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Preface

This book, the second in a two-part work, deals with topics that are essential for a
mastery of the quantum mechanics underlying the nuclear many-body problem.
These topics represent what can fairly be described as ‘an intermediate level view’,
and so we adopted this subtitle. There are also some more specialised topics that we
have selected because it is our opinion that they are important for handling the
emerging view of the quantum mechanics needed to understand nuclei.

We begin with a thorough treatment of angular momentum theory, handled in
three chapters. First, we present representations of rotations, angular momentum,
and spin. This is manifested in all of their popular guises; and in some less familiar
ones such as Bargmann representations. Implicit in our treatment is the need to
think in terms of representations that have a tensor structure: we note such structures
where they appear; but these structures play a much more important role than just
their manifestation in the handling of angular momentum and spin. We continue
with the details of the coupling of spins and angular momenta. The techniques are
fundamental to handling finite many-body quantum systems. The Clebsch–Gordan
coefficients that are encountered here are an essential topic that must be mastered by
a researcher in nuclear structure, whether theorist or experimentalist. We give a brief
introduction to ‘recoupling’ coefficients, 6-j and 9-j symbols. The manipulation of
recoupling is straightforward but takes practice to achieve mastery: that is left for
our more advanced reader to take up at a later stage in the series. We complete the
angular momentum topics with details of vector and tensor operators. This is also a
topic that must be mastered by the nuclear structure researcher, such that they have
a clear appreciation of the power of the Wigner–Eckart theorem.

The focus then turns to identical particles and the representation of many-body
states and operators. A heavy emphasis is placed on second quantization or the
occupation number representation. We pay particular attention to how this
language can be used to formulate solvable models of systems with correlations.
Such systems exhibit properties that lie completely outside of any classical
mechanical concepts. The quasi-spin formalism is a powerful language for the
description of many-fermion systems that form Cooper pairs and is developed in
detail. We also introduce the Lipkin model: this is a ‘toy’model, i.e. it is not realised
in nature (it is too simple). But it is exactly solvable and so can be used to test many-
body approximation methods. Many-body approximations such as Hartree–Fock
theory will be handled later in the series.

We then turn to the role of group theory and of algebraic structures in quantum
mechanics. These two topics are closely related in quantum mechanics because of
the close relationship between Lie groups and Lie algebras. We give a basic
introduction to these topics, using what has been learned via angular momentum
theory. We particularly emphasize the role that groups and algebras play in
quantum mechanics, both as a way to a deeper understanding of the subject and
as a set of tools for formulating models. We provide an introduction to Young
diagrams and their manipulation. We take a few steps into the Cartan theory of Lie

ix



algebras, sufficient to acquire a deeper appreciation for the mathematics behind their
application to quantum systems, especially ladder operators and spectrum generat-
ing algebras.

We complete the volume with standard treatments of perturbation theory, the
variational method, and a brief handling of the quantization of the electromagnetic
field and its interactions with matter.

We have aimed to focus on the quantum mechanics needed for taking up research
into the nuclear many-body problem, without going into the details of nuclear
modelling and approximation methods. These require familiarity with nuclear data
and transformation processes, which adds another ‘dimension’ to the path to
mastery of the subject. These steps will be taken later in the series.
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Chapter 1

Representation of rotations, angular momentum
and spin

The various representations of rotations in physical space, (3, ) and Hilbert space
n( , ) are developed in detail. This leads to an in-depth treatment of the represen-

tation of states of well-defined spin and angular momentum in quantum systems.
The peculiarities of the physics of spin-1

2
systems (spinors) are outlined. The tensorial

character of representations is implicit in the treatment. The Schwinger and
Bargmann representations are introduced in some detail; and this leads to SU(2)
coherent states (which are important for more advanced group representation
theory).

Concepts: Euler angles; matrix representations; Pauli spin matrices; ket rotations;
SU(2) and SO(3) tensor representations; Schwinger representation; spherical har-
monics as Cartesian tensors; spin-1

2
neutron interferometry; Bargmann space;

measure of a space; SU(2) coherent states; non-unitary representations.
Angular momentum and spin are dynamical variables that are fundamental to

finite systems in quantum mechanics, i.e. for molecules, atoms, nuclei and hadrons.
To fully handle the quantum mechanics of these systems, the mathematical
representation of rotations is fundamental. Some elements of these issues in quantum
mechanics are introduced in Volume 1. Namely, the concept of a group, the use of
matrices, the distinction between rotations in physical space, (3, ), and Hilbert
space is presented in chapter 10; and the basic quantization of spin and angular
momentum, using algebraic methods, is presented in chapter 11. Further, the facility
with which these methods reduce the solution of central force problems in quantum
mechanics to simple algebraic problems in terms of a single (radial) degree of
freedom is presented in chapter 12.

The mathematical representation of rotations is a rich paradigm for the whole of
quantum mechanics. In this chapter, a wide range of mathematical tools is
introduced. Matrix algebra and the algebra of polynomials in real and complex
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variables feature prominently. The peculiar physics of spin-1
2
particles and spinors is

presented. But, the primary aim is to initiate a language that is suitable for the
theoretical formulation of finite many-body quantum systems. Group theory and
Lie algebras are implicit in the material presented in this chapter: the groups SO(2),
SO(3) and SU(2) feature prominently in their behind-the-scene role. The road into
many-body systems necessitates more complicated groups such as SU(3): some of
the material in this chapter is intended to ‘pave’ this road.

1.1 Rotations in (3, )
One way to describe a rotation in (3, ) is in terms of rotation in a plane through a
specified angle1. This is defined in terms of an axis of rotation n̂ and an angle ϕ. The
axis n̂ is perpendicular to the plane defined by the initial and final orientations of the
vectors ⃗V , ⃗ ′V : ϕ ⃗ = ⃗′R V V( ) . The difficulty lies in ascertaining the direction of n̂.
Although this ‘axis-angle’ parameterisation or Darboux parameterisation is simple
in principle, it is difficult to use in practice.

The most widely used practical parameterisation of rotations in (3, ) is in terms
of Euler rotations. Consider a space-fixed coordinate frame Oxyz and a body-fixed
coordinate frame ¯ ¯ ¯Oxyz. The orientation of an object can be specified by the rotation
R that rotates the ¯ ¯ ¯Oxyz frame into the Oxyz frame. This can be done in three steps
as illustrated in figure 1.1.

Figure 1.1 depicts the following:

α β γ γ β α= ¯R R R R( , , ) ( ) ( ) ( ). (1.1)z Y z

Note the order of the three rotations. The problem is that these three rotations are
about axes belonging to three different frames of reference. The three rotations on
the right-hand side of equation (1.1) can be restated in terms of a single frame of
reference using similarity transformations, specifically

γ β γ β= ¯
−R R R R( ) ( ) ( ) ( ) (1.2)z Y z Y

1

and

β α β α= ¯ ¯ ¯
−R R R R( ) ( ) ( ) ( ). (1.3)Y z y z

1

Thus,

α β γ β γ α∴ = ¯ ¯R R R R( , , ) ( ) ( ) ( ); (1.5)Y z z

and, since γ¯R ( )z and α¯R ( )z commute,

1 It should be noted that rotations in (3, ) can be elegantly represented using quaternions. Use of quaternions
avoids gimbal lock; they are used for programming robots and computer games.
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α β γ β α γ∴ = ¯ ¯R R R R( , , ) ( ) ( ) ( ), (1.6)Y z z

α β γ α β γ∴ = ¯ ¯ ¯R R R R( , , ) ( ) ( ) ( ). (1.8)z y z

Note the new order of the three rotations (cf. equation (1.1)).

1.2 Matrix representations of spin and angular momentum operators

The matrix elements of ˆ ±̂J J,z in the ∣ 〉 = …{ jm j; 0, , 1, , ;1
2

3
2

= + + − … −m j j j, 1, , } basis are (cf. Volume 1, chapter 11):

δ δ〈 ′ ′∣ ˆ ∣ 〉 = ℏ ′ ′j m J jm m , (1.9)z j j m m

δ δ〈 ′ ′∣ ˆ ∣ 〉 = ∓ ± + ℏ± ′ ′ ±j m J jm j m j m( )( 1) . (1.10)j j m m 1

Figure 1.1. The Euler angles α β γ( , , ) defined in terms of a three-step sequence of rotations that take an
intrinsic or body-fixed frame ¯ ¯ ¯Oxyz into a space-fixed frame Oxyz. Note that the axes of rotation are: ¯Oz; the
line of intersection of the ¯ ¯Oxy and Oxy planes, OY; and Oz. In Step I, ȳ rotates to Y and z̄ remains fixed; in
Step II, z̄ rotates to z and Y remains fixed; in Step III, Y rotates to y and z remains fixed. Further, note that the
ranges of the angles are: α π⩽ <0 2 , β π⩽ <0 , γ π⩽ <0 2 . This results in an ambiguity for the rotation
β = 0, α γ α γ≡ ′ ′( , 0, ) ( , 0, ) if α γ α γ+ = ′ + ′: this is referred to as ‘gimbal lock’ (where ‘gimbal’ refers to the
rotation device or mechanical operator). This figure is adapted from that found on the Easyspin website.
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Matrix elements of Ĵx and Ĵy follow from:

ˆ = ˆ + ˆ+ −J J J
1
2

( ), (1.11)x

ˆ = ˆ − ˆ+ −J
i

J J
1
2

( ), (1.12)y

where, recall ˆ ≔ ˆ ± ˆ±J J iJx y. Thus, the matrix representations of ˆ ˆJ J,x y, and Ĵz in a
∣ 〉jm{ } basis are:

ℏˆ ↔

⋱

Jx 2

0 0 0 0

0 0 1
1 0

0

0 0
0 2 0

2 0 2

0 2 0

0

0 0 0

0 3 0 0

3 0 2 0

0 2 0 3

0 0 3 0

, (1.13)

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

ℏˆ ↔

−

−
−

−
−

−
⋱

Jy
i2

0 0 0 0

0 0 1
1 0

0

0 0
0 2 0

2 0 2

0 2 0

0

0 0 0

0 3 0 0

3 0 2 0

0 2 0 3

0 0 3 0

, (1.14)

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
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ℏˆ ↔

−

−

−
−

⋱

Jz 2

0 0 0 0

0 1 0
0 1

0

0 0
2 0 0
0 0 0
0 0 2

0

0 0 0

3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 3

. (1.15)

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

Note the ‘block-diagonal’ form of Ĵx and Ĵy. These blocks correspond to

= …j 0, , 1, ,1
2

3
2

. The matrix representation of Ĵz is diagonal with eigenvalues

ℏ − ℏ ℏ −ℏ ℏ ℏ0; , ; , 0, ; ,1
2

1
2

3
2

1
2

, − ℏ − ℏ …, ;1
2

3
2

. It is normal practice to reduce these
(infinite) matrices by breaking apart the blocks to give finite dimensional matrices.
Thus, e.g.

=j 1
2
:

ˆ ↔ ℏ ˆ ↔ ℏ − ˆ ↔ ℏ
−

( ) ( ) ( )J J i
i

J
2

0 1
1 0

,
2

0
0

,
2

1 0
0 1

; (1.16)x y z

1
2

1
2

1
2⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

j = 1:

ˆ ↔ ℏ

ˆ ↔ ℏ
−

−

ˆ ↔ ℏ

−

J

J
i

i i

i

J

2

0 2 0

2 0 2

0 2 0

,

2

0 2 0

2 0 2

0 2 0

,

2

2 0 0
0 0 0
0 0 2

.

(1.17)

x

y

z

(1)

(1)

(1)

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

The terminology:

ˆ ≔ ˆ ˆ ≔ ˆ ˆ ≔ ˆ( ) ( ) ( )J S J S J S, , , (1.18)
x x y y z z

1
2

1
2

1
2
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σ σ σ≔ ≔ − ≔
−

i
i

0 1
1 0

, 0
0

, 1 0
0 1

, (1.19)x y z⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

(cf. equation (1.16)), where σ σ σ, ,x y z are the Pauli spin matrices, is in common use.

1.3 The Pauli spin matrices
The Pauli spin matrices, σ σ σ, ,x y z, possess a number of useful properties. We redefine
them by σ σ σ =j k l x y z, , , ( , , ) ( , , )j k l . Then

σ σ σ= = = Î , (1.20)j k l
2 2 2

σ σ σ σ+ = ≠j k0, for , (1.21)j k k j

i.e.

σ σ δ= Î{ , } 2 , (1.22)j k jk

where ‘{, }’ is an anticommutator bracket (also written ‘ +[, ] ’). Further,

σ σ ε σ= i[ , ] 2 , (1.23)j k jkl l

where

ε ε ε ε ε ε≡ ≡ ≡ ≡ ≡ ≡ −1; 1. (1.24)jkl klj ljk kjl jlk lkj

From equations (1.22) and (1.23)

σ σ σ σ σ= − = i . (1.25)j k k j l

Also,

σ σ=† , (1.26)j j

σ = −det( ) 1, (1.27)j

σ =tr( ) 0. (1.28)j

For the three-dimensional Cartesian vector ⃗a , σ ⃗ · ⃗a is a 2 × 2 matrix2:

σ σ σ σ⃗ · ⃗ ≔ + +a a a a , (1.29)x x y y z z

σ∴ ⃗ · ⃗ =
−

+ −a
a a ia

a ia a
. (1.30)

z x y

x y z

⎛
⎝⎜

⎞
⎠⎟

2 The notation σ ⃗, i.e. σ σ σ( , , )x y z , viewed as a vector when the components are matrices, needs to be adopted as
a powerful language. This will lead to the concept of vector operators in chapter 3; therein, the concept is
formally developed. (See also Volume 1, equation (7.72).)
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This leads to the important identity:

σ σ σ⃗ · ⃗ ⃗ · ⃗ = ⃗ · ⃗ ˆ + ⃗ · ⃗ × ⃗a b a bI i a b( )( ) ( ). (1.31)

This can be obtained from equations (1.22) and (1.23):

∑ ∑σ σ σ σ⃗ · ⃗ ⃗ · ⃗ =a b a b( )( ) . (1.32)
j k

j j k k

∑∑σ σ σ σ σ σ∴ ⃗ · ⃗ ⃗ · ⃗ = +a b a b( )( )
1
2

{ , }
1
2

[ , ] , (1.33)
j k

j k j k j k
⎛
⎝⎜

⎞
⎠⎟

∑∑σ σ δ ε σ∴ ⃗ · ⃗ ⃗ · ⃗ = +a b i a b( )( ) ( ) , (1.34)
j k

jk jkl l j k

σ σ σ∴ ⃗ · ⃗ ⃗ · ⃗ = ⃗ · ⃗ ˆ + ⃗ · ⃗ × ⃗a b a bI i a b( )( ) ( ). (1.35)

If the components of ⃗a are real then

σ ⃗ · ⃗ = ∣ ⃗∣ ˆa a I( ) , (1.36)2 2

where ∣ ⃗∣a is the magnitude of the vector ⃗a .

1.4 Matrix representations of rotations in ket space
We are now in a position to obtain matrix representations of rotation operators in
ket space. For a rotation about an axis n̂ through an angle ϕ (cf. Volume 1,
chapter 10),

ϕ ϕ= ˆ = −
⃗ · ˆ
ℏ

R n i
J n

( ) ( , ) exp , (1.37)
⎧⎨⎩

⎫⎬⎭D D

the matrix elements of ϕn̂( , )D are

ϕ ϕ〈 ′∣ −
⃗ · ˆ
ℏ

∣ 〉 ≔ ˆ′jm i
J n

jm nexp ( , ), (1.38)m m
j( )

⎧⎨⎩
⎫⎬⎭ D

where ′ =j j is explicitly incorporated: this is because

ˆ ∣ 〉 = ˆ ∣ 〉J R jm R J jm( ) ( ) , (1.39)2 2D D

∴ ˆ ∣ 〉 = + ℏ ∣ 〉J R jm j j R jm{ ( ) } ( 1) { ( ) }, (1.40)2 2D D

which follows from the general relationship ˆ ˆ =A A[ , exp{ }] 0. This is sensible
because rotations cannot change the length of a vector. Thus, the matrix represen-
tation of R( )D has the form:
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↔

⋱

( )

( )

0 0 0

0 0 0
0 0 0

0 0 0

(1.41)R( )

(0)

1
2

(1)

3
2

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

D

D
D

D

D

and we can discuss the j( )D individually.
The Euler angle parameterisation leads to a simplification when one considers a

matrix representation:

α β γ = 〈 ′∣ ∣ 〉
α β γ

′
− ˆ

ℏ
− ˆ

ℏ
− ˆ

ℏjm e e e jm( , , ) ; (1.42)
m m
j iJ iJ iJ( ) z y zD

but,

〈 ′∣ = 〈 ′∣
α α− ˆ

ℏ
− ′jm e jm e , (1.43)iJ imz

α β γ∴ = 〈 ′∣ ∣ 〉α γ
β

′
− ′ +

− ˆ
ℏe jm e jm( , , ) , (1.44)

m m
j i m m

iJ
( ) ( ) y

D

i.e. only the ‘Ĵy’ rotation is non-trivial. We define

β ≔ 〈 ′∣ ∣ 〉
β

′
− ˆ

ℏd jm e jm( ) . (1.45)
m m

j
iJ

( ) y

The ′ R( )m m
j( )D ′s ( ϕ= ˆR n, or α β γ, , ) are called Wigner functions. They tell us how

much of ∣ 〉jm rotates into ∣ ′〉jm under the action of R:

∑∣ 〉 = ∣ ′〉〈 ′∣ ∣ 〉
′

R jm jm jm R jm( ) ( ) , (1.46)
m

D D

where the completeness relation has been used.
We are now in a position to obtain explicit matrix representations of R( )D , the so-

called Wigner matrices:
(0)D : This is trivial. It is the 1 × 1 matrix (1).
( )1

2D : This is a 2 × 2 matrix and can be evaluated from the properties of the Pauli
spin matrices. Consider

ϕ ϕ σ ϕˆ = −
⃗ · ˆ

ℏ
= − ⃗ · ˆ{ }( ) ( )

n i
J n

i
n

( , ) exp exp
2

. (1.47)
1
2

1
2

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

D

Then, expanding the exponential:

ϕ ϕ σ ϕ σ ϕ σˆ = ˆ − ⃗ · ˆ −
!

⃗ · ˆ +
!

⃗ · ˆ + ⋯( ) n I i n n
i

n( , )
2

1
2 2

( )
3 2

( ) . (1.48)
1
2

2
2

3
3⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠D
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But, from equation (1.36),

σ ⃗ · ˆ = ˆn I m( ) , even, (1.49)m

σ σ⃗ · ˆ = ⃗ · ˆn n m( ) ( ), odd, (1.50)m

ϕ ϕ σ ϕ ϕ∴ ˆ = ˆ −
!

+ ⋯ − ⃗ · ˆ −
!

