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PREFACE

This volume has a threefold purpose: to explain the physical concepts
of quantum mechanics, to describe the mathematical formalism, and to
present illustrative examples of both the ideas and the methods. The
book is intended to serve as a text at the graduate level and also as a
reference book. It is assumed that the reader is reasonably familiar
with atomic structure, classical mechanics, and differential equations.
In addition, he should have had some contact with electromagnetic theory
and, for the latter part of the book, with the special theory of relativity.

The author believes that the analytical methods employed in the book
will satisfy most theoretical physicists even though no attempt is made
to achieve mathematical rigor. For example, there is little or no dis-
cussion of the justification for the interchange of sum, derivative, and
integral operations, or for the use of the & function. On the other hand,
the physical reasons for the nature of the results obtained are investigated
wherever possible.

Problems are given at the end of each chapter. They are often used
to illustrate or amplify points discussed in the text. Original theoretical
papers are referred to throughout the book; the list is representative
rather than exhaustive. Experimental results are, for the most part,
quoted without reference, since the large amount of documentation
required for an adequate survey seems out of place in a book on theoretical
physics. Several other books on quantum mechanics and related sub-
jects are referred to for more detailed discussions of particular topics.

The scope of this volume is best outlined if the book is divided into
three parts. The first three chapters constitute an introduction to
quantum mechanics, in which the physical concepts are discussed and
the Schrédinger wave formalism is established. The detailed treatment
of the wave function (Chap. ITI) may be omitted in a first reading. The
next eight chapters comprise the central part of the book. This part
presents exact solutions of the wave equation for both energy-level and
collision problems, the Heisenberg matrix formalism and transformation
theory, approximation methods, radiation theory, and some applications
to atomic systems. Since the first eleven chapters correspond to a
typical one-year graduate course, it seemed desirable to include a semi-
classical treatment of electromagnetic radiation in the central part of
the book (Chap. X) even though some of the results are obtained again in
Chap. XIV. The last part of the book corresponds to a short course in
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Vi PREFACE

what is often called advanced quantum mechanics. It consists of rela-
tivistic particle theory and an introduction to quantized field theory and
quantum electrodynamics.

Since the preparation of the first edition, there have been no changes
in the fundamental ideas underlying the first 48 sections of the book,
which deal with the quantum mechanics of particles and linear wave
fields. Thisis not true of the last two sections, which are an introduction
to the quantum mechanics of interacting wave fields. Here the subject
matter has undergone drastic revision with the introduction and success-
ful application of covariant renormalization techniques, especially in
quantum electrodynamics. In spite of this, it was decided after serious
consideration not to alter the presentation in Secs. 49 and 50. This was
partly because a coherent account of covariant field theory would require
a great deal of additional space, and partly because it should at the pres-
ent time be written by someone who has taken an active part in the
development of the subject. Moreover, it was felt that the present
treatment serves a useful purpose in providing the student with a firm
basis for the newer work. »

In the revision, several changes have been made, some of which
describe improvements in calculational methods that have appeared in
the intervening years. The more important additions are a momentum
determination experiment (Sec. 4), the relation between total cross sec-
tion and forward scattered amplitude (Sec. 19), the virial theorem (Sec.
23), definition of angular momentum in terms of infinitesimal rotations
(Sec. 24), Green’s function and integral equation for the radial wave func-
tion (Sec. 26), variation principle for the phase shift (Sec. 27), photo-
electric effect and the use of an ingoing spherical wave in the final state
(Sec. 37), and the theory of the effective range in the neutron-proton
system (Sec. 41). The more general discussion of nuclear properties in
Sec. 41 has been considerably shortened. Two of the problems have
been deleted, and seventeen new ones added.

The author owes a particular debt of gratitude to three persons in con-
nection with the appearance of the first edition of this book. He wishes
to express his appreciation to Prof. J. R. Oppenheimer for introducing
him to several of the ideas and examples which helped give the book its
form, to Prof. R. Serber for many discussions of both the conceptual and
formal aspects of quantum mechanics, and to Dr. G. P. Harnwell for
continued encouragement while the book was being written. The author
is also grateful to some of the reviewers of the first edition and to several
of those who have studied and taught from it, for suggestions that were
helpful in the preparation of the revision.

LeoNarp I. ScHIFF
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CHAPTER I
THE PHYSICAL BASIS OF QUANTUM MECHANICS

At the present stage of human knowledge, quantum mechanics can
be regarded as the fundamental theory of atomic phenomena. The
experimental data on which it is based are derived from physical events
that lie almost entirely beyond the range of direct human perception.
It is not surprising, therefore, that the theory embodies physical con-
cepts that are foreign to common daily experience. These concepts did
not appear in the historical development of quantum mechanics, how-
ever, until a quite complete mathematical formalism had been evolved.
The need for quantitative comparison with observation, which is the
ultimate test of any physical theory, in this case led first to the formalism
and only later to its interpretation in physical terms.

It seems desirable in introducing the subject of quantum mechanics to
depart from the historical order and preface the mathematical develop-
ment with a discussion of the physical concepts. In this chapter we first
review briefly the experimental background and the ideas of the old
quantum theory, then discuss the newer physical concepts of uncertainty
and complementarity, and finally lay the groundwork for the formalism
that will be developed in its most familiar form in Chap. II. No attempt
will be made to deduce the structure of the formalism from the funda-
mental experiments; we shall try to make the theoretical development
seem plausible rather than unique. The justification for the theory,
then, will rest on the agreement between deductions made from it and
experiments, and on the simplicity (in principle more than in practice)
and consistency of the formalism.

1. EXPERIMENTAL BACKGROUND

Experimental physics prior to 1900 had demonstrated the existence
of a wide variety of phenomena, which for the most part were believed
to be explicable in terms of what we now call classical theoretical physics.
The motions of mechanical objects were successfully discussed in terms
of Newton’s equations on both celestial and terrestrial scales. Appli-
cation of this theory to molecular motions produced useful results in the
kinetic theory of gases, and the discovery of the electron by J. J. Thom-
son in 1897 consisted in showing that it behaved like a Newtonian particle.

1



2 QUANTUM MECHANICS [CraAP. I

The wave nature of light had been strongly suggested by the diffraction
experiments of Young in 1803, and was put on a firmer foundation
by Maxwell’s discovery in 1864 of the connection between optical and
electrical phenomena.

Inadequacy of Classical Physics. The difficulties in the understand-
ing of experimental results that remained at the beginning of this century
were largely concerned with the development of a suitable atomic model
and with the late discoveries of X rays and radioactivity. However,
there were also difficulties associated with phenomena that should have
been understood but actually were not: such things as the spectral dis-
tribution of thermal radiation from a black body, the low-temperature
specific heats of solids, and the appearance of only 5 degrees of freedom
in the motion of a free diatomic molecule at ordinary temperatures.

The beginning of an understanding of the second class of difficulties
was made by Planck in 1900, when he was able to explain the black-body
spectrum in terms of the assumed emission and absorption of electro-
magnetic radiation in discrete quanta, each of which contains an amount
of energy E that is equal to the frequency of the radiation » multiplied
by a universal constant h (called Planck’s constant):

E =hy (1.1)

This quantum idea was later used by Einstein in accounting for some of
the experimental observations on the photoelectric effect. In this way
the dual character of electromagnetic radiation became established:
it sometimes behaves like a wave motion, and sometimes like a stream of
corpuscular quanta.

At about this time, the existence of discrete values for the measurable
parameters of atomic systems (not only of electromagnetic radiation)
became apparent through Einstein’s and Debye’s theories of the specific
heats of solids, Ritz’s classification of spectral lines, the experiment of
Franck and Hertz on the discrete energy losses of electrons on collision
with atoms, and (somewhat later) the experiment of Stern and Gerlach,
which showed that the component of the magnetic moment of an atom
along an external magnetic field has discrete values.

Summary of Principal Experiments and Inferences. The theoretical
physics of the first quarter of this century thus contained two important
inferences, obtained from the experiments and their interpretations, that
had not existed in 1900: the dual character of electromagnetic radiation,
and the existence of discrete values for physical quantities. The relations
between the principal experimental conclusions and the theoretical
inferences are shown schematically in Table 1; for a more detailed dis-
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cussion and a bibliography, reference should be made to a book on atomic
physics.?

TaBLE 1. RELATIONS BETWEEN EXPERIMENTAL INTERPRETATIONS AND THEORETICAL

INFERENCES
Diffraction (Young 1803, Laue 1912).................ccovunenn.. { vallec:romagnetlc
Black-body radiation (Planck 1900) aves
Photoelectric effect (Einstein 1904) {Electromagnetic
Compton effect (1923) [ s quanta
Combination principle (Ritz-Rydberg 1908) .
Specific heats (Einstein 1907, Debye 1912) :zf“}ftz.c"l‘“““
Franck-Hertz experiment (1913) [~ 00t physica

quantities

Stern-Gerlach experiment (1922)

A third theoretical inference appeared in 1924 with the suggestion by
de Broglie that matter also has a dual (particle-like and wave-like)
character; he assumed that the relation between the momentum p of the
particle and the length X of the corresponding wave is?

h

A » (1.2)
Up to that time all the evidence had indicated that matter was composed
of discrete Newtonian particles; in particular, sharp tracks of charged
particles such as electrons and helium nuclei had been observed in expan-
sion cloud chambers like that invented by C. T. R. Wilson in 1911.
Shortly after this, however, Davisson and Germer (1927) and G. P.
Thomson (1928) independently observed the diffraction of electrons by
crystals, and thus confirmed de Broglie’s principal supposition.

2. THE OLD QUANTUM THEORY

What is now called the old quantum theory® was initiated by the work
of Planck on black-body radiation, and carried farther by Einstein and
Debye. However, it was only after Rutherford’s discovery in 1911 that
an atom consists of a small, massive, positively charged nucleus sur-
rounded by electrons, that the theory could be applied to a quantitative
description of atoms.

1 See, for example, F. K. Richtmyer, E. H. Kennard, and T. Lauritsen, ‘“Introduc-
tion to Modern Physics” (McGraw-Hill, New York, 1955); M. Born, ‘‘Atomic
Physics”’ (Hafner, New York, 1951); G. P. Harnwell and W. E. Stephens, ‘“Atomic
Physics”’ (McGraw-Hill, New York, 1955).

2 Equation (1.2) is also valid for light quanta, as may be seen by dividing both
sides of Eq. (1.1) by the velocity of light ¢; for a directed beam of light p = E/c and
A =c/».

3 For a more detailed discussion than is presented in this section, see the books cited
above, and L. Pauling and E. B. Wilson, Jr., “Introduction to Quantum Mechanics,”
Chap. II (McGraw-Hill, New York, 1935).
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Bohr-Sommerfeld Quantization Rules. The first step in this direc-
tion was taken by Bohr in 1913, when he made two postulates concerning
the electronic or extranuclear structure of an atom. The first of these
was that an atomic system can exist in particular stationary or quantized
states, each of which corresponds to a definite energy of the system.
Transitions from one stationary state to another are accompanied by
the gain or loss, as the case may be, of an amount of energy equal to the
energy difference between the two states; the energy gained or lost
appears as a quantum of electromagnetic radiation, or as internal or
kinetic energy of another system. The second postulate (in agreement
with that of Planck and Einstein) was that a radiation quantum has a
frequency equal to its energy divided by Planck’s constant h.

These two postulates by themselves provided some insight into the
Ritz combination principle and the Franck-Hertz experiment. To obtain
specific results for hydrogen, Bohr proposed a simple rule for the selection
of those circular orbits which are to constitute stationary states: the
angular momentum must be an integral multiple of A/2rx. A more
general quantization rule was discovered independently by W. Wilson
(1915) and by Sommerfeld (1916), thus making possible the application
of Bohr’s postulates to a wider variety of atomic systems. This rule is
applicable to Hamiltonian systems in which the coordinates are cyclic
variables, and states that the integral of each canonical momentum with
respect to its coordinate over a cycle of its motion must be an integral
multiple of A. The rule was applied with considerable success to the
computation of the fine structure of hydrogen, the spectra of diatomic
molecules, and other problems.

Practical Difficulties. The old quantum theory encountered practical
difficulties in several different respects. It could not be applied to
aperiodic systems, it provided only a qualitative and incomplete treat-
ment of the intensities of spectral lines, and it did not give a satisfactory
account of the dispersion of light. Moreover, improvements in experi-
mental techniques soon showed that there were problems, such as the
rotational spectra of some diatomic molecules, to which the theory gave
unambiguous but incorrect answers.

The correspondence principle was introduced by Bohr in 1923 in an
effort to make use of the classical theory as a limiting case to infer some
properties of atomic systems, especially the intensities of spectral lines.
Although much was achieved in this way, it was clear in the early 1920’s
that the quantum theory as it then existed was unsatisfactory.

Conceptual Difficulties. Quite apart from the practical difficulties
outlined above, the old quantum theory failed to give a conceptually
satisfactory account of the fundamental phenomena. It was difficult to
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understand why the electrostatic interaction between a hydrogen nucleus
and an electron should be effective when the ability of the accelerated
electron to emit electromagnetic radiation disappeared in a stationary
state. The mechanism of emission and absorption of radiation in transi-
tions between stationary states was obscure. The quantization rules
were arbitrary even when they were most effective. And the assumption
of a dual character for light (particle-like on emission and absorption
and wave-like in transit) seemed to be self-contradictory.

In order to illustrate the conceptual difficulties and the way in which
they are dealt with by the new quantum mechanics, we consider in some
detail a simple diffraction experiment, which is illustrated schematically
in Fig. 1. A light source S illuminates a diaphragm A4 in which two slits

= 1C)

A B

F1c. 1. A diffraction experiment in which light from S passes through the two slits in 4 to
form a diffraction pattern at B.

are cut. A diffraction pattern appears at a photosensitive screen B,
and the ejected photoelectrons are most numerous at the diffraction
peaks. Here we have the radiation behaving as a wave during its passage
from source through slits to screen, but behaving as a stream of light
quanta or photons when it ejects electrons from B. We now know that a
similar experiment could be set up with matter instead of radiation.
The diffraction pattern of electrons scattered from a crystal (analogous
to the slits in A) may be detected as a distribution of electron tracks in a
Wilson cloud chamber (analogous to the screen B), so that the wave and
particle aspects of matter appear in the same experiment.

In the situation illustrated in Fig. 1, we might at first suppose that
the diffraction pattern is due to an interference between different photons
passing through the two slits, thus explaining the observations entirely
in terms of the particle picture. That this is not a sufficient explanation
may be shown by decreasing the intensity of the light until an average of
only one photon at a time is in transit between source and screen. The
diffraction pattern still appears as the distribution of the large number of
photons accumulated over a sufficiently long time. Thus we must con-
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clude that diffraction is a statistical property of a single photon, and does
not involve an interaction between photons. From the point of view of
the particle picture, we may then ask how it is that a stream of inde-
pendent photons, each of which presumably can go through only one of
the slits, can produce a diffraction pattern that appears only when both
slits are open. Or to put the question in another way, how can the
presence of a slit through which a photon does not go prevent that photon
from reaching a part of the screen it would be likely to reach if that slit
were closed ?

Quantum-mechanical Viewpoint. In this question is implicit the
assumption that the photon actually does go through a particular one
of the two slits. This assumption is natural from the point of view of the
classical theory or the old quantum theory since these theories regard a
photon or other particle as having a definite and determinable position
at each instant of time. The quantum mechanics, however, discards this
assumption, and asserts instead that the position of a photon has meaning
only when the experiment includes a position determination. Moreover,
this part of the experiment will affect the remainder of the experiment
and cannot be considered separately. Thus from the point of view of
quantum mechanics, the question asked in the last paragraph is without
meaning, since it assumes that the photon goes through a particular one
of the two slits (thus making it possible to close the other slit) when there
is no provision in the experiment for determining through which slit the
photon actually goes.

The quantum mechanics resolves the situation by telling us that the
diffraction pattern is destroyed if a sufficiently careful attempt is made
to determine through which slit each photon passes (see Sec. 4). We
must then be prepared to forego the customary mental picture of a
photon (or an electron) as a classical particle that has at each instant of
time a position that can be determined without damage to diffraction
patterns of the type discussed here. Thus classical causality, which
requires that the motion of a particle at any time be uniquely determin-
able from its motion at an earlier time, must also be abandoned. The
new theory that is forced upon us in this way is so successful in other
respects as well that, at the present state of knowledge, we must regard
such classically incomplete descriptions as a fundamental property of
nature.

8. UNCERTAINTY AND COMPLEMENTARITY
Before presenting a more quantitative discussion of the diffraction

experiment outlined in Sec. 2, we consider two principles that express
in qualitative terms the physical content of the theory of quantum
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mechanics. We restrict ourselves here to a discussion of their meaning,
and give arguments for their validity in Seec. 4.

Uncertainty Principle. The first of these is the uncertainty principle,
developed by Heisenberg! in 1927. According to this principle, it is
impossible to specify precisely and simultaneously the values of both
members of particular pairs of physical variables that describe the behav-
ior of an atomic system. The members of these pairs of variables are
canonically conjugate to each other in the Hamiltonian sense: a rectangu-
lar coordinate x of a particle and the corresponding component of momen-
tum p,, a component J, of angular momentum of a particle and its
angular position ¢ in the perpendicular (zy) plane, the energy E of a par-
ticle and the time £ at which it is measured, etc. Put more quantitatively,
the uncertainty principle states that the order of magnitude of the
product of the uncertainties in the knowledge of the two variables must
be at least Planck’s constant h divided by 27 (£ = h/2r = 1.054 X 10~27
erg-second),? so that

Az - Ap:. > h 3.1)
Ap-AJ. >k (3.2)
At-AE > & (3.3)

The relation (3.1) means that a component of the momentum of a
particle cannot be precisely specified without our loss of all knowledge
of the corresponding component of its position at that time, that a particle
cannot be precisely localized in a particular direction without our loss of
all knowledge of its momentum component in that direction, and that in
intermediate cases the product of the uncertainties of the simultaneously
measurable values of corresponding position and momentum components
is at least of the order of magnitude of #. Similarly, Eq. (3.2) means,
for example, that the precise measurement of the angular position of a
particle in an orbit carries with it the loss at that time of all knowledge
of the component of angular momentum perpendicular to the plane of
the orbit. Equation (3.3) means that an energy determination that
has an accuracy AE must occupy at least a time interval At ~ L/AE;
thus if a system maintains a particular state of motion not longer than
a time Af, the energy of the system in that state is uncertain by at least
the amount AE ~ %/At, since A¢ is the longest time interval available for
the energy determination. The smallness of h makes the uncertainty
principle of interest primarily in connection with systems of atomic size.

1 W. Heisenberg, Zeits. f. Physik, 43, 172 (1927).
2J., W. M. DuMond and E. R. Cohen, Rev. Mod. Phys., 25, 691 (1953).
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As we shall see in Sec. 12, the uncertainty principle may be obtained
directly from the mathematical formulation of the theory, and this is
actually the way in which it was first obtained by Heisenberg.

Complementarity Principle. In order to understand the implications
of the uncertainty principle in more physical terms, Bohr! introduced the
complementarity principle in 1928. This principle states that atomic
phenomena cannot be described with the completeness demanded by
classical dynamics; some of the elements that complement each other to
make up a complete classical description are actually mutually exclusive,
and these complementary elements are all necessary for the description of
various aspects of the phenomena. From the point of view of the experi-
menter, the complementarity principle asserts that the physical apparatus
available to him has such properties that more precise measurements
than those indicated by the uncertainty principle cannot be made.

This is not to be regarded as a deficiency of the experimenter or of his
techniques. It is rather a law of nature that, whenever an attempt is
made to measure precisely one of the pair of canonical variables, the other
is changed by an amount that cannot be too closely calculated without
interfering with the primary attempt. This is fundamentally different
from the classical situation, in which a measurement also disturbs the
system that is under observation, but the amount of the disturbance can
be calculated and taken into account. Thus the complementarity
principle typifies the fundamental limitations on the classical concept
that the behavior of atomic systems can be described independently
of the means by which they are observed.

Limitations on Experiment. In the atomic field, we must choose
between various experimental arrangements, each designed to measure
the two members of a pair of canonical variables with different degrees
of precision that are compatible with the uncertainty relations. In
particular, there are two extreme arrangements, each of which measures
one member of the pair with great precision. According to classical
theory, these extreme experimental arrangements complement each other;
the results of both may be obtained at once and are necessary to supply
a complete classical description of the system. In quantum mechanics,
however, the extreme complementary experiments are mutually exclusive
and cannot be performed together.

It is in this sense that the classical concept of causality disappears in
the atomic field. There is causality in so far as the quantum laws that
describe the behavior of atoms are perfectly definite; there is not, how-
ever, a causal relationship between successive configurations of an

1 N. Bohr, Nature, 121, 580 (1928); ‘“Atomic Theory and the Description of
Nature,” especially Part II (Cambridge, London, 1934); Phys. Rev., 48, 696 (1935).
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atomic system when we attempt to describe these configurations in clas-
sical terms.

4. DISCUSSION OF MEASUREMENT

In this section we consider three fairly typical measurement experi-
ments from the point of view of the new quantum mechanics. The first
two are designed to determine the position and momentum of a particle
by optical methods; the third is the diffraction experiment in Sec. 2.

Localization Experiment. We consider a particular example of the
validity of the uncertainty principle, making use of a position-momentum
determination that is typical of a number of somewhat similar experi-
ments that have been discussed in connection with measurements on
particles and radiation fields.! We shall

consider here the accuracy with which the z _77‘_8
components of the position and momentum / \\
vectors of a material particle can be deter- // \\
mined at the same time by observing the / \\
. . . . /
particle through a rather idealized micro-
scope by means of scattered light. yl (\\—”/}L
The best resolving power of the lens L \ //
shown in Fig. 2 is known (either experi- * \\ /
mentally or from the theory of wave optics) /
: —_ \/
to provide an accuracy Q——» v
A —_— P
~ = (4.1) F1a. 2. An experiment for the
SIn € localization of a particle P by

. o . . . means of one of the scattered
in a position determination, where X is the gyuanta @, which is focused by the

wave length of the radiation that enters the 1lens L to form an image on the
lens, and ¢ is the half angle subtended at the *"°" 8.

particle P by the lens. For simplicity, we consider the case in which
only one of the light quanta @ is scattered onto the screen S. Because of
the finite aperture of the lens, the precise direction in which the photon is
scattered into the lens is not known. Then since Eq. (1.2) states that the
momentum of the photon after it is scattered is h/\,? the uncertainty in
the z component of its momentum is approximately (h/\) sin e.

The z components of the momenta of the photon and the particle
can be accurately known before the scattering takes place, since there is
no need then to know the x components of their positions. Also, if our
position measurement refers to the displacement of the particle with
respect to the microscope, there is no reason why the total momentum of

18ee, for example, W. Heisenberg, ‘“The Physical Principles of the Quantum
Theory,” Chaps. II, III (University of Chicago Press, Chicago, 1930); D. Bohm,
“Quantum Theory,” Chap. 5 (Prentice-Hall, New York, 1951).

2 See footnote 2, page 3.
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the system (particle, photon, and microscope) need be altered during the
scattering. Then the uncertainty Ap, in the x component of the momen-
tum of the particle after the scattering is equal to the corresponding
uncertainty for the photon.

Ap, ~ % sin € 4.2)

If we combine Eq. (4.1) with Eq. (4.2), we see that just after the scatter-
ing process,
Az - Ap, ~h (4.3)

is the best that we can do for the particle. Thus a realistic accounting
of the properties of the radiation gives a result in agreement with the
uncertainty relation (3.1) for the particle.

This experiment may also be considered from the point of view of
the complementarity principle. The complementary arrangements differ
in the choice of wave length of the observed radiation: sufficiently small
\ permits an accurate determination of the position of the particle just
after the scattering process, and large N of its momentum.

Momentum Determination Experiment. The experiment just dis-
cussed assumes that the momentum of the particle is accurately known
before the measurement takes place, and then measures the position. It
is found that the measurement not only gives a somewhat inaccurate
position determination but also introduces an uncertainty into the
momentum.

We now consider a different experiment in which the position is
accurately known at the beginning, and the momentum is measured.
We shall see that the measurement not only gives a somewhat inaccurate
momentum determination but also introduces an uncertainty into the
position. We assume that the particle is an atom in an excited state,
which will give off a photon that has the frequency », if the atom is at
rest. Because of the Doppler effect, motion of the atom toward the
observer with speed v means that the observed frequency is given approx-
imately by

» 2 v, (1 + z) (4.4)
so that
14
vV=¢ (‘;; - 1) (4.5)

Accurate measurement of the momentum mv by measurement of the fre-
quency » requires a relatively long time 7; the minimum error in the fre-
quency measurement can be shown to be

Ay~ L (4.6)
T
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Now the instant at which the photon is emitted is uncertain by 7; at
this instant, the momentum of the atom decreases by hv/c, and its veloc-
ity decreases by hv/mec. This makes the subsequent position of the atom
uncertain by the amount
_ hVT
T me

Az “¢.7
since the later the photon is emitted, the longer the atom has the higher
velocity and the farther it will have traveled. This position uncertainty
arises entirely because of the finiteness of 7. If 7 were zero, and we knew
the velocity and the velocity change on emission of the photon, we would
know where the atom is at each instant; it is because r is finite that we
do not know when the velocity changed, and hence where the atom is at
later times.

The momentum uncertainty is obtained with the help of Eqs. (4.5)
and (4.6):

Ap. = mAv%’mCAVNE

o - 4.8)
In the nonrelativistic case considered here, v/c << 1, and Eq. (4.4) shows
that » =2 »,. Then combination of Eqgs. (4.7) and (4.8) leads to the
minimum uncertainty relation (3.1).

Analysis of Diffraction Experiment. Finally, we analyze the diffrac-
tion experiment of Sec. 2 from the point of view of the complementarity
principle, assuming that the uncertainty principle is valid. Two con-
trasting arrangements, which would complement each other classically,
are considered here. One of these is illustrated in Fig. 1. Since it is
assumed that the distance from A to B is large compared to the distance
between the two slits, and this in turn is large compared to the wave
length of the light, the distribution of intensity in the diffraction pattern
determines to good approximation the angular distribution of the photons
leaving the slits in A, and hence determines the distribution of the
y components- of momentum of the photons beyond A. The second
arrangement, shown in Fig. 3, determines through which of the two slits
each photon passes, and hence provides information on the y coordinates
of the photons.

In the second arrangement each photon registers itself as it passes
through a slit by bouncing off one of a number of indicators C placed
close to A, and giving up to it a y component of momentum that may be
uncertain by the amount Ap,. If we do not want the resultant diffraction
pattern of many such photons to be destroyed by these events, the
uncertainty in p, for a particular photon produced by its encounter with
an indicator must be substantially smaller -than would be required to
throw the photon from a maximum of the diffraction pattern at B into a
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neighboring minimum. With a photon of momentum p,, this requires
that

Ap, K 6p. (4.9)
For the simple case in which R >>a >> ), the angle 6 is known experi-
mentally (or from the theory of wave optics) to be given by

A
0 =5 (4.10)

in terms of the optical wave length X and the distance a between the slits.
At the same time, we have not learned through which slit this photon

“e

L,

x.

B
F1a. 3. The experimental arrangement of Fig. 1, modified by the addition of photon

indicators C.
passed unless the uncertainty Ay of the y position of the indicator that
recoiled is less than half the distance between slits.

Ay < 3a (4.11)

It then follows from Egs. (4.9), (4.10), (4.11), and (1.2) that the
requirement that we be able to determine through which slit each photon
passes without destroying the diffraction pattern at B is equivalent to the
requirement that

Ay - Ap, KL th (4.12)
for each indicator that is used. Since Eq. (4.12) is in disagreement with
the uncertainty relation (3.1), we may conclude that it is impossible
to determine through which slits the photons pass without destroying the
diffraction pattern.

Discussion of Diffraction Experiment. The situation just analyzed
shows the intimate connection between the theoretical principles of
uncertainty and complementarity and the experimental observations
related to localization and diffraction. It provides an explicit demon-
stration of the validity of the complementarity principle (represented in
this case by the choice between the mutually exclusive but classically
complementary experiments for observing the diffraction and for localiz-
ing the photon) when taken in conjunction with the experimentally
observable properties of matter and radiation. For it shows that no
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fundamental difficulty need be encountered with the photon picture so
long as we do not insist on the degree of detail in describing the situation
that is entailed by classical concepts.

It is, of course, still necessary to ascribe unfamiliar properties to the
photons in order to explain the experimental observations; the foregoing
discussion does not show how an individual photon can interfere with
itself to produce the diffraction pattern.! Nor on the other hand does
it show how an electromagnetic wave can eject photoelectrons from the
screen.? Such demonstrations lie beyond the scope of the qualitative
discussion of this chapter, and require the use of the mathematical for-
malism of quantum mechanics. However, analysis of the diffraction
experiment from the point of view of quantum mechanics removes the
difficulty encountered in Sec. 2: the diffraction pattern disappears when-
ever a successful attempt is made to determine through which slit each
photon passes.

5. WAVE PACKETS IN SPACE AND TIME

The relation (1.2) between momentum and wave length, which is
known experimentally to be valid for both photons and particles, suggests
that it might be possible to use concentrated bunches of waves to describe
localized particles of matter and quanta of radiation. To fix our ideas,
we shall consider a wave amplitude or wave function that depends on the
space coordinates z,y,z and the time ¢. This quantity ¢ is assumed to
have three basic properties. First, it can interfere with itself, so that it
can account for the results of diffraction experiments. Second, it is large
in magnitude where the particle or photon is likely to be and small else-
where. And third, ¢ will be regarded as describing the behavior of a
single particle or photon, not the statistical distribution of a number of
such quanta. This last is an essential requirement in view of the conclu-
sion of Sec. 2 that a single quantum of matter or radiation interferes
with itself rather than with other quanta. In this section we shall con-
fine ourselves to a qualitative discussion of the one-dimensional case, in
which the wave function ¢ depends only on z and ¢, and leave the quan-
titative development for Chap. II.

Space Packets. A typical form for a concentrated bunch of waves,
which we shall call a wave packet, is shown in Fig. 4a, where ¥(z,t) is
plotted against « for a particular time ¢ The average wave length
Xo and the approximate extension Ax of the packet are indicated in the
diagram. The Fourier integral analysis® of ¥ with respect to x is now of

1 Chapter VI shows the equivalence of the wave theory of Chap. II and the general
quantum-mechanical theory of particles, so far as matter is concerned.

2 Chapter XIV shows how the theory of the electromagnetic field can be modified
to include quantum effects.

3 See, for example, L. A. Pipes, “ Applied Mathematics for Engineers and Physi-
cists,” Chap. III (McGraw-Hill, New York, 1946).
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interest since it shows how ¥ may be built up out of continuous harmonie
waves of various lengths. This is indicated in Fig. 4b, in which the
Fourier transform of ¢ is plotted schematically against the propagation
number k = 2z /\.

v 1lfour'ifen'
ransform
of - Ak
<-A o
x y £

.27

o %0
fe o AX-—mm e >
(a) (6)

Fic. 4. DPlots of a typical wave packet ¥ (z) and its Fourier i:ransform.
It can be shown by standard mathematical methods that
1
Ak 2 iz 5.1)
where Ak is the approximate spread in propagation number associated
with the packet. If now we correlate wave length and momentum as in
Eq. (1.2) we see that the spread Ak corresponds to a momentun spread

h h
Combination of Eq. (5.1) with Eq. (5.2) gives
Az -Ap Sk (5.3)

which agrees with the uncertainty relation (3.1). Thus the uncertainty
principle for position and momentum of a quantum of matter or radiation
follows directly from the wave-packet description and Eq. (1.2).

Time Packets. In analogous fashion, we may examine the depend-
ence of ¢ on the time ¢ for a point z that is typical of the packet, and
obtain a time Fourier transform that shows how ¢ can be built up out of
continuous harmonic waves of various frequencies ». In this case the
relation between the spread in time of ¥ and the spread in frequency of
the time Fourier transform of ¢ is

1
Equation (5.4) may be brought into correspondence with the uncer-
tainty principle by associating the energy E of a quantum with the fre-
quency of the wave that represents it in a manner similar to the
association of momentum- with wave length given by Eq. (1.2). We
shall make this connection through Eq. (1.1):
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E =hv (5.5)

which may be inferred in the case of photons from the experimental
discussion of Sec. 1. Combination of Eq. (5.4) with Eq. (5.5) then gives
the uncertainty relation (3.3).

The assumption that Eq. (5.5) is valid for matter as well as for radia-
tion may be made plausible by computing the group velocity® of a wave
packet that represents a nonrelativistic particle of mass m, kinetic energy
E, and momentum p for which X and » are given by Egs. (1.2) and (5.5),
respectively. The group velocity, which is the velocity of the center of
the packet, is equal to

oz _dr/em) _ P (5.6)

in agreement with the classical expression for the velocity. This shows
that with Eq. (5.5), the wave-packet description of the motion of a
particle agrees with the classical description when the circumstances are
such that we can ignore the size and internal structure of the packet.

Wave Formalism. We see then that quanta of matter or radiation
can be represented in agreement with the uncertainty principle by wave
packets that may be superposed to produce interference and whose
magnitudes give a measure of likelihood of location, provided that use is
made of the experimentally inferred relations (1.2) and (5.5). It is then
possible to set up a quantitative formalism based on the mathematical
analysis of wave motion. This will be done for matter in Chap. II, using
the physical principles outlined in this chapter as a guide, and requiring
always that the result of any calculation reduce to the result of the cor-
responding classical calculation in the appropriate limit. This require-
ment is a way of stating Bohr’s correspondence principle, which was
mentioned in Sec. 2. At the present time, when a reasonably complete
quantum theory exists, the correspondence principle is mainly of interest
in assuring that the formalism has the proper classical limit, although it
may also be of heuristic value in performing new calculations or extending
the boundaries of the theory.

It might at first be thought that the exclusive use of a wave formalism
for the description of matter in the next four chapters would conflict
with the observed particle-wave duality discussed in Sec. 1 and hence
disagree with the complementarity principle. This is not the case, how-
ever, for the formalism actually provides an understanding of all of the
measurable properties of matter, including, for example, the production of
particle tracks in a cloud chamber. Thus it will be shown in Sec. 30
that, if a single material particle is represented by a wave function of
definite momentum and hence completely undetermined position, the

1 M. Born, op. cit., pp. 88, 330.
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probability of ionization of two or more molecules of the cloud-chamber
gas is negligibly small unless the molecules lie very nearly along a line
parallel to the momentum vector.

It must be emphasized that these remarks are true only if a wave
function of the type described in this section is always interpreted as
representing just one particle of matter, and not the statistical distribu-
tion of a number of particles. When we wish to describe more than one
particle, we must make use of a wave function that depends on the coor-
dinates of all of them. The analogous analytical description of light
quanta, which will be taken up quantitatively in Chap. XIV, makes use
of a somewhat different approach. This is mainly because photons
(unlike particles as we consider them here) can be emitted or absorbed
through interaction with matter, so that their number is not fixed. Thus
a photon wave function would have to depend on a variable number of
parameters, and it is desirable to avoid such a situation.

Problems

1. Give a brief description of each of the experiments referred to in Table 1,
together with their interpretations.

2. Describe briefly the Davisson-Germer and Thomson experiments, and the use
of the Wilson cloud chamber for the observation of particle tracks.

8. A beam of silver atoms for a Stern-Gerlach experiment is produced by collimat-
ing atoms that vaporize from silver held in a furnace at 1200°C. If the beam travels
1 meter, use the uncertainty relation to find the order of magnitude of the smallest
spot that can be obtained at the detector.

4. Show that if a component of angular momentum of the electron of a hydrogen
atom is known to be 2# within 5 per cent error, its angular orbital position in the plane
perpendicular to that component cannot be specified at all.

5. A l-ounce rifle bullet takes 0.5 second to reach its target. Regarding the bullet
as a mass point, and neglecting effects of air resistance and earth motion, find the
order of magnitude of the spread of successive shots at the target under optimum
conditions of aiming and firing.

6. A perfectly elastic ping-pong ball is dropped in vacuum from a height equal to
ten times its radius onto a perfectly elastic fixed sphere of the same radius. Neglecting
effects due to earth motion, estimate the largest number of bounces against the fixed
sphere that the ball can be expected to make under optimum conditions of release.

7. A beam of monoenergetic electrons is used to excite a particular level of an
atom in a Franck-Hertz experiment. If this level is of short duration, owing to radia-
tion back to the ground state, show that the inelastically scattered electrons that
have lost energy to produce the excited level will not all be expected to have the same
final energy. If the excited level lasts about 1071° second, what is the order of magni-
tude of the electron energy spread, measured in electron-volts?

8. Discuss any connections you can think of that exist between the three uncer-
tainty relations (3.1), (3.2), and (3.3). .

9. Derive the expression for the group velocity that is given as the left side of
Eq. (5.6).



CHAPTER II
THE SCHRODINGER WAVE EQUATION

This and the next several chapters are concerned with the non-
relativistic motion of a particle in a force field that can be represented by
a potential energy. A quantitative description of the motion in terms of
a differential equation, the Schrédinger wave equation, is developed in this
chapter, and applied to a simple one-dimensional problem. Various
assumptions have to be made as regards the structure of the wave equa-
tion, the boundary and continuity conditions on its solutions, and the
physical meaning of these solutions. These assumptions are given a high
degree of plausibility in this chapter and the next by relating them to
experimental results, mainly those that deal with the diffraction of
material particles and with the existence of a classical limit to the quan-
tum mechanics. However, no attempt is made to derive the formalism
uniquely from a consideration of the experiments. The definitive test
of the theory must, of course, be its internal consistency and the success
with which deductions from it agree with particular experimental meas-
urements; some examples will be worked out in Chaps. IV and V.

6. DEVELOPMENT OF THE WAVE EQUATION

The form of the Schrodinger wave equation is obtained in this section
by generalizing the properties of the wave amplitude of Sec. 5. The
remainder of this chapter presents a discussion of some of the properties
of the equation and its solutions.

Traveling Harmonic Waves. The first task is to develop in more
quantitative fashion the properties of the one-dimensional wave function
¥(z,t) that was discussed qualitatively in Sec. 5. It was shown there that
for a continuous traveling harmonic wave, the wave length and momen-
tum are related by Eq. (1.2) and the energy and frequency by Eq. (5.5).
We rewrite these two equations in terms of the universal constant
h = h/2x:

p=hk k= 2%’ 6.1)
E = ho, w = 27y (6.2)

A wave function ¢(z,t) that represents a particle of completely unde-
termined position traveling in the positive z direction with precisely
17
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known momentum p and kinetic energy E, would then be expected to
have one of the forms

cos (kx — wt), sin (kx — wt), gilkz—ut) | e—itkz—ut)  (6.3)

or some linear combination of them. This follows from diffraction experi-
ments like those of Davisson and Germer and of Thomson (see Sec. 1),
and from the requirement that a wave packet of approximately the
propagation number k and angular frequency w has a group velocity equal
to that of a classical free particle of momentum p and energy E [see Eq.
(5.6)].

Need for a Wave Equation. In order to go beyond the very simplest
problem of a continuous harmonic wave, it is very desirable to have an
equation of which both the harmonic waves and more complicated waves
are solutions. An example from a more familiar field of physics should
help to clarify this point. In the case of three-dimensional sound waves
in a gas, it is possible to obtain a solution of the problem of the scattering
of sound by a rigid sphere by superposing plane harmonic waves traveling
in various directions. But it is far simpler to solve the differential
equation for sound waves directly in spherical polar coordinates. If the
temperature of the gas changes from point to point, no progress can be
made in the general case without such a differential equation. The cor-
rect underlying equation for sound waves can be found from direct con-
sideration of the mechanical properties of the gas. While this is not
the case with the equation of which the wave functions of Sec. 5 are solu-
tions, it is no less imperative to find the form of the equation. The need
for this becomes more evident when the wave function is to describe the
motion of a particle under the influence of external forces; this situation
turns out to be analogous to the propagation of sound waves in an
inhomogeneous gas. We shall, therefore, find an equation for ¢, and
having found it, shall regard it as a more fundamental attribute of the
wave functions than the harmonic forms (6.3).

The equation must have two basic properties. First, it must be
linear, in order that solutions of it can be superposed to produce inter-
ference effects (in the three-dimensional case) and to permit the con-
struction of wave packets. And second, the coefficients of the equation
must involve only constants such as % and the mass and charge of the
particle, and not the parameters of a particular kind of motion of the
particle (momentum, energy, propagation number, and frequency).
The reason for the latter requirement is that we shall want to leave open
the possibility of superposing solutions that belong to different values of
these parameters; this means that such a more general wave function
cannot be a solution of an equation that involves the parameters in its
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structure. Since differential equations are the easiest to handle, it is
worth while to try this type first, and it turns out that the requirements
can be met by a differential equation.

With all these considerations in mind, we look first at the most familiar
one-dimensional wave equation, that which describes the motion of
transverse waves on a string or plane sound waves in a gas:

% _ oW

ar = 7 ozt
where v is the square of the wave velocity. Substitution of the forms
(6.3) into Eq. (6.4) shows that each of the four harmonic solutions, and
hence any linear combination of them, satisfies this differential equation,
if and only if we put

(6.4)

(6.5)

where m is the mass of the particle that is to be described by Eq. (6.4).
Because of the structure of Eq. (6.5) it is apparent that the coefficient v
that appears in Eq. (6.4) involves the parameters of the motion (¥ or p);
we therefore discard this differential equation.

The One-dimensional Wave Equation. In looking further for a suit-
able equation, it is helpful to note that differentiation with respect to x
of wave functions like those of (6.3) has the general effect of multiplica-
tion of the function by k& (and sometimes also interchanging sine and
cosine), while differentiation with respect to ¢ has the general effect of
multiplication by w. Then the relation E = p2/2m, which is equivalent
to the relation w = #k?/2m, suggests that the differential equation for
which we are looking contains a first derivative with respect to ¢ and a
second derivative with respect to x.

o _ %

3t = Yo (6.6)

Substitution shows that the first two of the wave functions (6.3) are not

solutions of Eq. (6.6), but that either of the last two may be (but not both

at once) if the constant v is suitably chosen. In particutar, if we choose

_dw _thE ik

YIRS T om ©.7)

then the third of the wave functions (6.3) satisfies Eq. (6.6). Moreover,
the value of v given by Eq. (6.7) involves only the constants # and m.

We are thus led to the one-dimensional form of the Schrodinger! wave

1 E. Schrédinger, Ann. d. Physik, 79, 361, 489 (1926); 81, 109 (1926). The present
treatment is somewhat different from that originally given by Schrédinger.
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equation for a free particle of mass m, which from Egs. (6.6) and (6.7)
may be written
% o h? 8%

3% = T omazt (6.8)

The particular form in which Eq. (6.8) is written is significant in so far
as its harmonic solution, the third of the wave functions (6.3), makes
the left side Ey and the right side (p2/2m)y. The fact that the solution
¢'®==t) js complex is not in itself a defect of the formalism. We shall
have to be certain that all predicted results of possible physical observa-
tions are expressible in terms of real numbers, and this will supply a
condition on the detailed interpretation of .

Extension to Three Dimensions. The foregoing one-dimensional
treatment is readily extended to three dimensions. It is natural to
rewrite Eq. (6.1) as

2r
p = Ik, k =k = ~ (6.9)

where k is called the propagation vector. Similarly, the third of the wave
functions (6.3) becomes

exp [1(k-r — wt)] (6.10)

where r is the position vector for the particle. Then by an obvious
extension of the argument that led up to Eq. (6.8), it is seen that the
three-dimensional Schrédinger equation for a free particle that is repre-
sented by the wave function y(r,f) is

N

ihor = — 5= V. (6.11)

A comparison of Egs. (6.9), (6.10), (6.11), and the classical energy

equation

E=LX (6.12)

suggests that, at least for a free particle, the energy and momentum can
be represented by differential operators that act on the wave function y.

E — ik %, p— — ih grad (6.13)

The development of Secs. 7, 8, 10, and 11 will show that these are also
valid representations when the particle is not free.

Inclusion of Forces. The next problem is to extend the free-particle
wave equation (6.11) so that it includes the effects of external forces that
may act on the particle. We shall assume for the present that these
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forces are of such a nature (electrostatic, gravitational, possibly nuclear)
that they can be combined into a single force F that is derivable from a
potential energy V. )

F(ry) = — grad V(r,t) (6.14)

Just as the classical relation between energy and momentum is used above
to infer the structure of Eq. (6.11), so it is desirable now to start from the
corresponding classical relation that includes external forces. This is
simply expressed in terms of the potential energy

=2 Ve (6.15)

where E is now the total energy, and the first and second terms on the
right side of Eq. (6.15) are the kinetic and potential energies of the
particle, respectively.

Since V does not depend on p or E, Egs. (6. 15) and (6.13) suggest that
Eq. (6.11) be generalized into

R R (6.16)

This is the Schrodinger wave equation that describes the motion of a
particle of mass m in a force field given by Eq. (6.14).! While the intro-
duction of Eq. (6.16) cannot claim as high a degree of plausibility as the
derivation of the free-particle equation (6.11), the further discussion
of the next section should make it more convincing. It is, of course, the
agreement of solutions of Eq. (6.16) with experiment in particular cases
that eventually demonstrates the validity and usefulness of this wave
equation.

7. INTERPRETATION OF THE WAVE FUNCTION

The wave function y(r,f), which is a solution of the wave equation
(6.16), is now assumed to provide a quantum-mechanically complete
description of the behavior of a particle of mass m with the potential
energy V(r,f), and hence is analogous to the classical trajectory r(f).
Thus far, the only interpretative guide available to us is that the wave
function be large where the particle is likely to be and small elsewhere.
This has to be supplemented with more detailed statements that enable
us to get out of ¢ the maximum amount of information permitted by
nature, as was discussed in Sec. 3. As with the structure of the wave
equation, the correctness of our interpretation of the wave function must
be judged by logical consistency and appeal to experimental results.

1 The development of the wave function in time can also be related to integrals over
all possible paths of the particle; see R. P. Feynman, Rev. Mod. Phys., 20, 367 (1948).
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Statistical Interpretation. The phrase ‘‘likely to be”’ in the preceding
paragraph, together with the discussion of Sec. 3, indicates the need for
interpreting y in statistical terms. We can imagine a very large number
of identical, independent, nonoverlapping regions of space, each large
enough to contain all the physically interesting features of the motion,
in each of which the behavior of a particle with the potential energy
V(r,t) is described by the same wave function y¥(r,); in each case r is
referred to the origin of the particular region. We then make the assump-
tion, due to Born!, that the numerical result of the measurement at a
particular tiine ¢ (in so far as the time at which the measurement is made
can be specified) of any physically meaningful quantity, such as position,
momentum, or energy, will in general not be the same for all the regions.
Rather, there will be a distribution of these numbers that can be described
by a probability function. i

For example, we have seen in Sec. 5 that the result of a position deter-
mination is to be regarded as uncertain by an amount of the order of the
linear dimensions of the wave function. It is natural therefore to regard
¥ as a measure of the probability of finding a particle at a particular
position with respect to the origin of its region. However, a probability
must be real and nonnegative, whereas y is complex in general. We
therefore assume that the product of ¥ and its complex conjugate ¢ is
the position probability density.

P(ryt) = [¥(r,0)]* (7.1)

This means that P(r,t)dzdydz is to be the probability of finding a particle
in its volume element dzdydz about its point r at the time ¢, when a large
number of precise position measurements are made on independent
particles each of which is described by the one-particle wave function
Y(1,0).

Normalization of ¢. The probability of finding the particle some-
where in the region must be unity, so that Eq. (7.1) implies that the wave
function is normalized:

J¥@nldr = 1 (7.2)

where the integral extends over the entire region; here dr is the volume
element dzdydz. If ¢ is a wave packet of the type discussed in Sec. 5,
the integral in Eq. (7.2) converges, and the numerical coefficient of ¢ may
be adjusted so that the integral is unity; such normalization does not of
course change the fact that ¢ is a solution of Eq. (6.16), which is homo-
geneous in y. There are, however, wave functions like that given in
Eq. (6.10) for which the integral in Eq. (7.2) does not converge if taken
over an infinite volume. Such wave functions require special considera-
1 M. Born, Zeits. f. Physik, 87, 863 (1926); Nature, 119, 364 (1927).
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tion, and will be discussed further in Secs. 10 and 11. For the present,
we may think of the region of space in which such a wave function is
defined as being arbitrarily large, but finite; then the integral in Eq. (7.2)
is over the finite volume of this region and converges, so that normaliza-
tion is always possible.

The coefficient of ¥ that normalizes it must be independent of the
time in order that ¢ may satisfy the wave equation (6.16). Thus if
Eq. (7.2) is satisfied at one instant of time, the interpretation of |¢|? as a
position probability density requires that the normalization integral be
independent of the time. That this is actually the case may be shown by
computing the time derivative of the integral of P over any fixed volume

V.
a oy , oY
a/VP(r,t)dT=/V<¢_(% +'a—tl,/>d1'

= o [ vy = o

= 2% . div [{ grad ¢ — (grad §)yldr
= 2% 4 [¥ grad ¢ — (grad §) y].dA.

Here substitution has been made for dy/dt from Eq. (6.16), and for oy /ot
from the complex conjugate of Eq. (6.16). The last integral is obtained
by partial integration (use of Green’s theorem), where A is the bounding
surface of the region of integration and [ ], denotes the component of
the vector in brackets in the direction of the outward normal to the sur-
face element dA.!

We define a vector S(r,t),

S(0) = g ¥ grad ¢ — (grad $)y] (73)
in terms of which
a .
3 /VP(r,t)dr = — fV div Sdr = — fA S.dA (7.4)

In the case of a wave packet, for which ¢ vanishes at great distances and
the normalization integral converges, the surface integral is evidently
zero when V is the entire space. For a wave function of the type given
in Eq. (6.10), ¢ can be defined in a finite region V so that it vanishes or
has a periodic structure along the bounding surfaces (see Sec. 10). In all
these cases, it can be shown without difficulty that the surface integral in

1 Tt is convenient to adopt an order of factors such that § precedes y [see the dis-
cussion of Eq. (7.7) below].
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Eq. (7.4) is zero, so that the normalization integral in Eq. (7.2) is con-
stant in time.

Probability Current Density. The derivation of Eq. (7.4) also shows
that the differential relation

OP(r,t)

a1 + div S(ryt) = 0

is valid. This has the familiar form associated with the conservation
of flow of a fluid of density P and current density S, in which there are no
sources or sinks. It is thus reasonable to interpret S(r,¢) given by Eq.
(7.3) as a probability current density. This interpretation makes more
plausible the identification of —4# grad with the momentum in Eq. (6.13),
even when a force is present. For then (%/im)grad is the velocity
operator, and it is apparent that

S(r,t) = real part of (n]x ?ﬂ—z grad ‘P)

While this interpretation of S is suggestive, it must be realized that S
is not susceptible to direct measurement in the sense in which P is. It
would be misleading, for example, to say that S(r,t) is the average meas-
ured particle flux at the point r and the time ¢, for a measurement of
average,local flux implies simultaneous high-precision measurements of
"position and velocity (which is equivalent to momentum) and is therefore
inconsistent with the uncertainty relation (3.1). Nevertheless, it is
sometimes helpful to think of S as a flux vector, especially when it
depends only slightly or not at all on r, so that an accurate velocity
determination can be made without impairing the usefulness of the
concept of flux. .

Expectation Value. The existence of the position probability density
P(r,t) makes it possible to calculate what we shall call the expectation
value of the position vector of a particle, which is defined as the vector
whose components are the weighted averages of the corresponding com-
ponents of the position of the particle. The expectation value is the
mathematical expectation (in the sense of probability theory) for the
result of a single measurement, or it is the average of the results of a
large number of measurements on independent systems of the type dis-
cussed at the beginning of this section. We write the expectation value
of r as

@ = [Pa,Hdr = [PE)re(nt)dr (7.5)

which is equivalent to the three equations

(2} £ [Yavdr, () = [Pyddr, (&) = [Paydr
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where ¢ is normalized. The expectation value is a function only of the
time, since ¢ and P depend on ¢ and the space coordinates have been
integrated out.

The expectation values of any other physically meaningful quantities
can be found in a similar way if they are functions only of the particle
coordinate r. Thus the expectation value of the potential energy is

(V) = [V(E)P(rp)dr = [§(5,0) V(e (r,t)dr (7.6)

A quantity such as momentum or energy must, however, be expressed in
terms of r and ¢ before a calculation of this type can be made. We assume
that it is possible to use the differential-operator representations given in
Eq. (6.13) for this purpose, and justify this assumption with the help
of the corresponding probability functions in Sec. 10 (for the energy)
and in Sec. 11 (for the momentum). The question immediately arises,
however, as to how such differential operators are to be combined with
the position probability density P.

This question may be answered by imposing on the expectation values
the reasonable requirement that

B = B>+

in analogy with the classical energy equation (6. 15) In terms of dif-
ferential operators, this may be written

<m 6t> <— 29N 4wy 7.7)

It is apparent that Eq. (7.7) is consistent with the wave equation (6.16)
only if the expectation value is defined in the general case with the
operator acting on ¢, and multiplied on the left by ¢¥. We therefore
obtain, for example,

/ 1}7]1, dT, {) = / ¥ (—1Ry grad ydr (7.8)

Like Eq. (7.5), the second of Egs. (7.8) is equlvalent to the three com-
ponent equations

@)= [4%ar, @y= - [ 12
w = —in [ 12 a

Ehrenfest’s Theorem.! It is reasonable to expect the motion of a
wave packet to agree with the motion of the corresponding classical

1P, Ehrenfest, Zeits. f. Physik, 46, 455 (1927).

~
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particle whenever the potential energy changes by a negligible amount
over the dimensions of the packet. If we mean by the ‘‘position”
and “momentum” vectors of the packet the weighted averages or expec-
tation values of these quantities, we can show that the classical and
quantum motions always agree. A component of the ‘““velocity’” of
the packet will be the time rate of change of the expectation value of
that component of the position; since {z) depends only on the time, and
the z in the integrand of Eq. (7.5) is a variable of integration, this is

S =3 [vovar= [+ [ e

This may be simplified by substituting for the time derivatives of the
wave function and its complex conjugate from Eq. (6.16) and canceling
the V terms.

sm [ [ L)
— [ (= g5 + V¥) o |

The second integral can be integrated by parts:

= [ watv) — @peyten

[ &)wvdr = — [ (grad §) - grad (wp)dr + [, (@b grad §). d4

where the integral of the normal component of 2y grad ¢ over the infinite
bounding surface A is zero because a wave packet ¢ vanishes at great
distances. A second partial integration, in which the surface integral
again vanishes, results in

TV aydr = [§V*(ay)dr
Thus

L@y =g [ vavw — vion i
=——/¢"’“d - L (7.9)

Since {z) is seen always to be a real number from the structure of Eq.
(7.5), Eq. (7.9) shows quite incidentally that (p,) is real; this can also be
shown from the second of Eqs. (7.8) when ¢ represents a wave packet,
by means of partial integration.
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In similar fashion we can calculate the time rate of change of a com-
ponent of the ‘“momentum’’ of -the particle as

—ihg-tf&?fdr

-on(f v B [5ike)

- /%55<—2—mw+if¢)dr+/(—;—;vw+V¢)g—‘idr
—/';[i(w)—vz—‘i dr

/ sV i == (7.10)

4w

I

ox

again substituting from the wave equation and integrating twice by parts.
Equations (7.9) and (7.10), together with their other components, are

analogous to the classical equations of motion,

ar _p ap _

;i—i' = ﬁ, ‘—i—t' = grad vV
They provide an example of the correspondence principle, since they
show that a wave packet moves like a classical particle whenever the
expectation value gives a good representation of the classical variable;
this is usually the macroscopic limit in which the finite size and theinternal
structure of the packet can be ignored.

8. ENERGY EIGENFUNCTIONS

The Schrédinger wave equation (6.16) admits of considerable sim-
plification when the potential energy V(r) does not depend on the time.
It is then possible to express its general solution as a sum of products of
functions of r and ¢ separately.

Separation of the Wave Equation. We consider a particular solution
of Eq. (6.16) that can be written as a product: ¢(r,) = u(r)f(t); a general
solution can then be written as a sum of such separated solutions. If we
substitute into Eq. (6.16) and divide through by the product, we obtain

thdf 1 h? _,
Since the left side of Eq. (8.1) depends only on ¢ and the right side only
on r, both sides must be equal to the same separation constant, which we
call E. Then the equation for fis readily integrated to give
iEt

ft) = Ce ™
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where C'is an arbitrary constant, and the equation for v becomes

[— % v 4 V(r)] u(r) = Bu(r) 8.2)

Since Eq. (8.2) is homogeneous in u, the constant C may be chosen to
normalize u. Then a particular solution of the wave equation is

1Bt

Yt) = u(e * (83)

Significance of the Separation Constant E. The time-derivative
operator given in Eq. (6.13) as a representation of the total energy may
be applied to the ¢ of Eq. (8.3) to give

oy _
i = By (84)

An equation of the type of Eq. (8.4) is called an eigenvalue equation; ¥
is said to be an eigenfunction of the operator that appears on the left,
and the multiplying constant E that appears on the right is called the
corresponding eigenvalue.! An energy eigenfunction, like the ¢ in Eq.
(8.3), is said to represent a stationary state of the particle, since [¢|? is
constant in time. ' '

Equation (8.2) is also an eigenvalue equation. It states that 4 (and
hence also y) is an eigenfunction of the operator [— (%2/2m)V2 + V(r)]
with the same eigenvalue E. Tt is, of course, to be expected that ¢ is
an eigenfunction of this operator if it is an eigenfunction of the time-
derivative operator, since according to the wave equation (6.16), the two
operators are equivalent not only for separated functions of the form of
Eq. (8.3) but also for more general solutions.

We now anticipate the discussion of the physical significance of
eigenfunctions and eigenvalues that will be presented in Chap. III, and
assume that the energy eigenvalues E are the only possible results of
precise measurements of the total energy of the particle. It is then of
interest to inquire whether or not physically interesting solutions u(r)
of Eq. (8.2) exist for all real values of E. An answer cannot be obtained
until a specification of ‘‘ physical interest’” is found in terms of the bound-
ary conditions that are imposed on u(r). This specification, and the
general character of the energy eigenvalues that are associated with
various types of potential energy function V(r), are considered in the
remainder of this section.

1 The terms characteristic function and characteristic value are often used in place of
eigenfunciion and eigenvalue.
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Boundary Conditions at Great Distances. We have thus far encoun-
tered two classes of wave functions: wave packets that are well localized
and for which the normalization integral [|¢|2dr converges, and traveling
harmonic waves like the function (6.10) that have a constant magnitude
at great distances so that the normalization integral taken over an
infinite volume diverges. The first class may be interpreted as represent-
ing particles that, if free, are initially well localized, or that are restrained
to a particular region of space by external forces derived from the poten-
tial energy V(r). The second class represents particles that are neither
localized nor restrained, but travel through the region under consideration
from one distant part of space to another; such wave functions will be
useful in describing the scattering of particles by a field of force.! In
either case, the wave functions are bounded at great distances in all
directions.

Continuity Conditions. The time-independent wave equation (8.2) is
a second-order linear differential equation in r. Thus so long as V(r) is
finite, whether or not it is continuous, a knowledge of the wave function
and its gradient along a surface makes it possible to integrate the equa-
tion to obtain the wave function at any point. It isreasonable, therefore,
to require that the wave function and its gradient be continuous, finite,
and single-valued at every point in space, in order that a definite physical
situation can be represented uniquely by a wave function. These
requirements also have the consequence that the position probability
density P(r) and the probability current density S(r), defined in Sec. 7,
are finite and continuous everywhere.

Boundary Conditions for Infinite Potential Energy. If V(r) is infinite
anywhere, the appropriate boundary condition can be established by a
limiting process that starts from a finite ¥V and the above continuity
conditions.

Suppose, for example, that there is an infinite diseontinuity in V
across a continuous surface, so that the potential energy is finite on one
side of it and 4 e« on the other, and we wish to determine the boundary
conditions on u(r) and grad u at this surface.” The essential features of
the problem are retained if we replace the continuous surface by the
plane that is tangent to it at the point of interest, and the continuously
changing potential energy on one side of the surface by a constant poten-
tial, which can, without loss of generality, be chosen to be zero since any
constant change in V is equivalent to an equal change in E. We choose

1 Another possible class consists of wave functions that become infinite at large
distances; however, these are not of physical interest, since we have no reason to be
concerned with particles for which the position probability density becomes inde-
finitely large in remote regions of space.
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the origin of coordinates at the point of interest and the z axis perpendicu-
lar to the tangent plane.

