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Preface

Elementary mechanics, both classical and quantum, has become a
growth industry in the last decade. A newcomer to this flourishing field
must get acquainted with some unfamiliar concepts and get rid of some
cherished assumptions. The change in orientation is necessary because
physicists have finally realized that most dynamical systems do not
follow simple, regular, and predictable patterns, but run along a seem-
ingly random, yet well-defined, trajectory. The generally accepted
name for this phenomenon is chaos, a term that accurately suggests that
we have failed to come to grips with the problem.

This book offers a collection of ideas and examples rather than
general concepts and mathematical theorems. However, an indifferent
compilation of the most telling results can only discourage the novice.
In order to focus on a central theme, I have singled out the questions
that have a bearing on the connection between classical and quantum
mechanics. In this manner we are led to ask whether there are chaotic
features in quantum mechanics; the issue is still open, and all the pre-
liminary answers suggest that quantum mechanics is more subtle than
most of us had realized.

Reading this book requires a knowledge of both classical and
quantum mechanics beyond a first introductory physics course. Ad-
vanced mastery of these subjects is not necessary, however, and prob-
ably not even desirable, since I am trying to appeal to the intuition
rather than the analytical ability of the reader. Some of the more so-
phisticated concepts, such as the action function in classical mechanics
and its analog in quantum mechanics, Green’s function, are basic to the
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whole development as it is presented here. Their meaning and their use
will be explained in the context in which they appear, and without the
mathematical qualifications that would be necessary if 1 tried to offer
general propositions rather than special cases.

In keeping with this informal style I have emphasized certain as-
pects of the whole story which are not usually found in scientific books.
Whenever possible I base my arguments on elementary geometry rather
than algebraic manipulations. In order to gain a better perspective on
the more important results, references to the historical development
are often helpful. In the same vein, related problems from different
disciplines are mentioned in the same section, with particular attention
to mathematics, astronomy, physics, and chemistry. Finally, I have
taken the liberty to comment on the motivation behind certain efforts,
to evaluate the validity and relevance of some results, and to consider
future tasks, if not to speculate outright about possible developments
in the field of chaos.

This book comes out of a course of the same title that I taught in the
winter and spring of 1986 at the Laboratoire de Physique du Solide in
Orsay, outside of Paris. I owe a debt of gratitude to my faithful audi-
ence, who helped me with a moderate amount of criticism; in partic-
ular, Francoise Axel, Oriol Bohigas, Alain Comtet, Marie Joya
Giannoni, Bernard Jancovici, Maurice Kléman, Jean Marc Luck,
Claude Itzykson, and André Voros provided many useful suggestions.

Most scientists have not participated in the recent development of
ideas related to chaos in Hamiltonian systems; they are usually not
aware of the many different viewpoints and interpretations, the new
problems and methods for their solution, and the novel applications to
important experiments. As far as this book is concerned, all of these
ideas deal with relatively elementary questions in both classical and
quantum mechanics; as soon as they are understood, some readers may
be tempted to call them obvious because of their deceptive simplicity!

Since I have worked in this area for twenty years, I have benefitted
from discussions with many colleagues who are interested in questions
related to chaos. I want to thank them all, and apologize for not men-
tioning them by name. It is remarkable how many different personal-
ities and individual tastes in scientific matters can be attracted to one
central theme. 1 hope indeed that this book will appeal to all those who
look for diversity in their pursuit of physics and its closest relatives,
mathematics, astronomy, and chemistry. Thus we might eventually
find harmony in chaos.
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Introduction

Elementary mechanics is the model for the physical sciences. Its prin-
ciples and methods are the ideal for most other disciplines that deal
with nature. Substantial parts even of mathematics have been devel-
oped to deal with the problems of mechanics. Every scientist has a
fairly well-defined picture of the way mechanics works and the kind
of results it yields.

According to the prevailing views, a dynamical system runs along a
predictable and regular course, and ends up in some periodic and steady
state. If very many particles are involved and we are either unable or
unwilling to follow each one individually, then we are satisfied with
knowing the statistical properties of a dynamical system. The phe-
nomena of thermodynamics, of friction, and of diffusion have a prob-
abilistic character because we don’t really need to know everything
there is. The situation is subject to random processes because we
choose to be ignorant. By contrast, the mechanical behavior of simple
systems is assumed to be entirely comprehensible, easily described,
perhaps even dull.

This erroneous impression is created by the special examples dis-
cussed in school, from elementary to graduate: two bodies attracting
each other with an inverse-square-of-the-distance force, as in plane-
tary motion and in the hydrogen atom; several oscillators coupled by
linear springs; and a rotating symmetric rigid body in a uniform
gravitational field, the gyroscope. The general methods for solving
more difficult problems are presented as technical refinements best left
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to the experts -- astronomers working in celestial mechanics and the-
oreticians in atomic and molecular physics.

A century ago mathematicians discovered that some apparently
simple mechanical systems can have very complicated motions. Not
only is their behavior exceedingly sensitive to the precise starting con-
ditions, but they never settle to any reasonable final state with a re-
cognizable fixed pattern. Although their movements look smooth over
short times, they seem to jump unpredictably and indefinitely when
their positions and momenta are checked over large time intervals.

Astronomers became increasingly aware of this problem during the
last 60 years, but physicists began to recognize it only some 20 years
ago. The phenomenon, which now goes under the name chaos, has
since become a very fashionable topic of investigation. Innocent
onlookers might suspect one more passing fad. 1 do not think it will
turn out that way, though. Chaos is not only here to stay, but will
challenge many of our assumptions about the typical behavior of dy-
namical systems. Since mechanics underlies our view of nature, we will
probably have to modify some of our ideas concerning the harmony
and beauty of the universe.

As a first step, we will have to study entirely different basic exam-
ples in order to re-form our intuition. We must become familiar with
certain novel specimens of simple mechanical systems based on chaotic
rather than regular behavior. General abstract propositions do not
serve that purpose, although they are desirable once we become
knowledgeable about the issues involved.

This book is, therefore, committed to the discussion of specific ex-
amples, in particular the hydrogen atom in a magnetic field, the donor
impurity in a semiconductor where the effective mass of the electron
is different in different directions, and the motion of a particle on a
surface of negative curvature. Other equally instructive systems, which
are chaotic, yet simple enough to be understood thoroughly, will be
mentioned without detailed discussion. Among them is the hydrogen
atom in a strong microwave field; an adequate treatment would almost
require a monograph by itself, if the recent experiments on this system
are to be presented, and everything put into proper perspective.

These unfamiliar examples must be seen in full contrast with the
familiar ones. A discussion of the regular behavior and of some
borderline systems will therefore precede the main part of this book.
In particular the three-body problem of celestial mechanics will be dis-
cussed in some detail with special attention to the Moon-Earth-Sun
system. The important ideas of classical mechanics were first con-
ceived and tested in this area, and their practical application can be
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observed in the sky without elaborate instruments. Chaos made its first
appearance there.

Mathematicians have put a lot of effort into proving the formal
equivalence between various abstract dynamical systems. Although
one hopes that these endeavors will ultimately embrace all mechanical
systems, the different kinds of chaotic behavior have not been charac-
terized to the point where an exhaustive classification can be at-
tempted. The study of further examples will eventually get us there.
Meanwhile some simple practical distinctions are sufficient. I see no
reason to split the phenomenon into more than two broad categories:
soft chaos, which allows an approach starting from regular behavior by
perturbation or breaking the symmetry as it were, and hard chaos,
where each trajectory is isolated as the intersection of a stable and an
unstable manifold. Such general features as bound states versus scat-
tering, or conservative versus time-dependent forces remain important;
but there will be no discussion of friction, nor of any other dissipation of
energy.

Only systems with a finite number of degrees of freedom will be
considered. This selection is dictated by a fundamental problem on
which I have worked for two decades and which serves as the focus in
this book: How can the classical mechanics of Newton, Euler, and
Lagrange be understood as a limiting case within the quantum me-
chanics of Heisenberg, Schroedinger, and Dirac? Einstein in 1917 was
the first, and for 40 years the only, scientist to point out the true di-
mensions of this problem when the classical dynamical system is cha-
otic. While we are still a long way from a satisfactory answer, I can
think of no better issue to guide our thinking.

In this manner we are led straight into the main question of quantum
chaos: Is there anything within quantum mechanics to compare with
the chaotic behavior of classical dynamical systems? It seems unlikely,
although there are cases of smooth chaos in quantum mechanics which
border on the enigmatic, e.g., the scattering of waves on a two-
dimensional box. Their discussion requires a certain degree of math-
ematical sophistication which is well worth the effort.

Mechanics, classical as well as quantal, with all the above re-
strictions in the choice of examples, seems almost simple enough to be
within the grasp of purely algebraic and analytical methods. There are,
however, striking examples where numerical calculations have given the
investigator clues to the analytical solution of a problem. Furthermore,
the ready availability of computers has led to many interesting numer-
ical results, with as many intuitive interpretations, all in need of further
sorting to find the relevant ideas. A somewhat arbitrary choice among
these computational efforts is almost inevitable, particularly in view of
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the rapid accumulation of partial results. I have tried to concentrate
on the work which tests the limit toward classical mechanics, and which
is not the subject of some recent monograph, such as, for instance, the
hydrogen atom in a microwave field, one of the few cases of quantum
chaos with a wealth of experimental material.

Some readers may be disappointed because they do not find a sat-
isfactory account of what interests them most. The number of articles
in this general area has become overwhelming in the last decade. Since
I think that new examples are of the essence, I regret that some par-
ticularly interesting ones are not dicussed here.

Among the most serious omissions I want to mention specifically
almost everything connected with time-dependent Hamiltonian sys-
tems such as the hydrogen-atom in a strong microwave field (Bayfield
and Koch 1974, for a review cf. Bayfield 1987) as well as the closely
related kicked rotator (Casati, Chirikov, Izraelev, and Ford 1979;
Fishman, Grempel, and Prange 1982, 1984). Discrete maps and their
quantum analog get very little attention (Balazs and Voros 1989), and
almost nothing is said about rotating bodies like gyroscopes and coupled
spins (Magyari, Thomas, Weber, Kaufmann, and Miiller 1987;
Srivastava et al. 1988), nor about related work in nuclear physics
(Meredith, Koonin, and Zirnbauer 1988; Swiatecki 1988). The above
references are supposed to point to some of the seminal work in one
of these areas.

Every author is entitled to use the lack of space as an excuse, al-
though a lack of competence, interest, and/or hard work in certain
subjects might occasionally provide a more adequate explanation for
some shortcomings. Such obvious reasons, however, are based on the
author’s personal preferences and his perspective on the whole enter-
prise of theoretical physics. They are not easily condensed into simple
declarations of intent, or statements explaining general views and
methods, because they are always intimately mixed with the author’s
personal and professional experiences. The organization of this book
and the choice of the several topics has to be seen as one possible, and
to some extent coherent, approach to a novel and very active area in
science.



CHAPTER 1

The Mechanics of Lagrange

The most general starting point for the discussion of any mechanical
system is the variational principle. It was first proposed as a particularly
concise formulation of Newton’s laws of motion, and it turns out to be
extremely useful for some simple manipulations such as the transition
between different coordinate systems. Feynman (1948, 1965), with
the inspiration of Dirac (1933, 1935), then found a complete analog
for it in quantum mechanics. Indeed, the path integral provides the most
direct link between the classical and the quantum regime (cf. Section
13.4).

The ideas concerning the variational principle of Lagrange are the
backbone of this whole book. They will be explained in general terms
assuming that the reader has met them before; they will also be illus-
trated explicitly using the example of space travel in the solar system.

The titles of this chapter and the next one are somewhat misleading.
The historical development of mechanics is more complicated than the
simple division into two kinds of mechanics, Lagrange’s depending on
time as the primary parameter, and Hamilton-Jacobi’s depending on
the energy. This distinction is important in quantum mechanics, how-
ever, and since our presentation is skewed in that direction, the relevant
differences are brought out already at the classical level. The first two
chapters are not meant to trace the origin of all the ideas back to their
authors except where this is specifically mentioned.
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1.1 Newton’s Equations According to Lagrange

Let us think of the mechanical system to be studied as described at any
fixed instant of time ¢ by the collection of the position coordinates,
q = (q1, 92, ..., gn), and the collection of the velocity components,
q = (41, g2, ..., 4»), which are needed for a complete specification. We
call g simply the position of the system, and the vector ¢ its velocity.
The number n of coordinates is called the number of degrees of freedom
for the system. We will usually deal with n = 2 because that is the
smallest for a system to be chaotic when its energy is conserved.

The variational principle is formulated with the help of a function
L, called the Lagrangian, which depends on the position g, the velocity
g, and the time ¢, L(g, q,?). The most common form for L, and the
only one to be used in this book, is deceptively simple: it is the differ-
ence L = T — V of the kinetic energy 7 and the potential energy V.

The kinetic energy T is the product of half the mass, m/2, times the
square of the velocity, which we will write simply as g2. Only when the
particle is moving in a (Euclidean) plane and we are using Cartesian
coordinates, can we write g2 = §,% + ¢,2 ; when the motion takes place
on a curved surface, the square of the velocity involves the Riemannian
metric, as we will explain when the time comes.

The potential energy V is a function of the position coordinates only,
g1 and ¢, and possibly the time 7. (In the learned language of modern
mathematics the motion takes place on an n-dimensional manifold, and
L is a function from the tangent bundle of this manifold into the reals.)

Newton’s equations of motion are written in terms of the quantity
p called the momentum. Its definition in terms of the Lagrangian is
given quite generally by
oL

. 1.1
3, (1.1)

pj=

The momentum specifies the state of motion of the system just as well
as the velocity ¢. In particular, if L is a quadratic function of g, there
is a simple linear transformation connecting p and q. When
L =T- Vand T = mg?/2, one has p = mq according to (1.1).
The classical form of Newton’s equations is
dp; 14

—_— = -, 1.2
dt (')qj (1.2)

where the rate of change with time of the momentum p is on the left,
and the force as the derivative of the potential is on the right. The
momentum p has to be sharply distinguished from the velocity, even
though in many systems they are proportional to each other through the
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factor m, the mass. It is one of Newton’s glories to have postulated the
relation p = force, rather than m g = force, which one finds in most
elementary textbooks and many advanced presentations by mathe-
maticians. Although Newton did not know at the time, his formulation
correctly includes the motion of a charged particle in the presence of a
magnetic field, the trajectory of a rocket whose mass decreases as it
accelerates, and the motion of a particle close to the speed of light as
in high-energy physics. (In modern mathematical parlance p is a co-
tangent on the manifold described by the coordinates q.)

The Lagrangian equations of motion are
d 6 dL oL
—(——)—- —=0. 1.3
dt ( aqj ) aqj (13)

This formula combines the two preceding relations (1.1) and (1.2) in
our special case L = T — V, but it has general validity even in the situ-
ations of which neither Newton nor Lagrange were aware. The author
admits cheerfully that he does not have a good intuitive grasp of the
Lagrange formalism as expressed in the Lagrangian L = T — Fand
the equations of motion (1.3), although they are undoubtedly the
foundation of physics. The next section may convey a better idea why
the Lagrangian is the difference between the kinetic and potential en-
ergy; mechanics manages somehow to reduce this difference after av-
eraging over a given time interval.

1.2 The Variational Principle of Lagrange

Before proceeding to the main topic of this section, we introduce three
terms that will occur very frequently and have to be carefully distin-
guished. Although customary usage is not well defined for these terms,
and the present assignment may seem arbitrary, it is helpful to pin
down their meaning for the purpose of this book.

A path in the mechanical system is an arbitrary, continuous function
g(7) where the real variable 7 varies from the initial value ¢ to the final
value 1/, ie., / < 7 < ¢’ We call the initial value g(/') = ¢’ and the
final value ¢(/') = ¢’’. The functions ¢;(r), which describe the path of
the system, are assumed sufficiently smooth so as to give us no trouble
in the mathematical manipulations. A tremendous variety of such
paths is usually available, even for the most intricate choice of the ini-
tial and final values, 7, /", ¢, and 4"’

A trajectory of the mechanical system from the position 4’ at time ¢
to the position ¢’ at time ¢’ is a solution ¢(¢) of the equations of motion
(1.1) with the time ¢ in the interval (¢, /') and the stipulated initial and
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final values, ¢(f') = ¢’ and (') = ¢’’. Such a solution may not exist
if we choose the values 7, ¢, ¢’, and ¢’ awkwardly. On the other hand,
there may be several or even infinitely many such solutions, although
they are probably not easy to get explicitly.

A periodic orbit, occasionally abbreviated to orbit, is a trajectory
whose final position and momentum coordinates ¢’ and p”’ coincide
with the initial position and momentum coordinates ¢’ and p’ so that
qd' = 4q andp” = p’. A periodic orbit is a trajectory that closes itself
smoothly like a Kepler ellipse. Quite unexpectedly, even a mechanical
system with the worst kind of chaos has a dense set of periodic orbits.
They play a critical role in the transition from classical to quantum
mechanics.

The trajectories are the essence of classical mechanics. Every dy-
namical system runs along a trajectory; the only choice in the matter
concerns the initial and final values, getting from here ¢’ at this time ¢
to there ¢’ at that time /. In quantum mechanics, however, all possi-
ble paths contribute to the transfer of the system from ¢’ to ¢’ in the
time interval from ¢ to /. The result of all these possibilities is a
superposition of little wavelets, each associated with one of the paths.
Needless to say, the relevant calculation is even more difficult than
finding the classical trajectories.

The variational principle can now be formulated as follows: Given
the initial values (¢’, ) and the final values (¢”, f'’) together with a
trajectory go(¢) from here to there, look at all the neighboring paths
whose position coordinates g(7) are obtained by adding a function
dq(t), called a displacement, to the coordinates ¢go(r) so that
q(7) = qo(7) + 89(7). Then calculate the integral of L(q, g, 7) over 7
from ¢ to /’. The value of this integral depends on the particular choice
of the function 8¢(7); it can be expanded in powers of 8¢q(7), always
assuming that there is no analytical trouble with the chosen functions.
The three first terms of this expansion are needed; they have special
names, which will come up over and over again.

The lowest term depends only on the trajectory qo(#) because it is
obtained by setting 8q(7) = 0. It is called Hamilton’s principal function
(HPF), or somewhat indiscriminately, the action integral
R, 1" 4,7 from (¢, 1) to (4", ) along the trajectory go(f). As
a formula,

[//

R(", (" 4,1 = f dr L(4y, 9o, 7)- (1.4)
t’

The simplest example of R comes from a particle moving freely in
(Euclidean) space. Its trajectories are straight lines, so in order to get
from ¢’ to ¢’ we have to draw the straight line connecting these two
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points. The velocity of the particle is the distance divided by the al-
lowed time /" — ¢, and the kinetic energy T is half the mass times the
velocity squared. Since 7 is the same along the entire trajectory, the
integration over time simply multiplies with /' — ¢'; therefore, we have
in Cartesian coordinates for g, the formula

" ’\2
m(g’ —q)

R( n’ t"; /, t’)
q q 2([" _ t’)

(1.5)

The next term in the expansion is called the first variation and is
designated with the symbol 8/dr L. The variational principle demands
that the first variation vanish for any path which has the same initial and
final values as the trajectory go(¢), or in other words, has a displacement
such that 8g(¢') = 8¢(/') = 0. This principle is usually expressed by
the formula

,//
6f, dr L(q,q,7) = 0. (1.6)
11

This condition on the first variation of the integral over L can be
reduced to the equation (1.3). The detailed argument for this conclu-
sion can be found in every textbook on mechanics or on the calculus
of variation (cf. Whittaker 1904 and 1944; Courant and Hilbert 1924
and 1953; Carathéodory 1935; Goldstein 1950; Landau and Lifschitz
1957; Arnold 1978). The history of the variational principle is more
complicated than is generally realized, and shows that the principle is
not nearly as easy to understand intuitively as its formal statement.
Euler (1744) and Maupertuis (1744, 1746) gave the first valid propo-
sition of this type in the history of mechanics (cf. Section 2.3); but it
differed significantly from (1.6), and does not have a simple con-
nection with Feynman’s path integral (cf. the end of Chapter 13). The
full impact on mechanics was pointed out to them some sixteen years
later by the younger Lagrange (1760); but even he did not use what
we call today the Lagrangian, nor did he go beyond his two predeces-
sors to arrive at (1.6). That feat was left to Hamilton (1834, 1835)
some 75 years later, who deserves the credit for using the function
L = T — V,and deducing (1.3) from (1.6).

Jacobi (1842) was the first to offer definite conclusions as to the
mathematical meaning of the condition (1.6). Even today, most sci-
entists speak carelessly about the integral over L being a minimum, or
they phrase their thoughts more cautiously by talking only about an
extremum without any precise idea how to decide whether the trajec-
tory is indeed minimal, maximal, or something in between. This issue
is of central importance when we try to make the hazardous transition
from classical to quantum mechanics. It requires the third term in the
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expansion, the so-called second variation, which will be discussed at
the end of this chapter. Meanwhile we will try to put the action integral
(HPF) itself into better perspective.

1.3 Conservation of Energy

Most of the dynamical systems we will study in this book ’conserve
their energy’, an expression that needs to be defined in this context.
In terms of the Lagrangian L, conservation of energy comes about when
L does not depend explicitly on the time variable ¢; the position and the
velocity of the system determines the same value of L whatever the
time happens to be. As a consequence, the quantity

E = ij-:—,L— - L (1.7)
;%
stays constant along any trajectory, as is shown in any standard text-
book with relatively few manipulations. A further, almost trivial cal-
culation in the case where L = T — V, and T = mqg?/2, shows that
E =T+ V, the sum of kinetic and potential energy, just what we
would call the total energy of the system.

As another consequence, when we calculate the action integral
(HPF), the precise timing of the initial and final state does not matter,
as long as the time interval r = ' — ¢ is kept the same. Thus we will
henceforth write simply R(q’q’t) instead of the previous
R(4", /"4, 7). At the same time we simplify the writing by leaving
out the commas and the colons which serve as separators among the vari-
ables. The order of appearance in the list of variables is enough to
identify them. This convention will be used throughout this book as
long as there is no possible confusion.

A trajectory is usually defined in terms of its initial position ¢, its
final position ¢”’, and the total time ¢ = /' — /; the action integral R is
written as if it were a function of exactly these quantities for a partic-
ular trajectory go(r). What happens when ¢’, ¢”/, or t are allowed to
vary? The first thing to make sure is that we still have a trajectory;
moreover we want the original trajectory to go continuously into the
new one. When these conditions are met, a number of tricky compu-

tations show that

R _ , OR _ _, OR
aqll _p’ aq! - P’ 3[

where p’ and p’ are the initial and final values of the momentum.

= —F (1.8)
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These relations are sometimes expressed in the form of a differential
that reminds us of thermodynamics, namely
SR = p''sq" — p'oqd — Eér. (1.9)

The interpretation of this formula is straightforward: the use of
84 , 84", and 8¢ on the right-hand side indicates that ¢’, 4, and ¢ are
the natural variables for R; moreover, p" is the partial derivative of R
with respect to ¢’’, and so on. We will sometimes make use of this no-
tation. The classical work of Lagrange and Hamilton is mostly phrased
in formulas like (1.9), using virtual displacements, which seem to have
lost their intuitive appeal in our time.

1.4 Example: Space Travel in a Given Time Interval;
Lambert’s Formula

Suppose that you leave the Earth in 4’ today at noon at ', and you want
to arrive on Mars in ¢’/ six months later at the time /' = /' + 6 months.
You will get a short boost from a rocket at departure, and you will then
coast freely for six months. Most of the trip is made outside the
gravitational field of either Earth or Mars, so that it suffices for this
simple example to take into account only the gravitational attraction
of the Sun. Our first task is to find the appropriate trajectory, and then
we have to calculate the action integral R.

The known positions of the Earth in ¢’ at the start and of Mars upon
arrival in 4’ determine a plane together with the central position of the
Sun. Choosing polar coordinates (r, ¢) in this plane with the Sun at the
origin, we get ¢ as (r, ¢') and ¢’ as (+’, ¢’). The equation of the tra-
jectory is given by the expression

a(l - e2)

r = , 1.10
1 + ecos(¢ — ¢) ( )

where a is half the major axis of a Kepler ellipse, e its eccentricity, and
¢o the angle in the direction of the perihelion (closest approach to the
sun). The angle ¢ — ¢ is called the true anomaly because it gives the
true polar coordinate with respect to the perihelion; it does not increase
uniformly with time, however, and is not a convenient parameter in our
problem.

The eccentric anomaly u is the angle around the center of the tra-
jectory in a special construction of the ellipse. In Cartesian coordinates
with the Sun at the origin, the trajectory is given by

x=a(cosu—e),y=a‘/1—e2 sinu , (1.11)
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if the x-axis lies along the major axis. The values of x, y, and u are
primed for the starting conditions, and double-primed for the arrival.
The time dependence of the eccentric anomaly is given by Kepler’s
equation,
u — esinu = n(t -1y, (1.12)

where 1 is the time of perihelion passage, and the right-hand side is
called the mean anomaly. The mean motion n is the average angular
speed of our spacecraft if it were allowed to make a complete journey
around the Sun. It is given by Kepler’s third law n?a3 = GM in terms
of the solar mass M and the gravitational constant G. (Kepler’s third
law expresses the average balance between the centrifugal force m n%a
and the gravitational force GMm/a?.) The relation between the time
t and the eccentric anomaly u is transcendental, i.e., not algebraic, and
that is the principal difficulty in treating planetary motions analytically.

The problem of finding the parameters of the elliptic trajectory from
the known initial and final positions and times was solved by the
eighteenth-century all-round genius Lambert, after the usual prelimi-
nary work of Euler. We shall simply record the main steps in this re-
markable result because it is not easy to find in any textbook (cf. Battin
1964); the reader may check the algebraic manipulations, which are
not difficult.

As a first step, angles a and 8 are defined by

ul + uII u,, _ u,
cosa = e cos( > ), B= > ,

which are then combined into new angles vy and § through y = « + 8
and § = a — B. If we write r = (xX" = x)2 + (/' = )2)1/2 for the
distance between the points of departure and arrival, the following re-
lations are easy to check with the help of elementary geometry and
Kepler’s equation (1.12):

p=r+7 +r = dasin’(v/2), (1.13a)
v =r +7 —r = 4a Sin2(6/2), (1.13b)
VGM (/' = 1) = a®*((y — siny) (8 — sin8)) . (1.13¢)

These equations can be solved as long as the trajectory is indeed a
Kepler ellipse, rather than a parabola or hyperbola, because the right-
hand sides of (1.13a) and (1.13b) are then smaller than 44 by virtue
of the triangle inequality. The double sign in (1.13c) comes from
choosing the short ( — ) or the long (+) elliptic arc connecting the
endpoints of our space trip.

The three equations (1.13) have three unknowns, v, §, and a ; but
the first unknown can be eliminated by the simple expedient of writing
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y — siny = 2arcsing — 2(1 — £§2)1/2 for ¢ = sin(y/2), and expanding
both arcsin and (1 — £2)1/2 in powers of ¢ = \/ u/4a . A similar trick
is used for n = sin(8/2) = \/ v/4a . The necessary expansions are well
known; but before writing the result, it is natural to use the energy E
of the trajectory rather than its semimajor axis a; since
E = — GMm/2a,we use ¢ = 1/2a = — E/GMm, where m is the mass
of our space cabin. Finally, the result of Lambert is the series

4/GM (' - 1) = (1.14)

o (2)! 1 1 & J=1 2+ 1)/2 — (2j+1)/2
< U\ 2i-1 7 2+ 1 2 (a t’ )
o Ij!

which converges like a binomial expansion because both u and » are
smaller than 4a as noted above.

This marvelous formula can be better understood if we insert con-
crete numbers; it is natural to use the semimajor axis of the Earth’s
orbit as the unit length, and the year as the unit of time; the mean mo-
tion of the Earth is then 27/year, and Kepler’s third law for the Earth
then says that /GM = 2. If the semimajor axis a is infinite, i.e., the
trajectory is parabolic and its energy E = 0, then the formula (1.14)
has only the first term j = 1, and gives directly the time of travel in
years, t = (u3/2 F v3/2)/12«. This is the special case of (1.14), which
Euler had already derived; it serves as the starting point for more real-
istic trajectories where E < 0 and ¢ > 0. Since the coefficients in the
power series (1.14) are positive, the travel time increases
monotonically with increasing ¢, as one would expect as the trajectory
has less energy E. Given ¢’ — ¢, and the distances u and », the neces-
sary energy can be found by solving (1.14).

The whole calculation could have been carried out for hyperbolic
trajectories where E > 0 and therefore ¢ < 0; the same formula (1.14)
is still valid, but the series is now alternating, and the travel time shorter
than for the parabolic orbit.

The action integral R is now calculated directly from its definition
(1.4) with the Lagrangian L = T — V as given in the first section,
where V= — GMm/y/ (x?> + y2) . With the trajectory (1.11) and
Kepler’s equation (1.12) the integral over time is reduced to an ele-
mentary integral over the eccentric anomaly u, and then to the param-
eters y and 8. The result can be written as

R = 2ﬂ‘/ GMa (3y + siny — 36 — siné) , (1.15)

for the direct trajectory covering a polar angle less than #. The angles
vy and & can again be eliminated by the same trick as above; but the
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semimajor axis a, or equivalently the energy E, has first to be found
from Lambert’s equation (1.14).

1.5 The Second Variation

In trying to work out the second variation, all possible displacements
have to be presented in some practical form, such as an expansion in a
Fourier series over the time interval ¢,

- . mT
8q(r) = D, a;sin—— . (1.16)

1

The coefficients g; are real, and we have chosen a sine series in order
to get the boundary conditions 8q(0) = 8g(¢) = 0. The second vari-
ation consists of the second-order terms in the expansion of [d7L in
powers of 8g(7); it is a quadratic function of the numbers a; . The na-
ture of the extremum around the trajectory go(7) is entirely determined
by the character of this quadratic function. If it is positive definite,
we have indeed a minimum; otherwise, we have a more complicated
situation like a saddle-point.

This problem was first studied by Jacobi, mostly in the context of
geodesic lines on a two-dimensional surface. Marston Morse (1934)
in the 1920s and 1930s then came up with the definitive statements.
The nature of the extremum can be determined without explicitly cal-
culating the quadratic function of the preceding paragraph. The an-
swer depends on the trajectories in the neighborhood of go(7). Since
they are given by solving the equation of motion (1.1) and their coor-
dinates g(7) do not differ much from the trajectory go(7), it is natural
to write again g(1) = go(7) + 8¢(7), and find the equations to be solved
by éq.

Let us take the simplest case where p = mq, and use Newton’s
equation (1.2). The left-hand side is already linear in dq, but the right-
hand side has to be expanded in powers of 8g. Only the lowest terms
are retained so that

d’sq, v

- - 2 8q: ,
e 94,94, ho(r) %

m (1.17)

where the so-called Einstein convention has been used: indices occurring
twice are to be summed unless specified otherwise. The second deriva-
tives of the potential at the time 7 are evaluated by inserting for the
coordinates g the values go(7). In solving these ordinary linear differ-
ential equations we use the initial conditions &q(0) = 0, and
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mdq(0) = 8p’, where 8p’ are arbitrary numbers. The neighboring tra-
jectories are thereby chosen to start in the same location 4’, but with
momenta different from p’. These neighboring trajectories form a fan
that spreads out as one moves away from the starting point.

This fan of trajectories is left to spread until the time ¢’. The
endpoints differ from ¢"’ by an amount 8¢”’. The starting deviations
8p’, and the final deviations 8¢" are vectors that are linearly related
through the formula 8¢" = N 8p’ where the matrix N is given by

_ 0’1, p' ) 8°R
N - M = ”1 "2 = ——— 1. (1.18)
g 1,9 2--) 9q ;9q ;

i J
Instead of the matrix N we have calculated its inverse M, which can be
expressed directly in terms of the second derivatives of the action in-
tegral R(¢''q' /' — ') along the trajectory go(7) with respect to the co-
ordinates ¢’ and ¢’ because of (1.8). The matrix M and its determinant
will play an important role later on.

The fan of trajectories starts out with a regular matrix N, or equiv-
alently, with a regular matrix M. Any system moves like a bunch of
free particles for the first few moments of its trajectory, provided that
the forces acting on it are finite. The formula (1.5) for R(¢"'¢’ /' -1¢)
can, therefore, be used to calculate the matrix M, which becomes a
multiple of the unit matrix.

As the swarm of trajectories moves away from its starting point,
however, it may collapse occasionally; that happens when N becomes
singular. These unfortunate occurrences are isolated as the swarm
moves along, so that there is a sequence of times
0 < 11 £ 72 £ 73 < --- when that happens. Usually, the rank of N gets
reduced by 1, and the next time N becomes singular is strictly later. But
sometimes the rank of N may be reduced by 2 at the same time; in that
case we insert two values in the series of 7; that are equal, and distinct
from either their predecessor or their successor. The number of con-
secutive equal signs in the sequence of 7; is limited to one less than the
number of degrees of freedom. The times where the matrix N gets re-
duced in rank from its maximum are called the conjugate times, or, if
we think of these events as occurring along the trajectory, the conjugate
points, conjugate to the starting time or the starting point.

The second variation of the integral over the Lagrangian can now
be characterized by the following proposition, due mainly to Marston
Morse:

The second variation, considered as a quadratic form in the dis-
placements 8q(t) of all the possible paths around a given trajectory
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from ¢’ to g"’ in the time t, has as many negative eigenvalues as there
are conjugate points along the trajectory.

This simple theorem answers the question about the extremum in
Lagrange’s variational principle. For sufficiently short times the clas-
sical trajectory is indeed a minimum among all possible paths. But that
nice feature gets lost as soon as the system has passed the first conju-
gate point. An obvious illustration of this situation is a parncle movmg
freely on the surface of a sphere. Let the two endpoints ¢ and 4"’ not
be antipodal so that there is a well-defined great circle connecting
them. Moving from ¢’ to ¢” can be accomplished in two ways: the
shorter route goes directly, whereas the longer one passes through the
antipode of ¢’. All the great circles that start in ¢’ go through its
antipode. All particles starting out in 4 with the same speed will meet
in the antlpode The matrix N is singular there because a non-vanishing
value of &p y1elds a vanishing value for 84"'; the antipode is, therefore,
conjugate to ¢'. Thus, according to the above proposition, the route
through the antipode is not a minimum, as we know already from ele-
mentary geometry, but can see now in the context of Lagrangian me-
chanics.

1.6 The Spreading Trajectories

The relation between classical and quantum mechanics depends on the
way in which a swarm of classical trajectories spreads out. A picture
for the typical situation in two degrees of freedom is shown in Figure
1. The fan of trajectories starting in 4 first spreads, but then converges
again so that the individual trajectories cut into one another. Actually,
they form an envelope that looks as if the trajectories made a glancing
reflection from a wall. The envelope is called a caustic, in contrast to
the exceptional situation where all the trajectories starting in q go ex-
actly through the same point gr which is then called a focus. Both terms
are taken from the obvious analogy in optics. The antipode in the
above example is obviously a focus for the tra]ectorles on the sphere.
The spread of the trajectories which all start in 4 can be watched
very closely if one keeps track of the eigenvalues of N. The explicit
expression (1.18) for M shows that it is symmetric and has, therefore,
real eigenvalues. This symmetry is directly connected with the
reversibility of the classical trajectories: Can the tra]ectory from 4’ to
4" in the given time ¢ also serve to go from ¢”’ to ¢’ in the same allotted
time ¢ ? In general, this symmetry gets spoiled by the presence of a
magnetic field, and the eigenvalues of N are then no longer real.
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CONJUGATE POINT

’

q

Figure 1 Fan of trajectories originating in the point 4’ and intersecting one
another to form a caustic; the main (heavy) trajectory touches the caustic in
the point conjugate to q'. There is a whole sequence of caustics and conjugate
points along the main trajectory.

Conjugate points are the places along the trajectory where one of
the eigenvalues vanishes. The rate at which the largest eigenvalue
grows is called the Lyapounoff exponent of the trajectory. The growth
of these eigenvalues is crucial for judging the long-term behavior of the
dynamical system. In particular, we find instabilities when some of the
eigenvalues grow exponentially with time.

A somewhat abbreviated characterization of the swarm of trajec-
tories is obtained by looking at their density at any one given time.
Consider a little volume in position space that is defined by as many
initial values of 8p’ as degrees of freedom. Each such 8p’ leads to a
8q"' after the time ¢. The density C(q"'q’f) is defined as the ratio of the
volume defined by 8p’ over the volume defined by the 8¢”’. The for-
mula (1.18) now gives us the concise expression

d°R

cq'qdn = | - ——+ (1.19)
dg iaqj

We shall find that the quantum mechanical amplitude of a system that
started out in ¢’ is essentially given by the square root of C when the
system is observed in ¢’ at the time 7.

The mechanics of Lagrange, as presented very briefly in this chap-
ter, comes closest to our most intuitive picture of the way in which
things happen in nature. They start some place and then spread by
small increments as time evolves. Situations which were close to one
another may drift apart more and more, or they may come back to-
gether again, at least temporarily.

The next chapter will explain a different view which is not quite as
appealing, but has a certain number of technical advantages both for
experiments and for calculations. Time as the controlling parameter
will be replaced by energy, or equivalently, as is well known from
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quantum mechanics, by frequency. Most experiments used to be con-
ducted at a fixed frequency that could not be varied over a large inter-
val in one given apparatus. In recent years, however, electronic
technology has advanced to the point where short-time pulses can be
used to stimulate a physical system. This technical development brings
us back to the basic processes and what I would like to call the
Lagrangian view of nature.



CHAPTER 2

The Mechanics of
Hamilton and Jacobi

The transition from (what is here called) the mechanics of Lagrange,
with time as the main parameter, to the mechanics of Hamilton and
Jacobi, with energy as the controlling variable, is formally easy to carry
out. Its importance becomes apparent when one tries to solve special
problems. The test case is the motion of a body where the force de-
creases as the inverse square of the distance from the origin. It will be
treated at the end of this chapter and will be given an appealing ge-
ometrical solution.

2.1 Phase Space and Its Hamiltonian

The state of a dynamical system at the time ¢ is now specified by giving
its momentum p and its position g, rather than its velocity g and its
position g. If we start by describing the system with the help of its
Lagrangian L, then we have to make the transition from the velocity ¢
to the momentum p via the formula (1.1). This kind of transformation
is well known from thermodynamics and is generally called a Legendre
transformation. It implies a change in the function describing the sys-
tem at the same time as using its derivatives as the new variables; in
our case that means transforming the Lagrangian L, which is a function
of q,q, and ¢, into the Hamiltonian H, which is a function of
D, q, and ¢, with the help of the formulas



20 The Mechanics of Hamilton and Jacobi

oL . oL
= 2= Hp,q 0 = = _ L. 2.1
n= e @an = D4 % (2.1)

Comparing with (1.7), the Hamiltonian can be interpreted as the en-
ergy of the dynamical system at the time z.

The space whose points are defined by the » momenta p and the n
coordinates g is called the phase space of the dynamical system. For the
familiar Lagrangian L = T — V with T = mq¢?/2 and V depending only
on g, one finds H = T + V with T = p?/2m. In mathematical termi-
nology this is the cotangent bundle for the manifold in which the dy-
namical system moves.

The Hamilton-Jacobi equations of motion (1.2) become

/) . ) | 22)
dr o ~ At dp '

two sets of first-order equations, rather than one set of second-order
equations in the Newtonian tradition. We can regard them as defined
by a vector-field in phase space, which defines a flow in phase space.
It is given by some kind of gradient of the Hamiltonian H . The oppo-
site signs in the two sets of equations are crucial and cannot be elimi-
nated by any simple device. The consequences of these differing signs
are pursued in a special discipline, symplectic geometry, which is obvi-
ously important to the study of mechanics; but we will not discuss this
field, except for a short excursion in Chapter 7.

Conservation of energy in Lagrangian mechanics follows from the
fact that the Lagrangian L does not depend explicitly on the time 7 ; in
complete analogy, conservation of energy in Hamiltonian mechanics
requires that 0H/0t = 0. The value of H(p, gq) then remains constant
along any trajectory. This constant value is usually designated by E as
before, so that we will write H(p, g) = E. In alarge measure, the value
of E for a particular trajectory will replace the parameter ¢ in many
applications. The duality between E and ¢ comes out quite naturally in
Hamiltonian mechanics, but its full significance can only be appreci-
ated in quantum mechanics.

2.2 The Action Function S

The replacement of ¢ by E as the independent parameter requires that
we use a new kind of action integral S(¢”’¢'E). It is again defined by
a trajectory from ¢’ to ¢’’; but instead of the given time interval 7, the
energy E of the trajectory is now stipulated. In doing so, another

Legendre transformation is made,
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Sq"qdE) = R dD+Et

t q’l
‘ 2.3
= fOEPJ%'dT = f > pd. Y
q

A number of comments are necessary in order to clarify the mean-
ing of the various expressions on the right. The first shows the
Legendre character of the transition from R to § if we recall the re-
lation (1.8), E = — dR/dt. The second expression is written as an in-
tegral over the trajectory with the time as the parameter of integration,;
that may be the practical recipe to adopt in many cases, but it is not in
the spirit of Hamiltonian mechanics. Thus, we arrive at the third ex-
pression, which is most often quoted. The integral is calculated for a
curve in phase space that coincides with the trajectory and whose pa-
rameter can be any monotonically increasing variable; the value of the
integral does not depend on the particular choice of this parameter.
The element of integration p dg, the scalar product of the vector p with
the vector dg, is the canonical 1-form in the language of symplectic ge-
ometry.

This 1-form is important, among other reasons, because it guaran-
tees the particularly simple form (2.2) of the equations of motion.
More specifically, a second coordinate system (p, g) in phase space,
and the transformation formulas p = P(p, q, t); ¢ = Q(p, ¢, t) have to
be such that p dg — pdq = d®, with a total differential on the right-
hand side. The interpretation of this relation is again the same as in
thermodynamics: the variables in the function ® have to be ¢ and gso
that p = 0®/0q and p= — d®/9q. The function ® is called the gen-
erating function, because the explicit formulas for the change of coor-
dinates can be written as derivatives of ®.

The independent variables in ® can be chosen in various ways; a
useful choice is to write pdg + qdp = d(® + p q) = dW, where
W(q, p, t) is now considered to be a function of the mixed coordinates,
the old position g and the new momentum p ; this form will be used in
Chapter 5. The equations of motion in the new system have again the
form (2.2) in terms of the new Hamiltonian H’ B q) =
H(p, q, 1) + 0W/0dt. Coordinates in phase space for which the original
1-form p dq is given by the same simple formula up to a total differen-
tial are called canonical coordinates. It should be emphasized that a
particular system of canonical coordinates is not tied to any special
Hamiltonian; but for some exceptional Hamiltonian, one might find
canonical coordinates in which this Hamiltonian turns out to have a
simple form. Whether the Hamiltonian can be simplified at all, by any
possible choice of canonical coordinates, depends on the Hamiltonian;
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if the simplification is possible, the system is called integrable, and will
be discussed in the next chapter.

The formal relationships between the new action integral S(q”'¢ E)
and the momentum p’ at the beginning as well as p’’ at the end of the
trajectory are contained in the formulas

w_ S, _ 9S85
S o P T T T BE

The partial derivatives with respect to ¢’ and ¢"’ are calculated for the
fixed energy E, whereas in the corresponding formulas (1.8) these de-
rivatives are taken at constant value of £. With this proviso the two sets
of formulas are equivalent.

When going toward quantum mechanics it seems advisable to think
of the integral over pdg as a new and physically relevant 'length’ of
the trajectory. In the case of a particle moving freely in (Euclidean)
space, the trajectory is a straight line from ¢’ to ¢/, and its energy E is
now p?/2m; the momentum p = mq points in the direction of motion,
as does the increment (differential) dg ; their scalar product p dg is
simply the length (absolute value) of B times the length (absolute
value) of dg, pdqg = |p| dg .| Since  p|” k& 2mE is constant along
the trajectory, we are left with the integral over |dg | from 4’ to 4"
which gives simply | ¢’ — 4’| ; therefore

SW@'d E) = /2mE" —d) . (2.5)

This elementary calculation was carried out verbally rather than al-
gebraically because the relationships between the quantities should be
present in the mind of the reader at an almost instinctual level rather
than as formal propositions to be written down when needed. Notice
the big difference between this last expression and formula (1.5) for
R(¢"q " =), which involves the square of the distance from ¢’ to 4"’
rather than the distance itself as in (2.5).

(2.4)

2.3 The Variational Principle of Euler and Maupertuis

The variational principle of the last chapter is not easily transferred
from Lagrangian to Hamiltonian mechanics. Nevertheless, we will
mention at least one formulation because it is occasionally helpful.
We assume again the most familiar situation where H = T + V and the
kinetic energy T = p%/2m, while the potential energy V depends only
on the position coordinates g. Now we can use the argument of the
preceding paragraph: because the constant value E of H is given, we
find p? = 2m(E — V). Moreover, as before, the directions of p and dg
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are parallel, and the integrand of (2.3) is given by the product of the
absolute values of p and of dgq. Thus,

g
S(¢"qd E) = f V2m(E-V) |dq|, (2.6)
q

to be integrated along the trajectory that leads from ¢’ to ¢”’. The pa-
rameter along the trajectory is again irrelevant since the integrand is
homogeneous of first degree in dg.

The argument that follows is quite similar to the one in Section 1.2;
we start again from a trajectory go(7), and we add a small deviation
8q(7) in order to get the path ¢(); then we expand the integral (2.6)
in powers of 8g(7) so as to get the first and the second variation. The
equations of motion for the trajectory go(r) are again found to be
equivalent with the proposition that the first variation 45 = 0.

In this form Maupertuis and Euler gave the world the first vari-
ational principle of mechanics in 1744. This proposition can be given
a purely geometric interpretation: If one defines a length for any curve
in the space of position coordinates g by the integral (2.6), then the
trajectories of a particle with energy E in the potential V(g) have a
vanishing first variation. They can be viewed as the locally shortest
connection between the two endpoints when the distance is measured
by the formula (2.6), exactly as geodesics in a manifold with a
Riemannian metric.

2.4 The Density of Trajectories on the Energy Surface

As in Lagrangian mechanics one can ask what happens to a swarm of
particles that starts from the initial position 4’ with the energy E, but
taking off in directions p’ + 8p’. In contrast to the deviations in initial
momentum of the preceding chapter, which are completely arbitrary,
one has now lost one degree of freedom by specifying the energy to be
the same for all trajectories. The trajectories are bound by the condi-
tion H(p, q) = E to a (2n — 1)-dimensional surface on phase space, the
surface of constant energy. This restriction leads to a slightly different
definition for the density of trajectories in the neighborhood of the one
that starts in ¢’ and ends in ¢”’ at the fixed energy E.