+ ⋯( ) n I i n( , ) 1
1
2 2 2

1
3 2

, (1.51)
1
2

2 3
⎜ ⎟ ⎜ ⎟

⎧⎨⎩
⎛
⎝

⎞
⎠

⎫⎬⎭
⎧⎨⎩

⎛
⎝

⎞
⎠

⎫⎬⎭D

ϕ ϕ σ ϕ∴ ˆ = ˆ − ⃗ · ˆ( ) n I i n( , ) cos
2

sin
2

. (1.52)
1
2D

Explicitly,

ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ
∴ ˆ =

− − −

− + +
( ) n

in in n

in n in
( , )

cos
2

sin
2

( )sin
2

( )sin
2

cos
2

sin
2

(1.53)
z x y

x y z

1
2

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
D

for an axis-angle parameterisation.
For an Euler angle parameterisation

α β γ α β γ=( ) ( ) ( ) ( )( , , ) ( ) ( ) ( ), (1.54)z y z
1
2

1
2

1
2

1
2D D D D

then using equation (1.52):

α β γ

β β

β β
=

−α

α

γ

γ

− −( ) e

e

e

e
( , , ) 0

0

cos
2

sin
2

sin
2

cos
2

0

0
, (1.55)

i

i

i

i

1
2

2

2

2

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟D

α β γ

β β

β β
∴ =

−
α γ α γ

α γ α γ

− + − −

− +
( )

e e

e e
( , , )

cos
2

sin
2

sin
2

cos
2

. (1.56)

i i

i i

1
2

( )
2

( )
2

( )
2

( )
2

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
D

Note that ϕn̂( , )( )1
2D and α β γ( , , )( )1

2D fulfil the unitary unimodular or special

unitary form
− * *

a b
b a

⎜ ⎟
⎛
⎝

⎞
⎠, cf. Volume 1, equation (10.42), and herein

section 5.10.2.
(1)D : This is a 3 × 3 matrix. It can be evaluated using a series expansion if we use
its Euler angle parameterisation. From

α β γ β= α γ
′

− ′ +
′e d( , , ) ( ), (1.57)m m

i m m
m m

(1) ( ) (1)D
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expanding the exponential in d (1):

β β β= ˆ −
ℏ

ˆ −
! ℏ

ˆ +
! ℏ

ˆ + ⋯
β

−
ˆ

ℏ ( ) ( )e I
i

J J
i

J
1
2 3

. (1.58)
iJ

y y y
(1) 2

2

(1) 2 3

3

(1) 3y
(1)

This is greatly simplified by the following identity

ˆ

ℏ
=

−
−

−
−

×
−

−

( )J i

i i

i

i

i i

i

i

i i

i

1
8

0 2 0

2 0 2

0 2 0

0 2 0

2 0 2

0 2 0

0 2 0

2 0 2

0 2 0

,

(1.59)

y
(1) 3

3

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

∴
ˆ

ℏ
=

−
−

−

−

( )J i

i i

i

1
8

0 2 0

2 0 2

0 2 0

2 0 2
0 4 0
2 0 2

, (1.60)
y
(1) 3

3

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∴
ˆ

ℏ
=

−
−

( )J i

i i

i

1
8

0 4 2 0

4 2 0 4 2

0 4 2 0

, (1.61)
y
(1) 3

3

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

∴
ˆ

ℏ
=

ˆ

ℏ
( )J J

.
(1.62)y y

(1) 3

3

(1)

Then, equation (1.58) reduces to

β β β= ˆ +
ˆ

ℏ
− +

!
+ ⋯ +

ˆ

ℏ
−

!
+ ⋯

β
−

ˆ

ℏ
( )

e I
J

i
i J

3 2
, (1.63)iJ y y

(1)
3

(1) 2

2

2y
(1) ⎧⎨⎩

⎫⎬⎭
⎧⎨⎩

⎫⎬⎭

β β∴ = ˆ −
ˆ

ℏ
+

ˆ

ℏ
−

β
−

ˆ

ℏ
( )

e I
iJ J

sin (cos 1).
(1.64)iJ y y

(1) (1) 2

2

y
(1)

Thus,

β

β β β

β β β

β β β

=

+ − −

−

− +

d ( )

1
2

(1 cos )
1

2
sin

1
2

(1 cos )

1

2
sin cos

1

2
sin

1
2

(1 cos )
1

2
sin

1
2

(1 cos )

. (1.65)(1)

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
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To evaluate ϕn̂( , )(1)D and ϕn̂( , )j( )D or α β γ( , , )j( )D with >j 1, we must develop the
theory of tensor bases of representation in ket space.

1.5 Tensor representations for SU(2)
Consider the general SU(2) transformation (cf. Volume 1, chapter 10)

−
=

′
′* * ( )a b

b a
u
u

u
u

, (1.66)1

2

1

2

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

where the 2 × 2 matrix may, for example, have the form given by equation (1.53) or
equation (1.56). Then, defining

≔ ≔ ≔q u q u u q u, 2 , , (1.67)1 1
2

2 1 2 3 3
2

under the transformation, equation (1.66), we obtain

′ = ′ = + = + +q u au bu a u abu u b u( ) ( ) 2 , (1.68)1 1
2

1 2
2 2

1
2

1 2
2

2
2

∴ ′ = + +q a q abq b q2 ; (1.69)1
2

1 2
2

3

and similarly,

′ = − + − +* * * *q ab q aa bb q ba q2 ( ) 2 , (1.70)2 1 2 3

′ = − +* * * *q b q a b q a q( ) 2 ( ) ; (1.71)3
2

1 2
2

3

whence

− −
−

=

′
′
′

* * * *

* * * *

a ab b

ab aa bb ba

b a b a

q
q
q

q

q

q

2

2 ( ) 2

( ) 2 ( )

. (1.72)

2 2

2 2

1

2

3

1

2

3

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

This is still a representation of an SU(2) transformation: there are no new
parameters. However, it is a 3 × 3 matrix representation of SU(2). From the
Euler angle parameterisation, equation (1.56),

α γ β α γ β= − + = − − −
a

i
b

i
exp

( )
2

cos
2

, exp
( )

2
sin

2
; (1.73)

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭

and substitution of these values of a and b into the matrix in equation (1.72) will
yield α β γ( , , )(1)D , the β-dependent part of which is given by equation (1.65).

The process can be iterated by defining

≔ ≔ ≔ ≔p u p u u p u u p u, 3 , 3 , , (1.74)1 1
3

2 1
2

2 3 1 2
2

4 2
3

which will yield a 4 × 4 matrix representation of SU(2), i.e. an expression for R( )( )3
2D .
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Expressions for α β γ( , , )j( )D can be obtained by this process, for any j, together
with the values of a and b given in equation (1.73). Likewise, ϕn̂( , )j( )D can be
obtained using (cf. equation (1.53))

ϕ ϕ ϕ= − = − −a in b in ncos
2

sin
2

, ( )sin
2

, (1.75)z x y

where, recall, the constraint + + =n n n 1x y z
2 2 2 ensures that ϕn n n( , , , )x y z corre-

sponds to three free parameters. To reiterate: SU(2) is a three-parameter group.
The representation associated with the two-component spinor u u( , )1 2 is called the

fundamental representation. The representation associated with the three-component
entity q q q( , , )1 2 3 is a rank-2 SU(2) tensor, i.e. it is constituted from quadratic
combinations of the fundamental representation. In turn, p p p p( , , , )1 2 3 4 is a rank-3
SU(2) tensor.

1.6 Tensor representations for SO(3)
Consider the general SO(3) transformation of the vector ⃗V

∑=′ ′V R V , (1.76)
i

i i i i

where the Vi are the Cartesian components of the vector and the ′Ri i are the elements
of the 3 × 3 matrix R that effects the orthogonal transformation. This can be
generalised to

∑∑∑= ⋯
⋯

′ ′ ′⋯ ′ ′ ′ ⋯T R R R T , (1.77)
i j k

i j k i i j j k k ijk

where the Tijk⋯ are the Cartesian components of a tensor, the rank of which is equal
to the number of indices and the ′Ri i are, as before, elements of the 3 × 3 matrix R.
Details are clarified in the following.

The simplest Cartesian tensor is of rank 2 and is often called a dyad or dyadic. It is
formed from two Cartesian vectors, e.g.

⃗ = ⃗ =U U U U V V V V( , , ), ( , , ), (1.78)1 2 3 1 2 3

=T UV , (1.79)ij i j

of which there are nine components. Thus,

∑∑=′ ′ ′ ′T R R T , (1.80)
i j

i j i i j j ij

where the Tij are the nine components of the dyadic and the ′ ′R Ri i j j are the elements
of the 9 × 9 matrix that effects the underlying transformation. We note that there are
still only three parameters involved in describing this (SO(3)) transformation.
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The nine components of T are reducible, i.e. they can be expressed as linear
combinations that form subsets which transform among themselves under rotations.
They are:

+ + = ⃗ · ⃗ ≔U V U V U V U V T , (1.81)1 1 2 2 3 3

− ≔U V U V A
1
2

( ) , (1.82)2 3 3 2 1

− ≔U V U V A
1
2

( ) , (1.83)3 1 1 3 2

− ≔U V U V A
1
2

( ) , (1.84)1 2 2 1 3

i.e.

ε− ≔UV U V A
1
2

( ) . (1.85)i j j i k ijk

Further,

+ ≔U V U V S
1
2

( ) , (1.86)1 2 2 1 12

+ ≔U V U V S
1
2

( ) , (1.87)2 3 3 2 23

+ ≔U V U V S
1
2

( ) , (1.88)3 1 1 3 31

− ≔U V T S
1
3

, (1.89)1 1 11

− ≔U V T S
1
3

, (1.90)2 2 22

i.e.

δ+ − =UV U V T S
1
2

( )
1
3

. (1.91)i j j i ij ij

The combination −U V T1
33 3 is excluded because

− = − − + −U V T U V T U V T
1
3

1
3

1
3

. (1.92)3 3 1 1 2 2

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎫⎬⎭

T is a scalar product which is invariant under rotations. The Ak are the three
independent components of an antisymmetric tensor: by antisymmetric we mean
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that they change sign under exchange of the indices. The Sij are the five independent
components of a traceless second-rank tensor. The trace, ∑ = Si ii1

3 is evidently zero
from equation (1.92). Note that

δ δ=
⃗ · ⃗

+
−

+
+

−
⃗ · ⃗

UV
U V UV U V UV U V U V

3

( )

2 2 3
, (1.93)i j ij

i j j i i j j i
ij

⎛
⎝⎜

⎞
⎠⎟

i.e.

δ ε δ= + +UV
T

A
3

. (1.94)i j ij k ijk ij

Consider a rotation around the z-axis through an angle γ:

γ γ
γ γ

−
=

′
′
′

U
U
U

U
U
U

cos sin 0
sin cos 0

0 0 1

, (1.95)
1

2

3

1

2

3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

whence

γ γ γ γ′ = − ′ = + ′ =U U U U U U U Ucos sin , sin cos , ; (1.96)1 1 2 2 1 2 3 3

and similarly

γ γ γ γ′ = − ′ = + ′ =V V V V V V V Vcos sin , sin cos , . (1.97)1 1 2 2 1 2 3 3

Then for the Ak,

γ γ γ γ

γ γ

′ = ′ ′ − ′ ′

= + − +

= −

A U V U V

U U V U V V

A A

1
2

( )

1
2

{( sin cos ) ( sin cos )}

cos sin ;

(1.98)

1 2 3 3 2

1 2 3 3 1 2

1 2

similarly

γ γ′ = +A A Asin cos (1.99)2 1 2

and

′ =A A , (1.100)3 3

i.e.

γ γ
γ γ

−
=

′
′
′

A
A
A

A
A
A

cos sin 0
sin cos 0

0 0 1

. (1.101)
1

2

3

1

2

3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟
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Evidently, we can write

⃗ = ⃗ × ⃗A U V
1
2

. (1.102)

Further, for the Sij,

γ γ γ γ

γ γ γ γ

γ γ γ γ

γ γ γ γ

γ γ

′ = − +

+ + −

= − + + −

= − + −

= − +

S U U V V

U U V V

U V U V U V U V

S S S

S S S

1
2

{( cos sin )( sin cos )

( sin cos )( cos sin )}

( )sin cos
1
2

( )(cos sin )

( )sin cos (cos sin )
1
2

( )sin 2 cos 2 ;

(1.103)

12 1 2 1 2

1 2 1 2

1 1 2 2 1 2 2 1
2 2

11 22 12
2 2

11 22 12

similarly,

γ γ′ = +S S Scos sin , (1.104)23 23 31

γ γ′ = − +S S Ssin cos , (1.105)31 23 31

γ γ γ′ = − + + + −S S S Ssin 2
1
2

(1 cos 2 )
1
2

(1 cos 2 ), (1.106)11 12 11 22

and

γ γ γ′ = + − + +S S S Ssin 2
1
2

(1 cos 2 )
1
2

(1 cos 2 ), (1.107)22 12 11 22

i.e.

γ γ γ

γ γ
γ γ

γ γ γ

γ γ γ

−

−

− + −

− +

=

′
′
′
′
′

S
S
S
S
S

S
S
S
S
S

cos 2 0 0
1
2

sin 2
1
2

sin 2

0 cos sin 0 0
0 sin cos 0 0

sin 2 0 0
1
2

(1 cos 2 )
1
2

(1 cos 2 )

sin 2 0 0
1
2

(1 cos 2 )
1
2

(1 cos 2 )

. (1.108)

12

23

31

11

22

12

23

31

11

22

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

Similar equations can be obtained for S S S S S{ , , , , }12 23 31 11 22 for rotations about the
x and y axes.

The A{ }k , T, and the S{ }ij transform separately under rotations. Dyadics are said
to possess a reducible structure with respect to rotations.

1.7 The Schwinger representations for SU(2)
Representations of SU(2) can be constructed using a method due to Schwinger.
Consider
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= = ≔ ∣ 〉 = = − ≔ ∣ 〉+
†

−
†j m a j m a

1
2

,
1
2

0 ,
1
2

,
1
2

0 ; (1.109)

i.e. +
†a creates a state (particle in a state) of spin-1

2
up and −

†a creates a state of spin-1
2

down by action on the ‘vacuum’ ∣ 〉0 (which has no particles), where

δ= = + −†a a i j, , { , } { , }. (1.110)i j ij
⎡⎣ ⎤⎦

Then, defining

ˆ ≔ ˆ ≔ ˆ ≔
−

+ +
†

− − −
†

+
+
†

+ −
†

−J a a J a a J
a a a a

, , ( )
2

, (1.111)0

it follows that

ˆ ˆ = ± ˆ± ±J J J[ , ] , (1.112)0

ˆ ˆ = ˆ+ −J J J[ , ] 2 , (1.113)0

which define the structure developed for angular momentum and spin (here, ℏ ≡ 1).
Although the elementary building blocks in the Schwinger representation have

spin-1
2
, they should not be regarded as fermions. These spin-1

2
‘objects’ are designed

to be combined to produce any desired value of total spin: the number of spin-1
2
’s

needed to produce a total spin of j will be j2 . These building blocks can be regarded
as bosons. They can be visualised in terms of a two-dimensional harmonic oscillator:

= =+ +
†

− −
†a a a a[ , ] 1, [ , ] 1, (1.114)

ˆ = ˆ =+ +
†

+ − −
†

−N a a N a a, , (1.115)

∣ 〉 =
!

∣ 〉 ∣ 〉 =
!

∣ 〉+
+
†

+
−

−
†

−

+ −

n
a

n
n

a

n
( ) 0 , ( ) 0 , (1.116)

n n

ˆ ∣ 〉 = ∣ 〉 ˆ ∣ 〉 = ∣ 〉+ + + + − − − −N n n n N n n n, , (1.117)

∣ 〉 = + ∣ + 〉 ∣ 〉 = + ∣ + 〉+
†

+ + + −
†

− − −a n n n a n n n1 1 , 1 1 , (1.118)

∣ 〉 = ∣ − 〉 ∣ 〉 = ∣ − 〉+ + + + − − − −a n n n a n n n1 , 1 , (1.119)

∣ 〉 = ∣ 〉 =+ −a a0 0, 0 0. (1.120)

The states ∣ 〉+n , ∣ 〉−n can be written in the combined form ∣ 〉+ −n n which, from

= = = =− +
†

− + −
†

+
†

−
†

+a a a a a a a a[ , ] [ , ] [ , ] [ , ] 0, (1.121)
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obey

∣ 〉 =
! !

∣ 〉+ −
+
†

−
†

+ −

+ −

n n
a a

n n
( ) ( ) 00 , (1.122)

n n

ˆ ∣ 〉 = ∣ 〉 ˆ ∣ 〉 = ∣ 〉+ + − + + − − + − − + −N n n n n n N n n n n n, , (1.123)

∣ 〉 = + ∣ + 〉 ∣ 〉 = + ∣ + 〉+
†

+ − + + − −
†

+ − − + −a n n n n n a n n n n n1 1, , 1 , 1 , (1.124)

∣ 〉 = ∣ − 〉 ∣ 〉 = ∣ − 〉+ + − + + − − + − − + −a n n n n n a n n n n n1, , , 1 , (1.125)

∣ 〉 = ∣ 〉 =+ −a a00 0, 00 0. (1.126)

Then, from equations (1.111) and (1.115), i.e.

ˆ = ˆ = ˆ = − = ˆ − ˆ+ +
†

− − −
†

+ +
†

+ −
†

− + −J a a J a a J a a a a N N, ,
1
2

( )
1
2

( ), (1.127)0

together with

ˆ ≔ ˆ + ˆ = ++ − +
†

+ −
†

−N N N a a a a (1.128)

and

ˆ ≔ ˆ + ˆ ˆ + ˆ ˆ+ − − +J J J J J J
1
2

( ), (1.129)2
0
2

we obtain:

ˆ ∣ 〉 = + ∣ + − 〉+ + − − + + −J n n n n n n( 1) 1, 1 , (1.130)

ˆ ∣ 〉 = + ∣ − + 〉− + − + − + −J n n n n n n( 1) 1, 1 , (1.131)

ˆ ∣ 〉 = − ∣ 〉+ − + − + −J n n n n n n
1
2

( ) , (1.132)0

ˆ ∣ 〉 = + ∣ 〉+ − + − + −N n n n n n n( ) , (1.133)

and

ˆ ∣ 〉 = ˆ ∣ 〉 + ˆ ˆ ∣ 〉 + ˆ ˆ ∣ 〉

= − ∣ 〉 + + ∣ 〉

+ + ∣ 〉

= + + + ∣ 〉

= + ∣ 〉

+ − + − + − + − − + + −

+ − + − + − + −

− + + −

+ − + −
+ −

+ −

J n n J n n J J n n J J n n

n n n n n n n n

n n n n

n n n n
n n

n n
n n

1
2

1
2

1
4

( )
1
2

( 1)

1
2

( 1)

2 2
1

2 2
1 ,

(1.134)

2
0
2

2

⎜ ⎟⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

Quantum Mechanics for Nuclear Structure, Volume 2

1-17



where

= ++ −n n n . (1.135)

Evidently, by making the associations

↔ + ↔ −+ −n j m n j m, , (1.136)

we obtain

=n j2 ; (1.137)

and from equations (1.130)–(1.132) and (1.134)

ˆ ∣ 〉 = − + + ∣ + − 〉+ + − + −J n n j m j m n n( )( 1) 1, 1 , (1.138)

ˆ ∣ 〉 = + − + ∣ − + 〉− + − + −J n n j m j m n n( )( 1) 1, 1 , (1.139)

ˆ ∣ 〉 = ∣ 〉+ − + −J n n m n n , (1.140)0

ˆ ∣ 〉 = + ∣ 〉+ − + −J n n j j n n( 1) , (1.141)2

respectively. Thus, by comparison with

ˆ ∣ 〉 = − + + ∣ + 〉+J jm j m j m j m( )( 1) 1 , (1.142)

ˆ ∣ 〉 = + − + ∣ − 〉−J jm j m j m j m( )( 1) 1 , (1.143)

ˆ ∣ 〉 = ∣ 〉J jm m jm , (1.144)0

ˆ ∣ 〉 = + ∣ 〉J jm j j jm( 1) , (1.145)2

we can assert that

∣ 〉 ≡ ∣ 〉+ −n n jm , (1.146)

and from equation (1.122)

∣ 〉 ≡
+ ! − !

∣ 〉+
† +

−
† −

jm
a a

j m j m
( ) ( )
( ) ( )

00 . (1.147)
j m j m

Two special cases of note are: = +m j , i.e.

∣ 〉 ≡
!

∣ 〉+
†

jj
a

j
( )
(2 )

00 ; (1.148)
j2
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and = −m j , i.e.

