k), X5 = £ (k) vonr Xy £k, Xy = £ (k)
attains the minimum, where F_, : R'r' — R! is the N-times com-
position of f_’(x;k):
F_1(x;k) = f_1(x1; f_1(x2; R f_1(xN;k)...)). (20)

(ii) Let g : R1———0R1 be an onto differentiable strictly

increasing concave function., Then for h ¢ R1

g™N(h) = Maxy G_, (yih) (21)
YER

* -N * -N+ * -2 * -1
and y; =g N (h), y, =g V' (h), weus Yyq =9 2(B), yy = 9 (h)
1 1

attains the maximum, where G_1 : RNXR — R is the N-times com-
position of g_,(y:h):
G'1(y;h) = 9_1(y1; g qlygs «oei g_1(xN;h)...)). (22)

Hlere we remark that
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F_y(xp) Foilxy)
Fobk) = Fq b)) * gy * o Y Tl £ (g0 oo (i)

k

+ ——— = =
f (x1)f (x2)...f (xN)

{23)

where F_1(x) is defined in (16). Similarly, G_I(y;h) is de-
fined from G_1(yn), g‘(yn) and h. We call F_I(x:k), G_1(y;h)
the dynamic programmable function generated by reverse function
f_lfx;k), g_I(y;h)), respectively.

We have the following relation between F-1(y;k) and F_1

(x;h):
THEOREM 3. (i) Let f : R1 —_ R1 be an onto differentiable

strictly increasing convex function. Then we have by the monotone

transformation y = f(x)
£ yix) = £, (k). (24)
Furthemore, the monotone transfomation Y, = f(xn) 1 §$n &N yields

F ol yik) = F_j (x:k). (25)

(ii) Let g : R1 —_— R1 be an onto differentiable strictly

increasing concave function. Then we have by the monotone trans-

formation x = gl(y)
g7 xsh) = g_y (ysh). (26)

Furthermore, the monotone transformation xn = g(yn) 1 snsN

yields
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6T (xsh) = G_, (yih). (27)

Proof. 1t is straightforward.

Finally we consider conjugations * and ~ . For any convex

function £ : R1 — R1 1

———>R1

*
, we define its conjugate function £ : R

£ ) = swp [xy - £00)]. {28)
—o < X <o

1

On the other hand, for any concave function g : R° — R1 , we

1

denote its conjugate function G : R! — R by

§(x) = inf fyx - g(y)]. {29)
—Ly<®
If both operations * and ~ are well defined, they are dual

in the following sense:

CE) ty) = -£*(-y) y e R'.

1 1

LEMMA 2, Let £ : R' — R be a twice differentiable strictly
increasing strictly convex function. Then we have for f7{-=) <y

< £7 (=)

(1) f*(y) = xy — £{(x)

(11) £*°(y) x and in particular f£*“(y) > 0 for £7(0)<y<f” (x)

and

(1ii) £*"(y) =

where x satisfies uniquely £%x) = y. Therefore, f£* : (£7(0),
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1

£f°(w)) —> R is strictly increasing strictly convex. Thus we

*
have the following result for £ :

THEOREM 4. Let f : R1 _—> R1 be a twice differentiable

strictly increasing strictly convex function. Then we have for

*n
£°(0) < £ "(h) < £7°(») O £ n £ N~

*N

£ N = F (y;h) (30)

Max
f‘(0)<yn<f‘(m) 1in:N

* *N_‘I * *N_z O * *
and yy = £ N Wy, ) = W2y, Ly = £ ), vy = b
*
attains the maximum, where F (y;h) is the dynamic programmable
function generated by f* and f*n is the n~-time composition of

*

f.

Similarly, for concave function g, we have the following:

1 1

LEMMA 3., Let g : R — R be a twice differentiable st-
rictly increasing strictly concave function, Then we have for

g (=) < x < g”(-=)

(1) G(x) = yx — gly)

"

(ii) §°(x) = y and in particular §-(x) > 0 for g~ (w)<x<g~(0)

and

An

(iii) g

() = gy < 0

where vy satisfies uniquely gy} = x. Therefore, § : (g”(=),g”(0))

-_— R1 is strictly increasing strictly concave.

THEOREM 5. Let g : R' —> R' be a twice differentiable
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strictly increasing strictly concave function. Then we have for

g (») < g™(k) < g"(0) 0 2 n s N-1

Nk = min G(x;k) (31)
g‘(w)<xn<g‘(0) 1$nsN

~ _ N-1 ~ _ _N-2 o ~ s ,
and X, =49 (k), X, = g k), «cus Xgoq = g(k), Xy = k attains
the minimum, where S(x;k) is the dynamic programmable function

generated by § and an is the n-times composition of g.

Here we remark that

F (ysh) = Fily,) + £ 7y )F (y,) + oo+ £y D " (y,) .0

* * *_ *_ *
€ (yy ) F (yg) + £y E T yy) o E T (yg)h
(32)
where
F'iy) = £7(y) — y£*" (y)

(33)
= - f(x).

Here x satisfies uniguely f7{x) = y. Similar expressions for

B(x;k) and &(x) are omitted.

5. EXAMPLES

In this section we illustrate explicit form of f£(x;h), F(x;h)

, F N yik), £_,(xik), F_(xik), F' (y:k) and others for a given f(x).

5.1 f(x) =€ : (-, @) —s (0, )

In this case we have the following expressions. First we

have from (2}, (6)
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f(x;h) (1 —x +hle® - <x,h<w

X X, +x KiteootX
e (1 - xy) + e L (1 =x) + ... +e L N-1

F(x;h)

Xoteoo *X

x{1 — xN) + e 1

Noh - < xn,h < ™,

Second, for inversion, we have from (13), (14)

gly) & £ '(y) = logy : (0, ®) —> (==, =) (34)
_ -1 _ k

glytk) = £ (y:k) = =1 + logy + v 0 <y,k <

Glysk) = F ' {y;k) = =1 + logy, + (y;)" (=1 + logy,)

1

_1 -
t oy eeeyyoq) (51 2 logyy) 4o lyg..eyy) K

yn>°l k» 0
where k » 0 means that k 1is sufficiently large that log...logk
(N-times log operation) becomes well defined. That 1is, in this case,

e
k > e® ((N-1)'s e).

Third, for reversion, we have from (15), (16),(20)

x~1+e %k - <x < =, k>0

£_, (xik)

~X, =Xy eTXKyg

F_, (x;k) -1 +e (x, = 1) + ... +e (xgoq—1)

|
L]
-

_m<xn<oo,k»0_
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Moreover, the reversion of g = gly) defined in (34) becomes

g., (x;h)

G

y(1 = logy) +yh y >0, =0 <h<ao

_1(x;h) y1(1 - 1ogy1) + y1y2(1 - 1ogy2) LIEEEER IS PRERS /¥
x{1 - logyN) + y1...yNh Y, > 0, == <h < =,

Fourth, for conjugation, we have from (28), (29), (32), (33)

£ (y) = (=1 + logyly : (0, ®) —> [~1, «)

*
£f “(y)

logy > 0 on (1, =)

ft.n(y) = 1/Y > 0

*
£ (y;k)

-y + kXlogy y>1, k>1

*
F (y;k) = -y, — yylogy, = ... = yylogy,...logyy .

+ kXIogy1...1ogyN Yn >1, k> e2
g(x) =1 + logx : (0, ©) —>» (-, «)
§(x;h) = logx + x 'h 0 < x,h < o
G(x;h) = logx, + (x1)-1logx2 teea * (x1...¥N_1)—1long
+ (x1...xN)_1h x >0, h»0

where

h» 0 1in this case means that

1+t
-1+e’
h > e 1te (N's e).
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Finally, for reversion of gl(y;k), we have

6_1(x;k) = -xlogx + xk x>0, -o»<k<e

G_l(x;k) = -x1logx1 - x.lleogx2 - eae — x1...leong

+ x1...xNk X >0, -= < k < o,

5.2 f(x) = x2 fo, » — [0, =)

In this case we have the following result. First, we get

2

f(x;h) -x“ + 2xh x,h 2 0

2 2 N-1 2
X - 2x1x2 - ee. =2 g e Xy 4%y

F(x;h)

N
+ 2 x1...xNh X, 2 0, h 2 0.

In particular Theorem 1 for case N = 1 implies

Max [2xh - x2] = h ~» < h < ®,

-0 Lo

This is one of the simplest guasilinearization [1; p.134].

Second, the inversion becomes

gly) 2 £ (y) = /¥ : (0, ») —> (0, =)

glyik) = £ N (ysk) = 2(y +/§) yik > 0

Y

Glyik) = F ' (y:k)

1 1 1 12
sy )V o+ 2—2(3(2/3(1)’/2 e b ORI/

k_ -4
+ 2N(y1---yN) Y, > 0 k > 0.
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Therefore, Corollary (ii) for case N = 1 reduces

min [%/; v _l_] = /K k>0
x>0 2/x

(see also [1; p.134]).

Third, for reversion, we have

k) = L k
f_1(x.k) = 2(x + x) x,k >0
F_.(x:;k) = 1z, + Loix /x,) + + Lix /x Xy _q)
-1 271 22 27 e 2N N 71°°*"N-1
k -1
+ ;ﬁ(x1...xN) x, >0, k> 0.
Finally, the conjugation yields
*
£ (y) = %yz : [0, @) — [0, o)
*
£ (yik) = - gy + dyk yk =0
Fiiy;k) = -~ &2 -1, 2 _ I
i ¥y T VY2 T o T OUONETY YN Y
+ l—y Yok y =0 k20
oN 1°°°In n !
§(x) = -zt (@, @ —> (==, 0)
g(X)=-1Tx+—h—2- x,h > 0.
4x

Therefore we get

g(x) = min  §(x;h) .
0<x<»

However if N 2 2 , then it does not hold that
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g¢%(h) = min  G(x;h) h > 0,
0<xn<w

because of §(h) < 0.
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MODELISATION ET COMMANDE DES SYSTEMES BIOLOGIQUES ET DES ECOSYSTEMES

MODELS AND CONTROL POLICIES FOR BIOLOGICAL SYSTEMS AND ECOSYSTEMS






CONTROL THEORY AND BIOLOGICAL REGULATIONS:
BIPOLAR CONTROLS

Daniel CLAUDE

Laboratoire des Signaux et Systémes,
CN.R.S.- ESE,
Plateau du Moulon, 91190 Gif-sur-Yvette, France.

Abstract : In memory of Richard Bellman, we present bipolar controls in biology. From its therapeutic
application in the field of cerebral tumors and cancerology alone, Richard Bellman would have certainly
been in favour of this methodology which links control theory to biological regulation. We show all its
richness in opening other prospects that entirely justify the link between mathematics and medicine which
interested him so much.

I. INTRODUCTION

For several decades, numerous research workers have thought of making a link between
Mathematics and Medicine (cf. recent books by Winfree [26] and Swan {25)), particularly in attempts in the
modelization of certain biological phenomena and, for example, in cancerology, in the search for medicinal
procedures (chemotherapy) or the placing of protocols of emission of specific active particles
(radiotherapy). In this way they wished to combine mathematical theory with medical practice. Control
theory, applied to some biological regulations, answers this demand and this hope.

In biology, numerous regulations demand many factors with coupled actions. This is the case in
the regulation of cellular hydration or the control of the mitosis in which corticoids and vasopressin act
respectively, just as insulin and glucagon regulate glycemic activity. The failure, in some pathologies, of
therapies which give only one hormone results in the fact that the reaction of the other hormone, caused by a
subtle game of crossed feedbacks, has been neglected. Moreover, biology is a strongly nonlinear field
where the principle of superposition of actions does not work.

Every measurable therapeutic action should thus go through a multivariable nonlinear modelization
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complete enough to take care of the preponderant aspects of the phenomena studied, and simple enough to
be able reasonably to control those systems and deduce therapeutical actions. Because of couplings, the
solutions proposed, in character falsely paradoxical, can surprise, disturb, and even arouse hostility.
Nevertheless, clinical results authenticated by radiography and C.T. scans exist, and it is hoped that the two
examples we will treat convince the reader of the necessity for rapid improvement in the field of bipolar
therapy, in which Bernard-Weil is a pioneer.

II. THE ADRENAL-POSTPITUITARY SYSTEM AND VASOPRESSINO-
CORTICOTHERAPY

Within the framework of the application of control theory to cancer chemotherapy, Sundareshan
and Fundakowski [24] pose questions on the dual character of the object of therapies and try to find agents
which are able to destroy malignant cells while protecting healthy cells. In fact, at the heart of the organism
exists an important system which ensures the regulation of cellular growth both in cell division and in cell
hydration. This is the adrenal-postpituitary hormonal system.

The adrenal-postpituitary system, which is formed on the one hand by the corticoadrenal glands
and on the other hand by the neuropostpituitary gland, plays a leading part in clinical manifestations seen in
neurosurgical patients. This system is responsible for certain cerebral oedemas, figures in some cases of
cerebral collapse, thus endangering the possible continuation of operations for subdural haemotoma, and
intervenes in the evolution of malignant cerebral tumours.

The recognition of the coupling between these two glands dates from the 30s (cf. [23]), and the
system, which has agonistic-antagonistic actions {cf. [4, 6, 7}), ensures regulations of major importance.
Thus cortisone, secreted by the corticoadrenal glands, is a2 marvellous agent, not only against the
hyperhydration of cells, but also as an antimitogenic agent. This has been proved in vitro both in the case
of malignant cerebral tumours in culture and in the case of any other cancerous cell cultures. As for
vasopressin, secreted by the neuropostpituitary gland, it is responsible for the reabsorption of water by the
renal tube and is an important growth factor. This first polypeptide growth factor was discovered in 1968
by Bernard-Weil, Dalage, Olivier and Piette [9] and their result has been subsequently taken up by the
American authors, Rozengurt et al, [20] in 1979, and Monaco et al. [18] in 1982. We refer to Pawlikowski
[19] for a recent evocation of the mitrogenic influence of neuropeptides. The imbalance between corticoids
and vasopressin, with an excess of vasopressin promoting tumoral growth, has been measured again
recently in the cancerology of the digestive system (cf. [11]), but it has been ascertained in many other
cases. Because of coupling between these hormones, some cerebral oedemas are resistant to cortisone, and
cancerous tumours are only really influenced by corticoids for a short space of time and by very high doses
of these hormones. Worse still, the diseased system takes a position of “pathological homeostasis” (cf.
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Bemard-Weil [4]) and this controlled imbalance benefits from potent biological safeguards which tend to
maintain it as if it were in a state of "normal” physiological functioning.

In this way the vasopressin-corticoid imbalance is preserved in cancer patients with the
administering of corticoids having the effect of increasing the ratio of vasopressin, which is already
abnormally high (cf. [3]). The solution thus consists of considering the simultaneous administering of
vasopressin and corticoids (cf. [S]), a multivariable nonlinear model supporting the first intuitions of the
physician (cf. [4, 6, 7]).

This model is made up of a nonlinear differential system with two inputs, e, and e,, two
disturbances, p and g, and two outputs, z; and z,. It can be written in the following way {cf. (15]):

R = [k; (u+p)i + c,(v+q)i] + ¢,
1

* 3 . o . .
V= Z [k; (u+p)i + c,(v+q)] +e,

X=e @1

with ® = x+X; ¥ = y+Y, where x is an endogenous secretion of the adrenocortical hormones, y an
endogenous secretion of vasopressin, and X and Y the same type of hormones as x, y, but exogenous
(therapeutic).

The right-hand side of the first two equations are the development in a series in function of the
antagonistic expression u = #-¥ and the agonistic expression v = m Log[1+ (H+Y — m)/m] + 6(1), with
6(t) = A + B sin(wt) + C cos(wt), where the constants A, B, C and w (@ = 2r / 24 in the case of the
circadian rhythm) bring about the synchronizer 0(t) linked to biological rhythms. The introduction of the
cubic power is justified by the conditions of stability of the system (cf. [4]); p(t) represents a possible
osmotic stimulus; g(t) corresponds to an eventual volemic stimulus (haemorrhage, for instance) or stress;
k; ¢, lg c; (i =1,2,3) are constant parameters; m is a generally constant parameter (m = 0.8) but can also

be regarded as a time-variable parameter. Thus when q has positive values through a sharp increase in
volemia, for instance, and in such a way that x and y become negative, the possibility is forseen to leave the
value 0.8 at m during the necessary transient period.

The system is written in a system of common unit {c.u.) such that 0.4 c.u. =77 ng/ml of plasmatic
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cortisol (F) = 1.1 pU/ml of plasmatic vasopressin (YP), values which comespond to the mean experimental
values of circadian rhythms of these hormones. The values x, y, X, Y can be compared to hormonal
concentrations and are thus liable to constraints of positivity. In the physiological case (X=0,Y=0;p=
0, ¢ = 0), the equilibration is simulated with a parametric field of (2.1) giving a limit cycle such that the pair
(u, v) admits the origin (0, 0) as a critical point. The equilibration (X =0, Y = ()) becomes pathological if an
alteration of the field (2.1) allows a new limit cycle to appear.

The parameters k;, c;, k;, c; (i =1, 2, 3) for the system simulating the pathology, and k;, ¢, kI cl

for the system simulating the physiological cycle, are identified from clinical and physiological data, by
means of the Davidon-Fletcher-Powell method of numerical integration with constraints (cf. [1] ). The
criterion to minimize, J(k;, ¢, k;, ¢, T), is given by:

J Gk D=2 [(%5-%)% + (3-¥))] (22)
]

where x ety designate experimental values and x and y the solutions of system (2.1) with X =0,Y =0,
p =0, q =0. The quantity T corresponds to three cycles, here equal to 72 hours.

In the pathological case, the “therapeutical simulation” consists of determining exogenous
P g P! g g

hormones X et Y so as to bring the system back to a physiological situation. One method (cf. [6, 7])
consists of writing the inputs e, and e, in a form similar to that of the endogenous hormones, i.e.:

3 3
el=§' [k, (utpltcy, (v+q)i]+§ A (X -0
(23)

3 3 o
ez=§ [k.3+i (U+P)i+ c‘3+i (V+q)i]+§‘T li(x -a, )

with Ay, A5, A4, Ay, 3\.'2, Ay, a,, &, constant parameters with the role of avoiding the drift of the limit

cycle of dimension 4 which the four states of the system follows. The parameters of relations (2.3) are then
identified by means of the Davidon-Fleicher-Powell method.

Remark 1. For inputs e, and ¢,, the temptation to take the difference between the physiological state
equations and the pathological state equations leads to a control which could neither satisfy the conditions of
positivity of the variables x, y, X, Y, nor ¢nsure the existence of a limit cycle (cf. [6]).

A second method, based firstly (cf. [15]) on the decoupling and linearization of nonlinear systems
(cf. [12, 13, 14] and references therein), consists in fact of inversing the system (2.1}
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(cf. [16, 17)). From system ¢2.1), the following relations are then considered:

H=12(z+z+m)

V= l/2(-zl+z,2+m)
(24)
X=H-x
Y=Y-y
x et y being the solutions of differential equations:
3
=Z [k (z+pli+g (mLog(1+2zym)+6+q)']
i=1
(25)

Mu

[ (2 +p)i+c(mLog( 1+zym)+0+q)i)

]
—

It is a matter of allowing the outputs z; and 2z, of system (2.1) to pass from the pathological state, given by
differential equations:

l{[:

™M

[ (k-K) (W +p)+(c-¢)(v+q)]

]
oy

(2.6)

Mu

V=Y [+ (¥ +pl+(g+e)(v+q)])

-
"
—

with v =m Log ( 1+ y,/m) + A + B sin( ot ) + C cos( ot ) and & = 2r / 24, to the physiological balance
described by the differential equations obtained from experimental data:

Mu

[ (K- R')tpl+(c G vi]

-
—

i=

Q.7

o

I}
-

9, = I(Ei+R;)¢pil+(6i+é;)vi])

with v=m Log ( 1+ ¢/m ) + A + B sin( t ) + Ccos( @t ) and @ = 21t / 24. We write z, and z, in the form
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2 =8, +¢
(2.8)
=8,+¢,

The wish of the therapist is then to find functions 8, and 8, which first permit the definition of a

transient way leading initial pathological curves, depicted by x and y, towards physiological curves which
the variables # and ¥, sum of the actions of endogenous and exogenous hormones, should follow.
Secondly, after the transient period (two or three days), the therapist wishes, at one and the same time, to
see installed a permanent regime as close as possible to the physiological circadian rhythm for variables H
and Y, and to realize, for numerous reasons easy to guess, a periodic therapeutic action - depicted by X and
Y - of a period equal here to 24 hours.

Nevertheless, the immediate analysis of equations (2.5) shows that with pathological coefficients,
there is no reason that the insertion of physiological rhythms into these equations would lead to the
appearance of a limit cycle. On the contrary, as numeric solutions confirm, we note an affine drift of the
cycle and the demonstration of this phenomenon is evident.

Thus the only possibility, in a permanent regime, is to deform the physiological rhythm as little as
possible to ensure the periodicity of the therapy presented by X et Y, the functions 8, and 8, also being
periodic. This leads us to make an optimization under the following constraints: x 20,y 20,X 290,
Y = 0. Finally, we need to ensure that the limit cycle obtained is stable and that in addition the system is
structurally stable.

It should be observed that the use of optimization is judicious in comparison to the notion of mean
physiological rhythm which is used, and also in relation to the uncertainty brought about by modelization.
Thus the conditions of positivity of x, y, X, Y variables can be satisfied by the functions of &, and 8, and,
after a transient period, these functions should ensure the existence of a permanent cyclic regime founded on
the circadian rhythm, It is then a matter of finding a class of functions wide enough to include the solutions
sought. The 4-parametric family of functions given by

Ix«fl bd . .
f(x)=O TT 3% - coe (bt)cos(e)dt+c with d>0 (2.9)

is dense in the set of continuous functions on any compact interval of R and gives an idea of the minimal
number of necessary parameters. This class of functions is used by Boshernitzan [2] in the search for
unijversal differential equations (cf. [2, 22]).

Remark 2. System (2.8) always admits at least the mathematical solution 8, =y, = 9,, 8, =, ~¢,,
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but this solution can of course in no way be the therapeutical solution!
For the present, we envisage a nonlinear control in the following form:
- 3 o . 3 «
2,=3 [k, (zy+p)+c,, (mLlog(1+z/m)+8+q) 1+ A (z - )
i=1 i=1

(2.10)

h=

e

3
[, (z +p)+Cy,; (mLog (1+2/m)+0+q) ]+, A (z-« )
i=1

"
—

The parameters of equations (2.10) are then determined by the minimization of the gap between the
solutions of equations (2.7) and (2.10).

This second method is under study.

Remark 3. We may be uneasy about the impossibility of finding a therapeutic control capable of
restoring physiological rhythms, but we should not forget that in reality the parameters which cause the
behaviour of the system are variables. If they have gone from the physiological state to the pathological
situation, the therapist postulates in the case of reversibility that a forced maintaining of a rhythm close to
the physiological rhythm, during an adequate period, will allow the parameters to readjust onto the
physiological homeostasis.

HI. THE INSULIN-GLUCAGON COUPLING AND DIABETES

Glycemic activity can be considered as resulting from antagonistic action of glucagon which
increases glycemia and of insulin which reduces glycemia, these two hormones acting in a coupled way. In
relation to the adrenal-postpituitary system, this system presents a remarkable particularity from the
anatomical point of view. In the case of the response of glycemia, Nature has installed the control
mechanism in the same place - the islets of Langerhans - within the pancreas. In these cellular clusters is
found simultaneously the manufacture of insulin and glucagon under the coordinated effect of somatostatin.
With clinical results obtained by vasopressino-corticotherapy, it scemed interesting, considering the stakes
in diabetology, to propose a modelization of the insulin-glucagon systems from the bipolar point of view of
agonistic-antagonistic systems defined by Bernard-Weil.

