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FOREWORD 

Richard Bellman, a most pro l i f ic  and renowned mathematician of the United States, 

has made major contributions in pure mathematics and in numerous areas of applica- 

tions : engineering, economics, medicine, energy, water resources, mathematical 

physics, operations research, management sciences, psychology and sociology. This 

breadth of interests and this ab i l i t y  to contribute to so many fields at such a high 

level is rare indeed. Throughout his years in science, he had a large number of 

scient i f ic friends, students and followers. Among them, after Professor Bellman has 

passed away, a group of scientists of the United States attempted to preserve his 

School. As a mechanism for achieving this goal, they suggested an annual or biennial 

workshop : the Bellman Oon~inuum. This workshop was envisioned as being interdisci- 

plinary in nature, as the achievement of Richard Bellman was. 

The f i r s t  meeting was held at the University of Michigan, Ann Arbor, Michigan,in 

1985 and the second was hosted by the Georgia Institute of Technology, Atlanta, 

Georgia, in 1986. They correspond to a formative stage : they attracted a few scien- 

t i f i c  friends of Richard Bellman and some scientists whose work has connections with 

his School. 

The third Bellman Continuum, sponsored by IFAC and AFCET (french NMO of IFAC), 

has been organized by the Inst i tu t  National de Recherche en Informatique et en Auto- 

matlque (I.N.R.I.A.) and the University Paris 7, on June 13-14, 1988, at the INRIA 

Research Center of Sophia-Antipolis, on the french Riviera, 6 miles North-West 

Antibes. I t  immediately followed the INRIA Eight International Conference Analysis 

and Optimization of Systems, held at the Palais des Congr~s of Antibes on June 8-10, 

1988, and i t  immediately preceeded the third International Symposium on Differential 

Games and Applications, held at INRIA-Sophia on June 16-17, 1988. 
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The program included invited and contributed lectures in the following areas 

where research is very active and promising : 

- Deterministic Approach to the Control of Uncertain Dynamical Systems. 

- Control and Non-Linear Filtering of Quantum Mechanical Processes. 

- Models and Control Policies in Economics. 

- Models and Control Policies for Biological Systems and Ecosystems. 

Key-note speakers were Prof. G. teitmann, University of California, Berkeley, U.S.A., 

and Prof. S.K. Mitter, Massachusetts Institute of Technology, U.S.A. 

The areas above correspond to the four main sections of this book. An additio- 

nal section has been devoted to computational bearings. They have in common the fact 

that they al l  deal with wn~ert~in systems. 

The third Bellman Continuum was attended by 73 participants and observers from 

17 different countries (Austria, Brazil, Canada, Finland, France, FRG, Great-Britain, 

Hungary, IsraEl, I ta ly,  Japan, the Netherlands, Poland, Switzerland, U.R.S.S., U.S.A., 

Yugoslavia) and has bcen considered very successful in highlighting the current trend 

and perspectives of the new questions set forth in i ts program. The interdiscipl i -  

nary exchange of ideas was much in the honor and spi r i t  of Richard Bellman. 

The papers collected here speak for themselves; there is no point in attempting 

to summarize their content. However i t  is,  perhaps, appropriate to br ief ly outline 

the main scientif ic directions defined by the choice of the above topics, whose 

unifying scheme is the model~in~ ~nd contro~ of uncertain systems. 

Many systems in the "real '~ world are subject to human intervention and control .  

The f i r s t  step in devising a control policy or strategy for the accomplishment of a 

desired end is the abstraction of the perceived salient features of the actual 

(physical, chemical,engineerlng, biological, economic, etc . . . )  system. Such an 

abstraction is usually embodied in a ~them~¢ica~ model, e.g., ordinary differen- 

t ia] equations, f in i te  difference equations, partial differential equations, and 

so on. Mathematical models are uJ~cer~zin, partly because they are approximations 

involving unknown or part ial ly known elements, and partly because they include 

elements which model uncertain effects in the real world. 
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Two avenues are open to the system analyst dealing with such uncertain mathema- 

t ical models, a st<z~is~ioal approaoh and a ~te~TKnistio one. 

Part I of this book is devoted to the lat ter .  I t  is centered on the determi- 

nist ic approach to uncertain dynamical systems ini t iated by G. Leitmann : on the 

basis of known nominal model and bounds on uncertainties, feedback schemes are 

determined which force the system output to track a given signal. The operative 

controllers are obtained via a constructive use of tyapunov functions. In this 

book, the subject matter has been more specif ically oriented towards the most recent 

results concerning robuB~-ne88, i . e . ,  the ab i l i t y  of a system to retain certain 

performance measures in the presence of perturbations, systems with two time acaZe 

structure and related treatment u t i l i z ing  sinLjuZG-,-p~tu~l~tion analysis. 

Physics l i terature is a rich source of interesting mathematical questions. In 

connection with system theory we have seen in the past few years a growing realiza- 

tion of the interconnections between estimation theory and quantum physics, between 

stochastic models and quantum mechanical ones, between Hamilton-Jacobi theory, 

stochastic control and the evolution in time of quantum systems, etc . . .  "This 

reunification suggests that what we have seen so far may be just the i n i t i a l  part 

of a long term trend". I 

Part I I  is mainly concerned with systems in which uncertainty comes out through 

quantum mechanical rules. I t  owes i ts origin to a work of S.K. Mitter highlighting 

the analogy between quantum physics and mathematlcal problems of nonlinear f i l te r ing .  

I t  co l lects papers in stochastic contro l ,  nonlinear f i l t e r i n g ,  and in the new 

area of quantum f i l t e r i n g  and control approached from d i f fe ren t  points of  view and 

with d i f fe ren t  mathematical techniques. 

1 
Borrowed from R.W. Brockett, Rlcerche di Automat|ca, Vo] X, Dec. 1979, n ° 2. 
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A quantum mechanical control system is a quantum mechanical system with a time 

varying part considered as a perturbation. Different kinds of problems can be 

studied : one can be interested in the time varying part as a signal to be extracted 

from the measurements on the system. This is the quantum fi l tering problen~zt~cj 

usually associated with the concept of non demolition measurements. Also the time 

varying part can be considered as a purposeful control on the system, a control 

p~b~em stricto sensu. 

Quantum mechanical control theory is an essential step on the way from quantum 

physics to quantum technology. 

One of the f ields of applications of the mathematical theory of systems is in the 

overlapping areas of mathematical economics, econometrics, social sciences, and mana- 

gement science. The papers of Part I l l  report recent results in mathematical econo- 

mics, in the framework of dynamic optimization, continuous or sequential, with f i n i te  

or in f in i te  horizon, and in uncertain stochastic environment. The wide area of di f fe-  

rential-game theoretical approaches has been more specif ically and extensively 

explored in the thi)~ International Symposium on Differential Games and Applications 

which immediately followed the third Bellman Continuum. Its Proceedings are being 

published by SPRINGER-VERLAG in the same Series. 

Beginning in the 1960's, Bellman recognized that many biological systems display 

a number of characteristics similar to those of the decision processes to which he had 

devoted much attention. He then turned his talents towards developing models and 

control policies for these systems, He published many excellent papers in this f ie ld  

and achieved recognition as one of the pioneers in bringing the strength of mathe- 

matics and computer science into the medical area. His orlginal motivation was the 

cancer problem. Part IV is along the l ine of this part of Bellman's work. 

Part V collects papers which do not pertain to one oF the categories above but 

which are attached to several of them through Bellman's general approach to system 

science and related computational bearings. 

The th i rd internat ional workshop of the Bellman Continuum could not have taken 

place without the technical and f inancial  assistance of INRIA to whom we express our 
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gratitude. In particular I would l ike to take this opportunity to thank his 

President Professor Alain Bensoussan and the Director of the INRIA-Sophia Antipolis 

Research Center Professor Pierre Bernhard. 

We are indebted to the staff of the Public Relations Department of INRIA for 

the job they have carried out in the organization of the workshop. I personnally 

address special thanks to Th~r~se Bricheteau who, at the head of this Department, 

took care of al l  the myriad details of organization so ef f ic ient ly  and ably. We 

are most grateful to the expert assistance of Catherine Juncker and her staff  who 

took care of the organization at Sophia and of the local arrangements. 

The workshop was f inancial ly supported by the organizing Institutions : INRIA 

and the University Paris 7, and by the following national and intergovernmental 

Organizations : AFCET (France), CNRS (France), ERO United States Army (U.S.A.), the 

french Mlnistaries of Affaires Etrang~res, Education Nationale, and Recherche et 

Enseignement Sup~rieur, UNESCO. Additional fellowships to the participants were 

provided by various organizations l isted separately, to whom, as well as to the 

above mentioned organizations, ~e express our gratitude. 

We also would like to extend our gratitude to : 

- the participants who have shown their interest in this workshop, 

- the many referees who have accepted the d i f f i cu l t  task of selecting papers, 

- the chairpersons for the different sessions, 

- our colleagues of the Organizing Committee, 

- Gilbert Mallet and his staff  who, at INRIA, produced preprints of the conference, 

- Professor M. Thoma who has accepted to publish the Proceedings of the workshop 

in the Series : Lecture Notes in Control and Information Sciences, 

- Mr. Albrecht yon Hagen, Engineering Editor, 

- the Publisher SPRINGER-VERLAG. 

Austin 81aqui~re 

~orkshop Chaiman 



P R E F A C E  

Richard Bellman, un des math~maticiens les plus f~conds et ]es plus renomm~s 

des Etats-Unis, a apport~ des contributions majeures aux math~matiques pures e ta  de 

nombreux domaines d'applications : sciences de l ' ing~nieur, ~conomie, m~decine, 

~nergie, gestion des ressources en eau, physique math~matique, recherche op~ration- 

ne]le, sciences de ]a gestion, psychologie et socioIogie. Une te l le varlet6 des 

domaines abord~s et des moyens mis en oeuvre pour approfondir oes domaines aveo une 

tel |e p6n~tration se rencontre rarement en science. Tout au long du d~veloppement 

de son oeuvre, i l  eut un grand nombre d'amis, d'~l~ves et de correspondants port,s 

vers |esm~mes centres d' int~r~t. Parmi eux, apr~s ]a disparation du Professeur 

Bellman, un groupe de scientifiques des Etats-Unis s'est efforc~ de perp~tuer son 

Ecole. Dans ce but i l s  ont propos~ d'organiser un Colloque annuel ou bi-annuel : 

5¢ Bell.men ContinuJ~rn. Ce Colloque devait fitre de nature interdlscipl inaire, comme 

] '~ ta i t  ]'oeuvre de Richard Bellman. 

Le premier congr~s s'est tenu a l 'Universit~ du Michigan, Ann Arbor, Michigan, 

en 1985 et le second a ~t~ accueil l i  par l ' I n s t i t u t  de Technologie de Georgie, 

Atlanta, Georgie, en 1986. Ces efforts pr~liminaires ont r~uni que]ques scientifiques, 

amis de Richard Bellman ou dont ]e travail pr~sente des liens avec son Ecole. 

Le troisi6me Bellman Continuum, patronn~ par I'IFAC et I'AFCET (OMN franGaise 

de I'IFAC) a 6t6 organis6 par l ' I n s t i t u t  National de Recherche en Infomatique et en 

Automattque ( I .N .R. I .A . )  et l 'Un ivers i t6  Paris 7, les 13 et 14 duin 1988, au Centre 

de Recherche de I ' INRIA a $ophia-Ant ipol is,  sur la C6te d'Azur, ~ une dizaine de 

ki]omEtres au Nord-Ouest d'Antibes. I1 succ6datt fi la huiti6me Conf6rence Interna- 

t ionale Analyse et Optimisation des Syst6mes de ] ' INRIA, tenue au Palais des Congr~s 

d'Antibes les 8-10 Juin 1988, et pr6c6dait le troisi6me Symposium Internat ional sur 

les deux D i f f6 ren t ie ls  et leurs Appl icat ions, tenu fi [NRIA-Sophia les 16 et 17 Juin 

1988. 
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Le programme comportait des conf6rences sur invitat ion et des rapports destines 

i la presentation de travaux r~cents, dans les domaines suivants oQ la recherche est 

tr~s active et en expansion : 

- Approche d~terministe de la commande des syst~mes dynamiques incertains. 

- Commande et f i l t rage non-lin~aire des processus en M~canique quantique. 

- Mod~lisation et commande en Economle. 

- Mod~lisation et commande des syst~mes biologiques et des ~cosyst~mes. 

Les conf~renciers d'ouverture de sessions ~taient le Prof. G. Leitmann, 

University of California, Berkeley, U.S.A., et le Prof. S.K. Mitter, Massachusetts 

Institute of Technology, U.S.A. 

Les domaines mentionn~s ci-dessus correspondent aux quatre parties principales 

de ce l iv re.  Une cinqui6me pattie a ~t6 r6serv~e a l'aspect calcu1. Elles ont en 
commun le f a i t  qu'elles trai tent toutes de B~et~mes inoer~ains. 

Le troisi6me Bellman Continuum a r~uni 73 participants et auditeurs de 17 pays 

diff~rents (Autriche, Br6sil, Canada, Finlande, France, Grande-Bretagne, Hongrie, 

IsraEl, I ta l ie ,  Japon, Pays-Bas, Pologne, R.F.A., Suisse, U.R.S.S., U.S.A., 

Yougoslavie) e ta  atteint son objectif avec succ~s : celui de mettre en lumi~re les 

orientations et les perspectives des questions nouvelles mises en avant par son 

programme, et de susciter des 6changes d'id~es de nature interdiscipl inaire dans 

l 'espr i t  e t a  l'honneur de Richard Bellman. 

Les papiers r~unis ic l  sont suffisamment explicltes pour qu ' i l  n'y a l t  pas lieu 

d'analyser leur contenu. Peut-~tre, cependant, sera-t- i l  u t i le  d'indiquer dans leurs 

grandes lignes les orientations scientifiques d~finies par le choix des sujets 

trait~s, dont le th6me unificateur est Za moddlisatlon et Za conTna~ des syst~mes 

inee~q;aina. 

De nombreux syst~mes du monde r~el sont sujets a 1'intervention humaine, et sont 

commandos. La premiere ~tape dans 1'61aboration d'un syst~me de commande est 

l'~tabllssement d 'unrnod~emat /~ iquej  abstraction qui r~sume 1'information jug~e 

int~ressante pour l'~tude propos~e, u t i le  au math~maticien : syst~mes d'~quations 
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diff~rentielles ordinaires, d'~quations aux differences f inies, d'~quations aux 

d~riv~es partielles, etc ... Les modules math~matiques sont inoe~tains, en partie 

parce qu'i ls sont tributaires d'approximations does ~ une connaissance imparfaite 

des donn~es, en partie parce qu'i ls contiennent des ~l~ments repr~sentant des 

facteurs aIEatoires du monde r~el. 

Deux types de m~thodes s'offrent I l'analyste : une ~roc l~  st~tistlque et 

une approche ddterministe. 

La premiere pattie du l ivre est consacr~e a cette derni~re. L'accent y est mis 

sur l'approche d~terministe des syst~mes dynamiques incertains introduite par 

G. Leitmann : la connaissance du module nominal et des bornes sur les incertitudes 

permettent de d~terminer une r~troaction qui force la sortie du syst~me a suivre un 

signal donn~, r~troaction obtenue par la construction d'une fonction de Lyapunov. 

Dans ce l ivre,  le sujet a ~t~ plus particuli~rement orient~ vers les r~sultats les 

plus r~cents relat i fs a la robustesse : aptitude d°un syst~me a conserver certaines 

performances en presence de perturbations, aux syst~mes ~ d~u= ~chelles de temps et 

aux perturbations slnguli~res. 

La Physique est une riche source de questions math~matiques int~ressantes. En 

liaison avec la th~orie des syst~mes, nous avons vu au cours des annEes pass6es une 

prise de conscience de plus en plus nette des interconnexions entre la th~orie de 

l'estimation et la Physique quantique, entre les modules stochastiques et ceux de 

la MEcanique quantique, entre la th6orie d'Hamilton-Jacobi, la commande stochastique 

et l'Evolution au cours du temps des syst~mes quantiques, etc ...  "Cette r6unifica- 

tion sugg~re que ce que nous avons vu jusque la est peut-~tre le signe pr~curseur 

d'une tendance A long terme". 1 

La deu.~/~ne pattie du l ivre est plus particuli~rement concern~e par les syst~mes 

dans lesquels les incertitudes sont d'origine quantique. Elle dolt son origine a un 

travail de S.K. Mitter qui met en lumi~re l'analogie entre la Physique quantique et 

! 
R.W. Brockett, Ricerche di Automatica, Vol. X, Dec. 1979, n ° 2. 
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certains probl~mes math~matiques de f i l t rage non-lin~aire. Elle rassemble des papiers 

en commande stochastique, f i l t rage non-lin~aire, et dans le domaine nouveau du 

f i l t rage et de la commande quantiquesexaminEs de diffErents points de vue et avec 

diffErentes techniques mathEmatiques. 

Un systEme de commande en M~canique quantique est un systEme quantique ayant une 

partie variable au cours du temps, considEr~e come une perturbation. On peut 

s'int~resser a la partie variable au cours du temps en tant que signal ~ extraire 

d'un ensemble de mesures. C'est le probIEme du fi~trage qu~ntlque. On peut aussi 

considErer cette partie variable comme une commande appliquEe a dessein et se 

proposer de la determiner en fonction du but recherchE. C'est le probl~me inverse 

du precedent, c'est un problEme de eomrnan~e stricto sensu. 

La th~orie de la commande en m~canique quantique est une Etape essentielle sur 

le chemin menant de la physique quantique a la teohnolo~e qu~mtique. 

L'un des champs d'application importants de la th~orie math~matique des systEmes 

est celui oQ se recouvrent en partie les domaines de l'Economie math~matique, l'Econo- 

mettle, les Sciences sociales, la Recherche opErationnelle. Les papiers de la 

troisi~me pattie pr~sentent des travaux rEcents en Economie mathEmatique, dans le 

cadre de l'optimisation dynamique, continue ou sEquentielle, en horizon f in i  ou 

in f in i ,  et dans un environnement incertain. Le vaste domaine des approches th~oriques 

reposant sur les jeux diffErentiels a ~t~ explor~ de fa~on plus ~tendue et plus 

spEcifique dans le troisi~me Symposium International sur les Jeux Diff~rentiels et 

leurs Applications venant juste a la suite du troisi~me Bellman Continuum. Nous 

reportons le lecteur ~ ses actes publiEs par SPRINGER-VERLAG darts la mEme S~rie. 

DEs le debut des annEes 60, Bellman a reconnu que des systEmes biologiques trEs 

divers prEsentent un certain nombre de trai ts caractEristiques semblables A ceux des 

processus de decision auxquels i1 avait consacrE une partie importante de son oeuvre. 

Ceci |e conduisit A orienter ses efforts et son talent vers le d~veloppement de 

modEles et de lois de commande pour ces systEmes. II a publi~ plusieurs excellents 

papiers sur ces questions, qui l 'ont  fa i t  reconnaitre comme ]'un des pionniers ayant 

introduit la puissance des math~matiques et de la science des machines ~ calculer 

dans le domaine m~dical. Sa motivation premiere ~tait le probIEme du cancer. La 

qu~t~me parCie du l ivre est dans le droit f i l  de cette partie de l'oeuvre de 

Bellman. 
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La c,Y.nquiamepazC~e rassemble des papiers qul n'appartiennent pas ~ l'une des 

categories ci-dessus mais qui se rattachent ~ p]usieurs d'entr'elles dans ]a ]igne 

des m~thodes g6nEra|es de Bellman en science des syst~mes. Elle est plus particu- 

li~rement consacr~e a l'aspect calcul. 

Le troisi~me Colloque International du Bellman Continuum n'aurait pu avoir lieu 

sans le soutien technique et financier de l'INRIA a qui nous exprimons notre gratitude. 

En particu]ier, qu' i l  me soit permis de remercier ic i  son Pr6sident le Professeur 

A1ain Bensoussan et le Directeur du Centre de Recherche de l'INRIA-Sophia Antipolis 

]e Professeur Pierre Bernhard. 

Nous tenons a remercier les personnes du Service des Relations Ext6rieures de 

] ' INRIA qui ont organisE ce Colloque. d'adresse personnellement des remerctements 

tout par t i cu l ie rs  ~ Th~r~se Bricheteau qui,  a ]a t~te de ce Service, a prts soin si 

efftcacement de la multitude des prob]~mes d'organisat ion, et nous a f a i r  p ro f i t e r  de 

sa grande experience. Nous sommes tr~s reconnaissants a Catherine Juncker qui a pr is 

en main de fa~on experte l 'organisat ion du congr~s ~ Sophia et son implantation sur 

le s i te ,  a insi  qu'aux personnes de son Service. 

Ce Colloque internat ional  a re~u le soutien f inancier  de I ' INRIA et de l 'Un iver -  

st t~ Paris 7 qui l ' on t  co-organisE, et des organismes nationaux et intergouvernementaux 

suivants : AFCET (France), CNRS (France), ERO United States Army (U.S.A.), Minist~re 

des Affatres Etrang~res (France), Minist~re de ] 'Education Natlonale (France), 

Minist~re de la Recherche et de l'Enseignement Sup~rieur (France), UNESCO. D'autres 

subventions ont ~t~ at t r ibutes aux part ic ipants par divers organismes mentionn~s 

s6par~ment, auxquels, comma aux organismes ci t6s dans cette preface nous exprimons 

notre gratitude. 

Nos remerctements s'adressent ~galement : 

- aux part ic ipants qut ont manifest~ leur int~rEt  pour ce Colloque, 

- aux nombreux experts qui ont accept6 la d i f f i c i ] e  tache de sElectionner les 

communications, 
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- aux presidents de sessions, 

- a nos coll~gues du Comtt~ d'Organtsation, 

- ~ Gi lber t  Mallet et aux personnes de son Service qut, ~ I ' INRIA, ont publt~ 

les actes provisoires de la conference, 

- au Professeur M. Thoma qui a accept~ de publ ier  ]es acres d~ f t n t t i f s  du Col]oque 

dans la s~rie qu ' t l  dtrtge : Lecture Notes in Control and Information Sciences, 

- ~ Mr. Albrecht yon Hagen, Engineering Editor,  

- ~ l '~d t teu r  SPRINGER-VERLAG. 

Austin Blaqui~re 

President du Colloque 
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CONTROLLING SINGULARLY PERTURBED UNCERTAIN DYNAMICAL SYSTEMS 1 
G. Leitmann 

College of Engineering, University of California 
Berkeley, California 94720, USA 

INTRODUCTION 

The prototype for the class of systems considered in this chapter is depicted in 
Figure I and consists of a dynamical process P (imperfectly known) controlled by a 
(judiciously designed) feedback law (operator F) acting on state data generated by 
sensor S and implemented via actuator A. 

~ ACTIIATOR A . ~ - ~  UNCERTAIN PRf)CESS P I ~ SENSOR S 1 

I 'FEEDBACK OPERATOR F ~ 

Figure I. Prototype System 

We assume (realistically) that the sensor and actuator are d~namic elements of 
the feedback loop; furthermore, we adopt the viewpoint that these dynamics are 
"fast" relative to those of the process P to be controlled. I f  this is not the 

case, then, at the modelling stage, the sensor and actuator should be explicitly 
incorporated as an integral part of the process to he controlled. 

We recognize, of course, that in the context of nonlinear systems, the concept 
of "fastness" is difficult to quantify. Here we use the term loosely to indicate 
that the overall system exhibits a "two time scale" structure as described in the 
next section. 

THE FULL-ORDER SYSTEM 

The above prototype typifies a general class of singularly perturbed uncertain 
systems which can be decomposed, by means of a scalar parameter p, into two coupled 

I Based on research supported by the NSF and AFOSR. 
case of the problem considered in [8] and [g]. 

This paper deals with a special 



subsystems which henceforth w i l l  be referred to as the "slow" subsystem (with state 

x( t ) )  and the "fast" subsystem (with state y ( t ) ) .  The parameter ~, henceforth 

referred to as the singular perturbation parameter, can be interpreted as some 

measure of the rat io  of characteristic times of the fast and slow subsystems. 

We model this general class of systems by the following coupled pair of d i f -  

ferential equations. 

x( t )  = X ( t , x ( t ) , y ( t ) , u ( t ) ) ,  x( t)ER n, u(t)~R m 

p~(t) = Y ( t , x ( t ) , y ( t ) , u ( t ) , , ) ,  y( t )ER p, ~E(0,®) 

with measured output 

z( t )  = Sx(t) + Ty(t),  z(t)ER n 

where X and Y are uncertain functions with the following structure: 

(la) 

(Ib) 

( lc) 

X(t,x,y,u) = A11x + Al2Y + BlU + g l ( t , x ,y ,u )  (2a) 

Y(t ,x,y,u,u) = C(t)[A21x + y + B2u] + g2(t,x,y,u,~) . (2b) 

Aij , Bi, S and T are known constant real matrices; C is an uncertain measurable 

matrix-valued function; gl and g2 are uncertain Caratheodory functions ( i . e .  

measurable in their  f i r s t  argument, continuous in their  other arguments and 

integrably bounded on compact sets). 

Note that we require that the dimension of the output space coincides with the 

dimension of the slow subsystem state space. We refer to system ( I ) - (2)  as the 

fu l l -order s~stem (a dynamical system on Rn+P). 

Now suppose that the dynamics of the fast subsystem are neglected, i .e .  suppose 

that ~ is set to zero, in which case (Ib) reduces to an algebraic constraint on 

( la ) .  This procedure yields the reduced-order system (a dynamical system on Rn). 

Suppose further that a feedback strategy is designed which guarantees some s tab i l i t y  

property P for the uncertain reduced-order system. (One such design is proposed in 

§5 and analysed in @6, using the deterministic framework developed in e.g. [ I - 7 ] ) .  

Then the essential question to be addressed is that of structural s tab i l i t y  of pro- 

perty P with respect to singular perturbation, i .e .  does property P persist when the 

fast dynamics are re-introduced? More usefully, does there exist a calculable 

threshold value u > 0 such that property P persists for al l  values of the singular 
, 

perturbation parameter in the interval (O,u 7? 

Our objective is to answer such questions af f i rmat ively,  under additional 

hypotheses on the ful l -order system. The f i r s t  of these is an assumption which 

ensures that a well-defined reduced order system results from setting ~ = 0 in ( Ib) .  
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Assumption AI 

( i )  C(-) = C O + AC(-), where C o ERPXP is known with spectrum O(Co) c ~- (the 

open le f t  half complex plane) and AC: R + R pxp is an unknown measurable function 

with known bound K c (suff ic ient ly small), viz. for al l  t , IaC(t) l  < K c < 

1/21PI - I ,  where P > 0 (symmetric) solves the Lyapunov equation PC o + C~P + I = O; 

( i i )  g2( . , . , . , . ,O) = O. 

THE REDUCED-ORDER SYSTE~I 

Solving the algebraic equation Y(t,x,y,u,O) = 0 for y (uniquely in view of 

Assumption At) determines the function 

(x,u) ~ H(x,u) a 
= - [A21x + B2u] . (3) 

The reduced-order system associated with (1) is now defined as 

~(t) = Xr ( t ,x ( t ) ,u ( t ) ) ,  x( t)ER n (4a) 

with output 

z(t) = Sx(t) + TH(x(t),u(t)), z(t)~R n (4b) 

where 

Xr(t,x,u ) @ X(t,x,H(x,u),u) = Xx + ~u +-g(t,x,u) (5a) 

and 

- A11 - AI2A21 = BI - A]2B 2, = g1(t,x,H(x,u),u) . (Sb) 

At this stage, we loosely define our preliminary goal as that of rendering, by 

feedback, some acceptably small compact neighborhood of the zero state of (4) glo- 

bally attractive. Thus, i t  is not unreasonable to require the following of the 
~ w  

nominal linear system palr (A,B): 

Assumption A2 

( i)  (X',~ is a stabil izable pair, 

( i i )  S - TA21 is non-singular. 

R + A Now. let (~,yO)ER nxn x (R + = [0.®)) be a pair of design parameters with 

the properties ( i ) Q i s  symmetric and positive definite ( i i )  ~0 > 0 i f  o(~)~ t -  . 
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These properties, in conjunction with A2, ensure that the Riccati equation 

+ ~K  + Q-  2YoKBBTK = 0 (6) KX 

admits a unique real posi t ive-def in i te symmetric solution K > O. Hence, for 

example, in the absence of uncertainty ( ~  O) and i f  S = I and T = O, the output 

u = - YoB-'TKz renders the zero state of (4) asympstotically stable. feedback law 

We now impose some additional structure and hounds on the system uncertainty. 

Assumption A3 

There ex is t  known non-negative real numbers c l ,  c2, c3, and unknown Caratheodory 
funct ion e: R x R n x R m ÷ R m such tha t :  

and, for a l l  ( t , x , u )  ~ RxRnxR m , 

( i i )  l e ( t , x ,u ) !  < c I + c 2 Ix l  + c 3 lUl . 

In the famil iar terminology, the uncertainty is assumed to be matched and cone- 

bounded. The more general case of unmatched and non-conebounded uncertainty is con- 

sidered in [8] and [9 ] ,  a lbei t  at the expense of a considerably more complicated 

control ler design. 

Define A: R + R nxn and FI, F 2 c R as follows: 

A(y) ~ A21 - YB2-BTK (7a) 

/ [~, - ) ;  c 2 - 0 c2 IIQ-111] 
r 1~  ; i ~ (1 - c3)-1[~0 + (7h) 

- / (~ ,  " ) ;  c2 > o 

where 

r 2 ~ { x : l  s - TA(y) I¢  O; ~(y) < (1 - 2KclPI)/21PCol + 2~clPI)}  (7c) 

K(T) -~ ¥1B2-BTK [s - T A { y } ] - I ] l l .  

Then the fo l lowing addi t ional  assumption is required. 

Assumption A4 

r* ~-r l n r  2~,a'. 

(7d) 
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PROBLEM FORMULATION 

Suppose a (time-dependent) output feedback control function (t,z) ~ q(t,z) is 

designed which guarantees that the feedback-controlled reduced-order system 

(viz. u(t) = - q( t ,z( t ) )  in (4)) possesses some desired s tab i l i ty  property P, then 

the basic question to be addressed is that of robustness of P with respect to singu- 

lar perturbation, where the singularly perturbed system is defined by (I) with 

u(t) = - q( t ,z ( t ) ) ;  in particular, does there exist a (calculable) constant ~ > 0 

such that the fu l l  system ( I ) ,  under output feedback control u(t) = - q( t ,z ( t ) ) ,  

possesses property P for al l  values uE(O,~*)? 

Here, we take the desired property P to be the existence of a compact set Z c R n 

(respectively Z c R n÷p) containing the origin which is a global uniform attractor 

for the reduced-order system (respectively, the fu11-order system) in the following 

sense. 

Definition 1 

A compact set Z c R q Is a global uniform attractor for the system 

&it) = ~( t ,w( t ) ) .  w(t) E R q (*) 

i f  the following properties hold: 

( i )  Existence and continuation of solutions: For each pair (to,W°)ER x R q 

there exists a solution w: [ to , t  I )  ÷ R q (absolutely continuous function satis- 

fying (*) almost everywhere) with w(t o) = w ° and every such solution can be 

extended into a solution on [ to , - ) ;  

( i l )  Uniform boundedness of solutions: For each r > 0 there exists R(r) > 0 

such that lw(t) l  < R(r) for al l  t on every solution w: [ to , -  ) ÷ R q of (*) wlth 

lW(to)l < r, where toeR is arbitrary; 

( i i i )  Uniform stab i l i ty  of Z: For each d > 0 there exists D(d) > 0 such that 

w(t)~Z ÷ d8 for al l  t on every solution w: [ to , - )  ÷ R q of (*) with 

W(to)~Z + D(d)8 where t o is arbitrary (note, B denotes the open unit ball in 

R q and, for 6 > O, Z + 6B denotes the set {a + p: a E Z; Ipl < 6}); 
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( iv) Global uniform at t ract lv l ty  of Z: For each d > 0 and r > 0 there exists 

z(d,r) > 0 such that w(t)E~ + rB for all t > t o + z(d,r) on every solution 

w: [ to,-)  + R q of (*) with W(to)eZ + d B , where toe R is arbitrary. 

In the next section, we construct a feedback strategy which ensures property P 

for the reduced-order system (4). 

NONLINEAR OUTPUT FEEDBACK 

Choose ¢1' ¢2 > O; these are design parameters and can be chosen arb i t rar i ly  
small. Define p: RxR n + R m as 

p(t,x) ~ Po(X) + P1(X) . 

The function Po is linear and is given by 

(Ba) 

Y1BTKx Po(X) - 

where YIE R + satisfies 

~ i  E r . 

The function Pl Is nonlinear and bounded and is given by 

~1t1(P i  BTKx) i f  T = 0 or B 2 = 0 

P1(X) 

L 0 otherwise 

where pl eR + satisfies 

(Bh) 

(ac) 

(Sd) 

Pl • (I - c3)c 1 

and ¢I: Rm ÷ Rm is any smooth (C 1) function which satisfies 

(Be) 

l¢l(V)l < I , cV,¢l(V)) > Iv! - ¢I VvER m 

and which has bounded derivative l~tl ; i .e . ,  there exists KerR + such that 

I D~l(V)l ¢ (¢ for all v~R m. The proposed output feedback control function 

q: RxR n + R m is now defined by 

(sf) 

q(t,z) ~ p(t, [S-TA(YI)]-Iz) . (g) 

Loosely speaking, the linear component (Sb) of the control stabilizes ( i f  
necessary) the nominal linear system and counteracts part of the uncertainty e while 
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nonlinear component (8d) (when active) counteracts the remaining part of e. 

As an example of a function ¢I '  satisfying the above requirements, consider the 

function 

¢1: v ~ Iv l  + E l l ' I v  

for which (Sf) clearly holds, and moreover, ¢I is C I with iD¢1(v)l ( ¢i -1 for al l  

v ER m. 

A COMPACT ATTRACTOR FOR THE OUTPUT FEEDBACK CONTROLLED REDUCED-ORDER SYSTEM 

For the reduced-order system (4), i t  may be verif ied that q ( t ,z ( t ) )  = p ( t , x ( t ) ) .  

Hence, setting u(t) = - q ( t ,z ( t ) )  in (4a) ylelds the system 

~( t )  = F r ( t , x ( t ) ) ,  x ( t )  ~ R n (lOa) 

with 

Fr(t.x) ~'~x -~p ( t , x )  + g ( t , x ,  - p ( t ,x ) ) .  (lOb) 

As shown in [9],  system (I0) possesses s tab i l i t y  property P . 

To this end. we define V: R n ÷ R + Ca Lyapunov function candidate) by 

V(x) ~ <x,Kx> . (11) 

Theorem I .  

There exists a closed el l ipsoid 

Zr 0 ~ {XERn: V(x) ( r~} , 

where r o is defined in [ 9 ] ,  which is a global uniform attractor for system (10). 

Our next objective is to show that property p is not destroyed by the re- 

introduction of the fast dynamics. 

A COMPACT ATTRACTOR FOR THE OUTPUT FEEDBACK CONTROLLED FULL-ORDER SYSTEM 

Define 

h(x) ~ H(x, - p ( t , x ) )  = - A(Y1)x + B2Pl(X). (12) 
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Our final assumption is now made. 

Assumption A5 

(i) 

where 

(ii) 

where 

For all ( t , x ) ,  

Ig1(t,x,Yl,-q(t,Sx+TYl)) - g1(t,x,Y2,-q(t,Sx+TY2))! ( xmyl-Y2 ! 

) 0 is a known constant; 

for al l  ( t ,x ,y )  and p ) 0 , 

Ig2(t ,x,y,-q(t ,Sx+Ty),p) l  ( p[K1ly-h(x)l + K21xI + K 3] 

~1' K2' K3 > 0 are known constants. 

V Yl 'Y2 

While Assumptions I to 5 might appear somewhat esoteric, i t  is stressed that the 

class of systems which satisfy these hypotheses is far from t r i v i a l ;  for example, 

the assumptions hold for a class of uncertain systems with parasitic actuator and 

sensor dynamics considered in [10]. 

Let functions F: RxRnxR p + R n and G: RxRnxRPxR + + R p be given by 

F(t ,x,y) ~ AllX + A12Y - Blq(t,Sx+Ty) + g1(t,x,y,-q(t,Sx+Ty)) (13) 

= Fr(t ,x)  + A12[Y-h(x)] + Bl[P(t,x)-q(t,Sx+Ty)] 

+ g1(t,x,y,-q(t,Sx+Ty)) - g1( t ,x ,h(x) , -p( t ,x ) )  

G(t,x,y,p) ~ C(t)[A21x + y - B2q(t,Sx+Ty)] + g2(t,x,y,-q(t,Sx+Ty),p) (14) 

= C(t) [y-h(x)]  + C(t)B2[P(t,x)-q(t,Sx+Ty)] + g2(t,x,y,-q(t ,Sx+Ty),p).  

Then the problem under consideration reduces to that of determining a threshold 

value ~ > 0 ( i f  such exists) such that the system (two coupled subsystems): 

)(t) - F(t,x(t),y(t)) 

p)(t) - G(t,x(t),y(t),p) 

possesses stability property P for all )~ (0,)*). 

analysis akin to that of [II]. 

(15a) 

(15b) 

We resolve this question via an 

As stated in [8] and shown in [g] ,  the following theorem establishes propertyP 

for the fu l l  order system under output feedback control. 

Theorem 2. 

There exists a p > 0 such that, for al l  p~(O,p ), a certain el l ipsoid is a 



11 

global uniform attractor for system (15); the value of u and the definition of the 
attracting ellipsoid are given in [B] and [9]. Horeover, the reduced order dynami- 

cal behavior is recovered as u + 0. 2 

UNCERTAIN SYSTEM WITH ACTUATOR AND SENSOR DYNAMICS EXAMPLE: 

Consider the uncertain system 

£(t) = Ax(t) + [B + AB(t)]Y1(t) + d(t ,x( t ) ) ,  x(t) ~ R n (16a) 

with actuator dynamics 

p) l ( t )  = [C 1 + ACl(t)](Yl(t) - u(t)) ,  Y l ( t ) ,  u(t) E R m (16b) 

and sensor dynamics 

p~2(t) = [C 2 + AC2(t)](y2(t) - x( t ) ) ,  y2(t) ~ R n (16c) 

where the known nominal system matrices A, B, CI, C 2 satisfy the following: 

HI 
( i )  (A,B) is a stabilizable pair; 

( i i )  o(C I) c { ' ;  

( l i i )  a(C 2) c ¢-. 

The uncertain functions AB(-) and d(. , . )  are assumed to satisfy 

H2 

(i) 
( i i )  

AB(.) = RE(.), where E(-)(unknown) is measurable with I E ( t ) l  ~ 6 < 1 Y t ;  

d( ' , ' )  = Bg(.,-), where g ( ' , ' )  is a Caratheodory function with 

l lg(t,x), < alUXll + e2 V(t,x) and where ~I '  ~2 'B are known 

constants. 

Let P (symmetric and pos i t ive  de f i n i t e )  denote the unique solut ion of 

E o °l LI °1 + P+I=O. 

C C 

(17) 

2Loosely speaking, in the sense that the project ion of the a t t rac t ing  e l l i p s o i d  
onto R n approaches the a t t rac t ing  e l l i p so id  ~roOf  the reduced order system. 
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Then the uncertain functions ACI(. ) and AC2(-) are assumed to satisfy 

H3 

Idiag{ACl(t), AC2(t)}I < K c < 1/21PI -I ¥ t ,  where K c is a known constant. 

The above can be interpreted in the context of system (I)-(2) by making the 

following identif ications: 

R p, p ~ m + n (18a) 

A11 = A, A12 = [B " O] , 

B I = O, B 2 -- 

C(t) = Co+aC(t) , 

s o t  E o l  18c 

C o = diag{Cl, C2},  AC(t) = diag(AC1(t), AC2(t)} (18d) 

g1(t,x,y,u) -- d(t,x) + BE(t)[I i O]y 

g2=O • 

(IBe) 

(18f) 

In view of H l ( i i ) , ( i i i )  and H3, i t  is clear that Assumption A1 holds for this 

system. 

Now, 

= A11 - AI2A21 : A11 : A (Iga) 

= B I - AI2B 2 = - A12B 2 = B (19b) 

and hence, in view of Hl ( i ) ,  i t  follows that Assumption A2 holds. 

AlSo, 

[A21x + B2u] = Ix u] H(x,u) , , -  (20) 

and 

~(t,x,u) - gl( t ,x,H(t ,x) ,u)  = Be(t,x,u) (21a) 

where (21b) 

e(t,x,u) -- g(t,x) + E(t)u . 
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Thus, in view of H2, i t  is clear that Assumption A3 holds with c 3 

Proceed i ng, 

S - TA(y) = I, K(~) = yIBTK| 

r I = ( - - ,  (1.2KclPl)(Zip Col + 2~clPI)-]IBTKI - I )  c R . 

=~ .  

(22a) 

(22b) 

(22c) 

Assumption A4 now reduces to the following: 

: ~ (1-2~clPI)(I+2~clPI)'I lBTKI-1 A4 

Finally, i t  is readily verified that Assumption AS(ii) holds t r i v i a l l y  (since 

g2 ~ O) and A5(i) holds with ~ = BIBI. 

A specific example of this subclass of systems is considered in detail in [9]. 

OTHER METHODS 

An approach, differing from the one proposed here, can be found in [12-15]. In 

these references, the design procedure requires the sequential construction of 

controllers which assure existence of global uniform attractors for ( i )  an approxi- 

mation of the reduced order ("slow") subsystem, and ( l i )  the "fast" subsystem under 

the influence of the slow uncertainties. The controller for the fu l l  system is then 

obtained as the sum of these subsystem controllers. 

REFERENCES 

[ i ]  

[2] 

[3] 

[41 

[5] 

S. Gutman and G. Leltmann, "Stabilizing feedback control for dynamical systems 
with bounded uncertainty," Proc. IEEE Conference on Decision and Control 
(1976). 

G. Leitmann, "Deterministic control of uncertain systems," Astronautica Acta, 
7(1980), pp. 1457-1461. 

G. Leitmann, "On the efficacy of nonlinear control in uncertain linear 
systems," J. Dynamic Systems Meas. Control, 103(1981), pp. 95-I02. 

M. Corless and G. Leitmann, "Continuous state feedback guaranteeing uniform 
ultimate boundedness for uncertain dynamic systems," IEEE Trans. Autom. 
Control, AC-26 (1981), pp. I139-I144. 

B.R. Barmish and G. Leitmann, "On ult imate boundedness control of uncertain 
systems in the absence of matching conditions," IEEE Trans. Autom. Control, 
AC-27 (1982), pp. 153-158. 



14 

[6] 

[7] 

[s] 

[g] 

[i0] 

[11] 

[12] 

[13] 

[14] 

B.R. Barmish, M. Corless and G. Leitmann, "A new class of stabilizing 
controllers for uncertain dynamical systems," SIAM J. Control and Optimiza- 
tion, 21 (1983), pp. 246-255. 

E.P. Ryan and M. Corless, "Ultimate boundedness and asymptotic stabi l i ty  of a 
class of uncertain dynamical systems via continuous and discontinuous feed- 
back control," IMA J. Math. Control and Info., 1 (1984), pp. 223-243. 

G. Leitmann and E.P. Ryan, "Output feedback control of a class of singularly 
perturbed uncertain dynamical systems," Proceed. American Control Conference 
(1987), pp. 1590-1594. 

M. Corless, G. Leitmann and E.P. Ryan, "Control of uncertain systems with 
neglected dynamics," in'Variable Structure Control Systems", edited by 
A.I.S. Zinober, IEE Publ., London (in preparation). 

G. Leitmann, E.P. Ryan and A. Steinberg, "Feedback control of uncertain 
systems: robustness with respect to neglected actuator and sensor dynamics," 
Int. J. Control, 43 (1986), pp. 1243-1256. 

A. Saberi and H.K. Khalil, Quadratic-type Lyapunov functions for singularly 
perturbed systems," IEEE Trans. Autom. Contro, AC-29 (1984), pp. 542-550. 

F. Garofalo, "Composite control of a singularly perturbed uncertain system 
with slow uncertainties," Int. J. Control (to appear). 

F. Garofalo and G. Leitmann, "Nonlinear composite control of a nominally 
linear singularly perturbed uncertain system," Proceed. 12th IMACS World 
Congress (1988). 

F. Garofalo and G. Leitmann, "Nonlinear composite control of a class of 
nominally linear singularly perturbed uncertain systems," in "Variable 
Structure Control Systems", edited by A.I.S. Zinober, IEE Pub1., London (in 
preparation). 

[15] F. Garofalo and G. Leitmann, "Composite control of nonlinear, singularly 
perturbed uncertain systems," Proceed. Control 88, Oxford University (1988). 



On Robust Control of Uncertain Linear Systems in tile Absence of Matching Conditions 

HaroM Stalford 

Aerospace and Ocean Engineering 
Interdisciplinary Center for Applied Mathematics 

Virginia Polytechnic Institute and State University 
Blacksburg, Virginia 24061 

ABSI'RAC'I" 

We establish a general robust control result for linear time.invariant uncertain systems using the Lyapunov approach 

initiated by Lcitmann and Gutman. We show that systems satisfying matching conditions are handled by this resull. 

We give necessary and sufllcicnt conditions for the existence of a robust sliding mode controller. Wc show that its ex- 

istence implies the existence of a robust linear controller. A counter ex~unple is provided to establish that the converse 

does not hold. The feedback controllers treated are functions of the complete state without any dynamic compensation. 

I. INTRODUCTION 

The Lyapunov approach to uncertain systems received an initial thrust by Ixitmann and Gutman, I11 - 17J, fur systems 

satisfying matcldng conditions. They are joined by numerous authors ( e.g. {8] - {33]) in extending the Lyapunov ap- 

proach to handle more general systems since it is well suited for addressing structured uncertainty. Our work herein fo- 

cuses on applying the Lyapunov approach to systems wldch have constant uncertainties but do not necessarily satisfy 

the matching conditions. It builds on the work of [91, [141, and [20[ - [33]. Our main objective is to establish a robust 

control result based on the Lyapunov approach which generalizes some of the past work on linear uncertain systems 

with constant uncertainties. We specifically consider Uneax and sliding mode controUers and give necessary and sufficient 

conditions for their cxistenceo We prove that the existence of a robust stabilizing sfiding mode controller implies the 

existence of a robust stabilizing linear controllex. The converse does not hold. We provide a counter example showing 

the existence of a robust linear controller in the absence of such a sliding mode controller, llcrein, we use the term sta- 

bility to mean that the poles are in the left-half plane, i.e., asymptotic stability or, equivalently, that the characteristic 
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polynomial is Hurwitz. We say that a controUer is robust if it asymptotically stabiliTes the system for all uncertainties. 

We treat both the sc'al~ input and the multi-input problems. 

We investigate the robust control of linear time-invariant uncertain systems that are not required necessarily to satisfied 

matching conditions: 

=A(y)x+B(y)u, y o u  (I) 

where A(),) is a nxn uncertain matrix, 8(y) is an nxm uncertain matrix with full tank (m ~ n) and ~, belongs to a set 

of uncertainties F where F is a simply connected, compact subset of p-dimensional Euclidean space ~ .  We assume that 

A(~') and B(y) are continuous with respect to the uncertainty argument ), e I". In this paper we consider only full state 

feedback controllers u(x), i.e., those which are functions of the state x only. That is, we do not address dynamic com- 

pensation as part of the feedback controller. We require that system (15 satisfy the controllability assumption: 

ASSUMPTION 1. For each y ~ F the pair (A(D, B(),)) is controllable. 

The controllability assumption is equivalent to the assumption that closed-loop poles cab be arbitrarily placed by a 

suitable gain matrix. We state this equivalent assumption: 

ASSUMPTION 1'. For each 1' • F and prescribed eigenvalues A(y) ffi (2t0') . . . . .  2.(V)) in which imaginary eigenvalues 

occur in complex conjugate pairs there exists a real gain matrix K(V) such that the closed-loop matrix 

A(y) = A(v) - B(y)K(~) (2) 

has the prescribed eigenvalues A(y). 

For arbitrarily prescribed eigenvalues A(y), y ¢ F, we can rewrite (1) as 

ic = ~ ( v S x  + B(~)Cx(ySx + u] 

where K(y) is the corresponding gaLa matrix and A(y) satisfies (25. 

(3) 
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The next assumption makes it possible to define a control law with which to stabiliTe (I) in the presence of uncertainties 

y , r .  

ASSUMPTION I!. For each y ~ F there exist an mxn gain matrix K(y), an invertible mxm matrix R(~,) and an nxn 

symmetric, positive del'mite matrix Q0) such that 

(0 A(y) ffi A(y) - B(y) g 0 )  is asymptotically stable 

(i 0 F = R-t(p) Br(y) P(y) is a constant mxn matrix where P(y) is the 

symmetric, positive definite solution of Lyapunov equation 

P(y) AO) + ~-T(y)eo) + gO) = o (4) 

We make the following assumption on the mxm matrix R(y) which is def'med in Assumption 11. 

ASSUMPTION IlL For y ~ F the matrix O0, ) defined as 

*0) - ,'ca,r~ ~ + g(r) 
2 

(Sa) 

is positive de.finite and has the square root form 

• (v) = s r ( v ) s ( r )  (5b) 

whet, S(y) is invcrtible. The following upper bound exists and is finite 

h = m@ls-'( ,)Jl  IJs-T(,) (6) 

In Sections 2-4 and 6 we show how to use the constant matrix F in establishing a robust controller. 
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2. blAIN ROBUST CONTROL RESULT 

Assumptions I - 111 permit the development of a robust control law that is discontinuous in nature. "/~is is established 

in the next theorem. 

TIIEOREM I: If system (1) satisfies Assumptions I - 11I then the discontinuous controller 

Fx p(:¢), Fx ~ O 
~(x) = - ii/~ I 

stabilizes (1) for all y ~ F where p(x) satisfie~ 

The scalar h is given by (6) and the gain matrix K(y) is defined in Assumption II. 

(7) 

(s)  

PROOF: For y s r let K(y), R(y), Q(y), P(y) and F be the matrices described in Assumption 11. Define the Lyapunov 

function 

V(y) ffi xr / ' (y)x  

It has the time dcrivativ© 

V(y) •, - x rQ(y )x  + 21"Br(y)P(y)x'l r [K0,)x + u'l 

Using property (i0 of Assumption II this derivative becomes 

l~(y) ffi 

We show that the control law (7) yields 

- z r ~ y ) x  + 2[~>] r Rr(~) UC(Ox + u(x)3 

(9) 

(10) 

(11) 

f/(y) • -xTQ(y)x, ~ ~ f" (12) 

Since ~ , )  > 0 (i.e., positive definite) it suffices to show that W(y) is nonpositive: 

w(y) = 2[Fx]rRr(~)[r(v)x + u(x)] < o (13) 

Cor~ider a control law of the form (7) in which the scalar function p(x) is defined by (g). substitution of (7) into (13) 

yields 

w(F) = 2w, b ) -  2w2b) < 0 (14) 

where 
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wi(~) = EFx]r Rr(y) K(y)x 

r 7" F x  x w~tv) = [Fx] R (y)~p( ), Fx ¢ o 

w2(y) - [ v x ] r q , ( r ) ~  p(x) 

• r S ( ~ )  Fx 
W:(y) = [s(y)~x] ~p(x) 

wh~n~ 00') and SO, ) arc defined by (5") and (6). Making the vector defndtion 

Eq. (17) becomes 

Eq. (15a) can b¢ rewritten as 

where 

Inequality (14) is met provided 

f f  (v).v(v) 
w20') III'M p(x) 

z(y) ~ s(~)lo(ffl  - t  Rr(~) K(y)x 

In terms of (19) and (20) this inequality is given by 

This inequality is met provided 

Taking the norm of (21) yields 

Wt(y) < W2(~) 

yT(y)yty) 
p(x), Fx ~ 0 

llFxll 

I[v(y)ll IIz(y)ll < ~ p(x), Fx ~ 0 

IIz(y)ll ~g IIS-r(y)RT(~)II UK0,)xU 

Multiplying both sides by the norm IlS-t(y)U gives 

lls-~(y)ll Itz(y)ll < p(x) 

Observe that 

IIFxll = IlS-l(~,)S(y)Fxll g IIS-t(y)ll IlYff)ll 

(15a) 

(15b) 

06) 

(1~) 

(18) 

(19) 

(20) 

(2L) 

(22) 

(23) 

(24) 

(2~ 

(26) 

(27) 
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Multiplying both sides by p(x) yields 

The inequalities (26) and (29) yield 
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1 ~ IIS-J(~)IIItp(~)II, Fx ~ 0 (28) 
IIFxll 

p(x)  < 9s-t(y)l[ ILv(y)ll 
I[~l[ 

p(x), Fx ~ 0 (29) 

IW(~)II , ,  IIz(~)ll ~ ~ ~,txj, Fx ~ 0 (30) 

This verifies (24) which establishes (12). By the theory of Lyapunov, the control law (7) stabilizes (1) for each uncer- 

tainty 7 • F. 

3. ROBUST CONi'ROL IN TIlE PRESENCE OF MATCIIING CONDITIONS 

Systems which satisfy the matching conditions of linear uncertain systems, [2] - [7 L satisfy Assumplions I - I I I .  This 

result is given by the next theorem. 

TIIEOREM 2: l.ct system (1) satisfy the following matching conditions: There exist an nxn matrix A and an nxm 

matrix B and for each y ,- F there exist an mxn gain matrix D(y) and an invertible mxm matrix l-l(y) such that 

(a) a(r)  = .4 + /~D(v). 

(b) n(~) = B n ( y ) .  

(e) (A, B) is a controllable pair 

(d) ~(y) is an mxm positive definite matrix where 

nr(y) + n(y) 
~(Y) ~" 2 

(31) 

Then Assumptions 1 - 111 are met. As a consequence of Theorem I, there exists a robust stabilizing control law of the 

form 

Fx 
u = - K x  + , , -w~. , ,p(x)  (32) 

I l r ~ l  

such that 
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"A = A - B K  

F ~ B T P  

where P is the symmetric, positive det'mite solution of the Lyapunov equation 

p ~ +  ~ - r e +  Q = 0 

in which Q > 0 is arbitrarily chosen. 

(33) 

(34) 

(35) 

PROOF: Conditions (a) - (c) imply that (d(y), B(y)) is controllable for y ¢ F. Controllability is invariam under linear 

feedback and coordinate transformation on the input, 134]. Thus Assumption I is met. Since (A, B) is controllable there 

efists a gain matrix K such that A" of (33) is asymptotically stable. Define the uncertain gain matrix 

x(r )  ffi n - J ( r ) [ o ( y )  + x'l  

Using conditions (a) and (b) we fred A'0') of condition (t) of Assumption Ii reduces to 

X(y) = A - OK 

(36) 

(37) 

and is. therefore, asymptotically stable for ? s F. Select any Q > 0. Let P be the solution of (36) and let F be defined 

by (34). For i' e F define 

R(r) = nr( r )  (38) 

The matrix F of condition (it') of Assumption I1 and that of (34) are identical. That is, (34) can be rewritten as 

F = n-r (~)  [ a  r l (y ) ] r e  (39) 

which, in view of condition (b) and (38), is equivalent to 

F - R-I(y) Br(y) P (40) 

Thus, condition (it) of Assumption II is met with 

P(y) - e (41) 

Condition (d) implies Assumption II1 since B(r) is continuous and F is compact. That is, h exists and is finite. Since 

all conditions of Theorem 1 are met, the existence of the stabilizhlg control law (32) follows with 

p(x) = h ~a~llK(r)xll (42) 

where K(~) is defined by (36). 
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4. ROBUST CONTROL IN THE ABSENCE OF MATCtlING CONDITIONS: SCALAR INPUT 

We show that the robust control assumptions presented in [291 for scalar control satisfy the assumptions of Theorem I. 

Consider system (I) with scalar control The input matrix B(y) is a column vector. The work in 1291 assumes that the 

system (I) is controllable, Assumption L Under this assumption there is a unique coordinate transformation T(y) 

z = T(r)x (43) 

of (I) to the following controllable companion form, 1341, 

~ A,(a(y))z + n,u(x) (44) 

where 

[-i o o, ...... o° , -i ]  45a, 
AXa(y)) ~ T(~) A(~) T-l(y) (45b) 

and 

u, = [ I , o , o  ..... o] r 

The vector a(y) = (a~(y), ..., a~(y)) is the coefficient vector of  the open-loop characteristic polynomial: 

a~(s) = det[sl- A(y)] 

We need the following defmitinn in order to introduce the next assumption of 1291-[311. 

(46a) 

(46b) 

(47) 

DEFINITION I: The row vector PI = (Pu, Pn ... . .  Pl~) is said to be n - ! stable provide Pn > 0 and the polynomial 

Pi t  ~n-I  4- PI2,~ n-2 4- ... 4- Pzn = 0 (48) 

is Hurwitz (i.e., all eigenvalues are in left-half plane). 

A S S U M P T I O N  IV :  There exist an uncetain Yo • r and an n - 1 stable row vector Pt(yo) such that 

el(Y) ~" PI(Yo) T(yO) T'-I(Y) (49) 

is n - I stable for all y ~ r 
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The concept of a vector bdng n - l stable is fundamental in the asymptotically stable solution of Lyaptmov equation. 

This result is presented in the next lemma. Its proof is given in [30 I. 

LEMMA I. Let a = (at .... .  a,,). Define A(a) to be in the controllable companion form (45). Let P be the solution to 

the Lyapunov equation 

PA(~)+ArO)P+Q = 0 

where Q > 0 and Q = Qr Then A(a) is stable if, and only if, Pt is n - I stable where PI is the first row of P. 

PROOF: See [30]. 

11~0 next lemma is a consequence of I.emma I. 

(50) 

LFaMMA 2. Suppose Assumption IV holds. For each y t F define Q(y) > 0, Q(y) = Qr(y). Then for each y, there is 

a unique stable coefficient vector .~(y) satisfying Lyapunov equation 

P(r)a(,~(y)) + a T(~(v))P(y) + My) = 0 

where P=(y), the fu'st row of P0'), is prescribed under Assumption IV. That is, A(~0,)) is stable for y ~ F. 

The above Icmmas are ~d in the next theorem to establish a stabilizing controller for system (I). 

TIIEOREM 3. If Assumptions I and IV hold tben there is a stabilizing controller for system (I) having the form 

(5l) 

u = - F x  p ( x ) ,  F x # O  (52) 
IIl'~c[I 

where F is a constant row vector and p(x) is a nonncgative scalar function of the state x. 

PROOF: Since system (1) is controllable for each uncerlainty y~r it can be transformed to the controllable companion 

form (44). Assumption IV hnplies there is a stable coefficient vector ,$(y) for y ~ I" such that (51) is satisfied. I)clhle 

o0, ) to be the difference between the stable coeffic'ient vector ,~(y) and the open-loop characteristic polymonJ',d coefficient 

vector a(y) of System (1) 

o(y) ffi ~ (v) - a(y) (53) 
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Note that the negative of a(~) is contained in the ftrst row of (453. Substitution of (53) into (44) yields 

- el~ (-~0,))z + nz [.(ff/'(r)x + u(x)] (54) 

after making use of (43). We use the symmetric, positive det'mite solution P(y) of (51) to construct the Lyapunov func- 

tion 

Taking its derivative gives 

whcre F satisfies 

v(v)=zre(y)z (55) 

V(y) = - z r  Q(y)z + 2[16c]r[o(~) T(y)x + u(x)] 

and as a consequence of Assumption IV we have 

or, equivalently, 

(56) 

F = Pl(yo)T(yo) (57a) 

F =  et(v)T(v) (57b) 

r = a,re(y)T(r) 

where P(y) satisfies (51) and T(y) satisfies (43). Any admissible control law u(x) satisfying 

u(x) < - m a ~ [ o ( y ) T ( y ) x ]  , F x  > 0 

u(x) > marxr~(y)T(y)x], Fx < o 

stabilizes (1) since for such a control law 

(57c) 

(58a) 

(58/,) 

f/(y) <-zrQ(y)z, r • 1" (59) 

The maxima of (58) exist since F is compact and since the functions a(y) and 7"(y) are continuous on r .  An admissible 

control law satisfying (58) is (52) where 

p(x) -- ~na(~ llo(y) T(y) xll (60) 

and F is given by (57). In the next theorem we establish that a system satisfyin 8 Assumption IV also satisfies Assumption 
II. 

TIIEOREM 4: If the system (I) satldles Assumptions I and IV then Assumptions II and 111 are met. 
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PROOF: We make the following identifications 

X(v) = T-~(r) .4(~0,)) T(y) (61a) 

F ( r )  = rr(v) /'0,) 7"(v) (61b) 

Q0') = Tr(Y) Q0') T(r) (61e) 

K(y) = a(y) T(y) (61d) 

where T(y) is defined by (43), where P(y), Q(y)andd(~(y)) arc defined by (51) and where o(y) is defined by (53). The 

matrix A(~0,)) is asymptotically stable. This follows from Lemma 2 and the fact that eigenvalues are invafiant under 

coordinate transformation. From (44), (45), (53) and (54) it follows that 

X(y) = A(y) - n(y)K(y) (62) 

so that condition (i) of Assumption I11 is met. The vector F of (57) satisfies 

F = Br(y) P(y) (63) 

where P(~) is lhe solution of the Lyapunov equation 

P(y)A(y) + xr(y)F(y)  + QCr) = o (64) 

which shows that condition (it) of Assumption 11 is met. llere, the scalar R = I. Thus Assumption Ill is also met. 

Theorems 3 and 4 establish that Assumption IV implies Assumption I1. The converse need not hold. Thus Assumption 

IV is a stronger assumption. Assumption IV admits a sliding mode controller (52). From the next theorem we see that 

it also admits a stabilizing linear controller. 

TIIEOREM 5- If Assumption I and IV hold then there exists a stabilizing linear control 

u - - e F x  

where F is defined as in Theorem 3 and the sea/at c satisfies 

> 

where Q(~), ~ ~ F, is defined as in Lcmma 2 and where g(y) is given by (61d). 

(65) 

(66) 

PROOF: See 131]. 
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The maxima of (66) exist since K(y) is continuous. F is compact and the matrices Q(~) are chosen in a continuous 

manner. Usually Q(y) is ~et to be tho identity I or it is computed from 

Q(~) = r-r(y) Q T-'(~) (67) 

where Q is a prescribed symmetric, positive definite matrix. The next result gives an equivalence between Assumption 

IV and a minimum phase condition on the system. 

TilEOREM 6: Assumption IV is met if, and only if, there is a row vector F ,uch that 

F [ s I - A ( y ) ]  - I  B(y), y • F 

is minimum phase with n-I transmission zeros where I is the nxn identity matrix. That is, the determinant 

(68) 

det = 0, y z F (69) 

is Ilurwltz. 

PROOF: From (49) of Assumption IV 

Pt(Y) *" FT-](Y), Y ~ F 

where PI(Y) is n-I stable with polynomial Eq. (48) can be rewritten as 

pl(y)[$n-1 $n-2 ..,$ l ] r  = 0 

where s = a + jca = ,I. Multiplying (70) on both sides by Is "-t .e -2 ... s 13 r gives 

FF"J(~)[s n-I s n - ~ . . , s  1] r = 0 

The open-loop characteristic polynomial aF(s), (47), is given by 

ay(s) = s n + al(y)s n - !  + ... + an_](y)s + an(v) = 0 

(70) 

(71) 

(72) 

(73) 

Since A,(a(y))andB,  are in the controller companion form (45) and (46) we have the following identity from linear system 

theory, [341: 

[at-a~(a(r))]-'zr, = 

Substitution from (45b) and (46b) into (74) gives 

[$n--Isn--2 ... $ lIT 
a~(s) (74) 
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sa- lsa-I  1"17' T(y)['d-- .,4(y)]-lB(y) = ... s ,~(~) 

Multiplying both sides by FF-*(r) yields 

~Sl-- ~(y)]--l~(y) = F'F-I(Y) [3n-I Sn-2 ... $ l i t  

(75) 

= 0 (76)  

after making use of (72). The transmission zeros, [35"1 , of (76) are the n-I stable eigcnvalucs of the (n-I) stable PI(Y) 

row vector of (70). This proves that (68) is minimum phase. From (76) we have 

d e t [ s l -  ACt)] F[sI-AC~)]-IB(r) - 0 

A reciprocal form of(77) is given by, [343, 

(77) 

det[sl-_Fd(¢) B~)]  = 0 (7S) 

which yields (69). Since Pl0') is n-I stable it follows that (71) is llurwitz. Thus (69) is Hurwitz. 

Conversely, if there exists an F such that (69) is llurwitz then the vector Pt0') defined by (70) is n-I stable and As- 

sumption 1V is met. From the above thcorem we have the corollary. 

COROLLARY I. A necessary and sufficient conditions for the existence of a stabilizing sliding mode controller 

Fx u = - ~ p ( x ) ,  F x  ¢ 0 
II/~xll 

(79) 

of(I)  is the existence of a row-vector F such that (69) is Ilurwitz for all y~F. 

The existence of a stabilizing linear controller 

u = - K x  (S0) 

does not imply the existence of a stabilizing sliding mode controller (79). Bffor¢ tiffs is illustrated by an example we give 

necessary and sufficient conditions for the existence of a linear controller (80). 
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TIIEOREM 7: A necessary and sufficient condition that there exist a stabilizing linear controller (80) of system (!) is 

that there exists a row vector K such that the following determinant is llurwitz: 

['7' 7] det = 0, r *  I" (81) 

PROOF: Suppose there is a row vector K such that (80) asymptotically stabilizes (!). The feedback matrix 

A g v )  = A@) - BOOK, r ~ I" (82) 

is asymptotically stable and the deterrrdrtant 

a~(~) = de t [ s l -Ac (~ , ) ]  = 0 (83) 

is tlurwitz. Eq. (83) cart be written as the following series of identities, [34 ] ,  

~(~) = det{l'M - a(y)3 [ / +  [M - A(~,)]-ta(v)K]} (84a) 

~(~) = %(~) det[t + Ca - aO,)3-'a(~)K] (84b) 

where ads ) is the open-loop characteristic polynomial (47). The reciprocal form of (81) is (84(:), 134]. That is, (81) and 

(84(:) are identities. Therefore, (81) is Hutwitz if, and only' if, (83) is Hurwitz. Eq. (84c) can be used to prove Theorem 

5. lf(76) is lIurwitz then with 

K = e F  (85) 

Eq. (84(:) becomes 

~0) = ~(s)[1 + c e ' E , x -  A(~)/-'a(v)] 

which is Hurwitz for suffic{ently largo c. That is, in view of (7 0 °(76). F_,q. (86) can be rewritten as 

,¢u) = .," + , :n( , , ) l ,"- ' , . ,"- ' . . . - ,  ,1" + [,,,(.o-.,"] 

(86) 

(8"0 

in which the last term is an n-I order polynomial that is dominated by the middle term for large e. The first two terms 

give a llurwitz polynomial for sufficiently large e. As a consequence, the existence of a robust stabilizing sliding mode 

controller (52) implies the existence of a robust stabilizing linear controller (65). In general, the converse does not hold 

as is illustrated by the following example, 
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5. EXAMPLE OF ROBUST LINEAR CONTROLLER WH'IIOUT SLIDING MODE CONTROLLER 

Consider the uncertain system 

= x + u, 1 , * U  
0 

(88) 

where F -- I" - M ,  M]  and where M is a positive scalar greater than I 

M > ! (89) 

"l~e determinant of  the controllability matrix [B(y), AB0,)] is given by ~ + I which sati~fiet the equality 

y: + 1 > 0 ¥ y ~( -oo,  oo) (90) 

The system (88) is controllable for all uncertainties ~,. Thus Assumption I is satisfied. The requirement for the existence 

of a stable sliding mode surface 

Fx = 0 (91) 

depends on (69) being IIurwitz. For our example system (88) Eq. (69) reduces to the first order polynomial 

(Fry + F2),1 + (yF x - F  0 = 0 (92) 

which is llurwitz for ~,, F provided the coefiieients are positive 

Fly + F 2 > 0, y ~ r" (93a) 

r F  2 - F  t > 0, y ,  F (93b) 

Evaluating the first inequality at y = 1 and the second at y = - 1 give the contradicting inequalities 

F 2 > - F I (94a)  

F :  < - F ,  (94b) 

That is, there exists no F - -  (Fi, hi) satisfying (69) for ),d - l, 1"1 which is a subset of F .  Consequently, there is no stable 

sliding mode surfac¢ (91) on which a robust sliding mode controller (52) can be designed for yd" -1 ,  1]. 

The requirement for the existence of a robust stabilizing linear feedback controller (80) is that (80  is llurwitz. The 

chasacterisfic polynomial of (81) is given by 
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k z + a~(~,),t + a26, ) = 0 

where robustness follows from positiveness of the coemciants 

ad~,) - Kz+~,K1  > 0 ,  ~ ,= I "  

a~(~) = y K : l -  K| + 1 > 0 ,  ~,,,r 

The following ~ vector K = (Kj, K~ provides a robust linear controller (80) 

(9s) 

(96a) 

(96b) 

K I - 0 (97a) 

1 (97b) 
K 2 = M +  t 

where = > O. Substitution of the gain vector (97) into (96) gives 

142> O, y • r (98a) 

> - ( M + d ,  y , r  (98b) 

The inequalities (96) are met. Thus (81) is Hurwitz which implies that the linear controller defined by (97) robustly 

stabil;Tes (88). Consequently, (88) has a robust stabilizing linear controller but no stabilizing sliding mode controller. 

6. ROBUST CONTROL IN 'HIE ABSENCE OF MATCHING CONDITIONS: MULTI-INPUT 

The multi-input case parallels fl~at of the scalar case, Section 4. We consider a condition similar to (69) and show that 

it kads to necessary and sufficient conditions for the existence of a stiding mode controller (7). In this section 

B(y), 7 * f',  is an nxrn uncertain matrix with full rank (m :g n) We consider system (1) for which Assumption 1 holds. 

Our main result for a robust sliding mode controller is given in the next theorem. 

I ' l lEOREM 8. A robust stabilizing sliding mode controller (7) exists for system (1) in which Assumption i holds if, 

and only if, the following determinant is Hurwitz: 

PROOF: The reciprocal form of (99) is 

• r (99) 
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a~(s) det [F[s l -A(~,) ' I -1B(y) ]  = 0, ? ~ I" (leo) 

where a,(s), defined by (73), is the determinant of [ e l  - A(~,)] which is the open-loop characteristic polynomial of 

A(~). Since Assumption I holds there is a coordinate transformation T0,) 

z = T(7)x (lOl) 

which takes (1) into a controllable companion form, [341, 

= dz(a(r})z + Bzu(x ) (I02) 

where 

Az(a(~)) = T(~,) A(y) 7~1(~/) (103a) 

B,(y) = Try) B(y) 003b) 

The mxm matrix B,(y) is formed from m columns of the nxn identity matrix. The dependence of B,(y) on the uncertainty 

y follows from the fact that the selection of the m columns may dcpend on 3,~F. The nxn matrix A,(a0,)) is in block 

controllable companion form. Such companion forms are described in [32J-134 I. In view of the Transformation (101) 

we can rewrite (100) as 

Consider the last two factors 

which in z-coordinates is given by 

which is equivalent to 

=y(~) [7'(~)1~t- A(y)]-*n(~)] 

[E,I - 

(104) 

005) 

(106) 

A ~  : /  - A,(afv)) ]n, tv) (1o7) 

where Adj is the matrix adjoim operation. Consider the definition of an nxn symmetric, positive delinite matrix P(V) and 

the definition of an mxm symmetric, positive definite matrix R(y) such that 

R-'(y)BTz(y)P(y)T(~) = F, y • I" (108) 

That is, P(y) must be such that 

R-:(~)D/(y)P(y) = PT-t(v), y ~ r (lO9) 
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Furthermore, consider the Lyapunov equation 

P(~)~(~(~)) + Ar(~(y))e(y) + 12@) = 0, y ¢ r (110) 

where Q(~,) > 0 and Q(y) = Qr(y), y , F. A necessary and sufficient condition that d,(~(y)) be asymptotically stable and 

P(V) be symmetric, positive definite and satisfy the constraint (109) is that the determinant of the foUowing mxm matrix 

( i l  In) be Hurwitz and that the following mxm matrix (11 l b) be positive definite, [32[: 

BT(y)P(#)A4[d -  Az(y)]Bz(y), ~ • r (111¢) 

#[(y)I'(DB,(Z) > 0, # • r ( l t i b )  

From (104), (107), (109) and (I !1) it follows that (99) is necessary and sufficient in order that for each ?.I" there exist a 

symmetric, positive definite P0') satisfying (109) and a stable A,(<;(v)) such that the Lyapunov equation (110) is satisfied. 

The theorem now follows from Theorem 1. Define .(},), y s r 

oCy) = Bzr(~)[Az(a(y)) - A,(D(y))] ( i  12) 

By the canonical form of d,  and #, it follows that 

Az(~(),)) = Az(a(y))-Bz(y)o(y ) (113) 

Dcfmc K(y), y ~ r, as 

K(y)=a(y)T(~) 014) 

Transforming (113) from z-coordinates to x-coordinates using (101) yields the following asymptotically stable matrix. 

A(s) = A(~) - ~(y)l(#) (i15) 

Thus condition (i) of Assumption !1 is met. Transforming (108) from z-coordinates to x-coordinates using (101) gives 

F = R- i (# )Br(v)F(y)  (I 16) 

where P'(y) satisfies the Lyapunov equation which is transformed from (110) 

P'(y),4"(~,) + XTo,)P'(~) + ~'(y)---O, y , F (117) 

where 

-riO') -- TT(I')P(y)TO ') 

Q(y) = Tr(~)Q(y)T(~) 

( l l i la)  

( l i l tb) 
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Thus condition (ii) of Assumption II is met. Consequently all conditions of Theorem 1 ate satisfied. The existence of 

a robust sliding mode controller (7) now foUows. 

The existence of a robust stabilizing sliding mode controller implies the existence of a robust linear controller. This result 

is given in the next theorem which parallels the scalar result, Theorem 7: 

TIIEOREM 9:. The existence of a stabilizing sliding mode controller (7) for system (1) implies the existcncc of a robust 

stabilizing linear controller 

u = - K x  (119) 

PROOF: A necessary and sufficient condition for the existence of a robust stabilizing linear controller is that the de- 

terminant 

d - A(y) B(y)] 
det = O, ~, z [" 

- K  t,~ j 
02o) 

is I lurwitz where lm is the mxm identity matrix, Paralleling the developement (8 I) - (84) the determinant (120) is I lurwitz 

if, and only if, the mxm matrix 

,~(s) = ,,.,(0 detF:m + K [ d  - ,qfl]-~ a(r)], v * r (12l) 

is Hurwitz. if a robust stabilizing sliding mode controller (7) exists then there exists an m m  matrix F such that (99) is 

Hurwitz. Consequently, (100) is Hurwitz. For an arbitrary mxm matrix C define the gain matrix 

g =* C F  (122) 

substitution of (122) into (121) gives 

~(a) = a~(s) detE/m + C F  [ ~ l -  A(r)] - l  B(r)], 7 e F 023) 

In view of (73) we can rewrite (123) as 
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a~(s) ~ det[,l"l m + C F  / ld j~ .s l  - yl(y)] B(~) .6 (ay(s) - ,~n) ira] , V ~ r (124) 

Since the mxm matrix (100) is tlurwitz, it foUows that there exists an mxm matrix C with sufficiently qarge elements" 

such that (124) is tlurwitz, [33]. The last term is dominated by the second tenn. "lhe control law (119) robustly stabilizes 

(1) for a "sufficiently large" C matrix in (122). 

7. SUMMARY 

A linear time-invariant uncertain system is investigated for robust stabilization. The uncertainties belong to a compact 

subset of multi-dimensional Euclidean space. ~1~¢ dynamics and input matrices arc continuous functions of uncertainty. 

The system is controllable for each uncertainty, Assumption 1. In Assumption I1 two general conditions are stated which 

involve an uncertain Lyapunov equation. The first condition dears with the existence of an uncertain gain matrix for 

stabilizing the system. The second deals with the existence of a constant F matrix which has the appearance of a Riccati 

gain matrix. F is the product of three uncertain quantities one of which is the uncertain solution P(~,) of the Lyapunov 

equation. Another is the Rr') matrix which is assumed in Assumption Ill to form a positive definite matrix when added 

to its transpose. 

A general robustness result is established in Theorem I. It states that a robust stabilizing sliding mode controller exists 

under the general Assumptions I - IIL In Theorem 2 we prove that the matching conditions of uncertaln systems satisfy 

the Assumptions I - IlL 

Robust control in the absence of matching conditions is examined in Theorems 3, 4 and 5 for scalar control input. For 

such systems necessary and sufficient conditions are given for the existence of robust stabilizing sliding mode controllers. 

In Theorem 4 we show that systems satisfying such conditions also meet Assumptions I - Ill. lheorem 5 goes one step 

further and shows the existence of a robust linear control for such systems. The existence of a robust sliding mode 

controller is shown to depend on a minimum phase condition, Theorem 6. In Section 5 we give an example of a simple 

system which admits a robust linear controller but no robust sliding mode controller that stabilizes the system. 

In Section 6 we investigate robust control in the absence of matching conditions for multi-input systems. In Theorem 

8 we show that a certain determinant being lturwitz is necessary and sufficient for the existence of a sliding mode con- 

troller. A similar condition is stated in Theorem 9 for the existence of a robust linear controUcr. 
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ABSTRACT 

A dynamic output fee.dbark strategy is proposed for a cl~s of uncertain systems. Using a 
singular perturbation approa~h.-a threshold measure of "fastness" of the feedback dynamics, to ensure 
overall system stability, is derived, This threshold is calculable in terms of known bounds on the 
system uncertainties but may be ~ a t i v e  in practice. To circumvent this drawback and to allow 
for bounded uncertainties with unknown bounds, an adaptive version of the strategy is then 
developed. 

I. Introduction 

We address the problem of design of dynamic output feedback controls for a class of uncertain nonlinearly 

perturbed linear multivariable systems. The approach is similar in concept to that of [1], and fundamentally 

stems from the deterministic theory developed in, for example, [2-8] (see also bibliographies therein). 

Initially considering a hypothetical output y# for the system, a (generally unrealizable) stabilizing static output 

feedback control is established. This static control is then approximated by a realizable compensator (with 

parameter/z > 0) which filters the InJe system output y. Physically. the parameter # is a measure of "fastness" 

for the filter dynamics; analytically, # plays the role of a singular perturbation parameter. Using a singular per- 

turbation analysis akin to that of [9,10], a threshold measure/~* of "fastness" of the compensator dynamics, to 

ensure overall system stability, is then dedved. The threshold is explicitly calculable from known system data 

but corresponds to a "worst-case" value and consequently may he conservative. To counteract this inherent 

conservatism (and to allow for hounded uncertainties with unknown bounds) an adaptive version of the com- 

pensator is also developed by an approach which is essentially that of [11] (see also [12-16] and related work 

in [17-23]). 

2. The system 

We consider uncertain nonlinearly perturbed linear systems of the form 

i(t) = Ax(t) + Blu(t) + g(t,x(t).u(t))], x(t) ~ ~n, u(t) ~ ~m 

for which the only available state information is provided by the output 

y ( t )  = Cx(t) ,  y ( t )  6 ~ P ,  m < p S n . 

The triple (C,A,B) ,  which defines the nominal linear system, is assumed to satisfy the following. 

( i )  

(2) 
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Assumption 1: (A,B) is a controllable pair and rank B = m. 

Assumption 2: 

There exist known integer • > 1 and known matrices Ft ,F2," • ",Fr ~ ~ mxe, such that 

(i) f o r i =  1 , 2 , . . , , • - 1 ,  imCAi- IBc:  n kerF/  ; 
./,,i÷ l 

moreover, the matrix C, := FtC + F2CA + • • • + F ,  C A  " - ~  is such that 

(ii) ICr B I :~ O oand 

(iii) the transmission zeros of  the m-input m-output linear system (C,,A,B) lie in C -  (the open left half com- 

plex plane). 

Example 1: If A =  0 1 , B =  , 

O 0  

r= 2, Fl =[ l  l l a n d F 2 = [ 1  0l. 

C = 0 , then the above assumptions hold with 

Finally, we impose some structure on the uncertain function g. 

Asswnption 3: 

g: ~ × ~ , t × ~ , H  ~ ~m is (i) CaratlC..odory, with (ii) IIg(t,x,u)ll  ~ allxU + Pllull for all (t,x,u), where ot 

and ,8 are known constants with/~ < !, and (iii) if • > 2, then g is uniformly Lipschitz in its final argument 

(with known Lipschitz constant ~.), i.e. (if • > 2) there exists known ~., independent of (t,x), such that, for all 

u and v, U g ( t , x , u ) - g ( t , x , v ) l l  < allu-vll. 

The outline of the paper is as follows: 

Firstly, the problem of designing a (dynamic) output feedback compensator for  system (1,2) is addressed. This 

is accomplished by initially considering system (1) with hypothetical output 

ys(t) = C ,x ( t )  (3) 

where C, is as in Assumption 2. Note that, if r = 1 then y#(t) = FlY(t) and hence is realizable; however, if 

r > 2 then yS(t) is unavailable to the controller, hence the qualifier "hypothetical". For the system (1.3) so 

defined. (ii) and (iii) of  Assumption 2 in essence play the role of  "relative degree one" and "minimum phase" 

conditions on the hypothetical nominal linear system triple (C, ,A,B). Under such conditions, it is known (see, 

for example, [11-13]) that the zero state of  system (1,3) can be rendered globally uniformly asymptotically 

stable by static output feedback; this is reiterated in Theorem 1. However, with the exception of  the case 

• = 1, such static output feedback is unrealizable in the context of the true system (1,2). Therefore, in §3, a 

realizable dynamic compensator is constructed for the cases • > 2, which filters the actual output y. This filter 

can be interpreted as providing a realizable approximation to the static hypothetical output feedback; moreover. 

it is shown in Theorem 2 that global unifoma asymptotic stability of  the zero state of  (1,2) is guaranteed pro- 

vided that the filter dynamics are sufficiently fast (a calculable threshold measure of fastness is provided). 

Secondly, in §4, an adaptive version of  the dynamic compensator is developed, which counteracts conservatism 

(induced by crude estimates in the analysis) inherent in the non-adaptive filter and which also dispenses with 
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the requiwanent that the uncertainty parameters a,  ~0 and 2 in Assumption 3 be known (however, the assump- 

tion that p < 1 remains in force and, moreover, if r > 2 then g is assumed to depend linearly on x). 

3. Stabilizing s~atle output feedback control for hypothetical system 

Let 7"1 ¢ ~ ( . -m)x .  be such that ker TI = im B, then 

T =  (C,8)_ tC " with inverse T -1 = iS ! ; B] 

is a similarity wansformafion which takes system (!,3) into the form 

:~(t) = A n d ( t )  + Ai2y(t) , .~(t) e ~ - , n  (4a) 

~( t )  = A2t~(t) + A22Y(t) + u(t)  + ~( t ,£ ( t ) , y ( t ) ,u ( t ) )  , y( t )  e R 'n (4b) 

g(t, . t ' ,y,u) := g(t .S t£+By,u)  (4c) 

with output 

y#(t)  = (C,B)~( t )  . (5) 

Note that the eigenvalues of Art coincide with the transmission zeros of (C, ,A,B); thus, by virtue of Assump- 

tion 2(iii), o'(All ) c [ ' - .  

Let PI > 0 be the unique positive definite solution of the Lyapunov equation 

PIAtl  + A ~ P  t + 1 = 0 (6) 

then we state our first result. 

Theorem l :  

Define x"  := I[A22U + al[Bll + ~ [llelAl2+Aftl+allSlU] 2 , then, for each fixed P > r ' ( l - # )  -1. the static 

output feedback 

u(t)  = -~?(C,8)- lyJ( t)  -~ - P  y( t )  (7) 

renders the zero state of the hypothetical system (1,3) globally uniformly asymptotically stable. 

Proof' Let V: (~,y) ~ ~ (£',PIY) + ~[[yl] 2, then a straightforward calculation reveals that, along solutions 

(:e(-),y(-)) of (4,5,7) (equivalent to (1,3,7)), the following holds almost everywhere 

d V(~(t),y(t)) < -U(~(t),y(t)) 
dt 

where 

[[Yll ' M [[YI[ ' 

Noting the M is positive definite, the result follows. 

l - [ l l P i A n + A ~  II+allSl II1 ] 

n := -[[Ie lAi2+A~ [I+aUS~ Ill 2[~P(I-/~)-IIA22 I[-aIIBH] " 

r-i 
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In the context of Ihe true system (1,2), if r = 1, then the static feedback (7) is realizable as 

u ( t )  = - t ~ ( C r B ) - I  F l y ( t )  

whence:- 

(s) 

Coro l lary  1: 

Let JO be as in Theorem 1. If r = 1 then the static output feedback (8) renders the zero state of the true system 

(1,2) globally uniformly asymptotically stable. 

However• in all other cases (r > 2), the feedback (7) is unrealizable for the true system (1,2); in its place, we 

will develop a realizable dynamic compensator in the next section. 

4. Cases r ~ 2: Stabilizing dynamic output feedback for the true system (1,2) 

In view of  Assumption 2(i), we note that 

y S ( t )  = C r x ( t )  = F l y ( t  ) + F ~ ( t )  + . . .  + Fry< ' -1 ) ( t )  

which can be interpreted in the frequency domain as 

ym(s) = [F~+N(s)ly(s) , 

where 

N ( s )  = s F  2 + " • • + S r - I F r  

iS physically unrealizable. Our approach is to replace N ( s )  by a physically realizable transfer matrix (filteO of 

the form H # ( s ) N ( s )  with appropriately chosen H g ( s ) .  To this end, let di ~ r - i  denote the degree of the 

highest-degree polynomial in the lth mw of N(s).  Let constants aj > O, ] = 2 , .  • ",dl ,  be  such that 

xi(s) = s al + a~s a'-I + . . - + a~s + I, i= 1,2.. . .,m 

is Hurwilz (i.e. with all its roots lying in the open left half complex plane E-). For i = 1,2, • • • ,m, def'me 

h~(s), parametedzed by # > 0, as 

I 
h:(s) = z~(~s) 

which, interpreted as a transfer function, has minimal realization (el, #-IA i , #-Ibl), whel~ 

li l°°] I!] I! 0 0 I -.. 0 

Ai  _. : : • . : • ~d~xd~ , bi  = • ~d~ Ci 

0 0 1 

We now introduce the transfer matrix 

H~(a) := dJaglh:(s)} 
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which dearly has minimal realization (C*. # - IA ' . . u - IB*) .  where 

A* =-diag{Ai} cIR qxq,  B* =diag{bi)  c ~ q x = ,  C*-=diag{cT} c /R  =x¢.  w i t h q : = i d i .  
i=i 

We note. in passing, that or(A*) ~ C -  and that C * ( A * ) - X B  * = - I .  

Let Jc" be as in Theorem I, then. for fixed ~' > x * ( l - / ~ )  - l  , the proposed physically realizable comIxmsator 

(which filters the actual output y) for system (1,2) is parameterized by ,u, and has frequency domain characteri- 

zation: 

G~(s) = -P(C,B) -I [F 1 +H~(s)N(s)] . (9) 

For notational convenience we introduce functions ¢, f l ,  fz, A f2 and f3, defined as follows. 

¢: (z,y,~) ~ -(a(c,a) -= [F~C[S=X+ay] + C'~] 

fz: (r,x,y) ~ A~X + A J -  ~' + ~(t,~,y,-~y) 

Afz: (t,;~,y,z') I--) £~r + ¢p(.¢,,y,~ + g(t,,~.y,~(£,~',z")) - ~ ( t , £ , y , - ~ )  

f3 : (Z.y.~ ~-~ A ' i '  + B" [ C, By-FIC[SIZ+By] ] . 

Then it is readily verified that, in the lime domain and under state transformation 7'. the differential equations 

governing the dynamic output feedback controlled system may now be expressed in the form: 

~(t) = f1(~(t),y(t)) , .~'(t) ¢ ~-" (10a) 

~(t) = fz(t.3r(t).y(t)) + Afz(t.X(t),y(t),~r(t)) . y( t )  ~ #~a (10b) 

t ~ ( 0  = A(:7(t),Y(t),[(t))  . ~'(t) ¢ ~q  . (10c) 

In analysing the stability of this system, we regard g as a singular perturbation parameter. Recalling that 

C'(A ' ) - ]B"  = - I ,  we note that system (4) with control (7) is recovered on setting ju = 0 in (10); thus, in the 

usual terminology [9,10,24], system (4,7) may be inteq~reted as the reduced-order system associated with the 

singularly perturbed system (10). The ensuing approach is akin to that of [9,10], our objective being to deter- 

mine a threshold value .u" > 0 such that. for all /~ ~ (0,~*), the zero state of system (10) is globally uni- 

formly asymptotically stable. 

Recalling that or(A*) c C- ,  let P" > 0 be the unique symmetric positive definite solution of the Lyapunov 

equation 

P ' A "  + (A')TP" + I -= 0 .  (11) 

Define W: /Rs-'~xRaxR ¢ --~ [0,=-) by 

W(~,y,i') := ~ (w(~'.y,~). P 'w(~ .y ,~ )  (12a) 

where 

w(X,jr,~) := ~ + (A' ) - ta*  [ Cra~-F~C[S~X+a;]] 

= (A')-~f~(X,y,~. (12b) 

We now establish some preliminary lemmas. 
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The first is implicit in the proof of Theorem 1. 

Lemma h 

(V~V(g.y),A(~.y))  + (VyV(Y,,y)J2(t,;l,y)) ~ -aoV(~',y) where a o := filM -t Illllel II+ll] -j  > 0. 

Lemma 2: <VxW(X,y.~),I3(x,y,~) < -PoW(X,y.~3 whcre #o := liP* U -t  > 0 .  

Proof.. (V,W(X,y,z),/3(x,y,r)) = (e*w(X,y, ig, f3(x,y, vy)) 

= (P'w(~' ,Y,D, A'w(Z,y,z")) 

= - ~ IIw(x,Y,~9112 

< - l iP"  II-'WC~,Y,~). [] 

Clearly, the function 11/1 [I is bounded above by a calculable scalar multiple of the function V t. In view of 

Assumption 3(ii). 11/'2 II is also hounded above by a calculable scalar multiple of V ~. By Assumption 3(ill), ~" is 

uniformly Lipschitz in its final argument (with known Lipschitz constant 2); hence, 

IIAf2(t,Y.,Y.DII ~ ( l+, t) l l~Y + ~(X,Y,zDII for all ( t : ' , y ,  zD 

and, since £' y + ~(. i ' ,y,~ = -P(C,B)-IC*w(Yt,~,z"3, it follows that IlAf21l is hounded above by a calculable 

scalar multiple of  W t. Therefore, we may conclude: 

Lemma 3: 
There exist calculable constants 0 o, V/t, '/'2 and rio such that, for all (t,.f,y,~'), 

(i) (vxw(x,Y,  ig, A(x,Y))  < OoVt(x,Y)Wt(X,Y,~9, 

(ii) (V~w(~,,y,z~, f2(t,x,y-) + af=(t,x,y,~9) < v/,w(x,y,z'3 + v/~vt(:Ly)wt(z,y,z') , 

(iii) (VIV(~,y), aACt,X,y,r))  < riovt(x,y)wt(~,y,~9. 

The next theorem demonstrates that system (10) is asymptotically stable for a l l / t  > 0 sufficiently small. 

Theorem 2: 

Let ~c" be as in Theorem 1 and define /z* :ffi ab~o[aO¥l+r/0(00+v/2)] - t  > 0. Then, for each fixed 

P > x ' ( l - / ~ )  - l  and fixed /z e (0,#*), the zero state of system (10) is globally uniformly asymptotically 

stable. 

Proof: Define the positive definite quadratic form (Lyapunov function candidate) '/4.' by 

~ (~ ,Y,D := V(~,y) + [Oo+V2]-~noW(X,y,~9 

then, invoking Lemmas 1, 2 and 3, the following holds almost everywhere aloag solutions (X('),~('),~'( ')) of 

(10): 

~d¢ '~l(t),.g(t),~(t)) S - {  [ Wt(.~(t),y(t),~(t) ) , M [ Wt(~(t),;f(t),g(t)) 



where 

Noting that 9¢f is positive definite, the result follows. 
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.+;= ..,o-+,.:::o++-... +. 
r-l 

In practice, the componem H~(s)N(s)  of the proposed compensator is realized by constructing a total of mp 

filters of  the form nij(s)h~(s), where n# denotes the ij-th element of  N. It follows that H~(s)N(s) has a state 

space realization in the form of a p-input, m-output linear system E~ = (Y't(.u), Y '2( /~) , / : t .~ ,  ~-i~) with 

state dimension ~ = pq for which a ( , q ) c  E -  and the pair (F I (# ) .  Y'2(.u)) determines the output map. 

~-l(/~ ) being a fcedforward operator. Therefore. the overall continued system has the structure shown below. 

u ' )  { SYSTEM (1.2)~ , y  

I 
compensator 

The governing equations (equivalent to (I(3)) can be expressed as 

,t(t) = Ax(t) + B[u(t) + g(t,x(t),u(t))], x(t) ~ IR" (13:1) 

#i(t) ffi ~z(t) + ~y(t). z(t) ,: ~. F </a*. (13b) 

y( t )  = Cx(t) ~ ~P (13c) 

u(t)  = - ~ ( C r B ) - t [ F l y ( t )  + Ft( /a)y( t )  + .7"2(/~)z(t)] ~ ~m , ~ > ic*( l_p)- I  . (13d) 

Clearly, the threshold values ~'* and #"  are central to this design. Since Ihese values are determined via a 

"worst-case" analysis, it is to be expected that. in practice, the compensator will be conservative. In the next 

section, a stabilizing adap:ive version of the compensator is developed: however, in the case r > 2, this is 

achieved at the expense of  imposing further structure on the uncertain function g. 

5. Adaptive compensator 

5.! Case 1: r = l 

If Assumption 2 holds with r = 1 then, by Corollary 1, system (1,2) is asymptotically stabilized by the static 

output feedback (8) with .~ > Jc ' ( l - ,8)  - t  provided, of course, that P! and CrB arc known and that sufficient a 

priori information is avilable to compute the (conservative) gain threshold ~ " ( 1 - p )  - t .  We now consider the 

case for which the latter information is unavailable, i.e. we only assume knowledge of F t and Cr8 and, in 

particular, the constants a and ,0 < I in Assumption 3 may be unknown. All other assumptions remain in 

force. 
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Replace fixed ~ in (81 by variable ~c(t) to yield 

u( t) = -x(t)( CrB)-I F1y(t) (Ida) 

and let x(t) evolve according to the adaptation law 

it(t) = ll( C,B)-I FtYCt)ll ~ , (1461 

then:- 

Theorem 3: 

For all initial data (to,x(to),x(to)) ~ ~xlRax[0,o-) ,  the adaptively controlled system (1,2,14) exhibits the fol- 

lowing properties: 

(i) lira it(t) exists and is t'mite; 

( i i )  lim IIx(t)ll = 0.  
| , . -I .u 

Proof." For fixed ('but unknown) P > x ' ( l - / J )  -I and under the similarity transformation T, system (1,2,14) 

may be expressed as 

~'(t) ~. An£( t )  + A12Y(O (15a) 

~(tl = Azli'(t) + Azzy(t) - ~7(t) - [x(t)-~?]y(t) + g(t.~(t),y(t),-~:(t)y(t)) (15b) 

A?(t) = Uy(t)ll z . (15c) 

Let U and V be as in the proof of Theorem 1 and define the positive definite (since/~ < 11 function 

'v: (z ,y . r )  t-+ v (~ ,~  + t ( , ¢ - e ) z - t f ( ¢ - e ) l , c - e l .  

Then, along solutions (£(-) ,~ '( ' ) ,x(-))  of  (15), the following holds almost everywhere 

d q/(g(t),y(t) ,x(t))  ~ -U(X( t ) ,y ( t ) )  - #~llY(t)ll z - (x(t)-~)llY(t)[I z + fl~c(t)lly(t)ll z 

+ I ( x ( t ) - t ) - # l ~ c ( t ) - t  lillY(t)115 

~; -u(z(t),y(t)1. (16) 

Since U is positive definite, we conclude that t i-~ (£(t),y(t),~c(t)) is bounded and since t t-~ r(0 is also 

monotonic, assertion (i) of the theorem follows. Furthermore, in view of (161, we have 

f~U(X(t),y(t))dt ~ 'V(~'(to,y(to),x'(to)) < o. and hence, since /./and V arc positive definite quadratic forms, 

~V(Y,( t ) ,y( t ) )d t  < V(g'( ' ) ,y( '))  is essentially bounded from above. Therefore, we conclude GID~ moreover, 

that V(.~(t),y(t)) ~ 0 as t --~ ~ (see Lemma 6.3 of  [22]), whence assertion (ii) o f  the theorem. [] 

5.2 Case 11: r > 2 

Before describing the adaptive strategy in this case, it is remarked that the argument used in establishing 

Theorem 3 cannot be carried over directly. Instead, we will base our approach on that of  MRrtensson [11]. 

For this reason, further conditions are imposed on the uncertain function g. In particular, Assumption 3 is now 
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replaced by: 

Assumption 3': 

There exist a bounded continuous function AA: R --~ ~mx . .  a Carath6adory function ga: ~ x R ' a  -+ Rm 

which is uniformly Lipschitz in its second mgument, and a constant p < 1 such that 

O) g(t,x,u) = AA(t)x + g.(t,u), for all (t.x,u), 

(ii) Ilgo(t,u)ll "~ PUul(, for all ( t ,u) ,  

and 

0ii) (C,A+BAA(.))  is uniformly completely observable in the sense of [251. 

Note that, if Assumption 3" holds, then Assumption 3 holds afortiori with a -- sup l l~ ( s ) l l  provided that a, 

p and the Lipschitz constant for ga(t, ')  are known. However, knowledge of these constants is not required 

here. 

Example 2: With (C ,A ,B)  defined as in Example i of §2, Assumption 3'(i) holds for any bounded conlinuous 

AA: t bo (AaL(t),Aa2(t),Aa3(t)). 

Now replace fixed P in (13d) by variable Jc(t) > 0 and replace fixed ~ in (13b) by (/~lc(t)) - t .  where 6 > 0 is 

a constant (design parameter) and let x ( t )  evolve according to the adaptation law (other adaptation laws may 

b¢ feasible, as discussed in [20]) 

+(t)  = Ily(01l 2 + Uz(0112 . 

writing (as in [11]) 

r-] 
x t ( t ) =  Lz(O ' u l ( t )  = i ( t )  ' y i ( t ) =  [ z ( t )  ' 

then the overall adaptively controlled system may be expressed in the form 

where 

and 

.i+(t) = A t ( t ) x t ( t )  + B t [ u t ( t )  + g t ( t ,u t ( t ) ) ]  , x t ( t )  • R ' + i  , 

y t ( t )  = c t x t ( t )  • IRP+~ , 

u t ( t )  = - r ( t ) g t ( x ( t ) ) y t ( o  • ~"+~ , 

~( t )  = Ilyt(t)U 2 , 

K t ( x )  :-- L - 6 ~  - / ~ l  J ' g t ( t ' u t )  := (~,u) . 

(17a) 

(17b) 

(17c) 

(17(I) 

(17e) 

(170 
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The stability of  system (17) will now be investigated. We first require the following lemma (essentially a non- 

autonomous version of  Mlirtensson's lemma [111). 

Lemrna 4: 

Let x*: R --~ R "+~ satisfy 

:~t(t) = at(t)x*(t) + at[v(t) + gt(t,v(:))] 

where v: I~ ~ ~"+~ is measurable. Then, there exist constants c, ¢ > 0 such that, for all t. 

Uxt(t)ll 2 < c ~:_,[Uyt(s)ll 2 + llv(:)ll2l as. 

Proof" Let tI@,-) denote the state transition matrix function generated by A+BAA(.)  and define the observabil- 

ity Grarnian for the pair (C,A+BAA(.) )  in the usual manner, that is, 

IXt.s)  := ~¢Oz(o ,s )CrCO(o.s )  do . 

Now, for some constants kt and o~, we have [[exp Atl[ ~ kle 'a and, since AA(-) is bounded (by assumption), 

there exists constant k 2 such that UBAA(t)n < k 2. By standard perturbation theory, we conclude that 

IIO(t,s)U < t i e  (~+t*t'×t-') for all t,s . 

Clearly, the state transition matrix function ~ t ( . . )  generated by A ?(-) is given by 

whence 

where 

IIO*(t,s)g < ct(t-s) for all t , s ,  (18a) 

ct : a t- ,  1 + t i e  (w+t't2)¢' . (18b) 

The ohservability Gramian for the pair (C t ,At(.)) is given by 

l~ ( t ' s )  := ( t - s ) !  ' 

and, since (C,A+BAA(-)) is uniformly completely observable (by assumption), we may conclude (see [251) 

that there exist positive constants x, c2 and c3 such that, for all t, 

c211¢112 < (~' ,  V t ( t , t - ~ ) O  ~ c311C112 v ~" e ~'+~. (19) 

Now define the measurable function vt :  t ~ v ( t )+gt ( t , v ( t ) )  and note that Ilvt(0il < ( l+p) l lv ( t )L  Then, 

x t ( t )  = o t ( t , t - r ) x t ( t - O  ÷ S :_ fp t ( t , s )B tv t ( s )  as 

whence 

Ilxt(t)ll 2 < 211e t ( t , t -Ox t ( t -OU ~ + 211~'_ ~ t ( t . s ) e % t ( s )  esl[ 2 

< 2c41ixtO-~)[[ 2 + 2cs(l+~)~liatl i2S:, .~llv(s)l l2~. (20a) 
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Also, invoking both (18) and (19), 

where 
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~ 2  c~ :=c~(r) .  c~ : = ~ c . ( , ) ~ .  

~x t ( t - ' r ) l [  2 ~; C[ ! (X t ( t - f ) ,F t ( t , t -¢ )X t ( t - r )>  

= eim~/_,ll y t (s ) -c t J :_~ t (s ,¢ )B tv t ( c r )  do II = 

2e~l ~ ~/_,]]yt(s)l]2ds + c6r(l+/3)211ct][2[[B'[[ 2 ~/_'[[v($)~2ds'] , 

Combining (20) and (21) yields the rc, quircd result. 

~ # 2  

[ ]  

(20b) 

(21a) 

(21b) 

Theorem 4: 

For all initial data (t o ,xt(to)0=C(to)) a ~xM'÷¢x(0,=~), system (17) exhibits the following properties: 

0) lim x(t) exists and is finite; 

(ii) l i r a  I I z* (OI I  = o .  
I--~m 

Proof: Seeking a contradiction to (i), suppose that the monotonically increasing function t t-+ r ( t )  is 

unbounded. Then, for some t l  ~ [0 ,~) ,  x(to+h) = P > x ' ( i - , 8 )  -= and (&otto+q)) - I  = # < ,u °. Now, an 

argument similar to that used in the proof o f  Theorem 2 can b¢ adopted to establish that x ( . )  (and hence 

y ( . )  = Cx(.)) must ult imately tend exponentially to zero (and hence arc square integrable on [to ,~)). Since 

cr(~l) c C - ,  we may conclude from (13b) that z is bounded and so there exists constant Co such that 

r ( t )  < r(to)+Co(t-to) for  al l  t ;Z to. Let K (with inverse K - l )  denote the monotonic function 

t ~ 8&-($)ds. I t  is readily verif ied that the function y(K -t (-)) ult imately satisfies 

Uy(K'~(s))II ~ ctexp(cz-~/(cZ2+c3s)) for some positive constants c~, and so is square integrable. Solving 

(13b), we have 

z( t )  = exp ( .~ ' ( t ) ) z ( t  o) + f : ( t )  exp(:~(K(O_s))By(K_l(s) ) ds 

from which we may conclude that z ( . )  is square integrabl¢ on [ to,~=). Thus x t :  [ to ,=~) --~ ~ '+~ and a fortiori 
y t  are square integrable which, in v iew o f  (17d), contradicts our supposition that the function g is unbounded. 

This establishes assertion (i) o f  the theorem. 

It remains to show that x t ( t )  -.~ 0 as t --~ *=. Clearly, (i) ensures thaty  t is square imegrable on [to,=o) and, 

in v iew of  (17c), that u t is a bounded linear transformation of  y r .  Thus, we may conclude that u t is also 

square integrabl¢. Now, by Lcmma 4, we have 

Ilxt(t)ll 2 < c S/_,[Uy~(s)ll 2 + Ilut(s)ll =] 

= cJ:[ l lyt(s)l l2+l l~,*(s)n2] ~ - c S:- ' [ l ly*(s) l l2+l lut (s) l l2 l  ds .  

Therefore, I lx t (0u --* 0 as r ~ =-. D 



4 8  

6. Discontinuous feedback 

In this final section, some possible generalizations of the proposed compensators are briefly discussed. In [231 

and for the case r = 1 only, a wider class of uncertain functions g is studied; specifically, Assumption 3 (ii) is 

replaced by the condition 

llg(t,x.u)lI < aHxll +/~llull + 7:,(cx) for all (t.x.u) 

with a and fl < I as before and where 7 is a constant (assumed known in the non-adaptive case) and ~ is a 

known continuous function. Thus, loosely speaking, in [23] a non-cone-bounded component of uncertainty is 

allowed but this is required Io be bounded by a function of the system output y. In the context of this more 

general class of systems, the assertion of Corollary I of the present paper remains tree for fixed 

g > ( l - f l ) - tmax  { r "  ,7} if (8) is replaced by the generalized feedback 

u(t) e - ~  [(C,B)-l Fly(t) + ~(y(t))N(y(t))] , (22a) 

where the set-valued map y b-~ N(y) r- ~ '~ in essence models a discontinuous control component and is 

given by 

f III(C,B)-IFlYlI-J(C, ByIF;y}; Fxy ~ 0 

~ Y )  := [ ( v :  Uvll ~ 1}: F,y = 0 ,  (22b) 

and the overall controlled system is consequently interpreted in the generalized sense of a controlled differen- 

tial inclusion [26]. Furthermore, the assertions of Theorem 3 of the present paper remain true if (22) is 

replaced by the adaptive contrnl 

u(t) e -~c(t)[(CrB)-iFty + ~(y(t))N(y(t))] 

where so(t) evolves according 1o (14b). 

In the cases • > 2. preliminary investigations indicate that again a non-cone-bounded component of uncertainty 

(although considerably less general than that of the preceding paragraph) can be tolerated in g and counteractcd 

by augmenting the compensator (13d) (or its adaptive counterpart implicit in (17c,d)) with an appropriately 

chosen set-valued map (again essentially modelling a discontinuous control componcn0. Howevcr, the 

requisite structural conditions on the non-cone-boundcd uncertainty arc, as might be expected, of a rathcr res- 

trictive and technical nature (akin to thos~ in [10]) and arc not dclailed here. 
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ABSTRACT 

We consider a class of uncertain mechanical systems containing flexible elements and subject to 

memoryless output-feedback controllers. The damping and stiffness properties of some of the flexible 

elements are parameterized linearly in I.t -1 and I.t -2. respectively, where It > 0 and these components become 

more rigid as It approaches zero. We propose a class of "stabilizing" controllers for a system model in which 

the above components are rigid. Subject to a "linear growth condition, ~ the controllers also stabilize the 

model in which the components are flexible, provided It • 0 is sufficiently small. The results are illustrated 

by an example. 

1. INTRODUCTION 

The effect of the flexibility of mechanical elements is becoming more significant in engineering 

applications, e.g., light high-speed robotic manipulators and flexible space sl~'uctures. We consider here the 

problem of obtaining memoryless, stabilizing, feedback controllers for a class of uncextain mechanical 

systems with flexible elements. These elements are not rigid and can deform. The uncertainties are 

characterized deterministically rather than stochastically. An example of a system with a deterministic 

uncertainty is one which contains an uncertain disturbance input or an uncertain parameter about which the 

only information available is an upper bound on its magnitude. 

In general, if one models some of the flexible elements as rigid components, a simpler model results 

and controller design is simplified. However, one should then assure that the stability properties of the 

feedback-controlled system are robust in the presence of the previously unmodelled flexibilities. 

1" Based on research supported by the U.S. National Science Foundation under grant MSM-8706927. 
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In this palxa', we present "stabilizing" conuollers whose designs are based on a model of the 

mechanical system in which some of the flexible elements are modelled as rigid components. These 

controllers also have the following robustness property. Consider a model of the system in which the above 

components are treated as flexible components whose damping and stiffness properties are parameterized 

linearly in I1-1 and i,t -z, respectively, where tt > 0 and these components become more rigid as I.t approaches 

zero. Then the controllers also "stabilize" this model, provided I* is sufficiently small. 

Controller design is based on the constructive use of Lyapunov functions; see, e.g., [1-5, 9-15]. 

The results are illustrated by a simple example in Section 6. 

2. PROBLEM STATEMENT 

Consider a mechanical system which at each instant of time te  IR is subject to a control input 

u(0E R '~. Suppose the system contains certain flexible components (hereafter called the neglected 

components) whose flexibilities are neglected in the design of a feedback controller generating u(t), i.e., they 

are modelled as rigid components for controller design. 

Letting q(t) ¢ lg N denote a vector of generafized coordinates which describe the configuration of the 

mechanical system at t, we assume that, when modelled as rigid bodies, the neglected components give rise to 

a linear constraint 

Sq =- 0 (2.1) 

where S ~ IR LxN has rank L < N; see the example in Sec. 6. Also, we suppose that there are no other possible 

kinematical constraints on the system. 

We model all uncertainty in the system by a luraped uncertain element to. The only information 

assumed available on to is the knowledge of a non-empty set f l  to which it belongs. 

Letting 

A d q .  
~l(t) = dt  ( t ) ,  

we suppose thaZ the kinetic energy of the system is equal to(l) 

½ cirM(tolci 

where the system mass matrix M(to) ~ R N~ is symmetric and positive definite. 

(1) Somctim~ w© omit a~umm~. 
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Modelling the neglected components a la [6], the motion of the system can be described by 

M(o~i = X(t, q, 4, u, ~) + s'r2~ (2.2) 

where sTy. represents the sum of the generalized forces exe~xl by the neglected components and X represents 

the sum of all the other generalized forces. We assume that for each me ~,  Z(-,to): ]R×IRN×RN×I~ m -.~ i~ ~ 

is continuous. We suppose that the measurement vector z(t) ¢ IR t available for feedback control is given by 

z = D(t,q,~,o)) (2.3) 

where D(-jo) is continuous. 

Consider first the situation in which the neglected components are modelled as rigid bodies. Then (2.1) 

holds. Without loss of generality, we suppose that the coordinates have been chosen so that 

S=[OI ] ,  (2.4) 

i.e., (2.1) can be wriuen as 

wh~e 

0 = 0  

[1 =' 
with 0 ¢ IR L, ~ e IR ~, and N =A N-L. Utilizing (2.2), (2.3), this model can be described by 

M~(=)~= ~(t,~,~,,u,~) 
z= fiO,~,,~.=) 

with 

where Mxt(¢0) E IR s'N and 

Also. Z is given by 

~i(t, ~b,~, u, ¢o) =A ~(t, (~b, 0), (~,0), u, co), i=1 ,2  
~(~ ~,$, o~)-~ D(~ (*, 0), ($, 0), o~) 

M21 M22.1 =M'  X =Z.  

(2.5) 

(2.6a) 

(2.6b) 

(2.7a) 

(2.7b) 

(2.8) 

x = M~,¢co)~- ~2(t, ~. ~. u. ~) .  (2.9) 

Although the model described by (2,0) may contain other Itexible elements we shall, for convenience, refer to 

it as the "rigid" model. 
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Suppose now the neglected components are considered flexible, i.e., they are not rigid and can deform; 

hence constraint (2.1) no longer holds. Following [6] and assuming the components to be linear, their effect 

on the system can be represented by letting 

Z =--CS~I-  KSq 

= ---C0 - K0 (2.10) 

in (2.2). The matrix K e R LxL, which is assumed symmetric and positive definite, represents the stiffness 

properties of the components and C e  R I'xL, which is assumed positive definite, represents the damping 

properties of the components. For robustness considerations we shall let 

K f I C 2 K  °,  Cffip.-tC ° ,  (2.11) 

where I~> 0, and consider behavior for sufficiently small It. Substituting (2.10), (2.11) into (2.2)-(2.3), the 

system is now described 

M(co)ci = X(t, q, el, u, co) - I.L-tSrC°S(I - p.-2sTK°Sq, (2.12a) 

z = D(t,q,~,co). (2.12b) 

We shall refer to (2.12) as thefleMble model. 

The following assumption is made. 

