


QUANTUM MECHANICS



INTERNATIONAL SERIES IN PURE AND APPLIED PHYSICS

LEO N A R D I. S C B IFF, CON S U L TIN G E D ITO R

Allis and Herlin Thermodynamics and Statistical Mechanics
Becker Introduction to Theoretical Mechanics
Clark Applied X-rays
Collin Field Theory of Guided Waves
Evans The Atomic Nucleus
Finkelnburg Atomic Physics
Ginzton Microwave Measurements
Green Nuclear Physics
Gurney Introduction to Statistical Mechanics
Hall Introduction to Electron Microscopy
Hardy and Perrin The Principles of Optics
Harnwell Electricity and Electromagnetism
Harnwell and Livingood Experimental Atomic Physics
Harnwell and Stephens Atomic Physics
Henley and Thirring Elementary Quantum Field Theory
Houston Principles of Mathematical Physics
Hund High-frequency Measurements
Kennard Kinetic Theory of Gases
Lane Superfluid Physics
Leighton Principles of Modern Physics
Lindsay Mechanical Radiation
Livingston and Blewett Particle Accelerators
Middleton An Introduction to Statistical Communication Theory
Morse Vibration and Sound
Morse and Feshbach Methods of Theoretical Physics
Muskat Physical Principles of Oil Production
Present Kinetic Theory of Gases
Read Dislocations in Crystals
Richtmyer, Kennard, and Lauritsen Introduction to Modern Physics
Schiff Quantum Mechanics
Seitz The Modern Theory of Solids
Slater Introduction to Chemical Physics
Slater Quantum Theory of Matter
Slater Quantum Theory of Atomic Structure, Vol. I
Slater Quantum Theory of Atomic Structure, Vol. II
Slater Quantum Theory of Molecules and Solids, Vol. 1
Slater and Frank Electromagnetism
Slater and Frank Introduction to Theoretical Physics
Slater and Frank Mechanics
Smythe Static and Dynamic Electricity
Stratton Electromagnetic Theory
Thorndike Mesons: A Summary of Experimental Facts
Tinkham Group Theory and Quantum Mechanics
Townes and Schawlow Microwave Spectroscopy
White Introduction to Atomic Spectra

The late F . K. Richtmyer was Consulting Editor of the series from its inception in
1929 to his death in 1939. Lee A. DuBridge was Consulting Editor from 1939 to
1946; and G. P. Barnwell from 1947 to 1954.



QUANTUM MECHANICS

LEONARD I. SCHIFF

Professor of Physics
Stanford University

SECOND EDITION

McGRAW-HILL BOOK COMPANY, INC.

New York Toronto

1955

London



QUANTUM MECHANICS

Copyright © 1955 by the McGraw-Hill Book Company, Inc.

Copyright, 1949, by the McGraw-Hill Book Company, Inc. Printed in the
United States of America . All rights reserved . This book, or parts thereof,
may not be reproduced in any form without permission of the publishers.

Library of Congress Catalog Card Number 55-6170

IX

55288

THE MAPLE PREas COMPANY, YORX, PA.



PREFACE

This volume has a threefold purpose : to explain the physical concepts
of quantum mechanics, to describe the mathematical formalism, and to
present illustrative examples of both the ideas and the methods. The
book is intended to serve as a text at the graduate level and also as a
reference book. It is assumed that the reader is reasonably familiar
with atomic structure, classical mechanics, and differential equations.
In addition, he should have had some contact with electromagnetic theory
and, for the latter part of the book, with the special theory of relativity.

The author believes that the analytical methods employed in the book
will satisfy most theoretical physicists even though no attempt is made
to achieve mathematical rigor. For example, there is little or no dis­
cussion of the justification for the interchange of sum, derivative, and
integral operations, or for the use of the 0 function. On the other hand,
the physical reasons for the nature of the results obtained are investigated
wherever possible.

Problems are given at the end of each chapter. They are often used
to illustrate or amplify points discussed in the text. Original theoretical
papers are referred to throughout the book ; the list is representative
rather than exhaustive. Experimental results are , for the most part,
quoted without reference, since the large amount of documentation
required for an adequate survey seems out of place in a book on theoretical
physics. Several other books on quantum mechanics and related sub­
jects are referred to for more detailed discussions of particular topics.

The scope of this volume is best outlined if the book is divided into
three parts. The first three chapters constitute an introduction to
quantum mechanics, in which the physical concepts are discussed and
the Schrodinger wave formalism is established. The detailed treatment
of the wave function (Chap. III) may be omitted in a first reading. The
next eight chapters comprise the central part of the book. This part
presents exact solutions of the wave equation for both energy-level and
collision problems, the Heisenberg matrix formalism and transformation
theory, approximation methods, radiation theory, and some applications
to atomic systems. Since the first eleven chapters correspond to a
typical one-year graduate course, it seemed desirable to include a semi­
classical treatment of electromagnetic radiation in the central part of
the book (Chap. X) even though some of the results are obtained again in
Chap. XIV. The last part of the book corresponds to a short course in
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vi PREFACE

what is often called advanced quantum mechanics. It consists of rela­
tivistic particle theory and an introduction to quantized field theory and
quantum electrodynamics.

Since the preparation of the first edition, there have been no changes
in the fundamental ideas underlying the first 48 sections of the book,
which deal with the quantum mechanics of particles and linear wave
fields. This is not true of the last two sections, which are an introduction
to the quantum mechanics of interacting wave fields. Here the subject
matter has undergone drastic revision with the introduction and success­
ful application of covariant renormalization techniques, especially in
quantum electrodynamics. In spite of this, it was decided after serious
consideration not to alter the presentation in Secs. 49 and 50. This was
partly because a coherent account of covariant field theory would require
a great deal of additional space, and partly because it should at the pres­
ent time be written by someone who has taken an active part in the
development of the subject. Moreover, it was felt that the present
treatment serves a useful purpose in providing the student with a firm
basis for the newer work . .

In the revision , several changes have been made, some of which
describe improvements in calculational methods that have appeared in
the intervening years. The more important additions are a momentum
determination experiment (Sec. 4), the relation between total cross sec­
tion and forward scattered amplitude (Sec. 19), the virial theorem (Sec.
23), definition of angular momentum in terms of infinitesimal rotations
(Sec. 24), Green's function and integral equation for the radial wave func­
tion (Sec. 26), variation principle for the phase shift (Sec. 27), photo­
electric effect and the use of an ingoing spherical wave in the final state
(Sec. 37), and the theory of the effective range in the neutron-proton
system (Sec. 41). The more general discussion of nuclear properties in
Sec. 41 has been considerably shortened. Two of the problems have
been deleted, and seventeen new ones added.

The author owes a particular debt of gratitude to three persons in con­
nection with the appearance of the first edition of this book. He wishes
to express his appreciation to Prof. J. R. Oppenheimer for introducing
him to several of the ideas and examples which helped give the book its
form, to Prof. R. Serber for many discussions of both the conceptual and
formal aspects of quantum mechanics, and to Dr. G. P. Harnwell for
continued encouragement while the book was being written. The author
is also grateful to some of the reviewers of the first edition and to several
of those who have studied and taught from it, for suggestions that were
helpful in the preparation of the revision.

LEONARD 1. SCHIFF
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CHAPTER I

THE PHYSICAL BASIS OF QUANTUM MECHANICS

At the present stage of human knowledge, quantum mechanics can
be regarded as the fundamental theory of atomic phenomena. The
experimental data on which it is based are derived from physical events
that lie almost entirely beyond the range of direct human perception.
It is not surprising, therefore, that the theory embodies physical con­
cepts that are foreign to common daily experience. These concepts did
not appear in the historical development of quantum mechanics, how­
ever, until a quite complete mathematical formalism had been evolved.
The need for quantitative comparison with observation, which is the
ultimate test of any physical theory, in this case led first to the formalism
and only later to its interpretation in physical terms.

It seems desirable in introducing the subject of quantum mechanics to
depart from the historical order and preface the mathematical develop­
ment with a discussion of the physical concepts. In this chapter we first
review briefly the experimental background and the ideas of the old
quantum theory, then discuss the newer physical concepts of uncertainty
and complementarity, and finally lay the groundwork for the formalism
that will be developed in its most familiar form in Chap. II. No attempt
will be made to deduce the structure of the formalism from the funda­
mental experiments; we shall try to make the theoretical development
seem plausible rather than unique. The justification for the theory,
then, will rest on the agreement between deductions made from it and
experiments, and on the simplicity (in principle more than in practice)
and consistency of the formalism.

1. EXPERIMENTAL BACKGROUND

Experimental physics prior to 1900 had demonstrated the existence
of a wide variety of phenomena, which for the most part were believed
to be explicable in terms of what we now call classical theoretical physics.
The motions of mechanical objects were successfully discussed in terms
of Newton's equations on both celestial and terrestrial scales. Appli­
cation of this theory to molecular motions produced useful results in the
kinetic theory of gases, and the discovery of the electron by J. J . Thom­
son in 1897 consisted in showing that it behaved like a Newtonian particle.

1



2 QUANTUM MECHANICS [CHAP. I

The wave nature of light had been strongly suggested by the diffraction
experiments of Young in 1803, and was put on a firmer foundation
by Maxwell's discovery in 1864 of the connection between optical and
electrical phenomena.

Inadequacy of Classical Physics. The difficulties in the understand­
ing of experimental results that remained at the beginning of this century
were largely concerned with the development of a suitable atomic model
and with the late discoveries of X rays and radioactivity. However,
there were also difficulties associated with phenomena that should have
been understood but actually were not: such things as the spectral dis­
tribution of thermal radiation from a black body, the low-temperature
specific heats of solids, and the appearance of only 5 degrees of freedom
in the motion of a free diatomic molecule at ordinary temperatures.

The beginning of an understanding of the second class of difficulties
was made by Planck in 1900, when he was able to explain the black-body
spectrum in terms of the assumed emission and absorption of electro­
magnetic radiation in discrete quanta, each of which contains an amount
of energy E that is equal to the frequency of the radiation II multiplied
by a universal constant h (called Planck's constant):

E = liv (1.1)

This quantum idea was later used by Einstein in accounting for some of
the experimental observations on the photoelectric effect . In this way
the dual character of electromagnetic radiation became established :
it sometimes behaves like a wave motion, and sometimes like a stream of
corpuscular quanta.

At about this time, the existence of discrete values for the measurable
parameters of atomic systems (not only of electromagnetic radiation)
became apparent through Einstein's and Debye's theories of the specific
heats of solids, Ritz's classification of spectral lines, the experiment of
Franck and Hertz on the discrete energy losses of electrons on collision
with atoms, and (somewhat later) the experiment of Stern and Gerlach,
which showed that the component of the magnetic moment of an atom
along an external magnetic field has discrete values.

Summary of Principal Experiments and Inferences. The theoretical
physics of the first quarter of this century thus contained two important
inferences, obtained from the experiments and their interpretations, that
had not existed in 1900: the dual character of electromagnetic radiation,
and the existence of discrete values for physical quantities. The relations
between the principal experimental conclusions and the theoretical
inferences are shown schematically in Table 1; for a more detailed dis-
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cussion and a bibliography, reference should be made to a book on atomic
physics. I

TABLE 1. RELATIONS BETWEEN ExPERIMENTAL INTERPRETATIONS AND THEORETICAL

INFERENCES

. . { ElectromagneticDiffraction (Young 1803, Laue 1912) .
Black-body radiation (Planck 1900)} waves
Photoelectric effect (Einstein 1904) {Electromagnetic
Compton effect (1923) . . . . . . . . . . . . . . . . . . . quanta

Combination principle (Ritz-Rydberg 1908) } ID' t I
Specific heats (Einstein 1907, Debye 1912) iscre e. va ues
Fr k H t . t (1913) .. . . . . . . . . . . . . . . . . for physical

ane - er z exper~men quantities
Stern-Gerlach experiment (1922)

A third theoretical inference appeared in 1924 with the suggestion by
de Broglie that matter also has a dual (particle-like and wave-like)
character; he assumed that the relation between the momentum p of the
particle and the length Xof the corresponding wave is2

h
X = - (1.2)

P

Up to that time all the evidence had indicated that matter was composed
of discrete Newtonian particles; in particular, sharp tracks of charged
particles such as electrons and helium nuclei had been observed in expan­
sion cloud chambers like that invented by C. T. R. Wilson in 1911.
Shortly after this, however, Davisson and Germer (1927) and G. P .
Thomson (1928) independently observed the diffraction of electrons by
crystals, and thus confirmed de Broglie's principal supposition.

2. THE OLD QUANTUM THEORY

What is now called the old quantum theoru" was initiated by the work
of Planck on black-body radiation, and carried farther by Einstein and
Debye. However, it was only after Rutherford's discovery in 1911 that
an atom consists of a small , massive, positively charged nucleus sur­
rounded by electrons, that the theory could be applied to a quantitative
description of atoms.

1 See, for example, F. K. Richtmyer, E . H. Kennard, and T. Lauritsen, " Introduc­
tion to Modern Physics" (McGraw-Hill, New York , 1955); M. Born, "Atomic
Physics" (Hafner, New York, 1951); G. P. Harnwell and W. E. Stephens, "Atomic
Physics" (McGraw-Hill, New York, 1955).

2 Equation (1.2) is also valid for light quanta, as may be seen by dividing both
sides of Eq. (1.1) by the velocity of light c; for a directed beam of light p = Elc and
A = cf v.

3 For a more detailed discussion than is presented in this section, see the books cited
above, and L. Pauling and E. B. Wilson, Jr. , "Introduction to Quantum Mechanics,"
Chap. II (McGraw-Hill, New York, 1935).
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Bohr-Sommerfeld Quantization Rules. The first step in this direc­
tion was taken by Bohr in 1913, when he made two postulates concerning
the electronic or extranuclear structure of an atom. The first of these
was that an atomic system can exist in particular stationary or quantized
states, each of which corresponds to a definite energy of the system.
Transitions from one stationary state to another are accompanied by
the gain or loss, as the case may be, of an amount of energy equal to the
energy difference between the two states; the energy gained or lost
appears as a quantum of electromagnetic radiation, or as internal or
kinetic energy of another system. The second postulate (in agreement
with that of Planck and Einstein) was that a radiation quantum has a
frequency equal to its energy divided by Planck's constant h.

These two postulates by themselves provided some insight into the
Ritz combination principle and the Franck-Hertz experiment. To obtain
specific results for hydrogen, Bohr proposed a simple rule for the selection
of those circular orbits which are to constitute stationary states: the
angular momentum must be an integral multiple of h j27r. A more
general quantization rule was discovered independently by W. Wilson
(1915) and by Sommerfeld (1916), thus making possible the application
of Bohr's postulates to a wider variety of atomic systems. This rule is
applicable to Hamiltonian systems in which the coordinates are cyclic
variables, and states that the integral of each canonical momentum with
respect to its coordinate over a cycle of its motion must be an integral
multiple of h. The rule was applied with considerable success to the
computation of the fine structure of hydrogen, the spectra of diatomic
molecules, and other problems.

Practical Difficulties. The old quantum theory encountered practical
difficulties in several different respects. It could not be applied to
aperiodic systems, it provided only a qualitative and incomplete treat­
ment of the intensities of spectral lines, and it did not give a satisfactory
account of the dispersion of light. Moreover, improvements in experi­
mental techniques soon showed that there were problems, such as the
rotational spectra of some diatomic molecules, to which the theory gave
unambiguous but incorrect answers.

The correspondence principle was introduced by Bohr in 1923 in an
effort to make use of the classical theory as a limiting case to infer some
properties of atomic systems, especially the intensities of spectral lines.
Although much was achieved in this way, it was clear in the early 1920's
that the quantum theory as it then existed was unsatisfactory.

Conceptual Difficulties. Quite apart from the practical difficulties
outlined above, the old quantum theory failed to give a conceptually
satisfactory account of the fundamental phenomena. It was difficult to



SEC. 2] THE PHYSICAL BASIS OF QUANTUM MECHANICS 5

understand why the electrostatic interaction between a hydrogen nucleus
and an electron should be effective when the ability of the accelerated
electron to emit electromagnetic radiation disappeared in a stationary
state. The mechanism of emission and absorption of radiation in transi­
tions between stationary states was obscure. The quantization rules
were arbitrary even when they were most effective. And the assumption
of a dual character for light (particle-like on emission and absorption
and wave-like in transit) seemed to be self-contradictory.

In order to illustrate the conceptual difficulties and the way in which
they are dealt with by the new quantum mechanics, we consider in some
detail a simple diffraction experiment, which is illustrated schematically
in Fig. 1. A light source S illuminates a diaphragm A in which two slits

@
S

A B
FIG. 1. A diffr action experiment in which light from S passes through the two slits in A to
form a diffraction pattern at B.

are cut . A diffraction pattern appears at a photosensitive screen B,
and the ejected photoelectrons are most numerous at the diffraction
peaks. Here we have the radiation behaving as a wave during its passage
from source through slits to screen, but behaving as a stream of light
quanta or photons when it ejects electrons from B. We now know that a
similar experiment could be set up with matter instead of radiation.
The diffraction pattern of electrons scattered from a crystal (analogous
to the slits in A) may be detected as a distribution of electron tracks in a
Wilson cloud chamber (analogous to the screen B), so that the wave and
particle aspects of matter appear in the same experiment.

In the situation illustrated in Fig. 1, we might at first suppose that
the diffraction pattern is due to an interference between different photons
passing through the two slits, thus explaining the observations entirely
in terms of the particle picture. That this is not a sufficient explanation
may be shown by decreasing the intensity of the light until an average of
only one photon at a time is in transit between source and screen. The
diffraction pattern still appears as the distribution of the large number of
photons accumulated over a sufficiently long time. Thus we must con-
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elude that diffraction is a statistical property of a single photon, and does
not involve an interaction between photons. From the point of view of
the particle picture, we may then ask how it is that a stream of inde­
pendent photons, each of which presumably can go through only one of
the slits, can produce a diffraction pattern that appears only when both
slits are open. Or to put the question in another way, how can the
presence of a slit through which a photon does not go prevent that photon
from reaching a part of the screen it would be likely to reach if that slit
were closed?

Quantum-mechanical Viewpoint. In this question is implicit the
assumption that the photon actually does go through a particular one
of the two slits. This assumption is natural from the point of view of the
classical theory or the old quantum theory since these theories regard a
photon or other particle as having a definite and determinable position
at each instant of time. The quantum mechanics, however, discards this
assumption, and asserts instead that the position of a photon has meaning
only when the experiment includes a position determination. Moreover,
this part of the experiment will affect the remainder of the experiment
and cannot be considered separately. Thus from the point of view of
quantum mechanics, the question asked in the last paragraph is without
meaning, since it assumes that the photon goes through a particular one
of the two slits (thus making it possible to close the other slit) when there
is no provision in the experiment for determining through which slit the
photon actually goes.

The quantum mechanics resolves the situation by telling us that the
diffraction pattern is destroyed if a sufficiently careful attempt is made
to determine through which slit each photon passes (see Sec. 4). We
must then be prepared to forego the customary mental picture of a
photon (or an electron) as a classical particle that has at each instant of
time a position that can be determined without damage to diffraction
patterns of the type discussed here. Thus classical causality, which
requires that the motion of a particle at any time be uniquely determin­
able from its motion at an earlier time, must also be abandoned. The
new theory that is forced upon us in this way is so successful in other
respects as well that, at the present state of knowledge, we must regard
such classically incomplete descriptions as a fundamental property of
nature.

S. UNCERTAINTY AND COMPLEMENTARITY

Before presenting a more quantitative discussion of the diffraction
experiment outlined in Sec. 2, we consider two principles that express
in qualitative terms the physical content of the theory of quantum
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mechanics. We restrict ourselves here to a discussion of their meaning,
and give arguments for their validity in Sec. 4.

Uncertainty Principle. The first of these is the uncertainty principle,
developed by Heisenberg! in 1927. According to this principle, it is
impossible to specify precisely and simultaneously the values of both
members of particular pairs of physical variables that describe the behav­
ior of an atomic system. The members of these pairs of variables are
canonically conjugate to each other in the Hamiltonian sense : a rectangu­
lar coordinate x of a particle and the corresponding component of momen­
tum p"" a component J z of angular momentum of a particle and its
angular position ep in the perpendicular (xy) plane, the energy E of a par­
ticle and the time t at which it is measured, etc. Put more quantitatively,
the uncertainty principle states that the order of magnitude of the
product of the uncertainties in the knowledge of the two variables must
be at least Planck's constant h divided by 211" (h == h/211" = 1.054 X 10-27

erg-second)," so that

Ax· Ap", ?; h
Aep ' AJz ~ h
M·AE ?; h

(3.1)
(3.2)
(3.3)

The relation (3.1) means that a component of the momentum of a
particle cannot be precisely specified without our loss of all knowledge
of the corresponding component of its position at that time, that a particle
cannot be precisely localized in a particular direction without our loss of
all knowledge of its momentum component in that direction, and that in
intermediate cases the product of the uncertainties of the simultaneously
measurable values of corresponding position and momentum components
is at least of the order of magnitude of h. Similarly, Eq. (3.2) means,
for example, that the precise measurement of the angular position of a
particle in an orbit carries with it the loss at that time of all knowledge
of the component of angular momentum perpendicular to the plane of
the orbit. Equation (3.3) means that an energy determination that
has an accuracy AE must occupy at least a time interval At "-' h/AE;
thus if a system maintains a particular state of motion not longer than
a time At, the energy of the system in that state is uncertain by at least
the amount AE "-' h/At, since At is the longest time interval available for
the energy determination. The smallness of h makes the uncertainty
principle of interest primarily in connection with systems of atomic size.

1 W. Heisenberg, Zeits. f. Physik, 43, 172 (1927) .
I J. W. M. DuMond and E. R. Cohen, Rev. Mod. Phys ., 26, 691 (1953).
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As we shall see in Sec. 12, the uncertainty principle may be obtained
directly from the mathematical formulation of the theory, and this is
actually the way in which it was first obtained by Heisenberg.

Complementarity Principle. In order to understand the implications
of the uncertainty principle in more physical terms, Bohr! introduced the
complementarity principle in 1928. This principle states that atomic
phenomena cannot be described with the completeness demanded by
classical dynamics; some of the elements that complement each other to
make up a complete classical description are actually mutually exclusive,
and these complementary elements are all necessary for the description of
various aspects of the phenomena. From the point of view of the experi­
menter, the complementarity principle asserts that the physical apparatus
available to him has such properties that more precise measurements
than those indicated by the uncertainty principle cannot be made.

This is not to be regarded as a deficiency of the experimenter or of his
techniques. It is rather a law of nature that, whenever an attempt is
made to measure precisely one of the pair of canonical variables, the other
is changed by an amount that cannot be too closely calculated without
interfering with the primary attempt. This is fundamentally different
from the classical situation, in which a measurement also disturbs the
system that is under observation, but the amount of the disturbance can
be calculated and taken into account. Thus the complementarity
principle typifies the fundamental limitations on the classical concept
that the behavior of atomic systems can be described independently
of the means by which they are observed.

Limitations on Experiment. In the atomic field, we must choose
between various experimental arrangements, each designed to measure
the two members of a pair of canonical variables with different degrees
of precision that are compatible with the uncertainty relations. In
particular, there are two extreme arrangements, each of which measures
one member of the pair with great precision. According to classical
theory, these extreme experimental arrangements complement each other;
the results of both may be obtained at once and are necessary to supply
a complete classical description of the system. In quantum mechanics,
however, the extreme complementary experiments are mutually exclusive
and cannot be performed together.

It is in this sense that the classical concept of causality disappears in
the atomic field. There is causality in so far as the quantum laws that
describe the behavior of atoms are perfectly definite; there is not, how­
ever, a causal relationship between successive configurations of an

1 N. Bohr, Nature, 121, 580 (1928); "Atomic Theory and the Description of
1'\a.ture," especially Part II (Cambridge, London, 1934) j Phv8. tu«, 48, 696 (1935).
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atomic system when we attempt to describe these configurations in clas­
sical terms.

4. DISCUSSION OF MEASUREMENT
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-Q--FIG. 2. An experiment for the
localization of a particle P by
means of one of the scattered
quanta Q. which is focused by the
lens L to form an image on the
screen S.

(4.1)

In this section we consider three fairly typical measurement experi­
ments from the point of view of the new quantum mechanics. The first
two are designed to determine the position and momentum of a particle
by optical methods; the third is the diffraction experiment in Sec. 2.

Localization Experiment. We consider a particular example of the
validity of the uncertainty principle, making use of a position-momentum
determination that is typical of a number of somewhat similar experi­
ments that have been discussed in connection with measurements on
particles and radiation fields.' We shall
consider here the accuracy with which the x
components of the position and momentum
vectors of a material particle can be deter­
mined at the same time by observing the
particle through a rather idealized micro­
scope by means of scattered light.

The best resolving power of the lens L
shown in Fig . 2 is known (either experi­
mentally or from the theory of wave optics)
to provide an accuracy

X
Ax I"J -.­

sin E

in a position determination, where X is the
wave length of the radiation that enters the
lens, and E is the half angle subtended at the
particle P by the lens. For simplicity, we consider the case in which
only one of the light quanta Q is scattered onto the screen S. Because of
the finite aperture of the lens, the precise direction in which the photon is
scattered into the lens is not known . Then since Eq . (1.2) states that the
momentum of the photon after it is scattered is h1A,2 the uncertainty in
the x component of its momentum is approximately (hIX) sin E.

The x components of the momenta of the photon and the particle
can be accurately known before the scattering takes place, since there is
no need then to know the x components of their positions. Also, if our
position measurement refers to the displacement of the particle with
respect to the microscope, there is no reason why the total momentum of

1 See, for example, W. Heisenberg, "The Physical Principles of the Quantum
Theory," Chaps. II, III (University of Chicago Press, Chicago, 1930) i D. Bohm,
"Quantum Theory," Chap. 5 (Prentice-Hall, New York, 1951).

2 See footnote 2, page 3.
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the system (particle, photon, and microscope) need be altered during the
scattering. Then the uncertainty t1p", in the x component of the momen­
tum of the particle after the scattering is equal to the corresponding
uncertainty for the photon.

h .
t1p",,....,,,}.: sin E (4.2)

If we combine Eq. (4.1) with Eq. (4.2), we see that just after the scatter­
ing process ,

(4.3)

is the best that we can do for the particle. Thus a realistic accounting
of the properties of the radiation gives a result in agreement with the
uncertainty relation (3.1) for the particle.

This experiment may also be considered from the point of view of
the complementarity principle. The complementary arrangements differ
in the choice of wave length of the observed radiation : sufficiently small
A permits an accurate determination of the position of the particle just
after the scattering process, and large A of its momentum.

Momentum Determination Experiment. The experiment just dis­
cussed assumes that the momentum of the particle is accurately known
before the measurement takes place, and then measures the position. It
is found that the measurement not only gives a somewhat inaccurate
position determination but also introduces an uncertainty into the
momentum.

We now consider a different experiment in which the position is
accurately known at the beginning, and the momentum is measured.
We shall see that the measurement not only gives a somewhat inaccurate
momentum determination but also introduces an uncertainty into the
position. We assume that the particle is an atom in an excited state,
which will give off a photon that has the frequency Vo if the atom is at
rest . Because of the Doppler effect, motion of the atom toward the
observer with speed v means that the observed frequency is given approx­
imately by

v ~ Vo (1 +~) (4.4)

so that

v"""" c (:0 - 1) (4.5)

Accurate measurement of the momentum mv by measurement of the fre­
quency v requires a relatively long time T; the minimum error in the fre­
quency measurement can be shown to be

1
t1v ,....", - (4.6)

T
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Now the instant at which the photon is emitted is uncertain by T; at
this instant, the momentum of the atom decreases by hille, and its veloc­
ity decreases by hvfmc. This makes the subsequent position of the atom
uncertain by the amount

hvr
ilx =

me
(4.7;

since the later the photon is emitted, the longer the atom has the higher
velocity and the farther it will have traveled. This position uncertainty
arises entirely because of the finiteness of T . If T were zero, and we knew
the velocity and the velocity change on emission of the photon, we would
know where the atom is at each instant; it is because T is finite that we
do not know when the velocity changed, and hence where the atom is at
later times.

The momentum uncertainty is obtained with the help of Eqs. (4.5)
and (4.6) :

,...." meilll me
ilpz; = milv = -- "'-' -

110 1I0T
(4.8)

In the nonrelativistic case considered here , vic « 1, and Eq. (4.4) shows
that II""'" 110. Then combination of Eqs. (4.7) and (4.8) leads to the
minimum uncertainty relation (3.1).

Analysis of Diffraction Experiment. Finally, we analyze the diffrac­
tion experiment of Sec. 2 from the point of view of the complementarity
principle, assuming that the uncertainty principle is valid. Two con­
trasting arrangements, which would complement each other classically,
are considered here. One of these is illustrated in Fig . 1. Since it is
assumed that the distance from A to B is large compared to the distance
between the two slits, and this in turn is large compared to the wave
length of the light, the distribution of intensity in the diffraction pattern
determines to good approximation the angular distribution of the photons
leaving the slits in A, and hence determines the distribution of the
y components- of momentum of the photons beyond A. The second
arrangement, shown in Fig . 3, determines through which of the two slits
each photon passes, and hence provides information on the y coordinates
of the photons.

In the second arrangement each photon registers itself as it passes
through a slit by bouncing off one of a number of indicators C placed
close to A , and giving up to it a y component of momentum that may be
uncertain by the amount ilpJl ' If we do not want the resultant diffraction
pattern of many such photons to be destroyed by these events, the
uncertainty in pJl for a particular photon produced by its encounter with
an indicator must be substantially smaller .than would be required to
throw the photon from a maximum of the diffraction pattern at B into a
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neighboring minimum. With a photon of momentum p,., this requires
that

ApJl « (Jp,. (4.9)

For the simple case in which R» a »X, the angle (J is known experi­
mentally (or from the theory of wave optics) to be given by

(J = ;a (4.10)

in terms of the optical wave length Xand the distance a between the slits.
At the same time, we have not learned through which slit this photon

@

S

lB
FIG. 3. The experimental arrangement of Fig. 1, modified by t he addition of photon
indicators C.

passed unless the uncertainty Ay of the y position of the indicator that
recoiled is less than half the distance between slits.

Ay < ja (4.11)

It then follows from Eqs. (4.9), (4.10), (4.11), and (1.2) that the
requirement that we be able to determine through which slit each photon
passes without destroying the diffraction pattern at B is equivalent to the
requirement that

Ay . ApJl «ih (4.12)

for each indicator that is used. Since Eq . (4.12) is in disagreement with
the uncertainty relation (3.1), we may conclude that it is impossible
to determine through which slits the photons pass without destroying the
diffraction pattern.

Discussion of Diffraction Experiment. The situation just analyzed
shows the intimate connection between the theoretical principles of
uncertainty and complementarity and the experimental observations
related to localization and diffraction. It provides an explicit demon­
stration of the validity of the complementarity principle (represented in
this case by the choice between the mutually exclusive but classically
complementary experiments for observing the diffraction and for localiz­
ing the photon) when taken in conjunction with the experimentally
observable properties of matter and radiation. For it shows that no
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fundamental difficulty need be encountered with the photon picture so
long as we do not insist on the degree of detail in describing the situation
that is entailed by classical concepts.

It is, of course, still necessary to ascribe unfamiliar properties to the
photons in order to explain the experimental observations; the foregoing
discussion does not show how an individual photon can interfere with
itself to produce the diffraction pattern. 1 Nor on the other hand does
it show how an electromagnetic wave can eject photoelectrons from the
screen. 2 Such demonstrations lie beyond the scope of the qualitative
discussion of this chapter, and require the use of the mathematical for­
malism of quantum mechanics. However, analysis of the diffraction
experiment from the point of view of quantum mechanics removes the
difficulty encountered in Sec. 2: the diffraction pattern disappears when­
ever a successful attempt is made to determine through which slit each
photon passes.

6. WAVE PACKETS IN SPACE AND TIME

The relation (1.2) between momentum and wave length, which is
known experimentally to be valid for both photons and particles, suggests
that it might be possible to use concentrated bunches of waves to describe
localized particles of matter and quanta of radiation. To fix our ideas,
we shall consider a wave amplitude or wave function that depends on the
space coordinates X,Y,z and the time t. This quantity v is assumed to
have three basic properties. First, it can interfere with itself, so that it
can account for the results of diffraction experiments. Second, it is large
in magnitude where the particle or photon is likely to be and small else­
where. And third, '" will be regarded as describing the behavior of a
single particle or photon, not the statistical distribution of a number of
such quanta. This last is an essential requirement in view of the conclu­
sion of Sec. 2 that a single quantum of matter or radiation interferes
with itself rather than with other quanta. In this section we shall con­
fine ourselves to a qualitative discussion of the one-dimensional case, in
which the wave function v depends only on x and t, and leave the quan­
titative development for Chap. II.

Space Packets. A typical form for a concentrated bunch of waves,
which we shall call a wave packet, is shown in Fig. 4a, where "'(x,t) is
plotted against x for a particular time t. The average wave length
Ao and the approximate extension .6.x of the packet are indicated in the
diagram. The Fourier integral analysis! of", with respect to x is now of

1 Chapter VI shows the equivalence of the wave theory of Chap. II and the general
quantum-mechanical theory of particles, so far as matter is concerned.

2 Chapter XIV shows how the theory of the electromagnetic field can be modified
to include quantum effects.

3 See, for example, L. A. Pipes, "Applied Mathematics for Engineers and Physi­
cists," Chap. III (McGraw-Hill, New York, 1946).



14 QUANTUM MECHANICS [CHAP. I

interest since it shows how 1/1 may be built up out of continuous harmonic
waves of various lengths. This is indicated in Fig. 4b, in which the
Fourier transform of 1/1 is plotted schematically against the propagation
number k = 21l/A.

Fourier
transform

of,,/,

~--_----- Ax----------~

(a) (bJ
FIG. 4. Plots of a typical wave packet ",ex) and its Fourier transform.

It can be shown by standard mathematical methods that
1

Ak ~ Ax (5.1)

where Ak is the approximate spread in propagation number associated
with the packet. If now we correlate wave length and momentum as in
Eq. (1.2) we see that the spread Ak corresponds to a momentun spread

Ap = A (~) = ~ M = h . f:Jr (5.2)

Combination of Eq. (5.1) with Eq. (5.2) gives

Ax . t:.p ~ h (5.3)

which agrees with the uncertainty relation (3.1). Thus the uncertainty
principle for position and momentum of a quantum of matter or radiation
follows directly from the wave-packet description and Eq. (1.2).

Time Packets. In analogous fashion, we may examine the depend­
ence of 1/1 on the time t for a point x that is typical of the packet, and
obtain a time Fourier transform that shows how 1/1 can be built up out of
continuous harmonic waves of various frequencies v. In this case the
relation between the spread in time of 1/1 and the spread in frequency of
the time Fourier transform of 1/1 is

At . t:.v ~ ~ (5.4)

Equation (5.4) may be brought into correspondence with the uncer­
tainty principle by associating the energy E of a quantum with the fre­
quency of the wave that represents it in a manner similar to the
association of momentum" with wave length given by Eq. (1.2). We
shall make this connection through Eq. (1.1) :
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E = hv

15

(5.5)

,(5.6)
m

which may be inferred in the case of photons from the experimental
discussion of Sec. 1. Combination of Eq. (5.4) with Eq. (5.5) then gives
the uncertainty relation (3.3).

The assumption that Eq. (5.5) is valid for matter as well as for radia­
tion may be made plausible by computing the group velocity! of a wave
packet that represents a nonrelativistic particle of mass m, kinetic energy
E, and momentum p for which Xand v are given by Eqs. (1.2) and (5.5),
respectively. The group velocity, which is the velocity of the center of
the packet, is equal to

dv dE d(p2j 2m) = 1!.
d(l jX) = dp = dp

in agreement with the classical expression for the velocity. This shows
that with Eq. (5.5), the wave-packet description of the motion of a
particle agrees with the classical description when the circumstances are
such that we can ignore the size and internal structure of the packet.

Wave Formalism. We see then that quanta of matter or radiation
can be represented in agreement with the uncertainty principle by wave
packets that may be superposed to produce interference and whose
magnitudes give a measure of likelihood of location, provided that use is
made of the experimentally inferred relations (1.2) and (5.5). It is then
possible to set up a quantitative formalism based on the mathematical
analysis of wave motion. This will be done for matter in Chap. II, using
the physical principles outlined in this chapter as a guide, and requiring
always that the result of any calculation reduce to the result of the cor­
responding classical calculation in the appropriate limit. This require­
ment is a way of stating Bohr's correspondence principle, which was
mentioned in Sec. 2. At the present time, when a reasonably complete
quantum theory exists, the correspondence principle is mainly of interest
in assuring that the formalism has the proper classical limit, although it
may also be of heuristic value in performing new calculations or extending
the boundaries of the theory.

It might at first be thought that the exclusive use of a wave formalism
for the description of matter in the next four chapters would conflict
with the observed particle-wave duality discussed in Sec. 1 and hence
disagree with the complementarity principle. This is not the case, how­
ever, for the formalism actually provides an understanding of all of the
measurable properties of matter, including, for example, the production of
particle tracks in a cloud chamber. Thus it will be shown in Sec. 30
that, if a single material particle is represented by a wave function of
definite momentum and hence completely undetermined position, the

I M. Born, 07'. cit., pp. 88, 330.
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probability of ionization of two or more molecules of the cloud-chamber
gas is negligibly small unless the molecules lie very nearly along a line
parallel to the momentum vector.

It must be emphasized that these remarks are true only if a wave
function of the type described in this section is always interpreted as
representing just one particle of matter, and not the statistical distribu­
tion of a number of particles. When we wish to describe more than one
particle, we must make use of a wave function that depends on the coor­
dinates of all of them. The analogous analytical description of light
quanta, which will be taken up quantitatively in Chap. XIV, makes use
of a somewhat different approach. This is mainly because photons
(unlike particles as we consider them here) can be emitted or absorbed
through interaction with matter, so that their number is not fixed. Thus
a photon wave function would have to depend on a variable number of
parameters, and it is desirable to avoid such a situation.

Problems

1. Give a brief description of each of the experiments referred to in Table 1,
together with their interpretations.

2. Describe briefly the Davisson-Germer and Thomson experiments, and the use
of the Wilson cloud chamber for the observation of particle tracks.

3. A beam of silver atoms for a Stern-Gerlach experiment is produced by collimat­
ing atoms that vaporize from silver held in a furnace at 1200°C. If the beam travels
I meter, use the uncertainty relation to find the order of magnitude of the smallest
spot that can be obtained at the detector.

4. Show that if a component of angular momentum of the electron of a hydrogen
atom is known to be 2h within 5 per cent error, its angular orbital position in the plane
perpendicular to that component cannot be specified at all.

6. A I-ounce rifle bullet takes 0.5 second to reach its target. Regarding the bullet
as a mass point, and neglecting effects of air resistance and earth motion, find the
order of magnitude of the spread of successive shots at the target under optimum
conditions of aiming and firing.

6. A perfectly elastic ping-pong ball is dropped in vacuum from a height equal to
ten times its radius onto a perfectly elastic fixed sphere of the same radius. Neglecting
effects due to earth motion, estimate the largest number of bounces against the fixed
sphere that the ball can be expected to make under optimum conditions of release.

7. A beam of monoenergetic electrons is used to excite a particular level of an
atom in a Franck-Hertz experiment. If this level is of short duration, owing to radia­
tion back to the ground state, show that the inelastically scattered electrons that
have lost energy to produce the excited level will not all be expected to have the same
final energy. If the excited level lasts about 10-10 second , what is the order of magni­
tude of the electron energy spread, measured in electron-volts?

8. Discuss any connections you can think of that exist between the three uncer­
tainty relations (3.1), (3.2), and (3.3).

9. Derive the expression for the group velocity that is given as the left side of
Eq. (5.6).



CHAPTER II

THE SCHRODINGER WAVE EQUATION

This and the next several chapters are concerned with the non­
relativistic motion of a particle in a force field that can be represented by
a potential energy . A quantitative description of the motion in terms of
a differential equation, the Schrodinger waveequation, is developed in this
chapter, and applied to a simple one-dimensional problem. Various
assumptions have to be made as regards the structure of the wave equa­
tion, the boundary and continuity conditions on its solutions, and the
physical meaning of these solutions. These assumptions are given a high
degree of plausibility in this chapter and the next by relating them to
experimental results, mainly those that deal with the diffraction of
material particles and with the existence of a classical limit to the quan­
tum mechanics. However, no attempt is made to derive the formalism
uniquely from a consideration of the experiments. The definitive test
of the theory must, of course, be its internal consistency and the success
with which deductions from it agree with particular experimental meas­
urements; some examples will be worked out in Chaps. IV and V.

6. DEVELOPMENT OF THE WAVE EQUATION

The form of the Schrodinger wave equation is obtained in this section
by generalizing the properties of the wave amplitude of Sec. 5. The
remainder of this chapter presents a discussion of some of the properties
of the equation and its solutions.

Traveling Harmonic Waves. The first task is to develop in more
quantitative fashion the properties of the one-dimensional wave function
1/;(x,t) that was discussed qualitatively in Sec. 5. It was shown there that
for a continuous traveling harmonic wave, the wave length and momen­
tum are related by Eq. (1.2) and the energy and frequency by Eq. (5.5).
We rewrite these two equations in terms of the universal constant
h = h/27r:

p = hk,

E = hw,

k = 27r
x

W = 27rv

(6.1)

(6.2)

A wave function 1/;(x,t) that represents a particle of completely unde­
termined position traveling in the positive x direction with precisely

17
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known momentum p and kinetic energy E, would then be expected to
have one of the forms

cos (kx - wt), sin (kx - wt), ei(h-wl), e-i(kz-wl) (6.3)

or some linear combination of them. This follows from diffraction experi­
ments like those of Davisson and Germer and of Thomson (see Sec. 1),
and from the requirement that a wave packet of approximately the
propagation number k and angular frequency w has a group velocity equal
to that of a classical free particle of momentum p and energy E [see Eq.
(5.6)].

Need for a Wave Equation. In order to go beyond the very simplest
problem of a continuous harmonic wave, it is very desirable to have an
equation of which both the harmonic waves and more complicated waves
are solutions. An example from a more familiar field of physics should
help to clarify this point. In the case of three-dimensional sound waves
in a gas, it is possible to obtain a solution of the problem of the scattering
of sound by a rigid sphere by superposing plane harmonic waves traveling
in various directions. But it is far simpler to solve the differential
equation for sound waves directly in spherical polar coordinates. If the
temperature of the gas changes from point to point, no progress can be
made in the general case without such a differential equation. The cor­
rect underlying equation for sound waves can be found from direct con­
sideration of the mechanical properties of the gas. While this is not
the case with the equation of which the wave functions of Sec. 5 are solu­
tions, it is no less imperative to find the form of the equation. The need
for this becomes more evident when the wave function is to describe the
motion of a particle under the influence of external forces; this situation
turns out to be analogous to the propagation of sound waves in an
inhomogeneous gas. We shall, therefore, find an equation for y" and
having found it, shall regard it as a more fundamental attribute of the
wave functions than the harmonic forms (6.3).

The equation must have two basic properties. First, it must be
linear, in order that solutions of it can be superposed to produce inter­
ference effects (in the three-dimensional case) and to permit the con­
struction of wave packets. And second, the coefficients of the equation
must involve only constants such as h and the mass and charge of the
particle, and not the parameters of a particular kind of motion of the
particle (momentum, energy, propagation number, and frequency) .
The reason for the latter requirement is that we shall want to leave open
the possibility of superposing solutions that belong to different values of
these parameters; this means that such a more general wave function
cannot be a solution of an equation that involves the parameters in its
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structure. Since differential equations are the easiest to handle, it is
worth while to try this type first, and it turns out that the requirements
can be met by a differential equation. .

With all these considerations in mind, we look first at the most familiar
one-dimensional wave equation, that which describes the motion of
transverse waves on a string or plane sound waves in a gas:

(6.4)

where "I is the square of the wave velocity. Substitution of the forms
(6.3) into Eq . (6.4) shows that each of the four harmonic solutions, and
hence any linear combination of them, satisfies this differential equation,
if and only if we put

",2 E2 p2

"I = k 2 = p2 = 4m2 (6.5)

where m is the mass of the particle that is to be described by Eq. (6.4).
Because of the structure of Eq. (6.5) it is apparent that the coefficient "I

that appears in Eq. (6.4) involves the parameters of the motion (E or p);
we therefore discard this differential equation.

The One-dimensional Wave Equation. In looking further for a suit­
able equation, it is helpful to note that differentiation with respect to x
of wave functions like those of (6.3) has the general effect of multiplica­
tion of the function by k (and sometimes also interchanging sine and
cosine), while differentiation with respect to t has the general effect of
multiplication by e. Then the relation E = p2/ 2m, which is equivalent
to the relation '" = hk2/ 2m, suggests that the differential equation for
which we are looking contains a first derivative with respect to t and a
second derivative with respect to x.

(6.6)

Substitution shows that the first two of the wave functions (6.3) are not
solutions of Eq. (6.6), but that either of the last two may be (but not both
at once) if the constant "I is suitably chosen. In particular, if we choose

i", ihE ih
"1=-=-=-

k 2 p2 2m (6.7)

then the third of the wave functions (6.3) satisfies Eq. (6.6). Moreover,
the value of "I given by Eq. (6.7) involves only the constants hand m.

We are thus led to the one-dimensional form of the Schrodinger! wave
1 E . Schrodinger, Ann. d. Physik, 79, 361, 489 (1926); 81, 109 (1926). The present

treatment is somewhat different from that originally given by Schrodinger.
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equation for a free particle of mass m, which from Eqs. (6.6) and (6.7)
may be written

(6.8)

The particular form in which Eq. (6.8) is written is significant in so far
as its harmonic solution, the third of the wave functions (6.3), makes
the left side E1/I and the right side (p2 /2m)1/I . The fact that the solution
ei(kx-",O is complex is not in itself a defect of the formalism. We shall
have to be certain that all predicted results of possible physical observa­
tions are expressible in terms of real numbers, and this will supply a
condition on the detailed interpretation of 1/1.

Extension to Three Dimensions. The foregoing one-dimensional
treatment is readily extended to three dimensions. It is natural to
rewrite Eq. (6.1) as

p = hk,
27l"

k = Ikl = T (6.9)

where k is called the propagation vector. Similarly, the third of the wave
functions (6.3) becomes

exp riCk . r - wt)] (6.10)

(6.11)

where r is the position vector for the particle. Then by an obvious
extension of the argument that led up to Eq. (6.8), it is seen that the
three-dimensional Schrodinger equation for a free particle that is repre­
sented by the wave function 1/I(r,t) is

'h a1/l = _.!!!- V2.l,
~ at 2m v-

A comparison of Eqs. (6.9), (6.10), (6.11), and the classical energy
equation

E = E.
2m

(6.12)

suggests that, at least for a free particle, the energy and momentum can
be represented by differential operators that act on the wave function 1/1.

E ~ ih :t' p~ - ih grad (6.13)

The development of Sees. 7, 8, 10, and 11 will show that these are also
valid representations when the particle is not free.

Inclusion of Forces. The next problem is to extend the free-particle
wave equation (6.11) so that it includes the effects of external forces that
may act on the particle. We shall assume for the present that these
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forces are of such a nature (electrostatic, gravitational, possibly nuclear)
that they can be combined into a single force F that is derivable from a
potential energy V.

F(r,t) = - grad V(r,t) (6.14)

Just as the classical relation between energy and momentum is used above
to infer the structure of Eq. (6.11), so it is desirable now to start from the
corresponding classical relation that includes external forces. This is
simply expressed in terms of the potential energy

E = R.:. + VCr t)
2m '

(6.15)

where E is now the total energy, and the first and second terms on the
right side of Eq. (6.15) are the kinetic and potential energies of the
particle, respectively.

Since V does not depend on p or E, Eqs. (6.15) and (6.13) suggest that
Eq. (6.11) be generalized into

G,p h2

ih at = - 2m ,\12,p + V(r,t)1/I (6.16)

This is the Sehrodinger wave equation that describes the motion of a
particle of mass m in a iorce field given by Eq. (6.i4) .1 White the intro­
duction of Eq. (6.16) cannot claim as high a degree of plausibility as the
derivation of the free-particle equation (6.11), the further discussion
of the next section should make it more convincing. It is, of course, the
agreement of solutions of Eq. (6.16) with experiment in particular cases
that eventually demonstrates the validity and usefulness of this wave
equation.

7. INTERPRETATION OF THE WAVE FUNCTION

The wave function ,p(r,t), which is a solution of the wave equation
(6.16), is now assumed to provide a quantum-mechanically complete
description of the behavior of a particle of mass m with the potential
energy V(r,t), and hence is analogous to the classical trajectory ret).
Thus far, the only interpretative guide available to us is that the wave
function be large where the particle is likely to be and small elsewhere .
This has to be supplemented with more detailed statements that enable
us to get out of 1/1 the maximum amount of information permitted by
nature, as was discussed in Sec. 3. As with the structure of the wave
equation, the correctness of our interpretation of the wave function must
be judged by logical consistency and appeal to experimental results.

1 The development of the wave function in time can also be related to integrals over
all possible paths of the particle; see R. P. Feynman, Rell. Mod. Ph1/B., ~O, 367 (1948).
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Statistical Interpretation. The phrase" likely to be" in the preceding
paragraph, together with the discussion of Sec. 3, indicates the need for
interpreting y; in statistical terms. We can imagine a very large number
of identical, independent, nonoverlapping regions of space, each large
enough to contain all the physically interesting features of the motion,
in each of which the behavior of a particle with the potential energy
V(r,t) is described by the same wave function y;(r,t); in each case r is
referred to the origin of the particular region . We then make the assump­
tion, due to Bornt, that the numerical result of the measurement at a
particular time t (in so far as the time at which the measurement is made
can be specified) of any physically meaningful quantity, such as position,
momentum, or energy, will in general not be the same for all the regions.
Rather, therewill be a distribution of these numbers that can be described
by a. probability function.

For example, we have seen in Sec. 5 that the result of a position deter­
mination is to be regarded as uncertain by an amount of the order of the
linear dimensions of the wave function. It is natural therefore to regard
y; as a measure of the probability of finding a particle at a particular
position with respect to the origin of its region. However, a probability
must be real and nonnegative, whereas y; is complex in general. We
therefore assume that the product of y; and its complex conjugate If; is
the position probability density.

P(r,t) = 1y;(r,t)j2 (7.1)

This means that P(r,t)dxdydz is to be the probability of finding a particle
in its volume element dxdydz about its point r at the time t, when a large
number of precise position measurements are made on independent
particles each of which is described by the one-particle wave function
Y;(r,t).

Normalization of y;. The probability of finding the particle some­
where in the region must be unity, so that Eq. (7.1) implies that the wave
function is normalized:

fly;(r,t)j2dr = 1 (7.2)

where the integral extends over the entire region; here dr is the volume
element dxdydz. If y; is a wave packet of the type discussed in Sec. 5,
the integral in Eq. (7.2) converges, and the numerical coefficient of y; may
be adjusted so that the integral is unity; such normalization does not of
course change the fact that y; is a solution of Eq. (6.16), which is homo­
geneous in y;. There are, however, wave functions like that given in
Eq. (6.10) for which the integral in Eq. (7.2) does not converge if taken
over an infinite volume. Such wave functions require special considera-

I M. Born, Zeits. f. Physik, 87, 863 (1926); Nature, 119, 354 (1927).
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tion, and will be discussed further in Sees. 10 and 11. For the present,
we may think of the region of space in which such a wave function is
defined as being arbitrarily large, but finite; then the integral in Eq. (7.2)
is over the finite volume of this region and converges, so that normaliza­
tion is always possible .

The coefficient of if; that normalizes it must be independent of the
time in order that if; may satisfy the wave equation (6.16). Thus if
Eq. (7.2) is satisfied at one instant of time, the interpretation of \if;12 as a
position probability density requires that the normalization integral be
independent of the time. That this is actually the case may be shown by
computing the time derivative of the integral of P over any fixed volume
V.

:t Iv P(rtt) dT = Iv (?t ~~ + ~~ if;) dr

= ih r [?t\72if; - (\72?t)if;] dTss ),
= ~~ Iv div [?t grad if; - (grad ?t)if;]dT

'h f= ;m A [?t grad if; - (grad?t) if;]"dA.

Here substitution has been made for aif;/at from Eq. (6.16) , and for aVt/at
from the complex conjugate of Eq. (6.16). The last integral is obtained
by partial integration (use of Green's theorem), where A is the bounding
surface of the region of integration and [ ]" denotes the component of
the vector: in brackets in the direction of the outward normal to the sur­
face element dA .l

We define a vector S(rtt),

S(r,t) = 2~ [?t grad if; - (grad ?t)if;] (7.3)
2m

in terms of which

~ Iv P(rtt)dT = - Iv div SdT = - IA S"dA (7.4)

In the case of a wave packet, for which if; vanishes at great distances and
the normalization integral converges, the surface integral is evidently
zero when V is the entire space. For a wave function of the type given
in Eq. (6.10), if; can be defined in a finite region V so that it vanishes or
has a periodic structure along the bounding surfaces (see Sec. 10). In all
these cases, it can be shown without difficulty that the surface integral in

1 It is convenient to adopt an order of factors such that Vi precedes if; [see the dis­
cussion of Eq. (7.7) below].
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Eq. (7.4) is zero, so that the normalization integral in Eq. (7.2) is con­
stant in time.

Probability Current Density. The derivation of Eq. (7.4) also shows
that the differential relation

ap(r,t) + div 8(r,t) = 0
at

is valid. This has the familiar form associated with the conservation
of flow of a fluid of density P and current density 8, in which there are no
sources or sinks . It is thus reasonable to interpret 8(r,t) given by Eq.
(7.3) as a probability current density. This interpretation makes more
plausible the identification of -ih grad with the momentum in Eq. (6.13) ,
even when a force is present. For then (h/im) grad is the velocity
operator, and it is apparent that

8(r,t) = real part of (y, ::n grad ,p)
While this interpretation of 8 is suggestive, it must be realized that 8

is not susceptible to direct measurement in the sense in which P is. It
would be misleading, for example, to say that 8(r,t) is the average meas­
ured particle flux at the point r and the time t, for a measurement of
average..Iocal flux implies simultaneous high-precision measurements of

.position' and velocity (which is equivalent to momentum) and is therefore
inconsistent with the uncertainty relation (3.1). Nevertheless, it is
sometimes helpful to think of 8 as a flux vector, especially when it
depends only slightly or not at all on r, so that an accurate velocity
determination can be made without impairing the usefulness of the
concept of flux.

Expectation Value. The existence of the position probability density
P(r,t) makes it possible to calculate what we shall call the expectation
value of the position vector of a particle, which is defined as the vector
whose components are the weighted averages of the corresponding com­
ponents of the position of the particle. The expectation value is the
mathematical expectation (in the sense of probability theory) for the
result of a single measurement, or it is the average of the results of a
large number of measurements on independent systems of the type dis­
cussed at the beginning of this section. We write the expectation value
of r as

(r) = frP(r,t)dT = fy,(r,t)r,p(r,t)dT

which is equivalent to the three equations

(7.5)

(x) J:' fy,x,pdr, (y) = fy,y,pdT, (z) = fy,Z,pdT
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where 1/; is normalized. The expectation value is a function only of the
time, since 1/; and P depend on t and the space coordinates have been
integrated out.

The expectation values of any other physically meaningful quantities
can be found in a similar way if they are functions only of the particle
coordinate r, Thus the expectation value of the potential energy is

(V) = fV(r,t)P(r,t)dr = . f~(r,t)V(r,t)1/;(r,t)dr (7.6)

A quantity such as momentum or energy must, however, be expressed in
terms of rand t before a calculation of this type can be made. We assume
that it is possible to use the differential-operator representations given in
Eq. (6.13) for this purpose, and justify this assumption with the help
of the corresponding probability functions in Sec. 10 (for the energy)
and in Sec. 11 (for the momentum) . The question immediately arises,
however, as to how such differential operators are to be combined with
the position probability density P.

This question may be answered by imposing on the expectation values
the reasonable requirement that

(E) = <:~) + (V)

in analogy with the classical energy equation (6.15). In terms of dif-
ferential operators, this may be written .

< ih :t) = <-2~ V2
) + (V) (7.7)

It is apparent that Eq. (7.7) is consistent with the wave equation (6.16)
only if the expectation value is defined in the general case with the
operator acting on 1/;, and multiplied on the left by~. We therefore
obtain, for example,

(E) = f ~ih ~~ dr, (P) = f ~(-ih) grad 1/;dr (7.8)

Like Eq. (7.5), the second of Eqs. (7.8) is equivalent to the three com­
ponent equations

(pz) = -ih f ~ ~: dr, (PII) = -ih f ~ ~t dr

(P.) = -ih f ~ ~~ dr -

Ehrenfest's Theorem.' It is reasonable to expect the motion of a
wave packet to agree with the motion of the corresponding classical

1 P. Ehrenfest, Zeits. f. Physik, 45, 455 (1927).
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particle whenever the potential energy changes by a negligible amount
over the dimensions of the packet. If we mean by the "position"
and" momentum" vectors of the packet the weighted averages or expec­
tation values of these quantities, we can show that the classical and
quantum motions always agree . A component of the "velocity" of
the packet will be the time rate of change of the expectation value of
that component of the position; since (x) depends only on the time, and
the z in the integrand of Eq. (7.5) is a variable of integration, this is

d d f f aJ/t f a1f;-(x) = - 1f;#dr = 1f;x-dr + -xJ/tdr
dt dt at at

This may be simplified by substituting for the time derivatives of the
wave function and its complex conjugate from Eq . (6.16) and canceling
the V terms.

'h f= ;m [1f;x(V2J/!) - (V21f;)xJ/t]dr

The second integral can be integrated by parts:

J(V21f;)#dr = - J(grad 1f;) •grad (#)dr + L(# grad 1f;)11 dA

where the integral of the normal component of xJ/t grad 1f; over the infinite
bounding surface A is zero because a wave packet J/t vanishes at great
distances. A second partial integration, in which the surface integral
again vanishes, results in

Thus

d ih fdt (x) = 2m 1f;[XV2J/t - V2(xJ/t)]dr

ih f aJ/t - 1= - - 1f; - dr = - (p",)
m ax m (7.9)

Since (x) is seen always to be a real number from the structure of Eq.
(7.5), Eq, (7.9) shows quite incidentally that (p",) is real; this can also be
shown from the second of Eqs. (7.8) when J/t represents a wave packet,
by means of partial integration.
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(8.1)

In similar fashion we can calculate the time rate of change of a com­
ponent of the" momentum" of the particle as

d . d f aif!
dt (p:z) = -~h dt 1ft ax dT

- ih (f 1ft :x : dr + f ~~ ~~ dT)

-f 1ft aax ( - :~ v2if! + V if!) dT + f(-:~ v21ft + V1ft) :: dT

-f 1ft [~ (Vif!) - V aif!J dT
ax ax

-f 1ft av if!dT = (- av) (7.10)
ax ax

again substituting from the wave equation and integrating twice by parts.
Equations (7.9) and (7.10), together with their other components, are

analogous to the classical equations of motion,

dr p dp
dt = m: dt = - grad V

They provide an example of the correspondence principle, since they
show that a wave packet moves like a classical particle whenever the
expectation value gives a good representation of the classical variable ;
this is usually the macroscopic limit in which the finite size and the internal
structure of the packet can be ignored.

8. ENERGY EIGENFUNCTIONS

The Schrodinger wave equation (6.16) admits of considerable sim­
plification when the potential energy V(r) does not depend on the time .
It is then possible to express its general solution as a sum of products of
functions of rand t separately.

Separation of the Wave Equation. We consider a particular solution
of Eq. (6.16) that can be written as a product: if!(r,t) = u(r)f(t); a general
solution can then be written as a sum of such separated solutions. If we
substitute into Eq. (6.16) and divide through by the product, we obtain

ih df 1 ( h2
)- - = - - - V 2u + V(r)u

fdt u 2m

Since the left side of Eq. (8.1) depends only on t and the right side only
on r, both sides must be equal to the same separation constant, which we
call E. Then the equation for fis readily integrated to give

iEI

f(t) = Ce- T
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where 0 is an arbitrary constant, and the equation for u becomes

[ - :~ \72 + V(r) ] u(r) = Eu(r) (8.2)

Since Eq. (8.2) is homogeneous in u, the constant C may be chosen to
normalize u. Then a particular solution of the wave equation is

IE!

I/;(r,t) = u(r)e -71 (8.3)

Significance of the Separation Constant E. The time-derivative
operator given in Eq. (6.13) as a representation of the total energy may
be applied to the I/; of Eq. (8.3) to give

ih al/; = EI/; (8.4)at

An equation of the type of Eq. (8.4) is called an eigenvalue equation; "'.
is said to be an eigenfunction of the operator that appears on the left ,
and the multiplying constant E that appears on the right is called the
corresponding eiqenoalue:» An energy eigenfunction, like the I/; in Eq.
(8.3), is said to represent a stationary state of the particle, since 11/;1 2 is
constant in time. . . .

Equation (8.2) is also an eigenvalue equation. It states that u (and
hence also 1/;) is an eigenfunction of the operator [- (h2j2m)\7 2 + V(r)]
with the same eigenvalue E. It is, of course, to be expected that I/; is
an eigenfunction of this operator if it is an eigenfunction of the time­
derivative operator, since according to the wave equation (6.16), the two
operators are equivalent not only for separated functions of the form of
Eq. (8.3) but also for more general solutions.

We now anticipate the discussion of the physical significance of
eigenfunctions and eigenvalues that will be presented in Chap. III, and
assume that the energy eigenvalues E are the only possible results of
precise measurements of the total energy of the particle. It is then of
interest to inquire whether or not physically interesting solutions u(r)
of Eq. (8.2) exist for all real values of E. An answer cannot be obtained
until a specification of "physical interest" is found in terms of the bound­
ary conditions that are imposed on u(r). This specification, and the
general character of the energy eigenvalues that are associated with
various types of potential energy function V(r), are considered in the
remainder of this section.

1 The terms characteristic function and characteristic value are often used in place of
eigenfunction and eigenvalue.
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Boundary Conditions at Great Distances. We have thus far encoun­
tered two classes of wave functions : wave packets that are well localized
and for which the normalization integral fll/t1 2dr converges, and traveling
harmonic waves like the function (6.10) that have a constant magnitude
at great distances so that the normalization integral taken over an
infinite volume diverges. The first class may be interpreted as represent­
ing particles that, if free, are initially well localized, or that are restrained
to a particular region of space by external forces derived from the poten­
tial energy VCr). The second class represents particles that are neither
localized nor restrained, but travel through the region under consideration
from one distant part of space to another ; such wave functions will be
useful in describing the scattering of particles by a field of force.' In
either case, the wave functions are bounded at great distances in all
directions.

Continuity Conditions. The time-independent wave equation (8.2) is
a second-order linear differential equation in r, Thus so long as VCr) is
finite, whether or not it is continuous, a knowledge of the wave function
and its gradient along a surface makes it possible to integrate the equa­
tion to obtain the wave function at any point. It is reasonable, therefore,
to require that the wave function and its gradient be continuous, finite,
and single-valued at every point in space, in order that a definite physical
situation can be represented uniquely by a wave function. These
requirements also have the consequence that the position probability
density per) and the probability current density S(r), defined in Sec. 7,
are finite and continuous everywhere.

Boundary Conditions for Infinite Potential Energy. If VCr) is infinite
anywhere, the appropriate boundary condition can be established by a
limiting process that starts from a finite V and the above continuity
conditions.

Suppose, for example, that there is an infinite discontinuity in V
across a continuous surface, so that the potential energy is finite on one
side of it and + 00 on the other, and we wish to determine the boundary
conditions on u(r) and grad u at this surface. ' The essential features of
the problem are retained if we replace the continuous surface by the
plane that is tangent to it at the point of interest, and the continuously
changing potential energy on one side of the surface by a constant poten­
tial, which can, without loss of generality, be chosen to be zero since any
constant change in V is equivalent to an equal change in E. We choose

1 Another possible class consists of wave functions that become infinite at large
distances ; however, these are not of physical interest, since we have no reason to be
concerned with particles for which the position probability densrty becomes inde­
finitely large in remote regions of space .
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(8.5)

the origin of coordinates at the point of interest and the x axis perpendicu­
lar to the tangent plane .

The wave equation (8.2) then separates in the three space coordinates,
and the dependence of u on y and z is not affected by the discontinuity in
V at the plane x = O. We wish therefore to solve the one-dimensional
wave equation

h2 o«
- 2m dx2 + V(x)u = Eu

where V(x) = 0 for x < 0, V(x) = V o for x > 0, and we eventually
pass to the limit V o~ + 00 • If we assume that 0 ~ E < Vo, the general
solutions of Eq. (8.5) are

u(x) = A sin ax + B cos ax,

u(x) = Ce-fJ'" + De fJ"', x> 0,

The boundary condition that u be bounded at great distances requires
that we set D = O. Then the continuity of u at x = 0 gives the relation
B = C, while the continuity of du /dx gives the relation aA = -{3C.
Since {3 becomes infinite when Vo does, and the solution for x < 0 must
be finite, the second relation shows that C becomes zero as V o~ 00 ,

thus also making B zero; A is not determined from these relations, but
might be fixed by normalization.

Thus the boundary conditions at a surface at which there is an infinite
potential step are that the wave function is zero and the component of
the gradient of the wave function normal to the surface is not determined.
The assumption above that E < V o is evidently not a restriction since
V o eventually becomes infinite. For E < 0, the sine and cosine in the
solution for x < 0 are replaced by hyperbolic sine and cosine (which is
permissible since the solution need hold only near x = 0), with no change
in the final result. It should be noted that both P and S", vanish as
x ~ 0 from the negative side, so that they are continuous at x = 0 even
though du /dx is not.

A boundary surface of this type represents a perfectly rigid, impene­
trable wall, since in the analogous classical situation a particle of any
finite energy would have its x component of momentum reversed instan­
taneously on contact with the surface.

Energy Eigenvalues in One Dimension. Energy eigenfunctions that
represent particles that are restrained to a particular region of space by
the potential energy (first class) are always characterized by discrete
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eigenvalues, while eigenfunctions that do not vanish at great distances
(second class) possess a continuous range of eigenvalues. This may
be seen qualitatively by considering the nature of the solutions of the one­
dimensional wave equation (8.5).

We shall suppose at first that V(x) becomes equal to some constant
value, which may be taken to be zero, for sufficiently large positive and
negative x, and that E < O. A classical particle with this total energy E
cannot escape to infinity, and indeed can exist in the region only if E is
greater than or equal to the smallest value Vmin of V(x). The permitted
form of the wave function for Ixllarge enough that V = 0 is evidently
e-~[zl, where f3 = +( -2mE/h 2)! . These two solutions for large positive
and negative x can be extended in toward some intermediate point, say
x = 0, by making use of the wave equation and the continuity conditions.
At this point, u can always be made continuous by choosing the arbitrary
multiplying constants for the positive and negative x solutions appropri- ,
ately. Then a little reflection shows that for an arbitrary value of s;
they will not meet with the same value of du/dx. There may, however, '
be particular values of E for which both u and du/dx are continuous at­
x = O. The conditions for this can be seen in the following way.

In the regions in which E < V(x), (d2u/dx2)ju is positive, and so u is
convex towards the x axis. Thus the two solutions that are continued in
from ± 00 have opposite signs for their ratios of slope to value,

1 du
udx'

so long as they are in regions for which E is always less than V. This is
illustrated in Fig. 5b for the potential shown in Fig . 5a; both choices of the
sign of u are shown for x < O. The points at which E = V(x) are called
the turning points (TP) of the classical motion, since they are the limits of
the motion of a classical particle of energy E, at which the particle turns
around or reverses its motion. At these points d2u/dx 2 = 0, and u has
zero curvature.

Clearly what is needed to make the two solutions join smoothly is a
region in which E > V(x), in order that (d2u/dx2)/u may be negative and
u be concave toward the x axis; this may permit the ratios of slope to value
to become equal. Figure 5c shows the two solutions carried in until they
meet, but for a somewhat small value of E, so that when the u's are made
the same at x = 0, the slopes are not equal (solid curves), or when the
slopes are made the same at x = 0, the u's are not equal (dotted curve on
left and solid curve on right) . Figure 5d shows a somewhat larger (less
negative) value of E , and Fig. 5e a still larger value. The values of E
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v(x)

and Vmin are indicated on the u axis, and the turning points are indicated
on the x axis, in the last three cases.

Discrete Energy Levels, We see then that an eigenfunction that
satisfies the boundary and continuity conditions and that represents a
particle bound by the potential energy Vex), can exist for the particular

u(;;c)
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u(x)

l d u<O
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~

oX

(b)

u(x)

p.: .
(d) mm.

~__ E x

! (e)

~il7.
FIG. 5. (a) Potential energy function and (b) solutions for large Ixl; (e) and (e) show that
either the wave function or its slope is discontinuous at x = 0 for values of E that are
smaller (more negative) and larger. respectively, than the energy eigenvalue shown in (d) .

value of E illustrated in Fig. 5d.. In analogy with the classical situation,
a necessary condition that such an eigenfunction exist is that Vmin < 0,
in which case E lies between Vmin and 0; as in the classical case, this con­
dition is also sufficient in one dimension although it is not in three dimen­
sions (see Prob. 10, Chap. IV, and Sees. 9 and 15).

If the potential energy well illustrated in Fig . 5a is sufficiently broad
or deep, there will exist another eigenfunction corresponding to a larger
energy eigenvalue that is still negative. Figures 6a, b, and c shdw a series
of wave functions analogous to those shown in Figs . 5c, d, and e for suc­
cessively increasing (successively less negative) values of E; both signs
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of u are shown for x < O. Thus Figs . 5d and 6b.show the eigenfunctions
for the two lowest energy eigenvalues or energy levels of a particle bound
by the potential well Vex). It is easy to see by an extension of the fore­
going qualitative arguments that if there are any higher discrete energy
levels, each eigenfunction has one more node than that corresponding to
the next lowest eigenvalue.

Thus for a potential energy that approaches a finite constant value as
x ~ ± 00, there may be a finite number of discrete energy levels, or in

u(x}

(a)

u(x)

(6)

u(x}

(c)

FIG. 6. Solutions for sufficiently broad or deep potential and larger (less negative) values
of E than those shown in F ig. 5. E increases in going from (a) to (b) to (c) and is an
eigenvalue in (b), where the wave function and its slope can both be continuous at x = O.

some cases an infinite number (if VeX) falls off slowly enough for large
Ix!), depending on Vex) and the mass of the particle. However, if
Vex)~ + 00 as x ~ ± 00, an argument like that given above shows that
there will always be an infinite number of discrete energy levels; apart
from arbitrary multiplying constants there will be just one eigenfunction
u(x) for each of these.

Continuous Energy Eigenvalues. It is possible to find eigenfunctions
that obey the boundary and continuity conditions for all energy eigen­
-values that exceed the smaller of the two numbers V(+ 00) and V( - 00).
If, for example, the potential energy has the form illustrated in Fig. 5a,
then solutions of the wave equation can be found for all positive values
of E. This is because the solutions for large Ixl are of the form

A sin alxl + B cos a\xl, (8.6)
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and there is no reason why both terms should not be kept. Thus it is .
always possible to adjust the phase of each of the wave functions for ,large
Ixl (which is equivalent to adjusting the ratios A / B for the solutions for
large positive and negative x) so that they join together smoothly when
continued in to x = O.

The classical terms periodic (or multiply periodic) and aperiodic are
sometimes used to designate the particle motions associated with discrete
and continuous energy eigenvalues, respectively.

Discrete and Continuous Eigenvalues in Three Dimensions. We
shall assume without further discussion that all the foregoing results can

to vt») fo veX)
+00 +00

-a 0 a x -a 0 a x

~) W
FIG. 7. One-dimensional square well potential with (a) perfectly rigid walls and (b) finite
potential step.

be taken over in a natural way for the three-dimensional wave equation
(8.2). We can expect that if V(r) --l- + 00 as r --l- 00 in all directions,
there will be an infinite set of discrete energy levels extending to + 00 .
If V(r) is bounded as r --l- 00 in some direction, there may be a.finite or an
infinite number of discrete levels, depending on the form of V. In this
case, the discrete energy levels cannot exceed the smallest value that
V( 00) has in any direction. For values of E larger than this smallest
V( 00), the energy eigenvalues cover a continuous range extending to
+00.

9. ONE-DIMENSIONAL SQUARE WELL POTENTIAL

As a simple explicit example of the calculation of discrete energy levels
of a particle in quantum mechanics, we consider the one-dimensional
motion of a particle that is restrained by reflecting walls that terminate a
region of constant potential energy. Two simple types of potential
energy are considered. Figure 7a shows a situation in which V(x) = 0
for -a < x < a, and V(x) = + 00 for Ixl > a, corresponding to per­
fectly rigid, impenetrable walls at the points x = ±a. In Fig . 7b the
increase in potential energy at the walls is abrupt, but finite , so that
V(x) = Vo for Ixl > a; because of its appearance, this is often called a
square well potential. The motion of a classical particle with total energy
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E less than Vo is the same for both these potentials; but as we shall see,
the quantum-mechanical behavior is different. In general, an abrupt
finite increase in potential energy at the boundaries of a region forces a
particle toward the interior of the region . Such a potential may be
thought of as a limiting case of a potential of the type shown in Fig. 5a, for
which the force -dV[d» is always directed in toward x = O. The force
associated with a square well potential is zero except at the boundaries,
so that the particle is acted on by no force except a sudden impulse
directed toward the origin as it passes the points x = ±a.

Perfectly Rigid Walls. It was shown in Sec. 8 that the wave function
must vanish at the points x = ±a, when the potential energy has the
form shown in Fig . 7a. From Eq. (8.5) the wave equation for Ixl < a
is simply .

(9.1)

which has the general solution

u(x) = A sin ax + B cos ax, a = + e;2EY (9.2)

Application of the boundary conditions at x = ±a gives

A sin aa + B cos aa = 0,
- A sin aa + B cos aa = 0,

from which we obtain
A sin aa = 0, B cos aa = 0

Now we do not want both A and B to be zero, since this would give
the physically uninteresting solution u = 0 everywhere. Also, we cannot
make both sin aa and cos aa zero for a given value of a or E. There are
then two possible classes of solutions : For the first class

A = 0
and for the second class

B = 0

and

and

cos aa = 0

sin aa = 0

Thus aa = n1r12, where n is an odd integer for the first class and an
even integer for the second class. The two classes of solutions and their
energy eigenvalues are then

n odd

n even

in both cases
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(9.3)u(x) = Ce-fl" + Dell",

It is evident that n = 0 gives the physically uninteresting result u = 0,
and that solutions for negative values of n are not linearly independent
of those for positive n. The constants A and B can easily be chosen in
each case so that the eigenfunctions u(x) are normalized.

There is thus an infinite sequence of discrete energy levels that cor­
respond to all positive integer values of the quantum number n. There
is just one eigenfunction for each level, and the number of nodes of the
nth eigenfunction that are within the potential well is n - 1. These
results are in agreement with the discussion of Sec. 8. It is interest ing to
note that the order of magnitude of the lowest or ground-state energy
level is in agreement with the uncertainty relation (3.1). The position
uncertainty of order a implies .a momentum uncertainty at least of order
h/a, which in turn implies a minimum kinetic energy of order h2/ma2..

Finite Potential Step. When the potential energy has the form shown
in Fig. 7b, it is necessary to supplement the general solution (9.2), which
is still valid for Ixl < a since Eq. (9.1) is unaltered there, by a solution for
Ixl > a. The wave equation in this region is

h2 d2u
- 2m dx2 + You = Eu

which has the general solution for E < Vo (bound states)

(3 = + [2m(V~2- E)r
The boundary conditions at x = ± 00 discussed in Sec. 8 require that we
set D = 0 if Eq. (9.3) is to represent the solution for x > a, and C = 0
if the solution is for x < -a.

We now impose on the solutions (9.2) and (9.3) the requirements that
u and du/dx be continuous at x = ±a.

a.A cos cai - exB sin aa = - {3Ce-flo

exA cos exa + exB sin exa = {3De-flo

A sin aa + B cos exa = Ce-flo,

-A sin exa + B cos aa = De-flo,

from which we obtain

2A sin exa = (C - D)e-flo, 2exA cos exa = -{3(C - D)e-flo (9.4)
2B cos exa = (C + D)e-flO, 2exB sin exa = {3(C + D)e-flo (9.5)

Unless A = 0 and C = D, Eqs. (9.4) have as their consequence

ex cot exa = -{3 (9.6)

Similarly, unless B = 0 and C = -D, Eqs. (9.5) give

ex tan exa = {3 (9.7)
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Now it is impossible for Eqs. (9.6) and (9.7) to be valid at once, since
on elimination of {3 this would require that tan 2 aa = -1, which in turn
would make a imaginary and {3 negative, contrary to Eq. (9.3). Also, we
do not want A, B, C, and D all to vanish. Thus the solutions may again
be divided into two classes: For the first class

A = 0,

and for the second class

C = D, and atanaa={J

B = 0, C = -D, and a cot aa = -(J

Energy Levels. The energy levels are found from a numerical or
graphical solution of Eqs. (9.6) and (9.7) with: the definitions for a and {3

3
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FIG. 8. Graphical solution of Eq, (9.7) for three values of Voa1; vertical dashed lines are
the first two asymptotes of 'I = Etan E.

given in Eqs. (9.2) and (9.3) . A simple graphical method for effecting
this solution is described here, since it shows quite clearly the way in
which the number of discrete levels depends on Vo and a. We put
t = aa, "1 = {3a, whence Eq. (9.7) becomes t tan ~ = "1, with

l:2 + 2 = 2mVoa2

.. "1 h2

Since ~ and "1 are restricted to positive values, the energy levels may be
found in this case from the intersections in the first quadrant of the curve
of t tan t plotted against ~, with the circle of known radius (2m V oa2/ h2)i.
The construction is drawn in Fig. 8 for three values of Voa2

; for each of
the two smaller of these values, there is one solution of Eq. (9.7) and for
the largest there are two.
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Figure 9 is a similar construction for the solution of Eq. (9.6) in which
the energy levels are obtained from the intersections of the same circles
with the curve of - ~ cot ~ in the first quadrant. The smallest value of
V oa2 gives no solution, and the two larger values each give one. Thus the
three increasing values of Voa2 give altogether one, two, and three energy
levels, respectively.

It is clear from Figs. 8 and 9 that for a given particle mass, the energy
levels depend on the parameters of the potential energy through the com­
bination Voa2• For V oa2 between zero and 7r2h218m, there is just one

5432
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FIG. 9. Graphical solution of Eq. (9.6) for three values of Voa' ; vertical dashed line is the
first asymptote of 'I = - ~ cot ~.

'1

2

energy level of the first class; for V oa2 between 7r2h2/ 8m and four times this
value, there is one energy level of each class, or two altogether. As Voa2

increases, energy levels appear successively, first of one class and then of
the other. It is not difficult to see from Eq. (9.2) that when ordered
according to increasing eigenvalues, the nth eigenfunction has n - 1
nodes.

Parity. It follows from the foregoing discussion that the eigenfunc­
tions of the first class are even with respect to change in sign of x [u(-x)
= u(x)), while the eigenfunctions of the second class are odd [u( -x)
= -u(x)) . This division of the eigenfunctions into even and odd types
is not accidental, and will now be shown to be a direct consequence of the
fact that the potential energy function V(x) is symmetric about x = O.
If we change the sign of x in the wave equation (8.5)

h2 d2u(x)- '- -- + V(x)u(x) = Eu(x)
2m dx 2 (9.8)
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and if V( -x) = Vex), we obtain

h2 d2u(-x)
- 2m dx2 + V(x)u( -x) = Eu( -x)

Then u(x) and u( -x) are solutions of the same wave equation with
the same eigenvalue E. Unless there are two or more linearly inde­
pendent eigenfunctions that correspond to this energy level, these two
solutions can differ only by a multiplicative constant :

u( -x) = EU(X) . (9.9)

Changing the sign of z in Eq. (9.9) gives u(x) = EU(- x ). From these
two equations it follows at once that

or E = ±1

Thus all such eigenfunctions of a symmeiric potential are either even or
odd with respect to changes of sign of z. Such wave functions are said
to have even or odd parity.

If an eigenvalue has more than one linearly independent eigenfunc­
tion, these eigenfunctions need not have a definite parity: they need not
be even or odd. However, we can easily see that linear combinations of
such eigenfunctions can be found such that each has even or odd parity.
Suppose that an eigenfunction u(x) does not have a definite parity. It
can always be written

u(x) = ue(x) + uo(x),

where ue(x) = -Hu(x) + u( -x)] is even and uo(x) = -Hu(x) - u( -x)] is
odd. Then if the wave equation (9.8) is symmetric, we can write it as

h2 d2u h2 d2u
- 2m dx2e + (V - E)ue - 2m dx: + (V - E)uo ,= 0 (9.10)

On changing the sign of z in Eq. (9.10), we obtain

h2 d2u h2 d2u
- 2m dx2e + (V - E)ue + 2m dx 20 - (V - E)uo = 0 (9.11)

Addition and subtraction of Eqs. (9.10) and (9.11) shows thatjz, and!:f2.
are separately solutions of the wave equation with the same eigenvalue E.

A Simplified Solution. ' Knowledge that the solutions possess a defi­
nite parity sometimes simplifies the determination of the energy levels,
since then we need only find the solution for positive z, Even solutions
have zero slope and odd solutions have zero value at x = O. If, for
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example, we wish to find the even solutions, Eqs. (9.2) and (9.3) can be
replaced at once by

u(x) = B cos ax,
u(x) = Ce-fJ"',

O<x<a
x>a

Instead of making both u and du /dx continuous at z = a, it is enough to
make the ratio (l /u)(du/dx) continuous at x = a, since the normalizing
constants Band C are eliminated thereby. This gives Eq. (9.7) at once.
Similarly, the odd solutions are

u(x) = A sin ax, 0 < z < a
u(x) = Ce- fJ"', x > a

Then continuity of (l /u)(du/dx) at z = a immediately gives Eq. (9.6).

Problems

1. Use the arguments of Sec. 6 to set up a differential equation for y, that involves
a second time derivative of y" in the case of a free particle. Discuss any solutions that
this equation has that are not shared by the free-particle Schrodinger equation.

2. Show that the free-particle one-dimensional Schrodinger wave equation (6.8)
is invariant with respect to Galilean transformations. Do this by showing that,
when the transformation z' = x - vt, t' = t is applied, the transformed wave func­
tion y,'(x',t ') = y,(x' ,t') exp i/(x',t ') satisfies Eq. (6.8) with respect to the primed vari­
ables, where I involves only x' , t', h, m, and v. Find the form of I, and show that the
tra~ling wave solution y,(x,t) = A exp i(kx - wt) transforms as expected.
~) How must a wave packet y, fall off for large r in order that the volume integral

of P and the surface integral of S; in Eq. (7.4) converge?
4. Show directly that (Pz) is real for a wave packet.

@ Show that for a three-dimensional wave packet

d
!!. (XI) = ~ «xp",) + (p.,x».
t m

6. Calculate the energy levels and plot the eigenfunctions for the three bound
states in the potential of Fig . 7b when V 0(1' = 6h'lm. Compare with the first three
states for the potential of Fig. 7a.

CTh Discuss the relation between the energy levels for the potential of Fig. 7b and
those for the potential : V(x) = + co, X < 0; V(x) = 0, 0 < x < a ; V(x) = Yo,
x> a.

8. Show that if the potential energy V(r) is changed by !t constant amount every­
where, the time-independent wave functions are unchanged. What is the effect on
the energy eigenvalues?



CHAPTER III

EIGENFUNCTIONS AND EIGENVALUES

In Chap. II, the Schrodinger wave equation was developed and
applied to a simple problem. Some discussion of the physical interpreta­
tion of the wave function was given in Sec. 7. This relied for the most
part on the computation of average or expectation 'values of operators
that represent various physical quantities. In addition, however, a
position probability density was introduced,. Thus at the present point
we are in a position to calculate from the wave function any property
that depends on the spatial distribution of a particle (for example, the
mean-square deviation of its position from the average), whereas we can
only calculate average values of operators other than position. Clearly
what is needed to round out our interpretation of the wave function is a
means of computing probability functions for operators in general; this
would incidentally enable us to obtain the expressions for expectation
values used in Sec. 7 without separate assumptions.

In this chapter, we first set up three physical postulates from which a
complete interpretation of the wave function can be derived, and then
apply them to a discussion of the total energy and momentum of a
particle, and to an illustrative problem. The interpretation presented in
Sec. 7 can then be seen to be a special case of the more general treatment
given here.

10. INTERPRETATIVE POSTULATES AND ENERGY EIGENFUNCTION~

We start with the wave function 1/J(r,t), which is a solution of Eq.
(6.16) and describes the motion of a particle that has mass mand poten­
tial energy V(r). From this wave function we wish to obtain as complete
a description of the properties of the motion of the particle as is consistent
with the uncertainty relations discussed in Sec. 3.

Dynamical Variables as Operators. We first postulate that each
dynamical variable that relates to the motion of the particle can be represented
by a linear operator. The operator may be simply a multiplication oper­
ator such as r for the position, or it may be a differential operator such as
-ih grad for the momentum.

With each operator can be associated a linear eigenvalue equation,
defined near the beginning of Sec. 8. Thus with the operator n may be
associated the equation

; nu", = wU",

41
(10.1)
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where u'" is the eigenfunction of n corresponding to the eigenvalue w.
Our second postulate is that ~ne or another of the eigenvalues w is the

only possible result of a precise measurement of the dynamical variable
i epresented by n. This implies that the eigenvalues of all operators that
represent physically significant variables are real numbers.

Expansion in Eigenfunctions. We assume that all the eigenfunctions
of any dynamical variable constitute a complete set of functions in the
sense that an arbitrary continuous function can be expanded in terms of
them. This is a mathematical, not a physical, assumption, and will
be discussed further below in connection with energy and momentum
eigenfunctions.

Suppose now that a particular wave function Vt is expanded in terms
of the eigenfunctions u'" of the operator n. We adopt the statistical inter­
pretation of Vt given at the beginning of Sec. 7, according to which there
are a large number of identical, nonoverlapping regions of space, in
each of which is a particle described by Vt. We then make measurements
of the dynamical variable represented by 11 on each of these particles.
Our third physical postulate is that the number of measurements that result
in the eigenvalue w is proportional to the square of the magnf,tude of the
coefficient of u'" in the expansion of Vt. This postulate, due to M . Born
(see page 22) , enables us to associate a probability fun ction with any
dynamical variable.' A corollary is that we are certain to measure a
particular eigenvalue w only when the wave function that describes the
particle is the corresponding eigenfunction U", .

• Rather than develop the consequences of these postulates for an
arbitrary operator 11, we consider here the total energy of the particle,
and in Sec. 11 the momentum. Most of the results obtained are readily
applicable to other physical operators.

The Total Energy Operator. According to the uncertainty relation
(3.3), a precise measurement of the total energy of a particle cannot be
made in a finite length of time. Thus if the total energy is to have a
definite value, it is essential that the potential energy VCr) be inde­
pendent of the time. Then the operator - (h2j2m) \72 + VCr), which is
shown in Sec. 8 to be equivalent to the total energy operator ih ajat,-h!J.s
eigenfunctions u(r) that need not involve the time. The energy-eigen­
'value equation is Eq. (8.2),

[ - :~ \72 + VCr) ] uE(r) = EUE(r) (10.2)

1 An alternative deterministic interpretation in terms of "hidden variables" rather
than the dynamical variables, which has not been widely accepted, has been proposed
by D. Bohm, Phys. Reo., 86, 166, 180 (1952).
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where the eigenfunction uE(r) corresponds to the eigenvalue E, and obeys
the boundary and continuity conditions of Sec. 8.

As discussed in Sec. 8, the energy eigenfunctions can be divided into
two classes: those which are well localized and are associated with discrete
eigenvalues, and those which remain finite at great distances and possess
a continuous range of eigenvalues.

Nonnalization in a Box. It is often desirable to be able to treat these
two classes on the same basis; this can be accomplished by enclosing the
particle under investigation in a box of arbitrarily large but finite volume.
The simplest physical situation to which this approach is applicable is '
one in which the walls of the box are perfectly rigid, so that, as shown in
Sec. 8, the wave function vanishes there. Then the discussion of Sec. 8
shows that all the eigenvalues are discrete. If the box is large in com­
parison with the dimensions of physical interest in the problem, the
eigenvalues that were discrete in the absence of the box are practically
unaffected, since before the walls were introduced the wave functions were
extremely small there. Also, the eigenvalues that were continuously
distributed in the absence of the box are very closely spaced; this is
shown explicitly for a free particle in Sec. II.

It is more convenient to assume that the wave functions obey periodic
boundary conditions at the walls of the box than that they vanish there,
since it is then possible to get a simpler description of the momentum
eigenfunctions (see Sec. 11). We choose the finite region to be a cube of
edge length L centered at the origin, and require each wave function
to have the same value at corresponding points of opposite faces of the
cube, and the same derivative normal to the wall. These boundary
conditions make the otherwise continuous eigenvalues discrete , since
the phase of the eigenfunction at great distances is no longer arbitrary
[see the discussion of Eq. (8.6)]. As with the rigid-walled box, the pres­
ence of the walls has a negligible effect apart from imparting discreteness
to the otherwise continuous eigenvalues and providing a finite volume in
which these wave functions can be normalized; we shall continue to use
the word "continuous" to describe these functions, even when box
normalization is used.

Orthononnality of Energy Eigenfunctions. The integral f!uE(r)!2dr,
which converges in any case for the discrete set of eigenfunctions, CQJl­

verges for all eigenfunctions when they are normalized in the box of
finite volume V . The coefficient of UE can then be chosen so that this
integral is equal to unity, and the uE(r) are normalized.

We now show that the eigenfunctions corresponding to two different
eigenvalues E and E' are orthogonal; that is, that the integral of the
product of one of them and the complex conjugate of the other over the
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common domain of the functions is zero. From Eq. (10.2) we have that
uE,(r) satisfies the equation

[ - ;~ V2 + V(r) ] uE,(r) = E'UE,(r) (10.3)

where we assume in accordance with our physical interpretation that E'
is real; this is verified below. We multiply Eq. (10.2) by UE' and Eq.
(10.3) by UE, integrate over the volume L3, and take the difference
between the two resulting equations. The V t erms cancel, and leave

-;~ f (UE,V2UE - u EV2uE,)dr = (E - E') f uE'usdr (lOA)

The integral on the left side of Eq. (lOA) can be transformed by
Green's theorem into a surface integral over the surface A of the cube.
!(UE,V2UE - u EV2uE,)dr

= Jdiv (UE' grad UE - UE grad uE,)dr

= fA (UE' grad UE - UE grad uE,)"dA (10.5)

where the subscript n designates the component of the vector in the
direction of the outward normal to the element of area dA. Since the
imposition of periodic boundary conditions gives each wave function and
its normal derivative the same values at corresponding points of opposite
faces of the cube, the outward normal derivative has opposite signs on'
opposite faces, and the surface integral in Eq. (10.5) vanishes. Then
Eq. (lOA) tells us that if E ¢ E', UE and UE' are orthogonal.!

An energy eigenvalueE is said to be degeneratewhen two or more lin­
early independent eigenfunctions Ut, U2, . • • correspond to it. Orthog­
onal linear combinations of degenerate eigenfunctions can be found in
many different ways. For example, Ua = atUt + a2U2 can be made
orthogonal to Ut by choosing the constant coefficients at and a2such that

at fUtu~r

a2 = - ""flru"t!""""2d;-r

this choice does not interfere with the normalization of U a, and U a is still
an energy eigenfunction with the eigenvalue E. Evidently the choice

1 It is apparent that this proof of orthogonality can be applied to a discrete set of
eigenfunctions even though th e box is not introduced, since the u's vanish rapidly at
great distances and the surface integral, which is then over a sphere of infinite radius,
is zero. The continuous set of energy eigenfunctions can also be treated without
using the box normalization (as is the continuous set of momentum eigenfunctions in
Sec. 11). See E. C. Kemble, "The Fundamental Principles of Quantum Mechanics"
(McGraw-Hill, New York, 1937); Sec. 30 of Kemble's book presents a discussion of
this problem and references to the original papers.
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of orthogonal linear combinations is not unique. By an extension of this
procedure, all the energy eigenfunctions can be made orthogonal to each
other even though some of the eigenvalues are degenerate.

Such a set of eigenfunctions, each of which is normalized and orthog­
onal to each of the others, is called an orthonormal set of functions. We
specify an orthonormal set of nondegenerate energy eigenfunctions by
the relation

(10.6)

where OEE' is 'the Kronecker 0' symbol that equals unity if E = E' and
is zero otherwise. If there is degeneracy, Eq. (10.6) must be replaced by

IUE,.'(r)uE.(r)dr = OEE'O." (10.7)

where the index s distinguishes between orthogonal degenerate eigen­
functions. It is often convenient to omit explicit mention of s and use
Eq. (10.6) for degenerate situations as well, in which case the index s is
implied.

Reality of the Energy Eigenvalues. We can now see directly that E
is a real number, as has been assumed. We multiply Eq. (10.2) by uE(r)
and integrate over the box of volume L3. If UE is normalized, the result is

, h
2 f fE = - 2m UE\72uEdr + V(r)luEI 2dr

which may be expressed in terms of expectation values as (112m )(P2) + (V).
The second term (V) is real since its integrand is real. The first term

can be shown explicitly to be real by means of a partial integration.

- f uEV2u~r = f (grad UE) . (grad uE)dr - fA uE(grad uE)"dA.

The volume integral is evidently real, and the surface integral [like that
in Eq. (10.5)] vanishes because of the periodic boundary conditions at
the walls of the box. It is interesting to note that (p2) cannot be negative.

Expansion in Energy Eigenfunctions. As mentioned near the begin­
ning of this section, we make the mathematical assumption that all the
eigenfunctions uE(r) of the total energy operator constitute a complete
set of functions in the sense that an arbitrary continuous function can be
expanded in terms of them.' - Then if we have any wave function 1f;(r)
at a particular instant of time that is normalized in the box £3 and obeys
periodic boundary conditions at the walls, the assumed existence of the
expansion

1f;(r) = I AEuE(r) (10.8)
E

1 For further discussion see E. C. Kemble, op. cit., Chap. IV and Sec. 30.
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(10.10)

makes it possible to find unique coefficients A E that do not depend on r.
The coefficients in the expansion (10.8) can be determined by multi­

plying both sides by UE' and integrating over the box. We assume that

\he order of Land JdT can be reversed1 and obtain
E

JuE,(r)y,.(r)dT = LA EJuE,(r)uE(r) dT = LA EOEE' = AE,. (10.9)
E E

with the help of Eq. (10.6) or (10.7).
The Closure Property. Substitution of the expression (10.9) for A E

back into Eq. (10.8) gives

y,.(r) = L[J uE(r')y,.(r')dT'] uE(r)
E

which we rearrange to give

y,.(r) = Jy,.(r') [L uE(r')uE(r) ] dT'
E

Since y,.(r) is an arbitrary continuous function, Eq, (10.10) implies that the
bracketed part of the integrand vanishes unless r' = r, since otherwise
the value of y,. at the point r given by Eq. (10.10) would change when the
values of y,. at other points r' ~ r are changed, and this is contrary to
the assumption that y,. can have an arbitrary form. Moreover, the
integral of the term in brackets must be unity when the volume of inte­
gration includes the point r' = r. We conclude therefore that

LuE(r')uE(r) = 0, r' ~ r;
E

(10.11)

JLuE(r')uE(r)dT' = 1
E

if the volume of integration includes the point r' = r,
Equations (10.11) describe the closure property of the orthonormal

functions uE(r) and are seen to follow directly from their completeness as
expressed by Eq. (10.8), whether or not they happen to be energy
eigenfunctions.

Probability Function and Expectation Value. The second and third
physical postulates presented at the beginning of this section state that
the energy eigenvalues 'are the only possible results of precise measure-

1 The propriety of changing the order of summations and integrations must in
principle be investigated separately in each case. The mathematical considerations
entailed are beyond the scope of this book , and we shall always assume that such
interchanges are permissible in situations of physical interest.
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ment of the total energy, and that the probability of finding a particular
value E when the particle is described by the wave function Vt(r) is
proportional to IAzI2. It is easily seen that the proportionality factor is
unity, for if we put for the energy probability function

peE) = IAz l2
we see that peE) sums to unity.

2: peE) = 2: Juz(r)Vt(r)dr Juz(r')1{;(r')dr'
E . E

= JJ1{;(r')Vt(r) [I UZ(r)UE(r') ] drdr'
E

= JIVt(r)1 2dr = 1

(10.12)

since Vt is normalized; use has been made here of Eqs. (10.11).
We can also compute the average or expectation value of the energy

from the probability function.

(E) = 2: EP(E) = 2: JEUE(r)Vt(r)dr Juz(r')1{;(r')dr' (10.13)
E E

If we substitute for Euz from Eq. (10.3), the first integral in Eq. (10.13)
can be integrated twice by parts as follows:

rEuz(r)Vt(r)dr = f Vt(r) [ - :~ V 2 + v(r)] uz(r)dr

= f uz(r) [ - :~ V2 + v(r)] Vt(r)dr

(10.14)

./

= f 1{;(r) [ - ::n V2 +V(r) ] Vt(r)dr

The two surface integrals that result from the partial integrations vanish
because of the periodic boundary conditions on Uz and Vt. Thus with the
help of Eqs. (10.11), Eq. (10.13) becomes

(E) = L: f uE(r) [ - ;~ V2 + V(r) ] Vt(r)dr f uz(r')1{;(r')dr'

E •

= f f 1{;(r') {[ - :~ V2 + v(r)] Vt(r)} [~ uE(r)uZ(r') ] drdr'
E

The result embodied in Eq. (10.14) confirms the supposition made in
Sec. 7 that the expectation value of an operator is to be calculated by
inserting the operator between 1{;(r) and Vt(r), so that it operates just on
the latter, and integrating over r.
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(10.19)

General Solution of the Schrodinger Equation. If the potential
energy V(r) is independent of t and we know the solution of the Schrod­
inger equation (6.16) at a particular time, we can write down a formal
expression for the solution at any time. We expand Yt(r,t) in energy
eigenfunctions at the time t, in which case the expansion coefficients
depend on the time.

Yt(r,t) = I AE(t)UE(r), AE(t) = JuE(r)Yt(r,t)dT (10.15)
E

Substitution of Eq. (10.15) into the wave equation (6.16) gives

ih L: uE(r) :t AE(t) = 2: AE(t)EuE(r) (10.16)
E J.-

Because of the orthonormality of the UE, Eq. (10.16) is equivalent to

ih ~ AE(t) = EAE(t)

which may be integrated at once to give
iE(t-ta)

AE(t) = AE(to)e--A - (10.17)

Note that peE) = IA E (t) j2 = IA E (to)12 is constant in time.
Thus if Yt(r,t) is known at the time t = to, the solution at any time t

is given in terms of Eqs. (10.15) and (10.17) :
iE(t-to)

Yt(r,t) = I AE(to)e--A- UE(r)
E (10.18)

AE(to) = J uE(r')Yt(r',to)dT'
or

iE(t-to)

Yt(r,t) = J[I UE(r')UE(r)e--A-] Yt(r',tO)dT'
E

The solution (10.18) is a linear combination of the separated solutions
(8.3) obtained earlier.

11. MOMENTUM EIGENFUNCTIONS

The eigenfunctions of the linear momentum operator -ih grad pro­
vide a second instructive example of the application of the general ideas
developed at the beginning of the last section. They also are of con­
siderable usefulness in solving problems of physical interest. .

Form of the Eigenfunctions. The momentum eigenfunctions are
solutions of the three eigenvalue equations

-ih grad up(r) = pup(r) (11.1)
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or:

- ih :x Up(r) = p",up(r), ...... ih aay Up(r) = PIIUp(r)

- ih :z up(r) = p",up(r)

They have the form

Up(r) = C exp i (p . r)
h

(11.3)k = 27rn",
'" L

where C is a normalization constant.
It is convenient , as in Sec.. 6, to change from the momentum vec­

tor p to the propagation vector k = p/h, and rewrite the momentum
eigenfunctions

Uk(.r) = C exp ZK • r (11.2)

These are eigenfunctions of the momentum operator with the eigenvalues
hk.

Box Normalization. As with the energy eigenfunctions discussed in
Sec. 10, we can restrict the domain of the uk(r) to an arbitrarily large but
finite cubical box of volume L3 centered at the origin, at the walls of
which the functions obey periodic boundary conditions. Then Uk is
normalized if C = Lrt, Also, k is no longer an arbitrary real vector;
its components are restricted to the values

k• = 27rn"" k = 211"nll ,
* L II L

where n,., nil, and n", are positive or negative integers or zero. The spac­
ing of neighboring k vectors and of their energy eigenvalues h2k2/2m can
be made as small as desired by making L sufficiently large .

It is interesting to note that the momentum eigenfunctions (11.2)
cannot exist within a box that has perfectly rigid walls, since these eigen­
functions ,do not vanish anywhere. This is analogous to the classical
situation in which the momentum of a particle that is reflected from a
rigid wall is not conserved. On the other hand, the cubical box with
periodic boundary conditions is equivalent to a situation in which the
entire infinite space is divided up into adjacent cubes and all wave func­
tions are periodic throughout space with the period L along each of the
three cartesian axes. If the periodicity of the space is carried over to
the analogous classical situation, a particle passing through a wall would
be equivalent to one that strikes that wall and appears at the correspond­
ing point of the opposite wall with its momentum vector unchanged.