The wave equation (8.2) then separates in the three space coordinates,
and the dependence of % on y and z is not affected by the discontinuity in
V at the plane £ = 0. We wish therefore to solve the one-dimensional
wave equation

2
- éth P+ V@ = Bu (8.5)
where V(z) =0 for 2 <0, V(z) = Vo for 2 > 0, and we eventually
pass to the limit Vo — + . If we assume that 0 = E < V,, the general
solutions of Eq. (8.5) are

]

u(z) = A sin ax + B cos oz, z <0, a=+<2—hm2—E>
_ 3

u(x) = Ce=#* + Def?, x>0, B =+ [2__—m(V;;2 E)]

The boundary condition that u be bounded at great distances requires
that we set D = 0. Then the continuity of » at x = 0 gives the relation
B = C, while the continuity of du/dx gives the relation ad = —gC.
Since B becomes infinite when V, does, and the solution for z < 0 must
be finite, the second relation shows that C becomes zero as Vo — o,
thus also making B zero; A is not determined from these relations, but
might be fixed by normalization.

Thus the boundary conditions at a surface at which there is an infinite
potential step are that the wave function is zero and the component of
the gradient of the wave function normal to the surface is not determined.
The assumption above that E < V, is evidently not a restriction since
Vo eventually becomes infinite. For E < 0, the sine and cosine in the
solution for z < 0 are replaced by hyperbolic sine and cosine (which is
permissible since the solution need hold only near # = 0), with no change
in the final result. It should be noted that both P and S, vanish as
z — 0 from the negative side, so that they are continuous at z = 0 even
though du/dz is not.

A boundary surface of this type represents a perfectly rigid, impene-
trable wall, since in the analogous classical situation a particle of any
finite energy would have its x component of momentum reversed instan-
taneously on contact with the surface.

Energy Eigenvalues in One Dimension. Energy eigenfunctions that
represent particles that are restrained to a particular region of space by
the potential energy (first class) are always characterized by discrete
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eigenvalues, while eigenfunctions that do not vanish at great distances
(second class) possess a continuous range of eigenvalues. This may
be seen qualitatively by considering the nature of the solutions of the one-
dimensional wave equation (8.5).

We shall suppose at first that V(z) becomes equal to some constant
value, which may be taken to be zero, for sufficiently large positive and
negative z, and that E < 0. A classical particle with this total energy E
cannot escape to infinity, and indeed can exist in the region only if E is
greater than or equal to the smallest value Vi of V(z). The permitted
form of the wave function for |z| large enough that V = 0 is evidently
efzl where 8 = +(—2mE/h*} These two solutions for large positive
and negative x can be extended in toward some intermediate point, say
z = 0, by making use of the wave equation and the continuity conditions.
At this point, u can always be made continuous by choosing the arbitrary
multiplying constants for the positive and negative x solutions appropri-
ately. Then a little reflection shows that for an arbitrary value of E,,
they will not meet with the same value of du/dz. There may, however,
be particular values of E for which both u and du/dxr are continuous at
z = 0. The conditions for this can be seen in the following way.

In the regionhs in which £ < V(z), (d?u/dxz?)/u is positive, and so u is
convex towards the z axis. Thus the two solutions that are continued in
from + « have opposite signs for their ratios of slope to value,

1du

udz
so long as they are in regions for which E is always less than V. This is
illustrated in Fig. 5b for the potential shown in Fig. 5a; both choices of the
sign of u are shown for x < 0. The points at which E = V() are called
the turning potnts (TP) of the classical motion, since they are the limits of
the motion of a classical particle of energy E, at which the particle Yurns
around or reverses its motion. At these points d*u/dz? = 0, and u has
zero curvature.

Clearly what is needed to make the two solutions join smoothly is a
region in which £ > V(z), in order that (d?u/dz?)/u may be negative and
u be concave toward the x axis; this may permit the ratios of slope to value
to become equal. Figure 5¢ shows the two solutions carried in until they
meet, but for a somewhat small value of E, so that when the w’s are made
the same at z = 0, the slopes are not equal (solid curves), or when the
slopes are made the same at z = 0, the u’s are not equal (dotted curve on
left and solid curve on right). Figure 5d shows a somewhat larger (less
negative) value of E, and Fig. 5e a still larger value. The values of E
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and Vi are indicated on the u axis, and the turning points are indicated
on the z axis, in the last three cases.

Discrete Energy Levels. We see then that an eigenfunction that
satisfies the boundary and continuity conditions and that represents a
particle bound by the potential energy V(x), can exist for the particular

Vix) wu(x)
1 du 1 du
u dx>0 7 dx<o
x \J x
~Vnin. (6)
(@)
wu(x) u(x)
=~<a \ ” x \\{}1 Tfp x
477 . 1.
k min. (c) ) mun,
u(x)

(e)

TV .

min.

F1a. 5. (a) Potential energy function and (b) solutions for large |z|; (c) and (¢) show that
either the wave function or its slope is discontinuous at = 0 for values of E that are
smaller (more negative) and larger, respectively, than the energy eigenvalue shown in (d).
value of E illustrated in Fig. 5d. In analogy with the classical situation,
a necessary condition that such an eigenfunction exist is that Vaa < 0,
in which case E lies between Vi and 0; as in the classical case, this con-
dition is also sufficient in one dimension although it is not in three dimen-
sions (see Prob. 10, Chap. IV, and Secs. 9 and 15).

If the potential energy well illustrated in Fig. 5a is sufficiently broad
or deep, there will exist another eigenfunction corresponding to a larger
energy eigenvalue that is still negative. Figures 6a, b, and ¢ shdw a series
of wave functions analogous to those shown in Figs. 5¢c, d, and e for suc-
cessively increasing (successively less negative) values of E; both signs
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of u are shown for z < 0. Thus Figs. 5d and 6b show the eigenfunctions
for the two lowest energy eigenvalues or energy levels of a particle bound
by the potential well V(z). It is easy to see by an extension of the fore-
going qualitative arguments that if there are any higher discrete energy
levels, each eigenfunction has one more node than that corresponding to
the next lowest eigenvalue.

Thus for a potential energy that approaches a finite constant value as
z — + o, there may be a finite number of discrete energy levels, or in

w(x) u(x)

() 6)

z(x)

_mTT g -
\/‘\/ x

(c)

Fiac. 6. Solutions for sufficiently broad or deep potential and larger (less negative) values
of E than those shown in Fig. 5. E increases in going from (a) to (b) to (¢) and is an
eigenvalue in (b), where the wave function and its slope can both be continuous at z = 0.

some cases an infinite number (if V() falls off slowly enough for large
|z|), depending on V(zx) and the mass of the particle. However, if
V(z) — 4+ © as £ — + «, an argument like that given above shows that
there will always be an infinite number of discrete energy levels; apart
from arbitrary multiplying constants there will be just, one elgenfunctlon
u(x) for each of these.

Continuous Energy Eigenvalues. It is possible to find eigenfunctions
that obey the boundary and continuity conditions for all energy eigen-
-values that exceed the smaller of the two numbers V(4 «) and V(— ).
If, for example, the potential energy has the form illustrated in Fig. 5a,
then solutions of the wave equation can be found for all positive values
of E. Thisis because the solutions for large |z| are of the form

Asino|z| + Beosalz], a=+ (2mE) (8.6)
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and there is no reason why both terms should not be kept. Thus it is ~
always possible to adjust the phase of each of the wave functions for large
|z| (which is equivalent to adjusting the ratios A /B for the solutions for
large positive and negative z) so that they join together smoothly when
continued in to z = 0.

The classical terms periodic (or multiply periodic) and aperiodic are
sometimes used to designate the particle motions associated with discrete
and continuous energy eigenvalues, respectively.

Discrete and Continuous Eigenvalues in Three Dimensions. We
shall assume without further discussion that all the foregoing results can

fo Vix) 7o Vi)
100 | #oo
+7 . —
-a o a x -a o a x
(a) (6)

Fia. 7. One-dimensional square well potential with (a) perfectly rigid walls and (b) finite
potential step.

be taken over in a natural way for the three-dimensional wave equation
(8.2). We can expect that if V(r) > +« as r — « in all directions,
there will be an infinite set of discrete energy levels extending to + «.
If V(r) is bounded as r — « in some direction, there may be a finite or an
infinite number of discrete levels, depending on the form of V. In this
case, the discrete energy levels cannot exceed the smallest value that
V(») has in any direction. For values of E larger than this smallest
V (), the energy eigenvalues cover a continuous range extending to
+ .
9. ONE-DIMENSIONAL SQUARE WELL POTENTIAL

As a simple explicit example of the calculation of discrete energy levels
of a particle in quantum mechanics, we consider the one-dimensional
motion of a particle that is restrained by reflecting walls that terminate a
region of constant potential energy. Two simple types of potential
energy are considered. Figure 7a shows a situation in which V(z) = 0
for —a <z <a, and V(z) = 4+ » for |z| > a, corresponding to per-
fectly rigid, impenetrable walls at the points £ = +a. In Fig. 7b the
increase in potential energy at the walls is abrupt, but finite, so that
V(z) = V, for |z| > a; because of its appearance, this is often called a
square well potential. The motion of a classical particle with total energy
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E less than V, is the same for both these potentials; but as we shall see,
the quantum-mechanical behavior is different. In general, an abrupt
finite increase in potential energy at the boundaries of a region forces a
particle toward the interior of the region. Such a potential may be
thought of as a limiting case of a potential of the type shown in Fig. 5a, for
which the force —dV /dx is always directed in toward x = 0. The force
associated with a square well potential is zero except at the boundaries,
so that the particle is acted on by no force except a sudden impulse
directed toward the origin as it passes the points ¢ = +a.

Perfectly Rigid Walls. It was shown in Sec. 8 that the wave function
must vanish at the points £ = +a, when the potential energy has the
form shown in Fig. 7a. From Eq. (8.5) the wave equation for |z| < a
is simply )

A2 d2u
" 2m dz?

= Eu 9.1)

which has the general solution

]
u(r) = Asinar + Beos az, a= + (2mE)

=) 02

Application of the boundary conditions at ¢ = +a gives

A sin aa + B cos aa
—A sin aa + B cos aa

from which we obtain
A sin aa = 0, Bcosaa =0

I

0,
0,

Now we do not want both 4 and B to be zero, since this would give
the physically uninteresting solution v = 0 everywhere. Also, we cannot
make both sin aa and cos aa zero for a given value of @ or E. There are
then two possible classes of solutions: For the first class

A=0 and cos aa = 0
and for the second class
B=0 and sinea = 0

\

Thus aa = nr/2, where n is an odd integer for the first class and an
even integer for the second class. The two classes of solutions and thei
energy eigenvalues are then

nre

u(z) = B cos Sa . nodd
u(z) = A sin 7—1%6 n even
w2hn?

= Sma® in both cases



36 QUANTUM MECHANICS [Crar. II

It is evident that n = 0 gives the physically uninteresting result » = 0,
and that solutions for negative values of n are not linearly independent
of those for positive n. The constants A and B can easily be chosen in
each case so that the eigenfunctions u(z) are normalized.

There is thus an infinite sequence of discrete energy levels that cor-
respond to all positive integer values of the quantum number n. There
is just one eigenfunction for each level, and the number of nodes of the
nth eigenfunction that are within the potential well is » — 1. These
results are in agreement with the discussion of Sec. 8. It is interesting to
note that the order of magnitude of the lowest or ground-state energy
level is in agreement with the uncertainty relation (3.1). The position
uncertainty of order a implies a momentum uncertainty at least of order
#/a, which in turn implies a minimum kinetic energy of order #2/ma2

Finite Potential Step. When the potential energy has the form shown
in Fig. 7b, it is necessary to supplement the general solution (9.2), which
is still valid for |z| < a since Eq. (9.1) is unaltered there, by a solution for
|z| > a. The wave equation in this region is

A% d?u
bl 2-—"-L W + Vou = Eu
which has the general solution for E < V, (bound states)
— $
u(r) = CeP= 4 Defe, B =+ [W] 9.3)

The boundary conditions at £ = =+ « discussed in Sec. 8 require that we
set D = 0 if Eq. (9.3) is to represent the solution for # > a, and C = 0
if the solution is for z < —a.

We now impose on the solutions (9.2) and (9.3) the requirements that
u and du/dx be continuous at z = *+a.

A sin aa + B cos aa = Ce s, aA cos aa — aB sin aa = —pBCeFe
—A sin aa + B cos aa = De s, ad cos aa + aB sin aa = BDe b

from which we obtain

24 sin aa = (C — D)e s, 2aA cos aa = —B(C — D)e~fs (9.4)
2B cos aa = (C + D)e#s, 2aB sin aa = B(C + D)e#s 9.5)

Unless A = 0 and C = D, Egs. (9.4) have as their consequence
acot aa = —f (9.6)
Similarly, unless B = 0 and C = —D, Egs. (9.5) give
atan ca = 9.7
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Now it is impossible for Egs. (9.6) and 9.7) to be valid at once, since
on elimination of 8 this would require that tan? aa = —1, which in turn
would make « imaginary and 8 negative, contrary to Eq. (9.3). Also, we
do not want 4, B, C, and D all to vanish. Thus the solutions may again
be divided into two classes: For the first class

A =0, C =D, and atan aa =8
and for the second class
B =0, = —D, and acot aa = —f

Energy Levels. The energy levels are found from a numerical or
graphical solution of Eqgs. (9.6) and (9.7) with the definitions for « and 8

; S o
7=(,/an§- : \ ¢’é’””€“/
T N
N I/;ale.?zﬁ;z\\_;\ // i
7 2 4° N \ [ F :
ez f\ i l
e |
VARRENY
0 1 2 E 4 5

Fiac. 8. Graphical solution of Eq. (9.7) for three values of Voa2; vertical dashed lines are
the first two asymptotes of # = £ tan £.

given in Egs. (9.2) and (9.3). A simple graphical method for effecting
this solution is described here, since it shows quite clearly the way in
which the number of discrete levels depends on ¥V, and a. We put
¢ = aa, 7 = Ba, whence Eq. (9.7) becomes £ tan ¢ = 9, with -

2mV ,a?
g4 = T

Since £ and 7 are restricted to positive values, the energy levels may be
found in this case from the intersections in the first quadrant of the curve
of ¢ tan £ plotted against £ with the circle of known radius (2mVa?/A?%)3.
The construction is drawn in Fig. 8 for three values of Voa?; for each of
the two smaller of these values, there is one solution of Eq. (9.7) and for
the largest there are two.
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Figure 9 is a similar construction for the solution of Eq. (9.6) in which
the energy levels are obtained from the intersections of the same circles
with the curve of —£ cot £ in the first quadrant. The smallest value of
Va? gives no solution, and the two larger values each give one. Thus the
three increasing values of Voa? give altogether one, two, and three energy
levels, respectively.

It is clear from Figs. 8 and 9 that for a given particle mass, the energy
levels depend on the parameters of the potential energy through the com-
bination Va2 For Voa? between zero and #%:2/8m, there is just one

ﬁZ
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/
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¢
Fi1a. 9. Graphical solution of Eq. (9.6) for three values of Voa?; vertical dashed line is the
first asymptote of = —§£ cot £.

energy level of the first class; for Va2 between #%42/8m and four times this
value, there is one energy level of each class, or two altogether. As Va?
increases, energy levels appear successively, first of one class and then of
the other. It is not difficult to see from Eq. (9.2) that when ordered
according to increasing eigenvalues, the nth eigenfunction has n — 1
nodes.

Parity. It follows from the foregoing discussion that the eigenfunc-
tions of the first class are even with respect to change in sign of z [u(—z)
= u(z)], while the eigenfunctions of the second class are odd [u(—z)
= —u(z)]. This division of the eigenfunctions into even and odd types
is not accidental, and will now be shown to be a direct consequence of the
fact that the potential energy function V(z) is symmetric about z = 0.
If we change the sign of z in the wave equation (8.5)

A2 d2u(x)

T 2m  dx?

+ V(x)u(z) = Eu(x) (9.8)
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and if V(—z) = V(z), we obtain

_ h* du(—x)
2m  dz?

+ V(@)u(—z) = Eu(—2x)

Then u(x) and u(—=z) are solutions of the same wave equation with
the same eigenvalue E. Unless there are two or more linearly inde-
pendent eigenfunctions that correspond to this energy level, these two
solutions can differ only by a multiplicative constant:

w(—1z) = eulx). (9.9)

Changing the sign of z in Eq. (9.9) gives u(z) = eu(—=z). From these
two equations it follows at once that :

e =1 or e= *+1

Thus all such eigenfunctions of a symmescric potential are either even or
odd with respect to changes of sign of z. Such wave functions are said
to have even or odd parity.

If an eigenvalue has more than one linearly independent eigenfunc-
tion, these eigenfunctions need not have a definite parity: they need not
be even or odd. However, we can easily see that linear combinations of
such eigenfunctions can be found such that each has even or odd parity.
Suppose that an eigenfunction u(z) does not have a definite parity. It
can always be written

u(x) = u.(z) + Uo(T),

where u.(z) = ${u(z) + w(—2)] is even and w,(z) = }{u(z) — u(—2x)] is
odd. Then if the wave equation (9.8) is symmetric, we can write it as

h? d%u, ‘

A d2u, 3 \
g gt TV~ Be=0 (010)

"~ 2m de?

+ V = E)u, —

On changing the sign of z in Eq. (9.10), we obtain

_ B,
2m dx?

2
+ (V= Bt 2o ¥ (v~ B, =0 (0.11)

Addition and subtraction of Egs. (9.10) and (9.11) shows that u. and u,
are separately solutions of the wave equation with the same eigenvalue E.

A Simplified Solution.' Knowledge that the solutions possess a defi-
nite parity sometimes simplifies the determination of the energy levels,
since then we need only find the solution for positive z. Even solutions
bave zero slope and odd solutions have zero value at x = 0. If, for
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example, we wish to find the even solutions, Egs. (9.2) and (9.3) can be
replaced at once by .

u(z) = B cos az, 0<z<a

u(z) = Ce =, z>a

Instead of making both % and du/dz continuous at z = a, it is enough to
make the ratio (1/u)(du/dx) continuous at x = a, since the normalizing
constants B and C are eliminated thereby. This gives Eq. (9.7) at once.
Similarly, the odd solutions are

u(z) = A sin az, 0<z<a
u(z) = Ce P2, z>a

Then continuity of (1/u)(du/dz) at £ = a immediately gives Eq. (9.6).

Problems

1. Use the arguments of Sec. 6 to set up a differential equation for y that involves
a second time derivative of ¥, in the case of a free particle. Discuss any solutions that
this equation has that are not shared by the free-particle Schrédinger equation.

2. Show that the free-particle one-dimensional Schrodinger wave equation (6.8)
is invariant with respect to Galilean transformations. Do this by showing that,
when the transformation 2’ = z — o, ¢’ =t is applied, the transformed wave func-
tion ¢'(z',t') = y(z’,t') exp if(z’,t’) satisfies Eq. (6.8) with respect to the primed vari-
ables, where f involves only z’, ¢/, #, m, and v. Find the form of f, and show that the
trayeling wave solution y(z,t) = A exp 7(kx — «t) transforms as expected.

How must a wave packet ¢ fall off for large r in order that the volume integral
of P and the surface integral of S, in Eq. (7.4) converge?

4. Show directly that (p.) is real for a wave packet.

Show that for a three-dimensional wave packet

2 = — (epa) + (p.2)).

8. Calculate the energy levels and plot the eigenfunctions for the three bound
states in the potential of Fig. 7b when Vea? = 6#2/m. Compare with the first three
states for the potential of Fig. 7a.

Discuss the relation between the energy levels for the potential of Fig. 7b and
those for the potential: V(z) = + », 2 <0; V() =0, 0 <z <a; V(z) =V,
T > a.

8. Show that if the potential energy V(r) is changed by a constant amount every-
where, the time-independent wave functions are unchanged. What is the effect on
the energy eigenvalues?



CHAPTER III
EIGENFUNCTIONS AND EIGENVALUES

In Chap. II, the Schrodinger wave equation was developed and
applied to a simple problem. Some discussion of the physical interpreta-
tion of the wave function was given in Sec. 7. This relied for the most
part on the computation of average or expectation -values of operators
that represent various physical quantities. In addition, however, a
position probability density was introduced. Thus at the present point
we are in a position to calculate from the wave function any property
that depends on the spatial distribution of a particle (for example, the
mean-square deviation of its position from the average), whereas we can
only calculate average values of operators other than position. Clearly
what is needed to round out our interpretation of the wave function is a
means of computing probability functions for operators in general; this
would incidentally enable us to obtain the expressions for expectation
values used in Sec. 7 without separate assumptions.

In this chapter, we first set up three physical postulates from which a
complete interpretation of the wave function can be derived, and then
apply them to a discussion of the total energy and momentum of a
particle, and to an illustrative problem. The interpretation presented in
Sec. 7 can then be seen to be a special case of the more general treatment
given here.

10. INTERPRETATIVE POSTULATES AND ENERGY EIGENFUNCTIONS

We start with the wave function y(r,t), which is a solution of Eq.
(6.16) and describes the motion of a particle that has mass m and poten-
tial energy V(r). From this wave function we wish to obtain as complete
a description of the properties of the motion of the particle as is consistent
with the uncertainty relations discussed in Sec. 3.

Dynamical Variables as Operators. We first postulate that each
dynamical variable that relates to the motion of the particle can be represented
by a linear operator. 'The operator may be simply a multiplication oper-
ator such as r for the position, or it may be a differential operator such as
—1h grad for the momentum.

With each operator can be associated a linear eigenvalue equation,
defined near the beginning of Sec. 8. Thus with the operator @ may be
associated the equation ’

. Qu, = wu, (10.1)
41
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where u, is the eigenfunction of @ corresponding to the eigenvalue w.

Our second postulate is that one or another of the eigenvalues w is the
only possible result of a precise measurement of the dynamical variable
Tépresented by Q. This implies that the eigenvalues of all operators that
represent physically significant variables are real numbers.

Expansion in Eigenfunctions. We assume that all the eigenfunctions
of any dynamical variable constitute a complete set of functions in the
sense that an arbitrary continuous function can be expanded in terms of
them. This is a mathematical, not a physical, assumption, and will
be discussed further below in connection with energy and momentum
eigenfunctions.

Suppose now that a particular wave function ¢ is expanded in terms
of the eigenfunctions u, of the operator 2. We adopt the statistical inter-
pretation of ¥ given at the beginning of Sec. 7, according to which there
are a large number of identical, nonoverlapping regions of space, in
each of which is a particle described by . We then make measurements
of the dynamical variable represented by © on each of these particles.
Our third physical postulate is that the number of measurements that result
in the eigenvalue w is proportional to the square of the magnitude of the
coefficient of u, in the expansion of ¥. This postulate, due to M. Born
(see page 22), enables us to associate a probability function with any
dynamical variable.! A corollary is that we are certain to measure a
particular eigenvalue w only when the wave function that describes the
particle is the corresponding eigenfunction u,.

Rather than develop the consequences of these postulates for an
arbitrary operator @, we consider here the total energy of the particle,
and in Sec. 11 the momentum. Most of the results obtained are readily
applicable to other physical operators.

The Total Energy Operator. According to the uncertainty relation
(3.3), a precise measurement of the total energy of a particle cannot be
. made in a finite length of time. Thus if the total energy is to have a
definite value, it is essential that the potential energy V(r) be inde-
pendent of the time. Then the operator — (A2/2m)V? + V(r), which is
shown in Sec. 8 to be equivalent to the total energy operator 7% 9/9¢,-has
eigenfunctions u(r) that need not involve the time. The energy-eigen-
'value equation is Eq. (8.2),

K2
[—— 5 vz 4+ V(r)] ug(r) = Eug(r) (10.2)

1 An alternative deterministic interpretation in terms of ‘“hidden variables”’ rather
than the dynamical variables, which has not been widely accepted, has been proposed
by D. Bohm, Phys. Rev., 86, 166, 180 (1952).
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where the eigenfunction u(r) corresponds to the eigenvalue E, and obeys
the boundary and continuity conditions of Sec. 8.

As discussed in Sec. 8, the energy eigenfunctions can be divided into
two classes: those which are well localized and are associated with discrete
eigenvalues, and those which remain finite at great distances and possess
a continuous range of eigenvalues.

Normalization in a Box. It is often desirable to be able to treat these
two classes on the same basis; this can be accomplished by enclosing the
particle under investigation in a box of arbitrarily large but finite volume.
The simplest physical situation to which this approach is applicable is
one in which the walls of the box are perfectly rigid, so that, as shown in
Sec. 8, the wave function vanishes there. Then the discussion of Sec. 8
shows that all the eigenvalues are discrete. If the box is large in com-
parison with the dimensions of physical interest in the problem, the
eigenvalues that were discrete in the absence of the box are practically
unaffected, since before the walls were introduced the wave functions were
extremely small there. Also, the eigenvalues that were continuously
distributed in the absence of the box are very closely spaced this is
shown explicitly for a free particle in Sec. 11.

It is more convenient to assume that the wave functions obey periodic
boundary conditions at the walls of the box than that they vanish there,
since it is then possible to get a simpler description of the momentum
eigenfunctions (see Sec. 11). We choose the finite region to be a cube of
edge length L centered at the origin, and require each wave function
to have the same value at corresponding points of opposite faces of the
cube, and the same derivative normal to the wall. These boundary
conditions make the otherwise continuous eigenvalues discrete, since
the phase of the eigenfunction at great distances is no longer arbitrary
[see the discussion of Eq. (8.6)]. As with the rigid-walled box, the pres-
ence of the walls has a negligible effect apart from imparting discreteness
to the otherwise continuous eigenvalues and providing a finite volume in
which these wave functions can be normalized; we shall continue to use
the word ‘‘continuous” to describe these functions, even when box
normalization is used.

Orthonormality of Energy Eigenfunctions. The integral [|uz(r)|2dr,
which converges in any case for the discrete set of eigenfunctions, can-
verges for all eigenfunctions when they are normalized in the box of
finite volume L3, The coefficient of uz can then be chosen so that this
integral is equal to unity, and the uz(r) are normalized.

We now show that the eigenfunctions corresponding to two different
eigenvalues E and E’ are orthogonal; that is, that the integral of the
product of one of them and the complex conjugate of the other over the
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common domain of the functions is zero. From Eq. (10.2) we have that
ue (r) satisfies the equation

[— -2’% V2 + V(r)] ap(r) = B'ap(r) (10.3)

where we assume in accordance with our physical interpretation that E’
is real; this is verified below. We multiply Eq. (10.2) by %z and Eq.
(10.3) by wug, integrate over the volume L3, and take the difference
between the two resulting equations. The V terms cancel, and leave

2
- —2h7n / ('le'Vz’U,E -_ uEV%ZEr)d‘r = (E -_ E’) / 'le"U/EdT (104)

The integral on the left side of Eq. (10.4) can be transformed by
Green’s theorem into a surface integral over the surface A of the cube.
f(aE'WuE - uEV2'¢ZE')dT

= / div (@z grad uz — ug grad az)dr
= /A (@ grad ur — ug grad 4g).dA (10.5)

where the subscript n designates the component of the vector in the
direction of the outward normal to the element of area dA. Since the
imposition of periodic boundary conditions gives each wave function and
its normal derivative the same values at corresponding points of opposite
faces of the cube, the outward normal derivative has opposite signs on
opposite faces, and the surface integral in Eq. (10.5) vanishes. Then
Eq. (10.4) tells us that if E % E’, ug and uz are orthogonal.!

An energy eigenvalue E is said to be degenerate when two or more lin-
early independent eigenfunctions ui, us, . . . correspond toit. Orthog-
onal linear combinations of degenerate eigenfunctions can be found in
many different ways. For example, %, = au1 + asus can be made
orthogonal to u; by choosing the constant coefficients a; and a3 such that

a Iﬂlu'gd‘r
az jlullzd'r
this choice does not interfere with the normalization of u,, and u, is still
an energy eigenfunction with the eigenvalue E. Evidently the choice
1Tt is apparent that this proof of orthogonality can be applied to a discrete set of
eigenfunctions even though the box is not introduced, since the %’s vanish rapidly at
great distances and the surface integral, which is then over a sphere of infinite radius,
is zero. The continuous set of energy eigenfunctions can also be treated without
using the box normalization (as is the continuous set of momentum eigenfunctions in
Sec. 11). See E. C. Kemble, “The Fundamental Principles of Quantum Mechanics’’
(McGraw-Hill, New York, 1937); Sec. 30 of Kemble’s book presents a discussion of
this problem and references to the original papers.
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of orthogonal linear combinations is not unique. By an extension of this
procedure, all the energy eigenfunctions can be made orthogonal to each
other even though some of the eigenvalues are degenerate.

Such a set of eigenfunctions, each of which is normalized and orthog-
onal to each of the others, is called an orthonormal set of functions. We
specify an orthonormal set of nondegenerate energy eigenfunctions by
the relation

fﬁn'(l‘)un(r)d’r = Ogg (10.6)

where 8zz is the Kronecker & symbol that equals unity if £ = E’ and
is zero otherwise. If there is degeneracy, Eq. (10.6) must be replaced by

fﬁE’s’(r)uEs(r)dT = §pplss (10.7)

where the index s distinguishes between orthogonal degenerate eigen-
functions. It is often convenient to omit explicit mention of s and use
Eq. (10.6) for degenerate situations as well, in which case the index s is
implied. .

Reality of the Energy Eigenvalues. We can now see directly that E
is a real number, as has been assumed. We multiply Eq. (10.2) by %z(r)
and integrate over the box of volume L3. If uzis normalized, the result is

' E = — ;7; / UeViugdr + / V(r)luElsz

which may be expressed in terms of expectation values as (1/2m){p2) + (V).
The second term (V') is real since its integrand is real. The first term
can be shown explicitly to be real by means of a partial integration.

- / AeViugdr = / (grad uz) - (grad ug)dr — /.4 uz(grad ug).dA.

The volume integral is evidently real, and the surface integfa} [like that
in Eq. (10.5)] vanishes because of the periodic boundary conditions at
the walls of the box. It is interesting to note that (p2) cannot be negative.

Expansion in Energy Eigenfunctions. As mentioned near the begin-
ning of this section, we make the mathematical assumption that all the
eigenfunctions uz(r) of the total energy operator constitute a complete
set of functions in the sense that an arbitrary continuous function can be
expanded in terms of them.! Then if we have any wave function ¥(r)
at a particular instant of time that is normalized in the box L?® and obeys
periodic boundary conditions at the walls, the assumed existence of the
expansion

¥r) = EAEuE(r) (10.8)
4 .

1 For further discussion see E. C. Kemble, op. cit., Chap. IV and Sec. 30.
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makes it possible to find unique coefficients 4 ¢ that do not depend on r.
The coefficients in the expansion (10.8) can be determined by multi-
plying both sides by @z and integrating over the box. We assume that

she order of 2 and f dr can be reversed! and obtain
E

/ aw(@)Y(r)dr = }E:AE ] e (Nux(r) dr = ;Am = Ap. (10.9)

with the help of Eq. (10.6) or (10.7).
The Closure Property. Substitution of the expression (10.9) for Ag
back into Eq. (10.8) gives

v@) = ) [ [ ast)@)ir | us)
E

which we rearrange to give

v = f ¥ (@) [2 dg(r')ug(r)]dr' (10.10)
. E

Since ¥/(r) is an arbitrary continuous function, Eq. (10.10) implies that the
bracketed part of the integrand vanishes unless r’ = r, since otherwise
the value of ¢ at the point r given by Eq. (10.10) would change when the
values of ¥ at other points r’ 5 r are changed, and this is contrary to
the assumption that ¢ can have an arbitrary form. Moreover, the
integral of the term in brackets must be unity when the volume of inte-
gration includes the point r’ = r. We conclude therefore that

Z as(r)ux(r) = 0, r 13

(10.11)
[ }E: s us(r)dr = 1

if the volume of integration includes the point ' = r.

Equations (10.11) describe the closure property of the orthonormal
functions uz(r) and are seen to follow directly from their completeness as
expressed by Eq. (10.8), whether or not they happen to be energy
eigenfunctions.

Probability Function and Expectation Value. The second and third
physical postulates presented at the beginning of this section state that
the energy eigenvalues are the only possible results of precise measure-

1 The propriety of changing the order of summations and integrations must in
principle be investigated separately in each case. The mathematical considerations

entailed are beyond the scope of this book, and we shall always assume that such
interchanges are permissible in situations of physical interest.
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ment of the total energy, and that the probability of finding a particular
value E when the particle is described by the wave function ¥(r) is
proportional to |Ag|2 It is easily seen that the proportionality factor is
unity, for if we put for the energy probability function

P(E) = |Ag? (10.12)
we see that P(E) sums to unity.

zP(E') = Z / ax(O)Y(r)dr [ us(®)P()dr’
E, E
= [ [ 4@ Y axtus) | drdr’

E

= [ Ww@ldr = 1

since ¢ is normalized-; use has been made here of Egs. (10.11).
We can also compute the average or expectation value of the energy
from the probability function.

(B) = EEP(E) - z / Eas(r)y(r)dr / we(®)P()dr’  (10.13)
E E

7

If we substitute for Eir from Eq. (10.3), the first integral in Eq. (10.13)
can be integrated twice by parts as follows:

2
/ Bas(@)¥(r)dr = f ¥() [ - vt Vo) | astoar
2
= / ag(r) [— 2th vz + V(r)] Y(r)dr
The two surface integrals that result from the partial integrafions vanish
because of the periodic boundary conditions on ug and ¥. Thus with the

help of Egs. (10.11), Eq. (10.13) becomes
72
(E) = | as(r) | — 5= V2 4+ V(r) |¥(@)dr | u=(r)P()dr’

- [ [wo|{[- Q’%v#wr)] v [2 ax(o)us(e) | drdr’

- 7 (1) [— % vz 4 V(r)] y()dr (10.14)

The result embodied in Eq. (10.14) confirms the supposition made in
Sec. 7 that the expectation value of an operator is to be calculated by
inserting the operator between ¢(r) and ¥(r), so that it operates just on
the latter, and integrating over r.
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General Solution of the Schrodinger Equation. If the potential
energy V(r) is independent of ¢ and we know the solution of the Schrod-
inger equation (6.16) at a particular time, we can write down a formal
expression for the solution at any time. We expand ¢(r,f) in energy
eigenfunctions at the time ¢, in which case the expansion coefficients
depend on the time.

V) = zAE(z)uE(r), As(t) = ] as(DY(rl)dr  (10.15)
E
Substitution of Eq. (10.15) into the wave equation (6.16) gives

ih 2 uz(r) ditA =(f) = 2 Ag(t)Eug(r) (10.16)
E L

Because of the orthonormality of the ug, Eq. (10.16) is equivalent to
i d—"i As(t) = EAs(D)

which may be integrated at once to give
1E(t —to)
Ag(t) = Az(to)e_ h (1017)
Note that P(E) = |A=(t)|* = |A&(t)|? is constant in time.
Thus if ¥(r,f) is known at the time ¢ = £, the solution at any time ¢
is given in terms of Eqs. (10.15) and (10.17):

tE(t —to)

w(r) = zAE(to)e_ P ual(r)
E
Ax(to) = [ as(r )Y to)dr’

(10.18)

or
1E(t—to)

vat) = [[Y as@us@e” * | v to)dr (10.19)
E
The solution (10.18) is a linear combination of the separated solutions
(8.3) obtained earlier.

11. MOMENTUM EIGENFUNCTIONS

The eigenfunctions of the linear momentum operator —z% grad pro-
vide a second instructive example of the application of the general ideas
developed at the beginning of the last section. They also are of con-
siderable usefulness in solving problems of physical interest. -

Form of the Eigenfunctions. The momentum eigenfunctions are
solutions of the three eigenvalue equations B

~1h grad up(r) = pup(r) (11.1)
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or:

.9 ., 0
— tho- up(t) = Pap(r),  —ih % up(r) = pyup(r)

i)
— 1k 32 up(r) = P up(r)
They have the form

tg(t) = C exp X2
where C is a normalization constant.

It is convenient, as in Sec. 6, to change from the momentum vec-
tor p to the propagation vector k = p/A, and rewrite the momentum
eigenfunctions

ug(r) = Cexpik-r (11.2)

These are eigenfunctions of the momentum operator with the eigenvalues
fik.

Box Normalization. As with the energy eigenfunctions discussed in
Sec. 10, we can restrict the domain of the uk(r) to an arbitrarily large but
finite cubical box of volume L3 centered at the origin, at the walls of
which the functions obey periodic boundary conditions. Then wuy is
normalized if C = L% Also, k is no longer an arbitrary real vector;
its components are restricted to the values

2N, k= 2mn,, 2mn,

L’ "L L
where n,, ny, and n, are positive or negative integers or zero. The spac-
ing of neighboring k vectors and of their energy eigenvalues #%k2/2m can
be made as small as desired by making L sufficiently large.

It is interesting to note that the momentum eigenfunctions (11.2)
cannot exist within a box that has perfectly rigid walls, since these eigen-
functions do not vanish anywhere. This is analogous to the classical
situation in which the momentum of a particle that is reflected from a
rigid wall is not conserved. On the other hand, the cubical box with
periodic boundary conditions is equivalent to a situation in which the
entire infinite space is divided up into adjacent cubes and all wave func-
tions are periodic throughout space with the period L along each of the
three cartesian axes. If the periodicity of the space is carried over to
the analogous classical situation, a particle passing through a wall would
be equivalent to one that strikes that wall and appears at the correspond-
ing point of the opposite wall with its momentum vector unchanged

The orthonormality of the momentum eigenfunctions

ug(r) = L~ texpik-r (11.4)

kz=

k, = (11.3)
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is readily established. For integration over the volume L3

1 [ i i
G(Dux(r)dr = — eitetady eikrtudy eiklongy
L3 ] 31 —iL —iL

= 011 0k,0, 00,1, = Ot (11.5)

where the &’s are Kronecker & symbols and use is made of Eqs. (11.3).
Orthogonality could also have been shown by the more general method
used in Sec. 10 for the energy eigenfunctions [see Eq. (10.4)].

The Dirac  Function. It was stated in Sec. 10 that continuous sets of
eigenfunctions can be handled without introducing the box with periodic,
boundary conditions (which has the effect of making the set discrete with
an arbitrarily small spacing of eigenvalues). This can be shown explicitly
for the momentum eigenfunctions with the help of the Dirac § function,!
which can be defined by the relations

8x) =0 if =z%0, [i@)dz=1 (11.6)

where the region of integration includes the point = 0. An equivalent
definition is that for an arbitrary function f(z) that is continuous at
z = 0, the equation

Ji@)é(x)dz = f(0) (1L.7)

-is valid, where again the integration includes the point z = 0.

It is apparent from a comparison of Eqgs. (11.6) and (10.11), or of
Eqgs. (11.7) and (10.10), that the bracketed quantity in Eq. (10.10) can
be expressed in terms of & functions:

L
Y as(r)us(x) = 3@ — )8y — ¥)3(z — #) =b(x — F) (118)
E
Comparison of Eqs. (11.8) and (10.6) shows that the closure property
is a kind of orthonormality of the eigenfunctions with respect to summa-
tion over the eigenvalues. h
A Representation of the § Function. The definition (11.6) or (11.7)
shows that §(x) is an exceedingly singular function.? It may be thought
of qualitatively as being zero everywhere except at z = 0, and being so
large there that the area between it and the z axis is finite and equal to
unity. More formally, it can be represented in a number of different
ways as the limit of a sequence of analytic functions.

A particular representation that is quite useful involves (sin gz)/rz
as a function of z, where g s a positive real number. This has the value
g/m at x = 0, oscillates with decreasing amplitude and with period 2r/g

1P, A. M. Dirac, “The Principles of Quantum Mechanics,” 3d ed., Sec. 15 (Oxford,
New York, 1947).

? A rigorous mathematical basis has recently been provided for the & function by

L. Schwartz; see, for example, I. Halperin and L. Schwartz, ‘“Introduction to the
Theory of Distributions’’ (University of Toronto Press, Toronto, 1952).
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as |z| increases, and has unit integral from z = — » toz = -+ « indepen-
dently of the value of g. Thus the limit of this function as g — o has all
the properties of the & function: it becomes infinitely large at z = 0,
it has unit integral, and the infinitely rapid oscillations as |z| increases
mean that the entire contribution to an integral containing this function
comes from the infinitesimal neighborhood of £ = 0. We can therefore
put

. sin gz
8 = i .
(z) bm = (11.9)

Normalization in Terms of the § Function. The representation (11.9)
of the § function can be used to set up an orthonormality integral like that
given in Eq. (11.5), where now we do not impose the box normalization
but allow the momentum eigenfunctions to have the form {11.2) over all
space with all real vectors k. The integral [ (r)ux(r)dr is the product of
three integrals, each of which can be expressed in terms of a & function:

/_: gtz dy = lim [° gtz gy

g—eo J 8

Il

lim 2sin g(k, — 1)

g—>® k z = lz
= 2r8(k, — 1) (11.10)
Thus the momentum eigenfunctions in infinite space can be written
uk(r) = (8r3)~texpik-r (11.11)

in which case the orthonormality relation becomes
Ju(Oue(r)dr = 8k, — 1)d(ky, — 1)o(k, — 1) = 6k —1) (11.12)

It will be shown in Sec. 12 that the box and é-function normalizations
of the momentum eigenfunctions give the same final result in a typical
problem. )

Some Properties of the § Function. It is important to note that,
because of its singular character, the é function cannot be the end result
of a calculation, and has meaning only so long as a subsequent integration
over its argument is carried out. With this understanding we can write
down some relations between 6 functions.!

3(z) = 8(—=)

¥(z) = —&(—2)

xé(x) =0
28 (x) = —(x) (1113
§(ax) = a18(z), a>0

8(z2 — a?) = (2a)"[6(z — a) + é(z + a)), a>0
fé(a — 2)é(x — b)dx = é(a — D)
f@)é(x — a) = f(a)é(z — a)
Here, a prime denotes differentiation with respect to the argument.
1 Dirac, op. cit., p. 60.
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Each of the first six of these equations can be established by multiply-
ing both sides by a continuous, differentiable function f(z) and integrating
over z. For example, the fourth of Egs. (11.13) gives

/ f@)zd (x)dr = — / 3(x) d%[xf(x)]dx
= — [3(@)[fx) + 2f (©)]dr = — [f(z)é(x)dx

where the boundary terms that result from the partial integration vanish.
Thus x6’(z) has the same effect when it is a factor in an integrand as has
—&(x). Similarly the seventh of Eqgs. (11.13) means that the two sides
give the same result when multiplied by f(a) or f(b) and integrated over a
or b. The last equation is verified by integrating both sides over either
z or a.

Closure. The closure property of the momentum eigenfunctions,
with both box and § function normalization, can be established without
the help of the completeness assumption that was made in Sec. 10 for
the energy eigenfunctions. With box normalization, the expression
analogous to the left side of Eq. (11.8) is

Z“k(f Yux(r) = L3 z 2 z e2rilns (=) g )b e =) /L

Nz=— 0 Ny=— 0 Nz=— 0

This is readily evaluated in the limit of large L, in which case the sum-
mand changes by a negligible amount as each n changes by one unit.

We can then regard n. as a continuous variable and replace z by

Nz = — ©

[°, dn.= @/20) [ dk.. We thus obtain

uk(l")uk(l') (87,-3) eilk=(@—2") oy (y—v')+k: (z—2)] ] | Ak, dk,
) [ 1)
=68 —2)oy —y)o(z —2) =5r—1) (11.14)
on making use of Eq. (11.10).
A similar calculation can be carried through, using the s-function
normalization, in which case we obtain from Egs. (11.11) and (11.10)

Ja(tYu(t)dr = [ f [a(t)u(r) dko dky, dks = 8(r — ') (11.15)

The closure relation (11.14) or (11.15) shows that the momentum
eigenfunctions are orthonormal with respect to summation or integration

over the eigenvalue k as well as with respect to integration over the posi-
tion vector r.
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Expansion in Momentum Eigenfunctions. An arbitrary continuous
function ¢(r) can be written in terms of the & function as

Y(r) = [Y()o(r — r")dr’ (11.16)
If we substitute the left side of Eq. (11.14) in place of §(r — r’) in Eq.
(11.16), we obtain

o) = [¥) ) mEue)dr = ) Awu(s)
k k

Ax = [u(r)Y(r)dr’

Similarly, if we substitute for 6(r — r’) from Eq. (11.15), we obtain
¥(r) = JY) [a(r)ux(r)drds’ = [Axu(r)dn (11.18)
with the same expression for Ax. Equations (11.17) and (11.18) show
that it is possible to expand an arbitrary function in momentum eigen-
functions that are normalized either in a box or by means of § functions.’
Probability Function and Expectation Value. The momentum
probability function associated with a normalized wave function ¥(r) is
proportional to |4k|2. The proportionality factor is unity, since if we

put '

(1.17)

P(k) = |Ay? (11.19)
it is easily shown in analogy with the summation of Eq. (10.12) that
EP(k) =1 and / P(K)dr = 1 (11.20)

K

for the box and é-function normalization, respectively.
The expectation value of the momentum when box normalization is
used is

() = hsz(k) = hE j k(W (dr [ u(@)p()dr’ (11.21)
K X%

From the complex conjugate of Eq. (11.2), we can replace kak(r) by
¢ grad ux(r). Then the first integral in Eq. (11.21) can be integrated by
parts and the surface integral vanishes because of the periodic boundary
conditions on ¢ and @. Thus with the help of Eq. (11.14), Eq. (11.21)
becomes

() = —z‘hE / @(r) grad y(r)dr [ we ()P ()
k

—h [[P(r')[grad ¢(r)16(r — r')drdr’
= —ih[Y(r) grad Y(r)dr
1 These results, while not rigorously established here, are equivalent to the mathe-
matical theorems on the expansibility of functions in Fourier series and Fourier
integrals.

(11.22)
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This is in agreement with the second of Eqs. (7.8).

When é-function normalization is used, the details of the calculation
are very similar to those given above, except that the surface integral
that results from the partial integration is over a sphere of infinite radius;
it is zero because ¥ becomes vanishingly small at great distances. This is
consistent with the supposition that ¢ is normalized; otherwise neither
JP(k)dry, nor {p) have any physical meaning. The result of the calcula-
tion in this case is the same as Eqgs. (11.22) and (7.8).

12. MOTION OF A FREE WAVE PACKET IN ONE DIMENSION

The motion of a free particle (no external forces) in one dimension is
described by the Schrodinger wave equation (6.8). The study of this
motion provides an interesting application of the expansion techniques
developed in Secs. 10 and 11.  As a first step, we find the minimum value
of the uncertainty product given in Eq. (3.1), and the possible forms of
the one-dimensional wave packet that correspond to it, all at a definite
instant of time. The structure of this minimum packet is the same
whether or not the particle is free, since this form can be regarded simply
as an initial condition on the solution of the Schrédinger equation for
any V. However, the analytical work involved in finding ¢ at other
times is especially simple in the force-free case.

The Minimum Uncertainty Product.! In order to find the minimum
value for the uncertainty product Az - Ap, we must first define what we
mean by Az and Ap. While many expressions are possible, the simplest
to handle analytically is the root-mean-square deviation from the mean,
where the word ‘“mean” implies the expectation value of Sec. 7.

(42" = ((z — @) = (@) — 22 + (@) = @) = @ 15
ap)* = ((p — )) = ) — (o» '

Here the equalities follow directly from the general definition of expecta-
tion value given in Sec. 7. If now we put

Cama-@, s=p-@=-a|g-(E>]
then

(a2)2(8p)* = [ Paryda [ ° 98rds
= [T @ [T EHene (123
The transformation of the « integral in Eq. (12.3) is obvious; the similar

transformation of the 8 integral follows from a partial integration when

1'W. Heisenberg, “The Physical Principles of the Quantum Theory,” pp. 17-19
{University of Chicago Press, Chicago, 1930).
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we remember that ¥ is a normalized wave packet, which vanishes at

r = + o,
_ . Jfgdz |*
/ ’f gflg|2dx

The inequality
where all integrals are from £ = — « to 4 , is obviously true, and the
equality is applicable only if f = vg, where v is a constant.” From this
inequality we obtain at once

dr =0

—

JIf|?d=flg|*dz = |[fgd=|?
If now we replace f by o and g by ¢, Eq. (12.3) becomes

(Az)2(Ap)? Z |[ (&) (B¥)dal? = |[Popydal? (12.4)

The last term in Eq. (12.4) can be written

|[PE(aB — Ba) + F(aB + Ba)lYdz]|?
= 1[J¥(aB — Ba)ydz|? + 1|[¥(aB + Ba)ydz|? (12.5)

The cross term in the product that is omitted on the right side of Eq.
(12.5) can be seen to vanish when use is made of the relation

[YaBy dz = [Yapd dz = [(BY)(a¥) dz = [JBay dz,

which is obtained by using partial integration and remembering that «
is real. Now from Eq. (12.2)

(B — Ba)y = —ih [x W _ 4 (x¢)] = ihy (12.6)

We thus obtain from Egs. (12.4), (12.5), and (12.6)
(Az)2(Ap)2 = 4k  or  Az-Ap = }h (12.7)

where the equality can hold only if the second term on the right side of
Eq. (12.5) is zero. This is the precise expression of the Heisenberg
uncertainty relation (3.1), when the uncertainties Az and Ap are defined
asin Eq. (12.1).
Form of the Minimum Packet. It follows from the foregoing deriva-
tion that the minimum uncertainty product is attained only when two
- conditions are fulfilled.
o = yBY (12.8)
J¥(aB + Ba)pdr =0~ (12.9)
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Equations (12.8) and (12.2) give us a differential equation for ¢

%z[%(x—<x>)+i<fl_p>]¢

which is readily integrated to give

4@ = New [ @ — @y + 122 | (12.10)

where N is an arbitrary constant.
Equation (12.9), with the help of Eq. (12.8), becomes

(-1- + —E—) / Yaydr = 0
Y Y

which evidently requires that v be pure imaginary. Then since we want
Eq. (12.10) to represent a wave packet for which the integral of |¢|2 con-
verges, v must be negative imaginary. The magnitude of the constant N
can now be fixed by normalizing ¢.

JllPdz =1
Similarly, ¥ can be determined by requiring that
[ — (z))?|¢|2dz = (Ax)?

The integrals are readily evaluated, and lead to the normalized minimum
wave packet

V(@) = [2r(Az)?]~ exp [— (x4(_Af)”Z)2+ i<’,’l>x] S @211

Momentum Expansion Coefficients. The one-dimensional momen-
tum eigenfunctions analogous to Eqs. (11.4) and (11.11) are

ur(r) = L—3e= (12.12)
for normalization in a one-dimensional ¥box”’ of length L, and
ur(z) = (2r) —te= (12.13)

for é-function normalization. Since for a free particle the wave equation
has the simple form of Eq. (6.8)
2 A2
a¥_ R (12.14)

the momentum eigenfunctions are also eigenfunctions of the energy.!

1 The converse is not necessarily true, since there are two solutions of Eq. (12.16)
for k (positive and negative) for each value of Ej.
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Thus any solution of the wave equation can be written in a form analogous
to Eq. (10.18),

Y(x,t) = (2 or [ dk):Ake_i%’é ui(x), (12.15)
% '

where the A; are independent of z and ¢; the entire time dependence is
contained in the exponential factor. Equation (12.15) is readily verified
to be a solution of Eq. (12.14) by direct substitution, provided that

h 2k 2
2m

E; = (12.16)
The problem of finding the motion of a wave packet is thus resolved
into finding the expansion coefficient A; at some particular time, say
t = 0, and then using Egs. (12.15) and (12.16) to find ¢(z,f) at other
times. At ¢ = 0, the exponential factors in Eq (12.15) are unity, and
we may use the one-dimensional analogue of the second of Egs. (11.17)

to ﬁnd Ak.
A = [up(x)y(x,0)dx (12.17)

The limits on the integral are £ = +4L or x = + », according as box

or d-function normalization is used. The momentum probability func-
1Ext

tion P(k) = |Awe * |* = |44|?is independent of the time, so that (p) and

Ap, for example, are constants.

Change with Time of a Minimum Packet. As a simple specific exam-
ple, we take ¥(z,0) to have the form of Eq. (12.11) with (z) = {(p) = 0,
so that the wave packet initially is centered at x = 0 and has zero average
momentum. Then using box normalization, Eq. (12.17) gives

3L 2
A, = [2nL2(Ax)21—* /_*Lexp [— ﬁz - ikx] dx
- [8"(;7”)2] gkt (12.18)

where L is assumed to be so large that the contribution to the integral
from |z| > 3L can be neglected. Substitution into Eq. (12.15) gives the
wave function for general values of ¢ ‘

1hkt

p(zt) = EAke‘% () (12.19)
k

where k = 2rn/L and n takes on all positive and negative integer values
and zero. As in Sec. 11, L may be taken arbitrarily large, » can be
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regarded as a continuous variable and the summation replaced by [dn,
which in turn is the same as (L/2r)[dk. Thus

Vah) = [(Ax) ] /_ exp [—If2(Ax)2 ~ %+ k:c]

ht \ 7

= -1 W

(2m) <Ax + 2mAx> eXp[ i(Az)? + @iti/m )1 (12.20)
The position probability density is then

et = {or @0 + ]
2

- exp 2 [(Aa:)2 + _—4,"?:22@2] - (22

Equation (12.21) is of the same form as |¢(z,0)|?, except that (Az)?
s replaced by (Az)? + A2%2/4m?(Ax)?, whichisequal to (Az)? + (Ap)22/m?2.
Thus the center of the packet remains at £ = 0 while the breadth of the
packet increases as ¢ departs from zero in both past and future directions.
The smaller the initial uncertainty in position, the larger the uncertainty
in momentum and the more rapidly the packet spreads; the time-depend-
ent part of the above expression, ¢{(Ap)/m, is simply the distance traveled
by a classical particle of momentum Ap in the time .

Use of the é-function normalization does not alter the results of the
foregoing calculation. The expression for A; given in Eq. (12.18) is
to be multiplied by (L/27)}; in Eq. (12.19) the summation is to be replaced
directly by [dk, thus eliminating a factor L/2x; finally, u; in Eq. (12.19)
is to be multiplied by (L/2r)t. These three factors cancel, and so Egs.
(12.20) and (12.21) are unaffected by the choice of normalization of the
momentum eigenfunctions.

Classical Limit. We have seen in Sec. 7 that a wave packet always
moves like a classical particle in so far as the expectation values of its
position and momentum are concerned. However, classical dynamics is
only useful as a description of the motion if the spreading of the wave
packet can be neglected over times of interest in the particular problem.

As a simple example of the kind of parameter that indicates when the
classical limit is realized, we consider a wave packet that corresponds to a
classical particle moving in a circular orbit of radius a and period . We
shall assume that this packet is sufficiently well localized so that the
potential energy does not vary appreciably over its dimensions. Then
the classical theory can provide a useful description of the motion only
if a wave packet like that discussed above spreads by an amount that is
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small in comparison with a during a time that is large in comparison
with 7. The smallest spread of a packet during a time interval of mag-
nitude £ is attained when Az is chosen to be of order (At/m)t. We thus
require that (#it/m)} << a when ¢> T. This condition may be simply
expressed by saying that the angular momentum 2rma?/T of the particle
must be very large in comparison with . Thus for most atomic systems,
where the angular momentum of each electron is of order %, a wave packet
corresponding to a well-localized particle spreads so much in one period
that this type of description of the motion is not of physical interest.

Problems

1. Given three degenerate eigenfunctions that are linearly independent although
not necessarily orthogonal. Find three linear combinations of them that are orthog-
onal to each other and are normalized. Are the three new combinations eigen-
functions? If so, are they degenerate?

2. Show that so far as the one-dimensional motion of a particle is concerned, the
functions u.'(z) = 8(x — ') for all real =’ constitute a complete orthonormal set,
and that each of them is an eigenfunction of the position variable z with the eigen-
value z’. Set up the position probability function and compare with that obtained
in Seec. 7.

3. If the potential energy V(z) in a one-dimensional problem is a monotonic
increasing function of z and independent of the time, show that the functiong
uy'(z) = (dV/dz) ~},er 3(x — 2') for all real /, where V' = V(z’), constitute a com-
plete orthonormal set of eigenfunctions of the potential energy with eigenvalues V.
Find the probability function for the potential energy, and show that it has the prop-
erties that would be expected of it.

4. What changes are needed in the discussion of the momentum .eigenfunctions
given in Sec. 11 if normalization is carried through in a box of rectangular parallels
epiped shape rather than in a box of cubical shape?

6. Find two other representations for the Dirac & function like that given in Eq.
(11.9).

6. Verify each of Egs. (11.13) involving & functions.

7. Show that the two Eqgs. (11.20) are correct: that the momentum probability
function defined in Eqs. (11.19) and (11.17) for a normalized y sums or integrates to
unity.

8. The expression in square brackets in the integrand of Eq. (10.19) enables one to
calculate y at time ¢ in terms of ¢ at time ¢,. If this expression is called G(z,2’,¢.t0) in
the one-dimensional case, then y(z, ) = [G(z,z ttoN/(:c ,to)dz’. Show that for a free
particle in one dlmensmn

Gz, 2 tt) = [%5]* exp [92"7((%%;))2]

Assume that ¢ has the form of the normalized minimum wave packet (12.11) at o, = 0;
use the above result to find ¢ and |¢|? at another time ¢.



CHAPTER IV
DISCRETE EIGENVALUES: ENERGY LEVELS

The formalism that was developed in Chap. II and elaborated in Chap.
IIT will now be applied to the explicit computation of discrete energy
levels and the corresponding eigenfunctions. The next chapter will
take up situations in which the energy eigenvalues are continuously
distributed. Thus we are concerned here with bound states in which the
particle is restrained by the external forces (potential energy) to a
particular region of space, and in the next chapter with collision problems
in which the particle can approach from and recede to infinite distance.

The relatively few potential energy functions V' (r) for which analytic
solutions of the wave equation (8.2) are possible, are important beyond
these immediate problems, since they often serve as bases for approxi-
mate calculations on more complicated systems.

13. LINEAR HARMONIC OSCILLATOR

The one-dimensional motion of a point mass attracted to a fixed
center by a force that is proportional to the displacement from that center,
provides one of the fundamental problems of classical dynamics. Its
study is important not only for itself, but also because more complicated
systems can often be analyzed in terms of normal modes of motion that
are formally equivalent to harmonic oscillators. The linear harmonic
oscillator in quantum mechanics is similarly of importance both for the
study of such problems as the vibrations of individual atoms in a mole-
cule, and for the analysis of more complicated systems such as crystals
and (as we shall see in Chap. XIII) quantized wave fields.

Asymptotic Behavior. The force F = —Kz can be represented by
the potential energy V(z) = $Kz? so that Eq. (8.5) becomes

h? d2u

T 2mdx?

It is convenient in desling with an equation of this type to rewrite it in
dimensionless form. To this end we introduce a dimensionless inde-
pendent variable § = oz, and a dimensionless eigenvalue A, and attempt
to put Eq. (13.1) in the form
d*u

dg?

+ $Kz*u = Eu (13.1)

+A=-u=0 (13.2)
60
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Comparison of Egs. (13.1) and (13.2) shows that this is possible if

mK 2E (m\! 2E
at = —h—.z—’ A= _h_ (—I—() = h—w; (133)

where w. = (K/m)}is the angular frequency of the corresponding classical
harmonic oscillator.