Assumption A1. a) For each ¢a¢ £1, there is a real number k•0  such that for all t e  R,  0, ~e  R ~, 

n E ] R m :  

0) 

II~.II, II ~--~II s k[l  + li@ll + II~11 + lh l l ] ,  

IIDII, II-~-t II s k[l  +ll@ll+ll¢ll], 

i = 1 , 2 ,  

B B 

(ii) for all 01, O 2, ~1, ~2 e R L  

JlZi(t, (0,02), (0,02), u, CO) - Xi(t, (¢,01), (¢,0~), u, ¢0)11 < k[[IO 2-  Otll+ I102- ~1 II] ,  

liD(t. (0, 02), (~, ~ ) ,  co) - D(t, (¢. 01), (¢, ~t), co)U < k[ll02- 0111 + I I02- ~111]. 

i =  1, 2, 

(2) If • derivative ~ in • condition, ~ im#iddy um.m~es Ihat the ,t,'dvadve exim. 
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Note that the above assumption is readily satisfied by a linear system whose time-varying coefficients 

ar~ bounded and have bounde, d derivatives. 

We shall consider the control u(t) to be given by a memoryless feedback controller p: ]Rx_~: --~ R m 

operating on z(t), i.e., 

u(t) = p(t,z(t)). (2.13) 

Roughly speaking, the problem we wish to consider is as follows. Utilizing only the information 

available on the "rigid" model, obtain a feedback conu'oUer p whose utilization assures that 

(i) the fcedba~k-controUed "rigid" model is "stable" about zero, and 

(ii) the fccdback-conlrolled flexible model is "stable" about zero, provided tt > 0 is sufficiently small. 

Ideally "stable" means asymptotic stability. However, for systems with uncertain disturbance inputs, 

asymptotic stability may not be achievable, so, we content ourselves with "stable" behavior which is close to 

asymptotic stability. 

To obtain a more precise problem statement, we introduce state vectors 

The "rigid" model is described by 

where 

the flexible model is described by 

where 

i = F(t, x, u, co), (2.15a) 

z = ~(t, x, co), (2.15b) 

x'u' =a [ M,,(,o)":,O. ,, ,. ' 

~0.x, co) b 5(t.  ~,, ~, co): 

(2.16a) 

(2.:6b) 

= F(t.~,u, tt.co), (2.17a) 

z = d(t ,~ ,m),  (2.17b) 

F(t, ~, u, P~ °3) =A [M(C0)-I ix(t, q, fl, u, co)_ tt-tSrCOS~l_ ~2SrKosq I , 

d(t,~, m) __A D(t,q, ~1, co). 

(2.18a) 

(2.18h) 
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The fee, dback-controlled "rigid" model is described by 

~ = ~'(t,x, p(t,d(t, x, m))o e) (2.19) 

and the feedback-controlled flexible model is described by 

~ = F(t,~, p(t, d(t,~, o3)), p, ¢o). (2.20) 

The problem is as follows. Using only the information available on the "rigid" model, obtain a function 

p: R x R  t -o IR m which assures that 

(i) system (2.19) asymptotically Wacks O) 0 to within a bounded set, and 

(ii) system (2.20) asymptotically tracks 0 to within a bounded set, provided tt is sufficiently small. 

3. PROPOSED CONTROLLERS 

The following assumption yields a "stabilizing" controller for the "rigid" model. 

Assumption A2. There exists a continuous function p: ll.v.R I ---> l~ m such that for some symmetric, 

positlve-definite matrices (4) P, Q ¢ R ~ and non-negative numbers (s) a, b, 

xTpF(t, x,p(t,d(t, x, co)), (o) < -Ilxll~ + allxll o + b (3.1) 

for all t ¢ l t ,  x e  R ~, andme t'l. 

Roughly speaking, the following theorem states that any function p which assures satisfaction of A2 is 

a "stabilizing" controller for the "rigid" model. 

Theorem 3.1. Consider an uncertain "rigid" model described by (2.6) or (2.15), satisfying Assumption 

A2, and subject to feedback control given by (2.13) where p assures A2. 

Then, the feedback-controLled "rigid" model, (2.19), asymptotically tracks 0 to within the set 

B =~ {xe ]R a I Ilxlle< ~[} (3.2) 

where(e) 

d ~ [;~,,(Q-~e)f'2[a/2 + (a2/4 + b)~12] • 

Proof. The proof p r ~ d s  by considering the function V: R ~ ~ IR, given by 

0.3) 

(3) The Sl~.ndix c,~talm • definition. 
(4) n _O 2 (N -L )  
(5) If Q e ]R ' '~  ~ ,ymmetric ,rod po,~ve-~mim md X e ]pn, IIxlIQ --6 (xTQx) 1f2. 
(6) If all the eisenvtluel of M e ]R n'~ ue real, ),.j,~(,~)(IV0 iJ the maximum (minimum) eigenvdue of M. 
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V(x) ffi xZPx, 

as a candidate Lyapunov function for (2.19). Utilizing (3.1), it follows that along any solution of (2.19), 

dV(x(0) < - 2  lh(t)ll~ + 2allx(t)llq + 2b 
dt 

Th d V ( ~ < 0 )  us, dt < 0 for all t such that 

IIx(011Q • 8/2 + (a2/4 + b) Ij2 ; 

(3.4) 

dV(x(t)) < 0 for all t ~i~fying hence 

V(x(t)) > ~t 2 

Standard arguments in Lyapunov theory Complete the proof; see, e.g., [5]. 

Remark. If Assumption A2 is satisfied with 

a - - b = 0 ,  

then the corresponding conl~rolier yields a feedback-controlled "rigid" model which is globally uniformly 

asymptotically stable about 0. 

In order to obtain a controller which is also stabilizing for the flexible model, the following assumption 

is introduced. 

Assumption A3. Assumption A2 is assured with a function p which, for some non-negativc number k, 

satisfies 

I I~ t  (t.z)ll < k(1 +llzll), (3.5a) 

Ila-~z (t,z)ll < k (3.5b) 

for all t~ IR, z~ IR I. 

IIp(t.z)ll, 

A proposed feedback controller is any function p which assures satisfaction of Assumptions A2, A3. 

4. ROBUSTNESS IN THE PRESENCE OF UNMODELLED FLEXIBILITIES 

The following result assures us that a controller whose design is based on satisfying the requirements of 

Assumptions A2 and A3 for the "rigid" model will also "stabilize" the flexible model, provided Assumption 

AI is satisfied and tt is sufficiently small. 

Theorem 4.1. Consider an ancettain flexible model described by (2.12) or (2.17) where M(¢0), K ° are 

symmetric and 
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M(o), C °, K ° • O. (4.t) 

Suppose A1 is safistied and the corresponding "rigid" model satisfies A2 and A3 with a controller p. 

Then, there exists It*> 0 such that if I t< l  t*, the feedback-controlled flexible model (2.20) 

asymptotically tracks 0 to within a bounded neighborhood. 

Proof. See [g]. 

5. EXAMPLES OF PROPOSED CONTROLLERS 

In this section, we consider a specific class of uncertain mechanical systems whose "rigid" models 

satisfy Assumptions A2, A3. For these systems, we exhibit "stabilizing" controllers which are robust in the 

presence of unmodelled flexibiliti~. Two main characterizations of the "rigid" models treated here are that 

the number of independent scalar control inputs is the same as the number of coordinates and the complete 

state is available for feedback. 

5.1 A Specific Class of Uncertain "Rigid" Models 

Consider an uncertain mechanical system whose "rigid ~ model is described by 

with measurement vector 

(5.1a) 

and 

~ .  [M~,(o~)l > 1~, (5.2a) 

IIu(4 ¢, ~, (o)ll ~ ~1:~ + I~ll + flail1 (5.2c) 

for aU te  R,  Oe R E, O~ R ~. 

To demonstrate that B1 implies A1-A2, we present some controllers which assure satisfaction of AI- 

A2; see [8]. 

z = [#T ~T]T (5.1b) 

where te  R, ~be R ~, ue  lRU; the uncertain element co belongs to a known set £~; Mn(c0)e R E~  is 

symmetric; W e I~ExE; and, for each co e ~ ,  the function U(', m): 17o<Rs'xR s---> R E is continuous. 

The following assumption is satisfied. 

Assumption B1. 

(a) W is nonsingular. 

(b) There exist real numbers ~, ~ > 0 such that for all m E i~ 
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$.2 Examples of Proposed Controllers 

Choosing any nonsingular matrix T¢  IR s '~  and defining 

the "rigid" model can be described by (2.15) with 

F(t, x, u, co) = Ax + B[h(t, x, ~) + G(~)TTWu] 

~(t,x,~)= x, 

where 

(5.3a) 

(5.3b) 

G(~) =A tTTMn(~)13_s. (5.3e) 

A proposed controller is any function p: R x R  g -~ ]R g of the form 

p(t, z) = (TTW)-t[p°(t, z) + pC(z)] (5.4) 

where pe is speci6od below and p° is any function satisfying requirements (3.5) of A3; p° is chosen to reduce 

the magnitude of the uncertain term 

e(t, x, o~) b hO, x, co) + C(co)p°(t,x). (5.5) 

$.2.1. Construction of pe First choose any positive definite symmetric matrix Q E 1R a~, n =A 2N, and 

any positive real number o and solve the Riccati equation 

PA + ATP - 2¢~PBBTP + 2Q ~- 0 (5.6) 

for a positive definite symmetric PE IRn'~; since (A, B) is controllable such a solution exists. 

Choose any non-negative numbers ¥, p, ~c which, for all tee t2, satisfy 

¥~ k(co)[~ + 1 1~l(¢e)2], (5.7a) 

p > Z(r,o}ffo(O)), (5.~b) 

> fro(CO), (5.7c) 

wh~ 7,(~), fto(~O), 131(o~), 5, a~ chosen to satisfy 

~[TTMI l(fo)T] S ~,.(fO), (5.7(:I) 

lle(t, x, co)ll < 13o(CO) + [31(co)llxllQ, (5.7e) 
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O ; ~  if [31((0)m0 
(5.70 

Part Co) of B 1 guarantees the existence of the above bounds. 

Now, for any e > O, let s: lg ~ ~ 1R g be any differentiable function with bounded derivative which 

satisfies 

It1111s01) = IlsOI)ll TI, (5.8a) 

Ilrlll > e=> IIs(rl)ll > 1 - Ihlll-le. (5.81)) 

for 11 ~ R ~. 

Then 

pS(z ) A_TBTpz _ p s ( K B T p z ) ,  

As an example of a function satisfying the above requirements on s. consider 

S(rl) ffi (1~11 +e)-~ll. 

(5.9) 

(5.10) 

6. AN ILLUSTRATIVE EXAMPLE 

Consider a system consisting of two rotors B i and 8 2 connected by a massless shaft B 3; see Figure I. 

Figure 1. The system considered in the example. 

Relative to inertial reference frame e, the system is constrained to rotate about a line L parallel to 61; It, Iz > 0 

are the moments of inertia of B i. B2 respectively, about L.  Rotor Bz is subject to a control moment u(t~t. 

Rotor B 1 is subject to an unknown disturbance torque ¢o(t)~s; the only information assumed available on e0 is 
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, ~ t ) t < 1 3  V t G s  (6.]) 

where [3 is known. The system configtwation can be described by ~b and 0, the angular displacements of B 1 

relative to e and B2 relative to B l, respectively; thus 

q =a [~ of. (6.2) 

We shall treat B3 as a neglected component; when it is rigid, 0 = O. 

The kinetic energy of the system is 

2 [114~2 + 2x2~ + I202] " 

where IT =A Is+Iz; hence, 

Utilizing Newtonian mechanics, the motion of the system can be described by 

IT~ + I20 = U + 03(t), 

x2~+I2~=u+7., 

where - ~ t  and ~ t  are the torques exerted by B 3 on B l and B 2, respectively. 

As measurements available for feedback, we shall consider ~ and ~ + 0; hence 

z 9 [, ~,+ b] T . 

With B 3 rigid, the "rigid" model is 

(6.3) 

(6.4) 

(6.5) 

and the flexible model is given by 

IT~ + I20 = U + ~ 0 ,  (6.8a) 

I ~  + I20 ffi - -~-I0-  it-20 + u ,  

z= [~ ~+~f. (6.Sb) 

I ~  = u + m(0.  (6.6a) 

z--  [~ ~]T. (6.6b) 

Modelling B 3 as a parallel combination of a linear torsional spring of spring conslant tt -2 and a linear 

torsional damper of damping coefficient Ix -1, 

~. = -tt-10 - I.t-20, (6.7) 
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Clearly, (6.6) and (6.8) are in the form of (2.6) and (2.12) respectively. 

We also note that the "rigid" model is an example of the type of system considered in Section 5; (6.6) is 

in the form of (5.1) wi~ 

Assumption B1 is satisfied; let 

M11(O~) = IT, 

u( t . t .~ .¢o)  = ~ 0 .  w = l .  

I~=IT, ~= max[IT,13). 

Choosing T = 1, p° = 0 in (SA), and utilizing (5.3), (5.5), one obtains 

A = [ : ~ ] ,  B=[~] , e(t,x, o3)=I~lo~(0; 

hence inequalities (53) can be satisfied by choosing y, p, K such that 

Now choose any at ,  oh > 0 which satisfy 

a ~ - a l  > 0  

and let 

Q= a~-a: , o=1.  

Solving Riccati equation (5.6) for P > 0 yields 

BTp = let! ¢h_]. 

Choosing any e > 0 and utilizing (5.9), a "slabilizing" controller is given by 

u(t) = pt(z(t)), 

PC(Z) = --~(alzl + ohz.z) -- psDc(alzl + ohz2)l, 

where s: R ~ R is any differentiable function with bounded derivative which satisfies (5.8). 

The significance of parameters a l ,  ~ is as follows. If 

o~ t )=0 ,  p = 0 ,  3 '=IT, 

the resulting, undisturbed, linear, feedback-controlled "rigid" model is given by 
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~ + o ~ + a t = 0 .  

7. APPENDIX 

Consider any system described by 

= Y(t, y) (7.1) 

where t ~ IR, y E IRq, Y: I~lgq..-, IRq and let B be a set containing 0 e Rq. 

Definition 7.1. System (7.1) asymptoticaily B-tracks 0 or asymptotically tracks 0 to within B iff it has 

the following properties. 

(i) Existence of solutions. Given any to ~ ]R, Yo ¢ IRq, there exists a solution y(.) of (7.1) with y(to) = 1/o. 

(ii) Indefinite extension of solutions. Every solution y(.): [to,tl)--~lRq of (7.1) has an extension over 

tt~,-). 
(iii) Global uniform boundedness. Given any bound r e  1~., there exists a bound d(r)e 1~. such that 

for any t o e R and any solution y(,) of (7.1), 

Ily(to)ll ~ r => Ily(t)ll < d(r) ~ '  t ~ t o . 

(iv) Given any neighborhood B w orB,  there exists a neighborhood B s of 0 such that for any toe R and 

any solution y(,) of (7.1), 

y ( ~ B  m => y( t )~B,  ~f t>to. 

(v) Global uniform attractivity orB. Given any bound r~ R~ and any neighborhood B8 o rB ,  there 

exists T(r,B e) e 17,+ such that for any to e IR and any solution y(.) of (7.1)o 

I ly(~l l<r  => y( t )eB,  V t>to+T(r ,  BE). 

Remark 7.1. If (7.1) ~tlsfies the requirements of the above definition with B = {0), then it is globally 

uniformly asymptotically stable about zero. 

[1] 

[2] 

[31 

R E F E R E N C E S  

Ambrosino, G., G. Celentano, and F. Garofalo, Robust Model Tracking Control for a Class of 

Nonlinear Plants, IEEE Trans. Automatic Control, AC-30, 275, 1985. 

Ambrosino, G., G. Celentano, and F. Garofalo, Tracking Control of High-Performance Robots via 

Stabilizing Controllers for Uncertain Systems, J. Opdmiz. TheoryAppl., 2, 239, 1986. 

Barmish, B. R., M. Corless, and G. Leitmann, A New Class of Stabilizing Controllers for Uncertain 

Dynamical Systems, SIAMY. Contr. Optimiz., 21, 246, 1983. 



[4) 

[5) 

[6] 

(7] 

[s] 

[9] 

[1o] 

[11] 

[12) 

[13] 

[14] 

[15] 

[163 

64 

Chen, Y. I-L, Robust Control of Mechanical Manipulators, J. Dynam. Syst. Meas. Control, submitted. 

Corless, M., and G. Leitmann, Continuous State Feedback Guaranteeing Uniform Ultimate 

Boundedm~ss for Uncertain Dynamic Systems, IEEE Trana. Automatic Control, AC-26, 1139, 1981. 

Corless, M., Modelling "Flexible Conslralnls" in Mechanical Systems, Proc. 20th Midwestern 

Mechanics Conference, Purdue University, West Lafayet~, Indiana, 1987. 

Corless, M., Stability Robusmess of Linear Feedback-Controlled Mechanical Systems in the Presence 

of a Class of Unmodelled Flexibilities, Proc. 27th Conf. Decision Control, Houston, Texas, 1988. 

Codess, M., Controllers for Uncertain Mechanical Systems with Robusmess in the Presence of 

Unmodelled Flexibilities, in preparation. 

Cot'less, M. and G. Leitmann, Deterministic Control of Uncertain Systems: A Lyapunov Theory 

Approach, Deterministic Nonlinear Control of Uncertain Systems: Variable Structure and Lyapunov 

Control, (A. Zinober, ed.), lEE Publishers, to appear. 

Codess, M., and G. Leitmann, Controller Design for Uncertain Systems Via Lyapunov Functions, 

Proc. American Control Conference, Atlanta, Georgia, 1988. 

Codess, M., G. Leitmann and E. P. Ryan, Tracking in the Presence of Bounded Uncertainties, Proc. 

4th IMA Int. Conf. Control Theory, Cambridge University, England. 

Gutman, S., Uncertain Dynamical Systems--Lyapunov Min-Max Approach, IEEE Trans. Automatic 

Control, AC-24, 437, 1979. 

Ha, I. J., and E. G. Gilbert, Robust Tracking in Nonlinear Systems, IEEE Trans. Automatic Control, 

AC-32, 763, 1987. 

Madani-Esfahani, S. M., R. A. DeCarlo, M. J. Corless, and S. H. Zak, On Deterministic Control of 

Uncertain Nonlinear Systems, Proc. American Control Conf., Seattle, Washington, 1986. 

Ryan, E. P.. G. Leitmann and M. Codess, Practical Stabilizability of Uncertain Dynamical Systems, 

Application to Robotic Tracking, J. Optimiz. Theory Applic., 47, 235, 1985. 

Spong, M. W., Modeling and Control of Elastic Joint Robots, J. Dynam. Syst. Meas. Control, 109, 

310, 1987. 



O U T P U T  F E E D B A C K  C O N T R O L  O F  U N C E R T A I N  
S Y S T E M S  I N  T H E  P R E S E N C E  O F  

U N M O D E L E D  A C T U A T O R  A N D  S E N S O R  D Y N A M I C S  
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A B S T R A C T  

This paper  analyzes the performance of output  feedback controllers for a class of 
uncertain t ime-varying nonlinear systems in the presence of unmodeled actuator and 
sensor dynamics. In particular,  on the basis of known nominal model and bounds on 
the uncertainties, and initially neglecting actuator and sensor dynamics, hlgh-galn out- 
put feedback schemes are determined which force the output  to track a given signal. 
Then, the effects of actuator  and sensor dynamics are investigated on the performance 
of the tracking system. 

KEY WORDS-- Nonlinear systems, Output feedback, Uncertain systems, Singular 
perturbations. 

I. INTRODUCTION 

Recently, major progress has been made in the analysis and design of nonlinear 

control systems. Different approaches have been proposed (Utkln, [11, [2], Corless and 
Leitmann [17], Hunt et al. [5], Suet al. [6], Glad [221, [23], Bauman and Rugh [19], 
DeCarlo et al. [10], Isidori [15], Walcott and 7.ak [8], Steinberg and Corless [12]). An 
important property of control systems is their robustness, i.e. the ability of the system 
to retain certain performance measures in the presence of perturbations. Or in other 
words; "the ability of a control system to function even when the actual system differs 
from the model used for designing the controller" (Glad [22]). The system model used 
by the designer may differ from the controlled system because of model uncertainties or 
neglected high-frequency dynamics. Specifically, when devising a model of the plant, 
small time constants corresponding to actuator and/or sensor dynamics are neglected. 
Furthermore, it is often impossible to measure directly all the components of the state 
or output vectors. In order to restore them additional sensors are used which lead to 

motions different from the motions predicted by the plant model. 
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The problem of controlling a system in the presence of unmodeled actuator and 
sensor dynamics has received recently the attention of many researchers. In particular 
Bondarev et al. [7], and Zak et al. [25] studied the influence of neglected high-frequency 
dynamics on the variable structure control systems. Leitmann et al. [91 studied the 
robustness with respect to neglected actuator and sensor dynamics of state feedback 
controllers for uncertain systems. Glad [23] considered the sensitivity of the system to 
variations in gain at the input, corresponding to nonideai behavior of the actuators. 
The problem of the robustness of various output  feedback control algorithms based on a 
reduced-order model with neglected high-frequency dynamics was investigated by 
O'Reilly [18] and Vostrikov et al. [24] using singular perturbation techniques. 

The purpose of this paper is to analyze the effect of neglected high-frequency 
dynamics on various output  feedback control designs for nonlinear uncertain systems. 
Our approach is inspired by Marino [4], Utkin [2], and Vostrikov et al. [24]. The tools 
we use in this paper are the high-galn output  feedback and Lie derivatives. 

The paper is organized as follows. Section 2 is devoted to the description of the 
class of nonlinear systems we consider along with the problem statement. Th e  next sec- 
tion presents some background material and preliminary results. The following sections 
discuss different high-gain output feedback control schemes. Then the effects on the 

performance of the closed-loop system of unmodeled actuator and sensor dynamics are 
investigated. Finally, Section 6 contains concluding remarks. 

2. P R O B L E M  S T A T E M E N T  

In this paper we consider a class of dynamical systems governed by the following 
equations 

~(t) = fCt,x) + CCt,x) [uCt ) + ~(t,x)]~ 
y(t) = h(x) ,  I (2.1) 

where xE]R n, uE]R m, yE]R m, and ~(')JR×JR"--dR m is the lumped uncertain element. 
We assume that the norm of the uncertain element is bounded by a known bounded 
nonnegative function; that is for all (t,x)E]R×]R n 

l[~(t,x)[I = < p(t,x),  
,I 

where  p(-): I R × ~ - - ~ ÷ ,  and  II'll is t he  E u c l i d e a n  n o r m  i.e., IIxll ffi ( ~  ]x~ [~)x"L 
i - I  

Note that the only information assumed about the uncertain vector is its maximum 
possible energy. If the uncertainties ~(t,x) enter structurally into the state equations as 
in (2.1) then we say that  the matching condition is satisfied [17]. 

The function f(*) is a continuous slngle-valued vector-function and G(.) is a con- 
tinuous single-valued matrix function with rank G -~ m. Furthermore,  we require that 
f(t,0) ~-0 for all t. The output  vector function h( ')  is continuously differentiable and 
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h(0) = O. 

In this paper we analyze two different output  feedback control strategies. The first 
is the high-gain output  feedback stabilization scheme. In the synthesis of this control 

law we utilize a nonlinear transformation which brings the original system into the 
"regular form" ([20]) from where the design is performed. 

The aim of the second control law is to ensure the tracking property of the output 
of some given reference signal. 

For both control strategies we will investigate the effects of the uninodeled actuator 
and sensor dynamics on the performance of the closed-loop systems. 

3. P R E L I M I N A R Y  R E S U L T S  

LIE  D E R I V A T I V E S  

Tlme-Invar |ant  Lie Dee |vat |yes  

Let f : ]RU---*IR u and g : IRn---+]R n be C °O vector fields on ]R n. The Lie bracket is 

defined by 

af ogf 
[f, g l ~ ' g - -  o~x , 

c3f c~g are the Jacobian matrices of f and g, respectively. Using an alterna- where ~ -  and o~ x 

tive notation, one can represent the Lie bracket as follows 

If, g] == (adlf, g). 

Also, define 

(ad k f, g) ffi [f, (ad f, g)], 

Next, consider a Coo function h : ]RU-*IR. Let dh ---- VTh be the derivative of h 

with respect to x, where ~'h is the gradient of h with respect to x. Then the Lie deriva- 
tive of h with respect to f is defined by 

Lth ffi Lt(h) ~- <~dh,f:> ffi ~Vrh.f. 

The following notation is employed throughout this paper 

where, by definition 

(ad°f,g) -- g .  
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L~h ffi h 

L~h ~= Lfh 

Lfkh = Lf(Lfk-lh).  

The Lie derivative of dh with respect to the vector field f is defined by 

Lf(dh) =ffi 4" (dh) " ~ ' .  

One may easily verify that these three Lie derivatives obey the following so-called Leib- 
nitz formula 

Llt,¢lh ,~ <dh,{f,g] > = L~Lth -- LfLgh.  

Furthermore,  the following relation is valid 

dLfh ~- Lf(dh) .  

T i m e - V a r y i n g  Lie  D e r i v a t i v e s  

Suppose now f and g are C °O time-varying vector fields, i.e. f(.) : ]R×IRn--*IR a, 
g(-) : IR×IRa--*IR a. Then the time-varying Lie bracket is defined by 

and 

(1-,lf, g ) ~ (adtf ,  g ) _ c~g 

(rkf, g) ffi 

where 

(l-°f,g) g .  

Next consider a Coo function h(*) : IRXIRa"*IR. 
of h with respect to f is defined by 

Oh 
Xfh =-~f(h) ~ Lfh + -~--. 

We define 

Then the time-varying Lie derivative 

. ~ h  ~ h ,  

OX - h 
5£kh A_ .~t(5£~-th) = Lf(.~tk-lh) + 

The time-varying Lie derivative of dh with respect to the time-varying vector field f is 
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.~fdh = [~r -{.- (dh) ~ -  4- ~ (dh) .  

d.~h ---- .~r(dh). 

One may verify that the above defined time-varying Lie derivatives obey the following 

formula 

<dh,(rlf, g)> 
L(r,r,z)h -- LiLrh - L~Lzh -- La_Lh 

ot 

~- Lz.~ffh -- .~fLlh. 

M A ~ K O V  P ~ T E R S  

The atone Markov parameters  are defined as the elements of the matrix resulting 
from the product  of the observability and controllability matrices of an atrme nonlinear 
system described by the following equations 

= f(t,x) + gl(t ,x)ul  + ... + gm(t,x)um 

y = h(x) = [hl(x ) , . . . ,  hp(x)] T , (3"11 

where f, g l , " ' ,gm : ]Rx lRn"~tn  and h : ~n_...~.p are C °° vector fields. 

The observability matrix of such a system is defined by the following (np)xn 

matrix 
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dhl 

i 
dhp 

.~f(dht) 

0 "ffi .~ef (dhp) 

Xp-'(dh ) 

The controllability matrix is defined by the following n×(nm) matrix 

~ =  [g~,...,gm,(r' f,g~),...,(r' f, g=),...,(P-~ f,g,),..., (r~-' f,g=)]. 

So the elements of the matrix ~-~ have the form 

(~2'i(dh#)) (Pf, ga) = <-~i(dh~), (Pf, ga)> 

= < d ~ i h  s , (l"if, g,~)> 

= L(r~t,,o) ~ih3  

for i,j = 1,...,n--I, c~ -- 1,...,m , 

(3.2) 

parameters. 

T h e o r e m  3.1: 
satisfy 

then 

(3.3) 

(3.4) 

= 1,...,p, and are referred to as the ai~ne Markov 

If there exist constants Ck, k = 0,1,. . .  such that  the Markov parameters 

L(r,f,~} ~}hs -- Ck = ci+j , (3.5) 

L(r,f0~,}.~ih~ ---- Lg .~'i+Jh~ -- const = ci+ j . 

P r o o f :  Repeated application of the definitions of Lie derivatives and condition (3.5) 
yields the following 

L(r%r~}.~$h~ = <d..~'ih a , (Ff,(l"i-lf, g,,))> 
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L(r~-,f,~).~+1 hs - - ~ t c i + j - 1  

== L(r~-,f, z . )~i  + t h# . 

Continuing in this manner we find that 

L(rlt, L).~O?ih~ ---- Lr .~i+Jh# = const ~ ei-l-j " 

[] 

For further information about Markov parameters for nonlinear time-invariant sys- 

te=~ the reader is referred to [111 and [14 I. 

Consider now a plant modeled by (3.1), where p == m, and the high gain control 

law 

u = k s(x) (s.s) 

where k > 0 is a scalar and the function s(.) : ]Rn----~]R rn is continuously differentiable. 

Assume that detSG ~ 0, where 

8s 
S -  o~ x , a n d  G = [ g i , g 2 , . . . , g m ]  • 

Then we have 

T h e o r e m  3.2 ([2],[21]): 

If 

(i) the functions f(t,x), G(t,x)s(x), and fo -~ f -  G(SG) - I S f  satisfy Lipschitz condi- 
t ions for all x 

(ii) the system 

ds 
dt - (sc)s 

is uniformly exponentially stable, that is there exist positive A > 1 and cr such 

that 

IIs(x)ll < Alls(x(O))lle -~t  , 

then for any positive A, and T there exists a positive ko such that 

IIs(x(t))ll < A 

for k > k o and t o q-t1 < t < T on the solutions of (3.1) with the control 
u - ~ k s ( x ) , a n d  lira tl ~-0. 

k---*oo 
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4. T H E  O U T P U T  R E G U L A T I O N  P R O B L E M  

Consider  the  nominal  system, t h a t  is the  sys t em wi thou t  unce r t a in ty  as described 
by  

= f(t,x) + G(t,x)ul 
y = h(x). ~ (4.1) 

First we define the decoupling indices for the system (4.1). We consider each of the 

m output channels separately. So considering the first output channel we form the fol- 

lowing row vector which we will call the decoupling vector for channel one 

[Lz, h l, Lz~h,,. . . ,L~ ht] . (4.2) 

If this row vector is not identically equal to zero, then we define the decoupllng index of 

the first channel to be zero, or d, = 0. 

However, if the row vector ks identically equal to zero we proceed to form the fol- 

lowing decoupling vector 

[L~-~th , ,  L z ~ f h l  , . . . ,  Lg .L~'fhl] . 

Again we determine if it is identically equal to zero, or not. If it is not we stop and 

define dl ---- 1. If it ks zero we proceed further by forming 

and so on. 

So the decoupling index of channel i, is equal to the smallest integer d I for which 

the decoupling vector, 

[Lz, Zd'hl, Lz=ed'h,, ..., L~ ~ef'h,l, 
is not  identical ly equal to zero. 

Similax procedure  for the other  o u t p u t  channels  yields a set  of  m pa ramete r s ,  dl for 
i = 1 , 2 , . . . m .  

T h e  decoupling indices are an indicat ion of wha t  the lowest  der iva t ive  of  each out- 
pu t  channel  needs to be u t i lhed  for an o u t p u t  control  to be effective. By  tak ing  the 

t ime der ivat ive  of  the i th ou tpu t  channel  we obta in  

o~hi . 3h~ 
~ = -~-~ ffi -~- (f + z~u~ + ... + g~u~), 

hence 

)'i ----Lrhi + [Lg~hi , . . . ,  L~..hl] u . 

Thus  if ~ s , h i ,  L~,hi , . . . ,  Lc.hi ]  ~= [0] then  u has no effect on the o u t p u t  Yi, so we 

need to fo rm ~;i where 
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O~ri . 
Yi == - ~ - x  = . ~ h i  + [L,,.~fhi , .... L,  .iPfhi]u. 

Again if [Lg,~fhi ,  Ls,.~rhi , . . . ,  Lg .~fhi] ffi [0], then u has  no effect on the ou tpu t  

sad  we need to t ake  higher der ivat ives  of  Yi in a s imilar  fashion as before. 

Now tha t  we have obta ined  the set  of  deeoupling indices, we consider all the out-  
put channels together  to form the following mat r ix  

L,,m~'hz ... L ,  S ~ ' h ,  

N ~  • . o (4.3) 

We will assume tha t  the mat r ix  N is nonslngular  and we will fu r ther  assume tha t  
the Markov  pa rame te r s  of  the sys tem (4.1) are constant .  Hence by  the vi r tue  of  
Theorem 3.1 the ma t r ix  N is constant .  

With  the N mat r ix  cons tant  and nonsingular ,  we proceed to cons t ruc t  a high-gain 
output  control  which will regulate the  ou tpu t  to zero. 

We will consider two eases. T h e  first ease is when all decoupting indices are  equal 
to zero, and the second case when some, or all, decoupling indices are not  equal to zero. 

For  a r igorous t r e a t m e n t  of  the decoupling p rob lem for nonlinear  t ime- invar ian t  
systems the reader  is referred to [3], [14], [16]. 

C a s e  1. For  this case the N mat r ix  will have  the following fo rm 

N= ~ ---- -~-G =HG, 

h,, ... L~ h,.] 

@h 
where ~- is the Jacobian matrix of h and G - [gl,"',gm]. 

If  we employ  the following diffeomorphic s tate  var iable  t r ans fo rma t ion  

(4.4) 
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~I = @1(t,x) 

~o-=+i = h1(xl 

~ = hm(.), 

where the ~'s are chosen such that 

L[j~ = 0, j = 1,...,m for all i : 1,...,n--m, 

then the system (2.1) in the new coordinates will have the followir~ form 

( 4 . 5 )  

C4.s) 

o t~,;o_oj C,.Oa) 

I !l ] 
n-m+1 Lfhl g~hl ... Lg.,hl 

= i + : :. (u + ~). (4.7b) 

t ~  ~ j L~,~ l L,.,I~ ... ~.,°~j 
We will now employ the high gain output feedback control as given by 

1 
u = - -  Z°h(x), (4.8) 

where ~ is a small constant and K ° is an mxm constant matrix. Under the influence of 

this control, the system equations become 
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• ,-,,',+1 Lfhl + 1 N K°h(x) + N~ 
I.-I • i,, [L,h,,,] 

(4,0h) 

We see that the application of this control decouples the system into the slow and 
fast subsystems. The dynamics given of rh.e sllw subsystem are by 

- - m + !  

y = h(x) = = o 

t ~',, ] 

whereas by invoking the following change in the time variable, 

t = ~ ~-, (4.11) 

the equations describing the dynamics of the fast system are given by 

d__ = ~ " + N K°h(x)  + ~ N ( ,  (4.12) 
"h 

L~= J L ,o 
and for sufficiently small ~, the above equations simplify to 

n - m + t  n - m + l  

d = N K°h(x) = N K ° • (4.13) 
dr  

L~= ] L~= j 
Observing that  the part of our transformation in (4.5) is y ffi [~n-m+t , "" ,  x'n] T, 

we can rewrite the above equation as 

d~' = N K ° y .  (4.14) 
dr  

Note that  by  an appropriate choice of the matrix K ° the fast subsystem cxn be 
made uniformly exponentially stable. Thus if J is the required uniformly exponentially 

stable matrix then, 
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K ° = J, (4.1s)  

and K ° can be evaluated since N is assumed to be nonslngular. 

By invoking Theorem 3.2 we see that the stability of the fast subsystem will result 

in the trajectories of the system (4.7) converging to the A-vicinity of the manifold 
y(x) : 0. Thus the output is regulated to zero. Within the A-vlclnity of the manifold, 

the system will be governed by equation (4.10) which represents the dynamics of the 

slow subsystem. From equation (4.10), we notice that we do not have any influence on 
the internal stability of the slow subsystem when the output is regulated to zero. We 

assume however that the slow subsystem is asymptotically stable. The stability of the 

slow subsystem is a structural property of the plant. This subject requires further 

research. 

Although Theorem 3.2 was stated for nonlinear systems without uncertainties, it 
also applies to our particular case. This is because the uncertainties in the system (2.1) 

are bounded by a known bounded function. 

Case  2: Let us first reorder the output channels so that  they are ordered in ascending 
values of their decoupling indices. Thus Yl is assigned to the channel with the smallest 
di, and Ym to the one with the largest di. 

We then employ the following diffeomorphic state variable transformation 

h,.(x) 

, (4.18) 

.LPd~-lhm 

.~fd' h 1 

~ m h m  

where the ~'s  are chosen such that  

Lli  ~ : 0  j ~. l , . . . , m  . 

The system (2.1) in the new coordinates will have the following form 
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x I ~_ fl(t,x-) [ 
(4.17) 

J x 2 ---- f2(t,x-) -{- N(u -[- ~),  

where ~IERa-m,  x-~E]R m, and N is given by (4.3). The existence conditions of the 
transformation (4.16) can be deduced from the results of [5], [20], [26], [27]. 

Note that  
- 2  !dd 
xi ----Y , i ~ l , . . . , m ,  

where ()0) denotes the j- th derivative of ( ) with respect to t. The control law will have 
the form 

k ... k . (d,) 
k l , l Y  1 4" -]" 1 , d l + l ¥ l  

1 N _ ~  ( 4 . 1 s )  U ~  m 
e ,. . (d~) 

re, lYre "}" "'" "}" ~m,d~.+l.Ym 

In the new coordinates the closed-loop system (4.17), (4.18) is decoupled Into the slow 
and fast subsystems. The slow subsystem is governed by the equations 

x 1 = fl(t,x--) 
y = 0 .  (4.19) 

As in the previous case, we have no influence on the stability of the slow subsystem. 
Therefore for the controller to he effective we have to assume that  the system (2.1) 
without uncertainties is asymptotically stable when restricted to the manifold y = 0 
which is equivalent to requirement that  the system (4.19) is asymptotically stable. 

.As with regard to the fast subsystem we utilize a change in the time variable 

t ffi e r to obtain 

y~a1+ll kl,lYt + --- + "-l,a1+tJx 

i = e(f2 + N ~  -I- : . (4.20) 

-+')] Lk ,xy. + + km, d.+lY(m d') 

ff we now choose kij in such a way that the simplified fast subsystem 
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Y~d'+t) 1 ---- l kt ' tyx + "'" + kt'4'+ly~d'} 

y{m d•+l)] [km, ly.~ + ... + k= d•+ly(m din) 

is uniformly exponentially stable then by the virtue of Theorem (3.1) the closed-loop 
system is asymptotically stable. 

The above output feedback stabilization schemes are quite restrictive. Their 
effectiveness depends on the stability of the nominal system (~----f + Gu) when res- 
tricted to the manifold y ffi h(x)ffi 0. In the following section we provide a more 
effective control scheme. Before that however, we will analyze the effect of unmodeled 
actuator dynamics on the performance of the closed-loop system with the high-gain out- 
put feedbacks. 

S Y S T E M S  W I T H  F A S T  UN1VIODELED M O T I O N S  

We now investigate the effects of the introduction of uncertain actuator dynamics 
on the performance of the system (2.1) with high gain output feedback controllers. 

Case  1: We will assume that  the actuator dynamics is modeled by the following equa- 
tion 

# ~ ' = L r q - M ~ ,  u f N r q - R ~ ,  ~ = c K Q y ,  (4.21) 

where rE]R q, q ~ m, L is a Hurwitz matrix, PL is a positive constant that reflects the 
"fastness" of the actuator, the matrices L, M, R, and N satisfy the condition 

1 
R - NL-IM = Ira, and c -- --  is a large constant. 

Propos i t ion  4.1: If the matrix L is Hurwitz, (the fast subsystem described by (4.21) is 
exponentially stable) then as #ffi approaches 0, the motion of the slow subsystem is 
described by (2.1) with u = ~ = c K°y. 

Proof :  The fast subsystem is described by (4.21). Replacing ~ by its value yields 

p~r = Lr -~ cMK°y.  (4.22) 

Let 1" = /~ - l t ,  hence (4.22) becomes 

d-'L ffi Lr + cMK°y.  (4.23) 
dr  

Since L is a Hurwltz matrix, then as ~ approaches infinity we have y = constant and 



hence 
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r ffi - -  cL-1M:K°y ,  

u •ffi Nr + c t ~ ° y  --- [ -  N L - I M  + R]cK°y  ~= c K ° y .  

The  expression for u as per  (4.24) can also be found by  setting/~ffi ---- 0. 
subsys tem is described by  (2.1) and (4.24). 

(4.24) 
Hence the slow 

[] 

C a s e  2: If  the ac tua to r  dynamics  for this case is also described by  (4.21) wi th  

. (d,) 
K l . l y  I -~- . . .  ~t, l~ . l ,d~+l j ,  1 

= c N  - 1  

KmL,y m -{-... -}-~m,dm÷m,Y m 

then using a similar argument as in the previous case we conclude that the slow subsys- 

tem is described by (2.1) with u = u. 

In conclusion, for a sufficiently fast actuator the proposed control schemes will sta- 

bilize the output. 

5. T H E  T R J k C K I N G  P R O B L E M  

Our  goal now is to design a controller  such tha t  the ou tpu t  of  the sys tem (2.1) will 
t rack  a given reference signal. 

A sufficient condit ion for the ou tpu t  y to t rack  the reference signal ~(t) is 

d [y _ ~ t ) ]  = V[y -- ~ t ) l  A F ( y , ~ t ) )  (5.1) 
d t  ---- ' 

where  V is a Hurwi tz  mat r ix .  I f  ~ t )  = constant ,  then (5.1) becomes ~ = V[y --  u]. 

We  require tha t  the closed-loop sys tem (2.1) be asympto t ica l ly  stable with respect  
to the t ime-va ry ing  manifold  

n = { x :  h ( x ( t ) ) - ~ ( t ) f Y C t ) - - v ( t ) = 0 } .  

The  project ion of the overall  sys tem on this manifold is 

iCt) --  ~(t) = H~ -- ~(t) 

ffi Hf + n G ( u  + ~} - ~ ( t ) .  

Using equat ion (5.1) and solving for u, we obta in  the following control  law 

--  (HG) -1 [F (y ,~ t ) )  --  Hi' + ~(t)] --  ~ .  (5.2) 

In order  to imp lemen t  the control  law (5.2), we would have to have  the exact  knowledge 
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of the uncertain vector ~(t,x). Hence this control strategy is impractical, In what  fol- 
lows we propose a practical control algorithm which approximates the controller (5.2). 

Consider the following control strategy 

u ---- KIV(y - p(t)) - (~ - L~t))] , {5.3) 

where K is the matrix of gain coefficients, K = cK °, and c is a scalar large factor. At 
the present time, we will assume that  ~, can be measured exactly. Later, we will investi- 
gate the case in which !t is measured by a sensor. 

To analyze the behavior of the system (2.1) with the control law (5.3) in the pres- 
ence of unmodeled actuator and sensor dynamics we will employ the arguments of Vos- 
trlkov et al. [24] used for systems without uncertainties. 

Along the trajectories of the motion of the dynamical system (2.1),)" is given by 

= Hf(t,x) + HG(t,x)(u + ~(t ,x)).  (5.41 

Proposition 5.1: If det(I + cHGK °) # 0, and det(HG) # 0, then 

d 
(a) 01i _ [y -- ffi 

(b) lira u -~ (HG) -1 [F(y,~(t)) -- HI" + 5(t) -- HCf]. 
c 

P r o o f :  In what follows we shall utilize the arguments of Vostrikov et al. [24]. 

We first prove part  (a). Recall that 

~, ---H~, ~ = f + G(K[F -- (~'-- b)] + ~),  

thus, we have 

# = Hf + HGK(F -- # -~ i) + HGf, 

regrouping the ~" terms leads to 

(I + HGK)# = Hi" + HGK(F -[- ~) + H G ~,  

Hence, for K ---- cK °, we have 

~- = (I + cHGK°)-I (Hf  + HG~) + (I + cHGK°)-IcHGK°(F + i ) .  

Taking lira ~, the first term approaches zero, while the second term approaches F + i ,  
¢- - eCO 

therefore 

lira y" = F  + ~ , .  
¢- -~¢O 

We now prove part  {b). 
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We have  

therefore 

u = K[F --  (:~ -- b)l , ~" --- Hf  + HG(u  + ~ ) ,  

u = K[F -- H f - - H G ( u  + ~ + h i .  

Regrouping  the  u t e rms  leads to 

(I -t- K H G ) u  = K[F -- Hf - HG~ + i ] ,  

hence, for K ffi cK  °, we have  

u = (I + cK°HG)  -1 cK ° [F - Hf  - H G (  + i ] .  

Thus  

lira u = (HG) -x [F --  Hf  -- HG~ + b] . 

[] 

S Y S T E M S  W I T H  F A S T  U I ~ I O D E L E D  M O T I O N S  

We will now invest igate  the effects of  the neglected ac tua to r  dynamics  on the per-  
formance  of  the sys t em (2.1) with the control  ]aw (5.3). 

Suppose  t h a t  the ac tua to r  dynamics  is modeled by the following equat ion 

/ ~  ~ - L r  + M ~ ,  u ffi N r ,  ~ -  K(F - ~ + ~,), (5.5) 

where rE]R q, q >--- m,  L is a Hurwi tz  mat r ix ,  /zffi is a posit ive cons tan t  tha t  reflects the 
"fastness" of  these dynamics ,  and  the matr ices  L, M, N satisfy the condit ion 
- NL-XM ---- I. 

T h e  sys t em described by  (2.1), and (5.5) m a y  be studied by  the  methods  of the 
theory of  differential  equat ions wi th  small  pa rame te r s  in some of the der ivat ives  [24]. 

For  such systems,  the overall  mot ion  can be decoupled into the fast  and slow com- 
ponents  [21] [241. T h e  me thod  of  decoupling mot ions  is advan tageous  in sys tems involv- 
ing high-gain  feedback  a n d / o r  s ingular  per turba t ions .  The  main  idea behind the theory  
is to decouple  the  sys tem into two subsys tems of lower dimensional i ty .  The  equat ions 
of  the slow mot ions  and  the convergence condit ions for the fast  mot ions  are examined in 
[21] and  [241 . 

In the following proposi t ion  we invest igate  the effects of  the ac tua to r  dynamics  on 
the pe r fo rmance  of the sys tem (2.1). 
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P r o p o s l t | o n  5.2: If the matrix (L - MKHGN) is a Hurwitz matrix,  then as c ~  the 
motion of the slow subsystem will be described by (2.1) with u = ~. 

Proof: As/~ffi--*0, the slow subsystem is described by the following equations 

~ = f + G ( u  + ~ ) ,  u = ~ = K ( F  - - ~  + L , ) .  

We now examine the condition for the stability of the fast  subsystem. 

The fast subsystem is described by equation (5.5). Replacing u by  its value yields 

#,~ = Lr + MK(F -- Hf -- HGNr -- HG@ +/,). (5.6) 

Let ~ = / ~ l t ,  hence equation (5.6) becomes 

d--it = (L -- IVIKHGN)r + NfK(F -- I-If -- HG~ + ~,~ (5.7) 
dr " ' 

where x = constant, t = constant. 

If the matrix (L -- MXHGN) is Hurwitz, then 

lira r = -- (L -- MKHGN)-IMK(F -- Hf -- HG~ + ~/). 
/'--*OO 

Applying twice the following matrix identity know as the matr ix  inversion lernm~ 

- - I  --1 - - I  (Au + A~2A=A2,) - |  = A i ?  - A~'IIAI2(A21A[IIAIs 4- A22 ) A21.=kn , 

and the condition - NL- IM = I m  we obtain 

lira N(L -- ~ ° ( c H G ) N ) - * c . X ~  ° 
C.-oOO 

= l lm o K ° I -  I=  + (I< ° + ( c H G ) - I ) - ~ K ° I  
C ~ O 0  

Hence 

= - {HG) -1 . ( 6 . s )  

lira u =  llm N r = ( H G )  - I [ F - H f + b ] - ~ .  
C :)C C,==)~ 

[]  

I N F L U E N C E  O F  S E N S O R  D Y N A M I C S  

To implement the control law (5.3), the vector ~, has to be measured by a sensor 
(approximate differentlator). Suppose that the approximate differentiator is modeled b y  

the following equation 
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p..~, ~ Az + DhCx)/ 
(5.0) 

J ~=Pz ,  

where z E ~  q, ~ E R  m, q ~ m, and ~ is a "small" parameter  tha t  reflects the "fastness" 
of the approximate dlfferentiator, ~ is the estimate of y, A is a Hurwitz matrix, and the 

matrices P, A, and D satisfy the condition -- P A - I D  ~- I. We shall also use ~ instead of 
~r in the control law (5.3). Therefore, we have 

- P i  = + D h ( x ) ) .  

Again, to examine the system (2.1) with the control strategy (5.3) and the approxi- 
mate dlfferent|ator (5.9), we shall refer to the theory of decoupling motions ([21[, [24]). 

If  we denote 

s s Az + Dh(x) =/~;., (5.10) 

then the method of decoupllng motions described in [21] is suitable for the resulting sys- 

tem. We now examine the condition for the convergence of the fast motions to the 

manifold s ---- 0. 

The projection of the overall system on the manifold s is given by 

= A; + D~ 

= A; + DFA 

= A/~ts + DH[f + G(u + f)]. 

Replacing u by its value yields 

ffi C A - DGI-IKP)p~-Is + DHCf + GKF + GKD + a~). (5.11) 

If we now multiply both sides of the above equation by p~, and let t = tGr, we get 

ds ds 
d-~ ffi/~ d-t ---- (A -- DHGKP)s +/~DH(f + GKF + G~ + GK~,), 

where x = constant, t = constant. If the matrix [A -- DHGKP] is Hurwitz then 

lira s -- --/~[A -- DHGKP] -l [DHf + DHGK(F + ~) + DHG~]. 
T,==eCO 

Using twice the matrix inversion lemma and the condition -- PA-ID = I m we obtain 

lim C A - DHGKP) -z 
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= lim P - t P ( A -  D(cHG)K°P) -t  
C--~OO 

= llm P-I[I -- (K ° + (cHG)-z)-'K°]PA -I 
¢-.¢0o 

Hence 

= + P - t ( H G K ) - x P A - X  . 

or/~;'tPs ---- F +/~, which gives 

lira s = / ~ p - t  (F + D), 
C-=~CO 

y - , ' / -  F ( L v ) .  

To  derive the equation of  the slow motions, we let p~ equal to zero. 
equation (5.9) we get 

z = -- A - t D h ( x )  , 

--- Pz  = - P A - t n h ( x ) .  

Using the fact t ha t  --  P A - I D  = I, we obta in  

Hence the equation of the slow motions is given by 

= f + G[K(F(~,u) -- ~ +/~) + fl 
= f + C[u + ~], 

where 

u = K(F(~,v) -- ~ + b) = K(F{y,P} - ~, + b ) .  

(5.12) 

Hence using 

R e m a r k  5.1.- Note tha t  for large bu t  finite values of  the K-matr ix ,  the value of the 

control signal u remains finite (as shown in Proposi t ion 5.1 pa r t  (b)}. 

I N F L U E N C E  O F  N O I S E  

We now investigate the influence of noise on the behavior  of  the system (2.1) with 
the control  law {5.3). Assume tha t  the ou tpu t  vector y is corrupted  by  the continuously 
differentlable noise r(t), thus 

= y + r(t), (S.13) 

We now find values for ~, ~,  and u. We assume tha t  det(I + HGK) # 0. 
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- -HIf  + G[K(F(~,u) - 9  + b(t)) + ~]], 

using equation (5.13) we get 

y ---- H[f + G[K(F -- ~, -- ~ + b) + ~]]. 

Solving for ~" we obtain 

~, ffi (I + HGK)-' If-If + HGKF -- HGK~ + HGKb + HG~]. (5.14) 

(b) For the controller u, 

u = K ( F - - @  + b )  

•,X(F - - ~ ' - - ~ + b ) ,  

substituting ~ = Hi" + HGu + HG~, we get 

u = K(F -- Hf -- HGu -- HG~ -- ~" + ~), 

solving for u yields 

u ffi (I + KHG)-IK(F -- I-If -- ~ -- HG~ + ~). (5.15) 

(c) The derivative of the output vector with noise is 

9 ~Hf+HGu+HG~, 

using u = K(F -- 9 + b) we obtain 

= H f + H G K ( F - 9  + b ) + H G ~ ,  

solving for 9 yields 

---- (I + HGK)-I(Hf + HGKF + HG~ + HGKI). (5.16) 

In the timit the equation~ (5.14), (5.15), and (5.16) become 

C i) ~, = F -- ~ + i ,  

(u)  u = ( H G )  - ~ [ F  - H f  - -  ~ - -  H C ~  + i ] ,  

(m) i --  i = F ( i , ~ ) .  

In part (i) above we can see that for an actual system, in the limiting case, the noise r(t) 
is fully "repeated" in the output. As for the controller u, apart  from the '~basic" control 
law u = ( H G ) - I ( F - H f - H G ~  + i), we have an additional component due to the 

additive noise. 
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ft. C O N C L U D I N G  R E M A R K S  

I n  this paper, we discussed the robustness of high-gain output  feedback control 
designs for nonlinear t lme-varylng uncertain models to unmodeled high-frequency 
dynamics. Our approach followed on the papers by Vostrikov et al. [24], and Utkin [2]. 

Two different control strategies were analyzed. The first one was concerned with 
the output  regulation. To facilitate the synthesis we utilized a difl'eomorphic state vari- 
able t ransformation of the given model into the regular form. This regular form was 
found very useful in the design. However the problem of constructing a transformation 
which brings the system into this form requires further investigation. 

The aim of the second output  feedback control design was to ensure the tracking 
by the output  of a given reference signal. The proposed control algorithm involved the 
output  vector derivative. Following Vostrikov et al. [24], we suggested a sensor estimat- 
ing the output  derivative. One may argue that  using differentiating filters is impracti- 
cal. However one has to recognize that  the essential information about  a given process 
has significant spectral components only at  low frequencies [13 p. 227]. Hence if we use 
a n  approximate  differentiator which is sumciently fast then the system will hardly feel 
the difference between the ideal and approximate difl`erentiators. Thus, this approxi- 
mate  difl`erentiator acts as an ideal one and its gain levels off or decreases at higher fre- 
quencies. In this paper we a t tempted to prove that  the approximate difl`erentlator is a 
viable tool in the synthesis of control algorithms. 
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1. I n t r o d u c t i o n  

Typical problems encountered in the design of a control system are the 

presence of parameter uncertainties and the coexistence of slow and 

fast dynamics in the plant to be controlled. When the uncertainties are 

described assigning their range of variation and these variations 

belongs to appropriate subspaces, the so called deterministic control 

of uncertain systems (Leitmann, 1980; Corless-Leitmann, 1981) 

represents an useful tool for the design of controllers capable of 

guaranteeing certain performance no matter what the realization of the 

uncertainties is. The rigorous treatment of systems with two-tlme scale 

behavior can be done utilizing singular perturbation theory (Kokotovic 

et al.; 1986). The simultaneous use of these two methods for the 

control of uncertain two-tlme scale systems has recently received some 

attention (see Leitmann (this volume) and its references). 

In this paper we use a composite control technique in conjunction with 

the robust design of controllers for uncertain systems to synthesize a 

nonlinear controller which forces a class of two-tlme scale nonlinear 

system to follow a two-time scale linear reference model. The 

controllers that are used in the two phases of the design are obtained 

via a constructive use of Lyapunov functions (Kalman-Bertram, 1960). 

The same Lyapunov functions are successively combined (as suggested by 

Saberi-Khalil, 1984) for obtaining the proof of ultimate boundedness of 

the model tracking error. 
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We consider a two-time scale nonlinear system described by the 

following equations 

x(t) -- A11(x(t))x(t)+A,z(x(t))z(t)+B1(x(t))u(t)+a1(x(t)) ; 

~z(t) - K21(x(t))x(t)+A22(x(t))z(t)+B2(x(t))u(t)+a2(x(t)) ; 

(2.1a) 

(2.1b) 

(2.1c) 

(2.1d) 
x ( c  o) - xo; 

z (c  o) - zo; 

where x(t)6R n , z(t)ER m represent the state of the system, u(t)ER p is 

the control input, a1(x(t)) and a2(x(t)) are nonlinear vectors, ~E(0,~) 

is the singular perturbation parameter, and A,j(.) and Bi(-), i=i,2, 

J-l,2 are matrices of appropriate dimensions. 

The reference model specifying the state behavior expected from the 

controlled plant is described by the linear, time-invariant system 

~(t) - ~11~(t)+~12~(t)+~1~(t); (2.2a) 

~(t) - ~2 ~(t)+~2 ~(t)+~2~(t) ; (2.2b) 

~(t 0) - ^ Xo; (2 .2c )  

~(to) ~ • - o' (2 .2d)  

where ~(t)eR n and ~(t)~_R m is the state and ~(t)6R p is a reference 

signal. 

The following assumptions define the class of nonlinear plants 

considered here. 

Assumption I. There exist full rank matrices Bi, i-I,2 such that, for 

all xeK n, the following decomposition holds: 



Bl(x) " sl + SiEi (x)' 

ai(x) - Bidi(x), 

where El(. ) (resp. di(.)) 
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i-i,2, 

i-1,2 , 

is a matrix (resp. a vector) of appropriate 

dimensions, continuously differentlable with respect to x. 

The relationship between the system (2.1) and the reference model 

represented by equations (2.2) is preclsed by the following 

assumptions. 

Assumption 2. For all xeK" the following equalities hold 

Aij(x)-~i3 = BiCij(x) , i,j - 1,2 

^ ^ 

B -BC , i-i,2 
l i i 

where Ci3(x ) are continuously dlfferentlable matrices. 

Moreover, the singularly perturbed model is assumed in standard form, 

i.e., 

Assumption 3. Matrix ~ is full rank. 
22 

Defining 

0 11 12 22 21 

we hypothesize that 

(2.3) 
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Assumpelon 4. The p a i r s  (~0,Bt) and (~2z,B2) a re  c o n t r o l l a b l e .  

Assumption 5. The matrices A,j(x), Bi(x), ai(x), for i-i,2 and j-l,2, 

are norm bounded in R n. In particular we define 

h j - supJlS.(x)ll, 
x6R a 

. - a u p  II~,(x)ll. 
x ~ R  n 

~ - x ~  n s u p  lld,(~)ll, 

Moreover ~ < 1 , i-1,2. 
i 

Finally we make the following 

Assumption 6. The input reference signals 6(.) are such that there 

exist finite positive constants 

k - sup l l~( t )  ll, 
" te[t0,~ ) 

k - sup I I~ ( t )  ll, 
t~[to,~) 

where ^ Ua(t ) and ~ (t) represent the slow and the fast time scale 
A _ A AA A 

c o m p o n e n t s  of ~(t) and u(t)-us(t)+uf(t ) . Corresponding to these 

signals, there exists a positive constant # such that, for #E(0,#) the 

state variables of the reference model are uniformly bounded by known 

c o n s t a n t s ;  

k^ - sup II~<t)ll, 
x tE[t 0 , ~ )  

#~(o,;) 



z te[t0,~) 

~(o,~) 
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Remark i. Assumption 1 is the so called "matching assumption" and 

defines the manner in which the nonlinearities enter the plant. The 

equalities in Assumption 1 and 2 are the so called "model matching 

conditions" and determine the class of model that can be tracked by the 

nonlinear system under consideration. 

Remark 2. System (2.1) belongs to the class of singularly perturbed 

nonlinear system with slow nonlinearities considered by Chow-Kokotovlc 

(1981). Note, however, that for design purposes, it is not strictly 

necessary to know the nonlinearities affecting the system but only a 

nominal linear behavior and an evaluation of the maximum deviation from 

this behavior as preclsed in Assumption 5. The composite control design 

for the practical stabilization of a similar class of plants is also 

considered by Garofalo (to appear). 

The objective of the control is to synthesize a feedback control 

function guaranteeing that the plant tracks the model to within a 
1 

bounded neighbourhood of the zero state tracking error. 

The procedure we propose for the synthesis of the controller is based 

on the separate design of controllers guaranteeing tracking of the 

slow approximation and of the the boundary layer approximation of the 

reference model. On the basis of these control laws the composite 

control is constructed which guarantees tracking of the model for 

sufficiently small values of the singular perturbation parameter ~. 

IA formal definition can be found in Corless (1987) or In Appendix 1. 
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Following Kokotovlc er al. (1986) the slow approximation of the 

behavior of the reference model is obtained considering p-0 in (2.2b) 

and substituting the resulting value for variable z in (2.2a), 

obtaining 

(3.1) 

where 

(3 .2 )  i)o' i 

and the subscript s stands for slow tlme-scale approximation. 

In order to design the controller for tracking the slow component 

(3.1) of the reference model, we need an approximation of system (2.1) 

in the slow time scale. To this end, we assume that z variable has a 

nominal behavior z which is exactly the one that ~ variable takes in 
n 

the reference model, that is 

pzn(t ) - ~zlX(t)+~2zZn(t)+~2AU(t). (3.3) 

Correspondingly, the approximate model of slow dynamics neglects the 
2 

nominal fast transients, i.e., 

& - A (x)x+A (x )z +S (x )u +a.(x ) 
1 1  s • 12 R n ~ s s ~ s ' 

o -  ~ x+~  ~ + t ~ .  , 
21 s 22  n 2 s 

(3.4a) 

(3.4b) 

2Sometimes, when no confusion is likely to occur, we delete the time 

arEument of the functions. 
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which gives 

A 

and 

with 

x - A (x )x +S. (x )u -A (x)~-1~A u+a (x), 
u a s • 8 a 1 2  a 2 2  2. 8 ~. S 

(3.5b) 

Define now the slow time scale tracking error as 

A ^ 
m ( x,-x, (3.7) 

On the basis of (3.1), (3.2), (3.5) and (3.6) the slow time scale 

tracking error dynamics can be written as 

" , BIEx(x,)u , Bx[HI(x,)+K,]@ , + 

+ E [H ( x ) ~  -H ( x ) ~ + d . ( x  )] 
1 1 S S Z S S ~ S  p 

(3.8) 

where F ~ ~ -B K , K eK p= is a matrix which makes matrix F 
s 0 I s s s 

asymptotically stable with specified eigenvalues (which is always 

possible by virtue of Assumption 4), and 

(3 .9a)  

A [6 +C (x >~'~i) ] (3.9b) 

From the knowledge of matrices Cn(x) and Ciz(x) (given in 

2), and matrices ~zz' ~zl and ~2' we can compute the 
& 

Assumption 

following constants 



k~ ~ sup IIH~(x)+K•[[, 
s xER 
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(3.10a) 

A 
k d - sup 

1 x~-R n 

re[ t o ,~) 

~E(o,~) 

HH (x)xA-H2(x)uA +d1(x)If" (3.10b) 

Consider now the nonlinear feedback control 

(Ambroslno-Celentano-Garofalo, 1985; Garofalo-Gllelmo, to appear) 

law 

(3.11a) 

where P is the solution of the Lyapunov equation 

FTP + P F - -Q 
S • • • •J 

Q positive definite, (3.rib) 

and 

~, - ~,<IILII) A L x + L ~ l l ~  II - , 6 >0. 

IIB PLII ÷ " 
(3.11c) 

This feedback control has the tracking capabilities described in the 

next theorem. 

Theorem I. Consider the slow approximation (3.4) of system (2.1) 

subject to the feedback control law in (3.11). If constants 7sl, I-i,2, 

in (3.11c) are chosen so as to satisfy 

k d 
1 

7sl ~- I-~ 
I 

- -  , (3.12a) 

3Notice that the suprema can always be replaced by upper bounds. 



~,z -> i-~ 
i 
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, ( 3 . 1 2 h )  

then system (3.55) tracks the slow approximation (3.1) of the reference 

model (2.2) to within a spherical neighbourhood of ~-0 whose radius 

can be made arbitrarily small by a suitable selections of constants 

71, I-1,2, and/or of constant 5 in (3.11c). 
g 

Proof. The proof of the theorem can be found in Appendix 2. 

4. Fast Time Scale Control 

The boundary layer approximation of the reference model (2,2) is given 

by (Kokotovlc er el., 1986) 

(4.1) 

where r-t/p, ~ represents the fast component of the reference signal, £ 
and 

AZf -- 

The fast time scale approximation of system (2.1) is obtained 

substituting the slow control expression (3.11a) in equation (2.1b) and 

approximating variable x (t) by x(t) and ~,(t) by ~(t). So doing we 

obtain 

/j~. - A 2 1 ( x ) x - ~ s B 2 ( x ) ~ P a ~  + A22(X)Z + B 2 ( x ) u f + a z ( x ) ,  

A A 
where  u i s  t h e  f a s t  c o m p o n e n t  o f  t h e  c o n t r o l  l aw and X - X .  

( 4 . 3 )  
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Defining 

z -z - V(x,u A,) -z + (~2~ x+~2uA2' (4.4) 

the boundary layer model of the system can be written as 

dz 
f 

m 

d~ 
A (x)z +B (x)u -7 B (x)~P 

22. f 2 £ s 2 I s 

+g c (xlx+g e (x)u A +g d (x) 
2 1  2 2  a 2 2  ' 

with  

(4 .5)  

- [c2~(x) - 

%(x) 

( 4 . 6 a )  

(4.6b) 

The fast time scale tracking error can be defined as 

A ^ 
f~ - z -z , 44.7) 

and, on the basis of (4.1) and (4.5), its dynamics can be written as 

dr'- Ff~ + ~2ut + E2~2(x)u ~ + ~z[Cz~(x) + K]~+ 

+ B2[GI(x) - 7 (Ip + ez(x))B[P ]~ 

+ ~2[C(x>~ + c22(x)~ = + G2(x)~" - ~2~ + d2(x)], 

( 4 . 8 )  

where F ~ ~ -B K and K 6R pm is a matrix which makes matrix 
Z 2 2  2 £ £ 

asymptotically stable with specified eigenvalues (see Assumption 4). 

F 
f 

On the basis of Assumptions i, 2, 5 and 6, we can evaluate the finite 
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A 
- sup. 

kdz xc=R 

te[ t o ,~) 

.e(o,~) 

k~ A sup. II%~(~) + K,I[, 
xER 

+ d~(~)li, 

( 4 , 9 a )  

( 4 . 9 b )  

k~ ~ ~up ll%(x)- ~ <~ + %(x>>~Pll. (4.9c) 
xERn s p 

In the fast time scale the variables x and ~ can be considered 

constants, and the fast control law we propose for making the boundary 

layer system track the boundary layer reference model has the form 

pz(~z) ~ -7f~Pz~ f, (4. lOa) 

where Pf is the solution of the Lyapunov equation 

F~P + PfF - "Qf' Qf positive definite, (4.10b) 

and 

7, 7,(iILii ii~il) A 7.,+7..II~.il+~..li~[i - , - , 6>0. (4.10c) 

We can state the following 

Theorem 2. Consider the boundary layer approximation (4.5) of system 

(2.1) subject to the feedback control law (4.10). If constants 7it, 

i-i .... ,3 are chosen so as to satisfy 



k 
d 

2 

"Yn ~" I-'---~- ' 
i 

k 
v~a ~ f 

I 
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(4.11a) 

(4.11b) 

k~ 
"fzs > i-~ ' (4.11c) 

1 

then system (4.5) tracks the boundary layer reference model (4.1) to 

within a spherical neigbourhood of [f-O whose radius can be made 

arbitrarily small by a suitable selection of constants 7~i, i-I ..... 3 

and/or constant 6 in (4.10c). 
f 

Proof. The proof can be found in Appendix 2. 

5. Guaranteed Performance of the Composite Control 

The composite control is obtained as the sum of the slow and the fast 
^ ^ A 

control law with variable ~z replaced by ~-[F(X,A)+F(x,uA)]- f + 

~ ~, and ~ by it~ approximation ~, obtaining 

Uo - " (5.1) 

where f ~ (z-S). 

For this control law we can establish the following theorem. 

Theorem 3. Consider system (2.1) subject to the control law (5.1). The 

closed loop system tracks the reference model to within a spherical 

neighbourhood of the zero state tracking error, if the following 

conditions are satisfied. 

i) The constant ~,t satisfies the inequality: 
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k l 
d 
* (5.2) 7,1 ~ I---~ ' 

I 

with 

kd[ " x e R  n 

te[to,®) 
~e(o,~) 

and the constant 7 2 satisfies the inequality (3.12b); 

ii) the constants 7zj, J-1,2,3 in the control law (5.1) are 

chosen so as to satisfy inequalities (4.11); 

lii) constant 7f3, besides satisfying (4.11c), satisfies 

~3 < 211PII sup UB. Cx)II ¢5.4) 
xER n 

iv) the singular perturbation parameter is such that 0<~<p* 

where ~ is a constant whose value can be a priori computed. 

Proof. The proof of Theorem 3 and the expression for the upper bound of 

paramerer p are given in Appendix 3. 

6. C o n c l u s i o n s  

The robust model tracking control presented here is designed using the 

approach of deterministic control of uncertain systems, together with 

the composite control technique developed for singularly perturbed 

systems. This enables the designer to guarantee the model following 

within a spherical neighbourhood of the zero error, in the presence of 

"slow" nonlinearities. It must be pointed out that this technique does 
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not require the knowledge of the form of the nonlinearities, but just 

the possible range of their variations. 

Appendix i 

Some definitions and a useful lemma. 

Consider the equation of a model tracking error dynamics in the form 

- ~ ( e , t )  , ~(to)- %, (Al.1) 

where tEE, ¢6R p, and ~:R~xR*R p We say that the system tracks the 

reference model to within a spherical neighbourhood of radius R of ~-0 

(indicated with B(R)) iff the following properties are satisfied: 

i) Existence of the solution. Given any (¢0,t0)6KPxK there exists a 

solution ~(-):[t0,tl)~RP , tl> % of (AI.I). 

ii) Indefinite extension of solution. Every solution ~(.):[to,tl)~RP 

of (AI.I) has an extension over [t0,~ ) . 

ill) Global uniform boundedness. Given any bound r6R+, there exists a 

bound d(r)6R+ such that if ~(.):[t0,tl)~R p is a solution of (AI.I) with 

ll~Oll~r, then ll~(t)ll~d(r) for all tE[%,tl). 

iv) Local boundedness within B(R). There exists a spherical 

neighbourhood B(R0) of 4-0 such that if ~(.):[t0,tl)~RP is a solution 

of (AI.I) with ~06B(Ro) then ,(t)EB(R) for all te[t0,tl). 

V) Global uniform ultimate Doundedness within B(R). Given any bound 

rER+ there exists T(r)e-R+ such that if ¢(.):[t O,tl)~Kp is a solution of 

(AI.I) with [[~0]l~r , then ,(t)EB(R) for all tet0+T(r). 

The listed properties of the solution ~(.):[t0,tl)~RP can be stated 

with the aid of the following lemma (for the proof see 

Corless-Leftmann, 1981). 
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Lemma. Given system (AI.I) suppose ~(0,t)-0 for all tER. If there 

e x i s t s  a C z f u n c t i o n  L d e f i n e d  o n  II,llzs and  tER,  a n d  i f  t h e r e  e x i s t  

class KR functions Xl and X2 and a class K function X3 such that 

~--~L( ~ a  .t)+V~L(,, t )  ~ -x~(ll~ll), ( A 1 . 2 b )  

then for all II(ll~s and tEK the system tracks the reference model to 

within any spherical neighbourhood B(R) of ~-0 with R>x11oxz(s). 

Appendix 2 

Proofs of Theorems i and 2. 

Consider as Lyapunov function candidate 

feedback control (3.11) the following 

for system (3.8) with the 

Evaluating the derivative along the solutions of the closed loop system 

by virtue of (3.9), (3.10), (3.11), (3.12) and Assumption 5, we have 

s • • s I 1 s s 

<-(I/2)f~Qf- "yJi~iPf li2(l-~z) + IIB~Pf IIUH 1(x)+K IIU~j i 
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• ': -¢I/2)¢~Q.L- (,.l+,.~ll.qll)¢ll~P...~.ll - .~s > (1-,, 2 

+ II~P,AII II~,.(x ~+K II I1,.11 

+ II~PJ.II II",ov~.-"~(x.)~.+d,(,,.~ II 

___ - ( 1 / 2 ) ~  + kd 1 t = 

< ( l / 2 ) [ - v  II,L, II2+ v i l l i  + ~ ]  (A2.2) 

vz'A A in(Q), --v .A 2k=~ 5 , and v3 "A 2kd ~" where D 

• I 

At this stage the application of the lemma reported in Appendix i 

proves the statement of the Theorem I. 

The proof of Theorem 2 proceeds exactly in the same way. We define as 

Lyapunov candidate for system (4.5) subject to the feedback control 

(4.10) 

W(ff) A T (A2.3) 

The derivative along the solutions of the closed loop system, 

considering x constant in the fast time scale, can be proved to satisfy 

the following inequality 

,~(~) ~= -,,J~',ll ~ + w~ll~,il + w (A2.4) 

A A=in(q~, ) wzA 2 6 t k ~ ,  with w z- and w3~w ~ + w~H~H ~ 26k  d+26k~l]~]]. 
2 
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Proof of Theorem3. 

The proof of the theorem is based on the combined use of two Lyapunov 

functions, one for each component of the model reference tracking 

error. 

For the first component we can write 

A (x)x+A (x)z-v B (x)~P ~--y B (x)~ze C 
ii IZ • I I • Z i 2 f 

+ -, B (x)F'~, ~-~ e+a (~)-~ ~-~ ~-~ u A 
f I 2 f 22 21 i 11 12 1 

{F ~-7 g.~..P ~'7 B.E.(X)gT. P ~+B.[H (x)+K If+ 
• • 1 1 8 8 Z l ~ S I 1 $ 

+BI [HI(x)xA'H,(x)A+dI(x) ] ) "TzBI (xlB~Pz, [ f+~-I~2;~ 21 (] 

^ 

+A~a(x) [f+ ^ ^ ^ 

The terms within braces are exactly the 

(3.81, taking apart the substitution of 

basis of Assumptions 5 and 6, and recalling (4.10c), 

find constants at' i-1,3 and at, i-i,3 such that 

(A3.1) 

same as in the slow model 

and ~ with ~ and ~. On the 
I 

it is possible to 

II~II - HA,x (x) x+A,z (x) z"Y.B~ (x)~P.~"~,Bl(x)~P,~" 

A A A 

(A3.2a) 

(A3.2b) 
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For the second component of  the model t r ack ing  e r r o r  we simply r ewr i t e  

equation (4.8) as 

+ ~ [o (x)-~ (I +E (x))~P ]~ 
2 1 s p 2 1 s 

+ gz [O I (x)xA+C zz (x)zA ~ +O a (x)Au • -~zAu+da(x) ]. (A3.3) 

Consider the function 

W((~) fi 1/2 (f+,~-1~ ()~e (f+~-,~. (), (A3.4) 
' 2 2  2 1  . 2 2  2 1  

and evaluate the derivative along the solutions of the closed loop 

tracking error system (A3.1), (A3.3). One obtains 

• .l- - -  

W 
A 

W W f W" 
3 

Consider now the function 

V(~) ~ 1/2 ~Tp~, (A3.6) 

and eva lua te  the time d e r i v a t i v e  along the s o l u t i o n s  o f  the c losed  loop 



107 

tracking error system (A3.1), (A3.3). In view of (A3.2a), and 

conditions (5.2) and (5.3), we have 

(A3.7) 

We can choose as Lyapunov candidate for the closed loop tracking error 

system (A3.1), (A3.3) the following 

- p(c) , (A3.8) 

P(c) "(1-c)PiO cpO 1 
where 

, 0~c~l. (A3.9) 

In view of (A3.5) and (A3.7) the time derivative of (A3.8) along the 

solutions of the closed loop tracking error system satisfies 

r I1,~11 ] _ 
+ ~(c> LIIr+'~[~-~ ell + m, 

where 

(A3.10) 

A [(l-c)(v12~111P.ll) 
M(c) - 

L- i/2 (cat+ (l-c)b z 

-i/2(cal+(l-c)b J 

c(~I- a 2) 
, (A3.11a) 
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W" W 
.(c) ~ [(1-c)bl+c ~ c(a@>], (A3.11b:~ 

W w 
- -  A 3 

-- . (A3.11c) m - v3(l-c) + c 

V 

Provided that ai<2~ ~ (which is guaranteed by condition (5.4)), the 

upper bound ~ of parameter  ~ which guarantees  the d e f i n i t e  p o s i t f v t t y  
P 

of  matr ix  M(e) is  given by (see Sabe r i -KhaI i I ,  1984) 

<% -2% UP, H>~ 
#p -- (V 1.2r,lilP II)a 2 + alb 2 

(A3.12) 

* A min(~,fl ), for each 0<fl<~" the application of the lemma Chosen fl - 
P 

contained in Appendix i completes the proof of the Theorem. 
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CONTROL OF UNCERTAIN DYNAMICAL SYSTEMS : 
SIMULTANEOUS STABILIZATION PROBLEMS 

Bijoy K. GHOSH 
Washington University 

Saint-Louis, Missouri 63130, U,S.A. 

In  the  l a s t  decade ,  s i g n i f i c a n t  p r o g r e s s  have been w i t n e s s e d  in  the 

des ign o f  a r o b u s t  compensator  f o r  a f a m i l y  o f  m u l t i  i npu t  m u l t i  ou tpu t  

systems.  The main o b j e c t i v e  i s  to  c o n s t r u c t  a dynamic compensa tor  which 

s i m u l t a n e o u s l y  s t a b i l i z e s  a f a m i l y  o f  p l a n t s  and s a t i s f i e s  v a r i o u s  o t h e r  

design restrictions. The motivation is to extend various classically well- 

known compensator design methods for a single plant to a family of plants. 

Such a family of plants may occur as a result of parameter uncertainty or 

parameter variation in the plants and the goal is to construc~ a compensauor 

which is insensitive to these parametrle changes. 

To begin with, we consider the "simultaneous Stabili~aVion problem" 

described as follows: 

Given a r tuple C I ..... G r of pxm proper transfer functions, does there 

exist a compensator K(s) such that the closed loop systems GI[I + 

KGI]'I .... , Gr[I + KGr]'I are internally stable? 

This problem a r i s e s  i n  r e%iab le  sys tem d e s i g n  where G 2 , . . . ,  G r r e p r e s e n t  a 

plant G 1 operating in various modes of failure and K(s) is a non-switching 

stabilizing compensator, it also arises in the stability analysis and 

design of a plant which can be switched into various operatln 8 modes. It 

has been shown in [i] that 

The i n t e g e r  max(m,p) i s  the  c r £ t i c a l  number o f  p l a n t s  below which the  

s imul taneous  s t a b i l i z a t i o n  problem i s  s o l v a b l e  a lmos t  always i . e .  

g e n e r i c a l l y  ( i n  a s u i t a b l e  t o p o l o g y )  by a compensator  o f  McHi l lan  degree  

where qo i s  the  s m a l l e s t  i n t e g e r  s a t i s f y i n g  

r 
qo[max(m,p) ÷ l - r ]  ~ ~ n i -max(m,p) (1) 

i - 1  

q0 
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In the above formula, n i is the McMillan degree of the plant G i for 

i-I ..... r respectively. In fact, if mln(m,p) - i then the formula (i) also 

computes the minimum order of the generically stabilizing compensator. It 

may be  remarked that the minimum order compensator problem is a classically 

unsolved problem and in [i] the problem is solved for the special case 

mln(m,p) - 1. 

However, beyond saying that the simultaneous stabilization problem is 

solvable for certain classes, it is of great interest to parameterlze all 

those cases where the problem is indeed solvable. Moreover, for ease of 

computation, such a parameterlzatlon has to be explicit. This question is 
f f 

parameterlzlng the set of r tuples of plants (G 1 ..... Gr) is addressed in 

[2] and one of his main results is a considerable conceptual breakthrough, 

since to check simultaneous stabilizabillty using this result one only needs 

to know which path component (G l ..... Gr) lles in; i.e. the problem is 

reduced to the problem of analyzing big pieces of the space of r tuples of 

systems rather than individual r-tuples. Similar results on simultaneous 

stabilization and pole assignment for a parameterlzed family of plants by a 

parameterlzed family of compensators is also obtained by Dr. Ghosh and is 

reported i n  [2]. To my knowledge, use of semlalgebralc geometric methods 

for the purpose of parameterizlng stabilizable or unstabillzable path 

components has been done for the first time in [2]. 

Considering more than max(m,p) plants for the purpose of simultaneous 

stabilization (is quite a reasonable objective in robust system design), but 

unfortunately in particular in [3] it is shown that, "Pairs of 

simultaneously stabillzable single input single output plants of bounded 

McMillan degree may not have simultaneously stabillzlng compensators of 

aprlorl bounded McMillan degree." 

It is shown by Dr, Ghosh in [3] that there exists a sequence of pairs of 

simultaneously stabillzable plants of degree one for which the minimum 

degree of the stabilizing compensator is arbitrarily large. A consequence 

of the above proposition is that a simultaneously stabilizing compensator 

cannot be constructed by solving a set of simultaneous equations or 

inequalities in the coefficients of a parameterized family of compensators 

of a given McMillan degree. Stated differently, if r > max(m,p), the 
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c l a s s i c a l l y  known a l g e b r a i c  and semlalgebralc geometric methods are 

inapplicable since the compensator space is not finite dimensional and in 

particular, any numerical computation of the associated compensator needs to 

use a more appropriate transcendental method proposed by Dr. Ghosh in [4]. 

Also in [6] a new 'partial pole placement' problem is proposed which arises 

from a more practical design requirement to place an arbitrary number of 

self conjugate poles in the closed loop while restricting the remaining 

poles in the region of stability. The following result is shown: 

The problem o f  s i m u l t a n e o u s l y  s t a b i l i z i n g  t h r e e  s l n g l e  i n p u t  s i n g l e  

ou tpu t  p l a n t s  chosen  g e n e r i c a l l y  i s  e q u i v a l e n t  to  t he  p rob lem o f  p a r t i a l l y  

pole placing one slngle input slngle output plant by a stable minimum phase 

compensator. 

Use and application of a stable, minimum phase compensator is introduced in 

[6] for the first time. Furthermorea folklore example 

, S - 7  , s - 2  , s-6 
s - 4 . 6  2s -2 .6  4 . 8 s - 2 6 . 6  

of a triplet of simultaneously unstabillzable plants that are stabillzable 

in pairs is constructed by Dr. Ghosh [4]. These results to multl input 

multi output problems are further generalized in [6] to show that 

" I f  r min(m,p)  ~ m+p, t he  s i m u l t a n e o u s  p a r t i a l  p o l e  a s s ignmen t  problem 

may be analyzed via interpolation methods and one obtains a semlalgebralc 

parameterlzatlon of the partially pole assignable r~tuples of plants. If r 

mln(m,p) > m+p, the simultaneous partial pole assignment problem is to be 

analyzed via transcendental methods introduced in [4]." 

The above result, therefore, characterizes the "degree of difficulty" and in 

particular asserts the existence of certain cases (say for example m-p, rE3) 

when interpolation methods are inapplicable in the simultaneous 

stabilization problem. 

We have seen so far that transcendental methods are useful when the 

degree of the compensators under consideration is not aprlorl bounded. 

Frequently in system identification and control, it Is of interest to study 

a family of plants for which the McMillan degree is not fixed. In 

particular the degree may degenerate to a lower value. Thus rather than 
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fixing the McMillan degree of a plant, it is useful to parameterlze plants 

of McHillan degree ~ n for some n. We ,therefore, pose the following 

question -- 

"Parameterlze the set ~n of plants of degree ~ n (possibly as a 

ssmlalgebralc subset of an algebraic set) such that every p in ~n has an 

open neighborhood N(p) of p in ~ such that N(p) is simultaneously 

stabillzable by a compensator of degree ~ q for some q." 

Note that this question poses robust stabilization as a parameterlzatlon 

problem. In [5] an explicit parameterlzation of ~n is obtained as a 

subset of IRIP 2n+l for the single input single output systems and in 

particular we show that -- 

"Assume m-p-l, then 

subset of IRIp2n+I." 

N n i s  a s e m t a l g e b r a i c ,  o p e n ,  c o n n e c t e d  a n d  d e n s e  

More surprlsingly we show that 

"~ is a trlvlal vector bundle over a clrcle. 
n 

diffeomorphlc to S I × IR2n." 

In particular n n is 

The space O n has been parameterlzed for a multi input multi output 

plant In [6] as a vector bundle over a Grassmanlan, a well known object in 

algebraic geometry. We argue that O n and not rat n (the space of 

strictly proper single input single output transfer functions of a given 

n 
degree) or ~ (the space of pxm transfer functions of degree n) is a 

m,p 

more natural space for system identification and control. Various 

properties of this space has been reported in [8]. 

The geometry of ~n is useful in the study of a structured family of 

plants wherein the degree is aprlorl bounded. In practice, however, one is 
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also interested in the study of a family of plants possibly with some 

unmodelled dynamics. For example, under the presence of a high frequency 

"parasltlcs" it is unreasonable to assume that the McMlllan degree of a 

family of plants is bounded by n. In [6] we, therefore, construct the 

space ~ as a direct limit of the spaces ~i c N 2 c ... where ~ is a 

subspace of IR ~. Of course two points in ~ can model the same dynamical 

system and one therefore considers the quotient space ~ where two points 

in ~ are equivalent if they correspond to the same dynamical system. 

Various properties of ~ are being studied. In partlcular, we show that 

in ~= there exists arbitrary small open neighborhood N with the 

following property-- 

There e x i s t s  a sequence  ~0'  ~1 . . . .  o f  p l a n t s  i n  N such t h a t  the  

minimum degree  o f  t he  s t a b i l i z i n g  dynamic compensator  f o r  t he  p l a n t s  

corresponding to GO' ~l .... increases arbitrarily. 

This fact in particular implies that 

"There e x i s t s  p E I ~ "  such t h a t  e v e r y  open ne ighborhood  N of  p in  

~ cannot  be s t a b i l i z e d  even by an a d a p t i v e  c o n t r o l l e r  o f  a r b i t r a r y  l a r g e  

degree q."  

Thus we obtain a major limitation of the adaptive controllers that are 

currently of interest in system theory, vlz. open neighborhoods of points in 

that cannot be robustly stabillzable even by an adaptive controller. 

The structure of ~ also enables us to define a hybrid family of plants, 

(i.e. a family of plants with structured and unstructured uncertainty). In 

particular in [6] we characterize (for the first time in the literature) 

hybrid families of plants that can be stabilized simultaneously by an 

adaptive controller. 
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The proposed hybrid parameterization has many advantages over the 

currently existing graph parameterlzation due t o  Vidyasagar. In fact the 

hybrid parameterization is graded by the degree of the dynamical systems and 

each one of the graded space is diffeomorphlc to an Euclidean space if the 

plant is strictly proper. The Euclidean structure is of particular 

importance in system identification. Furthermore, the sequence of plants 

for example 

n 
m s 

6n(S) sn+l + _i_ 
n+2 

converges to 1 as n~ in the graph-topology. Thus in graph 
s 

parameterlzation, arbitrary close to a plant of a given degree there exists 

plants of arbitrary large degree which is clearly a deficiency from the 

point of view of robustness and obtaining an apriori bound on the complexity 

of the compensators. Hybrid parameterlzatlon does not suffer from these 

disadvantages and therefore appears to be a good parameterizatlon for system 

identification and adaptive control. 

In [7] we study the problem of simultaneous stabilization of a family 

F of plants described as follows -- 

n-I n-i 
F-~ ~g(s): g(s) - [ Z als ~] / [ Z blSi+ sn], 

i-O i-O 

ait[~i' ~i ]' bi~[Ti' 61]' ai-< ~i 

71 S ~i' i-O ..... n-l, deg g(s) - n} 

We prove the following rather surprising result 

"A n e c e s s a r y  a n d  s u f f i c i e n t  c o n d i t i o n  t h a t  e v e r y  p l a n t  i n  F i s  

simultaneously stabilizable by a feedback gain k is that eight plants in 

F (suitably chosen) is simultaneously stabillzable by a feedback gain k." 

We find the above result quite surprising. Indeed it asserts the existence 

of a suitable family of uneountably many plants, stabilizability of which 

can be asserted via the simultaneous stabilization problem of a finite 

number of plants. This we consider is a major conceptual breakthrough. 

The main idea of the preceding paragraph can be generalized to include 

dynamic compensation as well. In fact one can obtain a sufficient condition 
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which can be made asymptotically necessary by increasing t h e  computational 

complexity of the algorithm. Roughly speaking one therefore concludes the 

existence of a computational technique to construct a robust compensator 

which can be  asymptotically improved by considering increased computational 

load. This i n  my vlew is a computational breakthrough and in particular 

such a sequence of algorithms did not exist in the literature previously. 

For the purpose of constructing a compensator with an aprlorl bounded 

McMillan degree it is important to consider to following problem. 

" G i v e n  a f a m i l y  F o f  l i n e a r  d y n a m i c a l  s y s t e m s  t h a t  can  be s t a b i l i z e d  

simultaneously by a f i x e d  non-swltchlng compensator. Does there exist an 

aprlorl bound on the degree of the compensator which simultaneously 

stabilizes F." 

In general the above problem is unsolved. However for a 1 parameter 

family of plant we have a surprising result: Let Xl(S)/Yl(S ) and 

x2(s)/Y2(s) be a pair of proper but not strictly proper plants. Consider a 

I parameter family F of plants described as follows 

F - [gA(s): gA(s) - [Ax 1 + (l-A)x2l/[Ay I + (l-A)y2] 

A 6 [0,  i], deg  gA(s )  ~ n V A}. 

L e t  a 1 . . . . .  a t d e n o t e  t h e  z e r o s  o f  x lY 2 - x2Y 1 i n  t h e  o p e n  l e f t  h a l f  o f  

the complex plane. Let 

bj - x2/xl(ai) if the multiplicity of aj as a common zero of Xl, x 2 

is ~ multiplicity of a I as a common zero of Yl '  Y2 

- y2/Yl(ai) otherwise. 

for i-I ..... t. Let s i - (ai-l)/(af+l) and z i - (4~i-l)/(~l-l) where 

the branch cut for the square root is taken to be the non-positlve real 

axis. Furthermore let k be the largest real number such that 

[I - k2zizj]/[l - slsj]~, J-I 

is non-negatlve definite. The main result is now described as follows 
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"The followlng three statements are equivalent. 

I. Y is simultaneously stabillzable by some dynamic compensator. 

2. F is slmultaneously stabillzable by some dynamic compensator of 

degree s 3n-2. 

3. k > i 

We find that the above result is quite surprising. In fact, where as 

the conjecture - "pairs of slmultaneoulsy stabilizable plants of bounded 

HeMlllan degree have simultaneously stabilizing compensators of bounded 

HcMillan degree" - is false, the conjecture that "simultaneously 

stabillzable linear 1-parameter family of plants of bounded McMillan degree 

have simultaneously stabilizing compensators of bounded McMillan degree" is 

indeed true. Of course it is unknown if similar results would continue to 

be true for multiparameter family of plants. It appears however, in view of 

the above result, that the problem of stabilizing a discrete r-tuple of 

plants (in particular a pair of plants) simultaneously is a much harder 

problem to solve compared to simultaneously stabilizing a continuous family 

of plants, This fact indeed appears to be quite contrary to our original 

expectation - in fact the problem of simultaneous stabilization of a pair of 

plants was originally used with an idea of simplifying the robust 

stabilization problem of a family of plants. 

In order to arbitrary tune the closed loop frequencies of a plant, it 

is necessary to consider the simultaneous pole assignment problem. In [6] 

we analyze the pole placement problem as an intersection problem and apply 

Schubert enumerative calculus to compute (under appropriate cases) the 

number of complex dynamic compensators that would place the closed loop 

poles of a set of r-plants in a given set of self-conjugate complex numbers. 

We compactify the space o f  compensators and define a set of points known as 

'base locus' and a set of points known as 'critical points.' Roughly 

speaking, we assert in [6] that a compensator has to avoid the base locus 

and the critical points for otherwise the closed loop response of the 

control system would either be sensitive or would fall to be robust with 

respect to changes in the parameters. An explicit parameterlzatlon of these 

points also open up some new restrictions in the compensator design problem 

previously unknown in system theory. 
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To summarize, we maintain that the use of semialgebraic geometric, 

algebraic geometric and transcendental methods are three distinct 

foundational techniques that have been applied in robust system design. 

Extensions of these methods to parameterization, design, identification 

problems, and adaptive control would be useful and are currently being 

explored. These techniques are also being extended to nonlinear and time 

varying systems. 
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ABSTRACT 

Modelling of systems is generally done by frequency response methods or state 

varlable methods, It is our object to show how frequency domain robustness results 

can be extrapolated to their state space counterpart. Using properties of input- 

output relations of systems and different compatible norms we will show how a 

corresponding frequency response robustness result can be applied. The method can be 

used to solve a certain class of non linear equations. It can apply to the control 

of non linear multlvarlable systems in order to better stability, sensitivity as w e l l  

as decentralized control results. It can also apply to assess the state f~edback, the 

output feedback and the observer with regard to the robustnees problem. 

I. INTRODUCTION 

Multivariable control theory evolved in the sixties, using the state variable 

approach. This approach together with growing computer technology gave rise to 

tremendous research. Interesting results on system stability, controlabillty, 

observabillty, reachabillty and detectability were developed. This was a sharp 

contrast to the single Input-single output frequency response approach involving 

polynomlal approaches, Nyqulst erlterlum, and root locus methods. 

However, many of  the  answers s t v e n  by s t a t e  space methods lack the  supp leness  of  

multivariable methods as they apply to well defined models with no modelling 

uncertainty. Adaptive control is a partial response for the modelling uncertainty 

problem as far as parametric uncertainty is concerned. Clearly, in any state space 

representation (A, B, C, D), there is no way to predict the behavlour of elgenvalues 

whenever the matrix representation is modified to (A+AA,B,C,D). On the other hand, 

frequency response methods apply better to the uncertainty problem: in the case of a 

single input single output Nyquist diagram for instance, a Nyqulst plot could be 

replaced by some Nyqulst band representing the modelllng uncertainty at each 

frequency. 
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Multivariable frequency response methods such as the inverse Nyquist area [1],  the 

multlvarlable Nyqulst crlterlum [2], and the multlvarlable root locus [3] are 

concerned mainly with system stability. However, the input output approach to 

systems [4,5,6,7,8] which apply to any normed algebraic representation of systems fit 

partlcularily to the frequency response setting. Such an approach allows us to 

handle the problem of modelling uncertainty. It is our purpose to show how multiva* 

rlable frequency response uncertainty methods can be extrapolated to the 

multlvarlable state space uncertain models case. 

2. Mathematlcal notations 

Ne shall consider frequency responses defined in Hardy spaces, namely space ~e' 

H~,and H~ ~e is the space of n x n matrices of frequency responses in ~e, i.e. 

frequency responses which are holomorphlc and bounded in some right half plane 

Re(s)>o u > 0, o u > 0. H~ is the space of n x n matrices of elements in l~, i.e. 

frequency responses which are holomorphlc and bounded in the open right half plane 

Re(s) > 0. H~ is the space of n- tuple vectors whose elements u i = 1,2,..n are in 

H~, i.e. frequency responses which are holomorphic and bounded in Re(s) > 0. 

Frequency responses in H~ will be normed as follows: 

[[u2l[ =i ~- 1 II "ill~ 
~=1 ulCJ~)[2d~ i = 1,2 .... n lluill2 = 

We underline the fact that the H 2 norm is equivalent to the L 2 norm, i.e. 

BULB2" S:I Ul(t)[2dt 

Functions T in H~ are normed as follows 

fl Tu [[2 
IITII, = sup 

u~0 H u U 
2 

[[T[L = s~p ~ {T(jm)} 

where o(.) represents the maximal singular value of the matrix T(j~). 

We introduce the matrix G{T} whose elements are [[Tij[[. and a new norm 
m 

s(T) = o {C(T)}. 

It has been shown [9] that such a norm is compatible with the P~ norm, i.e. 

lIT[/. -< g (T) ~ n [[T]L 
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We shall extend this new norm to any matrix 

introduced for each of its elements alj, i.e. 

g(A) = ~ (G(A)} 

A In which an induced L 2 norm is 

3. N u l t i v a r i a b l m  f r e q u e n c y  r e s p o n s e  u n c e r t a i n t i e s  

Given an n x n matrix of frequency responses P(s) in H~e, we shall consider the unity 

feedback system wlth a series compensator C(s) in H~ (figure I). We shall assume 

that the matrix uncertainty dP(s) is in H~ and that the feedback system is altered by 

the following additive H 2 perturbations: input plant perturbation w(s), external 

output perturbation d(s), and sensor noise perturbation w(s). 

w d 

FIGURE 1 

For simplicity, we omit the (s) and deduce: 

vffiCe+w 

y f f i P v + d  (1) 

effiu-y-n 

H S 

(Pc) (I + PC) -I +(I + Pc) -I -Pc(I + PC) -i Pc(I + PC) -I 

-(I + PC) -I -(I + PC) -I -(I + PC) -I -P(I + PC) -1 

-C(I + PC) -I -C(I + PC) -I -C(I + PC) -I I-CP (I + PC) -I 

I!l 2) 
Transmissions from e and v to u, n and w are related to the "internal stability" 

of the system, while transmission from y to d refer to the output disturbance 

effects. Whenever P is replaced by P + AP where AP represents the modelling 

uncertainty, quantitative measures of feedback quality can be performed, with 

respect to external disturbances and plant uncertainty. 
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We shall focus our attention solely on the effect of feedback on  plant 

uncertainty AP. 

3 . 1  S t a b i l i t y  

Stability concerns itself with the holomorphlclty and the boundedness of the 

transmissions (2). 

Our first concern is to ensure the stability of these transmissions whenever P is 

replaced by P' ffi P + AP. Small gain and positivity conditions permit us to 

d e r i v e  stability criteria. Defining 

e ffi (I + PC)-lu = Eu 
(3) 

y = PC (I + Pc)'lu = Tu 

and 

e'= (I + P'C)-lu = E'u 

y = P'C (I + P'c)-lu = T'u 
(4) 

it can be shown that 

E' = E - EAPCE [I + APCE] -I (5) 

Whenever the original nominal transmissions (3) are stable, E' will be stable if 

IIAPCEII<I. Moreover, T' will be automatically stable as E' + T' = I. Similarily, 

whenever (I + PC) or (I + P'C) is n positive deflnitaj it follows that the 

transmissions E' and T' are stable, n posltlvity refers to positivity within a 

finite margin ~. 

3.2 Sensitivity 

It is not sufficient to require that the transmissions E or E t be stable, i.e. 

holomorphlc and bounded in the right half plane. Indeed E represents the trans- 

mission between output and output additive external disturbances d and it is 

desirable to reduce the effect of such disturbances.. 

Norms restricted on a given bandwidth [wJ<ml, such as maximal singular values 

over a given bandwidth H(.)H can be introduced. We therefore require 

HEH~I < c and l[E'[lwl < e' where g, c' are positive constants which are less than 

unity. 



125 

^sseming t h e  .ominal p l a n t  s a t i s f i e s  IIEIL1 <~, designing the compensator C such 

tha t  I I~PcEII~I < ~ w h e r e .  ~ { ( ¢ - . ' ) / . }  < 1 ensures t h a t  Ilz, ll,,, I < { ~ / ( 1 - = ) }  - ~ , .  

Such a des ign  has been proven to  be f e a s i b l e  [10,11] .  

3.3 D e c e n t r a l l z e d  c o n t r o l  

The problem of decentrallzed control is to attain some diagonal closed loop 

transmission, i.e. each input of the feedback controls one ouptut of the feedback 

system regardless of the cross-coupllng of the plant. 

A model of this situation involves a multivariable plant P with n input-output 

pairs (vl, Yl, i ~ I, 2 ...n) and a controller C which has access to both inputs 

and outputs of P. (Fig. I) In others words, C is a n x n matrix compensator. 

Assumming (I + PC) has an inverse, our aim is to dlagonallze the closed loop 

t r ansmis s ion  T = PC ( I  + PC) - I .  

Using the relation E + T = I, we deduce 

[[Tl[w I -< 1 + [[EHw I < 1 + e 

UT'I[w1 < 1 + [}E'[[~I < 1 + ¢' 

i.e. sensitivity reduction is linked to 

band of interest. 

decentralized control over a frequency 

4. M u l t t v a r i a b l e  s t a t e  space  u n c e r t a i n t y  

Given the  s t a t e  space system r e p r e s e n t a t i o n  

~ = A x + B u  

y-Cx+Du 

We are interested in studying the system performance whenever systems dynamics 

change to A t ffi A + A A, i.e. 

~'= A' x' + B u 

y'- C x' + D u 

Any change in the matrix A involves changes in the elgenvalues defined by 

(sI-A) = 0 for the nominal system and (sI - A') = 0 for the perturbed system. 

However, we cannot predict in which "direction" these elgenvalues are changing. 
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One way o f  checking the stability of the perturbed system is t o  study the class 

of disturbances AA = A' - A which preserve the stability of the matrix (sI - A'). 

Assuming for example, that (sI-A) is Invertible in H~ , the condition 

ll~(sI-A)-lll < I ,ould ensure the stability of the perturbed system. 

4.1 Correspondence between multlvarlable frequency responses and state Space 

models 

Given state space models (A, B, C, D) and (A', B, C, D), it is possible to assign 

to each model multivariable frequency responses T(s) and T'(s) such that 

T(s) = C (sI - A) "I B + V (5) 
T'(s) = C (sl - A') B + D 

These relations apply also to matrix entries, i.e. 

ti,j(s)ffi{C (sl - A) -I B + D}i, j i,j = I, 2,..n 

(6) 
tl,j(s) - {C(sl - A') B + D}i, j i,J = 1,2,..n 

Assuming the entries of the matrix {aij} change to {a'ij} = {aij + 6aij}, it is 

possible to relate changes AA to changes in the individual entries using the norm 

g(AA). 

Assuming (sl - A) and (sl - A - AA) are Invertlble, and that g[(sl - A) "I AA] <I 

it can be shown that 

g[T'(s) - T(s)] $ S[C(sI - A)I ~] B(AA) ~[C(sl - A~ 1 ] (7) 

1 - g[(sI - A) "I] g(AA) 

The u p p e r  bound f o r  g [ T ' ( s )  - T ( s ) ]  a s  a f u n c t i o n  o f  g (AA) i s  r e p r e s e n t e d  i n  

figure 2. If such a bound can be related to one of the many robustness results 

developed in the frequency response framework [11,13,15,16, 17,18], we may then 

consider their use in the state space framework. Any change in the matrix A will 

be normed by g (AA) and it will be possible to verify that the corresponding 

frequency response bound g[T'(s) - T(s)] respects some frequency response 

r o b u s t n e s s  p e r f o r m a n c e  result. 

S i m i l a r i l y ,  any  f r e q u e n c y  r e s p o n s e  r o b u s t n e s s  r e s u l t s  can  be found  t o  h o l d  on 

some s t a t e  s p a c e  d i s t r i b u t e d  model  A + ~A. The bound on t h e  norm o f  ~A can  be 

deduced  g r e p h l c a l l y  and be r e l a t e d  t o  v a r i a t i o n s  o f  t h e  norms o f  t h e  e n t r i e s  o f  

the matrix AA. 
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4.2 State Feedback t output feedback and observers 

Assuming a state space model (A, B, C, D) in which the pair (A, B) is 

controllable, it has been shown [21] that a stabilizing state feedback involving 

a matrix compensation K leads to a robustness bound assymptotic to the critical 

value g(~A) = 1/{g(sI - A + BK)-I}. Simllarily, assuming the pair (A, B) 

controllable and the pair (A, C) is observable, a stabilizing output feedback 

controller involving a matrix conpensatlon H leads to a robustness bound 

assymptotlc to the critical value g(6A) ffi 1/[g(sI - BHC - A)-I}. These two 

robustness bounds show that high gain state feedback or high gain output feedback 

reduce the output variations due to plant perturbation. 

Moreover, it can be shown that in the case of a system with observer gain G 

and control gainK, conresponing to a stable system model 

i A + BK - BK x 

0 A + GC e 
(8) 

where e is the error signal existing between the real state and the estimated 

state, uncertainty In the plant dynamics AA leads to a robustness bound which Is 

an increasing functions of a (AA) and which is also proportlonnal to the initial 

value of the error signal, i.e. the error in the estimation of the initial 

state. Such a conclusion can be drawn after rewriting (8) as 

x - - ( s l  - A-AA - BK) -1  BKe 

e = ( s I  - A - ~ A  - GC) - I  e o 
(9) 



128 

[~he robustness uncertainty due to the c h o i c e  of initial conditions can be 

optimized by the initial value of the estimated state to be C+ye where choosing 

Yo is the initial measurement value and C + is the pseudo inverse of C[22]. 

5.  C o n c l u s i o n  

The correspondances shown in section 4 can be extrapolated to multivariable 

results involving robustness, sensitivity, decentralized control and applied to 

perturbed state space models. These models are derived from differential 

equations with varying coefficients. The effect of such variations (which can be 

n o n  linear provided that they can be adequat]y normed, such as in the case of 

conic/sector non linearlties [19,20,9]) on the stability of the solutions may be 

deduced from the bounds of the frequency response counterparts. 
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I n t r o d u c t i o n  

We are concerned here with the Hamilton-Jacobi equation 

(~V aV 
- 0"7 + H ( t ' z ' - ' - ~ - z ) = O '  I t ( 1 , . ) = O  (1) 

arising in optimal control. 

It is well known that in general it does not admit classical (C 1) solutions, even when the 

data are smooth. This led to several weaker notions of solutions (see for instance [5]-[9], [12], [17] 

and bibliographies contained therein). We do not have the ambition here to provide the  reader 

with a complete overview of existing definitions of solutions, but we shall compare few of them 

having their origins in Nonsmooth Analysis. 

The importance of HJB (Hamilton-Jacobi-Beilma~t) equation for the investigation of proper- 

ties of dynamical systems and, in particular, of control systems was recognized a long time ago. 

One may see that the value function of an optimal control problem verifies (1) whenever it is 

smooth. This allows in some (very restrictive) cases to obtain a short proof of Pontriagin's 

necessary conditions for optimality, to prove some sufficient conditions for optimality and to con- 

struct optimal feedbacks [111. 

Let us emphasize that  the value function arising in control theory is nondecreasing along all 

trajectories of the system and is constant along optimal trajectories. This leads to a verification 

technique in optimal control (see [19] for a complete discussion and references). However, "com- 

puting" the value function from its definition is a very difficult task. 

On the other hand if we are able to find a solution of (1) having the cornerstone properties 

of the value function, then we may hope to use it for the same purposes. 

One can seek for instance to define the solution of HJB equation in such a way that the 

value function is the unique solution to (1). The notion of viscosity solution introduced in [8], [9], 

[17] (see also [10] for bibliographical comments) fulfills that objective, but only partially: the 

uniqueness results are proved up to now only for continuous solutions on open sets. Although a 

large class of free end point optimal control problems have a locally Lipschitz value function, it is 

well known that for the target problem and, more generally, for problems with state constraints, 



132 

the value function is not continuous and very strong controllability conditions are needed to 

prove its continuity. Controllability conditions exclude however from consideration a large 

number  of control problems. 

A different approach was developed in {5]-[7], where a solution of HJB equation associated to 

the target problem: 

minimize g(z(1)) 

= f ( t  , z ,  u ( t ) )  , u(t) E U is measur~able (2) 

=(o) : =o, =0 )  ~ g 

was defined in such a way that it is locally Lipschitz and nondecreasing along trajectories of the 

control system (2). Naturally this led to apply the verification technique to functions which may 

be different from the value function. Such a generalized solution is not uniquely defined, but  it 

allows to consider a broader class of control problems, to adapt the verification technique to 

problems with discontinuous value function and to get some necessary and sufficient conditions 

for optimality ([6], [7]). 

Another important  property of smooth value function is the possibility to construct optimal 

feedback laws. When the value function is the unique locally Lipschitz viscosity solution of (1) it 

allows as well to associate feedback laws to the solution of HJB equation. This feature fails 

whenever the value function is discontinuous. Generalized solutions of (I) defined in [61 enjoy 

more regularity than the value function dos~ and for the very same reason are only far relatives 

of this last one: 

It is impossible to associate the optimal feedback law with an arbitrary generalized solution 

of (1). A counter example was constructed in [4]. 

One would wonder which way to choose. Clearly, we cannot expect from the solution of 

HJB equation to be unique, locally Lipschitz and at the same time to be equal to the value func- 

tion. 

In this paper we show that  a necessary and sufficient condition for a function 

V : [0,1]  x R a ~ RI.J{ + co} to be nondecreasing along all trajectories of the control system 

(z) is: 

s~puD 1. ( - V )  ( t ,  z)(1,j'(t )z,u)) < 0 (3) 

where D! ( -  V) (t , z) is the contingent epiderivative of the function - V at (t , z) (see Section 2 

for precise definitions). 

Such a necessary and sufficient condition leads to a verification technique. Then we investi- 

gate necessary and sumcient conditions for a function V : [ 0 , 1 ]  × R n ~ R~_J {:E oo} to have 

the following property: 
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for all { t ,  ~) E [0 ,1]  x R n with V( t ,  ~1 f -/- oo there exists a solution ~ : i t ,  1] ~ R n of the 

control system 

=" =] ' ( '8, '~, u(s)) , u(s) E b" is measur,.abie 
=(t) =q  

such that the function s ----, V(s , Z(s)) is nonincreasing. 

In this way we obtain the second contingent inequality 

inf Dt V ( t ,  z ) (1 , f ( t ,  z,u)) < 0 (4) 
u E U  " 

We also observe that  a function V verifying (31, (41 and such that  V(1, .) = g(') is a viscosity 

solution to (11 . 

In this way solutions of contingent inequalities (3), (41 form a subset of viscosity solutions 

containing the value function. Let us emph~ize  that  the value function of the target problem is 

equal to + oo at every point ( to ,  z0) for which there is no solution z of (2) satisfying 

z(to) = z o , z(1) E K. This creates an additional difficulty to define the solution of (1) properly. 

In the example given in Section 5 we show why it is rather hopeless to expect uniqueness in 

the discontinuous case. In a nutshell, the function V vcrifpin 9 ($}, (4) allows to narrow the class of 

admissible controls and to get some information about optimal feedback laws and above all, by 

accepting as solutions ¢ztended functions, can be used in control problems with state constraints. 

The outline of the paper is as follows. In Sections 1~ 2 we derive contingent inequalities (3) 

and I4). Section 3 is devoted to the optimal feedback laws. In Section 4 we prove that solutions 

of (3), (41 are viscosity solutions of (1) and discuss their relationship. Section 5 compares viscos- 

ity solution of HJB equation and solutions in the sense of Clarke. We do not provide here com- 

plete proof of many results. They may be found in [12], [13]. 

1. M o n o t o n e  b e h a v l o u r  of  V. 

We consider a dynamical system described by a differential inclusion. 

Let F be a set-valued map from [0,1]  x R n to I t  n. We associate with it the differential 

inclusion 

z" E F(t  , z) (1.1) 

A function z E W 1'1 ( t ,  T ) ,  T_> t (the Sobolev space) is called a trajectory of the 

differential inclusion (1.11 if for almost all s E i t ,  Y], z '(s) E F ( s ,  z(s)). The set of all trajec- 

tories of (1.11 defined on the time interval it , T] and starting at f ,  (z(t) = ~) is denoted by 

Sl,, r](~). 
Let B denote the closed unit  ball in IR n, Throughout the whole paper we assume that for 

all (t ,  z) E [0,1] x R" 
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(HI) F(t, z) is a nonempty compact set, 

that  for all z E R a 

(H2) F(', z) is continuous on [0,1] 

and 

(Ha) F is locally Lipschitzian in z, in the sense that for every ( to ,  Zo) ~ [0, 1] x R n there 

exists a neighborhood N in [0 ,1]  x R n and a constant L such that  for all ( t ,  z ) ,  ( t ,  !t) E N 

F(t , z) C F(t , y) + L [[ z -- 11 [[ B (1.2) 

Differential inclusion (1.1) is a convenient expression of laws governing a dynamical system. 

Many systems arising in control theory may he reduced to (1.1). For instance consider the closed 

loop control system 

z'(t) = f(t, zCt), act)) , t E 10,11 (1.3) 

, , ( t )  e v(~Ct))  0 . 4 )  

where f : [0 , 1] x R n x R m - -*  R n is a continuous function and U : IR n ~ !~. m is a continu- 

ous control map with nonempty compact images. Admissible controls are measurable functions 

on [0 ,1]  satisfying (1.4). 

For all(t,z) 6 R x R nset 

F(t, =) = {l(t, =, ~) :, ~ u(~)} (1.s) 

Clearly every trajectory of (1.3), (1.4) is a trajectory of the differential inclusion (1.1) with F 

defined as in (1.5). Conversely, with every trajectory z E S[0 ' I] of differential inclusion (1.1) we 

can associate a measurable selection u(t)E U(z(t)) such that (1.3) holds true almost everywhere 
in [0,1]. This follows from Lusin's theorem exactly by the same arguments as in [1, p. 91] (see 

also [6, pp. 111-112]). 