The modelization proposed takes the form of a nonlincar differential system with three inputs e, e,
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and p, and three outputs, z,, z, ¢t z,, defined as follows (cf. [8]):

ft=

e

2 (R-V4p)fec(H+¥-m)]+e

]
—

w

v -2 [k;(H —?+p)i+c;(ll+ Y-m)]+e,

Y=e, (3.1)

G =g2,(Gy- G) + g5[g;[th(g,(B = ¥ + Y - X + g9)) + th(g,(X - Y + g)) - 2th(g,g5)] + p}

z;=H-Y
z=K+Y¥-m
2,=G

with B =x+ X, ¥ = y+Y, x and y the endogenous actions of glucagon and insulin respectively and X and
Y the actions of the exogenous hormones (therapeutic). G, = 0.78, indicates the physiological load of G(1)

glycemia and m = 2.1, A common unit is given by: :10 uU/ml of insulin = 100 pg/ml of glucagon.

In the case of the study of the oral glucose tolerance test, the input p(t) which is linked with the oral
absorption of 100g of glucose, is given by the function:

pt)=(p,/(p;-Py)).100.p; [ exp(- pt)-exp(-p;t)] (3.2)

In the same way as for the model of the adrenal-postpituitary system, the parameters of equations (3.1) and
(3.2) were identified by means of the Davidon-Fletcher-Powell method of nonlinear optimization from
experimental curves. The parameters defining the function p(t) were adjusted once only because the
conditions of intestinal absorption of glucose are less influenced by hormonal anomalies than other
processes of glucose metabolism. On the other hand, the parameters of equation (3.1) are to be identified in
both the physiological and the pathological cases. The search for control (therapeutic) which aims at
correcting the anomalies of glycemia in diabetics was obtained at first (cf.[8]) by taking the inputs e, and e,

in the form:
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3
e, =), [k (K- Y+pYec (Re¥-m)]
i=1
(3.3)
3
=2 [k (B-Y+p)ic, (B+¥-m)]
=

They allow the setting in place of an asymptotical control which tends to bring the pathological limit position
back to the physiological mean value of glycemia (1 g/1). The initial glucagon-insulin imbalance before the
dose in glucose, are, like the physiological balance, stable critical points of the physiological and
pathological models. We can also operate as for the adrenal-postpituitary system and consider the following
relations:

H=122(z,+z+m)

¥Y=12(-2,+z+m)

(34)
X=H-x
Y=Y-y
x and y being solutions of the differential equations:
. 3 . »
x=Y [k(z,+pl+c(z )]
i=1
(35)

3
y=2 [k(z+p)+c(z)]
i=1

Our concern here is to allow outputs z;, z, and z, of system (3.1) to pass from the pathological position:
z,(0);2,(0);G(0) (3.6)
to the asymptotical physiological balance:
z,=0;2,=0;G=1 (3.7)

The physiological balance should of course be attained before the next ingestion, that is to say, within a
period of about 5 hours.
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To determine the “therapy” - X, Y - to be applied to the “pathological” system (3.1) we can, for

example, use the same method given by formulas (2.10) and execute an optimization under constraints x 2
0,y20,X20,Y 20, by minimizing the gap between the three inputs z;, z, and z, of the controlled

“pathological” system (3.1) and the three outputs @, @, and @, of the "physiological" system ( 3.1 ) bound
to the inputs e, = 0, ¢, = O et p(t). This will be the object of our next study, but the simulations executed
with the inputs e, and e, in the form (3.3) (cf. [8]) already show that a better approximation of the glycemia
curve is obtained with the simultaneous intervention of two actions X et Y (insulin and glucagon) rather
than with the insulin action alone.

1V. CONCLUSION

We have presented, and illustrated with two examples, a new method of research which links
control theory to biology. This method, of which Bernard-Weil is the initiator, opens a vast field of
investigation and allows us, by way of an original modelization which is connected to Rosen's dynamical
metaphors [21], to 1ake into account the agonistic-antagonistic aspect occurring in many biological
regulations. This modelization, which is able to simulate both the pathology and the physiology, proposes
bipolar controls with therapeutical repercussions which are at times surprising. There is no question that the
specialist in control theory provide precise medical details, as he does not have the ability 10 do this, but he
can all the same indicate (as a number of medical publications (cf. [5, 10, 11]) have already done) that the
practice of bipolar therapy eniarges its field of application step by step. There is no doubt that at some future
date, which we should try to make as near as possible, this therapy will lead to the alleviation of suffering
of many human beings,
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COMPUTER MODELS APPLIED T 0

CANCER RESEARCH

Werner Diichting
Department of Electrical Engineering
University of Siegen
Hoélderlinstr. 3, D-5900 Siegen, West Germany

ABSTRACT: The aim of this contribution is to 1illustrate the
impact of computer simulation in the field of biology and medi-
cine. This paper shows how systems analysis, control theory and
computer sclence can stimulate new approaches to interpret can-
cer, to predict tumor growth and to optimize tumor treatment.

Starting with a review of the current biological knowledge about

the origin of cancer a computer model is constructed

- to simulate the time behaviour of disturbed cell growth control
circuits

- to predict spatial tumor growth (2-D, 3-D) and

- to simulate different kinds of cancer treatment (surgery, ra-
diation- and chemotherapy).

In the long run the aim of our work is to optimize treatment
strategies and schedules in vitro and in vivo by computer simula-
tion prior to clinical therapy.

1. BIOLOGICAL BACKGROUND OF THE CANCER PROBLEM

Cancer is a multistep process with the stages of initiation,
promotion and progression. Characteristic features of malignant
tumors (1) are uncontrolled proliferation, invasion in adjacent
normal tissue, metastases induced to other tissues via lymphatic
channels and the ability to evade immune surveillance. Though
cancer treatment is concentrated on a prevention of metastases
(2) the central question in the background of research is: Which
is the initiating event that is responsible for a stepwise trans-
formation of a normal cell into a tumor cell? Recent investiga-
tions in the field of molecular biology have focussed on dominant
cellular genes called "proto-oncogenes* which can be activated by
tumor viruses, gene amplification, gene translocation and genetic
mutation. In spite of this progress (3) the main question how
genes and the growth of normal and malignant cells are regulated
still remains open.
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Most of the normal tissues in the body contain some cells that
can renew themselves (neurons, liver cells, kidney cells) if a
tissue 1is injured. The division of a cell into tWwo new ones
involves four stages: Gt~ S —» G2 —» M (G1 is a gap after
stimulation; S 1is the phase of DNA replication; G2 is a second
gap period and M is the stage of mitosis). When the replacement
has been completed the repair process stops. Furthermore, at
particular stages of the cell cycle the cells may be blocked by
drugs or agents, or they may move out of the cell cycle into a
resting phase known as GO (4).

In contrast to the normal cell a tumor cell is theoretically able
to divide indefinitely. 1In addition a different morphology, lar-
ger nucleus, abnormal number of chromosomes and the formation of
new capillaries (tumor angiogenesis) which is associated with a
more rapidly growing tumor (5) can be noticed.

For studying the process of carcinogenesis tumors are induced to
animals or to cell cultures (in vitro). Cell cultures are not
only used to study the division of tumor cells, but also to
determine the effect of chemotherapeutic drugs. During the last
years a large progress has been made in experiments gaining hard
data about normal and abnormal cell-growth control processes for
instance of cell-cycle phase durations.

2. MODELING APPROACHES

Starting from basic biological test results a 1large body of
mathematically oriented work applying mathematics to the field of
biclogy and medicine has been published (6-10). Unfortunately
these models which consist of complicated formulae, are in most
cases not completely understood by clinicians. In this dilemma
the combined application of methods of systems analysis, control
theory, automata theory, computer sciences and heuristics is a
good 1ink between the diverging areas of medicine and mathema-
tics.
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our own approach developing closed-loop control circuits for
tumor growth started in 1968 (11). At that time the subject of
consideration was focussed on stability conditions and on the
interpretation of cancer as an unstable closed-loop control «c¢ir-
cuit. Step by step the dynamic behaviour of cell renewal control
loops (Fig. 1) was investigated. Blockoriented simulation lan-
guages have been used for simulating the macromodels. As a result
the number of cells as a function of time has been plotted (12).

Then oncologists advised us to consider not only the time but
also the spatial behaviour of tumor growth. 1In a first approach
we developed models at a cellular level which described the 2-D
behaviour of a normal cell inoculated into a nutrient medium (in
a Petri dish). Next we extended this approach and tried to simu-
late tumor growth in the tissue of a tobacco 1leaf (13).

D1 D2 D3 R
STEM CELL o PROLIFERATION -~ %’ﬁfﬁgﬂ'oﬁ‘m c
- PooL - PooL CELL REMOVAL -

CONTROLLER 2|« ‘'———CONTROLLER 3 =

E2 E1
CONTROLLER 1=

R: Required tissue oxygen (desired number of erythrocytes)
C: Number of red blood cells (erythrocytes)

E2: Production of the erythropoietin hormone

D1, D2, D3: Disturbance

Fig. 1: Multi-loop control circuit of erythropoiesis
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Fig. 2: Simulation of tumor formation in the tissue of a tobacco
leaf
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Fig. 3: Simulation of the formation of a tumor spheroid. The ini-
tial configuration consisted of a single tumor cell

placed in the center of the nutrient medium
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After getting the results shown in Figure 2 we improved these
models by introducing distinguished cell cycle phases (G1, S, G2,
M, GO, N). Thus, we were able to simulate the 3-D growth of a
single dividing tumor cell (14) inoculated into the center of the
cell space of a nutrient medium at the bedinning of the simula-
tion run (Fig. 3).

The introduction of distinguished cell-cycle phases was necessary
because chemotherapeutic agents and rays effect only a very
particular phase of the cell cycle that means they act phase -
specifically.

After simulating in vitro tumor growth the attempt was made to
substitute the nutrient medium by static blood vessels (15).
However, very soon it was clear that a more realistic structure
of capillaries was desirable for simulating in vivo tumor growth.

3. DESIGN STRATEGIES OF A HEURISTIC MODEL

The modeling of complex cell growth requires a considerable
simplification. Some of the oversimplifying assumptions are

- constant volume of a cubic cell

- constant phase duration and constant cell loss

- only horizontal and vertical communication between neighboring
cells

- a limited tissue volume by computer facilities

- side effects, immunologic reactions, heterogenity, drug resis-
tance and the formation of metastases are neglected.

If you want to construct a model of high order, it is necessary
to design a modular concept. In this case it means to design
modular structured subsystems.
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(1) You need control models (Fig. 4) which describe the cell
division of normal and tumor cells at a cellular 1level
including experimentally gained data e.g. of cell- cycle
phase durations.

(1i) Heuristic cell-production and interaction rules are re-
quired describing the cell-to-cell communication. For in-
stance one rule of the catalogue may say:

All tumor cells residing at a distance larger than 100 um
from the capillaries after the next division step will
enter the resting phase GO.

(iii) Cell movement is described by transport equations (diffu-

sion-, Poisson-equation), that means we have to introduce
into the model gradients for pressure and metabolic com-
pounds.

(iv) To represent 2-D and 3-D simulation results computer-
graphics software packages are necessary.

r- - -~ -— -
T T
1 L } | I |
- g; 1
STEM CELLS 61 | s |62 | - |
CELL CYCLE G0 1 € ',
1 |
I
|
E: DIFFERENTIATED END CELLS CELL DEATH

Fig. 4: Simplified cytokinetic model describing the division of a
normal cell
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The large body of statements, rules and equations has been trans-
formed into algorithms. In addition algorithms considering tumor
treatment (surgery, radiation- and chemotherapy) have been deve-
loped in subprograms written in FORTRAN IV. To start the simula-
tion program packages the following input data have to be fed
into the computer (VAX 730):

- notations about the character of a cell (normal, malignant)

- cell-cycle phase durations

- cell-loss rates

~ initial configuration of normal tissue and of tumor cells

- distinguished data about the kind of the planned tumor treat-
ment.

4. SELECTED SIMULATION RESULTS
Numerous simulation runs have been performed by Dichting and
Vogelsaenger (15-17) simulating tumor growth and different Xinds

of treatment. Some special results will be demonstrated now.

4.1 Growth of capillaries

The simulation of in-vivo tumor growth requires a realistic
structure of capillaries. Therefore Vogelsaenger (16) investi-
gated the question: 1Is the formation of capillaries a stochastic
or a regulated process? In (16) the assumption is made that each
cell of an organ in evolution has a special request for oxygen
and glucose. Therefore, parallel to the formation of tissue
capillaries are built with a specific structure corresponding to
the required oxygen and glucose. That means from the viewpoint of
control theory the request for oxygen supply is regulated to a
constant level by building a special structure of capillaries. A
comparison between Figure 5 and Figure 6 shows that for the
cortex of a rat the simulation result is highly similar to the
experimental result received by Bar (18).
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Fig. S5: Capillary network in the cortex (simulation result)

4.2 Spread of tumor cells in the cortex

Now the assumption is made that a single tumor cell is arbitrari-
ly placed in the tissue of the cortex at T=1 unit of time. 1If
this tumor cell resides close to a capillary it will divide and
move 1in accordance with the cell production rules (Fig. 7).
Further tumor growth is possible only because tumor cells produce
a substance which is called tumor-angiogenesis factor (TAF). This
factor stimulates nearby blood vessels to send out new capilla-
ries (Fig. 8) which grow towards the tumor, penetrate it and lead
to further rapid tumor growth. Recently great efforts have been
made to attack cancer by trying to find a protein which 1inhibits
the production of the tumor-angiogenesis factor.
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Fig. 6: Vascularization of the cortex (18)

4.3 Chemotherapeutic treatment in vitro

As pointed out in section 1, the cytotoxic effect of chemothera-
peutic drugs is tested in cell cultures. These are very good in-
vitro systems which can be simulated by a computer model. Figure
9(a) shows a tumor spheroid at T=200 units of time which has
grown up from a single tumor cell inoculated into the center of
the cell space at T=1 unit of time.
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Fig. 7: Spread of tumor cells in the cortex at T=45 units of time

Fig. 8: Formation of new capillaries at T=120 units of time
(tumor-angiogenesis effect)
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At T=201 units of time it is assumed that all proliferating tumor
cells (i.e. the outside rim) have been killed by a cytotoxic drug
(Fig. 9(b)). Now the remaining resting tumor cells (GO-phase) in
the neighborhood of the nutrient medium are being recruited into
the cell cycle again, and after a short time of remission the
tumor spheroid continues to grow (Fig. 9(c)-{(d)). Therefore, a
gecond therapeutic attack or a combined approach is recommended.
The task which has been solved in (15) is to determine the opti-
mum time at which the drug has to be applied for a second (and
more) time(s).

5. FUTURE FROSPECTS

From the voluminous catalogue of unsolved problems in the area of
cancer research I think there are three promising avenues of
future work in the modeling field:

- Optimization of distinguished methods and schedules of cancer
treatment.

- Generation of a more realistic initial configuration of a tumor
by combining CT-pictures (Computer Tomography) with predictive
models describing tumor growth and last not least

- Consideration of facts which had to be neglected so far (forma-
tion of metastases, immunologic reactions, drug resistance,
heterogenity, side effects).
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QUASILINEARIZATION IN BIOLOGICAL SYSTEMS MODELING

E. S. Lee* and K. M. Wang**

The estimation of parameters in differential equations is a basic problen in
biological systems modeling. However, these parameters cannot be estimated easily
when the equations are too complicated and cannot be solved in closed form.
Although Dr. Bellman has proposed to use quasilinearization to solve this problenm,
more numerical experiments are needed to show the effectiveness of this approach.
In this paper, quasilinearization is used to estimate the parameters in various
biological models. It is shown that this approach is quite effective and converges
very fast in most situations. Thus, the quadratic convergence property is
preserved.

QUASILINEARIZATION AND THE NRONLINEAR ESTIMATION OF PARAMETERS

The algorithm of quasilinearization in estimation is well documented [1-3], only
the essential equations will be discussed in the following. Consider a systenm
represented by the following system of nonlinear differential equations

Eetix, a, t) (1)
where x and f are N-dimensional vectors with components Xy Xgo eves xy and tl, f2'
. tu, respectively and a represents the L dimensional unknown parameters. Let us
assume that the L parameters cannot be measured directly and only Hl of the M
variables can be measured. These measured values are

(exp} = p (I = .
x; (ts) bs . §=1,2,...,m, J=1,2,...,M (2)

1
with t. =ty The problen is to estimate the parameters al(t), £=1,2,...,L and

the initial conditions

xi(o) = ¢y, i=1,2,....4 (3)
from the given or measured data, Equation (2). It should be emphasized that the
measured values h’(j) do contain noise. Let us establish the vector equation

da

e = ° (a)

* Corresponding author, E. S. Lee, Dept. of Ind. Engg., Kansas State University,
Manhattan, KS 66506
%% Dept. of Ind. Engg., Tsinghua University, Taiwan, China
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The problem can be stated as find the values of the vectors c and a so that the
least square expression
3= _g : [x;08,) - b, )72 (s)
i=l s=1
is minimized subject to the constraints of Equations (1) and (4). This is a
multipoint boundary value problem with minimization. It can be solved by the use of
quasilinearization . Equations (1) and (4) can be combined to obtain

¥-otvt) (6)
vhere y and ¢ are M + L dimensional vectors. Egquation (6) can be linearized by
the use of Taylor Series with second and higher order terms omitted. The resulting
vector equation is

k+

--3;1 =gy, t) + Iy My, - ¥)) (n
where ¥y is assumed known and is obtained from the previous iteration and Yk+1 is
the unknown function. The expression J(yk) is the Jacobian matrix. Because of the

fast convergence rate, Equation (7) with unknown initial conditions can be solved
quickly by the use of the superposition principle. 1In general, less than ten
iterations are needed to obtain a very high accuracy.

THE ARTIFICIAL KIDNEY SYSTEN

Consider the following simple model of the artificial kidney system [4, 10].

dc,

L T A A CAE Y (8)
ac,

V, 3t = K(C; - C)) - € €y - €€, (9)

where G = urea {(or creatinine) production rate

= mass transfer parameter
ck = clearance rate of patient kidney

cd = dialyzer clearance

C1 = urea concentration in intracellular cell
Cy = urea concentration in extracellular cell
v1 = volume of intracellular cell

v2 = volume of extracellular cell



415

In actual experimental situations, the constants or parameters cannot be
measured, only C2 can be measured at the various values of t. Our problem is to

estimate X and c1(°) for Equations (8) and (9) from the experimental data

cz(exp) (t’) = C s=1,2,...,n (10)

28’
Notice that the initial condition of cz(t=0) can be measured, but cl(t=0) must be

estimated. Thus, an equation like Equation (4) can be established for the parameter
k.

This problem is solved by quasilinearization with the following experimental
data (4]

{exp) ;. .1y =

¢ (ts 1) = 2.070,
(exp) (\ .0y =

C2 (ts 2) = 1.818

(exp) (o _ay o
¢, (t,=3) = 1.64

and the values of

G = 0.031, C, = 3.6, c, =0, at = 0.01,

d k

Cz(t-O) = 2.538, t, =3

£
Four different experiments were carried out with four different sets of initial
approximations. The convergence rates are summarized in Table 1. Notice that five
digits accuracy are obtained in 6 to 10 iterations. The Runge-Kutta integration
technique was used.

GLUCOSE AND INSULIN KINETICS MODELING

Consider the following simple one compartment model of glucose and insulin in
plasma (5, 6]

i

it ™ Iln + 156 + 12 (11)
4G

at = I4G ISH + I5 (12)

vhere G = plasma glucose concentration
H = plasma IRI concentration
Ii = parameters or constants.

The problem is to estimate Il' 13, 14, 16' H{t=0) and G(t=0) from experimental data

for H and G at various values of t. Again, equations like equation (4) can be
established for the four parameters.

The four parameter values and the two initial conditions are estimated by
quasilinearization. The numerical values used are
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= -1.56, IS = 6.94, t, = 180 minutes

L
at = 0.2,
The experimental data used are listed in Table 2. Several different sets of initial

approximations are used. One of the typical results are listed in Table 3. The

£

initial approximations are obtained by integrating the equations with the values for
the Zeroth iteration as the initial conditions. The Runge-Kutta technique is again
used. Notice that even with the very extreme initially assumed initial conditions
of zero, only nine iterations are needed to obtain a five digits accuracy.

CARDIOVASCULAR INDICATOR DILUTION MODELING

Consider the following four cell cardiovascular indicator dilution model {7, 8].

at = Bt BG

-3 = By (€, - ¢

ac

- =8, (c, - ) (13)
ac

“dt " B (63 - €

where 51 = F/Y, B2 = Fs/V, with

F = volumetric flow rate
Ps = recycle volumetric flow rate

YV = volume of the well-mixed cells
The boundary conditions for Equation {13) are

M
Cl(t=0) bl B Cz(t-O) =0

3'
C3(t=0) =0 C‘(t=0) =0 (14)
vwhere ¥ is the mass of the injection and the Ci's are the concentrations of the

corresponding cells.

In actual experiments, only the C's can be measured, the parameters B1 and B2

cannot be measured directly and must be estimated indirectly from experimental data.

The values of Bl' B2 and 53 are estimated by quasilinearization with the

numerical data listed in Table 4. 'The Runge-Kutta numerical integration formula

with at = 0.2 is used. Various different initial approximations for Bl' B, and B

2
were used. The convergence rate is again very fast. Three typical convergence

3

results are listed in Table 5 for three different sets of initial approximations.
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METHOTREXATE PHARMACOKINETICS MODELING

Consider the following pharmacokinetic model used to predict the detailed
distribution and excretion of methotrexate in mammalian species over a wide range of
doses [9]. The material balance equations representing the various anatomical
compartments are

dEE CL CK CM
Plasma: Vp i QL E; + QK i; + QM i; - (QL + QK + QH) Cp (15)
dCH CH
Muscle: VH it = QH (Cp - i;) (16)
dc C C
i . K. SO X
Kidney: VK it QK (Cp RK} kK RK 17
dc C C C
. L - - b S _ L _
Liver: V., dt (QL QGD (Cp R ) + Q (R i ) - r (18)
L G L
dCG CG 4 kG Ci
Gut Tissue: V., —=s-=Q. (C_ -~ ==) +1/4 £ (g~-—== +bC.) (19)
G dt G p RG i=1 l(G + ci i
dc 4 dc,
Gut Lumen: -5, 174 -1 (20)
dt ~, dt
i=1
v dc k C
GL 1 _ _ 6.1
¢ ATk Vg 6 - Mg rE b o) (21)
v dc, K C.
GL i _ - 6 i
i kF VGL (Ci-l Ci) 1/4(KG ¥E, +b Ci) (22)
i=2,3,4
vhere the value of r in Equation (18) can be represented by
- ety (23)
L L'L

vhich is the secretion rate of methotrexate out of the liver cells into the bile
ducts. Using the three compartments model, we have
dtl

T oFpcrUn (24)

e =% "% (25)

T O ge St (26}

vhere C is the drug concentration in the various anatomical compartments, r is the
drug transport rate in the bile, V is the volume of the various compartments, b is
the rate constant for nonsaturable gut absorption, Q is the plasma flow rate, R is
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the tissue plasma equilibrium ratio for linear binding and Kk is kidney clearance

and is equal to 1.1 m4/min for rat. The other numerical values used for rat are:

Vp =9 nl Q =5 nf/nin
VH = 100 mf Q, = 6.5 nt/min
Vk =1.9 ot Q = 5.3 mf/min
VL = 8.3 mt RH = 0.15

VG =11 nt Rk = 3.0
vGL = 11 at RL = 3.0

Q = 3 mt/min

The body weight for rat is 200 g. Notice that three compartments were assumed for
bile secretion and 4 compartments were assumed for gut lumen. Some of the

parameters such as RG' kG and KG are not measurable. These parameters for

methotrexate in rat will be estimated by quasilinearization using experimental data
obtained by Bischoff et al. [8]. These experimental data as & function of time for
the drug concentrations in the various compartments are listed in Table 6 and are
obtained from the figures of reference [9].