The solution of Eq. (13.2) is facilitated by first examining the domi-
nant behavior of « in the asymptotic region ¢ — + .1 For sufficiently
large £ it is apparent that u(§) = £reti# gatisfies Eq. (13.2) so far as the
leading terms (which are of order £%u) are concerned, when n has any
finite value. The boundary conditions of Sec. 8 permit us to keep only
the minus sign in the exponent. This suggests that it might be possible to

find an exact solution of Eq. (13.2) of the form

u(f) = H(§e 1 (13.4)

where H(%) is a polynomial of finite order in &. Substitution of Eq.
(13.4) into Eq. (13.2) gives as the equation for H (%)
H' —2tH' + (A — 1)H =0 (13.5)

where primes denote differentiation with respect to £.
Energy Levels. We now find a solution for H in the form
H() =&@+at+a2+ - -+ ), ag # 0, s=0 (13.6)

This is necessarily finite for £ = 0. Equation (13.5) is to be valid for all
values of £, so that when Eq. (13.6) is substituted into it, the coefficient
of each power of £ can be equated to zero.

s(s—1ap=0
(s+ Dsa; =0
s+2)(s+1az—2s+1—Nay,=0 (13.7)

(s+3)(s+2)as — (2s +3 — Na1 =

(s+v+2)s+v+1ay2— 2s+2v+1—2Na, =0

where » is an integer. Since a, cannot be zero, the first of Egs. (13.7)
tells us that s = 0 or s = 1. The second equation tells us that s = 0,
or a; = 0, or both. Then the third equation gives us a, in terms of a,,
the fourth gives us as in terms of a;, and the-general equation gives us
a,49 in terms of a,.

It follows from Eqs. (13.7) that the presence in the series (13.6) of a
finite or an infinite number of terms depends on the choice of s, a;, and

1 We follow the polynomial method of A, Sommerfeld, ““Wave Mechanics,” p. 11
(Dutton, New York, 1929).
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the eigenvalue X. If the series doés not terminate, its dominant asymp-
totic behavior can be inferred from the coefficients of its high terms

Qyy2 g

a, voe p

This ratio is the same as that of the series for £# with any finite value of
n. Equation (13.4) shows that this behavior for H violates the boundary
conditions on u for large |£|.

Thus the series (13.6) must terminate. This means that

A=2s4+2vr+1;

» must be an even integer, since a, # 0 and otherwise the even-subscript
terms would form an infinite series. Since the odd-subscript series can-
not then terminate, we must choose a; = 0. The index s can still be
either 0 or 1, and corresponding to these two values X is equal to 2v + 1
or 2v + 3, where » is an even integer. We may express both cases in
terms of a quantum number 7n

A=2n+1 E.=n+Hhe n=012 ... (13.8)

Zero-point Energy. The infinite sequence of energy levels (13.8) has
the equal spacing postulated in 1900 by Planck, which is in agreement
with the quantization rules of the old quantum theory. However, the
finite value of the ground-state energy level %fiw,, which is called the
zero-point energy, is characteristic of the quantum mechanics, and is
related to the uncertainty principle in the same manner as is the finite
lowest energy level for the square well with perfectly rigid walls (Sec. 9).
The total energy is of order (Ap)?/m + K(Az)?, where Ap and Azx are
measures of the spreads in momentum and position, as defined in Sec. 12;
if this is minimized, taking account of the uncertainty relation (3.1),
it is easily seen that the minimum Ap is of order (Km#?)t, so that the
minimum total energy is of order (K /m)? or fiw..

Parity. It follows from Eqs. (13.8) and (13.7) that n is the highest
value of s + » in the series (13.6) for H. If we denote the corresponding
polynomial by H,(£), we see that H, is of degree n in £, and is wholly
even or odd according as n is even or odd. Since 73 is even and has no
nodes, the corresponding eigenfunction u,(£) has the parity of n, and has
n nodes. These eonclusions are in agreement with the earlier results of
Secs. 8 and 9.

Hermite Polynomials. The polynomial of order » that has the parity
of n and is a solution of Eq. (13.5) with A = 2n 4 1

H" — 2tH' + 2nH, = 0, (13.9)
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is called the nth Hermite polynomial H,(£). It is clear from the fore-
going solution of Eq. (13.5) that these conditions define H, uniquely
except for an arbitrary multiplying constant. It is not necessary, then,
to use the recursion relations (13.7) to study the detailed properties of
the H,, if some other formulation of them can be found that is consistent
with these conditions. A far more convenient formulation is actually
available, which expresses the H, in terms of a generating function S(&,s).

S(¢s) = 352—(8—5)’ = g—sttast
= H;}('E) (13.10)
n=0

If the exponential in Eq. (13.10) is expanded out in powers of s and £, it is,
seen that a given power of s is associated only with powers of £ that are
equal to that power or less than it by an even integer. Thus H,(§)
defined in this way is a polynomial of order n that has the parity of n.

To show that this H, satisfies the differential equation (13.9), we
differentiate both sides of Eq. (13.10) first with respect to £ and then with
respect to s.

6? 2se—"‘”"-—z2—s—_+~ Hu () = 2 H'.()

88 - (~as+opemrne = )y (EBA2O g () z(n VH(2)

n

Equating equal powers of s in the sums of these two equations gives
respectively
H;l = 2nH'n—1
Hnpy = 2¢H, — 2nH, (13.11)

The lowest order differential equation involving only H, that can be
constructed from Egs. (13.11) is easily seen to be Eq. (13.9). Thus the
H,(%) given by Eq. (13.10) are the Hermite polynomials.

The relations (13.11) may be used for the calculation of the H, and
their derivatives, or an explicit expression obtainable directly from the
generating function may be used. If S(,s) is differentiated » times with
respect to s and s is then set equal to 0, Eq. (13.10) shows that the result
is simply H,(£). Now for any function of the form f(s — £) it is apparent
that

of _ _of

3s 33
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Thus

S a7 an
— = gt (-7 — nek? __ o—(s—§)2
3 = e ¢ (—1)me 3

This gives an expression for the nth Hermite polynomial
H,(¢) = (—1)”65’68—2,,6—5’ (13.12)

The first three polynomials calculated from Eq. (13.12) are
Ho(¢) =1, Hi(§) =2¢  Ha(f) =48 — 2

Harmonic-oscillator Wave Functions. The generating function is
also useful for the calculation of integrals involving the harmonic-oscil-
lator wave functions (13.4)

Un(x) = N,H,(ar)e 1 (13.13)

Suppose, for example, that we wish to normalize u,(z); this is equivalent
to choosing the constant N, such that

/_ |un(z)|2dx = |N"I / HX(§)e¥dt =1

The integral on the right can be expressed as a series coefficient in the
expansion of an integral containing the product of two generating
functions.

f T etutgrtutebdy = z En,m, / Hu () Hn(B)evdg  (13.14)

n=0m=0

The integral on the left of Eq. (13.14) is readily evaluated directly to give

wle?t = g}
n!

(13.15)

n=0

If equal powers of s and ¢ are equated in the series an the right sides of Egs.

(13.14) and (13.15), we obtain the results
[, Hx®eeag = mzml
- (13.16)
[7 H@HLDetde =0, nm

The first of Egs. (13.16) tells us that the normalizing constant can be
chosen to be

«
N, = (m) (13.17)
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where a constant multiplicative complex phase factor of unit magnitude
is still arbitrary. The second of these equations tells us that u.(z) and
un(z) are orthogonal to each other if n 5% m; this is in agreement with the
general result obtained in Sec. 10 for nondegenerate energy eigenfunc-
tions, since in accordance with Eq. (13.8), E, # E, if n # m, and so
there is no degeneracy.

The integral

| a@mun@as =T [ e na@ea

is typical of others that can be evaluated with the help of the generating
function. The two series expressions for the integral,

/j e—a’+2SEe—t2+2lE£e—€’d£ = z z 1‘:’;_;:' fj an(E)Hm(E)e_E’dE

n=0 m=0
and

r*(s + t)ezu = gt 2 2"(s"+1t" + S”t”+1)

n!

n=0

may be equated term by term. With the help of Eq. (13.17), we get

Y
cl!(" er 1Y, m=n+1
_ _ 3
/_ 3 Un () 2UR(x)d2 = %(g) , m=mn—1 (13.18)
0, otherwise

Correspondence with Classical Theory. Plots of the first six har-
monic oscillator wave functions are shown in Fig. 10. It is apparent
that the position probability densities |un|? associated with these station-
ary wave functions have little resemblance to the corresponding densities
for the classical harmonic oscillator; the latter are proportional to
(8 — £~ where & is the amplitude of the classical oscillator whose
energy is equal to the quantum-mechanical eigenvalue. The agree-
ment between classical and quantum probability densities improves
rapidly with increasing n. Figure 11 contains a plot of |u.|? for n = 10
(solid curve), and of the density of a classical oscillator of total energy
2'%w. (dashed curve). The agreement is quite good on the average, the
principal discrepancy being the rapid oscillations in |u,|2
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The expectation value for the potential energy can be obtained from
Eq. (7.6):

(V)n = /_: Tn(2)5Kxun(2)de

1
= iK 2”—2j—) = 3(n + Dho. = $Ea

where [22|u.|2dz can be calculated with the help of the generating func-
tion in analogy with the evaluation of Eq. (13.18). Thus for any value
of n, the average potential and kinetic energies are each half of the total
energy, just as is the case with the classical oscillator.

In similar fashion it can be shown that (z) = (p) = 0 for any
harmonic-oscillator wave function, so that Eq. (12.1) tells us that
(Az)? = (z?), and (Ap)? = (p?. It is then easy to see that the uncer-
tainty product is

Az - Ap = (n + $)h

This has the minimum possible value 3% of Eq. (12.7) for the ground-
state eigenfunction

;]
uo(z) = %e—*“"’ (13.19)

which, as would be expected, is of the form of the minimum packet
(12.11). Thus the minimum packet happens to be an eigenfunction of
the harmonic-oscillator wave equation if its Az is properly related to K
and m.

Oscillating Wave Packet. In accordance with Eq. (10.18), the
general solution of the time-dependent Schrédinger equation for the
harmonic oscillator

. 0 h? 92
iha—t Y(z,t) = (— 5 3t + %Kx’) ¥(x,t)

can be expanded in terms of stationary wave functions
kot iEnt ko
Y(x,d) = E Aun(z)e” = ¢ tios z Aun(z)eimt  (13.20)
n=0 n=0
where the A, are arbitrary constants. Thus apart from the phase
factor e~} (z,?) is a periodic function of £ with the period of the classical
oscillator 2r/w,. This suggests that it might be possible to find a solution
in the form of a wave packet whose center of gravity oscillates with the
period of the classical motion.
To investigate this possibility, we assume that at £ = 0 the ¢ of
Eq. (13.20) has the form of the normalized minimum packet (13.19),
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except that the center of gravity is displaced in the positive z direction
by an amount a.

- 3
Ha0) = ) Auinle) = & e (13.21)

n=0

We can make use of the orthonormality of the u, to calculate a particular
coefficient 4, by multiplying Eq. (13.21) through by @.(z) and integrat-
ing over z.

"4 No [° . B
An = / °°u,,.(ac)'//(x,O)dx =m/_mHm(5)e Yo ¥a'dE £ = aa

The integral on the right can be evaluated with the help of the generating
function by equating term by term the two series expressions for the
integral

-

© ~ sm «©
/ et Bttt dE = 2 i / H . (§)e—(B—ttortitgg
n! |_.
n=0
and

phe-tittets — phg-tte Y (£
n!
n=0
On making use of Eq. (13.17), we obtain

ne— i
" (2mnl)t

Substitution of these A, into Eq. (13.20) gives

A (13.22)

o e—itey H, .
‘P(x,t) = ;i e—*f —3 &0 —}iwet z _T(!Ez (_%Eoe—uut)n
n=0

3
o ) .
=4 exp (— 382 — 182 — Liwd — LEde ot | EEoe—io)

3
= 5 exp [~ $(§ — £o cos wd)?
— {(Gwd + Efo sin wit — 1£2 sin 2w.t)]

where the sum is evaluated with the help of the generating function
(13.10). The absolute square of this wave function gives a position
probability density

a

Wzl = & emotemeemo
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This shows that ¢ represents a wave packet that oscillates without
change of shape about 2 = 0, with amplitude a and the classical frequency.

As a — 0, ¢ approaches the lowest energy eigenfunction ue(x)e™ ¥,
The larger a becomes, the larger the number of stationary states that
contribute significantly to the packet, and the larger the quantum num-
ber no for which A4, of Eq. (13.22) has a maximum. For n> 1, we can
use Stirling’s formula to maximize In A4,; neglecting terms of order In n
and lower

InA,=2n(ln & —3In2) —in(lnn — 1)

o 2 48 = é{haz (13.23)
We

Thus the energy level E,, = (no + %)Aw., from whose neighborhood most
of the contribution to ¥ comes, is approximately equal to the energy
1Ka? of the classical oscillator that has the same amplitude.

14. SPHERICALLY SYMMETRIC POTENTIALS IN THREE DIMENSIONS

It is generally impossible to obtain analytic solutions of the three-
dimensional wave equation (8.2) unless it can be separated into total
differential equations in each of the three

space coordinates. It has been shown! Z‘;’%”
that there are 11 coordinates systems
in which the free-particle wave equa- |p
tion [Eq. (8.2) with ¥V = 0] can be /]
separated. One of the most important "6, Iz
of these is the spherical polar-coordinate |
system, in terms of which the rectangular !
coordinates are given by (see Fig. 12) _¢>\\\\ J/ B o
z = rsin 60 cos ¢ - :__I:Tl___b
. . .12, ati t n rec-
y=rsmnfsné tz:l()}gular and esphteorxilcal go‘iv:re coordi~
z=rcos 6 nates of a point P.

If the potential energy is spherically symmetric, so that V(r) = V(r)isa
function only of the magnitude r of r measured from some origin, the wave
equation can always be separated in spherical coordinates. Many prob-
lems of physical interest can be represented exactly or approximately
in terms of spherically symmetric potentials of various shapes. In
this section we effect the separation, and solve the resulting total dif-

1 L. P. Eisenhart, Phys. Rev., 46, 428 (1934). See also L. Pauling and E. B. Wilson,
Jr., “Introduction to Quantum Mechanics,” Appendix IV (McGraw-Hill, New York,
1935).
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ferential equations in § and ¢. The next two sections deal with the
solution of the radial equation for particular forms of V(r).

Separation of the Wave Equation. The wave equation (8.2) with a
spherically symmetric potential energy may be written in spherical
coordinates

l1af,d 1 af. .o 19
B %[1725;(7‘ 5‘) +r2sin0%(smoa—0) +rzsin205?] b
+ V(r)u = Eu (14.1)
We first separate the radial and the angular parts by substituting
u(r,0,¢) = R(r)Y(6,9)
into Eq. (14.1) and dividing through by wu.
1d{( ,dR 2mr? o,
R ar (T E;) + e [E — V(n)]
1 1 a (. )4 1 o%Y
=7 [ST 5 30 (Sm 6 W) T smre W] (142)

Since the left side of Eq. (14.2) depends only on r, and the right side
depends only on § and ¢, both sides must be equal to a constant that we
call \. Thus Eq. (14.2) gives us a radial equation

1d{(,dR 2m A _
Y= (r W) + {F [E — V()] — 72} R=0 (14.3)
and an angular equation
1 3 (. ,aY 1 Y B
-————Sin ] 5@ (sm 0 W + "—‘—'Sinz ] W + AY =0 (144)

The angular equation (14.4) can be further separated by substituting
Y (6,9) = 6(6)®(¢) into it and following the same procedure to obtain

ax®
1 df. ,do v _
m%(sm "@) + (* - m) 6=20 (14.6)

The ¢ equation (14.5) can be solved at once; its general solution may be
written
&(¢) = Aet¢ + Beite v =0

() = A + B, y=0 14D
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The requirement of Sec. 8 that ®(¢) and d®/d¢ be continuous through-
out the domain 0 to 2= of ¢ demands that » be chosen equal to the square
of an integer. We thus replace Eqgs. (14.7) by

(@) = (2m) ~deim (14.8)

where now all physical meaningful solutions are included if m is allowed
to be a positive or negative integer or zero;! the multiplying constant is
chosen equal to (2r)~% in order that ® be normalized to unity over the
range of ¢. )

Legendre Polynomials. Unless V() is specified, the farthest we can
carry our treatment is the solution of the 6 equation (14.6), where now
v = m? Ttis convenient to substitute w = cos 8 for 6, and put

6(0) = P(w),
when Eq. (14.6) becomes

E% [(1 — w?) %] + ( — %—;)P —0 (14.9)

Since the domain of 6 is 0 to«, the domain of wis 1to —1. The procedure
for solving Eq. (14.9) is in many respects similar to the solution of the
harmonic-oscillator wave equation presented in Sec. 13, and will not be
given in detail here.? Since Eq. (14.9) is a second-order differential
equation, it has two linearly independent solutions. Except for particu-
lar values of A, both of these are infinite at w = +1, and in accordance
with Sec. 8 are not physically acceptable. If however A = I(l + 1),
where [ is a positive integer or zero, one of the solutions is finite at w = +1
(the other is not); this finite solution has the form (1 — w?)}=l times a
polynomial of order I — |m| in w, and has the parity of I — |m)|.

The physically acceptable solutions of Eq. (14.9) when m = 0 are
called the Legendre polynomials Py(w). Just as is the case with the Her-
mite polynomials, their properties may be discussed in terms of a generat-
ing function

T(w,s) = (1 — 2sw + s?)—%

= 2 Py(w)s, s < 1. (14.10)
=0

7 At the very slight risk of confusion with the mass of the particle, we make use of
the customary symbol m for the quantum number associated with the coordinate ¢.

2 For a complete discussion of this equation, see E. T. Whittaker and G. N. Watson,
““A Course of Modern Analysis,” 4th ed., Chap. XV (Cambridge, London, 1935).
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Differentiation of the generating function with respect to w and s leads to
relations that are analogous to Egs. (13.11) for the Hermite polynomials.

(1 —wz)P§= -—l’lDPl+le_1
(@ + )Py = (2 + D)wP, — 1P,

where primes denote differentiation with respect to w. The lowest order
differential equation involving only P; that can be constructed from Egs.
(14.11) is easily seen to be Eq. (14.9) with A =I(l 4+ 1) and m = 0.

For m not necessarily equal to zero, Eq. (14.9) has physically accept-
able solutions if A = I(I 4+ 1) and |m| < I. These solutions, which are
called associated Legendre functions, are expressible in terms of the
Legendre polynomials

Pp(u) = (1 — wtin

(14.11)

dim|
dw'™l

This can be shown by substitution of Eq. (14.12) into the equation that is
obtained by differentiating |m| times the equation for P;(w). The
generating function for the associated Legendre functions is obtained by
differentiating Eq. (14.10) |m| times with respect to w and multiplying
by (1 — w?)ilml,

Py(w) (14.12)

2|m) 11 — w?)timlglm!
27 (|m|)1(1 — 2sw + s?)Imi+E

Tw(w,8) =

= 2 Pp(w)st (14.13)

I=|m|

Spherical Harmonics. The angular part Y:,(0,¢) of the complete
wave function, which is a solution of Eq. (14.4) when X\ = I(l 4 1), is
called a spherical harmonic. It is apparent that

Yin(6,6) = NimP7(cos 6)®n(4) (14.14)

where ®.(¢) is given by Eq. (14.8), and N}, is the normalization constant
for the associated Legendre function.

The same proof that was given in Sec. 10 for the orthogonality of the
energy eigenfunctions may be used to show that solutions of Eq. (14.4)
corresponding to different eigenvalues A or ! are orthogonal. The
eigenvalue ! is, however, (2! + 1)-fold degenerate, since there exist
linearly independent solutions Y;,(8,¢) for this value of I and all integer
values of m between +! and —I. The choice of Eq. (14.8) for &,.(¢)
makes these degenerate eigenfunctions orthogonal. We have then that
the integral

T T - . 1 27
L [ V10 (6,6) Yrm(0,9) sin 0dodg = [ ﬁ) VimY vwdwdé
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vanishes unless I = I’ and m = m/. It is interesting to note that there is
no more orthogonality present than is necessary to make this integral
vanish when it should. Thus the ¢ part of the integral vanishes when
m % m’ without regard for the ! values;the 8 or w part of the integral

vanishes only when ! I’ and |m| = |m/|, since for m % m’ the ortho-
gonality is taken care of by the integration over ¢.
The integral
/_‘1 Py (w) Py (w)dw (14.15)

can be evaluated in various ways, for example, by using the generating
function (14.13) in a manner similar to that described in Sec. 13. As
expected, the integral (14.15) vanishes unless I = 7/, when it has the
value [2/(2l + DI + |m|)!/@ — |m|)!]; thus Ni., which contains an
arbitrary complex phase factor of unit magnitude, may be taken to be
the reciprocal of the square root of this quantity. The normalized
spherical harmonics are then

B 2l+1(z—|m|)!]* " ims
Yin(0,4) = [ I U Fm)! Pp(cos )e (14.16)
The first four spherical harmonics are
1 3V ..
Yo,o = '@’ Y1,1 = (g) sin fe*

3\ 3\
Yi0=|5) cosé, Y1 = (=) sin gei¢
4 8

Parity. The concept of parity introduced in Sec. 9 can now be
extended to three-dimensional problems of the type discussed in this
section. Suppose that the position coordinate r is reflected through the
origin so that r is replaced by —rj; this corresponds to replacing z by —z,
y by —y, and z by —z, or to replacing § by # — 6, ¢ by ¢ + m, and leaving
r unchanged. It is clear that the only change in the wave equation
(14.1) is that u(r,6,¢) is replaced by u(r,m — 6,6 + w), the rest of the
equation being unaffected. Then the discussion of Sec. 9 shows that
orthogonal linear combinations of degenerate eigenfunctions can be
found that have definite parities, and that a nondegenerate eigenfunction
must have a definite parity.

The energy levels for a spherically symmetric potential are degenerate
at least with respect to the quantum number m, for I > 0. In this case,
the degenerate eigenfunctions all have the same parity, which we now
show to be the parity of I. When r is reflected through the origin, the
radial part R(r) of the solution is unchanged, the ¢ part ®(¢) given by
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Eq. (14.8) has the parity of |m|, and the 6 part Py (cos 6) has the parity
of I — |m/|, since P*(w) is equal to an even part (1 — w?)}"! times a poly-
nomial in w that has the parity of I — |m|with respect to change in sign
of w or cos 8. Thus Y;.(0,4), and hence u(r), has the parity of 1.

Angular Momentum. The radial wave equation (14.3) may be
rewritten in a form that resembles the one-dimensional wave equation
(8.5). If we put R(r) = x(r)/r, the equation for the modified radial
wave function x may be written

h? d*x (1 + 1)n?

Thus the radial motion is similar to the one-dimensional motion of a
particle in a potential
T+ 1)A?

2mr?

V() + (14.18)

The additional “potential energy’’ can be seen physically to be connected
with the angular momentum in the following way. A classical particle
that has angular momentum M about the axis through the origin per-
pendicular to the plane of its orbit has the angular velocity w = M /mr?
when its radial distance from the origin is ». An inward force

2

melr = —

mr
is required to keep the particle in this path; this ‘“centripetal force” is
supplied by the potential energy, and hence adds to the V' (r) that appears
in the radial motion an additional ‘‘centrifugal potential energy’
M?/2mr?.  This has exactly the form of the extra term in (14.18) if we put

M =10+ 1]Pr

The foregoing physical argument for identifying the quantum number
! with the angular momentum of the particle can be put in quantitative
form by finding the operators that correspond to the three components
of the angular momentum vector. Classically, we havé that M = r X p,
so that we take in quantum mechanics

. d d
M, = yp. — zp, = —zh(yég— z@)
M, =2p,—aps = —ih (22 — 22 14.19
v = 2P —ap; = —th (2o — T o (14.19)
. 2 i}
M. = zp, — yp. = —zh<x5§— y@>
Equations (14.19) can be transformed into spherical polar coordinates to
give
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M, =k (sm ¢ — +cot 0 cos ¢ ¢>

M, = ik (— cos ¢ 6_5 + cot 0 sin ¢ %> (14.20)
K4

¢

The operator that represents the square of the total angular momentum is
then found from Egs. (14.20) to be

M? = M2+ M+ M

1 9 d 1 9
= —}2 —_—
h [sin 6 90 (Sm 6 ao) T o a¢2] (14.21)
Comparison of Egs. (14.21) and (14.4) shows that Yin(0,4) is an eigen-
function of M? with the eigenvalue I(l 4 1)A2.

M2Y1(8,¢) = U1 + 1)A*Y1n(6,4) (14.22)

In similar fashion, it follows from the structure of Eq. (14.8) and the last
of Egs. (14.20) that ®,.(¢), and hence also Y1.(6,9), is an eigenfunction of
M, with the eigenvalue m#.

M.Yin(0,0) = mhYn(0,4) (14.23)

Thus the separation of the wave equation in spherical polar coordi-
nates results in wave functions that are eigenfunctions of both the total
angular momentum and the component of angular momentum along
the polar axis. The quantum number [ that appears in Eq. (14.22) is
called the azimuthal or orbital angular-momentum quantum number. The
quantum number m that appears in Eq. (14.23) is called the magnetic
quantum number, since it is of importance in the theory of the Zeeman
effect (see Sec. 39), which involves the component of angular momentum
along the magnetic field (¢ axis). It should be noted that the wave
equation cannot in general be separated in this way and angular-momen-
tum eigenfunctions obtained if the potential energy V(r) is not spherically
symmetric. This corresponds to the classical result that the angular
momentum is a constant of the motion only for a central field of force
(which is describable by a spherically symmetric potential). There is,
however, the characteristic difference between classical and quantum
theory that all three components of M can be precisely specified at once
in the classical theory, whereas only M, and M? can in general be pre-
cisely specified at once in the quantum theory, since Yin(6,¢) is not an
eigenfunction of M, and M, (except for the case | = 0). It is possi-
ble to relate this result to the uncertainty principle. The choice of
the, direction of, the polar axis that distinguishes M, from M, and M, is,
of course, completely arbitrary; it corresponds to the arbitrariness of

M.

—h
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the direction of space quantization in the absence of external fields in
the old quantum theory.

16. THREE-DIMENSIONAL SQUARE WELL POTENTIAL

We are now in a position to find the bound-state energy levels that
correspond to particular choices of the
vir) potential energy V(r) and of the angular-
momentum quantum number [, by solving
r the radial wave equation (14.3). As afirst
example, we consider the square well poten-
tial of finite depth, for which V(r) = —V,,
r < a, V(r) = 0,r > a,where V,is positive
(see Fig. 13). A spherical region of this
type in which the potential is less than that
of the surroundings serves to attract a par-
Fic. 13. Spherically symmet-  ticle just as in the one-dimensional case
ric square well . potential of considered in Sec. 9.
depth Vo and radivs a. Zero Angular Momentum. When | =
0, it is easier to solve the wave equation in the form (14.17) than in the
form (14.3). In this case, R(r) = x(r)/r, and the wave equation is

Y%

2 2
—;%‘(%_VOX=EX, r<a
W dn (15.1)
—2_77-187'_2=EX’ r>a

The solution of Eqs. (15.1) is the same as that obtained for the finite
potential step in Sec. 9, except for three points: first, the energy scale is
lowered everywhere in the present problem by an amount Vy; second, the
domain of r is 0 to + «, in place of the domain — © to + « for z; and
third, the boundary condition that the wave function not become infinite
at r = — o is now replaced by the same condition at r = 0.

From the discussion of Sec. 9, it is apparent that the solutions of
Eqgs. (15.1) are

_ i

x(r) = A sin ar + B cos ar, a=[g_m_(Vo_—|ED]’ r<a,
3

x(r) = Ce—ﬂf, ﬂ = (2mIEI) ) r>a

where we are interested in bound-state energy levels for which E < 0.
The requirement that R(r) be finite at r = 0 demands that we set B = 0
in the first of Eqgs. (15.2). Thus the solution has the form of the odd
parity solution of the one-dimensional problem. The energy levels are
obtained by equating the two values of (1/x)(dx/dr) at r = a (this is

(15.2)
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equivalent to making (1/R)(dR/dr) continuous there), and are given by
solving

acot aa = —f (15.3)
which is the same as Eq. (9.6). Then it follows from the discussion of
Fig. 9 that there is no energy level unless Voa? > 7%h2/8m; there is one
bound state if 72k2/8m < Vea? < 9r?h?/8m, ete.

Interior Solutions for Arbitrary I. For nonzero values of [, it is more
convenient to work with the original radial equation (14.3) than with the
equation for x. If we put p = ar, where « is defined in Eq. (15.2), the
wave equation for r < a becomes

d*R | 2dR I+1) _

W+;—£+[l— p ]R—O (15.4)
The strong resemblance between Eq. (15.4) and Bessel’s equation sug-
gests that R(r) can be expressed in terms of Bessel functions. This is in
fact the case; if we define the ‘“‘spherical Bessel function” ji(p) that is
regular at p = 0 by?

:
Jilp) = (%:;) J143(p) (15.5)

where J is an ordinary Bessel function of half-odd-integer order, it is
easily verified that ji(p) satisfies Eq. (15.4). In similar fashion, the
‘““spherical Neumann function” is

mm=ew%@1Hw

It can be shown? that J;,4(p), where ! is a positive or negative integer
or zero, is expressible as a sum of products of sin p and cos p with poly-
nomials of odd order in p—% In particular, explicit expressions for the
first three j’s and n’s are

. sin p cos p
= n == —
Jo(p) P 4 o(p) P
. sin cos cos sin
i) =55 = =5 m(p) = — =F ==~
(15.6)

. 3 1\ .
Jelp) = 5 — o) sme

3 3 1 3 .

- 5cosp, Map) = —\——=)cosp— 5sinp
P P p

The leading terms for small p are?

1 This definition and the properties of the j; and n; are taken from P. M. Morse,
¢“Vibration and Sound,” 2d ed., pp. 316-317 (McGraw-Hill, New York, 1948).

2 G. N. Watson, ‘“Theory of Bessel Functions,” 2d ed., p. 52 (Macmillan, New
York, 1945).

3 Equations (15.7) are useful approximations for p? somewhat less than 4 46 and
2, respectively (G. N. Watson, op. cit., p. 44).
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1

. P
Jz(P)j:;’l.3.5...(2l+1)’ (15.7)
() —Li1B05 @) -
m(p 0 Pz ’
and the leading terms in the asymptotic expansions are!
. 1
Jip) —2 = cos [p — (1 + 1)7]
? ’; (15.8)
n1(p) e sin [p — 3(I + V)]
Some properties of the j's and n’s are
J73(e)p’dp = 30%73(p) + no(p)fa(p)]
Jn§(p)p*dp = $p*[n(p) — Jo(p)na(p)]
. . 1 (15.9)
n-1(p)ju(p) — nu(p)ji-1(p) = pi 1>0
. d d . 1
Jup) @ n(p) — malp) d—th(P) =
The following are properties of both the j’s and the »n’s:
. . 2041,
iao) + Gunae) = 22 ), 1> 0
d . 1 . .
’d—th(P) = yri [lia(p) — @ + Vjna(o)]
d . .
a ["4(p)] = p*Yia(p), 1>0 (15.10)
d . .
ap [07%u(p)] = = Jur1(p)
Jir(p)dp = — jolo)
[3o(p)p*dp = p%1(p)
Jit(e)p%dp = 3p%j(p) — fi-1(p)frr1(p)] 1>0
Since R(r) must be finite for r = 0, the desired solution for r < a is
R(r) = Aji(ar) (15.11)

Exterior Solutions for Arbitrary . The wave equation for r > a can
be put in the form (15.4) if we redefine p to be 787, where g is given in Eq.
(15.2). Since the domain of p does not now extend in to zero, there is

1 Equations (15.8) are useful approximations for p somewhat larger than 3I(l 4+ 1)
(G. N. Watson, op. cit., p. 199); however, the magnitudes (although not the phases) of
71 and m; are given to good approximation by (15.8) if p is somewhat larger than I,
which is approximately the value of p for which the magnitude of j; is greatest.
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no reason why #n; cannot appear in the solution. The linear combination
of j; and n; to be selected will be determined by the asymptotic form,
which must fall off exponentially for large r. This suggests that we define
spherical Hankel functions ’

kP (p) = Ju(p) + imlp)
R (p) = ji(e) — inu(p) (15.12)

which from Egs. (15.8) have the asymptotic forms

h§P(p) —— 1 eilo— 10+D)7)

e f (15.13)

h?(p) —— — e~ ilp— 10+ D)7]

p® p

It can be shown that the asymptotic expansions, of which Eqgs. (15.13)

give the leading terms, contain nc terms for which the exponent has the
opposite sign to that given.

The desired solution for r > a is then

R(r) = Bh{(ir) = Bj(iBr) -+ inu(i8r)] (15.14)
The first three of these functions are
WP (ipr) = — o e
hP(Br) = ¢ (% + B”Lr”) ePr (15.15)
RO (ar) = (% + ot %) et

Energy Levels. The energy levels are obtained by requiring that
(1/R)(dR/dr) be continuous at r = a. When this condition is applied to
the interior solution (15.11) and the exterior solution (15.15) with I = 0,
we obtain Eq. (15.3). This may be written as

2m V002

feot £ = —n, P49’ =—0p

(15.16)

where, as in Sec. 9, we have put £ = aa and 7 = Ba. The same condi-
tion applied to the solutions for ! = 1 reduces, with the help of Egs.
(15.6) and (15.15) to

2mV,a?
h?

Equations (15.17) may be solved numerically or graphically, by the

methods indicated for the solution of Eqgs. (15.16) in Sec. 9. In general,

___=_'_, £2 2 )
7l+712 £ 49 (15.17)



80 QUANTUM MECHANICS [CrAP. IV

there is no degeneracy hetween the eigenvalues obtained from the solution
of equations like (15.16) and (15.17) for various values of I.

It is easy to see how many energy levels Eqgs. (15.17) give for various
values of Voa? without going through the numerical work. A new level
appears whenever 9 is zero or cot £ is infinite. This occurs at ¢ = =,
2r, . . . . Thus there is no energy level with I = 1 when

252
Voa? = 1;—:@—;
there is one bound state with I = 1 if #%2?/2m < Vea? < 27%%/m, etc.

The smallest value of Va? for which there exists a bound state with
l =1, is greater than the corresponding value of Voa? for I = 0; this is
reasonable from a physical point of view. The interpretation in Sec. 14
of the ! term in the radial wave equation as an additional potential energy,
which corresponds to the repulsive ‘‘centrifugal force,” suggests that a
particle possessing angular momentum requires a stronger attractive
potential to bind it than a particle with no angular momentum. Indeed,
it turns out that the minimum square well potential ‘“‘strength” V,a?
required to bind a particle of orbital angular-momentum quantum num-
ber [ increases monotonically with increasing [.!

16. THE HYDROGEN ATOM

The potential energy V(r) = —Ze?/r, which represents the attractive
Coulomb interaction between an atomic nucleus of charge +Ze and an
electron of charge —e, provides another wave equation that can be
solved analytically. This problem is of direct physical interest, since
apart from relativistic effects (see Chap. XII), the calculated energy
eigenvalues are in agreement with the observed energy levels of the hydro-
gen atom (Z = 1), the singly charged helium ion (Z = 2), ete.

Reduced Mass. The Schrodinger wave equation developed in Sec. 6
describes the motion of a single particle in an external field of force.
Now, however, we are interested in the motion of two particles (nucleus
and electron) that are attracted to each other by a force that depends
only on the distance between them. The form of the wave equation to
be used for two particles is suggested by the extension of the wave
equation from one to three dimensions that was given in Sec. 6. This
extension involved making the wave function depend on the three
rectangular coordinates r, y, and z instead of just on z, and introducing

11t can be shown that bound states appear with zero energy for a particular I
value when [(1/R)(dR/dr))s—a = —( + 1)/a; for I > 0 this is equivalent to the
condition ji_;(¢) = 0 where now £ = (2mVa?/A%)}.
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the momenta corresponding to the new coordinates as they appear in the
classical expression for the energy.

A similar extension from three to six rectangular coordinates leads
directly to the Schrodinger wave equation for two particles of masses
m, and may:

i) h? [ 32 92 9?2
'Lhb—t'l’(xliylyzlyx%y?yz%t) = |:_" %(a_x‘% + (@‘% + '&g)

h? (92
- 2—' (ax2+ 2+ 822>+ V(xlyybzl)xhy%z?yt) ]"’(xbyl;zhx?’yﬂyz?;t) (16 1)

where the potential energy is assumed to depend in an arbitrary manner
on all six coordinates and the time. If now the potential energy depends
only on the relative coordinates, sothat V = V(z; — &2, y1 — Y2, 21 — 22),
an important simplification can be made. We define relative codrdinates
2,9,z and coordinates of the center of mass X,Y,Z by

T = X1 — T Y =YL — Yo 2 =21 — 2

MX = miZy + Mox2, MY = muy: + may,, MZ = mz; + mozs (16.2)

Here, M = mi + m, is the total mass of the system. Equation (16.1)
can be rewritten in terms of the new coordinates

12 h% [ 9% 92 o2
w3 = [~ gt (o + oy + o)
h? [ 92 92 FY:
T2 (a_ﬁ TaE T 5@) + V(x,y,z)] ¥ (16.3)
where

mimsq

o (16.4)

v =

is called the reduced mass.

Two separations of the wave equation (16.3) can now be made. First,
the time dependence can be separated out, as in Sec. 8; and second, a
separation can be made into a product of functions of the relative coordi-
nates and center-of-mass coordinates. The process is straightforward
and simple, and results in

_iB+EN
¢(x,y,2X,Y,Zt) = u(x,y,2)UX,Y,Z)e *
- h—2V2u + Vu = Eu (16.5)
2u
h o, T
—o VU =EU

where the y? operators in the second and third equations imply differ-
entiation with respect to the relative and center-of-mass coordinates,
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respectively. The second of Egs. (16.5) describes the relative motion of
the two particles, and is the same as the equation for the motion of a
particle that has the reduced mass p in-an external potential energy V.
The third of Egs. (16.5) tells us that the center of mass of the system of
two particles moves like a free particle of mass M.

In the hydrogen-atom problem, we shall be interested in the energy
levels E associated with the relative motion. In this case, the reduced
mass p is only slightly smaller than the electronic mass, since atomic
nuclei are far more massjve than electrons. '

Asymptotic Behavior. The separation of the relative motion in
spherical coordinates is made as in Sec. 14. The radial equation that.
corresponds to the angular-momentum quantum number 7 is then

_m1d( R _ ze
2u r2dr dr

I+ DA,
- R+—WR—ER (16.6)
where E < 0 for a bound state. We follow the polynomial method used
in the treatment of the harmonic-oscillator equation that was given in
Sec. 13, and first attempt to rewrite Eq. (16.6) in dimensionless form by
introducing a dimensionless independent variable p = ar. Unlike Eq.
(13.1), however, where the leading term for large # was the potential
energy term $Kz? the leading term in Eq. (16.6) for large r is the eigen-
value term E. We therefore choose a so that the £ term becomes a
fixed number; this makes:the dominant asymptotic behavior of the solu-
tion independent of the eigenvalue. We rewrite Eq. (16.6) as

/
1 d(pzfi_Ri)Jr(h_l_’(lj;l))R:o (16.7)

“ptdp " dp p 4

where the particular choice of the number % for the eigenvalue term is
arbitrary but convenient for the following development. Comparison
of Eqgs. (16.6) and (16.7) shows that

_ 8ulE| _2uZe* _Ze*( p \E
=T Mg =\ (16.8)

As with the harmonic-oscillator equation, we first find the dominant
behavior of R(p) in the asymptotic region p— . For sufficiently
large p; it is apparent that R(p) = pret?s satisfies Eq. (16.7) so far as the
leading terms (which are of order R) are concerned, when n has any
finite value. This suggests that we look for an exact solution of Eq.
(16.7) of the form

R(p) = F(p)e~¥ (16.9)
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where F(p) is a polynomial of finite order in p. Substitution of Eq. (16.9)
into Eq. (16.7) gives as thg equation for F(p)

F" 4+ (% — ]_)F’ + I:)\ —1 - i t 1)] F=0 (16.10)
P P P

where primes denote differentiation with respect to p.
Energy Levels. We now find a solution for F in the form

\F(P)=P’(ao+a1p+a2p2+.\..) .
=p'Llp), a0, sz20 (16.11)

This is necessarily finite for p = 0. Substitution of Eq. (16.11) into Eq.
(16.10) gives as the equation for L

pL 4 pl2(s +1) = oL/ + [p(A =5 = 1) +s(s + 1) = U0+ DIL = 0

If p is set equal to zero in this equation, it follows from the form of L
 implied by Eq. (16.11) that s(s+ 1) — Il + 1) = 0. "This quadratic
equation in s has two roots: s =7 and s = —({ + 1). The boundary
condition that R(p) be finite at p = 0 requires that we choose s = [.
The equation for L then becomes

oL +120+1) — ol + (A =1 —1L =0 (16.12)

Equation (16.12) can be solved by substituting in a power series of the
form indicated by Eq. (16.11). The recursion relation between the
coefficients of successive terms of the series is readily seen to be

v+14+1—=2
(CENCE ) R

If the series does not terminate, its dominant asymptotic behavior can
be inferred from the coefficients of its high terms:

av+1 -

(16.13)

av+l l

Ay y>w PV

This ratio is the same as that of the series for p"er with any finite value of
n. Equations (16.9) and (16.11) show that this behavior for L violates
the boundary condition on R for large p.

Thus the series for L must terminate. If the highest power of p in
Lis p®(n’ = 0), we must choose \ equal to a positive integer n,! such that

A=n=n+1+1 (16.14)

1 The result that the allowed values of \ are integers, rather than multiples of
integers, derives from the choice of } for the eigenvalue term in the dimensionless
radial wave equation (16.7).
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n' is called the radial quantum number and n the total quantum number.
Since n’ and [ can take on positive integer or zero values, 7 can have the

values 1, 2, . . .. The energy eigenvalues are given by Eq. (16.8)
— _ g = _ nZ¥
E,= — |E.| = SRt (16.1?)

in agreement with the old quantum theory and with experiment. Unlike
the square well potential problem considered in Sec. 15, the Coulomb
field problem gives rise to an infinite number of discrete energy levels
extending from —uZZ%*/2%42 up to zero, for any finite value of Z. This is
due to the slow decrease in magnitude of the Coulomb potential at large r.

Laguerre Polynomials. The physically acceptable solutions of Eq.
(16.12) with X = n may be expressed in terms of the Laguerre poly-
nomials Lg(p), which can be defined in terms of a generating function

ps

Ulp,s) =

— 8

_ Z a(p) oo s<1 (16.16)

q'
g=0

Differentiation of the generating function with respect to p and s leads to
relations that are analogous to Eqgs. (13.11) for the Hermite polynomials
and (14.11) for the Legendre polynomials
L), — gl = —qLgs

Loy, = (2q + 1= p)Lg — ¢*Lg
The lowest order differential equation involving only L, that can be
constructed from Egs. (16.17) is easily seen to be

oL + (1 — )Ly + gLy = 0 (16.18)

Equation (16.18) resembles Eq. (16.12) but is not quite the same. We
define the associated Laguerre polynomz'al

(16.17)

L) = 75 Lale) (16.19)
on dlﬁerentlatmg Eq. (16.18) p times, it is seen that L2(p) satisfies
"oLy + 0+ 1= AL + (¢ =PI =0 (16.20)

Comparison of Eq. (16.12) with A = n and Eq. (16.20) shows that the
desired polynomial solutions are the associated Laguerre polynomials

L5 (p), which are of order (n + 1) — (2l + 1) = n — I — 1 in agreement
‘with Eq. (16.14).
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Differentiation of Eq. (16.16) p times with respect to p gives the
generating function for the associated Laguerre polynomials,

ps ©
_ (=ape i

Up(p,s) = D = z I—%!p) s? (16.21)

The following explicit expression may be verified by substituting it
into Eq. (16.21) with n 4+ [ = ¢ and 2] + 1 = p, and interchanging the
order of the two summations:

n—-l—1

wrs — N e O
Litie) = Z (=1 (n—l—1[(ﬁ k)!zzlli1+k)!k! (16.22)

k=0

Hydrogen-atom Wave Functions. The radial wave function is of the
form e~ #rp!L24*(p). The normalization constant may be found by using
the generating function to evaluate the integral

[ e = 2O EDE e

Thus the normalized energy eigenfunctions for the hydrogen atom are

unlm(ryoyd)) = Rﬂl(r) Ylm(0,¢)

- 2Z\* (n — 1 — DN}
(Ru) = = \(2) G o) oo
R 2z
W= P T ng”

where Y;.(6,4) is the normalized spherical harmonic given in Eq. (14.16);
ao is the radius of the first (circular) Bohr orbit for hydrogen (Z = 1)
in the old quantum theory. The energy levels (16.15) may be written

Z%?

2aon2

The first three radial functions, which are found from Egs. (16.22)
and (16.24), are
Z\' -Z
Rm(?”) = (——) 2¢ ao
Qo

Z\} 7r\ -
Rty = (£) (2 - 2)

(zZ\ zr -Z
Rzl("") - (2_‘10) ao\/§e

E,=—
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A much more complete set of these functions, with graphs of some of
them, is given by Pauling and Wilson.!

It is interesting to note that each of the eigenfunctions for which
I = 0 has a discontinuous gradient at r = 0, since dR,,/dr = 0 there
and Y, is independent of 6 and ¢. This is a consequence of the infinite
potential energy at that point, as can be shown by means of a limiting
process similar to that used in Sec. 8 to derive the boundary conditions
at a perfectly rigid wall.

Degeneracy. The energy eigenvalues (16.15) depend only on #, and
so are degenerate with respect to both 7 and m. Thus for each value of
n, I can vary from 0 to n — 1, and for each of these [ values, m can vary
from —lto 4+1. The total degeneracy of the energy level E, is then

n—1

2(2l+1)=2n—(n-———1)+n=n2

2 /

1=0

It follows from the discussion of Sec. 14 that the degeneracy with
respect to m is characteristic of any central force field, for which V
depends only on the radial distance r from some point. The ! degener-
acy, however, is characteristic of the Coulomb field, as distinguished from
most other central force fields. In some problems, such as the motion of
the valence electron of an alkali atom, the potential energy of the electron
is central, but only approximately of the Coulomb form. This pre-
vents the n energy levels that have the same total quantum number n
and different [ from being coincident, so that the nth hydrogen-like level
splits up into n distinct levels. If also some external field (such as a
magnetic field) that destroys the spherical symmetry is imposed, the
(2l + 1)-fold m degeneracy disappears, and the nth hydrogen-hke level
is split up into n? distinct levels.

The existence of degenerate energy eigenvalues means that linear
combinations of the corresponding eigenfunctions are solutions of the
wave equation with the same energy. In the case of the m degeneracy,
such linear combinations of the spherical harmonies Y;,(6,¢) can be
found that correspond to a new choice of the polar axis. It is reasonable
to expect that linear combinations of the degenerate hydrogen-atom
eigenfunctions that have the same n and different ! exist that also corre-
spond to some new choice of the coordinates. This is, in fact, the case,
since it turns out that the hydrogen-atom wave equation can be separated
in parabolic coordinates. In general, degeneracy will occur whenever
the wave equation can be solved in more than one way (in different

1 Pauling and Wilson, op. cit., Sec. 21.
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coordinate systems, or in a single coordinate system oriented in dif-
ferent ways), since if there were no degeneracy the wave functions
obtained in the different coordinate systems would have to be identical
except for a multiplying constant, and that is usually not possible. For a
general central field, an exception occurs when ! = 0, since then the wave
function is spherically symmetric and has the same form for all orienta-
tions of the polar axis, so that there is no degeneracy. A similar excep-
_tion occurs in the hydrogen atom problem when n = 1, in which case
it turns out that the solutions obtained by spherical and parabolic
separation of the wave equation are identical.
Separation in Parabolic Coordinates. The parabolic coordinates
£m,¢ are given in terms of the spherical polar coordinates by the relations

t=r—2z=r(— cos b

n=r-4+2z=r(l-+ cos 6) (16.25)

=9
he surfaces of constant £ are a set of confocal paraboloids of revolution
about the z or polar axis, with focus at the origin, that open in the direc-
tion of positive z or § = 0. The surfaces of constant 5 are a similar set
of confocal paraboloids that open in the direction of negative z or § = =.
The surfaces of constant ¢ are the same as in the spherical coordinate
system: planes through the polar axis.

The wave equation for the hydrogen atom in parabolic coordinates is

h? 4 9 ou
_ﬂlsﬂ[a_s(saz o ( an)] '
. 1 82 27Ze?
The separation is accomplished by substituting
u(gn,0) = f(£)g(n)2(¢)

into Eq. (16.26) and dividing through by u; the ¢ part of the equatlon
separates at once:

4t 1d(df> 1_d_< dg>]
£+n[fd£ “ag) T g \"
duZe*tn 2u|E|&n _1ad*%
TREFD T R - T 3ap (16:27)

Since the left side of Eq. (16.27) depends only on £ and 7, and the right
side only on ¢, both sides must be equal to a constant that we call m?; in
accordance with the discussion of Sec. 14, this gives normalized ¢ solu-




88 QUANTUM MECHANICS [CHaP. IV
tions that are the same as (14.8)
( ®.(¢) = (?nr)—*e"m‘:’ m=0,+1,+2, ... (16.28)
The rest of Eq. (16.27) can be separated into £ and 7 parts:

1d(,df\_m B, wle
fa‘(f*) o Tt

__|1a( dg\_m _ ulE| ]_

= [g n (11 an el T R il (16.29)
where the separation constant » is to be determined by the boundary
conditions. Thus the equations for f and g are

df wlE|E _ pZe? ) _
dg(%) (45+ Yok TR T)I=0

16.30
4 () (4 ), g 1630
an \" dn Iy T oR? g

Since these two equations are of the same form, and differ only in their
constant terms, it is sufficient to solve one of them.

Energy Levels. The first of Eqs. (16.30) may be solved by the
method used to solve (16.6). The substitution { = «f puts it into the
dimensionless form

df 1
§' o (i‘ a + (? v 4{2)]( 0 (16.31)
if we choose the parameters a and A, to be given by
2
of = 2';‘?', AL = ("ff - v) (16.32)

The second of Eqgs. (16.30) is also of the form (16.31) if we put ¢ = oy
with « given by (16.32); A\, is replaced by
L4
[s4

Ay = (16.33)

We now treat Eq. (16.31) as we did (16.7). The asymptotic behavior
is dominated by the factor e+ §, where we must take the minus sign in
the exponent. The series that multiplies this starts with a term ¢,
where it is readily shown that s = +4m. We therefore substitute

F(&) = e~ #gimIL(¢) (16.34)
into (16.31) and obtain as the equation for L :
L'+ (ml + 1 = OL + D — 3(m| + DIL = 0" (16.35)



Skc. 16] DISCRETE EIGENVALUES: ENERGY LEVELS 89

As with Eq. (16.12), the nonterminating solutions for L cause the wave
function (16.34) to becomes infinite for large {. The terminating solu-
tions are the associated Laguerre polynomials; comparison of Egs. (16.20)
and (16.35) shows that they are LIT, ., ({), where

is a positive integer or zero.
In similar fashion, the solution of the % equation shows that the
number

is a positive integer or zero. From Egs. (16.36) and (16.37) we obtain
MAX=n+n+im+1l=n (16.38)

where 7 is a nonzero positive integer. The energy levels are given by
combining Eqgs. (16.32), (16.33), and (16.38):

h2a® YA

B = =Bl = =50 = ~

in agreement with Eq. (16.15). The energy level E, is degenerate, since
according to (16.38) there are various ways in which the three quantum
numbers 71, 7, and m can be combined to make up n. For m = 0, there
are n ways of choosing n; and n,; for.|m| > 0, there are two ways of
choosing m (= +|m|), and n — |m| ways of choosing n; and n,. Thus the
total degeneracy of the energy level E, is

n—1
n + 2 2 (n—Im[)=n+2[n(n—1)—Ln2—_1)]=nz
Im|=1 .

in agreement with the earlier result.
Wave Functions. It is clear from the foregoing discussion that the
unnormalized hydrogen-atom wave functions in parabolic coordinates are

Unnn(£1,8) = €A (gn)dimd Liml (B (am)eimd

_ uZze?
hi(ny 4 ne + |m| 4 1)

a

\
Foraparticular energy leve] E,and magnetic quantum numberm(n > |m|),
the parabolic quantum ‘numbers n; and 7, can be chosen such that
ny + ny = n — |m| = 1; that is, in n — |m| different ways. Similarly,
for given n and m, the azimuthal quantum number / in the spherical
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solution can be chosen such that |m| <1 = n — 1,andsoalsoinn — |m)|
different ways. Thus the n — |m| products of the £ and 5 functions are
linear combinations of the n — |m| products of the r and 6 functions.

The ground-state energy level provides a particularly simple illus-
tration of the connection between the parabolic and spherical solutions.
In this case, ny = ny = m = 0, and the parabolic solution is simply

_npZer(E+n) ~ _pZer
e 2 | Also,n = 1,1 ="m = 0, and the spherical solutionise # .

It is apparent from Eq. (16.25) that these two solutions are identical.

Problems

1. Apply the Bohr-Sommerfeld quantization rules (see Sec. 2) to the determina-
tion of the energy levels of a harmonic oscillator and of the circular orbits in a hydrogen
atom. Compare with the results obtained in this chapter.

2. What is the order of magnitude of the spread of quantum numbers and energies
of the states that contribute significantly to the oscillating-wave-packet solution for
the harmonic oscillator?

3. Use the generating function for the Hermite polynomials to evaluate

/ _: U () 2%Um (2)d2;

where the u’s are normalized harmonic-oscillator wave functions.
4. Use the generating function for the Legendre polynomials to evaluate

f _11 Pu(w)Py (w)dw.

6. Obtain an approximate analytic expression for the energy level in a square well
potential (! = 0) when Va? is slightly greater than x2#2/8m.

6. Show that for a square well potential the values of Va? that just bind new
energy levels with an [ value greater than zero are given by %222 /2m, where the numbers
z are the nonvanishing solutions of the equation ji_1(2) = 0 (see footnote 1, page 80).

7. Assume that the interaction between the neutron and the proton that make up

a deuteron can be represented by a square well potential with @ = 2.00 X 10~13 ¢m.
If the lowest (I = 0) energy level of the system is —2.23 Mev (million electron-volts),
calculate Vo in Mev to three significant figures. How does the answer compare with
that which would be obtained from the approximate formula derived in Prob. 5?

_r
8.  Consider Eq. (14.17) with I =0 and V(r) = —Ve 9% Change variables
r

from 7 to z = ¢ 2% and show that Bessel’s equation results. What boundary condi-
tions are to be imposed on x as a function of z, and how can these be used to determine
the energy levels? What is the lower limit to ¥, for which a bound state exists?

9. Find expressions for the eigenfunctions and energy levels of a particle in a
two-dimensional circular box that has perfectly rigid walls.

10. It is shown in Sec. 9 that a one-dimensional square well potential has a bound
state for any positive Va2 and in Sec. 15 that a three-dimensional square well poten-
tial has a bound state only for Va2 > »2h2/8m. What is the analogous situation for a
two-dimensional square well potential? What, if any, is the physical significance of
these results?
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11. The Schrédinger equation for a rigid body that is constrained to rotate about a
fixed axis and that has a moment of inertia I about this axis is

where y(¢,t) is a function of the time ¢ and of the angle of rotation ¢ about the axis.
What boundary conditions must be applied to the solutions of this equation? Find
the normalized energy eigenfunctions and eigenvalues. Is there any degeneracy?

12. Find the energy levels of a three-dimensional isotropic harmonic oscillator
(V(r) = 3Kr?), by solving the wave equation in cartesian coordinates. What is the
degeneracy of each level? Show that this equation can also be separated in spherical
and in cylindrical coordinates.

13. Show that the expectation value of the potential energy of an electron in the
nth quantum state of a hydrogen atom is —Z2?/an? From this result, find the
expectation value of the kinetic energy.

14. Find the normalized hydrogen-atom wave functions in parabolic coordinates
forn = 2, m = 0. Express them as linear combinations of the corresponding wave
functions in spherical coordinates.

16. Discuss the parities, if any, of the hydrogen-atom wave functions in parabolic
coordinates.



CHAPTER V
CONTINUOUS EIGENVALUES: COLLISION THEORY

Problems for which the energy eigenvalues are continuously dis-
tributed usually arise in connection with the collision of a particle with a
force field. The method of approach is different from that employed in
the preceding chapter. There the boundary conditions at great distances
were used to determine the discrete energy levels of the particle. In a
collision problem, the energy is specified in advance, and the behavior of
the wave function at great distances is found in terms of it. This
asymptotic behavior can then be related to the amount of scattering of
the particle by the force field.

As in Chap. IV, the relatively few exact solutions that are obtained
here are of wider application than might at first seem to be the case,
since they can serve as foundations for approximate calculations on more
complicated systems. It is interesting to note that the study of collisions
is particularly important in connection with atomic nuclei (see Sec. 41)
where relatively little information can be obtained in other ways.

17. ONE-DIMENSIONAL SQUARE POTENTIAL BARRIER

We consider first the one-dimensional collision of a particle with the
square potential barrier V(z) shown in
Fig. 14. In this problem we are inter-
ested in a particle that approaches from
the region of negative « and is reflected
or transmitted by the barrier. In the
_— —_ corresponding classical problem, the
particle is always reflected if its energy
is less than that of the top of the barrier,
[7] a x and always transmitted if its energy is
Fia. 14. One-dimensional square po- greater. We shall see that in the
tential barrier of height Vo and thick- quantum problem’ both reflection and
ness a. transmission occur with finite proba-
bility for most energies of the particle. Because of the lack of symmetry
between positive and negative x that is introduced from the beginning,
it is disadvantageous to deal with solutions that have definite parities,
and so there is no reason for making V(r) symmetrical about z = 0, as
92

Vix)

Vo
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was done in Sec. 9. We assume, therefore, that V(z) = Oforz < 0 and
z>a,and V 2) = Vofor0 < z < a, where V, is positive.

Asymptotic Behavior. We are interested in representing a particle
that approaches from the left with energy £ > 0, and may be turned back
by the potential barrier or penetrate through it. Thus the asymptotic
behavior (in the regions where V' (z) = 0) is as follows: for x < 0, we want
the wave function to represent a particle moving to the left (reflected
particle) as well as to the right (incident particle); for z > a, we want the
wave function to represent only a particle moving to the right (trans-
mitted particle).

A particle in a force-free region that is moving in a definite direction
with a definite energy necessarily has a definite momentum, and hence
can be represented by a one-dimensional momentum -eigenfunction

pr
u(z) « e* if the particle is moving in the positive z direction with the
1pz
momentum p, and u(z) « ¢ * if the particle is moving in the negative =
direction with the same energy. Thus since the wave equation in the
regions where V(z) = 0 is
_ R dlu
2m dz?
our asymptotic solutions are
u(r) = Ae*s + Be—ik= z=<0
u(z) = Ce= r=a

(17.1)

wherek = p/k = (2mE /h?)} is the magnitude of the propagation number.
The solutions (17.1) are appropriate for the force-free regions that are
external to any scattering potential, whether or not it has the simple form
shown in Fig. 14.

Normalization. The physical meaning of the coefficients 4, B, and C
can be inferred by substituting (17.1) into the one-dimensional form of
the probability current density given by Eq. (7.3).

S(z) = v(A]* — |BJ?), z<0
S(x) = o|C[? z>a

where v = hk/m is the speed of a particle with propagation number k.
Since these expressions are independent of z, the discussion of Sec. 7
shows that they may be interpreted as the net flux (positive to the right)
in the two regions. This interpretation is consistent with the statement
above that A, B, and C are the amplitudes of the incident, reflected,
and transmitted wave functions, respectively.

The absolute normalization of the wave functions (17.1) is unim-
portant for this problem; this is because we are interested only in the

(17.2)
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ratios of |B|? and |C|? to |4|%, which are respectively the reflection and
transmission coefficients for the barrier. It is sometimes convenient,
however, to normalize the incident wave function to unit flux; this cor-
responds to taking A = 1/vt. Such a normalization must not be inter-
preted as indicating that u(x) represents more than one particle; rather
it means that we choose a large enough number of systems [each described
by u(x)] that are identical, independent, and nonoverlapping in the
sense of Sec. 7, so that the total incident flux in all of them is unity. A
more precise but sometimes less convenient normalization would assume
a one-dimensional ““box”’ of length L with periodic boundary conditions,

and require that j( - lu(x)|?dx = 1.

