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Foreword

WuEN Dr. Constantinescu and Dr. Magyari approached me about the possibility of the pub-
lication of an English edition of their collection of problems on quantum mechanics I was
very pleased to arrange this. Although there exist a few good collections of this kind, none
of those has the same extensive coverage which the present volume gives, and I felt that it
would be a valuable addition to the existing literature. Quantum mechanics courses are
getting more and more advanced, and topics which only a few years ago were deemed to be
fit only for graduate courses now appear in undergraduate courses. It is thus very much to be
welcomed to have a problems book which covers such topics as the Dirac equation, second
quantization, many-body problems, and the density matrix. I hope and expect that quantum
mechanics teachers as well as students will find the present book a great help, and I wish it

€Very sSuccess.

Magdalen College, Oxford D. TER HAAR

A Note on the Layout of this Book

EACH chapter is essentially self-contained, and is in three parts. In the first part, basic
propositions relating to a particular topic are given and some consequential theorems are
stated without proof. In the second part, a set of graded problems leads the reader to prove
the theorems already stated, and to derive further theorems and applications. Detailed
solutions of the problems are given in the third part. Equations in the first part are labelled
with the number of the chapter (in roman numerals) followed by a serial number; those in
the second and third parts with the number of the problem followed, respectively, by a
serial letter or a serial number. The letter A followed by a number is a reference to an

epuation in the Appendix.
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CHAPTERI

The Mathematical
Formalism of Quantum Mechanics

1. Hilbert Spaces

A set of entities E is said to constitute a linear (complex) space if, on the elements of the
set, operations of commutative addition, and of multiplication by a complex number, are
defined and are such that the results of these operations are also element of E. The term
“vector” is often used to denote the elements of such a space; these vectors should not be
confused with the vectors of ordinary geometric space.

Let H be a linear (complex) space such that, to every pair of elements x, y of H, there can
be made to correspond a complex number, called the scalar product (x, y) of the elements x
and y, and having the following properties:

@ (x,») =0, %%

(B) (x1tx2,») = (x1, ¥)+(x2, ),

© (Ax,p)=2A(xp); (% 4)=2AxY),

(d) (x, x) = 0, the equality holding only for the “null element” x = 0. The “norm”
of an element is defined to be || x|| = +4/(x, x).

H is then said to be a Hilbert space provided it is complete.

In any Hilbert space a set of elements can be found, such that any element of the space
can be written as a linear combination of these. Such a set is called a basis.

In quantum mechanics, every state of a physical system is associated with a vector, some-
times called a “ket”, and denoted by the general symbol | ), into which may be inserted
symbols denoting eigenvalues, quantum numbers, etc., which specify the state in question.
From the principle of superposition of states, it follows that the ket vectors of a system
together form a linear space.

t An ordered set {x,} of elements of H is said to converge to the limit x,, if || x,— x4/l = 0 as n — oo,

If a y ordered set {x,} of H, which is such that ||x,— x,,1| = 0 as n, m - oo, converges to a limit which is
an “lement of H, then H is said to be “complete”.



Problems in Quantum Mechanics

The scalar product of any two ket vectors |#) and |v) of a system is a complex number,
written as (v |u). The symbol (v | is sometimes called the “bra” vector corresponding to the
ket |v), since a “bra” and a “ket” together form a “bra(c)ket”. This somewhat whimsical
terminology is due to Dirac.

The set of all ket vectors of a system form a Hilbert space.

2. Operators in Hilbert Space

Any procedure 4 whereby each vector |u) of a Hilbert space H is related to one and only
one vector |v) = A |u) of that space is called an operator of that space.

An operator A4 is said to be “linear” if, for any vectors |u) and [v), and any complex
numbers 4 and u,

AR u)+p|v)) = AA|uwy+ pd|v). (L1)

Two operators 4 and 4™ are said to be Hermitian adjoints if, for any vectors |v) and
u) of H,

| 4™ [u) = uld|v)". 1.2)

An operator A4 is said to be “Hermitian” (or “self-adjoint™) if 4 = 4™.

An operator U is said to be “unitary” if UUT = UtU = 1.

If A4 is an operator and |u) is such that

Alu)y = a|u), (L.3)
where q is a real or complex number, then |«) is said to be an “eigenvector” of 4 with the
“eigenvalue” a. The eigenvalues of Hermitian operators are always real numbers. There may
exist more than one linearly independent eigenvector of 4 with the same eigenvalue a. Any
linear combination of these is then also an eigenvector of .4 with the same eigenvalue a. The
number of such linearly independent eigenvectors (if greater than one) is called the “degener-
acy” of the eigenvalue a. The set of all eigenvalues of A4 is called the “spectrum” of A.

The spectrum of an operator may be discrete, or may be continuous, or may have a dis-
crete part and a continuous part. Let us denote by | nr) an eigenvector of 4 with the eigenvalue
a, belonging to the discrete part, and by | vo) an eigenvector of 4 with the eigenvalue a,
belonging to the continuous part of the spectrum. (Here r and g are indices which distinguish
between degenerate states having the same eigenvalue.)

For the eigenvectors of Hermitian operators, the following orthonormalization relations
are satisfied for all values of the indices (provided that for degenerate eigenvalues a suitable
choice of eigenvectors is made):

(| = BBy,
(nr|ve’) =0, (1.4)
(vo|v'e’) = o(v—7") éo—¢'),

where 0, ., is the Kronecker delta and é(» —»") is the Dirac delta function.

nn'?
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Ch. I, The Mathematical Formalism of Quantum Mechanics

If the set of all eigenvectors |ar) and | vg) of the Hermitian operator A4 spans (by linear
combination) the entire space H, this set is said to be complete, and the operator A4 is said to
be an “observable” (the operator A is then capable of having a physical interpretation).

The operator [4, B] = AB—BA is called the “commutator” of the operators 4 and B. If
[4, B] = 0, 4 and B are said to commute. If two observables 4 and B commute, they have a
complete set of eigenvectors in common, and conversely.

3. The Matrix Representation of Vectors and of Operators

For any given vector |u), the number (n|u), where |} is an eigenvector of some observ-
able 4, can be regarded as an element having “row number” » of a one-column matrix ();
the whole matrix is then said to be a “representation” of the ket |#). The bra vector (u| is
represented by the Hermitian adjoint matrix whose elements are (u|#).

For a given operator 2, the eigenvectors |m) and | n) of 4 enable one to define the num-
ber Q,,, = (m|Q|n), which can be regarded as the element with “row number” m and “col-
umn number” n of a square matrix (22). The whole matrix is then said to be a representation of
the operator Q. Note that, in this representation, A itself is represented by a diagonal matrix.

Properties of representations:

(a) The Hermitian adjoints of operators are represented by the Hermitian adjoints of the
matrix representations of the original operators.

(b) Algebraic relations between vectors and operators lead to equivalent algebraic rela-
tions between their representative matrices (thus, in particular, the equations which define
the eigenvalues and eigenvectors of operators become matrix eigenvalue equations).

(¢) The trace Tr(£2) of any Hermitian operator £2, defined as }° £2,,,,, is independent of the

representation used to define it.

Let us denote by |n), and by |w), eigenvectors of the observables 4 and B, respectively.
The two sets of eigenvectors define two possible representations, {4} and {B} say. The
transformation from the first representation (of vectors and operators) to the second can be
made with the help of the unitary matrix § = ({w|n}), thus

Wp = SU)a (L.5)

(Q)p = SED4ST. 1.5
If there is a one-to-one correspondence between the vectors |n) and |w), the matrix S is
square and corresponds to a unitary operator U such that |#) = Ulw). U is then said to
define a unitary transformation of vectors and operators. Under a unitary transformation of
vectors and operators, all scalar products remain unchanged and all Hermitian adjoints
transform into Hermitian adjoints.

If |¢) is the state vector of some physical system at a given time ¢, then the ° ‘matrix”
{r|¢) = §(r), say, with “row number” r = the position vector(s) of the particle(s) constitut-

3
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ing the system, is called the “wavefunction of the system in coordinate representation”. Note
that the scalar product of two state vectors can be written, in terms of wavefunctions, as

follows:
i) = [(piryx|d)dr = [p*(r) p(x) dr

Problems

1. Derive the Schwartz inequality
|[ulo)| =V {ulu) v/ {v]v),

in which |#) and |v) are any two vectors of a Hilbert space H.

2. Derive the triangle inequality®

v @Hv|utv) </ (u|u)+ 1/ {v|v).
3. Show that the validity of the relation
(@1B) = 3. (x| ) a5 ) ()

for any arbitrary vectors |o) and |8), is a necessary and sufficient condition for the system of
orthonormal vectors |uy), |us), ..., |4,), ..., to be complete.

4. Let S; be a subspace of a Hilbert space H and S; its complementary orthogonal sub-
space. Any vector |#) can be written as a sum of its projections in the two subspaces, |u) =
lug )+ | us,). Show that the projection operator Py, which is such that |ug ) = Pg [u), is
Hermitian, and satisfies the equation P} = Pg,.

5. Show that if the subspace S; of the preceding problem is taken to be the subspace
spanned by a single normalized vector |a), then the corresponding projection operator is
given by

P, = |a)(al.

6. Show that if |nr) denotes the eigenvectors of an observable, the following “closure
relation” is valid
Y |nry{nr] = 1.

n,r

7. A projection operator P,, is said to be greater than or equal to another projection
operator Py, i.e. Py, = Py, if the subspace N is contained in . Show that

(a) The relation P,, = P, satisfies the axioms required of any relation of inequality.
(b) [PMaPN] = 05

t To simplify the writing, the notation | A,u+ 4,v) is used instead of 4, |u)+ 4,!v), 4, and 4, being com-
plex numbers. Then (Au+ Av| = Af{u|+ A3l

4



Ch. I. The Mathematical Formalism of Quantum Mechanics

(c) The relation P,, = P, is equivalent to the statement that {u| P,, | u) = (u| Py |u)for any
vector {u) of the Hilbert space.

8. Consider a set of vectors | ), in which » is a continuous index which can take all values
in the interval (v1, v2). Show that if the vectors | ») are orthonormal in the sense that (¥’ |v) =
6(»"— v), then the operator

P = j? | ) dv(v|

is the projection operator of the subspace spanned by the set of vectors |»).

9. Show that if a unitary operator U can be written in the form U = 1+ieF, wherecis a
real infinitesimally small number, then the operator F is Hermitian.

10. A Hermitian operator A issaid to be positive-definite if, for any vector |u), (u| 4|u) =
0. Show that the operator 4 = |a){a| is Hermitian and positive-definite.

11. If 4 is a Hermitian positive-definite operator (see problem 10), then

[(u] Av)] < A/(u| d|u)V/({v| 4] ). (11a)

Show that Tr (4) = 0, and that the equality holds if and only if 4 = 0.
12. Show that the operator F defined by the relation

F = [{|s)k(s, ©){t] dt ds,

in which the kernel k(s, £) is real, is a linear Hermitian operator.

13. Show that the differential operator

_h d
P=7 i@

is linear and Hermitian in the space of all differentiable wavefunctions (x| ¢) = ¢(x), say,.
which vanish at both ends of an interval (a, b).

14. The translation operator £2(a) is defined to be such that

Xa) ¢(x) = $(x+a).
Show that:
. h d
(a) £2(a) may be expressed in terms of the operator p = — e
1

(b) Q(a) is unitary.

15. Given three operators 4, B and C, express the commutator [4B, C]in terms of the
commutators [ 4, C]and [ B, C].



Problems in Quantum Mechanics

16. Let H(r) be an operator acting on the wavefunctions %(r), and 0 a coordinate trans-

formation operator which acts on the wavefunctions in such a way that Op(r) = »(r').
Show that if H(r) is invariant under the coordinate transformation 0, i.e. H(r') = H(r),

then [H, 0] = 0.

17. Find the expansion of the operator (4— AB)~! in a power series in A, assuming that
the inverse 4" of A exists.

18. Show that if 4 and B are two operators satisfying the relation [[4, B], 4] = 0, then
the relation [4", B] = mA4™ (4, B] holds for all positive integers m.

19. Show that

[p, x] = —ih, [p, x"] = —nihx"~1, n =1, (19a)
., dd
[p, A] = —ih I (19b)

d . ) . .
where p = ?3; and A4 = A(x) is a differentiable function of x.

20. If the characteristic equation (1) = Ofor an observable 4 is given, show that f(4) = 0.
21. Let | ) and |v) be two vectors of finite norm. Show that

Tr (Ju) (v]) = (v|u).

22. If A4 is any linear operator, show that 4% 4 is a positive-definite Hermitian operator
whose trace is equal to the sum of the square moduli of the matrix elements of 4 in any ar-
bitrary representation. Deduce that Tr (4" 4) = 0 is true if and only if 4 = 0.

23. Show that if 4 and B are two positive-definite observables, then Tr (4B) = 0.
24. Diagonalize the Hermitian matrix
011 Q12
9={ } Tr (o) = 1,
021 Q22
by means of a unitary matrix of the form

U= e(llz)f¢°:e(1/2)i¥"’3,

. 0 —i 1 0
= O‘: .
27 1i of {0—1

25. The derivative of an operator 4(1) which depends explicitly on a parameter A is defined
to be

where

dAG) _ . AQ-te)—AQR)

d;‘ _£—>O £
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Show that
dA dB
d , . _ ,d4

26. Show that the operator B(¢) defined by the expression
B(f) = el41Bye—idr,

where 4 and By are operators independent of the parameter z, is a solution of the integral
equation

B(t) = Bo+i[A, OfB(z) dr].

27. Show that, for any two operators 4 and L,
1

el de~L = A+[L, A]+ r[L: [L, All+ 57 [ L [L, [L, A1)+ .. (27a)
28. Show that ede? = ed+Be~W2 4 Blif[[ 4, B], A|[[4, B], B] = 0. (28a)
29. Verify Kubo’s indentity
B
[4, e~FH] = e~PH [ [ A, H] e=*H dJ, (29a)
0

where A and H are any two operators.
30. Show that a necessary and sufficient condition for two linear operators 4 and B to
be equal (to within a phase factor), i.e. for 4 = Be”, is that
[{ul A]v)| = [{(u| B|v)| (30a)

should hold for any pair of linearly independent kets |«) and |v).

31. Show that a necessary and sufficient condition for a linear operator U to be unitary
is that the matrix elements (7| U| k) of this operator in a given representation should obey the
following equations:

IIGIITE

Y@ UG UK =0, hx=k, (3la)

The convergence of the sums may be assumed.
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Solutions
1. Let us write for a start’ (u|u)+{v|v)—2 Re{u|v) = (u|u)+{v|v)—(u|v) —(v|u) =
(u—v|u—v) = 0. Hence
Re (u|v) < 3((u|u)+{v|v)). (1.1)
If we substitute ¢ | ) and (1/c)|v) for |4) and | v) (c being a positive real number) then the left-

hand side remains unchanged and the right-hand side becomes —;—(c2<u |uy+1/cXv|v)). Since
this expression is greater than Re (u|v), its minimum also satisfies the inequality. This mini-

mum is attained when ¢z = /(v |0%/(u|u). Hence

Re (u|v) < A/(u|u) v/ (v|v). (1.2)

Let us now subsitute e~ |u) for |u), where « is a real number. The right-hand side of (1.2)is
unchanged, while the left-hand side becomes

Re (e™(u|v)) = cosa Re (u|v) —sina Im {u|v).
This expression has a maximum when
vV (Re (u| )P+ (Im (u| o)) = [{u|v)],
and thus the relation to be proved is obtained, viz.,

|{u|0)| =< A/ (u|u) A/ {v)|v). (1.3)

From the proof it can be seen that the equality holds only if | &) or |v)is zero, or [u)and | v) are
linearly related.

2. We have that

(u+v|u+0) = (u|wy+{u| )+ (| u)+{v|v) = (u|uy+(v|v)+2 Re (u|v).
Using (1.2) we obtain

(u+v|ut0) < | w)+{v|H+24/ wlu) /0| v) = (v {u|u)+ A/ (0| 0))?
and thus

A ut v u+0) < A/ {u|u)+4/{v|v). 2.1
The equality holds only if | &) or |v) is zero, |u) and |v) or are linearly related.

3. Let us show first that the condition is sufficient. For this we have to prove that no
vector | ) different from zero and orthogonal to all vectors of the system can be found. If

t See the footnote on page 4.
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we suppose that there exists such a vector, we can choose |«) = |§) = |u) and we have
{u|u) = 0, whence |u) = 0 which is contrary to the supposition we have made.
From the completeness of the set |u1), |ua), .. ., |u,), it follows that

o0

) = Y alu), &= (|0

p=1

oo 3.1y
=Y bilw) b= (wlh)
and thus that
@lBy= T () wlB) alu) = 3, (i) (] 32
Remarks: Taking |f8) = |«), we have
(o |y = 21 || us |2 (3.3)

The equality (3.3) is called Parseval’s relation. It is valid for any complete set |u1), ..., | Uy
If the set is not complete it can be seen that

(ale)y =< 3. (el (34

4. Take the scalar product with |v) of both sides of the equation
Pg |u) = |us,) @.1)

(0| Ps,|u) = (v|usy).

so that
Similarly
(u| Ps |0)* = (u|vs)* = (us,|vs)* = (vs, |us,) = (vlus) = {v|Ps,|4)

for any |u) and |v), i.e. P is Hermitian.
Applying the operator Pj, to both sides of (4.1) we have that

P3 |u) = Ps,|us) = |us,) = Ps,|u),

for any |u), hence P} = Py

5. In this case we can write |u) = |u,)+|us, ). By hypothesis (alug) =0and |u,) = c|a),
¢ being a complex number. Taking the scalar product of |«) and |@) we have ¢ = {a|u), i.e.
|u,) = |a)(a|u), whence the relation to be proved follows.

6. Let P, be the projection operator on the subspace spanned by the vectors |nr). Since A4
is an observable, we have P, = 1. On the other hand the projection on a subspace is equal
to the sum of all projections onto vectors forming a base in this subspace. In particular,

PQM 2 9
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P, =Y P, where P, is the projection operator on the vector |nr). Thus we have that

Y. P,, = 1. But, from the preceding problem, P;, = |ar)(nr|, and hence
3 |y (nr| = 1. 6.1)

Remarks: From the solutions of problems 3 and 6 it follows directly that, for any ortho-
normal set of vectors, the closure relation and the completeness condition are equivalent.

7. (a) From the definition it follows immediately that, if P,, = Py and Py = P,,, then
Py = Py, and that, if P, = Py and Py = P,, then P, = P,

(b) the inequality Py, = Py implies that PPy = Py and PP, = Py, and hence that
[P, Py] = 0.

(¢) In general, for the projection operator Py, we have that

Py, |u) = us,y,  |uy = |ug)+]us,).
Consider the operator 1 ~Pg , then
(1 —Psl)l"> = |“>—PS,|“> = [”>—|usl> = |us,y = PS.|“>’
and consequently 1—Pg is also a projection operator. Now
(| Ps,|uy+(u| Ps,|u) = (u| (Ps,+Ps,) |uy = (ulu).
But (u| Py, |ty = (u|Pg |u) is non-negative, and
(u| Ps, |ty = {u|u). (7.1)

We can therefore write (u| Py|u) = (u|PyPyPylu) < (u | Pyl

Conversely, if |} 1s a vector of the complementary space of M we have P, |u)y = 0, and,
inaccordance with the relation (u| Py, | ) = (u| Py |u), wehave Py |u) = 0. Then, if |u) belongs
toN, (1 —Py,)|u) = Oand Py(1 —P,,) |u) = 0. If |u) does not belong to M, (1 =Py |u)y = |u).
But Py|u) = 0,and therefore for any | ) we have Py(1 —P,,)|«) = 0, and hence Py = P,P,,
which is equivalent to the inequality P,, = P,

8. For any arbitrary vector |u), we have that

Pluy= | |3 duv i,
and hence

VNA=P)|u)y = (V' |u)— j:’(v’| vy dw(v|u) = (v’]u)-—f 6(v' —») dv(v|u) = 0.

Since P|u) is a linear combination of the | ») vectors, and, as we have just seen, (1 —P)|u)
is orthogonal to all of these vectors, it follows that P is a projection operator onto the sub-

10



Ch. | The Mathematical Formalism of Quantum Mechanics

space spanned by the | ) vectors (see problem 4). Note that it is sometimes more convenient
to write the orthonormalization condition in the form (»| ") = f(»)d(y —"), where f(v) is a
real and positive function of ». The vectors so defined are equal to the normalized vectors

previously defined, except that each vector | ») is multiplied by a constant of modulus \/ f().
The projection operator on the subspace spanned by the | ») vectors is, in this case, given by

P = j |v>j%<v§. (8.1)

"1

9. Since U is unitary, we have that

(1—ieF+) (1+ieF) = (1+ieF) (1 —ieF )

and, retaining only the terms to first order in ¢, it follows that F = F*.

10. We have that

(u| A0y = (ulay(ajv) = (v|@)* (@|u)* = (v 41w)"
and also that
(u| A|u) = (u|ay(alu) = |(ua)}*=0.

11. The inequality to be proved can be deduced from the fact that A is positive-definite, by
using the same procedure as was used to prove the Schwartz inequality (see problem 1).
Note that Tr (4) = Y (n| 4 |n), where the |n) form the (complete) set of eigenvectors ofan

n
observable. It follows directly that Tr (4) = 0. The equality is true if, and only if, for all |n),
(n| A|ny=0. If this is the case, then, taking |v) = |n) in (11a), it follows that (u| 4|{n) = 0
for any |u), and hence that 4!n) = 0. Since the |n) vectors form a basis we have that
A any linear combination of the jn)s = 0,1.e. 4 = 0.

12. To prove the linearity of F is straightforward. To prove that it is Hermitian we write,
using the notation {¢|¢) = ¢(2), {sly) = w(s),

WIF1$) = [ v [[ ks, $(0) dr] ds = [ k(s, Dy*(s) $(0) d ds.
Also

@\ Floy* = [[ 6*6)([ k(s 0 p(0) de) ds]* = [ ks, ) p™() $() dt ds

whence it follows that (p | F|¢) = (¢ | F| w)* forany |¢)and [y), ie. that F is Hermitian.
13. We have that

b
wipld) =T | v g

a
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Integrating by parts we obtain

wol6r=Pon [ B g u

a a

={p|p|y)".

14. (a) Using Taylor’s theorem, we can write

ﬂ

a) (n) = dp(x+a) = 2 ET L ) = 20%(1@) b(x) — TP 0.

It follows that ((a) = exp (iap/h).
(b) 27 (a) is defined to be such that, for all |y) and | $),

(wi41¢)* = (p12* [y),

whence
j ¢*(x) 2* (@) p(x) dx = j ¢*(x+a) p(x) dx.

By making the change of variable x+ a-- x in the second integral we obtain
[ $* WL @w(x) dx = [ ¢*(x)p(x—a) dx,

for any ¢(x). It follows that 2+ (a) p(x) = y(x —a), hence that Q(a) Q+(a) = Q+ (@) 2a)=1.

15. We have
[4B, C] = (ABYC —C(AB) = ABC —CAB+ ACB—ACB = A(BC —CB)+(AC —C A)B,

i.e.
[4B, C] = A[B, C]+[A4, C)B. (15.1)

16. From the statement of the problem we can see that for any y(r),
O[H(r) y(r)] = H(r') (') = HE)p(r') = H(r) Op(r)

whence [H, 0] = 0.

17. Let the expression we are seeking be written as a series in powers of A, thus:

(A—AB)y~t = Y 1L, (17.1)
n=0

in which the operators L, are to be determined. Multiplying on the left by 4— B one ob-
tains

1= ,.Zo A(A—AB)L, = AL0+§1 A"(AL,—BL,_,).

12
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By equating coefficients of powers of A, it is found that L, = AL L =A'BL,_,,
n=1,2, ..., and hence that
(A—iB)~1 = A1+ )A"'BA~ '+ 24" BABA™ + . .. (17.2)
If [4~%, B] = 0, (17.2) becomes
(A—AB)~' = A"'+ABAT2+ B AT+ ... (17.3)

18. To prove this theorem we shall use the method of induction. Note that for m = 1, the
relation is obvious. Let us suppose that it is true for an arbitrary m and then deduce its valid-
ity for m+ 1. Thus, let us suppose that

AmB—BA™ = mAm—Y(AB—BA). (18.1)
Multiplying on the left by 4, we find that
Am+1B— ABA™ = mA™(AB —BA)
and, on adding 4™(AB— BA) to both sides, we obtain
A"+1B — ABAm + A"(AB—BA) = (m+1) A™(AB—BA).
But, according to the conditions of the problem, we have that
A"(AB —BA) = (AB—BA) A".

By making use of this fact, a relation of the form (18.1) is finally obtained with m replaced
by m+1.

19. The first relation (19a) follows directly by applying the commutator to an arbitrary
function of x. To establish the second one we use the identity

n—1
[4, B"] = k): BK[A, B] B»~ k1, (19.1)
=0

which can be obtained by repeated use of (15.1). Relation (19b) is then verified if A(x) is a
polynomial in x or, more generally, if it is a convergent series in powers of x.

20. We shall show that any vector |«) is transformed by the operator f(A) into the null
vector, i.e. that f(4)|u) = 0, and hence that f(4) = 0 is true as an operator relation.

Let | n) be an eigenvector of the observable A with the eigenvalue 4, i.e. 4|n) = 4,n).

By applying the operator A  times to both sides we find that 4"|n) = (4,) |n) and hence,
for an arbitrary polynomial P(2), P(4)|n) = P(4,) | ). Since any function f(A) can be approxi-
mated arbitrarily closely by polynomials P(1), we conclude that f(A)|n) = f(4,)|n) =0,
since the 2, are the solutions of /(1) = 0.

Let |u) be an arbitrary vector. This can always be written in the form |u) = )’ ,| 7).

13
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Applying the operator f(4) to both sides we have
S|y =3 u, f(A)| 1) = 0. (20.1)
Remarks: The reader can now solve the first part of problem 14 by using the relation

(20.1).

21. Let us represent the operator 2 = |u)(v| by a matrix, by using the eigenvectors of
some observable. The elements of this matrix will then be

Qun = (M| Q| 1) = (m|u) (v|n).
Then
Tr(Q) = ;.Q,,,, = Zn:<n|u>(v|n).

Using the identity (3.2), the desired result follows.
22. Using the properties of 4* we have that
(u| A* A]v)y = (v] A+ A|u)*, (22.1)

which expresses the fact that A" 4 is Hermitian.
Taking now |u) = |v), and writing |®) = 4|u), we have that

(Ul A" Alu) = (0 |w) = 0,

and hence A% A4 is positive-definite.
Let |n) be a complete set of eigenvectors of an observable. We have then that

Tr(A* A) = Y (n) 4% A|n).

Using the closure property ¥ |n)(n| = 1, we find that
Tr(4t4) =Y <n’A+ ;lm> {m|A|n)= mz (nid*my(m|A|ny = ¥ |(n| A|m)|? = 0.

The equality is true only if all the elements (| 4| m) = 0, which is equivalent to the operator
relation 4 = 0.

23. Let |n) be an eigenvector of the observable B. Then
Tr(4B) = ) (n| AB{n) = ¥ A.(n| A|n). (23.1)

But since the observable Ais positive-definite, we have (n| A|n) = 0. To study the sign of 1

we write
(#|B|n) = Ain|n) = 0.

But (n!n) > 0 and hence 4, = 0.

14
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By (23.1) it then follows that
Tr (4B) = 0. (23.2)

24. Since the matrix o is Hermitian we can write 012 = A+iB, a1 = A—iB where A and
B are real numbers. On expanding the exponentials in power series, the following expression
is obtained for U

¢ ¢

2 2

U= 24.1)
— €li’2W sin %’» e—{2¥ cos %

The transformed matrix 3 = UgU™* has the form

1 —(1 —2911) Ccos ¢ : (1 —2@11) sin ¢ ]
+2sin ¢(Acosp—Bsiny) : +2i(4sinyp+Bcosy)
* 4+2cos ¢(A cos p—B sin )

R R R PR R b (24.2)

G e .
(1 —2011) sin ¢ ;. 14+(1—2011) cos ¢
— 2i(A sin p+ B cos p) . —2sin ¢(A4 cos y—B sin p)
| +2 cos (A cos p— B sin )
This is diagonal if _
(1—2011) sin ¢ +2 cos (A cos py—B siny) = 0,
Asiny+Bcosy =0,
ie. if
_ B 24/ A2+ B?
tan p = —Z' , tan ¢ = ——i_—z“é“lr ' (243)
With these results the matrix U is determined and & becomes
1 (1-4 0
0= "5 4.
? 2{ 0 1+A}’ @244)
where A= ’\/(1 —2911)2-}*4(142-}-32).

25. We can write
A(A+ &) B(A+¢&)— A(A) B(A)
&
_ A(Gt¢) B+ &)= A(h+ ) BA)+ 40+¢) B(A)— A(A) B(Y)
_ A(h+ &) [B(A+ &)= B(A)] " [A(A+€)— A(W)] B(A) .

€ €

15
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Taking the limit as  tends to zero, we obtain

dB

d dA
-7 (4B) = B4 (25.1)

For the other relation we start from 44~! = 1 and differentiate it with respect o

dA dAa-1
- 4-~1 - =
7 A1+ 4 i 0,

ie.

Multiplying both sides on the left by A~ we obtain

-1
"jl - _,4—1‘%,4—1. (252)

26. The integral equation can be written as
t

B() = Bo+i [ [4,B(v)] dr, (26.1)
0

which is equivalent to the differential equation
%?_ =~ i[4, B(?)] (26.2)

with the initial condition B(0) = B,.
Using the expression for B(f) we obtain

‘z_f = idei!Boe~id! —gid1Boe~i41 4 = {AB(f)—iB()A = i[A, B(D)].

The initial condition is also satisfied.
27. Consider the operator
A(s) = esLA4e—sL, 27.1)
where s is a parameter. We have then that

dA(s)
ds

= Lestde~sL —eL Ae—sLL, = [L, A(s)].

16
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Let us differentiate once more, then

d24 dA
71?9) _ [L, d_g‘)] = [L, [L, A@)]]}

and so on. We shall now write the operator e“Ae~L = A(l) as a Taylor series expansion
about the origin
_ 1 dA(0) 1 d24(0)
Al = A(O)+ﬁ I -|~2—! 2 + .
Since A(0) = A, the required identity follows directly. It can be obtained also in another
way, by using the result of the preceding problem.

28. Consider the operator

T(s) = edseBs (28.1)
and differentiate it with respect to s:
dT AspB A B A A
5 = AeAseBs - e4sBeBs = (A+e45Be—45)T(s). (28.2)

Since the operators [B, A] and 4 commute, we find, by using the results of problem 18,
that
[B, A"] = nA"~1[B, A],

[B, 4] = ¥ (= 1y > [B, dr] = ¥ (— 1y - A»-1[B, A] = —e~4:[B, Als
n n! n (" H!

and hence that
e1sBe—4s = B—[B, Als. (28.3)

The relation (28.3) could have been obtained directly from (27a). From (28.2) and (28.3) we
have that
dI'(s)

o = (4+B+[4, B T(), (28.4)

and T(s) is thus the solution of this differential equation with the initial condition T(0) = 1.
Since the operators 4+ B and [4, B] commute, equation (28.4) can be integrated as if they
were merely numbers, to give the solution

T(s) = exp [(4+ B)s] exp {214, Bls?). (28.5)

The identity (28a) follows by putting s = L.

29. Let us denote by C(f) the left-hand side of (292) and by D(8) the right-hand side. We

have evidently
C(0) = D(0) = 0. (29.1)

17
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If we can also prove that C(8) and D(p) satisfy the same first order differential equation, then
the identity (29a) is valid. This is in fact the case, since

% = —AHe PH+ He=PHA = H(e PHA— Ae PH)—(AH —HA)e #H
= HC —[A, Hle  H8, (29.2)
and
dD _ - -
¥ = HD—e PHePH[ A, Hle P = HD—[A, Hle #H, (29.3)

30. The necessity of the condition is evident. To prove its sufficiency, let us consider a
representation in which 4, = (i| A|j)and By = (i| B|j) are the matrix elements of the opera-
tors 4 and B.

By (30a), with |u) = |i) and |v) = |j), we have that

| 4;;] = | By;| (30.1)

forany |i)and | j). Onthe other hand, with |u) = |i)and |v) = x;|j)+ x,|I), where x;and x
are arbitrary complex numbers, from (30a) we find that

| Aijxj+ Auxi| = | Bijxj+ Byx|. (30.2)
Taking into account (30.1), (30.2) can be written as
Re [x;x} (Aij i1—By;Bi)] = 0. (30.3)
Since the complex number x;x{ is arbitrary, it follows from (30.3) that
A;j A5 —B;;BY = 0. (30.4)
From (30.1) and (30.4) we then have that

Ai; Ay

Ay A 30.5
B; By (30-5)

which means that the ratio A;/B,; does not depend on j. On repeating the same argument

after interchanging rows and columns, we find that the ratio A;/B;; does not depend on i

either. Taking into account (30.1), we conclude that

A,;

By, (30.6)

where a is a real number independent of i and of j; i.e. the two operators 4 and B are equal
to within a constant phase factor.

18
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31. Let us consider first the necessity of the condition. Let U bea unitary operator. Then
for the matrices representing U and U™ we have

gu+ =1 (3L.1)

where 7 is the unit matrix. Since the matrix U™ is the complex conjugate transpose of U, the
relations (31a) follow directly from (31.1). Conversely, from (31a), valid in a particular re-
presentation, (31.1) follows. We have to prove only that (31.1) is valid in any representation.
Now the transformation from any representation to another is made by a unitary matrix
S in the following way (see 1.5°),

U= Sus+, U*+=S8U+S+. (31.2)

Hence it follows that
JU+ = (SUS+)(SU+S*) = 1, (31.3)

i.e. (31.1) is valid in any representation. This fact ensures the unitarity of the operator U.

19



CHAPTERII

Simple Quantum Systems

1. The Eigenfunctions and the Energy Spectrum

In quantum mechanics the non-relativistic motion of a particle of mass m, in a potential
V(r, £), is described by the time-dependent Schrédinger equation for the wavefunction
Y(r, £), of the particle

P 2
i ie%ﬂ - [—a%v2+ v, t)] P, 1). aL1)

For conservative systems, V = V(r), equation (IL1) has solutions of the form
Pe(r, £) = wg(r) exp ( —%—Et), (11.2)

which describe dynamical states with a well-defined energy E. Then, because of the linearity
of the equation, the most general solution P(r, f) can be written as

Y, = ; Ceye(r) exp (—- —hi—Et), (IL3)

where the values of E are the eigenvalues of the time-independent Schrédinger equation
2m
VE(®) + 25 (E-V(®) y&(r) = 0, (IL4)

and the functions y(r) are the corresponding eigenfunctions (continuous, differentiable, and
bounded at infinity), often called the wavefunctions of the stationary states, or the time-
independent wavefunctions, of the system. The coefficients Cy, are arbitrary constants. The
set of all eigenvalues E is called the energy spectrum of the system. The eigenfunctions (r)
are subject to the orthonormality condition :

J wi () pedr) dr = §(E, E), (IL5)

20
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where 8(E, E') is the Kronecker delta or the Dirac delta function, according to whether E
and E’ belong to a discrete (“bound state™) or to a continuous (“free state™) part of the spec-
trum. In the former case, but not in the latter, v, is square integrable. If ¥(r, £} is square inte-
grable, the quantity | ¥(r, £)|? dr then gives the probability of finding the particle described by
Y(r, f) in the volume element dr at time ¢, provided ¥(r, £) is normalized to unity, i.e. that

[1P@ npPdr=1 (11.6)

2. The Transmission of Particles through Potential Barriers

According to classical mechanics, a particle approaching a “potential barrier” (i.e. a
region of space in which the potential energy of the forces acting on the particle has a maxi-
mum, V,_,,, say) will pass through this region if its total energy E is greater than V., and
will be reflected back if E is less than ¥_,,. According to quantum mechanics, on the other
hand, such a particle, whatever its energy, has in general a finite probability of passing
through the barrier, and a finite probability of being reflected from it.

The probability of transmission (or of reflection) can be conveniently expressed in
terms of the transmission coefficient 7 (or the reflection coefficient R), defined as the ratio of
the probability flux of the transmitted (or reflected) wave to the probability flux of the in-
cident wave, thus

politl o lisl
iz | |1

where
i(r, ) = Re [,im v'(E, 1) T r, t)] aL7)

By conservation of particles, |j;| = |jr|+|jgl,and thusT+R = 1.

3. Motion in a Central Field

If the potential energy has spherical symmetry, ie. if ¥(r) = V(r), it is convenient to
change from Cartesian coordinates x, y, z to spherical coordinates 7, 6, ¢. The time-inde-
pendent Schrodinger equation (I1.4) then becomes

_[r, b _
Hy0,0,0) = |t tV O 0.6) = £, 0. ), aLs)
where p, is the so-called “radial momentum™ operator
.1 0
pbr= _lh—r_ Era (11.9)
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and
H2 . o /. 0\ 02
2 .. - - o e
. [sm 0 (sm 025+ 5 (H (IL10)
is the square of the orbital angular momentum operator, the latter being defined by the rela-

tion
1 = —ifrXv. (IL11)

The Hermitian operators H, 12 and I, = —i#(0/0¢) commute among themselves and form
a complete set of observables for the motion of a (spinless) particle in a central field.

The simultaneous eigenfunctions of 12 and of /, are the spherical harmonics Y7'(0, ¢),
which satisfy the following eigenvalue equations

12y7(0, ¢) = I+ 1) #Y7(0, $), (IL.12)
LY, ¢) = mhY' (0, ¢). (IL.13)

The orbital quantum number / may have any integral value / = 0, 1, 2, ..., and, for each
value of /, the “magnetic” quantum number m has the possible values m = 0, +1, ..., +/.
The simultaneous eigenfunctions of all three observables H, 12, I, are solutions of the

Schrodinger equation (I1.8), and have the form

Re®) ym, o), (IL.14)

F

/‘PElm(ra 63 d’) =

where the functions Rg(r) are the solutions of the “radial equation™

T | B (o ) |Rer = 0 (IL15)

art R 2mr?
which are bounded at infinity and have the boundary condition at the origin that
Rg(0) = 0. (IL.16)

Thus, for motion in a central field, the solutions of the three-dimensional Schrodinger
equation can be found by solving a one-dimensional problem, with an effective potential

I+ DA
2mr?

Ves(r) = V(r)+ R (11.17)

in the range (0, + <), with the boundary condition (11.16) at » = 0.
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Problems

1. Show that if the potential energy V' (r) can be written as a sum of functions of a single
coordinate, V(r) = V1(x1)+Va(x2)+ Va(xs), then the time-independent Schrddinger equa-
tion (I1.4) can be decomposed into a set of one-dimensional equations of the form

d*pilx:) | 2m

dx?

BVl p(x) =0, =123,

with 9(r) = p1(x1) pa(x2) pa(xs) and E = E1+E»+Ea.
2. The time-independent wavefunctions, i.e. the solutions of the Schrodinger equation

2
LY 2 vl peo) =

correspond to bound or to unbound states according to whether they vanish or are merely
bounded at infinity. Supposingthat lim V(x)=V exists,and that ¥, < ¥ _, determine

X — +oo

whether a state of energy Eis bound ornot, (Dif E=V_; Qif V_=E=V_;3)if
V., =>E.

3. Show that, in one-dimensional problems, the energy spectrum of the bound states is
always non-degenerate.

4, The well-known “oscillation theorem™ states that if the discrete eigenvalues of a
one-dimensional Schrddinger equation are placed in order of increasing magnitude,
E, <E,< ... <E ..., say, thenthe corresponding eigenfunctions will occur in increasing
order of the number of their zeros, the nth eigenfunction having n— 1 zeros.

Show that between any two consecutive zeros of the nth eigenfunction, the (n+ 1)th
eigenfunction will have at least one zero.

5. What conclusions can be drawn about the parity of the eigenfunctions of the Hamilto-
nian
/i

HO) == @

——+V(x)
if the potential energy is an even function of x, i.e. if ¥ (x) = V(—x)?

6. Show that the first derivative of the time-independent wavefunction is continuous even
at points where V(x) has a finite discontinuity.

7. Find the eigenfunctions and the energy spectrum of a particle in the potential well
given by V(x) = 0if |[x| < gaand V(x) = + « if | x| = a (Fig. IL.1).
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Vix)

—Q

~a Ol Q

Fig. 11.1.

8. A particle is enclosed in a rectangular box with impenetrable walls, inside which it
can move freely (Fig. I1.2). Find the eigenfunctions and the possible values of the energy.
What can be said about the degeneracy, if any, of the eigenfunctions ?

L" —————————— ——— — —

FiG. I1.2.

9. Find the energies of the bound states of a particle in the symmetrical potential well
given by ¥V (x) = ~V,if [x| < g, and ¥ (x) = 0if |x| > a (Fig. IL.3), where V, is a positive
quantity.

10. Find the energies of the bound states of a particle in the potential well given by
Vix) =+ ifx <0,V(x) =V, if0 < x <a,and V(x) = 0if x > a (Fig. 11.4). Com-
pare these values with those of the preceding problem.

11. Find the energy values of a particle in the asymmetric potential well given by
V(ix) =V,ifx < 0,V(x) =0if0 < x < a,V(x) = V1if x > a (Fig. IL5).
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Vix)

Fig. IL.3,

j vix)

Fic. 114,

1 vix)

vp--------p———

o] a X

Fic. I1.5.
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12. Solve the Schridinger equation for the potential shown in Fig. I1.6. Write down the
condition which gives the possible energy eigenvalues of a particle in such a potential.

Vix)

.

®

<l
w

<
[ o 1)
O —m——

©
o b=

»

Fi1c. 11.6.

13. Find the normalized energy eigenfunctions of a particle in the potential shown in
Fig. I1.7. What are the probabilities of finding the particle in the intervals 0 < x < a and
a < x < b respectively?

(1 4] i H w
1 i
1 |
]
I —— E
V.
! 2
—'—-—F-——-—--—--——-lE
i
|
|
vi ]
t ]
I I
I 1
Pt
0 o b x
. 1L7.
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14. Show that the energy spectrum of a particle in the periodic potential of Fig. I1.8 has
a band structure.
vix)

o em i il g -

-b 0 a d=atb 3
FiG. 118,

15. Solve the Schrédinger equation for the Péschl-Teller potential®

Vo

cos? ax’ (15a)

Vix)=

where V) is a positive constant.
16. Solve the Schrédinger equation for the generalized Poschl-Teller potential

Vi Vs

Vix) = —
(%) sin? ax +cos” ox ’

- - n - -
in the interval 0 < x < b (V1 and V', are positive constants).
v 4

17. In quantum mechanics, by analogy with classical mechanics, a system described by
the Hamiltonian
p: mw?

H=omt2

x? (17a)

is called a “linear harmonic oscillator”.
Finds its eigenfunctions and its energy spectrum.

18. In Fig. 11.9, the potential energy ¥ (x) and the total energy E; of an oscillator in the
quantum state with » = 1 are represented. Show that the probability of finding the particle
in the interval (x, x+dx) is, according to classical mechanics,

Wayde = - (1-2\ " ax
e1(x) _E( ﬁ’&g) s —ad=X=d.

t G. Péschl and E. Teller, Z. Physik 83, 143 (1933).
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Compare this probability with the quantum-mechanical one

un(x) dx = !wl(x) [2 dx’
where

IRYEAY P
p1(x) = 2(2n/2xy)— 12 (-;c—o)e ‘3("0) and xp= (m—a) .

Vix)

E; ‘%h w

Fi1G. IL.9.

19, Calculate the possible energy values of a particle in the potential given by V(x) = e

2
if x =<0, and V(x)=mm x2if x > 0.

20, A system described by the Hamiltonian

h?
H=-2 g+ (03I + wdy*+ wiz?) (20a)
2m 2
is called an “anisotropic harmonic oscillator”.
Determine the possible energies of this system, and, for the isotropic case (w; = wy =
w; = o), calculate the degeneracy of the level E,.

21. Find the wavefunction of a particle in the homogeneous field ¥(x) = — kx. What
can be said about its energy spectrum?

22, The conduction electrons in metals are held inside the metal by an average potential
called the inner potential of the metal. Calculate, for the one-dimensional model given by
V(x) = =Voif x < 0and V(x) = 0 if x > 0 (Fig. I1.10), the probability of reflection and of
transmission of a conduction electron approaching the surface of the metal with total energy
E,(1)ifE>0,and (ii)if —Vo < E < 0.
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v(x)

5// Metal Vacuum
A — x
B -V, —
t
FiG, 11.10.

23. A beam of mono-energetic electrons strikes the surface of a metal at normal incidence.
Calculate the reflection probability of these electrons if E = 0-1 eV and ¥V, = 8¢V.

24. In problem 22 it was supposed that, at the metal-vacuum interface, the potential
energy of the electrons jumps from —¥, to 0. Actually this change is continuous over an
interval a, whose dimensions are of the order of the interatomic distances in the metal. The
potential energy near the surface of the metal can thus be written approximately as

Vo

V) = —1rem

(24a)

(Fig. I1.11), which, as a — 0, approximates to the previously used discontinuous potential.
Calculate the reflection probability of a conduction electron approaching the surface of the
metal if (i) —Vo < E < 0, and (ii) E = 0.

Vix)

e e e i i et et e ] —Vo

Fic, 1I.11.
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25. Calculate the transmission and the reflection coefficients of a particle having total
energy E, at the potential barrier given by V(x) =0 if x <0, V(x) = Vo if 0 < x < q,
V(x) = 0if x > a, for the cases E = Voand 0 < E < V, (Fig. 11.12).

V{x)
Vo
O _[®] © -
x
0o a
FIGv. I1.12.

26. A particle of total energy E enters the barrier ¥V = ¥V(x) (Fig. I1.13) at the point
x = x; and leaves it at the point x = x (the “tunnel effect”). Assuming that the potential
energy curve V(x) is sufficiently smooth, let us divide the interval [x;, x2] into intervals of
length Ax;, large compared with the relative penetration depth d, = A[8m(V(x,)—E)]~/2
of a particle in the rectangular barriers so obtained. Calculate in this approximate
way the transmission coefficient 7' for the whole barrier ¥ = V(x), knowing that

T; ~ exp [ —% v 8m(V(x,)—FE) Ax,-] for the ith rectangular barrier (see problem 25).

Vix)

27. It has been shown experimentally that, under the influence of a strong electric field
normal to the surface of a metal, there is a flow of conduction electrons out of the metal
(the “cold emission” effect). According to classical electrodynamics, those electrons can
leave the metal which have enough energy to surmount the potential barrier produced
jointly by the electrical image force —e?/4x? (which acts upon an electron at a distance x
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outside the metal) and by the force e due to the external applied field. Although this expla-
nation is qualitatively correct, the quantitative results of classical calculations based upon
it are in complete disagreement with the experimental data. This disagreement is resolved
when a quantum phenomenon—the tunnel effect—is taken into account. Supposing, for
simplicity, that the electric field is homogeneous, determine the dependence of the cold

emission current (at a given temperature) on the magnitude of the applied field.

28. The fact that «-particles having energies of a few MeV can leave potential wells
with depths of tens of MeV (inside which they find themselves in radioactive nuclei), can
be explained by the tunnel effect. Using a simplified model, let V(r) = —V¢ if r < R,,

Vir) = 51;3 if r = R, (Fig. I1.14), and calculate Gamow’s factor for this barrier, i.e. the

transmission probability for a-particles of energy E through the barrier. Express the result
in terms of the final velocity of the «-particle, and estimate the mean life of an e-emitting

nucleus,
vir)

-V,

o

FiG. 11.14,

29. Find the eigenfunctions of a free particle, in the limiting case of motion in a central
field in which the potential ¥(r) — 0. Compare these eigenfunctions, based on the complete
set of observables H, I2, /,, with the “plane wave” eigenfunctions, in which the motion is

characterized by the observables p,, p,, p,, and H = % , which also form a complete set of

observables for a spinless free particle.

30. Find the possible energies of a particle in the spherical potential well given by V(r) =
—Voif r < aand ¥V(r) = 0 if r > a (Fig. 11.15).

31. Find the energy levels of a particle in the central field
Vr)= %+Br2, (31a)
where A4 and B are positive constants.
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§Vir)

Op———=-

Fic. 11.15.

Show that, in the particular case 4 = 0, B = muw?, the levels are the same as those found
in problem 20 for an isotropic three-dimensional oscillator.

32. Show that in quantum mechanics (as in classical mechanics), the problem of the
motion of two interacting particles of masses m; and m, can be reduced essentially to the
problem of the motion of a single particle of effective (“reduced”) mass m = mymy/(m;+my)
moving in the potential ¥(r) of the mutual interaction of the two particles.

33. Calculate the energy levels and eigenfunctions of a hydrogen atom. Discuss the
degeneracy of these levels.

34. By analogy with classical mechanics, a system described in quantum mechanics by the
Hamiltonian

H=_P (34a)

is called a “rigid rotator”. Here I is the (constant) moment of inertia of the rotator. Deter-
mine the corresponding energies and eigenfunctions. What is the degeneracy of the energy
levels?

Solutions

1. Substituting the trial function p(r) = y1(x1) pa(x2) Ys(x3) into equation (I1.4), and
dividing by y1yayps, we obtain
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Because the terms in each bracket of the sum contain independent variables, the equality
can be valid for all (xi1, x2, x3) only if each bracket is a constant, i.e. if

1d%; 2m 2m

i,vi dx?_‘h_z i__FEi, 12112,3s

where the E, are constants, and E = E, 4+ E,+ E,.
In particular, if ¥(r) = V1(x1), the function y1(x1) is given by the one-dimensional
Schrodinger equation
d2’lp1
d 2

(El —Vop =

and ya(x2) and y3(x3) are solutions of the free particle equations

d*y; 2m

d2+ Ewy; =0, i=2,3.

2. In the first case the difference E—V(x) is positive at both ends of the interval (— oo,
+ o), and thus the eigenfunctions in these regions oscillate indefinitely between finite bounds
and therefore correspond to unbound states. The energy spectrum is continuous and doubly
degenerate. In the case V_ = E = V_, the difference E—V(x) is negative in the limit
x - — oo, 50 that in this asymptotic region only one of the two linearly independent eigen-
functions is bounded (in fact, it has a decreasing exponential). In the other asymptotic
region, where E—V(x) is positive, this eigenfunction oscillates indefinitely between finite
bounds and in consequence it corresponds to an unbound state. The energy spectrum is
continuous and non-degenerate. In the third case the difference £ —F(x) is negative in both
asymptotic regions. The bound state solution, if it exists, must approach zero exponentially
at both the limits x - + o=. It can be shown that such a solution exists only for discrete
values of E. The case in which ¥ = ¥V _ is similar to the one in which ¥, < ¥ _, and
does not add anything new to the above conclusions. If ¥, = V_ = V,, the eigenfunctions
correspond to a bound state if 7y > E, and to an unbound state in a continuous and doubly
degenerate energy spectrum if £ = V.

3. For the sake of argument let us suppose that the opposite is true. Let y1(x) and pa(x)
then be two linearly independent eigenfunctions with the same energy eigenvalue E. From

the equations
,,  2m ,,  2m
Y1 +h—2(E‘V)'J’1=0’ Y2 +h—2(E*“V)'P2=O

we obtain

(%Y 'Pz
= V—
™ hz = (V—E),

1.€.
vi've—y2'yr = (yiye) —(yayn) = 0.
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After integrating this equation we find that
Y1y — iy = a constant.

Since, at infinity, y; = g, = 0 (bound states), we must have the constant = 0 and hence

Vi _ ¥
™1 1}’2'

Integrating once more we have Iny; = In y2+In ¢, ie. ¥; = cps, which contradicts the
assumed linear independence of the two functions.

4. Consider two eigenfunctions y,(x) and v, ,(x) with eigenvalues E, < E, +1- Since
the spectrum is supposed to be non-degenerate, all eigenfunctions can be taken to be real,
by a suitable choice of phase factors. From the equations

Py 2m re 2m
Yn +~ﬁT(Eu_V)Wh =0, Qpn+1+—h_2_(En+1_V)1pn+1 =0,

after some simple calculation we obtain

B
[‘Pé%ﬂ _QP)’1+1QPn]

o

B
2m
= -zz_(E”"rl _Eu) J.'!Pntpn+l dx.

Let us take « and 8 to be two consecutive zeros of y,, (n = 3). Then

o

B
B
["P::WM-H] = %(EIHJ _En)J‘QPu"Pnﬁs-l dx.
Now, in the interval («, 8), ¥, does not change sign; suppose, without loss of generality,
that y, > 0. This means that y,(«) > 0 and y,(8) < 0. It follows that v, ,(x) must change
sign in the interval («, B), since otherwise the right-hand side of the equality would have the
same sign as y,, ;, while the left-hand side would have the opposite sign. Hence, between
two consecutive zeros of y,, ¢, , has at least one zero. In this connection note also that

eigenfunctions which are even (0dd) with respect to the reflection x — —x have an even
(odd) number of zeros, and that the ground state is always even.

5. Since H(x) = H(—x), we have
Hy(x) = Ep(x), Hy(—x) = Eyp(—x), (5.1)

i.e. p(x) and y(—x) are eigenfunctions of H with the same eigenvalue E. We distinguish
two cases:
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(1) The level E is non-degenerate.

In this case w(x) = Cy(—x), and hence y(x) = Lty(—x), that is, the eigenfunctions
corresponding to non-degenerate energy levels are either even or odd. Suppose now that
all the energy levels are non-degenerate. Then, if we write the energy eigenvalues in increas-
ing order of magnitude, E; < E; < Ej .. ., the corresponding eigenfunctions will occur in
increasing order of the number of their zeros, the function corresponding to E, having
n—1 zeros (see problem 4). Since the even (odd) functions have an even (odd) number of
zeros, it follows that the eigenfunctions will be alternately even and odd, the ground state
wavefunction being always even.

(2) The level E is degenerate.

The degeneracy being twofold, the general solution of equation (5.1) can be written as

Cry(x)+Cap( —x) = Alp(x)+9(—x)]+ Bly(x) —p(—x)] = Ape(x)+ Byo(x)

where 4+B = C;, A—B = C,. Thus the two eigenfunctions having the same eigenvalue
can be written in the form of a linear combination of two functions of well-defined parity,
which are themselves eigenfunctions with the same eigenvalue.

6. Consider a potential ¥(x) having a finite discontinuity at x = xo (Fig. 11.16). In
the interval (xo—d, xo+d), by replacing V(x) by the line segment shown in the diagram,

Vix)

e s v — o — o ——

- I
L
% ! i
H {
o x
Xo=d x, x,+d
FiG. 11.16.

one obtains a continuous potential ¥;(x). The Schrédinger equation then becomes

v )+ o (E—Vi(0) pi(3) = O,

whence
xot+d
, , _ 2m
(WD)xyrd ~ WDxg—a = ) (V1(x) —E) pa(x) dx.
Xo—d
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Asd - Owehave V1 (x) - V(x), p1(x) — w(x), where y(x) is the solution which corresponds
to the discontinuous potential ¥(x) and the same eigenvalue E. Because the integrand is
bounded we find that (¢),, . = (¥'),_, in the limit 4 — 0. Note that at a point where the
potential ¥'(x) has an infinite discontinuity, the derivative wavefunction does not have the
above property. The condition of continuity of y(x) and of its first derivative is equivalent
to the condition of continuity of the “logarithmic derivative”

2y = velE of ).

7. For | x| = a, the solutions must be identically zero. Inside the well the particle states
are bound and the energy spectrum is non-degenerate. Because V(x) = V(—x) the solu-
tions of the equation y''(x)+k2y(x) = 0, where k2 = (2m/#)E, will have well-determined
parities, )(x) = 4 cos kx, y®(x) = B sin kx. The continuity conditions *“)(+a) = 0 and
p©O(+a) = 0 will be satisfied if ak = n7/2, where n=1,3,5, ..., and n = 2,4,6, ...,
respectively. Hence

nmw
Acos — x = v, for n odd

2a
Ya(X) =

. nm
Bsin —x = wf,ﬂ), for n even.

2a

The possible values of the energy are

2142
Enz_h2—k2= hznn

m "*8“—”;&2', n=1,2,3,...

In this example, the results of problems 4 and 5 can be verified directly. Thus, the eigen-
functions which correspond to the levels E1 < E; < E3 < ..., are alternately even and odd,
and the eigenfunction corresponding to the energy E, has n—1 zeros in the open interval

(—a, a). The orthonormalization relation j' v (X p,(x)dx = 8, is satisfied if we take

A=B=+a.

Note the difference between the classical and the quantum behaviour of particles.
A particle between two absolutely rigid walls can either perform an oscillatory movement
with any specified energy E, or it can remain at rest (£ = 0), according to classical mechan-
ics. According to quantum mechanics the energy can have only certain values, whose
number is, however, infinite. It is significant that the ground state energy E; is not zero, i.e.
the particle cannot be at rest in the potential well (see problem 12, Chapter III).

8. The potential energy can be written in the form V(x, y, z) = V(x)+ V() +V(2),

where
0 if 0<x<a, O<y<b O=<z=<ec,

VX)) =V =V(i)= {

oo outside these intervals.
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The Schrédinger equation (I1.4) can be decomposed into one-dimensional equations (see
problem 1), whose solutions are

pi(x) = Asin kix+Bcos kix, O<x<a
yo(y) = Csin kgy+Dcos kay, O<y<b
y3(z) = F sin k3z+G cos kzz, 0 <z <c,

?,izn_E and y1(x) p») wa(2) = w(x, y, 2).

Because at the walls y = 0, the eigenfunctions normalized to unity are given by

Vnynany (X ¥ 2) = l/— s1n ) sin (%22 y) sin (g z).

The energy of the particle is thus quantized, the possible values being given by

nzh2(n2+n§ "

where ki+ki+ ki =

Eﬂnﬂzﬂa 2m b2 +?) > m, Hg, N3 — 17 27 3, DR
If the ratio of any two sides is an irrational number, all the energy levels are non-degen-
erate. Otherwise the energy spectrum is in general degenerate. Thus, e.g., if a = b = ¢,
the level for which #24+n2+n2 = 6 is threefold degenerate, since three linearly independ-
6722

2ma?

ent eigenfunctions have the same eigenvalue: E121 = Fuz2 = Eon1 = . The ground

state E11: is, however, always non-degenerate.

9. If bound states exist, the particle’s total energy E in such states will be in the range
—Vo < E < 0. The eigenvalue equations are then

' 2m )
21 (x)—FlEl%(x):O, if x=>a
’ 2 ,
%(x)+7’;"—-(vo—|E|)w2(x)=o, if |x|<a

s (%) — |E|1p3(x) =0, if x<-—a.

1/2

2 1/2 2
Using the notation « = (7:; lEi) >0 and ﬂ={"};’;(Vo—|E|)} >0, the wave-

function can be written as

Y1 = Ae**+ Be—°%, if x=>a
p(x)=4{ wy=Csinfx+Dcosfx, if [x]<a
y3 = Fe**+Ge™ =%, if X < —a.
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For y to describe bound states, we have to take 4 = G = 0 (the vanishing condition at in-
finity). We can then see a typical quantum-mechanical effect. 8ince |y; [2 = B%~2** = 0, and
|ps |2 = F?** # 0, the particle may be found outside the potential well, with a probability
which decreases exponentially with distance (Fig. I1.17).

wix)=) (0

Exponentiai ‘Sinusoide

O sy - -

I
i
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i
!
a

Fic. 11.17.

From the continuity conditions at x = J-a we obtain

2C sin ﬁa = (B—F) e— 4 } (9.1)
28C cos fpa = —a(B—F)e—°@

2D cos fa = (B+F)e—=2 o)
2)8D sin ﬁa = o(,(B-J[-F) e—ta } (9.2

If C # 0, and thus B # F, we obtain from (9.1)

fcot fa = —a. 9.3
If D = 0, and thus B = —F, we obtain from (9.2)

Btan fa = a. .4

The relations (9.3) and (9.4) cannot both be satisfied at the same time. We have therefore to
distinguish two classes of solution:

() C=0, B=F and ftanfa=a«,

2)D=0, B=—-F and pJcotfa=—a.
In the, first class the eigenfunctions are even and in the second class they are odd, a result
which follows directly from problem 5.

The corresponding energy values are given by the solutions of the transcendental equa-
tions (9.3) and (9.4), which can be solved graphically as follows. Put X = fa, Y = «a; the

38



Ch. I Simple Quantum Systems

2

energy levels E = — Y2 are then obtained from the intersections (if any) of the curves

2ma?
Xtan X =Y Xcot X =-Y
2ma or 2ma® respectivel
X24+Y2 = ’;;a Vo X2+Y2 = ’;:;l— 0 P y

in the region X > 0 and ¥ > 0 (Fig. I1.18).
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FiG. 11.18.

We can see from Fig. I1.18 that the number of bound states increases as the product 4V
(the “well parameter”) increases, and is finite if @®/ is finite. It can also be seen that if
N N+1 2m 12

77:: <R =< ( )n, where R = ) aVo and N=0,1, 2, ..., then the number of
bound states is N+ 1 (for N = 0, the condition becomes 0 < R < 7/2).

10. The energies of the bound states will lie in the interval — Vo < E < 0, and the eigen-
functions will have the form

Y1 = Be—x, if x>a
p(x) =1 wo=Csinfx+Dcosfx, if O<x<a
Y3 — 09 if x < 0.

In this case the probability of finding the particle in range III is zero, and in range I it
decreases exponentially with x (Fig. I1.19).
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78]
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Fic. 11.19.

From the continuity conditions at x = 0 and at x = a one obtains D = 0, and hence
B cot fa = —a. (10.1)

Since this transcendental equation is the same as (9.3), the possible energy values in the
present problem will coincide with a part of those found in the previous problem. However,
the wavefunctions are now neither even nor odd, since F(x) = V(—x).

: 2m L 2 .
We observe that, if R = (_hT 14 oaz) <5 ie. if a®Vy < #%n2/8m, then the potential
well cannot bind the particle; the condition for the existence of at least one bound state is

2

(10.2)

asz)E=

11. From the behaviour of the wavefunction in the asymptotic regions x -+ oo, it
follows that the energy spectrum of the particle is either discrete, or continuous and non-
degenerate, or continuous and doubly degenerate, according to whether 0 < E < V 1, OF
Vi< E < Vs, or E > ¥V, respectively (see problem 2). The energy of the particle is thus
quantized in the range 0 < E < ¥, and the corresponding eigenfunctions will have the form

Bie—h, Xx>a
p(x)=1{ Asin(kx+¢), O0<x<aqg
Baebr*, x <0,
where
9 12 2 12

The continuity conditions at x = O and at x = a give Batan ¢ = k and B tan (ka+ ¢) = —k,
or, in other words,

sin ¢ = kh(2mV3)~Y2  and sin (ka+¢) = —kh(2my )12,
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Eliminating ¢ and introducing the notation

_ @myaye ok l/__ﬁi _ ( E)
9= "—2""> E_E_ g cosy=| o 0<y<3)

the following transcendental equation is obtained:
nw—aqgé = arc sin £+arc sin (£ cos ) (11.1)

(heren=1,2,3, ..., and the values of arc sin are to be taken in the interval (0,7/2)). The
roots of equation (11.1) give the energy levels E = V,£]. When E increases from 0 to V, &
increases from O to 1, the right-hand side of equation (11.1) increases from 0 to (7/2)+
arcsin (cos y) = —y, and the left-hand side decreases from n7 to nw — ag. Equation (11.1) can
be solved graphically, by determining the abscissae of the intersections of the curve given by
0 < f(£) = arc sin £+arc sin (€ cos y) < w—yp with the straight lines nm—agé (Fig. 11.20).
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Fic. 11. 20.

The necessary and sufficient condition for at least one of the straight lines D, to intersect the
curve C is that
m—aq<n—y, ie. aq=Mm—Dn+y. (11.2)

If ag < v, equation (11.1) has no solution for real £, and thus no bound states exist. If
y =< aq < m+y there is one eigenvalue E, and if 7+y =< ag < 2n -+ there are two eigen-
values E; and E; (E; < E3), and so on. As can be seen from condition (11.2), the number of
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energy levels in this potential well is finite. Observe that any bound particle can be found
outside the well with a non-vanishing probability. In the particular case V', = ¥ 2, we have
cosy = 1, y = 0, and the condition (11.2) is certainly satisfied, at least for n = 1, which
means that there always exists a bound state in this case (see also problem 9.

12. The solution of the one-dimensional Schrédinger equation satisfying the boundary
conditions ¢(0) = w(c) = 0 can be written in the form
Ay sin kyx, if O<x<a
w(x) = { Aazsin kex+ By cos kax, if a<x<b (12.1)
As (sin k3x —tan ksc cos k3x), if b < x < ¢,
where

2m 1/2 .
k; = [—gf(E—V,-)] . i=1,23 (122)

The continuity conditions at x = a and at x = b give the system of homogeneous equations:

A, sin kya— Ay sin ksa—Bj; cos kea = 0

A1k; cos kia— Asks cos kea+ Bsks sin kea = 0

A> sin ksb+ Bs cos ksb— A3 (sin ksb—tan ksc cos ksb) = 0

Azks cos keb—Bsks sin keb — Azks (cos ksb-+tan ksc sin ksb) = 0.

(12.3)

Non-trivial solutions for the variables 4,, 43, 4s, B, exist only if the determinant of the
coefficients of these variables in (12.3) vanishes, which gives

ks cos ky(c—b) [k3 sin kia cos ka(b—a)+ky cos kia sin ka(b —a)]
= kg sin ks(c —b) [k2 sin kia sin ky(b—a)—k; cos kia cos k(b -a). (2.9
From (12.2) and (12.4) the possible values of the energy of the particle can be found. We

mention that for E—¥; < 0, i.e. for imaginary k;, the trigonometric functions of (12.4)
become the corresponding hyperbolic functions.

13. Because this is the particular case b = ¢, V3 = V; of problem 12, the energy eigen-
value equation (12.4) becomes
k1 cot kia+ ks cot ka(b—a) = 0, (13.1)

and the corresponding eigenfunctions satisfying the boundary conditions 9(0) = ¢(b) = 0
are

1 = A sin kix, if 0<x<a
p(x) = _ sin kia ) . (13.2)
we = A sin kab —a) sin ke(b—x), if a<x<bs.

From the normalization condition

b a b
J'tpzdx=f1p§dx+f1p§dx= 1,
0 0 a
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the following expression for the amplitude 4 is obtained

sin® k1a] . (13.3)

1 _ay, sin 2k,a + 2ko(b —a) —sin 2ky(b —a)
A2 2 [ 2ka 2k.a sin? ko(b —a)

The probabilities W1 and W of finding the particle in the intervals0 < x < aanda<x<b
respectively are given by

; a sin 2kqa
W1:jw%dx: 5(1~——-2—k~;—11—)A2
0

and

Wa=1—W; = 1_3(1“_

sin 2ki1a\ ,
. _u_—) A2,

2k1a

2 . .
In the particular case 7,{"211 Vo—Via? = (kiap —(kea) = L,b—a=a (i.e. the two intervals

have equal widths), equation (13.1) becomes

kot cot kog = — A/ 1+ (kaa)? cot A/ 1+ (kea)?, (13.4)
and then
- sin 2k1a
2k
W, = 14

B sin 2kja  sin® kya 1 Asin 2ksa
2ka sin? kqa ( 2koat )

The transcendental equation (13.4) can be solved numerically, the smallest eigenvalue being
obtained for kea = 1-388, kya = 1-710. In this particular case W1 = 0-55 and W, = 0-45,

Note that if V1 < E < Vs, then the eigenfunctions are no longer periodic in the region
a < x < b. Substituting ky = ik, we find from (13.1)—(13.3) that

k, cot kya+k coth k(b —a) = 0,
y = A sin kix, if O=<x<a

p(x) = _ sin kya
¥2= 2 5inh k(b —a)

1 a 1 sin 2kia 2k(b —a)—sinh 2k(b— a)
N [ 2kia 2ka sinh2 k(b —a)

sinh k(b—x), if a<x<b

£ =3 sin® kla] .
14. On account of the petiodicity condition ¥ (x+d) = ¥(x), the solutions of the Schré-

dinger equation
v 2m

d—x2+—h-2—(E—V(x))1p =0 (14.1)
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will also be periodic, in the sense that
p(x+d) = Cy(x) (14.2)

where C is a constant factor. From (14.2) it follows that y(x+ nd) = C™y(x). If |C| 1, then
along one direction of the x axis, w(x) increases (decreases) without bound. Solutions having
a physical meaning can be obtained only if C is a phase factor, e.g. C = ¢, where ¢ is real.
Then |C| = 1 and

p(x+d) = etyp(x). (14.3)

In the period —b < x < a, let

(x) = Aetx Be—ibx  if _bp<x<(
v = Dei*xf Fe—#x  if Q0<x<a,
where

2m 1/2 2m _\1/2
ﬂ=|:mh—2w(E_Vo):| N a:(—vﬁE) R

Then, in the following period, ¢ < x < a+d,

[ AePe—Dy Be—iBx-d)  f g<x-<d
P(x) = et . . -
Desx—d) 4 Fe—ixtx=d)  {f d <« x <qg-+d.
From the continuity conditions at x = 0 and at x = a the following system of equations is
obtained
A+B = D+F
B(A—B) = «(D—F) ] (14.4)
eig&(Ae— iﬁb+Beiﬁb) — Deima+Fe—iaa
Be¥( Ae— "t — Beift) = q(De™a — Fe—iz4)

Non-trivial solutions for the variables 4, B, D, F are obtained only if the determinant of
their coefficients vanishes, which gives the condition
x2—062
cos ax..cosh bd — 55~ Sin ax.sinhbéd, if O0<E <V,
cos ¢ = 2 | o (14.5)
cos ao..cos b — “+p sin ax . sin bg, if E=V,

208

where
2m 1/2

Now the energy E, which appears in (14.5) through «, 8 and 6, has a value such that
—1 =cos ¢ <+41. (14.6)
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We have now to distinguish two cases:
(1) 0<E<V,.

To get a picture of the structure of the energy spectrum we look at the particular case for
whrch b — 0, ¥y — < in such a manner that 562 remains finite. With the notation

2
P = lim abo ,
b—0 2

4 — o0

(14.6) becomes
sin ax«

ao

—1=<P +cosax <+1.

. 3z, . .
From Fig. 11.21, where P = —;— , it can be seen that the energy spectrum consists of a series

of separate regions, inside each of which the energy of the particle can vary continuously.

Pﬂg&'l + €OS oc_!

— - — v o A A — - - aa

Fic, 11.21.

These regions are called the “allowed bands™, and the ones between them the “forbidden
bands”. It can be seen that the width of the allowed bands increases as the energy increases.

Q) E=>V,.
The possible values of the energy are determined by the condition
1 =f(E)=<+1, (14.7)
where
2
f(E) = cos ax.cos b — >+ sin ax .sin bB

2ap
/M2

= cos (ax+bp)— (a2os£) sin ax .sin bf. (14.8)
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The energy spectrum will also, in this case, have a band structure. The relation xa+ b = no,
n=0,1,2, ..., which would lead to a discrete spectrum does not satisfy the inequality

® and bf = n%—i—@ into (14.8), we find that

(14.7). Indeed, by substituting ax = n %—

—_ 72
1+ (@ =Py sin?® = 1 for n even,
2ap

T G i
208

fE)=

cos?® < —1 for n odd,

which is contrary to (14.7).
The resuits obtained above for rectangular potentials can be generalized for any periodic

bounded potentials, such as occur, for instance, in ideal crystalline lattices.

15. By writing the positive constant V¢ in the form

#h2
= —— 2 _— "
Vo 37 % MA=1), A=1, (15.1)
the Schrédinger equation becomes
d2y s, AA=D1]
ZF+[’° * c—osm]"’—” (13.2)

where k? = 2mE/[#2.
Changing the independent variable x in (15.2) to y given by

y = sin? ax (15.3)
we obtain the equation

y(1—y) A + (i—y) ﬂ-ﬂ—i [E— /'L(}.—l)] =0 (15.4)

dy? 2 dy 4| a2 1—y

The possibility of introducing the new variable y requires discussion, since (15.3) does
not establish a one-to-one correspondence between the variables x and y. Indeed, it trans-
forms each point of the complex plane of x into points on a Riemann surface having an
infinity of sheets in the plane of y. For ¥y > 0 (the upper half of F ig. I1.22) the periodic
potential (15a) consists of a series of valleys separated by walls of finite width and infinite
height. Since these walls present impenetrable obstacles to the particle, we can restrict our-

. . JT brj A
selves, in the study of the eigenvalue problem, to the range Ty Sex< +E , and use the

boundary conditions 1,0( i%) = 0. Since the range ( —; , +%) of «x corresponds to a

single sheet of the Riemann surface of y, the transformation (15.3) will, with this restriction
(warranted by the above physical considerations), be one-to-one. This argument is not
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trivial, since for E> 0 and 0 < A < 1, i.e. Vo < 0 (the lower half of Fig. 11.22), the particle
can move over the whole of the plane — o < 2x <+ <, and the above argument is then
invalid.

| Vix)

|| [ A ..]

-

J L/ /X

VIV

FiG, 11.22.
Introducing a new function f(y) through the relation

y = (1-py2f(), (15.5)

N[a

we obtain from (15.4) the equation

d2f

y(l—y) [——(Hl)} )’: 1(7—,12))“ 0. (15.6)

The general solution of this equation can be written in the form (A.53),

f=CiF(@a, b, c; p)+Caoy'—<Fla+1—c,b+1—c,2—c;y), (15.7)
where
1 k 1 k 1
a—5(1+;), b—i(l—;), = (15.8)

According to (A.54), both F functions have a singularity at y = 1 of the form (1—y)*=*"°
= (1 —y)Y2~4, Thus the function y, which differs from f(y) bya factor (1 —y)"?, diverges
like (1—y)2~»2 near y = 1, i.e. ax = +7/2. At these points, however, we must have
v = 0. But from (A.54) and (A.51) it follows that near y = 1 the function y behaves like

Cil(0) C.I'(2—0¢)
IT@Ik) [a+l1-c)I(b+1-c)

(1 —y)a-ne [ ] T(a+b—o). (15.9)
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Hence the coefficient of (1 —y)'~*"> must vanish. Note that all the above expressions are un-
changed if o — —a, with the exception of (15.8), in which a = b. The results which will be
obtained below for a chosen value of b can thus be transformed, using the transformation
« —~ —a, which does not change the physical problem, into the results which would be ob-
tained for a chosen value of a. Now, since the function I'(z) has simple poles at z = 0, —1,

—2, —3, ..., the quantity (15.9) will vanish identically eitherif » = —n (n=0,1,2,3,...),

and Cp = 0 orifb+1—c = —nand C; = 0. In the first case we obtain

= (l—y)WF[ (M—k) ;(l—g),%;y] (15.10)
where
= (,1—%) ——n, ie. k®=a2(}+2np (15.11)
and in the second case
y= —y)my”zF[ (x+1+ k), 1 (,1+1_5) gy] (15.12)
where
%(Hl_%) ——n, Qe K =a2(t+2nt1p. (15.13)

Thus the corresponding eigenvalues and eigenfunctions are

Vo

— V 2
B = o2y H 208 Bt = 50 (e 20 19, (15.14)
Yan = cos* ax.F(A+n, —n, 4; sin? ax),
Yons1 = cos* ax.sin ax.F(A+1+n, —n, §; sin? ax). (15.15)

16. Arguments similar to those used in the preceding problem give p = 0for x = 0and
for ax = x/2.
Using the notation

iizoc2 ﬁzfxz 2m

Vi= 5 =1, Ve=5——A-1), k*=—r_F, (16.1)

where 9, 4 > 1, the corresponding Schrédinger equation with the new variable

y = sin® ax (i6.2)
becomes
dy (1 \dy k2 nn—1) AMA-D7
(1 —)’)Tyi*—(“z— }’) dy +4 4 [“2 y 1—y ]"0— 0. (16.3)

Let us change now to a new function f(y) defined by the relation
v = y"A(1—y)y*2 f(y). (16.4)
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For f(y) the following equation is obtained
w9 Tht[(n+5) o] Gag [ -aerp]r=0 a6

whose general solution can be written in the form (15.7) with

n+l k _nti k _ 1
3t by =ty (16.6)

Near y = 1, i.e. ax = /2, both F functions behave like (1—y)2~# sothat p ~ (1—y)*=»'2.
Near y = 0, i.e.ax = 0, we have f = C1+Cap'~¢ = C1+Cap>~", and hence y = C1y"*+
Cay~"72, Since 5 > 1, the boundary condition y(0) = 0 requires that C, = 0. Thus both
boundary conditions will be satisfied if we choose Ca =0, and b= (n+2)/2—k/2e =—n
(n=0,1,2, ...). The energy eigenvalues will thus be given by

h2a2

E, = = —(+2+2np,

and the corresponding eigenfunctions by

Yn = U1 —yW2F(n+A+n, —n,n+3;y)
= sin" ax cos* ax F(n+ A+n, —n, n+§; sin® ax).
17. Introducing the dimensionless quantities
o x = 2F

Xo heo ’

where xo = (A/mw)"/% the Schrodinger equation for the oscillator

d2y mo? )\
d2+h (E— 5 x)vp—O

becomes

j;fﬂz _gpyp = 0. 17.1)

Energy levels are obtained only for those values of the parameter A for which the solutions of
equation (17.1) vanish at infinity. We seek these solutions in the form

Y= p(&)u(t) (17.2)

where yp_ () = exp( —+£?) satisfies (17.1) in the asymptotic regions & - + =, in which (17.1)
reduces to
'y _
ae - =0
and tends toward zero as & — + <.
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By substituting (17.2) into (17.1), the following differential equation for u(£) is obtained

d?u du
g% g+ G—Du=o. (17.3)

Looking for a solution of the form

u= ¥ Cu, (17.4)
k=0

the following recurrence relation for the coefficients C,, is found:

2k+1-1
Cure = Ty deiay (17.5)

Now, for large values of k, C,, _, ~ (2/k)C,. The latter recurrence relation holds also for the

coefficients of the series

exp ()= Y —i—&’a (17.6)

k=0,2,4,... >y
2 .

Hence, for the same range of values of k, it follows that as & — + oo, u(&) behaves like exp(£2)
and the wavefunction y diverges like exp(3£2). To avoid this divergence the series (17.4) has
to reduce to a polynomial. If C, + 0, we can have C, +o = Oforallk = nonlyif A = 2n+1,
from which follows the well-known quantization of the energy of the linear oscillator:

E.=fo(n+%), n=0,1,2,... (17.7

To calculate the corresponding eigenfunctions, the coefficients C, and C1 must be deter-
mined. Since, for the harmonic oscillator, ¥(x) = V(—x), the eigenfunctions corresponding
to bound states of energy E, will be either even or odd, which corresponds either to C; = 0,
Cos 0,0rtoCy 2 0,Cy =0, respectively. Taking C, = 2" (which means in effect specify-
ing Cy or C1), the recurrence relation (17.5) with 2 = 2n+ 1 gives for the solution u the Her-
mite polynomial

HA6) = @i =" (gyp-ay =D (=3

Qeyt— ... . (17.8)

The polynomial H,(£) satisfies equation (17.3) with A = 21+ 1, i.e.

d?H, dH, _
e —2¢ JE +2nH, = 0. (17.9)
H, (&) can also be written in the form
dre—*
H, (&) = (—1)e® P (17.10y
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Consequently the time-independent wavefunctions of the oscillator are

(%) = N,,H,,(xio) exp [—-;- (xio)z] , (17.11)

where the constant N, is determined from the normalization condition

+ oo + oo + oo

R, — &2
1= f yipn dx = 30| N2 j D& = (~lrxo Nt [ HE o d

v
_—0

Integrating by parts n times, we obtain

o0

-+
it [ o2y

— 0

+ oo
d"Hy(& -
dE’S ) - 2"n!  and j e~ dt =+/n,

— ¥

But

so that, with the exception of a possible phase factor,

N, = (2"n14/7 xo) 22,
and consequently

Yn(x) = (2"n!xo‘\/7_t)_1/2Hn(xio) exp [——;— ( x)z] : (17.12)

Xo
The orthonormalization condition then holds for these wavefunctions, i.e.

]

| vhandx = S (17.13)

18. Since the general solution of the equation of motion of a classical oscillator, X +w?x
= 0, is of the form x = C sin (w?+ ¢), the total energy
mx2  mo?

— — g T 42
Ei.=T+V 2+2x

of such an oscillator is given by E1 = mw?c?/2.
Since T = 0, we have E; = V, which means that, classically, the particle can be found
only in the range —a = x <+a. At the ends of this interval, where E; = V, its kinetic

energy vanishes; the points x = + a are called “turning points”. Accordingly, C* = a* =
2E;/mw? = 3#/me. The classical probability of finding the particle in the interval (x, x+dx)
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is proportional to the time df which it takes to pass through this interval. If the period of
oscillation is 77 = 27/w, then

dt o dx o dx 1 x2\ —1/2
- T = ) dx,
ToX 7w aw cos (wt+¢) ma ( az)

which is the required expression.

’\w(x)

W

O bl e e

a
i3
9. e s s 2

N et
-a -9 O’

Fic. 11.23.

It can be seen that this probability is greatest at the turning points x =+ a (Fig. 11.23).
According to quantum mechanics the probability of finding the particle in the interval
(x, x+dx) is

2
Wau(x) dx = 2712 x;3x2 exp (— %) dx.

0

It should be noted that W,u(x) has maxima near the classical turning points (a =4/ 3h/mo,
a=vVh /mco), but, in contrast with the classical case, it does not vanish beyond these points.
This phenomenon, of the penetration of a particle into regions with “negative kinetic energy”
(fx! = a), does not lead to any contradiction because the equality £ = T+V in quantum
mechanics is not a simple relation between numbers, but between operators; the kinetic and
the potential energies cannot in fact be determined simultaneously.

For higher levels, it is found that the curve 2W (x) becomes the envelope of the peaks of
W, .(x) in the classical limit n —co (cf. Fig. 11.24, which represents Woo(x) = |y1o(x) %,
a=V 21h/mw).

19. Since the particle cannot penetrate into the range x < 0, the eigenfunctions of the

corresponding Schrédinger equation have to vanish for x = 0. On the other hand, in the
range x > 0, these eigenfunctions are the same as those of the harmonic oscillator. Hence
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the odd wavefunctions of the oscillator, with » = 2k+ 1, which vanish at x = 0, are the
solutions of this problem. Therefore

Ep = hoQk+d), k=0,1,2, ...

20. Since V(x, y, z) = V1(x)+ Va(¥)+ ¥ '3(2), this problem reduces to the problem of three
independent harmonic oscillators of frequencies wy, w2, w3, along the axes x, y, z respectively
(see problem 1). Therefore

Epnyny = Hoor(na+§) + hos(nz+ 3 ) + fiws(ns+ 3), (20.1)

M3 14 D—(ni+nstng)\ 1/2
) ( nl!ng!ns! )

V’"lﬂzna(xs Y, Z) = ( P
X Ho(E) HalB) Holla) exp |~ G+ 848D (202)

1/2 1/2 1/2
51:(”’;’1) X, 52=(’"2’2) v, 53:("’;’3) .

andnla ng, N3 = 0’ -l, 2’ ton .

where
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If the ratios of the eigenfrequencies are irrational, the energy levels are non-degenerate,
otherwise they may be degenerate. The ground state Eqgo is always non-degenerate.
For the isotropic harmonic oscillator

= hw(n+4), where n=n+ny+ns. (20.3)

In this case all the energy levels with the exception of Ey are degenerate. To calculate the
degeneracy of the level of energy E,, consider for the moment a particular value of the
quantum number n;. ny can then have any of the values 0, 1, ..., n—n,, and the sum
n = n1+ ne+nzfor givennand n; can be obtainedinn—n; + 1 ways, Sincen1 =0, 1,2, .. ., n,
the degeneracy of E, will be

Y (r—m+1) = 3n+1)(n+2). 204)

n;=0

21. Since, as x - — o, the Schrédinger equation

ng +55 T (E+kxyp=0 1.1)
has, for any value of E, a single bounded solution (the one which decreases exponentially
as x - — ), which, as x - + <=, oscillates endlessly, it follows that the energy spectrum
of the particle in a homogeneous field is continuous and non-degenerate. In other words,
to each energy value, in the range — < < E < 4 o, there corresponds a single solution,
and this describes a motion of the particle which is limited in the negative direction of x and
unlimited in the positive direction.