The implicit control system 

I ( t ,  zC t ) , z ' ( t ) ,  u(t)) = 0 ,  t 61 O, 1 l 
uft) ~ u (1.e) 

where  f : [0 ,  II × R n × R n x R m - -  R k is cont inuous  and U is a c o m p a c t  metric  spac e  m a y  

be also reduced to (1.1) by setting 

F(t , 2) = iv : o ~ /(t , = , v, U} (1.7) 

In [14] it was shown that  solutions of (1.6) and (1.7) do coincide. For further discussion and 

applications of differential inclusions in control theory see bibliographies contained in [12], [14]. 

For all tER,  T>_t and f e r  n set 

R(T, t) ~ = {=(r) : • ~ sit, rl(~)) (1.8) 
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This is the so-called reachable set of (I.I) from ( t ,  ~) at time T. 

When F is sufficiently regular the set co F(t  , ~} is the infinitesimal generator of the semi- 

group R ( . ,  t) ~: 

Theorem 1.1. [12]. Assume that the assumptions (//'1) - (H3) are verified. Then for every 

(to, ~o) ~ [0,1 [ x R n and all (t, ~) near (to, ~o) and small h > 0 

R( t  + h ,  t) ~ = ~ + h ¢oF(to , ~o) + o(t , ~ , h) (1.9) 

where 

l ira 
(t,~) ---. (to,~o) 

k---b O+ 

II o(t, ¢ ,  h) I1 / h = 0 

Remark. Equality (1.9) means that 

R( t  ÷ h ,  t) ~ C ~ ÷ h eoF(to , ~o) ÷ I[ o(t , ~ , h) I[ B and 

+ h coF(to, ~0) C R(t -I- h ,  t) ~ ÷ l[ o( t ,  ~, h) IIB 

Definition 1.e (contingent epiderivative). Let X be a subset of R m, H : X ----, R U {+ co} be a 

given function and Xo E X be such that  ~(zo) ~ + co. The contingent epiderivative of ~ at Xo is 

the function D T ~(x0) : R m ~ R U {+ oo} defined by: for all u E ]R m 

DF ~(Xo) u = l imln/  [~oCx o + hu') - ~O(Zo) I I h 
c-", ~l+-r:.. ~.~ o+1 

The contingent epiderivative D 1 H (x0) u is defined only for those u E R ~ for which there 

exists at least one sequence (Un, hn) --~ (u  , 0 + )  satisfying z 0 + hnu a E X .  

The epigraph of D T ~(Zo) is equal to the contingent cone to the epigraph of ~ at 

(x 0 , ~(x0) ). If for all u E ]R m, D T ~(z0)u > - co then D T ~O(Zo) is positively homogeneous and 

lower semicontinuous (see 12, Chapter 71). 

Theorem 1.3. Let V : [ 0 , 1 1  x R n ~  ]R U{- I -co}  be a given function and assume that for 

every trajectory x E Wl ' l ( t  , T) , T > t of (1.1) the function [ t ,  T] ~ s ~ V ( s ,  x(s)) is nonde- 

creasing. Then for all t E [ 0 , 1 [ ,  z E R n satisfying V ( t ,  x) f~ + oo 

uEco~(tsu ,z) DT(- V)(t ' x)(1' u) -< O (I.I0) 

Proof. Fix tE[0,1[,zEIt nwith V(t,z) f:i:co and uE eoF(t,x). By Theorem 1.1 there 

exist u h E  c o F ( t , x )  such that h i-~mo+uh= u and x ÷  hu h E R ( t  ÷ h , t ) x .  By the assumption 

on v, v(t + h ,  z + h"h) > V(t,  =). Hence 

v ( t ,  =) - v ( t  + h ,  • + huh) 
DT(-V)(t,=)(I,u) < l imin f  <0 

--  h ---- 0 +  h - 
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Since u E e o F ( t ,  z) is arbitrary we end the proof, n 

To prove that (1.10~ is as well a suMcient condition for monotonicity of V along trajectories 

of (1.1) it is necessary to require some regularity of V and F. 

Let Dora V denote the domain of V, i.e. the set 

Dora V:  = { ( t ,  z) ~ [0,11 x R " :  VCt, z) # ± ~ } .  

For a set L C R m and z E L we denote by TL(Z ) the contingent cone to L at z, Le. 

TL(Z ) = { r E  R m :  liminf d i s t ( z + h v , L )  =0} 
h ----~ 0+ h 

The following result is a slight generalization of [12, Theorem 2.1]. 

Theorem 1.~ Let L C [0,1] × R n be a closed set and V : L --~ R U{-t- co} be an upper sem- 

icontinuous function such that 

V ( t ,  z) E V ,  t < I we have (1,  F(t ,  z)) C TL(t, z) Dora & 

u Es~#, ,) DT(- V)(t, , ) (1 ,  u) <_ 0 (1.11) 

Assume that F is locally Lipschitz in both variables. Then for every trajectory z E Sft, i j 

satisfying graph x C Dora V, the function s - - ,  V(s , z(s)) is nondecreasing on [t , 1]. 

Proof. Consider the closed set g = epiC- V). By [2, p.418], epi DT(-  V)(s ,  z) is equal to the 

contingent cone TK(s ,x  , -  V(s,  z)), and, by (1.11), for all s E l 0 , 1[, ( s ,  x )E  Dora V,  

q > - V ( s ,  z) 

(1 ,  F ( s ,  z ) ,  0) C TK(s ,  z ,  - V(s ,  z)) C rK(s, z ,  q) (1.12) 

Fix a trajectory z E Sit , 1], t E [0,1} such that (8 ,  z(s)) E Dora V and consider the function 

g : [t , 1] ~ R 4. defined by 

g(s) = distK(s , x ( s ) ,  - V(t,  z(t))) 

Observe that  g(t) = O. 

Step 1. We claim that g - 0  on [t,1]. Indeed assume for a while that for some 

T E [ t , 1 ] , g ( T )  >0. For a l l s E [ t , 1 ] , l e t l r ( 8 )  E K be such that  

g(~) ---- II (s, =(~), - v(t, =(t))) - ~(s) II (1,13) 

By continuity of g there exist t _< t o < t I _ T such that g(to) -- 0, g > 0 on ]to, tl] and for all 

, ~ ]to, ill 

x(s) = (~', [ ,  q)) for some ~-E [0, 1[, II g - ~(s) II < 1 ,  q > - V(~-, g ) .  (1.14) 

To end the proof of Step I we verify that  g = 0 on [t0,tl]. Indeed g being a Lipschitzian function, 

by Gronwalrs inequality, it is enough to show that for a constant L>0  
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(1.15) 

Let L be the Lipsch[tz constant of F on the set ( ( , ,  z ( s ) +  B ) : s  e 10,11}. By the 

Rademscher theorem g is differentiable almost everywhere. Let $ E [t o , tl] be a point where the 

derivat iv~ g'(8) and z ' (s )  E F (z  is)) do exist. Since z(s + h) = z(s) + hz" i s) + o(h), applying 

the inequality of [1, p.202] we obtain that  g ' ( s ) _  dist ( (1 ,  z ' ( s ) ,  0 ) ,  Tg(lr(s)) ). Thus by 

(1.14), (1.12) for some F e  [ 0 , 1 [ ,  ~ e  z (8) 4- B 

g '( , )  _~ dist ( (1 ,  z ' ( s )  , 0 ) ,  (1 ,  F ( F ,  ~ ) ,  0)) _~ L(II ~" - s II 2 4- II z(s)  - ~- ]l 2 )1/2 ~ ~g($)  

and (1.15) follows, a 

When the function V considered in Theorem 1.4 is locally Lipschitz then the a~sumption 

(1.11) may be relaxed. 

Theorem 1.5 Let L C [0 ,1]  × R n and V : L ~ 1l be a locally Lipschitz function satisfying 

V u E F ( t ,  z) with (1 ,  u) E T L ( t ,  z ) ,  D I ( -  V) ( t ,  z ) (1 ,  u) _< 0 

Then for every trajectory x :  i t ,  1l - -~  L of (1.1), the function s ----* Y ( s ,  z(s))  is nondecreasing 

on i t ,  1], 

Proof Fix z E S[t ' 1] with graph z C L. The function s - -~ ~(s)  : = - V ( s ,  z(s)~ is absolutely 

continuous. Let $ e ] t ,  1 [ be such that  ~o'(s) and z ' (s)  e f ( s ,  z(s)) do exist and h i ~ 0+ be 

such that  

- V(~ + h,, z(~ + h,)) + V(s, z(s)) 
D r ( -  ~ ( . ,  . ( ~ ) ) ( 1 , . ' ( s ) )  = lira 

i ---.. oo 

Then ~o'(s) < 0 and, consequently, ~ is nonincreasing. 

We study next the target  problem of optimal control: Let z 0 E 11n, the subset K C 11n and 

the function g : 11• ~ 11 be given. 

Consider the problem: 

minimize {g(z(1)) : z E S[o ' 1](Zo) , z(1) E K)  (1.16) 

The set K is the target  of the problem (1.16). 

Theorem 1.6 Let L C [0 ,1]  x 11n,  Y : L ----, I t  U {4- c o ) ,  F : [0 ,1 ]  × 11n ___, 11n satisfy all 

the assumptions of Theorem 1.4 or 1.5 and the boundary condition 

g(z) when z E K 
V(1, z) = [4- co otherwise (1.17) 

Further assume that  for every x E S[o ' 11 with z(1) E K we have graph z C Dora V. If £ E S{0 ' l] 

is such that  ~(0) = x 0 and V(t , ~(t)) =- const ~ 4- c0, then £ is an optimal solution of the prob- 

lem (I.16). 
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Proof. Observe that ~(1) e K. By Theorem 1.4 or 1.5 for every trajectory z • S[o ' 1](z0) satisfy- 

ing z ( I ) ¢ K ;  

V(O, Zo) _< V(1 ,  z(1)) = g(z(1)) . 

Since 

V(O, Zo) = V(O, r(O)) = V(1, r(1)) = g(r(1)) < g(z(1)) 

the result follows, o 

Remark The dynamical programming approach associates with the target problem its value 

function 

V ( t ,  ~) = inf {g(z(1)) : z E Sit , lj (~ ) '  z(1) (~ K } 

where V(t , ~) = + co when there is no z ~ S[t ' t] (~) verifying z(1) E K. Clearly V is nonde- 

creasing along trajectories of (1.1), hence it verifies the inequality (1.10). 

2. E x i s t e n c e  of  " cons t an t "  t r a j ec to r i e s .  

Let V : [0 ,1]  x R n ---, R U {+ oo} be a given function. In this section we investigate 

sufficient conditions for: V( t ,  ~)C Dora V there exists a trajectory z C Sit , 1](~) verifying 

graph z C Dora V and such that the function s ----* V ( s ,  z(s)) is nonincreasing on [ t ,  1]. This 

condition together with the results of Section 1 will infer that V(s ,  z(s))  - const along at least 

one trajectory of (1.1) defined on I t ,  1] with z(t) = ~. 

Theorem ~.1 Assume that for some ( t ,  ~)E D o m V ,  v >  0, there exists a trajectory 

x E W t ' t ( t ,  t + ~) of (1.1) with x(t) = ~ and such that the function s --* V ( s ,  x(s)) is nonin- 

creasing. Then 

3 u E c o F ( t ,  ~) such that D! V ( t ,  ~)(1, u) _< 0 (2.1) 

Proof. By Theorem 1.1 for all small s > 0 

z( t  + s) E ~ + s coF(t , ~) + o(s) 

where lira o(s) 0 .  Let s i 0+, u E coF(t z) be such that lim z ( t + s i ) - ~  - - - - - - 4  ~ - -  U ,  

s ----, O +  8 i - - - * ¢ o  S i 

Then 

lim inf V(t + h ,  ~ +hu ' )  - V ( t ,  ~) < lim inf 
h - - - .  o + ,  u" - - - .  u h i - - - ,  c o  

V(t + 8i,  zCt + ~i)) - V ( t ,  ~) 
<_0 

si 

This ends the proof, o 

To get the statement opposite to Theorem 2.1, we have to require more regularity of V. 
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end of the section we assume that for some a > O  and all 

sup { Ilull : u e F ( t ,  =)} _< ,,CIl=ll + *) (2.2) 

and that F has convex images. 

Theorem ,9.,9. Let P : [0,1]  ..~ R n be a set valued map with nonempty images and closed graph 

and let V : graph P ~ R be a continuous function satisfying the inequality: 

for all t E [0 ,11 ,  x C P(t)  there exists u E F ( t ,  x) such that D T V ( t ,  x ) i l  , u) < O. (2.3) 

Then for every ( t ,  0 E g r a p h P  we can find z E S[ t , l l (  0 such that  the function 

, ---, v ( , ,  ~(,)) is nonincreasiug on [t ,  11. 

Proof. 

Step 1. Fix ( t , ~ } E g r a p h P  with t < 1 , z  o>_ V ( t , O  and let h > O  be such that t + h<_ 1. 

Set K -- epi V, 

FI(S , x) = {1} x F(t  + s ,  x) x {0} 

F I ( s ,  x) s < for h 

: ( "  =) = [ ~ ( F ~ ( h ,  ~) O {0}) for s = h 

Then ~ is upper semicontinuous on [0 , h] x I~ n. 

Consider the viability problem 

y" • ~ ( , ,  v) ,  vCs) ~ K (2,4) 
v(o) = ( t ,  ~,  ~o) 

Fix 0 < s < h , ( t + s , x , z )  E K  and let u E F ( t  + a , z )  be ~uch D T V(t + s , x ) C l , u )  < 0 .  

Then (I, u, D I V(t + s, =)(1, u)) E TK(t + s, z, z) and we proved that 

~(s ,  z) Q TK(t + , ,  ~ ,  ~) # ¢. 

For a = h we have 0 E ~(s  , z) for all x. Thus ,0 verifies the viability condition on K. By the 

Haddad vlabillty theorem {[1]) there exists 0 < T < h and a trajectory y : [0,  T [ - -* ] l  n of the 

differential inclusion 

~" e t(,, y), ~(0) = ( t ,  ~, Zo) 

satisfying y([0, T[) c K. Since y'(-) is essentially bounded (thanks to (2.2), definition of F and 

the Gronwall lemma), y may be extended on the whole interval [0, T]. 

Using that K is closed we obtain that  y([0, T]) C K. Since ( t ,  ~ ,  Zo) E K is arbitrary, 

using the assumption (2.21 we prove that y may be extended on the whole time interval [0, hi. 

Let w(6) E R n , goes) E ]R be such that  ll(O) = i t + o , w ( 8 ) ,  l/0(s)). By definition of 

~ ,  y0(s) - V ( t ,  0 .  Setting x(t + ~) = t~(s) we obtain that z E S[t ' t + h](~) and 
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v(t + h ,  =(t + h)) <_ v(t , ~) = y0Ch) 

Step IL Fix It , ¢) E P , t < l , t = t o < ... < t i < t I + 1  < . . . < t  k = l .  Set Z(to}= ~. By Step I 

there exists z i E Sit/, t,.+t ] Izi(ti)) such that for all i > 0 

v(t~+l,  =~(t~+l)) _< v(t~, =~(t~)) 

Hence there exists z E S[t ' 1]i¢) such that V i = 0 . . . . .  k - I ,  V( t i+ l ,  z i t i+l)  ) <_ V( t i ,  z(ti} ). 

Step 8. Let {ti} i > o be a dense subset of [ t ,  1]. Fix j > 0. By Step 2 there exists zj E S[t ' tl(~) 

such that for all i ,  r E {0 . . . . .  j}  

ti <_ t ,  = .  v ( t .  , =i( t . ) )  <_ v(t~ , =j(t~)) 

Since F has convex images and satisfies the growth condition (2.2), the sequence {=j} has a 

subsequence converging uniformly to some z E Sit , 11(~ ). Then for all i ,  r > 0 

t i < t, ~ V ( t , ,  z(t ,))  < V( t i ,  z(ti) ) 

Fix t < r < s < 1 and let { tq},  {t;,} be subsequenees converging to r and s respectively. Then 

for all large j and r 

V{t~ , z{t;,)) < V(tq , z(t~j)) 

Using continuity of V and taking the limit in the above inequality we get 

Vir ,  zir)) <_ Vit  , z i t ) ) .  Hence V is nonincreasing along z. [] 

Theorems 1.4 and 2.2 yield 

Corollary 17.8 Let V and P be as in Theorem 2.2. Further assume that for every 

( t ,  z) E graph P ,  t < 1 we have ( I ,  F ( t ,  z)) C Tgraph p(t  , z) and 

. ( , ~ ,  =) D r ( -  v) ( t ,  ~)(1, ,,) <_ o 

If F is locally Lipschitz in both variables then for every ( t ,  ~)E graph P there exists 

z E Sit ' 11i¢ ) such that V ia ,  z(s)) =cons t  on [ t ,  11. 

From Theorems 2.2 and 1.5 we also deduce 

Corollary 2. 4 Let V and P be as in Theorem 2.2 and assume that V is locally Lipschitz on graph 

P and for all 

( t ,  x) E graph P ,  V u E F(t  , z) with (1,  u) E Tgraph p (t , x) , 

O r ( - V ) ( t  , z) (1 ,  u) < 0 

Then for every (t, ~) E graph P there exists z E S[t ' I](~) such that 

v(s,  ~(~)) = corot on I t ,  *l. 
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Theorem 8.5 Let ft C ]R n be an open set and V : [0 ,1]  × l~ ~ ]R be a continuous function 

such that for all t E [ 0 , 1 ] ,  z E 0 13 

lira V(t , z ' )  = + co 
l '  ---~fl  S 

Further assume that  for every t E [ 0 , 1 [ ,  z E f t  

3 u E F ( t ,  z) such that - M(I [ z[] + 1) < D T V ( t ,  z) (1 ,  u) _< 0 

where M does not depend on ( t ,  z). Then for every ( t ,  ~ )E  [0,1]  x ft there exists 

z E Sit ' 11(~) such that the function s ~ V(s ,  z(s)) is nonincreasing on ~t, 1]. 

The above result and Theorem 1.4 imply 

Corollary ~.6. Under all assumptions of Theorem 2.5 assume that F is locally Lipschitz in both 

variables a~d for every t E [0,1[ ~z E f t  

~,~ DT(-  v ) ( t ,  = ) 0 , , , )  < o 
u E F  ,z) 

Then for every (t ~ {~1 E [0 ,1]  × ft there exists z E Sit ' lJ(~) such that 

V ( , ,  z( , ) )  = const on [ t , 1]. 

Proo/q Th,or,,,, e.5. Set K = graph V, ,~( , ,  =) = {1) x r ( t  + s ,  =1 x [M(II =11 + 1),0J, de~ue 
in the same way as before. Then K is closed. Fix ( t , ~ ) E [ 0 , 1 [ x  ft. By the same argu- 

meats we obtain the existence of a trajectory y : [0, T} ~ R n of (2.4) satisfying y([0, TI) C K. 

Let z(s)~ yo(S) be such that yes) = (t + s ,  z ( s ) ,  y0(s)). 

Then Yo(T) f -t- co and thus z(T)  E ft. Using the same arguments as above we prove the 

existence of a trajectory ~ : [ t ,  1] ~ R n of (1.1 t such that  s ----4 V(s ,  ~(s)) is a nonincreasing 

function. 

3. O p t i m a l  F e e d b a c k  

Observe that  if V and z are as in Corollary 2.3 (or 2.4, or 2.6) then for all s E [ t ,  1] and all 

small h > O, V(s + I t ,  z(s + h)) = V(s , z(s)). Thus D 1 V(s ,  z(s)l (1 ,  z '(s)) _< 0 whenever 

the derivative z'(~) does exist. For all (8 ,  z) E R x r t  n set 

C(s , z) = {u E F(s , z) : D T V(8 , z ) (1 ,  u) _< 0} (3.1) 

and consider the differential inclusion 

z" E G ( s ,  z) (3.2) 

Under all assumptions of Corollary 2.3 (or 2.4, or 2.6) for every ( t ,  ~) E [0,1} x ]R n there exists 

a solution z of (3.2) with z(t) -- ~ and such that V(8, z(s)) = const on It , 1]. A natural  ques- 

tion arises if for every trajectory z E W l ' l ( t ,  1) of (3.2) the function 

, ~ v ( s ,  ~(,)) _= const on I t ,  11. 
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Definition 8.I. The set-valued map G : [0,1]  x I t  n ---* IRa is called an optimal feedback low 

associated to  V if 

(a) V i t ,  ~) E Dam V there exists a solution = of (3.2) defined on I t ,  1] such that  z(t) = 

(b) For every solution z E W ] ' l i t ,  1) of (3.2), the function s ---* V i a ,  z(s)) - const on I t ,  1]. 

Theorem 8.tL Let P : [0 ,1]  ~ ]R n be a set-valued map with nonempty images and closed 

graph and g : graph P - - ,  R be a locally Lipschitz function satisfying (2.3) and such that  

V(t, z)E graph P, V u E F(t, z) with (I, u) E Tgraph p i t , z), 

DT(- v)(t, , ) ( 1 ,  ,,) _< 0 

If F has convex images and verifies the growth condition (2.2) then the map G defined by (3.1) is 

an optimal feedback low. 

Proof. By Corollary 2.4 the requirement in) of Definition 3.1 is satisfied. Pick a solution 

z E w l ' l / t  , 1) of (3.2). Then the function s ---* V(s ,  zis)) is absolutely continuous. 

Let s be so that  ~o'(s} , z'(8) E F ( 8 ,  z(a)) do exist and h i ~ O+ be such that  

v ( ,  + hi ,  ~(, + hi)) - v ( s ,  z(,)) 
n T Vis ,  z(s))(1, z'(s)) = l im 

i ---. O+ h i 

Thus ~o'(s) = D T Vis , zis))(1 , z ' is))  < 0 and ~o is nonincreasing. By Theorem 1.5, ~o is also 

nondecreasing. Thus ~o = const, ra 

Exactly the same arguments yield 

Theorem 8.8. Let f/ be an open subset of ]R n and V : [0,1]  x t3 - -*  R be a locally Lipschitz 

function satisfying all the assumptions of Corollary 2.6. If F has convex images and satisfies 

(2.2) then the map G defined by (3.1) is an optimal feedback low. 

Remark:. In the above theorem we may avoid the assumption of Lipschitz continuity of V with 

respect to t, if instead we assume that  for every (t o , z0) E Dora V there exist L > 0 ,  ~ > 0 such 

that for all ( t , z )  E [ t  0 - c , t  0 + ~ ] N [ 0 , 1 ]  x (z o + c B ) ,  V ( t , . )  is L=Lipschitz on 

{z : ( t ,  , )  E graph P n {t} x Iz0 + cB)} and restrict our attention only to those solutions 

x E w l , l ( t ,  1) of i3.2) for which s ---* V(s ,  z(s)) is absolutely continuous. 

We apply the above results to the target problem considered at the end of the first section. 

Th¢orsrn 8.4 Let V be as in Theorem 3.2 or as in Theorem 3.3 and verifies the boundary condi- 

tion (1.17). Then every trajectory z E W I ' I ( 0 , 1 )  of (3.2) (with G defined by (3.1)) satisfying 

z(0) = z 0 is an optimal solution of the target problem. Moreover if F has convex images and 

verifies (2.2), then i3.2) has at least one solution starting at z 0. 
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4. V i scos i ty  s o l u t i o n s  o f  H a m i l t o n - J a c o b i - B e l l m a n  e q u a t i o n  a n d  c o n t i n g e n t  i nequa l i -  

ties. 

We associate with F its Hamiltonian H defined by 

V ( t ,  z)  E [ 0 ,  I~ x R n , Vq E 17, n , H(t, z ,  q) = sup { < q ,  ¢ >  : e E F(t ,  z) } (4.1) 

Our aim is to show that  for any open set i'l C [0 ,1]  x R n every solution of the problem 

inf  D, vet, z) (1 ,  u) < 0 ,  ( t ,  z) E f l  ] 
- E  toF(t,=) " 

sup D ,  ( -  V) ( t ,  z) (Z,  u) < 0 ,  ( t ,  x) E n I (4.2) 
=EeoF( t ,= )  " 

is the viscosity solution of Hamilton-Jacobi equation 

O V + H ( t  z a V) = 0  (t z) e n  (4.3) 
- o - t  ' ' - ~ - ; z  ' ' 

(see CrandalI-Lions 18], and Crandall-Evans-Lions [9]). Some related results can be found in [18]. 

We recall first 

Definition ~.1 (super- and subdifferentials). Let fl C R ra be an open set, to be a function from 13 

to R and z 0 E ft. 

The superdifftrential of ~o at z 0 is the set 

8+~O(ZO) = { p : l i m s u p [ ~ o ( z )  - ~o(z0)-  < p , z - -  z 0 > ]  / H z - -  z 0 H -<0} . 
z - - - - ,  x 0 

The subdifferentiai of ~o at z 0 is the set 

c9_ ~O(Xo) = {p  : lira inf[ ~o(x) - ¢p(Xo) - < p ,  z - z o > ] / II = - =o II > o } .  
z - - - *  x 0 

The super and subdifferentials are closed, possibly empty, convex sets. 

Definition 4.~ (viscosity solution). A function V : f / - - ~  I t  is called a viscosity solution of the 

equation (4.3) if for every ( t ,  z) E f~ we have 

a) for all p = (Pc . . . .  , Pn) E a+  V(t, z) 

-po + zz(t, = ,  - (p~ ,.. . ,  p.)) < o 

(viscosity subsolution). 

b) for all p = (Po . . . . .  p,,) ~ O_ V( t ,  z) 

-Po + i t ( t ,  = , - ( P z  . . . . .  p . ) )  _> 0 .  

(viscosity supersolution). 

gtmma 4.8. [12[ Let fl be an open set and ~o : fl --~ R .  Then 

0 _  ~oCx0) = { p :  Vr  E R m , D +  ~o (x0)r > < p ,  r > }  (4.4) 

tg.l_ ~oCz0) :- { p :  'v'r E R m , D. t_ (-~o) (zo) r _> < - p ,  r > }  :- - o  q_ ( -~) (Xo)  (4,5) 
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If a function V : f~ ----* ]R verifies relations (4.2), then V is a viscosity solution to 

It is easy to see that 

is equal to 

• " e F(t, ~), 2(0) = ,0 

~(1)  = ~o + v 

0_l if[I x -  (1 ,0)  [[ _< 1 - t  
V(t  , z) = co otherwise 

(4.7) 

Theorem 4 . ~ .  

H~milton-Jacobi equation (4.3). 

Proo]. By (4•4), (4.2) for all ( p ,  q) e 8 _  V ( t ,  z) C ]Rx R n 

p - H ( t , x , -  q ) =  inf ( p - F < q , u  > ) <  inf z)DT V(t ,x)  (1 ,u )  < 0  
u E c o F ( t ,  z )  - -  u E coF(t, -- 

Thus for all (p ,  q) E 8 _  V( t  , z)  

- -p  + HOt ,  z ,  - q) > O (4.6) 

On the other hand by (4.5), (4•2) for all (p ,  q) E 09+ V ( t ,  x) 

- su ,)(-p - p + H ( ~ , , ,  q ) =  ,oF~,. - < q '  ">) < ~up D , ( -  v) (t , , )  ( 1 ,  n) < 0 . 
. E - . ~ ¢oF(t , z) " - 

The very definition of viscosity solution ends the proof, n 

Hence solutions of (4.2) form a subset of viscosity solutions of (4.3). Since contingent deriva- 
tive is not convex, in general a viscosity solution of (4.3) does not verify (4.2). For this reason 

results of Sections 1,2,3 do not apply to an arbitrary viscosity solution. 

For the target problem considered in Section 1, the value function is nondecreasing along 

trajectories of (I.I) and is constant along optimal trajectories. Hence results of Section 3 may be 

applied to the value function when it verifies additional regularity requirements. However to find 

the value function may be a difficult task. 
• (1.17) 

If the HJB equation {4.3~Vhas a unique solution V and the value function is a solution of 

(4.3) then the results of Section 3 may be applied to V when it is regular enough. 

However uniqueness theorems for viscosity solutions concerns (up to now) only continuous 

solutions (see [8]-[101). When the value function is discontinuous, we have to take into considera- 

tion contingent inequalities from Sections 1,2. When the viscosity solution verifies in addition 

these contingent inequalities, then results of Section 3 may be applied• 

We provide next an example of the target problem having a Lipschitz viscosity solution 

different from the value function. It is obtained thanks to an appropriate choice of the domain of 

definition. 

Ezampl¢ Let U denote the closed unit ball in R 2 and consider the set-valued map 

F : R × R 2 ---* It 2 defined by F(t, z) = U. We consider the point target K = (I, 0) and the 

function g -= 0. The reachable set at time 1 of the inclusion 
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o i l l  = - 1  ( _ l - t , I  z= I_< 1 - t  
w i t ,  =1,  x2) = co otherwise 

We first observe that  V f W and that  V(1,  .) = W(1,  .), i.e. V and W verify the same boun- 

dary condition. On the other hand for all i t ,  x) E Int Dom W,  V Wit,  x) = 0. Hence W is a 

solution of the Hamilton-Jacobi equation (4.3) on hat Dora W. 

Even if we apply the definition of viscosity solution on Dora W from [10], it is still possible 

to check that  W solves (4.3) on Dora W. Thus the Hamilton-Jacobi-Bellman equation (4.3) has 

at least two solutions verifying the same boundary condition 

{~ if x =  I I ' O )  
Vi i  , x) = co otherwise 

Observe that  V = W on Dora V and one would wonder if the above negative statements would 

be improved if we restricted our attention only to Dom V. However for an arbitrary nonlinear 

control system (1.1), the set Dora V may be as difficult to find as the function V itself ( the glo- 

bal controllability on nonlinear systems remains an unsolved problem!). Therefore such improve- 

ment would be only an illusory one. On the other hand the map W does not verify the second 

contingent inequality (2.1) for ( t ,  ~) from the boundary of Dora W with 0 < t < 1. In this way 

the function W may be excluded from consideration. 

5. C l a r k e ' s  v e r i f i c a t i o n  t c c h n i q u e .  

In [6], [7] a different approach to the target problem was developed. 

Definition 5.1. Let ~o : R m ~ R be a locally Lipschitzian at z function. The epiderivative 

to°(x) : R at ----* I t  is defined by: for all u E R m 

~o°(z)u = lira sup [ ~o (z" + hu) - ~ (z ' )  ] / h 
z" ----* z 
h ~ S +  

The generalized gradient a ~(z)  is given by 

o ~(=) -- {p c R ~ : vu ~ R m , < p, u > < ~o(=)~} 

Observe that ¢~°Cx ) > D T ~o(x) and therefore 

o_ ~o(=:) c a ~(~) ,  a+( -~) (=)  c - o ~(=) = a( -~) (=) .  

Let 1"1 C R x R n be an open set. A locally Lipschitz function- V : fl ----, I t  is called generalized 

solution of Haxnilton-Jacobi equation i4.3) if for all i t , x) E f l  

su {-p + Hit , x , - q)}= O (~, q) • ~Dv(t, ,) 
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It was shown in [7} that if z E w t ' l ( t ,  1) is a trajectory of (1.1) such that for some ~ > 0 

and all t < s < 1, I s ,  z(s)  + , B) C fl, then s ----, V ( s ,  z (s) )  is nondeereasing on I t ,  1]. This 

led to a verification technique. 

To make a comparison with the results of Section lsobserve that for all (t , x) E f l  

Hence 

~u~v sap --p q- < - q , u  > {p,q) (t ,z) . ~ . o r ( t , ~ )  

= sup sup --p q- < -- q ,  u > 
u E col;'(t , x) (p , q) E a ( -  F){t , ,) 

= ( - v )  °It  u ) < o  
u E c o  t , z )  ' ' - 

uE,o~tSU ,z) DT ( - v )  ( t , z ) l l  ,u} <_0and, 

consequently, V verifies the contingent inequality (1.10). Hence replacing V by its restriction to 

{(s ,  z(s)  + , / ~ ) :  s E I t ,  1]} and using Theorem 1.5 we prove that V is nondecreasing along z. 

We provide next a comparison of viscosity and generalized solutions of (4.3). 

Theorem 5.1 A locally Lipschitz function V : fl -----, R is a viscosity solution of (4.3} if and only 

if V is a generalized solution and 

V(p ,q )  6 0_ V(t  , x) , - p  + H( t  , x , - q )  = 0  

P r o o f  By the definition of tIamiltonian It, for every t E [ 0 , 1 ] ,  x E I t " ,  H ( t ,  z ,  .) is convex. 

By the assumption on F ,  H is continuous. Thus [13, Theorem 2.3] ends the proof. [] 
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1. IIqTRODUCTION 

In recent work [1] we have studied stochastic differential equations related to the free field and (94)2- 

fields in finite volume following the earlier work of Jona-Lasinio and Mitter [2]. In [3] we have studied 

Lattice approximations to these stochastic differential equations and proved a limit theorem when the 

lattice spacing goes to zero. We now describe the nature of the results we have obtained. 

Let AcR  2 be a finite open rectangle and S' denote D'(A) the space of disuibutions on A and let S '  

denote the space of tempered distributions on A. Let Ci = (-A+I) "1, i = 1,2 with Dirichlet (resp. free) 

boundary conditions on A. Ci, i = 1,2 are covariance operators and for C a covariance operator let 

C(-,-) denote its integrat kernel, C¢ its ~ operator power and let ~C denote the centered Gaussian 

measure with variance operator C. Consider the following S'-valued stochastic differential equation 

l dto(t =- + C~ig(t)dt +dw(t) 

t 0 ( 0 ) = ¢ e $ ,  0 < e < l  

(1.1) 

1-e It is not difficult to prove that this equation has a where W(t) is a Wiener process with covariance C 1 . 

unique solution and has a path continuous version as an H-a-valued process on (0,~). Moreover (p(.) is 

¢rgodic and has I.tCl as it unique invariant measure. The same claims can be made with CI replaced by 

(22. This procedure of creating a stochastic differential equation with unique invariant measure a desired 

invariant measure is termed stochastic quantization. It is worth observing that the random field 9(0 for 

each t is a Marker random field and satisfies the Osterwalder-Schrader axioms. A proof of this will 
follow from that of Nelson [4]. Note that we cannot take e---0 in equation (2.1), since the transition 

probabilities p(t; q),.) of the process q) for different t's are no longer mutually absolutely continuous, a 

fact needed to prove ¢rgodicity of the process (p(.). The case e=l is excluded since W(t) is then no 

longer a genuine Wiener process. 

Since the process 9(') is ¢rgodic with unique invariant measure PCI' correlation functions 

lThis research was been supportod by the Air Force Office of Scienlific Research grant AFOSR-85-O227 and the Army 
Research Office under grant DAALO3-g6.K-0171 through the Center for Intelligent Control Systems, 
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El~Cl(~p(xl)...~(Xn)), ((~) denotes the gaussian random field with covariance laC1) can be computed 

by exchanging time and space averages. This is the basic idea behind Monte Carlo calculations of 

statistics of the random field. 

We study this differential equation in a space of distributions since the invariant measure ~tC1 can 

only be supported in some space of distributions. This is a consequence of the Minlos Theorem. It can 

be shown that the measure IaCI is supported in the space HA(A), the dual of the Sobolev space HI(A). 

In [I] and [3], we have also studied the infinite-dimensional non-linear stochastic differential 

equation 

d(p(0 = - 2(C'4Zq)(t) + Cl~: (p(03:)dt + dw(t) 
' t  

(1 Q2~ 

with (p(0) having initial law ~t given by: 

d~tc t 

A 

(1.3) 

In tbe above :q~(t)3: denotes Wick-ordering with respect to IJCt and has the explicit definition: 

:¢p(t)3: = ¢p3(t) _ ~ E  ¢p(t)2)~(t) (1.4) 

and is well-defined as an element of L2(dl.tCl). Similarly :qCt: denotes Wlck-ordering with respect to 

~tCl and the integral ~:q)4:dx is well-defined as an element of L2(dlxc) via an appropriate limiting 
A 

procedure. The fact that tt is a well-defined probabability measure is a consequence of Nelson's estimate 

[4]. 
The difficulty of studying equation (1.2) is that since the non-linear drift term :q)(t)3: is only defined 

in some limiting sense we cannot interpret it in the ho snese and hence we have to interpret it in a weak 

sense. In [1] it is shown that the new measure P0 defined by 

T T 
dPo tl f< 3[s. . ~ f  H=,li = dP = expk~-J :~p t, ):, dw(s)> I <:¢p3(s):, CI"¢: ¢p3(s):> (is 

o o 

 x)/z 
A 

(1.5) 
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where Z is a normalizing constant, is a well.defined probability measure. The proof uses both estimates 

from quantum field'theory and probabillstic arguments (in particular Novikov's criterion for an 

exponendat super-marfingalc to be a martingale). 
In [1] a limit theorem at the process level when AI" R 2 is also proved. 

2. STOCHASTIC OUANTIZATION AND IMAGE ANALYSIS 

Our interest in these problems arose from problems of image analysis. To see this note that the 

measure g corresponds to Hamihonian 

A 
where m0 is the bare mass and X the coupling constant (taken both to be 1 in the previous section). 

Corresponding to the Hamiltonian we can construct the limit Gibbs measure in the sense of Sinai (cf. [5] 

and [4]). 

Consider the following problems of Image Analysis. 

Problem I. 

Let f l  C R2 be an open bounded set and let V e L~'(fl) be given. We think o f v  as an observed 

noisy image. We wish to construct an estimate q~ ~ HI(f~) such that 

is minimimd. 
It is natural to think of ](tp) as a conditional Hamiltonian H0(tphF) and construct a conditional 

measure bt(q0tV) by making appropriate probabilistic hypotheses on V (for example by associating an 

Hamiltonian for V). To construct estimates we would have to compute statistics corresponding to the 

measure ~t(~p~) and this would be done using the ideas of stochastic quantization for both q0 and V. A 

start towards doing this has been made in [6]. 

Problem I% 
Let f l c R  2, be bounded and open and let V e L"(Q). Consider the following variational problem. 

Minimize 

where 1" is a closed set with F c •  and 9/10 ") denotes the one-dimenslonal Hausdorff measure. The 

inter'proration of this functional is that we want to find an estimate ( ~, f~) of the observed noisy image ~/ 

which preserves the discontinuities of the image, there am not too many discontinuities and t ~ is an 

estimate of the discontinuities. It can be shown that a minimizing solution ( $, f~) exists [7], [8]. A 

detailed study of the first variadon of I has been done in [9]. 

It is not clear how to give a pmbabilistic interpretation m this problem. However, if we consider a 
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lattice analog, then we can give a probabilistic interpretation by constructing a measure on the lattice 
Z2x(Z2) *, where (Z2) * denotes the dual lattice. This was one of the motivations for our work reported 

in [3]. For details of this problem in a discrete space setting, see our paper [10] and the references cited 

there. 

3. RENQRMALIZAT[QN ORQUP METHODS AND A BELLMAN EOUATION 

The main purpose of this section is to describe the renormalization group method of K.G. Wilson for 

U-V cut-offremoval as formulated by P.K. Mitter [I I, 12]. A certain infinite-dimensional Hamilton. 
Jacobi-Beilman equation arises in this context which has a natural control-theoretic interpretation. 

Consider the linear parabolic equation in R n x(0,T] 

dpt(x,t) = L~pt(x,t ) + 1 V(x,t)p¢(x,t)/ (3.1) 

p~(x,O) = Pto(x) = Kcexp(-1So(x)) J 

Here ¢ > 0, S0(x) > 0, lim efn Ke = 0 and L~ is the formal adjoint of the diffusion operator 
e---)0 

L = ~ - ~  02 + ~ fi(x) B'-'~" (3.2) 
• 2~ax~  i=1 a, 5 

We assume that f is a C**-function with bounded derivatives upto order 3, -V is a C°*-function which is 

bounded below by zero. 

Following, for example, Fleming-Mitter [ 13], introduce the logaarithmic transformation 

S~(x,t) = -eln pE(x,t). (3.3) 

Then St(x,t) satisfies the Bellman-Hamilton-Jacobi equation 

-~ St(x,t) -~ASe(x,t) + He(x,t,VS(x,t)) = 0 I 
at z 

SE(x,O) = -e In po(X), 

and He(x,t,p) = p'f(x) + ½ Ilpll 2 - V(x,t). 

Formally, letting e --4, O, we obtain the Hamilton-Jacobi equation 

(3.4) 

3~t-t S(x,t) + H(x,t,VS(x,t)) - 0,1 

S(x,0) = So(x). ] 

(3.5) 
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One can prove that ¢1~0 e In pe(x,t) = -J(x,t) on compact subsets of R n x[0,T], where J(x,t) is the value 

function of a deterministic optimal control problem: 

Minimize 
t 

J(t; x 0, u) = S0(x 0) + ; J Ilu(s)ll2ds (3.6) 
0 

subject to 

d~= f(x(s)) + u(s) / 

x(0) = %. j 
Let Ux,t = {(x0, u)lxu(0) = x0, Xu(t) = x, u•  L2(0,t;Rn)}, and 

(3.7) 

J(x,t) = IntIJ(t; x0,u)l(x 0, u) • Ux.t]. 

Then finally J satisfies (3.5). Note that this is a minimum energy optimum control problem. In a similar 

manner, S~(x,0 has the interpretation era value function for a Markovian stochastic opitmal conmo] 

problem [12]. 

We now rctum to the ideas of section I. We consider the random field ~b(x) on R d, d>2 with 

measure PC. The covariance C has a kernel C(x-y) given by the formula (in terms of Fourier 

transforms) 

C(x-y) = 1 fd% J- • i'°'(xy) 
(2~) d o 2 

(the covariance operator is (-A) -1 in contrast to the covariance operator (-A+I) -1 in Section 1). Let the 

measure PCz be defined by giving the kernel 

. ~ .  
O 

c  x-y) = J (2~) d 0) 2 ei°'(x'Y) 
¢ 

A computation gives the scaling properties 

C,¢(x-y) = ~'2C1(~:(x-y)), (3.8) 

and if ¢ denotes the random field with measuro PC• given by covariance C~ and • denotes the random 

field with measure PC! given by covariance C1, then 

d-2 

~(x) = • 2 0 0 c x ) .  (3.9) 
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The measure/:C~ is supported.on smooth functions. By virtue of the above 

n(-~) 
Ej~c (q~(xl)...qb(xn)) = !c Ege. (q~(g'xl)...q)C~xn)) (3.10) 

The problem of studying the behaviour of the n-point correlations for fixed Xl,...,xa as tc .-> 00 is 

equivalent to studying the long distance (infinite volume limit) problem at a fixed cut-off. 
Let Vo(~b ) b¢ an even polynomial and consider the new measure with interaction VO 

dl.t = dl.tc ' exp(-V0(¢)) 

and the corresponding characteristic function 

(3.11) 

ZK(f ) = f dl.t K exp(i¢(f)) (3.12) 

There are two steps in the renonnalization group method. 

Step 1 (Scaling) 

From (3.9), 

d , +  (3.13) 

Set 

Then 

¢ >) V ~2~(.)= )FI,(.. 

: : : f  + °,:+) 

d-2 --=.d 
where ~(x) = K 2 f(K:'tx). 

(3.14) 

Steo 2. Lowering the Cut-Off. 

Consider the uansformation 

1 -+¢ ' t . 1 ,  t g R + .  

Wfi know, 

C,(x-y) ffi f d ~  e 
. ,  (2g)  ° m 2 

- -  e kc(x'y), and hence 
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('.-~) 

c:.(~-y):  d% e ,:,.0<->'> 
(21~) d mz (3.iS) 

Now CI > Ce.t.1 as operators. 
_(h) 

Let CI = CS.t. 1 + t:  t . (3.16) 

In the above C1 is the covariance of the field • at unit cut-off, Ce.t. 1 the covariance corresponding to 

the lowered cut-off and C~ h) the covariance corresponding to a fluctuating field. 

From the (3.16) w¢ have the decomposition q) = ¢(1) + ~, ~ denoting the fluctuating field and q~(l) 

and ~ arc independent Gaussian field. The covariance kemcl of --C~ h) has exponential decay as 

Ix-yl ~ o.. 
We now integrate out the fluctuating field and scale back. 

f d"c,(*)exp(-q~;)(O)) = J'dP.c.. (~b(l))dllc (h)exp(-qJo)(ctbl+L~)) 

--Sd,.,<, + 

The renommlizafion group transformation is defined by 

,= , , >  

which sends 

~0 z) ~ ~rO. 

~(~:) is callcd the effective potential. 
t 
A computation shows that ~ (dropping the superscript ~c) satisfies the infinite-dimensional 

Bellman-Hamilton-Jacobi equation 

~t ~P(x) 

where 

(3.18) 

f ddto e.ko.(x-Y)e-~o2 K~-,: j -~:  
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q • 0  K) will have parameters which will have to be fixed so that we start at a critical surface. Studying the 

fixed point of the renormalization group transformation is equivalent to studying the asymptotic behavior 

of the equation (3.18) (at least in the small region). 

Equation (3.18) has a stochastic control interpretation as suggested earlier in the section, and q,'(~:) 
t 

has the interpretation of a Bellman Value function. The machinery of non-linear semigroups may be 

useful for this purpose. 

We would like to suggest that the ideas of the renormalization group method as exposed in the 

previous section could be generalized to yield a dynamic renorrnalization group method which would be 

relevant to problems of stochastic quantization. A program for this is described below. 

We consider the stochastic differential equation (1.1). The solution of this equation for each t gives 

us a Gaussian measure in path space. This path space Gaussian measure plays the role of the measure 

pC of section 3. Cut.-offs can be introduced for this measure and scaling properties analogous to (3.8) 

and (3.9) obtained. Note that this Ganssian measure can be obtained via a Girsanov Transformation of 

Wiener measure. The interaction measure is now introduced by a second Girsanov transformation as in 

(1.5). The proposal is to proceed as in Section 3 where the renormalization group transformation is now 

a transformation of Girsanov functionals thereby creating an effective Girsanov functional. The details 

of this will be presented elsewhere. 
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ABSTRACT 

The concept of local controllability is investigated for non-relativistic quantum 

systems. Sufficient conditions will be sought such that the solution of the 

controlled Schrodlnger equation can be gulded, over a short time interval, to any 

chosen point in a suitably prescribed neighborhood of the solution in the absence of 

control. Evolution equations which are linear in the controls but nonlinear in the 

quantum state @ are considered. Our formulation and analysis will (for the most 

part) run parallel t o  t h o s e  o [  Hermes. 

z .  I~TRODUCTTO~ 

In recent years, there has been a growing interest in the system theoretic 

problems of filtering and control of quantum mechanical systems. Several note- 

worthy efforts exist: (1) Tern, Huang and Clark [1] and van der Schaft [2] have 

explored the formal basis for the modelling of quantum mechanical control systems. 

(li) Clark, Tart and their associates [3-6] have obtained results on quantum 

nondemolltlon filtering problem. (ill) Belavkln [7] has investigated the 

measurement and control problem in quantum dynamical systems. (iv) Pierce, Dahleh 

and Rabltz [8] have studied the optimal control problem of quantum mechanical 

systems. (v) Butkovskly and collaborators have discussed the control of quantum 

objects in broad terms and have set forth general conditions for controllability of 

pure quantum states [9-11]. 

To the authors' knowledge very little has been published in the way of 

mathematically definitive results on the oontrollabillty of quantum systems. In [12] 

the authors are able to establish a series of ~lobal controllability conditions for 

the Schrodlnger equation which is linear In state and l~near in the external 

controls by extending the geometric approach as implemented by Sussmann and 

Jurd~evlc [13,14], Krener [15], Brockett [16], Kunita [17] and others. 
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I n  the p r e s e n t  c o n t r i b u t i o n ,  we s h a l l  c o n s i d e r  e v o l u t i o n  e q u a t i o n s  which  a r e  

linear in the controls but nonlinear in the quantum state; in this case the work of 

Hermes [18] is extended tc obtain conditions for local controllability along an 

unguided reference solution. 

II. PROBLEM FORMULATION WITH NONLINEAR GENERATORS 

I n  a d a p t i n g  Hermes '  work [18] t o  ou r  e n d s ,  i t  i s  c o n v e n i e n t  t o  t h i n k  i n  t e rms  

of the x representation [19]. Thus the state vector ~_H will be represented by 

the wave function ~(x) E L2(Rn), where xER n stands (ordinarily) for the set of 

spatial coordinate variables associated with the quantum system. (More generally, 

x may stand for any complete set of compatible variables [19] built from the 

position and momentum variables. Spin and other internal degrees of freedom can be 

incorporated by essentially trivial modifications.) Now, let us define a class of 

operators H in H which are supposed to be skew-Hermltlan (norm preserving) and 

time independent and to have, in the x representation, the mode of action 

(H~)(x) - H~x - ~ fA,l((Hl,l~)(x))...fA,q((HA,q~)(x)). (i) 
l-i 

Here, p, q are some integers, the HA, M (A - 1,...,p; p - 1 ..... q) are closed, 

skew-Hermltlan linear operators acting in H, end the mappings fA,p: CI~ CI are 

real analytic. (By the last requirement we mean that fA,~(w) is a real analytic 

function cf its argument w, this argument in itself being generally complex, w e 

C I. Also, in expression (1), fA,p(w)fA, p,(w') is to be interpreted as the usual 

product of complex functions.) Throughout the current section, the generators 

H 0 ..... H r entering the "controlled Schrodlnger equation" will be assumed to be of 

this more general form. Thus, while H 0 ..... H r are still taken skew-Hermltian, they 

need not be llnear--although the linear case is certainly included. 

We shall further assume that a unique local solution exists for the initial 

value problem 

d-~ #t " HO + u2(t)H2 @t' #t-0 " 4eH , (2) 
i-i 

posed by the Schrodinger equation so generalized, the admissible controls u 2 now 

being real, analytic, bounded functions of t. To establish that this is a viable 

assu~ptlon, we note that it is automatically fulfilled within the framework of [12], 

provided 4 belongs to the analytic domain Dw; moreover, in Ref. 20 it has been 

shown to be valid for a certain relevant class of partial differential equations. 

On the other hand the formulation of ~eneral conditions on H 0 + ~u2H 2 for the 
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e x i s t e n c e  o f  a u n i q u e  l o c a l  s o l u t i o n  o f  (2)  a w a i t s  f u r t h e r  m a t h e m a t i c a l  

developments. 

Our n e x t  t a s k  i s  t o  s p e c i f y  t h e  L i e  b r a c k e t  a p p r o p r i a t e  t o  t h e  ( g e n e r a l l y )  

infinlte-dimensional, (generally) nonlinear control problem (2), wherein the 

Hk, k-O .... ,r are of type (I). First, we appeal to the chain rule to define a sort 

of derivative operator, DH, corresponding to an operator H of that type: 

((DH~)(x))£(x) - ~ ~ f A , I ( ( H A , I ~ ) ( x ) ) . . . f A , # . I ( ( H A , ~ . I ~ ) ( x ) )  
A-I p-i 

• f~,p((HA,p~)(x))fA,~+l((HA,p+l~)(x))...fA,q((HA,q~)(x))(HA,~)(x), (3) 

where ~ E H and f'(w) is the derivative of f(w) with respect to its argument. 

The Lie bracket of two operators H, K of the indicated class is then specified by 

( [H,K]~)(x)  - [H ,K] ( Ix  - {(DH~)(x)}(K~)(x) - t (DK~)(x)} (H~)(x) ,  (4) 

to  apply V ~ e H and V X. Again we shall employ the notation adHK - ill,K], 

4 a K - [H,adVK], v - 1, 2 , . . . ;  a l s o ,  a K K. The p r e s c r i p t i o n  (4)  f o r  t he  L ie  

product is obviously consistent with that of [12], for, if H and K are linear, 

[H,K] - HK - KH as  in [12]. 

Remark I. The above definitions and specifications are tenable even if H and 

HA, ~ of (1) are not skew-Hermitian (or even if skew-Hermlticlty is not a meaningful 

concept). As is well known, skew-Hermitlclty of the generators of time displacement 

is an Indispenslble requirement in conventional quantum theory, where it is 

necessary for the probability interpretation of ~t" On the other hand, there are 

circumstances in which one may be led to drop this requirement, namely, (i) in 

approximate treatments of the Schrodlnger equation designed to yield simple pictures 

of complicated phenomena involving many degrees of freedom, and (il) in radical 

revisions of conventional quantum theory aimed at a more fundamental description of 

the microscopic world. The optical model of nuclear reactions, [21] wherein a 

complex potential is introduced to simulate the effects of inelastic processes, is a 

good example of circumstance (1), while the hadronic theory proposed by Santilli 

[22] suffices to illustrate possibility (ll). Obviously, in the latter context new 

interpretations as well as a new formal apparatus (see, e.g., Ref. 23) must 

accompany the enlarged mathematical framework. 

Remark 2. The message of this comment is similar to that of Remark i, except 

that the subject is nonlinearity of the generators H0, ..., H r rather than 

violation of their skew-Hermlticity. Conventional quantum mechanics is necessarily 

a linear theory, in that the superposition principle is an essential property. 

Specifically, llnearlty of the operators H 0 ..... H r is required to maintain this 

property. But again one might agree, either (i) in the framework of approximation 

methods, or (ll) in fundamental extensions of quantum theory, to sacrifice 
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linearity. The Hartree-Fock approximation [19,21] of atomic and nuclear physics 

furnishes a prominent example of a nonlinear approximation to the conventional 

quantum description. On the other side of the coin, nonlinear quantum theories at 

the flrst-prlnclples level have been considered by a number of authors; for example, 

Wigner [24] has suggested that a resolution of the mysteries associated with 

"collapse of the wave packet" might be sought in terms of such a theory. [25] 

III. QENEP~LIZED DECOMPOSITION THEOREM 

r 
Consider the system (2), wherein it is assumed that ~ ¢ D dom H k 

k-O 

null set. Let Vt(~) e D denote the solution (evaluated at time t) of the 

associated reference problem 

dt 4t " HO~t ' ~0 - ~" (5) 

This problem corresponds to free evolution of the quantum system, the external 

controls being turned off; accordingly ~t - Vt(~) will be referred to as the 

homogeneous reference solution. Treating ~, rewritten ~, as an arbitrary element 

of the allowed domain D, we obtain a mapping ~ ~ Vt(~), which in general defines a 

nonlinear operator. (We note that in the special case that the generator H 0 is 

linear, Vt(~) , which traces an integral curve of the vector field HO, serves to 

define a linear evolution operator V t. However, in the nonlinear setting of the 

present analysis, we are strictly not allowed to divorce operator from operand, 

since an operator of class (I) generally depends on the point of H at which it 

acts.) The differential of the mapping ~ * Vt(~), to be denoted DVt(~), is also 

(generally) a nonlinear operator. One may loosely interpret DVt([) as the 

derivative of the object Vt([) , a state vector, with respect to its argument, which 

is again a state vector. By DVt(~)~x we will mean the differential of the (wave 

function) ~ (wave function) map ~(x) - ~x ~ Vt(~)~x" 

Definition ~. A complex-valued function g: t ~ g(t) - gl(t) + Ig2(t) is said 

to be complex snalvtlc in the variable t, where t ~ R I, if the functions El and 

g2 are real analytic in t. 

Theorem I. (Generalized Decomposition Theorem (cf. Refs. 18,26)). Let ~ be 

an arbitrary element of the common domain D of the operators H 0 .... , Hr, and 

suppose that (i) the maps t * Vt(~)Ix and t ~ DVt([)Ix are complex analytic in t 

for all x and (ll) the differential DVt([) converges in the strong operator 

topology to the identity operator id, as t ~ O +. Then, a sufficient condition for 
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V~(Wt(~)) to provide a solution of the controlled dynamical problem (2), is that 

Wt(~) satisfy 

u-0 02-1 

If DVt(f) is one-to-one, the stated condition is also necessary. 

Prog~. A necessary and sufficient condition for Vt(Wt(~)) to be a solution 

r 
of (2)m given that V0(W0(~) ) - W0(~) - ~, is HoVt(Wt(~) ) + ~ u2H~Vt(Wt(~) ) 

~-I 

Since by definition Vt(£) mus~ satisfy the differential equation aVt(~)/St - 

H0Vt([), where ~ may he regarded as an independent variable so far as the time 

derivative is concerned, the initial terms in the first and last members of (7) 

cancel. Thus condition (7) may be distilled to 

The ¢ruelal step Is to prove that, for all f and for all x, 

r 

u-O vl . l-I 21 

Once property (9) is established, the theorem is in hand; for if Wt(~) satisfies 

(6), it will then follow from the sufficiency of (8) that Vt(Wt(~)) solves problem 

(2). 
In order to establish (9), we examine the quantlty 

g2(t;H2)' x - DVt(~) ~ "/~/~ [ ] v-O v! ad~_lOH ~ £1 x - H ~ V t ( ~ ) l x .  ( 10 )  

With ¢ an element of the allowed domain, the maps t ~ Vt(£)[x and t ~ H~Vt(£)Ix 

are complex analytic by our hypotheses, as is the map t ~ DVt(~)[x, Consequently, 

the rlght-hand side of (i0) is complex analytic in t, for all ~ and for all x. 

Therefore it is legitimate to evaluate g2(t;H2) Ix be means of its Taylor expansion 

in t. 

To begin with, we know g2(O;H~)[x - O, because DVt(~) ~ id in the strong 

operator topology as t * 0 +, and VO(~) - ~. Next, consider that 

d~tDVt(~) - aD~ Vt(¢) - D~[H0Vt(£) ] - D~[Ho(Vt(9)) | 

- {DHo(Vt(£)))}[DVt(£)} 

(The differentials in the first llne are all with respect to ~, as is indicated 

explicitly in places where confusion might arise. The differential D~[Ho(Vt([))] is 
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computed as the  p r o d u c t  o f  the  d i f f e r e n t i a l  o f  the  mapping Vt(~)  ~ H o ( V t ( f ) )  and 

the differential of the initial mapping ~ ~ Vt(~). ) In similar vein, 

d~t[H~Vt(¢)] - d~t[H~(Vt(f)) ]  - DH~(Vt(f))HoVt(¢)  

Using these last two relations, we may obtain (with the dot indicating time 

derivative) 

- DHO(Vt(~))[DVt(;)  v--O vI  [a oRal ~ d ~  

+ [DH0(Vt(~))H~Vt([) - DH~(Vt(~))HoVt(f) ] 

- DHo(Vt(~))g2(t;H~) - g2(t ;adHoH ~) (ii) 

But we know, from previous argument or its extension, that g~(t;H~)Ix and 

g~(t;adHoH~)Jx tend to zero as t ~ 0+; it follows that g~(O;H~)]x - 0 for all 

and for all x. 

The pattern is now set for an inductive construction of successive time 

derivatives of g(t;H~). In particular, based on the above results we may form 

g~(t;H~) " ~t [DHo(Vt (~ ) )g j ( t ;H~) ]  + DHo(Vt(~))g~(t;Hi) 

- D H 0 ( V t ( f ) ) ~ ( t ; a d H o H  ~) + g~( t ;ad~oH 2) , 

and i t  f o l l o w s  t h a t  g l ( t ; H ~ ) l x  * 0 as t - 0 +. C on t i nu ing  the  p r o c e s s  i n d e f i n i t e l y ,  

we a r r i v e  a t  the  r e s u l t  t h a t  a t  t - 0 a l l  the  t ime d e r i v a t i v e s  o f  g 2 ( t ; H i )  lx 

v a n i s h ,  to  a r b i t r a r i l y  h igh  o r d e r .  Thus g ~ ( t ; H ~ ) l x  i s  i d e n t i c a l l y  O, f o r  a l l  f ,  for  

all x, i.e., 

[ad~oH~]l x - H~Vt(~)l x , 

2 - 1 ..... r. The desired property (9) ensues upon multiplying this equality by 

u~(t) and summing over ~. 

Corollary I. Same as Theorem I, except that "complex analytic" is everywhere 

to be replaced by "real analytic". (See Ref. 18) 

Proof. Direct observation. 
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IV. LOCAL CONTROLLABILITY ALONG A REFERENCE HOMOGENEOUS SOLUTION 

Definition 2. The system (2) is said to be locally control~ab~ along the 

solution ~t " Vt(~) of the control-free problem (5) on the manifold M c H if, for 

small t > 0, there exists a set of u2(t), 2 - i, ..., r, such that the solution 

~t of (2) can be controlled to a Dei~hborhood of ~t on M. The precise meaning of 

the last phrase is that ~b t can be steered into any direction of the tangent space 

TMt of M at the point ~t - Vt(~) ~ M, for all ~ t M. 

We may now formulate the central result of this section. 

Theorem 2. Assume that the homogeneous solution of system (2), i.e., the 

solution ~t - Vt(~b) of the uncontrolled system (5), satisfies the hypotheses (1) 

and (ii) of Theorem I for ~ (and specifically ~) on a flnite-dlmensional 

submanlfold M, M c D C H, dim M - m. Assume further that there exist integers 

vi (with ~ - I ..... r and J2 - 1 ..... k2 < ~, and 0 < w21 < w~2 < "'" < V2k2 ) 
J~ 

v ~j 

such t h a t  t h e  s e t  {[adH0 H2]~} spans  the  t a n g e n t  s p a c e  T~ t o f  M a t  ~ t  - Vt(~)  

for all ~ ¢ M. It follows that system (2) is locally controllable along ~t on M. 

(Of. Theorem 2, Ref .  18 . )  

Proof. If the functions u2j (t), where ~ - I ..... r and J~ - i ..... kl, 

qualify as admissible controls (real, analytic, bounded functions of t), then so do 

the finite linear combinations 

a k2 
u2~(t) - ~ (t), 2 -- I ..... r , 

j~-i a~j u~j~ 

where in  t h e  r e a l  c o e f f i c i e n t s  

k2 
I - 1  

j~-I la~j~  

a~ l  . . . . .  a~k 2, a r e  c h o s e n  ( f o r  c o n v e n i e n c e )  to  obey 

, ~-I, .... r , 

~ t  us ~ b r e v i a t e  t h e  s e t  | a 2 j  } s imply  as  ~.  By g e n e r a l i z e d  d e c o m p o s i t i o n  in  the  

m u l t i - i n p u t ,  complex c a s e  o f  t h e  p r e c e d i n g  s ~ s e c t i o n  ( i . e . ,  by v i r t u e  o f  

a 2 Theorem 1) ,  t h e  s o l u t i o n  o f  p rob lem ( 2 ) ,  w i t h  t h e  u I a s  c o n t r o l s ,  i s  g i v e n  by 

a - N~(~) of the boundary value problem (6), #ta . Vt(W~(~) ) .  m e  s o l u t i o n  ~t 

a 2 r e s t a t e d  f o r  t h e  c o n t r o l s  u2 , e v i d e n t l y  obeys  ~ e  i n t e g r a l  e q u a t i o n  

d s  



Thus  

1 6 8  

aa~j I 8a~j~ 

where a- 0 means all of the a~j I are zero. By assumption, we can flnd a set of 

integral (or zero) powers vjj , where ~ - I, ..., r, J~ - 1 ..... k~, 

0 S V~l < v~2 < .-. < V~k ~, and Vma x -- max(v2j } < ~, such that the set 

{ a-V21H .. v~k~ 
[ oH0 j]$ ..... [adHo H~] ~, ~ - 1 ..... r| spans TM t. Then, since (also by 

assumption) DVt(~) ~ Id strongly as t ~ 0 +, there must exist a time t I > 0 such that 

the set 

{DVt (,) [a~:lH~], ..... DVC(,) [ad~ k'  H2]~} 

spans TM over the time interval 0 < t < t I. 
Wt' 

We now proceed to make a Judicious choice of the original functions u~j (t) 

involved in (12). One can realize admissible controls ~j~ (t) obeying the 

conditions 

fO uiJ~ O, for v ~ v~j~ 0 < v < tl- ~-s)v ds - ' - - Vmax 
Ca) vl 

clj ~ ~ 0 , for v - vlj ~ , 

+1, 
(13) 

where ~ - 1 ..... r, J~ - 1 ..... k~, and the c~j2 are real constants. The 

connecClon between the u~j~ and the u~j~ wlll be specified shortly. The power 

being integral, inversion of relations (13) is in effect Just a classical finite- 

moments problem. (Note that in the upper range v > Vma x + I, we have 

fO u~j(s) v! 

since [u2j[ is by assumption bounded. This implies that the higher moments not 

specified by (13) will be negligible.) 

Wlth t in the interval [O,tl], we now carry out the change of variable 

s - tlh/t in the integral on the left of (13): 
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tl_ v [~] 

Hence 

dh . 

O, f o r  v # v l j l ,  0 ~ v ~ Vma x + 1 , 

i  ,j(tlh/t ) rL1v+l f o r  - 
v ! ~tlJ clj ~ U~j J 

0 t max for v > v + i 
' max ' 

S e t t i n g  u ~ j ( s )  -- ~ j l ( t l S / t )  i n  ( 1 2 ) ,  we a r r i v e  f i n a l l y  a t  t h e  r e s u l t  

+ 1  

0a~j 

where, for t < tl, the last term can be neglected, t I being small. Consequently the 

s e t  (SVt(~(~))/0a~j i ~Z~[t , ~ -- I, .... r, j] I l, m.., kl} spans for t in the 

interval [O,tl], where t I has been chosen above. This means that we have been 

able to choose the controls so that, for small t > O, the state defined by system 

(2) can be steered into any direction of the tangent space on M at the point ~t " 

Vt(~ ). Then by definition the system is locally controllable along the reference 

s o l u t i o n  V t ( ~ ) ,  f o r  a l l  ~ c M. 

R e m a r k 3 .  T h e o r e m s  i a n d  2 r e m a i n  t r u e  a s  s t a t e d  i f  t h e  Hk, k - 0 ,  . . . ,  r ,  a r e  

n o t  skew-Hermltlan. 

Examnle I. The theorems of the present paper are aimed at an infinite- 

dimensional space of quantum states. However, the results obtained herein are still 

valid (with trivial alterations) for a flnlte-dlmenslonal state space. As pointed 

out in Remark 3, from a mathematical standpoint we may also dispense with the 

assumption that the generators H 0 .... , H E are skew-Hermitlan. 

For example, consider a nonlinear control system on R m, m < ~, defined by 

d x(t ) - A(x(t)) + u(t)B(x(t)) , X(0) -- X0 (14) 
dt 

where A and B are real analytic vector fields corresponding to nonlinear 

operators of the sort introduced in Section If. Then, as argued in Raf. 18, a 

sufficient condition for local controllability along the homogeneous (u 0) 

v 
solution of (14) is rank{[ad~B]X 0, u I 0,1,2 ..... ~) - m, This is precisely the 

condition which would enter the flnlte-state-space version of Theorem 2. Problem 

(14) does not strictly refer to a quentum-mechanlcal system; its study is, 

nevertheless, illuminating. 

Nhile surely of hlgh interest, the identification and analysis of "non-trlvlal" 
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e x a m p l e s  of t h e  u t i l i t y  of Theorem 2, meaning examples c o n c e r n e d  w i t h  novel quantum 

control systems characterized by nonlinear generators, exceeds the scope of the 

present work. 

V. SUMMARY AND OUTLOOK 

I t  h a s  b e e n  ou r  a im t o  augment  t h e  f o u n d a t i o n  f o r  t h e  c o n c e p t  o f  

controllability of quantum-mechanical systems [12]. In the generalized, nonlinear 

formulation of the quantum control problem, we were able to determine conditions for 

the property of local controllability along a homogeneous (i.e., control-free) 

solution, without havln 8 to refer to the existence of an analytic domain which was 

assumed in the ~lohal analysis of [12]. (Our treatment of this ease amounts to an 

extension of Hermes' work {18] to a multl-lnput, complex-state problem.) From the 

results obtained herein on the controllability of the solution of nonlinear 

Schrodinger equations, one may regain, upon appropriate specialization or 

adaptation, certain well-known systems-theoretlc results in flnlte-dlmensional state 

space (see, in particular, Refs. 13-18). 

Clearly, only a modest beginning has been made toward achieving the larger goal 

of a comprehensive theory of quantum control. The following problems, among others, 

await concerted effort: 

(1) Adaptation of the notions of observability, identification, realization, 

and feedback to the quantum context [27]. 

(li) Study of a controlled version of the Schrodlnger equation for the time 

evolution of the density operator, [19] so as to extend control theory to the realm 

of quantum statistical mechanics. 

It is evident that powerful mathematical techniques must be invoked to carry 

through this program; moreover, one must confront the profound conceptual obstacles 

intrinsic to the quantum measurement process [25,28,29]. 
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§1 Feynman's  approach revisited 

Feynman left us, recently, and we still have to face the challenge to understand the deep meaning of 

his original approach to quantum physics [1]. No serious theoretical physicist doubts that, in a 

certain way, Feynman was profoundly right, but one has to admit that this way is still unknown to 

us, at least for those of us who think that a good physical theory should be mathematically 

consistent. 

It has been thought for a long time that the rigorous version of Feynman's path integral approach 

is Kae's one, involving Wiener integral and the theory of Brownian motion [21. Although it is 

rigorous, there are suspicions that this is not what we need for quantum physics. For example, the 

(Euclidean) program of constructive field theory, founded on Feynman-Kac formula, did not 

succeed in producing realistic quantum field theories [3]. On the other hand, it is certainly true that 

to deal with the heat equation (i.e. the "imaginary time" SchriSdinger equation) 

- l : i  ~O° • --~- = HO* (1.1) 

in L2(ffi3), for instance, with H the Hamiltonian observable of the system, simplifies considerably 

the analysis. This transfer principle from the SchriSdinger equation 

i~ ~-  = HW (1.2) 

to the heat equation (1.1) is called the Euclidean point of view. It has proved to be technically very 

useful in both non-relativistic and relativistic quantum physics [31, but the theoretical reasons for 

this efficiency are lacking. 

Another, completely different, Euclidean starting point for quantum physics has been introduced 

recently [4-5]. It involves a new class of (well defined) diffusion processes, the Bemstein 

processes, whose properties differ notably from the properties of the stochastic processes 

associated with Feynman-Kac formula. In particular, these processes have dynamical 

characteristics very close to the (formal) diffusions underlying Feynman's path integral, including 

the time reversibility. 
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It is not the first time that time-symmetric diffusion processes arc used in relation with 

foundational questions of quantum mechanics: this has been done twenty years ago by E. Nelson 

[71. The basic point of his theory ("Stochastic Mechanics") was to deal directly with the 

SchrSdinger equation (1.2). The theory that we are advocating here ("Euclidean Quantum 

Mechanics" [5]), although it uses some common technical tools, is different and much easier to link 

to Feynman's original strategy. In particular, it stied some new light on Feynman's version of 

Least action pdnciple, in a generalization of classical calculus of variation which may be of some 

intrinsic interest for the specialists of control theory. 

It should also be noticed that Euclidean Quantum Mechanics (EQM) has been inspired by a 

forgotten idea of E. Schr&linger [8]. 

In the present contribution, we are going to focus on the case of a unit mass and charge particle in 

an electromagnetic field, namely a self adjoint Hamiltonian for (1.2) of the form 

~2 
H = - .~- [37 -i n'~]2 + qo (1.3) 

on L2(R3), where ~ = "~(x) is the vector potential and 9 = q>(x) is the scalar potential such that the 

-I, 4 

magnetic and electric fields H and E satisfy 

= rot'  (1.4) 

Afterwards, the arrows are reserved for electromagnetic data. First, wc are going to assume the 

T T 
existence of a certain IR3-valued diffusion process Z t, t in I = [- ~-, ~ ] and to describe its 

properties. We shall discuss later the question of its existence. 
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Let us denote by h(x,t-s,y) the integral kernel o f  e - ( t -s)H,  as an operator in L2(IR3). Even when 

the scalar potential q) is zero, the Hamiltonian H of (1.3) is such that e - ( t - s ) H  is not positivity 

preserving (it is not even reality preserving). 

In a Euclidean approach, however, the quantum mechanical momentum P = - iV should become -V 

since the time parameter x of  the SchrSdinger equation is analytically continued, x ~ -it. It is 

therefore natural to consider, as Euclidean version of (1.3), 

n2 [V + ri-'~] 2 + ~ (1.3') 
H A = - -~- 

-l' °-1. 
where A corresponds to - ]a .  

Let us consider a positive (smooth) solution O* of Eq. (1.1) for the Hamiltonian H A. Let us define 

I .(x,t)  = -h  log O*(x,t) (2.1) 

It solves the following nonlinear partial differential equation 

al. I] 4 I~ "]' 
"E- ~AI, + (VI,-A)VI, = ~ [ VI,-~ [2 + (l) + (VI,-~).~ - ~V.A (2.2) 

Comparing the left hand side with the backward infinitesimal generator of an ~3_valued diffusion 

.-) 

process Z t with diffusion coefficient ~ and (backward) drift B, = VI,-A. namely the second order 

differential operator D, defined for any smooth f:IR 3 x ~ -+ IR 3 by 

D,f(x.t) = ( a + B,V - ~V) f(x.t) (2.3) 

we observe that (2.2) reduces to 
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D,I,(z,(t),t) = ½ ID,Z(t)I 2 + ¢p(Z(t)) + A.D,Z(t) - ~ V.A (2.2') 

Now consider (formally) the classical limit h = 0 of this expression. Then t ~ Z(t) has a 

strong derivative, and D,f(Z(t),t) reduces to d f(Z(t),t). In particular, the r.h.s, of (2.2') continuous 

is the (Euclidean) Lagrangian of the system and. therefore, the l.h.s, is the derivative of the 

(Euclidean) Hamilton's principal function. For h ~ 0, we call I , ,  defined by (2.1), the backward 

Hamiltonian principal function (or simply Action function) associated with the starting Hamiltonian 

(1.3'). We also define the Lagrangian L of the system by the right hand side of (2.2'), namely 

L(Z(t),D,Z(t)) ~ ½ ID,Z(t)l 2 + q)(Z(t)) + A.D,Z(t) - ~- V.A (2.4) 

Let us show that these definitions are dynamically consistent. Taking the gradient of (2.2) and 

• .q, --1, 
using the vector identity V(a .b) -- ~V~a + ~V~ + ~ x rot "~ + ~ x rot ~, we obtain 

D,D,Z(t) = Vq0 + D,Z(t) x rot A - ~. rot rot A (2.5) 

This is clearly a generalization of the classical Newton equation for the Lorentz force acting on the 

charged particle. The change of sign of the force is natural in a Euclidean description. 

The presence of h in the definition of the Lagrangian (2.4) may seem alarming, but it is not. The 

conditional expectation of (2.2'), given the future position Z(t) = x, and a time integration, yields 

I,(x,t) - Ex,t[l,(Z(4), -~-)] = 

t t 

x,t J {7 ID,Z('012 + ~p(Z(x))}d't E t +Ex, t f [~.D,Z(~) 11 
d i d  

- ~ V.A )d'l; 
-T/2 -T/2 

But, according to ItS's calculus [141, the second term of the right hand side reduces to 

(2.6) 
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t t 

Ex, t f { A . d Z - ~  f V.~)dx 
-T/2 -T/2 

t 

= Ex, t A o dZ 

- 2 

• .4, -.) 
where fA .dZ  and fA o dZ denote respectively the backward ItG's integral with respect to a 

decreasing filtration F t (i.e. the sigma algebra generated by Z(u), u > t) and the symmea'ic Fisk- 

Stratonovich integral. Therefore the action function can also be expressed as the very classical 

looking path integral 

t t 

-w  2 -r/2 

Given (2.4), it is natural to call Generalized Potential U = U(Z,D,Z) the function 

(2.7) 

h -> 
U(Z,D,Z) = 9(Z) + A.D,Z - ~V.A (2.8) 

Observing that 

D ( a U ~  OL "~ 11 , ~  - ~-~ = - (Vq~ + D , Z  x rot A - ~ rot rot A ) (2.9) 

the Lagrangian (2.4) reduces to 

L(Z,D,Z) = T(D.Z) + U(Z,D,Z) (2.1o) 

for the Kinetic Energy T(D,Z)  = ½ ID,7-J 2. 
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It follows from Eqs, (2,5) and (2.10) that a (stochastic) Euler-Lagrange equation holds 

, aL ~ aL 
D,t - r e =  0 (2.,,) 

This method of derivation uses only the decreasing filtration F t and therefore breaks the natural 

time symmetry of quantum theory. But let us observe that we can do the same using an incresing 

filtration Pt' the forward analogue ot (2.3) (for B the forward drift) 

~3 -~ A) f(x,t) Df(x,t) = (~" + B.V + 

~3~9 
and starting from a positive solution of the backward heat equation I~ ~ = HAO (well defined in 

§5). Then, the analogue of Eq. (2.5) becomes 

DDZ(t) = Vq~ + DZ(t) × rot ~ + ~- rot rot A. 

In particular, if a unique diffusion Z t adapted simultaneously to F t and ~t exists, it solves the time 

symmetrie Newton equation 

- )  

½ (DDZ(t) + D,D,Z(t)) = Vq~ + ½ (DZ + D,Z) x rot A 

involving exclusively a natural generalization of the Lorentz force. The §4 will elaborate the 

meaning of this remark. 

On the other hand, the stochastic differential of the starting action function I ,  is also defined by 

dI,  = VI, . dZ + ~t* dt (2.12) 

The comparison of this expression with its classical counterpart (when ~ = 0) suggests to define 
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the Coaekward) Momentum and Energy of the system respectively by 

aL p,  E ~ = VI, (2.13) 
ot.,.z, 

and 

0I, 
e .  -- ~ -  (2.14) 

A straightforward calculation using (2.2') shows that 

D.e,(Z(t),t) = 0 (2.15) 

In other words, e ,  is an Ft-martingale, a natural generalization of the classical conservation of 

energy in our context. 

A very important property of Lagrangian mechanics is the gauge invariance. Suppose that, to the 

starting Lagrangian (for example the one of (2.7)), is added the derivative of a smooth function F in 

such a way that 

t t 

I,(x,t) = Ex, t S L(Z'D*Z)ds+ Ex,t f D,F(Z,s)ds+ Ex,t 'I,(Z(-T),-~) 
-T/2 -T/2 

(2.16) 

or equivalently I.",(Z,D,Z,S) -- L(Z,D,Z) + D,F(Z,S). The explicit form of the supplementary 

integrand, according to (2.3), is 

D , F =  ~ -  + D , Z . V F -  AF 

It is immediate to verify that, for such a "Lagrangian" D,F, the Euler-Lagrange equation (2.11) 

reduces to an identity. This means that, as in classical mechanics, the Euler-Lagrange equation 
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(2.11) are invariant under the gauge transformation L ~ L + D,F. 

Clearly, (2.16) corresponds to the following relation between actions, 

~,(x , t )  -- I,(x,0 + F(x,t) (2.16') 

This means that, under the same transformation, the Momentum and Energy (2.13) and (2.14) 

become 

~,  = p ,  + V F  (2.13')  

~F 
5, = e ,  +-~- (2.14') 

as in classical mechanics (up to an "Euclidean" sign). 

On the other hand, by (2.1),'i,(x,t) --. -h log O*(x,t) and (2.16') gives the simple relation 

~ ,  -- ~,(x,t) e-F(x't) (2.17) 

It follows immediately that O, solves the heat equation 

~)~, h 2 ") 2 ~ ~ .  
- fi-~.-= --~. (V + fi'lA = VF) 0 ,  + (q:) + )~, (2.18) 

if @, solves (1.1) for the Hamiltonian H A. This is clearly the Euclidean version of a local gauge 

transformation in the SchriSdinger equation (1.2) 

The construction if valid for any regular positive solution of (1.1). in particular for its integral 

kernel. In this case, the similarity with Feynman path integral is very striking. 

The necessity to use a symmetric integral to describe vector potential has been shown by Feynman 

is his original paper (1948). If our postulated diffusion process really exists, it has the dynamical 

properties we need to construct a natural extension of classical mechanics compatible with 

Feynman's ideas. 
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The validity of  (2.11) suggests the existence of a variational calculus in which the action 

functionals are of the form (2.7). For A = 0. cp = V the following result holds: 

Th~l~r~r/l 

Let L the (Euclidean) Lagrangian L(q,dl) = ½ IQI 2 + V(q). A smooth diffusion process Z(s), 

soludon of the Newton equation 

T 
D,D,Z(s) = VV(Z(s)) -~- < s < t 

minimizes the action functional 

t 

J[Z(.)l= E×, t f L(Z(s),D,Z(s))ds+EtI,(Z(-~-),--~) 
-T/2 

o n  the set of neighbouring processes Z e such that D,Ze( - Y) ffi VI,(Ze(_ 2 ) _  T) and Ze(t) = x. 

The relevant family of neighbouring diffusions contains IR3-valucd Fs-semimartingales of the 

form 

(d,Z~(s) = + d.W.(s) B~(Ze(s).s)ds 

Ze(t) = y 

T 
- ~ < s < t  2 (3.t) 

for W,(s) an Fs-martingale, and perturbed drifts defined by 
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(3.2) 

where g,  is smooth, but arbitrary, and 8 is a small parameter. When ¢ = 0 ,  the process Z 8 is 

the one of §2 (for ~ = 0 ) .  The proof is elementary, starting from (2.1), I,(Ze(s),s) = - h 

log O*(Ze(s),s), using the Theorem of variation of a stochastic differential equation with respect 

to a parameter, and the inequality 

½ + (3.3) 

with equality iff 8 ffi O. 

The point is that the stochastic Hamilton-Jacobi equation (2.2) is an equation of Dynamic 

Programming familiar in Optimal Stochastic Control Eq. (2.1) is a logarithmic transformation in 

the sense of W.H. Fleming (Cf. [9], and these proceedings). The idea of a stochastic calculus of 

variations of this kind for quantum mechanics (in the context of Nelson theory) is due to K. Yasue 

[101. It gave rise to a lot of interesting works (Cf. references in [7] (1985) and [151, for example). 

§4. Existence o f  diffusions 

The odd point of the strategy suggested in §2 is that it is time assymmetric. Clearly, if a 

diffusion process can be used to give a meaning to Feynman's path integral approach of quantum 

mechanics, it should be a time symmetric diffusion process. Since we are dealing with the heat 

equation (1.1), the situation seems hopeless. 

The solution of the puzzle was suggested by Schr&linger 50 years ago [8] and developed in 

[4, 5 and 61. We summarize here this solution since it cannot be regarded, as yet, as common 

knowledge. We say that a Hamiltonian H is in the Sch~dinger class if h(s,x,t,y) = h(x,t-s,y) ffi 

kernel [e -(t-s)H} is jointly continuous in x ,  y, t -s ,  and strictly nonnegative. 

We observe that 
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h(s,x,t,~,,v,y) = h(s,x,t,~)h(t,~,v,y) T T 
h(s,x,v,y) ---<2 s < t < v < ~- (4.1) 

x ,~ ,y  in ~3 

is the density of a probability measure with respect to d~, called a Bernstein transition [4-5]. 

A stochastic process Z t : f~ ~ R 3 is a Bernstein process iff for any bounded Borel 

measurable g, 

TT 
E[g(Zt) 1% u F u] -- E[g(Zt) I Z s, Z u] V s < t < v in I -- [ -p ~] (4.2) 

where ~' is the increasing f'fltration till s (the "past") and 9" u is the decreasing filtration from u 
S 

(the "future"). This is, in modern terms, the local Markov property, perfectly time symmetric. 

The usual construction of diffusion processes starts from the data of an initial probability, a 

(forward) transition probability and reconstruct the f'mite dimensional distributions according to the 

picture: 

-T/2 
future 

It is also possible to do it from a final probability and a (backward) transition probability: 

past f ~ F ~ t " ~ o - ~  time 
-T/2 

The following Theorem, due to Jamison [11], shows that a joint probability measure and a 

Bcmstein transition determine a Bemstein process on I = - ~  ~.- according to 

~ time 
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Thcomn 

f T T Let H(s,x,t,B,u,y)= h(s,x,t,d~,u,y) b c a B e m s t e i n t r a n s i t i o n , - ~ - < s < t < u < ~ - , m b e a  
B 

probability measure on the Borel sigma algebra B(~ 3) x B(~ 3) . Then there is a unique 

probability measure Pm such that with respect to (£2, a I, Pm ) (where a I is the sigma-algebra 

generated by Z t , t in I ) Z t is an ~3-valued Bemstein process and 

a) Pm(Z T/2  ~ Bs, Z.I,/2 ~ BE) = m(B s x BE), B s, B E in B(IR 3) 

b) Pm(Zt ~ B I Z s, Z u) = H(s, Z s, t, B, u, Zu), B in B(IR 3) 

c) P m ( Z T / 2  E Bs, Ztl ~ B 1 ..... Ztn ~ B n , Z T / 2  E BE) = 

f f r 
J dm(x,y) J H(-T/2, x, tl,dx 1, T/2,y)... J H(tn_l,Xn_l,tn,dX n, T/2, y) . 

BsxB E B t Bn 

The proof can be found in [11] (cf. also [4]). Its key idea is that, for fixed initial position, a 

Bemstein transition is a backward Markovian transition probability and, for a fixed final position it 
is a forward one. 

The resulting Z t , t in I ,  is obviously not Markovian in general. To get a Bernstein 

Markovian one and only one choice of joint probability m is possible, namely 

f 
m = M(BsxB E) = J ~*_T/2(x)h(x,T,y) (gT/2(Y)dxdy 

BsxB E 
(4.3) 

for any (unspecified) bounded positive measurable 0"=T/2" OT/2" With this choice, the finite 

dimensional distributions of Z t reduce to 

f 
pM(dXl,tl,..,dXn,tn) ~ j O* T/2(x)h(X,tl + T/2, dXl)...h(dx n, T/2 -tn,Y)C)T/2(Y)dxdy. (4.4) 

~3x~3 
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T 
for T < t  1 < t  2 <... < ~-. 

The data that we are given, actually, are a pair of initial and final probability densities p_T/2(x)dx 

and p,r/2(Y)dy. So the marginals of the joint probability M give a system of non-linear 

functional equations for 0"_,1,/2 and 0T/2 ,  discovered by SchriSdinger [8]: 

t 
~)_T/2(x) J h(x,T,y) ~gT/2(y)dy = p_T/2(x) 

R 3 

@T/2(y ) f @*T/2(X) h(x,T,y)dx = PT/2(y) 
[i 3 

(4.5) 

The existence theorem for the measure of the Markovian Bemstein process Z t , t in I, uses a 

general result of Beurling [121 Cf. also [4-51: 

For H in the Schr~dinger class and P-T/2  ' PT/2 two strictly positive probability 

densities, then positive (not necessarily integrable) solutions {O*-T/2' 0T/2} of (4.5) exist and 

are unique. 

The process Z t is then entirely determined, for t in I. It is a diffusion process without killing. 

For the Hamiltonian (1.3') its (backward) drift and diffusion matrix are, respectively, given by 

B,(Z(t),t) = (VI, - A) (Z(0,t) 

C.(Z(0,t) = n l (4.6) 

where 1 is the 3 x 3 identity matrix, as predicted in §2. 

The Bernstein diffusion Z t is time symmetric. For each t in I ,  its probability density is 
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p(x,t)dx = O0*(x,t)dx 
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(4.7) 

where O* solves the initial value problem (1.1) for O*(x, -T/2) = O*_TI2 and 0 solves the 

final value problem 

D0 ~-= He 

for e(x, T/2) = 0T/2(x) ,and the pair @*-TIT ~TI2 is a solution of the $chr6dinger systcms 

(4.5). For a more accurate summary of the construction cf [16]. 

§5. Hilbert space approach. 

The sense in which the new resulting theory can be regarded as an Euclidean version of 

quantum mechanics (EQM) is clarified by the following analytical description. (Cf. [6].) 

For H bounded below, the functional calculus cnablcs us to take thc analytical continuation 

of a solution of the initial value problem for the Schr'ddingcr equation (1.2) (for h = I). Thcn 

~0 

-OB 

(4.8) 

where {EH(~.)} is the spectral family of H,  solves the initial value problem for (1.1) in L2(~3). 

Suppose that Z is an analytic vector for H with convergence radius T /2 .  Then 

is also well defined, for t in I = [ -T/2, TIN.  

(4.9) 
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Observing that 

0~O*x(x,t)dx = Izg], (4.10) 
R 3 

one defines a dense linear subspace of L2(R 3) by 

~'~t --- {~*X (t) = e-tI-Ix' Z in a~(e(T/2)H)} (4.11) 

where a~(e (T/2)H) denotes the dense set of analytical vectors for H with convergence radius T/2. 

Define U;  1 : 71,, t ~ D(e(T/2)H) by ~*x(t) ~ X and a scalar product in ~ ' t  by 

(O*Xl(t) I O*x2(t)) t = <ut lO*xl ( t )  I u t lo*x2( t )>2 

-- <X 1 Ix2>2. (4.12) 

The completion of 7I# t with respect to (- I ")t is an Hilbert space denoted by 71,* t, and called the 

forward Hilbert space. ( ' ~ t '  ( ' l ')t) can, actually, be identified with (L2,<-1->2) because 

U t  1 has a unitary extension from q'*t onto L 2 . In particular, each quantum mechanical operator 

on L2(R 3) has its Euclidean analogue: if A : D(A) -, L2(R 3) is an observable, then 

F - = ¢=tH etI-I : (4.13) A_t = U t A U t I A Uta~(A ) c 'V* t ~ q'*t 

defines the forward operator associated with A .  

So, under proper restrictions on the domains, the Euclidean version of Heisenberg equation 
of motion is valid: 
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d A F [A,H]tF ( 4 . 1 4 )  
- ~ "  t ~ 

4 
For example, the simplest Hamiltonian (1.3') with A = 0 corresponds here to 

H = - ½ p2 + q~(Q) (4.15) 

(since iP is the quantum mechanical momentum) and then 

dQ~ F dPtF V¢(Q~) (4.16) 
dt = P t  ' dt = 

are the (Euclidean) Hamilton equations. 

There is a natural probabilistie interpretation of these Euclidean observables, namely for X', X 

regular enough and positive such that, according to (4.7), 11 X, ri*x(x,t) dx is the probability density 

ofa Bemstein diffusion Z(t), t ~ I, 

(O*x,(t) lQO*x(t)) t = (O*x,(t) lUtQt FUtl~*x( t ) ) t  

= <z ' IQ  F X> 2 

= F_~Ct)] (4.17)  

and similarly for the other observables. 

Some results of §2 become easier to interpret. For example, (2.13) means that 

VO* p ,  = VI,  = -  (4.18) 
0* 
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where P is the Euclidean momentum. If  we regard the 1.h.s. of (4.18) as a random variable, using 

(4.7), 

E[p.! = J" ePO* dx ,~ (e*(t) I P0*(t)) t . 

The same is true for the other observables. 

Euclidean Quantum Mechanics has a dynamical structure which is notably different from 

F d 
Nelson's Stochastic Mechanics. For example, if one defines a constant of  motion A t by d"~ 

F 
A t = 0 as suggested by (4.14), one shows easily that the associated random variable 

a ,  = a,(Z(t),t), t in I ,  is an ~rt-rnartingale, i.e. that D.a.(Z(t) , t)  = 0 .  (4.19) 

This is an important aspect of the probabilistic structure of EQM, which is without equivalent 

in Nelson's theory. 

§6. A brief history of  Euclidean Quantum Mechanics. 

The basic idea of EQM is due to E SchriSdinger [81. Then S. Bernstein, R. Fortet, A. Beurling 

and B. Jamison contributed to the mathematical clarification of Schr~dinger's intuition : cf  [11], [12] 

and references therein. The relation with quantum dynamics has been discovered in [4]. It was 

initially motivated by open problems in Nelson's Stochastic Mechanics. Then, the Euclidean 

approach has been developed on its own [51, under the name of  "Euclidean Quantum Mechanics", 

and can be regarded as an alternative starting point for a Euclidean program of field theory. In [6] 

the Hi/bert space approach of  the theory is elaborated. 
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I .  I n t r o d u c t i o n  

I n  r e c e n t  y e a r s ,  i n t e r e s t  h a s  d e v e l o p e d  i n  t h e  c o n n e c t i o n s  b e t w e e n  s t o c h a s t i c  

control theory, dynamic programming and quantum mechanics [i-4, 7, 12, 13] and (related) 

varlatlonal approaches [9, II, 14, 15] to Nelson's stochastic mechanics [10]. In this 

paper, we will start by considering two stochastic optimal control problems, one 

"forward" in time, one "backward" in time. We show that, if there are solutions to the 

extended Hamilton-Jacobi equations associated with the control problems, then there is a 

solutlon of a Schr~dingar equation and conversely, if there is a sufficiently 

well-behaved solution to a Schr~dinger equation, there are solutions to a pair of 

extended H-J equations. We note connections with Nelson's stochastic mechanics. The H-J 

equations are equivalent to a pair of inhomogeneous "backward" and "forward" heat 

equations via a well-known exponential transformation. One may thus pass from these to a 

Schr~dinger equation (and back). 

2. D e f i n i t i o n s  and  N o t a t i o n s  

We a s s u m e  a g i v e n  u n d e r l y i n g  p r o b a b i l i t y  s p a c e  ( O , F , P ) .  E n d e n o t e s  n - d l m e n s i o n a l  

E u c l i d e a n  s p a c e ,  ( t o , t 1 )  a n  i n t e r v a l  i n  E 1. S d e n o t e s  ( t 0 , t l )  x En; S - [ t 0 , t l ]  x E n .  

D e f i n i t i o n s  o f  s t o c h a s t i c  p r o c e s s ,  Brownian  moCion w i l l  be  t a k e n  f rom [6] a s  w i l l  o c h e r  

elements of our framework which will be noted below. 

A solution of a stochastic differential equation 

dE - b ( t , ~ ( t ) ) d t  + o ( t , ~ ( c ) ) d w  (2.1) 

w i t h  i n i t i a l  d a t a  ~ ( s )  - x i s  t o  b e  i n t e r p r e t e d  a s  i n  [6] a s  a s o l u t i o n  o f  t h e  i n t e g r a l  

e q u a t i o n  

t t 

( ( t )  - ~¢(s) + j" b ( r , ~ c ( r ) ) d r  + j" o ( r , ~ C ( r ) ) d w ( r )  

s e 

( 2 . 2 )  
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Here, w is standard Brownish motion of dimension n. With the vector notation 

(-(~I .... ~n), b-(bl...bn), we have 

n 
d~ i - bi(t,~(t))dt + ~ ai1(t,~(t))dwl 

~-I 
i-1,...n 

_I ,2 
The notation ~p (S) denotes the class of functions ~ in CI'2(S) (meaning C I in t, 

C21n x) which satisfy J~(t,x)~ ~ D(I+~xJ k) for some constants D,k, when (t,x) ~ S. 

3. 

in 3.1, then the symmetric "backward" problem, Problem 2, in 3.2. 

V will take values in E n. 

3.1 Problem I 

Consider the stochastic differential equation 

d~ - v(t,~(t))dt + odw 

with initial data ~(s) - x • E n, at time s • (t~,tl). 

Brownian motion, and 

ai3 - 2/~ 6ij 

where 6 is the Kronecker delta, and D is a positive constant. 

to a class of admissible control functions defined as follows: 

Two Stochastic Optimal Control Problems 

We consider first a "forward" stochastic optimal control problem, Problem i, 

The controls v and 

(3.1.1) 

Here, w is a standard n-dimensional 

We assume that v belongs 

Definition 3.I.A [6]. A feedback control law v (the term feedback refers co the fact 

that the control is a function of the state ((t)) is admissible if v is a Betel 

measurable function from S into E n, such that 

(a) For each (s,x), t o ~ s ~ tl, there exists a Brownish motion w such that (3.1.I) 

with Inltial data ~(s) - x has a solution (, unique in probability law; and 

(b) For each k > 0, Esx~(t)~k is bounded for s ~ t ~ tl, and 

tl r 
Esx | [v(t,~(t))Ik dt < -- 

s 

(the bound may depend on (s,x)). The subscript sx refers to the fact that 

~(s) - x. 
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Either of the following conditions are sufficient for the admissibility of v: 

(i) For some constant MI, Iv(t,y) l $ S1(l+ly I) for all (t,y) , S. Moreover, for any 

bounded Borel set B c E n and t o < t' < tl, there exists a constant K I such that, for all 

x,y ¢ B and t o ~ t ~ t', 

I v ( t , x )  - v ( t , y )  l ~ Z l l x - y l  

(K I may depend on B,t'; and both M1, K I may depend on v). 

(ii) V satisfies a Lipschitz condition on S. Further, if (i) or (ii) holds, the 

Brownian motion w can be specified in advance, which is the case in Problem I. 

Now, for (t,x) e S and v z E n, let 

L(t,x,u) - ½ mu 2 + Q(t,x) (3.1.2) 

where q is continuous on S, and let WI: E n ~ R+ (R+ denoting non-negative real numbers) 

be continuous and assume 

[q ( t ,x )  I ~ C(, + I x l )  k (3.1.3) 
%<x) ~ c<, + Ixl) k 

for some constants C,k. 

We define a cost function 

s 

The conditions on Q and W 1 ensure that J is finite. 

Now let the optimal control problem be as follows: Find an admissible feedback 

control v*, among all admissible feedback controls, which minimizes J(s,x,v). The 

following Verification Theorem gives sufficient conditions for the existence of a 

minimizing v*. 

Theorem 3.I.B [6J= Let W(e,x) be a solution of the dynamic programming equation 

n 
aw 1 

( s , x )  • s 

with  boundary  d a t a  

W(t 1,x) - W 1(x), x ~ E n, 

( 3 . 1 . 4 )  

(3.1.5) 
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such that W is in C~'Z(S) and continuous on S. Then, 

(a) W(s,x) ~ J(s,x,v) for any admisslble feedback control v and any initial data 

(s.x)  c S. 

(b) If v* is an admissible feedback control such that 

n aw )z 

n 
aW 1 . .I..,En [ D~W + l ~ . i ~ + _  ~ =.z + qCs.x)] (3 .z .4 )  

f o r  a l l  ( s , x )  e S, t h e n  W(s , x )  - J ( s , x , v * )  f o r  a l l  ( s , x )  ~ S. 

T h u s ,  v* is o p t i m a l .  

Now let us assume that there exists a W satisfying the hypotheses of the 

Verification Theorem, and an optimal control v*. 

in E n, which is open 

my* - - grad W for all (s,x) E S (3.1.6) 

and 

Then, since the controls take values 

8w 
a"-~ " " D~,W + ( g r a d  W) 2 - Q ( 3 . 1 . 7 )  

f o r  a l l  ( s , x )  e S .  E q u a t i o n  ( 3 . 1 . 7 )  i s  a n a l o g o u s  t o  t h e  H a m i l t o n - J a c o b i  e q u a t i o n  o f  

c l a s s i c a l  m e c h a n i c s ;  we s h a l l  r e f e r  t o  i t  a s  a n  e x t e n d e d  H a m i l t o n - J a c o b i  e q u a t i o n .  

3.2 Problem 2 

Now let us introduce another type of admissibility for a feedback control function 

as follows: 

D e f i n i t i o n  3 . 2 . A  A f e e d b a c k  c o n t r o l  l a w  V i s  b a c k w a r d  a d m i s s i b l e  i f  V i s  s u c h  t h a t  

V(,,x) - - ~(t0+t1-s,x) for all (,,x) ( S, and 

^ 
v i s  a n  a d m i s s i b l e  f e e d b a c k  c o n t r o l  l a w .  

We c o n s i d e r  t h e  s t o c h a s t i c  d i f f e r e n t i a l  e q u a t i o n  

d~ - v(..,(.))d. + ~d~ (3.2.1) 
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where ~ is a backward admissible feedback control law, and 

~(,) = w(to+t I-,). 

We say 1:hat ~ is a solution to (3.2.1) with terminal data ~(o) - y c E n, with 

t o ~ f < o ~ t I ,  i f  q s a t i s f i e s  the  i n t e g r a l  e q u a t i o n  

~(r)- q(o)- ~V(r,~(r))dr- ~ 2J~d~(r). 
f T 

By makin~ the change  o f  v a r i a b l e  

T - 1:0 + 1:1 - t ,  

o - 1:0 + t I - s ,  

I -- t o + t t - r 

(3.2.2) becomes 

I" ~ ( t o ÷ t l . t  ) - ~ ( t o + t t - s  ) - ~ ( t o + t l - I  , ~ ( t o + t l - l ) ) ( - d ~ )  

. i s  ~ d~(1:o+tl-1) 

^ 

Define q(~)  - ~(to+tl-2 ). Now (3.2.3) becomes 

^ ^ ~1:^ ^ ~1: 
,(t) - q(s) + v(~,~(A)) dl + 2J~ d~(t) , 

e s 

and we have 

^ 

.(s) - y 

We now d e f i n e  

{f.Cv i } J(s,y,v) - Esy [~ ( t , q ( ~ ) )  + Q ( t , q ( t ) ) ] d t  + W O ( q ( t l ) )  

" Eoy {~012 {V(r,,(r)))2 +Q(r,.(r))]dr + W0(.(t0)) } 

= ~ ( a , y . v )  

( 3 . 2 . 2 )  

(3.2.3) 

(3.2.4) 

(3.2.5) 

( 3 . 2 . 6 )  

Here Q i s  t h e  same a s  i n  P rob lem 1, W0: En ~ R+ i s  c o n t i n u o u s  and 
^ ^ 

Wo(Y) ~ C(1 + l y e )  k ,  ( C , k  as i n  ( 3 . 1 . 3 ) ) .  Thus, Q ( ~ , ~ ( ~ ) )  - q ( t 0 + t  1 -~ ,  ~ ( t 0 + t  1 - l ) ) .  

We now consider, as in Problem I, the problem of minimizing (3.2.6). For given 

terminal data y ( E n at time o ( (t0,tl] , we shall say that ~* is backward optimal if 
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~* is backward admissible, and 

for all backward  a d m i s s i b l e  ~. 

In view of (3.2.4) - (3.2.6), we have the following version of the Verification 

Theorem: 
^ 

Theorem 3.2.5 Let W be a solution of the dynamic programming equation 

^ ^ 

BW ~tn  ^ n ^ BW 1 ^ ^ 
0 - ~ + v~En [ D~W + i_ I~v i  a - ~  + ~ mvZ + q ( s . y ) ]  ( 3 . 2 . 7 )  

( s , y )  ~ S 

^ ^ I , 2  
w~th W(t~ ,y) l W~ (y) , y [ E n, such that W is in Cp (S) and continuous on S. Then: 

^ ^ ^ ^ 

(a) N(s,y) ~ J(s,y,v) for any admissible feedback control v and any initial data 

( s , y )  • S. 

^ 

(b) If v* is an admissible feedback control such that 

^ n A 
1 

DAW + i-E~ G~(s'y)a~ + ~ m _ v * _ s , y . .  2 (  ( ) ) ^  + Q ( s , y )  - 

( 3 . 2 . 8 )  ^ 

^ n ^ 8W I ^ G ''" [ D~W +i_ ~ ~ ~cZ n Iu£ + mv 2 + (s.y)] 

a ^ ^ 

for all (s,y) ¢ S, then W(s,y) - J(s,y,v*) for all (s,y) • S; v* is optimal 
^ 

Now suppose there exists a function W satisfying these hypotheses, 
^. 

and an optimal control v . Define 

^ 

W(o,y) - W(t0+t 1-o,y) , t o < o" < t I . 

^ 

a~ aw 
^ 

Thsn ~ ( t  o , y )  - W(t  1 , y )  and 
aa as " 

We define 

V*(a,y) - ~ * ( t o + t  I -s,y) = - v'Ca,y). 

Now we have 

0 - - ~ + DAW - i~ I- (V~(o,y) ayl 2 m(v*(°'Y))2 + Q(u'Y) (3.2.9) 



and. as in Problem I ,  

m~* - grad 

OF w ~  - 1 0-'~" ~ (grad ~)Z + Q 

We have l e t  

~ * ( s . y )  - - v * ( t o + t l - s , y )  , 

From (3 .2 .6 )  we have 

^ A 
3(a ,y ,V*)  - J ( s , y , v * ) .  
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o n  S .  

y e E U .  

(3 .2 .1o)  

(3.2.11) 

(3.2.12) 

If the Verification Theorem 3.2.B is satisfied, then ~* is optimal; that is 

From (3.2.6) and (3.2.11), (3.2.12) implies 

J(~.y,~) ~ ~(q,y,~*). 

for all backward admissible V. 

Therefore, if v* is an optimal control in the sense of Theorem 3.2.A, then ~* is a 

backward optimal control for Problem 2, and the converse ls also true. 

4. Extended Hamilton-Jacohl Equations t the $chr~dig~er Equation 
and Inhomogeneous Backward and Forward Heat Equations. 

4.1 Extended Hamllton-Jacobl Equations and the Schr~dinger Equation 

We have seen, that if there exist W, ~, v*, ~* satisfying the conditions 

of the Verification Theorems, then W is a solution of the equation 

8G 1 
~(t,x) -- ~ (grad G(t,x)) 2 + DdG(t,x) + Q(t,x) - 0 (4.1.1) 

( t . x )  , S 

(3.2.13) 

with 

(3.2.14) 

G(t I ,x) - W 1(x), (4.1.2) 
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with 
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i ~ (t,x) + ~ (grad G(t,x)) z - DAG(t,x) - Q(t,x) - 0 

( t ) x )  , S 

~(~o.x) -~o(x). 

(4.1.3) 

= ! (grad G*) 2 - 2DnG* - Q 
m 

then (4.1.7) becomes 

BH* 1 H.)2 1 G.)2 8--~-- + ~m (grad - ~m (grad + DAG* + Q - 0 

(4.1.8) is unchanged: 

0G* I H* G* 0-~- + m grad grad - DAH* - 0 

( 4 . 1 . 9 )  

(4.1.10) 

( 4 . 1 . 8 )  

(4,1,4) 

We now show that, when there are solutions G, G of (4.1.I), (4.1.3), then there are 

solutions of a Schr~dlnger equation. From now on D shall denote A/2m. 

Proceeding as in [4], with G* G+G H* G-G - 2 ' - - - ~ -  ) we have 

8_8C (G*-H*) - 2~ (grad(G*'H*))2 + DA(G*-H*) + Q - 0 (4.1.5) 

a_0C (G*+H*) +2~ (grad(G*+H*))2 + DA(G*+H*) - Q - 0 (4,1.6) 

Adding and subtracting (4.1.5)) (4.1.6) gives 

OH* I B,)2 1 2 0--t +~m (grad +~ (grad G*) - DAG* - Q - 0 (4.1.7) 

OG* 1 H* G* O--t-- + m - grad grad - DAH* - 0 (4.1.8) 

Equations (4.1.7), (4.1.8) are equations (19), (20), of [4], except for the potential 

Q which was taken to be zero in [4]. 

At this stage, we make the following observation: if we define 
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If we now multiply (4.1.10) by I, and subtract (4.1.8), we obtain 

I G.)2 
at (-G*+IH*) - - DAH* + ~ grad H* grad G* + ~m (grad 

i (grad H*) 2 2m - ID~G* -- IQ 

or 

i (grad(-G*+iH*))2 .iQ (4. I.Ii) a__at (-c*+ix*) - ID~(-C*+IH*) + 

Straightforward differentiation gives us 

Proposition 4.I.A. If G, G are solutions to (4.1.1), (4.1.3), then 

f-G*+IH*1 4 - axp[---F-- ] (4. i. 12) 

is a solution t o  

i. a_ ~ .,2 [(gramd G* )' hAG* QI 
at " 2--m- n~ + - 4. (4.1.13) r. 

Conversely, suppose we start with the Sehr~dinger equation 

^ 
. ~ 2  ^ ^ 

iA " 2Fro 44 " P4 (t.x) c 

with given potential P.  

4 - exp (4.1.15) 

and suppose that M and N are C 1 ,2 functions on S. 

we see 

8N I I 
~'-~ + ~m (grad N) 2 - ~m (grad M) z + DAM - P - 0 (4.1.16) 

8M 1 
a-~ + m grad N grad M - DAN - 0 (4.1.17) 

The passage from (4.1.14) to the pair of equations (4.1.16), (4.1.17) was used by Louis 

de Broglle for introducing his "theorle du guidage" (see [5l; equations (4.1.16), 

(4.1.17) are the so-called equations (J) and (C) of Louis de Broglle). Together with 

(4. i. 14) 

^ ^ 

Assume there Is a solution 4 of (4.1.14), 4 ~ 0, all (t,x), with 

Running the above arguments backwards, 
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this pair of equations he defined the quantum potential qp by 

1 qp - DnM - ~m (grad M) z (4.1.18) 

The purpose of the definition (4.1.18) was to reduce equation (4.1.16) to the form 

aN i a-~+~ (grad N) 2 + Qp - p - 0 (4.1.19) 

which is the Hamilton-Jacobl equation of classical mechanics for the motion of a mass- 

point in the potential P - Qp. As the reader may anticipate, if we next 
^ 

introduce the "modified potential" Q by 

^ ( g r a d  M) z (4.1.20) Q - P - 2qp - P - 2D~M + m ' 

then 

t 
~(N+.) +~ (grad (S+~)) 2 - D~(.÷a> - 6 - o 

1 ^ 
(M-N) -- ~ (grad (M-N)) z + DA(M-N) + q - 0 

Thus we have 

Proposition 4.I.B. If 

- exp - -  

is a solution as above to 

ih a_~ _~2 ^ at " 2m A~ " p~ ' 

then (M-N) is a solution t o  

aG 1 
^ 

(grad G) 2 + D~G + Q - 0 
a t  2m 

and (N+M) is a solutlon to 

aG 1 ^ 
+ ~ ( g r a d  ~)2 _ D ~ -  Q -  0 

(4 .1 .21)  

(4 .1 .22 )  

(4.2.12) 

(4.1.23) 

(4.1.24) 
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Equations (4.1.23, (4.I.24) are the eq.uatlons (4.1.i), (4.I.3) with q replaced by q, 

which is given by (4.I.20) (note that q is specified once P is given, and M and 

M subsequently determined). 

Remark 4.1.C 

Nelson's Stochastic Mechanics 

In [I0], Nelson considered a Markov process x(t) with forward and backward 

drifts b and b. and diffusion coeffIclenC A/2m as a model for the motion of a 

particle of mass m subjected to an exte~-nal force F. He showed, under assumptions, 

that if one defines 

. - 

z - { [ b + b . ]  , 

then u and z satisfy 

6u A 
8-¥- ~ grad(dlv z) - grad(z.u) (4.1.25) 

atSz F/m - (z.V)z + (u.V)u +~ au (4.1.26) 

Then, using the fact that in the derivation of the above equations u was shown to 

be a gradient 

u - A/m 8tad R 

1 
where R - ~ log p, the probability density of x(t), and assuming that z is a gradient 

also, 

z - A/m grad S, 

it Is shown that, In the case F - -grad V, 

% - exp(R+IS)  

s a t i s f i e s  the  Schr~dlnger  equa t ion  

.A 2 
i~ ~ - 2~-  ~ + v~. 

Conversely,  one may s t a r t  wi th  any (normalized)  s o l u t i o n  ~ to  a Schr~dlnger  

equa t ion ,  w r i t i n g  

- exp(R+iS) 

and 

h ~rad R A ~rad S 
u- ~ zm t m m 

b - = + u  , b . - z - .  , p -  l ~ [  z 
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The Markov process with forward and backward drifts b and b. and diffusion 

coefficient A/2m has probability density p. 

Now, if there exist W, W, v*, ~* satlsfyin 8 the conditions of the 

Ver~flcatlon Theorem,  then, le~£ng 

2 ' 2 ' 

W* and V* are solutions to (4.1.8), (4.1.I0), i.e,, 

aW* I V* W* at: + ~ grad grad - D~V* - 0 

8V* I V*) 2 1 
8 t  + 2mm (grad " 2mm (grad W*)2 + DAW* + Q - 0, 

. (grad W*} 2" 
m " iA AN* - Q 

Then 
f-w*+iV~q 

- e ~ p L ~  J 
is a solution to 

. . , 2  + | < ~ r e d ~ . > 2  

Letting 

u -grad W* grad V* 
m m 

b - z+u , b. - z-u , 

we h a v e  

b - -grad W - v* 
m 

b. - grad W . V. 
m 

T h i s  g i v e s  a n  i n t e r p r e t a t i o n  o f  t h e  f o r w a r d  and  backward  d r i f t s  o f  t h e  Markov 

p r o c e s s  i n  N e l s o n ' s  s t o c h a s t i c  m e c h a n i c s  a s  t h e  o p t i m a l  c o n t r o l s  v*  and  V*. 

A l s o  p - I~l  2 - e x p ( - 2 W * / h )  (4  n o r m a l i z e d  i f  n e c e s s a r y ) .  

T a k i n g  g r a d i e n t s  o f  ( 4 . 1 . 2 7 ) ,  ( 4 . 2 . 2 8 )  g i v e s  

a u  
a-~- -D~z -8rad(z.u) 

az -grad Q 1 1 
8-~- m - ~ grad z 2 + ~ grad u 2 + DAu 

( 4 . 1 . 2 7 )  

(4.1.18) 

(4.1.29) 

(4.1.3o) 
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if W*, V* are C 1,3 functions, and Q is C 1 in x. As D - ~/2m and u and z are 

gradients, these are the same as (4.1.25) and (4.1.26), with F - -grad Q. 