∣ − 〉 ≡
!

∣ 〉−
†

j j
a

j
, ( )

(2 )
00 . (1.149)

j2

Consider then the rotation of the states ∣ = = 〉 ≡ ∣ 〉j m, ,1
2

1
2

1
2

1
2

and

∣ = = − 〉 ≡ ∣ − 〉j m, ,1
2

1
2

1
2

1
2
:

β

β β

β β

β

β
↔

−
=( )

1
2

,
1
2

cos
2

sin
2

sin
2

cos
2

1
0

cos
2

sin
2

, (1.150)y ⎜ ⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
⎛
⎝

⎞
⎠

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
D

β

β β

β β

β

β
− ↔

−
=

−
( )

1
2

,
1
2

cos
2

sin
2

sin
2

cos
2

0
1

sin
2

cos
2

; (1.151)y ⎜ ⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
⎛
⎝

⎞
⎠

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
D

i.e.

β β β− = + −( )
1
2

,
1
2

cos
2

1
2

,
1
2

sin
2

1
2

,
1
2

, (1.152)yD

β β β− = − + −( )
1
2

,
1
2

sin
2

1
2

,
1
2

cos
2

1
2

,
1
2

. (1.153)y
⎛
⎝⎜

⎞
⎠⎟D

Then from

= ∣ 〉 − = ∣ 〉+
†

−
†a a

1
2

,
1
2

0 ,
1
2

,
1
2

0 , (1.154)

we have

β β β β= ∣ 〉+
† −a( )

1
2

,
1
2

( ) ( ) ( ) 0 , (1.155)y y y y
1D D D D

β β β β− = ∣ 〉−
† −a( )

1
2

,
1
2

( ) ( ) ( ) 0 ; (1.156)y y y y
1D D D D

whence

β β β β≡ = ++
† −

+
†′

+
†

−
†a a a a( ) ( ) cos

2
sin

2
, (1.157)y y

1D D

β β β β≡ = − +−
† −

−
†′

+
†

−
†a a a a( ) ( ) sin

2
cos

2
. (1.158)y y

1D D
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Thus,

β ∣ 〉 ≔
+ ! − !

∣ 〉+
†′ +

−
†′ −

jm
a a

j m j m
( ) ( ) ( )

( ) ( )
00 . (1.159)y

j m j m

D

β∴ ∣ 〉 =
+ − +

+ ! − !
∣ 〉

β β β β
+
†

−
† +

+
†

−
† −( ) ( )

jm
a a a a

j m j m
( )

cos sin sin cos

( ) ( )
00 . (1.160)2 2 2 2

y

j m j m

D

The right-hand side of equation (1.160) can be expanded using the binomial
theorem:

∑

∑

β β β

β β

∣ 〉 =
+ ! − !

+ !
! + − !

× − !
! − − !

− ∣ 〉

+
†

−
†

+ −

+
†

−
†

− −

jm
j m j m

j m
l j m l

a a

j m
k j m k

a a

( )
1

( ) ( )

( )
( )

cos
2

sin
2

( )
( )

( sin
2

) cos
2

00 .

(1.161)l

k

y

l j m l

k
j m k

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

D

∑β

β β

∴ ∣ 〉 = + ! − ! −
! + − ! ! − − !

× ∣ 〉

− + − + − +

+
† +

−
† − −

jm j m j m
l j m l k j m k

a a

( ) ( ) ( ) ( 1)
cos

2
sin

2
( ) ( )

( ) ( ) 00 ,

(1.162)
l k,

y
k

j m l k j m l k

l k j l k2

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

D

and comparing with

∑β β∣ 〉 = ∣ ′〉
′

′jm jm d( ) ( ), (1.163)
m

y m m
j( )D

i.e.

∑β β∣ 〉 =
+ ′ ! − ′ !

∣ 〉
′

′
+
† + ′

−
† − ′

jm d
a a

j m j m
( ) ( ) ( ) ( )

( ) ( )
00 , (1.164)

m

y m m
j

j m j m
( )D

equating coefficients of powers of +
†a in equations (1.162) and (1.164),

+ = + ′l k j m . (1.165)

Then, for a particular choice of ′m ,

= + ′ −l j m k (1.166)

and

∑β

β β

= −
+ ! − ! + ′ ! − ′ !

+ ′ − ! − ′ + ! ! − − !

× ×

′

− + ′− + − ′

d
j m j m j m j m

j m k m m k k j m k
( ) ( 1)

( ) ( ) ( ) ( )

( ) ( ) ( )

cos
2

sin
2

.

(1.167)
k

(no negative factorials)

m m
j k

j k m m k m m

( )

2 2 2

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
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1.8 A spinor function basis for SU(2)
The Schwinger representation and its associated basis leads directly to a spinor
function basis for SU(2):

= = ↔ = = − ↔j m u j m
1
2

,
1
2

,
1
2

,
1
2

, (1.168)v

where u and v are independent functions. We require u and v to satisfy (again, ℏ ≡ 1)

ˆ = ˆ = −J u u J
1
2

,
1
2

, (1.169)0 0v v

ˆ = ˆ =+ +J u J u0, , (1.170)v

ˆ = ˆ =− −J u J, 0. (1.171)v v

Thus, we deduce the realisation

ˆ ↔ ∂
∂

− ∂
∂

J u
u

1
2

, (1.172)0 ⎜ ⎟⎛
⎝

⎞
⎠v

v

ˆ ↔ ∂
∂+J u , (1.173)
v

ˆ ↔ ∂
∂−J
u

. (1.174)v

It follows from equations (1.148), (1.149) and (1.147) that

∣ 〉 ≔
!

∣ − 〉 ≔
!

jj
u

j
j j

j(2 )
, ,

(2 )
, (1.175)

j j2 2v

and

∣ 〉 ≔
+ ! − !

+ −
jm

u

j m j m( ) ( )
. (1.176)

j m j mv

It should be noted that u{ , }v are elements of a complex function space which is
formally developed in section 1.17 under the title of the Bargmann representation, i.e.
this function space is known as Bargmann space. These bases are irreducible (unlike
Cartesian tensors).

1.9 A spherical harmonic basis for SO(3)
The use of spinor functions as a basis for SU(2) and the relations for Ĵ0, ±̂J given in
equations (1.172)–(1.174) lead to the consideration of a functional representation of
the ∣ 〉lm for (ℏ ≡ 1)
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ˆ = ˆ = ˆ ˆ − ˆ ˆ ↔ − ∂
∂

+ ∂
∂

L L xp yp ix
y

iy
x

; (1.177)z y x0

ˆ = ˆ + ˆ = ˆ ˆ − ˆ ˆ + ˆ ˆ − ˆ ˆ+L L iL yp zp izp ixp , (1.178)x y z y x z

∴ ˆ ↔ − ∂
∂

+ ∂
∂

+ ∂
∂

− ∂
∂+L iy

z
iz

y
z

x
x

z
; (1.179)

ˆ ↔ − ∂
∂

+ ∂
∂

− ∂
∂

+ ∂
∂−L iy

z
iz

y
z

x
x

z
; (1.180)

where the postion representation has been used. Evidently, L̂0, ˆ±L in the form given
by equations (1.177), (1.179) and (1.180) leave the degree of a polynomial in x, y and
z unchanged. Therefore, we consider the space of homogeneous polynomials in x, y
and z, i.e.

= + +f x y z ax by cz( , , ) ( ) , (1.181)l

where a, b, and c are complex numbers.
We start with the homogeneous polynomials ϕ ⃗=− r( )lm l , ⃗ ≔r x y z( , , ), that satisfy

the so-called ‘lowest weight’ conditions:

ϕ ϕˆ ⃗ = − ⃗− −L r l r( ) ( ) (1.182)l l l l0 , ,

and

ϕˆ ⃗ =− −L r( ) 0. (1.183)l l,

Then, consider

ˆ + + = − ∂
∂

+ ∂
∂

+ +

= − + + + + +
= + + − +

− −

−

L ax by cz ix
y

iy
x

ax by cz

ixl ax by cz b iyl ax by cz a

l ax by cz ibx iay

( ) ( )

( ) ( )

( ) ( ),

(1.184)

l l

l l

l

0

1 1

1

⎛
⎝⎜

⎞
⎠⎟

and the right-hand side fulfils equation (1.182), i.e.

ˆ + + = − + +L ax by cz l ax by cz( ) ( ) , (1.185)l l
0

provided = = − =a b i c1, , 0. Thus,

ϕ ⃗ = −− r x iy( ) ( ) . (1.186)l l
l

,

Evidently,

ϕˆ ⃗ = − ∂
∂

+ ∂
∂

− ∂
∂

+ ∂
∂

−

= − − − −
=

− −

− −

L r iy
z

iz
y

z
x

x
z

x iy

izl i x iy zl x iy

( ) ( )

( )( ) ( )
0.

(1.187)
l l

l

l l

,

1 1

⎛
⎝⎜

⎞
⎠⎟
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We can construct the ϕ ⃗r( )lm using (ℏ ≡ 1)

ϕ ϕˆ ⃗ = − + + ⃗+ +L r l m l m r( ) ( )( 1) ( ). (1.188)lm l m, 1

For l = 1: from

ϕ ⃗ = −− r x iy( ) , (1.189)1, 1

ϕ

ϕ

ˆ ⃗ = − ∂
∂

+ ∂
∂

+ ∂
∂

− ∂
∂

−

= − +
=
≔ ⃗

+ −L r iy
z

iz
y

z
x

x
z

x iy

iz i z
z

r

( ) ( )

( )
2

2 ( );

(1.190)

1, 1

1,0

⎛
⎝⎜

⎞
⎠⎟

ϕ∴ ⃗ =r z( ) 2 . (1.191)1,0

Then,

ϕ

ϕ

ˆ ⃗ = − ∂
∂

+ ∂
∂

+ ∂
∂

− ∂
∂

= − −
= − +
≔ ⃗

+L r iy
z

iz
y

z
x

x
z

z

iy x

x iy

r

( ) 2

2 ( )

2 ( )

2 ( );

(1.192)

1,0

1,1

⎛
⎝⎜

⎞
⎠⎟

ϕ∴ ⃗ = − +r x iy( ) ( ). (1.193)1,1

For l = 2: from

ϕ ⃗ = −− r x iy( ) ( ) , (1.194)2, 2
2

ϕ

ϕ

ˆ ⃗ = − ∂
∂

+ ∂
∂

+ ∂
∂

− ∂
∂

−

= − − + −
= −
≔ ⃗

+ −

−

L r iy
z

iz
y

z
x

x
z

x iy

iz x iy i z x iy
z x iy

r

( ) ( )

2( )( ) 2( )
4 ( )
2 ( );

(1.195)

2, 2
2

2, 1

⎛
⎝⎜

⎞
⎠⎟

ϕ∴ ⃗ = −− r z x iy( ) 2 ( ). (1.196)2, 1
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Then,

ϕ

ϕ

ˆ ⃗ = − ∂
∂

+ ∂
∂

+ ∂
∂

− ∂
∂

−

= − − + − + − −
= − − + +
= − + +
≔ ⃗

+ −L r iy
z

iz
y

z
x

x
z

z x iy

iy x iy iz z i z z x x iy

x iy x iy z

x y z

r

( ) 2 ( )

2( ) 2 ( ) 2 2( )

2( )( ) 4

2( ) 4

6 ( );

(1.197)

2, 1

2

2 2 2

2,0

⎛
⎝⎜

⎞
⎠⎟

ϕ∴ ⃗ = − − +r x y z( )
2
3

( 2 ). (1.198)2,0
2 2 2

Similarly,

ϕ ⃗ = − +r z x iy( ) 2 ( ), (1.199)2,1

ϕ ⃗ = +r x iy( ) ( ) . (1.200)2,2
2

The functions ϕ ⃗r( )lm are proportional to the spherical harmonics, θ ϕY ( , )lm (see
table 1.1). This follows from the relationship between Cartesian coordinates and
spherical polar coordinates:

θ ϕ θ ϕ θ= = =x r y r z rsin cos , sin sin , cos , (1.201)

whence

ϕ

θ
π θ ϕ

= ∓ ±
= ∓

=

ϕ
±

±

±

x iy

r e

r Y

( )

sin

8
3

( , ).

(1.202)
i

1, 1

1, 1

Similarly,

ϕ θ

π θ ϕ

⃗ =

=

r r

r Y

( ) 2 cos

8
3

( , ).
(1.203)

1,0

1,0

ϕ θ

π θ ϕ

⃗ =

=

ϕ
±

±

±

r r e

r Y

( ) sin

32
15

( , ).
(1.204)

i
2, 2

2 2 2

2
2, 2

ϕ θ θ

π θ ϕ

⃗ = ∓

=

ϕ
±

±

±

r r e

r Y

( ) 2 cos sin

32
15

( , ).
(1.205)

i
2, 1

2

2
2, 1
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ϕ θ

π θ ϕ

⃗ = −

=

r r

r Y

( )
2
3

(3 cos 1)

32
15

( , ).

(1.206)
2,0

2 2

2
2,0

In general,

ϕ θ ϕ θ ϕ⃗ = ∓ ±± r r ir( ) ( 1) ( sin cos sin sin ) , (1.207)l l
l l

,

i.e.

ϕ θ⃗ = ∓ ϕ
±

±r r e( ) ( 1) sin . (1.208)l l
l l l il

,

The spherical harmonics θ ϕ=±Y ( , )l m l, are:

θ ϕ
π

θ= + !!
!!

ϕ
±

±Y
l

l
e( , )

(2 1)
4 (2 )

sin , (1.209)l l
il l

,

where !! ≔ − − …l l l l(2 ) (2 )(2 2)(2 4) 2 or 1 and

Table 1.1. The spherical harmonics, θ ϕY ( , )lm , = − − … − …m l l l, 1, 2, , 1, 0, 1, ,
− + −l l1, , for =l 0, 1, 2, and 3. They are normalized for ϕ π⩽ ⩽0 2 , θ π⩽ ⩽0 .

l m θ ϕY ( , )lm

0 0
π

1

4

1 0 θ
π

cos3
4

1 ±1 θ∓ ϕ±
π

e sini3
8

2 0 θ −
π

(3 cos 1)25
16

2 ± 1 θ θ∓ ϕ±
π

e cos sini15
8

2 ±2 θϕ±
π

e sini2 215
32

3 0 θ θ−
π ( )cos cos363

16
5
3

3 ±1 θ θ∓ −ϕ±
π

e (5 cos 1)sini 221
64

3 ±2 θ θϕ±
π

e sin cosi2 2105
32

3 ±3 θ∓ ϕ±
π

e sini3 335
64
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∫ ∫ϕ θ θ θ ϕ∣ ∣ =
π π

±Yd sin d ( , ) 1. (1.210)l l
0

2

0
,

2

Thus,

ϕ π θ ϕ⃗ = !!
+ !!± ±r r

l
l

Y( )
4 (2 )

(2 1)
( , ). (1.211)l l

l
l l, ,

It then follows from

ϕ ⃗ = − !
! + !

ˆ −+
+r

l m
l l m

L x iy( )
( )

(2 ) ( )
( ) ( ) , (1.212)lm

l m l

which is obtained by repeated application of equations (1.186)–(1.188), that a
general spherical harmonic is given by

θ ϕ
π

=
!

+ − !
+ !

ˆ −+
+Y

l
l l m

l m r
L x iy( , )

1
2

(2 1)( )
4 ( )

1
( ) ( ) . (1.213)lm l l

l m l

This leads to the general expression for spherical harmonics:

θ ϕ
π

θ
θ

θ

=
!

+ − !
+ !

−

−

ϕ
+

Y
l

l l m
l m

e( , )
1

2
(2 1)( )

4 ( )
( sin )

d
d(cos )

(cos 1) .

(1.214)
lm l

im m
l m

l2

⎡
⎣⎢

⎤
⎦⎥

The spherical harmonics are related to the Legendre polynomials, Pl by:

θ π θ ϕ=
+ =P

l
Y(cos )

4
2 1

( , ). (1.215)l l m, 0

1.10 Spherical harmonics and wave functions
Spherical harmonics naturally arise when using three-dimensional position wave
functions in quantum mechanics. Thus, for the position eigenkets ∣ ⃗〉r :

∫α α∣ 〉 = ⃗∣ ⃗〉〈 ⃗∣ 〉r r rd , (1.216)

the position wave function Ψ ⃗α r( ) is the amplitude α〈 ∣⃗ 〉r and Ψ ⃗α r( ) is often expressed in
spherical polar coordinates:

θ ϕΨ ⃗ = Ωα α αr R r( ) ( ) ( , ). (1.217)

The functions θ ϕΩα( , ) are then expanded in terms of spherical harmonics

∑θ ϕ θ ϕΩ =α αc Y( , ) ( , ). (1.218)
lm

lm lm
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Within the above framework, we can define direction eigenkets ∣ ˆ〉n , ˆ = ⃗n r
r
:

∫α α∣ 〉 = ˆ∣ ˆ〉〈 ˆ∣ 〉n n nd ; (1.219)

and for

∫∣ 〉 = ˆ∣ ˆ〉〈 ˆ∣ 〉lm n n n lmd , (1.220)

θ ϕ〈 ˆ∣ 〉 = = ˆn lm Y Y n( , ) ( ), (1.221)lm lm

i.e. θ ϕY ( , )lm is the amplitude for the state ∣ 〉lm to be found in the direction n̂ specified
by θ and ϕ.