Introducing the dimensionless variable

E\ (2mk\ V3
y= (x+-,;) (—h2 ) s (21.2)
equation (21.1) becomes
i 0. 21.3
dy2 +yi)v ( * )

This equation does not contain the energy as a parameter. Therefore, after obtaining its
correctly bounded solution, we can readily find the eigenfunction corresponding to any
arbitrary value of the energy. The solution of (21.3), finite for any x, has the form

y = NA(—), (21.4)
where

AQ) = —— J cos +uy)d (21.5)
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is Airy’s function, and N = (2mn—32k~Y24~2)1/3 is a normalization factor (see problem 18,
Chapter V). Thus, the wavefunction of a particle with energy £ will be

ye(x, 1) = NA(—p)e ", (21.6)
where y is given by (21.2) above.
22. By making the substitution

Yo ) =px)e P @2.1)
in the Schrddinger equation

" awg;, f_ [ 2h; 6622+V(x)] w(x, 1),

we obtain, for x < 0,

d’“wl

22 (E+ Vo)yr =

and, for x > 0,

d*ps 2m
Dz T =0

The general solutions of these equations are

p1= Adeh +Be *T, gq=[2m(E+Vo]:, x =<0,
wy = Ce* +De *, p=4/2mE, x=0.

According to classical mechanics, if E > 0, the electron has sufficient energy to overcome
the potential barrier at the surface of separation and hence it will leave the metal. In the
quantum-mechanical treatment the answer is not so simple.

The electron wavefunction is

i i
< (gx—Er) —5 (gx+Er) .
x. 1) Ae® +Be * , If x=<0O
ywx, 1) = ; ,
(zx—Er) — (px+Et) .
Ce* +De * , If x=0.

The term with the coefficient 4 represents a plane wave which arrives at the surface from
the left (incident particle), the term with B represents the reflected wave, the term with C
represents the transmitted wave and that with D represents a wave arriving at the surface
from the right. Since such a wave does not exist under the conditions of this problem we put
D = 0. The continuity conditions at x = 0 then yield the equations

A+B=C, ¢(A-B)=pC, (22.2)
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whence
= q__p.A’ C = 2q A.
q+p

q+p

It can be seen that the certainty of transmission (which would correspond to a total lack of
reflection, i.e. to B = 0) prescribed by classical mechanics, occurs only in the trivial case
g =p, i.e. Vo= 0. Since

i = 2i i = 2i i = 2£
jal = lapL g = B L, i) = o L,

we obtain in fact

= X = = o —_— e —\2? "
jal | 4| ¢ (@+p? (VE+Vo++/E)
liz| B2 (Q—P)2 Vs
R= =|—| =~} = S — 22.4)
|ja! A g+p! (AVE+Ve++/E)* (
T+R=1.

Note that, according to quantum mechanics, reflection occurs with a probability different
from zero even if E > 0. However, if E > ¥ the reflection probability decreases rapidly
with increasing energy:

Vi
R =~ 66 (22.5)
On the other hand, if 0 < E < ¥,, we have the approximate formula
R~1-4) £ (22.6)

70.

For the commonest metals, ¥y ~ 10 eV, and the reflection probability for an electron with
E = 01 eV is approximatively 60%.
If —Vo < E < 0 the total energy of the electron is not sufficient for it to leave the metal,
according to classical mechanics, so that we should have 7= 0 and R = 1.
In fact, in this case, ¢ = [2m(Vo—|E "2, p = i(2m|E|)*?, and the solution bounded in
the region x = 0 is
y2 = Ce~%) where d= #8m|E|)~12,

The continuity conditions at x = 0 give

i 1
B = - g(4—B)=——C
A+B=C, +q(4-B)=--C,
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whence
2i 21
A 2i 4T 2i '
1—7 qd 1 —7qd

It follows from the expression for v, that j. =0, and hence T=0and R= |B/4A|2=1.
Thus, as in classical theory, an electron having a total energy smaller than the potential
barrier height will be reflected with certainty. A new result, however, is that the probability
of finding the electron outside the metal (x = 0) is different from zero, since

—|E|

e—*d
Vo

pa(0)|2 = 4|A|2(1+ e = 4| 4127

4qzd2)_1

This phenomenon is similar to that of the “total internal reflection” which occurs when
the passage of light from a denser medium to a less dense one is impossible because the angle
of incidence exceeds a certain critical angle. The theory of wave optics shows that, in the less
dense medium, there is then a wave whose amplitude decreases exponentially, in analogy
with the exponentially decreasing electron wave considered above.

23. Since the electrons, with momentum p = V4 2mE, encounter a potential drop —¥,
at the metal surface, they will all enter the metal, according to classical mechanics,
and, because of the law of conservation of energy, they will acquire a final momentum
g = [2m(E+V¢)]'? after doing so.

According to quantum mechanics, on the other hand, some of the electrons may be
reflected by the metal surface. Using the notation of the preceding problem, D exp ( —i/#px)
now represents the incident wave, C exp (i/A px) the reflected wave, and B exp (—i/fgx) the
transmitted wave inside the metal. In this case, 4 = 0. The continuity conditions at the
point x = O give C+ D = B, p(C—D) = —gB, whence

R licl _[CPr_ (g—q)z

lip | D p+q
and
polsl _ | BPg _ 4pg
i Dip (pt+g)

Thus, if E = 0-1 eV and ¥ = 8 ¢V, the reflection probability is

Rz(«/ﬁ_\/my: - V”V° 2=(8)2=o.64,

E
VE+AE+V, 1+V1+%

10
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which is greater than the probability (0-36) of entering the metal. The higher the energy of
the incident electrons, however, the less probable is their reflection. For example, the prob-
ability of reflection of an electron bombarding an anticathode in the usual Rontgen X-ray
tube (Vo ~ 10 eV, E = 105 eV) is approximately 6-2X 1071,

For greater familiarity with the phenomena of electron reflection at, and penetration
into, metals, we suggest that the reader make a plot of the quantities R and T as functions

of E.

24. By introducing the new variable

y = (1+ev)~1, (24.1)
the Schrédinger equation
d21p 2m Vo B
Chisy (E+ 1+ex/a)1p —0 (24.2)
becomes
d%y 2 72
—1 1-2 —— |y =0, 24.3
Wy—D gz +( y) (y(l_y) y)w (24.3)
with the following notation:
_2_"%;_@ = k22 = 12, Z’ZZV" @ =22, (24.4)

Equation (24.3) has non-essential singularities at y = 0, 1 and -, and we accordingly
introduce a new function f(y) through the relation

=y (1= f0). (24.5)
If we impose on » and u the conditions
2=i2—? and =72, (24.6)

the following differential equation for fis obtained
yA = f"+[@v+ D) —Q2v+2p+ 291 f—(e+9) (e +v+ 1) f = 0. (24.7)
A particular solution of this equation is the hypergeometric function

= Flu+v, p+v+1,2v+1; ). (24.8)
Now, for
p =y (A —yYFlutv, pt+rv+1,2v+1;y) (24.9)

to be a physically acceptable solution of equation (24.2), it has to satisfy the appropriate
conditions as x — + <. This can be achieved by establishing correctly the signs of v and g,

which are not specified by (24.6).
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If —Vo<E<0,wehave 22 >n2andsovisreal. Asx =+ oo,y ~ e~ - 0, F » 1
and y ~ y ~ e *“ Thus the solution (24.9) vanishes as x -+ o, if we choose v = 0.
If E = 0, we have A2 < 72, and hence v is pure imaginary,say v = —io. Then, as x — - oo,
y o~ YT~ e = oKX gay and represents a plane wave travelling in the positive direction
of x, with a wave number K given by

1/2
k=21 (Zh—";E) . (24.10)

AS X - — oo, | —y ~ 7% — 0. Using the transformation (A.54),
[Q@v+1)1(~2p)
T(v—wy I (v—p+1)
rv+1)I2p)
I'(v+wI'(v+p+1)

Flp+v, p+rv+1,2v+15 ) = F(p+v, p+v+1,2u+1;1—-y)

+ (1 — y)—2« Fv—u,v—u+1, —2p+1;1-y), (24.11)

we have, as x - — oo,

I'2v+1)I'(—2p)
Y To—wIr—p+1)
Choosing p = i7, in the asymptotic region x — —co we have (1 —y)* ~ ¥ = ¢** gy,

and thus the first term of (24.12) represents a plane wave incident from the left, and the
second term represents a plane wave reflected at the surface of the metal, thus

T'Cv+1)TI(2u)

F(V—}—,u,)]‘(p,_}_ v+ 1) ad-y) . (2412)

(I—yy+

Y~ Aleikx+AR€_ikx (x d '—C’O).
The reflection coefficient is then

Ar? | T I —@I(p—p+1) P
Ay ’F(—ZM)F(HM)F(MH-H)'

(24.13)

Rz’

Since, if —Vy < E < 0, v is real and u is pure imaginary, we have
QW I+ M(u+v+ )" =T IT—p)(v—p+1)

and thus R = 1, i.e. there is total reflection of the electrons.
If E > Oboth xand v are pure imaginary, ¢ = inand v = —ijo, say. In this case I *(2u)
= I'(—2u) and, using the well-known formula /' (z+1) = z/'(z), we find that

— i(v+lu')|r(v—#+l)lz 2_ (’)’]—0’ 2 VF(I—I(W“W))P 2 (24 14)
(=) [T (v p+1)2 n+o ) [I'(1+i(n— o)) '
Bearing (A.40) in mind, we obtain finally the simple formula
sinh a(n— o) 72 sinh wa(k — K) 12
R = ; = ; . .
[ sinhz(n+ o) ] [smh ma(k+K )] (24.15)
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In the limiting case a — 0 we obtain once again the result of problem 22, viz.,

_ (k=K\* _ (VETVs- «/E)Z
B (k+K) B (\/ETV;H/E '
25. (1) E = V.
The general solution of the Schrédinger equation is

[ i i
3 PXx —3 PX

A +Be " x<=0

t:U(x):+ Ge?'—qx+Fe_iqx; O<x<a

A

{ cé” +De ; X > a,
where p = 2mE)Y%, g = [2m(E—V )]M2.
If a particle arrives at the barrier from the left, the terms with the coefficients 4, B and C

represent respectively the incident, the reflected, and the transmitted waves. The continuity
conditions at x = 0 and at x = a give

A+B = G+F; p(4d—B) = q(G—F);

a —La La -{-a _ia _i_a
G tFe "V = q(Ge""_Fe *q)zpce*”

If we eliminate G and F from these equations, we obtain

2 qa
B _ qz)(l —e * )
5= T (25.1)
(p+gP—(p—q)e ?
i‘(q—p)a
C _ 4pgeh
- = T (25.2)
P+9P—(p—q)Pe *
whence
T IE ?_ AE(E—Vo) (25.3)
A1 prgin? ‘—7,?+4E(E—Vo)
and
V2 sin? 4%
- ‘-ﬁ-[ - B . (25.4)
| VZsin? ﬁh—+4E(E—Vo)
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Note that reflection occurs with a non-vanishing probability. If the energy of the particle
equals the height of the potential barrier, i.e. if E = ¥, we have

ma2 Vo

-1 2 2 -1
To= (1+—*~‘2§§——) and Ro= (l-f- i ) .

ma? Vo

The barrier becomes completely transparent (R = 0, T = 1) if sin ga/fi = 0, i.e. if qa/fi
=m,n=12,3....
This happens when stationary waves are formed inside the barrier, i.¢. when

a=nﬁ—=n%, n=123,....

2q

Thus the passage of particles through rectangular barriers leads to resonance phenomena
of a type unknown in classical physics (Fig. I1.25).

: ,
| ]
] i = +'
| ! + ! |
/] .
T )
I v | n' :
! : I I !
vz ! ! | |
/) | ] |
Vi | 1 | |
2T
/! i | | ! ! _
0 1 | 3 2 s 3 3
Fic. I1.25.
QO0<E<V,

In this case, according to classical mechanics, the particle is reflected with certainty (to
be inside the barrier, the particle would need to have a negative kinetic energy). Quantum
mechanics puts in evidence here a new phenomenon. Because E < ¥, ¢ is pure imaginary,
since ¢ = i[2m(Vo—E)|Y? = i(h/2d) say, where d = A[8m(Vo—E)]~ V2.

Then

AT 1 Be? T, x<0
p(x) =4 Ge > Fex?d, O0<x<a

lpx

Cet X >a.
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Substituting ¢ = i(fi/2d) in (25.3) and (25.4), we obtain for R and T the following expres-

sions
T= AE(Vo—E) : (25.5)

V2 sinh2%+4E(V0 —E)

V5 sinh? 2%1
R= (25.6)

2 12 4 _ ‘
V; sinh 2d+4E(V° E)

Since T > 0, the particle has a certain probability of passing through the barrier even if,
classically, its energy is not sufficient for it to do so. This phenomenon is called the “tunnel
effect”. It is important only when a/2d ~ 1. If d < a, the transmission probability, and
thus the tunnel effect, decreases rapidly according to the approximate formula

T~16 2V —E) o (25.7)
Vi

In the classical limit # — O, T tends towards zero. Thus the tunnel effect is a purely quantum-
mechanical phenomenon.

26. Since the system is conservative, the particle passes through the barrier with constant
total energy. The transmission probabilities T; through the hatched regions will therefore
be approximately independent, which means that the transmission coefficient through the
whole barrier will be given by the product

T=TI7: = exp [ —-hlnz A/ Em(V(x)—E) Ax,—] . (26.1)

Increasing the subdivision of the interval x;, xz as far as is allowed by the condition
d, <« Ax;, the approximate formula

T = exp [_hi f A/ 8m(V(x)—E) dx] (26.2)

is obtained; this expression is known as “Gamow’s penetrability factor”.

27. The total force which acts on an electron outside the metal is the sum of the force e
due to the external applied field and of the “electrical image™ force. The latter is due to the
positive charges that the electron induces on the surface of the metal, through electrostatic
forces. These charges attract the electron exactly as if there existed inside the metal, at a
distance x from its surface, a charge + |e|, the “electrical image” of the electron. The total
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force on the electron is thus given by F = e, —e?/4x2 and the potential energy of the electron
in the field of this force is

V(ix)= —ecﬂx—%. (27.1)

Note that (x) reaches its maximum value V,, = —(e3%)"2at x = x,, = 4(e/&)"* (Fig. 11.26).
Thus we see that under the influence of the external field the potential barrier height is
decreased by (e3%)"2. According to classical mechanics, electrons which have an energy E

i

in the range of —V, < E < V,, cannot come out of the metal, while those which have an
energy in the range V,, < E < 0 can (and do) come out. In the presence of the field, as we
have seen, V,, decreases as the field increases. The current intensity therefore increases
with the applied field, a deduction which is in qualitative agreement only with the experi-
mental facts. According to quantum mechanics, and taking into account the tunnel effect,
electrons having total energy E in the interval —¥, < E < ¥, may pass through the poten-
tial barrier V(x). Gamow’s factor in this case is

T = exp —% j A/ 8m(| E| —edx —e?/4x) dx (27.2)
where X1, Xg = E] i\/Ez—e%
2ed

63



Problems in Quantum Mechanics

: : el )
By introducing a new variable z = — x, we obtain

|E]|
T = exp[ \/8m |E| o(y )] (21.3)

where

’]/ 2 2l & 1+4/1—4y2
¢(y)= J‘ I—Jé——ZdZ, y=—;/TeE'-—|———, 21'2=|8E'—|x1’2= 3 Y (274)

Denoting by J, the flux of electrons incident on the metal surface from inside, the “cold
emission” current intensity is given by

J(&) = JoT = Jo exp [ ‘/8'" 'E VOmIE| o )] (27.5)

where the bar denotes a statistical average over the energies E of the conduction electrons
(at a given temperature). This formula is valid only if the average width of the barrier is
much greater than the relative penetration depth of the electrons, i.e. if, for all significant
values of E,
%@1 d(y) > 1, (27.6)
which corresponds to T < 1.
If we neglect the action of the electrical image force, i.e. if we take y = 0, the elliptic

integral reduces to a well-known integral having the value ¢(0) = 2, and (27.5) becomes

J(&) = Jo exp [—g %ﬁ] 1.7)

A dependence of the form (27.5) or (27.7) of the cold emission current on the applied field
&, in the range in which (27.6) holds, has been verified experimentally.

28. Using the procedure of problem 26, we obtain

T=G=exp [——;? J V 8m(V(r)—E) dr] , (28.1)

where
ees/R = E. (28.2)

Changing the variable r to R cos? x we have

— R - —
G = exp —-———————'SJ'EJ V?—ldr]=exp[—\/—3k@1{

= exp -\memR—(arccosV—-— —Vl—%)]

arc cos (Ro/R)
sin? x dx]
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Since E < V(Ro), i.e. Ro << R, we can neglect terms of higher order than the first in (Ro/R)'?,
and obtain

G = exp [ _ VBmewer (“g“ vV R— \/R_o)] = exp [ \/Sm’;elezRo 1 2“:162 }, (28.3)

7] v

in which we have put E = ejez/R = mw?/2, v being the velocity of the «-particle at a large
distance r from the nucleus for which V(r) ~ 0

Using G, the mean life ¢ of an «-emitting nucleus can be estimated by the following
intuitive argument. Picture the «-particle as a classical particle moving freely inside the
nucleus with velocity v, and kinetic energy

Fmvi = E+V,~ V,. (28.4)

Since the a-particle is held inside the nucleus of radius Re by a potential barrier it will
“collide” with this barrier »,/2R, times per unit time. Now the probability per collision of
penetrating the barrier is G, and hence the probability per unit time of the «-particle leaving
the nucleus (= the inverse of the mean life 7) is

2 R G=7 (28.5)
Using (28.3)— (28.5) we obtain finally
_ 1 2R(2,m 8me1e2R0 2me 1€2 1
Int = {7 In V() — h2 + P - E . (28.6)

This relation gives an estimate of the mean life v of an «-emitting nucleus in terms of the
a-particle velocity v at large distances and the nuclear radius Ry. It is in good agreement
with the observed data.

29. For a free particle, ¥() = 0 in the whole range (0, ), and the Hamiltonian reduces
to the kinetic energy term H = p%/2m. The simultaneous eigenfunction of the observables
H, 12 and I_, with energy eigenvalue E = #%k?/2m and angular momentum quantum numbers

(I, m), can be written as fi(kr) Y7'(0, ¢), where fikr) = l(r) is the solution bounded in
the interval (0, =) of equation (A.46),
¢ 2 d I(I+ 1) .
[d—gﬁ? o ]f,( =0, o=kr (29.1)

Now the general solution of (29.1) is a linear combination of spherical Bessel functions,
(A.45), but the only solution which is non-singular at the origin is j(e), which behaves
like o' for small g; the other three solutions have a pole of order /41 (A.49). Their asymp-
totic behaviour is given by (A.48).
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p) 1/2
For E < O there is only one solution bounded at infinity; it is A\ (ieer), o« = (%’; | E ])

and it has a pole of order /+1 at the origin. Therefore we get an expected result, that there
are no negative energy eigenstates for a free particle.

If E = O there is only one function bounded everywhere, namely, j(kr). Hence for any
positive value of the energy an eigenfunction of the form

Y70, ¢) jilkr) (29.2)

exists and corresponds to the state of angular momentum (/, m).

The ensemble of these spherical waves, when / and m take all their possible discrete
values, and O < k < + <o, and each wave is suitably normalized, forms a complete ortho-
normal set of functions.

The simultaneous eigenfunctions of the observable H, p,, p,, p, are planes waves, exp (i .r),
which form (when suitably normalized) another complete orthonormal set. They describe
states of linear momentum p = #Kk and energy E = #2k%/2m of the free particle, but do not
have well defined angular momenta; conversely, the spherical waves (29.2) do not corre-
spond to states of well defined linear momentum. This result, according to which the linear
momentum and the angular momentum of a free particle cannot be specified at the same
time, is only to be expected, since the operators p,, p,, p,, I, I, do not all commute with
one another.

It can be seen that the energy eigenvalues of a free particle are infinitely degenerate.
Because the spherical waves (29.2) form a complete set, the denumerable set of spherical
waves corresponding to a given value of k spans the space of all eigenfunctions of given
energy E = #2k2?/2m. It follows that a plane wave exp (/k.r) can be expanded in a series
of these spherical waves (see (A.50) and (A.50").

30. Let E be the energy of the particle. Using the notation

1/2

K= [Zﬁ";- (E+ Vo)] , 0= Kr, R(r)= oflo),

the radial equation (II.15) for 0 < r < a becomes the equation of the spherical Bessel
functions (A.46),
d?

2 d I(+1) B
[7@?“7 ot 1—-7—]]’:(9) = 0. (30.1)

The only solution finite at the origin is 4j(Kr), A being a normalization constant. Outside
the well, r > a, equation (30.1) becomes (29.1) written for a free particle with ¢ = kr
Im 1/2
In order to study the energy spectrum, two cases must be distinguished:
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(MW E<DO.
The only solution bounded at infinity is the decreasing exponential Bh{*)(iar), where

1/2
= (%rﬁ |E 1) . The continuity condition of the radial function at » = a gives the ratio

h2
B/ A, and that of the logarithmic derivative
1 d 1 d
TASR]E — — I3
AP (ar) dr L7 Gar)} ea JiKr) dr LiKn)] —a (302)

determines the particle’s possible energies for a given /. Relation (30.2) holds for certain
discrete values of E(< 0) only, which are the energy levels of the bound states.
For s-states (! = 0), using (A.47), (30.2) reduces to

—aa = Ka cot Ka, (30.3)

which is clearly the same as (10.1). To solve it we can use the graphical procedure described
in problem 9. The condition for the existence of at least one bound state is (10.2).

For higher values of the orbital quantum number /, the determination of the energy
levels requires the solution of more complicated transcendental equations. For example,
the possible energy values of a particle in a p-state (/ = 1) are obtained from the equation

1 1 1+Y
—f cot X—-Yz = ?, (30.4)
where X = Ka, Y = aa.
In general, the energies of states of given angular momentum / can be determined from

the intersections of the curves (30.2), writing X = Ka,Y = aa as before, with the circle

X2+Y? = 27'" aVs. (30.5)

The number of these states is always finite, and depends only on the product a?V. If the
potential has no bound states for I = 0, there will be no bound states for / = 1,2, .. .,
either.

2) E = 0.

Outside the well the particle moves freely. The solution of the radial equation (29.1)
is bounded in the whole range r > a and can be expressed as a linear combination of
Jjikr) and n(kr).

Putting it in the form

B[COS 61.j,(kr)+sin 61.71{(’(!‘)], (306)

the ratio B/A of the coefficients can be determined from the continuity condition at r = a,
and the real quantities §, from the continuity condition of the logarithmic derivative

Ji(Ka) _ , cos §;.ji(ka)+sin 6;.nj(ka)

k j(Ka) — " cos é;.j(ka)+sin 6;.mka)

(30.7)
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h2
Thus, to each energy value E = I k?, there corresponds one wavefunction only (to a

constant factor).
Using (A.48) we can see that, as r — «, (30.6) behaves like

sin (kr —Inj2+ 6y)

B p (30.8)
6, is called the “phase shift” of the spherical waves with angular momentum /.
31. Introducing the dimensionless variable
£ = % v/ 2mBr2,
the radial equation (I1.15) for the potential (31a) becomes
d?R;, 1 dR, 1 B _
£ 2 t5 JE +Z(a~?—5) R, =0, 3L.D)
where
2m E 2mA
o= l/? 7 B = l(l+1)+—hz—. (31.2)

Since, as £ -~ o, the bounded solution behaves like exp (—%E), and since & = 0 is a singu-
larity of (31.1), we look for a solution in the form

R, = Lre~ Gy, (§), (31.3)

in which, on account of condition (I1.16), u has to be positive. Substituting (31.3) in (31.1)
and taking

| 8mA
= 314
u 4[1+V(21+1)2+ 2 } (31.4)
we get for u, the equation
1 1
Eu}'+(2y+5—f) u;—(,u+z—%) u =0, (31.5)

The non-singular solution (at the origin) of this equation is, apart from a constant factor,
the confluent hypergeometric series
1 « 1
Bearing in mind the asymptotic behaviour (A.64), R, increases without bound as £ — oo
unless the series F reduces to a polynomial. This occurs only if
1l «

phg—g=—n, n=012., (31.7)
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ie. if
B , 8mA ,
E., = h|/ —25[4;1 +2+l/(2l+1)2+7]; n,1=0,1,2,.... (31.8)
The eigenfunctions corresponding to these discrete energy levels are given by
Yuim = Nt "LR(OYT'(0, ¢), (31.9)
where
Ry = EreCM (=1, 2u+4, ), (31.10)
and N, is a normalization constant.
2
In the particular case 4 =0, B = me , we have
— 1 L = ' 3
= 3(+1), &= - E,; = oh(2n'+1+3), and (31.11)
Wi = Nyar €xp (—";—;’rz)F(—n', 1+3, %ﬂ) Y76, 6). (31.12)

Note that the energy eigenvalues now depend only on the sum 2n’ 4/ of the quantum num-
bers #" and /, which sum can take any of the values O, 1,2, ....
Introducing the “principal quantum number” n = 2n'+1, we obtain the energy levels

E,=oh(n+%), n=012,...

of the isotropic three-dimensional harmonic oscillator, as already calculated in problem 20.
The degeneracy of the level E, is given by (20.4). For example, the following six linearly
independent eigenfunctions correspond to Es:

¥1,0,0. Yo,2,20 Yo,2,1, Yo,2,00 Yo,2,-1 and Yo, 2, —2-

32. (1) In classical mechanics:

Let m1, ms be the masses, p1, s the momenta, and ry, rp the position vectors (relative
to the origin) of the two particles in some frame of reference (S). The Hamiltonian of the
two-particle system is then

He P P e (32.1)
2m1 2m2

By introducing the new variables

_ mrit+msrs . .
R = e P=pi+p2, M=m-+tme
maP1—miP2 nmyms
r=ro,—rp, = m=- 32.2
1—f2 P mi+my miy+ms ( )
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the motion of the two particles can be expressed in terms of two uncoupled motions. One

of these motions is that of the centre of mass, which moves like a particle of mass, M,

momentum P, and position vector R in the system S. The other motion is that of particle

1 relative to particle 2, with relative position vector r and relative velocity p/m equal to the

relative velocity (p1/m1) —(p2/ms2) of the two particles. The mass m defined above is called

the “reduced mass” of the system. It can easily be verified that the total kinetic energy is
PP pp _pP P

2my ' 2my  2m 2M
and that the total orbital angular momentum of the system about the origin of .S is

L+l = 1+L (32.3)
where
i =r1Xp1, la=r2Xps, 1=rXp, L =RXP.

In the new variables the Hamiltonian becomes

H =5t 5—+V @) (32.4)
Now the change of variables (32.2) leaves the classical Poisson brackets unchanged, i.e.
it is a canonical transformation, and the equations of motion in the new variables can
therefore be found from Hamilton’s canonical equations, which yield

li:£ P = 0; =P
m

, P =—grad V().
Thus the motion of the centre-of-mass is completely separated from the relative motion.
The former is the uniform motion in a straight line of a free particle of mass M, while the
latter is such that a (non-rotating) observer sitting on particle 2 would conclude that par-
ticle 1 had a mass m and was moving in a potential ¥(r) relative to himself as (fixed) origin.
The above facts can of course also be established by a straightforward use of Newton’s
laws of motion.

Once the relative motion (i.e. the change in time of the vector r) has been calculated,
the motion of the particles relative to the centre of mass of the system (“motion in the centre
of mass system”, or “CMS”)can be found immediately since the position vectors of particles

) . m m ,
1 and 2 relative to the centre of mass are given by Hzr and —ﬁ r respectively.

(2) In quantum mechanics:

Let usintroduce the new variablesr, R, p, P given by (32.2). The corresponding operators
r—-rLR—~R,p—>—ihv,P — —ihv, satisfy the usual commutation rules

[rja pk] = iﬁ&jka [Rj’ Pk] = iﬁajka
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and the Hamiltonian of the system becomes

_ _ o, e
H = Hg+H, = (—WVR) + (—ZMv +V(r)). (32.5)

The Schrodinger equation in the {R, r} representation can thus be written as
il + ” 21V (M) | vR,r) = Ep(R, 1) (32.6)
() (oo -nen e

This equation is separable and has a complete set of eigenfunctions of the form (R, r)
= @(R) ¢(r), where @ and ¢ satisfy the following equations:

HzD(R) = ( 2’34 vR) D(R) = ExD(R), (32.7)
H, $(r) = (—"— i+ V(r)) () = Ed(@). (32.8)

The total energy E of the two-particle system is then given by E = Ex+E, = the energy
of motion of the centre of mass+the internal energy of the system. Since @(R) describes
the motion of a free particle of mass M, the two-body problem in quantum mechanics
reduces to the problem of the relative motion of the two particles under their mutual
interaction (32.8). If the potential energy V(r) of the interaction has spherical symmetry,
and r is expressed in spherical coordinates, the radial variable can be separated from the
angular ones and we are led to solve equation (I1.15) with the condition (I1.16) at the origin.

33. The hydrogen atom is a system of two particles moving under their mutual Coulomb
interaction, the electron and the proton being subject to mutually attractive forces whose
potential energy is V(r) = —e?/r. If E, is the internal energy of the atom (= total energy
E of the atom in axes relative to which the centre of mass is at rest), then the wavefunction
of the relative motion ¢(r) (see the previous problem) satisfies the Schrodinger equation:

(—;’—; vz—‘%z) () = E $(r). (33.1)
Using spherical coordinates, the eigenfunctions of the problem will have the form (II.14)
81, 0.9) = B2 vo(0, ), (332)

where the R, are those solutions of the radial equation
or [E _ (—ﬁ—’(’;n‘rl”z - f}) ] R=0, (33.3)

which obey the condition (11.16).
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If E, > 0, R, has an oscillatory behaviour at infinity. The corresponding functions ¢}
can be accepted as eigenfunctions for any E, = 0 and in fact they describe the relative
motion of an electron and a proton in collision with given total energy E. in the CMS.
For E, < 0, the solutions which satisfy the condition (11.16) at the origin behave at infinity

1/2
like Cy exp (+ Ar)+ Caexp (— Ar), where A = ( —_— E) . These solutions can be accepted

as eigenfunctions only if C; = 0. This happens only for certain discrete values of E,, which
form the discrete spectrum of the hydrogen atom, and the eigenfunctions then represent
the corresponding bound states. Since in this problem the reduced mass is very close to the
electron mass [in fact (m,—m)/m, =~ 5X10™%], the true energy spectrum will coincide to
a good approximation with that of an “atom” consisting of an electron in the field of a
fixed (infinitely heavy) proton.

Introducing the new variable

x = 24r, (33.4)
(33.3) becomes
@ K+l v 17,
[dx2 — +;—Z]R, =0, (33.5)
where » is a dimensionless parameter
e? me2\ 12
"_“ﬁc"(—zE,) . (33.6)

The solution of (33.5) which satisfies the condition R,(0) = O behaves like x'+! near the
origin. Since, as x — <o, the acceptable solution has the form exp ( — x/2), we look for R,

in the form
R; = xltle=x2y(x). (33.7)

Substituting (33.7) into (33.5), we find that u(x) satisfies a Laplace type equation
d? d
[x@ +(21+2-x)3x——(1+1—v)]u1 - 0.

The only solution of this equation regular at the origin is, apart from a constant factor,
the confluent hypergeometric series

ulx) = F(l+1—v», 21+ 2; x). (33.8)

Now, as x -~ <o, F behaves in generalas x~'~1~"¢*, cf. (A.56); hence R, ~ x~* exp (x/2) > oo,
and cannot be the radial part of an eigenfunction, unless (33.8) reduces to a polynomial.
This happens only if

I+1—v=—nw, n=0,1,2,..., (33.9)
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and thus, according to (A.65),

F(—n,214+2; x)= ALZ Y(x), (33.10)
where L2 +%(x) is a Laguerre polynomial of order n” and 4 is a constant.
In this case, as x — o, R, ~ x"e~*® — 0, and the corresponding solutions (33.2) of the

Schrédinger equation can be accepted as eigenfunctions of the problem.
The condition (33.9) gives the (internal) energy levels of the hydrogen atom for the
value / of the orbital quantum number, and »’ of the radial quantum number:

e2\2  mc?
En‘l - —(%) m . (33.11)

Since n’ = 0, 1,2, ..., the discrete spectrum contains an infinite number of levels, which
occur closer and closer together as the value of the radial quantum number »’ increases for
a given /. They tend towards the limit E, = 0, from which point the continuous spectrum
(E. = 0) begins. The set of values E,, for ' =0,1,2,... and /=0,1, 2, ... form the
complete discrete spectrum of the hydrogen atom. Because these values depend only on
the sum /+n’, a “principal quantum number” n can be defined such that n = /+n'+1
and then we can write for the possible (internal) energies of the atom

&2 \2mc?
E,,——(h—c) s n=1L2.... (33.12)

For each value of n = 1,2, 3, ..., i.e. for each possible energy E,, the orbital quantum
number / can have the values /= 0,1,2,...,n—1 and, for each value of I,m =—/,
—1+1, ..., +1, (2I+1 values). The degeneracy of the energy level E, is therefore

n—

1
Y, 2+1) = n(n—1)+n = n, (33.13)
I=0
The eigenfunctions belonging to E, thus form a subspace of #* dimensions. In conclusion,

and bearing in mind the relations (33.2), (33.4), (33.7), (33.9), (33.10) and (33.12), the wave-
function of the state of relative motion (nlm) can be written as

Ontm = a=32N Ky (3_;)17;"(63 ?), (33.14)
where
2141 #2
Kux) = xle=2 Ly =i a(¥),  a=- =, (33.15)

and N, is a normalization constant.
Using (A.33) it is easy to show that the functions ¢, are orthonormal if

_ 23/ (n=I-1)!
Nu=5| Tor P (33.16)
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All the above results can be generalized for hydrogen-like ions (He*, Li*+, ...) by sub-
stituting Ze? for €2, where Ze is the nuclear charge. In Table II.1 some of the wavefunctions
¢, are given explicitly (see (33.14)-(33.16) and A.29)).

TaABLE II.1

34. By comparing (34a) with (I1.12), we see that the energy eigenvalues of the rigid
rotator are

2
Elz%l(H—l), 1=0,1,2, ... (34.1)

with the corresponding eigenfunctions Y76, ¢). Since m =0, 1, ..., £/, it follows
that to each energy value E, there correspond 2/+1 linearly-independent eigenfunctions,
i.e. the degeneracy of the level E; is 2/+ 1. When the rotator makes a transition to a lower

state it emits a quantum of (angular) frequency

E—FEy
h

h .
= s I+ D=1 +1)]. (34.2)

W =

The set of emitted frequencies for all allowed quantum transitions constitutes the optical
spectrum of the rotator. If the vibrations of the constituent atoms are neglected, a diatomic
molecule can be regarded as a rigid rotator; 7 is then the moment of inertia of the molecule
about its centre of mass, or, equivalently, that of a hypothetical single particle of “reduced”
mass m = myms/(m;+ms) rotating about a hypothetical fixed origin at a distance from it
equal to the distance between the two atoms of the molecule.
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CHAPTER 111

Mean Values and Uncertainty Relations

1. The Mean Values of Dynamical Variables

In quantum mechanics, to each dynamical variable of a system

o = A(qli ce s GNPt - -spN) (IIII)
there corresponds a linear Hermitian operator (or “observable”):
h O h 0O
A(‘Il,---,QN,l—.“gq—l‘s---,l—-—aa), (111.2)
which operates on the wavefunction ¥(qy, ..., qy; ?) of the system. By definition, the

“mean value” of this dynamical variable, when the physical system is in the dynamical state
described by the wavefunction ¥(q1, .. ., gy; ), is
(¥, A¥)
= =/ 111.

where
(P, AP) = j!lf*(AlF) dgi ... dqy,

<gj’ ':p> = IT*qul o qu
The function

;i N
D(p1, ..., pN3 1) = (Znh)—mzj‘. Y(q1, ..., gn; 1) €XD (—% _le,-q,-) dg, ... dgy, (1114)

which is the Fourier transform of ¥, is called the “wavefunction in momentum space”
and plays a part in the theory similar to that played by ¥ itself (see Chapter V, Section 2).

Thus, the dynamical variable (II1.1) can be represented alternatively by the linear Hermi-
tian operator

0 0
Alih — i i D1y s PN I1L.5
( apl aPN P21 pN) ( )
which operates on the momentum-space wavefunction @(p,, ..., py; £). By definition, its

mean value, when the. system is in the dynamical state described by the wavefunction
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D(py, ..y Py 1), 1
(D, AD)

A4y = RCX N (I11.6)

On account of the properties of Fourier transforms, the equivalence of the definitions (III.3)
and (II1.6) becomes obvious. Just as the functions @ and ¥ are equivalent representations
of the same dynamical state, so the observables (IIL.5) and (I11.2) are equivalent representa-
tions of the same dynamical variable (I11.1).

2. The Uncertainty Relations

Let # and v be two dynamical variables, and U and ¥’ their associated operators. By defi-
nition, the “uncertainties” AU and AV of these dynamical variables, when the system is in
the state described by the wavefunction ¥(g,, . .., gy; ), are the root mean square devia-
tions

AU = V{(U—U)P) = V{U»H—(UR,
AV = V=P = VITH-TR.
The following “uncertainty relation” then holds

AU . AV = sa (W) (I11.7)

where the operator W is defined to be ~% (UV —-vu).

Two dynamical variables are said to be compatible if they can be specified simultaneously
with complete accuracy. Otherwise they are called complementary variables.

Compatible (complementary) dynamical variables are represented by commuting (non-
commuting) operators.

The position coordinates ¢, and their conjugate momenta p, are complementary varia-
bles, since [g;, p,] = ih. Heisenberg’s uncertainty relation follows as a special case of (I11.7):

Agy. Apy = Lh. (I11.8)

Heisenberg’s uncertainty principle states that if, at a given moment, a dynamical variable
has a well-defined value, then all the complementary dynamical variables of the same system
are completely undetermined. Although it has a different meaning, a relation similar in

appearance to (I11.8), namely
At . AE= Lh (I11.9)

is also valid. It is often called the time-energy uncertainty relation. The essential difference
between (II1.9) and (II1.8) is the fact that while g, and p, cannot both be specified at the
same time with complete accuracy, the energy of the system may have a well-defined value
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at every moment of time #. In (II1.9), 4E is the difference between two values E; and E; of
the energy E measured at two different moments of time #, and #, (At = ta—t1), and is not
the uncertainty in the energy at a given moment of time.

Problems

1. Show that in the stationary states corresponding to the discrete spectrum of the
Hamiltonian H = p2/2m+ V(r), the mean value of the momentum vanishes, ie. (p) = 0.

2. Show that the mean value of x in a state described by the wavefunction y(x), viz.,

+ oo

x = [ p*x)xp(x)dx, (2a)

-0

is equal to the value of a for which the expression
-+ oo
Vie)= | v'(x+a@y(x+a)dx, (2b)

is a minimum, and that this minimum has the value V;, = (4x)? = (x2)—(x)%

3. Study the possibility of generalizing the definitions given in the preceding problem
(see the solution) to the case of an angular variable —& < ¢ <+, |y(¢)|? being the
probability density on a circle of unit radius.

4. Show that the energy of a harmonic oscillator in the state with quantum number »
can be expressed in the form

E, = mo¥Xx2),. (4a)
5. Following the procedure for solving the preceding problem, show that
(xb, = 3 xj(2n*+2n+1). (5a)

6. Calculate the mean value of 72 in the quantum state (n/m) of the hydrogen atom.

7. Using the radial equation of the hydrogen atom (6.2), derive Kramers’ relation:

s+1
e

)= @s+ 1) ae =D+ [+ 12— a3 = 0, (Ta)

where (#) is the mean value of r* in the state (n/m), and s > —2/--3. As an application,
calculate (r=1), (), (r®), {r~%)y and (r~*).
8. Show that in any stationary state of the hydrogen atom, the mean value of the kinetic
energy is equal to minus the total energy of that state, i.e. that
/P

\2 /o

—E,.
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9. Show that the time derivative of the mean value of any observable is given by

it d—gfi = ([4, H]) + i# <%’ti> . (9a)

10. When the motion of a particle is restricted to a finite region of space, the mean value

. d ) .
of the scalar product r.p has to be time-independent, i.e. _J{<r'p> = 0. Using this fact,
derive the “quantum virial theorem?”:

XT) = (x.vV), (10a)
where V is the potential energy and 7 is the kinetic energy operator of the particle.
11. Derive the uncertainty relation (II1.7).

12. Explain the fact that the ground state energy of a particle in the potential well
shown in Fig. II.1 is different from zero.

13. Using the uncertainty relation, evaluate th . ou' d state energy of a hydrogen atom,
and of a two-electrons atom whose nucleus has a charge Ze.

14. A beam of silver atoms in a Stern-Gerlach experiment emerges from an oven, which
contains silver vapour at a temperature of 1200°K. The beam is collimated by being passed
through a small circular aperture. Using Heisenberg’s uncertainty relation, show that it is not
possible, by narrowing the aperture, to decrease indefinitely the diameter of the spot on the
screen. If the screen is at a distance of 1 m from the aperture, estimate the smallest diameter
of the spot that can be obtained by varying the diameter of the aperture. Assume for
simplicity that all atoms have the same momentum along the direction of the beam.

(mag = 1-8X10-22 g, k = 1-38X 10-18 erg/°K).

15. Show that in the quantum state # of the harmonic oscillator, the product of the
position and the momentum uncertainties is given by

Ax Ap = #(n+3). (15a)

16. Using a method similar to that used in problem 11, determine the normalized
wavefunction y(x) for which the product of the coordinate and the momentum uncertainties
has the smallest value Ax Ap = #/2.

17. In a Frank and Hertz experiment, hydrogen atoms are raised to their first excited
state by colliding with a beam of electrons. Experimentally, it is observed that the energies
(after collision) of the electrons which produced these transitions are not all the same, even
if the incident beam of electrons is mono-energetic. Explain this phenomenon, bearing in
mind that the lifetimes of excited atomic states are (normally) very short.

18. Experimental observations have shown that the fluctuations in the observed final
energy of the electrons described in problem 17 above are of the order of 10~% eV Use this
fact to evaluate the mean life of the excited atoms.
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19. Using the time-energy uncertainty relation estimate the mass of a = meson, knowing
that the effective distance over which nuclear forces act is about 1-4 fermi.

20. In spherical polar coordinates, the /, component of the orbital angular momentum
of a particle is represented by the operator —i#9/0¢. By analogy with the commutation
rules for x and p,,, one would expect the following commutation rule and uncertainty relation
to be valid

(¢, I.] = if, (20a)

Al, A = _g . (20b)

Show that (20a) is not in general valid, and that (20b) would contradict the Heisenberg
uncertainty principle.

Solutions

1. Using the commutation rules [x,, p,] = i, it can easily be shown that
im
pP= —ﬁ—(Hr—rH). (1.1y
The mean value of p in the state y corresponding to a discrete energy eigenvalue is

im
P = _h_<"/)9 (Hr—rH)y). (1.2)
Since H is Hermitian we have

®) =27 iy, )~y T (1.3

For stationary states Hy = Ev, and from (1.3) it follows then that (p) = 0.
2. Substituting x —a for x in (2b), we find after some simple algebra that

V(a) = (x®—2a{x)+a*. (2.1)

From the equation d¥(a)/da = 0 it follows that the function V'(a) reaches its minimum
value for a = (x) and hence ¥, = V((x)) = (x2)—(x)* = (dx).

Consequently the definition (2a) is equivalent to the definition {x) = a, where a is the
value which makes ¥(a) a minimum.

Similarly, the definition
-+ oo

dxp= [ p*)(x—()Pp(x)dx (2.2)

—_—0

is equivalent to (4x)? = V ;.
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3. A formal change of variables in the results of the preceding problem would require
the equivalence of the definition

)= | @) bv(6) db = (91, G.1)
with (¢} = y = (§)a, where —n = p <+ and y is the value for which the function
Y0) = [ w0 S ds 32)
reaches its minimum, and also the equivalence of the definition
87 = [ V') (6~ vid) db = dopy, 33)

with (A¢)2 = Vmin = (A(2)¢)2_

But we can easily see that, in general, (¢)1 = (¢»). Indeed ($;) cannot be a measure
of the mean value, since it depends on the choice of the origin from which the angle is
measured: thus, if we put ¢ = ¢'+a, we find that (¢)1 = (¢')1+a. Thus, for any distri-
bution |y [2, by a suitable choice of origin, the “mean value” {¢>1 may be allocated to any
point of the circle. Hence, if the notion of the mean value of ¢ is to have a physical meaning,
we are obliged to use (¢)s, although, as opposed to the case of the variable x (—eo<x <
+ <o), it might not be unique.

The definitions of mean square deviations, 4% and A®¢, are not equivalent, even if
we take (¢) to mean (¢),. The quantity 4%¢ cannot in fact be accepted as a measure of the
uncertainty A¢ for the same reasons as apply in the case of {¢)1. On the other hand, A?¢
is independent of the choice of origin, and attains its maximum value A®¢ = 7t[4/3 when the
probability distribution is uniform, ie. when |y [* = const. = Lz. For these reasons, and
from the formal analogy between (3.4) and the definition of Jx, it seems reasonable to
take A®¢ as a suitable measure of the uncertainty A¢ of the angular variable."

4. We shall deduce (4a) by evaluating the integral
+ oo
(3= [ wi(x) X2p(x) dx (4.1)

and comparing the result obtained with (17.7) of Chapter II.
With the notation used in problem 17 of Chapter II, we have

+ o0
m=x3 | yity, d&. (4.2)
t D. Judge, Nuovo Cimento, 31, 332 (1964).
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Using (A.6) and (17.12) of Chapter II we can write

] / 1
E"I)n = ”g‘ Y1+ ‘/""Q‘jé_‘ Yni1, (43)
and hence

2, = E(Eyy) = % \/n(”_ 1) pu_at ("+%)'Pn+% ‘\/(’H‘ D(n+2)ynie. (4.4)
Substituting (4.4) into (4.2), and taking into account (17.13) of Chapter 2, we find that
() = x§(n+3). (4.5)

But x2 = #/mw and hence E, = mw*x%),.
Since, for the harmonic oscillator,
P2 mow?

H=mt 2

x2=T+YV,

it follows from (4a) that in the quantum state » the mean value of the kinetic energy equals
the mean value of the potential energy:

Tn=F)u= ET : (4.6)
S.
+oo +oo
(X = I Yaxty, dx = x3 f yaEty, dE. (5.1)

Using the recurrence relation (4.4),

B, = EE,) = A/ n(n—1)(n—2) (n—3) yu_s+ 5 V1(n—1P pp_s+32r+2n+ D)y,
+4/ (m+ D +2)(n+32 a2t + V (n+1) (n+2) (n4+3) (14 4) Yoya. (5.2)

Using (5.1), (5.2) and (17.12) of Chapter II, (5a) follows immediately.
6. The mean value of #* in the quantum state (#n/m) can be calculated from
(I’ s) = J"'P:lm(r) r* "Pnlm(r) dr

007123 oo

= [ [ [ PRADHYTO, $)YT(0, d) sin Odrdidp = [ rR() dr,  (6.1)
00 0

0

where the radial function R, is obtained by comparing (33.2) with (33.14) of Chapter II.
For s = —2 we can also use a more elegant method. Introducing the variable ¢ = r/a,
where a = #2/me?, the radial equation (33.3) of Chapter II for E = E, becomes

@R, {2 1 Ki+1)

d¢ Tle n

A }R,,,:O. 6.2)
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With this notation

(o) =a | R do. (6.3)
0

‘Suppose for the moment that, in (6.2), / were a continuous variable, and that » depended

on / in such a manner that »—/ remained an integer (equal to »n’+ 1, see (33.9) Chapter II).

Under these conditions the radial eigenfunctions R,; would be continuous and differentiable

with respect to /. From (6.2) we would then obtain

0 W\ 0 (1 2 +1D)) 2 2+1
?zr(len:)_a_l{?"@_+ o }__? @ ©4)
Multiplying this equation by R? and integrating it over o, we have
F 8 (R} [ @ [, 0R,
2 — nl ' nl
JR’GI( )dg Ru—5~ do- J W %
0 0 0
[ . ORy . [. ORY 2 [,
= | Ry—— = do— IR,,; T do = 0——?fRn1dQ
b 0 b
_ 2
+(2l+1)[9 2R2, do = —W+(21+1)a<r‘2).
The desired result follows immediately:
1
r3y=——m————, 6.5
Ry 6.5
7. Multiplying (6.2) by
+1 dRy I No*R
Qs dQ _5(S+ )Q nl s (71)
and integrating over o, we obtain
s+1R' R'! s+1 SR .R" 1 o 208 s—1 '
O RR ~ S RaRIf+ |~ 0 20—+ 10 | RuRy | do
0
s+17T 1 _y
_;__25_[?(@_2@ >+1(1+1)<9s"2>} = 0. (7.2)

Knowing that, as o —~ 0, R, ~ Q’+

J 0" 1Ry Ry do = % JQ“’I(R;?)’ do =—

82

!, and, as ¢ <, R,; —~ 0, we have

o0 o0

f o'R}} do

0

s+1
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if s4+2I+1 > 0 and

o5 o0

s+ 1 rr S+ 1 i I 1] —_—
- 2 J‘QSRM ni d@ = 2 R,,,(QSR,”-}-SQS an!) d@
0 0
w1 nr , ,
=2 3 Jgs 2 do + S(S;- ) o’ 1R, R, do, if s+214+1=0.
0 0
Thus equation (7.2) becomes

b @2 D)

o0

+%J {—%593+1+293+[S(S;—1) —l(l+1)] g“l} (R%) do = 0.

Integrating by parts we obtain

171
i | @)
1 [s+1 +1
2 | @261 [ 2 - @nl=0 03
if s+2/+3 = 0.
Re-ordering the terms in (7.3), Kramers’ relation is obtained:
Ty =@t a5 L@+ =] ) = 0, (7.4)

with the condition s = —2/-3.
Forsequal to 0, 1, 2, ..., we find after some simple calculation that

1 a
)=, () = 5 -1+ D)
2
o = "7 [5r2+1 =3I+ 1)}, (1.5)
For s =—1, —2, ..., the mean values of r~3, r~*%, ... (in the states with s> —2/—3)

can be obtained as functions of {#—%), which was calculated in the preceding problem.
The final results are
(r=3) = [@nil(l+3) I+ D17,

(r=4y = (32 —I{I+1)] {a4n51(1+ L+1) [21(1+ 1)—%]} . (7.6)
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8. For the hydrogen atom H = —211;-—872 =T+V, and hence E, = (T),,,—eXr 1.
Since E, = —é?/2an®, we find by using (7.5) that
= Thaim— 5 = D+ 2Es
whence
Ey, = —(T)uim-

The relation between the mean value of the potential energy and that of the kinetic energy is
thus

<V>nlm = _2<T>nlm- (81)
9. Consider ¥ to be normalized to unity. By differentiating the defining relation (II1.3)
we obtain
&4) _ agjep DN+, Aap\ T, o4\ ©.1)
dt / \ ot
But, from the Schrédinger equation, we have that
oF 1 o+ 1 .
- whh = EY

and thus, from (9.1), equation (9a) can be obtained.
e oA )
If the observable A is not explicitly time-dependent, then = 0 and equation (9a)

has the form
n%E) = (14, H]). 02)

This equation expresses a very important fact, namely, that the mean value of an observable
which commutes with the Hamiltonian is a constant of the motion. In particular, if H is not
explicitly time-dependent, the total energy of the system is conserved and the system is said
to be conservative.

10. Since the Hamiltonian of the particle is

H= % +V() = T+V(D),

it follows from (9.2) that

d 1
7P = 7 r-p, H) = XT)—(x.VV).
o d ., _ _
Taking into account the fact that ;1—{—(1-.1;) = 0, the virial theorem follows immediately.
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If the potential energy is proportional to 7", we have

.7V = nlV)
and (10a) becomes
2Ty = V). (10.1)

Note that for the harmonic oscillator potential (n = 2) and for the Coulomb potential
(n = —1) the relations (4.6) and (8.1) follow directly from (10.1).

11. Consider an arbitrary operator B. The mean value in a state y of a physical quantity
associated with the Hermitian operator BB* will be

(BB*) = (w, BB+yp) = (B+y, B+y) =0. (11.1)

Now let C and D be two Hermitian operators and 4 a real number. Taking B = C+iAD,
we have BY = C—iAD and

0 =< (BB+) = (C?+ D% —il{CD—DC) = f(A), (11.2)

say, when function f(i) has no maximum, and its minimum is given by the condition
(df]dA) = 0. After some simple algebra we find that

CD—-DC)
fmin = <C2>+§—-Z<~5'2>—l = 0, (113)
whence
(C?(D? = —3(CD—DC?. (11.4)

Let # and v be the dynamical variables associated with the Hermitian operators U and V'
of the uncertainty relation (IIL.7). The deviations

§U = U—(U), &V =V, (11.5)

of U and ¥ from their mean values (U') and (V') will also be Hermitian operators satisfying
the commutation rule

[6U, 6V] = [U, V]. (11.6)
If we now take C = 6U and D = 6V, (11.4) becomes
(BUEX@V )= — UV —VU?. (11.7)

Defining the root mean square deviations

AU = A/{(8UP) and 4V = /{(5V)),

we obtain from (11.7) the uncertainty relation
AU.AV =~/ — KU, V1*. (11.8)
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If [U, V] = ihW, say, then W is Hermitian and

AU. AV = Lh(W)). (11.9)

Thus the uncertainty relation expresses the impossibility of the exact simultaneous specifi-
cation of two physical quantities represented by two non- commuting operators.

12. The infinite potential well localizes the particle in the range —a < x < a, a fact
which, in accordance with the Heisenberg relation, leads to an uncertainty in its momen-
tum.

Therefore, although inside the well the energy of the particle is purely kinetic, in the
ground state it will have a non-vanishing value

Ey = #2/8m(dx).

To satisfy ourselves that the right-hand side of this inequality is less than, or at most equal
to, 7?42 [8ma® (see problem 7, Chapter II), we have to show that, in the ground state given by
7T
X) = —= cos 7
pi(x) = \/a
we have (4x)? = (a/n)2.
That this is so follows from a little simple algebra:

a a 2 a 9 2 2
2 _ 2 _ 2 21 — 2,2 — i E_ _a_

(4x) L;!.xzﬂpldx [_J;xipldx} 26fx i dx (:n) (3 2) > (n) )

13. Let us denote by ro the “radius” of the hydrogen atom in its ground state, under-

standing by this that the wavefunction is mostly concentrated inside a sphere of radius r,.

In other words, the probability of finding the electron at a distance # from the proton is

appreciable only if r < ro, and is very small if » > r,. This localization of the electron leads

to an uncertainty in its momentum of the order of #/ro. The energy of the ground state can
then be estimated by finding the value of r, for which the function

2
e (13.1)

2mré  ro

E(ro) =

is a minimum. After some simple calculation we find for the “radius” of the hydrogen atom

in its ground state the value
2

A
ro= 5 ~ 0:529X10-% cm, (13.2)

and for the corresponding energy

E=—L1" &~ 135V (13.3)
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Since the above argument is only approximate, it can be expected to give only an order of
magnitude for the ground-state energy of the hydrogen atom. The fact that F; has exactly
the value obtained from (33.12) of Chapter II must be regarded as a coincidence.

In the case of two-electron atoms, let 71 and r» be the radii of the “localization™ regions
for the two electrons. In accordance with Heisenberg’s relation, the uncertainties in the
respective momenta will be Apy ~ #/r1, Apz ~ A/ry, and the sum of the corresponding kinetic

energies will be of order
Ap 1l 1 13.4)
2m (r% + 2 ) (3.

The potential energy of the interaction of the two electrons with the nucleus of charge Ze is

_Ze? (-l—+ i), (13.5)

L Ie

and their mutual interaction energy is of order e?/(r1+r2).
To find the ground-state energy we have to calculate the minimum of the estimated total
energy

a2 /1 1 1 1 e

E(r1, r2) = —2”’;(',‘,%—-{-"‘%)—292(;:4-;;)4'“4_’,2‘ (13.6)

Since r1 and r» play symmetrical roles, the minimum of E(r1, 2) will occurwhenri=ra=1r,,
say.

After some simple calculation we find that
2 1\-1

rn= g (z—z) 3.7

and
1\2met 1\2

where E; = — 13-5 eV is the ground-state energy of the hydrogen atom (13.3). The values o
E,_,. calculated from (13.8) for different values of Z give good approximations to the experi-
mental values (see Table ITL.1). The deviations from these values are due to the approximate:
nature of the arguments used.

TaBLE I1I.1

H- He Lit Bet T t pt+t+ |Cctt+T
Ecae/Ey 1-125 6.125 15-12 28-12 45-12 66-12
Eexp/E, 1-05 5-807 14-56 27-31 44-06 64-8

8T



Problems in Quantum Mechanics

14, Let the atoms have a component of momentum p, along the beam. Then, by the
theorem of equipartition of energy, p2/2m = %kT, and hence

px = V/mkT. (14.1)

Oven t

T=1200%K

Fic. IIL.1.

The y-coordinate of an atom, at the moment when it passes through the aperture, is deter-
mined to a precision Ay = a, where a is the diameter of the aperture. Accordingly, there is an
uncertainty Adp, in the corresponding component p, of the momentum, such that

Ap, = % . (14.2)
This leads to a spread of the beam with angle «, where
1
tan o = -2 Aoy = h (14.3)

Px 4a \/m

Finally, for the diameter D of the spot obtained on the screen at a distance / from the aper-
ture, we have that
Ih

D =a+21tan =44 ——. 14.4
* 2a A/mkT (1449

From this expression it can be seen that the diameter of the spot cannot be made indefinitely
small by narrowing the aperture. The right-hand side of the inequality (14.4) is a minimum
for a® = #l(4mkT)~''* and thus

Dain = %ﬁ% (14.5)

Using the numerical values given, D, and the best diameter for the opening are given by
Dmin = 2a ~ 2)(10—3 cm.
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15. Since the oscillator wavefunctions have well-defined parities, it follows that, in any

steady state, (x), = {(p), = 0, and hence 4x = v (x%), and Ap = v {p%,. But, on account
of (4a) and (4.6), we have (p?), = mE,,(x%), = E,/mw* and therefore

E, 1
Ax Ap = P (n+5)h.
From this it can be seen that the product of coordinate and momentum uncertainty is a
minimum for the oscillator ground state, for which Ax Ap = #/2. In other words a simulta-
neous specification of coordinate and of momentum can be made with greater accuracy for
this state than for any higher state. Thus the oscillator ground state is the nearest quantum
analogue to the classical state of rest of the particle.

16. In the relation (11.8), the equality can hold only if, in (11.1),

B+y(x) = (C—idD)y(x) = 0, (16.1)
where A has the value for which f(4) = fmin =0, i.e.
_ (CD DC)
Using the notation of problem 11, it follows from (16.1) and (16.2) that
1 (UV—yU) B
[U—-(U) R A U (V))] w(x) = 0. (16.3)
For the special case U = p and V = x, the following differential equation is obtained,
ih x—{(x) _
[—zh = P—5 i ]w(X) — 0, (16.4)
whose solution is
(x—0p i
p(x) = Nexp [ W+ 7 (P) x]. (16.5)

+ o0
From the normalization condition [ [(x)[2 = 1, we find for N the value [27 (Ax)?] Y4

and hence -

W(x) = [2n(AxP]- V4 exp [—M+i (9 x]. (16.6)

Wavefunctions of the formy(x) are called “minimal wave-packets”. y(x) leads to a Gaussian
probability distribution

992 = Ra(dxf1 1 exp | - Gl | (16.7)

of the measured values of x about their mean (x).
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Since the state y(x) allows the greatest permissible precision in the simultaneous determi-
nation of the coordinate and of the momentum, it can be said that a particle in such a state
gives the best quantum mechanical approximation (consistent with the uncertainty relation)
to a point-particle of classical mechanics.

In momentum space the minimal wave-packet may be obtained from (16.3) by substitut-
ing U = xand V = p,

$(p) = [2a(dp)*]~* exp { —H%‘ﬁ;,;ﬁi’z —%<x>p]- (16.8)

We see that in momentum space the minimal wave-packet also has a Gaussian probability
distribution

|$(p)? = [22(ApP1- 1" exp [“L%(E;L)“] (16.9)

of the measured momenta about their mean (p).

Let us define the width é of a Gaussian distribution as half the distance between the two
points of inflexion of the corresponding curve, i.e. as half the distance between the two zeros
of the second derivative. After some simple calculation we then find that

8 = Ax = h/24p. (16.10)

Thus, if a Gaussian distribution “localizes” accurately a particle in configuration space (i.e.
if Ax is very small), then, in agreement with Heisenberg’s uncertainty relation, the “localiza-
tion” in momentum space 4Ap becomes bad, and conversely (see Figs. 111.2 and II1.3).

Lt ?
Hbtp)| 2

Fic. I11.2. FiG. 111.3.
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17. Let 7 be the mean life of the excited hydrogen atoms (this means that on average
these atoms take a time 7 to radiate their energy and return to the ground state). The
excited state is thus located in time with a precision 47 = 7, and therefore its energy, in
accordance with (I11.9), will have an uncertainty

’
JE= . (17.1)

The resulting fluctuations in the energy of the excited atoms, because of their very short life,
are appreciable, and corresponding fluctuations appear in the energy of the electrons which
produced the excitations. It should be noted, incidentally, that it is the energy fluctua-
tions AFE due to the short lives of excited states which determine the natural width of spectral

lines.

18. Using (17.1), the mean life T of hydrogen atoms in the first excited state is found to be
such that

h ~ Q. -10

19. Since At ~ a/c, where a is the effective range of nuclear forces, and ¢ is the velocity of
light, we have from (I11.9) that AE ~ #c/a. Thus
AE A

My ~ T ™ T ™ 270 Melectron-
C ac

20. If we define the scalar product of the functions f(¢) and g(¢), where —n < ¢ < =,
by the expression

8= [ @) e@)dd, 20.1)

1t can be seen that the operator —iA0/0¢ will be Hermitian only for the class of functions
w(¢) which have equal values (with the exception of an arbitrary phase factor) at the upper
and at the lower limits of integration, i.e. y(w) = e™y(— ). In general, if y(¢) is such a func-
tion, then ¢y(¢) is not, unless () = y(—=) = 0. Therefore the operator —i#%d/d¢, acting
in (20a) on the function ¢(¢), cannot represent the observable /,, a fact which restricts the
validity of the commutation relation to the special class of functions defined above.

It can be seen immediately that (20b) is not consistent with Heisenberg’s uncertainty prin-
ciple, as follows. Since ¢ belongs to a finite interval, the uncertainty /¢ has to be finite also.
As was shown in problem 3, the maximum value of A¢ is /4/3 and it is obtained for a uni-
form probability distribution. Thus, if A/, — 0, the left-hand side of (20b) tends towards zero,
and we arrive at the contradiction 0 = %/2. From what has been said, it can be seen that an

. oF
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uncertainty relation between 4/, and 4¢, to be consistent with Heisenberg’s principle, would
have to have the following properties:

(1) When 4¢ — 0, then 4l, — oo.

(2) When 4I, — 0, then 4¢ — x/3.

Such a relation was recently proposed by Judge,! and it has the form

A _

e

T D. Judge, Phys. Lett. 5, 189 (1963).
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CHAPTERIY

The Semi-classical Approximation

1. The Wavefunction in the WKB Approximation
With the substitution
i
o) = exp | 50|, av.1)

the time-independent Schrddinger equation becomes
(vS)2—ih 2SS —2m(E-V) = 0. (Iv.2)

The “semi-classical approximation” consists in writing the function S(r) as a power series
in #:
h h\2
§ = So+ 7 51+ (T) Sat ... (IV.3)

For the one-dimensional case, ¥V = V(x), § = S(x), the functions S; (i = 0,1,2,...)are
then determined in succession from the system of differential equations obtained by substi-
tuting (IV.3) into (IV.2) and equating powers of #:

Sg? = 2m(E—V)

28, = —S8;' /Ss (Iv.4)

28, = — (87" + 511/,

The first equation of the set (IV.4) shows that the wavefunction in zero-order approximation
isa linear combination of the exponentialsexp|[ £ /% | p(x) dx|, where p(x) = vV 2m[(E—V(x]
is the (classical) momentum of the particle. This approximation (i.e. the replacement of .S by
S, and the omission in (IV.2) of —i4S,, in comparison with S¢%) is a good one if

So”
So2

di
dx

f <« 1, (IV.5)

ie. 1f <« 1,
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where 4 = 1/27, and A = 27h/p(x) is the de Broglie wavelength corresponding to the classi-
cal momentum of the particle at each point x.

The approximate expressions obtained for the wavefunctiony (x) by using (IV.1), (IV.3)
and (IV.4) to any given order are valid only for sufficiently large values of p. They cannot be
used near the classical furning points, at whichp = 0,ie. E = V(x).

The so-called “WKB approximation” (G. Wentzel, H. A. Kramers, L. Brillouin, 1926)
is the approximation obtained by taking the first two terms only of the series (IV.3),1e. by
omitting terms in A2 and higher powers of 4. Using the second equation of the set (IV.4), one
obtains §1 = — 3 In p+ const., and hence the wavefunction p(x) in the WKB approximation
becomes

p= Al B e (IV.6)
\Vp Vp
The condition for the validity of the WKB approximation is that #|Ss| < 1. Since S, =
+A/4, it follows from the equation

rer 3 (SN2 18
obtained from the system (IV.4), that
1 1 A2
—hsg=i(—z“_. A )
whence
S, = F IZ’ 1 zlzd av.n
2= (2“ s T ") '
The condition #|S2| <1 is thus satisfied if |4'| <1, cf. (IV.5). The effect of higher
approximations shows in the appearance, in the factors multiplying the exponentials

exp { + -hl—f p dx], of terms of higher order in 4. In regions of space which are classically

“inaccessible”, i.e. in which E < V(x), the function p(x) is imaginary. The wavefunction
(IV.6) in these regions can then be written in the form

I 1 7 1
A"l B gfime (IV.8)

VT Vol

2. Formulae for connecting WKB Wavefunctions on Opposite Sides of Turning
Points

The WKB wavefunctions (IV.6) and (IV.8) give approximate solutions of the Schrodin-
ger equation for regions sufficiently far to the left and/or to the right of any classical turning
points, but they contain arbitrary constants in each such region which are unrelated to those
in other regions. To relate these constants, the WKB solutions have to be connected across
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The Semi-classical Approximation

the turning points. If, near the turning point x = g, say, the potential }'(x) behaves as shown
in Fig. IV.1, then the properly connected WKB solutions are found to have the form

’[/)1__-<

’ 1 A 7
sin padx+— for x<a (IvV.9)
\/p ( .[ 4)
——I——eXp ——l—jipdx for x=>a (IV.9)
| 2viel )

If, on the other hand, V(x) behaves as shown in Fig. IV.2, then the properly connected solu-
tions are found to have the form

1_ sin 1 pdx+ kil for x=>a, (IV.10)
p fi 4
y2 = .
-—-1—— ex —ljlp} dx for x=<a (IV.10")
24/1p] h
Vix) Vix)
/ / E |
i i
i N
| |
(o) cL; % O a X
Fic. IV.1. Fic. IV.2.
Problems

1. Determine the wavefunction in the semi-classical approximation up to terms of order

# in the factor which multiplies the exponential exp (

; '[p dx) in (IV.6).

2. Find the solution of the one-dimensional Schrédinger equation

2 2 E-rWly =, 2a)

95



Problems in Quantum Mechanics
which in the WKB approximation has the form

\/p exp ( + L3 '[ P dx) (2b)

X

to the left of the turning point shown in Fig. IV.1.
3. Find the solution of equation (2a) which, in the WKB approximation, has the form

Sren(s2]e)

to the left of the turning point shown in Fig. IV.2.

4. A particle of mass m moves in the potential well ¥ = V() (Fig. IV.3). Suppose that
V(x) is such that, for any energy E > V_,, there are two and only two turning points.
Show that, in the WKB approximation, the discrete energy levels are determined by the
condition

b
fp(x) dx =afi(n+3), n=0,1,2,.... (4a)
a

where a and b are the turning points given by V(a) = ¥(b) = E.and b > a.

Vix)

O\

N

Fa ) S,
olb——————

Fi1G. IV.3.

5. Determine, in the WK B approximation, the discrete energy levels for a particle in the
following potentials

(a) V(x) = mw2x2/2 (harmonic oscillator),

() V(x) = — Vo/cosh? (-ii) (see Fig. IV.4).
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...Vo

Fic. IV 4.

6. Determine, in the WK B approximation, the potential energy function ¥ = ¥(x) which
yields a given discrete energy spectrum E,, on the assumption that ¥(x) is an even function
of x, i.e. that V(x) = V(— x), and that, for x > 0, ¥'(x) increases monotonically.

7. Apply the results of the preceding problem to the energy spectrum of a one-dimen-
sional harmonic oscillator.

8. Show that, in the WKB approximation, the mean value of the kinetic energy in the
bound state p,(x) of the potential well ¥ = ¥(x) (Fig. IV.3), is given by

1 1\ dE,
<T>n = —2- (H‘|‘—2‘) —d—n— . (8&)
9. Using the quantum virial theorem (see problem 10, Chapter IIT), which states that
UTS = (€. TV )m, (92)

determine, in the WK B approximation, the discrete energy levels of a particle moving in the
potential V(x) = Vex'.

10. Show that, in the WKB approximation, the transmission coefficient for a particle of
mass m and energy E through the potential barrier ¥ = V(x) (Fig. IV.5) is given by the ex-

pression
) T = e-2L(1+¢e~2L)~2, (10a)
where
b

L=%J\p\ dx. (10b)

The condition (IV.5) can be assumed to hold.

11. Calculate the transmission coefficient (10a) for the parabolic potential barrier shown
in Fig. IV.6:
Vo(1—x*(xg), if |x| < xo,

0, if |x|=x.

Vix) = { (11a)
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Vix) V(x}

FiG. IV.5. FiG. IV.6.

What restrictions must be imposed on the parameters xo and ¥, for the result obtained to be
valid?

12. Find the general solution of the radial equation (II. 15) in the WKB approximation,

supposing that as r - < the potential energy V(r) tends to zero faster than r~, and that, at
the point r = 0, it has a singularity weaker than r—2.

Solutions
1. Remembering that 4 = #/p, we find from (IV.7) that

S2_4_PE+‘_J\ 7 dx. (1.1)

Thus the wavefunction to the required approxunatlon is
. [ » * r s 12
P = exp (-;:S) 2= eXp (‘;—SD+S1_ihS2) = \/_ exp ( i fp dx—i’i p_thip dx).

But, on account of (IV.5), we have #| P'[P?| < 1, #(p™[p®) < p/# and thus, to the required
approximation, we find

1 ihp' ih (p
’ft—-—:l ————— dx X d 1.2
¥ \/p( 4 pe 8fp3 )ep(hfp x) (1.2)

2. In order to solve this problem we try to find another WKB solution such that it and
(IV.9, 9') together form a system of two linearly independent solutions. We shall seek it in

the form 1 a
1 7T
—= CO08 pdx+—} for x=<a, (2.1)
v@ (J. 4)

c 1]
—exp | — | |p| dx for x=>a. (2.1
V|p] (ﬁf )

<
[y
I
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To determine the constant C we use the fact that the Wronskian of two linearly independent
solutions of (2a), with the same value of E, does not depend on the variable x. It follows that,
in the present case, we require C to be such that

Wy, §)=| ¥ 2.2)

~ ~

1¥1

be a constant independent of x.
Now, in the range x < g, i.e., for the solutions (IV.9) and (2.1) we have

W(x)=

1. (1 =\ 1 p . (1] z\ \p 1
—— sin |— —1; - —sin [l pdx+—]|—-——=cos |— | pdx+—
(ﬁ pdx+t ( b 4) 7 n])? 4)

[
=
——

o
x x
a
~

a , a \ ¢
icos 1 pdx—l——”);—i—p—_cos 1 pdx+ﬂ +ﬂsm — pdx+ELL
h 4 2 4 h

4
i J )

Since, p'/ \/E | <« \/;3/ #1, the terms of order p’/ v E can be neglected
in comparison with those of order \/1_)/ #, and we find then that W(x) = 1/A for x < a.

In the range x > a, i.e. for the solutions (IV.9') and (2.1"), we find after a similar calcula-
tion that W(x) = C/A.

In accordance with (2.2), it follows that C = 1. Solution (2b) is then obtained in the form
of a linear combination

v = (Parkipe’ &
1.e. finally,

( . 4
1 i
—exp| +— | pdx), for x<a
v p( ]| )

X

1 r T
\/l exp( jlpl ) 2\/_. (——f;‘flpldx:r-lz), for x >a.

3. Starting from the function (IV.10, 10") and following step by step the procedure used in
the preceding problem we obtain

( Jp dx+ ) for x=>a, 3.
exp ( J- ) x<a. 3.1
Ip

X

<
I

<
-
Il
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Let us now consider the two linear combinations
. T Y. i
y) = (P2 +iye) exp (—l Z) 3 ) = (Pa—iye) exp (z z)

After some simple calculation, we find that

[ X
1 .
—~= exp pdx for x=>a,
\p (ﬁf )
P = 4 . ]
1 1 T 1 1 s
exp |— | |p| dx—i— | +——=exp ——I]pl dx+i—|, for x<a;
VPl (ﬁ,[ 4) 24/ |p| ( A 4
[——l——exp —ijipdx for x=>a
Vp h ’ ’
(=) =] ¢
1
exp |p| dx+i— —|-—— ——flp] dx— z— for x < a.
V|p| ( f 4) 24/1p| (

The solutions which, under the conditions of this problem, have the forms

1 1 1 o
exp|— | |pldx] and — exp ——J]p] dx
1V |p| (h .[ ) ar ( A

can be constructed from the linear combinations

= %{'I’(“_i'»"(_)) exp (z%) and p= (y:(+)+iy)(—)) exp (_,‘%)

respectively.
Thus, in the first case we have

_._exp( I]pl ) for x<a,

Y= .

i 1 r 7
——exp [— dx+z— +-—-ex dx—i—}, for x=>a,

a

|
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and in the second case

1 L[
—exp [ —— | |2l dx}, for x<a,
Vi ( h! )

exp ijzpdx—z— + —=exp —ijzpdxﬂ'ﬂ: for x=>a
\/p Vp #) 4f '

a

4.In the WKB approximation the determination of discrete energy levels in the potential
well ¥ = V(x) reduces to finding the conditions under which real exponential WKB solutions
vanish asymptotically in regions I and IIL. Thus in region I we require the solution (IV.10"),
and in region III the solution (IV.9), so that at any point x (@ < x < b) situated sufficiently
far from the turning points @ and b, the solution (IV.9),

b
A 1 7
= — o1 — dx+—, a<x<b,
(%1 \/p sin (hfp 4)

has to coincide with (IV.10"),

Yo = sin ljipdx+n a<x=<b
z———'— — .
Vp 4

a

Equating these solutions and their derivatives at a point x in the interval (a, b), we obtain

b X
. 1 7 . (1 m
A sin (hjp dx‘l'z)—B sin (h j\p dx—l-z) = 0,

x
b

[l/ﬁcos(h fpdﬁ) \/’ o (%deﬁz)]

X

V' ¢ 1 1 g a\)
—— d. dx+—}| =0.
l cos ﬁjp x+4 5 \/p sin jp x-|-4

a

As was shown in problem 2, we have, on the strength of condition (IV.5), that p’/ \/ 1;5‘ <<
vV p/ #, and hence the terms containing p’/ v p? can be neglected in comparison with those

containing vV ;/ #. For the homogeneous system so obtained to have non-trivial solutions it
is necessary that its determinant should vanish, i.e. that

b
. 1 7
sin (h Jp dx+ 5) = Q. (4.1)

a
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b
Since p = vV 2m(E V)= 0, the integral f p dx is non-negative, so that the condition be-
[

comes

b
%deX+%=(n+l)n, n=20,12,..., 4.2)

which is what we had to prove.
Note that, according to classical mechanics, the particle can move only in the range
a = x = b, and performs a periodic motion in this range with a period 7 given by
b b
T=2 éi =2m i)i .
v P

a a
Thus condition (4a) can be written in the form
$p dx = 2nh(n+ %), (4.3)
b
where the integral :f =2 f is extended over a complete period of the classical motion. The
a

relation (4.3) is just the Bohr—Sommerfeld quantization rule of the old Quantum Theory.

5. The energy levels of an harmonic oscillator in the WKB approximation are obtained
from condition (4a), in which the limits of the integration are the solutions of the equation
2 1/2
p(x) = [Zm(E—n% xz)] =0, 1.e.
a =—QE/mwt)v2, b =+ QE/mw?)l?,

Making the substitution x = (2E/mw*)"?t, (4a) becomes
b 1

_2E —s ., aE 1
-1

whence

E = E, = bw(n+ %), n=20,1,2 ....
Note that the energy levels of an oscillator calculated in the WKB approximation coincide
with those obtained by solving the Schrodinger equation exactly (see problem 17, Chapter
).
For the potential V(x) = —V,/cosh? (%), the energy levels in the WKB approxima-

tion are also obtainable from (4a), @ and b being now the solutions of the equation

Vo 1/2
px) = |2m{E+— 2> _\| =o. (5.1)
(e )]
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B — b Ve —172
(E) = m{E+—2% dx (5.2)
T

let us differentiate both sides with respect to E. Then, 'because of equation (5.1), the deriva-
tives of the integral with respect to its upper and lower limits (which depend on E!) vanish,

and thus
b VO —1/2
ar _f [om{E+—2— dx. (5.3)
dE cosh? (?)

Making the substitution sinh (%) = z, (5.3) becomes

To evaluate the integral

Qe

dJ

&~ me J Cm[E(1+2)+ Vol}-12dz = —r

A/ —2mE’

dE

whence we find
J(E) = —ne(—2mE)\?2+ K.

The constant K can be determined by observing that for E = — ¥V the range of integration
in (5.2) reduces to a point (see Fig. IV.4), so that J(— V) = 0, and so

J(E) = nA/2me? (\/Vo—A/ — E) = nh{n+ ).
Finally, the energy levels in the WK B approximation are given by

_ 52 2mcV, 1)2]2 n=0.12
En'—'_zmcz I:V hz *"“(”‘l‘i ’ g Ly g 2 v

6. The energy spectrum for the potential ¥ = V(x) is given by relation (4a):

b
nh(n+5) = I A 2mlE—V(x)] dx. (4a)
Now, since the potential is even, a = —¥b, and (4a) becomes
b
ah(n+3) = 2 [ A/2m[E—V(x)] dx. (6.1)
0

Our problem reduces to that of solving this integral equation for ¥(x). For this purpose let
us differentiate (6.1) with respect to E, and, instead of x, let us take V as the independent
variable. Then, since V(b) = E, we have

b
nh  dn dx de dv 62)
A/2m dE \VE-V dv AE—V’ '
0 0
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Multiplying (6.2) by (o« — E)? and integrating over E from 0 to «, where « is a parameter to
be determined later, we obtain

o

an [ dn dE_ "dEE dx av
\V2m ) dE \/a—E AV A/ (a—E)(E-V)
0

= nx(a).

de I
s V (@~ ID(E V)

Putting « = V, we find the following expression for the inverse function x = x(¥V) of
V =V(x):
vV
dE

= \2m %\/V—E |
n

6.3)

0

Knowing the dependence E = E(n), equation (6.3) allows x(¥), and hence the potential
energy V(x), to be determined (see problem 7).

7. Since the energies E, of an harmonic oscillator as calculated in the WKB approxi-
mation coincide with those obtained by solving the Schrédinger equation exactly, i.e.
E, = ofin++), we may expect that if E in (6.3) is taken to have this dependence on n, then
V(x) will be found to be the harmonic oscillator potential V(x) = mw?2x?/2. That this is in
fact the case can be seen readily, since (6.3) becomes

v

ot dE V 2V
V2m ) oh\/V—E mw?
0
8. The mean value of the kinetic energy in the bound state y, (assuming the wavefunction

to be real) is
+.
_ n _ 2 d‘l’n
<T>H__ andzd 2m f (dx)dx (8'1)

—_—0

whence V = mw?x2/2.

In the WKB approximation, the wavefunction in the range in which classical motion is
possible, i.e. @ = x = b, has the form

sin ( ! Ip dx-l——z-), p =V 2mE,—V(x)]

a

Yn = —
\/p
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%:l@ancos l pdx+E Na sin 1 pdx+— (8.2)
dx A A 4] 2 '\/p 4

a a

Hence

Substituting this expression into (8.1), the range of integration can be reduced to the inter-
val [a, b], since outside this interval the function v, tends exponentlally to zero. Replacing
the squares of the trigonometric functions by their mean value + 3> and neglecting the integral
of the oscillating factor

1 ¢ ) 1 r T 2 r oy #
sin | — dx+—J]cos |— dx+—t = Lsin|Z | pdx+—|,
(hjp 4) (hjp 4) 2 (hjp 2)

a a a

we obtain finally the expression
b

<T>n=£-m,;’—,j(p+ o

a

Because of (IV.5), #%p'?/p® < p, and thus

b

(T, ~ ]_V_sz dx_Zanh( +3 (8.3)

a

The constant N, is determined from the normalization condition
+o0 b 1 ) x N2 b i
a4 x
2dx~ N2 | —sin? |— | pdx+—|dx~5 | —=

On the other hand, by differentiating (4a) with respect to n, we obtain

dE dx

" — = nh,
dn f \/Zm(E,,—V) "

a

hence N2 = (2m/nh) (dE,/dn), and the expression (8a) then follows from (8.3). Note that
for an harmonic oscillator the accurate result (T'), = -; (n +E) is found again (see 111.4.6).
9. From the quantum virial theorem it follows that T, = s(¥),, and hence that
245
Ey = (D)t = =D ©.1)
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Replacing (T, by its value obtained from (8a), the following differential equation is
obtained

2+ .
=g ()
whence
E, = C(n-i—%)z"'(z*‘). (9.2)

If 5 is an even integer, the constant C can be determined by using (6.1)

k4

nh(n+3) =2 f A 2m(E,—V ox*) dx, (9.3)

where b is the solution of »* = E, V.
Let us differentiate with respect to E,, and introduce a new variable y = V,x*|E,. Using
(9.2) we obtain

B F(§+l) 28/(2+5)
l/i sayys__ N\~ S/ (9.4)
2m r l ) |
Ry

If s = 2 and Vy = mw?/2 (the one-dimensional harmonic oscillator potential) then C = Aw

and E, = of(n+3).
10. Suppose that the particle arrives at the potential barrier from the negative direction
of the x-axis (Fig. IV.5). In the WKB approximation, the wave transmitted through the

barrier has the form
i X
exp p dx
\/ p ( f )

b

. . . . n
in the range x > b. For later convenience let us write C = 2D exp (—z 74—), so that

Y= \/ﬁ exp [ (1 Jp dx—4)], x > b. (10.1)

b

In the same way that we solved problem 2, we now use the two linearly independent WKB
solutions [see (IV.10.10)]:

( x

1 1
~—sm pdx+—J), x=>b,
V'p ( J 4)

Y2 =]

b
1 [ 1
VT exp \—;jlpldx), a<x-<a>,
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and [see (3.1, 1")]:

[ b

1
——cos pdx+— x=>b,
\Vp ( j 4)
‘ b
: exp lJ\|p] dx a<x<=>b
Vil ’ ’

to show that the solution which has the form (10.1) for x > b, has, for a < x < b, the
form

b b
D 1 1

y= — |exp| —— | |p| dx | —2i exp —f|p|dx , a<x=<»,
\/lpi[ ( ;,J ) h

or, using the notation of (10b),

D 1 [ 1 f
py=—— e Lexp —j|p|dx —2i el exp ——j]pldx , a<x<»>5 (102)
«/|p[ (h p

We have now only to determine the solution in the range x < a, knowing that fora < x < b
it has the form (10.2). For this purpose we multiply (IV.9, 9) by —4iDe":

-
[
I

a

4D 1 J L7
— ——el sin pdx+—1, xX<a,
V'p 4

—4iDely, = | * N (10.3)

— ZID_eLexp —lj|p|dx, a<x<b,
| Vpl A

and the function (2.1, 1), with C = 1, by De™:

Le_LCOS 1 pdx+E x<a
V'p f af ’
* (10.4)

D 1
——e~Lexp —le|dx , a<x<>b.
- Vil (’1

By adding (10.3) and (10.4) we obtain, for @ < x < b, the required solution (10.2), and, in
the range x < a, the solution

p= _eLsm 1 pafx+E +—:e‘Lcos pdx+— , x=<a. (10.5)
i p 4

X

De‘_L’lf)]_ =
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Using (10b), (10.5) can be written, after some elementary manipulation, as

(L et} exp H% f pdx_g)]

* (10.6)

+(e’~+%e"~) exp[—i(%de —2)] , X<a.