The orthonormality of the momentum eigenfunctions

uk(r) = Irs exp ZK • r (11.4)
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is readily established. For integration over the volume L3

Ju(r)uk(r)dr = -; f'L ei(k.-l.)zdx f'L eiCk"I.)lIdy f'L ei(k.-l·)·dz
L -lL -lL -lL

= Ok.I.Ok.I.Ok.l. ~ Ok! _ (11.5)

where the o's are Kronecker 0 symbols and use is made of Eqs. (11.3).
Orthogonality could also have been shown by the more general method
used in Sec. 10 for the energy eigenfunctions [see Eq. (10.4)].

The Dirac 0 Function. It was stated in Sec. 10 that continuous sets of
eigenfunctions can be handled without introducing the box with periodic,
boundary conditions (which has the effect of making the set discrete with
an arbitrarily small spacing of eigenvalues) . This can be shown explicitly
for the momentum eigenfunctions with the help of the Dirac 0function, 1

which can be defined by the relations

o(x) = ° if x ~ 0, fo(x) d» = 1 (11.6)

where the region of integration includes the point x :;;= o. An equivalent
definition is that for an arbitrary function j(xLthat is continuous at
x = 0, the equation

fj(x)o(x)dx = j(O) (11.7)

. is valid, where again the integration includes the point x = 0.
It is apparent from a comparison of Eqs. (11.6) and (10.11), or of

Eqs. (11.7) and (10.10), that the bracketed quantity in Eq. (10.10) can
be expressed in terms of 0 functions:

.>l uE(r')uE(r) = o(x - x')o(y - y')o(z - z') == oCr - r') (11.8)
E

Comparison of Eqs. (11.8) and (10.6) shows that the closure property
is a kind of orthonormality of the eigenfunctions with respect to summa­
tion over the eigenvalues. --

A Representation of the 0 Function. The definition (11.6) or (11.7)
-shows that o(x) is an exceedingly singular function." It may be thought
of qualitatively as being zero everywhere except at z = 0, and being so
large there that the area between it and the x axis is finite and equal to
unity. More formally, it can be represented in a number of different
ways as the limit of a sequence of analytic functions.

A particular representation that is quite useful involves (sin gX)/1l"X
as a function of x, where gis a' positive real number. This has the value
g/1l" at x = 0, oscillates with decreasing amplitude and with period 21l"/g .

1 P. A. M. Dirac, " The Principles of Quantum Mechanics ," 3d ed., Sec. 15 (Oxford,
New York, 1947).

2 A rigorous mathematical basis has recently been provided for the Ii function by
L. Schwartz ; see, for example, 1. Halperin and L. Schwartz, " Introduction to the
Theory of Distributlona " (University of Toronto Press, Toronto, 1952).
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as Ixl increases, and has unit integral from x = - 00 to x = + 00 indepen­
aently of the value of g. .T hus the limit of this function as g~ 00 has all
the properties of the 0 fun ction : it becomes infinitely large at x = 0,
it has unit integral, and the infinitely rapid oscillations as Ixl increases
mean that the entire contribution to an integral containing this function
comes from the infinitesimal neighborhood of x = O. We can therefore
put

(11.9)

(11.10)

r( ) _ li sin gx
u X -m--

g--+ 00 1I"X

Normalization in Terms of the 0 Function. The representation (11.9)
of the 0 function can be used to set up an orthonormality integral like that
given in Eq. (11.5), where now we do not impose the box normalization
but allow the momentum eigenfunctions to have the form {11.2) over all
space with all real vectors k. The integral fUl(r)uk(r)dT is the product.of
three integrals, each of which can be expressed in terms of a 0 function:

/ f 00 ei(k.-l. )" dx = lim fg ei(k.-l.) " dx
- co (J-+ CIO -g

1
. 2 sin g(k" - l,,)= 1m _----,-"--'---=--,----e:;.

g--+ 00 k" - l"
= 27l"o(k" - l,,)

Thus the momentum eigenfunctions in infinite space can be written

(11.11)Uk(r) = (811"3)-1 exp £k . r

in which case the orthonormality relation becomes

fUl(r)uk(r)dT = o(k" - l,,)o(kll - lll)o(k. - l.) == o(k - 1), . (11.12)

It will be shown in Sec. 12 that the box and o-function normalizations
of the momentum eigenfunctions give the same final result in a typical
problem. ,

Some Properties of the 0 Function. It is important to note that,
because of its singular character, the 0 function cannot be the end result
of a calculation, and has meaning only so long as a subsequent integration
over its argument is carried out. With this understanding we can write
down some relations between 0 functions.'

(11.13:
a>O
a>O

o(x) = o(-x)
O'(X) = - O'( -x)

xo(x) = 0
xo'(x) = -o(x)
o(ax) = a-1o(x),

o(x2 - a2) = (2a)-1[o(x - a) + o(x + a)],
fo(a - x)o(x - b)dx = o(a - b)

j(x)o(x - a) = j(a)o(x - a)

Here, a prime denotes differentiation with respect to the argument.
1 Dirac, op, cit., p. 60.
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Each of the first six of these equations can be established by multiply­
ing both sides by a continuous, differentiable functionf(x) and integrating
over z. For example, the fourth of Eqs. (11.13) gives

f f(x)x8'(x)dx = - f 8(X):X [xf(x)]dx

= - f8(x)[f(x) + xf'(x)]dx = - ff(x)8(x)dx

where the boundary terms that result from the partial integration vanish.
Thus x8'(x) has the same effect when it is a factor in an integrand as has
-8(x). Similarly the seventh of Eqs. (11.13) means that the two sides
give the same result when multiplied by f(a) or f(b) and integrated over a
or b. The last equation is verified by integrating both sides over either
x or a.

Closure. The closure property of the momentum eigenfunctions,
with both box and 8 function normalization, can be established without
the help of the completeness assumption that was made in Sec. 10 for
the energy eigenfunctions. With box normalization, the expression
analogous to the left side of Eq. (11.8) is

e2ri[n,(,,-,,'l+n.(II-v'l+n.(.-z'l)IL
00

I
00

II Uk(r;)Uk(r) = L-3
k n~=-~~=-~n,=-~

This is readily evaluated in the limit of large L, in which case the sum­
mand changes by a negligible amount as each n changes by one unit.

00

We can then regard n" as a continuous variable and replace I by
n2:"""'- GOJ-00.. dn ; = (Lj27r) J-0000 a; We thus obtain

~ uk(r')uk(r)~ (87r3)- t f 00 f 00 f 00 ei[k,("-"'>+k.(II-v'>+k,(z-z'l)dk"dk dk.
~ L-+co -00 -00 -00 y
k

= 8(x - x')8(y - y')8(z - z') = 8(r - r') (11.14)

on making use of Eq. (11.10).
A similar calculation can be carried through, using the 8-function

normalization, in which case we obtain from Eqs. (Ll.Ll) and (11.10)

f uk(r')uk(r)dTk = IffUk(r')Uk(r) dk; dkll dk, = 8(r - r') (11.15)

The closure relation (11.14) or (11.15) shows that the momentum
eigenfunctions are orthonormal with respect to summation or integration
over the eigenvalue k as well as with respect to integration over the posi­
tion vector t ,
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Expansion in Momentum Eigenfunctions. An arbitrary continuous
function if;(r) can be written in terms of the 0 function as

if;(r) = N(r')o(r - r')dr' (11.16)

If we substitute the left side of Eq. (11.14) in place of oCr - r') in Eq.
(11.16), we obtain

if;(r) = J if;(r') l uk(r')uk(r)dr' = l Akuk(r)
k k (11.17)

A k = f uk(r')if;(r')dr'

Similarly, if we substitute for oCr - r') from Eq. (11.15), we obtain

y;(r) = N(r')fuk(r')uk(r)drkdr' = fAkuk(r)drk (11.18)

with the same expression for Ak. Equations (11.17) and (11.18) show
that it is possible .to expand an arbitrary function in momentum eigen­
functions that are normalized either in a box or by means of 0 functions. J

Probability Function and Expectation Value. The momentum
probability function associated with a normalized wave function if;(r) is
proportional to \AkI 2

• The proportionality factor is unity, since if we
put

P(k) = IAk l2 (11.19)

it is easily shown in analogy with the summation of Eq. (10.12) that

LP(k) = 1
k

and JP(k)drk = 1 (11.20)

(11.22)

,
for the box and o-function normalization, respectively.

The-expectation value of the momentum when "box normalization is
used is

(p) = h l kP(k) = h 2: J kUk(r)if;(r)dr J uk(r')if;(r')dr' (11.21)
k k

From the complex conjugate of Eq. (11.2), we can replace kUk(r) by
i grad uk(r). Then the first integral in Eq. (11.21) can be integrated by
parts and the surface integral vanishesbecause of the periodic boundary
conditions on if; and Uk. Thus with the help of Eq. (11.14), Eq. (11.21)
becomes

(P) = -ih l J uk(r) grad if;(r)dr J uk(r')if;(r')dr'
k

= -ih f N(r') [grad if;(r)]o(r - r')drdr'
= -ihN(r) grad if;(r)dr

1 These results, while not rigorously established here, are equivalent to the mathe­
matical theorems on the expansibility of functions in Fourier series and Fourier
integrals.
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This is in agreement with the second of Eqs. (7.8).
When a-function normalization is used, the details of the calculation

are very similar to those given above, except that the surface integral
that results from the partial integration is over a sphere of infinite radius;
it is zero because if;becomes vanishingly small at great distances. This is
consistent with the supposition that if; is normalized ; otherwise neither
JP(k)dTk nor (p) have any physical meaning. The result of the calcula­
tion in this case is the same as Eqs. (11.22) and (7.8).

12. MOTION OF A FREE WAVE PACKET IN ONE DIMENSION

The motion of a free particle (no external forces) in one dimension is
desoribed by the Sehrodinger wave equation (6.8). The study of this
motion provides an interesting application of the expansion techniques
developed in Sees. 10 and 11. As a first step, we find the minimum value
of the uncertainty product given in Eq. (3.1), and the possible forms of
the one-dimensional wave packet that correspond to it, all at a definite
instant of time. The structure of this minimum packet is the same
whether or not the particle is free, since this form can be regarded simply
as an initial condition on the solution of the Schrodinger equation for
any V. However, the analytical work involved in finding if; at other
times is especially simple in the force-free case.

The Minimum Uncertainty Product.' In order to find the minimum
value for the uncertainty product ~x . ~p, we must first define what we
mean by ~ and lip . While many expressions are possible, the simplest
to handle analytically is the root-mean-square deviation from the mean,
where the word" mean" implies the expectation value of Sec. 7.

(lix)2 = «x - (X»2) = (x 2) - (2x(x» + «X)2) = (x2) - (X)2
(lip)2 = «p _ (p»2) = (p2) _ (p)2 (12.1)

Here the equalities follow directly from the general definition of expecta­
tion value given in Sec. 7. If now we put

(lix~2(~p)2 = J-.... Yt'"a2if;dx J-....Yt{32if;dx

. = J_...,<aYt)(a1J;)dx J_',..<~Yt)({3if;)dx

then

a == x - (z), {3 == p - (p) = -ih [d: - <:x>] (12.2)

(12.3)

The transfo~mationof the a integral in Eq. (12.3) is obvious; the similar
transformation of the {3 integral follows from a partial integration when

1 W. Heisenberg, "The Physical Principles of the Quantum Theory," pp. 17-19
(University of Chicago Press, Chicago , 1930).
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we remember that if; is a normalized wave packet, which vanishes at
x = ± 00.

The inequality

f If
' Jfgdx 1

2

d > 0
- ~ Jlgl2dx x =

I

where all integrals are from x = - 00 to + 00, is obviously true, and the
equality is applicable only if f = 'Yg, where 'Y is a constant. ' From this
inequality we obtain at once

JlfI2dxJlgI2dx '~ IJJgdxl2

If now we replacefby 00/; and g by IN, Eq. (12.3) becomes

The last term in Eq. (12.4) can be written

IN[-!(al3 - l3a) + i(al3 + l3a)]if;dxI 2

= tlN(al3 - l3a)if;dxI 2+ tlN(al3 + l3a)Vtdxl 2 (12.5)

The cross term in the product that is omitted on the right side of Eq.
(12.5) can be seen to vanish when use is,made of the relation

fV;al3if; dx = N;'~y; dx = J(~y;)(aif;) dx = Jy;l3aVt dx,

which is obtained by using partial integration and remembering that a
is real. N ow from Eq. (12.2)

(al3 - l3a)Vt = -ih [x # - .!i (Xif;)] = ihif; (12.6)dx dx

We thus obtain from Eqs. (12.4), (12.5), and (12.6)

or (12.7)

where the equality can hold only if the second term on the right side of
Eq. (12.5) is zero. This is the precise expression of the Heisenberg
uncertainty relation (3.1), when the uncertainties L\x and L\p are defined
as in Eq. (12.1) . .

Form of the Minimum Packet. It follows from the foregoing deriva­
tion that the minimum uncertainty product is attained only when two

. conditions are fulfilled.
00/; = 'Y13if;

N(al3 + l3a)Vtdx = O· •
(12.8)
(12.9)
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Equations (12.8) and (12.2) give us a differential equation for '"

# = [i.. (x - (x») + i(P)] '"
dx 'Yh h

which is readily integrated to give

",(x) = Nexp [2~h (x - (X»)2 + i(~)x] (12.10)

where N is an arbitrary constant.
Equation (12.9), with the help of Eq. (12.8), becomes

(~ + ~) f y;a2!fdx = 0

which evidently requires that 'Y be pure imaginary. Then since we want
Eq. (12.10) to represent a wave packet for which the integral of 1"'1 2 con­
verges, 'Y must be negative imaginary. The magnitude of the constant N
can now be fixed by normalizing "'.

fl"'1 2dx = 1

Similarly, 'Y can be determined by requiring that

f(x - (x»)2j"'1 2dx = (AX)2

The integrals are readily evaluated, and lead to the normalized minimum
wave packet

",(x) = [2?r(AX)2]-i exp [_ (x - (X»)2 + i(P)X] . (12.11)
4(AX)2 h

Momentum Expansion Coefficients. The one-dimensional momen­
tum eigenfunctions analogous to Eqs. (11.4) and (11.11) are,

Uk(X) = L-!eikx (12.12)

for normalization in a one-dimensional" "'box" of length L, and

Uk(X) = (~1r)-!eik'" (12.13)

for a-function normalization. Since for a free particle the wave equation
has the simple form of Eq. (6.8)

. a", h2 a2
'"

'th at = - 2m ax2 (12 .14)

the momentum eigenfunctions are also eigenfunctions of the energy.'
1 The converse is not necessarily true, since there are two solutions of Eq. (12.16)

for k (positive and negative) for each value of Ek •
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Thus any solution of the wave equation can be written in a form analogous
to Eq. (10.18),

(12.15)

(12.16)

where the A" are independent of x and t; the entire time dependence is
contained in the exponential factor. Equation (12.15) is readily verified
to be a solution of Eq. (12.14) by direct substitution, provided that

h2k2

E" = 2m

The problem of finding the motion of a wave packet is thus resolved
into finding the expansion coefficient A" at some particular time, say
t = 0, and then using Eqs. (12.15) and (12.16) to find ,/;(x,t) at other
times. At t = 0, the exponential factors in Eq (12.15) are unity, and
we may use the one-dimensional analogue of the second of Eqs. (11.17)
to find A".

(12.17)

(12.18)

The limits on the integral are x == ±iL or x = ± 00 , according as box
or a-function normalization is used. The momentum probability func­

iE.t

tion P(k) = IA"e-T I2 = IA,,12 is independent of the time, so that (p) and
tlp, for example, are constants.

Change with Time of a Minimum Packet. As a simple. specific exam­
ple, we take ,/;(x,O) to have the form of Eq. (12.11) with (x) _= (p) = 0,
so that the wave packet initially is centered at x = °and has zero average
momentum. Then using box normalization, Eq. (12.17) gives

A" = [27rL2(tlX)2]-i f~~Lexp [ - 4(~:)2 - ikX] ax

= [87r~X)2Te-"'(A,")2

where L is assumed to be so large that the contribution to the integral
from Ixl > iL can be neglected. Substitution into Eq. (12.15) gives the
wave function for general values of t

(12.19)

where k = 27rn/L and n takes on all positive and negative integer values
and zero. As in Sec. 11, L "may be taken arbitrarily large, n can be
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regarded as a continuous variable and the summation replaced by Jdn,
which in turn is the same as (L /21r)Jdk. Thus

[
(A )2]1f 00 [ 'hk2t ]1/;(x,t) = 2;3 _00 exp -k2(AX)2 - 't2m + ikx dk

(
iht ) -! [ x2 1

= (21r) -i Ax + 2mAx exp - 4(Ax)2 + (2iht/m)

The position probability density is then

(12.20)

!1/;(x,t)j2 = {21r [(AX)2 + 4m~~~X)2]} -1

. exp { [ x' A'" ]}. (12.21)
2 (AX)2 + 4m2(Ax)2

Equation '(12.21) is of the same form as I1/;(x,0)j2, except that (AX)2
: i~_replaced by (AX)2 + h2t2/4m2(Ax) 2, which is equal to (AX)2 + (Ap)2t2/m2.

Thus the center of the packet remains at x = °while the breadth of the
packet increases as t departs from zero in both past and future directions.
The smaller the initial uncertainty in position, the larger the uncertainty
in momentum and the more rapidly the packet spreads; the time-depend­
ent part of the above expression, t(Ap) /m, is simply the distance traveled
by a classical particle of momentum Ap in the time t.

Use of the o-function normalization does not alter the results of the
foregoing calculation. The expression for Ak given in Eq. (12.18) is
to be multiplied by (L/21r)1; in Eq. (12.19) the summation is to be replaced
directly by Jdk, thus eliminating a factor L /21r; finally, Uk in Eq. (12.19)
is to be multiplied by (L /21r)!. These three factors cancel, and so Eqs.
(12.20) and (12.21) are unaffected by the choice of normalization of the
momentum eigenfunctions.

Classical Limit. We have seen in Sec. 7 that a wave packet always
moves like a classical particle in so far as the expectation values of its
position" and momentum are concerned. However, classical dynamics is
only useful as a description of the motion if the spreading of the wave
packet can be neglected over times of interest in the particular problem.

As a simple example of the kind of parameter that indicates when the
classical limit is realized, we consider a wave packet that corresponds to a
classical particle moving in a circular orbit of radius a and period T. We
shall assume that this packet is sufficiently well localized so that the
potential energy does not vary appreciably over its dimensions. Then
the classical theory can provide a useful description of the motion only
if a wave packet like that discussed above spreads by an amount that is
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small in comparison with a during a time that is large in comparison
with T. The smallest spread of a packet during a time interval of mag­
nitude t is attained when ~x is chosen to be of order (ht/m)t. We thus
require that (ht/m)i «a when t» T. This condition may be simply
expressed by saying that the angular momentum 21rma2/T of the particle
must be very large in comparison with h. Thus for most atomic systems,
where the angular momentum of each electron is of order h, a wave packet
corresponding to a well-localized particle spreads so much in one period
that this type of description of the motion is not of physical interest.

Problems

1. Given three degenerate eigenfunctions that are linearly independent although
not necessarily orthogonal. Find three linear combinations of them that are orthog­
onal to each other and are normalized. Are the three new combinations eigen­
functions? If so, are they degenerate?

2. Show that so far as the one-dimensional motion of a particle is concerned, the
functions u:'(x) = o(x - x') for all real x' constitute a complete orthonormal set ,
and that each of them is an eigenfunction of the position variable x with the eigen­
value z', Set up the position probability function and compare with that obtained
in Sec. 7.

3. If the potential energy Vex) in a one-dimensional problem is it monotonic
increasing function of o: and independent of the time, show that the fun ctions:
uv'(x) = (dV / dx) -i:_:, o(x - x') for all real z', where V' = Vex'), constitute a com­
plete orthonormal set of eigenfunctions of the potential energy with eigenvalues V' .
Find the probability function for the potential energy, and show that it has the prop­
erties that would be expected of it .

4. What changes are needed in the discussion of the momentum .eigenfunctions
given in Sec. 11 if normalization is carried through in a box of rectangular parallel.
epiped shape rather than in a box of cubical shape?

6. Find two other representations for the Dirac 0 fun ction like that given in Eq,
(11.9).

6. Verify each of Eqs. (11.13) involving 0functions.
7. Show that the two Eqs. (11.20) are correct : that the momentum probability

function defined in Eqs. (11.19) and (11.17) for a normalized f sums or integrates to
unity.

8. The expression in square brackets in the integrand of Eq. (10.19) enables one to
calculate f at time t in terms of f at time to, If this expression is called G(x,x',t;to) in
the one-dimensional case, then f(x,t) = fG(x,x',t,to)f(x',to)dx'. Show that for a free
particle in one dimension •

[
-im Jt [im(x - X')2J

G(x,x',t,to) = 21rh(t _ to) exp 2h(t - to)

Assume that f has the form of the normalized minimum wave packet (12.11) at to = 0;
use the above result to find f and Ifl2 at another time t,



(13.1)

CHAPTER IV

DISCRETE EIGENVALUES: ENERGY LEVELS

The formalism that was deyeloped in Chap. II and elaborated in Char>.
III will now be applied to the explicit computation of discrete energy
levels and the corresponding eigenfunctions. The next chapter will
take up situations in which the energy eigenvalues are continuously
distributed. Thus we are concerned here with bound states in which the
particle is restrained by the external forces (potential energy) to a
particular region of space , and in the next chapter with collision problems
in which the particle can approach from and recede to infinite distance.

The relatively few potential energy functions VCr) for which analytic
solutions of the wave equation (8.2) are possible, are important beyond
these immediate problems, since they often serve as bases for approxi­
mate caiculations on more complicated systems.

13. LINEAR HARMONIC OSCILLATOR

The one-dimensional motion of a point mass attracted to a fixed
center by a force that is proportional to the displacement from that center,
provides one of the fundamental problems of classical dynamics. Its
study is important not only for itself, but also because more complicated
systems can often be analyzed in terms of normal modes of motion that
are formally equivalent to harmonic oscillators. The linear harmonic
oscillator in quantum mechanics is similarly of importance both for the
study of such problems as the vibrations of individual atoms in a mole­
cule, and for ·the analysis of more complicated systems such as crystals
and (as we shall see in Chap. XIII) quantized wave fields.

Asymptotic Behavior. The force F = - Kx can be represented by
the potential energy Vex) = tKx2 so that Eq. (8.5) becomes

11,2 d2u- - - + tKx2u = Eu2mdx2

It is convenient in dealing with an equation of this type to rewrite it in
dimensionless form. To this end we introduce a dimensionless inde­
pendent variable ~ = ax, and a dimensionless eigenvalue A, and attempt
to put Eq. (13.1) in the form

d2u
d~2 + (A - ~2)U = 0 (13.2)

60
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Comparison of Eqs. (13.1) and (13.2) shows that this is possible if

a4 = mK, X = 2E (m)! = 2E (13.3)
h2 h K !tw.

where w. = (Kim)! is the angular frequency of the corresponding classical
harmonic oscillator.

The solution of Eq. (13.2) is facilitated by first examining the domi­
nant behavior of u in the asymptotic region ~ ~ ± 00. 1 For sufficiently
large ~ it is apparent that uW = ~"e±H' satisfies Eq. (13.2) so far as the
leading terms (which are of order ~2U) are concerned, when n has any
finite value. The boundary conditions of Sec. 8 permit us to keep only
the minus sign in the exponent. This suggests that it might be possible to
find an exact solution of Eq. (13.2) of the form

uW = H(~)e-H' (13.4)

where HW is a polynomial of finite order in~. Substitution of Eq.
(13.4) into Eq. (13.2) gives as the equation for HW

H" - 2~H' + (X - l)H = 0 (13.5)

where primes denote differentiation with respect to ~.

Energy Levels. We now find a solution for H in the form

ao ~ 0, 8 ~ 0 (13.6)

(13.7)

This is necessarily finite for ~ = O. Equation (13.5) is to be valid for all
values of ~, so that when Eq. (13.6) is substituted into it, the coefficient
.of each power of ~ can be equated to zero.

8(8 - l)ao = 0
(8 + 1)8al = 0

(8 + 2)(8 + 1)a2 - (28 + 1 - 'A)ao = 0
(8 + 3)(8 + 2)aa - (28 + 3 - 'A)al = 0

(8 + II + 2)(8 + II + 1)a.+2 - (28 + 211 + 1 - 'A)a. = 0

where II is an integer. Since ao cannot be zero, the first of Eqs. (13.7)
tells us that 8 = 0 or 8 = 1. The second equation tells us that 8 = 0,
or al = 0, or both. Then the third equation gives us a2 in terms of ao,
the fourth gives us aa in terms of al , and the-general equation gives us
a'+2 in terms of a•.

It follows from Eqs. (13.7) that the presence in the series (13.6) of a
finite or an infinite number of terms depends on the choice of 8, al, and

1 We follow the polynomial method of A. Sommerfeld, "Wave Mechanics," p. 11
(Dutton, New York, 1929).
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the eigenvalue X. If the series does not terminate, its dominant asy-m,P­
totic behavior can be inferred from the coefficients of its high terms

This ratio is the same as that of the series for ~"e~' with any finite value of
n. Equation (13.4) shows that this behavior for H violates the boundary
conditions on u for large I~I .

Thus the series (13.6) must terminate. This means that

X = 28 + 2v + 1;

v must be an even integer, since ao r£ 0 and otherwise the even-subscript
terms would form an infinite series. Since the odd-subscript series can­
not then terminate, we must choose al = O. The index 8 can still be
either 0 or 1, and corresponding to these two values Xis equal to 2v + 1
or 2v + 3, where v is an even integer. We may express both cases in
terms of a quantum number n

)" = 2n + 1, n = 0, 1,2, ... (13.8)

Zero-point Energy. The infinite sequence of energy levels (13.8) has
the equal spacing postulated in 1900 by Planck, which is in agreement
with the quantization rules of the old quantum theory. However, t~
finite value of the ground-state energy level thwc, which is called the
zero-point en'ergy, is characteristic of the quantum mechanics, and is
related to the uncertainty principle in the same manner as is the finite
lowest energy level for the square well with perfectly rigid walls (Sec. 9).
The total 'energy is of order (~p)2/m + K(~X)2, where ~p and ~x are
measures of the spreads in momentum and position, as defined in Sec. 12;
if this is minimized, taking account of the uncertainty relation (3.1),
it is easily seen that the minimum ~p is of order (Kmh2)i , so that the
minimum total energy is of order h(K/m)! or hwc•

Parity. It follows from Eqs. (13.8) and (13.7) that n is the highest
value of 8 + v in the series (13.6) for H . If we denote the corresponding
polynomial by H,,(~), we see that H" is of degree n in ~, and is wholly
even or odd according as n is even or odd. Since e-H' is even and has no
nodes, the corresponding eigenfunction u,,(~) has the parity of n, and has
n nodes. These conclusions are in agreement with the earlier results of
Sees. 8 and 9.

Hermite Polynomials. The polynomial of order n that has the parity
of n and is g. sclution of Eq. (13.5) with X = 2n + 1

H~ - 2~H~ + 2nHn = 0, (13.9)
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is called the nth Hermite polynomial H"W. It is clear from the fore­
going solution of Eq. (13.5) that these conditions define H" uniquely
except for an arbitrary multiplying constant. It is not necessary, then,
to use the recursion relations (13.7) to study the detailed properties of
the H", if some other formulation of them can be found that is consistent
with these conditions. A far more convenient formulation is actually
available, which expresses the H" in terms of a generating function S(~,s).

'"
= ~ H"W sn

Lt n!
n=O

(13.10)

(13.11)

If the exponential in Eq. (13.10) is expanded out in powers of s and ~, it is,
seen that a given power of s is associated only with powers of ~ that are
equal to that power or less than it by an even integer. Thus H n(~)

defined in this way is a polynomial of order n that has the parity of n.
To show that this H n satisfies the differential equation (13.9), we

differentiate both sides of Eq. (13.10) first with respect to ~ and then with
respect to s,

as = 2se-8>+28~ = ~ 2s"+l H (~) = \' s" H' (~)
a~ Lt n!" Lt n! "

n n

~~ = (-2s+2~)e-8""28~ = 2: (-2S~2~)snH,,(~) = 2:(/~-~)!H,,(~)
n n

Equating equal powers of s in the sums of these two equations gives
respectively

H~ = 2nHn-l
H"+l = 2~H" - 2nH"_1

The lowest order differential equation involving only H" that can be
constructed from Eqs. (13.11) is easily seen to be Eq. (13.9). Thus the
H,,(~) given by Eq. (13.10) are the Hermite polynomials.

The relations (13.11) may be used for the calculation of the H" and
their derivatives, or an explicit expression obtainable directly from the
generating function may be used. If S(~,s) is differentiated n times with
respect to sand s is then set equal to 0, Eq. (13.10) shows that the result
is simply H,,(~). Now for any function of the formf(s - ~) it is apparent
that

af _ af
as = a~
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Thus

(13.12)

e-s a" a"- = eE' - e-1B-E)' = (-I)"eE' - e-(B-E)'
as" as" a~"

This gives an expression for the nth Hermite polynomial

a"
H ,,(~) = (-I)"e E' a~" e-E'

The first three polynomials calculated from Eq. (13.12) are

HoW = 1, HiW = 2~, H 2W = 4~2 - 2

Harmonic-oscillator Wave Functions. The generating function is
also useful for the calculation of integrals involving the harmonic-oscil­
lator wave functions (13.4)

u,,(x) = NnH,,(ax)e- la'''' (13.13)

Suppose, for example, that we wish to normalize u,,(x); this is equivalent
to choosing the constant N" such that

f-..."' lu,,(x)1 2dx = IN:12 f-"'", H;'(~)e-E'd~ = 1

The integral on the right can be expressed as a series coefficient in the
expansion of an integral containing the product of two generating
functions.

... "'

J-"'", e-B'+2BEe-t'+2tEe-E 'd~ = LL::! f-"'", Hn(~)HmWe-E'd~ (13.14)
,,=0 m=O

The integral on the left of Eq. (13.14) is readily evaluated directly to give

(13.15)

(13.16)
n~m

If equal powers of sand t are equated in the series on the right sides of Eqs.
(13.14) and (13.15), we obtain the results

J-"'", H;'We-E'd~ = 7I'l2"n !,

J-"'", H,,(~)HmWe-E'd~ = 0,

The first of Eqs. (13.16) tells us that the normalizing constant can be
chosen to be

(13.17)
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where a constant multiplicative complex phase factor of unit magnitude
is still arbitrary. The second of these equations tells us that un(x) and
um(x) are orthogonal to each other if n ~ m; this is in agreement with the
general result obtained in Sec. 10 for nondegenerate energy eigenfunc­
tions, since in accordance with Eq. (13.8), En ~ Em if n ~ m, and so
there is no degeneracy.

The integral

is typical of others that can be evaluated with the help of the generating
fun ction. The two series expressions for the integral,

"' "'
f "' ~ ~ snt

m f"'_., e-81f-28Ee-12+2tE~e-E2d~= 4 4 n!m! _", ~HnWHmWe-E2d~
n=O m=O

and

may be equated term by term. With the help of Eq. (13.17), we get

~(nt1Y, m=n+1
~ (~y, m = n - 1 (13.18)

0, otherwise

Correspondence with Classical Theory. Plots of the first six har­
monic oscillator wave functions are shown in Fig. 10. It is apparent
that the position probability densities lunl

2 associated with these station­
ary wave functions have little resemblance to the corresponding densities
for the classical harmonic oscillator; the latter are proportional to
(~~ - ~2)-i, where ~o is the amplitude of the classical oscillator whose
energy is equal to the quantum-mechanical eigenvalue. The agree­
ment between classical and quantum probability densities improves
rapidly with increasing n. Figure 11 contains a plot of lunl

2 for n = 10
(solid curve), and of the density of a classical oscillator of total energy
~hwc (dashed curve). The agreement is quite good on the average, the
principal discrepancy being the rapid oscillations in lunl

2•
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The expectation value for the potential energy can be obtained from
Eq. (7.6):

(V)n = [:.... un(x ){K x2un(x)dx

= tK (2n + 1) = t(n + t)/iwe = tEn
2a 2

where fx21u
nl

2dx can be calculated with the help of the generating func­
tion in analogy with the evaluation of Eq. (13.18) . Thus for any value
of n, the average potential and kinetic energies are each half of the total
energy, just as is the case with the classical oscillator.

In similar fashion it can be shown that (x) = (p) = 0 for any
harmonic-oscillator wave function, so that Eq. (12.1) tells us that
(.:lX)2 = (x2), and (.:lp)2 = (P2). It is then easy to see that the uncer­
tainty product is

&c . .:lp = (n + t)1i

This has the minimum possible value tli of Eq. (12.7) for the ground­
state eigenfunction

(13.19)

which, as would be expected, is of the form of the minimum packet
(12.11). Thus the minimum packet happens to be an eigenfunction of
the harmonic-oscillator wave equation if its &c is properly related to K
andm.

Oscillating Wave Packet. In accordance with Eq. (10.18), the
general solution of the time-dependent Schrodinger equation for the
harmonic oscillator

i ii :t t/;(x,t) = ( - :~ a~2 + tK X2) t/;(x,t)

can be expanded in terms of stationary wave functions

GO iEnt GO

t/;(x,t) = L Anun(x)e-T = e-!iw<l LAnun(x)e-inw<l (13.20)
n=O n =O

where the An are arbitrary constants. Thus apart from the phase
factor e-!iw<l, t/;(x ,t) is a periodic function of t with the period of the classical
oscillator 27r/ We . This suggests that it might be possible to find a solution
in the form of a wave packet whose center of gravity oscillates with the
period of the classical motion.

To investigate this possibility, we assume that at t = 0 the t/; of
Eq. (13.20) has the form of the normalized minimum packet (13.19),
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except that the center of gravity is displaced in the positive x direction
by an amount a. ..

\' a!1/I(x,O) = 4 A"u,,(x) = 7rt e-!a'(z-a)'

n=O

(13.21)

We can make use of the orthonormality of the Un to calculate a particular
coefficient Am by multiplying Eq. (13.21) through by um(x) and integrat­
ing over x.

Am = t: um(x)1/I(x,O)dx = ~mi f" Hm(~)e- !J'e- t<E-h)'d~, ~o == aa
_ 00 1f' a _ 00

The integral on the right can be evaluated with the help of the generating
function by' equating term by term the two series expressions for the
integral

and

On making use of Eq. (13.17), we obtain

f'e- Ho'A - 0
" - (2nn !)t

Substitution of these An into Eq. (13.20) gives

(13.22)

..
1/I(x t) = a

l
e-H'-W-liw,t \' Hn(~) (Hoe-iw,t)"

'7rt 4 n!
n=O

!
= :t exp (- H2 - H~ - tiwet - H~e-2,w,t + Hoe-iw,t)

a
l

1 ( )= 7rt exp [- ~ ~ - ~o cos wet 2

- iCkwet + ~~o sin wet - H~ sin 2wet)]

where the sum is evaluated with the help of the generating function
(13.10) . The absolute square of this wave function gives a position
probability density
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This shows that if; represents a wave packet that oscillates without
change of shape about x = 0, with amplitude a and the classical frequency.

As a~ 0, if; approaches the lowest energy eigenfunction uo(x)e-\i.., t .

The larger a becomes, the larger the number of stationary states that
contribute significantly to the packet, and the larger the quantum num­
ber no for which An of Eq. (13.22) has a maximum. For n» 1, we can
use Stirling's formula to maximize In An; neglecting terms of order In n
and lower

In An ,......, n(ln ~o - t In 2) - tn(ln n - 1)
,......, 11:2 _ Ka 2

no = '2"<;;0 - 2hwc
(13.23)

Thus the energy level En. = (no + t)hwc, from whose neighborhood most
of the contribution to if; comes, is approximately equal to the energy
iKa2 of the classical oscillator that has the same amplitude.

14. SPHERICALLY SYMMETRIC POTENTIALS IN THREE DIMENSIONS

Polar
axis

_A.~~ I .>
'1" , -:»______ ...2:':J,-- /
y

FIG. 12. Relation between re c­
tangular and sphe r ical polar coordi­
nates of a point P.

x = r sin (J cos ep
y = r sin (J sin ep
z = r cos (J

It is generally impossible to obtain analytic solutions of the three­
dimensional wave equation (8.2) unless it can be separated into total
differential equations in each of the three
space coordinates. It has been shown 1

that there are 11 coordinates systems
in which the free-particle wave equa­
tion [Eq. (8.2) with V = 0] can be
separated. One of the most important
of these is the spherical polar-coordinate
system, in terms of which the rectangular
coordinates are given by (see Fig. 12)

If the potential energy is spherically symmetric, so that VCr) = VCr) is a
function only of the magnitude r of r measured from some origin, the wave
equation can always be separated in spherical coordinates. Many prob­
lems of physical interest can be represented exactly or approximately
in terms of spherically symmetric potentials of various shapes. In
this section we effect the separation, and solve the resulting total dif-

1 L. P . Eisenhart, Phys. Rev., 46, 428 (1934). See also L. Pauling and E. B. Wilson,
Jr., "Introduction to Quantum Mechanics," Appendix IV (McGraw-Hill, New York,
1935).
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(14.2)

ferential equations in 0 and q,. The next two sections deal with the
solution of the radial equation for particular forms of VCr) .

Separation of the Wave Equation. The wave equation (8.2) with a
spherically symmetric potential energy may be written in spherical
coordinates

- ~ [~ ~ (r2~) + 1 s. (sin 0 ~) + 1 ~J u2m r2or or r2sin 0 00 00 r2sin" 0 Oq,2
+ V(r)u = Eu (14.1)

We first separate the radial and the angular parts by substituting

u(r,O,q,) = R(r)Y(O,q,)

into Eq. '(14.1) and dividing through by u.

~!£ (r2 dR) + 2mr
2

[E - VCr)]
R dr dr h2

1 [ 1 0 (. 0Y) 1 02Y]
= - Y sin 0 00 sin 0 ao + sin2 0 Oq,2

Since the left side of Eq. (14.2) depends only on r, and the right side
depends only on 0 and q" both sides must be equal to a constant that we
call h. Thus Eq. (14.2) gives us a radial equation

1 d (dR) {2m x}- - r 2- + - [E - VCr)] - - R = 0
r 2dr dr h2 r2

and an angular equation

(14.3)

(14.4)1 0 (. oY) 1 o2Y
sin 000 sin 0 ao + sin2 OOq,2 + hY = 0

The angular equation (14.4) can be further separated by substituting
Y(O,q,) = e(O)<I>(q,) into it and following the same procedure to obtain

d2<J> + v<l> = 0 (14.5)dq,2

Si~ 0 %0 (Sin 0 ~~) + (h - si:2 0) e = 0 (14.6)

The q, equation (14.5) can be solved at once ; its general solution may be
written

<I>(q,) = Aei , i 4> + Be- i ,i 4> ,

<I>(q,) = A + Bq"

v~O

v = 0
(14.7)
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The requirement of Sec. 8 that <1>(1/» and d<l>/dl/> be continuous through­
out the domain 0 to 21r of I/> demands that" be chosen equal to the square
of an integer. We thus replace Eqs. (14.7) by

(14.8)

where now all physical meaningful solutions are included if m is allowed
to be a positive or negative integer or zero ;' the multiplying constant is
chosen equal to (2'11-) -! in order that <I> be normalized to unity over the
range of 1/>. •

Legendre Polynomials. Unless V(r) is specified, the farthest we can
carry our treatment is the solution of the 8 equation (14.6), where now
" = m2• It is convenient to substitute w = cos 8 for 8, and put

8(8) = P(w),
when Eq. (14.6) becomes

d [ dPJ ( m
2

)- (1 - w 2) - + A - P = 0
dw dw 1 - w2 (14.9)

Since the domain of 8 is 0 to 'Il', the domain of w is 1 to' -1. The procedure
for solving Eq. (14.9) is in many respects similar to the solution of the
harmonic-oscillator wave equation presented in Sec. 13, and will not be
given in detail here.2 Since Eq. (14.9) is a second-order differential
equation, it has two linearly independent solutions. Except for particu­
lar values of A, both of these are infinite at w = ± 1, and in accordance
with Sec. 8 are not physically acceptable. If however A = l(l + 1),
where l is a positive integer or zero, one of the solutions is finite at w = ± 1
(the other is not); this finite solution has the form (1 - w2)! lml times a
polynomial of order l - Iml in w, and has the parity of l - Iml.

The physically acceptable solutions of Eq. (14.9) when m = 0 are
called the Legendre polynomials Pz(w) . Just as is the case with the Her­
mite polynomials, their properties may be discussed in terms of a generat­
ing function

T(w,s) = (1 - 2sw + S2)-!
.,

= I PZ(W)SZ, s < 1.
1=0

(14.10)

, At the very slight risk of confusion with the mass of the particle, we make use of
the customary symbol m for the quantum number associated with the coordinate 1/>.

2 For a complete discussion of this equation, see E. T. Whittaker and G. N. Watson,
" A Course of Modern Analysis," 4th ed., Chap. XV (Cambridge, London, 1935).
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(14.11)

(14.13)

Differentiation of the generating function with respect to wand s leads to
relations that are analogous to Eqs. (13.11) for the Hermite polynomials.

(1 - W2)P~ = - lwPI + lPZ_ 1

(l + I)PI+1 = (2l + l)wPz - lPl-1

where primes denote differentiation with respect to .w. The lowest order
differential equation involving only PI that can be constructed from Eqs.
(14.11) is easily seen to be Eq. (14.9) with A = l(l + 1) and m = o.

For m not necessarily equal to zero, Eq. (14.9) has physically accept­
able solutions if A = l(l + 1) and Iml ~ l. These solutions, which are
called associated Legendre functions, are expressible in terms of the
Legendre polynomials

dlml
PY'(w) = (1 - w2) ! lml dwlmlPz(w) (14.12)

This can be shown by substitution of Eq. (14.12) into the equation that is
obtained by differentiating Iml times the equation for Pz(w). The
generating function for the associated Legendre functions is obtained by
differentiating Eq. (14.10) Iml times with respect to wand multiplying
by (1 - w2) ! lml•

(21m\) !(1 - w2)!lmlslm!
Tm(W,s) = 2Iml(lm\) !(1 _ 2sw + s2)lmlH..

= 2: PY'(W)SI
1=lml

Spherical Harmonics. The angular part Yzm(8,ep) of the complete
wave function, which is a solution of Eq. (14.4) when A = l(l + 1), is
called a spherical harmonic. It is apparent that

Ylm(8,ep) = NzmPY'(cos 8)<I>m(ep) (14.14)

where <I>m(ep) is given by Eq. (14.8), and N Zmis the normalization constant
for the associated Legendre function.

The same proof that was given in Sec. 10 for the orthogonality of the
energy eigenfunctions may be used to show that solutions of Eq. (14.4)
corresponding to different eigenvalues A or l are orthogonal. The
eigenvalue l is, however, (2l + l j-fold degenerate, since there exist
linearly independent solutions Y zm(8,ep) for this value of l and all integer
values of m between +l and -l. The choice of Eq. (14.8) for <I>m(ep)
makes these degenerate eigenfunctions orthogonal. We have then that
the integral
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vanishes unless l = l' and m = m'. It is interesting to note that there is
no more orthogonality present .tba."L is necessary to make this integral
vanish when it should. Thus the ep part of the integral vanishes when
m ¢ m' without regard for the l values j-the 0 or w part of the integral
vanishes only when l ¢ l' and Iml = Im'l, since for m ¢ m' the ortho­
gonality is taken care of by the integration over ep.

The integral

J~l Pr(w)P'{l(w)dw (14.15)

can be evaluated in various ways, for example, by using the generating
function (14.13) in a manner similar to that described in Sec-, 13. As
expected, the integral (14.15) vanishes unless l = l' , when it has the
value [2j(2l + 1)][(l + 1m!) !f(l - 1m!) I]; thus N lm , which contains an
arbitrary complex phase factor of unit magnitude, may be taken to be
the reciprocal of the square root of this quantity. The normalized
spherioal harmonics are then

Y (0 ) - [2l + 1 (l - 1m!) !J! pm( 0) im4>
1m ,ep - ~ (l + 1m!)! I cos e

The first four spherical harmonics are

(14.16)

Y o•o = (4~);' Y1•1 = (;;Y sin Oei4>

Y1•O = (:7rY cos 0, Y1.- 1 = (;7rY sin (Je- i
4>

Parity. The concept of parity introduced in Sec. 9 can now be
extended to three-dimensional problems of the type discussed in this
section. Suppose that the position coordinate r is reflected through the
origin so that r is replaced by - r; this corresponds to replacing x by - x,
y by -y, and z by -z, or to replacing (J by 7r - (J, ep by ep + 7r, and leaving
r unchanged. It is clear that the only change in the wave equation
(14.1) is that u(r,(J,ep) is replaced by u(r,7r - (J,ep + 7r), the rest of the
equation being unaffected. Then the discussion of Sec. 9 shows that
orthogonal linear combinations of degenerate eigenfunctions can be
found that have definite parities, and that a nondegenerate eigenfunction
must have a definite parity.

The energy levels for a spherically symmetric potential are degenerate
at least with respect to the quantum number m, for l > O. In this case,
the degenerate eigenfunctions all have the same parity, which we now
show to be the parity of l. When r is reflected through the origin, the
radial part R(r) of the solution is unchanged, the ep part cfJ(ep) given by
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Eq. (14.8) has the parity of Iml, and the 8 part Pi'(cos 8) has the parity
of l - Iml , since Pr(w) is equal to an even part (1 - w2)11ml times a poly­
nomial in w that has the parity of l - Imlwith respect to change in sign
of w or cos 8. Thus Ylm(8,ep), and hence u(r), has the parity of l .

Angular Momentum. The radial wave equation (14.3) may be
rewritten in a form that resembles the one-dimensional wave equation
(8.5) . If we put R(r) = x(r)jr, the equation for the modified radial
wave function X may be written

_.!!!..- d
2x + [v(r) + l(l + 1)h

2JX = Ex (14.17)
2m dr2 2mr2

Thus the radial motion is similar to the one-dimensional motion of a
particle in a potential

V(r) + l(l + 1)h
2

2mr2.
(14.18)

The additional "potential energy" can be seen physically to be connected
with the angular momentum in the following way. A classical particle
that has angular momentum M about the axis through the origin per­
pendicular to the plane of its orbit has the angular velocity w = M jmr2

when its radial distance from the origin is r. An inward force

M2
mw 2r =­

mr3

is required to keep the particle in this path; this" centripetal force" is
supplied by the potential energy, and hence adds to the V(r) that appears
in the radial motion an additional "centrifugal potential energy"
M2j2mr2• This has exactly the form of the extra term in (14.18) if we put

M ='[l(l + 1)ph

The foregoing physical argument for identifying the quantum number
l with the angular momentum of the particle can be put in quantitative
form by finding the operators that correspond to the three components
of the angular momentum vector. Classically, we have that M = r X p,
so that we take in quantum mechanics

M., = yp. - ZPII = -ih (y i- - Z i.)az ay

Mil = zp., - xp, = -ih (z :x - x :i) (14.19)

M = xp - yp = -o, (x i. - yi.)
• 11 " ay ax

Equations (14.19) can be transformed into spherical polar coordinates to
give
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(14.20)
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M", = ih (sin t/J :0 + cot 0 cos t/J a~)

Mil = ih ( - cos t/J :0 + cot 0 sin t/J aat/J)

M. = -ih~
at/J

The operator that represents the square of the total angular momentum is
then found from Eqs. (14.20) to be

SEc.14}

M2 = M; + M~ + M;

= -» [Si~ 0:0 (sin 0:0) + Si:20a~2J (14.21)

Comparison of Eqs. (14.21) and (14.4) shows that Y1m(O,t/J) is an eigen­
function of M2with the eigenvalue l(l + 1)h2•

M2Y1m(O,t/J) = l(l + 1)h2Y 1m(O,t/J) (14.22)

In similar fashion, it follows from the structure of Eq. (14.8) and the last
of Eqs. (14.20) that oI>m(t/J), and hence also Y1m(O,t/J), is an eigenfunction of
M. with the eigenvalue mho

(14.23)

Thus the separation of the wave equation in spherical polar coordi­
nates results in wave functions that are eigenfunctions of both the total
angular momentum and the component of angular momentum along
the polar axis. The quantum number l that appears in Eq. (14.22) is
called the azimuthal or orbital angular-momentum quantum number. The
quantum number m that appears in Eq. (14.23) is called the magnetic
quantum number, since it is of importance in the theory of the Zeeman
effect (see Sec. 39), which involves the component of angular momentum.
along the magnetic field (zaxis). It should be noted that the wave
equation cannot in general be separated in this way and angular-momen­
tum eigenfunctions obtained if the potential energy VCr) is not spherically
symmetric. This corresponds to the classical result that the angular
momentum is a constant of the motion only for a central field of force
(which is describable by a spherically symmetric potential). There is,
however, the characteristic difference between classical and quantum
theory that all three components of M can be precisely specified at once
in the classical theory, whereas only M. and M2 can in general be pre­
cisely specified at once in the quantum theory, since Y1m(O,t/J) is not an
eigenfunction of M", and Mil (except 'for the case l = 0). It is possi­
ble to relate this result to the uncertainty principle. The choice of
the, direction of, the polar axis that distinguishes M. from M", and Mil is,
of course, completely arbitrary i it corresponds to the arbitrariness of
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the direction of space quantization in the absence of external fields in
the old quantum theory.

vo-.

a

- 'Va f------J

r<a
(15.1)

r>a

The solution of Eqs. (15.1) is the same as that obtained for the finite
potential step in Sec. 9, except for three points : first, the energy scale is
lowered everywhere in the present problem by an amount Yo; second, the
domain of r is 0 to + 00, in place of the domain - 00 to + 00 for X; and
third, the boundary condition that the wave function not become infinite
at x = - 00 is now replaced by the same condition at r = O.

From the discussion of Sec. 9, it is apparent that the solutions of
Eqs. (15.1) are

x(r) = A sin ar +B cos ar,

x(r) = Ce:",

_ [2m(Vo - IEi)]l
a - h2 '

~ = e~~EIY,

r < a,

r>a
(15.2)

where we are interested in bound-state energy levels for which E < O.
The requirement that R(r) be finite at r = 0 demands that we set B = 0
in the first of Eqs. (15.2). Thus the solution has the form of the odd
parity solution of the one-dimensional problem. The energy levels are
obtained by equating the two values of (1/x)(dx/dr) at r = a (this is
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equivalent to making (I/R)(dR/dr) continuous there), and are given by
solving

a cot aa = -(3 (15.3)

which is the same as Eq. (9.6). Then it follows from the discussion of
Fig. 9 that there is no energy level unless Voa2 > 1r2h2/ 8m ; there is one
bound state if 1r2l1,2j8m < V oa2 ~ 97r2l1,2j8m, etc .

Interior Solutions for Arbitrary l. For nonzero values of l, it is more
convenient to work with the original radial equation (14.3) than with the
equation for x- If we put P = ar, where a is defined in Eq. (15.2), the
wave equation for r < a becomes

d
2R + ~ dR + [1 _l(l + I)J R = 0 (15.4)

dp2 p dp p2

The strong resemblance between Eq. (15.4) and Bessel's equation sug­
gests that R(r) can be expressed in terms of Bessel functions. This is in
fact the case; if we define the "spherical Bessel function" jz(p) that is
regular at p = 0 byl

jz(p) = (;,;Y JZ+i(p) (15.5)

where J is an ordinary Bessel function of half-odd-integer order, it is
easily verified that jz(p) satisfies Eq. (15.4). In similar fashion, the
"spherical Neumann function" is

nz(p) = (-I)Z+{;pYL/-i(P)

It can be shown! that JZ+i(p), where l is a positive or negative integer
or zero, is expressible as a sum of products of sin p and cos p with poly­
nomials of odd order in p- i. In particular, explicit expressions for the
first three j's and n's are

(15.6)

_ cos p

p

cos p sin p
---p2--p-

. sin p
JO(p) = --,

p

. () sin p cos p
JIP =-- ---,p2 P

j2(P) = Ga - ;) sin p

3 G 1) 3.- - cos p n2(p) = - - - - cos p - - sm pp2' a p p2
The leading terms for small p area

1This definition and the properties of the jl and m are taken from P. M. Morse,
"Vibration and Sound," 2d ed., pp. 316-317 (McGraw-Hill, New York, 1948).

2 G. N. Watson, "Theory of Bessel Functions," 2d ed., p. 52 (Macmillan, New
York, 1945).

3 Equations (15.7) are useful approximations for p! somewhat less than 4l + '6 and
,2, respectively (G. N. Watson, op, cit., p, 44).
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• pZ
JZ(p)~ 1 ·3 ·5 . .. (2l + 1)'

1 . 1 · 3 · 5 . . . (2l - 1)
-, nz(p)~ - Z+1 '

p->O P

[CHAP. IV

(15.7)

and the leading terms in the asymptotic expansions are!

jZ(p) ---t .!. cos [p - tel + l)7I"]
p-+ 00 P

nz(p) ---t .!. sin [p - tel + 1)71"]
p-+ 00 P

Some properties of the j's and n's are

fj~(p)p2dp = tp3[i~(p) + nO(p)jl(p)]
fn~(p)p2dp = tp3[n~(p) - jO(p)nl(p)]

nl-l(p)jZ(p) - nZ(p)jl-l(p) = \'
p

jz(p) dd nz(p) - nz(p) dd jz(p) = \p p p

The following are properties of both the j's and the n's :

(15.8)

l > 0 (15.9)

jl-l(p) + jZ+l(p) = 2l + 1 jz(p), l > 0
p

;pjz(p) = 2l ~ 1 [ljZ-l(p) - (l + l)jz+l(p)]

~ [pZ+ljZ(p)] = pZ+1jZ_l(p), l > 0 (15.10)

d
d [p-Zjz(p)] = -p-Zj/+l(p)
p .

fil(p)dp = - jo(p)
fjo(p)p2dp = p2jl(p)
fH(p)p 2dp = t p3(jf(p) - iZ-l(p)il+l(p)] l > 0

Since R(r) must be finite for r = 0, the desired solution for r < a is

R(r) = Ajz(ar) (15.11)

Exterior Solutions for Arbitrary l. The wave equation for r > a can
be put in the form (15.4) if we redefine p to be i(3r, where (3 is given in Eq.
(15.2). Since the domain of p does not now extend in to zero, there is

1 Equations (15.8) are useful approximations for p somewhat larger than ~l(l + 1)
(G. N. Watson, op. cit., p. 199); however, the magnitudes (although not the phases) of
jz and nz are given to good approximation by (15.8) if p is somewh at larger than l,
which is approximately the value of p for which the magnitude of [t is greatest.
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(15.12)

no reason why nl caimot appear in the solution. The linear combination
of jl and nl to be selected will be determined by the asymptotic form,
which must fall off exponentially for large r. This suggests that we define
spherical Hankel functions '

. hj1>(p) = j l(p) + inl(P)
hi2)(p) = jl(p) - inl(p)

which from Eqs. (15.8) have the asymptotic forms

hj1>(p)~! e i[p-!(l+l)rj
P-+" P

hj2)(p)~!. e-i[p- H l+ l) r j
P-+" P

(15.13)

It can be shown that the asymptotic expansions, of which Eqs. (15.13)
give the leading terms, contain no terms for which the exponent has the
opposite sign to that given .

The desired solution for r > a is then

R(r) = Bhj1>(i(3r) = B[jI(i(3r) + inl(i(3r)]

The first three of these functions are

(15.14)

h(l)(i(3r) = - .le-fJr
o (3r

h(l>(i(3r) = i (.l + _1_) e-fJr (15.15)(3r (32r2

h(l) ( '(3 ) - (1 + 3 + 3 ) -fJ,
2 7 r - \]3r (32r2 (33r 3 e

Energy Levels. The energy levels are obtained by requiring that
(I /R) (dR/dr) be continuous at r = a. When this condition is applied to
the interior solution (15.11) and the exterior solution (15.15) with l = 0,
we obtain Eq. (15.3). This may be written as

(15.16)

(15.17)

where, as in Sec. 9, we have put ~ = aa and 1/ = (3a. The same condi­
tion applied to the solutions for l = 1 reduces, with the help of Eqs.
(15.6) and (15.15) to

cot ~ _ 1:.. = ! -+- 1:.., ~2 + 2 = 2mVoa2

~ ~2 1/ 1/2 1/ h2

Equations (15.17) may be solved numerically or graphically, by the
methods indicated for the solution of Eqs. (15.16) in Sec. 9. In general,



80 QUANTUM MECHANICS [CHAP. IV

there is no degeneracy between the eigenvalues obtained from the solution
of equations like (15.16) and (15.17) for various values of l .

It is easy to see how many energy levels Eqs. (15.17) give for various
values of Voa2 without going through the numerical work. A new level
appears whenever 11 is zero or cot ~ is infinite. This occurs at ~ = 1r,

27r, . • •• Thus there is no energy level with l = 1 when

there is one bound state with l = 1 if 1r 2h2/ 2m < V oa2 ~ 27r2h2/ m, etc.
The smallest value of Voa2 for which there exists a bound state with

l = 1, is greater than the corresponding value of Voa2 for l = 0; this is
reasonable from a physical point of view. The interpretation in Sec. 14

\
of the l term in the radial wave equation as an additional potential energy,
which corresponds to the repulsive "centrifugal force," suggests that a
particle possessing angular momentum requires a stronger attractive
potential to bind it than a particle with no angular momentum, Indeed,
it turns out that the minimum square well potential "strength" Voa2

required to bind a particle of orbital angular-momentum quantum num­
ber l increases monotonically with increasing l .l

16. THE HYDROGEN ATOM

The potential energy V(r) = -Ze2/r, which represents the attractive
Coulomb interaction between an atomic nucleus of charge +Ze and an
electron of charge - e, provides another wave equation that can be
solved analytically. This problem is of direct physical interest, since
apart from relativistic effects (see Chap. XII), the calculated energy
eigenvalues are in agreement with the observed energy levels of the hydro­
gen atom (Z = 1), the singly charged helium ion (Z = 2), etc.

Reduced Mass. The Schrodinger wave equation developed in Sec. 6
describes the motion of a single particle in an external field of force.
Now, however, we are interested in the motion of two particles (nucleus
and electron) that are attracted to each other by a force that depends
only on the distance between them. The form of the wave equation to
be used for two particles is suggested by the extension of the wave
equation from one to three dimensions that was given in Sec. 6. This
extension involved making the wave function depend on the three
rectangular coordinates x, y, and z instead of just on x, and introducing

1 It can be shown that bound states appear with zero energy for a particular l
value when [(l/R)(dR/dr)],.... = -(l + l)/a; for l > 0 this is equivalent to the
condition jl_1 (E) = 0 where now ~ = (2mV oa2/ h,2)i .
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the momenta corresponding to the new coordinates as they appear in the
classical expression for the energy.

A similar extension from three to six rectangular coordinates leads
directly to the Schrodinger wave equation for two particles of masses
ml and m2:

. a [ h2 (iJ2 iJ2 iJ2 )
th iJt if/(Xl,Yl,Zl,X2,Y2,Z2,t) = - 2ml iJxi + ayi + iJzi

- 2
h2

(aiJ22+iJ
iJ 22

+a
iJ22) + V(Xl,Yl,Zl,X2,Y2,Z2,t) ]if/(Xl,Yl,Zl,X2,Y2,Z2,t) (16.1)m2 X2 Y2 Z2

,vhere the potential energy is assumed to depend in an arbitrary manner
on all six coordinates and the time. If now the potential energy depends
only on the relative coordinates, so that V = V(Xl - X2, Yl - Y2, Zl - Z2) ,
an important simplification can be made. We define relative coordinates
x,Y,z and coordinates of the center of mass XJ Y,Z by

x = Xl - X2, Y = Yl - Y2,
MX = mlXl + m2X2, MY = mlYl + m2Y2,

Z = Zl - Z2
MZ = mlZl + m2Z2

(16.2)

Here, M = ml + m2 is the total mass of the system. Equation (16.1)
can be rewritten in terms of the new coordinates

(16.3)

where

(16.4)

is called the reduced mass.
Two separations of the wave equation (16.3) can now be made. First,

the time dependence can be separated out, as in Sec. 8; and second, a
separation can be made into a product of functions of the relative coordi­
nates and center-of-mass coordinates. The process is straightforward
and simple, and results in

i (E + E') t

if;(x,y,z,X,Y,Z,t) = u(x,y,z)U(X,Y,Z)e--f\-
h2

- - V2u + Vu = Eu2}.L

- !!!... V2U = E'U2M .

(16.5)

where the V2 operators in the second and third equations imply differ­
entiation with respect to the relative and center-of-mass coordinates,
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respectively. The second of Eqs. (16.5) describes the relative motion of
the two particles, and is the same as the equation for the motion of a
particle that has the reduced mass J.L in an external potential energy V.
The third of Eqs. (16.5) tells us that the center of mass of the system of
two particles moves like a free particle of mass M .

In the hydrogen-atom problem, we shall be interested in the energy
levels E associated with the relative motion. In this case, the reduced
mass J.L is only slightly smaller than the electronic mass, since atomic
nuclei are far more massive than electrons.

Asymptotic Behavior. The separation of the relative motion in
spherical coordinates is made as in Sec. 14. The radial equation that ,
corresponds to the angular-momentum quantum number l is then

_ h
2 !..!:- (r2 dR) _ Ze

2
R + l(l + 1)h

2
R = ER

2J.L r2 dr dr r 2J.LT2
(16.6)

where E < 0 for a bound state. We follow the polynomial method used
in the treatment of the harmonic-oscillator equation that was given in
Sec. 13, and first attempt to rewrite Eq. (16.6) in dimensionless form by
introducing a dimensionless independent variable p = ca, Unlike Eq.
(13.1), however, where the leading term for large x was the potential
energy term tKx 2, the leading term in Eq. (16.6) for large r is the eigen­
value term E. We therefore choose a so that the E term becomes a
fixed number; this makes-the dominant asymptotic behavior of the solu­
tion independent of the eigenvalue. We rewrite Eq. (16.6) as

(16.7)

where the particular choice of the number t for the eigenvalue term is
arbitrary but convenient for the following development. Comparison
of Eqs. (16.6) and (16.7) shows that

(16.8)

As with the harmonic-oscillator equation, we first find the dominant
behavior of R(p) in the asymptotic region p -? 00. For sufficiently
large p~ it is apparent that R(p) = p"eH p satisfies Eq. (16.7) so far as the
leading terms (which are of order R) are concerned, when n has any
finite value. This suggests that we look for an exact solution of Eq.
(16.7) of the form

R(p) = F(p)e- tp (16.9)
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(16.10)

where F(p) is a polynomial of finite order in p. Substitution of Eq. (16.9)
into Eq. (16.7) gives as the equation for F(p)

F" + (~ - 1)F1 + [A ~ 1 _ l(l ; 1)] F = 0

8 ~ 0 (16.11)ao ;= 0,

where primes denote differentiation with respect to p.

Energy Levels. We now find a solution for F in the form

F(p) = p'(ao + alP + a2p2 + ." . )
==< p'£(p),

This is necessarily finite for p = O. Substitution of Eq. (16.11) into Eq.
(16.10) gives as the equation for L

p2£" + p[2(8 + 1) - p]L' + [peA - 8 - 1) + 8(8 + 1) - l(l + 1)]£ = 0

If p is set equal to zero in this equation, it follows from the form of L
implied by Eq. (16.11) that 8(8' +,1) - l(l + 1) = O. 'T his quadratic
equation in 8 has two roots : 8 = land 8 = - (l + 1). The boundary
condition that R(p) be finite at p = 0 requires that we choose 8 = l,
The equation for L then becomes

p£" + [2(l + 1) - p]£' + (A - l - 1)£ = 0 (16.12)

Equation (16.12) can be solved by substituting in a power series of the
form indicated by Eq. (16.11). The recursion relation between the
coefficients of successive terms of the series is readily seen to be

(16.13)

If the series does not terminate, its dominant asymptotic behavior can
be inferred from the coefficients of its high terms:

aV+I 1
--7-

a" v~oo V

This ratio is the same as that of the series for p"ep with any finite value of
n. Equations (16.9) and (16.11) show that this behavior for L violates
the boundary condition on R for large p.

Thus the series for L must terminate. If the highest power of p in
L is p"'(n' ~ 0), we must choose Aequal to a positive integer n,1 such that

A =n=11:'+l+1 (16.14)

1 The result that the allowed values of A are integers, rather than multiples of
integers, derives from the choice of 1 for the eigenvalue term in the dimensionless
radial wave equation (16.7).
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n' is called the radial quantum number and n the total quantum number.
Since n' and l can take on positive integer or zero values, n can have the
values 1, 2, . . .. The energy eigenvalues are given by Eq. (16.8)

JLZ2e'

En = - IEnl = - 2h2n2 (16.15)

in agreement with the old quantum theory and with experiment. Unlike
the square well potential problem considered in Sec. 15, the Coulomb
field problem gives rise to an infinite number of discrete energy levels
extending from - JLZ2e'/2h2 up to zero, for any finite value of Z . This is
due to the slow decrease in magnitude of the Coulomb potential at large r .

Laguerre Polynomials. The physically acceptable solutions of Eq.
(16.12) with A = n may be expressed in terms of the Laguerre poly­
nomials Lq(p), which can be defined in terms of a generating function

p.

e -1=1
U(ps) =--, 1 - 8

00

= "\' Lq(p) sq
L..t q! '
Q=O

s < 1 (16.16)

(16.17)

Differentiation of the generating function with respect to p and 8 leads to
relations that are analogous to Eqs. (13.11) for the Hermite polynomials
and (14.11) for the Legendre polynomials

L~ - qL~_l = -qLq_1

L q+1 = (2q + 1 - p)L q - q2Lq_t

The lowest order differential equation involving only L q that can be
constructed from Eqs. (16.17) is easily seen to be

pL': + (1 - p)L~ + qL q = 0 (16.18)

Equation (16.18) resembles Eq. (16.12) but is not quite the same. We
define the associated Laguerre polynomial

dp

L~(p) = dpp Lq(p) (16.19)

on differentiating Eq. (16.18) P times, it is seen thatL~(p) satisfies,
I pL~" + (p + 1 - p)Lr + (q - p)L~ = 0 (16.20)

Comparison of Eq. (16.12) with A = nand Eq. (16.20) shows that the
desired polynomial solutions are the associated Laguerre polynomials
l-_~'f,l(p), which are of order (n + l) - (2l + 1) = n - l- 1 in agreement
with Eq. (16.14).
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Differentiation of Eq. (16.16) P times with respect to p gives the
generating function for the associated Laguerre polynomials,

(16.21)

(16.23)

(16.24)

The following explicit expression may be verified by substituting it
into Eq. (16.21) with n + l = q and 2l + 1 = p, and interchanging the
order of the two summations:

n-l-l

L21+1( ) _ \'. (-1)k+l [en + l) !]2pk (1622)
n+l P - Lt (n-l-1-k)!(2l+1+k)!k! '

k=O

Hydrogen-atom Wave Functions. The radial wave function is of the
form e-!pplL~I:l(p). The normalization constant may be found by using
the generating function to evaluate the integral

i " e-pp21[L~I)1(p)J2p2dp = 2n[(n + l) !]3
)0 + (n - l - 1)! i

Thus the normalized energy eigenfunctions for the hydrogen atom are

Unlm(r ,O,c/J) = Rnl(r) Y1m(O ,c/J)

( R/ () {(2Z)3(n-l-1)!}! -!plL21+1()
nl r = nao 2n[(n + l)!j3 e P n+l P

. h2 2Z
ao = p,e2' P = nao r

where Y1m(O,c/J) is the normalized spherical harmonic given in Eq. (14.16);
ao is the radius of the first (circular) Bohr orbit for hydrogen (Z = 1)
in the old quantum theory. The energy levels (16.15) may be written

The first three radial functions, which are found from Eqs. (16.22)
and (16.24), are

(Z)i Zr
R10(r) = ao 2e-00

(Z)i ( zr) ZrR 20(r ) = - 2 - - e -Zao
2ao ao

(Z)i Zr _ZrR21(r) = - __ e Zao

2ao aoV3
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A much more complete set of these functions, with graphs of some of
them, is given by Pauling and Wilson.1

It is interesting to note that each of the eigenfunctions for ,WJ:tich
l = 0 has a discontinuous gradient at r = 0, since dRno/dr ~ 0 there
and Yoo is independent of 0 and ep . This is a consequence of the infinite
potential energy at that point, as can be shown by means of a limiting
process similar to that used in Sec. 8 to derive the boundary conditions
at a perfectly rigid wall.

Degeneracy. The energy eigenvalues (16.15) depend only on n, and
so are degenerate with respect to both land m. Thus for each value of
11" l can vary from 0 to n - 1, and for each of these l values, m can vary
from -l to +l. The total degeneracy of the energy level E n is then

n-l2: (2l + 1) = 2 n(n ;: 1) + n = n 2

1=0

It follows from the discussion of Sec. 14 that the degeneracy with
respect to m is characteristic of any central force field, for which V
depends only on the radial distance r from some point. The l degener­
acy, however, is characteristic of the Coulomb field, as distinguished from
}nost other central force fields. In some problems, such as the motion of
the'va lence electron of an alkali atom, the potential energy of the electron
is central, but only approximately of the Coulomb form. This pre­
vents the n energy levels that have the same total quantum number n
and different l from being coincident, so that the nth hydrogen-like level
splits up into n distinct levels . If also some external field (such as a
magnetic field) that destroys the spherical symmetry is imposed, the
(2l + I)-fold m degeneracy disappears, and the nth hydrogen-like level
is ~plit up into n2 distinct levels.

The existence of degenerate energy eigenvalues means that linear
combinations of the corresponding eigenfunctions are solutions of the
wave equation with the same energy. In the case of the m degeneracy,
such linear combinations of the spherical harmonics Y1m(O,ep) can be
found that correspond to a new choice of the polar axis. It is reasonable
to expect that linear combinations of the degenerate hydrogen-atom
.!Jigenfunctions that have the same n and different l exist that also corre­
spond to some new choice of the coordinates. This is, in fact, the case,
since it turns out that the hydrogen-atom wave equation can be separated
in parabolic coordinates. In general, degeneracy will occur whenever
the wave equation can be solved in more than one way (in different

1 Pauling and Wilson, op. cit ., Sec. 21.
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coordinate systems, or in a single coordinate system oriented in dif­
ferent ways), since if there were no degeneracy the wave functions
obtained in the different coordinate systems would have to be identical
except for a multiplying constant, and that is usually not possible. For a
general central field, an exception occurs when l = 0, since then the wave
function is spherically symmetric and has the same form for all orienta­
tions of the polar axis, so that there is no degeneracy. A similar excep-

, tion occurs in the hydrogen atom problem when n = 1, in which case
it turns out that the solutions obtained by spherical and parabolic
separation of the wave equation are identical.

Separation in Parabolic Coordinates. The parabolic coordinates
~,1],cP are given in termsof the spherical polar coordinates by the relations

~ = r - z = r(1 - cos 8)
1] = r + z = r(1 + cos 8) (16.25)
cP=cP

he surfaces of constant ~ are a set of confocal paraboloids of revolution
bout the z or polar axis, with focus at the origin, that open in the direc­

tion of positive z or 8 = O. The surfaces of constant 1] are a similar set
of confocal paraboloids that open in the direction of negative z or 8 = 7r .

The surfaces of constant cP are the same as in the spherical coordinate
system : planes through the polar axis .

The wave equation for the hydrogen atom in parabolic coordinates is

h
2

{ 4 [ a (au) a ( au)]
- 2f.L ~ + 1] a~ ~ a~. + a1] 1] a1]

1 a2 u} 2Ze2

+ ~1] acP2 - ~ + 1] u = Eu,

The separation is accomplished by substituting

E < 0 (16.26)

u(~,1],cP) = f(~)g(1])i:f>(cP)

into Eq. (16.26) and dividing through by u; the cP part of the equation
separates at once:

(16.27)

Since the left side of Eq. (16.27) depends only on ~ and 1], and the right
side only on cP, both sides must be equal to a constant that we call m 2

; in
accordance with the discussion of Sec. 14, this gives normalized cP solu-
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tions that are the same as (14.8)
-,

( <J>m(t/» = (27r)-ie 'm"; m = 0,± 1,±2, . ..

The rest of Eq. (16.27) can be separated into ~ and 7J parts:

1 d(df) m2 JLIEI J1.Ze2
/1 d~ ~ d~ - 4 ~ - 2h2 ~ + -f/,2-/

= _ [! i. (7J dg) _ m2
_ J1.IEI 7J] = II

g d7J d7J 47) 2h2

(16.'28)

(16.29)

(16.30)

where the separation constant II is to be determined by the boundary
conditions. Thus the equations for f and g are

!£ (~df) _(m 2 + J1.IEI~ _ J1.Ze2 + )f= 0
d~ d~ 4~ 2h2 h2 II

:7) (7) ~~) - (~; + J1.~~l7J - II) g = 0

Since these two equations are of the same form, and differ only in their
constant terms, it is sufficient to solve one of them.

Energy Levels. The first of Eqs. _(16.30) may be solved by the
method used to solve (16.6) . The substitution r = a~ puts it into the
dimensionless form

(16.31)

if we choose the parameters a and AI to be given by

a2 = 2~!1, Al = ~ (J1.~:2 - II) (16.32)

The second of Eqs. (16.30) is also of the form (16.31) if we put r = a7)

with a given by (16.32); Al is replaced by

(16.33)

We now treat Eq. (16.31) as we did (16.7). The asymptotic behavior
is dominated by the factor e:l: r, where we must take the minus sign in
the exponent. The series that multiplies this starts with a term r',
where it is readily shown that s = ± i'm. We therefore substitute

f(r) = e-HrilmIL(r) (16.34)

into (16.31) and obtain as the equation for L

rIl' + (Iml + 1 - r)L' + [AI - -Hlml + 1)]L = 0 ' (16.35)



SEC. 16) DISCRETE EIGENVALUES: ENERGY LEVELS 89

As with Eq. (16.12), the nonterminating solutions for L cause the wave
function (16.34) to becomes)infinite for large r. The terminating solu­
tions are the associated Laguerre polynomials; comparison of Eqs. (16.20)
and (16.35) shows that they are L~~lml<n, where

n1 = Xl - -Hlml + 1) (16.36)

is a positive integer or zero.
In similar fashion, the solution of the 'l7 equation shows that the

number
(16.37)

is a positive integer or zero. From Eqs. (16.36) and (16.37) we obtain

~\l + X2 = n1 + n2 + Iml + 1 = n (16.38)

where n is a nonzero positive integer. The energy levels are given by
combining Eqs. (16.32), (16.33), and (16.38): . -

h2a2 JLZ2e4

E" = -IE"I = - 2JL = - 2h2n2

in agreement with Eq. (16.15). The energy level E" is degenerate, since
according to (16.38) thereare various ways in which the three quantum
numbers n1, n2, and m can be combined to make up n. For m = 0, there
are n ways of choosing n1 and n2; for ,lml > 0, there are two ways of
choosing m (= ± 1m!), and n - Iml ways of choosing n1and n2. Thus the
total degeneracy of the energy level E" is

n-1

n + 2 I (n - 1m!) = n + 2 [ n(n - 1) - n(n;- 1)] = n2

Iml=l -

in agreement with the earlier result.
Wave Functions. It is clear from the foregoing discussion that the

unnormalized hydrogen-atom.wave functions in parabolic coordinates are

U",,,.m(~,'l7,ep) = e-la(H~)(~'l7)l lml L~~lml(a~)L~~lml(a'l7)eim<fl

JLZe2

,
For a particular energy levetE" and magnetic quantum numberm(n > 1m!) ,
the parabolic quantum 'numbers n1 and n2 can be chosen such that
n1 + n2 = n - Iml "='" 1; that is, in n - Iml different ways . Similarly,
for given nand m, the azimuthal quantum number l in the spherical
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solution can be chosen such that Iml ~ l ~ n - 1, and so also in n - Iml
different ways. Thus the n - Iml products of the ~ and 7J functions are
linear combinations of the n - Iml products of the rand 8 functions.

The ground-state energy level provides a particularly simple illus­
tration of the connection between the parabolic and spherical solutions.
In this case, n1 = n2 = m = 0, and the parabolic solution is simply

pZe'(~+") pZe'r

e 2'" Also, n = 1, l = "m = 0, and the spherical solution is e-...,.,.
It is apparent from Eq. (16.25) that these two solutions are identical.

Problems

1. Apply the Bohr-Sommerfeld quantization rules (see Sec. 2) to the determina­
tion of the energy levels of a harmonic oscillator and of the circular orbits in a hydrogen
atom. Compare with the results obtained in this chapter.

2. What is the order of magnitude of the spread of quantum numbers and energies
of the states that contribute significantly to the oscillating-wave-packet solution for
the harmonic oscillator?

3. Use the generating function for the Hermite polynomials to evaluate

J-"., Un(X)x2u",(x)dx;

where the u's are normalized harmonic-oscillator wave functions.
4. Use the generating function for the Legendre polynomials to evaluate

f 1 PI (w)PI'(w)dw.
-1

6. Obtain an approximate analytic expression for the energy level in a square well
potential (l = 0) when Voa' is slightly greater than 1r 2h2/ 8m.

6. Show that for a square well potential the values of V oa2 that just bind new
energy levels with an 1value greater than zero are given by h2z2 /2m, where the numbers
z are the nonvanishing solutions of the equation jr..rfs) = 0 (see footnote 1, page 80).

7. Assume that the interaction between the neutron and the proton that make up
a deuteron can be represented by a square well potential with a = 2.00 X 10-13 em.
If the lowest (l = 0) energy level of the system is -2.23 Mev (million electron-volts) ,
calculate V o in Mev to three significant figures. How does the answer compare with
that which would be obtained from the approximate formula derived in Prob. 5?

r

8. , Consider Eq. (14.17) with 1 = 0 and VCr) = - Voe a. Change variables
r

from r to z = e-2.1, and show that Bessel's equation results. What boundary condi­
tions are to be imposed on x as a function of z, and how can these be used to determine
the energy levels? What is the lower limit to Vo for which a bound state exists?

9. Find expressions for the eigenfunctions and energy levels of a particle in a
two-dimensional circular box that has perfectly rigid walls.

10. It is shown in Sec. 9 that a one-dimensional square well potential has a bound
state for any positive V oa2, and in Sec. 15 that a three-dimensional square well poten­
tial has a bound state only for V oa2 > 1r 2h2/ 8m. What is the analogous situation for a
two-dimensional square well potential? What, if any, is the physical significance of
these results?
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11. The Schrodinger equation for a rigid body that is constrained to rotate about a
fixed axis and that has a moment of inertia I about this axis is

where "'(<p,t) is a function of the time t and of the angle of rotation <p about the axis .
What boundary conditions must be applied to the solutions of this equation? Find
the normalized energy eigenfunctions and eigenvalues. Is there any degeneracy?

12. Find the energy levels of a three-dimensional isotropic harmonic oscillator
(V(r) = !Kr2) , by solving the wave equation in cartesian coordinates. What is the
degeneracy of each level? Show that this equation can also be separated in spherical
and in cylindrical coordinates.

13. Show that the expectation value of the potential energy of an electron in the
nth quantum state of a hydrogen atom is -Z2e2/ aon 2• From this result, find the
expectation value of the kinetic energy.

14. Find the normalized hydrogen-atom wave functions in parabolic coordinates
for n = 2, m = O. Express them as linear combinations of the corresponding wave
functions in spherical coordinates.

16. Discuss the parities, if any, of the hydrogen-atom wave functions in parabolic
coordinates.



CHAPTER V

CONTINUOUS EIGENVALUES: COLLISION THEORY

Problems for which the energy eigenvalues are continuously dis­
tributed usually arise in connection with the collision of a particle with a
force field. The method of approach is different from that employed in
the preceding chapter. There the boundary conditions at great distances
were used to determine the discrete energy levels of the particle. In a
collision problem, the energy is specified in advance, and the behavior of
the wave fun ction at great distances is found in terms of it . This
asymptotic behavior can then be related to the amount of scattering of
the particle by the force field.

As in Chap. IV, the relatively few exact solutions that are obtained
here are of wider application than might at first seem to be the case,
since they can serve as foundations for approximate calculations on more
complicated systems. It is interesting to note that the study of collisions
is particularly important in connect ion with atomic nuclei (see Sec. 41)
where relatively little information can be obtained in other ways.

-
a

v(x)

o

--

17. ONE-DIMENSIONAL SQUARE POTENTIAL BARRIER

We consider first the one-dimensional collision of a particle with the
square potential barrier V(x) shown in
Fig. 14. In this problem we are inter­
ested in a particle that approaches from
the region of negative x and is reflected
or transmitted by the barrier. In the
corresponding classical problem, the
particle is always reflected if its energy
is less than that of the top of the barrier,

x and always transmitted if its energy is
FIG. 14. One-dimensional square po- greater. We shall see that in the
tential barrier of height Vo and thick- quantum problem, both reflection and
ness a. transmission occur with finite proba­
bility for most energies of the particle. Because of the lack of symmetry
between positive and negative x that is introduced from the beginning,
it is disadvantageous to deal with solutions that have definite parities,
and so there is no reason for making V(x) symmetrical about x = 0, as

92
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was done in Sec. 9. We assume, therefore, that Vex) = °for z < °and
z > a, and V x) = V ofor °< z < a, where V o is positive.

Asymptotic Behavior. We are interested in representing a particle
that approaches from the left with energy E > 0, and may be turned back
by the potential barrier or penetrate through it. Thus the asymptotic
behavior (in the regions where Vex) = 0) is as follows: for x < 0, we want
the wave function to represent a particle moving to the left (reflected
particle) as well as to the right (incident particle); for x > a, we want the
wave function to represent only a particle moving to the right (trans­
mitted particle) .

A particle in a force-free region that is moving in a definite direction
with a definite energy necessarily has a definite momentum, and hence
can be represented by a one-dimensional momentum eigenfunction

i p:t

u(x) ex: ell"" if the particle is moving in the positive x direction with the
ip:t

momentum p, and u(x) ex: e-T if the particle is moving in the negative x
direction with the same energy. Thus since the wave equation in the
regions where Vex) = °is

h2 d2u
--- =Eu2mdx2

our asymptotic solutions are

u(x) = Aeik:t + Be-ik." x ;;i 0
u(x) = Ceik ." x $;;; a

where k = p/h = (2mE /h 2)i is the magnitude of the propagation number.
The solutions (17.1) are appropriate for the force-free regions that are
external to any scattering potential, whether or not it has the simple form
shown in Fig. 14.

Normalization. The physical meaning of the coefficients A, B, and C
can be inferred by substituting (17.1) into the one-dimensional form of
the probability current density given by Eq. (7.3).

Sex) = v(lAj2 - IBI2),
Sex) = vlCI2

x<O
x>a

(17.2)

where v = hk/m is the speed of a particle with propagation number k ,
Since these expressions are independent of z, the discussion of Sec. 7
shows that they may be interpreted as the net flux (positive to the right)
in the two regions. This interpretation is consistent with the statement
above that A, B, and C are the amplitudes of the incident, reflected ,
and transmitted wave functions, respectively.

The absolute normalization of the wave functions (17.1) is unim­
portant for this problem; this is because we are interested only in the



94 QUANTUM MECHANICS . [CHAP. V

ratios of IBI2 and IC\2 to jA12, which are respectively the reflection and
transmission coefficients for the barrier. It is sometimes convenient,
however, to normalize the incident wave function to unit flux; this cor­
responds to taking A = 1/v1. Such a normalization must not be inter­
preted as indicating that u(x) represents more than one particle; rather
it means that we choose a large enough number of systems [each described
by u(x)] that are identical, independent, and nonoverlapping in the
sense of Sec. 7, so that the total incident flux in all of them is unity. A
more precise but sometimes less convenient normalization would assume
a one-dimensional "box" of length L with periodic boundary conditions,

and require that ( lu(x)1 2dx = l.
J(L)

Scattering Coefficients. The character of the solution inside the
potential barrier depends on whether E is greater or less than V o• Sup­
pose first that E > V 0, so that we can define a propagation number
inside the barrier: a = [2m(E - V o) /h2]1. Then the solution inside is

u(x) = Feiaz + Ge-iaz, (17.3)

The continuity of u and du /dx at x = 0 and z = 11,required by the bound­
ary conditions provides four relations between the five coefficients. We
can eliminate F and G, and solve for the ratios B / A and C/ A.

B (k2 - a2)(1 - e2iaa)
A - (k + a)2 - (k - a)2e2iaa
C 4kaei(a-k)a
A = (k + a)2 - (k - a)2e2iaa

(17.4)

The absolute squares of the ratios (17.4) are the scattering (reflection and
transmission) coefficients

I
B12 [ 4k2a2 J-l [ 4E(E - VO)J-l- = 1 + = 1 + -=~-::--...:..:..
A (k2 - a2)2 sin- aa vg sin? aa (17.5)

IC/2 = [ (k2 - a2)2 sin" aaJ-l = [ vg sin- aa J-l
A 1 + 4k2a2 1 + 4E(E - V o)

It is readily verified from (17.5) that IB/AI2 + IC/AI2 = 1, as would be
expected.

Equations (17.5) show that the transmission coefficient approaches

(1 + m~0~2)-1 (17.6)

when the particle energy approaches the energy of the top of the
barrier (E~ Vo). For increasingE (E > Vo) , the transmission coefficient
oscillates between a steadily increasing lower envelope and unity (see Fig.
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86532
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FIG. 15. Transmission coefficient of a square barrier as a function of particle energy for
mVoa'/h' = 8.

15). There is perfect transmission when aa = 'Jr, 27r, ••• ; i.e., when­
ever the barrier contains an integral number of half wave lengths.'
Interference phenomena of this type are well known in the transmission
of light through thin refracting layers.

1.0

The reflection and transmission coefficients for 0 < E < V o are most
easily obtained by replacing a by i{3 in Eqs. (17.4), where

The result for the transmission coefficient is

(17.7)I
C\2= [ vg sinh? (3a J-l
A 1 + 4E(Vo - E)

This decreases monotonically from the value (17.6) as E decreases
below Yo. When (3a» 1, the transmission coefficient (17.7) becomes
very small and is given approximately by

(17.8)16E(Vo - E) -2Pa
vg e

Figure 15 is a plot of the transmission coefficient computed from Eqs.
(17.5) and (17.7) for a rather "opaque" barrier: mVoa2/h 2 = 8.

1 This effect also occurs when V 0 < 0, in which case the square barrier becomes a
square well. The scattering coefficients are given by (17.5) if the sign of V ois changed
there and in the expression for a.



96 QUANTUM MECHANICS [CHAP. V

18. COLLISIONS IN THREE DIMENSIONS

We are primarily concerned in this chapter with collisions in three
dimensions, in which a particle collides with a fixed force field, or two
particles collide with each other. It was shown in Sec. 16 that the prob­
lem of the nonrelativistic motion of two particles, when the only forces
present depend on their relative positions, can be broken up into two one­
particle problems, of which one describes the motion of the particles
relative to each other or to their center of mass, and the other describes
the free motion of the center of mass. While the center of mass can be
taken to be at rest in calculating the energy levels of the internal motion,
as in Sec. 16, it has a definite motion in a collision that cannot be ignored
in calculating the outcome of such an experiment. This is because the
customary laboratory procedure consists in bombarding a particle that
is initially at rest with another particle that carries the total energy
Eo = E + E' of Eq. (16.5). Thus the energy E of the relative motion of
the two particles is different from the bombarding energy Eo, and the
observed scattering depends on whether the struck particle or the center
of mass is initially at rest.

We call the coordinate system in which the bombarded particle is
initially at rest the laboratory coordinate system and the coordinate system
in which the center of mass of the two colliding particles is (initially
and always) at rest the center-of-moss coordinate system. It is evidently
easier to calculate the result of a collision experiment in the center-of­
mass system than in the laboratory system, since only 3 degrees of free­
dom appear in the former as compared with 6 in the latter system. The
collision process in the center-of-mass system may then be thought of as
one in which a particle that has the reduced mass p. = mlm2/(ml + m2)
of Eq. (16.4) and an initial velocity v collides with a fixed scattering
center [see the discussion of Eq. (18.9) below]. The distribution in angle
of the scattered particles will be affected by the transformation between
the center-of-mass coordinate system, in which the calculations are made,
and the laboratory coordinate system, in which the observations are
made.

Scattering Cross Section. The angular distribution of particles
scattered by a fixed center of force or by other particles is conveniently
described in terms of a scattering cross section. Suppose that we bom­
bard a group of n particles or scattering centers with a parallel flux of N
particles per unit area per unit time, and count the number of incident
particles that emerge per unit time in a small solid angle t.wo centered
about a direction that has polar angles 00 and epo with respect to the
oombarding direction as polar axis. This number will be proportional
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to N, n, and Awo, provided that the flux is small enough so that there is
no interference between bombarding particles and no appreciable dimi­
nution of the bombarded particles by their recoil out of the target region,
and provided also that the bombarded particles are far enough apart so
that each collision process involves only one of them.

Then the number of incident particles that emerge per unit time in
Awo can be written

nNuo(80, ifJo)Awo (18.1)

where the proportionality factor uo(80,ifJo) is called the differential scatter­
ing cross section. Since (18.1) has the dimensions of reciprocal time,
uo(80,ifJo) has the dimensions of an area. uo(80,ifJo)Awo is equal to the cross­
sectional area of the parallel incident beam that contains the number of
particles scattered into Awo by a single target particle or scattering center.
The integral of uo(80,ifJo) over the sphere is called the total scattering cross
section

Uo = fuo(80, ifJo)dwo (18.2)

For the collision of a particle with a fixed scattering center, the
definition (18.1) of differential scattering cross section is equally valid in
the laboratory and center-of-mass coordinate systems, since a scattering
center that is fixed has an infinite effective mass and so the center of
mass of the system does not move. For a collision between two particles
of finite mass, however, the differential cross section (18.1) applies in
general only to the laboratory coordinate system and to the observation
of the scattered incident particle. It does not describe the observation of
the recoil bombarded particle in the laboratory system, although it is
of course possible to obtain a differential cross section for the recoil
particle from 0'0(80,ifJo) . In the center-of-mass system the differential
cross section u(8,ifJ) may be defined in analogy with (18.1), where again
the scattered incident particle is the one that is observed and the flux N
of the incident particle is computed with respect to the bombarded
particle, not the center of mass. Since in chis coordinate system the two
particles move in opposite directions away from each other after the
collision, it is clear that the differential cross section for observation of
the recoil bombarded particle in the direction 8,ifJ is just u(7I" - 8, ifJ + 71") .

Relations between Angles in the Laboratory and Center-of-mass
Systems. The relation between the differential cross sections and angles
in the laboratory system and in the center-of-mass system can be found
by translating the laboratory system in the direction of the incident
particle with sufficient speed to bring the center of mass to rest. Figure
16(a) shows a particle of mass ml and initial speed v striking a particle of
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mass m2 that is initially at rest; the center of mass moves to the right with
the speed v' = mlv/(ml + m2), as may be seen from the conservation of

o

FIG. 16. (a) Laboratory coordinate system, in whi ch the t arget particle of mass m2 is
initially at rest. (b) Center-of-mass coordinat e system, in which the center of mass is
initially and always at rest. (e) Vector addit ion of velocit y of center of mass in laboratory
system (v') to velo city of observed particle in center-of-mass system (v" ) to give velo city
obs erved in laboratory system (VI) ; if v" < v' , 90cannot exceed the angle sin'"! (v" Iv' ).

momentum. Thus in the center-of-mass system the particles of masses
ml and m2 approach the center of mass with speeds

and v', respectively; they evidently recede from the center of mass after
the collision with the same speeds [see Fig. 16(b)]. It follows from the
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geometry of the situation that 0 and 4> are related to 00 and 4>0 by

(18.3)
V" cos 0 + V' = Vi cos 00

V" sin 0 = Vi sin 00

4> = 4>0

From the first two of Eqs. (18.3) we obtain on elimination of Vi

sin 0 v' ~i
tan 00 = 'Y + cos 0' 'Y = v" = ~2 (18.4)

Equations (18.3) and (18.4) can be generalized by considering a col­
lision (for example, a nuclear reaction) in which a particle of mass ~i

strikes a particle of mass ~2 initially at rest, and after the collision,
particles of masses ~3 and ~4 emerge, where ~i + ~2 = ~3 + ~4.

If also an amount of energy, Q, is converted from internal energy to
kinetic energy of the emergent particles (Q is positive for exothermic and
negative for endothermic collisions), and the particle of mass ~3 is
observed, the first of Eqs. (18.4) is still valid. In this case 'Y is still equal
to the ratio of the speed of the center of mass in the laboratory system
to the speed of the observed particle in the center-of-mass system. How­
ever, 'Y is no longer ~d~2, but can be shown to be given by

'Y - + (~1~3 _E_)! (18.5)
- ~2~4E + Q

where E = ~1~2V2/2(~1 + ~2) is the energy initially associated with the
relative motion in the center-of-mass system [see the discussion of Eq.
(18.9) below].

Relation between Cross Sections. The relation between the cross
sections in the laboratory and center-of-mass coordinate systems can be
obtained from their definitions, which imply that the same number of
particles are scattered into the differential solid angle dwo about 00,4>0as
are scattered into dw about 0,4>.

(18.7)

0'0(00,4>0) sin OodOod4>o = 0'(0,4» sin OdOd4> (18.6)

With the help of the last of Eqs. (18.3) and the first of Eqs. (18.4), Eq.
(18.6) gives

(0 -1..) = (1 + 'Y 2 + 2'Y cos 0)1 (0-1..)
0'0 0,,+,0 11 + 'Y cos 01 0' ,,+,

where in general 'Y is given by Eq. (18.5). It should be noted that the
total cross section is the same for both laboratory and center-of-mass
systems, and also for both the outgoing particles, since the total number
of collisions that take place is independent of the mode of description of
the process.
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Dependence on 'Y. For 'Y < 1, Eq. (18.4) shows that 00 increases
monotonically from 0 to 7r as 0 increases from 0 to 7r. For v = 1, 00 = io
and varies from 0 to has 0 varies from 0 to 7r ; in this case

uo(Oo,cPo) = 4 cos OolT(200,cPo),

and no particles appear in the backward hemisphere in the laboratory sys­
tem. For v > 1, 00 first increases from 0 to a maximum value sin-l(l /'Y),
which is less than h , as 0 increases from 0 to cos"! (-1/y) ; 00 then
decreases to 0 as 0 increases further to 7r. In this case uo(Oo,cPo) is usually
infinite at the maximum value of 00, although this singularity gives a
finite contribution to the total cross section; no particles appear beyond
the maximum 00 in the laboratory system. The two values of 0 that
give rise to a particular value of 00 between 0 and sin- l (1/y) can be
distinguished by the energy of the observed particle, which is greater
for the smaller o.

This last case ('Y > 1) is illustrated schematically in Fig . 16c. The
resultant of the velocity v" of the observed particle in the center-of-mass
system and the velocity v' of the center of mass in the laboratory system
gives the velocity Vl of the observed particle in the laboratory system.
The locus of the terminal points of VI when its origin is at the point 0
is the circle of radius v" . Thus when v" < v', the angle 00 of the resultant
Vl with the bombarding direction cannot exceed the angle

sin- l (~:) = sirr"! (~}
As the ratio 'Y = v'lv" decreases, the circle gets relatively larger and the
angular range of VI increases.

The use of geometrical relationships in the foregoing discussion is
valid in a quantum-mechanical system as well as in a classical system.
This is because they are essentially relations between momentum vectors
that are applied in the asymptotic region where the particles need not be
precisely localized in space and hence can have definite momenta.

It is interesting to note that the difference between laboratory and
center-of-mass systems is negligible in the collisions of electrons with
atoms, because of the large mass ratio of the colliding particles. In
nuclear collisions, however, the difference between the two coordinate
systems is usually significant.

Asymptotic Behavior. The differential scattering cross section
u(O,cP) in the center-of-mass coordinate system can be found from the
asymptotic form of the solution of the second of Eqs. (16.5),

h2

- - V2u + Vu = Eu (18.8)
2,u
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which is the wave equation for the relative motion. The wave function
u may be written as a function of the angles 8, tP of Fig. 16(b) and the radial
distance r between the two particles. From Eq. (16.4) the reduced mass
is p. = mlmd(ml + m2). The energy E associated with the relative
motion is easily seen from Fig. 16 to be

(18.9)

where Eo is the initial energy of the bombarding particle. It is interesting
to note that E is equal to the kinetic energy of a particle whose mass is
the reduced mass p. and whose speed is the relative speed v. Thus we can
think of Eq. (18.8) as representing the collision of a particle of mass p.,

initial speed v, and kinetic energy E = tp.v 2, with a fixed scattering center
that is described by the potential energy VCr) j then r is the vector distance
from the fictitious particle p. to the origin of the scattering potential.

As in Sec. 17, the scattering is determined by the asymptotic form of
u(r,8,tP) in the region where V = O. When the colliding particles are
far apart, we want u to contain a part that represents an incident particle
of mass p. moving in a particular direction with speed v, and a part that
represents a radially outgoing particle :

u(r,8,tP)~ A[eU" + r- 1!(8,tP)eikr ] ,
r-+oo

k = p'V
h

(18.10)

The first term in Eq. (18.10) represents a particle moving in the positive
z direction, or along the polar axis 8 = 0, since z = r cos 8; it is an infinite
plane wave of the form of the momentum eigenfunction (11.2), where the
propagation vector k has the magnitude k and is directed along the polar
axis. The second term in Eq. (18.10) represents a particle that is moving
radially outward; its amplitude depends on 8 and tP, and is inversely
proportional to r since the radial flux must fall off as the inverse square
of the distance. It is readily verified that Eq. (18.10) satisfies the wave
equation (18.8) asymptotically through terms of order l /r in the region
in which V = 0, for any form of the function !(8,tP).

Normalization. The physical meaning of the coefficient A and the
angular function! can be inferred from a calculation of the particle flux,
as in Sec. 17. A straightforward substitution of Eq. (18.10) into Eq.
(7.3), however, yields interference terms between the incident and
scattered waves that do not appear in most experimental arrangements;
that they do not appear can be seen in the following way.

In practice, the incident and scattered particles are separated from
each other by collimating one or the other. Suppose, for example, that
the experimental arrangement is as shown schematically in Fig. 17, so
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that the bombarding particles from the source S are collimated by dia­
phragms DD into a fairly well-defined beam. Such a collimated beam
is not an infinite plane wave of the form eik . , but can be made up
by superposing infinite plane waves that have propagation vectors of
slightly different magnitudes and directions. The total angular spread
in radians will be of the order of the ratio of the wave length of the particle
to the diameter of the collimating aperture, and so can be made extremely
small in a practical case. Now 1usu ally does not vary rapidly with angle,
so that the small directional spread of the incident propagation vectors
does not affect 1significantly. Thus at the point of observation, P, only
the 1 term is present, and it is essentially the same as that which appears
in Eq. (18.10). The incident flux can be calculated from the plane wave
term alone, since if we go far enough from the scattering region, the 1

D D

e
S ]

FIG. 17. Schematic diagram of a laboratory arrangement for the measurement of scatter­
ing, in which there is no interference between the in cident and scattered waves at t he point
of observation P.

term can be made negligible. Thus in the region of observation, the
interference terms are a consequence of the idealization implicit in assum­
ing an infinite plane wave in Eq. (18.10), and usually have no physical
significance. 1

Substitution of the two terms of Eq. (18.10) separately into Eq. (7.3)
shows that the incident flux is of magnitude viA12 along the polar axis,
and that the leading term in the scattered flux is of magnitude

viA1
21/ (0,4» 1

2/ r2

along the outward radius. From the definition of cross section, it follows
that

u(O,4» = 1/(0,4>)12 (18.11)

As discussed in Sec. 17, the choice of the coefficient A is unimportant
so far as the calculation of the scattering is concerned. The wave func­
tion may be normalized to unit incident flux by choosing A = l /v!, or it
may be normalized by making flul 2dr = lover a large box that has
periodic boundary condit ions. 'We shall often simply set A equal to
unity.

1 For a somewhat exceptional case, see the discussion of Eqs. (19.14) and (19.24) in
the next section.
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19. SCATTERING BY SPHERICALLY SYMMETRIC POTENTIALS

The asymptotic behavior of the wave function determines the dif­
ferential scattering cross section, but cannot itself be found without solv­
ing the wave equation (18.8) throughout all space. As was the case with
the calculation of energy levels considered in Chap. IV , this can be done
only when the wave equation is separable, and a particular case of great
physical interest is that in which the potential energy is spherically
symmetric. We assume here that V is a function only of r, and find the
connection between the solutions separated in spherical polar coordinates
and the asymptotic form (18.10); this procedure is called the method of
partial waves.

In the remainder of this chapter we shall not, for the most part,
distinguish between collisions of a particle with a fixed scattering center,
and collisions between two particles treated in the center-of-mass coordi­
nate system.

Asymptotic Behavior. It is apparent that the problem now possesses
symmetry about the polar axis, so that u, t. and CF are independent of the
angle ep. The general solution of Eq. (18.8) has the form (see Sec. 14).