1.11 Spherical harmonics and rotation matrices
Spherical harmonics can be related to (the elements of) rotation matrices because of
their connection to direction eigenkets:

∑ ∑ θ ϕ∣ ˆ〉 = ∣ 〉〈 ∣ ˆ〉 = ∣ 〉*n lm lm n Y lm( , ) . (1.222)
lm lm

lm

To see this, consider

∣ ˆ〉 = ∣ ˆ〉n R z( ) , (1.223)D

i.e. ∣ ˆ〉n is obtained by the rotation of ∣ ˆ〉z . Evidently,

α ϕ β θ γ= = = =R( ) ( , , 0) (1.224)D D

will do the job. Then for equation (1.223), from the completeness relation:

∑∣ ˆ〉 = ∣ 〉〈 ∣ ˆ〉n R lm lm z( ) , (1.225)
lm

D

∑

α β θ γ

∴ 〈 ′ ′∣ ˆ〉 = 〈 ′ ′∣ ∣ 〉〈 ∣ ˆ〉

= = = = 〈 ′ ∣ ˆ〉′
′

l m n l m R lm lm z

l m z

( )

( 0, , 0) .
(1.226)lm

m m
l( )

D

D

But, 〈 ′ ∣ ˆ〉l m z is just θ ϕ=′
*Y ( 0, )l m and θ ϕ= =′Y ( 0, ) 0l m for ≠m 0: this is seen by

inspection of table 1.1. Thus,

θ ϕ δ

π
θ δ

π
δ

〈 ′ ∣ ˆ〉 = =

= ′ + ∣

= ′ +

θ

′
*

′ =

l m z Y

l
P

l

( 0, )

2 1
4

(cos )

2 1
4

,

(1.227)

l m m

l m

m

0

0 0

0
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where the θ′P (cos )l are the Legendre polynomials given by equation (1.215). Hence,
from equations (1.226), (1.223) and (1.227):

θ ϕ α ϕ β θ γ
π

= = = = ′ +
′ ′
*

′
′Y

l
( , ) ( , , 0)

2 1
4

, (1.228)l m m
l

0
( )D

or

α β γ π θ ϕ= =
+

∣θ β ϕ α* = =
l

Y( , , 0)
4

2 1
( , ) ; (1.229)m

l
lm0

( )
,D

and for m = 0

α β γ β= d( , , ) ( ), (1.230)l l
00
( )

00
( )D

and

β θ∴ = ∣θ β=d P( ) (cos ) . (1.231)l
l00

( )

Theorem 1.11.1. The addition theorem for spherical harmonics,

∑θ π θ ϕ θ ϕ=
+

*P
l

Y Y(cos )
4

2 1
( , ) ( , ), (1.232)

m

l lm lm2 2 1 1

where θ is defined by

θ θ θ θ θ ϕ ϕ≔ + −cos cos cos sin sin cos( ). (1.233)1 2 1 2 1 2

Proof. Consider

ϕ θ ϕ θ ϕ θ〈 ∣ ∣ 〉 = 〈 ∣ ∣ 〉l l l l0 ( , , 0) 0 0 ( , , 0) ( , , 0) 0 , (1.234)2 2 1 1D D D

where the group properties of rotations in ket space have been used. Then, from the
completeness relation

∑ϕ θ ϕ θ ϕ θ〈 ∣ ∣ 〉 = 〈 ∣ ∣ 〉〈 ∣ ∣ 〉l l l lm lm l0 ( , , 0) 0 0 ( , , 0) ( , , 0) 0 , (1.235)
m

2 2 1 1D D D

∑ϕ θ ϕ θ ϕ θ∴ =( , , 0) ( , , 0) ( , , 0), (1.236)
m

l
m
l

m
l

00
( )

0
( )

2 2 0
( )

1 1D D D

and from equations (1.229) and (1.231),

∑θ π θ ϕ θ ϕ=
+

*P
l

Y Y(cos )
4

2 1
( , ) ( , ). (1.237)

m

l lm lm2 2 1 1

□
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1.12 Properties of the rotation matrices
The rotation matrices α β γ( , , )j( )D are unitary. Thus, their matrix elements

α β γ′( , , )mm
j( )D obey:

γ β α α β γ− − − =′ ′
*( , , ) ( , , ), (1.238)m m

j
mm
j( ) ( )D D

∑ α β γ α β γ δ=′
*

″ ′ ″( , , ) ( , , ) , (1.239)
m

mm
j

mm
j

m m
( ) ( )D D

∑ α β γ α β γ δ=′
*

″ ′ ″( , , ) ( , , ) . (1.240)
m

m m
j

m m
j

m m
( ) ( )D D

The reduced rotation matrices βd ( )j( ) are real. Thus, their matrix elements,
β′d ( )mm

j( ) , from equation (1.238), obey:

β β− =′ ′d d( ) ( ). (1.241)m m
j

mm
j( ) ( )

From the general expression for the matrix elements of β′d ( )mm
j( ) , equation (1.167), it

follows that

β β β− = = −′−
− ′ − ′

′−
′d d d( 1) ( ) ( ) ( 1) ( ), (1.242)m m

m m
j

m m
j m m

mm
j

,
( ) ( ) ( )

and hence

α β γ α β γ= −′
′−

− ′ −
*( , , ) ( 1) ( , , ). (1.243)m m

j m m
m m

j( )
,

( )D D

1.13 The rotation of 〈 ∣jm

The rotation of 〈 ∣jm involves an important phase factor. From the rotation of ∣ 〉jm by
α β γ( , , )j( )D :

∑α β γ α β γ∣ 〉 = ∣ ′〉
′

′jm jm( , , ) ( , , ) , (1.244)
m

m m
j( )D D

∑α β γ α β γ∴ 〈 ∣ = 〈 ′∣
′

†
′
*jm jm( , , ) ( , , ) . (1.245)

m
m m
j( )D D

Then, from the complex conjugate of equation (1.243):

∑α β γ α β γ〈 ∣ = − 〈 ′∣
′

† ′−
− ′ −jm jm( , , ) ( 1) ( , , ) , (1.246)

m

m m
m m

j
,

( )D D

and replacing − ′ ↔ ′m m , − ↔m m, and noting that the sum is over
′ = − − + … −m j j j j, 1, , 1, and so is unaffected,

∑α β γ α β γ∴ 〈 − ∣ = − 〈 − ′∣
′

† − ′+
′j m j m, ( , , ) ( 1) ( , , ) , , (1.247)

m

m m
m m
j( )D D
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∑α β γ α β γ∴ − 〈 − ∣ = − 〈 − ′∣
′

− † − ′
′j m j m( 1) , ( , , ) ( 1) ( , , ) , , (1.248)

m

m m
m m
j( )D D

i.e. − 〈 − ∣− j m( 1) ,m transforms like ∣ 〉jm . It is conventional to multiply both sides of
equation (1.248) by −( 1) j and then − 〈 − ∣− j m( 1) ,j m transforms like ∣ 〉jm , and the
phase is real.

1.14 The rotation of the θ ϕY ( ),lm

The transformations of the θ ϕY ( , )lm under rotation follow from equation (1.221)

θ ϕ〈 ˆ∣ 〉 = = ˆn lm Y Y n( , ) ( ), (1.249)lm lm

and

∣ ˆ〉 = ∣ ′ˆ 〉R n n( ) ; (1.250)D
whence from

∑∣ 〉 = ∣ ′〉〈 ′∣ ∣ 〉
′

− −R lm lm lm R lm( ) ( ) , (1.251)
m

1 1D D

i.e.

∑∣ 〉 = ∣ ′〉
′

−
′

−R lm lm R( ) ( ), (1.252)
m

m m
l1 ( ) 1D D

then

∑〈 ˆ∣ ∣ 〉 = 〈 ˆ∣ ′〉
′

−
′

−n R lm n lm R( ) ( ). (1.253)
m

m m
l1 ( ) 1D D

But

〈 ˆ∣ = 〈 ˆ′∣−n R n( ) , (1.254)1D

∑∴ ˆ′ = ˆ
′

′ ′
*Y n Y n R( ) ( ) ( ), (1.255)

m

lm lm mm
l( )D

or

∑θ ϕ θ ϕ=
′

′ ′
*Y Y R( , ) ( , ) ( ). (1.256)

m

lm R R lm mm
l( )D

Similarly, from equation (1.248)

∑θ ϕ θ ϕ− = −
′

−
−

− ′
− ′ ′

*Y Y R( 1) ( , ) ( 1) ( , ) ( ). (1.257)
m

m
l m R R

m
l m mm

l
, ,

( )D
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1.15 Exercises
1.1. Explore the commutator properties of

= − =
−

=
−

T i
i

T
i

i
T

i
i

0 0 0
0 0
0 0

,
0 0
0 0 0

0 0
,

0 0
0 0

0 0 0
, (1.258)1 2 3

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

in comparison with SO(3) and SU(2), (3, ) and (2, ).
1.2. Show that

β =

− −
− −

− + − −
( )d

c c s cs s

c s c cs s c s cs

cs s c s c cs c s

s cs c s c

( )

3 3

3 2 2 3

3 2 2 3

3 3

, (1.259)
3
2

3 2 2 3

2 3 2 3 2 2

2 3 2 3 2 2

3 2 2 3

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

where ≔ βc cos
2
, ≔ βs sin

2
.

1.3. Show that the results of equation (1.167) agree with equation (1.229) for
ϕ α= = 0 and = =j l 1, 2, and 3.

1.4. Show that

β β= −′
′−

′d d( ) ( 1) ( ). (1.260)m m
j m m

mm
j( ) ( )

[Hint: in the binomial expansion of equation (1.160), which results in
equation (1.162) and eventually equation (1.167), reverse the positions of

β
+
†acos

2
, β

−
†asin

2
and − β

+
†asin

2
, β

−
†acos

2
, i.e. express the expansion so that it

contains β
+
† + −( )a cos

2

j m l
, etc.]

1.5. Show that for β=R (0, , 0) the θ ϕμY ( , )1 , μ = ±0, 1 obey equation (1.256).
[Hint: express the θ ϕμY ( , )1 in terms of x, y and z (cf. equations (1.188),
(1.191), (1.193), (1.202) and (1.203)), obtain x y z( , , )R using βR ( )y , and
show that βd ( )(1) (equation (1.65)) transforms the θ ϕμY ( , )1 into the

θ ϕμY ( , )R R1 .]

1.16 Spin-1
2
particles; neutron interferometry

The constituents of matter—electrons, protons, and neutrons—all have intrinsic spin
of ℏ1

2
. ‘Intrinsic’ is the term coined to convey the fact that the dynamics of spin does

not occur in physical space. ‘Spin space’ is not accessible to the physicist in the sense
that the spin of a particle cannot be changed: it is intrinsic to the particle. In fact, it is
not known what spin is. It is only known what spin does, namely ‘couple’ to other
spins and angular momenta such that it behaves as a =j 1

2
representation of SU(2).

In the absence of other particles and when its own angular momentum is zero, the
quantum mechanics of a spin-1

2
particle is almost trivial. It can exist in two possible

states: ‘spin up’ and ‘spin down’. These are directional components of the spin vector
and are usually defined by
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ˆ = = ± = ± ℏ = = ±s s m s m
1
2

,
1
2

1
2

1
2

,
1
2

, (1.261)z s s

where the direction is defined to be the z-axis in (3, ). However, there is one

extraordinary property of spin-1
2
particles: a rotation through 2π does not leave their

state kets unchanged! This is seen immediately from equation (1.52) for ϕ π= 2 ,
whence (using χ∣ 〉 ↔ ±sms )

π χ π σ π χˆ = ˆ − ⃗ · ˆ± ±
( ) n I i n( , 2 ) ( cos sin ) , (1.262)1

2D

π χ χ∴ ˆ = −± ±
( ) n( , 2 ) . (1.263)1

2D

This property is not observable where expectation values are involved; but it has a
dramatic effect on the interferometry of beams of spin-1

2
particles.

The interferometry (diffractive splitting and recombination) of particle beams is a
well-established property of quantum mechanical particles. It is most elegantly
illustrated using beams of neutrons. Neutrons, being electrically neutral, are not
subject to stray electric fields which can obscure the interferometric properties of
electrically charged particles. However, neutrons have magnetic moments and
through the use of suitable magnetic fields it is possible to effect the rotation of
the state of a neutron. This has been done using the experimental arrangement
shown schematically in figure 1.2. A picture of the silicon crystal, which is the
essential component of the interferometer is shown in figure 1.3. The neutron beam
is divided and recombined in such a way that one part passes through a magnetic
field B which causes the neutron state ket to undergo a phase change. The
recombined beam exhibits an interference pattern which can be varied by changing
B. Some results are shown in figure 1.4. (Note: by ‘divided’ it is meant that for each
individual neutron, it is not certain which path it takes. It is not a situation where
some neutrons take one path and the other neutrons take the other path.)

The phase change produced by the magnetic field is
ω

e
i T

2 , where T is the time spent
by the neutrons in the magnetic field, ω is the spin-precession frequency,

ω
μ

=
ℏ

B2
, (1.264)n

μn is the magnetic moment of the neutron, and the magnetic field is assumed to be of
uniform constant strength B. The phase change is the standard result for a magnetic
field B acting for a time T on a magnetic moment μn, causing the spin to precess. The
connection between precession and rotation is seen to follow directly from the
Hamiltonian for a neutron in the magnetic field (chosen to be in the z direction)

ωˆ = ˆH S , (1.265)z
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Figure 1.2. A schematic diagram of the paths of a beam of neutrons through the neutron interferometer shown
in figure 1.3. The lattice planes are continuous from slab to slab and the distances a, d1, and d2 are machined to
optical precision. The phase shift (state ket rotation) is effected in the darkened region using a magnetic field.
The distances d1 and d2 are typically 3 cm and a is typically 0.5 cm.

Figure 1.3. The essential component of the neutron interferometer in use at the University of Missouri. It
consists of three silicon slabs machined from a single crystal of high-purity silicon to ensure alignment of
crystal planes from slab to slab. (Reproduced from [1], with the permission of the American Institute of
Physics.)
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the time evolution operator for the system

ω= −
ˆ
ℏ

= −
ˆ

ℏ
U t

iHt iS t
( , 0) exp exp , (1.266)z

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭

and a comparison with the rotation operator about the z-axis

ϕ ϕ= −
ˆ

ℏ
iS

( ) exp , (1.267)z
z

⎧⎨⎩
⎫⎬⎭D

i.e.

ϕ ω= t. (1.268)

For a monoenergetic beam of neutrons, T is fixed. To produce the results shown in
figure 1.4, B is varied (by varying the current to the magnet). The change in B
necessary to yield successive maxima is given by

Figure 1.4. Observed neutron intensities in counts/2 min in the O beam and H beam, i.e. in counters C3 and C2,
respectively, in figure 1.2. This is effected by changing the magnetic field action (given in Gauss cm) on the
neutron beam by varying the magnet current (given in milliamps). One oscillation corresponds to a rotation of
4π not 2π. (Reprinted from [2], Copyright (1975), with permission from Elsevier.)
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μ λ
Δ = ℏ

B
md

, (1.269)
n

2

where λ is the de Broglie wavelength of the neutrons, m is the neutron mass, and d is
the length of the path for which ≠B 0.

The extraordinary property of the states of spin-1
2
particles, that they must be

rotated through 4π to ‘bring them back to their unchanged orientation’, does not
parallel our experience of rotating everyday objects. Such states are called spinors.

1.17 The Bargmann representation
The functions

χ ≔
!

z
z

n
( ) (1.270)n

n

provide an orthonormal basis for expanding functions realised on z-space (the
complex plane), with scalar products defined in terms of z-space integrals with

Bargmann measure3,
π

−∣ ∣e z 2

[3]. This space is called Bargmann space.
The relevance of these functions to coherent states is implicit in the normalized

coherent state form ∣ 〉z I , i.e. (cf. Volume 1, section 5.5)

∑∣ 〉 ≔
!

∣ 〉
=

∞−∣ ∣ *
z e

z

n
n

( )
. (1.271)

n 0

I

z n

2

2

Whence, consider

∫ ∫ ∫ ∫ ∑ ∑≔ ∣ 〉 〈 ∣ =
!

∣ 〉
!

〈 ∣−∣ ∣
*

K z z z ze
z

n
n

z

m
md d

( )
; (1.272)

n m

I I
z

n m
2

which, for = ϕz rei , gives

∫ ∫ ∑ϕ=
! !

∣ 〉〈 ∣
π

ϕ
∞

− −
+

K r r e e
r

n m
n md d . (1.273)

n m,

r i m n
n m

0 0

2
( )2

Now,

∫ ϕ πδ=
π

ϕ−ed 2 , (1.274)i m n
mn

0

2
( )

3 The measure of a space appears in the infinitesimal volumes under integrals. For example, polar coordinates
in three dimensions possess an infinitesimal volume expressed as θ θ ϕr rd sin d d2 and the measure is θr sin2 .
Cartesian coordinates possess a trivial measure because the infinitesimal volume under an integral is x y zd d d
(this space could be said to be ‘flat’).
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∫∑

∑

∑

π

π

π

π

∴ =
!

∣ 〉〈 ∣

= Γ +
!

∣ 〉〈 ∣

= ∣ 〉〈 ∣

=

∞
+ −K r r e

n
n n

n
n

n n

n n

I

d
2

( 1)
2

2

.

(1.275)

n

n

n

n r

0

2 1 2

Thus, the resolution of the identity on Bargmann space is:

∫ ∫ ∫ ∫π π
= ∣ 〉 〈 ∣ ≔ ∣ 〉 〈 ∣

−∣ ∣z
z z z

e
z zI

d
d , (1.276)I I

z

II II

2

where χ∣ 〉 ↔z z( )II n , cf. equation (1.270). Then,

∫ ∫

∫ ∫
∫ ∫

π

π

μ

〈Ψ ∣Ψ 〉 = 〈Ψ ∣ 〉 〈 ∣Ψ 〉

= Ψ Ψ

= Ψ Ψ

−∣ ∣

−∣ ∣
*

*

z
e

z z

z
e

z z

z z z

d

d ( ) ( )

d ( ) ( ) ( ),

(1.277)

z

II II

z

1 2 1 2

1 2

1 2

2

2

where

Ψ ≔ 〈 ∣Ψ〉z z( ) , (1.278)II

μ
π

≔
−∣ ∣

z
e

zd ( ) d . (1.279)
z 2

Bargmann representations of functions are transformed into position representa-
tions of functions by the Bargmann transformation,

∫ ∫ μΨ = Ψ*x z A x z z( ) d ( ) ( , ) ( ), (1.280)

where

π
≔ − + −* * *{ }A x z x xz z( , )

1
exp

1
2

2
1
2

( ) (1.281)1
4

2 2

is the Bargmann kernel function.
Comments:
1. The orthogonality of the χ z( )n is evident in a polar coordinate representation

which gives → ϕ* −z z e( )n m i m n( ) and ∫ ϕ πδ=
π ϕ−ed 2i m n

mn0

2
( ) .

2. The normalizability of the χ z( )n is evident from the Gaussian form of
Bargmann measure which ‘quenches’ the scalar products for large ∣ ∣z .
(Indeed, the scalar products involve ‘camouflaged’ Hermite polynomials.)
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3. The functions χ z( )n are trivially generalised to tensor product functions,

χ χ⊗ ⊗ ⋯z z( ) ( )n n1 21 2

which yields functions

∑ α
! !

⋯
…

…
!

z

n

z

nn n, ,

n n

n n

, ,
1 2

2
1 2

1 2

1 2

(cf. equations (1.147) and (1.176)).

1.17.1 Representation of operators

Consider the operator O and its representation, ↔ Γ( )O O in terms of z and ∂
∂z
,

∂
∂

z( , )
z

O acting on z-space wave functions, Ψ z( ). This is similar to the procedure
presented in Volume 1, chapter 8, where, e.g. the operator px (momentum in the x
direction) was shown to have a ‘position’ representation ↔ − ℏ ∂

∂
p i

xx when acting on
Cartesian-space wave functions Ψ x y z( , , ). The key there is to define a position
eigenket basis ∣ 〉x{ } and arrive at statements such as 〈 ∣ ˆ ∣Ψ〉 = − ℏ 〈 ∣Ψ〉=∂

∂
x p i x

xx

− ℏ ∂Ψ
∂

i x
x
( ) . Thus, we proceed with the ∣ 〉z II basis, (∣ 〉 ≔ ∣ 〉†*z e 0II

z a , cf. Volume 1,
section 5.5, equation (5.118))

∣Ψ〉 ⇒ Γ ∂
∂

Ψ = 〈 ∣ ∣Ψ〉 = 〈 ∣ ∣Ψ〉

= 〈 ∣ ∣Ψ〉

= 〈 ∣ + + + ⋯ ∣Ψ〉

−

z
z

z z e

e e e

za za za e

, ( ) 0

0 ( )

0 [ , ]
1
2

[ , [ , ]] ,

(1.282)

II
za

za za za

za

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

O O O O

O

O O O

where the Baker–Campbell–Hausdorff lemma is used (cf. Volume 1, chapter 5,
equation (5.110)). Essentially all operators of relevance can be expressed in terms of
a and †a , whence: for = aO

and from =∂
∂

e ae( )
z

za za

⇒Γ = ∂
∂

a
z

( ) . (1.284)

For = †aO
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Note:
1.