X

The solution (10.6) represents a superposition of two waves travelling in opposite directions
along the x-axis; one of them (given by the first term) is the incident wave and the other
(given by the second term) is the wave reflected at the barrier. Using (I1.7), (10.1) and (10.6),
we obtain, for the fluxes of the transmitted and of the incident waves, and for the transmis-
sion coefficient, the following expressions

. . 1 I\
lirl = 41DE—, || =4|D[3E(eL+Ze‘L) , (10.7)
i -2
_ —H'TII - e‘ﬁL(1+%e‘2L) : (10a)
I

If the barrier is broad enough, then e~2. « 1, and from (10a) we find that

b
T=e2=¢exp [—%JVSm(V(x) —E) dx] < l. (10.8)

11. The upper and lower limits of the integral are the two solutions of the equation
Vo(1-x*[x5)—E =0, ie. b = —a = x(1—E[V, )2

Making the substitution x = b sin z, the expression (10.8), as applied to the parabolic
potential (11a), becomes

B +7/2
1 E
T =exp | —xor/8mV, 5 (1 _V—o) J cos? z dz]
r- | = 2 (11.1)
= eXp -—.’me '\/ZmVoz (1—70)]

The condition for the validity of this result is that

! (1—£) = 1. (11.2)

TXp \/2mVo Z Vo

It is thus valid for large enough x, and/or ¥, (T < 1).
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Ch. IV The Semi-classical Approximation

12. Using the customary notation 2mE/#* = k?, and 2mV(r)/h = U(r), the radial equa-

tion (I1.15) becomes

d?R;

PR, [kz—U(r)— 1C+1)

re

— ]R, = 0. (12.1)
Instead of #, let us introduce a variable x defined by
r = k1", (12.2)

Since r lies in the range (0, + <o), it follows that x lies in the range (— <=, + o).
Making the change of independent variable (12.2) and the change of function,

R(r) = eu(x), (12.3)
equation (12.1) becomes
-Z—i;% Q¥xyu = 0, (12.4)
where
0%(x) = (1 —k~2U)—(I+ %)% (12.5)

Note that for large enough positive x we have @? > 0, and for large enough negative x we
have Q2 < 0. For simplicity let us suppose that Q*(x) vanishes at a single point x = x, only.

Then
0¥x)>0 for x> Xo,

(12.6)
0%x) <0 for x < xo.
An approximate solution of (12.4) can be sought in the form
l x
wx) = ———=¢expl * '[q(s)ds , (12.7)
Vq(x)
where the function g(x) is to be determined. By substituting (12.7) into (12.4) we obtain the
equation
¢*(x)+f(x) = Q¥x) (12.8)
where
_ 1 qu 3 qlz
fx) =5 Pt (12.9)

In the WKB approximation, f(x) is neglected, and it then follows that

¢(x) = Q%) (12.10)
The condition of validity of this approximation is that
| f(x)] = |Q*x)]. (12.11)
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The general solution of (12.4) in the WKB approximation is, in the range x > x,, of the

form
u= —\/1—@ [C+ exp (+ ixJ.Q(s)ds) +C_exp (—ijQ(s)ds)], (12.12)

where C, and C_ are constants, and Q > 0. Intherange x < x,the corresponding general
solution has the form

u= \/mll———Q—l [D+ exp (+! |O(s)] ds)+D_ exp (—! 1 Q(s)] ds)] , (12.12)

where D, and D_ are also constants.
The condition (I1.16) requires that u(x) - 0 as x — —eo, and hence we must put
D, = 0in (12.12'). Thus, in the range x < x,, we have finally

— 1 _ ¢
u(x) = -{/WD_ exp ( j Q@) ds) . (12.13)

Remarks: The point x = x, is not a singular point of the differential equation (12.4),
so that solving this equation presents no difficulty (in principle). From the continuity condi-
tions at x = x, it should be possible to determine the constants C',, C_ as functions of D_.
However, it follows from (12.11) that the WKB approximation fails at the turning point
X = Xo. Hence (12.12) and (12.13) cannot easily be joined, since we have first to solve (12.4)
in the neighbourhood of the turning point. As a result of some calculations given elsewhere,!
it is found that

C+ = i._. ei(ﬂ/ﬁ, C_ = _2; e—i("/ﬂ’
i i
and thus that

x
22_ sin ( Q(s) ds—i—g—) for x > xo,

VO(x)
u(x) = ; ° o (12.14)
\/—[l;_(_;)—lexp [_JIQ(S)IdS) for x < x,.

From (12.2) and (12.5) we have Q%(x) = r2p%(r), where
P = kB-U@r)—(I+5)2r2. (12.15)

1 See reference 14, chapter 6.
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Ch. IV The Semi-classical Approximation

Thus for r = ro = €*/k, the radial function in the WKB approximation becomes

R(r) = \/kru = 2D_(k/p)"* sin ( j p() dr’+%). (12.16)
Asr -, p - k, and (12.16) has the asymptotic form
R(r) ~ 2D_ sin [Z + j (p(r)—k) drf+k(r——ro)]. (12.17)

To
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CHAPTERY

Pictures and Representations

1. The Schrédinger, the Heisenberg and the Interaction Pictures

In quantum mechanics, the state of a system at any given time is described by a unit vector
in a Hilbert space, in which sets of axes can be defined by the eigenvectors of complete
sets of observables of the system. Any change with time in the state of the system can be
investigated by keeping the axes fixed and allowing the state vector to rotate, or by keeping
the state vector fixed and allowing the axes to rotate, or by permitting simultaneous rotation
of the state vector and of the axes, using in each case the appropriate equations of motion
of the vectors concerned. The three possibilities described above are called the Schrédinger,
the Heisenberg and the interaction “pictures” respectively.

Table V.1 gives the equations of motion of the state vector [y) and of any observable 4 of

TaBLE V. 1.
., 0lp()
Schrédinger th—o— = Hly(t)) (v.1)
picture
lp(@) = U, t,) |w(t,) (V.2)
T—O, i W—[AH,HH]‘FIhU TU
Heisenberg (V.3)
picture lpa) = U*(, 1) |9(r)),
Ag(t) = U™ (s, 1) AU, t,) (V.4)
) t .
in 2D _ g1y 00y
Interaction ., dA; IO+ ‘}ﬁ_ 0
picture ih dat [An Hofl+ iR U ot v® (V.5
lpe(2)y = U@(1, 1) 19(0)),
A(t) = U, 1) AUO(ty, 1,). (V.6)
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the system in each of the three pictures (using the subscripts H and I to denote “Heisenberg”
and “interaction” respectively. Quantities without subscripts refer to the Schrédinger
picture.) Relations between corresponding entities in the different pictures are also given.

In the interaction picture H, = Hy,+ H}, i.e., the Hamiltonian is split into two parts:
H,,, the “free” Hamiltonian, and H), the “interaction” Hamiltonian. U(s, #) and U9, to)
are unitary operators satisfying the differential equations

o oU(, ty) oUQt, t,)
T o o

with the initial conditions U(te, to) = 1, U®(te, to) = 1. If H and H, are time-independent,
we obtain as solutions

— HUG, to)); ik = H U0, ty), V.7

~L Hie— 19 —5 Hlt—10)

Ut t))=¢ * , U@, to) = (V.8)

2. Representations

A “representation” is a method of specifying any arbitrary vector by means of the
coefficients which occur when it is expressed as a linear combination of a given complete
set of orthogonal unit vectors (“base vectors”), the latter being the set of all eigenvectors of
some specified complete set of commuting observables of the system. If the vector thus speci-
fied is a state vector, its representation is called a “wavefunction”. The observables of the
system are represented by matrices (continuous or discrete), which operate on the sets of
coefficients treated as one-column matrices. To pass from one representation to another, a
unitary matrix is used. In any representation, the observables of the complete commuting
set which defines that representation are represented by diagonal matrices, for obvious

reasomns.

2.1. THE COORDINATE REPRESENTATION {g}

The position coordinates gy, g2, g3 of a particle form a complete set of commuting observ-

ables for that particle."
Denoting the base vectors of the representation (i.e. the simultaneous eigenvectors of the
observables g, g,, ;) by |4") = |g19.43), the following orthonormality and closure relations

hold:
3 3
qlqg= il;II (G lq) = gé(qi—q£’)5 g ~q") [lardggl=1 (V.9)

The state vector |) is then represented by a one-column continuous matrix which is in this
case the usual wavefunction in co-ordinate representation:

@'y = v(g); (V.10)

t For simplicity we restrict our considerations to the case of a single spinless particle.
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where the implied time-dependence of y(g') is not shown explicitly. In the Schrédinger
picture in {g} representation the rate of change with time of (g’) is given by the usual
Schrédinger equation.

It should be noted that although the symbol ¢, suggestive of the “generalized coordi-
nates” of classical Lagrangian and Hamiltonian mechanics, is traditionally used in abstract
argument to denote position variables, extreme care is necessary in practice if the ¢’s are
used to denote anything other than the Cartesian coordinates of individual particles of a
system.

2.2, THE MOMENTUM REPRESENTATION {p}

The base vectors of this representation, |p") = |p}p,ps), are the simultaneous eigenvec-
tors of the complete set of observables p1, pa, ps (the momenta conjugate to the coordinates
41,92, 9s). The orthonormality and closure relations are similar to those given in (V.9), (V.10).
The state vector |y) is represented by the one-column continuous matrix (p’ |y} = @(p"),
called the “wavefunction in the {p} representation” (the implied time-dependence of @(p’)
is not shown explicitly).

The following relations hold between these two representations

’ _ h 8 r

5 n=123
qn|y) = ih 5;:@(#) (V.11)

p'

@py = @'1q)y = Q)32

i, ,
— (P191+Pada + 03d’)

(P19} +p3293+Paa3)

P(p') = (21h)~3 | p(g')e dq'.

2.3. THE ENERGY REPRESENTATION

For conservative systems, representations in which the Hamiltonian is diagonal are often
useful. The base vectors are denoted by | Ex), where E is an eigenvalue of the energy operator
H, and « denotes the ensemble of the eigenvalues of the other observables, which, together
with H, form a complete set.

If |p(7)) is a state vector in the Schrédinger picture, the wavefunction in the energy

representation is
WE, «; 1) = (Ea|y(®). (V.12)

The time-dependence of this wavefunction is of the form

i E(t—13)

WE, a3 ) = YE, «; to)e * : (V.13)
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In the case of a discrete spectrum, any observable A is represented by an ordinary matrix
with the help of the base vectors |E,x) = |nx). The elements of this matrix, (nu« |4 |mx"), are
readily obtained using the coordinate or the momentum representations of the vectors
|na) and of the observable A (see problem 21).

3. The Density Operator

In quantum mechanics, the dynamical state of a system is completely determined if the
state vector is completely determined. Such states are called pure states. When the informa-
tion about the system is incomplete, one usually merely knows that the system has certain
probabilities p, p,, . .., P,» Of being at a given time £, in the states represented by the unit
vectors |1), |2), ..., |m), respectively.” In this case the dynamical state of the system is
represented by a statistical mixture of vectors (mixed state).

The average value of a measurement of a physical quantity 4 at time #, is then given by

{(4) = ;pm<m |A| m) = Tr (04), (V.14)
where

o =Y 1mpum!, Pu=0, Y pm=1, (V.15)

m

o is called the density operator. The properties of the system at any other time # can be investi-
gated by using the time-dependent density operator

0r = Y, Ult, to) | m) pulm | U (2, to), (V.15")
which satisfies the equation of motion

.0
j —§,—’= [H, o,]. (V.16)

A representation of the density operator using the eigenvectors of an observable is called a
density matrix.}

Problems

1. Show that, if the observables L, M, N satisfy the commutation relation [L, M] = iN
in the Schrédinger picture, this relation is valid also in the other pictures.

T We are in the Heisenberg picture,

1 The use of density operators (or of matrix representations of them) in quantum mechanics is treated
in detail in the following review articles: V. Fano, Rev. Mod. Phys. 29, 74 (1957), and D. ter Haar, Theory
and applications of the density matrix, in Reports on Progress in Physics, vol. XXIV (1961).
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2. Treating the coordinate x as an operator in the Schrédinger picture, determine the
corresponding operators x, in the Heisenberg picture (i) for the free particle and (ii) for
the harmonic oscillator.

3. Determine the coordinate and momentum operators in the Heisenberg picture for
a one-dimensional harmonic oscillator whose centre of force moves uniformly with velocity
a along the direction of oscillation. The relation (V.3) may be used.

4, Evaluate the commutators

[pu(t), xu(t2)],  [pu(ty), pa(t2)l,  [xa(t), xu(ts)]

for a harmonic oscillator.

S. For conservative systems, show that if, at ¢ = 0, the state vector |9(r)) is an eigen-
vector of the observable 4 with eigenvalue g, then, for # > 0, |9(¢)) will be an eigenvector
of the operator 4,(— ) with the same eigenvalue a.

6. Let us denote by S(t, t) = UQ (2, to) U(t, to) the transformation operator between
the Heisenberg and the interaction pictures. Show that this operator is the solution of the
differential equation

ih% = HIS(, 1) (6a)

with the initial condition S(t, #o) = 1.

7. Determine explicitly the operator S(z,0) of the preceding problem, for a one-
dimensional harmonic oscillator of mass m and charge e placed in a constant uniform electric
field &, with

mw?x®

p2 mo2x2 Ho _ p2 . :

5 T3 —elx; =5 H = —elx, (7a)

H=

+

8. Assume that, at time ¢ = 0, the wavefunction ¢(x, #) of a particle is of the form
(cf. problem 16, Chapter III):

2

1
w(x, 0) = sty exp (—-‘%), 62 = (Ax)p. (8a)

Investigate the change in time of this wave-packet if, for # > 0, no forces act on the particle.

9. Solve the preceding problem assuming that for ¢ > 0 the particle moves under the
action of a constant force.

10. Determine the Green’s function G(&, x, f) of the Schrédinger equation for a harmonic
oscillator.
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11. Investigate the spread of the minimal wave-packet of a harmonic oscillator, for
which, at 1 = 0,

wx, 0) = l/%exp [—ﬂ;—aﬁ], x = *?,

and whose centre is thus initially at a distance g from the origin.

12. Show that the Schrédinger equation is invariant under any Galilean transformation
of the coordinate system.

G,
13. Show that the solution of the Schrodinger equation ihl = Hy can, whether

ot
the Hamiltonian H is time-dependent or not, be written in the form of an integral ¥
Y(re, 12) = IG+(r2s ty; 1y, t)P(r, L) AV > 1 (13a)

which satisfies the condition at time #;:

= (1, t1) (13b)

ta=h

7#(1'9 t 2)

provided the Green’s function G*(rs, f2; ry, #1) is taken to be the solution of the equation

(l.h*aaT—* H(Z)) G+(l'2, ts: Iy, tl) = iha(tz —tl) (5(1'2 —1'1) (130)
2

which vanishes for t» < #1. Here the notation H(2) means that the Hamiltonian operator
H is to act only on the variables rz, 5 of G.

14. Show that the differential equation (13c) for the Green’s function of the Schrédinger
equation, G*(rz, #3; r1, 1) = G*(2, 1) say, can be written in the form of an integral equation:

+ o0

G2, 1) = G§(2, 1)—%‘ J- GF(2, 3) HD3)GH(3, 1) d*x, (14a)

in which G/ (2, 1) satisfies the equations
(ih—a—?———H“’)(Z)) G2, 1) = ihdY2, 1),
2

G, t) =0 for t <1, (14b)
and in which

64(2, I) = 6(x2 -—x1) 6(}72 _yl) 6(22 —21) 6(12 —tl), dix; = dX3 dya dzs dts s
and H = H®+ H®is any decomposition of the Hamiltonian into the sum of two operators.

1 R. P, Feynman, Phys. Rev. 76, 749 (1949).
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15. Show that, for a time-independent Hamiltonian H, the Green’s function G*(ry, 1y
r1, £1) of problem 13 can be written in the form

‘*ﬁi E,(ta—1)

GH(rs, t2; 11, 1) = 3 pur) yi(r) e (15a)

where £, and y,(r) are the eigenvalues and the eigenfunctions respectively of the Hamil-
tonian H, i.e., Hy,(r) = Ep,(1).

16. Show that, in the {p} representation, the Schrédinger equation

L O1y) _ P
lhT—HW% H = 2y TV (D),

can be transformed into the integro-differential equation
in-2- 0@, = X, i+ [ Up—p) 0@, 1) dp (162)
at p’ 2m -] 3 b
@(p, t) being the wavefunction in momentum representation, and

Up) = (227)~3 j V(r)eu’%’ ", (16b)

17. Solve the problem of the harmonic oscillator in momentum representation.

18. Solve the problem of the motion of a particle moving under a constant force in
momentum representation.

19. Express the operator 1/p in coordinate representation, and the operator 1/x in
momentum representation, for motion in one-dimension.

20. Find the law of transformation of wavefunctions in momentum representation for
Galilean transformations of the coordinate system.

21. Find the representations of the coordinate and of the momentum operators of
a harmonic oscillator in the energy representation.

22. Find the coordinate and the momentum matrices in the energy representation of a
particle in the potential well shown in Fig. II.1.

23. Let H = (p?/2u)+V(r) be the Hamiltonian of a particle of mass 4 moving in a
potential V(r).
Show that

; (En —E,) anmyz = ;Z s (233)

where the sum is taken over all states # of the particle, and x is the x-component of the
position vector r in a Cartesian coordinate system- (the Thomas-Reiche-Kuhn sum rule).
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24. Show, by using the double commutator

[[H, el'k.l‘], e-—ik.r],
that the relation

;(En"” S| (n|er|s)|? = 3%2 (24a)

can be obtained as a generalization of the TRK sum rule discussed in the previous problem.

25. Denoting by ¢ the density operator of a system, show
(a) that p and 1 —p are positive definite operators,
(b) that Tr (02) =< 1, and that Tr (0?) = 1 is the necessary and sufficient condition
for o to represent a pure state.
26. Verify that, in the Heisenberg picture, the density operator is time-independent.

27.7 Suppose that the density operator of some given system can be represented by
an NXN matrix. It can then be expressed as a linear combination of any “complete”
set of N XN matrices which form a “basis” in the space of square matrices of order N,
a basis which necessarily contains N2 linearly independent matrices. Suppose further that
we have succeeded in determining such a basis in the form of N2 Hermitian matrices
QO r = 1,2, ..., N? which satisfy the “orthonormality relations”

Tr (QUQ®) = §,. (27a)
Show that, if
0= ¥ P20, @27b)
then the coefficients o{” = (2} satisfy the following equations of motion
do®) i
_dt_ = Z Z Tr {H[Q(S), Q(r)]} Qgr); 3 = 1, 2, s N2, (270)

Solutions

1. In virtue of the relations (V.4), (V.6), and also of the unitarity of the operators
U(, t,), U9, 1)), we obtain [Ly, M,] = iNy and [L,, M;] = iN,.

2. Since the Hamiltonian is in both cases time-independent, we shall use the relations
(V.4) and (V.8), and take ¢, = O.

For a free particle
I L h? 0?2

XH — éh Htxe fi s H = .__% 5)?’ (2'1)
n% [ 02 02 FLI
[H, x]yp(x) = “m [W (xw(x))—xa—xz (y)(_x))] =—— %gcx)

* Other problems concerning the density operator will be found in Chapter VI (problems 38, 39).
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and consequently

B o |
(H,x]=—— =, [H [H,x]] =0, [H[H [Hx]]=0,... 2.2)
Using relation (I.27a) we find from (2.1)
ih 0
xg(t) = x - t P (2.3)
2 A2 242
For the oscillator H = — f + mox. Working out the commutators (2.2) and
2m Ox? 2
regrouping the terms, one obtains
ih 0
xg(f) = x cos wt ~ e SIO cota—x . (2.9

0
With the help of the momentum operator p = —iha , one can write the relations (2.3)

and (2.4) in the form

xﬂﬂ=x+%t 2.5)
xg(f) = x cos cot+m% sin wt. (2.6)

3. Since the Schrédinger coordinate and momentum operators do not depend explicitly
on time, we have

d ! J
h = 7 Ha, xal = 4 U+@OH, 51U
dpu _ —t—[H ] = L U+(O[H, plU®) 3.1
di = Flie Pl = » PIVRD '
where
_ Pt omo? A2 - E.
=5t (x—an)® p= lhax . (3.2)

From (3.1), some simple algebra leads to the equations

dxH _ 1 . de

“tH __ 1 GPH _ (e
7 - pu; i mw*(xy —at) 3.3

which are analoguous to the corresponding equations of motion of classical Hamiltonian
mechanics. The equations (3.3) have as solutions:

xg(f) = C; sin wt+Cq cos wt+at
pu(t) = mwC; cos wt —mwCy sin wt+am, 3.9

where the constants C; and C; are determined from the conditions x;(0) = x, p4(0) = p.
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Finally we obtain
xu(f) = x cos wt+-L— sin wt+at
mo
pu(t) = p cos wt—mwx sin wt+am. 3.5

If 2 = O (i.e. if the centre of elastic force remains fixed) we have

xp(f) = x cos wt+ L sin ot
i
pu(f) = p cos ot —mwx sin wt. (3.6)

As expected, the first of the equations (3.6) is the same as (2.6).
4. Using the equations (3.6), we obtain

[pu(t1), xu(tz)] = [p, x] cos wty cos wiz— [x, p] sin wt; sin oty

= —ih cos (w1 — i), (4.1)
[ pa(ts), pultz)] = —molp, X] cos wi sin wts —mow|x, p] sin wt1 cos Wiz
= —imwh sin (wt; —otsz) (4.2)

1 i .
[xu(t), xn(t2)] = ——[x, p] cos wt; cos wiz+ —— [p, x] sin w1 cos w2
__” sin (w1 —wt2) (4.3
= — 1—0l2). 3)

5. Taking #o = 0, and writing for simplicity U(t, 0) = U(?), we have from (V.4) that
[p(0) = U®|9(0)); Ap(t) = UT()AU(). (5.1)

Also, in this problem, 4|¢(0)) = a|(0)). By making the substitution |¢(0)) = U™ (8)|y(®))
and multiplying both sides of the resulting equation from the left by U(?) we have

U@ AU ()| (@) = a|p(®). (-2
By comparison with (5.1) and (V.38), it follows that
Ag(—D)|p(®) = a|p@)- (3.3)

6. The operator S(Z, to) performs the transformation from the Heisenberg to the inter-
action picture. Using (V.4) and (V.7) we obtain

o _ .. oU” o+ U\ _ posgy = yorgUu+H
at—zh( —— U+U ra—t)—U H'U = UO+UU+H'U)

— U“”*UH}, — °*UH};U+U‘°’+U‘°’U — SH},S*S — H;S,

ih

The condition S(te, o) = 1 follows directly.
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With these facts established, we see that the operator S(z, #,) describes the change in
time of the wavefunction in the interaction picture,

[v1(®)) = S, to) |p(t0)). (6.1)

7. The equations of motion (V.5) for the coordinate and the momentum operators
can be written in the form

axp

dt

. o
= 5 WHor, x1d, L =~ [Hor, pr) (7.1)

Knowing H,;, we obtain from (7.1) the equations

i _ i L

dt = "TP[, _dt— = —mCO2XI (72)

which are of the same form as equations (3.3), with @ = 0.
Integrating these equations we obtain

xi(t) = x cos wt + ;%o—sin wt

(1.3)
Pi(t) = p cos ot —mawx sin wt,
Taking into account (6a) and (7a), it follows that
., 05(t, 0) _ P
ih Era —ed (x cos wt+ o wt) S(z, 0). (7.4)

The solution of this differential operator equation, which satisfies the initial condition
S0,0)=1,is

ied (x 14 4
S(t, 0) = exp [_._.__ (a sin ot — o 0 ol + W)]’ (1.5)

h

the exponential being here defined by means of its power series. In the case of a weak
external field, we need retain only the first few terms of the expansion.
8. It is necessary to determine the wavefunction y(x, #) which satisfies the Schrédinger

equation

L Op(x, )

th——s——= Hy(x, 1),
and which, at time ¢ = 0, is the given function (x, 0). With that end in view we expand
¥(x, 0) in terms of the set of orthonormal time-independent eigenfunctions v (x),
(Hy,(x) = Ep,(x)) (see p. 204, footnote), thus:

¥ 0) = Xawux), 4= [y p(x, 0)dx. (8.1)
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The function )’ a,y,(x) exp (—%Ent) then satisfies the Schrédinger equation, and, at

time ¢ = 0, coincides with ¢(x, 0). Hence

v =X anpax)e F ", 82)
1.e.
w(x, ) = | G, x, 0w, 0) dk (8.3)
where .
G(E %, 1) = TyiE) yalx)e (8.4)

Since, in the case of free motion, the eigenfunctions are

{ :
pp(x) = iy exp (%Px) s (8.5)

the Green’s function (8.4) becomes (with p continuous)

G, x, 1) = j_.’l;zli exp {;—.[p(x—é)—g—Z]} dp

12 im  es
=( m ) oo N (8.6)

2niht

From (8.3) and (8a) it follows that

_ m \12 1 & im
v, 1) = j(zmz) Ot P {‘W* P ("‘5)2}"5’

whence we obtain finally, for the wave function,

1 x? iht

’l'U(x, t) = e P 174 exXp | — ] 725 (1 —W) N (8.7)‘

(225%) (”m) 40 (”—_—4,"254 )

and for the probability density

B2z \ V2 X2

lp(x, D2 = [2m§2(1+ W)] exp | — P X (8.8}
2 —_——
26 (1+ 4m264)

This expression has the same form as the initial probability density
1 x2
2 _ —_—
!w(xa O)I - (27!62)1/2 exp{ 262}: (8‘9)
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with the difference that, instead of 62 = (Ax)?, there appears

_ o, B (dppr
8= B = A+ - (8.10)

Thus the centre of the wave-packet remains at the point x = 0, ({(x) = 0), but its width
increases with time in both directions of the x-axis. The smaller the initial coordinate un-
certainty, the larger is the momentum uncertainty and the faster the packet spreads. It is
interesting to observe that the term which determines the spreading of the wave-packet,

(dp)t
m

, 18 exactly equal to the distance which would be covered in time ¢ by a classical

particle in uniform rectilinear motion with momentum Ap. We can make an estimate of
the time required for the wave-packet to spread appreciably. From (8.10) it can be seen
that this time is of the order v ~ &m/h. Thus, for an electron initially localized with a
precision of & ~ 107° ¢cm, 7is of the order of 10® sec, while for a particle of massm = 1 g,
and 8 ~ 107° cm, 7 is of the order of 10" sec, i.e. about 3000 million years.

9. The potential energy in this problem is ¥V = —kx, and the eigenfunctions of the
2 g2
Hamiltonian H = ——;—n— F—kx then have the form (see problem 21, Chapter II)
X

+e
ye(x) = 4 f 57%) g, ©.1)

where

E 2mk 113
y = (x-l———)tx, o = s = — .
k P 22 v/k

The Green’s function (8.4) is then given (with E continuous) by
+ oo

GEx = | yiOvste * dE

o T et [J GG ) gy, 02

where z = (§-+E/k)x. We can also write

ll’
5+ fvéu— iuxa

G, x, t)—Azjfe Ea duvaTe B g v)dE

J‘J~ _,__ i—-—wfa iuxa 27k ( ﬁ_v) du dv
ot
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We then integrate over v, using the properties of the é-function, and group the terms in the
following manner:

+ oo

2nk kt kt
= =7 A2 i 2
GE, x, 0 A J exp { 1 [u—}— S 2kt (x £) }

_—

I [kt [ kt fo3h 0
—TE(E) +“2— —E—(X+§)+ Akt (x —E)}du

Finally, integrating over u, we obtain

GE, x, 1) = (2;;[ )”2 exp { :2 (;ft) ik ( +E)+ 3t (x 5)2} (9.3)

As is to be expected, the expression (9.3) goes over into (8.6) as k£ - 0. From (8.3) we have

kr2 2
R\ -V ("_ﬂ) it \ kx| ik
— 2 —_ — —
p(x, t) = [216 (1+ 264)] exp o 1e o ( 262’”) 5! 6hmt3 ,
( 4m264)
(9.4)
whence

kt2 2

R\ 1 (*~3m)
w(x, D = [2n62(1+ 4m254)] xp | —— | 9.5)

20 (1+ 4m254)

Thus the Gaussian form of the probability density does not change, but the centre of the
wave-packet travels with constant acceleration in accordance with the classical law of
motion of a particle moving under a constant force. The width of the packet changes with
time according to the equation

i
a—$@+ %J 96)

which is the same as (8.10).

10. One can solve this problem by using (8.4), and taking the y,(x) to be the eigenfunc-
tions of the harmonic oscillator.
Another possibility is the following. From (8.4) we have immediately

G(, x, 0) = 6(§ —x). (10.1)

Regarding G(&, x, t) as a function of x, we observe that it is a solution of the appropriate
Schrodinger equation with (10.1) as initial condition. From (10.1) it can be seen that

xG(E, x, 0) = x0(& —x) = E6(f —x) = EG(&, x, 0) (10.2)
since the 6 function has the property xdé(x) = 0.
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If, in (10.2), we treat x as a coordinate operator and £ as a constant, it can be seen that
the Green’s function G(&, x, 0) is an eigenfunction of the coordinate operator with the
eigenvalue &.

From the result of problem 5, it then follows that G(, x, #) is an eigenfunction of the
coordinate operator x4(— ), with the same eigenvalue &.

Using (2.4) we have thus that

xg(—10G = (x cos a)t+—ln£o— —(%—)G = £G. (10.3)

The solution of this equation is of the form

(10.4)

G, x, 1) = Gol) exp [ imw(x2 cos wt—2x§)]’

24 sin wt

where Go(7) is a time-dependent integration constant.
In order to determine Go(¢), we impose on (10.4) the requirement that it be a solution
of the Schrédinger equation

R 0 mowix? . 0G

After some simple calculation we obtain the equation

dG, ® ima?E? _

& = (7 cot “”+m)G° =0 (10.6)
whence

C ime&?
Go(t) = ——— exp | ——— cot wi], 10.7
o) 4/sin wt p( 2A ) (107

C being an integration constant which can be found from the initial condition (10.1), or,
more easily, by comparing (10.7) with the free-particle Green’s function (8.6), since, for
t < (1/w), the Green’s function of the oscillator must go over to the Green’s function of
the free particle. We find thus that

mow
C = V—m.

Finally we have that

I VA ; 1Mo 5_ : 2
G(, x, 1) V 3w sim oo P [z 7 cot wi(x2—28x sin wt+ & )]. (10.8)

11. It is possible to solve this problem by taking the function G(£, x, r) found in the
preceding one and substituting it into (8.3) There is, however, a more straightforward way,
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as follows. Let ¢(x, ) be expanded in terms of the set of oscillator eigenfunctions, thus

p(x, 1) = 20 Ay(¥)e * = e—Tngo Anpn(x) e=ner, (11.1)

The constants 4, are given by the integrals

o0 oo
» N" —_ —(E—&,)2
4, = j PO, 0)dr = —ance J H(E)e-on-c-tongs  (112)

—oo —_50

where N, = (#¥22"nla~1)"Y2, & = aa (see (17.12) Chapter II).
The integral in (11.2) can be evaluated with the help of the generating function of the
Hermite polynomials (A.3), by equating coefficients in the following expansions

oo +-o0
j g— 51 +2sE o—(§1—LE0+-83/2) JE — :V‘; S_ .[ H(8) e~ E—&o+&y/D dE
i=p n!

—_— —00

li2 p—E4/4+-560 = Jp1/2 p—E}/4 i (S!;'o)"

We find in this way that
En et

4= i

(11.3)

Substituting into (11.1) the coefficients A, given by (11.3) and the oscillator wavefunctions
(17.12) of Chapter 11, we obtain

o, ) = V et 5 25 (2 o )
= V% exp (_ 5. E2_Z Eg__z_ iwt__z_.gg e—-2iwt+ 550 e—iwl)
= V% exp [—-;—(E—Eo cos wt)”—i(%coH— E&o sin wt% £2 sin sz‘)] (11.4)

The probability density is then

|9(x, D)[2 = \/i;e—"'fx'—a cos i)t (11.5)

The expression (11.5) shows that the wavefunction y describes a wave-packet whose centre
oscillates about the point x = 0 with amplitude a and classical frequency «, while the wave-
packet keeps its shape and size. Asa—0, y(x, #) tends to the ground state wavefunction
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Yo(x) exp (— -l—wt) As g increases, more and more stationary states contribute to form the
wavepacket, and the number no, for which the coefficient A,, is the greatest coefficient,
increases too. In order to establish this for the case n > 1, we derive an approximate
expression for A, by the use of Stirling’s formula:

In A, ~n(n&—+In2)—In(lnn—1)
whence
ny = 3& = wma?[2h,

It follows that the eigenfunction which gives the greatest contribution to y(x, 7) belongs to
the energy level
mw?a?

"o = (n0+ )hw ~ 2

(11.6)

It is interesting to note that E, is the energy of a classical oscillator having the same ampli-
tude and frequency as the centre of the wave-packet. Hence it is possible to say that the
packet is “grafted” onto the classical oscillator of energy E,.

12. For the sake of simplicity we shall solve this problem for the one-dimensional Schri-
dinger equation. Let us consider two frames of reference, K (x, Hand K'(x’, t'), which are in
uniform motion relative to each other with constant velocity v; x = x'+vt, ¢t = t', Denoting
by V(x, £) and V'(x’, t') the potential energies in the two frames of reference, we have that

Viix—ot, t) = V(x, 1). 2.1)

In the frame K’ the Schrédinger equation has the form

ooy Oy’
T om axr V Shes (122)

where y'(x’, ¢') is the wavefunction in K'. Since the probability density does not depend on
the frames of reference, we have that

p(x, 2 = (yp(x, 1) 2 (12.3)

Y(x, t) = eSy'(x', t), (12.4)

where S is a real function of (x, #), or, equivalently, of (’, ).
By substituting 3’ from (12.4) into (12.2) and transforming to the new variables x and L,
we find that

2 2

and it follows that

2m 9 Ox ox
K2 B?S R [8S\? oS , 851 . oy '
+ {V(x, t)+12m 52 o (ax) _hva—x_hﬁ] Y = m—aT. (12.5)
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The Schrédinger equation will keep the same form, i.e. will be invariant under the Galilean
transformation, if there exists a function S(x, #) such that equation (12.5) reduces to

At O _ oy
o T Vix, tyy = it (12.6)

For this to be so, S must satisfy the equations

h OS LRt 2SS  h? [0S \? oS oS
max P00 Tom ot om (ax) Mok e =0 (2D
It can easily be verified that this is the case if we take
‘mv my?
S(x,t)——h—x— oy I

Thus, finally, the relation between the wavefunction y(x, f) and its Galilean transform,
v'(x’, 1), is, except for a possible constant phase factor,

2

w(x, £) = exp (:’"T” x—i %2_ t)tp’(x—vt, 1). (12.8)

13. Let us show that the function w(rs, t5) defined by the integral (13a) satisfies the
Schrodinger equation and the given initial condition. To do this, we apply the operator
ih(0/0ts) — H(2) to both sides of (13a).

Putting #» > #; and using (13¢), we conclude that y(re, #2) satisfies the Schrédinger equa-
tion. It will also satisfy the initial condition (13b) if

Gt(rg, t; 11, 1) = O(rz—11). (13.1)

To show that this is the case, let us integrate equation (13c) with respect to 2 over a small
time interval #; — At to #;+ At, (At = 0); then

t+ At

dtz(iﬁg——Hg) G""(l'z, ts3; Iy, 11) = th 5([‘2—1'1) A (13.2)
2

ty—dt

Now the integral of the second term on the left-hand side vanishes as Az -~ 0. To evaluate the
integral of the first term we take into account the fact that Gt(ry, ty—At; 1y, 1) = 0, and we
then obtain the value i#G*(re, 1; rit1). Equation (13.1) is therefore satisfied.

Remarks: The Green’s function used above is defined in coordinate representation. It is
possible also to define a Green’s function in momentum representation, and indeed to define
one which dispenses with any particular representation. This is the so-called “Green’s func-
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tion operator” G(f), defined as the solution of the operator equation

(m%—ﬂ) G(f) = ih 8(2) (13.3)

which obeys the condition G(#) = 0 for 1 < 0. If we write G(t,—1;) = G(t,, t1) and express
all operators in coordinate representation, equation (13.3) becomes (13c) on account of the
closure relation. The operator G(f) is such that

[9(t2)) = G(t2— 11) | 9(21)), (13.4)

which leads to equation (13a) for the coordinate representations (wavefunctions) of states.
The above considerations are of importance in the formal theory of scattering (see Chapter
IX, Section 2).

14. Applying the operator i#(8/0t;)— H®(2) to both sides of equation (14a), and taking
into account (14b), we obtain

(ih—ag——H(“)(Z)) G+(2, 1) = ik 842, 1)+ HOQ) G+(2, 1)
2
and hence

(z‘h—a%—H(Z)) G+(2, 1) = it 642, 1). (14.1)

This equation is the same as (13c). The condition G*(2, 1) = 0 for 7, < #, follows from
equation (14.1) since G (2, 1) = Ofor 2, < #,.

Remarks: Equation (14a) can be used to develop time-dependent perturbation theory.
Treating H® as a perturbation, we have, in zero order approximation, (H® = 0),

GH2, 1) = G§(2, 1). (14.2)

The first order correction is obtained from (14a) by introducing G*(3, 1) (in zero order
proximation) in the right-hand side:

G2, 1) = -% G§(2, 3) HO3) G{(3, 1) d'x, . (14.3)
i

Similarly, the second order correction can be found:

G§(2,1) = ( -%)2 J' G2, 3) HO(3) Gf (3, 4) HO@) G} (8, 1) dix, dix,.  (14.4)
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Finally the Green’s function has the form of a series in powers of the perturbation:

G+(2, 1) = G2, N— = | G2, 3) HO3) GF(3, 1) dixs
0 4 0 0

i

+ (_;)2 j G#(2, 3) HO(3) G (3, 4) HV(4) Gf (4, 1) dx, dix,+ ... (14.5)

Equation (14.5) may be understood in the following manner. Suppose for simplicity that / ©
is the Hamiltonian of a free particle; the zero order term then describes free-particle motion
from point 1 to point 2. The first order term describes free-particle motion from point 1
to point 3, at which point the perturbation H®(3) acts, after which the particle moves freely
from 3 to 2. The second order term gives the effect of the perturbation acting twice, viz., at
points 3 and 4, and so on.

It is possible to give a simple diagrammatic representation of equation (14.5). For this
let us suppose that the time-axis is vertical, directed upwards towards increasing time. Let the
Green’s function (“propagator”) of the actual problem be represented by a thick line, and
that of a free particle by a thin line. Let each interaction with the perturbing Hamiltonian
H® be represented by a kink in the thin line. With these conventions, the series (14.5) can be
represented as shown in Fig. V.1. Note that, using the same conventions, the diagram for
the relation (14a) is as shown in Fig. V.2,

15. Let us write the function y(r, £), which is a solution of the Schrédinger equation, in
the form

p(r, £ = Y c(O) pu(D). (15.1)
n
15 3 . X 1, t,
t3
= + + +
1’3 1,4
FiG. V.1.
1, ¥ 1o X ta
= +
13
1, X t, X 1,
Fic. V.2.
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In order to determine the time-dependence of the amplitudes ¢ (f) we substitute (15.1) for
y(r, #) into the Schrodinger equation i#(6y/0f) = Hy. We then obtain

y d6(0) _
ih dt

E.c.(d), (15.2)

whence

) = cotde F (15.3)

We can determine the values of the amplitudes c,(¢,) at the initial time #,, using (15.1), thus
() = [ (e, 1) p*(ry) dvy. (15.4)

Substituting (15.3) into (15.1) and using (15.4), we find an expression for the wavefunction
1[)(1'2, ty) at time £o = #;:
"';:” En(t:"'fl)

‘!/J(l'z, 12) = Z w,,(rg)e f‘lp(l'l, Il) ![J:(l'l) dVl . (155)

By bringing the integral sign to the front, and comparing the result with (13a), we find that

~7 Exts—11)

GH(ry, t25 11, 1) = Y wa(re) wa(ro)e (15.6)

According to the closure relation, the Green’s function (15.6) becomes &(r —r;) when #, = 1;,
in agreement with (13.1). Note that this form of Green’s function (for the one-dimensional
case) has been used already, viz., in problems 8-10, to study the spread of wave-packets.

16. From relation (V.11) the wavefunction in momentum (or “{p}”) representation can
be written as

D) = (' |v) = Qrh)-34 f e ey v 16.1)

where, for simplicity, the time-dependence of the wavefunctions is not shown explicitly. The
Schrodinger equation in the {p} representation becomes

(0 |y) = j @ H P v dp” (162)
It remains for us to calculate (p’ | H| p"’). We have that
® V@ ") —f ®'ir >dr'<r IV(r)Ir" ) dr’ (e [p”)
(2~m)—-3U “ EV(e) o —r” dr"e"i

®".r')

’ L ’
—3 @ =p")ur

= (hh)"sj Ve = U(p'—p"). (16.3)
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It follows that the operator H will have, in the {p} representation, the following matrix
representation:

'3
P H|p")= gm s —p")+ U@ —p"). (16.4)

Introducing explicitly the time-dependence of the wavefunction, we obtain, from (16.1),
(16.2) and (16.4), the equation

(] 6 ’ . p’2 r r r r "
zhad—”(p,t)— 2m®(p,t)+JU(p —p")D(p", ©) dp”’,

which is, nutatis mutandis, equation (16a).

17. The oscillator Hamiltonian, in momentum representation, is

p:  mo’h? o2

H = 2 o 17.1)
and hence the Schrddinger equation in this representation is
., © (P mo®ht
e 7)) (17.2)
Note that equation (17.2) may also be obtained as a special case of equation (16a).
Looking for solutions of the form
Ly
D(p, 1) = $(ple " (17.3)
we obtain for ¢(p) the eigenvalue equation
d2¢ 2 p2 _
dp? + Moo h? (E_m)qb =0, (17.4y
ie.
d*¢ oy h ,
e+ 0—)p =0, (174
where
n=§o; po =/ mwhs A=2E[hv. (17.5)

By comparing (17.4') and (17.5) with (17.1) of Chapter 11, and using (17.12) of Chapter IT it
follows that the eigenfunctions corresponding to the energy eigenvalues E, = wh(n+ ),
n=20,1,2,...,aregiven by

6.0) = (2mtpoy/z) 2ty (2 e 176y
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18. For a homogeneous field, ¥(x) = — kx, and equation (17.4) is replaced by

itk f%gi)«+ (—% +E) #(p) = 0. (18.1)

The solution of this equation with eigenvalue E is

o(p) = Ce (%'E”). (18.2)
Since the energy spectrum is continuous, the appropriate normalization condition is
J b (pyde(p) dp = KE—E)
C = (2nhk)-12.

and it follows that

To relate these results to those of problem 21 of Chapter II, we shall change to coordinate
representation. Omitting the time-dependent factor in (V.11) we have that

+ oo
2 _E,

ve(x) = (uh)12 f be(p)e ™ dp = ! f ) A 183

2k k

—_— 0

Changing the variable of integration to u = — (2m#k)~3p, we obtain

+oo o

o . . a w
=— | ety = _—_ ——uy|d 18.4
YE(x) S J u m/kjcos (3 uy) y (18.4)

— 5o 0

where y = (x+§)oc and « = 2mk#i~%)'3,

19. Let us denote by y,(x) the result of the operation p~* on the function y(x), i.e.
Pe(x) = p~p(x). (19.1)

Our problem consists in finding %,(x) when y(x) is given. It is convenient to change to
momentum representation. Let f(p) and f,(p) be the Fourier transforms of the functions
y(x) and y,(x) respectively. Equation (19.1) then becomes

filp) = %f(p)- (19.2)

This equation shows that the function f(p) has, in general, a pole at p = 0, and thus does
not in general have the properties of continuity, etc., which are required of wavefunctions.
In order not to violate these properties it is necessary that £(0) = 0, a fact which, in coordi-
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nate representation, becomes

+ oo
{ wx)dx=0. (19.3)
From (19.1) and (19.2) we have

e i
pix) = (nh)-12 j 11;1)93 ™ dp. (19.4)

Let us suppose the integration along the real axis to be carried out in the complex p plane,

and the contour of integration to be changed into one which avoids the origin by following a
small semicircle in the lower half-plane (Fig. V.3).

- T

~
7/ hY
/ \
7/ \
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! \\
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i 3 \ i p
\ !
\ /
\ 7
\\ /
~ /
\‘-. . 7
Fig. V.3.

Since the function under the integral sign is holomorphic in the whole plane (including the
origin), the value of the integral is unchanged, i.e.

w0 = @anyen (102 & dp.
C

(19.5)
Now, by definition, ,
f(p) = 2nh)=12 j 'P(x’)e_"ipxl dx'. (19.6)
Substituting for f(p) in (19.5) and changing the order of integration, we obtain
T e—-h’-p(x—x')
P(x) = e J p(x") dx’ J—— » dp. (19.7)
—% ¢
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The second integralin (19.7) can be calculated immediately if we complete the contour C by a
semicircle having a sufficiently large radius and situated in the upper, or the lower, half-plane,
according to whether x > x’, or x < x’, respectively. From the theory of residues, we find

then that
i plx—x")

et dp = 2mi if x > X/,
P ?=1 0if x < x".
c
Substituting in (19.7) we have
Pf
vi(x) = 7 fdx w(x" (19.8)
and hence the operator relation
pl= % de'. (19.9)
This result is not unexpected, since p~ ! is the inverse of the differential operator p = — ifi——

Ox
For the operator x~' in the {p} representation we obtain similarly the operator relation

pl
1
-1 — ]
x~1l= 7 I dp’. (19.10)

It must be remembered that, for the above results to hold, the condition f(0)=0is essential.
If this condition were not satisfied, the operators would not be well defined. Thus, if we take
the semicircle around the origin to be in the upper half-plane and perform the same calcula-
tions as above, we obtain

4 oo
i ! !
0= | v
+m
This relation is equivalent to (19.8) if, and only if, | w(x') dx’ = 0.

—_—0

From (19.6), we see that this condition is equivalent to the condition £(0) = 0.

20. In problem 12 it was shown that the transformation of the wavefunction y(x, #) in
coordinate representation, which corresponds to a Galilean transformation of the coordi-
nates x = x'+ot, t = t', is given by the expression

2

p'(x', t) =exp (—i T;x-f—im?:-—- t) p(x, 7). (20.1)
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Now the wavefunction in momentum representation is given by
+o0 ;

B(p, 1) = (i)t j o(x, e ¥ dx.

Substituting for y(x, ¢) from (20.1) we have

+oo .
: — —mp)x’ '
D(p, f) = exp [(in;-%—il;ﬁ)t] (27h) 2 j Y(x, Ve 5 (p—m)x’ dx
and hence -
2
B(p, 1) = exp [(i%—i%f—)t] D(p—m, 1). (20.2)

21. Since, for the one-dimensional harmonic oscillator, the Hamiltonian by itself forms
a complete set of observables, there is only one energy representation. Let us denote by
|E,) = |n), say, the base vectors of this representation, in the Schrodinger picture. Taking
into account (V. 9) and (V.10), the matrix elements of the coordinate operator x in this re-
presentation (remembering that x|x") = x'|x")) are given by

(nlx|my = [(n|x|xy(x |m)ydx’ = [y(x) xpu(x) dx

+ oo
= xN,N,, [ EH (& H, () * dk. (21.1)
In the last expression the notation of problem 17 of Chapter II is used. The integral on the

right-hand side can be evaluated by using the generating function (A.3), from which it fol-
lows that

+oo +o0
| ememtimeeds= 5 5 i J SHOHaDe " di. (212)
n—0 m=o nim:
Now ) )
J‘w se-sl+2sé—t=+2t6—£= ds — '\,/;t(S*f- t)ez”,
and )

oo 2"(S"+1t"+3"t"+1)

\Va(s+ e = \/n )

=0 n!

(21.3)

s

so that, on equating corresponding coefficients of powers of s and ¢ in the two expansions
(21.2) and (21.3), we obtain
1/2
XQ(nZI) , m=n+l,

n\1/2
Xo (—2~) . m=n-—1,

PQM 10 137

(n|x|m) = (21.4)



Problems in Quantum Mechanics

or, in explicitly tabulated matrix form,

[0 41 o 0
W=x|V: 0 Vi 0
0 T 0 Vi

.

(21.5)

In a similar manner the matrix representation of the momentum operator can be obtained.

We have to calculate the integrals
+ o0

(n|p|m)y = —ih f valx) . g

dx

— O

After calculations similar to those made above we obtain finally

(nlp|my = g n—m) (n| x| m,

.and hence, in tabulated matrix form,

[ 0 —4/1 0 0
1o VEF o -3

(21.6)

Q1.7)

(21.8)

Remarks: The matrix representation of p can be obtained also in the following way.

. 1 .
Since Hy = — ph+V(xy) and [x, p] = [xy, py] = ih (see problem 1), we have from

2u
(V.3) that N
dxH _ 1 _ 1 2 _ PH
o E[xHa Hy] = W[xH,PH] =
and hence, in particular,

o <nlslm) = - (alpu]m)

(21.9)

(21.10)

Takinginto account the relations (n| x| m) = (n| x| m)e® ' and (n | p| m) = (n|p| mye'>",

where w,,, = (E,—E,)/h = w(n—m), we obtain once again the relation (21.7).

22. The wavefunctions found in problem 7 of Chapter II, viz.,

1 nm
() =l = —_—
Y(x) |/ 4 €08 5 X, for n even,

1 ni
(I-) = —_— 1 —
(%) l/a sin 3 x,  for n odd,
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can be used to find the matrix elements of the coordinate operator x. We have to distinguish
carefully the results obtained for states of different parity. Thus, for n and m even, we find

that

1 ( nrw man
(n|x|m)—x,,,,.—; chos 3, X ©08 —Q-a—xdx— . (22.1)
For n and m odd, we find that
x _1 xsin 22 x sin = x dx 2.2
nm — a 2a 2(1 >4 - ( . )
For even n and odd m,
Xnm = 1 X COS B xsin M x dx
" a 2a 2a
= 515 Jx[sin —(n—-;;ﬁ)ix—sin —(n;z;n—)—ﬂ-x] dx
4a | . (n+m)x 1 . (n—m)n
= —|— . 22.
[ s sin ————+ (n—my sin —— ] (22.3)
For odd n and even m,
4a 1 . (n+m)x 1 . (n—mxn
= -— — — . 4
Xmn [ it my Sin 3 —mp sin 5 ] (22.4)

From (22.1)~(22.4) it follows that the diagonal elements of the (x) matrix vanish. The
non-vanishing elements correspond to an odd difference (n—m), namely to a transition

n - m associated with a change in the parity of the wavefunction.
In order to find the momentum matrix we can use the method described in problem 21;

thus, from the relation
d i
<"|PH|m> = H‘a;(" | xg | m) = N;(En— m) | Xpr| 1)
it follows that

Pm = (nlp|m) = oy (Ba—En) (n| x| m) = iy (Ex—Ep)am. (229)

23. As was noted in problem 21, we have
i'(E,,—E,,,)r
(n|xg|my = (n|x|mye" . (23.1)
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and hence
‘—?; {n|xg|m = %(En —Eq){n|xg|m). (23.2)

Using these relations we can write
T EnmEn) | (n| x| m)[2 = T (Ba—Ep) (1] x| m)

=Z(E,.— ) xa| ) (m x| m)

5 X m|xnlm) g (rl vl my = 5 ) |
1 A 2
~(m|(XgXg—Xgxg)| m)y = ET(ml(xx xx)lm)——zg.

MI)—-N

24. The double commutator (24a) can be written in the form
[[H, el'k.r]] = Hefk.re—fk.r_ez'k.rHehfkl.r__e—l'k.rHeik.r.*_e*fk,refk.rH_ (241)

On the other hand, taking into account (I.27a), we have that
[[H, el’k.l‘], e—ik.r] = 2H —e% - THe—k.r _o—ik.rffolk.r

=_2 (lk)z[ [r, H]]- 2(1 [ [r [r, [r. H]]]] .. (24.2)
Since

[ H = 2p [np] = 3,
it follows from (24.2) that

3n%k?

k.r] p—ik.r] — _
([, 1], em-r] P

(24.3)

Let us now take the average value of both sides of (24.3) for the state |m). We obtain the
result that

2AEm(m €% | n)(n|e~"% | m)—E,(m |e*-r| n){n|e% | m)
—Em |e=%*m) (n|e%-* | m)y+Ep(m|e=%| n){n|e®-| m)} = —3#%2u. (24.4)
From this result, the relation (24a) is easily obtained, if we note that

<m lel'k.rl n) <’1 Ie—ik.rI m> — <n Ie*ik,rl m)* <n le——l'k.rI m>
= [(n|e=®r | my[2 = [(n |etr|my[2. (24.5)
(m e~ | my(n |%r| my = | (n ]| m 2. (24.6)

The last equality in (24.5) follows from the relations eX™ " = cosk.r + isink.r.
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If we retain only the first term in the expansion of the exponential ¢ (the “dipole
approximation™) in (24a), we obtain (23a) again.

25. (a) In accordance with the definition (V.15), for any |#) we have that
(u|g|u>:;(ulm>pm<m|u>=mel(ulm)izao. (25.1)

Further, if we use the Schwartz inequality (see problem 1 of Chapter I):

| (u|my | < (u|uy(m|m)y = (ulu),
it then follows that

w|(1—9)|uy = (uluy = ;p’" |<u|m>12;<uiu)*(u|u>§pm = 0. (25.2)

(b) Let us suppose that the system of base vectors |1), [2), .., |m), is such that ¢ is
represented by a diagonal matrix. In this representation, then,

Te(e) = S4 1) = Tlelip = [Sdllelb] = Trop=1. (53

Since the trace of an operator does not depend on the representation, (25.3) is valid in
any representation. If the system is in a pure state, | X) say, the density operator is of the
form o = | X)(X|, provided the norm of |X) is equal to unity. We see immediately that
in this case o® = o, whence Tr(o?) = 1. Conversely, if Tr (o?) = 1, then, since this is
true in any representation, let us take one in which o is diagonal, and in which, therefore,
S dllellp = 1= XllelD):

Since the quantities (/| ¢|/) are all smaller than, or at most equal to, unity, the above
relation implies that there is one and only one non-vanishing diagonal element of ¢, and
that this is equal to unity. But this is true only for a system in a pure state.

26. From (V.4) we have oy = UT(t, to)oU(t, to). By calculating the time-derivative of
o, and using relation (V.16) we find that
aQH oUu+

Bon _0U* i+ Ryyryr oY~ p+

oU oo
ot ot ot ot

i
%l g]}U*o.

27. Any operator £ can be written as a linear combination of the operators QO r=1,2,
.., V2, in the form
Q = Y w0 where w, = Tr (£20Q0).
In particular, the density matrix in the Schrodinger picture can be written as

0, = ¥ oPQ" where off = Tr (o,20) = (20,

141



Problems in Quantum Mechanics

Thus, if the operators ) are given, the dynamical state corresponding to the matrix 0,
is described by the set of average values ¢ = (Q®), Taking now the time-derivative of
relation (27b), using (V.16) and (27a), multiplying on the left by 2, and taking the trace,
we obtain finally

. 5
%—Tr (X0, H]} = dgﬁ . (27.1)

The equations of motion (27¢) are obtained from (27.1) by substituting for g, from (27b)
and permuting cyclically the operators under the trace sign. The operators 2 and the

equations of motion (27c) are given explicitly for a particular case in problem 38 of
Chapter VI.
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CHAPTER VI

Orbital Angular Momentum and Spin

1. Properties of Angular Momentum Operators

Avector J is called an angular momentum operator if its components are observables which
satisfy the commutation rules:’

Ve L] =ilzy Wy Jd=iTs, [JJi]=iJ,. (VL.1)y

Simultaneous eigenvectors |tjm) of J2 and of J, can be found such that
32| 5jmy = jGj-+ D gim),  J.|gjm) = m|jm) (VL2)
T+ |gjm)y = A/j(j+ 1) —m(m=£ D)7, j, m+ 1) (VL3)

where J, = J,+iJ,, and 7 stands for those indices which, together with j and m, specify
completely the states of the system under consideration. The number j can in general have
integral or half-integral values and, for any given j, m can have the following 2j+ 1 values:
—j, —j+1, ..., j. For a single particle, the vector operator 1 = rXp satisfies the commuta-
tion rules (VI.1) and represents the orbital angular momentum of the particle about the
origin of r (see Chapter II, Section 3). When the location of the origin is obvious (e.g., at
the centre of a central field of force), 1is referred to simply as the orbital angular momentum
operator of the particle.

2. Spin

The electron has an intrinsic angular momentum s called the “spin”, of magnitude 4

) . . ; e ) )

( “spin %”), with which a magnetic moment yu, = gs—z—“ s is associated. The value of the
mc

constant g, can be determined empirically or from the relativistic theory of the electron,

and in fact g, ~ 2. Experimental evidence shows that various other particles also have an

T In this chapter it is assumed that one is working with units such that # = 1 (except in the problems
32-39).
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intrinsic angular momentum (spin) whose magnitude may have an integral or half-integral
value. Since s obeys the rule (VL.1), a representation of the electronic spin operator s by
“Pauli matrices” can be obtained by putting j = % in equations (VI.2) and (VI.3), and

writing
1 01 0 —i 1 O
§=50; Oy = [1 O]’ o, = [i O]’ o, = [0 —l]' (VL4)

The corresponding wavefunction of a spin-% particle in coordinate representation then
r,j=4,m= +%>) ['P+(r)
(l‘, Jj= %’ m = _%> 'P—(l')

has two components ( ] say, and is called a “spinor”.

3. Angular Momentum and Rotations of Coordinate Axes. The Addition of
Angular Momenta

3.1. THE ROTATION OPERATOR OF A PHYSICAL SYSTEM

Let D be the (unitary) operator which represents a rotation of a given physical system
about a given axis,” i.e. the operator which is such that the state vectors and the observables
of the rotated system are related to those of the original system by the relations

@’y = D|a@), Q =DQD+. - (VL5)

If J is the operator which represents the total angular momentum of the system about a
given origin O, then the operators D(u, d¢) and D(a, ¢) which represent an infinitesimal
rotation d¢ of the system, and a finite rotation ¢, respectively, about an axis through O in
the direction of the unit vector u, can be written in the form

D(u,dp) = 1—idp(J.u); D(u, ¢) = e—i#3-w, (VL6)

For a rotation R(x, 8, y) about the origin, given by the Euler angles «, 8, ¥ (Fig. VL.1), we
have, in an obvious notation, that

D(x, B, v) = e~ 2lg—Blye—iv7; (VL7)
The operator D(«, 8, y) has the following matrix representationt
DR (o, B, y) = (jm|D(e, B, y) | jm'y = e™ dD) (B)e™™ (VL8)
where the coefficients d{}),(8) are given by Wigner's formula (see problem 14).

T The significance of this subtle concept is excellently discussed in the book Quantum Mechanics by A.
Messiah, Interscience, New York, 1961, Vol. II, chapter XIII.

I The matrix D' = (D!}, is of 2j+1 dimensions and is called the irreducible representation in 2j+ 1
dimensions of the rotation group. This name arises from the fact that applying the operator D(x, §, ) to
the state | jm) yields a linear superposition of all the 2j+ 1 states | jm’) with m’ = —j, —j+1, ..., 7, the value
of j itself being unchanged.
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3.2. THE ADDITION OF ANGULAR MOMENTA

Let us denote by J = j1+j2 the sum of the angular momentum operators of two sub-
systems which together form the system under study, by |tj1jsm1m2) the simultaneous eigen-
vectors of the set of operators j%, 2, /., jo.» and by |7j, j,JM) the simultaneous eigenvectors
of the set of operators j?, 3, J%, J,. Here 7 represents the indices which, together with j;,
Jja2, m1, ma, OF j1, jo, J, M, respectively, specify completely the states of the system. We have
then that

|thed M) = 3 |t jamuma) (Jijemums| JM),

my, my

(VL9)

where | j1—fa| < J < ji+j2, mi+ma = M, and the coefficients {jijamimz|JM) are called
the Wigner or Clebsch—Gordan coefficients. The coefficients most frequently used in applica-
tions are given in the following tables.

TaBLE VL1
Clebsch—-Gordan Coefficients for j, = 1
my =1 mg =0 my =—1
) [(jﬁrM)(Jr'1+x"*4'+1)]”2 [(jl_M+ 1) (1’1+M+1)]1’2 [(j1— M) (j,— M+1)]'?
J=hn+l i+ 1) C/i12) i+ D) Gr+ 1) NI EYE
J _ [(1'1+M)(1'1—M+1)]”2 [ M? ]“2 (1= M) Gr+ M+ 1)}
=N 2j1Ga+ 1) WG+ 1) 2j,(a+ D)
J =1 [(jl_M)(jl_M+ 1)42 _ (ji— M) (j,+ M) 12 [(ji+M+1) Gy +M)Y*
n 272+ D) J12i+ 1) 2,2+ 1)

145



Problems in Quantum Mechanics

TABLE VI.2
Clebsch-Gordan Coefiicients for j, = +
mz = % m2 — —-%
J=ji+1 [J'1+M+§]li2 [jl_M.i_%]llz
J=j,—1 _ [fl—M+%]”’ [j1+M+§]"’
: 2jl+1 2jl+1

3.3. IRREDUCIBLE TENSOR QPERATORS

By definition, the 2k+1 operators T (g = —k, —k+1, ..., k) form the components
of an irreducible tensor operator of order k, T®, say, if they transform under a rotation of
axes according to the relation

RTOR™' = ¥ TVR® (VL.10)

ql
The relation (VI.10) is equivalent to the following commutation rules between the T,S"’
and the components of the total angular momentum operator J:

Vs, 7Ol = VEE+ D) —qlg + DTE,,
[J PR ék)] = thgk)-

3.4. THE WIGNER—-ECKART THEOREM

(VL11)

In a representation {J%, J,} in which the base vectors are |tJM), the matrix element
(TJM|T®|v'J'M") is equal to the product of the Clebsch-Gordan coefficient (J'kM'q|IM)
and a quantity independent of M, M’ and g, i.e.

(CIM|T® (¢ J' M’y = (3] || T | I T kM'q| TMD. (VL12)

1
V2j+1
Problems

1. Show that, between the simultaneous eigenvectors of the operators J?and J,, there
exist the following relations

0.2 = | it ORI 23
] !
%0, 40) = || g G-I, ).
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2. Show that:

(a) In any representation in which J, and J, are real matrices, J, is of the form i X a real
antisymmetrical matrix.

(b) If an operator commutes with two of the components of the angular momentum
operator, then it commutes also with the third component.

3. Prove the validity of the following commutation rules:

@) [ xed = teaxs,  (0) U pid = feqapr, (€ [l B = deuals,
d [Lp=0, () [Lr*=0

where ¢,,, stands for the following totally anti-symmetrical tensor: &,, = 0 if any two indices
are equal, and ¢, = +1 (or — 1)if the indices i, k, / can be obtained from 1, 2, 3 by an even
(or an odd) number of permutations. (The indices 1, 2and 3 stand for the x-, y- and z-com-
ponents of vectors, and repeated suffixes are to be summed over.)

4. Show that if a system is in an eigenstate of J,, then the mean values of the operators
J, and J, vanish.

5. Show that for a system in the eigenstate |zjm) of the operator J,, the mean value of
the component of angular momentum along a direction 2, which makes an angle ¢ with the
z-axis, is equal to m cos 0.

6. Since the components of the angular momentum operator do not commute, their
simultaneous measurement is not possible. Show that in a state | 7jm) the greatest accuracy
of measurement of the components J, and J, is obtained when |m| = j.

7. Obtain expressions for the operators /,, /,, I, and I?in spherical coordinates (i) by using
a direct method, and (ii) by starting from the fact that I,,1/,,/, are related to infinitesimal
rotation operators.

8. Let 1 be the orbital angular momentum operator, r, 6 and ¢ a set of polar coordinates,
and P the parity operator of a particle, all referred to the same origin. P performs a reflection
about the origin, so that its action on any function of position of the form F(r, 0, ¢) is given

by the relation
PF(, 0, ¢) = F(r,m—0, ¢+m).

Show that [P, 1] = 0 and, starting from this fact, prove that each of the spherical harmonics
has a well-defined parity, which depends only on the quantum number /. Find this parity
as a function of /.

9. Establish the identity (¢.A) (¢.B) = A.B+ig(A X B), where o = (¢, 0,, 0,) are the
Pauli matrices, and A and B are vector operators which commute with o, but do not neces-
sarily commute with each other.

10. Find the eigenvalues and the eigenvectors of the operators s, ,, §,, in the representa-
tion by Pauli matrices in which s, is diagonal.
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11. Find the matrices corresponding to the spin operator components S5y 8, 8, for a
particle of spin s = 1, in the representation in which the operators s? and s, are dlagonal

12. Using the transformation matrix associated with a rotation about the origin given
by the Euler angles «, 8, v (Fig. VI.1), viz.,

cosycosfcosax—sinysine —sinycos Scosa—cosysina  sin B cos«
R(e, B, y) = | cos y cos fsinx+sinycose  —siny cos fsinx+cos ycosea  sin B sin «
—cos ysin 8 sin y sin cos

show that the components of the angular momentum operator transform according to the
relations

J: = ¢ sin fle=J , +e—i=J_)+cos S, (12a)
Jy = e¥ir [-l-i’czﬂé eFin], — —lifzﬁé e*ie] . —sin ﬂJz]. (12b)

13. Find the matrix elements of the rotation operator for states having j = 1 dlrectly

from the definition
DD (, B, v) = {jm|D(x, B, )| jm’>.

14. Show that the rotation matrix elements d¥2, are given by the Wigner formula
: (j+m)! (j—m)! 112 j+m' \ (j—m'
N (B) = .
() [(j+m’)!(j—m’)!] ;(j—m—t) ( t )
(_ ])J'—m'—t(cos ﬂ/2)2t+m+m’(sin ﬂ/2)2j~2t—m—m' . (143)

15. Suppose an electron to be in a state in which the component of its spin along the
z-axis is + . What is the probability that the component of the spin along an axis z’ (which
makes an angle 0 with the z-axis) will have the value + or ——‘? What is the average value
of the component of the spin along this axis?

16. Find how the spherical harmonics Y}, Y3, ¥;* transform under a rotation given by
the Euler angles «, £, ».

17. In a Stern-Gerlach type of experiment, a beam of atoms (each with total angular
momentum j) is passed through an inhomogeneous magnetic field. Each atom is deflected
through an angle which depends on the component of angular momentum of the atom in
the direction of the magnetic field. If the atoms all have initially a specified value of the
component of angular momentum along an axis which is not in the direction of the magnetic
field, the beam will split into 2j+ 1 component beams. Determine the relative intensities
of these component beams if j = 1.

18. A spin—% particle moves in a central field of force. By solving the appropriate eigen-
function equations, find those steady state wavefunctions of the particle which are also
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eigenfunctions of the operators I%, j? and j,, where j = 1+s. Show that these wavefunctions
can alternatively be obtained by using Clebsch-Gordan coefficients.

19. Using the vector model of angular momentum (cf. the answer to problem 4),
determine the possible values of the angle between the vectors 1 and s of the preceding
problem.

20. Let the energy eigenfunctions of an electron which moves in a central field of force
be characterized also by the quantum numbers /, j, m;, where j and m; are the quantum
numbers of the total angular momentum. Determine the possible values of the z-components
of the orbital angular momentum and of the spin and also their probabilities and their
average values.

21. Let s; and s, be the spin operators of two spin—% particles. Find the simultaneous
eigenfunctions of the operators s? and s,, where s = s, +s,. Show that these are also eigen-
functions of the operator s;.ss.

22. Show that the operator (61.65)", where 6; and 6, are Pauli matrices, dependslinearly
on the product (6;.63). Find the explicit form of this dependence.

23. Consider a system of two nucleons (protons or neutrons). Let r = r;—r; be their
relative position vector, and %c 1, %oz their spin operators. Now it has been found that part
of the interaction energy between nucleons is similar in form to the classical interaction
between two dipoles, i.e. it can be written in the form

(01.1)(02.1)
I’2

V= V() [3 — 0'1.62]. (23a)

This is the so-called “tensor force”. It is not of course electromagnetic in origin. Show that
the operator

Slz = 3[ (Gl.r)’ﬁgcg.l’) —0‘1.62], (23b)
which expresses the spin dependence of the “tensor force”, may be written in the form
3S.
Sis = 2[ ( > 0 _ sz], (23¢)

where S = L(a;+0,) is the total spin operator.
24. The Hamiltonian of relative motion of the nucleons of the preceding problem is

g=_F
= 2M0+V’

where M, is the “reduced mass” of the system (= 5 X mass of one nucleon), p is the relative
momentum, and ¥ is the potential energy of the mutual interaction. Show that if we take
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V = V(r)S1s, there will exist simultaneous eigenfunctions of H and of P, S2, J2 and J,.
where P is the parity operator, and J = 1+S, 1 = rXp.

25. Show that the Schrédinger equation for a system of two nucleons with an interaction
potential energy ¥ = V1(r)+ ¥ (r)(61.65) can be split into two Schrédinger-type equations,
one corresponding to the potential ;1 — 3V, and the other to the potential V1+ V5.

26. Show that the operator S1z = 2[3[(S.r)/r?] - $?], regarded as a function of r, depends
only on the polar angles 6 and ¢, and that this dependence has the form of a spherical harmo-
nic with / = 2,

27. Express the operators r, p and 1 = rXp as irreducible tensor operators.

28. Let 1 be the orbital angular momentum of a spinless particle, and A an operator
whose components satisfy the commutation rules:

[/i, Ax] = ieid,. (28a)

Using the Wigner-Eckart theorem, find the matrix elements of the components of the
operator A in the {I?, /.} representation.

Find the selection rules for “allowed” transitions (i.e. those with non-vanishing first
order matrix elements) due to a perturbation «A.

29. An expression from which the components of a vector can be calculated is said to
define a “polar” vector if these components change sign under the coordinate transformation
X - —X,y - —y, z - —z (50 that the geometrical vector so defined is unchanged), and an
“axial” vector if the components are unchanged (so that the geometrical vector so defined
has the opposite direction to the one defined in the original coordinate system). Show that,
in the {I2, /,} representation, the following allowed transition selection rules for the orbital
angular momentum are valid:

Al = +1 for a polar vector perturbation operator,
Al = 0 for an axial vector perturbation operator,
provided these vector operators satisfy the commutation rules (28a).

30. Find the matrix elements of the z-component of the unit vector n in the direction
of r, for a spinless particle, in terms of the eigenfunctions of angular momentum of the
particle.

31. Show that the operator (23c) may be written in the following form

1/2
S1a = (2—:”—) (S®. J®), (31a)

where S® and J® are second order irreducible tensor operators which are functions of the
spin and of the orbital variables respectively, and the bracket denotes their scalar product
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defined as follows:
(S@ . J®) = Z (-1 S@Te). (31b)

q_—
32. Show that the Schrédinger equation of a system of electrons in a homogeneous
magnetic field H can be written as

in 2 - { E i~ g (1+25)- Bt zzamk)zw}w,

where L = ¥ |, isthetotal orbital angular momentum operator of the system, S = Y s, is the
k k

total spin operator, and U is the potential energy of all interactions other than those with
the field H.

33. Show that, in a magnetic field which is homogeneous but not necessarily constant in
time, the wavefunction of a particle with spin which satisfies the Pauli equation (32.3) can
be written as the product of a coordinate function and a spin function.

34. Find the energy spectrum of a spin-% particle in a constant homogeneous magnetic
field.

35. Find the wavefunctions of a spinless particle in a homogeneous magnetic field for
states in which (i) the component of linear momentum, and (ii) the component of angular
momentum, both in the direction of the magnetic field, have well-defined values.

36. Find the wavefunction of a spin-% particle which is uncharged, but has a magnetic
moment, in a homogeneous time-dependent magnetic field H(?).

37. The plane x = 0 separates two regions of space; in the region in which x > 0,
there exists a uniform magnetic field H, = H, = 0, H, = H, and, in the region in which
x = 0, there is no field. A beam of polarized neutrons of momentum p is incident on the
plane x = 0 from the region x < 0. Find the reflection coefficient of the neutrons.

38. Taking into account the results of problem 27 of Chapter V, show that, to describe
a system of independent spin-—l— particles, we can choose operators £2 of the form

20 — ——_—_:I Qe = l__ Oy,
V2 V2
where 04, 03, 03 are the Pauli matrices.
Writing (¢,) = P,, say, show that, if the system is in a constant external magnetic field’
H, the equation of motion of the vector P = (Py, Py, Py) is

P — e xm), (382)

=123,

where y is the gyromagnetic ratio.
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39. The “magnetic resonance” phenomena observed in a “spin system” placed in a
constant magnetic field Ho (see problem 7 of Chapter 1X) are due to the absorption
of energy by the system from a second, rotating, magnetic field H, (H,, = H, cos wt,
H,, = H, sin o), and to the occurrence of “relaxation™ processes which have the effect
of continually tending to establish a thermal equilibrium (Boltzmann) distribution of the
spin orientations of the system in the magnetic fields Ho and H;.

Show that if the relaxation processes are such that in a constant field they would lead
exponentially to the equilibrium state with a “relaxation” time 7, then the real and the imagi-
nary parts of the magnetic susceptibility of the system are given by Bloch’s relations *

T (wotw)1t
L= RO T @y + 0Pt 03

1
1+ (o + w)2r?+ wir?

(39a)

xu — xO&)'E

where 30 = (Ny?h%)/(4kT) is the static susceptibility (N = number of spins, y = gyro-
magnetic ratio).

Solutions

1. We will consider only the relation

since the other three relations can be derived by similar reasoning. According to (V1.3) we
have that

J-|7,j, m+ 1) = Vj(j+ 1) —mm+1) | 5jm) = /(j—m) (j+m+1)| 5jm)

and hence

Pt ), m+2) = J_ A/ G—m—D GFm+ D)7, j, m+1)
= VG—m—D(G—m) GFmT )G+ m+2)|jm)

and, in general,

(Y- = /1.2 ... —m=D)(G—m)(j+m+ 1) (+m+2) ... (2i—1) 2/} gjm).
(1.2)

In order to obtain (1.1) it is sufficient to observe that the product under the square root sign
can be written in the form [(2/)! (j—m)!]/[(j+m)!].

T F. Bloch, Phys. Rev. 70, 460 (1946).
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2. (a) In any representation in which the matrices which represent J, and J_ are real as
well as Hermitian, they are also symmetrical, i.e. J, = J,, J, = J,. That the matrix represent-
ing J, is then of the form 7 X a real antisymmetrical matrix follows immediately from the
commutation rule [J,, J,] = iJ,, since

/-""-"/ P el e e A~ o~
Vo il = T =T = Td ;=TI = [Jiy J2) = — [T, Jo).

Hence J, = —i[J,, J,] = i X a real antisymmetrical matrix. Note that the representation in
which J? and J, are diagonal is of the above type, since from (VI.2) and (VI.3) one can
obtain, by a little simple algebra, the matrix elements

(T, ), mt1|Je|gmy = 3/ (GFm) (jEm+1) 2.1)
(1, £ 11y gimy = F oA/ GEM G EmF 1) 22)
(t j, m|Jz|gjm) = m. (2.3)

(b) From the commutation rules AJ, = J 4, 4J,=J, 4, and J J,—J,J. =iJ, we
find that i(—J, 4J ,+J AJ,) = AJ, = J, 4, ie. that [4,J,] = 0.

3. Using the commutation rules between the coordinates and the momenta, we have

Ly —yly = (yp: —zpy)y —y(yp. —2p,) = —zlp,, y] = iz

In a similar manner we find that

[Z:, x] =0 {l,y]=1iz [lx, z] = —iy
(4, y1=0 i, z] = ix (4, x] = —iz
[[z21=0 [ x]=iy [l y]=—ix.

All these results can be combined in the equation

[is xi] = iesrxs .
By similar reasoning, the results (b), (c), (d) and (e) can be obtained.

4. For any state |zjm), we have (zjm|J _|zjm) = 0. Separating the real and the imagi-
nary parts, the problem is solved. We can depict diagrammatically the vanishing of the
mean values of J, and of J, for systems in eigenstates of J_, by resorting to the “vector
model” of angular momentum, much used in the old Quantum Mechanics (Fig. VI.2a).
The eigenstate [tjm) is represented diagrammatically by an “angular momentum vector”
of length 4/j(j+1), which rotates continuously around a cone of height m. It follows that
the (time) average values of the components J,, J,, vanish. The angle ¢ between the angular

x y’

momentum vector and the z-axis is given by the relation cos ¢ = ————, and hence

VIG+1D)
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FiG. VI.2a. Fic. VI.2b.

the angle ¢ can have only a finite number of values. All possible orientations of the angular
momentum vector relative to the z-axis are shown in Fig. VI.2b (in which for purposes of
illustration j is taken to have the value ).

5. Using the vector model of angular momentum (see the preceding problem), we have

that
Jy = J,cos (x,2)+J, cos(y, z)+J. cos 6. (5.1)

Since |zjm) is an eigenvector of J,, we obtain

ygmlJ .| timy = (gjm|J,|tjm)y =0 and (gim|J|tim) = (xjm|J;|tjm) cos 6 = m cos 6.

(5.2)
6. The uncertainty in the angular momentum J  is (see problem 4)
Al = AT~ P = V{ID = V/{gm|J%| jm), (6.1)
and similarly ) L
A, = /Ty — (T = /T2 = A/ g T jm. 62)
Now
B = @im| P gjm) = j(j+1) = IDHT)+ T = @I+ ALY +m?,
and hence
(AT P+ AT, = j2+j—mP. (6.3)

From (6.3) we see that the minimum value of the combined uncertainties of J, and of J,
is obtained when |m| = j, namely, in terms of the vector model of angular momentum,
when the angular momentum vector is nearest to the z-axis. The components J, and J,
are well-defined only if the total angular momentum j vanishes.
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7. We have 1 = rXp, whence

8 ® YA Y
lx_—zh(yg—za—y), I, = lh(zg—xg), 12_—zh(xa—y—y§). 7.1y

Let y be a function of position, which can therefore be expressed in terms of Cartesian co-
ordinates x, y, z or of polar coordinates r, 8, ¢. We have then that

Oy Oy 0x Oy Oy Oy 0z _ Oy . : op .
96— ox 96 "oy 96 T 0z 0 25 7 sin 6 sin ¢+Ersm 6 cos ¢
LU
By comparing (7.2) with (7.1) we find that
., 0O
lz = —lﬁa—d) . (7.3)
Similarly we can write
oy oy oy Oy
a—a—cotﬂ(xg——%—y 3y )—tanB(zE). (7.4)

e

On the other hand, from the relations

x+iy=rsin 0(cos p+isin §) =re?sinf, z=rcos?¥,
we have that

. . oy , Oy oy | . oy oy
= helt _r — _r
L+il, = he [cot V) (x B +y B ) tan @ (z 3 ) + i cot B( By —y Bx)] (7.5)

From (7.4) and (7.5) one obtains

. /0 0
Lotil, = ihei"ﬁ(@il cot 6 %) , (7.6)
whence we find that
I, = th(sm §og+cot 0 cos b ¢) 1.7y
, ?
I, = —ih{cos ¢ ——cot 0 sin ¢ — (7.8)
59”
i 9 8 1 e
2 _ J2 2 2 _ _ B2 - )
= 212412 h[ . (smﬁaa) 5y a¢2]‘ (7.9)

Let us now derive the same expressions starting from the fact that /, /, and /, are related
to the infinitesimal rotation operators about the coordinate axes x, y and z respectively.
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For a rotation through an angle dx about any axis u, the wavefunction y(r) of a spinless
particle of orbital angular momentum 1 becomes, according to (V1.6),

V() = [l—ﬂa u)] ) (7.10)

provided of course that the axis passes through the origin to which 1 is referred. For a start
let us suppose that u is the unit vector k in the direction of the positive z-axis. Since any
rotation of a physical system is equivalent to a rotation of the coordinate axes in the oppo-
site direction, we have that

Y'(r, 0, ¢) = v(r, 6, ¢ —de) = 9(r, 6, ¢>)—-—¢ (7.11)

Comparing (7.10) with (7.11) we obtain (7.3). In order to obtain /, we perform a rotation
about the x-axis
, _ _ dd 0 dp 0
¥, 0, ¢) = y(r, 0—db, $—d) = [1 (Gt ar ) da] v, 0, 9),

whence

d8 b dp D
lx_—zh(d—aﬁer—a%). (7.12)

Finally, we require expressions for df/dx and d¢/de. Using Fig. VI.3 one can see that

dz=z1—z=yda, dy=y1—y=—zdax. (7.13)
4
dzaz-2
dy =y,~y
Y
da o 41_,*
z y

e y

FiG. VL3.
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Then, by differentiating the relations z = rcos 0, y = rsin 0 sin ¢, and comparing the
results with (7.13) we obtain

o . dé _
— = —sin é, 2. = —cot 0 cos ¢. (7.14)

From (7.12) and (7.14) we find (7.7); (7.8) can be found in the same way.

8. The first part of the problem is solved immediately if we take into account the expres-
sions for the angular momentum operator components /,, /,, /, in polar coordinates, (7.3),
(7.7) and (7.8). In order to prove the second part we write

[Ps lz] Y?’(Bs ¢) = MYT(W—B, ¢+“)_IJY;”(“_9: ¢+3’5) = 03

whence it follows that Y7'(z—0, ¢+x) is proportional to Y7'(0, ¢), the proportionality
constant, C(/, m) say, having unit modulus, since the normalization condition of the spheri-
cal harmonics Y7 gives

2n = 2n =

{ [ 1Yr(=—0,¢+m)2sin 0dOde = |CL,m)2 | [ Y70, §)|*sin 6 dOdp = 1,

0 0 0 0
whence {C(l, m)|2 = 1.

Let us show now that C(/, m) is in fact independent of m. To do this, we write

[P, L,1Y7(0, ¢) = I+ D—m(m+ DY+ (n—0, p+m)—L Y(m—0, ¢+m) = 0
8.1)

and similarly

[P, I_1Y7(6, ¢) = VII+D—mim—1) Y7 Y (n—0, p+n)—I_Y(n—0, p+7) = 0.
(8.2
From (8.1) and (8.2) we have that

Cl,m)=C(,m+1) = C(l,m—-1), (8.3)

i.e. C(l, m) does not depend on the integer m, and can thus be written as C(/). For this
reason, it is sufficient, in determining its value, to limit ourselves to the spherical harmonics
with m = 0, (A.24), i.e. to

Y6, ¢) = V-z%l— Py(cos 0).

For the Legendre polynomials (A.8) we clearly have that P(—u) = (—1)'P(u), so that
YY—0, ¢+m) = (—1YYYH, ¢). Since YUn—0, p+n) = CHYYO, ), we find that
C() = (—1). Hence the parity of the spherical harmonics is (—1)". Since the angular
part of the wavefunction of a particle in a central field is a spherical harmonic (see Chapter
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I1, section 3), it follows that the parity of the wavefunction in such a field depends only
on the orbital quantum number / and is equal to (—1)".

9. The required identity is obtained immediately if we express the product (6.A)(e.B)
in Cartesian components and regroup the terms, taking into account known relations such
as 02 = o? = o} = 1, 6,0, = —0,0, = io,, ctc. An important particular case is

(e.r)(c.p) = r.p+iorXp). ©.1)

10. In this representation we have (omitting the factor #):
110 1 1]0 —i 11 0
sx:?[l o]’ Sy:’z_[i o]’ Sz_?[o —1]' (10.1)

A C :
To obtain the eigenvectors yx, = [ B] say, and 7, = [ D] say, of s, and of 5, respectively,

with eigenvalues s, and s;, we have to solve the matrix eigenvalue equations:

%[? (1)] [‘;]=s; [;] (10.2)
;[0 o”g]”i[g] (10.3)

The solutions are easily found to be

T 1] . 1]
ZS;;=+1/2 = /\/2— e 1 ’ Lss=—1/2 = /\/5 el -1 (10'4)
x et 1] y e'b 1] (10.5)
sy=-+1/2 = \/5 ! Kk sy=—1/2 = \/5 2 | | .
and similarly, for s,
Asj=+1/2 = e [(l) ] > As;=—1/2 = €'Ps [(l) ] s (10.6)

where the as and the fs are arbitrary real phase angles.