~ ~

u(r,O) = LRI(r)PI(cos 0) = Lr-1xI(r)PI(cos 0) (19 .1)
1=0 1=0

where PI is the Legendre polynomial of order l, and Xl satisfies the
equation

d
2
xI + [k2 _ U(r) _ l(l + 1)] Xl = 0

dr 2 r 2

k = (2~~Y, U(r) = 2j.L~(r) ~ 0

The boundary condition at r = 0 that R I be finite or x.vanish determines
the asymptotic form of the solution (19.2) except for an arbitrary multi­
plicative constant.

In order to find the general nature of this asymptotic behavior, we
consider r to be so large that the U and l terms in Eq. (19.2) can be
neglected. Then the solution of Eq. (19.2) is one of the forms e±ikT• To
get a better approximation, we put

xI(r) = A exp [fa' f(r') dr' ] e±ikT (19 .3)

where A and a are constants. The first exponential is assumed to be a
slowly varying function of r for large r, which implies that fer) falls off
more rapidly than r- 1 as r~ 00. Substitution of (19.3) into (19.2) gives
the following equation for f:

f' + j2 ± 2ikf = U(r) + l(l + 1) == W(r)
r 2

where the prime denotes dlfforcntiation with respect to r. If now W(r)
falls off like r-' for large r (8 > 0), the last term on the left side is the
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leading term, and f also falls off like rr: In this case, Xl varies like e±ikr

for large r if s > 1, since then the integral in the exponent of Eq. (19.3)
converges for large r, If, on the other hand, W falls off like an exponen­
tial or error function of r (which implies that l = 0) , the first and third
terms on the left side of Eq. (19.4) may both have to be considered. It
can then be shown without difficulty that Xl again varies like e±ikr for
large r , The Coulomb field, for which U and W vary like r l for large r
regardless of the value of l, is the only case of physical interest which
requires special attention and will be discussed in Sec. 20.

The asymptotic form of xI(r) can then be written quite generally

xl(r)~ A; sin (kr + oD (19.5)
~oo

where thus far A~ and 0; can be complex. The solution of (19.2) that
vanishes at r = 0 is unique except for a multiplying constant. It can
be shown that this solution is real everywhere if it starts out to be real at
r = 0, since k, U, and l are all real. Thus o~ must be real, although A;
need not be. This being the case, it is readily verified that the total
radial flux of particles through a large sphere vanishes :

lim 27l"r2 (7T S, sin OdO = 0 (19.6)
T--+ DO )0

where S, is the radial component of the vector (7.3) calculated by sub­
stituting u(r,O) from Eq. (19.1) into it. This means that there are no
sources or sinks of particles present, and the particles that are scattered
radially outward are supplied by the incident plane wave.

Differential Cross Section. It is convenient to redefine the amplitude
A~ and phase angle 0; that appear in Eq. (19.5) in terms of a somewhat
more specialized problem. It will be assumed that U(r) can be neglected
for r greater than some distance a; in cases of practical interest, a may be
small enough so that the l term in (19.2) is not negligible. For r > a,
the most general form for RI(r) that is real (except possibly for a complex
multiplying constant) is shown in Sec. 15 to be

Rl(r) = Al[cos ozjl(kr) - sin olnl(kr)] (19.7)
where 01 is real; according to (15.8), this has the asymptotic form

RI(r)~ (kr)-lAI sin (kr - jl7l" + 01) (19.8)
r-> 00

Equations (19.5) and (19.8) agree if Al = kA; and 01 = o~ + il7l".
We now wish to identify the asymptotic form of (19.1) with (18.10) .

To do this, we require an expansion of eik z = eik r
e 08 8 in Legendre poly­

nomials;'
00

eik r
e 08 8 = l (2l + l)i!jl(kr)PI(cos 0) (19.9)

1=0

Substituting the asymptotic form of (19.9) into (18.10) with A = 1, and
1 G. N. Watson, "Theory of Bessel Functions," rev. ed., p. 128 (Macmillan, New

York, 1944).
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equating this to the asymptotic form of (19.1), we obtain
eeI (2l + 1)i1(kr)-1 sin (kr - -!l1l")P1(cos 8) + r-1f(8)eikr

1-0 .,
= I A1(kr)-1 sin (kr - il1l" + &1)P1(cos 8)

1-0

When the sine functions are written in complex exponential form , the
coefficients of eikT and of e-ikT on the two sides of this equation must be
equal to each other :

ee .,

2ikf(8) + I (2l + 1)i1e-1il..p1(cos 8) = I A1ei(6z-l1..)P1(cos 8)
1=0 1-0

(19.10)
., .,
I (2l + 1)i!eiilrP1(cos 8) = I A1e-i(6,-lIr)P1(cos 8)
1-0 1=0

Since these are true for all values of 8 and the Legendre polynomials are
orthogonal to each other, the second of Eqs. (19.10) becomes

Al = (2l + 1)i1ei6,

Substitution of this into the first of Eqs. (19.10) gives for the scattering
amplitude .,

f(8) = (2ik)-1 I (2l + 1)(e2i6, - 1)P1(cos 8)
1=0

Thus the differential cross section is

(19.11)

., 2

(f(8) = Ij(8)12 = ~2 L(2l + 1)ei6' sin &IP1(COS 8) (19.12)
1=0

Total Cross Section. The total cross section is the integral of Eq.
(19.12) over the sphere. Because of the orthogonality of the Legendre
polynomials, it contains no products of factors involving different values
of l. .,

a = 211" ~r (f(8) sin 8d8 = ~:L(2l + 1) sin! &1 (19.13)
1-0

The total cross section can also be related to j(O). It follows from
the generating function (14.10) for the Legendre polynomials that
P1(1) = 1 for alll, so that Eq. (19.11) gives for 8 = 0

.,

f(O) = (2ik)-1 I (2l + 1)(e2i6' - 1)
1=0

Comparison with Eq. (19.13) then shows that
2'Il" 4'Il"

a = ik [f(0) - J(O)] = Ii 1m [f(0)] (19.14)
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where Im denotes the imaginary part of the expression that follows.
The physical interpretation of Eq. (19.14) is as follows: In order for

scattering to take place, particles must be removed in an amount pro­
portional to fT from the incident beam, so that its intensity is smaller
behind the scattering region (0 r-.I 0) than in front of it . This can only
occur by interference between the two terms in the asymptotic expression
(18.10). Since such an interference term must be a linear function of the
forward scattered amplitude, we expect a relation of the general form of
Eq. (19.14). An actual calculation of this interference term shows that
Eq. (19.14) holds much more generally : whenf depends on ep as well as on
0, and when a includes inelastic scattering and absorption as well as elastic
scattering. '

Phase Shifts. The angle 01 is called the phase shift of the lth partial
wave, since according to (19.8) it is the difference in phase between the
asymptotic forms of the actual radial function RI(r) , and the radial func­
tion jl(kr) in the absence of scattering potential (U = 0). The phase
shifts completely determine the scattering, and the scattering cross section
vanishes when each of the 01 is 00 or 1800

•

It should be noted that the derivation of (19.11) is valid whether or not
there exists the assumed radius a beyond which U(r) is negligible , pro­
vided that U(r) falls off more rapidly than 1/r. However, the method
of partial waves is most useful for computing scattering cross sections if
such a radius a does exist, especially if ka is of the order of or less than
unity. The reason for this is that the first and largest maximum of
j l(kr) lies roughly at r = lfk, and that for r much smaller than this, jl is
small and increases about as r' [see Eq. (15.7)]. Thus if a « lfk, jl will
be very small where U is appreciable; then the lth partial wave will
hardly be affected by the potential, the phase shift 01 will be very small,
and the contribution to the scattering from that l will be negligible. It
follows then that the scattering cross section consists of a series of terms
extending from l = 0 to a maximum l that is of the order of ka . Since
the computation of the phase shifts is usually a tedious affair, the smaller
the magnitude of ka the easier the method is to apply. Thus this method
of partial waves is most useful at low bombarding energies .

It is interesting to note that the classical distance of closest approach
of a free particle of mass p., velocity v, and angular momentum lh to the
origin is lhl p'v = lfk , Thus the foregoing remarks are analogous to the
statement that a classical particle is not scattered if it has sufficient
angular momentum so that it does not enter the potential region r < a.

Calculation of oz. The phase shift 01 is computed by fitting the radial
wave function Rz(r) for r < a, which may have an analytic form and can
always be found numerically if necessary, to the exterior solution (19.7).
The boundary condition at r = a is that (lIRz)(dR zl dr) be continuous.

1 E . Feenberg, Phys. Rev., 40, 40 (1932) ; L. 1. Schiff, Progress of Theor. Physics
(Kyoto), 11, 288 (1954j.



SEC. 191 CONTINUOUS EIGENVALUES: COLLISION THEORY 107

Thus if 'YI is the ratio of slope to value of the interior wave function, we
have that

k[j~(ka) cos 01 - nHka) sin od
jl(ka) cos 01 - nl(ka) sin 01 = 'YI

where the derivatives j~ and n~ may be rewritten with the help of (15.10).
Then 01 is given by

(19.15)

(19.16)

(19.17)

(19.18)

t • kj~(ka) - 'Ydl(ka)an UI = ....-"-;;.-;.;--T---~~~

kn~(ka) - 'Ylnl(ka)

Equation (19.15) can be used at once to obtain an approximate expres­
sion for 01 when l » ka and 01 is expected to be small . In this case, 'YI
will differ little from the ratio of slope to value of the solution in the
absence of a scattering potential, so that we put

'YI = k [;:~~:? + Ez} IE/I « I~:~~:~I
Equation (19.15) can be rewritten with the help of (15.9) as

tan s E/(ka) 2jf(ka)an U I = ----,-,,....--,-::-:'-:-:-'-::"-"-'7=-'':----:::
E/(ka) 2jl(ka)nl(ka) - 1

which is still exact. If now we make use of the power series expansion
for jl from (15.7) when l >» (ka)2, and use (15.7) and (15.8) to estimate
the order of magnitude of nl, the inequality in (19.16) becomes

l
IE/I « ka

and (19.17) may be approximated as

E/(ka) 2/+2 E/221(l!)2(ka)2/+2
01 ,...., - [1 . 3 . 5 . .. (2l + 1))2 = - [(2l + 1) !)2 (19.19)

Equation (19.19) can be used to verify the convergence of the sums
over partial waves such as appear in (19.11). We use Stirling's formula
to find the leading terms in In 1011 when l is large, and neglect terms of
order In l and lower.

In 1011 ,...., In IE/I + 2l[ln (ka) + 1 - In 2] - 2lln l

Thus even if IE/I has the maximum value indicated by (19.18), 01 falls off
like the inverse factorial of l (faster than exponentially), and the series
that appear in the expressions for the scattering converge quite rapidly
for large l.

Relation between Signs of 01 and VCr). It is apparent from (19.19}
that when l » (ka) 2, 01 has the opposite sign from E/. If now the potential
energy term V or U is positive, corresponding to forces that are mainly
repulsive, Eq. (19.2) shows that the ratio of curvature to value for the
radial wave function is more positive than in the force-free case. This
means that the ratio of slope to value is more positive at r = a than is
the case if U = O. Thus a repulsive potential makes EI positive and 01
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negative. A negative phase shift means that the radial wave function is
II pushed out" in comparison with the force-free wave function.

In similar fashion, we see that a negative potential makes EI negative
and 51 positive. This means that the radial wave function is "pulled
in" by the attractive potential.

Ol--""""----t------~__+---___:T;
a

V>O. di<O

fa)

(6)
FIG. 18. Schematic plots of the effects of (a) positive (repulsive) potential, and (b) nega­
tive (attractive) potential, on the force-free radial wave function il(kr); the range of the
potential is a in each case . Rl(r) is drawn arbitrarily to start out like il(kr) at r = 0, and
is bent up more rapidly in (a) so that it has a greater amplitude and a retarded phase
(pushed out) with respect to il(kr) . In (b), Rl(r) bends over sooner, and thus has a smaller
amplitude than il(kr) and an advanced phase (pulled in) . The amplitudes have no direct
physical significance, whereas the phases determine the scattering. The difference between
neighboring nodes of il and Ri is not precisely equal to the phase shift divided by k (as
indicated) until ii has gone through several oscillations and attained its asymptotic form.

These conclusions are valid even when l is not large compared to ka
and 51 is not small. This may be seen graphically by comparing jl(kr)
and RI(r) when they are arbitrarily made to start out in the same way at
r = O. Figure 18(a) shows a schematic comparison for positive V, and
Fig. 18(b) for negative V.

Ramsauer-Townsend Effect. The construction in Fig. 18(b) suggests
that an attractive potential might be strong enough so that one of the
radial partial waves is pulled in by just half a cycle and its phase shift is
180°. If this were the case, the corresponding term in the expression
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(19.11) for j(O) would vanish, and there would be no contribution to the
scattering. It is clear from the foregoing discussion that the phase shift
is largest for l = O. The possibility then arises that ka can be small
enough and the attractive potential large enough in magnitude so that
00 = 1800 and all other phase shifts are negligibly small. In such a case,
the scattered amplitude j(0) vanishes for all 0, and there is no scattering.

This is the explanation! of the Ramsauer-Townsend effect, the ex­
tremely low minimum observed in the scattering cross section of electrons
by rare-gas atoms at about 0.7 electron-volt bombarding energy. " A
rare-gas atom, which consists entirely of closed shells, is relatively small,

FIG. 19. Schematic plot of the effect of the potential of a rare-gas atom of .. radius " a on the
I = 0 partial wave of an incident electron that has the minimum cross section observed
in the Ramsauer-Townsend effect. As in Fig. 18, the actual and force-free wave functions
start out in the same way at T = 0; the former is .. pulled in" by 1800 of phase. In an
actual case , the quantity ka would be somewhat smaller than is indicated here.

and the combined force of nucleus and atomic electrons exerted on an
incident electron is strong and sharply defined as to range. Thus it is
reasonable to expect that a situation such as that illustrated in Fig. 19
could occur. Here the partial wave with l = 0 has exactly a half cycle
more of oscillation inside the atomic potential than the corresponding
force-free wave, and the wave length of the electron is large enough in
comparison with a so that higher l phase shifts are negligible. It is clear
that this minimum cross section will occur at a definite energy, since the
shape of the wave function inside the potential is insensitive to the rela­
tively small bombarding energy whereas the phase of the force-free wave
function depends rapidly on it.

Physically, the Ramsauer-Townsend effect may be thought of as a
diffraction of the electron around the rare-gas atom, in which the wave
function inside the atom is distorted in just such a way that it fits on

1 This explanation, suggested by N. Bohr, was shown to be quantitatively reason­
able by H. Faxen and J . Holtsmark, Zeits.j. Physik, 45,307 (1927) .

2 The experimental results are summarized by R. Kollath, Phys . Zeits ., 31, 985
(1931).
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smoothly to an undistorted wave function outside. This effent, is anal­
ogous to the perfect transmission found at particular energies in the one­
dimensional problem considered earlier [see discussion of Eq. (17.5)].
Unlike the situation in one dimension, however, the Ramsauer-Townsend
effect cannot occur with a repulsive potential, since ka would have to be
at least of order unity to make 00 = -180°, and a potential of this large
range would produce higher l phase shifts.

Scattering by a Perfectly Rigid Sphere. As a first example of the
method of partial waves, we compute the scattering by a perfectly rigid
sphere, which is represented by the potential VCr) = + 00 for r < a,
and VCr) = 0 for r > a. The solution for r > a is just Eq. (19.7). The
boundary condition, obtained in Sec. 8, that u(a,O) = 0, is equivalent to
the requirement that all the radial functions vanish at r = a. The phase
shifts may then be obtained by setting either RI(a) given by (19.7) equal
to zero, or 'YI in (19.14) equal to infinity:

t
~ _ jl(ka)

an UI - nl(ka) (19.20)

The calculation of the scattering is particularly simple in the low­
energy limit: ka = 21ra/X «1. Then substitution of (15.7) into (19.20)
gives as an approximation for the phase shifts

~ (ka)~+l

tan 01 = - (2l + 1)[1 . 1 ·3 . 5 . . (2l - 1)]2 (19.21)

Thus 01 falls off very rapidly as l increases, in agreement with (19.19).
All the phase shifts vanish as k --+ 0; however, the l = 0 partial wave
gives a finite contribution to the scattering because of the factor 1/k 2 that
appears in (19.12) and (19.13). We thus obtain

(19.22)

The scattering is spherically symmetrical, and the total cross section is
four times the classical value.

In the high-energy limit (ka» 1), we might expect to get the classical
result, since it is then possible to make wave packets that are small in
comparison with the size of the scattering region, and these can follow
the classical trajectories without spreading appreciably. This corre­
sponds to the ray limit in the wave theory of light or sound. The dif­
ferential scattering cross section is rather difficult to find, and we only
indicate the computation of the leading term in the total cross section.
Substitution of (19.20) into (19.13) gives



SEC. 19] CONTINUOUS EIGENVALUES: COLLISION THEORY 111

..
471" ~ (21 + l)J1(ka)

(J = k2 '-' if(ka) + nHka)
z=o

(19.23)

We can make use of asymptotic expansions of Bessel functions that are
valid when the argument is large and the order is smaller than, of the
order of, and larger than the argument.' The calculation shows that
most of the contribution to the sum in (19.23) comes from

1 < (ka) - C(ka)i,

where C is a number of order unity; the leading term here is t (ka)2.

The other two parts of the sum, for (ka) - C(ka)i < 1 < (ka) + C(ka)i,
and for 1 > (ka) + C(ka)i, each contribute terms of order (ka)!, and hence
may be neglected in the high-energy limit. Thus

(19.24)

(19.25)Rz(r) = Bdz(ar),

which is twice the classical value.
The reason for the apparently anomalous result (19.24) is that the

asymptotic form of the wave function is so set up in Eq. (18.10) that in
the classical limit the scattering is counted twice: once in the true scatter­
ing (which turns out to be spherically symmetric as it is in the classical
problem), and again in the shadow of the scattering sphere that appears
in the forward direction, since this shadow is produced by interference
between the incident plane wave eik z and the scattered wave j(O)eik rIr
[see also the discussion of Eq. (19.14)]. However, so long as ka is finite,
diffraction around the sphere in the forward direction actually takes place,
and the total measured cross section (if the measurement can be made so
that it includes the strong forward maximum) is approximately 271"a2•

Scattering by a Square Well Potential. As a second example of the
method of partial waves , we consider the somewhat more complicated
problem of the scattering from the spherically symmetric square well
potential illustrated in Fig. 13 of Sec. 15. The interior (r < a) wave
function that is finite at r = 0 is seen by analogy with Eq. (15.11) to be

= [2J.L(E + Vo)]i
a h2

(19.26)

Thus the phase shifts are given by Eq. (19.14), where the ratio of slope
to value of the lth partial wave at r = a is

aj~(aa)

'Yz = jz(aa)

1 Watson, op. cit., Chap. VIII.
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In the low-energy limit (lea « 1), substitution of (15.7) into (19.14)
gives for the first two phase shifts

,...., "IOka2
tan 00 = - 1 + "loa

t ~,...., (lea)3 1 - "I1a
an vi = -3- 2 + "I1a

(19.27)

(19.28)

Unless "loa = -1 or 'Yla = -2, both of these vanish as le ~ O. As with
the rigid sphere, however, the l = 0 partial wave gives a finite contribu­
tion to the scattering because of the factor l /le2 that appears in (19.12)
and (19.13). From Eq. (19.26), we see that "loa = aa cot aa - 1, so that

,...., 4 2 ('1 tan aa)2
CT= 'Ira - ---

aa

The scattering is spherically symmetrical.
The conclusion reached here and in connection with the rigid sphere

that the low-energy scattering is substantially independent of bombard­
ing energy and angle of observation is almost always valid for any
potential that has a finite range. Exceptions can arise, as pointed out
after Eq. (19.27), if anyone of the "II is such that the denominator of
the expression for tan 01is very small . In such a situation, the lth partial
wave is said to be in resonance with the scattering potential; then it usu­
ally dominates the scattering.

Resonance Scattering. An approximate expression for the resonance
cross section can be obtained by making use of the fact that "II decreases
linearly with increasing a when a is sufficiently close to ao == (2JLV O/h 2)i .
Increasing a causes the interior wave function to bend over more rapidly
and so decreases the ratio of slope to value at r = a. Now

k2
a = (a5 + le2)i ::: ao + ­

2ao

when k is small, so that we can write to lowest order in k

'Yla ,...., "IFa - bz(lea)2

where "IF is the value of "Iz when a = ao, and bi is a positive number of
order unity.! Substitution into (19.27) and then into (19.12) gives for
the leading term in the differential cross section, in the two cases for
which the value of l for the partial wave that is in resonance is 0 and is 1,

1 It can be shown that the lth partial wave is exactly in resonance at zero bombard­
ing energy when 'Y?a = - (l + 1); in this case In = ! for alil. Compare with footnote
1, page SO.
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1 = 0 (19.29)

1 = 1 (19.30)

We have put to = 'Y8a + 1 and tl = 'Y~a + 2; for resonance, Itol and Itll
are small compared to unity. It is easy to show then that (19.29) is a
monotonically decreasing function of ka; however (19.30) has a sharp
maximum at ka r-J (tl/bl)! if tl is positive, and a much lower maximum
at ka r-J (2Itllbl)i if tl is negative.

If we make use of the relation to = aoa cot aoa, we see from (19.29)
that a suitable approximation for the total cross section when the 1 = 0
partial wave is in resonance is

(J' r-J k 2 + at:oV aoa (19.31)

It is apparent that the 1 = 0 partial wave is in resonance at low bombard­
ing energies whenever aoa is approximately an odd multiple of 7r/2, so
that Voa2

r-J 7r 2h2/ 8p., 97r2h2/ 8p., etc. The discussion of Eq. (15.3) shows
that these are just the values of Voa2 for which new energy levels with
1 = 0 appear. It is true quite generally that a potential well (not neces­
sarily square) that has an energy level nearly at zero exhibits a resonance
in the low-energy scattering of particles with the same 1value (not neces­
sarily zero) as the energy level. From a physical point of view, we can
say that an incident particle that has nearly the right energy to be bound
by the potential tends to concentrate there and produce a large distortion
in the wave function and hence a large amount of scattering.

Sharp resonance maxima in the low-energy scattering like that found
above for 1 = 1 with positive tl can appear for any 1value except 1 = 0,
provided that the potential well is not quite deep or broad enough to con­
tain a new energy level of that angular momentum (this corresponds in
the case of the square well to having tl small and positive) . We can think
of such a potential physically as containing a virtual energy level slightly
above zero. While a discrete energy level cannot exist with positive
energy, the positive "centrifugal potential" l(l + 1)h2/2,ur2 [see the dis­
cussion of Eq. (14.18)] for 1> 0 acts as a potential barrier that impedes
the escape of a particle that is in the virtual energy level. Figure 20
illustrates this barrier, which is characterized by a small transmission at
low energies in the same way as is the barrier of Fig . 14 [see the discus­
sion of Eq. (17.7)]. Thus the virtual level has a kind of transient exist­
ence and produces a greater distortion of the incident wave function at
its energy than at neighboring energies .
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Angular Distribution at Low Energies. When the bombarding energy
is small but not zero, t he par ti al wave l = 1 may have an observable effect
on the scatt ering. If only 00 and 01 are appreciably different from zero ,
Eqs. (19.12) and (19.13) become

0' (6) = ~2 [sin? 00 + 6 sin 00 sin 01 cos (01 - 00) cos 6

+ 9 sin 2 01 cos- 6] (19.32)

0' = ~~ (sin" 00 + 3 sin" 01)

In the absence of resonan ce, we see from Eqs. (19.27) and (19.32) that
the ratio of the contributions to the total cross section of the partial waves
l = 1 and l = 0 is of order (ka)4. However, the ratio of the largest angle-

Effective
potential
energy

0t----t+------------:===.

F IG. 20. E ffect iv e pot ent ial energy [V (r ) plus " centrifugal potenti al"] for l > O. when
V = 0 for r > a. T he dashed por t ion for r < a depen ds on t he shape of V . T he effect ive
potential barrier (r::::' a) resembles the barr ier of F ig. 14 in that it has a sm all trans­
mis sion for E sligh tly greater t han zero.

dep end ent term in the differential cross sect ion (which is proportional to
cos 6) to the constant t erm is of order (ka)2.

Thus the partial wave l = 1 manifests itself in the angular distribution
at a lower energy than that at which it becomes significant in the to tal
cross sect ion; this is because of it s interference wit h the stronger partial
wave l = O. For example, if 00 = 20° and 01 = 2° at a particular bom­
barding energy , the par tial wave l = 1 contributes only 3 per cent to the
total cross section while it makes the forward scat tering (6 = 0°) 3.5
times as great as the backward scattering (6 = 180°).

20. SCATTERING BY A COULOMB rrsr.n
It was noted in Sec. 19 that the Coulomb field is an exceptional scat­

terer so far as the application of the method of partial waves is concerned.
If VCr) = ZZ'e2/ r for a collision between par t icles of cha rges Ze and
Z' e, it is easily seen t hat Eq. (19.3) becomes asympto tically

Xl(r) ex: e ±iCkr-nlnr) (20.1)
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Here n = p.ZZ'e2/h 2k = ZZ'e2/hv, where v is the relative velocity and p.is
the reduced mass . Thus the radial solutions never approach the sinus­
oidal free-particle solutions, since there is always a logarithmic contribu­
tion to the phase at great distances that cannot be neglected. Although
it is still possible to obtain a solution of this scattering problem in spheri­
cal coordinates (this is given below), the phase shifts 0/ introduced in
Sec. 19 are altered in meaning. This section presents the anal ytical
work in outline, and quotes the principal results from more extended
treatments.'

Parabolic Coordinates. So long as u(O) for a pure Coulomb field is all
that is desired, it is simpler to work with the separation of the wave
equation in parabolic coordinates (see Sec. 16) than in spherical coordi­
nates. The reason for this is that the desired solution depends almost
entirely on the variable ~ defined in Eq. (16.25), and not on the other two
variables 'I) and cP. It is apparent that the solution will not involve cP,
because of the axial symmetry of the problem; if now the incident plane
wave term eik z is taken out as a factor, it can be made plausible that the
rest of the solution does not involve 'I). We put

(20.2)

(20.4)

where U c represents the complete Coulomb wave function (incident plus
scattered wave) . Now U c must contain a part whose dominant asymp­
totic behavior is of the form r-1eikr, but no part that goes like r-1e-ikr

[see Eq. (18.10)]. Since an expression eikzf(r - z) can be of this form,
while an expression eikzf(r + z) cannot, we anticipate that the function f
appearing in (20.2) will depend only on ~ = r - z,

We substitute Eq. (20.2) into Eq. (16.26) after replacing Z by -ZZ!,
and remember that E > O. The differential equation for f is then

d2f . df
~ de + (1 - 1k~) d~ - nkf = 0 (20.3)

The confluent hypergeometric equation

d2F dF
z dz2 + (b - z) dz - aF = 0

which has the solution F(a,b,z), is equivalent to Eq. (20.3) if we put

where C is a constant.

fW = CF( -in,l,ik~) (20.5)

1 W. Gordon, z-u« f . Physik, 48, 180 (1928); N. F . Mott and H. S. W. Massey ,
"The Th eory of Atomic Collisions," 2d ed., Chap. III (Oxford, New York , 1949). For
the mathematical background, see E. T . Whittaker and G. N. Watson, "A Course of
Modern Analysis, " 4th ed., Chap. XVI (Cambridge, London, 1935).



116 QUANTUM MECHANICS [CHAP. V

Confluent Hypergeometric Function. The solution of Eq. (20.4) that
is regular at z = 0 can be written as a power series

..
~ rea + s)r(b)z'

F(a,b,z) = Lt r(a)f(b + s)T(l + s)
.=0

az a(a + 1)z2
= 1 + b1! + b(b + 1)2! + . (20.6)

It is convenient to put F(a,b,z) = W1(a,b,z) + W 2(a,b,z), where WI and
W 2 are separately solutions of Eq. (20.4). An asymptotic expansion for
F can then be obtained from the following relations:

reb) _
W1(a,b,z) = reb _ a) (-z) ag(a, a - b + 1, -z)

_ r(b) Z -b
W2(a,b,z) - rea) e za g(l - a, b - a, z)

(
(.I ) 1 + a{3 + a(a + 1){3({3 + 1) +

g a,tJ,z~ zl! z22!

(20.7)

The solution of Eq. (20.4) that is irregular at the origin can be taken to be

G(a,b,z) = iW1(a,b,z) - iW2(a,b,z) (20.8)

(20.10)

We shall require the irregular solution for problems in which the Coulomb
field does not extend in to r = O.

The asymptotic form of the Coulomb wave function can be obtained
from Eqs. (20.2), (20.5), and (20.7). The result through terms of order
r- l is

u ~ Gel"" {eilkZ+" IOk(r-Z») [1 _ n
2

]
e r-+" I'(I + in) ik(r - z)

+ r- l! e(O) ei(kr- nl02kr)} (20.9)

where
r(l + in) e-;"10 (810'i 6)

!e(O) = ir e- in) 2k sin 2 M
n e-i" 10 (810' i6)+i..+2iq,

2k sin- to
'70 = arg I'(I + in)

Scattering Cross Section and Normalization. The j, term on the right
side of Eq. (20.9) represents the outgoing scattered wave, since it is the
only term in which the factor r-1eik r appears. The first term in Eq .
(20.9) similarly corresponds to the incident "plane" wave; the multi­
plicative factor -n2/ik(r - z) can be ignored in the asymptotic region.
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(20.11)

Both the incident and scattered waves are distorted at infinite distances
by logarithmic phase factors . In accordance with Eq. (18.11), the dif­
ferential scattering cross section is

CTc(O) = Ifc(0)12 = (2k S~L~OY

= (;~~~2Y cosec- to

This is just the formula obtained by Rutherford from classical dynamics,
which was verified experimentally for the collisions of alpha particles
(helium nuclei) with heavier nuclei . It should be noted, however, that
the angle-dependent part of the phase factor in the scattered amplitude
fc(O) given in Eq. (20.10) can manifest itself in a nonclassical way when
the colliding particles are identical (see Sec. 32) .

If the incident beam is normalized to unit flux, the constant C must
be chosen to be

C = v- i r (1 + in)e- inr

so that the Coulomb wave function is

Uc = v- ir(1 + in)e- tnreikzF( - in,l,ik~)

= v- i r (1 + in)e- inreikr cos8F(_ in,I,2ikr sin- to) (20.12)

Then the particle density at r = 0 is found from the power series expan­
sion (20.6) to be

(20.14)

(20.13)

luc(0)12 = ICI2 = v-l lr (1 + in)i2e-nlr

2n7l"
v(e2n r - 1)

For small collision speeds (Inl » 1), Eq. (20.13) tells us that

luc(O)i2 ::: 27l"lnl attractive case, n < 0
v

27rn
luc(O) 12 '" - e- 2n r repulsive case, n > 0

v

The second of Eqs. (20.14) is of some practical interest. The expo­
nential is the dominant factor in the production of reactions between
positively charged nuclei at low bombarding energies, when the nuclear
radii may be assumed small enough so that the colliding nuclei have to
approach to zero distance in order to initiate a reaction. In this case
exp (-27l"ZZ 'e2 jhv) is called the Gamow factor,' and is the dominant term
in the rate of many nuclear reactions at low bombarding energies.

· 1 G. Gamow, Zeits. f. Physik, 51, 204 (1928); R. W. Gurney and E . U. Condon,
Phys . Rev., 33, 127 (1929).
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Solution in Spherical Coordinates. In nuclear collision problems,
such as that of the scattering of protons of several million electron-volts
energy in hydrogen, the departures from the Coulomb law of interact ion
at small distances between the colliding particles can affect the scattering
cross section. Such problems can be treated by a modification of the
method of partial waves, developed in Sec. 19, in which an expansion in
spherical harmonics is made for the pure Coulomb field, and modifica­
tions introduced for the first few l values. In order to apply such a
technique, we require first a solution for the pure Coulomb scattering in
spherical partial waves.

We put
00

u. = l Rz(r)Pz(cos 8)
l=O

where the radial wave equation is

(20.15)

.!:-~ (r2 dRI) + [k2 _ 2nk _ l(l + I)J RI = 0 (20.16)
r 2dr dr r r 2

If we substitute Rz(r) = reikrfz(r), the equation for fz becomes

r ~~I + [2ikr + 2(l + 1)] ~I + [2ik(l + 1) - 2nkJil = 0 (20.17)

This is equivalent to the confluent hypergeometric equation (20.4), and
has as its solution that is regular at r = 0

iz(r) = CIF(l + 1 + i n, 2l + 2, -2ikr) (20.18)

(20.20)

The asymptotic form of (20.18) can be found from (20.7), and gives for
the radial wave function at great distances

Cle!nr+i~/f(2l+ 2). 1

Rz(r) ;::;-:7 (2k)lf(l + 1 + in)kr sin (kr - 7};l7r - n In 2kr + 7/1), (20.19)

where 171 = arg f(l + 1 + in).
The coefficients CI must be determined so that the partial wave expan­

sion (20.15) is identical with the solution (20.12) in parabolic coordinates.
Because of the orthogonality of the Legendre polynomials, we have the
relation

2l + 1 ( or .
RI(r) = -2-)0 PI (cos O)u.(r,O) sm OdO

where u.(r,O) is given by the second of Eqs. (20.12). The complete
evaluation of this integral can be avoided by making use of the fact that
we know all about the function Rz(r) except the constant multiplying



SEC. 20) CONTINUOUS EIGENVALUES: COLLISION THEORY 119

factor CI • CI can then be found by matching the known form of R1(r)
to Eq. (20.20) near r = 0, and turns out to be

C _ (2ik)le- inrr(l + 1 + in).
I - vi (2l) !

We thus obtain as an alternative expression to (20.12)

..
U - V-fe-inr \' r(l + 1 + in) (2ikr)l eikr

c - 4 (2l)!
1=0

. F(l + 1 + in, 2l + 2, -2ikr)PI(cos 8). (20.21)

Modified Coulomb Field. If the actual potential deviates from the
Coulomb form only at small values of r, we expect in analogy with the
partial wave treatment of section 19 that only the first few terms in
the sum (20.21) will be altered. Since each partial radial wave function
must be a solution of (20.16) outside of the potential anomaly, the only
change we can make in the function ji and still have it a solution of (20.17)
is to add in some of the irregular solution G(l + 1 + in, 2l + 2, -2ikr)
defined by (20.8). The manner in which G is to be added in is determined
by the requirement that the complete wave function shall represent
asymptotically a Coulomb incident plus scattered wave, plus an extra
outgoing scattered wave.

We must, therefore, substitute for each F term in (20.21) a linear com­
bination of F and G in which the amount of the ingoing term W 2 is not
changed. Such a combination is

eiSr(F cos 01 + G sin 01) = W le2iSI + W 2.

The modified wave function, which is a solution of the wave equation
outside of the potential anomaly, can then be written

..
U m = U c + V-ie-inri: r(l ~2~)Tin) (2ikr)l eikr

1=0

. (e2iSI - I)W1(l + 1 + in, 2l + 2, -2ikr)PI(cos 0) (20.22)

The asymptotic form of U m is
ee

Um~ v-I \' (2l + l)ilei(~I+sl)(kr)-l
r-+ CC 4

1=0

. sin (kr - jl71" - n In 2kr + '11 + OI)PI(COS 8) (20.23)

As shown in connection with Eq. (19.5), each term on the right side of
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(20.23) must be a real function of r, except for complex multiplying fac­
tors , so that the lh must be real.

The additional phase shifts 01 can be found by matching each partial
radial wave in Eq. (20.22) to the interior solution at the edge of the
potential anomaly, in just the same way as the phase shifts were found
in Sec. 19. While in Sec. 19 the phase shifts 01 represented the departure
of the wave fun ction from that of a free particle, they here represent
the departure from the wave function of a particle scattered by a pure
Coulomb field.! It can be shown from Eq. (20.22) that the asymptotic
form of Um may be written in the form of (20.9), wherelc(O) is replaced by..

Im(O) = Ic(O) + 2: k- l(2l + 1)ei(2~1+5,) sin OIPI(COS 0) (20.24)
1=0

The differential scattering cross section is just I/m(0)1 2, and in general con­
tains interference terms between the Coulomb scattered amplitude le(O)
and the extra terms that are determined by the 01 .

Classical Limit for a Pure Coulomb Field. Ai:! was discussed in Sec.
12, we expect the results of quantum and classical theory to coincide
whenever it is possible to construct wave packets that follow the classical
trajectory without spreading appreciably and are small enough so that
the forces are sensibly constant over their dimensions. The smallest
spread of a wave packet during a time interval t was found there to be of
order (ht/ p.)! or (hd/ p.v)! = (Xd)!, where d = vt is the distance traveled by
the packet in the time t, and X == A/27r = h/p.v is the reduced wave
length for the relative motion. Thus the classical theory can be used
when (Xd)! «:«, or (d/X)!» 1, where d is the distance over which the
force varies by an appreciable fra ction of itself . For a repulsive Cou­
lomb field, d is of the order of the classical distance of closest approach
IZZ'e2/ip.v21 . This also provides a useful estimate for an attractive Cou­
lomb field, since in all the collisions, except the relatively few for which
the particles are scattered through large angles , they never get closer than
this distance from each other.

The condition for the validity of the classical theory is then

Inl! = IZ~~e21! » 1

Large n implies that the angle-dependent part of the phase of le(O) given
by Eq. (20.10) varies rapidly with 0, so that these rapid oscillations in
the scattering amplitude should have little effect on the scattering when
the colliding particles are identical (see Prob. 6, Chap. IX) .

1 The computation of the 0/ in Eq. (20.22) requires knowledge of G at small r j
useful formulas have been given by F . L. Yost, J . A. Wheeler, and G. Breit, Phys . Rev.,
49, 174 (1936).
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It is interesting to note that for the Coulomb field the classical limit
is approached for small v, whereas for potentials that have a finite range
a, such as are discussed in Sec. 19, the classical limit is approached when
(a/X)! » 1, that is, for large v. This is because the" size" IZZ'e2/ IlV2j of
the Coulomb field increases more rapidly than X = h/IlV as v decreases.

Problems
1. Show that the coefficients of scattering by a one-dimensional square well poten­

tial (like Fig. 14 except that V o < 0) are given by Eqs. (17.5) if the sign of Vo is
changed there and in the expression for a . Discuss the dependence of transmission
coefficient on E in this case.

2. Show that Eqs. (18.4) and (18.7) are valid for a general binary collision if 'Y

is given by (18.5) ; make use of conservation of energy and mass .
3. Show that, when a particle of mass m, collides elastically with a particle of

mass m2 that is initially at rest, all the recoil (mass m2) particles are scattered in the
forward hemisphere in the laboratory coordinate system. If the angular distribution
is spherically symmetrical in the center-of-mass system, what is it for m2 in the
laboratory system?

4. Express the scattering wave function (19.1) outside the scattering potential
(but not necessarily in the asymptotic region) as the sum of a plane wave and an
infinite series of spherical Hankel functions of the first kind [see Eqs. (15.12»). From
this expression and the discussion of Eqs . (15.13), show that the scattered wave is
purely outgoing, even inside of the asymptotic region .

6. What must V oa2 be for a three-dimensional square well potential in order that
the scattering cross section be zero at zero bombarding energy (Ramsauer-Townsend
effect)? Find the leading term in the expression for the total cross section for small
bombarding energy. Note that both the l = 0 and the l = 1 partial waves must be
included.

6. State clearly the assumptions that go into the derivation of Eq. (19.31), and
verify that it is a suitable approximation for the total cross section at low bombarding
energies when the l = 0 wave is in resonance.

7. Make use of Eq. (19.31) and the result of Prob. 5, Chap. IV, to obtain an
approximate expression for the total scattering cross section by a particular potential
in terms of the bombarding energy E and the binding energy e of a particle in that
potential, when E and. are small in comparison with Yo.

8. Compute and make a polar plot of the differential scattering cross section for a
perfectly rigid sphere when ka = j , using the first three partial waves (l = 0, 1, 2) .
What is the total cross section in this case, and what is the approximate accuracy of
this result when the three terms are used?

9. Find a general expression for the phase shift produced by a scattering potential
VCr) = A lr2, where A > O. Is the total cross section finite? If not, does the diver­
gence come from small or large scattering angles , and why? What modifications are
necessary in the calculation if A < O? Are any difficulties encountered in this latter
case?

10. Protons of 200,000 electron-volts energy are scattered from aluminum. The
directly back scattered intensity (8 = 180°) is found to be 96 per cent of that com­
puted from the Rutherford formula. Assume this to be due to a modification of the
Coulomb potential that is of sufficiently short range so that only the phase shift for
l = 0 is affected. Is this modification attractive or repulsive? Find the sign and
magnitude of the change in the ohase shift for l = 0 produced by the modification.



CHAPTER VI

MATRIX FORMULATION OF QUANTUM MECHANICS

In the last four chapters the Schrodinger wave equation was developed
and its solutions obtained in some cases of physical interest. We now
turn to a different formulation of quantum mechanics, in which dynamical
variables such as the coordinates, momentum components, and energy
of a particle appear explicitly in the equations of motion of the system
without their having to multiply or differentiate a wave function. The
classical equations are just of this structure, so it might be expected that
there would be a closer resemblance between the classical and quantum
formalism here than in the Schrodinger theory.

This is actually the case; the principal formal difference is that the
quantum dynamical variables do not obey the commutative law of
multiplication. It is convenient to represent such non commutative
dynamical variables , which are often simply called operators, as matrices.
Matrix theory provides an expecially flexible representation scheme, since
there are an arbitrarily large number of ways of choosing the rows and
columns of a matrix, all of which are of equal validity. It is because of
the close formal resemblance between quantum matrix mechanics and
classical dynamics that this was historically the first formulation of
quantum theory to be discovered, by Heisenberg in 1925.1

In this chapter we first review briefly the more important properties
of matrices, and then show their connection with quantum theory and
their usefulness in particular problems.

21. MATRIX ALGEBRA

We restrict our discussion at first to matrices that have a finite num­
ber of rows and columns, and then indicate how the results obtained can
be taken over to matrices that have an infinite number of rows and
columns."

1 W. Heisenberg, Zeits . f. Physik, 88, 879 (1925); M. Born, W. Heisenberg, and
P . Jordan, Zeits . f . Phys . 36, 557 (1925). The connection between quantum matrix
mechanics and the wave equation was established by E. Schrodinger, Ann. d. Physik,
79, 734 (1926), and C. Eckart, Phys. Rev., 28, 711 (1926).

2 For a fuller discussion, see J . von Neumann, " Mathematische Grundlagen der
Quantenmechanik/' Chap. II (Springer, Berlin, 1932; reprinted by Dover, New
York).
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Matrix Addition and Multiplication. A matrix is a square or rec­
tangular array of numbers that can be added to or multiplied into another
matrix according to certain rules . We denote a matrix by a capital
letter, such as A, and the numbers or elements that make it up by the same
letter with subscripts, such as A k l ; here, k designates the row and l the
column in which the matrix element A k l appears. Two matrices can be
added when they have the same rank, i .e., the same number of rows and
the same number of columns. Addition is commutative:

A+B=B+A

If the sum matrix is called C, then

Ck l = A k l + B k!

(21.1)

(21.2)

A matrix A can be multiplied from the left into a matrix B if the num­
ber of columns of A is equal to the number of rows of B; then the product
matrix C has the number of rows of A and the number of columns of B.

C = AB, (21.3)

where the summation is over the subscript m, which denotes the columns
of A and the rows of B. It follows at once from Eqs. (21.2) and (21.3)
that the distributive law of multiplication is valid.

A(B + C) = AB + AC

Also, the associative law of multiplication is seen to be valid :

A (BC) = (AB)C

(21.4)

(21.5)

where the left side means that A is multiplied from the left into the
product of Band C, and the right side means that the product of A and B
is multiplied from the left into C. The product (21.5) is written simply
as ABC and, from (21.3), has the explicit expression

D = ABC, Dk! = l AkmBmnCn! (21.6)
m,n

It is clear from Eq. (21.3) that AB is not in general equal to BA ; thus
the commutative law of multiplication is not generally valid.

Null, Unit, and Constant Matrices. For an arbitrary square matrix
A , the null matrix 0 is defined by the equations

oA = 0, Ao = 0, (21.7)

from which it follows that all the elements of 0 are zero. If A is not
square, the elements of 0 are still all zero, but the 0 's that appear at
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different places in (21.7) do not all have the same numbers of rows and
columns.

The unit matrix 1 is defined by

lA = A, Bl = B, (21.8)

for arbitrary matrices A and B. From Eqs. (21.8) it follows that 1 is a
square matrix whose rank (number of rows or columns) equals the num­
ber of rows of A or the number of columns of B. Moreover, 1 must have
unit elements along its principal diagonal (k = l) and zeros elsewhere, so
that the elements of I equal the Kronecker symbol Okl introduced in
Sec. 10.

The product of a number c and a matrix A is the matrix cA that results
from multiplying each element of A by c. Thus if we define a constant
matrix C to be a multiple of a unit matrix so that each nonvanishing
element is c instead of unity, then

cA = CA, (21.9) ~

are the matrix elements of the constant matrix C.
Spur, Determinant, and Inverse of a Matrix. The spur of a square

matrix, often called the trace or the diagonal sum, is the sum of the
diagonal elements of the matrix:

(21.10)

The determinant of a square matrix is found from the usual rule for the
computation of the determinant of a square array of numbers.

A matrix A mayor may not possess an inverse A -I, which is defined
by the relations

AA-l = 1, A-IA = 1 (21.11)

A is said to be nonsingular if it possesses an inverse, and singular if it does
not. If A is nonsingular and of finite rank, it can be shown to be square
(see Prob. 2), and the kl element of its inverse is just the cofactor of A lk

divided by the determinant of A; thus A is singular if its determinant
vanishes. It is readily verified that for nonsingular matrices A, B, C

(ABC)-l = C-IB-IA-l (21.12)

Hermitian and Unitary Matrices. The Hermitian adjoint A * of a
matrix A is the matrix obtained by interchanging rows and columns and
taking the complex conjugate of each element; thus if

B = A* then (21.13)
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It is readily verified that the Hermitian adjoint of the product of a series
of matrices is the product of their adjoints in the reverse order

(ABC)* = C*B*A * (21.14)

A matrix is Hermitian or self-adjoint, if it is equal to its Hermitian
adjoint; thus, A is a Hermitian matrix if

A = A* (21.15)

Evidently only square matrices can be Hermitian.
A matrix is unitary if its Hermitian adjoint is equal to its inverse;

thus A is a unitary matrix if

A* = A-I, or AA* = I and A *A = I (21.16)

Unitary matrices of finite rank must be square.
Transformation and Diagonalization of Matrices. We define the

transformation of a square matrix A into a square matrix A' by a non­
singular matrix S, by the following equation:

SAS-l = A' (21.17)

It is evident then that S-1 transforms A' back into A.
The form of a matrix equation is unaffected by transformation. Thus

the equation
AB + CDE = F

may be transformed into

SABS-l + SCDES-l = SFS-l

which is equivalent to

SAS-l . SBS-l + SCS-l . SDS-l . SES-l = SFS-l

or to
A'B' + C'D'E' = F'

where the primes denote transformed matrices. This invariance of
matrix equations with respect to transformations makes it possible to
work with any convenient transformation of a set of matrices without
affecting the validity of any results obtained.

A square matrix is diagonal if it has nonvanishing elements only along
the principal diagonal (k = l) . The diagonal elements are then called
the eigenvalues of the matrix. It is easily seen that the nth power of a
diagonal matrix is also diagonal, and has as its eigenvalues the nth
powers of the eigenvalues of the original matrix. The matrix A in Eq.
(21.17) is said to be diaqonolized by the matrix S if the matrix A' that
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results from the transformation is diagonal, so that A~l = A~Okl. To
find A' explicitly, we multiply (21.17) through on the right by S.

SA = A'S (21.18)

The set of linear algebraic equations that are obtained by writing out
the elements of Eq. (21.18) for a particular row k and all columns l is

or l Skm(Aml - A~Oml) = 0 (21.19)
m

where A~ is a particular eigenvalue of A' and the subscript m is summed
over from unity to the rank N of the matrix A.

Now (21.19) may be regarded as a set of N homogeneous algebraic
equations for the transformation matrix elements Skm, where k is fixed.
The necessary and sufficient condition that these equations have a solu­
tion is that the determinant of their coefficients vanish, or that the
determinant of the square matrix (Ami - A~Oml) be zero. This provides
a single algebraic equation, called the secular equation, which is of order
N and has N roots A~. Thus the eigenvalues of the diagonal matrix A'
resulting from A by transformation are the same no matter how A is
diagonalized, except perhaps for the order in which they are arranged;
for this reason they are also called the eigenvalues of the original nondiag­
onal matrix A . A' and A are said to be degenerate when two or more
eigenvalues are equal. .

Matrices of Infinite Rank. The rules (21.2) and (21.3) for addition
and multiplication of matrices may be taken over in an obvious way for
matrices that have an infinite number of rows and columns, provided
that the infinite sum in (21.3) converges . We sometimes deal with
matrices that have a nondenumerably infinite number of rows or columns
or both; in this case, one or both of the matrix subscripts becomes
a continuous variable, and the usual summation over a subscript is
replaced by integration over this variable. We do not consider these
possibilities in detail here, but simply assume that all reasonable results
can be taken over from finite- to infinite-rank matrices without difficulty."
The statement that a Hermitian matrix of infinite rank is square means
that its rows and columns are labeled in the same way. A unitary
matrix of infinite rank need not be square. Its rows and columns can
be labeled differently; for example, the number of rows may be denumer­
ably infinite and the number of columns. nondenumerably infinite .

We are concerned primarily in quantum mechanics with Hermitian
and unitary matrices, mainly of infinite rank. A fundamental theorem

1 A more thorough discussion of this point, and a proof of the following theorem,
are given by J . von Neumann, lococit.
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that we shall _assume without proof is that any Hermitian matrix can be
diagonalized by _a unitary transformation; a corollary of this theorem is
that the resulting eigenvalues of the Hermitian matrix are unique,
except perhaps for the order in which they are arranged. Starting from
this theorem, it is not difficult to show (see Prob. 1) that the necessary
and sufficient condition that two Hermitian matrices can be diagonalized
by the same unitary transformation is that they commute (matrices A
and B commute if AB = BA).

It also follows from this theorem that the eigenvalues of a Hermitian
matrix are real. If the S and A in (21.17) are unitary and Hermitian,
respectively, that equation can be rewritten

SAS* = A'

The Hermitian adjoint of Eq. (21.20) is, from (21.14),

SAS* = A'*

(21.20)

(22.2)

Since then A '* = A', this shows that the Hermitian property is
maintained during transformation by a unitary matrix. If A' is diagonal
as well as Hermitian, it follows from (21.13) that its eigenvalues are"real.
It is easily seen that the converse is also true: a matrix that can be
diagonalized by a unitary transformation and has real eigenvalues is
Hermitian.

It is important to note with matrices of infinite rank that both of Eqs.
(21.11) must be valid in order for A-1 to be the inverse of A. Similarly,
both of the latter pair of Eqs. (21.16) must be valid if A is to be unitary.

22. MATRICES IN QUANTUM MECHANICS

The appearance of matrices in quantum mechanics can be connected
in a simple way with the solution of the SchrOdinger equation (8.2). In
this section we adopt the Hamiltonian notation, and justify it in detail
in Sec. 23. We rewrite Eq. (8.2) as

HUk(r) = Ekuk(r) (22.1)

where the subscript k denotes the different members of the complete
orthonormal set of energy eigenfunctions uk(r) and their corresponding
eigenvalues E k [k specifies the energy, and also distinguishes between
degenerate eigenfunctions; it thus includes both E and 8 of Eq. (10.7)].
The Hamiltonian or energy operator H is given by

p2 h2
H = 2m + V(r) = - 2m \72 + V(r)

In accordance with the discussion of Sec. 8, k may be a discrete or a
continuous variable, or discrete over part of its range and continuous
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over the rest. We shall use the symbol S or Sk to denote a complete
summation over the subscript k (the summation includes an integration
fdk over the continuous part of its range).

A Unitary Transformation Matrix. Suppose that we have a second
complete orthonormal set of functions vn(r), which are not necessarily
eigenfunctions of the Schrodinger equation (22.1) with the actual poten­
tial energy V(r) ; they might, for example, be momentum eigenfunctions
(11.4) or (11.11), or hydrogen-atom wave functions (16.24) supplemented
by continuous-eigenvalue Coulomb-field wave functions like those dis­
cussed in Sec. 20. The Vn can be expanded in terms of the Uk:

vn(r) = SkSknUk(r)

where it is readily verified from the orthonormality of the Uk that

Skn = fUk(r)vn(r)dT
Similarly

(22.3)

We can now see that the matrix of which Skn are the elements is
unitary.

(SS*hl = SnSk"sln = Snfuk(r)vn(r)dTfvn(r')ul(r')dT'
= ffuk(r)ul(r')o(r - r')dTdT' = fUk(r)ul(r)dT (22.4)

where use has been made of the closure property that is possessed by any
complete orthonormal set of functions such as the vn(r) [see the discussion
of Eq. (10.11)]. The last integral on the right side of (22.4) is a Kronecker
osymbol or a Dirac 0 function according as k is one of a discrete or a con­
tinuous set of subscripts; in either case, this integral is equivalent to an
element of the unit matrix, so that we have shown that SS* = 1. In
similar fashion, it can be established that

(S*S)nm = SkSknSkm = (l)nm

Hamiltonian Matrix. The functions vn(r) can be used to calculate a
Hamiltonian matrix

H nm = fvn(r)Hvm(r)dT (22.5)

where H is the operator given in (22.2). We now consider the connection
between the Hamiltonian matrix (22.5) in the Vn representation, and the
energy eigenvalues E k •

Transformation of Hnmby the unitary matrix S gives

(SHS*hl = Sn,mSknHnmSlm

= Sn,mfuk(r)vn(r)dTfvn(r')H'vm(r')dT' fvm(r")ul(rl)dT"
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where the prime on H indicates that it operates only on the variable t'

to its right. After performing the summation over the subscript m to
get oCr' - r"), it can be seen that

fH' oCr' - r")ul(r")dr" = H' f oCr' - r")ul(r")dr"

= H'ul(r')

On doing the sum over n and dropping the primes, we obtain

(22.6)

which is in diagonal form with the eigenvalues E k •

Thus the problem of solving the Schrodinger equation is completely
equivalent to the problem of diagonalizing the Hamiltonian matrix when
it is expressed in some arbitrary representation such as that provided by
the functions vn • The eigenvalues of the Hamiltonian matrix are the
energy eigenvalues of the Schrodinger equation, and the unitary trans­
formation matrix S that diagonalizes H serves , through Eq. (22.3),
to give the energy eigenfunctions uk(r) in terms of the arbitrary initial set
of functions.

It is interesting to note that S is not necessarily a square matrix. For
example, the functions Vn may be the eigenfunctions of a three-dimensional
harmonic oscillator, which form a completely discrete set, while the func­
tions Uk may be momentum eigenfunctions, which form a completely
continuous set . However the Hamiltonian matrix, in both its diagonal
form (22.6) and its nondiagonal form H nm, is square.

Dynamical Variables as Hermitian Matrices. The eigenvalues of the
Hamiltonian are found in (22.6) to be the real energy levels Ek • It then
follows from Sec. 21 that H is a Hermitian matrix in any representation.

The discussion of Sec. 10 developed the interpretation that the eigen­
values of any operator that represents a dynamical variable are real, since
they are the only possible results of precise physical measurement of that
variable. Any dynamical variable can be represented as a matrix whose
diagonal representation has its eigenvalues along the principal diagonal,
and that can be transformed to any other representation by a suitable
unitary matrix. Thus any physically measurable dynamical variable
can be represented by a Hermitian matrix, and is said to be Hermitian.

Wave Functions as Unitary Matrices. Any complete orthonormal set
of functions, such as the uk(r) or the vn(r), possesses the closure property

(22.7)
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and the orthonormality property

fUk(r)ul(r)dr = fJ kl or fJ(k - l) (22.8)

If now we regard the function uk(r) as a two-dimensional array of
numbers in which the rows are labeled by the position variable r and the
columns by the subscript k, it is equivalent to a matrix Urk. Equation
(22.7) is then equivalent to the matrix equation

(UU*)rr' = SkUrkUr'k = (l)rr'

Similarly, Eq. (22.8) is equivalent to

(U *Uhl = SrUrkUrl = (l)kl

Thus U is a unitary matrix.
The r Representation. This suggests that such a unitary matrix be

used to effect a transformation. Suppose that we transform the Hamil­
tonian matrix H nm given in (22.5) by means of the unitary matrix

V rn == vn(r).

(VHV*)rr' = Sn.mv.:«;Vr'm = Sn ,mvn(r)Hnmiim(r')

= Sn.mVn(r)fiin(r")H"vm(r")dT" • iim(r')

= f fJ(r - r")H" o(r" - r')dT"
= f o(r - r")H' o(r" - r')dT"
= H' f fJ(r - r") o(r" - r')dT"
= H'o(r - r') = Ho(! - r ') (22.9)

The result embodied in (22.9) is the inverse of the definition (22.5).
The latter takes a differential operator H and constructs from it a matrix
representation, while the former transforms that matrix back into what is
effectively the differential operator. However, we now see what was not
so obvious from the form (22.2) for H: that a differential operator on the
space coordinates can be expressed as a matrix in a representation in
which the rows and columns are labeled by the position variables rand t' ,

From this point of view, the solution of the Schrodinger differential wave
equation (22.1) is equivalent to the diagonalization of the matrix

Hrr, = Ho(r - r')

just as we saw above that it is equivalent to the diagonalization of the
matrix H nm.

The r representation is one in which the coordinate r is diagonal:
(r)r'r" = t' o(r' - r"). It is worth pointing out explicitly that the Hamil­
tonian Hrr' in the r representation is not diagonal, even though the 0
function makes it vanish when r differs from r' by a finite amount. This
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is because derivatives of the 0 function appear, and these have nonvanish­
ing matrix elements infinitesimally removed from the diagonal r = t',
For example, the matrix j(r)o(r - r') is diagonal, but the matrix

(dldx) o(r - r')

and the matrix V2o(r - r') are not.
A Useful Identity. If n is an operator whose effect on a function j(r)

can be represented as

nj(r) = fn(r,r')j(r')dT'

then we can establish an identity that is sometimes useful:

fu(r)[nj(r)]dT = f[n*g(r)]j(r)dT (22.10)

If we regard n(r,r') as a matrix in the r representation, the Hermitian
adjoint of n operating on g(r) is

n*g(r) = fn(r')r)g(r')dT'

from which Eq. (22.10) follows at once.
This identity enables us to transfer operators from one factor of an

integrand to another. The partial integrations in Eqs. (7.9), (7.10),
and (12.3) are examples of the application of (22.10). In those cases,
n is a differential operator, and its matrix representation involves deriva­
tives and multiples of the 0 function. However, n need not be of this
specialized type [it might, for example, be an integral operator like the
square bracket in Eq. (10.19)], and (22.10) is valid as well for operators
that have nonvanishing matrix elements a finite distance from the
diagonal.

23. EQUATIONS OF MOTION IN MATRIX FORM

In the preceding section we discussed the principal transformation
properties of matrices that represent dynamical variables at a particular
instant of time. We now find equations of motion for these variables by
computing the time rate of change of their matrix representations. The
resulting equations are very similar in form to the classical equations of
motion and indicate a general procedure for quantizing any classical
system.

Time Rate of Change of a Matrix. We take as our starting point the
time-dependent Schr6dinger wave equation (6.16), expressed in terms of a
Hamiltonian operator,

ill :t if;(r,t) = Hif;(r,t) (23.1)
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where a typical H is that given by Eq. (22.2). A matrix representation
for any function F of the dynamical variables can be found in terms of a
complete orthonormal set of functions , each of which depends on the
time in accordance with (23.1). We call any two of these functions if;
and cP, and calculate the time rate of change of a typical matrix element

HFif;dr = Jfii>(r,t)F(r,r',t)if;(r',t)drdr'

It is assumed that F is a general operator (not necessarily a differential or
multiplicative operator) of the type considered in Eq. (22.10), which may
depend explicitly on the time.

Differentiation with respect to t gives

~ f ii>Fif;dr = ff ii>(r,t) [:tF(r,r"t)] if;(r',t)drdr'

+ ff ii>(r,t)F(r,r',t) [:t if;(r"t)] drdr'

+ ff [:t ii>(r,t)] F(r,r',t)if;(r',t)drdr'

= f ii> a:; if;dr + i~ ff ii>(r,t)F(r,r',t)[H'.p(r',t)]drdr'

- i~ ff [Hii>(r,t)]F(r,r',t)if;(r',t)drdr'

where the first term on the right side is the matrix element of the operator
aFjat, and substitution has been made from Eq. (23.1). We make use
of the identity (22.10) to transfer the H (which is Hermitian) from <i> to
Fif; in the last term, and obtain the equation

:t f ii>Fif;dr = f ii> ~~ if;dr + i~ f ii>(FH - HF).pdr

This may be written as an equation for matrix elements, since the
functions if; and cP are quite arbitrary at any instant of time :

dF = aF +.!. (FH _ HF)
dt at in (23.2)

The left side of (23.2) is the matrix whose elements are the time rate of
change of the matrix elements of F, and may be called the total time
derivative of the matrix ofF. The first term on the right side is the matrix
of the partial derivative of F with respect to t, and takes into account the
explicit dependence of F on the time. The last term is that part of the
time derivative of the F matrix that arises from the change in time of
the functions with respect to which the matrix is calculated. Equation
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(23.2) is Heisenberg's form of the equation of .motion of a dynamical
variable.

Classical Lagrangian and Hamiltonian Equations of Motion. In
order to bring out the similarity between Eq. (23.2) and the corresponding
classical equation, we review briefly the structure of classical Hamiltonian
theory. The equations of motion of a conservative dynamical system
that has f degrees of freedom may be derived from a Lagrangian function
L(ql, ... , qh ql, ... , q/, t) of the coordinates qi, the velocities
qi == dqddt, and the time, by means of a variational principle;'

s (I'Ldt = 0,Jt. (23.3)

(23.4)i = 1 ... f

The resulting Lagrangian equations are

i (OL) _ oL = 0
dt oqi oq, '

If now we define a momentum canonically conjugate to q. as P. == oL joq.,
and a Hamiltonian function of the coordinates and momenta as

I

H(ql ... qllPl ... Pllt) = LP.q. - L
i=1

(23.5)

variation of H leads to the Hamiltonian equations of motion

q, = oH, Pi = - oH, i = 1 .. . f (23.6)
0p. oq,

The time dependence of any function of the coordinates, momenta, and
the time, calculated along a moving phase point, is

I

:t F(ql . .. qll PI . .. Ph t) = a:; + L(:~ q. + :: p)
i= 1

I

_ of + \' (oF oH oH OF)
- at 4 oq. Op. - oq. OPi

i=1

on making use of the Hamiltonian equations (23.6). The Poisson bracket
{A,B} of any two functions of the coordinates and momenta is defined as

I

{A,B} == \' (oA oB _ oB iJA) (23.7 )4 oq. op, Oqi Op.
i=1

1 E. T . Whittaker, "Analytical Dynamics," 3d ed ., Sees. 99, 109 (Cambridge,
London, 1927); H. C. Corben and P. Stehle, "Classical Mechanics ," Sees. 26, 63
(Wiley, New York, 1950); H. Goldstein, "Classical Mechanics," Chaps. 2,7 (Addison­
Wesley, Cambridge, Mass., 1950).
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(23.9)

(23.11)

In terms of the Poisson bracket, the equation of motion for the function
F of the dynamical variables becomes

dF = aF + {F H} (23.8)
dt at · ,

The left side of Eq. (23.8) is the total time derivative of F along a
moving phase point, the first term on the right side takes into account the
explicit time dependence of F, and the last term shows the change in F
due to the motion of the phase point at which F is evaluated. Thus there
is a strong resemblance between Eqs. (23.2) and (23.8); the effect of
the moving phase point in the latter corresponds to the effect in the
former of the change with time of the functions that specify the matrix
representation.

Poisson Brackets and Commutator Brackets. The resemblance
between Eqs. (23.2) and (23.8) suggests that the quantum analogues of
the classical equations of motion be found in general by substituting the
commutator bracket divided by ih for the Poisson bracket :

1 1
{A,BI -t ih [A,B] == ih (AB - BA)

There are two observations that lend support to this suggestion. The
first concerns the classical conditions for a contact transformation from
one set of canonical variables q"P, to another Qi,P,:l

{Q"Pi } = Olj, {Qi,Q;\ = 0, {P"P i } = 0 (23.10)

where the Poisson brackets are calculated with respect to the original
variables q"Pi. Now we saw in Sec. 6 that a successful transition from
classical to quantum theory could be made by substituting the differential
operator -ih(ajax) for p"" etc. The commutator of x and p", can then be
found by letting it operate on an arbitrary function g(r) of the coordinates.

(xp", - p,.x)g(r) = -ihx :~ + ih :x (xg) = ihg(r)

Since g(r) is arbitrary, this and the other commutators may be written
as operator equations

xP" - PuX =

xy - yx = 0,

-ih (x ~ - ~ x) = ih
ax ax

-ih (x!- - !-x) = 0ay ay
p",p" - p"p", = 0, etc.

1 Whittaker, op. cii., pp. 300, 307; Corben and Stehle, op, cit., Chaps. 11-13;
Goldstein, op cit., Chap. 8.
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These are in agreement with the classical equations (23.10) when the
substitution (23.9) is made.

The second observation is that the algebraic properties of the com­
mutator brackets are identical with those of the Poisson brackets. It is
readily verified from the definition (23.7) that

{A ,B} = - {B ,A}, {A,c} = 0, where c is a number
{(A l + A 2) , B} = {Al,B} + {A 2,B} (23.12)
{A 1A 2,B} = {A l,B}A 2 + AdA2,B}

{A,{B,C}} + {B,{C,A}} + {C,{A,B}} = °
The order of possibly noncommuting factors has not been altered.
Dirac- has shown that the form of the quantum analogue of the Poisson
bracket is determined by Eqs. (23.12) to be the right side of (23.9); the
constant li is, of course, arbitrary so far as this discussion is concerned
(see also Prob. 11).

Quantization of a Classical System. It is plausible on the basis of the
preceding discussion to assume that any classical system can be taken
over into quantum mechanics by finding the classical Hamiltonian func­
tion and equations of motion in terms of some set of canonical variables
qi,Pi, and replacing the Poisson brackets in (23.8) and (23.10) by com­
mutator brackets in accordance with (23.9). The canonical variables are
then found to obey the quantum condltions-

[qiPi] = ilioi;, [qi,q;] = 0, [Pi, Pi] = ° (23.13)

This quantization technique will be found useful in connection with
classical wave fields (Chap. XIII) as well as classical particles.

Two precautions are found necessary in applying this technique.
First, the coordinates and momenta must be expressed in cartesian coordi­
nates. And second , ambiguities in the order of noncommuting factors
are usually resolved by taking a symmetric average of the various possible
orders. These precautions are illustrated in the following example.

Motion of a Particle in an Electromagnetic Field. As an example of
the foregoing quantization technique, we consider the problem of the
motion of a charged mass point in a general external electromagnetic
field. The classical Hamiltonian, expressed in terms of the canonical
variables r, p and the electromagnetic potentials A(r,t), ep(r,t), is3

H= 2~ (p - ~ Ay + eep (23 .14)

1 P. A. M. Dirac, "The Principles of Quantum Mechanics," 3d ed., Sec. 21 (Oxford,
New York, 1947).

2 Note that the derivation of Eq. (12.7) then shows that for any pair of canonical
variables Aq, . IIp, ~ ih.

3 J . H. Van Vleck, "The Theory of Electric and Magnetic Susceptibilities," pp.
7, 20 (Oxford, New York, 1932). Gaussian units are used in the present book.
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where e is the charge on the particle and c is the speed of light; the electric
and magnetic field strengths are given in terms of the potentials by

E = - ~ ~~ - grad t/J, H = curl A (23.15)

The quantum conditions (23.13) in cartesian coordinates are

[x,p,,] = [y,pl/] = [z,P.] = ih (23.16)

with other pairs of coordinate and momentum components commuting.
We now use Eq. (23.2), with the expression (23.14) for H and the relations
(23.16), to calculate expressions for the particle velocity dr/dt and
acceleration d2r/dt2, for comparison with the corresponding classical
expressions.

Evaluation of Commutator Brackets. In order to facilitate evalua­
tion of some of the commutator brackets that arise from substitution
into (23.2), we derive a few elementary results. Any two functions of r
commute with each other, since all components of r commute with each
other. It follows from (23.16) that

x2p" - pzX2 = x(pzX + ih) - pzX2
= (pzX + ih)x + ihx - pzX2 = 2ihx

It is readily shown by induction that

x"p", - PzX" = nihx"-l (23.17)

It follows from (23.17) that for any function fer) that can be expressed
as a power series in x,y,Z, the relation

[f(r),p",] = f(r)p", - pzf(r) = ih o~f(r) (23.18)

is valid.' Equation (23.18) can also be established for more general
functions than power series by making use of the representation of p"
as -ih(%x), as in (23.11); if we operate with the left side of (23.18)
on an arbitrary function g(r), we obtain

[f(r),p,,]g(r) = -ih [fer) :x - o~ f(r)] g(r) :c g(r) [ih o~ fer) ]

which is equivalent to the operator equality (23.18) since g(r) is arbi­
trary. By repeated application of (23.18) it is easily shown that

(
of Of) of o2f

f(r)p; - p;j(r) = ih p" ax + ax p", = 2ih ax p" + h2 ox2 (23.19)

I This corresponds to the classical relation l!(r),p,,} = fJ!(r) !fJx [compare with
Eq . (23.9)].



SEC. 231 MATRIX FORMULATION OF QUANTUM MECHANICS 137

Velocity and Acceleration of a Charged Particle. The Hamiltonian
(23.14) may now be written, with the help of (23.18),

p2 e e2

H = 2m - 2me (p . A + A . p) + 2mc2A2+ ecP

p2 e ieh e2

= 2m - me A· p + 2mc div A + 2mc2A2 + ecP (23.20)

The time derivative of a component of r is then easily shown from (23.2)
to be

~~ = ~ (pz - ~ Az) (23 .21)

in agreement with the classical relation between the velocity and momen­
tum of a particle in the presence of an electromagnetic field.

The calculation of a component of the acceleration of the particle

d2x = ..!. [dPz_~ dAzJdt2 m dt c dt
1 e aAz e

= ~h [Pz,H] - - -at - -;--h [Az,H]
zm me inmc

is straightforward, but rather tedious. The result may be written

~;~ = - ~Ga~z + ::) + 2~2e [(Pv - ~Av) (a~v _ a~z)

+ e~v - a~z) (Pv - ~ Av)J- 2~2e [ (pz - ~ Az) e~z _a~)

+ (a~z _ a~z) (pz - ~ Az)J (23.22)

The Lorentz Force. Equation (23.22), with the similar y- and
z-component equations, can be written as a single vector equa.tion for the
"force"

m d2r = e (- ! aA - grad cP)dt2 c at
+ i ~ [~ (p - ~ A) X (curl A) - (curl A) X ~ (p - ~ A) ]

= eE + i ~ (dr X H - H x dr) (23.23)
e dt dt

where use has been made of Eqs. (23.15) and (23.21). Equation (23.23)
is in agreement with the corresponding classical expression

e
eE + - (v X H)

c
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where v = dr/dt is the velocity of the particle, if we take a symmetric
average of the two terms v X Hand - H X Vi these are identical clas­
sically but differ in quantum mechanics since the v given by (23.21) does
not commute with H.

Equation (23.23) includes a generalization of Ehrenfest's theorem,
which was discussed in Sec. 7. If we consider a diagonal element, the
left side is the product of the mass and the second time derivative of the
expectation value of the position vector of the particle. The right side
is the expectation value of the Lorentz force acting on the charge of the
particle. Thus (23.23) states that a wave packet moves like a classical
particle if it is sufficiently well localized so that the electromagnetic fields
change by a negligible amount over its dimensions. This result can, of
course, also be obtained by the method of Sec. 7 when, in accordance
with (23.1) and (23.20), the Sehrodinger wave equation is taken to be

ih aif; = (_.!!:':.- \72 + ieh A . grad + ieh div A +~A2 + eq,) if; (23.24)
at 2m mc 2mc 2mc2

Constants of the Motion. Equation (23.2) tells us that if F does not
depend explicitly on the time (so that aFf at = 0), then dF/ dt = 0 if F
commutes with H. In this case, F is said to be a constant of the motion.
This is usually possible at all times only if H is also constant. If we sub­
stitute H for F in (23.2), we see that the constancy of H implies that
aH/at = 0, or that H does not involve the time explicitly. Thus if H
is independent of t, a function F of the dynamical variables of the system
is a constant if it does not depend on t and commutes with H.

An example of a constant of the motion is anyone of the coordinates or
momenta of the system whose canonically conjugate momentum or coordi­
nate does not appear explicitly in H . Since the dynamical variable in
question commutes with all other variables except its own canonical con­
jugate, then it commutes with H . Thus if the Hamiltonian for a number
of interacting particles does not depend on the position coordinates of
the center of mass of the system, the total momentum of the system is a
constant of the motion. This is in agreement with the classical result
that the total linear momentum of a system of interacting particles is
constant if there are no external forces.

In similar fashion, we can make use of the third of Eqs. (14.20) to
find the condition for constancy of the angular momentum of a particle.
This equation states that the operator that represents the z component of
angular momentum is M. = ih(a/aq,), where q, is the angular coordinate
of rotation about the z axis. Thus, as with (23.11), we have the operator
relation

q,M. - M.q, = ih (23.25)
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and tP and M. may be regarded as canonically conjugate variables. If
then H does not depend on the angular coordinates of a particle [for
example, if V in Eq. (22.2) depends only on the radial distance r from a
fixed center] , M. is a constant of the motion; since there is nothing special
about the choice of the z axis, M" and M" are also constants. This is
in agreement with the classical result that the angular momentum of a
particle moving in a central field of force is constant.

The Parity Operator. Parity was first discussed in Sec. 9, and defined
there and in Sec. 14 as the property of an energy eigenfunction that speci­
fies whether it is even or odd with respect to changes of sign of all of the
space coordinates. The parity operator P can be introduced in quantum
mechanics, even though it has no classical analogue; it is defined as an
operator that reflects all coordinates of all particles through the origin:

Pf(Xl,Yl,Zl,X2,Y2,Z2, . . . ,t)
= f( -Xl,-Yl,-Zl,-X2,-Y2,-Z2, . ,t) (23.26)

It is evident from (23.26) that p2 is the unit operator 1. Thus if P is
diagonalized the square of each of its diagonal elements is unity, and its
eigenvalues are ±1.

If now H is left unchanged by reflection of all coordinates through the
origin, P commutes with H and is a constant of the motion. Moreover,
it follows from Sec. 21 that P and H can be made diagonal at once. Then
the parity of an energy eigenfunction can be well defined (even or odd)
and is constant in time.1

Energy Representation. It was shown in Sec. 22 that the set of
Schrodinger energy eigenfunctions uk(r) may be thought of as a unitary
matrix that transforms the Hamiltonian operator from the r representa­
tion into the diagonal form

Hkl = Ek8kl or Ek8(k - l) ;

Although the discussion of Sec. 22 is valid for only one instant of time,
it can be made valid for all time by using the time-dependent eigenfunc-

iEkt

tions uk(r)e-T for the transformation, provided that H is a constant.
The matrix representation in which H is diagonal is called the ene,gy
representation.

1 A particle can also possess an intrinsic parity, which is even or odd according as a
plus or a minus sign appears in the equation Pt/t(r,t) = ±t/t(-r,t) . Note that this
extends the range of operation of P to include the wave function itself, not just the
space coordinates on which it depends. ·
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(23.27)

The equation of motion (23.2) takes a particularly simple form in this
representation, if F does not depend explicitly on the time:

dFkl 1 i
at = in (FH - HF)kl = h (Ek - El)Fkl

Equation (23.27) can be integrated to give

i(E.-E.)l

Fkl(t) = F~le " (23.28)

where F~l is the value of the matrix element at t = O. Thus in the energy
representation the off-diagonal matrix elements of any time-independent
function of the dynamical variables oscillate in time with frequencies that
are related to the energy differences between the stationary states by
Bohr's frequency condition (see Sec. 2); the diagonal matrix elements are
constant in time.

Virial Theorem. A proof of the virial theorem in quantum mechanics
can be given in analogy with the corresponding proof in classical mechan­
ics. In the latter, the starting point is the time average of the time
derivative of the quantity r . p, which is zero for a periodic system. The
analogous quantity in quantum mechanics is the time derivative of the
expectation value of r . p, or the diagonal matrix element of the com­
mutator of r . p and H in the energy representation, which is also zero.

d 1
dt (r • p) = in ([(r . p), H]) = 0

r ~+~+~][(r • p), H] = (xp% + yp" + zp.), 2m + V(x,y,z)

in . (av sv av)= - (p2 + p2 + p2) - ~n x - + y- + z -m % "z ax ay az
= 2inT - in(r . grad V)

where T is the kinetic energy. We thus conclude that

2(T) = (r • grad V) (23.29)

Note that it is immaterial whether we start with r . p or p . r, since the
difference between them is a constant, and hence commutes with H .

If V is spherically symmetric and proportional to r», and the expecta­
tion values exist, Eq. (23.29) shows that 2(T) = n(V). The case n = -1
is in agreement with the result of Prob. 13, Chap. IV, and the case n = 2
is in agreement with the results of Sec. 13.
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Dirac's Bra and Ket Notation. A somewhat different notation for
states and matrix elements is based on the concept of bra and ket oectors,'
A ket vector, or ket, is analogous to the wave function for a state. The
symbol I) denotes a group of kets, and the symbol 1m) denotes the ket
vector that corresponds to the state m of the system. The superposition
of two states is represented by a linear combination of the corresponding
kets . A bra vector, or bra, is analogous to the complex conjugate of the
wave function for a state. The symbol (I denotes a group of bras, and
the symbol (n\ denotes the bra vector that corresponds to the state n of
the system. The scalar product of a bra and a ket vector corresponds to
the integral of the product of the complex conjugate of the wave function
for one state and the wave function For another state, and is denoted by
(nlm). A matrix element like that given in Eq . (22.5) is denoted by
(nIHlm).

24. ANGULAR MOMENTUM

As an interesting and useful example of the direct treatment of
dynamical variables by matrix methods, we now consider the properties
of the angular-momentum operator. We work entirely with a repre­
sentation at a particular instant of time, so that we are not concerned
here with the change in time of the resulting angular-momentum matrices.
However, if the angular momentum commutes with the Hamiltonian, it is
a constant of the motion, and the matrices retain their form for all time.
It was shown in Sec. 23 that this is the case if the Hamiltonian is spheri­
cally symmetric.

Definition of Angular Momentum. We define the angular momentum
M of a particle about some point in terms of its displacement r from that
point and its momentum p as in Eq. (14.19)

M = r X p (24.1)

We do not now require that p be expressible as a differential operator, but.
rather that the components of rand p satisfy the commutation relations
(23.16). It is then possible to find commutation relations between the
components of M, that do not involve rand p.

~~=~-~~-~-~-~~-~
= yp",(P.z - zp.) + XPlI(zp. - P.z) = ih(xpv - yp",)

1 Dirac, op, cit., Sees. 5-8.
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[M""MII ] = ihM., [M.,M",] = ihMII (24.2)

Equations (24.2) are seen to apply also to the total angular momentum
of a system of particles, since the rand p operators for the individual
particles commute with each other and so their angular momenta do also.
Now it turns out that the relations (24.2) admit of some matrix repre­
sentations for M that are not compatible with the original definition
(24.1). When such a conflict arises, there is in some cases physical reason
to regard (24.2) as being more fundamental than (24.1) (see the latter
part of this section).

We note that the original definition (24.1) makes M Hermitian, since
rand p are Hermitian. This is assumed to be true in general, since the
components of M can be Hermitian without violating the commutation
relations (24.2).

Definition in Terms of Infinitesimal Rotations. The angular momen­
tum can also be defined in a way that permits of generalization to more
complicated systems (many interacting particles, spin, fields). We sup­
pose that the system is specified by a Hamiltonian H that is unaffected by
rotations R of the coordinate system. For an arbitrary function t, we
then have RHf = HRf, so that R commutes with H. Thus any rotation
R is a constant of the motion, and its constancy is a direct consequence of
the invariance of H with respect to rotations. From a physical point of
view, the only dynamical variable whose constancy stems from the spher­
ical symmetry of H is the angular momentum. We therefore expect that
there is a relation between Rand M.

Any rotation R can be built up by repeated application of rotations
through very small angles about each of the three coordinate axes. The
argument of the last paragraph then indicates that each component of
M is related to an infinitesimal rotation about the corresponding axis.
The effect of a rotation about the z axis through an infinitesimal angle Ij>
on an arbitrary function f is

R.(Ij»f(x,Y,z) = f(x + Ij>y, y - Ij>x, z)

= f(x y z) + Ij>y af _ Ij>x af
, , ax ay

= [1 + Ij> (y :x - x :y) ]f(X,y,z)
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Sincef is arbitrary, we can write, with the help of Eq. (24.1),

cPR.(cP) = 1 + ih M., cP infinitesimal

for example,

This relation is more fundamental than (24.1) and can be used to define
M even when the rand p that appear in (24.1) do not exist.

Choice of a Representation. It is apparent from (24.2) that no two
of the three components of M commute with each other, and so it is
impossible to find a representation that diagonalizes more than one of
them. However, all three components commute with

M2 = M; + M; + M;

[M.,M2] = M.M; - M;M. + M.M; - M;M.
= ih(MzMv + MvMz) - ih(MvMz + MzM v) = 0

Thus it is possible to diagonalize one component of M, say M., and M2
at the same time; we use this to define our representation.

It is then convenient to work with M. and the non-Hermitian matrix

L = M z + iMv
from which it follows that

M2 = M; + i(LL* + L*L)

(24.3)

(24.4)

The commutation relations involving L are found from (24.2) to be

[M.,L] = hL, [L,L*] = 2hM. (24.5)

Our object is to find a representation in which M. and M2 are diagonal.
The rows and columns of this representation can be labeled by the eigen­
values of these two dynamical variables, and we wish to determine these
eigenvalues along with the corresponding matrix for L . The matrices
for M'; and M v are then given by solving (24.3) and its Hermitian adjoint
equation :

M z = i(L* + L), M v = ii(L* - L) (24.6)

Relations between Matrix Elements. We label the rows and columns
of our representation with a pair of symbols m and j. The eigenvalues of
M. are mh, so that m is a dimensionless real number ; j is related to the
eigenvalues of M2 in a way that is specified below [seeEq. (24.13)]. Then
the first of Eqs. (24.5), written in matrix form, is
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If we work out the matrix products and remember that M2 is diagonal,
this becomes

(24.7)

where (M2)j' is the eigenvalue of M2 that corresponds to j'. Equation
(24.7) tells us that all matrix elements of L vanish except those for which
j' = j". Thus we can temporarily ignore j in specifying the L matrix,
and remember when we finish that the matrix with which we come out is
all for a particular value of j . This may be part of a larger matrix in
which j can have various values, but there are no nonvanishing off­
diagonal elements of L between the sections of the matrix that correspond
to different values of i.

It is therefore sufficient for the present to use only the symbol m to
designate rows and columns of L . The second of Eqs. (24.5) then gives

(M.L)m'.m" - (LM.)m' .m" = hLm'.m"

or, since M. is diagonal with eigenvalues mh,

(m' - m")hLm',m" = Urn',m'l (24.8)

Thus the only nonvanishing matrix elements of L are those for which
m' = m" + 1, and we denote these by

(24.9)

so that Am is a dimensionless number that may be complex.
If now we take the mth diagonal element of the third of Eqs. (24.5), we

obtain

~ (Lm.m'L*m'.m - L* m.m,Lm'.m) = 2h2m
m

Each sum is seen to contain only one nonvanishing term, so that this
equation becomes, with the help of (24.9),

(24.10)

Eigenvalues of M.. Equation (24.10) is a first-order linear difference
equation in IAmI2, and its general solution has one arbitrary constant

(24.11)

Now IAm l2 is necessarily positive or zero, and yet the right side of (24.11)
evidently attains negative values for sufficiently large positive and nega­
tive values of m. This does not cause difficulty if there are two values
ml and m2 of m for which Am = 0, and if these two values differ from each
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other by an integer. If this is the case, the series of m values in which
successive terms differ by unity can terminate at both ends without
jXmJ2 becoming negative. Equation (24.8) can be satisfied at the upper
end (m = mI) by having Lm1+I. m, = 0 rather than by having an M z eigen­
value greater than mI, and (24.8) can be satisfied at the lower end
(m = m2) by having Lm,+l, m, = 0 rather than by having an M z eigen­
value less than m2 + 1. IAml

2 is evidently nonnegative for m values that
range from m2 + 1 to mI, inclusive.

We thus have a finite series of eigenvalues of M z ranging from mI
down to m2 + 1 by unit steps, where mI and m2 are the larger and smaller
roots of the quadratic equation C - m(m + 1) = 0:

mI = -! + !(1 + 4C)i, m2 = -! - !(1 + 4C)1

We rename mI and call it j, in which case C = j(j + 1), and the eigen­
values of M, range from j to -j by unit steps. This implies that 2j is a
positive integer or zero, or that j is restricted to the series of values 0,
! , I,!, . .. .

Eigenvalues of M2; the L Matrix. Equation (24.11) can now be
rewritten in terms of j

JAm l2 = j(j + 1) - m(m + 1) = (j - m)(j + m + 1) (24.12)

The eigenvalues of M2 can be found by calculating a diagonal element of
(24.4):

(M2)mi.mi = {m2+ Mj(j + 1) - (m - l)m + j(j + 1) - m(m + 1)Jlh2

= j(j + l)h2 (24.13)

We thus have an infinite number of representations for the matrices
M2, M», and L, each of which is characterized by a zero or half-integer
value for j and has 2j + 1 rows and columns . As expected, the eigen­
values of M2 are all the same for a particular value of i . All of these
representations may be taken together to form a single representation of
infinite rank, although it is often more convenient to consider them
separately.

Equation (24.12) leaves the phase of the matrix elements of L arbi­
trary. This corresponds to an arbitrariness in the choice of the phase of
the angular-momentum eigenfunctions when they are normalized, and
is not of physical significance. We therefore choose all the phases to be
zero, and obtain for the nonvanishing matrix elements of L

L(m+I)i,mi = [(j - m)(j + m + 1)]ih (24.14)

For j = 0, M2 and the components of M are all represented by null
matrices of unit rank: (0). The matrices for the next three values of j,
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(24.15)

o
o
1
o

~)
j = i

as obtained from Eqs. (24.6), (24.13), and (24.14), are

,i = t M: = th(~ ~} u, = th(~ -~)

M = Ih(1 0) M2 = 3 h2(1• ~ 0 -1 ' T 0

M: = ~(~ ~ ~), u, = ~(~ -~ -~)
V2 0 1 0 V2 0 i 0

M. = h(~ ~ ~), M2 = 2h2(~ ~ ~1)
o 0 -1 0 0

M: = th(~V~ ~ J)
o 0 V3 0

1 (v~ -~i -2~ ~)
M 1/ = ~h 0 2i _0 - V3i

o 0 v3i 0

M =lh(~ ~ ~ ~) M2=15h2(~ ~
• ~ 0 0 -1 0' ,- 0 0

o 0 0 -3 0 0

j=i

Connection with the Spherical Harmonics. Comparison of the
foregoing results with those of Sec. 14 suggests a close connection between
the matrix representations of the angular momentum for which j = l
is an integer, and the spherical harmonics YZm(O,et» defined in (14.6) . A
comparison of Eqs. (14.22) and (14.23) with the M2 and M. matrices
shows that the corresponding angular-momentum operators of Sec. 14
are simply another representation of the matrices considered in this
section. This can also be shown for the L matrix by computing the
effect of operation with L on a spherical harmonic. From (14.20) and
(24.3), theL operator in polar coordinates is seen to be

L = hei4> (~ + i cot o~) (24.16)
00 oet>

It is then possible, by making use of the properties of the spherical har­
monics discussed in Sec. 14, to show that

LYzm(O,et» = ±[(l - m)(l + m + 1)]1 hYZ,m+l(O,et» (24.17)
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where the minus sign is for m ;;; 0 and the plus sign is for m < 0 (the
calculation has a somewhat different structure for the two groups of m
values) . Thus if we set up a matrix to represent the operator L in
analogy with Eq. (22.5) , we get just the matrix (24.14) with integer i,
except for change of some of the signs, which are arbitrary anyhow.

In similar fashion, we can show in analogy with Eqs. (22.7) and (22.8)
that Y1m(O,tjJ) can be regarded as a unitary matrix that transforms from a
representation in which the rows and columns are each labeled by the
angle variables O,tjJ to one in which they are labeled by the quantum num­
bers l,m. The first representation is that which is implicit in the work of
Sec. 14, and in which L would be represented as the result of operating
with (24.16) on a suitably normalized 0 function of the angles. The
second representation is that developed in this section, in which L is
given by (24.14) except for some sign changes.

Spin Angular Momentum. .It follows from the work of Sec. 14 and of
this section that if all of the integer j representations are taken together to
form a single representation of infinite rank, the M matrices can be
expressed by (24.1) in terms of rand p matrices that satisfy the commuta­
tion relations (23.16). This is not true of the half-odd-integer j matrices,
which are solutions of Eqs. (24.2) but not of the more restrictive Eqs.
(24.1) and (23.16). Thus the matrices for the components of the orbital
angular momentum of a particle or a system of particles must have eigen­
values that are integer multiples of h, since they must be expressible in
terms of coordinates and momenta.

There is nothing to prevent a particle from having an intrinsic angular
momentum that is described by Eqs. (24.2) but cannot be expressed in
terms of the position and momentum of the particle in accordance with
(24.1) . The eigenvalues of the components of such an angular momen­
tum could be integers or half odd integers. Moreover, M2 could have a
single eigenvalue corresponding to a single value of i, since M2 commutes
with all three components of M and there is no reason why it should not
also commute with rand p [since Eq. (24.1) is not valid in this case].
Thus M2 could commute with all the dynamical variables that describe
the particle, and so could be a constant of the motion under all circum­
stances; there would then be no objection to equating M2 to a definite
number j(j + 1)h2• This is not possible for an orbital angular momen­
tum, since in that case M2 does not commute with rand p, and hence is
not always a constant. .

An intrinsic angular momentum of the type described in the last
paragraph is called a spin angular momentum. It is found experimentally
that electrons, protons, neutrons, and probably also Il mesons each possess
a spin angular momentum for which j = ~ and the M matrices are given
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in (24.15) and that 1r mesons possess a spin angular momentum for which
j = 0. 1

Addition of Angular Momenta. It is sometimes of interest to con­
sider the vector sum M = M l + M 2of two angular momenta M l and M 2
that commute with each other [all components of M l commute with all

. components of M 2, and M l and M 2 separately satisfy the commutation
relations (24.2)]. These angular momenta could refer to independent
particles, or to the spin and orbital angular momenta of the same particle.
As pointed out near the beginning of this section, M obeys the same
commutation relations (24.2) as do M l and M 2. A representation in
which Mi, M~, M lz, and M 2z are diagonal is easily obtained from the fore­
going theory. The rows and columns are labeled by i-; j2, ml, and m2;
the matrices for Mil for example, have the form (24.15) so far as the
indices i, and ml are concerned, and are unit matrices as regards the
indices j2 and m2.

It is possible to find a second representation in which Mi, M~, M2,
and M z are diagonal, for which the rows and columns are labeled by
jl, j2, j, and m [j(j + l)h2is an eigenvalue of M2 and mh is an eigenvalue
of .Mz]. If jl and j2 are fixed, the first representation has

(2jl + 1) (2j2 + 1)

rows or columns, and can be specified by products of eigenfunctions of
M lz and of M 2. , just as the representation (22.6), in which the Hamil­
tonian is diagonal, is specified by eigenfunctions Uk of the operator H .
The second representation, with the same fixed values of i, and j2, must
have the same number of rows, since it is specified by eigenfunctions of
M2 and M. that are linear combinations of the original eigenfunctions.
We now find the values of j and m that appear in the second representation.

Eigenvalues of (M l + M 2)2. Since M, = M lz + M 2z , it is apparent
that the possible values of mare ml + m2. The largest value of m is
therefore i, + j2, and this occurs only once, when ml = jl and m2 = j2.
This shows that the largest value of j is it + j2, and that there is only one
such state. The next largest value of m is i, + j2 - 1, and this occurs
twice: when ml = jl and m2 = j2 - 1, and when ml = i, - 1 and
m2 = h (provided that neither i. nor j2 is zero) . One of the two linearly
independent combinations of these two states must be associated with
the new state for whichj = jl + j 2, since for thatj value there must be m
values ranging from jl + j2 to -jl - j2 by integer steps. The other
combination cannot be associated with this or a larger j , since the larger
m values that should then also be present actually are not. Therefore
the second combination is associated with j = i, + j2 - 1. By an

1 For a discussion of the properties of 1r' and p. mesons, see R. E. Marshak, " Meson
Physics," Chaps. 4, 6 (McGraw-Hill, New York, 1952).
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extension of this argument we can see that each j value, from it + j2
down to Ij - j2! by integer steps, appears just once, and that with each
is associated 2j + 1 linearly independent combinations of the original
eigenfunctions. Thus the number of rows or columns of the second
representation is

i.+J,I (2j + 1) = (2jl + 1)(2j2 + 1)
i=Ij,-J,1

as expected.
The foregoing result is the same as the addition rule for angular

momenta of the old quantum theory: the magnitude of the sum of two
angular-momentum vectors can vary from the sum of their magnitudes
(parallel case) to the difference of their magnitudes (antiparallel case) by
integer steps.

The unitary matrix that transforms from the ml,m2 to the j,m repre­
sentation for fixed values of j, and j 2 can be found by matrix methods.
Since its structure is rather complicated it is not quoted here .'

Problems

1. Assume that any Hermitian matrix can be diagonalized by a unitary matrix.
From this, show that the necessary and sufficient condition that two Hermitian
matrices can be diagonalized by the same unitary transformation is that they
commute.

2. Show that a nonsingular matrix of finite rank must be square.
S. Given two matrices A and B that satisfy the following equations:

Ai = 0, AA* + A*A = 1, B = A*A

where 0 is the null matrix and 1 is the unit matrix. Show that B2 = B. Find A and
B in a representation in which B is diagonal, assuming that it is nondegenerate. Can
A be diagonalized in any representation?

4. Given three matrices A, B, and C that satisfy the following equations:

A2 = B2 = C2 = 1, AB + BA = BC + CB = CA + AC = 0

where 1 is the unit matrix and 0 is the null matrix. Find all three matrices in a
representation in which A is diagonal, assuming that it is nondegenerate.

6. Given three matrices A, B, and C that satisfy the following equations:

A 2 = B2 = C2 = 1, BC - CB = i A

where 1 is the unit matrix. Show that AB + BA = AC + CA = 0, where 0 is the
null matrix. Find all three matrices in a representation in which A is diagonal,
assuming that it is nondegenerate.

1 See E. U. Condon and G. H. Shortley, "The Theory of Atomic Spectra," Chap.
III, Sec. 14 (Macmillan, New York, 1935); Chap. III also discusses other interesting
prop erties of angular momentum. See also E . Feenberg and G. E. Pake, "Notes on
the Quantum Theory of Angular Momentum" (Addison-Wesley, Cambridge, 1953).
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6. Make use of the matrix expression (13.18) for x in a representation defined by
the harmonic-oscillator wave functions to obtain a similar matrix for x2, using purely
matrix methods. Compare with the answer to Prob. 3, Chap. IV .

7. Use purely matrix methods to show that if Xnm r! 0 for a harmonic oscillator,
then En - Em = ±fl,(K//-l)I. Note that for a harmonic oscillator, H = p2/2/-l + jKx2,

xp - px = if! .
8. Show by purely matrix methods that if H = pZ/2/-l + V(r),

where the summation is over all states and x is a cartesian component of r ,
9. If H = p2/2/-l + V(x) for a one-dimensional particle, and V(x) can be expressed

as a power series in z, show by purely matrix methods that

dp dV
dt=-dx

What is meant by the operator d/dt in this connection?
10. Transform the Hamiltonian for the harmonic oscillator expressed in the x

representation

f!Z dZ
H = --- +!KxZ

2/-ldx 2

into the p representation. What are the solutions in the p representation that corre­
spond to the x representation wave functions (13.13)?

11. A (x,p) and B(x,p) can be expressed as power series in x and p, and [x,p) = if! .
Show by purely matrix methods that

lim ~ [A,B] = {A,BI
h->O t ...·

12. Verify Eq. (24.17) by direct operation on the spherical harmonics with the L
operator given in Eq. (24.16).



CHAPTER VII

APPROXIMATION METHODS FOR STATIONARY PROBLEMS

In quantum mechanics, as in classical mechanics, there are relatively
few systems of physical interest for which the equations of motion are
capable of exact solution. Approximation methods are expected to play
an important part in virtually all applications of the theory. This
enhances rather than diminishes the importance of those problems for
which exact solutions can be found, since as was pointed out at the begin­
ning of Chaps. IV and V, exact solutions are often useful as starting points
for approximate calculations. In addition, they may also help to estab­
lish limits of validity for various approximation methods.

In this chapter and the next we develop several approximation
methods and apply them to illustrative problems. It is convenient to
divide the methods into two groups according as they deal with stationary
states of systems that are represented by eigenfunctions of the energy
(considered in this chapter), or with problems in which the Hamiltonian
depends on the time (considered in Chap. VIII). In both cases we start
with the Schrodinger wave equation, and only occasionally introduce
matrix methods or notation.

26. STATIONARY PERTURBATION THEORY

The stationary perturbation theory! is concerned with finding the
changes in the discrete energy levels and eigenfunctions of a system when
a small disturbance is applied. It is assumed from the outset that the
Hamiltonian H in the Schrodinger wave equation can be written as the
sum of two parts. One of these parts H« is of sufficiently simple structure
so that its Schrodinger equation can be solved, and the other part H' is
small enough so that it can be regarded as a perturbation on H o. It is
convenient to retain our old symbols Un and En for the supposedly known
normalized eigenfunctions and eigenvalues of the unperturbed Hamilto­
nian H 0, and use if! and W for the perturbed stationary wave function and
energy level:

Hif! = Wif!, H = H; + H', Houn = Enun (25.1)

Nondegenerate Case. The assumption that H' is small suggests that
we expand the perturbed eigenfunction and eigenvalue as power series in

1 E. Bchrodinger, Ann. d. Physik, 80, 437 (1926).
151
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(25.2)

H'. This is most conveniently accomplished in terms of a parameter X,
such that the zero, first, etc., powers of X correspond to the zero, first ,
etc ., orders of the perturbation calculation. We replace H' by XH', and
express 1/; and W as power series in X. We assume that these two series
are analytic for Xbetween zero and one, although this has not been inves­
tigated except for a few simple problems.1 The different orders of the
perturbation approximation are then given by the coefficients of cor­
responding powers of X. In the final results, Xis set equal to 1.

The perturbed wave function and energy level are written

1/; = 1/;0 + X1/;l + X21/;2 + X3if;a + ...
W = W o+ XW1+ X2W2+ XaWa +

and are substituted into the wave equation to give

(H; + XH')(1/;o + X1/;l + .. .)
= CWo + XWI + .. ·)(1/;0 + X1/;l + .. .) (25.3)

Since Eq. (25.3) is supposed to be valid for a continuous range of X, we
can equate the coefficients of equal powers of X on both sides to obtain
a series of equations that represent successively higher orders of the
perturbation.

H o1/;o = W o1/;o
H 01/;1 + H'1/;o = W 01/;1 + W 11/;0 (25.4)
H 01/;2 + H'1/;l = W o1/;2 + W 11/;1 + W21/;0, etc .

The first of Eqs. (25.4) means that 1/;0 is anyone of the unperturbed
eigenfunctions, as expected. We therefore put

W o = Em (25.5)

This state U m is assumed to be nondegenerate, although others of the
unperturbed eigenfunctions may be degenerate. The case in which the
unperturbed state 1/;0 is degenerate is considered later in this section.

First-order Perturbation. It is implicit in the present treatment that
the unperturbed state U m is one of a discrete set (even though the entire
set of u's may be partly continuous), since otherwise no interest would
attach to the calculation of the perturbed energy . In the next section
we consider the perturbation of one of a continuous set of eigenfunctions,
in connection with collision problems.

We expand 1/;1 in terms of the Un

(25.6)

1 For a discussion of this point, see N. Arley and V. Borchsenius, A cta Math., 76,
261 (1945), especially Part IV.
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where 5 denotes a summation over the discrete set together with an
integration over the continuous set of eigenfunctions. Substitution of
(25.6) into the second of Eqs. (25.4) gives

5a~I)Houn + H'u.; = Em5a~)un + Wium

We replace Hsu; by Enun in the first term, multiply by Uk, and integrate
over all space, making use of the orthonormality of the U'S:I

a~I)(Em - Ek) + WIOkm = fUkH'umdr= H'km (25.7)

where the integral on the right is the km matrix element of the perturba­
tion energy H' in the representation in which the unperturbed Hamilto­
nian H« is diagonal [see Eq. (22.5)].