It should be emphasized that the parameters Rg, kG and KG cannot be estimated

easily. This is because that the systems of differential equations cannot be solved
in closed form. thus, quasilinearization forms an ideal and powerful approach.

In addition to the 13 differential equations represented by Equations (15) -
(26), 3 additional differential equations in the form of Equation (4) can be
formulated for the 3 unknown parameters. Thus, there are a total of 16 differential
equations. The initial conditions for the 13 differential equations are all equal
to zero except Cp(t) which is

Cp(t) = 1200/9 (27)

The 16 different equations can be linearized by using Equation (7). The unknown
parameters can then be obtained by using Equation (5) and superpositoin principle.
The homogeneous and particular solutions can be obtained by numerically integrating
the linearized equations. 1In the present work, the modified Adan-Moulton
integration scheme is used with step size as

at = 0,01 minute for 0 < t < 30

at = 0.1 minute for 30 < t < 240.
The convergence rates for the three parameters are listed in Table 7. Notice the
fast convergence rates. Only 5 iterations are needed to obtain 4 digits accuracy.
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Since the results of the previous iteration for all t must be stored in the
cozputer, the storage requirement can be quite large. For example, the
pharmacokinetic model needs (30/0.01 + 210/0.1 + 1) 16 = 81616 storage spaces. In
order to reduce this storage requirement, we can store only the initial conditions
of the previous iteration. The complete profile for all t of the previous iteration
can be obtained by integrating the egquations when we calculate the current
iterations. The storage requirements can thus be reduced tremendously. For the
pharmacokinetic problem, the storage requirement is reduced from 81616 to 16.
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Table 1 Convergence Rates of the Artificial Kidney Model

Iteration ‘ CI(O) ! K I CI(O) ’ X 14?1(0) i X ' CI(O) } X
0 } 2.538 1§ 5. | 2.538 112. i 2.53%8 | 19.2 | 2.538 | 25.
1 ] 2.9513 | 6.1718 | 2.7879 | 5.2057 | 3.1695 }-35.947 | 2.4352 | 18.639
2 I 2.7675 | 7.5204 | 2.8314 | 7.4735 | 2.9149 {- 4.7%06]1 3.1274 {-34.37
3 1 2.7997 | 7.5318 | 2.8023 | 7.4970 | 2.9895 | 6.9627! 2.7892 |- 7.5045
4 { 2.8000 { 7.5279 | 2.7994 | 7.5351 | 2.7776 | 7.5923 | 2.6165 | 5.6438
5 12,7999 | 7.5288 | 2.8000 { 7.5272 | 2.7991 { 7.5369 | 2.8398 { 7.8420
6 I 2.7999 | 7.5286 | 2.7999 | 7.5289 | 2.8000 | 7.5270 | 2.8016 { 7.5273
7 1 2.7999 1 7.5286 | 2.7999 § 7.5285 | 2.7999 } 7.5290 | 2.7999 | 7.5292
8 | { ! 2.7999 | 7.5286 | 2.7999 | 7.5285 | 2.7999 | 17.5285
9 | f { 2.7999 [ 7.5286 | 2.7999 | 7.5286 | 2.7999 | 7.5286
10 | | ! l J 2.7999 | 7.5286 | 2.7999 | 7.5286
Table 2 Experimental Data for Glucose and Insulin Kinetics Model
t, H(exp)(ts) G(exp)(ts)
0 177 581
30 155 182
60 40 95
90 26 87
120 20 97
150 24 106
180 28 110
Table 3 Convergence Rates of Glucose and Insulin Kinetics Nodel
Iteration I1 12 I4 16 H{0) 60}
0 0. 0. 0. 0. 177. 581.
1 0.051076 0.025872 0.048153 0.22224 181.31 576.58
2 0.038405 0.017182 0.020605 0.052089 1717.16 580.37
3 0.045445 0.021543 0.028009 0.043957 1717.56 580.06
4 0.046151 0.022149 0.028790 0.043174 1717.27 580.35
5 0.046411 0.022281 0.028581 0.043500 177.24 580.38
6 0.046408 0.02228¢ 0.028565 0.043510 177.23 580.39
7 0.046423 0.022293 0.028555 0.043523 177.23 580.39
8 0.046421 0.022292 0.028555 0.043523
9 0.046422 0.022293 0.028555 0.043524
10 0.046422 0.022293 0.028555 0.043524
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Table 4 Experimental Data for Cardiovascular Model

ts Cl(ts) Cz(ts) Ca(t’) C‘(ts)

0.0 0.9997 0.0 0.0 0.0

3.0 0.2289 0.3314 0.2609 0.1387

4.0 0.1327 0.1887 0.2391 0.2366

6.0 0.1141 0.1347 0.1682 0.2009

8.0 0.0909 0.1066 0.1269 0.1528

10.0 0.0702 0.0834 0.0988 0.1175

12.0 0.0543 0.0646 0.0768 0.0912

14.0 0.0421 0.0501 0.0595 0.0707

16.0 0.0327 0.0388 0.0462 0.0549

18.0 0.0253 0.0301 0.0358 0.0425

20.0 0.0196 0.0234 0.0278 0.0329

Table 5 Convergence Rate of Cardiovascular Model

Iter- B1 B2 B3 { Bl B2 B3 | Bl 82 B3

ation ] 1
0 0.1 0.01 0.1 { 0.6 0.2 0.8 | 2. 1.5 3
1 0.4379 0.0725 0.4969 | 0.7663 0.3755 0.9903 | 1.7167 1.2619 1.0049
2 0.4896 0.1772 0.8993 | 0.7966 0.3970 0.9992 | 0.6845 0.2886 0.9983
3 0.6522 0.2679 0.9658 | 0.8013 0.4015 0.9996 | 0.8014 0.4021 0.9992
4 0.7616 0.3635 0.9952 | 0.8017 0.4018 0.9997 | 0.8017 0.4018 0.9997
5 0.7974 0.3979 0.9993 | 0.8017 0.4018 0.9997 | 0.8017 0.4018 0.9997
6 0.8014 0.4015 0.9997 | |
7 0.8017 0.4018 0.9997 | |
8 0.8017 0.4018 0.9997 | }

Table & Experimental Data

for Pharmacokinetics Modeling

ts Cp(ts) C“(t’) CK(ts) Cb(ts) ch(ts)
{min)

15 7.7 1.5 20, 20.9 23.98
30 4.0 0.75 10.8 11.5 47.00
60 1.5 0.25 4.0 4.97 59.00
90 1.14 0.16 2.8 3.60 45.50
120 0.80 0.13 2.2 2.80 36.00
180 0.45 0.072 1.1 1.45 18.25
240 0.27 0.043 0.67 0.86 8.90

Table 7 Convergence Rates of Pharmacokinetics Model

Iteration RG kG KG

0 1. 20. 200.

1 1.108 22.64 237.2
2 1.112 21.61 224.6
3 1.112 21.97 229.3
4 1.112 21.85 227.17
5 1.112 21.89 228.3
6 1.112 21.89 228.3
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The theory of feedback control as a possible stabilizing mechanism has already been introduced into
ecosystemn analysis. One problem in the theory is the identification of the informational links by which
such controls operate. Cyclic controls, for example, zero-mean sine functions added to certain exchange
flows in the system, might also contribute to system stability. Their advantage is that they operate without
need for information from the rest of the system. The theory of ecosystém cyclic control is presented and
applied to data from an oyster reef ecosystem.

I. INTRODUCTION

To address the problem of ecosystem stability and performance, the previous control studies
utilized solely classical control principles, feedback and feedforward (Olsen, 1961; Lowes and Blackwell,
1975; Mulholland and Sims, 1976; Vincent, et.al., 1977; Goh, 1979; Hannon, 1985b,c, 1986; DeAngelis,
1986). If knowledge of the current output is used to modify the inputs to control the system, we have a
feedback control situation (Wonham, 1984). Feedforward control uses current knowledge of the
disturbance (rather than output) as the basis for a corrective action (Takahashi, et. al., 1970). The major
problem with these kinds of controls, however, lies in explaining how the requisite information flows
occur.

An alternative approach to ecosystem stability is found in the concept of cyclic (or vibrational)
control (Meerkov, 1980; Bellman, et.al.,1986). Basically, cyclic controls are periodic variations (zero—
mean) in the flows between components in an ecosystem or between the ecosystem and the surrounding
environment. If the amplitudes and frequencies of these variations are within the appropriate range, the
ecosystem, unstable without such variations, could under certain conditions be stabilized by their

introduction without any information flows.

Oscillations—induced stabilization of ecosystems has been investigated by a number of researchers.
Armstrong and McGehee (1976) developed a theory for the coexistence of a variety of species using a
smaller number of resources. Their technique involved a the sequential staging of the species in a periodic
manner, sharing the resource through time. Kemp and Mitsch (1979) used an empirical model to
demonstrate the stable coexistence of three plankton species on the same resource if one of the resource
inputs (wave energy) was regularly pulsing. They speculated that only a special range of frequencies and

Supported in part by the Illinois Department of Energy and Natural Resources
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pulse amplitudes would produce the needed stability. The pulsing resource appeared to force a sharing
between the three species, disadvantaging the species which was the most prolific under steady conditions.
Levins (1979) established the sufficient conditions of coexistence by requiring that the resource or the
species functions contain externally induced time—varying elements that enter the equations nonlinearly,
Nonlinear dynamics in Levins' treatment was essential since it resulted in terms with even powers of zero
mean oscillatory functions. The averages of such terms gave rise to the "average" nonzero inputs which
acted as effective new resources and under certain conditions ensured stable oscillatory regimes of the
system.

The goal of the present paper is to assess cyclic (vibrational) control theory as a tool in ecosystem
analysis and management. We show that an unstable linear system can be made asymptotically stable by
zero mean parametric excitations as well, and hence, nonlinearities are not necessary for oscillatory
stabilization. We also utilize nonzero averages of even powers of zero mean oscillatory functions to obtain
stabilizing corrections. However, we average not the original system with oscillations, but some other
specially constructed system, the average of which reveals the dynamics of the original cycling system.
For the purpose of illustration, we have chosen a modeling technique known as flow analysis (Hannon,
1973, 1985a; Barber, et. al., 1979) from a variety of ecosystem modeling approaches, each valid for
certain system classes. First, we briefly review the flow analysis technique and present the theory of linear
cyclic control of ecosystems. Then, we apply cyclic control to an oyster reef ecosystem where it acts in
only one of the component flows. The extension of the theory to nonlinear systems can be done on the
basis of the work of Bellman, et. al.,, 1986. The theory indicates the range of the amplitude/frequency
1atios in which stabilizing cycles should be sought and asserts the gxistence of stabilizing cycles in this
range. The actual stabilizing amplitudes and frequencies are determined via trial and error solutions of the
differential equations.

II. FLOW ACCOUNTING

In the analysis of complex dynamic systems, it is necessary to develop consistent definitions and
categorize all the identifiable flows. We start with the diagram shown in Figure 1. For more details on the
ecological accounting system, see Hannon (1973), Finn (1976), Levine (1977, 1980), Hannon (1979),
Patten, et. al., (1976), Herendeen (1981), Ulanowicz (1984) and Hannon (1985a).

In Figure 1, n x n matrix P is called the production-consumption matrixl. This matrix represents
n processes which consume and produce n commodities. By process, we mean an aggregation of similar
consumers-producers which is viewed as a single ecosystem component. By commodities, we mean the
substances produced and consumed by the components of the ecosystem. The elements of the ith column
represent the breakdown of the main part of the consumption of the ith process. The elements of the ith
row describe the breakdown of the main part of the production by the same process. Therefore, each
element of P is the amount of commodity i (row number) which is used by process j (column number) in
the given time period. For example, pi.i could be the daily amount of algal biomass (commodity i)
consumed by a particular class of herbivores (process j). This is a multicommodity system since
commodities listed along any of the rows are noncommensurable with commodities in any other row.
Therefore, the row sums may be calculated since they are all the same commodity and, we assume,
possess the same nutritional qualities for all consumers (The exception to this rule is the nonbasal heat of
respiration which by definition has zero value to any component in the ecosystem). But, in general, the
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column sums cannot be formed because a common measure of a value of each element along the columns
may not exist. Commodities of different qualities, even though measured in the same units (e.g..gms-
carbon) cannot be meaningfully added together. The inputs to omnivores and detritivores, for example,
are of different qualities, both chemically and in nutritional meaning, to the consumer.

The diagonal elements in P are the self-use terms which are for example, own-waste consumption
by rabbits and the consumption of decomposers by decomposers and cannibalism.

The full output vector q' is the sum of the vector of the nonbasal heat w given off by each of the
componeats and the total output vector q.

The system in Figure 1 is shown without joint products, that is, each process (column) is assumed
to produce a commoadity of only one type. The joint product case is discussed in Hannon, 1985a and
Costanza and Hannon, 1986.

The relationship to the external environment of the measurable quantities in the ecosystem modeled
in Figure 1 is summarized in Table 1. The features of each quantity in this table are identified by the letters
in the corresponding boxes. The table shows two vectors: r and . The net output vector r is composed
of three types of flows: exports (A & D), imports (D & E) and the heat of basal metabolism (B). By
imports we mean those quantities which can be produced by the ecosystem but enter the system from the
external environment. Exports are those quantities which can be produced by the ecosystem but which are
not necessarily produced by it, and which leave the ecosystem for the external environment. The letter D
in the import and export columns indicates those measured quantities which are passing through the
ecosystem in the given time period, therefore, the quantity A — E is the net export. The system is
perturbed by the externally induced change of the net export. The heat of basal metabolism (basal
respiration) is that given off by the organism at rest. We take the heat of basal metabolism (B) as a
surrogate for the commodity flows which are used in rebuilding the stocks metabolized during the given
period. By stocks we mean the accumulated output quantities in each of the components in the system.

Net Output

P, the amount of i
H used by j ] P + |r

I
el
+
€

f
a

Figure 1. Steady State Ecosystem Flow Accounting Diagram

lMgmice.fx are upper case symbols and vectors are lower case; both are in bold type. The elements of either
are in plain type with the appropriate subscripting. A dot over a symbol indicates the time derivative.
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Net Output Nm];l 'u"d"wl
r ¢
Exports | Impons ﬁ:‘:‘

Commodities fLeaves the
that the Produced Syslem A B
Ecosystem ls’y the
is capablc of ystem Siays
Producing

Not Leaves )} D

Produced

by the

System Stays E
Commodities
that the
Ecosystem F
is incapable of
Producing

Table 1. Description of the Quantities which Form the Net Output and
Nonproduced Input.

The stocks are, for example, the amount of biomass of algae which has accumulated in the producer (sun
capturing) component of an aquatic ecosystem. The vector e stands for those input commodities that the
ecosystem is incapable of producing (e.g., sunlight) but that are necessary for ecosystem functioning.

III. FLOW ANALYSIS
Next we combine the flow definitions above with the possibility of a growth in the stock of

process j during the given time period At. These flows are graphically shown in Figure 2 for the
individual process.

The consumption flows p;, production flows pj, and the storage flow As/At are internal to the
ecosysiem boundary, while the net output flows r;, the nonbasat respiration flow w; and the nonproduced
input flow ¢; cross the ecosystem boundary. The nonbasal respiration flow (e. g., the energy used in

chasing prey, avoiding predators, food—searching and reproduction) is of such low quality that it cannot be
utilized further by the ecosystem, and it is therefore considered a waste. The rj consists of the net export

of the process (export minus import) and the stock replacement (basal respiration). The net input vector e
is assumed to cause no restriction to the level of g; and is dropped from further consideration at the current
stage of the model development.

The total outflow q‘j is defined for the steady state ecosystem as

q-Zp +5+ W, . M

To take into account a growth in stock, ASj, over the time period At when the system is not in the steady
state, definition (1) is augmented as
A8

q-Eka+r +W ot @)
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e Environment Extemal
j 10 the Ecosystem
Nonproduced
Input
Consumption Flows - Nonbasal Waste W —
from other Processes )
—-Exports
P, ——2B| Process [¢—lmom [T, '
j —— . ——>Basal Heat q. 1q.
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J »siorage AS;/AL
L p Production Flows
Jk 10 other Processes _
Internal Environment of the Ecosystem

Figure 2. The Definition of the Input and Output Flows of a Typical Process (j) .

Three important simplifying assumptions are now made for the ecosystem shown in Figure 2 with
g/ defined in (2).

i) a commodity weighting or importance factor is assigned to each of the commodities produced in
the system. The weight for each commodity is independent of which component consumes this
commodity. A weight of zero is given to the nonbasal heat of respiration, and therefore, the vector w
disappears from the formulation. The element g; can be then be formed by the simple addition of all the
¢lements along the jth row of matrix P, the rate of the jth stock growth and the jth element of vector r. For
amore complete discussion of the commodity weighting issue, see Hannon, 1985a.

ii) the inputs to process j, p;; form a constant ratio with the output of process j, q;, Thus, p;/q; =
g; = constant. The constants g;; are determined from the data on the ecosystem at its steady state and
they are assumed to remain constant for the dynamic form of our model presented below. These constants
represent the internal behavior of the jth process. The g; incorporate the consumption flows into the
model by locking them into a constant relationship with the output of the receiving process. Thus, the
problem of summing the consumption flows (see Figure 2) is avoided.

iii) the stock (s;) of any process (j) stays in constant proportion to the total output {qp) of this
process. That is: by = s;/q; = constant, forming a diagonal matrix B = diag(by,,....byn}. This
assumption allows us to obtain a balance equation using definition (2) since now

q; = s/by . )

If the results of assumptions i) and ii) are combined with (2) and (3), and if At becomes

infinitesimal, we have

§; i S, + R
— = —+r +5
by &8 b i TS @

where §= d% /dt.
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Equation (4) is the dynamic description of the stock for process j. However, most experimental
ecosystem data is presented as flows. Therefore, we change (4) into a dynamic description of the flows
for process j. Substituting {3) and its time derivative into (4) yields

. n . .
by =928 5 VI Isi<nm,
or in matrix form

[ —~1 A -1
q=Aq-BTr, A=B(I-G). )
This time invariant ordinary differential equation (5) is in the "standard” form for the flow analysis
approach.

1V. STABILITY ANALYSIS

The stability properties of the behavior of q@ when the system is subjected to a step change in r
depend entirely on the matrix A in (5). If the real parts of all the eigenvalues of A were negative, the
system would respond in a stable manner (Luenberger, 1979, p 158). However, in (5) the sum of the
eigenvalues of matrix A is always positive. Therefore, the system will always respond to "sufficiently
rich" changes in r in an unstable manner.

From an ecological viewpoint, a positive r represents an output of the ecosystem (for
example, the amount of fish caught in the annual season). From the control theory viewpoint however,
this output represents an input 1o the system or a control action. For example, the amount of fish caught
directly affects the rate of (re)production of fish and many other quantities produced in the ecosystem,
which in turn, also affect the fishing success. 1f the system (5) is to accurately represent the functioning of
an ecosystem, the equations must be judiciously modified to include stabilizing or controlling flows.
Equations (5) can be made to respond stably by modifying r to include a feedforward or a feedback
control. Let us, however, demonstrate the use of cyclic control for ecosystem stabilization through the
addition of a cyclic flow to one of the elements in the matrix G,

In the flow accounting framework, cyclic control alone cannot guarantee stability of the system.
However, only a very simple form of constant feedback is required to make cyclic control effective. Such
feedback can be easy to maintain since it need not ensure stability but only “condition" the system for
cyclic control. On the other hand, for a broad class of the so—called decentralized systems, no constant or
time-varying feedback exists that can stabilize the system (Anderson and Moore, 1981). In these cases,
the addition of cyclic control can result in the desired stabilizing effect.

Since equation (5) is still always unstable, several changes must be made to r to demonstrate the
cyclic control. First, r must be broken into two parts: a vector of net outputs which are independent of the

output q, and another vector which contains the feedback and cyclic control and depends on q. The first
vector contains the "set point” vector for the system, r: the vector of net outputs which in the absence of

cyclic control determines the unstable steady state level q of the total output. The introduction of cyclic
control converts the unstable steady state q into asymptotically stable T—periodic operating regime, q S(x),

where T is the period of a cyclic control. A feedback control is needed to convert the trace of the matrix in
equation (5) to a negative value (Meerkov, 1980). Assume that this is an internal control that changes the
net output from the system in linear proportion to the production flows, a "flow" control (Hannon, 1986).
For simplicity, let the linear proportionality be represented by a diagonal matrix of constants, Q. In this
case, vector r in equation (5) is given by:



where r = Q% 0}
Equation (5) then becomes:

§=B'0-G-Qq+Blr.-r)
.1 A -l
= Nq+B(r_,-r), N=B(I-G-Q).
The constant vector B'l(r c—rs) will be dropped because it is independent of q and therefore does not

affect the stability analysis.

Matrix Q must have only one non-zero element with sufficiently large absolute value to cause a
sign change in the trace of N. Therefore, we further assume that matrix Q makes the trace of matrix N
negative, but does not guarantee system stability, i. e., we simulate the circumstances where the feedback
controls (like Q) are not adequate to make all of the eigenvalues fall in the left-half plane. This situation
can arise if the information gathering processes of the system are somehow limited, resulting in lack of
controllability and/or observability (Luenberger, 1979), but are sufficient to condition the system for cyclic
control.

Let us again augment the vector r = Qq - D(t)q, where D(t) is a periodic, zero mean matrix. The
periodic input D(t), is weighted by the state vector of the system q, and therefore D(t) appears in the
system equation in the form of parametric perturbations or cyclic controf. In this case equation (6)
becomes

§=IN+BD(q . o

Because equation (7) is time-varying, eigenvalues can no longer describe its stability. It is
possible, however, to associate stability properties of the oscillatory system (7) with a certain constant
matrix that describes its average behavior. The stabilizing action of cyclic controls consists in converting
the remaining right-haif plane eigenvalues of system (6) into "left-half plane on-the-average" ones. In this
case, stabilization is achievable without the need for additional information flows, provided that the
amplitudes and frequencies of the cyclic controls are within a critical range.

Assume, for simplicity, that the ijth element of the cyclic control matrix D(t) is given by djjn =
cijcos((oijt). where ¢;; is the amplitude and @;; is the frequency of the oscillation.

In order to describe the average behavior of system (7), we introduce the parameter € as

A
ij )
and define
A A
C;j= Oj/e amd ©=P /e
so that the ijth element of D(t) can be rewritten as dij(() = (ai]/e)cos(Bijt/e).

With this notation, the cyclic control matrix D(t) takes the form
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D(1) = +D'(1),

and system (7) becomes
. -1
q=[N+ —il_:—B D'(—é—)]q. ®)

Thus, if the aij's and Bij's are assumed constant, the amplitudes °; and the frequencies ml.j of the
zero-mean cyclic terms dij(t) are parameterized by a positive €. It has been proven (Bellman, Bentsman
and Meerkov, 1985) that there exists an €, = constant > 0, such that for any € satisfying the inequality 0 <

E<E , the stability properties of system (8) are defined by the eigenvalues of a constant matrix

T
M = 1im—1‘.-f O 'NO(D dt ©
T oo 5
where ®(1) is the state transition matrix of
dq - BRIV
T = B'D (9q (10)

where t = t/e.

Specifically, for sufficiently small €, system (8) is asymptotically stable if all the eigenvalues of M have
negative real parts. As seen from this result, the elements of matrix M are defined in terms of the elements
of matrices N, B™", "amplitude/frequency” ratios o and "frequency/frequency” ratios Bij.
Consequently, M provides a link between oo Bij and stability of (7): Ifaij and Bij are found which place
all the eigenvalues of M in the left-half plane, then there exists an € such that oscillations with amplitudes
aille and frequencies Bille guarantee asymptotic stability of system (7). The matrix

M' 2 MN
can be thought of as a "correction” of N induced by oscillations.