It is easy to check that the two eigenvectors of each of the operators s,, s, and s, are nor-
mal, mutuvally orthogonal, and form a complete set, i.e. any arbitrary eigenvector can be
written as a linear combination of the members of any one of these pairs of eigenvectors.
The square moduli of the coefficients of such a linear combination then give the probability
of obtaining the particular value + - of s, of 5, or of s;, according to the pair of eigen-
vectors used. Thus, for example, sincc the z- and the x-axes are perpendicular to each
other, the probablhtles of finding s, =+ % L if a system is known to be in an eigenstate
of s, are equal to
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11. We have to use in turn therelations (2.1), (2.2) and (2.3), for j = 1. We then find that

1 [o 1 0} 1 [o _ 0}
S =—+|1 0 1}, s,=—+|i 0 —i (11.1)
V29 o 1 o V20 o i o
1 0 0 100
s.=|0 0 o ss=2lo 1 ol (11.2)
0 0 —1 0 0 1

12. Under the rotation R, the cartesian components of any vector V transform according

to the relations
Vi =RV, (12.1)

in which the coefficients R;; are the elements of the matrix associated with the rotation.
Hence, if A; is the transform of the unit vector a; in the direction of the jth coordinate
axis (f = 1, 2, 3), we have that

Aj = R,-,-a,-; R,-j = a,-.A,. (122)
The matrix R associated with the rotation has the following properties
R*=R, R=R1 detR=1. (12.3)

The rotation operator D of a physical system, as it is defined in paragraph 3, causes
each state | ) of the system to have a transform D[} under the rotation R. Similarly, any
observable Q (cf. V1.5) has a transform DQD~'. Let J = (J,, J,, J,) be the total angular
momentum operator (about the origin) of a physical system, and let J, = J.a,. Then the

transform
Ji =DJ;D-1' = J.A; = J;Ry. (12.9)

Taking in turn i = 3, 2, 1, we find that
Jz = sin B cos a J.+sin B sin aJ, +cos 87,

= 3 sin B(e~*J 1 +e~=J)+cos B/, (12:3)
Jy = (—sin y cos B cos «—cos y sin a)J . 1.6
—(sin y cos B sin @ —cos y sin «)J,+sin y sin A7, (12.6)
x = (cos ¥ cos B cos a—sin y sin a)J, 127
+(cos y cos B sin a+sin y cos a)J, —cos y sin 87, . (12.7)
From (12.6) and (12.7) we easily obtain
Jy = exfr[w eFin], — Lz"sﬁ eti] - _sin ,31,]. (12.8)

159



Problems in Quantum Mechanics

Relations (12.5)and (12.8) can be used to calculate the rotation matrix elements D$? (., 8, y)
(VL8).
13. According to (V1.8) we have that

Dimla, B y) = € " drpe(Be™"™ (13.1)
where
i (B) = (jm|e™*r| jm'). (13.2)
Let us define a matrix A = ﬂ/Z[ (l) (1)] It is then easily shown that
1 0 0 1
AZn — (_l)n (ﬁ/2)2n 0 1 and A2n+1 = (_i)n (ﬂ/2)2n+1 1 o
where 7 is an integer. Since, in the {J?, J,} representation, ifJ, = A, we have
m|m= 3 —1
(jmle~#%ijm) = 1 cos /2 —sin B/2 » (13.3)
—3 sinB/2  cos /2

and hence, omitting for typographical simplicity the suffixes m and m’,
e~ 02 cos B2 e~G2y — o=k gin B2 eli/2y ]
v —
DV¥(a, B, 7) [ el2% sin B/2 e— 12y eli2x cos B2 et |
14. The essence of the derivation given below consists in establishing a one-to-one

correspondence between angular momentum operators and certain linear differential
operators. Thus, consider the following operators:

(13.4)

———Ea.;.., _.____=6_, (14.1)
in the use of which y., and y_ are to be treated as if they were real number variables until
all differentiations have been carried out, after which they are to be given the values
Ay = [(1)] and y_ = [(l)]’ i.e. they are to become the eigenvectors of the operator J,

(with the eigenvalues +3 and —3) for the particular case j = 3. Now consider the one-

to-one correspondence
Jx ~ 3(1- 0++74+0-)

Jy oz (- 84—+ )

J: ~3(0+ 04 —x-0_)
J+~x+3_, J_'Vx_a.;...

(14.2)
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It is easily verified that the operators on the right-hand side satisfy the same commutation
rules as the corresponding angular momentum operators. For example, we have that

1 | |
[7 (- 041400, 401 02 —14 a_)] - Lano—r0,

which relation corresponds to [J,, J,] = iJ .. The square of the angular momentum operator
will also correspond to a differential operator, thus

P =T (D +T T~ g 04 Oy -y 0_0_+2y,%_ 0+ 0_
$3s 04 +3_ 0_) = k(k+1),
say, where k=310, 0.4+73_0). (14.4)

(14.3)

These differential operators act on a two-dimensional spin space and lead to a useful
method of representing angular momentum eigenvectors. Let us consider an arbitrary
product of powers of ., and of y_, for example (%, )* (x_). It can easily be verified that this
product is a simultaneous eigenvector of J, and of J2, represented in the above form, with
the eigenvalues% (x—y)and x_—;—y (x_-;y_l_ 1) , respectively. As for the operators J _and J _,
their action on the product is to change the values of the exponents, in such a way that
their sum remains unchanged.

It follows that the products y/t™y/~™, with m=—j, —j+1,...,j—1, j, form a
basis (in 2j+1 dimensions) which is equivalent to the basis formed by the states |jm),
withm = —j, —j+1, ...,j—1, j. In order to satisfy the relations (VI.3), we must normalize

the products
) ) Z._i;_+mx_i—m
LJm) o W) = G m) G 143)

Consider now a rotation of a physical system given by the Euler angles « = 0, § = 0,
y = 0. Taking into account (13.3), we have that

J+m’ j—m
(Z+ Cos %‘i‘ X- sin %) ’ (_x+ sin %_’_ ¥_ COS %)
[(G+m)! (j—m')1]2
— (H . . P x.f:'mx_i—m
= L D0, B, O)jm) = 3ot B) 55—y

D(0, B, O)u(jm’) =
(14.6)

whence, by equating the coefficients of the base vectors, one obtains the Wigner formula
(14a).

15. Under a rotation given by the Euler angles «, 8, p, the state |jm) transforms in
general into the state | jm’y = D| jm), the inverse relation being |jm) = D~!|jm)’". In the
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present case, using (13.4), one finds that
1 \ i Ba ﬁ G/ 2y
2 >y / el¥2e cos 5 e

The required probabilities are therefore

w(+—) = cos? ﬁ w(——) = szﬁ (15.1)

\ e(lfz)a Sln 7e —(i/2y

2)"

2 2’ 2 2°

The average value of the z/-spin projection, according to (5.2), is equal to > cos B.
This average value may also be obtained by using the result (15.1),

(s,:):%w(+%)+(—%)w(—%)=2 cos E—%snzg %cosﬁ (15.2)

16. The spherical harmonics Y1, Y%, Y71 are the simultaneous eigenfunctions of the
operators 12 and [, for / = 1. Their transformation under a rotation is given by the
rotation matrix DV whose clements are DD («, B8, y) = e=*"d) (B)e="™'. Using the
Wigner formula (14a), we find that

V2

%(1+cosﬁ) ——5—sinf %(1—003/3)

dO(B) = 72 sin cos 8 \/2 sin 8 (l6.1)

%(l—cosﬁ) va sin 8 %—(H-cosﬁ)

L -

and therefore

- o _ 1 1
Yy % e~*(14cos Ble=? — # e~ sin 8 %e— (1 —cos B)e’” | | Y1
Yy | = % sin fe—% cos f - % sin Be” Y9 (16.2)
yrv % e*(1 —cos Ble—" # e sin 8 % e*(1+cos B)e || ¥it

. 1 L JL

17. Choosing the z-axis along the direction of the magnetic field, let the z’-axis, along
which the component of the total angular momentum has a well-defined value m, make
an angle 8 with the z-axis. Now, as in problem 15, in order to determine the relative inten-
sities of the 2j+1 = 3 beams, we must use the inverse of the transformation (16.2). The
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required intensities are, for m = 1:

o+ 1) = cos? g, o(0) = % sin? 8, o(—1)= sin"—g,

for m = 0.
w(+1)=1Lsin?8, o(0)=cos?B, w(—1)= 4 sin?B,

and form=—1:;

w(+l)=sin4—§~, w(0)=—;vsin25, w(—l)=cos4§.

18. First, let us find the form of the eigenfunctions of the operator j,. In matrix form

we have
o (A R B S
= + = i 18.1
/ [o LJTlo -3 0 -1 (18D
Since I, = —i— 6 5 , the differential equation satisfied by the eigenfunctions of j, can be
written in the form
-, 0 +i 0
) ¥ 1
0 —1 a—(l) — _2‘ P Yo
ie.
0 1 i 1
—z——a'fbl +5 1= myyr, 61;)52 5 Yo = mype. (18.3)

It follows from (18.3) that the ¢-dependences of the functions v, and . take the form of
L1

the factors e!™—12% and e™+1?¢ respectively. Since [1/)
2

] is also an eigenfunction of the

operator 12, we can infer that

=[] [t ) 184

where the Y430, ¢) are the usual spherical harmonics (note that m, is a half-integer),
and Ry(r), Ro(r) are radial functions, We can find a relation between Ri(#) and Ra(r) from
the condition that y is also an eigenfunction of the square of the total angular momentum,
i.e. that j2p = j(j+ Dy.
Since
2 = (4+s)(1+5) = B+s2+2Ls = P+824-2(Lsx+ s, +1.55)
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.2_[12 0]_{_[% 0]+[ l; lx—il,]
Y=lo e|*tlo 2 ln+ia, -
we require that

P+3+/, I_ ROY0, )1 . Ri(MYT VX0, ¢)
[ I, P4i —1,] [Rz(")Y;n’H/z(@, ¢)] =JU+) [Rz(r)Y?'f“”w, )

or, in matrix form

]. (18.5)

Since, further, the spherical harmonics are such that

LY? = (U—m(+m+ DY,
I_Ym = VI+EmY(—m+ D) YFL,

it follows that R(r) and R,(r) must satisfy the following homogeneous equations
[[{+1)—j(j+ D) +m;+§] Ri++/(I+5)—m2 R, = 0,
AV ({I+L2—md R+[I0+ 1D —j(j+ 1) —mj+ 4] R: = 0.

From the condition that the determinant of this system must vanish, we obtain an equa-
tion which gives two possible values of j, viz., j = [+ and j = [ — .
Choosing j = [+, we find that

R() = VA m i ER®),  Ru) = v/I—m+ L RE), (18.7)
while, for j = /—1,
Rl(i‘) = —4/ l—mj+%R(r), Rz(r) = A+ mj+%R(r), (18.8)

where R(r) is a function which can be determined when the central field is specified.

Finally, then
] [+mi+3 m,—1/2-
If i1
I_mj+ % my+1/2
V=

_ Vl_mj-'- % Y;ﬂj—1/2
2+1

l/l'l‘ mi+ 5 yrmt
241 !

(18.6)

VI, j=1+12,my = R(r) (18.9)

W, i=1—1/2, m, = R(1) (18.10)

The factor 1/ (V214 1) arises from the normalization of v, as can easily be verified, since

l+mj+3  I-mj+s
21+1 2[+1

= 1.
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Denoting the spin wavefunctions by y_ and y_, the result may be written in the following
form

I+m+ 5 _ I—m;+ 1 .
VI, =212, my = l/_ﬁﬁj—l—g ROYTI™ 2y, + ]/——27_’;1—2 RYYPH 2 (18.11)

1 1
Vi, jmim12,my = — V% ROY? Py, + V% R(HYT_. (18.12)
The expressions (18.11) and (18.12) can also readily be obtained by using the theory of
the addition of angular momenta (see section 3) and the appropriate Clebsch-Gordan
coefficients (Table VI.2).

19. In the “vector model”, eigenstates of angular momentum are represented diagram-
matically by vectors whose magnitudes and z-components only are supposed to be known
(Fig. VI.4). Some of the properties of the quantum mechanical addition of angular mo-

FiG, VI..4.

menta can then be represented by the addition of the corresponding vectors. Thus, in the
present problem, we are asked only for the relative orientations of the vectors 1 and s,
in an eigenstate of the total angular momentum j = 1+s. Consider a fixed direction of the
vector representing the latter. 1 and s can then be regarded as “precessing” about this
direction (Fig, V1.4), with constant magnitudes v m and V/s(s+ 1) respectively. Then,
by simple trigonometry, if ¢ be the angle between the directions of I and of s,

JG+ D) —I{l+1) ~s(s+1)
24/ 10+ 1) s(s+1)

cos ¢ = (19.1)

where j=I/+1,/1=0,1,...,s = 7.
The expression (19.1) can be used to determine the energy corrections (“fine structure”)

in the spectra of hydrogen-like ions due to spin-orbit interaction.’

t Le. the interaction between the intrinsic magnetic moment of the electron and the effective mag-
netic field due to the motion of the (charged) nucleus relative to the electron.

165



Problems in Quantum Mechanics

20. The possible values of the z-components of the orbital and of the spin angular
momenta, and the corresponding probabilities, can be obtained immediately from the
results of problem 18 (viz., the expressions (18.11) and (18.12)). These probabilities are
tabulated as functions of m; for given /, and j = /43 or j = I—, in Table VL3,

TABLE V1.3
Orbital :
: lue of
angular (zsgg Value of
momentum | engy | = 141 J=1-3

(z-component)

I+m+} I—my+3

7o z 2]+1 2141
? 21+1 21+1

The tabulated probabilities can be used to calculate the average values of /, and s,, thus

_ 1\ I+m;+3 LN I—mp g 20m
Eomtenis = (’"1—5) T (’"f‘*“"z“) 2+l v 20D
and, similarly,
2(l4- 1)y m;
Ij=i—1e = —(—2—]:_—)1-—}, (20.2)
n; m
(S)i=t+12 = 37 —{il s Si=loip = —ﬁ- (20.3)

21. This problem can be solved in an elementary way by using the Pauli matrices to
represent the spin operators (see, for example, problem 10) or, more directly, by using
the Clebsch—Gordan coefficients. With the values given in Table VI.2, the results can be
written down systematically as follows:

TABLE V1.4
Simultaneous eigen- Eigenvalues
functions of s? and of
A 5 S,
Py 1 1
1
— PO+ P | 1 0
\/2 3 v
2y ® 1 -1
\% [P ® — 7 My®] 0 0
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The possible states thus consist of a triplet of states with total spin s = 1, and a singlet
with s = 0.

One can verify directly that the above spin functions are also eigenfunctions of the oper-
ator s;.ss, with the eigenvalues ++ and —2 for the triplet and for the singlet states
respectively. Thus, e.g., for s = 0

(5,.-S2) %o = %(SZ_S%_SE) fo = _%(S%‘*‘S%) o = _‘21‘(%+%) Yo = —a1%o-

22, The operator 6.6 has the eigenvalues + 1 and —3 for the triplet and for the singlet
states respectively (see problem 21), i.e.

(61.62) Ys—1 = + Xs=1, (61.62) Ys=0 = — 3¥s—0. (22.1)
By iteration we obtain the results
(61.62)" Ys—1 = Xs=1, (61.62)" Ys=0 = (—3)" %s=o. (22.2)

Since the three triplet states and the singlet state together form a complete orthonormal
basis in the space of the spin states of the two-particle system, it is sufficient to verify the
linear dependence of (61.62)" on 61.0: for these states. Let us suppose then that

(01.62)" = A+B(01.02), (22.3)

where the coefficients 4 and B are to be determined. Applying both sides of the operator
relation (22.3) to the triplet states and to the singlet state, we obtain

Zom1= (A+B) fs=1, (=3)"Ys=0 = (4—3B) Y50, (22.4)
whence A+B =1, A—3B = (—3)", so that
A=1{3+(=3r), B=1[1-(-3rl (22.5)

Since the operator relation (22.3) is then valid for the complete set of spin states considered,
it will be valid for all spin states of the two-particle system.

Note that, for n = 2
(61.62¢ = 3—2(0;.02), (22.6)

a result which is sometimes useful.

23. From the identity

(S.r2 = 1(61.r+05.12 = [(61.12+(02.12+2(61.1) (02.1)] = 3[(61.1) (2.1)+77],

it follows that
(61.1)(62.1) = 2(S.1)2—r?,
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and thus the “tensor force” operator S12 can be put into the required form

Sig = 2[3(5‘ ’)2—52]. (23.1)

72

24. The Hamiltonian H is invariant under rotation and reflection (under a reflection,
r and p transform into —r and —p, and the spin operators remain unchanged). It follows
that [, J] =0 and [H, P] =0, respectively. There remains to be shown only that
[#, 8?] = 0. This clearly follows from the results of the preceding problem, with the ob-
servation that [Sis, S$?] = 0.

Note that 1 and H do not commute, so that the eigenfunctions of the problem do .
not have a well-defined orbital angular momentum. |

Remarks: The interaction between nucleons represented by the “tensor force” operator
is only one of many needed for the construction of a “phenomenological” two-body poten-
tial adequate for the description of nuclear phenomena; such a potential is usually taken
to be a linear combination of operators of the following forms

Vi(r) (24.1)
Va(r)(c1.0,) (24.2)
Vai(r)1.S) (24.3)
V({r)Siz. (24.4)

Note that if ¥ contains only terms of the form (24.1) and (24.3), the energy eigenfunc-
tions can be taken to be simultaneous eigenfunctions of the operators P, 12, S and J,,
and the degeneracy is (2/+ 1)-fold. For terms of the form (24.1) and (24.2), the energy
eigenfunctions can be taken to be simultaneous eigenfunctions of P, I2, S?, 1, and §,, since
(24.1) and (24.2) are both invariant under rotations performed separately in coordinate
space and in spin space, and hence commute with 1 and with S. The degeneracy is then
(2L+1)(2S+1). If, however, a term of the form (24.4) is present as well as any or all of
the others, then only P, S%, J2 and J, remain of the operators which commute with V.

25. As mentioned in the remarks made at the end of the preceding problem, the Hamil-
tonian in this case commutes with 1 and S, so that the eigenfunctions can be taken to be
simple products of spin and coordinate functions, the latter corresponding to well-defined
angular momenta (/, m). If we take the spin functions to be those given in the results of prob-
lem 21, then the potential energy term in the equation for the coordinate functions has
two different values, viz., ¥1—3¥, and V14V, for the states with S = 0 and those with
§ = 1 respectively. Thus, instead of having to solve the full Schrodinger equation for ¥
we need solve only two equations, for the coordinate parts of the eigenfunctions of the
§ = 0 states and of the § = 1 states respectively.
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Ch. Vi Orbital Angular Momentum and Spin

26. In spherical polar coordinates, r = (r sin 8 cos ¢, r sin 6 sin ¢, r cos 6), we have
S, cos ¢+S, sin ¢ = (S, e~ %+ S_e't),

2
%(S ap2 = [% (S, e *+S_e*)sin 0+ 8, cos 6]
1 ~2i¢ gin2 0 lszzm'zg 1 ~id gin O
= IS?Fe sin +I 2 2% gin +5(S+SZ+SZS+)+6 sin 0 cos ¢
+ % (S_S,+S5,5_)e sin 6 cos 6+ 52 cos? B+%(S+S_+S_S+) sinZ 6.

Using the relations
[§,,8_]1=25, $*=8.5_+82-8, S5 +85.8, =25,85_-25,=28*-S52,
we have that

Sp = 38% =29 gin? 0+ 3(S,S,+ 5.5 )¢~ sin 6 cos 0
—(352—S?) (1 —3 cos? 0)+ 3(S_S,+S5.S_)e™ sin 0 cos 6+ 352 €2 sin? 0.

In terms of the spherical harmonics with / = 2 (A.29), we find that
m -2 -1 2 23y 0
S1s = 5 SEY 32+ (5.8, + 88, 5 1+ 3 (35%-S3)r}

(26.1)
—(S_S,+S8,S)Yi+ S&Yg].

27. The components of the operators r, p and 1 satisfy the following commutation
rules (see problem 3):

Ui, xi] = teapxr, Wi ] = dewpr, [ L) = iewd;. 27.1)
Let A,, A,, A, be the components of any vector operator, which is such that
i, Akl = iepids, (27.2)

where the indices 1, 2, 3 stand for the x-, y- and z-components as usual. Let us define
the quantities

AP = ‘\/LE (A, +id,), AP =4, AY = —1—2* (Ax—id,). (27.¥

/2

Then, after some elementary calculation, we find that

[[y, AP] = v/2—g(g £ DAY, (27.4y
[1,, AD] = gAD (21.5)
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For example, one of the two relations (27.4) can be established as follows:
[, AP = [h, Al+illy, 4] = —idy— A, = A/2 AP,

Taking into account (27.4), (27.5) and the definition of the irreducible tensor operators
(VI.11), the problem is solved.

28. Using the Wigner-Eckart theorem (VI.12), we obtain the required matrix elements in
the form

Ao | APV 'y = — (|| AD|| 1) (I, 1, 0, |1, m),

\/21
where the 4 are defined in (27.3)above, and the expressions (/ || £ || I’} depend, for a given
A, only on / and /.

In the following we shall require the Clebsch-Gordan coefficients (/', 1, n’, § |/, m) given
in Table VL.1. Suppose first that ¢ = —1. Then, since m'+g = m, we obtam?m = m+1.
For I’ we have three possibilities, viz., / = /'41 or /', so that, conversely, /"'= [/F1 or /.
Then, we can write directly, for the non-vanishing matrix elements,

Lm| A 1=, m+1) = 2220 i 4 1,m+1, —1(L m

_ [(l’—m—l)(l—m)]“2 — [(l—m—l)(l—m)]m (28.1)
A2+ 1 2/ —1)21 @ =-naei+1
‘where the coefficients a; ,_; = (/|| #®||/—1) are independent of m. Similarly
[—m)(I+m+1) 712
dm | A1, m+1) = a,,,[( (21’:)1() s 1))] 282)
" (I4+m+2)({+m-+1) 12
| 4(1) =
<ls m IA—-ll l+ 15 m-+ 1> al, I+1 d(2l_+_ 1)(21_'_2)(21_[_3)] (283)
Forg=0,m =m
[ ({—m)(I+m) V2
<l, m !A81)| /- 13 m> =41 (él-i- 1))1((21+ %)] (284)
m
L,m|[AP| L, m)y = a;, [+ D Id+ DE? (28.5)
(—m+1)(I+m+1) 72
)

Finally, the matrix elements for g = + 1 can be obtained in the same way, using the relevant
-Clebsch—-Gordan coefficients.

The selection rules for the orbital and for the “magnetic” quantum numbers are thus
!l -1lorl-~[+1,and m - mor m - m+ 1, respectively.
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29. Let us denote the parity operator by P, i.e. Py(r), = yp(—r). Then, if A is a polar
vector operator, it anticommutes with P. But P is diagonal in the {12, 1} representation (see
problem 8) and thus, in this representation, A has non-vanishing matrix elements only off
the main diagonal. Therefore, taking into account the result of the preceding problem, the
selection rules giving changes in the orbital quantum number for transitions induced by
polar vector operators are Al = * 1. Clearly, for axial vector operators, the selection rule is
Al = 0.

30. Using the results of problem 27, one can write the components of the vector n in
terms of irreducible tensor operators, and thus the required matrix elements can be deter-
mined using the Wigner-Eckart theorem (see problem 28). Since n is a polar vector, the
dependence on m of the non-vanishing matrix elements is given by (28.4) and (28.6).

There remains for us only to determine g, ,,, and a; ;_;.

Putting m = 0 in (28.6), we have that

(30.1)

41 e
{,0] n;|1+1, 0>=_al,l+1[ i ] ,

U+1)(2+3)

whereas, by direct calculation,

(0,0 n,|1+1,0) = (1,0 |cos 0| 1+1,0) = | ¥*(®, $) cos 6Y7,1(6, ) sin 0 d6 dip.  (30.2)

But, according to (A.28),
[+2 0 [+1 ¥

Y .
A/ QI+3)(21+5) ’*2+V(21+1)(21+3) !

0 —
cos 0Y7,, =

Using this result in (30.2), the integration is easily performed. By comparing the result with
(30.1) we find that g, ,,, = —V//+1. Similarly, 4, ,_, = Vi.

31. If the expressions (31a) and (31b) are compared with (26.1), it becomes evident that
we have to prove that the quantities

TP =Y} TP=Y), TP=Y) TY=Y;', TH=Y3%
and

SP = (S, SO =5.5,+8S5, SP=V73BEr-S,

S@ =8_8,+8,5_, S%=(S_)0,

are in fact the components of two second order irreducible tensor operators T® and S®.
This statement is evidently valid for T@; for S® we need to verify the validity of the follow-
ing commutation rules:

(54, SP] = v/6—qlg £ DSG2 3L1)
[S., SP] = 457 (31.2)
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Consider, for example, the commutation rule

[S+, S%] =[S, (S_P] = VE6—(=D(-2+ 1S = 2AS_S,+5,5.), (31.3)

which is one of the set (31.1). This can be verified directly by writing S,S_—S_S§ L =25,
multiplying on the left and then on the right by S_, and adding together the relations thus
obtained. The remaining rules can be verified in a similar way.

32. The Schrodinger equation for an electron in a potential ¥ and a magnetic field H =
curl A is

5 0¥ 1 e \?
in 2 = Hy, H—fn(pTA) +V+Voin, (32.1)

where V', ;. is the operator which represents the potential energy of the interaction between
the intrinsic magnetic moment of the electron and the field H. The wavefunction y is of
course a function of the position and of the spin orientation of the electron.

By analogy with the classical expression for the potential energy of z} magnetic dipole in a
field H, the term V', is written as \

e e 1
Veoin = — (m—c s) H=—2"(.H, s=ho (32.2)
Equation (32.1) then becomes
L Oy 1 e \2 e
A (p_.Z A) v—— (5. Hyp+Vy, (32.3)

which is sometimes called the Pauli equation.
Consider now the particular case of a homogeneous magnetic field H. The vector poten-
tial for such a field can be written in the form

A= L(Hxr). (32.4)

It can be seen from (32.4) that in this case, div A = 0, and hence that P-A—A.p=
—ifi div A = 0. Equation (32.3) then becomes

e2

e e
of = 2m ¥ omg XD py— = 6 Hy o HXYp+Vy. (325)

But (HXr).p = H.(rXp) = H.l, where 1 is the orbital angular momentum operator of the
electron. Hence (32.5) becomes

. Op PP _ o é?
lhar—ﬂ’#’—(ﬂl-H)T/’ (#s-H)V’TWle’)Z‘P‘FV% (32.6)
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in which
e
"' Ome

7 1 (32.7)
arises as an operator for the effective magnetic moment due to orbital motion (in contrast to
{2, which is the intrinsic magnetic moment operator). Note that the ratio of the orbital mag-
netic moment g, to the mechanical angular momentum 1 is (as in classical physics) equal to

-2—8—— . For the corresponding quantities attributed to the spin, this ratio is twice as large, a
mc

fact which was considered very puzzling until explained by Dirac’s theory of the electron.
For a system of electrons in a homogeneous field H, Pauli’s equation takes the form

e2
8mc?

0 1 e
in¥ _ {-—_Zpi—Tme—c(L.H)—%(S.H)+

H 2
or  \12m% 4]“:( er)+U}tp, (32.8)

where L = ¥'l, is the total orbital angular momentum operator, S = } s, the total spin
% %

operator, and U is the potential energy of all interactions other than those with the field H.
33. Let us seek a solution of the Pauli equation for one particle in the form

y= [:ﬁj = ¢(x, 3,2, 1) [ﬁg] (33.1)

where ¢(x, y, z, #) depends only on the particle’s position, and %(#) only on its spin orienta-
tion. One finds immediately that ¢(x, y, z, £) has to satisfy the equation

2
ih%‘ii - -2-:"-— (p—%A) o+ Vo, (33.2)

while y has to satisfy the equation

ih—a% [ﬁg] = ° (.H) [ﬁg] (33.3)

34. Choosing the z-axis to be in the direction of the field, the vector potential A can be
written in the form

A.=—Hy, A,=A.=0, (34.1)
2
and the Hamiltonian of the Pauli equation, except for the square term containing %2— , 18
_ 1 eHy\* p;  p: eh
H_Tm“(px—l- c ) +2m+2m_mcSzH' (34.2)
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We observe first that H is time-independent and commutes with 5. It follows that the time-
independent wavefunctions are given (cf. the case of the spinless Schrodinger equation) by
a “time-independent Pauli equation”

Hy = Ey, (34.3)

and also that the z-component of the spin in the state p has well-defined values s = + % By
separating the position-dependent and the spin-dependent parts of v (= ¢y say), we find
that, for a given value of s, ¢ obeys the following equation :

1 ey \2 , ﬁ _
B [(Px"%“ 7) +Py+PzJ¢— e sHp = Ep. (34.4)

Now the Hamiltonian of this problem is independent of x and of z, and it therefore come
mutes with the momentum operator components P and p,. These components are therefore
constants of the motion, and we accordingly seek a solution ¢ of the form

b =& (). (34.5)

Substituting (34.5) into (34.4), we obtain the following differential equation for @(y):

2
2 H
@"+ 2m [E+ eh SH—L—E (e___
#2 mc mc

2
) (y—yo)z]@ =0, (34.6)
in which we have written y, = —cp,/eH. Equation (34.6) is formally the same as the Schrédin-
ger equation of a linear oscillator of frequency w = |e|H /mc, whose centre of oscillation is at

the point y = yo. We can therefore, from (17.7) of Chapter II, write down directly the pos-
2

. . eh 7 . .
sible values of the quantity (E+—SH —?%1—), since these values are just the energy

mc
eigenvalues of the oscillator; thus
2
E+ g P _ (e Voo
mc 2m 2
whence
1 le| % Pt _
E= (n+§+s) “tH+ i, a=1, .. (34.7)

The corresponding eigenfunction are (except for a normalization constant):

v—i—p +p.Z } }H
b= e | o m[ e o] s

where H, is a Hermite polynomial.
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We observe that there is a degeneracy in the energy levels (34.7) owing to the spin. Thus,
the energies of the states for a given n=n" and s = 4, and for n = '+ 1 and s = —
respectively, are equal, although the corresponding wavefunctions are clearly different.

35. This problem is best solved in cylindrical coordinates o, ¢, z, in which the z-axis is
taken to be in the direction of the magnetic field. Suitable vector potential components are
then 4, = A, = 0and 4, = %H o, and the Schrodinger equation becomes (cf. problem 32)

2 2 o2 ; 0 2[]2
# [1 6( 61/)) %y 1 1/)]+l€hH y  e*H Ep.  (35.0)

Qag

T 2u |0 bg o2 T o* 07 | T 2uc " 56 T Suc

Since the variables ¢ and z do not appear explicitly in equation (35.1), the operators /, and
p, commute with H, i.e. the z-components of the angular momentum and of the linear mo-
mentum are constants of the motion. For this reason we seek a solution of the form

ip;z

y(o, §,7) = NR(g)e™ e " . (35.2)
Substituting (35.2) into (35.1), we obtain for the radial part of the wavefunction
d’R 1 dR 2uE —p? eH\* , eH m.
@ e d¢+[ 7 (ZCh) S m‘"‘g?]R_O'
Let us introduce the new independent variable £ = (|e| H/2ch)o®. We then obtain

(QuE—pHc  m
dhlelH 2 (35.3)

ER'+R + (—§+ﬁ*%2)R =0 A=

If can be seen that, as & — + o=, and as £ — 0, the solution of equation (35.3) behaves as e/
and as £"1’2, respectively. We therefore take a trial solution of the form

R = e—%2EImi2¢)(E), (35.4)
Substituting this into (35.3), we obtain for w(£) the differential equation

' +(|m|+1 —E)co’+( —Jﬂlzil—)w =0 (35.5)

whence, by (A.26),

w=F[—(ﬁ—’m12+l), »ml+1,5]. (35.6)

For the wavefunction to remain finite as £ — + o, the number f—(|m|+1)/2 must be a posi-
tive integer. Denoting this integer by #,, we find the energy levels, from (35.3), to be given by

_lelH Im|—m+1\ p;
E=10 h(ng+ ; )+2u' (35.7)

This expression is the same as (34.7) if we take s = 0 and n,+(|m|—m)/2 = n.
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36. The wavefunction is a two-component spinor y = B{H

] satisfying the equation

i g—’t‘ = Vipin s (36.1)

where V;, = —@ . H (& being the magnetic moment of the particle).
Choosing the z-axis to be in the direction of the magnetic field, equation (36.1) becomes

o Oxs L Or- _
ih w = _MHx-i-’ ih 7 = MH%__ ’ (36.2)
whence
X+ = C1eXp (%LIH dt), Y- = Ca €Xp (—%fH dt). (36.3)

The constants ¢; and ¢, remain to be determined from the initial conditions and the nor-
malization |y [2+][y_[2 = 1.

37. The polarization of the beam depends on the relative numbers of neutrons in dif-

ferent spin states. Let ustake as a basis for these spin states the eigenstates of s,, with the eigen-
. / L] - »

values + % To be specific, let us'suppose that all the neutrons of the incident beam are in the

s, = +% state, namely in the 3 = [(1)} state. Since there are no forces which could reverse

the spins on reflection or on penetration through the surface, the incident, the reflected and
the transmitted waves will be of the form

Ay,e™r, By e Cy.ek’r; k= % : (37.1)
The quantities k, k’ and k" are related to the total energy E and to the magnetic moment gy

of the neutrons by the relations

h2k?
2m

2[-'2 "2
’*_2”‘; -, B2 _p, uoH. (12

£, 2m

From the usual continuity conditions on the wavefunction, and on its first derivative with
respect to x, we find that

ky =k, =k, k,=k,=k)

A+B=C, k., A+k.B=k/C. (37.3)

From these relations it follows that k., = —k_, and hence that the angles of incidence and of

reflection are equal; also that
B kx_k"t’ C 2kx
A"tk ATkl (74)
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and, from (37.2),

1X4 2m
kY =k, ]/1+},I—2EMOH. (37.5)

The reflection and the transmission coefficients at the surface are then given by

ky—ky' \2 Ak ks’

R=(eik) T m e

If the spins of the incident neutrons are all in the y_ = [(1)] state, the results of the calcula-

tion are the same, except for a change of sign in the expression for k,, , which becomes

Ky = ky V ~ g ol - (1.7

38. Restricting our considerations to spin orientations, the density operator can be
represented by a 2X 2 matrix (s, || 5.); 5,, 5, = £ #/2. Now, if we denote the Pauli matrices
by o, (x = 1, 2, 3) and the 2X2 unit matrix by 7, it is easy to verify that

3
0,05 = Sl +i Y €50y, (38.1)
=1
where ¢, is the completely anti-symmetrical tensor of order 3 (see problem 3). From (38.1)

it follows that
Tr (0,) = Tr (Io,) = 0, Tr (0.05) = 2d.5. (38.2)

These relations show that, in this case,

1 1
Q=1 M=_—=q,, «=123, 38.3
3 (38.3)

V2

can be chosen as the required orthogonal operators.
The expansion of the density matrix in terms of these operators (in the Schrédinger
representation) is then

3
0 = o000 Z_:l o0, o = _ﬁ( I=—~, o®W=—={(6.). (38.4)

V2 f \/_

Writing {0,) = P,, so that P, denotes the components of the polarization vector P =
(Ps, P2, Ps), the expressions (38.4) become’

. 1 3 _ 1 14+ P; Pl—ipz]
Q,—-2—(I+rz=:1Pada) —{+P.o) = [P1+IP2 1—p; | (38.5)

t The o matrix occurs in the form (38.5) in the study of photon polarization; the quantities P, P,, Py
are then called Stokes’ coefficients.
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In order to determine the equation of motion of P, we observe that, using equation (38.1), it
is possible to write

D,ﬂ = 7;— —; Tr {H[O‘a, O'ﬁ]} = —}1{ 21 Efay 1T (Ho‘,,),
Y=
Duy = Dy = 0. (38.6)
Then, from (V.16), it follows that
dP, 1 3
= _ T . .
ar 7 ﬂ,Z’:l €y T1 (H0y) Py (38.7)
For a spin system in an external constant magnetic field H, we have
=—u.H=—4yhe.H, (38.8)
so that equation (38.7) becomes
daP, 1 3
7; = ——2—- N ?’Z‘;:l Ehuy Tr {G@Gy}Hde. (389)

Taking (38.2) into account, and using the obvious relation &gy ApB, = (AXB), for the Car-
tésTachTrﬁﬁﬁénts of two arbitrary vectors A and B in a right-handed system of axes, it can
be seen that (38a) then follows from (38.9). Note that equation (38a) has the same form as
the classical equation for Larmor precession.

39. Denoting by H the operator representing the potential energy of interaction between
a spin and the magnetic fields Hp and Hj, and using the notation of problem 7 of Chapter IX,
we have that

H = —yh[Hos,+ Hi(8, cOS wt+5, sin w?)]

= Hwos, + Jon(s, e +s_eton), (39.1)

As in the preceding problem, we will use the density operator formalism. Now the thermal
equilibrium (Boltzmann) distribution of the spins (brought about by the weak interactions
between the spins and the thermal vibrations of the crystal lattice) is given by the equilibrium
density operator:

exXp ( — E)
(e) kT
@ = H .
Tr [exp ( — E) :,

If this thermal equilibrium is disturbed, we assume that the “relaxation” processes which
tend to restore the equilibrium can be characterized by a relaxation time 7 such that the rate

of change with time of the spin system density operator o,, owing to these processes alone, is

0,— 0%
T

(39.2)

. Thus, bearing in mind equation (V.16), one can see that, in the presence of

equal to
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the rotating field, the equation of time-evolution of the density operator becomes in fact

do: | o—0 _
YR —[H o], (39.3)
1.€.
04 _ A 80P
5 [H At N-——"—"73, (39.4)

where A(¢) = o — o).

Assuming that the energy of a spinin the external magnetic fields is < kT, and expanding
the exponential function in (39.2) as a power series, equation (39.4) can be written, in terms
of the matrix elements of 4, as

cuoole—“‘" ’

9 1 1 A
(_a_t.—m)()—I— )Alz = —Elwle_mt(d22_dll)+2k]1

0 1 1 , .
(6! )An 5 w1(e~ A1 — ' Ay5),

Azz =4y, doy= 4.
We now seek solutions of these equations in the form
Ay = Ry, dig = Ppe=, Ay = 0ne™, (Qn = Pr).

After some elementary calculation we find that

A ww3T?
R 2kT
U7 T+ (wp+ 0)r2 + 03’
) (39.5)
P — h i 1 +i(wo+w)T
BT 2kT T Y 14 (g Fw)Pritwit?

In order to determine the real and the imaginary parts of the susceptibility ¥, let us calculate
(M) = —Nyh Tr (0s:) = —Nyh Tr [(0o+ d)ssl.

We find after some algebra that
sin wt —(wo+ )T cos wt

<Mx> = onl Cos Wi+ x()(D’Z'Hl 1 +(COO+(D)2‘E'2+CO%T,2 (396)
On the other hand
(M.+iM)) = y(H,+iH,) = (¥’ +iy'") (Hy cos wt+iH, sin wf)
. = Hy(y' cos wt—y'" sin wi)+iH(y' sin wt+ y'' cos wi)
whence
M, = Hy(y' coswt—y'" sin wt). (39.7)

By comparing (39.6) with (39.7) we immediately obtain Bloch’s relations (39a).
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CHAPTER VII

Systems of Identical Particles.
Second Quantization

1. Symmetry and Anti-symmetry of State Vectors

Particles of a system are said to be “identical” if the dynamical properties of the system are
not changed by any permutation of these particles. Consider a complete set of observables
for any one of a system of N identical particles and let |%,,» denote the simultaneous ortho-
normal eigenvectors of these observables, (y, 15,0 = By,
Now consider the Hilbert space & which consists of all linear combinations of the basis

vectors'
lwl(’::)wf’zz) e wﬁ’ﬁb = Iwh)(l) prz>(2) "t IwPN>(N) " (VII.I)

In the state (VIL.1) the particle 1 is in the state |9, the particle 2 in the state |%,,)» and so on.
A permutation of the N particles modifies their distribution among the N states K775 N
,,)- Note that any permutation can be written as a sequence of transpositions of pairs
of particles.

Let |u) be a vector of &, and Pan operator which performs a permutation of the N par-
ticles. The vector |u) is said to be symmetrical if, for any arbitrary P, we have P |u) = |u),
and antisymmetrical if P |u) = (—1) |u), where p is the number of transpositions equiva-
lent to P. The symmetrical and the anti-symmetrical vectors form mutually orthogonal sub-
spaces in &, the corresponding projection operators being (Fig. VIL1),

1 1
S=gTIP A=Y (1P, (VIL.2)

where the sums are over all possible permutations P of the particles.

¥ The vectors of & are usually specified in practice in a representation in which the position operators
x;y:z; and the spin z-component operators s! (i= 1,2, .. .) of the particles are all diagonal. In such a represen-~
tation the vector (VIL1) is represented by a product of one-particle wavefunctions

¥, (ED) v, (82) ... Pup(én) (VILL.1")
where £, stands for the position and the spin eigenvalues of the ith particle.
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[ g,(SJ
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Fia. VIIL.1.

aj

It follows from (VIL.2) that the effect of 4 on a basis vector can be written in the form

1 E W)Pl>(1) |1PP1>(2) A prl>(N)

2

Alyodsy - von) = 37 | 1900 1920 o 9™ (VIL3)
Wpﬁ(l)"l’pﬁ(z) - W’m)w)

which is called a “Slater determinant”.

Particle symmetry rules. By comparing theoretical predictions with experimental obser-
vations, it has been found that systems of particles which have spin % (electrons, protons,
neutrons, etc.) form totally anti-symmetrical states only (“fermions™), and that systems of
particles with zero or integer spin (photons, 7 mesons, etc.) form totally symmetrical states
only (“bosons™). No particles are known which can form both types of state, or states having
no specified symmetry. Hence, the possible states of fermions, and of bosons, respectively,
can be written as

0= A D),

- @) ) (V11.4)
I'P> =S‘w§1w§z 'I’;N>

The Pauli exclusion principle states that no two fermions can ever be simultaneously in the
same quantum state; it can be seen to be a consequence of the above considerations.

2. Isotopic Spin

The charge independence of nuclear forces allows us to consider the proton and the
neutron as different states of the same particle, or nucleon. Thus, in addition to position and
spin variables, the state of a nucleon requires for its specification a “charge” variable which
can take two values. Therefore in the study of nucleon systems a formalism similar to the one
developed for the eigenstates of spin 3 can be used. It is called the isotopic spin Jformalism.
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Briefly, the base vectors of a two-dimensional “isotopic spin space” can be defined to be

1 0
Xp = (O)s In = (1), (VII.S)
and the operators representing isotopic spin and nucleon charge are then
t= %T, q= %(1"{-‘83)6, (V11.6)

where the operation of t (71, 72, 73) on the base vectors can be represented by Pauli matrices.
For a system of N nucleons we can define a total isotopic spin operator and a total charge

operator

T=Y1, Q= (§+ Tg)e. (VIL7)

The m-mesons, =", 7% 7~ can be considered as constituting three states of a particle having
an isotopic spin equal to unity, with base vectors

1 0 0
Xnt = (0)7 Ao = (1)5 K = (0) (VIIS)
0 0 1

In this case the operations of the three components (61, 8., 05 say) of the isotopic spin opera-
tor are given by the matrices derived in problem 11 of Chapter VI. _
For a system of w-mesons, we can then define a total isotopic spin operator and a total

charge operator:
6= Z 8, 0=0;. (VIL9)

Experimental data show that, in the interaction of 7 mesons with nucleons, the total isotopic
spin I = T+ @ is a constant of the motion, provided that Coulomb forces can be neglected.

3. Second Quantization
Let us denote by 3, ng, . . ., the numbers of particles in the states
%o ¥ .- Xm=N

In the method of calculation known as second quantization, the basis vectors (VIL.1) are
specified by the corresponding occupation numbers ny, no, . . .

[vbvbe .. Yoy — |mang ..., (VIL10)

For a system of bosons the appropriate state vectors are the symmetrical linear combinations

of basis vectors
n1! n2! ‘e

1/2
iy . YO = S|mny L) = (T) T [pOp@ Ly (VILLL)
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Here, in contrast to (VII.2), the summation is over all possible distinct permutations of the
indices py, pa, - . ., Py (note that some of these may have equal values, in which case no new
state is obtained by permuting them).

It is convenient to define the following operators:
(1) the “annhilation” operator

a;|mng ... B ..y = \/E,-]nlng cee Bl o) (VIL.12)
(2) the “creation” operator
ai lmng ... n; .. S=Am+lmng om0, (VIL.12")

and (3) the “particle number” operator
n; = ai'a;. (VIL13)

The following commutation rules are then valid
[a,at]=1, [ana]=0, [af,af]=0, ik (VIL.14)

For a system of fermions, on the other hand, the appropriate state vectors are the anti-sym-
metrical linear combinations of the basis vectors:

lmng .. YD = Alnmn, .. ). (VIL.15)

“Annihilation”and “creation” operators can again be defined, although not quite so straight-
forwardly as for boson states; they obey the “anti-commutation” rules:

{ai, a7y =1, {a,a;}=0, {af,a}} =0, ik (VIL.16)
where {A, B} = (AB+BA).

The method of second quantization is useful in the study of systems of identical particles in
interaction (see problems 20, 21), and is essential in the treatment of systems in which par-
ticles can be created or annihilated, e.g. in the proper treatment of electromagnetic emission
and absorption (of photons) by charged particles, of electron-positron pair creation and
annihilation, of S-decay, etc.

Problems

1. Consider a system consisting of two identical particles, each of which has one-particle
states represented in coordinate representation by the wavefunctions y,(r), w(r).
Let us define
1
YOIy, 1) = % [¥a(r1) Ya(re) —pa(re) pa(ra)l,

(12)
Y1y, 1) = —\-}3 [.(r0) Y(r2) +pu(r2) walrn)],
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1.e. the corresponding anti-symmetrical and symmetrical wavefunctions, respectively, of the
system.

Now if the symmetrization rule for identical particles were ignored, the system would in
general have the following wavefunction

¥ = D+ uy®, |22+ |uf2 = 1. (1b)
Show that in this case the probability per unit volume of finding a particle at r; and another

atry depends on 4 and on u, and discuss this result.

2. Show that the symmetrization and the anti-symmetrization operators are orthogonal
projection operators, i.e. that S2 = 8§, A2 = 4,84 = AS = 0.

3. Find the state vectors of a system of two spin-3 particles which are simultaneous
eigenvectors of the operators S? and S,, where S is the total spin operator of the system. Dis-
cuss the symmetry of these state vectors.

4. Solve the preceding problem in the case of two particles, each of spin unity.

5. Write down the normalized wavefunctions of a system of three identical bosons, which
are in given one-particle states.

6. Show that for a system of two identical particles, each of spins, the ratio of the num-
ber of symmetrical to the number of anti-symmetrical spin states is (s+ 1)/s.

7. Show that if the wavefunction of a system of two identical spinless particles is an eigen-
function of the orbital angular momentum of relative motion of the two particles, then the
quantum number / necessarily has an even (or zero) value.

8. Use the result of the preceding problem to study the possibility of the decay
Be§ — Hei+ Hes,
if the Be nucleus is in an excited state, with a total angular momentum equal to unity.

9. Find the eigenvalues and the eigenvectors of the isotopicspin operator for a system of
two nucleons. Knowing that the bound state of the deuteron consists of a mixture of 3§,
and 3D, states only, deduce that its isotopic spin is zero.

10. Show that if we neglect the difference in mass between the proton and the neutron,
and the Coulomb interaction between protons, then the Hamiltonian of a system of two
nucleons commutes with the total isotopic spin.

11. Show that, assuming charge independence of nuclear forces to hold, the isotopic spin
formalism is equivalent to the formalism which describes a system of nucleons as consisting
of protons and of neutrons, treated as two distinct sets of identical particles.

12. Consider the following two possible nuclear reactions:

p+d - d+n+n+t,
p+d —~ d+p+n°.

Show that the branching ratio of the two reactions is equal to two.
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13. Show that the branching ratio of the reactions

n+p—-pt+pt+n—,

n+p — n+n+at
is unity.

14. Show that the elastic scattering process
at+p—-nt+p
can take place only in the isotopic spin state with T = %, while
at+n—-nat+n
can take place in both of the isotopic spin states, with T = 2 and T = 5
15. The Hamiltonian of the harmonic oscillator (see (17a) Chapter II) can be written as

H() = 3’23 (52—3-%), = x]/-”{"—. (15a)

Show that the operators

1 d 1j
a=—=\(8+—) = —=(E+ips), 15b)
1 d 1
at=——[f——y=——=(E—ip I5b)
vl %) VoA (
can be treated as annihilation and creation operators respectively, and that
how 1
H = —-(aa*+a*d) = hw(ata+3). (15¢)

16. Consider a system of two interacting harmonic oscillators of the same natural fre-
quency. If the interaction energy is proportional to the product of the displacements of the
oscillators from their equilibrium positions, study this system in second quantization.

17. Consider a system of N identical bosons, and let L, be an operator which operates on

the variables of the ith particle only. Find the expression for an operator of the form
N

L =Y L,in second quantization.
i=1

18. Let the complete set of observables & which define the one-particle states of a system
of identical particles consist of the positions and the spins of the particles, and let us define
the operators

v(&) =Y viEa, y+(&) =) via". (18a)

Show
(1) that the operators ¥ (%) and y(&o) create and annihilate respectively a particle at the

point &,
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(2) that the following commutation rules are valid if the particles are bosons:

[w(©), w(&)] = [y+(&), v* ()] =0,

(&), p+(E)] = 8(E—&) = d(x—r")dy (18b)

and that the following anti-commutation rules are valid if the particles are fermions:

{w@®, v} = {¥*(©), v* (€)=
{w(©), v+ (€D} = (2.

19, Let us suppose that the Hamiltonian of a system of bosons has the form

(18¢)

N 72 N

H= 3 (—zTnv2+V(5,)) P WEE) (19a)

where £ stands as before for the position and spin variables. By using the operators y(£),
w* (&) defined in the preceding problem, show that the Hamiltonian (19a) can be written in

the form

H= [ [ 25 77 @90+ VO @000 |
+4[ fot @) WE, E)p(E) (&) dt dE’ (19b)

where the integrations include sums over the spin variables.

20. Consider a system of bosons whose Hamiltonian is of the form

H=Y [ L . Z V(lr.—x)) (202)

ge=1

where ¥(|r, —r,|) is the two-particle interaction energy, and depends only on the distance
between the particles. Show that, by choosing as one-particle functions the eigenfunctions of
linear momentum with eigenvalue p:

i
py(r) = L3, (20b)

which are periodic and normalized in a cube of side L, the Hamiltonian (20a) can be written
in second quantization in the form

2 1
H= ; Zp—rl; a;-kapk-'_ % Z _ﬁ 1)(pl _Pf)a;a;;al)iapk (200)

where »(p) = jV(]q De~"% dq, and the second summation in (20c) is carried out subject to
the condition p;+p,, = P;+ Py
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21. Show that, if the interaction between the particles of the system described in the pre-
ceding problem is a weak one, the eigenvalues of the Hamiltonian (20c) are given approxi-
mately by the expression

E=Eot ¥ c(p)dy @212)
p#0
where
N 4
)= |/ 75 TP+ i (216}

and A, is a positive integer or zero for each value of p. Deduce from this result that a non-
ideal Bose gas can have superfluid properties.

Solutions

1. The probability per unit volume of finding a particle at r, and another at r» is a sum of
two quantities
P(r1, r2) = | 9(ry, T2} 2+ [9(r2, T} 2
= 2[| 22| p“(ry, r2) 2+ | 2| 9SNrs, 12) 2], (1.1)

and hence it depends on 4 and u. Thus, although the wavefunction (1b) represents the same
physical state for arbitrary A and u, the probability density (1.1) depends on these para-
meters. To avoid this difficulty we could postulate that

|pD(ry, T2) |2 = |9pXry, r2) [, 1.2y
for all r, r,.
But this is impossible since we can write

¥, 0] = V2] p@w®| = 0, yr,1) =0, (1.3)

which contradicts (1.2).

The difficulty can be avoided only by resorting to the symmetrization rule according to
which the values of the parameters A and u are fixedat A=0, u = l,oratA=1,u =0,
according to the type of particle being considered.

2. According to the definition (VIL.2)
1 1

where the summation is to be taken over all N! permutation operators. Let us suppose
that these operators have been placed in some particular order and let us multiply them
on the right (or on the left) by a given permutation operator P’. This merely changes the
order in the arrangement of the N! permutation operators. Owing to the summation in (2.1),.
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it follows that
PS=8SP =8, PA= AP = (—-1)r'A. (2.2)

From (2.1) and (2.2) the relations stated in the problem can easily be obtained.

3. This problem is essentially one of addition of angular momenta, and we can use the
Clebsch-Gordan coefficients given in Table VL.2. Let the two one-particle states (s, = 1)

be denoted by
i 0
g = [0], vs = [1] (3.1)

The solution of the problem is then given in Table VII.1.

TABLE VII.1
State vectors of the system T;tal SP;I: Symmetry
250%2 1| +1]]
\/2 (xff’x"’ + x“’x;” 1 0 | » Symmetrical
25°%8 1| -1
‘/— (Zm G x“’xff’ 0 0 | Anti-symmetrical

We shall also give an elementary solution of the problem. We rely on the fact that the total
spin can have only the values § = 1 (with §, = —1,0, 1)and S = 0 (with S, = 0). To show
how the state vectors of the system can be determined, consider the case of the two states for
which §, = 0. The general form of the state vectors is then

1 0 0 1
aenp o =alo | |7],+[1], [0, 2

where a and b are (for the moment) unknown coefficients. By imposing on (3.2) the condition
that it be an eigenvector of the operator

31 o] f1 O 10 1] {0 1
S2=5%+S%+251'52=§ 0 ]]1[0 1]2+_2_{[1 0]1[1 0]2

o P O N O | S
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with the eigenvalue 4, we find that
(A—Da—b=0, —a+(G—1)b=0 (3.4)

whence two possible values for 4 can be found: A = 2 (with @ = b), and 4 = 0 (with g =
—b). Taking into account the normalization condition |a|2+|b|2 = 1, two of the required
eigenvectors have thus been obtained. The others can be calculated in a similar way. Note
that the vectors given in Table VII.1 are also eigenvectors of the product s, .ss.

4. To solve this problem we can, as in the preceding problem, either use the Clebsch-
Gordan coefficients given in Table VI.1, or proceed ina more elementary way. The result is
summarized in Table VII.2, in which y,, %, %, are the one-particle states corresponding to
S, = 1, 0 and —1 respectively.

TABLE VI1.2
Total spin
State vectors of the system S S Symmetry
221 2 2
(1),,(3) (1,,(2)
— (P28 + 25" %a 2 1
\/_
2 1
]/ 3 (x,‘«}’x};"+ 5 Ko dy
2 0 b Symmetrical
1
+5 x;"xff’)
(x,‘s"x"’ (1) <2)) 2 -1
\/_ Y
250 2 -2
\/_(xff’x"’ X,(al’x(s) 1 1
1 W& ()@ Anti-
_ 0 )
\/ 2 (Za By Ay Ea ! [ symmetrical
(xm @) _ (1) <z>) 1 -1
\/
l -
75(::3’95}9” AP -y | 0 0 | Symmetrical
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5.Let |y, ), |%,,) |9, be the normalized one-particle states. We have now to distinguish

three cases:
(a) All the three occupied states are different, i.e. p1 # p» # ps. The state vector of the

system will then be

1 )
[W) = S|y ypusey = e [lwfi Yo o)

1) (@) (3 2 @3 @ @
+ l‘l’fn)‘l’fna WP2)> + ‘\tppa y"ﬂz "PP:)> + ‘VJPa 1/"511 T/Jp, >

+|w§?wﬁ’w§‘°;’>+|w§?w§?wﬁ)] 5.1)
(b) Two of the three filled states are identical, e.g. p, # p, = p5. Then
21
&) : ) ) (@) C
9 = 1/ 2 )+ e + st 52

The factor in front of this expression ensures the normalization of |y)*®.
(c) All three particles are in the same state, i.e. p1 = p2 = ps. Then

S
9 = [y vbw. (5.3)

6.Let y, (i =—s, —s+1, ..., 5) stand for the (25+ 1) possible one-particle spin states.
A possible set of basis vectors in the space of the total spin will then consist of all vectors of
the form y{Py?, where i, k = —s, —s+1, ..., s; hence their number is (2s+1)*. These
vectors do not all have a well-defined symmetry under permutation of the spins, but a set of
symmetrical and of anti-symmetrical basis vectorscan easily be obtained. Thus, for i = k the
(25+ 1) vectors ™y are clearly symmetrical. For i > k, we can construct 2s(2s+ 1) sym-
metrical (or anti-symmetrical) combinations %@+ yPy®. Since (2s+1)+25(2s+1) =
(2s+ 1)?, it follows that the vectors

WL, AOER P P k=—s —s+l .5 (6.1)

form a complete set of basis vectors having well-defined symmetry properties. The ratio of
the number of symmetrical to the number of anti-symmetrical states is then

2s+D+s2s+1)  s+1
s2s+1) s

7. Let r; and r» be the position vectors of the two particles. Let us choose a new system
| 8 + | P8

of coordinates with the origin at the point . We observe then that the operation of in-

version of the coordinat es in this system corresponds to a permutation of the two particles.
Further, if we denote th e orbital angular momentum of relative motion by /, then, under in-
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version of the coordinates, the wavefunction is multiplied by (—1)’ (see problem 8, Chapter
VI). Since the particles of the system are spinless and hence are bosons, the wavefunction
depends only on the position coordinates of the two particles and must be symmetrical
under their permutation. It follows that / must be even or zero.

8. Since a-particles are spinless, it follows from the preceding problem that the two-par-
ticle system can be found only in an even state of orbital angular momentum. Therefore, for
reasons of parity conservation, the decay is not possible.

9. Since the isotopic spin of each nucleon is -, this problem is formally equivalent to
problem 3; mutatis mutandis, Table VII.1 becomes Table VII.3:

TABLE VII.3
Total iso-
State vectors of the system topic spin | gymmetry | Physicalin-
—_— terpretation
T | T,
h f
2D = g Or® 1 +1 2 protons
1 )
ay _ 1), (& eI PRE ] Symmetri- proton-+
= — + 1 0 | WY I
Xo '\/i (xp xn xn xp Cai 4 neutron
A = gy 1 —1 ] 2 neutrons
1 .
0) _ (DB _ 1) (D) 0 0 |Anti-symmet-| proton+
x5 i(xp X — X A e utron

The component states of the bound deuteron, 3S; and 3D, correspond to orbital angular
momenta / = 0 and / = 2 respectively, and, in consequence, the deuteron wavefunction
is even in the coordinate variables (see problem 7). In addition, since the deuteron spin is
equal to unity, the spin-dependent part of its wavefunction is symmetrical in the variables.
In order to have a totally anti-symmetrical wavefunction, the isotopic-spin-dependent part
has to be anti-symmetrical, which is the case if T = 0.

10. The conditions of the problem suggest that the forces between two nucleons are the
same (for a given two-particle state) whether these nucleons are in fact neutrons and/or
protons. Let us see how this hypothesis can be expressed in terms of isotopic spin. Systems
consisting of two protons (or two neutrons) are described in isotopic spin space by the sym-
metrical state vectors ¥ or ) (see Table VII.3). Systems consisting of a proton and a
neutron are described by the state vectors x5P, x?. All but y{” are symmetrical, the latter
being anti-symmetrical. Each will appear in wavefunctions multiplied by a position and spin
function having the opposite symmetry, to preserve overall anti-symmetry. Now if we postu-
late that the Hamiltonian of the system is to be invariant under rotation of axes in isotopic
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spin space, it follows that the potential energy of interaction of the nucleons must be the
same in the three states ¥, ¥, and %{", but may have a different value in the state 5{*. This
is equivalent to the “charge independence” hypothesis made above, which can be seen to be
the same as the hypothesis that the purely nuclear forces may depend on the total isotopic
spin but that they do not depend onits “z-component” projection T'3. The interaction Hamil-
tonian between nucleons therefore contains the isotopic spin operators only in the form of
T2. However, since T? = (t,+t,)*> = t;+t5+2t,.t,, and since the eigenvalues of t] and of t;
are equal to %, the dependence of the interaction Hamiltonian on the isotopic spin variables

can be written in the form
H’ == U1+(t1.t2)U2 (101)

where U, and U, do not depend on the isotopic spin variables."

Since, in the expression (10.1), there appears only the scalar product t,.ts, H’ is clearly
invariant under any rotation in isotopic spin space. Now the operator for such a rotation in-
volves in general all the components of the total isotopic spin operator, and since H' com-
mutes with this operator it follows that H’ commutes with all the components of T, i.e.
that {H’, Th] = [H', Te] = [H', T3] = [H’, T?] = 0. Note that the above arguments are no
longer valid if we cannot neglect terms in the Hamiltonian which depend on the Coulomb
interaction between protons and on the proton-neutron mass difference. However, even in
this case, we still have [H’, T3] = 0, since this is in fact simply an expression of the law of
conservation of (electric) charge.

11. Consider a system of N nucleons, of which N, are protons and N, are neutrons, and
suppose that the protons have been labelled with the numbers 1 to N, and the neutrons with
the numbers N,+1 to N,+N, (= N). Letus denote the anti-symmetrizing operator of the N,
protons by Ay , the anti-symmetrizing operator of the N, neutrons by A4y , and let the state
vector of the whole system be | ¢). We have then that

ANPM’) =|¢), A, 0)=1¢). (11.1)

Passing to the isotopic spin formalism, we denote by | ®) the state vector of the system of
nucleons, and by A4 the total anti-symmetrizing operator which, in contrast to Ay, and Ay ,
can include permutations which change protons into neutrons and vice versa. From (VII.2)
and (VIL.4) we have that

A|P) = |P), A——Z( 1)#P, (11.2)
Since any permutation P is performed both on the charge variables and on the other vari-

ables, it can be written in the form P = P_P,, where P, is a permutation of the charge variables

t 1t is true that H’ could depend on higher powers of T2, Such a dependence would add to (10.1) higher

powers of the product t,.t,, which, however, can be expressed linearly in terms of t,.t; (see problem 22,
Chapter VI).
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and P, is the same permutation applied to the other variables. Hence
1
Az”"——'Z(_l)p.Po.Pc (11.2’)
N! %

We have now to show that a one-to-one correspondence can be established between the
state vectors | ¢) and |@) which leaves scalar products unchanged. Consider a state vector
| ) which satisfies condition (11.1), and let | {) be a vector which represents a charge state in
which the first N, particles are protons and the following N, are neutrons, thus

18) = |pUp® ... p®p); p®p+D |y, (11.3)

The vector given (in the isotopic spin formalism) by

N!
|®=Vmﬁ#mm> | (11.4)
hen satisfies the first relation (11.2). Conversely, for a given | &), we can show that

¢y = N, ,N,<C|*I>> (11.5)

Thus, by (11.4)

N! N 1
AT ANt VW@\AI ®) = T ("Dl $) I PelD). (116)

Now the N! permutations in (11.6) can be divided into two classes. The first class contains
permutations, which we denote by F, say, which do not exchange nucleons between the
proton and the neutron states. The N,!N,! “F-permutations” therefore leave the vector
|£) unchanged, and transform | ¢) into (—1)/ |$), and hence, writing F = F F,,

E|F|8y=1, F,l¢)=(=1)7]¢). (11.7)

The permutations in the second class, which we denote by G = GG, say, exchange nucleons
between the proton and the neutron states, so that ({ | G, | {) = 0. In consequence the summa-
tion in (11.6) contains only N,!N,! non-vanishing terms, all equal to | ¢). Hence (11.5) is
verified.

Finally, let us show that scalar products are unchanged. By analogy with (11.4), we

have

@) = ]/N_j%:!_mwwo

and using (11.5) it follows that
<mm=VNwmmm® (0l4). (L)
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12. Since T = T3 = O for the deuteron which appears in the initial and in the final
states (see problem 9), it can be ignored when conservation of isotopic spin is being consid-
ered. Hence, when calculating the consequence of this conservation, the reaction can be
written schematically as

proton (T = %) — nucleon (T = %) +7 meson (T = 1). (12.1)

For the left-hand side of (12.1) we have T = T3 = 1, so that for the right-hand side we must
also have T = T3 = 1. Using the notation of section 2 and the Clebsch-Gordan coefficients
given in Table V1.2, it can be seen that the wavefunction of the nucleon-z meson system has
to have the form

- '\/gxpxn“‘f‘ \/%xnxn+ . (12.2)

The squares of the coefficients in (12.2) give the relative probabilities of the reactions p —
p+a® and p — n+x™. The required result follows immediately.

13. Since the wavefunction of a system of two protons (or of two neutrons) is anti-
symmetrical with respect to simultaneous position and spin permutation, it has to be
symmetrical with respect to the isotopic spin variable. Therefore, since T can have only the
values O or 1, and T = |T5|, and, for the system p+p, T3 = 1 (and T3 = —1 for the system
n+n), it follows that the only possible value of T is unity. Thus, the wavefunctions of the
p+p and of the = meson systems have the same isotopic spin quantum numbers. A similar
situation occurs for the system n+n and the x~ meson: the right-hand sides of the two reac-
tions are described by the same function of the isotopic spin variables; hence the two reac-
tions which can result from the same initial state y,y,, willhave equal probability. The equality
of the cross-sections expresses in fact the charge symmetry of the nucleon-nucleon and
nucleon—pion interactions, i.e. the invariance of these interactions under the simultaneous
changesn - p,p > n,n" >, " - at.

14. For the first process Ts = 3 and, since |Ts| =< T, from the possible values 7= 2
and T = § we can have only 7' = 3. For the second process T3 = + and therefore, for 7,
both of the values T = 3 and T = 1 are possible.

15. The Hamiltonian can easily be put in the form (15¢). For the remainder of the
problem we require the relation (A.4) between Hermite polynomials:

dH,
O = 2nH, 18, (15.1)

Now the wavefunction y,(&) for the state of energy E, = hco(n+§) is given by

¥n(€) = Nne~EDH(E) (I1.17.11)
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and hence
oy, "
BE =2 l/; Vi1 —EYn. (15.2)
Using now the relation
n ] [n+1
E"Pn = V_ 1Pn—l"' — ¥n+1 (153)
2 2
it follows that
1 0 - 1 0 —
1 §+_) = A MU, _T(g__) v = A1 Yues, 15.4
\/2( %)Y \/w1\/2 BE'P\/ Ynt1 (15.4)
and hence that
ay, = '\/mp,._l, aty, = A/n+1yps. (15.5)

Let us show now that, in the formalism of second quantization, g and a* can be regarded
as annihilation and creation operators. & is now of course not related to the coordinate of a
particle, but to the amplitude, e.g., of a plane wave forming part of the decomposition of
some field, say a “phonon” field consisting of all elastic waves in a solid. The function y,(£)
of this partial wave amplitude, with n = 1, is the “wavefunction” of a “state” of the partial
wave of energy E1 = fo(1 + —;—) = Fo+ A, which differs from Ey by a quantum of energy #w.
This we can assign to the existence of a phonon of energy #w in the partial wave considered.
Similarly the state with # = 2 corresponds to E» = Ey+ 2w, which requires the existence
of two phonons each of energy #w. In general, the state y,, with E, = Ey+ nfiw, corresponds
to the existence of » phonons of energy #w in the partial wave considered and, consequently,
in the second quantization formalism, it is written as |n). The relations (15.5) then become

aln) = A/n|n=1, a+|n)=4/n+1|n+1), [a,a*]=1 (15.5%

i.e. a and a* are annihilation and creation operators of phonons of energy #w. It can be
verified directly that a*a is the phonon number operator. The state which does not contain
any phonon is called the vacuum state and is denoted by |0). It can be defined also through
the relation a|0) = 0.1t can be observed that, by starting from the vacuum state and using
creation operators, we can construct any other state, thus:

Iy = —\%—m(a’f)" 0. (156)
Phonons are in fact Bose particles of spin 1, and hence the values of » are not restricted.
Note that, in this representation, “wave-packet” states of the partial wave amplitude &,
in which the mean value of & oscillates with the classical frequency w, describe the classical
limit in which all field amplitudes are well-defined periodic functions of time. There is no
such representation, and no corresponding classical limit, for fermion fields.
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16. The Hamiltonian of the system of two oscillators can be written as:
H(xy, x2) = H(x1)}+ H(x2)}+ Ax1x2 (16.1)

where H(x;) and H(x,) are the Hamiltonians of the two oscillators. By introducing the

notation
£ = V—xl, Eo = |/ 7 Xa,
h #

(16.1) becomes

M
H(4, &) = H(§1)+H(§2)+% £1és, (16.2)
where
2 82
H(&) = —- (51 652) H(E) = (&z 652) (16.3)
By a further change of variables to the “normal coordinates” 73, 72,
m = ]/Zm (E1+&s), M= l/ 2 (E1—E2) (16.4)
where w? = w2+ A/m, w2 = w?—A/m, the Hamiltonian (16.2) becomes
han 2 32 hwz 9 62
— | —==)- 6.
Honm) = "5 (1 50) +75° () (16.5
To proceed further we follow the lines of the solution of the preceding problem. Define
1 0 1 0
Ay = +- %), 4r= ( ——) (16.6)
V2 (m 6771) V2 " om
1 0 0
Ay = — o+ —), A+———( ——) (16.6")
i V2 ("72 3772) * V2 2 o2

The operators A,, Af, A2, A are then the annihilation and the creation operators of
phonons of energies fiw; and Aw,. The Hamiltonian (16.1) becomes

H = fw, A] A+ hw, A5 A, + %(ml-i-wz), (16.7)

and a state of the system can be represented by the vector | N1Ny), with energy E = fiw N1+
f .
+ AN, 2+5 (w1+ws), where Ny and N, are the eigenvalues of the operators A] 4, Af A4,

and represent the number of phonons of energy #w, and A, respectively. The commutation
rules

[A1, 45] = [4f, 4] = 0, [4,, A]j—] = 6;‘]‘; Lhj=12
are satisfied.
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17. Let us find the matrix elements

(n{, né |L}n1n2 > (171)‘

N
Since L = ), L;, we need only consider a term of the form
i=1

(mny ... |Lilmne ... ). (17.2)

By using the relation (VII.11) we obtain

mln! ...om;! ..\ 12 1. (2) (
Lijmns ... = ( = ) LY [ySie ... v,

where the sum is over all possible permutations of the indices p1, p2, ..., py. But we have

also that
LY [0y o = N o @ L L) L [y

and consequently, in the double sum implied by (17.2), the only non-vanishing terms are
those which contain products of one-particle state vectors which correspond (except for
the ith) to the same one-particle states. Neglecting for the moment the normalization factors,
these terms have the form

(Lu = §& | Li| yon. (17.3)

But these are, for / # k, the matrix elements for transitions of the particle from the kth to
the /th state. Thus the number of particles in the kth state is decreased by one, and the
number in the /th state is increased by one. Taking into account the normalization factors..
the corresponding non-vanishing matrix element is

(coom—1..om . L] ooomeooom—1 0.0
TREPU (P | 1 SN 7L SR B S (T8 § L IR L
=( N ) ( N ) X
N—ID)!
% w—1) Lowe = Y2 Loy, (17.4)

m! ... (m—=D!... (@m-D1.. N

In (17.4) all possible permutations of (N—1) particles (i.e. of all particles except the ith
particle) have been taken into account. From (17.4) we obtain immediately

{o.ome—1 ..om . |Ll...omo.om—1...) =N\/]:Irkm (L = A/ mem( L. (17.5)

For / = k we find in a similar manner that

<n1n2. .. |L| ning .. > = ;nl(Lg)” . (17.6)
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Remembering the properties of the operators a and a*, we can see, from (17.5) and (17.6),
that L can be written in the form

L= L,' Fay .
kZ';( it Gy 17.7)

Remarks: In a similar manner it can be shown that, in the second quantization represen-

tation, an operator of the form L = Z L;, where L;; acts simultaneously on the ith and on

ijs

i,j=1
the jth particles, can be written in the form
L= % (Lum ohi a0, (17.8)
Ed p’ r m

where
(Llj)lm kp = (’P!‘Pm | Ly;| 'Pk‘Pp>

In particular, if the Hamiltonian of the system is written in terms of the variables &; (the
position and spin of the ith particle) in the form

H= Z [———V2+V(Ei)]+_ Z W(Ets 1)— ZH+2 Z W(Eis 1), (179)

2,11 i, j=1

then, by (17.7) and (17.8), we can obtain its form in the second quantization formalism:

H= sz (H,-):kafak+%k Zt (W), 07 G010, . (17.10)
» s Pyiym
If the states |y, ) are chosen to be the eigenvectors of H,, then
H= ZEkal‘C'«akﬁ_ _21—k Z (W)fm, kpai"a;akaps (1711)
k B Lm

where E, is the energy of the particle in the kth state, neglecting interactions except in so far
as these can be incorporated in the “smoothed out” potential V.

18. Let us show that the operator y*(&o) creates a particle at the point &,. We already
know that the operator a; creates a particle in the state represented by the wavefunction
p{£). It follows that the operator y*(&,) creates a particle in a state which is represented by
the wavefunction Y v} (&,)v,(£). But, inaccordance with the closure relation (6.1)of Chapter I,

1

we have Y |y){y;| =1 and so, if we multiply the latter on the right and on the left by
1
the vectors | &), | o), respectively, we find that
Zw (o) pi8) = (Go&) = d(E0—E) = d(ro—r)des , (18.1)

which represents the wavefunction of a particle created at £, (with spin z-component s?°).
Similarly it can be shown that (&) annihilates a particle at £,. The commutation relations
(18b) and (18c¢) follow immediately from (VII.14) and (VII.16), using (18.1).
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N
19. Consider in general an operator of the form L = ) L, where L, acts only on the ith
i=1

particle (cf. problem 17). From (17.7) and (18a) we have that

L= Y (Luarac= 3, J v ® Ly(®) diajra, = [y+(E) Ly(&) d& (19.1)
N
and, similarly, if L has the foom L = Y L, then
i,j=1
L= [[yr(E)y+E) LyE) y(E) dE dE'. (19.2)

It is interesting to note that, for any physical quantity f(&) which is a function of £ only, we
can write

f=[FE& v wE) de (19.1)

and thus the product v (&) w(&) d& can be regarded as the number (or, more strictly, the
number operator) of particles to be found in the “volume” d&. From (19.1) and (19.2), after
an integration by parts, we can obtain (19b). Similar expressions can be found for systems of
fermions.

20. We shall make use of expression (17.11). It is natural to choose for the one-particle

. h? . .
states the eigenvectors of the operator H,= P v2, Because the sum in (17.11) is over a

discrete spectrum, and the spectrum of the operator H, is continuous, we shall resort to the
usual quantization procedure in a cube of side L. The momentum of the particle can then
take only the values

__ 2mhn, B 2mhn, _ 2nhn;
Px - L s py - L H pz - L ’

(nx, 1y, n;) = whole numbers,

and the one-particle wavefunctions are given by (20b). The matrix elements of the interaction

operator W = Y V(|r,—r,!) are given by
a’ﬁ

1 "'ﬁ'i (Pr . Ts+Pm - T2) L (®: . T1+Pg . T2)
Wim, ik = je V{r —rs)e” dry drs,

V2
where V' = L3.
By introducing the new variable @ = r; —r; and bearing in mind that

e;:.—p.rdr V for p=0
|0 for p=0
V

we find that
L Wpi—p) for Pi+Pm=Pi+P
W’m,mle 1—Pi 17 Pm i+ P
0 for  pr+pm = pitp
where »(p) = I V(/q))e™ "™ dg. The relation (20c) then follows immediately.
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21. Let us suppose for a start that there is no interaction between the particles. If we
denote by n, the number of particles having momentum p, we have n, =0 if p # 0 and
n,=Nifp=0. Therefore, even if there is a weak interaction between the particles, the
greater part of them will be found in the state of zero momentum. Using annihilation and
creation operators we can write aja, = n,~ N, afa, = n, < N. The operators aj
and a, satisfy the commutation rule aaf —afa, = 1, but since afa, = n,>>1, we can
neglect the non-commutativity of these operators, and treat them as ordinary quantities.
Also, since n, << n,, we can neglect the terms in the Hamiltonian (20c) which contain
products of three or more operators g, (or af) with p # 0, and retain only terms of the
form ay qaa_,

Finally, since

p) = [ V(a))g®dg f e~Pacost sin §df | dp = 4n [V(|q|)p~>q dg = »(p),

we obtain
2

H=Y 5 ap+v(o)[— - P a a.,] +22 3 wp)as gy

p=0

(21.1)
3 + T ( +)2 p(
+3 ; WPy aZp+ 53 .,;o p)aga_,.
The Hamiltonian (21.1) can be put into a simpler form if we note that
Y afay, = N—np =~ 0.
p#0
Then
1 N2 ag + gt
H= [ +—vp ]a ay+5 — W) +52 ¥ v(p)ayac
,,;0 (») 2 Vv 2V Eo PP
(@5)? 21.2)
v(plaa_, . .
+55 .Eo (p)aga_,
Let us now introduce operators b, and b/ related to g, and a by the relations
ag a, . oy
= upb, + 1,075 = u,b; +v,b_,, (21.3)

Vo T \/T,

where, for the moment, u, and v, are unknown functions of p.

We shall determine these functions in such a way that the following two conditions are
satisfied :

(a) The operators b, and b have the usual commutators

[b,, b, ] = [b:, by] = (21.4)
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(b) The Hamiltonian (21.2) transforms into a diagonal form
H = Hy,+ ZO e(p)bb, (21.5)
p=
where Ho = (1/2) [(#(0))/V] N2
It can be shown very easily that, if the Hamiltonian has the form (21.5), the following
commutation rules are valid
[bpa H'l= 8(p)bp
[6;7, H] = —e(p)by (21.6)
where H' = H —H.
From (21.6), by using (21.2) and (21.3), the following set of homogeneous algebraic

equations is obtained:

e(py = Wylip + V(II/)) Aoty
— o)t = et "2 @17

where

Wy = [—2%+ KI;L)N].

By equating to zero the determinant of the coefficients of w,and v, in (21.7), we obtain for
&(p) the expression

0 =" 2 ooy Ly (21.8)

u, and v, are then easily obtained and have the form

1 A,
-, Y= 21.9)
where
__r _P_ Mo
Ay = s [ )5~ |
The eigenvalues of the diagonal Hamiltonian (21.5) are then
E = Eo+ }, &), (21.10)
p=0
where

2
By = 1590+ 3 5 [0 0|

p=0

and A is a positive integer or zero for each value of p. Since A, is an eigenvalue of the
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operator bb,, it can be regarded as the number of elementary oscillations (“quasi-
particles”) in a state of energy e(p).}

Let us now show that the above system (a “non-ideal Bose gas”) can have superfluid
properties. Let us suppose that the whole gas is in motion with velocity v with respect to
some fixed frame of reference (e.g. the wall of a container). If we denote by E the total
kinetic energy of the gas as measured in a frame of reference moving with the gas, and by E
the same quantity as measured in the fixed frame of reference, we have that

mv?

where P is the total momentum of the gas as measured in the fixed frame. Since P = Z P4,

we can write

2
E= E0+N£1~;— + Y Ay(e(p)+v.p). @1.11)
p

Any decrease in the velocity of the gas is equivalent to the creation of a quasi-particle having
a momentum in a direction opposite to that of v. By (21.11) the change in the energy of the
gas on the appearance of such a quasi-particleis AE' = e(p)—|v|.|p|. We shall show, how-
ever, that if the dominant forces between the gas particles are repulsive, then AE’ > 0,
which is inconsistent with a decrease in velocity of the gas. The appearance of such a quasi-
particle is therefore impossible, and the gas will continue to move with velocity v, i.e. it
will show superfluid properties.

Let us show that if the dominant forces between the gas molecules are repulsive, then, as
stated above, 4E’ > 0. This is equivalent to writing

o* _mln((p)) ~ 0. 21.12)

Pl
= (i) - (/-

4m p=0 l/—_ V(O)

and, when repulsive forces are dominant, »(0) = IV([qI) dq > 0, so that relation (21.12) is
verified.

Now

Vm

T The reader can easily show that the momentum of these quasi-particles is equal to p.
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CHAPTER VIII

Perturbation Theory. The Variational Method'

1. Stationary State Perturbation Theory

Let H = Ho+H’ be the Hamiltonian operator of a physical system, where Ho is a
time-independent operator (whose eigenfunctions are known), and H’ is also a time-
independent operator, called the perturbation. Through perturbation theory the energy
spectrum and the eigenfunctions of the Hamiltonian H can be determined to various orders
of useful approximation, provided that certain conditions are satisfied.

1. The spectrum of H| is discrete and non-degenerate.
Let ¢, and E® be the wavefunction and the energy respectively of a stationary state
of the “unperturbed Hamiltonian” H,, and y,, E, the corresponding quantities of the
Hamiltonian H. To the first order of approximation of perturbation theory we have then
that
Hu

@ 5w 9n (VIIL1)

E, = E‘Sao)+H;ns Yn = ¢n+ Z
mx

where H,,, = (m|H'|n) = [ ¢,,H'$, dV are the matrix elements of the perturbation.
To the second order of approximation

, | Hon|?
E, = Ego>+Hnn+m§n m (VIIL.2)
A necessary condition for these results to be valid is that
| H,,| < |E®—EQ)| (VIIL3)

for any m and n.

2. The spectrum of the Hamiltonian H, is discrete and degenerate.
Let us suppose that the energy level E” is f-fold degenerate. In general, the introduction
of a perturbation removes or partly removes the degeneracy of degenerate energy levels.

t For other problems in perturbation theory and other methods of approximation, see Chapter XI.
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The distinct energies which result from the initial level E? through the introduction of
the perturbation are the solutions of the “secular equation™:

[H{'{)—E H® H®P...
| H HP—-E HP... = 0. (VIIL4)
HD HY HP—E...
where HP = (nl|H'| nk) = _[ OmH G dV .
If £ is any solution of (VIII.4), then the corresponding wavefunction in zero-order approxi-
mation is y, = kfl APz, Where @y, @, ..., P, is a set of f distinct (degenerate) eigen-

functions of H, with energy E.”, and the coefficients a, are the solutions of the set of £
homogeneous algebraic equations’

f
3 (HP-Eda =0, 1=12..,f (VIIL5)

2. The Variational Method

By means of the “variational method”, the lowest eigenvalues and the corresponding
eigenfunctions of any Hamiltonian H can be found approximately without having to solve
the Schrédinger equation. Thus the ground state energy Ej is determined from the fact that

Ey = min | y"Hydv (VIIL6)

where the range of y includes all arbitrary functions subject only to the normalization condi-
tion | |y[*dV = 1. Similarly the energy of the first excited level is given by

E\ = min | p*Hpdv (VIIL.7)

where the range of  includes all arbitrary functions subject to the normalization condition
and to the condition of being orthogonal to the ground state wavefunction:

flplrdv=0, [pypdv=0. (VIIL7")

The relations (VIIL.6) and (VIIL.7) are exact, but, in practice, trial wavefunctions containing
parameters have to be used, the latter being varied to give the required minima. If the choice
of trial wavefunction is a good one, this procedure vields a good value for the energy.

T For a rigorous discussion of the validity of eigenfunction exansions and of perturbation theory,
see Eigenfunction Expansions by E. C. Titchmarsh, Clarendon Press, Oxford, 1962; in particular, chap-
ters XIX and XX of vol. II.
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Problems

1. To the first order of approximation of perturbation theory, calculate the correction
to the ground state of a hydrogen-like atom due to the finite spatial extension of the nucleus.
For simplicity assume that the nucleus is spherical, of radius R, and that its charge Ze
is uniformly distributed throughout its volume.

2. Solve the preceding problem with the hypothesis that the nuclear charge is uni-
formly distributed over the surface of a sphere of radius R.

3. Find the energy spectrum of a system whose Hamiltonian is

2 g2
woat 1 mw?x2+ ax3+ bx*t (3a)

H=Hot B ==5, "3

where a and b are small constants (the “anharmonic oscillator”).

4. A plane rigid rotator having a moment of inertia I and an electric dipole moment
d is placed in a homogeneous electric field E. By considering the electric field as a pertur-
bation, determine the first non-vanishing correction to the energy levels of the rotator.

5. Solve the previous problem for a rigid rotator which is not restricted to moving
in a plane.

6. Calculate the perturbation of the first two energy levels of a hydrogen atom placed
in an electric field E (the Stark effect).

7. Find the ground state energy of the He atom by treating the coulomb interaction
between the two electrons as a perturbation (the spins of the electrons, and the symmetry
or antisymmetry of the spatial wavefunction, may be ignored).