The original expression (1.19) for the density C(q'q’’?) in
Lagrangian mechanics is used as starting point; but the derivatives of
the action integral R(q’q"t) are now written in terms of the action in-
tegral S(¢'q" E), which is defined by (2.3) together with ¢ = 8S/dE
from (2.4). The derivatives of R in (1.19) are taken at constant time
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t, while the energy is allowed to vary. Thus, we have to allow for a
variation dE/dq while enforcing the condition

ot o 3%s 9*S OF
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which applies either to ¢’ or to ¢’
The entries in the determinant (1.19) become
__9R__ _ ¥S &S &S, &S
aq 94" dq' 84" dEdq' OEdq"” ' OEJE
with the appropriate indices. The n by n determinant with these com-

plicated entries can be written in terms of the n + 1 by n + 1 determi-
nant

3*s %S

84 09", o4 OE 0%S
D"’E=—1 + 1 l J i - _ C"’t.2.7
(@'dB) = (-1 s s 2 C@'dD. 27
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The n by n subdeterminant in D, which consists of the second de-
rivatives of S with respect to ¢’ and ¢’ alone, without the last row and
the last column containing the derivatives with respect to E, vanishes.
This can be seen if one writes the conservation of energy with the help
of (2.4) in the form of a first-order partial differential equation for .§
as function of q",

aS
H@", 4" = H( W q') = E. (2.8)
If this equation is differentiated with respect to ¢’, one finds
d "oon oH 9’S
H s = = 0 . 2.9
Oq',- (H(p", q)) ap"j 3q"j arqi (2.9)

The matrix of mixed second derivatives is singular, because the vector
dH/dp";, the velocity vector according to (2.2), is mapped into 0.
The determinant (2.7) can be made more understandable if we use
a local coordinate system in the neighborhood of the trajectory from
4 to ¢" ; further details will be worked out in Chapter 7. The coordi-
nate axis for g; runs along this particular trajectory. The remaining
coordinates, say ¢, and g3, are transverse to the trajectory; for example,
they are chosen at a right angle to the direction of motion along the
trajectory. The velocity vector dH/ Gp"j has, therefore, the compo-
nents (g; , 0, 0). Equations (2.9) then tell us that the second deriva-
tives 925/ 6q"j-6q'i vanish whenever either j = 1 ori = 1. The first
row and the first column in the determinant (2.7) vanish, except the
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last terms containing the partial derivatives with respect to E. Their
values are obtained from differentiating (2.8) with respect to E, yield-
ing ¢ 8°S/0¢10E = 1. In this way, we can write

2
D'dE) = ——— | 23 | (2.10)
14"l 1g"| | 9999,
where the determinant excludes the indices j = 1 ori = 1. If the

dynamical system has only one degree of freedom, only the first factor
remains in (2.10), and D becomes simply the product of the inverse
velocities at the beginning and at the end.

Although there is only the factor 325/9E? between D and C in
(2.7), the appropriate density of trajectories in the mechanics of
Hamilton and Jacobi is undoubtedly D rather than C. The factor be-
tween them is the derivative d¢/dE, which can be interpreted by going
back to the original idea in (1.18). The n- dimensional volume of var-
iations 8p’ in the numerator is divided by the variation 8F in energy,
and the n-dimensional volume of variations 8¢” in the denominator is
divided by the variation 6 in arrival time. If the energy E is changed,
but the starting point ¢’ and the endpoint ¢”’ remain fixed, then the
transit time ¢ has to be changed, too. For this reason, one needs the
peculiar division of the volume of endpoints by 8. The allowed swarm
of trajectories has thereby been effectively constrained to the energy
surface.

There is a more formal aspect to this argument, which betrays our
ultimate goal of reaching the quantum-mechanical limit. The physical
dimension of C is [volume in momentum space]/[volume in position
space] as shown in (1.18); but (1.19) has the equivalent physical di-
mension of [volume in phase space]/[volume in position space]?. If
one takes the square root, the volume of position space appears in the
denominator. Similarly, D has the physical dimension of [volume in
phase space]/[volume in position space times energy]2, which reduces
after the square root to both [volume of position space] and [energy]
in the denominator. As one goes to quantum mechanics, the [volume
in phase space] in the numerator gets divided by the appropriate power
of Planck’s quantum #, leaving only the denominator. Thus, the square
root of D is related to something like a density in energy as well as in
position space that will be called Green’s function in Chapter 12.
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2.5 Example: Space Travel with a Given Energy

The same problem as in the preceding chapter will now be taken up,
but the conditions are changed to fixing the available energy E rather
than the available time interval /' — ¢ for the trip from Earth to Mars.
We will first give an analytic expression for the action S(¢”'¢ E) using
the same calculation as in Section 1.4. Then we will give a geometric
construction of Jacobi for finding the trajectory from ¢’ to 4" at the
energy E. The main purpose of this exercise is to determine the number
of conjugate points on a Kepler ellipse that will be important in quan-
tizing the hydrogen atom.

The action S(¢''q'E) is obtained from the integral (2.3) using the
eccentric anomaly u from (1.11) and (1.12) as the parameter of inte-
gration, exactly as in the calculation of R("qd " =) of (1.15). The
result for the direct trajectory is

S(¢"dE) = my/GMa (y +siny — 8 —sing),  (2.11)

where the angle y is given by (1.13a), and § by (1.13b), while the
semimajor axis a = — GMm/2E. Notice that this expression for the
action is complete, i.e., it does not depend any longer on solving an
equation like Lambert’s (1.14). The right-hand side of (2.11) can be
expanded exactly like (1.14) as a power series in the normalized energy
¢ and the given distances p and », including the appropriate modifica-
tions for the indirect trajectory, and the positive energies.

The three expressions (1.14), (1.15), and (2.11) are not independ-
ent because of the definition (2.3) for S in terms of R, E, and t. More
striking, however, is the last of the relations (2.4) which allows us to
obtain Lambert’s formula (1.14) directly from (2.11) by differentiat-
ing with respect to E.

Now to the geometric construction (Jacobi 1842, p. 48): Since the
Sun at the origin O is one of the two foci for the Kepler ellipse of our
space trip, the main problem is to find the other focus F from the in-
formation that the ellipse has to go through ¢’ and ¢”’. The construction
of F, as shown in Figure 2, turns out to be quite simple, provided we
have obtained the length of the semimajor axis a = — GMm/2E from
the given energy E.

The sum of the distance ¥ = Og’ and the distance d’ = ¢'F equals
2a, so that d’ = 2a — /' similarly, the distance ¢’ F =d" = 2a — /".
Therefore, we draw a circle of radius d " around q', a circle of radius
d"" around 4", and find their intersections.

If the sum of the distances Og' + ¢'q”" + ¢"’ O is greater than 4a,
or equivalently, ¢'q”" + ¢'O > 4a — ¥, the circles do not intersect, and
there is no trajectory from ¢’ to ¢’ at the given energy E. In other
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Fo q

2a

Figure 2 Jacobi’s construction of the Kepler ellipse from ¢’ to ¢”’, if the energy
E of the trajectory, i.e., its major axis 2a, is given. Notice the completely
different eccentricities, i.e., angular momenta, for the two solutions.

words, if the position of O and the initial position ¢’ are given, the final
position ¢’ has to be inside a critical ellipse with O and ¢4’ as foci and
the major axis equal to 4a — ¥; otherwise, there is no trajectory from
q to 4’ with the energy E. The action S(q’¢'E) is not defined outside
this critical ellipse.

If 4" is inside the critical ellipse, the second focus F is obtained by
intersecting the two circles, of radius &’ around ¢, and of radius "
around ¢”’. For each of the two possible choices for F, the corre-
sponding Kepler ellipse can be constructed, because not only the
semimajor axis a, but also the eccentricty e as well as the perihelion is
now known. The action S(¢"'¢'E) = [ p dg along each of the two el-
lipses can be calculated without explicit knowledge of the time-
dependence. The integral contains no worse than the square root of a
quadratic function, and can be worked out in terms of elementary
functions to yield (2.11) without ever invoking Kepler’s equation
(1.12).

For 4"’ inside the critical ellipse there are always exactly two inter-
sections, F| and F5, for the two circles, and therefore, two Kepler el-
lipses from ¢’ to ¢” at the energy E. The two trajectories are well
known to tennis players and artillery officers, the straight low shot and
the indirect high shot, both with the same expenditure of energy or gun
powder.

When 4"’ approaches the critical ellipse these two trajectories co-
alesce and give rise to a conjugate point. Equivalently, all the Kepler
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Figure 3 Critical ellipse for the point ¢': all the Kepler ellipses around the same
center of attraction O, with the same energy (major axis), and going through
the same point ¢’ stay inside their common caustic, an ellipse with O and ¢’
as foci.

ellipses through 4’ with the fixed semimajor axis a lie inside the critical
ellipse and touch it. Indeed, consider the Kepler ellipse through ¢’, with
the focus F in addition to O, and with the semimajor axis a. We have
both 0q' + ¢ F=2aand 04" + ¢q'F = 2a, wherever ¢’ happens to lie.
As we move ¢/ away from 4’ along this Kepler ellipse, we come to the
point where ¢’ and ¢’ lie on a straight line through F. This point lies
on the critical ellipse because we have Og¢ + ¢'q’ + 4’0 = 4a.
Therefore, every trajectory through 4 touches the critical ellipse in a
conjugate point, and the critical ellipse itself is a caustic. Notice that
it is not sufficient for the point 4"’ to satisfy the condition that
V(¢"") < E to be reached from ¢’ with the energy E. As is well known
in space travel, and shown in Figure 3, a launch window is needed. The
goal of the space journey has to be inside the critical ellipse at the time
of arrival.

In the transition from classical to quantum mechanics, the number
of conjugate points on a trajectory that closes itself smoothly like a
Kepler ellipse is of great importance. The construction of the critical
ellipse has shown the existence of one conjugate point on any given
trajectory through ¢'. A second conjugate point is ¢’ itself since all
trajectories starting there return to it; ¢’ is a focus rather than simply
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a point on a caustic. Thus, there are two conjugate points along one
closed Kepler ellipse in two dimensions.

When the electron is allowed to move in three dimensions, the
construction remains the same as above, but the plane of the Kepler
ellipse can be any which contains both O and 4'. Therefore, the col-
lection of Kepler ellipses through O and 4’ can be rotated around the
line joining O and ¢’. We now get a third conjugate point where the
trajectory intersects this line, just as the first conjugate point was lo-
cated on the straight line through ¢ and the focus F. Finally, all the
Kepler ellipses return to ¢’ regardless of their orientation in space, so
that the point ¢’ becomes a double conjugate point since a two-
parameter family of trajectories all meet there again (cf. Gutzwiller
1967 and 1969). In conclusion, there are four conjugate points on the
Kepler ellipse in three dimensions. This difference in the number of
conjugate points accounts for the different energy spectra of the hy-
drogen atom, with half-integer quantum numbers in two dimensions
and integer quantum numbers in three dimensions, as will be discussed
in Chapter 14.



CHAPTER 3

Integrable Systems

Chaotic dynamical systems are the main topic of this book. Many
readers, however, have grown up in the belief that most systems of in-
terest are regular. The contrast between regular and chaotic behavior
has to be well understood in order to appreciate the novel features in
the chaotic systems. Therefore, this chapter is devoted to the dis-
cussion of the regular systems, and in particular to the display of some
of the more challenging examples.

Since the discusssion of integrable systems has been the mainstay
of all the advanced textbooks on classical mechanics, this topic is highly
developed, and an adequate account would take up too much space.
We shall try, therefore, to explain the salient features without proofs
or elaborate calculations. Nevertheless, the ideas will be presented
with greater care than might at first appear necessary, not so much for
dealing with the examples in this chapter, as in view of the more diffi-
cult discussion of the three-body problem and the methods for its sol-
ution in Chapters 4 and 5.

3.1 Constants of Motion and Poisson Brackets

Integrable dynamical systems are characterized by the existence of con-
stants of motion in addition to the energy. It may not always be easy to
find an explicit expression for these, but their presence can immediately
be recognized because they generate invariant tori in phase space.
What constants of motion and invariant tori are, and what they do for
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the dynamical system, will be explained in the next few paragraphs.
The adjectives ’integrable’ and ’separable’ designate systems that be-
have essentially in the same way. The small difference in meaning be-
tween these two words will be explained at the end of the chapter.
Although we started out with Lagrangian mechanics and declared
it to be the more fundamental and natural approach to the secrets of
the universe, most of the discussion concerning special examples will
be done in the framework of Hamiltonian mechanics. First, the
Hamiltonian H(p, q) of the dynamical system will be written down, and
then the equations of motion (2.2). Suppose that these two steps have
been completed, and a function F(p, q) is discovered, defined in the
relevant part of phase space, with the following property: The value
of F stays constant as a function of time ¢ when its arguments,
p and g, are replaced by a solution of the equations of motion (2.2).
Such a function is called a constant of motion of the dynamical system.
The constant value along a trajectory in phase space requires that

d oF dp oF dq
0= dt Fo. 9 = dp dt + dq dt 3.1)
_ BH OF _ OH OF _ g g
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The second line defines the Poisson bracket [H, F], which can be com-
puted for any two functions in phase space. The vanishing of the
Poisson bracket between the Hamiltonian H and the function F
throughout phase space makes F a constant of motion.

This last condition can be given a geometric interpretation: the vec-
tor field ( — dH/dq, 0H/dp) in phase space is tangent to the surface
F(p, q) = constant. Conversely, the vector field ( — dF/dq, 0F/dp) is
tangent to the energy surface H(p, q) = E. The trajectory lies in the
intersection of these two surfaces in phase space.

A whole collection of constants of motion might be found for the
dynamical system; call them Fi, F,, .... Each constant has a vanishing
Poisson bracket with the Hamiltonian in accordance with (3.1).
Moreover, it is important that they are independent of one another; it
should not be possible to express F3 as a function of F; and F,. The
trajectory then lies in the intersection of all the surfaces
Fi(p, q) = constant with the appropriate values of these constants.

These restrictions on the constants of motion, however, are not
sufficient as yet to assist in solving the equations of motion. The next
paragraph will discuss additional conditions to be imposed on the con-
stants of motion; if they are satisfied, a special system of coordinates
can be constructed in phase space: the action-angle variables, which
account for the special properties of integrable systems.



32 Integrable Systems

A dynamical system with n degrees of freedom has a phase space
of 2n dimensions. Suppose that we have been able to find k inde-
pendent constants of motion including the energy H(p, q) = E. The
trajectory is then restricted to a (2n — k)- dimensional subspace of the
whole phase space. This subspace contains k different vectorfields,
one from each of the k constants of motion; but these vectorfields are
generally not compatible with one another. One can choose a curve C;
by following the first vectorfield, and take each point of C; as starting
point for a set of curves C; along the second vectorfield; this set of
curves defines a two-dimensional surface in phase space. It would be
nice if this surface not only was filled with the curves C, along the
second vectorfield, but also could be covered with curves of the type
C, along the first vectorfield. This cannot be done, however, unless the
two constants of motion F; and F> are in involution, which means that
their Poisson bracket vanishes. In general, therefore, the existence of k
integrals of motion does not leave the remaining (2n — k)-dimensional
manifold with a simple internal structure, unless the constants of mo-
tion are in involution with one another.

3.2 Invariant Tori and Action-Angle Variables

The most favorable circumstances are achieved when there are at least
n constants of motion in involution, as many as there are degrees of
freedom. The trajectory is then confined to an n-dimensional manifold
that is covered by n compatible vectorfields. Let us assume, moreover,
that none of these vectorfields ever vanishes on the manifold of inter-
est. Then, by a remarkable theorem of topology, this manifold has the
shape of an n-dimensional torus; i.e., by a smooth deformation the
manifold can be transformed into an n-dimensional cube whose points
on opposite sides are identified. Each trajectory of the dynamical lies
inside such an invariant torus. The dynamical system is then called
integrable.

The reader may be familiar with the fact that » constants in
involution imply the integrability of the dynamical system, or equiv-
alently, the possibility of finding explicit solutions for the equations of
motion. But to demand the existence of these constants of motions is
much more restrictive than is generally realized; when they do exist,
however, the mechanical system can be described in very explicit detail.
The next step in the treatment of such systems is the construction of
action-angle variables.

Before getting into the technical details, the reader should try to
imagine why, in a system with two degrees of freedom and two con-
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stants of motion in involution, the trajectories cannot lie on a sphere
(or a surface with the same topology, like an egg or a pear); it is im-
possible to define a vectorfield on a sphere that does not vanish some-
where; just as it is impossible to comb down the hair on one’s head
without admitting a part or an eddy. On the surface of a torus that is
covered with hair, however, there is no trouble in combing it down flat

everywhere.
The deformation of the manifold into the n-dimensional cube can
be used to define new coordinates (wy, ws, ... , wy), called angle vari-

ables, designated as w collectively, each of which varies from O to 2«
like an angle. If the n compatible vector-fields are taken as the basis
for these coordinates, the vector-field ( — dH/dp, dH/dq) has con-
stant components throughout the manifold, (wi, wo, ... , w,), called the
frequencies of the dynamical system, and the trajectories become
straight lines. The set of frequencies w depends on the values of the
constants of motion for the particular invariant torus. Therefore, the
ratios between the individual frequencies for a particular torus are,
generally, irrational numbers; they become rational only for special
values of the constants of motion. As a word of caution, the whole
problem of solving the equations of motion is hidden in the few sen-
tences of this paragraph and the next.

The coordinates w are used as the position coordinates in a new set
of canonical coordinates for the whole of phase space (cf. Section
2.2); or as one half of a system of canonically conjugate coordinates.
The other half of these coordinates will be called (11, I, ..., I,,), ab-
breviated by the single letter /. The action integral S in (2.3) as an
integral over p dqg now becomes an integral over I dw. If the reader is
willing to admit the existence of the variables I with the property that
pdg =1dw (its construction will be discussed quite generally in
Chapter 7), then the explicit calculation of 7 proceeds as follows.

Suppose that only w; varies, and that it runs from O to 27; a closed
loop C; is thereby defined in the original coordinates (p, g) of phase
space. Since the action integrals in the two coordinate systems have
to agree, we find immediately the formulas

I, = e pdq. (3.2)
T Ci
The new variables I play the role of momentum with respect to the
positions w ; they are called actions, while the variables w are called
angles. Together they form the action-angle variables.

Most textbooks in classical mechanics present the transformation
of an integrable system from the original coordinates (p, q) to the
action-angle variables (Z, w), using Jacobi’s theory of first-order partial
differential equations. Quite in contrast, the above discussion relies as



34 Integrable Systems

a first step on finding the appropriate angular variables w ; they are
obvious as soon as the invariant tori in phase space have been recog-
nized, and vice versa. If the trajectories can be written in terms of as
many angular variables as degrees of freedom, then the invariant tori
have been obtained explicitly, as will be shown in the next section.
Most of the recent work on chaos in classical mechanics starts from a
search for the invariant tori, while most of the classical work in celestial
mechanics starts out by writing the coordinates in terms of angular
variables. Thus, our presentation stays close to these two important
applications of Jacobi’s general theory.

3.3 Multiperiodic Motion

The most important statement in the preceding section concerned the
time-dependence of the angle variables: they could be chosen such that
their derivatives with respect to time, the frequencies w, were the same
on the whole invariant torus. The equations of motion (2.2) in the
action-angle variables now take the trivial form

dl; o0H dw; OH

The usual arguments have been reversed: since the actions I are con-
stants of motion, the Hamiltonian can no longer depend on the angles
w ; also, the frequencies w are simply the derivatives of the Hamiltonian
with respect to the actions /. The Hamiltonian in the new coordinates
does not depend on the angles, and is, therefore, written in the form
H(,, I, ..., I,), not to be confused with the previous expression
H(p, q), which uses the same letter H to designate another function!

The action-angle variables give the complete solution of the equations
of motion. The general solution of (3.3) is given by w; = w;  + ¢,
where the frequencies « are determined by the values chosen for the
actions I, and the phase angles ¢ can be chosen arbitrarily. There are
many useful angle-type variables in any special problem, like the true
or the eccentric anomaly in the Kepler problem (cf. Section 1.4); but
their variation with time is not linear in general; they are not angle
variables as defined above, in contrast to the mean anomaly. The dif-
ficulty with integrating the equations of motion here consists in finding
the angle-type variables whose time-dependence is indeed linear.

When transforming back from the action-angle variables to the or-
iginal set (p , ¢), one sees that they are periodic with period 2 in each
one of the angles w. It is, therefore, natural to make Fourier expansions
in w,
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@ @) = D (PO, i explilhyw + - + kw)],(3.4)
Ky, ..., ky

where each integer k goes from -« to +e. Formula (3.4) is shorthand
for one such expansion for each component of p and g. The expansion
coefficients P and Q are complex numbers and depend on the values
of the actions I ; but they satisfy the simple relation Pg; = Py _y;,
where + indicates the complex conjugate, to make the sum over the
multi-index {kf = (ky, ..., k,) real. If the motion of a Hamiltonian
system can be written in the form (3.4), it is called multiperiodic.

How does a perturbation look in the action-angle coordinates? In
most of the interesting cases the perturbation arises as an additional
time-dependent potential energy V(q, t) that is periodic with the fre-
quency wo with respect to . In the action-angle variables of the dy-
namical system, V(q, t) becomes again a Fourier series,

V@) = D Vi k. k explitkowy + kywy + -+ + k)], (3.5)
ko, k1, ..., k,

where the complex coefficients Vi, «,, .., k, are functions of I. The same
symmetry conditions among them apply as for P and Q in (3.4), to
obtain a real value for the sum. The periodic time-dependence of the
potential ¥(q, t) has been included in the Fourier expansion through
the angle wp = wof + ¢p; but in contrast to the other frequencies, wg
does not depend on the values of the actions 1.

This whole theory of integrable systems will now be illustrated with
three examples of a slightly more complicated kind than the ones ordi-
narily found in textbooks. The purpose of this presentation is not to
offer a complete discussion of the solution, but to provide the reader
with some material for practice and enjoyment on examples which can
be treated without lengthy development. The frequencies w depend
on the actions / in a non-trivial manner, which means that the matrix
of derivatives of w with respect to 7 is not singular. This condition is
not satisfied by the usual textbook examples, like the Kepler problem
or a system of linearly coupled oscillators. Therefore, these two sys-
tems, although integrable, present special difficulties when perturba-
tions are applied, or the transition to quantum mechanics is made.

The three examples, though typical of integrable systems, are spe-
cial in other ways. All three of them are non-trivial in the sense that
their integration came as a surprise to the specialists in the field, and
the authors who first succeeded in solving the problem became famous
among scientists for having done it. Moreover, each one of the three
solves an important general question in physics or in geometry. They
will be taken in their historic order.
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3.4 The Hydrogen Molecule Ion

Two protons are fixed in the position A and B a distance 2c away from
each other, in the locations (0, 0, — ¢) and (0, 0, ¢) of a Cartesian co-
ordinate system. A single electron at (x,y,z) is subject to the
Coulomb attraction of both protons. Let r4 be its distance from A, and
rp its distance from B; the Hamiltonian is then given by

2 2
p 2, 1 1 e
m )t e (3.6)
where the constant e2/2c¢ has been added in order to account for the
electrostatic repulsion of the two protons.

The solution of this problem can be rated, with only slight exagger-
ation, as the most important in quantum mechanics, because if an en-
ergy level with a negative value of E can be found, the chemical bond
between two protons by a single electron has been explained. Classical
mechanics yields all kinds of interesting trajectories for this problem,
but none of them is safe from losing energy by some external pertur-
bation and thereby leading to the collapse of the molecule. This situ-
ation remains even if one tries to replace the point charge of the
electron by a charge cloud.

The classical problem was first solved by Euler in the context of two
stationary heavy masses exerting a gravitational attraction on a third
light mass. The solution is rather easy when one defines elliptical co-
ordinates with the heavy masses at the two foci. The equations of
motion can then be separated into three sets of second-order equations,
with each set solved by elliptic functions.

Two of the constants of motion are obvious: the total energy E, and
the angular momentum M = xv — yu around the z-axis, where the
Cartesian components of the momentum are called (u, v, w). The third
constant of motion, however, is difficult to write down in a physically
appealing manner; one expression is the following,

Q = L,Ly + 2me’c(cosf, — cosfp), (3.7)

H =

where L4 and Lp are the angular momentum vectors of the electron
around A and around B, while 8,4 and 8p are the angular distances of
the electron from the axis of the molecule, as seen from A and from
B. The three variables H, M, and ! are in involution.

The classical problem has three physical parameters: the distance
2c¢ between the two protons, the mass m of the electron, and its electric
charge e ; therefore, all dynamical variables can be normalized clas-
sically. The energy is measured in units of e?/c, and Q in units of
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2m e?c; the trajectories cannot be scaled with the energy E as in the
Kepler problem.

Before discussing the results, a little history of the problem is well
worth telling. After Bohr had given the first solution of a quantum-
mechanical problem in 1913 by deriving the energy spectrum of the
hydrogen atom, Sommerfeld generalized Bohr’s idea, and then asked
his precocious student, Wolfgang Pauli aged 19, to treat the hydrogen
molecule ion for his Ph.D. thesis. At that time, in 1919, it was not
known whether there exists such a molecule as the singly ionized H.
Something like it had been seen, but under conditions which made it
unlikely that the ion would be stable.

Pauli (1922) applied the rules which Bohr and Sommerfeld had
proposed and concluded that the hydrogen molecule ion could only be
metastable. He showed that its lowest energy level (3.6) was positive;
but it would only decay because of collisions, and not by emitting light
as most other unstable atoms or molecules. As soon as Schroedinger’s
equation had been established in 1926, the problem was solved cor-
rectly, and the energy of the lowest state was found to be negative (for
the relevant references, cf. Strand and Reinhardt 1979).

Pauli worked exactly in the no-person’s land between classical and
quantum mechnics which is our main concern here. It would be very
painful if his problem could not be done correctly at least to the point
of obtaining a negative energy. It turns out that Pauli did not know
about the role of conjugate points along the classical trajectories, and
their importance for the approach to quantum mechanics. His
quantization conditions were too restrictive; his wavelets made a hard
reflection on the caustics instead of a soft one, changing their phases
by 7 instead of 7/2, as will be explained in Chapter 14.

The semiclassical quantization of the hydrogen molecule ion was
carried out recently by Strand and Reinhardt (1979), using the im-
proved quantization rules that will be discussed later. Their pictures
of the classical trajectories are shown in Figures 4 and 5. The energy

E is defined such that E = E +1/2,and Q@ = — E- y. The three fig-
ures have the common values £ = 0 and M = 0, whereas § has been
given the values 0.4, 1.0, and 2.4.

Remarkably, the lowest quantum-mechanical state corresponds to
the value 0.4 of Q as in Figure 4. The trajectory for this value of  does
not surround both protons as do the two other trajectories; it is con-
fined to a region around one proton or the other. The electron takes
advantage of an opportunity which is not available in classical me-
chanics, tunneling from one trajectory to another, from the neighbor-
hood of one proton to the neighborhood of the other, back and forth.
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Figure 4 The classical trajectory of the electron for the relevant values of the
constants of motion in the ground state of the hydrogen-molecule ion HF ;
the quantum-mechanical ground-state requires the electron to tunnel between
the two classically allowed invariant tori with the same constants of motion.
[From Strand and Reinhardt (1979)]

The potential energy of the electron at the center of the molecule
is quite negative when ry = rg = c; the need for the electron to tunnel
is not due to its inadequate energy. The classical trajectory is limited
by the dynamics of the problem, in much the same way the Kepler el-
lipses were confined to a critical ellipse. It is a big open problem to
make classical mechanics in general cope with this quantum-
mechanical phenomenon; some of the difficulties are discussed in the
work of Strand and Reinhardt. Section 14.6 will briefly present one
approach to the problem of tunneling in dynamical systems.

3.5 Geodesics on a Triaxial Ellipsoid

The surface of a two-dimensional ellipsoid can be imbedded in
three-dimensional Euclidean space by the equation

oy =+ = =1, (3.8)

where the axes satisfy the inequality a > b > ¢ > 0. When a particle
moves freely on this surface, it is subject to a force that is always per-
pendicular to the tangent plane, and whose direction is, therefore, given
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Figure 5 Classical trajectories near the ground-state energy of H3 for values
of the constants of motion that do not correspond to the quantum-mechanical
ground state. [From Strand and Reinhardt (1979)]

by the vector (x/a?, y/b?, z/c?) times some factor A to be determined.
The equations of motion then become

du X dx u

— = - A —,.., — = — .., 3.9

dr a’ dt m (3.9)
where (u, v, w) is the momentum. By taking two derivatives with re-
spect to time in (3.8) and replacing the second derivatives of (x, y, z)
according to (3.9), one gets the condition,
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u’/a® + v?/b% + wi/c?
mA = >3 " - (3.10)
x“/a" + y°/b" + z°/c
If the initial position of the particle satisfies (3.8), and the initial mo-
mentum is tangential to (3.8), then the whole trajectory stays on the
ellipsoid.
It is now straightforward to check that the quantity
(xv — u)2 (xw — zu)2
A=+ - . (1D

2 2 2 2
a " —b a” —c¢

and similar ones, B and C, which are obtained by the cyclic permuta-
tion of the triples (x, y, z), (u, v, w), and (a, b, ¢), are indeed constants
of motion. These three quantities are not independent since one has
the relation 4 + B + C = u? + v? + w?, where the right-hand side is
the kinetic energy which is in fact the Hamiltonian of the system.
A, B, and C are in involution.

The geodesics on a two-dimensional surface are the trajectories of a
freely moving particle; for the triaxial ellipsoid they were found by
Jacobi (1842, p. 212), who used quite a different method. He intro-
duced triaxial elliptic coordinates in three-dimensional Euclidean space
which constituted a difficult generalization of Euler’s coordinate sys-
tem in the preceding problem. The equations of motion can then be
separated, and the motion for each coordinate is given again by an el-
liptic function. The geodesics on a multi-axial ellipsoid in higher di-
mensions have recently been discussed by Moser (1980); billiards
inside an ellipse have been discussed recently by Chang and Friedberg
(1988).

As in the preceding problem, we have simply quoted the constants
of motion, without trying to integrate the equations of motion. As
before, they turn out to be some kind of angular momenta, and are at
most quadratic in the momentum (u, v, w). Although it took Euler in
the first case, and Jacobi in the second, to find a method for integrating
the equations of motion, the solutions they found are in a sense ele-
mentary. It suffices to find the appropriate coordinate system in posi-
tion space, and the rest follows. Until some 20 years ago, that was the
only successful method known. The next example shows that certain
dynamical systems are integrable, but their constants of motion are
much more involved; there are no special position coordinates where
the equations of motion separate.
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3.6 The Toda Lattice

The lattice or chain consists of n particles which move along a straight
line and are coupled by non-linear springs. If the particle i has the
momentum p; and the position g;, then the Hamiltonian becomes

(n)

1 - 2 qi_qi+1
H = 3;21:]), +VOZ exp ( = ), (3.12)

where we have two possibilities which are indicated by the symbol (#)
in the last summation: for the open lattice we set (n) = n — 1, while for
the periodic lattice we set (n) =n along with the convention
dn +1 = 4q1-

Several comments are necessary to appreciate the remarkable
properties of this Hamiltonian. There are three physical parameters,
the mass m of each particle, the strength ¥, of the potential, and the
range a of the potential. It is natural to choose these parameters as the
physical units, so that the Hamiltonian contains only dimensionless
quantities. Once this has been accomplished, however, any new phys-
ical quantity cannot be reduced to 1 by the choice of the physical units.
In particular, when going to quantum mechanics, Planck’s quantum #
now has some definite numerical value, small, medium, or large.

This situation is expected to prevail in any truly non-linear system;
but no other integrable system known so far has this typical structure.
All the others have at most two physical quantities, so that the transi-
tion to quantum mechanics does not allow the possibility of distin-
guishing the effects of a large or small Planck’s quantum. The various
domains of physics such as the motion of atoms in molecules and
crystals, the motion of electrons in atoms and molecules, the motion
of protons and neutrons in nuclei, and finally, the motion of elementary
particles inside their little boxes, yield a Planck’s quantum equal to 1,
if one uses whatever units are natural to the system. The limit of a
small Planck’s quantum is a mathematical fiction when we come to the
fields where quantum mechanics is important; but this fiction is ap-
parently unavoidable if we want to form some intuitive picture of the
events on the microscopic scale.

Toda (1967, 1970) invented his chain of particles and springs, and
gave a special solution for it, a soliton. Up to that time, solitons had
been found only in continuum mechanics, that is in non-linear systems
where the masses are distributed continuously over the available space.
Solitons are solutions of the equations of motion in which an isolated
bump moves at constant speed. Such special solutions are not hard to
find in continuous systems; but once found they must be shown to be
stable against small disturbances. In discrete systems, however, it is
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very difficult to get such solutions in the first place, let alone to show
their stability. Toda’s solution requires an intimate knowledge of el-
liptic functions, and stability was not shown at first.

It occurred to Joseph Ford in 1973 to test numerically the
integrability of the Hamiltonian (3.12), i.e., the presence or absence
of invariant tori, using the standard method of surfaces of section to
be explained in Chapter 7. He expected the system to be chaotic be-
cause it is close to the well-known Hénon-Heiles system, which will
be the main topic of Chapter 8.

The numerical calculation was carried out by Ford, Stoddard, and
Turner (1973), for the simplest case of interest, n = 3. The verdict
was clear: the Toda lattice is integrable. Ford communicated this
finding to Hénon (1974) and Flaschka (1974), who discovered inde-
pendently, within less than a week and by two different methods, how
to construct the missing constants of motion. We will discuss
Flaschka’s procedure because it is closely patterned after the general
method that Lax (1968) invented for the discussion of the solitons in
continuum mechanics.

The main idea is contained in the following statement whose proof
is almost trivial. Assume that two matrices, L and M, have been con-
structed whose elements depend on the parameter ¢, and which satisfy
the condition

dL
dt

Then the eigenvalues of L, or equivalently, the coefficients in the
characteristic polynomial, det(L — AJ), do not vary with t. The matri-
ces L for different values of ¢ are said to form an isospectral series.
Methods for finding such a Lax pair (L, M) are discussed by Greene,
Tabor, and Carnevale (1983).  For the Toda lattice, the matrices L
and M are

= LM - ML . (3.13)

b, a; 0 a, 0 aq 0 —gq,
L = 0 , M = 0 —a, 0 ,  (3.14)
a, 0 b, a,

where the diagonal elements b; of L, and the off-diagonal elements a;
of L and M are given by

4+1— 4
a;, = exp( ——2——), b, = p;, (3.15)
in terms of the momenta p; and the positions ¢;. The element a, is zero
for the open chain. The equations of motion for the Toda lattice are
identical with the condition (3.13).
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The constants of motion are the coefficients in the characteristic
polynomial of L; or more explicitly, let F; be the trace, and let F; be the
sum of the j-th principal minors. In this manner one gets for the two
first constants the expressions

F, = zb,- = EP:' = total momentum P, (3.16)

2 1 1 2 2 P?
F= Sbt= a =5 Dbby— g D - Dyl == M,
i i

i<j i i

which are, of course, elementary, while the third constant is already
rather complicated, and is left to the reader as an exercise. One notices
immediately that the j-th constant is a polynomial of order j in the
momenta p. This is an entirely novel situation compared with the pre-
viously known integrable systems with a finite number of degrees of
freedom, where the additional constants of motion were at most
quadratic in the momenta.

3.7 Integrable versus Separable

Both the motion of a small mass moving in the gravitational field
or in the Coulomb field of two large masses, and the problem of the
free motion on the surface of a triaxial ellipsoid could be solved after
the appropriate position coordinates had been found. That procedure
is called separation of variables, it results in constants of motion which
are at most quadratic in the momenta; the equations of motion can be
solved by ’quadrature’, e.g., by elliptic integrals. Such a problem is
called separable.

The Toda lattice cannot be treated in this way, and what is worse,
the knowledge of the constants of motion does not automatically lead
to a set of coordinates in which the equations of motion become very
simple, such as in the action-angle variables. Such a system is called
integrable, but non-separable, a somewhat misleading term, because it
implies only the ability to integrate, but does not guarantee the explicit
construction of the integrating variables.

The complete integration of the Toda lattice has been discussed by
several authors, including Kac and van Moerbeke (1974) and Moser
(1975a and b). The fascinating part of this work, in addition to the
many beautiful mathematical propositions which appear there, is its
implication for the corresponding quantum problem. It turns out that
Schrodinger’s equation always separates when the classical problem is
separable. Nothing of the sort happens in the Toda lattice; there is no
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easy analog to the involved transformations that are necessary in the
classical Toda lattice.

The main obstacle is the intimate mixture between position and
momentum coordinates which finally yields the action-angle variables.
The construction of the wavefunctions that are simultaneous
eigenfunctions of the constants of motion is tricky. The author
(Gutzwiller 1981b) has succeeded in carrying out the necessary trans-
formation of Hilbert space for n up to and including 4; the results are
easily generalized to n > 5. But nobody seems to have gone beyond
n = 4, at least not to the point of proving an explicit algorithm for cal-
culating the spectrum (cf. Sklyanin 1985).

It is general wisdom in modern physics that problems are solvable
because they have symmetries which are responsible for their privi-
leged situation with respect to all the other problems. But in none of
the cases in this chapter are these symmetries particularly obvious, al-
though they are known by now. It is not clear to what extent these
known symmetries not only provide constants of motion, but are also
helpful in constructing explicit solutions for the equations of motion
or in finding simultaneous eigenfunctions.

In a more general context, the issue of symmetry is largely unre-
solved in view of the chaotic behavior of most dynamical systems. The
traditional concept of symmetry is such that it leads to integrability
wherever it applies. Its absence is then equivalent to chaos; but some
chaotic mechanical systems exhibit simplifying features which have the
same appeal as the usual idea of symmetry. One is tempted to set up
a new goal in the study of dynamical systems, namely to find the new
types of symmetry which allow the classical equations of motion and
Schrodinger’s equation to be solved in some effective manner, even
when the system is not integrable and its behavior is chaotic by our
present criteria.



CHAPTER 4

The Three-Body Problem:
Moon - Earth - Sun

The problem of three interacting point-like masses continues to be at
the center of physics. The latest version consists of three quarks mak-
ing up a proton or a neutron; but there are also two hydrogens and one
oxygen as the constituents of a water molecule, or an atom of helium
built with one alpha particle and two electrons. Behind these modern
examples are all the famous instances from celestial mechanics, partic-
ularly the most obvious as well as the most difficult of them all, the
motion of the Moon in the combined gravitational field of the Earth
and the Sun. Since chaos made its first though hardly recognized ap-
pearance in this context, and the case is far from closed, an abbreviated
discussion of this special problem seems both instructive and topical.

4.1 Reduction to Four Degrees of Freedom

Newton was the first scientist to investigate the problem of three mas-
sive bodies attracting one another with a force which decreases as the
inverse square of the distance. In the case of the Moon, deviations
from the standard theory had already been correctly determined by
Ptolemy of Alexandria in the second century a.C., and a number of
further refinements had been introduced by Tycho Brahe at the end
of the sixteenth century, all based on naked-eye observations. Newton
succeeded in explaining why the Moon’s orbital plane turns in a direc-
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tion opposite to the motion of the planets, making one full turn every
18 years. But his calculation for the motion of the Moon’s perigee in
the same sense as the planets was too small by a factor of 2.

In 1878, almost two centuries later, George William Hill finally
provided a natural explanation, and discussed in the process for the
first time what has now become known as Hill’s equation. His analysis
is fundamental for the study of non-linear mechanics, integrable or
chaotic. The three-body problem has provided the main inspiration for
the development of mechanics, to the point where Poincaré eventually
recognized the need to deal with chaotic systems, just about 100 years
ago. The author has devoted several years to the study of the Moon’s
motion so that it seems entirely appropriate if the reader is offered
some of this collective wisdom.

Astronomical observations from the surface of the Earth do not al-
low measurements to better than 1 second of arc, because the turbu-
lence of the air causes the image of any object in the sky to blur. A
telescope with an objective opening of 10 cm gives already this kind
of resolution. The Moon moves over the background of fixed stars at
a rate of about 1 second of arc in 2 seconds of time; her movements
can be tracked quite adequately with an ordinary stop-watch to a pre-
cision of a fraction of a second. The perturbation of the planets can
be neglected at this level of accuracy. The flattening of the Earth is
accounted for by a small correction, as are several other minor effects.
All that is left is the combined action of the Moon, the Earth, and the
Sun, considered as perfectly spherical structures with the masses L for the
Moon (Luna), T for the Earth (Terra), and S for the Sun (Sol).

There are nine degrees of freedom, which can best be described
with the following set of coordinates:

(i) Ro = Xy, Yo, Zy) for the common center of mass of the
three bodies;

(ii) R = (X, Y,Z) for the vector which points from § to the
center of mass I' of T and L;

(iii) r = (x, y, z) for the vector from 7 to L.

The phase space of this system has 18 dimensions, after we have
added the momenta Pg= (U, Vo, W), P=(U,V, W), and
p = (u, v, w) to the positions. Ten constants of motion can be imme-
diately recognized:

(i) Since the center of mass moves with a uniform motion which
has no effect on the internal movements of the three bodies, we
can eliminate both Ry and Py, thereby reducing the phase space
by six dimensions.
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(ii) The angular momentum of the whole system is constant; its
direction determines an invariant plane through the center of
mass. To a very good approximation, I' moves around § in a
Kepler ellipse whose (almost invariant) plane is called the ecliptic
because the eclipses of the Sun and the Moon occur when all three
bodies are in it. The absolute value of the angular momentum de-
termines essentially the eccentricity of the orbit of I', the Earth-
Moon center of mass, around the Sun.

(iii) The total energy of the system, assuming that Ry = 0, gives
the Hamiltonian of the internal motion; its value determines bas-
ically the major axis for the motion of I" around the Sun; the en-
ergy is the tenth and last constant of motion.

After reducing phase space to eight dimensions with the help of the
ten constants of motion, the system is left with four degrees of free-
dom. The Hamiltonian is best written in terms of the reduced masses

, S(T+ L) TL
po= o s b= : (4.1)
S+T+ L T+ L
which yields the expression
2
p’ P
= — -— - 4.2
20 + 2 (4.2)
_ GST _ GSL _ GTL
_ L, T v |
T+ L T+ L

The three components of angular momentum are still constants of
motion at this stage, in addition to the Hamiltonian itself. Are there
any others ?

This question is answered to some extent by a theorem of Bruns and
Poincaré: There does not exist any constant of motion which is analytic
in the variables P, p, R, r as well as in the mass ratios, (T + L)/S and
L/T, except the angular momentum and the total energy. Notice that
the constant of motion has to be analytic simultaneously in the coor-
dinates and the mass ratios, to fit the assumptions of the theorem. A
constant of motion could possibly be found which fails to be analytic
in the mass ratios. (A detailed account of this theorem is found in the
textbook by Whittaker (1904), Chapter XIV.) A modern discussion
of this theorem was given by Benettin, Galgani, and Giorgilli (1985).

Such a case arises in the theory of the gyroscope in a uniform
gravitational field, a rigid body of arbitrary shape and mass distribution
that is suspended from one fixed point and is subject to a homogeneous
gravitational field. Sofia Kowalevskaya found in 1890 an isolated case
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of integrability when the moments of inertia are A = B = 2C with the
suspension in the plane corresponding to the directions of the moments
A and B. The only two other cases of integrability for the gyroscope
are Euler’s freely rotating rigid body and Lagrange’s symmetric top
with the suspension in the axis of symmetry. No such exceptional cases
have been found for the three-body problem (cf. Leimanis 1965).

The absence of analytic constants of motion should not discourage
us completely, because there could be some which depend on the
momenta and positions like a real function with rather high-order
bounded derivatives. All the observational, analytical, and computa-
tional evidence in the Moon-Earth-Sun motion encourages this view,
although the mathematical proofs on the basis of the above
Hamiltonian (4.2) are missing. We will, therefore, continue the dis-
cussion as if the problem were indeed integrable.

4.2 Applications in Atomic Physics and Chemistry

The three-body problem has a close analog in atomic physics. The
helium-atom consists of an a-particle, a nucleus containing two protons
and two neutrons, and two electrons; but there are other atoms with
only two electrons, such as the negative ion of hydrogen, which was
first found in the solar atmosphere, or the once ionized lithium, the
twice ionized beryllium, and so on. The closest analog in celestial me-
chanics is the problem of the Jupiter-Saturn coupling in the solar sys-
tem; these two most massive planets have their periods very close to a
2:5 ratio, and perturb each other’s motion more effectively than a
simple estimate of their interaction would indicate. A similar situation
arises when two electrons in an atom get highly excited without being
ejected; this effect has been studied recently in many different vari-
ations and is known as the planetary atom (cf. RS Berry 1986).

The electrostatic forces between the nucleus and the electrons, as
well as between the electrons, are similar to the gravitational forces,
since they vary with the inverse square of the distance; but these forces
are not propotional to the masses of the particles on which they act,
and they can be both attractive and repulsive, depending on the relative
signs of the electric charges on the particles. Furthermore, the
electrons obey Pauli’s exclusion principle, which causes special re-
strictions in their freedom of motion.

The analogy between celestial mechanics and chemistry is more re-
mote, although there is a great variety of interesting cases. The most
immediate case consists of two protons and one electron, the hydrogen
molecule ion of the preceding chapter, but this time without restriction
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on the motion of the protons. They are allowed to move, either by ro-
tating around each other, or by oscillating like two masses connected
by a spring. The forces are still of the inverse square type, as in the
helium atom.

The most important situation in chemistry, however, involves the
motion of three nuclei that interact with one another through the in-
termediary of electrons, such as in the water molecule H,O. The forces
between the three nuclei cannot be described mathematically without
first solving a rather difficult problem in quantum mechanics. The
procedure, called the Rorn-Oppenheimer approximation, can be de-
scribed in the following simplified manner: each of the three nuclei is
assigned a fixed position in space, such as R} , R, , R3, and the energy
of the electrons E(Rj, R, R3) is computed by solving the correspond-
ing Schrodinger equation. This electronic energy, together with the
electrostatic repulsion between the nuclei, yields the potential energy
V(R}, Ry, R3) of the molecule, which then takes the place of the three
last terms in (4.2).

This method of treating the motion of the nuclei inside a molecule
assumes that the electrons are light enough to follow the motion of the
nuclei almost instantaneously; it works well as long as there is no
drastic reorganization of the molecule. Another way of stating this
assumption is to say that the energy differences for an electronic tran-
sition are large compared with the energy quantum for a vibrational
mode, which in turn is greater than the energy difference in a rotational
transition.

In a typical chemical reaction, the atom A hits the molecule BC,
with the result that the new molecule AB is formed while the atom C
flies off. The new molecule AB might be left in an excited state;
sometimes during the process, the electrons in the whole system found
it advantageous to pass from their ground-state energy Eo(R{, Ry, R3)
to the excited energy level Ej(Rj, Ry, R3). The calculation of the
classical trajectory starts with the potential energy V}, and ends with
the potential energy V;; an additional calculation in quantum mechan-
ics yields a probability Py; that depends again on the coordinates
Ri, Ry, R3, and controls the transfer of the electronic system from the
ground state to the excited state.