If we take k = min Eq. (25.7), we see that

WI = H:'m (25.8)

which is the expectation value of H' for the state m. Equation (25.7)
also gives

krr=m (25.9)

We thus have a solution to first order in H', except that a(~ is still unde­
termined; it is obtained below from the normalization of "'.

Second-order Perturbation. The solutions to second order in H' are
found from the third of Eqs. (25.4) by substituting in

(25.10)
to give

5a(~)Houn + H'5a(~)un = Em5a(~IUn + W8a(~)un + W 2um

As before, we replace H oUn by Enun in the first term, multiply by Uk and
integrate over all space to obtain

If now we set k = m, we see with the help of (25.8) that

W = 5' (11H' = 5' H:'nH:m = 5' IH:'nI2
2 an mn Em _ En Em - En

(25.11)

(25.12)

where the prime on 5 denotes the omission of the term n = m from the
summation and integration over n. Similarly, if k rr= m in Eq. (25.11),

1 f ukundr is equal to Okn if either k or n is one of a discrete set, and is equal to
o(k - n) if both belong to a continuous set; in either case, SnJnfukundr = Jk (see Sec.
10).
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(25.13)

We thus have a solution to second order in H', except that a~, like at;: ,
is not yet determined.

Normalization of if;. Since if;o is chosen to be equal to Um, if;is already
normalized to zero order. If then the normalization integral flif;1 2dr is
set equal to unity for all orders of A, when if; is given by (25.2), we
obtain

SCif;oih + if;oif;l)dr = 0
fCif;0if;2 + if;0if;2 + lif;lI2)dr = 0

These give at once

in first order
in second order

a~ + {j,~ = 0,

The real parts of a~ and a~ are fixed by these relations, but their
imaginary parts are not. The choice of the imaginary parts of these
coefficients is equivalent to the choice of a new phase for if; in each order
of the calculation; this in turn affects the phase of the next higher order
term in if;. There is no loss of generality involved in making the simple
choice of zero for these imaginary parts, in which case

a<l) = 0.m ,

Note that the perturbed energies are independent of this choice.!
The energy and wave function to second order in H' are then (setting

A = 1)

W = E + H' + 5' !H":nI
2

m mm n Em - En

if; = Um+ 5' H{mUk +5' {[S' H{nH':m (25.14)
kEm - Ek k n (Em - Ek)(Em - En)

H{mH':m ] 1 \H{,;.!2 }
- (Em - Ek)2 Uk - ~ (Em - Ek)2 Um

It follows from Eqs. (25.8) and (25.12) that the calculation of W to a
given order in H' requires knowledge of if; only to the next lower order.

Perturbation of an Oscillator. As a simple example of the application
of the first- and second-order perturbation theory to a nondegenerate
state, we consider the perturbation of the mth energy level of the linear

1 See also S. T . Epstein, Am. J. Phys., 22, 613 (1954).
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n=m
n = m - 2
otherwise

harmonic oscillator of Sec. 13 by an additional energy H' = jbx2• The
unperturbed Hamiltonian is H o = p2/2JL + jKx2 (the mass is denoted by
JL to avoid confusion with the quantum number m); the unperturbed
eigenfunctions um(x) given by Eq. (13.13) correspond to the eigenvalues
Em = (m + j)h(K/ JL)i, where m = 0, 1, 2, . . .. This example is
evidently a trivial one since the perturbed eigenfunctions and eigenvalues
are given simply by replacing K by K + bin um(x) and Em; it is neverthe­
less instructive.

We require the matrix elements of x 2 between various pairs of har­
monic-oscillator wave functions. These may be obtained with the help
of the generating function (13.10) for the Hermite polynomials, as in
Prob. 3 of Chap. IV, or more simply by matrix multiplication using the
definition (21.3) and the expressions for Xnm given in Eq. (13.18) . We
readily obtain

l
(2a2)-1[(m + l)(m + 2)]i, n = m + 2

2 _ \' _ (2a2)-1(2m + 1),
(x )nm - f XnkXkm - (2a2)-1[m(m _ 1)]i, (25.15)

0,

where a = (JLK/h 2)i . Substitution into the first of Eqs. (25.14) then
gives for the energy to second order

1 (K)i [ b b2
]W = (m +1f)h - 1 +- --JL 2K 8K2

in agreement with the expansion of (m + j)h[(K + b)/JL]i to second order
in b.

Degenerate Case. We now show that the foregoing treatment is
incomplete when the unperturbed state m is degenerate. We suppose
first that there is a state k that is degenerate with and orthogonal to the
state m (Ek = Em, fUkUmdr = 0). Then Eq. (25.7) tells us that H{m = O.
Thus the first-order perturbation theory developed above is satisfactory
only if Hk'm actually is zero.

If now H{m = 0 and we suppose in addition that HIk = H"!m, Eq.
(25.11) tells us that

In this case the degeneracy between the states k and m is not removed in
first order, since the first-order perturbed energies for the two states
(Ek + HIk and Em + Hm'm) are equal. Then the second-order perturba­
tion theory developed above is satisfactory in general only if there exist
no states n that connect the states k and m through the perturbation;
i.e., only if either or both of H{nand H:mare zero for all n.
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We can summarize the situation by saying that the foregoing pertur­
bation theory fails in first order if there is degeneracy of the unperturbed
state in zero order and the perturbation energy H' connects the degenerate
states in first order. Similarly, the theory fails in second order if there is
degeneracy of the unperturbed state in first order and the perturbation
energy connects the degenerate states in second order (through one or
more other states).

Removal of Degeneracy in First Order. Let us suppose that the
perturbation removes the degeneracy of the unperturbed state m in some
order. This means that there are at least two exact eigenfunctions of the
Hamiltonian H = H0 + XH' that have eigenvalues that are different
when X~ 0 and become equal when A is made to vanish. Now we
assumed earlier that the eigenfunctions are continuous analytic functions
of X as X--t OJ thus each of the eigenfunctions that are nondegenerate
when X~ 0, approaches a definite linear combination of the degenerate
unperturbed eigenfunctions when A = O. If these linear combinations
are not the same as the unperturbed eigenfunctions on which the calcula­
tion is based, the expansions (25.2) are not valid for A = 0, and the
method developed above breaks down.

It now becomes clear that we may treat degenerate unperturbed
states by perturbation theory, if we first perform an exact diagonalization
of as much of the perturbation matrix H~l as is necessary to remove the
degeneracy. This is equivalent to finding the linear combinations of the
unperturbed eigenfunctions that fit on continuously to the exact per­
turbed eigenfunctions when Xis made different from zero. For example,
suppose that only the unperturbed state k is degenerate with m, and
H~m = H'mk ~ O. In this case we need only diagonalize the submatrix

( H'mm H'mk) (25.16)
H~m H~k

in order to remove the degeneracy (in this case it is removed in first
order) and find the correct linear combination of Um and Uk that can be
used for higher order perturbation calculations. An explicit example of
this type of situation is given below.

Removal of Degeneracy in Second Order. It may, however, happen
that H~m = 0 and H~k = H'mm, so that the degeneracy is not removed in
first order. A direct but unnecessarily complicated procedure then con­
sists in diagonalizing the submatrix of the entire Hamiltonian that
includes the rows and columns labeled by all subscripts n for which either
H'm" or H~n is different from zero. Rows and columns of this matrix can
be rearranged to bring together any ones that are desired. For example,
when there are two such subscripts nand l, we can diagonalize
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(25.17)

to remove the degeneracy in second order.
A less direct but analytically simpler procedure consists in expanding

the exact eigenfunctions in powers of Xas in (25.2), (25.6), and (25.10).1
Because of the degeneracy, however, we now include both Um and Uk in
the zero-order term.

Ytm = amUm+ akUk + 5'(Xal1l + X2al2l)ul

Ytk = bmum+ bkuk + 5' (XW' + X2bl2l)ul

Yt" = u" + 5(Xal.lf + X2a~()U/,
1;0<"

n ~m,k

where the prime on 5 indicates that l ~ m,k. Substitution of the first of

these into the wave equation (H o+ XH')Ytm = WmYtm , where

W m = Em + XWg' + X2W~l,

gives to second order in X

XamH'um+ XakH'uk + S'(Xa!I'E1ul + X2a!2lE1ul + X2a!llH'UI)
= (XWg> + X2W~l)(amUm + akuk)
+ 5'(Xap'Emu, + X2al2lEmui + X2ap'Wg'UI) (25.18)

We now multiply (25.18) through on the left by Um and integrate to
obtain

(25.19)

since H'".k = O. Similarly, Eq. (25.18) can be multiplied by Uk and by
u" (n ~ m,k), and integrated in each case to give

XakH~k + 5'X2ap'H~, = XWg'ak + X2W~lak

hamH~m + XakH~k + Xal!'E" + X2a<;'E" + 5'X2a!llH~1

(25.20)

The first-order terms in (25.19) and (25.20) give the expected result

1 J. H. Van Vleck, Phys . Reo., 33, 467 (1929), Sec. 4.
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The second-order terms give

5'ap'H:m = W~2)a",

5'aplH~! = W~lak
(25.22)

The first-order terms in (25.21) give an expression for a~1), where l = n ~

m,k:
(25.23)

Substitution of (25.23) into (25.22) gives a pair of homogeneous algebraic
equations for am and as, These equations have a nonvanishing solution
if and only if the determinant of the coefficients of am and ak is zero [see
the discussion of Eq. (21.19)]:

=0 (25.24)

The secular equation (25.24) is of second order in this case, while the
similar equation resulting from (25.17) is of fourth order. It is apparent
that this procedure always yields lower order secular equations than exact
diagonalization.

Equation (25.24) would also have been obtained if we had started
from the equation for Vtk rather than Vtm. The two roots of (25.24) are
Wm( 2l and Wk( 2) , and the two pairs of solutions of (25.22) are am,ak and
bm,bk • We thus obtain perturbed energy levels in which the degeneracy
has been removed in second order, and also find the correct linear combi­
nations of the unperturbed degenerate wave functions U m and Uk.

First-order Stark Effect in Hydrogen. As an example, we now con­
sider the first-order change in the energy levels of a hydrogen atom due
to an external electric field of strength Edirected along the positive z axis
(Stark effect). H« is the unperturbed Hamiltonian for a hydrogen atom,
which from (16.5) and (22.2) is

h2 e2

H o = - -V2 --2}L r

where u is the reduced mass (16.4) . H' is the extra energy of the nucleus
and electron due to the external field and is readily shown to be

H' = -eEz = -eEr cos 0 (25.25)

where the polar axis is in the direction of positive z,
The discussion of Sec. 14 showed that the wave functions for any

spherically symmetric potential energy, when expressed in spherical
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harmonics, have even parity when the azimuthal quantum number l is
even, and odd parity when l is odd. Now the perturbation (25.25) is
an odd operator, since it changes sign when the coordinates are reflected
through the origin. Thus the only matrix elements of H' that fail to
vanish are those for unperturbed states that have opposite parities; in
particular, all diagonal elements of H' for the unperturbed hydrogen­
atom wave functions given in (16.24) are zero. This shows that a non­
degenerate state, such as the ground state (n = 1) of hydrogen, has no
first-order Stark effect.

The first excited state (n = 2) of hydrogen is fourfold degenerate; the
quantum numbers land m have the values (0,0), (1,0), (1,1), (1, -1).
We now show quite generally that nonvanishing off-diagonal matrix
elements of H' exist only for states that have the same quantum number
m. It is apparent from (23.16) that z commutes with the z component of
angular momentum M. = XPII - yp." so that [Mz,H'] = O. The ks
matrix element of this commutator in a representation in which M. is
diagonal is (mk - m.)hH£. = 0, so that HI. = °unless mk = m.. Thus
only the first two of the above four degenerate unperturbed states need
be considered in calculating the first-order Stark effect of the first excited
state of hydrogen.

Perturbed Energy Levels. The perturbation submatrix that has to be
diagonalized is of the form (25.16), where H:'m = H{k = 0, and

HIm = -eE f u2lO(r)r cos 8 u200(r) dr

= - ~ ( ~ fIr' (2 - ..c) e-<,/aow2dwdr
16ao' Jo -1 ao

= 3eEao,

where w = cos 8, and use has been made of (16.24). We now wish to
transform this two-row submatrix of H' from the representation in terms
of U200 and U2l0 to a representation in which it is diagonal and has the
eigenvalues W 1 and W 2.

We follow the notation of Eqs. (22.3) and (22.5) . The wave func­
tions are Vl = U200, V2 = Uno for the nondiagonal representation, and
SllVl + S12V2, SnVl + S22V2 for the diagonal representation. Then in
accordance with the discussion of Eq. (21.19), the eigenvalues of H' are
the two roots of the determinantal or secular equation

I
H{l - Wi H{2 I I-Wi 3eEaoi = 0,

H{2 H;2 - Wi = 3eEao -WJ
i = 1,2
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These are easily found to be W1 = 3eEao, W 2 = -3eEao. The trans­
formation matrix S can be found by writing out the matrix equation

SH' = WS,
(

Wl
W=

o
together with the unitary conditions on S . The result contains arbitrary
phase factors, which may be chosen equal to zero, in which case

S~2-'C J
Thus two of the four degenerate states for n = 2 are unaffected by

the electric field to first order, and the other two form linear combinations
2-i (U 200 + U2lO) with extra energy 3eEao in the electric field, and

2- i (U200 - U210)

with extra energy -3eEao. This means that the hydrogen atom in this
unperturbed state behaves as though it has a permanent electric-dipole
moment of magnitude 3eao, which can be oriented in three different ways :
one state parallel to the external electric field, one state antiparallel to
the field, and two states with zero component along the field.

Occurrence of Permanent Electric-dipole Moments. As remarked
above, a permanent electric-dipole moment (energy change proportional
to E) can appear in hydrogen only when the unperturbed state is degen­
erate, whereas an induced electric-dipole moment (energy change propor­
tional to E2) can appear in any state (see Probs. 1 and 12). We now show
that the first conclusion is generally valid for any system that is described
by a Hamiltonian that is unaffected by reflection of the coordinates of all
particles through the origin. It follows from the discussion of Eq. (23.26)
that a nondegenerate state of such a system has definite parity (even or
odd). Then since the electric-dipole-moment operator is odd, its expec­
tation value is zero. All the interactions between particles thus far
encountered in physical theory lead to Hamiltonian functions that are
unchanged by reflection. Since the ground states of all atoms and nuclei
are very likely to be nondegenerate,' it is to be expected that an atom or a

1 Apart from degeneracy due to the orientation of the total angular momentum of
the system in space , which cannot give rise to an electric-dipole moment because all
these degenerate states have the same parity, degeneracy either is associated with some
special symmetry property of the system (such as the separability of the hydrogen­
atom wave equation in spherical and parabolic coordinates) that is unlikely to occur
for many-particle systems, or is accidental and hence very improbable on statistical
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nucleus in its ground state will not possess a permanent electric-dipole
moment, and none has ever been found experimentally. An extension of
the foregoing argument leads to the expectation that an atom or a nucleus
can possess electric charge, electric-quadrupole moment, magnetic-dipole
moment, etc., but not magnetic pole, electric-dipole moment, magnetic­
quadrupole moment, etc. (see also Prob. 21, Chap. XI).

26. THE BORN APPROXIMATION

In the preceding section we considered the perturbation of those
energy eigenvalues, and the corresponding eigenfunctions, which are
part of a discrete set . Here we are concerned with the perturbation of
one of a continuous set of eigenfunctions. As in Chap. V, such eigen­
functions are of interest in connection with the theory of collisions. The
object of the calculation is not to determine an energy eigenvalue, which
in this case can be fixed in advance, but to find the perturbed eigen­
function and its relation to the scattering cross section. To simplify
matters, we restrict our attention to those cases in which the entire
potential energy of interaction between the colliding particles is regarded
as a perturbation, and carry the calculation only to first order. As we
shall see, this Born approximation- is best applied when the kinetic
energy of the colliding particles is large in comparison with the inter­
action energy. It therefore supplements the method of partial waves
(Sec. 19), which is most useful when the bombarding energy is small.

Perturbation Approximation. We wish to solve the wave equation
for the relative motion, Eq. (18.8),

h2

- - V'2U + V(r)u = Eu
2~ , (26.1)

and obtain an asymptotic form like that given by Eq. (18.10),

h2k2

u(r,O,4»;:=:-7 eikz + r-1!(O,4»e'kr, E = 2~

We adopt the perturbation approach of Sec. 25, and put

u(r) = eikz + v(r),

(26.2)

(26.3)

grounds. In some molecules, however, there is a group of nearly degenerate states
between which matrix elements of the electric-dipole operator exist; if these energy
levels are closely spaced in comparison with either the thermal energy of the molecule
or the energy associated with the applied electric field, they give rise to a permanent
electric-dipole moment [see J. H. Van Vleck, "The Theory of Electric and Magnetic
Susceptibilities," p . 154 (footnote 28), Sees. 48,70 (Oxford, New York, 1932)].

1 M. Born, Ze·its. f. Physik, 38, 803 (1926).
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where the scattered wave v(r) is to be a small addition to the unperturbed
plane wave solution eikz. The term v(r) will be found only to first order
in the scattering potential V(r) j the Born approximation becomes quite
arduous when carried to higher orders.

Substitution of (26.3) into (26.1) gives

( - V2 - k2)v = - U(r)eikz - U(r)v, U(r) = 2~ V(r) (26.4)

Our assumption that v(r) is small in comparison with eikz, or the roughly
equivalent assumption that U(r) is small in comparison with k 2, leads us
to neglect the second term on the right side of Eq. (26.4). We therefore
have to solve the inhomogeneous wave equation

( - \72 - k2)v(r) = - U(r)eikz (26.5)

where the right side is known. A sufficient criterion for the validity of
our solution is

Iv(r)I «\eikzl = 1, for all r (26.6)

This condition, while always sufficient, is in some cases more stringent
than is necessary for the Born approximation to provide useful results.

Green's Function. Rather than discuss Eq. (26.5) as a special case,
we indicate a method of solution of the more general inhomogeneous
partial differential equation

(n - wo)v(r) = F(r) (26.7)

(26.8)

(26.9)

Here n is a Hermitian operator that defines a complete orthonormal set
of eigenfunctions u",(r) with real eigenvalues w, and F(r) is a known func­
tion of r.

nu",(r) = wu",(r)
f u""(r)u,,, (r)dr = o(w - w')
f u",(r)u",(r')dw = o(r - r')

It is assumed for definiteness that the eigenvalues w form a continuous set.
Equation (26.7) can be solved by expanding v(r) in terms of u"'.

v(r) = fA",u",(r)dw

Substitution into (26.7) gives

fA",(w - wo)u",(r)dw = F(r)

If we multiply this equation by u",,(r) and integrate over r, we obtain

A"" = fu",,~r)F(r)dr
w - Wo



(26.11)

(26.10)

G ( ') - f u",(r)u.,(r') d
"'. r,r - ww - Wo

where the function
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Thus the solution of (26.7) can be written

v(r) = fG",.(r,r')F(r')dT'

(26.12)

is called the Green's function for the operator Q and the number wo. l

Green's Function for a Free Particle. The Green's function (26.11)
can be evaluated without great difficulty when the operator Q is the
Hamiltonian for a free particle. A suitably normalized eigenfunction of
- V'2 corresponding to the eigenvalue k'? is from (11.11)

uk,(r) = (27r)-1 exp ik' . r

where k' is any vector of magnitude k', Thus the Green's function is

G ( r') = (27r)-3 f exp (t'k' . r) exp (-t'k' . r') d '
k r, lr'2 _ lr2 Tk

We perform the k' integration in spherical polar coordinates with the
polar axis in the direction of the vector ~ == r - t',

100 f T 12r
ik ' p coo 8= (2'11'-)-3 ~ lr'2dlr' sin (Jd(Jdf/>

o 0 0 k 2 - lr2

= (27r2 )-1 r 00 sin lr'p 7.'dk'
P ) 0 k'? - lr2 /I /I

= (41l"2p)- 1! 00 ~ ~n K
2

d«
_ooK (j

(26.13)

where a == lrp = lrlr - r'l is a positive number.
The singularities in the integrand of (26.13) at K = ±ucan be dis­

cussed in terms of the corresponding singularity of the expansion coeffi­
cient A", in (26.9) at w = woo The behavior of A", at w = Wo cannot be
found from Eq. (26.7) alone, since to any solution vCr) of the inhomo­
geneous equation can be added a solution u",.(r) of the corresponding
homogeneous equation. The addition that is to be made can be deter­
mined only from the boundary conditions that are imposed on vCr). In
similar fashion, the contribution to the integral in (26.13) from the infini­
tesimal neighborhood of the points K = ±ucan be determined only from
comparison of Eqs. (26.3) and (26.2), which shows that we want only
those solutions v(r) that have the asymptotic form r- 1f «(J, f/» eik r• From
the relation (26.10) between v(r) and Gk(r,r'), we see that we must evalu­
ate the integral in (26.13) so that it approaches ei v when a is large.

1 For a fuller discussion of Green's functions, see P. M. Morse and H. Feshbach,
"Methods of Theoretical Physics, " Chap . 7 (McGraw-Hill, New York, 1953).
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1 wr'[r - r'l-l~- +-2
T--+" r r

u(r) = eik • - (41r)-lflr - r'l-l eiklf-r'leih'U(r')dr' (26.16)

The second term in (26.16) has the form of a superposition of waves
scattered from all points r' with amplitudes proportional to the product
of the incident wave amplitude and the scattering potential at those
points.

We assume that U(r') falls off rapidly enough for large r' so that there
is an asymptotic region in which r is large in comparison with those values
of r' for which there is a significant contribution to the integrand. We
can then put

[r - r'l~r - wr',
T--+ ,.

where w is the cosine of the angle between the vectors rand t', Thus the
asymptotic form of (26.16) is

u(r)~ eikz - (41rT)-leikrfU(r')eik(z'-tor'Jdr' (26.17)
r--+ ,.

Comparison of (26.2) and (26.17) shows that the scattered amplitude
is

f(O,cf1) = _(41r)-lfU(r')eik(z'-tor'Jdr'
= -(47r)-lfU(r') exp £K· r'dr' (26.18)

k o
FIG. 22. Relation between the propa­
gation vectors ko for the incident par­
ticle, k for the scattered particle. and
the angle of scattering O. The momen­
tum transfer in the collision is hK.
which has the magnitude 2hk sin 10.

Here we define a vector K = ko - k, where k o is the vector of magnitude
k that has the direction of the incident beam (polar axis), and k is the
vector of magnitude k that has the
direction of the polar angles (O,cf1) of
the point at which the scattered ampli­
tude is measured. Figure 22 shows
these three vectors; the magnitude of
K is evidently 2k sin iO. Its physical
significance is that hK is the momentum
transferred from the incident particle
to the scattering potential during the
collision. Thus if a Fourier integral
analysis of the scattering potential into
harmonic space waves is made, it is
apparent from the second integral in (26.18) that the scattered amplitude
in a particular direction is proportional to the Fourier component of the
scattering potential that corresponds to the momentum change of the
particle during the collision.

The differential scattering cross section is given by Eq. (18.11):

(26.19)
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In the event that U(r) = U(r) is spherically symmetric, the integrals
over the polar angles of r' in (26.18) can be evaluated by taking the direc­
tion of K as the polar axis. Then

f(O) = <K:» fa" r' sin Kr' U(r')dr' (26.20)

As expected, the scattered amplitude is independent of the angle t/>. It
is interesting to note from (26.19) and (26.20) that the amount of scatter­
ing depends on the bombarding speed v and the scattering angle 0 only
through the combination K 0:: v sin iO. .

Perturbation Treatment of Partial Waves. When U(r) is spherically
symmetric, the wave equation (26.1) can be separated in spherical coordi­
nates, as was done in Sec. 19, and solved approximately by a perturbation
method. The radial wave equation for the lth partial wave is

~ ~ (r2 dR') + [k2 _ l(l + f) _ u(r)] RI = 0 (26.21)
r2dr dr r2

As with Eq. (26.3), we put RI(r) = jl(kr) + xl(r) , where jl(kr) given by
Eq. (15.5) is the unperturbed solution. The approximate equation for
XI is found from (26.21) to be

~ ~ (r2 dXI) + [k2 _ l(l + 1)] XI = U(r)jl(kr) (26.22)
r2dr dr r2

where a term U(rhl(r) has been neglected.
Like Eq. (26.5), Eq. (26.22) is an inhomogeneous differential equa­

tion of which the right side is known . The solution can be expressed in
terms of a Green's function G(r,r'), in analogy with Eq. (26.10) :

xl(r) = fa" G(r,r') U(r')jl(kr')r'2dr' (26.23)

The requirements on G(r,r') are that it be regular at r = 0, so that xl(r)
will be regular there, and that it satisfy the equation

~ ~ [r/dG(r,r')] + [k2 _ l(l + 1)] G(r r') = oCr - r') (26.24)
r2dr dr r2' r'2

Substitution of (26.23) into (26.22) then shows that the latter is satisfied.
In dealing with a total differential equation like (26.24), it is often

less convenient to use the general form (26.11), which worked well in the
three-dimensional case, than it is to proceed in the following way : We
note that G(r,r') is a solution of the free-particle radial equation [right
side of (26.24) equal to zero] except at the point r = r', If then G(r,r')
is a particular free-particle solution for r < r' and another free-particle
solution for r > r', this requirement has been met. If in addition the
two solutions have the same value but different slopes at r = r' , then
the derivative of the discontinuous slope that arises from the left side of
(26.24) will give a multiple of a 0 function at r = r' , Since G(r,r') must
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be regular at r = 0, the solution for r < r' is taken to be jz(kr). It can
be shown in this way that the form of the Green's function is

G(r,r/) = kjz(krdnz(kr» (26.25)

where r< is the lesser of rand r' , and r> is the greater of rand r' , It is
apparent that this function is regular at r = 0 and satisfies Eq. (26.24)
except perhaps at r = r', In order to investigate the point r = r', we
substitute (26.25) into (26.24) and integrate both sides of the equation
with respect to r over an infinitesimal region that contains the point r',
The right side is then 1/r'2, and the second term on the left side vanishes
in the infinitesimal limit. The first term on the left side is

1· fT' -l-e 1 d [ 2dG(r,r') ] d _ 1 l' [2 dG(r,r/)] IT' -l-e1m - - r r - - lffi r
......0 T'-. r2dr dr r/2 ......0 dr T'-.

= k2[jz(kr')nf(kr') - j;(kr')nz(kr')]

From the last of Eqs. (15.9), the square bracket on the right side is equal
to (kr')-2 . It follows then that G(r,r') defined by (26.25) is actually the
required Green's function.

Phase Shifts. Substitution of (26.25) into (26.23) gives

xz(r) = k fa" jz(kr dnz(kr» U(r ')jz(kr')r'2dr'

_ knz(kr) i : j~ (kr') U(r')r' 2dr' (26.26)
r-+ .. Jo

N ow the phase shift Oz is defined in terms of the asymptotic form of Rz(r)
by Eq. (19.7)

Rz(r) - constant [jz(kr) - tan oznz(kr)]
r-+ ..

Comparison with the asymptotic form of Rz(r) 1'.1 jz(kr) + xz(r), obtained
from (26.26), shows that

tan s, ::: - k fa" jf(kr') U(r')r' 2dr' (26.27)

Equation (26.27) is the perturbation or Born approximation expression
for the phase shifts. If all these oz are small, they can be substituted into
Eq. (19.11) for f(O) with the approximation e2i61 - 1 "-J 2ioz, in which case

..
f(O) ::: k- l 2: (2l + l)ozPz(cos 8)

1=0 ..
::: - fo" r2U(r) [ 2: (2l + l)jHkr)Pz(cos 0)] dr (26.28)

I~O

The summation in brackets can be shown! to be equal to sin KrfKr,
where K = 2k sin iO, so that (26.28) is equal to the Born approximation
amplitude (26.20), as expected.

1 G. N. Watson, "Theory of Bessel Functions," 2d ed., p.366 (Macmillan, New
York, 194,'».
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The foregoing perturbation treatment of partial waves is of practical
interest since it has been found in some cases that substitution of the
approximate phase shifts (26.27) into the exact expression (19.11) for
the scattered amplitude results in an improvement on the Born approxi­
mation amplitude (26.20) when the Oz are not all small in comparison with
unity. In general, it is much easier to evaluate the integral in (26.27)
than to find the phase shift exactly from a solution of the radial wave

1.0

2 3
x

4 5 6 7

1.0

0.8

0.6

18r(y)

0.4

0.2

~
I\.

"I\.

'\
~

I'....
r--t---

(6)

2 3
y

4 5 6 7

FIG. 23. (a) Angle distribution function for scattering by a square-well potential, as given
by Eq. (26.29) ; (b) total cross section function given by Eq, (26.30) .

equation. Also, the Born approximation amplitude (26.20) can be used
as a device for summing the partial wave series for large l where the 01 are
small; changes can then be made in the low terms of the series.

Scattering by a Square Well Potential. As a first example of the
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application of the Born approximation result (26.20), we consider the
scattering by a square well potential: V(r) = - Va, r < a, V(r) = 0,
r > a. Substitution into (26.20) gives

() 2J.lVa ( .f 8 = h2K3 sin Ka - Ka cos Ka), K = 2k sin -!8

Thus the differential scattering cross section is

(
2J.l Voa3)2 .(]'(8) = -h-2- g(2ka sm -!8),

( ) _ (sin x - x cos x) 2
g X = x 6 (26.29)

(26.30)

The function g(x) jg(O) = 9g(x) is plotted in Fig . 23a. At high energies
(ka» 1), the scattering shows a strong maximum in the forward direc­
tion so that most of the scattered particles are in a cone whose angular
opening is of order 1jka.

The total cross section is most easily evaluated by changing the
variable of integration from 8 to x = Ka = 2ka sin -!8, in which case
sin 8d8 is replaced by xdx j(ka)2. Equation (26.29) then gives

(
2J.l Voa3)2 27r r-

a = -h-2- (ka)2 ) 0 g(x)xdx

= 327r~4V5a6 'Y(2ka)

( ) = 1- /11 (sin x - x cos X)2 d
'Yy - 2 5 X

Y 0 x

= _1_(1 _! + sin 2y _ sin 2 y)
4y2 y2 y3 y4

Since 1'(0) = -fFJ and 'Y(Y) approaches 1j4y2 as y becomes large, the total
cross section is 167rJ.l2V5a6/9h4 in the limit ka « 1and becomes

when the bombarding energy E measured in the center-of-mass system is
large. The function 'Y(y)h(O) = 18'Y(Y) is plotted in Fig. 23b.

Validity of the Born Approximation. A convenient criterion for the
validity of the Born approximation as applied to the foregoing problem
can be set up by using Eq. (26.6) and assuming that v(r) is largest at the
center of the scattering potential. This condition is probably sufficient, I

but may be more stringent than is actually required ;for example, the small­
angle scattering (small momentum transfer) may be given correctly
when the large-angle scattering is not. From (26.16), our criterion is that



170 QUANTUM MECHANICS (CHAP. VU

Iv(O)\ = :2Il'" f~l eikT(l~lV(r)rdrdWI

= L I I " (e2ikT - 1)V(r)drl
h2k Jo

= ,uVo le2ika - 2ika - 11
2h 2k2

= ~~;2 (y2 - 2y sin y + 2 - 2 cos y)l «1, y == 2ka (26.31)

In the low-energy limit (ka« 1), (26.31) becomes ,uVoa2/h2« 1,
while in the high-energy limit (ka» 1) it becomes

where v is the speed of the incident particle. If the square well potential
is about "strong" enough to bind a particle (as shown in Sec. 15, this
requires that ,uVoa2/h2 ~ 1), the Born approximation may therefore be
used for the computation of the scattering only when ka» 1. Thus the
Born approximation supplements the method of partial waves (Sec. 19),
which is most useful when ka is less than or of order unity.

The qualitative features of the results obtained here and above for a
square well potential apply to any potential that possesses a well-defined
range.

Scattering by a Screened Coulomb Field. As a second example of the
application of the Born approximation, we consider the elastic scattering
of an electron by a neutral atom that is represented by a simple form

_ T

of screened Coulomb potential: V(r) = - (Ze 2/r)e -;>. This potential
energy behaves like the nuclear Coulomb potential for atomic number Z
when r is small, and falls off rapidly when r is large in comparison with the
" radius" a of the atomic electron cloud that screens the nucleus. The
Thomas-Fermi statistical theory of the atom (see Sec. 38) shows that for
moderately heavy atoms, a is roughly equal to h2/me2Zl, where m is the
electron mass .1

Substitution of this potential into (26.20) gives

2mZe2 r"' . -': 2mZe2 .
f(8) = h2K Jo sm Kr e »dr = h2(K2 + a-2)' K = 2k sin in (26.32)

1 For a discussion of the scattering by a Thomas-Fermi atom, see N. F. Mott and
H. S. W. Massey, "The Theory of Atomic Collisions," 2d ed., Chap . IX, Sec. 4.1
(Oxford, New York , 1949).
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This gives a cross section in agreement with the Rutherford result (20.11)
when the momentum transfer is large enough so that II a2 can be neglected
in comparison with K2 in the denominator; in the analogous classical
situation, the particle passes close to the nucleus, so that the screening
electrons are relatively ineffective. Equation (26.32), unlike the Ruther­
ford result, yields a finite cross section at vanishingly small angles; the
analogous classical particles pass far from the nucleus and are well
screened from it by the atomic electrons. The total cross section is

i" 27rKdK 1611"1n2Z2e4a 4

U = Jo 111 2
k 2 = h4(4k 2a 2 + 1)

With the above Thomas-Fermi expression for a, this becomes 4'TrZf lk2

at high energies (ka» 1), which agrees in order of magnitude with the
result of a numerical integration! of the scattering produced by the
Thomas-Fermi potential.

The criterion (26.31) for the validity of the Born approximation
becomes

2mZe2 If 00. iz - -k
Z

dx! // 1-- SIn x e a - "
h2k 0 X

where x replaces kr as the variable of integration. For ka «1, this
becomes 2mZe2al h2 « 1, which with the above approximate expression
for a is equivalent to Z! « 1; thus the Born approximation cannot be
used for the scattering of slow electrons by atoms. For ka» 1, the
criterion becomes (Ze 2 j hv) In ka «1. Since it turns out that this result
is substantially unaffected by relativity theory the approximation
becomes poor for the heavier elements, where

Ze 2 Z
he = 137

becomes comparable with unity.
It is interesting to note the close correspondence between the various

results for the square well potential and for the screened Coulomb field
when a is chosen the same in the two cases and Vo <=::> Z e2I a.

27. THE VARIATION METHOD

The variation method was first used for the approximate determina­
tion of the lowest or ground-state energy level of a system and within the
last several years has been applied to collision problems. In the energy­
level case, which we consider first , it can be used when there is no closely
related problem that is capable of exact solution, so that the perturbation

1 E. C. Bullard and H. S. W. Massey, Proc, Camb. Phil. Soc., 26, 556 (1930).
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method is inapplicable. The variation method can also be applied to
systems that are described by a nonseparable Schrodinger equation, in
which case numerical solutions are extremely arduous and the WKB
method (Sec. 28) cannot be used . The application to collision theory is
taken up in the latter part of this section .

Expectation Value of the Energy. It was shown in Sec. 10 that if an
arbitrary normalized function if; is expanded in energy eigenfunctions

if; = LAEuE, where HUE = EUE (27.1)
E

and the UE form a complete orthonormal set, then the expectation value of
H for the function if; is given by

(H) = f 1f;Hif;dr = LEIA EI2

E

(27.2)

(27.3)

where the integration is extended over the entire range of all the coordi­
nates of the system. It is assumed for convenience in Eqs. (27.1) and
(27.2) that the energy eigenvalues are all discrete; this can be accom­
plished by enclosing the system in a box (Sec. 10), or else the summation
can be replaced by the symbol S (Sec. 22).

A useful inequality can be derived from Eq. (27.2) by replacing each
eigenvalue E in the summation on the right side by the lowest eigenvalue
Eo:

(H) ~ LEoIAE I2 = Eo LIA E j2
E E

Since LIAE I2 = 1 for a normalized function if;, as was shown in Sec. 10,
E

(27.3) yields the inequality
(27.4)

(27.5)

In the event that if; is not normalized, (27.4) evidently can be rewritten as

< f1f;Hif;dr
Eo = JIif;1 2dr

The variation method 1 consists in evaluating the integrals on the
right side of (27.4) or (27.5) with a trial funct ion if; that depends on a
number of parameters, and varying these parameters until the expecta­
tion value of the energy is a minimum. The result is an upper limit for
the ground-state energy of the system, which is likely to be close if the

1 The method was originally applied by Lord Rayleigh in 1873 to the computa­
tion of the vibration frequencies of mechanical systems-"Theory of Sound," 2d rev .
ed., vol. 1, Sec. 88 (Macmillan, London, 1937; reprinted by Dover, New York). See
also Morse and Feshbach, op. cit., Sec. 9.4.
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form of the trial function resembles that of the eigenfunction (see Prob. 9).
Thus it is important to make use of any available information or physical
intuition in choosing the trial function .'

Application to Excited States. The variation method can also be
used to obtain an upper limit for one of the higher energy levels if the
trial function is orthogonal to the eigenfunctions of all the lower states.
Suppose that the energy levels are arranged in an ascending series :
Eo, E l, E 2, • . .. Then if y; is orthogonal to UE, for i = 0, 1, .. . , n,
it is easily seen from (27.1) that the corresponding expansion coefficients
A E i are all zero. An inequality can be derived from (27.2) by replacing
each eigenvalue E in the summation on the right by En+l, with the
result that the expectation value of the energy is an upper limit on this
eigenvalue.

The trial function y; - UE.JuE.Y;dr is evidently orthogonal to UE., so
that if the lowest eigenfun ction is known either from an exact solution or
to a sufficiently good approximation from a variation calculation, an
upper limit for the energy of the first excited state can be computed.
Trial functions that are orthogonal to any number of known eigenfunc­
tions are easily found in this way .

It is sometimes possible to divide the energy eigenfunctions into
groups such that any member of one group is orthogonal to any member
of any other group. Suppose that there is a Hermitian operator F that
commutes with H (FH - HF = 0) ; then from a theorem of Sec. 21, F
and H can be diagonalized simultaneously and have common eigenfunc­
tions . Now any two eigenfun ctions of F that correspond to different
eigenvalues are orthogonal to each other. 2 Thus a trial function that is
constructed entirely from eigenfunctions of F that correspond to a given
eigenvalue is orthogonal to all other eigenfunctions that correspond to
different eigenvalues of F, and will provide an upper limit for the lowest
energy eigenvalue that is associated with this eigenvalue of F. The fore­
going results are useful when the operator F is one whose eigenfunctions
are easily recognizable by some simple property, such as, for example, the
symmetry in case F is the angular momentum or the parity. Then a
trial function with angular dependence corresponding to a particular
angular momentum, or with a particular parity, can easily be written
down, and gives an upper limit for the lowest energy level that has this
angular momentum or parity.

1 For an extension of this method that gives both upper and lower limits, see
T. Kato, Jour . Phys . Soc. Japan, 4, 334 tI949) , and G. Temple, Proc. Roy . Soc.
(London), A211, 204 (1952).

Z This is shown explicitly in Eq. (10.4) for the energy operator, and the proof given
there is easily extended to any Hermitian operator.
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Ground State of Helium. As a first example, we use the variation
method with a simple trial function to obtain an upper limit for the energy
of the ground state of the helium atom. The helium atom consists of a
nucleus of charge +2e surrounded by two electrons; from Eq. (16.1)
we find that its Hamiltonian is (neglecting the motion of the nucleus)

~ (1 1) ~H = - - (Vi + VD - 2e2
- + - +-

2m TI T2 T12
(27.6)

where rl and r2 are the position vectors of the two electrons with respect
to the nucleus as origin, and r12 = Irl - r21 is the distance between the
two electrons.

If the interaction energy e2/r12 between the two electrons were not
present, the ground-state eigenfunction of H would be the product of
two normalized hydrogenic wave functions uIOO(rl)ulOO(r2) given in Eq.
(16.24):

(27.7)

with Z = 2. We shall use (27.7) as a trial function, and permit Z to be
the variation parameter so that it is not necessarily equal to 2.

It follows from Prob. 13, Chap. IV, that the expectation values of the
kinetic and potential energies for the ground state of a hydrogen atom are
e2/2ao and -e2/ao, respectively; the corresponding hydrogen wave func-

r

tion is (7T'ag)-!e-;;;;. The expectation value of either of the kinetic energy
operators in (27.6) for the function (27.7) is obtained most easily by not­
ing that operation with the Laplacian gives a result that is inversely
proportional to the square of the length scale of the wave function; since
the scale of (27.7) is smaller than that of the hydrogen wave function by a
factor of Z, the expectation value of each of the kinetic energy operators
is e2Z2/2ao. Similarly, the factors l /r make the expectation values of the
nuclear potential energy operators inversely proportional to the length
scale; there is also an additional factor 2 from the nuclear charge, so that
each one is -2e2Z/ao.

Electron Interaction Energy. The expectation value of the inter­
action energy between the electrons is

(27.8)
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This integral is most easily evaluated by regarding it as the mutual elec­
trostatic energy of two overlapping, spherically symmetric, charge dis­
tributions, in which case simplifications from the theory of electrostatics
can be introduced.

A more general way of performing the integration, which can also be
used for wave functions that are not spherically symmetric, consists in
expanding l /T12 in spherical harmonics.

'"
1 1 L(T2)Z- = - - Pz(cos 0),

T12 Tl Tl
z=o
'"

= .!6(~)Z Pz(cos 0),
T2 T2

Z=

(27.9)

where 8 is the angle between r1 and r2, cos 0 = cos 01 cos O2 + sin 01 •

sin O2 cos (4)1 - 4>2) , and 01, 4> 1 and O2, 4>2 are the polar angles of the vectors
r1 and r21 respectively.' It can be shown! that
P, (cos 0) = P, (cos (1)P,(cos (2)

(27.10)

When (27.9) and (27.10) are substituted into (27.8) and use is made
of the orthogonality of the spherical harmonics, the integration over the
polar angles of r1 causes all terms to vanish except that for which land
m are zero. The integral on the right side of (27.8) becomes

f ec [f rl 1 2Z 1'" 1 2Z ](4 ) 2 - - (T1+T2) 2d + -- (T1+r ,) 2d 2d
7r - e ao T2 T2 - e a. T2 T2 T1 Tl

o 0 Tl rl T2

which can be evaluated as 57r2ag/ 8Z 5• Thus the electron interaction
energy has the expectation value 5e2Z/8ao.

Variation of the Parameter Z. We now have the result that the
expectation value of the Hamiltonian (27.6) for the trial function (27.7)
is

(H) = e
2Z2

_ 4e
2Z + 5e

2Z = e
2

(Z2 _ ¥-Z)
ao ao 8ao ao

1 Equations (27.9) follow at once from the generating fun ction (14.10) for the
Legendre polynomials ; the expression for cos 8 is simply obtained from the scalar
product of the vectors r, and rz in rectangular coordinates.

2 E. T . Whittaker and G. N. Watson, "A Course of Modern Analysis," 4th ed.,
p. 328 (Cambridge, London, 1935).
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Differentiation with respe ct to Z shows that this is a minimum when
Z = H = 1.69. Thus the lowest upper limit for the ground-state energy
of the helium atom obtainable with this trial function is

e2 e2

_(H)2 - = -2.85-
ao ao

The experimental value for the energy required to just remove both
electrons from a helium atom is 2.904e 2l ao, so that our limit is about 1.9
per cent high . The most careful variation calculation of the ground-state
energy of helium gives a result in excellent agreement with experiment,1

and provides an important verification of the theory of quantum
mechanics.

The result that hydrogenic wave functions give the best energy value
when Z = H rather than 2 indicates that each electron screens the

/'
L- Dox:>
A~---------R~--------~B

FIG. 24. Two hydrogen atoms, with nuclei at A and B separated by a distance R, have
electrons at L ..nd 2 ; their interaction is given by H' in Eq. (27.11).

nucleus from the other electron, the effective nuclear charge being reduced
by -t-r> of an electronic charge.

If the electron interaction term e2lr12 is regarded as a perturbation,
the first-order perturbation energy is given by (H ) with Z = 2 and is
-2.75e2Iao, which is 5.3 per cent above the experimental value. It
is apparent that, in general, the first-order perturbation calculation is
equivalent to a nonoptimal variation calculation.

van der Waals Interaction. As our second example of the application
of the variation method, we calculate the van der Waals (long-range)
interaction between two hydrogen atoms in their ground states. It is
convenient to consider this problem first by means of the perturbation
theory, since it is then easier to see that the leading term in the energy at
great separation distances varies inversely as the sixth power of this
distance. Also, it turns out that the perturbation theory and the varia­
tion method provide opposite limits for the coefficient of this term.

1 E. A. Hylleraas, Zeit». f . Physik, 66, 209 (1930). J . Sucher and H. M. Foley,
Phys. Rev., 96, 966 (1954), discuss a number of corrections and give references to more
recent work.
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We assume that the nuclei of the two hydrogen atoms, A and B, are
fixed in space a distance R apart, and that the z axis is chosen parallel to
the line through A and B. Then if rl is the vector displacement of elec­
tron 1 from nucleus A and r2 is the vector displacement of electron 2 from
nucleus B (see Fig. 24), the Hamiltonian for the two electrons can be
written

H = Ho+H'
h2 e2 e2

H 0 = - - (Vi + VD - - - -
2m Tl T2

e2 e2 e2 e2

H ' =- + - - - - -R T12 TiB Tu

(27.11)

The unperturbed Hamiltonian H 0 has the solution

uO(rl,r2) = ulOO(rl)ulOO(r2)

for two noninteracting hydrogen atoms in their ground states. We
regard the interaction terms H' as a perturbation; this is equivalent to
assuming that R » ao.

Since we are interested in the leading term in the interaction energy
when R is large, we expand H' in powers of l /R and keep the lowest
terms.

The last term is the interaction energy of two electric dipoles that cor­
respond to the instantaneous configurations of the two atoms.!

It is apparent at once that the expectation value of the leading term
in H' for the state uO(rl,r2) is zero, since uo is an even function of rl and
r2 and H' is an odd function of rl and r2 separately. It can also be shown
that all the neglected higher terms in H' have zero expectation value for
uo, since these terms can be expressed as spherical harmonics of order
different from zero. Thus the leading term in the interaction energy is
the second-order perturbation of the dipole-dipole term, which is pro­
portional to H' 2 and hence varies like 1/R6.

1 The neglected terms in the expansion (27.12) that vary like l iRe are the dip ole­
quadrupole interaction; the 11R6 terms are the quadrupole-quadrupole interaction.
etc .
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Perturbation Calculation. From Eq. (25.12), the second-order
change in the energy of the two hydrogen atoms is

(27.13)

where the index n refers to all states of the pair of unperturbed hydrogen
atoms (including dissociated states), and the ground state Uo is excluded
from the summation and integration that is denoted by 5'. It is appar­
ent that W(R) is negative, since Eo < En and the numerator of each term
in (27.13) is positive. We thus conclude that the interaction is attractive
and proportional to 1/R6, when R is large; both these conclusions can be
shown to be valid for any pair of atoms that are in nondegenerate,
spherically symmetric ground states.

We can obtain an upper limit on the positive quantity - W(R) by
replacing each En in (27.13) by the energy En* of the lowest excited state
of the two hydrogen atoms for which H'On* is different from zero. Then
the denominator can be taken outside of the summation, which can be
evaluated as a matrix product

5' IH ' 12 - 5'H' H' - 5H' H' H'2 - (H'2) H'2On - On nO - On nO - 00 - 00 - 00

Since we have seen that H~o = 0, we have that

_ W(R)::;; (H'2)00
- E n* - Eo

(27.14)

The state n* is that in which both atoms are excited to states of princi­
pal quantum number 2, so that Eo = -2(e2/2ao), E n* = -2(e2 j8ao),
and E n* - Eo = 3e2/4ao. From (27.12) we have

... ) (27.15)

The expectation value of the cross-product terms like XIX2YlY2 is zero
since these terms are odd functions of one of the cartesian components of
rl or r2. The first three terms in the parenthesis of (27.15) are each the
product of two identical factors that are equal to

..
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so that (H'2)00 = 6e4a3jR6. Substitution into (27.14) gives

8 2 6
W(R) ~ _ ~~o (27.16)

Variation Calculation. An upper limit on W(R) can always be
obtained by the variation method. It is apparent, however, that some
judgment must be used in the choice of the trial function t/;; thus if t/;
does not depend on R, the dependence of the expectation value of the
energy on R will be like that of H', that is, 1/R3. An upper limit with
this R dependence is of no value to us, since what we really want to
determine is a limit on the coefficient of the 1/R6 interaction. A useful
choice for t/; will be one in which there is a term proportional to H', since
there will then be terms in the expectation value that are proportional to
H'2 and hence vary like 1/R6 .

We choose for the trial function

where A is to be the variation parameter. Since this t/; is not normalized,
we use (27.5) rather than (27.4) and obtain

E + W(R) < ffuo(l + AH')(Ho+ H')uo(1 + AH')dT1dT2 (27.17)
o = ffuH1 + AH')2dT 1dT2

where again Uo is the product of the ground-state hydrogen wave func­
tions, and A is assumed to be real. The right side of (27.17) can be
written

Eo + 2A(H'2)00 + A2(H'HoH')00
1 + A 2(H'2)00

since Uo is a normalized eigenfunction of H 0 with the eigenvalue

(27.18)

and H~o = (H'3)00 = O. It is easily seen that (H'HoH')oo is a sum of
squares of factors of the form fU100(r) x H ox ulOo(r)dT; this can be shown
by direct computation to be zero.

Since we are interested only in terms of order H'2, we expand the
denominator of (27.18):

[Eo + 2A (H'2)oo][1 + A 2(H'2)00]-1 ~ Eo + (H'2)oO(2A - EoA 2) (27.19)

If we remember that Eo is negative, we find that (27.19) has a minimum
with respect to variation of A when A = l /Eo, in which case (27.17)
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(27.20)Eo + W(R) ~ Eo + (H~?oo = Eo _ 6~~g

Thus in (27.16) and (27.20) we have both upper and lower limits on the
interaction energy

8 2 5 625
_ e ao < W(R) < _ e ao

R6 = = R6

More careful variation calculations have shown that the numerical coeffi­
cient in W(R) is very nearly 6.50.1

Integral Equation for Collision Problem. The remainder of this sec­
tion deals with the application of the variation method to collision theory.
It is assumed that the scattering potential is spherically symmetric, so
that a separation into partial waves can be made as in Sec. 19.2 The
differential cross section can be calculated from Eq. (19.12) once the phase
shifts 01 are known. These are defined by Eq. (19.7) in terms of the
asymptotic form of the radial wave function

Rl(r) = jl(kr) + Xl(r) -~ jl(kr) - tan olnl(kr)
r---+ 00

(27.21)

Substitution int o the radial wave equation (26.21) shows that Xl satisfies
the equation

(27.22)

exactly, unlike Eq. (26.22), which is only satisfied approximately for a
potential that can be treated as a perturbation. The solution in terms
of a Green's function can still be used, however. In analogy with Eq.
(26.23), Xl is given by

xl(r) = fa 00 G(r,r') U(r') Rl(r')r'2dr' (27.23)

where G(r,r') is defined by Eq. (26.25).

1 See L. Pauling and E . B. Wilson, Jr., "Introduction to Quantum Mechanics,"
Sec. 47a (McGraw-Hill, New York, 1935).

2 L. Hulthen, Dizieme Conqree des M athematiciens Scandinaves, Copenhagen, p. 201
(1946), and earlier papers cited there ; J . Schwinger, Phys. Rev., 72, 742 (1947),78,135
(1950). The present treatment is based on unpublished lectures of Schwinger (1947);
see also F . Rohrlich and J . Eisenstein, Phys. Rev., 75, 705 (1949), and J. M. Blatt and
J . D. Jackson , Phys. Rev., 76, 18 (1949). For a discussion of the unseparated case
and additional references, see E. Gerjuoy and D. S. Saxon, Phys. Rev., 94, 478 (1954).
See also Morse and Feshbach, op. cit., Sec. 9.4.
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Substitution of (27.23) into (27.21) yields an integral equation for the
radial wave function RI(r)

RI(r) = jz(kr) + fo'" G(r,r') U(r')Rz(r')r'2dr' (27.24)

This equation is completely equivalent to the differential equation (26.21)
but is more convenient to use as a starting point for a variation calcula­
tion. Comparison of the asymptotic form of (27.24) with (27.21) shows
that the phase shift is given by

tan Oz = - k fo'" jl(kr') U (r ')Rz(r')r'2dr' (27.25)

This equation is valid only if Rz(r) is so normalized as to have the asymp­
totic form indicated in (27.21). Equation (27.25) is exact. It may be
approximated by replacing RI(r) by jz(kr) in its right side, to obtain the
Born approximation expression (26.27).

Variation Principle for the Phase Shift. It seems at first that Eq.
(27.25) is not very useful, since the phase shift is expressed in terms of the
radial wave function, which cannot be known unless the phase shift is also
known. However, one might hope to improve upon the Born approx­
imation by making a better guess as to the form of Rz(r) than the simple
choice jz(kr). In cases of practical interest, there is a rather well-defined
region in which U(r) is appreciably different from zero, so it would seem
that Rz need be guessed only within this potential range. Unfortu­
nately, Eq. (27.25) is correct only if RI is properly normalized, in accord­
ance with the asymptotic form of (27.21), so that in actuality R, must be
known asymptotically as well as within the potential. Further, (27.25)
does not possess the stationary property of the right side of (27.4) or
(27.5); these have minimum values for the correct eigenfunction, so that
a first-order error in the trial function produces only a second-order error
in the energy eigenvalue (see Prob. 9).

It would be desirable, then, to rewrite Eq. (27.25) so that it retains
the property that R I need be known only within the potential, but in such
a way that the normalization of R, is unimportant and that tan Oz is
stationary with respect to variations of R I • The first of these three
objectives is accomplished if R, always appears in an integrand multiplied
by U(r). The second objective is accomplished if tan Oz can be made a
factor in an equation that is homogeneous in R I • The only other equa­
tion available to help in the rewriting is (27.24). If now we multiply
both sides of (27.25) by the integral on its right side, the left side is of
first degree and the right side of second degree in R z• The left side can
then be made of second degree by substituting for jl(kr) from Eq. (27.24),
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after which a homogeneous equation is obtained. The result is

tan al [10" Rl(r) U(r)r2dr

- 10" fa" RI(r) U(r)G(r,r') U(r')RI(r')r2r'2drdr']

= -k [10" jl(kr)U(r)RI(r)r2drY (27.26)

Equation (27.26) is an expression for the phase shift that requires
knowledge of R I only within the potential and in which the normalization
of R I does not enter. The stationary property can now be investigated
by making a small arbitrary variation of R I from its correct form and
seeing if the resulting first-order variation in tan al is zero. Suppose that

an arbitrary variation of RI is applied to an integral I = 10" f(r)RI(r)dr.

The variation can be built up by combining independent variations at
each point r, each of which can be represented by a Dirac a function.
This is equivalent to replacing RI(r) by RI(r) + oRI(ro)o(r - ro), and
changes I into I + f(ro)oRI(ro). Thus, dropping the subscript,

is the variation in I produced by a variation in R I at the point r .
Application of this procedure to Eq. (27.26) yields

o(tan 01) [10" Rl(r) U(r)r2dr

- 10" 10" RI(r) U(r)G(r,r') U(r')RI(r')r2r'2drdr']

+ tan 01 [2RI(r) U(r)r20RI(r)

- 2U(r)r20RI(r) fa" G(r,r') U(r')RI(r')r'2dr']

= -2kjl(kr) U(r)r20RI(r) 10" jl(kr') U(r')RI(r')r'2dr'

The second square bracket on the left side may be rewritten with the
help of (27.24) as

2j!(kr) U(r)r20RI(r)

and the right side becomes, after substitution from (27.25),

+2 tan odl(kr)U(r)r20R!(r)

These two terms cancel, so that o(tan 01) = 0, and (27.26) possesses the
stationary property.



SEc.27) APPROXIMATION METHODS FOR STATIONARY PROBLEMS i83

(27.27)

Equation (27.26) can be rewritten with substitution of a trial function
u(r) for the correct wave function Rz(r)

k cot s, ~
fa .. fa .. u(r) U(r)G(r,r') U(r')u(r')r2r'2drdr' - fa" u2(r) U(r)r 2dr

Lfo .. jz(kr) U(r) u(r) r2drr

(27.28)
k-2[fo" sin krU(r)v(r)drr

and provides a variation principle for calculation of the phase shift ~z.

While (27.27) is stationary for the correct wave function, it is in general
neither a maximum nor a minimum, so that one cannot set a limit on the
phase shift in this way.

Zero Angular Momentum. When l = 0, it is convenient to replace
the trial function u(r) by v(r) = ru(r). The Green's function in this case
is G(r,r') = - (krr')-l sin kr< cos kr>. Equation (27.27) then becomes

k cot ~o ~

k-1 fa" v(r) U(r) [cos kr for sin kr'U(r')v(r')dr'

+ sin kr J." cos kr'U(r')v(r')dr'] dr + fo" v2(r)U(r)dr

As a simple example of the application of Eq. (27.28), we consider its
limiting form when k becomes zero. The variation principle for the zero­
energy phase shift is

(k cot ~o)o ~

fo .. v(r) U(r) [for r' U(r')v(r')dr' + r f," U(r')v(r')dr'] dr

+ fo" v2(r) U(r)dr

[fo .. rU(r)v(r)drT
(27.29)

To test this expression, we consider a uniform potential of magnitude U
and radius a (square well or square barrier), and assume the simple trial
function u(r) = constant or v(r) = r. We do not make explicit use of
the stationary property of (27.29), since this would require that the form
of v(r) be varied ; rather we use it implicitly in the sense that it increases
our confidence in the reliability of the estimate that is obtained. The
result is (k cot ~o)o = - [(3jUa3

) + (6j5a)]. Forthe same quantity, the
Born approximation formula (26.27) gives - (3jUa3) . The exact result,
obtained as in Sec. 19, is -[(3jUa3

) + (6j5a)] + higher order terms in
Ua2• Thus the Born approximation is correct for very weak scattering
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potentials, as expected, and the variation method in addition gives cor­
rectly the next term in an expansion in powers of the potential. A similar
behavior is found when terms of order k 2a 2 are included (low incident
energy; see Prob. 16).

28. THE WKB APPROXIMATION

In the development of quantum mechanics, the Bohr-Sommerfeld
quantization rules of the old quantum theory (Sec. 2) occupy a position
intermediate between classical and quantum mechanics. It is interesting
that there is a method for the approximate treatment of the Schrodinger
wave equation that shows its connection with the quantization rules . It
is based on an expansion of the wave function in powers of h, which,
while of a semiconvergent or asymptotic character, is nevertheless also
useful for the approximate solution of quantum-mechanical problems in
appropriate cases. This method is called the Wentzel-Kramers-Brillouin
or WKB approximation, although the general mathematical technique
had been used earlier by Liouville, Rayleigh, and Jeffreys.' It is applicable
to situations in which the wave equation can be separated into one
or more total differential equations, each of which involves a single
independent variable.

Classical Limit. A solution if;(r,t) of the Schrodinger wave equation
(6.16)

oif; h2

ih at = - 21-' tPif; + V(r)if;

can be written in the form

.1,( t) A iW(r,t)Of'r, = exp --h-

in which case W satisfies the equation

oW 1 ihat + 21-' (grad W)2 + V - 21-' \72W = 0 (28.1)

1 It is sometimes called the BWK method, the classical approx imation, or the phase
integral method. For the original work, see J. Liouville, J . de Math ., 2, 16, 418 (1837);
Lord Rayleigh, Proc. Roy. Soc. A86, 207 (1912) ; H. Jeffreys, Proc. London Math . Soc.
(2),23, 428 (1923); G. Wentzel, Zeits. f . Physik., 38, 518 (1926) ; H . A. Kramers,
Zeits. f. Physik., 39, 828 (1926) ; L. Brillouin, Comptes Rendus, 183, 24 (1926). For
more recent developments, see E . C. Kemble, " The Fundamental Principles of Quan­
tum Mechanics," Sec. 21 (McGraw-Hill, New York , 1937); R. E. Langer, Phys. Rev.,
61,669 (1937); W. H . Furry, Phys. Rev., 71,360 (1947) ; S. C. Miller , Jr., and R. H .
Good, Jr., Phys . Rev., 91, 174 (1953). The treatment of this section resembles most
closely those of Kramers and Langer.
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In the classical limit (h ---t 0), Eq. (28.1) is the same as Hamilton's partial
differential equation for the principal function W :1

oWat + H(r,p) = 0, p = grad W

Since the momentum of the particle is the gradient of W, the possible
trajectories are orthogonal to the surfaces of constant Wand hence, in
the classical limit, to the surfaces of constant phase of the wave function
..p. Thus in this limit the rays associated with ..p (orthogonal trajectories
to the surfaces of constant phase) are the possible paths of the classical
particle.

iEt

If ..p is an energy eigenfunction u(r)e-T, W can be written

W(r,t) = 8(r) - Et

In this case, we have that

i8(r)
u(r) = A exp -h-'

1 ,{h
2p. (grad 8)2 - [E - V(r)} - 2p. \l28 = 0 (28.2)

The WKB method obtains the first two terms (one term beyond the clas­
sical expression) of an expansion of 8 in powers of h, in the one-dimen­
sional case.

Approximate Solutions. The basic equation that we consider is
written in one of the forms

k2 > 0 (28.3)

(28.4)

so that k and K are always real. These are equivalent to the one-dimen­
sional wave equation (8.5), if we put

1
k(x) = +7i {2p.[E - V(x)}J! when V(x) < E

1
K(X) = +7i {2p.[V(x) - Ell! when V(x) > E

(28.5)

1 E. T . Whittaker, "Analytical Dynamics," 3d ed., Sec. 142 (Cambridge, London,
1927); H. Goldstein, "Classical Mechanics," Sec. 9-1 (Addison-Wesley, Cambridge,
Masa., 1950).
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(28.7)

Equations (28.3) and (28.4) are also equivalent to the radial wave
equation (19.2) if x is replaced by r, VCr) is replaced by

VCr) + h2l~ -t: 1),
J1.r

and u is equal to r times the radial wave function.
We restrict our attention for the present to Eq. (28.3); we shall be

able to generalize the resulting expression for u(x) to obtain solutions of
(28.4). We put

i s (x )

u(x) = Ae-fl-

which on substitution into (28.3) gives the one-dimensional form of
(28.2)

ihS" - S'2 + h2k~ = 0 (28.6)

where primes denote differentiation with respect to z.
We substitute an expansion of S in powers of h into (28.6) and equate

equal powers of h.
S = So + hSl + .. .

- S~2 + 2J1.(E - V) = 0
iS~ - 2S~Sf = 0, etc .

Integration of these equations gives

So(x) = ±h fX k(x')dx', Sl(X) = }i In k(x),

where arbitrary constants of integration that can be absorbed in the
coefficient A have been omitted. We thus obtain to this order of
approximation

u(x) = Ak-i exp (±ir kdx), V < E

In similar fashion, the approximate solution of (28.4) is

u(x) = BK-i exp (± fX Kdx), V> E (28.8)

Asymptotic Nature of the Solutions. The accuracy of these WKB
solutions can be gauged by comparing the magnitudes of the successive
terms So and hS1 in the series for S. Since So is a monotonic increasing

function of x so long as k does not vanish, the ratio hil is small if

hS'
S~l is small. We thus expect (28.7) to be useful in that part of the

domain of x where

IhS' 1 Ik'iSri
l

= 2k2 «1 (28.9)
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Now the local de Broglie wave length X is 27r/k, so that (28.9) can be
written

~ Idkl «»
411'" dx

which means that the fractional change in k (or in the wave length) in
the distance X/411'" is small compared to unity. Thus the WKB solutions
are useful when the potential energy changes so slowly that the momen­
tum of the particle is sensibly constant over many wave lengths.

The same criterion is obtained for (28.8) if we now mean by the "wave
length" the distance in which the magnitude of u changes by a factor
e2...

It is apparent that the condition (28.9) is violated near the turning
points of the classical motion, where Vex) = E, k and K are zero, and
the "wave length " is infinite. Thus the solutions (28.7) and (28.8) are
asymptotically valid in the sense that they can be used several wave
lengths from the nearest turning point if, as is usually the case, the wave
length is there slowly varying.

The asymptotic solutions are of little use to us unless we know how to
connect an oscillating solution like (28.7) to an exponential solution like
(28.8) across a turning point. It is only in this way, for example, that
we can apply boundary conditions and obtain energy eigenvalues. The
derivation of such connection formulas, which we consider next, is the
central problem of the WKB approximation.

Solution near a Turning Point. The wave equations (28.3) and (28.4)
are regular at a turning point, so that there is a solution that is analytic
there and has asymptotic forms like (28.7) and (28.8). Such a solution
usually cannot be written down in closed form. The wave equation can,
however, be modified slightly so that an exact solution that has the desired
asymptotic forms can be obtained.

We can without loss of generality take the origin of x at a particular
turning point; we also assume for the moment that Vex) < E to the right

of the turning point (positive z), and put ~(x) == fo'" kdx, Now if

k2(x) = Cx", where C is a positive constant, Eq. (28.3) is known to have
the solutions

1
m = n + 2 (28.10)

where J is a Bessel function; this can be verified by direct substitution.
The asymptotic form of J is such (see below) that (28.10) agrees asymp­
totically with (28.7).

We therefore try to retain this form by rewriting (28.3) with an
additional term 8(x) :
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(28.11)

Substitution of (28.10) into (28.11) shows that the new equation is
satisfied if we define 8 as

3k'2 k" k2
8(x) == 4k2 - 2k + (m2

- i) e (28.12)

We expand k2 as a power series in x:

k 2(x) = Cx"(l + ax + bx 2 + .. . )
in which case 8 can also be expanded in a series . The l/x2 and l/x terms
vanish, and the leading term is independent of x.

8(x) ---..7 3(n + 5)a2 3b
x->o 2(n + 4)(n + 6) - n + 6

v(x)

(28.13)

Region 2 o

FIG. 25. A typical linear turning point. where Vex) = E at x = 0; in region 1, E > V ex).
and in region 2. E < Vex).

We can now see that (28.11) is a good approximation to the actual
wave equation (28.3). The similarity in structure between each of the
three terms in (28.12) and the asymptotic accuracy criterion (28.9)
indicates that 8« k 2 in the asymptotic region if the WKB method can
be used at all. At and near the turning point, 8 is not negligible in com­
parison with k", since 8 is a constant and k 2 vanishes at x = O. However,
(28.13) shows that 8(0) is quite small, being of second order in the devia­
tion of k2 from the simple form Cz», Thus for potential functions Vex)
that are slowly varying, (28.10) is expected to be a good approximation to
the actual solution of equation (28.3).

Linear Turning Point. We now specialize to the situation of greatest
physical interest, in which n = 1. A typical linear turning point is
shown in Fig . 25; Eq. (28.3) is used in region 1 (x > 0), and Eq. (28.4) in

region 2 (x < 0). We put h = fox kdx, ~2 = fx° sda, so that both ~1

and ~2 increase as x moves away from the turning point; this makes it
easy to generalize the results to situations in which the regions 1 and 2
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are interchanged. The two independent solutions in each of the two
regions are

Ul±(X) = A±~l!k-iJ±!(~l)

U2±(X) = B±~h-!I±!a2)

It is evident that we must replace J by I, the Bessel function of imaginary
argument, in region 2.

We require the leading terms of the power series expansions and of
the asymptotic expansions for these functions .'

(28.15)

It is important to note that the term e-~' in the asymptotic expansion
for I can be retained only when a combination of solutions I±! is chosen
such that the coefficient of eh is zero. This is because other terms in the
asymptotic expansion, such as e~'/~2, have been neglected, and these are
of larger order of magnitude than e-~'. The asymptotic nature of the
WKB approximation is such that if the term that increases exponentially
away from the turning point is present, it is impossible to say whether or
not the decreasing exponential term is also there.

Connection at the Turning Point. The leading term in k 2 at x = 0
is Cx, so that k 1"/ ex!, K:::: elxl!, h 1"/ (2e/3)xi , b:::: (2e/3) [xli, where
e = +C!. Then from (28.14) and (28.15) we obtain the behavior of the
u's near x = 0

+ 1"/ (-i)!(-!c)i
U 1 = A+ r et) x,

u+ ~ B (-i)i(~c)i Ixl
2 - + r(~) ,

It is apparent then that ut joins smoothly on to ut if B+ = -A+, and
that U1 joins smoothly on to U2" if B_ = A_.

These relations between the coefficients can be used to obtain asymp­
totic forms like (28.7) and (28.8) for the two independent solutions u+
and u- in the two regions (the arbitrary multiplying constants A± are
omitted).

1 Whittaker and Watson, op, cit., Chap. 17.
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u+~ (pk)-i COS (~1 _57r).,_+.. 12
E. _Eo_on

~ - (27rK)-i(e + e 6)
~-+- 110

U-::;:: (pk)-i COS (~1 - ;2)
Eo -Eo-!:!

~ (27rK)- iCe + e 6 )
:r-+- •

[CHAP. VII

(28.16)

The asymptotic forms of any linear combination of u+ and u- can be
found from Eqs. (28.16).

Asymptotic Connection Formulas. Convenient connection formulas
between the asymptotic WKB solutions in the two regions can be
obtained by choosing suitable linear combinations of u+ and u-. Thus
the combination u+ + u- contains only the decreasing exponential, and
yields the first connection formula

(28.17)

The arrow in (28.17) implies that the asymptotic solution in region 2 that
appears on the left goes into the asymptotic solution in region 1 that
appears on the right, but that the converse is not necessarily true. This
is because a small error in the phase of the cosine introduces the dominant
increasing exponential in region 2.1

Another linear combination of u+ and u- can be found that gives the
second connection formula

(28.18)

where 7/ is appreciably different from zero or an integer multiple of 71".

The arrow in (28.18) appears since the neglected decreasing exponential
in region 2 alters the phase of the cosine in region 1 by an indeterminate
amount if the connection is reversed.

Energy Levels of a Potential Well. We now give a simple example of
the application of the WKB approximation that serves as a derivation of
one of the Bohr-Sommerfeld quantization rules. We wish to find the
energy levels of a particle moving in the one-dimensional potential well

1 The converse of (28.17) can be used in the following sense: If some parameter in
the solution (such as the energy E) is varied continuously so that the phase of the
cosine in region 1 passes through the value - t"., the increasing exponential in region 2
disappears for some indeterminate value of the phase close to - i".and leaves only the
decreasing exponential. This result is useful , for example, in treating the resonance
scattering of alpha particles by a heavy nucleus.
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shown in Fig. 26. For any assumed energy level E, there are supposed
to be just two turning points of the classical motion such that

V(XI) = V(X2) = E

The regions x < Xl and X > X2 are Type 2 regions in which we know that
u decreases away from the turning points in order to satisfy the boundary
conditions at ± 00 . Thus we have only the decreasing exponential WKB
solution in these regions.

The connection formula (28.17) can be applied at the turning point
Xl, which separates a Type 2 region from the Type 1 region Xl < X < :1"2.

v(x)

Region2 %1 RegIon 1. I
• :Ie

:lez Region 2

FIG. 26. Application of the WKB method to a potential trough ; linear turning points
occur at ZI and Z2 .

The only change is that the lower limit on the ~l integral is changed from
oto Xl, so that the solution to the right of the turning point is

k-l cos (£: kdx - in') (28.19)

apart from an arbitrary multiplying constant. The same connection
formula can also be applied at X2 by reversing the direction of the X axis
and changing the fixed limit on the ~ integrals from 0 to X2; the arrow in
(28.17) still means that we go from a region 2 solution to a region 1 solu­
tion, but now the latter is to the left of the turning point and the former

is to the right. We redefine ~l = (z, kdx , ~2 = (z «d» so that they still
}z lx'J

increase going away from the turning point, in which case (28.17) can be
used without any modification. The solution to the left of this turning

point is then k-l cos (£Z' kd» - in'), which can be written

k-l cos u: kdx - V - 7]) , 7] s= £:'kdx - in- (28.20)
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As was the case in the qualitative discussion of discrete energy eigen­
values in Sec. 8, we obtain the energy levels of this system by requiring
that the two solutions (28.19) and (28.20) join together smoothly in the
interior of region 1. This evidently requires that TJ be zero or a positive

integer multiple of 71", since e" kd» is necessarily positive. We can writei;
the determining equation for the eigenvalues as

[ x, kdx = (n + t)7I", n = 0, 1, 2,i; (28.21)

Equation (28.21) is to be used for values of n up to the point at which E '
becomes so large that one or both of the turning points disappears.

A Quantization Rule. The expression (28.5) for k can be substituted
into (28.21) to give one of the Bohr-Somerfeld quantization rules of the
old quantum theory

2 f,,:' {2JL[E - V(x)]}tdx = (n + t)h (28.22)

The left side of (28.22) is the integral around a complete cycle of the
motion (from Xl to X2 and back to Xl) of the momentum [2JL(E - V)]!.
The right side is the quantum value of the phase integral, with half­
integer rather than integer quantum numbers.

It is easily seen from the form of the solution (28.20) that n is the
number of nodes of the WKB wave function between the turning points.
Since it is basic to the WKB method that we can develop asymptotic
solutions like (28.7) only several wave lengths from each turning point,
the approximation should be good only if the turning points are several
wave lengths apart, or if n is large in comparison with unity. This con­
firms the earlier view that the WKB method is a semiclassical approxima­
tion, since it is expected to be most useful in the nearly classical limit of
large quantum numbers.

Actually, the WKB approximation also gives quite good results for
the low quantum states of many systems. For example, if we apply
(28.22) to the harmonic oscillator Vex) = tKx2, it is known from the old
quantum theory that the correct energy levels are obtained for all quan­
tum numbers.

Special Boundary Conditions. The boundary condition to be applied
to a WKB solution at a perfectly rigid wall (V changes discontinuously
to + C() at X = xo) is that thf:J wave function vanishes there. Thus if k
(for a region of Type 1) is slowly varying up to Xo and other turning points
are remote, the asymptotic solution can be used and has the form
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Similarly, for a finite potential step that is far from other turning
points, the asymptotic WKB solutions can be used up to the point of
discontinuity of V if k or K is slowly varying. Then the magnitudes and
slopes of the solutions on the two sides can be matched at this point.

As pointed out after Eq. (28.5), the WKB method can be applied
to the radial wave equation for a spherically symmetric potential. When
l = 0, the radial wave function must be finite at r = 0, and so u must
vanish there. If k or K is slowly varying there, the asymptotic solutions
can be used; for example, if E - V(r) is positive, finite, and slowly vary-

ing at and near r = 0, the solution is k: i sin (for kdr). When the

effective potential energy is infinite at r = 0, either because V itself is
infinite or because of the centrifugal-force contribution for l ~ 0, the
situation is more complicated and requires further investigation.

Problems

1. A one-dimensional harmonic oscillator of charge e is perturbed by an electric
field of strength E in the positive x direction. Calculate the change in each energy
level to second order in the perturbation. Show that this problem can be solved
exactly, and compare the result with the perturbation approximation.

2. A one-dimensional harmonic oscillator is perturbed by an extra potential energy
bx 3• Calculate the change in each energy level to second order in the perturbation.

3. Find the first-order Stark effect for a hydrogen atom in the state n = 3.
4. A system that has three unperturbed states can be represented by the per­

turbed Hamiltonian matrix

where E 2 > E! . Use the second-order nondegenerate perturbation theory to find the
perturbed eigenvalues. Then diagonalize the matrix to find the exact eigenvalues.
Finally, use the second-order degenerate perturbation theory. Compare the three
results obtained.

6. Show that the total scattering cross section by a potential that falls off at great
distances like r-" is finite if and only if n > 2, (a) by means of the Born approximation
formula (26.20), and (b) by means of the Born approximation express ion for the phase
shifts (26.27) (see footnote 1, page 78).

6. Find the differential scattering cross section for a potential V(r) = - Voe a,
using the Born approximation. What is the validity criterion in this case, and under
what circumstances is it satisfied?

7. In a particular scattering problem in which the potential is spherically sym­
metric, the phase shift 00is large and can be computed exactly, but all the other phase
shifts are small. Derive an expression for the differential scattering cross section with
the help of the Born approximation, in which all the phase shifts are taken into
account.

8. Use the Born approximation to discuss qualitatively the scattering by a crystal
lattice of identical atoms.
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9. A trial funotion v differs from an eigenfunction UE by a small amount, so that
'" = UE + ''''1, where UE and "'I are normalized and.« 1. Show that (H) differs
from E only by terms of order .2.

10. If the first n - 1 eigenfunctions of a particular Hamiltonian are known, write
down a formal expression for a variation-method trial function that could be used to
get an upper limit on the nth energy level.

11. Find the next terms (of order R-') in the expansion of Eq. (27.12). Show
that their diagonal matrix element for the unperturbed ground state vanishes, so that
there is no inverse fourth power contribution to the van der Waals interaction.

12. Use the first nonvanishing term in the series (27.13) to get a lower limit for
- W(R) . Compare with that obtained from the variation calculation.

13. Use the combination of perturbation and variation methods employed in Sec.
27 in connection with the van der Waals interaction to obtain limits on the electric
susceptibility of a hydrogen atom in its ground state. The electric susceptibility is
the ratio of the induced electric-dipole moment to the applied electric field, or is the
negative of the second derivative of the perturbed energy with respect to the electric
field at zero applied field.

14. A particle of mass m is bound by the potential of Prob. 6, where fl2 [m.Voa2 = l­
Use the variation method with a trial function e-ar to get a good limit on the lowest
energy eigenvalue.

15. Make use of Eqs. (27.24) and (27.25) to obtain the second Born approximation
expression for tan 81. What does this give for the zero-energy phase shift in a uni­
form potential when l = O?

16. Retain the terms of order k 2 on the right side of Eq. (27.28), and use the result­
ing variation principle with v(r) = r to calculate k cot 80 for a uniform potential.
Compare with the first Born approximation when calculated through terms of order
k2, and with the exact result.

17. Use Eq. (27.29) with v(r) = r to calculate (k cot 80) 0 for the exponential
potential of Prob. 6. Compare with the first Born approximation.

18. Show that the WKB approximation gives the correct energy eigenvalues for all
states of the harmonic oscillator.

19. Apply the WKB method to the one-dimensional motion of a particle of mass m
in a potential that equals - V 0 at x = 0, changes linearly with x until it vanishes at
x = ±a, and is zero for Ixl > a. Find all the bound energy levels obtained in this
approximation if mVoa2Ifl 2 = 40.

20. Use the WKB approximation to show that an attractive three-dimensional
potential that falls off like r-n for large-r has an infinite number of bound states if
n ~ 2.

21. Discuss the connection between the WKB approximation and the penetration
through "opaque" potential barriers; the barriers are to be like that considered in
Sec. 17, although not necessarily square.



CHAPTER VIII

APPROXIMATION METHODS FOR TIME-DEPENDENT
PROBLEMS

It is generally impossible to obtain exact solutions of the Schrodinger
equation when the Hamiltonian depends on the time. The three approxi­
mation methods that we consider in this chapter all start from the
assumption that there is a time-independent Hamiltonian that approxi­
mates the actual Hamiltonian in some sense, for which the Sehrodinger
equation can be solved . The time-dependent part of the actual Hamil­
tonian may be small compared to the stationary part, in which case a
perturbation method can be used. Or there may be time-dependent
parameters in the actual Hamiltonian that change very slowly (adiabatic
approximation) or very rapidly (sudden approximation) in comparison
with the periods of the approximate stationary solutions.

29. TIME-DEPENDENT PERTURBATION THEORY

The perturbation theory of a system for which the Hamiltonian
depends on the time! is sometimes called the method of variation of con­
stants. It starts from the assumption of Sec. 25 that

H = H o + H', (29.1)

(29.2)

where the unperturbed Hamiltonian H 0 can be solved for its normalized
eigenfunctions Un and its energy eigenvalues En, and the perturbation H'
is small. Since H' now depends on the time, stationary solutions of the
actual Schrodinger equation do not exist, and we must work with the
time-dependent equation

ih aif; = Hif;at
Expansion in Unperturbed Eigenfunctions. Our procedure is to

iEnt

express if;as an expansion in the eigenfunctions une-T of the unperturbed
time-dependent wave equation, where the expansion coefficients evi­
dently depend on the time.

iEnt

'" = San(t)une-T

1 P. A. M. Dirac, Proc. Roy. Soc., A112, 661 (1926); A114, 243 (1927).
195

(29.3)
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(29.4)

Sdenotes a summation over the discrete set together with an integration
over the continuous set of eigenfunctions. Substitution of (29.3) into
(29.2) gives

iEn! iEn! iEn!

Sihdnu"e-T + SanE"u"e-T = Sa,,(Ho + H')une-T

where the dot denotes differentiation with respect to the time.
We replace H OUn by Enu" on the right side, multiply through on the

left by 'Ih, and integrate over all space, making use of the orthonormality
of the u's

iE.! iEn!

ihdke-T = Sa"e-TJUkH'U"dT

The integral on the right is the matrix element H~n of the perturbation.
We define the Bohr (angular) frequency

Ek - En
Wkn == 11,

and obtain
(29.5)

The group of Eqs. (29.5) for all /r's is exactly equivalent to the Schro­
dinger equation (29.2); the amplitude an of a particular unperturbed
eigenfunction u" in the expansion of 1/1 has replaced the amplitude 1/1 at a
particular point in space. Because of the choice of the representation,
which is determined by the eigenfunctions of the unperturbed Hamilton­
ian, H o does not appear explicitly in (29.5).

The perturbation approximation consists in replacing H' by XH' in
(29.1) and (29.5), .and expressing the a's as power series in X:

(29.6)

As in Sec. 25, we assume that these series are analytic for X between 0
and 1. We can therefore substitute (29.6) into (29.5), equate coefficients
of equal powers of X, and set X = 1 in the final results. The substitution
yields the set of equations

These can in principle be integrated successively to obtain approximate
solutions to any desired order in the perturbation.

First-order Perturbation. The first of Eqs. (29.7) shows that the
zero-order coefficients a~O) are constant in time. Their values are the
initial conditions of the problem, which specify the state of the system
before the perturbation is applied. We assume throughout this section
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that all except one of the a~O) are zero, so that the system is in a definite
unperturbed energy state when the perturbation is applied.' The results
that we shall obtain can easily be generalized to situations in which more
than one of the zero-order coefficients is different from zero.

We thus put a~O) = Okm or o(k - m), according as the state m is one
of a discrete or a continuous set. Integration of the first-order equation
gives

(29.8)

(29.9)

where the constant of integration is taken to be zero in order that a~1)

be zero at t = - 00 (before the perturbation is applied). If H' is of
finite duration, the amplitude of a state Uk (k ¥- m) after the perturbation
has disappeared is proportional to the time Fourier component of the
matrix element of the perturbation between this state and the initial state,
that corresponds to the angular frequency Wkm given in (29.4). This
result is analogous to that obtained for the scattered amplitude in the
Born approximation [see the discussion of Eq. (26.18)].

Equation (29.8) takes a particularly simple form if the perturbation
H' is independent of the time except for being turned on at one time and
off at a later time . We call these two times 0 and t, respectively, and
obtain for the first-order amplitudes at the time t (these are also the
amplitudes at any subsequent time)

a~!)(t) = _ H~m eiw
•

ml
- 1

h Wkm

Thus the probability of finding the system in the state k at t is

la~!)(t)12 = 4IH~m~2Si~2 tWkmt
Wkm

The factor sin" tWkmtjwtm is plotted in Fig. 27 as a function of Wkm.
Physical Interpretation. The height of the main peak in Fig. 27

increases in proportion to t2, while its breadth decreases inversely as t, so
that the area under the curve is proportional to t. Thus if there is a
group of states k that have energies nearly equal to that of the initial
state m, and for which H~m is roughly independent of k, the probability of
finding the system in one or another of these states is proportional to t.
This is the physically interesting situation, since what we wish to calculate
eventually is a transition probability per unit time w, and this implies that

1 This need not conflict with the uncertainty relation (3.3), since the infinite lapse
of time prior to the application of the perturbation makes it possible to determine the
original energy of the system with arbitrarily great precision.
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the probability that a transition has taken place when the perturbation
has been on for a time t is proportional to t. l

It follows that a definite value of w exists only when the final state k
is one of a continuous or nearl y continuous set of states. The spread in
energy of the final states to which transitions occur , shown in Fig . 27

_ 611"
t

411"
t

6;r
t

WJcm

FIG. 27. The ordinate is proportional to the first-order perturbation probability of finding
a sys tem in a state that has an energy different fro m that of the ini t ial state by hW km ; the
scales for ordinate and abscissa depend on the duration t of the perturbation in t he manner
indicated.

(E k = Em + hWkm), is connected with the uncertainty relation (3.3) for
energy and time in the following way. We can regard the perturbation
H' as a device that measures the energy of the system (which is not
necessarily its initial energy since the system is disturbed) by transferring
it to one of the states k, The time available for the measurement is t,
so that the uncertainty in energy predicted by (3.3) is of order hit, in
agreement with the breadth of the main peak in Fig. 27. It is interesting

1 We assume that the total transition probability to all states k is small enough in
comparison with unity so that the initial state m is not significantly depleted. This is
equivalent to the original assumption that the perturbation is small, which means
that for times t of physical interest, there is little change in the initial sta te. There
can still be an effect of observable magnitude if a large number of independent systems
receive identical treatment.
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to note that conservation of energy, suitably modified by the uncertainty
principle, is an automatic consequence of the calculation and does not
have to be inserted as a separate assumption.

Transition Probability. In order to obtain an explicit expression
for W, it is convenient to assume that the system is contained in a large
cubical box of dimensions L that has periodic boundary conditions at its
walls (Sec. 10). Then the eigenfunctions Un form a discrete set and can
be normalized to unity in the volume L3. We now consider a particular
group of final states k that have nearly the same energy as the initial
state m and for which the matrix element H~m of the perturbation is a
slowly varying function of k , We define a density of final states p(lr)
such that p(lr)dEk is the number of such states in the energy range dE k ;

and assume that p(lr) is also a slowly varying fun ction of k ,
The transition probability per unit time to one or another of this group

of states can then be written

W = t-1 I lalc1l (t)j2 = t-1 JlaIc1l (t)12p(lr)dE k

k

(29.10)

when the box L is large enough so that the summation over k can be
replaced by the integration over E k • Since H~m and p(lr) are slowly vary­
ing and most of the contribution to the integral comes from a narrow
range of energy about Ek = Em, they can be taken outside of the integral,
and (29.10) can be rewritten as

W = ! 41H~m12 p(lr) f '"
t h _ ..

• 2 1 t
SIn "jl"Wkm d

2 Wkm
Wkm

(29.11)

where the index k now refers to a typical one of the group of states having

about the energy Em. The integral in (29.11) is it f-.... x-2 sin? xdx = pt,
so that we finally obtain

(29.12)

which is independent of t, as expected.
There may be several different groups of final states k, all of which

have about the energy Em but for which the perturbation matrix ele­
ments H~m and the densities of states p(lr), while nearly constant within a
group, differ from one group to another. Then (29.12) gives the transi­
tions per unit time to a particular group; similar expressions of the same
form give the rates of transition to other groups .

Scattering Cross Section. As a first application of Eq. (29.12), we
calculate W when the initial and final states are free-particle momentum
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eigenfunctions (plane waves) and the perturbation is a potential energy
V(r). The result can be interpreted in terms of an elastic scattering cross
section, and then agrees with the Born approximation result (Sec. 26), as
expected. We take for the initial and final states

um(r) = Lr t exp £ko • r,

(29.14)

where k o and k are the initial and final propagation vectors, respectively.
Thus the perturbation matrix element is

H~m = L-3f exp (-tK. r)V(r) exp (tKo· r)dr
= L-3fV(r) exp (tX· r)dr (29.13)

where K = k o - k.
The density of final states can be found from the permitted values of k

in a box : k", = 27rn",/L, etc., where the n's are positive or negative integers
or zero. Thus there are (L /27r)3dk"dkydkz states in the range dk",dkydkz of
propagation vector. Now there are many different final states k with the
same energy, corresponding to different directions of k with a given
magnitude. The matrix element (29.13) usually depends on the direction
of k, so that we have to consider only a small range of directions at a time.
We therefore ask for the rate of transition into an infinitesimal element of
solid angle sin 8d8dep about some direction that is specified by the polar
angles 8,ep. Then p(k)dEk is equal to the number of states in the range
drk given by the above solid angle element and the magnitude element dk
that corresponds to the energy element dEk •

p(k)dEk = (tY k2dk sin 8d8dep

Since Ek = h2k2/2p., dEddk = h2k/p., and we obtain for p(k)

p.£3 •
p(k) = 87r3h2 k SIll 8d8dep

The value of w obtained in this way is the number of particles scat­
tered into the element of solid angle per unit time when there is one
incident particle in the volume L3. This is an incident flux of v/ L 3
particles per unit area and time, where v = hk/ p. is the speed of the inci­
dent or scattered particle (since energy is conserved) . Since the dif­
ferential scattering cross section is defined as the scattering per unit
incident flux, we have that

p.£3
u(8,ep) sin 8d8dep = tik w (29.15)
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Substitution of (29.12), (29.13), and (29.14) into (29.15) gives

rr(8,¢) = (2:h2YIf V(r) exp (£K· r)drr (29.16)

This agrees with the Born approximation result (26.18) and (26.19),
and has the same range of validity.

Harmonic Perturbation. Another situation for which Eq. (29.8)
assumes a simple form occurs when the perturbation depends harmoni­
cally on the tim e, except for being turned on at zero time and offat time t.
If we put H~m(t') = H~o". sin wt', the first-order amplitudes at time tare

(29.17)

The probability of finding the system in the state k is appreciable only
when the denominator of one or the other of the two terms in (29.17) is
practically zero. Thus there is no interference between the two terms,
and the perturbation can produce transitions for which Wkm rv ± w if the
corresponding matrix element does not vanish. Th e energy-conserva­
tion condition Ek :::::: Em obtained earlier is now replaced by the condition

(29.18)

Equation (29.18) suggests that the first-order effect of a perturbation
that varies harmonically in th e time with angular frequency w is to trans­
fer to or receive from the system on which it acts an amount of energy
Iu», This concept will be used for a qualitative treatment of radi ation
processes in Chap. X.

Second-order Perturbation. The series of equations (29.7) can read­
ily be solved to second order for a perturbation that is constant in time.
We take the equation with s = 1, and substitute from (29.9) on the right
side.

Integration of this equation subject to the initial condition a\;'(O) = 0
gives for the second-order amplitudes at time t

(29.19)

Equation (29.19) indicates that transitions for which the probability
increases linearly with the time can occur either for Wkm rv 0 or Wkn rv O.
While the first type of transition conserves energy between the initial
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state m and the final state k, the second need not. It is not difficult to
see that the second bracket term arises from the 1 in the numerator of
(29.9), which in turn comes from the initial condition at zero time. This
initial condition means that the perturbation is turned on suddenly; thus
the mathematical formulation suggests that the second-order transitions
that do not conserve energy are caused by the sudden turning on of the
perturbation. This is in agreement with Eqs. (29.8) and (29.17), which
show that a perturbation that has nonzero frequency Fourier components
can give up energy to or absorb energy from the system that it perturbs.
In the case we are now considering, these Fourier components are not
marked enough to produce in first order a transition probability that is
proportional to the time, but they do in second order.

In most practical problems, the sudden turning on of the perturbation
is introduced as a mathematical artifice that simplifies the calculation.
Actually, in such cases, the perturbation either is always present, or is
turned on very slowly, and we are concerned with transitions that con­
serve energy between initial and final states. Problems that can be
treated by the sudden approximation (see end of Sec. 31) are an excep­
tion; there energy need not be conserved. Throughout this section and
the next, we assume that only transitions that conserve the energy actu­
ally occur (Wkm ::: 0).

Suppose now that the perturbation produces no transitions in first
order; this means that there are no states n that conserve energy (Wnm "" 0)
for which the matrix element H~m r= O. Since Wkm "" 0, this means also
that H~m = 0 whenever Wkn "" O. In this case, the second term in the
bracket of (29.19) is never appreciable. The calculation of w is carried
through as before, except that a~2l replaces alfl; thus (29.12) can be used
if the matrix element H~m is replaced by the second-order matrix element

(29.20)

Effect of First-order Transitions. In the event that transitions can
occur in first order, but they are not to the state in which we are inter..
ested, we can proceed as follows. It is still true that the second term in
the bracket of (29.19) is negligible for states n that have energies appreci­
ably different from E k (or Em), since then Wkn is large. However, there
may now be states n for which En, Em, and E" are all close together and
neither H~n nor H~m is zero. The second bracket term cannot be ignored,
for without it the summation or integration over n would have a singu­
larity when W nm is zero. It is not difficult to see that for any value of
Wkm (zero or otherwise), the entire bracket is proportional to Wnm (which
is equal to Wkm - Wlcn) when Wnm is small; this cancels out the Wnm
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(29.21)

in the denominator, and makes the summand or integrand finite
where Wnm = 0.1

We now show how an explicit evaluation of (29.19) is obtained in this
case if Scan be represented by an integral over En or wnm. We divide the
integral into parts according as Iwnml is large or is not large in comparison
with l it. In the first region, the second bracket term in (29.19) can
be neglected, since IWknl = IWkm - wnml is also large in comparison with
lit (Wkm:::::: 0 means that wkmt is not large in comparison with unity).
We thus obtain for this part of the integral

e
W kmt

- 1!'H~nH~m ( )lid--':'::'-~p n W nmWkm Wnm

Here p(n)dEn is the number of states of the particular group n under
consideration in the energy range dEn; the prime on the integral implies
that the region -cit ~ Wnm ~ cit is excluded from the integration, where
c is a constant number that is large in comparison with unity. If there
are two or more distinct groups of states n for which the matrix elements
or densities of states differ, a further summation over these different
groups must eventually be carried out.

In the second region, where Iwnml ~ cit, we assume that t is large
enough so that H~nH~mP(n) can be regarded as a constant, taken outside
of the integral, and evaluated at W nm = O. We must now use both terms
in the bracket of (29.19) in order that the integrand be finite . This part
of the integral is then

_ ei(wkm""""".m)t - IJ dWnm
Wkm - W nm Wnm

(29.22)

The integral that appears in (29.22) can be evaluated by considering the
contour in the complex Wnm plane shown in Fig. 28, which contains no
poles of the integrand. Thus the integral over the closed contour is
zero, and the integral in (29.22) is equal to the integral around the semi­
circle of radius cit taken in the counterclockwise direction. The magni­
tude of W nm is great enough over this semicircle so that the contribution

1 This result follows quite generally from the structure of the whole perturbation
calculation, since there is no way in which a singularity can appear. Thus if the
perturbation is turned on slowly rather than suddenly, so that the energy-conservation
difficulties mentioned above do not occur, the second bracket term of (29.19) has a
more complicated form but still cancels out the singularity at CAlnm = O. This can be
verified by direct calculation.
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of the second term in the integrand can be neglected in comparison with
the first . The integral in (29.22) is then easily evaluated and becomes

(29.23)

(29.24)

For large t, the prime on the integral in (29.21) is equivalent to taking
its principal value.' Thus if we substitute (29.23) into (29.22) and add
the result to (29.21), we obtain an expression like (29.21) except that the
primed integral is replaced by'the principal value of the integral plus
7ri times the residue of the integrand at the pole W n m = O. This is equiva­
lent to evaluating the integral along a contour in the complex Wnm plane

+ Imaginary
axis Ulnm plane'

+f Real
o Qltis

FIG. 28. Contour for the evaluation of the integral in Eq. (29 .22).

that passes along the real axis from - 00 to 00 except for passing beneath
the origin. We thus obtain finally

i", t If H'H'a~2)(t) = e 'm - kn nm p(n)dEn
hWkm C En - Em

where the contour C is over the real axis of En except for passing under
the pole of the integrand at En = Em. Equation (29.24) is to be used in
place of (29.19) whenever S can be represented by Jp(n)dEn • Compari­
son of Eqs. (29.24) and (29.9) shows that we can use the expression (29.12)
for w if we replace the matrix element H~m by the integral in (29.24),
which we sometimes call the second-order matrix element . An example
of this is given in the next section.

Intermediate States. We see that the time-dependent perturbation
theory gives a result in first order if there is a nonvanishing matrix

1 E. T . Whittaker and G. N. Watson, "A Course of Modern Analysis," 4th ed .,
pp . 75, 117 (Cambridge, London, 1935).
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element of H' that connects the initial state m and the final state k ,
If H~m = 0, but there are one or more states n for which neither H~m nor
H~n is zero, the transition occurs in second order.

It is then convenient to think of one of the states n as an intermediate
state: the perturbation transfers the system from m to k in two steps,
through a state n. Energy need not be conserved for an intermediate
state, since it has only a transient existence and according to the uncer­
tainty relation (3.3) it is impossible to determine the energy of such a
short-lived state with any precision. If some of the intermediate states
do conserve energy, the summation (29.20) over these states must be
int erpreted in accordance with the integral in (29.24).

In some cases, a perturbation can produce a particular transition only
through two or more different intermediate states; this corresponds to a
third or higher order of the perturbation calculation. If the perturba­
tion is small, it usually happens that the result of a calculation to the
lowest order in which the transition occurs gives a useful result, while
higher order calculations do not improve on this and may even be quite
misleading.

30. INELA~TtC COLLISIONS

The expression for the scattering cross section given in the preceding
section is easily generalized to a description of inelastic collisions, in which
internal as well as kinetic energy can be transferred between the colliding
systems. In this section we apply the result to two problems that are
typical of first-order and of second-order processes.' The latter calcula­
tion is of unusual theoretical interest, for it shows explicitly how a particle
that is described entirely in terms of a plane wave (momentum eigen­
function) can produce a sharp track in a Wilson cloud chamber.

Expression for the Cross Section. The expression (29.12) for th e
rate of transition w is applicable to inelastic collisions if the matrix ele­
ment is defined accordingly. We cons.der here the collision of a fast
electron with a hydrogen atom in its ground state, and wish to calculate
the cross section for scattering of the electron through a definite angle
accompanied by excitation ot the hydrogen atom to a definite state. We
leave out of consideration the possibility that the incident elect ron
changes places with the atomic electron ; such exchange collisions will be
taken up in Chap. IX.

1 The examples considered in this section can also be treated by an extension of
th e Born approximation; such an extension to first-order rearrangement collisions is
given in Sec. 34. For the treatment of second-order processes, it is more convenient
to work with the method of variation of constants.
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The unperturbed Hamiltonian is the sum of the kinetic energy of the
incident electron and the Hamiltonian for the hydrogen atom:

h2 h2 e2
H o = - - Vi - - V~ - - (30.1)

2m 2m T2

where rl and r2 are the coordinates of the incident and atomic electrons,
respectively, referred to the atomic nucleus, which is massive enough so
that its motion can be neglected. The perturbation is the electrostatic
energy of interaction between the incident electron and the electron and
nucleus of the atom

e2 e2

H'=-- -
Tn TI

(30.2)

The unperturbed wave functions are eigenfunctions of (30.1), which
we choose to be

Lr t exp (t'ko . rl)UIOO(r2)
Lr t exp (z'k . rl)U200(r2)

initial state
final state

(30.3)

(30.4)

In spectroscopic notation, this corresponds to a IS~ 2S transition of the
atom. The magnitude of the propagation vector of the electron after
the collision is fixed by conservation of energy

k 2 = k2 _ 2m 3e
2

o h2 8ao

Equations (30.2), (30.3), and (30.4) specify the matrix element that
appears in (29.12).

Hil = L-3 ff exp (zX . rl)u200(r2) (~ - ~)UIoo(r2)dTldT2'
TI2 TI

K = k o - k (30.5)

The differential cross section can be obtained from w as in the preceding
section. It must be remembered, however , that k appears in the expres­
sion (29.14) for the density of final states, whereas the initial speed
vo = hko/m appears in the expression for the incident particle flux. 'I'hur
the cross section is

(30.6)

where 8 is the angle between the vectors k and ko.
Evaluation of the Matrix Element. It is apparent from the structure

of the matrix element (30.5) that the term e2/TI in the integrand contrib­
utes nothing because of the orthogonality of UIOO and U200. This is to be
expected physically, since interaction between the incident electron and
the nucleus cannot produce excitation of the atomic electron.