∂
∂

= =†

z
z a a, 1, cf. [ , ] 1. (1.286)

⎡
⎣⎢

⎤
⎦⎥

2. z and ∂
∂z

are Hermitian adjoints for scalar products defined on Bargmann
measure:

∑ ∑Ψ = Ψ =a z b ze. g. for , , (1.287)
n n

a n
n

b n
n

∫ ∫ ∫ ∫∑
π π

Ψ ∂
∂

Ψ = + ! = Ψ Ψ
−∣ ∣

* * +

−∣ ∣
*z

e
z

a b n z
e

zd ( 1) d ( ) . (1.288)
n

z

a b n n

z

b a1

2 2

1.18 Coherent states for SU(2)
The generalisation of the coherent state concept from the one-dimensional harmonic
oscillator (Volume 1, section 5.5) to angular momentum is effected through their
respective algebras: the Heisenberg–Weyl algebra in one dimension, hw(1) and su(2).

hw(1) su(2)
Generators †a +J

a −J
I J0

Commutator relations =†a a I[ , ] = −− +J J J[ , ] 2 0

=†I a[ , ] 0 = ++ +J J J[ , ]0

=I a[ , ] 0 = −− −J J J[ , ]0

Lowest-weight state ∣ 〉0 ∣ − 〉 ≔ ∣ − 〉j j j,

∣ 〉 =a 0 0 ∣− 〉 =−J j 0

Generalising the type-I coherent state from HW(1) to SU(2)

ζ ζ ζ∣ 〉 ≔ − ∣ − 〉* + −J J jexp { } , (1.289)I

for ζ θ≔ ϕe1
2

i ,

= =ζ ζ θ ϕ ϕ θ− − − − ·⃗ ˆ* + −e e e , (1.290)J J i J J i J n( sin cos ) ( )x y

where n̂ is a unit vector in the x y, plane making an angle ϕ with the negative y-axis.
This is illustrated in figure 1.5. All physically significant rotations are accommo-
dated by this formalism (the apparent exclusion of rotations about the z-axis only
excludes changes in phase, which could be introduced using χ−e i J0).

The state ζ∣ 〉I , ζ ζ θ ϕ= ( , ), can be expressed:
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∑

∑

ζ θ ϕ

ϕ θ

∣ 〉 = ∣ 〉 = ∣ − 〉

= ∣ 〉〈 ∣ ∣ − 〉

= ∣ 〉

θ

θ

− ·⃗ ˆ

− ·⃗ ˆ

− *

e j j

jm jm e j j

jm

, ,

,

( , , 0) .

(1.291)m

m

I I
i J n

i J n

m j
j

( )

( )

,
( )D

From the orthonormality of the D functions, sections 1.11 and 1.12,

∫π
θ ϕ θ ϕ θ θ ϕ= + Ω∣ 〉 〈 ∣ Ω =j

I
(2 1)

4
d , , , d sin d d . (1.292)I I

The states ζ ζ− ∣ − 〉* + −J J j jexp{ } , are sometimes called ‘atomic coherent’ or
‘Bloch’ states (see, e.g. [4]).

The type-II coherent states of HW(1) can be generalised to SU(2):

∣ 〉 ≔ ∣ − 〉* +z z J j jexp{( )} , . (1.293)II

( ζ∣ 〉I and ∣ 〉z II are no longer trivially related, hence the use of z and ζ.)
The SU(2) states can be expressed in terms of the ∣ 〉z{ }II :

∣Ψ〉 → Ψ = 〈 ∣Ψ〉 = 〈− ∣ ∣Ψ〉 ≔ Ψ−z z j e z( ) ( ). (1.294)II
zJ

j

Operators are mapped into z-space realisations, Γ( )O by

Figure 1.5. A depiction of the parameters ϕ and θ that define a type-I SU(2) coherent state.
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∣Ψ〉 → Γ Ψ = 〈 ∣ ∣Ψ〉 = 〈− ∣ ∣Ψ〉
= 〈− ∣ ∣Ψ〉

= 〈− ∣ + + + ⋯ ∣Ψ〉

−

− − −

−

− − −

−

z z j e

j e e e

j zJ zJ zJ e

( ) ( )

( )

( [ , ]
1
2

[ , [ , ]] ) .

(1.295)

J
zJ

zJ zJ zJ

zJ

O O O O
O

O O O

Essentially all operators of relevance can be expressed in terms of −J , J0, and +J ,
whence: for = −JO

and from =∂
∂ −− −e J e( )
z

zJ zJ

⇒Γ = ∂
∂−J
z

( ) . (1.297)

For = J0O

and from =∂
∂ −− −z e zJ e( )
z

zJ zJ

⇒Γ = − + ∂
∂

J j z
z

( ) . (1.299)0

For = +JO

⇒Γ = − ∂
∂+J jz z
z

( ) 2 . (1.301)2

Then

Γ
!

= − +
!

= …J
z

n
j n

z

n
n( ) ( ) , 0, 1, 2, , (1.302)

n n

0

Γ
!

= −
!

= − +
+ !

+

+ +
J

z

n
j n

z

n
j n n

z

n
( ) (2 ) (2 ) 1

( 1)
, (1.303)

n n n1 1

Γ
!

=
!

=
− !

−

− −
J

z

n
n

z

n
n

z

n
( )

( 1)
. (1.304)

n n n1 1
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Comments

1. Starting from the state ∣ − 〉j j, , the raising action of Γ +J( ) terminates at =n j2
(as it should for SU(2)).

2. The representation is non-unitary, i.e. Γ ≠ Γ+
†

−J J( ) ( ) for scalar products
defined on Bargmann measure (for which =∂

∂
† z( )

z
).

3. This type of non-unitary representation is an example of a Dyson represen-
tation [5].

4. The ∣ 〉z II basis is defined on an SU(2) irrep labelled by j, i.e. it is a linear
combination of the states ∣ 〉jm , = − … −m j j j, 1, , .

1.19 Properties of SU(2) from coherent states
To obtain the properties of a quantum system which possesses an algebraic structure
requires that unitary representations of the operators be found. This can be done in
different ways. One way (which will not be developed here) is to change the measure
of the z-space to enforce orthonormality. Thus, for the atomic coherent states:

∫ ∫ π
= +

+ ∣ ∣
∣ 〉 〈 ∣+z

j
z

z zI d
(2 1)

(1 )
(1.305)j I I2 2 2

provides resolution into orthonormal (unitary) representations in z-space. A second
way (which is developed here) uses a similarity transformation. This choice is made
because for higher symmetry algebras changing the measure of the z-space (even if it
can be found!) involves very complicated integrals.

The non-unitarity of the z-space realisation of −J , J0, +J —Γ −J( ), Γ J( )0 , Γ +J( );
(Γ ≠ Γ+

†
−J J( ) ( ))—can be converted to a unitary realisation by a similarity trans-

formation with an operator K:

γ = Γ−
−

−J K J K( ) ( ) , (1.306)1

γ = Γ+
−

+J K J K( ) ( ) , (1.307)1

γ = Γ−J K J K( ) ( ) , (1.308)0
1

0

where it is required that

γ γ=+ −
†J J( ) ( ( )) . (1.309)

Now, from the form of Γ =− + ∂
∂

J j z( )( )
z0 , it is already Hermitian ( = ∂

∂
†z

z
). Thus,

we have the condition that K commutes with Γ J( )0 and so K is diagonal in m.
Therefore, it is sufficient for K to simply normalize each ladder step in m,

= − − + … +m j j j, 1, , . Hence, for SU(2) it is sufficient for K to be a diagonal
matrix. (For higher symmetry groups K will be more complicated.) The ‘K-matrix
method’ is being introduced in the context of SU(2), where standard methods are
simpler, to ‘see how it works’.
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Then, from γ = Γ+
−

+J K J K( ) ( )1 , multiplying from the left with K and from the
right with †K

γ = Γ+
† −

+
†K J K KK J KK( ) ( ) . (1.310)1

But

γ γ= = Γ = ∂
∂

=

+ −
† −

−
† −

†

† − †

J J K J K K
z

K

K z K

( ) ( ( )) ( ( ) )

( ) ,

(1.311)
1 1

1

⎜ ⎟⎛
⎝

⎞
⎠

γ∴ = =+
† † − † † † − †K J K KK z K K KK z KK( ) ( ) ( ) , (1.312)1 1

∴ Γ =+
† †J KK KK z( ) . (1.313)

Thus, from the above condition that for SU(2), K is diagonal with real matrix
elements,

∴ Γ =+J K K z( ) . (1.314)2 2

The matrix elements of †KK (a real diagonal matrix for SU(2), =†KK K 2) can be
obtained by proceeding in either of two ways:

1. Take matrix elements, with Bargmann measure, between the states +n n, 1,
viz.

χ χ χ χ〈 ∣Γ ∣ 〉 = 〈 ∣ ∣ 〉+ + + +J K K z( ) . (1.315)n n n n n n1
2

1 1
2

2. Introduce the auxiliary operator, Λop with the property

Λ = Γ +z J[ , ] ( ), (1.316)op

whence

Λ − Λ =z z K K z( ) , (1.317)op op
2 2

and then take matrix elements, with Bargmann measure, between states
+n n, 1, see the following.

The second way is easier to use for higher symmetry algebras and is the one
developed here. (In particular, the second way solves for the representation of an
algebra by obtaining the ratios of matrix elements of K, which are all that is ever
needed.)

The motivation for defining Λop can be seen from the analogy between
Λ = Γ +z J[ , ] ( )op and =+ +J J J[ , ]0 , recalling that for the hw(1) algebra, = Γ †z a( ).
From

Λ = Γ = − ∂
∂+z J jz z
z

[ , ] ( ) 2 , (1.318)op
2
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the right-hand side suggests that Λop must have terms of the form ∂
∂

z
z
and ∂

∂
z

z
2

2 , viz.

∂
∂

= + ∂
∂

z
z

z z z
z

( ) , (1.319)2⎜ ⎟⎛
⎝

⎞
⎠

∂
∂

= ∂
∂

+ ∂
∂

= ∂
∂

+ ∂
∂

∂
∂

= ∂
∂

+ ∂
∂

+ ∂
∂

z
z

z z
z

I z
z

z
z

z
z

z
z

z
z

z
z

z
z

( )

,
(1.320)

2
2

2 2 2

2 2 3
2

⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

whence

Λ = ∂
∂

− ∂
∂

= − ∂
∂

+ ∂
∂

jz
z

z
z

j z
z

z
z

2
1
2

1
2

4 1 . (1.321)op
2

2
⎜ ⎟⎛
⎝

⎞
⎠

Now

∂
∂ !

=
!

z
z

z

n
n

z

n
, (1.322)

n n

hence

Λ ≔ Λ = − +j n n
1
2

(4 1) . (1.323)neigenvalue

Then, from Γ =+J K K z( ) 2 2 and Γ = Λ+J z( ) [ , ]op , taking matrix elements,

χ χ χ χ〈 ∣ Λ − Λ ∣ 〉 = 〈 ∣ ∣ 〉+ +z z K K z( ) , (1.324)n op op n n n1
2

1
2

χ χ χ χ∴ Λ − Λ 〈 ∣ ∣ 〉 = 〈 ∣ ∣ 〉+ + + +z K K z( ) , (1.325)n n n n n n n n1 1
2

1
2

1

and so

= −+K

K
j n2 . (1.326)n

n

1
2

2

Starting with a normalized ∣− 〉j , =K 10
2 and we obtain on iteration

= !
− !

K
j

j n
(2 )

(2 )
. (1.327)n

2
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The matrix elements of J0, +J , and −J are then straightforwardly deduced:

∫ ∫

∫ ∫

∫ ∫

χ γ χ

π
χ χ

π

π

δ

〈 ∣ ∣ 〉 = 〈 ∣ ∣ 〉

= Γ

=
!

− + ∂
∂ !

=
!

− +
!

= − + = …

−∣ ∣
* −

−∣ ∣ * −

−∣ ∣ *

m J n J

z
e

z K J K z

z
e z

m
K j z

z
K

z

n

z
e z

m

K
K

j n
z

n
K
K

j n n

( )

d ( )( ( ) ) ( )

d
( )

d
( )

( )

( ), 0, 1, 2, ;

(1.328)

m n

z

m n

z m

m n

n

z m
n

m

n

m n
n

m

0 0

1
0

1

,

2

2

2

⎜ ⎟⎛
⎝

⎞
⎠

∫ ∫

∫ ∫

∫ ∫

χ γ χ

π
χ χ

π

π

δ

〈 ∣ ∣ 〉 = 〈 ∣ ∣ 〉

=

=
! !

=
! + !

+

= + = …

+ +

−∣ ∣
* −

−∣ ∣ * −

−∣ ∣ * +

+

m J n J

z
e

z KzK z

z
e z

m
K zK

z

n

z
e z

m

K
K

z

n
n

K
K

n n

( )

d ( )( ) ( )

d
( )

d
( )

( 1)
1

1 , 0, 1, 2, ;

(1.329)

m n

z

m n

z m

m n

n

z m
m

n

n

m n
m

n

1

1

1

, 1

2

2

2

and, similarly,

δ〈 ∣ ∣ 〉 = = …− −m J n
K
K

n n, 0, 1, 2, . (1.330)m n
m

n
, 1

Specifically, the matrix elements of J0, +J , and −J are:

〈 ∣ ∣ 〉 = − + = …
= − − + − + …

n J n j n n
j j j

( ), 0, 1, 2,
, 1, 2, ;

(1.331)0

〈 + ∣ ∣ 〉 = + = !
− + !

− !
!

+

= − +

+
+n J n

K
K

n
j

j n
j n

j
n

j n n

1 1
(2 )

(2 ( 1))
(2 )

(2 )
1

(2 )( 1) ,

(1.332)
n

n

1

and, from = − +m j n, i.e. = +n m j

〈 + ∣ ∣ 〉 = − + ++n J n j m j m1 ( )( 1) ; (1.333)

and, similarly,

〈 − ∣ ∣ 〉 = − +−n J n j n n1 (2 1) , (1.334)
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∴ 〈 − ∣ ∣ 〉 = − + +−n J n j m j m1 ( 1)( ) . (1.335)

Note: for =n j2 , 〈 + ∣ ∣ 〉 =+n J n1 0, i.e. =n j2max (as it should for SU(2)); and it
follows also, therefore, that =j2 integer.

1. The associations ↔∂
∂

a
z

, ↔ †z a , ↔ †n a a reveal that:

Γ ↔−J a( ) , (1.336)

Γ ↔ − + †J j a a( ) , (1.337)0

Γ ↔ −+
† †J a j a a( ) (2 ); (1.338)

and that Γ −J( ), Γ +J( ) can be made into an adjoint pair via

γΓ → ≔ −− −
†J J j a a a( ) ( ) 2 , (1.339)

γΓ → ≔ −+ +
† †J J a j a a( ) ( ) 2 . (1.340)

This type of representation is called a Holstein–Primakoff representation [6].
2. There is an extensive literature on boson realisations of Lie algebras (see, e.g.

[7]).

The material in this section relies on a treatment adopted by K T Hecht [8].

1.20 Exercises
1.6.

(a) Derive the result, equation (1.269).
(b) For =d 1.00 cm and neutrons of de Broglie wavelength

λ = Å1.82 , show that a 4π rotation is produced by Δ =Bd 149
Gauss ·cm. (μ = × −9.65 10n

24 erg ·Gauss−1, = × −m 1.67 10 27 kg.)
1.7. Show that substituting χΨ =z z( ) ( )n (cf. equation (1.170)) into equation

(1.280) gives

π
Ψ =

!

−

x
H x e

n
( )

( )

2
. (1.341)n

x

n

2
2

Use the generating function for Hermite polynomials

∑=
!

=− +
*

e H x
s
n

s
z

( ) , with
2

. (1.342)
n

s sx
n

n
22

1.8. Show that Ψ = ∑
!

z c( ) z

nn n
n
, where the cn are the expansion coefficients for

Ψ x( ) in the (orthonormal) basis defined by the one-dimensional harmonic
oscillator energy eigenfunctions.
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1.9. Show that

Γ Γ = − Γ
Γ Γ = + Γ
Γ Γ = − Γ

− +

+ +

− −

J J J
J J J
J J J

[ ( ), ( )] 2 ( ),
[ ( ), ( )] ( ),
[ ( ), ( )] ( ).

0

0

0

1.10. Show that:

Γ ≔ Γ Γ + Γ Γ + Γ = +− + + −J J J J J J j j( )
1
2

{ ( ) ( ) ( ) ( )} ( ) ( 1).2
0

2
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Chapter 2

Addition of angular momenta and spins

The coupling of spins and angular momenta is introduced at the simplest possible
level: the coupling of two spin-1

2
particles. The concepts of reducible and irreducible

representations are clarified. A thorough introduction to Clebsch–Gordan coeffi-
cients (CG coeffs) and the related Wigner or 3-j coefficients (3-j symbols) is given.
Spin–orbit coupling is described. The interconnection between CG coeffs. and
rotation matrices is presented. A brief introduction to recoupling coefficients—6-j
and 9-j coefficients—is given. Tables of simple CG and 3-j coefficients are given in
appendix A.

Concepts: direct, tensor, or Kronecker products; reducibility of a representation;
irreducible representations (irreps); Clebsch–Gordan (CG) coefficients; Wigner or 3-
j coefficients; CG series; irrep character; spin–orbit interaction and coupling; vector
spherical harmonics; 6-j coefficients; 9-j coefficients.

The epitome of quantum systems possessing SO(3) and SU(2) symmetry is
provided by quantum particles with angular momentum and spin. This naturally
leads us to consider the coupling of spins and angular momenta in many-particle
quantum systems. This is an essential part of the physics of molecules, atoms, nuclei
and hadrons.

2.1 The coupling of two spin-1
2
particles

The simplest possible coupling in SU(2) is that of two spin-1
2
particles. This is

realised, for example, in the ground state of the hydrogen atom where one is
concerned with a proton and an electron (both spin-1

2
particles) in a state of relative

motion with angular momentum zero (l = 0). Thus, the possible ground-state
configurations of the hydrogen atom are completely described by

= ½ ⊗ = ½ = ½ ½ ⊗ ½ ½s m s m, , , , , (2.1)s p s e p e

or

doi:10.1088/978-0-7503-2171-6ch2 2-1 ª IOP Publishing Ltd 2020
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= ½ ½ ⊗ ½ −½, , , (2.2)p e

or

= ½ −½ ⊗ ½ ½, , , (2.3)p e

or

= ½ −½ ⊗ ½ −½, , . (2.4)p e

These basis states, made up of the =s 1
2p , = ±m 1

2p and =s 1
2e , = ±m 1

2e basis states
for the proton and electron, respectively, are in a form referred to as a direct product,
tensor product, or Kronecker product.