Scattering Coefficients. The character of the solution inside the
potential barrier depends on whether E is greater or less than V,. Sup-
pose first that E > V,, so that we can define a propagation number
inside the barrier: a = [2m(E — V,)/h*t. Then the solution inside is

u(x) = Feler + Ge7=, 0=z =a (17.3)

The continuity of « and du/dx at x = 0 and z = a required by the bound-
ary conditions provides four relations between the five coefficients. We
can eliminate F and G, and solve for the ratios B/4 and C/A.

_ (k% — a?)(1 — e?iae)

- * + a)2 — *k — a)zezma
4kagiteila

AT T F )P = (k — a)ler=

The absolute squares of the ratios (17.4) are the scattering (reflection and
transmission) coefficients

B o et - 1+ BT

(17.4)

Q k=l

(k* — a®)? sin? aa V% sin? aa (17.5)
[ 14 (k2 — a®)?sin? aa |7 14 V2 sin? aa | )
Al 4k2a? - 4E(E — Vo)

It is readily verified from (17.5) that |B/A|* 4+ |C/A|? = 1, as would be
expected.
Equations (17.5) show that the transmission coefficient approaches

-1
(1 + "%’?) (17.6)

when the particle energy approaches the energy of the top of the
barrier (£ — V). For increasing E (E > V,), the transmission coefficient
oscillates between a steadily increasing lower envelope and unity (see Fig.
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15). There is perfect transmission when ag =, 2r, . . . ; i.e., when-
ever the barrier contains an integral number of half wave lengths.!
Interference phenomena of this type are well known in the transmission
of light through thin refracting layers.
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Fi1g. 15. Transmission coefficient of a square barrier as a function of particle energy for
mVoa2/h2 = 8.

The reflection and transmission coefficients for 0 < E < V, are most,
easily obtained by replacing a by 48 in Egs. (17.4), where

_lemw, - B
== |
The result for the transmission coefficient is
C? _ V2 sinh? ga |
A‘{“ﬂmm—m] (7D

This decreases monotonically from the value (17.6) as E decreases
below V,. When Ba > 1, the transmission coefficient (17.7) becomes
very small and is given approximately by

16E(Ve — B) .
— vz ¢

Figure 15 is a plot of the transmission coefficient computed from Egs.
(17.5) and (17.7) for a rather “opaque’ barrier: mVea?/h* = 8.

(17.8)

1 This effect also occurs when ¥V, < 0, in which case the square barrier becomes a
square well. The scattering coefficients are given by (17.5) if the sign of Vis changed
there and in the expression for a.
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18. COLLISIONS IN THREE DIMENSIONS

We are primarily concerned in this chapter with collisions in three
dimensions, in which a particle collides with a fixed force field, or two
particles collide with each other. It was shown in Sec. 16 that the prob-
lem of the nonrelativistic motion of two particles, when the only forces
present depend on their relative positions, can be broken up into two one-
particle problems, of which one describes the motion of the particles
relative to each other or to their center of mass, and the other describes
the free motion of the center of mass. While the center of mass can be
taken to be at rest in calculating the energy levels of the internal motion,
as in Sec. 16, it has a definite motion in a collision that cannot be ignored
in calculating the outcome of such an experiment. This is because the
customary laboratory procedure consists in bombarding a particle that
is initially at rest with another particle that carries the total energy
Ey=E + FE of Eq. (16.5). Thus the energy E of the relative motion of
the two particles is different from the bombarding energy E,, and the
observed scattering depends on whether the struck particle or the center
of mass is initially at rest.

We call the coordinate system in which the bombarded particle is
initially at rest the laboratory coordinate system and the coordinate system
in which the center of mass of the two colliding particles is (initially
and always) at rest the center-of-mass coordinate system. It is evidently
easier to calculate the result of a collision experiment in the center-of-
mass system than in the laboratory system, since only 3 degrees of free-
dom appear in the former as compared with 6 in the latter system. The
collision process in the center-of-mass system may then be thought of as
one in which a particle that has the reduced mass u = mm,/(m; + m,)
of Eq. (16.4) and an initial velocity » collides with a fixed scattering
center [see the discussion of Eq. (18.9) below]. The distribution in angle
of the scattered particles will be affected by the transformation between
the center-of-mass coordinate system, in which the calculations are made,
and the laboratory coordinate system, in which the observations are
made.

Scattering Cross Section. The angular distribution of particles
scattered by a fixed center of force or by other particles is conveniently
described in terms of a scattering cross section. Suppose that we bom-
bard a group of n particles or scattering centers with a parallel flux of N
particles per unit area per unit time, and count the number of incident
particles that emerge per unit time in a small solid angle Aw, centered
about a direction that has polar angles 6y and ¢, with respect to the
oombarding direction as polar axis. This number will be proportional
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to N, n, and Aw,, provided that the flux is small enough so that there is
no interference between bombarding particles and no appreciable dimi-
nution of the bombarded particles by their recoil out of the target region,
and provided also that the bombarded particles are far enough apart so
that each collision process involves only one of them.

Then the number of incident particles that emerge per unit time in
Aw, can be written

ﬂNo'o(ao, d)o)Awo (18 1)

where the proportionality factor ¢o(6o,¢0) is called the differential scatter-
ing cross section. Since (18.1) has the dimensions of reciprocal time,
o0(6o,0) has the dimensions of an area. (6o, ¢0)Awo is equal to the cross-
sectional area of the parallel incident beam that contains the number of
particles scattered into Aw, by a single target particle or scattering center.
The integral of ¢o(8o,40) over the sphere is called the total scattering cross
section

gy = fo'o(00,¢o)dw0 (182)

For the collision of a particle with a fixed scattering center, the
definition (18.1) of differential scattering cross section is equally valid in
the laboratory and center-of-mass coordinate systems, since a scattering
center that is fixed has an infinite effective mass and so the center of
mass of the system does not move. For a collision between two particles
of finite mass, however, the differential cross section (18.1) applies in
general only to the laboratory coordinate system and to the observation
of the scattered incident particle. It does not describe the observation of
the recoil bombarded particle in the laboratory system, although it is
of course possible to obtain a differential cross section for the recoil
particle from oo(fo,40). In the center-of-mass system the differential
cross section ¢(6,4¢) may be defined in analogy with (18.1), where again
the scattered incident particle is the one that is observed and the flux N
of the incident particle is computed with respect to the bombarded
particle, not the center of mass. Since in this coordinate system the two
particles move in opposite directions away from each other after the
collision, it is clear that the differential cross section for observation of
the recoil bombarded particle in the direction 6,¢ is just o(r — 6, ¢ + ).

Relations between Angles in the Laboratory and Center-of-mass
Systems. The relation between the differential cross sections and angles
in the laboratory system and in the center-of-mass system can be found
by translating the laboratory system in the direction of the incident
particle with sufficient speed to bring the center of mass to rest. Figure
16(a) shows a particle of mass m; and initial speed v striking a particle of
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mass m, that is initially at rest; the center of mass moves to the right with
the speed v/ = mp/(m, + m;), as may be seen from the conservation of

Y
Iy e \
Center 6,4
of mass., ovo
. - - $ . ¥
my 14 v v’ my,
L tm,
mye
(a)
mp v =p”
my+m;
ml. N
[
Certer 24
° oF massy ‘; mz
m. L] <
1 _mau e my
my+tmy 20 mtmp

F1c. 16. (a) Laboratory coordinate system, in which the target particle of mass m; is
initially at rest. (b) Center-of-mass coordinate system, in which the center of mass is
initially and always at rest. (c) Vector addition of velocity of center of mass in laboratory
system (v’) to velocity of observed particle in center-of-mass system (v/’) to give velocity
nbserved in laboratory system (v1);if v/ < v/, 6o cannot exceed the angle sin™! (v’ /v’).

momentum. Thus in the center-of-mass system the particles of masses
my and m, approach the center of mass with speeds

mov

V=0 —0v = ———
(my + my)’

and o', respectively; they evidently recede from the center of mass after
the collision with the same speeds [see Fig. 16(b)]. It follows from the
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geometry of the situation that 6 and ¢ are related to 6, and ¢, by

v" cos 6 + v = v, cos 6,
v"" §in § = vy sin 6, (18.3)
b = ¢o

From the first two of Eqgs. (18.3) we obtain on elimination of v,

sin 6 v m
tan 6, = — = —

v + cos 6 Y= v mg (18.4)

Equations (18.3) and (18.4) can be generalized by considering a col-
lision (for example, a nuclear reaction) in which a particle of mass m;
strikes a particle of mass m, initially at rest, and after the collision,
particles of masses m; and m4 emerge, where m; + ms = m; + m4.
If also an amount of energy, @, is converted from internal energy to
kinetic energy of the emergent particles (@ is positive for exothermic and
negative for endothermic collisions), and the particle of mass m; is
observed, the first of Egs. (18.4) is still valid. In this case 7 is still equal
to the ratio of the speed of the center of mass in the laboratory system
to the speed of the observed particle in the center-of-mass system. How-
ever, v is no longer m;/ms, but can be shown to be given by

mims E d
vy =+ (m m) (18.5)
where E = mimqw?/2(m,; + my) is the energy initially associated with the
relative motion in the center-of-mass system [see the discussion of Eq.
(18.9) below].

Relation between Cross Sections. The relation between the cross
sections in the laboratory and center-of-mass coordinate systems can be
obtained from their definitions, which imply that the same number of
particles are scattered into the differential solid angle dw, about 6y,¢, as
are scattered into dw about 6,¢.

0’0(00,¢0) sin 00d00d¢0 = 0’(0,4)) sin 0d0d¢ (186)

With the help of the last of Eqgs. (18.3) and the first of Egs. (18.4), Eq.

(18.6) gives

(1 4+ v 4 2v cos 0)?
[1 + v cos 6]

where in general v is given by Eq. (18.5). It should be noted that the
total cross section is the same for both laboratory and center-of-mass
systems, and also for both the outgoing particles, since the total number
of collisions that take place is independent of the mode of description of
the process.

o0(00,40) = a(6,9) (18.7)
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Dependence on y. For v <1, Eq. (18.4) shows that 6, increases
monotonically from 0 to = as 6 increases from O tor. Fory =1, 6, = 40
and varies from 0 to 4 as 6 varies from 0 to 7; in this case

a0(fo,d0) = 4 cos 0o (200,0),

and no particles appear in the backward hemisphere in the laboratory sys-
tem. For v > 1, 6, first increases from 0 to a maximum value sin—*(1/v),
which is less than 3, as 6 increases from 0 to cos™ (—1/v); 6, then
decreases to 0 as 6 increases further tow. In this case do(60,¢0) is usually
infinite at the maximum value of 6,, although this singularity gives a
finite contribution to the total cross section; no particles appear beyond
the maximum 6, in the laboratory system. The two values of 6 that
give rise to a particular value of 6, between 0 and sin—! (1/y) can be
distinguished by the energy of the observed particle, which is greater
for the smaller 6.

This last case (y > 1) is illustrated schematically in Fig. 16c. The
resultant of the velocity v” of the observed particle in the center-of-mass
system and the velocity v’ of the center of mass in the laboratory system
gives the velocity vy of the observed particle in the laboratory system.
The locus of the terminal points of vy when its origin is at the point O
is the circle of radius »’’. Thus when v”/ < v/, the angle 6, of the resultant
v, with the bombarding direction cannot exceed the angle

sin—! (v-—,) = sin—! (l)
v Y

As the ratio v = v/ /v"" decreases, the circle gets relatively larger and the
angular range of v, increases.

The use of geometrical relationships in the foregoing discussion is
valid in a quantum-mechanical system as well as in a classical system.
This is because they are essentially relations between momentum vectors
that are applied in the asymptotic region where the particles need not be
precisely localized in space and hence can have definite momenta.

It is interesting to note that the difference between laboratory and
center-of-mass systems is negligible in the collisions of electrons with
atoms, because of the large mass ratio of the colliding particles. In
nuclear collisions, however, the difference between the two coordinate
systems is usually significant.

Asymptotic Behavior. The differential scattering cross section
o(8,¢) in the center-of-mass coordinate system can be found from the
asymptotic form of the solution of the second of Egs. (16.5),

2
R 4 Vi = Bu (18.8)
2u



Sec. 18] CONTINUOUS EIGENVALUES: COLLISION THEORY 101

which is the wave equation for the relative motion. The wave function
u may be written as a function of the angles 6,4 of Fig. 16(b) and the radial
distance r between the two particles. From Eq. (16.4) the reduced mass
is u = mmmy/(m1 + my). The energy E associated with the relative
motion is easily seen from Fig. 16 to be
me

where E, is the initial energy of the bombarding particle. It is interesting
to note that E is equal to the kinetic energy of a particle whose mass is
the reduced mass p and whose speed is the relative speed ». Thus we can
think of Eq. (18.8) as representing the collision of a particle of mass g,
initial speed v, and kinetic energy E = $uv?, with a fixed scattering center
that is described by the potential energy V (r); then ris the vector distance
from the fictitious particle p to the origin of the scattering potential.

As in Sec. 17, the scattering is determined by the asymptotic form of
u(r,0,¢) in the region where ¥V = 0. When the colliding particles are
far apart, we want « to contain a part that represents an incident particle
of mass p moving in a particular direction with speed v, and a part that
represents a radially outgoing particle:

u(r,0,6) — Ale™ + rf(0,9)™], k=% (18.10)
The first term in Eq. (18.10) represents a particle moving in the positive
z direction, or along the polar axis § = 0, since z = r cos 0; it is an infinite
plane wave of the form of the momentum eigenfunction (11.2), where the
propagation vector k has the magnitude k and is directed along the polar
axis. Thesecond term in Eq. (18.10) represents a particle that is moving
radially outward; its amplitude depends on 6 and ¢, and is inversely
proportional to r since the radial flux must fall off as the inverse square
of the distance. It is readily verified that Eq. (18.10) satisfies the wave
equation (18.8) asymptotically through terms of order 1/r in the region
in which V' = 0, for any form of the function f(6,¢).

Normalization. The physical meaning of the coefficient A and the
angular function f can be inferred from a calculation of the particle flux,
as in Sec. 17. A straightforward substitution of Eq. (18.10) into Eq.
(7.3), however, yields interference terms between the incident and
scattered waves that do not appear in most experimental arrangements;
that they do not appear can be seen in the following way.

In practice, the incident and scattered particles are separated from
each other by collimating one or the other. Suppose, for example, that
the experimental arrangement is as shown schematically in Fig. 17, so
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that the bombarding particles from the source S are collimated by dia-
phragms DD into a fairly well-defined beam. Such a collimated beam
is not an infinite plane wave of the form e*2, but can be made up
by superposing infinite plane waves that have propagation vectors of
slightly different magnitudes and directions. The total angular spread
in radians will be of the order of the ratio of the wave length of the particle
to the diameter of the collimating aperture, and so can be made extremely
small in a practical case. Now f usually does not vary rapidly with angle,
so that the small directional spread of the incident propagation vectors
does not affect f significantly. Thus at the point of observation, P, only
the f term is present, and it is essentially the same as that which appears
in Eq. (18.10). The incident flux can be calculated from the plane wave
term alone, since if we go far enough from the scattering region, the f
D D

12[0)

Fie. 17. Schematic diagram of a laboratory arrangement for the measurement of scatter-
ing, in which there is no interference between the incident and scattered waves at the point
of observation P.

term can be made negligible. Thus in the region of observation, the
interference terms are a consequence of the idealization implicit in assum-
ing an infinite plane wave in Eq. (18.10), and usually have no physical
significance.!

Substitution of the two terms of Eq. (18.10) separately into Eq. (7.3)
shows that the incident flux is of magnitude v|A|? along the polar axis,
and that the leading term in the scattered flux is of magnitude

v|A[%f(6,4)[2/r?
along the outward radius. From the definition of cross section, it follows
that
a(6,9) = |£(6,9)[? (18.11)

As discussed in Sec. 17, the choice of the coefficient A is unimportant
so far as the calculation of the scattering is concerned. The wave func-
tion may be normalized to unit incident flux by choosing 4 = 1/v%, or it
may be normalized by making [|u|?dr = 1 over a large box that has
periodic boundary conditions. We shall often simply set A equal to
unity.

1 For a somewhat exceptional case, see the discussion of Eqgs. (19.14) and (19.24) in
‘the next section.
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19. SCATTERING BY SPHERICALLY SYMMETRIC POTENTIALS

The asymptotic behavior of the wave function determines the dif-
ferential scattering cross section, but cannot itself be found without solv-
ing the wave equation (18.8) throughout all space. As was the case with
the calculation of energy levels considered in Chap. IV, this can be done
only when the wave equation is separable, and a particular case of great
physical interest is that in which the potential energy is spherically
symmetric. We assume here that V is a function only of r, and find the
connection between the solutions separated in spherical polar coordinates
and the asymptotic form (18.10); this procedure is called the method of
partial waves.

In the remainder of this chapter we shall not, for the most part,
distinguish between collisions of a particle with a fixed scattering center,
and collisions between two particles treated in the center-of-mass coordi-
nate system.

Asymptotic Behavior. It is apparent that the problem now possesses
symmetry about the polar axis, so that , f, and ¢ are independent of the
angle ¢. The general solution of Eq. (18.8) has the form (see Sec. 14)

u(r,0) = E Ri(r)Pi(cos 6) = z r=lxu(r) Py(cos 6) (19.1)
=0 =0
where P; is the Legendre polynomial of order I/, and x; satisfies the

equation
2
- PR E) I
4 r (19.2)
2uE\} 2uV )
b= (2E), v =200 o

The boundary condition at » = 0 that R, be finite or x; vanish determines
the asymptotic form of the solution (19.2) except for an arbitrary multi-
plicative constant. .

In order to find the general nature of this asymptotic behavior, we
consider r to be so large that the U and ! terms in Eq. (19.2) can be
neglected. Then the solution of Eq. (19.2) is one of the forms ex*", To
get a better approximation, we put

xi(r) = A exp [ / " f(r’)dr’] ok (19.3)
where A and a are constants. The first exponential is assumed to be a
slowly varying function of r for large r, which implies that f(r) falls off

more rapidly than r—'asr— . Substitution of (19.3) into (19.2) gives
the following equation for f:

74t 2 = U@ + CED = e (19.4)

where the prime denotes differentiation with respect to . If now W(r)
falls off like 7—* for large r (s > 0), the last term on the left side is the
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leading term, and f also falls off like 7—*. In this case, x; varies like et
for large r if s > 1, since then the integral in the exponent of Eq. (19.3)
converges for large . If, on the other hand, W falls off like an exponen-
tial or error function of r (which implies that I = 0), the first and third
terms on the left side of Eq. (19.4) may both have to be considered. It
can then be shown without difficulty that x; again varies like et®*r for
large ». The Coulomb field, for which U and W vary like r—! for large
regardless of the value of [, is the only case of physical interest which
requires special attention and will be discussed in Sec. 20.
The asymptotic form of x;(r) can then be written quite generally

xi(r) — A} sin (kr + 67) (19.5)

where thus far A} and 8, can be complex. The solution of (19.2) that
vanishes at r = 0 is unique except for a multiplying constant. It can
be shown that this solution is real everywhere if it starts out to be real at
r = 0, since k, U, and [ are all real. Thus §; must be real, although A;
need not be. This being the case, it is readily verified that the total
radial flux of particles through a large sphere vanishes:
lim 2rr? L " S, sin 0d6 = 0 (19.6)
where S, is the radial component of the vector (7.3) calculated by sub-
stituting w(r,0) from Eq. (19.1) into it. This means that there are no
sources or sinks of particles present, and the particles that are scattered
radially outward are supplied by the incident plane wave.

Differential Cross Section. It is convenient to redefine the amplitude
A} and phase angle §; that appear in Eq. (19.5) in terms of a somewhat
more specialized problem. It will be assumed that U(r) can be neglected
for r greater than some distance a; in cases of practical interest, a may be
small enough so that the [ term in (19.2) is not negligible. For r > aq,
the most general form for R,(r) that is real (except possibly for a complex
multiplying constant) is shown in Sec. 15 to be

Ri(r) = Ajfcos §i(kr) — sin dmu(kr)] (19.7)
where §; is real; according to (15.8), this has the asymptotic form
Ri(r) — (kr)—'A; sin (kr — 3lr + &) (19.8)

Equations (19.5) and (19.8) agree if A; = kA, and & = 8} + 3lr.

We now wish to identify the asymptotic form of (19.1) with (18.10).
To do this, we require an expansion of e*? = e*res¢ in Legendre poly-
nomials:!

gibroos . — 2 (@l + 1)) Pi(cos 6) (19.9)
=0
Substituting the asymptotic form of (19.9) into (18.10) with A = 1, and

1 G. N. Watson, “Theory of Bessel Functions,” rev. ed., p. 128 (Macmillan, New
York, 1944).
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equating this to the asymptotic form of (19.1), we obtain

i (21 4+ 1)#4(kr)~' sin (kr — 3lr)Py(cos 6) + r—if(6) e
=0

= 2 Ay(kr)—1 sin (kr — 3w + 8)Pi(cos 6)
=0

When the sine functions are written in complex exponential form, the
coefficients of e¢*" and of e~*" on the two sides of this equation must be
equal to each other:

2ikf(0) + 2 @2l 4 1)#e¥=Py(cos §) = z Aiei®—i0Pi(cos )
1=0 1=0
(19.10)
Z (21 + 1)ite}t=Py(cos 6) = z Ae=i®1% Py(cos 6)
=0 1=0

Since these are true for all values of 6 and the Legendre polynomials are
orthogonal to each other, the second of Egs. (19.10) becomes

A = (21 + 1)itei®
Substitution of this into the first of Eqs. (19.10) gives for the scattering
amplitude

£(8) = (2ik)~ 2 (@1 + 1)(e%® — 1)Py(cos 6) (19.11)
=0
Thus the differential cross section is
2

(19.12)

a(8) = |f(0)]2 = klz z (21 + 1)e® sin §Pi(cos )
1=0

Total Cross Section. The total cross section is the integral of Eq.
(19.12) over the sphere. Because of the orthogonality of the Legendre
polynomials, it contains no products of factors involving different values
of 1.

¢ =2r L (6) sin 6d6 = 2—1’ z @+ 1) sinz s (19.13)
=0

The total cross section can also be related to f(0). It follows from
the generating function (14.10) for the Legendre polynomials that
Py(1) = 1 for all [, so that Eq. (19.11) gives for § = 0

fO) = @k Y (2 + 1exn — 1)
1=0
Comparison with Eq. (19.13) then shows that

¢ = 2O - JOI = ¥ In[jO)] (19.14)
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where Im denotes the imaginary part of the expression that follows.

The physical interpretation of Eq. (19.14) is as follows: In order for
scattering to take place, particles must be removed in an amount pro-
portional to ¢ from the incident beam, so that its intensity is smaller
behind the scattering region (6 =2 0) than in front of it. This can only
occur by interference between the two terms in the asymptotic expression
(18.10). Since such an interference term must be a linear function of the
forward scattered amplitude, we expect a relation of the general form of
Eq. (19.14). An actual calculation of this interference term shows that
Eq. (19.14) holds much more generally : when f depends on ¢ as well as on
6, and when ¢ includes inelastic scattering and absorption as well as elastic
scattering.!

Phase Shifts. The angle §; is called the phase shift of the Ith partial
wave, since according to (19.8) it is the difference in phase between the
asymptotic forms of the actual radial function R;(r), and the radial func-
tion j;(kr) in the absence of scattering potential (U = 0). The phase
shifts completely determine the scattering, and the scattering cross section
vanishes when each of the §; is 0° or 180°.

It should be noted that the derivation of (19.11) is valid whether or not
there exists the assumed radius a beyond which U(r) is negligible, pro-
vided that U(r) falls off more rapidly than 1/r. However, the method
of partial waves is most useful for computing scattering cross sections if
such a radius a does exist, especially if ka is of the order of or less than
unity. The reason for this is that the first and largest maximum of
Ji(kr) lies roughly at r = [/k, and that for » much smaller than this, j; is
small and increases about as r! [see Eq. (15.7)]. Thus if ¢ K l/k, 7, will
be very small where U is appreciable; then the Ith partial wave will
hardly be affected by the potential, the phase shift §; will be very small,
and the contribution to the scattering from that [ will be negligible. It
follows then that the scattering cross section consists of a series of terms
extending from I = 0 to a maximum [ that is of the order of ka. Since
the computation of the phase shifts is usually a tedious affair, the smaller
the magnitude of ka the easier the method is to apply. Thus this method
of partial waves is most useful at low bombarding energies.

It is interesting to note that the classical distance of closest approach
of a free particle of mass u, velocity », and angular momentum U to the
origin is lh/uwv = I/k. Thus the foregoing remarks are analogous to the
statement that a classical particle is not scattered if it has sufficient
angular momentum so that it does not enter the potential region r < a.

Calculation of §;. The phase shift §; is computed by fitting the radial
wave function R;(r) for r < a, which may have an analytic form and can
always be found numerically if necessary, to the exterior solution (19.7).
The boundary condition at r = a is that (1/R;)(dR:/dr) be continuous.

1 B. Feenberg, Phys. Rev., 40, 40 (1932); L. I. Schiff, Progress of Theor. Physics
(Kyoto), 11, 288 (19541
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Thus if v; is the ratio of slope to value of the interior wave function, we
have that
k[ji(ka) cos & — nj(ka) sin &]
ji(ka) cos & — ny(ka) sin &6,
where the derivatives j; and nj may be rewritten with the help of (15.10).
Then §; is given by
kji(ka) — vigu(ka)

knj(ka) — ymu(ka)

Equation (19.15) can be used at once to obtain an approximate expres-
sion for §; when I > ka and §; is expected to be small. In this case, v;
will differ little from the ratio of slope to value of the solution in the
absence of a scattering potential, so that we put

tan 81 =

(19.15)

i1(ka) 71 (ka)
= 5 |1 ] ! 19.16
v [];(ka) +ea Iezl < ]l(ka) ( )
Equation (19.15) can be rewritten with the help of (15.9) as
tan & = a(ka)*ji (ka) (19.17)

a(ka)?(ka)yni(ka) — 1

which is still exact. If now we make use of the power series expansion
for 5; from (15.7) when I>> (ka)? and use (15.7) and (15.8) to estimate
the order of magnitude of n;, the inequality in (19.16) becomes

le] < 70% (19.18)
and (19.17) may be approximated as
~ _ a(ka)2+? _ a2(1)?(ka)®

Equation (19.19) can be used to verify the convergence of the sums
over partial waves such as appear in (19.11). We use Stirling’s formula
to find the leading terms in In |§;| when [ is large, and neglect terms of
order In I and lower.

In |& =1In || + 2{[In (ka) + 1 —In 2] — 2l In ]

Thus even if |¢| has the maximum value indicated by (19.18), §; falls off
like the inverse factorial of I (faster than exponentially), and the series
that appear in the expressions for the scattering converge quite rapidly
for large [.

Relation between Signs of §; and V(r). It is apparent from (19.19)
that when [ > (ka)?, 6, has the opposite sign from ¢;. If now the potential
energy term V or U is positive, corresponding to forces that are mainly
repulsive, Eq. (19.2) shows that the ratio of curvature to value for the
radial wave function is more positive than in the force-free case. This
means that the ratio of slope to value is more positive at r = a than is
the case if U = 0. Thus a repulsive potential makes ¢ positive and §
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negative. A negative phase shift means that the radial wave function is
““pushed out” in comparison with the force-free wave function.

In similar fashion, we see that a negative potential makes ¢ negative
and §; positive. This means that the radial wave function is “pulled
in” by the attractive potential.

Ry(r)
19
VI
//’J;_(ZD\\\
//
(/] t
a
V>0, d;<0
(a)
jl(icr) Jy
///’ ﬁ\\\\ x
=4 _
0 pa ~____—. T
DNy =
V<0, d,>0
(6)

F1e. 18. Schematic plots of the effects of (a) positive (repulsive) potential, and (b) nega-
tive (attractive) potential, on the force-free radial wave function ji(kr); the range of the
potential is @ in each case. Ri(r) is drawn arbitrarily to start out like ji(kr) at r = 0, and
is bent up more rapidly in (@) so that it has a greater amplitude and a retarded phase
(pushed out) with respect to ji(kr). In (b), Ri(r) bends over sooner, and thus has a smaller
amplitude than j;(kr) and an advanced phase (pulled in). The amplitudes have no direct
physical significance, whereas the phases determine the scattering. The difference between
neighboring nodes of j; and R; is not precisely equal to the phase shift divided by k (as
indicated) until j; has gone through several oscillations and attained its asymptotic form.

These conclusions are valid even when [ is not large compared to ka
and & is not small. This may be seen graphically by comparing j;(kr)
and R;(r) when they are arbitrarily made to start out in the same way at
r = 0. Figure 18(a) shows a schematic comparison for positive V, and
Fig. 18(b) for negative V.

Ramsauer-Townsend Effect. The construction in Fig. 18(b) suggests
that an attractive potential might be strong enough so that one of the
radial partial waves is pulled in by just half a cycle and its phase shift is

180°. If this were the case, the corresponding term in the expression
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(19.11) for f(6) would vanish, and there would be no contribution to the
scattering. It is clear from the foregoing discussion that the phase shift
is largest for I = 0. The possibility then arises that ka can be small
enough and the attractive potential large enough in magnitude so that
8, = 180° and all other phase shifts are negligibly small. In such a case,
the scattered amplitude f(6) vanishes for all 8, and there is no scattering.

This is the explanation! of the Ramsauer-Townsend effect, the ex-
tremely low minimum observed in the scattering cross section of electrons
by rare-gas atoms at about 0.7 electron-volt bombarding energy.? A
rare-gas atom, which consists entirely of closed shells, is relatively small,
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Fia.19. Schematic plot of the effect of the potential of a rare-gas atom of ‘“‘radius’’ a on the
1l = 0 partial wave of an incident electron that has the minimum cross section observed
in the Ramsauer-Townsend effect. As in Fig. 18, the actual and force-free wave functions
start out in the same way at r = 0; the former is ‘‘pulled in”’ by 180° of phase. In an
actual case, the quantity ka would be somewhat smaller than is indicated here.
and the combined force of nucleus and atomic electrons exerted on an
incident electron is strong and sharply defined as to range. Thus it is
reasonable to expect that a situation such as that illustrated in Fig. 19
could occur. Here the partial wave with I = 0 has exactly a half cycle
more of oscillation inside the atomic potential than the corresponding
force-free wave, and the wave length of the electron is large enough in
comparison with a so that higher [ phase shifts are negligible. It is clear
that this minimum cross section will occur at a definite energy, since the
shape of the wave function inside the potential is insensitive to the rela-
tively small bombarding energy whereas the phase of the force-free wave
function depends rapidly on it.

Physically, the Ramsauer-Townsend effect may be thought of as a
diffraction of the electron around the rare-gas atom, in which the wave
function inside the atom is distorted in just such a way that it fits on

1 This explanation, suggested by N. Bohr, was shown to be quantitatively reason-
able by H. Faxén and J. Holtsmark, Ze:ts. f. Phystk, 46, 307 (1927).

2 The experimental results are summarized by R. Kollath, Phys. Zeits., 31, 985
(1931).
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smoothly to an undistorted wave function outside. This effect. is anal-
ogous to the perfect transmission found at particular energies in the one-
dimensional problem considered earlier [see discussion of Eq. (17.5)].
Unlike the situation in one dimension, however, the Ramsauer-Townsend
effect cannot occur with a repulsive potential, since ka would have to be
at least of order unity to make §, = —180°, and a potential of this large
range would produce higher [ phase shifts.

Scattering by a Perfectly Rigid Sphere. As a first example of the
method of partial waves, we compute the scattering by a perfectly rigid
sphere, which is represented by the potential V(r) = +» for r < q,
and V(r) = Oforr > a. The solution for r > a is just Eq. (19.7). The
boundary condition, obtained in Sec. 8, that u(a,0) = 0, is equivalent to
the requirement that all the radial functions vanish at » = a. The phase
shifts may then be obtained by setting either R;(a) given by (19.7) equal
to zero, or v; in (19.14) equal to infinity:

tan & = % (19.20)

The calculation of the scattering is particularly simple in the low-

energy limit: ka = 2ra/\ < 1. Then substitution of (15.7) into (19.20)
gives as an approximation for the phase shifts

(ka)?+1

tanﬁz-":"’—(2l+1)[1,1.3.5. @ -1))e

(19.21)

Thus § falls off very rapidly as ! increases, in agreement with (19.19).
All the phase shifts vanish as k¥ — 0; however, the I = 0 partial wave
gives a finite contribution to the scattering because of the factor 1/42 that
appears in (19.12) and (19.13). We thus obtain

a(6) = a?, o = 4ra? (19.22)

The scattering is spherically symmetrical, and the total cross section is
four times the classical value.

In the high-energy limit (ka > 1), we might expect to get the classical
result, since it is then possible to make wave packets that are small in
comparison with the size of the scattering region, and these can follow
the classical trajectories without spreading appreciably. This corre-
sponds to the ray limit in the wave theory of light or sound. The dif-
ferential scattering cross section is rather difficult to find, and we only
indicate the computation of the leading term in the total cross section.
Substitution of (19.20) into (19.13) gives
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_ 4 \' @+ DE(ka)
7= F L ) + niGha) (19.2)
1=0
We can make use of asymptotic expansions of Bessel functions that are
valid when the argument is large and the order is smaller than, of the
order of, and larger than the argument.! The calculation shows that
most of the contribution to the sum in (19.23) comes from

l < (ka) — C(ka)},

where C' is a number of order unity; the leading term here is §(ka)2
The other two parts of the sum, for (ka) — C(ka)? <l < (ka) + C(ka)?},
and for! > (ka) + C(ka)}, each contribute terms of order (ka)?, and hence
may be neglected in the high-energy limit. Thus

o = 2ra’ (19.24)

which is twice the classical value.

The reason for the apparently anomalous result (19.24) is that the
asymptotic form of the wave function is so set up in Eq. (18.10) that in
the classical limit the scattering is counted twice: once in the true scatter-
ing (which turns out to be spherically symmetric as it is in the classical
problem), and again in the shadow of the scattering sphere that appears
in the forward direction, since this shadow is produced by interference
between the incident plane wave ¢** and the scattered wave f(6)e#*/r
[see also the discussion of Eq. (19.14)]. However, so long as ka is finite,
diffraction around the sphere in the forward direction actually takes place,
and the total measured cross section (if the measurement can be made so
that it includes the strong forward maximum) is approximately 2ra®.

Scattering by a Square Well Potential. As a second example of the
method of partial waves, we consider the somewhat more complicated
problem of the scattering from the spherically symmetric square well
potential illustrated in Fig. 13 of Sec. 15. The interior (r < a) wave
function that is finite at » = 0 is seen by analogy with Eq. (15.11) to be

3
R(r) = Bijler), @ = [2—“(%] (19.25)

Thus the phase shifts are given by Eq. (19.14), where the ratio of slope
to value of the Ith partial wave at r = a is

_ %ji(aa)
Ji(aa)

(19.26)

1 Watson, op. cit., Chap. VIIL,
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In the low-energy limit (ka < 1), substitution of (15.7) into (19.14)
gives for the first two phase shifts

~ _ _Yoka®
tan 50 = 1 + Yol
(k)1 (19.27)
~ ra — 71Q
tan 6; =~ 3 2+ va
Unless yoa = —1 or yia = —2, both of these vanish as k — 0. As with

the rigid sphere, however, the I = 0 partial wave gives a finite contribu-
tion to the scattering because of the factor 1/k* that appears in (19.12)
and (19.13). From Eq. (19.26), we see that yoa = aa cot aa — 1, so that

tan aa)2

(19.28)

¢ & dra? (1 —
ad

The scattering is spherically symmetrical.

The conclusion reached here and in connection with the rigid sphere
that the low-energy scattering is substantially independent of bombard-
ing energy and angle of observation is almost always valid for any
potential that has a finite range. Exceptions can arise, as pointed out
after Eq. (19.27), if any one of the v; is such that the denominator of
the expression for tan §; is very small. In such a situation, the lth partial
wave is said to be in resonance with the scattering potential; then it usu-
ally dominates the scattering.

Resonance Scattering. An approximate expression for the resonance
cross section can be obtained by making use of the fact that v; decreases
linearly with increasing « when « is sufficiently close to g = (2uV/A2)}.
Increasing « causes the interior wave function to bend over more rapidly
and so decreases the ratio of slope to valueatr = a. Now

o = (o + K = ag + v
0 - 2(10

when £ is small, so that we can write to lowest order in %
via = via — bi(ka)®?

where ) is the value of y; when a = ay, and b; is a positive number of
order unity.! Substitution into (19.27) and then into (19.12) gives for
the leading term in the differential cross section, in the two cases for
which the value of I for the partial wave that is in resonance is 0 and is 1,

1Tt can be shown that the Ith partial wave is exactly in resonance at zero bombard-
ing energy when v’a = — (I + 1);in this case b = jforalll. Compare with footnote

1, page 80.
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- a? =
70) = e kT T Ga)? 1=0 (19.29)
o(6) = . 99" c0s* 0 (ka)* I=1 (19.30)

= (1 — bik%a®)? + (ka)®

We have put {o = v§a + 1 and {1 = v%a + 2; for resonance, |{o| and [{4]
are small compared to unity. It is easy to show then that (19.29) is a
monotonically decreasing function of ka; however (19.30) has a sharp
maximum at ka =2 (£1/b))? if ¢, is positive, and a much lower maximum
at ka = (2|¢1]b1)? if 1 is negative.

If we make use of the relation {, = aoa cot aoa, we see from (19.29)
that a suitable approximation for the total cross section when the I = 0
partial wave is in resonance is

o= i
— k% + o cot? apa

(19.31)

It is apparent that the I = 0 partial wave is in resonance at low bombard-
ing energies whenever aqa is approximately an odd multiple of 7/2, so
that Voa? =2 7%h2/8u, 9r%h?/8u, etc. The discussion of Eq. (15.3) shows
that these are just the values of Va? for which new energy levels with

= 0 appear. It is true quite generally that a potential well (not neces-
sarily square) that has an energy level nearly at zero exhibits a resonance
in the low-energy scattering of particles with the same ! value (not neces-
sarily zero) as the energy level. From a physical point of view, we can
say that an incident particle that has nearly the right energy to be bound
by the potential tends to concentrate there and produce a large distortion
in the wave function and hence a large amount of scattering.

Sharp resonance maxima in the low-energy scattering like that found
above for [ = 1 with positive {; can appear for any I value except [ = 0,
provided that the potential well is not quite deep or broad enough to con-
tain a new energy level of that angular momentum (this corresponds in
the case of the square well to having {; small and positive). We can think
of such a potential physically as containing a virtual energy level slightly
above zero. While a discrete energy level cannot exist with positive
energy, the positive “centrifugal potential”’ I(I 4+ 1)A%/2ur? [see the dis-
cussion of Eq. (14.18)] for I > 0 acts as a potential barrier that impedes
the escape of a particle that is in the virtual energy level. Figure 20
illustrates this barrier, which is characterized by a small transmission at
low energies in the same way as is the barrier of Fig. 14 [see the discus-
sion of Eq. (17.7)]. Thus the virtual level has a kind of transient exist-
ence and produces a greater distortion of the incident wave function at
its energy than at neighboring energies.
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Angular Distribution at Low Energies. When the bombarding energy
is small but not zero, the partial wavel = 1 may have an observable effect
on the scattering. If only &, and §; are appreciably different from zero,
Egs. (19.12) and (19.13) become

c(6) = Icl2 [sin% 8, 4 6 sin &, sin &; cos (81 — &) cos @
+ 9 sin? §; cos? 6] (19.32)
¢ = 471; (sin? &y + 3 sin? &y)
In the absence of resonance, we see from Eqgs. (19.27) and (19.32) that

the ratio of the contributions to the total cross section of the partial waves
!l =1and!l = Ois of order (ka). However, the ratio of the largest angle-

e oo
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Fig. 20. Effective potential energy [V (r) plus ‘‘centrifugal potential’’] for I > 0, when
V =0forr > a. The dashed portion for »r < a depends on the shape of V. The effective
potential barrier (r > a) resembles the barrier of Fig. 14 in that it has a small trans-
mission for E slightly greater than zero.
dependent term in the differential cross section (which is proportional to
cos 6) to the constant term is of order (ka)2

Thus the partial wave ! = 1 manifests itself in the angular distribution
at a lower energy than that at which it becomes significant in the total
cross section; this is because of its interference with the stronger partial
wavel = 0. For example, if §, = 20° and §; = 2° at a particular bom-
barding energy, the partial wave ! = 1 contributes only 3 per cent to the
total cross section while it makes the forward scattering (6 = 0°) 3.5
times as great as the backward scattering (6 = 180°).

20. SCATTERING BY A COULOMB FIELD
It was noted in Sec. 19 that the Coulomb field is an exceptional scat-
terer so far as the application of the method of partial waves is concerned.
If V(r) = ZZ'e?/r for a collision between particles of charges Ze and
Z'e, it is easily seen that Eq. (19.3) becomes asymptotically

xi(r) « gEitbr—nian (20.1)
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Here n = uZZ'e?/h% = ZZ'e?/hv, where v is the relative velocity and p is
the reduced mass. Thus the radial solutions never approach the sinus-
oidal free-particle solutions, since there is always a logarithmic contribu-
tion to the phase at great distances that cannot be neglected. Although
it is still possible to obtain a solution of this scattering problem in spheri-
cal coordinates (this is given below), the phase shifts §; introduced in
Sec. 19 are altered in meaning. This section presents the analytical
work in outline, and quotes the principal results from more extended
treatments.!

Parabolic Coordinates. So long as ¢(6) for a pure Coulomb field is all
that is desired, it is simpler to work with the separation of the wave
equation in parabolic coordinates (see Sec. 16) than in spherical coordi-
nates. The reason for this is that the desired solution depends almost
entirely on the variable £ defined in Eq. (16.25), and not on the other two
variables 7 and ¢. It is apparent that the solution will not involve ¢,
because of the axial symmetry of the problem; if now the incident plane
wave term e** is taken out as a factor, it can be made plausible that the
rest of the solution does not involve 5. We put

u, = ekzf (20.2)
where u. represents the complete Coulomb wave function (incident plus
scattered wave). Now u. must contain a part whose dominant asymp-
totic behavior is of the form r—le#*", but no part that goes like r—le—*r
[see Eq. (18.10)]. Since an expression e**f(r — z) can be of this form,
while an expression e**f(r 4- z) cannot, we anticipate that the function f
appearing in (20.2) will depend only on ¢ = r — 2.

We substitute Eq. (20.2) into Eq. (16.26) after replacing Z by —ZZ’,
and remember that E > 0. The differential equation for f is then

s‘é—?; - — k) g—é —nkf =0 (20.3)

The confluent hypergeometric equation
d dF

which has the solution F(a,b,z), is equivalent to Eq. (20.3) if we put

f(&) = CF(—1n,1,ik§) (20.5)
where C is a constant.

1 W. Gordon, Zeits. f. Physik, 48, 180 (1928); N. F. Mott and H. S. W. Massey,
“The Theory of Atomic Collisions,” 2d ed., Chap. III (Oxford, New York, 1949). For
the mathematical background, see E. T. Whittaker and G. N. Watson, “A Course of
Modern Analysis,” 4th ed., Chap. XVI (Cambridge, London, 1935).
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Confluent Hypergeometric Function. The solution of Eq. (20.4) that
is regular at z = 0 can be written as a power series

0

3 T'(a + s)T'(b)z*
F(a,b) = z T(a)L'(b 4+ s)T(L + s)

az | a(a + 1)2*
b1l " b(b + 1)2!

It is convenient to put F(a,b,2) = Wi(a,b,2) + Wi(a,b,z), where W, and
W, are separately solutions of Eq. (20.4). An asymptotic expansion for
F can then be obtained from the following relations:

W;—‘(—E)T) (—=2)g(a,a — b+ 1, —2)

TO) syt — a, b — a, 2) (20.7)

T'(a)
g(B,2) — 1 + %@! G 212)/;(!;3 L)

8=0

=1+ 10+ 4+ - (20.6)

Wl(a,b,z) =

Wa(a,b,2) =

The solution of Eq. (20.4) that is irregular at the origin can be taken to be
G(a,b,z) = iWi(a,b,z) — iW3(a,b,2) (20.8)

We shall require the irregular solution for problems in which the Coulomb
field does not extend in to r = 0.

The asymptotic form of the Coulomb wave function can be obtained
from Egs. (20.2), (20.5), and (20.7). The result through terms of order
r~1 is

Ce}mr X ’I’I,2
i [kz+n Ink(r—2)] —_—
Y ST+ |° [1 ik(r — z)]

+ ,,.—1fc ( g) ei(kr—n 1n 2kr) } (20.9)

where

T(1 + in) e-inln(ein24)

il'(— in) 2k sin? 19
_ n
" 2k sin? 36

10 = arg I'(1 + in)

Scattering Cross Section and Normalization. The f, term on the right
side of Eq. (20.9) represents the outgoing scattered wave, since it is the
only term in which the factor r—le*r appears. The first term in Eq.
(20.9) similarly corresponds to the incident ‘‘plane’ wave; the multi-
plicative factor —n2?/ik(r — z) can be ignored in the asymptotic region.

Il

Je(6)

g—in In (sin? }0)-Hir+2ing (20.10)
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Both the incident and scattered waves are distorted at infinite distances
by logarithmic phase factors. In accordance with Eq. (18.11), the dif-
ferential scattering cross section is

2
n
w0 = 101 = (gromezs)
1,2\ 2
= (Z2u—v§> cosect 30 (20.11)

This is just the formula obtained by Rutherford from classical dynamiecs,
which was verified experimentally for the collisions of alpha particles
(helium nuclei) with heavier nuclei. It should be noted, however, that
the angle-dependent part of the phase factor in the scattered amplitude
f.(6) given in Eq. (20.10) can manifest itself in a nonclassical way when
the colliding particles are identical (see Sec. 32).
If the incident beam is normalized to unit flux, the constant C' must
be chosen to be
C = v iIT(1 + in)e irr

so that the Coulomb wave function is

ue = v~ 3T (1 + in)e— rme*eF (— in,1,ikE)
= v~ T(1 + in)e  ¥rmeihr e OF (— ¢n,1,2¢kr sin? 36)  (20.12)

Then the particle density at r = 0 is found from the power series expan-
sion (20.6) to be

[u.(0)|* = |C|* = =!I (1 + in)|?e~

2nar
For small collision speeds (|n|>> 1), Eq. (20.13) tells us that
|u.(0)|2 =~ 2TT|nI attractive case, n < 0
o (20.14)

[ue(0)|2 =~ - e~ repulsive case, n > 0

The second of Egs. (20.14) is of some practical interest. The expo-
nential is the dominant factor in the production of reactions between
positively charged nuclei at low bombarding energies, when the nuclear
radii may be assumed small enough so that the colliding nuclei have to
approach to zero distance in order to initiate a reaction. In this case
exp (—2wZZ'e?/tw) is called the Gamow factor,! and is the dominant term
in the rate of many nuclear reactions at low bombarding energies.

"1 G. Gamow, Zeits. f. Physik, b1, 204 (1928); R. W. Gurney and E. U. Condon,
Phys. Rev., 33, 127 (1929).
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Solution in Spherical Coordinates. In nuclear collision problems,
such as that of the scattering of protons of several million electron-volts
energy in hydrogen, the departures from the Coulomb law of interaction
at small distances between the colliding particles can affect the scattering
cross section. Such problems can be treated by a modification of the
method of partial waves, developed in Sec. 19, in which an expansion in
spherical harmonics is made for the pure Coulomb field, and modifica-
tions introduced for the first few I values. In order to apply such a
technique, we require first a solution for the pure Coulomb scattering in
spherical partial waves.

We put

Ue = 2 Ry (r)Pi(cos 6) (20.15)
1=0

where the radial wave equation is

1d (,.2 dRz) + [kz _ 20k _ l(l;*; 1)] R=0  (20.16)

ridr\ dr r

If we substitute R;(r) = rle¢®7f;(r), the equation for f; becomes

a*; . dfy . _ -
T + [2¢kr + 2(1 + 1)] Ir + [2¢k(1 + 1) — 2nk]lf; =0 (20.17)
This is equivalent to the confluent hypergeometric equation (20.4), and
has as its solution that is regular at r = 0

filr) = CF(Q + 1 + 4n, 21 + 2, —2ikr) (20.18)

The asymptotic form of (20.18) can be found from (20.7), and gives for
the radial wave function at great distances

Cietrm+inT (21 4 2)
B(r) 2 GomaF 1 F i)k

where 5, = arg T(l + 1 4 n).

The coefficients C; must be determined so that the partial wave expan-
sion (20.15) is identical with the solution (20.12) in parabolic coordinates.
Because of the orthogonality of the Legendre polynomials, we have the
relation

sin (kr — 3lr — nln 2kr +9;), (20.19)

Ri(r) = 21% /; " Py(cos 6)u.(r,0) sin 048 (20.20)

where u.(r,0) is given by the second of Egs. (20.12). The complete
evaluation of this integral can be avoided by making use of the fact that
we know all about the function R;(r) except the constant multiplying
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factor C;. C; can then be found by matching the known form of R;(r)
to Eq. (20.20) near r = 0, and turns out to be

_ @) tT(l 4 1+ i),
- A2D)!

We thus obtain as an alternative expression to (20.12)

C

©

U, = vl in7 2 W (2ikr)tetr

“F(l+ 1+ in, 2L + 2, —2ikr)Py(cos §). (20.21)

Modified Coulomb Field. If the actual potential deviates from the
Coulomb form only at small values of r, we expect in analogy with the
partial wave treatment of section 19 that only the first few terms in
the sum (20.21) will be altered. Since each partial radial wave function
must be a solution of (20.16) outside of the potential anomaly, the only
change we can make in the function f; and still have it a solution of (20.17)
is to add in some of the irregular solution G + 1 + in, 21 4 2, —2¢kr)
defined by (20.8). The manner in which G is to be added in is determined
by the requirement that the complete wave function shall represent
asymptotically a Coulomb incident plus scattered wave, plus an extra
outgoing scattered wave.

We must, therefore, substitute for each F term in (20.21) a linear com-
bination of F and @ in which the amount of the ingoing term W is not
changed. Such a combination is

é8(F cos 8 + G sin &) = Wiekh 4+ W,.

The modified wave function, which is a solution of the wave equation
outside of the potential anomaly, can then be written

Uy = Up + VYo or 2 W (24kr)teitr
1=0

< (e — V)Wl + 1 + in, 20 + 2, —2¢kr)Py(cos 6) (20.22)

The asymptotic form of u, is
Uy — v} E (21 + 1)eteintd (o)1
r—
1=0

-sin (kr — 3lr — nln 2kr 4+ g + &)Pi(cos 6) (20.23)

As shown in connection with Eq. (19.5), each term on the right side of
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(20.23) must be a real function of r, except for complex multiplying fac-
tors, so that the § must be real.

The additional phase shifts §; can be found by matching each partial
radial wave in Eq. (20.22) to the interior solution at the edge of the
potential anomaly, in just the same way as the phase shifts were found
in Sec. 19. While in Sec. 19 the phase shifts §; represented the departure
of the wave function from that of a free particle, they here represent
the departure from the wave function of a particle scattered by a pure
Coulomb field.! It can be shown from Eq. (20.22) that the asymptotic
form of u,, may be written in the form of (20.9), where f.(6) is replaced by

Fu(8) = £.(6) + 2 E-1(2 + 1)+ sin 5,Py(cos 6)  (20.24)
1=0
The differential scattering cross section is just |f.(6)|2, and in general con-
tains interference terms between the Coulomb scattered amplitude f.(6)
and the extra terms that are determined by the §;.

Classical Limit for a Pure Coulomb Field. As was discussed in Sec.
12, we expect the results of quantum and classical theory to coincide
whenever it is possible to construct wave packets that follow the classical
trajectory without spreading appreciably and are small enough so that
the forces are sensibly constant over their dimensions. The smallest
spread of a wave packet during a time interval ¢ was found there to be of
order (ht/u)t or (hd/uwv)t = (Xd)%, where d = vt is the distance traveled by
the packet in the time ¢, and X = \/2r = #/uv is the reduced wave
length for the relative motion. Thus the classical theory can be used
when (Ad)* < d, or (d/X)* >> 1, where d is the distance over which the
force varies by an appreciable fraction of itself. For a repulsive Cou-
lomb field, d is of the order of the classical distance of closest approach
|ZZ'e?/5uv?|. This also provides a useful estimate for an attractive Cou-
lomb field, since in all the collisions, except the relatively few for which
the particles are scattered through large angles, they never get closer than
this distance from each other.

The condition for the validity of the classical theory is then
Z7'e}

fiv
Large n implies that the angle-dependent part of the phase of f.(6) given
by Eq. (20.10) varies rapidly with 6, so that these rapid oscillations in
the scattering amplitude should have little effect on the scattering when
the colliding particles are identical (see Prob. 6, Chap. IX).

1 The computation of the & in Eq. (20.22) requires knowledge of G at small r;
useful formulas have been given by F. L. Yost, J. A. Wheeler, and G. Breit, Phys. Rev.,
49, 174 (1936).

>1
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It is interesting to note that for the Coulomb field the classical limit
is approached for small v, whereas for potentials that have a finite range
a, such as are discussed in Sec. 19, the classical limit is approached when
(a/A)¥ > 1, that is, for large ». This is because the “size” |ZZ’e?/uv?| of
the Coulomb field increases more rapidly than X = %/uv as v decreases.

Problems

1. Show that the coefficients of scattering by a one-dimensional square well poten~
tial (like Fig. 14 except that Vo < 0) are given by Eqs. (17.5) if the sign of V, is
changed there and in the expression for . Discuss the dependence of transmission
coefficient on E in this case.

2. Show that Eqgs. (18.4) and (18.7) are valid for a general binary collision if v
is given by (18.5); make use of conservation of energy and mass.

8. Show that, when a particle of mass m, collides elastically with a particle of
mass m. that is initially at rest, all the recoil (mass m.) particles are scattered in the
forward hemisphere in the laboratory coordinate system. If the angular distribution
is spherically symmetrical in the center-of-mass system, what is it for m, in the
laboratory system?

4. Express the scattering wave function (19.1) outside the scattering potential
(but not necessarily in the asymptotic region) as the sum of a plane wave and an
infinite series of spherical Hankel functions of the first kind [see Eqgs. (15.12)]. From
this expression and the discussion of Egs. (15.13), show that the scattered wave is
purely outgoing, even inside of the asymptotic region.

6. What must Va2 be for a three-dimensional square well potential in order that
the scattering cross section be zero at zero bombarding energy (Ramsauer-Townsend
effect)? Find the leading term in the expression for the total cross section for small
bombarding energy. Note that both the [ = 0 and the [ = 1 partial waves must be
included.

6. State clearly the assumptions that go into the derivation of Eq. (19.31), and
verify that it is a suitable approximation for the total cross section at low bombarding
energies when the ! = 0 wave is in resonance.

7. Make use of Eq. (19.31) and the result of Prob. 5, Chap. IV, to obtain an
approximate expression for the total scattering cross section by a particular potential
in terms of the bombarding energy E and the binding energy e of a particle in that
potential, when E and e are small in comparison with V.

8. Compute and make a polar plot of the differential scattering cross section for a
perfectly rigid sphere when ka = 3, using the first three partial waves (I = 0, 1, 2).
What is the total cross section in this case, and what is the approximate accuracy of
this result when the three terms are used?

9. Find a general expression for the phase shift produced by a scattering potential
V(r) = A/r? where A > 0. Is the total cross section finite? If not, does the diver-
gence come from small or large scattering angles, and why? What modifications are
necessary in the calculation if A < 0? Are any difficulties encountered in this latter
case?

10. Protons of 200,000 electron-volts energy are scattered from aluminum. The
directly back scattered intensity (6 = 180°) is found to be 96 per cent of that com-
puted from the Rutherford formula. Assume this to be due to a modification of the
Coulomb potential that is of sufficiently short range so that only the phase shift for
1 = 0 is affected. Is this modification attractive or repulsive? Find the sign and
magnitude of the change in the phase shift for I = 0 produced by the modification.



CHAPTER VI
MATRIX FORMULATION OF QUANTUM MECHANICS

In the last four chapters the Schrodinger wave equation was developed
and its solutions obtained in some cases of physical interest. We now
turn to a different formulation of quantum mechanics, in which dynamical
variables such as the coordinates, momentum components, and energy
of a particle appear explicitly in the equations of motion of the system
without their having to multiply or differentiate a wave function. The
classical equations are just of this structure, so it might be expected that
there would be a closer resemblance between the classical and quantum
formalism here than in the Schrédinger theory.

This is actually the case; the principal formal difference is that the
quantum dynamical variables do not obey the commutative law of
multiplication. It is convenient to represent such noncommutative
dynamical variables, which are often simply called operators, as matrices.
Matrix theory provides an expecially flexible representation scheme, since
there are an arbitrarily large number of ways of choosing the rows and
columns of a matrix, all of which are of equal validity. It is because of
the close formal resemblance between quantum matrix mechaniecs and
classical dynamics that this was historically the first formulation of
quantum theory to be discovered, by Heisenberg in 1925.1

In this chapter we first review briefly the more important properties
of matrices, and then show their connection with quantum theory and
their usefulness in particular problems.

21. MATRIX ALGEBRA

We restrict our discussion at first to matrices that have a finite num-
ber of rows and columns, and then indicate how the results obtained can
be taken over to matrices that have an infinite number of rows and
columns.?

1'W. Heisenberg, Zeits. f. Physik, 88, 879 (1925); M. Born, W. Heisenberg, and
P. Jordan, Zeits. f. Phys. 86, 557 (1925). The connection between quantum matrix
mechanics and the wave equation was established by E. Schrodinger, Ann. d. Physik,
79, 734 (1926), and C. Eckart, Phys. Rev., 28, 711 (1926).

2 For a fuller discussion, see J. von Neumann, ‘Mathematische Grundlagen der
Quantenmechanik,” Chap. II (Springer, Berlin, 1932; reprinted by Dover, New
York).
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Matrix Addition and Multiplication. A matriz is a square or rec-
tangular array of numbers that can be added to or multiplied into another
matrix according to certain rules. We denote a matrix by a capital
letter, such as A, and the numbers or elements that make it up by the same
letter with subscripts, such as Ay; here, k designates the row and [ the
column in which the matrix element A;; appears. Two matrices can be
added when they have the same rank, 7.e., the same number of rows and
the same number of columns. Addition is commutative:

A+B=B+4 (21.1)
If the sum matrix is called C, then
Cu = A + Bu (21.2)

A matrix A can be multiplied from the left into a matrix B if the num-
ber of columns of 4 is equal to the number of rows of B; then the product
matrix C has the number of rows of A and the number of columns of B.

C = AB, Ckl = z AkmBml (21'3)

where the summation is over the subseript m, which denotes the columns
of A and the rows of B. It follows at once from Eqgs. (21.2) and (21.3)
that the distributive law of multiplication is valid.

AB + C) = AB + AC (21.4)
Also, the associative law of multiplication is seen to be valid:
A(BC) = (AB)C (21.5)

where the left side means that A is multiplied from the left into the
product of B and C, and the right side means that the product of A and B
is multiplied from the left into C. The product (21.5) is written simply
as ABC and, from (21.3), has the explicit expression

D = ABC, Du-= EA,,,,,B,,,,.C,,, (21.6)

It is clear from Eq. (21.3) that AB is not in general equal to BA ; thus
the commutative law of multiplication is not generally valid.

Null, Unit, and Constant Matrices. For an arbitrary square matrix
A, the null matriz O is defined by the equations

OA =0, AO =0, (21.7)

from which it follows that all the elements of O are zero. If A is not
square, the elements of O are still all zero, but the O’s that appear at
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different places in (21.7) do not all have the same numbers of rows and
zolumns.
The unit matriz 1 is defined by

14 =4, Bl =B, (21.8)

for arbitrary matrices A and B. From Egs. (21.8) it follows that 1is a
square matrix whose rank (number of rows or columns) equals the num-
ber of rows of A or the number of columns of B. Moreover, 1 must have
unit elements along its principal diagonal (¢ = [) and zeros elsewhere, so
that the elements of 1 equal the Kronecker symbol &y introduced in
Sec. 10.

The product of a number ¢ and a matrix A is the matrix cA that results
from multiplying each element of A by ¢. Thus if we define a constant.
matriz C to be a multiple of a unit matrix so that each nonvanishing
element is ¢ instead of unity, then

cA =CA, where Ci; = ¢ (21.9)

are the matrix elements of the constant matrix C.