4.2 Inhomogeneous "backward and forward" heat equations 

Now, If we make the exponential transformation 

~(t,x) - exp(-G(t,x)/~) (4.2.1) 

in equa t ion  ( 4 . 1 . 1 ) ,  we have 

a_~ . -D~+ + q~ (4 .2 .2)  a t  h 

with 

~ ( t 1 ' x )  " exp [ ~ I  

S i m i l a r l y ,  if 

~ ( t , x )  - exp [ ~ (4 .2 .3)  

i s  put  in  ( 4 . 1 . 3 ) ,  we have 

a_~ . -Dn~ + ~ (4 .2 .4)  8t  h 

with 

Thus from P r o p o s i t i o n  (4 .1 .5)  and the above t r ans fo rma t ion  we have the fo l lowing  

Fact I. If ~ given by 

is a solution to (4.1.14), as in Proposition 4.I.B, then 

l )  ~ -- exp i s  a s o l u t i o n  o f  

C4.2 .S)  
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il) ~-exp [-~J is a solutlon of 

^ 

a t  

A 

ill) The square of t h e  modulus of Ib(t,x) i s  given by  
^ 

D(t,x)[ 2 - exp(-ZSl~) - 4(t,x) ~(t,x) = ~*(t,x) 

(4.2.6) 

iv) 

w h e r e  

4" is a solution o f  the Fokker-Planck equation 

n 

aa_~t*.. ~ a + D~$* (v£(t,x)÷*) 

2D 8@(t,x) i - ~ .... n. 
vi(t'x) " ~(t,x) ax i 

(t,x) c §. 

Conversely, let ~, @ be the solutions of the equations 

Ot " . ~ ( t O , i t  gn  

at " A ~ in (to,t I) x , 

( 4 . 2 . 7 )  

(4.2.8) 

( 4 . 2 . 9 )  

( 4 . 2 . 1 0 )  

satisfying conditions 

~ ( t 0 ,  ") " ~0 (4.2.n) 

~ ( t l , ' )  - 41 , ( 4 . 2 . 1 2 )  

where  R i s  b o u n d e d ,  c o n t i n u o u s  on S and  s a t i s f i e s  a H ~ l d e r  c o n d i t i o n  w i t h  r e s p e c t  to  x,  

a n d ~  0 and  41 a r e  n o n - n e g a t i v e ,  c o n t i n u o u s ,  and  bounded  f u n c t i o n s  on E n .  ( s e e  [8] 

f o r  e x i s t e n c e  and  u n i q u e n e s s  o f  4 ,  4 ) .  I t  m a y b e  s e e n ,  [ 8 ] ,  t h a t  

~ ( t , x )  > 0,  and  ~ ( t , x )  > 0 i n  S 

p r o v i d e d  t h a t  n e i t h e r #  0 n o r  ~I v a n i s h e s  I d e n t l c a l l y .  Now, d e f i n i n g  W, W by  

( 4 . 2 . 1 3 )  
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-- exp L-~J 

we see that ~ is a solutlon of 

with 

(4.2.14) 

G(tl,x) - -A log ~I (4.2.16) 

and W is a solution of 

0--~+ ( g r e d  ~ ) 2  _ D~G -- R - 0 ( 4 . 2 . 1 7 )  

w h e r e  

with 

G(t  O,x) - -A log  ~0 (4.2.18) 

Thus, from Propos i t ion  4.1.A and the above arg~uaents, we have 

Fact I I .  I f  ~, ~ are so lu t ions  to the Cauchy problems (4 .2 .9 ) ,  (4.2.11) and (4.2.10) ,  

(4 .2.12) ,  then 

~, W+W ~.. W-W 
"-i-' --~-' 

satisfies 

- t 2 - ~ - J  

Note: 

a) the solutlon ~ of the Schr~dlnger equation (4.2.19) depends, llke ~ and ~, on 

the Inltlal and terminal data of the Cauchy problems. 

(4.2.19) 

a.GG _ 1 ( s r a  d G)2 + DAG + R - 0 ( 4 . 2 . 1 5 )  
a t  2m 
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h) t[-~(t'x)*2=D ~(t,x)] [ ; ( c , x ) [  z - exp - ~ ( t , x )  ~ ( t , x )  

- ~*(t,x) . (4.2.20) 

Fact I is obtained in the proof of Theorem 4.3 of [15]; Fact II is more or less implicit 

in Theorem 4.4 and Corolla~ 4.4.1 of [15], however, the arguments here give Fact II 

more dlreculy. 

Example Homogeneous "backward and forward" heat equations, n - 1 

The s o l u t i o n  o f  

~-~- --D~ on [t0,tl] where 0 < t o < t I < T, (4.2.21) 
St 

.x2 

~,(x5 -J4~0(T-t, 5 

l s  known to be 

1 -x  z 

Similarly, t h e  s o l u t i o n  of 

~-~ - D ~ 
a t  

1 

Is known to be 

. i - x  2 

Then 

W(t , x )  - --2rod l og  ~ ( t , x )  

m x z 
- ~ ~ + mDlog(T- t )  + mDlog 4~D 

-- m x 2 
W(C,x) - ~ ~-- + mDlog t + mDlog 4.D 

t o < t -< t I (4.2.235 

(4 .2 .24)  

(4.2.255 

(4,2.265 

(4.2.27)  

(4 .2 .28)  
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NOW, 

+ mDlog 4.D 

= 4 It - + -~ (log t - log(T-t)) , 

2t(T--t) ' 

=f ~-2t ~I v~*(t,x) - ~L~J 

Thus, by Prop. 4.2.B, 

{ 

satisfies 

m(T-2t) 
~*(t,x) - 2C(T-t) 

h 

+ i L 4 Lt(z-t)J ~-1o~ 
h 

- -A 2 - T 2 AT 

(4.2.29) 

(4.2.30) 
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APPENDIX. AN EXISTENCE THEOREM. 

Theorem [ .  

If W 1 : E n ~ R+ , continuous on E n, satisfies 

Wl(X) ~ c ( I . x  2) 

for some C, and if Q, continuous on S, satisfies 

~ ~  K for some K, and for all (s,x) E (A'I) 0 

(A'2) Q i s  uniformly H~Ider cont inuous in  ( s ,x )  in  compact subse t s  of S,  

then there exists W satisfying the hypotheses of the Verification Theorem 3.I.B. 

First note that the exponential transformation has the property stated in 

Remark 1. 

The foUowlng  c o n d i t i o n s  are  equ iva l en t  

(1) F is a non negative continuous function oaT, and F(t,x) ~ A(I + x 2) for some A, 

and for all (t,x) E S, 

~i) f is a continuous function on S which satisfies 

] • f(t,x) ~ M exp( -ax2) ,  ( t , x )  £ S,  ( I)  

for some constants M, a, with I • M> 0, O • O, and 

F 
f = exp ( - ~ )  . 

Proof of Remark ]. 

(i) ~ (ii) 

P continuous on S implies that f is continuous on ~. Further 

0 ~ F(t,x) ~ A ( l + x 2 ) ,  (t,x) E S, 

implies that 

I • f(=,X) • exp(- A)exp( - ~-~ x2), (t,x) ~ F . 
A 

We let M - exp(-A/2mD), a - A/2mD. 

Since A • O, we have | > M > O, u ~ O. Therefore (i) ~ (il) is established. 

( i l )  ~ (1) 

From c o n d i t i o n  (])  i t  follows t h a t  

f ( t , x )  > 0 fo r  a l l  ( t , x )  £ ~ . 
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Then, f con t inuous  on S i m p l i e s  t h a t  F ~ - 2mD Log f i s  con t inuous  on E . 

Further 

l ~ f(t,x) ~ M exp(-a x2), (t,x) £ 

implies that 

O ~ F ( t , x )  ~ 2mD~x 2 - 2mD Log M, ( t , x )  E 

with -2mD Log N ~ 0 s i n c e  I ~ M> 0 . 

L e t t i n g  A ~ Sup (2mDa,  - 2mD Log M) we have 

O ~  F(t,x) ~A(l+x2), (t,x) E~, 

so that (ii) ~ (i) is established. 

Proof of Theorem I. 

Let N I : En~ R+ , continuous on E n, satisfy 

Nl(X) ~ C(I + x 2) (2) 

for some C, and let Q, continuous on S, satisfy (A'I) and (A'2). 

Consider the Cauchy problem 

~'~s - DG+2-~mD ~ in Eto,t,)~ n ~3) 

W{(x) 
~(tl,x) = Pl(X) ~ exp(---~) • (4) 

From the Theorem of If'in {8), it follows that there exists a unique continuous 

and bounded solution ~ to that Cauchy problem, and further 

~(s,x) > 0 for (s,x) E ~. 

Define N by 

~(s ,x)  - e~p(- %~_.---!)-- , (s,~) 

Substituting in (3) we obtain 

l (grad ~)2 + S~+ Q = O . 
3s 2m 

Now, let 

A --L l grad ~ for ali (s,x) £ S. 
m m 

Since 

aW ~ aW I 
~-'~7" + DA~ + ~ mv 2 + q(s,x) a--~+ 

V i 
£-I 

as a function of v on E n , has a unique minimum for 

(5)  

(6) 

(7) 

(8) 

(9) 

v - ~(s,x), and since from (7) 
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(8), (9), the value of this minimum is 

I (grad ~)2 + DA~ + Q = 0 
as 2m 

we conclude that : 

~(s,x) is a solution of the dynamic programming equation 

0 = ~s + mln DAg ÷ ~ ui "~x. + 7 mu2 + Q(s,x) , (s,x) E S 
~gn i- I x 

with boundary data 

~(tl,x) - wl(x), x ¢ z n • 

Further, since ~' is in cl'2(S), strictly positive and continuous on S, ~ is in 

cl'2(S) and continuous on S. 

What remains to be proved is that ~ satisfies a polynomial growth condition. 

For that purpose, we will use an expression of the solution to a Cauchy problem 

given in Theorem 5.3, p.148, of A. Friedman'. 

By (A'|), (A'2) together with the fact that Pl is continuous and bounded, the 

assumptions of that theorem are satisfied in the case of the Cauchy problem 43), 

(4), so that we have 

~(s,x) " I f  t p(~sx(tl))eXp ( - I i  I Q(°'~x(°))2mD do)d~(w) (,0) 

wlth~sx solution of 

d~- 2~-~d~ o n  [s,t l] , 

~(s) - x, 

where ~ is a standard n-dlmensional Brownlan motion with respect to some probabi- 

lity space (fl, F,~). 

since, by (A'l), 0 ~ (Q(s,x)/2mD) < K for some K and for all (s,~) E S, we 

have 

2mD do ~ exp(-K(tl-S)) ~ exp(-K(tl-to) ). (ll) 

t A. ~rledman, Stochastic Differential Equations and Applications, 
Vol. I, Academic Press, New York, 1975. 
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T h e r e f o r e ,  f rom (I0), (II) 

P (~sx(t l))d~(w) • 

(s,x) E 

( 1 2 )  

I l 
" 4D T-t ' 1 

M exp(-uy 2) = M 
[4.D(T_tl)]-n/2 k(tl'Y;T'O) • 

s o  t h a t  

with 0 < B ~ exp (-K(tl-to)) ~ I • 

Now, by the transformation formula for integrals (see (8)), (12) rewrites 

IZ n ~ ~(s.x) ~ B I (y)dy (13) k(s,x;t I.Y)pl (y)dy En k(s'x;tl'Y)Pl 

(s,x) £ S, 0 < B ~ I ,  

where k is the transition density of Brownian motion. 

Further, by (2), Remark l and (4) 

1 ~ p l ( y )  ~ M exp(-ay 2) , (14) 

f o r  some c o n s t a n t s  H, a ,  w i t h  1 ~ M > 0 ,  ~ ~ 0 . 

At l a s t  l e t  us  p rove  t h a t  ( 1 3 ) ,  (141 imply t h a t  

I > ~(s,x) > S exp (-~x2), (t,x) ¢ ~ , (15) 

for some constants N, B~ with I ~ N > O, B ~ O. 

Remember that 

k(s,x;t,y) = [4.D(t-s)] -n12 exp 4D t-s " 

The left-hand inequality in (15) is a direct consequence of the left-hand ine- 

qualities in (13) and (14), since 

I k ( s ' x ; t l ' Y ) P i ( Y ) d Y  ~ I k ( s ' x ; t l ' Y ) d Y  = 1 • 
g E n 

Note that it implies that ~(s,x) ~ 0 for all (s,x) E S . 

The right-hand inequality in (15) is a consequence of the right-hand inequa- 

llties in (13) and (14). Suppose a > 0 and define T > t I by 
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Then, from the right-hand inequalities in (13), (14) we deduce 

.BM ..... I k ( s ' x ; t l ' Y ) k ( t l ' Y ; T ' 0 ) d y  " 
[4~D(T-tl)]-n/2 E 

Further 

By Chapman-Kolmogorov formula, this is 

BM k(s ,x ;T ,O)  
[4~D(T_tl)]-n/2 

l x 2 
k ( s , x ; T , 0 )  = [4~D(T-s ) ]  -n}2  e x p ( -  4D T--~ ) 

[ 4 ~ D ( T _ t o ) l - n / 2  1 x 2 
exp (-  4--6 T-t---~ ) " 

T h e r e f o r e ,  t h e  r i g h t - h a n d  i n e q u a l i t y  i n  (15)  i s  p roved  w i t h  

f T - t l l ~ n  ! ! 
N - BM -- 8 " u . 

[T-toJ ' 4D T - t  I 

One can readily verify that I ~ N > 0, and we already have 8 > 0. 

For ~ - 0, (15) is trivial with N - BM, 8 " 0 . 

At last, by (6), (15), Remark I, and by the fact that ~ E CI'2(S) and is 

c o n t i n u o u s  on S : 

e c~'2(s) 
and is continuous on S, which concludes the proof of Theorem I. 



CIRSANOV TRANSFORMATION AND TWO STOCHASTIC OPTIMAL CONTROL PROBLEMS. 

THE SCHRODINGER SYSTEM ANDRELATED CONTROLLABILITY RESULTS. 

A. B l a q u i ~ r e  
U n i v e r s l t ~  P a r i s  7, L a b o r a t o i r e  d l A u t o m a t l q u e  T h 6 o r i q u e  

P a r i s  ( F r a n c e )  

I .  INTRODUCTION. 

At t h e  h e g i n i n g  o f  Quantum m e c h a n i c s ,  two t h e o r e t i c a l  f r a m e s  i n  good a g r e e m e n t  

w l t h  e x p e r i m e n t a l  d a t a  emerged ,  name ly  t h e  o n e s  a t t a c h e d  to  t h e  names o f  H e i s e n b e r g  

and S c h r ~ d i n g e r .  D u r i n g  t h e  p a s t  s a y  a b o u t  t w e n t y  y e a r s ,  t a k i n g  a d v a n t a g e  o f  t h e  

e v o l u t i o n  o f  m a t h e m a t i c s  i n  some domains  a s  s e m l - g r o u p s ,  s t o c h a s t i c  p r o c e s s e s ,  s t o -  

c h a s t i c  c o u t r o l l  o t h e r  t h e o r e t i c a l  f r a m e s  have  been  p r o p o s e d  [13 -16)  among which  

t h e  mos t  w i d e l y  known i s  p r o b a b l y  t h e  one o f  N e l s o n .  The f a c t  i s  t h a t ,  a t  t h e  p r e -  

s e n t  t i m e ,  we a r e  f a c e d  w i t h  two k i n d s  o f  t h e o r i e s  d e e p l y  d i f f e r e n t  : t h e  o l d e r  ones  

which  d e a l  w i t h  wave f u n c t i o n s ,  wave e q u a t i o n s  and a l l  t h e  m a c h i n e r y  a s s o c i a t e d  ~ t h  

them and t h e  more r e c e n t  o n e s  wh ich  d e a l  w i t h  s t o c h a s t i c  d i f f e r e n t i a l  e q u a t i o n s  and 

p a r a b o l i c  e q u a t i o n s .  T h i s  h a s  r e o p e n e d  an o l d  d e b a t e  s i n c e ,  among t h e  t h e o r e t i c a l  

p h y s i c i s t s ,  t h e r e  i s  a r o b u s t  t r a d i t i o n  o f  r e s i s t a n c e  t o  t h e  i n t e r p r e t a t i o n  o f  quan-  

tum phenomena i n  t e r m s  o f  c l a s s i c a l  d i f f u s i o n  p r o c e s s e s .  

One r e a s o n  f o r  p h y s i c i s t s  to  r e j e c t  t h e  interpretation o f  quan tum phenomena i n  

t e r m s  o f  c l a s s i c a l  d i f f u s i o n  p r o c e s s e s  i s  t h a t  d i f f u s i o n  p r o c e s s e s  a r e  u n a b l e  to  

a c c o u n t  f o r  i n t e r f e r e n c e  phenomena .  T h i s  i s  p a r t l y  t r u e  and p a r t l y  wrong .  

T h i s  i s  t r u e  i n  t h e  s e n s e  t h a t  t h e  t h e o r y  o f  d i f f u s i o n  p r o c e s s e s  i s  b a s e d  on a 

" s u p e r p o s i t i o n  p r i n c i p l e * ' ,  whose  one e x p r e s s i o n  i s  K a c ' s  f o r m u l a  ( a n o t h e r  one i s  

t h e  e q u a t i o n  o f  Chapman-Kolmogorov)  wh ich  d o e s  n o t  a c c o u n t  f o r  i n t e r f e r e n c e  p h e n o -  

mena.  I n  c o n t r a s t ,  t h e  t h e o r y  o f  wave e q u a t i o n s  s u c h  a s  t h e  S c h r ~ d l n g e r  e q u a t i o n  

i s  b a s e d  on a n o t h e r  " s u p e r p o s l t i o n  p r i n c l p l e " p  whose one  e x p r e s s i o n  i s  F e y n m a n ' s  

f o r m u l a  ( a n o t h e r  one i s  t h e  p r i n c i p l e  o f  H u y g e n s - F r e s n e l )  wh ich  d o e s  a c c o u n t  f o r  

i n t e r f e r e n c e  phenomena.  

T h i s  i s  wrong i n  t h e  s e n s e  t h a t ,  i f  one  u s e s  t h e  t h e o r y  o f  c 0 n ~ o ~  o f  d i f f u s i o n  

p r o c e s s e s  one  i s  a b l e  t o  a c c o u n t  f o r  " i n t e r f e r e n c e  p a t t e r n s "  w i t h o u t  i n t r o d u c i n g  

any  " i n t e r f e r e n c e  p r l n c i p l e "  a s  a n  i n g r e d i e n t .  N e l s o n ' s  s t o c h a s t i c  m e c h a n i c s  - and 

o u r  P r o p o s i t i o n  5 . 3 . D  - shows t h a t ,  s t a r t i n g  f rom a g i v e n  p r o b a b i l i t y  d i s t r i b u t i o n  

a t  t h e  i n i t i a l  t i m e ,  one c a n  c o n t r o l  t h e  m o t i o n  o f  a random p a r t i c l e  i n  s u c h  a way 

t h a t  t h e  t e r m i n a l  p r o b a b i l i t y  d i s t r i b u t i o n  c o i n c i d e s  w i t h  any  p r e a s s i g n e d  " i n t e r f e -  

r e n c e  p a t t e r n "  ( u n d e r  p r o p e r  m a t h e m a t i c a l  c o n d i t i o n s  i n d e e d ) .  The c o u n t e r p a r t  o f  

s u c h  a d e s c r i p t i o n  i s  t h a t  t h e  v a l u e  o f  t h e  c o n t r o l  a t  a s t a t e  x and a t  a t i m e  
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t < t I w i l l  depend in  g e n e r a l  on an i n f o r m a t i o n  g i v e n  a t  t ime t l ,  say i n  t h e  fu~wle 

of  t . This  i s  a t y p i c a l  s i t u a t i o n  i n  op t ima l  c o n t r o l  t h e o r y  and,  more g e n e r a l l y  in  

the theory of the decision. One can easily understand that it may hurt physicists, 

however we must point out that it is not Quantum mechanics which is implicated, 

since the laws of Quantum mechanics are invariant under time reversal, but the ques- 

tion of ~au~o~.~y at the microphyslcs scale (which we will not discuss). 

Even if the discussions concerning the interpretation of the basic concepts of 

Quantum mechanics may seem futile~ the fall out of the resurgence of an interpreta- 

tion relying on stochastic processes is a partial answer to an important question : 

Can one contro£ a Sch~dlngcr equalc~on ~n order to obtain a wave-function having 

p r ~ e ~ b e d  prop~;v?~6 a t  th~ tc~mina~ time, ~tartinfl ~rom some known i n i t i a l  data ? 

We have based our  p r o o f s  of  the  main theorems of t h i s  paper ( P r o p o s i t i o n s  5 .2 .B ,  

5 .3 .D and 6.B) on p r o p e r t i e s  of  the  SRh~t~d~l~yt s ~ t e m  ( Se e . 5 ) ,  a r e s u l t  o r i g i n a t -  

ed i n  a paper  of  Schr~dinger  (B) p u b l i s h e d  in  1932. Mathemat ica l  development  of  

S c h r ~ d i n g e r ' s  idea  i s  due to B e r n s t e i n  (S) and,  l a t e r ,  to a few o t h e r  a u t h o r s ,  in  

p a r t i c u l a r  to B e u r l i n g  (10) and Jamlson (11). More r e c e n t l y ,  Zambrinl  (16) has r e -  

turned to Jamison's main theorems and has discussed some of their connections with 

Physics. So doing, he has found a number of formulas and results previously obtain- 

ed in Ref. (14). However, whereas Ref. (14) starts from two stochastic optimal 

control problems, the work of Zambrini starts from the two parabolic equations al- 

ready used by SchrBdinger, namely the equation of heat transfer and its adjoint. 

The paper of Zambrlni much clarifies the connections between the results of Ref.(~) 

and the  theo ry  of  r e c i p r o c a l  p r o c e s s e s  of  Jamison .  I t  a l s o  c l a r i f i e s  the  r e l a t i o n s  

between t h i s  framework and the  v e r s i o n  c r e a t e d  by Nelson.  

In  Sec .3 ,  we r e f e r  to Problems 1 and 2 of  Ref .  (20) and we r e c a l l  the  r e s u l t s  ob-  

t a i n e d  by pe r fo rming  the  e x p o n e n t i a l  change of  v a r i a b l e s  on the  g e n e r a l i z e d  Hamil ton-  

Jaeob i  e q u a t i o n s  a s s o c i a t e d  with them. 

I n  See .4 ,  we show how, s t a r t i n g  from t h e  g e n e r a l l z e d  Hami l ton - Jacob i  e q u a t i o n s  

f o r  t h e s e  problems,  one can o b t a i n  Kac ' s  formula  th rough  the  use  of Cameron-Mart ln-  

Gi rsanov t r a n s f o r m a t i o n .  This  method i s  r e l a t e d  to one developed by M i t t e r  in  Ref.  

(7 ) .  We d e r i v e  a v e r s i o n  of Kac 'a  fo rmula  which enab le s  comparison wi th  Feynman's  

formula  and,  in  a way, c l a r i f i e s  a p o i n t  of  d i v e r g e n c e  between the  two se~s of ideas  

we s t a r t e d  wi th  a t  the  b e g i n i n g  of t h i s  i n t r o d u c t i o n .  

2. BASIC DEFINITIONS, NOTATIONS AND FACTS. 

Our d e f i n i t i o n s  of  a ~ O ~ h o ~ . ~  p r o c e ~ ,  a n - d 2 ~ e ~ i o n o ~  ~ o ~ t ~ a n  mo ~ o n  (n ~ I ) ,  

a ~o~uX.(.on to a ~ t ~  Of 6tO~hO.b~. d i ~ f ~ R n ~  ~ q t ~ n ~ ,  a ~ t ~ 0 v  ~ o c ~  a re  

taken  from {1). 
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U n l e s s  o t h e r w i s e  s p e c i f i e d ;  ( ~ , F , P )  w~l l  d e n o t e  a g i v e n  u u d e r l y l n g  p r o b a b i l i t y  

s p a c e ,  E n a n - d i m e n s i o n a l  E u c l i d e a n  s p a c e ,  B(E n) (o r  B, when no c o n f u s i o n  i s  p o s s i -  

b l e )  t h e  o - a l g e b r a  o f  Bore1 s u b s e t s  o f  E n ,  [ t o , t  l]  a compact  i n t e r v a l  o f  E l . 

Le t  t he  strip S A__ (to,tl)XE n , and d e f i n e  

n ~2 f ( s~x)  n 

p s f ( S , X )  A ~ a i j ( s , x )  + a f ( s , x )  - c ( s , x ) f ( s , x )  42.11 -- i , j= l  axi3x j ~ b i ( s ' x )  ~x. 
i= l  t 

i n  E n .  

Our d e f i n i t i o n  o f  a ~uyldoJ~e.Rt.~ ~oJ~#J.on Y : ( s , x ; t , y )  e-p Y ( s , x ; t , y )  o f  t h e  

differential equation 

a.~f + p s f  = 0 (2.2) 
3s 

in  the s t r i p  S is  taken from {5) (see also the Appendix of  (4 ) ) .  

The fo l l ow ing  theorem gives s u f f i c i e n t  condi t ions fo r  the existence and unique- 

ness of a fundamental so lu t ion .  

Theorem 2.A (4). Let the differential operator (2.1) satisfy the following con- 

ditions : 

(i) The coefficients aij , bl, (i,j = I .... n) and e are bounded and continuous on 

and satisfy a HSlder condition with respect to x : 

s ' (s,x)i ~ K[x'-xl ~ ] a i j (  ,x  ) - a i j  

fbi(s,x')- bi(s,x) [<z[x'-x[~ I i,j- l .... n, ~>0 . 

I c ( s , x , )  - c ( s , x ) l  ~ K I ~ ' - ~ t  ~ 

(ii) The coefficients aij satisfy a HSlder condition with respect to s : 

laij(s',x) - aij(s,x) [ • Z[s'-s[ ~ 

( i l l )  There  e x i s t s  a c o n s t a n t  y > 0 such  t h a t  f o r  a l l  ( s , x )  E S and any c o l l e c t i o n  

o f  r e a l  numbers t l , . . . ~  n : 

n n 

i , j = l  i 1 

Then e q u a t i o n  42.21 has  a fundamenta l  s o l u t i o n  Y and t h i s  s o l u t i o n  i s  u n i q u e .  

The s o l u t i o n  has  t h e  f o l l o w i n g  p r o p e r t i e s  : 

( i v )  For  any toGS<t~t I , 

Y ( s , x , t , y )  > 0 . 
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(v) The following inequalities are satisfied : 

Y ( s , x ; t , y )  ~ M(t-s)  -n /2  exp ( - ~  C_J-~-~s 2) 

ax i I ~ M(t-s)-(n+l)12exp ( - ~ )  

~2y(s~x~t~Y) I BXi~Xj I • M ( t - s ) - ( n / 2 ) - l e x p  ( - U  ~ 2 )  

I ~ Y ( s ' x ; t ' Y )  l ~ s  < M ( t - s ) - ( n / 2 ) - i e x p  ( - a ~  12) 

where M and a are some positive constants. 

(vl) If, in ~, the derivatives 

~ai~, ~2ai~_ ~b i 
~xj ' ~Xi~Xj , ~xi', (i,j = 1 .... n) 

exist, are bounded and continuous, and satisfy a HSlder condition in 

¥(s,x;t,y) as a function of t,y satisfies the equation : 

~y n ~2(alj(t,y)Y) n 3(bi(t,y)Y) 
~-~= ~ ~ - c(t,y)Y • 

i,j=l ~Yi ~Yj iffil ~Yi 

x , then 

(2.3) 

The proof that the two fundamental solutions Y and Y of (2.2) and (2.3), res- 

pectively, are equal is given in Ii' in (5}. 

We now cons ider  again the pa rabo l i c  equa t ion  (2.2) with the te rmina l  cond i t ion  

f ( t l , Y )  ffi f l ( y )  on E n • (2.4) 

A s o l u t i o n  to the c l a s s i c a l  Cauchy problem for  (2 .2 ) ,  (2.4) i s  def ined  to be a 

func t ion  f on S which i s  continuous in  S, has continuous d e r i v a t i v e s  3f ~f 
~2 E 3x i ' ~s ' 

~xi~xj , ( i , j  = 1 . . . .  n) ,  in [ t o , t l ) x E n  , s a t i s f i e s  (2.2) in [ t o , t l )XEn  and t~e t e r -  

mlnal cond i t i on  (2.4) where f l  i s  a g iven c o ~ n u o t t 6  func t ion .  

We have the fo l lowing  theorem which, but fo r  a change of v a r i a b l e ,  i s  Theorem 2 

of Ref . (5)  : 

Thgor~ 2.B [5). In [to,tl)XE n there exists a unique bounded solution of the 

Cauchy problem for (2.2),(2.4) if the following conditions hold : 

(1) The coefficients a~j~ bi, c are bounded and continuous in S and satisfy condi- 

tions (1), (ii), (iil) of Theorem 2.A, and 

(ii) fl is continuous and hounded on E n . 
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The s o l u t i o n  i s  given by 

f ( s , x )  - ] Y ( s , x ; t l , Y ) f l ( Y ) d y  on [ t o , t l ) X E  n . (2.5) 
E n 

Note : I I ' i n  a c t u a l l y  cons ide r s  the equa t ion  

= Po g ( 2 . 6 )  3o 

with i n i t i a l  da ta  
g( to ,X)  = go(X) on E n , (2.7)  

and s t a t e s  that g i s  given by 

g(o ,y)  = I Z ( t  , x ; u , y ) g  (x)dx , (2.8)  
"E N 0 O 

where Z is the fundamental solution of (2.6), and Z( to,X ; o,y) is equal to 

Z(o,Y;to,X) of ll'in. To pass from (2.6), (2.7) tO (2.2), (2.4) we make the change 

of v a r i a b l e  o = t o+ t l -S  . 

From Theorem 2.B, and the corresponding theorem of ll'in, it is easy to see that, 

under the  assumptions of  t hese  theorems : 

f ( s , x )  = f Y ( s , x ; t , y ) f ( t , y ) d y ,  
"E n 

and 

Z(T ,x ;o ,y )g (T ,x )dx  , g(o,Y) 
@ 

E n 

t o ~ s < t ~ t I , (2.9)  

t o ~ T < o ~ t I . (2.10) 

3. EXPONENTIAL TRANSFORMATION. 

We refer to Problems I and 2 of Ref. (20). Keeping the same notation, we will 

assume t h a t  t h e r e  e x i s t  s o l u t i o n s  W, W, v*,  ~*,  s a t i s f y i n g  the  hypotheses  of  the 

V e r i f i c a t i o n  Theorems. Thus 

~W = _ D~W + l ~-~ ~ (grad W) 2 - Q ,  (3.1) 

my*= - grad W', (3.2) 

fo r  a l l  ( s , x )  £ $ ; and 

3---~ DAW- 1 ~O = ~m (grad ~)2 + Q, (3.3) 

m~-*- grad W, (3.4) 

fo r  a l l  (a ,y)  E S . 

We nov perform the exponen t i a l  change of v a r i a b l e  on ( 3 .1 ) ,  (3.2)  ; t h a t  i s ,  

we let 

T grad ~ (~l~x I . . . . .  ~ l ~ x ) .  



222 

p(s,x) a exp ( W(s,x) ) 
- 2mY , ( s , x )  E ~ . 

(p can be de f ined  on S s i n c e  W i s  con t inuous  on S) . 

Thus 

p ( t l , X )  = exp ( Wl(X) 2~ ) ~ °tCx) 
Equation (3.1) becomes 

~_.EP. Vap + . _ - ~  p , ( s , x )  £ S , 
~s  

(3.5) 

(3 .6 )  

(3 .7 )  

and,  from (3 .2)  we have 

v ; ( s , x )  - 2D 30( s ,x )  ( s , x )  E S . 43.8) 
p ( s , x )  ~x  i ' 

Further 

2D ~Pl (x) 
v ~ ( t l , x )  - Pl(X ) a x i  43.9) 

if the partial derivatives exist. 

Finding a solution to the equation 

ffi - SS~ + 2--~mD ~ ( s , x )  C S (3.10)  
~ s  ' ' 

with continuous and bounded terminal data ~l(X), constitutes a Cauchy problem. We 

have the following 

Pr0po~n 3.1.c. If Q satisfies 

(AI) Q is bounded in S, 

and 

(A2) ]Q(s,x')-Q(s,x)] < M]x'-x[ ~ , x',x c z n, 

for some positive constants M, X, then there exists a unique continuous and bounded 

solution ~ to the Cauchy problem (3.10) with 

~(tl,x) = ~l(X). 

This  fo l lows  from a d i r e c t  a p p l i c a t i o n  of Theorem 2.B. 

Thus, i f  we l e t  p denote  the  fundamenta l  s o l u t i o n  of  ( 3 . 10 ) ,  t hen  

[ p ( s , x ; t , y ) ~  ( t , y ) d y ,  s < t < t I . ~(s,x) (3 .11)  
E n 

S ince  W 1 i s  con t inuous  and n o n - n e g a t l v e ,  Pl g iven  by (3 .6)  i s  con t inuous  and 

bou nded  in  E n. I t  t hen  fo l lows  from (3 .6)  and (3 .7)  t h a t  i f  (AI) ,  (A2) ho ld ,  then  

I p ( s , x ; t , y )  p ( t , y ) d y ,  s < t < t I ; O ( s , x )  (3 .12)  
E n 
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that  is 

exp ( -  W(2amD)) = IEn P(S ,x ; t ,y )exp  (-W(2m~DY))dY, s < t , t I • (3.13) 

Likewise, we make the exponentlal change of variable 

O(o,y) ~ exp ( - ~ ) ,  (o,y) E S , 

with 

~o(y) 
Oo (y) ~ ~( to 'Y)  " exp ( -  ~ ) 

Equation (3.3) becomes 

(3.14) 

(3.15) 

(3.16) 

and, from (3.4) we have 

20 aE(#,y) 
v-i*(o,y ) = - ~  

~(a,y) 3Yi 

Further 

2D ~Oo (y) 
Vi*(to,Y) = 

To(y) 3Yl 

if the partial derivatives ex i s t .  

, (o,y) E s . (3.17) 

(3.18) 

Again from Theorem 2.B, assuming (AI), (A2) hold, we have the existence and uni- 

queness of a continuous and bounded solution p to the Cauchy problem 

, (3 9) 

with continuous and bounded initial data 

~(to,y) -To(y), y c z n . (3.20) 

Further, if we let ~ denote the fundamental solution of (3.19), then 

f ~ ( T , x : o , y ) ~ ( z , x ) d x  , t o < T < o • (3.21) ~(o,y) 
E n 

From the remark following Theorem 2.A, p - p. Thus 

" [ p (T ,X;O,y)~(z ,x )dx  , t o < z < o • (3.22) ~(o,y) 
E n 

$ince W ° is continuous and non-negatlve, PL given by (3.15) is continuous and 

bounded in E n. It then follows from (3.15) and (3.16) that if (Al), (A2) hold, then 

[ p ( T , x ; o , y ) ~ ( z , x ) d x  , t o ~ ~ < o ; (3.23) ~(o,y) 
E n 
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P(T 'x ; ° 'Y )  exp ( - N ( T ' x ) )  d x ' 2 m D  t o ~ • < u . (3.24) 

4. SEMIGROUPS DEFINED BY KAC'S FORMULA . 

4.1. Cameron-Martln-Girsanov Transformation. 

It is usual (see for instance (6)) to associate with the parabolic equation 

(2.2) the system of stochastic dlfferentlal equations 

d~" - ~(t)dt ÷ T(t)d~ (4.1.1) 

with ~(t) ~ (bl(t,~(t)) .... bn(t,~(t))) . T2(t) - 2(alj(t,~(t)))~j.l . 

is a standard n-dimenslonal Brownian motion with respect to some probability mea- 

sure 

In the case of equation (3.7) where 

n ~2 q 

s i= l  

(4 .1 .1)  reads 

d~- 2~d~ . (4.1.2) 

Now, in Problem l, we are faced with two systems of stochastic differential 

equations, namely (4.1.2) and 

d~ " v * ( t , ~ ( t ) ) d t  + ~dw (4 .1 .3)  

A r e l a t i o n  between them is provided by the Cameron-Hartin-Girsanov t rans format ion .  

A s i m i l a r  d i s cus s ion  holds in the case of Problem 2. 

We have assumed tha t  the re  e x i s t s  a W s a t l s f y i n  S the hypotheses of the V e r i f i -  

c a t i on  Theorem, and an opt imal  con t ro l  v*,  and tha t  Q i s  continuous and bounded in 

. Fur ther  l e t  W satisfy 

(BI) W is of class C I'2 (see [I)) ; that is, the partial derivatives Wt, Wxl , Wxlxj 

are continuous on ~ . 

Let us apply t/-e Ito stochastic differential rule (q) to W(t,~(t)) where ~ satis- 

fies (4.1.2). Then 

t 
W(t,~(t)) - W(s,~(s)) = I. ~w (a,~(a))d~ + 

ZW (a,~(a))d,~i(a) + D Z ~2W (o,g(o))do (4 1.4) 
+ ~xi--- 2 • . i - I  i=l  s 
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Othe rwi se  we deduce from (3. I) 

I ) Q<~,~(o))do - - ~ (o ,~(o>)do ÷ ½ . ftf~---- w <o,~'(o)) do 
s s i=l Jsk~Xi 

I ~2w (a,~(o))do . ( 4 . 1 . 5 )  
- D  ~ t 

i=l s 

Note that, in view of (B|) and the continuity of Q on S, (3.1) holds for all 

(s,x) ES , so that, in both relations (4.1.4), (4.1.5) we have t o ~ s ~ t ~ t I . 

By adding (4.1.4) and (4.1.5) we obtain 
t 

I Q(~,~(o))d# W(t,~(t)) W(s,~(s)) " ÷ m 

S 

= ~ ~W (o,~(~))d~i(o)÷ 1 ~W (o,~(o)) do (4.1.6) 

from which we readily deduce, by taking the exponentials of both sides after divi- 

sion by -2mD , 

W(t,~(t))), "~, ,,~ ( I t q(o.~(o)) d~)  ( 4 . 1 . 7 )  
(- exp 

exp ~s(0  ) t  = exp - 2mD 
s 

2mD " 

with 

it 11 t ~ : ( e )  = 8 ( o ) d ~ ( o )  - ~ [0(o)  12do , and 
s s 

( 4 .  ! . 8 )  

1 - -  I B(t) = ~v$(t,~(t)) = - ~ grad W(t,~(t)) • (4.1.9) 

Now assuming 

(B2) I v * ( t , x )  l ~ M f o r  some M, 

we a r e  r eady  to  app ly  

( t , x )  E ~ , 

Th~o&P.m 4.I.A (I}. Let P be absolutely continuous with respect tog, with 

P(dw) = exp ~(8)~(d~) , t o < s < t ~ T ~ t I . 

Then 

(a) P(~) = ! (hence (~,F,P) is a probability space). 

t 
(b) Let w(t) = ~(t) - ]o O(~)da o 

m t i o n  w i t h  r e s p e c t  t o  P.  

(c) Le t  B ~ ~ + T e  . Then 

I I ~ ( t ) - ~ ( s )  = BCo)do + T(o )dw(o)  . 
S $ 

Then w i s  a s t a n d a r d  n - d i m e n s i o n a l  Bro~mian 
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Here ~ and ~ have the  same sample f u n c t i o n s ,  but a r e  cons ide red  as s t o c h a s t i c  

processes with respect to different probability measures F and ~ . 

From (4 .1 .2 )  we have 

~(t) - ~(s) - ~ (~(t) -~(s)) 

Then, from (b) of  Theorem 4 . I . A  with  (4 .1 .9)  and (4 .1 .10)  we deduce 

I (~(t)-~(s)) +~(s) - ft I • W(t) " ~ Js - ~  v (o,~(o))do 

and 

(4 .1 .10)  

(4 .1 .11)  

w(s) = ~(s) (4. I. 12) 

At last (4.1.II) and (4.1.12) result in 

t f 

- ~(s) + | v*(~,~(o))d~ + ~ (w(t) -w(s)) . 
J 
S 

This is what condition (el of the Theorem states since, here, ~ = O, T " 24~I 

where I is the nxn unity matrix, and 

B " v * ( t , ~ ( t ) )  . 

In o the r  words, provided tha t  ~ and w are r e l a t e d  by the  c o n d i t i o n  (b) of  Theo- 

rem 4.I.A, and provided that the initial data s a t i s f y  ~(s,~) - ~(s,w), for ~ E 

a.s.f,then the solutions ~ and ~ of (4.1.2) and (4.1.31 with these initial data, 

respectively, are stochastic processes on (~,F,~) and (~,F,P), respectively, which 

have t h e  6o~e 6am~e fun~n~. Note that, here, the Brownlan motion w is not giv- 

en in advance (in contrast to Sect.3). It arises in the course of changing the 

p r o b a b i l i t y  measure.  

4.2. Kac's Formula. 

Now let the initial data associated with (4.1.2) be ~(s) = x E E n , at time 

s E [to,tl) , and denote by ~sx the corresponding solution. Then, in formula 

(4.1.71 we have W(s,~(s)) = W(s,x). From (4.1.71 and (a) of Theorem 4.[.A we ob- 

tain 
W(T,~sx(Z)) ~ [ fT Q(~,~sx(O)) d~)d~(~), 

W(s,x)) , [ exp ( -  ~ ~exp~-Js 2rod exp( -  

(4. I. 13) 

to~S~T~t I • 

(4.1.131 is Kac's formula. This formula turns out to be valid for a much larger 

class of potentials (see (7)). Here we have ~roved (4.1.13) under the assumvtions 

(Al), (BI), (B2). 

' F or ~ - a l m o s t  su r e ly  s i n c e  P ~ ~ and ~ ~ P . 
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In a r e s t r i c t e d  case,  we sha l l  give formula (4.1.13) another form, sometimes more 

suggestive. Now, in add£tion to the fact that Q is continuous aud bounded in S (see 

(Al)) let Q satisfy 

(B3) Q(t,x) ~ 0 for all (t,x) C S . 

In view of the continuity of ~sx on [s,t l] for ~-almost every ~ E ~, and of 

the continuity of Q, we have 

(,I ) exp ~ Q(U,~sx(O))do " I- Q(s,x) - 2mV h + o(h,~) (4.1.14) 
s 

~-almost surely, for h>O sufficiently small, where lim I°(h'~)l = 0 for ~ E ~ . 
h~o h 

Let us f i r s t  prove that  

lim I ~ d~(~) - 0 . (4.1.15) 
h~o 

Since, from (AI) and (B3), 0 • (Q(t,x)12mD) • K for some K, and for all (t,x) ES, 

we have 

{ )}, 0 • I-ex Q(O,~sx(U))do • {1-exp(-Kh)} • K (4.1.16)  
s 

From (4.1.14) and (4o!.16) i t  follows that  

- K • ~ • K  , 

so that  ( Io (h ,~ ) l / h )  • K, and (4.1.15) follows from the Lebesgue dominated conver- 

gence theorem. 

Now, from (4.1.13) and (4.1.14) it follows that 

h ex - d~(~)+ ~(h) (4.1.17) 2=D ) 2my ~\ 2roD' ] 

with 
W(s+h,~sx(e+h)) ~ 

u(h) ~ Iaexp ~ 2rod "/ o(h,w)d~(w) • 

By the transformation formula for integrals (see (I)), the first term in the 

r ight-hand side of (4.1.17) rewri tes  

I W(s+h,v) (1 - Q(s'x)' h) exp(- 2mD I )k(s,x;s+h,y)dy 
2mD En 

where k is the transition density of BrowniSh motion'. 

, Note that ~{~sx(t) EB) , I d~(m) . IdP*(y) . I k ( s , x ; t , y ) d y .  B E B . 

B B 

(~sx( t )  Es}  
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As concerns the second term, since (B3) implies that L, given by ( 3 . 1 . 2 )  of  Ref. 

(20) is non-negative, and since W I is non-negative, the cost function 

J ( s , x , v )  " Esx { I t l  L ( C , ~ ( t ) , v ( t , ~ ( t ) ) d t  + W l ( ~ ( t l ) ) }  
$ 

is non-negatlve and so is the function W . Accordingly p(t,x) ~ exp(-W(t,x)/2mD) 

is bounded on S, so that 

and c o n s e q u e n t l y ,  i n  v i ew  of ( 4 . 1 . 1 5 )  

t i m  a ( ] ~ h h )  = 0 . 
h~o 

T h e r e f o r e ,  i f  ( A I ) ,  ( B I ) ,  (B2) and (B3) h o l d ,  t h e n  t h e  Kac fo rmu la  can  be 

written 

f W(s+h~y) - h + ~ ( h ) )  k ( s , x ~ s + h , y ) d y  
2rod / ~ n  2rod 

(4. I. 18) 
t o <  s < s+h < t I , 

where lim l~'(h)[ - O, 
h,to h 

or, equivalently, by writing k(s,x;s+h,y) explicltely and replacing 

I 1- ,Q(s,,x), h + ~ ( h )  by exp { -  ~ ( Q ( s , x ) h  + o ' ( h ) ) }  
2rod 

where  

exp(- w(s'x) )- 
2roD 

E n 

lim i , ~l,o'.h.,. 0 • 
h¢o h 

1 I - ~-~[~m(-h~)2 + Q(s,x)h+o'(h)])dy 

( 4 . 1 . 1 9 )  
t o ~ s < s+h ~ t 1 . 

A s i m i l a r  d i s c u s s i o n ,  s t a r t i n g  from Prob lem 2,  l e a d s  to  

e x p ( -  N(t'7) ) - 
2rod 

-(4~Dh)-n/2 IE nex~ - ~(t-h'x)~ -)ex~- [ ~I [ ~l - (Y-X)2m h 

l i m  Io"(h)l 
h~o h 

\ 
÷ Q ( t , y ) h  + o " ( h ) ] ) d x  

( 4 . 1 . 2 0 )  
t o ~  t - h <  t ~ t I , 

w h e r e  , ,  0 . 
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These formulas are to be compared with (3.13) and (3.24) . In fact, by 

Dynkin's theory of a-subprocesses (see (2) and {3]), one can prove that, if (AI), 

(B3) hold ,  then 

(4~Dh)-n/2exp(_ I , I ~ > p ( s , x ; s + h , y )  ~ t ~ - m  h + q ( s , x ) h + o ' ( h ) ]  . (4 .1 .21)  J 

In (4 .1 .13)  the  f u n c t i o n a l  

t s 2mD 

is an example of contracting, right-contlnuous, multlplicat£ve functional of the 

type of those which occur in the theory of u-subprocesses (see (3)). In such a- 

subprocesses, the trajectories of the original process (here, solution of (4.1.2)) 
e are te rmina ted  in  a random ma t t e r  ; here  a t can be shown to  be the  c o n d i t i o n a l  p ro -  

b a b i l i t y  t h a t  a t r a j e c t o r y  s t a r t i n g  a t  ( s , x )  does no t  t e rmina te  dur ing  the  time i n -  

t e rva l  I s , t ] ,  g iven t h a t  a l l  phenomena connected with the p rocess  dur ing the  time 

i n t e r v a l  [ s , t ]  a re  known. From (4 .1 .14 ) ,  (4 .1 .15)  i t  fo l lows t h a t  the p r o b a b i l i t y  

tha t  a t r a j e c t o r y ,  s t a r t i n g  from x a t  time s ,  does t e rmina te  dur ing the  t ime i n t e r -  

val  [ s , s+h]  i s  equal to  (Q(e,x)/2mD)h up to an o ( h ) .  Thus the  f u n c t i o n  Q/2mD i s  

ca l l ed  t h e  t ~ m ~ l a ~ o ~ l  d£n6~ y .  There fo re ,  in  (4 .1 .21 ) ,  p ( s , x ; s + h , y )  i s  the p ro -  

duct of the transition density of the Broenian motion (correspondlng to Q J O) and of 

the n0n-t~n den~ l-(Q/2mD)h up to an o(h). This remark gives a simple 

intuitive meaning to the formulae (4. I. 19), (4.1.20). 

4._~3. Feynman's Formula. 

Formula ( 4 . 1 . | 3 )  is  a v a r i a n t  o f  a r e s u l t  o f  Kac (17) who was t r y i n g  to under-  

stand Feynman (12) .  A basic fo rBu la  in  F e y ~ a n ' s  theory  of  poX~ ~ £ g / u l ~  (12) ~ 

has formal  s i m i l a r i t i e s  w i t h  (4.1.20)  (see formula (4-5) on p.77 of  (12 ) ) .  I t  i s ,  

but f o r  a change of  the n o t a t i o n  

W(t-h,X)~exp(_ I ( - x )  2 

(4. I .  22) 
to ~ t-h < t ~ t I , 

with 

W(t,y) = V*(t,y) + iW*(t,y), 

where V $ and W* are C 1'2 real valued functions on S ; D = h/2m (h : the reduced 

Planck'  s c o n s t a n t ) .  

The f u n c t i o n  ~, given by 

~(t,y) - exp ( - ~ )  , 2mid 

exp( -  " ' t ' Y "  ) - 
2miD 

= (4~iDh)-n/2 IEneXp ( - 
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is the t t t l v £ - ~ n ~  of Quantum mechanics for the motion of a non-relativistlc par- 

tlcle in a field of forces derived from the potential Q . 

Except for the underlying idea of semi-group, (4.1.22) is deeply d~e~te~ from 

(4.1.20), in spite of the formal similarity. Feynman's formula is an expression of 

what is called in Physics the ~ n c i ~ e  O6 ~e~e~ence~ , in contrast with what 

physicists call d~6/p~t~ve proco~A6e~. 

5. SCHRODINGER SYSTEM AND CONTROLLABILITY RESULTS. 

5.1. Schr~dln~er System. 

In this sub-section, we shall continue to assume that there exist pairs of func- 

tions (W,v*), (W,v-*) satisfying the conditions of the Verification Theorems (i.e., 

v*,v'* are optimal controls). As in Ref. (14), define 

w*(t,x))  (5.1.1) p*(t,x) ~ p(t,x)p(t,x) = exp (- mD 

where 

W*(t,x) ~ W(t,x) + W(t,x) (t,x) • 

Like W*, p* is in CI'2(S) and continuous on~ ; further, it satisfies the 

boundary conditions 

p*(to,X) " exp ( -  %(x) +W(to,X) W(to,X) 

W(t I , x )  + W ! (x) 
pe(tl'X) = exp (-  ~D- ) 

Now, assuming (AI), (A2) hold, using 

P*(t°'x) " ~°(x) I P(t°'x;tI'Y)Pl(Y)dY (5.1.2) 
E n 

p*(tl 'y) " p| (y) IE n P(to'X;tl'Y)~o(X)dx (5.1.3) 

x,y E E n • 

Equations (5.1.2), (5.1.3) are a pair of functional equations which form a 

Sck~gett 6y6t~ (8} (16], which we now describe in more generallty. 

(3.|3), (3.24), we have 

Jamison has proved the following (11). 
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Th~0~ 5.I.A (Jamison). Suppose M is a o-compact metric space, that ~o and ~I 

are probability measures on its ~-field Z of Borel sets, and that q is an everywhere 

continuous,  s t r i c t l y  p o s i t i v e  func t i on  on HxH. Then the re  i s  a unique pa i r  ~, n of  

measures on ZxZ for  which 

(a) ~ i s  a p r o b a b i l i t y  measure and ~ i s  a o - f l n l t e  product measure. 

(b) ~(SxH) - ~o(B), ~(MxB) - ~I(B), B E Z . 

(c) d~/d~ - q ,  

Let H~ S n , • ~ B and q(x,y) ~ p(to,X;tl,Y), (x,y) C E nxE n . It follows from 

(c) that 

V(S o x B I )  = 1 P ( t ° ' x ; t i ' Y ) d n ( x ' Y ) '  So,B 1E  8 , 

SoXB I 

and since ~ is a o-finlte product measure, there exist measures v o and v I on B 

such that 

~(B o x B I )  = I P ( t ° ' x ; t i ' Y ) d ~ ° ( x ) d v l ( Y ) '  Bo,B 1E  B . (5 .1 .4)  

BoXB I 

Obviously,  the pa i r  (~o,~!) i s  not  unique : fo r  any pa i r  (ko ,k l )  or  r e a l  numbers 

with kok i = I,  the f a c t o r  measures koV ° , klV i , w i l l  produce the same n . In C~t6e 

~ ~ ~e, we can eliminate this inconvenience by normalizing the ~o,Vl, by the 

condition 

fdvo(x) - fdvl(y) = [fd~(x,y)] I/2 

In the general case, by Fublni's theorem, (5.1.4) can also be written 

"(BoXB1) " I d~oCX) I PCto'X;tl'Y)d~l(Y)' Bo,glC s , 
So Sl 

so that (b) rewrites 

u°(S°) " I dv°(x) I P(t°'X;tl'Y)dVl(Y)' S o E S , 

S o E n 

" I (B i )  " I d~l(Y) I P ( t ° ' X ; t l ' Y ) d V ° ( x )  B 1 E S . 
s! E n 

Denote by ~ the n-dlmenslonal Lebesgue measure t. 

(5.1.5) 

(5.i.6) 

Suppose that ~i ~ X, i = O,l . 

t The argument can be easily extended to the case where ~ is any o-finite measure. 
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Let  f A d~oldZ" g A d¢i /dZ ' 

e a s i l y  fo l lows  tha t  v i ~ X , i - O , l .  Let  ~ dVo/dl and ~1 A dVl /d l"  

and (5 .1 .6)  a re  equ iva l en t  to 

f (x )  =To(X) f P ( to ,X ; t i ,Y)~ l (Y)dy  , (5 .1 .7)  
E n 

g(y) = ~ l (y )  f ~ , (5 .1 .8)  P ( t o ' X ; t  1 'Y)Po (x)dx 
gn 

x ,y  E E n . 

Thus, according to (5 .1 .2 ) ,  (5 .1 .3)  and (5 .1 .7 ) ,  ( 5 .1 .8 ) ,  Po, Pl ' are  so lu t ions  

to the Schr~dinger system in the case where 

p* (to,X) , (5.1.9) f (x)  s 

g(x)  = p*(Cl,X) . (5 .1.10)  

From the d e f i n i t i o n s  of f and g and from the f a c t  tha t  ~o and ~1 are  p r o b a b i l i t y  

measures,  i t  fo l lows tha t  ffdX - fgdX = I.  Then, from ( 5 . 1 . 9 ) ,  (5 .1 .10) ,  (5 .1 .2)  

and ( 5 . 1 . 3 ) ,  and F u b i n i ' s  theorem, we see tha t  cond i t ions  ( 5 . 1 . 9 ) ,  (5.1.10) r equ i r e  

tha t  Wo and W I be such tha t  

} ~ o ( X ) p ( t o ' X ; t l ' Y ) P l  (y)dxdy = 1 • (c1) 
I 
jgnxEn 

Now cons ider  p * ( t , x ) .  By d i r e c t  computation us ing (3.71, (3 .8 ) ,  (3.16) 

and ( 5 . l . I ) ~  one can r e a d i l y  v e r i f y  tha t  the func t ion  p* s a t i s f i e s  
~_~ n ~ *) 
~t "- I ~ (v*(t,~)p + DAp* (5.!.ll) 

i= !  

Since d~/d(voaVl) - q ,  d ( v o X V l ) / d ¢ - l / q ,  from which i t  

Then (5 .1 .5)  

p * ( t o , . )  - exp (- W(to,') 
~ )exp(- 2rod ) (5,1.12) 

p*(tl,,) = exp - exp - ~-~ 

where W o and W l were given at the outset of Problems ! and 2 (not necessarily sa- 

tisfying (CI)) . 

5.2. Controllability Problems for a Fokker-Planck Equation. 

The Theorem of Jamlson motivates us to consider the following 

Cow~eoUab.i,2.L~¢ Pa.ob~Qm 5.2.A. Given non-negative bounded continuous initial 

data ~o and termlnal data ~l' satisfying 

S~o(X)dx=f~l(Y)dy - I (5.2.l) 
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find ~ : S ~ E n such that the equation 

n 

~t = ~ (vi (t'x)*) + DA* 
i=l 

has a solution satisfying the initial condition 

~ ( t o , ' )  = ~o 
and ~ 0  the terminal condition 

~(t i")  = ~1" 

(5 .2 .2)  

In the specific case where (AI), (A2) and (el) hold, and 

% = p * ( to , .  ) 

~ l  = P*(tl'') 
= v*t the optimal control for Problem l, is a solution to Problem 5.2.A . 

Below, we let ~o' ~l be the probability measures on B defined by t 

g°(B°) = J ~°(x)dx '  Ul(Bl) = I *I(y)dy' Bot B l E S • 
B o B 1 

We let ~ be the o-flnite product measure associated with go' gl by Theorem 5.I.A 

with M=E n ~ EfB , q = P(to~.;tl,.), and X be the n-dimenslonal Lebesgue measure. 

By arguments similar to ones of Jamison in (11}, which rely on results of Burllng 

(10), one can prove 

P~opo6~R 5.2.B. There exists a solution to the Controllability Problem 

5.2.A if one of the following conditions holds : 

(C2) % and ~I have compact support. 

(C3) There is a factorization of n - say w = ~oX~l - such that v i ~ X, i = O,I, 

and the function dvi/d~ , i = 0,1, are continuous and bounded. 

The proof of P ropos i t ion  5.2.R w i l l  be given in  another  p u b l i c a t i o n .  I t  s t a t e s  

that, for f = ~o and g = ~I in (5.l.7), (5.1.8), if one of the conditions : (C2) or 

(C3) holds, then the functions h and ~ given by 

h(s,x) ~ ~ p(s,X~tl,Y)~l(Y)dy in [to,tl) xE n , (5.2.3) 
"E n 

I P(t°'x;t'Y)O%(x)dx in (to,t[] xE n , (5.2.4) ~(t,y) 

t Remember tha t  ~o and ~] are  non-negat lve  bounded and cont inuous .  
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w i t h ~ o  , FI  as in  ( S . I . 7 ) ,  (5 .1 .B) ,  and h ( t l , X )  = ~ l (X) ,  h ( to ,Y)  - ~o (y ) ,  a re  

solutions to the Cauchy problems 

8e211 - V~h ÷ 2 - ~  h , in [to,tl) xE n , } 

(5 .2 .5 )  
h ( t l ,X)  = ~l(X) , in E n . 

~t ~-~" DA~ - 2 - - ~ 5  , in  ( t o , t l ]  x g  n , } 

~(to,Y) "~o(y) , in E n . 

(5 .2 .6)  

Further, h(s,x) > 0 in [to,tl) xE n , and ~(t,y) > 0 in (to,t I] xZ n . 

Letting 

~ i ( t , x  ) , 2D 3h( t ,x)  
h(t,x) 8x i (5.2.7) 

( t , x )  = ~ ( t , x ) h ( t , x )  , (5 .2 .8)  

the  proof  of P ropos i t i on  5.2.B shows tha t  v g iven  by (5.2.7)  i s  a s o l u t i o n  to the 

C o n t r o l l a b i l i t y  Problem 5.2.A,  and tha t  ~ g iven  by (5 .2 .8)  i s  a corresponding so lu -  

t i on  of (5.2.2) satisfying the given end conditions. 

, i " l , . . . n  , (t,x) £ S , 

(t,x) c ~ , 

5._~3. Controllability Problem for a Stochastic Differential Equation. 

Consider the following system of stochastic differential equations 

d~ - v(t,~(t))dt + 2/~dw , t o < t ~ t I 

with the initial data  

~(to) = ~o a.s. 

(5.3. l) 

(5 .3 .2)  

Ass~e 

~v ( i  = 1 , . . .  n ) ,  a re  bounded in S and uniformly (DI) The functions ~ and ~ , 

Lipschitz continuous in (t,x) in compact subsets of S . 

From the stochastic representation of solutions of a parabolic equation (see (8}) 

we have the  following 

T h ~ O ~ 5 . 3 . A .  Under the cond i t ion  (D1), the t r a n s i t i o n  p r o b a b i l i t y  func t ion  of 

the s o l u t i o n  of the s t o c h a s t i c  d i f f e r e n t i a l  system (5 .3 .1)  has dens i t y ,  i . e . ,  

p ( ~ s x ( t )  ~ B} = I ~(s,x;t,y)dy (s< t )  (5 .3 .3)  

B 

fo r  any Borel  s e t  B, and q ( s , x ; t , y )  i s  the  fundamental s o l u t i o n  of  equa t ion  ( 5 . 2 . 2 ) .  
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Theorem 5.3.A is a direct consequence of Theorem 5.4, p.149, in Friedman (8), and 

of the remark at the end of Theorem 2.A . 

Me have also 

F&Opo6~oa 5.3.B. Let (DI) hold and let ~o be independant of F(w(c), to~t~tl), 

El~o]2 < ~ Suppose the probability distribution - say ~o - of ~o has density ~o' 

continuous and bounded. Let @ be the solutlon of (5.2.2) with the initial data @o' 

and ~ be the solution of (5.3.1) with the initial data ~o* Then, for any t o~ t ~tl, 

the probabillty distribution of ~(t) has density, and that density is equal to 

~(t,.) . 

P&oo~. From Theorem 3.1, p.109 of {8) we deduce 

P(~(t)£B}= I P{~t x(t) EB}dPo (x) ' B E 8 , to<t~t I . 
En o 

Then, from 45.3.3) 

PC ~( t )  6B} ~= P : ( B ) "  I [ ~  ~ ( t ° ' x ; t ' y ) d y ] ' ° ( x ) d x  

for  any B £ B , t o < t ~ t  I , where P:  denotes  the p r o b a b i l i t y  d i s t r i b u t i o n  of ~ ( t ) .  

By Fub. ini ' s  theorem, t h i s  i s  a l so  

~B [ IEn~(to,X;t,Y)~o(X)dx]dy " IB~(t,y)dy, 

which concludes the proof. 

Proposition 5.3.B motivates us to consider the followlng 

Co~£~eabJ3.L~y PJ~ob~era 5.3.C. Let ~o be independent of F(w(t) , to~t ~ tl) , 

El~o[2 < ~ , with given probability distribution ~o on B, having density ~o conti- 

nuous and bounded. Let ~I be another given probability measure on B, having densi- 

ty ~I" Find v : S~ E n, satisfying (DI) such that the solutlon ~ to (5.3.1), 

(5.3.2) satisfy the end condition 

P{~(t I)CB} = ~I(B) for all BE8 . 

As a direct consequence of Proposition 5.3.B, we have 

Paopo~:on 5.3.D. If ~ is a function defined one, solution to the Controlla- 

bility Problem 5.2.A with ~o' ~I as in Problem 5.3.C, and if v satisfies (DI), then 

is a solution to Controllability Problem 5.3.C . 

Note : If v is a solutlon to the Controllabillty Problem 5.2.A satisfying the 

assumptions of Proposition 5.3.D, our assumption on ~o requires that the given ~I 

be continuous and bounded (by Z1'in Theorem of Ref. (5)). 
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In  t h e  s p e c i f i c  c a s e  where  (Al)p (A2) and (C1) hold~ and 

4 o = p * ( t o , .  ) , 

~l  = P * ( t l ' ' )  ' 

and v = v* ( t h e  o p t i m a l  c o n t r o l  f o r  Problem | )  s a t i s f i e s  (DI) ,  t h e n  ~ = v* i s  a 

s o l u t i o n  to  Problem 5 . 3 . C .  

6. A CONTROLLABILITY RESULT FOR THE SCHRODINGER EQUATION. 

Fact II of Ref.(20) ~otivates us to consider the followin~ 

Cottf.J10f~ab~y Problem 6.A. Given non-negative bounded continuous initial 

data ~o and terminal data ~l' satisfying 

fOo(x)dx = fOl(Y)dy = l (6.l) 

find Q* : S ~ E l such  that the Schrgdinger equation 

~-~-= iDA~ + i Q* ~ D A h/2m 46.2)  
~t 2mD ' " ' 

has a solution satisfying the initial condition 

2 
II ~(t o,-) II " ~o 

and o.~6o the terminal condition 
2 

ll~(t|,')ll = ~| 

For that problem, we have 

P~0p0~i~0n 6.B. If one of the conditions : (C2) or (C3) holds, then there 

exists a solution to the Controllability problem 6.A. 

~oo ~. 

i n s t a n c e  l e t  Q = 0 ) .  

So lve  t h e  S c h r ~ d i n g e r  s y s t em  

~o(X) " ~ o ( X )  I P ( t o ' X ; t l ' Y )  ~ I (Y)dY , 
E n 

~](y) - ~l (y) ! P(to,x;tj,y)~-- ~ (x)dx , 
Bn 

for TO, ~! (with p associated with the given Q) . 

Assume one of the conditions : (C2) or (C3) holds. 

Then, recalling equations (5.2.3), (5.2.4) with ~l " ~l' 

Let Q be arbitrary, continuous on S and satisfying CA|), (A2) (for 

(6.3) 

(6.4) 

To = 3o , the functions 



and ~ given by 

( s ,x )  ~ ~ p ( s , x ; t l , Y ) ~ l ( Y ) d y  in 

E n 

( t , y )  ~ [ P ( t o , X ; t , y ) ~  o (x)dx in  
E n 

with ~(tl,X) - ~l(X), ~(to,Y) = ~o(y), 
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[ t o , t l )  x E n , (6.5)  

( t o , t l ]  xE n , (6.6) 

a re  so lu t i ons  ~o the Cauchy problems 

~--;~ - - D~ + 21~ ~ , in [to,t m) - E n , 46.7) 

( t l , x )  - ~o ! ( x )  , in E n . (6.8) 

= DA~ - --Q- c~ in (to,t I] E n, (6.9) ~-'~ 2rod ~ ' x 

(to,Y) = To(y) , in E n C6.10) 

Fur the r ,  ~ ( s , x )  > 0 in  [ t o , t l ) x E  n, and ~ ( t , y )  > 0 in  ( t o , t l ]  xE n . 

Then, de f ine  ~', ~ by 

~(t,x) = exp (-~D )' in [to,tl)xE n, (6.ll) 

~ ( t , x )  = exp ( -  ~m) ) '  in ( t o , t l ]  xE n . (6.12) 

Now define ~r* and ~/* on S by 

7" = (1 /2 ) (~  - ~ ) ,  (6.13) 

~* = (112)(I~f + ~). (6.14) 

Let 

A.Q+2[DA~*- ' (grad ~',)2] • (6.15) 

A 

Then, by Fact I I  of Re£.(20), ~ is a solution of the SchrSdinger equation 

" + i . 

Since 

II ~(t,x)I~ = ~(t,x) ~ (t,x) (6. ,s) 

and s ince  ~ i s  continuous on ~ and s a t i s f i e s  

~(to,X)~(to,X) = ~o (x) (6.19) 

~(tl'Y)~(tl'Y) = ~ l  (y) ' 46.20) 
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the solution of the Schr~dlnger equation we have found satisfies the given end 

conditions, 

Therefore Q* = ~ is a solution to the Controllability Problem 6.A. 
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APPENDIX I. TRANSITION DENSITY OF AN OPTIMALLY CONTROLLED PROCESS. 

(see Paragraph 4.1) . 

Under assumption (B 2) ,  exp ~:(0)  i s  a mar t inga le  ? so tha t  

~ [ e x p  ~T(o)IF t ]  " exp g : (O) ,  to ~ s ~ t ~ T ~ t I , ( I . 1 )  

r e l a t i v e  to  the p r o b a b i l i t y  space (R, F ,~  ) • F t i s  an i n c r e a s i n g  fami ly  of s u b - a -  

a lgeb ras  of 5 to  which ~ i s  adapted .  

From (a) of Theorem 4. I.A, exp ~T(o) is ~-integrable and from the definition of 

[ IF t] we have ?? 

I 'Eexp l ;~(0) lFt ]P ' (dw)= I exp tlT(o)~(dm), B £ 8 . (1.2) 
~:(t)cB ~(t)£B 

Prom ( I . I )  and (1.2)  i t  fol lows t ha t  

I exp ~sT(0 )~Cd~) - I  exp ~:(O)~(d~) (1.3)  
~(t)CB ~(t)CB 

to ~ s ~ t < T ~ t I , B E 8 .  

Then, following Fleming and Rishel (Ref. (q)  ,p, 143) we let 

8 ( t , y )  A E'[exp t i : (O)[~'( t )  = y] , y C E n . 

For any BE B 

P{~(t)  E B } - [  exp ~T(0)P'(dm)= [ exp t~:(0)P'(d~) = 
"t~ (t)CB "~ (t)6B 

(1.4) 

where 

ed by 

~t(B) -?{~(t) ¢ B} , 

The left side is ~t(B). 

~t' and 

= I 8( t 'Y)~t (dY)  ' 
B 

~ t  denotes  the d i s t r i b u t i o n  of the n-dimensional  random vec to r  ~ ( t ) ,  d e f i n -  

B £ B .  

Therefore ~t is absolutely continuous with respect to 

~t(dY) - B(t,Y)~t(dY ) • 

$ See for instance : A. Bensoussan, Stochastic Control by Functional Analysis 
~ethods, North-Holland Pub. Co., Amsterdam, |982. 

tt Remember that ~ and ~ have the same sample functions, i.e.,~(.,~)~(-,~) . 
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In particular, consider initial data ~(s )  = ~(s) = x . Then ~t has the density 

k(s,x;t,.), and accordingly ~t has the density q*(s,x;t,.), with 

q * ( s , x ; t , y )  ffi B ( t , y ) k ( a , x ; t , y )  • ( I . 5 )  

Therefore ,  from ( I . 4 ) ~ ( I . 5 )  and (~! .7 )  we conclude tha t  the  process  ~ governed by 

dE = v*(t,~(t))dt + ~dw relative to (fl, f ,P) 

has the transition probability densit~ q* : 

q* ( s , x ; t , y )  ffi 

., exp(-exp(_ W's'x)32mD" [ P( I 2rod )1 ] ex - do ~ 'sx(t)  = y k ( s , x ; t , y ) .  ( I . 6 )  
2mD " s 

Note, in  paragraph 4, one can r e l ax  cond i t i on  (B 2) and make use of  the fo l low-  

ing arguments which fo l low c l o s e l y  ones of H i t t e r  in  Ref.  (7) : 

Re la t ion  (4 .1 .13)  holds under assumptions weaker than the ones of  paragraph 4.2. 

Indeed, s ince  p ffi exp(-W/2mD) i s  a s o l u t i o n  to the Cauchy problem (3 .6 ) ,  (3 .7 ) ,  

with Pl continuous and bounded, i f  Q continuous on S s a t i s f i e s  (AI) and 

(A'2) Q i s  uniformly tlSlder continuous in  ( s ,x )  in compact subsets  of S , 

then according to Theorem 5.3 ,  p.148, of  R e f . ( 6 ) ,  (4 .1.13)  ho lds .  

It follows that 

I exp I;T(0sx)P'(dto) = 1, t g S < t < T g t I , (1.7) fi O 

with 

W(T'~sx(T))~ I~ 
T ~ exp - ~-~ ~ / Q(O,~sx(O)) 

W(s,x)~ exp k-  2rod exp ~s(Osx) exp (-2--2-~----" 

and, as in  paragraph 4 .1 ,  assuming (BI),  

T 
- 1 

~:(Osx ) . I s Osx(O)d~(o ) ~ J~ [8sx(O ) ' 2  da, 

d~ ). (1.8) 

(1.9) 

I v , ( t ,~sx ( t ) )  1 w(t ,~sx(t)  ) ( I .z0)  8sx(t) " ~  " - m--7~srad • 

Here, we suppose that the standard Ft n-dimensional Brownian motion ~ relative 
to (fl, F , ~ )  is defined on is,T] , with ~(s) = 0 . 

For each ( s , x ) ,  l e t  PaX be abso lu t e ly  continuous with r e spec t  to ~,  with 
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Psx(Cka) = exp ~ ( e s x ) ~ ( d u ) ,  t o • s • t • T ~  t I . 

In view of (1.7), for each (s,x), P is a probability measure on (fl, F ) • 
sx 

Therefore, by the Girsanov theorem (Ref.(8]), the process w given by 
sx 

t 

- ~(t) - / w s x ( t )  0sx(O)do 
J 5 

i s  a s t andard  n-d imens ional  Brownian motion (with Wsx(S) = 0) wi th  r e s p e c t  to Psx 

By arguments s i m i l a r  to  the  ones of paragraph 4 .1 ,  i t  fo l lows t h a t  

t 
~ s x ( t )  - x + I i  v*Co,~sx(~))do + 2¢~-~wsx(t) . 

In other words, the stochastic process~sx, s ~ t ~ T, on the probability space 

(fl, F ,Psx ) is a solution of 

d~ = v * ( t , ~ ( t ) ) d t  ÷ 2¢r2~dw 
sx 

~(s) = x . 

By standard theorems of stochastic calculus, one can prove that, under CA1), 

exp ~(0sx), s • t • T, is a martingale. Based on this fact, (A '2) ,  ( n l ) ,  formula 

(1.6) can be obtained by arguments similar to the ones before. 

APPENDIX I I .  NONUNI~UENESS OF THE SOLUTIONS TO PROBLEM 5.2.A. 

P r o p o s i t i o n  5.2.B g ives  s u f f i c i e n c y  c o n d i t i o n s  fo r  a s o l u t i o n  to C o n t r o l l a b i l i -  

ty  Problem 5.2.A to e x i s t .  C l ea r l y ,  the  s o l u t i o n  we have c o n s t r u c t e d  in  paragraph 

5.2 under such cond i t i ons  i s  non unique s i n c e  i t  depends on the f u n c t i o n  p which, 

i t s e l f ,  i s  (uniquely)  determined by the choice  of  the p o t e n t i a l  f u n c t i o n  Q s a t i s f y -  

ing (AI) ,  (A2). In  o t h e r  words, t h e r e  e x i s t s  a family of  such s o l u t i o n s  indexed 

by q , 

Two ques t ions  a r i s e  : 

1. Does t h e r e  e x i s t  s o l u t i o n s  to  Problem 5.2.A not  be longing  to t h a t  family  ? and 

2. I f  i t  i s  the case ,  why have we p r i v i l e d g e d  t h i s  family  ? 

An answer to po in t  I i s  r e a d i l y  provided by a remark of P ro f .  H. Sussmann, 

r e p o r t e d  by Dr K. Kime. 

Assume ~o' ~I E C~(En), ~o' ~I non negative with compact supports A o, A I. Let 

~o(X)Ct l - t )  + ~lCX)( t - to )  
~ ( t , x )  = , ( t , x )  E S . 

t l - t  o 
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NOW, suppose E n • E 3 and find vi ' i = 1,2,3, such Chat 

3 

~t ~ (~i (t'x)~)" 
i=l 

One solution is to look for v of the form ~ = (~i,0,0) ; then 

The right-hand side is a [unction continuous with compact support, by the definition 

of $. 

Then x 

Vl(t,x)~(t,x) - Vl(t,a)~(t,a) = la[DA~(y,t) -~ (y,t)]dy . 

Take a outside AoU A I , then ~(t,a) - O . 

Provided that {(t,x) ~ 0, we have 

v | ( t , x )  = ~ !  Ia [DA~(y,t) - ~-~t ( y , t ) ] d y  I 

The s o l u t i o n  thus obta ined needs not  belong to the above fami ly .  

Note that  i f  ~o' @l are  not  C 2, the l i n e a r  i n t e r p o l a t i o n  w i l l  not y i e l d  a C 1'2 

funct ion  ; i f  ~o'  ~l a re  merely cont inuous,  the argument above can be extended by 

cons t ruc t ing  some C 1,2 func t ion  ~ such tha t  l lm ~ ( . , t )  = ~o and l im ~ ( . , t )  = @! " 
t~t o t~t I 

We are indebted to Prof. H. Sussmann for his comment. 

Concerning point 2, our interest in the family constructed in paragraph 5.2 is 

motivated by a connection between Controllability Problems 5.2.A and 6.A, which is 

introduced by Fact I and Fact II of Ref. (20}. Having in view the study of Problem 

6.A, we have been led by Fact I and Fact II to restricting the class of functions 

for Problem 5.2.A to those functions which are the product of two functions 

~,  ~ E C1"2(S), so lu t i ons  of 

~P= - D~ ~+ 2m-~D ~ ' ~t 

~ .  ~_____~ ~ 
~t 

for  some func t ion  Q . 
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The class of continuous nondemolition measurements vt in quan- 

tum stochastic systems is characterized in terms of Hudson-Parthasa- 

rathy stochastic calculus. Two types of such measurements of a quan- 

tum stochastic process are derived: a Poissonian counting measurement 

and a Brownian indirect observation. The corresponding nonlinear fil- 

tering equations are derived in semi-martingal and density-matrix 

form, and a posterior Schr5dinger equation is found. A quantum conti- 

nuous Bellman equation is derived for the solution of the problem of 

optimal control of a quantum stochastic process with nondemolition 

measurements. The solution of this equation u°(t,u ½ , 9) together 

with the solution of the corresponding nonlinear filtering problem 

" d (t Q (w , v(t)),~ w% ~ (u £, v ~) ^defines% the optimal control stra- 

tegy , w 6, v(t)) = u°(tl u %, ~t(w , v(t))). 

Quantum nondemolition principle. 

The problem of description of continuous observation in quantum 

dynamic systems can be effectively solved in the framework of qu~itum 

stochastic calculus of nondemolition processes developed for general 

linear boson models in El - 3]. The idea of nondemolition qu~itum mea- 

surements which is intensively discussed in physical literature in 

connection with the problem of gravitation waves distinction [4,5] , 

can be usually reduced to the condition of consistent measurability 

for a given family of physical variables x t related to different 

times ta ~. The mathematical definition of such self-nondemolishin~ 

quantum observation given in [6], is equivalent to the condition of 
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pairwise commutativeness for corresponding self-adjoint operators X t 

which represent these variables in a certain, generally speaking,ex- 

tended Hilbert space ~ . In such a form we can represent any real 

random process xt(~ ) defined on the probability space (~,~, P) 

(it is sufficient to take the space L2(~,~, P ) as ~ , and 

the operators of multiplication on xt(~ ) as X t ), and the class 

of nondemolition measurements is exhausted by operator representations 

of classical random processes in this described narrow sense. 

In order to explain the non-commutative generalization of the non- 

demolition measurements principle defined in E7 3 by means of a gene- 

ral quantum random process with respect to a non-increasing family 

~t of operator subalgebras ~t ~ ~s ' t>s , of the algeb- 

ra ~( ~ ) of all the bounded operators, we consider the indexi- 

lied pair Xt ' Yt of Hermitian operators in ~ . 

The process Y = (Yt) is called nondemolishing with respect to 

the process X = (Xt), if Yt commutates with X t and with all fu- 

ture X s , s>t , for each te ~ . By choosing as J~t the operator 

algebra generated by the family ~Xs, s~ t} , we obtain the non-in- 

creasing family ~t} ' with respect to which the nondemolition con- 

dition can be formulated in the form Yt E ~I for all t , where 

~t | = ~ X s , s~ t~ | is the commutant of the algebra ~t (every 

operator Yt ' commutative with ~ X s , s ~t } , is also commutative 

with J~t )" Such a nondemolition process Y called in C 7 ] a process 

with respect to C~= ( ~t )' can be described by the non-commuta- 

tive family ~Yt~ ' if only Yt ~ J~t even for a single t. It 

is interpreted as a process of subsequent, in general case self-demo- 

lishing, indirect mesurements with respect to a non-demolition quan- 

tum dynamic system, the present and future of which are described by 

the algebras ~t" We note that the process Y non-demolishing with 

respect to X can be non-commutative with the past X s , s <t, even 

in case of direct measurements Yt e ~t for all t , when it is 
is not generated by the family ~Ys,s~t~ commutative, if only ~t 

for all t , as it is in case of self-nondemolition proces~ Yt = Xt 

for all t . 
Such a weakened notion of nondemolition observation which does 

not demand due to the causality principle the measurability (commu- 

tativeness) of thepresent process Yt consistent with the unobser- 

vable past X s , s< t , permitted to formulate and to solve in the 

linear case the simplest problems of the filtering theory and control 

in open quantum systems not only in discrete, but also in continuous 
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time C 3 ]. 

The sufficiently general models of continuous quantum observation 

obtained in C 9 J as the limit ~ t-~ 0 when discrete subsequent indirect 

measurements were considered and which turned out to be nondemolishing 

in the weakened sense mentioned above, as well the possibility of their 

description [10] within the frames of quantum stochastic calculus [11, 

12 ] indicate that it is possible to construct some general stochastic 

calculus of nondemolition processes with respect to a given quantum 

random process X . Below we give the scheme of such calculus with re- 

spect to a quantum Markovian process represented in the Fock space, 

then we formulate a problem of nonlinear filtering in continuous time 

as a problem of finding a posterior state on the algebra J~ generated 

by unobservable operators X t for fixed t , and derive the stochastic 

differential equation for a posterior density matrix. In the commuta- 

tive case this equation coincides with the corresponding equation of 

nonlinear filtering for a Markovian process which is described a prior 

by the Kolmogorov-Feller equation, in the pure non-commutative case 

~ ~( '3~ ) it is reduced to a nonlinear equation for the proba- 

bility amplitude which generalizes the SchrSdinger equation. This equa- 

tion describes the a postrior density matrix of a Gaussian boson sys- 

tem with a linear coherent channel under the Gaussian indirect obser- 

vation which is described by the quantum analogue of the Kalman-Busy 

filter obtained for a quantum oscillator in [5, 6]. We note that quan- 

tum a posterior dynamics obtained in such a way which gives the solu- 

tion of optimal nondemolition filtration problem for quantum random 

processes according to the quadratic criterion coincides for conserva- 

tive (Hamiltonian) systems with a prior dynamics described by the 

SchrSdinger equation. The problem of nondemolition filtration in quan- 

tum Hamiltonian systems in the sense of self-ncndemolition of the ob- 

servable process without the quantum dynamics reduction was conside- 

red in ~13, 1~]. 

1. Nondemolition observation and a posterior dynamics 

of a quantum particle. 

Before we develop regorously the quantum stochastic calculus o£ ge- 

neral nondemolition processes in the Fock space, we consider a special 

case of physical interest: namely, a quantum m-dimensional particle of 
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mass j~ with the potential ~ (x) in a BOsch reservoir modelling 

the measurement apparatus. The position of tlze particle x = (x i) is 

observed indirectly together with the white noise by measuring a self- 

nondemolition vector process, which satisfies the equations Qi =~xi+ 
"+ 

+ 2Re A i , or in terms of Ito differentials: 

dQi(t)=~-~Xi(t)dt + 2ReIA;( t ) ,  Qi(O) = O, (1.1) 

where X(t) is the vector of coordinate operators in the Heisenberg 

picture, 2Re A~(t) = + A~(t) i is the operator representation of Ai(t) + 

a standard Wirier vector process in the Fock space with the canonical 

annihilation Ak(t) sad creation A;(t) operator-functions, which 

are generalized derivatives of the processes A i *= A~ with [ A:k(t) 

A~(s)] ~min (t,s). The apparatus effects on a quantum particle by 

means of the perturbation forces fi = ~ImA; , which are wi~ite noi- 

ses of the intensity ~2/2, proportional to the measurement accuracy 

, so that the momentum operators Pi(t) =~xi(t) in the Heisenber6 

picture satisfy the quantum Newton-Langevian equations Pi + Fi = fi' 

F = V~ , or in the form of quantum stochastic differential equations 

(QSDE): 

dPi ( t )  + F i (X ( t ) ) d t  = ~ I m d A ;  , (1.2) 

with initial ~i(O) = ~ Vi/J, J=~, xi(o) = xi, ImA; =(A~-A~)/2j, 

~ = Vi ~ . As it follows from the next section, the equations (1.2) 

are uniquely possible QSDE for a quantum particle with the Hamiltonian 

~/2~ + T(X) to be nondemolished by the measurement of the commu- 

tative stochastic process Q defined by (1.1) in the sense of 

[Pi(s),Qk(t)] = O, [Xi(s), Qk(t)] =0, Wi,k; s>_t. 

It means that the observable in such a way quantum particle is an 

open quantum system and its a prior state in the SchrSdin~er picture 

is a mixed state for ~ > O even if the initial state is purely des- 

cribed, i.e. described for the particle by the wave function ~(×)and 

for the reservoir by the vacuum Fock vector. 
By taking into account the measurement data, one can obtain a pos- 

terior quantum state of the particle which as we shall prove it is a 

pure state for a given initial ~ and a vacuum rock state. This a 

posterior state is described by a posterior stochastic wave function 

(t,x), satisfying the new nonlinear stochastic (posterior) SchrS- 
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dinger equation : 

~ 22  ' 2  

where 2(t) = x - ~(t), ~(t) -~x [~(t,x) l 2 dx is a posterior (sto- 

chastic) mean value of the position at t>O, and ~ is an innova- 

tinB process defined as the vector Winer process by the Ito equation: 

q-, 

dQi(t ) = d Q i ( t ) - ~ i ( t ) d t  , %(0)  = 0 (q.4-) 

By using the table dQidQk ~ ~ikdt in the Ito formula 

,~( ,?- ) o f , (  ~ )dC" + ,~ f , , (  '~ )(d '?' )2 

for the function 5 ( ~  ) = I@I 2, one obtains the stochastic (poste- 
r ior )  equation of continuity for the stochastic density function 

£( t ,x )  -- I ~ ( t , x ) l  2, 

d~ (x)+ V(v(x) ~ (x))at - ~ p(x)xdQ, 

where 

action 

(1.5) 

vi(x) = Vis(~)~ .re the velosity f~ctions defined by the 
S(t~x) = ~Arg ~(t,x) satisfying the Hamilton-Jacobi equation: 

_B._ s + (v~ , )2 /2 f  ÷ m = , , 2 ~ , / ~ / 2 ~  ~ (1.6) 
I)',; 

The real equation (1.5) together with (~.6) is equivalent to the comp- 

lex equation O.3) for (x) - V~(x>~xp(jS(x)l~ , and its non- 
A 

linearity due to the dependence of q on only is connected with 

normalization prassr~ing p=operty ~)d~ ~ ~. By multiplyin~ ~ (~,t) 
on the positive process ~(t) defined by the equation: 

(1.7) 

one obtains the linear stochastic continuity equation for non-norma- 

lized posterior density R(t,x) = ~(t) pit,x): 

dn(x) + 9(V(x)~(x))dt =~R(x)xdQ, (1 .8)  

corresponding to the followin5 linear stochastic Schr~dinger equation 
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for the normalized by ~ posterior wave function~(x)-exp jS(x)/~ : 

By taking into account that a posterior quantum pure state corres- 

ponds to a nonnormalized stochastic wave function c(t)~(t,x) up to 

an arbitrary complex stochastic multiplicator ~ , one should identify 

it with the complex velosity vector function: 

w(t,x) ~ ~Vln~(t,~) = ~VL@F(t,~) ~ u(t,x) + ~v(t,x) 

satisfying the following system of quasi-linear stochastic equations: 

dW(x)+(~ ~x+ ~F(x)- ~(VW2(x)+~W(x)))dt =~-~)% dQ (1.10) 

which can be obtained from (1.5) or (1.9) by using the Ire formula for 

the logarithm f = ln. 

Let us find the solution of the equation (1.10) in case of linear 

potential force F(x) = ~g - ~x and the Gaussian coherent initial 

wave function: 

T(x)  - (2~ 62) -m/4 e~p{- ~ 1  (x-q) 2 + ~px/~}  , 

defined by the mean values q, p and the dispersion ~2 of the wave 

packet in the coordinate representation. We find the solution of (1.10) 

with the initial condition: 

W(O,x) = 1 ~Vln~(x) = n(q-x) ~12~ 6 2 + jP ~I]~ (1.11) 

in the linear form W(t,x) = w(t) + u~(t)xl. By inserting VW 2 = 2~W, 

W =0 into (1.10), one obtains the following equations for the co- 

efficients w(t) and ~(t): 

dw + ~ (g_~w)d t  = ~ dQ, w(O) = + )$ , (1.12) 

d ~ / d t  + ~ / ~  = j ( i ~ / ~  + ~ 2 ) ,  ~ ( 0 )  = -~/2J~8 2 (1.13) 

The first equation of this system is a complex linear filtration equa- 

tion, while the second is a complex Rickatti equation having the uni- 
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que solution: 

~(o) ÷ j~tha~ V'~- 
Lo(t) = joLjw.. + ,.o(o) th~-t ~ = (;e+ ,j~ )I12 (1.1'0 

satisfying the normalizability condition Re~< O for the corres- 

ponding wave function: 

l~Lr(t,x) = e x p ~ ( G ( t ) x  + ~ ( t )  x212)/ "h~ . 

A 

Hence the posterior wave function ~(x) =~2(x)/ lieu 

form o f  t he  Gauss i a r~wave  p a c k e t :  

has the 

1 ( ~ ( t ) ( x _ ~ l ( t ) 2 / 2  + j p ( t ) x )~ ,  (1.15) ~ ( t , x )  = c(t)exp{~ 

where ~(t) -- (2 9g ~2(t))-m/~ up to the unessential stochastic pha- 

se multiplier, 4~2(-t) ~ i I%/2 ~ Re ~(t) is a posterior coordinate 

dispersion 62 = ~2_ ~< giving the minimal square error of the posi- 

tion estimation, ~ -- -Re w /ReOJ is a posterior mean coordinate ~ , 

and ~ = 24Im(~ + 6o~) is a posterior mean momentum 

Note that q satisfies the equation ~U(~) = ~Vln (~) = o, 

which defines the maximum of a posterior density 9 (and R ), and 

coincides due to linearity of V with the value j~ V(Q) = ~ S(~) 
*% 

of the classical momentum function VS(x) at x=q , giving the opti- 

mal velocity estimation V(q) ~ ~(t)/~ of the observable quantum 

particle. 
By taking into account "thai; ~ -- jl'~/~ -~ ~/, ~dl~ -~4&~dq = 

.~(d9 + ~d~) ~V-;~ ~d~- ( ~  + J(S~g - ~ ) ) d t ,  one obtains the 

following a posterior system of Hamilton-Langevian equations: 

^ ( 1 . 1 6 )  pdt - ~d~ ~ ~ C~d~me ~ 

which together with (1.14) define a posterior dynamics of qus/%tum 

observable particle in the Gaussian coherent initial state, defined 
by ~(0) = p and ~(0) = q. We note that a posterior momentum disper- 
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, 'b 
2 ~2  sion T p~ -- p , 

="n,~l~V~U(x) l 2dx = ~  I w(x)} 2 ~t ' (x) l  2 a,~ , 

gives the minimal square error T~ - ~Ico(t)|2/2ReOD(t) of the mo- 
a 

mentum estimation, satisfying the Heisenberg inequality 6z(t) T (t)~/@. 

If ~ ~ 0, these dispersions have the finite limits: 

_- - 2 + 

'%,-- ~ Ioc /2"rm W.. ,, f , (~ .p-  ( ~ 2  + 

_ ~ ) ) 1 / 2  ( 1 . 1 7 )  

1 2 ) 1 2 ( ~ ~ - ~ ) )  1/2, 

corresponding to the stationary solution o2 = ~ . 

The obtained a posterior quantum dynamics (1.16) helps to reduce 

the quantum optimal control problem of this particle by gravitational 

strength g=u(t) to the solution of corresponding classical stochas. 

tic problem, if one considers only Gaussian coherent initial states 

and mean square cost functionals. Due to the linearity of the system 

(1.16) the optimal control strategy u°(t) is a linear function 

u°(t) =-L(t)~(t) on posterior position ~(t), where the matrix L(t) 

is the control matrix for the classical deterministic controlled sys- 

tem: 

p-~=o, ~ +~u =~q, 

minimizing the corresponding quadratic cost functional. Such a solu- 

tion of the feedback control problem for the indirectly observable 

quantum oscillator was found in [6]. 

2. QND stochastic calculus in Fock space. 

Now we shall develop the general quantum nondemolitiom (QND) sto- 

chastic calculus in the Fock space ~ ~ U ( ~ ) over the Hilbert spa- 
ce ~ = ~2( ~+_~ ~m) of square-integrable complex vector-functions 

t ~-' ~(t) = (~tE),k=1,...,m on t >~ 0. As in the previous section, we 

shall use the tensor notations in which a vector ~E~ is represen- 
t 1," ,tn ~ with 

ted by all the tensors ~ k1''''tl,...'kn, t n = ~ kl,.[i,kn 
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o~ t I ,... ,t n 

: nX=O . . .  S 
tl<. • .<t n 

k I , -.., k n 
t I ,.-. ,tndtl"" .dtn 

(the sum is taken also over identical co- and contra-variant indexes 

ki=S,... ,m). 
One should consider ~ as a tensor-valued function ~ ~*~(~ ) on 

= (t 1< ... <t n) with %o (T)6~mxn. Let us denote ~ the va- 

cuum function ~# (T)= O, if T# ~ , ~(¢~- I, ~t = V( ~t ) and 
t t ~r = ~(~r ) the Fock spaces over orthogonal subspaces ~t = 

s_<t}, and cve  

~t= ~t , so that ~C= ~r~o ~t ~ ~t in accordance with ~= 

= C~ r e ~ ®  (S t  f o r  aii r ~ t .  r 

Let us define the following basic qua/itum m~'tingals with respect 

to the filtration (~£) and the state-vector ~ : the creation pro- 
^± ^k cesses AT(t), the annihilation processes A (t) and the preservation 
i ^k 

processes Ai(t), where i,k=l,...,m, described on the product func- 

tions %o (~) : @ ~ (t) by 
teT 

I,+ 
Ai(t)~o(T) = ~-- 9(Ts)~it(s) @~9(%~ s) 

s %~ 

~.k_(t) 9 ( ~ : )  = ~' ~k(s)ds %o(~. ) (2.~) 
0 

^k Ai(t)~(~ ) = ~ ~(q~s)® ~k ~ it(s)@ ?(%~s) ' 
S 6%" 

t S where q~ s =:tkE ~ : tk< s~ , qfs =~tk&TI tk's~ ' ~i ( ) = O, 

s>t, ~t . ~i' s4t with ~i = (~k). 

i i;(t), i_(f-,t) f~k(t), and By denoting A+(f+,t) = f+ = _ 

i ~.k (t), where f+ (fi+) e @m are m-columns, f-=(fk ) ( e ,t) = e k A i = 

E ~m are m-rows, and e = (e~) are complex mxm-matrices, one obtains 

the canonical commutation relations E Sl ] for the processes A , A_ 

and A , which we write in the following compact form 

[~(z,t~ X(g,t)] = i ( [z,s], t) (2.2) 



254 

of the operator representation in Fock space 

~ ( f , t )  ^*  - ^+ ~ ( f - , t )  + ~ k ( e , t )  = A_(f+,t)+A (f+,t) + - (2.3) 

with A~(f+,t) = f~t~ for the Lie *-algebra of block-matrlces 

(o,-!i) (i°i) f = e , f %  I F I = e" f -  ( 2 . 4 )  
0 0 0 0 0. I 

Here f: is a complex multiplier of the identity operator ~ in 

the Fock space, f+ *= f+, f*- = f+ . is the m-row with f&k = + ' 

f~+ = f-* is the. m-column with f*~ = fl~ ' and e* = e* is mxm- 

matrix with e*~ = e k ~ i ' so f is an operator and f* is a conjugated 

one in an indefinite spaceCi'~'Lof ]C= ( J~_, 3{i, /'+) with 

t he  p s e u d o - s c a l a r  p r o d u c t  ( ] L [  %o ) = / ~ _ . ~ -  + j ~ j . T  j + / r+ .L {+  , 

where ~- = ~+, yk = ~k' ~+ = ~-" Due to the so defined con- 

jugation one obtains the .-property A(f,t) ~ = ~(f* ,t) for the Lie 
^~ 

representation A ( f , t )  = f~AA ( t ) ,  where i ~ ; &  [ - , 1 , . . . , m , + }  are 
the summation indexes of the fl+m+Q-dimensional indefinite space. 

The multiplication table for Ito differenbials dA~ (t) = A~ (t+ 

+dt) A~ (t) of the processes A_+(t) = t~ A+(t), A~_(t) and -- ~ 

(t) in Hudson-Parthasarathy quantum stochastic calculus can be wri- 

tten simply in terms of A(f,dt) = f~v dA~ (t) as: 

^ A 

A ( f , d t ) A ( g , d t )  = A ( f g , d t )  . ( 2 . 5 )  

Now let us consider an initial Hilbert space ~ = ~ , denoting 
3ct ~@ ~ t and ~,t : ~ t_~ ~t the corresponding components 

of an ad~pted process F(t) = ~,t ~ ~t ' and let us regard the opera- 

At@ It tore A(t) = acting in ~ = J~ @'~ by multiplying each 

~(t) on the identity operator I in 3¢ , so that the quantum sto- 
t is defined as in [ l f l ]  by the 

chastic integral ~' A (F (s),ds) 

O 

stun: 
t 

t ~ dA~ I 
I ~, = 
o o 

(F~ ds * F I aA+ ^ i  k + i + dA + ~ dA i ), (2.6) 

k for adopted weakly measurable locally square-integrable A k =A i 
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functions t ~ F ~ ( t ) w i t h  F~( t )ac t ing in ~ for ~e~-,i}, Ve~k,+}, 

i,k~%..,m, and 9~v (t) = 0 for other indexes ~ ~ v. The Ito formula 
^ ^ t 

[~I] defines the product X(t)Y(t) of integrals X(t) I ~-~-'q 
t t o 

= ~dA~ in the form of an integral ~ d(XY) over: 
O O 

(2.7) 

The unitary quantum stochastic evolution U(t): ~OT ~-* U(t)(~o~ ) 

of the combined system consisting of pure states ~e~ and a Boson re- 

servoir is described by the quantum stochastic differential equation 

(QSDE) : 

(t)U(t)dA~ (t)= A(L(t)U(t),dt) (2.8) dU ( t )  : i 

~.t ~ ^ 
with U(O) : I@$ ~ i and adopted processes ~,~ - ~ ~ , 

if ~= + or ~ : -) satisfying the following conditions. 

THEOR~ I. If U(t) is a unitary process in the Hilbert space ~ : 

U(t)aU(t) : I = U(t)U(t)*, then z-u+ I@~ formsa pseudounitary 

block-operator Z = (Z ~ ) in the indefinite space ~@ c1+m+l for 

each t : ~*~ : l®& = ZZ*, where ~:( ~ ), or in terms of L : 

+ v +_ pL~ = 0 : L~ + ~W + ,.~,, ¥ (2.9) 

fop all ~ , ~ and t . The conditions (2.9) are not only necessary but 

also sufficient for the existence of the unitary solution of (2.6) at 

least in case of local houndednsss of the operator-valued functions 

t~ £~ . 
PROOF. (2.9) follows from the Ito formula of (2.8) as U(t):ut@ ~, , 

4 -  

~t = ~ * : ~ p I ~ S  d~: J~ where ~ t ( ~ _ ,  T , ~+) = ~ ( ~ ) ~ ( ~ )  is 
o t ~t is the indefinite space of the isometry: ~ -~ ~(~t), 

square-integrable 1+re+l-dimensional functions s~,(~),~=-,1,...,m,+~ 
with T~ = 0 for s >t, ~ (~t) is the space of tensor-valued func- 

tions h°( qy ~ T , ~+)=( ~kl I" "kn)( q~ , ~+) =-~( T_, T+)( ~6 ) with the 

pseudo-k~/cleadian metric defined n by the integral: 

over the finite subsets ~ , ~+c[O,t] ,dT= dtl...dt n forT=(tl<.-. 

• --<tn), Jt~(~) = ~(~_,~,~)d~_, an~ :~P ~(,)~s, is the 
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natural representation on ~@ ~(~t) of recursively defined chronolo- 

gical products 

" ' ' '  .~ (S l " ' 'Sn ) "  

Now let us consider the output canonical processes B ~(t)=U(t)* 

(t)U(t) and define the integral ~ B(F(s),ds) as the integral A ,  o 

o 

(2.6) with F(t) = U(t)F(t)U(t)* in the Heisenberg picture: 

t t 
(2.10) B(F(s),ds) = U(t A(F(sl ,ds) U( t ) ,  i f  [ ~ ; ( s l , ~ ( t ) ]  =0. Vs~t. 

O O 

THEOR~ 2. The integral (2.10) with adopted F(s) can be represented as 
t 

the integral (2.6) in the form I A(Z($tF(5)Z(5),ds), 

O 

(t) = L (t) +~ , x(t)= U(t) T(~)U(t), so where Z 

Z*FZ = L*FL + L*F + FL + ¥ (2.1~) 

PROOF. It is a direct consequence oi the Ito formula (2.7). 

Let us denote X(t) ~ X(O) + ~t A(D(s),ds) a quantum process, 

o 

defined by the initial operator X(O) = X ® ~ with X 6~(~) and adz- 

(t) and Y(t) = Y(O) + ~t B(F(s),ds) an output self-adjoint pted D ~ , 

o 

process, defined by the differential: 

dY(t) = A(Z(t) * F(t)Z(t),dt) (2.12) 

with F(t)* = F(t) Y(O)* Y(0), where Z ~ , = ~ (t) are assumed to be 

nondemolished by Y(t): [Y(e),Z~ (t)] =0 for all s~t, ~ ,V , as it is 

in the case ~t ~= tt~T~ , 9 ~ ~ ~s~1, Y(o) =c ~= - j. 

THEOR~ 5.. The output process (2.12) is nondemolished with respect to 

the process X(t) iff [X(O),Y(O)] = O, and 

D(t) = Z(t)*G(t)Z(t)--X(t)@~ , (2.13) 

the block operators G(t) = (G ~ (t)) commute with F(t) = (F~ (t)) and 

PROOF. It is an application of the Ito formula (2.77 to d[X(t),Y(t)]= 

=o and [dX(t),X(t)] = O. 
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Now we consider a family ~Yi(t), i=l,...,m~ of output self-adjoint 

and nondemolition processes, defined by (2.12) with Fi(t) = Fi(t)* , 

satisfying the following conditions. 

THEOR~ ~. A family Yi of the processes (2.12) is self-nondemoli- 

rich: [Yi(s),Yk(t)] = 0 for all i,k and s,t , iff the &lock opera- 

tors Fi(t) commute [Fi(t),Fk(t)] = O for all i,k,t and with Yj(s~ 

for all s~t, j--1,...,m. 

PROOF. It is a consequence of the Proof of Theorem 3. 

Note, that if the process F i ~ (t) commute with Z; (t) as it ta- 

kes place in case of the operators F i ~ affiliated with the algebra 
= t, then the output integrals ft 

0 

can be represented as in (2.6) by 
t t 

0 0 

Bk(t) are preservation output processes, defined as 

= + _ = ~ V k=Z-.k 

(2.1~)' 
= Z+ Z+dt + ~i =+'~i + -i* k " 

3. Stochastic calculus of quantum open systems. 

Let ~ = ~ ( ~ ) be the algebra of bounded operators describing 

an open dynamic system by a family ~. =(¢~) of normal representati- 

ons ~t : ~ ~( ~® ~V ). We assume that the family ~ is genera- 

ted by linear w*-continuous maps ~, V,-~ -v~, ~ : ~ -~ 

defining a qua rum Ito equation [11,12]: 

• + k(X)dA k ~(X)dt (3.1) d ~.(X) = ~ik(X)d~k + ~(X)d A i + ~ _ + , 

with respect to the standard gauge Ak(t), Bose annihilation Ak(t) 

and Bose creation ~(t) processes in ~ @~ , the increments of which 

satisfy the multiplication table 

dA- dAi ~ildt i= ~.d l k 1 k I k + =~d~, k ,jk~ 
d Akd Aj Ai, dAd Ai= ~idA_, d~idA j 
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with zero products, where I = I @ ~ is the identity operator in~. 

THEOR~ 5. Equation (~.1) with the initial condition Co(X) = X @ 

for all X = X* generates an open adapted dynamic system (j~ , • ), 

• t(X)=$~(X)@ ~, iff the adapted weakly measurable and locally squa- 

 e- otogra lo ma s d e p e n d  on 

in the following way: 

~t(x)* ~(x) -~(x), ~t(x)~ ~(x)~ t - ~ ~t(x) 
(~.~) 

r t ( X ) "  Zt* ~*(X)Zt  - ~t(X)(~ZtZt  + iHt )  - '~ttfl~'~t - i H t ) ~ t  (X) 

Mere ~t(X) = V~(X)Vt, Vj= Vt I ,  Z t and H t = H t are defined uni -  
quely  by some adapted 0perator-valued functions V~ = Vt I , Z t and H t = 

=Ht* up to operators ~'t' %t and h t from the commutant ~t t of ~t(~): 

= ~tVt , = V (Z t + ) , H t = H t + Im z t t + 

The proof of the theorem is based on the ~uantum Ito formula. Note, 
~ and the maps that in the Markovian stationary case ~k t' ~t are 

~--~ ~ (~), and Vt, Zt, H t can be defined as images of some operators 

V*= V -~, Z and H = H* from J4 : 

vtk- zt '.  t(z H t =  

Let us regard a quantum process Y = (Yt) in ~, which is adapted 

in the sense that Yt = Y~ is affiliated with~(~)@~ t , and nondemo- 

lishing (QND) with respect to (j~,~): XsY t = YtXs for all t~ s and 

X s~ ~s(~). We assume that the process Y is generated by the quantum 

Ire equation: 

with the corresponding (adapted, local square-integrable) operator- 

valued functions t~E t, F t, G t. The following theorem is a conse- 

quence of the QND principle and the Ito formula. 

THEOREM 6. The adapted process Yt' satisfying equation (3.4) is QND 

with respect to the system (3.1), iff 

I) it is QND with respect to the processes V t, Zt and up to 

~t ' ~t and htE ~ , i.e. if 
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[Vs,X t]  =o ,  [zs,Y t] --o, CHs,xtS =o,  s~t (~.6) 

A 

for the operators Vt, Z t and Ht, defining (5.2) by (5.~), ~o = yl 
for y~ ~ , and 

j ^ ^ ^ t 2) Vt~V = at, VtF t = atZ t + bt, Gt=Z + 2Re Z t + ct, t~ ~+, 
(~.7) 

where at = aC' bt and 8 t = 8; are adapted and commuting with X t ~ J~t 

for all t : 

Cat,Xt] = O, [b t ,X t ]  = 0, [c t ,X t ]  -- 0 (3.8) 

Condition (5.6) for the Markovian case (5.@) can be omitted. The disco- 

vered structure (5.6) of QND processes (5.5) allows us to consider the 

following three basic types of QND observations: 

a QND counting observation Yi(~ Ni(~) , where 

dNi = ~idAk" ~ X+ 2Re~ dA~ + ~*Z I dr, ~(0~ O (3.9) 

A 
(a ~, b = O, c = O), a QND diffusion observation Yi(~)= Q~I?QI(~ 2ReB~) 

• ' ÷ _~k. ? B~(P)~ 0 dB ~_ = V~dA~. Z~dt, dB i = VlaA k + Z~dt, _ = ~(o~ (3.10) 

(a , O, b ~'I, c = 0), and a QND time observation Yt = t~ (~ = O, 

= O, c = I). As it follows from the next theorem, the basic QND pro- 
cesses N~ ~ %i are commutative, but not mutually commutative with 

the multiplication table for their increments reads 

dN~dNt= dN~, dQ IdN i = dB i, dN Idq i = dB~, dQ Id~t - Idt 

and zero other products. 
THEOR~ 7- A family y = (YI,...,Ym) of QND processes Yi(t) satis- 

fying "ito equations (3.4) is mutually commutative ~Yi(t),Yk(S)B = O, 
iff the operators ~' hi' ci defining by (3.7) the coefficients H i , 

Fi, G i satisfy the QND conditions: 

ai~ = akai, aibk = ~bi' bibk = bkbi' t e ~+ (3.12) 
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Moreover, the adapted nondemolished process Z t in (3.7) defining (3.2) 

by (5.5) can be chosen in such a way that ~i(t)bi(t)=O for all i and 

t . If ^ai(t), hi(t) and ~i(t) commute with Z t for all t , as it 
can be done in Markovian case (3.@), then the processes Yi(t) satisfy 

the equivalent Ito equation: 

dXi(t) - ~i(t)dN~ ÷ 2R~i(t)aB ~ + ~i(t)dt, (3.13) 

Yi(O) = yil with respect to the canonical QND processes (3.9), (3.10). 
The family Y(t) = (Y1(t),...,Yn(t)) of mutually commutative~ ̂QI~D 

processes (3.13) is called QND filter, if the operators ai(t), bi(t) 

and ~i(t) are affiliated with the Abelian algebra ~ = {Y(s)}Is~t 
for each t . In that case of ai(t)~ bi(t) and ~i(t) defined by the 

corresponding functions ai(Vt), bi(V t) and ci(v t) on the trajecto- 
ry space ~t of the observed values V(s) of Y(s), s~ ~, we have: 

@ 

where I ~ (I ~.~ is the orthogonal identity resolution for yt = 
= {y(s) ~ The condition @~(t)~(t) = O meaning either e~(~t)=o 

or f~(vt)=o decompose a QND filter on a jumping and continuous ortho- 

gonal parts: 

dYi(V t) = ei(vt)dNt(V t) + fi(vt)dt, 

dYi(V t) = 2Rebi(Vt)dB~(V t) + ci(~ t )dr, 

V t e ~ 

where = is a measurable disjunction for each i and 

t and the increments dNt(V t ), dBt(V t ), dBt(v t ~are defined in 
(3.9), (5.10) by the corresponding components of the decompositions: 

Iz(  
Note that as it follows from (3.12), bi(Vt ) = O for all i and fi- 
xed v t provided that ai(v t ) # O for such V t and some i , and 
ai(v t ) = O for all i and fixed V t , provided that bi(V t ) # O for 

such V t and some i so that the subsets ~ll and ~ldo not depend on t° 
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~. QNDfiltering and optimal control in Fock space. 

Let u s  consider an initial normal state ~ on ~:~(~) and v a c u -  

um state ~ on ~(~), defined by normalized vectors ~a~ and~(~ , 
s i s 

denote by ~r' ~ the corresponding states on~( ~r),~-~( ~ ) and 
~t ~ on~A#~. The open dynamic system (~ ,¢ ) defined by a family 

¢~ (i t ) of representations ~t:~--~](~@~) is a quantum stochastic 

system with respect to the filtration ~ ~@~r~ } , and the nondemo- 

lition process, defined by (5.@)-(5.8) is a regular semimartingal with 

respect to {~e~l. We denote by ~X t~ the conditional expectations 

on the von Neumann decomposable algebras ~t@~ ~ with respect to 

their central subalgebras ~ , which are defined by pro~ectors E t 

on subspaces ~tc~@~i t' generated by^the action of ~t on T@~¢ : 

at(x) ~ E ~ XI , for all ~e~ ~, and ~t = &t ~t the posterior ~tate 
on ~ , identified with the density matrix due to its normality. 

THEOREM 8. Let (~ ,~, N) be a quantum stochastic process (~.I) with 

counting nondemolition measurement (~.9), and ~ZtZt~ ~s invertab- 

le for all t . Then the posterior mean value $ t = <It(X)~t satisfies 

the following stochastic filtration equation: 

where d~ t = dN t - ~ZtZt>tdt , 

~t(x) = z~ ~t(x)ztl<Z~Zt>t - ~t(x) . 

In the ~rkovian case (5.#) the posterior density matrix 

the recursive stochastic equation in Ito sense: 

(4-.2) 

?t satisfies 

^ t K~_ Z~tZ*)dt + (z t z',' ^ = - T t ) d N t ,  

where K=iH + Z~Z/2, ~Z- ^ - ~t(Z*Z), which has the solution 

for ~c = ~@~ , if ~t satisfies the nonlinear Ito equation: 

d ~'t+ (~Ht+ ~-~'t"2)  ~ t  dt : ~'t ~td~V i~z ~vt~, % : ~' , (4.4)  

. . . .  _ ^ ) I , ' 2 .  
where H t = ~- (I"tlZ'Z ~it) I,'2Tmz, Zt= Z (T~\Z~Z $d t 
T HEQREM 9. Let (~ ,$,Q) be a quantum stochastic process (3.1) with 

diffusion nondemclition measurement Qt = 2ReBt , defined by (3.!0). 

(4.3) 
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stochastic filtration equation: 
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q~ -- <~t(x)>t satisfies the following 

where d~t = dQ t - <2ReZt)tdt, 

~t(X) = 2ReCt(X)(Z t -<Z~t). (4.6) 

In the Markovian case (~.~) the posterior density matrix satisfies the 

recursive stochastic equation in Ito sense: 

^ ^ ^t K~ ~t z~ )dr ^ ^ d~t+ (K~t +~ - Z = 2Re(Z - zt)~tdQt (4.7) 

where K=iH + Z'Z/2, zt= , which has a solution ~ = t~ ~ for 
A 

tO ~ ~ , if ~t satisfies the nonlineal- Ito equation: 

d ~t • (i~ t + ztzt/2) ~t dt = zt~t~ t, ~o °~ 

where H t = ~: - (~t~ReZt ~t)ImZ, Z t = Z - (~tlReZ t ~t ). 
The linear continuous filtration for the Gaussian ~o and canonical 

Z was considered in [I-5], and the general formulation of quantum non- 

linear filtration for a quantum ~rkovian partially observable cont~-ol- 

led objects in operational approach was given in [16]. 