Just as we considered the rotation of spin-1
2
particles in chapter 1, we can discuss

the separate rotation of the proton and the electron in the four states, equations
(2.1)–(2.4)

α β γ α β γ⊗ = ⊗( ) ( )m m m m
1
2

1
2

, ,
1
2

, ,
1
2

, (2.5)s
p

R

s
e

R

p p p s
p

e e e s
e

( 1
2

) ( 1
2

)D D

where αp, βp, and γp and αe, βe, and γe are the Euler angles describing the rotations of
the proton and the electron ket states, respectively. These rotations can be viewed in
the form

α β γ α β γ⊗ = ⊗

× ⊗

( )( ) ( )m m

m m

, , , ,

1
2

1
2

,
(2.6)

1
2

1
2s

p

R

s
e

R

p p p e e e

s
p

s
e

( 1
2

) ( 1
2

)

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

D D

i.e. as transformations ⊗p e
( ) ( )1

2
1
2D D on a four-dimensional space spanned by

⊗m m1
2

1
2s

p
s

e
. The matrices representing ⊗p e

( ) ( )1
2

1
2D D are 4 × 4. For example,

if α = 0p , γ = 0p , α = 0e , γ = 0e , they have the form

β β β β

β β β β β β β β

β β β β β β β β

β β β β β β β β

β β β β β β β β

⊗ ≔

≔

− −

− −

− −

(0, , 0) (0, , 0) (0, , 0; 0, , 0)

cos
2

cos
2

cos
2

sin
2

sin
2

cos
2

sin
2

sin
2

cos
2

sin
2

cos
2

cos
2

sin
2

sin
2

sin
2

cos
2

sin
2

cos
2

sin
2

sin
2

cos
2

cos
2

cos
2

sin
2

sin
2

sin
2

sin
2

cos
2

cos
2

sin
2

cos
2

cos
2

,
(2.7)

p e p e

p e p e p e p e

p e p e p e p e

p e p e p e p e

p e p e p e p e

( 1
2

) ( 1
2

) ( 1
2

, 1
2

)

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

D D D
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where the 4 × 4 matrix is generated from

β

β β

β β
=

−
(0, , 0)

cos
2

sin
2

sin
2

cos
2

(2.8)p

p p

p p

( 1
2

)

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
D

and

β

β β

β β
=

−
(0, , 0)

cos
2

sin
2

sin
2

cos
2

(2.9)e

e e

e e

( 1
2

)

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
D

in a straightforward way.
The proton and the electron in hydrogen experience a ‘spin–spin’ interaction

through their magnetic moments: this results in a splitting in energy of the states,
equations (2.1)–(2.4). Thus, transformations such as that described by equation (2.7)
do not leave the energy of the hydrogen atom ground state unchanged. However,
‘rigid’ rotations with α α=p e, β β=p e and γ γ=p e, which preserve the relative
orientation of the two spins, will leave the energy unchanged. In equation (2.7),
for example, if β β β= ≡p e then

β β
β β β β β β

β β β β β β

β β β β β β

β β β β β β

⊗

=

− −

− −

− −

(0, , 0) (0, , 0)

cos
2

sin
2

cos
2

sin
2

cos
2

sin
2

sin
2

cos
2

cos
2

sin
2

sin
2

cos
2

sin
2

cos
2

sin
2

cos
2

sin
2

cos
2

sin
2

sin
2

cos
2

sin
2

cos
2

cos
2

.
(2.10)

( ) ( )

2 2

2 2

2 2

2 2

1
2

1
2

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

D D

This matrix is reducible:

β β

β β β

β β β

β β β

⊗

=

+ − −

−

− +

†C C(0, , 0) (0, , 0)

1
2

(1 cos ) sin
2

1
2

(1 cos ) 0

sin
2

cos sin
2

0

1
2

(1 cos ) sin
2

1
2

(1 cos ) 0

0 0 0 1

,
(2.11)

( 1
2

) ( 1
2

)

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

D D
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where

=
−

C

1 0 0 0

0
1

2
0

1

2

0
1

2
0

1

2
0 0 1 0

. (2.12)

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

A comparison of the matrix in equation (2.11) with that in equation (1.65) reveals
that

β β β β⊗ = ⊕†C C(0, , 0) (0, , 0) (0, , 0) (0, , 0), (2.13)( 1
2

) ( 1
2

) (1) (0)D D D D

where the ⊕ symbol describes the combining of the 3 × 3 matrix, β(0, , 0)(1)D
(equation (1.65)) and the 1 × 1 matrix β =(0, , 0) (1)(0)D to yield the 4 × 4 matrix in
equation (2.11), i.e.

β β
β

β
⊕ ≔(0, , 0) (0, , 0)

(0, , 0) 0

0 (0, , 0)
. (2.14)(1) (0)

(1)

(0)

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟D D D

D

Thus, under rotations the four spin–spin couplings of the hydrogen atom ground
state behave as a (total) spin J = 1 triplet and a (total) spin J = 0 singlet.

The relationship between the basis, equations (2.1)–(2.4) and the basis for the
spin-1 and spin-0 couplings is obtained from the form of the matrix C. Recall that
the elements of a unitary transformation are 〈 ∣ 〉old basis new basis (cf. Volume 1,
equation (6.85)). Thus, denoting the old basis (equations (2.1)–(2.4)) by

⊗ ↔ ∣↑↑〉1
2

1
2

1
2

1
2p e

, etc., and the new basis by ∣ 〉 ∣ 〉 ∣ 〉 ∣ 〉{ 1 , 2 , 3 , 4 }, we have

↑↑ =1 1, (2.15)

↑↓ = ↑↓ =2
1

2
, 4

1

2
, (2.16)

↓↑ = ↓↑ = −2
1

2
, 4

1

2
, (2.17)

↓↓ =3 1, (2.18)

whence

∣ 〉 = ∣↑↑〉1 , (2.19)

∣ 〉 = ∣↑↓〉 + ∣↓↑〉2
1

2
( ), (2.20)
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∣ 〉 = ∣↓↓〉3 , (2.21)

and

∣ 〉 = ∣↑↓〉 − ∣↓↑〉4
1

2
( ). (2.22)

The kets ∣ 〉1 , ∣ 〉2 , and ∣ 〉3 form a triplet representing the spin-1 coupling of the proton
and the electron. The ket ∣ 〉4 forms a singlet representing the spin-0 coupling of the

proton and the electron. The expansion coefficients, e.g. 〈↑↓ ∣ 〉 =2 1

2
, are called

Clebsch–Gordan coefficients. They are the amplitudes of the uncoupled base kets
needed for combinations that have definite total spin (S = 0 and S = 1 in this case).

These results can also be obtained algebraically. For ‘rigid’ rotations,
α α α= ≡p e , β β β= ≡p e , γ γ γ= ≡p e , and

α β γ α β γ⊗ =

=

α β γ α β γ

α β γ

−
ˆ

ℏ −
ˆ

ℏ −
ˆ

ℏ −
ˆ
ℏ −

ˆ

ℏ −
ˆ
ℏ

−
ˆ
ℏ −

ˆ
ℏ −

ˆ
ℏ

( ) e e e e e e

e e e

, , ( , , )

,

(2.23)p p p e e e

iS iS iS iS iS iS

iS iS iS

( 1
2

) ( 1
2

) z
p

p y
p

p z
p

p z
e

e y
e

e z
e

e

z y z

( ) ( ) ( ) ( ) ( ) ( )

D D

where

ˆ ≔ ˆ + ˆ = ˆ ⊗ ˆ + ˆ ⊗ ˆS S S S I I S , (2.24)z z
p

z
e

z
p e p

z
e( ) ( ) ( ) ( ) ( ) ( )

ˆ ≔ ˆ + ˆ = ˆ ⊗ ˆ + ˆ ⊗ ˆS S S S I I S , (2.25)y y
p

y
e

y
p e p

y
e( ) ( ) ( ) ( ) ( ) ( )

and similarly,

ˆ ≔ ˆ + ˆ = ˆ ⊗ ˆ + ˆ ⊗ ˆS S S S I I S , (2.26)x x
p

x
e

x
p e p

x
e( ) ( ) ( ) ( ) ( ) ( )

i.e.

⃗ ≔ ⃗ + ⃗ = ⃗ ⊗ ˆ + ˆ ⊗ ⃗S S S S I I S . (2.27)p e p e p e( ) ( ) ( ) ( ) ( ) ( )

Then for

ˆ = ˆ ± ˆ
±S S iS , (2.28)p

x
p

y
p( ) ( ) ( )

ˆ = ˆ ± ˆ
±S S iS , (2.29)e

x
e

y
e( ) ( ) ( )

ˆ = ˆ + ˆ± ± ±S S S , (2.30)p e( ) ( )
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consider

ˆ − ⊗ − = ˆ − ⊗ −

+ ˆ − ⊗ −

= ⊗ −

+ − ⊗

+ +

+

S S

S

1
2

,
1
2

1
2

,
1
2

1
2

,
1
2

1
2

,
1
2

1
2

,
1
2

1
2

,
1
2

1
2

1
2

1
2

,
1
2

1
2

,
1
2

1
2

,
1
2

.

(2.31)

p e

p

p e

e

p e

p e

p e

( )

( )

Similarly,

ˆ ⊗ = − ⊗ +

⊗ −

−S
1
2

,
1
2

1
2

,
1
2

1
2

,
1
2

1
2

,
1
2

1
2

,
1
2

1
2

,
1
2

,

(2.32)p e p e p

e

and

ˆ ⊗ − + − ⊗

= ± ⊗ ±

±S
1
2

,
1
2

1
2

,
1
2

1
2

,
1
2

1
2

,
1
2

2
1
2

,
1
2

1
2

,
1
2

.

(2.33)p e p e

p e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

But (cf. Volume 1, equations (11.58) and (11.60)), (ℏ ≡ 1)

ˆ ∣ 〉 = ∓ ± + ∣ ± 〉±S SM S M S M SM( )( 1) 1 , (2.34)

whence

ˆ ∣ − 〉 = ∣ 〉 ˆ ∣ − 〉 =+ −S S1, 1 2 1, 0 , 1, 1 0, (2.35)

ˆ ∣ 〉 = ∣ 〉 ˆ ∣ 〉 = ∣ − 〉+ −S S1, 0 2 1, 1 , 1, 0 2 1, 1 , (2.36)

ˆ ∣ 〉 = ˆ ∣ 〉 = ∣ 〉+ −S S1, 1 0, 1, 1 2 1, 0 . (2.37)

Hence, equations (2.19)–(2.21) follow. Equation (2.22) follows from equation (2.20)
by orthogonal construction, and

ˆ ⊗ − − − ⊗ =±S
1
2

,
1
2

1
2

,
1
2

1
2

,
1
2

1
2

,
1
2

0, (2.38)
p e p e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
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cf.

ˆ ∣ 〉 =±S 0, 0 0. (2.39)

A spin–spin interaction in the hydrogen atom can be defined as

≔ ⃗ · ⃗−V kS S (k constant). (2.40)S S
p e( ) ( )

This can be expressed as

= ⃗ · ⃗ − ⃗ · ⃗ − ⃗ · ⃗− { }V
k

S S S S S S
2

, (2.41)S S
p p e e( ) ( ) ( ) ( )

∴ = ˆ − ˆ − ˆ− { }V
k

S S S
2

. (2.42)S S
p e2 ( ) ( )2 2

The eigenvalues of −VS S for the states ∣ 〉 =S S S M, , , 1 1 , 1 0 ,1
2

1
2

1
2

1
2

p e( ) ( )

−1 , 11
2

1
2

, and 0 01
2

1
2

follow:

= + − + − +

=

−V
k

k

1
1
2

1
2

1
2

1(1 1)
1
2

1
2

1
1
2

1
2

1 1
1
2

1
2

1

4
1

1
2

1
2

1 ,

(2.43)
S S

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎫⎬⎭

and similarly for 1 01
2

1
2

and −1 , 1 ;1
2

1
2

and

= + − + − +

= −

−V
k

k

0
1
2

1
2

0
2

0(0 1)
1
2

1
2

1
1
2

1
2

1 0
1
2

1
2

0

3
4

0
1
2

1
2

0 .

(2.44)
S S

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎫⎬⎭

For >k 0, this can be depicted as shown in figure 2.1. Thus, algebraically the
coupled basis emerges as the eigenbasis for the ground-state multiplet of the
hydrogen atom, as it did by considering rotational invariants for the hydrogen
atom ground state under the condition of ‘rigid’ rotations.

2.2 The general coupling of two particles with spin or angular
momentum

The general coupling problem for a pair of SU(2) representations is realised in the
coupling of the spins or angular momenta j1, j2 of two particles. The result can be
stated as a theorem:

Theorem 2.1. For two SU(2) representations j( )1D and j( )2D , the Kronecker product
⊗j j( ) ( )1 2D D contains the SU(2) representations j( )D , ∣ − ∣ ⩽ ⩽ +j j j j j1 2 1 2, i.e.
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∑⊗ = = ⊕ ⊕ ⋯
=∣ − ∣

+
∣ − ∣ ∣ − ∣+ + . (2.45)

j j j

j j
j j j j j j j j j( ) ( ) ( ) ( ) ( 1) ( )1 2

1 2

1 2

1 2 1 2 1 2D D D D D D

(The expansion on the right-hand side is called the SU( (2)) Clebsch–Gordan series;
the sum ⊕ is defined in equation (2.14).)

Proof. The theorem can be proved by the brute-force method of computing the
dimensions of the representations on each side of equation (2.45). The left-hand side
is the product of two representations of dimension +j(2 1)1 and +j(2 1)2 , respec-
tively = − − + … = − − + …m j j j m j j j( , 1, , ; , 1, , );1 1 1 1 2 2 2 2 the right-hand side is
the sum of representations of dimension +j(2 1) where = ∣ − ∣ ∣ − ∣ +j j j j j, 1,1 2 1 2
… +j j, 1 2.

The theorem is more elegantly proved by considering the traces of the Wigner
matrices and the fact that the trace of a matrix is invariant under a similarity
transformation (cf. Volume 1, theorem 6.2). Thus,

∑ϕ ϕˆ = ˆ =
=−

+
ϕn z eTr { ( , )} Tr { ( , )} , (2.46)

m j

j
j j im( ) ( )D D

whence

∑ ∑ ∑ ∑=
=−

+

=−

+

=∣ − ∣

+

=−

+
ϕ ϕ+e e . (2.47)

m j

j

m j

j

j j j

j j

m j

j
i m m im( )

1 1

1

2 2

2

1 2

1 2

1 2

□

(The quantity χ ϕ∑ ≔ϕ
=−

+ e ( )m j
j im j( ) is called the character of the SU(2) irrep j for

angle ϕ.)

Figure 2.1. Spin–spin splitting of the hydrogen atom ground state. The S = 1 to S = 0 transition corresponds to
a wavelength of 21 cm: it is well known in radioastronomy.
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Two choices of basis are available for describing the two particles: the coupled basis
∣ 〉 ≡jm jj j m1 2 and the uncoupled basis ∣ 〉 ≡ ∣ 〉 ⊗ ∣ 〉j m j m j m j m1 1 2 2 1 1 2 2 . These two bases

are simultaneous eigenkets of the operators ˆ ˆ ˆ ˆJ J J J{ , , , }z
2

1
2

2
2

and ˆ ˆ ˆ ˆJ J J J{ , , , }z z1
2

1 2
2

2 ,
respectively.

For two particles described by the uncoupled basis states j m1 1 , ∣ 〉j m2 2 , they can
be alternatively described by the coupled basis states ∣ 〉jm :

∣ 〉 = ∑ = −jm j m j m j m j m jm , (2.48)m m m m( ) 1 1 2 2 1 1 2 2
1 2 1

where j1 and j2 are fixed and j can take the values

= ∣ − ∣ ∣ − ∣ + ⋯ +j j j j j j j, 1, , , (2.49)1 2 1 2 1 2

(note each j value occurs only once, i.e. it is multiplicity free with = +m m m1 2). The
expansion coefficients 〈 ∣ 〉j m j m jm1 1 2 2 are called Clebsch–Gordan coefficients or vector-
coupling coefficients or Wigner SU(2) coefficients. They are the amplitudes of
∣ 〉 ⊗ ∣ 〉j m j m1 1 2 2 needed for combinations that have total spin j. Stated in another way,
they are the amplitudes for combining the elements of the uncoupled basis so as to
give an irreducible form. The transformation between the two bases is unitary. The
relation, = +m m m1 2, follows from ˆ = ˆ + ˆJ J Jz z z1 2 . The Clebsch–Gordan coefficients
are real. The range of j values looks ‘obvious’ in that, with the restriction to integer
increments, the values are given by a classical vector picture; BUT: the coupling
involves cones of indeterminacy, as depicted in figure 2.2.

A powerful method for computing allowed J values for the coupling of two
particles is the so-called m-scheme:
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The method is especially useful when there are restrictions, e.g. for two identical
bosons:

Figure 2.2. Depiction of the combining of the ‘cones of uncertainty’ for directional components m1 and m2

when coupling j1 and j2 to definite J andM. The vectors ⃗j1 and ⃗j2 can be viewed as ‘rotating’ around ⃗J which is
in turn rotating around the z-axis in the sense of generating (hyper)cones of uncertainty. However, this
descriptive use of the word ‘rotating’ must not be adopted as a hidden view of such uncertainty.
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Symmetrization, e.g. ∣ 〉 = ∣+ 〉 + ∣ + 〉m m, { 1, 0 0, 1 }
1

21 2 excludes = +m m( , ) (0, 1);1 2

similarly, −( 1, 0) and − +( 1, 1) are excluded.
Similarly, for two identical fermions:

(the j1 and j2 states are presumed identical in every respect except form1 andm2, i.e. all
other quantum numbers equal). The Pauli principle excludes = + +m m( , ) ( 3/2, 3/2)1 2 ,
+ +( 1/2, 1/2), etc.; antisymmetrization excludes = + +m m( , ) ( 1/2, 3/2)1 2 , etc.

The m-scheme can be used for any number of particles to ascertain the allowed J
values, e.g. for three identical fermions:

This leads to the common artifice of describing an almost filled fermion ‘shell’ in
terms of holes, i.e. = ≡ = −j j( 3/2) ( 3/2)3 1.
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A dramatisation of the non-classical nature of quantum mechanical angular
momentum is provided by:

⃗ × ⃗ = ˆ ˆ ˆ

ˆ ˆ ˆ
= ˆ ˆ − ˆ ˆ

+ ˆ ˆ − ˆ ˆ + ˆ ˆ − ˆ ˆ

= ˆ ˆ + ˆ ˆ + ˆ ˆ

= ℏ ˆ + ˆ + ˆ = ℏ ⃗

L L

e e e

L L L

L L L

e L L L L

e L L L L e L L L L

e L L e L L e L L

i e L e L e L i L

( )

( ) ( )

[ ] [ ] [ ]

( ) .

op op

x y z

x y z

x y z

x y z z y

y z x x z z x y y x

x y z y z x z x y

x x y y z z op

The Clebsch–Gordan coefficients can be depicted conveniently using ‘m m,1 2’

diagrams. For example, figure 2.3 shows the diagrams for the possible couplings of
=j 21 , =j 22 .

(a) (b)

(d)(c)

(e)

Figure 2.3. Depiction of the Clebsch–Gordan coefficient (a) 〈 ∣ 〉m m m2 2 41 2 , (b) 〈 ∣ 〉m m m2 2 31 2 , (c) 〈 ∣ 〉m m m2 2 21 2 ,
(d) 〈 ∣ 〉m m m2 2 11 2 , and (e) 〈 ∣ 〉m m2 2 001 2 .
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It remains to compute the numerical values of the Clebsch–Gordan coefficients:
so far we have determined their values only for the coupling = =j j,1

2
1
21 2 to j = 0 or

1. In principle, one can repeat the process illustrated for = =j j,1
2

1
21 2 , and block-

diagonalize β β⊗d d( ) ( )j j( ) ( )1 2 : the Clebsch–Gordan coefficients are the matrix
elements of C in:

β β β β β⊗ = ⊕ ⊕ ⋯⊕† + + − ∣ − ∣C d d C d d d( ) ( ) ( ) ( ) ( ). (2.50)j j j j j j j j( ) ( ) ( ) ( 1) ( )1 2 1 2 1 2 1 2

However, as for = =j j,1
2

1
21 2 , one can obtain Clebsch–Gordan coefficients by

algebraic methods. Some examples are given below.
Algebraic methods can be used to generate Clebsch–Gordan coefficients by

noting two points:
(i) The raising and lowering operators in the coupled and uncoupled basis are

related by
ˆ = ˆ + ˆ± ± ±J J J . (2.51)1 2

(ii) The coefficient

= = = + = + =j m j j m j j j j m j j, , , , 1 (2.52)1 1 1 2 2 2 1 2 1 2

because

= ⊗ = = = + = +j m j j m j j j j m j j, , , . (2.53)1 1 1 2 2 2 1 2 1 2

The second point is clear from figure 2.3, where ∣ 〉 ⊗ ∣ 〉 = ∣ 〉22 22 44 . Thus, applying
ˆ = ˆ + ˆ− − −J J J1 2 to the ‘maximum weight’ state, equation (2.53),

ˆ = + = + = ˆ + ˆ = =− − −J j j j m j j J J j m j j m j, ( ) , , , (2.54)1 2 1 2 1 2 1 1 1 2 2 2

from

ˆ ∣ 〉 = + − + ∣ − 〉−J jm j m j m j m( )( 1) , 1 (2.55)

(cf. Volume 1, equation (11.60) (ℏ ≡ 1)),

∴ + + = + − = = − =

+ = = −

j j j j m j j j j m j j m j

j j m j j m j

2( ) , 1 2 , 1 ,

2 , , 1 ,
(2.56)

1 2 1 2 1 2 1 1 1 1 2 2 2

2 1 1 1 2 2 2

∴ + = + − =
+

= − =

+
+

= = −

j j m j j
j

j j
j m j j m j

j

j j
j m j j m j

, 1 , 1 ,

, , 1 ,

(2.57)
1 2 1 2

1

1 2
1 1 1 2 2 2

2

1 2
1 1 1 2 2 2
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∴ = − = = + = + − =
+

j m j j m j j j j m j j
j

j j
, 1, , , 1 (2.58)1 1 1 2 2 2 1 2 1 2

1

1 2

and

= = − = + = + − =
+

j m j j m j j j j m j j
j

j j
, , , 1 , 1 . (2.59)1 1 1 2 2 2 1 2 1 2

2

1 2

For =j j1 2, these reduce to 1

2
.