Spur, Determinant, and Inverse of a Matrix. The spur of a square
matrix, often called the {race or the diagonal sum, is the sum of the
diagonal elements of the matrix:

Sp(4) = ) Au (21.10)
k

The determinant of a square matrix is found from the usual rule for the
computation of the determinant of a square array of numbers.

A matrix A may or may not possess an snverse A—1, which is defined
by the relations

AA-1=1, A-14=1 (21.11)

A is said to be nonsingular if it possesses an inverse, and singular if it does
not. If A is nonsingular and of finite rank, it can be shown to be square
(see Prob. 2), and the kI element of its inverse is just the cofactor of Ay
divided by the determinant of A; thus A is singular if its determinant
vanishes. It is readily verified that for nonsingular matrices A, B, C

(ABC)-! = (-1B-14-1 (21.12)

Hermitian and Unitary Matrices. The Hermitian adjoint A* of a
matrix 4 is the matrix obtained by interchanging rows and columns and
taking the complex conjugate of each element; thus if

B = A* then Bu = A4 (21.13)
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It is readily verified that the Hermitian adjoint of the product of a series
of matrices is the product of their adjoints in the reverse order

(ABC)* = C*B*A* (21.14)

A matrix is Hermitian or self-adjoint, if it is equal to its Hermitian
adjoint; thus, 4 is a Hermitian matrix if

A = A* (21.15)

Evidently only square matrices can be Hermitian.
A matrix is unitary if its Hermitian adjoint is equal to its inverse;
thus 4 is a unitary matrix if

A* = A or AA* =1 and A*A =1 (21.16)

Unitary matrices of finite rank must be square.

Transformation and Diagonalization of Matrices. We define the
transformation of a square matrix A into a square matrix A’ by a non-
singular matrix S, by the following equation:

SAS-1 = A’ (21.17)

It is evident then that S—! transforms A’ back into A.
The form of a matrix equation is unaffected by transformation. Thus
the equation

AB + CDE =F
may be transformed into
SABS-! + SCDES—! = SFS!
which is equivalent to

SAS-1- SBS-! 4+ SCS-'- SDS-!- SES-! = SFS-1
or to
A'B' + C'D'E' = F'

where the primes denote transformed matrices. This invariance of
matrix equations with respect to transformations makes it possible to
work with any convenient transformation of a set of matrices without
affecting the validity of any results obtained.

A square matrix is diagonal if it has nonvanishing elements only along
the principal diagonal (¥ = ). The diagonal elements are then called
the eigenvalues of the matrix. It is easily seen that the nth power of a
diagonal matrix is also diagonal, and has as its eigenvalues the nth
powers of the eigenvalues of the original matrix. The matrix A in Eq.
(21.17) is said to be diagonalized by the matrix S if the matrix A’ that
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results from the transformation is diagonal, so that A} = Azdu. To
find A’ explicitly, we multiply (21.17) through on the right by S.

SA = A'S (21.18)

The set of linear algebraic equations that are obtained by writing out
the elements of Eq. (21.18) for a particular row &k and all columns [ is

Y Sindms = AiSu o ) Sen(Am = Abu) =0 (21.19)

where A}, is a particular eigenvalue of A’ and the subscript m is summed
over from unity to the rank N of the matrix 4.

Now (21.19) may be regarded as a set of N homogeneous algebraic
equations for the transformation matrix elements Sin, where k is fixed.
The necessary and sufficient condition that these equations have a solu-
tion is that the determinant of their coefficients vanish, or that the
determinant of the square matrix (Am. — Azdm) be zero. This provides
a single algebraic equation, called the secular equation, which is of order
N and has N roots A;. Thus the eigenvalues of the diagonal matrix A’
resulting from A by transformation are the same no matter how 4 is
diagonalized, except perhaps for the order in which they are arranged;
for this reason they are also called the eigenvalues of the original nondiag-
onal matrix A. A’ and A are said to be degenerate when two or more
eigenvalues are equal. .

Matrices of Infinite Rank. The rules (21.2) and (21.3) for addition
and multiplication of matrices may be taken over in an obvious way for
matrices that have an infinite number of rows and columns, provided
that the infinite sum in (21.3) converges. We sometimes deal with
matrices that have a nondenumerably infinite number of rows or columns
or both; in this case, one or both of the matrix subscripts becomes
a continuous variable, and the usual summation over a subsecript is
replaced by integration over this variable. We do not consider these
possibilities in detail here, but simply assume that all reasonable results
can be taken over from finite- to infinite-rank matrices without difficulty.!
The statement that a Hermitian matrix of infinite rank is square means
that its rows and columns are labeled in the same way. A unitary
matrix of infinite rank need not be square. Its rows and columns can
be labeled differently; for example, the number of rows may be denumer-
ably infinite and the number of columns nondenumerably infinite.

We are concerned primarily in quantum mechanics with Hermitian
and unitary matrices, mainly of infinite rank. A fundamental theorem

1 A more thorough discussion of this point, and a proof of the following theorem,
are given by J. von Neumann, loc. cit.
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that we shall assume without proof is that any Hermitian matrix can be
diagonalized by a unitary transformation; a corollary of this theorem is
that the resulting eigenvalues of the Hermitian matrix are unique,
except perhaps for the order in which they are arranged. Starting from
this theorem, it is not difficult to show (see Prob. 1) that the necessary
and sufficient condition that two Hermitian matrices can be diagonalized
by the same unitary transformation is that they commute (matrices A
and B commute if AB = BA4).

It also follows from this theorem that the eigenvalues of a Hermitian
matrix are real. If the S and 4 in (21.17) are unitary and Hermitian,
respectively, that equation can be rewritten

SAS* = A’ (21.20)
The Hermitian adjoint of Eq. (21.20) is, from (21.14),
SAS* = A'*

Since then A’* = A’, this shows that the Hermitian property is
maintained during transformation by a unitary matrix. If A’is diagonal
as well as Hermitian, it follows from (21.13) that its eigenvalues are real.
It is easily seen that the converse is also true: a matrix that can be
diagonalized by a unitary transformation and has real eigenvalues is
Hermitian.

It is important to note with matrices of infinite rank that both of Egs.
(21.11) must be valid in order for A~! to be the inverse of 4. Similarly,
both of the latter pair of Egs. (21.16) must be valid if A4 is to be unitary.

22. MATRICES IN QUANTUM MECHANICS

The appearance of matrices in quantum mechanics can be connected
in a simple way with the solution of the Schrédinger equation (8.2). In
this section we adopt the Hamiltonian notation, and justify it in detail
in Sec. 23. We rewrite Eq. (8.2) as

Hu,,(r) = Ekuk(r) (221)

where the subscript & denotes the different members of the complete
orthonormal set of energy eigenfunctions uz(r) and their corresponding
eigenvalues E; [k specifies the energy, and also distinguishes between
degenerate eigenfunctions; it thus includes both E and s of Eq. (10.7)].
The Hamiltonian or energy operator H is given by

h2

3 vz 4 V(1) (22.2)

m

p2

In accordance with the discussion of Sec. 8, k may be a discrete or a
continuous variable, or discrete over part of its range and continuous
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over the rest. We shall use the symbol § or S; to denote a complete
summation over the subscript ¥ (the summation includes an integration
fdk over the continuous part of its range).

A Unitary Transformation Matrix. Suppose that we have a second
complete orthonormal set of functions v.(r), which are not necessarily
eigenfunctions of the Schrodinger equation (22.1) with the actual poten-
tial energy V(r); they might, for example, be momentum eigenfunctions
(11.4) or (11.11), or hydrogen-atom wave functions (16.24) supplemented
by continuous-eigenvalue Coulomb-field wave functions like those dis-
cussed in Sec. 20. Thev, can be expanded in terms of the uy:

oa(r) = SpSima(r)
where it is readily verified from the orthonormality of the u; that
Sk = [Tr(r)va(r)dr
Similarly
u(r) = SuSiata(r) (22.3)

We can now see that the matrix of which Si, are the elements is
unitary.

S8S*¥)u = SnSanzn = Snfﬁ,k(r)v,,(r)d'rfz'),,(r’)u,(r’)d'r'
= [[a(t)w(@)o(r — t)drdr’ = [w()w(r)dr (22.4)

where use has been made of the closure property that is possessed by any
complete orthonormal set of functions such as the v,(r) [see the discussion
of Eq. (10.11)]. Thelast integral on the right side of (22.4) is a Kronecker
d symbol or a Dirac é function according as k is one of a discrete or a con-
tinuous set of subscripts; in either case, this integral is equivalent to an
element of the unit matrix, so that we have shown that SS* = 1. In
similar fashion, it can be established that

(S*S)mn = SkS-ImSkm = (l)nm

Hamiltonian Matrix. The functions z,(r) can be used to calculate a
Hamiltonian matrix
H.,, = [5,(r)Hvn,(r)dr (22.5)

where H is the operator given in (22.2). We now consider the connection
between the Hamiltonian matrix (22.5) in the v, representation, and the
energy eigenvalues Ej.

Transformation of H,», by the unitary matrix S gives

(SHS*)M = Sn,mSannmSlm
= S [T ()0n(0)dr [0 (") H vm(x" )’ [ (2 Y (2" )"
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vhere the prime on H indicates that it operates only on the variable r’
to its right. After performing the summation over the subscript m to
get 6(r’ — r’’), it can be seen that

SH'S@ — e wu(")d" = H' {5 — t")u(c")dr"
= H'u(r)

On doing the sum over n and dropping the primes, we obtain
(SHS*)u = [ax(r)Hui(r)dr = Eydy or Exd(k — 1) (22.6)

which is in diagonal form with the eigenvalues Ej.

Thus the problem of solving the Schrodinger equation is completely
equivalent to the problem of diagonalizing the Hamiltonian matrix when
it is expressed in some arbitrary representation such as that provided by
the functions v,. The eigenvalues of the Hamiltonian matrix are the
energy eigenvalues of the Schrodinger equation, and the unitary trans-
formation matrix S that diagonalizes H serves, through Eq. (22.3),
to give the energy eigenfunctions u.(r) in terms of the arbitrary initial set
of functions.

It is interesting to note that S is not necessarily a square matrix. For
example, the functions v, may be the eigenfunctions of a three-dimensional
harmonic oscillator, which form a completely discrete set, while the func-
tions u; may be momentum eigenfunctions, which form a completely
continuous set. However the Hamiltonian matrix, in both its diagonal
form (22.6) and its nondiagonal form H,,, is square.

Dynamical Variables as Hermitian Matrices. The eigenvalues of the
Hamiltonian are found in (22.6) to be the real energy levels E,. It then
follows from Sec. 21 that H is a Hermitian matrix in any representation.

The discussion of Sec. 10 developed the interpretation that the eigen-
values of any operator that represents a dynamical variable are real, since
they are the only possible results of precise physical measurement of that
variable. Any dynamical variable can be represented as a matrix whose
diagonal representation has its eigenvalues along the principal diagonal,
and that can be transformed to any other representation by a suitable
unitary matrix. Thus any physically measurable dynamical variable
can be represented by a Hermitian matrix, and is said to be Hermitian.

Wave Functions as Unitary Matrices. Any complete orthonormal set
of functions, such as the ux(r) or the v,(r), possesses the closure property

Suu(®)a(r’) = 8(r — r’) (22.7)
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and the orthonormality property
fﬂk(r)ul(r)d-r = {p; OT 5(](' - l) (228)

If now we regard the function u.(r) as a two-dimensional array of
numbers in which the rows are labeled by the position variable r and the
columns by the subscript k, it is equivalent to a matrix Un. Equation
(22.7) is then equivalent to the matrix equation

(UU*w = SiUnTei = W)
Similarly, Eq. (22.8) is equivalent to
(U*U)u = SeUaUn = (Du

Thus U is a unitary matrix.

The r Representation. This suggests that such a unitary matrix be
used to effect a transformation. Suppose that we transform the Hamil-
tonian matrix H,. given in (22.5) by means of the unitary matrix

Ven = va(1).
(VHV*)H' = Sn.mVranmV'r'm = Sn,mvn(r)Hﬂmﬂm(rl)

= S () [0V H 0, (x")dr" + D(1)
[6(x — v )H"s(x" — 1')dr"’

= [8(xr — " )H'5(x" — 1)dr"”

= H'[s(r — t'")s(r" — 1')dr"”

= H'5(r — 1) = Hé(t — 1) (22.9)

The result embodied in (22.9) is the inverse of the definition (22.5).

The latter takes a differential operator H and constructs from it a matrix
representation, while the former transforms that matrix back into what is
effectively the differential operator. However, we now see what was not
so0 obvious from the form (22.2) for H: that a differential operator on the
space coordinates can be expressed as a matrix in a representation in
which the rows and columns are labeled by the position variables r and r’.
From this point of view, the solution of the Schrodinger differential wave
equation (22.1) is equivalent to the diagonalization of the matrix

H,y = Hé(r — 1)

just as we saw above that it is equivalent to the diagonalization of the
matrix Hm.

The r representation is one in which the coordinate r is diagonal:
(T)yr = 1'8(x' — 1’"). It is worth pointing out explicitly that the Hamil-
tonian H. in the r representation is not diagonal, even though the &
function makes it vanish when r differs from r’ by a finite amount. This
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is because derivatives of the & function appear, and these have nonvanish-
ing matrix elements infinitesimally removed from the diagonal r = r’.
For example, the matrix f(r)é(r — r’) is diagonal, but the matrix

(d/dz) 5(r — ')

and the matrix V2§6(r — r’) are not.
A Useful Identity. If Qis an operator whose effect on a function f(r)
can be represented as

Qf(r) = [Qx,r")f(x")dr’

then we can establish an identity that is sometimes useful:

Ji@[Y (D)ldr = [[Q*¢(D)]f(x)dr (22.10)

If we regard Q(r,r’) as a matrix in the r representation, the Hermitian
adjoint of @ operating on ¢(r) is

Q*(r) = [ n)g(')dr’

from which Eq. (22.10) follows at once.

This identity enables us to transfer operators from one factor of an
integrand to another. The partial integrations in Egs. (7.9), (7.10),
and (12.3) are examples of the application of (22.10). In those cases,
Q is a differential operator, and its matrix representation involves deriva-
tives and multiples of the & function. However, @ need not be of this
specialized type [it might, for example, be an integral operator like the
square bracket in Eq. (10.19)], and (22.10) is valid as well for operators
that have nonvanishing matrix elements a finite distance from the
diagonal.

23. EQUATIONS OF MOTION IN MATRIX FORM

In the preceding section we discussed the principal transformation
properties of matrices that represent dynamical variables at a particular
instant of time. We now find equations of motion for these variables by
computing the time rate of change of their matrix representations. The
resulting equations are very similar in form to the classical equations of
motion and indicate a general procedure for quantizing any classical
system.

Time Rate of Change of a Matrix. We take as our starting point the
time-dependent Schrodinger wave equation (6.16), expressed in terms of a
Hamiltonian operator,

i a% W(rf) = Hy(r,) (23.1)
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where a typical H is that given by Eq. (22.2). A matrix representation
for any function F of the dynamical variables can be found in terms of a
complete orthonormal set of functions, each of which depends on the
time in accordance with (23.1). We call any two of these functions ¢
and ¢, and calculate the time rate of change of a typical matrix element

[oFydr = [[S(,O)F (r,t’ )y (r' ) drdr’

It is assumed that F is a general operator (not necessarily a differential or
multiplicative operator) of the type considered in Eq. (22.10), which may
depend explicitly on the time.

Differentiation with respect to ¢ gives

«% / $Fydr = / / 3(,0) [%F(r,r’,t)] (' ) drde’
+ / f HEDF (e ) [a%xb(r',t)] drd?
+ f [ [% &(r,o]F(r,r',t>¢<r',t>drdr'
- f 8% yar + % f f B(eOF (x,0' O H () drdr’

-2 ] / (H3IF (2 00(x' ) drds

where the first term on the right side is the matrix element of the operator
dF /3¢, and substitution has been made from Eq. (23.1). We make use
of the identity (22.10) to transfer the H (which is Hermitian) from ¢ to
Fy in the last term, and obtain the equation

d - - OF 1 -

This may be written as an equation for matrix elements, since the
functions ¢ and ¢ are quite arbitrary at any instant of time:

dF _ oF

dt ot
The left side of (23.2) is the matrix whose elements are the time rate of
change of the matrix elements of F, and may be called the total time
derivative of the matrix of F. The first term on the right side is the matrix
of the partial derivative of F with respect to ¢, and takes into account the
explicit dependence of F on the time. The last term is that part of the
time derivative of the F matrix that arises from the change in time of
the functions with respect to which the matrix is calculated. Equation

1
+ 7 (FH — HF) (23.2)
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(23.2) is Heisenberg’s form of the equation of motion of a dynamical
variable.

Classical Lagrangian and Hamiltonian Equations of Motion. In
order to bring out the similarity between Eq. (23.2) and the corresponding
classical equation, we review briefly the structure of classical Hamiltonian
theory. The equations of motion of a conservative dynamical system
that has f degrees of freedom may be derived from a Lagrangian function
Ligy, . . ., g5, 41, - - -, Gy, t) of the coordinates g;, the velocities
¢; = dg;/dt, and the time, by means of a variational principle:!

P [ 1" Ldt =0,  3qi(t) = dgi(ts) = O (23.3)
The resulting Lagrangian equations are

d (oL oL .

l—i—t (—a—q') - 5&; = 0, t1=1 f (23.4)

If now we define a momentum canonically conjugate to g; as p; = dL/3;,
and a Hamiltonian function of the coordinates and momenta as

f
H(gi* -+ qnp1- - - ppt) = 2 pigs — L (23.5)
i=1
variation of H leads to the Hamiltonian equations of motion
. _oH . _ _oH C e
G = ap;’ pi = o0 1=1 f (23.6)

The time dependence of any function of the coordinates, momenta, and
the time, calculated along a moving phase point, is

s
d or oF . oF
%F(m a5, P1 P/,t)—a—t+z<a—qi9i+@1h)
im1

1

s

_OF N\ (oF oH _ ot oF

ot dg; 0p;  9¢: Ip;
=1

on making use of the Hamiltonian equations (23.6). The Pozsson bracket
{A,B} of any two functions of the coordinates and momenta is defined as

f

. 0A 0B 9BIA

e = (Gaon~ Saam) 37
i=1

1E. T. Whittaker, ‘“Analytical Dynamics,” 3d ed., Secs. 99, 109 (Cambridge,
London, 1927); H. C. Corben and P. Stehle, “Classical Mechanics,”” Secs. 26, 63
(Wiley, New York, 1950); H. Goldstein, ‘“ Classical Mechanics,”” Chaps. 2, 7 (Addison-
Wesley, Cambridge, Mass., 1950).
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In terms of the Poisson bracket, the equation of motion for the function
F of the dynamical variables becomes
ar _ oF

7 = 5 T \FH} (23.8)

The left side of Eq. (23.8) is the total time derivative of F along a
moving phase point, the first term on the right side takes into account the
explicit time dependence of F, and the last term shows the change in F
due to the motion of the phase point at which F is evaluated. Thus there
is a strong resemblance between Egs. (23.2) and (23.8); the effect of
the moving phase point in the latter corresponds to the effect in the
former of the change with time of the functions that specify the matrix
representation.

Poisson Brackets and Commutator Brackets. The resemblance
between Eqgs. (23.2) and (23.8) suggests that the quantum analogues of
the classical equations of motion be found in general by substituting the
commutator bracket divided by 7% for the Poisson bracket:

{4,B) "’ilﬁ [4,B] = Elﬁ (AB — BA) (23.9)

There are two observations that lend support to this suggestion. The
first concerns the classical conditions for a contact transformation from
one set of canonical variables g;,p; to another Q;,P;:!

{Qt')PJ'} = 6171'7 {QixQJ'} = 0) {P,;,P,‘} =0 (2310)
where the Poisson brackets are calculated with respect to the original
variables ¢;,p;,; Now we saw in Sec. 6 that a successful transition from
classical to quantum theory could be made by substituting the differential
operator —¢%(d/dx) for p., ete. The commutator of  and p, can then be
found by letting it operate on an arbitrary function g(r) of the coordinates.

., 0g ., 0 .
(@ps — p)g(r) = —the 5+ dh o (zg) = shg(r)  (23.11)
Since ¢(r) is arbitrary, this and the other commutators may be written
as operator equations

—pa=—ihf(o 2 -2z
TP — PsT ¢ dx Oz

. a i)
TPy — Pyt = ——zh(x@ ——a—y:c) =0
zy —yr =0, PPy — PPz = 0, ete.

1 Whittaker, op. cit., pp. 300, 307; Corben and Stehle, op. cit.,, Chaps. 11-13;
Goldstein, op cit., Chap. 8.

ih
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These are in agreement with the classical equations (23.10) when the
substitution (23.9) is made.

The second observation is that the algebraic properties of the com-
mutator brackets are identical with those of the Poisson brackets. It is
readily verified from the definition (23.7) that

{A,B} = —{B,A}, {A,c} =0, where cis a number
{(4d1+ As), B} = {A1,B} + {A,,B] (23.12)
{4142,B} = {A,,B}A; + A:{A,B}
{4,{B,C}} + {B,{C,A}} + {C,{4,B}} =0
The order of possibly noncommuting factors has not been altered.
Dirac! has shown that the form of the quantum analogue of the Poisson
bracket is determined by Eqgs. (23.12) to be the right side of (23.9); the
constant # is, of course, arbitrary so far as this discussion is concerned
(see also Prob. 11).

Quantization of a Classical System. It is plausible on the basis of the
preceding discussion to assume that any classical system can be taken
over into quantum mechanics by finding the classical Hamiltonian funec-
tion and equations of motion in terms of some set of canonical variables
¢:,p;, and replacing the Poisson brackets in (23.8) and (23.10) by com-
mutator brackets in accordance with (23.9). The canonical variables are
then found to obey the quantum conditions?

[Qipz'] = ihaﬁ) [qi'yQi] = 0; [pi,pj] =0 (2313)
This quantization technique will be found useful in connection with
classical wave fields (Chap. XIII) as well as classical particles.

Two precautions are found necessary in applying this technique.
First, the coordinates and momenta must be expressed in cartesian coordi-
nates. And second, ambiguities in the order of noncommuting factors
are usually resolved by taking a symmetric average of the various possible
orders. These precautions are illustrated in the following example.

Motion of a Particle in an Electromagnetic Field. As an example of
the foregoing quantization technique, we consider the problem of the
motion of a charged mass point in a general external electromagnetic
field. The classical Hamiltonian, expressed in terms of the canonical
variables r, p and the electromagnetic potentials A(r,t), ¢(r,t), is?

1 e 2
1P, A. M. Dirac, “The Principles of Quantum Mechanics,” 3d ed., Sec. 21 (Oxford,
New York, 1947).
2 Note that the derivation of Eq. (12.7) then shows that for any pair of canonical
variables Ag; - Ap; = 3h.
3J, H. Van Vleck, “The Theory of Electric and Magnetic Susceptibilities,”’ pp.
7, 20 (Oxford, New York, 1932). Gaussian units are used in the present book.
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where ¢ is the charge on the particle and ¢ is the speed of light; the electric
and magnetic field strengths are given in terms of the potentials by

E=— T grad ¢, H=culA (23.15)
The quantum conditions (23.13) in cartesian coordinates are
[z,p.] = [y,p] = [¢,p] = ik (23.16)

with other pairs of coordinate and momentum components commuting.
We now use Eq. (23.2), with the expression (23.14) for H and the relations
(23.16), to calculate expressions for the particle velocity dr/dt and
acceleration d?r/dt?, for comparison with the corresponding classical
expressions.

Evaluation of Commutator Brackets. In order to facilitate evalua-
tion of some of the commutator brackets that arise from substitution
into (23.2), we derive a few elementary results. Any two functions of r
commute with each other, since all components of r commute with each
other. It follows from (23.16) that

z’p, — pa* = 2(px + th) — pa?
= (px + th)x + the — px? = 2k
It is readily shown by induction that
TP, — P = nihx™! (23.17)
It follows from (23.17) that for any function f(r) that can be expressed

as a power series in z,y,2, the relation

[@)sp] = FO)pe — paf(@) = ih o (1) (23.18)

is valid.! Equation (23.18) can also be established for more general
functions than power series by making use of the representation of p,
as —th(3/9z), as in (23.11); if we operate with the left side of (23.18)
on an arbitrary function g(r), we obtain

[F(@)palg(r) = —ih [f(r) >= = ——f(r)] g(r) = g(r) [iﬁ %f(r)]

which is equivalent to the operator equality (23.18) since g(r) is arbi-
trary. By repeated application of (23.18) it is easily shown that

J@O)p: — pif(r) = (pz gj; o p) = 2h f ps + A2 axJ: (23.19)

! This corresponds to the classical relation {f(r),p:} = 9f(r)/dz [compare with
Eq. (23.9)].
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Velocity and Acceleration of a Charged Particle. The Hamiltonian
(23.14) may now be written, with the help of (23 18),

2
H—g—m——(p A+A-p+; A2+e¢
P> _ e ieh
=5 — A ptg divA (23.20)

The time derivative of a component of r is then easﬂy shown from (23.2)

to be
dz 1 e
i m (pz - EA::) (23-21)

in agreement with the classical relation between the velocity and momen-
tum of a particle in the presence of an electromagnetic field.
The calculation of a component of the acceleration of the particle

dz 1 [dp, edAz]

'Jt?_— dt ¢ dt

[z;]_—E—BT_ [zy]

zhm zhmc

is straightforward, but rather tedious. The result may be written
w8 s (- ta) (- )
# (%) (=2 - [ (o £0) (5 - 52)
+ <aa‘i‘ - a(;i ) (p. — g A,)] (23.22)

The Lorentz Force. Equation (23.22), with the similar y- and
z-component equations, can be written as a single vector equation for the
“force”’

dxr 10A
dtz"e< za—t‘g’ad“‘)
el l e 1 e
+%E[%(p—5 )X(curlA)—-(curlA)X%<p—E >]
=eE+%§(%XH—HX%) (23.23)

where use has been made of Eqs. (23.15) and (23.21). Equation (23.23)
is in agreement with the corresponding classical expression

eE+-§(VXH)
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where v = dr/dt is the velocity of the particle, if we take a symmetric
average of the two terms v X H and —H X v; these are identical clas-
sically but differ in quantum mechanics since the v given by (23.21) does
not commute with H.

Equation (23.23) includes a generalization of Ehrenfest’s theorem,
which was discussed in Sec. 7. If we consider a diagonal element, the
left side is the product of the mass and the second time derivative of the
expectation value of the position vector of the particle. The right side
is the expectation value of the Lorentz force acting on the charge of the
particle. Thus (23.23) states that a wave packet moves like a classical
particle if it is sufficiently well localized so that the electromagnetic fields
change by a negligible amount over its dimensions. This result can, of
course, also be obtained by the method of Sec. 7 when, in accordance
with (23.1) and (23.20), the Schrédinger wave equation is taken to be

ieh zeh

A4
hat ( 5 2+—A d+-—dVA+

Constants of the Motion. Equation (23.2) tells us that if ¥ does not
depend explicitly on the time (so that 0F/dt = 0), then dF /dt = 0 if F
commutes with H. In this case, F is said to be a constant of the motion.
This is usually possible at all times only if H is also constant. If we sub-
stitute H for F in (23.2), we see that the constancy of H implies that
dH /ot = 0, or that H does not involve the time explicitly. Thus if H
is independent of ¢, a function F of the dynamical variables of the system
is a constant if it does not depend on ¢ and commutes with H.

An example of a constant of the motion is any one of the coordinates or
momenta of the system whose canonically conjugate momentum or coordi-
nate does not appear explicitly in H. Since the dynamical variable in
question commutes with all other variables except its own canonical con-
jugate, then it commutes with H. Thus if the Hamiltonian for a number
of interacting particles does not depend on the position coordinates of
the center of mass of the system, the total momentum of the system is a
constant of the motion. This is in agreement with the classical result
that the total linear momentum of a system of interacting particles is
constant if there are no external forces.

In similar fashion, we can make use of the third of Egs. (14.20) to
find the condition for constancy of the angular momentum of a particle.
This equation states that the operator that represents the z component of
angular momentum is M, = ¢%(3/0¢), where ¢ is the angular coordinate
of rotation about the z axis. Thus, as with (23.11), we have the operator
relation

A2+e¢ v (23.24)

oM. — M.¢ = ik (23.25)
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and ¢ and M, may be regarded as canonically conjugate variables. If
then H does not depend on the angular coordinates of a particle [for
example, if V in Eq. (22.2) depends only on the radial distance r from a
fixed center], M. is a constant of the motion; since there is nothing special
about the choice of the z axis, M, and M, are also constants. This is
in agreement with the classical result that the angular momentum of a
particle moving in a central field of force is constant.

The Parity Operator. Parity was first discussed in Sec. 9, and defined
there and in Sec. 14 as the property of an energy eigenfunction that speci-
fies whether it is even or odd with respect to changes of sign of all of the
space coordinates. The parity operator P can be introduced in quantum
mechanics, even though it has no classical analogue; it is defined as an
operator that reflects all coordinates of all particles through the origin:

Pf(xlyyhzl;x?:y?yz?y o .. yt)
= f(=2,—y1,—21,— Lo, — Y2, —23, . . . ,8) (23.26)

Tt is evident from (23.26) that P? is the unit operator 1. Thus if P is
diagonalized the square of each of its diagonal elements is unity, and its
eigenvalues are +1.

If now H is left unchanged by reflection of all coordinates through the
origin, P commutes with H and is a constant of the motion. Moreover,
it follows from Sec. 21 that P and H can be made diagonal at once. Then
the parity of an energy eigenfunction can be well defined (even or odd)
and is constant in time.!

Energy Representation. It was shown in Sec. 22 that the set of
Schrodinger energy eigenfunctions wx(r) may be thought of as a unitary
matrix that transforms the Hamiltonian operator from the r representa-
tion into the diagonal form

sz = E,,su or E,,a(k b l) .'

Although the discussion of Sec. 22 is valid for only one instant of time,

it can be made valid for all time by using the time-dependent eigenfunc-
1Ext

tions ur(r)e * for the transformation, provided that H is a constant.

The matrix representation in which H is diagonal is called the energy

representation.

1 A particle can also possess an ¢ntrinsic parity, which is even or odd according as a
plus or a minus sign appears in the equation Py(rt) = *y¢(—r1,t). Note that this
extends the range of operation of P to include the wave function itself, not just the
space coordinates on which it depends.
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The equation of motion (23.2) takes a particularly simple form in this
representation, if F does not depend explicitly on the time:

Py

L }h (FH — HF)u = 5 (Ex — E)Fu (23.27)

Equation (23.27) can be integrated to give

s(Ex—E)t
Fu(t) = F’g,e A (2328)

where FY, is the value of the matrix element at{ = 0. Thus in the energy
representation the off-diagonal matrix elements of any time-independent
function of the dynamical variables oscillate in time with frequencies that
are related to the energy differences between the stationary states by
Bohr’s frequency condition (see Sec. 2) ; the diagonal matrix elements are
constant in time.

Virial Theorem. A proof of the virial theorem in quantum mechanics
can be given in analogy with the corresponding proof in classical mechan-
ics. In the latter, the starting point is the time average of the time
derivative of the quantity r - p, which is zero for a periodic system. The
analogous quantity in quantum mechaniecs is the time derivative of the
expectation value of r - p, or the diagonal matrix element of the com-
mutator of r - p and H in the energy representation, which is also zero.

4 op) = 5 p), H) = 0

2 2 2
(00 H] = | e+ ymy + o), TP V(x,y,z>]

ik . N v v v
—Tn(p£+p,+p,) %h(xax+yay+z5

= 2thT — dh(r-grad V)
where T is the kinetic energy. We thus conclude that
2Ty = (r-grad V) (23.29)

Note that it is immaterial whether we start with r - p or p - r, since the
difference between them is a constant, and hence commutes with H.

If V is spherically symmetric and proportional to 7, and the expecta-
tion values exist, Eq. (23.29) shows that 2(T) = n(V). Thecasen = —1
is in agreement with the result of Prob. 13, Chap. IV, and the case n = 2
is in agreement with the results of Sec. 13.
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Dirac’s Bra and Ket Notation. A somewhat different notation for
states and matrix elements is based on the concept of bra and ket vectors.!
A ket vector, or ket, is analogous to the wave function for a state. The
symbol |) denotes a group of kets, and the symbol |m) denotes the ket
vector that corresponds to the state m of the system. The superposition
of two states is represented by a linear combination of the corresponding
kets. A bra vector, or bra, is analogous to the complex conjugate of the
wave function for a state. The symbol (| denotes a group of bras, and
the symbol (n| denotes the bra vector that corresponds to the state n of
the system. The scalar product of a bra and a ket vector corresponds to
the integral of the product of the complex conjugate of the wave function
for one state and the wave function for another state, and is denoted by
(n|m). A matrix element like that given in Eq. (22.5) is denoted by
(n|H|m}).

24. ANGULAR MOMENTUM

As an interesting and useful example of the direct treatment of
dynamical variables by matrix methods, we now consider the properties
of the angular-momentum operator. We work entirely with a repre-
sentation at a particular instant of time, so that we are not concerned
here with the change in time of the resulting angular-momentum matrices.
However, if the angular momentum commutes with the Hamiltonian, it is
a constant of the motion, and the matrices retain their form for all time.
It was shown in Sec. 23 that this is the case if the Hamiltonian is spheri-
cally symmetric.

Definition of Angular Momentum. We define the angular momentum
M of a particle about some point in terms of its displacement r from that
point and its momentum p as in Eq. (14.19)

M=rXp (24.1)

We do not now require that p be expressible as a differential operator, but
rather that the components of r and p satisfy the commutation relations
(23.16). It is then possible to find commutation relations between the
components of M, that do not involve r and p.

(M:,M,] = (yp. — 2p,)(2p: — zp.) — (2P — xz{z) (yp. — 2py)
= yp(pz — 2p;) + xp,(2p; — p.2) = th(zp, — YP.)

1 Dirac, op. cit., Secs. 5-8.
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We thus obtain

[M.,M,] = ihM., [M,M,] = LM, [M.M;] = kM, (24.2)

Equations (24.2) are seen to apply also to the total angular momentum
of a system of particles, since the r and p operators for the individual
particles commute with each other and so their angular momenta do also.
Now it turns out that the relations (24.2) admit of some matrix repre-
sentations for M that are not compatible with the original definition
(24.1). When such a conflict arises, there is in some cases physical reason
to regard (24.2) as being more fundamental than (24.1) (see the latter
part of this section).

We note that the original definition (24.1) makes M Hermitian, since
r and p are Hermitian. This is assumed to be true in general, since the
components of M can be Hermitian without violating the commutation
relations (24.2).

Definition in Terms of Infinitesimal Rotations. The angular momen-
tum can also be defined in a way that permits of generalization to more
complicated systems (many interacting particles, spin, fields). We sup-
pose that the system is specified by a Hamiltonian H that is unaffected by
rotations R of the coordinate system. For an arbitrary function f, we
then have RHf = HRY{, so that B commutes with H. Thus any rotation
R is a constant of the motion, and its constancy is a direct consequence of
the invariance of H with respect to rotations. From a physical point of
view, the only dynamical variable whose constancy stems from the spher-
ical symmetry of H is the angular momentum. We therefore expect that
there is a relation between R and M.

Any rotation R can be built up by repeated application of rotations
through very small angles about each of the three coordinate axes. The
argument of the last paragraph then indicates that each component of
M is related to an infinitesimal rotation about the corresponding axis.
The effect of a rotation about the z axis through an infinitesimal angle ¢
on an arbitrary function f is

Rz(d))f(x,y,Z) = f(x + d’yy Yy — ¢z, Z)

f _ g

= f(z,y,2) + ¢y :—x /

of
a9y
- [1 + ¢ (y% -z %)]f(x,w)
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Since f is arbitrary, we can write, with the help of Eq. (24.1),
R.(¢) =1+ $M, ¢ infinitesimal

This relation is more fundamental than (24.1) and can be used to define
M even when the r and p that appear in (24.1) do not exist.

Choice of a Representation. It is apparent from (24.2) that no two
of the three components of M commute with each other, and so it is
impossible to find a representation that diagonalizes more than one of
them. However, all three components commute with

M: = M2+ M + M
for example,

(M., M?]

M.M?: — MM, 4+ M.M? — MM,
th(M.M, + M,M,) — th(M,M,+ M.M,) =0
Thus it is possible to diagonalize one component of M, say M., and M?

at the same time; we use this to define our representation.
It is then convenient to work with M, and the non-Hermitian matrix

L =M, +iM, (24.3)

I

from which it follows that
M? = M? + 3(LL* + L*L) (24.4)
The commutation relations involving L are found from (24.2) to be
[M2z,L] = 0, [M.,L] = kL, [L,L*] = 2kM, (24.5)

Our object is to find a representation in which M, and M? are diagonal.
The rows and columns of this representation can be labeled by the eigen-
values of these two dynamical variables, and we wish to determine these
eigenvalues along with the corresponding matrix for L. The matrices
for M, and M, are then given by solving (24.3) and its Hermitian adjoint
equation:

M,=3L*+L), M,=xuL*-1L) (24.6)

Relations between Matrix Elements. We label the rows and columns
of our representation with a pair of symbols m and j. The eigenvalues of
M, are mh, so that m is a dimensionless real number; j is related to the
eigenvalues of M2 in a way that is specified below [see Eq. (24.13)]. Then
the first of Eqgs. (24.5), written in matrix form, is

(M2L) i mrrpe — (LM2) it e =0
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If we work out the matrix products and remember that M? is diagonal,
this becomes

[(M?)y — (M) ]Laymiw = 0 (24.7)

where (M?2); is the eigenvalue of M2 that corresponds to 7. Equation
(24.7) tells us that all matrix elements of L vanish except those for which
j =73"’. Thus we can temporarily ignore j in specifying the L matrix,
and remember when we finish that the matrix with which we come out is
all for a particular value of 7. This may be part of a larger matrix in
which j can have various values, but there are no nonvanishing off-
diagonal elements of L between the sections of the matrix that correspond
to different values of j.

It is therefore sufficient for the present to use only the symbol m to
designate rows and columns of L. The second of Egs. (24.5) then gives

(ML) — (LM wtmr = ALt
or, since M, is diagonal with eigenvalues m#,
(M — " YAL m» = ALt (24.8)

Thus the only nonvanishing matrix elements of L are those for which
m’ = m" 4+ 1, and we denote these by

Loyt m = Anh (24.9)

8o that A\, is a dimensionless number that may be complex.
If now we take the mth diagonal element of the third of Eqs. (24.5), we
obtain

2 (Lm.m'L*m’.m - L*m,m'Lm’,m) = 2h’m

Each sum is seen to contain only one nonvanishing term, so that this
equation becomes, with the help of (24.9),

Mmit|? — [Aal? = 2m (24.10)

Eigenvalues of M,. Equation (24.10) is a first-order linear difference
equation in |\.|?, and its general solution has one arbitrary constant

a2 = C — m(m + 1) (24.11)

Now |\.|? is necessarily positive or zero, and yet the right side of (24.11)
evidently attains negative values for sufficiently large positive and nega-
tive values of m. This does not cause difficulty if there are two values
my and m, of m for which \,, = 0, and if these two values differ from each
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other by an integer. If this is the case, the series of m values in which
successive terms differ by unity can terminate at both ends without
[Am|? becoming negative. Equation (24.8) can be satisfied at the upper
end (m = m;) by having L., +1, m, = 0 rather than by having an M, eigen-
value greater than m,, and (24.8) can be satisfied at the lower end
(m = my) by having Lu,41, m, = O rather than by having an M, eigen-
value less than me + 1. |\x|? is evidently nonnegative for m values that
range from m, 4 1 to my, inclusive.

We thus have a finite series of eigenvalues of M, ranging from m,
down to ms + 1 by unit steps, where m; and m. are the larger and smaller
roots of the quadratic equation C — m(m + 1) = 0:

mi= —%+ 31 + 40},  my= —} — 1 + 40)}

We rename m; and call it j, in which case C = j(j 4+ 1), and the eigen-
values of M, range from j to —j by unit steps. This implies that 27 is a
positive integer or zero, or that j is restricted to the series of values 0,
1 3
11,3 ....

Eigenvalues of M?; the L Matrix. Equation (24.11) can now be
rewritten in terms of j

Mul2=4G+ 1) —mm+1)=G—mG+m+1) (2412

The eigenvalues of M2 can be found by calculating a diagonal element of
(24.4):

M) mimi = {m? + 3jG + 1) — (m — ym + j(G + 1) — m(m + 1)]}A
= j(j + DA (24.13)

We thus have an infinite number of representations for the matrices
M?, M., and L, each of which is characterized by a zero or half-integer
value for j and has 2j + 1 rows and columns. As expected, the eigen-
values of M? are all the same for a particular value of j. All of these
representations may be taken together to form a single representation of
infinite rank, although it is often more convenient to consider them
separately.

Equation (24.12) leaves the phase of the matrix elements of L arbi-
trary. This corresponds to an arbitrariness in the choice of the phase of
the angular-momentum eigenfunctions when they are normalized, and
is not of physical significance. We therefore choose all the phases to be
zero, and obtain for the nonvanishing matrix elements of L

Linivimi = [(j — m)G +m + )]}k (24.14)

For j = 0, M2 and the components of M are all represented by null
matrices of unit rank: (0). The matrices for the next three values of j,
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as obtained from Eqs. (24.6), (24.13), and (24.14), are

ey e

1 0 0 1 0 0
M.=#l0 0o o) M:=2r2{0 1 O
0 0 —1 0 0 1
0v3 0 0 (24.15)
V3 0 2 0
—_— — 1
i=4% Me=3\ "0 2 0 v3
0 03 o0
0 —V3s 0 0
V3¢ 0 -2 0
— 1
My=3h\ "o 2 0 -3
0 0 V3 0
3 0 0 0 1 0 0 0
— 1 0 1 0 0 M2—15h20 1 0 0
M.=3hlg o _1 of 0 0 1 0
0 0 o0 -3 0 0 o0 1

Connection with the Spherical Harmonics. Comparison of the
foregoing results with those of Sec. 14 suggests a close connection between
the matrix representations of the angular momentum for which j = I
is an integer, and the spherical harmonics Y;.(6,¢) defined in (14.6). A
comparison of Egs. (14.22) and (14.23) with the M? and M, matrices
shows that the corresponding angular-momentum operators of Sec. 14
are simply another representation of the matrices considered in this
section. This can also be shown for the L matrix by computing the
effect of operation with L on a spherical harmonic. From (14.20) and
(24.3), the L operator in polar coordinates is seen to be

L = he* ( + 2 cot 0 5715) (24.16)

It is then possible, by making use of the properties of the spherical har-
monics discussed in Sec. 14, to show that

LYin(0,6) = £[I — m)I 4+ m + D} Y1 nia(6,¢)  (24.17)
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where the minus sign is for m = 0 and the plus sign is for m < 0 (the
calculation has a somewhat different structure for the two groups of m
values). Thus if we set up a matrix to represent the operator L in
analogy with Eq. (22.5), we get just the matrix (24.14) with integer j,
except for change of some of the signs, which are arbitrary anyhow.

In similar fashion, we can show in analogy with Egs. (22.7) and (22.8)
that Y;.(6,¢) can be regarded as a unitary matrix that transforms from a
representation in which the rows and columns are each labeled by the
angle variables 6,¢ to one in which they are labeled by the quantum num-
bersI,m. The first representation is that which is implicit in the work of
Sec. 14, and in which L would be represented as the result of operating
with (24.16) on a suitably normalized § function of the angles. The
second representation is that developed in this section, in which L is
given by (24.14) except for some sign changes.

Spin Angular Momentum. It follows from the work of Sec. 14 and of
this section that if all of the integer j representations are taken together to
form a single representation of infinite rank, the M matrices can be
expressed by (24.1) in terms of r and p matrices that satisfy the commuta-
tion relations (23.16). This is not true of the half-odd-integer 7 matrices,
which are solutions of Eqgs. (24.2) but not of the more restrictive Egs.
(24.1) and (23.16). Thus the matrices for the components of the orbital
angular momentum of a particle or a system of particles must have eigen-
values that are integer multiples of %, since they must be expressible in
terms of coordinates and momenta.

There is nothing to prevent a particle from having an intrinsic angular
momentum that is described by Eqgs. (24.2) but cannot be expressed in
terms of the position and momentum of the particle in accordance with
(24.1). The eigenvalues of the components of such an angular momen-
tum could be integers or half odd integers. Moreover, M? could have a
single eigenvalue corresponding to a single value of 7, since M2 commutes
with all three components of M and there is no reason why it should not
also commute with r and p [since Eq. (24.1) is not valid in this case].
Thus M? could commute with all the dynamical variables that describe
the particle, and so could be a constant of the motion under all circum-
stances; there would then be no objection to equating M? to a definite
number j(j 4+ 1)A% This is not possible for an orbital angular momen-
tum, since in that case M? does not commute with r and p, and hence is
not always a constant. )

An intrinsic angular momentum of the type described in the last
paragraph is called a spin angular momentum. It isfound experimentally
that electrons, protons, neutrons, and probably also x mesons each possess
a spin angular momentum for which j = ; and the M matrices are given
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in (24.15) and that = mesons possess a spin angular momentum for which
j=0.1!

Addition of Angular Momenta. It is sometimes of interest to con-
sider the vector sum M = M; + M of two angular momenta M, and M,
that commute with each other [all components of M; commute with all

. components of My, and M; and M, separately satisfy the commutation
relations (24.2)]. These angular momenta could refer to independent
particles, or to the spin and orbital angular momenta of the same particle.
As pointed out near the beginning of this section, M obeys the same
commutation relations (24.2) as do M; and M,. A representation in
which M2, M2, M., and M, are diagonal is easily obtained from the fore-
going theory. The rows and columns are labeled by ji, j2, mi, and m,;
the matrices for M;, for example, have the form (24.15) so far as the
indices j; and m,; are concerned, and are unit matrices as regards the
indices j; and m..

It is possible to find a second representation in which M3, M2, M?,
and M, are diagonal, for which the rows and columns are labeled by
J1, Jo, J, and m [§(7 + 1)A? is an eigenvalue of M? and mf is an eigenvalue
of M.,]. If j; and j, are fixed, the first representation has

(21 + 1)(2j2 + 1)
rows or columns, and can be specified by products of eigenfunctions of
M,, and of M, just as the representation (22.6), in which the Hamil-
tonian is diagonal, is specified by eigenfunctions u; of the operator H.
The second representation, with the same fixed values of j; and j,, must
have the same number of rows, since it is specified by eigenfunctions of
M? and M, that are linear combinations of the original eigenfunctions.
We now find the values of j and m that appear in the second representation.

Eigenvalues of (M; + M;)% Since M, = M,, + M, it is apparent
that the possible values of m are m; 4+ m,. The largest value of m is
therefore j; + 72, and this occurs only once, when m; = j; and my = j,.
This shows that the largest value of j is j1 + j», and that there is only one
such state. The next largest value of m is j; + j» — 1, and this occurs
twice: when m; =j; and my; = j, — 1, and when m; =j; — 1 and
mq = j2 (provided that neither j; nor j, is zero). One of the two linearly
independent combinations of these two states must be associated with
the new state for which j = j; + j,, since for that j value there must be m
values ranging from j; + j» to —ji — j» by integer steps. The other
combination cannot be associated with this or a larger j, since the larger
m values that should then also be present actually are not. Therefore
the second combination is associated with j =71 +j. — 1. By an

1 For a discussion of the properties of = and p mesons, see R. E. Marshak, ‘“ Meson
Physics,” Chaps. 4, 6 (McGraw-Hill, New York, 1952).
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extension of this argument we can see that each j value, from j; 4+ j.
down to |j — j.| by integer steps, appears just once, and that with each
is associated 2j 4 1 linearly independent combinations of the original
eigenfunctions. Thus the number of rows or columns of the second
representation is
Jitja
2 +1) =21+ 1)2:+1)
j=lir—jal

as expected.

The foregoing result is the same as the addition rule for angular
momenta of the old quantum theory: the magnitude of the sum of two
angular-momentum vectors can vary from the sum of their magnitudes
(parallel case) to the difference of their magnitudes (antiparallel case) by
integer steps.

The unitary matrix that transforms from the mm; to the j,m repre-
sentation for fixed values of j; and j; can be found by matrix methods.
Since its structure is rather complicated it is not quoted here.!

Problems

1. Assume that any Hermitian matrix can be diagonalized by a unitary matrix.
From this, show that the necessary and sufficient condition that two Hermitian
matrices can be diagonalized by the same unitary transformation is that they
commute.

2. Show that a nonsingular matrix of finite rank must be square.

8. Given two matrices A and B that satisfy the following equations:

A* =0, AA*+ A*A =1, B =A*4

where O is the null matrix and 1 is the unit matrix. Show that B2 = B. Find 4 and
B in a representation in which B is diagonal, assuming that it is nondegenerate. Can
A be diagonalized in any representation?

4. Given three matrices A, B, and C that satisfy the following equations:

A?=B*=(C% =1, AB+BA =BC+CB=CA+ AC=0

where 1 is the unit matrix and O is the null matrix. Find all three matrices in a
representation in which A4 is diagonal, assuming that it is nondegenerate.
6. Given three matrices A, B, and C that satisfy the following equations:

A2 =B =(C? =1, BC — CB =14

where 1 is the unit matrix. Show that AB + BA = AC + CA = O, where O is the
null matrix. Find all three matrices in a representation in which A is diagonal,
assuming that it is nondegenerate.

1See E. U. Condon and G. H. Shortley, “The Theory of Atomic Spectra,” Chap.
II1, Sec. 14 (Macmillan, New York, 1935); Chap. III also discusses other interesting
properties of angular momentum. See also E. Feenberg and G. E. Pake, “Notes on
the Quantum Theory of Angular Momentum”’ (Addison-Wesley, Cambridge, 1953).
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6. Make use of the matrix expression (13.18) for z in a representation defined by
the harmonic-oscillator wave functions to obtain a similar matrix for 22, using purely
matrix methods. Compare with the answer to Prob. 3, Chap. IV.

7. Use purely matrix methods to show that if z,m 7 0 for a harmonic oscillator,
then E, — Em = +#(K/u)}. Note that for a harmonic oscillator, H = p?/2u + 3Kz?,
zp — px = 1h.

8. Show by purely matrix methods that if H = p2/2u + V(r),

z: h2

— 2 = —
(En Em)lxnml 2”
n

where the summation is over all states and z is a cartesian component of r.
9. If H = p2/2u + V(z) for a one-dimensional particle, and V' (z) can be expressed
as & power series in z, show by purely matrix methods that
dz _p dp_ _dV
d 4 di dz
What is meant by the operator d/dt in this connection?
10. Transform the Hamiltonian for the harmonic oscillator expressed in the z
representation
_ _hrar o,
H = —2“dx2+7Kx
into the p representation. What are the solutions in the p representation that corre-
spond to the z representation wave functions (13.13)?
11. A(z,p) and B(z,p) can be expressed as power series in z and p, and [z,p] = %.

Show by purely matrix methods that
lim L [4,B] = {4,B
2—0 1%

12. Verify Eq. (24.17) by direct operation on the spherical harmonics with the L
operator given in Eq. (24.16).



CHAPTER VII
APPROXIMATION METHODS FOR STATIONARY PROBLEMS

In quantum mechanics, as in classical mechanics, there are relatively
few systems of physical interest for which the equations of motion are
capable of exact solution. Approximation methods are expected to play
an important part in virtually all applications of the theory. This
enhances rather than diminishes the importance of those problems for
which exact solutions can be found, since as was pointed out at the begin-
ning of Chaps. IV and V, exact solutions are often useful as starting points
for approximate calculations. In addition, they may also help to estab-
lish limits of validity for various approximation methods.

In this chapter and the next we develop several approximation
methods and apply them to illustrative problems. It is convenient to
divide the methods into two groups according as they deal with stationary
states of systems that are represented by eigenfunctions of the energy
(considered in this chapter), or with problems in which the Hamiltonian
depends on the time (considered in Chap. VIII). In both cases we start
with the Schrodinger wave equation, and only occasionally introduce
matrix methods or notation.

25. STATIONARY PERTURBATION THEORY

The stationary perturbation theory! is concerned with finding the
changes in the discrete energy levels and eigenfunctions of a system when
a small disturbance is applied. It is assumed from the outset that the
Hamiltonian H in the Schrédinger wave equation can be written as the
sum of two parts. One of these parts H, is of sufficiently simple structure
so that its Schrodinger equation can be solved, and the other part H’ is
small enough so that it can be regarded as a perturbation on H, It is
convenient to retain our old symbols u, and E, for the supposedly known
normalized eigenfunctions and eigenvalues of the unperturbed Hamilto-
nian H,, and use ¢ and W for the perturbed stationary wave function and
energy level:

Hy = Wy, H=H,+ H, Hou, = E,u, (25.1)
Nondegenerate Case. The assumption that H’ is small suggests that
we expand the perturbed eigenfunction and eigenvalue as power series in

1 E. Schrodinger, Ann. d. Physik, 80, 437 (1926).
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H’. This is most conveniently accomplished in terms of a parameter ),
such that the zero, first, etc., powers of A correspond to the zero, first,
etc., orders of the perturbation calculation. We replace H' by AH’, and
express ¥ and W as power series in \. We assume that these two series
are analytic for A between zero and one, although this has not been inves-
tigated except for a few simple problems.! The different orders of the
perturbation approximation are then given by the coefficients of cor-
responding powers of \. In the final results, A is set equal to 1.

The perturbed wave function and energy level are written

v ="+ M1+ M+ A5+ - - -
W=Wo+AWi+ NW,+NMWs+ - -

and are substituted into the wave equation to give

(Ho + NH) o + M1 + - - )
= (Mo + AW 14 - - Yo+ Ma+ -+ 2) (253)

Since Eq. (25.3) is supposed to be valid for a continuous range of \, we
can equate the coefficients of equal powers of A on both sides to obtain
a series of equations that represent successively higher orders of the
perturbation.

(25.2)

Hwo = Wobo
Hyy + HYo = W1 + Wi (25.4)
Hyo +~ HyY1 = W + W1 + Wb, ete.

The first of Egs. (25.4) means that ¢, is any one of the unperturbed
eigenfunctions, as expected. We therefore put

#’0 = um, WO = Em (255)

This state %, is assumed to be nondegenerate, although others of the
unperturbed eigenfunctions may be degenerate. The case in which the
unperturbed state y, is degenerate is considered later in this section.

First-order Perturbation. It is implicit in the present treatment that
the unperturbed state u., is one of a discrete set (even though the entire
set of u’s may be partly continuous), since otherwise no interest would
attach to the calculation of the perturbed energy. In the next section
we consider the perturbation of one of a continuous set of eigenfunctions,
in connection with collision problems.

We expand ¢, in terms of the u,

¥1 = SaPu, (25.8)

! For a discussion of this point, see N. Arley and V. Borchsenius, Acta Math., 76,
261 (1945), especially Part IV.
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where § denotes a summation over the discrete set together with an
integration over the continuous set of eigenfunctions. Substitution of
(25.6) into the second of Eqgs. (25.4) gives

Saﬁ})H oUn + Hupm = EnSa®un + Witin

We replace Hou, by E,u, in the first term, multiply by 4, and integrate
over all space, making use of the orthonormality of the w’s:!

a}}’(Em _ Ek) + Wlakm = J"quH'u,,, T= H'km (257)

where the integral on the right is the km matrix element of the perturba-
tion energy H'’ in the representation in which the unperturbed Hamilto-
nian H, is diagonal [see Eq. (22.5)].

If we take k = m in Eq. (25.7), we see that

W, = H,, (25.8)

which is the expectation value of H’ for the state m. Equation (25.7)
also gives
Hym

A = 5¥—2—
k Em - Ek

kF=m  (25.9)

We thus have a solution to first order in H’, except that a) is still unde-
termined; it is obtained below from the normalization of y.

Second-order Perturbation. The solutions to second order in H’ are
found from the third of Egs. (25.4) by substituting in

Y2 = Sa®u, (25.10)
to give
Sa®Hau, + H'Sa®u, = E,Sa®u, + W:1SaQu, + Watm

As before, we replace Houn by Eu, in the first term, multiply by % and
integrate over all space to obtain

aP(En — Er) = Sa®H, — Wia® — Wabin (25.11)
If now we set k = m, we see with the help of (25.8) that

’ ’ 7|2
N ol O = ! Hmanm — ’ |Hmnl

W2 S an mn S Em — En S Em — En (25.12)

where the prime on § denotes the omission of the term n = m from the

summation and integration over n. Similarly, if k¥ % m in Eq. (25.11),

! [Grundr is equal to & if either k or n is one of a discrete set, and is equal to

3(k — n) if both belong to a continuous set; in either case, Snf»fﬂkundr = fi (see Sec.
10).
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we obtain
’ H' H' H. !
(2) — kntfnm _ km*Lmm
@i S (Em - Ek)(Em - En) (Em - Ek)z
I)Hkm
+ gk k#m (25.13)

We thus have a solution to second order in H’, except that a®, like a®,
is not yet determined.

Normalization of ¢. Since y, is chosen to be equal to 4, ¢ is already
normalized to zero order. If then the normalization integral [|y|%dr is
set equal to unity for all orders of A, when ¢ is given by (25.2), we
obtain

J@od1 + dopr)dr = in first order
S + Yoz + ¥1|2)dr = 0 in second order

These give at once
a® + a¥ =0, a? + a® + Sla(}‘)lz =0

The real parts of af) and a® are fixed by these relations, but their
imaginary parts are not. The choice of the imaginary parts of these
coefficients is equivalent to the choice of a new phase for ¢ in each order
of the calculation; this in turn affects the phase of the next higher order
term in ¢. There is no loss of generality involved in making the simple
choice of zero for these imaginary parts, in which case

a® =0, a® = —§SlaPp

Note that the perturbed energies are independent of this choice.!

The energy and wave function to second order in H’ are then (setting
A=1)

W=En.+H.Hn+S, ——'Hf"|;
= HkMUk Hk’an'm \
V= Un +S -+ S, [[Sn I A iy (25.14)
Hkam,m ] 1 IHk,ml2 m
T (EBn — Ep)? T2 (E.—E):

It follows from Eqs. (25.8) and (25.12) that the calculation of W to a

given order in H’' requires knowledge of ¥ only to the next lower order.
Perturbation of an Oscillator. As a simple example of the application

of the first- and second-order perturbation theory to a nondegenerate

state, we consider the perturbation of the mth energy level of the linear
1 See also S. T. Epstein, Am. J. Phys., 22, 613 (1954).
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harmonic oscillator of Sec. 13 by an additional energy H' = 4bz2. The
unperturbed Hamiltonian is Hy = p?/2u + $Kx? (the mass is denoted by
u to avoid confusion with the quantum number m); the unperturbed
eigenfunctions u.(z) given by Eq. (13.13) correspond to the eigenvalues
E, = (m + H)h(K/u)}, where m =0, 1, 2,. ... This example is
‘evidently a trivial one since the perturbed eigenfunctions and eigenvalues
are given simply by replacing K by K + b in u..(x) and E,; it is neverthe-
less instructive.

We require the matrix elements of z2 between various pairs of har-
monic-oscillator wave functions. These may be obtained with the help
of the generating function (13.10) for the Hermite polynomials, as in
Prob. 3 of Chap. IV, or more simply by matrix multiplication using the
definition (21.3) and the expressions for .. given in Eq. (13.18). We
readily obtain

2o~ (m + 1)(m + 2)}, n=m+ 2
N _ ) @a)1(2m + 1), n=m
(x )nm - zk: ZnkLim = (2(12)_1[’”&(’”& — 1)]}’ n=m— 2 (2515)
0, otherwise

where a = (uK /A% Substitution into the first of Eqgs. (25.14) then
gives for the energy to second order

1 i b b?
W = (m+y)h<§> [1 +—27{—8—K—2]
in agreement with the expansion of (m + $)A[(K + b)/u]? to second order
in b.

Degenerate Case. We now show that the foregoing treatment is
incomplete when the unperturbed state m is degenerate. We suppose
first that there is a state k that is degenerate with and orthogonal to the
state m (Ey = En, [Gundr = 0). Then Eq. (25.7) tells us that H,,, = 0.
Thus the first-order perturbation theory developed above is satisfactory
only if H,,, actually is zero.