In all these cases, one treats a mechanical system consisting of three
bodies, each moving in three-dimensional Euclidean space. The phase
space has 18 dimensions, but there are always the same ten constants
of motion, six from the uniform center-of-mass motion, three from the
total angular momentum, and one from the total energy, kinetic plus
potential; one is left with four degrees of freedom. The chemical
problems require a major preliminary calculation to determine the po-
tential energy of the electrons as a function of the nuclear positions.
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As soon as this step has been completed, however, the analogy with
celestial mechanics becomes quite striking. Some early calculations of
classical trajectories for chemical reactions were carried out by Thiele
and Wilson (1961) as well as Bunker (1962).

The spontaneous break-up of a three-star system, or its inverse, the
capture of a third body, corresponds to the decay of a molecule, or the
formation of a new one. The choice of coordinates in the lunar prob-
lem is entirely suitable if S represents an atom that scatters off the
molecule TL. The result of such an interaction depends, of course, on
the value of the total angular momentum and of the total energy, al-
though their values remain the same throughout the whole event.

Celestial mechanics stays entirely within the confines of classical
mechanics, whereas molecular mechanics requires that the system be
viewed in the light of quantum mechanics. In addition, the motion of
the nuclei in a molecule can only be fully treated by solving
Schrodinger’s equation. Since our understanding of quantum mechan-
ics is based on the experience of classical mechanics, however, we gain
a great deal of insight by studying some of the most instructive prob-
lems in celestial mechanics. They are also accessible to our daily ob-
servation if we are willing to watch the sky occasionally and notice
some of its most obvious changes.

4.3 The Action-Angle Variables in the Lunar Observations

This section sketches the traditional view of the three-body problem
under the assumption (as yet to be proved correct) that it is integrable.
The Moon-Earth-Sun problem has been understood in this manner
since time immemorial, and provides a highly non-trivial example
where precise data have been available to be examined from different
viewpoints.

What would be the consequences if there existed four more con-
stants of motion to take care of the remaining four degrees of freedom?
The remaining four degrees of freedom would behave essentially as
four masses which are coupled by linear springs; there would be four
independent harmonic motions. The movements in the three-body
problem could be represented as a Fourier expansion exactly as in the
formula (3.4) with the help of four frequencies. The numerical values
of these frequencies depend on the initial conditions, but they remain
constant in time. This state of affairs has been well understood from
observation at least since 3000 years, going back to Babylonia.

The four relevant frequencies, or their periods, are conveniently
measured in terms of the Earth’s rotation, say in mean solar days,
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which are largely independent of the translatory motions of Moon,
Earth, and Sun. Thus, we have the following periods (cf. Allen 1962):

(a) the sidereal year T, describing the Sun’s yearly motion
through the sky from a given fixed star back to the same star in
365.257 days, which is about 20 minutes longer than the tropical
year, from equinox to equinox;

(b) the sidereal month T, of 27.32166 days taking the moon
from a fixed star back to the same fixed star; by combining the
sidereal year with the sidereal month one gets the better known
synodic month of 29.53059 days, which takes our satellite from
one full moon to the next;

¢) the anomalistic month T, of 27.55455 days for the moon to
complete its ’anomaly’ (speeding up and slowing down) from one
perigee, point of closest approach to the Earth, to the next;

d) the draconitic or nodical month T3 of 27.21222 days, which
takes the moon from one ascending (or descending) node, i.e.,
intersection with the ecliptic where it might get eaten by the
dragon in an eclipse, to the next.

The values of these periods were known to the Greeks correctly with
the accuracy quoted, corresponding to 1 second of time. These num-
bers constitute the first high precision results in the physical sciences.

The four periods are obtained by keeping careful records over long
times; watching the Sun set on the horizon in early spring, and waiting
till he sets exactly on the same spot over and over again, will eventually
yield a good value for the tropical year. The reader should try to im-
agine what kind of observations will give the lunar periods.

Each period T; (and the corresponding frequency w; = 2w/T;)
gives rise to an angular variable w; in the three-body problem, exactly
as it was explained in Section 3.3. The coordinates of the Moon with
respect to the Earth are, therefore, given by Fourier expansions like
(3.4). The angle variables, however, do not appear as if by magic out
of some general algorithm, but they arise out of a well-defined view of
the problem at hand. In the lunar motion, the astronomical observa-
tions naturally suggest the angles that are associated with the primary
periods. Similarly in chemistry, a particular model of the molecular
motion in terms of bond angles and bond stretches leads usually to the
good choice of variables.

The leading terms in the expansion (3.4) of the Moon’s coordinates
(x, y, z) with respect to the Earth can be interpreted geometrically. If
(x, y) are chosen to lie in the ecliptic with the Earth at the origin, the
most important term in (3.4) is a circular motion of radius a whose
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period is the sidereal month 7;. The next term increases and decreases
the radius of this circular motion in the (x, y) plane sinusoidally at the
rhythm of the anomalistic month 75; its amplitude is a fraction
2e ~1/9 of the radius a ; this fraction e is essentially twice the eccen-
tricity of the Moon’s trajectory. The leading term in the motion along
the z-axis (at right angle to the ecliptic) varies sinusoidally as the period
of the draconitic month T3, with an amplitude k~1/11 compared with
the radius a of the basic circular motion, corresponding to the inclina-
tion =59 of the lunar trajectory.

The coefficients in these three basic terms determine the values of
the actions that are associated with the angles. In a preliminary expla-
nation, 7 is associated with the ’binding energy’ between Moon and
Earth, 7, with their relative angular momentum, and 73 with its com-
ponent at right angles to the ecliptic. The fourth angle wy gives the
mean yearly motion of the Earth-Moon around the Sun, whose mean
distance 4’ yields the fourth action.

Many other, and generally smaller, terms are added to these four
basic terms in the Fourier expansions (3.4); their frequencies are
combinations of the four basic ones. The problem is to find the exact
values for the coefficients of these higher terms. Since the values of the
four action variables are essentially determined by the four basic terms,
all the coefficients of the higher terms are functions of these four basic
ones. There is no room for fudging anything: Newton was the first to
recognize clearly the existence of no more than four parameters besides
the mass ratios and the values of the obvious constants of motion like
the total angular momentum; he tried to obtain the coefficients of the
higher terms in (3.4) from the knowledge of the lowest four. But he
was not always beyond claiming that some coefficient had been calcu-
lated when, in fact, he had gotten it from fitting the data.

In the interest of simplifying the calculations, we will assume that
I' moves around the Sun in the ecliptic on a fixed Kepler ellipse with
known semimajor axis ' and eccentricity ¢’. This is a very good ap-
proximation since the solar mass exceeds the combined mass of Earth
and Moon by a factor of more than 300,000.

The polar angle of I' as seen from the Sun is written as
o' =g + f', where g is the direction of the perihelion as referred to
the spring equinox. The true anomaly f' differs from the mean anom-
aly /' by the expansion (cf. Brouwer and Clemence 1961, Chapter II).

2 a4
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The mean anomaly /' increases linearly with time,
/=t —)+ 70y, (4.4)
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where f is an arbitrary reference time called the epoch, and ¢ is the
value of the mean anomaly at the epoch.
The normalized polar distance R/a’ of T from the Sun is given by

a similar expansion,
erz , 3813 , erz ,
e —le = + - ]cosl —[=— — - ]cos 2/ (4.5
>+ [e 3 ] [ 5 ] (4.5)

All the quantities referring to the Sun appear primed in accord with
the traditions of celestial mechanics so that the analogous quantities for
the Moon can remain unprimed. The mean angular speed
n' = wy=27/T 0 also called the Sun’s mean motion, is related to the
semimajor axis a’ by Kepler’s third law,

nd®> =G +T+1L). (4.6)

The Moon-Earth-Sun problem has now been reduced from four to
three and one-half degrees of freedom, in the slightly facetious lan-
guage of the practitioners in this trade. On the one hand, the movement
of I' around the Sun is no longer influenced by the internal compli-
cations between the Earth and the Moon; on the other, these internal
motions are sub]ect to the periodically changing distance of T from the
Sun. The angle /' is what is left over from the angle-variable wy; it has
been reduced to the role of a sinusoidally varying external perturbation
of known period Tj as in (3.5). We are left with the three action-angle
variables corresponding to the periods T; , T5 , T.

1+

4.4 The Best Temporary Fit to a Kepler Ellipse

The location of the Moon as seen from the Earth at any instant ¢ is
determined in the following manner, which is basically the classic
Greek description in modern form. The angular momentum of the
Moon with respect to the Earth defines a direction in space, and an
instantaneous orbital plane at right angles to it, which intersects the
ecliptic in the nodal line and is inclined at an angle y. The energy of
the Moon-Earth system defines an instantaneous semimajor axis a, and
the absolute value of the angular momentum determines an instanta-
neous eccentricity e. The angle from the reference direction in the
ecliptic to the ascending node is called h; the angle from the ascending
node to the instantaneous perigee is g; and the angle from the instan-
taneous perigee to the Moon is called f, corresponding to the true
anomaly.

There is an advantage in using the mean anomaly / instead of f with
the help of the relation (4.3), but this time for the unprimed quantities.
The instantaneous coordinates a, e, v, &, g, / are completely equivalent
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to the six Cartesian components of p = (%, v, w) andr = (x, y, z). They
provide the best temporary fit of the real motion with the motion on a
Kepler ellipse, and are called the osculating elements. A perspective
drawing of this traditional picture for the Moon’s trajectory is pre-
sented in Figure 6.

If it were not for the presence of the Sun the angles g and 4 would
remain constant, while 7 increases linearly in time exactly as in formula
(4.4). The rate of increase n is 27 divided by the sidereal month 77, and
is related to the semimajor axis a again by Kepler’s third law

n’a®=G(T+L). (4.7)

The six quantities /, g, k, a, e, y can be grouped in canonically con-
jugate pairs, called Delaunay coordinates, as follows: A = una? with 7,
M = pna? (1 — e?)!/2 with g, and N = M cos y with 4. Slightly clumsy
expressions for A, M, N have been used to show that they have indeed
the physical dimension of an angular momentum or action, ready to
become multiples of Planck’s quantum if we want to quantize the mo-
tion.

With the momentum p = (u, v, w), and the position r = (x, y, z),
one has the mathematical identity wudx + vdy + wdz = Adl +
Mdg + Ndh, which is rather troublesome to derive, although it is simply
a consequence of the definition for A, M, etc. A careful stepwise proof
was found by Whittaker, and is also given in the textbook of Brouwer
and Clemence (1961, p. 279); the same result is derived in modern
terminology by Abraham and Marsden (1978, p. 638).

If the Sun did not disturb the Earth and the Moon, A, M, N, as well
as g and & would not change with time, and we would have a Kepler
motion. If the effect of the Sun is small, the values of A, M, N vary
slowly; also the angles 7, g, h vary almost exactly as linear functions
of time, g and A rather slowly compared with /.

Humanity has known for over 3000 years that /# decreases by 27 in
about 18 years, while the sum 4 + g increases by 27 in about 9 years.
The reader is encouraged to imagine how our ancestors were able to
determine these facts without any instruments whatever, simply by
keeping careful records of the events in the sky! The mean rates of
change for 4 and h + g follow directly from the various periods in
Section 4.3. The main ingredients are the differences of the draconitic
month and of the anomalistic month with the sidereal month; they are
— 2 hours 37 minutes 29 seconds and + 5 hours 35 minutes 29 sec-
onds, again known to this precision by the Greeks.

Until Newton no astronomer even suggested any reason for the slow
change in 4 and & + g. It was accepted as an observational result, and
since the moon’s motion could not be explained without it, the planets
were allowed to show similar slow migrations in their nodes and
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Figure 6 The traditional representation of the Moon’s motion around the
Earth: the x, y-plane is the ecliptic (plane of the Earth’s orbit around the
Sun); the orbital plane of the Moon (dashed lines) intersects the ecliptic in the
nodal line at the angle of inclination y; the Moon moves on a Kepler ellipse
around the Earth whose point of closest approach (perigee) is at the angular
distance g away from the node; the node moves backwards while the perigee
moves forwards at roughly twice the speed, covering a full circle in about nine
years.

perihelia, although they turned out to be extremely small. Kepler’s
Rudolphine tables are constructed exactly on this model, but using the
formulas (4.3), (4.4), and (4.5) instead of the earlier epicycles and
eccentric circles of Copernicus and Tycho Brahe.

Even this simple scheme based on the uniform change of the
osculating elements with ¢ does not do justice to the motion of the
Moon. Ptolemy already had discovered a correction to the Moon’s
longitude ¢ = h + g + f, called the evection, for the first time in sci-
ence, it was found necessary to combine two different harmonic
motions because of their non-linear coupling; a short explanation of
this extraordinary discovery is quite in order.

The main difference between the true anomaly f and the mean
anomaly 7 is given by the first term in the expansion (4.3), namely
2e sin /, where in angular units 2e =~ 375’ for the Moon. The evection
introduces a further correction to the mean anomaly which combines
/ and the mean angular distance D from the Sun to the Moon,
sin(2D — /), with an amplitude =~ 75’. Notice that the second cor-
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rection is opposite to the first when D = 0 (new moon) or D = « (full
moon), whereas the two corrections add constructively when
D = =/2 (both half-moons). The swing of the Moon away from its
mean position amounts, therefore, to =~ + 300’ = + 5° in the new
and full moons, whereas in the half moons it goes up to
~ +450 = 7.5%a large effect, which is not noticed if only the lunar
and solar eclipses are used as empirical data.

Ptolemy explained this marvelous observation with his crank model
which, indeed, gives the correct time dependence for the polar coordi-
nates of the Moon. Unfortunately, this model implies that the Moon’s
distance from the earth at half moon is only about half of what it is at
new moon or full moon; the Moon’s apparent size would then be about
twice at half moon what it is at new moon or full moon, which is not
correct, as everybody knows. It is the great merit of Copernicus to
have replaced Ptolemy’s pseudo-mechanical device by the more ab-
stract, but very general Fourier expansion (3.4).

The principal challenge of celestial mechanics beyond the explana-
tion of Kepler’s laws is to account for the drift in the Moon’s perigee
and node. Newton solved the problem as well as he could without the
use of extensive algebraic manipulations. He found that the nodical
month is shorter than the sidereal month by the fraction 3n'2/4n2 | and
that the anomalistic month is longer by the same fraction. The utter
simplicity of this result is impressive, and is only marred by the fact that
the second fraction is too small by a factor of 2. This discrepancy was
finally explained after Newton’s death by Clairaut and d’Alembert us-
ing a computational tour de force (for a full historical account cf. Waff
1975, 1976, 1977); but as mentioned earlier, it was left to Hill to find
a simple convincing physical picture.

4.5 The Time-Dependent Hamiltonian

The Moon circles around the Earth as its main center of attraction with
the Sun very far away. In practical terms, the distance R in the
Hamiltonian (4.2) is larger than r by a factor of 400. Therefore, the
first two terms in the potential energy are expanded in the ratio r/R.
If we retain only the lowest order beyond the inverse first powers of
R and r, we get the potential energy

T+ L GS
GS( ) LGS [-3—(R,r)2——1-r2R2]+---+ GTL

R S 2 2 r

, (4.8)

to replace the second line on the right of (4.2).
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The first term in the kinetic energy of (4.2) and the first term in the
potential energy of (4.8) yield the Hamiltonian for the Kepler ellipse
of the Earth-Moon center of mass I' around the Sun. This motion is
described very closely by the formulas (4.3), (4.4), and (4.5) with
Kepler’s third law (4.6). As was already explained at the end of Sec-
tion 4.2, one of the four degrees of freedom in the three-body problem
is taken away by assuming that the position vector R depends on time
exactly as given in (4.3) through (4.6). We are, therefore, left with the
second term in the kinetic energy of (4.2), and the remainder of the
potential energy (4.8) where R and R are to be replaced by their ex-
pressions (4.3) through (4.6).

The Moon’s motion around the Earth in terms of the momentum p

and the position r now results from the Hamiltonian
2 23 12 13 1
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where we have used Kepler’s third laws (4.6) and (4.7) to get rid of the

masses and the gravitational constant G. Also a correction (T + L)/S

has been neglected compared with 1 at this stage of the development.

The influence of the Sun on the motion of the Moon around the
Earth has been reduced to a simple quadrupole term whose size, how-
ever, depends on the distance R of the Sun, and the relative angle be-
tween Sun and Moon as seen from the Earth. Thus, we have a
time-dependent Hamiltonian, and the energy is not conserved; the
frequency of this time-dependence n’ is small compared with the fre-
quency 7 of the Moon’s orbit; we have n’/n = sidereal month / year
~ 1/13 . The quadrupolar term in (4.9) is smaller than the Earth’s at-
traction by the square of this quantity, or about 1/180.

Further terms in the expansion of the solar perturbation decrease
with ever higher powers of the ratio r/R, or equivalently a/a’ which is
of the order 1/400. As stated here, the time-dependent Hamiltonian
(4.5) with its higher order terms in powers of a/ a’ constitutes the so-
called main problem of lunar theory, whose solution accounts correctly
for all the peculiarities of the Moon’s motion. A systematic introduc-
tion to lunar theory was written by Brown (1896, 1960). It is surpris-
ing that such apparently small corrections to the Hamiltonian of a very
well-behaved mechanical system lead to a complex motion.




CHAPTER 5

Three Methods of Solution

The search for a general method to solve problems in mechanics is a
worthy endeavor; but the experience of two centuries shows that there
is no such thing as a universal recipe, in particular now, when chaos has
been recognized as an inevitable and even typical occurrence. The
three methods to be discussed have each their advantages over the
other two: Lagrange’s variation of the constants provides a direct in-
terpretation of the underlying physics; canonical transformations deal
effectively with systems that are assumed to be integrable; Hill’s
method explores the neighborhood of an isolated periodic orbit. The
emphasis is on the last because it is the least known and perhaps the
best for understanding a limited portion of phase space. The example
of the Moon’s motion not only provides the first detailed application,
but also gives a vivid picture of the ideas behind the mathematical
formalism.

5.1 Variation of the Constants (Lagrange)

Lagrange was the first mathematical physicist to search consistently for
underlying principles and to strive for the most economical and elegant
solutions. He found a general method for solving the problems of ce-
lestial mechanics; it incorporates the description of the solar system
that had been in use since antiquity. The basic pattern such as the
Kepler ellipse is maintained, but it is allowed to modify and adjust itself
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under the influence of the perturbations from third, fourth, etc. bodies.
These modifications and adjustments take place slowly compared with
the motion in the basic pattern. They are defined in terms of the pa-
rameters that determine the basic pattern, namely the constants of
motion such as the semimajor axis a, the eccentricity e, the inclination
of the orbit y, the direction of the ascending node 4, the direction of the
perigee & + g, and the mean anomaly 7, at the epoch.

Instead of solving the equations of motion for the coordinates of the
body in some arbitrary reference system, one establishes equations for
the change with time of the parameters aq,e, v, A, g, and /y. These

equations take the general form

%’-= K(a,e,v, Lo 8 ), %ﬁ'—= K(a e, 7, 0o 8 ) , etc. (5.1)
where the functions K, , K., etc. contain only terms that come from the
perturbations. While the idea is straightforward, it took the prodigious
skill of Lagrange to give an efficient scheme for calculating these
functions. In this context he invented the device of using what are now
called the Lagrange brackets, the forerunners and actually the inverses
of the Poisson brackets.

The reader is invited to spend an enjoyable few hours studying this
method in the standard textbooks, provided the explanation of the
method is followed by a non-trivial example. The textbook of Brouwer
and Clemence (1961, Chapter XI) gives a self-contained presentation
of Lagrange’s formalism.

Just looking at the right-hand sides of the equations (5.1) conveys
a lot of physics, because the causes for the change in the parameters
are immediately visible, and the extent of these changes can be esti-
mated. Nevertheless, Lagrange’s method has severe limitations in the
case of the Moon. Some parameters such as ¢ may remain nearly
constant, while others such as e vary by almost a factor of 2; the main
culprit in this case is the evection which was discussed at the end of the
last chapter. Figure 7 shows the variation of the Moon’s eccentricity
with time, and demonstrates that Lagrange’s idea does not work well.
Finally, # and g increase indefinitely with time, rather than varying
around a constant mean value and become very tricky to handle.

5.2 Canonical Transformations (Delaunay)

Canonical coordinates in phase space were briefly discussed at the be-
ginning of Section 2.2; now we shall consider more closely how they
can be adapted to the solution of a particular problem. Canonical
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Figure 7 The effective eccentricity of the lunar trajectory as a function of
time: the abscissa gives the time in synodic months starting with the year 1980
through 1986; the variations have a fairly simple spectrum, but show that the
traditional picture of the Moon’s orbit is not good.

transformations were invented by Hamilton in the first half of the
nineteenth century, when he tried to find a new formalism for what
we now call geometric optics. The basic ideas were then found to work
for mechanics as well, and were elaborated by Jacobi. Eventually, they
found their justification almost a century later in wave mechanics,
which is very close to wave optics.

This explanation for the importance of canonical transformations
in mechanics is well known, but it seems to imply that quantum me-
chanics is always lurking in the background, even when we deal with
celestial mechanics where we can certainly do without Planck’s quan-
tum. Canonical transformations may just be one of several useful sys-
tematic procedures for solving problems in classical mechanics, but not
the only one as it would appear from its presentation in many text-
books, to the exclusion of other methods.

The first large-scale application of canonical transformations was
carried out by Charles Delaunay who set out in 1846 to solve the main
problem of lunar theory as defined in the last chapter. His was a lonely
and monumental endeavor, which ended in the publication of two large
volumes in quarto of about 900 pages each as Mémoires of the (then)
Imperial Academy of Sciences of France, 1860 and 1867. We will re-
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view his work briefly because it reveals the first indications of chaos,
and the consequent limitations on this kind of effort. It also shows very
clearly the appearance of the small denominators that again get us
closer to the questions concerned with integrability.

Delaunay starts with the action-angle variables for the two-body
problem which were explained in Section 4.4; the actions are A, M, and
N, while the angles are 7, g, and . The Hamiltonian without the per-
turbation has the somewhat unlikely form H = — pu(GTL)2/2A2,
where p is the reduced mass TL/(T + L) . This expression takes care
of the first two terms in the full Hamiltonian (4.9). The Bohr formula
in atomic physics is obtained if one makes the following replacements:
w is the mass of the electron, GTL is the square of the electronic charge,
and A is a multiple of Planck’s constant divided by 2#. The remainder
of (4.9) constitutes the perturbation where we now have to replace the
position coordinates (x,y,z) by their expressions in terms of
A, M,N,/?, g, and h.

That replacement is already a major enterprise which we will not try
to carry out here. The new expression for the perturbation depends
explicitly on time through the time dependence of the solar coordinates
R which follows from the formulas (4.3) through (4.6). The
Hamiltonian can be made formally time-independent if we use the
fourth angular variable k = ¢/, and the corresponding action variable
K, and if we add a term n'K to the Hamiltonian, so that

w(GTL)®
H=————-—2—-+nK+F(A,M,N;k,/,g,h), (5.2)
2A
where the function F represents the perturbation corresponding to the
last term in (4.9) and does not contain the action variable K.

This little maneuver puts us back where we started, when we
counted a total of four degrees of freedom in the three-body problem
after eliminating the obvious constants of motion. The somewhat ar-
tificial occurrence of the fourth action-angle pair (K, k) in this
Hamiltonian expresses the reduction from 4 to 3 1/2 degrees of freedom,
which was mentioned at the end of Section 4.3.

The perturbation F has to be expanded, exactly as V{(g, ¢) in (3.6),
into a multiple Fourier series in the angles k, 7, g, and h. The coeffi-
cients depend on A, M, and N through the small parameters
m=n'/n,e,y,¢, and a/d’, as well as the mass ratios L/7, and
(T+L)/S.

The values of these parameters are about 1/13, 1/10, 1/20, 1/60,
and 1/400, as well as 1/80, and 1/330,000: small enough to suggest
a power series expansion for each coefficient in the Fourier series of
F. Delaunay carries out this expansion in algebraic form, keeping ev-
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erywhere rational numbers! It is not as easy to carry out this tedious
work on a modern computer as the reader might think. Barton (1966
and 1967) tried to duplicate Delaunay’s work and barely succeeded in
reproducing the function F, but he was not able to carry out the next
and more difficult step.

Delaunay retains 461 terms in the Fourier expansion of F; the co-
efficients are polynomials in the various small parameters, some of
which cover several pages. He proceeds systematically to get rid of one
term after another, each time using a canonical transformation adapted
to the particular term to be eliminated.

5.3 The Application of Canonical Transformations

The construction of such a transformation will now be demonstrated
because it will show exactly in what form the solution of the three-
body problem can be obtained in this standard procedure. After each
transformation the old set of actions ([, /1>, I;) and angles
(wy, wy, ws) is expressed in terms of a new set of actions (Jy, J3, J3) and
angles (uj, up, u3) . As explained already in Section 2.2, the transfor-
mation can be defined by a  gemerating  function
W1, J2, J5, wo, w1, wa, w3) where wy = ug coincides always with the
mean anomaly of the Sun #’, also called k in the preceding section. The

transformation is given by the formulas

ow ow .
et u = o fori=1,2,3. (5.3)

These formulas are applied to the old Hamiltonian

+ eV, I, 1) cos(mgwy + myw; + myw, + maws + ¢). (5.4)

All terms have been neglected except the ones that no longer depend
on the angle variables, and the one special term of the perturbation that
the transformation is designed to eliminate; it is characterized by the
quadruple of integers (myg, mj, my, m3) and the real coefficient
eV(1,, I, I3), where the factor ¢ has been inserted to show its magni-
tude relative to the first term in (5.4). In general, the expansion (3.5)
has complex coefficients; the argument of the cosine in (5.4) contains,
therefore, a phase ¢ which depends on the multi-index
(mg, my, my, mz). In the case of the lunar problem, however, the sym-
metry of the perturbation makes this phase vanish and yields the for-
mula (5.4) with ¢ = 0.
The generating function W is chosen so that the new Hamiltonian,
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ow
o

has no term in cos(mywy + miw; + myw, + msw3) any longer; but in
making the replacements of 7 and w by J and u , many other terms arise.
If the consecutive elimination of terms is properly managed, however,
the new terms are of higher order, and have more complicated angular
arguments. The transformation has to be applied to all the terms in the
complete Hamiltonian, not only to the particular term that appears in
(5.4), before the next transformation can be carried out.
W is now set up in the form

W = lel + J2W2 + J3W3 + EU(JI, J2, J3, Wy, Wi, W, W3) s (5.6)

H = H + (5.5)

which can be inserted into the formulas (5.3), and from there into (5.4)
and (5.5) where one expands in powers of e. The elimination of the
term in cos(mgwy + myw; + mows + msws) leads to a first-order linear
partial differential equation for the function U, which is easily solved
in the form

U = - U(Jl’ J2, J3) Sin(m0W0 + mlwl + m2W2 + m3W3) ) (5.7)
with the function U given by the equation
_ V(Jy, Jp, J3)
U(Jl, J2, J3) = . (5.8)

4 (mowo + mlwl + mzwz + m3w3)

The frequencies w follow from the standard formula (3.3),
w; = 0Hy/dJ; in terms of the angle-independent part Hy(Ji, J>, J3) in
(5.4); wq is always the mean solar motion »’.

5.4 Small Denominators and Other Difficulties

In the solution (5.8) for U, the denominator in the generating function
(5.7) is the cause of many difficulties. The division by a frequency
corresponds to an integration over time which averages the perturba-
tion and has to be carried out in one form or another in any solution;
the problem of small denominators is unavoidable. In our case, w; is
close to n, corresponding to the sidereal month; w, equals »’, corre-
sponding to the sidereal year, and therefore smaller than w; by a factor
m = n'/n or about 1/13; ws is the motion of the node, which is close
to — 3n'2/4n according to Newton, and a factor 3m2/4=1/240 below
w1; finally, the combination w; + w3 is the motion of the perigee, which
is the same up to its sign as w3 according to Newton, although it is ac-
tually twice as much when all the higher-order terms are included.
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If a term in the perturbation has m;= 0, it varies at a yearly rhythm,
it has, therefore, a small denominator which boosts its importance by
a factor of 13 compared with the monthly perturbations where
my # 0. If both my = 0 and m; = 0, the boost is of the order 240.
Finally, since w; and w3 are empirically of the order of 3:1 with a
change in sign, one has the exceptional case where my = m; = 0 and
m3 = 3m;, which gives a boost of 2000.

The effect of such small denominators is partially offset by the
smallness of the perturbing term with that frequency. There is usually
a direct relation, called the d’Alembert property, between the integers
m; and the powers of the expansion parameters m, e, v, ¢ anda/d,
which reduces the absolute value of the resonant perturbations.
Poincaré (1908) gave a thorough discussion of this problem for the
lunar theory, which has recently been taken up by Kovalewsky (1982);
again Brouwer and Clemence (1961, p.317) provide a good first glance
at the problem.

Two more comments are in order before we come to the discussion
of Delaunay’s results. The various frequencies in the lunar motion have
empirical values, and we know nothing about their numerical character,
rational, algebraic, or transcendental. Theorems about the conver-
gence of expansions that are based on the number-theoretical nature
of competing frequencies are, therefore, of little use. On the other
hand, as the solution to the problem develops, one obtains a power se-
ries expansion with rational coefficients for the frequencies in terms
of the small parameters in the problem; in our case, it is mainly the
expansion in m = n’/n which determines the resonances.

The occurrence of a resonance corresponds to the division by such
a small parameter; the original ordering of the terms in the perturbation
is obviated thereby. It is exactly this phenomenon which prevented
Barton from carrying out Delaunay’s solution on a computer of mod-
erate size in the late 1960s, and inspired Deprit, Henrard, and Rom
(1971) to try an entirely different approach yielding the same solution.
Their method uses the so-called Lie series which had been known by
some specialists but were not adapted to celestial mechanics until in-
dependently by Hori (1966) and Deprit (1969). Unfortunately, this
calculation for the Moon has not been reported in its entirety because,
with the coefficients in the expansion kept as rational numbers and the
expansion carried to the order required by modern observations, the
total output is huge.

Delaunay carried out a sequence of 505 canonical transformations,
choosing terms in the perturbation to be eliminated according to his
best guess about their importance. Thus, he went to the ninth order in
m, but that yielded only the fourth decimal in the motion of the perigee
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while the Greeks already knew five decimals. The reason for this failure
is the same which had defeated Newton; when the motion of the
perigee g + h and the motion of the node 4 are expanded to higher
powers in m , the first two terms of this expansion are,

1 dig+h) 3 5 225 3

. 7 = + 2 m° + 32 m 4+ ..., (5.9)
1 dh 3 2 9 3
— = = - = — - ., 5.10
n dr st (5.10)

as first found by Clairaut and d’Alembert.

Newton was completely correct as far as the first term in each ex-
pansion is concerned, but he did not know that the second terms would
be so vastly different. The coefficients in the first series keep on
growing at about the above rate, while those in the second series de-
crease and alternate. Both series converge for the relevant value of
m=1/13, but the first does so quite poorly. Schmidt (1979) has ob-
tained over 30 terms for a precision of 10 decimals, but his coefficients
are given as real numbers rather than rationals. Estimates of the higher
order terms in expansions of this kind have been discussed among
others by Bogomolnyi (1984a and b) as well as Llave and Rana (1989).

5.5 Hill’s Periodic Orbit in the Three-Body Problem

The main idea of Hill’s approach can be explained in relatively few
words, and this very simplicity shows how radically different his
method was from all its predecessors. Lagrange, Delaunay, and the
other celestial mechanicians started from the Kepler ellipses, which are
the most general solutions of the two-body problem, and modified
them so as to accommodate the effect of the third body in the problem.
Hill identifies a very special, but relatively simple solution of the full
three-body problem, and then constructs the other solutions in the
neighborhood of the particular one.

The special solution is a periodic orbit by which we mean that the
trajectory closes itself smoothly, and the body keeps running around
the same track indefinitely (cf. Section 1.2). Hill’s original paper was
first published separately in the USA (1877), and then reprinted in
Acta Mathematica 1886, this work and the second series of articles
(1878) are best available in the Collected Works (1905, p.243 and
284). They are quite readable. There are many other accounts in the
textbooks and treatises on celestial mechanics, such as Brown (1896,
1960), and Poincaré (1907), as well as Brouwer and Clemence (1961).
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The Kepler ellipses are periodic orbits; but the Moon’s trajectory
as it has been described since antiquity is not periodic, because both its
perigee and its node rotate at rates that are not commensurate with its
monthly circuit around the Earth. Periodic orbits in the full three-body
problem are difficult to find, and Hill’s choice is neither obvious nor
easy to calculate. Its construction requires that one work in a special
coordinate system in the ecliptic which had already been used in one
of Euler’s contributions to lunar theory.

The remainder of this chapter may be frustrating to the reader, be-
cause its pace seems slow. There are two separate endeavors both of
which require special care: on the one hand, all equations are written
in such a way that only the essential variables are left to deal with, and
can be interpreted directly in terms of observations; on the other, the
crucial first steps, in a long series of similar ones, are explained in suf-
ficient detail to clearly perceive how the procedure is continued. Hill’s
method and its development by Brown (1897 to 1908) and Eckert
(1966, 1967) are designed to construct directly the invariant tori
without the usual perturbation approach starting from the Kepler el-
lipses.

The starting point is the Hamiltonian (4.9) with an additional sim-
plification: the trajectory of the Earth-Moon around the Sun is as-
sumed to be a circle, or in other words, a Kepler ellipse with the
eccentricity ¢ = 0. The vector R in the ecliptic has a constant length
d’, and rotates at the constant rate n’ around the Sun, exactly as in the
formulas (4.3) and (4.4) with ¢’ = 0.

The new coordinate system of the Moon (x, y, z), with the (x, y) in
the ecliptic, is still centered in the Earth; but it rotates at the uniform
speed n', so that the Sun is always seen in the x-direction. The
Hamiltonian becomes

H = -21—u-[(u + pm'y)2 + (v — un'x)2 + wz]
ur? un’a® un’? (5.11)
- o+ - —— - ) Bx* =17,

where the momentum of the Moon has the Cartesian components
(u, v, w) in the rotating frame of reference. The complete Hamiltonian
in this coordinate system has many more terms, all of which, however,
are proportional to powers of ¢’ and a/a’ . The distance of the Sun d'
does not appear in (5.11) although the effect of the Sun is certainly
represented in the last term, the quadrupole potential of the Sun in the
neighborhood of the Earth.

The individual terms in this Hamitonian can be interpreted as if we
were dealing with atomic physics: let u be the mass of an electron, and
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the product unZa3 equal to the square of the electronic charge ¢2. Then
the frequency n’ becomes the Larmor frequency in the magnetic field
B through the formula n’ = eB/2uc with the speed of light c. Without
the two terms in n’2 we have the Hamiltonian of a hydrogen atom in a
magnetic field, a problem to which we will devote Chapter 18, because
it is an ideal case of a mildly chaotic system. The magnetic field is very
strong since the Larmor frequency n’ forms with the orbital frequency
n the ratio m = n’/n=~1/13; such a ratio corresponds to a Zeeman en-
ergy of 1 eV if the atom is in its ground state, or a magnetic field of
10,000 Tesla, far beyond anything technically available at present. If
one deals with a Rydberg atom, however, where the outermost electron
is in a very highly excited state, e.g., in a state with the principal quan-
tum number 100, the magnetic field for n’/n=~1/13 reduces to a man-
ageable 1 Tesla = 10,000 Gauss.

The two terms in 7’2 add an ’electrostatic’ potential with a parabolic
shape, negative in the x-direction, neutral in the y-direction, and posi-
tive in the z-direction. The origin of this peculiar destabilizing force is
easy to understand: the centrifugal force acts to drive the Moon away
in the x-direction, but the solar attraction tends to pull the Moon to-
ward the Earth along the z-axis. As a net result one finds the equations
of motion in the rotating frame,

2 3
3 V 2 n-a
x —2ny — 'x = - 3 x+2n'2x,
r
2 n2a3 2
. 120 14 /
y+2nx —ny = — Ty -y, (5.12)
r
2 3
. na 1?2
z = - z —n'z,
3
r

where the dot indicates differentiation with respect to time z. On the
left we have the acceleration, the Coriolis force, and the centrifugal
force, while on the right is the gravitational attraction of the Earth on
the Moon, and the solar quadrupole force. No masses appear any
longer, only the frequencies » and n’, which are extremely well known
from observation, and the dimensionless distance r/a of the Moon
from the Earth.

The periodic orbit we are looking for is a solution of the equations
(5.12) with the imposed period of 29.53059 days corresponding to the
synodic month, from full moon to full moon, or equivalently, with a
frequency n —n' . Therefore, we use the parameter 7 = (n — n')t,
which is the mean angle from the Sun to the Moon as seen from the
Earth, and we construct a solution of (5.12) with the period 2 in the
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variable 7 . Moreover, we restrict the periodic orbit to the ecliptic, i.e.,
z = 0, and expand in a complex-valued Fourier series

xXo(1) + inp(r) = €7 > a, e (5.13)
14

As further requirement on the periodic orbit, we demand symmetry
with respect to the x-axis in the form

X = 7) + (= 1) = [x(1) + iy(DIT (5.14)

where the upper index + indicates the complex conjugate. The coef-
ficients ay are real because of (5.14), and conversely, the symmetry of
the periodic orbit is assured when the coefficients a; are real.

Since the solar potential is approximated by a quadrupole field,
there is also symmetry with respect to the origin, and we can require
that xo(7 + 7) + iyo(7 + 7) = — (xo(7) + iyp(7)) which implies that
all the odd coefficients ay . 1 = 0. The periodic orbit has the shape
of an oval which is centered on the origin, and intersects the x-axis and
the y-axis at right angles.

If the Sun is not pushed off to infinity with an infinite mass to make
up for the distance, then the disturbing potential is not symmetric with
respect to the y-axis, although it remains so with respect to the x-axis.
The periodic orbit loses its symmetry correspondingly, and one needs
both even and odd coefficients ay.

The equations (5.12) in terms of the variable 7 contain only the pa-
rameter m = n’/n and the normalized coordinates (xy + iy)/a. Thus
one obtains a one-parameter family of ovals, which are sketched in
Figure 8 for different values of m. We see that if the Moon had a
synodic period of about 210 days, or seven calendar months, or a little
less than eight sidereal months, her orbit would have a stationary point
with respect to the Sun at half moon. According to a rough estimate
using Kepler’s third law for the Earth-Moon system (4.7), a reduction
of the mean motion n by a factor of 8 would be compensated by an
increase of the semimajor axis @ by a factor of 4. The Moon would still
be close to the Earth relative to the Sun since the ratio a/a’ would be
about 1/100.

As long as the Moon’s orbit does not deviate too much from a circle,
or equivalently, provided the term with / = 0 in (5.13) is dominant,
Hill’s periodic orbit can be roughly estimated. Let us, therefore, insert
x = ag cos(7), y = ag sin(7), z = 0 into (5.12). The first and second
equations become incompatible; by multiplying the first with cos(7),
the second with sin(7), and adding, we get the radial aceleration on the
left and the radial force on the right. Both sides are then integrated
over 7 from O to 27 to equate the average radial acceleration with the
average radial force. Thus, we find that



5.5 Hill’s Periodic Orbit in the Three-Body Problem 69
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Figure 8 Hill’s periodic orbits for the motion of the Moon: they lie in the
ecliptic, and close smoothly in the rotating coordinate system where the
(mean) Sun is on the x-axis; the closed orbits correspond to a: 12.37 periods,
b: 4, c: 3, and d: 1.78 periods (lunations) per year; the sizes of the orbits are
scaled properly.

@ = 2 ; (5.15)

(1 + m2/2)'3

the average distance of the Moon from the Earth has actually decreased
compared with its Keplerian value. The Moon has to come closer to
the Earth in order to maintain her frequency in spite of the Sun, which
tries to tear the Moon away from the Earth.

The complete solution for the periodic orbit, i.e., the coefficients a;
in (5.13), have to be obtained before one can go on to find the general
solution of the equations (5.12) in its neighborhood. The ideal method
is to write the coefficients as power series in the parameter m = n/n’;
we shall assume that this feat has been completed with the help of some
of the ingenious algorithms which we owe to Hill (1878), Poincaré
(1907), and others.



70 Three Methods of Solution

5.6 The Motion of the Perigee and of the Node

The Moon does not move on Hill’s periodic orbit, not even in the ro-
tating frame; but since she is never far from such a special solution of
the equations of motion, her trajectory can be found by looking at the
motions that differ only by small displacements from the periodic orbit.
The equations (5.12) are, therefore, linearized around the periodic or-
bit (xo(2), yo(1), 0); the result is written in terms of the displacements

(6x(1), dy(n), 62(2)),

23 23
6% — 2n'8y — n'%6x = — L= ox + 3n “— xo(xg0x + yody) + 2n'%0x,
I‘O rO
.. f ” n’a’ 3n’a® ”
Oy +2néx —ndy=— 3 oy + . Yo(xp0x + yy8y) — n' "0y,
o o
23
8z = - ”;‘ 8z — n'%8z, (5.16)
fo

where the dots again indicate differentiation with respect to time ¢ and
ro = (x¢ + y§)!/2. These equations are a special case of (1.17).

The equations are decoupled into the displacements in the ecliptic
(8x, 8y, 0), and the displacement normal to the ecliptic (0, 0, 6z). Since
the periodic orbit lies in the ecliptic so that zp = 0, the value of the
Hamiltonian (5.11) does not depend on &z to first order; a solution of
the last equation (5.16) by itself is acceptable. This condition for 6z is

already in the form of a typical Hill’s equation, since we can write

2.3
na

3
o

0 =62+ (

) 6z~ 85 + (n + % 7?82, (5.17)

The factor of 8z in the second member is a function of period 2# in the
independent variable T because of ry which is given by (5.13).

The third member in (5.17) uses the approximation (5.15) for the
periodic orbit as a circle with the radius rp = ao. It has the solution
8z = k cos(wf + x) with the frequency w = n(1 + 3n'2/4n?), which is
Newton’s result for the motion of the node: The vertical motion of the
Moon in the neighborhood of the periodic orbit has a higher frequency,
so that the Moon returns to the ecliptic before she faces again the same
fixed star; her node is refrograde. The first part of (5.17) was obtained
and its consequences were discussed independently by J.C. Adams
(1878), the codiscoverer (with Leverrier) of the planet Neptune, at the
same time as Hill published his general method.

The equations for the deviations from the periodic orbit in the
ecliptic are more difficult to treat. They reflect accurately the problems
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one encounters every time the neighborhood of a periodic orbit is in-
vestigated. There are two degrees of freedom since there are two po-
sition coordinates dx and 8y ; but one degree of freedom is
uninteresting. A shift in the time variable by some constant value ¢
makes no difference to the trajectory of the Moon, and a shift by §E
of the Moon’s energy, i.e., the constant value of her Hamiltonian
(5.11), would change the frequency (n — n’) of the periodic orbit.

The relevant degree of freedom is a shift ds that is perpendicular in
the (x,y) plane to the direction of motion of the periodic orbit.
Therefore, we write

(PO s x())
s )
.2 .2
VX +W
and then find the original Hill’s equation exactly as first written down
by its dicoverer,

(6x, &) = (5.18)

0s + O(ds = 0, (5.19)

where the function ©(¢) has the period 27/(n — n’) of the periodic
orbit.

The calculation of © in terms of the coodinates xy(¢) and yy(f) can
be made by inserting the expression (5.18) into the equations (5.16);
but the necessary manipulations and the final result are surprisingly
tricky. In the limit of a circular periodic orbit with the radius ry = qq
given by (5.15), the time-independent part of © becomes
n? —-3n'2/2. Just as in the case of 6z, we find now that
8s = € cos(Q + ¢) where Q = n(1 — 3n'2/4n2), again Newton’s result
for the motion of the Moon’s anomaly, which is her motion toward and
away from the Earth.

The coefficients of the Fourier series (5.13) depend only on the
ratio m = n'/n apart from some obvious scaling factors, and the same
holds for the periodic functions which appear in Hill’s equations (5.17)
and (5.19). Various systematic procedures have been devised in order
to find directly the expansions (5.9) and (5.10) for the motions of the
node and of the perigee as power series in m. The most ingenious was
first proposed by Hill, and involves the use of infinite determinants, a
very daring idea at the time. These difficult series can thus be obtained,
w1thout worrymg about the effect of the other parameters such as the
e,v,¢,anda/d .
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5.7 Displacements from the Periodic Orbit and Hill’s Equation

Hill’s work has another aspect which is important for the sequel. The
solutions of (5.16), (5.17), and (5.19) obey Floquet’s theorem (1883)
which was, of course, well understood by Hill five years earlier. They
consist of a product of two functions: the first factor is the simple
trigonometric function that we quoted earlier, and whose frequency
gives the motions of the node and of the perigee, called w and { in the
preceding section. The second factor is periodic with the periodicity
of the underlying periodic orbit; the second factor provides only a
modulation of the amplitude for the first factor.

The symmetry of the periodic orbit suggests the following ex-
pression for the solutions of the equation (5.17):

izy(1) = e®7G(r) — e *G* (1), (5.20)

and a slightly more complicated form for the equation (5.19):
x(7) + in(1) = e F (1) + e "UFy (1) . (5.21)

in terms of the mean synodic angle 7 = (n — n')t from the Sun to the
Moon. The functions G(7), Fi(7), and F>(7) are periodic with the same
period 2 as the orbit (5.13), and can be expanded in the same manner
with real coefficients,

Fi(7) = Eeie'h , Fy(r) = Ee'[;ed]T ,G(1) = le;elh. (5.22)

/ ? ¢

The motion of the perigee (5.9) is given by 1 — (1 — m)co, and the
motion of the node (5.10) is 1 — (1 — m)gy, because the coordinate
system for the periodic orbit is rotating with the angular speed
n(1 — m) = n — n’ , and the time parameter 7 has been normalized to
increase by 2« in one period.

The trajectory of the Moon can now be represented to first order
by adding the displacements (8x, 8y, 6z) to the coordinates (xo, o, 0)
of the periodic orbit. These displacements are the solutions of the
second-order linear equations (5.17) and (5.19), each of which has two
constants of integration. The most convenient choice for them are the
coefficients k = kg for 6z, and the difference e = ¢y — ¢y for
8x + i8y, as well as a phase angle in each of the exponentials of (5.20)
and (5.21). The constant k defines the effective inclination of the lunar
trajectory with respect to the ecliptic, and the constant e determines its
effective eccentricity. The phase angles fix the position of the node and
of the perigee at the epoch.

By taking the time derivatives we get for the momentum (u, v, w)
as well as for the position (x, y, z) of the Moon formulas of the type
(3.4) which describe the motion on an invariant torus. There are alto-
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gether three angle variables: the basic angle 7 in the periodic orbit and
in the functions F;, F, of (5.21) and G in (5.20), which describes the
synodic motion (with respect to the Sun); the angle cyr for the anom-
aly toward and away from the Earth; the angle gyt for the up and down
motion with respect to the ecliptic. A particular torus is characterized
by the effective eccentricity e and the inclination k.