SEC. 301 METHODS FOR TIME-DEPENDENT PROBLEMS 207

(30.7)

The integration of the remaining term over fl can be carried out by
transforming the volume element from dT 1dT2 to dTpdT2, where V = fl - f2;
the Jacobian of the transformation is easily seen to be unity. We can
then write

f exp ~X . fld (~) Jexp ~X . Vd
--=:--~ r i = exp ~A· r2 r»
~ P

= 2?r exp (~X . r2) r'" fl eiKP'DpdpdwJo -1

= ;; exp (~X . r2) l'" sin Kpdp

where we have taken the polar axis of Valong the vector K and put w
for the cosine of the angle between V and K. The last integral is not
strictly convergent, but can be evaluated by inserting an integrating
factor «r» into the integrand and subsequently taking the limit a -+ O.
The justification for this is that the integration over r2 in (30.5), if per­
formed first, gives a result that falls off like l/r~ and hence like 1/ p2 for
large p,l so that for large p, the integrand here behaves like sin Kp/p and
the integral converges. We thus obtain

f exp ~X . rl 411" . 1"' ·---='---- dTl = K exp (~X . rz) lim sm Kpe-apdp
r12 a-+O 0

411" . (K) 411"= K exp (~X . r2):~ a2+ K2 = K2 exp ~X . r2

Substitution of Eq. (30.7) and the expressions following Eq. (16.24) for
the hydrogen wave functions into (30.5), gives an integral over rz that
can be evaluated as

Differential and Total Cross Sections. The differential cross section
for this collision thus becomes

(30.8)

where

K2 = k~ + k2 - 2kok cos 8
= (2ko sin t8)2 - (ko - k)(ko + k - 2ko cos 8)

1 The leading term in l /T12 when T, » T. is l /T l, and the integral of this over r,
vanishes because of the orthogonality of U,oo and U.oo.
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Now the perturbation calculation is best when koao» 1, in which case k
is close to ko and we can rewrite (3004) .

(30.9)
ko+ k ~ 2ko,

2m 3e2 3
(ko - k)(ko+ k) = h2 8ao = 4a5

ko - k ~ 8k
3

2oao

With the help of (30.9), the expression for K2 in this high-energy
limit becomes

K2 ~ (4k5 - 2:5) sin> io '" (2kosin iO)2

Then according to (30.8), most of the scattering occurs for Kao;S 1,
which is equivalent to O,.:S l /koao. Beyond this, cr(O) falls off with
increasing angle approximately like cosec' " iO. This is a much more
rapid decrease with angle than the cosec- io dependence (26.32) obtained
for elastic scattering by an atom, and is characteristic of inelastic
processes.

The total cross section is found by making use of the exact expression
for K2 to replace the element of solid angle 211"sin OdO by 211"KdK/kok,
with limits ko - k and ko+ k , Then the integral of (30.8) can be
obtained explicit ly. However, the discussion of the last paragraph
shows that at high energies most of the contribution to the integral comes
from near its lower limit, and in accordance with (30.9)

(ko - k) 2a5~ 64i~a5 « ~

We thus obtain the leading term in the total cross section at high energies
by taking the limits 0 and 00 for K:

~ 12811" (~)lO
a - 5k6 3 (30.10)

Cross sections for elastic and other inelastic collisions with hydrogen
may be obtained by replacing U 200 in the matrix element (30.5) by the
appropriate final-state wave function, and modifying (3004) accordingly.
The total elastic cross section at high energies turns out to be 711"/3h-5,
which is about five times as large as (30.10). Excitation to the states
that have n = 2, l = 1 (IS ~ 2P transitions) is most easily calculated by
choosing the three final states (m = 0, ± 1) with their polar axis along
the momentum transfer vector K. Then the factors e±i4> that appear in
the wave functions for m = ± 1 make these matrix elements vanish and
only the state (210) is excited . This corresponds physically to the
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(30.11)

inability of the incident electron, whose momentum loss is along K, to
exert a torque on the atomic electron about this axis. The high-energy
cross section for this process turns out to be

'" 57611" (2)12
CT = k5 3 In (4koao)

The appearance of the logarithmic factor in Eq. (30.11) derives from an
extra factor I jK2 in the differential cross section. Thus in comparison
with the 18 ~ 28 scattering, the 18 ~ 2P differential scattering is more
pronounced at small angles and the total scattering decreases less rapidly
with increasing energy at high energies.

Production of a Cloud-chamber Track. It seems surprising at first
that a fast electron, which we can assume possesses a definite momentum
(magnitude and direction) and hence cannot be localized in space, can
produce a sharp track in a cloud chamber. This phenomenon may be
considered from various points of view. In accordance with Ehrenfest's
theorem (Sec. 7), we can represent the electron by a wave packet whose
center of gravity moves like a classical particle. If the wave length is
short enough, the packet can be quite small without spreading rapidly,
and will then interact only with atoms that lie close to the path of its
center. This implies that the electron is represented by a superposition
of plane waves and hence has an uncertainty in its momentum that
enables its position to be sufficiently well defined.

Another approach consists in describing the electron by a single plane
wave, and regarding its interaction with the first atom that it excites or
ionizes as a position measurement that carries with it an uncertainty of
the order of the atomic size. Thereafter, the electron is represented by a
packet, like that described in the last paragraph, which is well localized
if the first atom is large in comparison with the wave length.

We consider here in detail a description in which the electron and the
atoms of the cloud-chamber gas are treated as parts of a single system, so
that we do not have to regard an atomic interaction as a position deter­
mination that changes the structure of the electron's wave function.1

To simplify matters, we assume that there are just two atoms present ir,
their ground states, and that their nuclei are far from each other and are
fixed in space. We then calculate the cross section for a process in which
both atoms are excited and the electron is scattered inelastically. For r
fast incident electron, the perturbation theory can be used, and the
process is of second order. The calculation is interesting both because

1 See also W. Heisenberg, ' ''l he Physical Principles of the Quantum Theory,"
p. 66 (University of Chicago Press, Chicago, 1930).
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of the answer obtained and because it provides an instructive application
of the second-order perturbation theory developed in Sec. 29.

The result of the calculation is that the cross section is very small
unless the momentum vector of the incident electron is nearly parallel
to the line that joins the two nuclei, and unless also the incident and final
electron momenta are nearly parallel. These three directions can have
an angular spread in radians that is of the order of the ratio of thewave
length of the electron to the size of the atom. This is analogous to the
result obtained above for the inelastic collision of a fast electron with a
hydrogen atom: the angular spread of the scattered electron was found
to be roughly l /koao. It is also in agreement with the wave-packet
description of the process, since a localization of the electron by an atomic
size a in a direction transverse to its motion produces an uncertainty in
the transverse momentum component of amount h/a and an angular
spread of order h/ap ::: l /koa.

Formulation of the Problem. The nucleus of the first atom can
without loss of generality be placed at the origin, and that of the second
atom at the point R. The two atoms are assumed to be far enough apart
so that the interaction between them can be neglected. The unperturbed
Hamiltonian is then the sum of the kinetic energy of the incident electron
and the unperturbed Hamiltonians of the two atoms. The perturbation
is the sum of the interaction H~ between the incident electron and the
first atom, and the interaction H~ between the electron and the second
atom. In the initial state, both atoms are in their ground states Uo with
energies Eo, and the incident electron has the propagation vector ko• In
the final state, the first atom is in the state u.. with energy E.. , the second
is in the state U m with energy Em, and the propagation vector of the elec­
tron is k..m•

It is apparent that the transition in which we are interested cannot
occur in first order. It can occur in second order, and there are two
groups of intermediate states. In the first group, the first atom is in the
state U'" the second in the state Uo, and the incident electron has some
propagation vector k..o• In the second group, the first atom is in the state
Uo, the second in the state Um , and the propagation vector of the electron is
called k Om• Thus the second-order matrix element (29.20) is

~ (H~) ..m...o(HD..o.oo + ~ (H~) ..m.om(H~)om.oo (30.12)
L.t E oo - E ..o L.t E oo - Eo...
k"o kom

h2k2 h2k2

E oo = 2Eo + 2mo, E ..o = En + EO + 2;,0

h2k2

EOm = Eo + Em + 2;"m
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(30.14)

We evaluate only the first sum in (30.12) explicitly and indicate the
changes that are to be made in the resultto obtain the second sum. The
matrix elements that appear there are

(H~)nm.nO

= L-3f fum(2) exp (-ZKnm' r)H~(2,r)uo(2) exp (ZKno . r)dr'Jf1r (30.13)
(HDno.oo

= L-3ffun(l ) exp (-ZKno' r')H~(l,r')uo(l) exp (ZKo . r')drldr'

Here 1 and 2 denote all the internal coordinates of the first and second
atoms, respectively, and drl and dr2 are the corresponding elements of
integration; rand r' are variables of integration with volume elements
dr and dr', both of which specify the position of the incident electron with
respect to the origin. An integral over 1 has been performed in the first
of Eqs. (30.13) to give unity, and a similar integral over 2 has been per­
formed in the second equation.

Evaluation of the k Sum. When the matrix elements (30.13) are
substituted into the first sum of (30.12) and the sum and integrals are
interchanged, we must evaluate

1exp ZKno . (r - r')
k2 - ,,2 'nOk.,

For a box of sufficiently large dimensions L, we can replace the summa­
tion in (30.14) by an integration:

(!:-)3f exp ikno. (r - r') d (30.15)
2'11" k~o _ ,,2 rk.,

The integral in (30.15) has the form of that which appeared in the Green's
function (26.12) for a free particle. Thus the only new problem pre­
sented by the evaluation of (30.15) is the determination of the contour
that takes proper account of the singularity of the integrand at k nO = «,

This singularity is of the type discussed near the end of the last section
and arises from the possibility of first-order transitions in which just
one of the atoms is excited. Equation (29.24) shows that the proper
contour to use for the integral over the magnitude k no of the vector knois
one that goes from 0 to + 00 by passing under the real axis at the pole «.
After the angular integrations are performed, the integrand is even in
kno, and this contour can be reflected in the origin. The resulting con­
tour, which extends from - 00 to + 00, is exactly the same as that used
in the evaluation of (26.13) and shown in Fig. 21a. We therefore obtain
from the earlier work an explicit expression for the summation (30.14):

4?r1/~ r'l exp i"lr - r'l (30.16)
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Second-order Matrix Element. It is convenient to rewrite the matrix
elements (30.13) in terms of new functions

Fm(r - R) = f um(2)H~(2,r)uo(2)dr2
Fn(r/) = fUn(I)H~(1,r/)uo(l)drl

These functions are very small except when their arguments differ from
zero by distances of the order of the size of the atom. We put

r" = r - R,

so that practically all the contribution to the first summation of (30.12)
comes from small values of r' and r" . We can then approximate

R 'r" R · r '[r - r/l = IR + r" - r'] ~ R +~ -~
Ir - r'j-l ~R-l

to obtain the leading terms in (30.16) for large R. The first summation of
(30.12) then becomes, to this approximation,

_ 2m _1_ exp i(~ - k nm) . R f F ( ')[ '(k - ) . ']d Ih2 471"£3 R 10 r exp 't 0 ~ r r

.f Fm(r")[exp i(~ - k nm) . r"]dr" (30.17)

where ~ is a vector of magnitude K given by (30.14), that has the direction
of R.

In similar fashion, the second summation of (30.12) becomes

_ 2m _1_ exp i(~' + ko) . R f F ( ')[ _.( I + k ). ']d Ih2 471"£3 R 10 r exp 't X 10m r r

.f Fm(r")[exp i(ko + ~/) .r"]dr" (30.18)

where x' is a vector in the direction of R whose magnitude is given by
(30.14) with En replaced by Em.

The differential cross section is obtained by substituting the sum of
(30.17) and (30.18) for H;l in (30.6), and replacing k by k nm. Con­
servation of energy requires that

Discussion of the Cross Section. The integrals that appear in (30.17)
and (30.18) have the characteristic structure associated with the per­
turbation treatment of collision problems. They are very small unless
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the propagation vector that appears in the exponent of the integrand has
a magnitude that is of order 1/a or less, where a is a typical linear dimen­
sion of the atom (F significantly different from zero). It follows that
(30.17) is significant only when the vectors ko, le, and k nm are nearly equal
in magnitude and direction. Because of the assumption that the inci­
dent electron is fast, the magnitudes are very nearly equal in any event.
Then the cross section is appreciable only when the vectors Rand k nm are
nearly parallel to k o• The permitted angular deviation from parallelism
is easily seen to be of order 1/koa.

In similar fashion, it follows that (30.18) is significant only when
le', and hence R, is nearly antiparallel to both ko and k nm , in which case
the latter two vectors are nearly parallel to each other.

The two terms together show that excitation of both atoms occurs
with appreciable probability only when the line joining the two atoms is
nearly parallel to the direction of the incident electron. It is apparent
also that the cross section falls off inversely as the square of the distance
R between the two atoms, as would be expected.

31. ADIABATIC AND SUDDEN APPROXIMATIONS

In this section we develop approximation methods that involve the
rate of change of the Hamiltonian, rather than the magnitude of the time­
dependent part of the Hamiltonian. If the Hamiltonian changes very
slowly with the time, we expect to be able to approximate solutions of
the Schrodinger equation by means of stationary energy eigenfunctions
of the instantaneous Hamiltonian, so that a particular eigenfunction at
one time goes over continuously into the corresponding eigenfunction at a
later time (adiabatic approximation) . If the Hamiltonian changes from
one steady form to another over a very short time interval, we expect
that the wave function does not change much, although the expansion
of this function in eigenfunctions of the initial and final Hamiltonians may
be quite different (sudden approximation) . We determine here to what
extent both of these types of approximation are valid .

Expansion in Instantaneous Energy Eigenfunctions. We consider
first the adiabatic approximation, and wish to solve the Sehrodinger
equation

ih of = H(t)f
at (31.1)

when H(t) varies slowly with the time.' The solutions of the energy
eigenvalue equation at each instant of time are assumed to be known .

(31.2)
1 M. Born and V. Fock, Zeits. f. Physik, 61, 165 (1928) ; P. Giittinger, Zeits. f .

Phys ik , 73, 169 (1931).
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We assume also that the Un are orthonormal, nondegenerate, and dis­
crete; their phases are fixed below.

Suppose that the wave function is known at zero time; at later times
we put

(31.3)
n

Substitution of (31.3) into (31.1) gives

ih 2: (anUn + an a~n - ianU,.En) exp [ - i fat En(t')dt'J
n

= H 2: anun exp [ - i fat En(t')dt'J
n

Since HUn = Enun from (31.2), the last term on the left side cancels the
right side. Multiplying through on the left by ih and integrating over
all the coordinates of the system (fdr) , we obtain

ak = - 2: an exp [* fat (Ek - En)dt'J . f Uk a~n dr (31.4)
n

We now seek an expression for the integral on the right side of Eq.
(31.4) that is easier to interpret in physical terms. Differentiation of
(31.2) with respect to t gives

en + H aUn es; + E aUnat Un at = 7if Un n 7ft

Multiplying through on the left by Uk and integrating over the coordi­
nates gives

f Uk aa~ undr + f UkH a~n dr = En f Uk a~n dr, k ~ n (31.5)

We make use of Eq. (22.10) to rewrite the second integral on the left
side of Eq. (31.5), and remember that H is Hermitian.

f -H aUn d f (H - ) e«, d E f -aUn dUk 7ft r = Uk at r = k Uk at r

Substitution into (31.5) gives an expression for the integral on the right
side of (31.4)

n~k (31.6)
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(31.7)

Choice of Phases. In order to rewrite Eq. (31.4) along the lines
indicated in the last paragraph, we must have an expression for

f :.. eo; d
U n 7j{ T

We now show that this integral is pure imaginary, and that a proper
choice of the dependence of the phase of Un on t makes it zero. Differen­
tiation of the normalization integral for Un gives

O d f - d faun d + f - aUn d= dt UnUn T = 7j{ Un T Un7j{ T

Since the two integrals on the right are complex conjugates of each other,
each must be pure imaginary: fun(aunjat)dT = ia(t) .

We now change the phase of Un by an amount 'Y(t) , which is permissible
since the phases of the eigenfunctions are arbitrary at each instant of
time. For the new eigenfunction u~ == Unei'Y(I),

f u~ a~~ dr = f Une-i'Y :t (unei'Y)dT = ia(t) + i ~t 'Y(t)

Thus the choice 'Y(t) = - fol a(t')dt' for the phase makes the integral on

the left side of (31.7) vanish. In what follows, we assume that u~ has
been substituted for Un, with a consequent change in Eqs. (31.6), and
omit the primes.

We adopt our earlier notation hWkn = Ek - En, and substitute (31.6)
into (31.4):

(31.8)

where th e prime on the summation indicates that the term n = k is
excluded from the summation. The last term on the right side of Eq.
(31.8) is the kn matrix element of aH jat.

Adiabatic Approximation. The group of Eqs. (31.8) for all k's ill
exactly equivalent to the Schrodinger equation (31.1). We now estimate
the order of magnitude of ak by assuming that all the quantities
(an, Wkn, Un, aHjat) that appear on the right side of (31.8) are constant in
time. If further we assume that the system is in the state m at t = 0,
we can put an = Ilnm• We thus obtain

. 1 (aH) . IUk ~ -- -- e...•M

- hWkm at km '
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which is readily integrated to give

ak(t) ,....,~ (8H) (eiw•ml - 1),
thwkm at km

k;6.m (31.9)

With the above approximations, Eq. (31.9) shows that the probability
amplitude for a state other than the initial state oscillates in time and
has no steady change over long periods of time even though H changes
by a finite amount. If the change in H during the Bohr period for the
transition m ~ k is small in comparison with the energy difference
between these two states, the transition is unlikely to occur. The change
in amplitude of the state k after a long time is of the order of the ratio of
these two energies.

(31.10)

Connection with Perturbation Theory. An exceptional situation
arises when the Hamiltonian oscillates in time with a frequency nearly
equal to one of the transition frequencies, say Wkm' This is a case of
resonance, and we expect from the discussion of Sec. 29 that even a very
small change in H can produce appreciable changes in the amplitude ak
over long periods of time, so that (31.10) is not valid. It is then no
longer permissible to assume that the time dependence of aH / at can be
neglected, and jthe passage from (31.8) to (31.9) is not justified.

In order to consider this case more carefully, we assume that only a
small part of H oscillates in time with an angular frequency W that is
close to Wkm:

H = H o + H' sin wt, en H'- = W cos wt
at

(31.11)

where H' is small in comparison with H oand both of these are constant in
time. If then the dependence of an, Wkn, and Un on time is neglected and
we put an = onm as before, Eq. (31.8) becomes

. _ . wH~m cos wt . I
ak == e'W'm

hWkm

= wH~m [ei(w.m+w)l + e i(w.m-o»l]
2hwkm

This is readily integrated to give

wH' [ei(W.m+w)1 - 1 e i(w'm-w)l - 1J
ak(t) ~~ +----

2thwkm Wkm + W Wkm - W

This shows that the adiabatic approximation (31.10) breaks down for
"'km ::::: ±w, since then (31.11) increases steadily with the time. If Wkm is
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close to +w, the first bracket term can be neglected and we can replace
wiWkm outside the bracket by +1; if Wkm is close to -W, the second bracket
term can be neglected and we can replace wiWkm by -1. In both cases,
we see that (31.11) agrees with the perturbation-theory result given in Eq.
(29.17).

Discontinuous Change in H. As an introduction to the sudden
approximation, we consider first a situation in which the Hamiltonian
changes discontinuously from one form that is constant in time to another.
Suppose that H = H; for t < °and H = Hdor t > 0, where

and the u's and v's are complete orthonormal sets of functions that are
not necessarily discrete. The general solutions can be written

iE.t

", = Sanunc- T
iEmt

", = Sbmvmc- T

t < °
t>o

(31.12)

where the a's and b's are independent of the time.
Since the wave equation (31.1) is of first order in the time, the wave

function at all points in space must be a continuous function of the time
at t = 0, although its time derivative is not. The b's are then readily
expressed in terms of the a's by equating the two solutions (31.12) at
t = 0, multiplying by a particular V, and integrating over the coordinates :

b.; = Sanfvmundr (31.13)

The appearance of final states m that need not have the same energy as
an initial state is a consequence of the non-zero frequency Fourier com­
ponents into which the suddenly changing Hamiltonian can be resolved
(see Sec. 29).

Sudden Approximation. The sudden approximation consists in using
Eqs.(31.13) when the change in the Hamiltonian occupies a very short
but finite interval of time to. In order to make an estimate of the error
introduced in bm, we consider a problem that, while somewhat artificial,
can easily be solved formally. Suppose that H = Ho for t < 0, H = Hi
for t > to, and H = Hi for °< t < to. The intermediate Hamiltonian,
which is assumed to be constant in time, has a complete orthonormal set
of energy eigenfunctions:

H(Wk = EkWk

The true solution can be expanded in terms of the w's with constant
coefficients:

iE.!

", = SCkWkC- T o<t<to
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The continuity condition at t = 0 gives

[CHAP. VIII

(31.14)

In similar fashion, the continuity condition at t = to gives, with the help
of (31.14),

;(E.-Em)!.

bm = SkCkfv;"w{.dr' . e- A

;(E.-Em)!.

= SkSnanfwmundrfv;"w{.dr . e- A

i(E . - E m)!.

= SnanffV:"[Skw~wke - h JUndrdr' (31.15)

where the primes denote a different set of coordinate variables of integra­
tion. The closure relation (10.11) shows that the bracket in the last
term of (31.15) becomes a product of 0 functions of the differences
between primed and uriprimed coordinates when to = 0, in which case
the expression for b« agrees with (31.13), as it should.

The difference between the exact expression (31.15) for b« and the
approximate expression (31.13) is measured by the difference between
exp [-i(Ek - Em)tojh} and unity. This is small if to is small in compari­
son with all the periods hj(Ek - Em) that correspond to the eigenfunc­
tions k and m that appear when H changes .

A useful validity criterion is that to be small in comparison with the
periods associated with the initial motion, since new states of motion that
have very much shorter periods (high energies) are excited with relatively
small amplitudes. When the sudden approximation is useful, the error
in b.; (and hence in tf;) is of the order of the ratio of to to a typical initial
period.

Transient Disturbance. An interesting special case of (31.15) is that
in which initial and final Hamiltonians are the same (HI = H 0, Um = Um)
and the system is initially in a particular state n. Then if to is short
enough to satisfy the validity criterion of the last paragraph, we can
expand the exponential in the last member of (31.15) and retain only the
first two terms.

i; rv ff U:"SkW~Wk [1 - i~o (Ek - Em) ] undrd.,'

= ff U;"SkW~Wk [1 - i~o (Hi - Em) ] undrd.,'

With the help of the closure relation, the orthogonality of Umand Un when
m ~ n, the substitution EmUm = HoUm, and Eq. (22.10), this can be
reduced to
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i: r-J - i~o f um(H. - Ho)undr, m ¢ n (31.16)

Equation (31.16) can be generalized to a situation in which Hi depends
on the time; in this case a result that is also correct to first order in to

is obtained by replacing tu, by fola tuu.
It should be noted that the expression (31.16) for b« can be useful

even when H. - H 0 is not small in comparison with H 0, provided that
the general criterion for the validity of the sudden approximation is
satisfied (to sufficiently small). On the other hand, the perturbation
theory (Sec. 29) is useful when a small time-dependent addition to the
Hamiltonian is applied for a long time.

Disturbance of an Oscillator. As a simple example of the application
of the approximation methods developed in this section, we consider a
linear harmonic oscillator in which the position of the equilibrium point
aCt) depends on the time. The Hamiltonian for this system is

h2 a2

H(t) = - 2m ax2 + tK[x - a(t)J2

The instantaneous energy eigenfunctions are the harmonic-oscillator wave
functions (13.13) centered at the point aCt), and the energy levels are
unchanged :

Un(x) = NnHn[a(x - a)]e-!a'(z-a», En = (n + t)hwc

We suppose first that the equilibrium point moves slowly, and
investigate the circumstances under which the adiabatic approximation is
applicable. If the oscillator is initially in its ground state (n = 0), the
time derivative of the Hamiltonian aH/at = - K(x - a)d has a non­
vanishing matrix element only with the first excited state. With the
help of (13.18) this is found to be

(a!!\ = _ Kd _ = _ Kd(th)!(Km)-i
at }10 a.y2

Substitution into (31.9) shows that the coefficient of the time-dependent
factor in the amplitude of the first excited state has the magnitude

Kd (th)! d
hw~ (Km)i = (2hwc/m)!

This expression may be interpreted physically by noting that the denomi­
nator is of the order of the maximum speed of a hypothetical classical
oscillator that has the zero-point energy. Thus the adiabatic approxima­
tion is good if the equilibrium point moves slowly in comparison with the
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classical-oscillator speed . It is easily seen that for the nth excited state,
the equilibrium-point speed must be small in comparison with l /n times
the corresponding classical-oscillator speed .

The sudden approximation can be applied to an oscillator in its ground
state when the time required to move the equilibrium point from one
steady position to another is small in comparison with l /w c• If this point
is displaced a distance a in the positive direction along the line of motion,
application of (31.13) shows that the probability amplitude for the nth
state after the displacement is

This integral is identical with the expression for An in Eq. (13.21), except
for the sign of a, and has already been evaluated with the help of the
generating function (13.10) for the Hermite polynomials. The earlier
discussion (Sec. 13) shows that the states most likely to be excited are
those that have a classical amplitude of oscillation that is of the order of
the displacement c; this is in agreement with the corresponding classical
result.

Problems

1. A hydrogen atom in its ground state is placed between the plates of a condenser.
A voltage pulse is applied to the condenser so as to produce a homogeneous electric

t
field that has the time dependence: E = 0, t < 0 ; E = Eoe - ;, t > O. Find the first­
order prob ability that the atom is in the 2S state (200) after a long time. What
is the corresponding probability that it is in one of the 2P states?

2. An alternating voltage of angular frequency w > me' /2h3 is applied to the
condenser of Prob. 1. What is the probability per unit time for the hydrogen atom
to make a transition from its normal state to an ionized state? Assume, only for the
purpose of this problem, that the electronic wave function for the ionized state can be
represented by a plane wave .

3. Extend Eq. (29.20) to the case in which a transition can occur only in th ird
order of the perturbation. Assume that none of the intermediate states has the same
energy as the initial and final states.

4. Use the perturbation theory to calculate the differential collision cross section
for the IS -> 2S excitation of a hydrogen atom. Integrate this to obtain the total
cross section, and show that it becomes the expression given in Sec. 30 at high bom­
barding energy.

6. Use the perturbation theory to calculate the differential collision cross section
for the IS -> 2P excitation of a hydrogen atom. Show that the total cross section
becomes the expression given in Eq. (30.11) at high bombarding energy.

6. Discuss the statement that appears at the end of the next to the last paragraph
of Sec. 31. In particular, show physically why it need not be a sufficient condition
for the applicability of the adiabatic approximation that the equilibrium-point speed
be small in comparison with the corresponding classical-oscillator speed.
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7. Under what circumstances is ..p(t) = [exp (- iHt/h)]..p(O) a valid representation
of the solution ..p at time t in terms of the Hamiltonian H and the solution at time
zero? Show that, in general, the operator Ht in the exponent cannot be replaced by
(t (tolo Hdt'. Show, however, that H,to in Eq. (31.16) can be replaced by lo H,dt to first

order in to.
8. A hydrogen nucleus of mass 3 is radioactive, and changes into a helium nucleus

of mass 3 with the emission of an electron that has not more than about 17,000 elec­
tron-volts energy. Show that the sudden approximation can be applied to the extra­
nuclear electron that is initially present in the hydrogen atom, and is superior to the
other approximation methods that might be used. Calculate the numerical values
of the probabilities that the resulting helium ion is found in its IS, 2S, and 2P states
if the hydrogen atom is initially in its IS state. Give a qualitative discussion of the
energy balance in this process .



CHAPTER IX

IDENTICAL PARTICLES AND SPIN

The quantum-mechanical theory of particles presented thus far is
deficient in three respects. First, whenever two or more particles are
described at once, like the electron and proton of the hydrogen atom
(Sec. 16) or the incident and atomic electrons in an inelastic collision
(Sec. 30), it is assumed that the particles can be distinguished from each
other. This is a valid assumption in the first example, since electrons
and protons possess quite different masses and electrical charges. In
the second example, however, there is no observable difference between
the incident and atomic electrons, and the consequences of this identity
should appear in the formalism. The second defect of the theory is the
omission of an intrinsic spin angular momentum, or spin , actually pos­
sessed by some of the particles found in nature.! Third, no mention has
as yet been made of the special theory of relativity, which is expected to
affect the theoretical description of particles that move with speeds close
to that of light.

The ways in which the first two of these defects can be remedied are
described in this chapter, and illustrative examples are discussed.
Relativistic effects are taken up in Chap. XII.

32. IDENTICAL PARTICLES

Identical particles cannot be distinguished by means of any inherent
property, since otherwise they would not be identical in all respects.
In classical mechanics, the existence of sharply definable trajectories for
individual particles makes it possible in principle to distinguish between
particles that are identical except for their paths, since each particle can
be followed during the course of an experiment. In quantum mechanics,
the finite size and the spreading of the wave packets that can describe
individual particles often make it impossible to distinguish between
identical particles because of their positions, especially if they interact
with each other to an appreciable extent. This is true of the electrons
in a single atom, where we have seen that the description in terms of
moving wave packets breaks down completely. However, the electrons
of different atoms that are well separated from each other may, to good

1 Spin was first discovered in connection with electrons, by G. E. Uhlenbeck and
S. Goudsmit, Naturwiss., 13, 953 (1925); Nature, 117, 264 (1926).
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approximation, be regarded as distinguishable. This section considers
some of the effects of identity on the quantum-mechanical treatment of
systems of two or more particles. Other effects that involve the spin
explicitly will be taken up in the remainder of this chapter.

Physical Meaning of Identity. The impossibility in principle of dis..
tinguishing between identical particles in most quantum-mechanical
problems can lead to effects that have no classical analogue. As an
example, we compare the elastic collision of two identical particles that
have a particular interaction between them, with the collision of two
different particles that have the same interaction between them.

In a classical treatment, there is no difference of principle between the
results of these two experiments, since it is possible to distinguish between
the incident and struck particles in the first case as well as in the second.
In practice, however, this distinction would usually be made only in the
second experiment. Thus, according to classical mechanics, the meas­
ured differential cross section in the first experiment is equal to the sum
of the corresponding cross sections measured for the incident and struck
particles in the second experiment. In the corresponding quantum­
mechanical situation, the identical particles in the first experiment cannot
be distinguished by means of their trajectories, since they cannot be well
localized without interfering with the scattering process. Thus the dis­
tinction between incident and struck particles has no physical significance,
and the simple connection between the results of the two experiments that
is found in the classical case need not exist.

We use the word identical to describe particles that can be sub­
stituted for each other under the most general possible circumstances
with no change in the physical situation. Identical particles can in some
cases be distinguished from each other, as when their wave packets do
not overlap. Another case, discussed more fully in Sec. 33, arises when
each of the particles possesses an intrinsic spin angular momentum,
which is a constant of the motion in a particular collision. Then since
the component of the spin along some axis is assumed not to change dur­
ing this collision, the particles can be distinguished if they have different
spin components. Results of this kind must, of course, be a consequence
of the formalism that we now set up .

Symmetric and Antisymmetric Wave Functions. The Schrodinger
wave equation for n identical particles is

ill, :t if; (1,2, .. . ,nj t) = H(1,2, ... ,n)if;(1,2, ... ,nj t) (32.1)

where each of the numbers represents all the coordinates (positional and
spin) of one of the particles. The Hamiltonian H is symmetrical in its
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arguments, since the identity of the particles means that they can be
substituted for each other without changing H .

There are two kinds of solutions if;of Eq. (32.1) that possess symmetry
properties of particular interest. A wave function is symmetric if the
interchange of any pair of particles among its arguments leaves the wave
function unchanged. A wave function is antisymmetric if the interchange
of any pair of particles changes the sign of if;. We now show that the
symmetry character of a wave function does not change in time. If
if;s is symmetric at a particular time t, then Hif;s is also symmetric, and
(32.1) states that aif;sjat is symmetric. Since if;s and its time derivative
are symmetric at time t, if;s at an infinitesimally later time t + dt is given
by if;s + (aif;s jat)dt, and is also symmetric. Such a step-by-step integra­
tion of the wave equation can, in principle, be continued for arbitrarily
large time intervals, and if;s is seen to remain symmetric always . In
similar fashion , if if;A · is antisymmetric at any time, Hif;A and hence
aif;A jat are antisymmetric, and integration of the wave equation shows
that if;A is always antisymmetric.

The foregoing proof is not altered if H and if; have as their arguments
the coordinates of two or more different groups of identical particles;
thus a wave function that is initially set up to be symmetric or anti­
symmetric in the coordinates of each identical-particle group always
retains this character. This makes it possible for the different groups of
identical particles found in nature to have definite symmetry characters,
and this is actually found to be the case. Electrons, protons, and neu­
trons are the only material particles for which the experimental evidence
is unambiguous, and each of these kinds of particles is described by anti­
symmetric wave functions.

Construction from Unsymmetrized Functions. We now show how
!J;s or !J;A can be constructed from a general unsymmetrized solution if;
of Eq. (32.1). If the arguments of if;are permuted in any way, the result­
ing function is a solution of (32.1). That this is true follows from the
observation that the same permutation applied throughout Eq. (32.1)
does not impair its validity, since it corresponds simply to a relabeling
of the particles; then since H is symmetric, the permuted H is the same
as the original H, and the resulting equation is the same as (32.1) for
the permuted if;. In this way n! solutions can be obtained from anyone
solution, each of which corresponds to one of the n! permutations of the n
arguments of !J;. It is evident that any linear combination of these func­
tions is also a solution of the wave equation (32.1).

The sum of all these functions that are linearly independent is a sym­
metric (unnormalized) wave function if;s, since the interchange of any
pair of particles changes anyone of the component functions into another
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of them and the latter into the former, leaving the entire wave function
unchanged. An antisymmetric unnormalized wave function can be con­
structed by adding together all the permuted functions that arise from
the original solution by means of an even number of interchanges of pairs
of particles, and subtracting the sum of all the permuted fun ctions that
arise by means of an odd number of interchanges of pairs of particles in
the original solution. It is apparent that a nonvanishing antisymmetric
wave function cannot be formed from a solution that is unaltered by the
interchange of any pair of particles.

In the event that the Hamiltonian does not involve the time, station­
iEt

ary solutions y,(1 ,2, ... ,n; t) = u(1,2, .. . ,n)e- h can be found,
where

[H(1,2, .. . ,n) - E]u(1 ,2, .. . ,n) = 0

The earlier discussion shows that the solutions derived from any u by
means of permutations of its arguments are degenerate with the original
u; this is called exchange degeneracy. When n = 2, the 21 = 2 permuta­
tions result in u(1 ,2) and u(2,1); the symmetric and antisymmetric com­
binations are obtained by taking the upper and lower sign, respectively, in

u(1,2) ± u(2 ,1) (32.2)

When n = 3, the 31 = 6 permutations yield u(1,2,3), u(2,1 ,3), u(3 ,2,1),
u(1,3,2) , u(2,3,1), and u(3,1,2); the symmetric and antisymmetric com­
binations are

[u(1,2,3) + u(2 ,3,1) + u(3,1,2)]
± [u(2,1,3) + u(1 ,3,2) + u(3,2,1)] (32.3)

with the upper and lower sign, respectively.
All the energy eigenfunctions that are exchange degenerate with

u(1,2) can be formed from the two solutions (32.2). When n = 3,
however, there are four linearly independent eigenfunctions that cannot be
formed from the two functions (32.3) . These additional solutions, which
always appear when n > 2, can be chosen so as to possess permanent
symmetry characters that resemble but are somewhat more complicated
than those of the symmetric and antisymmetric solutions. However,
they do not appear to describe particles found in nature.

Distinguishability of Identical Particles. It is to be expected that
the result of an experiment is independent of the symmetry character of
the wave function if the coordinates of the particles do not overlap. This
corresponds to a situation in which the particles can be distinguished by
means of their positions (or their spin components) even though they are
identical. Such a situation implies, in the case of two particles, that the
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wave function u(1 ,2) is different from zero only when the coordinate 1 is
in some region A, the coordinate 2 is in a region B, and A and B have no
common domain.

The coordinate probability density associated with the wave function
u(1,2) is IU(1,2)1 2, and the densities associated with the symmetrized
wave functions (32.3) are

lu(1,2) ± u(2,1)12 = lu(1,2)12 + lu(2 ,1)12 ± 2Re[u(1,2)u(2,1)] (32.4)

where Re denotes the real part of the expression in brackets. If now
u(1,2) vanishes whenever 1 is not in A and 2 is not in B, and A and B do
not overlap, the bracket term is zero everywhere, and (32.4) becomes
lu(1,2)[2 + lu(2 ,1)12.

Thus the density associated with either of the symmetrized wave
functions (32.2) is the sum of the densities associated with u(1,2) and
u(2,1) separately. This is precisely the result that will be obtained if
the particles are not identical but no attempt is made to distinguish
between them in performing the experiment. Thus the interference
effects between exchange-degenerate wave functions, represented by the
bracket term in (32.4) , disappear when the coordinates of the particles
do not overlap.

The Exclusion Principle. In many problems, a useful zero-order
approximation can be obtained by neglecting the interactions between the
particles that make up the system under consideration. The approxi­
mate (unperturbed) Hamiltonian is the sum of equal Hamiltonian func­
tions for the separate particles

H o(1,2, .. . ,n) = H~(l) + H~(2) + . . . + H~(n) (32.5)

and the approximate energy eigenfunction is a product of one-particle
eigenfunctions of H~

u(1 ,2, . . . ,n) = va(l)vll(2) v.(n)
E = E a + Ell + + E. (32.6)

H~(l)va(l) = Eava(l) , etc.

H the particles are electrons, an antisymmetric wave function must be
constructed from the u given by (32.6). This is most easily expressed
as a determinant of the v's:

u.4(1,2, ... n) = (32.7)

v.(l) v.(2) v.(n)

The (unnormalized) UA given in (32.7) is clearly an antisymmetric solu­
tion of the approximate wave equation (H0 - E)UA = O.
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Equation (32.7) has the interesting property that it vanishes if two
or more of the v's are the same. This is a special case of the general
result stated earlier that an antisymmetric wave function cannot be
constructed from a solution that is unaltered by the interchange of any
pair of particles. Thus the approximate Hamiltonian H 0 has no solu­
tions for which there is more than one electron in anyone of the states
lX, fl, . .. , v, This result is known as the exclusion principle and was
first postulated by Pauli! as an explanation of the periodic system of the
chemical elements (see Sec. 38).

Connection with Statistical Mechanics. The unsymmetrized zero­
order solution given in Eq. (32.6) can be used to construct a symmetric
as well as an antisymmetric wave function. Such a symmetric (unnor­
malized) function is easily seen to be the sum of all different permutations
of the numbers 1,2, . . . ,n among the one-particle eigenfunctions
Va, Vp, • . . , V.. This wave function is unique, and can be specified
simply by stating how many particles are in each of the states a, fl, . . . .
In the same way, an antisymmetric wave function can be specified by
stating how many particles are in each state. The fundamental statis­
tical difference between particles that are described by antisymmetric
and by symmetric wave functions is that the number of the former type
that can occupy any state is limited to 0 or 1, whereas any number
(0,1,2, .. .) of the latter type of particles can occupy any state.

The treatment of aggregates of large numbers of noninteracting (or
weakly interacting) particles for which the states can be enumerated in
these two ways forms the subject matter of quantum statistical mechanics.
Particles that are described by antisymmetric wave functions are said to
obey Fermi-Dirac statistics, and particles that are described by symmetric
wave functions obey Einstein-Bose statistics.2

Of the material particles whose statistics are definitely known,
electrons, protons, and neutrons obey Fermi-Dirac statistics, and 1f'

mesons obey Einstein-Bose atatistics.! Also, light quanta, or photons,
in so far as they can be treated as particles, obey Einstein-Bose statistics
even though they cannot usefully be described by means of wave func­
tions. Further, aggregates of particles that are sufficiently tightly bound
so that they can be regarded as <l particles" are described either by sym­
metric or by antisymmetric wave functions.

For example, the nucleus of a helium atom is made up of two protons,
two neutrons, and an indeterminate number of 1f' mesons, which are
strongly bound together. If we consider a number of helium nuclei that

1 W. Pauli, Zeits. f . Physik, 81, 765 (1925).
'See, for example, R. C. Tolman, "The Principles of Statistical Mechanics,"

Chap. X (Oxford, New York, 1938).
I R. E . Marshak, "Meson Physics," Chap. 4 (McGraw-Hill, New York, 1952).
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interact with each other weakly enough so that the changes in the internal
motions of the nuclei can be neglected, we can see that the motions of the
centers of gravity of the nuclei can be described approximately by a sym­
metric wave function. The interchange of a pair of helium nuclei can
be thought of as the resultant of the interchanges of two pairs of protons,
two pairs of neutrons, and a number of pairs of 71" mesons . Since
the actual wave function is antisymmetric in all the protons and in all the
neutrons, the resultant of the first four interchanges leaves the approxi­
mate wave function unchanged ; the symmetry of the wave fun ction in the
71" mesons is such that the latter interchanges also have no effect . By an
extension of this argument, we see that weakly interacting "particles"
(nuclei, atoms, or molecules) obey Einstein-Bose statistics when each of
them consists of an even total number of electrons, protons, and neutrons,
and obey Fermi-Dirac statistics when each consists of an oddtotal number
of these particles.1

Collisions of Identical Particles. When the only forces acting on two
particles result from their mutual interaction, the over-all motion can be
separated into motion of the center of mass of the two particles and
motion of the particles relative to each other, as discussed in Secs. 16 and
18. It is apparent that an interchange of two identical particles does not
affect the position vector of the center of mass [which is i(rl + r2) since
the particles have equal masses] , but changes the sign of the relative
position vector r (= rl - r 2) . We postpone consideration of the spins of
the particles until the next section, and see now what effect symmetry
or antisymmetry of the space part of the wave fun ction has on the elastic
scattering of a particle by another that is identical with it.

The asymptotic form of the unsymmetrized scattering wave function
in the center-of-mass coordinate system is given by Eq. (18.10) .

u(r) -----t eikz + r-1!(O,cP)eikr (32.8)
,...... ..

where r,8,cP are the polar coordinates of the relative position vector r.
Since the polar coordinates of the vector -r are r, 71" - 0, cP + 71", the
asymptotic forms of the symmetric and antisymmetric wave functions
formed from (32.8) are given by

(eikz ± e-ikz) + [f(O,cP) ± !(71" - 0, cP + 71")]r-1eikr (32.9)

with upper and lower signs, respectively.
From the discussion of Sec. 18, it follows that the differential scatter­

ing cross section in the center-of-mass coordinate system is the square of
the magnitude of the bracket term in (32.9):

cr(8,cP) = 1!(8,cP)i2 + 1!(71" - 8, cP + 71")i2
± 2Re[!(O,cP)!(71" - 8, cP + 71")] (32.10)

1 A more rigorous treatment that leads to the same conclusion has been given by
P. Ehrenfest and J . R . Oppenheimer, Phys. Rev., 37, 333 (1931).
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The normalization adopted here can be justified by noticing that in the
classical limit, where the identical particles are distinguishable and the
last (interference) term in Eq. (32.10) drops out, O'(8,q,) becomes just
the sum of the differential cross sections for observation of the incident
particle (If(8,q,)12) and of the struck particle (If(7I" - 8, q, + 71")12), as it
should.

In the usual case, for which f is independent of q" it is apparent that
the scattering per unit solid angle is symmetrical about 8 = 90° in the
center-of-mass coordinate system. It is easily seen from Eq. (18.7) with
'Y = 1 that the scattering per unit angle (not per unit solid angle) in
the laboratory coordinate system

0'0(80) sin 80 = 4 cos 80sin 80 Ilf(280)12
+ If(7I" - 280)12 ± 2Re[f(280)J(7I" - 280)]}

is symmetrical about 80 = 45°.

33. SPIN ANGULAR MOMENTUM

The treatment of identical particles presented in the preceding section
must now be supplemented by inclusion of the spin angular momenta of
the particles. It was shown in Sec. 24 that the operator M, which has
the properties associated with an angular momentum, can be represented
by matrices in an infinite number of ways . For each representation,
M2 and one component of M, say M., can be diagonalized; their eigen­
values are j(j + 1)n2 and the series jn, (j - l)n, . . . , - jn, respec­
tively, where 2j is zero or a positive integer. If the expression for M
in terms of the position and momentum of a particle (r X p) is abandoned,
then M2 can commute with the Hamiltonian for that particle. In this
case, M2, and hence i. is a constant of the motion and characterizes the
particle for all time; the corresponding intrinsic angular momentum is
called the spin of the particle. We shall replace M by Sand j by 8 in
dealing with the spin.

Connection between Spin and Statistics. As remarked in Sec. 24,
electrons, protons, and neutrons have s = j , and 71" mesons have s = O.
Aggregates of particles that are sufficiently tightly bound can be regarded
as "particles," and can be characterized by definite magnitudes of their
total internal angular momenta, so long as their internal. motions and the
relative spin orientations of their component particles are not sig­
nificantly affected by the interactions between aggregates. This is
exactly analogous to the situation with regard to the statistics obeyed
by the aggregates, discussed in the preceding section.

The treatment of the addition of angular momenta, presented at the
end of Sec. 24, can be generalized to give the possible magnitudes of the
total internal angular momentum, which we call the spin, of any aggre­
gate of fundamental particles. If the aggregate consists of n particles.
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each of which has 8 = i, and any number of particles with 8 = 0, and if
the internal orbital angular momentum of these particles is ignored, the
total 8 can be any integer from 0 to in if n is even, or can vary by integer
steps from i to in if n is odd. The total orbital-angular-momentum
quantum number can be shown to be an integer or zero in general ;' its
inclusion extends the maximum value of 8 for the aggregate, but does not
alter the conclusion that 8 is zero or an integer if n is even, andis half an
odd integer if n is odd.

We see then that for the known'fundamental particles and for aggre­
gates of them that have a definite spin , there is a unique connection
between the spin and the statistics. Particles or aggregates that have
zero or integer spin are described by symmetric wave functions and obey
Einstein-Bose statistics, and particles or aggregates that have half-odd­
integer spin are described by antisymmetric wave functions and obey
Fermi-Dirac statistics. There is some theoretical reason, based on
relativistic quantum mechanios.! to believe that this connection also
holds for other fundamental particles whose existence is suspected but
whose spin and statistics have not yet been determined (other mesons and
neutrinos) .

Spin Matrices and Eigenfunctions. The spin can be included in the
formalism developed in Sec. 32 by having each of the numbers 1,2, . .. ,n
that appear as the arguments of if! and u represent a spin coordinate as
well as the three space coordinates of that particle. The spin coordinate
differs from the space coordinates in that it takes on only 28 + 1 values
for a particle (or aggregate) of spin 8, instead of the infinite number of
values that are taken on by each space coordinate. Thus the II spin
space" consists of a finite number of points. The spin wave function of a
single particle is completely determined by the specification of 28 + 1
numbers, whereas the space wave function involves the specification of a
continuously infinite set of numbers (which is equivalent to a continuous
function of the space coordinatesj.!

A convenient set of orthonormal one-particle spin functions is pro­
vided by the normalized eigenfunctions of the M2 and M. matrices given
in equations (24.15). These eigenfunctions are (28 + I)-row, one-column
matrices that have zeros in all positions except one. For example, if
8 = i, the four spin eigenfunctions are easily seen to be

1 The work of Secs. 14 and 24 shows that this is true for noninteracting particles
that move in central force fields, and the result turns out not to be affected by particle
interactions.

2 W. Pauli, Phys. s«, 58, 716 (1940).
3 If the space and spin motions are closely enough coupled together, the space wave

function may depend on the spin coordinate, so that 28 + 1 space functions are
required.



SEC. 33] IDENTICAL PARTICLES AND SPIN 231

'(il ~ (~} .(tl - (;)••(-tl ~ (~} 'Hl ~ (~) (33.1)

and correspond to S. eigenvalues of iii, iii, -iii, and -iii, respectively.
The orthonormality is demonstrated by multiplying the Hermitian
adjoint of one spin function into itself or another function

(0100) (0) _o - 0, etc.
1
o

with the help of the usual rule for matrix multiplication.
Symmetric or antisymmetric many-particle wave functions can be

constructed from unsymmetrized solutions that include the spin by fol­
lowing the procedure outlined in the preceding section. It is sometimes
convenient to choose the unsymmetrized solutions to be eigenfunctions
of the square of the magnitude of the total spin of the identical particles
(8 1 + 8 2 + + 8 n)2 and of the z component of this total spin
SIz + S2. + + Sn.. These quantities are constants of the motion
rf the Hamiltonian does not contain interaction terms between the spins
and other angular momenta. In addition, such functions are often useful
as zero-order wave functions when the spin interactions are weak enough
to be regarded as a perturbation. There is no loss of generality in choos­
ing the unsymmetrized solutions in this way, since in the absence of spin
interactions any solution can be expressed as a linear combination of total­
spin eigenfunctions.

Collisions of Identical Particles. The effect of spin on the collision of
two identical particles (or aggregates) can now be taken into account if
the interaction between the particles does not involve the spin. Since
each particle has 28 + 1 spin eigenfunctions, there are altogether (28 + 1)2
independent spin functions for the pair, each of which is a product of
one-particle spin functions.

Any (28 + 1)2 linearly independent combinations of these products
can be used in place of them. These are conveniently divided into three
classes. The first class consists of products of one-particle functions in
which both particles are in the same spin state with S. value mh:

Vl(m)V2(m), -8 ~ m ~ 8

where the subscript specifies which of the particles is in each state;
there are evidently 28 + 1 such states. The second class consists of
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Vl(m/)V2(m") + Vl(m")V2(m/), m' ~ m"

There are 8(28 + 1) of these states. The third class consists of dif­
ferences of products

vl(m/)v2(m") - vl(m")v2(m/), m' ~ m"

Again there are 8(28 + 1) of these.
The first two classes are clearly symmetric in an interchange of the

spin coordinates of the two particles, and the third class is antisymmetric
in such an interchange. Thus the total of (28 + 1)2states can be divided
into (8 + 1)(28 + 1) symmetric and 8(28 + 1) antisymmetric states.
Associated with the symmetric spin states must be a symmetric space
state if 8 is an integer (symmetric total wave function), and an anti­
symmetric space state if 8 is half an odd integer (antisymmetric total
wave function) . Similarly, the antisymmetric spin states multiply
antisymmetric space states if 28 is even, and multiply symmetric states
if 28 is odd. We see then that if all the spin states are equally likely to
appear in a collision;' a fraction (8 + 1)/(28 + 1) of the collisions will be
described by the wave function (32.9) with the upper sign, and a fraction
8/(28 + 1) will be described by (32.9) with the lower sign, if 28 is even .

This and the similar result for 28 odd can be summarized by rewriting
Eq. (32.10)

Cl(O) = If(0)12 + If(1I" - 0)12+ ~;~2; 2Re[f(0)J(1I" - 0)] (33.2)

where f is assumed to be independent of 4>.
Equation (33.2) can also be derived by making use of the earlier

observation that particles that have different spin components are dis­
tinguishable, in which case the interference term in (32.10) disappears.
This occurs in a fraction 28/(28 + 1) of the collisions. In the remaining
fraction 1/(28 + 1) of the collisions, the particles have the same spin
component, and the symmetric or antisymmetric space state (upper or
lower sign in the interference term) must be used according as 28 is even
or odd.

Electron Spin Functions. In the remainder of this chapter we con­
sider only electron spin functions (8 = i) . The spin matrices are given
by the first line of Eq. (24.15), and may be written as S = ihd, where

1 See footnote 1, page 242.

(
0 -i)

Clv = i 0 ' (33.3)
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are called the Pauli spin matrices.1 The normalized eigenfunctions of 8.
may be written in analogy with Eqs. (33.1) as

v(j) = (~} v(-j) = (~) (33.4)

and have eigenvalues jh and -jh, respectively; they are both eigenfunc­
tions of 8 2 with the same eigenvalue !h2•

Since we shall have occasion to write down products of spin functions
for different electrons, it is convenient to abbreviate the notation as
follows:

Vl(j)V2( -t)VS(j)V4(j) = (+ - + +), etc.

where the first particle has the eigenvalue jh for 8 lz, the second has the
eigenvalue -jh for 8 2: , etc . 8 1 has no effect on the spin functions of
any but the first particle.

The following operational rules are easily obtained from (33.3) and
(33.4) :

0"",(+) = (-), 0",,( +) = i( -), 0":( +) = (+)
0"",(-) = (+), 0",,(-) = -i(+), O"z(-) = _(_) (33.5)

There are four linearly independent spin functions for a pair of elec­
trons: (++), (+-), (-+), (--). These are orthonormal, since the
one-particle spin functions (33.4) are orthonormal. As remarked earlier,
it is often convenient to regroup these functions into combinations that
are eigenfunctions of (8 1 + 8 2) 2 and 8 lz + 8 2: . It can be verified with
the help of (33.5) that the following four combinations are orthonormal
and have the indicated eigenvalues:

(8 1 + 8 2) 2 81< + 8 2•

(+ + ) 2h2 h
2-![ (+-) + (-+)] 2h2 0 (33.6)

(--) 2h2 -h

2-![(+-) - (-+)] 0 0

It is interesting to note that the first three of the two-particle spin
functions (33.6) together behave in all respects like a single "particle"
of spin s = 1, and the last of the spin functions (33.6) behaves like a
single "particle" of spin s = 0.2 Not only do they have the proper
eigenvalues of the square of the magnitude of the total spin and the z
component of the total spin, but the result of operating on the triplet
spin function with the x or y components of the total spin is in agreem ent

1 W. Pauli, Zeits. f Physik, 43, 601 (1927).
2 The first three states are called a triplet and the last a singlet. In th e old quantum

theory, the triplet corresponds to parallel electron spins and the singlet to antiparallel
spins.



234 . QUANTUM MECHANICS [CHAP. IX

(338;

with the corresponding matrices in the second line of Eq. (24.15). This
provides an example of the addition of angular momenta; according to
Sec. 24, the combination of two systems of angular momenta t results in a
system of angular momentum either 1 or O.

The Helium Atom. The ground state of the helium atom was con­
sidered from the point of view of the variation method in Sec. 27. We
now consider the ground and first excited states of helium with the help
of the somewhat simpler first-order perturbation theory of Sec. 25; the
symmetry effects of the spins of the two electrons are taken into account,
although spin-dependent forces are neglected. We use products of
hydrogenic wave functions Unlm (with Z = 2) as the unperturbed eigen­
functions of the problem, and are interested in classifying the states
according to symmetry and spin properties rather than in obtaining
accurate energy levels.

In spectroscopic notation, the ground state of helium is the 182 state:
both electrons are in the hydrogenic state UIOO. Since this space state is
symmetric, the spin state that multiplies it must be the antisymmetric
singlet given as the last of the functions (33.6), for which the total spin
is zero.

The space part of the first excited state of helium is eightfold degener­
ate in the zero-order approximation. The spectroscopic configurations
are 1828 and 182p. Apart from electron exchange, the first state is non­
degenerate and the second is triply degenerate (because of the three 2p
states); the exchange degeneracy doubles the number of states, since
either electron can occupy the 18 state and the other the 28 or 2p state.
In order to simplify matters, we consider here only the doubly (exchange)
degenerate 1828 state; it is not difficult to show that the 182p states can
be treated separately (see Prob. 7).

The perturbation energy is the electrostatic repulsion between the
electrons e2/r12, and the unperturbed states are uIOO(rl)u200(r2) and
uIOO(r2)u200(rl). The spin need not be considered explicitly at this point
since the spin-dependent forces are neglected; appropriate spin functions
will be multiplied in later to make the entire wave function antisym­
metric. The matrix of the perturbation for these two states has the
structure of (25.16) and can be written

(~ ~) (33.7)

where

J = JJulOO(rl)u200(r2) ~ uIOO(rl)u200(r2)dT1dT2
r12

K = JJuIOO(rl)u200(r2) .::. uIOO(r2)u200(rl)dTldT2
r12

J is often called the direct or Coulomb energy, and K the exchange energy.
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(33.9)

Application of the diagonalization technique of Sec. 25 (see the treat­
ment of the first-order Stark effect in hydrogen) shows that the eigen­
values of the perturbation (33.7) are J + K and J - K; they correspond
to the normalized eigenfunctions 2- I[uIOO(rl)u200(r2) + uIOO(r2)u200(rl)]
and 2- i[uIOO(rl)u200(r2) - uIOO(r2)u200(rl)], respectively. Since the first
of these is a symmetric space function, it must be multiplied by the anti­
symmetric singlet spin function. Similarly the second, which is an anti­
symmetric space function, must be multiplied by one of the symmetric
spin functions that make up the triplet in (33.6) . Since K turns out to be
positive, the singlet spin state has a substantially higher energy than the
triplet spin states. This is not due to a spin-dependent interaction, but
to a coupling between the spins and the electrostatic interaction that is
introduced by the exclusion principle (use of antisymmetric wave
functions).

Spin Functions for Three Electrons. In the treatment of exchange
scattering from helium that is given in the next section, we shall require
eigenfunctions of the total spin of three electrons that are analogous to
those given in Eqs. (33.6) for two electrons. We can regard three elec­
trons as 1 + 2 electrons, in the sense that we can combine an electron
(8 = t) with the triplet two-electron function (8 = 1) and with the singlet
function (8 = 0). In the first case, the results on addition of angular
momenta, given in Sec. 24, show that we should get two groups of spin
functions for the three electrons that correspond to 8 = t and 8 = !i in
the second case we should get a single group of three-electron spin func­
tions that correspond to 8 = t . We thus expect one quartet group of spin
states (8 =!) and two distinct doublet groups of spin states (8 = t),
or a total of 4 + 2 + 2 = 8 individual three-electron spin states. These
must of course be expressible as linear combinations of the 23 = 8
products of one-electron spin functions.

It is not difficult to show that the following eight combinations are
orthonormal and have the indicated eigenvalues :

(8 1 + 8 2 + 8 3) 2 S10 + S20 + S30
(+++) Jlh2!h

3- i[(++-) + (+-+) + (-++)1 V h2 ih
3- i[ ( - - +) + (- + -) + (+ - - )I Jfh 2

- ih
( - - -) Jfh,2 -!h

6- i[(++-) + (+-+) - 2(-++)] th2 ih
6- i[(--+) + (-+-) - 2(+--)1 !h2 -ih

2-i[(++-) - (+-+)1 !h2 ih
2- i [ ( - - + ) - (-+-)] !h2 -itt

The first four (quartet) states are symmetric in the interchange of any
pair of particles. The division of the four doublet states into two pairs
is arbitrary, and is done here in such a way as to make the first pair of
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doublet states symmetric in the interchange of particles 2 and 3, and the
second doublet pair antisymmetric in 2 and 3. As they are written, the
doublets have no symmetry with respect to interchanges of the other pairs
of particles.

34. REARRANGEMENT COLLISIONS

Cross sections for elastic and inelastic collisions of electrons with
hydrogen atoms were calculated in Sec. 30 by means of perturbation
theory, under the assumption that exchange of the incident and atomic
electrons can be neglected. In this section, we consider the effects of
electron exchange taken together with spin and the exclusion principle,
but continue to use perturbation theory, which is most useful for high­
energy collisions.' We first consider a general rearrangement collision
by means of the Born approximation of Sec. 26, then show the connection
between this method and the time-dependent perturbation theory of
Sec. 29, and finally apply the theory to exchange collisions of electrons
with hydrogen and helium atoms.

Notation for Rearrangement Collisions. A general binary rearrange­
ment collision can be described as an event in which a system A in state
m collides with a system B in state n, and systems C in state sand D in
state t emerge. It is assumed that the same particles make up the sys­
tems A,B as make up the systems C,D (no particles appear or disappear
and no photons are involved), although the particles are rearranged dur­
ing the collision. We use the letters A,B,C,D to denote all the internal
coordinates (including spins) of the respective systems, fab and fed to
denote the vectors that connect the centers of mass of the systems

A,B and C,D, respectively, and 'M ab = M~+Mlvtb and u, = M~::~d
to denote the reduced masses associated with the relative motion before
and after the collision. The entire calculation is performed in the center­
of-mass system; the transformation to the laboratory system can be
effected by means of the general results of Sec. 18.

It was shown in Sec. 32 that a calculation of this type can be carried
through as though the particles are distinguishable. At the end, a linear
combination of the exchange-degenerate wave functions is formed that
has the proper symmetry in each group of identical particles. The sym­
metrization will be left for the specific examples given near the end of this
section. For the general problem considered here , we obtain only an
approximate unsymmetrized wave function.

1 For a discussion of other methods applicable to lower energy collisions, see N. F.
Mott and H. S. W. Massey, "The Theory of Atomic Collisions," 2d ed., Chaps. X and
XI (Oxford, New York, 1949).
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We wish to solve the wave equation

(H - E)1/I = 0

where the Hamiltonian can be written in either of two ways:

H = Hob + H'oo = Hed + H~d

(34.1)

(34.2)

The unperturbed Hamiltonians for the initial and final systems are

Hed = He + H d + Ted'
(34.3)

(34.4)

where the T's represent the kinetic energy operators for the relative
motions in the center-of-mass system. The unperturbed states of the
initial and final systems are (known) solutions of the wave equations

(H; - Eam)uam(A) = 0, (Hb - Ebn)Ubn(B) = 0
(He - Ee.)ue.(C) = 0, (Hd - Edl)Udl(D) = 0

The interaction terms H'aJ, and H~d are regarded as small perturbations.
It is always possible to expand the exact solution in the complete

orthonormal set of functions ue.(C)Udl(D), where the expansion coef­
ficients are functions of the relative coordinate red:

1/1 = Lue.(C)Udl(D)vst(red)
.,t

(34.5)

(34.6)

Our problem consists in finding approximate expressions for the functions
v.l(red) that correspond to internal final states 8 and t for the systems C
and D, and that arise from the unperturbed initial state

1/10 = Uam(A)Ubn(B) exp (t'ko • rab)

k5 = 2~ab (E - s.; - Ebn)

Use of the Born Approximation. Substitution of 1/1 from Eq. (34.5)
into the wave equation (34.1) yields, with the help of (34.2), (34.3), and
(34.4)

LUe.(C)Udl(D) (Ted + s: + Edl - E)v.l(red) = -H~dif; (34.7)
s,1

If now Eq. (34.7) is multiplied through on the left by ue.,(C)udt'(D) and
integrated over all the coordinates of C and D, the orthonormality of the
u's causes all the terms on the left side to vanish except that for which
8 = 8' and t = t'. We drop the primes and write this as

(Ted + Ee• + Edl - E)v.l(red) = - f fUe.(C)Udl(D)H~d1/ldTcdTd (34.8)
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Equation (34.8) can be written in a form that is analogous to Eq. (26.4):

(-V~d - k 2)v.t(red) = - 2~Cd f f Ue.(C)udt(D)H~d'{ldrcdrd
(34.9)

k2 = 2~ed (E - E e• - Edt)

Equation (34.9) with all sand t represents a sequence of exact equa­
tions that can in principle be solved for the functions VII' This situation
is similar to that encountered in Eq. (26.4), where we obtained an approxi­
mate solution by replacing the exact by the unperturbed solution on the
right side. We now obtain an approximate solution of (34.9) by replac­
ing f by the fo given in (34.6); then the right side is known, and the
inhomogeneous equation is readily solved for V.t by means of an appropri­
ate Green's function. The substitution of fo for f is equivalent to the
assumption that there is very little interaction between the unperturbed
initial systems A and B. This implies not only that the transition
A,B ---+ C,D has a small probability, but also that fo is a good approxi­
mation to the actual wave function even when the two systems A and B
are close together or overlap. In practical cases, it is difficult to set up a
workable criterion for the validity of this approximation, although useful
results are likely to be obtained when E is large in comparison with all
the interaction energies that appear in H~.

With the help of the Green's function (26.15), the solution of the
inhomogeneous equation (34.9), with f replaced by {lo, becomes

VIt(r.d) = - ~~2 f f f Ir~d - redl-1 [exp (iklr~d - red!)]

• ue.(C)udt(D)H~dUam(A)Ubn(B)[exp (~'ko' rab)]drcdr~red (34.10)

The integration in (34.10) is over all the unprimed coordinates; the
element of integration can be represented either as drcdr~red or as
dradr~rab, and is abbreviated in what follows as dr,

The asymptotic form of (34.10) when systems C and D are well
separated is

VIt(r~d) ) glt(IJ,cP)r~d-leikr"d
r'ss-« 00

g.t(IJ,cP) = - ~~2 f uc.(C)udt(D)[exp (-~'k . red)] (34.11)

• H~dUam(A)Ubn(B)[exp (~'ko . rab)]dr

Here, 8 and cP are the polar angles of the vector r~d' and k is a vector that
has this direction and the magnitude given by Eq. (34.9) . Equation
(34.6) is normalized so that the incident flux of systems A and B is the
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initial relative speed Vo = hko/ Mob, and Eqs. (34.5) and (34.11) are
normalized so that the radial outgoing flux of systems C and D per unit
solid angle is vlg,,(O,cf>)i2, where the final relative speed v = hk/Med.
Thus the differential cross section for the collision A,B~ C,D is

(34.12)

Lack of Orthogonality of Initial and Final States. There is an arbitrar­
iness in the expression (34.12) for the cross section that arises from the
fact that the wave function 1/10 for the initial state is not in general ortho­
gonal to the function 1/1, = ue,(C)udt(D) exp (tk. red), the complex con­
jugate of which also appears in the expression for gst(O,cf». !J;, may be
said to describe a final state in which the systems C and D are observed
to be moving in the direction O,cf>. Since the initial and final wave func­
tions are eigenfunctions of different unperturbed Hamiltonians Hob and
Hed, respectively, they are not expected to be orthogonal to each other.
If they are not orthogonal, the addition of a constant potential energy
(which corresponds to zero force) to H~d alters the expression for g,t(O,cf»j
such a change in H~d could be made by adding an arbitrary constant mul­
tiple of!J; to both sides of Eq. (34.7), thus also changing the magnitude of
E. We avoid this arbitrariness by defining H~d as the energy of inter­
action between systems C and D that vanishes as red becomes infinite;
the additive constant is then fixed uniquely. A similar definition is
made for H'aJ,.

It is interesting to note that H'aJ, can be used in place of H~ in the
integral for gat (O,cf». This integral is N,H~d1/l0d!Tj with the help of Eq.
(22.10) it can be transformed as follows:

N,H~1/IodT = J(H;d1/!t)!J;odT

= J[(H - Hed)!J;,J!J;odT = J~,H!J;odT - EJ~,!J;odT

where we have made use of the relation He~' = E!J;,. In similar fashion,
N,H'aJ,!J;odT can be shown to be equal to the last expression by making use
of the relation Hob!J;o = E!J;o. Thus so long as!J;o and!J;, are exact solutions
for the unperturbed Hamiltonians Hob and Hod, respectively, we see that

J~,H~d!J;odT = N,H'aJ,!J;odT (34.13)

Equation (34.13) has, for example, the consequence that g,,(O,cf» = 0
if H'aJ, = 0, even if H~d is not zero and the initial and final states are not
orthogonal. This result is to be expected, since if H'aJ, = 0, there is no
interaction between the colliding systems A and B and the transition
does not occur.

Connection with Time-dependent Perturbation Theory. It is also
possible to derive Eq. (34.12) by the method of variation of constants
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(Sec. 29). We expand the wave function ifi in unperturbed final-state
wave functions ifil = ue.(C)ud!(D)exp(£k • fed), where the subscript f
stands for the states sand t of systems C and D and for the relative
propagation vector k:

iEtt

ifi = I al(t)ifile-T
I

The time-dependent wave equation is

£h ~~ = Hifi = (H ed + H:d)ifi

Substitution of (34.14) into (34.15) gives

(34.14)

(34.15)

(34.16)

(34.17)

iEII iEtt

ih I alifile-T = I aIH:difile- T

! !

where use is made of the relation (Hed - EI)ifil = O. Equation (34.16)
can be simplified by multiplying through on the left by Vtl' and integrating
over all the coordinates; since the ifilare orthonormal, we obtain

i CE / - E I )1

iMI' = I al JVtI,H:difildr. e "
!

The system of Eqs. (34.17) is exact. We now make two approxima­
tions, which together are equivalent to the Born approximation sub­
stitution of ifio for ifi on the right side of Eq. (34.9). First, we assume that
the perturbation H:d is small ; because of Eq. (34.13), this is equivalent
for our purpose to the Born approximation assumption that H:b is small.
Then we can insert the unperturbed amplitudes a<Jl on the right side of
(34.17), and calculate the first-order perturbed amplitudes aYJ on the

iEI

left side. Second, we assume that the initial state ifioe-T can be expanded
in terms of only those (degenerate) ifil whose energies E I are equal to the
initial energy E. This assumes that ifio is an eigenfunction of the final
unperturbed Hamiltonian H ed, which is equal to H ab + H~ - H:d;
since ifio is actually an eigenfunction of H ab , this also is equivalent to the
assumption that the perturbations H~ and H:d are small.

We can then replace E I by E in the time factor on the right side of Eq .
(34.17) and take this factor outside of the summation over f. The unper-

turbed amplitudes at? are defined by ifio = I a<J)ifit, which gives
!

a<Jl = fVtlifiodr (34.18)
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(34.20)

With the help of (34.18), the summation over f can be rewritten

I J;hH:dhdTJIf;f'ltodT = JIf;!'H:d!fiodT
!

where use has been made of the closure relation for the complete ortho­
norm al set of functions !fif. Thus Eq. (34.17) becomes, to first order,

i(Et'-E)t

ihdg) = N!,H:d!fiodT • e A (34.19)

Equation (34.19) can be handled in precisely the same way as Eq.
(29.7), and yields the differential collision cross section (34.12).

Exchange Collisions of Electrons with Hydrogen. As a simple first
example of a rearrangement collision in which effects of identity and spin
appear, we consider the elastic scattering of an electron from a hydrogen
atom. In a problem of this type, we must know the asymptotic forms of
the unsymmetrized wave function for all permutations of identical par­
ticles .' A wave function that has the proper symmetry character can
then be constructed by the methods outlined in Sec. 32. We first obtain
the asymptotic form of the wave function when the incident electron is
scattered and when the incident electron exchanges with the atomic elec­
tron, to the accuracy of the Born approximation; spin-dependent inter­
actions are neglected.

The incident and atomic electrons are denoted by 1 and 2, respec­
tively, in the unsymmetrized wave function. The asymptotic form of
the stationary wave function !fi(rl,r2) that corresponds to nonexchange
elastic scattering with the total energy E is a product of the ground­
state hydrogen wave function ulOO(r2) for electron 2, and an incident­
plane plus outgoing-scattered wave for electron 1:

!fi(rl,r2) ---t [exp (ZKo • rl) + rlleikor'f(Ol)]ulOo(r2)
Tl-+ Ql)

h2P me'
2m

o
= E + 2h2

The work of Secs. 26 and 30 shows that the scattered amplitude has the
form

f(Ol) = - 2~2 JJ[exp (- ZK • rl)]UlOO(r2) (:1: - ~)
. (exp ZKo • rl)u100(r2)dT1dT2 (34.21)

where k is a vector of magnitude ko that has the direction 01 (f does not
depend on the other polar angle .pl).

J. R. Oppenheimer, Phys. Rev., 32, 361 (1928).
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The asymptotic form of if;(r1,r2) that corresponds to elastic exchange
scattering is a product of the ground-state hydrogen wave function u100(r1)
for electron 1, and an outgoing scattered wave for electron 2.

if;(r1,r2)~ r2"leikoT'g(82)u100(r1) (34.22)
Tt -+ ao

There is no plane wave in this case, since electron 2 is not incident on the
atom. In accordance with Eq. (34.11) , the exchange scattered amplitude
is

g(82) = - ~2 JJ[exp( -tK . f2)]U100(f1) (:1
22

- ~)
. (exp tKo . r1)u100(r2)dT1dT2 (34.23)

where k has the magnitude ko and is in the direction 82.
We must now form an antisymmetric wave function from products of

if;(fhf2) and appropriate spin functions . The spin functions can be taken
to be the set of four given after Eq. (33.5); however, it is simpler to make
use of the four symmetrized combinations (33.6). The spin of the inci­
dent electron is not assumed to have any definite relation to the spin of
the atomic electron. In this case we can use either of these sets of spin
functions, calculate the scattering with each of the four spin states of a
set, and then average the results with equal weights for each state.1 The
first three of the spin functions (33.6) are symmetric, and must be multi­
plied by the antisymmetric space function if;(rhf2) - if;(r2,f1); the fourth
spin function is antisymmetric, and must be multiplied by

if;(fhf2) + if;(f2,f1).

Differential CfOSS Section. The asymptotic forms of the symme­
trized space functions for large values of one of the electron coordinates,
say r1, are obtained from (34.20) and (34.22).

1 This is a consequence of the fundamental hypothesis of quantum statistical
mechanics ; see, for example, R. C. Tolman, "The Principles of Statistical Mechanics ,"
Sec. 84 (Oxford, New York, 1938). It can be shown that eith er of two complete
orthonormal sets of wave functions can be used in such a statistical calculation (in the
present problem, the two sets are complete so far as the spins of two electrons are
concerned). The two sets, say Vn and us, were shown in Sec. 22 to be connected by a

unitary transformation: Vn = I SknUk, where S is a unitary matrix. Then
k

Ilvnl2 = I SimEllnU1U/I. =< )' &kk'UkUk' = IlUkl2

n n.k,k' f.t.. k

Since the probability of observing a given event (such as the scattering in a particular
direction) is proportional to the square of a wave function, the same average result is
obtained from a statistical mixture of either set of wave functions.
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if;(rhr2) ± if;(r2,rl)
~ [exp (zko . rl) + 'r}leikoTlf(Ol) ± r-leikOTJg(01)]uIOO(r2) (34.24)
T1--+ co

The first two terms in the bracket on the right side of (34.24) come from
the first term on the left side, and the third term on the right side comes
from the second term on the left side. The differential cross section must
be computed with the upper sign in one quarter of the collisions, and with
the lower sign in three quarters of the cases. We thus obtain

(T(O) = ilf(O) + g(0)12 + ilf(O) - g(0)12 (34.25)

Equation (34.25) can also be derived without explicit reference to
the spin wave functions, as was Eq. (33.2) , by making use of the earlier
observation that particles that have different spin components are
distinguishable. In half the collisions, the electrons have different spin
components, and the cross section is just the sum If(0)12 + Ig(0 )1 2 of the
direct and exchange cross sections; in the other half, the electrons are
indistinguishable, and the antisymmetric space function must be used.
We thus obtain

(T(O) = ·Hlf(0)12 + Ig(OW) + ilf(O) - g(0)12

which is easily seen to be the same as (34.25).
An integral of the form J(exp zk . r)F(r)dr is small if ka» 1, where it

is assumed that F is a smooth function of r that becomes small for r > a.
Since both the rl and r2 integrals in (34.23) are of this type, we expect
g to be quite small in comparison with j'for kao» 1. This is the situation
in which the Born approximation is most applicable, so that the correc­
tions due to exchange are expected to be fairly small for the cross sections
calculated in Sec. 30.

Exchange Collisions with Helium. In dealing with the elastic scatter­
ing of an electron from a helium atom in its ground state, it is convenient
to work with the space and spin wave functions together. According
to the discussion of Sec. 33, the two electrons in the helium atom are in a
symmetric space state and an antisymmetric (singlet) spin state. Thus
if the incident electron is denoted by 1 and the atomic electrons by 2 and
3, the unperturbed wave function is (exp zko . rl)uo(r2,ra)v(I,2,3), where
uo is the symmetric space function for the normal state, and v(I,2,3)
is a spin fun ction that is antisymmetric in 2 and 3. The eight spin
functions for three electrons are grouped in (33.9) according to symmetry
in 2 and 3; it is apparent that v(I,2,3) must be one of the last doublet pair
given there.

The asymptotic forms of the first-order perturbed wave function
including spin are found to be
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,y(1,2,3)~ f(exp zko . r.) + T11f(81)]uo(rz,ra)v(1,2,3)
rt-+ 00

~ T2Ig' (8z)u o(r a,r l)v(2,3,1) (34.26)
T2-+ 00

~ rt'« (8a)uO(rl,rZ)v(3, 1,2)

and a spin term v*(1,2,3)v(1,2,3) = 1 has been omitted. Also

g'(8z) = g(8z)v*(2,3,1)v(I,2,3),

g(8z) = - 2:hzfff [exp (-zk . rz)]uO(ra,rl) (34.27)

(
eZ eZ 2eZ)

. - + - - - (exp zko ' rl)uo(rz,ra)dr1drz{lra
TIZ Tza Tz

with a similar expression for g'(8a) . The product of spin functions in
(34.27) is readily evaluated by making use of the one-electron functions
(33.4) and remembering that v* is the Hermitian adjoint of v. We take
for v(1,2,3) the next to the last spin function of (33.9), and obtain

v*(2,3,I)v(1,2,3) = 2-1[(-++)* - (++-)*]
. 2- 1[(+ + - ) - (+-+)] = -t (34.28)

The completely antisymmetric wave function derived from ,y(1,2,3)
is given in Eq. (32.3) with the lower sign. Since v is already antisym­
metric in its last two arguments, it is apparent that the second bracket
terms in (32.3) duplicate the first bracket terms. The asymptotic form
of the wave function for large values of one of the electron coordinates,
say TI, is then obtained from (34.26) and (34.28);

,y(1,2,3) + ,y(2,3,1) + ,y(3,1,2)~ .
Tl-+ ClO

{(exp zko . rl) + rlleikor.[f(81) - tg(81) - tg(81)]}u o(r z,ra)v(1,2,3) (34.29)

The differential cross section obtained from (34.29) is

u(8) = If(8) - g(8)IZ (34.30)

Like Eqs. (33.2) and (34.25) , Eq. (34.30) can be derived without
explicit reference to the spin functions. Since the two atomic electrons
must have antiparallel spins (singlet state) in order for the helium atom
to be in its ground state, the spin component of the incident electron
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is the same as that of one of the atomic electrons and different from
that of the other. It cannot exchange with the latter in an elastic
collision, since then both the resulting atomic electrons would be in the
same spin state and the exclusion principle would force the atom into an
excited state. Thus it can only exchange with the electron with which
it is indistinguishable, so that the antisymmetric combination of direct
(f) and exchange (g) amplitudes must be used; this gives Eq. (34.30).

In the absence of spin-dependent interactions, the excitation of a
triplet state of helium by electron impact can be accomplished only by
exchange between the incident electron and one of the atomic electrons.
In this case, there is no direct (f) amplitude, and hence no interference
between direct and exchange amplitudes.

Problems

1. Show that the antisymmetric wave function given in Eq. (32.7) vanishes if
there is an identical linear relation between the functions Va, VfJ, •• • , vv •

2. Show that if a wave function u(I ,2, . .. n) is an energy eigenfunction of a
symmetric Hamiltonian that corresponds to a nondegenerate eigenvalue, it is either
symmetric or antisymmetric. Show this first for n = 2, then for n = 3, and then
indicate how the proof can be extended to arbitrary n.

3. Verify that the spin wave functions given in Eq. (33.6) are eigenfunctions of
(8 1 + 8 2) 2 and S1. + S2. with the indicated eigenvalues. Show also that the result of
operating on these functions with the x and y components of the total spin is in agree­
ment with the appropriate matrices given in Eqs. (24.15) .

4. Carry through the calculations of Prob. 3 for the spin functions given in Eq .
(33.9).

6. Find the eigenfunctions of the square of the magnitude of the total spin and
the z component of the total spin of four electrons, and show that they can be grouped
into one quintet, three triplet, and two singlet states. (Hint: Start with the triplet
and singlet spin functions for two pairs of two electrons, and make use of the matrices
(24.15) together with the corresponding set for j = 2.)

6. Use Eq. (33.2) to write down an expression for the scattering of protons in the
center-of-mass coordinate system, assuming that the Coulomb interaction extends in
to r = O. Discuss the classical limit of the cross section (It -> 0), particularly in the
neighborhood of 8 = 90°, and show that the interference term drops out if the average
scattering over an arbitrarily small but finite range of angle is computed.

7. Show that the 182p configurations in helium can be treated separately from
the 1828 configurations so far as the first-order energy-level calculation of Sec. 33 is
concerned.

8. What would be the unperturbed ground-state wave functions of helium if each
electron had spin angular momentum It and obeyed Einstein-Bose statistics?

9. Write down the unperturbed ground-state wave function for a neutral lithium
atom.

10. Show by direct calculation that Eq. (34.25) is obtained if the incident and
atomic electrons are assumed to be described by the four spin wave functions (+ +),
(+ -), (- +), and (- -), rather than by the triplet and singlet combinations (see
footnote 1, page 242).



CHAPTER X

SEMICLASSICAL TREATMENT OF RADIATION

No account has thus far been given in this book of the interaction
between material particles and electromagnetic radiation. As would be
expected, a treatment that is consistent with the foregoing theory of
material particles requires that quantum equations of motion of the
electromagnetic field be found that are analogous to Maxwell's equations.
Indeed, it is only in this way that Planck's original quantum hypothesis
can be fitted into a general theoretical framework. The development of
the elements of a quantum theory of radiation will be postponed until
Chap. XIV. In the present chapter we treat the electromagnetic field
classically and the particles with which the field interacts by quantum
mechanics. Such a semiclassical treatment is bound to be incomplete
and not wholly satisfactory, although it is simpler in principle than the
quantum electrodynamics presented in Chap. XIV. We shall find that
it is possible in this approximate way to give a plausible and correct
account of the influence of an external radiation field on a system of
particles (absorption and induced emission) , but not of the influence of
the particles on the field (spontaneous emission). Nevertheless, the
results of the classical treatment of the latter phenomenon can be con­
verted to quantum theory in a correct, if not very convincing, manner.
Some simple applications of the theory are given in Sec. 37.

36. ABSORPTION AND INDUCED EMISSION

The Schrodinger wave equation for the motion of a particle of mass m
and charge e in an electromagnetic field described by the potentials
A,q" with an additional potential energy V, is obtained by adding a term
V1/I to the right side of Eq. (23.24).

. a1/l [ h2 ieh ieh .
th at = - 2m \72 + me A · grad + 2mc (div A)

+ 2:C2 A2+ eq, + V]1/I (35.1)

We regard V as the potential energy that binds the particle (of electro­
static origin if the particle is an electron); A,q, represent an electromag­
netic field that is weak enough so that those terms can be regarded as a

246
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perturbation. Our object is to calculate the probabilities of transitions
between stationary states of the particle in the potential energy V, that
are produced by the field. We first discuss some properties of the field
and its plane wave solutions.

Maxwell's Equations. Maxwell's equations of motion for the elec­
tromagnetic field are, in Gaussian units,

1 aH 1 aE 4'11"
curl E+ - - = 0 curl H - - - = - Jc at' c at c (35.2)

div E = 4'11"p, div H = 0

If the divergence of the second of these equations is combined with the
time derivative of the third, we obtain the equation of continuity for the
electric charge and current densities p and J

div J + ap = 0
at (35.3)

The electric and magnetic field strengths can be expressed in terms of the
potentials by Eqs. (23.15):

E = - 1: aA - grad I/J H = curl A (35.4)
c at '

which cause the first and fourth of Eqs. (35.2) to be satisfied identically.
The potentials are not defined uniquely by Eqs. (35.4), since any A,I/J that
give the correct E and H can evidently be replaced by new potentials
A' ,I/J' without altering the field strengths, where

A' = A + grad x, ql = I/J _1: ax
c at (35.5)

(35.6)

and X is an arbitrary function of rand t (see also Prob. 3).
Substitution of (35.4) into the second and third of Eqs. (35.2) gives

1 a2A 1 aI/J 4'11"
curl curl A + C2 at2 + cgrad tit = C J

1: ~ div A + V2I/J = -4'11"p
c at

If the vector A is written in rectangular coordinates, we can put

curl curl A = grad (div A) - V2A,

where the last term is the vector whose components are the Laplacians of
the components of A. We can therefore simplify Eqs . (35.6) by making
a gauge transformation (35.5) from A,I/J to A' ,I/J' such that the new poten-
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tials satisfy the Lorentz condition :

di A' + 1 04>' - 0
IV c"iii: -

The gauge function X then satisfies the equation

V2x - ~ ~:; = - (diV A + ~ ~~)
Equations (35.6) then become

(35.7)

(35 .8)

41r--Jc

-41rp
(35.9)

Plane Electromagnetic Waves. If J = 0 and p = 0 (completely
empty space), it can be shown that it is possible to choose the gauge
function so that div A' = 0 and 4>' = 0 for all rand t, without loss of
generality (see Prob. 1). Then transverse plane wave solutions can be
found for A', and hence also for Eand H. We drop the primes and have
in this case

div A = 0 (35.10)

A typical plane wave solution of (35.10) is one that represents a real
potential with the propagation vector k and the real polarization vector
IAol:

A(r,t) = 21Aol cos (k . r - wt + a)
= Ao[exp i (k . r - wt)] + c.c. (35.11)

Here "c.c." denotes the complex conjugate of the term that precedes it ,
and the constant complex vector Aois defined to be IAoleia • The first of
Eqs. (35 .10) is satisfied if w = kc, where k is the magnitude of k, and the
second is satisfied if Ao is perpendicular to k,

The electric and magnetic fields associated with the vector potential
(35.11) are

E = -2klAol sin (k . r - wt + a)
H = -2k X IAol sin (k . r - wt + a)

The Poynting vector (c/411")E X H is evidently in the direction of k; its
magnitude averaged over a period 211"/w of the oscillation is

(35.12)
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where IAol 2 is equal to the scalar product of IAol with itself (IAol . lAo!) or
the scalar product of Aoand its complex conjugate (Ao. Ao). The quan­
tity (35.12) is the intensity associated with the plane wave (35.11).

Use of Perturbation Theory. We now return to Eq. (35.1), and use
it to calculate the probability of a transition between stationary states
that is produced by the vector potential (35.11), which is regarded as a
small perturbation. The third term (div A) and fifth term (cP) on the
right side of (35.1) are now zero. The ratios of the second to the first
term and the fourth to the second term on the right side of (35.1) are of
order eA /ep, where p is the momentum of the particle. The magnitude
of this quantity is estimated in a practical case in Prob. 2, and is so small
that the perturbation approximation is justified. Thus to the first order
of perturbation theory, we can neglect the term e2A2/2me 2, and rewrite
Eq. (35.1)

H« =

ih ~~ = tn, + H')1/;

h2 ieh
- -2 \72 + VCr), H' = - A • grad

m me

(35.13)

We proceed as in Sec. 29, and expand if; in stationary eigenfunctions
uk(r) of the unperturbed Hamiltonian H« with time-dependent coeffi­
cients ak(t). If the system is initially in the state n and the perturbation
is turned on at t = 0, the first-order amplitudes at time t are given by an
expression similar to (29.17).

H'o ei("'kn-W)1 - 1 H"o e; ("'''+''')1 - 1
a~l ) (t) = - ----.!!' - ~ ----,---

h Wkn - W h Wkn + W

H~~ = ieh f uk(exp ZK • r)Ao• grad undr (35 .14 )
me

H~~ = ieh f uk[exp (-ik . r)]Ao • grad u ndr
me

.Ai3 discussed in Sec. 29, the probability of finding the system in the
state k is appreciable only when the denominator of one or the other of
the two terms in (35.14) is practically zero. There is no interference
between the two terms: the first is important when E T, ~ En + hw, and
the second is important when E k ~ En - lu», Thus the probability of
finding the system in a state k that has an energy higher than the initial
state by about lu» is proportional to IH~~12, and the probability of finding
the system in a state k' that has a correspondingly lower energy is pro­
portional to IH~,~12.

Transition Probability. The discussion of Sec. 29 shows that the
transition probability per unit time is independent of the time only if
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(35.16)

the final state can be any of a very closely spaced or continuously dis­
tributed group. The need for a group of final states arises from the
dependence of the probability lal!l(t)12 on the energy, which is shown in
Fig. 27; it is the area under this curve, not the ordinate at a particular
abscissa, that is proportional to i.

In the same way, a constant transition probability per unit time is
obtained in the present problem if the incident radiation is monochro­
matic (definite value of w) and transitions can occur to any of a group of
closely spaced or continuously distributed final states. The result is
Eq. (29.12) with either H~~ or H;:'~ substituted for H~m' However, the
computation of a transition probability between two discrete states is
often of interest. In this case, the transition probability per unit time
is not constant in time, if the incident radiation is strictly monochromatic,
and depends markedly on the difference between wand

IWknl = IEk - Enllh.

What we do in this case is to assume that the radiation covers a spread of
frequencies with no phase relations between the different frequency
components, so that the radiation can be characterized by an intensity
per unit frequency range that is constant in the neighborhood of IWknl.1

The probability of finding the system in the final state is then propor­
tional to IH~~12 or IH;:'~12, which in turn is proportional to IAol2and hence
to the intensity. If the intensity in the small angular frequency range
!:iw is I(w)!:iw, Eq. (35.12) tells us that we can put

21rcIAol2= -2 I(w)!:iw (35.15)
w

where Ao is the vector potential amplitude that characterizes the fre­
quency range !:iw. The probabiliw that a transition in which the system
is left in a higher energy state (Ek::: En + hw) has taken place at the
time t is then

!
a(lJ (t)\2 = "\' . 4IHk~1 2 sin2 t(Wkn - w)t

k ~ h2(Wkn - w)2
'"

= 2: :~~2 I(w)!:iwlf uk(exp £k . r) gradAUnd{

'" sin2 t(Wkn - w)t
(Wkn - w)2

1 For a discussion of the situation in which the intensity is not constant near IWk.!,
see W. Heitler, "The Quantum Theory of Radiation," 3d ed., Sec. 20 (Oxford, New
Yark, 1954).
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(35.17)

where grad; is the component of the gradient operator along the polariza­
tion vector Ao• The cont ribut ions to the probability from various fre­
quency ranges are additive, since there are no phase relations between the
radiation components of different frequencies.

Each frequency range Aw in (35.16) can be made infinitesimally small ,
and the summation replaced by an integration. Since the time factor
has a sharp maximum at W = Wkn, the other factors that involve W can
be taken outside the integral and the limits on W extended to ± 00 , as was
done in going from Eq. (29.10) to (29.11). Thus the transition prob­
ability per unit time for an upward transition becomes

.! la~l)(t)/2 = ~1l"e: I(wkn)lf uk(exp tK . r) grad; U ndT\2
t m CWkn .f '" sin2 ·!(Wkn - w)t dw

_ ec t (Wkn - w)2

~22 If \2=~ I(Wkn) Uk(exp tK . r) gradA undT
m CWkn

where the magnitude of k is now Wkn/C. An expression very similar to
(35.17) is obtained for the probability per unit time of a downward
transition (E k, "" En - hw):

(35.18)

In this case the magnitude of k is Wnk'/ c.
Interpretation in Terms of Absorption and Emission. Equations

(35.17) and (35.18) give probabilities per unit time for transitions of the
particle between stationary states under the influence of a classical
radiation field. These expressions can now be interpreted in terms of
absorption and emission of quanta of electromagnetic radiation. It is
necessary to assume that such quanta exist and provide the energy units
of the radiation field, and that energy is conserved between field and
particle. The particle gains the amount of energy E k - E n in an upward
transition under the influence of radiation of angular frequency Wkn. The
quantum energy of this radiation is hWkn = E; - En, so that it is reason­
able to associate with the upward transition of the particle the absorption
of one quantum from the radiation field.

In similar fashion the downward transition is associated with the
emission of one quantum whose energy corresponds to the frequency of
the radiation field. In accordance with Eq. (35.18), the emission prob­
ability is proportional to the intensity of the radiation present. This
process is therefore referred to as induced emission.
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(35.19)

It is sometimes convenient to rewrite Eq. (35.18) in terms of the
reverse transition to that which appears in (35.17). Equation (35.17)
describes the transition from an initial lower state n to a final upper state
k ; (35.18) can be made to describe the transition from an initial upper
state k to a final lower state n, if n is replaced by k and k' by n. Then
(35.18) becomes

k~ If 12-2-2- I(Wkn) un[exp (-2K . r)] grad; ukdr
m CWkn

We can now show that the integral in (35.19) is just minus the complex
conjugate of the integral in (35.17) . By means of a partial integration,
or with the help of Eq. (22.10), the integral in (35.19) is seen to be equal
tot

- JUk grad, [Un exp (-2K . r)]dr

Since only the component of the gradient along the polarization vector Ao
appears, and this direction is perpendicular to the propagation vector k,
the operator grad, does not affect exp (-2K . r), Thus the integral in
(35.19) is equal to

- JUk[exp (-2K . r)] grad, undr

and the square of its magnitude is equal to the square of the magnitude
of the integral that appears in (35.17).

Since (35.17) and (35.19) are the same, the probabilities of reverse
transitions between any pair of states under the influence of the same
radiation field are equal.

Electric-dipole Transitions. In most cases of practical interest, the
wave length of the radiation is many times greater than the linear dimen­
sions of the wave functions that describe the motion of the particle. This
means that the quantity k • r that appears in the exponential in the
integral of (35.17) is small in comparison with unity wherever Un and
Uk are large enough to give an appreciable contribution to the integral.
A good approximation is then obtained by replacing exp 2K • r by 1.

The resulting integral can be simplified by expressing it as a matrix
element of the momentum of the particle

f a; grad., u-slr = if UkPAundr = i (PA)kn

where PA is the component of the particle momentum p along the direc­
tion of polarization of the incident radiation. The matrix theory of Sec.

t In using Eq. (22.10), it must be remembered that the operator i grad, not the
operator grad, is Hermitian.
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23 shows that the momentum matrix of the unperturbed particle is given
by p = m(dr/dt) . Thus from Eq. (23.27)

k(p)kn = :t (r)kn = i(Ek - En)(r)kn = iWkn(r)kn

The integral in Eq. (35.17) becomes, in this approximation,

Ja, grad, u ndT = - XWkn(rAhn = - XWkn JUkrAundT (35.20)

where r A, is the component of r along the direction of polarization. Equa­
tion (35.20) can , of course, also be derived without recourse to matrix
methods (see Prob. 3) .

Transitions for which the probability can be computed by substitu­
tion of (35.20) into (35.17) are called electric-dipole transitions, since only
the matrix element of the electric-dipole moment er of the particle is
involved.' The transition probabilities per unit time for absorption and
induced emission then become, in the dipole approximation,

(35.21)

It is convenient to denote by (r)kn the vector whose cartesian components
are the kn matrix elements of x, y, and z, and to put

I(r)knI 2 = (r)kn · (rhn (35.22)

which is the scalar product of (rhn and its complex conjugate. The
reason for doing this is that there are usually pairs of states k and n for
which I(r)knI 2 is the same, but for which the vector (r)kn has various orien­
tations in space." Then if 8 is the angle between (r)kn and the direction
of polarization of the incident radiation, l(rhnl 2 cos" 8 can be substituted
for I(rA)knl 2 in Eq. (35.21), and an average performed over 8 . The
average of (35.21) for such pairs of states is then

471'2e2
3h2c I(wkn)I(r)knI 2 (35.23)

Forbidden Transitions. It may happen that the dipole matrix ele­
ment (rhn is zero for particular states k and n. In that case the approxi-

1 The quantity er is the electric-dipole moment of the particle of charge e with
respe ct to an arbitrarily placed origin ; the addition of a constant vector (corresponding
to a shift in the origin) to r does not affect the matrix element (35.20), since Uk and Un

are orthogonal.
2 For example, if the particle moves in a spherically symmetric potential VCr), the

state k can have 1 = 0, and the states n can have 1 = 1 and three values (0, ±1) for
the magnetic quantum number m.
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mate replacement of exp '/,k· r by 1 in the integral of (35.17) is not
justified. The exponential can be expanded in a power series

1
exp '/,k • r = 1 + '/,k • r + 2\ ('/,k • r)2 +

or in a series of spherical harmonics like (19.9)

exp '/,k • r = jo(kr) + 3ijl(kr)Pl(coS 8) - 5j2(kr)P2(cos 8) +
where 8 is the angle between k and r, The second series is more con­
venient than the first if, as is usually the case, the wave functions Uk

and Un can be expressed in terms of spherical harmonics.
With either series, the dominant factor in the nth term is proportional

to (kr)n if kr « 1 [see the first of Eqs. (15.7)]. Thus if the dipole matrix
element vanishes but the next term of each series does not, the transition
matrix element is reduced by a factor that has the order of magnitude ka,
where the linear dimensions of the particle wave functions are of order a.
A transition of this type is called a forbidden transition, since its prob­
ability is reduced by a factor (ka)2 with respect to dipole or allowed
transitions, and usually ka «1. Successive terms in the series can be
interpreted in terms of electric-dipole, -quadrupole, etc., transitions, and
involve successively higher powers of ka.

If both the states Uk and Un are spherically symmetric, the integral
fUk(exp '/,k . r) grad, undr is identically zero. This can be seen by choos­
ing cartesian coordinates for performing the integration such that the x
axis is along the direction of polarization. Then grad , Un is an odd
function of z, whereas Uk is an even function of z, and exp '/,k . r = ei(k . lI+k , z)

is also even in z, since the vector k is perpendicular to the direction of
polarization and hence is in the yz plane. Thus the integrand is an odd
function of x and the integral in (35.17) vanishes. The transition
between these states is said to be strictly forbidden , since the first-order
probability given by (35.17) is zero. It is still possible for transitions to
be produced by higher orders of the perturbation H' given in Eq. (35.13);
in such a calculation, the previously neglected term e2A2 j2mc2 must be
included in H'. However, it can be shown with the help of quantum
electrodynamics that such higher order transitions involve more than

.one quantum, and hence are not simple emission or absorption processes
in which the quantum energy is equal to the energy difference between the
unperturbed states k and n of the particle.

36. SPONTANEOUS EMISSION

A classical charged oscillator can absorb energy from a radiation field
or give energy up to it, depending on the phase relation between the field
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(36.2)

and the oscillator. These effects are analogous to the absorption and
induced emission of the last section. A classical oscillator also emits
radiation spontaneously, whether or not an external radiation field is
present. In this section, we calculate the electromagnetic radiation
from a classical oscillating charge-current distribution in the absence of
external fields, and somewhat arbitrarily rewrite the formulas in terms of
quantum matrix elements to obtain a probability for spontaneous emis­
sion. The results are then verified by comparison with Planck's expres­
sion for the distribution of thermal radiation in a cavity.

Classical Radiation Field. A charge-current distribution can be
completely specified by the current density J, since J determines the
charge density p through the equation of continuity (35.3). In similar
fashion, the electromagnetic fields in empty space, away from charges
and currents, can be completely specified by either Eor H, because of the
connections (35.2) between them. N ow a wave equation for H is
readily obtained by taking the curl of the first of Eqs. (35.9).

1 iJ2 411"
\72H - C2 iJt2 H = - c curl J. (36.1)

Thus H can be obtained in terms of J alone, whereas the similar equation
for E involves both J and p (although p can, of course, be eliminated) .
We proceed by solving Eq. (36.1) for H when the three cartesian com­
ponents of J vary harmonically in time with the same angular frequency
w but not necessarily with the same phase :

J,,(r,t) = 2IJ,,(r)1 cos (wt - 7],,) = J,,(r)e-;wt + c.c,
J ,,(r) = IJ ,,(r)le'~z

with similar expressions for the y and z components. We are interested
only in the steady-state solutions for E and H that have the same fre­
quency w

S(r,t) = 2jE,,(r)1 cos (wt - ~,,) = E,,(r)e-iwt + c.c.
H,,(r,t) = 2IH,,(r)I cos (wt - s,,) = H,,(r)e-iwt + c.c.

E,,(r) = IE,,(r)!eiEz, H,,(r) = IH,,(r)leil'z
(36.3)

again with similar expressions for the y and z components. From the
second of Eqs. (35.2), Eis given in terms of H in empty space by

ic
E(r) = - curl H(r) (36.4)

w

With substitutions from (36.2) and (36.3), Eq. (36.1) becomes

411" w
(\72 + k2)H (r) = - - curl J(r), k = - (36.5)

c c
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This is an inhomogeneous equation of the type (26.5); its solution can be
expressed in terms of the Green's function (26.15), and is

H( ) 1 Jcurl J(r') [ ( 'kl ' I)]d 'r = - I 'I exp 2 r - r Tc r - r (36.6)

Equation (36.6) is the retarded solution of (36.5); for large r, this solution
is an outgoing wave that varies with rand t like r-1ei(kT-<olt) + c.c., so
that the field produced by a current element occurs at a later time and
hence is retarded with respect to the current element.

Asymptotic Form. Weare interested in the energy and angular
momentum carried away by the field. As shown below, the energy can
be found from the leading terms in the asymptotic expression for the
field at very large r, which vary as 1/r ; the angular momentum requires
in addition some terms that vary as 1/r 2• The r-dependent part of the
integrand of (36.6) can be expanded in powers of 1/r

exp (ik!r -: r'l) ----* ~ (1 + r' cos 0 + Mkr'2 sin 2 0) eik(r-r' COB 8) (36.7)
Ir - r I r-+ 00 r r

where 0 is the angle between r' and r. Substitution of (36.7) into (36.6)
gives, together with (36.4), a complete specification of the asymptotic
electromagnetic field through terms of order 1/r 2•

Radiated Energy. The Poynting vector, which is the energy-flux
vector, is equal to (cI471")[E(r,t) X H(r,t)]. From (36.3), we see that its
time average per) over a period of the oscillation has as a typical com­
ponent

c
P,,(r) = -{JE,,(r)!IHlI(r)l[cos (wt - ~,,) cos (wt - rll)]ti",eavg.71"

- IElI(r)IIH,,(r)![cos (wt - ~1I) cos (wt - .I,,)ltimeavg.}
C

= 271" (jE,,(r)!IHlI(r)! cos (~" - .Ill) - IElI(r)IIH,,(r)! cos all - .I,,)}

This and the other two components can be put in the form

per) = ~ Re[E(r) X AWl (36.8)

where Re denotes the real part of the expression that follows. Now we
are interested only in those terms in the energy flux that fall off as 1/r2,

since only these correspond to radiated energy; we therefore require only
the terms of order 1/r in E and H.