In the context of ecological systems, cyclic control is easy to apply. Indeed, ecological systems are
usually described by sparse matrices and therefore the cyclic control matrix D{1) might often satisfy
condition Dz(t) =0 independently of the magnitudes and frequencies of the oscillations. In this case,
since B is a diagonal matrix, all non-zero elements of matrix M' are given as

1 _ Ji nji s Y. ﬁ _1__ —il an
ij
b'ﬁ

where n. denotes the jith element of the matrix N. Thercfore, the only elements of D(t) that will affect the

m

cigenvalues of M are those off-diagonal elements that have a corresponding non-zero symmetric element in
N.

The first step in the search for amplitudes and frequencies of the stabilizing oscillations is to find
m'ij's that move all the eigenvalues of N+M!' to the left-half plane. A straightforward way to accomplish

this is to try only one of the appropriate elements at a time, and let & increase from 0 to a sufficiently
large number. When the appropriate set of elements m‘ij, and, hence, g have been identified, we must
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Table 2. Oyster reef Input-Output flow matrix (P), along with vectors for net export + stock
replacement respiration (r), total output excluding waste heat (q), waste heat (w),
and total output including waste heat (q').

P

(1 @2 3 4) (5) (6) ¢ q w q'

Oysters 1 0 1579 0 0 0 051 17.80 34.10 7.365 41.47
Detritus 2 0 0 8.177.27 064 0 6.19 2227 0 22.27
Microbiota 3 0 0 0 1211210 2.875 5.295 2.875 8.17

Mciofauna 4 0 424 0 0 0660 1.75 6.65 1.75 84
Deposit Feeders 5 0 191 0 0 O 017 0.215 2.295 0.215 2.51
Predators 6 0 033 0 0 0 O 0.2 0.53 0.15 0.68
Net Input e 4147 0 o 0 © o
Control Q 1.52 228 .94 1.26 2.09 1.38

return to equation (8), placing (au/e)cos(ﬁi,/e) at these locations in D(t). Then, by changing € and
repeatedly solving equation (8) for stabilizing pairs of (o.8), the areas of stabilizing amplitudes and
frequencies can be found. The search for stabilizing oscillations becomes complicated when the stabilizing
matrices that satisfy Dz(l) = 0 do not exist (see for example, Wu, 1975).

Cyclic control could naturally arise in an ecosystem as i) an oscillation of the flows between
various components or ii) a part of the net output, a cyclical export (import) from (to) a particular
component, the interpretation used in this paper.

What follows is a simple example of ecosystem stabilization by a cyclic control.

V. APPLICATION TO THE OYSTER REEF ECOSYSTEM

In this section, we apply the theory presented above to the oyster reef ecosystem (Dame and
Patten, 1981). This compact but complex system is shown at steady state (i.e., for constant flows) in
Figure 3.

The data from Figure 3 have been arranged in the proposed accounting framework (Figure 1) in
Table 2. In this arrangement, estimates of the basal metabolism or structural-rebuilding respiration are
included in the net output.

From the data in Table 2, we constructed G for use in the N matrix. With the feedback control
elements of diagonal matrix Q, shown in Table 2, the trace of N is negative and its eigenvalues are:
0.0726 £0.0371i, -0.1753, -.0089, -0.0994 and -0.0028. Because the complex pair has positive real
parts, the system is unstable. Let us demonstrate that a cyclic control can be found to stabilize the system
at the given steady state.
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Figure 3. The Oyster Reef Ecosystem. Flow units are kcal/m —day.2 Stock unit: keal/n?.

Let m's 5 be the only non-zero element of matrix M', indicating a cyclic net input to deposit
feeders and a cycle in the flow 5-3. Then by experiment, for m'’, , > 0.0346, all the eigenvalues of matrix
N + M are in the left-half plane. Choosing [35 3= 1.0, from equation 11 we obtain

1

-2m's 5| 2
— 53
Q53 = bys|—=2| = 1.7298,
3,5
where bs 5= 7.0893 and n, j=-1.1632. Thus, according to the theory of Section IV, oscillations of the
form ds 3(t) = o, 3mSin(cm), o> 1.73, should stabilize the system for sufficiently large @. The

asymptotic nature of the theory implies however, that condition o 3 >1.73 should be partially observed

S
for smaller @ as well. It is precisely this insight that motivates the numerical search for the actual

parameters of stabilizing cycles at low frequencies. In Figure 4, we demonstrate that condition, o,

>1.73, is partially observed for w/2x > 0.08. The amplitudes are q,d, 3(t)/b5 5 The cross-hatched region
in Figure 4 corresponds to the actual stabilizing amplitudes and frequencies of the cycles d5 ;-
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Figure 4. Cyclic Control in the Oyster Reef Ecosystem. The Range of the Parameters of the
Stabilizing Oscillations of the Net Input to the Deposit Feeders 5 and of the Connection
to the Microbiota 3.

While our choice of Q was largely arbitrary, we find the data in Figure 4 interesting. They show,
for example, that a cyclic net input to the Deposit Feeders (which in turn allows them to cycle their feeding
on the microbiota) can stabilize this ecosystem (given the above Q). With a cycle frequency of once in
seven days, the stabilizing amplitude would range from about 1.1 to 1.7 kcals/mz—day, encompassing the
average value of the flow from 3 to 5 of 1.2 kcals/mz—day (see Figure 3). It seems possible that such a
cyclic flow could occur. No data on the variation of flows in this oyster reef ecosystem were given
(Dame, 1976, 1979; Dame and Patten, 1981). From Figure 4, we also see that smaller stabilizing
amplitudes are associated with lower frequencies. This application to the oyster reef system is expected to
convey a biological possibility of ecosystem stabilization by already existing or intentionally introduced

oscillations.

VI. CONCLUSION

The material presented above demonstrates that cyclic control is a biologically feasible stabilizing
mechanism that could either develop in the course of evolution or be introduced by an ecosystem manager.

The important point about cyclic control is that stabilization can be provided without any
information exchange. Therefore, the components that can establish a balanced cyclic exchange of
materials or energy with the external environment and/or with other components might bring stability to the
whole system without the cost of building and maintaining additonal information links. Thus, since cycles
often occur in ecosystems naturally or can be introduced intentionally, cyclic control theory constitutes a
viable tool for the ecosystem analysis and management.
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SELF CONTROLLED GROWTH POLICY

FOR A FOOD CHAIN SYSTEM

George Bojadziev
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Burnaby, B.C. V5A 156
Canada

Abstract. A behavioural policy of controlled growth for a food chain
model of length 2n is considered. The highest trophic level popula-
tion controls its own growth in order to restrain the growth of the o-
ther 2n-1 populations in the system so as to avoid undesirable out-

comes.

1. INTRODUCTION

The present research concerning control policies for biological systems
in population dynamics mainly deals with human control added to models
of interacting populations. Various pest management programs provide
typical examples of this kind of external control [1,2]1. However in re-
ality there are also situations in which one or more populations partic-
ipating in the system are the controllers. Such systems change bechav-
iour abruptly in response to changes of the size of the interacting pop-
ulations, climatic conditions, diseases, etc. We call this typc of con-
trol internal. The classical models in population dynamics usually do
not reflect either the external nor the internal control. The control-
ling populations can apply the internal control to their own members
(self control) or to all or some of the other participating populations in
the model. In this paper the attention is focused on the conceplt of

self control.

Generalizing a previous paper (Bojadziev and Skowronski [3]) here we
study a food chain system of size 2n involving a controlling factor

u{t} which adjusts the number of the highest trophic level population

so that a reasonable size of all populations is maintained. Making use
of a methodology developed by Leitmann and Skowronski [4] (see also
Blaguiere, Gerard, and Leitmann [5]) for dynamical systems, we derive
conditions under which the designed control policy results in avoidance
of a prescribed region in R2n so that undesirable outcomes are avoided.

2. THE FOOD CHAIN MODEL

Consider the food chain model with control
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x'(t) = £(x(t), u(t)) (1)

where t € R, is the time variable, x(t) = (xl,...,x )T is the popu-

2n
lation vector, u(t) 1is the control, and the components of the vector

function f(x,u) = [C PRI 4 )T are given by

2n

- B,
fl(x,u) = xl(al— ?I xz) '

B B
- _ 2k~1 _ Pax
£ox (®ew) = x5 ( @k * Yok X2k-1 Yox x2k+1) '

(2)

Bax - Boks1 "
X2k 2k+2 } '’

f2k+1 (x,u) = x2k+1 ( - a2k+1 * Y2k+1 Y2k+1

8
= _ - 2n-~1 2
on(x'“) B xZn( @n ¥ Yon x2n-1) +ouxyn v

k=1l,...,n-1, fi(i,u) = fi(i,O), i=1,...,2n-1 .

For u=0 the model (1) reduces to the uncontrolled food chain model
x'(t) = E(x(t),0) . (3)

In (1) xi,i=1,...,2n, is the size of the i-th population; oy (growth

rate coefficient), Bi {interaction coefficient), and Y (trophic weight
factor) are positive constants; Yj/yi expresses the gain-loss ratio .
when population i interacts with population j. The control u(E) € U[to,t]=
{u(t): u(t) € U and u(t) measurable on [to,t]), 0 =< t,o<tcw, U cR
is a compact set to be specified later in accordance to a growth restric-

tion policy.

The biological meaning of the control term ux2 in the last expression

2n
(2) which takes part in (1) is that for u > 0 the population with size

X (the highest trophic level population in the food chain} is enhanced

b;nincreasing the population density (increasing returns) and for u < 0
it dampers its own growth (diminishing returns). The 2n-th population
can be considered as a consumer or predator of a higher level in terms
of organization and brain capability in comparison to the other 2n-1
populations or resources. The self controlled growth of the consumer
(predator) will affect the growth of all populations in the food chain

system.

Each choice of control, say ul(ty) = ¢, € U on some time interval start-
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ing at t = to’ generates a solution or response k{t] = k(i(to), Cor t)

of the system (1) with initial state ﬁ(to) € Rin which geometrxically

is represented by an orbit lo in the phase space Rzn. If c, = 0

(no control, hence {1) reduces to (3)) the response k(x(to), 0, t) of
(3) can exhibit large variation and may endanger the existence of an
acceptable size of some populations. In order to avoid such undesirable
outcomes, the consumer population with size Xy, Mmay opt to self con-
trol its own growth which will affect the growth of the other populations
in the food chain. This can be accomplished by selecting a suitable
control value u(tl) =c € U at a point §(t1) € Rin (switching
point) on some time inverval starting at t = tl' tl > to. The control

value u(tl) =cp will generate a response k(§(t1), c t) along a

1'
new orbit ll, Qo n 11 = x(tl).
Using a Liapunov function for the uncontrolled model (3) we define for

the response of (1) an avoidance region A, a security zone S which
safeguards the response of entering A, and design a control policy for

avoidance.
3. THE LIAPUNOV FUNCTION
. - S s 0,-0 -0 0 0,T
The coordinates of the nontrivial equilibrium E (x ), x = (xl,...,x2n)
€ Rzn, of (3) are
&0 = Y1 O = Z2n'2n
= ’ -1 - TR s
2 By 2n-1 Bon-1
0 Yok * BoXoke -
Xypey = 2 k=1,...,n-2 , (4)
2k-1
- + B x0
0 ~ 2k+1Y2k+1 2k®2k _
Xox+2 = ) ' k=1,...,n~-1 .
2k+1
We require that Eo ¢ Int Rzn, the interior of the closed positive cone,

+
so that E° has biological meaning. Since xgn-l > 0, it follows from

(4) that xgk—l > 0, k-1,...,n-1. Also from (4) we see that xg > 0.
However, in order to secure that xgk > 0, k=2,...,n-1, we assume that

9 /8
X2k 7 %2k+1 Yok+1/”2k*
The model (3) has the Volterra function (Huang and Morowitz [6])

2n b4

X, .
V(x) = ZYixg(—s-—!.n—s-—l), (5)
i=1 Xy Xy
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continucus on Int Rin

following properties.

, which is actually a Liapunov function with the

(i) The minimum of V(x) is attained at the equilibrium Eo(io) given
. =0
by (4); minV(x") = 0;

(ii) V(x) is monotone increasing about Eo (has the nesting property);

- 2n
ces dav(x) aV -
(iii) = ~ £,(x,0) =0 , (6)
dt izl axi i

where fi are given by (2}. From here follows that the equilibrium
£%(z%) is stable.
The model (3) has a first integral

V(x) = h, h = const » 0 , (7)

which represents a family of level surfaces Vh in R2n+l

onal projection of Uh onto Rzn generates 2n dimensional hypersur-
R2n which are closed, do not intersect, contain inside

. The orthog-

faces Hh in

the equilibrium Eo, and accommodate orbits of (3). Further, if hl < hy,
the hypersurface Hh is inside the hypersurface Hh .
1 2
4, AVOIDANCE CONTROL

Here, marking use of a Liapunov design technique {4}, we introduce def-
initions and prove a theorem concerning the food chain model (1).

Definition 1 (Avoidance set A)., Given ¢ = (cl,...,szn)T € Int Rin
and the Liapunov function V(x) by (5),

AL X e R v@E 2 V(@) =n ), (8)

where €5 (avoidance parameters), i=1,...,2n, are small as desired for
a particular study. The boundary of A is
2n

93 = Hh A {x ¢ R

: V(X) = h } . (9)
c €

Definition 2 (Security zone §S). Given & = (61,...,62n)T € Int Rzn,

§; > €4, and V(x) by (5),

s A% € R®®: v(®) 2 v(3) = ngt - A, (10

Si,i=1,...,2n, are security parameters. The boundary of S 1is given by

s =H A {x € R°": v(x) = h.} . (11)

From the nesting property of V(%) it follows that h6 < h_, hence in
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Rin the hypersurface (9) encloses the hypersurface (11).

Definition 3 The set A defined by (8) is avoidable if there is a set
S defined by (10) and a control u € U such that for all Es(ts) €S,
the response k(is{ts),u(ts),t) of {1) cannot enter A, i.e.

k(x%(£), ult ), £) NA=¢V ¢t . (12)

Now we establish sufficient conditions for the avoidance of A,

Theorem The food chain model (1) is controllable for avoidance of A
if there is a control u(t) € U and a Liapunov function V(X) defined
by (5) so that

3V

av(z) 22" o £ (X,u) <0, (13)
. 1
i=1

G X

where fi(§,u) are given by (2}.

Proof. Assume that A is not avoidable, i.e. (12) is violated. Hence
for some is(ts) € S, the response k(is(ts), u(ts),t) enters A, t > ts'

. . -a _ =S
Then there is a ta > ts for which x (ta) = k(x (ts),u(ts),ta) € 3A.

From the nesting property of V(x) it follows that V(Es(ts)) < V(ia(ta)),
meaning that the function V(x) is increasing. This contradicts (13)
which states that V(X) is non-increasing along every response of (1).

5. THE CONTROL POLICY

To design a policy for avoidance the region A by the response of (1)
we use the theorem in the previous section. Substituting fi(i,u) from
(2) into (13) with (5) gives

- 2n

dv(x) _ v =

dt .Z ax. fi(x,O) +
i=1 i

aav ux2 =0.
X2
n

2n

According to (6) the summation term above is zero; the second term gives

0 1 1 2
Y2nx2n(x5 - X0 )ux2n =0
2n

which can be written as

(—%—--l—)uso. (14)

X2n

The inequality (14) establishes a relationship between the control u
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and the controlling population Xon~ It requires that

. 0
us<so0y Xon > Xop ¢
] (15)
uz0YVv Xogn < Xpp -+
According to (15) we specify that
u(t) € U = [-r,r] <€ R, r=const. (16)

On the basis of (15) we formulate the following behavioural policy.

Avoidance control poliey: If the response klt] = k(i(to),u(to),t) of
the food chain model (1) with initial state x(to) and fixed control
u(to) € U, U specified by (16), enters the security zone S given by
(10), in order to prevent k{t])] of entering into A defined by (8), a
new control value u(ts) should be selected from U at a switching

point ;(ts) € 8 with corresponding response k(i(ts),u(ts),t), ts > to'

If Xon > xgn, the new control value u(ts) should be negative and if

0 . s s
Kon < Xgpv it should be positive.

Note 1. The control u=0 satisfies (15) but then the response will be

accommodated on a hypersurface Hh enclosed in the security zone S,
8
Hh < Hh < Hh . which may not be satisfactory since large population
8§ s €
fluctuations occur.

Note 2. The particular situation Xon = xgn at E(ts) € 8§ satisfies
(14), hence any value u € U can be selected temporarily until the re-
sponse movesS to a neighbouring point in S for which Xon # xgn. Then

the avoidance control policy can be applied.
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ABSTRACT

The aim of this paper is to propose an approximation procedure to compute the value
function V and the optimal policy @ related to the stochastic problem (P) of controlling
diffusion processes. This procedure can be easily extended to problems for which stopping
time and impulse controls are also considered.

O - INTRODUCTION

As we did in [8] for deterministic problems we will employ here as basic tool of
analysis the characterization of V as the maximum element of a suitable set W of functions w.
While in [8] the definition of W requires for w to be subsolution of the first order Hamilton-
Jacobi-Bellman equation, ie. :

éwaﬁg- fxu) + Axu) - ow(x) » O, Vu e U, oD

here, in the stochastic case, we deal instead of (1) with
Luww + u) 3 0 0.2)
where L is a second order differential operator.

In what follows (P) will be solved using the characterization mentioned above. To
introduce the discretized problems (Ph) we need to define properly the functions wh belonging
to Wh, In fact : the existence of maximum solution Vh for each problem (Ph) and the
convergence of Vh to V are shown using a Discrete Maximum Principle (DMP) that wh must
verify (cfr. [3]). To insure this property we use particular schemes to discretize the first and
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second derivatives of w. Furthermore this choice enable us to compute VI using an algorithm
of relaxation type that increases the values of wh in the vertices of the triangulation employed.

Comments on applications are included in the final chapter.

1 - THE PROBLEM (P)

Let us consider :
a) The complete probabilistic space
QP F FW) ; (1.1)
b) The state process y(.), modelled by the diffusion
dy(® = fy(®, ut)dt + ofy(), u(®) dw(t)
(1.2}
yo) = x,t 3 0y € QC R?
with
Q : open boundet set
w(t) : Wiener process F(t)-measurable
u(t) : control process progressively measurable in a compact set U € Rm
G iS an X n matrix

f and o bounded continuous on Q x U.

¢) The cost functional
T
Jxu()) = E {J U(y(s).u(s)) e-os ds} (1.3)

with

1 : first exit time of Q of the system trajectory
a >0
2 : bounded continuous function on Q x U.
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Let us introduce the definition of the optimal cost
V(x) = inf J(x,u(.), (1.4)
uelU
V(x) being solution (cfr. [5),[2]) of the Hamilton-Jacobi-Bellman equation

.U {LWV + tw} = 0in Q

ue
(1.5)
V = 0indQ
: @ n : ; 1.6
['(u)“r’séla‘s(x,u) X xs+r_§l '(x’u)a‘i';‘“ (1.6)
with
n
as = } Zlomom,i.e.a,s=a;r. (L7)
zZ=

As it was said in the Introduction we will compute V taking advantage of its
characterization as maximum element of a suitable set, ie. (cfr. [6], [8], [15]) solving the
following auxiliar problem (having V as solution) :

(P) : Find the maximum element w of the set

W={weW (Q/ Low+? > 0nDQVue UQCR} (18

being
weEwe wx) € wx), Vx e Q 1.9)
the natural partial order in .

(Questions concerning existence and unicity of the solution of (P) can be seen in [4], [15]).
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2 - THE DISCRETIZED PROBLEM (Ph)

2.1, Prcliminary comments

We will compute V as the limit of the solutions of a sequence of approximate
problems (Ph).

To simplify the presentation we will suppose that Q is polyhedric. We consider in Q a
triangulation Qb (union of simplices), xih being @ = 1, 2, .., Ny) the vertices of Qb

= \ — Fia A1
Then we define Wh by functions wh verifying properties related to (1.8), (1.6). The
main difficulty of this approach is to ensure the existence of a maximum element wh in lh.

Following what we did in [8) for the deterministic case we introduce in Wh the natural
partial order ‘

wll1 < wg o wil(x?) < wg(x?), \I'x;1 vertex of Qb @.n

We consider functions wh : Q1 — R, wh continuous in Qb with %v-:—h constant in the
interior of each simplex of Qh, ie., wh are linear finite elements. So, to define wh it will be
enough to precise the inequality ("discretization” of L{u)w + £ » 0) to be verifyied at each
vertex xil of Q. Taking [8] into account if suffices to propose a suitable discretization of

n 9w . .
Liuw = r,sé ) ag o the term containing the second order derivatives of w.

2.2. Definition of Ih(u) wh

Let us consider S(x}l ) (see Fig. 2), all the simplices having xih as vertex.

From (1.7) the matrix A = (ar) has no negative eigenvalues A, and orthogonal
eigenvectors. So
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A = UDU' (2.2)
wih UU = I -y
D (diagonal) / Dpp = 2 > O. '

F is. 2
If we consider, with center in x? a new coordinates system (we denotes G the
transformation matrix G(x}‘ )

n=0G.t 2.3)
and we define
wi) = wed + 52 S = WG A am) 2.4)
we obtain
n h 2w n h . %%
= S = D , 2.5
Lww r’si_'.__l st » W 5 o p’q?;l bpq( 0 Fp ong 2.5)
with bpg(, W) = (GAGpq.
So, after the choice G = U' we have, because
bpg = A 8 (2.6)

the following diagonal form of L :

n h 2%
ILw = Y , U 2.7
P21 W52
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Now we define naturally the approximated oeprator Lh :

n
1w = 3 agfueSph e @8)
p=1 any,

2 - + .
where (%f)h oh = ;‘2- FACin - 2 W(x{hy + MChn) with
P 1

Cip = A -1 Cip = OO, .., -hi, .., 0)
A h

Ci =

ip | €ip Ciph = O, .. b, .., 0)

My = ©0, .. 0, .. 0)

+

Cp giving the direction of the np-axis and by such that G, Gy, € St

2.3. Definition of It

n
Coming back © (16), 3~ flsu) }Xr will be discretized as it was done in [8], i,
Ir'=

we will consider V in the direction f (see Fig. 2) :

WA - who)

f.th(x?)=W . lf(xbl 2.9}

1

So, from (2.8) and (2.9) we can define
Wh = {wh:Qt — R/ uwh + 2u) » 0,

(2.10)
Yu e Uh VA € Qb wh < 0 .on OQ}

where Uh is a finite discretization of U and
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7 MWL - 1y Tip) - 2 whx)
i

U‘(u)wh()qh) + i, x?) = p%

2.11)
whel) - whee)
h —+ h
+ wh()g + b °ip)) +W |f(’&h)| - aw(xih) + §u, x)-
i

Finally we can consider the discretized problem (P)h : Find the maximum element wh

of the set 1N with respect to the parial order (2.1), ie. find Wix) such that W) > Wi,

\I’xgl e Qt Yw"e W'

3 - SOME REMARKS ABOUT wh(x)

of wh we have :

As C;p' i;)' blh are convex combinations of the vertices of S()S-h), using the linearity
wh(Ci;)) + wh(q;) = Y ﬁw“(}&-h) %20 X y=2 (3.1)

jel:’ jel:1

h . h
L setofmdcxsuchthax)ﬁ € S(x?)

W) = T W) %50, T g=1 (3.2)

je’- je.

After 2.11), (31) and (3.2), we can rewrite Lh@WIKY + X, XD > O as :
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n
wied) < Bt (5 3 o i W)
hi p=1 jer'j=i

(3.3)

1) 1
Y 2 )ﬁ\»”(}ﬁhh!(u,x,h)]
Iy -x1 jel?