Let us consider a quantum controlled process over the algebra ~ = 

= ~(~C) described by the family of normal representations ~t: ~ -~ 

~ ~/¼~ ~.÷, where ~t is a C*-algebra of continuous functions 

~L~ ~ , ~: ~(~) ~or t~e ~ock space ~. ~et ~ r-s~ r~s ~ (t) 
be a Hausdorf space of controlling processes u ~ =(u(t)i r%t<s ? such r 
that ~tX ~ ~ ~ ~o~ all t,s~O, whera u(t~ ~(t), ~t o ~o ~, t 

process Xt(u~ ) -- ~t(m~,X) the algebra ~X, U~*~ ¢ , described 
by the Hudson-Parthasarathy dynamic equation: 

--^ d~ ^ ~ " t -- , dXt At t + 2ReBtdAt+ Ct(u(t~d ' X o X@ ~ (4.8) 

where it(mr) ~t(X)(u~), Bt(u÷) = pt(X)(u~), Ct(~,u(t)) = 
= ~t(X,u(t))(U~) are defined in a standard way (~°2), (~.5) by the 

operator-valued continuous adapted functions Vt(u~) = ~t(~%~/), 

Zt(u~ ) = Ct(u~,Z), llt(u ~) ~ ~t(u ~ ,H) with unitary V~ , Z ~ J~ and 

s elf-adjcint H(u(t))E ~ . We shall assume that the control process 
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~( t )  i s  def ined by s t ra teg ies  u t = d t ( w t , v t )  = < I t ( s , w t , ~ , v ' ( s ) ) ~ s > . t } ,  
where wt=(ut,vt), vt= Vo~ ' vSr = ~v(t)~r~ t< s} are tile results of non- 

demolition measurements v(t) on the interval ~r,sL , v t = v ~ t ' descri- 
bed by a commutative process Y(t) , satisfying the equations either 

dY(t) = a(t)dN t + ~(t)dt, or dY(t) = 2Re b(t)dB, + ~(t)dt with invor- 
53 t o (Y(s~ls -< t)" deri~ed by table a(t,ut), %(t, ut), c(t,ut)e 

the corresponding real-valued functions a(wt,v(t)), b(wt,v(t)), 
c(wt,v(t)). 

L~t us consider the optimal control problem with the operator-valued 

risk uel( ~-~ Rt(u) e J~tCu) = { %s(~4 ,u s) \s mt~" satisfaing the equation 

Rto(U) = I St(ut'u(t))dt + Rtl (u), (4.9) 

t 2 

where St(ut,u(t)) = 4t(S(u(t)), u 1) for a continuous ~ -valued self- 
. o 

adjcint function S(u(t)) = B(u(t))* The optimal control strategy It 

of the extremal problem 

<4~m), Rt(u t ,  ~ t ( w t , v t ) ) >  = i n f ,  (4.10) 

where ~ is an initial normal state on J~ , and ~ is the vacuum state 
on J~ = ~ (~-). This solution can be found by the dynamic program- 

ming method as a solution of the following Bellman continuous inverse- 

time equation. 
THEOREM 10. Let R(t,w t, It) be the averaged ~-valued risk uniquely 

defined for the strategy ~t by 

<@~, {t(ut,R(t,w t, dr))> 

due to the l~rkov condition for 

= Z@®~ , R t (u t , d t ( w t , v t ) ) ~  

Xt(u t) with respect to u~ = o0/-~., and 

^ t ~t(wt dr) : ~[Rt(ut,dt(wt,vt))] = <e~(w ),~(t,w t, dr)> 

be the posterior risk, corresponding to the strategy dt , where ~t is 
the conditional expectation on ~tV~ t with respect to the commutative 

algebra ~t and 

~ t(wt,v(t)) = ?~ ~t(ut)(v t) 

be controlled a posterior state on £or a w t = (ut,vt). Then 
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^ t ^ t 
inf<~t(wtiv(t)~R(tiw , ~t)~ = s(t, ~t(w ,v(t)), 
t 

where the functional s(t,~ ) satisfies the following Bellman equation: 

-gts(~) = inf <~ ,S(u(t)) + ~(u(t),~)s(~)> + <~,Z+Z~s(~) (4.~I) 
u(t) 

in case of counting observation and 

u(t)-" 

in case of diffusion obsex~ation. 

Here ~ t :~ /~ t ,  6 :  ~ / ~  , ~s (~ )  : s(Z~Z'J/<~,z*z>) - s(~) ,  

A (u ( t ) ,  ~)s(~)  = ~s(~) - 2~eK(u( t ) f  ~s(~) 

V(u(t),~ )s(~) :Z~s(~)Z- 2~eK(u(t)fg s(~) 

@(D)s(~ ) : 2~e(z -<@,z~ f ~s(~) 

and K(u(t))iK(u(t)~ are defined by ~ iK(u(t)) + Z*ZI2 and ~t(wt) 
is a posterior state on ~ for controlled and observed data w t = (u~v t) 
satisfying the corresponding nonlinear filtering equations: either 

(~.5) or (~.7) written respectively in the form: 

d t+ +tA + d7 t + r +t d t 

where +O : + " 
The linear programming for Gauss,an ~ , canonical Z and quadratic 

S(u(t)) was considered in [ 5]. The general formulation of quantum dyna- 
mic programming for the partially observable controlled quantum objects 

in operational approach was given in [d6]. 
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GLOBAL METHODS TO IMPROVE CONTROL AND OPTIMAL 

CONTROL OF RESONANCE INTERACTION OF LIGHT AND MATTER. 

V.F.  Krotov 
Institute of Control Sciences 
P r o f s o u z n a y a  65, Moscow, USSR 

T h i s  p a p e r  p r e s e n t s  c o m p u t a t i o n a l  me thods  f o r  o ~ _ 2 m i z a ~ o n  o~ c0n~Pt0l,  c o n n e c t -  

ed w i t h  d e v e l o p m e n t  and a p p l i c a t i o n  o f  an  a p p r o a c h  i n  wh ich  s u f f i c i e n t  c o n d i t i o n s  

f o r  g l o b a l  min ima o f  f u n c t i o n a l s  i n  v a r l a t i o n a l  c a l c u l u s  and o p t i m a l  c o n t r o l  t h e o r y  

are used. The first results were given at the beginning of the sixties (1-5), see 

a l s o  ( 8 , 7 ) .  The main  e l e m e n t  wh ich  i s  l ooked  f o r  i n  t h i s  a p p r o a c h  i s  a so  c a l l e d  

s o l v i n g  f u n c t i o n  d e p e n d i n g  on t h e  s t a t e  and  t h e  a r g u m e n t  ( t i m e )  o f  t h e  p r o c e s s  

under  c o n s i d e r a t i o n .  Hav ing  p r o p e r l y  c h o s e n  t h i s  f u n c t i o n  an  o p t i m a l  s o l u t i o n  i s  

found t h r o u g h  m a x i m i z a t i o n  o f  some s c a l a r  f u n c t i o n  o f  s t a t e ,  c o n t r o l ,  and t i m e  w i t h  

r e s p e c t  to f i r s t  two v a r i a b l e s .  

Making use of these methods the problem of optimal control for resonance in- 

teraction of radiation with a quantum system is being investigated. An iteration 

method f o r  s o l v i n g  t h i s  p r o b l e m ,  a p p l i c a b l e  to  a l a r g e  d i m e n s i o n a l  s y s t e m ,  i s  p r o -  

posed .  The a u t h o r  p r e s e n t s  t h e  n u m e r i c a l  s o l u t i o n s  o f  t h e  f o l l o w i n g  p rob l ems  : 

I) the obtaining of the maximal inverse population of a three level system excited 

by three fields with relaxation (dimension of a phase vector is equal to n =9) ; 

2) the obtaining of the maximal population of the first osci1~ting zone of a mole- 

cule of a spherical top type, excited by one external field (dimension of a phase 

vector equal to n = 15202). 

I. PROBLEM STATEMENT. 

Let us consider a triple of variables t ET, xEX, u EU and pair of functions 

V = ( x ( t ) , U ( t ) ) ,  v : T ~ X x U . The l a t t e r  i s  c a l l e d  an  a d m i s s i b l e  c o n t r o l l e d  p r o -  

c e s s  if the following conditions are satisfied : 

( t , x ( t ) , u ( t ) )  ( V, V t C T ( 1 . 1 )  

where V i s  a g i v e n  s u b s e t  o f  t h e  d i r e c t  p r o d u c t  T x X x U . A p r o c e s s  e q u a t i o n  o r  

e q u a t i o n  o f  m o t i o n  i s  s a t i s f i e d .  Two k i n d s  o f  t h o s e  e q u a t i o n s  a r e  c o n s i d e r e d  : 

a) The m u l t i s t a g e  ( d i s c r e t e  a r g u m e n t )  p r o c e s s .  Here  t h e  s e t  T i s  a r e a l  s e q u e n c e  

{ to ,  t o + l ,  t o + 2 ~ . . . , t  I} and t h e  p r o c e s s  e q u a t i o n  h a s  t h e  form 
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z(t) m x(t+l) - f[t,x(t),u(t)] - 0 

t = t o ,  t o + l , . . . , t l - l , t l ,  x(0) " x ° 

(1.2) 

where f(t,x,u) is a given function, f : T xXxU ~ X and x ° is a given element 

from the set X . 

b) The continuous argument process. Here T is an interval [to,t I] of the real 

line, X, U are real vector spaces R n and Rrp respectively, and the process equation 

has the form : 

z(t) = x(t) - f[t,x(t),u(t)] = 0 (1.3) 

t E (to,tl) , X(to) - x ° 

where f(t,x,u) is a given vector function. 

In the latter case some additional requirements must be imposed on v to satisfy 

the equation (|.3). Usually this is piecewise continuity of the function u(t) end 

continuity and piecewise differentlability of the function x(t), of measurability 

of u(t) and absolute continuity of x(t). 

The set of all admissible processes is denoted by D, t is called the process 

argument, x the state, and u the control. The function x(t) and u(t) are called 

the trajectory and the program control, respectively. To unify the notation we use 

tl-I 
¢ 

the sign S which will stand either for the sum ~ or for the integral Idt o 

tffit JT 
o 

Moreover, we use the notation [to,tl] , (to,tl) etc. not only for continuous time 

but also for discrete sequences with included or excluded initial and end points. 

We also admit the following notation : the superscript denotes the intersection of 

a given set with the set of constant values of a given variable, and the subscript 

denotes the projection of the set on the subset of this variable. For example V t 
x 

is the projection of the intersection of V and the set t -constant on X . D is 
X 

the set of the admissible process trajectories. The same letters used in multipli- 

cation will denote the summation over the repeated argument. 

On the set D we d e f i n e  t h e  functional : 

J(v) - Sf°(t,x(t),u(t)) + F(X(tl)) (1.4) 

where f°(t,x,u) and F(x) are given real functions which are continuous when the 

contiffuous case is considered. 

We introduce also a set E of processes v with the following properties : 
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I. D ~ E ; 

2. There exists a sufficiently simple algorithm for construction of processes 

v E E ; 

3. A functional p(v) is defined which satisfies the conditions 

p(v) = 0 for v E D 

p(v) > 0 for v E g \ D , 

and is called the distance between the element v E E and the set D ; 

4. A functional J'(v) satisfying J'(v) - J(v) for v £ D is defined. 

In this paper we define the set E as fellows. The pair of functions 

v = (x(t),u(t)) E E satisfies restrictions (I.I) but not necessarily (1.2) or (|.3). 

Although it is enough in the discrete time, one has to say more about the properties 

of the functions x(t) and u(t) in the continuous time case. Namely, we assume that 

both functions are plecewlse continuous. The distance p is defined as : 

It+O p(v) -slz(t)l ÷ X Ixi ( t ) l  (I .s) It-o 
tEB,i 

where z(t) is as in equations (1.2) or (1.3), and 8 is the set of arguments in 

which the function x(t) jumps. The second element in the sum (1.5) is taken into 

account only in the continuous case. 

Two subprob lems  may be a s s o c i a t e d  w i t h  the  above i n t r o d u c e d  p rob lem,  

(I) Construction of an admissible process. This consists in finding a sequence 

{v s} c E which converges to D : 

p(v s) ~ 0 (1.6) 

This is one of the basic problems in control theory : find a control strategy and 

trajectory resulting from it which satisfy the given constraints. In mathematical 

language, it is the problem of finding the solution of the open system of diffe- 

rentlal (difference) equations which satisfies the constraints. 

It is also often required that during the convergence some criterion is mini- 

mized. 

(P) Construction of an optimal admissible process. Besides the conditions of sub- 

problem (I) it is required that the sequence {v s} c E satisfies : 

J(v s) ~ d - inf J(v) (1.7) 
D 

In particular, when a minimum of the functional J(v) exists on D, then it is re- 

quired to find a solution ~ E D such that : 
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J (~ ' )  - mln  J ( v )  ( 1 . 8 )  
vCD 

Also approximate variants of those subproblems will be considered. Let us intro- 

duce a set De(O) of processes which satisfy the following conditions : 

v E E, p(v) < ¢ , E > O (1.9) 

We call De( p ) an c-extenslon of the seC D in the metric p . 

The approximate variant of the subproblem (I) is : find an c-extended solution 

E DE(p). In the approximate variant of the subproblem (P) it is required that the 

solution is also n-optimal on De(p) : 

J(v) - de(p) < n , q > 0, d¢Cp) = inf J(v) (l.10) 

De(g) 

Also two other variants can be independently considered : c ffi 0, i.e., 

q - optlmallty on strict D, and n"  O, i.e., strong optimallty on 

¢ - extension of D . In connection with the above definitions arises a question of 

the problem correctness, that is whether ~ C De(P) ~ ~ E D when ¢ ~ O. 

We call a solution to the subproblem (P) an optimal program control in agreement 

with one of its parts, i.e., program control u(t). 

In control theory a solution in feedback form also plays an important role. Let 

us assume that there is given a function u(t,x), u: T x X~U. Let us further assume 

that there exists a solution x(t) of the system (].2) or (1.3) with u(t,x) inserted 

for u(t) to form a program control u(t) -u(t,x(t)) such that v= (x(t),u(t)) £ D. We 

say that the process v is associated with the control (or feedback policy) function 

u(t,x). 

Let B be a set of initial eondit£ons (to,Xo) and let there exist a family of 

optimization problems with an initial condition (to,Xo) £ B and the rest of the 

problem conditions fixed. We shall include the dependence on the initlal conditions 

in notation such as D(to,X o) d(to,Xo), V(to,Xo), etc. For every (to,Xo) , let there 

exist the unique process V(to,X O) £ D(to,X o) associated with u(t,x). Then we 

call t h e  latter a control synthesizing function or simply a control synthesis. 

Let a synthesis ~(t,x) satisfy the following conditions : 

J(~( to,Xo))  - d(to,X o) • e , e > O, Vto,X 0 £ B 

The function ~(t,x) will be called an £-optimal control synthesis and for ¢ = 0 

an optimal synthesis. That means that a construction of an optimal synthesizing 

function is equivalent to the solution of a family of optimal program control pro- 

blems with an initial condition (to,Xo) . 
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2. BOUNDING AND SOLYING FUNCTIONS, SUFFICIENT CONDITIONS OF OPTIMALITY. 

Let us introduce a class N of real functions ~(t,x) : (continuously differen- 

tlable in the continuous case) such that the following exist : 

[a~ /ax  i . f i ( t , x , u )  - f ° ( t , x , u )  +a~/at  (cont inuous)  

R ( t , x , u )  (2.1) 
I ~ [ t + l , f ( t , x , u ) ]  - ~ ( t , x )  - f ° ( t , x , u )  ( d i s c r e t e )  
( 

O(x) - ~ ( t i , x )  + F(x) (2.2) 

~ ( t )  - sup R ( t , x , u ) ,  m - i n f  C(x) (2.3) 
(x,u)  EV t x E v t f t l  

x 

L ( ~ , v )  - O(x ( t l )  ) - S . R ( t , x ( t ) , u ( t ) )  - ¢ ( t o , X o )  

~ ( ~ )  - m -  S . ~ ( t )  - ~ ( t o , X  o )  

~ t  . Arg max R ( t , x , u )  
(x,u)  £ vt  

: v E E ,  ( x ( t ) , u ( t ) )  £ ~ t ,  t E [ t o , t l )  , x ( t )  EArg 

(2.4) 

(2.5)  

(2.6)  

min O(x) (2.7) 
vt f t  

X 

~ ( t , x )  E ~(t ,x)ffi  A1~ max R ( t , x , u )  (2.8) 
uCV tx 

P ( t , x )  - sup R ( t , x , u )  (2.9) 

u £V~ 

The func t i ons  ~ ( t , x )  E D w i l l  be c a l l e d  bounding f u n c t i o n s .  

The above in t roduced  values  and v a r l a b l e s  have some p r o p e r t i e s  which are  u s e f u l  

when a n a l i s l n g  the problems cons ide red  in  the paper .  They w i l l  be reviewed below. 

1/ L ( ~ , v )  - J ( v ) ,  V~ EH, v £ D  . This equat ion  d e f i n e s  a family  of  func-  

t i o n a l s  J (v )  on D . For a g iven (nonopt imal)  process  v i t  i s  p o s s l h l e  to choose 
O 

L ( ~ , v  o) in  such a way t h a t  i t  i s  obvious how to improve the process  vo, i . e . ,  

how to choose a v such t h a t  L ( ~ o , V )  - J (v)  < J (vo)  = L ( ~ o , V o )  and a l so  how to 

guess a ru l e  of  choosing i t .  These bounding f u n c t i o n s  w i l l  be c a l l e d  improving 

func t i ons .  I t  i s  p o s s i b l e  to c o n s t r u c t  methods fo r  approximate s o l u t i o n  of  the 

problem (P) in  D by s e q u e n t i a l  improvements. Bes ides ,  L ( ~ , v )  i s  used to d e f i n e  

J(v) on E (outside D) as J'(v) - L(~,v). This is used in the proof of sufficient 

optimality conditions and in some algorithms. 

2/ J(v) ~ £(~), Vv E D, ~ E D, i.e., to any bounding function ~ corresponds 
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a lower bound for the functional J on D . This inequality can be used to obtain 

sufficient optimality conditions and directly to obtain global bounds for the cri- 

terion. From these bounds it is possible to find the best : 

- sup I(~), ~ £ n . (2.10) 

3/ A sufficient condition of optimality. Assume that there are given a func- 

tion ~ E H and a process ~ = {~(t),u(t)} C D, such that 

R ( t , E ( t ) , u ( t ) )  - max R ( t , x , u )  - ~ ( t ) ,  t E [ t o , t  l )  ( 2 . l l )  
x ,u  E V t 

C(x ( t ) )  - min C(x) - m ,  t = t I 
x EV t 

x 

Then 

J ( ~ )  = rain J ( v )  = ~ ( ~ )  = max ~ ( ~ )  ( 2 . 1 2 )  
D n 

More g e n e r a l l y  : assume t h a t  t he re  e x i s t  sequences { ~ s }  E H and {Vs} c D 

such t h a t  : 

S i R s ( t ,  X s ( t ) , u s ( t ) )  - Us( t ) ]  ~ 0 (2.13) 

- ~ 0 ( 2 . 1 4 )  C ( x s ( t l ) )  m s 

Then 

J(Vs) * i n f  J (v)  = ~ =  l lm 6 ( ~ s )  (2.15) 
D 

These c o n d i t i o n s  of  o p t i m a l i t y  are  the  b a s i s  of  the  fo l lowing  approach to the  

solution of varlational problems (the principle of optimality, (2) : for different 

bounding f u n c t i o n s  f ind  s o l u t i o n s  ~ ( t ) ,  ~ ( t )  of the  family of  extremal  problems 

(2.11) wi th  the  parameter  t and then take ~ =~ such t h a t  the process  ~ = ~ ( t ) , ~ ( t ) )  

s a t i s f i e s  the equa t ions  ( ] . 2 )  o r  (1.3)  and the e a r l i e r  mentioned p r o p e r t i e s  of  the  

func t ions  x ( t ) ,  u ( t )  in  the cont inuous time ease .  ( the  s a t i s f a c t i o n  of  the  cond i -  

t i o n  (I.I) is looked for after construction of ~). The function ~ is generally 

e s s e n t i a l l y  nonunique and when s p e c i f i e d  fo r  d i f f e r e n t  s u b c l a s s e s  of  H i t  l eads  to 

d i f f e r e n t  methods of  s o l u t i o n .  The func t i on  ~ ( t , x )  £ D i s  c a l l e d  a so lv ing  func-  

t i o n  and the  s e t  of a l l  t he se  func t ions  i s  c a l l e d  D. Finding a p a i r  ~ E D, ~ £ n 

means that the  pair of the dual problems (2.12) has been solved. 

4/ According to (2.7) for any function ~ E D there exists a process ~ = 

" ~(t),~(t)) E ~ (perhaps nonunique) whose distance from the set D is C = O~) • 

It is a solution of the e -ex tended  problems (I) and (P) where : 
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min J ' ( v )  = ~,(ko), J ' ( v )  - L (q ) ,v )  (2.16) 
v £ D  

E 

If a sequence { ~0 s} ~ ~ i s  a solution of the dual problem 42. I0), then for some 

sufficiently weak conditions there hold p~s) -, 0, I(q)s) -* d, i.e., the sequence 

{~s } is a solution of the  problems (1) and (P). From that numerical algorithms 

for computing admlsslble and optimal processes can be built. They will be consider- 

ed in  the seque l .  

5/ Let a f u n c t i o n  ~ ( t , x )  implied by ~o E R through (2.8) be a s y n t h e s i z i n g  

function on the set B of initial conditions (to,Xo).  For example this is always t r ue  

in the discrete case if there are no constraints on states: V t =X, t =to+l,...,t l 
x 

Then for all (to,Xo) the following is true, see (4) : 

J~(to,Xo)) - d(to,Xo) ~ A(tp) = 
(2.17) 

- S [sup P(t,x) - inf P(t,x) ] + sup G(x) - inf C(x) 
v t V t v t=T V t=T 

X X X X 

i.e.,the synthesis ~(t,x) is G-optimal, e = A(~0). Minimizing the functional A(£0) 

it is possible to have it sufficiently small. 

A group of numerical algorithms for an approximate optimal solution is based on 

this idea. Let there exist a function ko(t,x) which satisfies the conditions : 

P(t,x) = C(C), Vt ; ~0(tl,X) = - F(x) + C l (2.18) 

where C(t) is a function and C l a constant. Then, according to (2.17), the synthe- 

sis ~(t,x) is optimal. If we take C(t) u 0 and C l = O, then the function £0 (t,x) 

ehich satisfies (2.18) is the dynamic programming return for an optimal value func- 

tion with a negative sign. The equation (2.18) is then the Hamilton-Jacobl or the 

dynamic programming equation in respective cases. 

6/ The transformation £0' = £0+ C(t) where C(t) is a differentiable function 

does not change the values of functionals I(q)) and L(~O,v) (when v is fixed) nor 

the sets E, ~(t,x),V ~t . From thls it is seen that the bounding function £0 can be 

defined in such a way that l~(t) m O, m = 0. Then, the function £0 is called norma- 

lized. 

7/ Along the admissible trajectory x(t) £ D x 

is nonincreaslng and thus : 

(t,x(t)) ~ ~(to,Xo), vt, Vx(t) ~ D x . 

a normalized function ~ (t,x) 
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8/ I f  the  f unc t i on  ~ E H i s  normal ized ,  then a l l  optlml t r a j e c t o r i e s  x ( t )  

are situated on the surface ~(t,x) - constant ffi ~(to,Xo). In particular it means 

that the optimal trajectories can not cross this surface, not only in the upper but 

also in the lower direction. 

The mathematical facts mentioned above are elementary but they imply nontrivlal 

corollaries, Sufficient conditions of optimality include the basic equalities and 

inequalities of variational calculus and optimal control theory like the maximum 

principle equations, the Jacobi conditions, and the Hamilton-Jacobi-Bellman equa- 

tlons. This means that they are quite close to necessary conditions. And in fact, 

after some natural additional assumptions they become necessary. This observation 

made it possible to find new classes of solutions for the variational calculus pro- 

blems and also methods of flndin E them. These facts were the basis for new ideas 

of constructing numerical algorithms for computing optimal or simply admissible 

processes. The mathematical methods which use the boundin S functions and related 

constructions were found efficient not only for problems formulated in this paper 

but also in many other problems in analysis and synthesis of dynamic system control. 

It seems that they are as much adequate for solvlng global problems as the methods 

which use adjoint equations for local problems. 

The equations (2.|) - (2.9), the presented mathematical facts, and resulting new 

possibilities and nontraditlonal directions in solvin E variational calculus and op- 

tlmal control problems were developed in the papers surveyed here, (I-5]. But also 

earlier papers containln E some elements of this theory should be mentioned. The 

Hamiltonian-Jacobi method in variational calculus and analytical mechanics can be 

regarded as a first application of solving functions. We can also consider that 

they are used in Bellman dynamic programming (8] which is a generalization of the 

Hamiltonian-Jacobi method to the modern problems of control ands in particular, to 

the problems of optimal control of multistage processes. However, these are solv- 

ing functions of special types, defined by equation (2.]8). They do not cover all 

possible applications of this theory. Functions of the solving type were used by 

Caratheodory (8, p.335)for examining local conditions o£ variational calculus. To 

those results we can also add the second Lyapunov method for analysis of stability 

of motion. In it [7) bounding functions were defined and extensively used. 

3. RELATIONS TO OTHER OPTIHALITY CONDITIONS. 

The relation of the described optimality conditions to Pontryagin's maximum 

principle {I0] is obvious from the following necessary extremum conditions (2.|])s 
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see (1 ,6 ,7 )  : 

R x ( t , x ( t ) , u ( t ) )  = ~ + H x ( t , ~ ( t ) , x ( t ) , u ( t ) )  = 0 (3.1)  

u(t) EAr 8 max R(t,x(t),u) =Ar 8 max H(t,V(t),x(t),u) (3.2) 
n u 

H ( t . ~ , x , u )  = ¥i  f i ( t ' x ' u )  - fo 
(3.3) 

~(t) = ~x(t,~Ct)) 

In the d i s c r e t e  v a r i a n t  the  analogous c o n d i t i o n s  have the  form, see (5) : 

R x ( t , ~ ( t ) , ~ ( t ) )  - it x i t ,  ¥ ( t + l ) , ~ ( t ) , u ( t ) ]  - ~ ( t )  = 0 (3.4) 

t e [ o , ~ - l ]  

g u ( t , x ( t ) , ~ ( t ) )  = H u [ t , * ( t + l ) , ~ ( t ) , ~ ( t ) ]  = 0 ( 3 . 5 )  

i . e ~  the maximum p r i n c i p l e  equa t ions  co inc ide  wi th  the  maximum c o n d i t i o n s  g iven  

e a r l i e r  f o r  the  f u n c t i o n  R ( t , x , u ) .  Together  wi th  the  p rocess  equat ions  ( 1 . 2 ) , ( 1 . 3 )  

they form a c losed  system of  equa t ions  where the  s o l v i n g  f u n c t i o n  ~0(t ,x) i s  r e p r e -  

sented only by i t s  g r a d i e n t  on an opt imal  t r a j e c t o r y .  The analogous co inc idence  of 

equat ions i s  t rue  in  a p p r o p r i a t e  ex tens ions  of  the  maximum p r i n c i p l e  (Dubavitzky- 

Milyutin conditions) and for state constraints, see Khrustalev {7, p.120-136). 

Equations (2.11) extend this necessary optimality conditions to the global suf- 

ficient conditions which depend on functions k0(t,x) such that q)x(t,~(t)) = ~(x) . 

Simple conditions of this type can be obtained taking a linear solving function 

q0(t,x) m v/(t)x . They were considered in {11). In (3,7) differential equalities 

for the matrix o(t) ,,* II txixj (t,x(t)) II were given. Their satisfaction guarantees 

the strong or weak relative minimum of the functional. The (necessary and suffi- 

cient) Jacobi conditions of variational calculus are equivalent to the existence of 

the matrix oct) in the appropriate cases. Development of these kinds of conditions 

for a local optimum is given in the papers by Rozenberg (q2) and Zeidan (q3). 

The Bellman dynamic programming equations (8) and the Hamilton-Jacohi partial 

differential equations of variational calculus coincide with the equation (2.18) 

which defines a solving function of a special type. Extensive analysis of the re- 

lations between the return functions and the solving functions has been done by 

Girsanov (14). 

~. COMPUTER ALC, ORITHMS BASED ON THE TECHNIQUE OF GLOBAL BOUND5. 

Computer a lgor i thms  based on the  technique  o f  g lobal  bounds can be d iv ided  i n t o  

3 groups : 
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(i) Methods of successLve improvements of the sweeping type similar to 

the traditional way presented, for example, by Kelley (22), Eneev (23), Krylov and 

Chernousko [24}, Bryson and Ho (25}. However, the choice of an improving function 

allows one to optimize not in a local (gradient) direction but in a global one. 

(ii) Dual methods which are connected with a construction of sequences of 

s o l v i n g  f u n c t i o n s  { ~ s  } = ~ maximizing t h e  f u n c t i o n a l  £ ( ~ )  g iven  by ( 2 . 5 ) .  This  

way we ge t  the  i n c r e a s i n g  sequence  o f  lower  bounds f o r  the  f u n c t i o n a l  J on the  s e t  

D which converges  under  a p p r o p r i a t e  c o n d i t i o n s  to  i n f  J ( v ) .  Yet a s o l u t i o n  to  the  
D 

problem is not this sequence but the sequence Iv s} c E which satisfies (1.6) and 

(1.7). The role of this sequence is played by {~s ) = {~s(t),~s(t) } c ~s which 

is related to (~s(t,x) } through (2.7). This way we get an approximation to 

inf J(v), v £ D, by an '%utside" approximation of an admissible process. Thus we 

solve not only the problem (P) but also the problem (£) . 

( i i ~ )  Methods where the  ¢ - o p t i m a l  feedback  c o n t r o l  u ( t , x )  i s  c o n s t r u c t e d  

u s i n g  the  bound ( 2 . 1 7 ) .  Th i s  l e ads  to  m i n i m i z a t i o n  of  t h e  f u n c t i o n a l  A ( ~ )  u n t i l  

i t  i s  no t  g r e a t e r  t han  a g iven  E. 

4 . 1 .  The methods o f  s u c c e s s i v e  improvements  of  c o n t r o l .  

We s t a r t  f rom a d e s c r i p t i o n  o£ the  methods ment ioned  o f  l o c a l  improvement of  

c o n t r o l  i n  terms o f  t he  improving  f u n c t i o n .  Let  us assume t h a t  we know an a d m i s s i -  

b l e  p r o c e s s  v ° = ( x o ( t ) , U o ( t ) )  E D We want to improve i t ,  i . e .  to  f i n d  a 

v = ( x ( t ) , u ( t ) )  E D such t h a t  J ( v )  < J ( v  o) . We r e p l a c e  o p t i m i z a t i o n  o f  t he  

f u n c t i o n a l  J ( v )  by o p t i m i z a t i o n  of  L(v ,  ~ )  g iven  by (2 .4 )  w i t h  a s u i t a b l y  chosen  

f u n c t i o n  ~ .  We s h a l l  look f o r  v which  i s  s u f f i c i e n t l y  c l o s e  to v in  such a 
o 

way that the sign of AJ - J(v) - J(Vo) is the same as its main linear part : 

8J = 8L " O x ( X o ( t l ) ) 6 x ( t  | )  - S (Rxgx( t )  + Ru~U(t)) (4 .1 )  

6X m X - Xo, ~U i U - U O 

It is tacitly assumed above that the functions R(t,x,u) and G are dlfferen- 

tiable. The formula for 8L is given to within the function ~ (tpx). We require 

that it complies with the equalities : 

Rx(t,Xo(t),Uo(t)) = 0 

G x ( X ( t l ) )  - ¥ ( t  ! )  ÷ F x ( X ( t l ) )  - 0 

(4 .2 )  

( 4 .3 )  
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These equations contain only the gradient of the function ~ (t,x) on the points 

of the trajectory Xo(t). The value of ¥(t) - ~x(t,Xo(t)) and the value of (3.l) and 

(3.4) are determined after replacing ~(t),~(t) by Xo(t),Uo(t). This means that the 

equations (4.2) and (4.3) are satisfied by the functions of the form ~(t,x)= Pi(c)xl, 

where the vector ¥(t) = {¥i(t) ] is determined by (4.2) and (4.3). This function 

we call local improving for control. Then : 

6J(v o) = 6L(v O, ~) " S Ru(t,Xo(t),Uo(t))~u(t) (4.4) 

where R u ( t , X o ( t ) , U o ( t ) )  e q u a l s  H u ( t , ¥ ( t ) , X o ( t ) , u o ( t ) )  o r  H u ( t , ~ ( t + l ) , x  o ( t ) , u o 4 t ) )  

f o r  c o n t i n u o u s  and d i s c r e t e  v a r i a n t s  o f  t h e  p rob lem,  r e s p e c t l v e l y .  

Let  t h e r e  be  g i v e n  a f u n c t i o n  6 u ( t )  and an i n f i n i t e l y  smal l  p a r a m e t e r  ~ such  

t h a t  : 

I. The right-hand side of (4.4) is positive, 

2. u(t,e) = u ° + e6u E Vtu ' t E T, 

3. x(t,~) E V t where x4t,¢) is the trajectory determined by the program control 
X 

u4t,e), the equation of motion, and the initial conditions, 

4. v (¢ )  - ( x ( t , c ) , u ( t , e ) )  ¢ v . 

Then there exists c > 0 such that 

J ( v )  < J4Vo) , v " v(E) (4 .5 )  

Without state constraints, i.e. for V t = X, t E (O,T ], the improvement of the 
x 

given program control uo(t ) reduces to the following steps : 

( i i i )  

(1) F ind  t h e  t r a j e c t o r y  Xo( t  ) by s o l v i n g  t h e  Cauchy prob lem 41.2)  o r  (1 .3 )  

w i t h  u = U o ( t ) ,  x(O) - x o .  The program c o n t r o l  Uo( t )  shou ld  s a t i s f y  

v o = (Xo( t ) ,Uo40) )  E D . 

(ii) Find ¥(t) and Ru(t,Xo(t),Uo(t)) by solving the linear Cauchy problem 

44,2) with the initial condition (4.3) which determines a local improv- 

ing function ~- T(t)x . 

S e t  a v a r i a t i o n  o f  t h e  program c o n t r o l  6 u ( t )  which  makes t h e  r i g h t - h a n d  

s i d e  o f  44.4) p o s i t i v e .  

(iv) For different e > 0 solve the problem (I) with u = u + ¢6u . The 
o 

value of ¢ should be taken in such a way that 46.5) holds. 

The basic part of this algorithm is the "sweeping" solution of the pair of 

Cauchy problems : the equation of motion from t o to t i and the adjoint equation 
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from t i t o  t o The c o n s e c u t i v e  r e p e t i t i o n  of  t h e s e  o p e r a t i o n s  a l l o w s  one to  f i n d  

the  improving  sequence  {v  s} c D . 

The e x p r e s s i o n  (4 .4 )  g i v e s  t he  g r a d i e n t  of  t he  f u n c t i o n a l  i n  t he  space  of  con-  

t r o l  f u n c t i o n s  u ( t ) .  The method p resen ted  can then be cons ide red  as an a p p l i c a -  

tlon of the gradient techniques to  the above class of problems. A weak point o f  it 

is the local character of improvement which is guaranteed only for small variations 

of the control u(t). This is not only troublesome because the convergence is slow 

but also because the small variations can be unrealizable, for example when the set 

V t is finite. This deficiency can be avoided when the globally improving functions u 
a r e  used .  

It was shown in (28) that the function ~ (t,x) is globally improving for a giv- 

en process v ° = (Xo(t),Uo(t)) E D if it satisfies the following conditions : 

R(t,Xo(t),Uo(t)) = min R(t,X,Uo(t)) , t E T 
x (4.6) 

G(xo(t)) = max G(x), t = t I 
x 

A process v - (x(t),n(t)) which is determined by the control ~(t,x) =arg max R(t,x,~ 
u 

satisfies the inequality J(v) < J(Vo) if the process v o iS not an optimal one. 

For continuous processes it also holds that ~(t,x) - arg max Hit, ~x(t,x),x,u ] . 
u 

That is, when the local improvement was previously realized by a small variation of 

control in order to increase the function R(t,Xo(t),u) , the new control is chosen 

as a global maximum of R with respect to u . The condition (4.6) which is satisfied 

by an improving function can be slightly weakened : 

R(t,x(t),uo(t)) ~ R(t,x(t),Uo(t)), t E 
(4.7) 

C(Xo(tl)) ~ C(x(tl)) 

where x(t) is the trajectory determined by ~(t,x) . 

TO satisfy the equalities (4.6) it is enough to consider improving functions in 

the form : 

~(t,x) = ~i(t)xl + oij(t)(xi-x~(t))(xJ-x~(t)) 

where the coefficients ¥(t) - {~i } , oij(t), i,j = I~-'-~ , have to be found. It is 

easy to see that the equations for ?(t) implied by (4.6) are the same as (4.2) and 

(4.3). Determination of the matrix o(t) is not unique. One possibility is to con- 

sider the equations : 

Rxixj(t,Xo(t),Uo(t)) = 6ij. ,Gxixj(Xo(t)) = - 6ij= , i,j ='l,n (4.8) 
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Here 6ij is the Kronecker delta : 6ij •O for i#j, ~il = I ; n and a are positive 

constants. The equations (4.8) form the system of (n+l)n/2 linear differential (or 

difference) equations with unknowns #ij(t) = aji(t) and the given boundary condition 

at t =t I. These equations together with (4.2), (4.3) and arbitrary positive n, a 

determine the coefficients of the function ~ (t,x) such that x - Xo(t) is a relative 

minimum of R(t,X,Uo(t)) and maximum of G(x). Appropriately choosing n we can sa- 

tisfy inequalltiea (4.7) and therefore (4.5). This way we obtain the following al- 

gorithm for improving a solution : 

(1) Set n > O, a > O, and find ¥(t), o(t), ~(t,x),~(t,x) by solving the 

linear Cauchy problem (4.2), (4.3), (4.81 from t. to t , 
i o 

(if) Find the process v - (x(t),u(t)) - ~[t,x(t)]) E D by solvlng the 

Cauehy problem for the equation of motion with u = ~(t,x),X(to) - x 0 , 

from t o to tl and verify the inequality J(v) < J(Vo). 

If it is not satisfied, then choose another ~, 0, and repeat the calculations. 

This procedure improves any process which does not satisfy the maximum principle 

equations or its discrete equivalent. 

Consecutively repeating the above algorithm we find an improving sequence 

{v s} c D . However, in general it does not converge to inf J(v), v E D . 

Example I (27}. 

The problem is : 

J " - x2(2) ~ min 

$.t. 
I x (t+l) - xl(t) + 2u(t) 

x2(t+l) = - (xl(t)) 2 + x2(t) + u2(t), 

xl(O) " 3, x2(O) = 3, l u(t)l 4 5 • 

t =0, I 

The optlmal solution is ~(0) = - 2, ~(I) = V 5, J ~ - 19. For this problem 

the Pontryagin maximum principle does not hold. The Hamiltonian H(t,u) - 

" ~i(t)fi(t,x(t),u) has for t -0 at u(0) =- 2 not the maximum but the minimum. 

We take el2(t) = e22(t) = 0, Vt, Ol[= ~ and thus : 

(t,x) ffi ~l(t)x I + ¥2(t)x 2 * o(t)(x I -xl(t))2/2o " 

T h e  f u n c t i o n s  R a n d  G t a k e  t h e  f o r m  : 
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R(t,x,u) = ¥1(t+l)(x+2u) + ¥2(t+l)(-x2+x+u 2) + 

+ O - 5 * a ( t + l ) ( x l + 2 u - x ~ ( t + l ) ]  2 - ¥ i ( t ) - x i  - 

- 0 . 5 . ~ ( t ) [ x t - x ~ ( t ) ]  2 , 

G(x)  = - x 2 + ¥ i ( 2 ) . x £  + 0 . 5 . o ( 2 ) [ x l - x ~ ( 2 ) ]  2 

The a d j o i n t  e q u a t i o n  and t h e  e q u a t i o n  f o r  o ( t )  a r e  a s  f o l l o w s  : 

¥ l ( t )  - ~ l ( t + l )  - 2 x ~ ( t )  . ~ 2 ( t + | ) ,  ~(2)  = 0 ; 

~ 2 ( t )  = ¥ 2 ( t + I ) ,  ¥ 2 ( 2 )  = I ,  

o ( t )  = - 2 . ¥ 2 ( t + i )  ÷ a ( t + l )  - n ,  0 ( 2 )  = a 

The r e s u l t s  : I t e r .  No 1 : u (O)  = u ( l )  ffi 0 ; J = - 18. I t e r .  No 2 - opt imum . 

We c h o o s e  a c l a s s  o f  n o n l i n e a r  o p t l m a l  c o n t r o l  p r o b l e m s  f o r  w h i c h  t h e  g l o b a l  

improving function satisfying (4.6) has the form ~(t,x) ffi ~i(t)x x . In this case 

the algorithm presented above is substantially simplified because there is no need 

to adjust the coefficients n, a nor to solve the system of equations (4.8). The 

problem functions have now the form : 

t 
f ( t , x , u )  = A ( t , u ) x  * S ( t , u )  ; F ( x )  = ~x ; u E V u 

( 4 . 9 )  
f ° ( t , x , u )  = a ° ( t , u ) x  + b ° ( t , u )  

An interesting subclass of these problems is connected with the control of quan- 

tum systems by the means of a laser radiation. It was investigated and algorithm£z- 

ed using the method described above in (28}. In a simulated experiment a good con- 

vergence and effectiveness of the method was obtained for very big dimensions of 

the state vector which reached some ten thousands. 

Ne mention also a class of so called knapsack multivariate problems where the 

a b o v e  method  seems  t o  be  e f f e c t i v e  : 

N 

J ( v )  - ~ Ctu t -~ mln  ; u t £ [0 ,B  t ] ; ( 4 . 1 0 )  
t = l  

N 
i b i 

a t u t ~ ; i = l,n 
tfl 

; ( 4 . 1 1 )  

and u t i s  i n t e g e r .  A p p l i c a t i o n  o f  t h e  above  method t o  t h e s e  p r o b l e m s  was c o n s i d e r -  

ed by  t h e  p r e s e n t  a u t h o r  t o g e t h e r  w i t h  F e l d m a n .  I n t r o d u c i n g  a s e q u e n c e  {x t} c R n , 

t = 0 , 1 , . . . , N  : 
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i £ i " - -  
x t +  I = x t + a t u t ; x ( 1 )  = 0 ; x l ( N + l )  ~ b i , i - t , n  ( 4 . 1 2 )  

we c a n  t r a n s f o r m  t h e  p r o b l e m  ( 4 .  I 0 ) - ( 4 .  l l )  t o  t h e  m u l t i s t a g e  o p t i m i z a t i o n  p r o b l e m  

w h e r e  : 

t o = 0 ,  t I = N ÷ l ,  x = R a ,  U - s e t  o f  i n t e g e r s ,  

f(t,x,u) = x + a(t)u, fo = C(t)u, V t = a n for t < t I , 
x 

Vtx = (x : xi,~ b i} f o r  t = t l ,  V t x  " [ 0 , ~  t ]  . 

We h a v e  : 

I aii(t)(xi_xi(t))2 ; oij = O, i ~ j . ~(t,x) = ~i(t)xi +~ 

• " I (xi+ai(t)u_xl (t+ i)) 2 R(t,x,u) = ~i(t+l)(xl+al(t)u) + ~ ~ii(t+l) 

• l Oii(t)(xi_x~(t))2 - C(t)-u ; 
- vi(t)x~ - 

• I (xi_x~ (t i)) 2 G ( x )  = ~ i ( t l ) X t  + ~ o i i ( t l )  

Taking n = 0 and solving the equations (4.2), (4.3) and (4.8) we get : 

¥'i(t) = constant = ~i = 0 if Xo1(t I) < b i and 

¥1(t) > if Xo(tl) < b i , i = l,--~ ; 

o"x1(t) = constant = - a i , a i > 0 

R(t,x,u) = - A(t)u2/2 + B(t,x)u + C(t,x) 

A(t) = ai(ai(t)) 2 > 0 

B(t,x) = - aiaX(t)(xX-x~(t+l)) ÷ ~iaz(t) - C(t) 

C(t,x) = ai[x~(t+l) - ~(t)] + ai[~2(t+l ) - x~2(t)]. 

The expression for R(t,x,u) aatls£ies (4.6). The control ~(t,x) is taken as an 

integer from the interval [0,~ t] which is closest to the value u*(t,x)=B(t,x)/A(t). 

The values ai are chosen in such a way that the improved trajectory satisfies the 

inequalities (4. I 1) . 

E x a m p l e  2 ( 2 9 )  . 

The p r o b l e m  i s  : 

J - - [ 6 u  I + 4 u  2 + u 3]  ~ m l n  

s . t .  u I ÷ 2u  2 ÷ 3u  3 ~ 5 

2u  I + u 2 + u 3 ~ 4 

u t = { 0 , 1 }  



and  t h e  o p t i m a l  s o l u t i o n  

91  ffi ~2  = I ; ~3  
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(see Table) : 

= O, 5 = - I0 . 

Iter 

Number 

C o n t r o l  

u I u 2 u 3 

0 0 0 

I 0 0 

l l 0 

Vector a 

a I a 2 

1 I 

1 1 

Functional 
.= 

0 

-6 

- lO 

Example 3 (30). 

The problem is : 

J = - [3u I + 3u 2 + 13u 3] -~ min 

s . t .  - 3u I + 6u 2 + 7u 3 ~ 8 

6u  I - 3u 2 + 7u 3 ~ 8 

0 ~ u t ~ 5 ,  u t - i n t e g e r ,  

a n d  t h e  o p t i m a l  s o l u t i o n  ( s e e  T a b l e )  : 

u I = u2 = 0 ; u3  = ! ,  J - - 13 

Iter 

Number 

Control 

u I u 2 

0 0 

0 0 

Vector 

u3 a l  a2  

0 0 . 3  0 . 3  

Functional 

0 

- 1 3  

I n  t h i s  t h e  v e r s i o n  w i t h  t h e  g l o b a l  i m p r o v i n g  f u n c t i o n  q u a d r a t i c  i n  x (28)  i s  

d i s c u s s e d .  T h e r e  e x i s t  o t h e r  v e r s i o n s  o f  t h i s  m e t h o d  w h i c h  a r e  p r e s e n t e d  i n  ( 3 1 ) .  



283 

4.2. The methods of successive improvement of the boundin~ function. 

The method is presented according to (32, 33). Let there exist a function 

~o(t,x) £ ~ . We give the operation of improving it,i.e, finding a function ~ E D 

such that g(~) > g(~o ). We assume that it has the form : ~ - ~o + ~ , where 

l,T(t,x) are a coefficient and a function which should be determined. We introduce 

a functional : 

6(v) = I r ( t , x ( t ) , u ( t l )  + y ( t , x ( t ) )  I t l  
t = O  

r ( t , x , u )  . f i  
" ~xi 

(4.13) 

~e denote by R ( t , x , u , ~ ) ,  ~(~1,  e t c .  the appropr ia te  cons t ruc t i ons  a s soc i a t ed  with 

~ = ~ o  + ~ '  and a l so  R o ( t , x , u ) - R ( t , x , u , 0 )  e t c .  Taking in to  account (4.13) and 

(2.5) the increment A£ = £(~) - £o can be written in the form : 

~ = ~ 6 ( v )  + [ L o ( v )  - ~o ]  , v £ ~ ( ~ )  ( 4 . 1 4 )  

From t h i s  i t  fo l lows tha t  ~ ( ~ )  > Z ( ~ o  ) i f  a t  l e a s t  fo r  one v C ~(11 : 

X6(v) > o (4.15) 

Fitting X and 6 which satisfy the above inequality will be called an elementary 

bound improving operation. In the sequel for simplicity we consider only the case 

when the s e t  ~ conta ins  only one element ~(~1 " ~ ( t , X ) , ~ ( t , % ) ) ,  i . e .  the  func t i on  

R( t ,x ,u ,  X) has only one maximum. We a l so  denote 6(X) - 6 ~ ( ~ ) ) .  Under s u f f i c i e n t -  

ly general conditions the function ~(~) is lower semicontinuous at  I = O. Thus if 

we def ine  the func t ion  ¥ to s a t i s f y  : 

5(0) - $ r(t,~o(t),u'o(t)) + ~(t,~o(t)) > 0 (4.16) 
0 

then for a sufficiently small ~ > 0 the inequality (4.151 holds and therefore 

Z(~) ~ £(~o ). We see then that the elementary operation can be done in two 

steps. In the first y(t~x) is chosen according to (4.16) and in the second a 

I > 0 is taken.  

It is easier to interpret the idea of elementary operation when the improving 

component is taken in the form y- vi(t)xl and the functional 6(v) in the form : 

I~ t+l  T-I  
6(v) - I ~ ( t ) ~ ( t ) d t  + ~ ~ ( t ) ~ ( t l  ; ~ ~ ( t ÷ l ) ~ ( t )  (4.171 

o tEB t - I  t-O 

where ~(t) is related to the process ~ through (1.21 or (1.31, 8 is the set of 

points of discontinuity of the function ~(11. The first and the second expressions 

correspond to the continuous and the discrete processes, respectively. 
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It follows from (4.17) that if there exists a value t -z such that ~(T) ~ 0 

or in the continuous time ~(T+0) -~(~-0) ~ 0, then the improvement of the function 

Oo(tsx) can be achieved by adding a linear term 7(t,x) = vi(t)~ i where the function 

v(t) is taken to keep the right hand side of (4.17) positive for V-~o(~o(t),uL(t)). 

The use of ¥(t,x) in more complicated cases is necessary only when the maximum 

of the function Ro(t,x,u ) is not unique. 

A weak point in this method is the necessity to maximize the function R(t,x,u) 

for every t in order to form the process ~ = (x(t),~(t)) or more generally - the 

set E . Therefore the method can be applied only to the problems where this maxi- 

mization can be performed analytically or there exist efficient numerical procedu- 

res for doing it. 

Repeating consecutively the elementary improving operations we get the sequence 

{~s } for which the value &(~) increases. 

There exist theorems in which it is shown that under some stronger conditions 

f o r  ~ and ~ the  above sequences  e n s u r e  a s o l u t i o n  to  the  problem (P) f o r  a wide 

class of systems. Namely, the sequence {~s} ffi (~s(t),~s(t)} corresponding to (~s } 

by (2.7) is a generalized solution to the problem (1) in the sense of (1.5) and 

(1.6), and to the problem (P) in the sense &(~s) ~ llm de(p) where dE(p) is given 

by ( I . I 0 ) .  ~-~0 

E x e m p l e  4 .  

Find a s o l u t i o n  to  the  sy s t em : 

= u ,  x (O)  = x  > 0 ,  
0 

x(1) = 0 

which min imizes  t he  f u n c t i o n a l  

I 
j ,, jr (u 2 + x 2 ) d t  

0 

Here x and u a r e  s c a l a r  f u n c t i o n s .  

We have : 

We look  f o r  a s o l u t i o n  i n  t he  form of  a sequence:  

~s = ~ ( t ) x ,  Xs =VsX 

R s C t , x , u  ) - ~ a u - u  2 - x  2 

= ( 1 / 2 ) ~  s 

u s = ( i / 2 ) ~  s 

s 
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"s ¢t) ~¢t'%';s) ( ~ *  s ) /4  
I 

~s = " Ys(O)Xo " S 0 ( ¥ 2 +  ~2)d t 

S 

A = A  I + A  2 
S S S 

Ai I 
s " S O l~'sldt 

a2"s I;(m)l * I ~ ( 0 ) -  %1 

~sCx,u) - -~ (n)~(1)-vs(o)(%-~(o)) - fl vs(O~d t 
s 0 

L- 

~s " ~s 12 

Rs(C,x ,u ,~ )  = R S ( t , x , u )  + ~rsCC,x,u)  

rs(t,x,u) = vsu + ~sx 

The va lue  I i s  t aken  to  s a t i s f y  the  c o n d i t i o n  : 
6 

7s (x) = ~s(;s * ~ ' ; s  * ~ )  " 0 

which i s  i n  t h i s  case an e lemen ta ry  i m p r o v i n g  o p e r a t l o n  (q9 } ,  Ne have : 

~s (x) = %(;s,;s) * x6s(%,~ 

Ys+l = Ys + ~sVs 

The f u n c t i o n  R ( t , x , u )  f o r  any ~ has t he  unique  =axlmu= a t  ~ ( t ) ,  ~ ( t )  and thus  

the e l eNen ta ry  o p e r a t i o n  i s  s o l v a b l e  i n  the  c l a s s  of  l i n e a r  f u n c t i o n s  y ( t , x )  - v ( t ) x  

for any ¥ which does not  ensure  the  s t r i c t  optimum. We p rov ide  the  s p e c i f i c  i t e r a -  

t ions  s t a r t i n g  £rom ¥o = 0 . 
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Iteration I .  

We h a v e  : 

~o~t>- ~oct> - 0  

41 = 0, 42 x -~o(0) ~(t) - 0, ~ - 0 o o m O m Xo j O 

l 

~ "  ~o~o,~o> " -  ~oC0)=o + so ~ o C t ) \ < t ) d t  - - ~o<0)Xo. 

The condition (4.16) i s  satisfied f o r  Vo(O) " - i .  For other values o f  t the func- 

tion Vo(t) can be defined arbitrarily. We define it in a simple way : Vo(t) = - l . 

~e have L "  =o' ~ "  O, ~ : -  ,/~, ~ o C ~ , ~ = -  '/~, ~o o ~=o ~enoe 

l l ( t )  - O+toV ° = - Ix  o, ~oreover 71 ( t )  - O, 71 ( t )  - - y o ,  Ai "Xo '  I I  "x2o > 1o =0 , 

This way in the first iteration the value of I increased but the pair x,u did 

not move closer to D, neither in the boundary condltions, i.e. in the norm A 2, nor 

in the integral norm 4 I. 

Iteration 2. 

We h a v e  : 
I 

T I = ~ i ( ~ i , ~ i )  = - V l ( 0  ) + x o ~ V l ( t ) d t  . 

A c c o r d i n g  t o  ( 4 . 1 6 )  a n d  r e q u i r e m e n t s  o f  n o r m a l i z a t i o n  (33)  ( f i r s t  way)  : 

V l ( 0  ) = - [ ,  V l ( t  ) i I f o r  t £ ( 0 , | )  . 

This function is discontinuous and does not comply with the conditions of the ele- 

mentary operation. Therefore we take as Vl(t) a continuous function from the ap- 

proximatlng sequence {l-2(t-l) k, k - 2, 4, 6,... }. We choose the function which 

is simplest for computing, i.e. vl(t) = l-2(t-l) 2 

We have : ~I ffi 4/3 x o 

8x I = 2(l-t) Au I = I/2 - (t-l) 2 

~l(AXl,AUl) = - 29 i I = ~i/~l(AXl,AUl) = 40/87 x ° 

~ 2 ( t )  = l lAU 1 ffi 8 0 / 8 7  X o ( 1 - t ) ,  ~ 2 ( t )  ffi ~ l + l l A U  ffi - ! / 8 7  X o [ 6 7 + 4 0 ( t - l ) 2  ] 

The  e s t i m a t e  o f  t h e  d i s t a n c e  f r o m  D i s  : 

2 ~ 7 /87  x ~ 7 / 9 0  x A = 10 /87  x ° ~ 1 /9  x ° , A2 " X o - X 2 ( 0 )  = o o 

The  l o w e r  b o u n d  i s  ~2 ~ x2  " T h e r e f o r e  i n  t h e  s e c o n d  i t e r a t i o n  t h e  p a i r  ~ ,  ~ was 
o 
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move4 s u b s t a n t i a l l y  c l o s e r  to D, app rox ima te ly  I0 t imes  in  each c r i t e r i o n .  

The above method was a p p l i e d  f o r  deve lop ing  a l g o r i t h m s  f o r  s o l v i n g  i n t e g r a l  

assignment, scheduling, traveling salesman problems (34~, different optimization 

problems of space  maneuvers (35) and d i s t r i b u t e d  pa rame te r s  sys tems  {36} . 

4 .3 .  Methods of  ¢ -op t lmal  c o n t r o l  syrLthes i s .  

We want Co f i n d  an c - o p t l m a l  c o n t r o l  s y n t h e s i z i n g  f u n c t i o n  ~ ( t , x ) .  We c o n s i d e r  

the case when there are no state constraints including in it also boundary cons- 

traints, i.e. V t - X, Vt, x E T ~ X . Other problems can be solved by this method 
X 

us ing  p e n a l t y  f u n c t i o n s .  We showed above t h a t  t h i s  problem can he so lved  u s i n g  the  

bounding e x p r e s s i o n  (2.17)  and min imiz ing  the  f u n c t i o n a l  A ( ~ )  u n t i l  i t  has  t h e  

value & ( ~ )  - e . Then the  s y n t h e s i z i n g  f u n c t i o n  ~ ( t , x )  - a rg  max R ( t , x , u )  i s  
u£V tx 

¢ -optimal. The problem of finding an optimal control synthesis is therefore reduc- 

ed to the minimization of the functional A(~). The lower bound for the latter is 

zero. This bound is attained when in the class n or its above mentioned refine- 

ments there exists a solution of the dynamic programming equation (2.18) or a se- 

quence which approximates this solution in the sense of A(~) . 

There exist numerical algorithms which use this approach. One of these algo- 

rithms {4, 6, 37, 38} is the following. The desired function ~ (t,x) is taken as 

an interpolating polynomial in the space X - R n . Its parameters depend on t and 

are determined from the equation : 

P ( t , x l ( t ) )  - 0 ; G ( x ~ ( t | ) )  - 0 (4.18)  

where {x£) i s  a given set of interpolation knots, P(t,x) and G(t,x) are given by 

(2.9) and (2.2). The equations (4.18) form a system of normal differential (diffe- 

rence) e q u a t i o n s  i n  the  pa ramete r s  o f  t h e  f u n c t i o n  ~ ( t , x )  wi th  the  g i v e n  boundary 

cond i t i ons  f o r  t = t [ .  So lv ing  t h i s  sys tem we ge t  the  f u n c t i o n  ~ ( t , x ) ,  t he  c o r r e s -  

ponding c o n t r o l  s y n t h e s i s  ~ ( t , x ) ,  and the  bound A ( ~ ) .  I f  the  l a t t e r  i s  too b i g ,  

then the  computa t ions  a re  r e p e a t e d  wi th  a b e t t e r  s e t .  This  i s  r e i t e r a t e d  u n t i l  we 

get 4 ( ~ )  < ¢ . 

A second a l g o r i t h m  which was used in  some i n t e r e s t i n g  a p p l l e d  problems (7, a s .  

343-357) c o n s i s t s  i n  s o l v i n g  the  problem A ( ~ )  ~ min by the  R i t z  method.  Then a 

c l a s s  of  f u n c t i o n s  ~ ( t , x )  = ~ ( t , x , a )  depending on a pa ramete r  a i s  t a k e n .  The 

f u n c t i o n a l  ~(a )  - A ( ~ ( t , x , a ) )  i s  com~uted and the  minimal v a l u e  of  A ( ~ )  i s  found 

us ing  the  ma themat ica l  prosrammlng method in  t h i s  c l a s s .  

The p o s s i b i l i t i e s  of  u s i n g  the  above methods a re  l l m i t e d  because  of the  o p e r a -  
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t i o n s  sup  P ( t , x )  and i n f  P ( t , x )  wh ich  a r e  i n  ( 2 . 1 7 ) .  For  many s p e c i f i c  p r o b l e m s  
x x 

{39, 40, 41)  t h e s e  o p e r a t i o n s  c a n  be  p e r f o r m e d  a n a l y t i c a l l y .  I n  t h e s e  c a s e s  i t  i s  

much easier to realize and justify the algorithms f o r  solving the problem A(~) ~min 

i n  t h e  c l a s s  o f  t h e  b o u n d i n g  f u n c t i o n s  wh ich  a r e  q u a d r a t i c  i n  x and  moreove r  to  

get exact solutions in the form of minimizing sequences of control synthesizing 

f u n c t i o n s .  

5. OPTIMAL CONTROL FOR RESONANCE INTERACTION OF LIGHT AND MATTER. 

5.1. Introduction 

At present there exists a vast domain of new techniques based on laser applica- 

tion ~ isotope separationp photochemistry, pure substance production, detecting of 

single atoms and molecules and others. This makes the problem of the most effec- 

tive utilization of lasers in such processes extremely important and causes the for- 

mation of a new type of problem of optimal control theory, namely, control of quan- 

tum systems by making use of macroscopic electromagnetic fields. Consideration of 

such problem statements is presented in (42). The authors of paper (43), using the 

sufficient conditions of optimality, the method of multiple maxima and the 

Pontryagin maximum principle, have analytically found the optimal regimes for some 

small dimension (dimensionality 2-3) models of photoprocesses in gases. Optimal 

excitation of the three level system set up by two resonant fields had been studied 

in {56~ in the class of constant controls (amplitudes and detuning of resonant 

fields~ relaxation constants). In this paper the authors describe the solution me- 

thod for a given class of nonlinear optimizing problems. This method is practical- 

ly applicable to systems of large dimensions, i.e. for a great number of energy le- 

vels. 

Papers (44, 45, 48) deal with the analysis of some different systems, namely, 

optimal laser heating of macroscopic volumes of a substance (i.e. a nonquantum sys- 

tem and nonresonance interaction). 

5.2. Statement of the problem. 

A quantum system (atom, molecule) is considered to be interacting with a ma- 

croscopic e l e c t r o m a g n e t i c  v e c t o r  f i e l d  E o f  t h e  f o l l o w i n g  form 

P 
E = Y uJ(t)exp(i~jt) , (5.1) 

j=l 

where u j(t) vary insignificantly in times ~ ~-1 Interaction is assumed to be elee- 
J 



289  

trodlpole. The state of the system is described by a matrix of density x represent- 

ing the interaction, which saClsfied the kinetic equation 

dR + ~ .  i[9,~] (5.2) 

where V - -dE is an operator of the quantum system interaction with a radiation 

fleld, d is an operator of a dipole moment in interaction representation, r is a 

linear operator of the quantum system interaction with a dissipating system and 

IV,X] = ~-~ is a commutator of the two operators (47). Assume that one or se- 

veral resonance conditions are being fulfilled 

+ ( 5 . 3 )  V k 

3 

where ~ a r e  p o s i t i v e  i n t e g e r s  and  mum a r e  n a t u r e l  f r e q u e n c i e s  o f  t h e  s y s t e m .  Then  

in resonance approximation and under the condition that Iv k] ,~ emn and [Vmn [ ~ hWmn 

(Vmn is a matrix element of transition from the state m to n, truncated equations 

for the density matrix have the form of 48 ; summation is assumed with respect to 

repeated indices) : 

.i ~ xi(0) i x - A (t, u)xJ ; = x ; i - l,q 
o (5.4) 

A £ a~ + B i x l x 2  • + A i ( 1 ) x l  
- . ual . u S 2  . .ual + 

3 J Jala 2 x I x 2 3a I x I 

i(2)XlX 2 
+ A. • u al *u a2 

Jula 2 x I x 2 

where x t, (i ÷ l,q) are real and imaginary parts of the density matrix components, 

related to resonant levels as well as to nonresonant ones strongly connected by re- 

laxation. Xl,..., x s are vector indices, varying from I to 3 and al,... , a s vary- 

ing from l to p . The first term of the right part in equation (4) describes rela- 

xation effects, the second one describes a dynamical Stark shift of the equations, 

the third -. contribution of one photon processes, the fourth - contribution of 

two photon processes and so on. Field amplitudes are assumed as limited ones 

0 , ~ , ~ where M~ are constants. It is quite natural by virtue of resonance 

approximation that [Vmn [ ~ h~mn We are given a period of time (O,T) and a state 

of the system at the initial moment of time. M x are considered sufficiently small 

fo r  p r e s e r v i n g  t h e  r e s o n a n c e  c o n d i t i o n s .  

Thus, the interaction of light with matter is described by the components of the 

density matrix Xi(t), i.e. the state of the process meeting equations (5.4) with inl- 

o , where amplitudes of the quasimonochromatical field uj(t) are tlal conditions X i 
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l i m i t e d  and p lay  the  r o l e  of  c o n t r o l s ,  m e  e lements  o f  the  s e t  D of  a d m i s s i b l e  

p r o c e s s e s  a re  d e s c r i b e d  by the  p a i r s  v - ( x ( t ) , U ( t ) ) .  We d e f i n e  the  f u n c t i o n a l  

T 
l(v) = [ xifi(t,U)dt + xi(T)£ i (5.5) 

o 

This functional, in particular cases includes polarization of the system, popu- 

lation of the levels in the moment of time T, their mean values for a period of the 

time T and also any linear combinations, for example, an inverse population of the 

levels m and n, Xm(T I - Xn(T ). Since level population is an important stage in the 

development of chemical reactions, controlled by laser radiation {49)as well as a 

laser spark and multiphoton ionization (50, 51], the choice of functional type l(v) 

includes a significant part of cases interesting from the physical view point. 

We are to find the sequence v s on which the functional (5.5) tends to its least 

value : 

lira I(Vs) - inf I(v) (5.61 
s~  ~ vED 

Note some e s s e n t i a l  f e a t u r e s  of  the  f o r m u l a t e d  problem : 

I /  no l l m i t s  f o r  phase  c o o r d i n a t e s  i n  the  t ime i n t e r v a l  [ 0 , T ] ,  

2/  independence of c o n t r o l  l i m i t s  of  t ime and phase  c o o r d i n a t e s ,  

3/ l i n e a r i t y  of  p r o c e s s  e q u a t i o n s  and f u n c t i o n a l  depending on the  phase  c o o r d i n a t e s  

wi th  the  f i x e d  program of c o n t r o l  U ( t ) .  

In that case if the modes, utilizing most efficiently the energy applied to a 

process are to be found, then the functional is presented in the form : I|(v) = 

T 
" - l(v)/(S ° uXiuXidt). In this case the optimization problem looses its property 

a |  a i 

(3 ) ,  i . e .  i t  becomes n o n l i n e a r  in  the  phase c o o r d i n a t e s .  

I t  i s  a l s o  p o s s i b l e  t h a t  t h e r e  w i l l  be l i m i t s  imposed on power consumpt ion by 

c o n t r o l s ,  t hen  f u n c t i o n a l  (5 .5)  p r e s e r v e s  i t s  form but  a new v a r i a b l e  Xq+l " 

x I Xl  . 
- u i u I xs i n t r o d u c e d  and i t  i s  r e s t r i c t e d  by  X q + l ( T )  ~ EM where EM i s  a cons -  

t a n t .  I n  t h i s  s t a t e m e n t  t h e  o p t i m i z a t i o n  p rob lem l ooses  i t s  p r o p e r t y  I . 

5.3. Description of  the  method. 

Let us analyse only the case when power consumption in controlling is inessen~al, 

i.e. the functional has the form of (5.51 and process equations can be written (sub/ 

superscripts omitted) in the following form : x - A(u,t)x + B(u,t)1 i.e. this pro- 

blem has the form (4.9) and its solution requires the application of the control 
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successive improvement method. As it has been previously shown, the choice of the 

solvable function can be limited for problems of this kind : ~(t,x) - ~i(t).x z. The 

c o r r e s p o n d i n g  c o n s t r u c t i o n s  a r e  : 

R(t,x,u) " [~j + ~iA~(t,u) - fj(t,u)]x j ; (5.7) 

~(t,x) = arg max R(t,x,u) ; (5.8) 
0 ~U <M 

O(x) - [ti(Z ) + ¥i(Z)],x i (5.9) 

Under t h e  a s s i g n e d  program Uo( t )  c o n d i t i o n s  (5 .61 a r e  e q u i v a l e n t  to  t h e  e q u a l i t i e s  : 

~i + A~(t'Uo(t))¥j - fi(t'Uo (t)) = 0 ; ~I(T) = - £i(T), (5.|0) 

j , i  = l , q  

The improvement algorithm has the form : 

I/ Assign ~=~o(t,x) - ¥io(t) ,x i and from (5.8) find ~o(t,x) ; 

2/ Solving the Cauchy problem for the system (5.4) of the closed control u - Uo(t,x) 

we find a trajectory Xo(t) and the control program Uo(t) = ~(t,Xo(t) ). Instead 

of item I, the initial control program Uo(t) can be directly assigned,and by vir- 

tue of item 2 with u = Uo(t ) ; 

3/ Iterating (5.10) find the vector-function ~(t) ; 

4/ Repeating I/ and 2/ with ~(t,x) - Ti(t) .x i find the process v = (x(t),u(t)), 

satisfying the inequality l(v) < l(Vo) ; u ° = ( X o ( t ) , U o ( t ) )  if the process v ° 

is not the solution of the maximum principle. 

Repeating this procedure we obtain the improvement sequence {v k] I(Vk+l) < l(Vk). 

The procedure of improvement leads to the solution equations of the maximum princi- 

ple. The practical signal for completing the iterations is the repetition of the 

values I(Vk+l) = I(Vk). 

5._~4. Computation features of the method. 

l) It was proved in (52) that I (k) -I (k+l) = A l +A 2 +A 3 In this problem 

Alm O, A 2 ~ O by construction, whereas A 3 is equal to 

T j + A~ V i f°)dt, (5.11) A3 I (X(k) ' " - = - x~k+ i) ) (Vj 3 
O 

A~ from (5.4). In other words, A 3 is equal to the sum of integrals of phase coordi- 
J 
hate differences in (K) and (k+l) interations multiplied by an error of integrating 

the equations (5.10) on the (kth)-iteration. If integration (5.10) was accurate 
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then 43 ~ 0 while insufficient accuracy of integration A 3 may produce a negative 

contribution (especially in the nelghbourhood of the extremal when 42 is decreas- 

ing). Therefore if I (k+l) > I (k) than it is deslrable to go back to the (kth) - 

iteration and to solve (5.10) with higher accuracy. 

2) Step 2/ of the algorlthm in the event when only one-photon transitions, is 

such a way, if A(I)x ox(k) o~!k-]) > 0 then uX " ~a and if consi- realized in 
-ija j i a ' 

daratlon of the Stark shift level or contribution of the two-photon processes trans- 

for-~ this step of the method into a quadratic programming problem while considera- 

tion of the S-photon programming program. 

3) Note that this method also guarantees the finding of local minimals only 

(Pontryagin's extremals), and therefore multiple iteration with different initial 

c o n t r o l s  u ° ( t )  i s  de s i r ed  to be fo l lowed by the s e l e c t i o n  of the  b e s t  s o l u t i o n  

from the obtained ones. Within the framework of this method, the problem of an ab- 

solute minimumremains unsolved. Its solution requires either utilization of suffi- 

cient optimality conditions with additional defining of ~(t,x) {12},or the analysis 

of the group properties of the problem (54). It is possible to use method [56] 

containing some stronger operation of improvement than in (52]. 

Example I .  

We s h a l l  cons ide r  a t h r e e  lave1 system being e x c i t e d  by t h r e e  resonance 

3 
f i e l d s .  The e x t e r n a l  f i a l d  E - [ u J ( t ) a x p ( i ~ J t )  i s  assumed to be l i n e a r l y  

j=! 

p o l a r i z e d  with ampli tudes  of  the quasimonochromatic f i e l d  uJ ( t )  be ing l i m i t e d  by 

Mj and da tun ings  v i - wlj - w k ~ wij be ing  c o n s t a n t .  The maximum popu la t ion  of  

l e v e l  (1) a t  t ime T i s  to be found. At the  i n l t i a l  t ime popu la t lon  of  l e v e l  (3) 

i s  equal to  l and l e v e l s  1 and 2 are  not  populated ; T - 3, (Vid/h)max - l ,  r e l a x a -  

t i o n  constant Xi - 0.3 . The initial value of the functional (with all the three 

controls being maximal) is equal to 0.293 , then a t  the first iteration it is 0.475 , 

at the second 0.482 , the third 0.483 , the fourth 0.487 , the fifth 0.492 , the 

sixth 0.492 . Optimization in the class of constant controls provides for I -0.303. 

The dynamics of functional changes in the iterations of this problem are the follow- 

ing : zero : (-0.417), first : (of 0.163), second : (+ 0.254), third : (+ 0.259) . 

Note that on the graph for the field U 3 the part of a so-called "pseudosllding" 

mode i s  in  the beginning  and i t  i s  c h a r a c t e r i z e d  by f r equen t  swl t ch ings  of  c o n t r o l s  

from maximum to minimum. It is not connected with the existence of a real sliding 

mode, since it is the particularity of application of this computational method. 
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The e x p e r i e n c e  o f  t h i s  method o f  a p p l i c a t i o n  r e v e a l s  t h a t  the  g r e a t e s t  improve-  

ment is achieved as a rule in the first iteration and the iteration number does not 

sxced lO. 

As i s  known (55) t he  p o p u l a t i o n  o f  t he  l e v e l s  i n  a quantum sys t em in  a r e s o n a n c e  

cons tan t  e l e c t r o m a g n e t i c  f i e l d  i s  exposed to o s c i l l a t i o n s  w i t h  the  Rabi f r e q u e n c e s  

( fo r  example,  f o r  one pho ton  t r a n s i t i o n s  i n  a t w o - l e v e l  sy s t em ~ = 
2 

+(dE/h)  2 

In fact we consider the system with the Rabl variable frequencies and control then 

by changing the external field amplitudes, trying to compensate the influence of 

relaxation effects. 

Note as  we l l  t h a t  s i n c e  we used  the  r e s o n a n c e  a p p r o x i m a t i o n ,  t he  o b t a i n e d  con-  
- l  t r o l s  and phase  c o o r d i n a t e s  shou ld  be s l i g h t l y  v a r y i n g  f u n c t i o n s  in  t imes  % ~j , 

however t he  p e r i o d s  w i t h  i n s t a n t e n u o u s  o n / o f f  s w l t c h i n g s  o f  t he  f i e l d s  a r e  a d m i s s i -  

ble (55) .  

Example 2 .  

As the  second example we s h a l l  c o n s i d e r  the  sy s t em be ing  e x c i t e d  by one e x t e r -  

nal f i e l d  o f  a molecu le  o f  a s p h e r i c a l  top  t y p e .  I t s  o s c i l l a t i n g  r o t a t i n g  spec t rum 

has a zone s t r u c t u r e  : each o s c i l l a t i n g  component has  i t s  c o r r e s p o n d i n g  r o t a t i n g  

s t r u c t u r e ,  whose component ,  i n  i t s  t u r n ,  i s  ( 2 J+ l )  t imes  d e g e n e r a t e d  by a magne t ic  

quantum number m (J  i s  a r o t a r y  quantum number) .  The f i e l d  i s  to  be c o n s i d e r e d  

l i n e a r l y  p o l a r i z e d  and r e s o n a n t  of  the  t r a n s i t i o n  v •0, v = l (v i s  an o s c i l l a t i n g  

quantum number) .  The s e l e c t i o n  r u l e s  p e r m i t  t r a n s i t i o n s  w i t h  an inc remen t  in  

Am = O, Av = ± I ,  AJ = ± ] .  At the  i n l t i a l  t ime the  p o p u l a t i o n  l e v e l s  a r e  d e f i n e d  

by the Boltzmann d i s t r i b u t i o n  a t  a t e m p e r a t u r e  o f  I00 °K, B - l -  (B i s  a r o t a t i n g  

c o n s t a n t ) ,  E = 103 (E i s  an ene rgy  d i f f e r e n c e  o f  t h e  f i r s t  and ze ro  o s c i l l a t i n g  l e -  

v e l s ) .  The c o n t r o l  which maximizes  t h e  p o p u l a t i o n  o f  o s c i l l a t i n g  zones  v = I a t  

time T = I0 i s  to  be found.  ( t ime  i s  measured in  t he  u n i t s  equa l  to t he  i n v e r t e d  

Rabi f r e q u e n c y  of  the  sys tem (h/dEM), d i s  a d i p o l e  moment of  a t r a n s i t i o n  

v = 0 ~ v = l ,  g M i s  a maximal v a l u e  o f  the  e x t e r n a l  f i e l d ,  w i t h  M = l ) .  R e l a x a t i o n  

i s  n e g l e c t e d  and,  as  a r u l e  i t  can be a lways  ach ieved  i n  ga se s  a t  a s u f f i c i e n t l y  

low p r e s s u r e .  Dimension of  t he  p r o c e s s  e q u a t i o n s  sys t em i s  to be de te rmined  by a 

maximal r o t a t i n g  number JM and i t  i s  equa l  to  G • J2m + 4 • JM + 2 . I n  ou r  computa-  

t ions  n = 5 0  and the  sy s t em d imens ion  n = 15202. In  t he  absence  o f  the  e x t e r n a l  

f l e l d  t he  f u n c t i o n a l  va lue  i s  equa l  to  0 .363 .  The c o n t r o l  in  t he  zero  i n t e r a t i o n  

i s  assumed to  be D ( t )  = I and h e r e  t he  f u n c t i o n a l  e q u a l s  0 .868 .  The i t e r a t i o n  p r o -  

cess converges  i n  the  f i r s t  i t e r a t i o n  and p r o v i d e s  f o r  a f u n c t i o n a l  va lue  which i s  

equal to I .  Note t h a t  in  f o u r  p e r i o d s  t h e  c o n t r o l  has  a " p s e u d o s l i d l n g "  form ( see  
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example 1) and the  d u r a t i o n  o f  t h e s e  p e r i o d s  i s  s u f f i c l e n t l y  g r e a t .  As has  been 

previously indicated, these periods have corresponding parts of special trajectories 

o f  the  sys tem.  

It should be also noted that the solution of this problem for systems of such 

dimensions involves meeting high requirements of a configuration of an applied com- 

puter (for this problem solution 1000 integration steps require 800 Kb of  opera- 

tional storage, I00 Mb of external storage, 3 hr 15 min of computation time of 

EC-I045). 

The above analysis of this problem makes it possible to draw the following 

conclusions : 

I) Programmed control of the resonance light radiation effecting the quantum 

systems allows the essential increase of this effect efficiently. 

2) The phase dimension of the corresponding problems of optimal control quickly 

increases with the growth of the number of system quantum states. The systems with 

several dozens of such states present an applied interest. The problems of optimal 

control correspond to such systems with dimensions of several thousands. 

3) The described method of solving the problems of optimal control provides for 

a regular computation algorithm allowing the solution of such problems. 
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ABSTRACT 

Consider stochastic linear dynamical systems, dx=Axdt+Bdw, dy=Cxdt+d~v(O)=O,x(O) a 
given initial random variable independent of the standard independent Wiener noise processes w,v. 
The matrices A,B,C ate supposed to be constant. In this paper I consider two problems. For the 
first one A,B and C are supposed known and the question is how to calculate the conditional pro- 
bability density of x at time t given the observations y(s),O~s~t in the case that x(0) is not 
necessarily 8anssian. (In the gau~!~n case the answer is given by the Kalmun-Bucy filter). The 
second problem concerns identification, i.e. the A,B,C are unknown (but assumed constant so that 
dA =O, dB =O, dC=O), and one wants to calculate the joint conditional probability density at time 
t of (x,A,B,C), again given the observationsy(s),O~s~t. The methods used rely on We[-Norrnan 
theory, the Duncan-Mortensen-Zakai equation and a "real form" of the SegaI-Shale-Weil represen- 
tation of the symplectic group Sp,(R). 

AMS classification: 93Ei 1, 93B30, 17B99, 93C10, 93B35, 93E12 
Key words and phrases: nonsaussian distribution, identification, non-linear filtering, DMZ equa- 
tion, Duncan-Mortensen-Zakai equation, propagation of nongaussian initials, Wei-Norman theory, 
gegal-Shale-We/l representation, reference probability approach, unnormaliT,-d density, Kalman- 
Bucy filter, Lie algebra approach to nonlinear filtering. 

1. Introduction 

Consider a general nonlinear filtering problem of the following type: 

dx = f(x)dt + G(x)dw , x e R  s, weR m (I.l) 

dy = h(x)dt + d~ , yeW, yew (1.2) 

wheref, G,h are vector and matrix valued functions of the appropriate dimensions, and the w,p are standard Wiener 
processes independent of each other and also independent of the initial random variable x(0). One takesy(O)=O. 

The general non-linear filtering problem is this setting asks for (effective) ways to calculate and/or approximate the 
conditional density ~(x,t) of x given the obs~vafionsy(s),O<s<t; i.e. ~x,t)  is the density of .~ =E[x(t)[y(s), O<s<t] 
the conditional expectation of the state x(t). 

On© approach to this problem proceeds via the socaUed DMZ equation which is an equation of a rather nice form 
for an unnormaliTcd version g(x,O of ¢(x,t). Here unnormalizcd means that g(x,t)=r(t)1r(x,t) for some function r(t) 
of ~ alone. A capsule description of this approach is given in section 2 below. Using this approach was strongly 
~vocated by Brockett and Mitter (c£ e.g. their contributions in [6D, and initially the approach had a number of non- 
trivial succes~  both in terms of positive and negative results (cf. e.g. the surveys [9] and [4]). Subsequently, the 
approach became less popular; perhaps because a number of rather formidable mathematical problems arose, and 
because the number of systems to which the theory can be directly applied appears to be quite small. Cf [4] for a dis- 
cussion of some aspects of these two points. 

It is the purpo~ of this paper to apply this approach to two problems concerning linear systems, which do not fall 
within the compass of the usual Ifalman-Bocy I.m~" filtering theory. More precisely, consider a finear stochastic 
dynamical system 

Vm'iom m_~'___te~_~ of the material in this m'fichs Imvc fo,ned the subject of various talks at diffment confermocs; e.g. the 2rid confer- 
m¢¢ ce the road-vchi¢~ system in Todno in June 1987, the 24-th Wintm" school o n  theoretical physics in I ~  in January 1988, the 
3rd m¢¢~ o1' the B,-llm~n ¢cminuum in Valbom~ in J'uo¢ 19~& the prmcot c~, and the special prosrsm on sisnal pr__~.~__i-g of the 
IMA in Minneapolis in the summer o/1988. As a rmult thls ank:l~ may also app©at in the p._ _~>:'o~___~gs or 0 ~  n~etings. 
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dx = Axdt + Bdw, x~R" ,  w~W' (1.3) 

@ = Cxdt + d~,, y, v e l ~  (1.4) 

where the A,B,C are matrices of the appropriate sizes. The first problem I want to consider is the filtering of (1.3)- 
(1.4) in the case that the initial condition x(0) is a non-gaussian random variable. The second problem concerns the 
identification of (1.3)-(1.4); i.e. one assumet that the matrices A,B,C are constant but unknown and it is desired t0 
calculate the conditional density a(x,A,B,C,t) of the (enlarged) state (x,A,B,C) at time t. Technically this means that 
one adds to 0.3)-(1.4) the equations 

dA = 0 ,  dB =O, dC = 0  (1.5) 

and one considers the filtering problem for the nonlinear system (1.3)-(I.5). Strictly speaking this problem is not well 
posed. Simply because A,B,C can not be uniquely identified on the basis of the observations alone. In the DMZ 
equation approach this shows up only at the very end in the form that p(x,A,B,C,t) will be degenerate in the sense 
that p(Sx, SAS-I,SB, CS-t,t)=p(X,A,B,C,t) for all constant invertible real matrices S. As a result the normalization 
factor/p(x,A,B,C,t)dxdAdBdC does not exist, and in fact ~x,A,B,C,t) is also degenerate. One gets rid of this by 
passing to the quotient spa~ (finite moduli space) {(x,A,B,C)}/GLs(R) for the action just given and/or by consider. 
ing (local) canonical forms. The normalization factor can be calculated by integrating over this quotient space. 

Besides the DMZ-cquation, already mentioned, the tools used to tackle the two problems described above are 
Wci-Norman theory and something which could be called a real form of the Scgal-Shale-Wcil representation of the 
symplectic Lie group Sp,(g). These two topics are discussed in sections 3 and 4 below. 

2. The DMZ aplwoaeh to nemlinear filtering 

Consider again the general nonlinear system (I.1)-(1.2). These stochastic differential equations are to be considered as 
lto equations. Let n(x,t) be the probability density of E[x(t)~(s), Ogagt],  the conditional expectation of x(t). (Given 
sufficiently nice f , G and h if can be shown that tr(x,t) exists.) Then the Duncan-Mortensen-Zakal result [1, 10, 12] is 
that there exists an mlnormnli,ed version p(x,t) of tr(x,t), i.e. ~x,O=r(t)n(x,O, which satisfies an evolution equation 

dp = ~ + Xh,~ty,(t) ,  o(x, O) = ¢(x) (2.1) 
where 6(x) is the distribution of the initial random variable x (0) and where £ is the second-order partial differential 
equation 

I 2 

Here hl,yk(t),f~ are components of h,y(t)  and f respoctively and (GGr)q is the (i,j)-entry of the product GG z of the 
matrix G and its transpose. 

Equation (2.1) is a Fisk-Stratonovi~ stochastic differential equation. The corresponding Ito differential equation is 
obtained by removing the -~-Xhj~q term from (2.2). 

As it stands (2.1) is a stochastic partial differential equation. However the transformation 

~(x,t) = exp(Xht(x)yk(t))p(x,t) (2.3} 

turns it into the equation 
| 

a~ = (~; + ~ y ,  + ~ . Y ~ : y 0 , ~  (2.4) 

where £j is the operator commutator f~=[hi,£]=hj£-fhi and f~/=[h,[hj,£]]. Cf. [41 for more details. In (2.4) I have 
explicity indicated the dependence of the various quantities on x,t to stress that here h(x) should simply be seen as a 
known function of x and not as the time function h(x(t)). Equation (2.4) does not involve the derivatives dy~ 
anymore; it makes sense for all possible pathsy(t), and can be regarded as a family of PDE parametrized by the pos- 
sible observation pathsy(t). Thus there is a robust version of (2.1) and we can work with (2.1) as a parametrized fam- 
ily of PDE parametrized by they(t).  Note that knowledge of p(x,t) (andy(t)) immediately gives p(x,t) and that the 
conditional expectation of any function ¢(x(t)) of the state at time t can be calculated by 

Et,~x(t))lv(s), o ,~s<t l  = ( f p(x.t),tx) - t  f c,(x)p(x.t) ,ix (2.s) 

Possibly the simplest example of a filtering problem is provided by one-dimensional Wiener noise linearly 
ob~,ved: 

dx = dw, x, weR (2.6) 

dy = xdt + dr, y, veR. (2.7) 

In this case the corresponding DMZ equation is 

. I  d 2 Ix2 . do = ( ' ~ - - ~ - ' ~  pat + xp dy (2.8) 
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an Euclidean Schr0dingcr equation for a forced harmonic oscillator. 

3. W ~ N e c a a  es~'y  

Wei-Norman theory is concerned with solving partial differential equations of the form 

~o = utAlp+ " ' "  +u.A.p (3.1) 
at 

where the A~, i = l,...,m are linear partial differential operators in the space variables x l,...,x:, and the u~, i = l,...,rn 
ate given functions of time, in terms of solutions of the simpler equations 

at = Atp , i = l,...,m (3.2) 

which we write as 

p(x,t) = e'4:q,(x), ~ x )  = p(x, 0) (3.3) 

O~nally, the theory was developed for the finite dimensional case, i.e. for systems of ordinary differential equations 

r. = ulAiz+ ' ' "  +u,  Area (3.4) 

where zeR t, and the Ai are k X k  matri~s. Both in the finite dimensional case (3.4) and the infinite dimensional case 
(3.1) it is well known that besides in the given directions A IP,...,A,,p, the to be determined function or vector can also 
move (infinitesimally) in the directions given by the commutators [.4, A~,]p=(AjAj -A/At)p, and in the directions given 
by repeated commutators [[A.A/],At], [[A~,Aj]. [At.At]I, etc. etc. 

Let Lie(A t,..,Am) be the Lie algebra of operators generated by the operators A h...,Am- This is the smallest vector 
space L of operators containing AI,..,A, and such that if A,BeL  then also [A ,B] :=AB-BAeL .  In the finite 
dimensional case (3.4) L is always finite dimensional, a subvector space of glk(R), the vectorspace (Lie algebra) of all 
kXk marries. In the infinite dimensional case the Lie algebra generated by the operators A t,...,A,, in (3.1) can easily 
be infinite dimensional and it often is; also in the cases coming from filtering problems via the DMZ equation. Cf. [5] 
for a number of examples. 

This is the essential difference between (3.1) and (3.4). Accordingly, here I shall assume that the Lie algebra 
L= Lie(Ah...,A,s) generated by the operators Ah...,Am in (3.1) is finite dimensional. For a discussion of various 
infinite dimensional versions of Wei-Norman theory d.  [4]. Hence, granting this finite dimensionality property, by sct- 
ring, if necessary, some of the ui(t) equal to zero, and by combining other Uj(t) in the case of linear dependence among 
the operators on the RHS of (3.1), without loss of generality, we can assume that we are dealing with an equation 

= u~Al~+ . . -  +u,A,p  (3.5) 
~t 

with the additional property that 

N, ,  As] = Y . ~ a k  ;~,j = I , . . . . ,  (3.7) 
k 

for suitable real constants ~ ;  i,j,k = I,...,n. 
The central idea of Wei-Norman theory is now to try for a solution of the form 

p(t) = ez't'~4' e t~(')x .... e t ' ( ' ~ ' ~  (3.8) 

where the g~ ate still to be determined functions of time. The next step is to insert the Ansao. (3.8) into (3.5), to obtain 

/~ = ~A • g'4 .... er'~'~ + et"4'~2A2e #*a .... er'A'¢ + --- (3.9) 

+ :,~ . . .  e~-,~.-,~,A,e~.~, 
Now, for i =2,...,n insert a term 

e-r~-~A,-, . . .  e-8~A~ eg, A, . . .  e~-,A,-, 

just behind g,A, in the i-th term of (3.9). Then use the adjoint representation formula 

eABe -A = B + {A,B] + /[A,[A,#II + ~[A,[A,~]II] + ' "  (3.10) 

and 0.7)) repeatedly, and use the linear independence of the A b...,A, to obtain a system of ordinary differential 
equations for the g~,...,g~ (with initial conditions gl(O)=O=g2(O)=... =~(0)). 

These equations are always solvable for small time. However they may not be solvable for all time. meaning that 
finite escape time phenomena can occur. 

Let's consider an example, viz. the example afforded by the DIvlZ equation (2.8). One calculates that 

[± dZ _ ± x ~  d ,±  d~ ~ 2 d 
~ 2  2 , x l = - ~ - , t 2 ~ - ~ ' - ' ~ , - ~ x  l = ~  
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, 4  
[-~, x]  = I, [A,I] 0 

. . I d 2 I 2 d 
where A is any linear combination of the tour operators ~--~--T- ~-x ,x, -~- I. Applying the recipe sketched above 

to the equation 

b = ( - -~x2~o+xpu( t )  + -~-pO + Ip0 (3.11) 

one finds the equations 

f,z = O, cosh(g,)~ 2 + fmh(Bl)~,3 = u(t), (3.]2) 

sin~,)g2 + cos~l)~3 = 0, g4 = ~392 

which are solvable for all time. 

This fact and the form of the resulting equations: straightforward quadratures and one set of linear equations 
B(t)g=b(t), with B(t),b(t) known and B(t) invertibie, is typical for the case that the Lie algebra L =$RA~ spanned 
by the A I,,,,,A. is solvable. This means the foUowlng. Let [L,L ] he the subvectorspace of L spanned by all h~e opera- 
tors of the form [A,B],A,B~L. It is easily seen that this is again a Lie algebra. Inductively let L(n)=[L,L (n-I)] be 
the subvectorspac¢ of L spanned by all operators of the form [A,B], A EL, B~L (a-D, L(°)=L. These are all sub Lie 
algebras of /~  

The Lie algebra of L is called nilpotent if L(")=O for n large enough. It is called solvable if [L,L] is nllpotent. 
The phenomenon alluded to above, i.e. solvability of the Wei-Norman equations for all time, always happens in case 
L is solvable [11]. (And it is no accident that these algebras have been called solvable. Though this is not the result 
which gave them that name.) 

Note that the DMZ equation (2.1) corresponding to a nonlinear filtering problem (1.1)-(I.2) is of the type (3.1) 
(width u~(t)=d),t(t)). Thus the Lie Algebra generated by the operators £,hl(x),...,hp(x) occuring in (2.1) clearly has 
much to say about how difficult the filtering problem is. This Lie algebra is called the estimation Lie algebra of the 
system (1.1)-(1.2) and it can be used to prove a variety of positive and negative results about the filtering problem [4, 
5, 9]. 

4. The Segai-Shale-Weil relnseatatio, and a 'real form' 

Let J be the standard symplectic matrix J = - 1 ,  0 ' where I~ the n Xn unit matrix. Consider the vector space of 

7.n X 2n real matrices defined by 

sp . (n)  = {M: J M  + Mr.r = 0}. (4.1) 

Writing M as a 2X 2 block matrix, M = D ' the conditions on the n Xn blocks A,B,C,D become 

B T = B , C  r = C ,D  = - A t .  (4.2) 

As we shall see shortly below this set of matrices occurs naturally for filtering problems coming from linear sys- 
tems (I.1)-(1.2). 

The corresponding Lie group to Sp,,(g) is the group of invenible 2n X2n matrices defined by 

SpA(R) = {SeRz 'x~:  STj$ = j }  (4 .3)  

(This is a group of matrices in that if St ,  S2¢Sp,(R) then also SIS2 ~Sp~(R) and Si -I eSpa(R) as is easily verified.) 

There is a famous representation of Sp,(R) (or more precisely of its two-field covering group .~p,(R)) in the Hilbert 
space L2(R ") called the Segal-Shale-Weil representation or the oscillator representation; cf. [8]. Here the word 
"representation' means that to each S¢Sp,(R) there is associated a unitary operator Us such that Us,s, = Us, Us, for 
all SI, $2 ESp.(a) .  

For the purposes of this paper a modification of it is of importance. It can be described as follows by explicit 
operators associated to certain specific kinds of elements of Sp~(R): 

(i) Let P be a symmetric n × n matrix; then to the dement 

1,0 
there is assodated the operator f(x)~exp(xrpx)f (x) 

(ii) Let A eGL,(R) be an invertible n ×a  matrix. Then to the element 
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(lib 

o (a_°)rl esp.(a) 
there is associated the operator 

f(x)  ~ Idet(A)ll/2f(A rx) 

let Q be a symmetric n×n matrix. Then to the element 

there is associated the operator 

where ~'denotes the Fourier transform. 

O'he operator corresponding to the element 

(0, °,,.,., 
is in fact the Fourier transform itself). 

Except for one snag to be discussed below, this sni~ces to describe the operator which should be associated to any 
dement S~Sp,,(R). Indeed let 

S = $3 $4 e Spn(R) (4.4) 

then there is an s>0,  s eR  such that SI +sS2 is invertible and we have a factorisation 

(It is easily verified that all four factors on the right are in fact in Sp,(R). 

Now assign to the operator S the product of the four operators corresponding to the factors on the RHS of (4.5) 
according to the recipe (i)-(iii) given above. There is a conceivable second snag here in that it seems a priori possible 
that different factorisations could give different operators. Tiffs in fact does not happen precisely because the 

t 2 a 'representation' described by (i)-(iii) is a real form' of the osciUator representation Sp,(R).-~Aut(L (R)).  ~ e  relation 
between the oscillator representation and (i)-(iii) above is given by the substitution xk~Vix, where i = V -  1. (The 
possible sign .ambiguity which could come from the fact that the oscillator representation is really a representation of 
the covering Sp,(R) rather than Sp,(R) itself also seems not to happen; if would in any case be irrelevant for the 
applications dicussed below.) 

It remains to discuss the first snag mentioned just above (5.4) and why the words 'representation' and 'real form' 
above have been placed in quotation marks. The trouble lies in part (iii) of the recipe. Taking a Fourier transform and 
than multiplying with a quadratic exponential may well take one out of the class of functions which are inverse 
Fourier transformable. Another way to see this is to observe that the operator described in (iii) assigns to a function 
~k the value in t = 1 of the solution of the evolution equation 

((-~x)rQ--~x)p, p(x,O) = ~X) (4.6) 
at 

and if Q is not nonnegative definite this involves anti-diffusion components for which the solution at t = I may not 
exist. Additionally; - but this is really the same snag - applying recipe (i) to a function may well result in a function 
that h not Fourier transformable. 

What we have in fact is not a representation of all of Sp,(R) but only a representation of a certain sub-semi-~oup 
cone in Sp,(l~). 
For the applications to be described below this means that we must be careful to take factorizations such that apply- 
ing the various operators successively continues to make sense. The factorization (5.5) does not seem optimal in that 
respect and we shall for the special dements of Sp,(R) which come from filtering problems use a different one. 

Incidentally, one says that two structures over R are real forms of one another if after tensoring with C ( -  extend- 
ing scalars to C) they become isomorphic (over C). It is in this sense that the 'representation' described by the recipe 
(iHiii) is a 'rent form' of the oscillator representation. 
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5. ~ d nou-g,ussUm u~am 

Now, finally, after all this preparation, consider a known linear dynamical[ system 

dx = Axd: + Bdw, Cxdt + dv, x eR" ,w ERm, y, v eRe. (5.1) 

with a known, not no~ssarily Gau,ssian, initial random variable x(0) with probability distribution ~x) .  

The DMZ equations in this case is as follows 

dp = ~ + ~ (c, oj, j( t) (5.2) 
j= l  

where (Cx)j is thej-th component of thep-vector Cx. The operator £ in this case has the form 

t T i} z x 0 = - - T A) - (5 .3 )  

Taking brackets of the multiplication operators (Cx)) with £ yields a linear combination of the operators 

a 8 L (5.4) 
xb'" 'x"; 8x t ..... 8x. ' 

This is a straightforward calculation to check. Moreover, the bracket ( -  commutator product) of £ with any of the 
opexators in (5.4) again yidds a linear combination of the operators listed in (SA). It follows that for linear stochastic 
dynamical systems (5.1) the ax.q~ated estimation Lie algebra (=  the Lie algebra generated by £, (Cx)t,...,(Cx)e) is 
always solvable of dimension ~2n +2. 

As a mather of fact it is quite simple to prove that the system (5.1) is completdy reachable and completely observ- 
able if and only if the dimcosion of the estimation Lie algebra is precisely 2n + 2  so that a basis of the algebra is 
formed by the (2n + i) opezators of (5.4) and £ itseff. 

In all cases Wd-Norman theory is applicable (working perhaps with a slightly larger Lie algebra than strictly 
necessarily makes no real difference). 

Thus we can calculate effectively the solufons of the unnormalized density equation (5.2) provided we have good 
ways of calculating the expressions, 

8 

etL¢, e'~¢, e'-~¢, ere (5.5) 

for arbitrary initial data ¢. The last three expressions of (5.5) cause absolutely zero difficulties 

(exp(t'~z)¢ = ¢(xl,...,x~-t,xl+t, xj+b...,x,)). Thus it remains to calculate the etch, where £ is an operator of the 

form (5.3). I t  is at this point that the business of the Segal-Shale-WeU representation of the previous section comes in. 
As a matter of fact the Segal-Shale-Wdl representation itself, not the 'real form' described in section 4 above, is a 
representation of the Lie algebra spanned by the operators 

. 8 t . 8 2 
,xkxj, xk ~ + ¥~kJ, ' a~kaxj' i = V ~  (5.6) 

and apart form multiples of the identity (which hardly matter) and the occurence of ~ these are the constituents 
of the operators £ in (5.3). It is to remove the factors V - I that we have to go to a real form. Cf. [3] for more details 
on the Se~-Shale-Well representation itself, and what it, and its real form, have to do with Kalman-Bucy filters. 

It is convenient not to have to worry about multiples of the identity. To this end note that if £' = £ + al then 
exp(t£')~ = exp(ta)exp(tfN/, so that neglecting multiples of the identity indeed matters hardly. 

The first observation is now that, modulo multiples of the identity operator, if £ and £' arc two operators of the 
form (5.3) then ~heir commutator difference [£,£'] = ££' - £'£ is again of the same form. (To make this exact replace £ 
in (5.3) by £ + ~-Tr(A) and similarly for £'.) Thus these operators actually form a finite dimensional Lie algebra and 
this is, of coturse~ the symplectic Lie algebra sp,(R). The correspondence is given by assigning to £(=£(A,B,C)) the 
2~x2a matrix 

(If you want to be finicky it is the operator £(A,B,C) + -~Tr(A) which corresponds to the matrix on the right of (5.7).) 

In terms of a basis on the left and fight side the correspondence (i.e. the isomorphism of Lie algebras) is given as 
follows. Let Eq be the n ×n  matrix with a 1 in spot (i,j) and zero everywhere else. Then 

Ox, Oxj ~" -~,j  -E~ t5.8) 
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0 ] 
(5.9) 

[;,o 
]t is now straightforward t~ check that this does indeed define an isomorphism of Lie algebras from the Lie algebra of 
all operators ~A.B,C) + -]-Tr(A) when: £ is as in (5.3) and the algebra sp,(R) described and discussed in section 4 

above. For example one has 

8 2 8 
[ ~ ,  x2x3] = x3 ~x t  (5.11) 

which tits perfectly with 

It is precisely the correspondence (5.8) - (5.10) or, modulo multiples of the identity, (5.7)~]_as the fact that 'real 
form' described in section 4 of the SSW representation is precisely the way to remove the V' - I factors, plus, again, 
the fact that the SSW is really a representation, which makes it possible to use finite dimensional calculations to 
obtain expressions for 

exp(t(£(A,B,¢) + -~Tr(A))~ (5.13) 

for arbitrary initial conditions. 
Basically the recipe is as follows. Take £(A,B,C) + "~Tr(A). Let Me sp,(R) be its associated matrix as defined by 

the RHS of (5.7). Calculate exp(tM)=S(t). Write S(t) as a product of matrices as in (i), (ii), (ill) in section 4. Apply 
successively the operators associated to the factors. The result, if defined, will be an expression for (5.13). One' factori- 
sation which can be used is that of (4.5) above, It does not, however, seem to be vez'y optimal and it is difficult to 
show that everything is well defined. 

It is better and more efficient to use a preliminary reduction. Consider the algebraic Riccati equation 

ATP + PA - PBBTP + CTC = 0 (5.14) 

determined by the triple of matrices (A,B,C). It is easy to check that for any solution P one has 

:i ['0 [% °1 
where ~l =A -BBZ'P. Given this it becomes useful to know when (5.14) has a solution and to know some properties of 
the so]utions. These will also be important for the next section. In fact the function rc(A,B,C) that assigns to the triple 
(A,B,C) under suitable conditions the unique positive definite solution of (5.14) is important enough to be considered 
a standard named function which should be avai]ab]e in accurate tabulated form much as say the Airy function or 
Bessel functions. I know of no such tables. The symbol 're' of course stands for Riceati. 

Let A" be the adjoint of the complex n X n  matrix A, i.e. the conjugated transpose of A, so, if A is real, A" =A T. 
Consider the equation (algebraic Riccati equation) 

A ' P  + PA = PBB'P - C ' C  (5.16) 

(Here A is an n ×n matrix, B an n ×m matrix, C an p ×n  matrix.) Some facts about (5.16) are then as follows: 

(5.17)If (A,B) is stabiliTable, i.e. if there exists an F such that A - B F  has all eigenvaiues with negative real part, then 
there is a solution of (5.16) which is positive semidefinite (P~0)  (and for this solution A = A - -BB 'P  is stable). 

(So in particular if (A,B) is completely reachable there is a solution of (5.14).) 

(5.18)Suppose (5.16) has a solution P ~ 0  and suppose that (A,C) is completely observable. Then f is the only nonne- 
satire definite solution of (5.[6) and P >0. 

(5.19)If (A,B,C) is co and er then there is a unique P > 0  which solves (5.16). 

This last property is the essential one for this section. For the next one we need something better. Let L~..~(R) be 
the space of all triples of real matrices (A,B,C) such that (A,B) is completely reachable and (A,C) is completely 
observable. Let rc(A,B,C) :=  P be the unique solution P of (5.16) such that P >0  (the matrix P is positive definite 
and seffadjoint). Then 
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(5.20)The function ro(d,B,C) from L~'n~(I]) to the space of selfadjoint matrices is real analytic (and so in particular 
C = ( -  smooth) 

Moreover 

(5.21)re(TAT -I, TB, CT -I) = (T')-Irc(A,B,C)T -I 

(5.22)rc(-A'), _c',_.+B') = rc(A,B,C) -I 

Property (5.21) is important in section 6; more precisely it will be important when these results are really implemented 
for multi-input multi-output systems. The point is that the matrices (A,B,C) are not determinable from the observa- 
tions alone, simply because the systems (A,B,C) and (TAT -I, TB, CT -I) for TeGL,,(R) produce exactly the same 
input-output behaviour. For completely reachable and completely observable systems this is also the only indeter- 
minacy. Property (5.21) guarantees that the whole analysis of these two section 5 and 6 'descends' to the moduli space 
(quotient manifold) L~'~(R)/GLs(R). 

Having all this available it is tempting (and natural) to play the trick embodied by (5.15) again, this time using 
conjugation by a 2 × 2  block matrix with identifies on the diagonal, a zero in the upper right hand comer and a Ric- 
carl equation solution Q in the lower left hand corner. This, however, is no particular good because this will introduce 
both the two factors 

in the factorisation of S(t)=cxp(tM), and at least one will cause diificulties with inverse and direct Fourier 
txandorms; cL part (iii) of the recipe of section 4. 
Instead, writing 

one uses the factorisafion 

I 0 
exp(f[--~;rO])=[_Rexp(t~r)Ol][eXP(ot~4r)exp(t~4)] (5.24) 

giving the following total factorisation for S(t)= exp(tM) 

s , , , :  ['0 :1 =,l  {'0:1 ,,2,, 
Except for possibly the second factor on the right hand side of (5.25) applying the recipe of section 4 is a total trivial- 
ity. 

As to that second factor observe that 

a f-~ ol [-=p~-t~)A~ 0 ) 
t dt 

-_ fe.,p,-a r) o .  1 o 1 
[--R exp(t,,l)j [-BB" AJ (5.26) 

from which it follows that 

= -R, i  r + expt~)BB r. (5.2~) 
dt 

A~ a result 

-~(~  ~,p(t~ T) = _ ~ r ~p(f i  r) + exp(~)BBT exp~t~ r) + ~ Texp~fi ~) ¢5.28) 

and it follows that 

R ~p(ui r) ~.0 all f ¢5.29) 
which means that applying part (iii) of the recipe of section 4 ( -  part (ili) of the definition of the real form of the 
SSW representation) just involves solving a diffusion equation (no anti diffusion component); or, in other words that 
the inverse Fouriex transformation involved will exist Note also that if the initial condition ~ is Fourier 
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transformable then, if P is nonnegative .definite, the result of applying the parts of the recipe corresponding to the 
third and fourth factors on the RHS of 5.25 will still be a Fourier transformable function. 

This concludes the description of the algorithm for propagating non-gaussian initial densities. 

6. Identification 

Given all that has been said above, this section can be mercifully short. The problem is the following. Given a linear 
system 

dx = Axd~ + Bdw, dy = ¢xdt + dv (6.1) 

with unknown A,B,C, but constant A,B,C, we want to calculate the joint conditional density (given the observations 
y(s), O=gs,gt) for A,B,C,x. This can be approached as a nonlinear filtering problem by adding the equations 

dA = O, dB = O, dC = 0 (6.2) 

or, more precisely, the equations stating (locally) that the free parameters remaining after specifying a local canonical 
form are constant but unknown. More generally one has the same setup and problem when, say, part of the parame- 
ters of (AtB, C) ale known (or, generaliTin~ a bit more, irnperfecdy known). 

The approach, of course., will be the calculate the DMZ unnormalized version of the conditional density p(x,A,B,t) 
given the observationsy(s), O~s~t .  Writing down the DIvE equation for the system (6.1)-(6.2) gives 

P 
dp = ZHt + ~, (¢x)jdyj(t) (6,3) 

l= l  

with £ gives by (5.3); i.e. exactly the same equation as occurred in section 5 for the case of known A,B,C. And, 
indeed the only difference is that in section 5 the A,B,¢ are known, while (6.3) should be seen as a family of equations 
patametrized by (the unknown parameters in) the A,B,C. Thus if p(x,t[A,B,C) denotes the solution of (5.2) and 
~x,A,B,C,t) denotes the solution of (6.3) then 

p(x, tb4,B,C ) = p(x,A,B,C,t) (6.4) 

Now the bank of Kalman-Bucy filters for .~ parametrized by (A,B,C)ELC~;~'~ gives the probability density 

~x, tla,B, c) = r (t,~,e, C)- ~ p(x, tla,s, ¢) (6.5) 

so that the norrnsliTation factor r(t,A,B,C) can be calculated as fp(x,t,.,t,B,C)dx. 
By Bayes 

¢(x,A,B,C,t) = ~x,t[d,B,C)c(A,B,C,t)) (6.6) 

so that the normalization factor r(t,d,B,C) is, so to speak, precisely equal to the difference between the solution of the 
DMZ equation (6.3) (or (5.2)) and the bank of Kalman filters producing ¢(x,tlA,B,C ). I.e. the marginal conditional 
density 

~A,B,C,t) = f~(x,A,B,C,t)dx = f p(x,A.B,C,t)dx / f o(x,d,B,C,t)dxdddBdC (6.7) 

is obtainable from the unnormalized version of the bank of Kalman-Bucy filters parametrized by (A,B,C). Given the 
relations between this bank of filters described in [13] and briefly recalled in section 7 below this may offer further 
opportunities. 

Be that as it may the marginal density r(A,B,C,t) which up to a normalization factor is equal to .Lo(x,A,B,C,t)dx 
can be effectively calculated by the procedure of section 5 above with the only difference that P=rc(A,B,C) now has 
to be treated as a function. Once ~(A,B,C,t) (or in various cases some unnormalized version p(A,B,C,t) is available a 
host of well known techniques such as maximum llkelyhood become available. 

If it is possible (as it will be in many cases) to work with a p(A,B,C,t)=r(t)c(A,B,C,t) there is no (immediate) 
need to descend to the quotient manifold L~°:~(R)/G~(R).  

7. On the relation between the 'real form' of the SSW representation and the Kalmun-Bucy filter 

We have son  that the essential difficulty in obtaining the (unnormalized) conditional density O(x,t) lies in 'solving' 
exp(t£)~ where £ is the second order differential operator (5.3). Now £ corresponds in a fundamental way with the 
2n x2n matrix 

Not very surprisingly this matrix in turn is very much related to the matrix Riccati equation part of the Kafman-Bucy 
filter. Indeed, consider the matrix differential equation 
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and, assmffmg that X(t) is invertible, let 

- p  = y x  -I.  

Then 

= -~ ,X-~  + y X - t ~ X  -I = ( + B B r X  - A Y ) X - I  + y X - t ( - A r x - c r c Y ) x  - t  

= +BB r + A P  + p A r - p c r c P  

which is the covariance equation of the Kalman-Buey filter. 

(7.3) 
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Abstra~ 

We are concerned with a class of problems described in a somewhat imprecise 

way as follows. Consider a linear operator of the form L + V(x), where L is the 

generator of some Markov process x t and the "potential" V(x) is some real-valued 

function on the state space of x t. We are interested in probabilistie representations 

for solutions u(t,x) of the evolution equation 

(1) ~ = Lu + V(x)u, t ~ 0 

with initial data at t = O. The Feynman-Kac formula gives a well-known stochastic 

representation for u(t,x). We seek a different probabilistic representation for 

I ---log u, if u(t,x) is a positive solution to (1). In this representation the operator 
L is replaced by another generator ~ (perhaps time dependent), chosen to solve a 
certain stochastic control problem. The dynamic programming equation for this 

stochastic control problem is 

(2) ~ = H(1) - V(x), where 

H(I)  = - eIL(e" I). 

Another way to view the change of gcncrator from L to L is by change of 
probability mcasure through conditioning. 

Next suppose that the state space of x t is euclidean R n, that 

L = L o u = u e, I E = - ~ log u E and 

Ht ( l  ) = . eILE(e- I). 