It is convenient in writing down explicit expressions for the fields to
choose cartesian axes such that the z axis is along the vector r, which goes
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(36.9)

(36.11)

from the center of the charge-current distribution to the point at which
the field is measured. Equations (36.4), (36.6), and (36.7) then give,
to order 1/r (where now r = z),

H" ---+ - ~: eik, f Jy(r')e-ikz'dr'

H ---+ ik eik, f J (r')e-ikz'dr'
11 rc "

H. ---+0

Eo ---+ ik eik, f J (r')e-ikz'dr'
rc "

E ---+ ik eik, f J (r')e-ikz'dr'
y rc 11

Ez ---+0

Partial integration has been used to get rid of the derivatives of J in
the integrand of H. Equations (36.9) show that the asymptotic fields
are transverse to the direction of propagation. They also relate the
polarization of the emitted radiation to the current distribution, and
show that only the component of the current perpendicular to the direc­
tion of propagation contributes to the radiated energy. Substitution
into (36.8) gives

P. = 2;2
C
(If J"e-ikz'dr,r + If Jye-ikZ'dr'D (36 .10)

Equation (36.10) can be generalized to give the average energy flux in
the direction of a vector k

2:;2c )f J l.k(r')[exp (-ik . r')]dr,r

where J l.k is the component of J perpendicular to k.
Dipole Radiation. Equation (36.11) is an exact expression for the

energy radiated by the classical current distribution (36.2). As in Sec.
35, the electric-dipole approximation is obtained in the long-wave-length
limit by assuming that kr' «1 and replacing exp (-tK . r') by 1 in the
integrand. The energy flux is then

;;2CIf J l.k(r')dr,r (36 .12)

From Eqs. (36.9) with the same approximation, it is apparent that the
polarization (direction of the electric field) of the radiation is determined
by the total current vector Jo == fJ(r')dr' . The radiation is linearly
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polarized if J0 has only one component in the plane perpendicular to the
direction of propagation, circularly polarized if J0 has two equal com­
ponents in this plane that are perpendicular to each other and 90° out of
phase (so that one component is i times the other), etc .

H J0 has only one component, the angular distribution of the radiation
can be found by replacing IfJ.Lk(r')dr'12 in (36.12) by

(Jo' Jo) sin" 8 = IJol 2 sin? 8

where 8 is the angle between Jo and k, and IJol 2 is an abbreviation for the
scalar product of Jo and its complex conjugate. The total power radiated
is then the integral of (36.12) over the surface of a sphere of radius r

(36.13)

(36.14)

Equation (36.13) is also valid if Jo has more than one component, and
these do not necessarily have the same phase (see Prob. 11).

Angular Momentum. The angular momentum radiated per unit
time is equal to the torque exerted on a large, perfectly absorbing sphere
that is centered at the charge-current distribution that constitutes the
source of radiation. The average energy flux is P, so that the (directed)
energy density is (l /c)P and the momentum density is (1/c2)P. Since
the radiation travels outward with speed c, the torque exerted on a
perfectly absorbing differential element of area, dA , that is perpendicular
to r is cdA times the vector product of r and the momentum density :
(dA /c)(r X P). Integration of this quantity over the sphere of radius
r gives the angular momentum radiated by the source per unit time.
Thus only the components of P tangential to the sphere are involved : in
the notation of Eqs. (36.9), these are P", and PI/' since the z axis is along r.

If Ez and Hz were zero, the tangential components P", and PI/ would
also be zero, and no angular momentum would be radiated. The third
and sixth of Eqs. (36.9) imply only that the z (radial) components of the
field are of smaller order than l /r; actually they are of order 1/r2• This
means that P", and PI/fall off as 1/r3 for large r, Then since r X P appears
in the expression for the angular momentum, and the area of the absorb­
ing sphere is proportional to r2, the total angular momentum absorbed by
a large sphere is independent of r.

We require the 1/ f2 terms in Ez and Hz, but not in the other field
components.

Hz -+ i: eikrf [y'J",(r') - x'Jy(r')]e-ikz'dr'
rc

E.. -+ .l. elkrf [2Jz(r') + ikx'J,,(r') + iky'JI/(r')]e-ikrdr'
r2c
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(36.15)

Equations (36.9) and (36.14) are sufficient for an exact calculation of the
radiated angular momentum.'

Dipole Case. The expressions for P" and PlI are simplified by the
dipole approximation since only the terms of lowest order in kr' need be
retained in (36.9) and (36.14). It is easy to see that the leading term in
P", for example, is -(c/211')Re(E.HlI) and not (c/27r)Re(ElIH.). We obtain
to lowest order in kr'

P" = 1I';3CRe (i f J .dr'JJ::;liT)

PlI = :3
C

Re (i f J.dT' JJ lIdT)

Equations (36.15) refer to axes fixed with respect to the element dA
of absorbing area at r, They must now be rewritten in terms of general

z,

k---\------)'----y'

X'

FIG. 29. Relation between the unprimed coordinate system of Eqs. (36.15) and the primed
coordinate system of Eq, (36.16).

cartesian coordinates, in order that the angular-momentum component
about a particular axis fixed in space can be found. This is analogous to
the rewriting of the energy-flux expression (36.10) in the general form
(36.11), but is somewhat more complicated. To accomplish this, we
choose new cartesian coordinates x',y',z' that are fixed in space. With
respect to these, the orientation of the old axes depends on r in the follow­
ing way (see Fig. 29): the z axis is in the direction of r and has the polar
angles O,€/> with respect to the new axes, the y axis is perpendicular to r
and in the plane of rand z', and the x axis is perpendicular to the plane of
rand z'. If now we wish to calculate the contribution to the z' component
of angular momentum from absorption by the element of area

dA = r2 sin OdOd€/>

! For a more general discussion, see J. M. Blatt and V. F. Weisskopf, "Theoretical
Nuclear Physics." Appendix B (Wiley, New York, 1952).
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at r, we need only P z given in (36.15). This can be rewritten in terms of
the components of the total current vector J0 along the new axes as

P; = ~ Re[i(Joz' sin 0 cos 4> + JOy' sin 0 sin 4> + J o.' cos 0)
1rr c

• (JOy' cos 4> - :lox'sin 4»] (36.16)

The moment arm about the z' axis associated with P x is r sin 0, so that the
differential element of angular-momentum component is

dM., = ! r sin 0 P xr2 sin OdOd4>
c

(36.17)

(36.18)

Substitution of (36.16) into (36.17) and integration over the polar angles
gives

4ik - -
M., = 3c2(J OT,JOy' - J Oy,J0:1/)

It is apparent from Eq. (36.18) that the radiation of a particular
component of angular momentum depends only on the perpendicular
components of Jo. Moreover, there must be two such perpendicular
components that are out of phase with each other, for if J ox' and JOy' are
both real or have the same phase, the parenthesis in (36.18) is zero. Thus
a linear dipole (J 0 entirely in one direction) radiates no angular momen­
tum. The maximum angular momentum for a given value of IJol 2 is
radiated when J0 has two equal perpendicular components that are 900

out of phase with each other and the third perpendicular component is
zero. If the nonvanishing components are along z' and y' we can put
J ou' = iJoz'; Eq. (36.18) then becomes

M., = :~ IJox'12= :;2IJoI2 (36.19)

and the other two components of M are zero.
Comparison of Eqs. (36.13) and (36.19) shows that the maximum

angular momentum radiated per unit time by an oscillating electric
dipole is like = If'" times the energy radiated per unit time. If this
relation is taken over into quantum theory, it shows that a quantum of
energy, lu» radiated by an electric dipole carries with it an amount of
angular momentum that does not exceed h.

Conversion from Classical to Quantum Theory. We now convert
the classical expression (36.13) for the power radiated by an electric
dipole, to quantum theory. This requires that we find a quantum
analogue for the total current vector J0 and associate the radiated power
with a transition probability between states of the particle that is doing
the radiating.
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We want to replace J by a current density that is associated with an
initial upper state Uk and a final lower state Un, since energy is radiated
during the transition from k to n. It is natural to represent the current
density as the product of a charge density and a velocity, and to take for
the velocity the momentum operator divided by the mass: - (ih jm) grad.
The charge density for a stationary state is expected to be the charge of
the particle times its position probability density : el,p1 2. However, we
are concerned here with a transition between states, so we replace this by
eUnUk. The way in which the grad that appears in the velocity operates
on the wave functions that appear in the charge density is determined by
arguments of the type presented in Sec. 7 [see Eq. (7.3)]. We thus arrive
at a quantity to substitute for the classical current density:

J(r) ---7 - ieh un(r) grad uk(r)
m

(36.20)

(36.22)

We assume that (36.20) can be substituted into all the foregoing classical
expressions to give quantum results.'

Integration of (36.20) over the coordinates gives the total current
vector

J 0 = - i::: f a; grad ukdT = -iewnk f unrukdT = iewkn(r)kn (36.21)

with the help of equation (35.20). Substitution of (36.21) into (36.13)
then gives the radiated power. We interpret this power as the product
of the spontaneous rate of transition from k to n, and the quantum energy
hWkn = h(Ek - En) given off in each transition. The transition prob­
ability per unit time for spontaneous emission then becomes

4e
2k2w

kn I() 12 = 4e2Wkn3!()
/2

3hc r kn 3hc3 r kn

where use has been made of the relation Wkn = kc.
Planck Distribution Formula. The transition from the classical

expression (36.13) to the quantum expression (36.22) can claim only a
moderate amount of plausibility. The correctness of the latter result can
however be verified by showing that Planck's formula for the spectral
distribution of thermal radiation in a cavity follows from (36.22) and
(35.23). This is the way in which the relation between the probabilities

1 The exponent ial that appears in (36.11), for example, can be placed either before
01' after the grad operator, since only the component of grad that is perpendicular to
k enters in.
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(36.23)

for absorption, induced emission, and spontaneous emission was first
obtained.'

We assume that the walls of the cavity contain particles of charge e
and mass m, each of which is bound by a potential V of the type that
appears in (35.1). When these particles are in equilibrium with thermal
radiation at the absolute temperature T, there must be as many quanta
of each frequency emitted as absorbed per unit time. The rate of
emission of quanta of frequency Wkn is the sum of (35.23) and (36.22),
multiplied by the number of particles that are in the upper state k, The
rate of absorption of these quanta is the product of (35.23) and the
number of particles in the lower state n. Nowfrom statistical mechanics, 2

the equilibrium ratio of the number of particles in the upper state to the
number in the lower state is given by e-(Ek-En)/.T, where K is Boltzmann's
constant. We thus obtain, on dropping the subscripts from Wkn,

- ,,,,, [47r2e2 4e2w3 ] 47r2e 2

e ,T 3h 2e I(w)l(rhnI 2 + 3he3 l(rhnl 2 = 3h 2e I(w)l(rkn)12

This is readily solved for I(w) to give

I(w) = ~:3
7r2e2( e'T - 1)

It is interesting to note that the parameters e, m, and (rhn of the particle
that emits and absorbs the radiation drop out of the expression for I(w).
The agreement between Eq. (36.23) and the Planck distribution formula
provides a verification of the ratio of (35.23) to (36.22), and hence shows
that the latter expression is correct if the former is.

Line Breadth. A classical oscillator that radiates electromagnetic
waves loses energy, so that the amplitude of its oscillation decreases in
time. Thus the electromagnetic fields given off by it have a damped
sinusoidal time dependence: e- h t cos (wot + a). The Fourier analysis of
these fields gives the frequency spectrum of the radiation from the oscil­
lator. The radiated intensity per unit frequency range at the angular
frequency w is proportional to

1
(36.24)

1 A. Einstein, Phys. Zeits., 18, 121 (1917). Einstein's A coefficient is just (36.22),
and his B coefficient is (35.23) divided by the energy density of radiation I(wkn) /C (this
is expressed in terms of the angular frequency Wkn rather than the circular frequency
wkn/2".) .

2 See, for example, R. C. Tolman, "The Principles of Statistical Mechanics," Chap.
IV (Oxford, New York , 1938).
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According to (36.24), the intensity of the emitted spectral line has half
its maximum value when w = Wo ± tl'. The quantity I' is called the
natural line breadth, and in cases of practical interest is small in com­
parison with woo

The line breadth is evidently twice the initial fractional rate of
decrease of the amplitude of the classical oscillator, or is equal to the
initial fractional rate of decrease of the oscillator's energy. It is plausible
to associate the rate of decrease of the energy of the classical oscillator
with the rate of decrease of the probability of finding the corresponding
quantum system in its initial upper state. If this is done, the quantum
analogue of the classical natural line breadth I' is the initial transition
probability per unit time for spontaneous emission given in (36.22) .1

The foregoing relation between transition probability and line breadth
can be arrived at in a qualitative but more general way by means of the
uncertainty relation (3.3). The reciprocal of the transition probability
per unit time is of the order of magnitude of the time that the quantum
system stays in its upper state. Thus a determination of the energy of
the upper state cannot occupy a time that is of larger order of magnitude
than the lifetime 1;'" of this state. According to (3.3), this means that
the energy cannot be determined with an accuracy much greater than
h divided by the lifetime, or hI' . If the energy of the upper state is uncer­
tain by this amount, the frequency of the emitted line will be uncertain
(broadened) by v. In general, a quantum energy level is broadened by
any process that shortens its lifetime: the level is perfectly sharp only
if the lifetime of the state is infinite (true stationary energy eigenfunction) .

A qualitative idea of the natural breadth of electric-dipole lines
emitted by a quantum system can be obtained by rewriting the expres­
sion (36.22) for I' in the form

I' 4 e2

- = - - k21(rhnj2

Wkn 3 he
The factor e2/he is a dimensionless constant that is very nearly equal to
rh if e is the electronic charge," and the factor k2j(rh nj2has already been
assumed small in comparison with unity in arriving at the dipole approxi­
mation. Thus the ratio of line breadth to angular frequency is expected
to be quite small (it is of the order of 10-6 for typical atomic dipole lines) .

37. SOME APPLICATIONS OF RADIATION THEORY

The semiclassical radiation theory developed earlier in this chapter is
applied in this section first to the determination of the conditions for

I For further discussion of line breadth, see Heitler, op. cit., Sec. 18.
i This is the fine-structure constant that appears in the theory of the fine structure

of atomic energy levels (see Chap. XII) .
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allowed transitions, and next to the theory of the Cerenkov effect. The
latter is of some practical interest and also shows how to calculate the
radiation from a eurrent distribution that does not depend harmonically
on the time. Finally, the theory of the photoelectric effect is discussed.

Selection Rules for a Single Particle. The discussion of forbidden
transitions at the end of Sec. 35 shows that the probabilities for absorption
and induced emission are reduced by a factor of at least (ka)2 with respect
to allowed transitions if the dipole matrix element (rhn vanishes. The
same remarks apply to the probability for spontaneous emission, since the
integral in (36.11) is the same as that in (35.19) when the substitution
(36.20) is made for J.

The conditions on Uk and Un for which the dipole matrix element is
different from zero constitute the selection rules. They are easily formu­
lated if the potential V that appears in the unperturbed Hamiltonian of
(35.13) is spherically symmetric. It is shown in Sec. 14 that the energy
eigenfunctions can then be written as products of functions of the radial
distance r and spherical harmonics Y 1m(O,4» defined in Eq. (14.16).
The matrix element (rhn is the vector whose cartesian components are
the corresponding matrix elements of x, y, and z. The matrix element of
z is fUkrcos Oundr, which can be written as a product of an integral over
r and the angular integral

(37.1)

where the primed and unprimed subscripts are the angular-momentum
quantum numbers for the lower state Un and the upper state Uk, respectively.

The 4> integration in (37.1) is 102
". ei(m'-m),pd4>, which is zero unless

m' = m. The integration can then be written, apart from numerical
factors,

J~l wP'j'(w)Pp(w)dw, w = cos 0 (37.2)

Now it can be shown with the help of the generating function (14.13) for
the associated Legendre functions that

m _ l + Iml m l - Iml + 1 m

wPI (w) - 2l + 1 PI_l(W) + 2l + 1 PZ+l(w)

Substitution of this into (37.2) shows, with the help of the orthogonality
integral (14.15), that the matrix element of z vanishes unless m' = m
and l' = l ± 1. A similar treatment shows that the matrix element of
x + iy vanishes unless m' = m - 1 and l' = l ± 1, and the matrix ele­
ment of x - i'll vanishes unless m' ... m + 1 and I' = l ± 1. These
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selection rules determine the possible allowed (electric-dipole) transitions
of a single charged particle that moves in a central force field.

Polarization of Emitted Radiation. The discussion following Eq.
(36.12) shows that the polarization of the emitted radiation is determined
by the total current vector Jo, and hence (because of 36.21) b-y the dipole
matrix element. When the initial and final states have l values that differ
by unity and the same magnetic quantum number m with respect to the
z axis, only the matrix element of z fails to vanish. The radiation is then
linearly polarized along the z axis if viewed in the xy plane, and there is
no radiation along the z axis. When the magnetic quantum numbers of
the initial and final states differ by unity, the x and y components of the
dipole matrix element are 90° out of phase, and the z component vanishes j

the radiation is then circularly polarized if viewed along the z axis, and
linearly polarized perpendicular to the z axis if viewed in the xy plane.
These results are of interest in connection with the polarization of the
radiation from atoms placed in a magnetic field (see the discussion of the
Zeeman effect in Sec. 39).

Conservation of Angular Momentum. The discussion of Eqs. (36.18)
and (36.19) shows that the angular momentum that is carried away by
an emitted quantum has its maximum value h, and is directed along the z
axis, when JOy = iJoz. From (36.21) we see that this is the case in which
(yhn = i(xhn, or (Y)kn = -i(X)kn. Now x = r sin 0 cos ep = ir sin 6
. (ei4> + e- i4» , and y = r sin 0 sin ep = -iir sin O(ei4> - e- i4» . Then it is
apparent from the ep integration in (37.1) that in order for the matrix
element of y to equal - i times the matrix of x, the magnetic quantum
number of the initial state Uk must be greater than the magnetic quantum
number of the final state Un by unity. Application of Eq. (14.23) shows
that the z component of angular momentum of the particle has decreased
by h during the transition. Thus angular momentum is conserved between
the radiating particle and the emitted quantum.

The foregoing result is based on the connection between the classical
and quantum current densities assumed in (36.20). The successful
derivation of the Planck distribution law in Sec. 36 shows that (36.20)
is correct so far as magnitude is concerned. The above demonstration
of the conservation of angular momentum shows in addition that the
phases of the initial and final states are inserted properly in (36.20) j if,
for example, J had been assumed proportional to Uk grad un, an incon­
sistent result would have been obtained in the last paragraph.

If the magnetic quantum number does not change in a transition, only
the matrix element of z fails to vanish, and the discussion of (36.18) shows
that the quantum carries off no angular momentum. This might seem
at first to be in contradiction with the change by one unit of the orbital-
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angular-momentum quantum number l . The x and y components of the
angular momentum of the particle do not commute with the z component
(which in this case is known to be mh and does not change), so that they
cannot be precisely specified. Their expectation or average values for
states that are described by quantum numbers land m are zero, since the
diagonal elements of the matrices for the x and y components of the angu­
lar momentum are all zero [see Eqs. (24.15)]. Thus there is no observable
change in any of the components of the particle's angular momentum,
and so the expectation value of the angular momentum carried off by
the quantum should be zero. The x and y angular-momentum com­
ponents for a particle in a stationary state can be thought of as fluctuat­
ing about zero in such a way that their average values are zero, although
their average squares are not. The change in l corresponds to changes in
these average squares.

Selection Rules for Many-particle Systems. When a quantum­
mechanical system consists of several particles that do not interact with
each other, the total Hamiltonian is simply a sum of terms like H o + H'
that appear in (35.13). The unperturbed energy eigenfunctions are
products of single-particle eigenfunctions such as are discussed in Sec.
32 (they can be unsymmetrized if the particles are not identical). It
is clear that the matrix element that appears in the first-order perturba­
tion theory of Sec. 35 (absorption and induced emission) involves a
multiple integral of the form

J . .. Jua,(1)Ub,(2)
... [H'(l) + H'(2) + .. . ]ui1)Ub(2) ••. dT 1dT2 • • •

Because of the orthogonality of different u's for the same particle, this
integral vanishes unless all the single-particle functions U a' , • • • are
equal to the corresponding functions U a, • • • , except for one. Thus
only one of the particles can change its state in a transition, and the
selection rules for a central force field are precisely those given above .
Since the spontaneous transition probability can be related to the same
integral through the Planck distribution formula, these selection rules
hold for spontaneous emission as well as for absorption and induced
emission.

If the system consists of several charged particles whose mutual
interactions cannot be neglected, we must base the selection rules on
general conservation laws for total angular momentum and parity. It is
not difficult to generalize the work of Sees. 35 and 36 to show that the
dominant term, when the wave length of the radiation is large in com­
parison with the dimensions of the system, is the matrix element of the
total electric-dipole moment e lf l + e 2f 2 + .. ' . The angular momen-
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tum radiated by an oscillating dipole cannot, according to the discussion
of (36.19), exceed h per quantum; this classical argument is based on an
arbitrary current distribution, so that it is not invalidated if several
particles contribute to the dipole . The interpretation of the conservation
of angular momentum between the emitted quantum and the radiat­
ing system is complicated by the semiclassical nature of the entire treat­
ment. A consistent treatment based on quantum electrodynamics shows
that the correct selection rule based on this conservation law is that the
total-angular-momentum quantum number of the system can remain
unchanged, or increase or decrease by unity. An exceptional case is
that in which this quantum number is zero for both initial and final states.
The initial and final wave functions are then spherically symmetric, and
an extension of the argument given at the end of Sec. 35 shows that a
radiative transition between these states is not only forbidden (no allowed
dipole transition), but strictly forbidden (no first-order transition
whatever) .

The discussion of parity in connection with Eq. (23.26) shows that the
parity of each energy eigenfunction can be well defined (even or odd) if
the total Hamiltonian is unchanged by reflection of the coordinates of all
particles through the origin. All known Hamiltonians are of this type.
Now the electric -dipole-moment operator given above is evidently odd
with respect to reflection of all coordinates ; thus its matrix elements van­
ish unless the initial and final states have opposite parities. This selec­
tion rule is known as the Laporte rule.

Cerenkov Effect. It is not difficult to show that a charged particle
that moves freely in empty space does not radiate energy. Electro­
magnetic radiation has the greatest momentum for a given amount of
energy when it is all flowing in one direction, in which case the ratio of
momentum to energy is l ie. The relativistic relation between the total
energy E (including rest energy) and the magnitude p of the momentum
of a freely moving particle is E2 = p2e2 + m2e4, where m is the rest mass.'
Differentiation of this relation gives 2EdE = 2pe 2dp, so that the ratio of
momentum loss to energy loss of the particle if it radiates is

dp = s. = ! [1 + (me)2]!
dE pe2 e p

which is always greater than l ie. Thus it is impossible for a freely
moving particle to radiate, since if energy were conserved between the
particle and the electromagnetic field, momentum would not be.

1 See, tor example, P. G. Bergmann, "Introduction to the Theory of Relativity,"
Chap. VI (Prentice-Hall, New York, 1942).



268 QUANTUM MECHANICS [CRAP. X

The situation is altered if other matter is present to take up the excess
momentum. An electron bound in an atom or an electron that passes
near an atomic nucleus can radiate; the latter case is usually described in
terms of the deflection of the electron by the nucleus and the emission of
radiation by the accelerated electron. An interesting example in which
the presence of matter makes it possible for the conservation laws to be
satisfied is provided by the uniform motion of a charged particle through
a medium of refractive index n, when the speed v of the particle is greater
than the speed of light in the medium :

cv>­
n

(37.3)

(37.4)

The radiation from fast electrons that satisfy (37.3) has been observed
by Cerenkov.! The theory of the Cerenkov effect" is developed on the
basis of classical radiation theory in the remainder of this section. This
treatment is satisfactory in so far as the structure of the medium can be
represented by a refractive index.

Expression for the Current Density. We assume that the moving
charge has dimensions that are small in comparison with emitted wave
lengths of interest. Then if the particle has charge e, moves in the z
direction with the speed v. and is at the origin at t = 0, the current density
can be written

J,,(r,t) = J 1I(r,t) = 0
J z(r,t) = evo(x)o(y)o(z - vt)

The Dirac 0 function is that introduced in Sec. 11. Since the radiation
theory developed in Sec. 36 is based on a current density that depends
harmonically on the time, J z must be expressed in terms of a Fourier
integral

Jz(r,t) = i/" [J ..,(r)e-iwl + c.c.]dw

The Fourier amplitude of angular frequency w is given by
e iwz

J ..,(r) = 271" o(x)o(y)eV"

This can be verified by substituting (37.6) into (37.5) to obtain

J z(r,t) = 2: o(x)o(y) fo" [/"G-I) + e- i"'G-I)Jdw

= s. o(x)o(y) f" ei"'G-I)dw
271" _ ..

(37.5)

(37.6)

1 P. A. Cerenkov, Phys . Rev., 52, 378 (1937).
21. Frank and 1. Tamm, Comptes Rendus de l' Acad. Sci. U.R.S.S., 14, 109 (1937);

1. Tamm, J . Phys. U.S.S.R., 1, 439 (1939).
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(37.7)

which with the help of (11.10) and the fifth of Eqs. (11.13) is seen to
agree with (37.4).

Fourier Analysis of the Radiation Field. The electromagnetic fields
can be expressed in analogy with (37.5) :

E(r,t) = fo" [E.,(r)e-;.,t + c.c.]dw

H(r,t) = fo" [H.,(r)e-i.,t + c.c.]dw

Because of the linear dependence of E and H on J through Maxwell's
equations, each of the Fourier components E., and H., can be obtained
entirely from the corresponding component J z., of the current density.
The Poynting vector obtained from (37.7) is

4: E(r,t) XH(r,t) = 4: fo" fo" [E.,(r) XH."(r)e-i(,,,+<.>')t

+ E.,(r) X A",,(r)ei(.,+"")t + E.,(r) X H""(r)e-i(,,,-w')t

+ E.,(r) X H",,(r)e;(,,-w'lt]dwdw' (37.8)

Equation (37.8) can be used to find the spectral energy distribution
of the radiation. The distribution of the radiated energy in frequency is
usually of more interest than the distribution in t ime, if the emission
process occupies a time that is short by laboratory standards. We there­
fore integrate (37.8) over t from - co to + co to obtain the total flow of
energy per unit area. Since t appears only in the exponentials, we can
use Eq. (11.10) to obtain 0 functions in the frequencies . Then when the
integration over w' is carried through, the first two terms in the integrand
of (37.8) contribute nothing, and the last two terms yield

:71" 1_"" E(r,t) X H(r,t)dt

= ic fo" [E.,(r) X A",(r) + E.,(r) X H",(r)]dw (37.9)

The integrand of (37.9) is just twice the real part of E",(r) X A",(r), and
in accordance with (36.8) can be called (471"/c)P",(r). Since (37.9) has
the form of an integral over frequency, we see that 27l"P",(r)dw is the flow
per unit area of energy that lies in the angular-frequency range w to
w +dw.

We assume that the medium with which we are concerned is a homo­
geneous isotropic dielectric that is characterized by a dielectric constant
or specific inductive capacity e. This means that c is to be replaced by
clt l = cln in Sees. 35 and 36, where the refractive index n of the medium
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is equal to Elj also, k is replaced by nk. 1 Thus (36.11) becomes, in our
present notation,

Pko,(r) = 2r::,.:c If J .Lk,.,(r') exp (-ink. r')drT (37.10)

(37.11)

(37.12)

Here Pk ., is the component of P., in the direction of observation (parallel
to k or r), and the magnitude of k has the earlier value wlc.

Radiated Energy. The direction of observation is taken to have
polar angles O,ep with respect to the z axis. Then k . r' in (37.10) is equal
to k(x' sin 0 cos ep + y' sin 0 sin ep + z' cos 0), and J .Lk,., = J •., sin O.
Substitution of (37.6) into (37.10) then gives for the energy flow per unit
area and angular frequency

nk
2

e
2 If f f i.,.'21rPk.,(r) = 21r 21T1'2C41r2sin" 0 o(x')o(y')e "

• e-ink(Z' .i n 6 008 ~+v'.iD 6.i n 4>+" 008 6)dx'dy'-i
ne

2
w

2
sin

2
0 If [., (1 n cos O)J d '1 2

= 41r2c3r2 exp twZ V - --c- z

In order that (37.11) be definite, the particle can be considered as radiat­
ing only over a finite length L of its path, so that the integral over z'
extends, say, from -tL to tL.

The squared integral in (37.11))s easily evaluated to give

4 . 2[1 L (1 n cos O)Jsm "]l"W Ii - --c-

w2 G- n c~s oy
For large L, this has a sharp maximum when the denominator is zero, at

c
cos 00 = - (37.13)

nv

Thus the radiation appears at a cone in the forward direction whose half
angle decreases as nvI c decreases. Since 00becomes imaginary if v < cfn,
there is no radiation if the condition (37.3) is violated; in particular, there
is no radiation if n = 1 (empty space), since v is always less than c. The
fact that (37.12) does not quite vanish for cos 0 less than unity even if
v < cln is due to the choice of a finite path length L; the starting and
stopping of the charge at the ends of its path mean that the particle is
accelerated, and this makes some radiation possible.

1 It can be shown that n must be such that c/n is the phase velocity, not the group
velocity, of light in the medium. See Tamm, op, cit., Sec. 5, or H. Motz and L. 1.
Schiff, Am. J . Phys., 21, 258 (1953).
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The total energy radiated involves an integral of (37.11) over the
surface of a sphere of radius r. This can be evaluated like the integral in
(29.11), by making use of the sharpness of the maximum to extend the
limits on cos (J to ± OC) and to replace sin? (J by sin- (Jo obtained from
(37.13). The integral of (37.12) is 4:;r2cLr2/ nw. Substitution into
(37.11) gives for the total energy radiated by theparticle per unit angular­
frequency range in the distance L

we2L sin 2
(Jo = we2L (1 _~)

c2 c2 n 2v 2

The number of quanta with angular frequency between wand w + dw
emitted per unit distance by a particle of charge e moving with a speed v
through a dielectric of refractive index n is then

(37.14)

(37.15)

if e is the electronic charge. Thus the number of quanta emitted per
unit frequency range depends on w only through n. For a very fast elec­
tron (v::: c) passing through water (n ""' 1.33), Eq. (37.14) shows that
there are about 230 quanta emitted per centimeter of path in the visible
region (wave lengths from 4,000 to 7,500 A).

Photoelectric Effect. When a bound system that contains charged
particles is irradiated by sufficiently high energy quanta, there is a finite
probability that the system will be broken up . This process is usually
called the photoelectric effect in the case of atoms and photodisintegration
in the case of nuclei. As an example, we consider the ejection of an elec­
tron from an atom by a photon of energy hw > E, where - E is the ground­
state energy of the electron. The initial wave function of the electron is
uo(r), and in its final state it has the kinetic energy

h2k2

-=hW-E
2m

We suppose the radiation to be incident along the positive z axis and to be
polarized with its electric vector along the x axis. Then the matrix
element for the transition is given by the second of Eqs. (35.14)

H'o - ieh f - (iwz) A (auo) dkO - mc Uk exp C 0 ax T (37.16)

We assume that the final state can be represented to sufficient accuracy
by the plane wave Uk(r) = Lr! exp (ik . r) . This is equivalent to the
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assumption that the Born approximation is valid for the scattering of the
electron by the remaining ion.

With the help of a partial integration, Eq. (37.16) becomes

H ' O ehAok",1 .(wz k ) d
kO = - mcLi Uo exp 't C - . r T

From Eqs. (29.12) and (29.14), the transition probability per unit time
from the bound to the ionized state is

_ mkL3 !H'OI2 • 8d8d-l.
W - 4,r2h3 kO sm 'I'

It is convenient for what follows to introduce the momentum hK that is
transferred to the atom :

(37.17)

where 1. is a unit vector in the z direction. The differential cross section
for the photoelectric effect is equal to w divided by the incident flux of
photons. This flux is obtained by dividing the incident intensity (35.12)
by lu», so that

e
2

kk
2 l1 1

2

11'(8,cjJ) sin 8d8dcjJ = 21l"mc: Uo exp UK · r)dT sin 8d8dcjJ (37.18)

Angular Distribution. There are two factors in Eq. (37.18) that
determine the angular distribution of the ejected photoelectrons. One of
these is the factor k';, which shows that the electrons tend to have a
cosine-squared distribution with respect to the polarization vector of the
incident radiation. If the radiation is unpolarized, k'; must be replaced
by i(k'; + k~), so that there is a sine-squared distribution with respect to
the direction of incidence. In either case, the electrons are ejected pref­
erentially at right angles to the incident beam of photons.

The appearance of the momentum transfer vector K in the integrand
of (37.18) also affects the angular distribution. The discussion of Sec. 26
shows that integrals of the kind that appear in Eq. (37.18) generally
decrease as K increases (see, for example, Fig. 23). Now K is smallest
when k is in the z direction, so that the K dependence of (37.18) tends to
shift the maximum in the differential cross section toward the forward
direction. However, this effect is only appreciable when k and w/c are
comparable in magnitude. Assuming for the moment that E can be neg­
lected in Eq. (37.15), the quantity w/ck::: hk/2mc = v/2c, where v is the
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speed of the ejected electron. Thus the forward shift of the cross­
section maximum occurs for high-energy photons and ejected electrons,
in which case E can in fact be neglected as assumed above.'

Cross Section for the Atomic Photoelectric Effect. We now special­
ize to the situation in which the photoelectron is ejected from the lowest
state (K or Is shell) of an atom. The initial wave function uo(r) is then
the wave function ulOO(r,O,q,) of Eq. (16.24), and is given by

ao
a = Z'

h2

ao = - (37.19)
me2

So long as Uo is spherically symmetric, the angle integration in (37.18) is
easily performed, and gives

8 2kk2\ r" 1
2

cr(O,q,) = ;;wK;)o uo(r) sin Kr rdr

Substitution of (37.19) into (37.20) yields

(37.20)

(37.21)

The discussion at the end of Sec. 26 shows that the Bom approxima­
tion is most nearly valid for high energy and for Ze2lhv« 1. Now
E = Z2e2/2ao, so that h2k2/2mE = (hvIZe2) 2. Thus E can be neglected in
Eq. (37.15). Since, as was shown above, wick rv vl2e in this case, the
magnitude of K given by Eq. (37.17) is approximately k(1 - v cos 0/2e) .
Further, ka = hvlZe2» 1. Thus the factor 1 + K2a2 in the denomina­
tor of Eq. (37.21) can be replaced approximately by k2a2(1 - v cos Ole).
We then obtain for the high-energy photoelectric differential cross section

(0 )rv 32e
2

• 2 2 (1 + 4v 0)a ,q, = mew(ka)5 sin 0 cos q, C cos (37.22)

Since the electron has been treated nonrelativistically, vic must be fairly
small in comparison with unity, and therefore terms of order v21e2 have
been neglected in Eq. (37.22) . Integration over the angles yields the
total cross section

rv 12811" e2

(1 = -3- -m-ew-('-;"k-a):-::5 (37.23)

1 The quantities k and ",Ie can also be comparable very close to the photoelectric
threshold, when 11,,,, is only slightly greater than E. However, the Born approximation
is not valid in this case.
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It follows from (37.15) and (37.19) that a is proportional to Z6/(hw)i.
In using Eq. (37.23), it must be remembered that a is the total cross
section for each of the K electrons, and hence must be doubled to obtain
the total atomic cross section for the K-shell photoelectric effect.

It is interesting to note that the leading term of Eq. (37.22), in which
vic is neglected in comparison with unity, and all of Eq. (37.23) result
from the electric-dipole approximation discussed in Sec. 35. In this
approximation, exp (iwz/c) is replaced by unity in Eq. (37.16) .

Improvement on the Born Approximation. There are two respects in
which the foregoing calculation is based on first-order perturbation the­
ory. First, the matrix element (37.16) is regarded as small , so that the
interaction between the electron and the electromagnetic field is treated
to first order. Second, the electron wave function is taken to be a plane
wave in the final state, so that the effect of the ionic potential on this state
is neglected. It is very difficult to improve on the calculation from the
first point of view, and hardly worthwhile because of the smallness of the
electron-radiation interaction. On the other hand, an improvement with
regard to the second point is feasible, and some trouble in this regard is
justified since the results would then be applicable to low energies and to
large values of Z; that is, Ze2/hv would not then have to be small in com­
parison with unity.

In the case of the photoelectric effect in hydrogen, a Coulomb wave
function of the general type discussed in Sec. 20 can be used for the final
state, and this is also a good approximation for the K-shell photoelectric
effect in heavier elements. One might expect at first that Eq. (20.2),
which has the asymptotic form (20.9) of a plane plus an outgoing scattered
wave, is the correct function to use.' Actually, it turns out that the final­
state wave function must have the asymptotic form of a plane plus an
ingoing spherical wave .

The reason for this can be seen qualitatively in the following way:2
Such a calculation is intended to yield the probability amplitude for a
transition in which the electron is ejected in the direction of propagation
of the plane wave. However, if the final state is a plane plus outgoing
spherical wave, one can expect that part of this amplitude is associated
with electrons going in directions other than that of the plane wave, since

1 The phase of the plane wave is actually distorted at infinity, so that it is not
exactly a plane wave in the Coulomb case.

2 A. Sommerfeld , " Wellenmechanik" (Ungar, New York) or" Atombau und Spek­
trallinien," vol. 2 (Friedrich Vieweg und Sohn, Braunschweig, 1939), p. 457. For
further discussion and referenc es to more recent work, see G. Breit and H. A. Bethe,
Phys . Rev., 93, 888 (1954).
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all directions are included in the outgoing spherical wave . Conversely,
part of the probability amplitude for ejection in the desired direction will
be included in the calculations for other plane wave directions, since their
outgoing waves contribute to the direction under consideration. The
only way to avoid this situation is to choose the final-state wave function
in such a way that it contains no outgoing spherical wave; this is only
possible if the wave function is asymptotically a plane plus an ingoing
spherical wave.

Problems

1. Show that if div J = p = 0, the most general solution of Maxwell's equations
can be expressed in terms of potentials such that div A = '" = o.

2. Show that the probability density associated with Eq. (35.1) is given by (7.1),
and find the form of the probability current density that replaces (7.3).

3. Show that, if the gauge transformation (35.5) is accompanied by the trans­
formation v;' = if; exp (iex /ftc), the form of the wave equation (35.1) is unaffected.

4. Estimate the order of magnitude of eA/cp, when e is the electronic charge,
A is the magnitude of the vector potential for the visible part of the spectrum that
corresponds to the radiation in a cavity at several thousand degrees centigrade, and
p is the momentum of an electron in the first excited state of hydrogen.

5. Verify Eq. (35.20) by means of the wave equation, without recourse to matrix
methods.

6. Show that the transition probability for spontaneous emission is equal to the
transition probability for induced emission that would result from an isotropic field of
such intensity that there is one quantum per state of the field in the neighborhood of
the transition frequency.

7. A hydrogen atom in its first excited (2P) state is placed in a cavity. At what
temperature of the cavity are the transition probabilities for spontaneous and induced
emission equal?

8. What is the spontaneous transition probability per unit time, expressed in
sec-I, of a hydrogen atom in its first excited state?

9. What is the selection rule for allowed transitions of a linear harmonic oscil­
lator? What is the spontaneous transition probability per unit time, expressed in
sec-I, of an oscillator in its first excited state, when e, m, and ware the same as in
Prob. 6?

10. Show that a logarithmic factor like that in Eq. (30.11) always appears in the
cross section for excitation of a one-electron atom by electron impact, if the corre­
sponding radiative transition is allowed . Derive the simplest relation that you can
between the differential cross section for excitation by electron impact and the corre­
sponding transition probability for spontaneous emission , assuming the transition
is allowed .

11. Make use of the dipole expression (36.12) for the radiated intensity to find
the angular distribution of the radiation when J o. = i J Oz , J o. = O. Show also that
the total power radiated is still given by Eq . (36.13).

12. Starting from Eq. (37.5), derive a general expression for J •.,(r) in terms of
J.(r,t) , assuming that the latter is real. Use this to verify Eq. (37.6) when J.(r,t) is
given by (37.4).
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13. What is the polarization of the Cerenkov radiat ion? Is any angular momen­
tum carried off by the radiation field in this case?

14. Assume that the interaction between the neutron and the proton that make
up a deuteron can be represented by a square well potential for which a = 0 (zero
range or 0 fun ction interaction), and that the only bound energy level of the system
has I = 0 and. = 2.23 Mev (million electron-volts) . Show that no error is involved
in the calculation of the photodisintegration cross section if the final-state wave func­
tion is taken to be a plane wave. Find the differential and total cross sections for
unpolarized photons.



CHAPTER XI

ATOMS, MOLECULES, AND ATOMIC NUCLEI

This chapter is not intended to be a complete survey of the properties
of atomic systems. It is primarily a presentation of a relatively few
problems that arise in connection with the structure of matter, selected
because they supply interesting and instructive applications of quantum
mechanics. These problems are grouped according to subject ; enough
explanatory material is included so that the treatment is coherent,
although severely limited in scope.

38. APPROXIMATIONS IN ATOMIC STRUCTUREl

The ground states of the two lightest atoms, hydrogen and helium, were
considered in Secs. 16 and 27, respectively. Variation calculations simi­
lar to those described for helium have been carried through for others of
the light atoms. This section describes some of the approximations that
have been used for the heavier atoms. The alkali atoms are discussed
separately in Sec. 39.

Central-field Approximation. The starting point of calculations on all
except the lightest atoms is the central-fieldapproximation. This assumes
that each of the atomic electrons moves in a spherically symmetric poten­
tial energy VCr) that is produced by the nucleus and all the other elec­
trons. The approximation is a good one if the deviation from the VCr)
for one electron produced by close passage of other electrons is relatively
small. This is actually the case, since the constant nuclear potential is
of the order of Z times as large as the fluctuating potential due to each
nearby electron, and the latter varies quite slowly (inversely) with the
separation distance. The two principal problems are then the calcula­
tion of the central field, and the correction of the approximate results
obtained from it . Before considering these problems, we discuss some
general properties of the central field.

The potential energy VCr) for a neutral atom has the Coulomb form
-e2/ r at a great distance r from the nucleus, since the removal of the
electron whose potential is being measured leaves a singly charged positive

1 For a more detailed discussion of the material of this section and the next, see
E . U. Condon and G. H. Shortley, " The Theory of Atomic Spectra" (Cambridge,
London, and Macmillan, New York, 1935).
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ion . The electron in the hydrogen atom, for which the potential energy
is -e2/r at all r, was shown in Sec. 16 to have an infinite number of
bound energy levels characterized by the quantum numbers n, l, and m.
An infinite number of energy levels is also expected for V( r) , since for
large n, the electron wave function is small near the nucleus, and only the
form of V(r) for large r is significant. An important difference between
the two situations is that the degeneracy between states of the same n
and different 1 that occurs in hydrogen is removed in a non-Coulomb
central field. This is because the electrons that have smaller angular
momentum penetrate closer to the nucleus, and V(r) is stronger (more
negative) than -e2/r there, since the nucleus is less completely screened
by the other electrons. Thus for given n, the states of lowest 1have the
lowest energy. The degeneracy with respect to m is not affected, since
this occurs whenever the potential is spherically symmetric.

Because of the spin, four quantum numbers n , 1, m" and m . are
required to specify the state of an electron in a central field. The orbital
quantum numbers land m, are the same as 1and m in the hydrogen atom,
m. = ±t specifies the spin orientation, and n is a natural generalization
of the total quantum number that appears in hydrogen. Equation
(16.14) shows that n - 1 - 1 is the number of nodes of the radial part
of the hydrogen wave function ; this definition of n is carried over to the
general central field, so that 1does not exceed n - 1.

Periodic System of the Elements. According to the Pauli exclusion
principle (see the discussion of antisymmetric wave functions in Sec. 32),
not more than one electron in an atom can have a particular set of values
of the four quantum numbers given above. As Z increases, electrons fill
the one-electron states of lowest energy in succession ; the ground state
of an atom in the central-field approximation is that in which there are
no unfilled electron states that have lower energy than any that are
occupied. Because of the degeneracy with respect to m, and m., there
can be as many as 2(21+ 1) electrons with the same energy in a shell
that is specified by nand 1. It is apparent then that the ground-state
configuration of the electrons in an atom can be described by specifying
the number of electrons in each shell. In the central-field approximation,
all shells that contain any electrons are full except perhaps that which
has the highest energy.

The chemical properties of atoms are determined for the most part
by the least tightly bound, or valence, electrons, which are in the shell of
highest energy. The most important factors are the number of occupied
and unoccupied electron states in this shell, and the energy interval
between this and the next higher (empty) shell . For example, an atom
tends to be chemically inert if its highest shell is full and there is an
appreciable energy gap to the next higher shell, since then electrons are
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not readily shared with other atoms to form a molecule. The quasi­
periodic recurrence of similar highest shell structures as Z increases is
responsible for the periodic system of the chemical elements.

In the usual spectroscopic notation, the n value of a shell is given as a
number, the l value as a letter, and the number of electrons in the shell
as a numerical superscript. The letter code for l , and the maximum num­
ber 2(2l + 1) of electrons in a shell, are as follows :

l = 0, 1, 2, 3, 4, 5, . . .
s, p, d, j, g, h, ...

2(2l + 1) = 2, 6, 10, 14, 18, 22, . . .

For example, the ground-state configurations of sodium (Z = 11) and of
mer cury (Z = 80) are

Na : Is22s22p63s
Hg : IS22s22p63s23p64s23dl04p65s24dl05p66s24j145dlO

The ground-state configurations of many of the elements can be
written down simply from a knowledge of the order in which the energies
of the shells increase. This order can be inferred from spectroscopic
evidence, and is as follows:

Is,2 s,2p,3s ,3p,[4s,3d],4p,[5s,4d],5p,[6s,4j,5d],6p,[7s,5j,6d]

The brackets enclose shells that have so nearly the same energy that they
are not always filled in sequence. These shell energies are close together
because the increase in n and the decrease in l tend to compensate each
other ; thus the 4s state, which has a higher energy than the 3d state in
hydrogen, is depressed by the penetration caused by its low angular
momentum. The s shell in each bracket is always filled first, although it
can lose one or both of its electrons as the other shells in the bracket fill
up . Apart from the brackets, there are no deviations from the indicated
order of filling.

Table 2 gives the ground-state configurations of each of the elements.1

An atom contains all the full shells that occur above and to the left of its
position in the table. Since the number of s electrons varies as each d
shell fills, the d columns are subdivided to show the number of s electrons.

1 This table is taken from Condon and Shortiey, op. cit., p. 333. Recent data and
estimates on the rare earths (lanthanide elements) are reviewed by W. F. Meggers,
Science, 106, 514 (1947). The assignments of the heaviest natural elements and the
artificial transuranic elements (actinide elements) are as given by G. T. Seaborg in
L. N. Ridenour, ed., "Modern Physics for the Engineer," Chap. 8, p. 213 (McGraw­
Hill , New York, 1954). The following elements have acquired new names in recent
years : niobium (Nb, 41), technetium (Tc, 43), promethium (Pm, 61), astatine (At, 85),
francium (Fa, 87) , neptunium (Np, 93), plutonium (Pu , 94), americium (Am, 95),
curium (Cm, 96), berkelium (Bk, 97), and californium (Cf, 98) . Elements 99 and
100 have been identified but not yet named.
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TAllLE 2. GROUND-STATE ELECTRON CONFIGURATIONS OF THE ELEMENTS
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The two groups of atoms that appear to have a partially full f shell in
their ground-state configurations fit in at * (rare earths) and at t (heaviest
elements) . The first group has the 6s shell full and the second has the
7s shell full; the distribution of electrons in d and f shells for each group is
shown below the main table. According to Meggers, the entries in the f
groups that are enclosed in parentheses are extrapolations or predictions
based on the analyses of neighboring spectra.

A few of the periodicities are worth explicit mention. The first
electron to go into each s shell beyond Is gives an alkali, and the elements
just before each of these (full Is shell or a full p shell) are rare gases. The
elements with the same number of electrons in a p shell have similar
chemical properties; this is especially striking in the case of the halogens
(one electron short of a full p shell). The elements with full 2s and 38
shells (Be and Mg) that are followed by p shells have somewhat different
properties from the alkaline earths, which have full 8 shells followed by d
or f shells. The filling of the 4s,3d shells gives elements somewhat similar
to those arising from the filling of the 5s,4d shells . The elements that
correspond to full bracketed shells (Zn, Cd, and Hg) are quite similar, as
are the noble metals (Cu, Ag, and Au) in which an s electron is missing
from the full bracketed shells.

Thomas-Fermi Statistical Model. We now turn to the first of the
problems associated with the central-field approximation. There are two
methods that have been used for the determination of the potential
energy VCr). The first of these, due to Thomas! and Fermi," is discussed
here , and the second, due to Hartree, is taken up later. The Thomas­
Fermi statistical model assumes that VCr) varies slowly enough in an
electron wave length so that many electrons can be localized within a
volume over which the potential changes by a small fraction of itself.
The electrons can then be treated by statistical mechanics, and obey the
Fermi-Dirac statistics mentioned in Sec. 32. At normal temperatures,
the thermal energy KT is very small in comparison with VCr) everywhere
except at the edge of the atom, where the chance of finding an electron is
small . In this case, the Fermi-Dirac statistics requires that the electron
states fill in order of increasing energy, as assumed above. The difference
between the present treatment and the more general discussion given
earlier in this section lies in the additional assumption that VCr) is
sensibly constant over a region in which many electrons can be localized.

The number of electron states in a cube of edge length L at the walls
of which the wave functions obey periodic boundary conditions was
computed in Sec. 11 to be (L j27l")3dk:lik1fl,k z• This must be multiplied by

1 L. H. Thomas, Proc. Camb. Phil. Soc., 23, 542 (1927).
2 E. Fermi, Zeits . f . Physik, 48, 73 (1928).
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2 to take account of the two possible spin states; then the number of
states for which the magnitude of the momentum p = hk is less than or
equal to P» is

(
L ) 3 ('i {or [2" gL3

2 271" } 0 } 0 } 0 k2dk sin 8d8dq, = :7I"2h3

If all these states are occupied, the number of electrons per unit volume
whose kinetic energy does not exceed p5/2m is p3!371"2h 3• Now the maxi­
mum kinetic energy at any distance r from the nucleus is - VCr), since
otherwise electrons would escape from the atom. We thus obtain a rela­
tion between the volume density of electrons, nCr), and the potential
energy

( )
_ [-2mV(r)J!

n r - 371"2h 3
(38.1)

The electrostatic potential V(r) /e is also determined by Poisson's
equation in terms of the charge density en(r)

.!. V2V = -.!..~ (r2dV) = -471"en(r) (38.2)
e er2dr dr

Equations (38.1) and (38.2) are two simultaneous equations for nand V.
The boundary conditions on the solutions can be expressed in terms of V
alone for a neutral atom of atomic number Z. As r~ 0, the leading term
in the potential energy must be due to the nucleus , so that VCr) ~ -Ze2/r.
As r~ 00, there must be no net charge inside the sphere of radius r,
so that V falls off more rapidly than l /r, and rVCr) ~ O. The boundary
condition at infinity is different from that assumed earlier in this section,
where V was taken to have the asymptotic form -e2/r. The V discussed
earlier is the potential experienced by one of the atomic electrons, while
the Thomas-Fermi potential is that experienced by an infinitesimal test
charge. The difference between the two potentials emphasizes the
statistical nature of the approximation made by Thomas and Fermi.
The solution for V is exact in the limit in which m becomes infinite and
e becomes zero in such a way that m 3e4 remains constant; then the elec­
tron wave length becomes zero, and the density of particles becomes
infinite. In this limit the potential is constant over many wave lengths,
and enough particles are present so that statistical mechanics can be
applied.

Evaluation of the Potential. Elimination of nCr) from Eqs. (38.1)
and (38.2) leads to an equation for - VCr)

!-~[r2d(-V)J = 4e
2[-2mV(r)p

(38.3)
r2dr dr 371"h 3
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Equation (38.3) and the boundary conditions given above are conven­
iently expressed in a dimensionless form in which Z, E, m, and h appear
only in scale factors. We put

Ze2

V(r) = - r x, r = bx

b = .! (371")1~ = O.885ao
2 4 me2Zt Zt

(38.4)

(38.5)

where ao = h2/me2• With these substitutions, (38.3) becomes

d2xxt - = Xi
dx2

X = 1 at x = 0, X = °at x = 00

The most accurate solution of Eq. (38.5) was computed by Bush and
Caldwell' with the help of the differential analyzer, and is expressed in
the form of a numerical table.

Equations (38.4) show that the "radius" of an atom is inversely
proportional to the cube root of the atomic number, if this radius is inter­
preted to be that of a sphere that encloses a fixed fraction of all the elec­
trons (see Prob. 1). These equations can also be used to show that the
Thomas-Fermi approximation improves with increasing Z. The poten­
tial at the atomic radius is proportional to Z! , so that a typical electron
wave length is proportional to Z-f. The distance over which the poten­
tial changes by a definite fraction of itself is proportional to the atomic
radius, or z-t. Thus the fractional change of the potential in an electron
wave length is proportional to Z- t, and decreases with increasing Z.
Moreover, since the number of electrons is equal to Z, the use of the
statistical method is better justified as Z increases.

Hartree's Self-consistent Fields. The second method for obtaining
a central field is due to Hartree,? This model assumes that each electron
moves in a central field that can be calculated from the nuclear potential
and the wave functions of all the other electrons, by assuming that the
charge density associated with an electron is e times its position prob­
ability density. The Schr6dinger equation is solved for each electron in
its own central field, and the resulting wave functions made consistent
with the fields from which they are calculated. Thus the kth electron is
described by a normalized wave function uk(rk) that is a solution of the
equation

1 V. Bush and S. H. Caldwell, Phys. Rev., 38, 1898 (1931).
2 D. R. Hartree, Proc. Camb. Phil. Soc., 24:, 111 (1928).
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(38.6)

where rjk = Irj - rkl. If there are Z electrons in the atom, (38.6) con­
stitutes a set of Z simultaneous nonlinear integrodifferential equations
for the Z functions uk(rk). It is therefore not feasible to solve these equa­
tions directly, and Hartree used a method of successive approximations.

A potential energy that approximately represents the second and
third terms in (38.6) is assumed, electron wave functions computed, and
new potentials for each electron found from these wave functions. This
process is continued until the potentials are self-consistent to a high order
of accuracy. The principal approximation made is the averaging of the
potential energy given as the third term in (38.6) over the angles of
rio to make it spherically symmetric. The solutions of (38.6) can then be
expressed as products of radial functions and spherical harmonics. A
further simplification is made so that the 2(2l + 1) or fewer electrons in a
shell all move in the same potential and have the same radial wave
function.

It is apparent that the Hartree approximation neglects correlations
between the positions of the electrons, since the entire wave function
for all the electrons is assumed to be a simple product of one-electron
functions

(38.7)

It is also clear from (38.7) that antisymmetrized wave functions are not
employed. The antisymmetry is considered only in so far as the quan­
tum numbers of the one-electron states Uk are chosen in agreement with
the exclusion principle.

Connection with the Variation Method. We now show that the
Hartree approximation results from an optimum variation calculation
with the trial function (38.7).1 The wave equation with inclusion of
interelectronic interactions but neglect of spin-orbit terms (see below) is

Hl/t = El/t

2: ( h2 Ze
2

) 2:2: e
2

H= --V~-- + -
2m rio rjk

k i>k

(38.8)

where j > k implies a double summation, over all different pairs of
indicesj and k, We wish to minimize the expectation value of H.

1 J. C. Slater, Phys . Rev., 35, 210 (1930); V. Fock, Zeits.f. Physik., 61, 126 (1930).
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From (38.7) and (38.8) we obtain

f .. .f y.,HYtdTl . . . dTz

= Lf uk(rk) ( - ;~ \7~ - ~:) uk(rk)dTk
k

+ LLf f uj(rj)uk(rk) ~: uj(rj)uk(rk)dTjdTk (38.9)

i>«

since the Uk are normalized. The optimum yt is obtained by varying
each of the Uk separately to minimize (38.9). The only dependence of
(38.9) on a particular one-electron function Uk is through the terms

f uk(rk) (- :~ \7~ - ~:2) uk(rk)dTk

+ Lf f uj(rj)uk(rk) ~: Ulrj)uk(rk)dTjdTk

ir'k

= f uk(rk)Hkuk(rk)dTk (38.10)

h
2

Ze
2

\' f e
2

H k == - 2m \7~ - r; + Lt IUj(rj)2I
r jk dTj

i r'k

The integral in (38.10) is the expectation value of the operator H k for
the function Uk . From the discussion of Sec. 27, it follows that this is a
minimum when Uk is an eigenfunction of H k that corresponds to its low­
est eigenvalue Ek.

(38.11)

Since Eqs. (38.11) and (38.6) are identical, we see that the Hartree wave
functions are the best from the point of view of the variation method that
can be written in the form (38.7).

The energy associated with this wave function is just the integral
(38.9), which can be written with the help of (38.6)

f .. .f y.,HYtdTl ..• dTz = LEk

k-LLf f !uj(rj)\2iuk(rk)12 : j: dT,-dTk (38.12)

i>k

The electrostatic interaction terms between electrons are counted twice
in the summation over Ek, and so have to be subtracted out to give (38.12).
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Thus the energy of the atom is not just the sum of the Ek, although each
Ek is roughly the energy of removal of the kth electron. This last is not
strictly true, since the removal of an electron alters the self-consistent
fields, and hence the wave functions and E'S for the remaining electrons.
However, Ek is found to be an especially good approximation to the energy
of removal in the case of an inner electron (X-ray level).

Corrections to the Central-field Approximation. We now turn to the
second problem mentioned at the beginning of this section, the correction
of the approximate results obtained from the central field. Two terms
are omitted in the central-field approximation: the difference between the
actual electrostatic interaction between electrons and the average inter­
action that is included in the central field, and the spin-orbit energy .
The latter is an interaction energy between the spin and the orbital
motion of each electron, and has the form

l Hrk)Lk . s, (38.13)
k

Here, Lk is the orbital-angular-momentum operator rk X Pk of the kth
electron, and has the properties of the M operator introduced in Sec. 24;
the eigenvalues of L~ and L kz are given in terms of the quantum numbers
land ml for the kth electron as l(l + 1)h2 and m1h, respectively. S, is the
spin angular momentum thdk of the kth electron that was introduced in
Sec. 33. The function Hr) is given by!

1 1 dV
~(r) = 2m2c2 r dr (38.14)

in terms of the central-field potential energy VCr) .
In considering the effects of these terms, we shall assume that the

perturbed eigenfunctions, which are linear combinations of various con­
figuration wave functions, have only negligibly small amounts of all but
one configuration mixed in them. From Eq. (25.9), it is apparent that
this is the case if the interconfiguration matrix elements of the perturba­
tion are small in comparison with the energy intervals between unper­
turbed configuration energies.

It can be shown that the part of the summation in (38.13) that
includes electrons in full shells is zero, since the function ~ is the same for
all electrons in a shell and the contributions from electrons with opposite
ml and m. cancel. Thus the electrons in full shells can be ignored and the

1 L. H. Thomas, Nature , 117, 514 (1926). This energy is a consequence of rela­
tivity, and is derived as such in Chap. XII. It was first obtained from th e precession
of the spin axis of the electron, part of which is of electromagnetic origin (Larmor
precession) and part of which comes from relativistic kinematics (Thomas precession).
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(38.15)

summation extended only over the remaining electrons. The case in
which there is just one electron outside full shells is of interest in connec­
tion with the ground state and low excited states of the alkali atoms, and
will be discussed in some detail in the next section. For the present, we
consider very briefly the more general situation, always assuming that
each atomic state is based on just one configuration of the electrons.

LS Coupling Scheme. There are, in general, a number of states that
belong to the same configuration, and that are degenerate in the central­
field approximation. These states differ in the assignment of mz and m.
quantum numbers to the individual electrons. The theory of complex
spectra consists in determining the linear combinations of such suitably
antisymmetrized wave functions that diagonalize the perturbation to
first order (see Sec. 25), along with the corresponding perturbed energy
levels.

The most usual situation is that in which the hitherto-neglected
electrostatic terms are larger than the spin-orbit energy; this is called the
Russell-Saunders ccse.! States of the same configuration can be clas­
sified as eigenfunctions of any dynamical variables that commute with the
Hamiltonian and hence are constants of the motion (see Sec. 23). When
all perturbations are included, the only true constants of the motion are
the total parity and the total angular momentum J of the electrons

J = L + S = l (Lk + Sk)
k

J is a constant because the angles that specify the orientation of the
atom as a whole, and that are the canonically conjugate variables to the
components of J, do not appear in the Hamiltonian of an isolated atom.
When the electrostatic perturbation is included but the spin-orbit energy
neglected, the same argument can be applied to show that the total orbital
angular momentum L and the total spin angular momentum S are
separately constants of the motion. The individual Sk need not be
constants, even though no spin-dependent forces act in this approxima­
tion, since the use of antisymmetric wave functions couples the spins to
the electrostatic energy (see the discussion of the excited states of helium
in Sec. 33).

A state can be specified by the quantum numbers J, L, S , M, M L . and
lvIs, which are connected with eigenvalues of angular-momentum opera­
tors through

J2 = J(J + 1)h2,

L2 = L(L + 1)h2,

S2 = S(S + l)h2,

J. = Mh
L. = MLn
S. = Msh

(38.16)

1 H. N. Russell and F . A. Saunders, Astrophys. Jour ., 61, 38 (1925).
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When the spin-orbit energy is neglected, the electrostatic energy separates
states of different L; in some cases, only particular 8 values are permitted
because of the exclusion principle. Only two of the other four quantum
numbers are independent, so we can use either L8MLMs or L8JM to
specify a state. Because of the spherical symmetry of the Hamiltonian
with respect to its space and spin parts separately, the energy is inde­
pendent of the directional quantum numbers M Land M s, and there are
(2L + 1)(28 + 1) degenerate states. For given Land 8, the states
specified by J and M are linear combinations of those specified by M L

and M s, so that the same amount of degeneracy appears in the L8JM
representation. This is called the L8 coupling scheme, since the indi­
vidual L; are coupled together to form the total L, and the individual 8k

to form the total 8.
If now the spin-orbit energy is included, Land 8 are no longer con­

stants of the motion, although J and M still are. However, we assume
that states of different Land 8 are sufficiently well separated by the
electrostatic energy so that their mixing due to spin-orbit energy can be
neglected. This is analogous to the earlier assumption that different
configurations are sufficiently well separated by the central field so that
their mixing due to the electrostatic energy can be neglected. States of
different J in the L8JM representation are now split apart by the spin­
orbit energy; the energy is still independent of M , so that there are 2J + 1
degenerate states. A Russell-Saunders state is usually written in the
form 4Dil where the superscript is the multiplicity 28 + 1, the letter
(now capitalized) is the L value according to the code given earlier in this
section, and the subscript is the J value; in this case 8 = t , L = 2, and
J = t . Since J = L + S, the argument at the end of Sec. 24 shows that
J can only be one of the numbers L + 8, L + 8 - 1, ... , IL - 81.

Selection Rules. The selection rules in the Russell-Saunders case
can be obtained from the discussion of Sec. 37. Only one electron is
involved in a transition, so that the configuration changes through a
change in one of the l's by one unit; this also changes the parity. Since
the electric-dipole moment does not involve the spins, and the spin func­
tions for different 8 are orthogonal (see Prob. 4), 8 does not change in an
allowed transition. The conservation of angular momentum between
atom and radiation field further requires that J and L each change by
1 or O. Transitions between states both of which have J = 0 are strictly
forbidden.

Intersystem lines that join states of different multiplicity (change in
8) sometimes occur, and indicate a partial breakdown of L8 coupling.
The very intense mercury resonance line at 2,537 A is an intersystem
line: 3PI ~ 180• This transition is allowed so far as the changes in J, L,
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(39.1)

configuration and parity are concerned, but not as regards the change in
S. The aP I state is partially mixed by the spin-orbit energy with a
higher singlet (S = 0) state of the same J and parity, and this makes an
electric-dipole transition possible.

ii Coupling Scheme. The opposite approximation to that involved
in LS coupling assumes that the spin-orbit energy is large in comparison
with the electrostatic energy. If the latter is neglected, each electron
can be characterized by the quantum numbers nljm rather than nlmrm.,
where (L, + Sk)2 = j(j + 1)h2 and Li, + Sk. = mho The electrostatic
energy then splits apart states of different J.

This is called the jj coupling scheme, since the orbital and spin angular
momenta of the individual electrons are coupled together to form j's,
from which the states are built up. I t is mainly of interest in heavy
atoms, where the large VCr) makes the spin-orbit energy (38.13) the
dominant perturbation.

39. THE ALKALI ATOMS

The ground-state configuration of an alkali atom consists of a series
of full shells followed by a single s electron, and so is 2S!. The inner rare­
gas configuration is so stable that all but quite high excited states of the
atom involve only the valence electron. Thus the alkalis can be treated
to quite good approximation in terms of a model in which a single electron
moves in a spherically symmetric non-Coulomb potential energy VCr).
In this section we calculate the energy levels and the intensities of allowed
transitions in the absence and presence of an external magnetic field.

Doublet Separation. The configuration of an alkali atom can be
specified by a single pair of quantum numbers nl. Since there is only
one electron, the perturbing electrostatic term mentioned in the last sec­
tion does not appear. In the absence of external fields the Hamiltonian,
including the spin-orbit energy (38.13), is

h2

H = - 2m \72 + VCr) + Hr)L ' S

where Hr) is given by (38.14). As in Sec. 38, we neglect the mixing of
different configurations produced by the spin-orbit energy, and regard
this term as a perturbation that removes the mzm. degeneracy within each
configuration. The total angular momentum J = L + S of the valence
electron is a constant of the motion (see Prob. 5), so that states can be
designated by jm instead of mzm., where J2 = j(j + 1)h2 and J. = mh o
The states of differentj have different energies, but there is still a (2j + 1)­
fold degeneracy due to m. The removal of the m degeneracy by a mag­
netic field is discussed later in this section.
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(39.5)

The difference in energy between states of different j is due to the
L . 8 term in (39.1), and can be found from its expectation value or
diagonal matrix element [see Eq. (25.8)]. We have the operator relation

J2 = (L + 8)2 = L2 + 82 + 2 L· 8 (39.2)

Since l, j, and 8 are all good quantum numbers (8 = t for one electron),
Eq. (39.2) can be solved for the diagonal matrix element of L . 8 .

(L . 8)li.li = Mj<i + 1) - l(l + 1) - tlh2 (39.3)

N ow if l is different from 0, j can be either l + t or l - t. Thus the
first-order perturbation arising from Hr)L . 8 is

tlrnl if j = l + t
-t(l + l)rnl if j = l - t (39.4)

tnl == h2fo "'\Rn,(r)N(r)r2dr, t » 0

where Rnl(r) is the normalized radial part of the unperturbed eigenfunc­
tion associated with the nl configuration. Since V(r) represents an
attractive potential energy, Hr) given by (38.14) is positive and rnl is
positive. Thus (39.4) shows that the state with higher j has the higher
energy. The pair of states is called a doublet; the doublet structure
characterizes all the moderately excited levels of the alkali atoms except
those for which l = 0, in which case j can only be t.

The doublet separations can be calculated from (39.4) if the radial
function is known. We can get a rough estimate of their dependence on
n by using the hydrogenic wave functions given in Eq. (16.24), and assum­
ing that V(r) has the Coulomb form -Ze2/r. Substitution into (38.14)
and (39.4) gives, with the help of the generating function (16.21) for the
associated Laguerre polynomials,

h2Ze2 j "'I
tnl = -22 2 - R~l(r)drme 0 r

e2h2Z 4
• - "..---=--=-:,---;:';,..",...---:--......,...-,..,,--:--:"""

2m2c2a03n3l(l + t)(l + 1)

This is valid only for l > 0; the singularity in Hr) at r = 0 makes the
integral for t nO diverge there, so that the perturbation approximation is
not valid. It follows from (39.4) and (39.5) that the doublet separation is
proportional to n-3, and this is in fair agreement with observation. The
absolute value of the doublet separation and its dependence on l are not
given at all by this simple theory, since the effective Z is difficult to
estimate and depends markedly on l because of penetration.'

1 The effect of the spin-orbit interaction on the energy levels of hydrogen is found
in the next chapter as part of an exact relativistic calculation.
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Doublet Intensity. We now calculate the relative intensities of the
two lines of the allowed doublet 2p, -+ 28, and 2p, -+ 28h under the
assumption that the radial wave functions are the same for the two excited
"P states. Transitions of this type give rise to the principal series in the
alkali spectra. From Eq. (36.22), the spontaneous transition probabili­
ties, and hence the observed intensities if the two P states are equally
likely to be occupied, are proportional to the squares of the dipole matrix
elements.1

The dependence of the two excited 2p states and the ground 28 state
on the angular and spin coordinates of the electron is obtained by finding
linear combinations of products of the four spherical harmonics Y l,l(O,4J ),
Y l•O(O,4J ), Y l.- l(O,4J) and Yo•o(O,4J), and the two spin wave functions (+)
and (-), that are eigenfunctions of J2 and J. (see Sees, 14 and 33 for dis­
cussion of the angle and spin functions) . These combinations can be
obtained from the spin functions for three electrons given at the end of
Sec. 33. We replace 8 1 by 8, 8 2 + 8 a by L, and the spin functions (33.6)
for the second and third electrons by the spherical harmonics Y 1,1,

Y l •O, Y l .- l , and Yo•o, respectively (see Prob. 3, Chap. IX). This gives at
once

i (+)Yl •1

t 3- i[2i(+)Yl.O + (-)Yl.lJ
-t 3- i[2i(-)Yl.O + (+)Yl.-lJ
-i (-)Yt~

t 3- i[(+)Yl.O - 2i(-)Yl.lJ
-t 3- i[(-)Y1•O - 2i(+)Yl._d

t (+)Yo•o
-t (-)Yo•o

The wave functions (39.6) can be used to calculate the matrix ele­
ments of x = r sin 0 cos 4J, y = r sin 0 sin 4J, and z = r cos o. We assume
that the radial functions associated with (39.6) are all the same, so that
the radial part of the matrix-element integral is a common factor through­
out. The angle parts of the integrals are easily evaluated by making use
of the explicit expressions for the V's in terms of 0 and 4J given in (14.16).2
The products of spin functions follow the simple rules (+)*(+) = 1,
( - ) *(+) = 0, etc. In this way we obtain the following values for the
squares of the magnitudes of the indicated matrix elements, expressed in
units of l~ of the common radial factor:

1 The energy difference between the two upper states is so small that the w3 factor
in (36.22) does not affect the intensity ratio appreciably.

2 In the general case in which y,m'S with l > 1 are involved, it is often easier to
use a formula for the integral of the product of three spherical harmonics given by
J. A. Gaunt; see Condon and Shortley, op. cit., p. 176.
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(39.7)

(39.9)

Ixl2= lyl2 = 3, Izl2 = °
Ixl2 = lyl2 = Izl2= °
Ixl2 = lyl2 = 0, Izl2 = 4
Ixl2 = lyl2 = 1, Izl2 = °
Ixl2 = lyl2 = 0, Izl2 = 2
Ixl2 = lyl2 = 2, Izl2 = °

l
m =! to m = i

2p 28 ! to -i
j ~ t ito i

t to -t
2p ~ 28 {m = i to m= t
ttl to 1"2" -"2"

Similar results are obtained for the transitions that start from m = - t
and -!; altogether, they confirm the m selection rules of Sec. 37.

It follows from (39.7) that the sum of the intensities of all the lines
that originate on each of the four 2Pj states is equal to 6, in the above
units. It is to be expected that these sums are equal since the four values
of m differ only in the orientation of the angular momentum, and this
should not affect the intensity. However, the total intensity from each
of the two 2Pt states is also equal to 6. The equality of total intensities
from each state formed from a given Land 8 is a general property of LS
coupling; this makes the observed intensity, which is that from all the
states that are degenerate with respect to m, proportional to 2J + 1.1

In the example considered here, the two lines of the doublet have inten­
sities in the ratio 2: 1. This is observed for the lowest doublets of the
alkalis, although for the higher doublets, the intensity ratio exceeds 2.
This is because the spin-orbit energy actually mixes different configura­
tions ep states with the same j but different n); the amount of mixing is
different for the two j values, so that the two radial functions are not the
same. A small admixture of the low-intensity upper states in the high­
intensity lowest 2p states has little effect, whereas in the opposite case,
there is a large effect on the doublet intensity ratio."

Effect of a Magnetic Field. 3 We now consider the effect of a magnetic
field on the energy levels and transition intensities of an alkali atom. A
constant magnetic field H can be represented by the vector potential

A = (iH X r) (39.8)

since H = curl A. The divergence of (39.8) is zero, so that the terms
involving A that appear in the Hamiltonian (23.24) are

ieh A . ad +~ A2
mc gr 2mc2

e e2

= - 2mc (H X r) . p + 8mc2 (H X r) . (H X r)

e e2

- - H . L +-- H2r 2 sin> (J
2mc 8mc2

1 Condon and ShortJey, op. cit., p. 238.
2 E . Fermi, Zeits . f . Physik, 69, 680 (1929).
3 W. Heisenberg and P. Jordan, Zeits . f. Physik., 37, 263 (1926).
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where L = r X p and 8 is the angle between rand H j e is the electronic
charge, and hence is a negative number.

The electron also has an intrinsic magnetic moment in the direction of
its spin axis. The magnitude of this moment can be determined from
comparison between experiment and the theory of the Zeeman effect
presented below, and is in agreement with the value deduced from Dirac's
relativistic theory of the electron (see Chap. XII); it is eh/2mc, or eimc
times the spin angular momentum of the electron. This is twice the
ratio of magnetic moment to angular momentum of a classical charge
distribution for which the ratio of charge to mass density is constant.
The magnetic moment is (e/mc)S, and the extra energy in a magnetic
field is

-~H ·S
mc

(39.10)

The ratio of (39.9) to the kinetic energy is quite small for magnetic
field strengths commonly attainable in the laboratory (see Prob. 7). It is
therefore permissible to use perturbation theory to find the effect of the
H terms on the wave functions and energy levels. In most cases, only
the linear terms need be considered. However, for very strong fields
and large orbits, the quadratic terms can become of interest (see the dis­
cussion of the quadratic Zeeman effect below). Also, the diamagnetic
susceptibility can be obtained from the terms in the energy that are
proportional to H2.

Weak-field Case. For the present, we consider only the first-order
effects of H. The Hamiltonian (39.1) then becomes, with (39.9) and
(39.10),

h2 eH
H = - -2 V2 + V(r) + Hr)L . S + E(L. + 28.), E == - 2- (39.11)m mc

where the field is along the z axis. The magnetic field can now be clas­
sified as weak or strong according as the last term in (39.11) is small or
large in comparison with the spin-orbit energy. The Zeeman effect usu­
ally refers to the weak-field case, and the Paschen-Back effect to the
strong-field case, although the term Zeeman effect is sometimes used to
include all magnetic effects.

In the weak-field case, we can make use of the wave functions (39.6),
which are eigenfunctions of P and J.. It is easily verified that the
magnetic energy E(L. + 28.) = E(J. + 8.) has matrix elements between
states of different i, but not between states of the same j and different m.
We neglect the former, because of the relatively large energy separation
between states of different i . Thus the magnetic energy is diagonal with
respect to m for each i, and shifts the energy of each of the states (39.6)
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(39.12)

(39.14)

by its expectation value for that state. In each case, J. is diagonal, so
its expectation value is mho The expectation value of 8. for the 2Pi
state with m = t, for example, is

ff3- i[2i(+) *1\0 + (-)*1\llthu.3- i[2i(+) Y 1•0 + (-)Y1,l] sin 8d8dcP

= ~ f f [2i(+)*1\0 + (-)*Yl,l)[2i(+)Y1•0 - (-)Y1•1] sin 8d8dcP

h h
= 6 (2 - 1) = 6

with the help of (33.5) and the orthonormality of the spin functions and
the Y's. Thus the magnetic energy of this state is Eh(t + t) = jEh.
This and the similar results for the other states (39.6) can be expressed in
terms of the Lande g factor; the magnetic energy is

Ehmg
g = t for 2Pt , g = i for 2pj, g = 2 for 28i

The weak-field transition intensities are given directly by (39.7).
According to the discussion of Sec. 37, the radiation from the transitions
in which m changes by unity is circularly polarized when viewed along
the field and linearly polarized perpendicular to the field when viewed in
the xy plane; these are called the a components (from the German senk­
recht). When m does not change in a transition, the radiation does not
appear along the field, and is polarized parallel to the field (7r components)
when viewed in the xy plane. For observation in the xy plane, the 7r
intensity is proportional to Izl2 in (3~ .7) and the aintensity is proportional
to either Ixl 2 or lyl2 (but not to their sum).

Strong-field Case. If the magnetic energy is large in comparison
with the spin-orbit energy in (39.11), the field is said to be strong. In
this case the states within a given nl configuration are better specified by
mz and m. than by j and m as in (39.6). The magnetic energy is then
diagonal and has the value

Eh(mz + 2m.) (39.13)

If the spin-orbit energy is neglected for the moment, the eight wave func­
tions that correspond to (39.6), and their energy shifts (39.13), are

(+ )Y1•1 2Eh
(+ )Y1,o Ell

2p (+)Y 1,-1 0
(-)Y1,l 0
(- )Y1,o -Eh
(- )Y1,- 1 -2Eh

28 { (+)Yo,o Ell,
(- )Yo,o -Eh
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In the event that the magnetic field is very strong, the spin-orbit
energy is most simply treated as a perturbation on the wave functions
(39.14). We consider instead the general case, which includes all relative
magnitudes of the magnetic and spin-orbit energies. This is done by
working with the matrix of the last two terms in (39.11) in either of
the representations (39.6) or (39.14). The eigenvalues of the matrix are
the energy levels, and the transformation that diagonalizes the matrix
gives the wave functions in accordance with the discussion of Sec. 22.
We start from (39.14), and notice at once that the two 28 wave functions
are the same as the 28; functions of (39.6). We ignore the effect of the
spin-orbit energy on these two states, since it does not shift them with
respect to each other; the energy shifts due to the magnetic field are
± eh. Similarly, the first and last of the six 2p wave functions are the
same as the 2Pf functions of (39.6) with m = ±I; their energies are
ir ± 2eh, where r is given by (39.4).

The four remaining 2p wave functions combine in pairs, according to
whether m = ml + m. is equal to i or - i . It is enough to consider
just one of these pairs, say that for which m = i : (+)Y1,o and (-)Y1,l'
The matrix of the magnetic and spin-orbit energies in the representation
specified by these two states can be found with the help of the angular­
momentum matrices (24.15).

(
eh 2-;r) (39.15)

2-;r - ir

In accordance with the discussion of Eq. (21.19), the eigenvalues of the
matrix (39.15) are found by solving the secular equation

leh - X 2-1r I
2-1r - ir _ X = X2 + (ir - eh)X - ir(eh + n = 0

In this way we obtain for the energy shifts of these two states

(39.16)

In the weak- and strong-field limits, the upper and lower signs in (39.16)
lead to

and

and

eh
for- ~Or
for :h~ 0

(39.17)

Equations (39.17) show that the state that corresponds to the upper sign
in (39.16) is the weak-field state j = I, m = i and the strong-field state
ml = 0, m. = t. Similarly, the lower sign in (39.16) corresponds to the
weak-field state j = i, m = i and to the strong field state ml = 1,
m, -= - t.
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The transition intensities can be foundin the general case by calcula­
ting the matrix elements of x, y, and z with the help of the eigenfunctions
of Hr)L. S + E(L. + 28.). These eigenfunctions are the first, sixth,
seventh, and eighth of (39.14), and linear combinations of the other four
functions that are obtained from the matrix that diagonalizes (39.15).

Quadratic Zeeman Effect. For very strong magnetic fields and large
orbits or n values, effects of second order in Hbecome appreciable. From
(39.5), it is apparent that the effect of the spin-orbit energy becomes very
small for large n, and a useful approximation is obtained by neglecting
this part of the energy entirely. In this case the electron spin commutes
with the Hamiltonian, so that m. is a constant of the motion, and the spin
can be ignored. The Hamiltonian (39.11) is then replaced by

h2

H = - 2m V2 + VCr) + EL. + tmE 2r2 sin? () (39.18)

Since L. = - iha /iJcjJ commutes with (39.18), ml is a good quantum
number, and the only effect of the term EL. is to displace each energy level
by the amount Ehml' Thus for large n, we need only be concerned with
the effect of the last term H' == tmE2r2sin" () in (39.18) , for particular
values of ml and m•.1

It follows from the work of Sec. 16 that the effective radius of a hydro­
gen atom is roughly proportional to n2• For alkali-atom states of large
n, VCr) has practically the Coulomb form, and the wave functions are
very nearly hydrogenic functions. Thus H' increases about as n 4• This
means that n is no longer a good quantum number for sufficiently large n.
For smaller n, l may not be a good quantum number since H' has off­
diagonal matrix elements between states of different l, and the unper­
turbed energies of these states lie close together (they fail to be degenerate
only because the wave functions for the smallest values of l penetrate
the inner full shells). In this region, the perturbed energy levels can be
found by diagonalizing the matrix of H' for given values of n, ml, and
m., when the n - Imll rows and columns are labeled by l, The structure
of the H' matrix can be inferred from Gaunt's formula (footnote 2, page
281) ; since sin> () can be expressed in terms of spherical harmonics of order
oand 2, the only non vanishing matrix elements Hfll are for l - l' = 0, ± 2.
Thus the H' matrix has the form (if for example, mz = 0)

H~o 0 H~2 0 0
o tr; 0 H~3 0
mo 0 H~ 0 m4

I H' (39 .19)o H3l 0 33 0
o 0 H~2 0 H~4

I L. 1. Schiff and H . Snyder, Phys . Rev., 55, 59 (1939).
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The matrix (39.19) is equivalent to two independent matrices, one
for even and the other for odd l, each with about in rows and columns .
Direct diagonalization of these would be quite arduous for large n. How­
ever, the resulting energy levels are so close together that they cannot
be resolved spectroscopically, so there is little reason to determine the
individual levels. What can be observed is the aggregate of transitions
between the 2S ground state (l = 0) and the group of states that are
obtained by diagonalization of (39.19); these appear to be a single
broadened "line." Allowed transitions occur only by virtue of the state
with l = 1 that is mixed into each of the eigenfunctions of (39.19), so
that ml can be only 0 or ± 1. This makes it possible to find the center of
gravity of this line and its mean-square breadth without diagonalizing
H', as we now show.

The unperturbed wave functions can be chosen so that H' is a real
matrix. Then the unitary matrix S that diagonalizes H' can be real , so
that Eq. (21.20) or Eq. (22.6) can be written

SH'S* = E (39.20)

where E is diagonal. In terms of matrix elements, this equation is

I S'kH~ISjl = E,8ii
k,l

The new eigenfunctions u, that correspond to the energy eigenvalues E,
are given in terms of the unperturbed wave functions VI by (22.3)

u, = I S,IVI

I

If now we neglect the dependence of the radiative transition probability
on energy over the small range of energies involved in this group of
states, the transition probability is proportional to the square of the
amount of VI in each U" or to S.i. Thus the energy levels E. should be
weighted in proportion to S.i. The center of gravity of the group of
perturbed energy levels is given by

E - \' E ·C'·2 - H'
av&:. - '-' to'l - 11

i

since (39.20) can be inverted to give H' = S*ES. In similar fashion,
the mean-square breadth of the line is

I (E, - E.vc.)2S.i = LE~Sd - E•.,i.
•

= LHii - mvw• = Hfi
I
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Thus only two of the matrix elements of H' need be calculated. It is
apparent that both the displacement (apart from the factor Ehml) and
the breadth of the line are proportional to H2.

40. MOLECULES

Molecules are considerably more complex in structure than atoms,
and correspondingly less has been accomplished in the quantitative
application of quantum mechanics to molecular problems. In this sec­
tion, a general account of the nature of molecular energy levels is followed
by a simple explicit calculation for the hydrogen molecule and a somewhat
more general treatment of diatomic molecules ."

Classification of Energy Levels. The simplifying feature that is the
basis of all molecular approximations is the large ratio of nuclear mass to
electron mass . As we shall see shortly, this implies that the energy
associated with the motion of the nuclei is much smaller than that associ­
ated with the motion of the electrons about the nuclei. Since the period
of a motion is of the order of h divided by its energy, the nuclear periods
are correspondingly longer than the electronic periods . It is then a good
approximation to regard the nuclei as fixed in calculating the electronic
motion. Moreover, the nuclear motion can be calculated under the
assumption that the electrons have their steady motion for each instan­
taneous arrangement of the nuclei (adiabatic approximation).

The nuclei are expected to have a stable equilibrium arrangement
somewhere between a completely collapsed structure (which is unstable,
since the nuclei are positively charged and repel each other at short dis­
tances) and a completely dispersed structure (which is not the most stable
structure if a molecule exists) . The nuclear motions can then be classified
into translations and rotations of the quasi-rigid equilibrium arrange­
ment, and internal vibrations of the nuclei about equilibrium. As with
atoms, the translational motion is the same as that of a free particle
[see the discussion of Eqs. (16.5)], and gives rise to no nonclassical
features.

We thus arrive at a classification of molecular energy levels into
electronic, vibrational, and rotational types, and proceed to estimate their
relative orders of magnitude. Suppose that the molecule has linear
dimensions of order a. Then the energy E. associated with the motion
of a valence electron (one that occupies roughly the whole of the molecular
volume, rather than one that is bound in an inner shell close to a nucleus)

1 For more detailed discuss ions, see G. Herzberg, "Molecular Spectra and Molec­
ular Structure," 2d ed. (Van Nostrand, New York , 1950); L. Pauling and E. B. Wilson,
Jr., " Int roduction to Quantum Mechanics," Chaps. X, XII, and XIII (McGraw-Hill,
New York, 1935).



SEC. 40) ATOMS, MOLECULES, AND ATOMIC NUCLEI 299

(40.1)

(40.2)

is of order ft2l ma2, where m is the electronic mass . This can be inferred
by an argument like that given near the beginning of Sec. 9, by noting
that the momentum uncertainty of the electron is at least of order hla, so
that its minimum kinetic energy is h2l ma2• We thus obtain

h2

s, r--'-2
ma

For values of a of the order of a few angstrom units, this corresponds
to transition frequencies in the visible and ultraviolet regions of the
spectrum.

To estimate the vibrational energy, we regard each of the normal
modes as a harmonic oscillator with which is associated a mass M and a
stiffness constant K« M will be of the order of a typical nuclear mass .
K« can be estimated by noting that a displacement along a normal mode
by the order of the molecular size a must produce an energy change of
the order of the electronic energy E e, since such a large displacement
would produce a substantial distortion of the electronic wave function;
we thus put K; r--' E el a2

• Then the energy E" associated with a fairly
low mode of vibration is, from (13.8),

E" r--' h(I[;y r--' (m:)ia2 r--' (;;yEe
where use has been made of (40.1). E" is roughly a hundred times smaller
than E e, and corresponds to transitions in the near infrared.

The rotational energy E; can be estimated from the moment of inertia
of the molecule, which is of order M a2• As would be expected, the
angular momentum of a fairly low mode of rotation turns out to be of
order h, so that

(40.3)

This is about a hundred times smaller than E", and corresponds to transi­
tions in the far infrared.

It might be expected from Eqs. (40.2) and (40.3) that the electronic,
vibrational, and rotational energy levels can be obtained as successively
higher orders in an approximation that is based in some way on the small
ratio mfM (which is usually in the range 10-3 to 10-4) . This was shown
to be the case by Born and Oppenheimer." They used as expansion
parameter the ratio of a typical nuclear vibrational displacement to the
internuclear distance (which is of order a). An oscillator of energy

I M. Born and J . R. Oppenheimer, Ann. d. Physik, 84, 457 (1927).
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E" and stiffness constant K ohas a displacement of order

so that the expansion parameter is

(40.4)

In terms of this, the electronic energy is of zero order, the vibrational
energy of second order, and the rotational energy of fourth order; the
first- and third-order energies vanish.

Wave Equation. The time-independent Schrodinger equation for a
molecule is readily written down

n N

( - !!!... \' V~ - \' !'!-V~ + v) if; = Eif;
2m Lt· Lt 2Mj 1

i=l i=l

(40.5)

There are n electrons and N nuclei, and V is the sum of the electrostatic
interactions between all pairs of them. It is apparent that the nuclear
kinetic-energy terms are of fourth order in the expansion parameter
(40.4). If they are neglected, the wave function if; involves the nuclear
coordinates R, only parametrically, and (40.5) is a wave equation in
the r, for the motion of the electrons with respect to nuclei that are fixed
in space. In this case, if; is approximately URi(f,) and corresponds to
the energy eigenvalue U(Ri ) . The nuclear motion can then be found by
regarding U(Rj ) as a potential function and using it to obtain a nuclear
wave function w(Rj).

We therefore write if; in the form

where U satisfies the equation

n(-:~ 2: V~ + V) UR;(f.) = U(Rj)uR;(r.)
i=l

(40.6)

(40.7)

For each arrangement of the nuclei, U(Rj ) is obtained as an eigenvalue
of Eq. (40.7). There will, in general, be several solutions that corre­
spond to different electronic states of the molecule; care must be taken to
ensure that U and U change continuously with Ri' especially if the system
is degenerate. Substitution of (40.6) into (40.5) gives, with the help of
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(40.7),

ATOMS, MOLECULES, AND ATOMIC NUCLEI

N

[-L2~i V; + U(Ri )lit = E,y
; = 1
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which can be rewritten

(40.8)

If now the dependence of u on R, is neglected, the right side of (40.8)
drops out, and an approximate wave equation for the nuclear motion is
obtained:

N[-2: 2~i V;+ U(Ri)] W(Ri) = Ew(Ri)
;=1

(40.9)

The neglect of the grad, u terms derives physically from the smallness of
the amplitudes of the nuclear motion in comparison with the equilibrium
internuclear distances [smallness of the expansion parameter (40.4)];
this implies that the electronic part u of the wave function does not change
much as the nuclei move. Born and Oppenheimer have shown formally
that this approximation is justified so long as not too high vibrational
and rotational modes are excited.

The Hydrogen Molecule. It is clear from the foregoing discussion
that two distinct problems arise in connection with molecular structure.
The first is the solution of Eq. (40.7) to obtain electronic wave functions
and a potential energy function U(Ri ) of the nuclear coordinates. The
second is the solution of (40.9) for the nuclear motion. The first prob­
lem can be solved only in the simplest cases. As an example, we now
consider in outline an approximate solution for the hydrogen molecule
due to Heitler and London.' Following this, we discuss the solution of
Eq. (40.9) for a general diatomic molecule, making simple assumptions
concerning the potential energy U.

The only nuclear coordinate R, that appears in (40.7) in the case of
the hydrogen molecule is the magnitude R of the distance between the
two hydrogen nuclei . The Hamiltonian is that given in Eq. (27.11)

1 W. Heitler and F . London, Zeits .j. Phys ik , 44, 455 (1927).
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(40.11)

(see Fig. 24) ; however, R is no longer large in comparison with

h2

ao = me 2

so that the approximations implied in (27.11) and (27.12) are no longer
useful. Nevertheless, an approximate wave function based on a simple
product of two ground-state hydrogen-atom functions gives remarkably
good results. The reason for this is that exchange degeneracy (see Sec.
32) is taken into account: the degenerate wave fun ctions for which elec­
tron 1 is on nucleus A and electron 2 on nucleus B, and for which electron
1 is on nucleus B and electron 2 on nucleus A , are both used at once.
The new feature of the work of Heitler and London was the recognition
that an appropriate linear combination of unperturbed degenerate wave
functions gives a significantly lower energy than the separate wave
functions; it is the basis of the present-day theory of homopolar binding in
molecules. This property of degeneracy is sometimes referred to lIB

resonance. An analogous situation is that in which an interaction
between two classical oscillators that are in resonance (same unperturbed
frequency) gives rise to a normal mode that has a lower frequency (and
also one that has a higher frequency) . In a similar way , an interaction
between two resonant (degenerate) states in quantum mechanics gives
rise to a lower energy eigenvalue (as well as to a higher one) ;' There
may of course be more than two degenerate unperturbed states, and the
degeneracy need not be of the exchange type.

Potential-energy Function. Equation (40.7) for the hydrogen mole­
cule is

[H - U(R)]uR(rl,r2) = 0 (40.10)

h2
( 1 1. 1 1 1 1 )H = - - (Vi + Vn + e2 - + - - - - - - - - -

2m R rl2 rIA r 2B TIB T2A

We wish to base our approximate calculation of U(R) on the approximate
wave functions

Ul(rl,r2) = uA(rl)uB(r2)
u2(rl,r2) = UAr2)uB(r l)

where UA and UB are ground-state hydrogen wave functions [UIOO in the
notation of (16.24)] based on nuclei A and B, respectively. It must
first be noticed that the Ul and U2 of (40.11) are eigenfunctions of different
unperturbed Hamiltonians, so that the degenerate perturbation theory
of Sec. 25 is not applicable. This is unlike the situation with the helium

1 This use of the word resonance is only remotely related to that which appeared in
Sec. 19 in connection with scattering.
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(40.14)

atom [see the discussion of (33.7)], where the two exchange-degenerate
wave functions are solutions of the same unperturbed Hamiltonian.

We can, however, use the variation method of Sec. 27, in which case
it is natural to adopt as the trial function an arbitrary linear combination
of Ul and U2

1J;(rl,r2) = ul(rl,r2) + AU2(rl,r2) (40.12)

where A is the variation parameter. Substitution of (40.12) into (27.5)
gives

U < (1 + A2)Hu + 2AH12 - ff
(R) = 1 + A 2 + 2A l' ' l' = UIU?!lT IdT2 (40.13)

H u = H 22 == JJu1Hu1dTIdT2, H 12 = H 21 == JJu IHu 2dTIdT2

These equalities between matrix elements are easily established with the
help of Eq. (22.10) when it is remembered that the u's are real, and that
H is Hermitian and symmetrical in the two electrons.

The matrix elements and l' depend on R. For any particular value of
R, the derivative of the right side of (40.13) with respect to A is

2(1 - A2)(H12 - 'YHl1)
(1 + A2 + 2A'Y)2

which is zero for A = ± 1. Since the right side of (40.13) is equal to
H n when A is - 00 , 0, and + 00, one of the points A = ± 1 must be a
minimum and the other a maximum. The integrals in (40.13) can be
expressed in terms of tabulated functions, and the minimum expectation
value of H is obtained with A = +1:

1J; = UI + U2

U(R) ~ HI; ~ ~12

The upper limit on U(R) given in (40.14) has the general appearance that
is characteristic of the internuclear potential energy of a diatomic mole­
cule (see Fig. 30) and is in good agreement with experiment. I Since 1J; in
(40.14) is symmetric in an interchange of the space coordinates of the two
electrons, it must be multiplied by the antisymmetric singlet spin func­
tion given as the last of Eqs. (33.6).

It is interesting to compare the symmetry characters of the ground
state of the hydrogen molecule and the excited states of the helium atom
considered in Sec. 33, from a physical point of view . Because of the
exclusion principle, electrons must be in different space states if they
have parallel spins, and hence tend to keep away from each other. In the

I Pauling and Wilson, op. cit., Sec. 43a.
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(40.15)

excited 1828 state of helium, for example, this reduces the electrostatic
repulsion of the electrons and lowers the energy. Thus the triplet states
of helium tend to lie lower than the singlet state of the same configuration.
(The situation is different for the ground state, since only the singlet state
can exist for the 182 configuration.) In the ground state of the hydrogen
molecule, on the other hand, the lowest energy (strongest binding) is
obtained when the electrons tend to concentrate between the two nuclei ,
since then the repulsion between the electrons is more than compensated
by the attraction of both nuclei for each electron. This occurs when the
electrons can occupy the same space state and hence when they have
antiparallel spins. Thus it is the singlet state that leads to a stable
molecule.

The Morse Potential. We now turn to diatomic molecules in general,
and consider the nature of the solutions of Eq. (40.9) for the nuclear
motion. If the nuclei have masses M 1 and M 2 and their relative position
vector R has polar coordinates R,8,et>, the equation for the relative motion
becomes [see Eqs. (16.5)]

[ - 2~ V2 + U(R)] w(R,8,et» = Ew(R,8,et»

where M = M 1M2/ (M1+ M 2) is the reduced mass.
It has been found by experience that the potential-energy fun ction

for the lowest electronic states of actual diatomic molecules can be repre­
sented quite accurately by a simple analytic function that contains three
adjustable parameters

[

_ 2(R-Ro) _ (R-RO)]
U(R) = Us e a - 2e a (40.16)

Equation (40.16) represents the Morse potentiol,' and is drawn in Fig. 30.
U approaches zero exponentially for large R, has the minimum value
- U« at R = Ro, and becomes large and positive as R approaches zero if
the "breadth" a of the attractive region is somewhat smaller than the
equilibrium distance Ro•

Figure 30 has the general appearance that would be expected for a
diatomic molecule. The zero of energy is arbitrarily chosen to occur
when the neutral atoms are far apart; then U becomes negative at first
as R decreases, because of the van der Waals attraction. 2 For small er R
this is replaced by the much stronger Heitler-London resonance attrac-

1 P . M. Morse , Phys. Rev., 34, 57 (1929).
2 One of the inaccuracies of the Morse potential is its replacement of the 1/R6

van der Waals term (see the middle of Sec. 27), by an exponential ; however, the
behavior of U at such large R has little influence on molecular energy levels .
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tion. As R continues to decrease, the close approach of the nuclei (or
ionic cores) gives rise to a repulsion that causes U to increase and eventu­
ally become large and positive. 1

Rotation and Vibration of Diatomic Molecules. Equation (40.15)
can be separated in spherical coordinates, as was Eq. (14.1), to give

x(R)
w(R,O,cP) =~ y KMAO,tJ»

K and M K are the angular-momentum quantum numbers that are
analogous to land m, respectively, for a single particle in a central field.
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FIG. 30. The Morse potential (40.16), with a = iRo•

The radial equation is
h2 d2x

- 2M dR2 + W(R)x = Ex (40.17)

W(R) = U(R) + h2K2~R-t; 1), K = 0,1,2, . . .

Equation (40.17) is the wave equation for the one-dimensional motion
of a particle of mass M in a potential W(R) , with the boundary condition
that X vanish at R = 0. If K is not too large , the general shape of W
resembles that of U shown in Fig. 30. In this case, we are primarily
interested in vibrations of small amplitude about the minimum. We can
then expand W about its minimum at R1, which is only the same as R«
if K = 0, to give

W(R) = Wo + ~Ko(R - R 1)2 + b(R - R 1) 3 + c(R - R 1) 4 (40.18)

1 Unlike the true interaction, the Morse potential is finite at R = O.
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where higher order terms are neglected. If the band c terms are also
neglected and the domain of R is extended to - 00 , the eigenvalues of
(40.17) are those of a linear harmonic oscillator with an additive term
Woo This is a good approximation for moderate values of the rotational
quantum number K and the vibrational quantum number v. A somewhat
better approximation can be obtained by regarding the band c terms in
(40.18) as perturbations on the oscillator. Since the b term produces
only a second-order effect (see Prob. 2, Chap. VII), whereas the c term
appears in first order (its expectation value can be computed by matrix
methods as in Prob. 5, Chap. VI), both make contributions to E that have
the same order of magnitude.

Energy Levels. The eigenvalues of (40.17) to lowest order in band c
are then

E = W o + h (~;Y (v + t) - ;;~ [¥(v + t)2 +-ie-l

+ 2~io [(v + t)2 + il, v = 0,1,2, (40.19)

Wo, K«, b, and c can all be expanded in powers of K(K + 1), where the
coefficients depend on the parameters of the fun ction U(R). If U has
the form (40.16), the following expressions can be obtained:

(40.20)

Only enough terms have been retained to give E correctly to second order
in (v + t) and K(K + 1).

The first of Eqs. (40.20) shows that the molecule stretches owing to
rotation. The second equation is the equilibrium energy - U 0, plus the
rotational energy to second order. The first-order rotational energy is
h2K (K + 1)/2[0, where [0 = MR5 is the moment of inertia of the mole­
cule about an axis perpendicular to the line joining the nuclei ; this energy
is the same as for a rigid rotator (see Prob. 12). The third equation
includes the change in the stiffness due to stretching. The corrections
for stretching in the anharmonic terms band c can be neglected to this
order. The second term on the right side of (40.19) can be expanded
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with the help of the expression for K o to give

h (2U~)1 (v + i) [1 _ 311
2K(K + 1) s. (1 _ ~)]

Ma 4MR5Uo n, u;
The last two terms in (40.19) give the second-order vibrational energy

(- H- + T~) ;;:2 (v + i)2 = - 2;;a2 (v + i)2 (40.21)

since the constant factors cancel.
It is apparent that the rotational and vibrational energy levels agree

in order of magnitude with the estimates made at the beginning of this
section. As either v or K increases, the spacing between levels becomes
smaller than that predicted from the simple rigid rotator and harmonic

. oscillator.
Effect of Nuclear Identity. In the event that the two nuclei of a

diatomic molecule are identical, the wave function must be symmetric
with respect to an interchange of their space and spin coordinates if the
nuclei have zero or integer spin, or antisymmetric if they have half-odd­
integer spin (see Sec. 33) . The discussion of Sec. 14 shows that the par­
ity of the nuclear wave function is determined by the angular function
y K M x(8,¢ ), and is even or odd according as K is even or odd. An inter­
change of the space coordinates of the two nuclei is equivalent to a change
in sign of their relative position vector R, so that the parity determines
the space symmetry of the wave function. We thus see that for nuclei
of zero or integer spin, the spin function must be symmetric for even K
and antisymmetric for odd K; for nuclei of half-odd-integer spin, the spin
function must be antisymmetric for even K and symmetric for odd K.