IR |
|

n A
with Bih(xil,u) = [pzf.z—l;zﬂ Ap (xlh,u) + —I%E——h—l + 0.]'1 > 0
- "X

Taking into account that all the factors that multiply wh(x;]) in the second member of

(3.3) are non-negative we can easily prove (see [8]) :
THEOREM 1

There exists an unique wh(x), maximum element of Wh, ie. (Ph) has an unique
solution,

Furthermore the operator LM verifies the following Discrete Maximum Principle
(DMP) :
(DMP) : If C is a subset of vertices of QM satisfying Lh(u) wh(XihS > 0,

Vx?eQ‘,VueUh,tlmcxistsl“,0<l“<lsuchthat: G4

wWhed) < T (ymax_ (Wi v 0).
Xi ¢ C

We can use this DMP to establish two important properties of wh,

The first one is that wh is characterized by the fact that (3.3) becomes an equality for
allxl-h € Qb for some u € Uh when we put wh instead of wh. This characterization allows us

to compute wh using iterative algorithms of the same type than those pesented in [8]. The
value of u giving the equality will be used to define the optimal control Gy,
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The second one concems the convergence of wh to V. We have
THEOREM 2

The solutions wh(x) of the approximate problems (Ph) converge uniformly to V(x),
solution of (P), ie. :

lim | Vix) - wi)l =0, Vx e Q (3.5)
lhl—0

where [h] is the maximum of the diameters of the simplex of Qh. (see [8]).
The proof is achieved in two steps. We will briefly give here the main ideas.

In the first part we show

li wh V. 3.6
o @6

For that we regularize the elements of (1.8) by means of a convolution with a function
of C= (R2) having a parameter p > 0. These functions wp can be approximate by functions
Wp,a With this property : the linear finite element w::’a, taking the same values of wpqin the

vertex of the triangulation Qb, belongs to Wh. So,

—, h
wh 3 Wo,0 3.7

If we consider in (3.7) the lower limits for fhl — O, then the limits for (p,a) — (0,0), we
obtain

mllf“-"fo wh 3w (3.8)

Finally, as w is an arbitrary element of W, (3.6) is proved.
The second part is devoted to show

lim wh gV 3.9
W0  ° G2
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We consider a sequence of auxiliar problem Pp for which the controls u, can take in
(1.8) a finite number of values and the number of switchs within that set of values is, at most,
n. If V, is the solution of P, we can show

VigwdVnr VpuaszVv
(3.10)

im V, = V.

n—oco

On the other hand we consider the discretized problem ZP:: for which we prove

lim w, =V 3.11)
M—-o =~ "
—h —h —_
Wp ? Wopoq 3. > W, Vo (3.12)
So, uh}l_ﬁo wh < Vp ; then, using (3.10) we obtain (3.9). Finally (3.6) and (3.9)
give (3.5).

4 - COMMENTS ON SOME APPLICATIONS

The idea of solving optimal control problems computing the maximum element of a
suitable set of subsolutions of the Hamilton-Jacobi-Bellman equation has been recently
applied to several problems. Remaining in the deterministic approach we have study in [9] the
optimization of an electricity production system which comprise three hydraulic plants (two of
pumped type) and seven thermic plants (one nuclear, two of coal, tow of fuel, one gas
powered and one external). The numerical data have been provided by EDF (Electricity of
France) : they describe a forecast of the French system for a week of the year 2000, Other
application can be seen in [12] where several serial production/inventory systems are
optimized.

Concerning the stochastic approach we can mention :

a) [11] devoted to the optimization of the system presented in [9] considering random
perturbations in the demand ;
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b) [7] in which the algorithm proposed in [10] for L(u) = A is used to obtain the optimal
control of a bidimensional diffusion ;

¢) [1] in which the numerical solution of an optimal correction problem for a damped random
linear oscilator is studied.

First applications of the procedure just proposed in §2 and §3, as well as a comparison

of these results with those obtained by other clasic methods (13], [14] and [17], will be
presented in a special session of the next IEEE-CDC, Austin, 7-9 Dec. 1988.
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Fuzzy arithmetic in qualitative reasoning

Didier DUBOIS and Henri PRADE
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The paper provides a preliminary exploration of the application of fuzzy arithmetic and
fuzzy approximate reasoning techniques to qualitative reasoning problems considered in Artificial
Intelligence. More specifically, this investigation is done along three lines : constraint propagation with
ill-known values, handling of orders of magnitude in terms of fuzzy intervals or by means of fuzzy

relations.

1. Introduction

Reasoning about the behavior of systens in a qualitative way is interesting in two kinds of
circumstances : i) when the system under consideration is complex and the data available about it are
pervaded with imprecision or even vagueness ; ii) when it is sufficient to have a qualitative view of the
system and of its behavior, and this qualitative view is not only easier to get than a more precise one
from a computational point of view, but also easier to understand. From the beginning of the eighties
there have been a growing interest about qualitative reasoning in Artificial Intelligence ; see (Bobrow,
1984 ; Dormoy, 1987) for an introduction. The intended purpose of this research is mainly to provide
understandable explanations of the behavior of complex systems from their qualitative description. The
modeling is done in terms of variables which are potentially real-valued, but the analysis and the
description of the system behavior is made only in terms of three values usually, namely "-", "0" and
"+", corresponding to whether the variables are negative, zero or positive. Independently, works
motivated by research in qualitative economics, have been developed about qualitative controllability
and observability of linear dynamical systems where real-valued variables are approximated in terms of
the same three values ; see Travé and Kaszkurewicz (1986) for instance.

From the end of the seventies, fuzzy set and possibility theory (Zadeh, 1978 ; Dubois and
Prade, 1985), whose introduction was initially motivated by the niodeling of complex and ill-known
systems, has been considerably developed both from a theoretical and an applied point of view in
various directions ; particularly, fuzzy arithmetic {Dubois and Prade, 1980, 1987) enables us to handle
ill-known quantities in an easy way which generalizes interval analysis, and besides a methodology for
approximate reasoning (Bellman and Zadeh, 1977) has been settled in the fuzzy set framework. Until
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now there have been no serious attempt to use fuzzy techniques in qualitative reasoning problems in
Artificial Intelligence --if we except some hints (Raiman, 1985) and preliminary works (d'Ambrosio,
1987)-- although it would be desirable in some cases to have a finer and less sharp description of the
values of the variables than the one provided by "-", "0" or "+", Particularly, the sign of the difference
between two positive quantities cannot be determined without any information about their respective
order of magnitude.

This paper investigates what may be the use of fuzzy arithmetic and fuzzy set-based
approximate reasoning techniques in qualitative reasoning problems. First, a general approach for
refining interval values attached to variables by exploiting constraints which must be satisfied by these
variables, is extended to fuzzy set values. Then, a fuzzy interval-based approach is proposed for
handling orders of magnitude in arithmetic operations and a valid approximation technique is used in
order to insure a closure property of the operations restricted to the considered fuzzy values. The
interest of fuzzy intervals for interfacing symbolic information and numerical data, is emphasized.
Then another way of dealing with orders of magnitude based on approximate equality relations is
investigated. The concluding remarks point out some other contributions of fuzzy logic to qualitative
control and to qualitative descriptions of systems behavior.

2 - Constraint i ith f 1
2.1 - General discussion

Let X}, ..., X, denote single-valued real variables. Let A; be a subset of the real line
which is known to restrict the possible values of Xj, and let R be a relation which must be satisfied by
the Xj's and which acts as a constraint on (X1, ..., Xy). Then, the refinement of the possible ranges of
the variables Xj's taking into account R, leads to update the possible range of each variable X into a
new subset A’j in the following way

Afj={xje A;jl3 xj € Ajj=1n,j#iand (xy, ..., X}, ...,xp) € R} ¢))

More generally in case of several constraints represented by relations Ry, k = 1,r, we can iterate this
refinement procedure on each variable taking successively each relation into account over and over until
no more changes occur in the updated ranges. This is known in Artificial Intelligence as the Waltz
algorithm ; see Davis (1987) for a detail study of this procedure both from an implementation and an
application point of view. Let us consider a simple example. Letn =3, A1 =[0,2], A2 =[1,3] and
A3 =[0,2] and the constraint Xj + X5 = X3. Then we get A’y =[0,1], A5 =[1,2] and A’3 =[1,2].
Observe that any triple of values in the Cartesian product A’y x A’ x A3 is not necessarily feasible,
e.g-3 x3 € A3 such that xq + X9 = x3 with x] = 1 and xp =2,

The definition (1) expresses that A°j is obtained as the intersection of Aj with the result of
the composition of the relation R with the Cartesian product of the Aj's except Aj. This can be readily
extended to the case where the Aj's are fuzzy sets and/or R represents a fuzzy constraint ; i.e.

Vi, Vxj, p A’i(xi) = min[p.Ai(xi), Supxj min(MR(x1, ..., Xp), ¢ min lJ-Aj(Xj))] @
j=ln; j=i j=1n; j=i
where { denotes the membership functions (whose range are [0,1]) of the corresponding fuzzy sets
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and relation. When R is an ordinary relation such that Xj is a function f of the other variables X, A’j is
a fuzzy set which can be obtained by applying f, in the sense of fuzzy set and possibility theory, to the
Aj's (G #i), ie.

Vxir A% (xi) = minlpa(x{), sup min - HAx))] 3)

f(xj, j=1,n, j#i) =xi j=ln;j#

When the Aj's are fuzzy intervals and f is monotonic with respect to each variable and can be expressed
in terms of arithmetic operations, the A°j's are fuzzy intervals which can be easily computed using
results of fuzzy arithmetic ; see Dubois and Prade (1985, 1987). This extends the fact that, for
instance, in the above example the A°j's can be obtained as the result of operations on intervals ;
namely A’] = A1 N(A3 8 A2), A2 = A2 (A3 8 Ay), A3 = A3 N(A] @ A)), where the circled
symbols are used for denoting the extension of arithmetic operations to intervals. Indeed fuzzy
arithmetic generalizes interval arithmetic. Note that the refinement is obtained in (2) in one step, in the
sense that refined A’j's cannot enable us to obtain a more restrictive A’j. This can be easily checked ;
indeed, taking n = 2 for notational convenience, we have

min(pA { (x1), sup min(UR(x1.x2), KA (x2))
x

2
= sup min(A ; (x1), KR(x1,x2), sup min(uA  (x1), HR(X]1.X2)), HA,(x2))
X2 X1

= p.A'l(xl) since obviously min(p.Al(xl), HR(x1,x2)) S sup min(p.Al(xl), HR(x1.x2))
X]

In fact, (2) can be viewed as a particular case of the general approach to approximate reasoning initiated
in Bellman and Zadeh (1977) and developed in Zadeh (1979), namely, all the pieces of information are
conjunctively combined and then the result is projected on the domain of the variable(s) in which we
are interested. Indeed (2) can be equivalently rewritten
Vi, Yxj, BA (%)) = supy; min(UR(X1, - Xn)y KA (XD, -0 RA;XiDs --s KA (Xn)) 4
j=1,n; A

In case of several relations Ry the combination/projection method leads to the following
updating scheme where the Ry's are replaced by their cylindrical extensions when they do not involve
all the variables

ViLVxj, BA (X)) = supx; min(ming=1,r KRy (X1, ..., Xn)» miNj=1 uAj(xj)) (5)
j=1.n;J#i
Sming_1r [min(p.Ai(xi), 5“ij min(p.Rk(xl, «.»Xp), Min p.Aj(xj)))] (6)
j=1,n; j#i j=1,n; j#

The inequality (6) expresses that if we take into account each Ry separately in the refinement process,
we are not sure, even if we iterate the procedure as in the Waliz algorithm, of obtaining the most
accurate refinement for each variable range. However, what is got by (6) is obviously valid and more
easy to compute in general.

Note that in case of binary relations, the Waltz procedure (i.e. the separate processing of
the Ri's) yields the most accurate result given by (5), provided there is at most one relation Ry
between any pair of variables (xi,xj) and that there is no cycle in the non-oriented graph whose nodes
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correspond to the variables and edges to the binary relations. Indeed, for instance with n = 3 and two
relations, we have
HA“)(x1)=min{pp , (x1), Supxy xq MIn(R(x1,X2), KR (x2:X3), RA;(X2). KA 3(x3))

= min(l Al(xl),supx2 min(pR(xl,xz).min(qu(xz),supx3 min(HR “(X2.X3L1t A3(x3))))) )]

22-F liti g liti

In this subsection, we consider particular fuzzy relations which are of interest in practice
for qualitative reasoning. Approximate equalities or strong inequalities (e.g. 'much greater than") are
examples of binary fuzzy relations which can be easily handled using fuzzy arithmetic techniques.
Indeed an approximate equality can be modelled by a fuzzy relation E of the form pg(x.y) =
pp(Ix - yh, for instance

liflk-yI<8
S+E-Ix-yl Y
Vx, Vy, HE(.y) = max(0, min(1 , —— ="y {oitix-ylz5+e @®)
€ S+€-ix-yl .
~——"_ otherwise
€

where 8 and € are respectively positive and strictly positive parameters which modulate the
approximate equality. Then the approximate equality of variables X and Y (in the sense of E) will be
written under the form of the equality
X-Y=L ¢)]

with the following intended meaning : the possible values of the difference X - Y are restricted by the
fuzzy set L. Here L is a fuzzy interval centered in 0, 1.e. L =-L since pp(d) =gy (-d) orif we prefer
HE(X,Y) = HE(Y.x). Similarly a strong inequality can be modelled by a relation I of the form
Ki(x.y) = pg(x - y), for instance

x-y-A lifx2y+dA+p
Vx, Yy, y(x.y) = max(0, min(l, — ")) = { Oifx<y+A (10)
P X-y-A .
—  otherwise
p

where A 2 0 and p > 0. The constraint ‘X is much greater than Y' (in the sense of I) can then be
written
X-Y=K (11
where K is a fuzzy interval such that K = [K,+e<) (With fH[K +e)(t) = sup Kk (s), i.e. K identifies
sSt

itself as the set of values equal or greater than a value restricted by K.

If we know for instance that 'X{ is approximately equal to X7' (i.e. X1 - X2 = L) and that
X2 is much greater than X3' (i.e. X3 - X3 = K), we can deduce that
X1-X3=LeK
where @ denotes the addition extended to fuzzy intervals! (see Dubois and Prade (1980, 1987)). It can

1. Let @denote the extension of an arithmetic operation ~ to fuzzy sets of the real line, @is defined by
BK @L(1) = supg ¢ min(ug(s), uL(1)). Besides p.[(K)(t) =sup pK(s). When ~is the addition and K and L. are trapezoids
=5~ t t=f(s)
represented by the abscissas of the endpoints of their parallel sides, it can be proved that (ky, k3, k3, kg) @ (11,12, 13,
14) = (g + 11, kz +12, k3 + 13, kg +14) (kj or ]; may be equal to o or +oo).



461

be proved that it means that it is certain that X1 2 X3 + A -(8 + £) and that the value of the difference
X1 - X3 belongs to L ® K at the degree 1 as soon as X1 2 X3 + A +p - 8. See Figure 1. Then
depending on the respective values of the parameters, X1 is still greater than X3 (but may be not as
much as X7 with respect to X3) (if A > 8 + £), or we are only sure that X1 is not much smaller than
X3 (if A + p < 8). Moreover, if we know that X3 = A3, we shall get

X1=A1=Az3eL oK
This is a particular case of (7) where R=E,R" =1, Ap = (-e0,400) = A{.

A
1

-8-e-5 0 & S+e A Atp
Figure 1

2.3 - Linear constraints

Another worth-considering particular case of the general problem presented in 2.1 is the
one of linear systems of constraints, For sake of simplicity, we only briefly discuss linear systems
with two variables and two constraints of the form

a1X1 +bjXp2=A3
a2X1 +bX = Ay
where A3 and A4 are fuzzy sets of real numbers, and the other coefficients are real numbers. Note that
each of these constraints implicitly defines a fuzzy relation which restricts the possible values of the
pair (X,X3). Provided that ajby - agbg # 0, we can deduce, using (3), that
byA3z @bjAy 42A3 9a1Ay

X1=Al=—; X2=A7
ajby - azby azbp -agbp

12)

with A = Ap = (-e0,400) ; see the footnote 1 for the definition of the extended difference @ and of the
product of a fuzzy quantity by a scalar. If the constraints are changed into 21X| +b1X3=X3
and azX> + bpX3 = X4, with X3 = Ag and X4 = Ay, the ranges of possible values of X3 and Xy are
respectively updated into A"y = A3 "(ajA’] @bjA™) andinto A’y = Ag N(arA"] @ brA”)).

More generally, the coefficients in linear systems may be ill-known, Then direct extensions
of (12) can still be used where the a;'s and bj's are replaced by fuzzy quantities and where we use the
product and the quotient defined in fuzzy arithmetics. However in that case we get ranges which are
still valid but may be larger than the actual ranges. This is due to the interactivity constraint which
requires that the values of a; or bj should be the same at the numerators and the denominators in (12),
even if the coefficients are ill-known, and which is forgotten in a straightforward calculation. This
interagtivity constraint should be taken into account for obtaining the actual ranges. See Dubois (1987)
for a general discussion of fuzzy linear programming.
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3 - Fuzzy intervals and orders of magnitude

Standard qualitative reasoning distinguishes between values which are strictly negative (-),
zero (0) or strictly positive (+), and is based on the exploitation of the following tables for the addition
and the product

el|lO(+]-|? efl+]-1?]0

ofjo|+]~-|? +|[+]-1?]0

+{|+]+]|?]? ~-1+]?10

-H-1?]-17 ?H?]?]?]0

TH?I|? 0§j0j0]0}o0

Tables 1

where ? denotes the completely unknown value corresponding to the range (-e,+02). However, if we
know for instance that X1=+,; X3=+; X1+X32=X3

we can only deduce X2 = ? (while if X] =0, we get X9 = +). Another simple example of the
undesirably limited representation power of the above calculus is the following
if X1 =+ and X2 =+ then X3=X1+Xy=+

then the fact that X3 > X1 and X3 > X3 is forgotten. These kinds of ambiguities could be removed, if
a more precise knowledge about the orders of magnitude, which is often available, could be modelled.
Indeed we have in the general case for the first above example

X1=A1; X2=A2; X3=A3 ; X]1+X2=X3
from which we deduce Xy = A2 = Ap (A3 @ Ap).

This kind of thing still can be done in an approximate way when the A;'s are required to
belong to a prescribed set of labels, such as, for instance : negative large (NL), negative medium
(NM), negative small (NS), zero (0), positive small (PS), positive medium (PM), positive large (PL),
unknown (7). These labels can be represented by fuzzy intervals such as the ones pictured in Figure 2.
They form a (fuzzy) partition of the real line in some sense.

The condition requested to build a meaningful qualitative calculus are twofold :

C1. The advantage of qualitative reasoning is linked to the existence of symbolic calculation tables
such as the ones above. Such tables should be kept when absolute orders of magnitude are
introduced.

C2. The calculus, even qualitative, should remain consistent with the real line and the operations of
the real line of which it is an approximation.

Standard qualitative reasoning trivially meets these requirements. However going beyond the four
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symbols -, 0, +, 7 may look challenging. Indeed the closure property of the table seems to be

incompatible with condition C2. For instance let § be the totally ordered set of symbols [NL, NM,

NS, 0, PS, PM, PL} ; PS @ PS = PM looks reasonable at first sight. But PS is of the form ]0,a] and

PS @ PS =]0,2a] # PM = [a,b]. Moreover lim nPS = ?. Hence results obtained from the addition
n—3+o0

table built from § such that PS ® PS = PM is inconsistent with the addition on the reals.

It does not mean that qualitative reasoning based on absolute orders of magnitude is a
utopia. Interpreting orders of magnitude as intervals or fuzzy intervals apparently forbids the closure
property of calculation tables. But the closure property can be preserved on subsets of § containing
adjacent elements, instead of 8 itself, provided that we look for the best approximation (in the sense of
inclusion) of s; @ sj by means of unions of adjacent si's, i.e. sj ® SEY {sk). Note that the

keK
introduction of the symbol ? in the usual qualitative tables meets the same purpose, that is
+@- € {-,0,+} = 2. What is proposed is just a generalization of the way the symbol ? appears.

The example of Figure 2 leads to consider the following term set T = (NL, NM, NS, 0,
PS, PM, PL, [NL,NM], [NM,NS], [NS,PS]..., [NL.PM], [NM,PL}, 7} where [s;,Sj] = {sg |
siSsk < Sj] fors;e §-{0}, sj€ §-{0}),s; < j- Of course + = [PS,PL] and - = [NL,NS]. Note that
+1
if § has n elements distinct from O then I VI=(n +(n- D+...+ DN+ 1= u_. + 1 elements. Here
2

1) = 22, for instance. This size is not so large for contemporary computers.
L] P8 |PM | PL |PM-|PM*| +
P8 | + {PM*| PL | + [PM*] +
PM {PM*|pM*+| PL |PM*|PM*|PM+
PL |PL |PL {PL |PL {PL | pL
PM™| + |PM*| PL | + |PM*| +
PM*[PM+|PM+| PL [PM*|PM*|pM+
+ + (PM*Y|PL | + IPM*| +
Table 2 : PM- = [PS,PM] ; PM* = (PM,PL]

In Table 2 is part of the addition table (for strictly positive symbols), without any
assumption regarding the model of PS, PM, PL (except that they are adjacent). Note that this Table
corresponds to an associative operation, when restricted to positive values. However, it is no longer
possible to preserve associativity on the whole table. This is due to the approximation procedure since
associative operations remain associative when extended to intervals or fuzzy intervals. For instance
with NL = -P], (NL ® PM) o PS = -@PS = [NL,PS], while NL o(PM o PS) = NL @ PM* =1,
However this lack of associativity does not prevent to use this approach, since the ranges which are
obtained will be always valid even if they may be too large with respect to the available knowledge.
Moreover, we may try to perform operations in a way where no information is lost.
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The addition law can be improved (with regard to the precision of its results by subsequent
requirements for instance PS @ PS = PM-, which forces PS = ]0,a], PM = {a,b] with 2a £ b. Note that
it is not necessary to use fuzzy intervals. Adjacent intervals can do the job. However there will be
discontinuity problems when the (real) values of variables cross the boundaries of the intervals
modeling the symbol. Only fuzzy intervals can cope with these problems.

4 - Fuzzy relations and orders of magnitude

Orders of magnitude can be expressed in an absolute way in terms of labels such as
"small”, "medium" or "large" which can be represented by fuzzy intervals, as said in section 3. They
can also be handled in a relative way by means of relations. This is the wopic of the present section.
Raiman (1985, 1986) has proposed a formal system for order of magnitude reasoning with three
binary operators : Ne (for 'negligible in relation to"), Vo (for ‘close to'), and Co (for ‘comparable to').
Infercnce>rules, which can be justified from a Non-Standard Analysis point of view, describe how
these operators work together. See Bourgine and Raiman(1986) for an application in macroeconomics.
In the following, we discuss the modeling of these operators in terms of fuzzy relations.

The idea of closeness seems to be naturally captured by an approximate equality relation,
Raiman (1986) relates the ideas of closeness and of negligibility in the following way : 'x is close to y'
is equivalent to '(x - y) is negligible in relation to y'. In other words, *x is negligible in relation to y' if
and only if 'x +y is close to y'. If we use an approximate equality of the form HE(x,y) = pp(Ix - yl) (as
in 2.2) for modelling close to', the above equivalence would lead to a definition of ‘negligible’ which
would not be relative (since I(x + y) - y! = Ixl does not depend on y), but absolute. It can be avoided by
defining the fuzzy relation 'Vo' in terms of a quotient, i.e.