Before concluding this chapter a few additional remarks about Hill’s
method may help to gain perspective on his work. I find it surprising
that the trajectories in the neighborhood of a periodic orbit have fre-
quencies that are completely different from the underlying period; after
all, one could have expected that the frequency differences vanish as
the trajectories get closer to their periodic progenitor, but the differ-
ence between the sidereal and the anomalistic month does not vanish
even when the eccentricity e goes to 0, and similarly with the nodical
month and the inclination k of the lunar trajectory.

The expansion around the periodic orbit can be pushed to higher
order in a fairly straightforward manner. Instead of expanding the
Hamiltonian or the equations of motion around the periodic orbit
(x0,70,0), one expands around the first-order trajectory (xo + xi,
Yo + 1, 21), which is determined by the values of e and k. Second-order
corrections, 8x = x,(7), 8y = y»(71), 6z = z5(7), now appear, which are
proportional to the small parameters ¢’ and a/d’ , as well as to the
higher powers of e and k.

These corrections and all the subsequent ones satisfy linear differ-
ential equations whose only difference from (5.16) is the presence of
inhomogeneous driving terms on the right-hand side. They arise when
x = xo(7) + x1(7), etc. are inserted into the Hamiltonian (5.11), and
its ancestors, (4.9) and (4.2). Each combination of small parameters
e, k, ¢, a/d’ leads to one such new set of inhomogeneous linear
equations. The whole expansion (3.4) for the lunar trajectory is found
by solving over and over again the same set of linear differential
equations (5.16).

This program was carried out around the turn of the century by
Brown (1897-1908), again by hand, with important technical im-
provements by Eckert (1954), and formed the basis for all lunar cal-
culations before the landing of human beings on the Moon. By that
time modern computers had become available, which allowed all the
former computations to be pushed significantly beyond their original
goals. Dieter Schmidt of the University of Cincinnati and the author
(Gutzwiller and Schmidt 1986) completed in this manner the work that
had been started by Hill, and carried on by Brown and Eckert.

The resulting series for the Moon’s invariant torus is useful as far
as practical calculations are concerned, but it has not been shown to
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converge for the relevant choice of parameters. Moreover, the incip-
ient chaos of the Moon’s trajectory shows up even in this traditional
result and can perhaps be appreciated more nowadays than in the he-
roic precomputer times.

The first symptom is the great proliferation of small terms of higher
order. If the lunar coordinates are required to a relative precision of
10-8, it is not sufficient to know all the coefficients > 10—3 in the
Fourier expansion (3.4). The author (Gutzwiller 1979) has calculated
the root-mean-square of the coefficients in the interval (10-8, 10~°) ;
i.e., the squares of the coefficients in this interval were added up and
the root of the sum was taken; it is almost 10~7. Thus, the small terms
generate a background noise which has to be controlled by pushing the
expansion far beyond its original goal.

The second symptom is the very small denominator that was men-
tioned at the beginning of Section 5.4. The original intention of
Schmidt and the author was to guarantee a relative precision of 10~10
by obtaining all coefficients down to 10~ !? and calculating each to an
accuracy of 10~14, i.e., reals defined by 64 bits. The boost of 2000 by
the small denominator, however, forced us to push down to 10~17, and
reals defined by 128 bits, an accuracy far beyond any measurement,
since it corresponds to 4.10~7 cm, or 40 atomic radii, at the distance
of the Moon.



CHAPTER 6

Periodic Orbits

The idea of everything returning eventually to its point of departure
has a strong hold on humanity, with many historical, philosophical, and
religious implications. Kepler’s discovery of the elliptical orbits for the
planets in the solar system seemed to give a scientific basis to this
predilection for things running along a closed track and repeating their
history over and over again. The motion of the Moon does not fit this
picture in its most narrow interpretation; but we have seen in the past
chapters how the invariant tori of an integrable system generalize the
simple-minded view. Instead of one period after which all momenta
and positions return to their initial values, one deals with as many dif-
ferent periods as degrees of freedom.

The various periods in the lunar problem are vastly different: a
month for the main motion around the Earth, a year for the direct pe-
riodic influence of the Sun, as well as 9 and 18 years for the Sun’s
secular effect. It hardly matters whether the exact ratios of these pe-
riods are rational numbers or not, except when one has to set up a cal-
endar.

All the great civilizations have established simple rational approxi-
mations for the ratios of these periods. The most useful of them is the
Metonic cycle of 19 tropical years, which contains 235 synodic months,
with a difference of only 1/4 of a day; on its basis the Jewish calendar
has a well-defined sequence of 12 short years containing 12 months
and 7 long years containing 13 months. Solar and lunar eclipses can
be conveniently organized into Saros cycles of 223 synodic months =
239 anomalistic months = 241 sidereal months = 242 draconitic



76 Periodic Orbits

months & 18 years 11+1/3 days. The 1/3 day is remarkable, because
it means that almost exactly the same type of eclipse is seen in the same
place on Earth every 54 years and 34 days, i.e., with a delay of only
one month.

The search for exactly periodic orbits may have been inspired by
these amazing near coincidences; but their importance for modern
physics has a quite different origin and was first recognized by
Poincaré (1892, Chapter III). He found that periodic orbits, i.e., sol-
utions of the equations of motion that return to their initial conditions,
are densely distributed among all possible classical trajectories; and he
suggested that the study of periodic orbits would provide the clue to the
overall behavior of any mechanical system. In his words,

"what makes these periodic solutions so valuable, is that they offer,
in a manner of speaking, the only opening through which we might
try to penetrate into the fortress which has the reputation of being
impregnable. "

Periodic orbits form continuous families in phase space that can be
investigated by varying either the energy of the system or some ex-
ternal parameter like the relative masses of the bodies involved. There
are fascinating details, in particular the sudden bifurcation of a partic-
ular isolated periodic orbit, or its unexpected birth without further
warning. The reader will find interesting examples in the work of
Hénon (1966-70) on the Restricted Three-Body Problem, i.e., a light
body moving in the same plane as two heavy bodies that are in a cir-
cular orbit around their center of mass; Hill’s theory of the lunar
perigee (cf. Section 5.5) is a special case. Contopoulos (1970) inves-
tigated the motion in the galactic gravitational field; Baranger and
Davies (1987) with de Aguiar and Malta (1987) finally carried the
good word to the quantum-chaos-minded physicists. A lot of work has
been done about actually finding periodic orbits; cf. Helleman (1978),
as well as Kook and Meiss (1989).

Poincaré’s suggestion seemed, at first, to be valuable only as a gen-
eral approach for the better understanding of some difficult problems
in classical mechanics. Since the advent of quantum mechanics, how-
ever, the periodic orbits have turned out to be of special significance
in the transition from the classical to the quantum regime; this idea is
the essence of the trace formula which will be explained in Chapter 17.
The present chapter will discuss how periodic orbits arise in an
integrable system, how many of them there are, and how phase space
looks in their neighborhood whether the system is integrable or not.
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6.1 Potentials with Circular Symmetry

Periodic orbits in an integrable system are best handled with the help
of the action-angle formalism. The main ideas come out clearly when
studying a particle moving in a plane under the influence of a potential
V(r) that depends only on the distance r from the origin. Einstein
(1917) gave this example in his paper on quantization conditions,
which has inspired many researchers ever since it was "discovered" by
Keller (1958). Although the circular symmetry of the problem makes
the discussion almost trivial, the reader should pay close attention to
some of the finer points such as the exact definition of the angle vari-
ables, and the calculation of the Hamiltonian in terms of the actions.

In polar coordinates (r, ¢), the Hamiltonian becomes

2 2
Hp,M,r,¢) = rF_, M + V(r) = E, (6.1)

2m 2mr?

where we have used the conjugate pairs (p, r) and (M, ¢) with the ra-
dial momentum p and the angular momentum M. The radial momen-
tum p is not a good action variable for this problem because its
conjugate variable r still occurs explicitly in H; but since we have suc-
ceeded in separating the variables, we can find the relevant actions with
the help of (3.2). M is the action for the azimuthal motion, while the
action N for the radial motion is given by the integral

= % frZPdr = %frzdr\/zm(E _ V(r)) _ M2/r2 ,(62)
r1 rl

where the limits of integration, r; and r,, are the roots of the equation
E=V(r) + M?/2mr2.

The invariant tori in the three-dimensional surface of constant en-
ergy E can now be represented, exactly as Einstein saw them for the
first time, by using a cylindrical coordinate system with the polar co-
ordinates (r, ¢) in the horizontal plane and p along the vertical. The
trajectories of the Hamiltonian (6.1) for a given value of M form a
closed curve in the vertical (r, p) plane, which has to be rotated around
the p —axis to generate a torus. These tori for different values of M
are nested inside one another as shown in Figure 9.

The angular momentum M reaches its largest value M, at the core
of these nested tori, when the two solutions, r; and r,, coincide, and
their common value is ry; the corresponding value of N=0. As M
decreases, N increases, and reaches a maximum Ny when M = 0. The
values of M can be both positive and negative; but N is always positive,
and depends only on | M|. For each value of E , there is a well-defined
curve of N versus M.
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Figure 9 Invariant tori in the three-dimensional surface of constant energy.

In order to transform the system to the action-angle variables that
are associated with N and M, one has to solve the equation (6.2) with
respect to E. The resulting function E(N, M) is the required
Hamiltonian Hy(N, M) whose derivatives give the frequencies accord-
ing to (3.3). The equation (6.2) cannot be solved explicitly, except for
some special potentials V(r).

If V(r) is the Coulomb potential — e2/r, one finds

4
me

H, = s (6.3)
2(N + | M)

the two-dimensional harmonic oscillator of frequency « has the
Hamiltonian Hy = (N + | M|)w. In both cases the matrix of second
derivatives with respect to N and M is singular; the further investi-
gations do not apply to these special cases. A similar fate awaits the
case of two independent harmonic oscillators; it is not a good example
for studying the effect of perturbations on typical integrable systems.

The frequency w, which is associated with N according to (3.3), is
obtained by taking the derivative of (6.2) with respect to N at constant
M, while considering E to be a function of both N and M. The resulting
expression is more easily written in terms of the period

n

T, = 2= =2f m dr L (6.4)
1 n \/2m(E -V - M?/r?

this formula gives the elementary expression for the time to cover the

radial motion from r; and r, and back, since the equations of motion
give df = mdr/p and p is obtained from (6.1). A similar argument
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gives the frequency w; for the azimuthal motion as the ratio of two in-
tegrals like (6.4). Once the frequencies are known, the corresponding
angle variables follow simply by multiplying with 7 which is the integral
over m dr/p.

The angle variables, w; and w», are not very interesting because they
are both proportional to the time. The angle ¢, however, does not in-
crease linearly with time since the equations of motion give
d¢ = dt M/mr?. The average rate of increase with time for ¢ is the
same as for wy, namely w;; but the difference ¢ -—- w, is a periodic
functlon of tlme exactly as the difference between the true anomaly
f' = ¢’ — g’ and the mean anomaly /" in the Kepler motion of (4.3).
The same thing happens in the three-body problem: the intuitive choice
of the various angles differs from the final angle variables by terms that
are periodic in time. These are called the inequalities in the traditional
astronomical literature because they give the real motion of the celes-
tial bodies through the sky an irregular appearance.

Periodic orbits arise when the ratio of the two frequencies, w;/w>,
is a rational number »/u where » and u are assumed to be relatively
prime. One can then write w; = vwg and wy = pwy in terms of the
overall period Tp = 27/wo. In the case of orbital precession, the polar
angle ¢ has increased beyond 27 by a rational fraction of 2, in the
time it takes the radial motion to complete its period; Figure 10 shows
a case of orbital regression.

Let us now go back to the surface of constant energy, as shown in
Figure 11d, and look at two consecutive intersections of a trajectory
with the vertical plane ¢ = 0. The intersection of an invariant torus
with ¢ = 0 forms a simply closed loop. An initial point on the r-axis,
with r > ry, does not complete the closed loop as it returns to ¢ = 0;
it may advance by some angle less than 2w, in a rough manner of
speaking. The greater the loop in Figure 11d, the less the advance of
the representative point.

The periodic orbits occur on those tori, where upon p consecutive
intersections with ¢ = 0, the representative point completes exactly »
turns around its loop. For a fixed value of the energy E, each loop is
characterized by its value for M, or equivalently by N, or again by the
ratio of the two frequencies, all of which vary continuously in some
interval. The rational values of this ratio form a dense set in this in-
terval, just as Poincaré pointed out.
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Figure 10 Precessing trajectory: the angular motion covers 47/5 while the
radial motion goes through one cycle, from its minimum r; to its maximum r
and back.

6.2 The Number of Periodic Orbits in an Integrable System

The arguments of the last section are now generalized to an integrable
system with n degrees of freedom. We assume that the transformation
to action-angle variables has been carried out, and the new
Hamiltonian is a function of the actions Iy, I, ... , I,. The frequencies
are then given by the formulas (3.3), w; = 0H/0dI; in terms of the
actions. But it is now crucial that these formulas can be inverted: one
needs the map « - I rather than the map I - w, which the
Hamiltonian yields. This inversion is possible only if the matrix of the
second derivatives dw;/8l; = 02H/dI,0I, is regular. This last condi-
tion fails for the Kepler problem and the harmonic oscillator, as shown
in (6.3).

Let us now proceed to the frequency space (w1, w2, ... , w,), and
consider in it a straight line through the origin in the direction
(K1, K25 ... s Kn). This line cuts through the energy surface
H(, ..., I,) = E in the point (wg1, ... , wgy). In particular, if we have
chosen integer values for the «’s, ie., x;=k; , we find that
wo; = kjwo ; all the frequencies are integer multiples of some basic
frequency wo. The corresponding trajectory has the period
To = 27/wo. Inside the allowed region of frequency space, the ratios
of the integers k can be given arbitrarily; the more complicated they
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are, the smaller is the common frequency wg and the longer is the
overall period Ty.
The use of classical periodic orbits in quantum mechanics requires
the calculation of the action integral S over one period,
To Ty
S = (Ildwl + -+ Indwn) = (Ilwl + -+ Inwn)dt
0 ) 0 (6.5)
= (Lo, + - + Lw,) w—’; =27 ki, + - + kL) .

The last expression is easily misunderstood, because the integers k do
not only appear as the explicit factors of the actions 7, but the actions
depend implicitly on the chosen values of the integers. Let us, there-
fore, find out how the value of S changes when the integers k are
changed by some small amounts 8k.

In order to carry out this computation, we go back to the original
real numbers («y, ..., k,), which are to be changed by (8kj, ... , 8k,).
The energy E = H(Iy, ..., I,) has to remain the same, and this leads to
the condition

oH ol
8H=z (9] BJ (0k; wy + k;0wy) =

where w; = 3H/dI; = kjwo has to be inserted. Now we can work
out
I

88 = 2w62 216x+2wzja (8K,wo + K,80p) ;
J

but the second term on the right vanishes because of §H = 0.

The remaining first term can be interpreted in the light of Bohr’s
correspondence principle. The «’s are replaced by the large integers
k, as in a highly excited state, and the real increments 8x become the
small integer increments dk, as in the transition to a neighboring state.
The above calculation is still valid since the 8k’s are small compared
with the k’s. Thus, one finds that

8S = 2m (Lidk, + ... + ISk,). (6.6)

The action is a first-order homogeneous function of the «’s, and also
of the k’s as long as they are large.

For the purpose of counting how many periodic orbits there are
whose action § is smaller than some positive number o, we can treat S
as if it were a linear function of the positive integers k; with positive
coefficients /; . Therefore, the number of periodic orbits for a fixed en-
ergy E, and for which S < o, grows as the n-th power of o.
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This polynomial growth in the number of periodic orbits for an
integrable system is in sharp contrast to the exponential growth in a
mechanical system with hard chaos, a condition that will be discussed
at length in the later chapters. The polynomial growth can be directly
traced to the one-to-one relation between n —tuples of integers
(ky, ..., k,) and periodic orbits. Such a simple characterization does not
work any longer in a chaotic system.

6.3 The Neighborhood of a Periodic Orbit

Hill’s theory of the motions of the Moon (cf. Sections 5.5 and 5.6) was
based on the idea of investigating the neighborhood of a particular
simple periodic orbit of the full Hamiltonian. The neighboring trajec-
tories were calculated as Fourier series in the basic angle variable 7 of
the periodic orbit; the computations can be carried to high accuracy.
The study of chaotic systems requires a less detailed, but more general
understanding of periodic orbits, which can eventually be related di-
rectly to the variational principle and Feynman’s path integral. The
present section is intended to lay the foundation for this complemen-
tary approach.

Without restriction as to the integrability or lack thereof in the me-
chanical system, let us latch onto one particular periodic orbit, which
starts with the momentum p in the position ¢ and returns to this place
in phase space after the time 7. We shall assume that all the trajecto-
ries that start at (¢, ¢’) in some sufficiently small neighborhood of
(7, ¢) will return to that neighborhood after some time ¢ close to 7.
None of these trajectories ever strays far from the periodic orbit during
the time 7.

We will examine the neighboring trajectories in function of their
initial conditions (p’, ¢’) and their endpoints (p”’, ¢'’), all in the neigh-
borhood of (7, §). Although (¢, ¢") and (", q") are in the same
neighborhood of (p, ¢), they are joined by a long trajectory; when ei-
ther (o', ¢') or (o', ¢"’) are allowed to vary, the whole trajectory con-
necting them will change in order to join correctly the initial and the
final points while running close to the periodic orbit.

The whole calculation will be carried out for a system with three
degrees of freedom, because that represents already the most general
case, whereas such is not true for two degrees of freedom. We will also
avail ourselves of a special set of coordinates in phase space whose
existence and benefits will be established in the next chapter. The
momentum coordinate p; is simply the energy E, quite generally; the
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position coordinate g is the time variable along the periodic orbit for
the points on it. For the points off the periodic orbit, however, the
coordinate g, is a continuously differentiable function of the original
coordinates. The points with g; = constant and p; = E form a four-
dimensional submanifold transverse to the periodic orbit. The re-
maining coordinates (py, p3, 42, g¢3) vary in such a submanifold, but are
otherwise chosen arbitrarily with the only restriction that
1, q1) , (02, ¢2) , (p3, g3) are canonically conjugate, or equivalently
that”the action integral S is given by [(pidg1 + p2dgs + padgs) from ¢’
fog .

The action integral S(g"' ¢’ E) is taken along the trajectory that
starts at ¢’ in the neighborhood of g, runs close to the periodic orbit for
one, two, or more turns, whichever is of interest, and ends up at g’
again in the neighborhood of g while moving at the energy E. We
could have left out the explicit mention of E since in our special coor-
dinate system p”'{ = p’| = E, but the energy E is listed explicitly to
make the connection with the formulas in Chapter 3. In particular we
need (2.4) in order to calculate the momenta p’ and p"’.

This formula is now used to get the displacements p = p — pand
éq = g — q, while p; and q; are kept fixed,

3 2 3 2
’ aS / aS "
¥ = -.2_ W‘S"f = 2 5l
Jj=2 J j=2 i J
3 ) (6.7)

9°S sd"
E + E —7 209 ;,

- aq’/a j=2 aqlliaq/’j J

where the index i takes only the values 2 and 3, while the second de-
rivatives are evaluated at ¢’ = ¢’ = ¢ These formulas can be written
in the abbreviated form

o' = —adqd — boq", & =bT84d + cé4’, (6.8)

where a, b, and ¢ stand for the 2 by 2 matrices of second derivatives
of S with respect to 4’ and ¢/, and b+ is the transpose of b.

In order to understand the geometry of the trajectories in the
neighborhood of the periodic orbit, one would like to have formulas for
8p"' and 84" in terms of 8p’ and 84, such as

8" = 484 + B&p', &" = Ccé4 + D&Y, (6.9)

where A= — b~ la,B=—b"1,C=b* —cb~la,D = — ch~!. These
2 by 2 matrices are well defined provided the matrix b of mixed second
derivatives of S with respect to ¢’ and ¢’ is regular. A similar matrix
was discussed in Chapter 2 when trying to find the formula (2.7) for
the density of trajectories; but the relevant expression contained the
second derivatives with respect to all position coordinates and the en-
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ergy, rather than only the position coordinates of index larger than 1.
The relation between these two matrices and their determinants will
become clear when the trace formula is discussed in Chapter 17.

6.4 Elliptic, Parabolic, and Hyperbolic Periodic Orbits

The behavior of the trajectories near the periodic orbit is described by

the linear transformation (8p’, 8¢') - (8p”, 8¢"") of (6.9). Naturally,

one looks for the eigenvalues A of this linear transformation, and cal-

culates, therefore, the characteristic polynomial F(A), which is given
by the determinant

A-N B | _

C D-A\I l -

—b a1 —bp!

FQ) = b* + N — N

, (6.10)

where [ is the 2 by 2 unit matrix. The second determinant was obtained
from the first by replacing 4, B, etc. by their expression in terms a, b,
and c as given in (6.9). Moreover, the first two lines in the first deter-
minant have been multiplied with ¢, and then subtracted from the last
two lines.

This kind of manipulation is continued by first multiplying the first
lines in the second determinant of (6.10) by b, and compensating this
change by dividing the whole determinant with det| b |, which yields
the expression

1 | —a-2b —I'_ L__\—a—)\b -1
5] b +xc =M |5 bH+(a+c)A+A2b o

where the second determinant results from the first one if the first two
lines are muitiplied by A, and subtracted from the last two lines. At this
point, the 4 by 4 determinant has been effectively reduced to a 2 by 2
determinant, and one can write

F(\) = det |bY + (@a+ )\ + bN\?|/ det |b],  (6.11)

which is the desired result of this calculation.

The first corollary of (6.11) states that F(0) = 1, i.e., the determi-
nant of the linear transformation (6.9) is 1; the transformation con-
serves the four-dimensional volume of the submanifold
(q1 = q, py = p) in the neighborhood of the periodic orbit. This pro-
position will be generalized in the next chapter. The present purpose
is to find out more about the eigenvalues of the transformation (6.9),
i.e., the solutions of the equation F(A) = 0.

Since the matrix elements in a, b, and ¢ are real, the solutions of this
algebraic equation either are real, or come in complex conjugate pairs.
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Moreover, the expression (6.11) shows that, if A is any zero of F, then
so is 1/A. Thus, we have the following four possibilities which carry
the classical designations:

(i) elliptic for A = exp(ix), exp( —ix) with x real;

(ii) direct parabolic for A = +1 or inverse parabolic for A = - 1;
(iii) direct hyperbolic for A = exp( % x), or inverse hyperbolic for
A = — exp( + x) with real x;

(iv) loxodromic for A = exp( * u * iv) with independent signs and
real values of u and v.

The first three cases occur in a system with two degrees of freedom,
but the fourth case requires at least three degrees of freedom.

The values of F(1) for the three first cases will come up in the trace
formula (cf. Chapter 17); they are given by the expressions:
—4 (sinh(x/2))? for direct hyperbolic, 0 for direct parabolic,
4 (sin(x/2))? for elliptic,c +4 for inverse parabolic, and
4 ( cosh(x/2))? for inverse hyperbolic orbits. Notice that these values
of F(1) span the full range from — o to +; Greene (1979) gave the
name residue to this quantity F(1) which characterizes the neighbor-
hood behavior of the periodic orbit.

Since the first three cases describe transformations of a two-
dimensional manifold in the neighborhood of the periodic orbit, they
can be represented schematically as shown in Figure 11. In order to
get from the initial point P’ to the final point P "’ in the transformation
(6.9), the point P has to slide by a certain amount along either ellipses,
parallel lines, or hyperbolas, as indicated by the arrows.

The situation in an integrable system (see Figure 11d) can only be
reconciled with the parabolic case. When a mechanical system is
integrable, the transformation (6.9) in the neighborhood of a periodic
orbit has only the eigenvalues + 1. Since periodic orbits are dense, this
special feature has to be true everywhere. For systems with two de-
grees of freedom in particular, the 2 by 2 matrices in (6.9) reduce to
real numbers; the condition for parabolic behavior of the periodic orbit
becomes a + ¢ = + 2b.

Integrable systems are, therefore, non-generic; they are excep-
tional, unless some principle in nature exists which gives preference to
them over all the others; but none has been found so far. If a me-
chanical system with two degrees of freedom is generic, the neighbor-
hood of a periodic orbit has to be elliptic or hyperbolic. It becomes
then very difficult to reconcile a collection of the local behavior as de-
picted in Figure 11 with some simple overall pattern such as in Figure
11d. This is the reason why chaotic systems are unavoidable in me-
chanics; in most cases there is an intimate mixture of elliptic and
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Figure 11 Area-preserving maps in the neighborhood of an elliptic (a),
hyperbolic (b), parabolic (c¢) fixpoint, and the surface of section (d) of an
integrable system (¢ = O at the end of section 6.1).

hyperbolic behavior which we shall call soft chaos; Markus and Meyer
(1974) provide a mathematical version of this statement. Phase space
might look integrable at some rough scale, although the fine details are
much more complicated.

If the behavior is hyperbolic throughout, however, a relatively sim-
ple overall pattern can usually be established in spite of the prevailing
chaos. In fact, the chaotic features in such a system turn out to be
particularly striking, a condition we shall therefore call hard chaos. In
our view, classical mechanical systems cover a wide range of chaotic
behavior, with integrability as a rather exceptional situation on one
end, and hard chaos as a structurally stable, i.e., immune to small per-
turbations, but not the most general situation at the other end.



CHAPTER 7

The Surface of Section

The trajectories in phase space often have very involved global features
which are in apparent contradiction to the locally smooth flow.
Poincaré proposed to deal with this problem by intercepting the flow
at discrete times, rather than by following up on every little shift and
displacement. His method, known as the surface of section, has be-
come the main tool for studying chaotic systems, and will be discussed
in this chapter for the special case of Hamiltonian systems. The main
ideas are all of geometrical origin and will be presented in this light.

7.1 The Invariant Two-Form

The adjectives ’dynamical’ and ’Hamiltonian’ have been used quite
loosely in the preceding chapters; it is now important, however, to fol-
low the common usage. A dynamical system is a smooth vector field in
phase space, and its trajectories are obtained by joining its little local
arrows into continuous curves. A Hamiltonian system is the special case
of a dynamical system where the vector field is defined by the formulas
(2.2) in terms of the Hamiltonian H(p, q).

This book deals exclusively with Hamiltonian systems; they turn out
to be a very particular subset somewhere at the outer boundary of the
large set of dynamical systems. Nature has decided to be Hamiltonian
at its most basic level; non-Hamiltonian dynamical systems come up in
physics only as phenomenological models for the more complicated
underlying processes. The characteristic differences between the two
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types of systems shows up most clearly when discussing the surfaces
of section.

The first step in our approach is the construction of the canonical
two-form 1. For this purpose, we choose an arbitrary point (p, ¢) in
phase space and two more points in its neighborhood. The latter are
defined by giving their displacement from (p,q), i.e., a vector

8p1, ..., 0pn, 8q1, ..., 8q,) for the first, and a vector
(Apy, ..., Ap,, Aqi, ..., Agq,) for the second displacement. These two
vectors span a parallelogram whose area is defined as
n
Q(8,8) = . (8p;Aq, — 84;Ap)) . (7.1)

i=1

The canonical two-form {2 is antisymmetric, in its two arguments, which
means that 2(8, A) = — Q(4A, §).

The three points in phase space (p,q), (» + dp,q + 8q), and
(p + Ap, g + Ag) are now taken as the starting points for three differ-
ent trajectories, each a solution of (2.2) with a well-defined
Hamiltonian H(p, ¢), which will remain the same throughout this
chapter. Therefore, p, q, ép, 8q, Ap, and Ag become functions of the
time ¢. Since the displacements from (p, ¢) are assumed to be small,
however, the equations of motion (2.2) can be simplified by expanding
around the central trajectory p(z), g(¢). Therefore,

d op; O°H O*H

a 0q,0p; P~ g0, 5k »

4%, _ &H O H (7.2
i~ opop T apog, O

where one inserts the functions p(#) and g(#) into the second derivatives
of H. The vector (Ap, Ag) satisfies the same set of linear, first-order,
ordinary differential equations. Equations (5.16) for the displace-
ments from Hill’s periodic orbit in the lunar problem are a special case

of (7.2).
It is now a trivial exercise to check that
dQ(é, A) 0 (7.3)
dt - '

whatever the initial values of p, g, ép, 8¢, Ap, and Ag. In words, the
value of the area {2 for the little parallelogram remains the same as the
three neighboring trajectories proceed, each along its own course.

A more striking formulation of this result starts from an arbitrary,
simply connected, two-dimensional surface W bounded by a curve C.
Such a surface is parametrized by two real variables (u, v) with the help
of functions p(u, v) and g(u, v) where (u, v) is limited to a simple do-
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main. This domain is divided into small rectangles (8u, Av) by the in-
crements du and Ay, each of which gives rise to a pair of displacements
(8p, 8q) and (Ap, Ag). If the corresponding areas Q(8, A) are summed
over the domain in (u, v), the surface W in phase space gets a value 4
for its total area.

Each combination (u, v) defines the starting point for a trajectory;
there is now a two-parameter family of trajectories in terms of the
functions p(u, v, r) and q(u, v, 1). The whole surface W is thereby made
to move as time ¢ changes; we can speak of a surface W(¢) with an area
A(¢). By virtue of the equation (7.3), the area A is constant, i.e., does
not vary with time. This fact is expressed sometimes by saying that 4
is an integral invariant of the Hamiltonian system.

Notice that the constancy of 4 does not depend at all on the par-
ticular Hamiltonian that describes the system; on the contrary, the in-
variance of the integral 4 depends only on the peculiar structure of the
equations of motion (2.2). The integral invariant  says something
rather profound of a purely geometric nature concerning mechanical
systems in general. Anticipating again some results to be discussed
much later, the integral A is limited by quantum mechanics to simple
multiples of Planck’s quantum. This may be another instance where
quantum mechanics lurks in the background, although neither
Poincaré nor we could suspect such a relation at this point of the dis-
cussion.

7.2 Integral Invariants and Liouville’s Theorem

The constancy of € is the generalization of a theorem of Liouville
which has been known since the middle of the last century, and which
plays a central role in statistical mechanics. The derivation of this
theorem from (7.3) leads to further theorems that are needed for the
work in the next section.

Let us consider a total of four neighboring points for (p, q), or
equivalently, four vectors, the previous (8p, 8q) and (Ap, Ag), and the
new (dp, dq) and (Dp, Dq), which give the displacements from (p, g) .
Together they span a four-dimensional parallelepiped to which can be
assigned the volume Q4(8, A, d, D), which is defined as

2(6,A) Q(d, D) — Q(8,d) A, D) + 8, D) A, d). (7.4)

This combination is the only one that is antisymmetric under any ex-
change of two arguments, as for example Q4(8, A,d, D) =
— Q4(d, A, 8, D), apart from an arbitrary constant factor.
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This four-dimensional volume 4 is also called a four-form; and
since it is entirely based on the two-form {2, it is often written as
QAQ. The symbol A indicates the formation of an antisymmetric
product like (7.4), also called the exterior product of § with itself.

The base point (p, ¢) and its four neighbors can again be taken as
the initial conditions for one central and four neighboring trajectories,
by solving (2.2) and (7.2). The four vectors &, A, d, D are then func-
tions of the time ¢, and so is the volume 4. Equation (7.3) now shows
that the value of €4 does not depend on time, because in taking the time
derivative of (7.4) each factor in the three terms is constant.

The exterior product of € with itself can be formed as many times
as there are degrees of freedom. The antisymmetrizing operation like
(7.4) yields zero when the vectors are not linearly independent, and
only 2n vectors at most can be independent in a 2n-dimensional space.
The 2n — form Q,, is the ordinary (Cartesian) 2n-dimensional volume
of phase space.

As in the preceding section, one can now consider a simply con-
nected piece W of 4, ..., or 2n dimensions in phase space. This piece
W has a well-defined volume in terms of the exterior products of £ with
itself. Also, W can serve as the base for an ensemble of trajectories
that move simultaneously through phase space. At each moment, this
moving piece W(¢) has a volume that is always computed with the help
of © and its exterior products. Therefore, the volume of W is constant
in time.

This last statement for a 2n-dimensional piece of phase space is
Liouville’s theorem. The importance of this theorem lies in its impli-
cations for the long-time behavior of the generic trajectory in a typical
Hamiltonian system. The word generic is meant to exclude trajectories
with special properties such as the periodic orbits, and the word #ypical
is designed to remove special Hamiltonians from our discussion, such
as the integrable ones. Non-generic trajectories have initial conditions
whose measure in terms of  is zero; in a more vague sense, atypical
Hamiltonians have near them an overwhelming number of typical ones.

In most Hamiltonian systems an arbitrarily chosen piece W of phase
space with an initially simple shape gets progressively deformed into a
grotesque tangle of interwoven arms and branches, while staying sim-
ply connected and keeping the same volume (cf. Figure 24). Eventu-
ally every piece of phase space will contain some part of this tangle
W(t), and the available volume will be distributed equally; i.e., the
volume of W(r) contained in some particular piece is proportional to
the volume of that piece; it constitutes the same fraction everywhere.
The Hamiltonian system is then called ergodic, which is the normal sit-
uation, although it is not true in integrable systems.
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The word ’ergodic’ needs an explanation: of its two Greek compo-
nents, ’erg’ refers to energy, and ’odos’ to the trajectory. In a con-
servative Hamiltonian system, the energy stays constant so that each
trajectory stays on a (2n — 1)-dimensional submanifold H(p, q) = E.
The description of the increasing tangle in the preceding paragraph has
to be restricted to such a surface of constant energy. The invariant
volume on a constant energy surface, however, is the result of the more
general invariant volume for the whole phase space.

When one starts with some simply connected piece of the constant
energy surface H(p, q) = E, it is necessary to enlarge its content by
including the whole slab of phase space between the energies E and
E + ¢ where ¢ can be an arbitrarily small increment. Liouville’s theo-
rem can only be applied to the slab. The thickness of the slab in terms
of the coordinates (p, g) can vary from place to place. If one has de-
fined some measure of (2n — 1)-dimensional volume on the constant
energy surface (e.g., by using the 2n components of p and ¢ like
Cartesian coordinates), then it is essential to divide this measure by the
absolute value of the gradient of H with respect to p and ¢g. Otherwise,
Liouville’s theorem does not hold on the surface of constant energy.

7.3 Area Conservation on the Surface of Section

The flow of trajectories on a surface of constant energy H(p, q) = E
will now be studied in more detail. It would be difficult to follow all
the many curves as they wind around this (2n — 1)-dimensional sub-
manifold of phase space. Instead, we will concentrate on a
(2n — 2)-dimensional submanifold of the constant energy surface,
called a surface of section 2, which is transverse to the flow; i.e., = cuts
the flow, or put differently, 2 is never tangent to the flow. Apart from
this requirement, the only other condition to be satisfied is that every
trajectory actually does intersect X.

The points on this surface of section X can serve as initial conditions
for the trajectories at the given energy E. Let us pick one such point
(@®, g(©) and start a trajectory there at the time r = 0. Unless we
have chosen a bad surface of section, or a poor point on it, this trajec-
tory will intersect = again at some later time #; in the point (p(1), g(V),
but not at any time between O and 7. In this manner, the point
®®, g) is mapped into (p'V, ¢V); = is mapped into itself. This
transformation of Z into itself gives a somewhat simplified picture of
the flow of trajectories on the surface of constant energy.

The integral invariants for the flow of trajectories in phase space
are now carried over into this transformation. Continuous time as the
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governing parameter is translated into some kind of discrete stepping
mechanism. The basic geometric features of mechanics up to now were
always tied to the coordinates (p, g) being continuous functions of the
time ¢ ; but when we use the surface of section, we look at each tra-
jectory only as it crosses 2, i.e., at the times ¢ = 0, #;, and at any of the
subsequent times, #, f3, and so on. To make things even more strange,
the exact values for #, 1, etc. depend on the initial point (p(®, g(©),
It is very often neither desirable nor even possible to find = such that
the times of intersection #1, #,, etc. are the same for all the points on
2.

As in the previous two sections, let us look at neighboring points to
(@, g®), but this time located in =. The vectors (8p, 8q) and
(Ap, Ag) are, therefore, tangent to =. Since the neighboring points
belong to the same constant energy surface and satisfy H(p, g) = E,

we have

p T g
with a similar equation for (Ap, Agq); the derivatives of H are taken in
(p®, g). This relation can be interpreted differently if we introduce
the vector 7 = (p, ¢), i.e., the tangent to the trajectory at (p(©, g(0)),
With the help of the equations of motion (2.2) and the definition (7.1)
of the two-form €, one can write (7.5) as (8, 7) = 0, and Q(A, 1) =
0. Of course, one has trivially Q(r, 7) = 0.

The two-form (8, A) is now transported along the trajectory that
starts in (p(©, ¢g'9), until the time 7; when this trajectory intersects =
again. The value of 2(8, A) does not change; but the new vectors
(8pD, 8¢V) and (Ap‘D, Ag'D) are not necessarily tangent to = any
longer, because the two neighboring points move along trajectories that
differ from the one through (p(®, ¢(®), and hit = at a time that differs
slightly from #1. This complication can be removed, however, as will
be shown in the next paragraph.

To the first order in the displacements, a change in the time #; adds
to (8pV, 8¢(1) a multiple of the vector 71, which is the tangent at time
t = 1, to the original trajectory through (p(®, ¢(®). If we continue the
neighboring trajectory until it intersects 2, we get a vector 8, which is
tangent to = in (p(V, ¢‘V), but which differs from (8p(», 6q(V) by a
multiple of 7y. Since 2(8, 7) = Q(A, 7) = O for all times, such cor-
rections do not change the value of ©(6, A) at ¢;.

If one now looks at the map of X into itself, the vectors § or A that
join two neighboring points get mapped into the vectors §; or A; join-
ing the corresponding transformed points. The above arguments show
that

QB,A) = 8,4, . (7.6)
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The discontinuous transformation of 2 into itself has, therefore, the
same geometrical properties as the continuous map of the whole phase
space as time increases. In particular, Liouville’s theorem, the conser-
vation of volume in Z, follows by the same reasoning as in the preced-
ing section.

7.4 The Theorem of Darboux

The surface of section is especially useful in systems with two degrees
of freedom, because = then has two dimensions, and the map of £ into
itself can be visualized rather easily. Also the choice of 2 is often quite
straightforward; e.g., if we start with the pairs of canonically conjugate
coordinates (pq, q;) and (p2, ¢2), we define £ as the submanifold
g1 = 0 in the energy surface H(p, q) = E. The second pair (p;, ¢») is
then the natural coordinate system in X, and the invariant element of
area is simply dpdg,.

While almost all the examples in this book have no more than two
degrees of freedom, and the above remarks are sufficient for their dis-
cussion, one would like eventually to advance into the vast arena of
Hamiltonian systems with three degrees of freedom. The surface of
section 2 then has four dimensions, however, and only very few pio-
neers (e.g., Froeschlé¢ 1970) have had the courage to penetrate into this
jungle. For example, the restricted three-body problem where the two
primary bodies, such as the Sun and the Earth for the Moon, or the Sun
and Jupiter for the asteroids, move in a fixed circle, has three degrees
of freedom, and requires a four-dimensional surface of section. The
neighborhood of a periodic orbit was already studied in Section 6.3
with the help of this more general setting.

Among the questions which arise is the following: Is it always pos-
sible to make = part of a canonical coordinate system such that the last
two pairs (p2, ¢2) and (p3, ¢3) are the coordinates for 2, while p; = FE
represents the energy, and ¢, = ¢ is the time, at least in the neighbor-
hood of £ ? The general answer to this question is affirmative, and the
construction of the required canonical coordinates is based on a theo-
rem by Darboux. The whole discussion will be carried out for a system
with three degrees of freedom because all the essential elements of the
argument are present there already.

The original system is described by the usual canonical coordinates
(v1, P2, P3, 91, @2, q3) in phase space with the Hamiltonian H(p, g). The
surface of section 2 is defined in terms of four variables zj, ... , z4; the
coordinates (p, g) are known functions of the z’s. The map of = into
itself leaves the two-form 2 invariant, if one restricts the displacements
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6 and A to be tangent to X. Varying any one of the z’s generates such
a displacement & = (8p, 8q). The two-form € that is originally defined
for any displacements in phase space, becomes thereby a two-form Qs
which is restricted to the displacements in Z.

In terms of the variables z , the two-form s does not look as simple
and concise as the definition of € in terms of p and g in (7.1). But the
transition from § to Iy is easy to work out; the displacements
ép, 8q, Ap, and Aq in (7.1) have to be written in terms of 8z and Az.
The result can be expressed with the help of the Lagrange bracket with
respect to the two variables z and ¢,

‘& dp; 9g; dp; 9g;
{2,81 = Z( e e ) (7.7)

i=1

The resulting formula is

4
Q:(5, A) = % > @y (85, 0z — 8z, 85) . (7.8)
k=1
The coefficients in this two-form, ®;, = {z, z;{, are functions of the
parameters z,, ... , z4, and are assumed to be known in 2. These func-
tions have the evident antisymmetry &, = — .

The question of finding the canonical coordinates in £ now be-

comes: Are there functions f5, f3, 82, 83 of z1, ..., z4 such that

where 8f2, Af> etc. have to be expressed in terms of 8z;, Az; and so
on ?

The answer comes in the theorem of Darboux: Given any two-form
(7.8) in Z, the necessary and sufficient conditions for finding new co-

ordinates />, ..., g3 such that (7.9) holds, are the equations
0P,
8I-jkf az = O b (7.10)

"

where the summation over the indices j, k, and / from 1 to 4 is implied
as usual by the Einstein convention concerning indices that occur twice
in a product. The Kronecker symbol ¢, differs from O only when the
four indices are all different; e = 1 when (i j k /) is an even permuta-
tion of (1234), e = —1 when (i j k /) is an odd permutation of (1234).
It is a straightforward exercise in differentiation to show that the
Lagrange brackets /z, z,{ satisfy (7.10).

The necessity of (7.10) for the required existence of the new
canonical coordinate pairs (f2, g2) and (f3, g3) is easy to prove because
(7.10) is satisfied in the new coordinates as follows from the right-hand
side of (7.9), and a straightforward calculation shows that (7.10) must
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hold in all coordinate systems if it holds in one of them. The difficulty
with Darboux’s theorem lies in demonstrating the sufficiency of (7.10).
We shall not attempt even to give a glimpse of how this part of the
proof can be carried out; but before sending the reader to the relevant
sources, a few cautionary remarks seem appropriate.

The two modern references, Abraham and Marsden (1978) and
Arnold (1978), rely completely on their discussion of symplectic geom-
etry, which takes up dozens of pages before coming to Darboux’s the-
orem. To work through this whole build-up of preliminary material is
made difficult at best by the use of modern, mathematical terminology;
at the end, it is almost impossible for the physicist to tell where exactly
the new coordinate system was actually shown to exist, rather than just
being defined and manipulated. The original paper by Darboux (1882)
is quite readable, and gets right away into the main business of showing
which ordinary differential equations have to be solved in order to find
the new coordinates. It is written for a mathematical audience of the
time, however, not for physicists, and ends up being very long because
many different cases of similar nature are treated without regard to
their relevance in mechanics.

Since mechanics is a branch of physics, the conditions (7.10) cannot
be left standing without mentioning another area where they play a
central role, Maxwell’s equations of electromagnetism. The four vari-
ables z now describe our everyday space-time continuum, and the
antisymmetric functions ®;, are the components of the magnetic and
the electric fields in the notation of special relativity, B; = ®,3 ,
By = ®31,B3=® 5, F| = Oy, F, = Py4, F3 = &34 . The conditions
(7.10) are the one half of Maxwell’s equations which does not involve
the electric charges and currents. They proclaim the absence of mag-
netic monopoles, and Faraday’s laws of magnetic induction; they
guarantee the existence of a four-component vector potential A from
which the magnetic and the electric fields are obtained by calculating
the curl in four dimensions. Although the theorem of Darboux is based
on the same conditions, its conclusion in the form of the canonical co-
ordinates f and g is quite different from their use in electromagnetism.

7.5 The Conjugation of Time and Energy in Phase Space

Now that the surface of section ¥ has been endowed with a system of
canonically conjugate coordinates (f, g), one would like to complete
the job by adding one more pair, at least in the neighborhood of Z,
calling it (f1, g&1). The two most obvious candidates are the energy E
for f1, and the time ¢ for g;. The success of this endeavor depends on
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calculating the relevant two-forms (7.1) between E, t, and the coordi-
nates in 3. The part concerned with ¢ is easy, but E has to be treated
with some care.

Since each point on £ is the starting point for a trajectory, we will
use the simple expedient of defining g; = 0 on 2, and setting g1 = ¢
along each trajectory since leaving 2. We can write 6t instead of 8g; ;
the displacement (8p, 8g) corresponding to & is given by the vector
(p, )81, or in view of (2.2) by ( — dH/dq, dH/dp)st which will be
called 8 for simplicity’s sake. We can now calculate its two-form Q
according to (7.1) together with an arbitrary vector A in Z. The result
is the product &t [Ap(0H/dp) + Aq(dH/dq)]. Since = belongs to a
surface of constant energy, this change of H with the displacement A
vanishes, and (8, A) = 0.

The surface of constant energy H(p, ¢) = E is now endowed with
the coordinates f5, f3, &1, &2, &3, sufficiently close to =. A change in any
one of these five coordinates leads to well-defined displacements inside
> and along the trajectories of energy E. The sixth and last coordinate
in phase space has the job of changing the value of H (p, q) from E to
E + 8E. This new coordinate f; will be chosen such as to have a van-
ishing value of € with any displacement A inside X, whereas
Q(8f;, Ag1) = SE At. The only new kind of displacement in phase
space is in the direction § = (3H /0p, 8H/dq). The displacemnt cor-
responding to a change in f; is, therefore, a linear combination of 8 with
the five independent deviations inside the constant energy surface, so
as to produce the correct values for 1.

The details are tedious to work out, and the end result is not of in-
terest in itself. Of the six coefficients in the linear combination, the
one that goes with &gy, i.e., with a vector in the direction
( — 8H/dq, OH/dp), remains arbitrary; the antisymmetry (7.2) of @
allows only for five independent conditions, whereas six would be re-
quired for a unique determination.

This ambiguity is natural as can be seen even in the original coor-
dinates (p, ¢): the two-form (7.1) does not change, for example, if one
replaces p» by p» + go while leaving all the other coordinates as be-
fore. What does change, is the one-form p dq , and that would affect
the value of the action integral S in (2.3). When the integral of the
one-form is taken over a closed loop, however, for example, a periodic
orbit, the ambiguity disappears.