The discussion of Sec. 33 shows that for two nuclei of spin 1h each,
the total of (21 + 1)2 spin states can be divided into (1 + 1)(21 + 1)
symmetric states and 1(21 + 1) antisymmetric states. Thus in a gas
that is in statistical equilibrium, the ratio of the number of molecules
with even K to the number with odd K will be (I + 1)/ 1 if 1 is zero or an
integer, and 1/(1 + 1) if 1 is half an odd integer." This effect gives rise
to alternating intensities in the band (rotational) spectrum of homonu­
clear diatomic molecules. Both the spin and the statistics of appropriate
nuclei can be determined in this way, and the results are in agreement
with the general statement in Sec. 33.

41. ATOMIC NUCLEI

The application of quantum mechanics to the investigation of the
structure of atomic nuclei entails great mathematical complexities in all

1 This ratio is, of course, modified by the Boltzmann factor if the spacing between
rotational levels is not small in comparison with the thermal energy KT.
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but the simplest cases. In this section we mention very briefly some gen­
eral properties of nuclei and then consider the nuclear two-body problem.1

General Properties of Nuclei. Atomic nuclei consist of protons and
neutrons, both of which are called nucleons. Other particles (mesons,
electrons), which have a transient existence within nuclei, are usually
ignored in structure theories. Protons are nuclei of hydrogen atoms, and
neutrons are particles that have about the same mass, no electric charge,
and the same spin and statistics as protons (spin -}h, Fermi-Dirac statis­
tics). A nucleus can be charact erized by its charge Ze, where Z is an
integer and e is the positive proton charge, and its mass M, which is
measured in units of -Ar of the mass of 0 16 (oxygen isotope of mass num­
ber 16). M is always found to be close to an integer A, called the mass
number. The number of neutrons in a nucleus is equal to A - Z ; thus
the deuteron (heavy-hydrogen nucleus) H2 consists of one proton and one
neutron, the alpha particle (helium nucleus) He4 of two protons and two
neutrons, and the gold nucleus Au l 97 of 79 protons and 118 neutrons.

According to the theory of relativity, the difference between the sum
of the masses of the Z protons and A - Z neutrons in a nucleus and the
mass M of that nucleus, multiplied by the square of the speed of light, is
the energy evolved when the separate nucleons are brought together to
form the nucleus. This energy is called the binding energy of the nucleus,
and is convenient ly measured in units of a million electron-volts (Mev).
The nuclear radius R is a reasonably well-d efined quantity. It can be
measured in several ways, for example, from the scattering of high­
energy neutrons, protons, and electrons. It is found experimentally that
both the binding energy per nucleon and the volume per nucleon are
roughly constant over most of the periodic system. The former is about
8 Mev, and the latter is usually expressed in the form R = roAt, where
ro"-' 1.2 to 1.4 X 10-13 em. The approximate constancy of the binding
energy and volume per nucleon is referred to as the saturation property of
nuclei.

Two-nucleon Interaction. The most fundamental problem to be
solved in connection with nuclei is the determination of the parameters
of the interaction energy between pairs of nucleons. It is possible that
once these are known the problem of the structure of nuclei heavier than

1 For further discussion, see H. A. Bethe, " Elementary Nuclear Theory" (Wiley,
New York, 1947); L. Rosenfeld, "Nuclear Forces" (Interscience, New York, 1948);
G. Gamow and C. L. Critchfield, "Theory of Atomic Nucleus and Nuclear Energy­
sources" (Oxford, New York , 1949); E . Fermi, "Nuclear Physics" (University of
Chicago Press, Chicago, 1950) j J . M. Blatt and V. F. Weisskopf, "Theoretical Nuclear
Physics" (Wiley, New York, 1952); R. G. Sachs, "Nuclear Theory" (Addison­
Wesley, Cambridge, Mass., 1953); A. Bohr and B. R. Mottelson, Kgl. Danske Vid.
Sels. Mat.-fys. Medd ., 27, 16 (1953).
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the deuteron would become merely an exceedingly complicated exercise
in the application of quantum mechanics. This situation would be
analogous to that which obtains in atomic and molecular structure,
where the main interaction is known to be given by Coulomb's law. On
the other hand, it is possible that knowledge of the two-body interactions
is not enough to determine the structure of heavier nuclei, even in prin­
ciple. This would be the case if there were additional interactions which
occur only when three, four, or more nucleons are close together, so that
their existence and character could not be inferred from a study of the
two-nucleon system. The question of whether or not appreciable many­
body interactions exist has not yet been settled, and we shall not discuss
it further here .

We devote the remainder of this chapter to the two-nucleon system
and assume that the main interaction is of short range. It is reasonable
to expect this range to be substantially less than the radii of heavy nuclei,
and calculations of the type described below show that it is of the order
of 2 X 10-13 em. We put aside for the present any possible dependence
of the interaction potential energy V(r) on quantities other than the
magnitude of the separation distance r between the two nucleons. Our
first problem then is to solve the Schrodinger equation for the relative
motion of two particles of reduced mass J.L in the potential V(r). Since
neutrons and protons have about the same mass , J.L is very nearly equal
to half the mass of either of them.

Neutron-Proton System. A simple assumption for the shape of V(r)
is the square well form (see Fig. 13, page 76): V(r) = - V o for r < a,
V(r) = 0 for r > a. It was shown in Sec. 15 that there is no bound state
of a particle of mass J.L in this potential unless V oa2 > 7r 2h2/ 8J.L , which is
equal to 1.01 X 10-24 Mev-cm 2 for the neutron-proton system. If we
assume that a = 2.00 X 10-13 em, V omust exceed 25.2 Mev in order for
the deuteron to exist. Since the deuteron has only one bound state, it is
reasonable to suppose that it corresponds to l = O. Then the solution
of Prob. 7, Chap. IV, shows that the measured binding energy of 2.23 Mev
is obtained with V o = 36.1 Mev.

The scattering cross section for neutrons of very low energy on pro­
tons can then be obtained from Eq. (19.28). If we neglect E in compar­
ison with V o, we find that a = 3.5 X 10-24 em", The measured cross
section for neutrons of a few electron-volts energy in hydrogen is about
20.4 X 10-24 em"; this energy is small enough so that it can be neglected
in comparison with Vo and large enough so that the binding of the proton
in the hydrogen molecule does not affect the result. An explanation of
this discrepancy in terms of the dependence of the neutron-proton inter­
action on the spin state was suggested in 1935 by E. Wigner (unpub-
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lished). The deuteron is known to have spin h, and so is in a triplet
spin state. However, as discussed in Sec. 34 in connection with exchange
collisions of electrons with hydrogen atoms, the colliding neutron and
proton will be in a triplet state in three-fourths of the collisions and in a
singlet spin state in one-fourth of the collisions. Thus the discrepancy is
removed if the singlet cross section is taken to be 70.8 X 10-24 em",

If we assume that a is also equal to 2.00 X 10-13 cm for the singlet
interaction, Eq. (19.28) shows that this cross section is obtained for a
potential depth of either 23.6 or 27.0 Mev. It is apparent that this is
the resonance scattering case discussed in Sec. 19 and that these two
potentials correspond to virtual and bound singlet states, respectively.
The decision as to which is correct cannot be made on the basis of the
dependence of the scattering cross section on incident neutron energy; it
is shown in Sec. 19 that with l = 0, a is a monotonic decreasing function
of E in both cases, and there is not enough difference in the behavior of
the two functions. It is found from other considerations1 that the singlet
state is virtual, so that the depth corresponding to this range is 23.6 Mev.

Arbitrary Shape of Potential. The interaction potential energy
between a pair of nucleons is characterized by a short range a and a large
magnitude Vo. Here, a and V odo not apply only to the square well shape
but rather refer to the distance within which V(r) is appreciably different
from zero and to the approximate magnitude of V(r) in this region,
respectively. For collisions of moderate energy, up to a few Mev, ka is
fairly small compared to unity, where k = (2p.E)ijh and E is the kinetic
energy in the center-of-mass coordinate system. For example, with
a = 2 X 10-13 em, ka is equal to unity when the energy of the incident
nucleon in the laboratory system is about 20 Mev. Thus for moderate
energies, only the l = 0 partial wave need be considered. Also, both E
and E, the binding energy of the deuteron, are fairly small in comparison
with Vo. It follows that the form of the l = 0 radial wave function
depends only slightly on the energy within the potential range and has
its simple asymptotic form outside this range. This suggests that the
binding and the low-energy scattering produced by such a potential
should depend primarily on the "strength" of the potential, measured
roughly by Voa2, and on the distance at which the wave function attains
its asymptotic form, measured roughly by a.

It turns out that any strong, short-range, predominantly attractive
potential can actually be represented by two parameters, which may be
chosen to be a strength and a range, and which between them specify the

1 Most reliably from the scattering of very slow neutrons in ortho- and para­
hydrogen; the possibility of such a determination was first pointed out by J. Schwinger
and_E . Teller, Phl/', Rev., &12, 286 (1937).
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bound state energy -E and the dependence of the scattering phase shift
on energy for moderate values of E.l Thus low-energy experiments can
be expected to determine only these two parameters and not the shape of
the potential V(r); this expectation is confirmed by the experimental
results.

Relations for the Phase Shift. We work entirely with the l = 0
partial wave, and let u(r) be the product of r and the radial wave function .
The normalization of u is so chosen that its asymptotic form is

u(r) -------7 1/;(r)

outside the range of the potential, where

1/;(r) == sin (~r + 0)
sin 0

(41.1)

(41.2)

for all r, The phase shift 0 agrees with the definition given in Eq. (19.8),
and the total cross section is

4,r . 2
U = k2 sm 0

as in Eq. (19.13) .
The wave equations for particular energies E l and E 2 are

d2u l
dr2 + kiul - UUl = 0

d2u2
dr2 + k~U2 - UU2 = 0

(41.3)

(41.4)

where U(r) = 2JLV(r)jh 2. We multiply the first of Eqs. (41.4) by U2,
the second by Ul, and integrate the difference between them over r from
r = 0 to a distance R that is somewhat larger than the range of the
potential :

(41.5)

(41.6)

The 1/;'s satisfy the same Eqs. (41.4) as the u's , except that the U terms
are absent. Therefore Eq. (41.5) holds for the 1/;'s as well:

(
d1/;1 d1/;2) IR (R

1/;2 dr - 1/;1 dr 0 = (k~ - ki) Jo 1/;l1/;2dr

If now Eq. (41.5) is subtracted from Eq. (41.6), the contributions to the

1 Although suspected earlier, this result was first established by J . Schwinger in
unpublished lectures (1947), using a variational method; the present treatment follows
that of H. A. Bethe, Phys. Rev., 76, 38 (1949).
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left side from the upper limit R cancel, since u(R) = 1/I(R) . Then the
limit R -. 00 can be taken, to yield

( 1/11d1/l2 _ 1/12 #1) _ (U1 dU2 _ U2 dU1)
dr dr r=O dr dr r - O

= (k~ - ki) fa '" (1/111/12 - u1u2)dr (41.7)

From Eq. (41.2), the first parenthesis on the left side is equal to k 2 cot 02
- k 1 cot 01. Also, since u(O) = 0, the second parenthesis on the left
side is zero. Thus Eq. (41.7) can be written

k2 cot 02 - k1 cot 01 = j(k~ - ki)p(E1,E2)

p(E 1,E 2) == 2 fo ee (1/111/12 - U1u2)dr
(41.8)

'41.9)

A modification of Eqs. (41.8) that is of interest is obtained by replac­
ing E 1 by -E, 1/I1(r) by 1/Ig(r) == exp (-{3r), where (32 = 2J.LE/h2, and u1(r)
by the ground-state wave function ug(r) normalized in analogy with
(41.1). The result is

k« cot 02 + (3 = j(k~ + (32)p( -E,E2)

p(-E,E2) == 2 fo '" (1/Ig1/l2 - ugu2)dr

Another modification consists in allowing E 1 to become zero:

». cot 02 + 1. = -2
1 k~p(O,E2)

at

p(O,E2) == 2 fa '" (1/101/12 - uou2)dr

1/10 == 1 - !..., .!. = - lim (k cot 0)
at at E-+O

(41.10)

where the subscripts on Uo and 1/10 denote zero energy. The quantity
at is called the scattering length; from Eq. (41.3) the scattering cross sec­
tion at zero energy is equal to 411"al. The subscript on at implies that it
refers to the triplet, not the singlet interaction.

Effective Range. Equations (41.8), (41.9), and (41.10) are exact.
We now make an approximation with regard to p that is suggested by
the general form of the potential. It is apparent that Eq. (41.1) makes
the integrand of p vanish outside the potential. Inside the potential,
all the 1/I's are very nearly equal to unity since kr and {3r are small in com­
parison with unity ; also, the u's are very nearly equal to each other since
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U is much larger than k2 or (32. Thus p depends only slightly on its argu­
ments, and can be calculated for any convenient energies. Our approx­
imation, then, is to replace p in the above equations by

ro == p(O,O) = 2 10 00 (if;~ - u~)dr (41.11)

which is called the effective range . Alternatively, the effective range
could be defined, for example, as

p(-E,-E) = 2 10 00

(if;; - u;)dr (41.12)

It is shown in Prob. 17 that the effective ranges computed from Eqs.
(41.11) and (41.12) in a typical case agree with each other within a few
per cent.

With this approximation, the scattering phase shift is given by Eq .
(41.9) as (dropping the subscript 2)

k cot 0 + (3 '"" jro(k2 + (32) (41.13)

and by Eq. (41.10) as
1 1

k cot 0 + - '"" - rok2

at 2
(41.14)

Comparison of Eqs. (41.13) and (41.14) gives the following relation
between at, {3, and the triplet effective range ro:

(41.15)

With 1/{3 = 4.28 X 10-13 em, which corresponds to E = 2.23 Mev, and
at = 5.34 X 10-13 em, Eq. (41.15) gives ro '"" 1.70 X 10-13 em.

Either of the quantities {3 or at may be thought of as a strength param­
eter for the potential and ro as a range parameter; however, (3 and at
differ enough so that specification of any two of the three quantities fixes
the third. Thus according to this shape-independent effective range
theory, all the binding and moderate-energy scattering properties of the
potential are determined by just two parameters. The experimental
results show that this is actually the case and so confirm the assumption
of a strong, short-range interaction on which the theory is based.

Exchange Operators. The spin dependence of the neutron-proton
interaction noted above can be expressed in terms of the spin-exchange
operator j(l + dN • dp ) , where dN and dp are the Pauli spin matrices for
the neutron and proton, respectively, defined as in Eqs. (33.3) . As
shown in Prob. 18, such an operator multiplies a triplet (symmetric) spin
function by +1 and a singlet (antisymmetric) spin function by -1. It
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follows from the foregoing discussion that the coefficient of the spin­
exchange part of the neutron-proton interaction is about one-fifth of the
coefficient of the non-spin-exchange part.

A space-exchange operator! multiplies wave functions of even l by +1
and wave functions of odd l by -1; it has no effect on the results obtained
thus far, which are all for l = O. For higher energy scattering, the discus­
sion of Sec. 19 shows that the partial wave with l = 1 can be significant.
If the phase shift <h for l = 1 is small in magnitude and the higher phase
shifts can be neglected, Eq. (19.32) can be approximated as

(T(O) ""' ~2 (sin" 00 + 301 sin 200 cos 0)

For energies high enough so that o! is appreciable, the l = 0 phase shift
00is likely to be between °and 90°, so that the sign of the angular asym­
metry is determined by the sign of o!.

If now the interaction were predominantly of the non-space-exchange
type, the potential would be negative (attractive) for l = 1, and 01
would be positive. Then neutrons incident on protons would be pref­
erentially scattered forward in both the center-of-mass and laboratory
coordinate systems. If, on the other hand, the space-exchange operator
were to dominate the interaction, the potential energy would be repulsive
for l = 1, and 01 would be negative. Then the neutrons would be pref­
erentially scattered backward in the center-of-mass system or at right
angles in the laboratory system, and the protons would tend to recoil in
the forward direction in both systems. This effect can be regarded
physically as a non-space-exchange type scattering accompanied by an
exchange of identity between the neutron and the proton.

High-energy scattering experiments show that the differential cross
section is nearly symmetric about 90° in the center-of-mass system. If
it were exactly symmetric, the simplest and most likely situation would
be either that all the even l phase shifts are zero or that all the odd l phase
shifts are zero (see Prob. 19). The first case is impossible, since it is
known that 00~ O. Weare thus led to the Serber interaction as an
approximation to the space-exchange character of the neutron-proton
potential : the coefficients of the space-exchange and non-space-exchange
parts of the neutron-proton potential are equal and of the same sign, so
that there is no interaction in odd l states.

Proton-Proton Scattering. The scattering of fast protons in hydrogen
can be treated by the methods outlined in Sec. 20, with suitable allow-

1 This was introduced by E. Majorana, Zeits . f. Physik, 82, 137 (1933), as a modi­
fication of the original suggestion of W. Heisenberg, ZeUs. f . Physik, 77, 1 (1932).
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ance for the identity and spin of the two colliding protons (see Sec. 33) .
When the interaction is a pure Coulomb field, combinat ion of Eqs. (20.10)
and (33.2) yields the M ott scattering formula-

<T(0) = (2::2) 2 {cosec4 j-e + sec! jo
- cosec? jo sec? jo cos [~: In (tan" jO)]} (41.16)

which is expressed in the center-of-mass coordinate system. This for­
mula represents only the experiments for protons of less than about 0.2
Mev bombarding energy, since for higher energies the protons approach
closely enough so that the specifically nuclear interaction becomes
appreciable. Up to several Mev energy, only the 00 term in (20.24) need
be included. It must be remembered th at because of the exclusion
principle, the partial wave with 1 = 0 is associated with a singlet spin
state. Thus experiments with fast protons are required if information
concerning the triplet proton-proton interaction is to be obtained. An
effective range theory can be made for the singlet proton-proton inter­
action," and leads to about the same parameters as for the singlet neutron­
proton interaction.

Problems

1. Find an expression for the electron density nCr) in the Thomas-Fermi model
in terms of the dimensionless fun ction x, and show that the radius of a sphere that
encloses a fixed fraction of all the electrons is proportional to Z-i.

2. Use Lagrange's method of undetermined multipliers to show that the condition
that the integral in (38.9) is stationary, when the u's are varied but kept normalized,
is given by (38.11).

3. Two p electrons (l = 1) can have L = 0, 1, or 2 and S = 0 or 1, in the Russell­
Saunders case. Are all combinations of Land S permitted if the n values of the two
electrons are different? Are they all permitted if the n values are the same?

4. Show that spin wave fun ctions in the Russell -Saunders case that are eigen­
functions of 52 with different values of the total-spin quantum number S are orthog­
onal. Use a method like that which was employed in Sec. 10 to show that energy
eigenfunctions corresponding to different eigenvalues are orthogonal.

6. Show by direct computation that J = L + 5 commutes with L·5, and hence
with the Hamiltonian (39.1) .

6. Use the M matrices given in Eqs. (24.15) to show that the wave functions
(39.6) have the indicated eigenvalues of J2 and J •.

7. Estimate the ratio of the term in (39.9) that is linear in H to the kinetic-energy
term, for a hydrogen atom in a magnetic field of 106 gauss .

1 N . F . Mott, Proc. Roy. Soc., A126, 259 (1930). I'is half the proton mass, and
!I is the relative speed.

s Bethe, op, cit.
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8. Estimate the magnitude of the magnetic field strength for which the two
perturbation terms in (39.11) are equal for an alkali atom.

9. Construct a diagram that shows the relative displacements and intensities of
the 7r and (J Zeeman components of the 2p -+ 2S transitions in an alkali atom when the
magnetic field is weak. Construct a similar diagram when the field is strong.

10. Show that the ratio of the distance traveled by the nuclei of a molecule during
a period of the electronic motion, to the dimensions of the molecule, is of order (mlM)i
in the case of vibrational motion, and (m IM) in the case of rotational motion. Do
these results justify an adiabatic type of approximation?

11. Does the internuclear potential (40.14) obtained for the hydrogen molecule
approach the -11R6 form obtained in Sec. 27 for large R? If not, why doesn't it?

12. Set up and solve the wave equation for a rigid rotator: an object that has no
kinetic energy of rotation about a particular axis, and equal moments of inertia about
the two perpendicular axes.

13. Derive the selection rules for transitions between rotational levels of a diatomic
molecule .

14. Discuss the selection rules for vibrational transitions when the two nuclei of a
diatomic molecule are the same and when they are different.

16. Calculate the contributions to the vibrational energy of a diatomic molecule of
the neglected fifth- and sixth-power terms in the expansion (40.18), and show that their
neglect is justified in arriving at the (v + j.p energy given in (40.21) . Use matrix
methods to get the needed matrix elements of x6 and x6 for a harmonic oscillator.

16. Suppose that the interaction between a neutron and a proton is the same in
the singlet as in the triplet state, and is represented by a square well. Is there any
value of a that will fit both the deuteron binding energy (I = 0) and the slow-neutron
scattering cross section? If so, what is it?

17. Use the value of the binding energy of the deuteron to calculate the triplet
effective range of a square well potential from Eq. (41.11) and from Eq. (41.12),
assuming that a = 2.00 X 10-13 em. Compare these with each other and with the
value for ro given in the text.

18. Show that the spin-exchange operator j.(l + dN' dp) has the properties
ascribed to it in the text.

19. Assume that the neutron-proton differential scattering cross section is sym­
metric about 90° in the center-of-mass system, and neglect the difference between
triplet and singlet interactions. Show that this is equivalent to the requirement that

II (21 + 1)(2/' + 1) sin 01 sin 01' cos (01 - OI,)PI(COS O)PI'(cos 0) = 0
I I'

for all 0, where alii are even and all I' are odd . Show that a sufficient condition that
this relation is satisfied is that all 01are either 0 (mod 7r) or T/ (mod 7r) and that all 01'
are either 0 (mod 7r) or T/ +~ (mod 7r), where T/ is arbitrary;' Show also that, if
only one of the 01' is different from 0 (mod 7r), a necessary and sufficient condition
that the above relation is satisfied is that all 01 are either 0 (mod 7r)or 01' +~ (mod 7r).

20. Make use of the work of Sec. 20 to obtain an expression for the ratio of the
proton-proton scattering with a phase shift 00 (and no others), to the Mott scattering
given by Eq. (41.16).

t The term mod 7rsignifies that an integer multiple of 1r may be added to or sub­
tracted from the preceding quantity without invalidating the stated relationship.
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21. The ground-state wave function ,yo of an atom or nucleus, if nondegenerate,
has a definite value J« for its total-angular-momentum quantum number. Since the
diagonal matrix element of an operator fl for a state ,y vanishes unless ;po,y is spheri­
cally symmetric, show that the expectation value of 0 for the state ,yo is zero unless
the function o,yo, when expanded as a series of eigenfunctions of the operator J2,
contains a term with quantum number J 0. If 0 is the operator for a 21 electric or
magnetic multipole moment, show also that its expectation value is zero unless J°~ il
(compare with the discussion at the end of Sec. 25).



CHAPTER XII

RELATIVISTIC WAVE EQUATIONS

In this chapter we extend the nonrelativistic SchrOdinger wave
equation to the description of the motion of a particle that has a speed
approaching that of light. This extension can be made in many ways,
each of which is consistent with the Lorentz transformation equations of
the special theory of relativity. 1 A characteristic feature of relativistic
wave equations is that the spin of the particle is built into the theory from
the beginning, and cannot be added afterward as Pauli added the electron
spin to SchrOdinger's nonrelativistic equation. This feature provides a
useful gauge of the applicability of a particular equation to the description
of a particular kind of particle. Two relativistic equations are con­
sidered here : the spin <J equation due to Schrodinger that has since been
found to describe a 7r meson, and the spin j equation due to Dirac that
describes an electron. In discussing these equations, we devote our
attention mainly to the deductions that can be made from them and
do not attempt to establish their Lorentz invariance. We shall, there­
fore, continue to use three-dimensional vector notation rather than the
more elegant four-dimensional notation of special relativity theory.
The invariance of an equation can usually be inferred quite convincingly
from its symmetry between the space coordinates and the time.

42. SCHRODINGER'S RELATIVISTIC EQUATION

At the time when Schrodinger developed his nonrelativisitic wave
equation, he also proposed an extension of it that meets the requirements
of special relativity." This equation follows quite naturally from the
transition in classical dynamics from the non relativistic relat ion

(42.1)

between the energy and momentum of a free particle, to the corresponding
relativistic relation

(42.2)

1 For a review of special relativity, see, for example, P. G. Bergmann, "Introduc­
tion to the Theory of Relativity," Part I (Prentice-Hall, New York, 1946), or R. C.
Tolman, "Relativity, Thermodynamics and Cosmology," Chaps. II, III, and IV
(Oxford, New York, 1934).

2 E. Sehrodinger, Ann. d. Physik, 81, 109 (1926), Sec. 6.
818
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(42.3)p~ -ih grad

where now E includes the rest-mass energy me». We proceed by adopting
the substitutions (6.13) for E and p

E~ih~,

Free Particle. A relativistic wave equation for a free particle can be
obtained by substituting (42.3) into (42.2) and operating on a 'Nave
function if;(r,t), just as the substitution of (42.3) into (42.1) yields Eq.
(6.11). The result is

- h2 a2if; = -h2c2V2if; + m2c4if; (42.4)
at2

Equation (42.4) has plane wave solutions of the form

exp i(k . r - wt) (42.5)

which are eigenfunctions of the operators E and p in (42.3) with eigen­
values hw and hk, respectively. It is apparent that (42.5) satisfies Eq,
(42.4) if

(42.6)

The positive and negative square roots in (42.6) correspond to an ambigu­
ity in the sign of the energy that also results from the classical expression
(42.2). We take only the positive square root for the present, and
return to the negative-energy solutions at the end of Sec. 44.

Expressions for the charge and current densities can be found in
analogy with those obtained in Sec. 7. The conservation equation

~ P(r,t) + div S(r,t) = 0 (42.7)

(42.8)

turns out to be invariant with respect to Lorentz transformations. We
multiply (42.4) on the left by ?t, the complex conjugate equation on the
left by if;, and subtract one from the other. Then (42.7) results, if we
define real quantities

ih (aif; a?t)
P(r,t) = 2mc2 ?t at - if;at

h
S(r,t) = -2' (?t grad if; - if; grad ?t)

~m

This expression for S is identical with the nonrelativistic form (7.3),
and the expression for P can be shown to reduce to (7.1) in the non­
relativistic limit (see Prob , 2). It should be noted that P given by (42.8)
is not necessarily positive, and hence cannot be interpreted as a position
probability density. It can, however, be multiplied by e and interpreted
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(42.9)

as an electri c charge density, since charge density can have either sign so
long as it is real.

Electromagnetic Potentials. We can include the electromagnetic
potentials A(r,t) , ef>(r,t) in the wave equation by making use of the fact
that ef> and (l jc)A have the same Lorentz-transformation properties as
E and p. In analogy with the nonrelativistic expression (23.14), we
replace (42.2) by

(E - eef»2 = (cp - eA)2 + m2c4

for a particle of charge e. The substitutions (42.3) then give

( h2 iJ2 2 ' h iJ . h iJef> + 22) .t.- iJt2 - te ef> at - ze at e ef> 't'

= [-h2c2V'2 + 2iehcA · grad + iehc(div A) + e2A2 + m2c4]if; (42.10)

We can now find the connection between Eq. (42.10) and the similar
Eq. (23.24) in the nonrelativistic limit. We make the substitution

imc 2t

1/;(r,t) = if;'(r,t)e --,,- (42.11)

in (42.10), and assume that operation with ih(iJjiJt) on if;' gives a result
that is of the same order as eef>if;' and small in comparison with mc2if;'.

This is equivalent to subtracting out the rest energy and assuming that
the remaining energies are small in comparison with it. Differentiation
of (42.11) gives

iJif; (iJif;' imc2 ) _ imc' !at = at ----,;-1/;' e "

iJ2if; (iJ 2if;' 2imc2iJif;' m2c4 ') _ imc' l
at! = (Jt2 - -h- 7ft - ¥ if; e "

The first term in each of these derivatives can be neglected, as can the last
two terms on the left side of (42.10), which then becomes

(
iJif;' ) -~

2ihmc2at + m2c4if;' - 2emc2ef>if;' e "

With these approximations, Eq. (42.10) becomes the same as (23.24)
if 1/;' is replaced by 1/;.

There is no way in which the Pauli spin matrices (33.3) can be included
in Eq. (42.10) without destroying the invariance of the theory. This is
not surprising, since the spin matrices transform like the components of a
three-dimensional, rather than a four-dimensional, vector, and since if;
has one component rather than two components like the spin functions
(33.4). Thus the Schr6dinger relativistic equation represents a particle
that has no spin .
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The structure of Eq. (42.9) shows that a "potential-energy" term
cannot be added arbitrarily to (42.10), as the term Vlf was added to
(23.24) to give Eq. (35.1). The Lorentz-transformation properties of
any such term must be investigated first. If it transforms like part of a
four-dimensional vector, the rest of this vector must be included in some
such manner as cP and (1/e)A were included in (42.9). If it is an invariant
with respect to Lorentz transformations, it can be included as part of the
rest energy me',

Separation of the Equation. The wave equation (42.10) can be
separated with respect to rand t if the potentials A,cP are independent of
the time. We then put

iEt

If(r,t) = u(r)e-T

and substitute into (42.10) to obtain

(E - ecP)2u
= [-h2e2V2+ 2ieheA· grad + iehe(div A) + e2A2 + m2e4]u (42.12)

We now specialize to the case in which A = 0 and cP(r) is spherically
symmetric. Equation (42.12) then becomes

(42.13)

(42.14)

(42.15)

which can be separated in spherical coordinates (see Sec. 14) to give

u(r,O,cP) = R(r)Y1m(O,cP)

[ _ l!£(r2.!:..) + l(l + 1)J R = [(E - ecP)2 - m
2e4JR

r2dr dr r2 h2e2 '
l = 0,1,2, .

This reduces to the nonrelativistic radial equation if we put E = me2 + E',
and assume that E' and ecP can be neglected in comparison with me",
Then the bracket on the right side of (42.14) becomes (2m/h 2) (E' - ecP),
as it should.

Energy Levels in a Coulomb Field. An exact solution of (42.14) can
easily be obtained if we put ecP = - Ze2/r, by making use of the results of
Sec. 16. This situation would represent a hydrogen atom were it not for
the fact that the particle described by (42.10) has no spin, and so cannot
be an electron.

If we put p = ar, Eq. (42.14) can be written as

.!..!:.. ( 2dR) +e_! _ l(l + 1) - ')'2) R = 0
p2 dp p dp p 4 p2

Ze2 4(m 2e4 - E2) 2E')'
')' == -, a2 == ,X == --he h2c2 hc«
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This has precisely the form of Eq. (16.7) except that l(l + 1) has been
replaced by l(l + 1) - )'2. The parameter Ais determined by the bound­
ary condition on R when p = 00 , and E is expressed in terms of A by
eliminating a from the last two of Eqs. (42.15):

E= mC2 (1+ ~:)-t (42.16)

A study of the way in which Eq. (16.7) was solved shows that solu­
tions of (42.15) that are finite at p = 0 and 00 exist only if

A = n' + s + 1 (42.17)

where n' is zero or a positive integer and s is the nonnegative solution of
the equation

s(s + 1) = l(l + 1) - )'2

Equation (42.18) has the two solutions

s = - i ± i[(2l + 1)2 - 4)'2]1

(42.18)

(42.19)

of which one is positive and the other negative for l > O. For l = 0,
both the s values given by (42.19) are negative; however, )' is quite small
(very nearly equal to Z/137 if e is the electronic charge), so that use of
the upper sign in (42.19) gives a value of s that is close to zero for physi­
cally interesting values of Z. Moreover, even though R(r) behaves like
r' near r = 0, and so is singular at the origin, the integral of P(r) given
by (42.8) converges there so that the total electric charge is finite. We
thus use the upper sign in (42.19) for alll, and obtain from (42.17)

A = n' + i + [(l + iF - )'2]1 (42.20)

Equations (42.16) and (42.20) give a fine structure to the nonrela­
tivistic energy levels (16.15). This can be seen by expanding the expres­
sion for the energy levels in powers of )'2. The result to terms of order
)'4 is

E = me" [1 - 2)':2 - ;~4 C~ i-i)] (42.21)

where n = n' + l + 1 is the total quantum number of Eq. (16.14) , and
can take on positive integer values. The first term on the right side of
(42.21) is the rest energy. The second term is

mc2)'2 mZ2e 4

---=---,
2n 2 2h2n2

and agrees with (16.15). The third term is the fine-structure energy,
which removes the degeneracy between states of the same n and different
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I. The total spread of the fine-structure levels for a given n is easily
seen from (42.21) to be

(42.22)

This is much larger than is observed experimentally in the spectrum of
hydrogen.

43. DIRAC'S RELATIVISTIC EQUATION

Dirac! approached the problem of finding a relativistic wave equation
by starting from the Hamiltonian form (23.1)

ih ft 1/;(r,t) = H1/;(r,t) (43.1)

The classical relativistic Hamiltonian for a free particle is the positive
square root of the right side of Eq. (42.2). However, if this is substituted
into (43.1) and p is replaced by -ih grad, the resulting wave equation is
unsymmetrical with respect to space and time derivatives, and hence not
relativistic. Dirac therefore modified the Hamiltonian in such a way
as to make it linear in the space derivatives.

Free-particle Equation. The simplest Hamiltonian that is linear in
the momentum and mass terms is

H = - ea . p - /3me 2

Substitution into (43.1) leads to the wave equation

(E + ea • p + /3mc2)1/; = 0
or

(43.2)

(43.3)

We now consider the four quantities a"" Ciy, a., and /3. If (43.3) is to
describe a free particle, there can be no terms in the Hamiltonian that
depend on the space coordinates or the time, since such terms would
have the properties of space-time-dependent energies and give rise to
forces. Also, the space and time derivatives are to appear only in p and
E, and not in a and /3, since (43.3) is to be linear in all these derivatives.
We thus conclude that a and /3 are independent of r, t, p, and E, and hence
commute with all of them. This does not necessarily mean that a and /3
are numbers, since they need not commute with each other.

1 P. A. M. Dirac, Proc. Roy. Soc., A117, 610 (1928); " The Principles of Quantum
Mechanics," 3d ed., Chap. XI (Oxford, New York, 1947/.
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(43.5)

We can learn more about a and {J by requiring that any solution if; ot
(43.3) also be a solution of Schrodinger's relativistic equation (42.4)
(the converse need not be true) . This is a reasonable requirement since
in the absence of external fields, the wave-packet solutions of (43.3)
whose motions resemble those of classical particles must have the classical
relation (42.2) between energy, momentum, and mass (see Prob. 1).
We therefore multiply Eq. (43.3) on the left by (E - Ca' P - (Jmc2) to
obtain

{E2 - c2[a~p; + a~p~ + a~p~ + (azall+ avaz)pzPlI
+ (al/a. + a.al/)pl/p, + (a.az + aza.)p.pz] - m 2c 4{32

-mc3[(azP + {3az)pz + (al/{3 + {3av)PlI + (a.{3 + (3a.)p.]}if; = 0 (43.4)

where the substitutions (42.3) for E and p in terms of differential opera­
tors are implied . Equation (43.4) agrees with (42.4) if a,{3 satisfy the
relations

a~ = a~ = a~ = {32 = 1
azal/ + al/aZ = alia. + a.al/ = a.az + aza. = 0

az{3 + {3az = al/{3 + {3all = a.{3 + {3a. = 0

The four quantities are said to anticommute in pairs, and their squares are
unity.

Since a, (3 anticommute rather than commute with each other, they
cannot be numbers. We have seen in Chap. VI that quantities of this
type can be expressed in terms of matrices, and it is convenient for calcula­
tion to have a matrix representation of them. We note first that since
the H given by (43.2) is Hermitian, each of the four matrices a,{3 must
be Hermitian, and hence square. Our problem is to find an explicit repre­
sentation in which, say, one of these matrices is diagonal (then the others
cannot be diagonal since they do not commute with this one). In the
interests of simplicity, we shall require the representation to have as Iowa
rank as possible.

Matrices for a and {3. The squares of all four matrices are unity, so
that their eigenvalues are +1 and -1. We arbitrarily choose {3 as the
matrix that is to be diagonal, and rearrange its rows and columns so that
all the +1 eigenvalues are grouped together in a matrix of rank n, and all
the -1 eigenvalues are grouped in a matrix of rank m. Since {3 anti­
commutes with a, it cannot be a constant matrix, and so both nand m
must be greater than zero. The {3 matrix can be represented schemati­
cally as

(43.6)
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which is an abbreviation for

1 0 .J ° 0

o 1 . :1 0 0 . .

0-----6-------------.!=T----(f------------

o ° :1 0-1

. !

(43.7)

The dashed lines in (43.7) separate the sub matrices 1, 0, 0, and -1 that
appear in (43.6) .1 We now consider the matrix equation a:zJ3 + {3a" = 0,
the jl element of which is

(43.8)

Here {3i and {31 are two of the eigenvalues of {3, which are arranged in
accordance with (43.6) or (43.7). If {3i = {31, then (a") il = 0, whereas if
{3i and {31 have opposite signs, (a") il need not be zero. Thus the matrix for
a" can be written in the form

(
0

a -
z - a

z
2

where azl has n rows and m columns, and a,,2 has m rows and n columns.
Since the square of (43.8) is a unit matrix, we see also that

(43.10)(
0 -i)

G"1I = i 0'

azlad = 1, adazl = 1 (43.9)

The unit matrix that appears on the right side of the first of Eqs. (43.9)
has n rows and columns, and the unit matrix in the second equation has
m rows and columns. It is not difficult to show that no matrices can
be found that satisfy (43.9) if n,m equal 1,2 or 2,1. We therefore con­
sider the two possibilities n = m = 1 and n = m = 2, as giving matrices
of minimum rank. 2 It is apparent that Cf.tt and a. can be written in forms
similar to (43.8).

We have already obtained three anticommuting matrices of the form
(43.6) or (43.8) with n = m = 1. These are the Pauli spin matrices
(33.3)

which satisfy the equations

(43.11)

1 The matrices 1, 0 are the same as the unit and null matrices 1, 0 defined in
Sec. 21.

2 Higher rank matrices correspond to particles with spin greater than 1·
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(43.14)

together with the two similar relations obtained by permuting x, y, z. Any
matrix with two rows and columns has four elements, and so can be
expressed as a linear combination of the four linearly independent
matrices (T:r;, (Til ' (Tt, and 1. Then it is not difficult to show that a fourth
matrix that anticommutes with all three of those in (43.10) cannot be
found.

We therefore try n = m = 2, and for simplicity take Q'd = Q':r;2,

etc. Then Eqs. (43.9) become Q'~l = 1, and the equation Q':r;Q'1I + Q'yQ':r; = 0
becomes Q'dQ'yl + Q'ylQ':r;l = O. From these and the similar relations
obtained by permuting x,y,Z, we see at once that we can identify Q':r;l with
(T:r;, etc. We thus arrive at an explicit matrix representation for B,« :

p ~ (~
0 0

~} a. ~ (~
0 0

~)1 0 0 1
0 -1 1 0
0 0 -1 0 0

~ ~(~ a. ~ (~ -~)
(43.12)

0 0

-~)
0 1

0 i 0 0
-i 0 o ' 0 0

0 0 0 -1 0

These matrices are evidently Hermitian; we abbreviate them as

{3 = G-~} a. = (~ ~) (43.13)

where each "element" is a matrix with two rows and columns.1

Free-particle Solutions. N ow that a. and (3 are represented by
matrices, Eq. (43.3) has no meaning unless the wave function if; is itself
a matrix with four rows and one column:

if;(r,t) = (~~~~:g)
if;3(r,t)
if;4(r,t)

Then (43.3) is equivalent to four simultaneous first-order partial dif­
ferential equations that are linear and homogeneous in the four if;'s.

Plane wave solutions of the form

if;i(r,t) = Ui exp i(k . r - wt), j = 1,2,3,4 (43.15)

1 The relativistic character of the Dirac equation can be made more apparent if
(43.3) is multiplied through on the left by {3; this enhances the symmetry between
space and time derivatives, since the four matrices {3, {3ahave similar properties to the
four matrices {3, a.



SEC. 43] RELATIVISTIC WAVE EQUATIONS 327

(43.16)

can now be found, where the Uj are numbers. These are eigenfunctions
of the energy and momentum operators (42.3) with eigenvalues hw and
hk, respectively. Substitution of (43.15) and (43.12) into (43.3) gives
a set of algebraic equations for the Uj, where E = hw and p = hk are now
numbers,

(E + me2)ul + cpsu« + e(p:z - ipll)U4 = 0
(E + me2)u2 + e(p:z + iPIl)ua - ep.U4 = 0
~E - me2)ua + ep.Ul + e(p:z - ipll)U2 = 0
(E - me2)u4 + cip; + ipll)Ul - CP.U2 = 0

These equations are homogeneous in the Uj, and have solutions only if
the determinant of the coefficients is zero. This determinant is

(E2 - m 2e4 - c2p2)2,

so that the relat ion between E and p is in agreement with (42.2).
Explicit solutions can be obtained for any momentum p by choosing a

sign for the energy, say E+ = +(c2p2 + m2e 4)1. Then there are two
linearly independent solutions, which are conveniently written as

Ul = - cp.
U2 = -

e(p:z + ipll)
Ua = 1, U4 = 0

E+ + mc2' E+ + me2'

(43.17)

Ul= - c(P:z - ipll) ep.
U3 = 0, U4 = 1

E+ + me2' U2 = E + 2'+ me

Similarly, if we choose the negative square root E_ = - (c2p2 + m2e 4)1,
we obtain two new solutions, which are conveniently written as

Ul = 1, U2 = 0, Ua =
cp.

U4 =
e(p:z + ipll)

-E_ + mc2' -E_ + me2

(43.18)

Ul = 0, U2 = 1, U a =
e(p:z - ipll)

U4 = - ep.
-E_ + me2' -E_ + me2

Each of these four solutions can be normalized, in the sense that 1[;*1[; = 1,
by multiplying it by the factor 11 + [e 2p2/ (E+ + me2) 2Jl - l j 1[;* is the
Hermitian adjoint of 1[;, and is a matrix with one row and four columns.

It is apparent that the solutions (43.17) correspond to positive energy,
and the solutions (43.18) to negative energy. In the nonrelativistic
limit, in which E+ = ' -E_ is close to mc2 and large in comparison with
r,lpl, Ul and U2 are of order vic times Ua or U4 for the positive-energy solu­
tions (v is the speed of the particle) j the opposite is true for the negative­
energy solutions. The physical distinction between the two solutions
for each sign of the energy can be seen by defining three new spin matrices
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(43.20)

O"~, O"~, O"~ that have four rows and columns

d' = (~ ~) (43.19)

We shall see at the beginning of Sec. 44 that ind' can be interpreted as
the operator that represents spin angular momentum. When the small
components of the wave function can be neglected, it is easy to see that
l/t is an eigenfunction of O"~ with eigenvalue +1 for the first of each pair of
solutions (43.17) and (43.18), and eigenvalue -1 for the second solution
of each pair.

Charge and Current Densities. We can obtain a conservation equa­
tion by multiplying the second of Eqs. (43.3) on the left by l/t*, the Her­
mitian adjoint equation

-in al/t* + inc(grad l/t*) . u + l/t*{jmc2 = 0at

on the right by l/t, and taking the difference of the two results. We then
get Eq. (42.7) if we define the real quantities

P(r,t) = l/t*l/t
S(r,t) = -cVt*al/t

The expression for P has the nonrelativistic form (7.1); since it is never
negative, it can be interpreted as a position probability density. It can
be shown that the expression (43.20) for S reduces to (7.3) in the non­
relativistic limit (see Prob. 6).

The operator - cu can be interpreted more directly as a particle
velocity by calculating the time derivative of the position vector r from
Eq. (23.2). With the Hamiltonian (43.2) and the commutation relations
(23.16) , we obtain

dx 1
dt = in (xH - Hx) = -cao: (43.21)

Thus the eigenvalues of a velocity component are ±c. This result can
be made plausible from a physical point of view with the help of the
uncertainty relation (3.1) . A very precise measurement of instantaneous
velocity [which according to (43.21) is not the same as momentum in a
relativistic theory] requires the accurate measurement of the position of
the particle at two slightly different times. Such accurate position
measurements imply that the momentum of the particle is completely
unknown, so that all momentum values are about equally probable.
Then very large momenta are much more likely to result than small
momenta, and these correspond to velocity components close to the
speed of light.
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Electromagnetic Potentials. Terms that involve the electromagnetic
potentials can be added to Eq. (43.3) in a relativistic way by making the
usual replacements cp ~ cp - eA and E ~ E - eep, where the particle
described by the equation has electric charge e. We thus obtain

[E - eep + a . (cp - eA) + ,Bmc2]~ = 0 (43.22)

Here E and p stand for the operators (42.3) . This equation can be
reduced to a form that is similar to (42.10) by multiplying it on the left
with [E - eep - a' (cp - eA) - ,Bmc2] . The result is

l (E - eep)2 - [a' (cp - eA)]2 - m2c 4

+ (E - eep)a . (cp - eA) - a ' (cp - eA)(E - eep)}~ = 0 (43.23)

The second operator in (43.23) can be reduced by making use of the
following relation:

(a ' B)(a ' C) = B · C + id' . (B X C) (43.24 )

where Band C commute with a but not necessarily with each other (see
Prob.7). We identify both Band C with (cp - eA); we also require the
relation

(cp - eA) X (cp - eA) = -ceCA X p + p X A) = ieliccurl A = ielicH

where use has been made of (23.15). With this substitution, Eq.
(43.24) becomes

[a' (cp - eA)]2 = (cp - eA)2 - elioo' . H

The last two operators in (43.23) can be rewritten as

-ea' (EA - AE) - cea' (epp - pep)

= -ielia' aA - iehc« . grad ep = iehc« . Eat

where use has again been made of (23.15). Equation (43.23), then
becomes

[(E - eep)2 - (cp - eA)2 - m2c4 + elicd' . H + iehc« . E]~ = 0 (43.25)

The first three terms are precisely the same as (42.10). The physical
significance of the last two terms will now be shown from consideration of
the nonrelativistic limit of the entire equation.

We could proceed just as we did in obtaining the nonrelativistic limit
of Eq. (42.10) . A slightly different approach consists in putting

E = E' + mc2 (43.26)
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and assuming that E' and eep are small in comparison with mc2; this is
equivalent to the substitution (42.11) and the subsequent approxima­
tions. We can then make the replacement

(E - eep)2 - m2c' ::: 2mc2(E' - eep)

in (43.25) to obtain

E'if; = [...!... (p - ~ A)2 + eep - eh d'· H - ieh 0:' EJ if; (43.27)
2m c 2mc 2mc

Now E' is equivalent to the time derivative operator ih(a/at) if a factor
imc2t

e--,,- is taken out of if;. Thus (43.27) is the nonrelativistic Schrodinger
equation (23.24), with two additional terms that involve Hand Edirectly.

The H term has the form associated with the energy of a magnetic
dipole of moment (eh/2mc)d'. Now it was shown in (43.18), for a free
particle, that the third and fourth components of the wave function are
large in comparison with the first and second components for the positive­
energy solutions in the nonrelativistic limit. This can also be shown
without difficulty , when the particle is not free, from the structure of the
general equation (43.22). Equation (43.19) shows that d' operating on
the four-component wave function is the same as d operating on the large
components alone . Thus the two large components of (43.27) with the
H term give just the nonrelativistic equation with the Pauli spin matrices
and the correct coefficient for the magnetic moment of an electron [see
Eq. (39.10)].

We now show that in practical cases, the E term in (43.27) is of order
(V/C)2 times the eep term, and so is to be neglected in the nonrelativis­
tic limit.' We note first that the expectation value of 0: is of order
(v/c)N*if;dT, since (43.13) shows that 0: mixes the large and small com­
ponents (we also saw earlier that -co: is the velocity operator). For an
electron that is part of a system of linear dimensions a, eep is of order
eEa, and h/a f'J p f'J mv. Thus the ratio of the E to the eep terms in
(43.27) is of order

In contrast with this, we have already seen in Eqs. (39.9) and (39.10) that
the H term in (43.27) is of the same order as the other magnetic terms
that are linear in A. While the E term must be omitted from (43.27)
for a consistent nonrelativistic approximation, it cannot be dropped from
the relativistic equation (43.25), where it is required to preserve Lorentz
invariance.

1 For a spherically symmetric electrostatic potential it leads to the spin-orbit
energy. which is actually of order (V/C)2e.p; see Eq . (44.8).
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44. DIRAC'S EQUATION FOR A CENTRAL FIELD

In the last section, the existence of the magnetic moment of an elec­
tron was demonstrated explicitly by showing that the expected extra
magnetic energy appears in the nonrelativistic approximation. The
electron spin carries no energy in itself , and so can be observed only
through its coupling with the orbital motion of the electron. In the
first part of this section, we make this coupling apparent in two ways :
through conservation of total angular momentum, and through the spin­
orbit energy that was introduced in Sec. 38. In both cases we work with
such potentials A,c/J that there is no transfer of angular momentum to the
electron; this implies that we have a central field (A = 0 and c/J spheri­
cally symmetric) . In the latter part of this section, we separate the Dirac
equation for a general central field, and find the energy levels of the
hydrogen atom.

Spin Angular Momentum. With A(r,t) = 0 and c/J(r,t) = c/J(r) , Eq.
(43.22) can be written as

ih a1/l = H1/I
at

H = -cex' p - {3mc2 + V
(44.1)

where V = ec/J. We might expect that the orbital angular momentum
L = r X p is a constant of the motion in such a central field. . In order
to investigate this point, we calculate the time rate of change of L with
the help of Eqs. (23.2) and (23.16):

ih d~", = L",H - HL",

= -cex ' [(ypz - ZPl/)p - p(YPz - ZPl/)]
= ihc(azPl/ - al/Pz) (44.2)

since L commutes with any spherically symmetric function such as V(r).
It is apparent that L does not commute with H, and hence is not a con­
stant of the motion. However, we expect on physical grounds that it is
possible to define a total angular momentum that is constant in a central
field of force. This means that we must find another operator such that
the commutator of its x component with H is the negative of the right
side of 44.2); the sum of this operator and L is then a constant of the
motion and can be interpreted as the total angular momentum.

It is not difficult to see that the desired operator is a multiple of the
d' defined in (43.19). From (43.11) and (43.13), we find that u~ com­
mutes with a", and {3, although not with the other components of ex :
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0) (0 UlI) (0 UlI) (UZ 0)
Uz Ull 0 Ull 0 0 Uz

iUz) _( 0 - iuz) = 2 '
O . 0 zaz-zuz

The t ime rate of change of d' can now be obtained:
'hdu~ r tr H' 2 '( )z (Jj = (j:z:L~ - Uz = - zc azPlI - allPz (44.3)

(44.5)

It is apparent from (44.2) and (44.3) that the quantity L + ihd' com­
mutes with H and can therefore be taken to be the total angular momen­
tum. We refer to the operator

S = ihd' (44.4)

as the spin angular momentum of the electron.
Approximate Reduction; Spin-orbit Energy. We now wish to show

that the spin-orbit energy (38.13) is a consequence of the Dirac equation.
This term can be shown to be of order (vlc)2 times the potential energy :

1 1 1 dV 1 1 V v2

V 2m2c2r dr (L· S) I'J V m2c2 a2 pah I'J C2

where a represents the linear dimensions of the system, and

haI'J P I'J mv.

Thus the approximations that led to (43.27) are not adequate for the
present purpose.

In order to obtain a consistent approximation that is expressed in
terms of the more familiar two-component wave functions, we replace
1/; in (44.1) by 1/;1 and 1/;2, which now represent respectively the first two
and the last two components of 1/;. We assume that 1/;1,1/;2 together con­
stitute a nonrelativistic energy eigenfunction, which means that

E = E' + mc2

is regarded as a number rather than an operator; E' and V are assumed to
be small in comparison with mc2• The wave equation then becomes

(E' + 2mc2 - V)1/;1 + cd • P1/;2 = 0
(E' - V)1/;2 + cd . P1/;1 = 0

where p is still an operator. It is apparent from the first of these equa­
tions that 1/;1 is of order vic times 1/;2, so we eliminate it to obtain an equa­
tion in terms of 1/;2 alone . The substitution

1/;1 = - (E' + 2mc2 - V)-1cd . P1/;2
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in the second of Eqs. (44.5) gives

1 (E' - V)-l
E'if;2 = 2m (e - p) 1 + 2me2 (d ' P)if;2 + Vif;2 (44.6)

Thus far , no approximations have been made.
The desired approximation is obtained by keeping the lowest terms in

an expansion in powers of (E' - V) /2me2. The following relations are
easily established :

(
E' - V)-l ro..J E' - V

1+ 2 2 =1- 2 2me me
pV = Vp - ih grad V

(d' grad V)(d . p) = (grad V) . p + id . (grad V) X p]

With the help of these, (44.6) becomes

E'if;2 = [(1 - E;~2V) :~ + V Jif;2

h2 h2

- 4m 2e2 (grad V) . (grad if;2) + 4m 2e 2d . [(grad V) X Pif;2] (44.7)

Further simplifications can be made if V is spherically symmetric.
We use the relations

dva
(grad V) . grad = dr ar

1 dV
grad V = r dr r

and note that E' - V is approximately equal to p2/ 2m, the accuracy
being sufficient to replace the second-order term (E' - V)p2 in (44.7)
by p4/ 2m. We can then rewrite (44.7) as

E'.', - [r - .z., + V - ~dV i + _l_.!dV S -l- (44.8)
'1'2 - 2m 8m 3e2 4m 2e 2 dr ar 2m 2e 2 r dr 2

where now S = thd and L = r X p.
The first and third terms on the right side of (44.8) give the non,

relativistic Schrodinger equation. The second term has the form of the
classical relativistic mass correction, which can be obtained by expanding
the square root of (42.2):

E' = E - me2 = (e2p2 + m 2e4)i - me2 :: r - L
2m 8m 3e2

The last term is the spin-orbit energy (38.14), which is now seen to
appear as an automatic consequence of the Dirac equation. The fourth
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term is a similar relativistic correction to the potential energy, which does
not have a classical analogue. Since it does not involve the angular
momenta, it is much more difficult to demonstrate experimentally than
the spin-orbit energy.!

Separation of the Equation. The Dirac equation for a central field
can be separated without approximation in spherical coordinates. The
procedure is more complicated than for either of the Schrodinger equa­
tions because of the interdependence of orbital and spin angular momenta.
We start by defining radial momentum and velocity operators

Pr = r-l(r . p - ih), (44.9)

both of which can be shown to be Hermitian. We also define an operator
k that will shortly be seen to be related to the total angular momentum:

hk = (j(Il' . L + h) (44.10)

where L = r X p, It can be shown by direct substitution, with the help
of (43.24), that

arPr + ihr-lar{jk = 0: • P

The Hamiltonian (44.1) then becomes

ihc
H = -carpr - - ar{jk - {jmc2 + Vr (44.11)

The following relations can be established with the help of the definitions
(44.9) and (44.10) and the relations of Sec. 43:

ark - ka; = 0, {3k - k{3 = 0, prk - lep; = °
These show that k commutes with the Hamiltonian (44.11), and so is a
constant of the motion. The eigenvalues of k can be inferred by squar­
mg (44.10) .

h2k 2 = (d' . L)2 + 2h(d' . L) + h2 = (L + -ihd')2 + th2 (44.12)

The quantity (L + -ihd')2 is the square of the total angular momentum,
and has eigenvalues j(j + l)h2, where j is half a positive odd integer.
Thus k2 has eigenvalues (j + -i)2, so that k can be ± 1, ±2, . . . .

We now choose a representation in which Hand k are diagonal and
represented by the numbers E and k , respectively. a r and {j can then be
represented by any Hermitian matrices that satisfy the relations

1 For further discussion of this term, see E. U. Condon and G. H. Shortley, "The
Theory of Atomic Spectra," p. 130 (Cambridge, London, 1935).
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which are not difficult to verify. Such matrices can have two rows and
columns; for example, we can put

(
0 -i)

a r = i 0 (44.13)

Now the angular and spin parts of the wave function are fixed by the
requirement that 1/1 be an eigenfunction of the k operator (44.10). For
such purposes as the computation of energy levels, we need be con­
cerned only with the radial part ; because of the structure of (44.13),
this has two components, which we write

(
r- 1F (r))
r-1G(r)

(44.14)

Substitution of (44.13) and (44.14) into the wave equation with the
Hamiltonian (44.11) gives us the radial equations for an electron moving
in a central field. We make use of the relation

Pr = -ih (i. +!)ar r
to obtain

p = ar

(E + me 2 - V)F - he ~; - h~k G = 0

(E - me 2
- V)G + ne ~~ - n~k F = 0

It is convenient to make the numerical substitutions

me 2 + E me 2 - E
al = he ' a2 = he '

(m2e 4 - E2)!
a = +(ala2)! = he

in terms of which Eqs. (44.15) become

(44.15)

(44.16)

(44.17)
(~ + ~) G - (a l

- ~) F = 0
dp p a hea

(;p - ~)F - (:2 + h~a)G = 0

The Hydrogen Atom. We now find the energy eigenvalues of (44.17)
when VCr) = -Ze2Ir ; with 'Y = Ze2l he, the quantity V [hc« becomes
-'YIp. We follow a procedure that is analogous to that of Sec. 16, and
put

G(p) = g(p)e-p (44.18)
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The equations for f and g are

, kg (al -r)g -g+-- -+- f=Opap

, kf (a2 -r)f -f--- --- g=Opap

We look for solutions of (44.19) in the form of power series

f = p'(ao + alP + ), ao ¢ 0
g = p'(bo+ blP+ ), b« ¢ 0

(44.19)

(44.20)

Since (44.14) is supposed to be finite at r = 0, we expect that s is greater
than or equal to one. However, in analogy with the solution of the
Schrodinger relativistic equation (42.15) for the Coulomb field, we shall
admit a value of s slightly less than one, since the volume integral of
if;*if; will still be finite.

We substitute (44.20) into (44.19), and equate the coefficients of
p.+,-l to zero :

(s + P + k)b. - b._1 - -ra. - al a'_l = 0
a

(s + P - k)a. - a.-l + -rb. - a2 b,_l = 0
a

for P > o. When P = 0, the equations analogous to (44.21) are

(s + k)bo - -rao = 0
(s - k)ao + -rbo = 0

(44.21)

(44.22)

Equations (44.22) have the required non vanishing solution for ao and
b« only if the determinant of their coefficients vanishes; this gives

(44.23)

Because of the boundary condition at the origin, we take the upper sign
for s in (44.23).

A relation between a. and b. can be obtained by multiplying the first
of Eqs. (44.21) by a , the second by aI, and subtracting.

b.[a(s + P + k) - aaJ = a,[al(s + P - k) + a-rJ (44.24)

where use has been made of (44.16) . We can now examine the behavior
of the solution at large r, Unless both the series (44.20) terminate, this
behavior is determined by their high terms, so we can neglect constant
factors in comparison with P. We then obtain from (44.21) and (44.24)
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This means that both series have the asymptotic form e2p, and regular
solutions are obtained only if they terminate. Suppose that this occurs
at p = n', so that an'+l = bn'+l = 0. Then both Eqs. (44.21) give the
relation

n' = 0,1,2, . .. (44.25)

We obtain energy levels by setting p = n' in (44.24), and making use
of (44.25). With the help of (44.16), we find that

2E 'Y
2a(s + n') = 'Y(al - a2) = ---riC

The square of this is

(m2c4 - E 2)(S + n')2 = E2'Y2

which is easily solved to give

E = mc
2

[ 1 + (s ..tn')2r i

(44.26)

Equations (44.23) and (44.26) are equivalent to the formula first de­
rived by Sommerfeld! on the basis of the old quantum theory. This
formula accounts quite well for the spectrum of hydrogen," The fine
structure is made evident by expanding (44.26) in powers of -y2. The
result to terms of order 'Y4 resembles (42.21) but is not quite the same :

(44.27)E = mc2 [1 - .r:. - s: (~ - ~)J
2n2 2n4 Ikl 4

where n = n' + Ikl is the total quantum number of Eq. (16.14), and
Ikl can take on positive integer values. The total spread in energy of
the fine-structure levels for a given n is easily seen from (44.27) to be

(44.28)
bo
ao

and

mc2'Y4 n - 1
na"2n

This is substantially less than the value (42.22) obtained from the
Schrodinger relativistic equation, and is in agreement with experiment.

Classification of Energy Levels. For n' > 0, all positive and nega­
tive integer values of k are permissible [we saw from (44.12) that k can­
not be zero]. For n' = 0, however, a contradiction can arise between
(44.22) and (44.25); these give

bo 'Y
ao=s+k

1 A. Sommerfeld, Ann. d. Physik, 51, 1 (1916).
2 There are, however, small but important deviations from this formula ; see W. E .

Lamb, Reports on Progress in Physics, 14, 19 (1951).
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j=l+t
j=l-t

respectively. Since 8 < Ikl, the first of these expressions is positive or
negative according as k is positive or negative, whereas the second is
always negative. Thus for n' = 0, k can assume only negative integer
values.

Thus far we have only shown that the j value of a level is equal to
Ikl - t. In order to connect l with the level, we must make the non­
relativistic approximation that the orbital angular momentum is well
defined. Since in this case Gin (44.14) is much larger than F, we can
replace {3 by -1 and d' by d in (44.10). Now in this approximation,
(L + thd)2 = [l(l + 1) + i]h2 + hd . L, and is also equal to j(j + 1)h2•

We obtain in this way

{
-l - 1

k = l(l + 1) - j(j + 1) - i = l,'

As an example of the energy levels in hydrogen, we consider the case
n = 3. The radial quantum number n' can be 0, 1, or 2, and k can be
± (3 - n') except that k can be only -3 when n' = O. The levels
with their nonrelativistic classifications are

n' k l j
0 -3 2 5 2Dt~

1 2 2 3 2D,~

1 -2 1 3 2p,
~

2 1 1 1 2P1~

2 -1 0 1 2S1~

According to (44.23) and (44.26), states with the same Ikl or j have the
same energy; Eq. (44.27) shows that the energy increases with increasing
Ikl·

Negative Energy States. We have seen that both the Schrodinger
and Dirac relativistic equations admit of solutions for which a particle
has negative kinetic energy and negative rest mass. These solutions
correspond to the negative square root of the classical energy equation
(42.2). The negative-energy solutions cannot be ignored in the quantum
theory, as they are in the classical theory, since there is nothing to prevent
a charged particle from making a radiative transition from a state of
positive energy to a state of negative energy.

Dirac proposed that we regard the negative energy states of Eq.
(43.22) as being full, in which case the exclusion principle prevents transi­
tions into such occupied states. The normal state of the vacuum then
consists of an infinite density of negative-energy electrons. It is assumed
that there are no electromagnetic or gravitational effects of these elec­
trons, but that deviations from the norm produced by emptying one or
more of the negative energy states can be observed. The absence of a
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negatively charged electron that has negative mass and kinetic energy
would then be expected to manifest itself as a positively charged particle
that has an equal positive mass and kinetic energy. In this way, a
"hole" theory of positrons can be formulated.

With so many electrons present, however, the theory is no longer the
one-particle theory contemplated when the wave equation was set up.
A many-particle theory can be based on the Dirac equation in accordance
with the formalism of quantized fields discussed in the next chapter, and a
theory of positrons can be developed.

It might at first be thought that a similar technique cannot be applied
to the Sehrodinger relativistic equation, since it describes a particle of
zero spin, which we expect to obey Einstein-Bose statistics rather than
the exclusion principle. However, Pauli and Weisskopfl have shown
that the quantized field energy is always positive in this case, even though
the parameter E in the wave equation can be either positive or negative.
Moreover, the charge in the quantized field can have either sign, cor­
responding to the ambiguity of the sign of P noted after Eq. (42.8).
Thus both the theories discussed in this chapter predict the existence of
particles that have positive energies and both signs of electric charge.
The appearance of spin angular momentum as a consequence of the Dirac
equation shows that this is the theory that describes electrons.

Problems

1. Show that the expectation values of E2 and p2 for a general wave-packet solu­
tion of Eq. (42.4) satisfy the equation (E2) = C2(p2) + m2c'. Discuss the connection
between this result and the classical equation (42.2).

2. Use the nonrelativistic approximation implied in (42.11) and in the immedi­
ately following discussion to show that the expression (42.8) for P reduces to (7.1) in
the proper limit.

3. Solve the Schrodinger relativistic equation for an attractive square well poten­
tial of depth V o and radius a, after determining the continuity conditions at r = a.
Obtain an explicit expression for the minimum Vowith given a that just binds a par­
ticle of mass m.

-4 . Sl.ow explicitly that the wave functions (43.17) and (43.18) ai e not eigec,
functions of any component of the spin angular momentum !hd'.

5. Show that any matrix with two rows and columns can be expressed as a linear
combination of 0-., 0-., 0-_, and 1. Use this result to show that there is no matrix that
anticommutes with each of the first three of these.

6. Show that the current density given by (43.20) for a free-particle wave func­
tion agrees with the corresponding nonrelativistic expression in the proper limit.

7. Make use of Eqs. (43.11), (43.13), and (43.19) to verify Eq . (43.24) .
8. Prove that the operators a, and k defined by Eqs, (44.9) and (44,10) commute

with each other, and that h2k' is given by the right side of (44.12) .
9. Discuss the connection between the .. . Eterm in Eq. (43.27) and the spin-orbit

energv,

1 W. Pauli and V. Weisskopf, Helv. Phys. Acta, 7, 709 (1934).
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10. Show that the negative square roots that could appear in arriving at Eqs .
(42.16) and (44.26) actually do not correspond to bound states.

11. Show explicitly that elimination of bo/ao between the two Eqs. (44.28) gives
the correct energy levels for n' = 0 if k < 0, but not if k > O.

12. Use the selection rules tJ.l = ±1, tJ.j = 0, ±1 to list the frequencies of the
allowed transitions between the states with n = 2 and n = 3 for the Coulomb field, in
both the SchrOdinger and Dirac relativistic theories. In particular, show that the
latter theory gives seven lines, of which five are distinct, whereas the former gives
three lines that are much more spread apart.

13. Solve the Dirac equation for an attractive square well potential of depth V o
and radius a, after determining the continuity conditions at T = a. Obtain an explicit
expression for the minimum Vowith given a that just binds a particle of mass m, and
compare with the answer to Prob. 3.



CHAPTER XIII

THE QUANTIZATION OF WAVE FIELDS

The theory of quantum mechanics presented thus far in this book has
dealt with systems that, in the classical limit, consist of material particles.
We wish now to extend the theory so that it can be applied to the electro­
magnetic field, and thus provide a consistent basis for the quantum theory
of radiation. The quantization of a wave field imparts to it some particle
properties; in the case of the electromagnetic field, a theory of light
quanta (photons) results. The field quantization technique can also
be applied to a 1/1 field, such as that described by the nonrelativistic
Schrodinger equation (6.16) or by one of the relativistic equations (42.4)
or (43.3). As we shall see (Sec. 46), it then converts a one-particle
theory into a many-particle theory; in the nonrelativistic case, this is
equivalent to the transition from Eq. (6.16) to (16.1) or (32.1). Because
of this equivalence, it might seem that the quantization of 1/1 fields merely
provides another formal approach to the many-particle problem. How­
ever, the new formalism can also deal as well with processes that involve
the creation or destruction of material particles (radioactive beta decay,
meson-nucleon interaction).

This chapter and the next are intended to serve as an introduction to
quantum field theory.' We start in Sec. 45 with a discussion of the clas­
sical and quantum equations of motion for a wave field, without specify­
ing the detailed nature of the field. The application to Eq. (6.16) is
used as a first example in Sec. 46, since the analysis is relatively simple
and uncomplicated by considerations of relativity. The quantization
of the Dirac equation (43.3) is carried through in Sec. 47. Several other
particle wave equations (including the relativistic Schrodinger equation)
have also been quantized; they are mainly of interest in connection with
meson theory, and are not discussed here. The electromagnetic field is
considered in the next chapter.

1 For further discussion, see G. Wentzel, "Einfiihrung in die Quantentheorie der
Wellenfelder," (Franz Deuticke, Vienna, 1943; reprinted by Edwards Bros, Inc.,
Ann Arbor, 1946; English translation published by Interscience, New York , 1949);
W. Heisenberg, "The Physical Principles of the Quantum Theory," Appendix, Sees.
9-12 (University of Chicago Press, Chicago, 1930); P. A. M. Dirac, " The Principles of
Quantum Mechanics," 3d ed., Chaps. X, xtr (Oxford, New York , 1947). See also
H. Goldstein, "Classical Mechanics," Chap. 11 (Addison-Wesley, Cambridge, Mass .,
1950); H . C. Corben and P. Stehle, " Classical Mechanics," pp. 210-212 (Wiley, New
York, 1950).
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45. CLASSICAL AND QUANTUM FIELD EQUATIONS

A general procedure for the quantization of the equations of motion of
a classical system was obtained in Sec. 23. We start with the Lagrangian
function for the system, and verify that it gives the correct classical
equations. The momenta canonically conjugate to the coordinates of
the system are found from the Lagrangian, and a Hamiltonian function is
set up. The classical Hamiltonian equations of motion are then con­
verted into quantum equations by the substitution of commutator
brackets for Poisson brackets. We now show how this procedure can
be applied in its entirety to a wave field if;(r,t), which we assume for the
moment to be real.'

Coordinates of the Field. A wave field is specified by its amplitudes
at all points of space and the dependence of these amplitudes on the
time, in much the same way as a system of particles is specified by the
positional coordinates q, and their dependence on the time. The field
evidently has an infinite number of degrees of freedom, and is analogous
to a system that consists of an infinite number of particles. It is natural,
then, to use the amplitudes if;(r,t) at all points r as coordinates in analogy
with the particle coordinates q,(t) of Sec. 23.

It is not necessary, however, to proceed in this way. As an alterna­
tive, we can expand if; in some complete orthonormal set of functions Uk:

(45.1)

The expansion coefficients ak in (45.1) can be regarded as the field
coordinates, and the field equations can be expressed in terms of either if;
or the ae : We shall use the wave amplitudes at all points as the field
coordinates in this section. It will be convenient for some of the later
work to make use of the coefficients ae.

Lagrangian Equation. The Lagrangian L(q"qi,t) used in Sec. 23 is a
function of the time and a functional of the possible paths q,(t) of the
system. The actual paths are derived from the variational principle
(23.3) :

J
12

o Ldt = 0,
It

By analogy, we expect the field Lagrangian to be a functional of the
field amplitude if;(r,t). It can usually be expressed as the integral over all
space of a Lagrangian density L:

L = fL(if;, grad if;, ..p, t)dr

I W. Heisenberg and W. Pauli. z-u«j. Physik, 56, 1 (1929) i 59, 168 (1930).

(45.2)
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where,f = at/; jat. The appearance of grad t/; as an argument of L is a
consequence of the continuous dependence of t/; on r (continuously infinite
number of degrees of freedom); higher derivatives of t/; could also be
present, but do not seem to arise in problems of physical interest. The
variational principle that corresponds to (23.3) is

5 t- Ldt = 5 {Is Jtee- = t- J(5L)dtdT = 0ill it. ill (45.3)

where the infinitesimal variation 5t/; of t/; is subject to the restrictions

(45.4)

If L has the form indicated in (45.2), its variation can be written

(45.5)

where the summation over x, y, z implies the sum of three terms with y and
z substituted for z . Now o,f is the difference between the original and
varied ,f, and hence is the time derivative of the variation of t/;. This
and the similar expression for 5(at/; jax) can be written

5(at/;) = ~ (5t/;)ax ax
Equation (45.3) then becomes

112f [aL ~ et. a et. a ]
II at/; 5t/; + Lt a(at/;jax) ax (N) + a,f at (5t/;) dtdT = 0

xyz

(45.6)

The summation terms in (45.6) can be integrated by parts with respect
to the space coordinates; the surface terms vanish, either because t/; falls
off rapidly enough at infinite distance, or because t/; obeys periodic
boundary conditions at the walls of a large but finite box. The last term
of (45.6) can be integrated by parts with respect to the time, and the
boundary terms vanish because of (45.4) . Equation (45.6) can therefore
be written

112 f {aL - ~ s. [ aL ] - s. (aL)} Ot/;dtdT = 0 (45.7)
h at/; Lt ax a(at/; jax) at a,f

xyz

Since (45.3) is valid for an arbitrary variation N at each point in space,
Eq. (45.7) is equivalent to the differential equation

et: ~ a [ aL ] a (aL) = 0 (45 8\
at/; - '-I ax a(at/; jax) - at a,f . i

xyo
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Equation (45.8) is the classical field equation derived from the Lagrangian
density L(1/;, grad 1/;, if;,t).

Functional Derivative. In order to pursue further the analogy with
particle mechanics, it is desirable to rewrite Eq. (45.8) in terms of L
rather than L. Since the aggregate of values of 1/; and if; at all points is
analogous to the qi and qi of particle theory, we require derivatives of L
with respect to 1/; and if; at particular points. These are called functional
derivatives, and are denoted by ilL/il1/; and ilLjiJif;.l Expressions for them
can be obtained by dividing up all space into small cells and replacing
volume integrals by summations over these cells. The average values of
quantities such as 1/;, grad 1/;, and if; in the ith cell are denoted by subscripts
i, and the volume of that cell by OTi. Then

l L[1/;i, (grad 1/;)i, if;i,t]Ori
i

approaches L in the limit in which all the OTi approach zero.
In similar fashion, the t integrand in Eq. (45.6) or (45.7) can be

replaced by

\' {aL _ \' ~ [ aL ]} N.Or. + \' (aL)'-! a1/; '-! ax a(a1/;/a x) i " '-! aif; i Oif;iOTi
i zyz i

where the variation in L is now produced by independent variations in the
1/;i and the if;i. Suppose now that all the o1/;i and Oif;i are zero except for a
particular 01/!i. It is natural to relate the functional derivative of L with
respect to 1/; for a point in the jth cell to the ratio of oL to o1/;i; we therefore
define

st; r s: st. \' a [ aL ]
il1/; = 81-~~0 NiOTi = a1/; - '-! ax a(a1/;/ax)

xy z

(45.9)

(45.10)

Similarly, the functional derivative of L with respect to if; is defined by
setting all the o.f;i and li,J;i equal to zero except for a particular Oif;i :

ilL = lim~ = aL
ilif; 81-j-+O Oif;iOTi aif;

Here again the point r at which the functional derivative is evaluated is in
thejth cell. Substitution of (45.9) and (45.10) into (45.8) gives

i ilL _ aL = 0 (45.11)
at ilif; il1/;

which closely resembles the Lagrangian equations (23.4) for a system of
particles.

1 For an alternative treatment, see the paragraph following Eq. (27.26).
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Hamiltonian Equations. The momentum canonically conjugate to
Y;i can be defined as in particle mechanics to be the ratio of oL to the infini­
tesimal change O,j;i when all the other o,j;. and all the N. are zero. We
thus obtain

Pi = oL = OTi (iJL)
a,j;i iJ,j; i

It follows from (45.11) and (45.12) that

Pi = ori (:~)i
The analogy with Eq. (23.5) then gives for the Hamiltonian

(45.12)

(45.13)

(45.14)

We write H as the volume integral of a Hamiltonian density H, and
assume that the cells are small enough so that the difference between a
volume integral and the corresponding cell summation can be ignored; we
then have

H = f HdT, H=~-L,
iJL et.

7T'=-=-
iJ,j; a,j;

(45.15)

The approximate Hamiltonian (45.14), with the relations (45.12) and
(45.13), can be manipulated in precisely the same way as the Hamiltonian
for a system of particles. Instead of showing this explicitly, we now work
with the true field Hamiltonian H given in (45.15), which is a functional
of Y; and 7T' from which e has been eliminated. The classical Hamiltonian
equations of motion will be derived without further recourse to the cell
approximation. The variation of L produced by variations of Y; and ,j;
can be written, with the help of (45.11) and (45.15),

st. = f (:~ ay; + :~ a,j;) dT = f UrN + 7T'o,j;)dr

= J[o(7r,j;) + irN - ,j;&r]dr
= aH + oL + f(iroy; - If;&r)dr (45.16)

The variation of H produced by the corresponding variations of y; and 7T'

can be written

(45.17)
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It follows from the earlier discussion of functional derivatives that

iJH aH \' a aH
iJif; = aif; - L.t ax a(aif;jax)

xyz

iJH aH \' a aH
iJ7r = a7r - L.t ax a( a7r j ax)

xy z

(45.18)

Comparison of Eqs. (45.16) and (45.17) for arbitrary variations oif; and
07r then gives the classical field equations in Hamiltonian form

(45.19)

The Hamiltonian equation for the time rate of change of a functional
F of if; and 7r can now be found . We express F as the volume integral of
the corresponding functional density F(if;,7r), which for simplicity is
assumed not to depend explicitly on the time or on the gradients of if; or
7r. The foregoing analysis can be used to show that

(45.20)

This equation also serves to define the Poisson-bracket expression for two
functionals of the field variables. The right side of Eq. (45.20) is not
changed if F also depends on grad if; or grad 7r (see Prob. 2). It is appar­
ent from (45.20) that H is a constant of the motion if it does not depend
explicitly on the time; in this case, H is the total energy of the field.

Quantum Equations for the Field . The analogy between particle
coordinates and momenta q.,P. and the cell averages if;.,p. suggests that we
choose as quantum conditions for the field

[hif;j] = [P"Pj] = 0, [hPj] = iho'j (45.21)

where the commutator brackets are defined by Eq. (23.9). This means
that we have converted the wave field from a numerical function to an
operator that can be represented by a matrix as in Sec. 23.

We now assume that the cell volumes are very small . Then Eqs.
(45.21) can be rewritten with the help of (45.12) and (45.15) in terms of
if; and 7r:

[if;(r,t),if;(r',t)] = [7r(r,t),7r(r',t)] = 0
[if;(r,t),7r(r',t)] = iho(r,r')
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where o(r,r/) = 1/or; if rand r' are in the same cell and zero otherwise.
The function o(r,r/) has the property that ff(r)o(r,r/)dr is equal to the
average value of f for the cell in which t' is situated. Thus in the limit in
which the cell volumes approach zero, oCr.r') can be replaced by the three­
dimensional Dirac 0 function oCr - r'), defined in Eq. (11.14) . The
quantum conditions for the canonical field variables then become

[y,(r,t),y,(r/ ,t)] = [1I"(r,t) ,1I"(r/ ,t)] = 0
[y,(r,t),1I"(r/,t)] = iho(r - r')

(45.22)

The equation of motion for any quantum dynamical variable F is
obtained as in Sec. 23 if the Poisson bracket in Eq. (45.20) is replaced by
the commutator bracket divided by ih .

ihF = [F,H] (45.23)

The commutator bracket can be evaluated with the help of (45.22) when
explicit expressions for F and H in terms of y, and 11" are given. Thus Eqs.
(45.22) and (45.23) completely describe the behavior of the quantized
field that is specified by the Hamiltonian H.

Fields with More than One Component. Thus far in this section we
have dealt with fields that can be described by a single real amplitude. If
the field has more than one component Y,l, Y,2, • • • , the Lagrangian den­
sity has the form L(Y,I, grad Y,l, ,fl, Y,2, grad Y,2, ,f2, . . . ,t). Then if
each of the field components is varied independently, the variational
equation (45.3) leads to an equation of the form (45.8) or (45.11) for each
of Y,l, Y,2, . • • • A momentum canonically conjugate to each y,. can be
defined as in Eq. (45.15) to be 11", = aLla,f.. The Hamiltonian density
has the form

H = L11".{;. - L
•

(45.24)

and the Hamiltonian equations consist of a pair like (45.19) for each 8 .

Equation (45.23) is unchanged, and the commutation relations (45.22) are
replaced by

[y,.(r,t),y,.,(r/,t)] = [11". (r,t) ,1I".' (r' ,t)] = 0
[y,.(r,t),1I".,(r/,t)] = ihO••,o(r - r') (45.25)

A case of immediate interest is a single complex field y" for which we
can write

(45.26)

where Y,l and Y,2 are real. We show first that the equations of the form
(45.8) obtained by independent variation of y, and of Yt are equivalent to
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those obtained by variation of Y;1 and Y;2. It follows from (45.26) that

a_2-t (a + . a)
ay; - aY;1 t aY;2

Thus the sum and difference of the Y;1 equation and i times the Y;2 equa­
tion give the Lagrangian equations that result from independent varia­
tion of y; and Y;, respectively, in (45.3). In similar fashion, the momenta
canonically conjugate to Y; and y; are seen to be

and (45.27)

(46.1)

(45.28)

respectively. 1 Then 'lrl,pl + 'lr2,p2 = ~ + ft~, and the Hamiltonian is
unchanged. The commutation relations for if;, y;, 'Ir , and 'if' can be obtained
from Eqs. (45.25) (with s = 1 and 2), together with (45.26) and (45.27).
All pairs of variables except the following commute:

(if;(r,t) ,'Ir(r',t)] = ihO(r - r')
[y;(r,t) ,'if'(r',t)] = ihO(r - r')

46. QUANTIZATION OF THE NONRELATIVISTIC SCHRODINGER EQUATION

As a first example of the application of the field quantization technique
developed in the preceding section, we consider here the quantization of
the nonrelativistic Schrodinger equation (6.16). This application implies
that we are treating Eq. (6.16) as though it were a classical equation that
describes the motion of some kind of material fluid. As we shall see, the
resulting quantized field theory is equivalent to a many-particle Schro­
dinger equation, like (16.1) or (32.1). For this reason, field quantization
is often called second quantization; this term implies that the transition
from classical particle mechanics to equation (6.16) constitutes the first
quantization.

Lagrangian and Hamiltonian Equations. The Lagrangian density
may be taken to be

h2

L = ihy;if; - 2m grad ~ . grad if; - V (r,t)y;if;

As shown at the end of the last section, Y; and y; can be varied separately to
obtain the Lagrangian equations of motion. The equation of the form
(45.8) that results from variation of if; is

..:. h2

-ihy; = - 2m V2~ + V(r,t)~

which is the complex conjugate of Eq. (6.16). Variation of ~ gives Eq.
(6.16):

1 See footnote 1, page 349.
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(46.2)

The momentum canonically conjugate to if; is

7r = aL = ihif!
at/;

(46.3)

However ~ does not appear in the Lagrangian density, so that 'it is identi­
cally zero.' It is therefore impossible to satisfy the second of the commu­
tation relations (45.28) (or the corresponding classical Poisson-bracket
relation) , so that if!,'it cannot be regarded as a pair of canonically conjugate
variables. They can easily be eliminated from the Hamiltonian since 'if

never appears and Eq. (46.3) gives if! in terms of 7f. 2

The Hamiltonian density is
'h .

H = 7ft/; - L = - _2 grad 7f' grad if; -:. V7r'if; (46.4)
2m h

The Hamiltonian equations of motion obtained from (45.19), with the
help of (45.18), are

oJ; = - £V if;+ ih V2t/;
h 2m

. i V ih "2
7r = h 7f - 2m v 7f

The first of these equations is the same as (46.2), and the second equation,
together with (46.3), is the complex conjugate of (46.2). We have thus
shown, from the point of view of classical field theory, that the Lagrangian
density (46.1), and the canonical variables and Hamiltonian derived from
it, are in agreement with the wave equation (6.16) or (46.2).

Quantum Equations. The quantum equations are obtained by
adopting the volume integral of (46.4) as the Hamiltonian, (45.23) as
the equation of motion, and the first of Eqs. (45.28) as the quantum condi­
tion on the wave field. Since if; is now an operator rather than a nu-

1 The notation of Eqs. (45.27) does not necessarily imply that 1f is the complex
conjugate of 7r, since these quantities were defined as canoni cal momenta. It is not
difficult to see that s- and ;r are actually complex conjugates of each other if L is real;
in this case the 7rl and 7r2 that appear in (45.27) are also real.

~ The conclusion that 7r can be identified with ;p is related to the appearance of only
the first-order time derivative in the wave equation (46.2), since in this case tit can be
expressed in terms of 1/t and its space derivatives through the wave equation. If the
wave equationis of second order in the time derivative, 1/t and tit are independent ; then
7r is related to if; rather than to ;P, and both 1/t,7r and ;p,i are pairs of canonical variables.
The nonrelativistic Schrodinger equation and the Dirac equation are of the former
type, while the relativistic Schrodinger equation is of the latter type.
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(46.5)

merical function, 1f; is to be interpreted as the Hermitian adjoint of 1/; rather
than as its complex conjugate. We therefore follow the notation of Sec.
21 and denote it by 1/;*. It is convenient to make use of Eq. (46.3) to
replace 7r by ih1/;*, in which case the Hamiltonian becomes

H = f (:~ grad 1/;* . grad 1/; + V1/;*1/;)dr

Application of Eqs. (21.14) and (21.15) then shows that H is Hermitian.
The quantized Hamiltonian given in (46.5) is the operator that represents
the total energy of the field ; it is not to be confused with the operator
given in (22.2), which is the energy operator for a single particle that is
described by the wave equation (6.16) or (23.1). We have as yet given
no explicit representations for the new operators 1/; and H, and therefore
cannot say on what they operate. The choice of a particular representa­
tion is not necessary so far as the equations of motion are concerned, but
is desirable in the physical interpretation of the formalism that we give
later in this section.

The commutation relations are

[1/;(r),1/;(r')] = [1/;*(r),1/;*(r')] = 0
[1/;(r),1/;*(r')] = o(r - r') (46.6)

(46.8)

The omission of t from the argument of the field variables implies that
both fields in a commutator bracket refer to the same time.1

Substitution of 1/; for F in Eq. (45.23) gives

ihy; = [1/;,Hj

= [1/;, f :~ grad' 1/;*' . grad' 1/;'dr'] + [1/;, f V'1/;*'1/;'dr'] (46.7)

where primes indicate that an integration variable r' has been substituted
for r, The second term on the right side is easily evaluated with the
help of (46.6) to give

jV'(1/;1/;*'1/;' - 1/;*'1/;'1/;)dr' = jV'(1/;1/;*' - 1/;*'1/;)1/;'dr'
= jV'1/;'o(r - r')dr' = V1/;

1/; commutes with V, which is a numerical function. Evaluation of the
first term on the right side of (46.7) is simplified by performing a partial
integration on j grad' 1/;*' . grad'1/;'dr' to obtain - j 1/;*''\''21/;'dr' ; the surface
terms vanish because 1/; either vanishes at infinity or obeys periodic bound-

1 Commutation relations between quantities that refer to different times are of
interest in connection with relativistic theories (see Sec. 47).
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ary conditions. We thus obtain

[1/1,1grad' 1/;*' . grad'1/;'dr'] = - [1/;,11/;*'V'21/;'dr']
= - f[1/;,1/;*']V'21/;'dr'
= - J(V'21/;')o(r - r')dr' = -v21/; (46.9)

Substitution of (46.8) and (46.9) into (46.7) yields Eq. (46.2), so that the
equations obtained from classical and quantum field theory agree . A
similar calculation shows that the equation ihif;* = [1/;*,H] yields the
Hermitian adjoint of Eq. (46.2); it can also be seen directly that this
equation is the Hermitian adjoint of the equation ihif; = [1/;,H] so long as
H is Hermitian.

If V is independent of t, H has no explicit dependence on the time,
and Eq. (45.23) shows that H is a constant of the motion. Thus the
energy in the field is constant. Another interesting operator is

N = J1/;*1/;dT

which we assume represents the number of particles in the field. We note
first that N is Hermitian. Its time derivative is given by

ihN = [N,H]

= [f1/;*1/;dr, f (:~ grad' 1/;*' . grad'1/;' + V'1/;*'1/;) dT'] (46.10)

The commutator of N with the V part of H can be written as

JJV'(1/;*1/;1/;*'1/;' - 1/;*'1/;'1/;*1/;)drdr';

with the help of (46.6) the parenthesis in the integrand is

1/;*#*'1/;' - 1/;*'1/;'1/;*1/; = 1/;*[1/;*'1/; + oCr - r')]1/;' - 1/;*'1/;'1/;*1/;
= 1/;*'1/;*1/;'1/; + 1/;*1/;' oCr - r ') - 1/;*'1/;'1/;*1/;
= 1/;*'W1/;* - oCr - r')]1/; + 1/;*1/;' oCr - r')

- 1/;*'1/;'1/;"'1/;
=0

since the 0 function vanishes unless r = t' , A similar but slightly more
complicated calculation shows that

[1/;*1/;, grad' 1/;*' • grad' 1/;'] = [1/;* grad'1/;' - (grad' 1/;*')1/;] • grad' oCr - r')

The double integral of this over rand r' is zero. Thus Eq. (46.10) shows
that N is a constant of the motion.

It can also be shown that the commutator brackets in (46.6) are con­
stants of the motion, so that they are always true if they are true at a
particular time.
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The N Representation. We now specialize to a representation in
which the operator N is diagonal. Since N is Hermitian, its eigenvalues
are real. A convenient and general way of specifying this representation
is by means of an expans ion like (45.1) in terms of a complete orthonormal
set of functions uk(r), which we assume for definiteness to be discrete.
We put

y;(r,t) = l ak(t)uk(r),
k

y;*(r,t) = l at(t)uk(r)
k

(46.11)

where the Uk are numerical functions of the space coordinates and the ak
are operators that depend on the time. Equations (46.11) can be solved
for the ak:

Thus if we multiply the last of the commutation relations (46.6) by
uk(r)ul(r') on both sides and integrate over rand r', we obtain

(46.12)

because of the orthonormality of the Uk. In similar fashion, it is apparent
that ak and al commute, and that at and at commute, for all k and L,
Substitution of (46.11) into the expression for N shows that

N = I N k where N k = atak (46.13)
k

It is easily seen that each N; commutes with all others, so that they can
be diagonalized simultaneously.

In order to find a representation in which N and all the N k are diag­
onal, we write each of the ak in the form

(46.14)

where qk and Pk are Hermitian. This is always possible since Eqs.
(46.14) can be solved to give

qk = 2-i (ak + an, Pk = -i2-i (ak - at)

and these operators are evidently Hermitian. It follows from (46.12)
that

and that
(46.15)

(46.16)

Equations (46.15) and (46.16) have the advantage over the equivalent
earlier equations (46.12) and (46.13) that their solution has already been
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n = 0,1,2,

(46.17)

obtained in connection with the theory of the linear harmonic oscillator.
We now show that some of the results of Sec. 13 provide explicit matrices
for the Pk and qk that make the N; diagonal.

Connection with the Harmonic Oscillator. The quantum motion of a
particle of mass m acted on by a force '- Kx, where x is the displacement
from equilibrium, was discussed in Sec. 13 from the point of view of the
Schrodinger equation. As shown in Sec. 22 and 23, the solution of this
problem is equivalent to the diagonalization of the energy matrix

2

l!- + lKx2
2m 2

when the coordinate x and the canonically conjugate momentum P satisfy
a commutation relation like (23.13):

[x,p] = iii

The energy eigenvalues were found to be given by Eq. (13.8):

(n + i)h (~y,

The matrix for x in the representation in which the energy is diagonal is
given by Eqs. (13.18).1

If now we identify x with qk, P with Pk, and set h; m, and K equal to
unity, we see at once that N k + i can be identified with the energy of the
oscillator and has the eigenvalues nk + i , where nk is a positive integer or
zero. Equations (13.18) then show that the matrix for qk has the form

(
nk + l)t(qk)n>.n>+l = (qk)n>+l.n> = --2-

with other matrix elements vanishing. A calculation similar to that
which resulted in (13.18) can be used to show that the matrix for P» has
the form

(46.18)

with other matrix elements vanishing. The matrices for ak and at can
then be obtained from (46.14) :

(46.19)

All other matrix elements vanish. Equations (46.17), (46.18), and (46.19)
imply that the nonvanishing matrix elements refer to pairs of states for

1 These results can also be obtained by purely matrix methods, without explicit
solution of the Schrodinger equation; see Dirac, op. cit., Sec. 34.
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which all the other nl have the same values, since qk, pk, ak, and at each
commute with N 1 for l ~ k,

The matrix for x in the harmonic-oscillator problem can be related to a
set of wave functions un(x) given by (13.13), such that

Xnn' = fun(X)Xun,(x)dx .

We also expect that the matrices for qk, pk, ak, and at can be related in a
similar way to some kind of quantities that play the role of wave functions
in the quantized field theory. We call these quantities wave functionals
'1' of the numbers nk; they can be thought of as one-column matrices that
have the properties

)'1'(n~, . • • ,n~, • •. )
= onln1~ • • • On1cnI/

)ak'1'(n~ , • • • ,n~, ... )
= (nk + l)ion,n,1, •• onk+1,n.'

)at'1'(n~, • •. ,n~, ••. )
= nkion,n,' • • • On.-l,n.' ...

(46.20)

(46.21)

(46.22)

in agreement with Eqs. (46.19) . Equations (46.20) are equivalent to
the statement that the '1"s are orthonormal and satisfy the relations

ak'1'(nl, • • . ,nk, ... )
= nki'1'(nl, ..• ,nk - 1, . .. )

at'1'(nl, ... ,nk, ... )
= (nk + l)i'1'(nl, . . . ,nk + 1, ... )

Physical Interpretation. Since we regard N as the operator for the
total number of particles in the quantized field, it is reasonable to assume
that N k is the operator for the number of particles in a state of the field that
is described by the space function uk(r) . We thus have the result that
a precise measurement of the number of particles in any state must
be one of the positive integers or zero. Equation (46.13) then shows that
this also applies to the total number of particles.

Although N is a constant of the motion, N k need not be. Substitu­
tion of N; for Fin Eq. (45.23) gives

ihf.h = [atak,H]

H can be expressed in terms of the ak by substituting (46.11) into (46.5) .

H = 1a1al f (:~ grad ui' grad Ul + VUiU1)dT
j l

= 1ajal fUi( - :~ V
2 + V)U1dT

11
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It is not difficult to show from (46.12) that a particular N'; is constant if
and only if all the volume integrals in (46.22) are zero for which either
j or l is equal to k , These integrals are just the matrix elements of the
one-particle Hamiltonian (22.2), so that the necessary and sufficient con­
dition that N k be a constant of the motion is that all such off-diagonal
elements that involve the state Uk be zero. I

The case in which the Uk are eigenfunctions of (22.2) with eigenvalues
E k is of particular interest. The integrals in (46.22) are then E1o j l , and
the field Hamiltonian becomes

(46.23)H = LatakEk = Lu,»,
k k

This particular N representation is one in which H is also diagonal; the

wave functional '1'(nl' .. . ,nk, . .. ) has the eigenvalue LnkEk for
k

It is apparent that all the N k are constantthe total-energy operator H .
in this case.

The first of Eqs. (46.21) permits the interpretation of ak as a destruction
operator for particles in the state k, since it converts a wave functional into
a multiple of one that has one less particle in that state. Similarly,
at can be interpreted as a creation operator, since it increases the number
of particles in the kth state by unity.

Connection with the Many-particle Schrddinger Equation. The
quantized field theory is closely related to the many-particle Sehrodinger
equation discussed in Sec. 32. If the Uk are eigenfunctions of the one­
particle Hamiltonian (22.2), the fieldtheoryshows that stationary solutions
exist for which the number of particles nk in the kth state is a con-

stant positive integer or zero, and the energy is LnkEk. Each solution
k

can be specified by a wave functional '1'(nl, . . . ,nk, . . . ); the '1"s
form a complete set, and there is just one solution for each set of numbers
nl, . • .. A stationary many-particle wave function like the tJ; in
Eq. (32.1) can be written as a product of one-particle wave functions

iEkt
uk(r)e-T if there is no interaction between particles. The linear com-
bination of such products that is symmetric with respect to interchange of
any pair of particle coordinates can be specified uniquely by stating the
number of particles in each state. Again, the number of particles in
each state is a positive integer or zero, and the energy is the sum of all
the particle energies .

1 This result for the quantized field is closely related to the corresponding result,
contained in Eq. (29.5), for the one-particle probability amplitude.
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We see then that the quantized field theory developed thus far in
this section is equivalent to the Sehrodinger equation for several non­
interacting particles, provided that only the symmetric solutions are
retained in the latter case. We are thus led to a theory of particles that
obey Einstein-Bose statistics. It can be shown that the two theories are
completely equivalent even if interactions between particles are taken
into account.'

It is natural to see if there is some way in which the quantized field
formalism can be modified to yield a theory of particles that obey Fermi­
Dirac statistics. As discussed in Sec. 32, a system of such particles can
be described by a many-particle wave function that is antisymmetric with
respect to interchange of any pair of particle coordinates. The required
linear combination of products of one-particle wave functions can be
specified uniquely by stating the number of particles in each state, pro­
vided that each of these numbers is either 0 or 1. The desired modifica­
tion of the theory must, therefore, limit the eigenvalues of each operator
N; to 0 and 1.

Anticommutation Relations. A review of the foregoing theory shows
that the conclusion that the eigenvalues of each N k are the positive
integers and zero stems from the commutation relations (46.12) for the
ak and at. Equations (46.12) in turn arise from the commutation rela­
tions (46.6) for y; and y;*. Thus we must modify Eqs. (46.6) if we are to
obtain a theory of particles that obey the exclusion principle. It is
reasonable to require that this modification be made in such a way that
the quantum equation of motion for y; is the wave equation (46.2) when
the Hamiltonian has the form (46.5).

It was found by Jordan and Wigner- that the desired modification con­
sists in the replacement of the commutator brackets [A,B] == AB - BA
in Eqs. (45.22) and (46.6) by anticommutator brackets [A,B]+ == AB + BA.
This means that Eqs . (46.6) are replaced by

[y;(r),y;(r')]+ = y;(r)y;(r') + y;(r')y;(r) = 0
[y;*(r),y;*(r')]+ = y;*(r)y;*(r') + y;*(r')y;*(r) = 0 (46.24)

[y;(r),y;*(r')]+ = y;(r)y;*(r') + y;*(r')y;(r) = o(r - r')

It then follows directly from Eqs. (46.11) and (46.24) that

[ak,ad+ = akal + alak = 0
[at,aiJ+ = ata't + a'tar = 0
[ak,a'tJ+ = aka't + a'tak = Okl

1 See Heisenberg, op, cit., Appendix, Sec. 11.
2 P. Jordan and E. Wigner, Zeits. f. Physik, 47, 631 (1928).

(46.25)
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We define Nk = aZak as before, and notice first that each N; com­
mutes with all the others, so that they can be diagonalized simultaneously.
The eigenvalues of N k can be obtained from the matrix equation

N~ = aZakaZak
= at(l - aZak)ak = atak = N k (46.26)

where use has been made of Eqs. (46.25). If N k is in diagonal form and
has the eigenvalues n~, n~ , . . . ,it is apparent that N~ is also in diagonal
form and has the eigenvalues n~2, n~2, . . .. Thus the matrix equation
(46.26) is equivalent to the algebraic equations

n',; = n~,

for the eigenvalues. These are quadratic equations that have two roots :
oand 1. Thus the eigenvalues of each Nk are 0 and 1, and the particles

obey the exclusion principle. The eigenvalues of N = I N k are the
k

positive integers and zero, as before . The earlier expressions (46.22) and
(46.23) for the Hamiltonian are unchanged, and the energy eigenvalues

are 2: nkEk •

k

Equation of Motion. In order to find the quantum equation of motion
for if; when the Hamiltonian is given by (46.5), we must decide whether
or not the general equation of motion (45.23) is to be retained. The latter
equation was obtained by replacing the Poisson bracket by the com­
mutator bracket in the classical equation (45.20). This replacement was
justified by analogy with the particle theory of Sec. 23, by the identical
algebraic properties of the two kinds of bracket expressions given in
(23.12), and by the correspondence-theory argument of Prob. 10, Chap.
VI. Thus abandonment of Eq. (45.23) means that the classical equation
(45.20) is likewise abandoned; since many of the quantities with which we
are concerned (number of particles, energy, etc .) have well-defined clas­
sical analogues, we shall retain (45.23) as the general quantum equation
of motion.

The equation for if; is then given by (46.7), where now the anticom­
mutation relations (46.24) are to be used in evaluating the right side.
This causes (46.8) to be replaced by

fV'(#*'if;' - if;*'if;'if;)dr' = fV'(# *' + if;*'if;)if;'dr'
= fV'if;'o(r - r')dr' = Vif;

The similar treatment of the first term on the right side of (46.7) gives
no change in the right side of (46.9). Thus the wave equation (46.2) is
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unaffected by the substitution of anticommutation for commutation rela­
tions between the wave amplitudes. It can also be shown without dif­
ficulty that N and the anticommutator brackets in (46.24) are constants
of the motion.