VoY) = kM) a3
y

1

where the characteristic function M)y is such that ppg(1) = 1 and ppp(t) = up(—). Thus we have
t

Hyo(xy) = Lyo(y.x) and M is a fuzzy interval which restricts values which are around 1 and which is

1
equal to its "inverse”, i.e, M = — (however we have not M2=1 1). Then it leads to define the extent to
M

which x is negligible in relation to y, by

HNe(6y) = M) (14)
y

The combination/projection method, used in 2.1, enables us to perform the composition of
Vo or of Ne with itself, or of Vo with Ne. The following results are easy to establish 2

2. Waming : in interval arithmetic and more generally in fuzzy arithmetic, the product MM is equal to M2 if and only if
M is either positive (i.e. ppM(x) > 0 => x 2 0) or negative (i.e. pp(x) > 0 = x < 0). Here in practice M is positive,
but not (M-1).
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sup min(EVo( ), o) = umm(%) 2 pyo(x,2) (1s)
S;p min{tNe(*.¥) KNe(y12)) = H[(M-1)M-1) @ 11(x—;i) SHNe(xZ)  (16)
S;p min(yo(x,y); UNe(¥:2)) =H{M(M-1) @ 1](xz—+z—) 2 PNe(x,2) a7
sup minuy(e +3. 2 ey ) = uMM(:—) 2 yox.2) (18)

They correspond to the following inference rules proposed by Raiman (1986) (for sake of brevity, here
we only discuss a part of the 30 rules used in the formal system)

(i xVoy)a(yVoz) = (xVoz) ; (i) xNey)a(yNez) = (xNe2z)

(i) (x Voy)A(yNez) = (xNez) ; (iv)(x+y)Voz)A(yNex) = (xVoz)
The fuzzy relation approach shows that several of these rules are only "qualitatively valid”. Indeed in
(15), the fact that MM is a fuzzy set which contains M mirrors the intuitively satisfying lack of
transitivity of the fuzzy relation Vo, strictly speaking. By contrast, as shown by (16), the relation Ne is
transitive. The repeated use of the formal rules (i), (iii) or (iv) without control can lead to dubious
conclusions in a way similar to sorites such as the bald man paradox (i.e., adding an hair to a bald man
leaves him bald, but if we repeat the addition...). The results of the composition of fuzzy relations,
such as (15)-(18), are easy to compute in terms of simple fuzzy arithmetic operations on M. The
fuzzy relation calculus enables us to reason about closeness and negligibility in a rigorous way without
limitations on the chaining by means of control techniques.

N.B. 1 Inference rules expressing the compatibility of the relations with respect to arithmetic
operations, such as (x Vo y) A (z Ne t) = xz Ne yt can be also discussed in our framework, Indeed it
can be proved that
u+v

Supx,y,zt Min(yo(x.y), KNe(z) = H{M(M-1) @ 1](—) 2 KNe(u.v) 19)

u=xz; v=yt v
Again we see that the rule is only "qualitatively valid", i.e. xz may be slightly less negligible with
respect to yt than z in relation to t. Alternatively, we could compute what is the possibility that u is not
negligible (in the sense of Ne) with respect to v, from (19).

N.B, 2 Note that we have only an approximate equality between UNe(x,y) and UNe(-X,y) using (14) ;

+
a perfect equality could be recovered by modifying (14) into pNe(x,y) = p.M(y X ).
y-x

N.B. 3 Raiman (1986) makes use of a third relation Co which is such that if x Vo y, then x Coy
and expresses that two values have the same sign and the same order of magnitude. We may imagine to
define Co in relation to Vo and Ne in different ways, for instance by expressing that x Co y iff
¥z, x Né z < y Ne z, following Raiman (1986). Another way would be to state that x Co y iff
not{(x Ne y) A (y Ne x)} in the sense of some fuzzy negation n to be chosen in relation with jtpf in

1
order to have max(n[pup(1 + u)], n[up(1 +—)]) 2 pp(u), Vu (in order to guarantee He, 2 Hyg)-
u
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5 - Concluding remarks

Other tools, not presented here, which have been also developed in fuzzy set or possibility
theory, may turn to be useful in qualitative reasoning. Qualitative descriptions of the dependency
between variables of the form “the more (or the less) X1 is Aj and... and X, is A, the more (or the
less) Y is B", where A{, ..., A and B are gradual properties, can be conveniently represented (by
means of a special kind of fuzzy relation) and dealt with in the framework of fuzzy logic, as recently
shown in Dubois and Prade (1988). Such gradual rules naturally provide a qualitative description of
the behavior of systems. For instance, with n = 2, Ay = 'large’, Ay = 'small', B = "large' and the

hedges "the more... the more™, we express that "“if Xy increases and X5 decreases then Y increases”
(the nature of the increasingness or of the decreasingness can be modulated through a proper choice of

HA{> HA, and pB).

Besides, a methodology for the control of complex dynamical systems by means of fuzzy
expert rules which provide a qualitative description in terms of fuzzy sets of the relation between action
variables and observable state variables, was settled more than ten years ago (Mamdani and Assilian,
1975) ; see Sugeno (1985) for an overview of existing applications. People in Artificial Intelligence
have also considered the problem of qualitative control recently (e.g. Clocksin et Morgan, 1986).

The intended purpose of this short communication is to point out that fuzzy set and
possibility theory can offer valuable tools for qualitative reasoning problems. In particular
"commonsense" arithmetic reasoning (e.g. Simmons, 1986) can be easily handled using fuzzy
intervals and fuzzy comparison relations. This framework is especially useful for interfacing numerical
data and symbolic information.
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EXISTENCE AND COMPUTATION OF SOLUTIONS FOR Till 'I'WO
DIMENSIONAL MOMENT PROBLEM
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Introduction

In this paper we deal with some problems of the theory of two
dimensional.polynomial moment problems. More precizely we give

necessary and sufficient conditions for the existence of a solution,
i.e. of a nonnegative mass distribution supported within a fixed, a
priori given subset S of Rz, which has a finite set of moments with
prescribed values.We study the problem of characterizing all minimal
support solutions, i.e. those solutions which have a minimal number of
atoms.

The connections between the restricted (or finite), classical,
polynomial (onedimensional) moment problem {as a special case of the
moment problems of Nevanlinna-Pick type) and various other problems in
the theory of orthogonal polynomials, rational Pade approximation
(interpolation of Stieltjes functions),restriction of self aujoint
operators to Krylow-subspaces, construction of guadrature formulae,
minimal partial realizations of causal linear input-output maps, are
well known. Similar applications for the considered two dimensional
generalization motivate our study. The method we use for the solution
of these problems is operator theoretic and is based on solving an
"extension problem" for pairs of commuting, self adjoint operators.The
characterization obtained for the minimal support solutions,i.c. for
the analogons of the Gaussian quadrature formulae is different from
the previous approaches, which (as far as we know) used two dimensional
orthogonal polynomials (searching for their common zeros) and poly-
nomial ideal theory, see [11] for an extensive set of historical and
current references. ile were inspired by the operator theoretic treat-
ment of moment problems as developped in [12], see also the mcthod of
the paper{16].

* on leave from Dept. of Numer.Anal.,EStvds University
H. 1088,Budapest, Muzeum k.6-8,F&e'p.
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Since the minimal support solutions are, in general non unigue
in the higher dimensional case {in contrast to the onedimensional case)
moreover their set (thus the problem of finding at least one element of
it) is not convex amd for other reasons like the complexity and stab-
ility ( with respect to errors in the prescribed moments)we propose
and study here an other,particular (nonminimal) solution , i.e. mass

distribution, the so called analytical centre of the feasible set (of

solutions). Several positive features and applications of this solu-
tion concept,like stable computability with a relatively small nu.iber
of arithmetical operations and the feasibility of high degree homo-
topy methods for computing bounds for any further,not specified
"moment’ (i.e. integrals with respect to the underlying measure)are
studied in the last section.

2. Preliminaries

Suppose that S c R" is a closed set and u is a nonnegative [Radcn)
measure supported within S. Xn the general, finite or restriced
moment problem we shall study lhere the data are the N values reals

y = f = 1=
(2.1) ¢ / K;(s) p(ds) O (), 371,

of fixed, linear {continuous) functionals wj, given by continuous on §
functions Kj’ j=1,...,N on § and one asks for the conditions of the
existence and a characerization of all solutions p which have minimal

support belonging to S:

0, s, € 8, k=1,...,n,

(2.2) M -+ min, Cj = I Kj(sk) Her Py "

In the case when S < R2, i.e. n=2, and for 8§ = (x,y) the functions

K ...,KN have the form

1’
(2.3) xiyd, (1,9) € I, i1t = N

2

where I is a finite subset of Z+

( the set of nonnegative entires)of

cardinality N, the above problem -~ the so called restricted polynomial
moment problem - is a natural generalization of the Gaussian quad-~
rature problem. Of course, one can expect a reasonably simple and
constructive answer to this problem only if I and S have a sinple

form, e.c. S is a quadrangle

(2.4) S==[a1,b1] x[az,bzi

and - for some fixed, positive I, -
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(2.5) I ={(i,3)I11 + j s L, 1,7 2 0O}.

We give now an equivalent formulation of the problem(2.2)-(2.3)
which is crucial for our approach.
Proposition 1. The problem (2.2)-(2.3)- with data set{c(I),Slis

equivalent to the existence and characterization of quadruples

#i,A,B,e , where Hl is a Hilbert spacc (whose dimension should be mini-
mized), A and B are self adjoint cummuting operators on H and e is a
nonzero vector in H such that

(2.5) ¢, =<a'Ble,e >, for all (i,j) € I.

Proof. If there is a solution of problem (2.2)-(2.3) then we define
the Hilbert space
(2.6) H: = L2(S,du), e: = 1 on §

and the operators
(2.7) A f(x,y):= x £(x,y) B f(x,yv): =y f(x,y)
which are self adjoint and commuting. The conditions in (2.2)can be
expressed as those in {2.5).

Conversely, suppose that (2.5) holds and let A,B have the eigen-
vectors (they are common and form a basis of H by the communtativity
and self adjointness of A,B) Wl,..., WMand eigenvalues XqreerXy resp.
y1;---:YM ;where M is the dimension of H
(LG)AWk=kak,
Then
{(2.9) ¢c,. = % xi yj (i,j) € I , wherepn. : =<V ,e>2,k=1,...,M.

13 Tpoy Tk Yk Pt Pk k

DY, = v¥, k=1,...,M.

This completes the proof and shows that once we constructed the
quadruple <H,A,B,e> then the quadrature formula (2.9)can be obtained
by a low complexity stable numerical method i.c.solvipgg an cigenvalue
problem.

Not assuming H to be finite dimensional we had to invcke the
general spectral decomposition theorem, see e.g. [12) ,by which a
representing measure is obtained from the associated projector measure

dp( ») = 4 ( <E(Ne,e>)
Proposition 2. If problem (2.1),(2.3) has a solution then the problem

(2.2),(2.3) also has a solution,moreover for the minimal value M we

have the inequality

(2.10) min M s II|
which is exact in the sense, that there exist (multiple conneccted)

domains S such that for the constant weight function p'(x,y)z 1 on S
and the set I as in (2.5}, for arbitrary L we have equality in (2.10)
- The first part is known as Chakaloff's theorcem see [6] and is baseca

on the simple fact that if
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R k
cC= ¥ y,e,,c ER, vy, < 0,i=1,...,R

j=1 + 1 i
then there exist a similar representation in which there are at most
k nonzero constants ¥;- For a proof of the second part see §4,ch.2in
[11]. Before going further let us indicate here the connection of the
above problem with the minimal,partial relization problem for a class
ot two dimensional shift invariant, linear input-output maps

(2.11) Yk, 1 =k-i?l'j Froi,1-3 Yi,5

by state-space models of the form
(2.12) yk,l = <h’xk,1>
¥k+1,141 = Fi¥, e T ¥k, T X, Y 9%
where F1,F2 are commuting,symetric matrices in ]! and h,g € RM,see [3].
The transfer functions assiciated to such maps

_ du(xl') - 1 J
T(w,2) —j] -(T——W)-(-{_(T—Z—y;’ —igo JEO Fijw -4

are generalizations of the one variable Stieltjas functions and should
play the same role in analyzing "passive" input-output maps. Note that
the realizability conditions have the form of complete, infinite moment

conditions, if g = h,

Fy,4 = <n,rlF)gs 1,3 <0,
It is known that the minimal partial realization problem underlies most
of the basic engineering problems of system analysis, see e.g. [2],
even if for a Suifable,more exact and stable numerical solution of
these problems other linear information functionals are better suited,
see [14] and below.Connections to(rational)approximation(interpolation)
problems for Stieltjes functions are extensively studied, see e.g.[7],

{101,014, [186].

J.Exact conditions of existence and minimality

We shall restrict our interest to so called "regular"index sets I,

which - by definition- have the following property.

(3.1) if (i,3j) € I, then (k,1) € I, for all k < i, 1 % j

In order to characterize the minimal solutioens {H,A,B,e} we have to
characterize first the sets with consits of a maximal number of

linearly independent vectors among(53.2) AiBje, i,3 2 0.

Lemma 1 In the linear space H spanned by the vectors (3.2) (if it is
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finite dimensional) there always exist a basis consisting of ele-

ments of a regular subset L Zi .

1

Proof. l,et n, be the maximum of the values n such that e,Be,..,Bﬁg

1
are linearly independent. Suppose inductively that nk,k z 1 is the
largest value of n such that Bn_111\k—1

the vectors A'BJe, with i s k-2,j s n

b is linearly independent on

and i=khj:n-2.since the

i
sequence of the nk,k—1,...satlsf1es n13 nz...: nkz 1, E nk=d1m H
the above procedure ends in at most dim H steps and yieldsa reqular

set L.

Definition. If L is a reqular set, the (generalized)Hankel-matrix asso-
ciated to it is defined by

C,

i

H . . . . := . .
L(11.J1),(12.Jz) 1+i-2.J1+J2

where we order the rows and colums of HL(indexed by elements of L)

according to the lexigographic order in Zi. Further we denote-for

a regular set L

L*¥: = {(k,1)! 3 (i,3j) €L with 1 - k-i -0, 1 = 1-j » 0}
Ly:={(k,1)13(i,J) €L,k s i+1,1=3},L,=((k,1) 3 (i,))eL,k=1i,1.j+1}

L2:

{(k,l)Ik=i1+iz,l=j1+j2,(i1,j1)€L,(i2,j2)€L)

Theorem 1. The necessary and sufficient condition for the existence -
given the moment data c(I) - of a nonnegative representing measure
supported in at most M points of S is that there exists a regular
set L of cardinality m and an extension of the data from c(I) to
c((L*)2), i.e. an assigument of values to the unspecified moments
in c((L*)z) such that the matrix H

{3.3)rank HL = rank HL*.:M.

Moreover the minimal value of M for which the above two conditions

L* is positive semidefinite and

can be satisfied equals the minimal number of knots in the corres-
ponding culature formula,
Proof. In order to understand the role of the matrices “L and HL* note
that these are theGram matrices associated to the set of vectors
W(L) = {Ainje 1(i,j) € L}
W(L*) = (A¥BSviv e w(L), O - r = 1, 0+ s+ 1}.
The necessity of the conditions (3.3) follows now from Proposition 1 and
Lemma 1 since Gram matrixes should be positive semidefinite and their
rank equal the dimension of the space spanned by the underlying vectors.
To prove the sufficiency of the conditions we have to construct a quad-
ruple (H,A,B,e) , such that dim H = rank Hy, and (2.5) holds. Now we
define H as the Hilbert space spanned by vectors Vij indexed by the

element (i,j) €L* , whose scalar products are specified by
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< Vy,9%,1% T Ciak, 41
Since rank HL = rank H{, , the operators A,B defined by

AV, . =V, . BV, .=V, . ., (1,j7)€ L
i,3 i+1,3 i,3 i,3+1
are hereby defined on the whole space H, moreover they are well

defined: if
Vr’S = (i'§)€L “i,j Vi'j, i.e. & °‘ij<vi,j'vk,1>:wr,s'vk,l)
for all (k,l) € L*¥ , then
Vr+1,s Ti,%)GL ai,j Vi+1,j and Vr,s+1 =(i?j)€L « i,jvi,j+1
hold. Indeed multiplying the latter relations by Vk,r(k'l)E L, the
relations obtained are consequences of the previous ones because HL is

a submatrix of HL and HL and these are submatrixes of HL*.
1 2

These operators A and B are clearly symmetric (i.e. self adjoint)
since for all (i,j),(k,1)€ L

< Avi,j'vk,l> = ci+1+k,j+l = i,j k,l>
and they commute, since
< ABVi

c =<BAVi'j,Vk'l)_

37k, T
By this the theorem is proved.

The difficulty with this extension problem is partly apparent from the
following fact:the restriction of the original say infinite dimensiocnal
operators A and B to a Krylow-like subspace W(L)} are symmetric but

they may not commute, (in general, they do not commute).- It is not

i+tk+1,3+1+1

clear what further connections (if any) exist between the set I (and
the values c(I)) on one side and the possible sets L on the other side,
is it true that L can be chosen as a subset of I?

These sharp differences between one and higher dimensional polynomial
moment problemshave been observed e.g. in [13]),where it is first shown
that in the twodimensional trigonometric,finite moment problem the non-
negativity of the associated, generalized Toeplitz matrix (the precize
analogon of our Hankel matrix) is not sufficicient for the solvability.

The theory of normal extensions of operators,see the appendix written

by Szokefalvi Nagy in [12],is clearly related to our problem since the
operator A + iB = T should be normal, for A,B to be symmetric and
commuting and vice versa. The conditions - in terms of c{I) - for the
condition:spectrum T < S can be easily written down in the case {2.4):
the following matrixes should be nonnegative definite

(3.4) HL1 - a1Hl ' b1HL-HL1 ' HL2 - a2HL, b2HL - HL2‘

If 5§ is the disjoint union of two qpadrangles Q1 and 02 than we have to

require that there exist a decomposition of each of the moments (fixed
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or assigned) such that
_ 1 2 - %12
Ci,j = cij (Q-I) + Ci,j(Qz) 1] (113) € (L*)
and (3.4) holds for the respectively decomposed matrixes.As an example
of a simple application of Theorem 1 we metion the following fact:

fir six data (co Pees 3Cy 2) if the coresponding 3 x 3 mattix
’

;iC
,0'71,0
is nonsingular the minimal measures should have 3 atoms and they con-

stitute a one parameter family.

A_new numerical approach to solve the existence_problem.

It is very difficult to handle the constraint(3.3) numerically, the
set of solutions of the minimal extension problem is not convex.
Observing that the finite dimensional analgon of the solution set to a
moment problem (2.1) has the form of a polyhedron ( in the sequel we
often use abbreviations for N tuples (C1""’CN) = cN)

N N

4.1 K=K (k,e) = { plaky,pr=cy d=1,..,N, p € R])

we see that searching for the extremal points "vertices" of K.

It is known that the parameters of a Gaussian quadrature are very ill

condifioned functions of the moments ( note that(2.1) is something like

an integral equation of the first order whose right hand side is known

only at some points) - and this has its parallel in the fact that the

vertices of a polyhedron H(kN, cN) are nonsmooth functions of the data
N N

N, or (k ,c }.

c . .
We propose now using an other specific solution,theanalytic centre”

of the solution set, in order to solve the existence ( and some related
estimation) problems, in a numericaly more feasible manner.
The analytic centre P(K) =P(kN,cN) of the polyhedron(4.1) is defined

as the unique point which solves the following optimization problem

m . . .
max(i£1log Pil(kj,y = Cj,j=1,..,N,Pi z 0,i=1,...,m}

If the polyhedron is represented in its own spacce (of dimension m=N, in
general), i.e. K - P = P(am,bm)

P(a™,b™ = (xIb ~<a,,x) 2 0, i=1,...,mx € &V

)

by the map Py = bi-<ai,x> ,i=1,...,m, then ; = x (a™,b™) the point,
which solves the problem (assuming int P # @)
m m . m
max{ I (bi—(ai,x))Ix € P(a ,b )},
i=1 m ,m =, m m
One can prove that the map (a ,b’) - x(a',b) is affine invariant

and thete exists a two sided ellipsoidal approximation for P around Xz

X +EcPcx +mE, E={ zI{Az,2> s 1)}
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where the symetric matrix E = E(am,bm)is easily obtained from §(am,bm)
see [14),[15]. The fact that i(am,bm) = ;(kN,cN) is an analytic, very
smooth function of the data allows to solve the feasibility and linear
optimization problems by a homotopy approach,see [15],which we gene-
ralize now as follows.

The analytic entre of the set (2.1) is defined (if its cxists) as

the solution of the problem
[ ' = S
(4.2) sup(é log P (s)ds| é Kj(S)P (s)ds = cj, ij=1,...,N}.

It is easy to prove that the set of values cN for which (4.2) has a
solutionis convex and dense in the set of all feasible cN, if s is

a domain, i.e. closure {int S} = §. For the trigonometric moment pro-
blem this solution was studied already about 1920, see [10},{14].
Lemma 1. The solution of the problem (4.2) - if it exists - has the
following form N
-1
L] -—
B (s}) = (£ a; K.(s))
j=1 3 3
for suitable uN € RN, which in fact is then the unigue solution of the
equation
OF (a) _ N -1 .
(4.3) ——~ =] K.(s) ( £ a,K,(s)) ds =¢.,j=1,...,N

such that Iz quj(s) is positive on S, here

(4.4) F(a) =Sf log ( X quj(s))ds

Proposition The moment problem (2.1) has a solution if and only if the
homotopy path a(X) can be continued from = 1 till A= O, where uN(A)
O < 2 5 1 is defined as the solution of (4.3) where cN is replaced by
N N
(1 -2ac” + ACq
N (-] '1
N = f KNs) (I K, (s)) ds
s S j=1 33

and £ a. K, is an arbitrarily fixed polynom which is positive on S.

=1
The proof is a simple application of the implicite function theorem.
For brevity we can only rafer t{[9]),[15] for the application of this
method for the estimation of (computation of exact upper and lower

bounds in terms of the moments cN for
1(cM) s i K (s) p(ds) s uch)

It can be expected that for smooth analytic kernel functions
Ko’KI""'KN
of the measure (of the set S) and algorithms based on the simplex

this approach is superior to those using discretizations

method (note that the latter methods use- as a tool - extremal solu-

tions, only piecewise smooth homotopies) jconcerning numerical test
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results on this approach-using homotopies along analytic centers- to
solve linear programming problems, see{9].

The special sclution of (4.2} in the case of the (real)trigono -
metric moment problem - where Kj(s) = exp(i(j-1)s), s €[-N,Nland y a
measure on[-NI,N1](which is symetrical to zero)-,which is a special
case of the Nevanlinna-Pick moment problem, is the so called
"maximum entropy" solution. These analytical centers, more precizely
the coefficients of the trigonometric polynomiall[ ﬁ'(eis)]_1 are ratio-
nal functions of cN which can be computed rather quickly:in 0(N2)
arithmetical operations. This and other observations, see[15]lead to
the idea that for the extrapolation of the function aN(x)rational
(multipoint Pade) approximation - with Newton type corrector step to
solve (4.3) - will furnish a rather efficient path following method.
In fact, in a problem closely related to (4.2), the use of a special
rational extrapolation method can be justified rigorously using a
generalizaiton of the well knwon fact (see e.g.[7]) that the multi-
point Pade approximants (i.e.interpolants) to a Stieltjes function
are again Stieltjes functions, see[15].