Under various assumptions it turns out that I E -. 10 as ~ --. 0, 

lira ~H, (~ ' I I )  = H0(x,lx) 
4-.0 

where I x is the gradient, and that l(t,x) is a viscosity solution of the first-order 

partial differential equation 

~-_- H0(x,]x). 
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When x t is a nondegenerate diffusion on R n, then L is a second order elliptic 
partial differential operator. In this case, the logarithmic transmation provides an 
analytical approach to large deviations questions of Ventsel-Freidlin type, and for 
more precise results in the form of asymptotic series expansions of I E in powers of 

E. The logarithmic transformation technique is also of use to study certain 

asymptotic problems in which u~(t,x) obeys a nonlinear parabolic partial differential 
equation. 
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A b s t r a c t  

A dynamic decision model is said to be forward-looking if the evolution of the underlying 
system depends explicitly on the  expectat ions the agents  form on the future evolution itself. 
Such models lead to nons tandard  stochastic dynamic opt imizat ion problems where one has 
to take into account  the  fact t h a t  there is a circular (closed) relat ionship between future 
forecasts and future system behavior.  In this  paper  we study a class of such problems where 
there is an addi t ional  control input  designed to make the system track a given trajectory. 
This leads to a game-theoretlc formulation in which context  we consider both  finite and 
infinite horizon formulations.  It  is shown t h a t  for the finite horizon problem the  unique Nash 
equilibrium solution requires (fixed size) memory for bo th  agents because of spillover across 
stages, whereas  for the  infinite horizon version no memory is needed. 

1. A n  I n t r o d u c t i o n  to  F o r w a r d - L o o k i n g  M o d e l s  

We refer to  a dynamic stochastic model as forward-iooklng if one of its inputs  involves 
future expectat ions  of the system trajectory, using (possibly noisy) measurements  on the past  
realizations. Such decision models find wide-spread use in economics, where they are more 
commonly known as rational expectations models. A few representat ive papers  in this  area 
are the  works of Lucas (1975), Sargent  and Wallace (1975), Barro (1976), Taylor (1977), 
Shiller (1978), Blanehard (1979), and Blanchard and Kahn (1980). Perhaps  the simplest 
such model t h a t  captures  the salient  features of forward-looking behavior  is described by the 
scalar difference equat ion 

Yt+l = aye + bet + et+l ,  ( la )  

where a and  b are cons tan t  parameters ,  {~t} is a sequence of independent  zero-mean random 
variables with finite (positive) variance, and  vt is the  decision variable chosen a t  t ime t under  
some ~expectation ~ of  the future behavior  of the system based on information available at  
time t. If  the  forecast of interest  is a steps into the future, for example,  one possibility is to 
replace vt in ( l a )  by F,~y~+,,, the  condit ional  mean of Yt+n based on the  information available 
at  t ime t. This  information, which we denote by sTt, could involve a direct measurement  of 
all the past  values of the system trajectory, t ha t  is {lt~, Y~-I,.. .) =-: y t  or involve some noisy 
measurement  on the s ta te  trajectory, #t -- z t, where ( z t )  is a measurement  sequence defined 
by 

t This work was performed while the author was spending a sabbatical year at INR[A, 
Sophia Antlpolls, France, and it was also partially supported by the Air Force 01}~ce of Sci- 
entific Research under Grant No. AFOSR 084.0050, throuyh the University of Illinois. 
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zt  = vt + ~t,  ( [b)  

with {~t} being another sequence of independent, zero-mean random variables with finite 
variance. 

A basic question addressed in the literature over the years has been the existence of 
a (unique) stochastic process {Yt} that  satisfies ([a) whenever us = Ety~+n and the time 
interval is infinite. The answer to this question is that  there is, in general, more than one 
such solution even in the class of stationary processes. However, as we have recently argued 
in Ba#ar (1987), a better  approach towards policy determination in these forward-looklng 
models would involve the optimization of an appropriate loss function, by carefully taking 
into account the informational dependence as well as the correlation of policies across stages. 
One such criterion would be 

T 
~.~ :=  rain ~ E{[-~,(,~,) - ~ , + , , ] ' } p ' - ' ,  (23 {'~') t='-'~ 

where minimization is subject to the dynamic constraint (In), with vt = "Tt(r/t), and uses 
the boundary condition vt = 0 for t > T. In the above, [s,T] stands for the time horizon, 
which could also be infinite, and p denotes a positive discount factor (0 < p ~ 1). It  has been 
shown in Ba#ar (1987) that  the dynamic policy optimization problem admits the solution 
vt = Etpt+l  when n = 1, but  for n _> 2 the unique solution for the finite-horizon version is 
different from Etp,+,~. For n = 2, for example, the best forecast into the future (by two time 
steps), under the criterion (2) and using the information {T/t -- I /} ,  is given by 

,,: = ~;(~,') = ~ ,~ ,  + f , , , ,_~,  (sa) 

for 2 _~ t ~_ T, where the sequences {st} and {fit) are determined recursively off-line. For 
the noisy measurement case, {~/, : z t ) ,  the solution is again unique and is given by 

v; = qf~(z') ----- atYt + f ,  v t - l ,  (3b) 

for 2 < t < T, where the sequences {a,} and {f,} are the same as in (3a), and 9t is a 
sequence of estimates generated recursively by a Kalman filter, under the assumption that 
the underlying statistics are Gaussian. An interesting feature of the solution is that  for the 
infinite-horizon version (that is as T ~ co) the coefficient sequence {fit} vanishes for all finite 
t, and the solution becomes v~ = Etyt+2,thus eliminating the correlation across stages. 

In the present paper, we consider a more general formulation than that  above, where 
now two separate agents, say A and B,  have influence on the system trajectory, one of them 
(A) again making a two-step ahead forecast of the trajectory, whereas the other one (B) 
trying to drive the trajectory as close to a specific target as possible. For such a scenario, the 
system equation would be replaced by 

yt+l = a~/t + bet + cwt + ~t+l, (4) 

where v, = ~t(9 t) is controlled by agent A and tot = /~t(y t) by agent B.  Taking the time 
horizon as [0, T-t- 1], the two cost functions to be minimized by A and B,  respectively, are 

T 
E 

t=D 
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and 
Toe1 

J B ( % # )  ~ E{[yt+t fh+l] 2-t- ' ' = - k , ~ ,  } p B ,  (sb) 
~----0 

where {~t,2 < t < T + 2 }  is the desired trajectory~ k is a posltive weight on agent B ' s  control, 
PA, PB are the corresponding discount factors, '7 :=  {'YT, fiT--l, .., "I0}, /~ :=  {P r+ l ,  #T, ..,#0}, 
and v2'+1 -- 0, the last identity reflecting the fact that no forecast is made at t ime t -- T -t- 1. 
Furthermore, we assume that  the independent random variables ct (1_< t_  T+2)  eacl~ have zero 
mean and a probability distribution that assigns positive probability to every measurable open 
subset of the real line. One such distribution would be the normal (Gaussian) distribution 
with positive variance. 

Since this is a problem with multiple objectives, several equilibrium solution concepts 
would be applicable, with the one adopted here being the noncooperative Nash equilibrium 
solution. Therefore, we seek a pair (~/*, ;z*), preferably unique, satisfying the pxlr of inequal- 
ities 

J,,(,~*,~,*) < JA(%~,*); JB(,~*,J,*) _< J~(,~*,J,), (6) 

for all admissible ~/and iz. Other  possibilities would have been the Stackelberg solution with 
either agent acting as the leader and the Pareto-optimal solution, which, however, we do not 
discuss here because of space limitations. 

The first question we attack, in section 2, is a ~simpler" version of the above, where 
agent A ' s  policy is fixed as vt = Etyt+~, t _< T, which is in general a suboptimal policy for 
A. We obtain the best policy for B under this additional structural restriction, and derive 
the corresponding expression for {/~t} (see Theorem 1). Furthermore, we study the limiting 
behavior of the two policies, for the infinite-horizon problem. Subsequently, in sect/on 3, 
we derive the unrestricted Nash solution and prove its (generic) existence and uniqueness 
(see Theorem 2), with details of the derivation provided in the Appendix. We also study 
the limiting behavior of the solution as T --+ co, and analyze the discrepancies that  exist 
between the two stationary solutions of Theorem 1 and Theorem 2. The paper concludes 
with a discussion of the "nolsy measurement" case and some other possible extensions, in 
section 4. Throughout  the analysis, we take the reference trajectory (to be tracked) as the 
zero trajectory, an assumption that  does not bring in much loss of conceptual generality but 
leads to considerable simplifications in the resulting expressions. 

2. T h e  O p t i m a l  T r a c k i n g  S t r a t e g y  U n d e r  P e r f e c t  M y o p i c  F o r e c a s t  

With vt taken as EcYt+2 (which myopically minimizes each term of (5a)), and {~t} 
taken as the zero trajectory, the dynamic policy optimization problem faced by agent B is 
the minimization of F TM, where 

T-t-1 

F:÷' = E{y, '+,  ' ' - "  + k~, }PB , (Ta) 
t • 

the dynamic constraint is 

~T+2 =- aYT+l + CWT+I + eT+2, (7b) 
Y:+1 = ap~ + bE~yt+: + cw~ ÷ et+1, t _< T, 

and the information constraint is wt --- #t(Y:). Note that  this is not  a standard linear- 
quadratic stochastic control problem because of the presence of the conditional expectations 
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term in (7b), which could even make the dynamic constraint nonlinear in the past values of 
the trajectory. We will show below, however, that the optimal control is still linear, thus 
making the corresponding forecast also linear in the available information. The derivation 
entails a recursive approach where the structure of vt is determined alongside the optimal 
control at each step of the iterative minimization. 

Before presenting the main result of this section, we first introduce two sequences {pc} 
and {vt} which are defined recursively by 

Ps==kPt+ l  • (8a) p t = t + ¢ 2 p = + l + k = . ~ ,  p'r+== 1, 

abkvt 
~,_, = 1 -  • = 1. (Sb) c2p=+l + kv~' VT+1 

Next we define a third sequence {gt} in terms of the other two, according to 

g, = --capt+ll(c2p,+,  -t- kv==), t < T-t- 1. (8c) 

We are now in.a position to state the main result, after invoking a condition which generically 
holds. 

C o n d i t i o n  1. The sequence {vt} generated by (8b) does not vanish/'or any t _< T + 1. 

T h e o r e m  1. Let Condition I be satisBed. Then, the dynamic policy optimization problem 
with myopic forecast admits the unique solution 

~,t f ~,,(y,) = g,y,,  O <_ t <_ T + l ,  (ga) 

with the corresponding forecast policy given by 

v, = E ,y ,+ ,  = (a + c~,+~)(= + cg,) y, := h,y,.  (gb} 
Pt÷lV¢ 

The minimum value ofF~ "+x in (Ca) is 

• ~o ~+ '  = poE{co'} + ~o, (9c) 

where Ao is the last step of the backward recursion 

At- l  = pea t  + p=uar(e=). 

Proo/. The proof proceeds by recursively showing that  the minimum value of F T-I'I is given, 
for each a < T +  1, by 

FT +1 ~- [(p, - 1) /pB]E{y= =} -t- A.. 

The result is t r iv ia l ly  true for s = T + 2, where we take AT+ 2 = 0. Let us therefore assume 
its validity, along with (ga) and (9b), up to a -t- 1, and verify the expression, as well as (ga) 
and (gb), for s. The minimization problem faced by agent B at t ime a is 

min[psF  T+I  + E{Y~+I + k/~. (Y°) ' } ] ,  ( ' )  
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which is equivalent to 
m~u E{P.+~X'.~+, + k'~ I y ' ) ,  

which uses the dynamic constraint 

Y,+I = ay° + bE, y,+a + cw + c ,+l .  (.) 

We also have the rdationship 

where we have explicitly used (9a) and (9b), with t replaced by s-k 1. {Of course, i ra  -- T-/- 1, 
the last relationship would not be needed since the conditional expectation term in (*) would 
be missing.) Now, taking the conditional expectation of the last expression with respect to 
~ ' ,  substituting this into (*), taking the conditional expectation of the resulting expression 
again with respect to y ' ,  and solving for the resulting E ,  yo+I in terms of yo and w, we arrive 
at the expression 

g,  ll,+l = ~-, [a~,, + cw]. 

Using this, E,t/~+2 can easily be evaluated to be 

a -b cg++l E,~,+, = bh'+llaU." + owl. (**) + 

Pj 

under which the dynamic constraint becomes equivalent to 

y ,+l  = l [ a ~ ,  + ctu] + ~o+1. 

This makes the minimization problem a standard linear-quadratic one, and hence it readily 
follows that  the minimizing control is uniquely given by (ga) with t -- s. Substitution of this 
solution into (.)  and (**) finally verifies the asserted form for F~+~ and the structure of the 
forecast policy as given by (gb). We should note that  Condition 1 has explicitly been used in 
the proof, to make sure that  one can solve uniquely for E,y,+I and E,!t°+z. o 

Condition I, under which the exlstence and uniqueness of the optimal control (ga) is valid, 
holds whenever a and b have opposite signs, regardless of the magnitudes of the parameters of 
the problem. The result follows by inspection, since with ab < 0 and v~'+l -- 1, we have v~ > 0 
for all t _< T + 1. For ab < 0, however, there may exist isolated values for the parameters 
for which the condition does not hold for some t. [A more precise s tatement  here would be 
that with all but  one of the parameters fixed (and ab > 0), there will exist at most a finite 
number of different values of that  parameter for which Condltlon I is violated. This fellows 
since for each t, ~t is a rational function of the quintuplet (a,b, c, pv~ k).] For example, for 
the parameter values a = e = k = 1, b = 2, we have v~- = 0, which shows that  Condition 1 
may fall even for a two-stage problem. However, if we perturb the value of b to b = 2.1, and 
take pB = I, then Condition I holds for all values of t .  In fact, running the coupled recursive 
equations (Sa)-(Sb) in retrograde time, we find that  (for these parameter values) the pair 
(~'t, Pt) converges to (0.504147, 1.880960) in 29 steps, within the accuracy of six decimal places. 
Hence, in this ease, the infinite-horizon version (even with no discounting) admits a unique 
optimal stationary control, given by *at = ~(Yt) = -1.135124 ~;t. If, in the above, b is instead 
taken to be 1, again Condition I holds, the pair (vt, Pt) converges to (0.694146, 1.787692) in 9 
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iterations, and the optimal control policy converges to tot = ~(~h) = -0.787692 yr. As a final 
numerical experimentation, reflecting a different set of parameter values, we consider the case 
of ~ = 2,b = - 3 , p v  = 0.8,¢ = k = I. For this set, we already know that  Condition I holds, 
since ab < 0. Studying the convergence of the optimal pollcy to a stationary control, we find 
that  the pair (v, ,pt)  converges to (2.796267,1.521150) in 26 iterations, with the resulting 
stationary policy being u~t = ~(yt) = -0.325719 1/t. 

3. T h e  N a s h  E q u i l i b r i u m  S o l u t i o n  

We now remove the restriction that  agent A ' s  input to the system is a myopic forecast, 
and allow him to determine the "best ~ choice for vt by minimizing the cost function JA. 
As we have discussed in section I, this joint optimization problem can best be treated as 
a noncooperative game, and hence we study in this section the Nash equilibrium of the 
underlying game, as defined by (6). 

There are two general approaches to the derivation of Nesh equilibria in such dynamic 
games. One would be first to guess (or propose) a structure for the solution in terms of 
some parameters, and then to validate the equilibrium property of the asserted structure 
and to obtain the corresponding values of the parameters so that the resulting policies are 
in Noah equilibrium. A second approach would be to obtain the Nash solution recursively 
(by employing the definition of ~tagevoise or feedback equilibrium; eee, for example, Ba~ar and 
Olsder (1982)) by solving static games conditioned on the available (common) information, 
at  each step of the iteration. Note that  this would be applicable only if both agents have 
identical information (which is the case here), since otherwise stagewise decomposition would 
not be possible. Now, two disadvantages of the first method are that  (i) one has to guess the 
structure of the solution correctly, and (ii) even if the initial guess is correct there is no way 
to show (using this method) that  the validated Nash solution is unique. The second method, 
on the other hand, is capable of answering the uniqueness question, but it only produces 
candidate solutions which subsequently have to be checked for their equilibrium property. 
What  we will, therefore, choose to do in the sequel is to use an appropriate combination of 
the two approaches, to generate candidate solutions and verify their existence and uniqueness. 
We should note in passing that  even though the problem may look, at the outset, as a standard 
linear-quadratic one, the presence of the two-step delay in the cost function of agent A makes 
the game a nonstandard one, thus eliminating the possibility of direct application of results 
available on linear-quadratlc feedback Noah games (as, for example, covered in Ba~ar and 
Ol~er (1osz) ) .  

Before presenting the solution in Theorem 2 below, we first introduce some sequences 
which will be needed in the characterization of the equilibrium policies. Towards this end, 
let (mr}, {mr), {n~} be three sequences generated by 

I ak 
( lo , , )  m , _ , =  1 _ bmt[a + c~,  + ba ,~t] ;  m T =  k + c ~ '  

1 [c~, + bf l ,~ , l ;  ~ T  -~" 0, (10b) ~nt-t  = 1 - bm-----~ 

pAr~t(l -- brat) 2 
' * ' -*  = b* + p A " , ( I  -- bm, )~ '  "T = 1, (10c) 

where a=, a t ,  fit, fl= are defined, for t < T, by 

( 1  - b m t ) p A n t m t  - 6 
¢*t :=  b2 - t-pAn,(1 - bin,)(1 Z b m ' t - ~ t )  i n ÷  c~,], t <_ T, ( l l a )  
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and 

k4-c~kt l , t  , t < T + l ,  ( l ib)  

(1 - bmt)pAntratc~ + b(1 -- c~t) 
fit :=  b' 4- pAnt(l  -- brat)(1 - brat - mr) '  t < T,  (12a) 

~ , _ ,  :=  (bk . , ,  + k . , , ) c # , _ ~  
, t < T 4- 1, (12b) 

k + t2kll,t 

klt,t ktl,t ) 
Kt  :=  \ k12,t k~ , t  

is a 2 x 2 matrix sequence generated by the discrete time Riccati equation 

K t  = t pvAt{Kt+x - Kt+tC(C 'Kt+tC  4- k ) - lC tK t+ l }A t  4- Q, 

x T + ,  = { k ~ p ~ / ( k  + : ) I Q ,  
03a )  

e[(a - bradp A ra:t ,  - b] (14s) 
rat := b2 jr pant(1 -- brat)(1 - brat - ~nt)' 

c(bkll,t+t -4- k~2,t+l) (14b) 
r&t . '= k 4- C l k l l , t + l  ' 

c(1 -- bmt)pAntmt -- bc (15a) 
rflt := b 2 -1- PAnt(1 -- brat)(1 - brat - ~nt)' 

c(bklt,t+t 4- k12,t+l) (15b) 
r#t := k 4- c2ktt,t+l 

The last four expressions are the coefficient terms in (lla)-(12b), indicating the dependence 
of ctt, ~ , , / / t  and/~t on ~t, t~t, ~t and/~t, respectively. A certain relationship between these 
coefficient terms in fact determines the existence of a unique Nash equilibrium solution, as 
to be elucidated below. 

Condition 2. For all t < T, 

r~trat ~ 1, r#tr~t ~ 1, 

T h e o r e m  2. 
admits a unique Nash equillbrium solution {'7~',tt~}, where agent A'~ (best forecast) policy 
is 

,,t = "t~(~') = , ,wt +/~,~t-~,  t > 1 (17) 
~oYo,  t ---- O, 

(16a) 

brat # 1, (16b) 

pAnt(l  -- brat)(1 - brat - ~tt) ~ -b2. (16c) 

Let Condition 2 be satls[ied. Then, the forward-looklng tracking model (4)-(5) 

with 

A t : =  , Q : =  , C : =  . (13b) 
\ a t  fit 

Finally, let rat, rat, r~t, r~t be defined by 
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and agent B ' s  (be~t tracking) policy is 

w, = p[(yt) = atPt + fl~'t-1, 1 < t < T 

= - [ ~ o / ( k  + c2)]y~.+,,  t - -  T + 1 

= ~0Y0, t = 0 , 

(18a) 

where the sequence {v't} is generated by 

"v===a=yt+~=v't-], t>_ I 

= ao~o, t = o. (lSb) 

Pros/. We will first verify the structural consistency of the solution (17)-(18) under the Nash 
inequalities (6), and then discuss the existence of the solution. Some details of the derivation, 
as well as a proof for the uniqueness of the solution will be given in the Appendix. 

Towards verifying the validity of (6), first consider the second inequality, where agent 
A ' s  policy has been fixed as given by (17). Then, agent B faces a stochastic control problem 
with cost function J v  (given by (bb) with zero reference trajectory) and state dynamics 

yt+, = (a + bat)yt + bP,~'t-x + c~, + ~,+, , t _< T 

= a~T+t + CWT+, + eT+S , t = T + l, 

where the sequence {~'t} is generated by (18b) in view of (17). The optimal control at time 
T + 1, wT+,,  can readily be obtained, to be given by the second line in (18a). To obtain 
the rem~ning  controls, we introduce a new state vector, zt := (yt, ~t-x), and reformulate the 
problem as one of minimizing JB under the dynamic constraint 

=:+i=A*z,+Cw*+De,+* ; D := (1 0)', 

where control wt is allowed to depend on z t, t < T. [Note that  even though u t-1 is not 
available to agent B, ~ - l  is since it is generated by y t - , . ]  This is the familiar linear- 
quadratic optimal control problem, whose unique solution is 

w, = - (k + C'K,+ ~ C)-' C'K,+ x A,xt, (*) 

where {Kt} is generated by (13~). [Note that the terminal constraint on Kt at t = T + 1 
is not Q because we have already substituted for the optimal wT+l and have reduced the 
cost function JB to the one where the leading term is now Y~'+l instead of !;~,+~.] Now, the 
optimal control (*) is clearly linear in y, and ~ _ , ,  at time t, and a little algebra shows that 
it can be expressed in the form (18a). 

We now focus attention on the first inequality of (6), where agent B 's  policy is fixed as 
given by (18a). Then the problem faced by agent .4. is one of optimal forecast, where the 
cost function is JA (given by (ba)) and the dynamic constraint is 

Yt+* = (a+c~t)Yt+c~t~t-1 +bvt +Ct+l, 1 < t < T 

= -[=k/(k + c')]~T+, + 'T+,, t = T + 1 

= (a + c&o)yo + bvo + e,, t = O. 

Because of the form of the cost function, the available linear-quadratic theory cannot be 
directly applied to this problem; nevertheless, a one can employ a d~,amlc programming type 
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argument to construct the optimal solution in retrograde time, as in the proof of Theorem 
2.1 of Ba~ar (1987). It  has been shown in the Appendix that  the optimal solution is unique 
(under some conditions which will be specified later), and the optimal policy at time t is a 
function of three variables, y~, ~ , - I  and v t - t .  The precise expression is 

= ~oYo, t = O, 
(**) 

where 

b 2 ÷ (I -- bmt)~PAftt 
lpAn,(I  - b ~ , ) ( ~ , ~ ,  + Ca + c ~ , 1 ~ , )  - b(= + o~,) l  ('1 

~ t  = b 

b 2 + (1 - bmt)~pAnt 

1 
~t = b2 + (1 - bmt)=pAnt '[pAn'(1 - bmt)(~tf l  + c/~,mt) - bc~'t], (--)  

and {mr}, {~=}, {n~} are generated by (10a)-(10c I. In writing down these expressions, we 
have already assumed the validity of ( lea) and (16c), since otherwise m~ and ~ t  would not 
have been well defined. We should note, however, that even in the pure forecast problem 
discussed in Ba~ar (1987), a condition similar to (16b) was required for the well-posedness of 
the problem. 

Now, to complete the derivation, we substitute for a t  and fit in ('1 and (*'1 from ( l l a )  
and (12a), respectively, and observe that the resulting expression for at is identical with that 
of at ,  and also when the resulting expression for ~t is added to ~t, the outcome is identical 
to/~t; in other words, 

~ t - a t  , P , ÷ ~ - - A .  

When the latter is used in (*'1 recurslvely, it follows that {ut} is generated by the same 
sequence (of y,'s) as {~t}, and hence that  (**) admits the simpler representation (17). 

This then completes the verification of the existence part  of the theorem; more precisely, 
of the fact that the policies (17)-(181 constitute a Nash equilibrium pair under Condition 2. 
Note that  (16a) in Condition 2 simply guarantees that there is a unique solution to the two 
pairs of coupled equations (11) and (12), for all t, and it may also be referred to as the Nash 
condition. 

As we have indicated earlier, the uniqueness part of the theorem has been verified sepa- 
rately in the Appendix. o 

Several observations and remarks would be in order here. Firstly, we note that, as 
opposed to the memoryleaa solution of Theorem 1 (obtained under myopic forecast), the 
unique Nash equilibrium solution incorporates memory, for both agents. For agent A, the 
=best" forecast policy is a linear function of the most recent measurement and the most recent 
decision taken by that  agent. [This is true since ~'t-I in (17) can be replaced by vt-~, without 
affecting the solution.] For agent B, on the other hand, the =best ~ tracking policy is a linear 
function of the most recent measurement and a linear aggregate of all past measurements, 
weighted in an appropriate manner. The solution is characterized in terms of four gain 
coe~cients (at, at ,  ~t, fit), which can be computed recursively. Hence, the solution does not 
change structurally over time, which makes it feasible to obtain stationary Nash policies for 
the infinite-horizon version, provided that  the sequences {aT) ,  {~T}, {~T}, {~'T) converge 
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for all finite t as T-*co, where the superscript T in the sequences denotes the dependence of 
each sequence on the terminal time, taken as a parameter. Even though the computation of 
the four critical quantities (at ,  ~¢, fit, fit) may look complicated at the outset, the iterations 
are in fact quite straightforward, requiring simple algebraic manipulations at each step. The 
order one has to follow in the computattlon is as follows: 

Start ing at  t=T,  first compute the quadruple (a2., ~ r ,$ r ,~2" )  £rom (lla)-(12b), using 
the given boundary conditions on KT+I,  m r ,  mT and h r .  Note that this computation 
involves the solution of two pairs of  coupled linear equations, at which point we invoke 
the Naah condition (16b) to obtain a unique solution. A t  this stage also condition (16c) 
is invoked, so that ( l id )  and (12a) are well defined. The next step would be to obtain 
the new values for kt+l,  m, ,  ~nt, nt at t = T  + 1, using the iterations (13a), (10a), (10b) 
and (10¢), respectively. A t  this stage, condition (16a) is invoked so that (X0a) and (10b) 
are well-detlned relationships. These new values for K ,  m, ~ ,  n are then used again in 
(lla)-(12b) to update the values o£ the gain coe[ncients, and this procedure is repeated 
until the initial stage t = 0 is reached. 

We should point out that  similar to Condition 1 in Section 2, Condition 2 also generically 
holds, in the sense that if all but  one of the parameter values are fixed, then there is only a 
finite number of values for that parameter for which the condition fails. 

Even though it is not our intention to provide here a general convergence analysis for the 
infinite-horizon problem (this would in fact be quite a challenging task), it would nevertheless 
be instructive to study some properties of the stationary solution, assumlng that such a 
solution exists and Condition 2 holds for all t of interest. Accordingly, letting 

a* := lira ~ r ,  ~ ,  :=  lira 7. T, 8" := lira ~T, ~* := lira ~'r,  n* := lira nt r ,  
T--*oo T--*oo T--*oo T- -*ao  T - * v o  

it readily follows that  n*=0. In view of this, we arrive at the stationary Nash policies 

where {v't} is generated by 

v, = 7,(~t) = a*~, + ~*v , - l ,  (19a) 

(19b) 

(19d 
and the following relationship holds: 

a + c~* I - c~* 
- - -  #* = (20) 

a* = b ' b 

Now, using these stationary policies in the system equation (4), we arrive at  the result that 
the equilibrium trajectory {y~} is generated by 

~+l = (u + ha* + c~*)~t + bE v,_1 + c~ vt_ I + e,+1, 

where {v~'} and {W} denote the dlscrete-tlme stochastic processes generated by (19a) and 
(19b), respectively, when Yt = Y~, t _> 0. Note that, as stochastic processes, they are identical 
almost surely, and hence, by also using (20), it can be shown that the equilibrium trajectory 
{p~'} is generated by the simpler dynamics 

Y~+I * ut_  1 -[- e t + l  
• * * ~*U* 

t~¢ = O~ ~ t  + t" t - - I  ' 
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which admits the A R M A  representation 

(21) 

An important  observation that  can be made here is that  the relationship 

t - - l ~ / t - t - I  = t J | - - I  s 

holds, that  is we have perfect foresight. Said differently, the stationary Nash solution satisfies 
the side condition of myopic foresight introduced in section 2, in spite of the fact that the 
two solutions (of Theorem I and Theorem 2) are structurally different. [Compare (20) (or its 
stationary version) with (17)-(18).] This clearly implies that  the Nash solution is disadvanta- 
geous to agent B (at least in the limit as T ~ o o ) ,  since it does not yield the best (optimum) 
solution obtainable under the side condition induced by the equilibrium solution itself. A 
reason for this ine~icient behavior on the part of B is that  in the analysis of section 3 agent 
A is also an active player, whereas in section 2 he was passive. Such features can be observed 
even in finite-horizon problems, as the following example demonstrates. 

Numerical ezample I .  In our general formulation, let T=0 ,  E[y~] =:  ¢0, and all other 
parameter values be unity. Then, the two solutions given in Theorem I and Theorem 2 and 
the corresponding values of expected costs and trajectory sequences can be computed to be 
as follows: 

Theorem 1: 
1 6 1 

wx = ill(P1) : - ~ P t ,  w0 = ~o(Y0) = - ~ 9 o ,  vo = ~Yo, (22a) 

3A=~; 3B= 5 6 + ~o, 
2 1 

01=~y0+~l; ~z=:~l+~. 
Theorem 2: 

1 3 I 
'01 ---- ~(Yn) = - ~ Y l ,  wo =/~;(9o) = - ~ 9 0 ,  uo = "~;(It0) = ~90, (22b) 

5 5 15 

. 1 . 1 . 

A number of observations can be made in connection with this example: 
1. In both cases above, we obtain perfect foresight ( i.e. vo = Eoy2 ), but  the corresponding 

trajectories are different. Even though (as we have seen earlier) the Nash solution does 
not generally enjoy perfect foresight for the finite-horizon case, here it does, mainly be- 
cause the problem involves basically a single stage, thus eliminating the effect of spillover 
across consecutive periods. 

2. Agent A incurs equal expected costs in both cases, whereas agent B does worse with the 
Nash solution. This is, of course, consistent with our earlier comments just  preceding this 
example, which, even though were made in the context of the infinite-horizon problem, 
are equally valid here since the Nash solution satisfies the boundary condition (i.e. perfect 
foresight) of the myopic solution. 
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3. Since /~I = #~ is a univer~all1/ optimal policy for agent B at stage t--l, whichever 
equilibrium solution is adopted (even outside the two considered here) the trajectory 
will be given by 

1 
Y 2 : ~ 1 / x + ~ 2  

1/1 = 1/o + vo % Wo. 

Now, if we let vo = Eo1/2, and at tempt to solve for vo from the above equations, we first 
obtain (since ~o = ~o(1/0) is known to n for each axed po) 

1 1 1 1 
vo = Eo1/~ = ,~Eo~ = ~1/o + ~ o  + ~wo, 

from which u0 can be solved uniquely to give 

~o = ~ o ( ~ o )  - -  1/o + '~o;  , ~ o  - -  ,~o(1/o1. (o) 

This shows that the actual choice for vo = ~oCY0) (under perfect foresight) depends 
explicitly on IS's policy/~o, and the two solutions given above are two different manifes- 
tations of this dependence. Both (22a) and (22b) use (o) as a constraint, but while in 
(22<~) JB is minimized subject to (o1, in (22b I the choices are determined by the Nash 
solutlon of a game played between the two agents at time t=0. One could envision other 
scenarios between the two agents which would lead to still different choices for/~o (and 
thereby ~/o)) but in all cases the resulting expected cost to A will be the constant 5/4, 
independent of/~o and ~Xo. o 

We now conclude this section with a second example, which is an extended version of 
the previous example with an additional stage. It will serve to demonstrate some additional 
features of the solution given in Theorem 2. 

Numerical ezample ~. In the general formulation, let T = I ,  and all parameter values be unity. 
Then, the unique Nash equilibrium solution (as presented in Theorem 2) can be computed 
to be as follows: 

1 3 
I#2 = //'~C1/31 = --~Y2, Wl = p~(1/11 = - - ~ ! / 1  -- 0 - 1 9 0 4 7 6 y 0 ,  

Wo = ~;(901 = -0.7460321/0; (23) 

,,, = .~'(1/~) = -~1 /~  + o.31~481/o, ~,o = "~;(yo) -- o.2539OSyo. 

The corresponding equilibrium trajectory is generated by 

3/1 - -  0 . 5 0 7 9 3 6 6 y o  -{- c l  

y~ = 0.25y~" -t- 0 .1269841 /o  + e2 

0 - "~" 1/3 -~-- "OYz "{'- ES ) 

from which it follows that lYs E * = 0.125!/~ -I- 0.0634921/o ~ "7~'(Y~, 1/01; that is, the solution 
E * does not lead to perfect foresight at time t=l. However, 01/2 = 0.2539681/o = "~(yo); that 

is, there is perfect foresight at t=0. This latter result is not a feature of this example only, 
but holds for the general solution of Theorem 2 (even though it may be rather dii~cult to 
prove algebraically I. Through an indirect reasoning that follows the proof of Theorem 2, as 
given in the Appendix, one can conclude that Eol/~ = "7~(1/o) is a genuine property of the 
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general Nash solution since, a t  the initial stage, the variable v0 minimizes an expression t ha t  
is a perfect square in y~ (see (A.1)) and there is no spillover effect, o 

4. S o m e  E x t e n s i o n s  

A first extension of the  results presented in sectlon 2 and section 3 would be to the  more 
general case where the  reference trajectory is no t  zero and the  cost function (5b) contains 
additional ( t ime-varying) weights on the deviation from the desired trajectory (i.e. the first 
term). The  reason why we have not  included this  in our presentat ion here is because such 
an extension does not  entail  any th ing  conceptually new, while requiring some addit ional  
notation which would have complicated the result ing expressions considerably. The  gist of 
the results  for the  nonzero reference trajectory ease is t ha t  the  s t a tements  of both  Theorem 1 
and Theorem 2 remain essentially intact ,  wi th  the only difference being t ha t  now each policy 
includes an addit ive (bias) te rm which depends linearly on the  desired reference trajectory. 
The existence conditions in bo th  cases are identical to the earlier ones. For the  case when 
there is a t ime-varying weight in the  first t e rm of (5b), the results  again remain intact,  
with only the  addit ive t e rm 1 in (8a) replaced by this new weight and Q in (13a) adjusted 
accordingly. 

A second extension would be to the class of problems where the  agents  do not  have 
direct access to the trajectory {t/t}, but  ra ther  acquire common noisy measurements  {zt}, as 
defined by (14), where now r/t = z t. Towards s tudying this  extension, let us assume tha t  {st) 
and {~t} are sequences of independent  Gaussian zero-mean random variables with variances 
var(e~) = :  ~o > 0, var(~t)  --: ft > 0, and  t ha t  they are independent  of  Y0 which is also a 
Gaussian zero-mean r andom variable,  wi th  variance era. Then,  in the  formulation of section 
2, we in te rpre t  the operator  E ,  as the conditional expectat ion E { . I z  ~, w ~- * }. Note tha t  here 
we have replaced '7, = z t with ~t :=  (z t, w t - l ) ,  wi thout  any loss of generality, since w t - l  is 
measurable with respect  to z t -1 .  Now, lett ing ~t := Etyt ,  it is a s tandard  result  (see, for 
example, Bertsekas  (1987) or K u m a r  and  Varalya (1986)) t h a t  ~t is generated by the Kalman 
filter equations: 

~T-F2 : ~ /~+1 ÷ Ct0T+I q- [~T'l'Z/(~rT-t'2 "~" ~T÷2)]TT't-2, (24~) 
flj+, = af/t + 4Etyt+~ + cry, ÷ [a,+,/(~t+1 + ~t÷,)]r,+,, t _< T; ~_, = O, 

r t+ ,  := z t+,  - af/t - 4gtllt+2 - cwt,  (244) 

where {r t )  is a sequence of independent  Gaussian random variables, known as the innovation 
sequence. In writ ing down these relationships,  we have made explicit use of the fact tha t  
both Ety~+2 and wt are zt-measurable.  

Now note  t ha t  the error  sequence {e~}~ et := y~ -- ~t, is generated by 

and that Etet+n --- 0 for all n _~ I. In view of this last property, 

Ety,+2 = E,.~,+2 + E,e,+~ = E,.0,+2, 

and hence (24a) can be rewri t ten as 

9,+, = aftt + bE,9,+~ + cw, + l~t+,/(bt+, + ft+l)]r,+1, | _< T; 9-s = 0. 
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Furthermore, slnce yt = ~t + et, and 9, i~ orthogonal to et, the counterpart of (7a) for the 
noisy case would be: 

T-t-1 T + I  

FT ÷' ~ ~ ( ~ + ,  + ' ' -"  ~ t+~lp,, , = kw¢)pB -I->-~E'e' " '-" (26) 
~=# t = l  

where the second summation term does not enter the optimization, since the sequence {et} 
generated by (A) is independent of the control sequence {wt}. Hence, the problem faced by 
agent H is the minimization of the first term of (26) subject to the dynamics (25), where 
w~ = pt(9~), which is compatible with the original information ~'t = (Yt, tu'-*) since 9t is 
generated by (@',~-,, mr-z). Then, the problem is identical with the perfect information case 
(apart from a change of notation), in view of the fact that {r~} is a zero-mean independent 
sequence, playing the role of {~t} in (7b). Thls shows that the problem (with myopic forecast) 
features certainty equivalence, making the statement of Theorem 1 valid also in the noisy case, 
with only Yt replaced by ~,  and (9c) including an additional positive term due to the second 
term of (26). The following theorem summarizes this result. 

Theorem 3. Let Condition 1 be saLisAed. Then, the dynamic policy optimization problem 
with myopic forecast, as formulated in section 2 but with common noisy measurements (lb) 
for both agents, admits the unique solution 

w~ =/~(y¢) = gt.~t, 0_< t ~  T +  1, (27a) 

with the corresponding forecast policy given by 

v, = E,y¢+~ = (a + ¢g,+z)(a + cg,) 9,, (27b) 
//t+ lb't 

where {~,) is generated by (2~), and {g,), {~,) are as deAned by (So) and (Sb), re,pect~vely. 
O 

Hence, for the noisy case, certainty equivalence holds under myopic forecast, and the 
statement of Theorem 1 basically remains intact. For Theorem 2, however, there is no direct 
counterpart, and derivation of the Nash equilibrium solution is quite a nontrivial task. We 
will not pursue this extension here, since presenting the full details of the derivation of the 
Nash equilibrium solution would at least double the length of the present paper. What we 
can say at this point, however, is that (guided by the results presented in Ba~ar (1978b) for a 
linear-quadratic nonzero-sum dynamic game with a different type of an information pattern 
and a different type of a cost function for one of the agents) the problem will generically 
admit a unique Nash equilibrium solution, linear in the available common information. This 
solution will not satisfy the certainty equivalence or separation principle of stochastic control, 
and thus will have no relationship with the solution presented in Theorem 2. The following 
numerical example (which is the "noisy" version of the second example of sectlon 3) should 
serve to corroborate this claim and to give 8ome indication as to the intricacies involved in 
the derivation of the general solution. 

Numerical ezample 8. Consider the second numerical example of section 8, but with noisy 
measurement (lb) for both agents, and with all parameter values (including the noise vari- 
ances) equal to unity. Hence, the cost functions are 

s~ = E{(~, - ys)' + (~o - ~)z} (28) 

J~ = E{~] + ~ + y] + ,4  + ~ + ,4 ) ,  
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and the dynamic constraints are 

y2 = yi + vl + ~i + ~= 

Yl :-" ~0  "1- VO q- W0 q- CI~ 

(~) 

where w~ ~- /~2(zs), wl = /~,(zl), wo : /zo(zo), v~ ~- 51(zI), vo = "~o(zo)i zo : Yo + (0, 
zl = Yl + (1 and z2 = Y2 + (2. The first significant difference between the perfect and 
the noisy measurement cases appears in the construction of the b e s t / ~ ,  which now depends 
explicitly on (/~1,/~o) and ( 'h ,5o).  [Recall that in the perfect measurement case covered by 
Theorem 2, there was a universally optimal policy for agent B at the terminal stage of the 
game.] With the quadruple (~/1,'~o;/~,~o) fixed, say at (%/z), the minimization of J s  with 
respect to/~2 becomes a standard quadratic optimization problem, 

rain E((y2 + w~ + cs) 2 + w]lz2,'~, ~}, 

whose unique solution is 

" 

Here ~, is generated by the Kalman filter: 

8 

3 

I 

which depends on (%#) partly directly and partly through 1~l~o~o := E[lh]z1,~/o,/~o]. To 
obtain the pair (%/~) that is in Nash equilibrium with (30), we follow a procedure quite 
analogous (in principle) to the one followed in the proof of uniqueness (for Theorem 2) in 
the Appendix, geared towards obtaining a (unique) stagewise equilibrium. Accordingly, the 
derivation involves the solution of two static games, one at t = l  and the other one at t=0. To 
characterize the static game at ~--1, we substitute (31) into (28), eliminate the intermediate 
variables and take expectation over the statistics of ~s, ea and ~ ,  to arrive at the reduced 
conditional (on ~I) cost functions: 

1 
+ ~-'~"~'lS(~', + 51 ÷ P l )  + 8(,vl + '.'1 + '.v,.)l ~ + (~',. + v l  + ~1)~ + ~ l z " )  • 

In the above, we have made notational simplifications by suppressing the (70,/z0)-dependence 
of ~ and the arguments of ('I1, Pt). This is clearly a static game in the pair ( ~ ,  w~), and its 
Nash solution can be obtained for each fixed (Sz, ~ )  and (5o, #o), where we take ~o = 5o(zo). 
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Differentiating J~  with respect to vt and J~ with respect to tot, and setting the resulting 
expressions equal to zero after condltlonlng on z 1, we find that the Na.sh condition is satisfied 
and there exists a unique solution to the pair of equations, linear in 3'1, #1, .el and "/o- Now 
requiring consistency in the solution (as in the proof of uniqueness for Theorem 2 in the 
A p p e n d i x ) ,  we set vl = qfl(=l), wl =/~1(zl) ,  and solve the resulting pair of linear equations 
(in vl and wl) uniquely, to arrive at the policies: 

ul = "/l(z 1, "/o,#o1 -- -0.523810~1 + 1.547619"/o(zo), (32¢) 

wl = /~ l (z  1, "/o, po) = -0.285714~1 - 0.928571'/o (zo). (32b) 

Note that  here "1o is yet  to be determined. 
To complete the solution, we next formulate the game at  t-----0, by substi tuting (30) and 

(32) into (28), again eliminating the intermediate variables and averaglng over the statistics 
of the random variables involved, to obtain the reduced conditional (on Zo) cost functions: 

j o  = E{(0.619048~o + 1.208790"/o - 0.029304/=0 + 0.648352(uo + too)) 2 

+ (0.485714vo + 0.295238~o - 0.514286tuo + 0.190477'/o + 0.809524/zo)21zo}, 

I 
J~  = E(~(0.619048Wo - 1.194139~1 -I- 1.384615Yl12 

-t- ¼(0.619048"/o - 0.424909.01 -t- 0.615385y]) 2 "t- (0.619048"/o - 0.809524~1 -{- yl) ~ 

+ (0.285714.~, + 0.9285717012 + y~ + w021zo}, 

where both Yl and Yl depend on (vo, too), the latter through zl, as given in (31). 
The procedure here is the same as at t=l: First obtain the Nash solution of (J°,J~) 

in terms of ("fo,/Ao), then require consistency (vo=%(Zo),wo=,Uo(zo)) and solve for (vo, w0) 
from the resulting equations, which will lead to policies whose argument is zo. At each step 
the uniqueness condition is met, and thus the procedure yields the unique Nash equilibrium 
policies (at t=0): 

VO ---- '7;(Zo) = "-F0.248227~O, (33a) 

wo = # ~ ( z o )  = -0.751773~0. (33b) 

These policies are finally used in (32) and (311 to complete the characterization of the Nash 
equilibrium policies: 

w h  ere 

wl  = P ~ ( z l I = - o - 2 8 5 7 1 4 y ;  --  0 .230496~o ,  

= 2  = . ; ( = 2 1  = - 0 . 5 ~ ; ,  

~ = 0.059102.% + 0.073260.0~' + 0,615385z2 

~ = 0.t98582~o + O.6z l 

.~o = 0.5Zo. 

An equivalent representation for '7~ in (34a) would be 

(34a) 

(34b I 

(34c) 

(3s) 

v , = ~ ( z ] ) = - 0 . 5 2 3 8 1 0 ~ +  1.547619vo, 
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which shows explicit dependence on vo. Note that  the policies C34) are different from their 
counterparts in the noise.free case (i.e. (23)), thus corroborating our earlier remark that  the 
anoisy version ~ does not feature certainty equivalence. 

The equilibrium trajectory corresponding to the unique Nash solution is generated by 

* * 0 .5.~;  + es gts = Y~ - 

It~ -- tt~ -- 0.809524~ + 0.153664~o + e~ 

ltt* ---- lto -- 0.503546~0 + ~t. 

Using these, it is easy to check that, as in the second example of section 3, E11t~' ~ "l~'(zt), 
while E0t;;  = "t~(z0), which shows that  the Nash solution could lead to perfect foresight at 
the initial stage, even in the noisy case. As we will discuss in a companion paper, this turns 
out to be a general property of the Nash solution for the %oisy version" of the problem of 
section 8. o 

A p p e n d i x  

In this appendix, we first complete the proof of the existence part of Theorem 2 by 
showing that  the policy (**) given there indeed solves agent A' s  optimization problem. Sub- 
sequently, we establish the uniqueness of the Nash solution presented in Theorem 2. 

Eziaenee. The optimization problem faced by agent A is the minimization of j T ,  where 

T 

= yt+2) )PA , 
t=O 

under the constraints 

Yt+] = (a + c~)V t  + cfl ,~,-l  + bvt + e*+t, l < t < T  

Yl = ( a + C~o)yo + q ;  

We nOW claim that~ for a general t ,  

ra in J [  ~ m l n  E { p A n , + l ( v , + t  - m , + l V , + ,  - ~ t + l ~ t + l )  a + (v,  - V~+2) ~} + q,, CA1) 
{~.),~=, ~,+,,~, 

where {qt} is a sequence depending only on the variances of the additive stochastic terms et, 
t < T + 2. Under the validity of this assertion, the optimal policy at t ime t is obtained by 
minimizing the following quantity with respect to the scalar variable vc+t=:v,  for each £xed 
!/t+t: 

(A.2) 
- ~ , + ~ / ] , + x ' ~ , l  ~ + t(n + c~+t)u,+t + c ~ , + t ~ ,  + b~ - ~,l'ly'+'}. 

Being quadratic and strictly convex (in v), this optimization problem admits a unique solution 
(for each fixed re+l, ~t, tit)' given by 

~,+~ = ~,+~(v '+~) = a ,+~ ,  +/L+,~, + £ + ~ , ,  (A.~) 
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for 0 < t < T - 1, and at the initial stage by 

vo = "1o(z/o) = &oyo, 

where 

(A.~b) 

1 
at  b 2 + (1 - bmt)2pAnt  [pAnt(1 - bmt)( f f t t~t  + (a + ©~t)rnt) - b(a + c~t)] 

b 2 + (1 - brnt)2pAnt 

1 
~t = bl + (1 - bmt)~pAnz [pAnt(1 -- b m t ) ( ~ t f  + c~tmt)  - bc~t]. 

As we have discussed earlier (in the proof of the existence part of Theorem 2), substitution 
for ¢x, and f t  (from (11a) and (12~),respectively) into the three expressions above, leads to 
the equivalences &t ---- '~t and fit -t-/St = fit. Hence, the optimal solution (A.3) admits the 
equivalent representation 

v t = - , Y , + ~ t ~ , - , + ( f t - ~ t ) ~ - , ,  l < t < T  (A.4) 
= ~OYO , | = O. 

We now turn to verification of the structural form (A.I). The result trivially holds for 
t = T ,  with m T  ---- ak / (k  ~- ca), ~tT = 0. Let us therefore assume the validity of the assertion 
for t + l  and prove it for t. Towards this end, we substitute (A.4), with t replaced by t + l ,  
into (A.2), and arrive (after some rather tedious algebra) at an expression which i8 a perfect 
square in ~¢, Yt+z and ~t:  

E{-,(~t - ~,y,+~ - ~t~t)'ly'+'}. CA.5) 

Here mr, mt and nt are defined in terms of mr+, ,  mr+* and n:+,  as in (10a) through (10c). [In 
fact, it is not difficult to see that  the resulting cost should be a perfect square, because (A.2) 
can be made equal to zero by appropriately choosing vt and vt+z. With this observation, it 
then remains to find the three coefficients n ,  mt and mt.] Now, since the minimum of (A.2) 
over vt+l is equal to (A.5), we have 

min T = J/_, rain E{(vt-1 - Yt+I) 2 -{- PA min jT} 
( .).-_,_, ~,.~*-, {~.}.=,+, 

= min E { ( v t - I  -- y t+I) 'PAnt (v t  -- mty,+l  -- ~ttv't) 2} 
"/t D~lt-- l 

which is in the same form as (A.1), with 

This then completes the proof of optimality of (**) in the proof of the existence part of 
Theorem 2. 

Uniqueness. I t  is a well-known fact that dynamic games could admit  nonunlque Na~h equilib- 
ria, with each such equilibrium leading to a different cost pair which are in general incompara- 
ble (see, for example, Ba~ar and Olsder (1982)). Thus, "uniqueness" is an important  question 
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to pose, if  the proposed equilibrium is to be of value. As we have discumed extensively in 
earlier papers (for ex+~mple, Ba~r~OTa), Ba~ar(1977)), the main sourceof  nonuniqtJeness in 
Nash equilibria is the s6-called informational nonunlqueneu which arises if each agent, in 
his one-sided optimization, has the freedom of choosing different representations of the same 
policy. What  we prove in the sequel is that  for the game problem covered by Theorem 2 
there is no informational nonuniquenems, and the structural form (17)-(18) is the only form 
in which a Nash equilibrium can exist. Furthermore, we show that  structural uniqueness is 
guaranteed under Oondition 2. In the proof, we will not explicitly derive the expressions for 
this unique Nash solution, since we have already shown in the first part of the proof that 
(17)-(18) exists as a Nash equilibrium. 

Towards devising a proof for uniqueness, we first introduce two generic functions quad(.) 
and ]in(.), where 

quad(.) = a quadratic function of its arguments 

/in(.) = a linear function of its arguments. 

Furthermore, we introduce a class of hooted subgames {Gs}, parameterized by s, each one 
being a replica of the original game but defined on a shorter time interval, is, T +  1}, 0 < 8 < 
T + 1. More precisely, for the subgame G , ,  the cost functions are defined by (Sa)-(Sb) with 
the lower limits changed to t = s - 1 ,  and with the action variables being ~T := (VT, .., ~,+l ,V,)  
for A,  and w+ TM := (~IJT+ l . . . .  W++I,W,) for B,  where vt = #t(yt), wt = ~t(V~), and a similar 
convention as above applying to the policy variables • TOt _ r  To be consistent with this ~a  , ' | I  " 

convention, for s=0  we extend the limit of the summation to t = - 1  in both Jx  and JB, 
by adding zero as the incremental cost term at t = - 1 .  Now let ('~ := "~OT,~ := ~o TM) be 
a Nash equilibrium solution for the original game (Go), such as the one given in Theorem 
2. Then, i t  is a well-known property of the Namh solution (called the stagewlse equilibrium 
property) that  for any a, the truncated version of these policies, ( ~ T  ~ '+1) ,  constitutes a 
Na~h equilibrium solution for G , ,  with the past policies " , - i  , - ~  k% ,~o J fixed at ( ~ - , , ~ - l ) .  

We now develop a procedure for studying the uniqueness of the solutions of these indi- 
vidual subgames. First  consider the case s = T + 1, where GT+t  is not really a game but 
a one-sided optimization problem for agent B,  since only B is active at t = T + 1. Then, 
clearly the solution is unique, and is given by the second line in (1Ba). Note that  this solution 
is both informationally and structurally unique (regardless of the past policy choices), the 
former being due to our assumption in section 1 on the structure of the probability distribu- 
tion of the additive system noise. Hence, in the study of the second game in the sequence, 
G r ,  we can take/+T+t as ~n (18a), without any loss of generality. Accordingly, substituting 
th i s / z r+ l ,  say P~'+t, into both JA and .ds, eliminating the intermediate variables using the 
evolution equation (4) and averaging over the statistics of the random variables by employing 
their independence property, we arrive at the structural forms 

cOSt A(Gr)  = quad(yr, vT, wT, VT-I) 
cost.(GT) = quad(~, o~, ~ )  + q . a d ( ~ _ , ) ,  (A.6) 

which are the costa incurred to A and 1:1, respectively, conditioned on the in formation available 
at time T,  i.e. t / r = y  r .  Since the first cost shows explicit dependence on Ur-t+ we fix 
t~T- 1 = ~IT--i{I/T--I), and solve for the Nash equilibrium of the resulting static game. Because 
of the quadratic structure of the cost functions, the Nash solution, if it exists, will be linear 
in the pair (?/r, v r - t ) ;  furthermore it  will be (structurally) unique under conditions not 
depending on 92" and v2"-t, and Condition 2 precisely serves this purpose. Hence, the static 
game defined by (A.6) admits a unique Nash solution, for each fixed 'T r - l ,  given by 
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w~" = ~T(y T) ---- lln(yr, VT-I), (A.7b) 

where vT-i  : "~T-l(y~'-t). The linear functions here are precisely the ones given in (17) 
and (18), with vT-t  in the latter case replaced by ~'T-I. The solution is also unique rep- 
rescntationtoise since, because of our nonsingular statistics assumption on the probability 
distributions of the random variables involved, ~r cannot be expressed in terms of the past 
values of the trajectory almost surely (which would have been possible in a purely determin- 
istic problem). We now note that the complete (unique) solution to subgame GT is (A.7) 
along with/~+1 which was the unique solution (for agent B) to subgame GT+a. 

The next game in the sequence, Ga.- , ,  involves the the action variables (v'r,vT-l) for 
agent A and (WT+I,tVT, WT--1) for agent B. Since every Nash equilibrium is necessarily a 
stagewise equilibrium and since the unique (linear) Nash solution of GT does not depend 
structurally on VT-I and WT-1, it follows that every Nash equilibrium for GT-1 should 
match with that of GT for policies t~r+~, aT and 7T. Hence, the equilibrium solution of 
GT-X will be nonunique only if the last components of the policy sequences, ('~T-t, # r - l ) ,  
are nonunique at equilibrium. Towards a study of this, we substitute the solution of GT into 
JA and de, with v r - t  in (A.Tb) replaced by a general function of yT- t ,  say Cr_~(yT-~), 
since B does not have direct access to VT-t. [It is important to note at this point that if 
B had direct access to VT-l, the solution would have been informationaily nonunique, for 
reasons discussed extensively in Ba#ar (1978a) for a different class of such games.] Now, after 
eliminating the intermediate variables and averaging over the stochastic variables, we arrive 
at the following reduced costs for G~'-I ,  conditioned on the common information available at 
time T - l ,  i.*. yT-~: 

cOStA(GT--I)  ----- q u a d ( y T - l ,  VT--l, w r - l ,  VT--2, ~bT-I (yT--1)) 

costB (GT_a) m quad(yT_ l ,  t~T--l, I/)T-I, ~T-I  (yT-I)). 

Here, in addition to the unknown (but fixed) function CT-I,  we also have vr -z  = ~T-2 (yT-Z) 
fixed by an arbitrary choice of'~T_2. Under an appropriate condition which is independent of 
CT-I and "IT-2 (which is also guaranteed by Condition 2), this static game admits a unique 
equilibrium for each fixed C r - t  and "~T-2: 

'OT_ 1 = ~T_I(YT_I,I)T_2.Dt~T_I(YT_I))  ~ ]in(YT_I,I$T_2,~T_I(I .]T_I))  (A.Sa) 

"WT_ ! = ~ T _ I ( ~ T _ I , U T _ 2 ,  ¢T-_I(~]T_I)) -~ ~[n(~g,T_I,YT_.2.,~JT_I(~],T_I)), (A.8b) 

where vr_2=',/r_2(yT-*). Next, we impose consistency in the solution for each fixed "~T-Z, 
which requires that rrr_t _= ~bT-t. Using this side condition in (A.Sa), we arrive at 

UT-1 ~-" lin(~IT-l, UT-2, UT-I ) 

which, being linear, admits the unique solution (for each fixed yT-l  and "YT-2) 

VT--I = # T - 1 ( ~ r - t ,  VT-2) =-- lin(UT--~, VT--2), (A.ga) 

under a nonsingularity condition which is met under Condition 2. Letting ¢T-1 : ~T-I in 
(A.8b), we finally obtain for wT_ 1 (for each fixed "YT-2): 

WT-I = ~ r - t ( ~ T - , ,  ~T--2) =-- lln(yT--t,vT-2) (A.gb) 

This then completes the verification of the uniqueness of the solution of G T - h  for each fixed 
"~T-~. Note that the complete solution to GT- I  is given by ~ + a ,  (A.7) and (A.9), with 
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VT-I in (A.7b) replaced by the expression in (A.Oa). Here we could also have expressed 
(A.Ta) in terms of yT, instead of (YT, aT-t) ,  by substituting for UT-I from (A.ga), but this 
is not necessary since agent A does have access to his past decision value, and enriching 
his information set by also including past decision values does not lead to informational 
nonuniqueness. 

The important observation here is that, for each fixed "~T-=, the solution of subgame 
GT_ 1 ( to be denoted (~.,  ~T-l ;  ~T+l, PT, ~T--l) ) is structurally unique, with each strategy 
being linear in its arguments. More precisely, we have ~T linear in (tiT,aT_I), ~T-I linear 
in (g/r_l,tIT_2), ~T-91 linear in g/T+l, ~r  linear in (g/T, YT_I,~T_2(g/T--2)) and ~T-I  linear 
in (g/T--S,'yT--2(g/T--=)). Furthermore, the solution is informationally unique because of the 
nonsingular statistics of the additive noise in the dynamics (4). Then, in the construction 
of the Nash solution for subgame GT_2, we first substitute for (3'T, ~/T-I; P~'+z, PT, PT-!) 
from the unique solution of GT-1, with ~/T-~ replaced by a general function ~br-2, as in the 
construction of the solution for GT- I .  Repeating the same procedure as in GT_ h we can 
obtain a linear stagewise Nash solution for GT-a for each fixed ~T-a, whose uniqueness is 
again guaranteed by Condition 2. Following this procedure in retrograde time, we find that 
for each o, the subgame G,  admits a unique stagewise equilibrium (for each fixed %-1), linear 
in the available information as well as in %-s.  Since "/-1 is trivially zero, the process halts 
at s=0, leading to the conclusion that the game G0 admits a unique stagewise equilibrium, 
linear in the common information available to the agents. This then establishes uniqueness 
of the Nash solution of the original problem (which is identical with Go), since every Nash 
equilibrium is a stagewlse equilibrium and we have already proven that the game admits at 
least one Nash equilibrium. 

We conclude this Appendix by pointing to the fact that the above procedure would have 
been an alternative method for the construction of the Nash solution given in Theorem 2, bat 
alone it would not be sufficient, since a stagewise equilibrium need not be a Nash equilibrium. 
O 
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V i c t o r y  a n d  D e f e a t  i n  D i f f e r e n t i a l  G a m e s  

J e a n - P i e r r e  A u b i n  

CEREMADE, UNIVERSlTI~ DE PARIS-DAUPHINE 
F-75775, Paris  cx{16) France 

A b s t r a c t  

We construct the set-valued feedback map with allow players in a differential game the possiblity 
of winning, separately or colletively, or the certainty of winning or loosing and we characterize 
the indicator/unctions of their graphs as solutions to (contingent) partial differential equations. 
Decisions are defined to be the derivatives of the controls of players, and we provide decision rules 
for each of these set-valued feedback maps allowing the players to abide by them as time elapses. 

Rdsumd 

Nous construisons des correspondanccs de rdtroaction qui procurent aux joueurs d'un jeu  diffirentiel 
la possibiliti de gagner (sdpardment ou eollectivement), ou la certitude de gagner ou de perdre, et 

nous caract~risons ten fonetions indicatrlees de leurs graphes eomme solutions d'gquations auz 
dlrivies partielles (eontingentes). Les d~eisions sont dgfinies comme Its d&ivies des contr61es des 
joueurs, et nous proeurons des rdgles de ddcision associles d chaeune de ces eorcspondances de 
rdroaetion permettant de Its respecter au tours du temps. 

1 D e s c r i p t i o n  o f  t h e  G a m e  

Let our two players Xavier and Yves act on the evolution of the s ta te  z(t)  E I t "  of the differential 
game governed by the  differential equat ion 

(t) ~'(t) = h(~(t, u(t),v(t))) 

by choosing Xavier 's  controls 

{2) V t > O, ,,(t) e U(z(t)) 

and by choosing Yves's controls 
(3) V t > O, v(t) a V(t) 

Here, h, describing the dynamics of the game, maps continuously R n x R p x R q into R" ,  and 
U : R n -.-* R~ and V : R n ---* Rq are closed I set-valued maps  describing the s ta te-dependent  
constraints bearing on the  players. 

We shall assume that the open-loop controls u(-) and v(-} are absolutely continuous and obey 
a growth condition of the type 2 

(4) { i) II~,'(t)ll <_ p(llu(t)ll + 1) 
ii) }lv'{t)ll < o{}lv{t)ll + 1) 

We shall refer to them as "smooth open-loop controls",  the non negative parameters  3 p and a 
being fixed once and for all. The  domain K of the game is the subset  of 

IThls means that the graph of the set-valued map is closed. Upper semicontinuous set-valued maps with compact 
values are closed, and thus, closedness can be regarded as a weak continuity requirement. 

2one can rephce P(llull + t} by any continuous function •{u) with linear growth. 
°or any other linear growth condition ~{-} or ¢(.} which makes sense in the framework of a game under investigation. 
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(z ,u ,v)  • R "  x R ~ E Rq such that  
(s) ,, e u(~) ~ ,, e v(~) 

Roughly speaking, Xavier may win an long az its opponent allows him to choose at each instant 
t >__ 0 controls u(t) in the subset U(z(t)), and must loose if for any choice of open-loop controls, 
there exists a time T > 0 such that  u(T) ¢ U(z(T)).  

D e f i n i t i o n  1.1 Let (uo, vo, zo) be an initial situation such that initial controls uo E U(zo) and 
Vo E V(zo) of ths two players are consistent with the initial state Zo. 

We shall say that 
- -  Xavier must win if and only i / for  all smooth open-loop controls u(.) and v(.) starting at 

uo and re, there exists a solution z(.) to (1) starting at zo such that (~} is satisfied. 
- -  Xavier may win if and only if there exist smooth open-loop controls u(.) and v(.) startina 

at uo and vo and a solution z(.) to (1) starting at zo such that (~) is satisfied. 
- -  Xavier must loose if and only if for all smooth open-loop control u(.) and v(.) starting 

at uo and vo and solution x(-) to (1) starting at zo, there exists a time T > 0 such that 

u(T) ¢ U(z(T)) 

- -  The initial situation is playable ff and only i~ there exist open-loop controls u(.) and v(.) 
starting at uo and vo and a solution z(.) to (I)  starting at zo satisfying both relations (e)and (~). 

Naturally, if both Xavier and Yves must win, then both relations (2)and (3) are satisfied. This 
is not necessarily the ease when both Xavier and Yves may win, and this is the reason why we are 
led to introduce the concept of playability. 

2 T h e  M a i n  T h e o r e m s  

T h e o r e m  2.1 Let us assume that h is continuous with linear growth and that the graphs of U and 
V are closed. Let the growth rates g and o be fixed. 

There exist five (possibly empty) closed set-valued feedback maps from R n to R e x R q having 
the following properties: 

- -  Ru C U is such that whenever (u0, v0) E Ru(zo), Xavier m a y  w i n  and that whenever 
(u0, v0) ¢ Ru(zo), Xavier must loose 

- -  If  h is lipschitzean, Sv C Ru is the largest closed set-valued map such that whenever 
(uo,Vo) 6 Su(zo), Xavier must win. 

--  Sv C R v  C V, whieh have analogous properties. 
- -  Ruv C R v  N Rv is the largest closed set-valued map such that any initial situation 

satisfying {uo, vo) E Ruv(zo) is playable. 

Knowing these five set-valued feedback maps, we can split the domain K of initial situations 
into ten areas which describe the behavior of the differential game from the position of the initial 
situation. 



3 3 9  

(z.o, Uo, Vo) E Graph(Sv) C r a p h ( R u )  K \ C r a p h ( R e }  

Xavier must win Xavier may win Xavier must loose 

Graph(Sv) 
Yves must win Yves must win Yves must win 
Xavier must w'in" "? Xavier must loose 

Graph(Rv)  

K \ C r a p h ( R v )  

Yves may win 
Xavier must  win 

Yves must loose 

? ? 

? [PLAYABILITY[ ? 
? ? ? 

Xavier may win 

Yves mus t  loose 

Yves may win 
Xavier must  loose 

Yves must loose 

The 10 areas of the domain of the differential game 

In part icular ,  the complement  of the graph of Rvv  in the intersection of the graphs  of Rv and 
Rv is the  instabil i ty region, where either Xavier or Yves may win, bu t  not  bo th  together.  

The problem is to characterize these five set-valued maps,  the existence of which is now guar- 
anteed, by solving the ~contingent extension" of the part ial  differential equat ion 4 

ii0oll a~.h(z,~,v)-p([I,~H+O ~ -o(ll~ll+l ) =0  (6) o---~ 
which can be wri t ten  in the following way: 

aq~ . h ( z ,  u , v )  + inf a ~  . u' tgq~ 
O--z [I-'li_<p(ll.ll+l) ~ u  + inf • v' = IMl<o(ll~[l+l} -~v 0 

We shall also introduce the part ial  differential equation s 

(7) 0¢0__; h(z,~,v) +,(11~11 + 1) a~  + o([[~ll + 1) 0¢¢ = 0 

which can  be wri t ten  in the following way: 

O e ~ . h ( z , u , v ) +  sup O~ Oe~ v' 
0"-~ i[.ql<~(l[.il+ tl ~ 'u"  u'  + sup = 0 [lct[_<o(ll~[{~' q ~vv " 

The link between the feedback maps and the solutions to the solutions to these part ial  differ- 
ential equat ions is provided by the indicators of the graphs:  we associate with  the set-valued maps 
Su,Ru and Ruv the functions ~e ,  ~Pv and ~ from R "  × llP x R q to R+ U {+co} defined by 

41f ~b is a solution to this partial differential equation, one can check that for az~y initial situation (zo, uo, ~ )  E 
Dom(~b}, there exists a smooth solution (z(.), u(.), v(.}) such that 

t - ,  O(z(t), u(t), u(t}} is uon increasing 

This property remains true for the solutions to the coutiageut partial differential equation (9). 
5One can check that if f is lipschitzean attd • is a solution to this partial differential equation, for arty initial 

situation [Zo, Uo, Vo} E DomlO }, any smooth solution (z(.}, u(.}, v(.}} satisfies 

t ~ ¢b(z(t), u(t), u(t}} is non increasing 

This property remains true for the solutions to the contingent partial differential equation (10). 
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(s) 

i) ¢ . ( ~ , = , ~ )  := 

ii) ~Pv(z,u,v) := 

ill} ~(z ,u ,v)  := 

+oo if ( . ,~ )  ¢ s~(~) 
0 if ( u , v )  E R e ( z )  

+oo if C,,.,,.') ¢ R,.,(~) 
0 if (u,v) E Rvv(z) 
+c~ if (u,v) ¢ Rvv(z)  

and the functions ~ v  and fly associated to the net-valued map Rv and Sv in an analogous way. 
These fundtions being only lower semicontinuous, but not differentiable, cannot be solutions to 

either partial differential equations (6) and (7). But we can define the contingent epiderivative# of 
any function ~ : R "  x RP x R ~ ~ R u {+oo} and replace the partial differential equatimJs (6)and 
(7) by the contingent partial differential equations 

(9) inf DTgP(z,u,v)(h(z,u,v),u',v' ) 
I1='11 -< p(ll"ll + 1) 
IIv'll _< o([Iv[I + I) 

and 
(10) sup DTc~(z,u,v)(h(z,u,v),u',v'  ) 

II"'ll <- o(ll-ll + 1) 
IIv'll <- a(ll@ + 1) 

respectively. 
Let flu and fly be the indicators of the graphs of the set-valued maps U and V defined by 

0 if u 6 U(z) 
i) f lv(z ,u ,v)  := +oo if u ¢ U(z) 

(11) 0 if v E V ( z )  
ii) f l v ( z ,u ,v ) :=  +oo if v• V(z) 

T h e o r e m  2.2 We posit the assumptions o/Theorem e.1. Then 
- -  qtv is the smallest lower scmicontinuous solution to the contingent partial differential 

equation (9) larger than or equal to fly 
- -  ~v is the smallest lower semicontinuous solution to 

equation (9) larger than or equal to [Iv 
- -  ko is the smallest lower semicontinuous solution to 

equation (9) larger than or equal to max(fly,l-Iv) 

the contingent partial differential 

the contingent partial differential 

- -  If h is lipsehitzean, ~u is the smallest lower sernicontinuous solution to the contingent 
partial differential equation (10) larger than or equal to flu 

I / h  is lipsehitzean, ~v is the smallest lower semicontinuous solution to the contingent 
partial differential equation (10) larger than or equal to l'lv 

If any of the above solutions is the constant +vo, the corresponding feedback map is empty. 
P r o o f  o f  T h e o r e m  2..1. - -  Let us denote by B the unit ball and introduce the set-valued 

map F defined by 

H(z,n ,v)  : :  {h(~,u,v)}  x p(llull + I)B x o(ll~ll + a)B 

The evolution of the differential game described by the equations (1) and (4) is governed by the 
differential inclusion 

{z'(t),u'(t),v'(t)) E H(z(t) ,u(t) ,v(t))  
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-- Since the graph of U is closed, we know that there exists a largest closed viability domain 

contained in Graph(U) x R q, which is the set of initial situations (so, u0, v0) such that there exists a 
solution (z(-), u(.), v{.)) to thls differential inclusion remaining in this closed set. This is the graph 
of Ru. Indeed, if (u0,v0} E Ru(zo), there exists a solution to the differential inclusion remaining 
in the graph of Us i.e., Xavier may win. If not, all solutions starting at (z0, no, Vo) must leave this 
domain in finite time. 

The set-valued feedback map is defined in an analogous way. 
For the same reasons, the graph of the set-valued feedback map Ruv is the largest closed 

viability domain of the set K of initial situations. 
-- When h is lipschitzean, so is F. Then the solution-map S(zo,uo, vo) is also lipschitzean 

thanks to Filippov's Theorem s, so that the subset of initial situations such that all the functions 
of S(zo, u0, v0) remain in a closed subset is also closed. This is the largest closed invariant domain 
by F of this closed subset. Then the largest closed invariant domain contained in Graph(U) × R q 
is the graph of the set-valued feedback map Su. 0 

Proof of Theorem 2.2 M We recall that thanks to I[addad's viability Theorem, a subset 
L C R "  x R p x R q is a viability domain of F if and only if 

V ( z , u , v )  e L, rL(z ,u ,v )  n H ( z , u , v )  # 

Let ~L denote the indicator of L. We know that the epigraph of the contingent epiderivativc 
Dt~z(z  , u,v) of ",P£ is the contingent cone to the epigraph of ~L at ((z, u, v),0). Since the latter 
subset is equal to L × R+,  its contingent cone is equal to TL(z, u, v) × R+,  and coincides with the 
epigraph of the indicator of TL(z,u,v). Hence the indicator of the contingent cone TL(z,u,v} is 
the contingent epiderivative DTk~L(z , u, u) of the indicator ~L o~ L at (z, u, v). 

Therefore, the above tangential condition can be reformulated in the following way: 

V (z ,u ,v )  ~. L, a w E HCz, u ,v  ) such that Dl@L(z ,u ,v ) (w  ) = ~'rc( ..... )(w) -- 0 

Since the epiderivative is lower semicontinuous and the images of F are compact,  this is equiv- 
alent to say that 

V (z,u,v) e L, inf DlkgL(z,u,v}(w) = O 
wEH{z.u,u} 

By the very definition of the set-valued map F,  we have proved that L is a closed viability domain 
if and only if its indicator function g'L is a solution to the contingent partial differential equation 
(g). 

- -  Hence to say that the graph of Rv is the largest closed viability domain coat,tined 
in the graph of U amounts to saying that its indicator @v is the smallest lower semicontinuous 
solution to the contingent partial differential equation (9) larger than or equal to the indicator 
I t / o f  Graph(U) x R q. The same reasoning shows that  indicator ~ v  of Rv is the smallest lower 
semicontinuous solution to the contingent partial differential equation (9) larger than or equal to 
t2v and that the indicator k~ of the graph of Ruv is the smallest lower semicontinuous solution to 
the contingent partial differential equation (9} larger than or equal to the indicator of K,  which is 
equal to max(flu, fly). 

- -  We know that  the a closed subset L C R"  x R p x R q is Uinvariant" by a lipschitzean 
set-valued map F if and only if 

V (z,u,v) e L, TL(z,u,v) C n ( z , u , v )  

This condition can be reformulated in terms of contingent epiderivative of the indicator function 
kOL of L by saying that  

V(z ,u ,v )  e I , ,  sup Sr~PL(z,u,v)(w)=O 
,.uetl(z,u,~) 

eSee 13, p.120] 
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Hence to say that the graph of Su is the largest closed invariance domain contained in tile graph 
of U amounts to saying that its indicator (I'u is the smallest lower semicontinuous solution to the 
contingent partial differential equation (10) larger than or equal to the indicator flu of Graph(U) x 
R q. D 

3 Closed-Loop Decision Rules 

When the initial situation (zo, u0, v0) belongs to one of the following subsets: 

(12) Graph(Su) 13 Graph(Sv) or K\(Graph(Rv) U Graph(Rv)) 

then the players has nothing to worry about because both of them must either win or loose whatever 
the choice of their control. 

In the other areas, at least one of the players may win, but for achieving victory, he has to find 
open-loop or closed-loop controls which remain in the appropriate set-valued feedback map. 

Let us denote by R one of the feedback maps Ru, Rv, Rvu and assume that the initial situation 
belongs to the graph of the set-valued feedback map R (when it is not empty). The theorem states 
only that there exists at least a solution (z(.),u(.), v(.)) to the differential game such that 

vt>_o,  (u(t),v(t)) ~ R(~(t)) 

To implement these strategy, players have to make decisions, i.e., to choose velocities o/controls 
in an adequate way: 

We observe that playable solutions 

P r o p o s i t i o n  3.1 The solutions to the game satisfying 

Vt  > O, (u(t),v(t)) E n(~(t)) 

are the solutions to the system o/differential inclusions 

(13) { i) z'(t) = h(z(t),u(t),v(t)) 
i i) (u'(t),v'(t)) C CR(z(t),u(t),v(t)) 

where we have denoted by GR the R-decision map defined by 

(14) Gn(z,u,v) := Dnn{z ,u ,v)(h(z ,u ,v))  

For simplicity, we shall set G :=  GR whenever there is no ambiguity. 
P r o o f -  Indeed, since the absolutely continuous function (z(.),u(.),v(.)} takes its values 

into Graph(R),  then its derivative (zt(.), u'(.), v'(.)) belongs almost everywhere to the contingent 
c o n e  

TGraph(nl(Z(t),u(t),v(t)) := Graph(DR(z(t),u(t),v(t))) 

We then replace z'(t) by h(z(t), u(t), v(t)). 
The converse holds true because equation (13) makes sense only if (z(t), u(t), v(t)) belongs to 

the graph of R. 1::3 
The question arises whether we can construct selection procedures of the decision components 

of this system of differential inclusions. It is convenient for this purpose to introduce the following 
definition. 

D e f i n i t i o n  3.2 () We shall say that a selection (~,d) o/the contingent derivative of the smooth 
regulation map R in the direction h defined by 

(15) U (z,u,v) e Graph(R),  6(z,u,v) e DR(z ,u ,v) (h(z ,u ,v) )  
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is a closed-loop decision rule. 
The system of differential equations 

(16) 
i) 
ii) 
iii) 

z'(t) = h( , ( t ) ,  ,,(t), ,,(t)) 
u'(t)  = c ( , ( t ) , , , ( O , v ( t ) )  
v'Ct) = d ( z C t ) , u ( t ) , v ( t ) )  

is called the associated closed-loop decision game. 

Therefore, closed-loop decision rules being given for each player, the closed-loop decision system 
is just a system of ordinary differential equations. 

It has solutions whenever the maps c and d are continuous (and if such is tile case, they will 
be continuously differentiable). 

But they also may exist when c or d or both are no longer continuous. This is the case when 
the decision map is lower semicontinuous thanks to Michael's Theorem: 

T h e o r e m  3.3 Let us assume that the decision map G := GR is lower semicontinuous with non 
empty closed convex values on the graph of R.  Then there exist continuous decision rules c and d, 
so that the decision system 16 has a solution whenever the initial situation (u0,v0) E R(zo) 

But we can obtain explicit decision rules which are not necessarily continuous, but for which 
the decision system 16 has a still solution. 

It is useful for that  purpose to introduce the following definition: 

Def in i t ion  3.4 (Se l ee t l on  P r o c e d u r e )  A selection procedure of the regulation map G : R"  -.-, 
R P x R q is a set-valued map So : R"  ..-+ RP x Rq 

J i) v,, c K, s(c(,,)) := so(z) n c ( , )  # 
O7) t ii) the graph of Sa is closed 

and the set-valued map S(G) : z ~ S(G(z))  is catted the selection of G. 
It is said convex-valued or simply, convex if its values are convex and strict i/moreover 

(18) Vz e Dom(G), Sa(z) 0 G(z) = {d(z)),E(z)} 

is a singleton. 

Hence, we obtain also the following existence theorem for closed-loop decision rules obtained 
through sharp convex selection procedures. 

T h e o r e m  3.5 Let Sa be a convex selection of the set-valued map (3. Then, for any initial state 
(zo,uo,Vo) E graph(R), there exists a starting at (Zo,Uo,Vo) to the associated system of differential 
inclusions 

i) z'(t) = h(z( t ) ,u( t ) ,v( t ) )  
(19) ii) (u'(t),v'(t)) E S(DR(z( t ) ,u ( t ) , v ( t ) )h (z ( t ) ,u ( t ) , v ( t ) } )  

:= c ( : ( t ) , u ( t ) , v ( t ) )  n s~(.(t),u(t),,,(t)) 
In particular, if we assume further that the selection procedure Sc is sharp, then the slngle-valued 
map 

{~(~,u,,~),d(,.,,,,v)) := s(c)(~,u,v) 

is closed-loop decision rule, for which decision system 16 has a solution for any initial state 
(zo,uo, vo) E graptl{R). 
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P r o o f - -  We shaU replace the system of differential inclusions (13) by the system of differential 
inclusions 

J i) z'(t) = h(z(t) ,u(t} ,v( t))  (20) 
I ii) {u'{t),v'{t)) e so (z ( t ) ,~ ( t ) ,~ ( t ) )  

Since the convex selection procedure Sc has a closed graph and convex values, the right-hand 
side is upper semicontinuous set-valued map with nonempty compact convex images and with 
linear growth. It remains to check that  GraphR is still a viability domain for this new system 
of differential inclusions. Indeed, by construction, we know that  there exists all element w in 
the intersection of G(z ,u ,v )  and So(z ,u ,v) .  This mev.ns that the pair (h ( z ,u ,v ) ,w)  belongs to 
h(z ,u ,v )  x Sa(z ,u ,v )  and that  it also belongs to 

Graph(G) :=  TGraphR(Z,U ) 

Therefore, we can apply Haddad's  Viability Theorem. For any initial situation (So, uo, vo), there 
exists a solution (z( .) ,u(.) ,v( .))  to the new system of differential inclusions (20) which is viable 
in Graph(R).  Consequently, for almost all t > 0, the pair (z '(t) ,u'(t) ,v '(t))  belongs to the con- 
tingent cone to the graph of R at (z(t), u(t), v(t)), which is the graph of the contingent derivative 
DR(z( t ) ,  u(t) ,v(t)) .  In other words, 

for ahnost all t > O, (u'(t),v'(t)) E G(z(t),u(t),v(t)} 

We thus deduce that for almost all t > 0, (u'(t), v'(t)) belongs to the selection S(G)(z( t) ,  u(t), v(t)) 
of the set-valued map G(z(t) ,u(t) ,  v(t)). Hence, we have found a solution to the system of differ- 
ential inclusions (19}. [] 

We can now multiply the possible corollaries, since we have given several instances of selection 
procedures of set-valued maps. 

E x a m p l e - - -  COOPERATIVE BEHAVIOR 
Let a : Graph(G) *--, G be continuous. 

C o r o l l a r y  3.6 Let us assume that the set-valued map G is lower semicontinuous with nonempty 
closed convex images on Graph(R).  Let o be continuous on Graph(G) and convex with respect to 
the pair (u,v).  Then, for all initial situation (uo,vo) E R(zo}, there exist a solution starting at 
(zo, uo, vo} and to the differential game (1)-(4) which are regulated by: 

for almost all > O, (u'(t),v'(t)) E G(z( t ) ,u( t ) ,v( t ) )  and 
(21) oCt(t), u(t), v(t), ~'(t), v'(t)) 

= inf=,,.,eoC.f,),°,l,.~l o(z(t) ,  ~(t), ~(t), ~', v') 

In particular, the game can be played by the heavy decision of minimal norm: 

{ (c°(z,u,vl,d°(z,u,v)) e a ( z , u , v )  

I I , : (z ,v. ,v) l f '  + Ila°(~.,u,v)ll ' )  = min(.,,,,}~o( ..... i(llu'll ~ + IIv'll ~') 

P r o o f - -  We introduce the set-valued map So defined by: 

So(z) := {(c,d} E Y l a ( z ,u ,v ,c ,d )  < inf o(z ,u ,v ,u ' , v ' } }  
- ( , , . , , , ) c a {  . . . . .  } - -- 

It is a convex selection procedure of G. Indeed, since G is lower semicontinuous, tile function 

( z : , , v , c , d )  H o(z,,,,,:,c,d) + sup (--a(z,,~,,:,u',,,')) 
(,,,.,,,)cc(,,~,,,) 

is lower semicontinuous thanks to the Maximum Theorem. Then the graph of So is closed because 

Graph(So) = 
{ ( z ,u , v )  l a (z ,u ,v ,e ,d )  +snp¢u,.¢)eaf ..... ) ( - o ( z , u , v , u ' , v ' ) )  <_ O} 
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The images are obviously convex. Consequently, the graph of G being also closed, so is the 
selection S(G) equal to: 

S(G)(z,u,v) : {(,:,d) e G(z,u,,~) l o ( z , u , v , e , d )  < inf o{z,u,,,,u' v'}~ 
- { , , , , , , , ) e a ( ~ , , , , , , )  . . . . . .  

We then apply Theorem 3.5. We observe that when we take 

o(z,u,v,~,d) := I lcll '+lldll '  
the selection procedure is strict and yields the decisions of minimal norm. [] 

E x a m p l e - - -  NONCOOPERATIVE BEIIAVIOR 
We can also choose controls in the regulation sets G(z, u, v) in a non cooperative way, as saddle 

points of a function a(z, u, v , . ,  .). 

Coro l l a ry  3.7 Let us assume that the set-valued map G is lower semicontinuous with noncmpty 
closed eonvez images on Graph(R) and that a : R "  x R p x R q ~ R satisfies 

i) a is continuous 
(22) ii) V ( z ,u , v ,d ) ,  c H a ( z ,u , v , c , d )  is convex 

iii) V ( z ,u , v , c ) ,  d ~ a ( z ,u , v , c ,d )  is concave 

Then, for all initial situation (u0,v0) E R{zo), there ezist a solution starting at (zo,u0,v0) and to 
the differential game (1)-(J) which are regulated by: 

i) (u'(t) ,v '(t))  E G(z ( t ) ,u ( t ) , v ( t ) )  
ii) V (u',v') E G(z ( t ) ,u ( t ) , v ( t ) ) ,  

for almost all t > O, a(zCt), u(t),  v(t), u'Ct), v') 
< aCdt), u(t),,,(t), u'(t), v'(t)) 
< a(z(t), ~(t),.(t), u', ¢ (t)) 

P r o o f - -  We prove that  the set-valued map So associating to any ( z ,u ,v )  E Graph(R) the 
subset 

Sa( z ,u , v )  := {{c,d) such that 
V(u',v') ~ C(~,, , ,v),  a(~,,,,,,,e,v') < a(~,u,,, ,u',d) } 

is a convex selection procedure of G. The associated selection map S(G(.))  associates with any 
(z, u, v) the subset 

S(G(z ,  u,v)) := { (c,d) e G ( z , u , v )  such that 

v(u',v') e G(~,u,,,), a(~,u,v,e,v') < aC,,u,v,u',d) } 

of saddle-points of a ( z , u , v , . , . )  in G(z ,u ,  v). Yon Neumann'  Minimax Theorem states that the 
subsets S(G(z ,  u, v)) of saddle-points are not empty since G(z ,u ,  v) are convex and compact. The 
graph of So is closed thanks to the assumptions and the Maximum Theorem because it is equal to 
the lower section of a lower semicontinuous function: 

Graph(Sa) = {(z,u,v,e,d) [ sup (a{z,u,v,c,v') - a(z,u,v,u',d)) < 0} 
(e,e)ec(.,.,~) 

We then apply Theorem 3.5. [] 

Remark -- Whenever the subset Ruv(z(t))kRv(z(t)) is not empty, Xavier may be tempted 
to choose a control u(t) such that 

(~(t),v(t)) c R.~C4t)) \Rv(z(t) l  



346 

because in this case, Xavier may win and Yves is sure to loose eventually. Naturally, Yves will use 
the opposite behavior. 

Hence we can at tach to the game two functions 

i) au(z,u,v) := d(Cu, v),RuvCz)\RvCz)) 
(23) ii) bv(z,u,v) := dCCu, v) ,Ruv(z) \nu(z) )  

and look for closed-loop controls (fi(z),fi(z)) which are Nash equilibria of this game: 

i) (aC,,,,~(z))) ~ R~,v(z) 
(24) ii) V (u,v) E Rvv(z) ,  au(z, fi(z),O(z)) < au(z,u,O(z)) 

& bv(z,fi(z),~(z)) < bv(z,d(z),v) n 

Unfortunately, the selection procedure which could yield such behavior are not convex. The 
answer to this question remains unknown for the time. 
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BARGAINING WITH DYNAMIC INFORMATION 

Jukka Ruusunen, Harri Ehtamo and Ralmo P. H~n~l~inen 

Espoo, Finland 

Abstract : The Nash bargaining solution in a sequential cooperative game with dynamlc infor- 

mation is studied. The bargaining scheme is applied at each stage, where the gains from the 

cooperation are measured by considering the past, the current and the future gains. It is shown 

that at each stage the cooperative policy can be selected as if the current contract would remain 

in effect over the remainder of the time horizon of cooperation. 

I. Introdqction 

Let us consider a group of decision makers (DMs), who are in a position to choose their policies 

cooperatively. It is assumed that there are outcomes that all the DMs prefer to the status quo 

outcome. Since the DMs do not in general have the same choice set for the cooperative outcomes, 

there is a conflict of interests between the DMs in cooperation. The cooperative outcome is required 

to be individually rational such that all the DMs gain from the cooperation. However, depending 

on the contract chosen an individual DM can gain more or less. 

The Nash bargaining solution, see e.g, Roth (1979), has been developed for games in normal form. 

The cooperative outcome is selected by maximizing the product of the DMs' gains from cooperation. 

The gains are measured as differences between the payoffs from a cooperative outcome and the 

status quo outcome. In the present study bargaining takes place in a dynamic framework under 

future uncertainty. Decision making is described by a cooperative game in an extensive form. Thus 

an extension of the Nash bargaining scheme to extensive form games has to be made. 

Haurie (1976) has studied a dynamic bargaining game, where at each stage only future gains are 

considered in bargaining, and the past is ignored. This kind of an extension was shown to lead to 

the sustainability problem: reopening of the negotiations at an intermediate stage would change the 

cooperative policy. The solution concept proposed by Tolwinski (1982) is based on the assumption 

that rebargalning actually takes place at every stage. A cooperative policy related to a given stage 

is constructed by considering only current and future gains relative to the stage. The policies are 

constructed according to the principle of dynamic programming assuming that rebargalning will 

take place at every future stage. The solution satisfies the axioms of the bargaining scheme in all 

of the resulting aubgames. However, the axioms are not satisfied in the original cooperative game. 
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In this paper we propose a bargaining mechanism that  satisfies the rules of fairness of the Nash 

bargaining scheme over the whole t ime interval of cooperation. At each stage the cooperative 

policies are functions of the current information. The past history of bargaining relative to a given 

stage is described by the Dbis '  gains over the past stages. A procedure to construct the bargaining 

s01utinn is given. An at tract ive feature of this procedure is that  at each stage the DMs can select 

the cooperative policy as if the contract defined would remain in effect over the remainder of the 

time interval. 

2. A bargaining problem with dynamic information 

Consider a group 01 = {1 . . . . .  M} of M CM _> 2 i DMs who have joined together to cooperate. The 

bargaining takes place over N time periods in a stochastic environment. The uncertainty related 

to the environment in period k E 82 = {0, . . .  , N  - 1} is described by the random variable ~k E Ek 

with probability measure pk(. l lk_l) ,  where l k - i  = (~-1, ~0 , . . . ,  ~k-1) is the information related 

to period k - 1. The first term in the information vector, ~-1, describes the past behaviour of the 

random variable before the inltlM period k = 0. It is assumed that  the actual value taken by ~k is 

known before the decision in period k is made. 

The admissible policies are functions of the information vector, i.e. uh : u&(/k) E Uk C R m, 

k E 02. Furthermore, u~ is of the form u/c t M " = (u~ . . . . .  u k ), where u}~ E U~ C R m~ is the admissible 

policy for DMi, i E 0t. The decision uk and the sequence of random variables described by 

the information I t  yield a payoff g~(uk, Ik) for DMi  in period k. The objective of DMi is the 

maximization of the sum of these payoffs over the time interval of cooperation, 

N - I  
s' = ~ o~(u,,x,) (1) 

/=0 

The benefits of cooperation are measured from a status quo, which would prevail in the noncoop- 

erative situation. The status quo policies are denoted by vk = 5k(Ik), k E 02. 

The rules of fairness of the Nash bargaining scheme are used to determine the cooperative solution 

over the whole time interval of cooperation. Consequently, the time interval is partitioned into the 

past and the future relative to each period k E 02. For given information lk -1 ,  the past periods 

are described by the cumulative benefits for the DMs up to period k 

k - I  

~(uo . . . . .  u~_ .  z~_,) = ~ [g~(u,, ~) - gi(,~,(v,), I,)], 
,=o  C2) 

v~(z0)  = 0.  

The expected future payoffs from period k on are 
N - I  

J~(u~ . . . . .  u~_,;  1k) = o~(u~Cr~),~k) + E~..,.,,...,~.,., { ~ g~(~,(~,),I,)}. (3) 
i fk+ l  
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If the status quo policies were used, these expected future payoffs would become 

D~(;~) = 2~(~  . . . . .  ~n- , ;  &}. (4) 

According to the Nash bargaining scheme, the contract definition problem related to period 

k 6 0 s  can be stated as follows: For given i • • . Yk(Uo , . . . , uk -z , l k - l ) ,  lk find an admissible policy 

{t ik, . . . ,  a i r - l }  such that 

[I r ' ' ' "  " "  " "  ' • - [Yk~ o , ' " ,  / c -* , ' h - , I  + J~(R/, . . . .  e ,v-x;Ik)  
J 

iEOi (5) 
> 11 r ' ' , , *  • . _ __ L~,,~ o . . . .  . . . . .  uN-x;Sk) -D~(Sk)j 

iEO, 

for all admissible policies {uk . . . . .  u N - , }  for which 

itu* u* "I '+J~(uk,. I1~) D~(Ik)>O, Vi60,. Yk~ 0,''', k--l, k--l] -.,UN--I; -- (6) 

3. Computation of the contract 

To solve the problem defined by (5) and {6) we need two results; for the proofs of these results see 

Ehtamo ¢ta/. (1987). Let U be a set, and ji : U --+ R, i G 0,. Define 

Fi(u) = Ji(u) - D ~, i • 0,, (7) 

~(") = ]-I r ' ( , , ) ,  ,, • u, (s) 
/E0i 

where D i • R, i • 0,, are fixed, and consider 

maxr{u) (9) uEU 

subject to Fi(u) ~_ 0, i• Pl. (10) 

Lemma I: Let u* • U be such that 

where 
iE#, iES, 

d = R rJ(~'), r'(¢) > 0, v," • 0,. 

Then u* solves (9), (10). 

(11) 

(I~) 
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Lemma ~: Suppose U is a convex set in a vector space X and 3 i , i 6 Ot are concave functionals 

on U. Suppose u" E U solves (9), (10) with Fi(u *) > 0 for all i. Then (11) holds, whe re /~  is as 

in (n). 

Lemm~ I is now applied to the contract  definition problem (5) and (6). Denote A > = {/~ 6 

R~[p ~ > 0, Vi}. For given l, 11 and p 6 k > let u / - -  j~l(II,/~) solve the maximization problem 

max E l~igJ(ul' It), (13) 

and define 
N - 1  

W(I~,p) = z~, . ,  ..... ~._, { [ :  9j(~,(I.,,),I,)}. vk • 0z. 
/ = k + l  

(14) 

The bargaining solution {t~k, . . . .  g N - , }  in period k E Oz is defined as follows. Let p 6 A > satisfy 

pd = H [£(u~ . . . .  ,u~_,;lk_,) +O~(~k(lk,il),lk) -I- VJk(lk,p) --~(Ik)]. (15) 

jeo, 
j#i 

Set ~ (&)  = j~(lhp) for I _> k. Then we have 

t/,* * * Proposition 1: Let k E Oz. For given If, and Yk( o , . - -  , u~- l , , rk -* )  Iet {ilk . . . .  , ¢ N - * }  be defined 

as above. Then {~k . . . . .  ~ N - t }  solves (5) and (6). 

Proof: Since E(max[.]} > max[E{.}], we have, using the defnini t ion of the functio~ ~t( I : ,u ) ,  

Z P~Ji({~k'""" , " N - * ;  Ik) 
iEO, 

- -  I '~ kL, k~''',UN--l;IkJ 
i 

iEO, 

for all admiasibh {u~,...  , u N - , } .  The result is then implied by (15), (16) and Lemma 1. 

(16) 

D 

According to Proposition I the cooperative policy for the present stage can be selected by assum- 

ing that the current contract p will remain in effect over the remainder of the time interval of 

cooperation. At the next stage rebargaining takes place and cooperative actions for that stage are 

selected, assuming that the updated contract will remain in effect over the remainder of the time 

interval of cooperation, and so forth. Hence, the actual cooperative policy {uS,..., u~v_l}, where 

u;c is the policy to he applied at stage k, k G 0z, is chosen as follows: 

(i) Set k --- 0 ,  vo(Io) =/~,  where p satisfies 

~ ' =  I I  [~(I0)+g(~0(1o,~),Io)+ vg(1o,.)- ~(10)]. 
jeO, 

(17) 

Set .~go) = po(~o,~o(~o)). 
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(ii) Suppose Ui_l(Ik_t ) has been chosen. Set m=(lk) = #, where/~ satisfies 

,,,= ]-[ . . . .  . . .  
t i--IriS--l)"{'~(flk(.l'k,P'),.[k) Jl'V~(1"k,J 2') ~(J'k)]. 

/Ee, 
y#; 

set =;,(a) = ,8,,(a,vk(a)l. 

(:s) 

4. Conclusion 

A mechanism for sequential bargaining under uncertainty is presented. The cooperative solution 

satisfies the rationality axioms of the Nash bargaining scheme over the whole time interval of 

cooperation. At each stage the past history of the disturbances is known. It is also assumed that 

the actual value taken by the disturbance related to the present stage is known before the decisions 

are made. It has been shown that the expected future gains contributing to the current contract 

can be computed as if no further contracts will be made in the future. 
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i. Introductlon 

Economic Agents operating in uncertain, stochastic environments can face a 

tradeoff between current period expected reward and accumulation of information of 

uncertain value. For example, a firm producing to meet uncertain demand might 

produce at the expected current reward maximizing output, based on his current 

beliefs about the form of the demand curve, or it might choose to experiment by 

varying output, thus taking short term losses in order to sharpen beliefs about the 

form of the demand curve. A parametric representation of the agent's problem is 

made by considering the utility function u(x,y) and the conditional density 

f(y[x,8). Here the random variable y is What the agent is trying to control 

(e.g., current period profits) and x is the control variable. The parameters 8 

of the conditional density of y given x are unknown, but the agent has opinions 

about 0 given by s distribution ~. ~e agent attempts to minimize the present 

discounted value of the stream o f  expected losses, EZ6tu(xt,Yt) , where the expec- 

tation is taken with respect to current beliefs. The problem is complicated by the 

fact that beliefs are updated from period to  period using Bayes Rule; consequently 

current period actions can be expected to influence future period beliefs. This 

introduces stochastic dynamics into the model. 

This paper considers the problem in the case in which the density f(yIx,0) is 

a location family. ~n this case the model can be written y - g(x,$) + c, where t 

is an i.l.d, random variable whose distribution may involve unknown parameters. 

When g(x,~) - x'$ the problem is one of controlling a linear regression process 

with unkno~ parameters over an infinite horizon. Many approximate control rules 

for this problem have been proposed, for example sequential least-squares estimation 

combined with one-period optimization conditioning on the current estimates. The 

analogous policy for the nonlinear model is clear. In practice several policies can 

work "well," though it is possible to compose examples in which the policy men- 
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t ioned, for example, is  eas i ly  improved. From an economic modelling point  of view, 

however, we are interested in the o~tlmal policy, and in the consequences for 

convergence of beliefs and policies of following the optlmal policy. Will it be 

optimal for an agent to learn the parameters (and thus converge to "rational 

expectations")? 

This paper gives general conditions hnder which the sequence of beliefs 

converges to a llm£t and the sequence of optimal policies converges to a limit. 

Under further conditions the limlt policy is the optimal one-perlod policy for limit 

beliefs. Conditions under which the limit belief is point mass at true parameter 

values, corresponding to consistent parameter estimates are more stringent and are 

still under investigation. 

Least-squares control rules in the linear regression model have been widely 

discussed and studied analytically by Taylor (1974) and Jordan (1985) and experi- 

mentally by Anderson and Taylor (1976). Improvements using a Bayesian approach were 

suggested by Zellner (1971) and studied by Harkema (1975). The optimal policy in 

the linear regression case has been studied by Kiefer and Nyarko (1987), who obtain 

results on coffvergence of beliefs and policies, convergence in a different class of 

models has been studied by Easley and Kiefer (198G). Results on optimal learning 

while controlling a stochastic process are collected along with an example in Kiefer 

(1988). 

2. The Decision Problem: Uncertainty. Policies and ~ewor~ 

In this section we sketch the general framework we wish to study. 

Let n' be a complete and separable metric space, let ~' be its morel field, 

and (O', ~' , P') a probability space. Define the stochastic process [ct) ® on 

(~', ~' , P'). The it are assumed to be independent and identically distributed, 

with the common marginal distribution p(¢tl() depending on some parameter, ( in 

R h, which is unknown to the agent. ~e assume that the set of probabillcymeasures, 

(P('l~}, is continuous in the parameter ~ (in the weak topology of measures); and 

that for any ~, f ¢ p(d¢]~) - O. Let X, the action space, be a compact subset 

of R k. Define 9 - Rm x R h to be the parameter space. If the "true parameter" 

is 0 - ($,() ¢ e, and the agent chooses an action x t c X at date t, then the 

agent observes Yt' where, 

Yt - g(xt'~) + it (2.1) 

and z is chosen according to P('I~). The function g is assumed measurable; 
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further restrictions are introduced implicitly through assumptions on the updatlng 

equation (2.2) and the reward function (2.3). 

One example i s  t h e  s imple  l i n e a r  r e g r e s s i o n  model w i t h  unknown s l o p e  and 

i n t e r c e p t  and w i t h  the  c t i n d e p e n d e n t  draws f rom the  normal  d i s t r i b u t i o n  w i t h  

mean ze ro  and v a r i a n c e  o~ I n  t h a t  example G' i s  R ~, 9 '  i s  the  c o l l e c t i o n  of  

Borel sets on R ~, and P' is the infinite product of independent unlvarlate 

normal distributions with means zero and common variance o 2 . The parameter ~ is 

the variance of z, o 2. The action space X is a closed interval in R I, The 

parameter $ z R 2 consists of the slope and Intercept of the regresslon. The 
1 space O is R 2 x R+. 

Let ~ be the Borel field of e, and let P(e) be the set of all probability 

measures on (e, ~ ). Endow P(e) with its weak topology, and note that P(e) is 

then a comple te  and s e p a r a b l e  m e t r i c  space  ( s ee  e . g . ,  P a r t h a s a r a t h y  (1967, Ch. I I ,  

Theorems 6 .2  and 6 . 5 ) ) .  Let  ~0 ~ P(e)  be the  p r i o r  p r o b a h i l l t y  on the  p a r a m e t e r  

space, with finite first moment. 

The agent is assumed to use Bayes rules to update the prior probability at each 

date after any observation of (x t, yt). For example, in the initial period, date 

i, the prior distribution is updated after the agent chooses an action xl, and 

observes the value of YI" The updated prior, i.e., the posterior, is then 

~i " r(Xl' YI' ~0 )' where r:x x R 1 × P(B) ~ P(B) represents the Bayes rule 

operator. If the prior, ~0' has a density function, then the posterior may be 

easily computed. In general, the Bayes rule operator may be defined by appealing to 

the existence of certain conditional probabilities, although some care is needed 

(see Diaconis and Freedman (19B6)). Under some conditions the operator r is 

continuous in its arguments, and we assume this throughout. Any {xt, yt] process 

will therefore result in a posterior process, {~t}, where for all t - 1,2,..., 

~'t- r(xt' Yt' ~t-i ) (2.2) 

n-1 
Let  Hn " P(O) x H IX x R 1 x P(O)}.  A p ~ r t ~ l  h i s t o r y ,  hn ,  a t  d a t e  n i s  

i - 1  

a~ element hn " (Mo'(Xl ' YI' ~I ) .... (Xn_l, Yn.l,~n.l )) t H ; h n is said to be 

a ~ i s s l b l e  I f  ( 2 . 2 )  h o l d s  f o r  a l l  t - 1 ,2  . . . . .  n - l .  Le t  H be the  s u b s e t  o f  
n n 

consisting of all admissible partial histories at date n. A vollov is a sequence 

- {~t):.l, where for each t ~ I, the policy function ~t:Ht ~ specifies the 

date t a c t i o n  x t - x t ( h t )  , as  a Bore l  f u n c t i o n  o f  t he  p a r t i a l  h i s t o r y ,  h t i n  
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Hi, at that date. A policy function is stationary if xt(h t) - g(#t) for each t, 

where the function g(,) maps P(O) into X. 

D e f i n e  (O, ~ , P) - ( e ,  ~ , pO ) x ( f i ' ,  ~ '  , P ' ) .  Any p o l i c y ,  z ,  t h e n  

generates a sequence of random variables [(xt(w), yt(w), # t ( ~ ) ) ~ . l  on (fl, -~ , P) 

as described above, using (2.1) and (2.2). See Ziefer and Nyarko (1987) for 

technical details. 

For any n - 1,2,..., let ~n be the sub-fleld of ~ , generated by the 

random variables (hn, Xn). Notice that x n is ~n -measurable but Y n and 
n 

are not F - measurable .ext daflno F - VLOF n 

Let u:X x R 1 ~ R 1 be the utility function, so u(xt, yt) is the utility to 

the agent when action x t is chosen at date t and the observation Yt is made. 

The reward function r:X x P(8) ~ R I, is defined by 

r(xt,#t, l) - IjRU(X t, yt)p(dctl~)pc.l(d#) (2.3) 

The inner integration marginalizes with respect to ¢, given the parameter ~, the 

outer integration is with respect to parameters. Assume that the reward function is 

uniformly bounded, continuously, and concave in x for given p. Note that this 

assumption restricts g(-,-), U(-,.) and P('I'). 

Let 6 in [0,1) be the discount factor. Any policy x generates a sum of 

expected discounted rewards equal to 

Vx(P O) " I ~ 6t'ir(xt(~), Pt.I(~))P(d~) (2.4) 
t-I 

where the (xt, pc) processes are those obtained using the policy ~. A policy 

is said to be an outimal volicv if for all policies . and all priors gO in 

w 
in P(8), Vx.(p0) ~ V (p0). Even though the optimal policy, ~ (when it exists) 

may not be unique, the value function V(p0) - V .(p0 ) is always well-defined. 

3. Existence o~ a Stationary Optimal Policy 

Straightforward dynamic programming arguments can be used to show that station, 

ary optimal policies exist and the value function is continuous. 

Theorem 3.1: A stationary optimal policy g:P(O) ~ X exists. The value 

function, V, is continuous on P(8), and the following functional equation 

holds: 
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v(~) - max {r(x, ~) + 6fV(~)p(ac[~)~(de)) (3.1) 

where ~ - P(x ,  y ,  ~) and y - g (x ,  ~) ÷ c, and where t h e  i n t e g r a l  i s  t a k e n  ove r  

R I x g .  

Proof: Let S - (f:P(O) ~ R [ f i s  c o n t i n u o u s  and bounded}.  

Define T:S ~ S by 

Tw(~) - max {r(x,~) + 6fV(~)p(d~[@)~(d0)) (3.2) 

x~X 

One can easily show that for w£S, TwoS; and that T is a contraction mapping. 

Hence there exists a yes such that v-Tv. Replacing w with v in (3.2) then 

results in (3.1); and since yeS, v is continuous. Finally, it is immediate that 

the solution to the maximization exerclse in (3.2) (replacing w with v) results 

in a stationary optimal policy function (see Blackwell (1965) or Maltra (1968) for 

the details of the above arguments). 

4. Convergence o f  the  P r o c e s s  {#t} .  

I n  t h i s  s e c t i o n  we p rove  t h a t  the  p o s t e r i o r  p r o c e s s  c o n v e r g e s  f o r  P - a . e  ~ i n  

G, to a well-deflned probability measure (with the convergence caking place in a 

weak t o p o l o g y ) .  

Note t h a t  f o r  any Bore l  s u b s e t ,  D, o f  the  p a r a m e t e r  space  O, i f  we s u p p r e s s  

the ~ ' s  and l e t ,  f o r  some f i x e d  w, p t (D)  r e p r e s e n t  t he  mass t h a t  measure  ~ t (w)  

a s s igns  to t he  s e t  D, t h e n  

~t(D) - E[I(o~D}]~ t] (4.1) 

Define a measure #~ on 9 by setting, for each Borel set D in 6, 

- E[I|@tD)[ ~] (4.2) 

The measure ~ is the limiting posterior distribution and is indeed a well-deflned 

probability measure. 

~eorem 4.1. The posterior process {~t) converges, for P-a.e. ~ in n, 

in the weak topology, to the probabillty measure p . 

Summary of Proof: Use 44.1) above to show that for any Bore1 set D in e, 

pc(D) is a Martlngale measure, establish that the sequence of probability 
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measures, ~t(w), for fixed ~, is tight using the assumption that the first 

moment of ~ is finite, then apply Prohorov's Theorem (e.8. , Billingsley 

(1968, Theorem 6.1)) to deduce that ~ is a probability measure. 

Note tha~ this result on convergence of beliefs is quite different from the 

standard consistency result looked for in econometrics. The Martingale Convergence 

Theorem allows us to establish convergence, but the limit measure ~ is a random 

variable, in the sense that it depends on the particular sequence of shocks real- 

ized. In a standard estimation problem, the limit result is that beliefs converge 

and the limit belief is independent of sample paths, and the limit belief is correct 

in the sense that ~ assigns point mass to the true parameter value. Standard 

results do not hold here because along any sample path for which beliefs converge, 

the sequence of actions {x t) may also be converging. But if actions converge too 

rapidly, they may not generate enough information to identify all the unknown 

parameters. One can construct examples in related problems in which this phenomenon 

occurs (see e.g., Kiefer (1988)). 

5. Ootlmizat~on and ~ml~ Belief~ and Actions 

In Theorem A.1, convergence of beliefs was established for an arbitrary {x t} 

sequence (i.e., without taking into account the underlying maximization problem). 

In this section we ask what action (or actions) x corresponds to the limiting 

beliefs ~®. 

Theorem 5.1 establishes that the limit action is the action which maximizes 

single period reward for limit beliefs. 

Theorem 5,1: The limit action x - llm x exists, is unique for given ~) 
t-~ 

and maximizes the one-period reward, r(x,~,), for limit beliefs ~ . 

Proof of Theorem 5.1: Recall from Theorem 4.1 that lim ~t - ~= exlats for 

all sample paths. The sequence (xt} and (pt} satisfies for each t 

(simultaneously, a.e.) the functional equation 

V(~ t) - r(x=,~ t) + 6fV(F(xt,yt,~t))P(dcl~)~t(d0). (5.1) 

Taking limits along any convergent subsequence gives 
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v (~ . )  - r ( ~ , p . )  + 8 f V ( r ( i , y , p ® ) ) p ( d c [ O ~ . ( d e )  

whsrs x i s  a l i m i t  p o i n t  o£ the | x t )  sequence.  ( In  t ak ing  the  l i m i t s  one uses  

the fact that V is bounded and the integral in (5.1) is E[V(~t)]Ft.l] to apply 

Chung (1974, Theorem 9 . 4 . 8 ) . )  However, from convergence of  b e l i e f s  (x ,y)  y i e l d s  

no in fo rma t ion  so P ( x , y , p . )  - p~, and (5.1)  becomes V ( ~ )  - r ( x , p ~ )  + ~V(p.) .  

Now we show t h a t  x solves the problem 

max r(x,~®) (5.2) 
x~X 

Suppose on the contrary that there is an AcX such that r(xA,p ) > r(x,~ ). Then 

by the functional equation 

v(~®) >_ r(xA,~®) + 61v(r(xA,~,~))p(dcle)..(ae). (5.3) 

But by Blacl<well's Theorem (see e.g., Kihlstrom (1984, Lemma l, p. 18)), since the 

.^ A.. experiment "observe ~x,y~ is trivially sufficient for the experiment "make no 

observations," we obtain, 

/V(P(x,y,p..))p(dc{~)~(dg) >. V(~ ) (5.4) 

Hence, from (5.3)  and (5 .4)  V(~ ) > r ( x , #  ) + 6V(~ ) ,  which i s  a c o n t r a d i c t i o n .  

So x s o l v e s  problem (5 .2 ) ;  t h a t  i s ,  x maximizes the  one -pe r iod  reward r ( x , p )  

for l i m i t  b e l i e f s ,  p . Since r ( . , p = )  i s  s t r i c t l y  concave in  x,  x "must be 

unique. 

6. ConcIusion 

We have c o n s i d e r e d  the  d e c i s i o n  problem f a c i n  8 an agent  c o n t r o l l i n g  a n o n l i n e a r  

r eg re s s ion  p r o c e s s  when parameters  in  the mean f u n c t i o n  and in  the  e r r o r  d i s t r i b u -  

~ion are  unknovn. The agent  f aces  a t r a d s o f f  between accumulat ing in fo rma t ion  by 

varying the  v a l u e s  o f  the  r e g r e s s o r s  and accmnulat ing o n e - p e r i o d  reward bY fo l lowing  

the one -pe r iod  expec ted  reward maximizing p o l i c y .  We show t h a t  the  problem can be 

brought i n t o  the  dynamic programming framework and t h a t  the  va lue  gunc t ion  s a t i s f i e s  

~he usual  f u n c t i o n a l  equa t ion .  The sequence o f  b e l i e f s  about the  unknown parameters  

is  shown to  converge a lmost  s u r e l y .  F u r t h e r ,  the  opt imal  a c t i o n  p r o c e s s  converges  

to the o n e - p e r i o d  opt imal  a c t i o n  under l i m i t  b e l i e f s .  



7. 

362 

Ackn~wledeements 

This research is supported in part by the National Science Foundation. 

REFERENCES 

Anderson, T.W. and J. Taylor, (1976), "some Experimental Results on and Statistical 
Properties of Least Squares Estimates in Control Problems," Econometrica, 
44:1289-1302. 

gillingsley, P., (1968), Cgnver~ence of Prob~b~)~ty Mes#ures, Wiley, New York. 