8. Inside an atomic nucleus the distance between nucleons is of the order of 107" cm.
At such a distance the nuclear forces are much stronger than the Coulomb force between
protons. Estimate the correction to the energy of a stationary state of a nucleus, due to
Coulomb interaction between the protons.

9. Relation (VII1.3) gives a necessary condition for the validity of perturbation theory.
Show, by taking as an example the case of a particle moving in the potential V(x) =
+mw?x2+ Ax3, that this condition is not sufficient.

10. Find, to the first order of perturbation, the changes in the energy levels of a hydrogen-
like atom produced by a unit increase of the nuclear charge (due, for example, to a beta-
emission). Using the exact energies, discuss the validity of the approximation used.

11. The states of a paramagnetic ion in a crystalline lattice are, according to the theory
of paramagnetic resonance, the eigenfunctions of a “spin Hamiltonian™:

Hg = aZ6S;+b70L++D(3 cos? 6 —1) [S2— 382+ 3D sin 26 X
% [S+ (S,+~;-) +5_ (s_%)] +% D sin® 6(S% +S2)+ AS,I,+1;— S.I_+8.1,)
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where § and I are the spin operators of the electrons and of the nucleus respectively, a, b,
D, A are constants, a << b, and 6 is the angle between the axis of symmetry of the crystal
and the direction of the applied magnetic field 75.

Denoting by |M M), (Mg=-8, —-S+1,...,8; M= —I, —I+1,...,I), the
eigenvectors of the “unperturbed” Hamiltonian Hy = a#S,+ b A1, find the perturbation
of the energy levels of Hy which occurs when the terms in D and A are added to it to form
Hg, to the second order of perturbation theory.}

12. Find the eigenvectors of the Hamiltonian H of the preceding problem, to the first
order of perturbation theory, in terms of the eigenvectors of Hp.

13. Let H = Ho+ H' be the time-independent Hamiltonian of a system. The operator

RE) = _H—}E_ (132)
considered as a function of the complex variable E, is called the “resolvent” of the Schré-
dinger equation H |y) = E|yp).

Show that if the Hamiltonian Hy has a discrete non-degenerate spectrum Hy|¢,) =
EP| ¢, then the energy of the perturbed level E, is a pole of the diagonal matrix element
D,(E) = (¢,|R(E)| ¢, Deduce from this the expressions which give E, in the usual for-
mulation of perturbation theory.

14. Show that, in the preceding problem, the perturbed state vector is given by
¥n) = —N712Y ReS [(Pm | REE)| $)| b d)e—r, (14a)

where Res denotes the residue of the pole at E = E,, and N, = —Res [D(E)],_ g, (assum-
ing that (¢, |,) = 1).

15. By using the variational method, find the ground state energy of an atom with
two electrons and a nuclear charge Ze, using a trial wavefunction of the form

‘3

o) = (s

)e—Z’rlfae—Z’rzfa (15a)

where 7, and 7, are the distances of the two electrons from the nucleus, a = #2/me?, and
Z’ is an adjustable parameter.

16. Since the harmonic oscillator wavefunction must be finite for any x, and must
vanish as x — 2 oo, it seems reasonable to take as a trial function for the ground state

wavefunction the form
wix) = Aexp(—Bx?), B =0. (16a)

T F. Waldner, Helv. Phys. Acta, 35, 756 (1962); 1. Ursu, A. Nicula and 8. Nistor, Rev, Roum. Phys.
10, 229 (1965).
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Find, by means of the variational method, the “best” value of B and of the ground state
energy.

17. Using the results of the preceding problem, find by means of the variational method,
an approximate wavefunction and energy for the first excited level of the harmonic oscillator.

18. Apply the variational method to the determination of the ground state of the hydro-
gen atom, using as trial wavefunctions the following expressions, which all have spherical

symmetry,
1

2 £
()
a
where a is the radius of the first Bohr orbit and b is an arbitrary constant. Perform the
numerical calculations and discuss the results obtained.

p1 = A=, yy = Ay ys = Aa{-l-e*“’/“)’ (18a)

19. Using the variational method, find an approximate energy and wavefunction for
he 2s state of the hydrogen atom.

Solutions
1. The potential energy of the electron is given by

Vir) = (1.1)
Ze?
-, r=R

In Fig. VIIL1, the potential energy V(r) is shown as a continuous line, and the potential
energy for a point nucleus as a broken line.

vir) °

Laze
2R

Fig. VIII.1.
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Using perturbation theory, we take as the unperturbed Hamiltonian that of the hydrogen
atom with a point nucleus (¥ = —Ze?/r), and as the perturbation the following differences:

Ze (3 _1Lry [ Ze o R
H = _T(z 2 R2) ( r ) ==
0, r=R.

(1.2)

The first-order correction to the ground state energy is then
E® = [piog() H'yyoe(r) dv (1.3)

where, from Table 11.1, we have that

2
e~'a, g h

o = (1.4)

Y100(r) =

Bearing (1.2) in mind, it can be seen that the integration in (1.3) is to be carried out only
within the volume of the sphere of radius a. Since the quantity a in (1.4) is the radius of
the first Bohr orbit, and Ris the radius of the nucleus, r < g, and the exponential e~"/4 ist
approximately equal to unity. Thus, for R ~ 10722 cm, Z = Z_, ~ 100 we have that
a ~ 5x107° cm, and so a/R ~ 50. Approximately, we have then that

R

1 ([Ze Ze(3 17 2 Zét [ R\?
(1) — —_ ——— = _ | __
E m3” == (2 - Rz)]4m’2dr .= (a) . (1.5)

The fact that E{Y > 0 could have been foreseen from the beginning, since, as Fig. VIIIL.1
shows, the depth of the potential well in which the electron moves is decreased when one
takes into account the finite spatial extension of the nucleus. Since the unperturbed ground
state energy is E{® = —Z2me*/2#2 (see (33.12) Chapter II), we have, to first order of per-

turbation theory,

4 [R\2
E, ~ EO+ED = EO [1 - (7) ] . (L6)

Remembering that the nuclear radius is approximately proportional to Z¥3, and the first
Bohr orbit radius to Z~!, we arrive at the conclusion that the importance of the pertur-
bation increases as Z*/3,

The corrections to the energy levels of the atom due to the spatial extension of the
nucleus are called “isotopic™ corrections, since they vary from one isotope to another
of the same element.

2. As in the preceding problem, the perturbation is different from zetro only inside a
sphere of radius R, in which it has the value

S I
H = Ze2(7—ﬁ). @.1)
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Then
¢ 1 1
ED = Ze? j win(?) (7— 7{—) Proo(r) dv. 2.2)
0
By the same arguments as in the preceding problem, we find that
2 Ze® [R\? 4 /R\2
N2 = (2 = FO|]-—[—
w32 et e

By comparing (2.3) with (1.6) we can see that, at least to a first approximation, the isotopic
corrections do not depend on the distribution within the nucleus of the nuclear charge.

3. If a = b = 0, the Hamiltonian H reduces to that of a linear harmonic oscillator, He
say. We shall accordingly use perturbation theory, with H' = ax3+bx*. The following
integrals must then be calculated:

oo <+ oo
H,,=a jlp,,x31p,,dx+b jip,,x“ip,,dx (3.1

where », denotes the nth harmonic oscillator eigenfunction ((17.11) Chapter 1I). Since x3
is an odd function and ¥? is an even one, the first integral in (3.1) vanishes. The second
integral has already been calculated in problem 5 of Chapter HI, thus

f

T: oty dx = %x3(2n2+ mtl), = (32)
The first-order perturbation of the energy level EX is thus given by
H., = 2bx3(2n2+2n+1), (3.3)
so that, to this approximation, the energy spectrum of the oscillator is
E, = EO+H,, = (n+3) ho+3bx}(2n*+ 2n+1). (3.4)
4. The Schrodinger equation of a plane rigid rotator is
_ _g; Z;‘l; _ (4.1)

where ¢ is the angle of rotation about the z-axis. The energies and the normalized wave-
functions are readily found to be:

2,2
E® = wm p(P) = —1:(3"'”‘?’, m=0,+1,=+2, ..., 4.2)

m ?

21 V2%

the levels for m # 0 being doubly degenerate, since states with +m and with —m have
the same energy.
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Treating the electric field E as a perturbation, the Hamiltonian of the system becomes
n o ar

—Ed cos ¢. (4.3)
Now, since the “parity” operator P defined by Pf(¢) = J(—¢) (reflection in the z-axis)
commutes with both H and H', there will be no mixing of a state with —m, say, into a
(perturbed) state with +m; thus the perturbation theory for non-degenerate levels can be
used. We have, then, that
2n

2n
Hive = | it g = 5L [ et cos g ag
0 0
0, m' = mzt1
= 44
—?, m =m=l. “44)

From (VIIL1), (VIIL.2) and (4.4) it follows immediately that
| Hpm—11* | |Hpmea|?  TE?d2
EQ—EQ, EQ—-E® .~ n{dm*—1)

EQ =

and hence, to the second order of perturbation, we have
nm? TE2q?
TR P

E,=EQP+EP+E® = (4.5)
5. The eigenfunctions and eigenvalues of the unperturbed problem (see problem 34,
Chapter II) are

0, |4, m)y = Y70, ¢), EO = —Z—;I(H 1). (5.1

In the presence of an electric field E in the direction of the z-axis, the Hamiltonian of the
system contains the additional perturbation term

H' = —dE cos 0. (5.2

To solve the problem we have to evaluate the matrix elements {l1i,m1 |H'| Iy, my). This can
be done directly, by using relation (A.28), or by using the results obtained in problem
30 of Chapter VI. The only non-vanishing matrix elements are those in which my = my
and/; = lL£1.

For these we find the expressions:

{l, m|cos Bll—l,m)=(l~1,m|c0s0|l,m):( (5.3)

12 _ m2 1/2
hom)
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Note that the energy spectrum of the rotator is degenerate except for the level / = 0. For
this reason, it might seem at first sight that we have to use the perturbation theory appli-
cable to degenerate levels. This can be avoided, however, since the free Hamiltonian
12
Hy, = 57
that a (perturbed) state |/, m) will contain only unperturbed states |/, m) with the same
quantum number m, and hence the problem can be solved by using only the perturbation
theory for non-degenerate levels. Since (I, m |H'| [, m) = 0, the first-order energy corrections
are zero. In second order we have

2I(Ed)? |{I, m| cos 8|1, m)|?

and the perturbed Hamiltonian H = Hy,+H' both commute with /,. It follows

2) — 2.
Elm - 52 ey l(l+1)_lr(lr+1) (54)
Bearing in mind the selection rule /' = /%1, and the relation (5.3), we find
E® = 2I(EdY |, m| cos 014+1,my|2 |{I,m|cos B]I—1,m)
m #2 I+1D)—0{+2)(+1) I(d+1)—Id—-1)
_(Edp l(+1)-3m® (5.5)
—E™ 2021-1)(21+3)° '
The energy levels in second-order approximation will thus be
Ed\? I(I+1)—3m?
~ E©
Eim ~ E| [1 * (E,“’)) 22—1) @2+ 3)}' (5.6)

Note that the initial degeneracy is only partly removed, since the energy depends on / and
on m2, but not on m. States with m and —m therefore have the same energy. It can be shown
that this remaining degeneracy is retained in higher orders of perturbation theory. The
problem we have just solved is relevant to the study of the polarization of diatomic mole-
cules in weak electric fields.

6. In non-relativistic approximation, the electric field E does not interact with the
electron’s magnetic moment and for this reason the spin, and the fine structure resulting
from spin-orbit interaction, can be neglected.” By choosing the z-axis along the direction
of E, the perturbation operator becomes

H =—d.E = —er.E = —ezE. (6.1)

The ground state | 100) of the hydrogen atom is non-degenerate. Because the corresponding
wavefunction is even under the transformation z — —z, it follows that (100 |z| 100) = 0,
i.e. that the energy of the ground state is not perturbed. For n = 2, we have to remember

t Such an approximation is valid for electric fields weaker than about 10° V/cm.
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that E{” is fourfold degenerate. To study the perturbation of this level in first-order approxi-
mation, the following linear combination must be formed

4
p© = kZI AW (6.2)

where p; = |200), y2 = |210), p3 = |211), y, = |21 -1).
By using the hydrogen atom wavefunctions (Table IL1) the only non-vanishing matrix
elements of the perturbation are found to be
2
Hyp = Hyy = —eF(200 | z| 210 = —3eaF, a= h

me? ’

(6.3)

By writing e = E,—E{, the secular equation (VIIL4) becomes (e2—9€2a2E?)e? = 0, and
has the roots
&1 = 3eaE, ey =—3eaE, e3=¢4=0. (6.4)

The corresponding correct wavefunctions in zero-order approximation can be obtained
by determining the coefficient g, in (6.2) with the aid of the equations (VIIL.5).

Eif'+3ead

E‘é” E(é))

EY-3ea

FiG. VIIL2.

Note that on applying the external electric field, the fourfold degenerate level EY
is split into three levels, one of which is doubly degenerate, with m =+1 (Fig. VIIL2).
The energy splittings are proportional to the electric field. For this reason we say that this
is an instance of the “linear” Stark effect. It can be shown that the linear Stark effect appears
(in systems of particles moving under Coulomb interactions) only if there is degeneracy
in zero-order with respect to the orbital quantum number /. If there is no such degeneracy,
the first-order corrections vanish, and the Stark effect is then proportional to the square
of the electric field (cf. the rotator in problems 4 and 5).

7. Consider in general the problem of two electrons in the Coulomb field of a nucleus
of charge Ze. Examples are given by He, Li*, Bet+, etc., for which Z = 2,3,4,....
The potential energy of the system is then
Ze? Zer g
r T 2 + 712

(7.1)
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where r; and r; are the distances of the two electrons from the nucleus, and r;» is the distance
between the electrons. If we assume a fixed nucleus (which is very nearly the case), the Schro-
dinger equation of the system is

. 2 e e & e @
”’“m(ax*'ayﬂ*'a +6x§+6y22+6z§)

Ze Zé e :
+(— - +e)1p=Ew (1.2)

r: 2 ris

where x1, y1, z1 and X, ys, z2 ate the Cartesian coordinates of the two electrons respectively,

and m is the electron mass. Since, in the absence of the term
! e2
H =—-, (7.3)

Fi2
equation (7.2) can be solved exactly, we shall treat H’ as a perturbation. The unperturbed
wavefunctions 9@ can be written in the form
YO(Xy, V15 215 Xgs Yoy Zp) = U Xy, V1s 20) U (X, Vo Zs) (7.4)
where t{(x,, y;, z,), i = 1, 2, satisfy the equations

u® U 2 2m E© Ze?
a2 T o Tor TR ( +

) WO =0, E®=EO+E®. (1.5

i

Equation (7.5) is the Schrédinger equation of the hydrogen-like atom. By using the expression
(33.12) of Chapter II for the unperturbed energy of the ground state of a two-electron atom

we have
met

E® = _222EH, EH =—-FE = —2“’;2— =135eV.

The first-order correction due to the interaction between the electrons is

FEQ = v[ftp(O)"‘If’q)p(O) dv = J_ y)(o)z dv (76)
Fiz2
Z3 0 2Zr
(O) = = | = L)
where (% Y100 ‘/ o eXp ( 2) 0 a

is the ground state wavefunction of a hydrogen-like atom (see Table 11.1), and a is the radius
of the first Bohr orbit.
Using spherical coordinates,

27 T oo 2T ;T oo

Ze? e-a=a e-a=e
1) =
o= e = | [ ] 7
0

% 0% doy sin 0, df, d,0% do, sin 6, df, do, . (1.7)
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The integral

e —e
I= ff dv, dv, (7.8)
Qa2

can be evaluated by using an electrostatic analogy. Thus 7 is the potential energy of the
forces between two charge distributions of densities e=% and e respectively (Fig. VIIL.3).
To evaluate 7, we can calculate first the electrostatic potential at any point due to the first
charge distribution, and then calculate the potential energy of the second charge distribution
in the field of the first one. Now, the potential at a distance r from the centre due to a
spherical shell of charge density ¢~ enclosed between the radii o1 and p;+dp, is

dnole— dp, . L for r<op
1

d¥(r) =
dnple—e dp, . % for r=> p,.

de

Fi1G. VIII. 3.

The electrostatic potential of the first distribution at a distance 7 from its centre is therefore

r o

D(r) = 1:5 f e~ap? do, + 4nf e~up2 do, = 4’_—“ [2—e~(r+2)],

0 r
and hence
1= [D(g)e2 dvs = 1622 J 2—e=(pa+2)e-20, dpy] = 20n2. (7.9)
0
Finally,
O = HS%Q = ;ZEH, E=EOLE®— _ (222—%2) Ey. (7.10)

Numerical values calculated from (7.10) agree quite well with the experimental values obtain-
ed by adding the two ionization energies. As Z increases, the interaction between the two,
electrons (i.e. the perturbation) becomes smaller in comparison with their interaction with
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the nucleus, which is why the values calculated from (7.10) for B** and C** agree better
with the experimental data than those for He or Li*.

8. The unperturbed Hamiltonian H, consists of the kinetic energy operator of the nucle-
ons and of the nuclear potential energy. The perturbation H’ is a sum of +Z(Z —1) terms,

and has the form
2
H= % =, rmy=In-r (8.1)
i<j<Z Tij
where r, and r; are the position vectors of two nucleons.

If we suppose that the potential energy of the nuclear forces has the form (24.4) of
Chapter VI, we can choose, as unperturbed state vectors, the vectors |y ;,,) which correspond
to well defined values of J2 and J,. We can then apply the perturbation theory for non-
degenerate levels, since J2 and J, commute both with Ho and with H, so that states having
different values of J and of M cannot be mixed together by the perturbation.'

We have then that

E® = (prm| H' [9ia1)- (8.2}

The wavefunctions corresponding to the state vectors |y,,,) depend on the spatial coordi-
nates and on the spins of the protons and of the neutrons. Because these vectors are anti-
symmetrical with respect to permutations of protons, the 2Z(Z—1)terms of H' give equal

contributions to the integral (8.2), and hence
\ 2 &
Yim )= Z ITPJMI —;~1—2dl'1 odrzdrz ... dry

E® = 1Z(Z— 1), (8.3).
€= <1DUJM / d
spins

where 4 (the “mass number”) is the total number of protons and neutrons in the nucleus,
and the summation is over the spin variables of all the nucleons.
Let

e

Fi2

o(ry, r2) drydry = Z [I]prMlzdra . dl‘N] dry dro

spins

denote the probability of finding simultaneously the first proton in the volume element dr,
about the point r; and the second in dr, about r,. Then

e2
& = J— 9(1'1, 1'2) dl'l dl'g. (84)
Fiz2

The integral (8.4) can easily be evaluated approximately by considering a simplified model,
in which all correlations between protons 1 and 2 are neglected (which involves neglecting,
among other things, the Pauli principle). In this approximation we can write o(ry, r2) =~

t See also problems 1, 3, 4 of Chapter XI.
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o(ry) o(r2). Assuming further that the proton charge is uniformly distributed inside the
nucleus, which we take to be a sphere of radius R, we have

3/(4nR%, r <R
o) = { 0 r > R.

The integral (8.4) can then be calculated as in the preceding problem. Finally, we have
that

6 2
e=g 2. EV=ZZ-D%. 8.5)

R

Although the above approximations are quite rough, the expression (8.5) can be used to
confirm the charge independence of nuclear forces.

9. For 4 = 0, the Hamiltonian H = —(#2/2m) d?/dx®*+ V reduces to the Hamiltonian
of a harmonic oscillator and hence possesses a discrete spectrum of energies E, = fio(n+ %)
For small values of 4, the conditions (VIII.3) become

Al(m| X3 |m)| < |Ep—E,| = fo[m—n| (9.1)

and are always satisfied. However, for any 4 = 0, however small, the Hamiltonian H has
a continuous energy spectrum, since for large negative values of x the potential energy
becomes smaller than the total energy of the particle. The particle can thus go through the
potential barrier shown in Fig. VIII.4 along the negative direction of the x-axis, and so
escape to infinity.

Vix)

Fic. VII1.4.

We have here an example in which the perturbed quantities do not pass continuously into
the unperturbed ones as A — 0 so that, although the conditions (VIII.3) are satisfied, per-
turbation theory is not, strictly speaking, applicable. Nevertheless, it can be seen that as
A — 0, the probability that the particle will pass through the potential barrier also tends to
zero, and the states are very nearly bound, or quasi-bound, for small A. Due to this fact,
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calculations based on perturbation theory yield bound states which are good approximations
to the correct quasi-bound states (see p. 204, footnote).

10. The perturbation operator is H' = ¢2?/r. We have then that

n1m>=/n in>

\

Taking into account (7.5) of Chapter III, it follows that

mZet
#2n?

EW = / nim %

ED =_

(10.1)

The correction to the level E” can be obtained exactly in this case from (33.12) Chapter II,
thus

AE,(,O) =_

[(Z+l)2 22 =— (Z+ 3). (10.2)

2ﬁ2 2 ﬁz 2

By comparing (10.2) with (10.1), we see that E ~ AE® only in the limit of large Z,
a conclusion which could have been drawn from the conditions of applicability of perturba-
tion theory, i.e. from (VIII.3).

11, The unperturbed spectrum is given by the expression
ESDn, = aZ6M s+ bIoM;. (11.1)

Applying perturbation theory, we find that
ESoar, = (MsMy | H'| MsM;) = D3 cos? §— 1) [M2—+S(S+ D))+ AMsM;, (11.2)

’ 2 ’ ' ™ |2
Eﬁ)sM,= ¥ (MM |H | MM y MM, | H' | McMp)| _

’ ’ (O) (0) , ’ ’ ’
Mg, M EMSM,_ EM,;M, MS.MI a%(Ms_ Ms)

(11.3)

The only non-vanishing matrix elements in (11.3) are

(MsM; | H'| Ms+1, My) g sin 20 (MS+ ) [S(S+1) —Mg(Mg+ DJ12
(MsM, |H' | Ms—1, M}y = g sin 20 (Ms —%) [S(S+1)—Mg(Mg—1)]12
(MsM, | H'| Ms+2, My, = ;@ sin? B[S(S+1) —Mg(Ms+ D]V2 X

Y [SS+1)—(Ms+1) (Mg + 22
(MsM, |H' | Ms—2, M}y = % sin? O[S(S+1) —Ms(Ms — D2 X (11.4)

X[S(S+1)—(Ms—1) (Ms—2)]/2
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A
(MsM;|H | Ms+1, M;—1) = T[S(S—fw D—Ms(Ms+1)]'12 X

X [I(I+-1)— M (M —1)]'2
(MsM || Ms—1, My+1) = 5 [SS+ 1)~ Ms(Ms— D}

X [I(I+ 1) —M (M + 1)]V2,
Substituting for these in (11.3), we obtain

E(Mng = Dz:‘izr%ze {(Ms 1) [S(S+1)-Mg(Mg—1)]

- (M5+5) IS0+ D-Mstas+ 01}

D LSS+ 1)~ MM~ DIIS(S+ 1) (M5 —1) (M5 —2)]

—[SS+1D)—Mg(Ms+ 1) [S(S+ 1)+ (Ms+ 1) (Ms+2)]}

A?

5 e {M[M2—S(S+ )]+ Mg I(I+ 1) - M3} (11.5)

12. Using (11.4) and denoting the state vectors in the zero order approximation by
| M M Y®, we find from (VIIL.1) that

D sin 20
(1) . = 2 <Y
| MsM ;) 2 ok

D sin 20
T2 dk

D sin2 0

(M5~ ) 1505+ D—Ms(Ms ~DF= | M5 —1, M)

(Ms+ )[S(s+1) Ms(Ms+D)]¥2 [ Ms+1, M)

+3 [S(S+l) —(Ms—1) (Ms-2)]'2[S(S+ 1) —Ms(Ms—1D]\2| Mg —2, M/)
D sin2

~8 [S(S+ 1) —(Ms+ 1) (Ms+2)]'2[S(S+ 1) - Ms(Ms+ 1)]'2 | Ms+2, M)
A
Za%

4
+ 2a/5

[S(S+ 1) —Ms(Ms— DAL+ 1) -M (M, + D)]'? | Ms—1, M;+1)

[S(S+ 1) —Ms(Ms+ DIV2[II+1)-M,(M;—1)]2 Ms+1, M;—1).

13. The resolvent R(E) can be written in the form

1 1

R(E) = Ho—E Ho—E

H'R(E) (13.1)
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whence

(81| RE ) = 55— g & Bn || ) (Gin | RCE)| )

= o5 g (b | H'| 6 (64 | REE)| 62

_E(O)I—E Y, (&n|H'| o) (G | REE)| bu). (13.2)

Similarly for ¢,, = ¢, we have

(@m | RE)| $ny = (0) 75— Om | H'| 60) (b | R(E)| 6n)

E(o) E 2 ($m | H'| 60) (br | R(E)| 6 (13.3)
By iterating (13.3) we obtain

(n | RE) ) = gy |~ || )+ T B H190) g

X(ge | H'| duy— .. .}D,.(E). (13.4)
Bearing in mind that

I¢’r> E(O) E<¢r H _E |¢r> <¢r B (13.5)

(13.4) can be written in the form

4 2 1 4 ’
(@m |R(E)| duy = E«n 5 (Oml {—H +H HD_EH— } |¢n) Di(E), (13.6)

where {...} indicates that the quantities in brackets are to be calculated by introducing,.
where necessary, the operator Y |¢,){¢,|. By substituting (13.6) into (13.2) we obtain
r#En

1 1 1
Dn(E) = E§,°)—E_E§,°)—E<¢" |H” ¢n> DH(E)_E_'(a)——E'mén <¢n |H’| ¢m>

1 l ’
E§3——)_E<¢’"|{ —H A+ H gy H'— } | ¢y D E). (13.7)

Using once more the identity (13.5), we see from (13.7) that

1 1 ] ] 1 ’ ’
D,E) = EO—E +E£0) —FE (@n] {_H +H Ho—E H—.. } | ¢y Du( E), (13.8)
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i.e. that
DAE) = g5+ g FAEIDAE) (13.9
where
Fu(E) = (bl {—H’-{-H’ Hgl—E H - ...}'|¢,,>. (13.10)
From (13.9) it follows that
DAB) = $u KBNS = or—5—r 75 13.11)

Let us denote by E, an energy value for which the denominator in (13.11) vanishes. Then,
from (13.4), we see that E = E, is a pole of the function {¢,,| R(E)|¢,) for any m, and we can

therefore construct a vector
[yn) = C lim (E,—E)R(E)| $,) (13.12)
E—E,

where C is a normalization constant which we leave undetermined. Writing
H—-E, = (H_E)+(E_En)
and operating with both sides of this operator relation on C(En —E)R(E)| ¢,, we obtain

(H —E,)C(E,—~E)R(E)| ¢n) = C(H —E)(E,—E) 77—5 | ¢) —C(E—E.PR(E)| ¢).

Finally, taking the limit E - E,, we obtain (H—E,)|y,) = 0, i.e. E, is an eigenvalue of H, as
required.

For the second part of the problem, we substitute the expression (13.10) into E?—E, —
F(E,) = 0, and obtain

En =E$10)+<¢H|H'l¢n>+ Zf <¢'"|H”¢m><¢'m|H’l¢n>

m=n E,—E®
s APu| H' | Qm) (Pm | H' | $1){P¢| H | pn
v 3 e e ey ke (31

r#n

This expression is known as the Wigner-Brillouin formula. Its disadvantage consists in the
appearance of the unknown quantity E, in the second and higher terms. However, by iterat-
ing we can obtain the usual results of (Rayleigh—Schrodinger) perturbation theory, thus

ED = ED+(¢a| H | w),
E(nz) =E§,O)+<¢n|H'!¢n>+ Z <¢n’H |¢’M><¢m|H |¢n>

e ED_E®

14. From (13.12), if we multiply by {(¢,|, we have that
(D lyn) = CEliI[z (Ex—E)D,(E) = CN,
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where
N, =— lim (E—E,)D(E)

E—E,
is the residue of D,(E)at the pole E = E,. On the other hand, consider the identity

{ba| REE)| ) = <¢,. e

multiply both sides by C(E, — E), and take the limit E—~ E,. By (13.12), we find that(y,|y,)
= C{¢,|p,). Since (,ly,) = 1, we obtain the result C = N, /. Using (13.12) once more,
we find that

[puy = N2 EILH; (Ex—E)R(E)| ¢ny = N1 Eliﬂ; (Es—E) Y. | m){¢n| R(E)| pn)
= —N,; 2 ), Res [(¢m| R(E)|dw)e=E,| Om)-

w0 )= Fop el

The reader can verify that, as in the preceding problem, the usual formulae for the state
vector in different orders of approximation of perturbation theory can be obtained from
(14a).

It should be carefully noted that the normalization condition used above is {y, |y,) = 1,
whereas the normalization condition {(¢,|y,) = 1 is often used in perturbation theory
expressions.

15. From (15a) it can be seen that y is the product of two ground state wavefunctions
of ‘a hydrogen-like atom with nuclear charge Z'e:

/ '3 Z r Z'r
< N1 Zla ___g
Y = P12 = a (15.1)

Then, with the notation

02 02 o Z'e? .
Hy =—7 (6x?+6y,?+62,?) - i= 1,2 (15.2)
we have that
, met
Hj'lpl' = —(Z )2EH, EH = W = 13’53 eVv. (15.3)

From (VIIL.6) it follows that
Eo = min J"lp [*—(Al-mz) Zee(i+l)+ﬁ] p dv
r, re Fi2

— min [—22'253+(z'—2)e2 J v (}Iﬁrlz) v dv+ J v %'q) dv] . 154

The first integral in (15.4) can be written as

j ( fpdv—ZJ d1—4ZEH

and the second integral is of the same form as (7.7), with Z’ instead of Z.
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Thus,
. e? 5
* —— ’
P rmzp dv 4ZEH

and hence

Ey = min | —227 +751“Z’+ 4Z'(Z' —Z)] Ey.
The required minimum is attained when Z' = Z—(5/16), so that

2
Eo = —2(2_ %) En. (15.5)

s

Comparison of numerical results obtained from (15.5) with experimental data shows that
in this case the variational method gives better results than the first order of perturbation
theory.

16. To normalize y(x, B) we require 4 = (2B/x)"*. By (I.17a), the ground state energy

is then
4+ oo

2 2
B | mo ) (16.1)

Eo = min J. p*Hy dx = min (—2—’;+§E—

—_—

The minimum is attained when B = mw/2#, so that
mw mw\ /4 mox? hw
'![){)(X) = w(x, —2?) = (*g;%—) cxXp (— P ‘), E() = —2— . (16.2)

Note that these results are in fact the accurate solutions of the problem (see problem 17 of
Chapter II).

17. We have to choose a simple trial function, depending on a parameter, which is finite
at all points of the x-axis, which vanishes as x - + =, and which is orthogonal to the func-
tion yo given by the expression (16.2). It is clear that all these conditions are satisfied by

pi(x,D) = Cxexp (—Dx?), D=0, (17.1)
The normalization condition gives C = 4(2z~1Y2 D¥2, Then, by (VIIL.7), we have
32D 3mw?
2m 8D )

(17.2)

E; = min erIprl dv = min (

The minimum is attained when D = mw/24, so that
mw 2 \12 rmw 34 mawx2 3
X) = e == —] xexp|— , Ei= —hw. (17.3
vilx) 1”("’ Zh) (\/n) (fz) p( 2fz) 1=y Ao (179)
18. From the normalization condition we can determine the values of the constants
Az, As, Aj, thus:

3\ 12 12 5o\ 12
Alz(b) , A2=—l-(i) : A3=(b ) . (18.1)

nq® n\ @ 3ng®
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For yp; we have

o 2 2
Eo = min wf(—h—d—e?) 1 dv

2m
253 - 2 .
= min ; 285 J e~ 0t Ae—Giary? dr — 4etb j e~ @by drl (18.2)
ma®
0 0

The two integrals immediately yield

e—(b/a)r Ae—(b,'a)rr2 dr = — e—(b,’a)r r2dr = — ,
f or 4b
0 0

-] ) ) a2

e~ Crpdr = —-.
j 4b?
0

By substituting in (18.2) we then find that
)
2ma®  a

. e 1
Ep = min ( ) -, oy = e, (18.3)

2a’ ,\/ a3

the minimum being attained when b = 1. By performing analogous calculations for the
other two cases we obtain the results given in Table VIIIL.1.

TasLE VIII.1

¥ = Y1 Ye Ys

7 3

b= ! 4 Z
EO = _EH —O‘SIEH —0'75EE

Note that the first set of results is accurate, while the other two are approximate only;
this is related to the fact that y; behaves correctly at the origin and at infinity, y2 behaves
correctly at the origin but its asymptotic behaviour is different from that of the exact
solution, while 3 is incorrect at the origin but has a correct (exponentially decreasing)
behaviour at infinity.

19. Since the 2s state wavefunction has spherical symmetry and vanishes as r -, we
may suppose that it contains a factor e~®®", where b is an adjustable parameter and 4 is
the radius of the first Bohr orbit. We need another parameter in order to be able to apply
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the variational method to the first excited level, and this can be introduced by multiplying
e~/ by a factor ((1+7(r/a)). We therefore take as a reasonable trial function for the 2s
state wavefunction the form

oy = A(l +%)e—<bfa>r. (19.1)

From (VIIL.7) and (VII1.7") we obtain

(19.2)

i 355 1/2

4= [ na*(a® —ab+ b?)

. . P, e T K b b b?
E>; = min J"l,l)gs(—fn-;v T)szsdr—'mm {?[—7-}— 6 _Z(bz—b-l-l)”' (19.3)

The minimum is attained when » = 5, and thus

e? r
_— = —-1/2 — 1 p—(ri2a)
Ep=—g vu=(310) (1 2a)e . (19.4)
The expressions (19.4) are in fact exact (see problem 33, Chapter II). We could also have
tried other forms for v,,, for example, those given in problem 18, each multiplied by a
factor (14 7(r/a)). The results obtained would have been approximate only.
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CHAPTER IX

Time-dependent Perturbations.
Radiation Theory

1. Time-dependent Perturbations

Let us suppose that a system having a time-independent Hamiltonian Ho is in the steady
state m, at time ¢ = 0, and that small, time-dependent, forces then begin to act on the system
and continue todo so until a time ¢ = z. If H' is the contribution to the Hamiltonian of the

system due to these forces, then

H,={V(t), for O=t=<t

0, for t=<0,t=>7 (IX.1)

where V(?) is the effective potential energy of the forces.
The probability, at time 7, that a transition m — n has occurred, due to the perturbation
H’, is given, to a first approximation, by

T 2

o) = j<n V(@) et |
d |
If it happens that ¥ is independent of ¢ in the interval O < # < =, then, by (IX.2),
4|(n|V |m)|? sin® (5 Wnni¥)

hwl,,

Fionm = Ep—En. (IX.2)

(IX.3)

OnmT) =

Forany givenE, (+# E,), this is a periodic function of 7, with a peak for E, ~ E ;.. In practice,
the final states often have a continuous (or nearly continuous) energy spectrum. Then, if
o(E) is such that the number of final states having energies in any range E to E+dE is
o(E)dE, the total probability of transition summed over all final states (the main contribu-
tion coming, of course, from those whose energies are close to that of the initial state) is
given by “Fermi’s Golden Rule”:

unl) = 2 (| V| m) [P B (IX.4)
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in which the matrix element is to be calculated for a typical state n of the set of final states
having E,, ~ E,. Since this result is proportional to 7, it follows that a transition probability
per unit time, P, = w,,(T)/z, can be defined. If the perturbation is periodic in time V(¢) =
Y Viet™, the transition probability has a form similar to that of (IX.4), and leads to
+

a probability per unit time

Py = —2;— [(n|VE | m)Po(E), E, = E,Tho. (IX.5)

Note that ¥(f) must be Hermitian, i.e. real, unless the ¥y are operators, in which case
V5 must be the Hermitian adjoint of V.

2. Radiation

In classical theory,' it is shown that the vector potential of the electromagnetic radiation
field can be expanded in plane waves, thus:

A= ; (baA;+bIAY), Ai=e¢ V

2
47;/6 elk;_.l‘ ,
where e, includes (for each value of k;) the two possible directions of polarization, V is
the volume of the normalization cube and the sum is taken over all possible plane waves
which are periodic in this cube. By taking

gr = ba+bi, pi=—iwibi—b}),

ky = -‘gi (IX.6)

the energy of the radiation field can be written in the Hamiltonian form
H g = ; (P} + i) (IX.7)

In the quantum theory of radiation, the Hamiltonian H has the form (IX.7), but the quan-
tities p,, g,, are operators which satisfy the commutation rules

[Pla qu] = _ihaﬂu, [ql’ q#] = [PA, pﬂ] = 0. (IXS)

The vector potential (operator) and the Hamiltonian (operator) of the radiation field are
then:
A =) (b:A;+biA)),
A

1 ) 1 ) ]
by = Do; (@:ga+ips), bi = 0 (waga—ipa); (IX.9)

Hpag = ;hwz(a;ﬂj"—[--;—),
= _‘z;lxj‘b}.a a;’tl-:]/ri;o‘ibfs

T L. D. Landau and E. M. Lifshitz, Classical Theory of Fields, Addison-Wesley, Reading, Massachusetts,
1951. .

(IX.10)
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Ch. IX Time-dependent Perturbations. Radiation Theory

where a; and g, are creation and annihilation operators respectively (see section 3 and
problem 15, Chapter VII), and satisfy the commutation rules for Bose particles (which
are, in this case, the radiation field quanta or “photons”):

[a/'l9 a,t-j,_] = 62,0,9 [a}.’ a‘u] = [a/'l+’ a:] = 0. (IX.]])

The total field energy eigenvalues can be written in the form
h
E = ZE,mH—ijA = Y Ezm+Eo, (IX.12)
a a A

where E, = Aw,, and n, is the number of photons of energy E;. If all n, are equal to zero, the
field has an energy E,, called the vacuum energy. The presence of the (infinite) constant Eg
in the expression for the field energy does not affect the emission, absorption and scattering
of light, since in these processes Ey does not change, any change in field energy being due
solely to the first term of (IX.12).

3. The Interaction of Radiation with Atomic Systems

A system which consists of an electron in a radiation field is described in non-relativ-
istic quantum mechanics by the Hamiltonian (cf. problem 32, Chapter VI),
1 p2 2

e \?2 e e
= A - = 5 - . 2 rads .
H=- (p . A) +VtHug =5 +V=— (AP ++5 5 A+ Heag, (1X13)

where the potential ¢ of the radiation field is taken to be equal to zero,! and V is, for
example, the electrostatic field of a nucleus. The part of the Hamiltonian which represents
the interaction between the electron and the radiation is thus

ro_ ¢ 2
H =——(A.p)+ A2, (IX.14)

2mc?

By treating H' as a perturbation, it follows from (IX.14) that the probability per unit time
for the electron to make a transition (due to the absorption of a photon of energy £, = #w,>
from a steady state 1 to a steady state 2 of the unperturbed electronic Hamiltonian, is given
by

APy = 2§|<2; e, L [H L g R 0(E) AR (IX.15)

where dQ is an element of solid angle about the direction of propagation of the photon,

and
w2V

o(E) = Brcl h (IX.16)

is the number of states of the radiation field in the volume V" per unit energy interval and
per unit solid angle.

+ For a pure radiation field, the gauge can be chosen to be such that¢ = 0, V.A = 0.
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Using the properties of the creation and annihilation operators, one finds that
Zﬂhm_

<2; ceam—1, ... ]Hll, ...,n;,...)-—-——n—1

(2 |e™rH(p.ey)| 1). (IX.17)

Writing, for simplicity, k, = k, e, = e, we have that

dPu =22 "’2"‘ 2 (2 e (p.e)| 1) [2o(E) dO2. (IX.18)

Similarly, for emission, one obtains the result

471162(11;, + 1)

dPyz = Veiom?

(1 |e~*(p.e)| 2)[2o(E) dO. (IX.18)

It follows from (IX.18") that the transition probability dP;; consists of two terms. The first
is proportional to the radiation field intensity (i.e. to the number n, of photons present)
and corresponds to “stimulated” emission. The second term is independent of n, and
corresponds to “spontaneous” emission. It very often happens that the wavelength of the
absorbed (or of the emitted) photon is much greater than the linear dimensions of the region
in which the probability of finding the electron is appreciably different from zero. In such
cases the exponential factor can be put equal to unity, and, for emission, we then have the
“dipole” transition probability :

e%w

AP = L o 2

3 [(p.€)12|2(n+ l)d.Q = [(d.e)12|2(m;+ l)d.Q, (IX.19)

W
2nhc®
where d = er is the electric dipole moment operator of the electron. Choosing the states of
plane-polarization of the photon to be in the plane (d, k), and perpendicular to it, respec-
tively, we can obtain from (IX.19)

3
dPy; = 2:hc3 |12 |2 (n3+ 1) sin? 0 4O (IX.20)

and, similarly,

dPs; = n, sin2 6 dQ (IX.ZO')

w
2nhe?
where 0 is the angle between the vectors d;, and k. By integrating over the angles, we find
finally from (IX.20) that the total energy of spontaneous radiation per excited atom per unit
time is 4w%/3¢® | di2 |2. This expression is the same as the classical one if we make the equation
|d12{2 « 5d?, where d2 is the mean square classical dipole moment of the radiating system.
The above relations, derived for one electron, are also valid for a system of electrons if d

now stands for the sum of the dipole moments of all the electrons, and states 1 and 2 now
refer, of course, to many-particle states.
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If the dipole transition probability vanishes, the transition is said to be “forbidden”.
By expanding the exponential factor in (IX.18’) in a power series, expressions for the
probabilities of the transitions known as “magnetic dipole”, “electric quadrupole”, and so
on, can be obtained.

Problems
1. A charged-particle linear harmonic oscillator is in a time-dependent homogeneous
electric field given by

oy = e— (1a)

nT

where 4 and 7 are constants. If, at # = — oo, the oscillator is in its ground state, find, to a
first approximation, the probability that it will be in its first excited state at # = + oo.

2. A hydrogen atom is placed in a time-dependent homogeneous electric field given by

g_ 1
e 2412

0 = (2a)
where B and 7 are constants. If, at = — oo, the atom is in its ground state, calculate the
probability that it will be in a 2p state at t = + oo.

3. Calculate the probability that an electron in an atom will make a transition from the
tationary state m to the stationary state » under the influence of a heavy charged particle
which passes near the atom. Discuss the result obtained.

4. Let m and n be two stationary states of an atom on which the perturbation (IX.1)
acts. Show that if the “adiabatic approximation” condition is satisfied:

E,—E,

(nIV(t)|m><< \E,—Enl, Opm= .

w5 4a)

(i.e. if the change in time of the interaction energy which occurs during one period of oscil-
lation of the atomic system is much smaller than the difference between the energies of the
initial and the final states), then the probability of the transition m-n is very small. Find an
approximate expression for the probability of the transition m—n in the opposite case, in
which

W 2 (an(t)|m>>> |En—Eml, (4b)

during the time in which the perturbation increases from zero to a maximum value ¥V, ie.
the perturbation is “suddenly switched on™.
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5. A charged-particle linear harmonic oscillator isinits ground state when a time-depend-
ent electric field is suddenly switched on. Calculate the probability of excitation of the nth
level of the oscillator, assuming that the conditions under which perturbation theory can be
used are not satisfied.

6. Calculate the probability of excitation of the 2s level of a hydrogen-like atom if a
sudden change of the nuclear charge, Z — Z+1, occurs (e.g., due to ¥ decay).

7. “Magnetic resonance” phenomena are due to the absorption of energy by a system
(having a spin and a magnetic moment) from a rotating magnetic field H, = (H, =
H, coswt, H,, = H,sinwt, H,, = 0), which' results in a change in the orientation of
the spin of the system relative to a constant homogeneous magnetic field Hy = (0, 0, H 0)-
Denoting by y the gyromagnetic ratio of the system, the rate of change with time of the
spin wavefunction y of the system is given by

ih {Z—’: = Hy = —yh[Hs;+ Hy(s5 cos wt+s, sin wi)) x. (7a)
Suppose that, at = 0, the spin is in the state m,. Calculate the probability of finding it at
time ¢ in a state m (m,, m, = —s, —s+1, ..., s—1, +s5). Study in detail the case s = 3

8. Obtain, to the first order of approximation of time-dependent perturbation theory,
the differential cross-section for scattering by a constant potential (the “first Born approxi-
mation”, see (X.10)).

9. Find the differential cross-section for inelasticscattering of a fast electron by a hydro-
gen atom in its ground state, which, as a result of the collision, is excited to the 2s state. Any
exchange effects between the colliding electron and the bound one may be neglected.

10. Derive expressions for the transition probability due to the perturbation (IX.1), to
arbitrarily high orders of perturbation theory.

11. Find the probability that the oscillator of problem 1 will make a transition to an
excited state n > 1 under the influence of the perturbation (1a).
12, Let H = Ho+V be the Hamiltonian of two conservative systems in interaction. In

the Schrédinger picture Hy, ¥V and H are time independent.? Show that:
1. The matrix elements of the S-matrix defined in problem 10 can be written as

where
VihHJAaw
@ |T|m) = (n|V|m)+} - ‘Eijélli4m>

by SAVIDAVID @ |Vim)
Lr (Em—E1+177) (Em+E]'+i17) ce ey

(12b)
7 being a small positive number.

¥ See the note on page 245.
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2. The operator T satisfies the equation
T =V+V(E,—Ho+in)T. (12¢c)

13. A hydrogen atom in its ground state is placed in an electric field () = &o sin wt of
angular frequency w > me*(2#°. Find the probability per unit time that the atom will be
jonized. The wavefunctions of the electron in the ionized states may be taken to be plane

waves.

14. Show that the term in A2 in the interaction Hamiltonian of an electron in a radiation

field
e e?
I —_ - 2
H s (p.A)+ I A (IX.14)
gives a contribution to the transition probability of a process only if two photons take part

in that process.
15. Show that free electrons cannot absorb or emit photons.

16. Show that the total probability of spontaneous emission of an excited atom per unit
time is of the order of w/(137)®.

17. The intensity of magnetic dipole, and of electric quadrupole, radiation is propor-
tional to the square of the matrix element of the first-order term in the expansion in series of
the exponential in (IX.18'):

(1i(k.&)(@-e)|2). (17)
Separate, in (17a), the part which represents electric quadrupole radiation from that which
represents magnetic dipole radiation.

18. Find selection rules for the emission and absorption of electric dipole, electric quad-
rupole and magnetic dipole radiation, by an electron moving in a central field.

19, Show that, in quantum theory (as well as in classical theory), a charged linear har-
monic oscillator can absorb or emit radiation of frequency equal to its own classical fre-
quency only.

20. Using the expressions (IX.18) and (IX.18") for the absorption and emission probabili-
ties, find the spectral distribution of black-body radiation (Planck’s formula).

21. Find the probabilities of the spontaneous transitions (n, /) -~ (', [+1) and (n, [) -
(', [ —1) for an electron in a central field.

22. Find the ratio of the intensities of the first two lines of the “Balmer series” of hydro-
gen.

23. The process of absorption of a photon by a bound particle, when the photon energy
is greater than the binding energy of the particle, is called a “photoelectric” process. Find
the differential cross-section of this process for a hydrogen-like atom in its ground state.
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24. Consider a system of charged particles (atom, molecule, etc.) placed in the field of an
electromagnetic plane wave whose wavelength is much greater than the linear dimensions of
the system, and which induces in the system an electric dipole moment d = 8¢, proportional
to the electric field amplitude & = &, cos wt. Show how the quantity 5, called the “polariza-
tion tensor” of the system, may be calculated, assuming the eigenstates of the unperturbed
system to be brown.

It may be supposed that there are no eigenfrequencies of the system near the frequency of

the external field.

Solutions

1. Note that the “characteristic time” z enters into the expression for the perturbation in
such a way that the total linear momentum P given (classically) by the field to the oscillator
does not depend on 7,

+ oo + oo
P= el(t)ydt = 61_4 e~P dt = eA.
vV
The transition probability from the state » to the state k is given by (IX.2) to be
1| 2
Wkn = 25 J (k |W | n)e'ont dt | , (1.1)

—_— D0

where W = —x/(t)e is the effective (time-dependent) potential energy of the perturbing
force. Knowing the matrix elements of x for the oscillator states (see (21.4) Chapter V),

, I
(5l nt 1) = (nt 1 x|y = | CEDE (1.2)
we have that
P h )
©OW|1) ={(1|W|0)= v 5 e, (1.3)
Substituting (1.3) in (1.1) and remembering that w,, = w, we obtain
ro
O St f e (14)
Now, since - -
+ oo

—_— 00
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we find finally that

P2

Wig = p- e~ WD) (1.5)

Transition probabilities to levels with » > 1 are obtained only in higher orders of perturba-
tion theory (see problem 11).

Let us discuss (1.5) as a function of the characteristic time z. It can be seen thatifz > 1/
(i.e. if the time during which the perturbation has an appreciable value is much longer than
the period of a classical oscillation), then the probability w1 is very small. This is the “adia-
batic” case (cf. problem 4). At the other extreme, if v < 1/w, then the probability w1, is
approximately constant. As = — O the perturbation tends towards a é-function of #, and the
probability w,, then appears as the ratio of the (classical) energy P%/2m given to the oscillator
to the energy quantum #w. For perturbation theory to be valid, the probability of a transition
to an excited state has to be much smaller than the probability of remaining in the ground
state, i.e. w10 < (1 —w10), whence w19 < 1. From(1.5)it can be seen that a sufficient condi-

tion for this is that
2
% = % < ho. (1.6)

It is interesting to note that, if (1.6) holds, the possibility of excitation of the oscillator is a
purely quantum-mechanical effect, since, from a semi-classical point of view, the energy
P2/2m received from the field would be insufficient to allow the energy jump w# to occur. In
the quantized system, however, the quantity P?/2m does not in fact represent the energy
received by the oscillator from the field, so that the paradox is only an apparent one.

2. Choosing the z-axis in the direction of the electric field, it follows from (IX.2) that the
required probability is
=) 2

J (2101 V| 100)ei dt 2.1)

1
TR

where V = —erd(t) cos 0 and w = 3met/8#2. From Table 1 of Chapter II we see that the
only possible transition from the ground state to the 2p state corresponds to the matrix ele-
ment

.
{210 |r cos 0] 100) = —1—_ 1ir e—29) cos f(r cos B)e— D) dr = 2 \/20. (2.2
442 a8 a 35

Substituting (2a) and (2.2) in (2.1), we obtain

+ o0

el'w-t d 2 23
~[1:2+t2 il (2)

|—Q0

215B%r%q?
= Bt

@

233



Problems in Quantum Mechanics

The integral in (2.3) can be calculated using the theory of residues. The contour of integration
in the plane of (complex) # is along the real axis, and can be closed by a semicircle of infinite
radius in the upper half-plane (Fig. IX.1). On this semicircle the integral vanishes on account
of the factor ™"

"-'--u...~
/' &
/ \
'4 L N
/ \
] \
] 1
1 — 3
0
Fic. I1X.1.

The only pole inside the contour of integration is at # = 4+ #z, and hence

+co
el.a)t . efwt n ot
J\ tz—l——'{,’z dt = 2751 Res (m)rz& = ';e . (2.4)
Finally, the required probability is
2155242
w = W e 2ot (2.5)

This result can be discussed as in the preceding problem; the total linear momentum given
by the electric field to the hydrogen atom is equal to B.

3. Since the particle is heavy, we suppose that its motion is not changed by any interac-
tion with the atom. We suppose also that the nucleus of the atom remains at rest. Let us
choose a coordinate system with its origin at the nucleus, and with its x-axis parallel to the
direction of the particle’s motion. Let v be the (constant) velocity of the latter and R = (¢,
D, 0) its position vector at time ¢. D is the distance of nearest approach to the atom, attained
at time £ = 0. If r = (x, y, z) is the position vector of the electron, the potential energy of
particle-electron interaction is given by

Zet Ze® Ze¥(xvt+ Dy)
R~ R o + ...

W(t) = — 3.1)

where R =/ (v£*+ D? and Ze is the electric charge of the particle. Since x, y < R, in (3.1)
we can restrict ourselves to the first two terms only, and we have then that

Ze?
(n|W(t)|m) = R (Xnm¥t+ Dypm), // (3.2)
where x,, and y,,, are the matrix elements of the coordinates x and y of the electron.
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Substituting (3.2) in (IX.2) we obtain the transition probability from the state m to the
state n of the atom:

2%t Xnm08+Dypm
WOpm — h_2 [(vt)2+D2]3’,2 givnmt dt |, (33)

The integrand decreases rapidly with R. We can gy-"that the effective duration of the inter-
action, or “collision”, between the particle ;n‘fd the atom 1s of order D/v. Note that, as
in problem 1, if the adiabatic condition (e ”ﬂ)) /v = 1 holds (i.e. if the effective duration of
the collision is much greater than the characteristic period, w; ), of the quantized system),
then the value of the integral is almost zero|and the collision cannot excite the atom. In the
opposite limiting case, (w,,,D)/v << 1, the exponential in (3.3) can be put equal to unity, and
the integral reduces to

+ oo +o0
X0+ Dyum Dynm g — 2Yum
[+ D22 = [(v02+ D2 ™ = oD

—_— 00 —_—

(note that the substitution »f = D tan 0 enables the integral to be evaluated) and, finally,

_ 4Z%* | yum|®

nm = T anmE (3.4)

4, Integrating by parts, we find that

T

1

J. (n|V(t)| mye'onn’ dt = [(n | V(t)| myeionn' ]
0

S @1
je"”nm z‘ \n ‘ V(t) m> dt

0

1

lCU,,m

—

Substituting (4.1) in (IX.2), and remembering that {n |V (f)! m) vanishes for ¢ = 0 and for

t = 7, we obtain
T 12

je'wnm' (n\V(t)|m) dt] . (4.2)

0

1

Wl

W (T) =

For an adiabatic variation of the perturbation (4a) the second factor in the integral changes
very slowly in comparison with the first, so that it can be taken outside the integration, with
the result that

4

24
A wnm

O nm(T) =

Z ¢ vy m>' sin® (; w,,m) (4.3)
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Remembering (4a), it can be seen immediately that the probability w,,,(7) is very small. Note
that (4.3) can also be obtained without using perturbation theory, and that it is known as the
“adiabatic™ approximation.}

If the perturbation is applied suddenly, i.e. if ¥(f) increases from zero to a maximum
value V in a time A¢ which is short in comparison with the periodic time .} (so that (4b)
holds), and, subsequently, it varies and/or vanishes adiabatically, then the major contribu-
tion to the integral in (4.2) occurs in the interval A¢ in which the perturbation is applied. In
this time interval the factor ¢ changes very little, and therefore can be regarded as a
constant and taken outside the integral. One obtains then

_ KnV m)yl2

where V' is the maximum of the perturbation. Instances of (4a) and of (4b) have both been
met already in problems 1, 2 and 3. Note that (4.4) can be used to calculate transition proba-
bilities due to a sudden perturbation only if the maximum ¥ is small enough for perturba-
tion theory to be valid. Otherwise we have to use another method (see problems 5 and 6).

5. If the field is sufficiently weak for perturbation theory to be valid, expression (4.4) can
be used. There is, however, another way of calculating the required probabilities which is
independent of perturbation theory, and which is valid even if the field & is a strong one.

Let us suppose that the field is applied suddenly at £ = 0. For ¢ =< 0 the oscillator is in
the ground state yo(x). Since the perturbation is applied suddenly (i.e. in a time much short-
er than the period of oscillation 1/w), the wavefunction at time ¢ = + 0 will be the same as it
was at £ = —0 (see (17.12), of Chapter II), viz.,

Wnm

2
Yo(x) = xg Vo =14 exp [ L (3—) ], 5.0
2 Xo
where xo = (#/mw)"2. However, for f = + 0 the Hamiltonian of the system is
2 d?2 mox?
H=— S T —el, (5.2)

or, in terms of a new variable x; = x—ed&/mw?,

n A2 mo? (ed)
“om A T T 2t
Now the Hamiltonian (5.3) 1s, except for a constant, that of an oscillator of the same fre-
quency as the unperturbed one, but oscillating about the point x = a, where a = e/,/mw?. The

corresponding wavefunctions ¢,(x) can therefore be obtained from (17.12) of Chapter II by
making the substitution x - x —a, thus,

$a(x) = palx—a) = = V42 xg)~ 2 == ¥I2K} H, ( o ) (5.4)

H=

(5.3)

Xo
/ .
t M. Born and V. Fock, Zs. f. Phys. 51, 165 (1928). . -
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The initial wavefunction yo(x) is not an eigenfunction of the new Hamiltonian (5.2), but it
can be written as a superposition of the new eigenfunctions,

o0

%(x) = Z cnd’u(x) = ”zo cn’l)n(x—a), (55)

n=0

the ¢, being constants. The time-dependent wavefunction of the oscillator in the electric
field (¢ = 0) is then

e y(x, ) = of: r:,,w,,(.?c—a)e_;T Ent, (5.6)

n=0

and the probability of finding the oscillator at a time # > 0 in the state ¢, of energy

~ 1\ (el
E, = Ao (IH_E)  2maw?

+ 00

Cn = f Yo(x) Yu(x —a) dx

L
- OO

is equal to |c,|®. Now

+ oo

— =Y an, ) b2 _l iz_i x—a\? X—a
xg (72"n!) j exp[ 5 (xo) 7 = H, - dx. (5.7)
The integral in (5.7) is the same as in (11.2) of Chapter V if the change of variable x;a =
0
is made. Hence
(&)= (-7 %)
Xy T4 x2
Cn = —1 n U 0 , 5.8
(=1) e (5:8)
and, finally,
() o (-3 %)
¥ S )
o = lealt = ~ 20 2 Xl (59)

27n!
. . . e 1 _—_
Note that this expression has the form of a Poisson distribution ——'(ﬁ)"e*", with the
.

mean value

7 1(“)2 Ly (5.10)

=5 x—o = 2mnow®

The method given above is valid whatever the strength of the field. If & > (mAiw®)'?/e, i
if 7> 1, we have we = ¢~" < 1. In other words the probability that the oscilltator will
remain in its ground state is very small. Since w, reaches its maximum value for n = #,
the most probable excited level is the one which has energy E;. The opposite limiting case,
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fi< 1, corresponds to a weak perturbing field. In this case, from (5.10), we find that

w, == —1' (r)". Since this expression decreases very rapidly with #, it has a negligible value
n!

except for n = 1, in which case

<. (5.11)

In this case perturbation theory is valid, and, as is to be expected, the result (4.4) obtained
by means of perturbation theory (for a sudden switching on of the perturbation) is the same
as (5.11).

6. The initial state of the atom has the wavefunction

z3 Zr A
Y100 = nT‘seXp =) a=w. 6.1

Using the same method as in the preceding problem, the required probability is found to be
w(ls ~ 25) = | $ioatproo dV (6.2)

where @200 is the wavefunction of the 2s state of a hydrogen-like atom having a nuclear
charge (Z+ 1)e. From Table 11.1 of Chapter 11 it can be seen that

foomr— [ TP o 2200 ] [ ]

2na®
z? _Zr [22Z(Z+ 1)P/2
]/ exp( )dV (F2) GZLip
The required probability is thus
_ zuzs(z:t 1)3
w(ls - 25) = GZLIp (6.3)

For large values of Z the perturbation ¥ = +e¢?/r is small. Hence in this case perturbation
theory is also valid. Since E,, —E,, = 3Z2%?2/8a, from (4.4) we have that

164

2s V| 1s)2. (6.4)
A familiar calculation gives for the matrix element of (6. 4)

25|V 1s) = 182272" :

so that
w(ls - 25) &~ 2119-47-2 . 0-3127-2, (6.5)

It can be seen that for large Z the expressions (6.3) and (6.5) are nearly equal.
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7. Using the notation wy, = —y5o (= the “Larmor precession frequency” of the system
in the constant magnetic field #¢) and w, = —y0;, equation (7a) becomes
. O 1 : .
i %k [wosz+7w1(s+ et 45 e"“‘)] L. (7.1)
We first solve the problem in a way which gives the exact result. We change to a frame of
reference which is rotating with the field Z0,, by the unitary transformation

¥y = Uye = exp (—iws;t) % -
Equation (7.1) then becomes

ite = {U wos: + 5 wi(s, e~ ™'+ 5_ )] U—iU- Uy} (7.2)
We have, however, that
,//-\\ U_ISZU — et‘wtszsz e—iwtsz =5,
f AN e+iwszts+ e—iws;t — eiwts+ (73)
e \ e+iwszts_ e‘—tﬂiszt — e‘—iﬂ)ts_h
and hence
iy = [(wo—w) $:+018:] e - (7.4)

Equation (7.4) can be integrated immediately, to give

xe = %e(0) exp { —i[(ewo —w) 5.+ w;5.] £}, (7.5)
where y,(0) = #(0). By introducing the notation
a = [(wy —wP+wi*?, sin 0 =w,/a, cosl = (w,—w)/a, (7.6)

the spin wavefunction can be written in the form

y = exp (—iws.f) exp [ —ia(n.s)] x(0), (7.7)

where n is a unit vector having components n, = sin 0, n, = 0 n, = cos 0. Since, initially,
the spin is in the state |m), we have that

|7y = exp (—iws.f) exp [—ia(n.s)] |ms). (7.8)
From (7.8) it follows immediately that the probability of finding the spin in the state |m,)
at time £ is
Pom, = [ (| exp (—icws,t) exp [ia(n.s) £]| ms) [ = | (m; |exp [ia(n.s) ]| mo).  (7.9)
1

In the special case s = 4, (7.9) can be written easily in an explicit form. Writing s = o,
where ¢, 6., o, are the Pauli matrices, the following relations can easily be verified:

x? »y?

m.¢)* =@ =1, (n.c)*?*!=(n.ag). (7.10)
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From (7.10) one finds that

exp [ia(n.s) f] = exp [; ia(n.q) t] = CoS$ —;— t+i(n.c)sin —;— t, (7.11)

)

sin® —;— [(wo —w)*+ M2t (7.12)

and, by substituting in (7.9),

-

P_yp, 2 = \ 2

.. a . 2
cos t+z sin > t (cos Oa,+sin fo)

2
= sin2 Bsinz 2 ¢ = wlz 5
2 (g —w)2+ew?

Let us try now to solve the problem by using perturbation theory. Since the rotating field
is usually much weaker than the constant field, it follows from (IX.2), after some simple
calculation, that, to first order in perturbation theory,

Wy
wog—w

2
P_ya s = ( ) sin® - (wo—a) 1. (7.13)
It can be seen that (7.13) gives a good approximation to the exact result (7.12) only if
two—w | > w,, i.e. if the rotating field has a frequency far enough removed from the reso-
nance frequency w = wo. From this an important fact emerges, viz., that, in the vicinity
of a resonance, perturbation theory cannot be applied, no matter how small the perturbation
may be. Thus, for w = wy, (7.13) becomes

P_yip, 12 = w302 (7.14)

an expression which would lead to probabilities greater than unity for ¢ > 2/w;. Similar
contradictions occur in other situations, usually when the frequency of a perturbation ap-
proaches one of the eigenfrequencies of the perturbed system,

If the direction of rotation of the field #0, is reversed (i.e. if #6,, = 4, cos wt, .,
~d0, sin wf) the corresponding probability is obtamed from (7.12) by replacmg w by —w,
thus

w3

(o + )P+

Py, = sin® -;— [(wo + w)* +ef]¥21. (7.12)
It can be seen that if w is in the vicinity of the frequency —wo (7.13) gives a good approxi-
mation to the exact result (7.12").

8. In order to solve this problem we use Fermi’s Golden Rule (IX.4). The unperturbed
Hamiltonian Ho = p?/2m is the free-particle Hamiltonian, and we shall treat the scattering
potential ¥(r) as a time-independent perturbation. In the usual cube of side L, the ortho-
normal eigenstates of Hy are the plane waves

wk = L—3/2 el'k.l', P= hk. (8.1)

-

"

240 -



Ch. IX Time-ependent Perturbations. Radiation Theory

If we denote by o(E) dE df2 the number of states (8.1) having an energy E = p?/2m in the in-
terval (E, E+dE), and a wave vector k in the solid angle d©2, then

b 3
o(E)dEdQ = (%) dk, dk, dk, = (2%) k2 dkc d©, 8.2)
whence
L\S dk [L\*m
Q(E)=( ) o o = (E) w“a 8.3)

Consider now an incident flux of particles of energy F = %mvﬁ, and let #k, and #k, be the
momenta (corresponding to the same energy) of the incident and of the scattered particles.
From (IX.4), it follows that the transition probability per unit time from the state a to the
state b is

2
o= - (Ko | V| Ka)|? o(E). (8.4)

Let do(0, ¢) be the differential cross-section of the scattering process, i.e. the number of
particles scattered into a solid angle df2 about the direction (6, ¢) of k,, per unit time and
per unit incident flux. We can thus write

do va\ ! mL?
m = (E) Dpa = "_'_hk Wpg . (8‘5)
From (8.4), (8.3) and (8.5) it follows that
do m? . 2
~aym) dr| , q=ko—kg (8.6)
a0 = dnnt J e/“ r)
which is in fact the “first Born approximation” of colli ion theory (see X.10).

Remarks: In order to determine o(E), eigenstates of Hy Wthh are periodic and normal-
ized in a cube of side L were used. We can alternatively W9rk with eigenstates of Hy which
are “normalized to a d-function”, viz.,

1/)k = (27!)—3/28!11.1“ (8-1r)

In accordance with the closure relation we have (see problem 8, Chapter I) f |kYdk (k| =1,
whence it follows that the number of states (8.1") with wave vectors in the range (k, k+ dk)
is equal to dk. Hence we have immediately that

o(E) dE dQ = dk = k? dk dS2, (8.2)

and thus, for these states,
mk m '
o(F) =5 =2 8.3)

9, Choosing the origin of coordinates at the nucleus (assumed to remain stationary
owing to its large mass), and denoting by r; and r; the position vectors of the colliding
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electron and of the bound electron respectively, and by p; and p, the corresponding momen-
tum operators, the unperturbed Hamiltonian is
P e
Ho= i om re ®-1)
The perturbation is the interaction energy between the colliding electron and the bound

electron and its nucleus:

2 2
SR (9.2)

rig ri
The unperturbed initial and final wavefunctions are
L3200k, 'r1w100(r2)s L—3/2eik;, 'r1w200(r2),

where L is the side of the normalization cube, k. and k,# are the initial and the final
momenta of the colliding electron, and y;00(rs) and so(rs) are the initial and final wave-
functions of the hydrogen atom (see problem 8). From the law of conservation of energy,

we find that
H2m 3e?

2 __ p2_ =
kb ka h2 8 a M (9'3)
The differential cross-section is found from (IX.4) in the same way as in the preceding
problem, except that now the magnitudes of k, and k, are not equal, but are related by
(9.3). We find then that

do(0 k m \2
_c%l = (W) L8200 | 77| 100} 2, (9.4)

2 2
(200 || 100y = L-3 f f €9 Eipdon(rs) (;;2—5;) Yioolre) dry dry,  q = kp—ko.  (9.5)

The term €?/r; does not yield any contribution to the integral because of the orthogonality
of the wavefunctions ¥, 0(rs) and yaoo(#). This result is to be expected, since any interaction
between the colliding electron and the nucleus (which is assumed to remain at rest) cannot
excite the atom. To calculate the other term we first carry out the integration over the
variable r;:

el'q .r
J dr; . (9.6)
rie
This can be done as follows. Note that, in electrostatics, the quantity
e—ig.r’ A 9.7
¢q(r) - Jrr_r| ( . )

is the potential at r due to an electric charge distribution of density o(r") = e='". This
potential therefore satisfies Poisson’s equation,

Va(r) = —4rofr) = dme=a-y,
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whence, by inspection,

Po(r) = ;—f e—fa-r, (9.8)

With the help of this result and the use of the hydrogen atom wavefunctions (33.14), Chapter
I1, we obtain from (9.5), after integrating over r,

<200 | VI 100> — L—3 16 \/Zﬂazez a= A (9 9)
(q2a2+ 4y me?’ .
2
do() _ky 128 2 — k24 k2 —2k.k, cos 0. (9.10)

dQ ks (Qa+2)%
From (9.9) we see that, in order to be able to apply perturbation theory, it is necessary that
k,a > 1, i.e. that the colliding electron should have a high enough energy. k, is then nearly
equal to k_, and, by (9.3),

2m 3¢ 3
(kq —kg) (ko + +kp) = 2 8 4a2
3 (9.11)
ka+kb = 2ka, kamkb a1 ———~8k az .
Thus for g2 we can write
3 0 0\2
g ~ (4k2 ) sin? 7~ (Zk sin 2) : (9.12)

From (9.9) we see also that the main contribution to the total inelastic scattering cross-
section comes from the region in which ga =1, i.e. in which 6 < (k,a)~*. Outside this
do(0 ‘
dQ
to the elastic collision cross-section (which decreases as cosec® 0/2 according to Rutherford’s
formula). This strong forward peaking of the inelastic scattering cross-section is charac-
teristic of inelastic processes in general. To calculate explicitly the total cross-section, we
observe from (9.10) that the required integration over the solid angle 27 sin 6 d0 can be
replaced by an integration over 27nq dg/kk,, between the limits k,—k, and k,+k,. For
high energies, the main contribution to the integral comes from values of g near the lower
limit. From (9.11) it follows that (k,—k,’d® ~ (9/64k2a") << (3). We can therefore
extend the integration over ¢ from O to =, and we obtain finally

10

6
region, decreases rapidly with increasing 0 (approxlmately as cosec?? 3 ) as opposed

10. Denoting by ¢, and E, the eigenfunctions and the eigenvalues respectively of the
time-independent Hamiltonian Ho, the solution of the Schrodinger equation,
3,

it F’f = [Ho+V(O)ly, (10.1)
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can be written in the form

1Ent ) (10.2)

Y =Y a,(f)$, exp (— P

Since, up to the moment when the perturbation is applied, the system is in the state m>
we have
aﬂ(t) = anma = 0

After the perturbation has ceased, i.e. for 7 = 7, the coefficients a, again have constant
values, a,,(7) say, and the wavefunction becomes

Y = ;anm(t)fﬁn exp ( —%‘Ent). (10.4)

The probability of the transition m — n will then be
Opm(T) = | @um(T) 2.

We have now to calculate the coefficients a,,,(7). Substituting (10.2) in (10.1) and performing
some elementary calculations we obtain for the a,(f) a system of differential equations,

ih th a,(f) = ;(n | V(D Deiontt a(t). (10.5)

We can solve (10.5) by successive approximations and obtain

t
oy = %J(nl V(') mye'" dr, (10.6)
0

t
a® — Iihj(n |V (| m)ei‘”””‘" dt’
0

t £ (10.7)
1)? Wyt ’ Y fw r t" 0 gt
+(z?) Zf<"|V(")|"'¥i ! J(" V()| mye' " dr dr'.
0 0
In general (and ignoring questions of convergence) we can write
/ t R t ¢
nn(t) = n 1+I.% f Vi(t) dt'+(;,;) f Vit f Vi(t"yde dr
N U
t ¢’ (10.8)

o

148 \

_|_ (ITE) J'VI (tf)J. VI(t”)J' VI (tuf) dtfn dt.rf dtf_l_ . m ,
0 0 0 /

where V() is the expression for the perturbation in the interaction picture. As is to be

expected, the quantity |a)(7) |2 is equal to w,,(t) in (IX.2).
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The problem can be solved in a more elegant and general way, as follows. Consider
a quantum-mechanical system consisting of two interacting sub-systems, whose total
Hamiltonian H = Ho+V consists of the sum H, of the Hamiltonians of the two systems
(neglecting any interaction between them), and the time-independent interaction Hamil-
tonian® V. The time evolution of the wavefunction of the system in the Schrédinger picture
is given by
w(#) = S(, to) y(to) (10.9)
where the operator S(#, #o) satisfies the differential equation (6a), Chapter V,
" oS(2, to)
ot
with the initial condition S(#o, f0) = 1.
We can solve (10.10) to successive approximations by taking as the zero-order approxi-
mation S(¢, to) = 1. Without concerning ourselves with questions of convergence, the
solution can be written as

S(, to) = Z Sk(?, to),

= V() S, t0), (10.10)

(10.11)
Sk(t, to) = Jdtl j dty ... J dnV () Vi(ta) ... Vi)

The repeated integrals in (10.11) can be rewrltten as follows. Consider, e.g., the term
t 4
Sa(t, to) = — | dty | dtaV (t1)V i(t2). (10.12)
to fo

In the plane (71, £2), (10.12) is a surface integral over the triangle shown in Fig. IX.2 below

the diagonal.
t2

- = — o~ ——
—_ - ——— =

t
Fic. 1X.2.

t In the preceding sections it was always supposed that H referred to a single system only. ¥ is then a
time-dependent external perturbation, whereas in the present section it is internal and time-independent.
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Let us now change the order of integration in (10.12), so that

Sz(t, Io) = — I dt, Izdtlyl(tz)yl(tl). (1012')

o o
In the plane (71, ;) the surface integral is now over the triangle above the diagonal. If the
operators V(¢,) and V,(t,) commute, the expressions under the integral signs in (10.12)
and in (10.12") are equal to each other and S(#, #,) can be written as half the integral calcu-
lated over the whole of the square shown in the diagram.
If the operators V,(2,) and V,(t,) do not commute, we can still write

4 4 Viit)Vi(ts), ta<t
St to)=—=2 [dn | dt { 10.13
(¢ to) ? :‘.[ ! r;,[ ? Vit)Vi(t), 4 <, ( )
1.e.
I I
S, 1) =— %J. dh I dtzT(Vj(fl)VI(Iz)), (10.13)
fo fo
where
VitV its), <t
TV (t))V (1)) = 10.14
(Ve 2) { Vi)Vit), t<t, ( )

and, in general,

t ¢ !
k
Sk, 1) = %— (%) th dez e jdtkT(VI(fl)VI(tz) . Vl(fk)), (10.15)
to L0 fo
where T is called the “time-ordering operator” and has the property that it rearranges the
factors which follow it in such a way that, for any given values of t ...1, the order in
which the operators ¥,(f) occur is such that the values of their arguments decrease from
left to right. Formally we can write

I
S(, to) = exp (% IVI(I) dt), (10.16)
o
provided the exponential is suitably interpreted.
The probability of the transition m — n is equal to the square of the matrix element

t
n|S(t, to)|m) = (n|exp (ziz JVI(I) dt) | m). (10.17)
7o
If we let 7o - —co, and ¢ — + c, the resulting operator
foo
S =58(— e, + =) =exp (l; J V() dt) (10.18)

is called the S-matrix (see also Chapter X).
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11. Using the results obtained in the preceding problem, we have w,,= |a,,[?, where

“+ oo
1
Ano = (n|exp (17 J V() dt) |0). (11.1)
Since V(1) = —ex(t), and the matrix elements of the oscillator coordinate are non-vanish-

ing only between states whose quantum numbers differ by unity, it can be seen that

+oo +oo

o = — (i) j aIVit) n—1) dt j (—11Vi@&)|n—2) dt ...

n! \ih

. — 00

J(1|V1(t)|0>dt. (11.2)

Following now the solution given for problem 1, we obtain the required probability

n! \ 2mhw

A discussion of the physical significance of this result would be similar to that given for the
solution of problem 1.

12. From (10.18) and (10.11) we have that

2 n
W = _1_( P ) o~ (niRotet (11.3)

nlSimy=3 (1| S@|m), (12.1)
=0
where
n|SO|\my = (n|m) = d,m
+4- oo

(n|SO|m) = %(m J V() dt|m)

— 00

(12.2)

+ oo 1y

(nIS(2)|m> = (lih)z<n| V[ dty V[ dtzVI(tl)VI(fz)|m>

These matrix elements can be transformed in the following way

L E—Et

(nIS(1)|m>=—%~<n|V|m> jeﬁ dt = —2nid(E,—En)(n|V|m), (12.3)

since | e dr = 2m8(x). (12.4)
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Further, we can write

oo H

(8|SO | m) = (;ﬁ-)z; fdtlww,u) jdtz(lJVﬂm)

— oo -— 0o

hH

2 o 4B
- (lih) Y (n | V1)V | m) je" B0 Gy, je" EEDE .
1

-_— OO

In order to perform the second integration we make the change E,—F, —~ E,—E, —in
where 7 is a small positive real number which ensures the convergence of the integral at
its lower limit. Then, in the results so obtained, 7 is made to tend to zero. Thus

t t i
! ! T(El—Em—in) 1]

i T
T (Ei—Ep)ts —(Ei—Ej —in)ts .. €
] h _
e dts — e dts = ih -
J‘ j Em —E1+IT]

—_— O a4

Hence

+ oo
1 « |V IDAIV|n) L (En=E—iny
) - h
(n|S®| m) 7 Y E,—E+7; e dty
VDA V| m)
E,,—E/+in :

= 2mi8(Ea—En) Y (12.5)
i

‘Similarly the matrix elements for higher orders can be obtained. Substituting these results
into (12.1), the expression (12a) follows immediately. Note that the intermediate states
1 are eigenfunctions of the Hamiltonian H,. Then

VDIV m)

E,—E,+in  ~ YVIDAEn—Hoti)= | (V| m)

and (12b) can be written as

T=V+V(E,—Ho+in)~'V+V(En—Ho+ i)~ V(En—Ho+in)~ V+ ... (12.6)

‘Thus the operator T can be regarded as a solution (obtainable by successive approximation)
.of the operational equation (12c).

It is interesting to note that the first approximation to the operator 7, T = V, leads to
the expression (IX.4). Thus, it follows from problem 10 that the probability of the transition
m(— o) = n(+ o) is

On( o) = [(n|S|m)|2 = 4n?0XE,—E,,) |[{n|T| m) 2. (12.7)
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On the other hand

T T
) = O a(x) D i J ol gt — 92%)_ lim j dt. (12.8)
-7 -T

For the last equality in (12.8) we have used the identity f(x) d(x —a) = f(a) d(x —a). The
transition probability per unit time 1s then

P,, = (=) _ 35 8(En—En) |(n|T| m)[2. (12.9)

T

lim I dt

T—ooo _

It we take T = V, (12.9) becomes (IX.4).

13. Denoting by r the radius vector of the electron, and by e the electronic charge, the
perturbation operator takes the form

V =—er./(f) = —er.b sin wt = Vet Vel

Vo= %r.&,. (13.1)

It should be noted that, to ionize the hydrogen atom from the ground state, the minimum
energy required is —FE; = me*/2#2, whence, for this problem, we obtain o > me?/243.}
In order to find the probability that ionization will occur under the influence of the pertur-
bation (13.2), we shall apply formula (IX.5). We have then to calculate the matrix element

i J% (% &,.r) V100 d, (13.2)
where
Y100 = (RA¥)~V2e~rla, = (Qm)~¥2eker, (13.3)
and hence
Vel = %(Zn)—m(na‘"’)“”z f e~kr—ria(5y 1) dr. (13.9)

In order to evaluate the integral we introduce spherical coordinates (r, 0, ¢) with the polar
axis directed along k. We have then that

Lo.r = &Sor[cos @ cos 8+ sin O sin 0 cos ($ —o)], ] '(13.5)
where @ and ¢, are the polar angles of &o. By substituting (13.5) in (13.4) and noting that

TNote that the approximation made by taking the final state of the electron to be a plane wave is accurate
only if w > me*/2#® (in which case the ejected electron has a large kinetic energy).
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the second term of (13.5) makes no contribution owing to the integration over ¢, we obtain

522502

] E+1 /s o
Vel = — ¥ negcos O J (J e~ikrx—riap2 dr) x dx, (13.6)
0

-1
where x = cos 0. After performing the integration in (13.6) one finds

elocos B 16kad
n(2ap? (1+k%a%° °

Vo' = (13.7)

Taking into account (IX.5), (8.3"), and the relation E, = E, +#w, we find the probability

per unit time of ionization with ejection of an electron into the element of solid angle d2

to be

2%ma’e® JEkP cos? O
a®  (1+k%P)P

dPy = d%. (13.8)

With the notation E; = —me?t/2#2 = —kw,, the equation E, = E, + fiw shows that 1+ k2%a% =
w/wy, and hence that

dPy =

2 (] 3/2 ’
64;;&’ (3‘1) (ﬁ—l) cos? O dQ,. (13.8)

w (0])

Note that the probability (13.8’) is symmetrical about the direction of the applied field
and vanishes along any direction perpendicular to it. By integrating (13.8”) over all directions
of emission of the electron we obtain the total probability of ionization of the atom:

P, 280G (ﬂ)2 (ﬁ— 1)5’2. (13.9)

3A w Wo
For w = wy (i.e. near the ionization threshold) this probability increases from zero as
(w0 —wo)*"2. For o > wy it decreases as w~%2, The maximum occurs when @ = 3wo.
14. From (IX.9) we have
A? = zz;' {b:bi(Az. Ax)+b:bF (A AT)+ b bi(A.Ay)+ b3 b (A7 . AD)}. (14.1)

Bearing in mind the properties of creation and annihilation operators, it follows from
(IX.10) that the only non-vanishing matrix elements of the operators b, and b} are

]/ h
(M1, ooisMay oue |balng, oo, m+l, 000 = E(nz-l-l),

(14.2)
A
My oo Bay onn [BF 0L, oy m—1, .. )= V——“n;,.

The solution of the problem then follows from-(14.1) and (14.2).
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15. Let vy, and y2 be the wavefunctions of the initial and the final states of the electron.
If the electron is free we can write i, and . in the form of plane waves,

] i
w1 =Cexp (%pl.r) , W= Cexp (-ﬁ—pz.r) , (15.1)

where C is a normalization constant. Let us consider the probability of emission. The
matrix element from (IX.18") is

i i
va; e~ kir(p.e)y, dr = |C|? Ie_ p AT (—:l- ez-\_/') ekt dr. (15.2)

Now the Dirac delta function is the Fourier transform of unity, i.e.
4-00

(%)3 J 1.ehr dr = 3(K),

_— OO

and it therefore follows from (15.2) that
[ wtemar(p.es)y, dr ~ 8(py—#iks—Py). (15.3)

Relation (15.3) expresses the law of conservation of momentum as applied to the emission

of a photon by a free electron,
P2 = p1+#k. (15.4)

Now the law of conservation of energy states that

and it can easily be seen that (15.4) is not consistent with (15.5). A similar argument can
be used to show the impossibility of absorption.

In order to satisfy both conservation laws, the electron must interact with at least one
other particle which can take up the excess momentum, e.g. the nucleus in the case of an
electron in a bound state in an atom.

16. From (IX.20), by integrating over all space, we obtain (with n, = 0),
4003 4 [Tiz] \2 e 1
( ! ) W, o

2 - = = .
3nes 14l =g he 137" (16.1)

Pz =

In view of the resemblance between (16.1) and the classical formula (p. 228), it is clear

that we can put |ris| ~ a, where a is the atomic radius. Taking as an example the

hydrogen atom, we can write, for the probability per unit time of spontaneous transition.
from the first excited level to the ground state, the expression

2 52

P 12 ~ oW (_a_:.f_) 2 d e

= —

me®: ke
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or
w

(1377

From (16.2) it follows that, for visible radiation (w ~ 10 sec™?), the order of magnitude
of the transition probability per unit time is 10° sec™!

Py ~ (16.2)

17. Let a system of Cartesian coordinates be chosen such that the y axisis along the vector
e, and the x axis is along the vector k. The matrix element (18a) then becomes
2\J

x%‘2>
1)+ /

L
o Y ox a
Denoting by Ho the Hamiltonian of the system, the vectors | 1) and | 2) will be eigenvectors
of Hy, i.e. Hy|1) = Ey|1) and H¢|2) = E»|2). From the operator relation

(11(k.r)}(p.e)| 2y = —ikh <l

(17.1)

i
L

xm;—y Ox

h2 ) 9
xyHo—Hoxy = ( - yax) (17.2)
we have that
< +ya ! > 7 (Ez—Ey) (1| xy|2). (17.3)

Then, from (17.1), it follows that

. k
(U 1(p-€) ()| 2) = —ieogm(l | xp] 2+ (1|11 2) (17.4)
where I, = —»ih(x g}—;— %) is the z-component of the orbital angular momentum opera-

tor. The second term in (17.4) clearly corresponds to a magnetic dipole transition, while
the first term corresponds to an electric quadrupole transition. These expressions are in
fact similar to those obtained in the classical theory of radiation.

For other orientations of ¢ and of k, matrix elements like (1 |yz|2), (1|zx]|2),
(1ly|2), {1|Ix|2), also appear.

18. In order to have electric dipole transitions, the matrix element of the proiection of
the radius vector along the direction of polarization must not vanish.