In order to solve - over some domain S - the closely related uniform
approximation problems
min{{ K _(s) - § B.K. Il
ﬁN o joq i
we propose following the homotopy path BN(X) determined by

L”(s)

N
sup (log(x—s) + f(log (Ko(s)— z BiKi(s)—£)+ log (c-Ko(s)+
(e,ﬂN) S i=1

N

151 B;K;(s)))ds .

Of course,the sucess of these methods depends (among others) on the
availability of fast and accurate methods for approximating the above

integrals as well as those in (4.3}.
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SPECULATIONS ON POSSIBLE DIRECTIONS AND APPLICATIONS
FOR THE DECOMPOSITION METHOD

G. Adomian

The decomposition method has now been applied to a rather
wide class of nonlinear differential and partial differential
equations. An interesting characteristic is that once a problem
is modeled with a specific (linear, nonlinear, deterministic,
stochastic, ordinary or partial differential) equation with
physically correct conditiong specified, the usual
linearizations, perturbations, closure approximations, white
noise assumptions, or discretization are avoided. Certainly,
much remains to be done on the theoretical foundations and
precise limitations which can be viewed as a fascinating
challenge for further research. Valuable work in this
direction has appeared by Professor N. Bellomo and his co-workers
{1]. The range bf problems solved and the accuracy obtained -
the fact that nonlinear systems with stochastic parameters are
included in the methodology - and the fact that the work has
applied to parabolic, elliptic, and hyperbolic equations -
suggest that this may be a useful and computational method for
frontier applications. Proof of convergence and convergence rate
in solution of partial differential equations, error estimates,
and perhaps better generation of the author’s presently used Ap,
polynomials or equivalent new forms are fertile areas for further
study and dissertations. Many other research topics are in the
area of applications; some are discussed in [1].

Let us point out some speculations on possible applications
noting that these applications require the development of a
correct mathematical model before decomposition can possibly
solve them. It is not useful to apply the method to many
existing models since they have already been linearized and
otherwise simplified for mathematical tractability. The solution
from such simplified models can differ, sometimes substantially,
from the actual models. Also, since the decomposition technique



480

does not require discretization, it is evident that in a
difficult problem such as Navier-Stokes, use of decomposition may
provide appreciable saving in computation time.

Nevertheless, some possible applications which represent an
exciting challenge are areas such as nonlinear and possibly
stochastic and multidimensional optimal control theory,
hypersonic flow, quantum theory and gravitation, generalization
of the Kalman filter, and problems of large space structures such
as vibration, heating, etc., [3].

Before going into these areas, let’s look briefly at some
illustrative decomposition examples (chosen for clarifying the
procedure rather than for difficulty.)

Example 1: d2y/dx? + 2x dy/dx = 0 with y(0) = 0 and y(a) = 1.
The solution is y(x) = erf(x)/erf(a) or

x3 x5 x7  x9
X ==+ = == 4 —

y(x) = 3 10 42 216 "
a3 a® al a’
a--—.'.——--—.',——-...

3 10 42 216
By decomposition we write (letting L = d2/dx?2)
Ly = -2x(d/dx)y
Operating with L™l , a two-fold integration:
Y = yg - 2L71 x(d/dx)y

where yg = c¢; + cox . If we satisfy the boundary conditions we
have ygp = x/a which is our first approximation ¢; . The
@

complete solution is y = E: Yn and our approximation
n=0

n-1 ©
to some n terms is ¢, = >, yj; . Substituting y =2, yp
i=0 n=0
above we identify



481
y; = =2L"1x(d/dx)yq

Yy = -2L'1x(d/dx)y1

Yn = -2L71lx(d/dx)yn-;
Thus y; = =2L~1x(d/dx)(c; + cyx) = -cy x3/3 ,

y2 = =-2L"1x(d/dx) (-c3 x3/3) = c, x5/10 , etc. A three-term
approximation, for example, is

3 = Yo t Y1 + Y2
= Ccq + Ccyx - Cy x3/3 + cy x5/10

satisfying the boundary conditions with ¢5 , i.e., a three-term
approximation, we have

3 5

N SN <

u = 3 10
a2, 2

3 10

which can be carried further if necessary.

Example 2: d2u/dx2 - 40xu = 2, u(-1) = u(l) = 0. Let
L = d2/dx? and write [1)
Lu = 2 + 40xu

u=c, +ox+ L 1(2) + L7t (40xu)

@
Let ug = cy + cyx + L71(2) =cy + cox + x2 and let u =3, uj.
n=0
The components of u are given by

Upey = L™laoxuy
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for n 2 0 thus:
uy = L~ l4oxug = (20/3)c;x? + (10/3)cyx? + 2x53

Similarly,

u2 = (80/9)c1x6 + (200/63)c2x7 + (10/7)x8

n-1
We continue to some n-term approximation ¢, =2, uj which
i=0
[
approaches u= > u, as n + o (1]. If we write 5 as an
n=0
approximation,

+
03-1104'\11 \12

2 3 4
=-c, + c X +x + (20/3)c1x + (10/3)c2x

+ 2x° + (80/9)c1x6 + (200/63)c2x7 + (10/7)x°

Imposing the boundary conditions at -1,1, we write
03(1) = 03(-1) = 0 to get

149/9 473/63
29/9 -53/63

c
c2

from which c¢;, c; are evaluated. Substituting ¢, into the
left side of the differential equation, we should get the right
side, or 2, if the approximation is sufficient. We note that the
12-term approximation yields 2.000000 or seven-digit accuracy.

on R3 with Ly = 3%2/0x2, L, = 32/2y2, Ly = 22/02%2 we
write

(L, + LY + L,Ju = f£(x,y,2) + k(x,¥,z)u

Solve for each linear operator in turn. Operate on each of the
three equations with the appropriate inverse and write



483

u=o + LY -1 tku-1 (L +L)u
X X X X 'y z

u=o¢_ + LY -1 tku-1 YL +L)u
Y Y Y Y z X

u=o + L1t -1 ku - L 3L + L )u
z 2z z z X '

where " vy, », are the homogeneocus solutions. Adding and

dividing by 3,

u=u + Ku
0

with

-1 -1 -1
u0 = (1/3)(0x + vy + oz + (Lx + Ly + Lz 1 £}

1

-1 - -1 -1
K= (1/3)((L + Ly + L, )k + L, (Ly + L)

-1 -1
LI, 4 L) 4L (L + L))
-]
assuming u=32, u_,
n
n=0

Yy = Ky,

so all components are determined. The inverse operators are

double integrations leading to two constants of integration to

be determined by forcing u, to satisfy the given condition.
Suppose k = k(u) so the equation becomes nonlinear. The

-]
nonlinear term is expanded as ), A, where the A, polynomials
n=0
are generated for the nonlinear term as discussed e.g. in (3].
For analytic functions £(u) , the sum of the A, can be
shown to be equivalent to a generalized Taylor series about
the function ugp . The procedure is now as before except that
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the wup;y will involve an A, term. Since each A, depends only
on ug,uj,...4,, the solution can be obtained essentially as
easily as in the linear casa.

The generation of these polynomials has been discussed in
previous work. However, for convenience, we provide a useful
heuristic rule to write the A, in general. The A, for
polynomial nonlinearities being sums of various products of the
uj up to i =n can be written in symmetrized form. For

@
Nu = u2 = 3% A, , for example, Ag = ug , Ay = 2uguy ,
n=1

2
Az = u, + 2uguy , etc., but we can write this as Ag = ugug ,

A; = ugu; + ujug , Ay = uguy + uyuy + usuy , ete., i.e., the
first subscript goes from 0 to n , the second from n to ©
such that the sum is n .
n
For more general forms, we define A, = > c(v,n) £(¥) (uq)
v=1
vhere f(V)(uo) represents the vth derivative of f£(u)
evaluated at u = uy . To get the c(v,n) we first ask how many
combinations of v integers will add to n . Thus c(v,n) will
mean the sum of possible products of v ujy’s whose subscripts
add to n. To get c(2,3), we see that two integers can add to
3 only if one 18 1 and the other is 2 , if zero is excluded.
Hence, we write c¢(2,3) = uju; . To get c(1,3), the coefficient
of f(l)(uo), we have one uj and its subscript must be 3 ,
hence c¢(1,3) = u3 . For c¢(3,3), we need three factors uj
with subscripts summing to 3 ; hence each subscript must be 1

and c¢(3,3) = ujujuy = ui . As stated so far however, this rule

is incomplete. We must also divide by the factorial of the
nunmber of repetitions to use the formula as stated. Thus

c(3,3) = (1/3!)u: » We have now

Az = uze(l)(ug) + uguyr(2) (ug) + (1/31)ui £03) (ug) .
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£(")(ug) for v from 1 to 6 . The coefficient of £(6)

must involve six integers adding to 6 or ui : hence the

coefficient is (l/él)ui . What about the coefficient
c(2,6) for £(2)(ug) in Ag . These are (1,5), (2,4), and
(3,3). Thus the coefficient c¢(2,6) Iis (1/2l)u§ + ujuy + ujug.

Thus the A, are as follows:

Al = ulf(l) (uo)

Ay = up£(1) (ug) + (1/2)ui £(2) (ug)
Ay = u3f(1)(uo) + ujupf(2) (ug) + (1/3!)uif(3)(uo)
Ay = ugf(t) (ug) + [(1/2!)u: + uyu;1£(2) (ug)

+ (1/20)uPuyf(3) (ug) + (1/40)uie(4) (ug)
12 0 1 0

Example 3: Consider Duffings equation
Y" + ay’ + By + 1y? = x(t)

which we write
Ly = x(t) - ay’ - By - 7y’

o o
-1 -
Y=Yo-L @« (d/8t) X3 yp -L"lv 3 A,
n=0 n=0

Given initial conditions y(0) and y’(0) , we identify
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Yo = Y(0) + ty’(0) + L1 x(t)
y1 = -L7la(d/at)yy - L™18 yg -L717 2,
Y2 = -L7la(d/at)y; - L1718 vy - 171y A

The A, polynomials to represent the nonlinearity y3 are given

3
Ao = Yo

2

Ay = 3Y0Y1

2 2
Az - 3y°y1 + 3Y0Y2

3 2
Ay = y) + 6Yqviyz + 3¥yY3
2 2 2

Ay = 3Y1Y2 + 3Y0Y2 + 6ygY1Y3 + 3Y0Y4

2 2 2
Ag = 3Y1Y2 + 3Y1Y3 + 6YgYaY3 t+ 6YqYi1Ysq + 3Y0Y5

3 2 2 2
Ag = y, + 6y1YaY3 + 3y, Y4 + 3ygy, + 6YoYaYs t+ 6YQY1Ys + 3Y. Y6

Thus the solution is determinable to any desired n-term
n-~1 ®

approximation ¢, = 2: yi which converges to y = 2: Yn -
i=0 n=0
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n-1 o
approximation e, = 3} y; which converges to y =2, ¥p -
i=0 n=0
©
The 2. Ap constitutes a generalized Taylor series about
n=0

the function yo(t).1

Btochastioc Case: We could have stochastic fluctuations in
a, B, or 71 in the above example, in addition to stochastic
X(t) or initial conditions. Thus, in general, we could write

a = <a> + ¢

B = <B> + 1

T =<9> + 0

vwhere ¢, W, ¢ are zero-mean random processes. The solution
process can now bé obtained from

-]
Ly = x - a(d/dt)y - By - 7 2, Ap
n=0
[
- ¢(d/dt)y -~ ny - ¢ 2, A,

n=0

where the A, summation represents y? in the Duffing case and
(d/dt)y3 in the Van der Pol case. Thus,

Yo = Y(0) + ty’(0) + L"1x
Y1 = —a(d/dt)yg ~ Byg - 11

~¢ (d/dt)yq - nyp - 0Aq

1. See reference (4}
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Yy = —a{d/dt}y; - 8y - 1A1

-€ (d/dt)yl = ny; - Ghl

©
Then y(t) =2, yn(t) yields a stochastic series from which
n=0
statistics can now be obtained without problems of statistical
separability of quantities such as <Ry>, where R = ¢ (d/dt) - n,
which normally require closure approximations and truncations.

We note that no statistical linearization is necessary. We
do not need to assume x(t) is delta-correlated or stationary or
to neglect parameter fluctuations.

Rather than further discussion of the methodology on which
there is now a considerable published literature in the U.S. and
Europe, let us speculate on some applications which appear to be
possible in the very near future although they require the
modelling expertise of theorists concerned primarily with each of
those areas.

Some of these, in the author’s opinion, are

1) optimal control for nonlinear stochastic systems

modelled by ordinary or partial differential equations.

2) hypersonic flow, turbulence, single-stage-to-orbit flight

(essential for shuttles which can be used for the
construction of space stations,)

3) quantum theory and gravitation

4) generalizations of Kalman filtering.

Because of page and time limitations we discuss only the first
two here.

1) Suppose we consider a nonlinear and possibly stochastic
system which we want to control in some optimal way. For a
linear control system with a quadratic performance index, of
course an analytical solution can be made. Consider the state
equations
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x(t) = f(xl,...,xn: ul,...,um;t)

i.e., a set of n nonlinear differential equations with x(t)
representing a state vector with n components f1¢+++,fn, and
x(tg) a given initial vector. Define, for example (4] a
performance functional J(x,u,t) given by

- t1
T = elx(t)), t,] + jto F(x,u,t) dt

where ¢ and F are scalar functions with necessary smoothness
properties. lLet p = [pl,...,pn]T be a vector of Lagrange
multipliers and form an augmented functional

J! = v[x(tl),tl] + I:: [F(x,u,t) + pT (f-*)] dt

Integration by parts leads to

t

t
T 1
Jr=e - (px] |+ It

1 M+ p’ x] dt
0 0

with H defined as

H(x,u,t) = F(x,u,t) + pr .

If u is defined on tp < t £ t; , we vary u and find the
variation 3J’ corresponding to 3u, leading to the n adjoint
equations,

. 2H
Py = = ;;I

s0 Wwe have a system of 2n nonlinear differential equations with

two-point boundary conditions. Although this approach has been

discussed by R.E. Bellman and many others, perhaps most recently

in [2], analytical solution has usually not been possible except

by numerical methods. We now have a potentially valuable



430

alternative since such systems of nonlinear differential
equations have been solved (even for the stochastic and/or
multidimensional cases) in a analytic approximation by the
decomposition method.

Another possibility is through solution by decomposition of
the matrix Riccati equation which appears in invariant embedding
and neutron transport theory as well as modern control theory.
Consider

R/ (x) = B(x) + D(x)R(x) + R(x)D(x) + R(x)B(x)R(x)
R(0) = 0

where B, D, R are continuous n X n non-negative matrices.
Suppressing the argument x , we have

R’ = B + DR + RD + RBR
If L = d/dx
IR = B + HR*+ NR
where IR = R’ , HR = DR + RD , and NR represents a nonlinear

operator on R . Since R(0) = 0 , operation with L1 on both
sides yields

R=L 18+ L %R+ LR .
Let R and NR be written in terms of the A, polynomials.

@
For R this is equivalent to writing R = E: R, «+ For NR we
n=0

[+ ]
write >, A, . Identify Ry = L™1B ; then
n=0
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for n21. The A, for NR are given by (1)

A =R B RO

RO B Rl + Rl B RO

Az = R1 B Rl + Ro B R2 + Rz B Ro

3 = RO B R3 + R3 B RO + Rl B R2 + R2 B Rl
4 R2 B R2 + RO B R4 + R4 B Ro

+ +
Rl B R3 R3 B Rl

so that

nonL"l B

-1 -1
+
Rl =L H Ro L RO B RO

-1 -1
Rz =L H R1 + L (Ro B Rl + Rl B Ro)

-1 -1
+
R3 = L H R2 + L (Rl BR, + RO B R R_B RO}

1l 2 2

Finally, since HR = DR + RD
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-1
R, =L B
R. =L YpR +R D} + L YR BR.
1 0 o 0 o
R.=L DR, +R. D} + L Y(R_ BR, + R, BR_}
2 1 1 0 1 1 0
-1 -1
= +
R,=L (DR, +R, D} +L (R BR +R BR, +R BR)
n-1
An n-term approximant is e, = 3. R, which approaches
i=o0

-]
R = E: R, as n *» o , Thus, given B, D, a specific R can be
i=0
calculated to a desired approximation. Accuracy has been
demonstrated in {3].

(2) Hypersonic Flow: The present approach to hypersonic

flow problems is computational fluid dynamics (CFD), and
intensive work is being done to develop appropriate CFD computer
programs for the hypersonic case. With continuing rapid
developments in supercomputers, this emphasis is certainly
appropriate. Yet, another methodology now appears promising
which is quite different and seems to have a high potential for
important advantages as well as a probably high adaptability to
supercomputers. This is the decomposition method.

It yields a rapidly converging series solution in analytic
form. It requires no linearization, perturbation, closure
approximations, or assumption of special mathematically tractable
stochastic processes such as delta-correlated processes.

Probably most important is the fact that discretization into
grids is unnecessary. Hence, computation should be less, and the
difficulty of different time scales in turbulence is avoided.

In the types of fluid flow which interest us, velocity,
density, and pressure are stochastic, not constants. Present
treatment of Navier-stokes equations solves a simplistic
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model, not real behavior. Turbulence is a strongly nonlinear,
strongly stochastic phenomenon and cannot be understood by
linearized perturbative treatments. The theories of physics are
perturbative thecories and the theories of mathematics are for
linear operators (other than some ad hoc methods for special
nonlinear equations). WwWhat is needed is a way of solving one or
more nonlinear stochastic operator equations whether algebraic,
differential, delay-differential, partial-differential, or
systems of such equations. The computational accuracy of a
supercomputer is dependent on the sophiastication of the
mathematical methods programmed into it. Typical calculations
consider millions of discrete time intervals made small enough so
that trajectories between them can be taken as low-order
polynomials, e.g., gquadratics.

In generalized hydrodynamics, the form of Navier-Stokes
equations is kept, but time and distance scales are introduced so
one can go beyond continuum approximation and take account of
molecular structure. However, application to a real situation
becomes simply a test of the validity of the linear
approximations, as pointed out in the literature. Fluctuations
are , as usual, assumed "small," and delayed effects, due to the
fact that responses cannot be instantaneous, are ignored.

When one studies airflow about aircraft surfaces,
computations must be made at tens of millions of points, and it
is felt that by increasing the volume of computation to the limit
in an ultimate extrapolation, supercomputers will yield complete
accuracy. Not only does this ignore stochasticity, it ignores
the sensitivity of nonlinear stochastic systems to very slight
changes in the model - in fact, to changes essentially
undetectable by measurement.

To solve an.aircraft problem on contemplated next-generation
computers, a 3-dimensional mesh is generated which discretizes
the system of nonlinear partial differential equations into a
million, a hundred million, or perhaps a billion coupled
difference equations in as many unknowns. One begins to see then
the tremendous data handling problem, the necessity for improved
algorithms, and the need for still greater computational speed,
We may also have many unknowns at each point, and, as we have
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pointed out, the system nonlinearities and random fluctuations
need to be taken into consideration. 8ince usually solutions are
iterative - first solving an approximation to the original system
of differential equations and then improving the solution by
repeated substitution of each new solution - parallel processing
is complicated by the difficulty of partitioning the work so that
each processor can work independently. This is being pursued by

many ingenious ideas necessitated by the brute force method of
discretization.

In all such problems we need to be able to solve coupled
systems of nonlinear (and generally stochastic as well) partial
differential equations with complex boundary conditions and
possible delayed effects. These systems are linearized and
discretized (and the stochastic aspects either ignored or
improperly dealt with) so that the various numerical
approximation methods can be used. This requires faster and
faster supercomputers to do these computations in a reasonable
time.

Unfortunately the further developments in supercomputers can
quite possibly give wrong answers because even a single
one-dimensional nonlinear differential equation without
stochasticity in coefficients, inputs, and boundary conditions -
let alone vector partial differential equations in space and time
with nonlinear and/or stochastic parameters - is not solved
exXactly. Real systems are nonlinear and stochastic. When these
"complications" are ignored or approximated by assumptions such
as weak nonlinearity, white noise, etc., we have a different
problem! i.e., a mathematized problem, not the original
physical problem. The model equations, even before the
linearization, discretization, etc., are already wrong because
the stochastic behavior is generally not incorporated or is
incorporated incorrectly as an afterthought.

Our approach to hypersonics, using decomposition, will be
based on previous work on Navier-Stokes [4) which showed that an
analytic solution is possible. For hypersonic cases, additional
effects are present changing the model equations but the approach
is similar. Discussion of the mathematical methodology, let
alone the huge subject of hypersonics and turbulence is, of
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course, not addressable here. We can only call attention now to
the possibility of some alternatives to the present approaches.

References

Bellomo, N. and Riganti, R. Nonlinear Stochastic Systems in
Physics and Mechanlcs, World Scientific Publ. co., 1987.

Barnett, S. and Cameron, R.G. Introduction to Mathematical
Control Theory, Clarendon Press 1985.

Adomian, G., Pandolfi, M., and Rach, R., An Application of
the Matrix Riccati Equation to a Neutron Transport Process,
J. Math. Anal. and Applic., in publication.

Adomian, G., Nonlinear Stochastic Systems Theory and
Applications to Physics, Reidel, 1988.



CONTINUITY of TRAJECTORIES
of

RANDOM WALKS with INFINITESIMAL STEPS

by

E.RBenoit *
B. Candelpergher *
C. Lobry *

* Centre de Mathématiques appliquées, Ecole des Mines de Paris, Sophia Antipolis, 06565 VALBONNE Cedex
France
et G. R. Automatique - EN.S.LE.G. , B.P. 46 , 38402 Saint Martin d'Heres France .

¥ Laboratoire de Mathématiques, U.A. 168, parc Valrose, 06000 NICE , France
et G. R, Automatique - EN.S.LE.G. , B.P. 46 , 38402 Saint Martin d'Heres France .



498

In may 1985, E. NELSON gave a very short introduction to "Stochastic
Mechanics" to an audience of Nonstandardists and wrote it in "What is stochastic mechanics"[ 9 ].
In accordance with the title of the meeting : "Mathématiques finitaires et Analyse non Standard ", he
defines diffusion processes as discrete objects and at the end of his paper he says : << Each
solution of the Schrédinger equation describes a diffusion process in which the particles have
continuous trajectories ...>> but actually in this very short paper he does not explain in what sense
a "discrete diffusion” has "continuous trajectories” . At the same time a set of notes by NELSON
himself, now published as RADICALLY ELEMENTARY PROBABILITY THEORY [11}, was
circulating, in which he defined the mathematical Brownian motion as the process :

X, given

Xeade = Xg + ZoVdt

where t =0, dt, 2dt, 3dt, ....Ndt and Z, is a sequence of independent random variables with values

+ 1 and expectation 0 , and proved, among other things, that "almost every" trajectory of this
process is "continuous” .

So, in view to make precise what are "continuous trajectories" of discrete
diffusions we decided to extend some results of [11] to more general processes of the form :

X, given
Xpadt = Xy + b(xp 1) dt+ s(x,0) ZoVdt
where t = O, dt, 2dt, 3dt, ....Ndt and Z; is a sequence of independent random variables with values

+ 1 and expectation O or a more general process. This has been done and is written now [ 1] .
The objective of the present paper is to explain to an audience of
Non Nonstandardists how, thanks to the existence of infinitesimals, it is
possible to give a precise mathematical status to the sentence :
" Almost every trajectory of the above discrete diffusion (or random

walk) is continuous”.

This will be done in the first three paragraphs . In the first one we introduce the reader to Non
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standard concepts . We try to explain to him , mainly on the exemple of a deterministic walk of
infinitesimal step how finite sets, with unlimited number of elements, are the nonstandard
equivalents of a continuum like the set of reals . In the second paragraph we give the definition of
what we call a "discrete diffusion process” and state our principal results . In paragraph 3 we give
an outline of the proofs, assuming for granted NELSON's results .

Very often in mathematics one is concerned with the “limit of some object, for
instance a diffusion process, when some parameter goes to infinity". What does that means when
one parameter of the problem, dt in the case of discrete diffusions, is already fixed as an
infinitesimal ? We explain this point on an example in the last paragraph .

Few papers [2] , [3] , [6] related to these topics have been written by the
authors of this note .