If now H,, = 0 and we suppose in addition that H}, = H,., Eq.
(25.11) tells us that

a(il‘)H ’n p— Hk,an,m =
n7§c,m iy n#sk,m Em - En 0
In this case the degeneracy between the states ¥ and m is not removed in
first order, since the first-order perturbed energies for the two states
(Ex + H/;, and E,. + H,.,,) are equal. Then the second-order perturba-
tion theory developed above is satisfactory in general only if there exist
no states n that connect the states & and m through the perturbation;
1.e., only if either or both of H,,, and H,’, are zero for all n.
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We can summarize the situation by saying that the foregoing pertur-
bation theory fails in first order if there is degeneracy of the unperturbed
state in zero order and the perturbation energy H’ connects the degenerate
states in first order. Similarly, the theory fails in second order if there is
degeneracy of the unperturbed state in first order and the perturbation
energy connects the degenerate states in second order (through one or
more other states).

Removal of Degeneracy in First Order. Let us suppose that the
perturbation removes the degeneracy of the unperturbed state m in some
order. This means that there are at least two exact eigenfunctions of the
Hamiltonian H = H, + AH’ that have eigenvalues that are different
when A % 0 and become equal when A\ is made to vanish. Now we
assumed earlier that the eigenfunctions are continuous analytic functions
of A as A — 0; thus each of the eigenfunctions that are nondegenerate
when A 0, approaches a definite linear combination of the degenerate
unperturbed eigenfunctions when A = 0. If these linear combinations
are not the same as the unperturbed eigenfunctions on which the calcula-
tion is based, the expansions (25.2) are not valid for A = 0, and the
method developed above breaks down.

It now becomes clear that we may treat degenerate unperturbed
states by perturbation theory, if we first perform an exact diagonalization
of as much of the perturbation matrix H}; as is necessary to remove the
degeneracy. This is equivalent to finding the linear combinations of the
unperturbed eigenfunctions that fit on continuously to the exact per-
turbed eigenfunctions when X is made different from zero. For example,
suppose that only the unperturbed state k is degenerate with m, and

wm = Hop # 0. In this case we need only diagonalize the submatrix

/4 4
(H mn m") (25.16)

km ;ck
in order to remove the degeneracy (in this case it is removed in first
order) and find the correct linear combination of % and u; that can be
used for higher order perturbation calculations. An explicit example of
this type of situation is given below.

Removal of Degeneracy in Second Order. It may, however, happen
that H},, = 0 and H}; = H.,,, so that the degeneracy is not removed in
first order. A direct but unnecessarily complicated procedure then con-
sists in diagonalizing the submatrix of the entire Hamiltonian that
includes the rows and columns labeled by all subscripts # for which either
H.,,. or H}, is different from zero. Rows and columns of this matrix can
be rearranged to bring together any ones that are desired. For example,
when there are two such subscripts # and [, we can diagonalize
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En+ Hpn 0 H, — Hy
0 Em Hznm ’n %
o Rl W (25.17)
im A In E, + Hy

to remove the degeneracy in second order.

A less direct but analytically simpler procedure consists in expanding
the exact eigenfunctions in powers of A as in (25.2), (25.6), and (25.10).!
Because of the degeneracy, however, we now include both u, and u; in
the zero-order term.

Um = Gnlim + Gz + ' af® + N2aP)wy

Vi = bmttm + biux + S'OB + APy
¥n = U + SQa® + Na@)w, n % mk
l#=n

where the prime on § indicates that I ¢ m k. Substitution of the first of
these into the wave equation (Ho + AH")¢, = Wo¥m, Where

Wa = En + AW + MWD,
gives to second order in A

NmH Um + NapH'uy + S’ \af B + NaPEn + Naf®H'ui)
= AWP 4+ N2W2) (@mttm + arux)
+ S' AP Eu + NaPEu + NaPWPw)  (25.18)

We now multiply (25.18) through on the left by 4, and integrate to
obtain

NanHl o + SA2PHL, = AW Pa,, + N2 W2a,, (25.19)

since H,;, = 0. Similarly, Eq. (25.18) can be multiplied by %, and by
4. (n ¥ m,k), and integrated in each case to give

A Hy, + SN HYy = AW Day + MW Ra, (25.20)
NanH., + NaiHYy, + NP E, + NaPE, + S\ HY,
= MPEn + NaPE, + Na@WP  (25.21)
The first-order terms in (25.19) and (25.20) give the expected result
WP = Hyp = Hi

1J. H. Van Vleck, Phys. Rev., 33, 467 (1929), Sec. 4.
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The second-order terms give

S'afoHYy = WPanm

25.22
S'aPH}, = Wa; (25.22)

The first-order terms in (25.21) give an expression for af’, wherel = n =
mk:
o’ (Em — E1) = anH}n + arHy, (25.23)

Substitution of (25.23) into (25.22) gives a pair of homogeneous algebraic
equations for a, and a;. These equations have a nonvanishing solution
if and only if the determinant of the coefficients of a. and ay is zero [see
the discussion of Eq. (21.19)]:

4 !’ HI HI
’ mlttm 2) ’ mlit Lk
SgrsE - Syt
’ 7 ’ 7 =0 (25.24:)
S/ lelm S/ sz W __ W
E, — E; E, — E; ki

The secular equation (25.24) is of second order in this case, while the
similar equation resulting from (25.17) is of fourth order. It is apparent
that this procedure always yields lower order secular equations than exact
diagonalization.

Equation (25.24) would also have been obtained if we had started
from the equation for ¢, rather than ¢... The two roots of (25.24) are
W.® and W;®, and the two pairs of solutions of (25.22) are an,a; and
bm,bx. We thus obtain perturbed energy levels in which the degeneracy
has been removed in second order, and also find the correct linear combi-
nations of the unperturbed degenerate wave functions u,, and u;.

First-order Stark Effect in Hydrogen. As an example, we now con-
sider the first-order change in the energy levels of a hydrogen atom due
to an external electric field of strength E directed along the positive z axis
(Stark effect). H, is the unperturbed Hamiltonian for a hydrogen atom,
which from (16.5) and (22.2) is

Ho=—h

? 2
' T
where u is the reduced mass (16.4). H’ is the extra energy of the nucleus
and electron due to the external field and is readily shown to be

H' = —eFz = —ebEr cos 0 (25.25)

where the polar axis is in the direction of positive 2.
The discussion of Sec. 14 showed that the wave functions for any
spherically symmetric potential energy, when expressed in spherical



Skc. 25] APPROXIMATION METHODS FOR STATIONARY PROBLEMS 159

harmonics, have even parity when the azimuthal quantum number I is
even, and odd parity when [ is odd. Now the perturbation (25.25) is
an odd operator, since it changes sign when the coordinates are reflected
through the origin. Thus the only matrix elements of H’ that fail to
vanish are those for unperturbed states that have opposite parities; in
particular, all diagonal elements of H’ for the unperturbed hydrogen-
atom wave functions given in (16.24) are zero. This shows that a non-
degenerate state, such as the ground state (n = 1) of hydrogen, has no
first-order Stark effect.

The first excited state (n = 2) of hydrogen is fourfold degenerate; the
quantum numbers [ and m have the values (0,0), (1,0), (1,1), (1,—1).
We now show quite generally that nonvanishing off-diagonal matrix
elements of H' exist only for states that have the same quantum number
m. It is apparent from (23.16) that z commutes with the z component, of
angular momentum M, = zp, — yp,, so that [M.,H'] =0. The ks
matrix element of this commutator in a representation in which M, is
diagonal is (mx — m,)hH;, = 0, so that H, = 0 unless m; = m,. Thus
only the first two of the above four degenerate unperturbed states need
be considered in calculating the first-order Stark effect of the first excited
state of hydrogen.

Perturbed Energy Levels. The perturbation submatrix that has to be
diagonalized is of the form (25.16), where H,.,, = H}), = 0, and

Hy, = —eE f Ta10(T)7 OS 6 Us00(T) dr

f— — _7_'_ —T1/Gg9 2
16a0 / / (2 ao)e w? dwdr

= 36Ea0)

where w = cos 6, and use has been made of (16.24). We now wish to
transform this two-row submatrix of H’ from the representation in terms
of %00 and ua10 to a representation in which it is diagonal and has the
eigenvalues Wy and W,.

We follow the notation of Eqgs. (22.3) and (22.5). The wave func-
tions are v1 = Useo, V2 = Uato for the nondiagonal representation, and
S1w1 + Siws, Sawi + Saws for the diagonal representation. Then in
accordance with the discussion of Eq. (21.19), the eigenvalues of H’ are
the two roots of the determinantal or secular equation

H\—W:  Hj

—W; 3eEao
= = 0’ 7: = 1’2
H 1'2 2’2 - Wi

36an —W;
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These are easily found to be W, = 3ekas, W2 = —3e¢Eao. The trans-
formation matrix S can be found by writing out the matrix equation

W. 0
SH' = WS, W=
0o W,

together with the unitary conditions on S. The result contains arbitrary
phase factors, which may be chosen equal to zero, in which case

1 1
S =2}
1 -1

Thus two of the four degenerate states for n = 2 are unaffected by
the electric field to first order, and the other two form linear combinations
2-}(ug00 + Uz10) With extra energy 3eka, in the electric field, and

2- *(uzoo - uno)

with extra energy —3e¢Ea,. This means that the hydrogen atom in this
unperturbed state behaves as though it has a permanent electric-dipole
moment of magnitude 3ea,, which can be oriented in three different ways:
one state parallel to the external electric field, one state antiparallel to
the field, and two states with zero component along the field.

Occurrence of Permanent Electric-dipole Moments. As remarked
above, a permanent electric-dipole moment (energy change proportional
to E) can appear in hydrogen only when the unperturbed state is degen-
erate, whereas an induced electric-dipole moment (energy change propor-
tional to E2) can appear in any state (see Probs. 1and 12). We now show
that the first conclusion is generally valid for any system that is described
by a Hamiltonian that is unaffected by reflection of the coordinates of all
particles through the origin. It follows from the discussion of Eq. (23.26)
that a nondegenerate state of such a system has definite parity (even or
odd). Then since the electric-dipole-moment operator is odd, its expec-
tation value is zero. All the interactions between particles thus far
encountered in physical theory lead to Hamiltonian functions that are
unchanged by reflection. Since the ground states of all atoms and nuclei
are very likely to be nondegenerate,! it is to be expected that an atom or a

1 Apart from degeneracy due to the orientation of the total angular momentum of
the system in space, which cannot give rise to an electric-dipole moment because all
these degenerate states have the same parity, degeneracy either is associated with some
special symmetry property of the system (such as the separability of the hydrogen-
atom wave equation in spherical and parabolic coordinates) that is unlikely to occur
for many-particle systems, or is accidental and hence very improbable on statistical
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nucleus in its ground state will not possess a permanent electric-dipole
moment, and none has ever been found experimentally. An extension of
the foregoing argument leads to the expectation that an atom or a nucleus
can possess electric charge, electric-quadrupole moment, magnetic-dipole
moment, etc., but not magnetic pole, electric-dipole moment, magnetic-
quadrupole moment, etc. (see also Prob. 21, Chap. XI).

26. THE BORN APPROXIMATION

In the preceding section we considered the perturbation of those
energy eigenvalues, and the corresponding eigenfunctions, which are
part of a discrete set. Here we are concerned with the perturbation of
one of a continuous set of eigenfunctions. As in Chap. V, such eigen-
functions are of interest in connection with the theory of collisions. The
object of the calculation is not to determine an energy eigenvalue, which
in this case can be fixed in advance, but to find the perturbed eigen-
function and its relation to the scattering cross section. To simplify
matters, we restrict our attention to those cases in which the entire
potential energy of interaction between the colliding particles is regarded
as a perturbation, and carry the calculation only to first order. As we
shall see, this Born approximation' is best applied when the kinetic
energy of the colliding particles is large in comparison with the inter-
action energy. It therefore supplements the method of partial waves
(Sec. 19), which is most useful when the bombarding energy is small.

Perturbation Approximation. We wish to solve the wave equation
for the relative motion, Eq. (18.8),

myme

— % Vi + V@u = By, p= T (26.1)
and obtain an asymptotic form like that given by Eq. (18.10),
) h2k?
u(r,0,9) -0 e*z 4+ r1f(6,p)e*r, = o (26.2)
We adopt the perturbation approach of Sec. 25, and put
u(r) = e** 4 o(r), (26.3)

grounds. In some molecules, however, there is a group of nearly degenerate states
between which matrix elements of the electric-dipole operator exist; if these energy
levels are closely spaced in comparison with either the thermal energy of the molecule
or the energy associated with the applied electric field, they give rise to a permanent
electric-dipole moment [see J. H. Van Vleck, ‘“The Theory of Electric and Magnetic
Susceptibilities,” p. 154 (footnote 28), Secs. 48, 70 (Oxford, New York, 1932)].

1 M. Born, Zeits. f. Physik, 38, 803 (1926).
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where the scattered wave v(r) is to be a small addition to the unperturbed
plane wave solution ¢*2. The term v(r) will be found only to first order
in the scattering potential V(r); the Born approximation becomes quite
arduous when carried to higher orders.

Substitution of (26.3) into (26.1) gives

(=V2 — k% = —U(r)e* — Uy, U) = %’; V) (26.4)

Our assumption that v(r) is small in comparison with ¢*2, or the roughly
equivalent assumption that U(r) is small in comparison with k2, leads us
to neglect the second term on the right side of Eq. (26.4). We therefore
have to solve the inhomogeneous wave equation

(—V2 — ko) = — U(r)et (26.5)

where the right side is known. A sufficient criterion for the validity of
our solution is

lv(r)] < |e*#| =1, for all r (26.6)

This condition, while always sufficient, is in some cases more stringent

than is necessary for the Born approximation to provide useful results.

Green’s Function. Rather than discuss Eq. (26.5) as a special case,

we indicate a method of solution of the more general inhomogeneous
partial differential equation

(@ — wo)r(r) = F(r) (26.7)

Here Q@ is a Hermitian operator that defines a complete orthonormal set
of eigenfunctions wu,(r) with real eigenvalues w, and F(r) is a known func-
tion of r.

Qu,(r) = wu,(r)
Jas(@u,(r)dr = 8(0 — ') (26.8)
[a,()u,(r')dw = 8(r — ')

It is assumed for definiteness that the eigenvalues » form a continuous set.
Equation (26.7) can be solved by expanding »(r) in terms of u,,.

v(r) = [Au.(r)dw (26.9)
Substitution into (26.7) gives
A, (0 — wo)u,(r)dw = F(r)

If we multiply this equation by 4./ (r) and integrate over r, we obtain

4, = {B@F ()dr

o — wo
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Thus the solution of (26.7) can be written

o(r) = [Gu,(r,t')F (x')dr’ (26.10)
where the function
Gon(r,r) = / U)u(T) 5 (26.11)
w — Wwo

is called the Green’s function for the operator © and the number w,.t

Green’s Function for a Free Particle. The Green’s function (26.11)
can be evaluated without great difficulty when the operator Q is the
Hamiltonian for a free particle. A suitably normalized eigenfunction of
—V? corresponding to the eigenvalue k’2 is from (11.11)

up(r) = (2r)~texp ik’ -r

where k’ is any vector of magnitude ¥’. Thus the Green’s function is

!, — I. /
Gu(r,r') = (2r)~3 / exp (ik ;,)ffpkg 1) g (26.12)

We perform the k’ integration in spherical polar coordinates with the
polar axis in the direction of the vectorp =r — r'.

® x ik’ con
Gi(r,’) = (2m)—3 /; / / ]jz ’ 5 k'?dk’ sin 6d6d¢

= (2,,-2‘,)—1/ ks’l;l k'p ]f’d’f’
0 —_

= (4n2p)~1 / ’;s“‘ L dx (26.13)

—w K" — 0O

where ¢ = kp = k|r — 1’| is a positive number.

The singularities in the integrand of (26.13) at xk = 4o can be dis-
cussed in terms of the corresponding singularity of the expansion coeffi-
cient A, in (26.9) at @ = wo. The behavior of 4, at w = w, cannot be
found from Eq. (26.7) alone, since to any solution »(r) of the inhomo-
geneous equation can be added a solution wu,,(r) of the corresponding
homogeneous equation. The addition that is to be made can be deter-
mined only from the boundary conditions that are imposed on »(r). In
similar fashion, the contribution to the integral in (26.13) from the infini-
tesimal neighborhood of the points x = +¢ can be determined only from
comparison of Egs. (26.3) and (26.2), which shows that we want only
those solutions »(r) that have the asymptotic form r—f(6,¢)e*". From
the relation (26.10) between »(r) and Gx(r,r’), we see that we must evalu-
ate the integral in (26.13) so that it approaches ¢ when ¢ is large.

! For a fuller discussion of Green’s functions, see P. M. Morse and H. Feshbach,
‘“Methods of Theoretical Physics,” Chap. 7 (McGraw-Hill, New York, 1953).
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Explicit Evaluation. The contribution to this integral from the
infinitesimal neighborhood of the points k = +o¢ can be adjusted by
regarding it as a contour integral in the complex « plane. The main path
of integration is along the real axis, and we now show that the choice of
the contour near the two singularities determines the dependence of the
integral on o.

Suppose that we choose the contour as shown in Fig. 21(a). The
integral in (26.13) can be written

. ke . ke ik

(21) l/mdk - (27,) l/mdl( (2614)
The first integral can be evaluated by closing the contour with an infinite
Imaginary semicircle C' in the positive imaginary
axis « plane half plane as in Fig. 21(b), since the
S~ o Real exponential becomes vanishingly small
- - 0 - +0X5  there and contributes nothing to the
(a) integral. Then the value of the first
integral is 277 times the residue of the
integrand at the only pole (k = o) that

lies within the contour: wiei,

C The second integral in (26.14) can be
evaluated by closing the contour with an
infinite semicircle C’ in the negative

> 5 o imaginary half plane as in Fig 21¢. Itis
(6) equal to —2m: times the residue at the
only pole (x = —o) that lies within the
contour: —wzet’. Thus the entire expres-
sion (26.14) is equal to we’s. It is not
difficult to see that the choice of any
contour other than that of Fig. 21(a)
would have given a term e~¢ in addition
to or in place of the term e, Such a term
in G corresponds to an incoming wave in
(c) v(r), and is ruled out because of the
Fia. 21. Contours for the evalu- asymptotic form (26.2) of the desired
ation of the integral in Eq. (26.13). solution.

Substitution into Eq. (26.13) shows that the Green’s function for a

free particle (represented by the operator —V?) is

Gi(r,r’) = (4n|r — r'|)~1 exp tkir — 1’| (26.15)

Scattering Cross Section. From Egs. (26.3), (26.5), (26.10), and
(26.15) we obtain an approximate solution of the wave equation (26.1)

+
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u(r) = % — (4m)~if|r — O'|1 eeFe U()dr’  (26.16)

The second term in (26.16) has the form of a superposition of waves
scattered from all points r’ with amplitudes proportional to the product
of the incident wave amplitude and the scattering potential at those
points.

We assume that U(x’) falls off rapidly enough for large r’ so that there
is an asymptotic region in which r is large in comparison with those values
of 7 for which there is a significant contribution to the integrand. We
can then put
wr’

[r = 1| —r — wr, |r—-r’|—1—>1+7

77— ®© r—> ® r
where w is the cosine of the angle between the vectors r and r’.  Thus the
asymptotic form of (26.16) is

w(r) —> etz — (darr)leihr [ U (1) ek C—or)dr! (26.17)

Comparison of (26.2) and (26.17) shows that the scattered amplitude
is
f(0)¢) = = (41r)_1fU(r’)eik(z’—wr’)d,rl
— ()7 U(r') exp &K - r'dr’ (26.18)

Here we define a vector K = ko — k, where k, is the vector of magnitude
k that has the direction of the incident beam (polar axis), and k is the
vector of magnitude k& that has the
direction of the polar angles (6,¢) of
the point at which the scattered ampli-
tude is measured. Figure 22 shows
these three vectors; the magnitude of
K is evidently 2k sin 6. Its physical
significance is that 2K is the momentum %o
transferred from the incident particle Fie. 22. Relation between the propa-
to the scattering potential during the Sien,ssior ks for the incident pu-
collision. Thus if a Fourier integral theangle of scattering 6. The momen-

. . . 1. tum transfer in the collision is 2K,
analysis of the scattering potential into  Lhich has the magnitude 24k sin 36.
harmonic space waves is made, it is
apparent from the second integral in (26.18) that the scattered amplitude
in a particular direction is proportional to the Fourier component of the
scattering potential that corresponds to the momentum change of the
particle during the collision.

The differential scattering cross section is given by Eq. (18.11):

a(6,4) = |f(6,)? (26.19)
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In the event that U(r) = U(r) is spherically symmetric, the integrals
over the polar angles of r’ in (26.18) can be evaluated by taking the direc-
tion of K as the polar axis. Then

7(6) = —K—1 ﬁ) * ¢+ sin K¢’ UG)dr’ (26.20)

As expected, the scattered amplitude is independent of the angle ¢. It
is interesting to note from (26.19) and (26.20) that the amount of scatter-
ing depends on the bombarding speed v and the scattering angle 6 only
through the combination K « » sin 36. )

Perturbation Treatment of Partial Waves. When U(r) is spherically
symmetric, the wave equation (26.1) can be separated in spherical coordi-
nates, as was done in Sec. 19, and solved approximately by a perturbation
method. The radial wave equation for the Ith partial wave is
~2 (ﬂ dd—% + [k2 -t U(r)] Ri=0 (2621)
As with Eq. (26.3), we put R;(r) = 7i(kr) + xi(r), where j;(kr) given by
Eq. (15.5) is the unperturbed solution. The approximate equation for
x: is found from (26.21) to be

34 <7'2 ‘%) + [k’ _+ 1)] xi = UMtk (26.22)

r

where a term U(r)x:(r) has been neglected.

Like Eq. (26.5), Eq. (26.22) is an inhomogeneous differential equa-
tion of which the right side is known. The solution can be expressed in
terms of a Green’s function G(r,r’), in analogy with Eq. (26.10):

x(r) = L ® Qe ) U )jilker')r'2dr’ (26.23)

The requirements on G(r,r’) are that it be regular at r = 0, so that x;(r)
will be regular there, and that it satisfy the equation

K ’ /
L2190 4 [ - WA gy = 221D (3529
Substitution of (26.23) into (26.22) then shows that the latter is satisfied.

In dealing with a total differential equation like (26.24), it is often
less convenient to use the general form (26.11), which worked well in the
three-dimensional case, than it is to proceed in the following way: We
note that G(r,") is a solution of the free-particle radial equation [right
side of (26.24) equal to zero] except at the point » = 7/. If then G(r,')
is a particular free-particle solution for » < 7’ and another free-particle
solution for r > r/, this requirement has been met. If in addition the
two solutions have the same value but different slopes at r = 7/, then
the derivative of the discontinuous slope that arises from the left side of
(26.24) will give a multiple of a & function at r = 7’. Since G(r,r") must
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be regular at r = 0, the solution for r < 7’ is taken to be ji(kr). It can
be shown in this way that the form of the Green’s function is
G(r,r") = kj(kr<)m(krs) (26.25)
where r< is the lesser of r and 7/, and 75 is the greater of r and /. It is
apparent that this function is regular at r = 0 and satisfies Eq. (26.24)
except perhaps at r = /. In order to investigate the point r = 7/, we
substitute (26.25) into (26.24) and integrate both sides of the equation
with respect to r over an infinitesimal region that contains the point #.
The right side is then 1/7'2, and the second term on the left side vanishes
in the infinitesimal limit. The first term on the left side is
[Tt 7’ 1. da(r,) | [t
121—41% r—e F%[’J dGEi:l’ )] dr = ;I_ilel—'né [7'2 Gfir )] ' —e
= E{j(kr)ny(kr’) — ji(kr")yma(ker’)]
From the last of Egs. (15.9), the square bracket on the right side is equal
to (kr')~2. It follows then that G(r,r’) defined by (26.25) is actually the
required Green’s function.
Phase Shifts. Substitution of (26.25) into (26.23) gives

x(r) =k ﬁ,“ Jilkr Qra(krs) U (r)gu(ler’)r'2dr!
—— kny(kr) Lw Bk U(r')r'2dr’  (26.26)

Now the phase shift §; is defined in terms of the asymptotic form of E;(r)
by Eq. (19.7)

Ry(r) — constant [5;(kr) — tan §my(kr)]

Comparison with the asymptotic form of By(r) = 5i(kr) + x:(r), obtained
from (26.26), shows that

tan & = —k L ® 2k U () 2dr (26.27)

Equation (26.27) is the perturbation or Born approximation expression
for the phase shifts. If all these §; are small, they can be substituted into
Eq. (19.11) for f(8) with the approximation e%% — 1 = 2¢3,, in which case

1(6) = k—lz (21 + 1)8,Py(cos )

1=0

&~ — ﬁ,"“ U (r) [ 2 (2L + 1)72(kr) Py(cos o)] dr  (26.28)
=0
The summation in brackets can be shown! to be equal to sin Kr/Kr,
where K = 2k sin 36, so that (26.28) is equal to the Born approximation
amplitude (26.20), as expected.

1G. N. Watson, “Theory of Bessel Functions,” 2d ed., p. 366 (Macmillan, New
York, 1945).
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The foregoing perturbation treatment of partial waves is of practical
interest since it has been found in some cases that substitution of the
approximate phase shifts (26.27) into the exact expression (19.11) for
the scattered amplitude results in an improvement on the Born approxi-
mation amplitude (26.20) when the §; are not all small in comparison with
unity. In general, it is much easier to evaluate the integral in (26.27)
than to find the phase shift exactly from a solution of the radial wave

1.0
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F1a. 23. (a) Angle distribution function for scattering by a square-well potential, as given

by Eq. (26.29); (b) total cross section function given by Eq. (26.30).

equation. Also, the Born approximation amplitude (26.20) can be used

as a device for summing the partial wave series for large [ where the §; are

small; changes can then be made in the low terms of the series.
Scattering by a Square Well Potential. As a first example of the
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application of the Born approximation result (26.20), we consider the

scattering by a square well potential: V(r) = —V,, r < a, V(r) =0,
r > a. Substitution into (26.20) gives
2uV,

f6) = el (sin Ka — Ka cos Ka), K = 2k sin 46

Thus the differential scattering cross section is

o(6) = (Moa) g@kasin30), g(o) = ST =TT 45,

x8

The function g(z)/g(0) = 9¢g(x) is plotted in Fig. 23a. At high energies
(ka > 1), the scattering shows a strong maximum in the forward direc-
tion so that most of the scattered particles are in a cone whose angular
opening is of order 1/ka.

The total cross section is most easily evaluated by changing the
variable of integration from 6 to 2 = Ka = 2ka sin %6, in which case
sin 6d6 is replaced by zdz/(ka)?. Equation (26.29) then gives

2 V 3\ 2 2 2ka
T = (_uh2oa> ——(k;r)z/; g9(x)zdz

27 2,6
= 32‘“;# v(2ka)
1 [Y(sinz — x cos 7)? (26.30)
W) =5, - dz
1 (., 1  sin2 sin?y
K% (1 TR v )

Since ¥(0) = 1% and v(y) approaches 1/4y? as y becomes large, the total
cross section is 16wu2V2a%/9%4 in the limit ka < 1 and becomes

muViat
hE

when the bombarding energy E measured in the center-of-mass system is
large. The function v(y)/v(0) = 18y(y) is plotted in Fig. 23b.

Validity of the Born Approximation. A convenient criterion for the
validity of the Born approximation as applied to the foregoing problem
can be set up by using Eq. (26.6) and assuming that v(r) is largest at the
center of the scattering potential. This condition is probably sufficient,'
but may be more stringent than is actually required ; for example, the small-
angle scattering (small momentum transfer) may be given correctly
when the large-angle scattering is not. From (26.16), our criterion is that
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O)] = 73

1
gitr(1+w) V(r)rdrdw\
-1

= ’h%k / (e2ikr — 1)V(7‘)d7‘
= 2“;27]:2 |e?*s — 2¢ka — 1|
= 2’;‘:,;’2 (2 — 2ysiny +2 — 2cos )} K1, y=2ka (26.31)

In the low-energy limit (ka < 1), (26.31) becomes uVa?/h? < 1,
while in the high-energy limit (ka >> 1) it becomes

[l.Voa Voa

T T <1,
where v is the speed of the incident particle. If the square well potential
is about “strong’’ enough to bind a particle (as shown in Sec. 15, this
requires that pVoa?/k? = 1), the Born approximation may therefore be
used for the computation of the scattering only when ka >> 1. Thus the
Born approximation supplements the method of partial waves (Sec. 19),
which is most useful when ka is less than or of order unity.

The qualitative features of the results obtained here and above for a
square well potential apply to any potential that possesses a well-defined
range.

Scattering by a Screened Coulomb Field. As a second example of the
application of the Born approximation, we consider the elastic scattering
of an electron by a neutral atom that is represented by a simple form

- r
of screened Coulomb potential: V(r) = —(Ze?/r)e . This potential
energy behaves like the nuclear Coulomb potential for atomic number Z
when 7 is small, and falls off rapidly when 7 is large in comparison with the
“radius” a of the atomic electron cloud that screens the nucleus. The
Thomas-Fermi statistical theory of the atom (see Sec. 38) shows that for
moderately heavy atoms, a is roughly equal to h2/me?Z!, where m is the
electron mass.!
Substitution of this potential into (26.20) gives

2mZe? - 2mZe? _ -
f(0) th o sin Kre odr = W’ K = 2k sin -50 (2632)

1 For a discussion of the scattering by a Thomas-Fermi atom, see N. F. Mott and
H. S. W. Massey, ‘“The Theory of Atomic Collisions,” 2d ed., Chap. IX, Sec. 4.1
(Oxford, New York, 1949).
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This gives a cross section in agreement with the Rutherford result (20.11)
when the momentum transfer is large enough so that 1/a? can be neglected
in comparison with K? in the denominator; in the analogous classical
situation, the particle passes close to the nucleus, so that the screening
electrons are relatively ineffective. Equation (26.32), unlike the Ruther-
ford result, yields a finite cross section at vanishingly small angles; the
analogous classical particles pass far from the nucleus and are well
screened from it by the atomic electrons. The total cross section is

Y | f|221rKdK _ 167m?Z%‘a*
= Jo T Rk £ 1)

With the above Thomas-Fermi expression for a, this becomes 47rZt/k?
at high energies (ka > 1), which agrees in order of magnitude with the
result of a numerical integration! of the scattering produced by the
Thomas-Fermi potential.

The criterion (26.31) for the validity of the Born approximation
becomes

2mZe?
h2k

/ sin z eix_E @ K1
0 x

where z replaces kr as the variable of integration. For ka <1, this
becomes 2mZe?a/h* < 1, which with the above approximate expression
for a is equivalent to Z* «< 1; thus the Born approximation cannot be
used for the scattering of slow electrons by atoms. For ka > 1, the
criterion becomes (Ze?/kv) In ka << 1. Since it turns out that this result
is substantially unaffected by relativity theory the approximation
becomes poor for the heavier elements, where

ze_ 7
he 137

becomes comparable with unity.

It is interesting to note the close correspondence between the various
results for the square well potential and for the screened Coulomb field
when a is chosen the same in the two cases and Vo, = Ze?/a.

27. THE VARIATION METHOD

The variation method was first used for the approximate determina-
tion of the lowest or ground-state energy level of a system and within the
last several years has been applied to collision problems. In the energy-
level case, which we consider first, it can be used when there is no closely
related problem that is capable of exact solution, so that the perturbation

1 E. C. Bullard and H. 8. W. Massey, Proc. Camb. Phil. Soc:, 26, 556 (1930).
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method is inapplicable. The variation method can also be applied to
systems that are described by a nonseparable Schrédinger equation, in
which case numerical solutions are extremely arduous and the WKB
method (Sec. 28) cannot be used. The application to collision theory is
taken up in the latter part of this section.

Expectation Value of the Energy. It was shown in Sec. 10 that if an
arbitrary normalized function y is expanded in energy eigenfunctions

Y = EAEuE, where Huz = Eug (27.1)
E

and the uz form a complete orthonormal set, then the expectation value of
H for the function ¢ is given by

(H) = [ JHydr = 2E|AE|2 (27.2)

where the integration is extended over the entire range of all the coordi-
nates of the system. It is assumed for convenience in Egs. (27.1) and
(27.2) that the energy eigenvalues are all discrete; this can be accom-
plished by enclosing the system in a box (Sec. 10), or else the summation
can be replaced by the symbol § (Sec. 22).

A useful inequality can be derived from Eq. (27.2) by replacing each
eigenvalue E in the summation on the right side by the lowest eigenvalue
Eo:

(Hy = ) Eo|Ag|* = Eo ) |Ag|? (27.3)
y 2
Since 2 |A£|? = 1 for a normalized function ¥, as was shown in Sec. 10,
E
(27.3) yields the inequality
Eo, = [YHydr (27.4)
In the event that ¢ is not normalized, (27.4) evidently can be rewritten as
JyHydr
E, < 27.5
"= Jvpdr @75)

The variation method! consists in evaluating the integrals on the
right side of (27.4) or (27.5) with a ¢rial function ¥ that depends on a
number of parameters, and varying these parameters until the expecta-
tion value of the energy is a minimum. The result is an upper limit for
the ground-state energy of the system, which is likely to be close if the

1 The method was originally applied by Lord Rayleigh in 1873 to the computa-
tion of the vibration frequencies of mechanical systems—¢Theory of Sound,” 2d rev.
ed., vol. 1, Sec. 88 (Macmillan, London, 1937; reprinted by Dover, New York). See
also Morse and Feshbach, op. cit., Sec. 9.4.
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form of the trial function resembles that of the eigenfunction (see Prob. 9).
Thus it is important to make use of any available information or physical
intuition in choosing the trial function.!

Application to Excited States. The variation method can also be
used to obtain an upper limit for one of the higher energy levels if the
trial function is orthogonal to the eigenfunctions of all the lower states.
Suppose that the energy levels are arranged in an ascending series:
Ey E, E,, . ... Thenif ¢ is orthogonal to ug forz =0,1, . . . , n,
it is easily seen from (27.1) that the corresponding expansion coefficients
Ag; are all zero. An inequality can be derived from (27.2) by replacing
each eigenvalue E in the summation on the right by E.i, with the
result that the expectation value of the energy is an upper limit on this
eigenvalue.

The trial function ¥y — wug,[usydr is evidently orthogonal to wz, so
that if the lowest eigenfunction is known either from an exact solution or
to a sufficiently good approximation from a variation calculation, an
upper limit for the energy of the first excited state can be computed.
Trial functions that are orthogonal to any number of known eigenfunc-
tions are easily found in this way.

It is sometimes possible to divide the energy eigenfunctions into
groups such that any member of one group is orthogonal to any member
of any other group. Suppose that there is a Hermitian operator F that
commutes with H (FH — HF = 0); then from a theorem of Sec. 21, F
and H can be diagonalized simultaneously and have common eigenfunc-
tions. Now any two eigenfunctions of F that correspond to different
eigenvalues are orthogonal to each other.? Thus a trial function that is
constructed entirely from eigenfunctions of F that correspond to a given
eigenvalue is orthogonal to all other eigenfunctions that correspond to
different eigenvalues of ¥, and will provide an upper limit for the lowest
energy eigenvalue that is associated with this eigenvalue of F. The fore-
going results are useful when the operator F is one whose eigenfunctions
are easily recognizable by some simple property, such as, for example, the
symmetry in case F is the angular momentum or the parity. Then a
trial function with angular dependence corresponding to a particular
angular momentum, or with a particular parity, can easily be written
down, and gives an upper limit for the lowest energy level that has this
angular momentum or parity.

1For an extension of this method that gives both upper and lower limits, see
T. Kato, Jour. Phys. Soc. Japan, 4, 334 (1949), and G. Temple, Proc. Roy. Soc.
(London), A211, 204 (1952).

2 This is shown explicitly in Eq. (10.4) for the energy operator, and the proof given
there is easily extended to any Hermitian operator.
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Ground State of Helium. As a first example, we use the variation
method with a simple trial function to obtain an upper limit for the energy
of the ground state of the helium atom. The helium atom consists of a
nucleus of charge +2e¢ surrounded by two electrons; from Eq. (16.1)
we find that its Hamiltonian is (neglecting the motion of the nucleus)

——ﬁ(v24r\72)—2««32(—1+—1 +2 (27.6)
- 2m 1 2 1 T T12 :
where r; and r, are the position vectors of the two electrons with respect
to the nucleus as origin, and 712 = |r; — 1| is the distance between the
two electrons.

If the interaction energy e?/ri, between the two electrons were not
present, the ground-state eigenfunction of H would be the product of
two normalized hydrogenic wave functions %100(r1)%100(rs) given in Eq.
(16.24):

3 -_ ‘g‘ r1 T2
Yaenry) = 25 o (@)t @7.7)
7ra0

with Z = 2. We shall use (27.7) as a trial function, and permit Z to be
the variation parameter so that it is not necessarily equal to 2.

It follows from Prob. 13, Chap. IV, that the expectation values of the
kinetic and potential energies for the ground state of a hydrogen atom are
€?/2a0 and —e?/a,, respectively; the corresponding hydrogen wave func-

r

tion is (rag)—%e 9. The expectation value of either of the kinetic energy
operators in (27.6) for the function (27.7) is obtained most easily by not-
ing that operation with the Laplacian gives a result that is inversely
proportional to the square of the length scale of the wave function; since
the scale of (27.7) is smaller than that of the hydrogen wave function by a
factor of Z, the expectation value of each of the kinetic energy operators
is €2Z2/2a,. Similarly, the factors 1/r make the expectation values of the
nuclear potential energy operators inversely proportional to the length
scale; there is also an additional factor 2 from the nuclear charge, so that
each one is —2e2Z/a,.

Electron Interaction Energy. The expectation value of the inter-
action energy between the electrons is

/ / Y(r1,rs) -;% Y(r1,r2)drdrs

2
(Za) f f 1@y g, @18
a3 T12
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This integral is most easily evaluated by regarding it as the mutual elec-
trostatic energy of two overlapping, spherically symmetric, charge dis-
tributions, in which case simplifications from the theory of electrostatics
can be introduced.

A more general way of performing the integration, which can also be
used for wave functions that are not spherically symmetric, consists in
expanding 1/71, in spherical harmonics.

©

11 2\
;1—2 —7'_12<—T_1> P[(COS 0), 7'1>T2
1=0
1 i1 lP( s 6) ri<r
s T 1{CO y 1 2
1=

where @ is the angle between r; and rs, cos 6§ = cos 6; cos 0 + sin 6, -
sin 0, cos (¢1 — ¢2), and 01,61 and 8,,, are the polar angles of the vectors
r; and 1, respectively.! It can be shown? that

Pi(cos 6) = Py(cos 6;)P;(cos 65)

(27.9)

1
- !
8—+%' Pp(cos 61)Pp(cos 0,) cos m(1 — ¢2) (27.10)

m=1
When (27.9) and (27.10) are substituted into (27.8) and use is made
of the orthogonality of the spherical harmonics, the integration over the
polar angles of r; causes all terms to vanish except that for which [ and
m are zero. The integral on the right side of (27.8) becomes

[ (™1 -2 ¢4m * 1 22 i)
(471')2/0 [/; n® a0 T g2y, + ne ” T ridr, | ridry
T1

which can be evaluated as 5m2a$/8Z%. Thus the electron interaction
energy has the expectation value 5¢2Z /8a,.

Variation of the Parameter Z. We now have the result that the
expectation value of the Hamiltonian (27.6) for the trial function (27.7)
is

+ 2

e2Z? 4e*Z | beZ
<H)_—E_ Qo + 8ay

P
= £ (72 - %7)

Qo

1 Equations (27.9) follow at once from the generating function (14.10) for the
Legendre polynomials; the expression for cos  is simply obtained from the scalar
product of the vectors r; and r, in rectangular coordinates.

2 E. T. Whittaker and G. N. Watson, ‘““A Course of Modern Analysis,” 4th ed.,
p. 328 (Cambridge, London, 1935).
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Differentiation with respect to Z shows that this is a minimum when
Z = %% = 1.69. Thus the lowest upper limit for the ground-state energy
of the helium atom obtainable with this trial function is

—@2 ¥ = _9gs
) = 2.85

The experimental value for the energy required to just remove both
electrons from a helium atom is 2.904¢%/a,, so that our limit is about 1.9
per cent high. The most careful variation calculation of the ground-state
energy of helium gives a result in excellent agreement with experiment,?
and provides an important verification of the theory of quantum
mechanics.

The result that hydrogenic wave functions give the best energy value
when Z = 2% rather than 2 indicates that each electron screens the

2
/ Zaxis

A R B

Fra. 24. Two hydrogen atoms, with nuclei at A and B separated by a distance R, have
electrons at 1.and 2; their interaction is given by H’ in Eq. (27.11).

1

nucleus from the other electron, the effective nuclear charge being reduced
by ¥ of an electronic charge.

If the electron interaction term e?/r;, is regarded as a perturbation,
the first-order perturbation energy is given by (H) with Z = 2 and is
—2.75¢*/a,, which is 5.3 per cent above the experimental value. It
is apparent that, in general, the first-order perturbation calculation is
equivalent to a nonoptimal variation calculation.

van der Waals Interaction. As our second example of the application
of the variation method, we calculate the van der Waals (long-range)
interaction between two hydrogen atoms in their ground states. It is
convenient to consider this problem first by means of the perturbation
theory, since it is then easier to see that the leading term in the energy at
great separation distances varies inversely as the sixth power of this
distance. Also, it turns out that the perturbation theory and the varia-
tion method provide opposite limits for the coefficient of this term.

1E. A. Hylleraas, Zeits. f. Physik, 66, 209 (1930). J. Sucher and H. M. Foley,
Phys. Rev., 95, 966 (1954), discuss a number of corrections and give references to more
recent work.
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We assume that the nuclei of the two hydrogen atoms, A and B, are
fixed in space a distance R apart, and that the z axis is chosen parallel to
the line through A and B. Then if r; is the vector displacement of elec~
tron 1 from nucleus 4 and r; is the vector displacement of electron 2 from
nucleus B (see Fig. 24), the Hamiltonian for the two electrons can be
written

H Ho+ H'
e2 e2
H, = ——(v2+v2) -z -z
1 2

P (27.11)

Hl

I
I
+

The unperturbed Hamiltonian H, has the solution
Uo(T1,T2) = U100(T1)U100(T2)

for two noninteracting hydrogen atoms in their ground states. We
regard the interaction terms H’ as a perturbation; this is equivalent to
assuming that R >> a,.

Since we are interested in the leading term in the interaction energy
when R is large, we expand H’ in powers of 1/R and keep the lowest
terms.

’ _ e’ 2(22 — 21) (s — 1)+ (y2 — y)? + (22 — 21)? -4
H =7 {1 + [1 +2B 3 ]
3 3

(=T ) (e R

= %23 (12 + Y1ys — 22122) (27.12)

The last term is the interaction energy of two electric dipoles that cor-
respond to the instantaneous configurations of the two atoms.!

It is apparent at once that the expectation value of the leading term
in H’ for the state uo(ry,rs) is zero, since 4, is an even function of r; and
r; and H’ is an odd function of r; and r; separately. It can also be shown
that all the neglected higher terms in H’ have zero expectation value for
uo, since these terms can be expressed as spherical harmonics of order
different from zero. Thus the leading term in the interaction energy is
the second-order perturbation of the dipole-dipole term, which is pro-
portional to H’? and hence varies like 1/RS.

1 The neglected terms in the expansion (27.12) that vary like 1/R* are the dipole-
quadrupole interaction; the 1/R® terms are the quadrupole-quadrupole interaction,
ete.
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Perturbation Calculation. From Eq. (25.12), the second-order
change in the energy of the two hydrogen atoms is

"t
WER) =S % (27.13)

where the index n refers to all states of the pair of unperturbed hydrogen
atoms (including dissociated states), and the ground state u, is excluded
from the summation and integration that is denoted by §'. It is appar-
ent that W(R) is negative, since £y, < E, and the numerator of each term
in (27.13) is positive. We thus conclude that the interaction is attractive
and proportional to 1/R¢ when R is large; both these conclusions can be
shown to be valid for any pair of atoms that are in nondegenerate,
spherically symmetric ground states.

We can obtain an upper limit on the positive quantity — W(R) by
replacing each E, in (27.13) by the energy E.« of the lowest excited state
of the two hydrogen atoms for which H’¢.x is different from zero. Then
the denominator can be taken outside of the summation, which can be
evaluated as a matrix product

S'|H,,|* = S'HH;,, = SH H,, — Hiy = (H'?)oo — H2
Since we have seen that Hy, = 0, we have that

—-W(R) = E(—Hi—)i_fg—o (27.14)

The state n* is that in which both atoms are excited to states of princi-
pal quantum number 2, so that E, = —2(e?/2a0), E.x = —2(e?/8ay),
and E.x — E, = 3¢*/4a,. From (27.12) we have

4
H"? = £ (e%d + yiod + 43 + 2oy — - - - ) (27.15)

The expectation value of the cross-product terms like xix2y1y. is zero
since these terms are odd functions of one of the cartesian components of
ryor ra. The first three terms in the parenthesis of (27.15) are each the
product of two identical factors that are equal to

J[ x2IU1oo(r)l2d‘r = %— / T2luloo(l')lzd’r

1 © _2r
r2e % 4rridr = a}
0

= a3
. 3ra}
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so that (H'%)¢ = 6e‘ai/RS. Substitution into (27.14) gives

8e%ad

RS

W(R) = (27.16)

Variation Calculation. An upper limit on W(R) can always be
obtained by the variation method. It is apparent, however, that some
judgment must be used in the choice of the trial function y; thus if ¢
does not depend on R, the dependence of the expectation value of the
energy on R will be like that of H’, that is, 1/R3. An upper limit with
this R dependence is of no value to us, since what we really want to
determine is a limit on the coefficient of the 1/RS interactiqn. A useful
choice for ¢ will be one in which there is a term proportional to H’, since
there will then be terms in the expectation value that are proportional to
H'’? and hence vary like 1/RS,

We choose for the trial function

Y(ryrz) = U100(r1)ur0o(rz)(1 + AH')

where A is to be the variation parameter. Since this ¢ is not normalized,
we use (27.5) rather than (27.4) and obtain

fqu(]. + AH’)(HO + H')UQ(I + AH’)dTlde
Huﬁ(l + AH’)szlde

E,+ W(R) = (27.17)
where again %, is the product of the ground-state hydrogen wave func-
tions, and A is assumed to be real. The right side of (27.17) can be
written
Ey + 2A(H'*) o0 + A*(H'HoH') oo
1+ A2(H'?)40

(27.18)

since %, is a normalized eigenfunction of H, with the eigenvalue

and Hyy = (H'®)g = 0. It is easily seen that (H'HoH')oo is a sum of
squares of factors of the form [wi00(r) £ Ho Z %100(r)dr; this can be shown
by direct computation to be zero.

Since we are interested only in terms of order H’?, we expand the
denominator of (27.18):

[Eo + 2A(H'?)oo][1 + A2(H'?)o0] ' = Eo + (H'?)00(24 — E,A?%) (27.19)

If we remember that E, is negative, we find that (27.19) has a minimum
with respect to variation of A when 4 = 1/E,, in which case (27.17)
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becomes

(H’2)oo = H, — 662(12
E, 7' R

Ey+ W(R) £ E, + (27.20)

Thus in (27.16) and (27.20) we have both upper and lower limits on the
interaction energy

8e2al
"R

6e%ad
-

=S W(R) =

More careful variation calculations have shown that the numerical coeffi-
cient in W(R) is very nearly 6.50.!

Integral Equation for Collision Problem. The remainder of this sec-
tion deals with the application of the variation method to collision theory.
It is assumed that the scattering potential is spherically symmetric, so
that a separation into partial waves can be made as in Sec. 19.2 The
differential cross section can be calculated from Eq. (19.12) once the phase
shifts & are known. These are defined by Eq. (19.7) in terms of the
asymptotic form of the radial wave function

RI(T) = ]z(’{}T) + Xz(r) —_—> ]l(kr) — tan Bml(kr) (2721)

Substitution into the radial wave equation (26.21) shows that x; satisfies
the equation

:—ﬁd;(’z %l) + [“ - l‘(l%l)] xi=U@R()  (27.22)

exactly, unlike Eq. (26.22), which is only satisfied approximately for a
potential that can be treated as a perturbation. The solution in terms
of a Green’s function can still be used, however. In analogy with Eq.
(26.23), x: is given by

xa(r) = [) ® Qr ) U R )r"2dr’ (27.23)

where G(r,r’) is defined by Eq. (26.25).

1See L. Pauling and E. B. Wilson, Jr., “Introduction to Quantum Mechanics,”
Sec. 47a (McGraw-Hill, New York, 1935).

2 L. Hulthén, Diziéme Congrés des Mathématiciens Scandinaves, Copenhagen, p. 201
(1946), and earlier papers cited there; J. Schwinger, Phys. Rev., T2, 742 (1947), 78, 135
(1950). The present treatment is based on unpublished lectures of Schwinger (1947);
see also F. Rohrlich and J. Eisenstein, Phys. Rev., 76, 705 (1949), and J. M. Blatt and
J. D. Jackson, Phys. Rev., 76, 18 (1949). For a discussion of the unseparated case
and additional references, see E. Gerjuoy and D. S. Saxon, Phys. Rev., 94, 478 (1954).
See also Morse and Feshbach, op. cit., Sec. 9.4.
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Substitution of (27.23) into (27.21) yields an integral equation for the
radial wave function R;(r)

Ri(r) = jukn) + [|" Gl UG Ri(r')rdr’ (27.24)

This equation is completely equivalent to the differential equation (26.21)
but is more convenient to use as a starting point for a variation calcula-
tion. Comparison of the asymptotic form of (27.24) with (27.21) shows
that the phase shift is given by

tan & = —k L ® i) U Ri(r ) dr (27.25)

This equation is valid only if R;(r) is so normalized as to have the asymp-
totic form indicated in (27.21). Equation (27.25) is exact. It may be
approximated by replacing R;(r) by ji(kr) in its right side, to obtain the
Born approximation expression (26.27).

Variation Principle for the Phase Shift. It seems at first that Eq.
(27.25) is not very useful, since the phase shift is expressed in terms of the
radial wave function, which cannot be known unless the phase shift is also
known. However, one might hope to improve upon the Born approx-
imation by making a better guess as to the form of R;(r) than the simple
choice ji(kr). 1In cases of practical interest, there is a rather well-defined
region in which U(r) is appreciably different from zero, so it would seem
that R; need be guessed only within this potential range. Unfortu-
nately, Eq. (27.25) is correct only if R; is properly normalized, in accord-
ance with the asymptotic form of (27.21), so that in actuality E; must be
known asymptotically as well as within the potential. Further, (27.25)
does not possess the stationary property of the right side of (27.4) or
(27.5) ; these have minimum values for the correct eigenfunction, so that
a first-order error in the trial function produces only a second-order error
in the energy eigenvalue (see Prob. 9).

It would be desirable, then, to rewrite Eq. (27.25) so that it retains
the property that R; need be known only within the potential, but in such
a way that the normalization of R; is unimportant and that tan & is
stationary with respect to variations of R;. The first of these three
objectives is accomplished if B; always appears in an integrand multiplied
by U(r). The second objective is accomplished if tan & can be made a
factor in an equation that is homogeneous in R;. The only other equa-
tion available to help in the rewriting is (27.24). If now we multiply
both sides of (27.25) by the integral on its right side, the left side is of
first degree and the right side of second degree in R;. The left side can
then be made of second degree by substituting for j;(kr) from Eq. (27.24),
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after which a homogeneous equation is obtained. The result is

tan §; [j;” Ri(r)U(r)ridr
— [ ROUCCEATE) Ry dnar|
=~k Uyuﬁ(k’)U(r)Rz(r)ﬂdr]” (27.26)

Equation (27.26) is an expression for the phase shift that requires
knowledge of R; only within the potential and in which the normalization
of R; does not enter. The stationary property can now be investigated
by making a small arbitrary variation of R, from its correct form and
seeing if the resulting first-order variation in tan §;is zero. Suppose that

an arbitrary variation of R, is applied to an integral I = ﬁ) N f()Ry(r)dr.

The variation can be built up by combining independent variations at
each point 7, each of which can be represented by a Dirac & function.
This is equivalent to replacing R;(r) by Ri(r) + 6Ri(ro)é(r — 7o), and
changes I into I + f(ro)dRi(ro). Thus, dropping the subscript,

51 = f(r)sRu(r)

is the variation in I produced by a variation in R; at the point 7.
Application of this procedure to Eq. (27.26) yields

5 (tan &) [ [) ° RXr)U(r)redr
= [ BOU@GE UG R yrtr2drdr |
+ tan & [2R,(r) U(r)r2s Ri(r)
— 2U(r)r*8Ry(r) L ° G(r,r')U(r')R,(r')r'zdr']
= —2jikr) Ur)r2oRi(r) [[” jullor')U () Rulr')r'2ds”

The second square bracket on the left side may be rewritten with the

help of (27.24) as
27:(kr) U (r)r*6 Ry(r)

and the right side becomes, after substitution from (27.25),
+2 tan 51j1(k7‘) U(T)Tzst(T)

These two terms cancel, so that §(tan ;) = 0, and (27.26) possesses the
stationary property.
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Equation (27.26) can be rewritten with substitution of a trial function
u(r) for the correct wave function R;(r)

k cot &; =
ANL‘“ w()U@GQ(r,) U@ u(r)r2r'2drdr’ — L” W@ UE)rdr

[Ln Ju(kr) U(r)u(r)rzdr]z

and provides a variation principle for calculation of the phase shift ;.
While (27.27) is stationary for the correct wave function, it is in general
neither a maximum nor a minimum, so that one cannot set a limit on the
phase shift in this way. ’

Zero Angular Momentum. When [ = 0, it is convenient to replace
the trial function u(r) by »(r) = ru(r). The Green’s function in this case
is Q(r,r") = —(krr’)~sin kr< cos kr>. Equation (27.27) then becomes

27.27)

k cot 0o =2
k= ﬁ,” v(r)U(r) [cos kr _L " sin kr' U )o(r")dr’
+ sin kr -[-” cos kr’U(r')v(rl)dr,] dr + /(’)w 1)2(1-) U(r)dr

- | J” sin krUyo(dr | #7.28)

As a simple example of the application of Eq. (27.28), we consider its
limiting form when k becomes zero. The variation principle for the zero-
energy phase shift is

(k cot 8o)o =2
[) o) U [ ﬁ) P U@ Wwe)dr + r [ ° U(r’)v(r’)dr'] dr
+ [ ° v U(r)dr
- [ ﬁ)n rU(r)v(r)dr]2 : (27.29)

To test this expression, we consider a uniform potential of magnitude U
and radius a (square well or square barrier), and assume the simple trial
function u(r) = constant or »(r) = r. We do not make explicit use of
the stationary property of (27.29), since this would require that the form
of v(r) be varied; rather we use it implicitly in the sense that it increases
our confidence in the reliability of the estimate that is obtained. The
result is (k cot 80)o = —[(8/Ua®) + (6/5a)]. For the same quantity, the
Born approximation formula (26.27) gives —(3/Ua®). The exact result,
obtained as in Sec. 19, is —[(8/Ua?®) + (6/5a)] + higher order terms in
Ua?. Thus the Born approximation is correct for very weak scattering
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potentials, as expected, and the variation method in addition gives cor-
rectly the next term in an expansion in powers of the potential. A similar
behavior is found when terms of order k%? are included (low incident
energy; see Prob. 16).

28. THE WKB APPROXIMATION

In the development of quantum mechanics, the Bohr-Sommerfeld
quantization rules of the old quantum theory (Sec. 2) occupy a position
intermediate between classical and quantum mechanies. It is interesting
that there is a method for the approximate treatment of the Schrodinger
wave equation that shows its connection with the quantization rules. It
is based on an expansion of the wave function in powers of %, which,
while of a semiconvergent or asymptotic character, is nevertheless also
useful for the approximate solution of quantum-mechanical problems in
appropriate cases. This method is called the Wentzel-Kramers-Brillouin
or WKB approximation, although the general mathematical technique
had been used earlier by Liouville, Rayleigh, and Jeffreys.! 1Itisapplicable
to situations in which the wave equation can be separated into one
or more total differential equations, each of which involves a single
independent variable.

Classical Limit. A solution ¢(r,t) of the Schrodinger wave equation
(6.16)

L R
ihgy = = 5, V¥ + V@

can be written in the form

Vo) = A exp 0D
in which case W satisfies the equation
";:’ + 5 (grad W)* +V — & V2W —0 (28.1)

1Tt is sometimes called the BW K method, the classical approzimation, or the phase
integral method. For the original work, see J. Liouville, J. de Math., 2, 16, 418 (1837);
Lord Rayleigh, Proc. Roy. Soc. A86, 207 (1912); H. Jeffreys, Proc. London Math. Soc.
(2), 28, 428 (1923); G. Wentzel, Zeits. f. Physik., 38, 518 (1926); H. A. Kramers,
Zeits. f. Physik., 39, 828 (1926); L. Brillouin, Comptes Rendus, 183, 24 (1926). For
more recent developments, see E. C. Kemble, “The Fundamental Principles of Quan-
tum Mechanics,” Sec. 21 (McGraw-Hill, New York, 1937); R. E. Langer, Phys. Rev.,
61, 669 (1937); W. H. Furry, Phys. Rev., 71, 360 (1947); S. C. Miller, Jr., and R. H.
Good, Jr., Phys. Rev., 91, 174 (1953). The treatment of this section resembles most
closely those of Kramers and Langer.
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In the classical limit (A — 0), Eq. (28.1) is the same as Hamilton’s partial
differential equation for the principal function W:!

O L Hep) =0, p=grad W

Since the momentum of the particle is the gradient of W, the possible
trajectories are orthogonal to the surfaces of constant W and hence, in
the classical limit, to the surfaces of constant phase of the wave function
¢. Thus in this limit the rays associated with ¢ (orthogonal trajectories
to the surfaces of constant phase) are the possible paths of the classical
particle.

iEt
If ¢ is an energy eigenfunction u(r)e *, W can be written

W(r,t) = S(r) — Et
In this case, we have that

ih

'iS(r)’ 2_1“ (grad 8)2 — [E — V()] — Z—LV"’S =0 (28.2)

f

u(r) = A exp

The WKB method obtains the first two terms (one term beyond the clas-
sical expression) of an expansion of S in powers of #, in the one-dimen-
sional case.

Approximate Solutions. The basic equation that we consider is
written in one of the forms

d*u . .

U+ R =0, >0  (283)
2,

gﬁ—ﬁ@u=m >0 (284)

so that k and « are always real. These are equivalent to the one-dimen-
sional wave equation (8.5), if we put

M@=+%MW—V@W when V(z) < E
! (28.5)
k(x) = +E {2u[V(z) — E]}* when V(z) > E

1 E. T. Whittaker, ‘“ Analytical Dynamics,” 3d ed., Sec. 142 (Cambridge, London,
1927); H. Goldstein, ‘“Classical Mechanics,” Sec. 9-1 (Addison-Wesley, Cambridge,
Mass., 1950).
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Equations (28.3) and (28.4) are also equivalent to the radial wave
equation (19.2) if x is replaced by r, V' (r) is replaced by

A1+ 1)

Vo) + 25

)
and u is equal to r times the radial wave function.
We restrict our attention for the present to Eq. (28.3); we shall be

able to generalize the resulting expression for u(z) to obtain solutions of

(28.4). We put
iS(z)
u(x) = de *

which on substitution into (28.3) gives the one-dimensional form of
(28.2)

hS"” — §'2 4 h%*2 = (28.6)

where primes denote differentiation with respect to z.
We substitute an expansion of S in powers of % into (28.6) and equate
equal powers of A.
S=8 +kS:+ - - -
—82 + 2u(E — V) = 0
18y — 2838; = 0, ete.