Consider first the case in which the direction of polarization is along the z-axis. In this
case (r.e) = r cos 0 = z. For a central field, the dipole radiation matrix element will be
proportional to

a2

[ | ¥7% cos 0Y7 sin 0 df dép. (18.1)
0 0

Here the quantum numbers /3, m1; ls, ms refer to the states of the system before and after
emission.
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Since

(ot 1+mg)(lat1—my) ]1/2 ¥ [(12+ ma) (2 —m2) ]1/2 y
2+ 1)(212+ 3) BT 0L ¥ 1) (2 —1) Ih—1

(see A.28),it follows that the integral (18.1) will be different from zero only if Am =
me—my = Qand Al = LL—1, =+1.

Suppose now that the direction of polarization is along the x- or the y-axis. In this case
we have to calculate the matrix elements of the coordinates x and y. This can easily be
done if, instead of x and y, we consider the quantities x+iy = r sin fe**, which are
related to the two directions of circular polarization in the xy plane. The matrix element for
dipole radiation is then proportional to

cos Y * = [

n 2n
[ | ¥7* sin 6e?Y7" sin 0 dO dg. (18.2)
0 0

According to the same relation (A.28) we have that

. me (12+1—m2)(lz+2—m2)]1/2 ma—1 [(12"""2)(]2—1"‘”12)]”2 me—1| ip
sin 0, —{—[ Cl+ 1) 2+ 3) Yo Y| "on+ D@k=D Yi-1fe

and hence the integral (18.2) will be different from zero only if Am =+1, Al =+ 1. The
dipole transition selection rules are therefore Am = 0, + 1, Al = +1. This result could have
been obtained directly from problem 29, Chapter VI, by noting that the position vector r is
a polar vector. For electric quadrupole radiation (see problem 17), we have to calculate
matrix elements of the products xy, yz and zx. Using the relations (A.28), we obtain, by a
calculation similar to the one given above, the following selection rules:' Al = 0, +2
(excluding the case /; = Il = 0) and 4m = 0, £ 1, £2. The selection rules for magnetic
dipole radiation are easily found to be A/ = 0, Am =+ 1. It is worth noting that for a purely
central field, states with the same principal and orbital quantum numbers (#, /) have the
same energy for all m, so that magnetic dipole transitions cannot occur between such states,
although they satisfy the rule A/ = 0. However, if the system is put in a magnetic field, the
energies of the states will depend on m (Zeeman effect), and magnetic dipole transitions can
then occur between such states, in accordance with the selection rules A4/ = 0, Am ==+ 1.

19. The problem is that of determining the selection rules for an oscillator. For this we
require the matrix elements of the coordinate x. From (21.4), Chapter V, the only non-
vanishing matrix elements are

n+1\1/2
xo( ) , m=n+1

2

n 1/2 |
xo(—z—) ’ m-=n-—1.

(nlx|my=

t These selection rules can be obtained directly by applying the Wigner—Eckart theorem (see Chapter VI).

253



Problems in Quantum Mechanics

It follows that the selection rule for the quantum number ni1s An = + 1. Therefore, for the
oscillator, only transitions between adjacent levels are possible, and the frequency of the
radiation emitted or absorbed is then always equal to the classical frequency of the oscillator.

20. Let us assume that the energies of the atoms of a black-body, in thermodynamic
equilibrium with its own radiation, obey a Boltzmann distribution. Denoting by N, and N,
the numbers of atoms with energies E, and E,, E; < E», we have that

N 5
NydPy = NpdPa, 3= exp (k?) (20.1)

From (IX.18), (IX.18") and (20.1), it follows that the average number of photons in the
volume V having given momentum and polarization is

Ao\ -1
" = (e"T—I) . (20.2)

The number of states of the radiation field (i.e. the number of “oscillators™) per unit

frequency range is (see 1X.16)
dne?V

The factor 2 in this relation appears here because for any given momentum there are two
possible states of polarization. Then, in the range (o, @ +dw), there will be dn, = n, g(w) dw
photons and therefore the field energy in this range is #iw dn,. Since the photons occupy a
volume V, the black body radiation energy density (the Planck formula) is given by

hwdn h w?
o0, T) =" = 55 (20.4)
e*T —1

21. If we consider only the transition 2 = (n,/} - 1 = (', I+ 1), it follows from (IX.19)

that
40®

Pre= 25

|d1z2f2. (21.1)

Since in a central field the states are degenerate with respect to the magnetic quantum num-
ber, we have that

[dy2[? = € Z |r1212—922[ | X124 iy12[2+ 3 [ X12—iyiz[®+] 2123 (21.2)

m=-—1

The matrix elements (x+iy)12, (x—iy}12 can be calculated easily by changing to spherical
polar coordinates, in which

x+iy =rsin0e®, x—iy =rsinfe*%, z=rcosh.
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Now the wavefunctions of an electron in a central field are of the form

Yaim = Sl Y70, 8), | |Ynim|2dV = 1, (21.3)
so that, if we define

Lo = T Pd3r) du(r) dr

we obtain the results

(I+m+1)(I+m+2)71/2
(2I+1)(21+3) ] ’

, . _ (—m+1)(I—m+2)]"2
<n,l+19m llx ly|n,l,M> Inl+1,nl[ (21+l)(2’+3) ] )

@ I+, m+1 | x+iy|n, l,m) = Iy, ,,1[

| ~ (+m+1)(—m+1)]V2
(i, 1+1,m|z| n, 1, m) _I"'”l’"'[ (21+1)(2+3) ] ’

(I—m—1)(I—m) V2
(21—1)(21+1)] ’

(1=, m+1 | x+iy| m, b, my = — Ly, ,,,[

@ 1=1,m—1|x—iy| n, 1, my = Ly, "’[(l(;ﬁ;)l()z(;jrr ;')1) ]m’

3 (I+m) (I —m) V2
B "”"‘-"’[(21—1)(2l+1)] ’

', 1-1,m|z|n 1, m)

and hence
, +m+D(I+m+2)
2 2
; | x12+8p12|? = | I12] ;: AFDNE+3) (21.4)
Remembering that
Ym =i+ 1DQI+1), Ym=0, Y1=2+1
we find that

. | Il
; Ix12+lyl2l — (21+1)(2]+3)

[+ 1) (+2) 2+ D+ I+ 1) 21+ 1)] = §0+1) [ I2]2.

(21.5)
Similarly one can obtain the result
Y | X12—iy122 = 2 | 2122 = 2+ 1) | I12)% (21.6)
so that
Y Ire|? = (I+1) | 12 (21.7)
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For the transition 2 = (n,[) - 1 = (n’, [—1), one obtains by a similar calculation the

result
Y Ir12l2 = 1| ]15]2 (21.8)

m

22, The first two spectral lines of the Balmer series correspond to the transitions (n = 3)
— (' = 2) and (n = 4) - (n' = 2) respectively. We can use the results of the preceding
problem by taking the ¢,(r) to be the radial parts of the hydrogen atom wavefunction.
From (33.14-16) Chapter II, and (A.33) we have

1 r r
= ]—— e—(rlza), = — . g—(ri2a)
b0 = o ( Za) #2153 \/6a3
2 2r 2r?
s - 1 _—— + e‘('/s")
$a.0= \3a ( 3a 27a2)

8 r(i_.r 4 ie_(rlsa)

— — — e (rlaa)’ =
$1= 5 \/6a3 a ( 6a) a2 = VIS &

( 3r +__rz___ r )e-(’/40)
4a 8a2 19243

¢4,0 4\/—

1 5 r r r2
= - — —(r/da)
4.1 16 L 3 a (1 4a+80a2)e

1 r? r 1 3
- 1___)e—(r/4a), —_ 1V ena
P2=g Vi@ @ ( 12a 43 =78 VSR &

The first line H_ of the Balmer series results, according to the selection rules, from the
transitions (3, 0) — (2, 1), (3, 1) = (2, 0), and (3, 2) — (2, 1), for which we have the matrix
elements

oa

(2,11r3,0) = f Pebasdao dr = -154\“/2 (6)

0

oa

~ _ 3a (6\}
2,01r3, 1) —Jﬁ¢20¢31 =5 (5) 22.1)

[ _ 64a_ 6\
(2,1]r|3,2)-fr¢21¢32dr 15\/5(5).
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The second line H,, results from the transitions (4, 0) -~ (2, 1), (4, 1) ~ (2, 0) and (4, 2) ~
(2, 1), for which

<2,1“‘}4,0>_3 I’3¢21¢40dr__)\/__€(g_)5
> < 5
2,0(|r|4, 1) = | Pdsops1dr= % ]/% (%) (22.2)

o
0

£

<2, 1 |l‘| 4, 2> = t’3¢!21¢!42 dr =

o
0

5 (3)

The frequencies of the two spectral lines are

Co_e“m 1 Iy 5 e*m
“-Eﬁfﬁ“?ﬂ—iaaﬁ’
co_e‘m 1 1 _3 em
P 288 (7“?) ~ 16 28

From (21.1), (21.7), (21.8), (22.1) and (22.2) we find the transition probabilities per unit
time (per excited atom)

=t Sl (T 25 (T2 [s (O]
"7 3 ke 154/2 ] 154/3 5)] 154/5 \5 ] ’
542 = 542 542
ne g dellow ) [+ BV O T2 lum ()]
3 ke o 94/6\3 3V 6\3 94/30 \5
Numerical computation then gives the results

c2\* ¢ 280X3727 e\t ¢ 20X209
ﬂ=ﬁﬂzjﬁvﬂ &“ﬁﬂEﬁﬁT“ (223)

The intensities of the lines are then found from (22.3) to be

e?\4¢ 2 23X 3727 1
Ja = Pa.hma = (h—c) C? = W €rg sec— -,
22.4
J_Phw_e24ﬁ_2><209 1 (22.4)
g = Lg.nwg = (_h—c)caz ——31—2———ergsec .
For the ratio of the intensities of the first two lines of the Balmer series we find
2 10
J.  22X3 ><3727 _ 216, (22.5)

Jy 5 209
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assuming that equal numbers of atoms are excited initially to the n = 3 and to the n = 4
states.

23. The kinetic energy of the electron ejected from the atom is given by the Einstein

relation
T=to-1I I=-F; (23.1)

where 7 is the ionization energy of the atom. If the photon energy is large in comparison
with I, we can neglect the Coulomb field which acts on the emitted electron. Then the normal-
ized wavefunctions y; and ., with which we calculate the transition matrix elements, corre-
spond respectively to the ground state of the hydrogen-like atom and to a free electron,

1.e.
]/z3 _Zr [
1= ‘—39 2, 1})2=(2u__)37_2_eﬁp . (232)

The total probability per unit time of a transition to a state y, whose momentum p lies in a
solid angle d@ is, by (IX.4),

aP = 2% | Hyy 2 o(E)d, (23.3)

where H,, is the matrix element of the perturbation (IX.14).
The magnitude of the momentum p is determined from the relation (23.1). From (IX.17)
and (23.2), putting n, = 1, we have

Hjy=——o |/ z e%q'rﬁ(e.v)e__zz[dr (23.4)
2 mQ2ah) | nadVo i ’ '

where e is the polarization vector, and q = #k —p is the momentum transferred to the nu-
cleus. Integrating by parts, we obtain

T

Ha = m(th) na"'Vco AN ")f ¢
By changing to spherical polar coordinates with the polar axis in the direction of q, we
have

oa

_5 P PN _Z, 3
e dV—zlh (e”q—e"q)e 8 rdr= 8m2a2 ,
(1+ Zzhz)
0
and hence
. de 43 qzaz) -

The differential cross-section for the photoelectric effect is obtained by dividing the transi-
tion probability per unit time by the flux density of the incident photons. Since the normali-
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zation has been chosen in such a way that there is only one photon in the volume ¥, the flux
density of incident photons will be ¢/V. Then, taking into account (8.3'), we have

32x137% p(p.e)? c® q2a®\—4
do = 2 A r2(1+ hzzz) a0, (23.6)

where we have written e?/fic = 137 and e2/mc® = ry (the “classical radius” of the electron).
Denoting by 6 the angle between the planes (p, k) and (e, k), we have that

p.e =psinfcos d, ¢*>=p*+st—2pscosl; s = hk, (23.7)
qg?a>  a&® (Z N\ & (Zm 5
1+h222 = 2373 ( + ) = 7370 ( 75 +p?+ 52 —2ps cos 6).

From (23.1), and remembering that I = Z2¢*m/2#2, it follows that

2
Z%;I:e‘+p2 = 2mhw = 2msc,
and hence that
q2a2 _ _
1+ 7T = h222 s(2me —s—2p cos 0) = 22 — = 2mhw(1 — 8 cos 0), (23.8)

where 8 = v/c. To obtain the last equality the incident photon energy was assumed to be
much smaller than the rest energy' of the electron, i.e. Aw << mc2,

From (23.1) and the fact that the kinetic energy of the ejected electron is much greater
than the ionization energy, we can take p = V/ 2m#w. From (23.6), (23.7) and (23.8) we then
obtain

712 2 2
do=4+/2-2 '”"'2) sin? 0 cos* ¢ o) (23.9)

1374 °( how (1—p8 cos 6)*

Since (23.9) has been obtained in a non-relativistic approximation, it is correct only to
first order in §, so that we can write finally

do = 4 V_ 378 (mc2 ) sin2 6 cos? ¢(1+48 cos 0) dQ2. (23.10)

From (23.10) it follows that almost all photo-electrons are emitted in the direction of
polarization of the photon (6 = 7/2, ¢ = 0), and that no photo-electrons are emitted in the
direction of motion of the photon (6 = 0). This maximum in the differential cross-section
of the photoelectric effect along the direction of polarization of the photon becomes more
marked with increasing photon energy. We can obtain the total cross-section of the photo-

t This was of course implied from the start, since this is a non-relativistic treatment of the photoelectric
effect.
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electric effect for K shell electrons by integrating (23.10) over 6 and ¢ and multiplying it by
2, since there are two electrons in the K shell; we obtain in this way

/' 5 7/

24. Let us suppose that, until the electromagnetic field is applied, the system is in the
stationary state ¢,(r) which is an eigenfunction with eigenvalue E, of the unperturbed
Hamiltonian Hy. The interaction energy between the particle of charge e and the electro-
magnetic field is, in the dipole approximation, —er.fo cos wt, so that the Schrédinger
equation of the system is

ih %%’— = (Ho—er.&y cos o) y. (24.1)

Let us try to determine the perturbed wavefunction in the form
Pa(r, 1) = Pu(r) e~ onf 4 1, (1) e~ 1@n= 2 g, (1) e~ @nt o), (24.2)

where w, = E,/h, and the terms in %, and v, are small. Substituting (24.2) into (24.1) and
restricting ourselves to first-order terms, we obtain

i(wn—) iy € + b p+ ) Oy e~ = — Hotp €+ Hovpe=t —e(r . &g) P cOs 2. (24.3)

Equating the coefficients of the exponentials:

#(won—) Uy = Hotty— % (r.&o) Pa
(24.4)
Hlwn+w) vy = Hovp —% (r.&o) Pn.

In order to solve these equations we expand « and v in terms of the orthonormal functions

P
Uy, = IZAnIQny Vp = ; Bnl¢l- (245)

Taking into account the fact that the ¢, are eigenfunctions of H,, and substituting (24.5)
into (24.4), we find that

B Y @u—0)dubr = —5 €. Lol

) (24.6)
h ; (wnt+)Budy = —5 r.Co)dn,
whence
. 60 *Pin _ 60 «Pin
A = S om =)’ 5" o+ a)
Pin = [ drerd, dV. (24.7)
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Since the expressions (24.2), (24.5) and (24.7) are in first-order approximation only, it is
necessary for their validity to assume that the electric field is sufficiently weak and that its
frequency is far from any resonance frequency of the system.

Now the electric dipole moment of the system in the state v, is

D, = Iw‘,",erfp,, dr
and, using (24.2), (24.5) and (24.7), we obtain finally
eiwt [(50 . pln)dnl + (60 . an)dln:I

Dn = P 2k ; Wiy —0 Wi+
e—iot [(c’}o « Pin)Pni N (&0 pi"n)pzn]
i

2h n+0 W1 —

(24.8)

Note that the electric dipole moment consists of two parts: (1) the permanent dipole moment
p,, of the system in the state ¢,, and (2) aninduced electric dipole moment which is periodic
in time with the same frequency as the external field. This induced moment d, = D,—p,,
leads to coherent scattering and to dispersion. From (24.8) we can write

d, = Re (8Loci"), (24.9)
where Re means the real part of the expression in parentheses, and 8 is the tensor
xx ﬁxy ﬁxz
B=\Byx Byy Bv: (24.10)
zx ﬁzy ﬁzz
which has components of the form
—_ l (pln)y (P« (P?n)y (Pbt)x
By = 7 XI:[ By — 00 + 0,1+ 0 ] (24.11}

Since p,, = Py, (24.10) is Hermitian, i.e. 8,, = B,,, etc., and, in consequence, the diagonal
terms are real. In the particular case in which all the components of the tensor are real (i.e.
there is no phase difference between the field £(¢) and the induced moment d,,), we have
from (24.9) that

d, = g, (24.9")
where 8 is now simply a scalar, ie. 8, = 8,,=§,,=0 and 8, =8,,=8,,=8. From
(24.11), an expression similar to that obtained from the classical theory of dispersion can be

found:

g = ﬁz Jin fin = 2meony K xtmp 2. (24.12)

m T o}, —0? ]
The quantity f,, is called the n - / dipole transition intensity.” The expressions (24.12) can

t The following identity (Thomas-Reiche-Kuhn) is valid Z fer=1; o= x,p,z (see problem 23,
i
Chapter V).
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be used to find the dielectric constant of a rarefied gas in accordance with the formula of
classical electrodynamics:'

oI
(24.13)

e = 1+4aN; = 1+4aN Y, ——
I W, —w
where N is the number of atoms (or molecules) per unit volume. If the atoms are in the

ground state, (n = 0), the quantities £, are all positive and the refractive index n = V&
increases with the frequency w. If the atoms are in excited states, there will be ranges of
frequencies for which the refractive index decreases with frequency. Such cases lead to

anomalous dispersion.

T It was assumed above that all the atoms were initially in the same state n. For a mixed ensemble (see
section 3, Chapter V), if we denote by N, the number of atoms in the state », (24.13) has to be replaced by

et
—"Tfln
E = 1+4u¥Z,N”—GW' (24.14)
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CHAPTER X

Collision Theory

1. Potential Scattering

1.1. SCATTERING AMPLITUDES AND SCATTERING CROSS-SECTIONS

In non-relativistic quantum mechanics, the scattering of particles of mass m, momentum
k# and energy E by a potential V(r) is determined by the asymptotic behaviour of the
solution w; (r), corresponding to out-going scattered waves, of the Schrédinger equation

(A+ k%) p(r) = Ur) y(r) X.1)
k2 = 2mE[r?, U(r) = 2mV (r)/#2. (X.2)

If the potential has a finite range (i.e. if ¥(r) is appreciably different from zero only for
Ir| ;. ro say), the problem of solving the differential equation (X.1) with the appropriate
boundary conditions is equivalent to that of solving the Fredholm-type integral equation

exp (¢k|r—r'})

W) = mm—{;f o VO @) r, (X3)
where
¢w(r) = exp (ikl.r) X4
and satisfies the homogeneous equation
(44 k%) ¢u(r) = 0. (X.5)

At large distances from the scattering centre (r > ro) we have
WO ~ GO AE O HE, ror x6)
where r = (r, 0, ¢) in polar coordinates having k as polar axis, and
A(E, 0, 8) =~ (b | Ulpit)s ) =efer, W =kt X.7)
A(E, 0, ¢) is called the “scattering amplitude”,
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The differential scattering cross-section is then

do(E, 0, ¢) = | A(E, 0, $)|2dQ, dQ = sin 0 40 d¢. (X.8)

Integrating this expression over all directions, we obtain the total scattering cross-section

o(E) = J @%’L@ ds. (X.9)

The scattering amplitude obtained from (X.7) by using the zero-order approximation P =
¢(r) to the solution of the integral equation (X.3)is called the Born amplitude, and can
be written in the form

AP = (4 |U| . (X.10)

Denoting by #iq = #(k—k’) the momentum transferred on scattering, we can write

ABYq) = _4% J earU(r) dr. (X.10")
The ratio
A®)
Fg) = TB)?(% (X.11)

is called the “form factor” and it characterizes the interference between waves scattered
in different volume elements of the scattering field. The mutual elastic scattering of two
particles with masses m; and m., and a potential energy of interaction V(rs—ry) can be
expressed in terms of the motion of particle 1 relative to particle 2, which is formally identi-
cal with that of a single particle of “reduced” mass m = myma(m;+ms)~* moving in a
potential ¥/(r) referred to a fixed origin. Thus, in the centre of mass system (CMS) of the two
particles, the direction of motion after scattering of particle 1, (9, ¢), coincides with that of
the hypothetical single particle and is related to the directions of motion after scattering,
(01, ¢1) and (03, ¢2), of particles 1 and 2 in the laboratory system (in which the second parti-
cle was at rest before the scattering occurred) by the relations

__ sinf om 1
tanBl—m, V_E’ 02 = 2(7': ) (X.12)
¢1 = ¢s ¢2 = ¢+7t.

1.2. THE METHOD OF PARTIAL WAVES

For a central potential, ¥(r) = V(r), the direction of the momentum of the incident
particle constitutes an axis of symmetry of the problem. Choosing the polar axis in this
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direction, the solution® of equation (X.1) will be independent of ¢, and will have the form

w0 =5 2% peos o) (X.13)

I=0 r

where, for convenience, we have written a, = i'(2/+ 1)e’*®,

The functions R, ,(r) are the solutions of the radial equation (IL.15) which obey the
condition (11.16) at the origin, and which (for potentials which vanish at infinity more rapidly
than ! and are less singular at the origin than r~2) have the following asymptotic behavi-
our for large r:

Riilr) ~ 4 sin (kr—%‘——a,(k)). (X.14)

This asymptotic behaviour of R, .(r) corresponds to the “normalization™

oo
T

J‘ Rl, k(r) Rl’ k'(r) dr = %2 6(k—k')
0

For large r, it is convenient to write the “outgoing” parts of the partial waves of (X.13) in
the form

Nt (r, 6) (X.15)

where ¢;f,(r, 6) is the outgoing part of the /-state wavefunction for the limiting case of a
zero scattering potential.

The effect of the non-zero potential then appears in the phase shift factor, and thus the
scattering due to a central potential can be represented as a unitary transformation of
“free” outgoing partial waves by a scattering operator, which, in the above angular momen-
tum representation, takes the simple form of a diagonal “scattering matrix” whose elements

arc
S”' = €Xp [216,(k)]6,p . (X16)

The various functions associated with elastic scattering are thus
(a) The phase-shifts 6,(k),
(b) The eigenvalues of the scattering matrix
Sik) = exp [2idi(k)], X.17)

known as the “S-functions” for each value of the (orbital) angular momentum / of the
partial waves,

1 In this chapter we emphasize, for reasons which will soon be apparent, the k-dependence of the radial
function, writing the latter as Ry x(r).
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(c) The partial wave amplitudes
1 |
= —_— —_ = — l(k)
A(E) = 5 (Sk)—1) = - &%® sin 8(k), (X.18)

(d) The scattering amplitude
A(E, 6) = Y (214 1) A(E) P((cos 0), (X.19)
=0

(¢) The differential cross-section for elastic scattering

do(E, 0) = | A(E, 0)2dQ, (X.20)
(f) The total cross-section for elastic scattering
= dn = . 4
o(E) =Y o™E) = v Y 21+ 1) sin2 §y(k) = - Im A(E, 0). (X.21)
=0 =0

To investigate the analytic properties of the scattering matrix, solutions f(£k, I; ) of
equation (IL.15) which are regular at infinity, called Jost solutions, are introduced. These are
chosen to satisfy the boundary condition

m f(+k, I; Petier = 1. (X.22)

¥ — o0

In general, the Jost solutions do not satisfy the condition (IL.16); their values at r = 0
are called the Jost functions and are denoted by F,(+k). We have then the important
relationship

Fi(k)

Si(k) = et F(—K) .

(X.23)

When the scattering process is such that it can be accompanied by various internal chan ges
in the scattered “particles”, which can take up or give out energy (such as excitation or
ionization of atoms, excitation of nuclei, etc.) one says that it can occur in a number of
possible “channels”. Any channel which results in a change in the internal energy of one or
more particles is said to be “inelastic”. The existence of inelastic channels has an influence
on the properties of the elastic one studied above. In the asymptotic region r -~ oo, the
radial part of the wavefunction in the elastic channel will still consist (as in the purely
elastic case) of a sum of outgoing and of incoming spherical waves. But, because of the
presence of the inelastic channels, the amplitude of the outgoing wave is attenuated by a
factor exp [ —2y,(k)), where , is real and positive, so that now

¥ —=oo

Risr) ~ E}E {e_zy,exp [i(kr—nlzf+él)]—exp[—i(kr—%z+6:)]}. (X.24)
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Thus, when inelastic channels are present, we have the following expressions for the elastic
scattering amplitude and for the total elastic scattering cross-section:

A(E, 6) = 5 ’f 1+ 1) (2 — 1) Pcos B), (X.25)
=0
o (E) = ’i APE) = 75 ,So QI+ 1-C 2, (X.26)

where C; = exp (2in;), and 1, = 6,+iy, (the “complex phase-shift”).
The total inelastic scattering cross-section is given by

oue(E) = 5 olu(E) = 75 3 QI+ D (-ICP) (X.27)

and the total cross-section for all channels is then

ol E) = Ol E)+ Oinei( E)- (X.28)

1.3. THE REGGE PoLE METHOD!

The Regge pole method is the name given to a method of studying the analytic proper-
ties of the scattering amplitude in which the orbital angular momentum / is treated as a con-
tinuous complex variable. In order to extend the definition (X.19) of the scattering amplitude
to allow for complex values of /, it is assumed that in the complex plane of / an analytic
function

A(LE) = = [S(, E)—1] (X.29)

= 2k k
can be defined, whose values, for integer values of /, coincide with the corresponding values

of the partial amplitude 4{E). The scattering amplitude A(E, 0) can then be represented by a

Watson-Sommerfeld integral

AE, 0)=— f 51111+1 A(l, E)P,(—cos 0) I, (X.30)

C

in which the contour of integration C is chosen so that the “accidental poles™ of the function
A(l, E) on the axis Re (/), Fig. X.1, are excluded. For Re (/) > -—%, and given energy, the
quantity under the integral sign in (X.30) has a finite number of poles, N, which are all in the
half-plane Im (/) = 0.

As the energy E changes, these poles move along curves called Regge trajectories (see
problems 36, 37). Thus, for example, for a potential consisting of a superposition of Yukawa

t V. de Alfaro and T. Regge, Potential Scattering, North-Holland Publishing Co., Amsterdam, 1965.
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potentials,

oo o0

V) = f o) = d, J o) dx < oo,

r
“ 2

the function A(/, E) tends to zero as [ - < faster than P(—cos 6)/sin n/ diverges so that the
product tends to zero. By closing the contour of integration C as shown in Fig. X.2 and
using the theory of residues, (X.30) becomes

—1/2+ico
i 2+1 N 8(E)
2 sin 7l AL E) Pi(—cos Oy dl -+ ,,Zl sin 7,

—1/2—ioc

A(E, 0) = P (—cos ). (X.31)
Here /,(E) is the position of the nth pole and 3,(E) is the quantity

Bn(E) = —7e(21,+ 1) Residue [A(I, E));.. I, -
A useful feature of the Regge pole representation (X.31) is that it distinguishes the singular
part of the amplitude from the non-singular (integral) part.

Im(l) Accidental pole

0 gt 3 Re(U)

FiG. X.1.

2. The Lippmann-Schwinger Equations

Let H be the time-independent Hamiltonian of a quantized system consistin g of several
mutually interacting sub-systems. Let us make the followin g assumptions.
1. H can be expressed as the sum of two terms

H = H0+H', (X.32)

such that the eigenvalues and eigenfunctions of H, (called the “reference-system Hamilto-
nian”) are known.
2. Thespectrum of H, has a continuous part, which extends over the entire domain E = 0.
3. The “interaction Hamiltonian™ H’, no matter how it affects the discrete part of the
spectrum of H,, does not “displace” the continuous part, i.e. if |P,) is any eigenfunction of
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ImiL)

N

Fic. X.2.

H,, with energy E, in the continuous part of the spectrum of Hy, so that
Hy|Dg) = E,| Do), (X.33)

then there exists a corresponding eigenfunction {y,) of H with the same energy E,, belonging
to the continuous part (E = 0) of the spectrum of H,

H|'Pa> = Ea| "Pa>- (X34)

Under these conditions, two solutions |¢*) and |y~) of the Schrddinger equation (X.34)
can be defined, called the “in” and the “out” solutions respectively, which satisfy the Lipp-
mann-Schwinger equations

|y3) = P+ lim

- H'|yd. X.35
n-+0 Ea—Hotin v > ( )

These equations are valid in any representation, and once the representation has been chosen

they become Fredholm-type integral equations. Thus, e.g., for a single particle in coordi-
h2

nate representation, Hy = ™ v2, H' = V(r), and (X.35) becomes simply the integral

equation (X.3) for potential scattering.
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Problems

1. Using the Green’s function method, deduce the integral equation for scattering (X.3).
2. Find the conditions of validity of the Born approximation,
3. Study the possibility of applying the Born approximation to the following potentials:

1. The “exponential” potential ¥(r) = V, exp (——:—) .
0
2. The “screened Coulomb” potential, or “Yukawa” potential, V'(r) = TA exp (——’—_r—)
’ 0
3. The “spherical potential well” V(r) = =V, for r < to, V(r) =0 for r > r,.

4. Find the differential cross-section for scattering, in the Born approximation, for poten-
tials with spherical symmetry, as a function of the an gle of scattering.
Apply this expression to the following potentials:

1. V()= 4 exp (— i) (4a)
¥ Fo
r2 [13 * : "
2. V(r)= Voexp (—2?), the “Gaussian potential (4b)
0
3. Vn=-Ve for r<ry, V®)=0 for r=> ro. (4c

3. Using the results obtained in the preceding problem, calculate (in Born approximation)
the total cross-section for scattering for the potentials (4a)(4c).
6. In order to describe the interaction between two nucleons, Yukawa introduced the po-
tential (4a).
Calculate the form factor and the total cross-section for neutron-proton scattering in Born
approximation using the Yukawa potential. How does the total cross-section for scattering
behave at high energies, where the use of the Born approximation is justified ?

7. Using the transformation formulae (X.12), deduce the relation

04 12y372
|46 ol = EHEE TP | 4, gy, (72)

where 41(6,, ¢1) and A4(0, ¢) are the scattering amplitudes in the laboratory and in the centre
of mass systems respectively,

8. The wavefunction of a system of identical particles has to be symmetrical (for bosons)
or anti-symmetrical (for fermions) with respect to the exchange of any two particles. Bearing
this fact in mind, express the elastic scattering cross-section of two spinless bosons in terms
of the scattering amplitude.

9. By generalizing the result of the preceding problem to include particles with spin,
express the differential cross-section for proton-proton scattering in terms of the scattering
amplitude, assuming that the interaction potential has spherical symmetry.
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10. Knowing the Coulomb scattering amplitude

A(B) = ———ijé- exp [—m In (sinz 3) +2in], (10a)
. 2
2k sin? —
2
where
2 2
},:E_I,Z_Zei E:..h_kﬁzﬂ n:arg[‘(]{.i},),

ho 2m 2°

calculate the differential cross-section for elastic scattering of two identical particles of spin
3 in Coulomb interaction, in the CMS and in the laboratory system.

11. Bearing in mind the asymptotic behaviour (X.14) of the radial equation, deduce the
integral formula

o0

sin &x(k) = —2—',2—2'2 k J ridkr) V(r) Ry, «(r) dr, (11a)

which can be used to calculate the phase shift §,(k) for a state of orbital angular momen-
tum /.

12. By using (11.6), study the dependence of the phase-shift &,(k) on small changes in the
potential (k and / being kept constant).
13. Find the total cross-section for scattering of slow particles by the following spherical
potential well:
Vie)=—Ve if r<ro and V(r)=0 if 7= re.

14. Find the total cross-section for scattering of slow particles by the following spherical
potential barrier:

Vie)= +Ve if r<ro and V(@) =0 if r=>re.

15. Find the phase shifts and the differential cross-section for scattering of particles of
mass m by the potential ¥'(r) = A/r?. Discuss the case in which 2mA#~* < 1.

16. Show that, in the WK B approximation, the phase-shift §,(k) is given by

§i(k) = lim [_‘F'\/kz—U(r)—(l+%)2r‘2 dr— f’\/kz—(l+%)2r‘2 dr], (16a)

R-—oo

where the lower limits of integration a and a, are the zeros of the functions under the inte-
gral signs (if k2 —U(r) —(/+ 4 )?r~* has more than one zero, 4 is to be the largest of them).

17. Calculate, in the WK B approximation, the phase-shifts §,(k), for / > 1, for scattering
by a potential which at large enough distances has the form ¥'(r) = 4r™",n > 2.
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18. Using the results of problem 1 show that the radial function R, , (r) satisfies the inte-
gral equation

Ry u#) = rikr)e=2 — ek kr) [ rkr’y UGry Ry o) d
(1]
—ikrji(kr) j:o R kr') U(r) R, (¥)) ar (18a)

where the A{(kr) are Hankel functions of the first kind.
19. Show that the Jost solutions f(+k, /; r) and f(—k, I; r) of the radial equation

[—di+ kz—U(r)+l(l:;1)

ar ]f(i k,l;r)=0 (19a)

are linearly independent.
Express the solution R, ,, which is regular at the origin:

R (0) =0, Rj0)=1 (19b)
in terms of the Jost solutions, and hence deduce relation (X.23).

20. Find the Jost functions Fy(+ k), and the function So(k), for the scattering of particles
of energy E and orbital angular momentum / = 0 by a spherical potential well (4c). What
properties do the poles of So(k) have if —Vy < E < 09

21. Show that the Jost solution f(k, /; r) satisfies the integral equation

flk,l;r) = e—""’+—llc—.“ sin k(r' —r) Ur") f(k, I; ') dr', (21a)

where
Ulr) = U@r)+I(1+ Dr-2 (21b)

and that, in the complex k-plane, the corresponding Jost function F,(k) is holomorphic in
the lower half-plane if

[ Ut dt' <o (2lc)

Show that Fi(k) is also holomorphic in the region of the upper half-plane in which the con-
dition

j"o | Ui(r')| e?®” dr' < oo, (21d)
is satisfied.
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22. Using the integral equation (20a), show that the following relations hold:
Sk)ST(k*) = 1 (22a)
Sik)S—k) = 1. (22b)
23. Determine the Bargmann strip’ of the function Sy(k) in the complex plane of & for

the scattering of particles of orbital angular momentum / = O by the Yukawa potential
(4a).

24. Study the arrangement and the physical meaning of the poles and the zeros of the
function S,(k) in the Bargmann strip.
25. Using Cauchy’s theorem
_ 1 [f@
N=2n j @
o

which gives the number of zeros of the holomorphic function f(z) inside the closed contour
C, show that the following equality (Levinson’s theorem) holds:

S(+0)—8)( =) = my. 7, (25b)

(25a)

where #, is the number of bound states with orbital angular momentum /, provided that the
Bargmann strip includes the whole complex plane of &.

26. Show that, for low energies, bound and virtual states of the same energy give equal
contributions to the total cross-section for scattering.

27. Find the radial function R, ,(r), the partial amplitude 4,(k), and the diagonal elements
S,(k) of the matrix S, for scattering by a potential which is a 8-function on a sphere of radius
a:

U(r) = —Uyd(r —a). (27a)

28. Find the smallest value of U, which can lead to a bound state of orbital angular mo-
mentum /, in the potential (27a). Study the possibility of the existence of bound states with
=0,

29. Show that the following relation holds between the elastic scattering amplitude (in
the presence of inelastic channels) and the total cross-section:

6l E) = 2 1m A(E, 0). (29)

30. Show that, for a given o{),, the elastic scattering cross-section ¢! is such that
‘\/C@—\/Of)’) —ofly < ‘\/G_gi = \/@'F\/G(()D + {1 (302)
where o) = mk=2(2/+1).

t The Bargmann strip of S(k) is the region of the complex plane of & in which Fi(k) and Fi(--k) are
both holomorphic.
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31. Assuming the existence and the uniqueness of the function (X.29), deduce relation
(X.30), which gives the analytic continuation of the scattering amplitude into the complex /
plane.

32. Show that, in the complex / plane, the solution R; ,(r) of the radial equation (II.15) is
completely determined by the following condition :

Riy~r+l as r-0 (32a)
provided
Re (/) > —1%. (32b)

33. Show that the solution R,(k, r) of the radial equation (II.15) which obeys (32a)is a
holomorphic function in the complex /-plane if Re (/) > — 1.

34. Show that, for positive energies (E > 0), all the poles of S(, k) are in the region
Im (/) > 0, Re (/) > —, of the complex / plane.

35. Show that, for negative energies (k2 < 0), all the poles of S(/, k) are on the real axis
of the complex / plane.

36. Show that, for E' < 0, the poles of S(/, k) move along the axis Re (/) towards greater
values of Re (/) as E increases, i.e. that

(i (E)/dE) > 0. (36a)

37. Study the motion of the poles of S, k) for E > 0.

38. Show that a single Regge pole causes the appearance of bound states (or of resonan-
ces) whenever its trajectory for E < 0 (or E > 0) passes through the physical values / = 0,
1,2, ... (or comes close to one of the physical values / = 0, 1, 2, .. D

39. Show that, in the Hilbert space of the eigenfunctions of the reference Hamiltonian
H,, the operators (E,—H,+in)~! are well defined, i.e. their eigenvalues and their eigen-
functions can be found.

40. Show that the solution of the Schrédinger-type equation

., 0 i,
i |90) = & Hyly,(8), 0 =0 (402)

with the initial condition |9, (— <)) = |®), in which H, is the operator H' in the interaction
picture, is equal in the limit  —+ 0 to the “in” state vector lpT), at £ = 0, i.e. that

lp*t) = '1112 | (0)). (40b)

41. Let {£} be a given representation. Using the completeness condition
j &y dEE| = 1 (41a)
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for the states |£) which form the basis of the representation, show that the Lippmann-
Schwinger equations lead to Fredholm-type integral equations for the representations of

states in the {£} representation.
2

42, Show that, for the potential scattering of a particle, in which Ho = 5 V2,

i . . . . .
H =V({), E, = 2 in coordinate representation, the Lippmann-Schwinger equation

1
) = D+ lim ————— H'|y), 4
I’tpk> I k> "EI; Ek—Hoin) IW’C) ( za)
leads to the integral equation (X.3) for the corresponding wavefunctions.
43, Starting from equations (X.35), show that
) = [0+ lim ———— H'|D). (43a)

n~+0 Eo—HEin

44. Let |y )and |y; ) be two different “in” states of a system. Show that the orthonor-

mality relation
Wi lvE) = O (44a)

holds, where &, is the Dirac delta-function, and the states are suitably normalized.

48. Using the results of the preceding problems deduce the relations
1

+\ — i - |t
<@b | Ya > 60b+ "1-‘1'1110 Ea '_Eb:t i'r] <@b l H | Ya > (453)
1 :
WEIDy) = =g VR | H'1Dy), (43b)
in which the superscript L refers to bound states of H.
Solutions
1. Let us write the Schrédinger equation (X.1) in the form
Li(r)y(r) = U(r) %(r) (1.1

where L,(r) = V2+k2.
Using the Dirac é-function, (1.1) can be written in the form

Lir)y(r) = | UE')y(r) 6@’ —r) dr.

Multiplying on the left by L, *(r) and adding the solution ¢,(r) = exp (ikr) of the homogene-

ous equation:
Li(r) ¢u(r) = 0, (1.2)
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. o . h
normalized in such a way that the probability current density ik =Re [—— b, vd)k] of the
im

incident particles is numerically equal to their velocity #k/m, we obtain

Y1) = G0+ [ UE)p(r) Ly (1) ' —r) di.
With the notation

L (r) 6(r' —1) = G, (r—r"), (1.3)
we arrive at the integral equation
p(r) = ¢u(r)+ | Gulr —r'YURE) y(r') dr’ (1.4)
in which the Green’s function G,(r 1) is the solution of the differential equation
Li(r) Gi(r —1') = 8(r—r). (1.5)

Remembering the well-known integral representation

o —r) = (2n)-3 [ exp [iq. (r—r') dq,
one obtains from (1.3)
Gu(Ir—r'}) = (223 | Ly'(x) exp [ig. (r —r")] d.
Si
e Li(r) exp [iq.(r—1)] = (k*—g exp ig.(r—r)], and L;Y(r)Lyr) =1
we have
Li'(r) exp [iq.(r—1)] = (k*—g®)~1exp [ig.(r—r')].

Gllr—r'|) = 1 J‘exp [iq.(r—r’)]dq

Therefore

oy gt : (1.6)

Changing to spherical coordinates with the polar axis along R = r— r’, and integrating over

the angular variables, we obtain
+ o0

Gu(R) = - €T 4, R=|r_r 1.7
k _;41-an kz_qz qs - l' ( . )

The integrand in (1.7) has two poles, at the points ¢ = +k and q = —k. Strictly speaking
the integral does not exist. This difficulty can be overcome by considering ¢ as a complex
variable and changing the contour of integration in the complex g plane so as to avoid the
poles. Different contours then define Green’s functions which correspond to different
boundary conditions. There are three basic ways of avoiding the poles (Fig. X.3). Any other
possibility yields a linear combination of these. Since R > 0, in each case the contour of inte-
gration has to be closed in the upper half-plane by a semicircle of infinite radius.

In case (a), only the pole from ¢ = +k gives a contribution, and, using the theory of
residues we obtain the corresponding Green’s function:

1 e*klr—r|

G;(lr—"|)=—zy—t Tr—r|’ (1.8)
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Imiq)
k
0 — L Relw
Imiq)
-k ﬁ
(b}
U -0 - Relqg)
Imlig)
(c) . 5 . =——-Re(q)
Fic. X.3.
Similarly, in case (b) we obtain:
G 1 e—ikll‘—l"l 1 9
r—r)=—— ———m. :

The contour (c) gives the Cauchy principal value of G(R). It can be calculated easily by
taking the arithmetical mean of the results obtained when both poles are included in the
contour of integration, and when both are excluded from it, respectively.

The corresponding Green’s function is found to be:

1 cos (k|r—1'|)

Glr—T'|) =—~_ r—r] (1.10)
From the three solution y;(r), y; (r) and wi(r) of the integral equation (1.4), only
1 {exp(ik|r—r , s
e e e L (1.11)

represents the solution of the scattering problem, since in the asymptotic range r > ro
only y;f (r) is a superposition of a plane wave and an outgoing wave (see X.6).

The solution yi, although it has no physical meaning, plays an important role in the
formal theory of scattering.

2. If we compare the scattering amplitudes (X.7) and (X.10), it can be seen that the Born
approximation consists in limiting the solution (obtained by iteration) of the integral
equation (X.3):

1 eik|r—r'| ,
WE = pu®)— = j UE) ) e + ..

4 | |r—r|
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to its first term ' (r) = ¢,(r). This approximation is valid only if, within the range of
the interaction, r =< #y, the following condition holds:

1 eik|r—r|
)] = | L f ) dey e |. 2.1)

4 | |r—1'|

Since the potentials in common use all have their maximum value at the origin, we obtain,
after making the substitutions » = 0 and ¢,(r) = exp (ik.r), the condition

1

4n

|
J' —__Uf") elr ek de | < 1. 22)

If the kinetic energy of the incident particle is sufficiently small (kro < 1), the exponential
in (2.2) is approximately equal to unity and we then have the condition

h2

V <« el (2.3)
where
_ 1 [y
7—47"% J. " dr . 2.4

In accordance with the uncertainty relation between position and momentum, the quantity
#2/2mr? is the uncertainty in the kinetic energy of a particle “localized” in a region of linear
dimensions ro. Thus (2.3) requires that, in the low energy range, the potential energy should
be much smaller than the kinetic energy of the particles.

If V(r) = V(r), then, by choosing the direction of k as the polar axis of a polar coordinate
System and performing the integration in (2.2) over the angular variables, we obtain the
condition of validity of the Born approximation for potentials with spherical symmetry:
i oo
J V(r)e? —1]dr | <

0

1
2kr2

h2
i (2.5)

If the kinetic energy of the particle is large (kro = 1) then the contribution of the oscillatin g
term can be neglected and (2.5) becomes

o

1
2 J V(r)dr

0 i

(2:6)

=

22
2mr¢’

From this requirement it follows that for high kinetic energies the Born approximation is in
general more useful than it is for low kinetic energies. For low energies (kro < 1), the expo-
nential in (2.5) can be expanded in a power series. Keeping the first two terms, we find
condition (2.3) once again.
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3. (1) For the exponential potential we have

, Zikl 2P
l/ ikr —_ 0" 0

0
Condition (2.3) then requires that
2V, < WA/ 1+8k%2 (3.2)
whence the following conditions can be obtained:
2mr2V, < #?,  for low energies  (kr, < 1),

mroVo < k#2, for high energies (kro > 1).

A
(2) For V(r) = ~~ exp (—ar), where a = 1/ro, we need to calculate the integral

I(@) = J e'“’(ezik’—l)%':. (3.3)
0

Now, if we differentiate with respect to a, we find that

dI_ —ar({ o2ikr __ —1 1
E_—Je (€ l)dr—z—a_zl.k.

0

From which
I(@) = Ina—In (a—2ik)+C,

ie.
I = —In (1 =2ikrg)+C = —In A/1+4k?3+i tan—1 (2kr)+C.

Since for ro = 0 we have I = 0, it follows that C = 0, and thus the condition of validity
of the Born approximation (2.5) becomes

mA [(In \/T+3k2r2)2+arctan g? (2kro)]"* < kf?. (3.4)

This condition is satisfied only for high energies.
(3) In this case (2.5) becomes

= 2 {sinZ kro+ krofkro—sin (2kro)]}1? < 1. (3.5)

f Vo(eikr —1) dr | = kW

10
4. Note that the matrix element

($| Ul = | Uder dr = U(@): 4.1)
219
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say, which determines the Born amplitude (X.10), is the Fourier transform of the potential,
for the momentum transfer #q:

6
#q=#k—-Kk'), g =2ksin 5 (4.2)

where 0, the angle between k and k', is the angle of scattering. If the potential has spherical
symmetry, then, from (4.1), we obtain

AUg) = ﬁt—;i J. rU(r) sin gr dr, 4.3)
b

whence it follows that the Fourier transform of the potential depends only on the magnitude
of the momentum transfer,

U@Q) = Ug).
Thus
A® = _ L gr(op sin 2 (4.4)
4 2 ’
and
1 . O\, [ m \2 . 6\2
do = 16 | @l(Zk sin 5)' dQ = (W) 0 (2k sin 5) dQ. (4.5)
If the potential is an even function of #, then (4.3) becomes
+ o0
H(g) = f—g I rU(r)ear dr. (4.6)
(1) For vir) = Lexp (— i), @.7)
r Fo
we obtain from (4.3)
-1
D(g) = 4nA (q2 +’%) . 4.8)
0
And thus
2
do = 2’";’ | 42, p =k, 4.9)
4p? sin? 7tz
0

Asry —~ oo the screening disappears, and, by taking 4 = Z;Z¢2, (4.7) becomes the Coulomb
potential ¥V (r) = Z,Zse?/r, and (4.9) becomes the well-known Rutherford formula for
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Coulomb scattering:

do mZiZqe? \ 2 Z1Zse%
10 = kbt ot 7| = et el g\ (4.10)
2p? sin® > 4E sin? 3

where E is the kinetic energy of the incident particles. It should be mentioned that this
expression, although it was obtained in Born approximation, is in fact valid for all energies.
The following important features of Coulomb scattering follow from it:

(a) The cross-section depends only on the absolute value of the charges and not on
their signs.

(b) The angular distribution is independent of the energy.

(c) For a given angle, the differential cross-section is inversely proportional to the
square of the energy.

(d) The total cross-section is infinite, since the integral of do(E, 6)/dQ over all solid
angles diverges at the lower limit of small angles of scattering.

(2) Since the Gaussian potential is an even function of r, we can use (4.6) to calculate
the scattering cross-section and obtain

D(g) = (2urkP2V o exp (—513¢%),
and hence

mr3V,
h2

2
do = sz( ) exp (—4k2r§ sin? g) dq. (4.11)
(3) The potential is in this case an even function also, so that we have, from (4.6), that

4r Vo

_ sin gro
g) = p (ro cos gro——_ )

and hence

37\ 2 (i _ 2
do = 4(mr9V0) (sin gro —gro COS gro) do. 4.12)

A (gro)°

A common feature of the scattering differential cross-sections (4.9), (4.11) and (4.12)is that
they become isotropic, i.e. independent of the scattering angle, atlow energies (kro < 1).
This fact is characteristic of all potentials which have a finite range.

5. In order to obtain the total cross-sections we have to integrate the differential cross-
sections (4.9), (4.11) and (4.12) over all solid angles. The calculations are much simplified
if we return to the variable ¢ = 2k sin /2 and replace the element of solid angle d@2 =
sin 0 di d¢ by 2nq dq/k? after performing the (trivial) integration over ¢. The results are:
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(1) For the Yukawa potential

_ Amrh\2 1
o= 16:3( “ ) AT (5.1)
(2) For the Gaussian potential
2n2 (mriV o\ 2 .
o= F( L °) (1—e~4mt), (5.2)

(3) For the spherical potential well
o‘ 27 (mr§V9)2 [1 1 sin 4kry  sin® 2kro]

(5.3)

T ) | T Chrop T @Rro ~ Chroy

It should be remembered that these expressions are valid only when the Born approximation
is valid. In limiting cases (5.3) gives

167 , (mrdVy\2
o = 9 I‘%( ﬁ02 0) for kro << | (54)
2 2
o= ("’";;)2’/0) for kro > 1. (5.5)

6. The neutron-proton elastic scattering problem can be reduced to the problem of the
scattering of a hypothetical particle of mass m = m,m,(m,+m,)~" =~ m_/2in the potential
V(r) = (A/r) exp (—r/ro).

Using (4.4) and (4.8) we find the Born amplitude:

m myraA
(B = —_——— = o—
A®Xg) 2mth? 09 ?(1+r2g®) ©6.1)
Hence the form factor can be found:
_ A®(g) 1 ., 0\1
F(g) = - AP0y (1+r3g>! = (1+4r§k2 sm2—2) . (6.2)

From the definition of the Born amplitude (X.10"), it can be seen that each volume element
of space dr in which the potential is not negligible makes a contribution — (1/47)e®-"U(r)dr
to the amplitude. The factor ¢ determines the phase shift between the wave scattered
by each volume element dr and the wave scattered by the volume element at the origin.
If U(r) does not change its sign, then, for forward scattering (¢ = 0), the waves scattered
by all volume elements will have the same phase and the Born amplitude will have a maxi-
mum value

ABY0) = —ﬁ j U(r)dr.
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In all other directions the contributions of the different volume elements will have different
phases, and thus the form factor defined by (X.11) characterizes the interference between
waves scattered in the various volume elements. The total cross-section for n-p scattering
in the CM system is found from (5.1):

oE) = dn (TR 1 00 63)
2 4 r’ E dmri dmyrg ’ '

From this it can be seen that, for high energies the total cross-section for n-p scattering
is proportional to E~1:
L7 0
AE)~ 4 — -y n (6.4)
7. By definition the differential cross-section for scattering, do(0, ¢), in the CM system,
is the number of particles of type 1 (say) scattered per unit time into an element of solid
angle dQ2 about the direction (6, ¢), when a beam of particles of type 1 collides with a beam
of particles of type 2 travelling in the opposite direction, with equal and opposite momentum,
the flux of particles of type 1 relative to each particle of type 2 being equal to unity. From
this definition it follows that
do(6, ¢) = do1(61, 1), (7.1)

i.e. that
| A0, $)12 dAO, ) = | A1(61, p1)|? d1(61, 1), (7.2)

where (61, ¢1)is the direction of motion (after collision) of particle 1 in the laboratory co-
ordinates which corresponds to a motion in the direction (6, ¢) in the CM system.

From (7.1) it follows that the total cross-sections for scattering as measured in the labora-
tory and in the CM systems are equal:

o= fdo6, $) = | do1(01, $1) = 01. (7.3)
Bearing in mind the transformation relations (X.12), we obtain immediately the result
do6,¢)  sinfdodp  (1+2pcos 6+y2p2 (1.4

dQl(Bl, (f)1) o sin 01 d61 dqb1 o | 1+'y COS 6[ '

and thus from (7.2) one obtains (7a).

8. Consider the elastic collision of two identical bosons. Let R, P,r and p denote
respectively the position vector of the centre of mass of the system, the total linear momen-
tum of the system, the relative position vector of the two particles, and the “relative”
momentum ; then

R = “%“(rl‘*'rz), r =r1—TI9

P = p1+p2 P = 2(P1—P2).
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Since R is invariant with respect to an exchange of the two particles, under which r becomes
—r, the wavefunction (R, r, #) which describes the state of the system has to satisfy the
following symmetry condition:

YR, T, 1) = +9(R, —T, 1). @8.1)

Let us suppose for a moment that the two particles can be distinguished. In the CMS, the
differential cross-section for particle 1 to be scattered into the direction (6, ¢) is then equal
to the probability (per unit time, etc.) that the relative position vector r will end up pointing
in the direction (6, ¢), i.e.

doy(0, ) = | A6, $)|* 2. 8.2

Similarly, the differential cross-section for particle 2 to be scattered into the direction
(6, ¢) is equal to the probability (per unit time, etc.) that the relative position vector r will
end up pointing in the opposite direction to (6, ¢), i.e.

doy(6, ¢) = | A(n—0, ¢ +x) (2 dQ. (8.3)

However, if the two particles are not distinguishable, the above argument must be supple-
mented as follows:

(a) Since the observer cannot distinguish the particles after scattering, do1(6, ¢) and

dos(0, @) cannot be measured separately.

(b) The function (R, r, ) has to be symmetrical (for bosons). Condition (a) does not
lead to anything new from the quantum-mechanical point of view. We merely take the
observed differential cross-section do(6, ¢) to be the total number of particles (1 and 2)
scattered into the element of solid angle df2 about the direction of observation (6, ¢) per
unit time per unit flux of incident particles, so that

do(0, ¢) = doy(6, ¢)+doy(®, ¢). (8.4)

Note, however, that if we retain the definition of the fotal cross-section as being the number
of particles scattered out of the incident beam per unit time per unit incident flux, we have

o =3} { do(6, ¢). (8.5)

The requirement (b) is a quantum-mechanical one. Let us introduce the symmetrized wave-
function

1
7/ 2
Since this symmetrization is valid in the asymptotic region also, it implies a corresponding
symmetrization of the scattering amplitude, i.e.

PR, T, )= [y@®R, 1, H+y(R, —T, )] (8.6)

ﬁ&¢kb$§M@éHAm“&¢HM- 5.7
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Then for do, and dos we obtain
doy(0, §) = |40, §)|?* dQ = 5 | A0, )+ A(n—6, ¢ +7) {2 L,
dos(0, ¢) = |A(n—0, ¢ +7)|2 dQ2 = doi(6, ¢)
whence
do(0, ¢) = 2146, ¢)2d2 = | A(0, o)+ A(m— 0, ¢+ =) |2 d2. (8.8)

In conclusion, the symmetry of the wavefunction appropriate to indistinguishable bosons
gives rise in scattering processes (and elsewhere) to a new quantum phenomenon called
the “exchange effect”. This leads to an appreciable increase in the differential cross-section;
in particular, if the scattering amplitude does not depend on the angle ¢, then, in the direc-
tion 6 = 7/2, the differential cross-section (8.8) is increased by a factor of 4.

9, Although under the conditions of this problem the total spin of the two-proton system
is a constant of the motion, the interactions of the two protons in the singlet and in the
triplet spin states can be different. Let 4,(0) and A,(6) be the corresponding singlet and
triplet scattering amplitudes (as calculated without symmetrization). Since protons are fer-
mions, the p—p system wavefunction must be anti-symmetrical with respect to the exchange
of the two particles. If this function represents a triplet spin state, it will be symmetrical
under a permutation of the spin variables, and hence it must be anti-symmetrical under
a permutation of the coordinates r1 and r.. The correctly symmetrized triplet amplitude
will then be

a 1
AL0) = ﬁ [40) — A —0)), 4.1

and the differential cross-section for p—p scattering in the triplet spin state becomes
do () = 2| A,(0)2dQ = | A(6)— A(n—0)|2 dOQ. (9.2)
If, on the other hand, the wavefunction represents a singlet spin state, it will be anti-symmet-

rical under a permutation of the spin variables and hence must be symmetrical under a
permutation of the coordinates. We then have

L
A 2
and the scattering differential cross-section for the singlet spin state becomes

doy(0) = 2| A5(6)(2 dQ2 = | 4,0)+ A(n—6)|* dQ. (9.4)

Ay(0) = [4:(0)+ As(m—0)]* 4O, (9.3)

If the target and the incident beam both consist of randomly oriented (non-polarized)
protons, then at each collision the orientations of the spins of the colliding particles will be
distributed at random. Now there are three independent triplet states and only one singlet
state. It follows that, in any collision, the probability that the total spin S = 1 (triplet
state), is %, while the probability that the total spin S = 0 (singlet state), is 5. It follows
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that, for unpolarized beam and target protons,
do(0) = § do(0)+ 1 do,(6) = {} | 4,(0) — A(m—0) |2+ F | 4,(0)+ A(m —0) 2} dQ. (9.5)
Note that if the forces between the particles were spin-independent, then we should have
A(0) = A(6) = 4(0),
say, and
do(0) = {| A(0) 12+ | A(m—0)|2—F[4*(0) A(m —6)+ A(6) A*(n— 0)]} de2. (9.6)

10. Since the Coulomb interaction does not depend on the spin state (singlet or triplet)
of the system of two particles, the scattering differential cross-section in the CMS can be
calculated by using (9.6).

After some simple calculation we obtain

cos [_ﬁZ%ﬂ In (tan2 6)]
Z22\2| 1 1 v 2
do(6) = ( 1E ) g+ g 7 7 aQ, (10.1)
nd 4 2 2 __
Sin 2 COS 2 Sin 2 COS 2

where E is the energy of the system in the CMS, v is the relative velocity of the two particles,
and Z, = Z, = Z. The expression (10.1) is called the Mott formula. It can be applied to
electron—electron elastic scattering, and, for low energies, when nuclear forces can be neg-
lected, it can be applied also to proton-proton elastic (Coulomb) scattering (crudely speak-
ing, if the energy is low enough, Coulomb repulsion prevents the protons from coming
close enough for nuclear forces to be effective).

At high energies the contribution of Coulomb forces to proton-proton scattering is
negligible in comparison with that of the purely nuclear forces, and the Mott formula is no
longer valid. A calculation of the electron—electron elastic scattering differential cross-
section (neglecting the spin and the indistinguishability of the particles) would, in accord-
ance with (8.2)-(8.4), have given the result

doy(6) = (%)2 [sin—4§+cos—4—§] 0. (10.2)
The third term in (10.1) has thus a quantum-mechanical origin and is due to the exchange
interaction between identical particles. Formally, it shows itself in the “interference”
between the amplitudes 4(6) and A(z—6) (cf. relation (9.6)).

In the limit # — 0, this term oscillates rapidly about the value zero, so that its mean
value vanishes in any solid angle, however small, and the Mott formula passes into (10.2).
The differential cross-section for scattering in the laboratory system can be obtained imme-
diately by substituting 6 = 26, and d2 = sin 0 d6 d¢ = 4 cos 01 sin 61 d6, dp1 = 4 cos 6,dQ2,
in (10.1), in accordance with the transformation relations (X.12).

The energy of relative motion E = mw?/2, when expressed in terms of the velocity v,
in the laboratory system and the mass m, of the incident particle, is E = mgp?/4 = mp?/4.
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11. The expression which will be deduced below (and from which (11a) follows as a

particular case) is useful for comparing the phase shifts d,(k) and 5,(k) (for orbital angular

h2k?
momentum / and energy E = >

) due to two potentials ¥(r) and P (r) respectively. The

relevant radial equations are

[-;2_2-+k2 (vt "’;”)]R,,k(r):o (11.1)
[%+k2 (vo+ ’(’“’)]R, (1) =0 (1L.1)

with the condition at the origin that R, ,(0) = R, ,(0) = 0, and the asymptotic behaviour
for large r

R () ~ % sin (kr L 6,(k))

2
: 1 (11.2)
Ry, 1) ~ - sin (kr—é—lszr 6,(k)).
The Wronskian of the two solutions
W(R, 1, ﬁt, x) = Ry, kﬁl',k‘"ﬁl, xRI, & (11.3)
vanishes at the origin, and
lim W(Ry 1, Ri i) = llc sin (8,(k) —8,(k)). (11.4)
On the other hand, from equations (11.1), we find that
b
W (R, & Ry ) ——‘“"-le U—U)Ry,  dr. (11.5)
By choosing a = 0 and b = -, we then find that
1 2m -
+ sin (3()—i(k)) = — - {V—P)Ry, dr. (11.6)
[i]

This relation is valid for any two potentials ¥(r) and P(r) provided only that they tend to
zero more rapidly than 1/r at infinity and that, at the origin, they have a singularity (if any)

not stronger than 1/r2. If ¥(r) = 0, then 3,(k) = 0 and, in accordance with (A.46),
Ry, u(r) = rjikr).
The integral formula (11a) then follows immediately from (11.6).
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Remarks: In order to calculate the phase shifts d,(k), the solution R, ,(r) of the radial
equation (11.1) must be known. But, if ¥(r) is small enough, R, ,(r) differs only slightly from
the free spherical wave rj(kr), and the phase shift is almost zero.

Thus, without too large an error, we can replace R, ,(r) by rj(kr), and sin 8,(k) by 8,(k)
in (11a) and obtain the following approximate formula

oo

2m

Sik) ~ — 0 k j r2jkr) V(r) dr. (11.7)

0

The error in making this approximation is negligible if ¥(r) is small enough in comparison
with E—I(I+1)#2/2mr2. This is true at high energies provided that, for large values of /,
the potential decreases rapidly enough as r . If the potential has a finite range, e.g.
if ¥(r) = 0 for all r > ry, then at low energies, kry < 1, we have, by (A.49),

Jikr) ~ (kr)

2 D (11.8)

and, using (11.7), we obtain

r

Imkropi+l [ 21+1
5(k) "‘\’_hz[r?z(li 1));]2 J v (r) (":;) dr. (11.9)

0

From this expression it can be seen that the phase shifts decrease rapidly with increasing /.
If, for a given potential, the energy of the particles is such that kry < 1, then the particles
are said to be “slow”, and from what has been said above we can conclude that in order to
study their scattering it is sufficient to consider s-waves (/ = 0) only.

Starting from expression (11.6), the following approximate formula can be derived:

- 2 r -~ ~
(k) —d,(k) ~ —h—’;'k J R ((V—V) ar. (11.10)
0

This relation is useful if the solutions R, , of (11.1') are known for a potential ¥ which differs
only slightly from V. A quite good approximation to the §,(k) can then be obtained without
having to solve equation (11.1) for ¥,

12. From (11.6), the following conclusions concerning changes in the phase shifts due
to small changes in the potential can be drawn:

If V(r)—PV(r) = AV, say, is a small quantity, then 48, = 8,(k)— 5,(k) will also be small,
and the difference between R, , and R, , will be negligible. It follows then that

=]

Ay = 2h’" kaAVdr (12.1)

0 -
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If the variation AV in the potential has the same sign over the whole range 0 to < of r,
then the change in the phase shift 46, has the opposite sign. Thus an increase in the potential
(i.e. in the repulsive forces) leads to a decrease in the phase shift, and a decrease in the
potential (i.e. in the attractive forces) leads to an increase in the phase shift.

The relation (X.14) defines the phase shift ,(k) to an additive constant 2nz. To eliminate
this ambiguity, let a continuous change of the potential from O to V(r) be considered.
The phase shift then changes from zero to some value 6,(k) which does not depend on the
way in which the potential was varied in going from zero to ¥(r), and which therefore can
be taken as a unique definition of the phase shift. Thus, if the potential ¥ (r) is everywhere
repulsive, we can pass from zero to V(r) by summing all the in finitesimal contributions.
In accordance with (12.1) each such contribution decreases the phase shift and in conse-
quence §,(k) will be negative. Similarly, if V(r) is everywhere attractive, then d,(k) will be
positive. More generally, if ¥(r) > V(r) for all r, then §,(k) < 8,(k);if ¥(r) < P(r) for all r,
then 6,(k) > 8,k).

13. We have to find the phase shifts 6,(k), i.e. to find the asymptotic forms of the radial
functions which are the solutions of the equations

a* I(H'l) i _
[dr2+ ]Rt()_o K ﬁg(E-!-Vo) r<ro
d? (S )
[d 2+k2 r2 ]Rm:(r) - O, k2 = Zz—E, r>rg

with the conditions at the origin Rj™,(0) =

If the particles are “slow” (kro < 1), the main contribution to the scattering cross-
section is that due to the s-wave (see (11.9)). It is then sufficient to calculate 4.

The corresponding radial function satisfying the condition at the origin is

_ | Rint (r) = Asin Kr
R, ,.(r) =170k 13.1
0.k (") {Rg’f‘k(r) = B sin (kr+ ). (D

From the continuity of the logarithmic derivative at r = ro,

Rito)| _ Rog®) (132)
mt (I‘) r=ro (r) r=rg
it follows that
0o = tan~? (% tan Kro) —kro. (13.3)
The partial scattering cross-section for / = 0 is then
4 4 k
oy = 7;2 sin2 8¢ = = sin? [tan 1 (Ktan Kro) —kro], (13.4)

and is very nearly equal to the total cross-section o.
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If the kinetic energy of the incident particles is very small (k - (), we have

8o ~ kr (ta;‘ Of:“’ 1), k2 = zh’;' Vo, (13.5)
and therefore
o % g = dard (taz kzr" 1)2. (13.6)
If the potential well is such that koro << 1, then
~ a0 10 (mfz’/ﬂ)z. (13.7)

This expression for the total cross-section is the same as the one found by means of the
Born approximation (5.4).

From (13.6) it can be seen that, as V¢ increases, the scattering cross-section increases,
and becomes infinite for k¢r¢ = @/2. The condition koo = 7/2 is also the condition for the
appearance in the potential well of the first bound state (see problem (11.10) and (I1.30)).
A further increase in ¥ is then followed by a decrease in the scattering cross-section, until
it vanishes when tan krq = kr,. Further increases in ¥, lead to an oscillatory variation of the
scattering cross-section between 0 and <. The infinite values of o occur whenever, with
increasing Vo, a new bound state becomes possible. This oscillatory behaviour of the scatter-
ing cross-section for slow particles explains in a qualitative way the experimental fact that
the cross-sections for scattering of slow electrons by atoms bear no relation to the geometri-
cal cross-sections of the atoms. It should be noted, however, that if the value of kgry is
nearly an odd multiple of 7/2, then (13.5) and (13.6) cannot be used for quantitative calcula-
tions. Indeed, in this case tan Kr, is very large and we cannot use a power series expansion
in (13.4), as we did in (13.6). In the argument of the sine function of (13.4), only kr, (which
by assumption is < 1) can be neglected.

Under these conditions we obtain instead

4z

. {k
do = tan—1 (T( tan Kro), o= e B (13.8)
where
K 1
£ = ke o (13.9)

(13.8) gives the “resonance scattering™ cross-section for small values of k, when the potential
well is such that a small variation of its parameters would lead to the appearance (or the
disappearance) of a bound state.
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14. The required results can be obtained immediately by substituting —¥ for ¥ in
the solution of the preceding problem. Thus we find

1/2
8o = tan~1 (K’f tanh K’rg) —kre, K'= [%’;2'_’ Vo —E)] , (14.1)

whence, for very small kinetic energies (k — 0),

tanh kg¢ro 2m
60 o kl‘o (-——Ia;—'—l), kg = —h“z"VO (14.2)
and hence
tanh kol‘o 2

= 0 =~ 4t | —————1} . 14.3
0 &= Gg ~ 4} ( Tore l) (14.3)

If the well is such that kore << 1, then

tanh korg

~1—3(k
koto 1 3( 01‘0)2

and the expression for the scattering cross-section, as is to be expected, is the same as
(13.7).
As V¢ — oo, the scattering cross-section becomes
¢ = dard. (14.4)

This value is four times the classical scattering cross-section 6, = zir; for a hard sphere
of radius ro. The greater value of the total cross-section as calculated by quantum mechanics
is due to the wave properties of particles, which in this case lead to diffraction in the neigh-
bourhood of the sphere.

15. In order to find the phase shifts we have to determine the asymptotic form of the
solution of the radial equation

[_d_Z_+k2 (2mA+l(l+1))] Ry «(r) = O, (15.1)

ar® #2p2 r2

which satisfies the condition R, ,(0) = 0 and is bounded as r - . By defining a quantity
A 10 be such that

2mA

MA+1) = (15.2)

]

we can see that the function which satisfies the above conditions is (except for a constant
factor)

Ry, u(r) = 1jilkr), (15.3)
where the index 4 of the spherical Bessel function is the positive root of (15.2), i.e.
2mA
A= +V(1+ 7 (154)
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From (A.48) we have that, for large r,
| 7
Ry i(r) ~ % Sin (kr —5 2).
Comparing this expression with (X.14) we find that

& = —% [V(H Ly 2':2‘4 —(l+%)]- (15.5)

In this example we can easily verify the conclusions of problem 12. Thus if ¥(r) is repulsive,
(4 > 0), then 6, < 0, and if ¥(r) is attractive, (4 < 0), then ¢, > 0.

In accordance with (X.18) and (X.19), the fact that §, is independent of k means that the
scattering amplitude can be written as

A(E, 6) = - AdD), (15.6)

where

AoB) = 3 (21+1) Pdcos B)e sin 3, (15.7)
=0

and does not depend on the energy of the particles.
The differential cross-section for scattering is then

do(E, 0) = k2| Ao(6) |2 dQ. (15.8)

If 2mAh—? <« 1, then, from (15.5),

N namA
TR AR

<1

-

and thus

Ao(@) =z lio (2l+ 1) P](COS 0)61 &z _E%;—‘éli PI(COS B).
= =0

Using the generating function (A.13) of the Legendre polynomials, we observe that
oo -1
Y. Pfcos 6) = (2 sin E)
=0 2

and therefore
*mA? 6
dO'(E, 6) = —2-@ cot —f dQ. (15.9)
If we attempt to calculate the total cross-section for scattering we obtain an infinite value,

as in the case of the Coulomb potential.
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16. The phase of the radial function R, ,(r) in WKB approximation (see IV.12.16)) is

given by the integral
1\2 7
j l/kz—U(r)—(l+—2—) /r2 dr+ 7, (16.1)

where a is a zero of the integrand. Since the range in which the particle moves is beyond
the classical turning point, r > a, we have to take a to be the largest zero of the integrand.
Subtracting from (16.1) the phase of the radial function corresponding to free motion:

f sz_ (1+-§—)2 /r2 dr+% (16.2)

and proceeding to the limit r -~ <, we obtain, in accordance with the definition, the phase
shift

R
d(k) = lim [f AV KR—U@r) —(1++)2/r2 dr — f V= (1+3)2/r dr]. (16.3)

- 00

Using the fact that

r—» o0

lim R(r) = 2D_ sin [%Jr f (Vk2_U(r)—(l+ —;—)2/r2— k) dr+ k(r—a)} 1V.12.17)

a

another useful expression for the phase-shift can be obtained, which is equivalent to (16.3).
Thus, by comparing (IV.12.17) with (X.14), we find that

oo

8i(k) = (H%) %—ka+J (Vk2—U(r)—(l+m;—)2 /r2—k) dr. (16.4)

a

(16.3) has the advantage that, for /> 1, it can be put into a simple form, since, if > 1,
a is also large; ¥ (r) is then small over all the range of integration, and hence ¢ ~ ao and

dik) = —% | U@ [K2—(1+3)2/r?]- 12 dr. (16.5)
Since / > 1, the approximation /+ =~ / can be used, and thus, finally,
8i) = —% [ UG (2 —irey-112 ar. (16.6)
ik

17. The conditions of this problem are such that we can use (16.6). We have then
that

A (= =)
Oi(k) = _";1_2 j r-o(k2 —2/r2)-1/2 dr,

1k
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Making the substitution /2/k%*? = t, we obtain Euler’s “beta function”, and hence

1 n—1
makn—2 L (‘2)‘r ( 2 )

6l'(k) = - 242In—1 n (17.1)
r{
(2)
18. As we saw in problem 1, v (r) satisfies the integral equation
P () = dum)+ | GuIr—r'|) U il (') i, (18.1)
where ¢, (r) = exp (ik .r) and
Gul((r—r ) = i | £ 18.2
k(l(r F I) - (27’5)3 kz_qg q. ( . )

The integral equation (18a) is obtained from (18.1) by making series expansions of ¢, (r)
and of yj (r) in spherical harmonics.
In accordance with (A.50") we have -

i(r) = 4n ISO mg+j kYT (O DYT(Brs ).

Choosing the z-axis along k, we have 6, = ¢, = 0, and, owing to the spherical symmetry
of the potential, m = 0. Therefore the expansion (X.13) can be written by means of (A.24) as

o ol .
w(r) = da IZ i lilel ) _Rt_;i"_)_ YT (B> D) Y1'(Gr, ). (18.3)

=0 m=-

The Green’s function G, (|r —r’ |), which depends on 7, " and cos « = r.r’[r’, can be expand-
ed in a series of Legendre polynomials Pj(cos «). Thus, bearing in mind the addition theorem

(A.30), the function G,(|r—r’|) can be written in the form

I'

+

Gk(| r—r’ ’) = I'Zo oy G;(kl')(r, I") Y?"(Br’a ¢r’) Y?’(Bn ¢r) (184)

Now, using (18.1), (A.50’), (18.3), (18.4) and (A.27), after a little calculation we find that

Ry «(r) = rj,(kr)e_w'(k)-l-r f r’Gg)(r; rYU() Ry «(r) dr, (18.5)
: 0
ie. Ry () = rjikr ~i0 1 g fr’T,(f)(r, rYU) Ry (1) dr’
0
+r f rTr; ¥) UE) Ry (') dr'. (18.5")

In order to determine the functions G¥(r; ') we expand the plane waves ¢“ " and e~ in
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spherical harmonics in accordance with (A.50"). Thus, using (A.27), (18.2) becomes

oo

R -
Gulr—r) =23 i,(f q“—’(‘fc’z)j_’—-%dq)n" (O, 9 YT e 6. (186)

By comparing (18.4) and (18.6), and remembering that the integrand is an even function of g,

it can be seen that
+eo

1 i(qr)jdqr’)
Deoory 2 Ji\gr)jng
G(k(",")—; j QW—dq- (18.7)
This integral can be evaluated easily by means of the theory of residues. Note first that j(z)
is a whole function of z, so that the poles of the integrand are simply the zeros of the

denominator (g = +k).

Suppose now that » > 7' (as in the first integral of (18.5’)), and replace j{qr) by %
i

[#X(gr)—H~Xgr)]. Then, since A*X(z) ~ + exp [ii (z—gf)] as z - oo, it follows that
h*Xgr)j{qr') —~ 0 as |g| —~ - in the upper half-plane, and that A~gr)j(gr’) - O as
|g| — <= in the lower half-plane. Thus the integrals in the expression

=+ oo ’ + oo
U 0@ty U K@)
Dipe p'y — 2 _ g ¢l )
el e s e = =D

— —

can each be completed by a semicircle of infinite radius, in the appropriate half-plane.
Remembering that, for a scattering problem, we must take for the first integral of (18.8)
the residue of the pole at ¢ = +k, and for the second integral the residue of the pole at
g = —k, and bearing in mind that A X(—z) = (—1Y*'A{*) z), we obtain after some
simple calculation the correct Green’s function

GiXr; ) = —khiP(kn) jikr'), =7
If r << " (as in the second integral of (18.5")) we replace j(¢#’) by zii[hﬁ’(qr N —h g

and, after calculations similar to those given above, we obtain the result

GO, r) = —kn§H k) ji(kr), r <V
and therefore, finally,
h{(kr) jkr’) r=r
Dipe py — _ f] 1 s 18.9
GP(rs 1) k {hS+ Xkr) ji(kr), r<r. (18.9)

19. Since the two Jost solutions f(+ k, /; r) have the same value of k2, their Wronskian
does not depend on 7. Also, from the conditions (X.22), it can be seen that, for large r,

f(£k, I; ) ~ exp (Fikr).
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The independence of r of the Wronskian enables us to calculate its value from these
asymptotic forms, and the result

Wif(k, I; r), f(—k,I;r) =2k = 0, (19.1)
demonstrates the linear independence of the two solutions f(tk, /; r).

Thus the required radial function which satisfies conditions (19b) can be expressed asa
linear combination of f(k, /; r) and of f(—k, I; r), i.e.

Ry «(r) = Ak, Df(k, I; )+ Bk, Df(—k, I; r). (19.2)
The coefficients A(k, /) and B(k, [) can easily be found by noting that

WIf(k, 1; ), Ryp(r)] = A(k, ) WIf(k, I3 1), f(k, I; )]
+Bk, D WIf(k, 15 1), f(—k, I; )] = 2ikB(k, 1),
WIf(~k, 157), Ryu(] = Ak, D WIf(—k 15 1), f(k, 15 7)] (19.3)
+B(k, D WIf(=k, 15 1), f(=k, I; )] = —2ikA(k, ]).

On the other hand

Wlf(k, 15 0), R, (0)] = f(k, I; O) R}, i(0)—f"(k, I; O) Ry, ((0) = Fi(k)
(19.4)
WIf(—k, 1;0), R, (O)] = f(—k, I; 0) R}, 1(0)—~f"(k,~ I; O) R, .(0) = F(—k),
and, because W[f (L&, I; r), R, ,(r)] is independent of r, we obtain from (19.3) and (19.4) the
results

F(—k Fik
age, ny=-FEE) gy p = B, (19.5
and thus
1
R, lr) = 5 [FR)f(=k, I; ) =F(—K) f(k, I; 7)]. (19.6)
Note that, in the asymptotic region (r — <o),
Ry 1 (r) ~ [2z_lk Fi(k)e'r —F,(—k)e-"’"]. (19.7)
Now from (X.14) we have that
: In ;
Rl, k(r) N 2%( el:r(dt(k) 2 ) e'kr _e—i(dx(k)—%) e—ikr] ] (198)

By comparing (19.7) with (19.8) we obtain the following relation between the Jost functions
and the diagonal elements of the scattering matrix:

Si(k) = B = gin F—“?(_kz)c) . (19.9)
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20. Except for a multiplying constant which is included in the normalization factor of the
wavefunction, the Jost solutions are

f(xk,0;r) = Asin Kr+ B cos Kr, r<ro
f(iks 0; r) = eZFikr’ r="rog

where

K= [2—;’2’ (E+ Vo)]m.

A and B can be determined from the continuity of the solutions and of their derivatives at
r = ro. Thus the inner solution has the form

etikro . . .
[(K sin KroFik cos Kro) sin Kr

fl£k0;1) = —5

+(K cos Kry *ik sin Kro) cos Kr], r<ro.
The Jost functions follow immediately:

Fo(+ k) = eq“""O[cos Kro:ti% sin Kro], (20.1)»

and then

Fo(k) _ Kcos Kro-+ik sin Kro .

So(k) = Fo(—k) ~ K cos Kro—ik sin Kro

—2ikry . (20 2)

If the kinetic energy of the particles is less than the depth of the potential well, i.e. if

2 1/2
—Vo=E<0,then k =i (h—n; |E |) = jko, say, and the poles of the function So(k) (i.e.

the zeros of Fo(—k)) are determined from the condition

K cos Kro+ko sin Kro = 0,
i.e.
roko = —ro K cot Kro. (20.3)

By noting that (20.3) is the same as (30.3), Chapter II, we arrive at the conclusion that the
energy values, corresponding to the poles of So(k), coincide with the energies of bound
states in the (spherical) potential well. This concrete example serves to demonstrate some
properties which are valid in general for the functions S(k) corresponding to an orbital
angular momentum /. Since (20.2) is valid for complex values of k, it follows that Se(k),
being the ratio of two holomorphic functions, is a meromorphic function of complex k.

Note that
So( —k) = Sy (k) (20.4)
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and hence that
do( —k) = —do(k) (20.5)
and also that
[So(kM)]* = S5(k), (20.6)
a property which is called “unitarity”.
Finally, we can show, by using (20.2), that

Jim_ Su(k) = 1 (20.7)
k| oo
and that
Jim bk = 0, (20.8)
k| oo

which express the fact that for very high energy particles no scattering oceurs (So(k) = 1),
i.e. the motion of the particles is not affected by any potentials they encounter.

21. Since, from (19a),
aA2flk, 1, r
FIEED — (i -k 106, 15 7
and
d* . .
g [sin k(¥ —7)] = —k? sin k(' —r),
we have that

Tsin k(r' —r) ULr") f(k, I; ¥y dr

oo
.

- 2
= {sin k(r' —r) ﬁ%r—)—f(k, [ i");’;g [sin k("'—")]} dr’

[ 4. .o Ldftk, 1 r) o d o , )
= | % {sm k(r —r)T—f(k, [ ¥) ;7 Sin k(r —r)]} dr’.

e

By integrating and using the boundary condition (X.22), the integral equation (21a) follows
directly. In order to simplify the calculation, consider the integral equation

=~}

i I —e—2ik(r'—r)
gk, Iy r)=e* fk, I, r) = 1+EJ‘ T Udr)g(k, I; r) dr, (21.1)

r

whose solution can be written formally as

gk, ;1) = Y gk, ;1) 21.2)
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where
golk, I; r) =1,

oo

1 1 _e2ik(r’—r)
gnialls 13 7) = f ST U all, 1 ) (21.3)

This expansion in a series defines the solution g(k, /; 7) of the integral equation (21.1) only

if the series converges. We shall prove that this is so provided Im(k) = b < 0, (k = 0),
and

{10y dr = M) say, s finite.

Thus, if b < 0, we have
e2b(r'—r)
T2

1
=< T3
k|

1

2ik

1 _e—2fk(r'—r)
2ik

<

and hence
_ 1 o
8nea <—‘k|J.|Uz(f)| - |8alle, 13 )] '

It follows that

) M(r)
|g1(ka l’ r)‘ = W’

oo

. D [dM) e, MG
a1 = [ 10 M = i | e - 500
and, in general, that

It is clear then that the series (21.2) converges, and hence that a solution exists for b < 0 and
k = 0. In addition it follows that g(k, /; r) is a holomorphic function, since the series is
uniformly convergent. Further, it can be seen that

gt =11 = | § gl 1) =1 \ =| 5 et tin

= S M) MAD)\
$n§1|gn(k9 13 r)|‘“n§;::1 n'|k|” —eXp( |k| ) 1;
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and hence

M’(’)) -1, 21.5)

8k, 1; ) —1] < exp (TkT

whence
lim gk, I; r) =1,
|k |—co
for any direction of k in the lower half-plane.
Since g(k, I; 0) = F(k) we can conclude that, if (21c) is valid, then the Jost functions
F(k) and F/(— k) are holomorphic in the half-planes Im (k) < 0 and Im (k) = 0 respectively,
and that lim Fyk) = land lim F(—k) = 1, for any directions in the appropriate half-

| = oo k] —> oo

planes.
Consider now the case Im (k) = b > 0. Then

e2(r'—r)
| k|

-

| —e—2ik(r'~r)
—

and it follows that

o0

e2br , o elbr
lgik, I; )| < mj | U(r")| e2tr’ dr' = Wpl(r)

and, in general, that
M) 1
(n—1)1 [kj

|gnk, I3 )| < Py(r) e=2r (21.6)

Thus the function g(k, /; r) is holomorphic in the region of the upper half-plane in which

oo

P(r) = [ Ufr)e dr L7

s finite. The Jost functions F,(k) and F,(—k) are therefore holomorphic in the region of the
upper (or the lower) half-plane, in which

[ 10| e ar (21.8)

is finite. Note that if b > 0, then M /r) 1s finite if P(r) is.
22. Since f*(—k*, I; r) satisfies the same integral equation (21a) as fk, I; r), we have
SH=kS L) =fk 157 (22.1)
and hence
Fr(—k*) = F(K). (22.2)
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Thus
s F(k) F'(—k") _ 1 . .
Sk) = e IF,(—k_) = e S~ 570 = ST(—k"), (22.3)

whence the unitarity relation
Si(k)S;(k*) =1
and the reciprocity relation
S k)S{—k) = 1
both follow.
The relations have already been obtained for / = 0 for the particular system specified
in problem 20. The relation (22.1) is called the *crossing symmetry relation” of the Jost

function.
23. Since, for the Yukawa potential,

oo o

Mo(r) = J U dr’ = 2mhLA' J _r',”" dr' < oo,

r

it follows from problem 21 that Fo(k) and Fo( — k) are holomorphic in the whole of the
lower (or, respectively, the upper) half-plane of k. However,

3 , 2mi A 3 e@bro—1)7'Iro
Po(r)=f vy e dr = 2 lj ~

%
r

r

converges only for & < 1/(2ro).
In conclusion, for Yukawa-type potentials, Fo(k) and Fo{ —k) are holomorphic functions

of k in the regionsin which b < 1/(2ro) and & > —1/(2ro) respectively. Hence the Bargmann
strip of the function So(k), which is the region of the complex k-plane which is common

to both the above-mentioned regions, (Fig. X.4), is the region defined by

1 1
— g =T <+ (23.1)

Rl

2 © . ©
£ £ e |%
o o S ¢
5§ § 5¢ge ,
2 2 o] Egw Re(k)
- = @
= ol =
LE © Al A
/ _
Fic. X.4.
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The Bargmann strip is important in the study of Sy(k) because in it Fo(k) is holomorphic,
and the poles of So(k) are therefore due, not to sin gularities in Fy(k), but to zeros of F o —k).