Blackwell, D., (1965), "Discounted Dynamic Programming," Annals of Mathematical 
Statistics, 36, pp. 2226-235. 

Chung, K.L., (1974), A Course in Probability Theory, 2rid edition, Academic Press, 
New York. 

Diaeonls, P. and D. Freedman, (1986), "On The Consistency Of Bayes Estimates," 
Annals of Statistics, 14, 1-26 (discussion and rejoinder 26-27). 

Easley, D. and N.M. Kiefer, (1986), "Controlling a Stochastic Process with Unknown 
Parameters," Cornell University working paper, forthcoming in Econometrica. 

Harkema, R., (1975), "An Analytical Comparison of Certainty Equivalence and Sequen- 
tial Updating," JAS~, 70, 348-350. 

Kiefer, N.M. and Y. Nyarko, "Control of a Linear Regression Process with Unknown 
Parameters" in W. Barnett, E. Berndt and H. White (eds.), Dynamic Econometric 
Modellin~, New York: Cambridge University Press, 1987. 

Kiefer, N.M., "Optimal Collection of Information by Partially Informed Agents," 
Cornell working paper, 1988. 

Kihlstrom, R.E., (1984), "A 'Bayesian' Exposition of Blackwell's Theorem on the 
Comparison of Experiments," in Bayesian Models in Economic Theory, eds. M. 
Boyer and R.E. Kihlstrom, Elsevier Science Publishers B.V. 

Jordan, J.S., (1985), "The Strong Consistency of the Least Squares Control Rule and 
Parameter Estimates, = manuscript. 

Maltra, A., (1968), "Discounted Dynamic Programming in Compact Metric Spaces," 
Sankhva, Set A, 30, pp. 211-216. 

P a r t h a s a r a t h y ,  K, ,  (1967) ,  P r o b a b l l i t v  Measures on Met r i c  Svace~, Academic P r e s s ,  
New York. 

Taylor, J.B., (1974), "Asymptotic Properties of Multiperiod Control Rules in the 
Linear Regression Model, = International ~copom~ q ~ev~ew, 15, 472-484. 

Zellner, A., (1981), An Introduction to Baveslan Inference in Econometrics, Wiley: 
New York. 
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I. INTRODUCTION 

The essence of dynamic programming states that a simultaneous 

optimization of real-valued two-variable functions is assured by the 

two-stage optimization under both separability and monotonicity [15, 

16]. We call these two properties the recusiveness with monotonl- 

city dynamic programming structure -- [8, 11]. This struc- 

ture yields what we call dynamic programmable function [11]. 

In this paper we focus our attention on both dynamic program- 

ming structure and quasililearization for a class of objective fun- 

ctions. Given a differentiable strictly increasing convex function 

f : R I ~ R I, we approximate f(x) by its linear approximation f(x;h) 

RIxR I J R I, which is strictly increasing in h for x £ R I . Thus, 

f(x) is a quasilinearization of f(x;h). The N-times composition of 

f(Xn;.) generates a dynamic programmable function F(x;h) : RNxR I 

R I. Similarly, inverse function f-1(y), reverse function f_1(x;k) 

which is the inverse function of f(x;h) with respect to h for fixed 

x, and conjugate function f (y) also generate dynamic programmable 

* RNxR I R 1 functions F-1(y;k), F_1(x;k}, and F (y;h) : , , respect- 

tlvely. Thus, the function f yields four main, inverse, reverse, 

and conjugate optimization problems on R N. These problems are 

solved through dynamic programming approach. Some relations between 

them are established. Finally we illustrate two interesting examples 

from Bellman [I]. 



p. 

364 

2. PROBLEMS 

First of all let us consider the following famous problem [I, 

102; 8, p.101; 10, p.18]: 

x I x1+x 2 x1÷--.+x N 
Max e (1-- x I) + e (I -- x2)+ ...÷ e (I -- x N) 

+ eX1÷'''+XN×h 

s.t. -~ < x < = 1 -< n -< N 
n 

where h is a real constant. We remark that the N-times iteration of 

f(x;h) = eX(1 --x + h) 

y i e l d s  t he  o b j e c t i v e  f u n c t i o n  

f (Xl; f (x2; • •. ;f (XN;h) ...)1 

Xl xl x2 ( 1 x2 e xN-1 
= e (1 -- x|) + e [e -- x2) + e [...+ 

x[eXN XN 
e ×hi .]] (1 -- x N) + .. 

(See also [11, p.278; 12, p.28~). 

Second we consider the following maximization problem: 

Max (1--2x12)exp(x12) + 2x1(1--2x22)exp(x12+x22) + 4XlX 2 

x(1--2x32)exp(x12+x22+x32) + 8XlX2X3|1--2x32) 

xexp(x12+x22+x32)h 

s.t. x1~0, x2~0, x3~0 

where h ~ 0. The three-times iteration of 
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f(x;h} = (I -- 2x 2 + 2xh)exp(x 2) 

generates 

f (x I ;f (x2;f (x3;h))) 

= (1-2x12)exp(xl 2) + 2xlexp(xl 2) [(1-2x22)exp(x22) + 2x2exp(x22)~ 

~1-2x32)exp(x32) + 2x3exp(x32}h]] . 

These two functions are called recurs~ve f~,ctio,8 o, RN(resp. 

H~) with s~r~ct inereasing,es, (~0, 11]). A function F : RNKR I- 

R I is called dynamic programmable function on R N if it is expressed 

as follows 

F(Xl,X2,...,XN;h) 

= f1(xl;f2(xl,x2;...;fN(Xl,X2,...,XN;h)...)) 

where fn: RnxR1 ' R1 and fn(Xl,X2,...,Xn; -): R I ) R I is non- 

decreasing for I ~ n & N, (Xl,X2,...,x n) c R n. Therefore, any re- 

cursive function with strict increasingness is a dynamic programmable 

function. In the following we are mainly concerned with a class of 

recusive functions on X(~RN| with strict increasingness. 

3. MAIN RESULT 

First, we prepare the following fundamental lemma. Let X and 

Y be two nonempty sets. For each x ~ X let Y(x) be a nonempty 

subset of Y. That is, Y(-) : X ~ 2 Y is a point-to-set-valued 

mapping, where 2 Y denotes the set of all nonempty subsets of Y. 

Let 

Gr(Y} = {(x,y) I y ~ Y(x), x c X} C XXy 
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be the graph of the mapping Y(-). In the following it will be clear 

from the context whether a notation ¥ is considered the set or the 

mapping. 

LEMMA 1 (Maximax Theorem [11; p.268]) Let f : XxR 1 > R I be 

a function such that f(x;-) : R I ) R I is no,decreasing for x 

X. Let g : Gr(Y) ---~ R I be a function. If Max f(x; Max g(x,y)) 
xeX yeY(x} 

exists, then Max f(x; g(x,y)) exists and both are equal: 
(x,y)¢Gr(Y) 

Max f(x; Max g{x,y)) = Max f(x; g(x,y)). 
xeX y~Y(x} (x,y)eGr(Y) 

REMARK This equality remains valid even if the operator Max 

is replaced by the operator min under the same condition as stated 

above. Furthermore, as a special case we have 

Max f(x; Max g(y)) = Max f(x; g(y)). 
-~<x<~ -~<y<~ -~<Xny<~ 

In general we have for 

any differentiable convex 

function f : R I ) R I 

f(h) = Max f(x;h) (I) 

where 

6A )~%~ 

f(x;h) = F(X) + f'(x)h 

F(x) = f(x) -- xf'(x). 

Thus, f(x;h) is the linear approximation of f(x) a~ h: 
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f(x;h) --f(x) + (h- x)f'(x). (3) 

The expression (I) is called a quasiZinear{~at£on of f(z) ([I; p.135 

; 13; 14]). 

Furthermore, from Lemma I, we obtain under f'(x) ~ 0, -~ < x 

< 0= 

f(f(h)} = Max f(xl; Max f(x2; h)) 
-~<x1<~ -~<x2<~ 

= Max f(xl; f(x2;h)). 
-~<xl,x2<= 

(4) 

that is 

f(f(h)) = Max [F(x I) + f'(x I) (Max [F(x 2) + f'(x2)h]) ] 
-~<Xl<m -~<x2<~ 

(5) 

= Max [F(x 11 + f'(Xl)F(x 2) + f'(xl)f'lx2)h ]. 
-~<x1,x2 <= 

DEFINITION Let f : R 1 > R I be a differentlable increas- 

ing (resp. strictly increasing) convex function. Then we define F 

: RN×R I ~ R I by 

F(x;h) -- f(xl; f(x2; ...; f(XN;h)...)) 

= F(X I) + f'(Xl)F(x 2) +... + f'(xl)f'(x2)...f'(xN_1) 

xF(XN) + f.(xl)f.(x2)...f.(xN) h (6) 

where f(x;h) and F(x) are defined in (2), and x = (Xl,X 2 .... , 

XN). The function F : RNxR I ~ R I is the recursive  function ~i~h 

inoreasingness (resp. s~r ic t  increasingness)  generated by f o r  s i m p l y  
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dynamia programmable f u n o t i o n  genera ted  by f .  

In the following, it will be clear from the context a function 

f (resp. F) is considered f(x) or f(x;h) (resp. F(x) or 

F(x;h)). 

REMARK The equalities (I) and (4) (or (5)) remain valid 

if we replace 'Max' and 'convex' with 'min' and 'concave', respec- 

tively. Similarly, a differentiable increasing (resp. strictly 

increasing) ooncave function g : R 1 ) R 1 g e n e r a t e s  the r e c u r s i o e  

funo~ion G = RN×R 1 ) R I wi th  £ncreau£ngnenB (ranp, u~r{ct 

inoreasingnea8), which is also called dynam£o programmable funct{on 

generated by g: 

G(y;k) = g(Yl; g(Y2; "''; g(YN ;k)''')) 

= G(y I) + g'(yl}G(Y2) + ... + g'(yl)g'(y2 ) .... g'(yN_1} 

xG(y N) + g'(Yl)g'(y2)...g'(YN)k (7) 

where 

Y = (YI'Y2'''''YN)' 

g(y;k) --g(y) + (k- y)g'(y) 

= G(y) + g'(y)k, 

(8) 

G(y) = g(y) -- yg'(y). 

Therefore we have the following main result: 

THEOREM I. |i) Let f: R I ) R I be a differentiable increas- 

ing convex function. Then for h £ R I 
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fN(h) = Max N F(x;h) (9) 
xeR 

* fN--1 * fN--2 * = f(h}, x N h attains and x I = (h), x 2 = (h| ..... XN_ I = 

the maximum, here and in the following fn(h) is the n-times com- 

position of f(x): 

fn(x) = f(f(...f(x)...)). 

(ii} Let g : R 1 ~ R 1 be a differentiable increasing con- 

cave function. Then for k E R 1 

gN(k) = min. G(y;k) (10) 
yER N 

= gN--1 = gN--2 ^ 
and 91 (k), 9 2 (k) ..... YN--I = g (k) , YN = k attains 

the minimum. 

4. INVERSION, REVERSION AND CONJUGATION 

First we consider the inverse function f-1 to a continuous 

strictly increasing function f. We remark that f : R I • R I is 

an onto differentiable strictly increasing convex function iff f-1 

: R I ~ R I is the onto differentiable strictly increasing concave 

function. Then we have 

COROLLARY (1) Let f : R I ) R 1 be an onto differentiable 

strictly increasing convex function. Then for k e R I 

f-N(k) = min N F-I(Y; k) (11) 
yeR 

f-N+1 = f-N+2 and 91 = (k), 92 (k) ..... ?N-I = f-1(k), ~N = k att- 

ains the minimum, where F-1(y;k) is the dynamic programmable fun- 
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f-1 and f-n(y) is the n-time composition of 

f-n(y) = f-l(f-1(...f-1(y)...)). 

(ii) Let g : R I 

increasing concave function. 

g-Nlh ) = Max N 
xCR 

* -N÷I * -N+2 
and x I = g (h), x 2 = g (h), 

ains the maximum, where G-1(x;h) 

ction generated by g-1 

Here we remark that 

) R I be an onto differentiable strictly 

Then for h E R 1 

G-l(x;h) 

F -1(y;k) = F -I (yl } + f-1~(Yl)F-1 (y2 } 

×...f-1.(YN_1 )F-I {YN ) 

(12) 

where 

and f-1. 

G-1(x;h) 

F-1(y) = f-1(y) _ yf-1~(y) 

* - 1  * 
..., XN_ I = g (h), x N = h att- 

is the dynamic programmable fun- 

+ ... ÷ f-1.(yl )f-1"(y2) 

+ f-1. (Yl) f-1. (y2)... f-1, (yN) k 

(13) 

is the derivative of the inverse function 

is defined and omitted. 

(14) 

f-1. Similarly, 

Second we consider the reversion of the linear approximation 

f(x;h) of f(x) -- not the reversion of f(x) itself -- as 

follows. For any onto differentiable strictly increasing convex 

function f : R I ~ R I , its linear approximation f : RIxR I • ~ R I 
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defined by (2) or (3) is continuous strictly increasing and linear 

in h for x c R 1. Therefore, f(x;-) : R I • R I is invertible for 

x c R 1. Its inverse function f_1(x;.) : R I ----~ R I becomes 

k f-I (x;k) - F_I (X) + 

where 

(15) 

fix) 
F_1(x) = x f'(x)" (16) 

We call f-1 = f-1 (x;k) 

the reverse funot~on of 

f = f(x;h). As we noted 

in (I), we have 

f(h) = Max f(x;h) 
-~<x<~ 

- . i W /  

"3 

= Max IF(x) ÷ f'(xih] 
--~<X<~ 

(17) 

= Max 
-~<x<~ 

[f(x) + (h- x)f'(x)] 

and x = h attains the maximum. 

formed to 

f-1(k) = min f-1 Ix;k) 
-~<x<~ 

= rain [F_1(x) + f~] 
-~<x<~ 

This fact is equivalently trans- 

(18) 
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x k -- f(x) 

and x = f-1(k) attains the minimum (see ~ig.2). This fact ref- 

lects also the main idear of Newton method from a viewpoint of opti- 

mization. Therefore, we have the following reversed form of (9): 

THEOREM 2. (17 Let f : R I * R I be an onto differentiable 

strictly increasing convex function. Then for k £ R | 

f-N(k) = rain N F_I (x;k7 
xgR 

(19) 

~I = ~2 , .... ^ = f-2 ^ = f-1 and f-N(k 7, = f-N+1 (k) XN_ I (k), x N (k} 

attains the minimum, where F_I : RNxR I ~ R I is the N-tlmes com- 

position of f-1 (x;k7 : 

F_I (x;k) = f-1(xl; f-1 (x2; "''; f-1 (XN;k)''") )" (20) 

(li) Let g : R I ,R I be an onto differentiable strictly 

increasing concave function. Then for h £ R I 

g-N(h7 = Max N G_I (y;h) 
y~R 

(217 

* -N * g-N+1 * -2 * -1 
and Yl = g (h), Y2 = (h), .... YN-1 = g (h), YN = g (h) 

attains the maximum, where G_I : RNxR I ; R I is the N-times com- 

position of g-1(Y;h) : 

G -I (y;h) = g-1(Yl; g-1(Y2; "''; g-1 (XN;h)'''7)" (227 

Here we remark that 
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F_ I (x 2) F_ I (x N) 
F_I (x;k) = F_I(X I) + + ... + f" (x I) f" (x I) f" (x2) •..f" (XN_ I ) 

k 
+ f. (x I) f. (X2) ...f" (xN) (23J 

where F_I(X) is defined in (16}. Similarly, G_1(y;h) is de- 

fined from G 1(Yn), g'(yn ) and h. We call F_1(x;k), G_I (y;h) 

t h e  dynamio p~ogrammabZe funet£on generated by r ~ v ~ s e  f u n ~ £ o n  

f_1(x;k), g_l(Y;h)), respectively. 

We have the following relation between 

(x;h) : 

THEOREM 3. (i) Let f : R I ; R I 

strictly increasing convex function. 

transformation y = f(x) 

-1  
F (y;k) and F_I 

be an onto differentiable 

Then we have by the monotone 

f-1(y;k) = f-1(x;k)" (24) 

Furthemore, the monotone transfomation Yn = f(Xn) I & n & N yields 

F-1(y;k) = F_1(x;k). (25) 

(il) Let g : R I ~ R I be an onto differentiable strictly 

increasing concave function. Then we have by the monotone trans- 

formation x = g{y) 

g-1(x;h) = g-1 (y;h). (26) 

Furthermore, the monotone transformation 

yields 

x n = g(yn ) I <- n ~ N 
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G-1(x;h) = G_1(Y;h). 

It is straightforward. 

(27) 

Finally we consider conjugations * and ^ For any convex 

function f : R I ---~ R 1, we define its oonjuga~e function f* : R I 

R I 

f (y) = sup [xy - f(x)]. (2s) 
--~<X<~ 

On the other hand, for any concave function g : R I ~ R I , we 

denote its aon~ugate function ~ : R I ¢ R I by 

~(X) = inf [yx -- g(y)] . (29) 
-~<y<~ 

If both operations * and ^ are well defined, they are dual 

in the following sense: 

(-f~ (y) = -f*(-y) y e R I. 

LEbLMA 2. Let f : RI---~R | be a twice differentiable strictly 

increasing strictly convex function. Then we have for f~|-~) < y 

< f° (-) 

(i) f*(y) = xy -- f(x) 

(ii) f*°(y) = x and in particular f*'(y) > 0 for f'(0)<y<f'(~) 

and 

I 
(iii) f*"(y) = ~ > 0 

where x satisfies uniquely f~x) = y. Therefore, f* : (f'|0), 
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f'(~)) ) R I is strictly increasing strictly convex. Thus we 
, 

h a v e  t h e  f o l l o w i n g  r e s u l t  f o r  f : 

THEOREM 4. Let f : R I ) R I be a twice differentiable 

strictly increasing strictly convex function. Then we have for 

f'(0) < f*n(h) < f~(-) 0 & n ~ N-I 

f*N(h) = Max F (y;h) 
f'(0)<Yn<f'(~) lhnlN 

(30) 

* *(N-I) * = f*(N-2)(h), * = f*(h), YN = h and Yl = f (h), Y2 "''' YN-I 

a t t a i n s  t h e  max imum,  w h e r e  F { y ; h )  i s  t h e  d y n a m i c  p r o g r a l m l l a b l e  

function generated by f and f*n is the n-time composition of 

f . 

Similarly, for concave function g, we have the following: 

LEMMA 3. Let g : R I • ) R I be a twice differentiable st- 

rictly increasing strictly concave function. Then we have for 

g'(~) < x < g'(-®) 

(i) ~(x) -- y x -  g(y) 

(ii) ~'(x) = y and in particular ~'(x) > 0 

and 

(ill) ~"ix) = ~ < 0 

for g'(~)<x<g'(0) 

where y satisfies uniquely g'(y) = x. Therefore, ~ : (g'(=),g'(0}) 

---~ R I is strictly increasing strictly concave. 

THEOREM 5. Let g : R 1 ~ R I be a twice differentiable 
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striatly increasing strictly concave function. 

g'(=) < gn(k) < g'(0) 0 < n ~ N-1 

Then we have for 

N(k) = rain G (x;k) 
g'(=)<Xn<g'(0) 1<n~N 

(31) 

= gN-1 ..., = g(k), = k attains and ~I (k), ~2 = gN-2(k)' ~N-I ~N 

the minimum, where ~(x;k) is the dynamic programmable function 

generated by ~ and ~n is the n-times composition of ~. 

Here we remark that 

F (y;h) -- F (yl) + f "(Yl)F (y2) + ... + f "(yl)f "(y2 ) ... 

@ W W * W 

xf (YN_I)F (yN) + f-(yl)f-(y2)...f -(YN)h 

(32) 

where 

F (y) = f (y) --yf "(y) 

= - f(x). 

(33) 

Here x satisfies uniquely f'(x) = y. Similar expressions for 

~(x;k) and G(x) are omitted. 

5. EXAMPLES 

In this section we illustrate explicit form of f(x;h), F(x;h) 

F-I * , (y;k) , f _1(x;k), F_1(x;k), F (y;k) and others for a given f(x). 

5.1 f(x) = e x : (-= , =) ) (0 , ~) 

In this case we have the following expressions. First we 

have from (2), (6) 
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f(x;h) = (I - x + h)e x -~ < x,h < = 

x I x1+x 2 x1+...+XN_ I 
F(x;h) = e (I -- x I) + e (I -- x 2) + ... + e 

x1+.-. +XNx h x(1 -- XN) ÷ e -~ < Xn,h < =. 

Second, for inversion, we have from (13),(14) 

g(y) ~ f-l(y) = logy : (0, ~) 

g(y;k) = f-1(y;k) = --I + logy + k 
Y 

G(y;k) --F-1(y;k) ----I + logy I + (yl) 

÷ (Yl " " "YN-1 )-I 

) (-~, ~) (34) 

0 < y,k < 

-I 
(--I + logy 2) 

(--I + fogy N) + (yl...yN)-Ik 

Yn > 0, k ~ 0 

where k ~ 0 means that k is sufficiently large that log...logk 

(N-times log operation) becomes well defined. That is, in this case, 

.e 

k > e e" ((N-1)'s e). 

Third, for reversion, we have from (15),(16),(20) 

f-1(x;k) = x -- I + e-Xk -= <x < =, k > 0 

-x -x I-. . .-XN_ 1 
F_l(X;k) = x I -- I + e l(x 2 _ I) + ... + e (XN_ i--1 ) 

-X I-. . - + e " XNxk 

-~ <X < =, k ~ 0. 
n 
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Moreover, the reversion of g = g(y) defined in (34) becomes 

g-1 (x;h) -- y(1 - logy) +yh y > 0, -= < h < 

G_1(x;h) = Yi(I -- logyl) + ylY2(I -- fogy2) + ... + yl...yN 

×(I -- logy N) + YI"''YN h Yn > 0, -® < h < =. 

Fourth, for conjugation, we have from (28), (29) , (32), (33) 

f (y) = (-I + logy)y : (0, ~) ) [-I, ~) 

f "(y) = logy > 0 on (1, =) 

f "(y) = I/y > 0 

f (y;k) = -y ÷ kxlogy y > I, k > I 

F (y;k) = -Yl -- Y21°gYl -- "'" -- YNI°gYl"''I°gYN-I 

+ kxlogyl...logy N 

g(x) = 1 + logx : (0, ~) 

g(x;h) = logx + x-lh 

Yn > I, k > e 2 

> (-=, ®) 

0 < x,h < 

+ )-11ogxN G(x;h) = logx I (Xl)-llogx 2 +... + (Xl...XN_ I 

-I h ÷ (Xl...XN) x n > 0, h ~ 0 

where h ~ 0 in this case means that 

.-l+d* 

h > e -l+e-1+e" (N's e). 
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g_1(x;k) = -xlogx + xk 
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g(y;k) , we have 

X > 0, -~ < k < ~ 

-1 (x~k) = -XllOgx I -- XlX21ogx2 -- ... -- x I ...XNlOgx N 

+ x 1...xNk x n > O, -= < k < =. 

s . 2  f ( x )  = x 2 = ~, ®) ~ ~, =) 

In this case we have the following result. 

f(x;h) = -x 2 + 2xh x,h ~ 0 

2 
F(X;h) = -X~ -- 2XlX ~ -- . o .  -- 2N- lx l . . .XN_lXN 

+ 2Nx1...XN h X n ~ 0, h ~ 0. 

First, we get 

In particular Theorem I for case N = I implies 

Max [ 2xh -- x2] = h 2 -- < h < =. 
--oo<X<eO 

is one of the simplest quasilinearization [I ; p.134]. This 

Second, the inversion becomes 

g(y} ~ f-1(y} = ~ : (0, ~) ) (0, ~) 

g~y,k~ = f-'c~,k, = ½c y +~ y,k > 0 

G(y;k) = F -1(y~k} 

= ½(Yl)%a + ~(Y2/Yl)~ + ... * ~(YN/Y,-.-YN_I )~ 

+ 2~(YI "''yN )-3A Yn > 0, k > 0. 
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Therefore, Corollary (ii) for case N = I reduces 

sin [½/x + I ] = /~ k > 0 
x>0 2/x 

(see also [I; p.134]). 

Third, for reversion, we have 

f-llX;k) = (x ÷ ~1 x,k > 0 

F_1(xtk) = ½Xl + ~(x21xl) + ... + ~(xN/xl...xN_I) 

~1 > 0, k> 0. + x1...XN |-I x n 

Finally, the conjugation yields 

* 1 2 [0,-~ [0, =) f (y) = ~y : 

f*(y~k) = - ly2 ÷ ly k y,k ~ 0 

* 1 2 1 2 I 2 
F (y;k) = - 4YI -- ~V2YlY2 -- "'" 4.2N/~Yl "''yN-IyN 

I 
+ vYI"''YN k Yn ~ 0, k Z 0 

(xJ = I 
- 4--~ " (O , =) > (-~ , 0) 

^ I h g(x) = - ~ + x,h > 0. 

Therefore we get 

;(x) = rain ~(x;h) . 
0<x<m 

However If N ~ 2 , then it does not hold that 



gN(h) = min 
0<X <~ 

n 

because o f  g(h) < O. 
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^ 

G(x;h) h > 0, 
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Abstract : In memory of Richard Bellman, we present bipolar controls in biology. From its therapeutic 
application in the field of cerebral tumors and cancerology alone, Richard Bellman would have certainly 
been in favour of this methodology which links control theory to biological regulation. We show all its 
richness in opening other prospects that entirely justify the link between mathematics and medicine which 
interested him so much. 

I. INTRODUCTION 

For several decades, numerous research workers have thought of making a link between 

Mathematics and Medicine (of. recent books by Winfree [26] and Swan [25]), particularly in attempts in the 

modelization of certain biological phenomena and, for example, in cancerology, in the search for medicinal 

procedures (chemotherapy) or the placing of protocols of emission of specific active particles 

(radiotherapy). In this way they wished to combine mathematical theory with medical practice. Control 

theory, applied to some biological regulations, answers this demand and this hope. 

In biology, numerous regulations demand many factors with coupled actions. This is the case in 

the regulation of cellular hydration or the control of the mitosis in which corticoids and vasopressin act 

respectively, just as insulin and glucagon regulate glycemic activity. The failure, in some pathologies, of 

therapies which give only one hormone results in the fact that the reaction of the other hormone, caused by a 

subtle game of crossed feedbacks, has been neglected. Moreover, biology is a strongly nonlinear field 

where the principle of superposition of actions does not work. 

Every measurable therapeutic action should thus go through a muhivariable nonlinear modelization 
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complete enough to take care of the preponderant aspects of the phenomena studied, and simp/e enough to 

be able reasonably to control those systems and deduce therapeutical actions. Because of couplings, the 

solutions proposed, in character falsely paradoxical, can surprise, disturb, and even arouse hostility. 

Nevertheless, clinical results authenticated by radiography and C.T. scans exist, and it is hoped that the two 

examples we will treat convince the reader of the necessity for rapid improvement in the field of bipolar 

therapy, in which Bemard-Weil is a pioneer. 

I I .  T H E  A D R E N A L - P O S T P I T U I T A R Y  SYSTEM AND VASOPRESSINO.  

C O R T I C O T H E R A P Y  

Within the framework of the application of control theory to cancer chemotherapy, Sundareshan 

and Fundakowski [241 pose questions on the dual character of the object of therapies and try to find agents 

which are able to destroy malignant cells while protecting healthy cells. In fact, at the heart of the organism 

exists an important system which ensures the regulation of cellular growth both in cell division and in cell 

hydration. This is the adrenal-postpituitary hormonal system. 

The adrenal-postpituitary system, which is formed on the one hand by the corticoadrenal glands 

and on the other hand by the neuropostpituitary gland, plays a leading part in clinical manifestations seen in 

neurosurgical patients. This system is responsible for certain cerebral oedemas, figures in some cases of 

cerebral collapse, thus endangering the possible continuation of operations for subdural haemotoma, and 

intervenes in the evolution of malignant cerebral turnouts. 

The recognition of the coupling between these two glands dates from the 30s (cf. [23]), and the 

system, which has agonistic-antagonistic actions (cf. [4, 6, 7]), ensures regulations of major importance. 

Thus cortisone, secreted by the cortieoadrenaI glands, is a marvellous agent, not only against the 

hyperhydration of cells, but also as an anfimitogenic agent. This has been proved in vitro both in the case 

of malignant cerebral tumours in culture and in the case of any other cancerous cell cultures. As for 

vasopressin, secreted by the nettropostpituitary gland, it is responsible for the reabsorption of water by the 

renal tube and is an important growth factor. This first polypeptide growth factor was discovered in 1968 

by Bernard-Weil, Dalage, Olivier and Piette [9] and their result has been subsequently taken up by the 

American authors, Rozengurt et al. [20] in 1979, and Monaco et al. [181 in 1982. We refer to Pawlikowski 

[ 19] for a recent evocation of the mitrogenic influence of neuropepfides. The imbalance between corticoids 

and vasopressin, with an excess of vasopressin promoting tumoral growth, has been measured again 

recently in the cancerology of the digestive system (cf. [11]), but it has been ascertained in many other 

cases. Because of coupling between these hormones, some cerebral oedemas are resistant to cortisone, and 

cancerous tumours are only really influenced by corticoids for a short space of time and by very high doses 

of these hormones. Worse still, the diseased system takes a position of "pathological homeostasis" (of. 
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Bernard-Well [4]) and this controlled imbalance benefits from potent biological safeguards which tend to 

maintain it as if it were in a state of "normal" physiological functioning. 

In this way the vasopressin-eorticoid imbalance is preserved in cancer patients with the 

administering of  corticoids having the effect of  increasing the ratio of vasopressin, which is already 

abnormally high (eL [3]). The solution thus consists of considering the simultaneous administering of 

vasopressin and corticoids (of. [5]), a multivariable nonlinear model supporting the first intuitions of the 

physician (cf. [4, 6, 7]). 

This model is made up of  a nonlinear differential system with two inputs, e t and e 2, two 

disturbances, p and q, and two outputs, z t and z 2. It can be written in the following way (cf. [15]): 

3 
= ~ [ki (u+p) i + Ci(v+q) i] + • i 

i=l 
3 

"E  [kl (u+p)+, h 
i=1 

,~r= e2 

(2.1) 

zt= X-Y 

~=  11+Y-m 

with 11 = x+X; V = y+Y, where x is an endogenous secretion of  the adrenocortical hormones, y an 

endogenous secretion of vasopressin, and X and Y the same type of hormones as x, y, but exogenous 

(therapeutic). 

The fight-hand side of the first two equations are the development in a series in function of the 

antagonistic expression u = 11-Y and the agonistic expression v = m Log[l+ (11+Y - m)/m] + 0(t), with 

0(t) = A + B sin(cot) + C cos(cot), where the constants A, B, C and co (co = 2n / 24 in the case of the 

circadian rhythm) bring about the synchronizer 0(t) linked to biological rhythms. The introduction of the 

cubic power is justified by the conditions of stability of the system (cf. [4]); p(t) represents a possible 

osmotic, stimulus; q(0 corresponds to an eventual volemic stimulus (haemorrhage, for instance) or stress; 

k i, c i, k i, c i (i =1,2,3) are constant parameters; m is a generally constant parameter (m = 0.8) but can also 

be regarded as a rime-variable parameter. Thus when q has positive values through a sharp increase in 

volemia, for instance, and in such a way that x and y become negative, the possibility is forseen to leave tile 

value 0.8 at m during the necessary transient period. 

The system is written in a system of common unit (c.u.) such that 0.4 e.u. = 77 ng/ml of plasmatic 
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cortisol (F) = 1.1 laU/ml of plasmatic vasopressin (VP), values which correspond to the mean experimental 

values of circadian rhythms of these hormones. The values x, y, X, Y can be compared to hormonal 

concentrations and are thus liable to constraints of positivity. In the physiological case (X = 0, Y = 0 ; p = 

0, q = 0), the equilibration is simulated with a paranaetric field of (2.1) giving a limit cycle such that the pair 

(u, v) admits the origin (0, 0) as a critical point. The equilibration (X = 0, Y ~. 0) becomes pathological if an 

alteration of the field (2.11 allows a new limit cycle to appear. 

The parameters ki, ci, k'i, c' i (i = 1, 2, 3) for the system simulating the pathology, and [i,/:i, I~i, ci 

for the system simulating the physiological cycle, are identified from clinical and physiological data, by 

means of the Davidon-Fletcber-Powell method of numerical integration with constraints (cf. [11 ). The 

criterion to minimize, ~( k i, c i, ~, el, T 1, is given by: 

(kl, cl, k'i,c'i,T)=E [ (~j.xj)2 + (~j.yj)2] 
J 

( 2 . 2 )  

where i e t  ~ designate experimental values and x and y the solutions of system (2.1) with X = 0,Y = 0, 

p --- 0, q ~- 0. The quantity T corresponds to three cycles, here equal to 72 hours. 

In the pathological case, the "therapeutical simulation" consists of determining exogenous 

hormones X et Y so as to bring the system back to a physiological situation. One method (cf. 16, 71) 
consists of writing the inputs e I and e 2 in a form similar to that of the endogenous hormones, i.e.: 

3 3 

e l - - E  [k3+i ( u + p ) i + C 3 + i  ( v + q ) i ]  + E  ~i ( x  -o~i)i  
i=l i~l 

3 3 

e2=E [k'3+ ̀ (u+p)i+ c'3+ i ( v + q ) i ] + ~  ~.'i(X -c~'l)i 
i~i i=l 

(2.3) 

with ~'t' ~'2' ~'3' ~"1, ~k2, ~.3, t~ l, Ix' 1 constant parameters with the role of avoiding the drift of the limit 

cycle of dimension 4 which the four states of the system follows. The parameters of relations (2.3) are then 

identified by means of the Davidon-Fletcher-Powell method. 

R e m a r k  1. For inputs e x and ~ ,  the temptation to take the difference between the physiological state 

equations and the pathological state equations leads to a control which could neither satisfy the conditions of 

positivity of the variables x, y, X, Y, nor ensure the existence of a limit cycle (of. [611. 

A second method, based firstly (of. [15]) on the decoupling and linearization of nonlinear systems 

(cf. [12, 13, 14] and references therein), consists in fact of inversing the system (2.1) 
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(cf. [16, 17]). From sysmm (2.1), the following relations arc then considered: 

H - V2(zt+zz+m) 

V " l / 2 ( - z l + z 2 + m  ) 

X=H-x 

(2 .4)  

Y = V - y  

x et y lacing 1he solutions of  differential equations: 

3 
x =Z [ ki ( Zl +P)i+Ci ( mLog(1+z2/m) +O + q) i ] 

i=l 

3 
)' =,~., [ ki(z, +p)i+ci(mLog(l+-z,jm)+O+q) { ] 

i=t 

(2.5) 

It is a matter of allowing the outputs z I and z 2 of system (2.1) to pass from the pathological state, given by 

differential equations: 

3 

3 

i=l 

[ ( k i ' k i ) ( V / l  + p ) i + ( c i - c ' i ) ( v + q ) i ]  

[ ( k{ + kl) (Vt + p){+ (ci + c'i) (v + q)i ] ) 

(2.6) 

with v = m Log ( 1+ wz/m ) + A + B sin( tot ) + C cos( tot ) and to = 27t / 24. to the physiological balance 

described by the differential equations obtained from experimental data: 

3 

3 
,h--Z i=| 

[ ( ~-~i )q °~, + (6~- ~i v~] 

[ ( ~i+~} )~o i, + (61 + ~ } )v i ] ) 

(2.7) 

with v = m Log ( 1+ ~o2/m ) + A + B sin( tot ) + C cos( tot ) and co = 2x / 24. We write z t and z 2 in the fern1 
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(2.8) 

The wish of the therapist is then to find functions 5 t and 52 which f'u:st permit the definition of a 

transient way leading initial pathological curves, depicted by x and y, towards physiological curves which 

the variables H and Y, sum of the actions of endogenous and exogenous hormones, should follow. 

Secondly, after the transient period (two or three days), the therapist wishes, at one and the same time, to 

see installed a permanent regime as close as possible to the physiological circadian rhythm for variables }{ 

and Y, and to realize, for numerous reasons easy to guess, a periodic therapeutic action - depicted by X and 

Y - of a period equal here to 24 hours. 

Nevertheless, the immediate analysis of equations (2.5) shows that with pathological coefficients, 

there is no reason that the insertion of  physiological rhythms into these equations would lead to the 

appearance of a limit cycle. On the contrary, as numeric solutions confirm, we note an affine drift of the 

cycle and the demonstration of this phenomenon is evident. 

Thus the only possibility, in a permanent regime, is to deform the physiological rhythm as little as 

possible to ensure the periodicity of the therapy presented by X et Y, the functions 5j and 82 also being 

periodic. This leads us to make an optimization under the following constraints: x ~ I), y > 0 ,  X -> 0 ,  

Y > 0 .  Finally, we need to ensure that the limit cycle obtained is stable and that in addition the system is 

structurally stable. 

It should be observed that the use of optimization is judicious in comparison to the notion of mean 

physiological rhythm which is used, and also in relation to the uncertainty brought about by modelization. 
Thus the conditions of positivity of x, y, X, Y variables can be satisfied by the functions of 8 t and 52 and, 

after a transient period, these functions should ensure the existence of a permanent cyclic regime founded on 

the circadian rhythm. It is then a matter of finding a class of functions wide enough to include the solutions 

sought. The 4-paxamctric family of  functions given by 

fo ' bd f(x)= 1 + d 2 - cos (bt) c°s(et)dt +c with d>O (2.9) 

is dense in the set of  continuous functions on any compact interval of R and gives an idea of the minimal 

number of necessary parameters. This class of  functions is used by Boshernitzan [2] in the search for 

universal differential equations (cf. [2, 22]). 

Remark 2. System (2.8) always admits at least the mathematical solution 81 = 'lit - q~], 52 = ~2 - q)2, 
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but this solution can of course in no way be the therapeutical solution! 

For the present, we envisage a nonlinear control in the following form: 

3 3 

z l = ~  [k3+i(z  l + p ) i + c 3 + i ( m L o g  ( l + z 2 / m ) + 0 + q ) i  ]+~-"  Xl ( z t . c t  t ) i  
i~l i=l  

(2.1o) 

3 3 

~ = E  [ k ' 3 + i ( z l + P ) i + c ' 3 + i ( m L ° g ( l + z 2 / m ) + O + q ) i ] + ~  ~"i(z2"tx't)i 
i~l i=l 

The parameters of equations (2.10) are then determined by the minimization of the gap between the 

solutions of equations (2.7) and (2.10). 

This second method is under study. 

Remark 3. We may be uneasy about the impossibility of finding a therapeutic control capable of 

restoring physiological rhythms, but we should not forget that in reality the parameters which cause the 

behaviour of the system are variables. If they have gone from the physiological state to the pathological 

situation, the therapist postulates in the ease of reversibility that a forced maintaining of a rhythm close to 

the physiological rhythm, during an adequate period, will allow the parameters to readjust onto the 

physiological homeostasis. 

IlL TIlE INSULIN-GLUCAGON COUPLING AND DIABETES 

Glycemic activity can be considered as resulting from antagonistic action of glucagon which 

increases glycemla and of insulin which reduces glycemia, these two hormones acting in a coupled way. In 

relation to the adrcnal-postpituitary system, this system presents a remarkable particularity from the 

anatomical point of view. In the case of the response of glycemia, Nature has installed the control 

mechanism in the same place - the islets of Langerhans - within the pancreas. In these cellular clusters is 

found simultaneously the manufacture of insulin and glucagon under the coordinated effect of somatostatin. 

With clinical results obtained by vasopressino-corticotherapy, it seemed interesting, considering the stakes 

in diabetology, to propose a modelization of the insulin-glucagon systems from the bipolar point of view of 

agonistic-antagonistic systems defined by Bernard-Well. 

The modelization proposed takes the form of a nonlinear differential system with three inputs c z, e 2 
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and p, and three outputs, z t, z 2 et z3, defined as follows (cf. [81): 

3 

fi I'= Z [ k i ( X  - y + p ) ) i + c i ( X  + y-m)i] +el 
i=l 

3 

~ ) . ~  [k'i(X-Y+p)i+c'i(X+Y-m)i]+e2 
i=l 

~ = e  t 

~ ' = e  2 ( 3 . 1 )  

(1 = gl(Go - G) + g2[g3[th(g4(X - Y + Y - X + gs)) + th(g4(X " Y + g5)) "2th(g4gs)l + P] 

z1=X - y 

~ = X + Y - m  

z 3 = G  

with X = x + X, Y ffi y+Y, x and y the endogenous actions of glucagon and insulin respectively and X and 

Y the actions of the exogenous hormones (therapeutic). G O = 0.78, indicates the physiological load of G(t) 

glycemia and m = 2.1. A common unit is given by: :10 gUlml of insulin = I00 pg/ml of glucagon. 

In the case of the study of the oral glucose tolerance test, the input p(t) which is linked with the oral 

absorption of 100g of glucose, is given by the function: 

p( t ) = ( Pt / ( P: "Pz ) ) "  100. P3 [ exp(- p2 t ) - exp( - pit ) ] (3.2) 

In the same way as for the model of the adrenal-postpituitary system, the parameters of equations (3.1) and 

(3.2) were identified by means of  the Davidon-Fletcher-Powell method of nonlinear optimization from 

experimental curves. The parameters defining the function p(t) were adjusted once only because the 

conditions of  intestinal absorption of  glucose are less influenced by hormonal anomalies than other 

processes of  glucose metabolism. On the other hand, the parameters of equation (3.1) are to be identified in 

both the physiological and the pathological cases. The search for control (therapeutic) which aims at 
correcting the anomalies of  glycemia in diabetics was obtained at first (cf.[8]) by taking the inputs e I and e 2 

in the form: 
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3 

Ot--E [k3+i(H " V+P)i+c3+i(H + Y'm)i] 
i-1 

3 
e2=- E 

i=l 
[ k'3+i(X - V+p)'+c~+i(X + V -m) i] 

(3.3) 

They allow the setting in place of an asymptotical control which tends to bring the pathological limit position 

back to the physiological mean value of glyccmia (1 g/l). The initial glucagon-insulin imbalance before the 

dose in glucose, are, like the physiological balance, stable critical points of the physiological and 

pathological models. We can also operate as for the adrcnal-postpituitary system and consider the following 

relations: 

H = I/2 ( zl +z2+m) 

P = I/2(-z1+zz+m) 

X = H  -x 

( 3 . 4 )  

Y=Y-y 

x and y being solutions of the differential equations: 

3 
x - -Z  [ k i ( z l + p ) i + c i ( z 2  ) i]  

i=l 

3 

=E [ k'i(z, 
i=l  

(3.5) 

Our concern here is to allow outputs zp z 2 and z 3 of system (3.1) to pass from the pathological position: 

z l ( 0 )  ; Z.z(O) ; G(O ) ( 3 . 6 )  

to the asymptotical physiological balance: 

z l = O ;  z 2 = 0 ; G  = 1 (3.7) 

The physiological balance should of course be attained before the next ingestion, that is to say, within a 

period of about 5 hours. 
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To determine the "therapy" - X, Y - to be applied to the "pathological" system (3.1) we can, for 

example, use the same method given by formulas (2.10) and execute an optimization under constraints x 
0, y > 0, X > 0, Y > 0, by minimizing the gap between the three inputs z t, z 2 and z. 3 of  the controlled 

"pathological" system (3.1) and the three outputs qh, q)2 and q~3 of the "physiological" system ( 3.1 ) bound 

to the inputs e t = 0, e 2 = 0 et p(t). This will be the object of our next study, but the simulations executed 

with the inputs e I and e 2 in the form (3.3) (cf. [8]) already show that a better approximation of the glycemia 

curve is obtained with the simultaneous intervention of two actions X et Y (insulin and glucagon) rather 

than with the insulin action alone. 

IV. C O N C L U S I O N  

We have presented, and illustrated with two examples, a new method of  research which links 

control theory to biology. This method, of  which Bernard-Well is the initiator, opens a vast field of 

investigation and allows us, by way of an original modelization which is connected to Rosea's dynamical 

metaphors [21], to take into account the agonistic-antagonistic aspect occurring in many biological 

regulations. This modelization, which is able to simulate both the pathology and the physiology, proposes 

bipolar controls with therapeutical repercussions which are at times surprising. There is no question that the 

specialist in control theory provide precise medical details, as he does not have the ability to do this, but he 

can all the same indicate (as a number of medical publications (cf. [5, 10, 1 I]) have already done) that the 

practice of bipolar therapy enlarges its field of application step by step. There is no doubt that at some future 

date, which we should try to make as near as possible, this therapy will lead to the alleviation of suffering 

of many human beings. 
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ABSTRACT: The aim of this contribution is to illustrate the 
impact of computer simulation in the field of biology and medi- 
cine. This paper shows how systems analysis, control theory and 
computer science can stimulate new approaches to interpret can- 
cer, to predict tumor growth and to optimize tumor treatment. 

Starting with a review of the current biological knowledge about 
the origin of cancer a computer model is constructed 
- to simulate the time behavlour of disturbed cell growth control 
circuits 

- to predict spatial tumor growth (2-D, 3-D) and 
- to simulate different kinds of cancer treatment (surgery, ra- 
diation- and chemotherapy). 

In the long run the aim of our work is to optimize treatment 
strategies and schedules in vitro and in vivo by computer simula- 
tion prior to clinical therapy. 

I. BIOLOGICAL BACKGROUND OF THE CANCER PROBLEM 

Cancer is a multistep process with the stages of initiation, 

promotion and progression. Characteristic features of malignant 

tumors (I) are uncontrolled proliferation, invasion in adjacent 

normal tissue, metastases induced to other tissues via lymphatic 

channels and the ability to evade immune surveillance. Though 

cancer treatment is concentrated on a prevention of metastases 

(2) the central question in the background of research is: Which 

is the initiating event that is responsible for a stepwise trans- 

formation of a normal cell into a tumor cell? Recent investiga- 

tions in the field of molecular biology have focussed on dominant 

cellular genes called "proto-oncogenes" which can be activated by 

tumor viruses, gene amplification, gene translocatlon and genetic 

mutation. In spite Of this progress (3) the main question how 

genes and the growth of normal and mallgnant cells are regulated 

still remains open. 
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Most of the normal tissues in the body contain some cells that 

can renew themselves (neurons, liver cells, kidney cells) if a 

tissue is injured. The division of a cell into two new ones 

involves four stages: GI ---~ S ---~ G2 ---~ M (GI is a gap after 

stimulation; S is the phase of DNA replication; G2 is a second 

gap period and M is the stage of mitosis). When the replacement 

has been completed the repair process stops. Furthermore, at 

particular stages of the cell cycle the cells may be blocked by 

drugs or agents, or they may move out of the cell cycle into a 

resting phase known as GO (4). 

In contrast to the normal cell a tumor cell is theoretically able 

to divide indefinitely. In addition a different morphology, lar- 

ger nucleus, abnormal number of chromosomes and the formation of 

new capillaries (tumor angiogenesis) which is associated with a 

more rapidly growing tumor (5) can be noticed. 

For studying the process of carcinogenesis tumors are induced to 

animals or to cell cultures (in vitro). Cell cultures are not 

only used to study the division of tumor cells, but also to 

determine the effect of chemotherapeutic drugs. During the last 

years a large progress has been made in experiments gaining hard 

data about normal and abnormal cell-growth control processes for 

instance of cell-cycle phase durations. 

2. MODELING APPROACHES 

Starting from basic biological test results a large body of 

mathematically oriented work applying mathematics to the field of 

biology and medicine has been published (6-10). Unfortunately 

these models which consist of complicated formulae, are in most 

cases not completely understood by clinicians. In this dilemma 

the combined application of methods of systems analysis, control 

theory, automata theory, computer sciences and heuristics is a 

good link between the diverging areas of medicine and mathema- 

tics. 
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0ur own approach developing closed-loop control circuits for 

tumor growth started in 1968 (11). At that time the subject of 

consideration was focussed on stability conditions and on the 

interpretation of cancer as an unstable closed-loop control cir-- 

cult. Step by step the dynamic behaviour of cell renewal control 

loops (Fig. I) was investigated. Blockorlented simulation lan- 

guages have been used for simulating the macromode]s. As a result 

the number of cells as a function of time has been plotted (12). 

Then oncologists advised us to consider not only the time but 

also the spatial behaviour of tumor growth. In a first approach 

we developed models at a cellular level which described the 2-D 

behavlour of a normal cell inoculated into a nutrient medium (in 

a Petrl dish). Next we extended this approach and tried to simu- 

late tumor growth in the tissue of a tobacco leaf (13). 

D1 D2 D3 R 

I - 1 

E2 ICONTROLLE R ii: El 

R: Required tissue oxygen (desired number of erythrocytes} 

C: Number of red blood cells (erythrocytes) 

E2: Production of the erythropoietin hormone 

DI, D2, D3: Disturbance 

Fig. 1: Multi-loop control circuit of erythropoiesls 
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Flg. 2: Simu]atlon of tumor formation in the tissue of a tobacco 

leaf 

NUIRIENT 
MEDIUI ~ NECROTIC CENTER 

~ ~ _ ~  NUTRIENT MEDIUM 

: q  , 0 ~  

~° SYMBOLS : 

• ' H 

PROLIFERATING ZONE , , cm 
]K 0 S 

0 P (GL. f;. P-2} 

Fig. 3" Simulatlon of the formatlon of a tumor spheroid. The in i -  
t i a l  conflguration consisted of a single tumor cell  

placed l~ the center o~ the nutrient medium 
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After getting the results shown in Figure 2 we improved these 

models by introducing distinguished cell cycle phases (GI, S, G2, 

M, GO, N). Thus, we were able to simulate the 3-D growth of a 

single dividing tumor cell (14) inoculated into the center of the 

cell space of a nutrient medium at the beginning of the simula- 

tion run (Fig. 3). 

The introduction of distinguished cell-cycle phases was necessary 

because chemotherapeutic agents and rays effect only a very 

particular phase of the cell cycle that means they act phase 

specifically. 

After simulating in vitro tumor growth the attempt was made to 

substitute the nutrient medium by static blood vessels (15). 

However, very soon it was clear that a more realistic structure 

of capillaries was desirable for simulating in vivo tumor growth. 

3. DESIGN STRATEGIES OF A HEURISTIC MODEL 

The modeling of complex cell growth requires a considerable 

simplification. Some of the oversimplifying assumptions are 

- constant volume of a cubic cell 

- constant phase duration and constant cell loss 

- only horizontal and vertical communication between neighboring 

cells 

- a limited tissue volume by computer facilities 

side effects, immunologic reactions, heterogenlty, drug resis- 

tance and the formation of metastases are neglected. 

If you want to construct a model of high order, it is 

to design a modular concept. In this case it means 

modular structured subsystems. 

necessary 

to design 
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You need control models (Fig. 4) which describe the cell 

division of normal and tumor cells at a cellular level 

including experimentally gained data e.g. of cell- cycle 

phase durations. 

(ll) Heuristic cell-productlon and interaction rules are re- 

quired describing the cell-to-cell communication. For in- 

stance one rule of the catalogue may say: 

All tumor cells residing at a distance larger than 100 ~m 

from the capillaries after the next division step will 

enter the resting phase GO. 

(iii) Cell movement is described by transport equations (diffu- 

sion-, Poisson-equation), that means we have to introduce 

into the model gradients for pressure and metabolic com- 

pounds. 

(iv) To represent 2-D and 3-D simulation results computer- 

graphics software packages are necessary. 

I # #  ,I 

I 

~-~STEMCELLS]~ ~~l 6] 1 S G2 
CELL CYCLE 

, i ' I I I l !__ 

" I1 
! 

' i  
E: DIFFERENTIATED END CELLS 

l 

I 
i CELL DEAI]I 

Fig. 4: Simplified cytokinetic model describing the division of a 

normal cell 
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The large body of statements, rules and equations has been trans- 

formed into algorithms. In addition algorithms considering tumor 

treatment (surgery, radiation- and chemotherapy) have been deve- 

loped in subprograms written in FORTRAN IV. To start the simula- 

tion program packages the following input data have to be fed 

into the computer (VAX 730): 

- notations about the character of a cell (normal, malignant) 

- cell-cycle phase durations 

- cell-loss rates 

- initial configuration of normal tissue and of tumor ceils 

- distinguished data about the kind of the planned tumor treat- 

ment. 

4. SELECTED SIMULATION RESULTS 

Numerous simulation runs have been performed by Ddchting and 

Vogelsaenger (15-17) simulating tumor growth and different kinds 

of treatment. Some special results will be demonstrated now. 

9.1 Growth of capillaries 

The simulation of in-vivo tumor growth requires a realistic 

structure of capillaries. Therefore Vogelsaenger (16) investi- 

gated the question: Is the formation of capillaries a stochastic 

or a regulated process? In (16) the assumption is made that each 

cell of an organ in evolution has a special request for oxygen 

and glucose. Therefore, parallel to the formation of tissue 

capillaries are built with a specific structure corresponding to 

the required oxygen and glucose. That means from the viewpoint of 

control theory the request for oxygen supply is regulated to a 

constant level by building a special structure of capillaries. A 

comparison between Figure 5 and Figure 6 shows that for the 

cortex of a rat the simulation result is highly similar to the 

experimental result received by B~r (18). 
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RIM 

/ 

VENTRICULUS 

Fig. 5~ Capillary network in the cortex (simulation result) 

4.2 Spread of tumor cells in the cortex 

Now the assumption is made that a single tumor cell is arbitrari- 

ly placed in the tissue of the cortex at T=I unit of time. If 

thls tumor cell resides close to a capillary it will divide and 

move in accordance with the cell production rules (Fig. 7). 

Further tumor growth is possible only because tumor cells produce 

a substance which is called tumor-angiogenesis factor (TAF). This 

factor stimulates nearby blood vessels to send out new capilla- 

ries (Fig. 8) which grow towards the tumor, penetrate it and lead 

to further rapid tumor growth. Recently great efforts have been 

made to attack cancer by trying to find a protein which inhibits 

the production of the tumor-angiogenesis factor. 
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VENIRICULUS 

.Fig. 6: Vascularization of the cortex (18) 

4.3 Chemotherapeutic treatment in vitro 

As pointed out in section I, the cytotoxlc effect of chemothera- 

peutic drugs is tested in cell cultures. These are very good in- 

vitro systems which can be simulated by a computer model. Figure 

9(a) shows a tumor spheroid at T=2OO units of time which has 

grown up from a single tumor cell inoculated into the center of 

the cell space at T=I unit of time. 
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Fig. 7:, Spread of tumor cells in the cortex at T=45 units of time 
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Fig. 8: Formation of new capillaries at T=120 units 

(tumor-angiogenesis effect) 

of time 
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At T=201 units of tlme it is assumed that all proliferating tumor 

cells (i.e. the outside rim) have been killed by a cytotoxic drug 

(Fig. 9(b)). Now the remaining resting tumor cells (GO-phase) in 

the neighborhood of the nutrient medium are being recruited into 

the cell cycle again, and after a short tlme of remission the 

tumor spheroid continues to grow (Fig. 9(c)-(d)). Therefore, a 

second therapeutic attack or a combined approach is recommended. 

The task which has been solved in (15) is to determine the opti- 

mum time at which the drug has to be applied for a second (and 

more) tlme(s]. 

5. FUTURE PROSPECTS 

From the voluminous catalogue of unsolved problems in the area of 

cancer research I think there are three promising avenues of 

future work in the modeling field: 

- Optimization of distinguished methods and schedules of cancer 

treatment. 

- Generation of a more realistic initial configuration of a tumor 

by combining CT-pictures (Computer Tomography) wlth predictive 

models describing tumor growth and last not least 

- Consideration of facts which had to be neglected so far (forma- 

tion of metastases, immunologic reactions, drug resistance, 

heterogenity, side effects). 
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QUA$1LINEAKIZATIOM IN BIOLOGICAL SYSTEMS MODELING 

E. S. Lee* and K. M. Nang** 

The e s t i m a t i o n  of parameters  in  d i f f e r e n t i a l  equa t ions  i s  a b a s i c  problem in  

b i o l o g i c a l  systems modeling.  However, t h e s e  parameters  cannot be e s t ima ted  e a s i l y  

when the  equa t ions  are  too compl ica ted  and cannot be so lved  in  c losed  form. 

Although Dr. Bellman has proposed to  use q u a s i l i n e a r i z a t i o n  to  so lve  t h i s  problem, 

more numerical  exper iments  are  needed to  show the  e f f e c t i v e n e s s  of t h i s  approach.  

In t h i s  paper ,  q u a s i l i n e a r i z a t i o n  i s  used to  e s t i m a t e  the  parameters  in  var ious  

b i o l o g i c a l  models.  I t  i s  shown t h a t  t h i s  approach i s  q u i t e  e f f e c t i v e  and converges 

very f a s t  in  most s i t u a t i o n s .  Thus, the  q u a d r a t i c  convergence p r o p e r t y  i s  

p re se rved .  

QU&SILINEARIZATION AHD THE NONLINEAR ESTIMATION OF PARAMETERS 

The algorithm of quasilinearlzation in estimation is well documented [1-3], only 

the e s s e n t i a l  equa t ions  w i l l  be d i s c u s s e d  in  the  f o l l o w i n g .  Consider  a system 

r e p r e s e n t e d  by the  fo l lowing  system of non l inea r  d i f f e r e n t i a l  equa t ions  

~ f ( x ,  a, t )  (1) 
d t  

where x and f are H-dimensional  vec tors  w i th  components x 1, x 2, . . . .  x H and f l '  f 2 '  

. . . .  fM' r e s p e c t i v e l y  and u represents the L d imensional  unknown parameters. Let  us 

assume t h a t  the  L parameters  cannot be measured d i r e c t l y  and only M 1 of the  H 

v a r i a b l e s  can be measured. These measured va lues  are  

xj(exp)(t s) - bsiJ), $ - 1,2 ..... m, j - 1,2 ..... M I (2) 

with t m - t f .  The problem i s  to  e s t i m a t e  the  parameters  a £ ( t ) ,  ~ = 1,2 . . . . .  L and 

the  i n i t i a l  c o n d i t i o n s  

xi(O) - c i ,  i - 1,2 . . . . .  M (3) 

from the  given or measured da ta ,  Equation (2) .  I t  should be emphasized t h a t  the  

measured va lues  bs ( J )  do con ta in  n o i s e .  Let us e s t a b l i s h  the  v e c t o r  equa t ion  

d ~ .  0 (4) 
dt  

* Corresponding au thor ,  E. $. Lee, Dept.  of Ind.  Engg.,  Kansas S t a t e  U n i v e r s i t y ,  
Manhattan, KS 66506 

** Dept. of Ind.  Engg.,  Tsinghua U n i v e r s i t y ,  Taiwan, China 
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The problem can be s t a t e d  as f i n d  the  v a l u e s  of  the  v e c t o r s  c and u so t h a t  the  

l e a s t  s q u a r e  e x p r e s s i o n  

M m 

j .  [xj ts - hs Jll2 
j=l s=l 

is minimized subject to the constraints of Equations (I) and (4). This is a 

multipoint boundary value problem with minimization. It can be solved by the use of 

quasilinearization . Equations (i) and (4) can be combined to obtain 

~z 
dt = g(y,t) (6) 

where y and g are M + L dimensional vectors. Equation (6) can be linearized by 

the use of Taylor Series with second and higher order terms omitted. The resulting 

v e c t o r  e q u a t i o n  i s  

dYk+ 1 
--dr- = g(Yk' t) + J(yk)(Yk+l - yk ) (7) 

where Yk is assumed known and is obtained from the previous iteration and Yk+l is 

the unknown function. The expression J(yk ) is the Jacobian matrix. Because of the 

fast convergence rate, Equation (7) with unknown initial conditions can be solved 

q u i c k l y  by the  use  of  the  s u p e r p o s i t i o n  p r i n c i p l e .  In  g e n e r a l ,  l e s s  than  t en  

i t e r a t i o n s  a r e  needed t o  o b t a i n  a ve ry  h i g h  a c c u r a c y .  

Y~X,ALRTXFXCIJIL KIDI~SFS~ 

Cons ide r  the  f o l l o w i n g  s imple  model of  t he  a r t i f i c i a l  k idney  sys tem [4, 10] .  

dC 1 
v 1 - ~  = G -  K(C 1 - C 2) 

dC 2 
V 2 - ~  = K(C 1 - C 2)  - C k C 2 - CdC 2 

where G = u r e a  (or  c r e a t i n i n e )  p r o d u c t i o n  r a t e  

k . mass t r a n s f e r  p a r a m e t e r  

C k - c l e a r a n c e  r a t e  of  p a t i e n t  k idney  

C d = d i a l y z e r  c l e a r a n c e  

C 1 = u rea  c o n c e n t r a t i o n  in  i n t r a c e l l u l a r  c e l l  

C 2 = u r e a  c o n c e n t r a t i o n  in  e x t r a c e l l u l a r  c e l l  

V 1 = volume of  i n t r a c e l l u l a r  c e l l  

V 2 = volume of  e x t r a c e l l u l a r  c e l l  

(8 )  

(9) 
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In  a c t u a l  e x p e r i m e n t a l  s i t u a t i o n s ,  the  c o n s t a n t s  or pa rame te r s  cannot  be 

neasured° on ly  C 2 can be measured a t  t he  v a r i o u s  va lues  of t .  Our problem i s  to  

e s t ima te  k and CI(O) f o r  Equat ions  (8) and (9) from the  expe r imen t a l  da t a  

c2(exp)(t s} = C2s, s = 1,2 ..... m (I0) 

Notice that the initial condition of C2(t=O) can be measured, but Cl(t=O) must be 

estimated. Thus, an equation like Equation (4) can be established for the parameter 

k. 

This problem is solved by quasilinearization with the following experimental 

data [4] 

c2(expl(ts=l) = 2.070, 

c 2 ( e x p ) ( t s a 2 )  = 1.818 

c 2 ( e x p l l t s = 3 )  = 1.674 

and the values of 

G = 0.031, C d = 3.6, C k = O, At = 0.01, 

C2(t=0) = 2.538, tf = 3 

Four d i f f e r e n t  exper iments  were c a r r i e d  out  wi th  four  d i f f e r e n t  s e t s  of i n i t i a l  

approximat ions .  The convergence  r a t e s  a re  summarized in  Table 1. Not ice  t h a t  f i v e  

d i g i t s  accuracy  a re  o b t a i n e d  in  6 to  10 i t e r a t i o n s .  The Runge-Kutta i n t e g r a t i o n  

technique  was used .  

GLUCOSE AND INSULIN KINETICS MODELING 

Cons ider  the  fo l l owing  s imple  one compartment model of g lucose  and i n s u l i n  in  

plasma [5, 6] 

de 
~ = - IIH ÷ 130 + 12 (II) 

dG 
~ = - 140 - I6H + 15 (121 

where G = plasma glucose concentration 

H = plasma IRI concentration 

I i = parameters or constants. 

The problem is to estimate I I, 13, 14, 16, H(t=O) and G(t=0) from experimental data 

for H and G at various values of t. Again, equations like equation (4) can be 

established for the four parameters. 

The four parameter values and the two initial conditions are estimated by 

quasillnaarlzation. The numerical values used are 
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12 - -1 .56 ,  15 = 6.94,  t f  = 180 minutes 

At -- 0 .2 .  

The exper imenta l  data  used are  l i s t e d  in  Table 2. Severa l  d i f f e r e n t  s e t s  of i n i t i a l  

approximat ions  are  used.  One of the  t y p i c a l  r e s u l t s  a re  l i s t e d  in  Table 3. The 

i n i t i a l  approximat ions  are  ob ta ined  by i n t e g r a t i n g  the  equa t ions  wi th  the  va lues  fo r  

the Zeroth  i t e r a t i o n  as the i n i t i a l  c o n d i t i o n s .  The Runge-Kutta technique  i s  again 

used.  Notice t h a t  even with the  very extreme i n i t i a l l y  assumed i n i t i a l  c o n d i t i o n s  

of zero ,  only nine  i t e r a t i o n s  are  needed to  ob t a i n  a f i v e  d i g i t s  accuracy.  

CARDIOVASCULAR INDICATOR DILUTION MODELING 

Consider  

dC 1 

dt  

dC 2 
- ~  - Bl(C 1 - C 2) 

dC 3 
-d -~"  Sl(C2 - C3) 

dC 4 
- ~ - s  l(c 3-C 4) 

where B 1 - F/V, B 2 - Fs/V, wi th  

F - vo lumet r i c  flow r a t e  

F = r e c y c l e  vo lumet r i c  f low r a t e  s 

V = volume of the  wel l -mixed c e l l s  

The boundary c o n d i t i o n s  fo r  Equation (13) are  

Cl( t=O)  - ~ - B 3, C2(t=O) = 0 

C3(t=O) = 0 C4(t-O) - 0 

the  fo l lowing  four  c e l l  c a r d i o v a s c u l a r  i n d i c a t o r  d i l u t i o n  model [7, 8].  

- B1C 1 + B2C 4 

(13) 

(14) 

where M i s  the  mass of the  i n j e c t i o n  and the  C i ' s  a re  the  c o n c e n t r a t i o n s  of  the  

cor responding  c e l l s .  

In ac tua l  exper iments ,  only  the  C ' s  can be measured, the  parameters  B 1 and B 2 

cannot be measured d i r e c t l y  and must be e s t ima ted  i n d i r e c t l y  from exper imenta l  da ta .  

The va lues  of B 1, B 2 and B 3 are  e s t ima ted  by q u a s i l i n e a r i z a t i o n  wi th  the  

numerical  da ta  l i s t e d  in  Table 4. The Runge-Kutta numerical  i n t e g r a t i o n  formula 

wi th  At - O.2 i s  used.  Various d i f f e r e n t  i n i t i a l  approximat ions  f o r  B 1, S 2 and B 3 

were used.  The convergence r a t e  i s  again very f a s t .  Three t y p i c a l  convergence 

r e s u l t s  a re  l i s t e d  in  Table 5 fo r  t h r e e  d i f f e r e n t  s e t s  of i n i t i a l  approximat ions .  
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METHOTREXATE PHARHACOKINETICS MODELING 

Cons ider  the  

d i s t r i b u t i o n  and 

doses [9] .  The m a t e r i a l  ba l ance  e q u a t i o n s  r e p r e s e n t i n g  the  va r i ous  ana tomica l  

f o l l owing  p h a r = a c o k i n e t i c  model used to  p r e d i c t  the  d e t a i l e d  

e x c r e t i o n  of m e t h o t r e x a t e  i n  mammalian s p e c i e s  ove r  a wide range  of 

compartments a re  

dC C L C K C M 

de M C M 
Huscle :  V M - ~  = 0 H (Cp - RM)-- 

dCK CK CK 
Kidney: V K -d~ = QK (Cp - RK)-- - k K RK-- 

dC L C L C G C L 
Liver: VL "~ = (QL - QG ) (Cp - RL)-- + QG (RG ..... RL) - r 

dC G C G 4 k G C i 
Gut T i s sue :  V G - ~  = 0 G (Cp - RG)-- + 1/4 i=l~" (K;-~-C;  + b C i)  

dCGL 4 dC i 
Gut Lumen: - ~ -  = 1/4 ~" - ~ -  

i = l  

(15) 

(16) 

(17} 

(18) 

(19) 

(20) 

VGL dC I k G C~ 
-~- - ~ =  r 3 - k F VCL c I -  Z / d ¢ ~ - ~ - c t *  b C l )  {21~ 

VGL dC i K G C i 
d d t  kF VGL (Ci-1 C i)  . . . . . . . .  + b C i)  (22) . . . . . . . .  1/4(KG + C i 

i = 2 ,3 ,4  

where the  va lue  of r i n  Equat ion  (18) can be r e p r e s e n t e d  by 

KL(C1/R L) 
r . . . . . . . . . . .  (23) 

KL+(CL/R L) 
which i s  the  s e c r e t i o n  r a t e  of = e t h o t r e x a t e  out  of the  l i v e r  c e l l s  i n t o  the  b i l e  

duc ts .  Using the  t h r e e  compartments model, we have 

dr I 
T - ~  = r -  r I (24) 

dr 2 
r - ~  = r I - r 2 (25) 

dr 3 
T -~ = r 2 - r 3 [26) 

where C is the drug concentration in the various anatomical compartments, r is the 

drug transport rate in the bile, V is the volume of the various compartments, b is 

the rate constant for nonsaturable gut absorption, Q is the plasma flow rate, R is 



4 1 8  

the  t i s s u e  plasma e q u i l i b r i u m  r a t i o  f o r  l i n e a r  b i n d i n g  and K k i s  k idney c l e a r a n c e  

and i s  equa l  to  1 .1  mL/min f o r  r a t .  The o t h e r  numer i ca l  v a l u e s  used  f o r  r a t  a r e :  

Vp = 9 ml Qk = 5 ml/min 

V M E 100 m! O L = 6.5 ml/min 

V k = 1 .9  ml O G = 5.3 ml/min 

V L = 8.3 m l  R H = 0 . 1 5  

V G = 11 mr Rk s 3 .0  

VGL = 11 mi R L = 3 .0  

QH = 3 ml/min 

The body weight  fo r  r a t  i s  200 g.  Not ice  t h a t  t h r e e  compartments  were assumed fo r  

b i l e  s e c r e t i o n  and 4 compartments  were assumed fo r  gut  lumen. Some of the  

p a r a m e t e r s  such  as  R G, k G and K G are  not  measu rab l e .  These pa rame te r s  fo r  

m e t h o t r e x a t e  i n  r a t  w i l l  be e s t i m a t e d  by q u a s i l i n e a r i z a t i o n  u s i n g  e x p e r i m e n t a l  da ta  

o b t a i n e d  by B i s c h o f f  e t  a l .  [9] .  These e x p e r i me n t a l  d a t a  as a f u n c t i o n  of t ime fo r  

the  drug c o n c e n t r a t i o n s  i n  the  v a r i o u s  compartments  a re  l i s t e d  in  Table  6 and are  

o b t a i n e d  from the  f i g u r e s  of  r e f e r e n c e  [9] .  

I t  shou ld  be emphasized t h a t  the  p a r a m e t e r s  Rg, k G and K G cannot  be e s t i m a t e d  

e a s i l y .  This  i s  because  t h a t  the  sys t ems  of d i f f e r e n t i a l  e q u a t i o n s  cannot  be solved 

i n  c l o s e d  form. t h u s ,  q u a s i l i n e a r i z a t i o n  forms an i d e a l  and powerful  approach .  

In a d d i t i o n  to  the  13 d i f f e r e n t i a l  e q u a t i o n s  r e p r e s e n t e d  by Equa t ions  (15) - 

(26) ,  3 a d d i t i o n a l  d i f f e r e n t i a l  e q u a t i o n s  i n  the  form of Equat ion  (4) can be 

f o r m u l a t e d  f o r  the  3 unknown p a r a m e t e r s .  Thus,  t h e r e  a re  a t o t a l  of 16 d i f f e r e n t i a l  

e q u a t i o n s .  The i n i t i a l  c o n d i t i o n s  fo r  the  13 d i f f e r e n t i a l  e q u a t i o n s  a re  a l l  equal  

to  zero  except  Cp(t)  which i s  

Cp( t )  = 1200/9 {27) 

The 16 d i f f e r e n t  e q u a t i o n s  can be l i n e a r i z e d  by u s i n g  Equat ion  (7) .  The unkno.a 

pa rame te r s  can then  be o b t a i n e d  by u s i n g  Equat ion  (5) and s u p e r p o s i t o i n  p r i n c i p l e .  

The homogeneous and p a r t i c u l a r  s o l u t i o n s  can he o b t a i n e d  by n u m e r i c a l l y  i n t e g r a t i n g  

the  l i n e a r t z e d  e q u a t i o n s .  In the  p r e s e n t  work, the  modi f i ed  Adam-Houlton 

i n t e o r a t t o n  scheme i s  used  wi th  s t e p  s i z e  as  

At - 0 .01 minute  fo r  0 ~ t • 30 

At - 0 .1  ~ i n u t e  f o r  30 ~ t ~ 240. 

The convergence  r a t e s  f o r  the  t h r e e  p a r a m e t e r s  a re  l i s t e d  in  Table 7. Not ice  the  

f a s t  convergence  r a t e s .  Only 5 i t e r a t i o n s  a re  needed to  o b t a i n  4 d i g i t s  accu racy .  
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Since the  r e s u l t s  of the  p rev ious  i t e r a t i o n  fo r  a l l  t must be s t o r e d  in the  

computer, the  s t o r age  requirement  can be q u i t e  l a r g e .  For example, the 

pharmacokineti¢ model needs (30/0.01 + 210/0.1 + 1) 16 - 81616 s t o r a g e  spaces .  In 

order to  reduce t h i s  s t o r a g e  requ i rement ,  we can s t o r e  only  the  i n i t i a l  c o n d i t i o n s  

of the previous  i t e r a t i o n .  The complete p r o f i l e  fo r  a l l  t of the  previous  i t e r a t i o n  

can be ob ta ined  by i n t e g r a t i n g  the  equa t ions  when we c a l c u l a t e  the  c u r r e n t  

i t e r a t i o n s .  The s t o r a g e  requi rements  can thus  be reduced t remendously .  For the  

phareacokinet ie  problem, the  s t o r a g e  requirement  i s  reduced from 81616 to  16. 
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Table 1 Convergence Rates  of the  A r t i f i c i a l  Kidney Model 

Iteration I C1(0) 

0 I 2.538 
1 I 2.9513 
2 I 2.7675 
3 1 2.7997 
4 I 2.8000 
5 I 2.7999 
6 I 2.7999 
7 1 2.7999 
8 I 
9 I 

10 I 

Table 2 

Table  3 

K 

5. 
6.1718 
7.5204 
7.5318 
7.5279 
7.5288 
7.5286 
7.5286 

C1(0) I K 

2.538 112. 
2.7879 I 5.2057 
2.8314 i 7.4735 
2.8023 ) 7.4970 
2.7994 I 7.5351 
2.8000 i 7.5272 
2.7999 I 7.5289 
2.7999 I 7.5285 
2.7999 I 7.5286 
2.7999 I 7.5286 

I 

ci'°) I x 
2.538 $ 19.2 ) 2.538 
3.1695 1-35.947 I 2.4352 
2.9149 |- 4.79061 3.1274 
2.9895 
2.7776 
2.7991 
2.8000 
2.7999 
2.7999 
2.7999 
2.7999 

6.96271 2.7892 
7.5923 2.6165 
7.5369 2.8398 
7.5270 2.8016 
7.5290 2.7999 
7.5285 2.7999 
7.5286 2.7999 
7.5286 2.7999 

Experimental Data for Glucose and I n s u l i n  Kinetics Model 

t s R ( e x p ) ( t s )  G ( e x p ) ( t s )  

0 177 581 
30 155 182 
60 40 95 
90 26 87 

120 20 97 
150 24 106 
180 28 110 

Convergence Rates  of Glucose and I n s u l i n  K i n e t i c s  Model 

K 

25. 
18.639 

!-34.37 
- 7.5045 
5.6438 
7.8420 
7.5273 
7.5292 
7.5285 
7.5286 
7.5286 

Iteration I 1 12 14 16 H(O) G(O) 

0 0. 0. 0. 0. 177. 581. 
I 0.051076 0.025872 0.048153 0.22224 181.31 576.58 
2 0.038405 0.017182 0.020605 0.052089 177.16 580.37 
3 0.045445 0.021543 0.028009 0.043957 177.56 580.06 
4 0.046151 0.022149 0.028790 0.043174 177.27 580.35 
5 0.046411 0.022281 0.028581 0.043500 177.24 580.38 
6 0.046408 0.022286 0.028565 0.043510 177.23 580.39 
7 0.046423 0.022293 0.028555 0.043523 177.23 580.39 
8 0.046421 0.022292 0.028555 0.043523 
9 0.046422 0.022293 0.028555 0.043524 

10 0.046422 0.022293 0.028555 0.043524 
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Table 4 Exper imenta l  Data f o r  C a r d i o v a s c u l a r  Model 

t Cl(t s) C2(t s) C3(t s) C4(t s) ___s 

0.0 0.9997 0.0 0.0 0.0 
2.0 0.2289 0.3314 0.2609 0.1387 
4.0 0.1327 0.1887 0.2391 0.2366 
6.0 0.1141 0.1347 0.1682 0.2009 
8.0 0.0909 0.1066 0.1269 0.1528 

10.0 0.0702 0.0834 0.0988 0.1175 
12.0 0.0543 0.0646 0.0768 0.0912 
14.0 0.0421 0.0501 0.0595 0.0707 
16.0 0.0327 0.0388 0.0462 0.0549 
18.0 0.0253 0.0301 0.0358 0.0425 
20.0 0.0196 0.0234 0.0278 0.0329 

Table  5 Convergence Rate  of C a r d i o v a s c u l a r  Hodel 

I t e r -  BI B2 B3 
at ion 

0 0 .1  0.01 0 .1  
1 0.4379 0.0725 0.4969 
2 0.4896 0.1772 0.8993 
3 0.6522 0.2679 0.9658 
4 0.7616 0.3635 0.9952 
5 0.7974 0.3979 0.9993 
6 0.8014 0.4015 0.9997 
7 0.8017 0.4018 0.9997 
8 0.8017 0.4018 0.9997 

B1 B2 B3 

0.6 0.2 0.8 
0.7663 0.3755 0.9903 
0.7966 0.3970 0.9992 
0.8013 0.4015 0.9996 
0.8017 0.4018 0.9997 
0.8017 0.4018 0.9997 

B1 52 B3 

2. 1.5 3 
1.7167 1.2619 1.0049 
0.6846 0.2886 0.9983 
0.8014 0.4021 0.9992 
0.8017 0.4018 0.9997 
0.8017 0.4018 0.9997 

Table  6 Exper imenta l  Data fo r  Pha rmacok ine t i c s  Modeling 

t s Cp{t s) CM(t s) CK(t s ) CL(t s ) CGL(t s ) 
~ . i . )  

15 7.7 1.5 20. 20.9 23.98 
30 4 .0  0 .75 10.8 11.5 47.00 
60 1.5 0.25 4.0 4.97 59.00 
90 1.14 0.16 2.8 3.60 45.50 

120 0.80 0.13 2.2 2.80 36.00 
180 0.45 0.072 1.1 1.45 18.25 
240 0.27 0.043 0.67 0.86 8.90 

Table  7 Convergence Rates  of Pha rmacok ine t i c s  Modal 

I t e r a t i o n  R G k G K 0 

0 1. 20. 200. 
1 1.108 22.64 237.2 
2 1.112 21.61 224.6 
3 1.112 21.97 229.3 
4 1.112 21.85 227.7 
5 1.112 21.89 228.3 
6 1.112 21.89 2 2 8 . 3  
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The theory of feedback control as a possible stabilizing mechanism has already been introduced into 

ecosystem analysis. One problem in the theory is the identification of the informational links by which 

such controls operate. Cyclic controls, for example, zero--mean sine functions added to certain exchange 

flows in the system, might also contribute to system stability. Their advantage is that they operate without 

need for information from the rest of the system. The theory of ecosystem cyclic control is presented and 

applied to data from an oyster reef ecosystem. 

I. INTRODUCTION 

To address the problem of ecosystem stability and performance, the previous control studies 

utilized solely classical control principles, feedback and feedforward (Olsen, 1961; L,owes and Blackwell, 

1975; Mulholland and Sims, 1976; Vincent, et.al., 1977; Gob, 1979; Hannon, 1985b,c, 1986; DeAngelis, 

1986). If knowledge of the current output is used to modify the inputs to control the system, we have a 

feedback control situation (Wonham, 1984). Feedforward control uses current knowledge of the 

disturbance (rather than output) as the basis for a corrective action (Takahashi, et. al., 1970). The major 

problem with these kinds of controls, however, lies in explaining how the requisite information flows 

occur. 

An alternative approach to ecosystem stability is found in the concept of cyclic (or vibrational) 

control (Meerkov, 1980; Bellman, et.al.)1986). Basically, cyclic controls are periodic variations (zero- 

mean) in the flows between components in an ecosystem or between the ecosystem and the surrounding 

environment. If the amplitudes and frequencies of these variations are within the appropriate range, tile 

ecosystem, unstable without such variations, could under certain conditions be stabilized by their 

introduction wi|hout any information flows. 

Oscillations-induced stabilization of ecosystems has been investigated by a number of researchers. 

Armstrong and McGehee (1976) developed a theory for the coexistence of a variety of species using a 

smaller number of resources. Their technique involved a the sequential staging of the species in a periodic 

manner, sharing the resource through time. Kemp and Mitseh (1979) used an empirical model to 

demonstrate the stable coexistence of three plankton species on the same resource if one of the resource 

inputs (wave energy) was regularly pulsing. They speculated that only a special range of frequencies and 

Supported in part by the Illinois Departn~nt of Energy and Natural Resources 
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pulse amplitudes would produce the needed stability. The pulsing resource appeared to force a sharing 

between the three species, disadvantaging the species which was the most prolific under steady conditions. 

Levins (1979) established the sufficient conditions of coexistence by requiring that the resource or the 

species functions contain externally induced time-varying elements that enter the equations nonlineady. 

Nonlinear dynamics in Levins' treatment was essential since it resulted in terms with even powers of zero 

mean oscillatory functions. The averages of such terms gave rise to the "average" nonzero inputs which 

acted as effective new resources and under certain conditions ensured stable oscillatory regimes of the 

system. 

The goal of the present paper is to assess cyclic (vibrational) control theory as a tool in ecosystem 

analysis and management. We show that an unstable linear system can be made asymptotically stable by 

zero mean parametric excitations as well, and hence, nonlinearities are not necessary for oscillatory 

stabilization. We also utilize nonzero averages of even powers of zero mean oscillatory functions to obtain 

stabilizing corrections. However, we average not the original system with oscillations, but some other 

specially constructed system, the average of which reveals the dynamics of the original cycling system. 

For the purpose of illustration, we have chosen a modeling technique known as flow analysis (itannon, 

1973, 1985a; Barber, et. al., 1979) from a variety of ecosystem modeling approaches, each valid for 

certain system classes. First, we briefly review the flow analysis technique and present the theory of linear 

cyclic control of ecosystems. Then, we apply cyclic control to an oyster reef ecosystem where it acts in 

only one of the component flows. The extension of the theory to nonlinear systems can be done on the 

basis of  the work of Bellman, et. al., 1986. The theory indicates the range of the amplitude/frequency 
ratios in which stabilizing cycles should be sought and asserts the existence of stabilizing cycles in this 

range. The actual stabilizing amplitudes and frequencies are determined via trial and error solutions of the 

differential equations. 

II.  FLOW ACCOUNTING 

In the analysis of complex dynamic systems, it is necessary to develop consistent definitions and 

categorize all the identifiable flows. We start with the diagram shown in Figure I. For more details on the 

ecological accounting system, see Harmon (1973), Finn (1976),/.,trine (1977, 1980), Hannon (1979), 

Patten, et. al., (1976), Hcrendeen (1981), Ulanowicz (1984) and Harmon (1985a). 

In Figure 1, n x n matrix P is called the production-consumption matrix I. This matrix represents 

n processes which consume and produce n commodities. By process, we mean an aggregation of similar 

consumers-producers which is viewed as a single ecosystem component. By commodities, we mean the 

substances produced and consumed by the components of the ecosystem. The elements of the i th column 

represent the breakdown of the main part of the consumption of the ith process. The elements of the i th 

row describe the breakdown of the main part of the production by the same process. Therefore, each 

element of P is the amount of commodity i (row number) which is used by process j (column number) in 
the given time period. For example, Pij could be the daily amount of algal biomass (commodity i) 

consumed by a particular class of herbivores (process j). This is a muhicommodity system since 

commodities listed along any of the rows arc noncommensurable with commodities in any other row. 

Therefore, the row sums may be calculated since they are all the same commodity and, we assume, 

possess the same nutritional qualities for all consumers (The exception to this rule is the nonbasal heat of 

respiration which by definition has zero value to any component in the ecosystem). But, in general, the 
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column sums cannot be formed because a common measure of a value of each clement along the columns 

may not exist. Commodid¢s of different qualities, even though measured in the same units (e.g.,gins- 

carbon) cannot b¢ meaningfully adde.d together. The inputs to omnivores and detritivores, for example, 

are of different qualifies, both chemically and in nutritional meaning, to the consumer. 

The diagonal elements in P are the self-use terms which arc for example, own-waste consumption 

by rabbits and the consumption of decomposcrs by decomposcrs and cannibalism. 

The full output vector q' is the sum of the vector of the nonbasal heat w given off by each of the 

components and the total output vector q. 

The system in Figure I is shown without joint products, that is, each process (column) is assumed 

to produce a commodity of only one type. The joint product case is discussed in Hannon, 1985a and 

Costanza and Hannon, 1986. 

The relationship to the external environment of the, measurable quantities in the ecosystem modeled 

in Figure 1 is summarized in Table 1. The features of each quantity in this table arc identified by the letters 

in the corresponding boxes. The table shows two vectors: r and e. The net output vector r is composed 

of three types of flows: exports (A & D), imports (D & E) and the heat of basal metabolism (B). By 

imports we mean those quantities which can be produced by the ecosystem but enter the system from the 

external environment. Exports arc those quantities which can be produced by the ecosystem but which are 

not necessarily produced by it, and which leave the ecosystem for the external environment. The letter D 

in the import and export columns indicates those measured quantities which are passing through the 

ecosystem in the given time period, therefore, the quandty A - E is the net export. The system is 

perturbed by the externally induced change of the net export. The heat of basal metabolism (basal 

respiration) is that given off by the organism at rest. We take the heat of basal metabolism (B) as a 

surrogate for the commodity flows which are used in rebuilding the stocks metabolized during the given 

period. By stocks we mean the accumulated output quantities in each of the components in the system. 

' " ' ,  

i 

P 

° I 

Net Output 
[-7 

Figure I. Steady State Ecosystem Flow Accounting Diagram 

1 ° Matrices axe upper case symbols and vectors arc lower case; both arc in bold type. The elements of either 
arc in plain type with the appropriate subscfipting. A dot over a symbol indicates the firnc derivative. 
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.,eaves the 
System 

Stays 

Leaves 

Stays 

Net Output 

r 
Basal 

Exports Imports Heat 

A B 

D D 

E 

Non--Praltxal 
Inpul[ 

Table 1. Description of the Quantifies which Form the Net Output and 
Nonproduced Input. 

The stocks are, for example, the amount of biomass of algae which has accumulated in the producer (sun 

capturing) component of an aquatic ecosystem. The vector e stands for those input commodities that the 

ecosystem is incapable of producing (e.g., sunlight) but that are necessary for ecosystem functioning. 

I lL F L O W  ANALYSIS 

Next we combine the flow definitions above with the possibility of a growth in tile stock of 

process j during the given time period At. These flows are graphically shown in Figure 2 for the 

individual process. 

The consumption flows Pij, production flows pj~ and the storage flow Asj/At are internal to the 

ecosystem boundary, while the net output flows rj, the nonbasal respiration flow wj and the nonproduced 

input flow ej cross the ecosystem boundary. The nonbasal respiration flow (e. g., the energy used in 

chasing prey, avoiding predators, food-searching and reproduction) is of such low qu',dity that it cannot be 
utilized further by the ecosystem, and it is therefore considered a waste. The rj consists of the net export 

of the process (export minus import) and the stock replacement (basal respiration). The net input vector e 

is assumed to cause no restriction to the level of qj and is dropped from further consideration at the current 

stage of the model development. 
The total outflow q'j is defined for the steady state ecosystem as 

t A  n 
- -  k~=tpjk "I" rj + wj  . (]) q j  

To take into account a growth in stock, Asj, over the time period At when the system is not in the steady 

state, definition (I) is augmented as 

~ A n A S j  
= ~=,'~P~ + ~ + wj + a--T- (2) qj 
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Environment External 
tho ,o,,s  

lnlmt 

L ~ Nonbasal Waste Wj 
i ~E~p~ 7 

I 
T Imports /rj 

~'- Basal HeatJ 

~Storage AS j / A t  
! - 

, . . -  Production Flows 
k to other Processes 

Figure 2..The Def'mition of the Input and Output Hows of a Typical Process (j).  

Three important simplifying assumptions are now made for the ecosystem shown in Figure 2 with 

qj' defined in (2). 

i) a commodity weighting or importance factor is assigned to each of the commodities produced in 

the system. The weight for each commodity is independent of which component consumes this 

commodity. A weight of zero is given to the nonbasal heat of respiration, and therefore, the vector w 

disappears from the formulation. The element qj can be then be formed by the simple addition of all the 

dements along the jth row of matrix P, the rate of the jth stock growth and the jth element of vector r. For 

amore complete discussion of the commodity weighting issue, see Harmon, 1985a. 
ii) the inputs to process j, Plj form a constant ratio with the output of process j, qj. Thus, PiJqj = 

glj = constant. The constants glj are determined from the data on the ecosystem at its steady state and 

they are assumed to remain constant for the dynamic form of our model presented below. These constants 
represent the internal behavior of the jth process. The gij incorporate the consumption flows into the 

model by locking them into a constant relationship with the output of the receiving process. Thus, the 

problem of summing the consumption flows (see Figure 2) is avoided. 

iii) the stock (sj) of any process (j) stays in constant proportion to the total output (qj) of this 

process. That is: bji = si/qj = constant, forming a diagonal matrix B = d iag lb l t  ..... bnn}. This 

assumption allows us to obtain a balance equation using definition (2) since now 

qj = sj]bjj O) 
If the results of assumptions i) and ii) are combined with (2) and (3), and if At becomes 

infinitesimal, we have 

Sj & S k 
-b =k~gj--~+rj+§j , (4) 

where ~ = d~/dt. 



Equation (4) is the dynamic description of the stock for process j. However, most experimental 

ecosystem data is presented as flows. Therefore, we change (4) into a dynamic description of the flows 

for process j. Substituting (3) and its time derivative into (4) yields 
n 

bjj ~lj = qj-kE__l~k O~ -1] V j, l_<j_<n, 

- t  A 
= A q  - B r, A = B-'(I - G ) .  <5) 

This time invariant ordinary differential equation (5) is in the "standard" form for the flow analysis 

approach. 

IV. STABILITY ANALYSIS 

The stability properties of the behavior of q when the system is subjected to a step change in r 

depend entirely on the matrix A in (5). If the real parts of all the eigenvalues of A were negative, the 

system would respond in a stable manner (Luenberger, 1979, p 158). However, in (5) the sum of the 

eigenvalues of matrix A is always positive. Therefore, the system will always respond to "sufficiently 

rich" changes in r in an unstable manner. 

From an ecological viewpoint, a positive r represents an output of the ecosystem (for 

example, the amount of fish caught in the annual season). From the control theory viewpoint however, 

this output represents an input to the system or a control action. For example, the amount of fish caught 

directly affects the rate of (re)production of fish and many other quantities produced in the ecosystem, 

which in turn, also affect the fishing success, if the system (5) is to accurately represent the functioning of 

an ecosystem, the equations must be judiciously modified to include stabilizing or controlling flows. 

Equations (5) can be made to respond stably by modifying r to include a feedforward or a feedback 

control. Let us, however, demonstrate the use of cyclic control for ecosystem stabilization through the 

addition of a cyclic flow to one of the elements in the matrix G. 

In the flow accounting framework, cyclic conu'ol alone cannot guarantee stability of the system. 

However, only a very simple form of constant feedback is required to make cyclic control effective. Such 

feedback can be easy to maintain since it need not ensure stability but only "condition" the system for 

cyclic control. On the other hand, for a broad class of the so-called decentralized systems, no constant or 

time-varying feedback exists that can stabilize the system (Anderson and Moore, 1981). In these cases, 

the addition of cyclic control can result in the desired stabilizing effect. 

Since equation (5) is still always unstable, several changes must be made to r to demonstrate the 

cyclic control. First, r must be broken into two parts: a vector of net outputs which are independent of the 

output q, and another vector which contains the feedback and cyclic control and depends on q. The first 
vector contains the "set point" vector for the system, rs: the vector of net outputs which in the absence of 

cyclic control determines the unstable steady state level qs of the total output. The introduction of cyclic 

control converts the unstable steady state qs into asymptotically stable T-periodic operating regime, qs(t), 

where T is the period of a cyclic control. A feedback control is needed to convert the trace of the matrix in 

equation (5) to a negative value (Meerkov, 1980). Assume that this is an internal control that changes the 

net output from the system in linear proportion to the production flows, a "flow" control (Hannon, 1986). 

For simplicity, let the linear proportionality be represented by a diagonal matrix of constants, Q. In this 

case, vector r in equation (5) is given by: 
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or in matrix form 
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- rc + Q q  , r = r I + r s = r s 

where r c = Q% 0 ) 

Equation (5) then becomes: 

= a"<i.  G -  Q)q +B'tr - r 
-1 A B-I(I  = N q + a ( r  e - r s )  , N =  - G - Q ) .  (6) 

The constant vector B'l(rc..-rs) will be dropped because it is independent of q and therefore does not 

affect the stability analysis. 

Matrix Q must have only one non-zero element with sufficiently large absolute v.~lue to cause a 

sign change in the trace of N. Therefore, we further assume that matrix Q makes the trace of matrix N 

negative, but does not guarantee system stability, i. e., we simulate the circumstances where the feedback 

controls (like Q) are not adequate to make all of the elgenvalues fall in the left-half plane. This situation 

can arise if the information gathering processes of the system are somehow limited, resulting in lack of 

controllability and/or observability (Luenberger, 1979), but are sufficient to condition the system for cyclic 

control. 

Let us again augment the vector r = Qq - O(t)q, where D(t) is a periodic, zero mean matrix. The 

periodic input O(t), is weighted by the state vector of the system q, and therefore D(t) appears in the 

system equation in the form of parametric perturbations or cyclic control In this case equation (6) 

becomes 

• B ' tD(  0 ] q  (7) q = [ N +  

Because equation (7) is time-varying, eigenvalues can no longer describe its stability. It is 

possible, however, to associate stability properties of the oscillatory system (7) with a certain constant 

matrix that describes its averaee behavior. The stabilizing action of cyclic controls consists in converting 

the remaining right-half plane eigenvalues of system (6) into "left-half plane on-the-average" ones. In this 

case, stabilization is achievable without the need for additional information flows, provided that the 

amplitudes and frequencies of the cyclic controls are within a critical range. 

Assume, for simplicity, that the ij th element of the cyclic control matrix D(t) is given by dij(t) = 

cijcos(c0ijt), where eli is the amplitude and ¢oij is the frequency of the oscillation. 

In order to describe the average behavior of system (7), we introduce the parameter e as 

e ~ m a . x ( I / ~ i j  ) 
I./ 

and define 

A 
C ij = (~ ij/E and t.O ~ [3 ij/£ 

so that the ij th element of D(t) can be rewritten as dij(t) = (0~i/~)+OS([~ijfle). 

With this notation, the cyclic control matrix D(t) takes the form 
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1 D , ( t ) ,  D(t) = T 

and system (7) becomes 

= [N + '-~-~ l ] ' D ' ( + ) ] q .  (8) 

Thus, if the cx..'su and I]ij's arc assumed constant, the amplitudes e..u and the frequencies c0..u of the 

zero-mean cyclic terms dij(t) are parameterized by a positive e. It has been proven (BeUman, Bentsman 

and Meerkov, 1985) that there exists an e o = constant > 0, such that for any e satisfying the inequality 0 < 

e < e o , the stability properties of system (8) are defined by the eigenvalues of a constant matrix 

T 

M = lim ~2-f q~(~)'lN q)(~) dz ~9) 
T....~oo = d 

0 

where q~(t) is the state transition matrix of 

dq 
- g~D'(~)q oo) d ' c -  

where t = fie. 

Specifically, for sufficiently small e,, system (8) is asymptotically stable if all the eigenvalues of M have 

negative real parts. As seen from this result, the elements of matrix M are defined in terms of the elements 

of matrices N, B "I ,  "amplitude/frequency" ratios 0tij, and "frequency/frequency" ratios [~ij' 

Consequently, M provides a link between aij, I~ij and stability of (7): If ot..y and [31j are found which place 

all the eigenvalues of M in the left-half plane, then there exists an e such that oscillations with amplitudes 

0t.u/e and frequencies [3i/~ guarantee asymptotic stability of system (7). The matrix 

M'-AM-N 

can be thought of as a "correction" of N induced by oscillations. 

In the context of ecological systems, cyclic control is easy to apply. Indeed, ecological systems are 

usually described by sparse matrices and therefore the ¢ycli¢ control matrix D(t) might often satisfy 

condition D2(t) =0 independently of the magnitudes and frequencies of the oscillations. In this case, 

since B is a diagonal matrix, all non-zero elements of matrix M ° are given as 

m'. = - ~ n j i  , Tij A 1 ~Xi i ,  
'J = ba [~ij (ll) 

where n.. denotes the ji  th element of the mamx N. Therefore, the only elements of D(t) that will affect the 
Jl 

eigenvalues of M arc those off-diagonal elements that have a corresponding non-zero symmetric element in 

N. 

The first step in the search for amplitudes and frequencies of the stabilizing oscillations is to find 
m'..'s that move all the eigenvalues of N+M' to the left-half plane. A straightforward way to accomplish 

q 

this is to try only one of the appropriate elements at a dme, and let glj increase from 0 to a sufficiently 

large number. When the appropriate set of elements m'ij, and, hence, gij have been identified, we must 
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Table 2. Oyster reef Input-Output flow matrix (P), along with vectors for net export + stock 

replacement respiration (r), total output excluding waste heat (q), waste heat (w), 

and total output including waste heat (q'). 

P 

(1) (2) (3) (4) (S) (6) r q w q' 

Oysters 1 0 15.79 0 0 0 0.51 

Detritus 2 0 0 8.17 7.27 0.64 0 

Microbiota 3 0 0 0 1.21 1.21 0 

Meiofauna 4 0 4.24 0 0 0.66 0 

Deposit Feeders 5 0 1.91 0 0 0 0.17 

Predators 6 0 0.33 0 0 0 0 

Net Input e 41.47 0 0 0 0 0 

Control Q 1.52 2.28 .94 1.26 2.09 1.38 

17.80 34.10 7.365 41.47 

6.19 22.27 0 22.27 

2.875 5.295 2.875 8,17 

1.75 6.65 1.75 8.4 

0.215 2.295 0.215 2.51 

0.2 0.53 0.15 0.68 

return to equation (8), placing (0ci/e)cosCIBi/e) at these locations in D(t). Then, by changing e and 

repeatedly solving equation (8) for stabilizing pairs of (a,13), the areas of stabilizing amplitudes and 

frequencies can be found. The search for stabilizing oscillations becomes complicated when the stabilizing 

matrices that satisfy DZ(t) = 0 do not exist (see for example, Wu, 1975). 

Cyclic control could naturally arise in an ecosystem as i) an oscillation of the flows between 

various components or ii) a part of the net output, a cyclical export (import) from (to) a particular 

component, the interpretation used in this paper. 

What follows is a simple example of ecosystem stabilization by a cyclic control. 

V. APPLICATION TO THE OYSTER REEF ECOSYSTEM 

In this section, we apply the theory presented above to the oyster reef ecosystem (Dame and 

Patten, 1981). This compact but complex system is shown at steady state ( i.e., for constant flows) in 

Figure 3. 

The data from Figure 3 have been arranged in the proposed accounting framework (Figure 1) in 

Table 2. In this arrangement, estimates of the basal metabolism or structural-rebuilding respiration are 

included in the net output. 

From the data in Table 2, we constructed G for use in the N matrix. With the feedback control 

elements of diagonal matrix Q, shown in Table 2, the trace of N is negative and its eigenvalues are: 

0.0726 :L-0.0371i, -0.1753, -.0089, -0.0994 and -0.0028. Because the complex pair has positive real 

parts, the system is unstable. Let us demonstrate that a cyclic control can be found to stabilize the system 

at the given steady state. 
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Figure 3. The Oyster Reef Ecosystem. Flow units are kcal/m -day. 2 Stock unit: kcal/n~, 

Let m'5, 3 be the only non-zero element of matrix M °, indicating a cyclic net input to deposit 

feeders and a cycle in the flow 5-3. Then by experiment, for m'5. 3 > 0.0346, all the eigenvalues of matrix 

N + M' are in the left-half plane. Choosing [$5,3 = 1.0, from equation 11 we obtain 

1 

r-2m'5,3] ~ 
a5,3 = b5,5 m n 3,5 _] = 1.7298, 

where b~.3= 7.0893 and n3.5=-1.1632. Thus, according to the theory of Section IV, oscillations of the 

form ds,3(t) = as.3mSin(cot), o~5. 3 > 1.73, should stabilize the system for sufficiently large (0. The 

asymptotic nature of the theory implies however, that condition a5~3 >1.73 should be partially observed 

for smaller co as well. It is precisely this insight that motivates the numerical search for the actual 
parameters of stabilizing cycles at low frequencies. In Figure 4, we demonstrate that condition, 0~5, 3 

>1.73, is partially observed for o.q2n > 0.08. The amplitudes are q3ds,3(t)/bs,y The cross-hatched region 
in Figure 4 corresponds to the actual stabilizing amplitudes and frequencies of the cycles ds,3(t). 
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Figure 4. Cyclic Control in the Oyster Reef Ecosystem. The Range of the Parameters of the 

Stabilizing Oscillations of the Net Input to the Deposit Feeders 5 and of the Connection 

to the Microbiota 3. 

While our choice of Q was largely arbitrary, we find the data in Figure 4 interesting. They show, 

for example, that a cyclic net input to the Deposit Feeders (which in turn allows them to cycle their feeding 

on the microbiota) can stabilize this ecosystem (given the above Q). With a cycle frequency of once in 

seven days, the stabilizing amplitude would range from about 1.1 to 1.7 kcals]m2--day, encompassing the 

average value of the flow from 3 to 5 of 1.2 kcals/m2--day (see Figure 3). It seems possible that such a 

cyclic flow could occur. No data on the variation of flows in this oyster reef ecosystem were given 

(Dame, 1976, 1979; Dame and Patten, 1981). From Figure 4, we also see that smaller stabilizing 

amplitudes are associated with lower frequencies. This application to the oyster reef system is expected to 

convey a biological possibility of ecosystem stabilization by already existing or intentionally introduced 

oscillations. 

VL CONCLUSION 

The material presented above demonstrates that cyclic control is a biologically feasible stabilizing 

mechanism that could either develop in the course of evolution or be introduced by an ecosystem manager. 

The important point about cyclic con~ol is that stabilization can be provided without any 

information exchange. Therefore, the components that can establish a balanced cyclic exchange of 

materials or energy with the external environment and/or with other components might bring stability to the 

whole system without the cost of building and maintaining additonal information links. Thus, since cycles 

often occur in ecosystems naturally or can be introduced intentionally, cyclic control theory constitutes a 

viable tool for the ecosystem analysis and management. 
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Abstract. A behavioural policy of controlled growth for a food chain 

model of length 2n is considered. The highest trophic level popula- 

tion controls its own growth in order to restrain the growth of the o- 

ther 2n-I populations in the system so as to avoid undesirable out- 

c o m e s .  

I. INTRODUCTION 

The present research concerning control policies for biological systems 

in population dynamics mainly deals with human control added to models 

of interacting populations. Various pest management programs provide 

typical examples of this kind of exLernal control [1,2]. E1owever in re- 

ality there are also situations in which one or more populations partic- 

ipating in the system are the controllers. Such systems change behav- 

iour abruptly in response to changes of the size of the interacting pop- 

ulations, climatic conditions, diseases, etc. We call this type of con- 

trol in~6r~l. The classical models in population dynamics usually do 

not reflect either the external nor the internal control. The control- 

ling populations can apply the internal control to their own members 

(seZf control)or to all or some of the other participating populations in 

the model. In this paper the attention is focused on the concept of 

self control. 

Generalizing a previous paper (Bojadziev and Skowronski [3]) here we 

study a food chain system of size 2n involving a controlling factor 

u(t) which adjusts the nuatber of the highest trophic level population 

so that a reasonable size of all populations is maintained. Making use 

of a methodology developed by Leitmann and Skowronski [4] (see also 

Blaquiere, Gerard, and Leitmann [5]) for dynamical systems, we derive 

conditions under which the designed control policy results in avoidance 

of a prescribed region in R 2n so that undesirable outcomes are avoided. 

2. THE FOOD CHAIN MODEL 

Consider the food chain model with control 
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xt(t) = f(x(t), u(t)) (i) 

where t E R+ is the time variable, x(t) = (Xl,...,X2n)T is the popu- 

lation vector, u(t) is the control, and the components of the vector 

function ~(x,u) (fl,...,f2n)T are given by 

81 
fl(x'u) = Xl(~l- ~i x2) ' 

f2k(X'U) = X2k I- U2k + 82k-Iy2k ) X2k-I - Y2--~ X2k+l ' 

f2k+l(~,u) = X2k+l ( _ U2k+l + 82____~ k 82k+I ) 
72k+i X2k Y2k+l X2k+2 ' 

f2n(X,U) = X2n(-~2n + 82n-I X2n_l)+ UX2n , 
Y2n 

(2) 

k=l, .... n-l, fi(x,u) = fi(~,0), i=l ..... 2n-i o 

For u=0 the model (I) reduces to the uncontrolled food chain model 

x' (t) = f(x(t),0) . (3) 

In (i) xi,i=l,...,2n , is the size of the i-th population; ui (growth 

rate coefficient), ~i (interaction coefficient), and 7i (trophic weight 

factor) are positive constants; 74/7 iJ expresses the gain-loss ratio 

when population i interacts with population j. The control u(t) E U[to,t] = 

[u(t): u(t) 6 U and uCt) measurable on [to,t]), 0 ~ t O < t < ~, U c R 

is a compact set to be specified later in accordance to a growth restric- 

tion policy. 

2 The biological meaning of the control term UX2n in the last expression 

(2) which takes part in (i) is that for u > 0 the population with size 

X2n (the highest trophic level population in the food chain) is enhanced 

by increasing the population density (increasing returns) and for u < 0 

it dampers its own growth (diminishing returns). The 2n-th population 

can be considered as a consumer or predator of a higher level in terms 

of organization and brain capability in comparison to the other 2n-i 

populations or resources. The self controlled growth of the consumer 

(predator) will affect the growth of all populations in the food chain 

system. 

Each choice of control, say u(t o) = c o E U on some time interval start- 
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ing at t = t o , generates a solution or response kit] = k(x(to) , Co, t) 

2n which geometriGally of the system (i) with initial state x(t o) E R+ 

is represented by an orbit £o in the phase space R 2n. If c o = 0 

(no control, hence (i) reduces to (3)) the response k(x(to), 0, t) of 

(3) can exhibit large variation and may endanger the existence of an 

acceptable size of some populations. In order to avoid such undesirable 

outcomes• the consumer population with size X2n may opt to self con- 

trol its own growth which will affect the growth of the other populations 

in the food chain. This can be accomplished by selecting a suitable 

2n (switching control value u(t I) = c I E U at a point X(tl) E R+ 

point) on some time inverval starting at t = t I, t I > t o • The control 

value u(t 1) = c I will generate a response k(X(tl), Cl, t) along a 

new orbit £i' £0 N £1 = X(tl)- 

Using a Liapunov function for the uncontrolled model (3) we define for 

the response of (i} an avoidance region A, a security zone S which 

safeguards the response of entering A, and design a control policy for 

avoidance. 

3. THE LIAPUNOV FUNCTION 

The coordinates of the nontrivial equilibrium E0(~0), ~0 

E R 2n, of (3) are 

0 0 T 
= (x ,...,X2n) 

0 alY1 0 ~2n72n 
x2 - B1 " X2n-i - S2n-I ' 

0 
0 S2kY2k + 82kX2k+l 

X2k-l B2k_ 1 

0 
0 - a2k+iY2k+l + B2kX2k 

X2k+2 = 82k+ 1 

k=l•...,n-2 , 

, k=l,...,n-I . 

(4j 

2n the interior of the closed positive cone, We require that E 0 E Int R+ , 0 

sO that E ° has biological meaning. Since X2n_l > 0, it follows from 
0 

(4) that X2k_l > 0, k-l,...,n-l. Also from (4) we see that x~ > 0. 

0 0, k=2 ,n-l, we assume that However, in order to secure that X2k > ,... 
0 

X2k > ~2k+l Y2k+l/82k" 

The model (3) has the Volterra function (Huang and Morowitz [6]) 

2n 0(xi x ) 
V(~) = [ 7ix i --~- £n ~- 1 , 

i=l x i x i 

(5) 
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2n continuous on Int R+ , which is actually a Liapunov function with the 

following properties. 

(i) The minimum of V(x) is attained at the equilibrium E0(x 0) given 

by (4); minV(x 0) = 0; 

(ii) V(x) is monotone increasing about E 0 (has the nesting property); 

2n 
(iii) dV(X)dT = [ ~SV fi(~,0 ) = 0 , (6) 

i=l 

where fi are given by (2). From here follows that the equilibrium 

E0(x 0) is stable. 

The model (3) has a first integral 

V(x) = h, h = const > 0 , (7) 

which represents a family of level surfaces V h in R 2n+l. The orthog- 

onal projection of V h onto R 2n generates 2n dimensional hypersur- 

faces H h in R 2n which are closed, do not intersect, contain inside 

the equilibrium E 0, and accommodate orbits of (3) . Further, if h I < h2, 

the hypersurface is inside the hypersurface 
Hh I Hh 2 " 

4. AVOIDANCE CONTROL 

Here, marking use of a Liapunov design technique [4], we introduce def- 

initions and prove a theorem concerning the food chain model (i). 

set A). Given ~ = (~l,...,C2n)T E Int R~ n_ Def~n~t4on 1 (Avoidance 

and the Liapunov function V(x) by (5), 

A ~ {x E R2n: V(x) Z V(~) = h E) , (8) 

where ¢i (avoidance parameters), i=l,...,2n, are small as desired for 

a particular study. The boundary of A is 

A {x E R 2n = : V(X) = h£} ~A = H h (9) 
£ 

Definlt40, 2 (Security zone S). Given ~ = (~l,...,~2n)T ~ Int R 2n, 

~i > ¢i' and V(x) by (5), 

S _A {x E R2n: V(x) >_ V(6) = h~ 

~i,i=l,.°.,2n, are security parameters. 

~S = Hh~ =A {x E R2n: V(x) = h 6} . 

From the nesting property of 

} - A , (10) 

The boundary of S is given by 

(ii) 

V(x) it follows that h~ < h , hence in 
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R+2n the hypersurface (9) encloses the hypersurface (11) 

Defi, ition 3 The set A defined by (8) is avoidable if there is a set 

S defined by (10) and a control u E U such that for all xS(ts) E S, 

the response k(xS(ts),U(ts),t) of {i) cannot enter A, i.e. 

k(xS(ts ), u(t s), t) N A = ~ V t . (12) 

Now we establish sufficient conditions for the avoidance of A. 

TheoPem The food chain model (I) is controllable for avoidance of A 

if there is a control u(t) E U and a Liapunov function V(x) defined 

by (5) so that 

2n ~V 
dV(x) _ fi(x,u) < 0 (13) t_a___ ; 

i=1 

where fi(x,u) are given by (2). 

Proof. Assume that A is not avoidable, i.e. (12) is violated. Hence 

for some xS(t s) E S, the response k(xS(ts), U(ts),t) enters A, t > t s- 

Then there is a t a > t s for which ~a(t a) = k(xS(t s),u(t s),t a) ( ~A. 

From the nesting property of V(x) it follows that v(xS(ts ) ) < v(xa(ta ) ), 

meaning that the function V(x) is increasing. This contradicts (13) 

which states that V(x) is non-increasing along every response of (I). 

5. THE CONTROL POLICY 

To design a policy for avoidance the region A by the response of (i) 

we use the theorem in the previous section. Substituting fi(x,u) from 

(2) into (13) with (5) gives 

2n 
dV(~) _ ~ ~v ~v 2 
dt i=1 ~ ~--~i fi(~'°) + ~--~2n ux2n ~ 0 . 

According to (6) the summation term above is zero; the second term gives 

0 I 1 1 ~ 2 < 0 
Y2nX2ni~ UX2n - 

~X2n X2n ! 

which can be written as 

X2n X2n 

The inequality (14) establishes a relationship between the control u 
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and the controlling population X2n. It requires that 

0 
u 5 0 V X2n > X2n , 

0 (15) 
u ~ 0 V X2n < X2n . 

According to (15) we specify that 

u(t) ( U = [-r,r] c R, r=const. (16) 

On the basis of (15) we formulate the following behavioural policy. 

Avoidance controZ policy: If the response k[t] = k(x(to),U(to),t) of 

the food chain model (i) with initial state x(t O) and fixed control 

u(t O) E U, U specified by (16), enters the security zone S given by 

(i0), in order to prevent kit] of entering into A defined by (8), a 

new control value u(t s) should be selected from U at a switching 

point x(t s) E S with corresponding response k(x(ts),U(ts),t), t s > t O • 

0 the new control value u(t s) should be negative and if If X2n > X2n, 
0 

X2n < X2n, it should be positive. 