Integration of these equations gives
So(x) = +h j k@,  Si@) = ¥ In k(z),

where arbitrary constants of integration that can be absorbed in the
coefficient A have been omitted. We thus obtain to this order of
approximation

we) = Ak-dexp (i ki), V<E (287)
In similar fashion, the approximate solution of (28.4) is
u(z) = Bx% exp (+ / "wz), V>E  (288)

Asymptotic Nature of the Solutions. The accuracy of these WKB
solutions can be gauged by comparing the magnitudes of the successive
terms S, and %8S, in the series for S. Since S, is a monotonic increasing

function of z so long as k does not vanish, the ratio RS, is small if

So
I’
%S,i is small. We thus expect (28.7) to be useful in that part of the
0
domain of z where
A,
S

kl

= g <1 (28.9)
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Now the local de Broglie wave length N is 2r/k, so that (28.9) can be
written
N |dk
ir |dz
which means that the fractional change in k (or in the wave length) in
the distance A /4 is small compared to unity. Thus the WKB solutions
are useful when the potential energy changes so slowly that the momen-
tum of the particle is sensibly constant over many wave lengths.
The same criterion is obtained for (28.8) if we now mean by the “wave

length’”’ the distance in which the magnitude of u changes by a factor
e,

<k

It is apparent that the condition (28.9) is violated near the turning
points of the classical motion, where V(z) = E, k and « are zero, and
the “wave length’’ is infinite. Thus the solutions (28.7) and (28.8) are
asymptotically valid in the sense that they can be used several wave
lengths from the nearest turning point if, as is usually the case, the wave
length is there slowly varying.

The asymptotic solutions are of little use to us unless we know how to
connect an oscillating solution like (28.7) to an exponential solution like
(28.8) across a turning point. It is only in this way, for example, that
we can apply boundary conditions and obtain energy eigenvalues. The
derivation of such connection formulas, which we consider next, is the
central problem of the WKB approximation.

Solution near a Turning Point. The wave equations (28.3) and (28.4)
are regular at a turning point, so that there is a solution that is analytic
there and has asymptotic forms like (28.7) and (28.8). Such a solution
usually cannot be written down in closed form. The wave equation can,
however, be modified slightly so that an exact solution that has the desired
asymptotic forms can be obtained.

We can without loss of generality take the origin of z at a particular
turning point; we also assume for the moment that V' (z) < E to the right

of the turning point (positive z), and put £(z) = L “kdz. Now if

k%(x) = Cz», where C is a positive constant, Eq. (28.3) is known to have
the solutions

1

T n+2

where J is a Bessel function; this can be verified by direct substitution.
The asymptotic form of J is such (see below) that (28.10) agrees asymp-
totically with (28.7).

We therefore try to retain this form by rewriting (28.3) with an
additional term 6(x):

u(r) = Agk—¥ u(f), m (28.10)
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d*u . _

Substitution of (28.10) into (28.11) shows that the new equation is
satisfied if we define 6 as

3k’ k" 1 k2

2

b(z) = o "ot (m* — 1) B (28.12)

We expand k2 as a power series in z:
k*(z) = Cx*»(1 4+ azx + D224 - - )

in which case 6 can also be expanded in a series. The 1/22 and 1/z terms
vanish, and the leading term is independent of z.

3(n+5a*  3b
Vix)

o ~s

Region 2 O| Region] \ i

Fr1a. 25. A typical linear turning point, where V(z) = E at z = 0; in region 1, £ > V(z),
and in region 2, E < V(z).

We can now see that (28.11) is a good approximation to the actual
wave equation (28.3). The similarity in structure between each of the
three terms in (28.12) and the asymptotic accuracy criterion (28.9)
indicates that 6 < k% in the asymptotic region if the WKB method can
be used at all. At and near the turning point, 6 is not negligible in com-
parison with kZ since 6 is a constant and k? vanishes at z = 0. However,
(28.13) shows that 6(0) is quite small, being of second order in the devia-
tion of k? from the simple form Cz». Thus for potential functions V(z)
that are slowly varying, (28.10) is expected to be a good approximation to
the actual solution of equation (28.3).

Linear Turning Point. We now specialize to the situation of greatest
physical interest, in which n = 1. A typical linear turning point is
shown in Fig. 25; Eq. (28.3) is used in region 1 (z > 0), and Eq. (28.4) in

region 2 (z < 0). We put &= ﬁ)x kdx, &= LO kdz, so that both £

and £, increase as x moves away from the turning point; this makes it
easy to generalize the results to situations in which the regions 1 and 2
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are interchanged. The two independent solutions in each of the two
regions are
ut(z) = ALk 4(8)
ust(z) = Bifh 3 yy(E)
It is evident that we must replace J by I, the Bessel function of imaginary
argument, in region 2.

We require the leading terms of the power series expansions and of
the asymptotic expansions for these functions:!

(28.14)

Tas(e) —> pdts
::) (Fm£)~ % cos (51 ¥ 5 - 77;) (28.15)
La(e) — a2

(27r£2) i[efz + etk . e—(}ﬂ:*)ri]
2w

It is important to note that the term e—% in the asymptotic expansion
for I can be retained only when a combination of solutions I is chosen
such that the coefficient of e# is zero. This is because other terms in the
asymptotic expansion, such as ef/£,, have been neglected, and these are
of larger order of magnitude than e¢~&. The asymptotic nature of the
WXKB approximation is such that if the term that increases exponentially
away from the turning point is present, it is impossible to say whether or
not the decreasing exponential term is also there.

Connection at the Turning Point. The leading term in k2 at z = 0
is Cz, so that k = cx}) «k |z}, £ =2 (2¢/3)a?, &2 =2 (2¢/3)|z|?, where
¢ = +C% Then from (28.14) and (28.15) we obtain the behavior of the
w's nearz = 0

(3}t (#)i(ze)" ¢
oy A, 8807 T2A_
WESTTE o W T3)
o g @GO} o BG0
BTy M =g
It is apparent then that uf joins smoothly on to i if By = —A,, and

that uy joins smoothly on to uz if B = A_.
These relations between the coefficients can be used to obtain asymp-
totic forms like (28.7) and (28.8) for the two independent solutions u*

and u— in the two regions (the arbitrary multiplying constants A, are
omitted).

1 Whittaker and Watson, op. cit., Chap. 17.
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ut ——> (hrk)~4 cos (sl _ o
=+ = 12
& —Ez—ﬁ!‘
— — (2mx)~¥e + e 6)
F— (28.16)
U~ — (gwk)~ % cos (El - 112)

z—+4 o

— s (@m)—H(e" + e T8

zr—
The asymptotic forms of any linear combination of u* and u~ can be
found from Eqs. (28.16).

Asymptotic Connection Formulas. Convenient connection formulas
between the asymptotic WKB solutions in the two regions can be
obtained by choosing suitable linear combinations of u+ and w—. Thus
the combination u* + u~ contains only the decreasing exponential, and
yields the first connection formula

et —> k1 cos (& — ) (28.17)

The arrow in (28.17) implies that the asymptotic solution in region 2 that
appears on the left goes into the asymptotic solution in region 1 that
appears on the right, but that the converse is not necessarily true. This
is because a small error in the phase of the cosine introduces the dominant
increasing exponential in region 2.1

Another linear combination of u+ and 4~ can be found that gives the
second connection formula

sin g k Yebh— k~Y cos (81 — 3 + 1) (28.18)

where 7 is appreciably different from zero or an integer multiple of .
The arrow in (28.18) appears since the neglected decreasing exponential
in region 2 alters the phase of the cosine in region 1 by an indeterminate
amount if the connection is reversed.

Energy Levels of a Potential Well. We now give a simple example of
the application of the WKB approximation that serves as a derivation of
one of the Bohr-Sommerfeld quantization rules. We wish to find the
energy levels of a particle moving in the one-dimensional potential well

1 The converse of (28.17) can be used in the following sense: If some parameter in
the solution (such as the energy E) is varied continuously so that the phase of the
cosine in region 1 passes through the value — 1, the increasing exponential in region 2
disappears for some indeterminate value of the phase close to — {= and leaves only the
decreasing exponential. This result is useful, for example, in treating the resonance
scattering of alpha particles by a heavy nucleus.
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shown in Fig. 26. For any assumed energy level E, there are supposed
to be just two turning points of the classical motion such that

Vzy) = V(zs) = E

The regions z < z1 and x > z, are Type 2 regions in which we know that
u decreases away from the turning points in order to satisfy the boundary
conditions at + ©. Thus we have only the decreasing exponential WKB
solution in these regions.

The connection formula (28.17) can be applied at the turning point
z1, which separates a Type 2 region from the Type 1 region 2, < z < 2.

Vix)

Region2 x4 Reg|on 1 X2 Region 2

Fre. 26. Application of the WKB method to a potential trough; linear turning points
occur at z1 and z2.

The only change is that the lower limit on the £, integral is changed from
0 to x4, so that the solution to the right of the turning point is

k¥ cos ( f ° kdz — %f) (28.19)

apart from an arbitrary multiplying constant. The same connection
formula can also be applied at x; by reversing the direction of the z axis
and changing the fixed limit on the £ integrals from 0 to z.; the arrow in
(28.17) still means that we go from a region 2 solution to a region 1 solu-
tion, but now the latter is to the left of the turning point and the former

is to the right. We redefine £, = _L = kdz, & = L j kdz so that they still

increase going away from the turning point, in which case (28.17) can be
used without any modification. The solution to the left of this turning

point is then k% cos ( /; * kdzx — iqr), which can be written
k¥ cos (ijdx -} — ,,), g = / kdz — 3r  (28.20)
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As was the case in the qualitative discussion of discrete energy eigen-
values in Sec. 8, we obtain the energy levels of this system by requiring
that the two solutions (28.19) and (28.20) join together smoothly in the
interior of region 1. This evidently requires that n be zero or a positive

. . . z2 . . oy e .
integer multiple of =, since f kdz is necessarily positive. We can write
T

the determining equation for the eigenvalues as
:%m=4n+@m n=01,2 ... (28.21)

Equation (28.21) is to be used for values of # up to the point at which E
becomes so large that one or both of the turning points disappears.

A Quantization Rule. The expression (28.5) for k can be substituted
into (28.21) to give one of the Bohr-Somerfeld quantization rules of the
old quantum theory

2£%mw—vwwm=m+ah (28.22)

The left side of (28.22) is the integral around a complete cycle of the
motion (from z; to z, and back to z:) of the momentum [2u(E — V)b
The right side is the quantum value of the phase integral, with half-
integer rather than integer quantum numbers.

It is easily seen from the form of the solution (28.20) that = is the
number of nodes of the WKB wave function between the turning points.
Since it is basic to the WKB method that we can develop asymptotic
solutions like (28.7) only several wave lengths from each turning point,
the approximation should be good only if the turning points are several
wave lengths apart, or if n is large in comparison with unity. This con-
firms the earlier view that the WKB method is a semiclassical approxima-
tion, since it is expected to be most useful in the nearly classical limit of
large quantum numbers.

Actually, the WKB approximation also gives quite good results for
the low quantum states of many systems. For example, if we apply
(28.22) to the harmonic oscillator V(z) = $K=z? it is known from the old
quantum theory that the correct energy levels are obtained for all quan-
tum numbers.

Special Boundary Conditions. The boundary condition to be applied
to a WKB solution at a perfectly rigid wall (V' changes discontinuously
to 4 at z = z¢) is that the wave function vanishes there. Thus if &
(for a region of Type 1) is slowly varying up to z, and other turning points
are remote, the asymptotic solution can be used and has the form

k—3sin ( /; j kdx)-
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Similarly, for a finite potential step that is far from other turning
points, the asymptotic WKB solutions can be used up to the point of
discontinuity of V if k or « is slowly varying. Then the magnitudes and
slopes of the solutions on the two sides can be matched at this point.

As pointed out after Eq. (28.5), the WKB method can be applied
to the radial wave equation for a spherically symmetric potential. When
! = 0, the radial wave function must be finite at » = 0, and so u must
vanish there. If k or « is slowly varying there, the asymptotic solutions
can be used; for example, if £ — V() is positive, finite, and slowly vary-

ing at and near r = 0, the solution is k% sin ( ﬁ) ! kdr). When the

effective potential energy is infinite at r = 0, either because V itself is
infinite or because of the centrifugal-force contribution for I > 0, the
situation is more complicated and requires further investigation.

Problems

1. A one-dimensional harmonic oscillator of charge e is perturbed by an electric
field of strength E in the positive z direction. Calculate the change in each energy
level to second order in the perturbation. Show that this problem can be solved
exactly, and compare the result with the perturbation approximation.

2. A one-dimensional harmonic oscillator is perturbed by an extra potential energy
bz3. Calculate the change in each energy level to second order in the perturbation.

3. Find the first-order Stark effect for a hydrogen atom in the state n = 3.

4. A system that has three unperturbed states can be represented by the per-

turbed Hamiltonian matrix
E 1 0 a
<o 2 b>
a b E.

where E; > E;. Use the second-order nondegenerate perturbation theory to find the
perturbed eigenvalues. Then diagonalize the matrix to find the exact eigenvalues.
Tinally, use the second-order degenerate perturbation theory. Compare the three
results obtained.

6. Show that the total scattering cross section by a potential that falls off at great
distances like " is finite if and only if n > 2, (a¢) by means of the Born approximation
formula (26.20), and (b) by means of the Born approximation expression for the phase
shifts (26.27) (see footnote 1, page 78).

,

6. Find the differential scattering cross section for a potential V(r) = —Vee 9,
using the Born approximation. What is the validity criterion in this case, and under
what circumstances is it satisfied?

7. In a particular scattering problem in which the potential is spherically sym-
metric, the phase shift 8, is large and can be computed exactly, but all the other phase
shifts are small. Derive an expression for the differential scattering cross section with
the help of the Born approximation, in which all the phase shifts are taken into
account.

8. Use the Born approximation to discuss qualitatively the scattering by a crystal
lattice of identical atoms.
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9. A trial function y differs from an eigenfunction ug by a small amount, so that
¥ = ug + &)1, where ug and ¢, are normalized and ¢ << 1. Show that (H) differs
from E only by terms of order 2.

10. If the first n — 1 eigenfunctions of a particular Hamiltonian are known, write
down a formal expression for a variation-method trial function that could be used to
get an upper limit on the nth energy level.

11. Find the next terms (of order R~4) in the expansion of Eq. (27.12). Show
that their diagonal matrix element for the unperturbed ground state vanishes, so that
there is no inverse fourth power contribution to the van der Waals interaction.

12. Use the first nonvanishing term in the series (27.13) to get a lower limit for

—W(R). Compare with that obtained from the variation calculation.

13. Use the combination of perturbation and variation methods employed in Sec.
27 in connection with the van der Waals interaction to obtain limits on the electric
susceptibility of a hydrogen atom in its ground state. The electric susceptibility is
the ratio of the induced electric-dipole moment to the applied electric field, or is the
negative of the second derivative of the perturbed energy with respect to the electric
field at zero applied field.

14, A particle of mass m is bound by the potential of Prob. 6, where #2/mVoa? = 3.
Use the variation method with a trial function e~2r to get a good limit on the lowest
energy eigenvalue.

16. Make use of Eqs. (27.24) and (27.25) to obtain the second Born approximation
expression for tan §. What does this give for the zero-energy phase shift in a uni-
form potential when ! = 0?

16. Retain the terms of order k2 on the right side of Eq. (27.28), and use the result-
ing variation principle with »(r) = r to calculate k cot 3, for a uniform potential.
Compare with the first Born approximation when calculated through terms of order
k?, and with the exact result.

17. Use Eq. (27.29) with v(r) = r to calculate (k cot do)o for the exponential
potential of Prob. 6. Compare with the first Born approximation.

18. Show that the WKB approximation gives the correct energy eigenvalues for all
states of the harmonic oscillator.

19. Apply the WKB method to the one-dimensional motion of a particle of mass m
in a potential that equals — Vo at z = 0, changes linearly with z until it vanishes at
z = +a, and is zero for |z| > a. Find all the bound energy levels obtained in this
approximation if mVa2/A2 = 40.

20. Use the WKB approximation to show that an attractive three-dimensional
potential that falls off like r— for large'r has an infinite number of bound states if
n < 2.

21. Discuss the connection between the WKB approximation and the penetration
through “opaque” potential barriers; the barriers are to be like that considered in
Sec. 17, although not necessarily square.



CHAPTER VIII

APPROXIMATION METHODS FOR TIME-DEPENDENT
PROBLEMS

It is generally impossible to obtain exact solutions of the Schrédinger
equation when the Hamiltonian depends on the time. The three approxi-
mation methods that we consider in this chapter all start from the
assumption that there is a time-independent Hamiltonian that approxi-
mates the actual Hamiltonian in some sense, for which the Schrédinger
equation can be solved. The time-dependent part of the actual Hamil-
tonian may be small compared to the stationary part, in which case a
perturbation method can be used. Or there may be time-dependent
parameters in the actual Hamiltonian that change very slowly (adZabatic
approximation) or very rapidly (sudden approzimation) in comparison
with the periods of the approximate stationary solutions.

29. TIME-DEPENDENT PERTURBATION THEORY

The perturbation theory of a system for which the Hamiltonian
depends on the time! is sometimes called the method of variation of con-
stants. It starts from the assumption of Sec. 25 that

H=H,+H, Hu,=Eu, (29.1)

where the unperturbed Hamiltonian H, can be solved for its normalized
eigenfunctions u, and its energy eigenvalues E,, and the perturbation H’
is small. Since H’ now depends on the time, stationary solutions of the
actual Schrodinger equation do not exist, and we must work with the
time-dependent equation

¥ = Hy (20.2)

Expansion in Unperturbed Eigenfunctions. Our procedure is to
iEnt
express ¥ as an expansion in the eigenfunctions u.e * of the unperturbed
time-dependent wave equation, where the expansion coefficients evi-
dently depend on the time.
iEnt

¢ = Sa.(t)ue * (29.3)

1P, A. M. Dirac, Proc. Roy. Soc., A112, 661 (1926); A114, 243 (1927).
195
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S denotes a summation over the discrete set together with an integration
over the continuous set of eigenfunctions. Substitution of (29.3) into
(29.2) gives

1Ent 1Ent 1Ent

Sihdnume * + SanEoue * = San(Ho + H)u.e *

where the dot denotes differentiation with respect to the time.
We replace Hou, by E.u, on the right side, multiply through on the
left by 4, and integrate over all space, making use of the orthonormality

of the u's
_iBut _iEat
ihdke o= Sane A /dkH'u,, T

The integral on the right is the matrix element H}, of the perturbation.
We define the Bohr (angular) frequency

Wi = &-—;——p" (29.4)

and obtain
ax = (GhY'SH,aqeiwt (29.5)

The group of Egs. (29.5) for all k’s is exactly equivalent to the Schro-
dinger equation (29.2); the amplitude a, of a particular unperturbed
eigenfunction u, in the expansion of ¥ has replaced the amplitude ¢ at a
particular point in space. Because of the choice of the representation,
which is determined by the eigenfunctions of the unperturbed Hamilton-
ian, H, does not appear explicitly in (29.5).

The perturbation approximation consists in replacing H’ by AH’ in
(29.1) and (29.5), and expressing the a’s as power series in A:

tn = @ + Aa® + NP + - - - (29.6)

As in Sec. 25, we assume that these series are analytic for A between 0
and 1. We can therefore substitute (29.6) into (29.5), equate coefficients
of equal powers of A, and set A = 1 in the final results. The substitution
yields the set of equations

a® = 0; ag+ = (Gh)"'SHja®eort, §=0,1,2, ... (29.7)

These can in principle be integrated successively to obtain approximate
solutions to any desired order in the perturbation.

First-order Perturbation. The first of Eqgs. (29.7) shows that the
zero-order coefficients af® are constant in time. Their values are the
initial conditions of the problem, which specify the state of the system
before the perturbation is applied. We assume throughout this section
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that all except one of the af® are zero, so that the system is in a definite
unperturbed energy state when the perturbation is applied.! The results
that we shall obtain can easily be generalized to situations in which more
than one of the zero-order coefficients is different from zero.

We thus put af® = &m» or 6(k — m), according as the state m is one
of a discrete or a continuous set. Integration of the first-order equation
gives

a(®) = @) [* | Hin(@)eomrde (29.8)

where the constant of integration is taken to be zero in order that af®
be zero at ¢ = — « (before the perturbation is applied). If H’ is of
finite duration, the amplitude of a state u; (k # m) after the perturbation
has disappeared is proportional to the time Fourier component of the
matrix element of the perturbation between this state and the initial state,
that corresponds to the angular frequency wi. given in (29.4). This
result is analogous to that obtained for the scattered amplitude in the
Born approximation [see the discussion of Eq. (26.18)].
Equation (29.8) takes a particularly simple form if the perturbation
H’ is independent of the time except for being turned on at one time and
off at a later time. We call these two times O and ¢, respectively, and
obtain for the first-order amplitudes at the time ¢ (these are also the
amplitudes at any subsequent time)
_ Hi et — 1

ap(t) = - = (29.9)

Wrm
Thus the probability of finding the system in the state k at ¢ is

4|H},,|? sin? $wimt
2,42
h Wim

The factor sin? $wimt/w}, is plotted in Fig. 27 as a function of wim.

Physical Interpretation. The height of the main peak in Fig. 27
increases in proportion to 2, while its breadth decreases inversely as ¢, so
that the area under the curve is proportional to ¢. Thus if there is a
group of states & that have energies nearly equal to that of the initial
state m, and for which Hj,, is roughly independent of %, the probability of
finding the system in one or another of these states is proportional to ¢.
This is the physically interesting situation, since what we wish to calculate
eventually is a transition probability per unit time w, and this implies that

laf? ()]* =

1 This need not conflict with the uncertainty relation (3.3), since the infinite lapse
of time prior to the application of the perturbation makes it possible to determine the
original energy of the system with arbitrarily great precision.
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the probability that a transition has taken place when the perturbation
has been on for a time ¢ is proportional to &.!

It follows that a definite value of w exists only when the final state &
is one of a continuous or nearly continuous set of states. The spread in
energy of the final states to which transitions occur, shown in Fig. 27

Sin?3e fepmt

©gem

—— | 1

-ér Ar 4 2r 4r ér
z ¢ ¢ ¢ z

z

Yl
F1a. 27. The ordinate is proportional to the first-order perturbation probability of finding
a system in a state that has an energy different from that of the initial state by fiwkm; the

scales for ordinate and abscissa depend on the duration ¢ of the perturbation in the manner
indicated.

(Ex = En + hwim), is connected with the uncertainty relation (3.3) for
energy and time in the following way. We can regard the perturbation
H’ as a device that measures the energy of the system (which is not
necessarily its initial energy since the system is disturbed) by transferring
it to one of the states k. The time available for the measurement is i,
so that the uncertainty in energy predicted by (3.3) is of order %/¢, in
agreement with the breadth of the main peak in Fig. 27. It is interesting

1 We assume that the total transition probability to all states k is small enough in
comparison with unity so that the initial state m is not significantly depleted. Thisis
equivalent to the original assumption that the perturbation is small, which means
that for times ¢ of physical interest, there is little change in the initial state. There
can still be an effect of observable magnitude if a large number of independent systems
receive identical treatment.
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to note that conservation of energy, suitably modified by the uncertainty
principle, is an automatic consequence of the calculation and does not
have to be inserted as a separate assumption.

Transition Probability. In order to obtain an explicit expression
for w, it is convenient to assume that the system is contained in a large
cubical box of dimensions L that has periodic boundary conditions at its
walls (Sec. 10). Then the eigenfunctions u, form a discrete set and can
be normalized to unity in the volume L3. We now consider a particular
group of final states k that have nearly the same energy as the initial
state m and for which the matrix element H},, of the perturbation is a
slowly varying function of k. We define a density of final states p(k)
such that p(k)dE) is the number of such states in the energy range dE,;
and assume that p(k) is also a slowly varying function of £.

The transition probability per unit time to one or another of this group
of states can then be written

w=r1 Y O = 0 [ la@OF®E  (29.10)
k

when the box L is large enough so that the summation over k can be
replaced by the integration over E;. Since H},, and p(k) are slowly vary-
ing and most of the contribution to the integral comes from a narrow
range of energy about E;, = E,, they can be taken outside of the integral,
and (29.10) can be rewritten as
! © 3 1
w = }24|}Ihkm'2 p(’(’) . sin? gwgmd dwrn (2911)

Wkm

where the index & now refers to a typical one of the group of states having
about the energy E,.. The integral in (29.11) is 3¢ /—: 22 sin? zdx = 4w,
so that we finally obtain

w = 2 o (8) | Hl (29.12)

which is independent of ¢, as expected.

There may be several different groups of final states k, all of which
have about the energy E, but for which the perturbation matrix ele-
ments H},, and the densities of states p(k), while nearly constant within a
group, differ from one group to another. Then (29.12) gives the transi-
tions per unit time to a particular group; similar expressions of the same
form give the rates of transition to other groups.

Scattering Cross Section. As a first application of Eq. (29.12), we
calculate w when the initial and final states are free-particle momentum
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eigenfunctions (plane waves) and the perturbation is a potential energy
V(r). Theresult can be interpreted in terms of an elastic scattering cross
section, and then agrees with the Born approximation result (Sec. 26), as
expected. We take for the initial and final states

Un(r) = L~? exp tko - 1, up(r) = L~texptk-r

where k, and k are the initial and final propagation vectors, respectively.
Thus the perturbation matrix element is

ww = L3 exp (—1k - 1)V (r) exp (ik, - r)dr
= L73[V(r) exp (K- 1)dr (29.13)
where K = k, — k.

The density of final states can be found from the permitted values of k
in a box: k, = 2wn./L, etc., where the n’s are positive or negative integers
or zero. Thus there are (L/2r)3dk.dk,dk, states in the range dk.dk,dk, of
propagation vector. Now there are many different final states k with the
same energy, corresponding to different directions of k with a given
magnitude. The matrix element (29.13) usually depends on the direction
of k, so that we have to consider only a small range of directions at a time.
We therefore ask for the rate of transition into an infinitesimal element of
solid angle sin 6d6d$ about some direction that is specified by the polar
angles 6,¢. Then p(k)dE} is equal to the number of states in the range
dr, given by the above solid angle element and the magnitude element dk
that corresponds to the energy element dE;.

3
p(k)dEy = (%) k*dk sin 6d9de

Since Ey = h2k2?/2u, dEi/dk = h*k/u, and we obtain for p(k)
ul? .

The value of w obtained in this way is the number of particles scat-
tered into the element of solid angle per unit time when there is one
incident particle in the volume L3 This is an incident flux of »/L3
particles per unit area and time, where v = %k /u is the speed of the inci-
dent or scattered particle (since energy is conserved). Since the dif-
ferential scattering cross section is defined as the scattering per unit
incident flux, we have that

pL?

a(6,¢) sin 0d0d¢ = FF Y (29.15)
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Substitution of (29.12), (29.13), and (29.14) into (29.15) gives

o(6,68) = (2 h2)2

This agrees with the Born approximation result (26.18) and (26.19),
and has the same range of validity.

Harmonic Perturbation. Another situation for which Eq. (29.8)
assumes a simple form occurs when the perturbation depends harmoni-
cally on the time, except for being turned on at zero time and off at time ¢.
If we put H},,(t') = H}, sin wt’, the first-order amplitudes at time ¢ are

H’O ei(mkm+m)t -1 ei(wkm—w)t —1
V() = — —km —
as‘ (t) 2k [ Wkm + w Wrem — W ]

2

/ V(r) exp (K - r)dr (29.16)

(29.17)

The probability of finding the system in the state k is appreciable only
when the denominator of one or the other of the two terms in (29.17) is
practically zero. Thus there is no interference between the two terms,
and the perturbation can produce transitions for which wim =2 o if the
corresponding matrix element does not vanish. The energy-conserva-
tion condition E; = E,, obtained earlier is now replaced by the condition

E,~E, + ho (29.18)

Equation (29.18) suggests that the first-order effect of a perturbation
that varies harmonically in the time with angular frequency w is to trans-
fer to or receive from the system on which it acts an amount of energy
hw. This concept will be used for a qualitative treatment of radiation
processes in Chap. X.

Second-order Perturbation. The series of equations (29.7) can read-
ily be solved to second order for a perturbation that is constant in time.
We take the equation with s = 1, and substitute from (29.9) on the right
side.

d$c2) —_ nm (ezmkmt — ewk”t)

H’nH’
" e

nm

Integration of this equation subject to the initial condition af’(0) = 0
gives for the second-order amplitudes at time ¢

’ ’ twkmb Wkt —
an(t) = G2 ’"°H [6 1_e¢ 1] (29.19)

Wkm Wkn

Equation (29.19) indicates that transitions for which the probability
increases linearly with the time can occur either for wim =2 0 or wi, = 0.
While the first type of transition conserves energy between the initial
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state m and the final state k, the second need not. It is not difficult to
see that the second bracket term arises from the 1 in the numerator of
(29.9), which in turn comes from the initial condition at zero time. This
initial condition means that the perturbation is turned on suddenly; thus
the mathematical formulation suggests that the second-order transitions
that do not conserve energy are caused by the sudden turning on of the
perturbation. This is in agreement with Egs. (29.8) and (29.17), which
show that a perturbation that has nonzero frequency Fourier components
can give up energy to or absorb energy from the system that it perturbs.
In the case we are now considering, these Fourier components are not
marked enough to produce in first order a transition probability that is
proportional to the time, but they do in second order.

In most practical problems, the sudden turning on of the perturbation
is introduced as a mathemagical artifice that simplifies the calculation.
Actually, in such cases, the perturbation either is always present, or is
turned on very slowly, and we are concerned with transitions that con-
serve energy between initial and final states. Problems that can be
treated by the sudden approximation (see end of Sec. 31) are an excep-
tion; there energy need not be conserved. Throughout this section and
the next, we assume that only transitions that conserve the energy actu-
ally occur (win =2 0).

Suppose now that the perturbation produces no transitions in first
order; this means that there are no states n that conserve energy (wn» = 0)
for which the matrix element H, > 0. Since win =2 0, this means also
that H’, = 0 whenever wi, =2 0. In this case, the second term in the
bracket of (29.19) is never appreciable. The calculation of w is carried
through as before, except that a@® replaces a; thus (29.12) can be used
if the matrix element H},, is replaced by the second-order matrix element

;an:t‘m

S o (29.20)

Effect of First-order Transitions. In the event that transitions can
occur in first order, but they are not to the state in which we are inter-
ested, we can proceed as follows. It is still true that the second term in
the bracket of (29.19) is negligible for states n that have energies appreci-
ably different from Ej (or E,), since then wg, is large. However, there
may now be states n for which E,, E,, and E; are all close together and
neither Hj, nor H!, is zero. The second bracket term cannot be ignored,
for without it the summation or integration over n would have a singu-
larity when w,n is zero. It is not difficult to see that for any value of
wim (zero or otherwise), the entire bracket is proportional t0 w.» (Which
is equal t0 wim — wis) When w., is small; this cancels out the wum
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in the denominator, and makes the summand or integrand finite
where wnm = 0.1

We now show how an explicit evaluation of (29.19) is obtained in this
case if S can be represented by an integral over E,, or w.». We divide the
integral into parts according as |w.m| is large or is not large in comparison
with 1/¢. In the first region, the second bracket term in (29.19) can
be neglected, since |win| = |wim — wnm| is also large in comparison with
1/t (wrm =2 0 means that wist is not large in comparison with unity).
We thus obtain for this part of the integral

iwkmt " o
¢ 1 / Helom ) hdesam (29.21)
Wrm Wnm

Here p(n)dE., is the number of states of the particular group n under
consideration in the energy range dE,; the prime on the integral implies
that the region —c/t < w.n < ¢/tis excluded from the integration, where
¢ is a constant number that is large in comparison with unity. If there
are two or more distinet groups of states n for which the matrix elements
or densities of states differ, a further summation over these different
groups must eventually be carried out.

In the second region, where |w.n| < ¢/f, we assume that ¢ is large
enough so that H;, H,,o(n) can be regarded as a constant, taken outside
of the integral, and evaluated at w.» = 0. We must now use both terms
in the bracket of (29.19) in order that the integrand be finite. This part
of the integral is then

[

t iw’mt —_ i("’hm—"’nm)' _
(hHjH omp ()]0 f [e 1 e 1] e

(29.22)

Wim Wkm — Wnm nm

~i0

The integral that appears in (29.22) can be evaluated by considering the
contour in the complex w.» plane shown in Fig. 28, which contains no
poles of the integrand. Thus the integral over the closed contour is
zero, and the integral in (29.22) is equal to the integral around the semi-
circle of radius ¢/t taken in the counterclockwise direction. The magni-
tude of w.» is great enough over this semicircle so that the contribution

1 This result follows quite generally from the structure of the whole perturbation
calculation, since there is no way in which a singularity can appear. Thus if the
perturbation is turned on slowly rather than suddenly, so that the energy-conservation
difficulties mentioned above do not occur, the second bracket term of (29.19) has a
more complicated form but still cancels out the singularity at wnm = 0. This can be
verified by direct calculation.
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of the second term in the integrand can be neglected in comparison with
the first. The integral in (29.22) is then easily evaluated and becomes

. eiwkm! —_ 1

Wim

(29.23)

For large ¢, the prime on the integral in (29.21) is equivalent to taking
its principal value.! Thus if we substitute (29.23) into (29.22) and add
the result to (29.21), we obtain an expression like (29.21) except that the
primed integral is replaced by the principal value of the integral plus
wt times the residue of the integrand at the pole w.» = 0. This is equiva-
lent to evaluating the integral along a contour in the complex w.» plane

+|Imaginary ‘
¢ axis Wpyym Plarie o5
z z_Real
[7] axis

F1a. 28. Contour for the evaluation of the integral in Eq. (29.22).

that passes along the real axis from — «to « except for passing beneath
the origin. We thus obtain finally

hwkm

iw, b — H' H’
a®(l) = © 1 /C 7 p(n)dE, (29.24)

where the contour C is over the real axis of E, except for passing under
the pole of the integrand at E, = E,. Equation (29.24) is to be used in
place of (29.19) whenever § can be represented by [p(n)dE,. Compari-
son of Egs. (29.24) and (29.9) shows that we can use the expression (29.12)
for w if we replace the matrix element Hj, by the integral in (29.24),
which we sometimes call the second-order matrix element. An example
of this is given in the next section.

Intermediate States. We see that the time-dependent perturbation
theory gives a result in first order if there is a nonvanishing matrix

1 E. T. Whittaker and G. N. Watson, “A Course of Modern Analysis,” 4th ed.,
pp. 75, 117 (Cambridge, London, 1935).
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element of H’ that connects the initial state m and the final state k.
If H},, = 0, but there are one or more states n for which neither H’, nor
%n 18 Zero, the transition occurs in second order.

It is then convenient to think of one of the states n as an intermediate
state: the perturbation transfers the system from m to k in two steps,
through a state n. Energy need not be conserved for an intermediate
state, since it has only a transient existence and according to the uncer-
tainty relation (3.3) it is impossible to determine the energy of such a
short-lived state with any precision. If some of the intermediate states
do conserve energy, the summation (29.20) over these states must be
interpreted in accordance with the integral in (29.24).

In some cases, a perturbation can produce a particular transition only
through two or more different intermediate states; this corresponds to a
third or higher order of the perturbation calculation. If the perturba-
tion is small, it usually happens that the result of a calculation to the
lowest order in which the transition occurs gives a useful result, while
higher order calculations do not improve on this and may even be quite
misleading.

30. INELASTIC COLLISIONS

The expression for the scattering cross section given in the preceding
section is easily generalized to a description of inelastic collisions, in which
internal as well as kinetic energy can be transferred between the colliding
systems. In this section we apply the result to two problems that are
typical of first-order and of second-order processes.! The latter calcula-
tion is of unusual theoretical interest, for it shows explicitly how a particle
that is described entirely in terms of a plane wave (momentum eigen-
function) can produce a sharp track in a Wilson cloud chamber.

Expression for the Cross Section. The expression (29.12) for the
rate of transition w is applicable to inelastic collisions if the matrix ele-
ment is defined accordingly. We cons.der here the collision of a fast
electron with a hydrogen atom in its ground state, and wish to calculate
the cross section for scattering of the electron through a definite angle
accompanied by excitation ot the hydrogen atom to a definite state. We
leave out of consideration the possibility that the incident electron
changes places with the atomic electron; such exchange collisions will be
taken up in Chap. IX.

1 The examples considered in this section can also be treated by an extension of
the Born approximation; such an extension to first-order rearrangement collisions is
given in Sec. 34. For the treatment of second-order processes, it is more convenient
to work with the method of variation of constants.
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The unperturbed Hamiltonian is the sum of the kinetic energy of the

incident electron and the Hamiltonian for the hydrogen atom:
h? _, ht _, e

5 Vi 5m \% ™ (30.1)
where r; and r, are the coordinates of the incident and atomic electrons,
respectively, referred to the atomic nucleus, which is massive enough so
that its motion can be neglected. The perturbation is the electrostatic
energy of interaction between the incident electron and the electron and
nucleus of the atom

Ho=—'

2 e2
H'=ril;—r—1 (30.2)

The unperturbed wave functions are eigenfunctions of (30.1), which
we choose to be
L~ exp (1Ko - T)U100(rz)  initial state

L~ exp (¢k - T1)uzoo(r2) final state (30.3)

In spectroscopic notation, this corresponds to a 1.8 — 28 transition of the
atom. The magnitude of the propagation vector of the electron after
the collision is fixed by conservation of energy

2m 3e?

Equations (30.2), (30.3), and (30.4) specify the matrix element that
appears in (29.12).

2 2
I{.‘,'l = I3 // exp (’LK . rl)u_zoo(l'z) (;?1; - %)umo(l’z)dTldTg,
K=k —k (30.5)

The differential cross section can be obtained from w as in the preceding
section. It must be remembered, however, that k appears in the expres-
sion (29.14) for the density of final states, whereas the initial speed
vo = hko/m appears in the expression for the incident particle flux. Thur
the cross section is

2
o(60) = ,%(2,%) Lo|Hy (30.6)
where 6 is the angle between the vectors k and k.

Evaluation of the Matrix Element. It is apparent from the structure
of the matrix element (30.5) that the term e2/r, in the integrand contrib-
utes nothing because of the orthogonality of %100 and use. This is to be
expected physically, since interaction between the incident electron and
the nucleus cannot produce excitation of the atomic electron.
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The integration of the remaining term over r; can be carried out by
transforming the volume element from dridr, to dr,dr;, wherep = r; — 133
the Jacobian of the transformation is easily seen to be unity. We can
then write

/ exp &K - 1 Ddr, = exp (K - ;) / xprl-e ix - 9dr,,

T12

«© 1
= 21 exp (1K - 1p) / / e'Krvpdpdw
o J-1
= % exp (7K - 1,) / sin Kpdp
0

where we have taken the polar axis of ¢ along the vector K and put w
for the cosine of the angle between ¢ and K. The last integral is not
strictly convergent, but can be evaluated by inserting an integrating
factor e~ into the integrand and subsequently taking the limit « — 0.
The justification for this is that the integration over r; in (30.5), if per-
formed first, gives a result that falls off like 1/72 and hence like 1/p? for
large p,! so that for large p, the integrand here behaves like sin Kp/p and
the integral converges. We thus obtain

/ exp 1K - I dTl = _4_15 exp (iK . 1'2) lim sin er_“”dp
T12 K a—0 0

4 . K 4
= % exp (@K - 15) 'lllil(l) (m) = %2 XD iK-r, (30.7)
Substitution of Eq. (30.7) and the expressions following Eq. (16.24) for

the hydrogen wave functions into (30.5), gives an integral over r, that
can be evaluated as

;16 V/2mrale? h?

Hzll = 71799 1 9\=2’ ao = —
(K?a§ + 2)° me?

Differential and Total Cross Sections. The differential cross section
for this collision thus becomes
_k 128a3
O = k@t o @08
where

K? = k¥ 4+ k% — 2kok cos 6
= (2ko sin $0)2 — (ko — k)(ko + k — 2k, cos 6)

1 The leading term in 1/r;, when 7, 3> ry is 1/r;, and the integral of this over r,
vanishes because of the orthogonality of %100 and u20.
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Now the perturbation calculation is best when koao 3> 1, in which case &
is close to ko and we can rewrite (30.4).

2
(ko — K)(ko + k) =2hifg—;=£;
3° (30.9)
ko + k = 2k,, ko—k%’m

With the help of (30.9), the expression for K? in this high-energy

limit becomes

K? =~ (4kg - —3—) sin? 36 2 (2k, sin 36)?
2a}

Then according to (30.8), most of the scattering occurs for Kao S 1,
which is equivalent to 6 < 1/koas. Beyond this, ¢(6) falls off with
increasing angle approximately like cosec!? 4. This is a much more
rapid decrease with angle than the cosec* 0 dependence (26.32) obtained
for elastic scattering by an atom, and is characteristic of inelastic
processes.

The total cross section is found by making use of the exact expression
for K? to replace the element of solid angle 2wsin 6d6 by 2rKdK /kok,
with limits ko — k and ko + k. Then the integral of (30.8) can be
obtained explicitly. However, the discussion of the last paragraph
shows that at high energies most of the contribution to the integral comes
from near its lower limit, and in accordance with (30.9)

9

4

We thus obtain the leading term in the total cross section at high energies
by taking the limits 0 and « for K:

10
P %2%” (?g)) (30.10)

9
2742 ~v
(ko — k)*af = s <

Cross sections for elastic and other inelastic collisions with hydrogen
may be obtained by replacing w0 in the matrix element (30.5) by the
appropriate final-state wave function, and modifying (30.4) accordingly.
The total elastic cross section at high energies turns out to be 7r/3k2,
which is about five times as large as (30.10). Excitation to the states
that haven = 2,1 = 1 (18 — 2P transitions) is most easily calculated by
choosing the three final states (m = 0, +1) with their polar axis along
the momentum transfer vector K. Then the factors e+ that appear in
the wave functions for m = +1 make these matrix elements vanish and
only the state (210) is excited. This corresponds physically to the
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inability of the incident electron, whose momentum loss is along K, to
exert a torque on the atomic electron about this axis. The high-energy
cross section for this process turns out to be

12
o 22 37 (2" 1 (dkoa) (30.11)
7 \3

The appearance of the logarithmic factor in Eq. (30.11) derives from an
extra factor 1/K? in the differential cross section. Thus in comparison
with the 18 — 28 scattering, the 1.8 — 2P differential scattering is more
pronounced at small angles and the total scattering decreases less rapidly
with increasing energy at high energies.

Production of a Cloud-chamber Track. It seems surprising at first
that a fast electron, which we can assume possesses a definite momentum
(magnitude and direction) and hence cannot be localized in space, can
produce a sharp track in a cloud chamber. This phenomenon may be
considered from various points of view. In accordance with Ehrenfest’s
theorem (Sec. 7), we can represent the electron by a wave packet whose
center of gravity moves like a classical particle. If the wave length is
short enough, the packet can be quite small without spreading rapidly,
and will then interact only with atoms that lie close to the path of its
center. This implies that the electron is represented by a superposition
of plane waves and hence has an uncertainty in its momentum that
enables its position to be sufficiently well defined.

Another approach consists in describing the electron by a single plane
wave, and regarding its interaction with the first atom that it excites or
ionizes as a position measurement that carries with it an uncertainty of
the order of the atomic size. Thereafter, the electron is represented by a
packet, like that described in the last paragraph, which is well localized
if the first atom is large in comparison with the wave length.

We consider here in detail a description in which the electron and the
atoms of the cloud-chamber gas are treated as parts of a single system, so
that we do not have to regard an atomic interaction as a position deter-
mination that changes the structure of the electron’s wave function.!
To simplify matters, we assume that there are just two atoms present in.
their ground states, and that their nuclei are far from each other and are
fixed in space. We then calculate the cross section for a process in which
both atoms are excited and the electron is scattered inelastically. For ¢
fast incident electron, the perturbation theory can be used, and the
process is of second order. The calculation is interesting both because

1Qee also W. Heisenberg, ‘“The Physical Principles of the Quantum Theory,”
p. 66 (University of Chicago Press, Chicago, 1930).
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of the answer obtained and because it provides an instructive application
of the second-order perturbation theory developed in Sec. 29.

The result of the calculation is that the cross section is very small
unless the momentum vector of the incident electron is nearly parallel
to the line that joins the two nuclei, and unless also the incident and final
electron momenta are nearly parallel. These three directions can have
an angular spread in radians that is of the order of the ratio of thewave
length of the electron to the size of the atom. This is analogousto the
result obtained above for the inelastic collision of a fast electron with a
hydrogen atom: the angular spread of the scattered electron was found
to be roughly 1/keae. It is also in agreement with the wave-packet
description of the process, since a localization of the electron by an atomic
size a in a direction transverse to its motion produces an uncertainty in
the transverse momentum component of amount %/a and an angular
spread of order fi/ap = 1/k.a.

Formulation of the Problem. The nucleus of the first atom can
without loss of generality be placed at the origin, and that of the second
atom at the point R. The two atoms are assumed to be far enough apart
so that the interaction between them can be neglected. The unperturbed
Hamiltonian is then the sum of the kinetic energy of the incident electron
and the unperturbed Hamiltonians of the two atoms. The perturbation
is the sum of the interaction H} between the incident electron and the
first atom, and the interaction Hj between the electron and the second
atom. In the initial state, both atoms are in their ground states u, with
energies ¢, and the incident electron has the propagation vector ko. In
the final state, the first atom is in the state u. with energy e,, the second
is in the state u, with energy e», and the propagation vector of the elec-
tron is Kum.

It is apparent that the transition in which we are interested cannot
occur in first order. It can occur in second order, and there are two
groups of intermediate states. In the first group, the first atom is in the
state u,, the second in the state u,, and the incident electron has some
propagation vector K,,. In the second group, the first atom is in the state
Uy, the second in the state u.n, and the propagation vector of the electron is
called ko, Thus the second-order matrix element (29.20) is

z (H%:»m no(%l)no ,00 2 (H;)E',’m Om(%”"”‘ 00 (30.12)
00 — Lino 00 Hom

2
hko Eo—6n+€0+hk

k22,
2m

EOO = 2eo +

E0m=50+5m+
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We evaluate only the first sum in (30.12) explicitly and indicate the
changes that are to be made in the result to obtain the second sum. The
matrix elements that appear there are
(H ;)nm.no

= L3[[1n(2) exp (—tKnm - 1)H3(2,)u0(2) exp (iKno * 1)drodr
(H1)no,00

= L8[ [1@,(1) exp (—1kno * T')H; (1,r")uo(1) exp (iko * t’)drdr’

(30.13)

Here 1 and 2 denote all the internal coordinates of the first and second
atoms, respectively, and dr, and dr; are the corresponding elements of
integration; r and r’ are variables of integration with volume elements
dr and dr’, both of which specify the position of the incident electron with
respect to the origin. An integral over 1 has been performed in the first
of Eqgs. (30.13) to give unity, and a similar integral over 2 has been per-
formed in the second equation.

Evaluation of the k Sum. When the matrix elements (30.13) are
substituted into the first sum of (30.12) and the sum and integrals are
interchanged, we must evaluate

. — !
z exp ilno - (t —1) 5 _ K — 2&_7? (en — €0)  (30.14)

2 z
k%2, — «

For a box of sufficiently large dimensions L, we can replace the summa-
tion in (30.14) by an integration:

L\® [ expikp-(r—1
(517) / pram ) dry.. (30.15)

The integral in (30.15) has the form of that which appeared in the Green’s
function (26.12) for a free particle. Thus the only new problem pre-
sented by the evaluation of (30.15) is the determination of the contour
that takes proper account of the singularity of the integrand at k.o = «.

This singularity is of the type discussed near the end of the last section
and arises from the possibility of first-order transitions in which just
one of the atoms is excited. Equation (29.24) shows that the proper
contour to use for the integral over the magnitude k.o of the vector k. is
one that goes from 0 to 4+ « by passing under the real axis at the pole «.
After the angular integrations are performed, the integrand is even in
kno, and this contour can be reflected in the origin. The resulting con-
tour, which extends from — « to 4 =, is exactly the same as that used
in the evaluation of (26.13) and shown in Fig. 21a. We therefore obtain
from the earlier work an explicit expression for the summation (30.14):

L3

m exp ’L'Kll' - r’l . (3016)
]
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Second-order Matrix Element. It is convenient to rewrite the matrix
elements (30.13) in terms of new functions

Fu(t — R) = [@n(2)HL(2,1)u0(2)dr
Fa(t') = [a.(1)Hi(1,r")ue(1)dr

These functions are very small except when their arguments differ from
zero by distances of the order of the size of the atom. We put

' =r—R,

so that practically all the contribution to the first summation of (30.12)
comes from small values of 7’ and 7/.  'We can then approximate

/o 1"l A R‘l'”__R’l"
r—r|=R+r r|_—_R+——R— 5

r —r|'~R!

to obtain the leading terms in (30.16) for large R. The first summation of
(30.12) then becomes, to this approximation,

2m 1 exp i(x — Kun) * R ) L
T RE 4qL3 R Fa(r")[exp (ko — ) - r'ldr

. / Fo(t")[exp t(x — Kam) - 1’1dr””  (30.17)
where x is a vector of magnitude « given by (30.14), that has the direction

of R.
In similar fashion, the second summation of (30.12) becomes

_2m 1 expi(¥ +ko) R
h? 4rl3 R

/ F.(@)exp —i(x’ + Kum) * r'ld7’
. /Fm(r")[exp i(ko 4 «’) - r’]dr""  (30.18)

where «’ is a vector in the direction of R whose magnitude is given by
(30.14) with e, replaced by e.

The differential cross section is obtained by substituting the sum of
(30.17) and (30.18) for Hj,, in (30.6), and replacing k¥ by k.m.. Con-
servation of energy requires that

2
Kin= kK — 55 (en + en — 2€0)
Discussion of the Cross Section. The integrals that appear in (30.17)

and (30.18) have the characteristic structure associated with the per-
turbation treatment of collision problems. They are very small unless
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the propagation vector that appears in the exponent of the integrand has
a magnitude that is of order 1/a or less, where a is a typical linear dimen-
sion of the atom (F significantly different from zero). It follows that
(30.17) is significant only when the vectors ko, %, and k. are nearly equal
in magnitude and direction. Because of the assumption that the inci-
dent electron is fast, the magnitudes are very nearly equal in any event.
Then the cross section is appreciable only when the vectors R and k., are
nearly parallel to k. The permitted angular deviation from parallelism
is easily seen to be of order 1/koa.

In similar fashion, it follows that (30.18) is significant only when
¥/, and hence R, is nearly antiparallel to both ko and k.n, in which case
the latter two vectors are nearly parallel to each other.

The two terms together show that excitation of both atoms occurs
with appreciable probability only when the line joining the two atoms is
nearly parallel to the direction of the incident electron. It is apparent
also that the cross section falls off inversely as the square of the distance
R between the two atoms, as would be expected.

31. ADIABATIC AND SUDDEN APPROXIMATIONS

In this section we develop approximation methods that involve the
rate of change of the Hamiltonian, rather than the magnitude of the time-
dependent part of the Hamiltonian. If the Hamiltonian changes very
slowly with the time, we expect to be able to approximate solutions of
the Schrodinger equation by means of stationary energy eigenfunctions
of the instantaneous Hamiltonian, so that a particular eigenfunction at
one time goes over continuously into the corresponding eigenfunction at a
later time (adiabatic approximation). If the Hamiltonian changes from
one steady form to another over a very short time interval, we expect
that the wave function does not change much, although the expansion
of this function in eigenfunctions of the initial and final Hamiltonians may
be quite different (sudden approximation). We determine here to what
extent both of these types of approximation are valid.

Expansion in Instantaneous Energy Eigenfunctions. We consider
first the adiabatic approximation, and wish to solve the Schrodinger
equation

ihg_‘f — HQw 3L.1)
when H(t) varies slowly with the time.! The solutions of the energy

eigenvalue equation at each instant of time are assumed to be known.

H)un(t) = En(t)ua(t) (31.2)

1 M. Born and V. Fock, Zeits. f. Physik, b1, 165 (1928); P. Giittinger, Zeits. f.
Physik, 73, 169 (1931).
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We assume also that the u, are orthonormal, nondegenerate, and dis-
crete; their phases are fixed below.
Suppose that the wave function is known at zero time; at later times

we put
. Lt
Y= z an(t)ua(t) exp [— % /; E',.(t')dt’] (31.3)

Substitution of (31.3) into (31.1) gives

. . Un T i [ N 70
ih z (a,.u,. + aa > 7 anu,,En) exp [—- 7 /; E.(¢)dt ]
=H z Anln €XP [— ﬁ/ n(t’)dt’]

Since Hu, = E,u, from (31.2), the last term on the left side cancels the
right side. Multiplying through on the left by ; and integrating over
all the coordinates of the system (fdr), we obtain

ay = — Z a, exp [ / (Ex — E )dt'] / ﬁh%dr (31.4)

We now seek an expression for the integral on the right side of Eq.
(31.4) that is easier to interpret in physical terms. Differentiation of
(31.2) with respect to ¢ gives

oH ou, OF 6un

W u, + H —at—' ot Un + E,
Multiplying through on the left by % and integrating over the coordi-
nates gives

/ak%undr+fakH";‘t"dr=E /u,, aat dr, ksn (3L5)

We make use of Eq. (22.10) to rewrite the second integral on the left
side of Eq. (31.5), and remember that H is Hermitian.

. E dun
/akﬂ?altdr_/(flu,,) u dT—Ek/uk—:Tdr

Substitution into (31.5) gives an expression for the integral on the right
side of (31.4)

[ () vt
k\ a7 n
/aka—“ﬂdr=— o , n=k (3L6)

at Ek - En
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Choice of Phases. In order to rewrite Eq. (31.4) along the lines
indicated in the last paragraph, we must have an expression for

- aun
fu,.—aT dr

We now show that this integral is pure imaginary, and that a proper
choice of the dependence of the phase of u, on ¢ makes it zero. Differen-
tiation of the normalization integral for u, gives

O=%/1Z,.u,.d = /au"u,.dr+/unau"

Since the two integrals on the right are complex conjugates of each other,
each must be pure imaginary: [@,(0u,/0t)dr = ia(t).

We now change the phase of #, by an amount «(¢), which is permissible
since the phases of the eigenfunctions are arbitrary at each instant of
time. For the new eigenfunction u, = u.e7®,

[ , ag;"d = / Une™ Y—a— (une)dr = ia(t) + z 'y(t) (31.7)

Thus the choice y(f) = — ﬁ) ! a(t)dt’ for the phase makes the integral on

the left side of (31.7) vanish. In what follows, we assume that «), has
been substituted for u,, with a consequent change in Egs. (31.6), and
omit the primes.

We adopt our earlier notation Awg. = E; — E,, and substitute (31.6)

into (31.4):
’ t
. E: Gn . , o0H
dy = Feor, [exp (z f(; wrndl )] (—a ; )kﬂ (31.8)
n d

where the prime on the summation indicates that the term n =k is
excluded from the summation. The last term on the right side of Eq.
(31.8) is the kn matrix element of dH /dt.

Adiabatic Approximation. The group of Egs. (31.8) for all %’s ig
exactly equivalent to the Schrédinger equation (31.1). We now estimate
the order of magnitude of a; by assuming that all the quantities
(@n, wkn, U, OH /3t) that appear on the right side of (31.8) are constant in
time. If further we assume that the system is in the state m at ¢ = 0,
we can put @n = dnm. We thus obtain

1 (éH

~ ___ == eianmt

ay = hwkm at m ) k # m
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which is readily integrated to give

ax(t) gmii_m (%)km (etowmt — 1), k= m (31.9)

With the above approximations, Eq. (31.9) shows that the probability
amplitude for a state other than the initial state oscillates in time and
has no steady change over long periods of time even though H changes
by a finite amount. If the change in H during the Bohr period for the
transition m — k is small in comparison with the energy difference
between these two states, the transition is unlikely to occur. The change
in amplitude of the state k after a long time is of the order of the ratio of
these two energies.

|a| ~ %@ (31.10)

Connection with Perturbation Theory. An exceptional situation
arises when the Hamiltonian oscillates in time with a frequency nearly
equal to one of the transition frequencies, say win. This is a case of
resonance, and we expect from the discussion of Sec. 29 that even a very
small change in H can produce appreciable changes in the amplitude a;
over long periods of time, so that (31.10) is not valid. It is then no
longer permissible to assume that the time dependence of dH /¢ can be
neglected, and the passage from (31.8) to (31.9) is not justified.

In order to consider this case more carefully, we assume that only a
small part of H oscillates in time with an angular frequency o that is
close to wim:

H = Hy+ H sin of, % = wH’ cos wt
where H’ is small in comparison with H, and both of these are constant in
time. If then the dependence of as, wia, and u. on time is neglected and
we put a» = 8.m as before, Eq. (31.8) becomes

wH},, cos wt

hwkm
_ wH},
- 2hwkm

This is readily integrated to give
~ wH;cm ei(wkm-i-w)t -1 ei(wkm—w)t —1
= 2thwim Wrm + Wkm — @

This shows that the adiabatic approximation (31.10) breaks down for
wim =2 + o, since then (31.11) increases steadily with the time. If win is

IR

dk eiwkmt

[ei(mkm+w)t + ei(um—w)t]

ax (t)

(31.11)
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close to +w, the first bracket term can be neglected and we can replace
w/wim outside the bracket by +1; if wim is close to —w, the second bracket
term can be neglected and we can replace w/win by —1. In both cases,
we see that (31.11) agrees with the perturbation-theory result given in Eq.
(29.17).

Discontinuous Change in H. As an introduction to the sudden
approximation, we consider first a situation in which the Hamiltonian
changes discontinuously from one form that is constant in time to another.
Suppose that H = Hofort < Oand H = H,fort > 0, where

Hou, = Enun, Hwn = Envm

and the u’s and v’s are complete orthonormal sets of functions that are
not necessarily discrete. The general solutions can be written

1Ent

¥ = Sa,.une_ 3 t<O0
ine (31.12)
¥ = Sbuvme ® i>0

where the a’s and b’s are independent of the time.

Since the wave equation (31.1) is of first order in the time, the wave
function at all points in space must be a continuous function of the time
at ¢t = 0, although its time derivative is not. The b’s are then readily
expressed in terms of the a’s by equating the two solutions (31.12) at
¢t = 0, multiplying by a particular 7, and integrating over the coordinates:

bn = Stnfmtiadr (31.13)

The appearance of final states m that need not have the same energy as
an initial state is a consequence of the non-zero frequency Fourier com-
ponents into which the suddenly changing Hamiltonian can be resolved
(see Sec. 29).

Sudden Approximation. The sudden approximation consists in using
Eqs.(31.13) when the change in the Hamiltonian occupies a very short
but finite interval of time #. In order to make an estimate of the error
introduced in b, we consider a problem that, while somewhat artificial,
can easily be solved formally. Suppose that H = Hyfort < 0, H = H,
for ¢t > to, and H = H;for 0 < ¢ < t,. The intermediate Hamiltonian,
which is assumed to be constant in time, has a complete orthonormal set
of energy eigenfunctions:

Hay, = Exwy

The true solution can be expanded in terms of the w’s with constant
coefficients:
1Ext

¢=Sckwke__"_ 0<t<ty
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The continuity condition at ¢ = 0 gives
& = SnanfDrundr (31.14)

In similar fashion, the continuity condition at ¢ = ¢, gives, with the help
of (31.14),

_ (Ex—Em)to
=/ ’
bn = Secrfolwidr’ - e A
_ 1(Ex— Em)to

= SkSnanfwmundeﬁ:nw;‘dT - e A
$(Ex— Em)to

= Sua.f [0, Sewpie” ~ * Juadrdr’ (31.15)

where the primes denote a different set of coordinate variables of integra-
tion. The closure relation (10.11) shows that the bracket in the last
term of (31.15) becomes a product of & functions of the differences
between primed and unprimed coordinates when ¢, = 0, in which case
the expression for b. agrees with (31.13), as it should.

The difference between the exact expression (31.15) for b, and the
approximate expression (31.13) is measured by the difference between
exp [—¢(Ey — En)to/h] and unity. This is small if ¢, is small in compari-
son with all the periods ~/(E; — E,) that correspond to the eigenfunc-
tions & and m that appear when H changes.

A useful validity criterion is that ¢, be small in comparison with the
periods associated with the initial motion, since new states of motion that
have very much shorter periods (high energies) are excited with relatively
small amplitudes. When the sudden approximation is useful, the error
in b, (and hence in ¢) is of the order of the ratio of ¢, to a typical initial
period.