24. Since, in the Bargmann strip, the Jost functions Fy(+ k) are holomorphic, the poles

of Sy(k) are given by the condition
F(—k)=0. (24.1)
We shall show first that, in the part of the Bargmann strip which lies in the upper half of

the k-plane, all the poles of S,(k) lie on the imaginary axis. Suppose that there is a pole
ko = a+ib, (F(—ky) = 0) with b > 0 and a = 0; then, from the relation

Si(k) = S7(—k") (24.2)
it follows that there is a pole at —k; also.
Further, by (19.6),
1 1
R (1) = 55— [Ft(ko)f(—ko, /; ")—Fl(—ko)f(ko, I, n)] = _-—Fl(ko)f(—ko, I;r),
2iko 2iko

1
R, _i2(r) = _—%TEF’(_ks)f(ka’ L r).

Thus there would exist two solutions, both regular at the origin (r = 0), viz., f (—ky I;7)

=f(—a—ib,I;r)and f(k;, I r) = f(a—ib, I; r), which describe two states corresponding
B2

to the two eigenvalues E L= T(aiib)z, i.e. two states which are mutually orthogonal,
m

so that
| fla—ib, I; 1) f(—a—ib, I; ) dr = 0. (24.3)
0

This is, however, impossible, since, according to (22.1),
fla—ib, I; r) = f*(—a—ib, I; r) (24.4)

so that, unless f(—a—ib, I; r) = 0, the integral (24.3) cannot be zero. If a = 0, b > 0, then
E_ = E_, and, instead of the orthogonality relation (24.3), a normalization condition is
required

oo

[F*(—ib, I; ) f(—ib, I; F) dr = Ny =0,
0
which can evidently be satisfied. |
Hence in the part of the Bargmann strip which lies in the upper half of the k-plane, S,(k)
has no poles except on the imaginary axis. For b < 0 the argument given above is no longer
valid, since, in accordance with (X.22), in the asymptotic region # — oo, S(—a—ib, I; 1)
~ exp [(ia—b)r], and thus, unlike the case b > 0, the wavefunction is not square integrable.
In the part of the Bargmann strip which lies in the lower half of the k-plane, the poles of
S,(k) do not have to be on the imaginary axis.
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Let us consider the physical significance of the poles of S,(k). We start with those placed

in the upper half of the k-plane. Let ko = ibo, (bo = 0), be one of them. The corresponding
solution

1 - .
Ry, v (1) = —Z—bOF;(tbo) f(—ibo, I; n

15, by definition, bounded at the origin (see (19b)), whence it follows that the Jost solution
f(—ibo, I, r)is regular at r = 0. Becauseit behaves at infinity as exp (—bor), it is thus a square
integrable radial function and describes a bound state. It follows that any poles on the posi-
tive imaginary axis (within the Bargmann strip) describe bound states.

If ko = ibo, where by < 0 (within the limits of the Bargmann strip) is a pole of the func-
tion S,(k), then the corresponding state is called a “virtual state”. Virtual states do not rep-
resent physical states of systems in the usual sense of quantum mechanics, since their radial
wavefunctions are not square integrable. They do have an important observable effect, how-
ever, since their influence on the scattering cross-section is the same as would be that of a
bound state of the same energy (Eo = —% bg)

Those poles of S, (k) which occur in the lower half of the k-plane (inside the Bargmann
strip) and which are not on the imaginary axis appear in complex conjugate pairs (k,, —k ),
as can be seen. The states corresponding to these poles are called “resonances”. From the

relations
Sik) = [ST(kM)]~* and S{k) = [S(—k)]? (24.5)

it can be seen that if (k) has a pole at k then it has a zero at the conjugate point k, and
also at —ko. It is thus clear that zeros in the lower half-plane can occur only on the imaginary
axis.

Thus, to bound (or virtual) states there correspond zeros of S,(k) on the imaginary axis
in the lower (or the upper) half of the k-plane, and to resonances there correspond zeros of
S,(k) in the upper half of the k-plane, off the imaginary axis.

Figure X.5 shows how the poles and the zeros of the function S,(k) in the Bargmann
strip are related as a direct consequence of (24.2) and (24.5). From these relations it follows

Imik)

- Re(k)

X‘-———.—O
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that on the real axis the function S,(k) can have neither poles nor zeros. Remember that only

rea] values of k correspond to real scattering states.
25, From Cauchy’s theorem we have that
1 1
N = e f[lnf(z)] dz = i In £(z) . (25.1)
C
Since F/(—k)is a holomorphic function in the upper half of the k-plane, in which it has zeros
only on the imaginary axis, and since between these zeros and the bound states there is a one-

to-one correspondence, it follows that by choosing the contour C = C1+C3+Cs shown in
Fig. X.6 we obtain

n = "Z—:TI, [11’1 FI( — k)]c . (25.2)

- ——— B
~m C; ~0 +0 c 40 Relk)
Fic. X.6.

As we saw in problem 21, lim F(—k) = 1, along any direction in the upper half of the

K| ~»oc0

k-plane. For this reason (25.2) becomes
1
n = *-2-”—1 [ln Fl(—k)]CH-C, . (253)

By comparing (X.17) with (X.23) and taking into account the crossing-symmetry (22.2) of
the Jost functions, we can write on the Re (k) axis

F(—k) = [F(—K)| exp [—i(a,(k)—’T")], (25.4)
and hence

= —-Z—:r—l,[ln |F—k)| —i(a,(k)—’z_“” . (25.5)
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Since, on C; +C,, the function |F, ,(—k):] has no zeros, and is equal to 1 at both ends, (25.5)
becomes

" = 51; [l;‘_—a,(k)] . (25.6)

Ci+C3
From the reciprocity relation (22b) we have

di(k) = —oi(—k), (25.7)

and from (25.6), Levinson’s theorem follows immediately. Supposing that (20.8) holds for
any value of /, Levinson’s theorem can be written as

5(+0) = m. (25.8)

26. Let k, = iby, by < 0, |b,| < 1, be a virtual state, so that Fi(— k;) = 0. By expanding
the Jost function in a Taylor’s series about ko and retaining only the first non-vanishing term,
we have
dF(—k)

dk ’

k=ko

k—ko dF(—k) |

~ | = (k—ko)
k=kq
whence

Fik) ., k+ibo

— 2ibk) — pinl " )
Si(k) = e e Fi—F) e % —ibe

(26.1)

Since at low energies the principal contribution to the total scattering cross-section comes
from the s-waves,

o(E) ~ i‘kg sin® 8o(k),

and from (26.1) we then find that
47

O'(E) Q-‘—kﬁz"*—"[——bg .

(26.2)

Thus it can be seen that, at low energies, poles corresponding to virtual states are associated
with high values of the scattering cross-section, which depends as shown on the positions of
the poles. Further, it can easily be seen that if there existed, instead of a given virtual state,
a bound state of the same energy E, = —#?b}/2m, we would obtain the same expression for
the scattering cross-section. This means that it is impossible, from measurements of the scat-
tering cross-section alone, to determine the sign of b, in other words, that such measure-
ments alone cannot distinguish between bound and virtual states. For example: the neutron—
proton scattering cross-section both in the singlet and in the triplet states shows an appre-
ciable increase at low energies of the form (26.2). This can be explained easily in the triplet
state through the existence of the deuteron bound state. In the singlet state such a bound
state does not exist. The increase in the scattering cross-section at low energies follows, how-
ever, from the existence of a virtual singlet state.
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27. By substituting (27a) into the integral equation (18a) we obtain immediately

: k) juka), a<r
Ry «(r) = rjkr)e=® + kaUgrR; (a)] ! ’ 27.1
1, k(r) = rji(kr)e or Ry, ){ I I, a = (27.1)
from which R, ,(a) can easily be determined by puttingr = a.
Thus we find that
. aj(ka)e®x)
R, k(@) = I ka?Uyjka) K (ka)” (27.2)
2
Using now (11a) where, in our case, —h’; V(r) = U(r) = — Uy 6(r —a), it follows that
1 . . a?U| ji(ka)]?
.. Idl(k) — .
k€SO0 = T ey KOG (27.3)

which, by (X.18), is precisely the scattering partial amplitude.
With the notation x = ka and g = al,, the expression for the partial amplitude be-

comes

_ _ agljx)P
4O = w00 09 @4
and thus
Sik) = 14 2EX LI (27.5)

1 —gxji(x) h{H(x) "

28. As we saw in problem 24, bound states correspond to poles of the scattering matrix on
the positive imaginary axis in the complex k-plane. The analytical continuation of (27.5) for
complex values of k, is given by

2igz] ji(2)]?
[~ 222 K1G) (2.1
in which we have written z = a[Re (k)+i Im (k)] = x+iy. Since j(z) is an entire function, the
poles of S, are due solely to the zeros of

Sik) = 1+

D&, 2) = 1—gzj(z) h{*)(2). (28.2)
The value of Uy we are looking for corresponds to the bound state of zero energy, for which
x =y =0,E= —#%?2ma? and the orbital angular momentum / = lp.

Since, in accordance with (A.49),

1
2L+1°

lim zj, (z) KP(z) =
z-0

it follows that

D (g, 0) = ‘"ﬁi“ , g&=al,.
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X 1 . . .
Hence, if Uy = " (21 + 1), there is a2 bound state in the potential (27a) with / = /o and zero
energy.

For s-waves, I = 0, (28.2) becomes (see (A.47)),

Difg, z) = 1—ge* ==, (28.3)

and the condition for a bound state, Do(g, iy) = 0, y = 0, leads to the equation
1 1—e%
—— — 28.4
s 5 (28.4)

The existence of bound states can be studied easily by means of the plot shown in Fig. X.7,
in which the broken lines represent constant values of 1/g and the right-hand side of (28.4)
is plotted as a continuous curve.

L —— DM LR S iaaia e g<0

Fic. X.7.

It can be seen immediately that in the potential (27a) only one bound state can exist for
[ = 0, and this appears only if g = 1. The binding energy of this state is £ = —#*3/2ma®.
A bound state with E = 0is, in agreement with what has been said above (in which, in this
case, lp = 0), obtained if g = 1, i.e. if Up = 1/a.

29, From the relations (X.26) —(X.28) we have that

o, (E) = i—fgﬂ 2I+1)(1—Re C). (29.1)

From (X.25), putting 6 = 0, and from (29.1), there follows the relation (29a) whichisa gener-
alization of the optical theorem (X.21). It expresses a very important fact, viz., that for any
energy, the elastic scattering amplitude in the forward direction determines completely the
total scattering cross-section (elastic and inelastic).

30. The relation (30a) follows from o = 6|1 —C,? and 0¥, = o§’(1 —{C,*) with the
help of some elementary algebra. It is interesting that, if o{lx, # 0, then o) » 0 also, i.. the
existence of scattering in an inelastic channel implies the existence of elastic scattering.
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31. The derivation of the Watson-Sommerfeld formula follows immediately. Thus, in-
side the C contour, the integrand has poles only where sin s/ = 0, i.e. only for integer values
(= physical values) of /. Thus, the integral becomes a series consisting of the sum of the
residues each multiplied by 27i.

Now the residue at / = n is

i 2n+1) A(E)P,(—cos 6) 1 y
) 7 COS HR - 2mi(— 1)y (Gt D) ALE) (1Y Pifeos 6)

_ 217-"(2"“)‘4"(’5) Pu( cos 6),

which, multiplied by 27, becomes the nth term of the series (X.19) for the scattering ampli-
tude A(E, 0).

32. The condition (32a) is fulfilled if, as » -» 0, the radial equation (II.15) passes into the

equation
a2 I(J+1)
[372_ o _J R () = 0. (32.1)

The two linearly independent solutions of this equation are ¥+ and r—'. If Re () E—
then as r ~ 0 we have |F"**| < [~/ | and thus it is impossible to add the solution r~? to the
solution r'+1, without violating the condition (32a).

If Re (/) < —5 then, as r — 0, we have |F+!| > | /| and it will always be possible to add
the solution r~'to the solution #+1, without changing its behaviour near the origin.

1

If Re (/) = —4, both solutions have the same behaviour near the origin. In conclusion, the

condition (32a) determines uniquely the solution of the radial equation (I1.15) in the complex
[-plane only if Re (/) > —%.

33. The required solution of the radial equation (I1.15) can be found from the integral
equation:

Ryu(r) = 14 [ Gor, ) (UG —R2) Ry W(¥') i, (33.1)

provided the Green’s function satisfies the differential equation

2 I(+]1
[Er?_(_r_:_)J Gir, ') = 8(r—7). (33.2)

Starting from the solutions of the homogeneous equation it can easily be verified that

Gl(r, r') =1 2I+1 " p ) if r=>r

(33.3)

0 if r<r.
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(33.3) in fact satisfies (33.2) for any r, except at the point r = 7, where its first derivative
undergoes a jump equal to unity, and in consequence its second derivative behaves like
o(r—r').

Thus

r

11 1 yi+1 rl+1 , ” , )
Ry, = r+i+ JTER] J‘( T ) (U(r)*k )R,,k(r)dr . (334)

0

Let us show that the solution of this equation satisfies condition (32a) at the origin. We have
to show that, as » — 0, the integral tends to zero faster than #/*1, For this to be the case, it is
sufficient that, as r — 0,

r

Ry (¥ , ,
[ 42 wer-syar < (335)
0
and
[ (UG k) Ryl dr ~ 7, (33.6)
0
where

5 = 20+1. (33.7)

If, as r - 0, we have U(r) ~ r~",n>0, and R, ,(r) ~ #*1, then (33.5) converges if —/—n+
I+1 >-1,1e. if
n< 2. (33.8)

Performing the integration in (33.6) we see that (33.7) becomes 2(/+1)—n-+1 = 2/+1,
which is equivalent to (33.8). The convergence condition (2/4-1)—# > —1 must thus be
imposed, i.e.

n—3

- (33.9)

The inequalities (33.8) and (33.9) are the conditions under which the integral equation (33.4)
defines the required solution R, ,(r).

The restriction n < 2 imposed on the potential is clearly necessary, since, for n = 2, the
behaviour of the radial function at small distances is determined by the nature of the poten-
tial and not by the centrifugal term /(/+ 1)/r2, as was tacitly assumed when (32.1) was derived.
For attractive potentials, if n > 2, the particles “fall” into the centre of the field. For n = 2,
this also occurs, but only in the lower states of orbital angular momentum. For #n < 2 the
restriction (33.9), imposed evidently on Re (/), has the same significance as condition (32b),
and so it can be considered to be satisfied.

Finally, since (33.4) is an integral equation of the well-known Volterra type, its solution
will be a holomorphic function of the parameter / in the domain Re (/) > *—;-.

309



Problems in Quantum Mechanics

Remarks: Since R, (r) is a holomorphic function in the domain Re (/) > —%, it follows
from (19.7) that the functions F(k, /) and F(— k, [), which represent the analytic continuation
of the Jost functions in the complex /-plane, will also be holomorphic (for Re (/) > —1). This
means that the analytical continuation of S,(k),

S(l, k) = ezw(l, k} = eiﬂl F(k’ l)

will be a meromorphic function in the domain Re (/) > —+.
Also, since f*(—k*, I*; r) and f(k, I; r) satisfy the same integral equation (21a), we have
that

SH=K5 1) = flk, L), (33.11)
and
F*(—k, I*) = F(k, D). (33.12)
Hence the unitarity condition (22a) becomes
SU, kK)S*(I*, k") = 1. (33.13)

34. For the proof, we require equation (11.15) and the similar equation with / replaced
by /'. Multiplying these equations by R, ,(r) and R, ,(r) respectively, and subtracting the
results, we obtain

d?Ry i APRex _ . 0 , Ry Ry,
R[’,k—’F—R[’k—arz_— (l l)(l+l +1)_‘r—2“—'—. (34.1)
By integrating from O to < we find that
, ' ( R, Ry , 'dR,, & dRp, i\ [~
A=) (+I+1) f bk g = (R,,,k 2k Ry T) 0 (34.2)
0

Since Re (/) > —5 and Re (¥') > —1, it follows by (32a) that the right-hand side of (34.2)
vanishes for r = 0, and, as r — «, we find from (19.7) that

d=IY(I+I'+1) J R, "rf””‘ dr = le“ [F(k, IV F(—k, I)—F(k, ) F(—k, I)]. (34.3)
0

By putting // = /* and using (33.12), we find that

oo

4k Im () Re (1+—;-) f

0

The point /, at which S(/, k) has a pole is a zero of F(—k, I), ie. F(—k, ) = 0. Since
Re (1)) > —+, it follows from (34.4) that

Im (/,) >0 (34.5)

which shows that the poles of S(/, k) are to be found only in the upper half-plane of complex /.

| Ry« |2
r2

dr = |F(k, )| —{F(—k, D). (34.4)
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Remarks: Another interesting result can be obtained from (34.3), by taking the limit
[ - I treating / and [’ as real variables. We then obtain

j R;zk = -;il)k i Fek, 1) F(—k, 1’3j(k, I')F(—k, 1)
:
(21+ iy Pk DF (-~ 1) [F;‘(_kk’l)[)]
_ @%-)-EF(k, I F(—k, ) [n d‘s(f”")] . (34.6)
Since, for real and k, F(k, ) F(—k, ) = | F(k, D, i d‘;}” <3
ie.
814 1(6) — 8,(k) < 3‘5 (34.7)

Hence, for a given real and positive value of &, the phase shifts which correspond to two con-
secutive physical values of the orbital angular momentum differ by less than z/2.

35. If we have k = ib, b = 0, the poles of S(/, k), i.e. the zeros of F(—k,[), correspond to
bound states, since, as ¥ — oo,

Ry xlr) ~ — F(ib, I)

2

These poles can occur only on the real axis Re (), since their occurrence off the real axis
would imply the existence of eigenfunctions with real energies of a non-Hermitian Hamilto-
nian (the centrifugal term /(/4+1)r—2 is not real for complex values of /). This fact can be
proved also directly by using (34.3) with k = ib, I = [, and I = [, where , is a pole of
S(, k), so that F(—k, ) = 0. Taking into account (34.12), one finds then thatIm (/) = 0
Similar conclusions can be arrived at for virtual states, for which k = ib, b > 0, and, as

¥ — oo

br 0.

?

F(—ib,
Ru) ~ D2 o

Remember that all the above results are valid only in the range Re (/) > — 7.
36. Multiply (11.15), written for R; (r), by R, ,(r), and integrate from zero to infinity,
Omitting terms which vanish at r = 0 and at r = «, we find that

o0 2 oo
J(Ry,x, E, I)) = —j (@;;—:-k-) dr— im J V() RE, ik dr

0 0

2mE
+ )

j RY i dr—1,(0,+1) j r-2R3 . dr = 0. (36.1)
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The total variation of this expression is

oJ oJ oJ
oJ = ORy, x+ 3 O0E+ o

o 81, = 0.

Because the term (6J /aR,p. ) leads precisely to the radial equation (II.15), it will be equal to
zero (cf. the variational principle for this equation). Thus

oJ o7 m
35 O+ = (h2 jR,p kdr) SE— [(21 +1)J F—2R? kdr] 51, = 0,
0

j'o R%p,k dr
0

1.e.

6, 2m 1

= _
SE ~ A 2D,+1 TRy e

0

= 0. (36.2)

Thus, as the energy increases from negative values to positive ones, the poles of S(/, k) move
as follows: for E < 0 the poles are on the real axis (Im (/,) = 0) and move to the right as the
energy increases; this displacement has an upper bound, since there cannot exist bound states
for an arbitrarily large centrifugal barrier. For E = 0 all the poles are in the upper half-plane
of / (Fig. X.8).

Imil)

E<0 E=0 E<Q E=0 Rel(l)

1
rj—

\T
\

Fic. X.8.

These conclusions are of course valid only in the range Re (/) > —%.

37. We have seen that, for negative energies, the motion of the poles along the axis Re (/)
has an upper limit. Restrictions on the motion of the poles exist also for positive energies,
although in this case /, is complex. In order to study the trajectory of the poles in the range

312



Ch. X Collision Theory

E > 0, we formally suppose that r is a pure imaginary quantity, r = iy, y = 0, If l,is a pole

of S(/, k), so that F(—k, /) = 0, then, in the asymptotic region, in accordance w1th (19.7),
the function

Ri,, (1) = Ry, 1(iy) = ¢y, i¥)
say, becomes, as y — oo,

b1, &(Y) ~ F(k ) (37.1)

Now let the radial equations (I1.15) for ¢, «(») and for ¢, .«(»), be multiplied by qb, (¥ and

by ¢, , i(y), respectively and let the difference be 1ntegrated over y from zero to mﬁmty We
find then that

[ Pk Ly, —_‘}I’I kd%lp dy — 1p+l _ lj,"-ki 2 X
Tt oo

X [y 2 ou, a2 dy+2i [ |¢,2 Im [UG)] dy = 0. (37.2)
0 0

We suppose, of course, that the potential is such that U(iy) has a meaning. The first integral
on the left-hand side of (37.2) vanishes, as can be seen by integrating by parts using (37.DH
and the condition at the origin (22a). Thus (37.2) becomes

o fo | @112 Im [U(iy)] dy
2 Im (/) Re (1p+*) = (37.3)
? f Y2 b, i dy
0

If we suppose that Im [U(iy)] < My~2 for some constant M, it then follows that
2Im (;) Re (I,+31) < M, (37.4)

which means that the product of the real and the imaginary parts of [, is bounded, i.e.
for E > 0 the poles of S(/, k) cannot move away to infinity. As the energy increases, the
poles elther leave the range Re (/) > —-, or come asymptotically close to the straight line
Re (/) = — § while maintaining the inequality (37.4) (see Fig. X.9).

38. Let us suppose that the energy E is close to that of a bound state or of a resonance.
This means that the scattering amplitude 4(E, 0) will have a very large value, and that, in
accordance with (X.31), its behaviour will be dominated by one of the Regge poles. Denoting
the position of this pole by /, = a(F), say, and the corresponding 3,(E) by S(E), the scatter-
ing amplitude is given approximately by the expression

A(E, §) =~ mfa(zEz ) Pup(—2), z=cos0. (38.1)
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Im{l)

E<0 E=0 Re(l)

—— e e ] - —— — ——— . — ——— —— ———

Fig. X.9,

Let us now find the projection of this expression onto the partial wave having orbital quan-
tum number / = 0, 1, 2, .... From (X.19) it follows that
1

A(E)=% [ A(E, 0)P(2) dz. (38.2)
-1
Using the formula
1
1 1 sin 7o
5 J‘P,(Z)Pa(—z) dz = % GD@LIED (38.3)
-1
we find from (38.1) and (38.2) that
A(E)~ AE) 1=0,1,2,... (38.4)

. (aw(E)—{)((E)+1+1)
From this it can be seen immediately that for the energy E for which «(£) = 1 (which, in
accordance with the results of problem 35, implies that E < 0) the partial amplitude 4,(E)
has a pole. Since a pole of 4(E), with E < 0, represents a bound state with orbital angular
momentum /, it follows that a single Regge pole trajectory can determine the appearance
of bound states with various orbital angular momenta, since such a bound state occurs when-
ever the Regge pole trajectory passes through one of the “physical” values/ = 0,1, 2, ...
Let us examine now the relation between Regge poles and resonances. Suppose that,
for a particular energy E, > O, the real part of the pole, a(E), is very close to a physical
value of /. «(E) can then be expanded in a Taylor’s series about the value £ = E,

dRe (oc)] (E—E,)+i[Im (2))z=k, -
E=E,

oc(E):::l+[ bl
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By substituting this expression into (38.4) we find that

~ B(E:) 1
A(E) ~ a2+ 1+im ()]le-r} (E_E A ) (38.5)
T
where
A= [ERC_(&)] I Im@ler (35.6)
dE  lp-r, 2 (dRe(x)/dE)g-g,

If [Im («))g_g, < 1, the partial amplitude A,(E) shows a typical resonance behaviour for
E ~ E_, the half-width I'/2 of the resonance being given by (38.6). Thus whenever the
trajectory of a Regge pole, for E = 0, passes close to a physical value /=0, 1, 2, ..., it
produces a resonance in the corresponding partial amplitude. Evidently a single Regge
pole can produce resonances in more than one partial wave. Thus a resonance in the ampli-
tude of a partial wave is related directly to the behaviour of the amplitudes of other partial
waves; a Regge pole of given energy E affects in theory all the partial amplitudes, but its
influence is only slight on partial amplitudes whose value of / differs considerably from

Re [a(E)].

39, Let us see first what happens when we operate on the base vectors with the operators
(E,—H,tinp)™ .

If |®@;) is an eigenvector with eigenvalue £ of H, then

(E,—Hotin)|Pg) = (E,—E+in)| D). (39.1)
By operating on the left with (E, —H,+in)~!, we obtain
(Ea—Hotin)~1|@g) = (E,—ELin)~1{ D) (39.2)

whence it follows that the eigenvector |D) with eigenvalue E of H, is also an eigenvector
of the operators (E,—H,+in)~!, with the eigenvalues (E,—E=xin)~'. From (39.1) and
(39.2) it can easily be shown that the converse is also true. '

Since the eigenvalues and eigenvectors of Hy are known by hypothesis (see 1), it follows
that they are known for the operators (£, —H,*in)~! too.

40. The differential equation (40a), together with the initial condition |,(—<=)) = |¢),

is equivalent to the integral equation
I

nio) = 19— |

_—0

) ) d (40.1)

In particular, using (V.6) and (V.8), we have that

0

2, L
+ﬁt ﬁHo

90)) = |¢>—% _[e e t’H'e_%HM’l%(t’D dr’. (40.2)

—
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Let us substitute for |y, (¢')) in (40.2) its value given by (40.1), then

1 ,
|9,(0)) = |®>+mH D)

t’

iz2 n iHor —iHor' L iHot" i "
( )eﬁ'e He " " dt j & & He " |y )t (40.3

By substituting (40.1) once more into (40.3), we find that

1 1 , 1

2O = 1O e gom T Ot e m T Bt O

= [P+ H' | p,(0))- (40.4)

E—Hy+in
By comparing (40.4) with the Lippmann-Schwinger equation we see that lim |,(0))

n—0
= |p").
In other words, the time-dependent solution |4,(£)) enables us to calculate |9*). The

introduction of the “adiabatic™ potential H,,(f) = exp ( ——Z— | tl) H, () enables us to avoid

some divergences in the calculations, since we take the limit 7 — =0 only after the calcula-
tions have been otherwise completed.

41. By multiplying (X.35) on the left by the bra vector (£|, and introducing the integral
(41a) between H' and |y*), we find that

ElyEy = EIP)+ [ lim (E|(E,—Hytin) L H'|E)E [pk)dE'. (41.1)

n—+0

The projections {(£|yE) and (£|®,) are the wavefunctions in the {£} representation, and
we denote them by y* (£) and @ (§) respectively. If we introduce the notation

lim (&|(E,—H,+tin)"'H'|&) = K¢, &; E,), (41.2)

7 —+0
then (41.1) takes the form of the well-known Fredholm-type integral equation
vEE) = D)+ | KE(E, &5 E)ypE(E)dE". (41.3)
42. A possible complete set of eigenstates of Hy consists of the plane wave states of
momentum #k which, in coordinate representation, can be written as
x|Dy) = eker, (42.1)

On account of the completeness of this system (normalized to (27)® é(r —r")), and of (39. 2)
we can write

]. dkf
= &) ip.l .
E,—Hy+in (273 Jl "‘ >Ek “Eptin (Dy| (42.2)
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The matrix elements of the operator (Ek ~H,+in)~! in coordinate representation are then

1 e\ = (L@ 4
Ek+(h2/2m)v2ﬂ: 7 —Eptin
_ 2m exp [iK'.(c'—x")] ..,
T (Qnpst j k2—k'2+ie ', (42.3)

where ¢ = (2m/®.
Performing the integration over the angular variables, we obtain

1
Er+ (#22m)v2 L in

r’f —
/ ht 4n% |r' —r" |

—_—

) P

+ oo
_2m 1 1 k' exp [ik’' |’ —r
(k2tic)—k'2

/v
\

If we compare this expression with (1.7)-(1.9) we arrive at the conclusion that

1 r’
Ex+®2myrxin |/
_ 2"1 1 exXp (:tik 11" _r’rl) r
- LT = 2 G(r "), (42.5)

If we now use (42.1), the Lippman-Schwinger equation (42a) can be written as

1 K’ ,
)= 00+ lim oy | 190 gy e\ I90: @9)

Since in our case H' = V(r), on account of the completeness of the set of coordinate opera-
tor eigenvectors, we can write

(D |H' |9 ) = [[(@rlry @ V)| XY |pic) &' d” . (42.7)

The function ¥(r) depends only on the coordinates, so that its matrix elements in coord
nate representation are simply

&’ Vo) = vae') o’ —r)
By performing the integration over r”’, we obtain from (42.7):
@ |H' | pit) = [(@uyVEV@ |91 dr’. (42.8)

Now (r|®,) = exp (ik.r), and (r|y;’) is the wavefunction of the “in” state |y} in co-
ordinate representation (let us denote it by v, (r)). Thus (42.8) becomes

(b | H'\9) = [ = V) )yl () dr’. (42.9)
Substituting this expression into (42.6), and multiplying by the bra vector (r|, we obtain

2m 1 exp ik'.(r—r' , N
WE) = ekt lim 7o H ,fz_k.gm) V@) yi@') dk’ dr'.
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The integral over k' is the same as the one in (42.3), and hence, using (42.5) and denoting
(2m/#2) V(r) by U(r), we have
1 (exp(ikir—r' , N
pi) = v j PEIETD ye) pir(e) di

r—r’|
which is what we had to demonstrate.

43. Multiplying (X.35) on the left by H’, we have

1
14 i\ o 4 r : F ! i
H'\y$) = H'|P)+H ,,linio—Ea—Hoiin H'|y%). (43.1)

With this relation we can write further

1
H) = |D lim ——————H'|D,
W’a> I a>+ﬂ—l>n::0 Ea—HOil’r] l >

1 1
lim '——_"'—.H’ lim ‘—,‘II’i p .

Multiplying on the left by lim (E,— H,=+in), and reordering the terms, we obtain

7> +0

1
H im — — Hpt)= lim (E,—Hy+in)|v:
I Ea—H():tn’] |w n._b+0( 0 7])"'/))

— lim (Ea_'HOj:i'r]) |@a>_H’ i(pa>

n—>+0

= lim (E,—Hytin)|p)— H' |DyFiniD,).
0

7>+
Substituting in (43.1) we find that
H'lyg)— lim (E,—Hoxin)|vg) = Fin|P).

n—+

Since H = Ho+ H’, after operating with the inverse operator lim (E,—H=+in)~' we

. n—>+0
obtain

£ 4 lim -
l"/’a) iqgn-‘ll—o Ea_H:ti’r] |@a>' (43'2)

Finally, since
i____hl__ =1— _Ea—H
Ea_H:tn] N Ea_H:I:l-’I’]

and H|D,) = (Hy+H)|?,) = E,|D)+H'|D,), the required expression (43a) follows
immediately from (43.2).
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Remarks: Since
1 1

E,—Htin E,—Hotin—H"

we may use the operator identity

1 1 1
A+B - A4 (1 BA—+B) (43.3)

by taking 4 = E,— H,+in and B = —H’, to obtain

1 1 1 , I
“HEin - E,_Hotin t E,—Hotin ! E,—HLiy’ (43.4)

Hence, by successive approximation, one finds that
1 _ 1 + 1 , 1
E,—H+in E,—Hotin E,—Hyxin  E,—Hotiy
1 1 1
Hf ’
t B Hytin | Ea—Hotin ! E.—Hotl

+ ... (43.5)

Thus we obtain for the states |pZ) the Born series

1
£ = @)+ lm ——— — H'|®D,
vE) = 1@+ T o iy 199

1 1
’ D, e .
t m e HeEin ' E.—Hotin (Dot (43.6)

44, Since the operators H and H' are Hermitian, by (43a) we have that

1
4\ — + ’ +

n—>+0
Further, since

1 1
ey = -
by using the Lippman-Schwinger equation we can write
1 -
v lwg) = <¢’a|(pb>+ hm <®“‘——H—-Bﬁ_ lvs
1
+ im —————(D,|H |y
Ry ey e ( | H' | p)-
Hence, using (39.2) we obtain
D,|D 1 (D N H' |y}
) < | b>+"imo Eb—Ea-Fi’Y] < ‘ |pr/
1
+ im ————— (D H'|9})-

f7n—+~+0 E Eb_
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In the limit y - +0 we have
a1y = (Dal D). (44.1)

Since the eigenvectors which belong to the continuous spectrum of the reference system
Hamiltonian are taken to be orthonormalized to a Dirac 8-function, relation (44a) follows
immediately from (44.1).
Similarly we obtain
a lvp) = (Du|Dy) (44.2)
whence

Wa [¥5) = 0. (44.3)

Remarks: If the spectrum of H, besides having a continuous part (E = 0), has also
a discrete part (which by hypothesis is in the range E < 0), then the corresponding bound
state |y;) will be orthogonal to the states |p¥), ie.

(walvd) = (v |y = 0. (44.4)

It is assumed, and in simple cases it can be shown explicitly, that the “in” states together
with the bound states, and the “out” states together with the bound states, form complete
sets,’ so that

-]

[ 12y dECQE |+ Y 195y (pE| = 1,
. (44.5)
§ WEYdE(wE |+ 1D (| = 1.
1] o

45. By multiplying equation (X.35) by (®, |, and using the Hermitian property of Hy
and the relation (39.2), (45a) follows immediately.

Further, we have that

Wz | H' (o) = (yz|(H—Ho)|Dyy = (yk | HIDy)— (pL| Hy| By = (E, —Ey) (k| Dy).
(45.1)

In accordance with the hypotheses made concerning the spectra of the operators H and H,,
we have E, # E,, and thus, by dividing (45.1) by E, —E,, (45b) follows directly.

T For a rigorous discussion of complete sets of the eigenfunctions of the type considered here, see
chapters XI and XII of vol. II of the reference given in the footnote on p. 204,
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CHAPTER Xl

Atoms and Molecules

THE basic problem in the study of many-electron atoms is that of solving the Schrédinger
equation with the following Hamiltonian:

2 2 2
H:z(_z’; v?_z")+zze—+w, (XL1)
i i

F; i<j Ti

in which W is the potential energy operator of the spin-dependent interactions (spin—orbit,
spin-spin and hyperfine interactions). To find solutions, approximation methods, such as
perturbation theory, the variational method (see Chapter VIII), the self-consistent field
approximation of Hartree and Fock, the statistical model of Thomas and Fermi, etc.,
have to be used. In the self-consistent field approximation, the actual Coulomb interaction
between the electrons is replaced by a mean field having spherical symmetry, together with
small residual interactions. If W is much smaller than these residual interactions it can be
neglected to a first approximation. This procedure leads to the Russell-Saunders coupling
scheme for the electronic angular momenta L = ) 1, S = ) s;, J = L+8. If the opposite
i i

is the case, then the angular momenta have to be coupled in accordance with the “j-j”
coupling scheme: j; = L,+s, J = Y j. In the Fermi-Thomas statistical model, which is

used for the study of heavy atoms, the point charges of the electrons are replaced by a
continuous charge distribution with charge density —ep(r). The electrostatic potential
@(r) due to the nucleus and to the distribution of electronic charge satisfies the classical

Poisson equation

v = 4nep (XI1.2)
with the boundary conditions
lim r® = Ze, lim @ =0. (X1.3)
r—0 r— oo

The potential @ can be expressed in terms of a dimensionless function ¢ through the relation

_ Ze ¢(x)
D(r) = b x (X1.4)
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where x = r/b, b = 0-885Z713g, a = #:/me?, and ¢(x) satisfies the Thomas-Fermiequation

ﬁ = 1 P32 (X1.5)

dx? Vx

with the boundary conditions ¢(0) = 1, ¢(e) = 0.

Problems

1. Find the corrections to the energy levels of the hydrogen atom due to spin-orbit
coupling:
h2e? 1

4

2. Find the relativistic correction to the energy level E, of a hydrogen atom, to order
v?/c? in its relativistic Hamiltonian.

3. Find the energy spectrum of an atom placed in a constant, homogenous magnetic
field H, if the potential energy of the interaction between the electrons and the field is much
smaller than the spin-orbit coupling energy (“Zeeman effect™).

4. Find the energy spectrum of an atom placed in a constant, homogenous magnetic
field H, if the potential energy of the interaction of the electrons with the field is much great-
er than the spin-orbit coupling energy (“Paschen-Back effect™). Show that, in states in
which the total orbital angular momentum L = } 1, and the total spin angular momentum

k

S = ) s, vanish, the atom has diamagnetic properties.
k

5. Find the energy spectrum of a hydrogen atom placed in a magnetic field H if the
energy of interaction of the electron with the magnetic field is of the same order of magni-
tude as the spin-orbit coupling energy.

6. Two identical particles move in a potential well ¥(r). Knowing the solutions of the
Schrddinger equation for a single particle in this potential, solve the problem of the two
particles, if their mutual interaction can be treated as a first-order perturbation.

7. Suppose that, at time ¢ = 0, the first particle of the preceding problem is found to be

in the rth (unperturbed) state and the second in the sth (unperturbed) state. At what time
t will the occupation of the states be reversed ?

8. Remembering that the Thomas-Fermi function ¢(x) of a neutral atom has an expo-
nential behaviour, determine by means of a trial function ¢(x) = ¢~** used in a variational
principle, the best approximation of this type to the solution of equation (XL.5).

9. From the results of the preceding problem, find the nuclear charge Z’ of an imaginary
hydrogen-like atom which is such that its ground state energy is equal to the energy of an
electron in the K shell of a Z-electron atom.
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10. In the study of the vibrational spectra of molecules, the harmonic oscillator potential
V(x) = mw?x?/2 is found to be valid only to a first approximation. More accurate results
can be obtained by using the potential.

V(x) = Vo(l —e—#*) (10a)

proposed by Morse.
Find the resulting energy levels of the molecular oscillator.

11. In the study of the rotational and vibrational spectra of diatomic molecules, it is
found that the potential energy of interaction between the two atoms of the molecule can be

written as

1 2

where o = r/a is the distance between the two nuclei (Fig. XI.1). Find the corresponding
energy levels.

Vip)

Fic. XI1.1.

Solutions

1. We use perturbation theory. As unperturbed wavefunctions we could take the simul-
taneous eigenfunctions of the operators 12, s?, [, and s,. However, we would then be obliged
to use the perturbation theory for degenerate levels. We can avoid this difficulty in the
same way as in problem 18 of Chapter VI, i.e. by using the simultaneous eigenfunctions
of the operators 12, j2 and j, as unperturbed wavefunctions. Since I, j2 and j, commute with
H', it follows that only states with the same quantum numbers /, j, m; (but with different
principal quantum numbers #) can contribute to the perturbation of an unperturbed state

T P. M. Morse, Phys. Rev. 34, 57 (1928).
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of given /, j, m;. Thus we can apply non-degenerate perturbation theory to these states. To
obtain the required answer it is sufficient to calculate the mean value

rer 1
(HY = fznﬁ%ﬁl.s> (1.1)

in a state with given / and j. Now () = j(j+ 1) = I(l+ D+s(s+ 1)+ X1.s), whence

, h2e? . . 1 \
But
Y 3
JIN _ I (’"ez ) , (I1L7.6)
\B/ w+D({I+3\
so that
4 247 — —
ary =™ (gi) SO+ D =M+ D= 1) 13)
2 \kc al(l+3) I+ 1)
Remembering that s = > and j = /T %, we find after some simple calculation that
met [e2\?% 1 1 1
ED = <H'>=__(f_) m( - 1). (1.4)
72 \hc) 208 \I+5 j+3

2. The relativistic Hamiltonian of a particle of rest mass mo and electric charge —|e|
moving in a Coulomb field |e|/r is

€2
H= C\/p2+m(2,cz——r—- 2.1

If » <« c, then, to the required approximation,

- P2\ 12 7 P
2 22 — pa 2 — 2 £
¢\ pP+mic® = mc (1+m2c2) myc +2m0 Smic
and hence
Heme = (Z_S\_ P _ g m 22
—Mmyct = (Z—II’I—;_—I‘—)_W_ 0+' . ( . )

If we take mo to be the reduced mass of the electron-proton system, and put p = —ifi A,
H, becomes the non-relativistic Hamiltonian operator of the hydrogen atom, and H’
can be treated as a perturbation.

Thus, using the eigenfunction equation Hy,., = E¥um, and the relations (6.5) and
(7.5) of Chapter I11 the relativistic correction to the energy of the state (n/m) of the hydrogen
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atom is, to the required approximation,

* ? 1 *
AE, = JWnlmH Ynim dr = — 'WJ'}’nlmp/ly)nlm dr

(")
2 2
! J"Pnlm (E + ez) Yrim d!' = 3E’2z - A

= 2mec® 2moc®  nic*mo(21+1)
[ 2 1 moet [ e \2
_[8n4_(21+1)n3] 72 (%) 2.3)

Remarks: As was shown in the preceding problem, because of spin-orbit coupling the
energy of the (n/j) state must be corrected by an amount

1 s e2\2 ] 1 1

AE, = T (_) ( _ ) Q2.4
w2 \kc/ 2 \I+5 j+3

Hence, combining the correction (2.4) due to spin—orbit coupling with the first order rela-

tivistic correction (2.3), the energy of the hydrogen atom in the state (rj) becomes

moet N mee8 _3_ n )

P2 2t (4 i)

En; = moc?+E,+ AE1+ AEy = moc?— (2.5)

Since m, ~ m,, the third term on the right-hand side of (2.5) is the same as that given by
the fine-structure formula (cf. problem 32, Chapter XII).

3. In order to solve this problem we have to take into account the electron spin. For
this reason we shall use the Pauli equation, (32.8) Chapter VI. The wavefunction ()
of a stationary state of the atom is written, as usual, in the form

iEt

) =ye * . (3.1)
Substituting (3.1) into (32.8) Chapter VI we find
1 e?

b S oL (L4+28). He oy B EXR oly = v (3.2)

where U includes the spin-orbit interactions, the interactions between the electrons, and
the interactions of the electrons with the nucleus. We assume that the external magnetic
field is weak enough so that in (3.2) we can neglect terms proportional to the square of the
field. We apply perturbation theory by taking as the perturbation

Iel

H' = ) (3.3)

~(L+2S).H =
. 1 .
where J = L+8 is the total angular momentum operator. H, = 5 Y p2+U is then the
m i
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unperturbed Hamiltonian. Since U includes the spin—orbit interactions as well as the other
time-independent interactions, the energy levels are only (274 1)-fold degenerate (see
problem 1), each state having a different value M of the component J, of the total angular
momentum operator. At first sight, it seems that we have to use the perturbation theory
for degenerate levels, but this can be seen to be unnecessary if we note that H,, as well
as H = Hy+H’, commutes with J, and, for that reason, H’ does not mix states with
different M.

In order to find the perturbation of the energy levels to first approximation, we need
therefore calculate only the diagonal elements of the matrix of the operator H’. Now we

have, for a start, that
J,M|J|J, M)=0. (3.4)

Let us then proceed to calculate (J, M |S,|J, M). Note that the following commutation

rules hold:
[Jx, Sx] = O, [Jx, S}] = ihSz, [Jxa Sz] = “thy

[J}" Sy] = Oa [J)‘s SZ] = ihSJCs [Jys Sx] = _ihSz (3.5)
[Jza Sz] = 0, [Jz’ Sx] = ihSya [Jz: Sy] = — Ith .

From (3.5) we have

Let us determine the matrix elements of the two terms of (3.6) between the states |J, M+ 1)
and |J, M—1).
Now

T, M1 TS| T, M=1) = (J, M+1{S,J.|J, M—1),
and hence, by the multiplication rule for matrices,
(M+11T.| MY(M|S.| M—1y= (M+1|S,| MYM |J, | M~1),

where, for simplicity, we have omitted the index J.
Using (V1.3), we find that

(M+1|S, 1My  (M|S,|M—1)

= = A, 3.7
VI+M+1) (T -M) AVI+M)(J—-M+1) G.7)

say. In an analogous manner we find that
(M+2[S:\M+1) _ 4 38)

VUI+M+2)J-—M—1)

whence we see that the quantity 4 is independent of M. Hence we have

(M|S; | M—1)= A\ ([T+M)(J—M+1). (3.9)
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The diagonal elements of the matrix of the operator S, can now be obtained by using the
commutation rule [J_, §.] = —24S,. We have that

—OW(M S, M) = (MIJ_| M+ 1Y(M+1.S, | M)—(M|S.| M—1)(M—1]J_| M).

(3.10)
Using (V1.3) and (3.9), one obtains
(M|S;| M) = AM. (3.11)
It remains for us to determine 4. We have, on the one hand,
(M|3.S| M) = # 2J(J+ 1) —L(L+ 1)+ S(S+1) (3.12)

2 ]
and, on the other hand,

(M|J.S| M)y=3(M[S,iM—-1)(M—1]J_| M)
+ 3 (M| S_| M+ D (M+1 T M)+ hM{M|S;| M).  (3.13)

Using (VL.3), (3.9), (3.11) and comparing (3.12) with (3.13) we find finally that

JJ+D)+SES+ 1) —L{IL+1)

A=* 2J(J+1)

(3.14)

Thus an energy level with the quantum numbers J, L and S is split by the magnetic field into
2J+ 1 equidistant levels:

EY) g (3.15)

_ el HAM (| JU+D+SS+D-LELAD) \ _ el HAM
- 2me ( 2J(J+1) )_ 2mc

say, where g is called the Landé factor.

In order to obtain correct results by using perturbation theory as above, ES) must be
small in comparison with the fine structure splitting of the atomic levels.

Note that in the above solution we have assumed that J, L and S are “good” quantum
numbers, i.e. that the Russell-Saunders coupling scheme is valid for the atom in question.

4. If the energy of interaction of the atom and the magnetic field is much greater than
the energy of the spin—orbit coupling, the latter can be neglected in the unperturbed Hamil-
tonian H, (see Problem 3). The unperturbed state vectors will, in this case, be | LSM; M) =
= |LM,){SMy), while the perturbation operator remains the same, i.e.

le| A
2mec

le| A

H = 2mc

(Je+8:)H = (L.+25:)H. (4.1)

Although the degeneracy of an energy level having the quantum numbers L and S is (2L+1)
(25 + 1), we can still use non-degenerate perturbation theory for the same reasons as those
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given in the preceding problem. The first-order correction to the energy of a level with
quantum numbers L and S is then

hH \
ER = ";'mc - (M +2My). (4.2)

Note that the initial degeneracy is in general lifted by the magnetic field. It can be shown
that the perturbation H’ of problems 3 and 4 determines the paramagnetic properties of the
atom. Thus, denoting by m, the z-component of the atom’s magnetic moment, we have
E® = —Hm_. On the other hand, from (3.15) and (4.2) we see that E® is a quantity which
can take the same number of positive as of negative values. In an ensemble of atoms in
thermodynamic equilibrium the negative values of E® (i.e. the positive values of m,) will
be preferred. It follows that an average magnetic moment in the direction of the magnetic
field appears (the paramagnetic effect). Note, however, that in states with L = §= 0 we
have H' = 0. Consequently for these states the energy splittings are no longer linearly de-
pendent on H, and we are obliged to consider quadratic terms in H, for example the per-
turbation

Hj = 8imc2 Xy 4.3)

neglected in (3.2). The energy correction to first order of perturbation theory will then be
given by

e /Z(erk)z> = Smez;«Hrk sin Bk)2>

2
8mc? \ %

To calculate ((Hr sin 6)*) we use the fact that the wavefunction with L = § = 0 has spher-
ical symmetry. Hence

sin? @) = 1—(cos? Py = 1—5 = 2

and therefore the level shift for states with L = § = 0 will be

e2H?
AE = 5 s X 4.4)

2
aailf , we havem = yH, where 3y = — 6;c2 ;rﬁ
The quantity y (< 0) is called the diamagnetic susceptibility, and thus the term (4.3) is
responsible for the diamagnetic properties of atoms. Since ¢? appears in the denominator
of the expression (4.4), diamagnetic effects can in general be observed only if paramagnetic
ones are absent (which is the case if L = § = 0).

Since the magnetic moment is given by m =
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5. If the interaction of the electron with the magnetic field is of the same order of
magnitude as the spin—orbit coupling, we have to take

_ eh hPe? |
= ¢Ml.s+5 H:+2s), ¢0)= iz ., 5.1

as the perturbation operator. In the unperturbed states, the constants of the motion are the
square magnitudes and the z-projections of the orbital and of the spin angular momenta
(i.e. the quantum numbers of the states are /, m, , £4). It has been seen (cf. problem 18,
Chapter VI) that the unperturbed ¢lectron states can alternatively be characterized by the
quantum numbers #, [, j, m. Now the degeneracy of an unperturbed level EJ is, as we
know, equal to 22 However, there is no need to solve a secular equation of this order.
Indeed, in the perturbed states, the z-projection of the total angular momentum is a constant
of the motion. The correct zero-order wavefunctions of the perturbed states will accordingly
be linear combinations of functions %}, which have the same values of n, /, m;, and have
j=1++and -5 ie.

v = ey, j=l+1/2,m_,+czw.sg)lf=l—11'2,mj (5.2)
or, using the results of problem 18, Chapter Vi,
| — _
0o RO Vismigrrs\ o [V mer
V2I+1 ]/l—mj+%}’§"’+”2 V2I+1 Vl+mf+ ; yr+e
(5.3)

Let us define now the quantity

_ mel [N 1 54
s (hc) i+ 1) 21+1) S
Then, from (5.1)-(5.3) above, and (7.6) of Chapter III, we obtain without difficulty

/n,l l+ I , m; |H'| n, l,l+—l— \— A-— : +Hyom,(l+

2° / 2

ll—— m;|H'|n, I, [— . m\ AIL+Hy0mj(l—-—-l—),
1.
2°

1
21+1)

2° ’/ 2 2{+1

n I, /- ,mj|H’|n,ll+l, \=/n,l,l+ s m; | H \n, L [—

\
n
\"
( ")

PQM 22 329
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Since the degeneracy is relevant only in connection with the quantum number j (as j2 does
not commute with H"), the secular equation of the problem will be of second order only:

1 1 H I\2
E,(,°)+Aw+Huom,-(1+——) —E, -5t ]/(1+—) —nt?

2 2/+1 2
Huo ne o I+ 1 =0 63
_ii”ﬁl/(l+§) i, E¢ —A—2——+Huomj(1—m) —E
where E{” is the energy of the unperturbed hydrogen atom. From (1.4) it follows that
EP mtiye = Ay andED, ., . =—4 1—12:1 - If we now define the quantities
E, = E,(¢0)+Ep(:)l,j=l+1/2: E.=EP+ fc(,})l,j=1_1/2, (5.6)

then the energies of the hydrogen atom in the external magnetic field, taking into account
spin-orbit coupling, i.e. the solutions E of the above secular equation, can be written in the
form

_1 ] _ m; _ 1 2
E = 5(E++E-)+Hﬂ0mjj:l/z"(E+ E—-)2+HM02‘lﬁ(E+ E_)‘l-z*Hz'uO. (57)
Note the following special cases:

(a) For weak magnetic fields, uoH < (E + —E_), it follows from (5.7) that
2142
7 2+1

2/
E—FE =~ —HuoijH .

'5.8)

As is to be expected, the relations (5.8) are special cases of (3.15), the first forj = /+, and

the second for j = /£, with, in each case, s = 1.

(b) For stiong magnetic fields, u H > (E, —E_), and negligible spin-orbit coupling,
E, ~ E_ =E, it follows immediately from (5.7) that
E = E+Huo(m;+ ), (5.9)
an expression which can also be obtained from 4.2).
6. For the whole system, the steady state equation is
(H1+ Hz+ Hys)y = Ey 6.1)

where Hyand H, are the Hamiltonians of the one-particle systems, and H,, is the (symmetri-
cal) interaction Hamiltonian: H,, = H,,. In zero order v = ¢,(r;)) ¢,(r,) where the ¢ ,(r)
satisfy the Schrédinger equation H, ¢ (r) = E, ¢ (r).
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The eigenvalue E = E,+E, (the total energy of the system) is doubly degenerate; the
corresponding eigenfunctions being ¢,(r,) ¢ (r,) when particle 1 is in the rth state and particle
2 in the sth state, and ¢ (r,) ¢,(r,) in the opposite case. Any linear combination of the form

p = ad(l) 92 +b¢:(1)9A2), |al?+]b2=1 (6.2)

is also a normalized eigenfunction with the same energy E = E,+E,. Substituting (6.2) in
(6.1) we obtain (H,,—¢) = 0, ¢ = E—E,—E,, and so

(Hiz—2)[a $:.(1) §5(2)+ 0 ¢s(1) ¢,(2)] = 0. (6.3)

Using the notation

I¢7(1)¢?(2)H12 P(1) Ps(2) drydry = j'¢;"(1) ¢ (2)Hy2 ¢ (1) §.(2) dry dr; = K,
and

I ¢:(1) ¢:(2)H12 ¢‘r(1) d’s(z) dry dr; = I ¢:(1) ¢:(2)H12 ¢s(1) ¢‘r(2) dridr; = A,

let us multiply (6.3) first by ¢7(1) ¢3(2), and then by ¢;(1) $](2), in each case integrating
the product over ry and rz, and obtain

a(K—e)+b4 =0, ad+bK—-¢e)=0. (6.4)

The system of equations (6.4) has non-trivial solutions if 4% = (K—e¢)?. In the case s =
K+ A, we have a = b and therefore

1
E=E+E+K+4, vys= V) [¢:(1) $5(2)+ Ps(1) $(2)]
which is the symmetrical solution. In the case ¢ = K—4, we have a = —b and therefore
1
E=E+E+K—4, ya= ) [¢:(1) ¢:(2) —9:(1) (2)]

which is the anti-symmetrical solution.

In the energy correction ¢ = K 4 4, the term K is the classical potential energy of the
Coulomb interaction between the two charge distributions o,(1) = ¢7(1) ¢,(1) and 0(2) =
$*(2) ¢ (2), while 4 is called the exchange energy, and has no classical counterpart.

By taking the two particles to be electrons moving in the Coulomb field of a nucleus of
charge Ze, the above results can be seen to be applicable to two-electron atoms (H™, He,
Lit, etc.)

Considering now the spins of the electrons, it follows, from the total anti-symmetry of
the wavefunction, that in the state u the total spin must be zero, while in the state v, it
must be equal to 1 (see Table VII.1). To these two possibilities correspond the so-called
para and ortho states respectively.
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7. At time ¢ = 0, the wavefunction of the system is

90) = ¢,(1) $5(2) = »\j—fwsml. 7.1)

Since y, and y, describe stationary states of energy E, = E+E+K+AdandE, = E+E +
+ K — A4 respectively, their time-dependence will be

—~E 4t

B A
ps() = ypse ", pul) = pee 7 (7.2)

For ¢ > O the ave-function of the system is therefore

$O) = L [ps+ 9a@] = | (1) (2) cos (ﬁ’-) —i $4(1) $,(2) sin (ﬁi)L“ﬁ“Ef+Es+K"-
V2 [ A h J

(7.3)

The expression (7.3) shows that if, at time 7 = 0, particle 1 is found to be in the rth state
and particle 2 in the sth state, then at time ¢ = n4/24 the occupation of the states will have
been reversed.

8. It is easy to verify that the Thomas-Fermi equation is the Euler equation of the varia-
tional problem

b [ dx(§¢2+Ex—112¢52) = 0, 8.1

0
The functions ¢ = e~** satisfy the boundary conditions ¢(0) = 1, ¢(=) = 0. Substituting
¢ = e ** into (8.1) and remembering that F(%) = Vn, it follows that we require

475 \5
$(@4n)'? = 0:93.%-

9. From the expression (X1.4), and by using the result of the preceding problem, we have

Ze . .
D(r) = — e, o = 0-93, so that the potential energy of an electron in the atom under
r

a 2 (2)\12 — : . .
6( + ( ) v n) = 0, whence by differentiating with respect to « we find o =

consideration is
2
Vir) = —»Zri exp (—1-0521135). 9.1)

Let us imagine that we have removed one of the electrons from the K-shell and also a unit
positive charge from the nucleus. The result is a neutral atom with Z —1 electrons. T he
potential energy of the chosen electron is, accordin g to the Thomas-Fermi model,

e (Z—1)e?
¥F

V(r)= — - e~ (uria) u= 1-05(Z —1)y13, (9.2)
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Z 2
Thus we may write F(r) = Vo (r)+V 1(r), where Vo () = ——:— is the potential energy due to

(Z—1)e?
r

the Coulomb field of the nucleus, and V1 () = (1 —e~“/9)is the potential energy

of the (averaged out) interactions with the other electrons.
To the lowest order of approximation (see problem 33, Chapter II) we can neglect
: 272 7 :
Vi(r) and obtam Ep = — g » Y00 = —age‘(””“) for the energy and the wavefunction
T
of a K-shell electron. Treating V;(r) as a perturbation, to first-order approximation we

obtain for the K-shell energy,

E= E0+lemV1(r)ﬁ——§2{ 2Z(Z—1)[1—(1+2"Z)—2]}=--§aZ'2

zZ = Z]/ 1 —2(ZZ"‘” [1 (1+—22)—2]. (9.3)

This result is valid only for atoms with Z in the range 40 < Z -< 60, since for small Z the
statistical character of the Thomas-Fermi method is inappropriate, and, for large Z,
relativistic corrections to the K-shell energy are important.

and so

10. Introducing the new variable y = 2ae™**, where a® = 2mVy/ u?#?, the Schrédinger
equation
dy 2m

e+ 35 [E—Vo(l—ewyly = 0,
becomes
d 1dyp (E-Vead® a 1
——— —— —— |y = 0. 10.1
dy2+y dy ( Vo y y 4) (10.1)

The possible energies of the molecular oscillator are those values of E for which equation
(10.1) has solutions which vanish at infinity. Looking for these solutions of the form

p = e~y u(y), (10.2)

it follows from (10.1) that if we choose

g=_E ;V" a? (10.3)
0

then u# must satisfy a differential equation of the type (A.62):
d? 1
[ d 5 +(1—|—2s-ﬂy) (2 —I—s-ﬂa)]u = 0. (10.4)
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The general solution of this equation is
u=C1F(3+s—a, 1+2s; y)+CoF(§ —s—a, | —2s; ).

Taking into account the asymptotic behaviour (A.64), we see that (10.2) is a solution of the
problem (i.e. it vanishes at infinity) only if

%i—_s—a:—n, = 0, 1,2 cee » (105)
From this condition we have that
$? = a®—2a(n+ %)+ (n+ })2. (10.6)

Noting that, for x| < 1, (small oscillations), the Morse potential is essentially a harmonic
oscillator potential:

2
V=Vo(l—e v n Voutx® = '%xa
so that
1/2
u(%n’”—) =, (10.7)

we can use (10.3), (10.6) and (10.7) to obtain finally the required energy eigenvalues of the
molecular oscillator:
_ Ly _ g 1)2 _
E,, == hw(n+§—) _—2; (n+2) . H = 0, l, 2, cee (108)
By comparing this result with that obtained for the harmonic oscillator, we can see that,
for the Morse potential, the expression for the energy contains an extra term in the square

of the quantum number », which makes the levels appear closer to one another as the energy
increases, in agreement with experimental data.

11. The vibrational and the rotational energy levels of the molecule are given by the
solutions of the radial equation (IL15), with the potential (11a), which are bounded at the
origin and which vanish at infinity. Introducing the notation

2ma? 2ma?
l = ‘_"_Es ?2 = h2

h2
where m = mymao(m; +my)~! is the reduced mass of the molecule, the radial equation
becomes

Vo, (11.1)

d2R " 292 A2+
! ll+y_/+(2+)

S| ) ]R, - 0. (11.2)

Note that, as ¢ — <, the solution has the form R, - exp (i Vi 9), and that, as 0 -0, it
behaves like o where 4 is the positive root y = 3+ V22 +(I+1)? of the characteristic equa-
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tion, the negative root being excluded by condition (II.16). We accordingly look for a solution
of equation (11.2) of the form

R; = orelViep (), (11.3)
and obtain for v, the equation
d?
d2’+(2u+2z v/ 7o) —+ (Quiv/A+2y2) v = (11.4)
By introducing the variable z = —2iy/2g, this becomes
d’l); dv; iy? )
u—z)——fpu— v, = 0. 11.5
d 5 ) dZ (#’ \/1 / 1 ( )

The solution of this equation which is regular at the origin is, except for a constant factor,
the confluent hypergeometric series (A.59):

v = F( \/_ . 2u; —2;\/29) (11.6)

To study the asymptotic behaviour of F we have to distinguish two cases: 4 < O and
A=>0.

(1) If 2 == O, let A/ = i say, where f is real, and then
2
Ri= o+ F (u=", 20 %) (11.7)

By (A.64), as o - =, F ~ €% 50 that R, increases indefinitely. It follows that the series
must reduce to a polynomial. This will occur only if

y.‘!
_._F=—n, n=0, 1,2,.-., (11'8)
that is, if
42
2ma? 7

(11.9)

nl — —

o Lo YT

The set of all negative discrete eigenvalues E forms the vibrational and rotational spectrum
of the diatomic molecule. Since for molecular spectra y > 1, the denominator can be
expanded in a series in powers of 1/y,

1 0 1 27—2

D) eal b el

7}2

2 T T
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And hence
2 1 1 1\2 3 1\2 3 1 1\2

By expanding in a series the potential ¥ about the value s = 1, we obtain

V
V() ~ — r—a)~Vn,

ma
Denoting by I = ma? the moment of inertia of the molecule, we shall have

LY U S AW TR AL AT A
S “’(” 5)+2_1( 7) “57( z)‘m(" “5)( E)

ml=0,1,2.... (11.10)

ARG . —
‘whence it follows that w = (~§) is the classical frequency of small oscillations.

The first term of the series (11.10) is a constant. The second term gives the molecular vibra-
tional spectrum. The third term gives the rotational spectrum; for large values of /, when
(1+ %)2 = I(I+1), this is the same as for the rigid rotator. The fourth term is a correction to
the vibrational spectrum (cf. the preceding problem). The higher terms represent the effect
of coupling between the vibrational and the rotational motion of the molecule. The dissoci-
ation energy of the molecule is equal to minus the ground state energy Eyo, thus:

1 A2 3 #

1 1
L L 2
EdlS_ 2[ 2hw+4 I+16 12W+ s (11-11)
(2) If 2 = 0, let 2 = 82, and then
. iy? .
R; = oveifeF (u— 5 2u; —21/39). (11.12)

By (A.64), as o — oo,

Ry ~ (=2if)~«T'2u) X
—(mpt) — (2
e~ (mv?/26) ¢i(Be+(2/8) In 280) + e~ 242 e~ i(Be+ (49 In 25‘_,)].

Xe*f"#—_-fa— s
o) oi%)

Thus, for positive energies, the function R, oscillates indefinitely between bounds as o — .
Any value of E (= 0) is thus an eigenvalue of the Schrédin ger equation, and the correspond-
ing eigenfunctions describe states of the dissociated molecule.
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CHAPTER XII

Relativistic Quantum Mechanics

1. Definitions, Notation, Conventions

The choice of a moment of time ¢ and a position r = (x, y, z) in three-dimensional
space defines a “point” or “point-event”, having the coordinates x; = x, x2 = y, x3 = 2,
Xs = ict = ixo, in four-dimensional space-time. Any linear transformation of the form'

Xy > Xy = QuXy, (XIL.1y

in which the coefficients a , satisfy the orthogonality conditions

Qe = Opgy  Goulou = Oug, (XIL.2)

preserves the “length” of all four-vectors, and, in particular,
32 = xf+agtad+ad = X2 = X+ x+ gk,

Such a transformation is called a homogeneous Lorentz transformation. The “homogeneous
Lorentz group” consists of all such transformations, from one inertial system to another
without change of origin.

A four-dimensional vector (or “four-vector”) ¥, is a set of four quantities V,, Vg, V3, Vs
which are so defined that under a transformation of the four-dimensional coordinate frame
(XI1.1) they transform in the same way as do the coordinates x pieV, — V; =a,V,.

A four-dimensional tensor (or “four-tensor”™) of the second rank is a set of 16 quantities
T ., which are so defined that under a transformation of the coordinates (XII.1) they trans-
form like products of coordinates x_x,, i.e. according to the formula

uy?
Typ - T;‘y = auuayﬁTaﬁ .

1 In this chapter, all Greek indices take the values 1, 2, 3, 4, and, all Roman indices the values 1, 2, 3.

The summation convention, i.e. the convention of summing over repeated “dummy” indices, is adopted,
thus, e.g.,

2 a2 2 2 2
Xy = XpXy = X{T+ X3+ X3+ Xg.
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2. Elements of Relativistic Mechanics

In relativistic mechanics the energy E and the momentum p of a free particle of mass m
and velocity v are given by the expressions

mc? mv

E = oz PT s,
(1-2) (1-%)

The energy of the particle in its own frame of reference, E = E, = mc?, is called the “rest
energy” of the particle, and the energy expressed in terms of the momentum is called the

Hamiltonian

(XIL.3)

H = £/ cp?+ nct. (X11.4)

. i .
The four-vector p " with components (p, —H ), is called the energy-momentum four-vec-
c

tor. It satisfies the following relation
Pubu+mic?® = 0. (XIL.5)

From a study of the transformations of the electromagnetic field vectors E and H, on passing
from one inertial frame to another, it can be shown that the components of these vectors
form an anti-symmetrical tensor of the second rank

0 H, —H, —iE,
—H, 0 H, —iE,
H, —H, 0 —iE |
iE, iE, iE, 0

(F) = (XIL6)

called the electromagnetic field tensor.! This can best be seen by noting that the electro-
magnetic field can be derived from a four-vector potential A., by the relations
04, 04,

Fw = ox, 0x,°

(XI1.7)

The spatial components 4, , 4 of 4, form a three-dimensional vector A, which is in fact the
usual vector potential of the field. The time component of 4 » Ay = i4, say, 1s such that 4,
is the usual (real) scalar potential of the field. The relations (XIL.7) are such that F v 15
unchanged by the following transformation of A,:

0G

P, (X1L.8)

A, ~ A+

t L. D. Landau and E. M. Lifshitz, Classical Theory of Fields, Addison-Wesley, Reading, Massachu-
setts, 1951.
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called a gauge transformation of the second kind. It follows that the components F,, of the
electromagnetic field tensor define the four-potential 4, except for the gradient of an
arbitrary scalar function G. Physical significance can therefore be attributed only to quan-
tities invariant under the transformation (XIL.8); in particular, all electrodynamical equa-
tions have to be invariant under this transformation.

The generalized momentum and the Hamiltonian of a particle of mass m and charge e,
moving in an electromagnetic field having a four-potential 4, = (A, i4,), are given by

mv e
P="—Frn + ’ A, (XIL.9)
f——
(%)
and
2
H = eAo+ ‘/ c”*(p —% A) +m?ct. (XIL.10)

The four-vector p, with components (p, lH ) is called the generalized energy-momentum
c

four-vector. 1t satisfies the relation

2
(m—%AJ-Hﬁ&=O. (XIL11)

3. The Klein-Gordon Equation and the Dirac Equation

The Klein-Gordon equation for spinless particles can be obtained by replacing the

A . 0
components of the energy-momentum four-vector by the differential operators p, = —ih oy
H

in (XIL5) and (XIL11) respectively; thus the Klein-Gordon equation for a free particle is
(P2+m*c®y = 0 (XI1.12)

and the Klein—-Gordon equation for a particle withcharge e in an electromagnetic field 4, is
2
[Pm—%A44m&ﬂw=0. (XIL13)

Introducing the notation k = mc/h and the d’Alembert operator
1 & 0?

¢ o8 0x,0x,

the equations (X1I1.12) and (XII.13) can be written in the form

a=vi-

(@O—k®)y(r, 1) =0, (XI1.12)
N W (r,£) = 0 (XI1.13")
ox, he wi : .
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Free particles of mass m and spin 3 are described by the Dirac equation

i a”’g; D — Hpuir, 0, (XI1.14)
in which
Hp = —ifica .V +me®8 = co . p+me2f, (XIL15)

and & = (x1, @2, 3) and B are 4X4 Hermitian matrices which satisfy the equations

2 _ .2 _ .2 __ g3 _
af =y =af =2 =1,

aiﬂ"'ﬁai =0, oot ooy, = 204 . (XIII6)
The Dirac wavefunction v is a one-column matrix
Y1
v=15 (XI1.17)
Y3
Y4

and is called a double or bi-spinor, for reasons which will appear later. The Dirac
equation (XII.14) and (XII.15) can be rewritten in four-vector notation in the form

(yupu —lmC)'l’ = 09 (XII]S)

where
Y = —ifa, ya=p (XH.19)
T~

are Hermitian matrices which satisfy the equation
VuVotVsVu = 267;;- (XH.20)

The most useful representations of « and B are
(1) The Pauli representation

0 ¢ I 0
[0 o s=]f 9 ar2y
(2) The Kramers representation
K — i 0] K — [0 I], ’
o [0 sl B 70 (XI1.21")

(3) The Majorana representation

oy O 0 -1 63 O 62 0 "
“i‘l:[ol ] “gl:[—l 0]’ “¥=[03 ] ﬁM:[Oz ] (XHL21)

— a4 — 03 — 02

where @ = (03, 03, 63) is a vector having the Pauli matrices as its components.
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The Dirac equation for an electron in an electromagnetic field having the four-potential
A, = (A, i) is, in four-vector notation,

[V.u(p,u_%A#) —imC]w =0 (XI1.22)

In the notation of (XII.12") and (XII.13"), the equations (XII.18) and (XII.22) can be written
in the form

0
(n T +k)w =0, (XIL.18")
u
0 ie ,

Problems

1. Starting from the Klein-Gordon equation (XII.12"), deduce the equation of conserva-
tion

6o, _._
5tV =0, (1a)
where
_ h oy* . _ hoo
¢ =Im (m—‘cg E‘W), j=Re (l-,;i'l’ V'P)- (1b)
Considering the plane wave solution
y(r, ) = Aexp [% p- r—Et)], (1c)

show that the energy can have both a plus and a minus sign. What form do the expressions
(1b) take in the non-relativistic limit |p| < mc?

2. Show, by means of the matrices

T R NN P S

that the Klein-Gordon equation (XII.12’) can be put into the form of a “Schrodinger™ equa-
tion

% = iy, (2b)
where
1 h awz[i], 1 PR -~
A A,
H= —%(ta—l-itz) v24mcrs. (2¢)
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3. Show, using the notation of the preceding problem, that the expressions (1b) can be

written in the form
0= 3(¢*d—x*1) = Fyrray, (3a)

h y -
i = g ™ Ts(t +iTe) vy —(Tyo)* Ta(rs-+ita)y]. (3b)
4. From the results of the preceding problem, show

(1) that if 4 is a 2)X2 matrix which does not contain x, y, z or derivatives with respect to
X, ¥, 2, then the definition (3.6) of the Hermitian conjugate 4 of 4 reduces to

AH = 134+1,, (4a)
and the unitarity condition (3.7) to
UH = U1, (4b)
and (2) that
H=—1, d=—1, =1
? 1. 2 . 2 . 3 ‘ 3 . (40)
(r )7 =ivy, (t)H =ity, (its)H = —iz;.

Express (A}, in terms of the solution y(r, #) of the Klein-Gordon equation (XI1.12") (see
the remarks made in the answer to question 3 above).

5. By using the expressions (3.8)-(3.10), express the energy, the momentum and the an-
gular momentum of a spinless free particle in terms of the solution y(r, t) of the Klein—Gor-
don equation (XII.12").

6. From the Klein-Gordon equation (XI1.13"), deduce the equation of conservation

O
ox, 0, (6a)
where \
., h [, Op Op* e . e
Juo =5 (w ox,  ox, w) e A"y = (J, ico). (6b)

7. Solve problem 2 for the Klein-Gordon equation (XII.13") which describes the relati-
vistic motion of charged spinless particles in an electromagnetic field 4,. How may (6.6) and
(6.7) be written in the matrix formalism ?

8. Using (Ic), (2c) and (2d), find the positive and negative energy solutions of the Klein-
Gordon equation for a free particle in the “Schridinger” form (2b). Normalize these solu-
tions in the F-V metric and discuss their significance.

9. Show that, in relativistic quantum mechanics, the motion of a charged spinless particls
in an electromagnetic field can be described by the equation

2 42 ’,
eds_, Je A%) we, 1) = 0. (%)

(D"‘”ch—z— e

Find the corresponding stationary-state equation.-
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10. A system consisting of a7z~ meson bound by Coulomb forces to a nucleus is called a
n-mesic atom. Using equation (9.3), find the energies of the stationary states of a7-mesic atom
whose nucleus has a charge + Ze.

11. Verify the following relations

ViVu =4y VYVu = — 2
VIVIPu = s VYV = —2VVP
Tr (y,9,) = 40, (11b)

12. Consider the following set of 16 elements’

(11a)

I ]
Y1, V2, V3, V4
iviys, Bysy1,  Iysys,  iyiyss  Bveys,  iysya
ip1yays,  Eyayiva,  iysyveys  Bysviva
YIyaysyVs = Vs

et

(12a)

Denoting the elements of the set (12a) by I',, 4 = 1,2, ..., 16, verify that they have the
following properties:

1) rs=1r (12b)

(2) The product of any two elements of the set is proportional to a third element of the

set, 1.e.
I',r'y=al,, (12¢)

wherea =+1or +i,anda =+1if and only if 4 = B.
(3) ¥ I, # I, then I' g can always be found such that

FBFAFB=—FA. (12d)
(@) If I, # I, then
Tr (I'y) = O. (12e)

13. Showthat theelements ", 4 = 1, 2, ..., 16, of the preceding problem are linearly in-
dependent.

14. Show that if a 4X 4 matrix commutes with all the matrices y,, then it is a multiple of
the unit matrix.

15. Show that the 4X 4 unitary matrices

in/4
UP—-»K = ..1_ [I I:|, UK»M ¢ [ 1 0'2:| (15&)

V21 -1 T V2| - T

+ In this problem, the only assumption that need be made is that the y,, satisfy the commutation rela-
tions (XIL.20); there is no need to assume that they are 4X4 Hermitian matrices (see the next problem).
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transform the matrices, v, from the Pauli representation into the Kramers representation,
and from the Kramers representation into the Majorana representation, i.e. that

Vo= UroxpuUpsk  and  y2 = Ux_ ayXUz?, ur. (15b)

Find the unitary matrix U,_, ,, and the corresponding transformation of the two-component
spinor (XII.17), which, together with the transformations (15b), leave the Dirac equation
{XII.18) unchanged in form.

16. Starting from the Dirac equation (XII.18") deduce the equation of conservation

dj
-8?’; =0, (16a)
where
Ju = ic@?u% (l6b)
and
P =1vtry,

(% is called the “Dirac conjugate” of y).

17. Find the solutions of the Dirac equation (XII.14) which represent stationary states
.of free particles with well-defined linear momenta.

18. By using equation (V.4), find the time dependence of the position operator r of a free
particle of spin 3 in the Heisenberg picture. Discuss the result obtained.

19. Find a real function f such that the solution p of the Dirac equation (17.2) can,
through the unitary transformation ¢, with

___i Il
§= 2mc'3a'pf(mc)’ (1%)
be written in the form
=€ =9, +9_, (19b)
in which 9, and ¢ _ are the eigen-spinors 7f the Hamiltonian

HAp =lelSHpe—is (19¢)

with positive (E = +E,) and negative (E = —E ) eigenvalues respectively, which have the
Iast (or, respectively, the first) two components equal to zero.

From the answer to question 17, express the bi-spinors (17.19, 17.19') in the above repre-
sentation, which is called the F oldy-Wouthuysen' representation.

20. Show that, in the non-relativistic limit |p | << e, the negative energy part (19.6) of the
two-component spinor  is negligible compared with the positive energy part (19.6).

T L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).
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21. Determine the form of the Hamiltonian A, of problem 19, and find an explicit expres-
sion for the transformation operator ¢ if, instead of (19.3), the following form is chosen
for f:

me
| p|

_q1 mc

tan=* ——,
|pl

f= (21a)

22. Show that the matrix U in the relation

¥'(x) = Uyp(xy), (22a)

in which y(x,) and y'(x,) are corresponding solutions of the Dirac equation (XII.18) in two
different frames of reference related by the transformation (XII.1), satisfies the equation

U- lyﬂU = Quy)Yy . (22b)

23. Show that, under the transformation (22a) of y, the Dirac conjugate function ¢ trans-

forms as follows:

r r a - —
P'(x) = Taj—ﬁw(xﬂ)v L, (23a)

24. Show that, for an infinitesimal transformation
X = QupXy = (Ot £4)X, (24a)

where ¢, is an infinitesimal four-tensor, the matrix U introduced in problem 22 can be written

in the form
U= I+%‘9ﬂv?’u?’v- (24b)

25, Using the relations (22a), (22b)iand (23a), show that if the orthogonal transformations
(XII.1) do not change the sign of the time (a4 > 0), then the following quantities:
S=py, V.=9Pny,
Tor = 3P(Pu¥o— VsVl (25a)
Au = Pyuysy, P = Pysy
transform respectively as a scalar, a four-vector, an anti-symmetrical four-tensor, an axial

four-vector, and a pseudo scalar.

26. Show that the Klein-Gordon equation (XII.13) and the Dirac equation (XII.22) are
invariant under a gauge transformation of the second kind (XII.8), if the frllowing unitary
transformation is made simultaneously:

ie
- — 6.
P > pexp (ﬁc G) (26a)
This is called a “gauge transformation of the first kind”.
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27. Using in succession the Pauli, the Kramers and the Majorana representations for the
matrices y,, find the matrix elements of the “charge conjugation” operator, which transforms
the solution # of the Dirac equation (XII.21) into the solution y¢ of the equation obtained

from (X11.21) by changing the charge e to —e.
Show that, if i describes a stationary state of positive energy

W)=y 7, E=0,

then 9, describes a stationary state of negative energy —E. What is the relation between
P and Pc?

28. Find the “Schrodinger” form of the Dirac equation for a charged particle in an
electromagnetic field 4, = (A, i4,).

29, The interaction of a Dirac particle with an electromagnetic fieldcan lead to transitions

between the states with positive energy and those with negative energy. Hence, in contrast
with the case of a free particle (see problem 19), the Foldy-Wouthuysen transformation,

P = ey, (292)

can result in a covariant separation of the contributions of these states only to some

order of non-relativistic approximation.
By expanding the operator S in a power series in 1/mc? find the Hamiltonian of the

transformed equation
in 2 _ i (29b)

to an approximation which retains terms of order
(kinetic energy/mc?)® and  (kinetic energy). (field energy)/(mc?)*.

30. A free electron of energy E = E, moving in the z-direction meets a “step” in the
electrostatic potential at the surface z = 0 (Fig. XII.1). Calculate the reflection and trans-
mission coefficients R and T, defined in (IL.7), in which, in this case, j is given by (16.4).

e e

Fig. XII.1.
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31. Find the values of the coefficients R and T of the preceding problem if

V=0 (20<V<E,—Ey; (3 V=E,—E; @WE,~E <V < »+Eo;
() V=E,+Eo; (6)E,+Ec<V <e; and (7) V =oo.

Discuss the results by comparing them with the non-relativistic ones obtained from the
Schrodinger equation (see problem 22, Chapter II).

How can the paradoxical situation (the Klein paradox"), which arises if EA4+E, <V <o,
be explained?

32. Using the Dirac equation, find the energies of the bound states of an electron in the
Coulomb potential Ao = |e|Z/r of an infinitely heavy nucleus (the problem of hydrogen-like
atoms treated relativistically).

33. Using the Dirac equation (XII.22), find the energy levels of an electron in a homo-
geneous constant magnetic field H. Compare the result with that of problem 34 of Chapter

VI.
34. Show that Maxwell’s equations in vacuo:

1 6H 1 0E
VXE+ 5 =0 vxH-T 5 =0 (34a)
v.H=0, v.E=0

can be written in the “Schrodinger” form

ih % = Hy, (34b)
1 which
™1
Y= ["Pz:l, ;= Ej"!'l'Hj, j = I, 2, 3, (340)»
Y3
and
Oy;
3%, = 0. (34dy

35. Find the solutions of (34b) which correspond to states of well-defined linear momen-
tum of a free photon.

36. By choosing the z-axis of the coordinate system to be in the direction of p, find the
physical meaning of the solutions (35.9) of the eigenvalue equation (35.10) given in the
answer to problem 35 above.

t O. Klein, Zs. f. Phys. 53, 157 (1929).
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Solutions

1. Multiplying (XI1.12") by »*, and its complex conjugate by y, and subtracting the
results, we find that

1 oy ot
* _ o - » VY Y'Y —
ie.
1 @ op oy
* * LA P R S —
Now, since
ih ., oy o Ao oyt
_ Zr = L = 2
2me ("" T ”’) Im(mc2 ¥ ) % (1.3
and
L ool — Re (vt ou) = i
i LV vy—(vy*) ] = Re (l.m {2 Vw) =}, (1.3)
equation (1a) follows immediately.
On substituting the plane wave (1c) into (XII.12), we obtain
PPLE ke -
whence
E=+cApP+mi? = +E,. (1.4

From the two possible signs of the energy, it can be seen that the general solution of the
Klein-Gordon equation for a free particle can, owing to the linearity of the equation, be
regarded as a superposition of plane waves travelling in different directions. Since the differ-
ential equation (XII.12') is of second order in # (unlike the non-relativistic ones), a knowledge
of the function w(r, f) at a given time ¢, without specifying also the function [dy(r, £)/0t] at
the same time, is not sufficient to determine it at any later time. Furthermore, the quantity
o(r, t) need not always be positive; thus for the stationary state (1c), we have

o= —Lylylr and j=Z[pp (1.5

Hence, unless the eigenfunctions with negative energy eigenvalues can be regarded as having
no physical significance, the function y(r, #) cannot lead to the type of statistical prediction
which is so successful in non-relativistic quantum mechanics. In the non-relativistic limit
|p| < mc, it can be seen that E, ~ mc?, p/m ~ v, and that the expressions (1.5) become
the well-known non-relativistic expressions for the probability density and the probability
flux:

e~ Iyt jrvipl
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Remarks: For a free particle, the solutions of the Klein-Gordon equation with negative
energies can be ignored without loss of consistency, since the Hilbert space spanned by the
solutions with positive energies is a complete one. Transitions from the positive to the
negative energy states are then not possible, and the quantity ¢ given by (1.5) is always
positive, so that a statistical interpretation is possible, at least in some circumstances.’
The eigenfunctions of the position operator r are no longer ¢ functions, but are more
complicated functions which allow the particle to be located only in a volume having linear
dimensions of the same order as the Compton wavelength #/mc of the particle.

2. With the notation
1 oy

Ys = '—TC* a—x;, (2.1)
the Klein-Gordon equation (XII.12) becomes equivalent to the system of equations
oy -
Fxa +kyps=0 ,
2.2)
ke O ey,
vy —k Bxe k2y = 0.
From (2d) we obtain
1 1
= —=(¢+ 1), = —(¢p— 2.3
Y="15 1> Vs \/2(¢x) (2.3)
and thus from (2.2) and (2.3) the following system of equations:
L 00 R 0
lh—a—t"—-mv(¢+%)+mc¢ s
4
. 0y A g
ih v —ZEVZ(‘P-!-X)—’”C X

or, in matrix form,

nalyl==me o Jllemelo S e

With the aid of the matrices (2a) we can write

[ ! l]—r—}-'t
-1 -1 BT

and thus equation (2b) follows immediately. It can be seen that it is of the same form as the
Schradinger equation of non-relativistic quantum mechanics.