It is important to emphasize that the addition of f; = E and gy =1,
as canonically conjugate variables to the coordinates in Z, is generally
feasible only in the neighborhood of Z in phase space. As ¢ increases,
S(f) sweeps out the energy surface, and some parts of Z(z) will even-
tually intersect =(0); but at no time will >(?) and Z(0) fully coincide.
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This complication was already discussed in Section 7.3; it is all the
more remarkable that the transformation of X into itself, after cor-
recting for the different return times, still conserves the two- form 2.
The special coordinates (E , ¢) in the neighborhood of a particular tra-
jectory played an important role in calculating the determinant
D(¢" 4 E) in Section 2.4.

The construction in this section should be sharply distinguished
from another one which also presents E and ¢ as an additional pair of
conjugate coordinates. The dimension of phase space now gets in-
creased from 2n to 2(n + 1) where n is always the number of degrees
of freedom. This idea is already present in the expressions (1.8) and
(1.9) for the variation of the Lagrange action R, where the one-form
p 0q gets the extra term E &¢. A similar enlargement of phase space was
used in Section 5.2 where the variable /', the mean motion of the Sun
acting as a time-dependent perturbation on the Moon-Earth-Sun sys-
tem, was considered to be a new angle variable k£ with a corresponding
new action K to complete the pair. The resulting enlarged system was
thereby made conservative.

Including (energy, time) as a new pair in addition to (momentum,
position) is, of course, essential in special relativity, and leads again to
a conserved Hamiltonian system even though there might be time-
dependent forces. As an example, let us consider a charged particle in
an electromagnetic field, which is given by the vector potential
(Ag, A1, A2, A3) where each component is a given function of the time
variable xo = ct, and the Cartesian coordinates x1, x3, x3; ¢ is the ve-
locity of light. In order to find equations of motion that look like (2.2),
one needs a conjugate variable p, for xy, a new time-like variable 7, and
a Hamiltonian function M(py, ..., p3, X0, ... , X3). The equations of
motion have to yield the movement of an electric charge e in the com-
bined electric and magnetic fields of the given vector-potential A,
equivalent to Newton’s equation of motion for a particle of rest-mass
myg subject to the Lorentz force as in equations (18.1) and (18.2). If
these terms are not understood at this point, the reader is requested to
come back to this place after looking at Chapter 18 where the hydrogen
atom in a magnetic field is discussed at length.

The most convincing form of the Hamiltonian M is

3
e 2 e 2
M= (-~ —=4) - X @ — =4), (111
i=1

with a new variable 7 to play the role of time. If this expression is used
in (2.2) with M replacing H and x replacing g, and the result is com-
pared with the usual equations of motion for an electric charge, such
as (18.1), the following interpretation emerges: Since the system is
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conservative, i.e., M does not depend on 7, the value of M remains
constant and its value is m§ c¢2. The variable 7 is the proper time of the
particle, i.e., the ordinary time measured in the instantaneous rest-
frame, and pp = E/c (cf. Garrod 1968).

In this form, the rest-mass mgy stays constant because of the
equations of motion in an electromagnetic field. It may change only if
there are internal degrees of freedom; these work always in the proper
time 7 which is the natural time-like variable in the Hamiltonian M.
As an example, one can think of radioactive decay; e.g., the ’heavy
electron’, alias u-meson, decays into an ordinary electron with a prob-
ability which decreases with its speed, because the speed is measured
in the time-frame of the laboratory while the internal clock always runs
more slowly, as in the famous twin paradox of special relativity.

The end of this chapter may be the appropriate place to mention a
bit of particle physics that has a direct bearing on the question of chaos
in simple physical systems. The theoreticians of high-energy physics
have arrived at a consensus in recent years, whereby one or the other
of the non-Abelian gauge fields are able to explain the bewildering va-
riety of elementary particles. These theories were first proposed by
Yang and Mills in 1954 to generalize Maxwell’s theory of
electromagnetism which is an Abelian gauge field. But the new theo-
ries lead to non-linear field equations, although they are still amenable
to the techniques of perturbation theory.

Unfortunately, the effective coupling constants are outside the do-
main where the perturbation expansion can be expected to converge,
even if only asymptotically. A brute-force numerical assault on the
problem, lattice gauge theory, seems to be the only way to extract
quantitative results at this time; the work has been in progress for some
years. It seems almost inevitable that chaotic behavior is present in
these systems, and that no real understanding will be achieved until this
aspect of the problem is taken into account.

The first steps in this direction have been made by Savvidy (1982
and 1983) together with Martinyan and Prochorenko (1988). They
have studied the classical non-Abelian field equations in the simple
approximation where they are constant in space and depend only on
time. With three non-vanishing independent components of the field,
they obtain a rather ordinary-looking Hamiltonian system with three
degrees of freedom and a polynomial interaction. It can be studied by
the standard methods involving the surface of section (cf. the next
chapter), and is found to be chaotic.



CHAPTER 8

Models of the Galaxy
and of Small Molecules

This chapter deals with some special models that were first discussed
by the astronomers who tried to understand the motion of stars in the
gravitational field of the Galaxy. The pioneering work was done by
George Contopoulos (1960) and some of his students; they were the
first to realize that the stellar trajectories in the gravitational potential
of a typical galaxy can be either integrable or chaotic depending on
their initial conditions. That discovery was crucial in understanding the
observed velocity distribution of stars in our solar neighborhood.

The work of Michel Hénon and Carl Heiles from the early 1960s is
based on a special case which finally brought the idea of chaos home
to the physicists. As astronomers, these two authors, like their prede-
cessors, were interested in understanding our galaxy, but they chose a
particular mathematical model for ease of computation while keeping
the essential features of the galactic environment. Their model has
become the testing ground for various general methods in the study of
chaotic dynamical systems. We shall discuss three of these: The
Birkhoff-Gustavson normalization, the analysis of singularities in the
complex-time plane, and the study of discrete algebraic transforma-
tions. The chemists have adopted the same model to describe the mo-
ion of the nuclei in a small molecule as shown in the spectrum of
molecular vibrations as well as in the transformation of molecules and
their reactions (cf. Brumer 1981).
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8.1 Stellar Trajectories in the Galaxy

Poincaré reviewed the purely analytical approach to celestial mechanics
in the nineteenth century, and came to very disturbing conclusions: the
motion along conic sections, or even the more general movements in
the neighborhood of a periodic orbit, could no longer serve as a starting
point in many situations. It became necessary to face a great prolifer-
ation of periodic orbits, and to cope with trajectories which defied any
kind of simple repetitive pattern.

The only way to gain new insight was to carry out numerical calcu-
lations. This task was first taken up by Sir George Darwin (son of
Charles who had written The Origin of Species and The Descent of Man
) and F. W. Moulton, before World War I, and was then continued
primarily by Stromgren and his school in Copenhagen during the 1920s
and 1930s. This work and much of what followed is surveyed in the
Theory of Orbits by Szebehely (1967). Together with the work on
stellar trajectories in galaxies, this field, now called dynamical astron-
omy, is the modern version of celestial mechanics; Contopoulos (1979)
reviewed it for the benefit of the quantum-oriented physicists.

Since the gravitational force between stars decreases as the inverse
square of the distance, stars can never really get away from one an-
other; but they don’t hit one another either. Quite in contrast, the
molecules in a gas move freely most of the time when outside the short
range of their interaction; but they get close enough to one another
with reasonable frequency, so as to change their direction of motion
very drastically in a collision between only two of them. Stars move in
the integrated potential of the whole galaxy, and any close encounters
are prevented by the very long-range nature of their mutual attraction.
This situation is also found in a plasma, i.e., a fluid whose particles are
electrically charged rather than neutral as in ordinary gas and fluids.

The manner in which mass is spread through the Galaxy can be in-
ferred from the observed distribution of stars in the sky. The
gravitational potential V(x, y, z) is then found from solving Poisson’s
equation

2 2 2
a;/.’. 612/4. 612/ = —47Gulx,y,z) , (8.1)
Ox dy 0z

where u is the mass density and G is the gravitational constant. Each
star moves as if alone in the fixed potential ¥ (cf. Ollongren 1965).
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The exact shape of u is not known; but it corresponds to a flat disk
with known radius in which the stars are fairly evenly distributed. An
important feature is the cylindrical symmetry, the fact that p depends
onlyonp = (x2 + »2)!/2 and z. Therefore, also V depends only on
p and z, and as a consequence the angular momentum M of a star with
respect to the z-axis, through the center of the Galaxy and at right an-
gles to its plane, is a constant of motion.

The equations of motion are thereby reduced to two degrees of
freedom with the canonical pairs (p,, p) and (p,z), and the

Hamiltonian
2

1 M
H@,p.,0,2) == @} +p)) + V(p,2) + — . (8.2
2 2p2

Notice that the mass of the star does not appear in this Hamiltonian
because it would multiply both the kinetic and the potential energy, and
was divided out. The momenta p, and p, are, therefore, reduced to the
corresponding velocities, and M is the areal velocity of Kepler’s second
law.

The nature of the stellar trajectories in the galactic potential ¥ can
be found by observing their velocities in the solar neighborhood. Ac-
cording to the principles of statistical mechanics, the distribution in
phase space can depend only on the constants of motion. If there
aren’t any besides the Hamiltonian (8.2), and the angular momentum
M, the stellar velocities in the meridian plane (p, z) have no preferred
direction, contrary to experience. There is then bound to be a constant
of motion F in addition to the energy H and the angular momentum
M. Since it is not clear what it should be in terms of the variables
Do Dy M, p, z, the astronomers called it the third integral without
knowing exactly its origin.

The problem of the third integral was approached systematically in
the early 1960s, especially by Contopoulos and his students, using both
analytical and numerical tools. A collection of the relevant work can
be found in the volume edited by Contopoulos (1966). Many of the
results are directly applicable to the study of such disparate fields as the
design of particle accelerators, plasma physics, atoms in strong mag-
netic fields, and molecular vibrations. The work of Hénon and Heiles
(1964) gives the most economical account of this large body of re-
search.
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8.2 The Hénon-Heiles Potential

The potential W in the preceding section has a basin or pit where most
of the stars in the galaxy are trapped. A high barrier due to the
centrifugal potential M?/2p? keeps the stars away from the center of
the galaxy; but since the gravitational attraction of the whole galaxy
vanishes at large distances, stars with sufficient energy can escape into
intergalactic space; a mathematical model for the combined potential
should have these features. The cylindrical geometry, however, is not
important any longer so that one might just as well replace (p, z) by the
Cartesian (x, y).

The model potential U(x, y) as a function of the position coordi-
nates (x, y) should also be easy to evaluate, either analytically in a
proof, or numerically in a computation. All these requirements leave
us with a polynomial of third degree. Hénon and Heiles chose a po-
tential whose value is constant along the sides of an equilateral triangle,
on the straight lines, x = (y — 1)/\/3_, x=—-(y- 1)/\/3_, and
y = —1/2, so that U(x , y) is given by

1 2 - 1)2 2 Yy 3 x* + y2 1

(y+2)(x 3 ) =Xx"y 3 + > 6.(8.3)
The constant —1/6 is usually left out, so that the local minimum of U
at the origin has the value 0, while U = 1/6 along the sides of the
equilateral triangle. There are steep mountains beyond the three sides;
but the vertices of the triangle are mountain passes on whose far side
the potential decreases rapidly, and goes to -« eventually, allowing the
particle to escape.

If the results of Hénon and Heiles are applied to a real physical sit-
uation, the starting Hamiltonian would be

2 2 2 2
H = u_ + mw2 x_+_y_
2m 2
Notice the three physical constants: the mass m, the frequency w, and
the length a = mw?/\ which make of this Hamiltonian a complete
model for a non-linear system. The value of the parameter A does not
indicate the strength of the non-linear coupling between the motions
in x and in y, but sets the length scale a. As pointed out in Section 3.6,
however, Planck’s quantum 4 has now a non-trivial numerical value in
such a system if the three constants, m, w, and a, are used as physical
units.

The Hénon-Heiles system shows a remarkable similarity to the
Toda lattice of Section 3.6. The simplest case is a tri-atomic molecule
in one dimension where n = 3 in (3.12), and the lattice is periodic so

3
+ A(xzy—%—) (8.4)
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that g4 = ¢. Its configuration is decomposed into the center-of-mass
coordinate z = (g, + ¢2 + ¢3)/3, and the two internal vibrational co-
ordinates x = (2q; — ¢ — q3)/2\/3_ and y = (g3 — q1)/2. The po-
tential energy does not depend on z, so that the center-of-mass
momentum becomes a constant of motion whose value has no effect
on the internal degrees of freedom x and y. The Kkinetic energy is the
sum of the squares of the momenta corresponding to x, , z.

The three-particle Toda lattice is now explicitly reduced to two de-
grees of freedom, exactly as it was tested by Ford and coworkers (cf.
Section 3.6). If one thinks of small-amplitude vibrations in a molecule,
it is reasonable to expand the exponential functions in the potential
energy of (3.12) in powers of x and y, and to stop the expansion at the
first term which goes beyond the quadratic. The resulting Hamiltonian
is the same as (8.3), which is the reason why the Toda lattice, coming
after the work of Hénon and Heiles, was not expected to be integrable,
but rather chaotic at moderate energies. The non-integrability of the
truncated Toda-lattice was proven by Yoshida, Ramani, and
Grammaticos (1988).

8.3 Numerical Investigations

It would be difficult to get even an approximate idea of the dynamical
properties of the Hamiltonian (8.4) without looking first at many tra-
jectories with the help of the surface of section. The symmetry of the
equilateral triangle suggests the vertical x = O for this purpose. The
equations of motion with the normalization m =1, 0w = 1,and A = 1
can be integrated with any simple routine such as Runge-Kutta to a
sufficient accuracy and for many traversals.

An energy E is chosen, and a number of trajectories are computed.
The points of the traversal are plotted in the domain D(E) of the sur-
face of section which is defined by the inequality vZ + 2U(0, y) < 2E.
Each trajectory is started at some arbitrary initial point Py = (vp , Jo)
with x = Oand ¥ > 0O at the fixed energy E. The subsequent traversals
P, = (vi, 1), P, ... of x =0 with u > 0 are obtained by numerical
integration. Either they line up on an apparently smooth curve, or they
scatter wildly throughout a portion of the domain D(F).

If the traversals line up nicely, the corresponding trajectory lies on
a torus in the energy surface; if the traversals cannot be accommodated
easily on a smooth curve, there is no invariant torus in phase space to
contain the trajectory. It would seem at first that the criterion for the
existence of a smooth curve through a finite number of points in a plane
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is entirely a matter of individual taste. But in practice there is no doubt
about which of the situations applies to any particular trajectory. The
dichotomy seems always amazingly clear; nobody quibbles with the
conclusions of Hénon and Heiles as drawn from the three Figures 12a,
13a, and 14a.

Figure 12a was calculated for E = 1/12; points belonging to the
same trajectory are connected by a smooth line, drawn by hand as it
were. Every trajectory at that energy seems to have a torus, although
the nesting of all these tori is not trivial. Several isolated points in the
surface of section are the centers of concentric closed loops that define
a basin or a mountain as in a topographic map. Between these moun-
tains and basins, however, are separating lines with self-intersections;
they correspond in an ordinary pendulum to the motion that separates
the libration from the rotation around the point of suspension. The
approach to the point of self-intersection takes a very long time, or
equivalently, very many traversals with the surface of section. The
conclusion from Figure 12a is clearly that the system is integrable at
E=1/12.

Figure 13a is computed for £ = 1/8 which is still well below the
energy where escape from the inside of the equilateral triangle is pos-
sible. Yet, a large part of the surface of section is clearly ergodic;
amazingly, the points that scatter all over a portion of the domain
D(E) come from a single trajectory. This ergodic region in D(1/8)
coincides to some extent with the portions of D(1/12) where the
basins and mountains are meeting. The remaining concentric closed
loops in D(1/8), generally called islands, correspond quite closely to
the nested loops in D(1/12).

Part of the energy surface E = 1/8 is obviously covered with in-
variant tori, whereas the remainder is not. The boundary seems rather
sharp, or even smooth, although that is probably an illusion to be
checked by more elaborate calculations. Nevertheless, the area of the
ergodic portion in D(1/8) is quite well defined, and can be assigned a
numerical value by counting little squares in the figure.

Figure 14a presents the surface of section for the escape energy
E = 1/6; but only the point y = 1, y = 0 could lead to the system ac-
tually leaving the equilateral triangle. It is highly unlikely for a partic-
ular trajectory to go through that unique point. Almost all of the
domain shows ergodic behavior; the exception consists of some tiny
loops near the centers of the earlier structures of nested tori. These
small islands can easily evade the notice of the investigator, because it
is again unlikely that the correct initial condition be found in a random
search. The element of area can serve as a probability measure for
finding a particular island.
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Figures 12a and 12b Surfaces of section for the Hénon-Heiles potential at the
energy 1/12, from numerical integration (a), and from Birkhoff-Gustavson
renormalization (b) [from Gustavson (1966)].

(a) (b)

(a) (b)
Figures 14a and 14b Same as preceding two figures for the escape energy 1/6.
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Figure 15 The fraction of phase space in the Hénon-Heiles model that is
covered with invariant tori, as a function of the energy. [From Hénon and
Heiles (1964)]

The area p(E) covered with invariant tori relative to the total area
of the domain D(FE) is plotted in figure 15. The two straight lines were
obtained as a good fit from the numerical computations like the ones
in Figures 12a, 13a, and 14a. They demonstrate a remarkable empirical
fact: The Hénon-Heiles model is practically integrable in the energy
range from O to about 1/10; from then on the area with ergodic be-
havior increases linearly with energy, until the whole energy surface is
ergodic at E = 1/6.

8.4 Some Analytic Results

Since the Hénon-Heiles Hamiltonian (8.4) is the simplest conceivable
for a non-linear system with two degrees of freedom, no effort has
been spared to understand its properties by purely analytical consider-
ations rather than with the help of numerical computations. Three
different approaches will be discussed briefly in the next sections, be-
cause they all have their analogs in quantum mechanics. Much work
remains to be done, however, to establish a better connection between
the classical and the quantal domain even in the limited confines of the
Hénon-Heiles model.
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The present section shows how a systematic perturbation theory has
been devised by Gustavson (1966) on the basis of the earlier work by
Birkhoff (1927). In the next section, we will present the results of an
analysis by Chang, Tabor, and Weiss (1982), who examined for which
choice of parameters a Hamiltonian like (8.4) becomes integrable. A
third device was first invented by Hénon (1969) and has since become
the basis for a large industry, both analytical and numerical. The or-
dinary differential equations of classical mechanics combined with the
use of the Poincaré surface of section are replaced by a discrete, but
still area-preserving map.

Birkhoff’s method is designed to examine the motion of a dynamical
system in the neighborhood of a point of stable equilibrium, like the
center of the equilateral triangle in the Hénon-Heiles potential, or the
equilibrium configuration of a large molecule. The Hamiltonian is ex-
panded in the momentum and position coordinates; the lowest terms
are quadratic, and positive definite since otherwise the equilibrium is
unstable; they are diagonalized by a linear canonical transformation,
and reduced to

n W
H, = 21 2—’ @ + ) . (8.5)
j=

The stable equilibrium reduces in lowest order to a set of oscillators
with the frequencies w;. The awkward form of the Hamiltonian results
from the usual (p? + m2w2q?)/2m by the canonical transformation
p » p/(mw)!/? and g - g(mw)!/2. Both p? and ¢2 have the same di-
mension as Planck’s quantum, and will eventually become multiples of
it.

A sequence of canonical transformations (cf. Section 2.2) is now
carried out with the help of the generating functions W , ... , Wy ; the
new Hamiltonian is expanded in a power series with respect to the new
corrdinates p and g . The lowest term is kept exactly like (8.5), whereas
the higher-order terms, up to a power N, are made to depend only on
the combinations p; = p? + g?. The system is then called normalized
to the order N. The remaining higher-order terms beyond N are as-
sumed to be of no importance for understanding the properties of the
dynamical system.

The paper by Gustavson in The Astronomical Journal (1966) gives
a good explanation of the necessary algebraic manipulations. The
principle is not difficult, although some of the details are tricky. The
method will be further explained in Section 14.3.

The normalization procedure, and particularly the existence of ad-
ditional constants of motion, depends on the numerical relations be-
tween the frequencies w; . If there exist no integers k; such that the
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scalar product (k, w) = 0, the dynamical system has the n constants of
motion p; = p} + ¢ in terms of the new coordinates. If the condition
(k, w) = 0 can be satisfied, however, and if, moreover, this can be done
by 7 independent vectors k, then there are n — / independent combi-
nations of the p; that are constants of motion, in addition to the
Hamiltonian itself.

Since w| — wp = O for the Hamiltonian (8.4), there is one more in-
tegral of motion F besides the Hamiltonian. F has only quadratic terms
in the normalized coordinates; it can be written as a power series ex-
pansion in the original coordinates by inverting the canonical trans-
formations generated by Wi, .., Wy. The normalization and the
construction of F was carried out by Gustavson for the Hénon-Heiles
Hamiltonian (8.4), up to and including the eighth order in the
u,v,x,y. The coefficients for the expansion of the normalized
Hamiltonian, for the generating functions, and for the additional con-
stant of motion F in the original coordinates are listed. If the
Hénon-Heiles model were integrable, the expansion for F could be
expected to converge; but a look at the coefficients says otherwise;
several of them in eighth order are between 10 and 100, whereas in
fourth order the largest coefficient is 5/3, and all the others are below
1 in absolute value.

Even when all the terms above the eighth are truncated, however,
the expression for F gives a good account of the surface of section
x = 0 wherever there are invariant tori. The Figures 12b, 13b, and 14b
give the level lines, F(u, v, x = 0, y) = constant, in the (v, y) plane with
the energy held at E = 1/12, 1/8, and1/6 as in the Figures 12a, 13a,
and 14a. The islands are in good correspondence; but nothing in the
new figures yields any indication of the chaotic regions in the earlier
ones. Remarkably, as will be dicussed later, the quantal
Hénon-Heiles model suggests that the formal constant of motion F has
still some validity in the classically chaotic regions of phase space.

The Birkhoff-Gustavson construction has been applied to other
problems where it yields similar results, e.g., the hydrogen atom in a
magnetic field (cf. Section 18.2). Like all the other schemes for re-
moving perturbing terms from the Hamiltonian with the help of
canonical transformations, the task is accomplished by an averaging
process that necessarily leads to the infamous small denominators.
Deprit and coworkers (1969) have made the method particularly
transparent; their work also casts the whole procedure into a recursive
algorithm that is free of the coefficient-matching of Birkhoff and
Gustavson.
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8.5 Searching for Integrability with Kowalevskaya and Painlevé

The numerical evidence of the Hénon-Heiles calculations clearly indi-
cates that the Hamiltonian (8.4) does not have a global third integral.
Could one have known this in advance? Or since we know the final
outcome of such an investigation is it possible to look at Hamiltonians
similar to (8.4), and single out the integrable ones? This question is
completely analogous to the question of Sofia Kowalevskaya concern-
ing the motion of a gyroscope held outside its center of mass, and sub-
ject to the Earth’s gravitational field (cf. Section 4.1). Her method was
applied to Hamiltonians of the Hénon-Heiles type by Chang, Tabor,
and Weiss (1982). This section presents the bare outline, so as to give
at least a hint of the ideas involved in this type of analysis.

The main idea is to investigate the equations of motion in the com-
plex domain, i.e., to allow the components of the momentum and of the
position as well as the time to have complex values, and then to find
out where the singularities of a typical solution are located in the
complex-time plane. As a general rule, integrability requires an ex-
ceptionally simple structure of singularities; the criterion is the so-
called Painlevé property: only isolated poles of bounded order. The
reader should be forewarned, however, not to expect any clear-cut and
sweeping theorems.

Let us start with the equations of motion in their Hamiltonian form
(2.2). If the trajectory starts in (pg, go) at the time 1, it is natural to
expand the right-hand sides as power series in the components of
P — Po, 4 — qo, as well as ¢ — 1y, and to assume that each power series
converges within a circle of non-vanishing radius in the complex plane.
The solution is then uniquely determined as a convergent power series
with respect to (¢ — #) inside the intersection of all these circles of
convergence.

The trajectory is now defined in the complex-time plane, and can
be continued analytically until it collides with one or more of the
singularities. In order of increasing seriousness, they can be poles, al-
gebraic branch points like a square root, transcendental branch points
like a logarithm, or finally an essential singularity such as exp( — 1/7)
whose expansion in powers of ¢ has negative powers going to — «. The
location of some of these singularities may depend on the initial values
Pos qo, o of the trajectory; if so, they are called movable singularities,
and our main task is to find where and of what kind they are, and
whether they have the Painlevé property.

The most general potential with second- and third-order terms, first
investigated by Contopoulos, leads to the Hamiltonian,
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3
1
H = —2—(u2+v2+,ux2+y2)+>\x2y—%—, (8.6)

where the units of mass, length, and time have already been chosen so
as to leave only the essential parameters A and p. The equations of
motion are used in the Newtonian form,

X = —ux—2A\xy, (8.7a)

J= —p-NM+)0, (8.7b)

The next step is elementary, but it has to be carried out with great
care. Suppose that our trajectory has a singularity at the complex time
tp. We try to find the expansion for x and y in powers of 1 =t — g,
The most singular, i.e., the algebraically smallest, powers of 7 are
written as

x=1@+ct),y =Pb+d), (8.8)

where y > 0. The a and b terms in (8.8) are called the leading terms
because they are the most singular, while the ¢ and d terms are called
the resonance terms for somewhat obscure reasons.

First only the leading terms are inserted into (8.7), and the most
singular contributions are matched on either side of the = sign. The
linear terms on the right-hand sides of (8.7) cannot compete with the
non-linear ones. Equation (8.7a) gives 8 = —2, but (8.7b) permits two
cases. Case 1 is obviously a = 8, while case 2 allows « > 8. Matching
the coefficients in front of the powers of 7 leads in case 1 to the con-
ditions Ab = —3,Aa? = b2 — 6b, whereas in case 2 one has
ala — 1) = =2Ab, b = B(B — 1) = 6 with a remaining undetermined.

At this point one could pursue each case separately in order to find
the power series expansions for x and y starting with the leading terms.
If we want to have only poles in the solution, it is important to require
that « in case 2 be an integer; the value of A is thereby severely re-
stricted, a first indication that not every Hamiltonian (8.6) is suffi-
ciently well behaved. (Actually, this condition on « will be relaxed
later on, but for the time being there is no harm in adopting it.) In this
manner one ends up with one particular trajectory, whereas there ought
to be four free parameters for a general solution of (8.7). The time £,
represents only one parameter; the remaining three come from the
resonance terms.

If the full expressions (8.8) are inserted into (8.7), the leading terms
have already been chosen to cancel the most negative powers of 7. The
next terms in (8.7) involve the time derivatives of the resonances on
the left, and the products of the leading terms with the resonance terms
on the right. These terms in (8.7) cancel, provided the coefficients ¢
and d satisfy two linear equations; and that in turn requires the van-
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ishing of the corresponding determinant. In this way, the necessary
conditions for the exponent v in the resonance terms are established.
For each acceptable value of y the linear equations for ¢ and d can be
solved, yielding one free parameter in the solution of the equations of
motion.

Case 1 yields eithery = 6 or (y =2)(y — 3) = —6(1 + 1/)A). Both
solutions of this quadratic equation for y have to be positive integers
in order to obtain the required three parameters. Thus, we find a set
of possible negative values for A in case 1. The analysis of case 2 is
different: the coefficient a in (8.8) is already arbitrary, corresponding
to y = 0; there is again y = 6; the third value of y is such that
o' = a + v is the second solution of a(a — 1) = —12A, i.e., both sol-
utions have to be > —2 and integers, leading to a restriction on A.

To continue the argument to its successful conclusion, it is now
necessary to construct the full expansion starting from the values for
the exponents a, 3, and y in (8.8) which have just been found. There
are many tricky details that the reader has to study in the original pa-
per. The present discussion is meant to stimulate interest in a totally
different and potentially revealing approach to the question of
integrability in Hamiltonian systems.

The final conclusion shows the following four cases where the
Hamiltonian (8.6) is integrable:

(1) A = 0 decouples the motions in x and y;

(2) A = —1 with u = 1 also becomes separable when the coordi-
nates x + y and x — y are used,;

(3) A=-1/6 has the 'third" constant of motion
F=x*+ 4x%? — du(uy — vx) + 4ux?y + (4u —1)(u? + px2?);
(4) A = —1/16 with u = 1/16 is also integrable, but the expan-
sions in the complex-time plane require algebraic branch points.

It would have been close to impossible to find the last two cases
without the analysis in the complex-time plane that was first used by
Kowalevskaya. The reader will find more details in the work of
Yoshida (1983), in the article by Newell, Tabor, and Zeng (1987), and
in the recent monograph by Tabor (1989).

8.6 Discrete Area-Preserving Maps

Investigating the Poincaré surface of section for an arbitrary
Hamiltonian requires the numerical integration of the trajectories.
Since most of them are inherently unstable in a chaotic system, no
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computational scheme is able to provide more than a few dozen inter-
sections with the surface of section, say x = 0 as in Section 8.3. The
quality of any calculation can always be checked by running the tra-
jectories backward in time: let Py = (vy,)0), P1 = (v,)1), ... ,
P, = (v,, y») be the consecutive intersections; then one could start a
trajectory at Po= (= v, y.); the subsequent intersections are

1= (= Voo 1y 1)y s Plu=(— vo, Jo) to the precision of the
round-off error.

Even without this technical difficulty, it is often prohibitively ex-
pensive to run the integration routine over thousands of initial points
Py, because each intersection may require several hundred integration
steps in order to approximate the continuous variation of the coordi-
nates along the trajectory. The fine structure of the Poincaré map
cannot be displayed, unless the map is drastically simplified. Instead
of the real trajectories that belong to a well-defined Hamiltonian such
as (8.7), an artificial transformation from the (x, y) plane into itself is
studied.

Froeschlé (1968) and Hénon (1969) were among the first to try out
this strategy in order to overcome the computational limits of the ear-
lier calculations concerning the Hamiltonian (8.6). The choice of a
map (x, y) - (x1, y1) was dictated by the paramount requirement that
the element of area remain invariant, or equivalently that the Jacobian
d(x1,y1)/9(x, y) = 1. Moreover, the map had to look like a rotation
in the neighborhood of the origin, imitating the Poincaré map in the
neighborhood of a point of stable eqilibrium such as the center of the
equilateral triangle in the Hénon-Heiles potential. Finally, the simplest
non-linear term was added in order to achieve the most economical
numerical procedure.

After eliminating all trivial parameters, the following transforma-
tion T is found to be the most general when no more than quadratic
terms are allowed,

2 .
X =x005a—(y—x2) sin « , (8.9)
Yy = xsina + (y—x°) cosa, '

where « is the only non-trivial parameter left. This map has the further
advantage that its inverse is given by similar quadratic formulas, as one
can check immediately. Moreover, the fixpoints of 7, T2, T3, T* can
be calculated explicitly by solving the corresponding algebraic
equations.

The resulting structure of islands, i.e., smooth invariant curves, and
of areas where the consecutive points of transformation Py, P, Ps, ...
scatter chaotically, is shown in Figure 16, where cos a = .24. The re-
semblance to Figure 12 is quite striking; but certain fine details can
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Figure 16 Consecutive points of the transformation (8.9) for a = 0.24 [from
Hénon (1969)].

now be explored, as demonstrated in Figure 17, where the neighbor-
hood of an unstable fixpoint of 7% is blown up. Notice the various sets
of small subsidiary islands and the approach of the large island within
-00001 of the fixpoint. The detailed structure could easily have gone
unnoticed in a cruder calculation, but then quantum mechanics might
ignore it knowingly, as we shall see later.

This map, sometimes called the Hénon map, has been investigated
very intensively during the last decade in a slightly more general version
which was also proposed by Hénon (1976). The transformation
(x,») = (x1, y1) now has the deceptively simple appearance,

X\=y, n=—ex+p—y, (8.10)
where ¢ and p play the following role. The Jacobian

d(x1, 1)/ d(x, y) = & so that this map does not preserve the area unless
e = 1; if such is the case, however, the new map (8.10) is the same as
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Figure 17 The neighborhood of an unstable fix-point in the preceeding figure
is enlarged to show the intricate mingling of small islands with ergodic regions
[from Hénon (1969)].

(8.9) up to a change of coordinates in the (x, y) plane. The rotation
angle o in (89) is related to g in (8.10) through
(1 + w2 = 2sin%a/2.

When ¢ < 1, the map is a good model for a dynamical system with
dissipation. As the the map is iterated, the original area of any portion
of phase space becomes smaller by a factor ¢ at each step. The con-
traction, however, does not lead to a set of points whose diameter de-
creases indefinitely, but rather to a fractal set with dimension larger
than 1. The consecutive points Py, Py, .... eventually get ever closer to
this set, which has, therefore, been called a strange attractor, they move
around this fractal without ever converging to a limit.

Since the volume in phase space is conserved, this kind of phenom-
enon is strictly excluded from Hamiltonian mechanics, which is the
central theme of this book. The transformation (8.10) is of interest
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because area conservation appears as the formal limit of decreasing
dissipation. Moreover, the opposite limit, ¢ = 0, is perhaps the best-
known map of the straight line into self, the so-called logistic map,
y = y1 = p — p?%; the variable x simply takes on the previous value of
y, and can be ignored.

The map (8.9) has been studied in great detail and many of its
mathematical properties have been established in the form of bona fide
theorems which are not easy to prove at all. The reader has to work
through a great many papers to get acquainted with the terminology
and the techniques of this field. Recent surveys were written by
Grebogi, Ott, and Yorke (1987), as well as Schuster (1988). One
general conclusion, however, is worth mentioning: the transition from
the logistic map to the Hénon map (8.9) is very complicated, and the
former is not a very useful guide to the latter. The absence of an
attractor in Hamiltonian systems, even a strange one, is responsible for
some entirely different situations in phase space, and puts these sys-
tems into a class all by themselves.

As a final comment on the progressive reduction from conservative,
to dissipative, to the logistic map, the ultimate link in this chain are
maps of the logistic kind, but considered in the complex plane. This
work goes back to the French mathematicians Fatou (1906) and Julia
(1918) in whose honor these maps are called Julia maps. Their prop-
erties are astounding and have been studied in great computational and
artistic detail, e.g., by Peitgen and Richter (1986). As in the analysis
of Kowalewskaya and Painlevé, the recourse to the complex domain
again reveals itself as fundamental for a genuine understanding. This
conclusion becomes particularly evident when the logistic map (e = 0
in 8.10) is investigated as a function of the complex parameter y; its
general behavior is best understood with the help of the Mandelbrot set
(Mandelbrot 1980).



CHAPTER 9

Soft Chaos and the KAM Theorem

Chaotic behavior in a dynamical system is most easily understood as a
breakdown of the invariant tori due to the perturbations. The KAM
theorem deals with this process of disintegration and shows that it is
gradual. The resulting situation in phase space, to be called soft chaos,
is smooth wherever the tori are intact, but it has many rough spots that
are associated with resonances or phase-locking. This phenomenon
happens when two degrees of freedom get stuck with the ratio of their
frequencies given by a rational number. Soft chaos can be explained
by estimating the size of the domain of phase space where phase-lock
occurs as a function of the perturbation strength.

9.1 The Origin of Soft Chaos

The key problems in mechanics are integrable: the motion of the plan-
ets around the Sun in astronomy, the symmetric heavy gyroscope in
mechanics, the hydrogen atom in physics, and the hydrogen-molecule
ion in chemistry. It is tempting to reduce the more complicated prob-
lems to these standard cases, and the method to carry out this reduction
is perturbation theory. We have discussed the three-body problem of
Moon-Earth-Sun in some detail in order to bring out the difficulties of
such an approach and to suggest at least one alternate route, Hill’s
theory of the Moon. This chapter is meant to explain how perturbation
theory breaks down and what is left of the old integrable structure of
phase space.
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The pictures for the surface of section in the Hénon-Heiles model
show clearly how the smooth intersections of the invariant tori at low
energies give way to isolated islands in a sea of chaotic behavior as the
energy increases. Each island consists of nested simply closed curves
with a single point at the center, which corresponds to a very special
periodic orbit, comparable to a soliton. The motion in the neighbor-
hood of this periodic orbit is stable; the intersections of a neighboring
trajectory with the surface of section stay on one of the closed curves.

Stable periodic orbits are indigenous to mechanical systems; they
are a generic feature as we argued at the end of Chapter 6, in contrast
to integrability, which is highly exceptional. Stable periodic orbits are
the best we can hope for as perturbations are allowed to destroy part
of the invariant tori that characterize the integrable systems. The main
question now concerns the extent of a particular island as it is saved
from the floods of chaos.

Periodic orbits show up in the surface of section as a finite set of say
n isolated points whose locations line up again on a simply closed curve.
This last claim is, of course, moot, because any finite set of points in a
plane can be lined up on a smooth curve; but a close look shows an
ordered pattern of islands belonging to the same stable periodic orbit;
it clearly arises from some underlying simple loop and is all that’s left
over from the original invariant torus. The periodic orbit jumps from
one point in the finite set to the next in a well-defined manner, such
as skipping every other point; thus, it runs around this simple loop a
number of, say m, times before returning to the first point. Figure 16
shows this situation with n = 5 islands, which are visited by the peri-
odic orbit in m = 2 turns around the underlying closed curve.

The physical interpretation of this phenomenon is made in terms of
a resonance between the two degrees of freedom of the dynamical sys-
tem. An integrable system is full of resonances since every pair of in-
tegers (m, n) yields a periodic orbit, as we saw in Section 6.2. Only few
of them are effective, however, in capturing the neighboring trajecto-
ries the way it happens in Figure 16. Indeed, a whole area of the sur-
face of section in Figure 16 imitates the same 5:2 repeating pattern as
the periodic orbit. This phenomenon is called phase-lock: the phase
angle of the first degree of freedom is locked in step with the phase of
the second degree of freedom, and cannot be shaken loose by modify-
ing the starting positions and momenta.

The capture of the trajectories in the neighborhood of a periodic
orbit is the origin of chaos, because it is impossible to fit many bands
of islands into a smooth overall foliation of the energy surface, i.e., a
complete covering with non-intersecting manifolds of lower dimension
such as the invariant tori. On the other hand, the very existence of the



118 Soft Chaos and the KAM Theorem

islands indicates a local kind of integrability whose usefulness depends
on the extent of the island. The main purpose of this chapter is to es-
timate the size of a particular set of islands. If they do not cover the
whole surface of section, one can assume that the remainder is chaotic.
In a somewhat mysterious fashion, the old foliation by invariant tori is
not completely destroyed; the mixed situation, where some invariant
tori and whole islands are left over in phase space, will be called soft
chaos.

This term is entirely devoid of mathematical precision, and its do-
main of applicability is only bounded on one side by the integrable
systems and on the other side by hard chaos. The majority of
Hamiltonian systems belongs to the category of soft chaos; the prime
example is the hydrogen atom in a magnetic field: it is integrable both
for a vanishing field and for very strong fields, so that it never quite
detaches itself from integrability. Most research nowadays deals with
softly chaotic dynamical systems, because they arise quite naturally
when one starts with an integrable system like coupled linear oscillators
and adds a sufficiently smooth perturbation such as the cubic potential
in the Hénon-Heiles model.

In spite of all this work, soft chaos is understood only in some of its
local features, while no more than superficial and general arguments
can be given for the global characteristics. Just as one cannot say easily
whether a particular dynamical system is integrable or not, so nobody
has been able as yet to offer a good overall description of phase space
with soft chaos. That may be the basic reason why the connection with
quantum mechanics is still so poor; the failure is as much on the clas-
sical as on the inherently more subtle quantum side.

9.2 Resonances in Celestial Mechanics

By far the most striking resonance is known to everybody, although its
explanation was only given by Lagrange (1764) in response to a prize
question of the French Academy of Sciences; the 28-year-old author
was awarded the prize, but he went back to the problem in 1780 to get
better agreement with observations. Since the Moon turns always the
same side toward the Earth, her rotation around her own axis is obvi-
ously synchronized with her motion around the Earth. But these two
frequencies do not have the same value by accident, because otherwise
they would differ by a small amount, and we would get to see the far
side of the Moon after many years. The Moon is elongated toward the
Earth, leading to spin-orbit coupling and to a complete phase-lock.
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Another example of a resonance was well known to the observers
before it was finally explained by Laplace. Its origin is a numerical
coincidence between seemingly unrelated periods; the period of Jupiter
around the Sun is 12 years while the period of Saturn is 30 years; the
exact value of their ratio is .40268677, very close to 2:5. The orbits
of both planets are very close to the ecliptic; they also carry most of the
angular momentum in the solar system. If one ignores all the other
planets, one ends up with another three-body problem, but of a quite
different nature compared with the Moon-Earth-Sun system.

Molecular vibrations are full of such resonances; but the compar-
ison with the Helium atom is more appropriate. The mass of Jupiter is
about 1/1000, and the mass of Saturn is about 1,/4000 of the solar
mass, while the mass of the electron is about 1/8000 of the mass of the
He-nucleus. As emphasized in Section 4.2, however, the main differ-
ence is the strength of interaction, which goes as the product of the
masses in astronomy, rather than the product of the electric charges in
physics and chemistry.

The eccentricities of the Kepler orbits are moderate by the stand-
ards of the solar system, 0.048 for Jupiter and 0.056 for Saturn. They
play the crucial role in the resonance, however; if they were zero, the
interaction between the two planets would depend only on the differ-
ence of the polar angles ¢; — ¢s, and the peculiar combination
Y = 5¢5 — 2¢; would never come up. The exact ratio of the frequen-
cies ws/wy yields 880 years for ¢ to change by 27. The small pertur-
bation with this angular dependence is able to build up more effectively
than larger perturbations with shorter periods.

Let each planet be confined to the ecliptic; its coordinates with re-
spect to the Sun are the osculating elements in the conjugate pairs
(A, ?) for the energy and the mean anomaly and (M, g) for the angular
momentum and the direction of the perihelion (cf. Section 4.4). The
center-of-mass motion is eliminated, taking away two degrees of free-
dom; the total angular momentum M; + My is conserved, and the per-
turbation depends only on the difference g; — gs; only three degrees
of freedom are left. Each planet gets one for moving in its own elliptic
orbit, and the third degree of freedom allows for trading angular mo-
mentum back and forth, and thereby changing the individual eccen-
tricities.

Formulas (4.3) and (4.4) have to be inserted into the gravitational
potential between Jupiter and Saturn with the help of the expressions
for A and M just following (4.7). The critical angle ¥ = 5¢5 — 2¢,
appears only in terms proportional to at least three powers of the ec-
centricities, and thus smaller by a factor (1/20)3 = 1/8000 than the
leading term in the perturbation. Calculating the positions requires two
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time integrations, or equivalently two divisions by the small denomi-
nator Swsg — 2wy whose period is 880 years compared with the basic
periods of 12 and 30 years. Therefore, the perturbation gets boosted
by a factor somewhere between 302 and 752.

The complete theory of the Jupiter-Saturn resonance is difficult
because the ratio of their semimajor axes is more than 1/2 so that any
expansion in this parameter converges poorly. The inequalities of 20’
for Jupiter and 48’ for Saturn were easily observed by the naked eyes
of Brahe and Hevelius. The center of mass for Sun, Jupiter, and Saturn
lies outside the Sun most of the time so that the Sun’s motion is not
negligible.

A famous example of resonance in the solar system may be more
directly connected with the phenomenon of chaos. It was noted by
Kirkwood in 1866 that the periods of asteroids in the belt between Mars
and Jupiter are such as to avoid any resonance with Jupiter. These are
the famous Kirkwood gaps of which the most glaring correspond to the
ratios 2:1 and 3:1 for Jupiter’s period to the asteroid’s period (cf.
Froeschlé and Scholl 1982). Somewhat less conspicuously missing are
the ratios 5:2, 5:3, 7:2.

It is not clear whether a resonance always has a destabilizing effect.
Our understanding of the Kirkwood gaps is incomplete at best; the
situation is reminiscent of the gaps in the rings of Saturn, which are
presumably due to the resonances with some of Saturn’s satellites. The
doubts in all these explanations have to do with phase-lock, and were
first pointed out in 1812 by Gauss. The asteroid Pallas, one of only
four known at that time, has a period ratio close to 18:7 with Jupiter.
Gauss thought that this coincidence would tie down the motion of
Pallas in the same way as the Moon’s rotation is locked to its orbit
around the Earth. Rather than make the motion more precarious, the
resonance provides extra phase space in which to absorb small irregular
noise-like perturbations.

9.3 The Analogy with the Ordinary Pendulum

Soft chaos will now be approached starting from an integrable system
with two degrees of freedom. The action-angle coordinates for the
unperturbed system are the canonical pairs (M, ¢), (N, ). The per-
turbation does not depend explicitly on time, so that the Hamiltonian
reduces to

H = HyM,N) + % > Vyu(M, N) exp(imé + ing) ,(9.1)
mmn # 0,0
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Figure 18 Trajectory in the (¢ , ¢) plane of angle variables with a 2:5 reso-
nance, using periodic boundaries.

where the coefficients V,,, are complex and satisfy the relation
V_m, —n= Vi, in order to make the second term on the right real-
valued. The factor ¢ has been inserted to help us distinguish the various
orders of perturbation.

Let us investigate the neighborhood of the particular unperturbed
periodic orbit with frequency ratio k//, i.e., the neighborhood of the
values M=M,., N=N,. where

0H,

OM mn,

ON ]MJ\L

w; = =kw0, Wy = = ?wo. (9.2)
The period of this orbit is 27/wy which would be 60 years in the case
of the Jupiter-Saturn resonance where k// = 5/2. The orbit in a ¢
versus ¢ diagram can be represented in two ways: either in the square
0 < ¢, ¥ < 27 with opposite sides identified as in Figure 18, or in the
unlimited (¢, ¥) plane as in Figure 19; in both cases, one has a straight
line at an inclination 2/5, not necessarily through the origin.

The first step in dealing with this resonance is a shift of the origin
and a linear transformation of the axes in the action-angles variables.
The origin of the (M, N) plane is moved into (M, , N,). The angles
(¢, ¥) are transformed into (¢>', 11/') so that the unperturbed periodic
orbit is given by ¢’ = constant. Since ¢’ becomes the coordinate along
the periodic orbit and increases linearly with time at the rate wg, we
will take the term wot out of ¢’ . The canonical transformation is car-
ried out with the help of the generating function

W = (M, + /M —ANY¢ + (N, — kM + kN — Nwy1,(9.3)

which has the same mix of the new actions (M’, N') and old angles
(¢, ¥) as Win the discussion of Section 5.3; the transformation is given
by the same formulas (5.3).

The old actions are then given in terms of the new ones by
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W Mo, N= N kM kN, (9.4)

do i

while the old angles are given in terms of the new ones by
d=rd + k(W +wgt), v=A¢ + 0 +wpt), (9.5

where k/ — Ak = 1, which also guarantees the conservation of area in
both planes, (M, N) and (¢, ¢).