Transient Disturbance. An interesting special case of (31.15) is that
in which initial and final Hamiltonians are the same (Hy = Hy, vm = un)
and the system is initially in a particular state n. Then if £, is short
enough to satisfy the validity criterion of the last paragraph, we can
expand the exponential in the last member of (31.15) and retain only the
first two terms.

bm =2 [/ d;,Skwf,u')k [1 - E’tl—o By — Em):l undrdr’
= / / al, Srwliby, [1 - l—’? (H; — E,,.)] Undrdr’
With the help of the closure relation, the orthogonality of #. and u, when

m 7 n, the substitution Eniin = Holim, and Eq. (22.10), this can be
reduced to
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bm = — = | tim(Hi — Ho)undr, m #=n (31.16)

Equation (31.16) can be generalized to a situation in which H; depends
on the time; in this case a result that is also correct to first order in ¢,

is obtained by replacing H, by ﬁ) “ Hdt.

It should be noted that the expression (31.16) for b,. can be useful
even when H; — H, is not small in comparison with H,, provided that
the general criterion for the validity of the sudden approximation is
satisfied (¢, sufficiently small). On the other hand, the perturbation
theory (Sec. 29) is useful when a small time-dependent addition to the
Hamiltonian is applied for a long time.

Disturbance of an Oscillator. As a simple example of the application
of the approximation methods developed in this section, we consider a
linear harmonic oscillator in which the position of the equilibrium point
a(t) depends on the time. The Hamiltonian for this system is

HE) = — 22 2 3Kl — o)

- Om oz T IO T @

The instantaneous energy eigenfunctions are the harmonic-oscillator wave
functions (13.13) centered at the point a(f), and the energy levels are

unchanged:
Un(x) = N H.Ja(x — a)]etet@—a)? E, = (n + $)ho.

We suppose first that the equilibrium point moves slowly, and
investigate the circumstances under which the adiabatic approximation is
applicable. If the oscillator is initially in its ground state (n = 0), the
time derivative of the Hamiltonian dH/dt = — K(z — a)d has a non-
vanishing matrix element only with the first excited state. With the
help of (13.18) this is found to be

a Ka
— ) = ———- = — Ki(}h)}(Km)-t
(%)= ~=vs &)} (m)
Substitution into (31.9) shows that the coefficient of the time-dependent
factor in the amplitude of the first excited state has the magnitude

Ki b} _ _ a

hw? (Km)t — (2hw./m)}
This expression may be interpreted physically by noting that the denomi-
nator is of the order of the maximum speed of a hypothetical classical
oscillator that has the zero-point energy. Thus the adiabatic approxima-
tion is good if the equilibrium point moves slowly in comparison with the
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classical-oscillator speed. It is easily seen that for the nth excited state,
the equilibrium-point speed must be small in comparison with 1/n times
the corresponding classical-oscillator speed.

The sudden approximation can be applied to an oscillator in its ground
state when the time required to move the equilibrium point from one
steady position to another is small in comparison with 1/w.. If this point
is displaced a distance a in the positive direction along the line of motion,
application of (31.13) shows that the probability amplitude for the nth
state after the displacement is

) * ] ®
:— dn(z — a)e e dy = ‘3; n(z) e deratargy
—w L .

This integral is identical with the expression for 4, in Eq. (13.21), except
for the sign of a, and has already been evaluated with the help of the
generating function (13.10) for the Hermite polynomials. The earlier
discussion (Sec. 13) shows that the states most likely to be excited are
those that have a classical amplitude of oscillation that is of the order of
the displacement a; this is in agreement with the corresponding classical
result.

Problems

1. A hydrogen atom in its ground state is placed between the plates of a condenser.
A voltage pulse is applied to the condenser so as to produce a homogeneous electric

¢
field that has the time dependence: E = 0,¢ < 0;E = Ee¢” 7, >0. Find the first-
order probability that the atom is in the 28 state (200) after a long time. What
is the corresponding probability that it is in one of the 2P states?

2. An alternating voltage of angular frequency w > met/2%3 is applied to the
condenser of Prob. 1. What is the probability per unit time for the hydrogen atom
to make a transition from its normal state to an ionized state? Assume, only for the
purpose of this problem, that the electronic wave function for the ionized state can be
represented by a plane wave.

3. Extend Eq. (29.20) to the case in which a transition can occur only in third
order of the perturbation. Assume that none of the intermediate states has the same
energy as the initial and final states.

4. Use the perturbation theory to calculate the differential collision cross section
for the 1S — 28 excitation of a hydrogen atom. Integrate this to obtain the total
cross section, and show that it becomes the expression given in Sec. 30 at high bom-
barding energy.

6. Use the perturbation theory to calculate the differential collision cross section
for the 18 — 2P excitation of a hydrogen atom. Show that the total cross section
becomes the expression given in Eq. (30.11) at high bombarding energy.

6. Discuss the statement that appears at the end of the next to the last paragraph
of Sec. 31. In particular, show physically why it need not be a sufficient condition
for the applicability of the adiabatic approximation that the equilibrium-point speed
be small in comparison with the corresponding classical-oscillator speed.



Skc. 31] METHODS FOR TIME-DEPENDENT PROBLEMS 221

7. Under what circumstances is ¢(t) = [exp (—¢H{¢/%)}¢(0) a valid representation
of the solution y at time ¢ in terms of the Hamiltonian H and the solution at time
zero? Show that, in general, the operator H¢ in the exponent cannot be replaced by

¢
A Hdi'. Show, however, that H;f, in Eq. (81.16) can be replaced by ﬁ) " Hdt to first

order in ¢,.

8. A hydrogen nucleus of mass 3 is radioactive, and changes into a helium nucleus
of mass 3 with the emission of an electron that has not more than about 17,000 elec-
tron-volts energy. Show that the sudden approximation can be applied to the extra-
nuclear electron that is initially present in the hydrogen atom, and is superior to the
other approximation methods that might be used. Calculate the numerical values
of the probabilities that the resulting helium ion is found in its 18, 28, and 2P states
if the hydrogen atom is initially in its 18 state. Give a qualitative discussion of the
energy balance in this process.



CHAPTER IX
IDENTICAL PARTICLES AND SPIN

The quantum-mechanical theory of particles presented thus far is
deficient in three respects. First, whenever two or more particles are
described at once, like the electron and proton of the hydrogen atom
(Sec. 16) or the incident and atomic electrons in an inelastic collision
(Sec. 30), it is assumed that the particles can be distinguished from each
other. This is a valid assumption in the first example, since electrons
and protons possess quite different masses and electrical charges. In
the second example, however, there is no observable difference between
the incident and atomic electrons, and the consequences of this identity
should appear in the formalism. The second defect of the theory is the
omission of an intrinsic spin angular momentum, or spin, actually pos-
sessed by some of the particles found in nature.! Third, no mention has
as yet been made of the special theory of relativity, which is expected to
affect the theoretical description of particles that move with speeds close
to that of light.

The ways in which the first two of these defects can be remedied are
described in this chapter, and illustrative examples are discussed.
Relativistic effects are taken up in Chap. XII.

32. IDENTICAL PARTICLES

Identical particles cannot be distinguished by means of any inherent
property, since otherwise they would not be identical in all respects.
In classical mechanics, the existence of sharply definable trajectories for
individual particles makes it possible in principle to distinguish between
particles that are identical except for their paths, since each particle can
be followed during the course of an experiment. In quantum mechanics,
the finite size and the spreading of the wave packets that can describe
individual particles often make it impossible to distinguish between
identical particles because of their positions, especially if they interact
with each other to an appreciable extent. This is true of the electrons
in a single atom, where we have seen that the description in terms of
moving wave packets breaks down completely. However, the electrons
of different atoms that are well separated from each other may, to good

1 Spin was first discovered in connection with electrons, by G. E. Uhlenbeck and
S. Goudsmit, Naturwiss., 18, 953 (1925); Nature, 117, 264 (1926).
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approximation, be regarded as distinguishable. This section considers
some of the effects of identity on the quantum-mechanical treatment of
systems of two or more particles. Other effects that involve the spin
explicitly will be taken up in the remainder of this chapter.

Physical Meaning of Identity. The impossibility in principle of dis-
tinguishing between identical particles in most quantum-mechanical
problems can lead to effects that have no classical analogue. As an
example, we compare the elastic collision of two identical particles that
have a particular interaction between them, with the collision of two
different particles that have the same interaction between them.

In a classical treatment, there is no difference of principle between the
results of these two experiments, since it is possible to distinguish between
the incident and struck particles in the first case as well as in the second.
In practice, however, this distinction would usually be made only in the
second experiment. Thus, according to classical mechanics, the meas-
ured differential cross section in the first experiment is equal to the sum
of the corresponding cross sections measured for the incident and struck
particles in the second experiment. In the corresponding quantum-
mechanical situation, the identical particles in the first experiment cannot
be distinguished by means of their trajectories, since they cannot be well
localized without interfering with the scattering process. Thus the dis-
tinction between incident and struck particles has no physical significance,
and the simple connection between the results of the two experiments that
is found in the classical case need not exist.

We use the word identical to describe particles that can be sub-
stituted for each other under the most general possible circumstances
with no change in the physical situation. Identical particles can in some
cases be distinguished from each other, as when their wave packets do
not overlap. Another case, discussed more fully in Sec. 33, arises when
each of the particles possesses an intrinsic spin angular momentum,
which is a constant of the motion in a particular collision. Then since
the component of the spin along some axis is assumed not to change dur-
ing this collision, the particles can be distinguished if they have different
spin components. Results of this kind must, of course, be a consequence
of the formalism that we now set up.

Symmetric and Antisymmetric Wave Functions. The Schrodinger
wave equation for n identical particles is

ih%;/z L2, ... ;) =HL2 ... W12 ... ¢ 0 (B21)

where each of the numbers represents all the coordinates (positional and
spin) of one of the particles. The Hamiltonian H is symmetrical in its
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arguments, since the identity of the particles means that they can be
substituted for each other without changing H.

There are two kinds of solutions y of Eq. (32.1) that possess symmetry
properties of particular interest. A wave function is symmetric if the
interchange of any pair of particles among its arguments leaves the wave
function unchanged. A wave function is antzsymmetric if the interchange
of any pair of particles changes the sign of ¢. We now show that the
symmetry character of a wave function does not change in time. If
¥s is symmetric at a particular time £, then Hys is also symmetric, and
(32.1) states that dys/dt is symmetric. Since ¥s and its time derivative
are symmetric at time ¢, ¥s at an infinitesimally later time ¢ 4- dt is given
by ¥s + (3¢s/dt)dt, and is also symmetric. Such a step-by-step integra-
tion of the wave equation can, in principle, be continued for arbitrarily
large time intervals, and ¥sis seen to remain symmetric always. In
similar fashion, if ¢, is antisymmetric at any time, Hy4 and hence
dya/0t are antisymmetric, and integration of the wave equation shows
that ¢, is always antisymmetric.

The foregoing proof is not altered if H and ¢ have as their arguments
the coordinates of two or more different groups of identical particles;
thus a wave function that is initially set up to be symmetric or anti-
symmetric in the coordinates of each identical-particle group always
retains this character. This makes it possible for the different groups of
identical particles found in nature to have definite symmetry characters,
and this is actually found to be the case. Electrons, protons, and neu-
trons are the only material particles for which the experimental evidence
is unambiguous, and each of these kinds of particles is described by anti-
symmetric wave functions.

Construction from Unsymmetrized Functions. We now show how
¥s or Y4 can be constructed from a general unsymmetrized solution y
of Eq. (32.1). If the arguments of ¥ are permuted in any way, the result-
ing function is a solution of (32.1). That this is true follows from the
observation that the same permutation applied throughout Eq. (32.1)
does not impair its validity, since it corresponds simply to a relabeling
of the particles; then since H is symmetric, the permuted H is the same
as the original H, and the resulting equation is the same as (32.1) for
the permuted . In this way n! solutions can be obtained from any one
solution, each of which corresponds to one of the n! permutations of the n
arguments of ¢. It is evident that any linear combination of these func-
tions is also a solution of the wave equation (32.1).

The sum of all these functions that are linearly independent is a sym-
metric (unnormalized) wave function ¥s, since the interchange of any
pair of particles changes any one of the component functions into another



Sec. 32] IDENTICAL PARTICLES AND SPIN 225

of them and the latter into the former, leaving the entire wave function
unchanged. An antisymmetric unnormalized wave function can be con-
structed by adding together all the permuted functions that arise from
the original solution by means of an even number of interchanges of pairs
of particles, and subtracting the sum of all the permuted functions that
arise by means of an odd number of interchanges of pairs of particles in
the original solution. It is apparent that a nonvanishing antisymmetric
wave function cannot be formed from a solution that is unaltered by the
interchange of any pair of particles.
In the event that the Hamiltonian does not involve the time, station-
iBt
ary solutions ¢(1,2, . .. ,n;¢) = u(1,2, . .. ,m)e  * can be found,
where
[H1,2, ... ,n) — Eu@l2, ...,n) =0

The earlier discussion shows that the solutions derived from any u by
means of permutations of its arguments are degenerate with the original
u; this is called exzchange degeneracy. When n = 2, the 2! = 2 permuta-
tions result in %(1,2) and %(2,1); the symmetric and antisymmetric com-
binations are obtained by taking the upper and lower sign, respectively, in

w(1,2) + u(2,1) (32.2)

When n = 3, the 3! = 6 permutations yield «(1,2,3), «4(2,1,3), u(3,2,1),
u(1,3,2), u(2,3,1), and %(3,1,2); the symmetric and antisymmetric com-
binations are

[w(1,2,3) + u(2,3,1) + u(3,1,2)]
* [u(2,1,3) +u(1,3,2) + u(3,21)] (32.3)

with the upper and lower sign, respectively.

All the energy eigenfunctions that are exchange degenerate with
u(1,2) can be formed from the two solutions (32.2). When n = 3,
however, there are four linearly independent eigenfunctions that cannot be
formed from the two functions (32.3). These additional solutions, which
always appear when n > 2, can be chosen so as to possess permanent
symmetry characters that resemble but are somewhat more complicated
than those of the symmetric and antisymmetric solutions. However,
they do not appear to describe particles found in nature.

Distinguishability of Identical Particles. It is to be expected that
the result of an experiment is independent of the symmetry character of
the wave function if the coordinates of the particles do not overlap. This
corresponds to a situation in which the particles can be distinguished by
means of their positions (or their spin components) even though they are
identical. Such a situation implies, in the case of two particles, that the
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wave function u(1,2) is different from zero only when the coordinate 1 is
in some region 4, the coordinate 2 is in a region B, and A and B have no
common domain.

The coordinate probability density associated with the wave function
u(1,2) is |u(1,2)|?, and the densities associated with the symmetrized
wave functions (32.3) are

[u(1,2) £ w(2,1)|* = [u(1,2)[* + [u(2,1)]* & 2Re[u(1,2)7(2,1)] (32.4)
where Re denotes the real part of the expression in brackets. If now
u(1,2) vanishes whenever 1 is not in A and 2 is not in B, and 4 and B do
not overlap, the bracket term is zero everywhere, and (32.4) becomes
u(L,2)[? + [u(@,1)]%

Thus the density associated with either of the symmetrized wave
functions (32.2) is the sum of the densities associated with »(1,2) and
u(2,1) separately. This is precisely the result that will be obtained if
the particles are not identical but no attempt is made to distinguish
between them in performing the experiment. Thus the interference
effects between exchange-degenerate wave functions, represented by the
bracket term in (32.4), disappear when the coordinates of the particles
do not overlap.

The Exclusion Principle. In many problems, a useful zero-order
approximation can be obtained by neglecting the interactions between the
particles that make up the system under consideration. The approxi-
mate (unperturbed) Hamiltonian is the sum of equal Hamiltonian funec-
tions for the separate particles

Ho1,2, . .. n) = Hy(1) + Hy(2) + - - - + Hi(n)  (32.5)

and the approximate energy eigenfunction is a product of one-particle
eigenfunctions of Hj
u(1,2, . . . ,n) =v,(Da(2) . . . v,(n)
E=E.+Es+ - - - +E, (32.6)
Hi(1)v.(1) = Ewa(l), ete.

If the particles are electrons, an antisymmetric wave function must be
constructed from the w given by (32.6). This is most easily expressed
as a determinant of the v’s:

0a(1)  0a(2) - wva(n)

ve(1)  vs(2) cc vg(n)
u4(1,2,...n)='-- (32.7)

v,(1) v,(2) SR v,(n)

The (unnormalized) u4 given in (32.7) is clearly an antisymmetric solu-
tion of the approximate wave equation (Hy — E)us = 0.
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Equation (32.7) has the interesting property that it vanishes if two
or more of the v’s are the same. This is a special case of the general
result stated earlier that an antisymmetric wave function cannot be
constructed from a solution that is unaltered by the interchange of any
pair of particles. Thus the approximate Hamiltonian H, has no solu-
tions for which there is more than one electron in any one of the states
a, B, . ..,v. This result is known as the exclusion principle and was
first postulated by Pauli! as an explanation of the periodic system of the
chemical elements (see Sec. 38).

Connection with Statistical Mechanics. The unsymmetrized zero-
order solution given in Eq. (32.6) can be used to construct a symmetric
as well as an antisymmetric wave function. Such a symmetric (unnor-
malized) function is easily seen to be the sum of all different permutations
of the numbers 1,2, . . . ,n among the one-particle eigenfunctions
Vay Vs, . - - , Uy. This wave function is unique, and can be specified
simply by stating how many particles are in each of the states e, 8, . . .
In the same way, an antisymmetric wave function can be specified by
stating how many particles are in each state. The fundamental statis-
tical difference between particles that are described by antisymmetric
and by symmetric wave functions is that the number of the former type
that can occupy any state is limited to 0 or 1, whereas any number
(0,1,2, . . .) of the latter type of particles can occupy any state.

The treatment of aggregates of large numbers of noninteracting (or
weakly interacting) particles for which the states can be enumerated in
these two ways forms the subject matter of quantum statistical mechanics.
Particles that are described by antisymmetric wave functions are said to
obey Fermi-Dirac statistics, and particles that are described by symmetric
wave functions obey Einstein-Bose statistics.?

Of the material particles whose statistics are definitely known,
electrons, protons, and neutrons obey Fermi-Dirac statistics, and =
mesons obey Einstein-Bose statistics.? Also, light quanta, or photons,
in so far as they can be treated as particles, obey Einstein-Bose statistics
even though they cannot usefully be described by means of wave func-
tions. Further, aggregates of particles that are sufficiently tightly bound
so that they can be regarded as ‘particles’ are described either by sym-
metric or by antisymmetric wave functions.

For example, the nucleus of a helium atom is made up of two protons,
two neutrons, and an indeterminate number of = mesons, which are
strongly bound together. If we consider a number of helium nuclei that

1'W. Pauli, Zeits. f. Physik, 81, 765 (1925).

2 See, for example, R. C. Tolman, “The Principles of Statistical Mechanics,”
Chap. X (Oxford, New York, 1938).

3 R. E. Marshak, ‘“Meson Physics,” Chap. 4 (McGraw-Hill, New York, 1952).
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interact with each other weakly enough so that the changes in the internal
motions of the nuclei can be neglected, we can see that the motions of the
centers of gravity of the nuclei can be described approximately by a sym-
metric wave function. The interchange of a pair of helium nuclei can
be thought of as the resultant of the interchanges of two pairs of protons,
two pairs of neutrons, and a number of pairs of = mesons. Since
the actual wave function is antisymmetric in all the protons and in all the
neutrons, the resultant of the first four interchanges leaves the approxi-
mate wave function unchanged ; the symmetry of the wave function in the
« mesons is such that the latter interchanges also have no effect. By an
extension of this argument, we see that weakly interacting ‘‘ particles”
(nuclei, atoms, or molecules) obey Einstein-Bose statistics when each of
them consists of an even total number of electrons, protons, and neutrons,
and obey Fermi-Dirac statistics when each consists of an odd total number
of these particles.!

Collisions of Identical Particles. When the only forces acting on two
particles result from their mutual interaction, the over-all motion can be
separated into motion of the center of mass of the two particles and
motion of the particles relative to each other, as discussed in Secs. 16 and
18. It is apparent that an interchange of two identical particles does not
affect the position vector of the center of mass [which is 3(r; + r;) since
the particles have equal masses], but changes the sign of the relative
position vectorr (= r; — r;). We postpone consideration of the spins of
the particles until the next section, and see now what effect symmetry
or antisymmetry of the space part of the wave function has on the elastic
scattering of a particle by another that is identical with it.

The asymptotic form of the unsymmetrized scattering wave function
in the center-of-mass coordinate system is given by Eq. (18.10).

u(r) —> € + (6, )¢ (32.8)
r— ®

where 7,0,¢ are the polar coordinates of the relative position vector r.
Since the polar coordinates of the vector —r are r, # — 6, ¢ + =, the
asymptotic forms of the symmetric and antisymmetric wave functions
formed from (32.8) are given by

(% £ e*) + [f(6,4) & f(r — 6, ¢ + m)]rle (32.9)
with upper and lower signs, respectively.
From the discussion of Sec. 18, it follows that the differential scatter-

ing cross section in the center-of-mass coordinate system is the square of
the magnitude of the bracket term in (32.9):

a(6,4) = |f(8,8)|* + [f(x — 6, ¢ + 7)*
* 2Re[f(6,8)f(x — 6, ¢ + m)] (32.10)

1 A more rigorous treatment that leads to the same conclusion has been given by
P. Ehrenfest and J. R. Oppenheimer, Phys. Rev., 87, 333 (1931).
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The normalization adopted here can be justified by noticing that in the
classical limit, where the identical particles are distinguishable and the
last (interference) term in Eq. (32.10) drops out, o(8,¢) becomes just
the sum of the differential cross sections for observation of the incident
particle (|f(6,¢)|?) and of the struck particle (|f(x — 8, ¢ + 7)|2), as it
should.

In the usual case, for which f is independent of ¢, it is apparent that
the scattering per unit solid angle is symmetrical about # = 90° in the
center-of-mass coordinate system. It is easily seen from Eq. (18.7) with
v = 1 that the scattering per unit angle (not per unit solid angle) in
the laboratory coordinate system

0'0(00) sin 00 = 4 cos 00 sin 90 {|f(200)|2
+ [f(r — 260)|* £ 2Re[f(260)f(r — 260)]}

is symmetrical about 6, = 45°.

33. SPIN ANGULAR MOMENTUM

The treatment of identical particles presented in the preceding section
must now be supplemented by inclusion of the spin angular momenta of
the particles. It was shown in Sec. 24 that the operator M, which has
the properties associated with an angular momentum, can be represented
by matrices in an infinite number of ways. For each representation,
M? and one component of M, say M,, can be diagonalized; their eigen-
values are j(j 4+ 1)A% and the series jh, (j — 1)k, . . ., —jh, respec-
tively, where 2j is zero or a positive integer. If the expression for M
in terms of the position and momentum of a particle (r X p) is abandoned,
then M2 can commute with the Hamiltonian for that particle. In this
case, M2, and hence j, is a constant of the motion and characterizes the
particle for all time; the corresponding intrinsic angular momentum is
called the spin of the particle. We shall replace M by S and j by s in
dealing with the spin.

Connection between Spin and Statistics. As remarked in Sec. 24,
electrons, protons, and neutrons have s = %, and = mesons have s = 0.
Aggregates of particles that are sufficiently tightly bound can be regarded
as “particles,” and can be characterized by definite magnitudes of their
total internal angular momenta, so long as their internal motions and the
relative spin orientations of their component particles are not sig-
nificantly affected by the interactions between aggregates. This is
exactly analogous to the situation with regard to the statistics obeyed
by the aggregates, discussed in the preceding section.

The treatment of the addition of angular momenta, presented at the
end of Sec. 24, can be generalized to give the possible magnitudes of the
total internal angular momentum, which we call the spin, of any aggre-
gate of fundamental particles. If the aggregate consists of n particles.
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each of which has s = 3, and any number of particles with s = 0, and if
the internal orbital angular momentum of these particles is ignored, the
total s can be any integer from 0 to n if n is even, or can vary by integer
steps from § to n if n is odd. The total orbital-angular-momentum
quantum number can be shown to be an integer or zero in general;! its
inclusion extends the maximum value of s for the aggregate, but does not
alter the conclusion that s is zero or an integer if n is even, and is half an
odd integer if n is odd.

We see then that for the known fundamental particles and for aggre-
gates of them that have a definite spin, there is a unique connection
between the spin and the statistics. Particles or aggregates that have
zero or integer spin are described by symmetric wave functions and obey
Einstein-Bose statistics, and particles or aggregates that have half-odd-
integer spin are described by antisymmetric wave functions and obey
Fermi-Dirac statistics. There is some theoretical reason, based on
relativistic quantum mechanics,? to believe that this connection also
holds for other fundamental particles whose existence is suspected but
whose spin and statistics have not yet been determined (other mesons and
neutrinos).

Spin Matrices and Eigenfunctions. The spin can be included in the
formalism developed in Sec. 32 by having each of the numbers 1,2, . . . n
that appear as the arguments of ¢ and u represent a spin coordinate as
well as the three space coordinates of that particle. The spin coordinate
differs from the space coordinates in that it takes on only 2s 4+ 1 values
for a particle (or aggregate) of spin s, instead of the infinite number of
values that are taken on by each space coordinate. Thus the ‘“spin
space’’ consists of a finite number of points. The spin wave function of a
single particle is completely determined by the specification of 2s + 1
numbers, whereas the space wave function involves the specification of a
continuously infinite set of numbers (which is equivalent to a continuous
function of the space coordinates).?

A convenient set of orthonormal one-particle spin functions is pro-
vided by the normalized eigenfunctions of the M? and M, matrices given
in equations (24.15). These eigenfunctions are (2s + 1)-row, one-column
matrices that have zeros in all positions except one. For example, if
s = 2, the four spin eigenfunctions are easily seen to be

1 The work of Secs. 14 and 24 shows that this is true for noninteracting particles
that move in central force fields, and the result turns out not to be affected by particle
interactions.

2 W. Pauli, Phys. Rev., 68, 716 (1940).

3 If the space and spin motions are closely enough coupled together, the space wave
function may depend on the spin coordinate, so that 23 + 1 space functions are
required.
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1 0
o® = (o) @ ={g) v=»=[2} v ={) @

OO m=O
O - OO

0 1

and correspond to S, eigenvalues of $%, 3%, —3%, and —3$A, respectively.
The orthonormality is demonstrated by multiplying the Hermitian
adjoint of one spin function into itself or another function

(0100) /0 0100) /0
11=1, 0} =0, etc.
0 1
0 0

with the help of the usual rule for matrix multiplication.

Symmetric or antisymmetric many-particle wave functions can be
constructed from unsymmetrized solutions that include the spin by fol-
lowing the procedure outlined in the preceding section. It is sometimes
convenient to choose the unsymmetrized solutions to be eigenfunctions
of the square of the magnitude of the total spin of the identical particles
(S1+ S22+ ¢ -+ 4+ S,)?% and of the z component of this total spin
Si: + S2. + ¢+ + + + Sa.. These quantities are constants of the motion
if the Hamiltonian does not contain interaction terms between the spins
and other angular momenta. In addition, such functions are often useful
as zero-order wave functions when the spin interactions are weak enough
to be regarded as a perturbation. There is no loss of generality in choos-
ing the unsymmetrized solutions in this way, since in the absence of spin
interactions any solution can be expressed as a linear combination of total-
spin eigenfunctions.

Collisions of Identical Particles. The effect of spin on the collision of
two identical particles (or aggregates) can now be taken into account if
the interaction between the particles does not involve the spin. Since
each particle has 2s + 1 spin eigenfunctions, there are altogether (2s + 1)2
independent spin functions for the pair, each of which is a product of
one-particle spin functions.

Any (2s + 1)? linearly independent combinations of these products
can be used in place of them. These are conveniently divided into three
classes. The first class consists of products of one-particle functions in
which both particles are in the same spin state with S, value m#:

v1(m)ve(m), —s=m=s

where the subscript specifies which of the particles is in each state;
there are evidently 2s + 1 such states. The second class consists of
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sums of products
vi(m v (m'’) + vi(m')v2(m'), m' % m'’

There are s(2s + 1) of these states. The third class consists of dif-
ferences of products

vi(m )va(m’’) — vi(m'"vo(m'), m’ = m'’

Again there are s(2s + 1) of these.

The first two classes are clearly symmetric in an interchange of the
spin coordinates of the two particles, and the third class is antisymmetric
in such an interchange. Thus the total of (2s 4 1) states can be divided
into (s + 1)(2s + 1) symmetric and s(2s 4+ 1) antisymmetric states.
Associated with the symmetric spin states must be a symmetric space
state if s is an integer (symmetric total wave function), and an anti-
symmetric space state if s is half an odd integer (antisymmetric total
wave function). Similarly, the antisymmetric spin states multiply
antisymmetric space states if 2s is even, and multiply symmetric states
if 2s is odd. We see then that if all the spin states are equally likely to
appear in a collision,! a fraction (s + 1)/(2s 4 1) of the collisions will be
described by the wave function (32.9) with the upper sign, and a fraction
s/(2s + 1) will be described by (32.9) with the lower sign, if 2s is even.

This and the similar result for 2s odd can be summarized by rewriting
Eq. (32.10)

o0) = O + lftr = 0 + ST 2RAFOFr — 0] (33.2)

where f is assumed to be independent of ¢.

Equation (33.2) can also be derived by making use of the earlier
observation that particles that have different spin components are dis-
tinguishable, in which case the interference term in (32.10) disappears.
This occurs in a fraction 2s/(2s + 1) of the collisions. In the remaining
fraction 1/(2s + 1) of the collisions, the particles have the same spin
component, and the symmetric or antisymmetric space state (upper or
lower sign in the interference term) must be used according as 2s is even
or odd.

Electron Spin Functions. In the remainder of this chapter we con-
sider only electron spin functions (s = ). The spin matrices are given
by the first line of Eq. (24.15), and may be written as S = A8, where

0 1 0 —2 1 0
Oz = (1 0)) gy = (’L 0)7 g; = (0 _1) (333)

1 See footnote 1, page 242.
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are called the Pauli spin matrices.! The normalized eigenfunctions of S,
may be written in analogy with Egs. (33.1) as

o = () o= (%) (33.4)

and have eigenvalues 3% and —3#, respectively; they are both eigenfunc-
tions of S? with the same eigenvalue £#2.

Since we shall have occasion to write down products of spin functions
for different electrons, it is convenient to abbreviate the notation as
follows:

1@ —H)vs(F)va(F) = (+—++), ete.
where the first particle has the eigenvalue 3% for Sy, the second has the
eigenvalue —3h for Sa,, etc. S; has no effect on the spin functions of
any but the first particle.

The following operational rules are easily obtained from (33.3) and
(33.4):

0';;(+) = (_)7 aﬂ(+) = 7’(—)1 0';(+) = (+) (33 5)
oo(=) = (+), (=)= —i(+), (=)= —(-) )

There are four linearly independent spin functions for a pair of elec-
trons: (++), (+-=), (=), (——). These are orthonormal, since the
one-particle spin functions (33.4) are orthonormal. As remarked earlier,
it is often convenient to regroup these functions into combinations that
are eigenfunctions of (S; + S,)? and S;; + Ss.. It can be verified with
the help of (33.5) that the following four combinations are orthonormal
and have the indicated eigenvalues:

(Sl + S2)2 Slz + S2z
h

(++) 2h?

273(4+—) + (—4)] 2h? 0 (33.6)
(——) 2h? - 5

273(+—-) — (—+)] 0 0

It is interesting to note that the first three of the two-particle spin
functions (33.6) together behave in all respects like a single ‘“particle’’
of spin s = 1, and the last of the spin functions (33.6) behaves like a
single “particle” of spin s = 0.2 Not only do they have the proper
eigenvalues of the square of the magnitude of the total spin and the z
component of the total spin, but the result of operating on the triplet
spin function with the z or y components of the total spin is in agreement

1'W. Pauli, Zeits. f Physik, 43, 601 (1927).

2 The first three states are called a triplet and the last a singlet. In the old quantum
theory, the triplet corresponds to parallel electron spins and the singlet to antiparallel
spins.
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with the corresponding matrices in the second line of Eq. (24.15). This
provides an example of the addition of angular momenta; according to
Sec. 24, the combination of two systems of angular momenta § results in a
system of angular momentum either 1 or 0.

The Helium Atom. The ground state of the helium atom was con-
sidered from the point of view of the variation method in Sec. 27. We
now consider the ground and first excited states of helium with the help
of the somewhat simpler first-order perturbation theory of Sec. 25; the
symmetry effects of the spins of the two electrons are taken into account,
although spin-dependent forces are neglected. We use products of
hydrogenic wave functions %nm, (with Z = 2) as the unperturbed eigen-
functions of the problem, and are interested in classifying the states
according to symmetry and spin properties rather than in obtaining
accurate energy levels.

In spectroscopic notation, the ground state of helium is the 1s? state:
both electrons are in the hydrogenic state ui0. Since this space state is
symmetric, the spin state that multiplies it must be the antisymmetric
singlet given as the last of the functions (33.6), for which the total spin
is zero.

The space part of the first excited state of helium is eightfold degener-
ate in the zero-order approximation. The spectroscopic configurations
are 1s2s and 1s2p. Apart from electron exchange, the first state is non-
degenerate and the second is triply degenerate (because of the three 2p
states); the exchange degeneracy doubles the number of states, since
either electron can occupy the 1s state and the other the 2s or 2p state.
In order to simplify matters, we consider here only the doubly (exchange)
degenerate 1s2s state; it is not difficult to show that the 1s2p states can
be treated separately (see Prob. 7).

The perturbation energy is the electrostatic repulsion between the
electrons e?/ri,, and the unperturbed states are wio0(r1)uae0(r:) and
U100(T2)U200(r1). The spin need not be considered explicitly at this point
since the spin-dependent forces are neglected; appropriate spin functions
will be multiplied in later to make the entire wave function antisym-
metric. The matrix of the perturbation for these two states has the
structure of (25.16) and can be written

J K
( K J (33.7)
where

2
J = / / W100(T1) T200(T2) ;—uloo(rl)u200(r2)d7'ld72
12 (33 8)

2
K = / / %100(T1) Wz00(T2) ’:}_u U100(T2)Uz00(T1)dT1dT2
J is often called the direct or Coulomb energy, and K the exchange energy.
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Application of the diagonalization technique of Sec. 25 (see the treat-
ment of the first-order Stark effect in hydrogen) shows that the eigen-
values of the perturbation (33.7) are J/ 4+ K and J — K they correspond
to the normalized eigenfunctions 2~ #[u100(T1)%200(T2) + %100(T2)U200(T1)]
and T*[uloo(rl)uzoo(rﬂ _ uloo(rz)U2oo(r1)], respectively. Since the first
of these is a symmetric space function, it must be multiplied by the anti-
symmetric singlet spin function. Similarly the second, which is an anti-
symmetric space function, must be multiplied by one of the symmetric
spin functions that make up the triplet in (33.6). Since K turns out to be
positive, the singlet spin state has a substantially higher energy than the
triplet spin states. This is not due to a spin-dependent interaction, but
to a coupling between the spins and the electrostatic interaction that is
introduced by the exclusion principle (use of antisymmetric wave
functions).

Spin Functions for Three Electrons. In the treatment of exchange
scattering from helium that is given in the next section, we shall require
eigenfunctions of the total spin of three electrons that are analogous to
those given in Eqgs. (33.6) for two electrons. We can regard three elec-
trons as 1 + 2 electrons, in the sense that we can combine an electron
(s = %) with the triplet two-electron function (s = 1) and with the singlet
function (s = 0). In the first case, the results on addition of angular
momenta, given in Sec. 24, show that we should get two groups of spin
functions for the three electrons that correspond to s = 4 and s = §; in
the second case we should get a single group of three-electron spin func-
tions that correspond to s = 3. We thus expect one quartet group of spin
states (s = §) and two distinet doublet groups of spin states (s = 3),
or a total of 4 + 2 4+ 2 = 8 individual three-electron spin states. These
must of course be expressible as linear combinations of the 23 =
products of one-electron spin functions.

It is not difficult to show that the following eight combinations are
orthonormal and have the indicated eigenvalues:

(S1+ Sz + 83)2 81 + S2s + Sae

(+++) ph2 3h
FH(++-) + (+—+) + (=++)] 1502 1h
3H(——+4) + (—+-) + (+— ) 15 i
—_—— 2 -8
(=== e # (33.9)
674 (++-) + (+—+) = 2(=++)] ih? i
6~H(——+) + (—+-) —2(+—-)] i —it
27 (++-) = (+=+)] i 1
27 i(——+) — (—=+-)] i —1h

The first four (quartet) states are symmetric in the interchange of any
pair of particles. The division of the four doublet states into two pairs
is arbitrary, and is done here in such a way as to make the first pair of
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doublet states symmetric in the interchange of particles 2 and 3, and the
second doublet pair antisymmetric in 2 and 3. As they are written, the
doublets have no symmetry with respect to interchanges of the other pairs
of particles.

34. REARRANGEMENT COLLISIONS

Cross sections for elastic and inelastic collisions of electrons with
hydrogen atoms were calculated in Sec. 30 by means of perturbation
theory, under the assumption that exchange of the incident and atomic
electrons can be neglected. In this section, we consider the effects of
electron exchange taken together with spin and the exclusion prineciple,
but continue to use perturbation theory, which is most useful for high-
energy collisions.! We first consider a general rearrangement collision
by means of the Born approximation of Sec. 26, then show the connection
between this method and the time-dependent perturbation theory of
Sec. 29, and finally apply the theory to exchange collisions of electrons
with hydrogen and helium atoms.

Notation for Rearrangement Collisions. A general binary rearrange-
ment collision can be described as an event in which a system A in state
m collides with a system B in state n, and systems C in state s and D in
state ¢ emerge. It is assumed that the same particles make up the sys-
tems 4,B as make up the systems C,D (no particles appear or disappear
and no photons are involved), although the particles are rearranged dur-
ing the collision. We use the letters A,B,C,D to denote all the internal
coordinates (including spins) of the respective systems, rg and r.; to
denote the vectors that connect the centers of mass of the systems
A,B and C,D, respectively, and My = MM, and M, = *M°Md
’ ¥ ’ M a + M b ¢ Mc + M d
to denote the reduced masses associated with the relative motion before
and after the collision. The entire calculation is performed in the center-
of-mass system; the transformation to the laboratory system can be
effected by means of the general results of Sec. 18.

It was shown in Sec. 32 that a calculation of this type can be carried
through as though the particles are distinguishable. At the end, a linear
combination of the exchange-degenerate wave functions is formed that
has the proper symmetry in each group of identical particles. The sym-
metrization will be left for the specific examples given near the end of this
section. For the general problem considered here, we obtain only an
approximate unsymmetrized wave function.

1 For a discussion of other methods applicable to lower energy collisions, see N. F.
Mott and H. S. W. Massey, ‘“The Theory of Atomic Collisions,” 2d ed., Chaps. X and
XTI (Oxford, New York, 1949).
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We wish to solve the wave equation

(H—-—Ey=0 (34.1)
where the Hamiltonian can be written in either of two ways:
H=Hg+ H)y = H,q+ H, (34.2)
The unperturbed Hamiltonians for the initial and final systems are
2
Hy = Ho+ Hy + T, T¢b=—-—h—Vﬁb
2M
32 (34.3)
Hcd = Hc + Hd + Tcdy Tcd = - mvfd

where the T’s represent the kinetic energy operators for the relative
motions in the center-of-mass system. The unperturbed states of the
initial and final systems are (known) solutions of the wave equations

(Ha - Eam)uam(A) = 0, (Hb el Ebn)ubn(B) = 0

(He — Eeo)ue(C) = 0, (Ha — Eg)ua(D) =0

The interaction terms H/; and H.; are regarded as small perturbations.
It is always possible to expand the exact solution in the complete

orthonormal set of functions wu.(C)us(D), where the expansion coef-
ficients are functions of the relative coordinate r.s¢

(34.4)

v = zuc.(C)udg(D)v,,(rcd) (34.5)

8t

Our problem consists in finding approximate expressions for the functions
v.:(rcq) that correspond to internal final states s and ¢ for the systems C
and D, and that arise from the unperturbed initial state

‘PO = uam(A)ubn(B) exp (’Lko . rab)
2M, 4.
k% - ?2 (E — Egm — Ebn) (3 6)

Use of the Born Approximation. Substitution of ¢ from Eq. (34.5)
into the wave equation (34.1) yields, with the help of (34.2), (34.3), and
(34.4)

E Uea(C)Uat(D)(Tea + Ees + Egr — E)vg(tea) = —Hy (34.7)
8,t
If now Eq. (34.7) is multiplied through on the left by .y (C)@sr (D) and
integrated over all the coordinates of C and D, the orthonormality of the
w’s causes all the terms on the left side to vanish except that for which
s=¢and ¢t =¢. Wedrop the primes and write this as

(Tea + Eeo + Esy — E)vgy(red) = — [[e,(C)a(D)H pdrdras  (34.8)
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Equation (34.8) can be written in a form that is analogous to Eq. (26.4):

(~ V2 — Fou(r) = — 2t f / 1ea(C) (D) H.ghlrdra

. Mc., (34.9)

k2

(B — Ees — Ea)

Equation (34.9) with all s and ¢ represents a sequence of exact equa-
tions that can in principle be solved for the functions »,;. This situation
is similar to that encountered in Eq. (26.4), where we obtained an approxi-
mate solution by replacing the exact by the unperturbed solution on the
right side. We now obtain an approximate solution of (34.9) by replac-
ing ¢ by the ¢, given in (34.6); then the right side is known, and the
inhomogeneous equation is readily solved for v,; by means of an appropri-
ate Green’s function. The substitution of ¢, for ¢ is equivalent to the
assumption that there is very little interaction between the unperturbed
initial systems A and B. This implies not only that the transition
A,B — C,D has a small probability, but also that ¢, is a good approxi-
mation to the actual wave function even when the two systems A and B
are close together or overlap. In practical cases, it is difficult to set up a
workable criterion for the validity of this approximation, although useful
results are likely to be obtained when E is large in comparison with all
the interaction energies that appear in H7,.

With the help of the Green’s function (26.15), the solution of the
inhomogeneous equation (34.9), with ¢ replaced by ¥, becomes

ot = = et [ [ [ tts — sl foxp bt — )

+ Ues(C)Tar(D) Higtbam(A)upa(B)exp (1Ko - Tap)ldredradres  (34.10)

The integration in (34.10) is over all the unprimed coordinates; the
element of integration can be represented either as dr.dredr.s or as
dredrydras, and is abbreviated in what follows as dr.

The asymptotic form of (34.10) when systems C and D are well
separated is

Vat(T0q) —— Gar(0, )75 e e
T ‘d—" ©

0u(0,8) = — 258 [ 7, (Cyta(D)lexp (—ik - £.0)] (34.11)

H! juam(A)Uusn(B)[exp (ko - 153)]dr
Here, 6 and ¢ are the polar angles of the vector 1/ and kis a vector that

has this direction and the magnitude given by Eq. (34.9). Equation
(34.6) is normalized so that the incident flux of systems 4 and B is the
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initial relative speed vy = hko/Ma, and Eqs. (34.5) and (34.11) are
normalized so that the radial outgoing flux of systems C and D per unit
solid angle is v]g.(60,4)|2, where the final relative speed v = hk/M.a.
Thus the differential cross section for the collision A,B — C,D is

0'.:(01¢) = 'v_I: |gat(0y¢)|2 (34.12)

Lack of Orthogonality of Initial and Final States. There isanarbitrar-
iness in the expression (34.12) for the cross section that arises from the
fact that the wave function ¥, for the initial state is not in general ortho-
gonal to the function y¥; = uc(C)ua(D) exp (ik - r.4), the complex con-
jugate of which also appears in the expression for ¢.(0,4). ¥; may be
said to describe a final state in which the systems C and D are observed
to be moving in the direction 6,¢. Since the initial and final wave func-
tions are eigenfunctions of different unperturbed Hamiltonians H, and
H,,, respectively, they are not expected to be orthogonal to each other.
If they are not orthogonal, the addition of a constant potential energy
(which corresponds to zero force) to H.; alters the expression for g.:(6,);
such a change in H.; could be made by adding an arbitrary constant mul-
tiple of ¥ to both sides of Eq. (34.7), thus also changing the magnitude of
E. We avoid this arbitrariness by defining H’; as the energy of inter-
action between systems C' and D that vanishes as 7. becomes infinite;
the additive constant is then fixed uniquely. A similar definition is
made for HY;.

It is interesting to note that H’, can be used in place of H; in the
integral for g, (,¢). This integral is [¢;H.ppod7; With the help of Eq.
(22.10) it can be transformed as follows:

[V H pbodr = [(Hiabs)Yodr
= [[(H = Ha)¥sodr = [Y:Hyodr — Ef§pbodr

where we have made use of the relation H.s¢y = Ey,;. In similar fashion,
[¥:Hoodr can be shown to be equal to the last expression by making use
of the relation Hayo = Eyo. Thussolong asy,and ¢, are exact solutions
for the unperturbed Hamiltonians H,; and H.q, respectively, we see that

JViHapodr = [YHpodr (34.13)

Equation (34.13) has, for example, the consequence that g.(6,¢) = 0
if H’y = 0, even if H.; is not zero and the initial and final states are not
orthogonal. This result is to be expected, since if Hy, = 0, there is no
interaction between the colliding systems A and B and the transition
does not occur.

Connection with Time-dependent Perturbation Theory. [t is also
possible to derive Eq. (34.12) by the method of variation of constants
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(Sec. 29). We expand the wave function ¢ in unperturbed final-state
wave functions ¥; = uc(C)ua(D)exp(ik - rcq)y where the subscript f
stands for the states s and ¢ of systems C and D and for the relative
propagation vector k:

iEpt
b= Y ape * (34.14)
7
The time-dependent wave equation is
% = Hy = (Ha+ Hw (34.15)
Substitution of (34.14) into (34.15) gives
ih 2 a,‘/,,e‘%ﬂ - E ach'dulqe—iE"‘_ﬂ (34.16)
/ f

where use is made of the relation (H.s — E,)¢; = 0. Equation (34.16)
can be simplified by multiplying through on the left by ¢, and integrating
over all the coordinates; since the ¥, are orthonormal, we obtain

+(Es—Ep)t

ihay = Ea, f VoHydr - ® (34.17)
!

The system of Eqs. (34.17) is exact. We now make two approxima-
tions, which together are equivalent to the Born approximation sub-
stitution of ¥, for ¥ on the right side of Eq. (34.9). First, we assume that
the perturbation H.; is small; because of Eq. (34.13), this is equivalent
for our purpose to the Born approximation assumption that H/}, is small.
Then we can insert the unperturbed amplitudes a‘p on the right side of
(34.17), and calculate the first-order perturbed amplitudes a) on the

iBt
left side. Second, we assume that the initial state yoe * can be expanded
in terms of only those (degenerate) ¥, whose energies E; are equal to the
initial energy E. This assumes that ¥, is an eigenfunction of the final
unperturbed Hamiltonian H., which is equal to Hu + HjY — H/j;
since ¢, is actually an eigenfunction of Hg, this also is equivalent to the
assumption that the perturbations H}, and H/; are small.

We can then replace E; by E in the time factor on the right side of Eq.
(34.17) and take this factor outside of the summation over f. The unper-

turbed amplitudes a9 are defined by ¢, = z a‘Pyy, which gives
f

a® = [Ppbodr (34.18)
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With the help of (34.18), the summation over f can be rewritten

Y [ UrHisbdr [ Gpodr = [ BoHlsodr
!

where use has been made of the closure relation for the complete ortho-
normal set of functions ¢;. Thus Eq. (34.17) becomes, to first order,

1(Ey’—E)t
hdp) = [PpH/ gpodr e 5 (34.19)

Equation (34.19) can be handled in precisely the same way as Eq.
(29.7), and yields the differential collision cross section (34.12).

Exchange Collisions of Electrons with Hydrogen. As a simple first
example of a rearrangement collision in which effects of identity and spin
appear, we consider the elastic scattering of an electron from a hydrogen
atom. In a problem of this type, we must know the asymptotic forms of
the unsymmetrized wave function for all permutations of identical par-
ticles.! A wave function that has the proper symmetry character can
then be constructed by the methods outlined in Sec. 32. We first obtain
the asymptotic form of the wave function when the incident electron is
scattered and when the incident electron exchanges with the atomic elec-
tron, to the accuracy of the Born approximation; spin-dependent inter-
actions are neglected.

The incident and atomic electrons are denoted by 1 and 2, respec-
tively, in the unsymmetrized wave function. The asymptotic form of
the stationary wave function ¥(ry,rs) that corresponds to nonexchange
elastic scattering with the total energy E is a product of the ground-
state hydrogen wave function u%00(rs) for electron 2, and an incident-
plane plus outgoing-scattered wave for electron 1:

Y(r1,r2) — [exp (ko - 11) + r7te®omf(6:)]u100(r2)
' hekd meh (34.20)

2m 2n2

The work of Secs. 26 and 30 shows that the scattered amplitude has the
form

100 = — 57 f / [exp (— ik - 12)|1oo(r:) (— - j—)
- (exp Ko * T1)uoo(r2)dridr,  (34.21)

where k is a vector of magnitude ko that has the direction 6, (f does not
depend on the other polar angle ¢,).

J. R. Oppenheimer, Phys. Rev., 32, 361 (1928).
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The asymptotic form of ¢(r,r2) that corresponds to elastic exchange
scattering is a product of the ground-state hydrogen wave function w100(r;)
for electron 1, and an outgoing scattered wave for electron 2.

Y(r1,r5) — r3te*omg(03)u100(r1) (34.22)

There is no plane wave in this case, since electron 2 is not incident on the
atom. Inaccordance with Eq. (34.11), the exchange scattered amplitude
is

2 2
g(82) = — % / f [exp(—1k - 12)]d100(r1) (r%; — %)
- (exp Ko * T1)u100(T2)dridry  (34.23)

where k has the magnitude ko and is in the direction 6,.

We must now form an antisymmetric wave function from products of
¥(r,r;) and appropriate spin functions. The spin functions can be taken
to be the set of four given after Eq. (33.5); however, it is simpler to make
use of the four symmetrized combinations (33.6). The spin of the inci-
dent electron is not assumed to have any definite relation to the spin of
the atomic electron. In this case we can use either of these sets of spin
functions, calculate the scattering with each of the four spin states of a
set, and then average the results with equal weights for each state.! The
first three of the spin functions (33.6) are symmetric, and must be multi-
plied by the antisymmetric space function ¥(ry,rs) — ¥(rsry); the fourth
spin function is antisymmetric, and must be multiplied by

Y(ryra) + P(rary).

Differential Cross Section. The asymptotic forms of the symme-
trized space functions for large values of one of the electron coordinates,
say r1, are obtained from (34.20) and (34.22).

1This is a consequence of the fundamental hypothesis of quantum statistical
mechanics; see, for example, R. C. Tolman, “The Principles of Statistical Mechanics,”
Sec. 84 (Oxford, New York, 1938). It can be shown that either of two complete
orthonormal sets of wave functions can be used in such a statistical calculation (in the
present problem, the two sets are complete so far as the spins of two electrons are
concerned). The two sets, say v, and ux, were shown in Sec. 22 to be connected by a

unitary transformation: v, = zSh.u;, where S is a unitary matrix. Then
%

ZIWI’ = z SinSpnuriin = zakk'ukﬁk’ = ZIuklz
n

k. kK k
Since the probability of observing a given event (such as the scattering in a particular
direction) is proportional to the square of a wave function, the same average result is
obtained from a statistical mixture of either set of wave functions.



Skc. 34] IDENTICAL PARTICLES AND SPIN 243

¢(r1’r2) * \1/(1'2,1‘1)
— [exp (ko * 11) + ryleonf(6;) £ r—le®ong(01)]uioo(ra) (34.24)
r1i— ©
The first two terms in the bracket on the right side of (34.24) come from
the first term on the left side, and the third term on the right side comes
from the second term on the left side. The differential cross section must
be computed with the upper sign in one quarter of the collisions, and with
the lower sign in three quarters of the cases. We thus obtain

a(0) = 17(0) + g(O)* + £7(6) — g(O) (34.25)

Equation (34.25) can also be derived without explicit reference to
the spin wave functions, as was Eq. (33.2), by making use of the earlier
observation that particles that have different spin components are
distinguishable. In half the collisions, the electrons have different spin
components, and the cross section is just the sum |f(8)|> + |g(6)|? of the
direct and exchange cross sections; in the other half, the electrons are
indistinguishable, and the antisymmetric space function must be used.
We thus obtain

a(0) = F(fO)* + lg(6)[*) + 3f(6) — ()|

which is easily seen to be the same as (34.25).

An integral of the form [(exp 7k - r)F(r)dr is small if ka > 1, where it
is assumed that F is a smooth function of r that becomes small for r > a.
Since both the r; and r, integrals in (34.23) are of this type, we expect
g to be quite small in comparison with f for kao >> 1. This is the situation
in which the Born approximation is most applicable, so that the correc-
tions due to exchange are expected to be fairly small for the cross sections
calculated in Sec. 30.

Exchange Collisions with Helium. In dealing with the elastic scatter-
ing of an electron from a helium atom in its ground state, it is convenient
to work with the space and spin wave functions together. According
to the discussion of Sec. 33, the two electrons in the helium atom are in a
symmetric space state and an antisymmetric (singlet) spin state. Thus
if the incident electron is denoted by 1 and the atomic electrons by 2 and
3, the unperturbed wave function is (exp 7ko - I1)uo(rsrs)v(1,2,3), where
uo is the symmetric space function for the normal state, and »(1,2,3)
is a spin function that is antisymmetric in 2 and 3. The eight spin
functions for three electrons are grouped in (33.9) according to symmetry
in 2 and 3; it is apparent that »(1,2,3) must be one of the last doublet pair
given there.

The asymptotic forms of the first-order perturbed wave function
including spin are found to be
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¥(1,2,3) — [(exp tko * 11) + r7f(81)]uo(r2r3)v(1,2,3)
— 131" (02) uo(r5r1)0(2,3,1) (34.26)

r2—> ©

— r31g (05)uo(r1,12)v(3,1,2)

73— ©

where there is antisymmetry only in electrons 2 and 3. Here

f(8,) = — o h2 /// [exp (—ik - r1)]io(T2rs)
. (32__ + 6_2 — _2_e_> (exp 1Ko - £1)Uo(T2yr3)dr1drodrs
T12 T13

and a spin term v*(1,2,3)»(1,2,3) = 1 has been omitted. Also
g'(02) = g(82)v*(2,3,1)»(1,2,3),

9(0) = — 5 / / / [exp (—ik - r2) o (rapts) (34.27)
e? 2e
('—— + _ ——) (exp l-ko l'1)Uo(f2,r3)dT1dT2dT3
T12 T23

with a similar expression for ¢’(f;). The product of spin functions in
(34.27) is readily evaluated by making use of the one-electron functions
(33.4) and remembering that »* is the Hermitian adjoint of v. We take
forv(1,2,3) the next to the last spin function of (33.9), and obtain

v*(2,3,1)v(1,2,3) = 2= (—4++)* — (++-)%
27 (++-) - (+—H)] = —F (34.28)

The completely antisymmetric wave function derived from ¢(1,2,3)
is given in Eq. (32.3) with the lower sign. Since ¢ is already antisym-
metric in its last two arguments, it is apparent that the second bracket
terms in (32.3) duplicate the first bracket terms. The asymptotic form
of the wave function for large values of one of the electron coordinates,
say 71, is then obtained from (34.26) and (34.28):

r1—>

{(exp ko - 11) + rte® i [f(61) — 3g(0:) — 9(00)]}uo(rayrs)v(1,2,3) (34.29)

The differential cross section obtained from (34.29) is

a(6) = |f(6) — g(6)|* (34.30)

Like Eqs. (33.2) and (34.25), Eq. (34.30) can be derived without
explicit reference to the spin functions. Since the two atomic electrons
must have antiparallel spins (singlet state) in order for the helium atom
to be in its ground state, the spin component of the incident electron
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is the same as that of one of the atomic electrons and different from
that of the other. It cannot exchange with the latter in an elastic
collision, since then both the resulting atomic electrons would be in the
same spin state and the exclusion principle would force the atom into an
excited state. Thus it can only exchange with the electron with which
it is indistinguishable, so that the antisymmetric combination of direct
(f) and exchange (g) amplitudes must be used; this gives Eq. (34.30).

In the absence of spin-dependent interactions, the excitation of a
triplet state of helium by electron impact can be accomplished only by
exchange between the incident electron and one of the atomic electrons.
In this case, there is no direct (f) amplitude, and hence no interference
between direct and exchange amplitudes.

Problems

1. Show that the antisymmetric wave function given in Eq. (32.7) vanishes if
there is an identical linear relation between the functions ve, vg, . . . , v,.

2. Show that if a wave function u(1,2, . . . n) is an energy eigenfunction of a
symmetric Hamiltonian that corresponds to a nondegenerate eigenvalue, it is either
symmetric or antisymmetric. Show this first for n = 2, then for n = 3, and then
indicate how the proof can be extended to arbitrary n.

3. Verify that the spin wave functions given in Eq. (33.6) are eigenfunctions of
(S1 + S2)%2and Si. + Sz with the indicated eigenvalues. Show also that the result of
operating on these functions with the z and y components of the total spin is in agree-
ment with the appropriate matrices given in Eqs. (24.15).

4. Carry through the calculations of Prob. 3 for the spin functions given in Eq.
(33.9).

6. Find the eigenfunctions of the square of the magnitude of the total spin and
the z component of the total spin of four electrons, and show that they can be grouped
into one quintet, three triplet, and two singlet states. (Hint: Start with the triplet
and singlet spin functions for two pairs of two electrons, and make use of the matrices
(24.15) together with the corresponding set for j = 2.)

6. Use Eq. (33.2) to write down an expression for the scattering of protons in the
center-of-mass coordinate system, assuming that the Coulomb interaction extends in
tor = 0. Discuss the classical limit of the cross section (% — 0), particularly in the
neighborhood of = 90° and show that the interference term drops out if the average
scattering over an arbitrarily small but finite range of angle is computed.

7. Show that the 1s2p configurations in helium can be treated separately from
the 1s2s configurations so far as the first-order energy-level calculation of Sec. 33 is
concerned.

8. What would be the unperturbed ground-state wave functions of helium if each
ciectron had spin angular momentum # and obeyed Einstein-Bose statistics?

9. Write down the unperturbed ground-state wave function for a neutral lithium
atom.

10. Show by direct calculation that Eq. (34.25) is obtained if the incident and
atomic electrons are assumed to be described by the four spin wave functions (+ +),
(+-), (—+), and (— —), rather than by the triplet and singlet combinations (see
footnote 1, page 242).



CHAPTER X
SEMICLASSICAL TREATMENT OF RADIATION

No account has thus far been given in this book of the interaction
between material particles and electromagnetic radiation. As would be
expected, a treatment that is consistent with the foregoing theory of
material particles requires that quantum equations of motion of the
electromagnetic field be found that are analogous to Maxwell’s equations.
Indeed, it is only in this way that Planck’s original quantum hypothesis
can be fitted into a general theoretical framework. The development of
the elements of a quantum theory of radiation will be postponed until
Chap. XIV. In the present chapter we treat the electromagnetic field
classically and the particles with which the field interacts by quantum
mechanics. Such a semiclassical treatment is bound to be incomplete
and not wholly satisfactory, although it is simpler in principle than the
quantum electrodynamics presented in Chap. XIV. We shall find that
it is possible in this approximate way to give a plausible and correct
account of the influence of an external radiation field on a system of
particles (absorption and induced emission), but not of the influence of
the particles on the field (spontaneous emission). Nevertheless, the
results of the classical treatment of the latter phenomenon can be con-
verted to quantum theory in a correct, if not very convincing, manner.
Some simple applications of the theory are given in Sec. 37.

36. ABSORPTION AND INDUCED EMISSION

The Schrédinger wave equation for the motion of a particle of mass m
and charge ¢ in an electromagnetic field described by the potentials
A,, with an additional potential energy V, is obtained by adding a term
V¥ to the right side of Eq. (23.24).

8\0 h 1eh
W [—é—”—tw—i——A gra d—i———(d A