* R. G. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400 (1949).
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3. From (2.1) and (2.3) we have
¢=1Im (,:7 %—w) = Im (iyjy) = %—[wa+(wa)*]
1
= T -V @D+ G-D G N = F*6—1D)

EE [ 8- b

) x
Similarly
i=Re (;f;; p* W) = ghm- (@* vy—ypvy?)
h * * * *
= m[(qﬁ +27) V(g +x)—(¢+1) V(o*+x")]

o1 v i | Bl H T
= Z:%t_ [v*+Ta(Ta+ite) Vi — (V)t Ta(Ta+iTs) y].

Remarks: In non-relativistic quantum mechanics a metric in the space of the wave-
functions was introduced by defining a scalar product such that

(1> 92) = wawzdr
)= | lp[*dr = [oar (3.1

In this metric, called the Schrodinger metric, the mean value (4) and the Hermitian conju-
gate A of an observable A are defined respectively by the expressions’

(4) = (p, Apy = [yp*dydr 3.2)

(1, Ayz) = (A*yr, pa). (3.3

-

and

As was shown in problem 2, the Klein-Gordon equation (XII.12") can be put into the
Schrodinger form (2b) by the use of two-component wavefunctions. Intuition suggests that
it should be possible to express the energy, the linear momentum and the angular momentum
of spinless particles in relativistic quantum mechanics as mean values of differential opera-
tors if a metric can be suitably defined in the space of the two-component functions. Arguing
by analogy (cf. (3.1) and (3a)) let us define a metric in the space of the two-component wave-

T The mean vaiue {4) given by (3.2) differs from that given by (IIL3) by a factor equal to the norm of
the wavefunction (p, p). Since the latter is a constant of the motion, the two definitions are equivalent
so far as the present discussion is concerned. :
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functions by defining a scalar product of y1(r, #) and p.(r, #) as follows:

W1 Yoy = 1 I Yi T3y, dr. (3.4

The resultant metric is called the Feshbach—Villars metric.' In the F-V metric, the mean
value (A);,, and the Hermitian conjugate 47 of an operator 4, are defined by the relations

(v = (b, APy = 3 j yt13dy dr, (3.5)
and
(W1, Apadry = (A%y1, Yo)rv (3.6)
respectively.
The operator A is said to Hermitian if
A% = 4 (3.6")
and unitary if
(Ay1, Apayry = (1, Y2)Fv. (3.7)

Using (3.5), we find the following expressions for the energy, the linear momentum, and the
angular momentum of a spinless free particle:

E = (p, Hy)ry (3:8)
p= < Y, ?th> (3.9)
. FV
h
1= <tp, rxTth>FV. (3.10)

The values of E, p and 1 given by these expressions agree with those calculated from the
energy-momentum tensor of the Klein—-Gordon field (see problem 5). This gives a justifica-

tion of the definition (3.5).
4, Using (3.5) we can write

(Y1, AP2)ry = 3 I pityye dr = (A7, Yo)ry = % I Y (A5)* 157, dr.
Since T = 7, in this problem, (4a) follows immediately. Similarly, from
(Ayy, Apo)ry = ¥ I Yl ATy Ay, dr = (Y1, Yo)ry = 7 I Py Tay, dr

we can obtain (4b).
The equalities (4¢) are obtained immediately by using (4a) and the well known properties

of the matrices 7;:
ffl- = T;, Tt +TiTe — Za[k, T = itm’ (4.1)

in which (k, I, m) stands for any cyclic permutation of the indices (1, 2, 3).
t H. Feshbach and F. Villars, Rev. Mod. Phys. 30, 24 (1958),
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Note that, in the F-V metric, T3, ity and ito are Hermitian, and 7., 7o and it are anti-
hermitian.
Using (2¢) and (2d) we have that

=3 JEE o ][] = s [ (2 5= B o) e 02

5. Using (3.8), (2c)-(2e) and (XII.12") we have that

h 2 2 2
| — 5 EmME - )
E = Pl ‘f’*x* 42 2 " dr
_igv2 _2_v2+mc2 x
— A . O Ot Oy
T 2mc2'j (w orf ot at)d" G.1)

For the operators —? v and rX?_— v respectively, (4.2) yields the results

_dh [ . op oyt (A

P= Fmce | [W (?‘V)‘ér ot (i‘V)W]dh G-2)
i [T, h oy o' h

1= et ['f’ ('XT V)W‘ T (’X? V)"’]"’- -3)

The quantities E, p and 1 given by (5.1)(5.3) agree with the energy, the linear momentum
and the angular momentum of the Klein-Gordon field, as calculated from its energy-
momentum tensor.’
Note that the operators H, —ih v and —ifirX v are Hermitian in the sense of (3.6").
6. With the notation
0 ie
Dﬂ - ax‘u _%? A!U (6'1)

the Klein-Gordon equation (XII.13’) can be written as
(D2 — K3y = 0. 62)
Taking the complex conjugate of (6.2), and defining

_ 0 e

u = axﬂ +"’h_c‘ 7 (6.3)

t See [19), Chapter II.
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we obtain

(D~ k3" = 0
Following the procedure of problem 1 we have then that
(D) — (Diy*yy = 0.

On imposing the Lorentz gauge condition

aAF —_
it follows that
0 oy oy* 2ie
a (‘P axﬂ axﬂ L4 he Aﬂw 1/)) 0 (65)

On multiplying (6.5) by #/2mi, we obtain the continuity equation (6a), in which the compo-
nents of the four-vector j, are given by

* —"i * == _h__ * ___e_ *
i= 2mz [v* vy — (V¥7)v] me Ay"y = Re (mi LAY daps Ay TP), (6.6)
_dh (L Oy Oy e . hoyt e,
= ot (‘P ot ot 1/)) T e A’y = Im (mc2 Frak Aoy y)). 6.7

In the absence of an electromagnetic field, (A = 0, 4o = 0), (6.6) and (6.7) reduce to (Ib).

7. With the notation
1

ve = — 1 Dy, (7.1
_0 k="C
YT 9xs A% o oa’

the Klein-Gordon equation (XI1.13") is equivalent to the system of equations

D4’lp+ k’l[)4 =0

7.2
V’"lp—-kDupg, ——-kz’tp = 0. 72)

Let us now take

_ d>]
"P - l:x ’ (7.3)
where
1

= — (p+ and = —=(p— 7.4
G (p+vya) %= \/2 (v —vp4). (7.4)
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Then, from (7.2) and (7.4), the following system of equations is obtained

o6 1 (h_ e \? .
ih—— ot E(Tv_?A) (¢+x)+(er+mc )
(1.5)
oy 1 (& e ,\2 .
ih oy = =5 (7 V—‘;A) (9+ 1)+ (edo—mcP)y,
which is equivalent to the matrix equation
L 0P
it 2 = Hy, (7.6)
H= . (—;3+nz) ( v—mA) +me2vs+edol. (1.7)
From (7.4) it follows that
a‘l,l) mc? er
=——(¢+ and — = +—-- + 7.8
v= «/ ($+2) e kaar (e (139)

Thus (6.6) and (6.7) can be written as
. f . . .
1= &im [y*Ta(ts +iTa) vy — (V)T Ta(T3+ iTa)y] — 2—;6 Ayp*ry(ta+ite)y, (7.9

0= 3P*d—1*) = Ty+iay. (7.10)
Remarks: The advantages of the matrix formalism just developed are as follows:

(a) The formal equivalence of the Klein—-Gordon equation (7.6) and the Schrédinger
equation offers, in some circumstances (see problems 8 and 9), the possibility of a one-parti-
cle interpretation of the results.

(b) The density (7.10) appears as the difference of two positive densities, as it must be in a
theory which describes simultaneously particles with charges of both signs (for example, the
nt and the n~ mesons). Thus ej can be regarded’ as a net electric current and ep as a
net density of electric charge, both expressed as the difference between the current (or density)
of positively and negatively charged particles respectively.

(c) In this formalism the charge symmetry which is characteristic of the relativistic
equation appears explicitly.

Thus, if we take the complex conjugates of equations (7.5):

ot

6q’>*
ot

ax 1 /A e 2 * * 2 *
%~ (—I.—v+—c--A) (6" + 1)+ (mc —edo)y .
| /s N (7.11)

R kil . * *y _ 2 *
ih—— 2m(iv+cA) (¢*+ ") —(mc®+edo)
t W. Pauli and V. F. Weisskopf, Helv. Phys. Acta, 1, 709 (1934).
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we see that, if (7.3) satisfies the equation

., Oy
ih - = Heey, (1.12)
then there exists a function
*
ve=| k] - v (71.13)
obtained from y by the operation of “charge conjugation”, which satisfies the equation
ih%’"’; = H(—ekc. (7.14)
From (7.12)-(7.14) it follows that
11H*(e)t1 = —H(—e). (7.15)

Thus, if y is an eigenfunction of H(e) with energy E, i.e. if H(e)y = Ey, then the conjugate
function y . is an eigenfunction of H(—e) with energy —E, and conversely.
Note also that

Oc = %1}’2‘_731}’C =—0 and jc = j (7.16)

The law of conservation of electric charge makes it possible, with a proper normalization of
v, to have

[ode =% [ytrapdr =+1 (7.17)
and

3 [ vérapede = F1. (7.18)

It is important to note that, in the limit e —~ O the function y. becomes a solution of (2b)
which is independent of y (see problem 8).

Thus, in the absence of an electromagnetic field, there is a one-to-one correspondence
between the “positive” and the “negative” solutions of (2b). The positive solution, normal-
ized to +1 (according to the F-V metric (3.4)), describes a positive charge, the negative
solution, normalized to —1, describes a negative charge.

This correspondence must remain in the presence of an electromagnetic field.

8. The solutions of (2b), corresponding to the eigenvalues (1.4), viz.,

E = j;cx/ilz—i—m%'z = +E,
of the Hamiltonian (2e), are

+, =) u(+s =) ]
P+ =) = [f” _)] = [v“” _)] exp [%(P.r?Ept)] 8.1
where
A

A
5 MOEED 000 = s (T B (82)

)

u(+s _) =
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Note that, in accordance with what was said in the preceding problem, the function obtained
from v by charge conjugation:

+)* ) i u(-) i
we = [iﬁ),] = [u(+)] exp [X(—p.r—i-Ept)] = L)(_)] exp [z(—p.r—i-Ept)], (8.3)
is an eigenfunction of (2b) with the negative energy eigenvalue —E, [only the square of p

appears in (1.4)].
Thus, if the solution ™ represents a particle of positive charge, (= will represent

a particle of negative charge, and by (7.17) and (7.18), we have that
% Iw(+)+t31p(+) dr =+1

. I'P(_)+"3'P(') dr = —1.
If we take the normalization volume equal to unity, it follows from the above relations that
we shall have 4 = (mc?/E,)"* and hence

and

me+E, gy me—E 1 (P —p ) =+ 1

\2mcE,’ \2meE,” 2
W) = H\"/’_cz___EL . v = ﬁ\’_;cz_"'EL, 1 (o —pf%) = —1,
2mc?E, 2mc2E, 2

If a particle is such that its motion is correctly described by the wavefunction y, then a
particle whose motion is correctly described by y is said to be the “anti-particle” of the
first one. Thus, if " describes the free motion of a =" meson, the function ¢ will
describe the free motion of a #— meson, which is the anti-particle of the n*. Particles and
anti-particles differ not only in electric charge but in other properties also (e.g., in magnetic
moment, in baryon number, etc.). Under the charge conjugation operation these quantities
change their sign. Particles which have no electric charge are sometimes identical with their
own anti-particles; this applies, e.g., to the 7° meson and the photon, but not to the neutron
or to the neutrino. From what has been said above it can easily be deduced that a #° meson
can be described by a real wavefunction, a fact which is true for all particles which are
identical with their anti-particles.

9. For an electrostatic field, A = 0, and the Lorentz condition (6.4) reduces to

0Ao

“a—t = 0. (9.1)

Equation (9a) then follows from (XII.13"). The equation for stationary states is obtained as
usual if we substitute into (9a) the trial solution

w(r, 1) = ¢(r) exp (— % Et). (9.2)
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After some simple calculation it is found that

_ 2
[t (E i) o =0 (9.3)
Remarks: From (6.7) it follows that, in the stationary state (9.2), the charge density is
E—eA
eo=e mc2°1¢;2. (9.4)

For E > eAj the sign of the charge density is the same as the sign of the charge of the par-
ticles. But for large potential energies, if E < eAo, the sign of eg is opposite to the sign of e.
Thus in strong fields the one-particle interpretation, which is valid for weak fields and for

free particles, is no longer valid.

The reason why the charge density changes its sign in strong fields can be given only in
the context of field theory, which takes into account the processes of pair creation and
annihilation.

10. Since m, = 273m,, the nuclear motion can be neglected, without serious loss of

accuracy.
Thus, treating the nucleus as an infinitely heavy point, the ener gies of the bound states

of the mesic atom are simply the energies of the bound states of azz~ meson in the Coulomb
potential

Ay = lelZ (10.1)
r
. . . ez
Since the potential energy of thez~ meson is then edo = — (9.3) becomes
E2—E2 2aZe 1 o2Z%
2_0 il = ,
(V h2c? hc r T ) () =0, (10.2)
in which
e? 1

= 2 = — = ——
Eo=mc* and o=z =133

is the fine structure constant.
If we use spherical coordinates and write

R,(r)
r

¢(r) = Yy, ¢)

the radial variable can be separated from the angular variables, and the radial function R(ry
will satisfy the equation [cf. (IL.10)-(11.17)]:
d*R; E;—E* 20ZE 1 4 I+ 1)—a2Z?
dr? ( A2c? hc 1 r?

)R, ~ 0. (10.3)
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By introducing the dimensionless variable

§=pr, where B= %(Eg_E‘Z)uz,
(10.3) becomes

SR (1 e K+D)—aZ?\ .
X (Z‘"&“Jr . )R, = 0. (10.4)

The energy eigenvalues for which, in the asymptotic region (¢ — <), the solutions R, remain
bounded, are contained in the parameter

aZe

& = V—Eﬁ- (10.5)
0

The asymptotic solution of (10.4) which satisfies the required condition is R, ~ exp (— —‘25—)
Looking then for R, in the form

Ri = e~&2u(E) (10.6)
we obtain for u(£) the differential equation
d*u  du e l(l+1)—a?Z2\
g (E - )u =o. (10.7)
Since & = 0 1is a singularity of (10.7) we put
uE) =&Y ek, s=0, cox 0. (10.8)

k=0

Substituting (10.8) into (10.7) we find

Y Als(s — D) =I(I+ D)+ a2Z2]c bk + 52 1 [25(k 4+ 1) 41 + (£ —s)e]Ek+5-1
K=0
(10.9)
+H{(k+ 1) (k+2)ck 12 —(k+ Deg 1 1)E5+5) = 0,
This equation is satisfied only if the coefficients of all powers of & vanish. Putting equal to
zero the coefficient of the lowest power of &, i.e. £72, and of the general term &%+5~1, we
obtain the relations
s(s—1D) =+ 1)+a2Z? = 0, (10.10)
Crp1 = stk—e c
LT kD Ost k)¢

(10.11)

For large values of k, ¢, , = ! ¢ and and hence for large k the series (10.8) behaves like
k+1 k k

exp (§) and the factor exp (—§/2) from (10.6) cannot ensure the correct behaviour of R, as
£ — oo . The series must therefore reduce to a polynomial, i.e. starting from a particular
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k = n’ say, all coefficients must be equal to zero, and hence
s+n —e =0, n=012... (10.12)

It is evident that s is the positive solution of (10.10) for any given value of / =0, 1, 2, ...,
i.e. that

= L+ (I+ 1)V 12221+ 1) 2 (10.13)
Finally, from (10.5), (10.12) and (10.13), the following energy eigenvalues are obtained
Evi = Eo{l+aZ2lw+ 3+ (+ ) V1—z(+ )17} aous

By introducing a principal quantum number
n=n+Il+1, n=123...

we find for the energies of bound states of a =~ meson the following expression

Eu = E{l+a2Z2|(n—1—-1)+ (1+4) V1—2222(1+3) 2} 7% (1015)

In order to compare this relativistic result with that obtained from the Schrédinger equation
[cf. the problem of hydrogen-like atoms, (I1.35)] we expand (10.15) in a series in powers of
aZ up to terms in (xZ)?, thus:

E, = By PA0Zr  EdaZ) (3— —"—)+ (10.16)

202 mt \4 I+3

The first term is the rest energy of the z~ meson. The second term gives the energy spectrum
of the bound states in the non-relativistic approximation [cf. (35.11) Chapter II]. The third
term is a relativistic correction which depends on the orbital quantum number, owing to
which the energy levels calculated in non-relativistic approximation are split into components
which depend on /, thus giving a fine structure to the spectrum.

As an historical detail we mention here that soon after the Klein-Gordon equation was
proposed in 1926, a calculation similar to the one given above was carried out, in order to
try to explain the observed fine structure in the spectra of hydrogen-like atoms. The calcu-
lated results disagreed with experimental observations; thus the predicted spread in energy

m.e8Z4 n—1

E, » —En, =
IO T gy g}

(10.17)

of the fine-structure splitting of the level with principal quantum number # is much larger
than the experimental value.

Later the reason for this discrepancy became clear : the Klein—-Gordon equation describes
spinless particles, so that the -+ spin of the electron had been ignored. A correct formula for
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the fine structure, which is in fact very similar to (10.15), can be obtained from the Dirac
equation (see problem 32).
11. The first of the relations (11a) results directly from (X11.20). The other relations can
be verified as follows:
Vi¥Vu = bt VPV Vu—VViVu = 20—y, = =2,
ViVs¥iu = Qipot ViV u—V5Vi¥i¥u = 20uVivatvva) = 2yt vy = 40,
VYV = Qe t ViV eru— V¥V eV = 2000 ery—27:02)

= 227,020 Ve¥a¥» —27s020) = —2Ye¥ays -
Remembering that
Tr (AB) = Tr(BA) (11.1)

(11b) follows immediately, since
Tr(v) = Tr (vr) = 3 Tr oy, +v) = 8, Tr (1) = 40,
12. Propositions (1) to (3) of this problem can be verified by direct calculation using the
commutation relations (XI1.20). Thus, with e.g. the notation
I's = iyyys and Ig = y1yayays,
we have that I's I'ig I's = — p1yayiyeysyayiya = +71017Vay1¥2ysVa)s
= —yaYsyryevays = —Vryeyays = —[1s-

Using (11.1), the relation (12¢) follows as a direct consequence of (12d):

—TI'(FA) = TT(FBFAFB) = TI(FAI%) = TT(FA) = 0.

13. We have to show first that
18
Y ad’4=0 (13.1)
A=1

is true if, and only if, all the coefficients a4, (4 = 1, 2, . . ., 16), are equal to zero.

By taking the trace of (13.1), and using (12e), we find that a; = 0. Similarly, by multiply-
ing (13.1) by I", and using (12b, c, ¢), we find that a, = 0. It follows that the “hyper-complex
numbers” y, cannot berepresented by square matrices smaller than 43<4, since there cannot
existilé linearly independent nXn matrices if n < 4. In fact, the y, can be represented by
a sut able choice of 16 linearly-independent 4X4 matrices. This representation (and all
representations equivalent to it, obtained by a similarity transformation y, ~ Uy, U™) is
irreducible.” Any other representation can be reduced to the form

Vu 0

0 Vu
t W. Pauli, Ann. de I’Institut Henri Poincaré, 6, 137 (1936); R. H. Good, Rev. Mod, Phys. 27, 187
(1955).
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It is worth mentioning that in abstract algebra any set of hyper-complex numbers which
satisfy the anti-commutation relations (XI1.20) is said to constitute a Clifford algebra.

14. Let X be a 4 X4 matrix which commutes with all the matrices y, and hence with all
the I' ,. From the linear independence of the I' it follows that X can be written in the form

16
X = Z XAFA (141)
A=1

in which we have, from (12b, c, e), that

x4 =L Tr(XTy). (14.2)

Let us write (14.1) in the form

X = xBFB-l— Z xcpc, FB = I (143)
¢=B

Now let I" , bethe matrix such that, inaccordance with (12d), I", 'y I" y = —I'p. By hypothesis

I' ,XT", = X, so that, if we multiply (14.3) on the left and on the right by I",, we obtain
X:—-XBFB-I- Z chAFCrA :-—-.XBFB—I- Z (il)xcrc, (144)

C+=B =B
in which we have +1if I and I, commute, and — 1 if they anti-commute. If we multiply
(14.3) and (14.4) by I"p, and take the trace, it follows that x; = —xp = 0.

Since I', could equally well have been any one of the /" matrices (excluding 1), it follows

that the only non-vanishing coefficient in the expression (14.1) is that of Z, a fact which
completes the proof of the statement made in the problem.

15. Using (XII1.21-21"") and (XII.19), this statement can be verified by elementary

calculation.
The unitary matrix which transforms the matrices y, from the Pauli representation to the

Majorana representation is
eiﬂf4

_ . I+ O I—-0'2
UP—»M - UK—» MUP-—»K - —Q_ [I—O’z —I—-O’z], (15.1)
and the required transformations of the bi-spinor (XII.17) are

yr=Upxy and yuy = Ukomyx = Upmy (15.2)

respectively.
16. Let us first find the equation for  (i.e. the conjugate Dirac equation). Taking the
Hermitian conjugate of (XII1.18") we have

oyt ~ Op*
0x; vie 0x4 Ve

+kyt = 0.
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Multiplying this equation on the right by vs, and using (XII1.20) and (16c), we obtain

op o
Now, from (XI1.18") and (16.1), and using the same procedure as in problems 1 and 6, we
can derive the equation of conservation (16a).

If j, = (J, icp), then, in three-dimensional notation, (16a) becomes

%+v .j =0, (16.2)

where
0=ty = yiy,, (16.3)
j= Cyptayp. (16.4)

The density (16.3) is clearly positive. With the usual boundary conditions, it follows from
(16.2) and Gauss’s theorem that

0

-67 ’lp+w dr = 0.

Hence the normalization
fyrpdr=1 (16.5)

remains unchanged in time and thus g can be regarded as a probability density. We should
mention here that, as in the case of free spinless particles (see problem 1), the probabilistic
interpretation given above is only approximately valid. The centre of any wave-packet
corresponding to a free particle of spin ., besides having a uniform motion in a straight
line, performs in addition a rapid oscillatory motion (“Zitterbewegung), whose amplitude
is of the order of the particle’s Compton wavelength #/mc (see problem 18). Using the
normalization (16.5), the mean value of an operator A4 is given by

(Ay = [yrAydr = [Pysdy dr. (16.6)

17. For stationary states, the wavefunction is of the form
w(r, 1) = (r) exp (—i;Et). (17.1)

By substituting (17.1) into (XII.14), we obtain the equation

Hpy(r) = Ey(r). (17.2)
It is useful to express the bi-spinor (r) in the form of two spinor functions, each having
two components,
Y1 Y3
= , = , 17.3
¢ [ %] x [w] (17.3)
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as follows:
Y1 L4
w(r) = 5: %:ﬂ - [f] (17.4)
L [Z]

In states of specified linear momentum, the dependence on the momentum of the bi-spinor
(17.4) is of the form

N [ PO | | T SO
G

where N is a normalization constant and the spinors u and » are independent of the time
and of the coordinates; only the matrix operators @ can operate on them. Substituting (17.5)
into (17.2), and defining

mc? —ihce . 7
Ho = Lz‘hco.v —me? ] ’ (17.6)
we obtain the set of homogeneous equations
mc? — +co.py =0
(me*—E) ¢+ ca.py 177

co.pp—(mc2+E)y = 0.
Non-trivial solutions of these equations exist only if the determinant of the coefficients of
¢ and y vanishes, i.e. if
mc®2—E co.p
= 0. 17.
‘ —co.p mc*+E (17.8)
This determinant can be evaluated by using the identity

(6.A)(c.B) = A.B+ia.(AXB) (V1.92)

which is valid if [e, A] = [a, B] = 0.
After some simple calculation it is found that E = +E,, where

E, = cA/p*+m?c? (17.9)
is the magnitude of the energy of the particle.
The two signs of E correspond to two types of stationary solution of the Dirac equation
for a free particle: the one with E = +E is called the positive-energy solution and the one
with E = —E, the negative-energy solution.
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Let us introduce now the unitary Hermitian operator

— Hp _ 1 2

=E = E—p(co:.p+mc 3). (17.10)
Since /* = 1 it follows that the eigenvalues of A are A = E/E, = +1. The eigenvalue
A =+1 corresponds to positive-energy solutions (E = +E,), and A = —1 to negative-

energy solutions (£ = —E)).

Since [Hy,, Hp] = [Hp, pl = [Hp, A] = 0, it follows that, for a free particle, the energy
E,, the momentum p, and the eigenvalues 4 of the operator /1 are constants of the motion,
and therefore can have well defined values simultaneously.

From the equations (17.7), the spinors ¢ and y can be expressed in terms of each other,

thus, for example,

__ co.p
L= i+ E b, (17.11)

and hence the bi-spinor which represents a state with momentum p and energy AE, can be
written in the form

u .
yplt) = N|_ca.p exp(%—p.r). (17.12)
mc2+AE,

Since N is still undetermined, any arbitrary normalization condition can be applied to the
spinor u, and in particular we may take

utu = {uy |2+ ug|2 = 1. (17.13)
It can then be verified immediately that if we take
me? + LE,\ 12
— —app (1T A5y
N = Quh) ( AE, ) : (17.14)

the bi-spinors v, will be normalized in the sense that
| verpr dr = 62.0(p—p). (17.15)

In the non-relativistic approximation, we have, for the positive-energy solutions, £ = E, =
mc2+E' where E' < mc?, and thus from (17.11) it follows that

p~—P gy © (17.16)

2mc

_ ca.p
X mE+E

Thus, if the velocity of the particle in the frame of reference chosen is small compared with
¢, two of the four components of the bi-spinor v, are small in comparison with the other
two. For this reason v, y, are called the large components and vs, 4 the small components.
In states with E = —E,, (the negative-energy solutions), ¥, and y. are small and y; and vy,
are large.

We shall now show that, besides having different signs of E[E,, the various stationary
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states for a given linear momentum of a free particle can be distinguished from one other
by means of another physical quantity, namely, the projection of the spin of the particle
onto its direction of motion. To show this, let us define a “helicity operator”

Z.p
==r 17.16’
Y ( )
where 0
h|o
z = 5 [O c] . (17.17)

The operator (17.16’) commutes with the Hamiltonian (17.6), and hence the corresponding
physical quantity is a constant of the motion for a free particle. Since the momentum p is
a constant, we can choose the z-axis to lie along the direction of p, and the helicity operator
then reduces to

f

o, O ,
S—EZ—E[O O'Z]' (17.17)

But X, is simply the spin operator of the spin-% particle. The eigenfunctions U, of 2,
with eigenvalues 1#/2, can be written in the form of the bi-spinors (17.12) by taking

u, = [(1)], u_ = [(1)] (17.18)
In the state u, = [ (1)], the spin of the particle is said to be directed along its momentum,
since G.p [ (1)} =p [ (1)], and, in the state u_ = [(1)] , to be directed in the opposite

sense, since ©.p [ (1)] =—p [(1) ] Thus in the states described by the spinors (17.18) the spin

projection has a well-defined value. There exist, of course, states in which the spin projection

1

conclusion, the time-independent wavefunctions, for a given momentum p directed along
the z-axis, and with well-defined values of 1 (= = 1)and of 2, (= +#/2), can be written as

has no defined value; such states are described by spinors of the form a [ é]—i—b [0] In

C1
A I R
1/ mc2+AE, cp P\ 7 P2 17.19)
Vo= | TR | mEH2E, | Qahpe (.
L 0 B
C 0 ]
1 i
_ l/m o P ( " ”Z) 1719
Ypb-12 = | T —ep PR (17.19")
| mc?+AE, |
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The bi-spinors (17.19, 19} satisfy the orthonormalization condition
| Y&azoyoren dr = bz, nd@ —p). (17.20)
An arbitrary state of given A can be written in the form
v1i =2z | AD®) vz, dp. (17.21)

Bearing in mind that Hpy, pz) = AEWary, it follows that

A
Ay = s f 5 Hupyus,db = I, (17.22)

With the help of A, projection operators for the energy states + E, can be constructed thus:
I'y = 3(1+.4); (17.23)

these operators act on the bi-spinors v, as follows:
Pyye=yy, Iyy =0, I'_y, =0, I'_y_=1y_. (17.24)

18. Let r(?) be the position operator, a(z) the operator (XII.21), p the momentum opera-
tor and H the Hamiltonian (XII.15) of a free particle of spin 3 in the Heisenberg picture
(see Chapter V).

Using the Heisenberg equation (V.3), the commutation rules [x, 2] = ihd,,, and
(XII.16), we find after some simple calculation that

dr 1

& = e Hl = co (18.1)
dot 1 [ 2 2i

== = — — = aH = = (cp—aH). 8.
= p [o, H] P (Ha+aH) P o P (cp—aH) (18.2)

Since p and H are constants of the motion, (1 8.2) can easily be integrated. The result is

- c P _c P _ 2
a(f) = ¢ H+ (a(O) c H) exp( P Ht). (18.3)
Similarly, from (18.1) and (18.3), we obtain
p D exp ( 'y Ht)
= 2 X 4 _
r(?) = a+c i t+ich (a(O) CH) Yo , (18.4)
in which
- — oy — _p._ -1_
a=r0)—ich (a(O) c H) 5H - (18.5)
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From (18.4) (which expresses the time dependence of the position operator in the Heisenberg
picture) the motion of the centroid (r) of a wave-packet for a free particle with spin % can
be found.

By comparison with the classical motion (which is uniform and rectilinear for a free
particle),
ra(d) = ra(0)+ (C %) Z,

cl

it can be seen that, in addition to the classical uniform motion in a straight line, the centroid
of the wave-packet has a rapid oscillatory motion

// exp (—%Ht) \

\\ ich (a(O) —c %) 37 // s

whose amplitude and period are of the order of #/mc and of #/mc? respectively. This oscilla-
tory motion was called the “Zitterbewegung” by E. Schrédinger. Because of it, the locali-
zation of a free particle is possible only in a volume of linear dimensions of order #/mc
(= the Compton wavelength of the particle). The oscillatory motion vanishes if the wave-
packet is a superposition of positive-energy solutions only, ie. is of the form (17.21)
with 2 = +1, or of negative-energy solutions only (A = —1). To see this it is sufficient
to show that

exp (—E Ht)
Fi(a—c l)—) A
H 2H

where the I"_ are the projection operators (17.23). Using (18.2), (17.10), (17.23) and (17.22),
it can be shown that

Fi=0’

[H,o] = Aep—ah), s a]l=tcP o,
E, T*E,

Hri = iE“I’Iw:lza
and hence that

O=1Iy[l'y,all'y =Ty (C%—G)Fi,

which verifies the above statement.

It follows that the oscillatory motion is due to interference between the positive- and
the negative-energy solutions which are normally required to form a wave-packet, since
neither set alone constitutes a complete set of functions.

19. Note that the Hermitian matrix S commutes with Su; and anti-commutes with 3,
Le.

SPo.p = Pa.pS and SB=-pS.

36'F



Problems in Quantum Mechanics

Thus the Dirac Hamiltonian of a free particle becomes, in the Foldy-Wouthuysen represen-
tation,

Hp = e'S(co.p+pmc) e=iS = eiSB(cha.p+mc?) e~ iS = ¢S e~ iSh(co. p+ Bmc?)
= e?3f¥co.p+Pmc?) = e*SHp.

Expanding e*® in a power series,
3215—1_1.._,__._‘3“ f+2|m22(/3 )2f2+3|m33(ﬁa )3f3+

and bearing in mind that

+(pl for n even
(Ba.p)y = _
+|p|"~Ba.p  for nodd,

we obtain
s cos 1S g0 g 101, 15.1)

and hence
A =TTT(c|p|cos S et sin |:1Lf)+,8(mc2cos PS¢ 1plsin ;'cf). (19.2)

The function f has to be chosen so that the coefficient of the operator «.p, which mixes
the upper and lower components of the bi-spinor (19b), vanishes. This is the case if we

choose

(19.3)

Then

- mc p| R
Hp = mC2:+|p|c_“—"-——] = pC 2+m2C2: F,. 19.4
b= me bl e [ = e BE, (194
Therefore in the Pauli representation (XII.21), the two upper components of the solution

of the equation i
Hpyp = Ep (19.5)

correspond to the positive energy, and the two lower ones to the negative energy, and thus
the bi-spinor

P1 [17’1] A

T I I =[‘,’f]
Y3 Y3 X
Ve [17’4]
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can be written in the form (19b), with
.1 . [r ol[é] _[d]
b= yamn=|o o151 = 15 (196)
.1 . Jo olf[é] [o] ,
1P~=§(I—i3)w= 0 I ;iz = 7| (19.6")
and then i ) S -
HD¢+ = Ep‘7’+s HDT?JH = _Ep‘?’— s (19.7)

which was to be proved.

Thus, in the F-W representation, the operators (/% 8) project the solutions of equa-
tion (19.5) onto the states of positive and of negative energy respectively.

The projection operators of the solution y of the Dirac equation (17.2) onto states of

specified energy , are L(I+p)e”, since

Py = FILB)ey.
By choosing f as in (19.3), the explicit form of the F-W transformation operator can be
obtained from (19.1):

(19.8)

. plf ,a.p . IPIf 1 2E, ( cBo . p+mc?

iS — = — 1

e =08 e T P 2me 2N Bt T B, (19.9
_ L]/_EEP_ (1+ _,,) |
—2) Ept+me? Ep/)’

Using this expression and the relations (19.8), after some simple calculation we obtain
expressions for the bi-spinors (17.19, 19°) in the F~W representation:

Neelin) [l
X 0 exp |7 Pz A e xXp \ 5 P2 1
Yp,1,1/2 = 0 W ’ Yp, 1, —~1/2 = 0 W, ( 910)
| 0 [ 0
Serlin) [t
~ 0 p h p ~ . O p h p 1 ,
Yp, —1,12 = 1 W ’ Yp, -1, -1j2 = 0 W . (19 0)
0 1 ]
20. In the non-relativistic limit, E, ~ mc?, and the transformation operator (19.9)
becomes
, 1 o.v
iS ~ ___ -
evxy (2+ﬂ . ) (20.1)

in which we have written p = mv.
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Using (19.8) we find that
L1 sy o 1 p o%.V
P =y U=Bey ~ ¢ (=) (2487 )y
(20.2)
~ 1 s 1 o.v
Y+ =3 (I+B)et>y =~ 1 (I+8) (2+ﬂT)W,
o1, by (XIL.21) and (17.4),
| 0 |5 w2
P~ 3 le.v y Pa 5 (20.3)

Since, in non-relativistic mechanics, the (kinetic) energy of a free particle is always positive,

it follows by (17.16) that %‘I O+2y = c_c._v x+2¢ and thus, in the non-relativistic limit,

o~

P =< P,.
21. Choosing the function fto have the form (21a), the second term of the Hamiltonian
(19.4) vanishes and we obtain

mc

ﬁp=a—'—p c|pi _1____—|—mc2 _|ﬂ_ =a'pEp. 21.1)
P mc \2 mc \2 Ip|
1+|— I+{-—
p| p|

In the same way as we established the expression (19.9) for ¢, we find in this case that

o.
E‘,,—%«c|pi—,B——Bmc2

el = ol 21.2)
'\/2Ep(Ep+c Ip[)

The transformation of the bi-spinor by the unitary operator (21.2) is called the Cini-Tou-
schek transformation.t

22. By (22a) and the relation p, = a,p,, the equation

(Vubu—ime) '(x,) = 0 (22.1)
becomes
(ypapvpv_imc)Uw =0, (222)

Multiplying this equation on the left by U~ we find that
U~yUa,p,—imcyy = 0. (22.3)
¥ M. Cini and B. Touschek, Nuovo Cimento, T, 422 (1958).
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Now (22.3) is the same as (XII.18) if and only if
U-w.Ua, = p,. (22.4)
By the orthogonality relations (XI1.2), (22b) then follows from (22.4).

It can easily be shown that (22b) is valid also if y(x,) is a solution of the Dirac equation
(XI1.22) for a particle in an electromagnetic field.

23. Since the fourth coordinate x4 = ict is a pure imaginary quantity, the matrix U is
not unitary. Of the elements of the transformation (XII.1), only a,, and a,, (k, ! = 1,2, 3)
are real, while the elements a,, are pure imaginary. Thus, on account of the Hermitian
property of v, and of the relation (22b), we find that

(U= U)" = asays—auy, k=12,3.
Multiplying this expression on the right by y4 and remembering (XII.20), we obtain

(U=t Ut pa = Utpa(UT) "1 ps = yalauyu.
By changing the right-hand side with the help of (22b) we have
PaUrp(Ur) 1y, = Uy U. (23.1)

Since y, = p; %, (23.1) can be written as

(PaUrpg) ya(paUty)™t = U lplU
and hence
}14U+’y4 = AU1 s (232)
where A =+ 1.
In order to decide when A =+1 and when A = —1, consider the identity UtU =
U+paysU. By transforming the right-hand side of this identity with the help of (22b) and of

(23.2), we obtain
UtU = Ay U U = Maga+auvan), k=123
Taking the trace of both sides, and remembering that Tr (y,) = O [see (12¢)], we find
Tr (U+ U) = Ad4s. (233)
Since Tr (U*U) = 0 always, it follows that A = +1 for those transformations which do

not change the sign of the time, i.e. which have as > 0, and A = —1 for those transforma-
tions which change the sign of the time, i.e. for which asg < 0. Thus

JZ::J U-1, (23.4)

yaUty, =

Taking the Hermitian conjugate of (22a) and multiplying it on the right by ys, we find that
P = ptUtys = PyaUty,. (23.5)
The relation (23a) follows immediately from (23.4) and (23.5).
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24, In order to keep the lengths of all four-vectors unchanged under the transformation
(24a), we need, to first order in € iy

xLz = (Ous+ €0) (Qug+ ) XXy = X3,

whence ¢,, must be anti-symmetrical, ie. ¢, = —¢,,. Since the transformation (24a) is
an infinitesimal one, the matrix U will differ from the unit matrix by infinitesimal quantities

proportional to ¢, only, thus
U= 1+Mutum. (24.1)

In order to determine the matrix “generators” M, of the transformation U we use (22b),
which, for a,, = é,,+¢,,, leads to the equation

(1 —Men) vl +Myue3) = put eupn,
1.C. .
(y,uM Ay —-M, i.vy,u)elv = Syv'}’r . (24-2)
Remembering that
EnYy = Slvailyyv = %811:(51#% - 6;'#’}’1),
(24.2) becomes
(VulMay — Miyyu— 303,90+ 30uipa)Eas = O. (24.3)

It can easily be seen that this equation will be satisfied if we take M, = 1y, and thus
(24b) is verified.

25. Using the expressions given in the problem, we have
S = ‘ip"tp' — ,lpU-—].Uip — W — S,
V»:‘ = Qﬁ’ylﬂpf = "TJU_LV#U"P = am@'}’v"ﬁ = a,qulﬁs
T,:w = %@'(m%-wn)w' = %@U_IY#UUL 1}”’ Ui])
—3pU W, UU- Y, Uy = Tl PYeyey

- %avraﬂg"f"?’r?’ew = aﬂeavr%@(?g% —VrYe)y
= a,u(_)avrTer .

The anti-symmetry of T,,, is obvious. Since, by definition y5 = v,y,y57,, it follows from the
preceding relations that P transforms like the product of the four coordinates X1X2X3X4,
ie. like a four-dimensional volume. P is therefore invariant under spatial rotations, but
changes sign under a mirror reflection of the three spatial coordinates, i.e. it is a “pseudo-
scalar”.

From what has been said above, the axial-vector character of A, is obvious. In view
of the result of problem 13 it can easily be seen that the quantities (25a) exhaust all the
independent bi-linear forms which can be constructed from @ and v, in the sense that
any such bi-linear form can be expressed as a linear combination of the quantities (25a).
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The bi-linear covariants (25a) contain in all 16 independent components: one component
each of types S and P, 4 components each of types ¥, and 4,, and 6 components of type
T

uv*
The results of this problem are still valid if v is a solution of the Dirac equation for

a particle in an electromagnetic field.
26. Note that, under the transformation (XII.8),

e e g Yg e
Pu_"EA.u e "P"’eﬁc P#_"CTA# ©,
whence, after some simple calculation, it follows that
2 e ie 2
e =G =G e
(P#_”CTA#) e p —~ ek (P#_c Aﬂ) Y.

That the Klein-Gordon equation is invariant under gauge transformations of the first
and of the second kind, follows immediately. That the same is true of the Dirac equation
(XI1.22) can be shown in a similar way.

If we take into account the fact that the unitary transformations (26a) do not change
any of the physical properties of the system under consideration (e.g., they do not affect
the mean values of the observables), we can say that equations (XII.13)and (XII.22), in so far
as their physical content is concerned, are invariant under a gauge transformation of the
second kind.

27. The equation satisfied by y., without specifying for the moment any particular
representation of the matrices y,, i

[y,l(p#-i-—i— A,,) —imc]t,uc = 0. (27.1)

Taking the complex conjugate of (XIL22), and remembering that A* = A, p* =—p.
A, = —A4,and p; = p,, we find that

[y* . (p+~§ A) —y’;( Pt A4) —imc]ip* =0. (27.2)

If, in (27.2), we make the following transformation

p* = Cyc, ie. wpc=C iy (27.3)
where the matrix C satisfies the relations

y=CI¥*'C, y,=-CWC, (27.4)
then (27.2) will coincide with (27.1).

In the Pauli representation we have
Cy1=—piC, Cypa=ypC, Cyz= —3C, Cypyg = —psC

and thus the matrix of the charge conjugation operator in this representation is C = - ..
In the Kramers representation we find, in a similar manner, that C = vy,
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Since in the Majorana representation Cy,=».L, (p=1,2,3,4), the matrix C, in
accordance with problem 14, is a multiple of the unit matrix. By convention one takes

C =1, so that
pM = pM*, (27.5)
For the second part of the problem we have

oy*
ot

in e _ c—l(ih

*
ot ) - _C—l(ih@) = EC™'y* = Eyc.

ot

In conclusion, if the function y describes a state of a certain charged particle, then the
function y obtained from y by charge conjugation describes a state of a particle with the
same mass and spin, but with a charge and a magnetic moment of opposite sign (cf. the
electron and the positron).

As in (16.1), the equation satisfied by ¢ in the presence of an electromagnetic field is

( P Aﬂ)q‘)yy-%immp = 0. (27.6)

By carrying out the calculations described in the first part of the problem, we obtain, in
analogy with (27.3),
Pc=Pc. (27.7)

28. Let us write the Dirac equation (XII.22) in the form
e ih 0 e . _
[Y . (p—? A) +?4(—E E‘f‘ﬁ“ AO) —lmC]i]J =

Multiplying on the left by icy, and using (XII.16), we obtain the Dirac equation for a particle
in an electromagnetic field in “Schrodinger” form:

ih%) = [ca.(p——g— A)+mc2ﬁ+er]1p. (28.1)

If the Hamiltonian
H=ca .(p——j— A) +mc*f+eA,

is time independent, (28.1) has stationary solutions of the form (17.1). The equation for

the stationary states is then
| Hy(r) = Ey(o), (282)
ie.

Hpy(r) = (E+ e . A—eAdo) y(r), (28.3)

where H), is the free particle Hamiltonian (XII.15).
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29, Let us write the Hamiltonian (28.2) in the form

H = fm+X+Y (29.1)
where
X=edo Y=ca. (p—— A) (29.2)
with the properties
XB—BX =0, YB+BY =0. (29.3)

From (28.1) and (29a) we have that

0 oy 0
= emiSy — He—iS§ = e—iS Y omiS
ih—e Sy =Hy=He Py=e (zh at) + (lh o1 e~ )zp,

ot
whence
., 0P is o O\ _is]a
lh—a"-; = [e (H —ih é»t-)e ]q) (29.4)
and thus
= e"S(H—ih éa—t)e— is | (29.5)

Since S is of order 1/mc?, to the required order of approximation [H = 0(1/m%?®)], we
have by (27a) and (25a) of Chapter I,

H = H+I[S, H] —% [S, IS, H]]—% [S.[S. IS, H]]
1 " . (29.6)
+24 |5, [S. [SIS, Bme]]}] —4S - [, 81+ ¢ [S. IS, S1].

In order to find the operator S, we retain first only the terms in (29.6) of zero and first order

in mc?, i.e. we take
Hy = fm+X+Y +iS, fimc?. (29.7)y

In order not to have the two upper components of the bi-spinor ¢ mixed (by Ho) with the
two lower components, the off-diagonal matrix elements of Hy have to be identically zero.

This is the case if, in (29.7), we have
Y+ imc?[S, 8] = 0,
whence it follows that, to this order of approximation, § = S, say, where

_ Y
Si=—5 5. (29.8)
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With this expression for S, we find for the commutators (29.6):
. _ B BY?
i[S1, H] = _Y+W [Y, X]+m_c'~’

ﬁY .

|

y3 BY*
6m2ct  6m3ct

% [S1, [S1, [S1, H]]] =

1
24

[S 1 81, [S1lS7, ﬁmc2]]]] 2fn)::c"

~ pY it R
AS1 = lh2mcz’ “5[51,51]— W[Y,Y]

h h .
A S0 181, 8l] =~ £ [7, ¥, 1}

The last double commutator can be neglected to the approximation used [its order of
magnitude is (field energy/m3c®)).
Thus, the Hamiltonian (29.6) becomes

H, = re Y -I-X—LY[Y X]
! —ﬁ(m" T 3me 8m3c6) gt 0 [ Xl
M
ﬁ Y* gy
 8mPc 4[Y Y]+ 7 [V, X1— 3m3c4+2mc2
= fmc2+X1+Y1 (29.9)
where
" Vax— v 7 XY - 7, 7]
2mc2 8m1"c6 8mict V" 7 8m2ct™ ’ 7
B Y3 lhﬁY
Y3 = g U X1 =30 e

Note that ¥ is of order 1/mc2. By repeating the above procedure we can remove the off-
diagonal term ¥; from (29.9) if a second F-W transformation of the same form as (29.8)
is carried out, with

Sz=——i£c—yl= z'ﬁ (—ﬁ—[Y x]--2 +i”’3Y). (29.10)

2mc? 3m2ct  2mc?
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Further, we have

H, = e"S!(Hl—ih Y )e {8y = ﬁmcz-l-erzrf [Y1, Xi]
(29 11
+ HHEY = fmc+X1+Y o,
2mc?
where ¥; is of order 1/m?ct.
Finally, by means of a third transformation, with
Ssz—iY2 (29121

2mc?

the off-diagonal term is pushed beyond the limits of the approximation required, and.
after a calculation similar to the preceding one, we obtain

A o f A . O )

Hjz = e'Ss(Hz—lh at) e~ s = fmc?+ X,

—p(met e X Nix— L yroan- L 0.3
N (m 2mc® 8m3cﬁ) 8Pt 8mict " T 13)

From (XII.6) and (XIL.7), it follows that

H=vXA, E= —VAO—? L

and thus, within the limits of our approximation, we have

I Gl S T I e

2m02 — 2mcz = 2m - 2mC G.H,
1 ieh DA ieh
s (Y, X]—ihF) = o o ( vAO—E) = oo E,
jeh #
[Y, AS:nTci"a E] 81e2 > [a.p, a.E]
= —ZV E+-—— i ¢.(VXE ef 6.(VX
~ 82 Sic? (v )+4 22 % p)

Thus, finally, the Hamiltonian, to the required approximation, is

(p-2a)
P—— 4
I?.v,:ﬁ(mcz-l— ¢ - )+er——eiﬁ— H

2m Smc? 2m
ieh? eh eh?
Wa.(VXE) et o.(EXp)— P v .E. (29.14)
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2
The first term (in brackets) is the series expansion of ¢ l/ ( p ——i A) + m2c? to the required

approximation, and includes purely relativistic corrections. The second and third terms
are, respectively, the electrostatic and the magnetic dipole potential energies. The following
two terms are spin—orbit interaction energies; thus, for a static potential with spherical
symmetry (A = A(r), 4o = V(r)), we have

1 dv 1 dV
vXE =0, o.(EXp)= - Jr-u.(rXp) =— ﬁc.l,
and hence
ehh 1 dV
Hspin-orbit == ZW ‘r‘ d;“ c.l (2915)

The last term in (29.14) is known as the Darwin term. Since V. E = 4mp, it vanishes except
inside the charge distribution which produces the field.

30. In order to solve this problem we have to find the solution of equation (28.3) with
A =0,1ie. of
Hpyp(r) = (E—eAp)y(r) (28.3")

with energy E = E,, and with
{ 0 for z<0
EAG =

Vv for z=0.

It can be seen immediately that the required solutions will have the form (17.19, 19), with
the difference that in region II the energy E, is replaced by E,—V, and the momentum

1 —
p=c\/E3—E§by /

1
q= V(E,~VP-E, E=me (30.1)

Since the spin orientation is a constant of the motion, i.e. [H, X] = 0, itis sufficient to use
for the calculation either v, ; 1/, 0T, |, _y, 85 both give the same result. We shall suppose
that the spin of the incident particle is directed along its momentum. The required solution
of (28.3") is then, in region I, a superposition of an incident wave of amplitude 4 and
of a reflected wave of amplitude B, of the form

S S
0 i 0 i
vi(z) = AYp 12+ BY_p1,12= A} ¢p e +B —cp e " (30.2)
Ey+Ep Eo-I-Ep
I L 0
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and, in region II, a wave transmitted through the potential step

~ 1 -
0 —
vi(2) = Dyy,12 = D cq er

Eo+E,—V

i 0 |
The coefficients R and T are given by
R = |!B| and T = |.|D|
i TJal

where, in accordance with (16.4),

Ja = ClAPY L ysotyp, 1,12, B = CIBEyT) 1,100 51,172
p = CID[Byg 1,120y, 1,1/2-
Clearly
(Ja)x = (J8)x = (in)x = (Ju)y = (ja)y = (in)y = 0.
So that
lial = 1(Ja):! where

0 0 1 oOjr 1 7
' 10 0 0 -1} O

L] p
= 21,0, , 0

Similarly,
. 2c%p . 2c2q
z = — B 2, z = - D 2’
(o) ==y 1B G0k = gt (D)
and hence
i2
= Bl o _ z_E_gi! DI
4| P EotE,— 4|

The ratios B/4 and D/A are determined from the equations

A+B =D
a-p=9_tob

obtained from the continuity condition y,(0) = v,,(0).

Using the notation
L E,—Ey\12 - Ey—Ey—V \12
(Ep+E0) ? B (EP+E0—V) >

25*

B Ey+E, 1

Relativistic Quantum Mechanics

(30.3)

(30.4)

(30.5)

A2 (306)

(30.7)

(30.8)

(30.9)

(30.10)
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the equations (30.9) become simply

A+B =D
by (30.11)
a
Thus, after some elementary calculation, we obtain the result that
_|a—-b|? _ 4|ab]
R = s and T——m—|a+b|2' (30.12)

31. The results of the calculation are given in Table XII.1. The dependence of R and of
T on V is shown in Fig. XII.2.

R
R=I -
T=0 ] i
| |
i i
] i
a—1 @ l i 49
Re (700" |t o T 1 e
! i .
0 E, - E, E, E,+E, Vv
R=0
T=1
[T
Fig. XI1.2
TasLE XI1I.1
| 4 b R T R+T
1 0 a / 0 1 1
a—b\2 4ab
2 0< V< E,—E, 0<=b=1 R=(a—i—b) <1 T=(a+b)2<1 1
3 E,-E, 0 1 0 1
4 EP_EO < V b= lbo 1 lim (jD)z =0 1
= Ep +E0 bo“ real Z—»o0
5 E,+E, oo 1 0 1
a—b\?2 4ab
6 Ep+E0<V<°° b=1 R=(a+b) <1 T=m<1 1
a—-1\2 4a
co R = 1| T=—x==1
7 . (a+1) = @rE 1
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Di1scussION OF THE SPECIAL CASES

(1) For ¥ = 0 there is evidently no reflection.

(2) In this case the kinetic energy of the incident electron, E,;, = E,—E,, is greater than
the height of the potential step. In agreement with the non-relativistic result, the electron
may pass through the potential step, or may be reflected off it with a non-vanishing proba-
bility.

(3) The kinetic energy of the electron is equal to the step height. As in the non-relativistic
case, reflection is certain, and 7 = 0.

(4) The potential energy is greater than the kinetic energy, but does not exceed its value
plus twice the rest energy. In this energy range, which is approximately 2 MeV wide, there
is total reflection of the electron, which, unlike cases 3 and 5, is similar to the phenomenon
of total reflection in wave optics: the electron enters region II, and returns to region I after
travelling a finite distance in region II. For z > 0 the probability density decreases exponen-
tially with z, as in the non-relativistic case, thus

IPILEN 2
g exp(—ﬁf— \/(V—EP+E0)(E,,+EO—V)Z).

o = virvn = |DI* 1+ g5 )
P /

A

Note that whereas, in the non-relativistic case, total reflection occurs whenever the potentiat
energy is greater than the kinetic energy of the incident particle, i.e. whenever V > E, . ,
in the relativistic case it does not occur if V' > E; +2E = E +E,. The value V = E,+E,
(case 5) is the largest one for which total reflection still occurs.

(6), (7) In view of the above remarks, cases 6 and 7 show a very interesting situation;
the incident electron, although it does not have a kinetic energy high enough to surmount
the potential step, nevertheless enters region II with a non-vanishing probability. This is so
even if ¥ = oo, the probability being then T = 4a(a+1)"2 # 0. This surprising result is
called Klein’s paradox.

We shall show that, like the “Zitterbewegung”, it is a natural and necessary consequence
of the existence of negative energy states.

Consider Figs. XII.3 and XII.4. On the left-hand side of each figure the two zones
(— oo, —E,) and (E,, + o) of electron energy are shown hatched. They are separated by a
region of width 2E, =~ 2 MeV (see problem 17). The energy of the incident (free) electron,
E = E_, is necessarily in the range (Eo, 4 o). On the right-hand side of the figures the same
zones are shown, but displaced by an amount V, where V > E +E, and E,—E, < V <
E,+Eq, in order to represent the state of affairs in cases 6 and 4, respectively.

Owing to the displacement V' = E, +E, (see Fig. XII.3) the zone (— <, —E,) of the left-
hand side is raised up on the right-hand side so that it overlaps the zone (E,, + <) in which
the energy E = E, of the incident electron lies. Since the passage of the electron from the
region z < 0 into the region z > 0 takes place at constant total energy, the final state of
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/%M% i
//// o

the electron is in the lower energy zone, i.e. is one of the negative energy states according
to Dirac’s theory. This explains why the electron can penetrate through a potential step of
height V' > E, + E,.

The situation is very different if E,—E; < V < E, 4+ E, (see Fig. XIL.4). In this case the
energy E, extends into the forbidden region on the right-hand side, and hence the electron,
after a finite penetration into region II, returns to region I, i.e. it undergoes total reflection.

32. This problem consists in determining the values of E in the equation

Hpy(r) = (E—eAo(r)) w(r) (28.3)
which correspond to the bound states (E < Eo = mc?) of the electron in the potential energy
well e4o = —e2Z/r. Since the potential energy has spherical symmetry, we shall solve the
equation

2
Hy(r) = (ca.p+Eo — f-u) W) = E(r) (32.1)

in spherical coordinates.
Using the identity (V1.9a), we can write

(g.r)(e.l) = (g.1) (6.(rXp)) = (r.(cXp))+ig.(rX(rxp)) = i[(a.r) (r.p)—%a.p)],

and hence

@ =2 [ tieD)
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Thus
0 (a.r)
|1 O (e.p)| _ r (r.p)—ih+i(c.l)+if
(a.p) = [(c.p) 0 ]_ (o.1) 0 r ’

r

or, if we introduce the “radial momentum operator”

(r.p)—ih {0 1y 1 ©
Pr= r —_h(ar+ )——1h7“a7’ (119)
and use the notation
0 (c': T)
w0, = (32.2)
(o.r) 0
r
we obtain
(.p) = rx,(p, +iﬁ'r)ﬂ) . (32.3)
We define now an operator K through the relation
hK = p(E. )+ 4 (32.4)
where
o [" 0] . (32.5)
0 o
The Hamiltonian then becomes
y 2
H = ca.p,+ the cx,ﬁK + Eof8 —E—% (32.6)

Since [K, £] = [K, «,] = [K, p,] = 0, it follows that [H, K] = 0. Using again the identity
(V1.9a), as well as the commutator equation 1XX1 = i#l, we have that

#2K? = (B (E.D+2HE +# = P+iZ. AXD 28 1) +#7
" 7

1 2
— 2
= (1+w~2 hZ) + =Pt

where j = 1+14Z = 1+s is the total angular momentum operator. The eigenvalues of the
operator j2 are of the form h2j( j+1), where j = 1+, except for the s-state (I = 0), in which
j can have only the value 4. The operator #2K? is therefore a constant of the motion, with

eigenvalues #2k2, where k2 = j(j+1)++ = (j+3)? and hence
k=+(+ =+1,+2,+3, ... . (32.7)
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We are interested in states of the electron which have a well-defined value of the total
angular momentum, i.e. a well-defined value of k. The energies of these states, in accordance
with (32.6), are the eigenvalues of the equation

(ca,p,+ arBl +Eoﬁ——z) p(r) = Ey(r), (32.8)

in which y(r) denotes the radial part of (r).
Since o = % = 1 and « 8+ B«, = 0, it is possible to restrict ourselves to a 2X 2 repre-

sentation, for example
0 —i 0
o=, of and 8= o 1)

The angular and the spin parts of the wavefunction will then be determined from the
condition that y(r) be an eigenfunction of K (since [H, K] = 0). The radial part, which we
shall write in the form

1lFe )] 32.9
p(r) = [ G (32.9)
is determined by the system of differential equations
2
(hc)"l( _Eo+ ef)F+‘2—G+ kKe=0
- - (32.10)
(hc)- (E+Eo+ e—)G ~S A+ F=0
obtained from equation (32.8).
With the notation
_E+E, _E—E ==
B=—"=, Ad="—"0—, D = /4B, (32.11)
and the dimensionless variable ¢ = Dr, the equations (32.10) become
A Zo d k
(5-%)F~(G+s)e=0
2z P (32.12)
®
(3+ 0 )G (E_?) F=9
where « = €%/#c is the fine structure constant.
We shall look for solutions in the form of series
| Flo) = e=¢ Y a0+,
r=0 (32.13)

G(Q) — e—Q ZO vaS-!-v.
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Substituting (32.13) into (32.12), and equating to zero the coefficients of ¢**"~!, we obtain

the relations
(k+S) bo+ Zauao = 0 } (3214)

Zabo+ (k—s)ao =0
and, for v = 0,

A
—D— av_l—Zocav—(S-I- v k) bp+bv_.1 =0
3 (32.15)
5] b,_1—Zab,—(s+v—k)a,+a,_, =0
From (32.14) we obtain the equation k? —s* —Z%? = 0, whose positive root is
s = (k?—Z%2)12, (32.16)

The negative root must be excluded, since it would make the functions F and G singular at

the origin.
Multiplying the first equation (32.15) by D and the second by A4, and subtracting the

results, we obtain

av(—]/% Zoc+s+v—k) = b,,(]/ij—(er v+k)+Zoc)- (32.17)
As v — oo, it follows from (32.17) and (32.15) that
~ :Bj (32.17)
a, ~ l/ y b,
A
D ay_1—ZLoa,—vb,+b,_{ =~ 0

(32.15%)

B

Ebv—l"i‘zabv—vav"f‘ a1 = 0

From these equations we obtain immediately the result that, as ¥ - oo,

2 2
a ~—da,_1 and b, ~—b,_;.
y v

This means that for large values of v the two series (32.13) both behave like ¢*. Thus,
solutions which satisfy the condition at infinity can be obtained only by interrupting the
series F and G, i.e. reducing them to polynomials.

Let us suppose that this happens for » = N, sothata, , = b, , = Oforall v = N. Then,
by (32.15),

A/ Aay = —/Bby- (32.18)
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Putting » = N in (32.17), and using (32.18), we find that

B—A4
D

Za = 2(s+N),
whence, by (32.11) and (32.16),

E = E{l+22Z2[N +|k| \/T—a2Z%-2] "2} 712, (32.19)
If we define a principal quantum number

n=N+|ki=N+j+%
(32.19) becomes

Eny = Eo{l+a2Z?[(n—j— 1)+ (j+3) V1—2Z2(j+ )]} 2, (32.20)

This expression is very similar to the expression (10.15) obtained from the Klein-Gordon
equation for z-mesic atoms. The difference arises from the fact that while the Klein-Gordon
equation describes a spinless particle, and hence has j = 1, the Dirac equation refers to a
spin-1- particle, with j = 1+s. Expanding (32.20) in a series in powers of «Z, we obtain

EyxZy 'Eo(aZ)* (3 n
A (Z_j+%)+ (32.21)

E,,j = Eo—

The first term is the rest energy of the electron. The second term gives the energy spectrum
of the bound states in non-relativistic approximation (see (33.12) Chapter II). The third
term is a relativistic correction which takes into account the spin of the electron and leads
to a fine structure in the spectra of hydrogen-like atoms, in very good agreement with
experimental observations.

The total spread in energy

mee®Z* n—1
Eu, n— 1/2—Eﬂ, 1/2 = czh4n3 n2n (32.22)

of the component levels which form the fine structure of the states of given n is much
smaller than that previously obtained without taking into account the electron spin (see
10.17). :

An important featyge of (32.20) is that it contains only 7 and j. We thus expect the states
255(n=2,1=0,j=3)and2p,, (n = 2,1 =1, j = I—4 = ) to have the same energy.

This is true to a very good approximation only. In fact, as the measurements of Lamb and
Retherford (1947) have shown, the 2s, , levelis very slightly higher than the 2p, ,. The fre-
quency difference corresponding to the transition 2s, , < 2p, , is 1-05777X 10~%~1; this is of
the order of a millionth part of the usual Balmer frequencies. This relative displacement of
the two levels, called the Lamb shift, which is contrary to the result (32.20), can be explained
only by means of quantum electrodynamics, in which the electromagnetic field is treated
as a quantized system.
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33. From the Dirac equation (XI1.22), using the substitution
W(r, 1) = p(r) exp (—% Et) (33.1)

the following equation for the stationary states is obtained:

[ca : (p - A) +mc2ﬁ]1p — By. (33.2)
If we write the bi-spinor y in the form

_ cb]
v [x
and use (XII.21), the following system of equations follows from (33.2):

ca. (p—-z A)q’) = (E+mc?)y
(33.3)

ey (p—%A)x = (E—me?).

By choosing the z-axis to be in the direction of the field H, and the corresponding vector

potential to be
do=A, = A4, =0, A, =—Hy,

and by eliminating the spinor %, we find that
[c?p?—e2H%y? —ecH(fio, —2yp.) ¢ = (E2—mPct)o. (33.4)

The operator on the left-hand side of this equation does not contain explicitly the coordinates
x and z. Hence, the operators p, and p, commute with the Hamiltonian, i.e. the x and the z
components of the (generalized) momentum are constants of the motion. Accordingly we

look for a solution ¢ of the form
%(pxx+p.2)

p=c¢e S (33.5)
The eigenvalues p, and p, can take all values from — = to + «.The momentum p, is related
to the velocity », through the relation p, = mw,(1 —v2/c?)~1/? (see XIL.9). Thus the velocity
of the particle in the direction of the field can have any value; in other words, the motion
along the z-axis, as in the non-relativistic case, is not quantized.
By substituting (33.5) into (33.4) the following equation for the spinor f'is obtained :

[ — Czhzﬂa% +(eHy+cp,)? —echH Uz:| f= (B —mPc*—pic) f.
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Introducing the dimensionless variable

E_]/belH CPx)

the following differential equation is found

(—%— 24a— az)f= 0, (33.6)

where

B2 —mic'—pic?. 33.7)

A= —ChlelH

The spinor f can be chosen to be an eigenfunction of o, i.e.

o,f=2sf where s=11%.

/= [01/2]

This means that for s =+ we have

1 0
and, for §=—5, f= [f—l/z].
Thus, for f,, (s = ), we obtain the equation
d?
[@—Eu (a_zs)]fs = 0. (33.9)

This equation is formally the same as the Schrédinger equation of a linear oscillator which
oscillates with classical frequency w = |e|H/mc about the point y = —cp, /eH. Hence we

#
can deduce that the constant -zﬂ (a—2s), which plays the role of the oscillator energy, can

take only the values (n+5)fw, with n =0, 1, 2, .... Remembering (33.7), the following
expression for the energy levels of an electron in a homogeneous constant magnetic field is
then obtained:

E2_ 2,4 1
znzz"’_ = wh (n+ 5 ) + §i+ 2p0sH (33.9)

where uo = |e|#/2mec is the Bohr magneton.
The corresponding eigenfunctions are

fs = Ne=%2H, (&), (33.10)

where N is a normalization constant and H,(£) is the nth Hermite polynomial.
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The spinor y can be expressed in terms of ¢ as follows:

y = Emfmmg [2spz— V@ (&ax+iay a%)]qs. (33.11)

It can be seen that, in the non-relativistic limit, the results obtained above are the same as
those obtained in problem 34 of Chapter VI.

34, Using the formula valid in any right-handed system of Cartesian axes,

(AXB)j = EjkIAkAI; js ka l = 19 25 39

where ¢, is the Levi-Civita symbol (see problem 3, Chapter VI), Maxwell’s equations in
vacuo (34a) can be written in the form

oE, 1 oH; oH; 1 0E;
om T o T Mg, T w0 41)
oH, o OE _, |
ax,- - 6xj -
Introducing a complex vector defined as follows
w; = E;+iH; (34.2)
the equations (34.1) become
Oyr I Oy; _
Ejk[—a“*x-_—k"—‘-g —W = 0 (34.3)
L7 (34.3)

Now, from (34.3),

ie. Z% is independent of ¢. We can therefore dispense with (34.3') and use (34.3) only,
£

provided we assume as an initial condition that the divergence of the solutions, %w—i , vanishes
Xj
att = 0.
If we introduce the one-column matrix (34c) and the 3X 3 matrices

0 0 O 0 0 i 0 —-i O
0 0 -1}, s2= 0 0 Of, s=)¢i 0 O} (34.4)

0 i 0 —i 0 0 0O 0 O

8 =
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defined by the relations

(Sx)jr = ieju, (34.4')
and further define
., 0
Pr = —ih a s (34.5)
then (34.3) can be written in the form
,, O
ih % = ¢(Sk) jPry1- (34.6)

But this is just the j component of the (matrix) equation (34b), with H = cs;p,.

By means of dimensional considerations and formal analogies with the Schrédinger, the
Klein-Gordon and the Dirac equations, the operators p, and H can be shown to have some
of the properties expected of the momentum operator and the Hamiltonian respectively of a
free photon. They are not, however, equivalent to momentum and energy observables.
The attempt to interpret v as a “photon wave-function™ also leads to certain difficulties.’
These are resolved in the second quantization formalism of quantum electrodynamics.

35. The required solutions of (34b), i.e. of (34.6), will have the form

Y; = U; €Xp [;_.(P . I'—Et)]a (35.1)
in which
U
(uj) = I:uZI, (352)
Us

and the components u; are independent of time and of position. Only the matrix operators
8, can operate on them.
By substituting (35.1) into (34.6), the following set of homogeneous algebraic equations
is obtained:
Euy+icpgug —icpous = 0

—icpguy + FEus+icpiuz = 0 (35.3)
icpaur —icpttas+ Eus = 0.

For solutions to exist, the determinant of the coefficients must vanish. Since this condition
is satisfied for three values of E, viz., E= 0, +cp; where p = +\/ p?, it follows that the

eigenvalue equation
Hu = Eu (35.4)
¥ R. H. Good, Jr., Phys. Rev. 105, 1914 (1957).
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has three linearly independent solutions, e, #, and u_, say, with the eigenvalues £ = 0,
+c¢p and —cp respectively.

We can define more completely the solutions of (35.3) by imposing the normalization
conditions

Uity =utu, = utu_ = 1. (35.5)
0 +%4

For E = 0, the equations (35.3) become

Datg—pati3 = 0
Diug —patt1 = 0
Dot —Pi1ls = 0

whence it follows that u, = &ul, Uz = %ul. (For simplicity, u;, u2 and u3 are written
P 1
here in place of (1)1, (4o)2 and (uo)s.)

Using the normalization condition (35.5) we obtain

2+ 2+ 2 2
1= Ju 2+ ual+ | usl? = 31—;’;—”3|u1|2 = %Iullz-
Hence, with the exception of a phase factor, we have
J 41
. 1
u1=—1—’1, u2=&, u3=£3, ie. ug=—1pa}.
V4 ¥4 P ¥4 s

For E = +¢p, we have
pu1+ipss —ipotsg = 0

—ipsuy+pus+ipius = 0
ipgul—ip1u2+pu3 = 0.

From the first equation multiplied by p and the second one multiplied by —ips we find that

Ipap —P1P3
=" .
Similarly, by multiplying the first one by ips and the second by p, we find that
uy = _PP3T ip\p
n+n

Using the normalization condition (35.5), we then obtain

n+r

V205 pi+13)

Uz =
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1 PP — P1Ps
Uy === —IPP1—Pp2P3|.

and thus, finally,

- 2( 2 2
V 20%(p}+ 1)) P2+l

A smmilar expression can be found for #_ , and the complete result is then:

1 +ipps —p1ps
. (35.6)

"
Up = — | P2} Uy = —52——2—[$ipp1_p2p3
p [ pJ VB | g p
A simple calculation shows that the initial condition (34.3"), which, for u, takes the form
up; = 0, (35.7)

is not satisfied by the zero-energy solution uo, which, for this reason, must be eliminated.
The solutions u.. satisfy (34.3") identically and are called the “transverse” solutions.
It can also be verified easily that

ufuz = 0. (35.8)

Thus a complete set of eigenfunctions for pure radiation fields is given by

i
pa(p, 1, ) = ()Y, exp [?{ (p.r—cpt)]

) (35.9)
v (B, 1, £) = (k) H2u_ exp [% (p.r+cpz)] :
where y, are the solutions of the eigenvalue equation
Hy, =tcpy, (35.10)
and satisfy the orthonormalization conditions
+ ' —
[wi®y=@)dr =0 (35.11)

[ vi@) v.(@) dr = (p—p").

36. In this problem, p = (0, 0, p). Putting p; = 0 and taking the limit p, — 0, we find
from (35.6) and (35.9) that
+i .
Yy = 2nh)-322-12 [— 1] exp [%p(z}”ct)] . (36.1)
0

But since
y)i”:Ei;j—*_iHi;J’ j: 1’ 23 3,
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we find by separating the real and the imaginary parts that

E,.1 = Fasin %(ztit) , Hi,y =xtacos [%(z¢ct)ﬁ ,

Ei;gz—aCOS %(Z:FCI) . Hi;2=—asin [%(Z?Ct) R

Eys=0, Hia=0,

where a = (2nh)~3/22-172,
From the phase % (zFct) of these plane waves it can be seen that the positive (or nega-

tive) eigenvalue solution corresponds to a wave which travels in the positive (or negative)

direction of p.

Since B2, +E2,,= H,,+HL,,= a it follows that the tips of the transverse vectors
E,=(FE, ,E ,)E = (E_.,E_,);H =(H, ,H,  ,JandH_=(H_,,, H_,) lie
on a circle of radius « in the xy plane.

Denoting the phases by

¢+=%@ﬂﬂ ¢_=%@wm (36.2)

it can be seen from Tables XIL2, XII.3, and Figs. XIL5, XII.6, that the solution with the
positive eigenvalue represents a plane wave whose circular polarization is right-handed with
respect to the direction of the momentum vector, and that the solution with the negative
eigenvalue represents similarly a wave whose circular polarization is left-handed.

TaBLE XI1.2
P+ Ei, Ey, Hyy Hyo
0<¢y < 32.£ - - + -
T g =n _ N _ _
<y =< 3—;‘ + + - +
3—;— < ¢y <2m + - + +
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TABLE XII.3
¢ E_,, E_,, H_, H_,
0~<e. = % + - - -
% <=¢p_<an + + + -
T < STn - + + +
322 ¢- 27 = = — +

The directions of propagation and of circular polarization of the waves v, which correspond
to the eigenvalues E = +¢p are shown in Figs. XII.7 and XIL.S.

y=xz
A
Q X=Xy
D
=Xy
k. XIIL.5.
Ex+cp
| 8 ——
p
Fic. XI1.7.
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As can be seen from (36.2), the wave y_, which corresponds to the eigenvalue —cp, is the
same as the wave which corresponds to the eigenvalue +cp, except that it travels in the
opposite direction. We can therefore say that any state of a free photon of momentum p and
energy -+ cp is represented in general by a linear superposition of two plane waves, with right-
handed and left-handed circular polarization respectively with respect to the direction of
the momentum vector, which latter coincides in direction with the direction of propagation.
In particular, any state of linear polarization is a superposition of the two states of opposite
circular polarization.
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APPENDIX

Certain Functions used in Quantum Mechanics

1. Hermite Polynomials

Definition:

2 dn ——22‘ —
H,,(z):(——l)e(E;e ) n=0,1,2 ..
Differential equation:
€ 5 i+2 Hyz)=0
( de n) n _— -

dz?

/

Generating function:
S.’?
exp (—s%+2sz2) = 3 —3 H,(z).
n=0 7

Recurrence relations:

d
EH" - 2an_1

d \
(22—5) H,= H,_,

ZZH,, = H,,+1+2HH,,__1 .

The first few Hermite polynomials:

Hg =] Hl = 2z
Hy = 4221 Hy = 82812z
Hy = 1624 —482z2412 Hy = 3225—-160z% + 120z,

2. Legendre Polynomials and the Associated Legendre Functions
Definition:

Legendre polynomials:

I
P = L ety 1=0,1,2, ...

20" dl
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Legendre functions:
Pr, 1=0,1,2,..., m=0,12 ...1

(1 —u2ymiz di+m
20 duttm

Pr() = (1—sy 2 piu) =

Particular cases:
m=1,  Plu)= Q- {1—R)
m=0, P%u = Pu).

Differential equation:

d? d m? o
[(1—-u2)—£2——2u-3u—+l(l+ 1)—m] Pr=0.

Generating functions:

rm =

—In — 12 — lpm |
Cm—-DN (1 -2y (0 —2tas yiin l;ntP,(u), 1t < 1.

Orthonormality relation:
+1

'
PrPr dy = 2 (+m)!

20+1 (I—m)!

Recurrence relations:
Q2+ l)uP;" = (+1—m) P, +({{+m)P,

(1— uz)———P’” = — P +(I+m) Py = (I+ D)uPr—(+1—m)Pr, .

[N.B. The convention P_, = 0 is used above.]
Particular values:
P(y=1, P(-1)=(-1)
PrYy=PH(-1)=0, m=0
(1) (2p+2m)!
2'pW(p+m)!
0 if I-m=2p+1

Pr(0) = if I-m=2p

The first few Legendre polynomials:
Po = 1, P1 = U, Pz = %(3112—1)
= +5488-3u), P, = 3(35ut—30u2+3)

Appendix

@—1), —l<u<l (9

(10)
(11)

(12)

(13)

(14)

(15)

(16)
(17)

(18)
(19)

(20)

21)
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3. Spherical Harmonics

Definition: _
1/2 )
Y76, 6) = (—I)m[zle g;zg:] Pr(cos 0)e™, m =0 22)
Ym0, o) = (=1y"Y7(6, ¢) (23)

1=0,12,...; m=—[, —I+1, ..., +1

Y™ consists of a polynomial of degree (/— |m|)and parity (—1)'~™ in cos 6, multiplied
by sin!™1§ ™,

Particular cases:
m=0, Y!= ]/29_—1- PAcos 0) (29)

BT )

12
] sin/ Ge® . (25)

Differential equation:

1 @ ) 1 & - B
[sm 6 50 (S‘“ 6 ae) *simeg gz T “)] Y7, ¢) = 0. (26)
Orthonormality relation:
27 n
fYryr aQ = | do ( sin 6 dOY (0, $) Y76, ¢) = Syedppm - 27N
0 0

Recurrence relations:

U lemy 4+ l—m) PR [ (+m)(—m) T2
COSBY“[ A1) 2+ ] Y’+1+[(21+1)(21—1)] Yisa .
. m (+1—m)({+2—m) 12 (+my(+m-1) 2 1 .
sin 0 “‘{‘[ D @+I) ] Yt [ A+ @=D ] Y-ll}”'

The first few spherical harmonics:

L yo= ]/i cos 6, ¥y= Vuf— (3 cos? 6—1)
A\ 4n 4n 167

Y)= l/—7- (5 cos® 8—3 cos 0)

29
l/—— sin 0e®, Yi= — I/ ;5 sin 0 cos e @)

yi=—_ 21 gy 6(5 cos? 6 —1)e*
647

Yg

398



YZ2= ]/_ sin2 fe??, ]/—— sin2 0 cos Be*¢

_V 22 in3 gedi¢
]/Mﬂsm b,

The addition theorem for spherical harmonics:

o
E%— Picos @) = i Y76y, ) Y702 62)

v m=—1

where o is the angle between the directions (01, #1) and (02, ¢2).

4. Laguerre Polynomials

Definition:

L= ¢ Ed"; (e~ 72"

Lk = (-1 2 1,

kkn=20,12, ..

Differential equation:

[522+(k+1 z)——+n]L 0.

Generating function:

e—zt,’(l——t) oo
(o = L@ <1
Orthonormality relation:
oo -
j LKL dz = M 5.
n!
(1)

5. The Gamma Function
Definition:

I'iz) = j'oe“'tzhl dt, Re (z) = O.
0

Appendix

(30

(31

(32)

(33)

(34)

(35)

For —(n+1) < Re (z)=<<—n,z # 0, —1, —2, ... the [’ function is defined by means of

the recurrence formula
_I'(z+1)y  TI'z+n+1)
z  z(z+1)...(@z+n)

(36)

399



Problems in Quantum Mechanics

[Note that the points z = 0, —1, —2, ... are simple poles of I'(z).]
Functional relations:
I'z+ 1)y = zI'(z)

A

T&I(1-2)= (37)
Asymptotic behaviour: As |z| - o,
I'(z) ~ eC-UDInz—2+AD) 27 | ar0 7| =z—8, 0 < § < 1. (38)

For real x, as x - e,
T(x) ~ /27 x+~12p-x,

Particular values: If n is a positive integer,

Tn+1) = n!
1 2n—1t
r(n+5) = el v, (39)
If 8 is any real number,
\ra+ipe = (40)

sinhaf

6. Bessel Functions of the First Kind

Definition:

1 i v+2k
EED) () @1)
’ o L(k+ 1) Tk + v+ 1)

where » is (in general) a complex number, and, in the complex z-plane, a cut (— oo, 0)
is made."

Differential equation:
a2 1 d 2

[QIZT_FZ EZ—+(1 “?)]Jv(z) = 0. (42)

Particular cases:
z ﬂ+2k

0

i P My ey B
J__,,(Z) = (- l)an(Z) (44)

T The restriction thus imposed on z, |arg z| < m, is necessary to ensure the uniformity of 2%, If vis an
integer, the cut becomes unnecessary. -

n=0,1,2,... (43)
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7. Spherical Bessel Functions

Notation:
jie) = the spherical Bessel functions, proper,
nfo) = the Neumann functions,

K" (o) = the Hankel functions of the first kind,
1) (o) = the Hankel functions of the second kind.

Definitions:
7T

(o) = (2—9)1’2Jz+m(9), no) = (— 1)'(2—’;)”?_,_1,2(9)

hE) o) = nle) L iji(o).

Differential equation:

[dz 2 d+ l(l+1)]ﬁ

"o do
The solution which is regular at the origin is f; = j;
Solutions which are irregular at the origin are f; = n, and Af*.

The first few spherical Bessel functions:

0=sing j1=sing_cosg
o’ 0 0
cos Cos 1
Ro = Q, ny = 2 ¢ sme .
0 0 0

Asymptotic behaviour: for ¢ =~ /(/+1),
. 1 . In 1 I
Jjie) ~ e ( _T) ., nie) ~ 2 &0 ( __2")
1 . In I0+1)
(o) ~ — —
K (o) Qexp [iz(g 2)][1+ g ]

Behaviour near the origin: for small o,

o d o*
JI(Q)_W[I_—Z‘EZ—H—B—)"i‘ ...]

0 = G0 () 1+ spiy ]

where (2/+ )11 = QI+ 1) (2I—D2I-3) ... 3.1

Appendix

(46)

(47)

(48)

(49)
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The expansion formula for a plane wave:

ek — ’f QI+ 1) ilji(kr) Pcos 6), z = rcos 6 (50)
=0
oo +{
e r = 4 :;; ;: k) YT*(6,, ¢ YT(D,, b,) (50%)

where (8, ¢,) and (6,, ¢,) are the polar angles of the vectors k and r respectively.

8. The Hypergeometric Function

Definition :

ab

2
F(a,b,c;z) = 1+ %+a(a+1)b(b+1) 2

clc+1) 2!

ala+ 1) (@a+2) b+ 1) (b+2) 3
e+ 1) (c+2) IR 1)

The series is convergent at all points inside the unit circle | z| < 1.
Differential equation:

[z(l —z)g;+ [ce—(a+b+ l)z]gz——ab]u = 0. (52)

Forec # —n,(n=0,1,2, ...), F(a, b, c; z) is the solution of this equation which satisfies
the condition #(0) = 1.
The general solution of the differential equation (52) is then given by

u=CiFa, b, c; 2)+Cyz'~°Fla+1—c,b+1—c, 2—c; 2) (53)

for|z| <lande # 0, +1, +2, ... .

The analytic continuation to points outside the unit circle, i.e. for |z| = 1, with a cut
(+1, =),!is given by
I'(e)l(c—a—b)

Fab,¢;9) = 70 A F@ boatb—c+131-2)
! (C}I(;(;’;(g)_ ) (1 ~2)-0-8 Fe—a, c—b, c—a—b+1; 1—2), (54)

Fla, b, ¢;2) = ;%l;—g’::—%(—z)-w(a, G—c+1,a—btl: %)
%%%E—g(—z)*bF(b, b—ct+1,b—a+1; %) . (55)

ti.e. for |arg (- 2)| < m.
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Asymptotic behaviour: as |z| - oo,

_ I'eyltb—ay, . _, I'(c)I'(a—b) b
F(a, b, c;z) ~ W—(C—a)( z) +m(—z) . (56)
Special case:
Fora=—-nor b=—-n (n=0,1,2, ...), F(a, b, c; z) reduces to a polynomial of

degree n (Jacobi polynomial).
Relation to Legendre functions:
I'+m+1) (2—1y»? F

Pr@) = Fism+1) 27 I +m) ("’_” mti+1, m+l, 152)’
larg 2+ 1)} < . &1
Relation to Legendre polynomials:
Piz) = F(—l, I+1, 1; i;—z) . (58)

9. The Confluent Hypergeometric Function

Definition:
a z a(@+1) 22  al@+)(@+2y 2

Fa,;=1+7 1+ 2cih) ot eer ey 317 (39)
The series is convergent in the whole of the complex plane.
Forc=-n{n=0,1,2, ...), F(a, c; 2) is defined to be
. Fa,c;z)y TI(a+n+l) z'+!
1 = ; 2).
Am IO @ (enr ottt ©
Relation to the hypergeometric series:
Fa,c;z) = lim F(a, b, c: %) . ©61)
b — oo
Differential equation:
d? d
[272_5+(c—z)—‘i;—a]u = 0. 62)
General solution of the equation (62):
u = CiF(a, ¢; z2)+Cyz*~Fla—c+1, 2 —c; 2). 63)
Asymptotic behaviour: as jz| — <,
T I
Fla,c;z) ~ e © () e?z°~¢ (64)

I'(c—a) 2t [(a)
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provided a # —n, (n=0, 1,2, ...), and the z-plane is cut along the positive imaginary

axis.
Relation to Laguerre polynomials:
[(n+ K]

LX(z) = A F(—n, k+1; z2).

Relation to Hermite polynomials:
(— 1y (2"’) (— % ) for
(—1yp2 P ” ( 22) for

(65)

(66)
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