The exact values of « and A are left open for the moment, although
they have to be integers, which is always possible as long as k£ and 7 are
relatively prime, i.e., their greatest common divisor is 1. The restriction
to integers is necessary so that the Fourier expansion of the perturba-
tion in (9.1) is still valid. Taking the time derivatives in (9.5) shows
that (f),=[(i)—kl[/ =/w; — kwp, =0, and \P,=—>\¢+K'4J—w0
= —Aw; + kwy —wg= ( — Ak + kl)wg — wg = 0. Therefore, both
¢’ and ¢ remain constant along the periodic orbit as long as there is
no perturbation.

If the formulas (9.4) and (9.5) are inserted into (9.1), the exponent
in the perturbation becomes m¢ +ny = (mx+n\)¢ +
(mk + n0)W + wot). The new integers m’ = mx + n\ and
n' = mk + n/ vary independently from -« to +. The coefficients in
the Fourier expansion of the perturbation can be simplified by setting
Vian(M, N)=V,, ,(M,, N,), since they vary slowly as functions of M and
N, and are, moreover, small compared with H,. They are also renum-
bered in terms of (m’, n') rather than (m, n).

The first term in (9.1), the integrable part of the Hamiltonian Hy ,
is expanded around the resonance by assuming that the values of M’
and N are small. That requires taking first and second derivatives of
H, with respect to M and N at the resonance (M,, N,); let these be
called H{, Hy, Hy, ... and so on. The new unperturbed Hamiltonian is
given by (5.5); its constant term, Hy(M, , N,), can be dropped; the
linear terms cancel, as can be checked without difficulty; to terms of
second order, the transformed Hamiltonian (9.1) becomes

AM? £ 2BMN + CN* + ¢ D ¥, exp(im¢ + in(¥ + wyt)) , (9.6)
m,n # 0,0

where A, B, C are defined by the matrix relations
(A B) _ ( ¢ —k) HH,, ( / -)\)
B C . - }\ K H21H22 - k K ’
An overall factor 1/2 has been left out in (9.6); also, the primes are
not attached to M, N, ¢, ... so as to simplify the reading of (9.6) and
the following paragraphs.

The only approximation so far is the expansion of Hy(M, N) around
the resonance at (M, , N,) to second order; it could have been carried
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Figure 19 The transformation of the angle variables according as (9.5) from
(9 ,9¢) to (¢',¢)) with (k,?) = (5,2) and (x,\) = (3,1); the base vectors
of the new unit-cell are extremely elongated.

further if necessary. Before indulging in more drastic simplifications,
however, one has to ask: Is there still a periodic orbit in the neighbor-
hood of the resonance when the perturbation is taken into account, and
if so, where exactly is it located ?

The answer is by no means obvious. Proving the existence of a pe-
riodic orbit became an important part of Poincaré’s work in celestial
mechanics; his last scientific paper (Poincaré 1912) deals with this
problem, and he shows in great detail how he failed to come to a
mathematically rigorous result; his theorem was proven the following
year by Birkhoff (1913). We will discuss an approximate solution for
the trajectories of (9.6) without trying to justify the procedure by more
than crude physical reasoning. Our purpose is to give a simple picture
for the existence and size of islands around a periodic orbit.

The main argument is that any term in the perturbation with a
non-vanishing variation in ¥ + wqt gets averaged out to zero; only the
terms with n = O are important in lowest approximation. The summa-
tion over » in (9.6) is, therefore, left out at first, leaving us with the
quadratic terms in M and N, and a perturbation that depends only on
¢. Nothing essential is lost if only the terms m = + 1 are taken into
account, and all the others are dropped. Thus, the potential energy in
(9.6) becomes simply €| V19| cos(¢ + ¢o), where ¢q is the phase of
the complex coefficient V.

The two degrees of freedom can now be separated in this simplified
Hamiltonian. Since the angle ¢ does not occur at all, N becomes a
constant of motion. The conjugate pair (M, ¢) is governed by the same
Hamiltonian as the ordinary pendulum,

AC — B?

N, (9.7
24 .7

1
- AM ~ M) + €| Vo] cos(e + ¢g) +

where My = — BN/A.
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The periodic orbit has not been lost completely; corresponding to
the ordinary pendulum, the stable equilibrium at M = M, ,
¢ =7 — ¢ , and the unstable equilibrium at M = M, , ¢ = ¢ are
solutions of the equations of motion that represent the same kind of
periodic orbit as in the unperturbed system. That is no longer true for
the other trajectories that result from the Hamiltonian (9.7); they do
not return to the same point in phase space after the period
Ty = 27/ wp.

The reduced Hamiltonian (9.7) has to be kept at some constant
value E. Different trajectories of the same energy are distinguished by
different values of N. It is convenient, however, to discusss the
Hamiltonian (9.7) as if the third term was missing, and the individual
trajectories are characterized by the energy E. Thus, one arrives at
Figure 20, which is the surface of section ¢=0 with the coordinates
(¢, M); it is in complete analogy to the phase space of the ordinary
one-dimensional pendulum.

Let us now construct a more realistic picture by taking the trajec-
tories from the reduced Hamiltonian (9.7) back into the original (old,
unprimed) coordinates, with the help of (9.4) and (9.5); the reduced
(new) coordinates of (9.6) and (9.7) are written again with primes at-
tached as in (9.3), (9.4), and (9.5). In particular, let us try to look at
the surface of constant energy E by adding the old action N as a third
dimension to the old angles ¢ and ¢ in Figures 18 and 19. Since the
stable periodic orbit becomes the straight line ¢’ = /¢ — ki = 7 — ¢¢
with N = N, = —k M’y + kN', we can imagine Figure 20 as sliding
along this line! The representative point of some particular trajectory
in Figure 20 now becomes a trajectory in (¢, ¥, N) space, as shown in
Figure 21, looking like a square platter with lasagne al forno.

The surface of section ¢ = 0, with the old coordinates y and N can
now be understood. Figure 20 slides k times through the plane ¢ = 0,
before it arrives at its starting configuration; also, it is reduced in size
appropriately to fill out the interval 0 < ¢ < 2, yielding & copies of
itself sitting next to one another. These k copies can finally be wrapped
into a ring because the angle ¥ is defined only modulo 2%. The conju-
gate variable N can then be viewed as a radial coordinate. In this way,
one obtains a picture looking like Figure 16 in the Hénon-Heiles model.
We will refer to Figure 16 as if it had been obtained from a
Hamiltonian with a 5:2 resonance.

The discussion in this section shows how a perturbation at a reso-
nance frequency replaces the nested invariant tori with a chain of is-
lands. The centers of these islands form a stable periodic orbit which
is surrounded by a new set of invariant tori. The islands are separated
from each other by an unstable periodic orbit; they are bounded by the
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Figure 20 Surface of section for the Hamiltonian (9.7), which corresponds to
the ordinary pendulum.

separatrix that forms the boundary between the vibrational and the
rotational trajectories of the pendulum, and self-intersects in the un-
stable periodic orbit. The original layered structure of invariant tori
continues to exist outside, and immediately adjacent, to the separatrix,
at least in this primitive picture.

9.4 Islands of Stability and Overlapping Resonances

The main features of Figure 16 are largely independent of its precise
construction; indeed, it could well have been obtained from a numer-
ical computation of the trajectories in a circularly symmetric potential
that is perturbed by a force with five-fold symmetry as in an organic
molecule. A Poincaré section on a radial line, i.e., plotting the radial
momentum p, versus the radial variable p when the azimuthal angle
0 = 0, may lead to a figure just like 16 (cf. also Section 6.1).

Notice that the lines of constant energy in the equivalent pendulum
of Figure 20 have an orientation: the closed loops go clockwise around
the stable equilibrium; the open trajectories have decreasing (increas-
ing) angles ¢’ according as M’ > ( < )M’y. In Figure 16 the points in
each island jump from one island to the another by skipping the one in
between; thus there is a prevailing counter-clockwise drift for the
whole pattern; but the trajectories outside the islands that correspond
to the full rotations of the equivalent pendulum, inherit the increase
(decrease) of the angle ¢; therefore the outermost lines in figure 16
turn counterclockwise more slowly than the innermost. This situation
is consistent with the precession of the trajectories in a circularly sym-
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Figure 21 The foliation of the energy surface near a 5:2 resonance.

metric potential of Figure 11d, which is, therefore, maintained in spite
of the perturbation.

If the prevailing motion of the islands, 47 /5 per Poincaré section,
is taken out of Figure 16, the basic scheme for a mapping of a circular
annulus into itself appears. The outer and the inner rims turn in op-
posite directions, and, most importantly, the area of the map is con-
served. Such a map is called a twist map, and plays a central role in
modern treatises on celestial mechanics (cf. Siegel and Moser 1971;
Moser 1973), as well as the study of classical chaos. It will be dis-
cussed further at the end of this chapter.

The perturbation disturbs the structure of nested loops of Figure
11d. Each term in the perturbation of (9.1) gives rise to its own set
of islands, and difficulties are bound to arise when the islands from
different resonances get into each other’s way as the strength of the
perturbation increases. They can no longer be separated from each
other by a layer of smooth tori such as on the outer and the inner
boundaries of the islands in Figure 16. The islands start to shrink and
are surrounded by a chaotic region in phase space

This interpretation of Figure 16 is demonstrated by the calculations
of Walker and Ford (1969) who investigated the Hamiltonian

H = Hy(M, N) + aMN cos(2¢ — 2¢) + BM*/*N cos(26 — 3¢) , (9.8)

where H, is of second degree in (M, N), while « and j8 are arbitrary real
coupling parameters. When f8 = O one finds Figure 22a with two is-
lands surrounding the origin, while a = 0 yields Figure 22b with a belt
of three islands as expected from the analysis in the preceding section.
With both coupling parameters small enough, the two sets of islands
coexist, and are separated by a full invariant torus as shown in Figure
23a; everything looks as if the system were still integrable. When the
coupling parameters « and 8 become fairly large as in Figure 23b, the
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Figures 22a and 22b Surface of section for the Hamiltonian (9.8) when (a)
only the first resonance is turned on («a # 0), and (b) only the second reso-
nance is active (B # 0) [from Walker and Ford (1969)].

two belts of islands are no longer separated by an invariant torus, but
each island is surrounded by a chaotic region.

The argument for the appearance of chaos because of the overlap-
ping resonances can be made more specific with the help of the pre-
ceding section. The oscillatory region in the (M’, ') plane of Figure
20 becomes the set of islands in the (¢, N) plane of Figure 16. The
largest extent of this region is defined by the curve through the maxi-
mum of the potential energy in (9.7), and is given by

M =+ 2| V)/a)'? sin(¢’ — ¢p)/2. Since this curve separates the
oscillatory and the rotatory regions of the phase space, it is called the
separatrix.

The area, contained inside the separatrix is [M'de' =
8(e| V|/4) '°. The corresponding tube (torus) in phase space cuts the
line ¢ = 0 a total of £ times so that the total area of the islands in the

surface of section becomes 8k(e | VI/A)I/Z. This area depends only
on the ratio k/¢ because A is a quadratic function of (k, /). According
to the definition of 4 in (9.6), the quantity 4/k? gives the change in
frequency (M, N) with a change of the actions in the unperturbed
system as one moves away from the resonance. The size of the islands
increases, therefore, with the strength of the perturbation, and depends
inversely on the derivative of the frequency with respect to the action,
dw/dl.

Another way of judging the effectiveness of the perturbation in
creating islands, emerges from studying the frequency ratio w;/w,.
This ratio is basically the same for the whole island, because all the
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(@) (b)

Figures 23a and 23b Surface of section for the Hamiltonian (9.8) when both
resonance terms are turned on; (a) with small coupling parameters « and 8,
and (b) with large coupling parameters [from Walker and Ford (1969)].

points in it go through the same k/? cycle of the resonance; this is one
form of phase-lock. The value of M’ can be spread in the perturbed

system as much as 2(e| V|/A)1/2 around the resonance values
(M, , N,) without changing the frequency ratio, or equivalently, the
original actions can be changed by as much as (6M,6N) = 4
(¢, — kM = (¢, — k)(e| VI/A)I/Z. If we go back to (3.3), we can
now calculate the change in the frequency ratio that such a change in
the actions would have caused in the unperturbed system,

— 0(—) = H, H,,H. , .
©; () H,H, Hzl] H222 2 (9.9)

where the integers (k, /) appear only as indices in the strength of per-
turbation V7 _,. The determinant of first and second derivatives
measures the non-linearity of the Hamiltonian Hy(M, N) transverse to
its gradient, i.e., in the direction where the frequency ratio changes.

If there are two active resonances (wi’, w2') and (w;”, w2”’) be-
longing to (', 7"y and (K", ?"), each is embedded in an interval of
width given by (9.9). Chaos arises when these two intervals overlap;
this explanation of soft chaos has been pursued by Chirikov and his
school, and is generally called the resonance-overiap criterion (cf. the
reviews Zaslavskii and Chirikov 1972, and of Chirikov 1979). It allows
to estimate qualitatively how strongly a system can be perturbed before
it becomes softly chaotic. In practice, the overlap becomes critical al-
ready when intervals of only half the width (9.9) touch.
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9.5 How Rational Are the Irrational Numbers?

Resonances are characterized by the fact that the ratio of two fre-
quencies in the unpertubed system is a rational number, the ratio of two
integers. If the system without the perturbation is not degenerate, i.e.,
if the matrix of the first and second derivatives of Hy(M, N) with re-
spect to M and N in (9.9) does not vanish, the resonant points on the
energy surface Hy(M, N) = E are exceptional, exactly as the rational
points are exceptional in the interval (0,1). Nevertheless, these points
are dense, and it is hard to see how one ever gets away from them;
equivalently it is not clear how one ever escapes the dire consequences
of even small perturbations Vj , in (9.1) if they don’t vanish for any
pair (k, 7).

The salvation can only be sought in the non-rational, alias irrational,
numbers of which there are, of course, many more than rational ones.
One has to be at a safe distance from the rational numbers, however,
so as to avoid their destructive influence. In order to define such a
distance, the manner in which an irrational number can be approxi-
mated by a rational one has to be studied. Humanity has pondered this
problem ever since anybody tried to measure the diagonal of a square
or the circumferene of a circle. In the first case the nature of /2 is
at stake, and in the second the nature of the number #. Although a
knowledge of continued fractions is not absolutely necessary for the
discussion of resonances, even a cursory discussion of this beautiful
subject will make everything better understood and will be useful in the
study of hard chaos of Section 20.2. For a detailed presentation cf.
textbooks on elementary number theory, e.g., Khintchine 1963;
Drobot 1964; Stark 1970.

Every real positive number « can be expanded in the form

a = ag+ 1 = f{ay; a;, ap, a3, ...},(9.10)

1
a]+

1
a ————
2+ a3+...

where ay, a1, a2, a3, ... are positive integers with the exception of ay,
which can also be 0. The continued fraction for « is obtained by the
following algorithm: if x > 0, call [x] the largest integer that does not
exceed x; let ag = [a], a1 = a — ap , and a; = [1/a;]; now work out
recursively a, 4 1 = a, —apanda, ;1 = [1/a, 4+ 1].

The reader will be immediately captured if not obsessed by contin-
ued fractions after trying out a few examples on a hand-held computer.
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The continued fraction for a rational number is finite. For the diagonal
of the unit-square one finds that ﬂ =1{1;2,2,2,2,..}; one of
Lagrange’s great achievements was to show that the necessary and
sufficient condition for a continued fraction to be periodic is for « to
be a quadratic (irrational) number, i.e., the solution of a quadratic
equation with integer coefficients like a? = 2.

The next example takes Euler, both to figure out numerically and
then to prove rigorously: for the base of the natural logarithms, he
found that

e=2.71828 18284 = {2;1,2,1,1,4,1,1,6,1,1,8, 1, ...}.

The number 7 seems to defy any simple rule since it yields
13;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2,1,84, 2, ...} ;
in case the reader should be worried by the many occurrences of 1, it
was shown by Gauss that if « is chosen at random in the interval
(0, 1), then the probability for a, to be in the interval (x, x + dx) is
given by dx/((1 + x) log 2) for large n; the domain 1/2 < a, < 1
leading to a, . 1 = 1 has a probability of 42%.

Celestial mechanics provides the oldest and most significant practi-
cal applications of continued fractions. At issue are the ratios between
the solar, lunar, and planetary periods; there is no reason why they
should be simple; but the authors of antique texts have always ex-
pressed these ratios in rational numbers, for both technical as well as
philosophical reasons. Nowadays, one looks up the relevant periods
as obtained from the best observations, given in mean solar days, and
calculates the continued fraction.

The Astronomical Almanac for 1987 gives 365.242191 days for the
tropical year (equinox to equinox) and 29.530589 days for the synodic
month (new moon to new moon) for a ratio of
12.3682663 = {12; 2,1, 2,1, 1, 17, 3}. For the truncated continued
fraction §12;2,1,2,1, 1} = 12 + 7/19 = 235/19 = 12.368421, one
can say that after one Metonic cycle of 19 years = 6939.601 days the
new moon is about 2 hours late because 235 months take 6939.688
days. The Islamic year is defined as 12 synodic months so that the
Islamic calendar is already ahead of the Christian calendar by 7 months
after 19 Christian years; the Islamic calendar gains about 3 years for
every Christian century. The Jewish calendar makes a compromise by
decreeing a cycle of 12 short years interspersed with 7 long ones. The
full length of the continued fraction yields
12 + 376/1021 = 12.3682664 which is already the full accuracy of 7
decimals; a total of (only) 1021 years is required to bring about the
near complete coincidence of the two calendars!

When the continued fraction of an irrational number « is truncated
at the n-th term, a rational number p,/g, is obtained which is a partic-



9.5 How Rational Are the Irrational Numbers? 131

ularly good approximation, and is therefore, called the n-th convergent
of a. The integers p, and g, are calculated by the recursion formulas

pn+1=an+1pn+pn—1, 9y + 1= 4+ 19+ 41 > (911)

with the initial values po =ag, qo =1, py = ajao + 1, q1 = a;. The
even-numbered convergents form a monotonically increasing sequence
that converges to « from below, while the odd-numbered convergents
converge monotonically to a from above. Compared with any other
rational p/q the convergents are distinguished because they satisfy the
inequality

la —p/q < 1/24" . (9.12)

In contrast to this result, notice that if the integer g is fixed, it is gen-
erally not possible to get closer to a than 1/24.

All these propositions are easy to prove, as is the more precise esti-
mate |a — p,/qnl < 1/qugn+1 < 1/a, 4 12, where we have used
Gn +1 > an 4+ 19n- The n-th convergent is, therefore, particularly good
when a, , | is large; e.g., in the ratio (tropical year)/(synodic month)
of the preceding paragraph one has ag = 17 so that ps/gs = 235/19
is within 1/(17 x 19 x 19)~.00016 of the correct value. A similar
case is 7 where a; =15 so that p;/q; =22/7 is good to
1/(15 x 7 x 7)~.00136; and even more unexpected is as = 292 so
that p3/g3 = 355/113 is within .00000027 of .

The additional occurrence of a;; = 14 and of a,; = 84 in the con-
tinued fraction for 7 makes one suspicious that 7 may be so close to the
rational numbers that a torus with this frequency ratio might be easily
destroyed by the nearby resonances. In fact, in order to guard against
resonances, one would like to find numbers a« where the difference
|a — p/q | never falls much below the value 1/ 242, which is always
realized by the convergents for every irrational number.

Liouville gave a simple and constructive proof to show: If « is the
root of the equation cox¥+cx¥-14 ... 4+cy = 0 where
<o, C1, ..., Cy are integers, and ¢y # 0, there exists a number & such that
|a — p/q| > 8/q" whatever integers p and g are chosen. E.g., if ais
a quadratic number such as \/Eg , no rational p/q will get close to «
within less than 2/3(cf — 4cyc)!/2q2.

This theorem was used by Liouville to construct the first
transcendental number, i.e., a number a; that is not the solution of an
algebraic equation with integer coefficients. Let a; have the continued
fraction with a, = 10"/ then a, , | = (a,)" * !, and one shows easily
that g, < 2 101/ +2/+ .. +nl « 102(0) = 42: our estimate then shows
that |a; — p/gnl < 1/a, 4+ 192 < 1/(gn)" + 572, 1f o were algebraic
of degree N, its 2N-th convergent would already beat Liouville’s lower
limit.
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Transcendental numbers that beat the Liouville conditions are
called Liouville numbers. Not all transcendental numbers are Liouville;
in fact, there is an ongoing competition between mathematicians to
lower the boom’ on transcendental numbers. The present record for
m is held by Gregory Choodnovsky (1979) who showed that
|7 —p/ql> 8/q7. Algebraic numbers, too, are much less rational
than the Liouville conditions would suggest. Indeed, a difficult and
non-constructive argument by Roth shows that for an algebraic number
|a — p/q| > 8/q*+ ¢ with ¢ positive and arbitrarily small, but not 0.
These modern results on irrational numbers are quite subtle; they re-
quire a large formal apparatus and serve as a warning against the
temptation to oversimplify the mathematics of soft chaos.

9.6 The KAM Theorem

The explanations of the first four sections of this chapter about the
effect of small perturbations on an integrable system can be made
mathematically precise. The necessary formal apparatus is formidable,
however, and the results are disappointing in the sense that the rigorous
limits on the relevant propositions are much more stringent than the
numerical examples indicate. Nevertheless, it is important to be aware
of the minimum that can be guaranteed by mathematical proofs, and
to be reassured that the somewhat superficial discussion of this chapter
has some validity.

The central KAM theorem and its proof were first suggested by
Kolmogoroff (1954), but the details were worked out by Arnold
(1963), and the same conclusions were then established under much
broader assumptions by Moser (1962). Benettin, Galgani, Giorgilli,
and Strelcyn (1984) have given a self-contained presentation of the
proof along Kolmogoroff’s original scheme.

The main object is to overcome the small denominators which ap-
peared in the discussion of canonical transformations of Section 5.3,
particularly in formula (5.8) and which cannot be avoided. One would
like to be sure that the second, non-trivial term in the generating
function (5.6) is small in spite of the denominator
w, = (M, w) = mowo + M1 + Mrw>r + M3w3; where we abbreviate
m = (mg, my, my, mz). This condition requires that the corresponding
perturbation V,, become small with increasing |m| =
|mol + |my| + |ma] + |ms| at a faster rate than w,,. Our main
discussion in this section will center on various ways in which this
condition can be realized.
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Satisfying this requirement is not the whole story, however, because
even if one particular canonical transformation as given in Section 5.3
succeeds in overcoming its small denominator, all the other terms of the
perturbation (3.5) have to be transformed before going on to the next
step. The next term to be treated in the new series (3.5) is character-
ized by the integers m’, and the new coefficient ¥, may be quite dif-
ferent after the transformation compared with its value in the series
(3.5) before the transformation. If the old coefficient was small for its
associated frequency w,,/, there is a priori no assurance that this will still
hold for the new coefficient.

Another difficulty comes from the modifications in Hy at each step
in the perturbation procedure. The expressions (5.3) for the old
actions I; in terms of the new ones J; have to be inserted into
Hy(I,, I, I;) and the result has to be expanded in powers of e. The
even powers contain terms, like the square of (5.7), that yield a cor-
rection to Hp because sin2(...) = 1/2 — cos 2(...)/2, of which the first
part adds to the new Hy. The zero-order Hamiltonian for the next step,
H' o(J1, J», J3) differs, therefore, from Hy(I, I, I3) by terms of order
€2, If the same values are assigned to J; as to I;, the new frequencies
differ from the old ones; unforeseen resonances can arise.

An example is the near-resonance between the three main motions
of the Moon in the combination 2wpode + @perigee — 3Wsidereal, Which
was mentioned in Section 5.4. The expansion in powers of the small
parameter the n’/n=~1/13 has to be carried to the third power before
this resonance appears; in second order, one would believe that
Wnode + Wperigee = 0 as formulas (5.9) and (5.10) show to Newton’s
great distress. Hill’s theory of the Moon circumvents this problem by
obtaining the complete expansion in n’/n before treating any of the
other small parameters.

The purpose of the KAM theorem is to demonstrate the continued
existence of certain invariant tori as the perturbation parameter ¢ in-
creases from 0. The frequencies w,, are kept away from any resonance
by requiring that

lo,l = lm )| >6lm|” =6E Im)  (9.13)

at each step, where 8 and » are independent of m. In a system with two
degrees of freedom, the results of the preceding section can be used to
insure this condition. If the frequency ratio a = w;/w; is irrational,
then |gqw; — pws| = qwo|a — p/q|# 0 as long as both w; and ¢

differ from 0. Therefore, if |a — p/q|> 8/¢* 1, condition (9.13)

holds. With more than two degrees of freedom, however, the question
of the preceeding section becomes how to approximate simultaneously
two or more ratios of frequencies, «, 3, etc. by rational numbers; the
beautiful theory of continued fractions is no longer available, and very
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little is known. Nevertheless, condition (9.13) is the central assump-
tion.

Two more ideas are important to complete the proof of the KAM
theorem. Instead of the stepwise expansion in powers of ¢ where the
remainder is smaller than the last term by only one factor ¢, a con-
struction is used where the remainder is of order 2% after the terms of
order ¢* have been treated. The elementary example of this supercon-
vergence is found in Newton’s method for solving equations such as
f(x) =0, if xq is a first guess, the first approximation x; is obtained
from solving the linear equation f(xg) + f (x0)(x — xp) = 0; the second
approximation x, follows then from the linear equation
f(x1) + f(x))(x = x;) = 0, and so on. When solving for x,, it is no
longer admissible to calculate f(x;) and f (x1) by expanding in powers
of the small difference (x; — xp) . Also, this ’superconvergence’ is not
applied to the full perturbation, but only to a properly smoothed ver-
sion, not unlike singling out a particular, slowly varying term in ex-
plaining the effects of a resonance. These sketchy indications are
intended to show that the KAM theorem cannot be proved without
techniques outside conventional perturbation theory.

The KAM theorem will now be quoted from Arnold’s book (1978):

If an undisturbed system is non-degenerate, then for sufficiently
small conservative Hamiltonian perturbations, most non-resonant in-
variant tori do not vanish, but are only slightly deformed, so that in
the phase space of the perturbed system, too, there are invariant tori
densely filled with phase curves winding around them conditionally-
periodically, with a number of independent frequencies equal to the
number of degrees of freedom. These invariant tori form the ma-
Jjority in the sense that the measure of the complement of their union
is small when the perturbation is small.

(A conditionally-periodic motion is the same as our multiperiodic mo-
tion in Sections 3.2 and 3.3.)

The resonant tori of the undisturbed system remove from phase
space a layer whose thickness in the space of the frequency ratios « is
essentially given by (9.9). The KAM theorem is made plausible if the
widths of these layers for all rational frequency ratios are added up, and
their sum is found to be finite; the strength ¢ can then be chosen to
leave enough space for the frequencies which satisfy the criterion
(9.13). If the perturbation is analytic as in the Kolmogoroff-Arnold
formulation, the expansion coefficients V,, in (3.5) decay exponentially
with |m |, and the sum over all vectors of integers m converges. If the
dynamical system has n degrees of freedom, and the perturbation is
only required to have u continuous derivatives, as in Moser’s version,
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the coefficients V,, decay as |m| " 2. Since the width of the reso-

nance (9.9) goes with |V, |1/2, and there are =~ |m [~ terms for a

given |m| , convergence requires at the least that
(w+2)/2—-(m—=1)>1, or pu>2n—2. Moser gave the sufficient
condition u > 2n + 2; the reader will find more details of this type in
the monograph of Lichtenberg and Liebermann (1981).

A similar argument applies directly to the criterion (9.13): the fre-
quencies w, which violate (9.13) for some fixed m fill a layer of
thickness 8/ |m|" " in frequency space, Adding up all these excluded
layers leads to the sum of &/ |m| YT over bn |, which converges
provided » > n — 1. In a system with two degrees of freedom, there-
fore, » > 1, which excludes all the quadratic numbers, and probably
most of the algebraic ones, too, according to Roth’s result. In the most
common form, the KAM theorem is based on » = 3/2. While this kind
of argument yields reasonable inequalities for u and », it deals only with
the frequencies whose neighborhood gets transformed into soft chaos.
By contrast, the KAM theorem insures the survival of the invariant
tori, and tells us something about the set in frequency space that is
complementary to the incipient chaos.

9.7 Homoclinic Points

The destruction of the invariant tori can be seen as a catastrophe that
overtakes the dynamical system as it is subjected to an ever stronger
perturbation. A lot of effort, both numerical and analytical, has been
spent on trying to understand the detailed mechanism by which the
orderly structure of phase space gets lost, and to get a glimpse of what
happens after the disaster has occurred. The reader will have to work
through some of the vast literature to get an adequate picture of what
is known so far (cf. Arnold and Avez 1967; Devaney 1985;
Guckenheimer and Holmes 1983; as well as the survey by Grebogi,
Ott, and Yorke 1987). This and the next section will briefly mention
two ideas that seem to dominate much of this work.

The discusssion in Section 9.3 showed how the layered structure of
the nested tori (cf. Figure 11d) gets broken up so as to resemble the
phase space of a pendulum (cf. Figure 21). The immediate cause is a
resonance with a sufficiently strong perturbation; but no great harm is
done as long as this resonance stays isolated. The phase-lock region
looks like the vibrational motions of the pendulum, now represented
by a set of islands as in Figure 16; these are smoothly bounded by the
separatrix, beyond which the original layered structure again takes
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over, just as the rotational motions of the pendulum; the critical ele-
ment in this situation is the smooth nature of the separatrix.

A first general problem, therefore, concerns the loss of the
separatrix in one single chain of islands. The discussion of Sections 9.3
and 9.4 gives no indication why the points P;, P, ... of unstable equi-
librium between the islands should not remain the intersections of two
smooth torus-like surfaces, the two branches of the separatrix as it
were; the transition from Figure 23a to Figure 23b, however, indicates
something quite different.

The points P;, P>, ... continue to be part of a periodic orbit as the
perturbation increases; but the linear map in their neighborhood ac-
quires a trace larger than 2. As a consequence, there are two well-
defined directions through each of them: the stable one for the
trajectories approaching ever more closely at each pass through the
surface of section, and the unstable one for the trajectories getting
further and further away, as in the typical hyperbolic periodic orbit of
Figure 11b.

For sufficiently weak perturbations, these two directions, say the
stable one at P; and the unstable one at P,, are connected by the
separatrix so that a trajectory that starts near P; on the unstable man-
ifold eventually ends up near P,, typically after a very long time. As
the perturbation becomes strong enough, the stable as well as the un-
stable directions at Py, P,,... continue to define smooth curves in the
surface of section, namely the intersections of the stable and the un-
stable manifolds with the surface of section. The existence of these
rather smooth manifolds, and their smooth lines of intersection, when
everything else in phase space seems to break down, is something of a
mathematical miracle. The trajectories on the stable manifold are
characterized by their tendency to approach ever more closely to P,
or P, at each pass in the future; trajectories on the unstable maniflold
approach in the same way when going backward in time. But the un-
stable line of P, does no longer join up smoothly with the stable line
of P,, or any other stable line in the surface of section, to form a
separatrix; and similarly for P;.

On the contrary, lines originating in different points P; will intersect
transversally in a well-defined set of points. They are called heteroclinic
points, if the intersection occurs between the stable and unstable lines
belonging to different points P; and P; ; if the stable and unstable lines
come out of the same point corresponding to an unstable periodic orbit,
their intersections are called homoclinic points. The existence of these
points causes a profound reorganization in the neighborhood of the
unstable equilibria of the pendulum. Although this description refers
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only to one isolated chain of islands, it is the presence of a neighboring
resonance which is responsible for the emerging chaos.

The conservation of area in the surface of section is now the main
culprit in making things so complicated, together with the fact that the
stable or the unstable lines cannot intersect themselves. The relevant
arguments were first presented in detail by Birkhoff (1935); but al-
ready Poincaré (1899, last chapter) had understood their full impact.
Since a serious discussion would take too much space, we will try to
give the reader at least a glimpse of classical chaos in the making due
to an homoclinic point; Figure 24 shows schematically how the stable
and unstable lines are bound to form very complicated folding patterns.

Let the stable line « out of the unstable periodic orbit through P,
intersect the unstable line « out of the same point P in the homoclinic
point Qyp. The name « was chosen to remind the reader that the pre-
images of Qg in the surface of section, Q_;, O_», ..., lie on «, and form
a sequence of points converging to P in the past; similarly, the images
of Qy, called 0y, O, ... , lie on « where they form a sequence con-
verging to P in the future. Thus, lines o and ® keep intersecting each
other and forming new homoclinic points.

Between any two consecutive intersections, Q; and Q; ; 1, the seg-
ments along « and « define an open domain D;; all these domains en-
close an area A which is the same, independent of ;.  If
self-intersections of either a or w are to be avoided, these domains have
to take on increasingly contorted shapes. They become thinner and
longer, because one of the bounding segments gets short quickly with
large |j |; e.g., for j < 0, the points Q; lie on the initial portion of w
near P, and their distance obviously decreases exponentially.

Eventually, one of these domains doubles back on itself to the point
where both ends run right across one of its predecessors; the cut of the
boundaries is allowed only of a with w. The abstract version of this
situation is the famous horseshoe of Smale (1965); the original domain
D of roughly rectangular shape is stretched in one direction, and then
bent like a horseshoe big enough so that its two ends run across D. Part
of D is mapped into itself, and this map can be repeated indefinitely,
both forward and backward.

This process leads to a natural coding scheme in terms of binary
sequences, because there is a choice between the two branches of the
horseshoe at each step of the consecutive transformations of D. The
long-term behavior of the trajectories is now characterized by the
symbolic dynamics of the binary sequences; in particular, it is easy to
see that there are infinitely many new periodic orbits, as well as tra-
jectories with a seemingly random character, according as the binary
sequence is periodic or random. The basic mechanism behind these
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Figure 24 The formation of homoclinic points when the stable and the unsta-
ble manifolds of the same unstable periodic orbit intersect transversally.

unexpectedly complicated features in a simple dynamical system is the
stretching and bending of an initially nice convex area in phase space,
in agreement with Liouville’s theorem.

The simple device of letting the stable and unstable lines in the
surface of section intersect each other has produced the most extreme
chaos, something akin to the flipping of a coin. While this picture is
very generally valid, it does not yield the detailed and exhaustive in-
formation about the classical trajectories, in order to make the transi-
tion to quantum mechanics; the symbolic dynamics is applicable only
to a very tiny subset in the surface of section. In contrast, we will find
that all the trajectories in the Anisotropic Kepler Problem (Chapter
11), and the geodesics on a surface of negative curvature (Chapter 19),
can be fully understood in terms of a simple coding scheme.

9.8 The Lore of the Golden Mean

A second general problem concerns the fusion of different chains of
islands into a single region of chaotic character through the destruction
of the invariant tori between them. The reader will find a useful se-
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lection of reprints in the book edited by MacKay and Meiss (1987);
only a bare outline of some ideas will be given in this section.

As the perturbation in the Hamiltonian is allowed to increase, the
critical parameter on any invariant torus in the original system is the
winding number «. On a two-dimensional torus, it is the ratio between
the two frequencies; in more than two degrees of freedom, however,
more than one ratio is needed to characterize the way in which the
trajectory winds around its torus. As a rule, the less rational a, the
more resistant the torus; the last invariant torus to be destroyed by the
perturbation has the most irrational frequency ratios.

If « is expanded in a continued fraction (9.10), and the values of
a, remain small, the difference between successive convergents,
1/4nGn +1 = 1/¢.(an 4+ 1gn + g» — 1) remains large, and neither con-
vergent ever gets close to «. The worst case is obviously a, = 1 for all
n; the recursion formulas then yield p, = f, _ 1, g, = f,, where f, is the
n-th Fibonacci number: f_1=0,fo=1,fi=1,fis1=fu+fa_1;
and o = (\/5_ — 1)/2 = v, the famous golden ratio y of Greek geom-
etry. Therefore, the last invariant torus to disappear as the perturba-
tion increases is expected to have the winding number y. A useful
collection of various articles concerning this phenomenon has been put
together by Cvitanovic (1984).

Even though more and more island chains are created, the remain-
ing tori set up barriers which prevent the trajectories from drifting
indiscriminately all over phase space. This conclusion holds rigorously
for conservative systems with two degrees of freedom, because the
two-dimensional tori effectively separate the three-dimensional energy
surface into distinct open sets. With three degrees of freedom, how-
ever, a three-dimensional torus does not divide the five-dimensional
energy surface into two disconnected open pieces; a trajectory that
originates near one resonance eventually drifts toward some other res-
onance although there still exists an invariant torus at an intermediate
set of winding numbers. This process, called Arnold diffusion (Arnold
1964) is actually very slow; it has been found to take a time
=~ exp( — 1/¢°) with 0=~1/2, while the diffusion of the trajectory inside
its own original island chain takes a time ~1/¢” with 7 > 0; ¢ is the
strength of the perturbation (cf. Chirikov 1979). This further compli-
cation of the transition from integrable to chaotic behavior is still
largely unexplored (cf. Piro and Feingold 1988), and we shall, there-
fore, return to the safety of systems with no more than two degrees of
freedom.

The most closely studied systems are area-conserving maps, and
among them in particular the so-called standard map,

7D ™ L kosin w®™ , w0 e ) (9.14)
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The corresponding physical model, the kicked rotator, is a pendulum
of length a and mass m, or equivalently, a rotator with moment of in-
ertia ma? which is kicked with an impulse F At sin w at equal time in-
tervals, Ar apart; w is the angular position at the time of the impulse;
the motion is a uniform rotation between kicks. If one normalizes the
angular momentum J by setting I =JAt/ma? and calls K =
F(Ar)?/ma, the first equation (9.14) gives the increase in angular mo-
mentum from the »-th kick, and the second equation describes the in-
crease of the angular position between the n-th and the (n + 1)-th kick.
The conservation of area can be checked by calculating the Jacobian
6(1(" + 1), wn + 1))/6(1("), w(n)) = 1.

The ordinary pendulum arises in the limit Az - 0 which corresponds
to K » 0. The difference equations (9.14) become two ordinary
first-order  differential  equations  with  the  Hamiltonian
Hy = (J2/2ma?) + F cos w. Near the stable equilibrium at w = 7 the
frequency of the motion is y/ F/ma? ; the separatrix including the un-
stable equilibrium at w=0 is given by Hy=F, where
I=1%2y ma?F sin(w/2), and the period is infinite. As Af increases
from O, the trajectories tend to get stuck and form chains of islands
around the periodic orbits of the difference equations (9.14); but for
small K they are separated by what remains of the curves Hy = const.,
where the winding number « is irrational.

These are the KAM tori, so called because they are guaranteed to
exist by the KAM theorem; they set up barriers for the classical tra-
jectories, whose presence is critical for the understanding of chaos.
For their practical calculation, the periodic orbits have to be found at
a fixed K for a sequence of rational winding numbers that are the con-
vergents for a given irrational number such as y. As long as the corre-
sponding KAM torus still exists, the trace for the local map near the
periodic orbit will become 2 for the higher convergents. Greene
(1979) calculated the residue (cf. section 6.4) for the relevant se-
quence of periodic orbits, and found their asymptotic behavior as a
function of their order in the continued fraction expansion. He showed
that the last KAM-torus for the standard map (9.14) belongs to the
golden mean y, and disappears when K > .9716, as shown in Figure
25.

According to Escande and Doveil (1981), however, it is not neces-
sarily the winding number y which determines the last KAM torus (cf.
the review by Escande 1985). Nevertheless, the standard map gives a
particularly simple example where the transition to global chaos in the
phase space can be studied, even after K has become larger than its
critical value. As a rule, the region of the last KAM torus acts as a
barrier, on which the trajectories get stuck for a while even then, al-
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Figure 25 The last invariant torus separating different ergodic regions in the
surface of section for standard map (9.12). [from Greene (1979)]

though they will eventually traverse it. It appears that this delay near
a former KAM torus is crucial in quantum mechanics; a wave function
is able to maintain itself in such a region, almost as if there was still a
good invariant torus to settle on. Reinhardt (1985) has coined the
phrase of ’vague’ or ’fragmented’ torus for this situation in classical
phase space.



CHAPTER 10

Entropy and Other Measures of Chaos

The throw of a dice and the flip of a coin are the best-known devices
for generating an unpredictable end result. In both cases the detailed
sequence of events cannot be controlled at each step so as to guarantee
a definite outcome. The main problem seems to lie with the starting
conditions although relatively few parameters are involved: the posi-
tion and the momentum of the center of mass, as well as the orientation
in space and the angular momentum at a given instant in time. These
quantities would have to be measured with an accuracy far exceeding
any practical instrument; moreover, the drag from the air and the
bouncing from surfaces would have to be investigated to a degree that
is not ordinarily available. Nevertheless, there is a chain of cause and
effect from beginning to end; nothing is inherently random in the ele-
mentary mechanics, but our ignorance makes it so.

Physicists have been aware of this paradoxical situation ever since
Maxwell and Boltzmann laid the foundations of statistical mechanics
at the end of the nineteenth century. But the resolution of the paradox
depended on the large number of degrees of freedom, which obviates
any effort to take into account the motions of all the particles involved.
The mathematicians realized that similar problems of predictability
arise in much simpler systems where the equations of motion can be
written without much trouble and can be solved numerically on a (by
modern standards) primitive computer. A number of very useful con-
cepts were developed to define different types of such behavior; the
most important notion is called entropy. This name was adopted from
thermodynamics where it designates a measurable quantity that, ac-
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cording to Boltzmann’s interpretation, indicates the prevailing degree
of disorder.

While the idea of an entropy is of great help in understanding clas-
sical mechanical systems, nobody has been able to find its analog in
quantum mechanics; therein lies the great unresolved mystery of
quantum chaos. This chapter gives a brief introduction to the concept
of entropy in classical mechanics, and some related notions, to make it
quite clear that there is nothing imprecise about these quantities. For
a rigorous and complete presentation, however, the reader will have to
consult the mathematical literature; a particularly fine introduction is
the book by Arnold and Avez (1967).

10.1 Abstract Dynamical Systems

In order to be on firm ground, the objects of investigation are defined
in terms that are somewhat remote from physics. A classical dynamical
system, also called a flow, is a collection of objects (M, u, ¢,) where M
is a differentiable manifold, alias a phase space, p is a density defined
on M, alias Liouville measure, and ¢, is a one-real-parameter group of
diffeomorphisms (continuously differentiable map) of M into itself
that preserves the measure based on p, alias equations of motion. The
restriction to a group rather than an arbitrary one-parameter family
makes each time interval 8¢ equivalent to any other of the same dura-
tion; that is exactly what happens in a conservative Hamiltonian sys-
tem.

A particularly popular example is the geodesic flow on a Riemannian
surface N; the manifold M is a set of points where each is the combi-
nation of a point in N and a tangent direction there; the measure pu is
the product of the area (volume) of N and the (solid) angle of di-
rections; the flow ¢, describes the motion of a particle that moves
freely on N with unit speed for a time .

As a purely mathematical model, one may instead study an abstract
dynamical system: again a collection of objects (M, u, ¢,) where now
M is a measurable space with a measure p and a group of
automorphisms ¢, (maps of M into itself) that preserve the measure u
and where the variable ¢ runs through the integers. In contrast to the
preceding definition, the space M is only required to be endowed with
a measure, and the automorphisms do no more than preserve this
measure, so that sets of measure zero are allowed to do whatever they
please. The maps on Poincaré sections belong to this kind of dynamical
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system, since the parameter for them is discrete; but there are now
examples which seem at first far removed from ordinary mechanics.
The standard example is the Bernoulli scheme B(py, ..., p»): Con-

sider an alphabet of m letters which will be called (1, ... , m) for sim-
plicity’s sake; a point a in the space M is a sequence
a=1{(..,a_y,ap, ay,a, ..) where g, =1, ..., m. In order to define a

measure in this space, the sets 4;; = {a la; = j} are given the measure
p; > 0 with 2p; = 1. The sets A4;; generate a so-called o-algebra of
measurable sets in M by taking all the possible intersections and unions
with the obvious rules for the measure, such as u(4;; N Ay /) = p; ps
provided i # k.

The group of automorphisms is defined as the integer powers of the
shift, ¢ - a - a’ where d’; = a; , | which translates the whole sequence
a to the left by one place. In order to give a physical interpretation to
the shift, we call the half-sequence @, = (...,a_,a_1,aop| the past,

and the half-sequence ar = |ay, a;,...) the future. After the event
/

a; has occurred, the past becomes a, = (...,a_1,a9, a |, and the

futureisa’s = |az, a3 ,...).

The simplest among the Bernoulli schemes, B(1/2, 1/2), is nothing
but the coin toss: the experience of a particular person in this game is
described by a binary sequence a of letters in the alphabet
(up = 1,down = 2) which occur with equal probabilities
p1 = p> = 1/2. The probability for any special combination of se-
quences is the same as the measure of the subset in the space M that
is made up of these sequences. Notice that no concept of closeness
between the points a is required, only a notion of measure. Binary se-
quences will occur again in the discussion of the Anisotropic Kepler
Problem (cf. next chapter); but they will be represented as points in a
plane, and acquire thereby a notion of distance between different se-
quences, which is absent in a Bernoulli scheme.

A more involved example of an abstract dynamical system is the
subshift where the space M consists again of the infinite sequences a
of letters from a finite alphabet, and an automophism is obtained from
the translation of a sequence by one place; but the measure p on M is
generated by the sets 4; ; « = /a la; = j, a; , 1 = k} whose measure is
given by a matrix of transition probabilities pjx > O with the normal-
ization 2 pj = 1 where, for each value of j, the sum is taken over k.
Such a scheme has a memory built in, since the probability of the future
event a; depends on the past event ap. This is the basic model for a
Markoff process. 1t is realized in the geodesic flow on a compact closed
surface of constant negative curvature that will be discussed briefly in
Section 20.3.
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The Bernoulli schemes are the most unpredictable, and yet
deterministic processes imaginable. The word deterministic conveys the
basic assumption of classical mechanics: if the initial point a in the
space M is known with infinite precision, then the ’trajectory’
a',d”, ... can be calculated for all later times, and even for all earlier
times as well.

A mechanical system can be classified as being 'Bernoulli’ although
it may not look like that at all. Quite generally, two systems (M, u, ¢)
and (M, ', ¢') are called isomorphic if there exists a measure-
preserving bijection f: M - M’ (one-to-one map) modulo sets of
measure 0 where ¢'(f(M)) = f(¢(M)), i.e., the order of f and ¢ does
not matter, always up to sets of measure 0.

The two Bernoulli schemes B(1/2,1/8,1/8,1/8,1/8) and
B(1/4,1/4,1/4, 1/4) are isomorphic; the reader may try to imagine
how the bijection f can be established and will find it very difficult. Its
existence depends on the equality of the entropies of the two schemes
as will be discussed in Section 10.3.

Besides the isomorphism between two particular dynamical systems
it is of interest to know whether a system is typical. The answer re-
quires a concept of closeness (topology) between systems whereby
each system is surrounded by a neighborhood of other systems, and the
problem is to find the genmeric properties that are valid for a whole
neighborhood even if the systems in it are not equivalent. Abstract
dynamical systems have a better chance to be generic than the classical
dynamical systems, which are described under more restrictive as-
sumptions. In particular, since Hamiltonian systems, which are the
topic of this book (and the basis of physics), have very few generic
features, there is a tremendous variety of truly dissimilar types.