Physical Implications of Anticommutation. Since anticommutator
brackets do not possess the algebraic properties of Poisson brackets, we
can conclude that there is no classical analogue for the quantities v and
ak that satisfy the relations (46.24) and (46.25). This does not mean,
however, that Nand H do not possess classical limits, for they are con­
structed of bilinear combinations of"" or ak and commute with each other.

These conclusions can be confirmed on the basis of physical considera­
tions . In order that a field amplitude be strong enough to be classically
measurable, it must be possible to have a very large number of particles
in the same state so that their fields are coherent. This implies that such
particles obey Einstein-Bose statistics. We can, for example, conclude
that light quanta or photons obey Einstein-Bose statistics, since it is
known that strong electric and magnetic fields can be produced and are
classically measurable. In the case of metallic electrons, which obey
Fermi-Dirac statistics, quantities like energy, and charge and current
density, are classically measurable since they can be expressed as bilinear
combinations of the field amplitude, while the electron field amplitude
itself is not.!

Representation of the Anticommuting ak Operators. An explicit
representation for the operators that appear in (46.25) is easily obtained
in the hypothetical but instructive case in which the system has only one
state. The matrix equations to be solved are

a2 = a*2 = 0, aa* + a*a = I, N = a*a (46.27)

Equations (46.27) are just those solved in Prob. 2, Chap. VI. We have
already seen in (46.26) that N2 = N, so that N has the eigenvalues 0 and
1. If there is no degeneracy, N can be represented by the diagonal matrix

N = (~ ~) (46.28)

It is interesting to note that a cannot be diagonalized since N has a non­
vanishing eigenvalue. If it could be, the first of Eqs. (46.27) would show

1 The classical measurability of the field amplitude for any charged particle
(Einstein-Bose or Fermi-Dirac statistics) implies that ,p appears linearly in H , since
the energy must then depend on ,p itself as well as on bilinear combinations of ,p. This
in turn impli es that terms linear in ak or ak appear in the Hamiltonian, so that single
charged particles can be destroyed or created. Thus ,p cannot be measured classically
if the theory is such that electric charge is conserved.
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that the square of each of its eigenvalues is zero; this would mean that a,
and hence a* and N, are identically zero, so that N could not have the
form (46.28) in any representation.

Explicit matrices for a and a* that agree with (46.27) and (46.28) are

a = (~ a* = (~ ~) (46.29)

The two wave functionals that represent the two possible states of this
system can be expressed as

'l'(0) = G)' 'l'(1) = (~) (46.30)

It is easily seen that the first of (46.30) has the eigenvalue 0 for the opera­
tor N given in (46.28) , and the second wave functional has the eigenvalue
1. The following relations are easily obtained from Eqs. (46.29) and
(46.30) :

a'l'(n) = n'l'(l - n), a*'l'(n) = (1 - n)'l'(l - n) , n = 0,1 (46.31)

Thus a and a* again play the roles of destruction and creation operators,
respectively.

In the actual problem, the number of states of the system is infinite,
and it is not convenient to write down explicit matrices like those in
(46.28) , (46.29), and (46.30) . We can, however, find the effects of opera­
tion with ak and at on a wave functional 'l'(nl, . .. ,nk, . .. ) that has
the eigenvalue nk (= 0 or 1) for the operator N k. The desired relations
would have the form (46.31), were it not that a series of such equations
(with subscripts added) would not agree with the first two of Eqs. (46.25).

We therefore proceed in the following way. We order the states k of
the system in an arbitrary but definite way: 1, 2, . . . ,k, . . .. Then
the effect of operating with each ak or at on 'l' has the form (46.31),
except that a multiplying plus sign or minus sign is introduced, according
as the kth state is preceded in the assumed order by an even or an odd
number of occupied states. We thus replace Eqs. (46.21) by

ak'l'(nl, .. . ,nk, . . . )
= Oknk'l'(nl, . .. ,1 - nk, . . . )

at'l'(nl, • .. ,nk, . . . )
= Ok(l - nk)'l'(nl, ,1 - nk, . . ) (46.32)

k-l
Ok = (-l)vt, VI' = .l ni

i-I
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As an example, we calculate the effect of operating with akal and with
alak on a wave functional 'It, where we assume for definiteness that the
order is such that l > k. If each operation is not to give a zero result,
both nk and nl in the original 'It must equal unity. Operation with akal
empties first the lth and then the kth state, and introduces a factor OIOk.
Operation with alak empties the kth state first, so that Ok is unchanged.
But when the lth state is emptied in this case, there is one less particle in
the states below the lth than there was in the previous case, since the kth
state is now empty, whereas it was occupied before. Thus the sign of
01 is changed. We find then that akal'lt = -alak'lt, in agreement with
the first of Eqs. (46.25). In similar fashion, it can be shown that Eqs.
(46.32) agree with the result of operating with the other two of Eqs.
(46.25) on any 'It. Since the aggregate of wave functionals represents
all possible states of the many-particle system, the 'It's constitute a com­
plete set, and Eqs. (46.25) follow as operator equations from Eqs. (46.32).

47. QUANTIZATION OF THE DIRAC EQUATION

As our second example, we now consider the quantization of Dirac's
relativistic equation (43.3) for a free electron. Our procedure again
consists in treating the one-particle equation as though it were a classical
field equation. The resulting quantized field theory represents the
motion of a number of noninteracting free electrons.

Lagrangian and Hamiltonian Equations. The Dirac wave function Vt
has four components that we denote by Vtj (j = 1, 2, 3, 4). The Lagran­
gian density may be taken to be

L = l Y;j ( iMj - ike l ajl •grad Vt· + me2l (3jlVtl) (47.1)
j I I

where the matrices ajl and {3jl are given in Eqs. (43.12). We must now use
the multicomponent extension of the field theory described at the end of
Sec. 45. Variation of one of the components Vtl of Vt leads to an equation
of the type (45.8) :

me2l y.,j{3jl + ike l grad Y;j . ajl - ih~l = 0
j j

The four equations like (47.2) may be written together as

-iM* + ihc grad Vt* . a + mc2Vt*{3 = 0

(47.2)

where Vt* is the Hermitian adjoint of Vt and is a matrix with one row and
four columns; this equation is the Hermitian adjoint of (43.3). In similar
fashion , it is easily shown that separate variation of the four fields y.,j
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(47.4)

(47.3)

results in four equations that can be written together as

iM - i hc« . grad if; + mc2f3if; = 0

which is the same as the Dirac equation (43.3).
The momentum canonically conjugate to if;j is

7rj = :~j = ih;h

As with the nonrelativistic Schrodinger equation, the momentum 'ifj
canonically conjugate to ~j is identically zero; we therefore eliminate
~j from the Hamiltonian with the help of (47.4). Then the Hamiltonian
density is

H = 2: 7rjY;j - L
i

\' imc2
\'

= c L..t 7rjaj! . grad if;! + h L..t 7rjf3j!if;!
fi fi

(47.5)

(47.6)

It is not difficult to show (see Prob. 12) that the first of the Hamiltonian
equations (45.19) is the same as (47.3), and that the second Hamiltonian
equa tion, together with (47.4), gives the Hermitian adjoint of (47.3).
This comple tes our demonstration that (47.1) , (47.4) , and (47.5) are in
agreement with the Di rac equation.

Quantum Equations. As with the nonrelativistic Schrodinger equa­
tion, it is convenient to rewrite the Hamiltonian with the help of (47.4)

H = J( ihc l ~jaj! . grad if;, - mc2l ~jf3jzif;l) dT
fi fi

= J(ihcf*a . grad if; - mc2if; *f3if;)d-r

In spite of its appearance this expres sion is actually real, as can be seen
by performing a partial integration on half of the first term to obtain

H = f[tihc(if;*a . grad if; - grad if;* . aif;) - mc2if; *f3if; ]d-r (47.7)

The surface terms vanish because if; either vanishes at infinity or obeys
periodic boundary conditions.

We have already seen (Sec. 32) that electrons obey the exclusion
principle. We therefore quantize the field by imposing anticommutation
relations on the components of if;. With the help of (47.4) these become

[if;j(r),if;z(r')]+ = [if;!(r),if;i(r')]+ = 0
[if;j(r),if;t(r')]+ = ~jZ~(r - r')

(47.8)
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(47.10)

The substitution of "': for Y;i implies that each "'i is now a quantum­
mechanical operator rather than a numerical function ; we interpret "'* to
mean the matrix that has one row and four columns, whose elements are
the operators "'t.

The quantum equation for'" is obtained by substituting "'i for F in
Eq. (45.23), where H is given by (47.6) or (47.7).

ihfj = ["'h J(ihc I "'t'Ukl' grad' "'~ - mc2 I "'t'{3kl"'O dr'] (47.9)
H H

Primes indicate that an int egrat ion variable r' has been substituted for r.
The second term on the right side can be evaluated with the help of (47.8)
as follows:

r- J-mc2 I ",t{3kl",;dr']
kl

-mc2 I {3kl J[ifii,"'Z'",adr'
H

-mc2 I {3kl J("'i1J;t"'; - "'t"';"'i)dr'
kl

= -mc2 I {3kl J("'i"'t + "'t"'i)"';dr'
kl

= -mc2 I {3klOikJ"';o(r - r')dr' = -mc2 I {3il"'l
H I

Evaluation of the first term on the right side of (47.9) is accomplished in
the same way, since "'i anticommutes with grad' "'~ as well as with "';:

[ifii, Jihc I "'tUkl . grad' "'~dr'] = ihcI Uil . grad "'I
kl I

Thus the four equations like (47.9) are equivalent to the Dirac equation
(47.3), A similar calculation shows that the four equations of the form
ihft = [",:,H] yield the Hermitian adjoint of (47.3).

The operator N for the total number of electrons in the field can be
written

N = J"'*"'dr = JI ",Nl(]r
j

It is apparent that N is Hermitian, and it can also be shown that

ihN = [N,H] = 0

so that N is a constant of the motion (see Prob. 13). As with the non­
relativistic theory of Sec. 46, the anticommutator brackets in (47.8) can
be shown to be constant in t ime.
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The N Representation. A representation in which N is diagonal is
conveniently found by expanding t/t in plane wave solutions of the Dirac
equation for a single free electron. The entire procedure is exactly
analogous to that followed in the last section, but is complicated by the
multicomponent nature of the Dirac field. We shall continue to denote
the four components of 1/1 and of the plane waves by a subscript j or l.
The propagation vector of a plane wave (momentum divided by h) will
be denoted by k, and it will be assumed that these waves obey periodic
boundary conditions at the walls of a large cubical box of edge length L.

We saw in Sec. 43 that there are four solutions for each value of k;
these will be dist inguished by the letter s (= 1, 2, 3, 4), so that both k and
s must be given in order to specify a one-electron plane wave solution.
The free electron solutions that form a complete orthonormal set of func­
tions within the volume L3 are then

Vj(k,s;r) = uj(k,s)L-f exp ik . r (47.11)

(47.12)

The uj(k,s) are numbers obtained by multiplying the four sets of Uj given
in Eqs. (43.17) and (43.18) through by the normalizing factor given there.
The two solutions (43.17) will be denoted by s = 1,2, and correspond to
the two spin orientations for the positive energy:

Ek. = +(h2c2k2 + m 2c4)! , s = 1,2

The two solutions (43.18) are for negative energy :

Ek • = - (h2c2k 2 + m 2c 4)!, s = 3,4 (47.13)

The orthonormality relations for the Vj of Eq. (47.11) are easily seen to be

JLvj(k,s; r )vj(k' ,s' ; r )dr = Okk' oss'
j

As in Eqs. (46.11), we expand 1/Ij and 1/11 in terms of the Vi :

1/Ij(r,t) = La(k,s; t)vj(k,s; r)
ks

1/If(r,t) = La*(k,s;t)vj(k,s; r)
k.

(47.14)

(47.15)

The coefficients a and a* are quantum-mechanical operators that depend
on the time. With the help of the orthonormality property (47.14) it is
not difficult to show that the anticommutation relations (47.8) are equiva­
lent to

[a(k,s ;t),a(k',s';t)J+ = [a*(k,s;t),a*(k',s'; t)J+ = 0
[a(k,s;t) ,a*(k',s';t)J+ = Okk'O••r

(47.16)
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Substitution of (47.15) into (47.10) shows that

where Nk. = a*(k,s; t)a(k,s;t) (47.17)

The work of Sec. 46 shows that the eigenvalues of each N k • are 0 and 1,
so that there cannot be more than one electron in each state (which is
specified by the spin orientation, the value of the momentum, and the
sign of the energy). Explicit expressions for the a's, analogous to (46.32),
can also be written down.

Substitution of (47.15) into the expression (47.6) for the field Hamil­
tonian gives

H = I J(ilict/ifaiZ· grad t/;z - mc2t/;jf3izt/;z)dr

j l

= I JI I a*(k,s;t)a(k',s';t)Vi(k,s;r)
jZ ks k'.'

The solution of Eqs. (43.16) shows that the Vi defined by (47.11) satisfy
the equations

I (ilicaiZ . grad - mc2f3iz)Vz(k' ,s' ;r) = Ek's'Vi(k',s'; r)
I

We then obtain, with the help of (47.14),

H = I a*(k,s;t)a(k,s;t)Ek• = I Nk.Ek.
k. ks

(47.18)

where the E k • are given by (47.12) and (47.13). It follows at once that
the Nk. are constants of the motion, since they commute with each other
and hence with H.

Negative Energy States and Positrons. All the results obtained thus
far in this section can be obtained from the assumption that the t/;'s and
a's commute, as well as from the assumption that they anticommute.
This makes it seem that the Dirac theory can describe either particles of
spin iii that obey Einstein-Bose statistics, or electrons that obey the
exclusion principle. It is easily seen, however, that the field energy
operator (47.18) has negative eigenvalues of arbitrarily large magnitude,
which correspond to electrons in negative energy states (s = 3,4) . The
existence of such eigenvalues implies that there is no equilibrium con­
dition of the field when electromagnetic interactions are taken into
account, since an electron will make radiative transitions to states of lower
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and lower energy. This difficulty cannot be avoided so long as the
particles are assumed to obey Einstein-Bose statistics.

It was proposed by Dirac! that the undesirable transitions to negative
energy states be eliminated from the theory by the asswnption that the
normal condition of empty space is that in which all positive energy states
are empty and all negative energy states are full:

N k1 = Nk2 = 0, Nk3 = Nk4 = 1 for all k (47.19)

This is an equilibrium condition of the field, since the exclusion principle
prevents transitions into the negative energy states. It is also assumed
that the infinite density of negative-energy electrons produces no observ­
able electromagnetic or gravitational effects, but that departures from
the vacuum values (47.19) are observable in the usual way. We there­
fore subtract the vacuum values

L Le
k 8=3.4

and

for the total electric charge and total energy, from the total charge and
energy operators eN and H, respectively; e is the (negative) charge of an
electron.

The resulting expression for the total observable charge is

eL( L Nk8 - L Nk.'), Nk.' == 1 - Nk8 = a(k,sjt)a*(k,s;t) (47.20)
k 8=1,2 8=3,4

The new operator Nk.' has the eigenvalue 0 when the state ks is full and
the eigenvalue 1 when that state is empty. The similar expression for the
total observable energy is

(47.21)

According to (47.20), each positive-energy particle acts like a negative
electron, and each missing negative-energy particle like a positive elec­
tron; (47.21) then shows that the observable energy is positive, and equal
to the sum of a positive term for each positive-energy particle and for
each missing negative-energy particle. It is therefore reasonable to
interpret the "holes" in the otherwise occupied set of negative energy
states as positive electrons or positrons. Because of the relation (47.13)
between energy and momentum, positrons have the same rest mass as
electrons. The existence of positrons was predicted by Dirac on the basis
of this theory in advance of their discovery in cosmic radiation,"

1 See also J . R . Oppenheimer, Phys. Rev., 36, 562 (1930).
2 For further discussion of the formal aspects of positron theory, see Wentzel,

op, cit., Chap. V.
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We have seen that the Dirac theory, which describes particles of spin
th, can only be quantized in accordance with the exclusion principle.
This is a special case of a general result, obtained by Pauli;' according to
which particles of zero or integer spin obey Einstein-Bose statistics and
particles of half-odd-integer spin obey Fermi-Dirac statistics. The con­
nection between spin and statistics can be derived only for relativistic
theories. For example, the negative energy states that prevent Einstein­
Bose quantization of the Dirac equation appear only in a relativistic
theory, and the nonrelativistic Sehrodinger equation was successfully
quantized in both ways in Sec. 46.

Anticommutation Relations at Different Times. All the commutation
and anticommutation relations that have been used up to now have been
between quantities that refer to the same time. In a relativistic theory,
however, there is some reason for being interested in relations of this kind
between quantities that refer to different times. Such relations can be
used to investigate the causal connections between events that occur at
different times and places, and hence the relativistic character of the field
theory as a whole.

To see this, suppose that we have a physically observable quantity,
such as particle or charge density, which can be represented by an opera­
tor that depends on rand t. It is interesting to inquire under what cir­
cumstances the values of this observable at different space-time points
can be measured without interference of one measurement with the other.
Measurements without interference can be made if the two operators that
represent the observable at the two points commute with each other,
since then their matrices can be diagonalized simultaneously and precise
results (eigenvalues) can be obtained from both measurements. We
expect that observables at the same time and different space points will
always commute, since there is no way in which an effect can be propa­
gated over a finite distance in zero time. In a nonrelativistic theory,
observables at different time and space points need not commute, for
there is no limit to the speed at which effects can be propagated. In a
relativistic theory, however, we expect that observables at different
space-time points always commute if the spatial separation of the two
points is greater than c times the time interval. Thus commutation or
anticommutation relations at different times can provide a direct physical
check on a relativistic theory, but are of little interest in connection with a
nonrelativistic theory.

The anticommutation relations (47.8) or (47.16) are conveniently
extended to different times by finding the equations of motion for the
a's. We have from Eqs. (45.23), (47.16), and (47.18) that

1 W. Pauli, Phys . Rev., 68, 716 (1940).
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(47.22)

ihd(k,s; t) = raCk,s; t),H] = Ek8a(k,s; t)
ihd*(k ,s ; t) = [a*(k,s; t),H] = -Ek8a*(k,s; t)

These are easily integrated to give

(
'E t)a(k,s ;t) = a(k,s ;O) exp - 't t

iEk.t
a*(k,s;t) = a*(k,s;O) exp -h-

Equations (47.16) apply when both the times that appear are the same;
they can both be taken to be zero, in which case we can use (47.22) to
obtain

raCk,s; t),a(k',s' ; t')]+ = [a*(k,s; t)a*(k',s'; t')]+ = 0

[ (k ) *(k' , ')] • iEk.(t' - t)a,s; t ,a ,s ; t + = Okk'u••r exp h
(47.23)

(47.25)

Substitution of (47.23) into (47.15) enables us to calculate the anti­
commutation relations for y/s at different times. It is apparent that

[lh(r,t),fl(r',t')l+ = [fi(r,t) ,fi(r',t')]+ = 0 (47.24)

The anticommutator bracket for f and f* becomes

[fj(r,t) ,fi(r',t')]+ = L raCk,s; t),a*(k',s'; t')]+vj(k,s; r)i;iz(k',s'; r')
kk'.s'

_ ~ (k . )- (k ") iEk8(t' - t)- L.. V j ,s, r VI,S, r exp h
k.

The last sum could be simplified at once by making use of the closure
property

Luj(k,s)uI(k,s) = Ojl
8

(47.26)

which follows from (43.17) and (43.18) , were it not for the fact that Ek8
has different signs for different values of s,

As it is, we can still use (47.26) if we first rewrite the exponential in
(47.25) so that it does not involve s explicitly. We put

(
iEk8T) Ek.T. . Ek8T

exp - -h- = cos T - 't sin T
IEk81T ts ; sin (JEk.IT/h)

= cos -h- - h jEk.l /h

where T = t - t', \Ek.\/h = +e(k2 + k5)1 is independent of s, and
ko = me/h. We can write this as

(
_ iEk.T) = (.i _iEk.) sin cr(k 2 + k5)i

exp h aT h e(k 2 + k5)i
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The remaining factor Eko can be replaced by an operator:

Ek,Vi(k,s; r) = I (ihcuil' . grad - mc2{3il')VI,(k,s; r)
I '

Substitution into (47.25) gives, with the help of (47.26),

[,h(r,t),1ff(r /,t')]+ = 2: vI(k,s; r')
k.s

~ ( a . ) sin cr(k 2 + k~)i.Lt Oil' ar + cuw . grad + tcko{3il' vl,(k,s; r) c(k2 + k~)i
I'

= (Oil :r + cUil • grad + iCko{3i)

~ -3 I sin cr(k 2 + k~)i.Lt L [exp t'k . (r - r )] c(k2 + k~)i
k

= (Oil~ + ccq; > grad + iCko{3il)D(r - r/,t - t') (47.27)

where

_ ~ -3 sin ct(k 2 + k~)i
D(r,t) = Lt L (exp t'k . r) c(k2 + k~)i

k

(47.28)

It can be shown that (47.27) reduces to the third of Eqs. (47.8) when
t' = t (see Prob. 14).

Commutation Relation for the Charge Density. The charge density
in the Dirac theory, without the modification (47.20) that results in
positrons, is

p(r,t) = eif;*(r,t)1f(r,t) = eI 1ft(r,t)1fi(r,t)
j

In order to discuss the extent to which measurements of p at different
space-time points interfere with each other, we must calculate the com­
mutator bracket

[p(r,t) ,per',t')] = e2 I [1ft(r,t)1fi(r ,t)1ft(r' ,tl)1fI(r
' ,t')

jl

-1ff (r ' ,t')1fI(r' ,t')1ft(r,t)1fi(r,t)]

With the help of Eqs. (47 .24) and (47.27), this can be reduced to

[p(r,t),p(r/,t')] = e2 2: N(r,t)1fI(r /,t') (Oil :t + CUil • grad + iCko{3il)
n

. D(r - r/,t - t') - H .A.
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(47.29)

where H.A. signifies the Hermitian adjoint of the preceding term. In
general, p(r,t) will commute with p(r',t') only when D(r - r', t - t') is
zero.

We therefore examine the structure of the D function by replacing the
k sum in (47.28) by an integral, as in Eq. (11.14):1

-3 f sin ct(k2 + k5)t
D(r,t) z:=.--;: (211'-) (exp ~1r . r) c(k2 + k5)t dTk

The integration over the polar angles of k is readily carried out; the result
can be written

D(r,t) = (211'"2rc)- 1fa" k(k2+ k5)-t sin kr sin ct(k2+ k5)tdk

a f"= - (47I'"2rc)-1 - (k2 + k5)-t cos kr sin ct(k2+ k5)tdkar _..

The substitution k = ko sinh z transforms this into

D(r,t) = _(411'"2rc)- 1:r f-., cos (kor sinh x) sin (koct cosh x)dx (47.30)

The integrand in (47.30) can be rewritten as

i sin (koct cosh x + kor sinh z) + i sin (koct cosh x - kor sinh x) (47.31)

Further reduction depends on the relative magnitudes of ct and r .
Suppose first that ct is positive and greater than r, which is always posi­
tive; we can then put

koct cosh x ± kor sinh x = kO(C2t2 - r2)t cosh (z ± 8), tanh 8 == ..:
ct

The integral in (47.30) then becomes

i J-.... sin [z cosh (x + 8)]dx + i J-.... sin [z cosh (x - 8)]dx,

z == k O( C2t2 - r2)t (47.32)

These have the form of one of the integral representations of a Bessel
funotion:s

1 f"Jo(z) =:;;: _.. sin (z cosh x)dx

1 P . A. M. Dirac, Proc. Camb. Phil . Soc., 30,150 (1934).
2 E . T . Whittaker and G. N . Watson, "A Course of Modern Analysis," 4th ed .,

p.382 (Cambridge, London, 1935).
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The two integrals in (47.32) are equal, and their sum is then equal to
7rJo(Z). It is apparent that for ctnegative and less than -r, the integral in
(47.30) is equal to -7rJo(z).

To consider the case in which ct lies between rand -r, suppose first
that ct is positive and less than r. We then use a different expression for
the arguments of the sines in (47.31) :

koct cosh x ± kor sinh x = ±ko(r2 - c2t2)! sinh (x ± 0'),
ct

tanh 0' ==­
r

The integral in (47.30) then becomes

-! J-"", sin [z' sinh (x + O')]dx - -! J-.... sin [z' sinh (x - O')]dx,

z' == k o(r2 - c2t2)!

Each of these integrals vanishes, since the integrands are odd functions
of z + 0' or z - 0'. We see then that the integral in (47.30) is equal to

7rJo[kO( C2t2 - r2)!] for ct > r
o for r > ct > -r (47.33)

-7rJO[kO( C2t2 - r2)!] for -r > ct

We have thus shown that there is no interference between measure­
ments of charge density at two different space-time points if and only if
the spatial distance between the points is greater than c times the time
interval. In this case there is no physical mechanism whereby a dis­
turbance can be communicated from either point to the other.

The hypersurfaces ct = ±r in four-dimensional space-time const itute
the light cone, which is the locus of all light pulses that pass through the
space point r = 0 at the t ime t = O. An explicit expression for D(r,t)
infinitesimally close to the light cone can be obtained by noting that
(47.33) changes discontinuously from 7r to 0 as r increases in crossing
the ct = r half of the light cone, and changes discontinuously from -7r to
oas r increases in crossing the ct = -r half of the light cone. Now the
derivative of an increasing step function is a positive 0 function, so that
we obtain from (47.30):

D(r,t) '" (47rTc)-1[o(r - ct) - oCr + ct)], ct~ ±r (47.34)

It is interesting to verify that the right side of (47.27), with the expres­
sion (47.34) for D near the light cone, reduces to oilO(r) when t = 0; this
shows that (47.27) agrees with the third of Eqs. (47.8) in the proper limit,
as of course it must (see also Prob. 14). To see this, we note that the
terms (cajl' grad + icko{3il)D(r,t) vanish when t = 0, since the two 0
functions in (47.34) cancel. The term (ajat)D(r,t), however, becomes
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- (21rr)-lo'(r) when t = O. We now show that this quantity is equiva­
:ent to oCr). Let fer) be an arbitrary continuous function that has a
continuous gradient at r = 0; then ff(r)o(r)dr = f(O). We also have
that

Jfer) (21rT)-lO' (r)dr = fo "' fer) (21rT)-lO' (r)41rr2dr

fo "' f(r)2ro' (r)dr

= J-"'", f(r)ro'(r)dr (47.35)

Since the fourth of Eqs. (11.13) states that ro'(r) can be replaced by
- oCr), we see that (47.35) is equal to f(O).

Problems

1. Make use of Eqs . (45.12), (45.13), and (45.14) to show that the classical
Hamiltonian equations of motion for a field agree with the Lagrangian equations in the
cell approximation.

2. Show that F = {F,H} even if the functional density F depends on grad." and
grad e as well as on ." and n ,

3. The wave amplitude .,,(ro,t) can be regarded as a functional to which corre­
sponds the functional density .,,(r,t)o(r - ro), and similarly for tr, Show that Eq.
(45.20) gives the correct equations of motion for'" and 'Ir when use is made of these
functional densities. Also use them to calculate the Poisson-bracket expression for ."
and 'Ir at different points and the same time.

4. Show in detail that the commutator of N and the kinetic-energy term
grad y,* • grad." in (46.10) is zero, and that the commutator brackets in (46.6) are
constant in time.

6. Make use of Eqs. (46.14) and (46.15), and the answer to Prob. 1, Chap. VI,
to show that the matrix for ak defined by (46.11) cannot be diagonalized.

6. Extend (46.11) and the following equations to the situation in which the Uk

constitute a continuous set of functions. Then make use of Prob. 2, Chap. III, to
show that the measured number of particles in the infinitesimal neighborhood of any
point is a positive integer or zero.

7. Show that Eqs. (46.21) are completely equivalent to Eqs. (46.20) if the'1"s
are orthonormal.

8. Show that the anticommutator bracket has different algebraic properties from
the commutator bracket and the Poisson bracket.

9. It is shown in the text that an electron field amplitude is not classically meas­
urable, since electrons obey the exclusion principle and have electric charge. Explain
how it is that the diffraction pattern of electrons scattered by a crystal, which repre­
sents interference of electron amplitudes, can be measured classically.

10. Show that N is a constant of the motion for nonrelativistic Fermi-Dirac
particles.

11. Consider a system of Fermi-Dirac particles for which there are two states.
Obtain explicit matrices for the a's and '1"s that are analogous to (46.29) and (46.30).

12. Show that the unquantized Hamiltonian equations for the Dirac theory agree
with the corresponding Lagrangian equations.

13. Show that N given by (47.10) commutes with the Dirac field Hamiltcnian
(47.6).
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14. Show that the anticommutation relation (47.27) for if; and if;* at different
space-time points reduces to the third of Eqs. (47.8) when the times are made the
same. Make use of the replacement of th e k sum in (47.28) by the k integral in
(47.29), and a representation of the Ii function given in Sec. 11.

16. Show that [p(r,t ), p(r',t)] = 0 for both quantizations of the nonrelativistic
Schrodinger equation, and for the quantized Dirac theory.

16. Show that if the wave functionals satisfy Schrodinger-type equations ii'lit
= Hw , - ii'lit* = qr*H, then the calculation of the time derivative of a general
matrix element of F results in Eq. (45.23) [compare with the transition from (23.1)
to (23.2)]. Show also that if the set of qr's diagonalizes H as well as N, each qr oscil­
lates in time with a frequency determined by the corresponding eigenvalue of H .



CHAPTER XIV

QUANTUM ELECTRODYNAMICS

The field quantization technique developed in the last chapter will
now be applied to the electromagnetic field. In this case, the classical
wave theory contains no suggestion of photons, while the quantized
theory successfully explains the wave-photon duality discussed in Chap.
I. It is convenient to consider first the electromagnetic field in empty
space (Sec. 48), and then to take up the interaction between electrons and
the field (Sec. 49). Some problems that illustrate the theory are solved
in Sec. 50.1 Since we are not concerned with establishing the Lorentz
invariance of the theory, we use three-dimensional rather than four­
dimensional notation throughout.

48. ELECTROMAGNETIC FIELD IN VACUUM

We shall follow the methods developed in Sec. 45. The equations of
motion of the electromagnetic field are Maxwell's equations, and we
start by finding a Lagrangian whose variation yields these equations.
From this, canonical momenta can be defined, and a Hamiltonian can be
set up . Quantization is effected by replacing the classical Poisson
brackets by commutator brackets. We shall not consider the possible
existence of anticommutation relations between the field variables, since
experiment shows that strong electric and magnetic fields are classically
measurable and that photons obey Einstein-Bose statistics.

Lagrangian Equations. Maxwell's equations in empty space are
obtained by setting p and J equal to zero in Eqs. (35.2):

1 aH 1 aE
curl E +cat = 0, curl H - Cat = ° (48.1)

div E = 0, div H = °
The Lagrangian is most conveniently expressed in terms of the potentials
A,rP that are partially defined by

E 1 aA d H = curl A (482)= - C7ft - gra rP, .

1 For further discussion, see the first group of references cited in footnote 1, page
341, and also E . Fermi, Rev. Mod. Phys ., 4, 87 (1932); L. Rosenfeld, Ann. Inst , Henri
Poincare, 1, 25 (1931) ; W. Heitler, " The Quantum Theory of Radiation," 3d ed .
(Oxford, New York, 1954); F. J. Dyson, "Advanced Quantum Mechanics," 2d ed .
(multigraphed lecture notes, Cornell University, 1954).

37a
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(48.3)

As discussed in Sec. 35, this does not specify the potentials completely,
since gauge transformations of the potentials can still be made without
altering the electric and magnetic field strengths computed from (48.2).

The Lagrangian density can be taken to be

1 (1 aA )2 1L = 871" Ciii + grad ep - 871" (curl A)2

The Lagrangian equations are obtained from (45.8) if we regard Ax, All,
A z , and ep as the field variables. Variation of the components of A gives
three equations that can be written together as

1 1 a (1 aA )- 471" curl curl A - 47rc at ciii + grad ep = 0

This is the same as the second of Eqs. (48.1). Variation of ep gives

- 1.- div (! aA + grad ep) = 0
471" c at

which is the same as the third of Eqs. (48.1). The definitions (48.2)
for the potentials automatically satisfy the other two of Maxwell's
equations.

Hamiltonian Equations. The momentum canonically conjugate to
A" is found from (45.15) and (48.3) to be

p = _1 (! aA" + aep) (48.4)
x 47rc c at ax

with similar expressions for the other two momenta. The momentum
canonically conjugate to ep vanishes identically, since cP does not appear
in the Lagrangian density. A similar situation was encountered with 1ft
in the nonrelativistic Schr6dinger equation (Sec. 46) and in the Dirac
equation (Sec. 47); as before, it means that ep cannot be treated as a field
vari able and must be eliminated from the Hamiltonian.'

The Hamiltonian density is obtained from (45.24):

aA 1
H = P . iii - L = 271"C2p2 + 871" (curl A)2 - cp· grad ep (48.5)

where use has been made of (48.4) to replace aAjat by terms involving P.
The Hamiltonian equations of motion (45.19) are

aA ap 1iii = 471"c2P - c grad ep, iii = - 471" curl curl A (48.6)

1 For an alternative approach, see P. A. M. Dirac, V. Fock, and B. Podolsky, Phys.
Zeits. Sowjetunion, 2, 468 (1932).
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(48.7)

(48.8)

The first of these equations is the same as (48.4); it is necessary that (48.4)
be obtained over again in this way, since the Hamiltonian formalism con­
sists only of (48.5) and the canonical variables A and P. We can now
make use of this equation to define a quantity E that is equal to -47rcP.
Then the second of Eqs. (48.6) agrees with the second of Maxwell's
squations (48.1), if we also define a quantity H to be equal to curl A. The
first and fourth of Eqs. (48.1) are satisfied because of the way in which
E and H are defined .

The third of Maxwell's equations cannot be obtained as a Hamilton­
ian equation based on (48.5). We can, however, say that we shall be
concerned only with those solutions of the Hamiltonian equations for
which div E = 0, or div P = 0, at some definite time. If then we can
show that this restriction is maintained at all times, the solutions so
chosen form a consistent and satisfactory set . The time derivative of
div P is found from the second of Eqs. (48.6) to be

~ div P = - 4~ div curl curl A = 0

Since the field equations are of first order in the time derivatives, we have
shown that the restriction that div E = 0 at one instant of time is equiva­
lent to the validity of the third of Eqs. (48.1) at all times.

We now see that the last term in the Hamiltonian density (48.5) con­
tributes nothing to the field Hamiltonian. Its volume integral can be
transformed by means of a partial integration into c] rjJ div Pdr, which is
equal to zero; the surface term vanishes because P either vanishes suf­
ficiently rapidly at infinity or obeys periodic boundary conditions at the
walls of a large box. The Hamiltonian is then

H = f [21rC2P 2 + 8~ (curl A)2J dr

and rjJ has disappeared. This is in agreement with the usual expression
(1/81r)f(P + H2)dr for the total energy in the electromagnetic field.

Quantum Equations. The classical electromagnetic field is converted
into a quantum field in the following way . We start with the Hamil­
tonian (48.7) and the canonical field variables A,P. Since rjJ no longer
appears, it is convenient to choose the gauge so that rjJ = O. The general
equation of motion is (45.23), and the commutation relations (45.25)
between the field variables become

[A.(r,t) , A.,(r',t)] = [P.(r,t), P. '(r',t)] = 0
[A.(r,t), P.,(r' ,t)] = ihfJ••,fJ(r - r')

Each of the indices 8,8' can be x, y, or z.
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The equation of motion for a typical component of A is

ihA.x(r,t) = [A.,(r,t) , H]

Ax commutes with the (curl A)2 term in H, and also with that part of the
p2 term that involves Pj + P;j thus we need calculate only the commuta­
tor of Ax and the P; term in H . This is 2?rc2 times the integral over r' of
[Ax,P~21, where the prime indicates that the argument is r' rather than r.

[Ax(r,t), P;(r',t)] = AJ>~2 - P~2Ax

= [P~x + i hO(r - r')]P~ - P~2AJ:

= P~[P~Ax + ihO(r - r')] + i hO(r - r')P~ - P~2Ax

= 2ihO(r - r')P.,(r',t)

Integration over r' gives the relation

ihA.,,(r,t) = 21rc2f2iho(r - r')Px(r',t)dr'
= 41rc2ihPx(r,t) (48.9)

This is the same as the corresponding classical equation, which is the first
of Eqs. (48.6), when cP = O.

The equation of motion for a typical component of P is

illPx(r,t) = [Px(r,t),H]

Px commutes with all the integrand of H except for that part which con­
tains the sum of the squares of the y and z components of curl A. The
calculation of this commutator bracket is straightforward but tedious
(see Prob. 1), and yields an expression for P that is in agreement with the
second of Eqs. (48.6). 'thus if we define E = -47rcP and H = curl A,
the quantum equations of motion for A and P agree with the first, second ,
and fourth of Maxwell's equations (48.1).

The third of Maxwell's equations must be imposed as a supplementary
condition, as in the classical case. If we set div P equal to zero at a
particular time, it is always zero since its time derivative is zero. Equa­
tion (48.9) then shows that the time derivative of div A is always zero, or
that div A is a constant in time. It is convenient to restrict the choice of
gauge further so that div A is zero everywhere at a particular time, in
which case we see that it is zero at all space-time points. It is apparent,
however, that the introduction of the supplementary condition is incon­
sistent with the commutation relations (48.8). For example, the com­
mutator bracket of Ax and div P should be zero, since div P is zero, but
is computed from (48.8) to be

[Ax(r,t), div' P(r',t)] = ih a~' oCr - r')
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It is not surprising that this inconsistency should arise, since Eqs. (48.8)
imply that there are three independent pairs of canonical variables,
whereas the restrictions div P = 0 and div A = 0 cause only two of these
pairs to be linearly independent. We should therefore modify the com­
mutation relations so that they are consistent with the supplementary
condition.

The nature of this modification is established in Prob. 2. It turns out
that the commutator brackets of A(r,t) and per' ,t) do not vanish when
r - r' is finite. This would appear at first to contradict the physical
principle that there can be no interference between measurements per­
formed at different places and the same time (see the discussion of Sec.
47). However, the vector potential A is not in itself a physical quantity;
only the electric and magnetic fields are directly measurable. We shall
now show with the help of (48.8) that the commutation relations of Eand
H have the required infinitesimal character and are, moreover, consistent
with the supplementary condition div E = O. It can also be shown (see
Prob. 3) that the same results are obtained by starting with the modified
canonical commutation relations of Prob. 2.

Commutation Relations for Eand H. The electric and magnetic fields
are defined by the equations

E = -41rcP, H = curl A (48.10)

where the commutation relations for A and P are assumed to have the
form (48.8). We see at once that

[Es(r,f), Es,(r',t)] = [Hs(r,t), H.,(r',t)] = 0 (48.11)

where each of the indices e.s' can be z, Y, or z, The commutator bracket
for typical parallel components of Eand H is

[E,,(r,t), H,,(r',t)] = -47rC[p", (~:'~ - aa~,~)J = 0

For typical perpendicular components of Eand H, we obtain

[E,,(r,t), H/(r',t)] = -41rC [p",ea~'~ - ~~,~)]
= -41rC a:' [PJ:,A~]

= 41rcih a:' oCr - r')

(48.12)

(48.13)

Other relations similar to (48.13) are obtained by cyclic permutation of
X,Y,z .
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It follows at once from (48.11) that div E commutes with all com­
ponents of E. The commutator bracket of div Eand a typical component
of H is, with the help of (48.13),

[d· E H'] = [aEu H'] + [aEz HI]
IV '''' ay' '" az' '"

= 411"cih [-.i-~ o(r' - r) + i-.i-- o(r' - r)] (48.14)ayaz' az ay'

Since (ajay')o(r' - r) = - (ajay)o(r' - r), we see that the right side of
(48.14) is zero. Thus div Ecommutes with Eand H, and hence also with
the Hamiltonian, which from (48.7) can be written as

(48.15)

(48.16)

This means that div E is a constant of the motion, and so is zero at all
space-time points if it is made to vanish everywhere at a particular time.

As would be expected, the field commutation relations (48.11), (48.12),
and (48.13), together with the Hamiltonian (48.15), can be used in place
of the canonical formalism originally developed in terms of A and P. We
have already seen that div Eis a constant of the motion; a similar calcula­
tion shows that div H is constant, so that it can also be made to vanish at
all space-time points. The first two of Maxwell's equations (48.1)
then follow as special cases of the general equation of motion (45.23)
(see Prob. 5):

ihE", = [E"" H] = ;11" f [Ez, (H~2 + H~2)]dT'
= ihc(curl H)",

ihH", = [H"" H] = 8~ f [H"" (E~2 + E~2)]dT'
= -ihc(curl E)",

Plane Wave Representation. For many applications, a representation
of the potentials and fields in a complete orthonormal set of plane waves
is useful. These plane waves are taken to be vector functions of r that
are polarized perpendicular to the propagation vector so that the condi­
tions div A = div P = 0 are satisfied.

uk~(r) = L-iEn exp 2K . r, A = 1,2

The vectors k are chosen as in (11.3), so that the Uk~ satisfy periodic
boundary conditions at the walls of a large cubical box of volume L", The
Ek~ are unit vectors, and £kl, £k2, and k form a right-handed set , so that
k . EkX = 0 and div Uk~ = O. It is easily verified that the orthonormality
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property assumes the form

Jtik~ . uk,~,dT = /lkk'~!

We expand A and P in terms of the Uk~:

A(r,t) = I' [qk~(t)Uk~(r) + ~~*(t)tik~(r)]
k~

P(r,t) = I' [Pk~(t)Uk~(r) + Pk~ *(t)tik~(r)]
k~

(48.17)

The operators qk~* and Pk~* are the Hermitian adjoints of ~~ and Pk~,

respectively; thus A and P are Hermitian. The primes indicate that the
summations extend over half the k space, so that the plane waves tik~ do
not duplicate U_k~.

We take for the commutation relations between the q's and p's

(48.18)

with all other pairs commuting, and verify that they give the correct com­
mutation relations between A and P. It is apparent that

[A .(r,t), A.,(r',t)] = [P.(r,l), P.,(r',t)] = 0

We also obtain from (48.17) and (48.18)

[A .(r,t), P.,(r',t)] = I'I' {[~~(t), Pk'~ *(t)]uk~.•(r)iZk,~".,(r')
k~ k'~'

+ [q~*(t), Pk,~,(t)]iZk~.•(r)Uk,~,.•'(r')}

= ihL-3I Ek~.•Ek~,,'[exp ik · (r - r')] (48.19)
k~

The subscripts s,s' denote cartesian components of the vectors on which
they appear; the prime has been removed from the last summation in
(48.19) since the primed summation over terms with both k and -k is
equivalent to a summation of k terms over the entire k space.

If there were three mutually perpendicular unit vectors Ek~, then the
three numbers Ek~.• would be the direction cosines of the cartesian direc-

tion s, and we would have that I Ek~.•Ek~.•' = /l••r, Since there are just
x

two unit vectors Ek~ that are perpendicular to each other and to k, we can
write

'\" k.k.,4 Ek~.•Ek~.•' = /l.s' - ¥
x



380 QUANTUM MECHANICS [rHAP. XIV

(48.22)

We also have that
a a

k.k.,[exp tK . (r - r')] = ar. ar., [exp tK . (r - r')]

With these substitutions, and the replacement of L-3 l by (27r)-3JdTk
k

when L is large, we can rewrite (48.19) as

IA.(r,t), P.,(r',t)] = iM..,{(211")-3f[exp tK . (r - r')]dTd

-ih a~. a~~, {(211")-3 f ~2 [exp tK . (r - r')]dTk} (48.20)

The first brace expression in (48.20) is equal to 5(r - r'), The second
brace is the Green's function Go(r,r') given in (26.12), which according to
(26.15) is equal to (411"1r - r'\)-I. The commutator bracket (48.20)
then becomes

[A.(r,t), P.,(r',t)] = iM,, '5(r - r') - ~: a~. a~, Cr ~ r 'l) (48.21)

which is that assumed in Prob. 2; the other commutator brackets vanish.
This confirms the choice of the commutation relations (48.18).

Quantized Field Energy. Substitution of (48.17) into the field
Hamiltonian (48.7) gives

H = 2:' (411"C2PkXPkX* + :: 01.,0...,*)
kX

since qkX and qkX*, and Pkx and PkX* commute; here use has been made of
the restriction on the summation to half the k space, which makes all
integrals of the form fUkX . uk'x,dT vanish.

We wish now to find the eigenvalues of H when the commutation rela­
tions are as given in (48.18) . This can be done by choosing linear com­
binations of the plane wave amplitudes that make H formally equivalent
to the sum of the energies of a number of harmonic oscillators (see Sec.
46) . Now each index pair k,A corresponds to two linearly polarized plane
waves that travel in opposite senses along the k direction. Thus we
want our new linear combinations of qkXUkX and PkXUkX to have the general
forms

akX exp i(k . r - kct) , a'kX* exp i(k . r + kct) (48.23)

where akX and a'kX are operators that are independent of rand t. The first
of these is a plane wave that travels in the positive k direction and has
the positive angular frequency kc, and the second is the Hermitian adjoint
of a plane wave that travels in the negative k direction and has the same
frequency.
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With the remarks of the last paragraph as a guide, we proceed to find
the time dependence of l]k>. and PJ<>.. Their equations of motion are given
by (45.23):

ihqk>' = [qk>.,H] = 41rihc2PJ<>.

'h' [H] ihk
2

'/, Pk>. = Pk>., = - 41r qio;

Elimination of PJ<>. gives a second-order equation for qk>.

qk>. = 41rC2pk>' = - k2c 2qk>.

This is easily integrated to give

(48.24)

(48.25)

(48.26)

where we have followed the pattern indicated by (48.23). We then
obtain from the first of Eqs. (48.24)

( ) i k Ok l ik, * ok t
Pk>. t = - - ak>.e-t 0 + - a k>' e' 0

41rC 41rC

Equations (48.25) and (48.26) can be solved for the a's .

1 ( 41riC) 'kak>' = ~ qk>. + T pio; e' ct

'* 1( 41riC) 'kla k>' = ~ qk>. - T pio; e-' 0

(48.27)

(48.28)

Similar relations hold for their Hermitian adjoints. The commutation
relations for the a's can be obtained from (48.27) and (48.18) :

[ *] [' '* ] 21rhcak>.,a k'>.' = a k>.,a k' >" = -k- okk'<h>.'

with all other pairs commuting; these are independent of the time, as
they should be.

Substitution of (48.25) and (48.26) into the Hamiltonian (48.22)
gives

(48.29)

If we adopt the definitions

N _ k *
k>' - 21rhc ak>' ak>., N ' k, * ,

k>. = 21rhc a k>' a k>. (48.30)

we see from the work of Sec. 46 that Nk>. and N'io; each have the eigen­
values 0,1,2, . . .. In terms of the N's, the Hamiltonian (48.29)
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H = l' hck(NkA+ N'kA + 1)
kA

[CHAP. XIV

(48.31)

Because of the structure of (48.23) and (48.25), we can identify a'kA with
a-kA, and N 'kA with N -kA. Then the restriction on the summation of
(48.31) to half the k space can be removed to give

H = I hck(NkA+ t)
k>'

(48.32)

Equation (48.32) is equivalent to Planck's quantum hypothesis : the
energy associated with each plane electromagnetic wave is an integer
multiple of the fundamental quantum liv = hkc. In addition to the
Planck energy, however, there is the harmonic-oscillator zero-point
energy of one-half quantum per state of the field, which is infinite since
there are an infinite number of states. This infinite energy is not objec­
tionable since it does not interact with charged matter.'

Quantized Field Momentum. The momentum density of an elec­
tromagnetic field is the Poynting vector (c/4?r)E(r,f) X H(r,f) divided by
c2• The total momentum in the field can then be written in terms of the
canonical variables, with the help of (48.10),

G = 4;c f E X HdT = - f p X (curl A)dT

Substitution from (48.17), (48.25), (48.26), and (48.30) gives

G = i 2:' k(]ikAqkA* - ]ikA*qk>')
kA

= 4;c 2:' kk[(akAakA * + akA*ak>') - (a'k>.a'k). * + a'k>. *a'k>')]

k>'

= 2:' hk[(NkA+ t) - (N'kA + t)] = 2: hkNkA (48.33)
~ ~

where the restriction on the summation is removed as in the transition
from (48.31) to (48.32). In this case, the zero-point terms cancel for
plane waves that travel in opposite directions.

Equations (48.32) and (48.33) show that the energy and momentum
of each plane wave are quantized in units of hkc for the energy and hk for
the momentum. It will also be shown explicitly in Sec. 50 that the inter-

1 See also the discussion following Eq . (50.17).
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(48.34)

action between matter and radiation is such as to account both for the
interference of light and for the discrete properties of light quanta.

A(r,t) in the Plane Wave Representation. The vector potential
appears in the interaction between electrons and the electromagnetic
field discussed in the next two sections. We shall therefore require an
expression for A(r,t) in the plane wave representation that is specified by
the eigenvalues nk}" of the operators Nk X. A typical wave functional for
this representation can be written as 'J!(• • • nkX • • '), which describes a
state of the electromagnetic field in which there are nkX light quanta with
momentum hk and polarization £kX. We then see from Eq. (48.28) and
the work of Sec. 46 that the operators akX and akX* have the properties

(
27rhCnk x)!akX'J!(· • nkX ' .) = k 'J!(. . • nkX - 1 ...)

.) __ (27rhc(nkkX + I»)! 'T'(.akX*'J!(' • nkX • '£ • • nkX + 1 ...)

We obtain from (48.17) and (48.25)

A(r,t) = L- f 2:' £kX[(akXe-ikct + a'kX*eikct)(exp tK . r)
kX + (akX*eikct + a'kXe-ikct) exp( -tK . r)]

= L- f 2: £kX{akX[exp i(k . r - kct)]
kX

+ akX* exp[ -i(k . r - kct)]} (48.35)

Here again the restriction has been removed from the summation by
identifying a'kX with a-kX. This expression for the vector potential is
easily seen to be Hermitian, as it must be. It follows from the structure
of (48.34) that (%X and akX* are destruction and creation operators, respec­
tively, for a light quantum in the state k,A. Thus a term in the Hamil­
tonian linear in A would give rise to the emission and absorption of light
quanta.

Commutation Relations at Different Times. It is interesting to
generalize the commutation relations (48.11), (48.12), and (48.13) for
the components of Eand H, to the case in which the times are different.'
As with the quantized Dirac equation (Sec. 47), the result shows under
what circumstances measurements of the electromagnetic fields at dif­
ferent space-time points affect each other.

Expansions for E and H in terms of the akX, that are analogous to
(48.35), can be found without difficulty:

1 These commutation relatione are due to P. Jordan and W. Pauli, Zeits. f . Physik,
47, 151 (1928).
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(48.38)

E(r.t) = L-J 2: i~A{akA[exp i(k' r - kct)]
k>-.

- akA* exp[-i(k· r - kct)]} (48.36)

H(r,t) = L-~ l t(k X EkA){akA[exp i(k ' r - kct)]
kA

- akA* exp[-i(k . r - kct)]}

The commutator bracket for two cartesian components of the electric
field strength is

[E.(r,t), E.,(r',t')] = L-3 2: 47rihCkEkA.•EkA.•, sin (k· e - ker) (48.37)
kA

e = r - r', T = t - t'

where use has been made of (48.28). The summation over the polariza­
tion index Acan be evaluated by the technique used on the similar sum­
mation in (48.19):

~ EkA.•EkA.•' sin (k • e - ker) = 12 (k28..' - k.k.,) sin (k· e - kCT)
A

1 [8••, a a a a ] . (k k)
= k2 C2 at at' - arB ar~' sm . e - or

The summation over k can be evaluated by replacing it with an integral
for large L:

L-3 ~ k-1 sin (k • (} - kcr) _ (211")-3 Jk-1 sin (k . e - ker)dTk
~ L-+oo
k

= (211")-3f(2ik)-1[exp Uk · e - iker)
- exp (- tK' e + iker)]dTk

= (27l")-3f(2ik)-1[exp (tK' e - ikcT)
- exp (tK . e + ikcT)]dn

= - (211")-3fk-1exp (tK . e) sin kCT dTk

We denote the last expression by -CDo(e,T), where Do is the same as the
D function of Eq. (47.29) except that kois set equal to zero.

We can see from (47.30) and (47.33) that DO«(J,T) is obtained as the
result of operating with - (47r2pc)-1(ajap) on a function that is equal to
+11" for CT > p, 0 for p > CT > -p, and -11" for -p > CT. Thus Do has
the form (47.34) for all p, not just for p in the infinitesimal neighborhood
of lerl :

Do(g,T) = (47rpc)-1[8(p - CT) - 8(p + CT)], P = [r - r'l (48.39)
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It then follows from (48.37) and (48.38) that

[E.(r,t), E.,(r/,t')]

_ A -'h 2 [0", a a a a ] D ( / /) (
- -'±7ft e C2 at at/ - arB ar~' 0 r - r, t - t 48.40)

The commutator bracket for two cartesian components of the magnetic
field strength can be found in the same way, and is

[H.(r,t), H.,(r/,t')] = [E.(r,t), E.,(r/,t')] (48.41)

An expression for the commutation relation between components of
E and H can also be obtained from (48.36).

[E.(r,t), H.,(r/,t')]

= L-3I 47rihek(Ekl,.Ek2,.' - Ek2,.Ekl,.') sin (k . ~ - ker) (48.42)
k

It is apparent that (48.42) vanishes if 8 = 8', so that parallel components
of the electric and magnetic field st rengths commute at all space-time
points. If 8 ~ 8/, we can put 8 = X, 8/ = y, where x,y,z form a right­
handed set of axes, in which case we see that

Ekl,.,Ek2,1I - Ek2,.,Ekl,1I = (tkl X tk2). = ~.

An analysis similar to that which led from (48.37) to (48.40) then shows
that

[E.,(r,t), HII(r/,t')] = 47rihc :z a~' Do(r - r', t - t/) (48.43)

The subscripts x,y,z can be permuted cyclically in (48.43).
Since all these commutation relations involve the Do function (48.39),

we see that all components of the field strengths commute except in
the infinitesimal neighborhood of the light cone e(t - t/) = ± Ir - r'[.
Thus the field strengths at space-time points so situated that a light sig­
nal cannot pass from either one to the other, commute with each other
and can both be measured precisely. This shows that the quantized
electromagnetic field is propagated with the classical speed of light e.
A discussion of the connection between these commutation relations and
the uncertainty principle has been given by Bohr and Rosenfeld.'

49. INTERACTION BETWEEN ELECTRONS AND THE
ELECTROMAGNETIC FffiLD

The quantization of Dirac's relativistic wave equation for free elec­
trons was carried through in Sec. 47. We shall now combine this free-

I N. Bohr and L. Rosenfeld, Det Kgl. Danske Vidensk. Selskab, Mat .-fys . Mood.• 12,
8 (1933).
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electron theory with the quantum theory of the electromagnetic field in
vacuum, given in Sec. 48. The resulting formalism is called quantum
tlectrodynamies; it provides a description of the interaction between elec­
trons and the electromagnetic field.

Lagrangian and Hamiltonian Equations. We wish first to obtain a
Lagrangian whose variation yields the earlier equations of motion for the
electron field and the electromagnetic field. Dirac's electron field equa­
tion is (43.22):

ih ~~ - ecPf + a' (- ihe grad f - eAf) + mc!/N = 0 (49.1)

where e is the charge on the electron, and hence is a negative number.
Maxwell's equations for the electromagnetic field are given in (35.2):

1 aH 1 aE 41r
curl E +c7it = 0, curl H - c at = c J (49.2)

div E = 47rp, div H = °
The electric charge and current densities that go into (49.2) can be
obtained from equations (43.20) :

J = - eC1/t*fXI/! (49.3)

We assume for the present that p and J are due entirely to electrons. We
can verify the electric continuity or conservation equation (35.3) by
multiplying (49.1) on the left by f*, its Hermitian adjoint equation on
the right by f, and taking the difference of the two results.

The desired Lagrangian is just the sum of the Lagrangians for the
separate electron and electromagnetic fields, with the electron operators
ih(a jat) and - ihe grad replaced by ih(a jat) - ecP and -ike grad - eA,
respectively. We thus obtain from (47.1) and (48.3)

L = f f* [ih ~~ - ecPf + ex . ( -ike grad - eA)f + me213 f Jdr

+ 8: f [0 ~~ + grad cPY- (curl A)2J dr (49.4)

It can be shown that variation of f* in (49.4) leads to (49.1), variation of
tJ; leads to the Hermitian adjoint of (49.1), and variation of A leads to
Eqs. (49.2) when use is made of (49.3) and (48.2) (see Prob. 9).

The Lagrangian (49.4) suffers from the defects noted earlier in con­
nection with (47.1) and (48.3). Since f* and 4> do not appear in (49.4),
their canonical momenta cannot be defined, and so f* and cP must be
eliminated as coordinate variables from the Hamiltonian theory. As
before, the momentum canonically conjugate to a component tJ;j of tJ; is
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(49.6)

ihih, and the momentum canonically conjugate to a component A", of
A is P", = (47rc)-1[(l jc)(aA", jat) + (a<p jax)] . The Hamiltonian then
becomes

H = I (ihtf* ~~ + P . ~~) dT - L

= f tf*[a . (ihc grad + cA)tf + e<Ptf - mc2f3tf]dT

+ f [27rC2P2 + 8~ (curl A)2 - cP · grad <pJ dr (49.5)

and tf* appears as a canonical momentum variable.
It is not difficult to show that the Hamiltonian equations of motion

for tf and its canonical momentum ihtf* are (49.1) and its Hermitian
adjoint, respectively. The Hamiltonian equations for A and Pare

aAat = 47rc2P - egrad <p

ap 1
at = - 47r curl curl A - Ctf*atf

Thus if we define E = -47reP and H = curl A, as before, we obtain the
first, second, and fourth of Maxwell 's equations (49.2).

Elimination of <p. The third of Maxwell 's equations (49.2) must be
obtained as a supplementary condition, as the corresponding equation was
in Sec. 48. We shall therefore be concerned only with those solutions of
the Hamiltonian equations for which div E - 47rCtf*tf = 0 at some definite
time. If then the time derivative of this quantity is zero, the restriction
is maintained at all times, and the solutions so chosen form a consistent
and satisfactory set . With the help of the second of Eqs. (49.6) and the
definition of E, we see that

:t (div E - 47rctf*tf) = 47rC[c div(tf *atf) - :t (tf*tf)]

This is zero because of (49.3) and the equation of continuity for the elec­
tric charge and current densities.

We can now see that the two terms on the right side of (49.5) that
involve <p cancel each other. The second <p term can be integrated by
parts to give

-efP . grad <p dT = ef <p div P dT = - f <PpdT

which is equal to and opposite in sign from the first <p term cf <Ptf *tfdT.
'I'hus <p has disappeared from the Hamiltonian, and may be chosen in any
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convenient way. The choice is made so that when P (or E) is divided into
solenoidal and irrotational parts, the latter is expressed entirely in terms
of l/J. We put

P = PI + P 2

div PI = 0
curl P2 = 0

(PI is solenoidal)
(P 2 is irrotational)

(49.7)

If now we put P 2 = (47rC)-I grad l/J, we see that the third of Eqs. (49.7)
is satisfied, and that the first of Eqs. (49.6) becomes

(49.8)

It is now possible to have div A = 0 at all times if it is true at any' one
time, since (49.8) and the second of Eqs. (49.7) show that (a/at) div A
= O. We therefore choose the gauge so that div A = O.

The l/J potential reappears in the Hamiltonian (49.5) through the p2
term. The volume integral of p2 can be written, with the help of the
expression for P 2 and a partial integration,

fP 2dr = fPidr + f(2P I + P 2) • P2dr

= f Pidr + 4~c f (2P I + P 2) • grad l/J dr

= f Pidr - 4~c f l/J div (2P I + P2)dr

Now div PI = 0, and the supplementary condition is that div P 2 = -p/c;
thus the p2 term in H becomes

27rc2f P2dr = 27rc2f Pidr + tfl/Jpdr (49.9)

The choice of l/J tells us that

V2l/J = 47rc div P 2 = -47rp

This equation can be integrated by making use of the Green's function
(26.15) with k = 0; the result is

A.(r t) = f p(r',t) dr' (49.10)
w I [r - r'l

The Hamiltonian (49.5) can now be rewritten, with the help of (49.9)
and (49.10),

H = f ~*[a' (ikc grad + eA)~ - mc2fJ~]dr

+ f [27rc2Pi +~ (curl A)2Jar + t f f p(~t~(;:t) drdr' (49.11)
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Here, div PI = div A = 0, and p(r,t) = eift*(r,t)ift(r,t). The last term in
(49.11) is the internal Coulomb energy of the electric charge distribution
p(r,t); it results from the elimination of q, and the irrotational part of P,
and does not have to be inserted into the theory as a separate assumption.

The solenoidal field vectors (PI and A) are usually referred to as the
transverse part of the electromagnetic field, since the electric and mag­
netic field strengths in the corresponding plane wave solutions are trans­
verse to the direction of propagation, as in Sec. 48. The irrotational
Coulomb field vector (P 2) is called the longitudinal part of the field, since
Eq. (49.10) shows that the contribution to P 2 at one point from an
infinitesimal element of charge at another point is along the line joining
the two points. .

Quantization of the Fields. We can now obtain a quantum theory
of the interacting electron and electromagnetic fields by adopting the
equation of motion (45.23), the electron field anticommutation relations
(47.8), and the electromagnetic field commutation relations (48.21) with
PI substituted for P. It will also be assumed that all components of ift
and ift* commute with all components of A and Pl.

The order of factors like iftl and iftl that are multiplied together in the
Hamiltonian (49.11) is of course immaterial in the unquantized case. In
the quantum theory, however, these factors do not commute with each
other, and the result of a particular calculation will depend on the order
in which they appear in the Hamiltonian. We shall see at the end of this
section that a suitable Hamiltonian is obtained if all terms are left as
they are, except for a change in the integrand of the Coulomb term. This
integrand in (49.11) contains the term

4 4

p(r,t)p(r',t) = I I iftl(r,t)ift;(r,t)iftt(r',t)iftl(r',t)
1=11=1

which we replace by'

4 4I I iftl(r,t)iftt(r',t)iftl(r',t)ifti(r,t)
1=11=1

(49.12)

(49.13)

It can be shown with the help of the anticommutation relations (47.8)
that (49.12) is equal to (49.13) plus

4I iftl(r,t)ifti(r',t)fJ(r - r')
i=1

1 Note that both (49.12) and (49.13) are Hermitian.
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Thus the change from (49.12) to (49.13) is equivalent to the subtraction
from the Hamiltonian (49.11) of the quantity

~ f f f*(r,t)t;r~t):1r - r') drdr' (49.14)

This is evidently infinite unless f*(r,t)f(r' ,t) is zero ; it will be shown below
that this can happen only if there are no electrons in the field.

The quantum equations of motion are obtained from (45.23), when
the Hamiltonian (49.11) is modified by substitution of (49.13) for (49.12).
The electromagnetic field equations agree with those obtained in -Sec.
48, except that PI replaces P and the electric-current term appears as in
the second of Eqs. (49.6). The electron field equation is the same as
(49.1), except that 4> is replaced by

f f*(r',t)f(r',t) d r
e Ir _ r'l r

It can then be shown that the time derivatives of the bracket expressions
in (47.8) and (48.21) are zero, so that these equations hold for all time if
they are valid initially, as was assumed (see Prob. 11).

Inclusion of Static Fields. Thus far we have assumed that the
electric charge and current densities arise entirely from the electrons that
are described by the Dirac f field. The effect of a static charge distribu­
tion can easily be included, by the addition of a term 41l"p. to the right
side of the third of Eqs. (49.2), and a term -e4>.f to the left side of (49.1),
where \724>. = -41l"p.. It is not difficult to see that the only effect on
the Hamiltonian (49.11) is to add a term f e4>.f*fdr.

The situation of greatest practical interest is that for which-

4>. = -Ze/r.

This corresponds to a fixed (infinitely massive) point nucleus of atomic
number Z, placed at the origin. With this addition, and the modifica­
tion (49.13), the Hamiltonian (49.11) becomes

H = f f* [a . (ike grad + eA)f - Z:2 f - me2(3fJar

+ f [21l"e2Pi + ;1l" (curl A)2]dr + ~ f f 2: ~~f~f:ti drdr' (49.15)
;1

where the primes indicate that the arguments are t' rather than r,
Use of Perturbation Theory. It is natural to attempt to find the

eigenvalues of the Hamiltonian (49.15), which would be the energy levels
of the system of electrons, electromagnetic field, and nuclear Coulomb

1 e is th e electronic charge, and hence negative.
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field. All such attempts have failed, and there is reason to believe that
these eigenvalues do not exist : that it is impossible to diagonalize this
Hamiltonian. This reason derives from a perturbation approach that is
based on the smallness of e. If e is set equal to zero, (49.15) becomes
simply the sum of the free-electron Hamiltonian (47.6) and the vacuum
electromagnetic-field Hamiltonian (48.7). These Hamiltonians have
already been diagonalized; the eigenvalues correspond to solutions in
which there are definite numbers of free electrons and of light quanta,
with no interaction between any of them.

For a finite value of e, neither the nuclear term of order Ze 2, nor the
interelectron Coulomb interaction of order e2, causes a fundamental
difficulty. As we show below, the latter term would give an infinite
electrostatic or longitudinal self-energy (just as in the classical theory of
point charges), were it not for the somewhat arbitrary substitution of
(49.13) for (49.12). A more serious trouble arises from the ea . A term,
which couples the electrons to the transverse electromagnetic field. This
term is responsible for all interactions between electrons and light quanta,
and will be used in the next section for the calculation of the emission
and absorption of light by an atom. One of the effects that the ea . A
term produces is an infinite transverse self-energy of a free electron, due to
the virtual emission and reabsorption of light quanta by it; we shall
ignore this effect in what follows.'

We shall work mainly with the perturbation approach. In the
remainder of this section we consider the matrix elements of the inter­
electron Coulomb interaction, and ignore the transverse electromagnetic
field. This example is of interest since it shows how the infinite electro­
static self-energy is eliminated, and how the exchange interaction between
electrons (which obey Fermi-Dirac statistics and are described by anti­
symmetric many-particle wave functions) comes out of the quantized
field theory. The perturbation treatment of the ea' A term will be
taken up in Sec. 50.

Matrix Elements of the Coulomb Interaction. We now consider the
Hamiltonian (49.15) with the transverse electromagnetic field omitted:

H = f if;* (ihC a' grad if; - Z:2 if; - mC2{3if;) dT

+ ~ f f Lif;frif;~if;:~i drdr' (49.16)
jl

1 A relativistically invariant way of subtracting out infinities of this type has
been developed by S. Tomonaga, Progress of Theor. Physics (Kyoto), 1, 27 (1946),
Phys. Rev., 74, 224 (1948), and J. Schwinger, Phys. Rev., 74, 1439 (1948), 75, 651
(1949). See also R. P . Feynman, Phys. Rev., 76, 749, 769 (1949); Dyson, op, cit. and
Phys. Rev., 75, 486, 1736 (1949) ; Heitler, op, cit., Chap. VI.
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(49.17)

(49.18)

(49.19)

This turns out to be an adequate approximation when the speed of
the electrons is small in comparison with the speed of light, since then
light quanta are not likely to be emitted. In this case, it is possible to
use the nonrelativistic Schrodinger equation (with spin included) to
describe the electrons, although we shall continue to use the Dirac
equation.

There is a complete orthonormal set of energy eigenfunctions for a
single electron in a Coulomb field, that we denote by wj(n,r):1

J2: wj(n,r)wj(n',r)dr = onn'

i

2: (ihCfY.i l . grad - Z;2 Ojl - mC2/3;) WI(n,r) = Enwj(n,r)

I

These can become the free-electron solutions (47.11) when Z is set equal
to zero. We expand if;and if;* in terms of the w's as in (47.15):

if;j(r,t) = l b(n,t)wj(n,r)
n

vij'(r,t) = l b*(n,t)wj(n,r)
n

where the b's are operators that obey anticommutation relations like
(47.16) :

[b(n,t), b(n',t)]+ = [b*(n,t), b*(n',t)]+ = 0
[b(n,t), b*(n',t)]+ = onn'

Substitution of (49.18) into (47.10) gives. with the help of the ortho­
normality relation in (49.17),

N = Jif;*if;dr = l b*(n,t)b(n,t) = l N n, N n z= b*(n,t)b(n,t)
n n

In similar fashion, the first term in the Hamiltonian (49.16) becomes

l b*(n,t)b(n,t)En = l N »,
n n

(49.20)

In any calculation in which the second term in (49.16) is regarded as a
perturbation on the first term, we are interested in finding the matrix
elements of the second term in the representation (specified by the b's

1 This set includes positive- and negative-energy continuum states as well as
bound states ; it is made discrete by adopting periodic boundary conditions. The
index n includes specification of the spin .
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and w's) that diagonalizes the first term. Substitution of (49.18) into
the Coulomb-interaction term gives

e2
\''2 nn!;:l,. rrr b*(n,t)b*(n',t)b(n",t)b(nfll,t)

.Lf f Ir - r'\-Lwi(n,r)wl(n' ,r')wl(n",r')wi(n"',r)dTdr' (49.21)
jl

We wish to find the matrix element of the operator (49.21) that corre­
sponds to any pair of unperturbed wave functionals (see Sec. 46). Since
electrons obey the exclusion principle, these wave functionals can be
specified by stating which of the single-electron states n are occupied .
Now, the b's are destruction operators, and the b*'s are creation operators.
Since two of each appear in each term of (49.21), this operator has non­
vanishing matrix elements only for wave functionals that correspond to
the same total number of electrons, and for which not more than two
electrons are assigned to different states in the two wave functionals.
Moreover, since the two destruction operators appear to the right of the
two creation operators in each term of (49.21), the. only nonvanishing
matrix elements are for wavefunctionals that correspond to the presence
of two or more electrons.

We see then that (49.21) is a null operator so far as a single electron is
concerned, so that the infinite longitudinal self-energy of single electrons
has been eliminated. We now show that this elimination was effected
by the replacement of (49.12) by (49.13) . The difference energy (49.14)
can be written

~Lb*(n,t)b(n',t) Lf f [r - r'I-1wi(n,r)wi(n',r')8(r - r')drdr'

nn.' j

(49.22)

Since b(n',t) destroys an electron in the state n', and b*(n,t) creates an
electron in the state n, the diagonal matrix elements of (49.22) are those
for which n' = n. Then b*(n,t)b(n',t) can be replaced by N n8nn' , and
there is a positively infinite contribution to the expectation value of
(49.22) for each electron that is present. Thus the substitution of (49.13)
for (49.12) was equivalent to the subtraction of the infinite electrostatic
self-energy of each electron from the Hamiltonian.

The expectation value or diagonal matrix element of (49.21) for a
wave functional that corresponds to two or more electrons is a sum of
terms, each of which involves a pair of occupied electron states. The
term that refers to the states 1 and 2, for example, contains the matrix
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elements of four combinations of b's multiplied by appropriate volume
integrals; these four combinations are abbreviated as b;bib2b l , b!b;b2b l ,

btbtb lb 2, and bib;blb 2• The anticommutation relations (49.19) show
that the second and third of these are equal to each other and opposite in
sign to the first and fourth. We can also see from (49.19) that (compare
with Prob. 12)

'1'*(1,1, .. .)bib;bzbl'l'(l,l, ...)
= 'l'*(1,1, .. .)NlN2'l'(1,1, ...) = +1 (49.23)

Equation (49.23) then shows that the part of the expectation value of
(49.21) that refers to the occupied states 1 and 2 is

e2 JJ[r - r'j-l L!wj(1,r)!2 LIwz(2,r' )i2dTdT'
j I

-ezJJ[r - r'l-l I wj(1,r)wj(2,r) Lwz(2,r')wz(1,r')dTdT' (49.24)
j I

The second integral in (49.24) is called the exchange energy, and also
appears when the expectation value of the Coulomb interaction is calcu­
lated for an antisymmetric many-electron wave function like (32.7).

50. RADIATION THEORY

The quantum theory of radiation consists of the perturbation treat­
ment of the ea· A term, and usually also theZe2/rterm, in the Hamiltonian
(49.15). Calculations have been carried through for several processes of
physical interest that are of various orders in the electronic charge e.l

In most cases it is unnecessary to use the quantized Dirac field that is
implied by (49.15), since only one electron at a time is involved and the
theory of Sec. 43 is adequate.

In this section we consider only the simplest processes of emission and
absorption of light by an atom, and continue to use the complete quan­
tized field theory. We assume that the nuclear Coulomb energy and the
interelectron interaction energy can be combined into an effective atomic
potential energy V(r) of the Hartree type for the electron under con­
sideration (see Sec. 38). The resulting formulas agree with those
obtained in Chap. X by means of a semiclassical treatment. At the end
of this section, we show how quantum electrodynamics provides a quanti­
tative explanation of the diffraction experiment discussed in Sec. 2.
Both the wave-like properties of radiation (appearance of a diffraction
pattern) and the particle-like properties (ionization of an atom by absorp­
tion of a light quantum) result from Eq. (49.15) or (50.2).

1 Details of some of these calculations and references to the origins'! papers are
given by Heitler, op. cit
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Formulation in Terms of Transition Probabilities. The development
of quantized field theory in the last two chapters has been entirely from
the point of view of Heisenberg's form of the equations of motion of the
field variables (see Sec. 23). This formulation centers attention on the
dynamical variables rather than on the states of the system. Now, how­
ever , we wish to calculate transition probabilities between states of the
system of electrons and electromagnetic field, and in this way obtain
expressions for the rates of emission and absorption of light quanta by an
atom. This suggests that we make use of the time-dependent perturba­
tion theory of Sec. 29, which was in fact first developed by Dirac in con­
nection with the present problem.'

The states are represented by wave functionals that can be taken to
satisfy the Schrodinger-type equations

ih"r! = H'I!

-£h-4'* = 'I!*H
(50.1)

where H is given by (49.15) . It can then be shown that the dependence
on time of the matrices that represent dynamical variables such as if;and A
arises from the change in time of the wave functionals 'I! that are used to
calculate the matrix elements (see Prob. 16, Chap. XIII). Thus the
time dependence is transferred from the dynamical variables to the wave
functionals ; the former will now be regarded as operators whose structures
are independent of t.

Before proceeding further, we simplify the Hamiltonian by approxi­
mately replacing the effect of the nucleus and all the other electrons on a
particular electron by a Hartree-type potential energy VCr). With this
change, Eq. (49.15) becomes

H = H« +H'

H« = f if;*[ihca· grad if; + V(r)if; - mc2(3if;]dr

+ f [27rC2Pi + 8: (curl A)2J dr

H' = eJVt*a· Aif;dr

(50.2)

The unperturbed Hamiltonian H 0 can be rewritten by expanding A in
plane waves and if; in eigenfunctions of Eq. (49.17), where the nuclear
potential -Ze2/ r is replaced by VCr). We obtain from (49.20) and
(48.32)

1 P . A. M. Dirac, Pl 'OC. Roy. Soc., A112, 661 (1926) , Sec. 5; A114, 243 (1927) .
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u, = I NnEn + I hck(NkA + t)
n kA

k
N n = b~bn, NkA= 21rhc akA *akA

[CHAP. XIV

(50.3)

The commutation relations are given by (49.19) and (48.28) :

[bn,bn,]+ = [b~,bn'*]+ = 0, [bn,bn,*]+ = onn'
21rhc

[akA,ak'A'] = [a*kA,a*k'A'] = 0, [akA,a*k'A'] = k ~'OAA'

The a's and b's commute with each other.
The perturbing energy H' in (50.2) can also be rewritten by making

use of the expansions (49.18) and (48.35). We can choose t to be an
arbitrary constant (say t = 0) in these expressions, since the time depend­
ence of the field variables now arises from the wave functionals. The
result is

H' = elr ) I JI b~wi(n,r)tkA . !Xii

nn'kA jl

. [akA exp Uk . r) + akA* exp (-tK . r)]bn,wI(n',r)dT (50.4)

(50.5)Nn'l! = { ~
NkA'l! = nkA'l!

We specify the unperturbed wave functionals by giving the quantum
numbers n of the occupied electron states and the number of light quanta
nkA in each plane wave state of the electromagnetic field:

if the state n is occupied
if the state n is empty

It then follows from (50.1) (with H replaced by H o) together with (50.3)
and (50.5), that 'l! oscillates in time with a frequency that is determined
by the sum of the energies of the electrons and light quanta present. If
we omit the infinite zero-point energy of the electromagnetic field, we see
that 'l! has the time dependence

(50.6)

where the prime denotes a summation over only the occupied electron
states n.

Weare now in a position to apply the time-dependent perturbation
theory of Sec. 29. The form of (50.6) shows that only transitions that
conserve the total energy of electrons and light quanta take place. We
require the matrix elements of H' in the representation in which H 0 is
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diagonal. These can be obtained by operating with (50.4) on the wave
functionals 'l' in accordance with Eqs. (48.34) for the a's and equations
like (46.32) for the b's, and making use of the orthonormality property
expressed by the first of Eqs. (46.20).

Matrix Elements of the Perturbation. The perturbation H' given by
(50.4) is a sum of terms, each of which contains one b, one b*, and either
an a or an a*. Thus the effect of H' on a wave functional is to destroy
an electron in one state, create an electron in the same or a different state,
and either destroy or create a light quantum. This corresponds physi­
cally to the transition of an electron from one state in the potential V(r) to
another, accompanied by the absorption or emission of a light quantum.

We consider first a transition in which a light quantum is absorbed.
The initial wave functional 'l'le-i",,1represents a state of the entire system
in which there are nkA light quanta in the state k,A, an electron in the state
n', and perhaps other light quanta and electrons that do not take part
in the transition. The final wave functional 'l'2e-i<.>,1 represents a state in
which there are nkA - 1 light quanta in the state k,A, an electron in the
state n instead of the state n' , and whatever other light quanta and elec­
trons that were present in the initial state. The transition frequency
W21 == W2 - WI is given by

hW21 = En - En' - hck

The matrix element of H' for this transition is!

(50.7)

We can approximate to (50.8) in the nonrelativistic limit by replacing
the Dirac single-electron wave functions wj(n,r) by Schrodinger wave
functions wn(r). We then see from Eq. (43.21) and Prob. 6, Chap. XII,
that the velocity operator is -ca, and that this can be replaced by
(-ihjm)grad in the nonrelativistic limit. The matrix element (50.8)
then becomes

(50.9)

The factor exp 1,K . r can be placed on either side of the gradient operator,
since only the component of grad along tkA comes in, and this is per­
pendicular to k.

1 The sign factor 8n8n' , which arises from Eqs. (46.32), can be ignored in the
remainder of this section.
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(50.10)

Transition Probability for Absorption. We shall make use of the
nonrelativistic approximation in the subsequent development, since the
results obtained are then directly comparable with those of Chap. X.
Equation (29.9) gives the amplitude of a particular wave functional at
the time t. From this and Eq. (50.9) we obtain the total transition
probability per unit time for absorption of a light quantum in any of tho
states k,X:

.!. \' 41H~112 sin2iw21t
t ~ h2 W~l

k>'

\' 87re2
hnk>' If - 12 sin! iw21t

= ~ m2wL3 wn(exp z"k • r)£k>. • grad W n' dT w~lt

k>'

where we have put w == ke.
We now suppose, as in the work of Sec. 35, that the states nand n' are

discrete, and that the incident radiation covers a range of angular fre­
quencies w in the neighborhood of (En - En,)/h. The radiation can
then be described by an intensity I(w)dw for the infinitesimal frequency
range de , It is convenient to replace the summation over states k,X of
the radiation field by an integration over t», Each quantum contributes
an amount hw/L3 to the energy density, or an amount hew/L3 to the
intensity. We can therefore replace

by f {}£3I(w)dw
hew (50.11)

The time-dependent factor on the right side of (50.10) has a sharp
maximum at W21 = 0, which because of (50.7) is the same as

hw = En - En"

The other factors are relatively slowly varying ; after the substitution
(50.11) is made, they can be taken outside of the w integral, which
can he written

f "' sin 2 i W 21t d - 1
2 t W21 - "21T"

- "' w21

Thus the absorption probability (50.10) becomes

(50.12)

which agrees with the corresponding expression (35.17) obtained in
Chap X
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Transition Probability for Emission. The energy relation (50.7)
implies that the electronic state n has a higher energy than the state n' .
We can now find the transition probability per unit time for emission of a
light quantum when the electron goes from state n to state n'. The
akX * term in (50.4) is involved, and the matrix element analogous to (50.9)
is

ieh (27rhe(nkX + l))i f -me Lr t k wn,[exp (-{k· r)]£ kX • grad W ndr, (50.13)

where nkX is the number of light quanta initially present in the electro­
magnetic field state k,A. A calculation similar to that which led from
(50.9) to (50.12) gives for the emission probability

4;;:::~~) if wn,[exp (-tK . r)]£kX • grad W nd{

\' 87re
2
h if - [()] 1

2

sin? tW 21t+~ m2wL3 W n' exp -tK' r £kX' grad W n dr w~lt (50.14)
kX

These two terms evidently arise from nkX and from 1, respectively,
in the factor (nkX + l)i of (50.13) . The first term is proportional to the
intensity of the incident radiation, and agrees with the expression (35.19)
for the induced emission probability. The second term is independent
of the intensity of the radiation present initially; we now show that it
agrees with the spontaneous emission probability obtained in Chap. X.

We can simplify the second term in (50.14) by replacing the summa.
tion over k with an integral over w or W21 . In order to do this, we require
an expression for the number of states of the electromagnetic field that lie
in the angular-frequency range w to w + de , It follows from the discus­
sion of periodic boundary conditions in Sec. 11 [see Eqs. (11.3)] that there
are (L j27r)3dk,dky<1kz plane waves with propagation vectors in the range
dk,dk,p,kz • Thus if we specify the direction of the propagation vector k
by the polar angles O,e/> with respect to some fixed set of axes , the number
of plane waves with angular frequency in the range dw that have direc­
tions of propagation in the angular range dOde/> is

(;:~:) sin OdOde/>dw.

The integration over w in the second term of (50.14) can be carried out as
before ; the result is

for fo2.. 2: 2;~~e 31fwn,[exp (-tK . r)]£kX • grad wnd{ sin OdOde/> (50.15)
x
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(50.16)

The expression to the right of the summation in (50.15) is the prob­
ability per unit time for spontaneous emission of a light quantum with
propagation vector k in the angular range dOdep, and polarization A. Thus
(50.15) is the total spontaneous emission probability associated with the
transition n ---+n'. In order to compare it with the corresponding expres­
sion in Sec. 36, we specialize to the dipole case by replacing exp (-t'k . r)
by unity and grad by - (mwjh)r in the integrand of the matrix element
[see Eq . (35.20)]:

~7( ~27( 2: 2~~;3 \£k~ .f wn,rWnd{ sin OdOdep
x

The two directions of polarization for each propagation vector can be
chosen in any way so long as they are perpendicular to each other and to
k. If we choose one in the plane of k and the matrix element (r)n'n, and
the other perpendicular to this plane, only the former is emitted; then a
factor sin 2 0 appears in the integrand, where 0 is the angle between k and
(r)n'n. Thus the polarization and angular distribution of the emitted
radiation are in agreement with those found in Sec. 36. The total spon­
taneous dipole emission probability obtained from (50.16) is

~.. ~2" 2~~;3 sin2 0(Jwn,rwndr . f Wn,rWndr) sin OdOdep

4e2w3

= 3he3 I(r)n'nI 2 (50 .17)

which agrees with (36.22).
Both the spontaneous and induced emission probabilities appear as

the result of a single calculation in quantum electrodynamics, while these
two effects were calculated in quite different ways in Chap. X . As was
pointed out above , the spontaneous emission arises from the 1 in the
factor (nk~ + I)! that appears in the second of Eqs. (48.34). This in
tum comes from the commutation relations (48.28), and hence is a
purely quantum-mechanical effect. From a formal point of view, we can
say that the spontaneous emission probability is equal to the probability
of emission that would be induced by the presence of one quantum in
each state of the electromagnetic field (see Prob. 4, Chap. X) . Now we
have already seen in Eq. (48.32) that the smallest possible energy of the
field corresponds to the presence of one-half quantum per state. This
suggests that we regard the spontaneous emission as being induced by
the zero-point oscillations of the electromagnetic field; note, however,
that these oscillations are twice as effective in producing emissivetransi­
tions as are actual quanta, and are incapable of producing absorptive
transitions.
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Analysis of a Diffraction Experiment. As our final example, we con­
sider the diffraction experiment that was discussed in Sec. 2.1 It is
desirable to simplify the calculation as much as possible, and we start by
reducing the arrangement of Fig . 1 to its essentials. These essentials
consist of a source of light S, a diaphragm A with two slits cut in it, and a
detector of light that can be placed at various points in the plane B .
The source is taken to be a single atom that is in an excited state and can
radiate a light quantum. The detector is taken to be a different kind of
atom in its ground state, which becomes ionized if it absorbs the light
quantum given off by the source atom (photoelectric effect) . The
diaphragm is assumed to be made of perfectly reflecting material; its
atomic structure is ignored, and it simply imposes certain boundary
conditions on the electromagnetic field.

The physical process in which we are interested is that in which the
initially excited source atom emits a light quantum, and the detector
atom absorbs the quantum and is ionized. Actually, however, the light
quantum cannot be observed in transit unless an arrangement like that
of Fig . 2 is used, and we are not interested in such an experiment. What
we wish to calculate is the transition probability from a state in which the
source atom is excited, the detector atom is in its ground state, and no
quanta are present, to a state in which the source atom is in its ground
state, the dete ctor atom is ionized, and no quanta are present. This
tells us how the probability of observing ionization depends on position in
the plane B when a light source is placed at S. We shall see that this
probability is proportional to the intensity calculated by classical electro­
magnetic theory when a light source is at S. In this way, quantum
electrodynamics predicts both the diffraction pattern that is characteristic
of light waves, and the ejected photoelectrons that are characteristic of
light quanta.

The form of the Hamiltonian [Eqs. (50.2) and (50.3)] tells us that elec­
trons on different atoms interact with each other only through the cou­
pling between each electron and the electromagnetic field. Thus the
process with which we are concerned occurs only in second order of the
perturbation energy H' of (50.2) .2 Since no quanta are present initially
or finally, the intermediate states are those for which a single quantum is
present, and either both atoms are in their ground states or the source

1 See also G. Rac ah , Accad. Lincei Rend., 11, 837, 1100 (1930) ; W. Heisenberg,
Ann. d. Physik, 9, 338 (1931) ; E. Fermi, op. cit., Sec. 10.

2 We assume that the spontaneous radiation probability of the source atom is small
enough so that the remarks of footnote 1, page 198. are applicable. Then the over-all
transition probability per unit time is constant for times that are long enough so that
energy is conserved between initial and final states.
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atom is excited and the detector atom is ionized. The first type of
intermediate state corresponds to a double process in which the source
atom makes a transition to its ground state and emits a light quantum,
and the detector atom makes a transition to its ionized state and absorbs
this quantum. Since the intermediate state need not conserve energy,
the light-quantum energy does not have to equal the initial excitation
energy of the source atom (see Sec. 29). The second type of intermediate
state corresponds to a double process in which the detector atom makes a
transition to its ionized state and emits a light quantum, and the source
atom makes a transition to its ground state and absorbs this quantum.
In this case, it is apparent that the intermediate state cannot conserve
energy. The second-order matrix element for the over-all process is
obtained by summing expressions like (29.20) over all possible intermedi­
ate light-quantum states of both types.

The structure of the calculation that follows does not depend on the
particular experimental arrangement of Fig . 1. The actual diffraction
pattern is not found explicitly; instead it is shown that the quantum and
classical results agree for any arrangement of perfectly reflecting dia­
phragms, with or without slits. This conclusion is not surprising, since
Maxwell's equations have the same form in classical and quantum electro­
dynamics. Nevertheless, it is interesting for us to see explicitly in what
way agreement is obtained. It is shown below that the summation over
intermediate light-quantum states gives an expression that is equivalent
to the point-source solution (Green's function) of the electromagnetic
wave equation.

Representation of the Electromagnetic Field. The expansion of the
electromagnetic field in plane waves that was introduced in Sec. 48 and
used earlier in this section is not suitable for the present problem, since
plane waves do not satisfy the proper boundary conditions at the surface
of the diaphragm. The functions that do satisfy these boundary con­
ditions are quite complicated, and we do not attempt to find explicit
expressions for them. We simply assume that they exist and form a
complete set in terms of which the vector potential can be expanded.
The assumption that the surface of the diaphragm is perfectly reflecting
means in the general case that these functions have to be real. We make
the set discrete by placing the entire system in a large but finite closed
box that has perfectly reflecting walls. The cartesian components of
the vector functions uk(r) satisfy the second-order wave equation

2 wi _
V Uk' + "2 Uk, - 0,c

s = X,Y,Z (50.18)

where div u, = O. Since the tangential components of the electric field
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and the vector potential vanish at a perfectly reflecting surface, the
boundary condit ion is

n X u, = 0 (50.19)

where n is the vector normal to t he surface of the diaphragm or to the
walls of the box.

We now show that tw o of t hese fun ctions t hat correspond to different
eigenvalues Wk are orthogonal to each other. We mul tiply (50.18) by
uk,.(r) , the corresponding equation for uk,.(r) by uk8(r ), take t he difference
of the two results and sum over s = X,Y,Z. The result can be written,
with the help of Green's t heorem,

(50.20)

where (ajan) denotes the component of the gradient in the dire ction of
the outward normal. The surface integral on the left extends over both
the diaphragm and the walls of the box. According to (50.19), the
tangential components of u, vanish on the boundary surfaces; this implies
t hat the tangential derivatives of these components are also zero. Then
since div us = 0, the normal derivative of the normal component of
Uk vanishes. It follows t hat at the bounding surfaces, Uk is a vector
perpendicular t o t he surface, an d auk/an is a vector parallel to the sur­
face, so that t heir scalar product is zero. Thus t he surface integral on the
left side of (50.20) vanishes, an d Iuk' . u/;dr = 0 if WI,' ~ Wk. Any degen­
erate solut ions of (50.18) can be chosen orthogonal to each other, and all
solutions can be normalized in t he entire region , so we can put

(50.21)

We now proceed as in Sec. 48 to expand A and P for the vac uum field
in terms of t he fun ctions us :

A(r,t) = I qk(t)Uk(r), P(r,t) = I Pk(t)Uk(r) (50.22)
k k

where qk and Pk are Hermitian and satisfy the commutation relations

[qk(t), Pe(t)] = ihokk,
[qk(t), qe(t)] = [Pk(t), Pe(t)] = 0

(50.23)

Substitution of (50.22) into the electromagnetic field Hamiltonian (48.7)
gives, with the help of (50.21),

Hem = 2: 211"C2p~ + ;11" 2: qkqlJ(curl Uk) . (curl ul)dr

k /;1
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The integral on the right can be simplified by means of a partial inte­
gration :

J(curl Uk) . (curl ul)dr = JUk . curl curl u, dr

where the surface integral vanishes because of the boundary conditions.
This integral can be simplified further if u, is expressed in cartesian coordi­
nates and use is made of Eqs. (50.18) and (50.21) :

J(curl Uk) . (curl ul)dr = - JUk . V 2uldr

w~ f w
2

= - Uk • uldr = -1 Okl
c2 c2

The field Hamiltonian then becomes

(50.24)

The quantum equations of motion for gk and Pk are obtained from
(45.23) , (50.23), and (50.24) :

These are readily integrated to give

qk = ake-iwkl + ate iwkl

Pk = - iWk (ake-iwkl _ a*eiw•/)
411"c2 k

where ak and at are operators that do not depend on the time. It is
easily verified that the a's satisfy commutation relations like (48.28):

with all other pairs commuting. Thus we can identify ak and at with
destruction and creation operators, respectively, for quanta in the state
k of the electromagnetic field. The Hamiltonian (50.24) becomes

Hem = I hWk(Nk + t),
k

This is in agreement with (48.32) since Wk corresponds to the quantity ck
in Sec. 48.

Matrix Elements. The second-order matrix element (29.20) can be
written as the sum of two terms that correspond to the two types of
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intermediate states discussed above. The first term can be written

(50.25)

(50.2G)

(H~)Ok.l is the matrix element for the transition of the source atom from
the excited state of energy E Sl to the ground state of energy E so with
emission of a quantum in the state k: l

(H ' ) ieh (27l"hC
2)if - (') (') d' ( ')d IS Ok.l = - -- WSO r Uk r . gra WSl r r

mc Wk

(H~);.Ok is the matrix element for the transition of the detector atom from
the ground state of energy E BOto an ionized state of energy E Bi with
absorption of the quantum in the state k:

I ieh (27l"hC
2)tf -(H B);,Ok = mc ----;;;;- WBi(r)uk(r) • grad wBo(r)dr

The second term can similarly be written

~ (H~)O,lk(H~)ik.O
1..( E BO- E Bi - hWk

k

It is readily verified from the earlier work that (H~)o.1k = (H~)ok,l and
(H~)'k.O = (H~);,Ok.

The time-dependent perturbation theory of Sec. 29 tells us that the
transition probability per unit time is appreciable only if energy is con­
served between initial and final states. Thus we are interested in those
ionized states for which

E Bi - EBO= E Sl - E so

If we call this energy difference lu», the sum of (50.25) and (50.26) can
be written

47l"me~h2 f f 2: -I (jW~l - OWBO [2: UkS,(r/)UkS(r)] d d I" Wso ----:;-r WB, - ,,- 2 2 r rur., ur. Wk - W
s.s'=x,y.z k

(50.27)

The electronic wave functions W that appear in (50.27) are well
localized around either the source atom or the detector atom. Since we
are primarily interested in macroscopic observations, we neglect the

1 As was done earlier in this section, we change to a representation in which the
time dependence appears in the wave functionals rather than in the operators, since
this lends itself more readily to application of the time-dependent perturbation theory.
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(50.28)

spatial extent of these wave functions. The transition probability then
depends on the positions r' of source and r of detector through the expres­
sion in square brackets. For a large containing box, the summation over
k is to be replaced by an integration over Wk , where the contour C is
chosen in accordance with Eq. (29.24). We define a density of states
p(k), such that p(k)dwk is the number of states of the electromagnetic field
in the angular-frequency range dWk. We can then put

[ ]
= ruk.,(r')~k.(~~ p(k)dwk == P + iR

Jc w~ - w2

where P is the principal value of the integral and R is 1f" times the residue
of the integrand at the pole Wk = w. It is apparent that P and R are real.
The transition probability is proportional to the square of the magnitude
of (50.28), or to

(50.29)

Classical Diffraction Pattern. We have now to compare this result
with the classical expression for the intensity of light produced at r by a
source at r'. This can be found from a solution of the wave equation
(35.9) for the vector potential A(r,t) that is produced by a current density
J(r,t) :

(50.30)

We are interested in a solution of Eq. (50.30) when the source current J
is small in spatial dimensions and oscillates sinusoidally in the time. It
will be apparent from what follows that an analytical difficulty is encoun­
tered if the time dependence of J is purely harmonic. We therefore make
the physically plausible assumption that J represents a damped oscilla­
tor, and later take the limit in which the damping constant is negligibly
small . We put

J(r,t) = J(r)e--rt cos wt
= U(r)[e(--r+iw)t + e(-y-iw)tj

Since Eq. (50.30) is linear , its steady-state solutions have the form

A(r,t) = !A(r)e(--r+iw)t + tA(r)e(--r-iw) !

where A(r) satisfies the equation

V2A(r) + ~ (w + i-y)2A(r) = - 41f" J(r)
c c

(50.31)

(50.32)

Equation (50.32) can be solved in the same way as was the inhomo­
geneous wave p.Quation (26.7). We expand A(r) in terms of the complete
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set u,,(r) of real vector functions that satisfy the boundary conditions
stated earlier:

(50.33)

The constant expansion coefficients A" may be complex since A(r) is not
necessarily real [the vector potential A(r,i) is of course real] . Substitu­
tion of (50.33) into (50.32) gives, with the help of (50.18),

- ~ \' A,,[w~ - (w + i'Y)2]u,,(r) = - 47r J(r)
C ~ C

k

This can be solved for A" with the help of the orthonormality relation
(50.21).

A" = 2 t7rC
+ ' )2f u,,(r') . J(r')dr' (50 .34)

w" - w ~'Y

Substitution of (50.34) into (50.33) gives for a cartesian component of
A(r)

(50.35)

The summation in square brackets can be replaced by an integration
over real values of w" without difficulty, since for finite 'Y the pole of the
integrand is above the real axis . In the limit 'Y ~ 0, the pole moves into
the real axis, and the integral approaches the value computed with the
contour C of Eq. (29.24). This is just the integral (50.28), so that we
can replace the square-bracket expression in (50.35) by P+ iR. The
intensity of light measured at r is proportional to the time average of the
square of the vector potential (50.31) . Fora small current source
located at the point r', this intensity is proportional (in the limit 'Y ~ 0)
to

{[(P + iR)eu"t + (P - iR)e-iwtJ2 }tim••v•. = 4[(P cos wi - R sin wt)2]tim••v•.
= 2(P2 + R2)

The agreement between this result and (50.29) shows that the probability
of finding an ionized atom at a particular point is proportional to the
classically computed intensity of light at that point.

Problems

1. Calculate the commutator bracket of [curl A(r,t)]2 and P~(r',t). Use the
result to show that the equation of motion for the quantity P in a vacuum electro­
magnetic field is given by the second of Eqs . (48.6).
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2. Show that if the commutator bracket of two cartesian components of A and P
is given by

[A .(r,t), P.,(r',t») = ihO... lJ(r - r ') - 4
i h ~a ~ ~, (-I2 'I)

7J or, en s' r r

then A and div P at different space points commute with each other.
3. Show that the replacement of the last of the commutation relations (48.8) by

that of Prob, 2 does not affect those commutator brackets that involve the field
strengths.

4. Show that div H commutes with the electromagnetic field Hamiltonian (48.15),
and hence is a constant of the motion.

6. Carry through the calculations implied in Eqs. (48.16), and show that the
first two of Maxwell's equations are obtained.

6. Calculate the commutator bracket of each of the bracket expressions in (48.18)
and the Hamiltonian (48.22), and show that the bracket expressions are constant in
time. This means that these commutation laws are consistent with the equations
of motion.

7. Compare the D function given in Eqs. (47.30) and (47.33), and the Dofunction
given in Eq. (48.39) , from a physical point of view.

8. Derive the expression (48.43) for the commutator bracket of Ex(r,t) and
Hu(r',t') .

9. Obtain the Lagrangian equations of motion for f, f*, and A from Eq . (49.4) .
10. Find the quantum equation of motion for f when the Hamiltonian is given by

(49.11) with the substitution of (49.13) for (49.12) . Show that it agrees with (49.1)
if <p is replaced by ef[f*(r',t)f(r',t) /Ir - r'l)d r'. What result is obtained if the above
subsitution is not made?

11. Show that the bracket expressions in (47.8) and (48.21) are constant in time
for the Hamiltonian of Prob. 10.

12. Verify Eq . (49.23) by making use of the anticommutation relations (49.19),
and also by making use of operator equations like (46.32) .

13. Calculate a typical off-diagonal matrix element of the Coulomb interaction
energy (49.21), and show that it is in agreement with what would be obtained from an
antisymmetric many-electron wave function like (32.7).

14. Carry through a calculation like that given in the latter part of Sec. 50, except
that the diaphragm is omitted and plane waves with periodic boundary conditions are
used in place of the real vector functions uk(r) . Show explicitly that the probability
of ionization of the detector atom is inversely proportional to the square of its dis­
tance from the source atom. Compare this calculation with that of Sec. 30 which
dealt with the production of a cloud-chamber track.
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Herzberg, G., 298
Holtsmark, s., 109
Homopolar binding, 302
Hulthen, L., 180
Hydrogen atom, 80-90

collision of electron with, 205-209,
241-243
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short-range interaction, 302-304
wave function, 85, 89

Hydrogen molecule, 301-304
Hylleraas, E. Ao, 176

I

Identical particles, 222--223
collision of, 228-229, 232
distinguishability of, 223, 225-226,

232, 243-245
effect of spin, 229-236
scattering of, 228-229, 232
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Lamb, W. E., 337
Lande g factor, 294
Langer, R. Eo, 184



INDEX 413

Laporte rule, 267
Lauritsen, T., 3
Legendre polynomial, 71
Light, speed of, 385
Light cone, 370
Line breadth, 263
Liouville, J ., 184
Localization experiment, 9-10
London, F., 301
Longitudinal electromagnetic field, 389
Longitudinal self-energy, 391
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Neumann, J. von , 122, 126
Neutron spin, 147
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294,400

selection rules, 264, 266-267
spontaneous emission of, 254-263, 399­

400
by uniformly moving charge, 268-271

Ramsauer-Townsend effect, 109
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relativistic, 318-323
for two particles, 81

Schwartz, L., 50
Schwinger, J., 180, 310, 311, 391
Seaborg, G. T., 279
Second quantization, 348
Secular equation, 126

for degenerate perturbation theory, 158
for Stark effect, Ul9

Selection rules, 264, 266-267, 288
Self-adjoint (see Matrix, Hermitian)
Self-consistent fields, 283-286
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