Note i. The control u=0 satisfies (15) but then the response will be 

accommodated on a hypersurface H h enclosed in the security zone S, 
s 

Hh~ < H h < H h , which may not be satisfactory since large population 
s 

fluctuations occur. 

0 at x(t s) ~ S satisfies Note 2. The particular situation X2n = X2n 

(14), hence any value u E U can be selected temporarily until the re- 

0 Then sponse moves to a neighbouring point in S for which X2n # X2n. 

the avoidance control policy can be applied. 
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ABSTRACT 

The aim of this paper is to propose an approximation procedure to compute the value 

function V and the optimal policy fl related to the stochastic problem (P) of controlling 

diffusion processes. This procedure can be easily extended to problems for which stopping 

time and impulse controls arc also considered. 

O- INTRODUCTION 

As we did in [8] for deterministic problems we will employ here as basic tool of 

analysis the characterization of V as the maximum element of a suitable set W of functions w. 

While in [8] the definition of IO requires for w to be subsolution of the first order Hamilton- 

Jacobi-Bellman equation, i.e. : 

0w(x) ~ .  f(x,u)+ ~(x,u)- aw(x) • 0, Vu e U, (0.i) 

here, in the stochastic case, we deal instead of (1) with 

L(u)w ~- ~(u) • 0 (0.2) 

where L is a second order differential operator. 

In what follows (P) will be solved using the characterization mentioned above. To 

introduce the diseretizcd problems (ph) we need to define properly the functions w h belonging 

to It) h. In fact : the existence of maximum solution V h for each problem (ph) and the 

convergence of V h to V are shown using a Discrete Maximum Principle (DMP) that w h must 

verify (cfr. [3]). To insure this property we use particular schemes to discretize the lust and 
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second derivatives of w. F ~ r ¢  this choice enable us to compute V h using an algorithm 

of relaxation type that increases the values of w h in the vertices of the triangulation employed. 

Comments on applications are included in the fmal chapter. 

1 - THE PROBLEM (P) 

Let us consider : 

a) The complete probabilisfic space 

(fl, P, F, F(t)) ; (1.1) 

b) The state process y(.), modelled by the diffusion 

dy(t) --  fly(t), u(t))dt + o(y(t), u(t)) dw(t) 

( 1 . 2 )  

y(o) = x , t  ;~ O ,y  e Q c  R n 

with 

Q : open boundet set 

w(O : Wiener process F(t)-nmasurable 

u(t) : control process progressively measurable in a compact set U C R m 

o i s a n  x n r a a ~  

f and o bounded continuous on Q x U. 

c) The cost functional 

J(x,u(.)) = E {(~ ~(y(s).u(s)) e-aS ds} (1.3) 

with 

m 

q~ : first exit ~ of Q of the system trajectooj 

ct > 0  

t : bounded continuous function on Q x U. 
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Let us introduce the definition of the optimal cost 

V(x) = inf  J(x,u(.)), (1.4) 
u e U  

V(x) being solution (cfr. [5],[2]) of the Hamilton-Jacobi-Bellman equation 

rain (L(u)V + ~(.,u)} = 0 in Q 
ueU 

v ffi O i n i ~  

(1.5) 

where the differential olxa-ator L is given by : 

n B2 n 
L(u) -- r,s--1Z ars(X,U) ~ + r __Z 1 fr(x,u) ~ r  - a (1.6) 

with 

n 
ar~ = ½ ~ ¢~z¢~zs, i.c. ars = asr. (1.7) 

z=l 

As it was said in the Introduction we will compute V taking advantage of  its 

characterization as maximum element of a suitable set, i.e. (cfr. [6], [8], [15]) solving the 

following auxillar problem (having V as solution) • 

(P) : Fred the maximum element w of fie set 

IO = {w e W~'°*(Q)/L(u)w + ~ ~ 0 inD ' (Q)  Vu e U , Q  c R n} (1.8) 

being 

w ~ w ~ w(x) ~ ~v(x), Vx e Q (1.9) 

tbe natur, a r~ar~a~ oraer in ~ .  

(Questions concenaing existence and unicity of the solution of ('P) can be seen in [4], [15]). 
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2 - THE DISCREITZED PROBLEM (Ph) 

2.1. Preliminary comments 

We will compute V as the limit of the solutions of a sequence of approximate 

problems (ph). 

To simplify the presentation we will suppose that Q is polyhedric. We consider in Q a 

triangulation Qh (union of simplices), ¢ being (i = I, 2, .... NI0 the vertices of Q~. 

Then we define ldh by functions w h verifying properties related to (1.8), (1.6). The 

main difficulty of this approach is to ensure the existence of a maximum dement wh in Wh. 

Following what we did in [8] for the deterministic cam we introduce in W h the natural 

partial order 

h h h h h h 
w I ~ w 2 ¢:~ Wl(X i) =; w2(x i ), V¢ vertex of Qh (2.1) 

~w h 
We consider functions w h : ~  --* R, w h continuous in ~)h with ~ constant in the 

interior of each simplex of Qh, i.e., w h are linear finite elements. So, to define w h it will be 

enough to precise the inequality Cdiscretization" of L(u)w + ! ) 0) to be verifyicd at each 

vertex ¢ of Qh. Taking [8] into account ff suffices to propose a suitable discrctization of 

n 02w 
L(u)w = Z ~ 5"~'~s '  the term containing the second order derivatives of  w. 

r , s=  1 

2.2. Def'mition of Lh(u) w h 

Let us consider S(¢)  (see Fig. 2), all the simplices having ¢ as vertex. 

From (1.7) the matrix A = (ars) has no negative eigenvalues Xo and orthogonal 

eigenvectors. So 
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A = LIE)IT (2.2) 

D ( ~ )  / DI~ = Xp ;~ O. 

Fi~.  2 

h 
If  we consider, with center in x i a new ccx~rdinates system (we denotes G the 

Wansformafion matrix G(x~) : 
1 

n = G. ~ (2.3) 

and we ~fm¢ 

wCx) = w(xp + ~ a = ~v(~O = ~v(G. l~  ) A ~v(Tl) (2.4) 

we obtain 

L(u)w = n ( h  O2w n blxl(h, ~2~¢ Y~ ~ , u) ~ = E u) (2.5) 
r,s = 1 p,q = 1 ~ ' 

with bpq(~ h, u) - (GAG~q. 

So, after the choice G ffi 17 we have, because 

= ~ ~ (2.6) 

the following diagonal feral of L : 

n _ 1 1  i~ ¢v 
Lw ffi =~ l p  ~p(x~.u) (2.7) 
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Now we define naturally the aPlxoximatcd ocpmtor L h : 

a2 
where (~.p)h ~vh 

+ h ---, 
Cip = x i + hi e ip 

= n ~ j ¢ , U ) ( = ~ ) h ~  

p ~ l  arlp 

1 (~(Cil ~ 2 ~(xih)n ~(Ci+p)n) with 
h i 

(ci'ph = (0,0 . . . . .  -hi . . . . .  O) 

(c~p)~ = (o,o ..... h~ ..... o) 

(xih)~ = (0,0 ..... 0 ... . .  O) 

(2.8) 

2.3. Definition of 1~  

n a 
Coming back to (1.6), ~ fr(X,u) will bc discredzed 

r = l  ~ r  

we will consider V in the dir~tion f (see Fig. 2) : 

as it was done in [8], i.e., 

(2.9) 

So, from (2.8) and (2.9) we can define 

= ( ~  : @  - ,  R / £b(u)v~ + t<u) ;, o, 

Vu e L~, V ~  ~ Qh, wh < o m a(L~} 
(2.10) 

whom U h is a finite discrctization of U and 
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n 1 

p=lhi 

(2.11) 

Finally we can consider the dlscretlzed problem ('p)h :Find the maximum element 

of the set I ~  with respect to the parial order (2.1), i.e. fred ~(x) such that ~ ( x i  h) • w~(xih), 

Vxi h ~ @, Vw% Io. ~ 

3 - SOME REMARKS ABOUT ~vh(x) 

of wh we ~ve : 

are convex combinations of the vertices of S(xih), using the lincarity 

I h set of index such that x jhe S(xi h) 

After (2.11), (3.1) and (3.2), we c~m rewrit~ Lh(u)wh(xi h) + ~(u, xi b') • 0 as : 

(3.2) 
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1 a h 
wh(xih) ' ~h(r~'u)[ '"~ p=~l 7~(x~,n). .~j 

hi j e ~ i  

I f (x~)  I 
+ Z.~ .~ ~,(~k)+ ,(u, xi~] Ibi h" ¢ '  j 

(3.3) 

= [ Z ~ ,u)+ +a]-1 >(t 
P= • I - I 

h 
Taking into account that all the factors that multiply wh(xj ") in the second member of 

(3.3) are non-negative we can easily prove (see [8]) : 

THEOREM 1 

There exists an unique wh(x), maximum element of W h, i.e. (13h) has an unique 
solution. 

Furthermore the operator f.,h verifies the following Discrete Maximum Principle 
(DMP) : 

(DMP) : If C is a subset of vertices of Qh satisfying Lh(u) wh(xi~ 

Vxi h e Qh, Vu e uh, tlx~ exism r', 0 < l" < I such fl~ : 

v 0) 

x i eC 

0, 

(3.4) 

We can use this DMP to establish two imlx)rtant propcrdes of w h 

The fn'st one is that ~ is characmizcd by the fact that (3.3) becomes an equality for 

all n e Qh for some u e ~ when ~ put ~ instead of wk This charactctzation allows us 

to compute ~v h using iterative algorithms of the same type than those pesented in [8]. The 
value of u giving the equality will be used to define the optimal control fib. 
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The ser.ond one concerns the convergence of ~ to V. We have 

THEOREM 2 

The solutions wh(x) of  the approximate problems ('ph) converge uniformly to V(x), 

solution of (P) ,  i .e. : 

lim I V ( x ) -  ~,h(x) I = 0, Vx ~ Q (3.5) 
I~--,0 

where [h[ is the maximum of the dianme~ of the simplex of Qh. (see [8]). 

The proof is achieved in two steps. We will briefly glve hem the main ideas. 

In the f '~t part w¢ show 

lira ~v h ;= V. (3.6) 
I h l~0  

For that w¢ regularim the dements of (1.8) by means of a convolution with a function 

of C °O (R 2) having a patmneter p > 0. These functions wp can b¢ approximate by functions 
h wp,a with this property : the linear finite element Wp,a, taking the same values of wp, ain the 

vertex of the triangulation flh, be.longs to W h. So, 

;= wphct (3.7) wh 

If we consider in (3.7) the lower limits for [ha ~ 0, then the limits for (p,ct) ---, (0,0), we 

obtain 

]im ~ ~ w. (3.8) 
Ih]l-~O 

Finally, as w is an arbitrary elenmat of Id, (3.6) is proved. 

The second part is devoted to show 

~v h ~ V. (3.9) 
Ihll--.o 
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We consider a sequence of auxiliar problem Pn for which the controls un can take in 

(1.8) a finite number of values and the number of switehs within that set of values is, at most, 

n. If Vn is the solution of :Pn we can show 

VI ~ ..  • VB • Vn÷l • V 

(3.10) 

lira Vn = V. 
n - . . b  o o  

On the other hand we comider the diseretized problem ph for which we prove 

--h 
lim w n = Vn (3.11) 

Iha--.O 

--h --h 
w n > Wn+ 1 > ... • ~ , V n .  (3.12) 

Sol 

give (3.5). 

1-:~ ~h < Vn ; then, using (3.10) we obtain (3.9). Finally (3.6) and (3.9) 
Rh[[--, 0 

4 - COMMENTS ON SOME APPLICATIONS 

The idea of solving optimal control problems computing the maximum element of a 

suitable set of subsolutions of the Hamilton-Jaeobi-Bellman equation has been recently 

applied to several problems. Remaining in the deterministic approach we have study in [9] the 

optimization of an electricity production system which comprise three hydraulic plants (two of 

pumped type) and seven thermic plants (one nuclear, two of coal, tow of fuel, one gas 

powered and one external). The numerical data have been provided by EDF (Electricity of 

France) : they describe a forecast of the French system for a week of the year 2000. Other 

application can be seen in [12] where several serial production/inventory systems are 

optimized. 

Concerning the stochastic approach we can mention : 

a) [11] devoted to the optimization of the system presented in [9] considering random 

perturbations in the demand ; 
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b) [7] in which the algorithm proposed in [I0] for L(u) = A h used to obtain the optimal 

control of a bidimensional diffusion ; 

c) [1] in which the numerical solution of an optimal correction problem for a damped random 

linear oscilator is studied. 

F'wst appScations of the procedure just proposed in §2 and §3, as well as a comparison 

of these results with those obtained by other clasie methods [13], [14] and [171, will be 

prcsentezl in a special session of the next IEEE-CDC, Austin, 7-9 Dec. 1988. 
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The paper provides a preliminary exploration of the application of fuzzy arithmetic and 

fuzzy approximate reasoning techniques to qualitative reasoning problems considered in Artificial 

Intelligence. More specifically, this investigation is done along three lines : constraint propagation with 

ill-known values, handling of orders of magnitude in terms of fuzzy intervals or by means of fuzzy 

relations. 

1 - Int roduct ion 

Reasoning about the behavior of systems in a qualitative way is interesting in two kinds of 

circumstances : i) when the system under consideration is complex and the data available about it are 

pervaded with imprecision or even vagueness ; ii) when it is sufficient to have a qualitative view of the 

system and of its behavior, and this qualitative view is not only easier to get than a more precise one 

from a computational point of view, but also easier to understand. From the beginning of the eighties 

there have been a growing interest about qualitative reasoning in Artificial Intelligence ; see (Bobrow, 

1984 ; Dormoy, 1987) for an introduction. The intended purpose of this research is mainly to provide 

understandable explanations of the behavior of complex systems from their qualitative description. The 

modeling is done in terms of variables which axe potentially real-valued, but the analysis and the 

description of the system behavior is made only in terms of three values usually, namely "-", "0" and 

"+", corresponding to whether the variables axe negative, zero or positive. Independently, works 

motivated by research in qualitative economics, have been developed about qualitative controllability 

and observability of linear dynamical systems where real-valued variables are approximated in terms of 

the same three values ; see Tray6 and Kaszkurewicz (1986) for instance. 

From the end of the seventies, fuzzy set and possibility theory Q/_.adeh, 1978 ; Dubois and 

Prade, 1985), whose introduction was initially motivated by the modeling of complex and ill-known 

systems, has been considerably developed both from a theoretical and an applied point of view in 

various directions ; particularly, fuzzy arithmetic (Dubois and Prade, 1980, 1987) enables us to handle 

ill-known quantities in an easy way which generalizes interval analysis, and besides a methodology for 

approximate reasoning (Bellman and Zadeh, 1977) has been settled in the fuzzy set framework. Until 
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now there have been no serious attempt to use fuzzy techniques in qualitative reasoning problems in 

Artificial Intelligence --if we except some hints (Raiman, 1985) and preliminary works (d'Ambrosio, 

1987)-- although it would be desirable in some eases to have a finer and less sharp description of the 

values of the variables than the one provided by "-", "0" or "+', Particularly, the sign of the difference 

between two positive quantities cannot be determined without any information about their respective 

order of magnitude. 

This paper investigates what may be the use of fuzzy arithmetic and fuzzy set-based 

approximate reasoning techniques in qualitative reasoning problems. First, a general approach for 

refining interval values attached to variables by exploiting constraints which must be satisfied by these 

variables, is extended to fuzzy set values. Then, a fuzzy interval-based approach is proposed for 

handling orders of magnitude in arithmetic operations and a valid approximation technique is used in 

order to insure a closure property of the operations restricted to the considered fuzzy values. The 

interest of fuzzy intervals for interfacing symbolic information and numerical data, is emphasized. 

Then another way of dealing with orders of magnitude based on approximate equality relations is 

investigated. The concluding remarks point out some other contributions of fuzzy logic to qualitative 

control and to qualitative descriptions of systems behavior. 

2 - C o n s t r a i n t  nroua~allon with fuzzy values 

2.1 - G e n e r a l  d i s c u s s i o n  

Let X 1 . . . . .  X n denote single-valued real variables. Let A i be a subset of the real line 

which is known to restrict the possible values of X i, and let R be a relation which must be satisfied by 

the Xi's and which acts as a constraint on (X 1 . . . . .  Xn). Then, the refinement of the possible ranges of 

the variables Xi's taking into account R, leads to update the possible range of each variable X i into a 

new subset A" i in the following way 

A" i = {x i e A i 1 3 xj e Aj, j = l ,n, j  ~ i and (x 1 . . . . .  x i . . . . .  x n) e R} (1) 

More generally in ease of several constraints represented by relations Rk, k = l,r, we can iterate this 

refinement procedure on each variable taking successively each relation into account over and over until 

no more changes occur in the updated ranges. This is known in Artificial Intelligence as the Waltz 

algorithm ; see Davis (1987) for a detail study of this procedure both from an implementation and an 

application point of  view. Let us consider a simple example. Let n = 3, A 1 = [0,2], A 2 = [1,3] and 

A 3 = [0,2] and the constraint X 1 + X 2 = X 3. Then we get A" 1 = [0,1], A" 2 = [1,2] and A" 3 = [1,21. 

Observe that any triple of values in the Cartesian product A" 1 x A" 2 x A" 3 is not necessarily feasible, 

e.g. ~ x 3 e A" 3 such that x 1 + x 2 = x 3 with x 1 = 1 and x 2 = 2. 

The definition (1) expresses that A~i is obtained as the intersection of A i with the result of 

the composition of the relation R with the Cartesian product of the Aj's except A i. This can be readily 

extended to the case where the Ai's are fuzzy sets and/or R represents a fuzzy constraint ; i.e. 

Vi, Vxi, gA'i(x i) = min[gAi(Xi), suPxj min(I.tR(Xl . . . . .  Xu), , rain gAj(Xj))] (2) 

j=l,n ; j¢ i  j=l ,n ; j ~  

where g denotes the membership functions (whose range are [0,1]) of the corresponding fuzzy sets 
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and relation. When R is an ordinary relation such that X i is a function f of the other variables Xj, A" i is 

a fuzzy set which can be obtained by applying f, in the sense of fuzzy set and possibility theory, to the 

Aj's fj ~ i), i.e. 

Vx i, I.tA-i(xi) = min[PAi(Xi), sup min laAj(Xj)] (3) 

f(xj, j=l ,n,  jci)  = x i j=l ,n  ; j# i  

When the Aj's are fuzzy intervals and f is monotonic with respect to each variable and can be expressed 

in terms of arithmetic operations, the A'i 's are fuzzy intervals which can be easily computed using 

results of fuzzy arithmetic ; see Dubois and Prade (1985, 1987). This extends the fact that, for 

instance, in the above example the A'i 's  can be obtained as the result of operations on intervals ; 

namely A" 1 = A 1 o ( A  3 e A2), A" 2 = A 2 ~(A 3 o A1), A" 3 = A 3 ~(A 1 • A2), where the circled 

symbols are used for denoting the extension of arithmetic operations to intervals. Indeed fuzzy 

arithmetic generalizes interval arithmetic. Note that the refinement is obtained in (2) in one step, in the 

sense that refined A'j 's cannot enable us to obtain a more restrictive A" i. This can be easily checked ; 

indeed, taking n = 2 for notational convenience, we have 

min(I.tAl(Xl), sup min(gR(Xl,X2), I.tA-2(x2))) 
x2 

= sup m i n ~  A l(Xl), I.tR(X 1,x2), sup min(la A 1 (x 1), IlR(X 1,x2)), l.tA2(X2)) 
x2 Xl 

= I.tA'l(Xl) since obviously min(PAl(Xl), PR(Xl,X2)) < sup min(PAl(Xl), PR(Xl,X2)) 
Xl 

In fact, (2) can be viewed as a particular case of the general approach to approximate reasoning initiated 

in Bellman and Zadeh (1977) and developed in Zadeh (1979), namely, all the pieces of information are 

conjunctively combined and then the result is projected on the domain of the variable(s) in which we 

are interested. Indeed (2) can be equivalently rewritten 

Vi, Vx i, laA'i(x i) = supx j min(pR(X 1 . . . . .  Xn) , pA l(X 1) . . . . .  gAi(Xi) . . . . .  PAn(Xn)) (4) 

j=l ,n  ; jci  

In case of several relations R k the combination/projection method leads to the following 

updating scheme where the Rk'S are replaced by their cylindrical extensions when they do not involve 

all the variables 
Vi,Vx i, PA-i(xi)= supx j min(mink=l, r P.Rk(X 1 . . . . .  Xn), minj=l,  n P.Aj(Xj)) (5) 

j= l ,n  ; j~i 

< mink=l, r [min(PAi(Xi) , supx j min(PRk(X 1 . . . . .  Xn) , min ~tAj(Xj)))] (6) 

j=l ,n  ; j;~i j= l ,n  ; j;~i 

The inequality (6) expresses that if we take into account each R k separately in the refinement process, 

we are not sure, even if we iterate the procedure as in the Waltz algorithm, of obtaining the most 

accurate refinement for each variable range. However, what is got by (6) is obviously valid and more 

easy to compute in general. 

Note that in case of binary relations, the Waltz procedure (i.e. the separate processing of 

the Rk'S) yields the most accurate result given by (5), provided there is at most one relation R k 

between any pair of variables (xi,x j) and that there is no cycle in the non-oriented graph whose nodes 
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correspond to the variables and edges to the binary relations. Indeed, for instance with n = 3 and two 

relations, we have 

laA'l(Xl)  = min(I-tAl(Xl), SUpx2,x 3 min(llR(Xl,X2), ~tR'(X2,X3), ~tA2(X2), laA3(X3)) 

= min(l'tA 1 (x 1),SUPx 2 min(ttg(x l,X2),min(ttA2(X2),SUpx 3 min(~tR'(X2,X3),~A3(X3))))) (7) 

2 . 2 -  F u z l v  eaual i t ies  and  ineauali t ies  

In this subsection, we consider particular fuzzy relations which are of  interest in practice 

for qualitative reasoning. Approximate equalities or strong inequalities (e.g. 'much greater than") are 

examples of  binary fuzzy relations which can be easily handled using fuzzy arithmetic techniques. 

Indeed an approximate equality can be modelled by a fuzzy relation E of  the form btE(x,y)= 

~tL(Ix - y[), for instance 
1 i f  Ix - yl < 5 8 + 8 yl # .  

Vx, Vy, ttE(x,y) = max(0, rain(1 , .)) = | 0 if  Ix - yl > 8 + E (8) 
£ " 8 + 8 -Ix - yl 

otherwise 
£ 

where 8 and i~ are respect ively posi t ive and strictly posit ive parameters which modulate the 

approximate equality. Then the approximate equality of  variables X and Y (in the sense of  E) will be 

written under the form of  the equality 

X - Y = L  (9) 

with the following intended meaning : the possible values of  the difference X - Y are restricted by the 

fuzzy set L. Here L is a fuzzy interval centered in 0, i.e. L = -L since I.tL(d) = laL(-d) or if  we prefer 

ttE(x,y) = ttE(y,x). Similarly a strong inequality can be modelled by a relation I of  the form 

I.tl(x,y) = I.tK(X - y), for instance 
1 i f x > y + ~ . + p  7, X Y f 

Vx, Vy, l.ti(x,y ) = max(0, min(1, )) = [ 0 i f x  < y + Z (10) 
P x - y - ~ .  

otherwise 
P 

where ~. > 0 and p > 0. The constraint 'X is much greater than Y' (in the sense of  I) can then be 

written 

X - Y f K  (11) 

where K is a fuzzy interval such that K = [K,+oo) (with g[K,+o.)(t) = sup p.K(S))0 i.e. K identifies 
s < t  

itself as the set of  values equal or greater than a value restricted by K. 

I f  we know for instance that 'X 1 is approximately equal to X 2' (i.e. X 1 - X 2 = L) and that 

'X 2 is much greater than X 3' (ke. X 2 - X 3 = K), we can deduce that 

X 1 - X 3 f f i L ~ K  

where ~ denotes the addition extended to fuzzy intervals 1 (see Dubois and Prade (1980, 1987)). It can 

1. Let Odcnotc the extension of an arithmc.tic operation ^ to fuzzy sets of the real line. Ois def'mcd by 
I.tKOL(U ) = suPs,t min~K(S), ilL(0). Besides I.tf(K)(0 = sup ~K(S). When ^ is the addition and K and L are u'apczoids 

u f s  ^ t t=f(s)  

represen~t by Ihe abscissas of Ihe en@oints of their parallel sides, il can be proved that (kt, k2. k3, k4) ~ (1 I, 12,13, 
14) ffi (k i + I1, k2 ÷ 12, k3 + 13. k4 + 14) (ki or lj may be equal to -~ or +*o). 
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be proved that it means that it is certain that X 1 > X 3 + ~. -(8 + £) and that the value of the difference 

X 1 - X 3 belongs to L ~ K at the degree 1 as soon as X1 > X3 + ~, + p - & See Figure 1. Then 

depending on the respective values of tbe  parameters, X 1 is still greater than X 3 (but may be not as 

much as X 2 with respect to X 3) (if ~. > 8 + 13), or we are only sure that X 1 is not much smaller than 

X 3 (if 3. + p < 5). Moreover, if  we know that X 3 = A3, we shall get 

X 1 =A"  1 = A  3 e L e K  

This is a particular case of (7) where R = E, R" = I, A 2 = (-,~,+00) = A 1. 

' L 
~ . . . .  g 

L e K  

- 5 - ¢ - 5  0 8 ~+¢ k k+p 

Figure 1 

2 . 3  - L i n e a r  c o n s t r a i n t s  

Another worth-considering particular case of  the general problem presented in 2.1 is the 

one of linear systems of constraints. For sake of simplicity, we only briefly discuss linear systems 

with two variables and two constraints of the form 
a lX 1 + b l X  2 = A 3 { 
a2X 1 + b2X 2 = A 4 

where A 3 and A 4 are fuzzy sets of reai numbers, and the other coefficients are real numbers. Note that 

each of these constraints implicitly defines a fuzzy relation which restricts the possible vaiues of the 

pair (X 1,X2). Provided that a l b  2 - a2b I ~ 0, we can deduce, using (3), that 

b2A 3 o b lA 4 a2A 3 o a lA  4 
X 1 = A" 1 - ; X 2 = A" 2 = (12) 

a l b  2 - a2b I a2bl - a l b  2 

with A 1 = A2 = (.oo,+oo) ; see the footnote 1 for the definition of the extended difference e and of the 

product of a fuzzy quantity by a scalar. If the constraints are changed into a lX  1 + b l X 2 - - X  3 

and a2X 2 + b2X 2 = X 4, with X 3 = A 3 and X 4 = A4, the ranges of  possible values of X 3 and X 4 are 

respectively updated into A" 3 -- A 3 c~(alA" 1 • b lA"  2) and into A" 4 = A 4 r~a2A" 1 e b2A'2). 

More generally, the coefficients in linear systems may be ill-known. Then direct extensions 

of (12) can still be used where the ai's and bj's are replaced by fuzzy quantities and where we use the 

product and the quotient defined in fuzzy arithmetics. However in that case we get ranges which are 

still valid but may be larger than the actual ranges. This is due to the interactivity constraint which 

requires that the values o f a  i or bj should be the same at thenumerators and the denominators in (12), 

even if the coefficients are i lbknown, and which is forgotten in a straightforward calculation. This 

intera.ctivity constraint should be taken into account for obtaining the actual ranges. See Dubois (1987) 

for a general discussion of fuzzy linear programming. 
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3 -  Fuzzy intervals and orders  of  magni tude 

Standard qualitative reasoning distinguishes between values which are slxictly negative (-), 

zero (0) or strictly positive (+), and is based on the exploitation of the following tables for the addition 

eiO + - ? ® + - ? 0 

0 0 + - ?  + + - ? 0  

+ + + ? ?  + ? 0  

...... 7 - 7  ? ? 7 7 0  

7 ? ? 7 ?  0 0 0 0 0  

T a ~ e s l  

and the product 

where ? denotes the completely unknown value corresponding to the range (.o,,+**). However, if we 

know for instance that X1 = + ; X3 = + ; X1 + X2 = X3 

we can only deduce X 2 = ? (while if  X 1 = 0, we get X 2 = +). Another simple example of the 

undesirably limited representation power of the above calculus is the following 

i fX  1 = +  and X 2 = +  then X 3 = X  1 + X 2 = +  

then the fact that X 3 > X 1 and X 3 > X 2 is forgotten. These kinds of ambiguities could be removed, if 

a more precise knowledge about the orders of magnitude, which is often available, could be modelled. 

Indeed we have in the general case for the first above example 

X I = A 1  ; X 2 = A 2  ; X 3 = A  3 ; X I + X 2 = X  3 

from which we deduce X 2 = A" 2 = A 2 n (A 3 o A1). 

This kind of thing still can be done in an approximate way when the Ai's are required to 

belong to a prescribed set of labels, such as, for instance : negative large (NL), negative medium 

(NM), negative small (NS), zero (0), positive small (PS), positive medium (PM), positive large (PL), 

unknown (?). These labels can be represented by fuzzy intervals such as the ones pictured in Figure 2. 

They form a (fuzzy) partition of the real line in some sense. 
1 

: \ /  \ / /  \ / \  
0 

Fieure 2 

The condition requested to build a meaningful qualitative calculus are twofold : 

C 1. The advantage of qualitative reasoning is linked to the existence of symbolic calculation tables 

such as the ones above. Such tables should be kept when absolute orders of magnitude are 

introduced. 

C2. The calculus, even qualitative, should remain consistent with the real line and the operations of 

the real line of which it is an approximation. 

Standard qualitative reasoning trivially meets these requirements. However going beyond the four 
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symbols -, 0, +, ? may look challenging. Indeed the closure property of the table seems to be 

incompatible with condition C2. For instance let S be the totally ordered set of symbols [NL, NM, 

NS, 0, PS, PM, PL} ; PS • PS = PM looks reasonable at first sight. But PS is of the form ]0,a] and 

PS • PS = ]0,2a] ¢ PM = [a,b]. Moreover lim riPS = ?. Hence rcsuhs obtained from the addition 
n-9+c,~ 

table built from 8 such that PS • PS = PM is inconsistent with the addition on the reals. 

It does not mean that qualitative reasoning based on absolute orders of magnitude is a 

utopia. Interpreting orders of magnitude as intervals or fuzzy intervals apparendy forbids the closure 

property of calculation tables. But the closure property can be preserved on ~ubsets of ~ containing 

adjacent elements, instead of $ itself, provided that we look for the best approximation (in the sense of 

inclusion) of s i • sj by means of unions of adjacent Sk'S, i.¢. s i e sj _C. u {Sk}. Note that the 
k ~ K  

introduction of the symbol ? in the usual qualitative tables meets the same purpose, that is 

+e-  .C. {-,0,+} = ?. What is proposed is just a generalization of  the way the symbol ? appears. 

The example of  Figure 2 leads to consider the following term set ~ = {NL, NM, NS, 0, 

PS, PM, PL, [NL,NM], [NM,NS], [NS,PS] .... [NL,PM], [NM,PL], 7} where [si,sj] = {Ski 

s i < s k < sj) for s i ~ $ -{0}, sj E • -{0}, s i < sj. Of course + -- [PS,PL] and - = [NL.NS]. Note that 

(n + l)n 
if 8 has n elements distinct from 0 then I~l = (n ÷(n - I) +... + 1) + 1 - - -  + I elements. Here 

2 

I~l = 22, for instance. This size is not so large for contemporary computers. 

o 

Ps + PM + PL + pM + + 

PM PM +PM + PL pM + PM +PM+ 

PL PL PL PL PL PL PL 

PM'I + pM + PL + pM + + 

pM +PM + pM+ PL PM+!PM + pM+ 

"*" 4. P M  + P L  + P M  ÷ + 

Table 2 : PM" = [PS,PM] ; PM + = [PM.PL] 

In Table 2 is pan  of the addition table (for strictly positive symbols), without any 

assumption regarding the model of PS, PM, PL (except that they are adjacent). Note that this Table 

corresponds to an associative operation, when restricted to positive values. However, it is no longer 

possible to preserve associativity on the whole table. This is due to the approximation procedure since 

associative operations remain associative when extended to intervals or fuzzy intervals. For instance 

with NL = -P1, (NL • PM) • PS = -ePS = [NL,PS], while NL e (PM • PS) = NL e PM + = ?. 

However this lack of associativity does not prevent to use this approach, since the ranges which are 

obtained will be always valid even if they may be too large with respect to the available knowledge. 

Moreover, we may try to perform operations in a way where no information is lost. 
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The addition law can be improved (with regard to the precision of its results by subsequent 

requirements for instance PS e PS = PM-, which forces PS = ]0,a], PM = [a,b] with 2a <-. b. Note that 

it is not necessary to use fuzzv intervals. Adjacent intervals can do the job. However there will be 

discontinuity problems when the (real) values of  variables cross the boundaries of the intervals 

modeling the symbol. Only fuzzy intervals can cope with these problems. 

4 -  Fuzzy relations and orders  of ma2nitude 

Orders of  magnitude can be expressed in an absolute way in terms of labels such as 

"small", "medium" or "large" which can be represented by fuzzy intervals, as said in section 3. They 

can also be handled in a relative way by means of  relations. This is the topic of  the present section. 

Raiman (1985, 1986) has proposed a formal system for order of magnitude reasoning with three 

binary operators : Ne (for 'negligible in relation to'), Vo (for 'close to'), and Co (for 'comparable to'). 

Inference rules, which can be justified from a Non-Standard Analysis point of view, describe how 

these operators work together. See Bourgine and Raiman(1986) for an application in macroeconomics. 

In the following, we discuss the modeling of these operators in terms of fuzzy relations. 

The idea o f  closeness seems to be natural ly captured by an approximate equali ty relation. 

Raiman (1986) relates the ideas of closeness and of negligibility in the following way : 'x is close to y' 

is equivalent to ' ( x  - y) is negligible in relation to y'. In other words, 'x is negligible in relation to y' if 

and only if 'x + y is close to y'. If we use an approximate equality of the form I~E(x,y ) = IlL(Ix - yl) (as 

in 2.2) for modelling 'close to', the above equivalence would lead to a definition of 'negligible' which 

would not be relative (since I(x + y) - yl = Ixl does not depend on y), but absolute. It can be avoided by 

defining the fuzzy relation 'Vo' in terms of a quotient, i.e. 

gVo(x,y) = g M ( x )  (13) 
Y 

where the characteristic function It M is such that tiM(I) = 1 and IJ.M(t) = I.tM(t--). Thus we have 
t 

I.tVo(x,y ) = I~Vo(y,x) and M is a fuzzy interval which restricts values which arc around 1 and which is 
1 

equal to its "inverse", i.¢. M = - -  (however we have not M 2 = 1 t). Then it leads to define the extent to 
M 

which x is negligible in relation to y, by 

IiNe(x,Y) = ~tM( x + y. ) (14) 
Y 

The combination/projection method, used in 2.1, enables us to perform the composition of 

Vo or of Ne with itself, or of  Vo with Ne. The following results arc easy to establish 2 

2. Warning : in interval arithmetic and morn generally in fuzzy arithmetic, the product MM is equal to M 2 if nod only if 
M is ¢ithcz positive (i.e.p.M(X) > 0 ~ x > 0) or negative (i.e.p.M(X) > 0 ~ x < 0). I-,Ier¢ in practice M is positive, 
but not (M-l). 



465 

sup min(gVo(X,y), ~Vo(Y,Z)) = ].tMM(x) > ]lVo(X,Z) (15) 
y z 

sup min(]aNe(x,y), ~Ne(y,z)) = [a[{M_I)CM_I) ~) 1]( x + z ) < I~Ne(X,Z) (16) 
y z 

x - F z  
sup min(l~Vo(x,y), laNe(Y,Z)) = I.t[M(M_ 1) ~ 1]( ) > P'Ne(X, z) (17) 
y z 

X 
sup miu(P.Vo(X + y, z), p.N¢(y,x)) = I~MM(-- ) > ~Vo(X,Z) (18) 
y z 

They correspond to the following inference rules proposed by Raiman (1986) (for sake of brevity, here 

wc only discuss a part of the 30 rules used in the formal system) 

(i) (x Vo y) ^ (y Vo z) --> (x Vo z) ; (ii) (x N¢ y) ^ (y Ne z) --¢ (x Ne z) 

(iii) (x Vo y) ^ (y Ne z) --¢ (x N¢ z) ; (iv) ((x + y) Vo z) ^ (y Ne x) ---) (x Vo z) 

The fuzzy relation approach shows that several of these rules arc only "qualitatively valid". Indeed in 

(15), the fact that MM is a fuzzy set which contains M mirrors the intuitively satisfying lack of 

transitivity of the fuzzy relation Vo, strictly speaking. By contrast, as shown by (16), the relation Ne is 

transitive. The repeated use of  the formal rules (i), (iii) or (iv) without control can lead to dubious 

conclusions in a way similar to sorites such as the bald man paradox (i.e., adding an hair to a bald man 

leaves him bald, but if  we repeat the addition...). The results of the composition of fuzzy relations, 

such as (15)-(18), are easy to compute in terms of simple fuzzy arithmetic operations on M. The 

fuzzy relation calculus enables us to reason about closeness and negligibility in a rigorous way without 

limitations on the chaining by means of control techniques. 

bl,B, I Inference rules expressing the compatibility of the relations with respect to arithmetic 

operations, such as (x Vo y) ^ (z Ne t) --¢ xz Nc yt can be also discussed in our framework. Indeed it 

can b¢ proved that 

l](U + v  
SUPx,y,z,t min(I.LVo(x,y), p.Ne(Z,t)) = I.t[M(M_l) ~ ) > ~Nc(U,V) (19) 
u=xz ; v=yt v 

Again we see that the rule is only "qualitatively valid", i.e. xz may be slightly less negligible with 

respect to yt than z in relation to t. Ahemativcly, we could compute what is the possibility that u is not 

negtigiblc (in the scns~ of  Nc) with respect to v, from (19). 

N.B. 2 Note that we have only an approximate equality between laNe(x,y) and ]aNe(-x,y) using (14) ; 

a perfect equality could be recovered by modifying (14) into P.Ne(x,y) = ]aM( 5' + x ). 
y - x  

N.B, 3 Raiman (1986) makes use of a third relation Co which is such that if x Vo y, then x Co y 

and expresses that two values have the same sign and the same order of magnitude. We may imagine to 

define Co in relation to Vo and Ne in different ways, for instance by expressing that x Co y iff 

Vz, x Ne z ~ y Ne z, following Raiman (1986). Another way would be to state that x Co y iff 

not[(x Ne y) ^ (y Ne x)] in the sense of some fuzzy negation n to be chosen in reladon with ]aM in 
1 

order to have max(n[]aM(l + u)], n[BM(1 + --)])  > ]aM(U), Vu (in order to guarantee I.tCo > BVo). 
U 
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5 -  Concludin~ remarks 

Other tools, not presented here, which have been also developed in fuzzy set or possibility 

theory, may turn to be useful in qualitative reasoning. Qualitative descriptions of the dependency 

between variables of the form "the more (or the less) X 1 is A 1 and.., and X n is An, the more (or the 

less) Y is B", where A 1 . . . . .  A n and B are gradual properties, can be conveniently represented (by 

means of a special kind of fuzzy relation) and dealt with in the framework of fuzzy logic, as recently 

shown in Dubois and Prade (1988). Such gradual rules naturally provide a qualitative description of 

the behavior of systems. For instance, with n = 2, A 1 = 'large', A 2 = 'small', B = 'large' and the 

hedges "the more.., the more", we express that "if X 1 increases and X 2 decreases then Y increases" 
(the nature of the increasingness or of the decreasingness can be modulated through a proper choice of 

~tA1, IIA2 and I.tB). 

Besides, a methodology for the control of complex dynamical systems by means of fuzzy 

expert rules which provide a qualitative description in terms of fuzzy sets of the relation between action 

variables and observable state variables, was settled more than ten years ago (Mamdani and Assilian, 

1975) ; see Sugeno (1985) for an overview of existing applications. People in Artificial Intelligence 

have also considered the problem of qualitative control recently (e.g. Clocksin et Morgan, 1986). 

The intended purpose of this short communication is to point out that fuzzy set and 

possibility theory can offer valuable tools for qualitative reasoning problems. In particular 

"commonsense" arithmetic reasoning (e.g. Simmons, 1986) can be easily handled using fuzzy 

intervals and fuzzy comparison relations. This framework is especially useful for interfacing numerical 

data and symbolic information. 
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Introduction 

In this paper we deal with some problems of the theory of two 

dimensional.polynomial moment problems. More precizely we give 

necessary and sufficient conditions for the existence of a solution, 

i.e. of a nonnegative mass distribution supported within a fixed, a 

priori given subset S of R 2, which has a finite set of moments with 

pre~ribed values.We study the problem of characterizing all minimal 

support solutions, i.e. those solutions which have a minimal number of 

atoms. 

The connections between the restr~ed (or finite) classical, 

polynomial (oncdi~ensional) moment problem (as a special case o[ Lhe 

moment problems of Nevanlinna-Pick type) and various other problems in 

the theory of orthogonal polynomials, rational Pade approximation 

(interpolation of Stieltjes functions),restriction of self aujoint 

operators to Krylow-subspaces, construction of quadrature formulae, 

minimal partial realizations of causal linear input-output maps, are 

well known. Similar applications for tile considered two dimensional 

generalization motivate our study. Tile method we use for the solution 

of these problems is operator theoretic and is based on solving an 

"extension problem" for pairs of commuting, self adjoint operators.The 

characterization obtained for the minimal support solutionsli.e, for 

the analogons of the Gaussian quadrature formulae is different from 

the previous approaches, which (as far as we know) used two dimensional 

orthogonal polynomials (searching for their common zeros) and poly- 

nomial ideal theory, see [11] for an extensive set of historical and 

current references. We were inspired by the operator theoretic treat- 

ment of moment problems as developped in [12], see also the method of 

the paper[16|. 

on leave framDept, of N~ner.Anal.,Eb~v6s University 

H. IO88,Budapest, Muzeumk.6-8,F6e'p. 
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Since the minimal support solutions are, in general non unique 

in the higher dimensional case (in contrast to the onedimensional case) 

moreover their set (thus the problem of finding at least one element of 

i£) is r~ot convex and for other reasons like the complexity and stab- 

ility ( with respect to errors in the prescribed moments)we propose 

and study here an other, particular (nonminimal) solution , i.e. [,lass 

distribution, the so called analytical csntre of the feasiule set (of 

solutions). Several positive features and applications of tills solu- 

tion concept,like stable computability wit}, a relatively small number 

of arithmetical operations and the feasibility of high degree homo- 

topy methods for computing bounds for any further, not specified 

"moment' (i.e. integrals with respect to the underlying measure)are 

studied in the last section. 

2. Preliminaries 

Suppose that S c R n is a closed set and I~ is a nonnegative (Raa< n) 

measure supported within S. In ~he ~eneral, finite or restriced 

moment problem we shall study here the data are the N values reals 

(2.1) Cj = jr Kj(s) p(ds) = ~j(p), 9=I ..... L~ 
S 

of fixed, linear (continuous) functionals ~j, given u~ continuous on S 

functions Kj, j=I,...,N on S and one asks for the conditions of the 

existence and a characerization of all solutions ~ which have minimal 

support belonging to S: 

(2.2) M ~ min, Cj = Z Kj(s k) ~k' ~k O, SkE S, k = I, .... i~. 

In the case when S ~ R 2, i.e. n=2, and for S = {x,y) the functions 

K I,...,K N have the form 

(2.3) xiy 3, (i,j) 6 I, iI~ = N 

2 
where I is a finite subset of Z+ ( the set of nonnegative entires)of 

cardinality N, the above problem - the so called restri6~d polynomial 

moment problem - is a natural generalization of the Gaussian quad- 

rature problem. Of course, one can expect a reasonably simple and 

constructive answer to this problem only if I and S have a simple 

form, e.g. S is a quadrangle 

(2.4) S = [al,b I] x [a2,b 2 ] 

and - for some fixed, positive L - 
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(2.5) I =((i,j)li + j ~ L, i,j ~ O}. 

We give now an equivalent formulation of the problem(2.2)-(2.3) 

which is crucial for our approach. 

Proposition I. The problem (2.2)-(2.3)- with data set[c(1),S]is 

equivalent to the existence and characterization of quadruples 

l{,A,B,e , where |I is a l|ilbert space (whose dimension should be mini- 

mized), A and B are self adjoint cummuting operators on H and e is a 

nonzero vector in H such that 

(2.5) C. = <AIB3e,e > , for all (i,j) 6 I. 
13 

Proof. If there is a solution of problem (2.2)-(2.3) then we define 

the l[ilbert space 

(2.6) H; = L2(S,d~,), e: = I on S 

and the operators 

(2.7) A f(x,y):= x f(x,y) B f(x,y): = y f(x,y) 

which are self adjoint and commuting. The conditions in (2.2)can be 

expressed as those in (2.5). 

Conversely, suppose that (2.5) holds and let A,B have the eigen- 

vectors (they are common and form a basis of |I by the communtativity 

and self adjointness of A,B) ~I''''' ~M and eigenvalues Xl,..,x M resp- 

Yl,..-,YM ,where M is the dimension of H 

(2.8) A ~k = X k ~k" B ~k = Yk~k ' ~= I ..... M. 

Then 

M i ~ l,e>2 
(2.9) cij =k=IZ x k y pk,(i,j) 6 I , where ~K: =< V { ,k=1 .... ,M. 

This completes the proof and shows that once we constructed the 

quadruple <H,A,B,e> then the quadrature formula (2.9)can be obtained 

by a low complexity stable numerical method i.e.solvi~g an cigenvalue 

problem. 

Not assuming H to be finite dimensional we had to invcke the 

general spectral decomposition theorem, see e.g. [12] ,by which a 

representing measure is obtained from the associated projector measure 

d~(~) = d ( <E~e,e >) 

Proposition 2. If problem (2.1),(2.3) has a solution then the problem 

(2.2),(2.3) also has a solution,moreover for the minimal value M we 

have the inequality 

(2.10) min M &II[ 

which is exact in the sense, that there exist (multiple connected) 

domains S such that for the constant weight function V' (x,y)~ I on S 

and the set I as in (2.5), for arbitrary L we have equalitF in (2.10) 

- The first part is known as Chakaloff's theorem see [6] and is basea 

on the simple fact that if 
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R 
C = I ,c E R k, Yi z O i=I, .,R 

i = l Y i e i  ' . .  

then there exist a similar representation in which there are at most 

k nonzero constants Yi" For a proof of the second part see §4,ch.2in 

[11]. Before going further let us indicate here the connection of the 

above problem with the minimal,partial relization problem for a class 

ot two dimensional shift invariant, linear input-output maps 

- Z U. (2.11) Yk,l -k i,l j Fk-i'l-J l,j 

by state-space models of the form 

(2.12) Yk,l = <h'Xk,l> 

Xk+1,1+ I = F1Xk,l+ I + F2Xk+1,1 - FIF2Xk, 1 + gUk, 1 

where FI,F 2 are commuting,symetric matrices in R M and h,g E RM,see [3]. 

The transfer functions assiciated to such maps 

T(w,z) =fJ d~(x,~) = ~ ~ F .wiz j 
(1-wx) (1-zy) i=O j=O l] 

are generalizations of the one variable Stieltj~s functions and should 

play the same role in analyzing "passive" input-output maps. Note that 

the realizability conditions have the form of complete, infinite moment 

conditions, if g = h, 

Fi, j = <h,F I F g> ~ i,j g O. 

It is known that the minimal partial realization problem underlies most 

of the basic engineering problems of system analysis, see e.g. [2~, 

even if for a SUitable,more exact and stable numerical solution of 

these problems other linear information functionals are better suited, 

see [14] and below.Connections to(rational)approximation (in£erl)olation) 

problems for Stiel~es functions are extensively studied, see e.g.[7], 

[I0],[14],[16]. 

3.Exact conditions of existence and minimalitv 

We shall restrict our interest to so called "regular"index sets I, 

which - by definition- have the following property. 

(3.1) if (i,j) E I, then (k,l) E I, for all k ~ i, 1 ~ j 

In order to characterize the minimal solutions (H,A,B,e) we }lave to 

characterize first the sets with consits of a maximal number of 

linearly independent vectors among(3.2) AIB]e, i,j e O. 

Lemma I In the linear space H spanned by the vectors (3.2) (if it is 
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finite dimensional) there always exist a basis consisting of ele- 
2 ments of a regular subset L c Z+ 

Proof. Let n I be the maximum of the values n such that e,Be,..,Bne -I 

are linearly independent. Suppose inductively that nk,k ~ I is the 

largest value of n such that Bn-IAk-lb is linearly independent on 

the vectors AIB3e, with i ~ k-2,j ~ n i and i=~I,~ n-2.Since the 

sequence of the nk,k-1,...satisfies nlz n2...c nkZ I, ~ nk=dim H 

the above procedure ends in at most dim H steps and yields a regular 

set L. 

Definition. If L is a regular set, the (generalized)Hankel-matrix asso- 

ciated to it is defined by 

}IL(i1,Jl), (i2,J2):= Ci1+i2,j1+j 2 

where we order the rows and colums of HL(indexed by elements of L) 

.2 Further we denote-for according to the lexigographic order in Z+. 

a regular set L 

L*: = { (k,l) J H (i,j) 6 L with I : k-i c O, I ~ l-j ~ 0} 

LI:={ (k,l)13(i,j)£L,k £ i+1,1=j},L2= ( (k,l~ 3 (i,j)EL,k=i,l: j+1 } 

L2:={ (k,l) Ik=i1+i2,1=J1+J2, (i 1,911£L, (i2,J2)6L} 

Theorem I. The necessary and sufficient condition for the existence - 

given the moment data c(1) - of a nonnegative representing ineasure 

supported in at most M points of S is that there exists a regular 

set L of cardinality m and an extension of the data from c(I) to 

c((L*)2), i.e. an assigument of values to the unspecified moments 

in c((LM) 2) such that the matrix HL~ is positive semidefinite and 

(3.3)rank H L = rank IlL* ~ M. 

Moreover the minimal value of M for which the above two conditions 

can be satisfied equals the minimal number of knots in the corres- 

ponding culature formula. 

Proof. In order to understand the role of the matrices II L and HL~ note 

that these are theGram matrices associated to the set of vectors 

W(L) = { AIB3e I (i,9) 6 L} 

W(L ~) = {ArBsv]v 6 W(L), O _ r I, O ~ s u I). 

The necessity of the conditions (5.5) follows now from Proposition I and 

Lemma I since Gram matrixes should be positive semidefinite and their 

rank equal the dimension of the space spanned by the underlying vectors. 

To prove the sufficiency of the conditions we have to construct a quad- 

ruple (H,A,B,e) , such that dim H = rank H h and (2.5) holds. Now we 

define H as the Hilbert space spanned by vectors Vij indexed by the 

element (i,j) £L • , whose scalar products are specified by 
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• Vi,j,Vk,l> = Ci+k,j+ 1 

Since rank H L = rank }{~ , the operators A,B defined by 

AVi, j =Vi+1, j BVi, j = Vi,j+1, (i,j)£ L 
! 

are hereby, defined on the whole space H, moreover they are well 

defined: if 

Vr,s = (i,j)£LZ a.l,j Vi, j, i.e. I aij<V i , j,Vk,l> =<Vr,s,Vk,l~ 

for all (k,l) £ L • , then 

ai, and = Z a . V Vr+1, s ~i, )£L J Vi+l,J Vr, s+1 (i,j)£L 1,3 l,j+1 

hold. Indeed multiplying the latter relations by Vk,~(k,l)6 L, the 

relations obtained are consequences of the previous ones because H L is 

a submatrix of HLI and HL2" and t h e s e  a re  submat r ixes  of  HL*. 

These operators A and B are clearly symmetric (i.e. self adjoint) 

since for all (i,j),(k,1)6 L 

AVi,j,Vk, 1 > = ci+1+k,j+ 1 =< Vi,j,AVk,l> 

and they commute, since 

< ABVi,j,Vk,I> = Ci+k+1,j+l+ 1 = ~BAVi,j,Vk,I> " 

By this the theorem is proved. 

The difficulty with this extension problem is partly apparent from the 

following fact:the restriction of the original say infinite dimensional 

operator s A and B to a Krylow-like subspace W(L) are symmetric but 

they may not commute, (in general, they do not commute).- It is not 

clear what further connections (if any) exist between the set I (and 

the values c(I)) on one side and the possible sets L on the other side, 

is it true that L can be chosen as a subset of I? 

These sharp differences between one and higher dimensional polynomial 

moment problems have been observed e.g. in [13],where it is first shown 

that in the twodimensional trigonometric~finite moment problem the non- 

negativity of the associated, generalized Toeplitz matrix (the precize 

analogon of our Hankel matrix) is not sufficicient for the solvability. 

The theory of normal extensions of operators)see the appendix written 

by Sz6kefalvi Nagy in [12] is clearly related to our problem since the 

operator A + iB = T should be normal, for A,B to be symmetric and 

commuting and vice versa. The conditions - in terms of c(I) - for the 

condition:spectrum T c S can be easily written down in the case (2.4): 

the following matrixes should be nonnegative definite 

(3 4) - aiH 1 , - a2HL, b2H L , 
• HL1 blHL-HL1 , HL2 - HL2 

If S is the disjoint union of two ~uadrangles QI and Q2 than we have to 

require that there exist a decomposition of each of the moments (fixed 
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or assigned) such that 

ci, 9 = ci~ (01) + ci2j(Q 21 , (i,j) £ (L*) 2 

and (3.4) holds for the respectively decomposed matrixes.As an example 

of a simple application Of Theorem I we metion the following fact: 

fir six data (Co,o;Cl,o;... ;Co, 2) if the coresponding 3 x 3 matrix 

is nonsinqular the minimal measures should have 3 atoms and they con- 

stitute a one parameter family. 

A new numerical approach to solve the existence problem 

It is very difficult to handle the constraint(3.3) numerically, the 

set of solutions of the minimal extension problem is not convex. 

Observing that the finite dimensional analgo~ of the solution set to a 

moment problem (2.1) has the form of a polyhedron ( in the sequel we 

often use abbreviations for N tuples (cl,...,c N) = c N) 

(4.1) K = K (kN,c N) = ( ~ I< ki,~>= ci, i=I ..... N, ~ E R~ ) 
we see that searching for the extremal points "vertices" of K. 

It is known that the parameters of a Gaussian quadrature are very ill 

condi~o~ed functions of the moments ( note that(2,1) is something like 

an integral equation of the first order whose right hand side is known 

only at some points) - and this has its parallel in the fact that the 

vertices of a polyhedron H(k N, c N) are nonsmooth functions of the data 

c N, or (kN,cN). 

We propose now using an otherjs[,ecific solution,the"@nalztic centre" 

of the solution set, in order to solve the existence ( and some related 

estimation) problems, in a numericaly more feasible manner. 

The analytic centre ~ (K) =p(kN,c N) of the polyhedron(4.1) is defined 

as the unique point which solves the following optimization problem 

max( ~ log ~iI~kj,~}= cj,j=1 .... N ~i Z O,i=I ..... m} 
i=I 

If the polyhedron is represented in its own space(of dimension m-N,in 

general), i.e. K ~ P = p(am,b m) 

p(am,b m) = {xlbi-<ai,x > ~ O, i=1,...,m,x £ R m-N} 

5Y the map Pi = bi-<ai'x> ,i=1,...,m, then ~ = x (am,b m) the point, 

which solves the problem (assuming int P % ~) 
m 

max{ fi (bi-<ai,x>) Ix E p(am, bm)}. 
i=I 

One can prove that the map (am,b m) ~ x(am,b m) is affi~e invariant 

and the~e exists a two sided ellipsoidal approximation for P around x: 

+ E ~ Pox + m E, E ={ zI<Az,z> ~ I} 



476 

where the symetric matrix E = E(am,bm) is easily obtained from x(am,b TM) 
see [14],[15]. The fact that x(am,b m) = ~(k N,c N) is an analytic, very 

smooth function of the data allows to solve the feasibility and linear 

optimization problems by a homotopy approach,see [|5];which we gene- 

ralize now as follows. 

The analytic entre of the set (2.1) is defined (if its exists) as 

the solution of the problem 

(4.2) sup(S log ~'(s)dsl ; Kj(s)~'(s)ds = cj, 9=I ..... N}. 
S S 

It is easy to prove that the set of values c N for which (4.2) has a 

solutionis convex and dense in the set of all feasible c N, if S is 

a domain, i.e. closure (int S) = S. For the trigonometric moment pro- 

blem this solution was studied already about 1920, see [10],[14]. 

Lemma I. The solution of the problem (4.2) - if it exists - has the 

following form 
N -I 

~' (s) = ( ~ aj Kj(s)] 
j=1 

for suitable a N £ R N, which in fact is then the unique solution of the 

equation 
N 

~F(~___~) = ~ Kj(s) ( Z a K.(s))-Ids = c.,j = I, .... N (4.3) 
~aj j=l 3 ] ] 

such that Z a~K~(s) is positive on S, here 
J J 

(4.4) F(a) =Sf log ( z ajKj(s))ds 

Proposition The moment problem (2.1) has a solution if and only if the 
N 

homotopy path a(~) can be continued from I = 1 till A= O, where aN(1) 

O < I & I is defined as the solution of (4.3) where c N is replaced by 

( I - ~)c N + A c N , 

N N o -1 
Co = S xN(s) ( Z =.K.(s)) ds 
N S j=1 3 3 

and X a0 K. is an arbitrarily fixed polynom which is positive on S. 
j = l  ] ] 

The proof is a simple application of the implicite function theorem. 

For brevity we can only refer tD[9 ],[15] for the application of this 

method for the estimation of (computation of exact upper and lower 

bounds in terms of the moments c N for 

i(cN) ~ S Ko(S) P (ds) _~ u(c N) 

It can be expected that for smooth analytic kernel functions 

Ko,KI,...,K N this approach is superior to those using discretizations 

of the measure (of the set S) and algorithm~ based on the simplex 

method (note that the latter methods use- as a tool - extremal solu- 

tions, only piecewise smooth homotopies)}concerning numerical test 
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results on this approach-uslng homotopies along analytic centers- to 

solve linear programming problems, see[9]. 

The special solution of (4.2) in the case of the (real)trigono - 

metric moment problem - where Kj(s) = exp(i(j-1)s), s £[-K,~]and p a 

measure on[-~,,](which is symetrical to zero)-,which is a special 

case of the Nevanlinna-Pick moment problem, is the so called 

"maximum entropy" solution. These analytical centers, more precizely 

the coefficients of the trigonometric polynomial[ ~'(eiS)] 1 are ratio- 

nal functions of c N which can be computed rather quickly:in O(N 2) 

arithmetical operations. This and other observations, see[15]lead to 

the idea that for the extrapolation of the function aN(l)rational 

(multipoint Pade) approximation - with Newton type corrector step to 

solve (4.3) - will furnish a rather efficient path following method. 

In fact, in a problem closely related to (4.2), the use of a special 

rational extrapolation method can be justified rigorously using a 

generalizaiton of the well knwon fact (see e.g.[7]) that the multi- 

point Pade approximants (i.e.interpolants) to a Stieltjes function 

are again Stieltjes functions, see[15]. 

In order to solve - over some domain S - the closely related uniform 

approximation problems 

N 
minJl Ko(S) - Z ~iKilJ L~(S) 
pN i=I 

we propose following the homotopy path BN(~) determined by 

sup (log(k-~) + I(log (Ko(S) N - [ BiKi(s)-~)+ log (~-Ko(S)+ 
(~,@N) S i=I N 

[ SiKi(s)})ds • 
i=I 

Of course~the sucess of these methods depend5 (among others) on the 

availability of fast and accurate methods for approximating the above 

integrals as well as those in (4.3). 
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SPECULATIONS ON POSSIBLE DIRECTIONS AND APPLICATIONS 

FOR THE DECOMPOSITION METHOD 

G. Adomlan 

The decomposition method has now been applied to a rather 

wide class of nonlinear differentlal and partlal differentlal 

equations. An interesting characteristic is that once a problem 

is modeled with a specific (linear, nonlinear, deterministic, 

stochastic, ordinary or partial differential) equation with 

physically correct conditions specified, the usual 

linearlzatlons, perturbations, closure approximations, white 

noise assumptions, or dlsoretlzatlon are avoided. Certainly, 

much remains to be done on the theoretlcal foundations and 

precise limitations which can be viewed as a fascinating 

challenge for further research. Valuable work in this 

direction has appeared by Professor N. Bellomo and his co-workers 

[1]. The range bf problems solved and the accuracy obtained - 

the fact that nonlinear systems with stochastic parameters are 

included in the methodology - and the fact that the work has 

applied to parabolic, elliptic, and hyperbolic equations - 

suggest that this may be a useful and computational method for 

frontier applications. Proof of convergence and convergence rate 

in solution of partial differentlal equations, error estimates, 

and perhaps better generation of the author's presently used A n 

polynomials or equivalent new forms are fertile areas for further 

study and dissertations. Many other research topics are in the 

area of applications; some are discussed in [1]. 

Let us point out some speculations on possible applications 

noting that these appllcatlons require the development of a 

correct mathematical model before decomposition can posslbly 

solve them. It is not useful to apply the method to many 

existing models since they have already been llnearized and 

otherwise simplified for mathematical tractability. The solution 

from such simplified models can differ, sometimes substantially, 

from the actual models. Also, since the decomposition technique 
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does not require dlscretization, it is evident that in a 

difficult problem such as Navier-Stokes, use of decomposition may 

provide appreciable saving in computation time. 

Nevertheless, some posslble appllcations which represent an 

exciting challenge are areas such as nonlinear and posslbly 

stochastic and multidimenslonal optlmal control theory, 

hypersonic flow, quantum theory and gravitation, generalizatlon 

of the Kalman filter, and problems of large space structures such 

as vibration, heating, etc., [3]. 

Before going into these areas, let's look briefly at some 

illustrative decomposition examples (chosen for clarlfylng the 

procedure rather than for dlfficulty.) 

Example 1; d2y/dx 2 + 2x dy/dx = 0 with y(O) - 0 and y(a) = 1. 

The solution is y(x) - erf(x)/erf(a) or 

y(x) - 

x 3 x 5 x 7 x 9 

x - 7 + l o  42 +216"'" 
a 3 a 5 a 7 a 9 

a - ~ + i0 42 + 216 "'" 

By decomposition we write (letting L = d2/dx 2) 

Ly - -2x(d/dx) y 

Operating with L -I , a two-fold integration: 

Y = YO - 2 L - 1  x ( d / d x ) y  

where Y0 = Cl + c2x - If we satisfy the boundary conditions we 

have Y0 " x/a which is our first approximation ~1 • The 

w 

complete solution is Y = ~' Yn and our approximation 
n=O 

n-i 
to some n terms is ~n = ~. Yi • Substituting Y = ~. Yn 

im0 n=O 

above we identify 
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Yl " "2L-ix(d/dx)Y0 

Y2 " "2L-Ix(d/dX)Yl 

Yn " -2L-ix(d/dx)Yn-i 

Thus Yl " -2L-ix(d/dx)(cl + c2x) = -c2 x3/3 , 

Y2 " -2L-Ix(d/dx)(-c2 x3/3) = c2 x5/I0 , etc. 

approximation, for example, is 

A three-term 

~3 = Y0 + Yl + Y2 

- c I + c2x - c 2 x3/3 + c 2 x5/10 

Satisfying the boundary conditions with ~3 , i.e., a three-term 

approximation, we have 

x 3 x 5 
x-E-+ i- 

U - a3 a5 
a-7+l  

which can be carried further if necessary. 

Example 2: d2u/dx 2 - 40x~I = 2, u(-l) = u(1) = 0. 

L = d2/dx 2 and write [1] 

Lu = 2 + 40xu 

u - c I + c2x + L-1(2} + L-l(40xu) 

Let 

Let u 0 - c I + c2x + L-1(2) = c I + c2x + x 2 and let 

The components of u are given by 

n--0 
tl n . 

Un+ 1 = L-140xu n 
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for n ~ 0 thus: 

u I = L-140xu 0 = (20/3)CLX3 + (i0/3)c2x 4 + 2x 5 

Similarly, 

u 2 - (80/9)CLX6 + (200/63)c2x7 + (10/7)x 8 

n-i 
We continue to some n-term approximation ~n " ~ ui which 

i=0 

approaches u - ~. u n as n * ~ [1]. If we write ~3 as an 
n=O 

approximation, 

~3 " Uo + Ul + u2 

- c I + c2x + x 2 + (20/3)ci x3 + (i0/3)c2x4 

+ 2x 5 + (80/9)CLX6 + (200/63)c2x7 + ( lO /7 )x  8 

Imposing the boundary conditions at -1,1, we write 

~3(I) - ~3(-i) - 0 to get 

29/9 -s3/63 c2 I -3/71 

from which Cl, c 2 are evaluated. Substituting ~n into the 

left side of the differential equation, we should get the right 

side, or 2, if the approximation is sufficient. We note that the 

12-term approximation yields 2.000000 or seven-dlgit accuracy. 

On R 3 with Lx . %2/ax2 ' Ly = %2/%y2, Lz = %2/%z2 we 

write 

[L x + Ly + Lz]U = f(x,y,z) + k(x,y,z)u 

Solve for each linear operator in turn. Operate on each of the 

three equations with the appropriate inverse and write 
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+ L-lf _ L-lku _ L -1 
u - "x x x x (Ly + Lz)U 

+ L-if _ L-iku _ L -I 
u - ~y Y Y Y (L z + Lx)u 

- + L-If - L-lku - L -1 Ly)U 
u ~z z z z (Lx + 

where ~x' ~y' ~z 

dividing by 3, 

are the homogeneous solutlons. Adding and 

with 

U = U 0 + KU 

(LxI L-I I) - +, + + +L- f} U 0 (I/3){~X + ~y Z y z 

K = ¢, , /3}¢¢I . ,~ 1 + L -I~ + L-1)k~ + i . , ~ 1 ¢ ~  + Lz) 

+ + + + 

W 

assuming u = ~. u n , 

n = O  

= K u Un+l n 

so all components are determined. The inverse operators are 

double integrations leadlng to two constants of integration to 

be determined by forcing u n to satisfy the given condition. 

Suppose k - k(u) so the equation becomes nonllnear. The 

nonlinear term is expanded as ~. A n where the A n polynomials 
n=0 

are generated for the nonlinear term as discussed e.g. in [3]. 

For analytic functions f(u) , the sum of the A n can be 

shown to be equivalent to a generallzed Taylor Series about 

the function u 0 . The procedure is now as before except that 
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the Un÷ 1 will involve an A n term. Since each A n depends only 

on u0,ul,°..Un, the solutlon can be obtained essentlally as 

easily as in the linear case. 

The generation of these polynomlals has been discussed in 

previous work. However, for convenience, we provide a useful 

heurlstlo rule to write the A n in general. The A n for 

polynomial nonlinearities being sums of various products of the 

u i up to i - n can be written in symmetrlzed form. For 

O 

NU u 2 A n , for example, A 0 - u~ , A 1 - 2u0u I , 8 

n--i 

2 
A 2 - u I + 2u0u 2 , etc., but we can write this as A 0 = UoU 0 , 

A 1 - UoU 1 + UlU 0 , A 2 ~ UoU 2 + UlU 1 + u2u 0 , etc., i.e., the 

first subscript goes from 0 to n , the second from n to 0 

such that the sum is n . 

n 

For more general forms, we define A n = ~. c(v,n) f(V)(u0) 

v=l 

where f(v) (u0) ~epresents the vth derivative of f(u) 

evaluated at u = u 0 o To get the c(v,n) we first ask how many 

combinations of v integers will add to n . Thus c(v,n) will 

mean the sum of possible products of v ui's whose subscripts 

add to n. To get c(2,3), we see that two integers can add to 

3 only if one is 1 and the other is 2 , if zero is excluded. 

Hence, we write c(2,3) - UlU 2 . To get c(1,3), the coefficient 

of f(1)(u0) , we have one u i and its subscript must be 3 , 

hence c(1,3) - u 3 . For c(3,3), we need three factors u i 

with subscripts summing to 3 t hence each subscript must be 1 

3 
and c(3,3) - UlUlU l - u I . As stated so far however, this rule 

is incomplete. We must also divide by the factorlal of the 

nnmber of repetitions to use the formula as stated. Thus 

3 
C(3,3) - (i/31)u I . We have now 

A3 = u 3 f ( 1 ) ( u 0 )  + UlU2f(2 ) (u0) + (1/3|)u31 f (3 )  (u0) . 
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f(V)(u0) for v from 1 to 6 . The coefficient of f(6} 

6 
must involve six integers adding to 6 or u I 2 hence the 

6 
coefficient is (1/61)u I . What about the coefficient 

c(2,6) for f(2)(Uo) in A 6 . These are (I,5), (2,4), and 

(3,3). Thus the coefficient c(2,6) is (I/2[)u~ + u2u 4 + UlU 5. 

Thus the A n are as follows: 

A0 . f(0) (u0) 

A 1 ,= ulf(1)(U 0) 

A2 ,,, u2f(1)(u0) + (i/2)u 2 f(2) (u0) 

A 3 = u3f(1) (u 0) + UlU2f(2) (u 0) + (1/31)u3f( 3] (u 0) 

A 4 = u4f(1)(u0) + [(i/2[}U~ + UlU3]f(2) (u0) 

2 
+ (i/2[)UlU2f(3)(u0) + (i/4l)u4f(4)(u0) 

Example 3: Consider Duffings equation 

y" + ¢y' + BY + ~y3 = x(t) 

which we write 

Ly = x(t) - ay' - BY - ~y3 

m 

Y " YO - L-I~ (d/dt} ~. Yn -L-17 ~ An 
n = O  n = O  

Given initial conditions y(O) and y'(O) , we identify 
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Y0 " y(0) + ty'(0) + L -I x(t) 

Yl " -L~-la(d/dt)Y0 - L-IB Y0 -L-17 AO 

Y2 " -L-l~(d/dt}Yl - L-IB Yl - L-17 A1 

A n polynomials to represent the nonlinearlty y3 are given 

3 
A0 " Y0 

2 
A 1 = 3Y0Y 1 

2 
A 2 = 3Y0y21 + 3Y0Y 2 

2 
A 3 - y31 + 6Y0YlY 2 + 3Y0Y 3 

2 2 2 
A 4 = 3YlY 2 + 3Y0Y 2 + 6Y0YlY 3 + 3Y0Y 4 

2 2 2 
A 5 - 3YlY 2 + 3YlY 3 + 6Y0Y2Y 3 + 6Y0YlY 4 + 3Y0Y 5 

3 
A6 = Y2 

2 
+ 6YlY2Y 3 + 3YlY 4 + 3Y0Y ~ 

2 
+ 6Y0Y2Y 4 + 6y0YlY 5 + 3Y0Y 6 

Thus the solution is determinable to any desired n-term 

n-i f 
approximation ~n = ~. Yi which converges to Y = Yn • 

i=0 n=0 
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n-1 ® 

~n " ~. Yi which converges to Y " ~. Yn • 
i-0 n-0 

The ~. A n constitutes a generalized Taylor series about 

n-0 

1 
the function Y0(t). 

stoehastlo Qasez We could have stochastic fluctuations in 

a, 8, or 7 in the above example, in addition to stochastic 

x(t) or Inltlal conditions. Thus, in general, we could write 

m <~> + E 

m <B> + 

7 m <~/;> + ¢ 

where (, ~, ¢ are zero-mean random processes. The solution 

process can now b~ obtained from 

o 

Ly - x - ~ ( d / d t ) y  - B y  - 7 ~. 
n~O 

An 

m 

- ((d/dt)y-.y- ~ Z An 
n=O 

where the A n summation represents y3 in the Dufflng case and 

(d/dt}y 3 in the Van der Pol case. Thus, 

Y0 " y(0) + ty,(0) + L'Ix 

Yl " -~(d/dt)Y0 - BY0 - 7A0 

-((d/dt)Yo - ~Yo - cAo 

i. See reference [4] 
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Y2 " -~(d/dt)Yl - ~Yl - 7AI 

-6(d/dt)y I - ~Yl - ~AI 

W 

Then y(t) - ~. Yn(t) yields a stochastic series from which 
n=O 

statistics can now be obtained without problems of statistical 

separability of quantities such as <Ry>, where R = E (d/dt) - ~, 

which normally require closure approximations and truncations. 

We note that no statistical linearizatlon is necessary. We 

do not need to assume x(t) is delta-correlated or stationary or 

to neglect parameter fluctuations. 

Rather than further discussion of the methodology on which 

there is now a conslderable published literature in the U.S. and 

Europe, let us speculate on some applications which appear to be 

possible in the Very near future although they require the 

modelling expertise of theorists concerned primarily with each of 

those areas. 

Some of these, in the author's opinion, are 

1) optimal control for nonlinear stochastic systems 

modelled by ordinary or partlal dlfferential equations. 

2) hypersonic flow, turbulence, single-stage-to-orblt flight 

(essential for shuttles which can be used for the 

construction of space stations,) 

3) quantum theory and gravitation 

4) generalizations of Kalman filtering. 

Because of page and time limitations we discuss only the first 

two here. 

1) Suppose we consider a nonlinear and possibly stochastic 

system which we want to control in some optlmal way. For a 

linear control system with a quadratic performance index, of 

course an analytical solution can be made. Consider the state 

equations 
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x(t) - f(xl,...,Xnt Ul,...,Um;t ) 

i.e., a set of n nonlinear differential equations with x(t) 

representing a state vector with n components fl,...,fn, and 

x(t0) a given initial vector. Define, for example [4] a 

performance functional J(x,u,t) given by 

tl F(x,u,t) dt j - ,[x(tl), t 11 + ~to 

where ~ and F are scalar functions with necessary smoothness 

properties. Let p - [pl,...,pn] T be a vector of Lagrange 

multlpliers and form an augmented functional 

Integration by parts leads to 

tl t I ~T 
J' - ~ - [pTx] [to + ;t 0 [H + x] dt 

with H defined as 

H(x,u,t) = F(x,u,t) + pTf . 

If u is defined on t o ~ t ~ t I , we vary u and find the 

variation ~J' corresponding to 8u, leading to the n adjolnt 

equations, 

so we have a system of 2n nonlinear differential equations with 

two-point boundary conditions. Although this approach has been 

discussed by R.E. Bellman and many others, perhaps most recently 

in [2], analytical solution has usually not been possible except 

by numerical methods. We now have a potentlally valuable 
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alternative since such systems of nonlinear differential 

equations h~ve been solved (even for the stochastic and/or 

multidlmensional cases) in a analytic approximation by the 

decomposition method. 

Another possibility is through solution by decomposition of 

the matrix Riccati equation which appears in invarlant embedding 

and neutron transport theory as well as modern control theory. 

Consider 

R ' ( X )  '= B(x)  + D(x )R(x )  + R ( x ) D ( x )  + R(X)B(X)R(x)  

R ( o )  = o 

where B, D, R are continuous n × n non-negative matrices. 

Suppressing the argument x , we have 

R' - B + DR + RD + RBR 

If L = d/dx 

LR = B + HR'+ NR 

where LR - R' , HR = DR + RD , and NR represents a nonlinear 

operator on R . Since R(O) = 0 , operation with L -1 on both 

sides yields 

R = L-IB + L-IHR + L-INR . 

Let R 

For R 

and NR be written in terms of the A n polynomials. 

this is equivalent to writing R = ~. R n . For NR 
n=O 

Identify R 0 = L-1B ; then 

-i 
H R 0 + L A 0 

W 

write ~. A n . 
n=O 

- 1  
Ro=L B 

- 1  
R I = L  

We 
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R 
n 

- L -I H R 1 + L -I A 1 

-1 -i 
- L H Rn_ 1 + L An_ 1 
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for n k 1 . The A n for NR are given by [1] 

A 0 - R 0 B R 0 

A 1 ~ R 0 B R 1 + R 1 B R 0 

A 2 = R 1 B R 1 + R 0 B R 2 + R 2 B R 0 

A 3 = R 0 B R 3 + R 3 B R 0 + R 1 B R 2 + R 2 B R 1 

A 4 - R 2 B R 2 + R 0 B R 4 + R 4 B R 0 

+ R 1 B R 3 + R 3 B R 1 

so that 

R 0 

R 1 

R 2 

R 3 

-i 
-L B 

-1 -I 
L H R 0 + L RQ B R 0 

-1 -i 
- L H R 1 + L (R 0 B R 1 + R 1 B R O) 

-i -i 
- L H R 2 + L {R 1 B R 1 + R 0 B R 2 + R 2 B R 0} 

Finally, since HR- DR + RD 
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-I 
R 0 -- L B 

Sl " L-lID ~o + R 0 D} + L-I{Ro B R O} 

R 2 = L-I(DR1 

-i 
R3-L 

+ R 1 D} + L-I{Ro B R 1 + R 1 B RO} 

{D R 2 + R 2 D} + L-I{R1 B R 1 + R 0 B R 2 + R 2 B R0} 

n-i 
An n-term approximant is ~n = 5q. R n which approaches 

i=0 

R m ~. Rn as n + m . Thus, given B, D, a specific R 
i-0 

calculated to a desired approximation. Accuracy has been 

demonstrated in [3]. 

can be 

(2) Hypersonic Flow: The present approach to hypersonic 

flow problems is computational fluid dynamics (CFD), and 

intensive work is being done to develop appropriate CFD computer 

programs for the hypersonic case. Wlth continuing rapid 

developments in supercomputers, this emphasis is certainly 

appropriate. Yet, another methodology now appears promising 

which is quite different and seems to have a high potential for 

important advantages as well as a probably high adaptability to 

supercomputers. This is the decomposition method. 

It ylelds a rapidly converging series solutlon in analytic 

form. It requires no linearization, perturbation, closure 

approximations, or assumption of special mathematically tractable 

stochastic processes such as delta-correlated processes. 

Probably most important is the fact that discretization into 

grids is unnecessary. Hence, computation should be less, and the 

difficulty of different time scales in turbulence is avoided. 

In the types of fluid flow which interest us, velocity, 

density, and pressure are stochastic, not constants. Present 

treatment of Navier-Stokes equations solves a simplistlc 
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model, not real behavior. Turbulence is a strongly nonlinear, 

strongly stochastlcphenomenon and cannot be understood by 

linearized perturbatlve treatments. The theories of physics are 

perturbative theories and the theories of mathematics are for 

llnear operators (other than some ad hoc methods for speclal 

nonlinear equations). What is needed is a way of solving one or 

more nonlinear stochastic operator equations whether algebraic, 

differential, delay-differential, partlal-differential, or 

systems of such equations. The computational accuracy of a 

supercomputer is dependent on the sophistication of the 

mathematlcal methods programmed into it. Typical calculatlons 

consider millions of discrete time intervals made small enough so 

that trajectories between them can be taken as low-order 

polynomials, e.g., quadratics. 

In generalized hydrodynamics, the form of Navler-Stokes 

equations is kept, but time and distance scales are introduced so 

one can go beyond continuum approximation and take account of 

molecular structure. However, applicatlon to a real situation 

becomes simply a test of the validity of the linear 

approximations, as pointed out in the literature. Fluctuations 

are , as usual, assumed "small," and delayed effects, due to the 

fact that responses cannot be instantaneous, are ignored. 

When one studies airflow about aircraft surfaces, 

computations must be made at tens of millions of points, and it 

is felt that by increasing the volume of computation to the llmlt 

in an ultimate extrapolation, supercomputers will yield complete 

accuracy. Not only does this ignore stochastlcity, it ignores 

the sensitivity of nonlinear stochastic systems to very slight 

changes in the model - in fact, to changes essentially 

undetectable by measurement. 

To solve an,aircraft problem on contemplated next-generatlon 

computers, a 3-dlmenslonal mesh is generated which discretlzes 

the system of nonlinear partial differentlal equations into a 

milllon, a hundred million, or perhaps a billion coupled 

difference equations in as many unknowns. One begins to see then 

the tremendous data handling problem, the necessity for improved 

algorithms, and the need for still greater computational speed. 

we may also have many unknowns at each point, and, as we have 
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pointed out, the system nonlinearities and random fluctuations 

need to be taken into consideration. Since usually solutions are 

iterative - first solving an approximation to the original system 

of differentlal equations and then improving the solution by 

repeated substitution of each new solution - parallel processing 

is complicated by the difficulty of partitioning the work so that 

each processor can work independently. This is being pursued by 

many ingenious ideas necessitated by the brute force method of 

discretization. 

In all such problems we need to be able to solve coupled 

systems of nonlinear (and generally stochastic as well) partial 

differential equationswith complex boundary conditions and 

possible delayed effects. These systems are linearized and 

discretized (and the stochastic aspects either ignored or 

improperly dealt with) so that the various numerical 

approximation methods can be used. This requires faster and 

faster supercomputers to do these computations in a reasonable 

time. 

Unfortunately the further developments in supercomputers can 

quite possibly give wrong answers because even a single 

one-dimensional nonlinear differentlal equation without 

stochasticity in coefficients, inputs, and boundary conditions - 

let alone vector partial differentlal equations in space and time 

with nonlinear and/or stochastic parameters - is not solved 

exactly. Real systems are nonlinear and stochastic. When these 

"complications" are ignored or approximated by assumptions such 

as weak nonlinearity, white noise, etc., we have a different 

problem! i.e., a mathematized problem, not the original 

physical problem. The model equations, even before the 

linearization, discretization, etc., are already wrong because 

the stochastic behavior is generally not incorporated or is 

incorporated Incorrectly as an afterthought. 

Our approach to hypersonics, using decomposition, will be 

based on previous work on Navier-Stokes [4] which showed that an 

analytic solution is possible. For hypersonic cases, additional 

effects are present changing the model equations but the approach 

is similar. Discussion of the mathematical methodology, let 

alone the huge subject of hypersonlcs and turbulence is, of 
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course, not addressable here. We can only call attention now to 

the possibillty of some alternatlves to the present approaches. 
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In may 1985, E. NELSON gave a very short introduction to "Stochastic 

Mechanics" to an audience of  Nonstandardists and wrote it in "What is stochastic mechanics"[ 9 ]. 

In accordance with the title of  the meeting : "Math6matiques finitaires et Analyse non Standard ", he 

defines diffusion processes as discrete objects and at the end of  his paper he says : << Each 

solution of the Schr0dinger equation describes a diffusion process in which the particles have 

continuous trajectories ...>> but actually in this very short paper he does not explain in what sense 

a "discrete diffusion" has "continuous trajectories". At the same time a set of  notes by NELSON 

himself, now published as RADICALLY ELEMENTARY PROBABILITY THEORY [11], was 

circulating, in which he defined the mathematical Brownian motion as the process : 

x o given 

Xt+dt = x t  + Zt'/dt 

where t = 0, dr, 2dr, 3dr ..... Ndt and Z t is a sequence of independent random variables with values 

:t: I and expectation 0 ,  and proved, among other things, that "almost every" trajectory of this 

process is "continuous". 

So, in view to make precise what are "continuous trajectories" of  discrete 

diffusions we decided to extend some results o f  [11] to more general processes of  the form : 

X 0 given 

Xt+dt = x t + b(x t, t) dt+ s(xt,t) Z t ' ~ t  

where t = O, dt, 2dt, 3dr ..... Ndt and Z t is a sequence of independent random variables with values 

+ 1 and expectation 0 or a more general process. This has been done and is written now [ 1 ] .  

The objective of  the present paper is to explain to an audience of  

Non Nonstandartfists how, thanks to the existence of  infinitesimals, it is 

possible to give a precise mathematical status to the sentence : 

"Almost every trajectory of the above discrete diffusion (or random 
walk) is continuous". 

This will be done in the first three paragraphs.  In the fas t  one we introduce the reader to Non 
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standard concepts. We try to explain to him, mainly on the exemple of a deterministic walk of 

infinitesimal step how finite sets, with unlimited number of elements, are the nonstandard 

equivalents of a continuum like the set of reals. In the second paragraph we give the definition of 

what we call a "discrete diffusion process" and state our principal results. In paragraph 3 we give 

an outline of the proofs, assuming for granted NELSON's results. 

Very often in mathematics one is concerned with the "limit of some object, for 

instance a diffusion process, when some parameter goes to infinity". What does that means when 

one parameter of the problem, dt in the case of discrete diffusions, is already fixed as an 

infinitesimal ? We explain this point on an example in the last paragraph. 

Few papers [2] , [3] , [6] related to these topics have been written by the 

authors of this note. 

1 Introduction Non Standard conceots. 

Everybody knows what are the classical mathematical objects tl ,R and how to 

use them .The main idea of the practice of N.S.A. advocated by NELSON [8], REEB[13], LUTZ 

and GOZE [7], DIENER [5], DIENER et REEB [4] is to add a new undefined predicate st(x) 

which reads "the object x (previously defined by classical mathcmatics) is standard", plus some 

axioms which rules the manipulations on st .  It turns out that now we are in position to formulate 

sentences about mathematical objects which might be more rich than the classical ones. Those 

which use st or a derivate are called external  and classical sentences - those which are 

understandable by a classical mathematician who never heard about st - are called internal. 

It can be proved that the introduction of st and the three axioms Idealization, 

Standardization, Transfert (LS.T.) is relatively consistent to Axiomatic Set Theory and thus is 

"relatively" secure ( See [8] for the definition of I.S.T. ). 

From I.S.T. one easily deduces the following that we will take as our first axioms in this note : 

0 is standard 

ifn is standard, n+l is standard 

ifm is smaller than a standard integer n then m is a standard integer 

there exist an integer, say ta, which is not standard 
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One must be carefuU that the induction result of  classical mathematics does not applies to "the set of 

standard integers" because this sentence, being external, does not define a subset of Jq. 

Every nonstandard o is called unlimited because from the above rules every 

standard integer is majorized by o .Now the definition of unlimited real is clear ( every real which 

is greater in absolute value than an unlimited integer considered as a real ) and also of infinitesimal ( 

0 or the inverse of  any unlimited real ) .  Two reals are equivalent ( x -- y ) if  their difference is an 

infinitesimal.  From the fact that I~ is complete one can deduce that every limited real ix is 

equivalent to a unique standard one denoted by °x.  

Continuity. 

Definition : A function f f rom R to R is called S-continuous at point x i f y  --x ~ f(y)= f(x).  

We say S-contlnuous in order to distinguish this 

external concept from the classical concept of  

continuity .The interesting point is the following : Let 

c be a fixed number different from 0 ; the function 

t in t (x /c ) ,  is never continuous at points O, c 2 c, 3 

.. . . . .  in the classical sense, but it is S-continuous 

everywhere, provided c is an infinitesimal. 

Conversely, the function x ~ sin(ox), with ta 

infinite, is continuous, but not S-continuous.  

in the case of  a normed space the definition is the 

s a m e .  

fig I 

,.g 

There is anothe~ interesting point in the external concept of  S-continuity : The function f need not be 

defined everywhere. Precisely consider the points : 

{ 0, dt, 2dt, 3dt ..... ndt . . . . . .  Ndt = 1 } = T 

where N is an unlimited integer and, by the way, dt is an infinitesimal. 
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Defini t ion : The sequence of  real numbers x t with t ¢ T is S-cont inuons  at t provided: 

t ' - ~ t ~ x  t , ~  x t .  

This definition al lows us to state the 

Proposition : Let f be a function bounded by some standard constant K. The sequence x t 

defined by : 

x O given 

Xt+dt = x t + f(x t ) dt  

is S-cont lnuous  at every t .  

P r o o f :  Let  t = ndt and t' = n'dt and t' = t with t < t ' .  

nl_l 

Ix t, - x t I = I ~ f(xidt)dt  I 
i = n  

n ' - I  

Ix t , - x  t l  < Z K d t ,  
i = n  

K ( n ' -  n )dt = K(t ' - t)  

The  cons tant  K be ing  s tandard  and ( t ' - t )  be ing  in f in i t es imal  the produc t  is 

inf ini tes imal .  Which  proves the propos i t ion .  

Probabi l i ty  on finite se t s .  

Consider ,  as previously,  the set 

T = { 0, dt, 2dt, 3dt  ..... ndt  . . . . . .  Nd t  = 1 ) .  

Consider the set il of sequences (Z t ) of +1 or -I indexed by T - { I ). This set has 2 N elements. 

Example I : Consider the uniform probability on 11. This is a finite probability space. Every 

subset of 11 as a probability which is the number of its points divided by 2 N . But not every "event" 

has a probability because an event might be defined by an external sentence. Consider for 

instance the event  : 

E n = "(Z0+ZI+...Zn)In --- 0" 
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The symbol Fat does not define a set because its definition uses an external symbol ; for this reason 

there is no sense to consider the "number of  elements o f E  n ". But we can say : 

Definit ion : A property E, ( i.e. an assertion eventually external about elements of  ~'1 ) is 

a l m o s t  ce r t a in  if  for every standard positive real ~,,  there exist a set A 

with P(A) < X such that : 

tz ~ A ~ The ( eventually external) assertion E is true for to.  

So, except for sets which can be choosen of arbitrarily small standard probability, or eventually of 

infinitesimal probability, the property is true. we can prove the following : 

Propos i t ion  : For every unlimited n the event E n = " (Z0+ZI+. . .Zn) /n  = 0" is a lmost  

certain. 

P roo f .  Take a positive real k .  Tchebychev inequality states : 

P( I (Zo+ZI+...Zn.1)/n I > ~, ) < 1/(nk 2) 

Take for X the real 1 / log(n) .  The event A = (I (Z0+ZI+. . .Zn_I ) /n  I > ),) has a 

probability less than log(n)2/n  which is infinitesimal ( and thus smaller than 

any standard strictly positive real ) .  If  a sequence does not belong to A one has 

( I ( Z 0 + Z I + . . . Z n . 1 ) / n  I < X) which implies that (Zo+ZI+.. .Zn.1)/n = 0 

because, n being unlimited, 1/log(n) is infinitesimal. 

This proposition is an external formulation of  the weack law of large numbers .  The external 

formulation of the strong law of large numbers is : 

The event "For  every unlimited n (Z0+ZI+...Zn)/n -~ 0" is almost cer ta in .  

As one can see the external formulation of the two laws of  large numbers does not 

introduce the consideration of any infinite sequence of  random variables defined on an infinte 

product space on which each individual sequence has measure zero.  
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R e m a r k  : In view of  the above example one should think that a better 
definition of  an almost certain event might be : 

A property E, ( i.e. an assertion eventually external about elements of  
[1 ) is almost  cer tain if  there exist a set A with P(A) infinitesimal such 

that : 
o ¢ A ~ The ( eventually external) assertion E is true for o .  

But this is too restrictive as is shown by the following e x e m p l e .  One 
consider as ~ the set T -{ 1 } i tself  with the uniform probabil i ty ; each 
element o f  the set T being a real number it makes sense m say 

" o is not an infinitesimal" 
It is clear that any interval E n of  the form 0, dt, 2dt ..... ndt with ndt not 

infinitesimal is such that : 
~ E n ~ ca is not an infinitesimal 

The probability of  the event E n is (n+l)dt  which can be choosen smaller 

than any standard positive number, but not infinitesimal. 

Macroscopic properties.  

Consider the trajectory defined by : 

x o given 

Xt+dt = x t + f(x t ) dt , t ~ T = { 0, tit, 2dt, 3dt ..... ndt . . . . . .  Ndt = 1} 

which is supposed to represent a physical situation in which dt is very small compare to the interval 

between two distinct observations t and t ' .  We assume, to avoid some technicalities, that our state 

space is compact  ; assume for instance that x represents an angle, thus x ~ S 1.The space of  

trajectories is the space (S 1) T with the norm 11 (t H x(t) II = max I x t I ( t ~ T ). 

We know that the state variable can only be measured up to a 

certain accuracy.  The classical way to idealize such a situation is to consider a continuous limiting 

process defined as a solution of  the differential equation : 

X 0 given 

X'(t )  = f ( x ( t ) )  
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and prove that the limit, when dt goes to 0 of  the discrete process is the solution of  the differential 

equat ion .  In other words, we have good reasons to believe, that for small dt, the continuous 

process is a good approximation of  the discrete one .  

The Non Standard idealization is quite different : 

We say:  dt > 0 is a fixed infinitesimal. 

and we look for the macroscopic properties of  our representation. What does that mean ? 
A macroscopic property of  a trajectory (t *x t) i s apmper ty  

F( (t "*x t )  ) such that: 

( ( t , x  t )  = ( t *  g t ) )  => ( F( ( t * x  t )  ) ¢==> F( ( t ,~ l  t )  ) . 

For instance, one sees easily that : 

• The trajectory (t , x  t )  is S - con t lnuous  " 

is a macroscopic property. Let us look at another macroscopic property of  trajectories defined by : 

X 0 ~iYen 

Xt+dt = x t + f(x t ) d t  t e T = { 0, dr, 2dr, 3dt ..... ndt, ..... Ndt = 1} 

We def'me now the macroscopic velocity of the wajectory : 

Definition : For a given t ,  i f  there exist a standard real v such that, for every standard striclty 

positive t there exist a strictly positive standard q such that : 

ndt ( ~ and ndt not inf in i tesimal => I ( X t + n d t - X t ) / n d t  - v I < ¢ 

this v is unique and called the macroscopic velocity at time t .  

The property " The real v is the macroscopic velocity at time t o f  the trajectory " is clearly a 

macroscopic property. Let us prove the following : 

Proposi t ion : I f  the function f i s  S-contlnuous and bounded by a limited real the macroscopic 
velocity of  the trajectory defined by:  

x o given 

Xt+dt = x t + f(x t ) dt t ¢ T = { O, dr, 2dr, 3dr ..... ndt ...... Ndt = 1 } 
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is well defined for every t and is equal to the standard pan o f  f (xt ) .  

Proof: Consider n such that ndt = 0 ; one has : 

Xt+nd t = x t + dt ~ f ( x t + t d  t )  = x  t + dt Z f ( x t ) + ( x  ! ~x I = 0 

because the trajectory and the function f arc S-c0nt l  nu0us.  From this we get : 

ffi x t + ndt ° f ( x  t )  +dt Z I~! I~t = 0 

= x t + ndt ° f ( x  t )  + ndt 1~ 13 = 0 

Xt+ndt  

X t+nd t  

and thus 

( X t + n d t  - x t ) / n d t  = ° f ( x  t )  

for every ndt such that ndt = 0 .  Then by a permanence argument we deduce that 

° f ( x  t )  is the macroscopic veloci ty .  

P e r m a n e n c e  : We detail here this classical argument of  N.S.A. Let c b c a  strictly 
positive standard number and consider the set : 

E c = { q :  ndt ( q  =~ I ( X t + n d t - x t ) / n d t  - ° f ( x t )  I c e } 

From the above equivalence it contains all positive q = 0 ; this collection of  reals is 
callcd the (positivc)"halo" of  0 .  We prove below that it can't b c a  set, which have the 
consequence that there exist at least one sandard strictly positive real in E¢ and proves 

that ° f (x  t)  is the macroscopic velocity.  

Proposition : 
Every set A which contains all infinitesimals of  R contains at least one 

standard number different from 0 .  
Proof: Let a = Sup {x ; [ 0 ,  x ] A } .  I f a  is infinitesimal [ 0 , 2 a  ] is included in A 
which is contrary to the definition. Thus a is not an infinitesimal and °a/2 is a standard 
number in A .  

R e m a r k  : We have actually proved more than nccdcd by the definition of macroscopic 
velocity; we have proved : 

ndt ( q  ~ J ( X t + n d t - X t ) / n d t - v J  c r 

even if ndt is infinitesimal. This conics from the continuity o f f .  But this hypothesis is 
not necessary for the existence of a macroscopic velocity. Consider the case where f is 
equal to +1 i f x  = 0 and f i s  equal to -1 otherwise. The trajectory def'mcd by: 

X o = 0  

xt.~d t = x t + f(x t ) dt t E T = { . . .  0, dt, 2dt, 3dt ..... ndt ...... Ndt = 1 ) 

has 0 as macroscopic velocity, but (Xt+dt-Xt)/dt = + 1 in this case .  
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Trajectories defined by walks of infudtesimal step and by differential equations. 

One might suspect that our result about the existence of the macroscopic velocity for 

the trajectory defined by : 

X o = 0  

Xt+dt = x t + f(x t ) (it t E T = { 0, dr, 2dt, 3dt ..... ndt ...... Ndt = 1} 

( where f is a standard continuous function ) is an "approximation" of  the classical existence 

theorem : 

There exist a differentiable mapping t ~ x(t) such that : 

x(O)  = x o 

x'(t) = f(x(O) 

This is not the case because this last result i s actually a formal consequence of  the previous one.  

Let us prove i t .  From the "Standardization axiom" there exist a standard set whose standard points 

are infinitely close to the points of  coordinates (ndt, Xnd t) and it is not difficult to realize that this set 

is a graph ; we denote by t ~ x(O the function defined by this way .  Consider, for a standard h, 

the quotient : 

(xCt+h) - xCt) ) / h 

by eonslruction of  x(t) one has : 

( x ( t + h ) - x ( O ) / h  -~ (xt+ h -  x L ) / h  

where the i stands for the nearest point of  the discrete set T to the real t .From the fact that the 

macroscopic velocity at L is °f(xt) = °f(x(t)) and the definition of  the macroscopic velocity we get: 

For every standard stricly positive ~ there exist a stricty positive standard TI such that : 

h ( n and h standard ~ I (x(t+h)-x(t))/h -°f(x(t)) I ~ e 

which is the definition of  the derivative for a standard function. 

The fact that classical results concerning continuous objects are easy formal 

consequences of  discrete analogues is a very general fact .  See the appendix of [I 1] on this point.  
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2 ~ and results on Discrete Diffusions. 

As we did previously, in order to avoid technicalities related to the existence of  

unlimited reals, we shall suppose, when necessary, that our diffusions take their values in a 

compact set, namely S t. 

DEFINITIONS 

Definition 1: A stochastic process is a sequence o f  random variables denoted by I t ,  Xt , xt ..... 

etc, indexed by the finite set T and taking a finite number o f  values in I~ or S 1.Thus a 

stochastic process is defined on a finite probability set. 

Definition 2 : Let Z t be the family o f  independant random variables taking values + 1 or - 1 with 

expectation O. It is called the "dichotomic process" and the process ( 1 / ' ~ ) Z  t is called 

the "dichotomic no~'se". 

Definition 3 : The process defined on I~ by : 

W e = 0  

Wt+dt = w t + Z t 

where Z t is the dichotomic process is called the "Wiener walk" or the "Wiener 

process".  

Two processes ( t ~ t  ) and ( t ~ q t  ) are not necessarilly defined on the same probability 

space. For this reason it is not allways possible to compare dirtily trajectories. However we can 

compare the laws of  the processes. 

Definition 4 : Two processes gt and rl t with values in S + are equivalent if for every limited 

S-continuous fonction f, defined on ($1) T one has : 

E[ f ( t  ~'gt)] - E[f( t  ~ q t ) ] "  
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Definition 5 : Let b(x) and s(x) be two functions defined on S 1 , .  Assume that there exist 

two standard Ctfunctionsf andg such that : 

b(x) =b(x) and s(x) = s(x) 

and let Z t be the "dichotomic process" of  the example 1 above.  The process defined 

by: 

Eo--0 

~t+dt = ~t + b( ~t' t)dt+ s( ~t , t )Zt '~" 

is called the "dichotomic diffusion process with drift b(x) and diffusion coefficient 

s(x)". 

Definition 6 : Di f fus ion .  Let b(x) and s(x) be as in the previous definition. The "diffusion 

process of  drift b{x) and diffusion coefficient s(x) " is the collection of all the 

processes which are equivalent to the"dichotomic diffusion process "with drift b(x) 

and diffusion coefficient s(x) o f  clef 5 

RESULTS : 

T h eorem 1 : Let dt = 1 / N  and dr' = 1 /N '  be two different infinitesimals and let E be an 

infinitesimal such that e = kdt = k'dt' with k and k' unlimited. Let b(x) ,  b'(x), s(x) 
and s'(x) be S-Continuous functions defined on S 1 such that : 

Ib(x) - b(y) I < c Ix - y I (c limited) 
b(x) = b'(x) 
s(x) --- s'(x) 

Let ~t t and ~t' t, be two markov processes which satisfy : 

I% = ~'o 

I~t+dt = }~t + b(~tt )dr + s ( ~  ) X t ~ -  

~t't,+d t, = I.t't, + b'(}~' t, )dt' + s '(~t 't ,)X't,q'~' 

where the processes X t and X't,have limited values in R ,  and have conditional (with 
respect to the present ) mean and mean square respoctivelly equal to O and 1. 
The two processes : 

~ne and ~t'n~ 

are equivalent. 
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Corollary:  Any process defined by : 

g o = 0  

~t+dt ffi ~ + b(~) , t t  + s0~)Xt~i" 

whcr¢ b(x) ,  s(x) and X t satisfy the hypothesis o f  th. 1 above ,  defines a "diffusion 

process", i.e. is a rcprvsentative o f  the collection of  processes equivalent to the 
corresponding "dichotomic diffusion". 

This shows us that when we define a diffusion, no matter the size of  the 

infinitesimal step, no matter the exact values of  1~) and s(x) and no matter the microscopic random 

fluctuation, provided they satisfy the right statistics: At a macroscopic level one sees the same 

process.  

Theorem 2 : Trajectories of  diffusion processes arc almost surely S-continuous. 

3 Sketch of  the proofs.  

Consider the.orvm 1.  R is proved in NELSON[ 11] for the case : 

b(x) = b'(x) = 0 .  

s(x) = s'(x) "- 1 . 

we shall use h latvr. 

a ) - Diffusion driven by "dichotomie noise". 

Consider theorem 1 in the case dt = d r ' ,  s(x) = s'(x) = 1 and X t = X' t . In that case the 

conclusion is very easy.  Consider : 

P o  = I~'o 

lit+tit = Pt + b01t )dt + X t ' ~  

g' t+dt = g ' t  + b'(P't )tit + X t ' ~ "  

Define x t = ~t "I£t" After subsu~cdon it comes : x o = 0 and : 

Xt+dt = x t + b(g t )dt - b'(g'  t )dt -- x t + (b(g t ) - b(p' t ))dt +( b(l.t' t ) - b ' ~ '  t ))dt 
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Ixt+dt I < x t + Ib(IO. t ) - b(lYt )1 dt  +1 b(l~'t ) - b '( l l ' t  )1 dt  <[ x t I c [ Xt+dt [ dt  + o.dt 

the conclusion follows from a discrete Gronwal l  inequal i ty .  

This  does  not  work when s(x)ffi s'(x) is not equal to 1 ; after subs~racfion one have an extra term : 

I s(Ix t ) -  s'(IX' t) I X t q ' ~  

which might  give a large confibution because s and s' are not evaluated at the same poin t .  

A reasonnable idea is to perform a change of  variable : 

x t -- F~t ) 

x'  t = F(I.t't) 

in o rder  to come  back to the case  s(x) = 1 and s'(x) -- 1 .  Le t  us look  to  the decomposi t ion  of  the 

processes x t and x' t . They are of  the form : 

Xt+dt = x t + b(xt)dt + li(x t) X t ~ "  

x ' t+dt  = x' t + b ' (x '  t) d t +  s ' (x '  t) X '  t ~C~ 

b u t ,  in general ,  there is no reason that the process  X t wil l  be equal  to X '  t . Thus the processes x t 

and x' t are driven by different  noises,  a case  we are not  yet  able to c o n s i d e r .  For tunately  here is 

one case in which the process  X t an X'  t are the same : When  X t is the "dichotomic process" : Zt ,  

because there is jus t  one probabi l i ty  law on I~ which is the half  sum of  two dLrac's, with mean 0 

and square mean 1 ! . Thus the idea of  a change of  variable will  work in the case : 

d t = d t '  b ( x ) - -  b '(x) , s ( x ) = s ' ( x )  and X t = X'  t = Z t -  

Technica l ly  we assume : b and s are smooth standard function with s > 0 .  Af ter  the change of 

variable we  have two processes : 

Xt+dt = x t + b(xt)dt  + Z t 

x ' t+dt  = x'  t + b ' (x ' t )dt  + (1 + o(x't) ) Z t " ~  

with o(x) inf in i tes imal .  The difference process x t - x'  t = 0 t s a d s f y :  

O t ~ t  = ~)t + ~ (x t )  - b'(x't) )dr + o(x't)) Z t ' ~ - .  

The va lue  o f  x '  t depends  only  o f  Zo,Zdt  ....... Z b d  t . F r o m  this one can prove  that the stochastic 
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term in the difference process can be "almost surely" neglected and the conclusion follows from the 

discrete Gronwall inequality as previously. 

b) - Diffusion driven by general noises. 

Now we have proved that two processes driven by the same dichotomic noise 

and with equivalent coefficients are equivalent .  What we have to prove now is that the two 

processes : 

X 0 = X* 0 g iven  

Xt+dt = x t + b(xt)dt + s(x t) XtX~" 

x't+dt = x' t + b(x't)dt + s(x't)Zt'fd'~ 

are equivalent .By a change of  variable we can reduce it to the ease s "- 1.  Thus we consider : 

x o = x' o given 

xt+dt = x t + b(xt)dt + Xt~ '~  

x't+dt = x' t + b(x't)dt + Ztxr& 

Step one : Consider the process defined by : 

I + ~  with probability 1/2(1 + b(xt) ' /&) 

~t+dt ~t + [ 
- ~ ' t  with probability 1/2(1 - 13(~t),~t) 

it has the same decomposition as the process x t .We can compute the probability of  a trajectory m. 

It will be given by the formula : 

P( ~ = ra ) = T N exp(M(m)) 

where M(m) is "computable" from m. This means that the process ~ is obtained from the Wiener 

walk w t (2 "N is the probability of  every trajectory of  the Wiener walk ) by a change of  measure 
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O'his is the elementary counterpart of  Girsanov transformation ) .  

Step 2 : We perform an analogue change of measure, not on the space of trajectories of  the Wiener 

process but on the set of  trajectories of  x t . Define ~ by the markov process : 

~tt+dt = ~ + b( I.tt ) dt + Xt~/~ 

where the conditional law with respect to the present is given by : 

P ( X t = u l ~ t  s = n  s s < t ) = P ( X  t = u l  Ps = n s  s < t ) ( 1 - u b ( n t ) ~ f ~ ' )  

This formula is choosen in order that Et[l~ t] = O and Et[~t2 t] = (1 + o )dt in order that ,  thanks to 

NELSON result [11] on processes equivalent to the Wiener walk ,  the process ~ is just equivalent 

to the Wiener walk w t . 

From its definition the probability of  a trajectory n of  the process I.t is given by 

a formula : 

P(.ct = n ) = P(  x t = n ) e x p ( N ( n ) )  

step 3 : It remains to prove that the change of  measure defined by M and N ,  the first one from the 

Wiener process w t to the process ~ t ,  the second one from the process x t to the process It t 

equivalent to the process w t , are inverse in eater to prove that x t is equivalent to x t . 

Step 4 : Steps 1 to 3 are valid with Z t in place o f X  t and hence x t is also aquivalent to the process 

x' t which proves the equivalence of  the two processes : 

x O = x' O given 

Xt+dt = x t + b(xt)dt + Xt~/~ 

x't+dt = x' t + b(x't)dt + Zt~/'~ 

The last point, which is to prove that we can change the size of  the infinltes~rml step, is obtained by 

a similar reduction than the above one to the comparison of two Wiener walk of  different s teps,  
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0 - c t m ~ t f i t y .  

It suffices to prove continuity for the "dlchotoruic diffusion process" (Dcf 5) : 

~o =0 

~t4dt = ~t + b( ~t)dt+ s( ~ t )Zt '~ .  

Define x t by : 

and compute Xt+dt assuming derivability of ~ : 

q)(~t+dt) = q)(~) + q)'(~t ) (b(~t)dt+s(~t)Zt q ~ )  + (l/2)q)"(~t)(b(~t)dt+s(~t)Zt q~)%' ' "  

qo(~t+d t) = qo(~t) + [q)'(~t ) b(~t) + (l/2)q)"(~t)s2(~t)Za t ] dt + qo'(~t) s(~t)Ztq'~ +... 

and be.cause Z t is the dichotomic process Z2t = 1 : 

9(~t+dt) -- 9(~t) + [q~'(gt) b(~t) + (1/2)9"(~t)s2(~t)] dt + q~'(~t) s (~ t )Zt '~  +... 

Now if we chose the funcdon q) in order that : 

[q/(~t ) b(~t) + (1/2)q~"(~t)s'(~t)] = 0 

we get : 

Xt+dt = x t + q/(gt ) s (g t )Zt '~  +... 

if  we consider the order of the neglected terms the decomposition of  this process is : 

Xt+dt = x t + b(xt)dt + s(xt)Xtx/'~ 

where b(x) " 0 .  Thus the process x t is equivalent to the martingale : 

Yt+dt = Yt + s(Yt)Xtq'~ 

for which almost every trajectory is S-continuous by NELSON's [11] result .The proof of  this 

result uses martingale inequalities and permanence arguments .  Permanence arguments in 

probability have been systematized in [ 2 ] .  
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~t4<lt = ~t + 4 m  Z t ~ "  

is a good approximation of  the position process x t . We prove this result in the context of  N.S.A. 

Let us explain what is the meaning of :  

"the limit, b )--) ~ " .  

One immediatly sees that this expression makes no sense for if b is too large, b = l / d t  for instance, 

the steps of  the process are not ilLf'mitesimals. The parameter b must be large but not too large I h 

place o f  b ~ oo we say for "large enough, but s tandard b" in order to preserve the fact that dt is 

def'mitely not at the same scale than any other parameter of  the problem. We assume for simplicity 

of  notations that ~/2D -- 1. 

Consider the process x t defined by : 

and the process w t clef'meal by : 

x o ,  Vo given 

Xt+dt = x t + v t dt 

Vt+dt = v t - bvtdt + bZt~/~ 

W 0 = X 0 

Wt+dt = w t + Ztq'~ 

we want to compare x t and w t . We introduce the notation : 

f l=  ( l - b d t ) ( I / d O  = ( l - b d t ) N  

Step 1: By inducdon one establishes : 
t-dt 

v t = B tv  o + b  ~ B t's-dtZ s 
5----0 
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Step 2 : From v t one computes x x : 

x~ = Xo+ 

• c-dt "¢ qlt "~ -tit t-dr 

Evtdt=x o+ E 6  tv odt+ E b E 8 t s d t z s ' ~  dt 

t=O -t=O t=O 

After an exchange of  the order of  summations and the use of  tho formula for the sum of  a geometric 

progression one gets : 

"¢-2dt 

x x = x o - v o (13~-l)/b + ~ ( 1 - If o's'dr ) Zs,/'dt 

Step 3 : Replace Z s ' ~  by Ws.8:lt - w s and apply the classical formula ( discrete integration by 

parts ) : 

Un (Vn +1" Vn) = " (Un+l - tin ) Vn+l + UpVp - UoV o 
11:=O I1=O 

One gets : 

"C-dt 
xx = - v o (Bz-1)fo* I~Z'dtWo+ b ~ B z's'dt wsdt 

~ d t  

and hence: 

-dt 
X~ _ W~: = - V 0 (ffC-1,)/b + gl:'dtWo + b ~ If c - s -d t  wsdt-w. ~ 

s=dt 

Step 4 : We assume now that w s is a typical trajectory of  the Wiener process. Such a trajectory is 

S-continuous.  We consider a standard b .  

For stmh a standard b we have : 

and thus : 

6 t = (1-bdt) t/dr'" exp(-bt) 
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l~-dt 

~ - v o (exp(-b ~) -1)/b + exp( -bx)  Wo+ ~ b exp(-bO:-s)) wsdt - w~ 

s=dt 

the function : 

s ~ b exp(-b(,~-s)) w s 

is S-continuous and limited; in that ease the discrete summation is equivalent to an integration and 

one gets: 

"t; 

x x _ w x "- - v o (exp(-b ~) -1)/b + exp(-b x) Wo+ ~ b exp(-b O:-s)) wsdt - wx 

o 

Step 5 : It is now a trivial exercice of  "standard" analysis to recognize in the mapping : 

s > b exp(-b(x-s))  

a mapping converging to the dirac function at point x and to majorize the other terms for b large 

enough .  

Hence we have proved the 

Theorem : Consider the process x t defined b y :  

x o ,  Vo given 

xt+dt = x t + v t dt 

Vt+dt = v t - bvtdt + b Z t ~  

and the Wiener process : 

w t 

t-dr 

= -  x o + Zs4 /. 
8=0 

Given the posit ive standard e ,  there exist a real standard A such that for every 

standard b such that b > A ,  almost surely one has for every t in T :  

I× t - w t i  <C 
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Fig. 4 

:i~l" ~ : "  

/ V-, 
i 

' l 

The case b = 100 ; dt = 0,001 

. 

In the three figures above are represented one trajectory of the process x t compared to the 

corresponding trajectory (i.e. the same realization of Z t) of the Wiener process. One sees the 

convergence. 
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