The procedure then divides into two paths. The other coefficients with = +j j j1 2
(cf. figure 2.3) are generated by successive application of equations (2.51)–(2.57),
whence:

+ +

=
+ − − ! + + + ! ! !
− ! − ! + ! + ! + !

j m j m j j m m

j j m m j j m m j j

j m j m j m j m j j

,

( ) ( ) (2 ) (2 )

( ) ( ) ( ) ( ) (2 2 )
.

(2.60)
1 1 2 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

1 1 2 2 1 1 2 2 1 2

The second path leads to the coefficients with = + −j j j 11 2 (cf. figure 2.3) by
constructing = + − = + −j j j m j j1, 11 2 1 2 which must be orthogonal to
∣ = + = + − 〉j j j m j j, 11 2 1 2 (equation (2.57)), i.e.

+ − = + − = = − =

−
+

= = −

+
j j m j j j m j j m j

j

j j
j m j j m j

1, 1 , 1 ,

, , 1 .
(2.61)

j

j j1 2 1 2
2

1 2
1 1 1 2 2 2

1

1 2
1 1 1 2 2 2

The other coefficients with = + −j j j 11 2 are generated by successive application of
equations (2.51)–(2.61). Coefficients with = + −j j j 21 2 , = + −j j j 31 2 , etc., are
constructed by appropriate orthogonalization and application of equation (2.51).

General expressions for some Clebsch–Gordan coefficients are given in
tables A.1–A.4.

Clebsch–Gordan coefficients possess a number of general properties:
(i) They are real: this is by convention.
(ii) + ⩾ ⩾ ∣ − ∣j j j j j1 2 1 2 : this is proved in theorem 2.2.1.
(iii) = +m m m1 2 : this follows from

ˆ = ˆ + ˆJ J Jz z z1 2 , (cf. equation (2.51))
whence

= ˆ − ˆ − ˆ ∣ 〉

= ˆ − ˆ − ˆ ∣

= − − ∣

J J J jm

j m j m J J J jm

j m j m m m m jm

0 ( )

( )

( ) ,

(2.62)

z z z

z z z

1 2

1 1 2 2 1 2

1 1 2 2 1 2

∴ = − −m m m j m j m j0 ( ) . (2.63)m1 2 1 1 2 2
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Thus, either

= + =m m m j m j m jmor 0. (2.64)1 2 1 1 2 2

(iv)

=j m j m jm jm j m j m : (2.65)1 1 2 2 1 1 2 2

this follows from (i).
(v)

∑∑ δ δ′ ′ = ′ ′j m j m jm j m j m jm : (2.66)
j m

m m m m1 1 2 2 1 1 2 2
1 1 2 2

this follows from the orthogonality of the ∣ 〉j m j m1 1 2 2 basis

δ δ′ ′ = ′ ′j m j m jm j m j m jm (2.67)m m m m1 1 2 2 1 1 2 2 1 1 2 2

by using the completeness relation for the ∣ 〉jm basis,

∑∑ δ δ′ ′ = ′ ′j m j m jm jm j m j m , (2.68)
j m

m m m m1 1 2 2 1 1 2 2 1 1 2 2

from which equation (2.66) follows using (iv).
(vi)

∑∑ δ δ′ ′ = ′ ′j m j m jm j m j m j m : (2.69)
m m

jj mm1 1 2 2 1 1 2 2

1 2

this follows in a manner similar to (v).
(vii)

∑∑∣ ∣ =j m j m jm 1: (2.70)
m m

1 1 2 2
2

1 2

this follows from equation (2.69) for ′ =j j , ′ =m m, and using (iv).
(viii)

μ μ μ

μ

μ

∓ ± + ±

= ∓ + ± ∓

+ ∓ + ± ∓

j j j m j m j

j m j m j m j m j

j m j m j m j m j

( )( 1) 1

( 1)( ) 1,

( 1)( ) , 1 :

(2.71)

1 1 2 2 1

1 1 1 1 1 1 2 2

2 2 2 2 1 1 2 2

this is a general recursion relationship for Clebsch–Gordan coefficients
which follows from

∑∑μ μˆ ∣ 〉 = ˆ + ˆ ′ ′ ′ ′
′ ′

± ± ±J j J J j m j m j m j m j( ) ,
(2.72)

m m

1 2 1 1 2 2 1 1 2 2

1 2
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where the completeness relation for the ′ ′j m j m1 1 2 2 basis has been used;
whence

∑∑
μ μ μ

μ

∓ ± + ∣ ± 〉

= ∓ ′ ± ′ + ∣ ′ ± ′〉

+ ∓ ′ ± ′ + ∣ ′ ′ ± 〉 ′ ′
′ ′

{

}

j j j

j m j m j m j m

j m j m j m j m j m j m j

( )( 1) 1

( )( 1) 1,

( )( 1) 1 ,

(2.73)
m m

1 1 1 1 1 1 2 2

2 2 2 2 1 1 2 2 1 1 2 2

1 2

and taking the inner products on both sides of this equation with
〈 ∣j m j m1 1 2 2 ,

∑∑
μ μ μ

μ

∴ ∓ ± + ±

= ∓ ′ ± ′ + ′ ± ′

+ ∓ ′ ± ′ + ′ ′ ± ′ ′
′ ′

{

}

j j j m j m j

j m j m j m j m j m j m

j m j m j m j m j m j m j m j m j

( )( 1) 1

( )( 1) 1,

( )( 1) 1 ,

(2.74)
m m

1 1 2 2

1 1 1 1 1 1 2 2 1 1 2 2

2 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2

1 2

and equation (2.71) follows from the orthonormality of the j m j m1 1 2 2

basis.

μ+ = ±m mNote: 1. (2.75)1 2

The recursion relations embodied in equation (2.71) can be viewed
usefully in a graphical way by plotting the m m( , )1 2 values of the
coefficients in the recursion relation. This is shown in figure 2.4. Thus,

+̂J connects −m m( 1, )1 2 and −m m( , 1)1 2 to m m( , );1 2 and −̂J connects

Figure 2.4. The action of +̂J and −̂J in the m1–m2 plane. LHS and RHS refer to the left-hand side and right-
hand side of equation (2.71). Thus, the points in the m1–m2 plane corresponding to the RHS of equation (2.71),
which are connected to the LHS of equation (2.71) by −̂J , are +m m( 1, )1 2 and +m m( , 1)1 2 .
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+m m( 1, )1 2 and +m m( , 1)1 2 to m m( , )1 2 . To determine the Clebsch–
Gordan coefficients defined by equation (2.71), the procedure is to draw
the boundary, in the m1–m2 plane, defined by

− ⩽ ⩽ − ⩽ ⩽ − ⩽ + ⩽j m j j m j j m m j, , (2.76)1 1 1 2 2 2 1 2

for specified j1, j2, and j. This is shown in figure 2.5. Then, starting at
location A in figure 2.5, we determine which RHS points contribute to the
LHS (cf. figure 2.4 and equation (2.71)). Evidently, because there is no point
in the m1–m2 plane with = +m j m( 1, )1 1 2 , under the action of −̂J the point
B can only be reached from the point A. Thus, from the Clebsch–Gordan
coefficient corresponding to the point A, we obtain the Clebsch–Gordan
coefficient corresponding to the point B. Continuing, we then determine,
using +̂J , the Clebsch–Gordan coefficient for point D from those at points A
and B. This can be iterated, B and D giving E, B and E giving C, E and C
giving F, and so on.

The literature contains many conventions for expressing (SU(2)) Clebsch–Gordan
coefficients. Some of them are:

∣j m j m jm or j m j m jm

j m j m j j jm

j j m m jm

j j m m j j jm

C j j j m m m

C j j j m m

C jm m m

X jmj j m

C

( ) (note angular and curved brackets)

( ; )

( ; )

( ; )

( )

.

j j

j m j m
jm

1 1 2 2 1 1 2 2

1 1 2 2 1 2

1 2 1 2

1 2 1 2 1 2

1 2 1 2

1 2 1 2

1 2

1 2 1

1 2

1 1 2 2

Figure 2.5. A graphical view of the manner in which the recursion relation (equation (2.71)) connects points in
them1–m2 plane, each point of which represents a Clebsch–Gordan coefficient. (Compare with figures 2.3(a)–(e).)
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Clebsch–Gordan coefficients possess a high degree of permutational symmetry.
Wigner introduced a form that facilitates the execution of these permutations by
defining the (Wigner) 3-j symbol:

≔ − + −− − −j j j
m m m

j j m j m j m( 1) (2 1) , . (2.77)j j m1 2 3

1 2 3
3

1
2 1 1 2 2 3 31 2 3

⎛
⎝⎜

⎞
⎠⎟

Note: the −m3 in the Clebsch–Gordan coefficient. The 3-j symbols possess the
following symmetry properties:

(i)

+ + =m m m 0; (2.78)1 2 3

(ii)

= =j j j
m m m

j j j
m m m

j j j
m m m

; (2.79)1 2 3

1 2 3

2 3 1

2 3 1

3 1 2

3 1 2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

(iii)

− =+ + j j j
m m m

j j j
m m m

( 1) ; (2.80)j j j 1 2 3

1 2 3

2 1 3

2 1 3
1 2 3

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

(iv)

= − − − −
+ +j j j

m m m
j j j
m m m

( 1) . (2.81)j j j1 2 3

1 2 3

1 2 3

1 2 3
1 2 3

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

General expressions for some 3-j coefficients are given in table A.5. These are in a
highly-compacted notation that requires the use of the permutational symmetry.

2.3 Spin–orbit coupling
Intrinsic spin and orbital angular momentum have the same units, namely ℏ, and
appear in specific combinations in molecules, atoms, nuclei and hadrons. We
describe states of specified spin and position by, e.g.

∣ ⃗ +〉 ≔ ∣ ⃗〉 ⊗ ∣+〉r r, , (2.82)

where this is to be interpreted as describing a particle in a state of spin up along z
located at the position ⃗r . Spin operators only act on ∣+〉 ∣ − 〉{ , }; operators such as r̂,
p̂, L̂ only act on ∣ ⃗〉r{ }. The space spanned by ∣ ⃗〉 ⊗ ∣ + 〉 ∣ ⃗〉 ⊗ ∣ − 〉r r{ , } is called the
direct product space. The spin operators commute with the space operators:
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ˆ ˆ = ˆ ˆ = ˆ ˆ = ∀S r S p S L i j[ , ] 0, [ , ] 0, [ , ] 0, , . (2.83)i j i j i j

The rotation operator for the coupled system has the form

ϕ ϕˆ = −
⃗ · ˆ
ℏ

n i
J n

( , ) exp , (2.84)
⎧⎨⎩

⎫⎬⎭D

where

⃗ = ⃗ ⊗ ˆ + ˆ ⊗ ⃗ = ⃗ + ⃗J L I I S L S , (2.85)spin space

and Îspin is the identity operator acting only on the spin kets and Îspace is the identity
operator acting only on the space kets. Note, with respect to vector operators, the
symbols being used indicate explicitly that they are operators; but usually
the symbols do not indicate that they are operators. We ask the Reader to make
the necessary inferences with respect to vector operators versus vectors. From

ˆ ˆ = ∀S L i j[ , ] 0, ,i j ,

ϕ ϕ ϕ ϕˆ = − · ˆ = −
⃗ · ˆ
ℏ

−
⃗ · ˆ
ℏ

⃗ + ⃗
ℏ{ }n i n i

L n
i
S n

( , ) exp exp exp . (2.86)L S
⎧⎨⎩

⎫⎬⎭
⎧⎨⎩

⎫⎬⎭D

Space–spin wave functions can be written:

α⃗ ± = Ψ ⃗±αr r; ( ), (2.87)

and are usually arranged in column matrix form

α
α

⃗ +
⃗ −

=
Ψ ⃗
Ψ ⃗

α

α

+

−

r
r

r
r

;
;

( )
( )

. (2.88)
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Here, ∣Ψ ⃗ ∣α± r( ) 2 gives the probability for finding the particle at the position ⃗r with spin
up or down. We can also write:

α χ α χ⃗ + = Ψ ⃗ ⃗ − = Ψ ⃗α α+ + − −r r r r; ( ) , ; ( ) . (2.89)

Expressing Ψ ⃗α± r( ) as

θ ϕ χΨ ⃗ =α α± ± ±r R r Y( ) ( ) ( , ) , (2.90)lm

we are confronted with the task of coupling spin to orbital angular momentum in

α θ ϕ χ⃗ ± = α± ±r R r Y; ( ) ( , ) . (2.91)lm

We know the following:

θ ϕ θ ϕˆ = + ℏL Y l l Y( , ) ( 1) ( , ), (2.92)lm lm
2 2

θ ϕ θ ϕˆ = ℏL Y m Y( , ) ( , ), (2.93)z lm lm
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χ χˆ = ℏ± ±S
3
4

, (2.94)2 2

χ χˆ = ± ℏ± ±S
1
2

, (2.95)z

The θ ϕ χ±{ }Y ( , )lm are simultaneous eigenfunctions of the set of mutually

commuting operators ˆ ˆ ˆ ˆ{ }L L S S, , ,z z
2 2 . They are referred to as the uncoupled basis.

We seek the coupled basis which are simultaneous eigenfunctions of the set of
mutually commuting operators ˆ ˆ ˆ ˆJ J L S{ , , , }z

2 2 2 . From the development of Clebsch–
Gordan coefficients, the coupled basis can be directly constructed:

θ ϕ θ ϕ χ

θ ϕ χ

= − ±

+ + − ±

= ±
− +

+ −

l m l m Y

l m l m Y

( , ) ,
1
2

,
1
2

1
2

1
2

, ( , )

,
1
2

,
1
2

,
1
2

1
2

, ( , )
(2.96)

l
j l m

l m

l m

,
, 1

2

, 1
2

1
2Y

or

θ ϕ
θ ϕ

θ ϕ
≔

− ±

+ − ±

= ± −

+

l m l m Y

l m l m Y
( , )

,
1
2

,
1
2

1
2

1
2

, ( , )

,
1
2

,
1
2

,
1
2

1
2

, ( , )
, (2.97)l

j l m
l m

l m

1
2

,
, 1

2

, 1
2

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
Y

where m is an odd-half integer. The functions Y are called spinor spherical harmonics
or spin-angular functions. The Clebsch–Gordan coefficients in equations (2.96) and
(2.97) are:

− ± = ±
± +

+
l m l m

l m

l
,

1
2

,
1
2

1
2

1
2

,

1
2

2 1
,

(2.98)

+ − ± = ±
∓ +

+
l m l m

l m

l
,

1
2

,
1
2

,
1
2

1
2

,

1
2

2 1
.

(2.99)

The wave functions θ ϕ= ±
( , )l

j l m,1
2Y are, by construction, simultaneous eigenfunc-

tions of ˆ ˆ ˆJ J L, , ,z
2 2 and Ŝ

2. They are also eigenfunctions of the operator ⃗ · ⃗L S . This
follows from ⃗ = ⃗ + ⃗J L S and:

ˆ = ⃗ · ⃗ = ⃗ + ⃗ · ⃗ + ⃗

= ⃗ · ⃗ + ⃗ · ⃗ + ⃗ · ⃗ + ⃗ · ⃗

= ˆ + ˆ + ⃗ · ⃗

J J J L S L S

L L L S S L S S

L S L S

( ) ( )

2 ,

(2.100)

2

2 2
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whence

⃗ · ⃗ = ˆ − ˆ − ˆL S J L S
1
2

( ). (2.101)2 2 2

The eigenvalues of ⃗ · ⃗L S are:

⃗ · ⃗ = + − + −ℏ { }L S j j l l( 1) ( 1)
3
4

; (2.102)
2

2

and, for = +j l 1
2

⃗ · ⃗ = ℏL S l
1
2

; (2.103)2

and, for = −j l 1
2

⃗ · ⃗ = − + ℏL S l
1
2

( 1) . (2.104)2

The operator ⃗ · ⃗L S is called the spin–orbit interaction operator. It plays an
important role in both atoms and nuclei. This is illustrated in figures 2.6(a) and (b).

2.4 Vector spherical harmonics
The vector spherical harmonics are very similar to the spinor spherical harmonics.
They are defined by

Figure 2.6. Spin–orbit interaction ⃗ · ⃗AL S in: (a) the hydrogen atom ( >A 0); (b) the nucleus 15O ( <A 0). The
labelling quantum numbers are for single-particle motion in a central force field. The energy zero for 15O is
arbitrary. Note that the magnitude of the spin–orbit interaction in 15O (and all other nuclei) is enormous:
unlike in atoms, the origin of the spin–orbit interaction in nuclei is not electromagnetic but comes from the
strong force. (Note: the conventional labelling for the hydrogen atom is nlj and for nuclei is n lr j , cf. Volume 1,
figures 12.6 and 12.7.)
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∑θ ϕ ν θ ϕ ξ ν≔ ⃗ = ±
ν

νY Lm JM Y( , ) 1 ( , ) , 0, 1, (2.105)
M,

LJM LM

where

ξ ξ ξ
ξ ξ⃗ = ⃗ ⃗ = ∓

⃗ ± ⃗
±

i
,

( )

2
, (2.106)z

x y
0 1

and ξ ξ ξ⃗ ⃗ ⃗( , , )x y z denote a triple of orthogonal Cartesian unit vectors. They are used in

the multipole expansion of the electromagnetic field, where the ξν⃗ describe photon
polarization (recall that the spin of the photon is ℏ1 ).

2.5 Clebsch–Gordan coefficients and rotation matrices
Clebsch–Gordan coefficients and rotation matrices are related. The connection can
be stated as a theorem:

Theorem 2.2.

∑∑∑= ′ ′ ′′ ′
′

′R R j m j m jm j m j m jm R( ) ( ) ( ), (2.107)
j m m

m m

j

m m

j
mm
j( ) ( )

1 1 2 2 1 1 2 2
( )

1 1

1

2 2

2D D D

where the sum over j is from ∣ − ∣j j1 2 to +j j1 2. (This is an explicit way of stating
equation (2.45), i.e. the Clebsch–Gordan series.)

Proof. Consider

∣ ′ ′ = ∣ ′ ∣ ′

= ′ ′

j m j m R j m j m j m R j m j m R j m

R R

( ) ( ) ( )

( ) ( ),
(2.108)

m m

j

m m

j

1 1 2 2 1 1 2 2 1 1 1 1 2 2 2 2

( ) ( )

1 1

1

2 2

2

D D D

D D

i.e. the left-hand side of equation (2.107) is equal to ′ ′〈 ∣ ∣ 〉j m j m R j m j m( )1 1 2 2 1 1 2 2D . But
this can also be written as

∑∑∑∑

∑∑∑∑ δ

∣ ′ ′ =

× ∣ ′ ′ ′ ′ ′ ′

=

× ′ ′ ′ ′

′ ′

′ ′
′ ′

j m j m R j m j m j m j m jm

jm R j m j m j m j m

j m j m jm R

j m j m j m

( )

( )

( )

,

(2.109)

j m j m

j m j m
mm
j

jj

1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2

1 1 2 2
( )

1 1 2 2

D

D

D

where the completeness relation has been used twice and the reality of the Clebsch–
Gordan coefficients has been used. Evidently, this proves the theorem. □
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A useful application of equation (2.107) is the simplification of an integral over
the product of three spherical harmonics. This commonly occurs in problems
involving electromagnetic transitions in atoms, molecules, and nuclei. From
equation (1.229), i.e.