1 Introduction Non Standard concepts .

Everybody knows what are the classical mathematical objects N,R and how to
use them .The main idea of the practice of N.S.A. advocated by NELSON [8] , REEB[13], LUTZ
and GOZE (7], DIENER (5], DIENER et REEB [4] is to add a new undefined predicate st(x)
which reads "the object x (previously defined by classical mathematics) is standard" , plus some
axioms which rules the manipulations on st . It turns out that now we are in position to formulate
sentences about mathematical objects which might be more rich than the classical ones . Those
which use st or a derivate are called external and classical sentences - those which are
understandable by a classical mathematician who never heard about st - are called internal .

It can be proved that the introduction of st and the three axioms Idealization,
Standardization, Transfert (I.S.T.) is relatively consistent to Axiomatic Set Theory and thus is
"relatively" secure ( See 8] for the definition of I.S.T. ).

From LS.T. one easily deduces the following that we will take as our first axioms in this note :

O is standard
if n is standard, n+1 is standard
if m is smaller than a standard integer n then m is a standard integer

there exist an integer, say ©, which is not standard
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One must be carefull that the induction result of classical mathematics does not applies to "the set of
standard integers" because this sentence, being external, does not define a subset of N .
Every nonstandard o is called unlimited because from the above rules every

standard integer is majorized by «» .Now the definition of unlimited real is clear ( every real which
is greater in absolute value than an unlimited integer considered as a real ) and also of infinitesimal (

0 or the inverse of any unlimited real ) . Two reals are equivalent ( x = y ) if their difference is an

infinitesimal . From the fact that R is complete one can deduce that every limited real ix is
equivalent to a unique standard one denoted by °x .

Continuity ,
Definition : A function f from R to R is called S-continuous at point x if y ~x = f(y)=~ f(x) .

We say S-continuous in order to distinguish this My
external concept from the classical concept of nl

continuity .The interesting point is the following : Let -
¢ be a fixed number different from O ; the function =

¢Int(x/ €), is never continuous at points O,¢ 2¢, 3 -~

v

€, e in the classical sense, but it is S-continuous -~

everywhere, provided ¢ is an infinitesimal .
Conversely, the function x +— sin(ox), with ©
infinite, is continuous, but not S-continuous .

In the case of a normed space the definition is the
same .

There is another interesting point in the external concept of S-continuity : The function f need not be
defined everywhere . Precisely consider the points :

{ 0, dt, 2dt, 3dt,..., ndt, ....Ndt=1} =T

where N is an unlimited integer and, by the way, dt is an infinitesimal .
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Definition : The sequence of real numbers x, with t € T is S-continuous at t provided:

'

This definition allows us to state the

Proposition : Let f be a function bounded by some standard constant K . The sequence x;
defined by :

Xp given
Xeadt = X¢ + fxp ) dt

is S-continuous at everyt.

Proof :Lett=ndtandt' =n'dtandt' =t witht<t'.

n'-1

kg - x| =12, f(xigpdt |
t=n
n-1

ke-x | S 2 Kdt,  K(o'-n)dt=K@-0)
i=n

The constant K being standard and (t'-t ) being infinitesimal the product is

infinitesimal . Which proves the proposition .

Probability on finite sets .

Consider, as previously, the set
T = { 0, dt, 2dt, 3dt,..., ndt, ....Ndt =1} .

Consider the set Q of sequences (Z; ) of +1 or -1 indexed by T - { 1 }. This set has 2N elements .

Example 1 : Consider the uniform probability on Q . This is a finite probability space . Every
subset of Q as a probability which is the number of its points divided by 2N . But not every "event"
has a probability because an event might be defined by an external sentence . Consider for
instance the event :

B, = "(Zg+Z+.Z)/n 20"
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The symbol E, does not define a set because its definition uses an external symbol ; for this reason
there is no sense to consider the "number of elements of E, ". But we can say :
Definition : A property E, ( i.e. an assertion eventually external about elements of Q) is

almost certain if for every standard positive real ) , there exist a set A
with P(A) <) such that :

w & A = The ( eventually external) assertion E is true for ¢« .

So, except for sets which can be choosen of arbitrarily small standard probability, or eventually of
infinitesimal probability, the property is true . we can prove the following :

Proposition : For every unlimited n the event E;, = " (Zg+Z;+...Z,)/n = 0" is almost
certain.
Proof . Take a positive real ) . Tchebychev inequality states :

P(| (Zg+Z1+..Zy.1)/n 1> X ) < 1/(nk2)

Take for \ the real 1/log(n) . The event A = (I (Zg+Z1+..Z,_{)/n 1> )) hasa

probability less than Iog(n)2/ n which is infinitesimal { and thus smaller than
any standard strictly positive real) . If a sequence does not belong to A one has

((Zy+Zy+...Z;.1)/n | < N) which implies that (Zg+Zj+..Z; 1)/n =0
because, n being unlimited, 1/log(n) is infinitesimal .

This proposition is an external formulation of the weack law of large numbers . The external
formulation of the strong law of large numbers is :

The event " For every unlimited n (Zy+Z¢+...Z;)/n = 0" is almost certain,

As one can see the external formulation of the two laws of large numbers does not
introduce the consideration of any infinite sequence of random variables defined on an infinte
product space on which each individual sequence has measure zero .
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Remark : In view of the above example one should think that a better
definition of an almost certain event might be :

A property E, (i.e. an assertion eventually external about elements of
Q) is almost certain if there exist a set A with P(A) infinitesimal such

that :
o & A = The (eventually external) assertion E is true for & .

But this is too restrictive as is shown by the following exemple . One

consider as €2 the set T —{1} itself with the uniform probability ; each
element of the set T being a real number it makes sense to say

" ¢ is not an infinitesimal "
It is clear that any interval E,, of the form 0, dt, 2dt,...,ndt with ndt not

infinitesimal is such that :
o & E, = o is not an infinitesimal

The probability of the event Ej, is (n+1)dt which can be choosen smaller
than any standard positive number, but not infinitesimal .

Macroscopic properties.

Consider the trajectory defined by :

X, given

Xepde = Xp + f(xg ) dt t € T =(0,dt, 2dt, 3dt,..., ndt, ....Ndt = 1}

which is supposed to represent a physical situation in which dt is very small compare to the interval
between two distinct observations t and t' . We assume, to avoid some technicalities, that our state

space is compact ; assume for instance that x represents an angle, thus x € S'.The space of

trajectories is the space (S') T with the norm i (tr—x( =maxix | (t € T).

We know that the state variable can only be measured up to a
certain accuracy . The classical way to idealize such a situation is to consider a continuous limiting
process defined as a solution of the differential equation :

X, given

X = f(x(v)
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and prove that the limit, when dt goes to 0 of the discrete process is the solution of the differential
equation . In other words, we have good reasons to believe, that for small dt, the continuous
process is a good approximation of the discrete one .

The Non Standard idealization is quite different :
Wesay: dt >0is afixed infinitesimal .

and we look for the macroscopic properties of our representation , What does that mean ?
A macroscopic property of a trajectory (t +x;) is a property
F( (t+xy) ) such that:
(@ axg) = (toy)) = CFC@Rax) ) &2 F((tay) ) .

For instance, one sees easily that :

* The trajectory (t »x;) is S-continuous "

is a macroscopic property . Let us look at another macroscopic property of trajectories defined by :

Xq given
Xppdp = X + fxg ) dt t € T = {0,dt, 2dt, 3dt,.., ndt, .....Ndt = 1}

We define now the macroscopic velocity of the trajectory :

Definition : For a given t , if there exist a standard real v such that, for every standard striclty
positive ¢ there exist a strictly positive standard 1) such that :
ndt ¢ n and ndt not infinitesimal = | (Xyypgt—%¢)/ndt - v| < ¢

this v is unique and called the macroscopic velocity at time t .

The property " The real v is the macroscopic velocity at time t of the trajectory " is clearly a
macroscopic property . Let us prove the following :

Proposition : If the function f is S-continuous and bounded by a limited real the macroscopic
velocity of the trajectory defined by :

X, given
Xppdp = Xg + flxp ) dt t € T = {0,dt, 2dt, 3dt,..., ndt, ....Ndt = 1}
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is well defined for every t and is equal to the standard part of f(x,) .
Proof: Consider n such that ndt ~ 0 ; one has :
Xtendt = Xt + 0t Z f(Xppqq¢) = X + dt T f(x) +oy oy =0
because the trajectory and the function f are S~continuous . From this we get :
Xt+ndt = Xt + ndt °f(x,) +dt £ By By =0
Xt+ndt = Xt + ndt °f(x¢) + ndt B p=0
and thus
(Xg4ndt — Xt )/ ndt = °f(x;)
for every ndt such that ndt =~ O . Then by a permanence argument we deduce that

f(x¢) is the macroscopic velocity .

Permanence : We detail here this classical argument of N.S.A. Let € be a strictly
positive standard number and consider the set :

Eg = {n:ndt¢n = | (X4pge—X¢)/ndt - °f(x¢) | < €}
From the above equivalence it contains all positive n = 0 ; this collection of reals is
called the (positive)“halo" of 0 . We prove below that it can't be a set, which have the
consequence that there exist at least one sandard strictly positive real in E; and proves
that °f(x;) is the macroscopic velocity .
Proposition :

Every set A which contains all infinitesimals of R contains at least one
standard number different from 0.
Proof: Leta=Sup (x;[0,x] A }.Ifais infinitesimal [ 0, 2a] is included in A
which is contrary to the definition . Thus a is not an infinitesimal and °a/2 is a standard
number in A .

Remark : We have actually proved more than needed by the definition of macroscopic
velocity; we have proved :

ndt ¢n > | (Xgypgt—Xt)/ndt -v| ¢ ¢
even if ndt is infinitesimal . This comes from the continuity of f. But this hypothesis is
not necessary for the existence of a macroscopic velocity . Consider the case where f is
equal to +1 if x = 0 and f is equal to -1 otherwise . The trajectory defined by:

xo=0

Xp4dt = X + f(xg ) dt t € T ={...0,dt 2dt, 3dt,..., ndt, ....Ndt = 1)

has 0 as macroscopic velocity, but  (x;4q-X)/dt == 1 in this case .



506

Trajectories defined by walks of infinitesimal step and by differential equations.

One might suspect that our result about the existence of the macroscopic velocity for
the trajectory defined by :

Xepdt = Xg + f(x ) dt t € T ={0,dt,2dt, 3dt,.., ndt, ....Ndt =1}

( where f is a standard continuous function ) is an "approximation" of the classical existence
theorem ;

There exist a differentiable mapping t —» x(t) such that :
x(0) =x4
xX@® = f(x@©)

This is not the case because this last result i s actually a formal consequence of the previous one .
Let us prove it . From the "Standardization axiom" there exist a standard set whose standard points

are infinitely close to the points of coordinates (ndt, x,4,) and it is not difficult to realize that this set
isa graph ; we denote by t — x(t) the function defined by this way . Consider, for a standard h,
the quotient :

(x(+h)-x(t))/ h
by construction of x(t) one has ;

(x(t+h)-x(t))/h = (xlih - xL) /h
where the { stands for the nearest point of the discrete set T to the real t From the fact that the
macroscopic velocity at{ is °f(x1) = Of(x(t)) and the definition of the macroscopic velocity we get :

For every standard stricly positive € there exist a stricty positive standard 1 such that :
h ¢nand hstandard = | (x(t+h)-x(t))/h -°f(x(t)) | < ¢
which is the definition of the derivative for a standard function .

The fact that classical results concerning continuous objects are easy formal
consequences of discrete analogues is a very general fact . See the appendix of [11] on this point .
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2 Definition and results on Discrete Diffusions .

As we did previously, in order to avoid technicalities related to the existence of
unlimited reals, we shall suppose, when necessary, that our diffusions take their values in a

compact set, namely S1.

DEFINITIONS

Definition 1: A stochastic process is a sequence of random variables denoted by E;, X , x;.....

etc, indexed by the finite set T and taking a finite number of values in R or $'.Thus a

stochastic process is defined on a finite probability set .

Definition 2 : Let Z, be the family of independant random variables taking values + 1 or - 1 with

expectation 0 . It is called the "dichotomic process" and the process (1/ \/c_l_t)Zt is called

the "dichotomic noise" .

Definition 3 : The process defined on R by :

Wipdy = Wy +ZVdt

where Z, is the dichotomic process is called the "Wiener walk" or the "Wiener

process" .

Two processes ( t HEt) and (tw 1, ) are not necessarilly defined on the same probability

space. For this reason it is not allways possible to compare dirctly trajectories . However we can
compare the laws of the processes .

Definition 4 : Two processes §; and 1 ; with values in S' arc equivalent if for every limited
S-continuous fonction f, defined on (S')T one has :

E[f(t »E)] = E[f(tng)).
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Definition 5 : Let b(x) and s(x) be two functions defined on S'. . . Assume that there exist
two standard Ctfunctionsf andg such that :
b(x) =b(x) and s(x) = s(x)
and let Z, be the "dichotomic process” of the example 1 above . The process defined
by:
£y, =0

Epigr = K¢ + B(Ep Ddt+ s(E0ZNdt
is called the "dichotomic diffusion process with drift b(x) and diffusion coefficient
s(x)" .

Definition 6 : Diffusion. Let b(x) and s(x) be as in the previous definition . The "diffusion
process of drift b(x} and diffusion coefficient s(x) " is the collection of all the
processes which are equivalent to the"dichotomic diffusion process "with drift b(x)

and diffusion coefficient s(x) of def 5 .
RESULTS :

Theorem 1 : Let dt = 1/N and dt' = 1/N' be two different infinitesimals and let £ be an
infinitesimal such that € = kdt = k'dt’ with k and k' unlimited . Let b(x) , b'(x), s(x)
and s'(x) be S-Continuous functions defined on S$* such that :

b(x) -b{y)I<cix-yl (climited)
b(x) = b'(x)
s(x) = s'(x)
Let p, and p'y be two markov processes which satisfy :

Hg = Ho
Mgy =My + bOL AL + s(r)XVdt
Weade =Wp+ bp)dt + s'Gur)X Vdr
where the processes Xt and X't-have limited values in R , and have conditional (with

respect to the present ) mean and mean square respectivelly equal toOand 1.
The two processes :

e and Wne
are equivalent .
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Corollary : Any process defined by :

By =0
Meede =M+ DOy At + sGu YXVEE

where b(x) , s(x) and X, satisfy the hypothesis of th. 1 above , defines a "diffusion

process”, i.e. is a representative of the collection of processes equivalent to the
corresponding "dichotomic diffusion” .

This shows us that when we define a diffusion, no matter the size of the
infinitesimal step, no matter the exact values of bﬁ() and s(x) and no matter the microscopic random
fluctuation, provided they satisfy the right statistics: At a macroscopic level one sees the same
process .

Theorem 2 : Trajectories of diffusion processes are almost surely S-continuous .

3 Sketch of the proofs .

Consider theorem 1. It is proved in NELSONJ 11] for the case ;
b(x)=b'(x)=0.
sx)=s'(x) = 1.

we shall use it later .

a) - Diffusion driven by "dichotomic noise" .

Consider theorem 1 in the case dt = dt', s(x) =s'(x) = 1 and X; = X'; . In that case the

conclusion is very easy . Consider :
Ho = Wo
Hesde =M+ b, )dt +Xt\faz
Rl =R+ by )de +XpVde

Define x; =p, - W'y . After substraction it comes : x, =0 and :

Xeedt = Ko+ bty - by ddt =x; + (b, ) - by Ddt +( b’y ) - b’y )dt
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Beade! S Xp+ IbGL )- BN de+ b ) - WIS x| e Xy | de+ 0t

the conclusion follows from a discrete Gronwall inequality .

This does not work when s(x)= s'(x) is not equal to 1 ; after substraction one have an extra term :

sty ) - s | XVt

which might give a large contibution because s and s' are not evaluated at the same point .
A reasonnable idea is to perform a change of variable :

X = F(up

xy= FQrp
in order to come back to the case s(x) =1 and s'(x) = 1 . Let us look to the decomposition of the
processes x; and x'; . They are of the form :

Xeade = X+ DOxpdt + 5(x)) X, Vdt

Kadt = X+ R(x' de+ 'x'p X', Vdt
but , in general, there is no reason that the process X, will be equal to X' . Thus the processes x,
and x', are driven by different noises, a case we are not yet able to consider . Fortunately here is
one case in which the process X; an X', are the same : When X is the “dichotomic process" : Z;,

because there is just one probability law on R which is the half sum of two dirac's, with mean 0
and square mean 1! . Thus the idea of a change of variable will work in the case :

dt=dt b(x)= b(x) , s(x)~s'(x) and X, = X'\ = Z,.

Technically we assume : b and s are smooth standard function with s > 0 . After the change of
variable we have two processes :

Xeadt = X¢ +DOxpdt +Z Vdt
X'de = X+ Rdt + (1 + o(x')) Zy Vdt

with o(x) infinitesimal . The difference process x, - x'; =0, satisfy :
eade = B¢ + (xg) - B0 Mt + o(x) Zy Vat.

The value of x'y depends only of Z,,Zj;,.....,.Z.g; - From this one can prove that the stochastic
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term in the difference process can be "almost surely” neglected and the conclusion folows from the
discrete Gronwall inequality as previously .

b) - Diffusion driven by general noises.

Now we have proved that two processes driven by the same dichotomic noise
and with equivalent coefficients are equivalent . What we have to prove now is that the two
processes :

Xg =X given
X'tadt = Xt + b(x'pdt + s(x'p) z;l&

are equivalent .By a change of variable we can reduce it to the case s « 1. Thus we consider :

Xo =X'g given
Xeadt = X + blxpdt +XNdt
Xipdt = X + b(x'pdt + ZVde

Step one : Consider the process defined by :

+¥dt with probability 1/2(1 + b( x,)Vdt)

et = Xt
- ¥dt with probability 1/2(1 - b( x)Vdo)
it has the same decomposition as the process x; .We can compute the probability of a trajectory m.
It will be given by the formula :

P( x, =m) =2NexpM(m))

where M(m) is "computable” from m. This means that the process x, is obtained from the Wiener

walk w; (2“N is the probability of every trajectory of the Wiener walk ) by a change of measure
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(This is the elementary counterpart of Girsanov transformation ) .

Step 2 : We perform an analogue change of measure, not on the space of trajectories of the Wiener
process but on the set of trajectories of x; . Define p; by the markov process :

Heede = e+ bRy ) de+ XVat
where the conditional law with respect to the present is given by :

P( X;=ulpg =ng sSt)=P(X, =ul pg =ng s<t) (1 -ubm)Vdr)

This formula is choosen in order that Ei[}y] = O and Et[u2t] =(1 + 0)dt in order that , thanks to
NELSON result [11] on processes equivalent to the Wiener walk , the process W is just equivalent

to the Wiener walk w; .

From its definition the probability of a trajectory n of the process p is given by
aformula :

Py =n)=P(x;=n)exp(N(n))

step 3 : It remains to prove that the change of measure defined by M and N, the first one from the
Wiener process w; to the process x; , the second one from the process x, to the process j;

equivalent to the process wy , are inverse in order to prove that x, is equivalent to x, .

Step 4 : Steps 1 to 3 are valid with Z; in place of X and hence x, is also aquivalent to the process

x'y which proves the equivalence of the two processes :

Xo =X'o given
Xt = Xp + bx'pdt + Zat

The last point, which is to prove that we can change the size of the infinitesimal step, is obtained by
a similar reduction than the above one to the comparison of two Wiener walk of different steps ,
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point which is proved in NELSON {11].

¢) - Continuity .

It suffices to prove continuity for the "dichotomic diffusion process" (Def §) :

£,=0

Eivdr =E¢ + b(Epdi+ s( Et)prth.
Define x, by :

x=9)

and compute X4, assuming derivability of @ :
Oy = PE) + &) GEIASEIZNT) + (1/2)p"E ) BE Ydr+sEIZ VT +..

O g = 9ED + [PE) bE + (1/2)9"E)2E)Z3 1 dt + Q&) sEIZ VGt +.

and because Z, is the dichotomic process Z% =1 :

Q&g = P& + [P'E) BE) +(1/2)9"(E)s* &Pl dt + @) sEHZVat +..
Now if we chose the function ¢ in order that :

[9'E) bE,) + (1/2)0"E)s2E] = 0

we get

Xppdt =X+ 9'Ep s€YZat +..
if we consider the order of the neglected terms the decomposition of this process is :
where b(x) = 0. Thus the process x, is equivalent to the martingale :

Yeede= Yo+ sypXeldt

for which almost every trajectory is S-continuous by NELSON's [11] result .The proof of this
result uses martingale inequalities and permanence arguments . Permanence arguments in
probability have been systematizedin[2] .
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Eeodr = B+ V2D ZpVdt

is a good approximation of the position process x; . We prove this result in the context of N.S.A.

Let us explain what is the meaning of :

"the limit, b +— oo

One immediatly sees that this expression makes no sense for if b is too large, b =1/dt for instance,
the steps of the process are not infinitesimals, The parameter b must be large but not too large ! In

place of b —» o we say for "large enough, but standard b” in order to preserve the fact that dt is
definitely not at the same scale than any other parameter of the problem . We assume for simplicity
of notations that V2D = 1,

Consider the process x; defined by :

X o Vg given

Xpadt = Xp+vpdt

Visdt = V- bvdt + bZt‘lc—lf
and the process w, defined by :

Wo =Xg

Wiady = We + ZpVdt
we want to compare x, and w; . We introduce the notation :

B=(1-bde) (/) = (1.bde) N

Step 1: By induction one establis(lixcs :
t-at

v = Blvg+b 2, Bt-sdiz gr
§=0
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Step 2 : From v, one computes X :

T-dt T-dt t-dt
Xp = %ot Lvpdt=xg + ZBtvodHZb 2, Brsdtz VG d
t=0 t=0 t=0 $=0

After an exchange of the order of summations and the use of the formula for the sum of & geometric
progression one gets :

T-2dt
Xy = Xg - Vo (BS-1)b+ 2, (1- 680ty Z /Gt
$=0

Step 3 : Replace z;!E: by Wgydt - W and apply the classical formula ( discrete integration by
parts ) :

2 Up (Vp 41" Vo) = - E‘. (up4[-Up) Vpa1 + UpVp-UoYo

n=0 n=0
One gets :
T-dt
X = - Vo (BE-1)/b+ BT+ b Y, BT5dtwdt
s=dt
and hence :
T-dt
Xg - W = = vo (B%-1)/b + 8%y + b 2, gr-s-dt wdt - we
s=dt

Step 4 : We assume now that wg is a typical trajectory of the Wiener process . Such a trajectory is
S-continuous . We consider a standard b .

For such a standard b we have :

Bt = (1-bd)dt ~ exp(-br)
and thus :
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T-dt
Xg . We ~- Vo (exp(-b7) -1)/b + exp(-bT) Wyt 2, b exp(-b(z-s)) wgdt - wy

s=dt

the function :
s —> b exp(-b(t-s)) Wy

is S-continuous and limited; in that case the discrete summation is equivalent to an integration and
one gets:

T

Xy - W ~ = v (exp(-b t) -1)/b + exp(-b ) wy+ J b exp(-b (t-s)) wgdt - we
0

Step 5 : It is now a trivial exercice of "standard” analysis to recognize in the mapping :
s — b exp(-b(x-s))

a mapping converging to the dirac function at point t and to majorize the other terms for b large
enough .

Hence we have proved the
Theorem : Consider the process x, defined by :

X o+ Vg Biven

Xpdt = Xp+ v dt

Viedt = Ve -bvdt+ b Zt\fcﬂ
and the Wiener process :

tdt
wt = xo+ 2 ZsJaE-
$=0

Given the positive standard € , there exist a real standard A such that for every
standard b such that b> A , almost surely one has foreveryt in T:

Ixt -wtl <€
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We illustrate this result by the following numerical experiments :

Fig 3 Thecase b =10 dt= 0,001
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Fig. 4 Thecaseb=100 ; dt = 0,001
In the three figures above are represented one trajectory of the process x, compared to the
corresponding trajectory (i.e. the same realization of Z;) of the Wiener process . One sees the

convergence .
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