10.2 Ergodicity, Mixing, and K-Systems

The mathematicians have developed a finely tuned hierarchy of possi-
ble behavior in dynamical systems. We will mention the three most
commonly used, and define them only with the degree of precision
necessary to convey their basic differences.

(i) Ergodicity: For each integrable function f: M - R, the spatial
mean [/ du equals the temporal mean (1/T)fgf(¢, x) dt when T —» oo,
and where x is any point in M with the exception of a set of measure
0. The integral over ¢ is replaced by a sum when the parameter ¢ varies
in discrete steps. This definition corresponds to the original idea that
Boltzmann invoked to explain the second law of thermodynamics. It
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turns out to be widely realized in dynamical systems; but it is not nearly
strong enough to guarantee what Boltzmann intended to accomplish
with it.

The repeated rotations around a point by an irrational angle are
ergodic; this is the famous theorem that Weyl proved for the first time,
although it must seem obvious to most non-mathematicians. The space
M is the circumference of the unit-circle, the measure p is the length
along the circumference, and the automorphism is the rotation by the
angle 27a where 0 < « < 1. Pandey, Bohigas and Giannoni (1989)
have shown that this system has some very non-random features which
make it unsuitable as a model in statistical mechanics; the angular dis-
tances between the points on the circle take values that are severely
restricted rather than being arbitrary.

Ergodicity implies that the phase space M cannot be decomposed
into subsets with non-vanishing measure each of which remains invar-
iant. This idea is presented in many textbooks as the ergodic hypothesis
which underlies thermodynamics. And yet, no explicit model for the
basic phenomenon of heat conduction was known until Casati, Ford,
Vivaldi and Visscher (1984) gave a very appealing demonstration: a
few particles move inside a segment of finite length; when they reach
the left end, they are reinjected with a kinetic energy corresponding to
the lower temperature 7, whereas they reappear with the higher tem-
perature 7, upon reaching the right end of the interval. During their
travel back and forth, these particles hit massses that are suspended
from a point like a pendulum and deprive the particles of their energy.
When the pendulum comes back to its original position, the particle
gets its energy back and can continue its trip down the segment; but the
waiting time is longer for the higher kinetic energy, and this retardation
of the fast particles accounts for an orderly transfer of energy at a finite
rate that is proportional to the temperature difference as in Fourier’s
law.

(ii) Mixing: Given two subsets 4 and B of M, as t » « one has
u(¢,(ANB)) = u(A4) u(B); each subset eventually gets spread out
homogeneously. The rotations by an irrational angle do not satisfy this
condition; two overlapping intervals of the circle remain exactly as they
were at the start. On the other hand, it takes only relatively little stir-
ring to mix coffee and milk quite thoroughly.

Neither ergodicity nor mixing gives us any understanding of a pe-
culiar paradox in chaotic systems: on the one hand, they seem to ob-
literate any simple pattern that a trajectory might be designed to
follow; on the other, they are full of the most rigid of such repetitive
behavior, i.e., periodic orbits for isolated starting conditions. Indeed,
the rotations by a fixed irrational angle 2w« yield no periodic orbits
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whatsoever, although they are ergodic. The paradox appears when the
scrambling of the space M proceeds in a much more pervasive manner,
which was first studied by Kolmogorov.

Before giving the relevant definition, however, a number of techni-
cal terms have to be defined. A collection = of subsets in M is called
an algebra, if it is closed under the operations of taking the union for a
denumerable family of subsets and of taking the complement of a sub-
set (and, therefore, of taking the intersection between subsets). An
algebra = is said to be contained in the algebra =1, if for every subset
Ay € g  there exists a subset A{ € =4 such  that
w(AgU Ay — AgN A1) = 0, i.e., up to sets of measure O the algebra =,
divides up the space M at least as well as the algebra =. If a number
of algebras =; are available, then there exists a maximal algebra N Z;
which is contained in all of them, and a minimal algebra U =; which
contains them all. If the map ¢ is applied to the subsets of an algebra
=, the images of all the subsets of = generate another algebra with the
obvious name ¢(=).

(iii) K-system: there exists an algebra = of measurable subsets in
M which is contained in the algebra ¢(Z) in such a way that
N¢"(Z) = € and U ¢"(=) = ¥, both taken over all integers »n; the al-
gebra {2 contains only sets of measure 0 or 1, whereas the algebra ¥
contains all the measurable subsets of M. Similar definitions apply to
the classical dynamical systems where the parameter ¢ is continuous.

The prime example of this construction are the Bernoulli schemes.
The algebra = is generated by the subsets A4;; with i > 0. Since
¢(4; ;) = A;_ 1, , this algebra is further subdivided with each subse-
quent map ¢. Every measurable subset with non-vanishing measure is
caught eventually, with the possible exception of subsets with measure
0, or the whole space, because the complements always belong to an
algebra.

10.3 The Metric Entropy

The concept of entropy in a dynamical system was formalized by
Kolmogorov on the basis of the definition that Boltzmann had ori-
ginally used in his theory of gases. Similar expressions are found
throughout statistical mechanics and have become the essence of in-
formation theory. Again, an awesome degree of mathematical ab-
straction seems unavoidable, and we can only give a (possibly bitter)
taste of the necessary details.
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The space M has to be subdivided by a decomposition a, which is a
collection of measurable subsets 4; where the index i now belongs to a
collection 7 ; the union of these subsets is M, and all their intersections
are void, up to sets of measure 0. The entropy h(a) with respect to the
decomposition « is defined as

ha) = — > p(A)Log(u(4)) (10.1)

iel

where Log designates the logarithm with the base 2.

The next step in the construction requires the joining of two de-
compositions « and B in a straightforward manner: a decomposition
vy = a U B consists of all the intersections of a subset 4; € a with a
subset By € B. Now, the entropy h(a, ¢) of the automorphism ¢ with
respect to the decomposition « becomes the limit

Mo $) = Jim =y 67 (@ v ™2@) U u s T (@) (10.2)

A lot of hard work goes into showing that this limit exists.

The last step consists in getting rid of the reference to the decom-
position «a by looking for the supremum (the least upper bound) when
all finite and measurable decompositions of a of M are considered.
Thus, one finds the metric entropy of the automorphism ¢

h(¢) = supremum A(a, ¢) . (10.3)
finite «
More hard labor is required; but eventually the goal is reached in the
form of two theorems.

The entropy h(¢) is an invariant of the automorphism in the sense that
two isomorphic automorphisms ¢ and &' have the same metric entropy.
As an example, the two Bernoulli schemes at the end of Section 10.1
have the same value of the metric entropy because they are isomorphic;
the equality of the entropies will be obvious as soon as the entropy for
Bernoulli schemes is actually calculated in the next paragraph. Mean-
while another theorem is needed to allow us to make this calculation
possible. It is natural to use a finite decomposition a to generate the
algebra = which goes into the definition of a K-system at the end of the
preceding section, by joining a with ¢~ 1(a) , $=2(a), and so on. If this
can be done, « is called a generator with respect of ¢. If a is a generator
for the automorphism ¢, the metric entropy h(¢) = h(a, ¢). In other
words, it is no longer necessary to find the least upper bound for all
possible finite and measurable decompositions of M.

The generating decomposition o« for the Bernoulli scheme
B(pi, ..., p,) is obtained from the sets 4, ... , A1,, as defined in Sec-
tion 10.1. Since ¢=*(4,) = Ak + 1, the subsets of the decomposition
aU ¢~ Ha)u - - uo!~"(a) are the intersections A;; NAy,N ...
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N A, whose measure is p;, p;, ... p;,. These values have to be inserted
into (10.3) which leads back to (10.2) where the family of indices /
now consists of (ji, j, ... , j») where each j varies independently from
1 to m. There is some minor rearrangement of the terms, which then
leads to the metric entropy of the shift ¢ in B(py, ... , pm)

h(@) = — > pLog(p) - (10.4)

Jj=1

The entropies for B(1/2,1/8,1/8,1/8,1/8) and
B(1/4,1/4,1/4,1/4) have the same value 2 Log 2 = 2, whereas the
coin-toss B(1/2, 1/2) has the entropy Log 2 = 1. Intuitively the
scrambling of the space M is twice as effective at each step when the
entropy is twice; that coincides with our impression of the two former
Bernoulli schemes being equivalent to a double coin-toss.

Ornstein proved the remarkable theorem: A/l Bernoulli schemes
with the same entropy (10.4) are isomorphic. This proposition is a model
of simplicity; but its proof is very hard. It requires the construction of
the isomorphism f, which is extremely difficult to find because it cannot
be defined in a finite process. The development of this field, including
some of the work to be discussed in the next sections, was recently re-
viewed by Adler (1987).

A favorite model of a strongly ergodic system is a point particle on
a flat torus with a circular hole; the particle moves with constant ve-
locity in a straight line until it hits the hole, where it undergoes an
elastic reflection, maintaining its momentum parallel to the boundary,
and reversing the momentum at right angles to the boundary. The
motion gets badly defocused in this kind of billiard game, and Sinai
(1968, 1970) has shown that this system has a non-vanishing entropy.
A related model is the motion inside a stadium, i.e., two half-circles
joined by two parallel lines; although its ergodic properties are not so
obvious, Bunimovich (1974, 1979) was able to show that there is again
a non-vanishing metric entropy (cf. Bunimovich and Sinai 1980). A
recent update of these mathematically oriented developments was
given by Katok and Strelcyn (1986).

10.4 The Automorphisms of the Torus

Since mechanics is closer to geometry than to algebra, one would like
to have an example where the scrambling of phase space can be seen
more intuitively. The automorphisms of the torus fulfill this role; they
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also show the relation between the metric entropy of the preceding
section and the topological entropy of the next section.

Let L be an m by m matrix with integer elements such that det
| L| = 1. The space M is the m-dimensional hypercube with opposite
sides identified just like the m-dimensional torus of the angle variables
in Section 3.3. Its points are given by the column vectors x with the
components (xj, ..., x,,) where 0 < x; < 1. The measure is the
Euclidean volume, which is preserved because det | L | = 1. The
automorphism ¢ transforms x into the column vector y with the linear
transformation

y = Lx (modulo 1) . (10.5)

The most famous example is Arnold’s cat map with the 2 by 2 matrix
(1, 1; 1, 2) in flattened notation. The pictures of the gradual distortion
and disruption of a cat’s head have become a compulsory item in every
book on chaos.

The effect of the automorphism (10.5) on the m-dimensional cube
can be understood by transforming the matrix L into diagonal form
with real entries. This can be done for the cat map since L is symmet-
ric; in general, however, the discussion is more complicated. The local
neighborhoods get stretched in the direction where the eigenvalues A
of L are > 1, and get compressed in the directions where |A | < 1.
This argument has to be made more explicit in order to calculate the
metric entropy; but the general result is again very simple:

mL) = > Logl|Al . (10.6)
(A >1

This formula relates the metric entropy to the local distortion of the
space M ; or equivalently, if one thinks of neighboring points as getting
progressively further and further away from each other, the metric
entropy gives the rate at which the two points diverge.

This last interpretation of the metric entropy is very important for
the later applications. Quite generally, any two neighboring initial
points can be followed through many successive automorphisms; their
distance increases in an exponential manner with the number of
automorphisms. The rate of this exponential drift follows from the
linearized map and its eigenvalues exactly as for L; the expression on
the right-hand side of (10.6) is called the Lyapounoff number for the
automorphism in some particular neighborhood. Quite generally, the
metric entropy is given by the average over the Lyapounoff numbers,

he) = < 3, LoglAl > . (10.7)
(A1 >1
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The exponential spreading of the trajectories was already mentioned
in Section 1.6.

The linear automorphism shows very clearly the occurrence of pe-
riodic orbits. For this purpose, let us study the n-th power A = L" of
the matrix L. A point x in the torus which returns to itself after »
automorphisms satisfies the equation Ax = x modulo 1, or more ex-
plicitly, Ax = x + k where k is a column vector with m integer com-
ponents. This condition can be written as (A — I )x = k, or in the form
x = (A — 1)~ 'k, where I is the m-dimensional unit matrix. The
transformation from the vector k to the vector x reduces the unit vol-
ume by a factor K = det | A = I|. Therefore, if the vector k runs over
the integer lattice points in m-dimensional space covering a volume
equal to K, the corresponding points x are all located inside the m-di-
mensional unit cube.

The condition for a point x on the torus to have the period » is sat-

isfied exactly K times. The integer
m

K = H(A;?—1)= IT il

J=1 Al >1

in the limit of large n. If N, (L) designates the number of periodic orbits
of ’length’ n for the automorphism L, then in the limit of large n

%LogNn(Lh > LoglAl = h(L) , (10.8)

Al >1

where the formula (10.6) for the metric entropy of L has been used.
The metric entropy appears in a completely different context; the de-
gree of scrambling that the automorphism L wreaks on the torus is ex-
pressed in the number of points that are mapped into themselves as the
map is iterated. The arithmetical properties of linear maps on the
2-torus have been studied by Vivaldi (1987) and by Percival and
Vivaldi (1987).

10.5 The Topological Entropy

The metric entropy tells us how fast the phase space M gets divided up
by the repeated automorphisms ¢. If the decomposition a consists of
v pieces, the decomposition a U ¢~ () U --- U ¢=" * (&) can be ex-
pected to consist of v pieces. The situation is more involved, however,
because if one starts with a decomposition « of too many pieces, ap-
plying the automorphism ¢~! does not divide up every piece over and
over again. On the other hand, if the starting decomposition has too
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few pieces, the repeated application of ¢—! does not keep pace with the
scrambling of phase space.

Adler, Konheim, and McAndrew (1965) asked whether there is a
minimum number v for the generating decomposition « to calculate the
metric entropy. In order to get away from the metric entropy, and de-
fine a new and independent quantity for the disorder that is created in
the phase space by the automorphism ¢, they went back to the original
idea of the K-systems as explained in Section 10.2. They tried to count
the number of subsets in the decomposition a and its offspring

n
U ¢—/(a) as n increases, assuming that the algebra = of all measurable
subsets for a K-system will be obtained in the limit of large n.

Instead of measuring the decreasing size of the pieces, their in-
creasing number gives the same information, possibly even on a more
fundamental level. This procedure can be viewed as setting up win-
dows in the phase space M through which the trajectories have to pass;
a trajectory can be characterized by the sequence of windows it passes
as it is brought back by the succession of automorphisms. If the num-
ber of windows is too small, different trajectories end up with the same
sequence of windows; whereas for too large a number of windows,
some possible sequences of windows are not realized by any trajectory.
This idea of associating with every trajectory a sequence of subsets by
which it is characterized is reminiscent of the sequence of symbols that
is the base for Bernoulli schemes, or symbolic dynamics in general.

Going back to the decompositions « and calling N the number of
subsets, the topological entropy is defined as the infimum (largest lower
bound) with respect to all decompositions « of the quantity

g(¢) = lim —Log Ma u ¢~ () u - U ¢! "(a) .(10.9)

In this form the topological entropy seems quite remote because it
seems difficult to count the different subsets, unless they are as simply
constituted as in the Bernoulli schemes; indeed, there are m” possible
words of length n in an alphabet of m letters, so that g = Log m. In
general, however, as a decomposition « is progressively cut into finer
pieces by the successive automorphisms ¢!, some cuts may not create
new subsets because they duplicate earlier cuts. Another way of doing
the same count may be, therefore, if not easier, then at least better
defined.

The relevant idea appears to be discussed for the first time in a pa-
per of Bowen; the connection with formula (10.9) can be grasped in-
tuitively, but the mathematical intricacies are again discouraging for a
physicist. As the decomposition « is refined by the automorphisms
¢!, each piece can be characterized by a unique trajectory that re-
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turns to its beginning after »n successive maps; in other words, by a pe-
riodic orbit. The number N in (10.9) is, therefore, also the number of
periodic orbits of length n; the topological entropy, rather than giving the
number of subsets in a generating decomposition, counts the number of
periodic orbits.

More generally, let us assume that there is a length s defined for the
periodic orbits of a dynamical system; for a discrete automorphism, this
may simply be the number of transformations to get back to the initial
point; but for a Hamiltonian system, the length is either the period, or
the action integral. The number of periodic orbits of length less than
o is then given by

N(s < 0) ~ exp( o 7log2) , (10.10)

where 7 is the topological entropy. This exponential is typical for cha-
otic systems, and is in sharp contrast with the count of periodic orbits
in integrable systems, which was shown in Section 6.2 to be polynomial
in the upper limit o.

The number of periodic orbits for the linear automorphisms of the
torus was worked out in the preceding section; indeed, formula (10.8)
gives the topological entropy in this special case. The equality of the
topological entropy with the metric entropy can be proven for certain
classes of dynamical systems; the relevant statement is sometimes re-
ferred to as Pesin’s theorem (cf. Pesin 1977). It does not hold for some
scattering problems where the trajectories are more unstable than their
increasing number would suggest, if the two entropies were the same.

The two different interpretations of the entropy, metric and
topological, will be very important in the transition from classical to
quantum mechanics in chaotic systems. This transition can be under-
stood if some quantity of interest in quantum mechanics, such as the
response to a external stimulus, or the probability for being deflected
in a scattering experiment, can be expressed as a sum over all relevant
classical trajectories. The convergence of this sum and the location of
its singularities as a function of the energy E are the result of the com-
petition between the number of terms and their absolute magnitude,
i.e., between the kinds of entropy

A third element enters, however, in the guise of a phase factor
(complex number of absolute value 1), where the phase angle is the
classical action divided by Planck’s quantum #, either R from Chapter
1 or § from Chapter 2. The interplay among these three ingredients
was discussed by the author (Gutzwiller 1986a). The statistical prop-
erties of the phases, R/#% or S/#, are sufficiently important that one is
tempted to speak of third entropy.
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10.6 Anosov Systems and Hard Chaos

Dynamical systems can be further analyzed than has been done so far,
if the phase space M is endowed with a distance, indicated by the
double bars || |, in addition to the measure u. Moreover, most appli-
cations of this new feature are made in spaces where functions can be
differentiated, and the automorphisms are differentiable, so that one
can speak of a tangent at a point, and so on. A Riemannian manifold
is the most important example of such a space, and the reader might
just as well fix her ideas on this case in the discussion of this section.
The definitions can easily be extended from the discrete maps ¢ to the
continuous flows ¢,. The map ¢ : M- M is extended to the linear map
¢* : TM,~TM, where TM, is the tangent space of M at the point
qge M.

The Anosov systems satisfy the following conditions: The tangent
space at each point can be decomposed TM, = X,® Y, so that for any
positive integer n, there are constants a, b, A that are independent of n
and the lengths | ¢, ||n| of the tangent vectors £ and 7, so that

(") €l 2 ae™ £, (o™ el < be™ €], if§ € X,
1Gnl 2 beind ) Vni s ae ol iy € 17, (01D

X, is called the expanding linear subspace of TM,, and Y, is called the
contracting linear subspace. Locally, the Anosov system looks like a
linear automorphism of the torus.

If these conditions are applied to a flow ¢, , the tangent space TM,
decays into three linear subspaces, TM, = X,®Y,®Z,, where Z, is
along the direction of the flow. A vector { € Z, stays constant in
length, whereas the vectors £ € X, grow exponentially with ¢, and the
vectors 7 € Y, decay exponentially with ¢. The dimensions of X, and
of Y, are at least 1, whereas the dimension of Z; is always 1. The prime
example of these Anosov systems are the geodesic flows on surfaces of
negative curvature which are discussed in a monograph by Anosov
(1969), and will be the topic of Chapter 19.

The expanding and contracting subspaces in the tangent space of
each point can be tied together into smooth submanifolds of the phase
space M, called the unstable (expanding) and the stable (contracting)
submanifolds. The phase space carries two families of, roughly speak-
ing, parallel leaves where each leaf in one family is transverse to the
leaves of the other family, i.e., intersects each leaf in a point (discrete
automorphisms) or in a line (continuous automorphisms). Each family
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of submanifolds is said to foliate the manifold M, i.e., decompose it
completely into a family of non-intersecting, smooth submanifolds. A
trajectory can be viewed as the intersection of two leaves, one from
each family; neighboring trajectories approach exponentially along the
stable submanifold, and diverge exponentially along the unstable sub-
manifold.

This structure of phase space is as clean and simple as the foliation
into invariant tori for integrable systems. The dimension of the leaves
equals the number of degrees of freedom in both situations; but the
function of the foliations is entirely different. The trajectories in
integrable systems stay on one leaf, and only one family of leaves is
necessary, whereas in Anosov systems each trajectory belongs to one
leaf from each family and is defined by the intersection of those two
leaves. The latter construction allows for a lot of possibilities, whereas
very few different designs are compatible with a single family of in-
variant tori. The double foliation of the Anosov systems is stable
against small perturbations, whereas the invariant tori are easy victims
of the small denominators as described in the KAM theorem.

Anosov systems and dynamical systems of a similar nature, such as
the Axiom-A systems of Smale (1967), have received wide attention in
the mathematical literature. They are in some vague sense the opposite
extreme to the integrable systems, because they are almost equivalent
to Bernoulli schemes, and represent, therefore, something that looks
totally random, although it remains deterministic. It seems as impor-
tant to understand what they are doing as it is to study the integrable
systems; unfortunately, the physicists have grown up to believe in the
virtues of being integrable. A main motive for writing this book is to
wean them away from the misguided attachment to that rather excep-
tional set of circumstances.

The great bulk of dynamical systems looks like an intimate mixture
of the two extremes; the left-over KAM tori separate regions where
stable and unstable submanifolds govern the behavior of the trajecto-
ries. This simplified picture still needs to be substantiated by looking
at many examples more closely than has been done so far. We called
such a fusion of opposite behavior soft chaos in the last chapter, in
contrast to the extreme situation which was described in this section,
and which will be called hard chaos from now on.



CHAPTER 11

The Anisotropic Kepler Problem

The physically most appealing example of a conservative Hamiltonian
system with hard chaos is the analog of the hydrogen atom inside a
crystal of silicon or germanium. The significant difference with the
ordinary Kepler problem is the anisotropy of the mass tensor, i.e., the
electron moving in the crystal has a much larger inertia along one axis
than along the two other axes. Although the trajectories cannot be
written in terms of simple functions, the Poincaré surface of section
has a simple structure very close to an Anosov system. The energy
surface foliates into two families of smooth submanifolds, the stable
and unstable ones. All the trajectories can be coded uniquely with the
help of binary sequences, and in particular, all the periodic orbits can
be effectively enumerated.

11.1 The Donor Impurity in a Semiconductor Crystal

Since solid-state physics is not a prerequisite for studying chaos, the
experimental origin of the Anisotropic Kepler Problem (AKP) will be
briefly explained in this section. Further details, especially concerning
the band structure of solids, have to be gleaned from any of the stand-
ard textbooks (cf. Kittel 1966, p.316; Burns 1985, p.312).

The elements carbon, silicon, and germanium are chemically four-
valent; they arrange themselves naturally in the beautiful diamond
lattice where each atom sits at the center of tetrahedron with exactly



11.1 The Donor Impurity in a Semiconductor Crystal 157

four neighbors at the vertices. These crystals are insulators, unless
some of the atoms are replaced by their five-valent neighbors in
Mendeleev’s table of elements, such as phosphorus, arsenic, antimony,
or bismuth. Each of these impurities carries effectively one more pos-
itive charge in its nucleus and brings one more electron with it so as to
maintain electric neutrality.

The extra electron is weakly bound to its parent atom and is easily
liberated from its bound state to roam freely through the crystal. The
silicon or germanium then becomes a semiconductor, i.e., not as good
an electric conductor as a metal, with the help of the electrons ’do-
nated’ by the five-valent impurities, thus their name of donor impurities.
Our problem is to understand the bound states of the extra electron,
but that requires a more precise idea of the way the isolated donor im-
purity and its additional electron can be accommodated in the crystal
lattice.

The additional nuclear charge in the donor impurity generates an
electric field which deforms (polarizes) the regular atoms in its neigh-
borhood. The extra electron feels the combined effect of the nuclear
charge and the polarization of the surrounding lattice. The resulting
net force is still attractive, and decreases with the inverse square of the
distance; but it is weakened by a factor «, the dielectric constant of the
lattice, whose value is 11.4 in Si and 15.4 in Ge. _The potential energy
of the electron is, therefore, given by — e2/xy/qt + g% + q3 .

The unusual feature of the AKP comes from its kinetic energy; a
few explanatory words have to suffice. Since the chemical bonds be-
tween the immediate neighbors are saturated, the pure crystal is an
insulator, and no further electrons can be accommodated. Additional
slots for electrons are available at a price of at least 1 electron-volt; but
these states are extended over the whole crystal like plane waves with
a well-defined wave-vector k. Their energy depends on k in a rather
complicated manner that is not easy to understand a priori and differs
drastically in Si and Ge; this dependence is expressed in the so-called
dispersion function E (k). All these states form the so-called conduction
band, which is empty in the ideal crystal, in contrast to the valence band,
which is normally occupied.

The extra electron makes up a linear combination of the plane-wave
like conduction states so as to be localized near its donor impurity. In
order to minimize its kinetic energy, wave vectors k near the minimum
ko in the dispersion function E (k) are selected. The kinetic energy of
the electron is then assumed to be



158 The Anisotropic Kepler Problem

ky — koi)° ky — ky,)? ky — kon)?
E0+ﬁ2((1 01)+(2 02)+(3 03)), (11.1)

Zm] 2m2 2m3

where the quadratic form in the vector k — ky has already been
diagonalized by choosing the appropriate directions in position space.
The coefficients are written so as to give them the physical dimension
of a mass. A classical momentum p can be associated with the wave
vector k — ko according to the de Broglie relation p = h(k — ko).

The expression (11.1) and the de Broglie relation is all we need for
the discussion of the AKP; but two further complications will be men-
tioned, although we will not consider them because they are well un-
derstood and are not involved in the chaotic features of the problem.
First, there are six equivalent minima in Si, and four equivalent minima
in Ge, due to the cubic symmetry of the crystal lattice. This degeneracy
can be fully discussed and treated by the standard methods of group
theory, and will be ignored. Second, the extra electron takes a glimpse
at the exact chemical properties of the donor impurity to see whether
itis P, As, Sb, or Bi. The resulting shifts affect all the energy levels in
a global manner without influencing their differences; again these shifts
will not be considered any further.

The Hamiltonian for the AKP now becomes

i P22 + p; e’
+ - , (11.2)

2m 2m
! 2 o ai+a+a

where the crystal symmetry in Si and Ge is responsible for the equality
of the second and the third mass, m, = m3. The so-called cyclotron
experiments in the semiconductors give precise values for these effec-
tive masses. In terms of the usual free electron mass my, one finds that
m; = 916 my, m, = .1905 m, for Silicon (11.3)

m, = 1.588 me, my = 0815 m, for Germanium . ’

Again, the large differences in the values of the effective masses are
not easy to explain although they can be obtained from elaborate nu-
merical band calculations. The large mass-anisotropy makes it impos-
sible to treat the AKP as a perturbation of the usual Kepler problem.
When the energy levels of a donor impurity became of interest in
the 1950s, the energies of the lowest states for the Schrodinger
equation corresponding to the Hamiltonian (11.2) were first found by
Kohn and Luettinger (1954), with the help of very simple variational
wave functions. Their results were improved by Faulkner (1969) who
used a basis of 9 such functions, thereby getting a number of excited
states. Wintgen, Marxer, and Briggs (1987) have recently extended the
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basis to well over a thousand states, with the purpose of looking for
chaotic features in the spectrum. Recent experiments by Navarro,
Haller, and Keilmann (1988) give energy levels with three-figure ac-
curacy.

The author (Gutzwiller 1971, 1973) was the first to examine the
classical behavior of the AKP, and to discover its hard chaos. This
chapter is devoted to the exclusive discussion of the classical trajecto-
ries, but the AKP will be taken up in Chapter 17 as the prime example
where the transition to quantum mechanics can be examined in great
detail. Nevertheless, many questions are still open even for this special
example, as will be pointed out at the end of this chapter.

The anisotropy of the mass-tensor is a rather common feature in
mechanics, although the reader may not have noticed it before in con-
nection with electrostatic or gravitational forces. The Helium atom can
have a configuration where the nucleus is the vertex of an isoceles tri-
angle and the two electrons form the base. The relative motion of the
two electrons with respect to the nucleus has a much larger mass than
their relative motion between each other. Similarly, in the ammonia
molecule N H3, the three hydrogen atoms form the base in the shape
of an equilateral triangle and the nitrogen is the vertex. The regular
shape of this pyramid is preserved, but the two degrees of freedom have
quite different masses. The first demonstration of maser action was
achieved in this system with exactly this kind of vibration. Devaney
(1980, 1981, 1982) went a long way in showing the close similarity of
these systems with the AKP.

11.2 Normalized Coordinates in the Anisotropic Kepler Problem

The natural units for the AKP are the geometric mean of the masses
my = y/mim;, , the 'Rydberg’ Ey = mpe*/2x*%? for the energy, and
Planck’s quantum 7. Further, we use the ratios p = ‘/ml/ m, and
v=y/ my/m; for which the product u v = 1. The main parameter in
the whole treatment is the mass ratio m;/m, = u/v whose value is
~4.8 for Si and ~20 for Ge.

The Hamiltonian (11.2) shares with the Hamiltonian of the ordi-
nary Kepler problem its homogeneity: the kinetic energy is homoge-
neous of the second degree in the momenta, and the potential energy
is homogeneous of degree —1 in the position corrdinates. If all mo-
mentum components are multiplied with some positive number A, and
all the position coordinates are divided by A2, then the value of the
energy gets multiplied by A2. All the trajectories are preserved as sol-
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utions of the equations of motion, if the time variable is divided by A3.
Thus, we can arbitrarily set the normalized energy = —1/2 in order to
investigate the behavior of the trajectories.

The components of the normalized momentum will be called
(u, v, w), and the normalized Cartesian coordinates are (x, y, z), with
the x-axis along the "heavy'' direction of mass m;. The normalized

Hamiltonian becomes

2 2 2
u vV +w 1
H= + and = —

1
2u v Vi + 2 2

The all-important action integral S is given in ordinary units by
fp dg = \/m0e4/ —2°E ® , &= f(udx + vdy + zdw) , (11.5)

where the quantity ® now has a purely geometric meaning, while all the
physics is contained in the factor y/ mge*/ — 2k2E . Of course, ® de-
pends on the trajectory.

Since my; = my in (11.2), the angular momentum M = yw — zv is a
constant of motion. In cylindrical coordinates (x, p, ¢) around the
x-axis, (11.4) becomes

2 2 2

2u 2 2"92 ‘/ x2 + 02

where now (v, p) and (M, ¢) form conjugate pairs. At fixed M the
system has only two degrees of freedom.

If M # 0, then p > 0; the centrifugal potential M?2/2vp? stabilizes
the trajectories. As M increases from 0 to the maximum \/7 , the
Poincaré section shows an increasing number of islands; only the limit
M = 0 shows hard chaos.

The soft chaos when M # 0 has not been studied as yet. We will
concentrate exclusively on the case M = 0 with the hard chaos. Each
trajectory is then confined to a plane through the x-axis; henceforth,
we will write y for the radial coordinate p in order to emphasize the
purely plane character of the trajectories. But we will also find at the
very end that the three-dimensional nature of the problem shows up
anyhow in the count of conjugate points and in the admissible symme-
tries of the periodic orbits.

(11.4)
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11.3 The Surface of Section

The equations of motion of the AKP in two dimensions follow from the

normalized Hamiltonian (11.4), and are deceptively simple,

X : Y . u . 4
_3—’V=__3—’x=p,_’y=:v_' (11.7)
r r

W= —

Notice that the force is always directed toward the origin; but the ac-
celeration (x, y) tends to have a larger component in the y-direction
because the y-component of the force gets divided by », while in the
x-direction the force gets divided by p where p > v.

The trajectories, therefore, intersect the x-axis more often than the
y-axis, contrary to the usual Kepler problem where any two axes
through the origin are intersected the same number of times. The
choice of the x-axis as the surface of section is then inevitable. If
y = 0, the condition (11.4) for the kinetic energy to be positive be-
comes

Ix| < 2/(1 + «*/), (11.8)

where — o < u < + o. The corresponding region in the (x, ) plane
has an awkward shape; its total area is 417\/11_ .

This region can be transformed into a rectangle by stretching every
slice (4, u + du) to go from x = —2 to x = + 2, and thinning it ac-
cordingly. The area-preserving transformation is given by the formulas

X=x(1+u’/p), U=yu arctg(u/y/p),
u=y/u tang(U/y/u ), x =X cos(U/y/1 ),

where |X| < 2and |U|< / u w/2. The surface of section is now
a rectangle.

The most important property of the AKP is contained in the fol-
lowing description of the trajectories: Consider the sequence of con-
secutive intersections for a particular trajectory, ...(X_,, U_»),
X-1, UZy), (Xp, Uy), (X1, Up), (X5, Us),..., and associate with it a se-
quence of binary numbers a = {...,a_3,a_1, ap, a1, a2, ...{, where
a; = sign(X;) = sign(x;). The binary sequence is mapped into two real
numbers,

(11.9)

oc

= >a277, g = > a2, (11.10)
Jj=1

Jj=0

which are obviously contained in the square —1 < £, < +1.

At this point, the map from the rectangle, i.e., the surface of section
in the (X, U) plane given by (11.9), to the square, i.e., the region in the
(¢, n) plane defined in (11.10), is no more than a very schematic de-
scription of any particular trajectory. If this map were sufficiently
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smooth in any generous sense, then we could use it to define another
invariant measure in the surface of section. Notice that the sequence
of consecutive intersections (£_2,m-2), (¢_1,m-1), (0, m0),
(&1, m1), (&2, m2),... obeys the simple rule,

§ 1 = (§+sign(n))/2,7m; ., = 27;—sign(n) .(11.11)

This map is none other than the inverse of the so-called baker’s trans-
formation, i.e., stretching by a factor of 2 in the horizontal direction
and thinning by 1/2 in the vertical direction; the area in the (¢, n) plane
is preserved.

Some further comments are obvious, but they quickly get us into the
middle of the AKP dynamics. Two binary sequences which start in the
past with a uniform binary, eithera; = —1 for j < k < O and g, = +1,
or gi= +1 for j < k < 0 and g, = —1, but with the same binaries for
indices j > k, are mapped into the same point (£, ). The same hap-
pens for two binary sequences whose binaries are identical all the way
to some index k& — 1 > 0, but which differ from then on in the same
manner with a uniform sequence going to +oc.

If the parameters (£, ») are of any use, the two binary sequences of
the preceding paragraph should correspond to a single trajectory. Such
is indeed the case; the trajectory comes out of a collision with the origin
if the binary sequence is uniform in the past, and it goes into a collision
if the binary sequence is uniform in the future. In more detail, consider
the initial conditions (Xp, Up) as a function of a single parameter vary-
ing in some limited interval; the signs of all the intersections out to
some index & — 1 > O stay the same, but sign(Xy) changes, say from
—1to +1, at the critical value (Xy., Up:). As this critical initial condi-
tion is approached from ’below’, with sign(X;) = —1, the numerical
integration of the trajectories shows an ever increasing string of sign
(X;) = +1 for j > k. Conversely as the critical initial condition is ap-
proached from above, i.e., with sign(X;) = +1, there is an ever
lengthening string of indices j > k where sign(X;) = —1. The critical
initial condition (Xy., Up.) yields a trajectory that goes into the origin
at its k-th intersection.

Collision trajectories are characterized by the values of &, or n, or
both, rational with a power of 2 in the denominator. They form a dense
grid in the square, which will be used in the next section to construct
numerically the map from the rectangle into the square. At this point,
such a map is still entirely based on numerical results, but some general
propositions have been proved mathematically.

Devaney (1978 a, b, and ¢) and the author (Gutzwiller 1977) have
shown independently, and by different arguments, the following theo-
rem: Each binary sequence a, and therefore every point
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—1 < §,n £ +1, can be realized by at least one initial condition
(X0, Uy), provided the mass ratio p/v is larger than 9/8; the only ex-
ceptions are the totally uniform sequences, either a; = +1 or a;j = —1 for
all indices j.

The proof is largely based on a detailed study of the trajectories in
the neighborhood of a collision with the origin, which also shows that
such a collision is an isolated event, i.e., does not take place in an open
interval of the initial conditions. The AKP is more smooth in this re-
spect than two other Hamiltonian systems where binary sequences
yield a good qualitative description: both, the isoceles three-body prob-
lem of Devaney (1980, 1981, 1982) and the bouncing-ball model of
Hénon (1988) must assign open intervals to binary sequences with a
uniform past or future. All our further applications of the binary se-
quences are not possible in these systems. Atela (1988) has recently
studied the isoceles three-body problem with both gravitational and
electrostatic interactions; the equations of motion become identical
with the AKP if the gravitational attraction between the two identical
masses is exactly compensated by their electrostatic repulsion.

The mathematical proof for the converse of the above theorem is
still missing, however; in spite of continued efforts by a number of
people, we are only able to state as a conjecture: FEach pair (¢, 1) is
realized by no more than one initial condition (Xy, Uy), with the exception
of £=m=2x1. The map from the rectangle into the square is a
homeomorphism, i.e., a one-to-one transformation that is continuous in
both directions.

The evidence for this sweeping statement is a vast amount of nu-
merical computation for mass ratios > 2, coupled with checking various
special cases of the above conjecture. For example, the symmetry of
the binary sequence is reflected in the symmetry of the corresponding
trajectory, if indeed the relation between them is one-to-one; in par-
ticular, certain simple periodic orbits must be unique, as well as sym-
metric with respect to the x-axis, or the y-axis, or both. Nevertheless,
the situation is more complicated for mass ratios < 2, as was shown for
the first time by Broucke (1985), with more detailed information to
be found in the author’s paper (Gutzwiller 1989); these results are
discussed in Chapter 20.
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11.4 Construction of Stable and Unstable Manifolds

The (£, n) parameters tell the ’story’ of the trajectory; £ for the past,
and 7 for the future. The Bernoulli sequences in Section 10.1 were in-
terpreted in the same manner. Once the binary expansions (11.10) for
¢ and 7 have been calculated, the exact order in which the trajectory
crosses the positive or negative x-axis is known, and a good picture of
the trajectory exists.

Instead of varying the initial conditions (Xp, Up), we can vary £ and
n to see how the trajectory changes. In particular, we can compare
neighboring trajectories by watching how the displacement (6£p , 610)
develops as we go from one intersection with the surface of section to
the next. Since the coordinates (Xy, Up) are in a one-to-one continuous
relation with (&g, 1¢), at least the immediate neighborhood shows the
same qualitative behavior.

The transformation of the ’square’ is given by the explicit formulas
(11.11). Therefore, 8¢ decreases with every intersection by a factor
of 2 as one goes forward in time, i.e., with increasing index, while 7
increases by a factor of 2. A change in ¢ becomes less and less signif-
icant, while a change in n becomes more and more important, as one
goes forward in time. Just the opposite happens when going backward
in time. The trajectory is stable with respect to changes in £, and un-
stable with respect to changes in . Of course, two trajectories which
approach each other in the future, tend to diverge in the past, and vice
versa.

The lines £ = constant and n = constant are eactly the unstable (ex-
panding) and stable (contracting) submanifolds of Section 10.6 which
are characteristic of hard chaos. The conditions (10.11) are explicitly
given by (11.11), and are almost trivial when applied to the binary se-
quences a. The conditions (10.11) are no longer obvious when going
back to the original surface of section with the coordinates (X, U); but
the map into the (£, n) coordinates allows us to construct the stable and
unstable submanifolds also for (X, U).

If a trajectory originated in a collision at the intersection labeled
— k, it has £ = integer/2%; if it ends in a collision at the intersection
labeled k + 1, then n = integer/2k. The collision trajectories form a
one-parameter family that can be represented explicitly by solving the
equations of motion (11.7) in the neighborhood of the origin,

2u = p 24P 732 2y =0 2B(2B — 1)¢%F T2
x = A’ y=2¢ + BT

in terms of the parameter { > 0, and with the abbreviations

»(11.12)
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B=3(1+(1-8/9:3"%/4, B=34%/4028 — 3)(48 — 1).(11.13)

The right-hand sides in (11.12) are the lowest terms of an expansion
in powers of {; the higher-order terms become rapidly more compli-
cated, and these formulas serve only to get the trajectory out of the
collision far enough from the origin so that the ordinary numerical in-
tegration can take over. The value of B is slightly below 3 /2 for Si and
Ge; the collision trajectories are characterized by the single parameter
A. For more details, cf. Gutzwiller (1977).

Given the mass-ratio u/v and the parameter A, the values (11.12)
of the momenta and the positions for, say, { = .02 serve as initial con-
ditions in the numerical integration of the equations of motion (11.7).
The k — th intersection of the resulting trajectory yields the coordi-
nates (Xp, Up) of the surface of section. The corresponding binary
representation f0,a_x , 1,a_k 4+ 2, ..., a1, ag, ....4 is known from the
numerical integration for the particular value of 4; this binary sequence
has been truncated on the left by setting a_; = O to indicate the colli-
sion. This simplification in the notation is consistent with the formulas
(11.10), and the discussion of the collisions following (11.11); the
value of £, corresponding to (Xy, Up) is, therefore, known.

As the parameter 4 is varied very carefully, the coordinates
(Xo, Up) trace out a smooth curve in the rectangle. The value of
£o = integer/2* does not change as long as the k-th intersection in our
trajectory does not end up in a collision. The smooth curve in the rec-
tangle runs from a well-defined limit point on the lower boundary to
an equally well-defined limit on the upper boundary as 4 increases. In
fact, Up increases monotonically with 4, while Xy may vary either way
although it stays away from the values Xy = —2, 0, 2.

The last description is again the result of the computational experi-
ence; some of these features can be shown analytically. If they could
be proven in full generality, the basic conjecture concerning the one-
to-one continuous map between the square and the rectangle would
follow immediately. The above construction gives a series of smooth
curves in the rectangle as A is varied from -« to 4, each with a label
£o. These curves do not intersect; since they run from the bottom to
the top of the rectangle, they can be ordered from left to right. Their
label £y is then found to increase monotonically from —1 to +1.

The k-th intersections for the full range of 4 generate 2% such curves
of constant value ¢ in the (X, U) plane. As k is increased the rectangle
gets covered with an ever finer set of smooth non-intersecting lines.
These are unstable (expanding) submanifolds; if one chooses two
neighboring points (X, U) and (X + 8X, U + 8U) in the same smooth
line, the corresponding trajectories share the same value of £, but have
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different values of 7. As the trajectories with these initial conditions
are integrated forward in time, their consecutive intersections with the
surface of section will move further apart just as described in (10.11).

The stable (contracting) submanifolds are constructed in the same
manner, by integrating the equations of motion (11.7) backward in
time assuming a collision to occur at the (k + 1)-th intersection. When
the parameter 4 is varied smoothly, the intersection (Xp, Up) lies on a
smooth curve with a constant value for n9. Everything works out in
complete analogy to the unstable submanifolds. Actually, it is not
necessary to repeat the calculation because the equations of motion
(11.7) are symmetric with respect to time reversal. The stable sub-
manifolds in the rectangle are obtained by taking the mirror image of
the unstable ones with respect to the X-axis.

The advantage of the (X, U) coordinates over the original (x, u) is
quite clear when looking at Figure 26. The ends of the stable and un-
stable submanifolds are spread out along the upper and the lower
boundaries of the rectangle; but they would all be squeezed into the
infinitely far portion of the original domain (11.8) in the (x, u) plane.
Also, the stable and unstable submanifolds are clearly seen as trans-
verse to one another in Figure 26.

The binary parameters (£, ) define new coordinates in the rectan-
gle; but while the ordering of the £ and 7 labels shows that these new
coordinates are continuous with respect to the old ones, a close look
reveals some rather irregular spacings. A detailed study in the neigh-
borhood of the origin in position space gives more information on the
local continuity. If a displacement in the (&, ) plane has the absolute
value ¢, and the corresponding displacement in the (X, U) plane has the
absolute value 8, one can define the Hdlder exponent « by setting

¢ ~ constant 8 , or, a = loge/logé , (11.14)

in the limit of 6 going to zero.

The values of a have a rather complicated multifractal distribution,
a term that will be discussed in Section 20.7. At this point, it is enough
to realize that a may be locally anywhere between 1/2 and 2. If the
initial conditions of a trajectory are sought for a given associated binary
sequence, i.e., given (¢, 1), the usual, linear interpolation schemes
break down. Even if a trajectory has already been found such that only
a small correction ¢ is needed, the corresponding correction & in the
initial conditions may be quite large.

The construction of the stable and unstable manifolds in phase
space is the main avenue to a better understanding of the hard chaos
in a Hamiltonian system. The crucial ingredient in the AKP is the re-
lation with the binary sequences; they constitute a sort of code, which
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Figure 26 The stable and unstable lines in the surface of section (‘rectangle’)
of the AKP; they are uniquely labeled with parameters ¢ (past) and 5 (future)
whose binary expansions give the qualitative description of the corresponding
trajectory.

gives the most important physical features of every trajectory. Finding
the appropriate code seems the most important task when facing a dy-
namical system with hard chaos. The AKP demonstrates that such a
code can be unexpectedly simple, although the mathematical properties
of the code may still be difficult to establish. Numerical computations
are essential in finding a particular code and testing whether it is useful.
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11.5 The Periodic Orbits in the Anisotropic Kepler Problem

The one-to-one relation between trajectories and binary sequences in
the AKP makes it possible to enumerate all the periodic orbits. The
associated binary sequences are periodic, i.€., ; 4+ 2x = a; ; their period
is of even length 2k because the sign of the momentum component in
the y-direction alternates from one traversal of the surface of section
to the next; not only v and x, but also v have to join smoothly at the
completion of one period. The number of binaries in one period will
be called the binary length of a periodic orbit.

There are obviously 2% periodic orbits of binary length 2k. Their
number thus increases exponentially with the binary length, but there
are some important simplifications. First off, the order of the binaries
can be changed cyclically without changing the corresponding periodic
orbit; such a change simply moves the starting time from one inter-
section to the following, without modifying in any way the corre-
sponding closed orbit in phase space.

If we choose some binary sequence of even length, (a;, ay, ..., ax),
it may happen that it can be obtained by repeating some shorter se-
quence, also of even length. A periodic binary sequence which cannot
be simplified in this manner is called primitive, as is the corresponding
periodic orbit. Although many results concerned with periodic orbits
are usually phrased in terms of the primitive ones among them, it seems
that some of these results would be mathematically simpler if they were
phrased so as to cover both primitive and nonprimitive periodic orbits.

Further reductions in the number of different periodic orbits come
from the symmetries in the equations of motion (11.7). As an example,
changing the signs of all the binaries gives the same trajectory reflected
with respect to the y-axis, thus a new periodic orbit. But if a trajectory
intersects the y-axis at a right angle immediately after its start, then it
is symmetric with respect to the y-axis. Moreover a; = —a_; ;| for
j > 0; its binary sequence is antisymmetric. From what was said in the
preceding paragraph, any place in the binary sequence can be taken as
the beginning of a periodic orbit. Thus, if there is some place where the
sequence of binaries is antisymmetric, then the corresponding periodic
orbit is symmetric with respect to the y-axis. Similar criteria apply to the
symmetries with respect to the x-axis, and to time reversal. Therefore,
different periodic binary sequences may have different multiplicities
attached to them.

The search for the appropriate initial conditions is largely simplified
by these reductions due to symmetries. The number of new and dif-
ferent periodic orbits for the binary lengths 2k =2, 4, 6, 8, 10, 12 is 1,
2,6, 14,42, 112. As a rule, it is easy to locate the symmetric ones
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because they require the variation of a single parameter; e.g., for sym-
metry with respect to the y-axis, it is best to start the trajectory on the
y-axis with the y-component of the momentum v = 0, so that only the
initial position y has to be found. As 2k increases, however, most of
the periodic sequences are asymmetric, and their initial conditions must
be searched in the whole rectangle of (11.9).

The construction of stable and unstable submanifolds in the pre-
ceding section is crucial for this purpose. Periodic orbits have no col-
lisions so that each one can be localized with increasing precision inside
a small parallelogram whose sides describe trajectories that come out
of or go into a collision. Since the collision trajectories are found from
varying a single parameter, such a procedure is at least systematic.
Nevertheless, the underlying instability of all trajectories continues to
make all numerical work very time-consuming. For example, with the
mass-ratio 5, the periodic orbit ( + + — + + — — — + + ) in Figure
27 has an stability exponent of 6.875, i.e., an error in the initial condi-
tions gets blown up by a factor of exp(6.875)~1000 after one period.

The periodic orbits are used in the present context mainly to calcu-
late the classical approximation for the energy levels with the help of
the trace formula. The most important ingredient there is the normal-
ized action integral ® in (11.5) to be calculated for each periodic orbit.
This task is feasible only if one can find some general effective formula
that yields @ directly as a function of the binary code for the periodic
orbit. The author has established such an expression which works
unexpectedly well, although it is not exact.

The action integral @ for the periodic orbits of a given binary length
2k varies over a large range. The maximum value belongs to the repe-
tition k times of the shortest periodic orbit ( + — ); the minimum value
is taken by the somewhat arbitrary, but consistent assignment of 0 to
the only non-realizable periodic sequence (+++ ... ++). The maxi-
mum is, therefore, k times the value 7 = ®( + — ) = 5.74272 for
the mass ratio 5, instead of 2« for the ordinary Kepler problem. The
minimum value of ® is realized by ( —++ ... ++), and goes to the
limit 8.95 in the limit of k. The distribution is narrowly peaked and
has a well-defined mean.

Finding an effective expression for ®(ay, ...., ax) requires a so-
phisticated fit of the computational results. In the first try (Gutzwiller
1981a), the numbers for all the periodic orbits up to binary length 10
were used. In spite of the many parameters available, such as 42 of
them for 2k = 10 in addition to the known maximum and assumed
minimum, a single parameter y was used to get the correct value for the
mean. The second try (Gutzwiller 1988a) is based directly on the
construction of the stable and unstable submanifolds in the preceding
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+ + + + + +
Mass Ratio NC 1D Stability
5.00000 10 17 6.87477
X Initial Eta Period
1.667241207245 0.695014662757 22.04334
U Initial Xi Action
-0.238343983398 0.554252199413 22.04375

Figure 27 Periodic orbit of the AKP for the mass ratio 5, and the binary code
(++ - + + — — — + + ) corresponding to the sequence of
signs of x at the intersection with the (heavy) x-axis; the circle is the boundary
for the classical motion in a bound state; the initial values are X =
1.66724121 and U = -0.23834398 with the period T = action S = 22.04334.

section and has the advantage of using only the data from the collision
trajectories. Since they are dense just as the periodic orbits, it is indeed
reasonable to get the same information from either of them.

The numerical data for the action ® of the periodic orbit
(a1, ..., ay) is fitted by the formula

2%
® ~ 2kt cosh?(y/2) — —;— sinh y’;j ;xa,aj exp( — v|j—i]), (11.15)
whose maximum is indeed 2kt for ( + — + — -+ + — ), the minimum

is 0 for (+++ ... + ), and the mean is k7(1 + exp( — v)) yielding
vy = .610 for the mass ratio 5. The quality of the fit is seen from the
root of the mean square deviation, which is less than .21, while the
mean is 22.16 for the orbits of binary length 10. This formula corre-



11.5 The Periodic Orbits in the AKP 171

sponds to the energy for a chain of classical spins with ferromagnetic
exchange coupling 7 that decays exponentially at the rate y.

11.6 Some Questions Concerning the AKP

Several questions come up quite naturally about the nature of the
Anisotropic Kepler Problem, whose structure in phase space is really
quite simple, and yet totally unfamiliar. We will try to answer some
of them in this section; but the reader still may not feel comfortable,
unless many more results are presented requiring a lot of additional
work.

A first question concerns the connection with the ordinary Kepler
problem: how can one understand the transition from the great variety
of periodic orbits when the mass ratio differs from 1, to the Kepler el-
lipses, which make just one simple loop around the origin ? The peri-
odic orbit ( + — ) has the binary representation £ = 1/3, n = — 1/3,
which is close to the point X = .5, U = 0 when p/v = 5. This point
lies inside a parallelogram that is bounded by lines ¢ = 5/16, £ = 3/8,
n = — 1/4,n = — 3/8 in the Figure 26.

These curves of constant £ or n can be drawn in the (X, U) rectan-
gle for decreasing values of the mass ratio u/v. The parallelogram
surrounding the point { = 1/3, 7 = -1/3, is found to take an ever big-
ger portion of the whole rectangle. When the mass ratio is 1.2, almost
one half of the rectangle is contained inside the parallelogram. There-
fore, almost half of the initial conditions lead to a trajectory that has
the binary sequence (... — + — + — + — --- ), where the dots indi-
cate an arbitrary sequence; the corresponding trajectory looks like a
Kepler orbit for at least three intersections preceding and following the
start.

The next question concerns the behavior of the trajectories for
mass ratios close to 1. The hard chaos which was described in this
chapter so far is limited to the mass ratio u/v > 9/8. No work has
been done to my knowledge to investigate the region of mass ratio from
1 to 9/8. The peculiar limiting value 9/8 arises in the detailed study
of the trajectories close to the x-axis; they can be represented by an
expansion similar to (11.12), where the exponent B is given by a for-
mula like (11.13) with » replacing p; there is obviously a singularity
when p/v = 9/8. Such a trajectory has a long sequence of identical
binaries, indicating a near-collision. The collisions yield the clue to the
chaotic features, a situation that has been known for some time in the
three-body problem.
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The region of mass ratios below 2 will be discussed in more detail
in the last chapter. There is at least one isolated island (cf. Gutzwiller
1989), to be called Broucke’s island after its discoverer (Broucke
1985), in the surface of section for a mass ratio 1.5; it surrounds the
periodic orbit with the binary sequence (+ + — + + —). The
existence of this island is hard to understand, because it does not in-
terfere with the existence of all the trajectories belonging to the other
possible binary sequences, so that the theorem of Devaney and
Gutzwiller in Section 11.3 is still correct. Also the basic (Keplerian)
periodic orbit with the code ( + — ) remains unstable all the way down
to the mass ratio 1, although its stability exponent goes to 0.

Some mathematical methods have been developed recently to show
that there exists no integral of motion in addition to the Hamiltonian.
Yoshida (1987a and b) has applied them to the AKP; but the proofs
are fraught with rather forbidding technical details. The existence of
Broucke’s island for mass ratios below 2, and presumably other islands
that could escape even a high-precision numerical search, seems to ex-
clude any clear-cut and simple, mathematical result. Nevertheless, as
a physicist, one is tempted to accept that the AKP behaves effectively
like a system with hard chaos, in particular in its transition to quantum
mechanics.

The special trajectories along the two main axes were studied more
closely by Yoshida (1987c¢); the collision orbits are exponentially un-
stable. It does not seem feasible to continue such a trajectory through
a collision in a natural and unambiguous manner, as it is in the ordinary
Kepler problem. The various qualitative aspects of the AKP have been
reviewed by Casasayas and Llibre (1984).

A final remark concerns the two kinds of entropies. Formula
(11.15) gives good approximate values for the lengths ® of the periodic
orbits. Unfortunately, there is no simple relation between the length
of the binary sequence and the value of ®; in particular, the periodic
orbits with only one crossing of the negative x-axis have a finite upper
bound for ® which is independent of the number of binaries in the
symbolic sequence. The count of periodic orbits as a function of @
becomes tricky, and the topological entropy is not well defined; on the
other hand, these orbits can be incorporated properly into the transi-
tion from classical to quantum mechanics, for instance, in the trace
formula of Chapter 17, because the instability of these special orbits
makes their contribution negligible.



CHAPTER 12

The Transition
from Classical to Quantum Mechanics

Since our physical intuition is so firmly grounded in classical mechan-
ics, we have little choice but to advance as far as we can into quantum
mechanics along the trails that can be laid out with the help of classical
mechanics. To be of help in our context, they have to be usable for
regular as well as chaotic dynamical systems, and, therefore, they differ
from the ones in most textbooks. The two main guideposts are the
classical approximation for the quantum-mechanical propagator in po-
sition space and time, as first proposed by Van Vleck in 1928, and the
consistent use of the stationary phase method whenever an integral has
to be evaluated.

The topics in this chapter to be discussed in this manner include the
change of variables from position space and time to other coordinates,
and the composition of propagators for consecutive times. Special at-
tention is given to Green’s function whose controlling parameter is the
energy rather than time. The hydrogen atom is treated in momentum
space to illustrate this approach to quantum mechanics, starting with
Rutherford scattering, but then using the same formulas to get the ap-
proximate Green’s function for bound states.

The usual name for this type of approach to quantum mechanics is
semiclassical, suggesting a mixture of classical and quantal ideas. We
will not follow this usage; a quantum-mechanical object like Green’s
function will be called classical if it is calculated purely with the help
of classical mechanics. Although it could not have been conceived
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without understanding quantum mechanics, its explicit computation
becomes a technical problem in classical mechanics and requires a
much better grasp of what is going on there than most physicists have
right now.

12.1 Are Classical Mechanics and
Quantum Mechanics Compatible?

Classical mechanics has served humanity well for three centuries. It
has been confirmed to very high precision particularly in celestial me-
chanics, from the naked eye observations of Tycho Brahe all the way
to the intricate orbital maneuvers of space probes. The relevance to
very small systems like atoms and molecules, however, has been se-
verely questioned for about 100 years. The most incisive criticism is
contained in Heisenberg’s uncertainty relations, which seemed to re-
solve the issue once for all times by setting up unbeatable limitations
to the usual classical interpretation of nature.

The boundary between classical and quantal behavior lost some of
its interest after Heisenberg’s decisive results. Quantum mechanics it-
self has become the object of intensive studies, because it seems to
accommodate all kinds of paradoxes, i.e., situations which offend our
most sincerely held beliefs about what nature is or is not able to do,
such as Schrodinger’s cat and the Einstein-Podolsky-Rosen experiment.
Again, a clearcut quantitative answer to these problems exists in the
form of Bell’s inequality, which has been confirmed experimentally at
least for photons; a comprehensive review was provided by Wheeler
and Zureck (1983). Nevertheless, quantum mechanics remains some-
what of a mystery, although it is well confirmed by all the experimental
evidence available.

This book does not intend to discuss these issues; the reader will
undoubtedly see many connections between, on the one hand, the
mainly technical problems of understanding chaotic behavior in dy-
namical systems, and, on the other hand, the more philosophically ori-
ented efforts to find the conceptual basis of quantum mechanics. Since
the author does have fairly clearcut opinions on some of these
questions, the reader is entitled to know in what spirit they are getting
short shrift in the present context. For ease of further reference, the
relevant points are numbered 1 through 7.

1) In all cases of a real experiment, in contrast to an abstractly
made-up situation (sometimes called a Gedanken or 'thought" exper-
iment), two things seem to hold without exception: (a) the practical
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rules of quantum mechanics give unambiguous quantitative answers,
and (b) these answers have always been found to be correct, i.e., in
agreement with the measurements.

2) The discussion of the so-called ’thought experiments’ in most
cases is singularly crude, i.e., removed from any awareness of the
practical considerations in a real experiment. Time and effort is spent
on purely logical discussion, along with entirely formal manipulations
of mathematical relations. With few exceptions, the hard work of
writing down, and then solving the relevant equations for a specific
laboratory set-up has not even begun; in particular, the inevitable
presence of noise is ignored most of the time. The work of Leggett
(1978, 1980), Caldeira and Leggett (1983), as well as Grabert and
Weiss (1984) and their collaborators are notable exceptions.

3) Experimental techniques have advanced well beyond what the
early masters in the field of quantum mechanics could have imagined.
Some of the standard answers are now open to question, in spite of the
continued uncritical acceptance in most textbooks. For example, the
wave function of a small quantum system could conceivably be meas-
ured experimentally, as long as relativistic effects such as pair pro-
duction can be ignored.

4) The exact place in a specfic experiment where quantum me-
chanics interferes with our often dogmatic and simplistic philosophical
prejudices (everyone has some) is very hard to pinpoint. For example,
the breakdown of classical mechanics is probably more subtle and re-
mote than most of the theoretical discussions so far. A similar situation
prevails in trying to understand the second law of thermodynamics,
which started well over a century ago with Maxwell’s demon, and where
the crucial failure of time reversibility is no longer ascribed to the im-
mediate physical processes, but to the handling and, in particular, the
erasure of the relevant information (cf. Bennett 1987).

5) Classical mechanics, with some simple, but important modifica-
tions in its interpretation, can get us a long way in the treatment of
particular problems. It is essential to understand as much of quantum
mechanics as feasible, and as explicitly as possible on that basis. The
hard questions of classical mechanics can, therefore, not be dismissed
as irrelevant because they are presumably superseded by modern
physics. For example, the study, and in particular the effective enu-
meration, of periodic orbits, as suggested first by Poincaré, has to be
met head-on.

6) The chaotic features of classical mechanics seem to destroy much
of its practical usefulness in the more difficult problems of physics and
chemistry; e.g., it would be close to impossible to define a sensible
cross-section for the scattering of an electron from a molecule as if it
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were a purely classical phenomenon. The main point to recognize,
however, is that even what we now call chaos has a well-defined, if
unfamiliar structure which is perhaps no more difficult to handle than
the familiar, but exceptional, invariant tori in phase space. If this
structure is interpreted in the light of quantum mechanics it gives use-
ful, if approximate results.

7) Quantum mechanics mitigates the destructive influence of clas-
sical chaos on simple physical processes. Indeed, quantum mechanics
is sorely needed to save us from the bizarre aspects of classical me-
chanics; but most paradoxically, this process of softening the many
rough spots is entirely in our grasp as soon as the nature of the
roughness is well understood.

The required tools for translating classical chaos into quantum me-
chanics, and thereby evading the bad classical features, are assembled
in this chapter. They will be used later; I believe that there is a great
opportunity for more work on specific examples to be treated in this
manner.

12.2 Changing Coordinates in the Action

The course of a dynamical system may be most easily described in one
coordinate system, say position and time; but a measurement on the
system may test for the value of some other variable, like the momen-
tum. Such a situation in quantum mechanics requires the discussion
of the relevant operators and their expectation values, whereas in
classical mechanics no more than a transformation of coordinates is
involved. Nevertheless, this transformation has all the earmarks of the
quantal situation as soon as it is carried out on the action function
R(¢"'¢'t) of (1.4) and the associated density C(¢”’¢f) of (1.19).

The transformation from the canonically conjugate pair (p, g) to the
new pair (g, p) will be performed on the final position ¢’’; the double
primes will be left out in this section so as to simplify the formulas.
The final position coordinate ¢ will be replaced by the (so far not
specified) coordinate p, while the initial position coordinate ¢’ will not
be changed. Thus, the old action R(q 4 ) becomes the new action
R(p ¢’ t). Notice that only one half of each conjugate pair appears at
time ¢, so that there is no conflict with Heisenberg’s uncertainty re-
lation.

As long as we do classical mechanics, there is no impediment to the
use of the canonically conjugate variable whose construction was dis-
cussed in Chapter 7. The change of coordinates from g to p can,
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therefore, proceed with the help of the generating function W whose
properties are established as follows. The first variation of each action
is_written in the form (1.9), 8R=pdg—p'dq — Eét and
SR=pudp—p’'8g — Ebt, so that their difference becomes
8R — 8R = 1. 8p — p 8qg = W. The natural variables in W are, there-
fore, p and g, with the canonical transformation

p=0W/0p, p=—0W/dq, (12.1)

where the generating function W has nothing to do with the dynamical
system to which the transformation is applied.

In order to make the appropriate replacement in the action, the old
variable g has to be given as function of the new one p; the second
equation in (12.1) is combined with first equation (1.8) to yield the
condition )

b= dR(q,q, 1) _ w9 _ (12.2)
dq dq
Notice that the solutlon of this equation, ¢(p, 4, ), depends on the in-
itial coordinate ¢’ and the time .
The new action is obtained from the old by writing

R(p,qd',0) = R(q, 4,0 + W(p,q), (12.3)

and inserting ¢ = ¢g(p, ¢, £). One checks that this definition yields in-
deed the first dErivatives _ _
= 0R/%p, p' = —0R/dJ, E = —09R/dr, (12.4)

as required in complete analogy to (1.8).
The determinant of the mixed second derivatives, C(q ¢’ t) as in
(1 19), gives the spread after time ¢ of the trajectories that started in
¢’ and end near g. The corresponding spread in the space with the co-
ordinates p is given the determinant C of the second-order mixed de-
rivatives of R with respect to p and ¢’. Using the first equation (12.4),
and taking the derivative of u with respect ¢ demands a little juggling
act involving both (12.1) and (12.2); at the end, the determinant has
to be calculated.
Besides C and C, two new determinants appear:
W d’R N *w
9p,9q; 99,0q;  9q,0q;

cw = ; (12.5)

K

the complete relation between the two densities now becomes
Clog'n = CWlp,q) [CR(p, 4,4, 0] ' Claq' 1) , (12.6)

where g on the right-hand side has to be expressed in terms of p, q,t.
This formula, though computationally straightforward, has two factors
whose presence is expected, namely CW to make the transition from p
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to ¢, and C to express the density in the old coordinates; but the middle
factor is strange. Its significance will appear only after the classical
approximation to quantum mechanics has been discussed in Section 5.

As an example of the general formulas in this section, let us make
the transition from position coordinates g to momentum coordinates
p =p. The generating function is W= — p g from which follows
p=—gq and p = p according to (12.1). Leaving aside the names
(u, p) for the new coordinates, one can write directly the new action
as

R(pq't) = R(gqd') — pg, p = 0R/dq , (12.7)

where the second equation is the condition to validate the first
equation. This is no more than an ordinary Legendre transform; the
factor CWin (12.6) becomes 1; and CR simplifies to the determinant
of the second derivatives 0°R/dg,;0q;, which is the Jacobian 8(p)/d(q)
as would be expected.

The same process of classical transformations can also be used to
change the initial coordinates ¢’, while leaving the final coordinates
g =q''. For example, the energy E and the angular momentum L can
take over the function of ¢’. As we shall see shortly, the resulting
action function and its density yield directly the classical approximation
to the wave- function in g-space for the energy E and the angular mo-
mentum L.

12.3 Adding Actions and Multiplying Probabilities

The development of a dynamical system takes place in consecutive
time-steps, at least in what we called the Lagrangian view of nature at
the end of Chapter 1. It is then natural to ask for the Lagrange action
Ry =R(G" 4 ¢ —1) over a total time from ¢ to /', if it is already
known as R = R(¢ 4’ t — /') from the beginning ¢ to the intermediate
time ¢, and as R, = R(q" q /" — 1) from ¢ to the final time {’. The
intermediate point ¢ has not been specified; but it is clear that it has to
be chosen so as to allow for one continuous trajectory in phase space
to go all the way from 4’ to ¢ in the alotted time /' — '.

Another manner of presenting this requirement is to say that the
value of the total action, R, + Ry, is stationary with respect to the
intermediate point g. Thus, we find the condition

ARG q " =) . dR(gq t-=1)

dq dq

=0, (12.8)
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where the two endpoints, ¢’ and 4’, and the time intervals are given,
and there is assumed to be a solution ¢ = gyp. According to (1.8), this
equation stipulates the equality of the momentum at arrival in gy with
the momentum at the departure from g.
The total action becomes the sum of the partial actions,
Rq'qd "=1) =R q"-0) + Rigqt-1),(129)

provided ¢ satisfies (12.8). Since we have already invoked the vari-
ational principle, we might just as well calculate the second variation
in terms of the displacements 8g = g — ¢,
2 2
1 0°R, 0°R,
R,+ R =R({"qd7! =1)+—=0q + g, . (12.10
2 + R (g ) 5 g,( EYY RN vF )8, . ( )

The deviation from the extremum of the action is given by a quadratic
form in g whose matrix is given by the last term in (12.10), and whose
elements will be called c; henceforth.

Again the density of trajectories can be calculated with the help of
the expression (1.19) in terms of the mixed second derivatives of the
action. Call these determinants C;; for the whole trajectory, with C|
and G, for the two partial trajectories. The same juggling act as in the
preceding section then leads to the relation

&R, O’R,
+
9q,9q, 9q;9q;

Cp, = Gldet ¢ ]7' ¢y, ¢ = ,(12.11)

which has the same structure as (12.6).

The interpretation of (12.11), however, is more transparent: The
density of trajectories C(¢"" ¢ /' — ') is viewed as the probability to
get to the final point ¢’ when starting from the initial point ¢’. If this
process were to take place in two consecutive, independent time-steps,
then the total transfer probability Ci, would be the product of the
partial ones, C; and Cj; but in classical mechanics these two partial
processes are not independent, because the intermediate point ¢ is
fixed by the condition (12.8). The necessary correction depends on the
second variation according to (12.11); if the second variation is small,
the matrix elements c; are small and so will be the value of their de-
terminant. The product C,C) will be enhanced thereby, as if, indeed,
there were more freedom in the choice of the intermediate point g.

The essence of Feyman’s path integral in quantum mechanics is to
release the intermediate point g from the restriction (12.8). Never-
theless, the formula (12.11) still holds, at least approximately; the en-
hancement or reduction by the factor in the middle, according to the
second variation of the action integral, stems from the constructive or
destructive interference of waves, as will be explained in Section 5.
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12.4 Rutherford Scattering

The existence of a positively charged, practically point-like nucleus in
each atom was demonstrated by Geiger and Marsden in a famous ex-
periment which was successfully interpreted by Rutherford in 1911:
a-particles were sent into a gold-foil; some of them came out at large
angles with respect to the incoming direction. This can happen only if
they make an almost head-on collision with a very concentrated, heavy,
electrically charged object, namely the nucleus of the gold atom.

Rutherford derived a formula for the angular distribution of the
outgoing a-particles on the basis of classical mechanics. He assumed
an ordinary repulsive Coulomb potential acting between the a-particle
and the point-like heavy nucleus of the gold atom. The trajectories are
hyperbolas with the nucleus at one of the foci.

Rutherford’s argument can be couched in terms of the probabilities
in the preceding section, but this time applied to the momentum rather
than the position coordinates. The resulting formula is identical with
the corresponding result in quantum mechanics; it seems that
Rutherford sometimes expressed particular pleasure at having discov-
ered about the only formula that holds both in classical and in quantum
mechanics. In the present context, it shows that classical mechanics
can be phrased in correct quantum-mechanical terms.

The Kepler problem in momentum space is geometrically simpler
than in position space. The trajectory in momentum space, the so-called
hodograph, i.e., the plot of the momentum as a function of time, is a cir-
cle. This startling fact is unknown to most physicists although it must
have been well understood by Kepler, Huygens, and Newton who were
supreme geometers; it is mentioned in Sommerfeld’s lectures on me-
chanics (1942). Milnor (1983) discusses the relevant geometry for a
mathematical audience, and even physicists could profit from his pres-
entation.

Lambert’s formula (1.14) with its corollaries (1.15) and (2.10)
could be used together with (12.7) to calculate the relevant action in-
tegrals and probabilities as function of the momenta p’ and p”’. Since
the trajectories are so simple, however, their action integral can be
obtained directly. The most important formulas will now be listed, with
the task of checking left to the reader.

The trajectory of the a-particle in polar coordinates around the gold
nucleus is given by (1.10), which is now written as
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2
. _ M , (12.12)
2mZe (1 + & cos(¢ — é))

where the interacting electric charges are 2e and Ze, and the angular
momentum is M. The eccentricity ¢ is

e = 1 + ME/2mZ%* | (12.13)

where the energy E > 0 for a scattering experiment, and, therefore,
¢ > 1. The momentum in the plane of the trajectory has the compo-
nents

__ 2mze® ( 2mZe’.
P = ] ——sin(¢ — ¢¢), pr = 1,
which is indeed a circle of radius 2mZe?/M centered on p; = 0,
P2 = ((2mZe?/M)? + 2mE)!/2, as shown in Figure 28.

The geometric construction of the hodograph is straightforward: a
circle of radius y/2mE is drawn in the momentum plane around the
origin; any point outside this base circle can be the center of a partic-
ular hodograph, which is then found by drawing the tangents to the
base circle. The hodograph intersects the base circle at right angles.
The base circle divides the hodograph into two separate arcs: the arc
inside the base circle is used for a repulsive potential, while the outside
arc is the hodograph for an attractive potential. The endpoints of these
two arcs on the base circle correpond to the positions of the scattering
particle infinitely far away from the scattering center.

Since the experiment is done for a fixed energy E, all the further
calculations will be based on the Hamilton-Jacobi action (2.3). In
analogy with (12.7) we have to set

S¢" P E) = S(¢"d E) - p'd" + P =

t p
. 12.15
=—fqu1=—f,qdp- (12.15)
0 P

The integral is positive when g and p have opposite signs, as in an at-
tractive potential; but it is negative in Rutherford scattering. If one sets
p=— gradV where V is a homogeneous potential, i.e.,
V(Ag) = A% V(q) so that Euler’s relation g gradV = xV holds, then
SQ"pE)y=x«/[ V(q) dt, which is called the virial in statistical me-
chanics.

The trajectories in momentum space, i.e., circles intersecting a fixed
based circle at a right angle, will reappear in Chapter 19 as geodesics
on a surface of constant negative curvature. The relation between the
two constructions is easily recognized if we write down the virial for
the Coulomb problem with positive energy. Since the coordinate g and
the increase in momentum dp are parallel, the integrand in (12.15) re-

(e + cos(¢ — ¢p)), (12.14)
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Figure 28 The hodograph (plot of the trajectory in momentum space) for the
scattering from 8’ to 8’ in an attractive (repulsive) Coulomb field is the outer
(inner) part of a circle of radius 2mZe2/M, which intersects the reference
circle of radius /2mE at a right angle.

duces to 2me?|dp|/(2mE — p?), which is exactly the Riemannian
metric on a surface of Gaussian curvature —1/2mE; notice that
p? < 2mE. The variational principle of Euler and Maupertuis (cf.
Section 2.3) applies to momentum space as well as to the usual position
space.

The explicit calculation proceeds in two steps. First, the angular
momentum M has to be expressed directly in terms of p”’ and p’; if 4
is the counterclockwise angle from p’ to p”’, then

———M—2—= sinn (P"? + P? — 2P"P cosn — 2mE sin*p)~ "2, (12.16)
2mZe

where 2P = |p|+ 2mE/ |p | Secondly, the integral (12.15) is cal-
culated; the manipulations are elementary, but tricky, and yield

"

_ ® d 2 1
S(p”p/E) - _ f ¢ __ 2mZe log + ’
s 1+ ecos(p — o) "mE 1-¢
2 E 4 _ 4
& = mEV" 7' (12.17)

' = 2mE)(p'* = 2mE) + 2mE|p" - p' f

These two formulas have been written explicitly because they will be
used in Section 6.

The Rutherford scattering formula could be obtained systematically
by calculating the density D(p”’ p’ E) from (2.7); but the result follows
more directly from (12.16). At large distance from the gold foil, the
a-particle has only Kinetic energy so that p2 = P? = 2mE; the angle 7
is then the total deflection suffered by the a-particle, i.e., n is the

scattering angle 8. Formula (12.16) simplifies to
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2 i 2 s 0/2
M = 2mZe sin 0 _ 2mZe- cos 8/ (12.18)

B v 2mE 1 —cos @ v 2mE sin 6/2

In order to complete the argument, the initial probability for the
a-particle to have its angular momentum in the interval (M, M + dM)
has to be stipulated. If the impact parameter s is the distance of the
a-particle from the straight line through the gold nucleus and parallel
to its initial direction of motion, then M = s,/2mFE . The a-particle
approaches the gold nucleus through the annulus of area d4 =
2ws ds = 2o M dM/2mE, which becomes

dA = (Ze’/2E)* dQ/(sin 8/2)* , (12.19)

where dQ = 27 sin 6 df is the solid angle into which the a-particle
scatters. All the physics of the Rutherford scattering formula (12.19)
is contained in (12.16); the rest is kinematics.

Although this approach to the scattering problem seems unneces-
sarily lengthy, or even artificial, it is not so much the fact that the result
happens to be quantum-mechanically correct, as the possibility to solve
quantum-mechanical problems classically, which makes this whole ex-
ercise worthwhile. As a consequence of the remark at the end of Sec-
tion 12.2, the initial probability distribution in terms of the impact
parameter s and the angular momentum M can be given a more con-
sistent formulation; since one measures the initial coordinates s and the
direction of motion, it is natural to use them in the action S rather than
the initial momentum p’. In order to carry out the classical analysis,
they have to be considered as one half of a set of canonically conjugate
variables in phase space. But as we emphasized earlier, these extra
variables do not enter into the expression for the action or the density
of trajectories, so that the Heisenberg uncertainty relations are not vi-
olated. Rowe (1987) has recently given a detailed picture of the clas-
sical limit of quantum-mechanical Coulomb scattering, where the
surfaces of constant action are constructed to show the progressive
waves.
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12.5 The Classical Version of Quantum Mechanics

The fundamental tenets of quantum mechanics cannot be derived from
classical mechanics. Once they are known, however, it is natural to
look for the opening that leads from the narrow classical confines to
the wide open quantum fields. The usual passageway is built on the
assumption that the classical system is integrable, or has no more than
one degree of freedom, whereas the trail to be used here will also allow
chaotic systems to pass. The crucial formula was first written down by
Van Vleck in 1928, shortly after the discovery of Schridinger’s equation.
The transformations of the action and the density of trajectories in
Sections 2 and 3 can now be interpreted very convincingly.

The important step is to replace the density C(g" ¢’ 1) of (1.19) by
its square root. More precisely, a complex-valued function, K.(q"' ¢’ 1),
called the (quasi-)classical propagator, is defined by Van Vieck’s formula,

K(d'qd )= @ity "*/C(q"qd 1) expl(i/MR(G"q 1) — i$](12.20)

where (2wifi)!/2 is always an abbreviation for (2##)'/2 exp(in/4).
The phase ¢ will be specified later as a multiple of 7/2; it was not part
of Van Vleck’s original work and was first introduced by the author
(Gutzwiller 1967) in his derivation of (12.20) from Feynman’s path
integral. More detailed studies along these lines are due to Mohring,
Levit, and Smilansky (1980); cf. other references there.

In the special case of a free particle in Euclidean space, the ex-
pression (1.5) for the action integral can be used in (12.20), which then
yields

K" ¢ 1) = (m/2witi)"? explim(q”’ — ¢')*/2h1] . (12.21)

We have written K instead of K., because it will turn out in the next
chapter that the expression (12.21) is already correct in quantum me-
chanics; it is not an approximation like the more general (12.20).

The absolute square of K, differs from C in (1.19) by (2#%)” in the
denominator. As we pointed out at the end of Section 2.4, the double
differential d"q’’ d"q’ C(¢"' ¢ ©)/(2wh)" can be understood as the
probability of finding the system after the time ¢ in the volume element
dng”’ of position space, if it was in d"q’ at the beginning ¢ = 0.

The propagator for K, describes a wave which originates in ¢’ and
spreads to ¢'’; its name comes from its main property which is con-
tained in the integral formula

K" qd¢ -1~ f dg"K.(q" q!" =D K(gqd t-1), (12.22)
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where /' >t > ', and the ~ sign has been inserted because the integral
has been evaluated by the stationary phase method. The proof of
(12.22) will now be sketched.

The Van Vleck expressions are inserted on the right-hand side of
(12.22). The integrand consists in the product of the two roots,

C,C, , and an exponential whose exponent is the sum (R, + R;)/#

of the actions that were defined at the beginning of Section 3. If the
variation of this sum covers many multiples of 27 as the intermediate
position g ranges over its domain, then the integral depends only on the
neighborhood of a stationary point g+¢qo, in the nomenclature of Sec-
tion 3. The two roots are assumed to vary slowly in that neighborhood
because they are not gauged against Planck’s quantum #. This way of
approximating the integral is called the stationary phase method.

The value of the integral is now obtained by inserting the expansion
(12.10) in the neighborhood of the stationary point gop. The computa-
tion has thereby been reduced to the integral

(2miti)~"? f d"q expli 8q; c; 8q,/24] , (12.23)

which is a slight generalization of the Fresnel integral. The matrix cy,
given by (12.11), is real and symmetric; it can be diagonalized by an
orthogonal transformation of the variables of integration 8q. The in-
tegral becomes then a product of n Fresnel integrals, each of which
looks like

rik)'/?
(ah'"”?

where A is one of the n eigenvalues of the matrix cj. The product of
the eigenvalues is the determinant which appears in the second factor
of (12.11).

The right-hand side of (12.22) is now compared with the left-hand
side where we insert again the Van Vleck formula (12.20): The various
roots match exactly because of (12.11), and the exponents match be-
cause of (12.9). The only possible discrepancy arises because of the
phase factor in (12.24), which yields a factor exp( — iw/2) for every
negative eigenvalue in the second variation (12.10). Accordingly, we
now adopt the following rule for the definition of the phase ¢ in
(12.20):

The root in the Van Vieck formula (12.20) is always taken on the
absolute value of the determinant C(¢"' ¢’ t), and the phase ¢ is de-
fined as w/2 times the number « of conjugate points along the tra-
Jectory from ¢’ to q".

fd£ exp(i}\£2/2h) = explim(sign(A) — 1)/4], (12.24)
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In view of Morse’s proposition in Section 1.5, relating the signs of the
eigenvalues in the second variation to the number of conjugate points,
the integral formula (12.22) has, therefore, been proven under the as-
sumptions of the stationary phase method.

In most situations, there is more than just one trajectory going from
4 to 4"’ in the fixed time 7. The classical propagator is then simply as-
sumed to be the sum of terms like (12.20), one for each trajectory,

K(d'd = @uit)y™*/C expliR/h — ixn/2]. (12.25)

class.traj.

At this point, the superposition principle of quantum mechanics has been
used; but the computation of each term in (12.25) is still entirely done
within classical mechanics. The trigger for the system in the position
4’ has produced different waves, each following its own mainly classical
trajectory to the position ¢”’; the result is simply the sum of the indi-
vidual waves.

If the whole sum (12.25) is inserted for each occurrence of K. in
(12.22), there will be all kinds of mixed terms on the right-hand side,
coming from partial trajectories which do not form a complete contin-
uous trajectory in phase space; call them broken trajectories, because
their direction of motion changes abruptly. The stationary phase
method eliminates them all because they do not satisfy the condition
(12.8). The associated exponents never settle to a condition where the
expansion (12.10) can be used; in other words, the integral vanishes
because of the destructive interference between these broken trajec-
tories even over small domains of the intermediate position gq.

12.6 The Propagator in Momentum Space

The expression (12.25) is usually called semiclassical, because it is a
mixture of classical and quantal ideas; as mentioned earlier, we will call
it simply classical, because the burden of computing it explicitly for any
special example lies completely within classical mechanics. With the
help of the stationary phase method, (12.25) can be transformed into
the classical approximations for all kinds of useful quantum-mechanical
objects. Although we will not give the details of the calculations, the
reader is encouraged to do the hard work of deriving the general for-
mulas before using any of them in some special example.

Bound states in quantum mechanics often have a better classical
approximation in momentum space than in position space. The hy-
drogen atom is a particularly glaring example, as will be seen in Section
12.8, where the reasons for this peculiar situation will be explained.
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The experience from the preceding section together with the discussion
in Sections 2 and 3 makes the required formulas for the transformation
from position to momentum coordinates almost obvious. We will,
therefore, only write down the results, and point out the relations with
the earlier work which could have motivated the formulas in the first
place.

If the correct quantum-mechanical propagator in position space is
called K(¢" 4’ 1), without the index ¢ in (12.20), which indicates the
classical approximation, then the Fourier transform K(p"'p’ 1) is given
by

f f d"qd K(¢"q' 1) expli®'q —p"qd")/A1,  (12.26)
(27 h)
and represents exactly what is needed in momentum space. This rather
abstract expression becomes more understandable if it is applied to the
classical propagator (12.20), or more generally to (12.25).

If these expressions are inserted into (12.26), the integrand again
consists of an amplitude, the root of a determinant, and an exponential;
the exponent is [R(¢” ¢’ ) + p'qd’ — p”¢''1/h. Notice that this expo-
nent corresponds exactly to the aetlon function (12.7), except that
both space coordinates, ¢’ and ¢’, are now transformed, whereas only
g’ = g was transformed at the end of Section 2.

The stationary phase method for doing the integral (12.26) requires
that the exponent be stationary with respect to the variation of both
¢’ and ¢/, not only ¢ as in (12.7). The second variation around the
stationary point is, therefore, a quadratic function in 2n variables, and
the Fresnel-type integral corresponding to (12.23) leads to the root of
a 2n by 2n determinant. This determinant has to be manipulated
somewhat, and then yields the expected result, namely the Van Vleck
formula (12.20) with the variables p”’ and p’, instead of ¢’ and ¢’, and
in terms of the action function R(p" p’ 1) rather than R(¢" ¢’ 1).

There are now two forms for the classical propagator, K.(¢"" 4 1)
and K.(p" p' t), which apply to position space and to momentum space
respectively. They can both be composed as in (12.22) because they
depend on time ¢ rather than energy E. Both of them will now be
converted so as to have the energy E as their parameter rather than the
time ¢.
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12.7 The Classical Green’s Function

The conversion from time to energy is accomplished quite generally
by the transformation that defines Green’s function,

G(d' ¢ E) = (ih)™! fxdt K" 4 1) expGEt/R) , (12.27)
0

with an entirely analogous formula to relate the propagator
Kr(p"' p’ 1) of (12.26) to the Green’s function Ge(p"' p’ E). Notice that
the integral is extended only over positive times; it is a Laplace integral,
since one can add a small positive imaginary part ie to the energy,
E—-E + ie, and insure the convergence of the integral. The Green’s
functions are, therefore, defined in the whole upper half of the complex
energy plane.

The Van Vleck formula (12.20) is inserted on the right-hand side,
and the stationary point of the exponent, R(g"' ¢’ t) + Et, as a function
of time is determined; the condition to be satisfied is exactly the last
equation (1.8), dR/dt = —E. The stationary value of the exponent is
the Hamilton-Jacobi action S(¢” ¢’ E); the second variation is simply
(02R/312)612/2.

The Fresnel integral (12.24) in one dimension can be used. The
determinant C has to be expressed in terms of the action S(¢’ ¢’ E), a
task, that was already carried out in Section 2.4. In combination with
3?R/3t? = — [02S/0E?)-! from the Fresnel integral, the amplitude
becomes the square root of the density D(¢” ¢’ E), which was defined
by (2.7).

The classical Green’s function G.(q"' 4 E) becomes

(27 h)<n+1)/2 EV -"*'p exp[—S(q"q’E) ium/2]£(12.28)

where the factor ( —1)"* 1 in front of D insures that the expression
under the square root is positive for short trajectories. The phase ¢ is
again defined as 7/2 times the number p of conjugate points, but the
relevant conjugate points in (12.28) are obtained from varying the
trajectory at constant energy E, rather than at constant transit time ¢
asin (12.25).

In order to understand the difference, we have to return to (2.7),
which relates the amplitude C(q”" ¢’ 1) for (12.25) to the amplitude
D(q" 4 E) for (12.28). The singularities in C determine the number
of conjugate points in (12.25); these are at fixed ¢’ the exceptional
points ¢’’ and times ¢ that the system can reach with different energies
E,ie.,8E # Owhiledd = 84" = 6t = 0. In going over to D with
the help of (2.7), however, the amplitude C is divided by 32R/d¢?
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which is just — §E/ 8t according to (1.8). The singularities along the
trajectory from 4’ to ¢’ where 8t = 0 are thereby canceled, and new
singularities are introduced every time E = (. These are the places
where the trajectory can be displaced infinitesimally while keeping
both endpoints as well as the energy fixed; they are the conjugate
points when the trajectory is restricted to vary on the surface of con-
stant energy.

The expression (2.10) for D shows that there are two varieties of
conjugate points entering into the total count p in (12.28): ordinary
caustics on the energy surface come from the singularities in the de-
terminant of (2.10); but the points of classical return where ¢ = 0
also contribute, although they are comparatively rare in a system with
two or more degrees of freedom. On the other hand, these classical
return points, where the potential energy V(q) = E, yield exactly the
phase loss of /2 that is known in one-dimensional systems from
Kramers’ connection formulas. All these considerations apply in mo-
mentum space, provided the Hamilton-Jacobi action § and its second
derivatives in D are replaced everywhere by the virial S (p"’ p' E),
given by (12.15), and its second derivatives.

Again, one can work out the classical Green’s function for a free
particle in Euclidean space by inserting the expression (2.5) of the
classical action S(¢"" ¢’ E). The resulting classical Green’s function
Glq" q E)is

- (sz)(n+ 1)/4

— expliy/2mE i’ — 4 1/#)(12.29)
E (27ih)(n + ])/2|qn _ qr l (n—1/2

In contrast to the propagator (12.21), this expression is only an ap-
proximation to the correct quantum-mechanical Green’s function for
the free particle, if the Euclidean space has an even number » of di-
mensions; it is correct, however, when n is odd.

The formula (12.28) for G. is the basis for the so-called trace for-
mula, which relates the spectrum of energy levels to the collection of
periodic orbits of the corresponding classical system and which will be
discussed in some detail in Chapter 17. Before calculating G, the
classical approximation of Green’s function in momentum space, for
the Kepler problem in the next section, a major failure of all Green’s
functions as compared with the propagators has to be mentioned.

There is no analog for Green’s functions to the composition (12.22)
that holds for the propagators. The role of the propagator, as its name
indicates, is to describe the evolution of the dynamical system at the
time 7, by taking the appropriate average over all the relevant features
at the intermediate time . When performing this averaging operation
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over the relevant features of the system at the time ¢, one can fall back
to the description for an even earlier time /. This simple idea is ex-
pressed in (12.22) for the special case of K,; but it is true for all the
other propagators. Quite in contrast, there is no sensible modification
of this principle that holds for any of the Green’s functions.

The calculation that comes to mind would be something like

f d'qG.(d'qE) G(qqd E) ,

in the hope that it can be shown to yield G.(¢"' ¢’ E). The stationary
phase method should work in the present context; but the reader will
find that the various determinants that arise will not combine appro-
priately to give the desired result. The main consequence of this failure
is that the Green’s functions cannot be calculated by anything resembling
Feynman’s path integral for the propagators. This crucial difference will
be discussed later in more detail; it is mentioned here because it is al-
ready visible in the classical approximations (cf. Gutzwiller 1988c).

12.8 The Hydrogen Atom in Momentum Space

All the questions about a particular dynamical system in quantum me-
chanics can be answered if either the propagator or Green’s function
is understood well enough. The reader is asked to accept this statement
on faith for the time being, because there will be ample arguments in
favor of this view in the remaining chapters. Of course, one could
dismiss such a claim as devoid of any significance, since there is no use
trying the impossible, i.e., to get either the propagator or Green’s
function for a complicated system if indeed that would answer all the
questions.

In practice, we will settle for something less, namely the trace of
Green’s function; but in the case of the hydrogen atom, one can do
more, and thereby demonstrate the usefulness of this approach, which
works for chaotic systems as well as for integrable ones. In particular,
the sum over the classical trajectories in (12.28) can be carried out
explicitly for the Kepler problem. The calculations for Green’s func-
tion could be worked out in position space with the help of Lambert’s
formula (2.11); but the detailed expressions would be complicated just
like the series (1.14). There is a good reason for these complications
in position space, which does not apply to the treatment of the Kepler
problem in momentum space.

If the total energy E < O in an attractive potential, the classical
trajectories are restricted to the volume in position space where the
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potential energy V(q) < E. In general, the situation is actually worse
as was shown in Section 2.5 for the Kepler problem; the Kepler orbits
are restricted to the inside of a critical ellipse, which depends on the
given energy E and the point of departure ¢'. The classical Green’s
function G, is expected to be singular on the boundary of the accessible
volume, whereas the correct quantum-mechanical Green’s function G
is well behaved there, and continues beyond. Thus, aside from being
mathematically more complicated, G, is not even a good approximation
to G.

A similar difficulty arose when we discussed Rutherford scattering
in momentum space in Section 12.4; the trajectories had to stay inside
a circle of radius y/2mE . Such a restriction also arises in position
space when a particle scatters from a repulsive potential, since the tra-
jectories are then restricted to the volume ¥(q) < E, which excludes a
neighborhood of the scattering center itself. Most remarkably, how-
ever, no limitation of this kind comes into play in momentum space for
the bound states of an attractive potential.

The equations (12.12) through (12.14) are still valid, except that
the product of the charges 2Z = — 1 and E < 0. The hodograph re-
mains a circle, which, however, is now characterized by intersecting the
base circle of radius /— 2mE in diametrically opposite points, as
shown in Figure 29. The hodograph goes around the origin of the
momentum plane; the trajectory does not stop on the base circle as it
did in the repulsive potential.

The formula (12.16) for the angular momentum M can be re-
derived, but turns up unchanged. The integral for the virial is no more
difficult, and the final result as written in (12.17) still holds; but the
quantity { is now purely imaginary. Notice that { does not depend on
the electric charge, whereas the sign of the interaction appears in the
factor in front of the logarithm. As { becomes imaginary the logarithm
changes into an arctang, and the factor i gets canceled by the y/2mE
in the denominator. Altogether, the virial becomes

2
SQ"'PE)y=20¢ arctang\/ - 5“2 , 0 = S — , (12.30)

v — 2mE

where {? is defined in (12.17); the negative sign in the square root is
welcome because now E < 0.

For a brief discussion of this formula, let us start the trajectory on
the base circle. As p’’ moves away from p’ the arctang increases, until
its argument becomes  when P’ reaches the point opposite p’ o