α β γ π θ ϕ= =
+

∣θ β ϕ α* = =l
l

Y( )( , , 0)
4

2 1
( , ) , (2.110)m

l
lm0

( )
,D

and equation (2.107) for =j l1 1, =j l2 2, j = l, ′ =m 01 , ′ =m 02 , and hence m = 0, i.e.

∑∑=R R l m l m lm l l l R( ) ( ) 0 0 0 ( ), (2.111)
l m

m
l

m
l

m
l

0
( )

0
( )

1 1 2 2 1 2 0
( )

1
1

2
2D D D

substituting equation (2.110) in equation (2.111),

∑∑

π θ ϕ π θ ϕ

π θ ϕ

∴
+ +

=
+

* *

*

l
Y

l
Y

l m l m lm l l l
l

Y

4
2 1

( , )
4

2 1
( , )

0 0 0
4

2 1
( , ).

(2.112)

l m

l m l m

lm

1 2

1 1 2 2 1 2

1 1 2 2

Rearranging and taking the complex conjugate, this gives

∑∑θ ϕ θ ϕ
π

π θ ϕ

=
+ +

×
+

Y Y
l l

l m l m lm

l l l
l

Y

( , ) ( , )
(2 1)(2 1)

4

0 0 0
4

2 1
( , ).

(2.113)l m

l m l m

lm

1 2
1 1 2 2

1 2

1 1 2 2

Then multiplying both sides of equation (2.113) by θ ϕλμ
*Y ( , ) and integrating, the

result is obtained:

∫ θ ϕ θ ϕ θ ϕ
π λ

λ λμ

Ω = + +
+

×

λμ
*Y Y Y

l l

l l l m l m

( , ) ( , ) ( , )d
(2 1)(2 2)

4 (2 1)

0 0 0 ,

(2.114)l m l m
1 2

1 2 1 1 2 2

1 1 2 2

where the orthonormality of the spherical harmonics has been used.

Exercises
2.1. Show that L̂z and Ŝz cannot be included in the mutually commuting set of

operators ˆ ˆ ˆ ˆJ J L S{ , , , }z
2 2 2 , ⃗ = ⃗ + ⃗J L S , because they do not commute with Ĵ

2.
2.2. Show that equation (2.45) holds using the brute-force method, i.e. compute

the dimensions of the left-hand and right-hand sides. (Recall
∑ = += n k k( 1)1

2n
k

1 .)
2.3. Using the recursion relationship, equation (2.71), carry out the derivation

of the general Clebsch–Gordan coefficients for spin–orbit coupling, equa-
tions (2.98) and (2.99).
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2.4. Show that for = = =m m m 01 2 3 and + +j j j1 2 3 odd, all 3-j symbols
are zero.

2.5. From table A.5, obtain the Clebsch–Gordan coefficients in tables A.1
and A.2.

2.6. What are the numerical values of:

(a)
−

2

1

3
2

3
2

1
2

1
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟?

(b)
−

0

0

3
2

3
2

1
2

1
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟?

2.7. Express jmj j1 2 as a linear combination of the basis states j m j m1 1 2 2 , for:
(a) = = = =j j j m1, 2, 1, 0,1 2
(b) = = = =j j j m1, 2, 2, 0.1 2

2.8. The operator for the quadrupole moment of a quantum mechanical body
can be expressed as θ ϕr Y ( , )2

20 in the position representation. Compute the

numerical value of the integral ∫ ∫ θ ϕ θ ϕ θ ϕΩ
π π

*Y Y Yd ( , ) ( , ) ( , )LM LM0 0

2
20 ,

which appears in the expression from the expectation value of the quadru-
pole moment of the body in the state ∣ 〉LM .

2.6 The coupling of many spins and angular momenta and their
recoupling

The coupling of many spins and angular momenta is quite straightforward. It is
done sequentially, e.g. for j m1 1 , j m2 2 , j m3 3 , first couple j m1 1 and j m2 2 to

J M12 12 and then couple J M12 12 and j m3 3 to ∣ 〉JM :

∣ 〉 = ∑ ∣ 〉

×

j j J j JM j m j m j m

j m j m J M J M j m JM

( ) , ;

.
(2.115)

m m,1 2 12 3 1 1 2 2 3 3

1 1 2 2 12 12 12 12 3 3

1 2

However, the order of coupling can be ‘2 with 3 and then 1’, viz.

∑∣ 〉 = ∣ 〉

×

j j j J JM j m j m j m

j m j m J M J M j m JM

( ) ;

;
(2.116)m M,

1 2 3 23 1 1 2 2 3 3

2 2 3 3 23 23 23 23 1 1

2 23

or it could be ‘1 with 3 and then 2’. These coupling schemes are different. For
example, consider =j 1

21 , =j 3
22 , =j 5

23 (ignoring any special symmetrization, e.g.
for fermions):
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= ⊗ = ⊗ =

= = ⊕ = ⊗ =

= = ⊗ = ⊕ = ⊗ =

= = ⊕ = ⊕ = ⊕ =

⊕ = ⊕ = ⊕ = ⊕ =

= = ⊕ = ⊕ = ⊕ = ⊕ =

j j j

J J j

J j J j

J J J J

J J J J

J J J J J

1
2

3
2

5
2

{( 1) ( 2)}
5
2

( 1)
5
2

( 2)
5
2

3
2

5
2

7
2

1
2

3
2

5
2

7
2

9
2

1
2

3
2

5
2

7
2

9
2

,

(2.117)

1 2 3

12 12 3

12 3 12 3

2 2 2

⎜ ⎟

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

or,

= ⊗ = ⊗ =

= = ⊗ = ⊕ = ⊕ = ⊕ =

j j j

j J J J J

1
2

3
2

5
2

1
2

{( 1) ( 2) ( 3) ( 4)}
(2.118)

1 2 3

1 23 23 23 23

⎜ ⎟⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

∴ = ⊗ = ⊗ =

= = ⊗ = ⊕ = ⊗ =

⊕ = ⊗ = ⊕ = ⊗ =

= = ⊕ = ⊕ = ⊕ =

⊕ = ⊕ = ⊕ = ⊕ =

j j j

j J j J

j J j J

J J J J

J J J J

1
2

3
2

5
2

1
2

( 1)
1
2

( 2)

1
2

( 3)
1
2

( 4)

1
2

3
2

3
2

5
2

5
2

7
2

7
2

9
2

.

(2.119)

1 2 3

1 23 1 23

1 23 1 23

⎜ ⎟

⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

The intermediate couplings above are clearly different. In actual physical
situations, interactions may exist between j1, j2, and j3, e.g. magnetic dipole–dipole
interactions, and this can lead to a preference of coupling scheme. A good example is
the hydrogen atom where spin–orbit coupling for the electron dominates and
coupling the proton spin is secondary (weaker). By contrast, in positronium
(a hydrogen-like bound state of an electron and a positron) spin–spin coupling
dominates. This matters because the uncoupled or partially coupled bases are mixed
by the interactions and the choice of intermediate coupling is usually the partially
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coupled basis which is least mixed by the final coupling. For example, the (electron)
spin–orbit coupled basis in the hydrogen atom is only slightly mixed when it is
coupled to the proton spin; if the proton and electron spins were to be coupled first,
the subsequent coupling of the orbital angular momentum would mix states in the
spin–spin basis more strongly.

Recoupling and its coefficients is defined with respect to the coupled bases, e.g.
j j J j JM( ) , ;1 2 12 3 , j j J j JM( ) , ;2 3 23 1 , and j j J j JM( ) , ; ;1 3 13 2 or with respect to the
coupling of four (or more) spin-angular momenta. Thus,

= ∑ ×j j J j JM j j J j JM j j J j J j j J j J( ) , ; ( ) , ; ( ) , ( ) , . (2.120)J2 3 23 1 1 2 12 3 1 2 12 3 2 3 23 112

The coefficient 〈 ∣ 〉j j J j J j j J j J( ) , ( ) ,1 2 12 3 2 3 23 1 is called a recoupling coefficient. A useful
representation of the vectors involved (not quantum mechanically correct) is
provided by a tetrahedron (see figure 2.7).

2.6.1 6-j coefficients

The recoupling coefficient for three spin-angular momenta is presented in a number
of various forms:

= + +j j J j J j j J j J J J W j j Jj J J( ) , ( ) , (2 1)(2 1) ( ; ), (2.121)1 2 12 3 2 3 23 1 12 23 1 2 3 12 23

= − + ++ + +j j J j J j j J j J J J
j j J
j J J

( ) , ( ) , ( 1) (2 1)(2 1) . (2.122)j j j J
1 2 12 3 2 3 23 1 12 23

1 2 12

3 23
1 2 3

⎧⎨⎩
⎫⎬⎭

The W are called Racah W coefficients; the {} are called Wigner 6-j coefficients.

1

Figure 2.7. A depiction of ⃗j1, ⃗j2, and ⃗j3 to ⃗J showing the alternative intermediate couplings ⃗J12 and ⃗J23, cf.
equation (2.120).
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These recoupling coefficients can be expressed in terms of coupling coefficients, e.g.

∑

δ δ

−
− −

×
−

′
′

=
+

+ + + + +

′ ′

J J j
M M M

J J j
M M m

J J j
M M m

j j j
m m m

j

j j j
J J J

( 1)

1
2 1

,

(2.123)

M M M m m, , , ,

J J J M M M

j j m m

1 2 3

1 2 3

2 3 1

2 3 1

3 1 2

3 1 2

1 2 3

1 2 3

3

1 2 3

1 2 3

1 2 3 1 2

1 2 3 1 2 3

3 3 3 3

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

⎧⎨⎩
⎫⎬⎭

where the ‘( )’ are 3-j coefficients.
The recoupling coefficients possess a high degree of permutational symmetry, e.g.

λ λ λ λ λ λ
=l l l l l l

, (2.124)1 2 3

1 2 3

3 1 2

3 1 2

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭

λ λ λ
λ λ

λ
=l l l l

l l
. (2.125)1 2 3

1 2 3

1 2 3

1 2 3

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭

The coupling of four angular momenta, j1, j2, j3, j4 can be carried out in a variety
of ways, e.g.

j j J j j J JM j j J j j J JM( ) , ( ) ; or ( ) , ( ) ; . (2.126)1 2 12 3 4 34 1 3 13 2 4 24

The recoupling coefficient between this pair is defined:

j j J j j J JM j j J j j J JM( ) , ( ) ; ( ) , ( ) ; . (2.127)1 2 12 3 4 34 1 3 13 2 4 24

2.6.2 9-j coefficients

The recoupling coefficients for four spin-angular momenta are related to the so-
called 9-j coefficients by:

= + + + +

j j J j j J JM j j J j j J JM

J J J J
j j J
j j J

J J J

( ) , ( ) ; ( ) , ( ) ;

(2 1)(2 1)(2 1)(2 1) ,
(2.128)

1 2 12 3 4 34 1 3 13 2 4 24

12 34 13 24

1 2 12

3 4 34

13 24

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

where ‘{ }’ is the 9-j coefficient.
An expression for the 9-j coefficient in terms of 3-j coefficients is:

∑=

×

J J J
M M M

j j J

j j J

J J J

j j J

m m M

j j J

m m M

j j J

m m M

j j J

m m M
J J J
M M M

;

(2.129)

12 24

13 24

1 2 12

3 4 34

13 24

1 2 12

1 2 12

3 4 34

3 4 34

1 3 13

1 3 13

2 4 24

2 4 24

12 34

12 34

m m m m M M, , , , ,1 2 3 4 13 24

⎛
⎝⎜

⎞
⎠⎟
⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟
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and in terms of the 6-j coefficients is:

∑= − +

×

j j J
j j J

J J J

j
j j J

J J j

j j J
j j J

J J J
j j j

( 1) (2 1)

.

(2.130)j

j
1 2 12

3 4 34

13 24

2 1 3 13

24

2 4 24

3 34

12 34

1 2

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭

The recoupling of four spin-angular momenta arises, for example, if it is desired
to transform from ‘J–J’ to ‘L–S’ coupling in atoms.
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Chapter 3

Vector and tensor operators

The vector and tensor character of operators is described. This is developed into
identifiable commutator bracket relationships with the operator components of
angular momentum. Irreducible tensor operators are introduced as outer products of
bras and kets. The Wigner–Eckart theorem is proved using the outer-product
structure of irreducible tensor operators. The projection theorem is proved.

Concepts: vector operators; tensor operators; spherical tensor operators; irredu-
cible outer-product operators; Wigner–Eckart theorem; projection theorem.

All operators can be classified in terms of their tensor properties. The value of
knowing these properties is that it tells us how the operator transforms under
rotations. Knowing the transformation properties of an operator under rotations
enables us to greatly simplify the computation of its matrix elements. The simplest
possible tensorial classification of an operator is when it is a scalar or rank-zero
tensor. Such an operator is invariant under rotations. The next simplest possibility is
a vector or rank-one tensor operator.

3.1 Vector operators
Operators corresponding to ⃗r , ⃗p , ⃗S , ⃗L, ⃗J are vector operators. All of these possess
the standard Cartesian form

⃗ = ⃗ ˆ + ⃗ ˆ + ⃗ ˆA e A e A e A , (3.1)x x y y z z

where ⃗ ⃗ ⃗e e e, ,x y z are unit Cartesian base vectors. We reiterate that vector quantities are
given without explicit indication of whether or not they are operators, to avoid
cumbersome notation. Thus, the reader must interpret when an operator has been
introduced. The vector character of such an operator is manifest in the expectation values
α α〈 ∣ ˆ ∣ 〉Ax , α α〈 ∣ ˆ ∣ 〉Ay , α α〈 ∣ ˆ ∣ 〉Az , for some state α∣ 〉, which form a vector in (3, ). Thus,
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α α
α α

α α

α α
α α

α α

〈 ∣ ˆ ∣ 〉
〈 ∣ ˆ ∣ 〉

〈 ∣ ˆ ∣ 〉

=
〈 ∣ ˆ ∣ 〉
〈 ∣ ˆ ∣ 〉

〈 ∣ ˆ ∣ 〉

A

A

A

R

A

A

A

( ) . (3.2)
R x R

R y R

R z R

x

y

z

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

For example, for ϕ=R R ( )z

α ϕ α∣ 〉 = − ˆ
ℏ

∣ 〉iJ
exp ; (3.3)R

z
⎧⎨⎩

⎫⎬⎭
and

ϕ ϕ
ϕ ϕ

〈 ˆ 〉
〈 ˆ 〉

〈 ˆ 〉

=
− 〈 ˆ 〉

〈 ˆ 〉

〈 ˆ 〉

A

A

A

A

A

A

cos sin 0
sin cos 0
0 0 1

, (3.4)
x R

y R

z R

x

y

z

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

where α α〈 ˆ 〉 ≔ 〈 ∣ ˆ ∣ 〉A Ax x , α α〈 ˆ 〉 ≔ 〈 ∣ ˆ ∣ 〉A Ax R R x R, etc. Thus,

α ϕ ϕ α ϕ ϕ〈 ∣
ˆ
ℏ

ˆ − ˆ
ℏ

∣ 〉 = 〈 ˆ 〉 − 〈 ˆ 〉iJ
A

iJ
A Aexp exp cos sin . (3.5)z

x
z

x y

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭

For small ϕ,

α ϕ ϕ α ϕ〈 ∣ ˆ +
ˆ
ℏ

ˆ ˆ − − ˆ
ℏ

∣ 〉 = 〈 ˆ 〉 − 〈 ˆ 〉I
iJ

A I
iJ

A A , (3.6)z
x

z
x y

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

α α α ϕ α α ϕ α ϕ ϕ∴ 〈 ∣ ˆ ∣ 〉 + 〈 ∣
ˆ
ℏ

ˆ ∣ 〉 − 〈 ∣ ˆ ˆ
ℏ

∣ 〉 + = 〈 ˆ 〉 − 〈 ˆ 〉A
iJ

A A
iJ

O A A( ) , (3.7)x
z

x x
z

x y
2

ϕ
α α α α ϕ∴

ℏ
〈 ∣ ˆ ˆ ∣ 〉 − 〈 ∣ ˆ ˆ ∣ 〉 = −〈 ˆ 〉

i
J A A J A{ } , (3.8)z x x z y

α α α α∴ 〈 ∣
ℏ

ˆ ˆ − ˆ ˆ ∣ 〉 = 〈 ∣ − ˆ ∣ 〉{ }i
J A A J A( ) ( ) , (3.9)z x x z y

and since α∣ 〉 is an arbitrary state,

∴ ˆ ˆ = ℏ ˆJ A i A[ , ] . (3.10)z x y

Proceeding similarly:

ˆ ˆ = − ℏ ˆJ A i A[ , ] , (3.11)z y x

ˆ ˆ =J A[ , ] 0, (3.12)z z
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ˆ ˆ =J A[ , ] 0, (3.13)x x

ˆ ˆ = ℏ ˆJ A i A[ , ] , (3.14)x y z

ˆ ˆ = − ℏ ˆJ A i A[ , ] , (3.15)x z y

ˆ ˆ = − ℏ ˆJ A i A[ , ] , (3.16)y x z

ˆ ˆ =J A[ , ] 0, (3.17)y y

ˆ ˆ = ℏ ˆJ A i A[ , ] . (3.18)y z x

Note the cyclic permutational structure of the indices, i.e.

εˆ ˆ = ℏ ˆJ A i A[ , ] . (3.19)i j ijk k

Equations (3.10)–(3.18) provide a definition of a vector operator. It is an
alternative definition to equation (3.2). It can be noted that the case ⃗ = ⃗A J , i.e.

ˆ ˆ = ℏ ˆ ˆ ˆ = ℏ ˆ ˆ ˆ = ℏ ˆJ J i J J J i J J J i J[ , ] , [ , ] , [ , ] , (3.20)x y z y z x z x y

is just a special case of equations (3.10)–(3.18). We can also write immediately,

ˆ ˆ = ℏˆJ y i z[ , ] , etc., (3.21)x

ˆ ˆ = ℏ ˆJ p i p[ , ] , etc. (3.22)x y z

3.2 Tensor operators
Cartesian tensor operators of rank r can be introduced in a manner similar to
Cartesian vector operators:

∑ˆ = ˆ ⃗ ⃗ ⃗ … ∈
⋯

…T e e e i j k x y zT , , , , , , (3.23)
ijk

r
ijk i j k

( )

where the ˆ …Tijk are operators and the ⃗e are unit Cartesian vectors. For example,

∑ˆ = ˆ ⃗ ⃗ ∈T e e i j x y zT , , , , , (3.24)
ij

ij i j
(2)

∴ ˆ = ˆ ⃗ ⃗ + ˆ ⃗ ⃗ + ⋯ + ˆ ⃗ ⃗T e e T e e T e eT , (3.25)xx x x xy x y zz z z
(2)

which was introduced in the form

=T UV (3.26)ij i j

in equation (1.79). Here, the Tij are operators.
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The transformation of the Tij under rotations, equation (1.80), was shown to be
reducible, equations (1.81)–(1.90). Thus, a scalar T (equation (1.81)), a vector ⃗A
(equations (1.82)–(1.84)), and a five-component quantity Sij (equations (1.85)–
(1.90)) were obtained. These linear combinations of the Tij are simply related to
the spherical harmonics. For T, let = = = = = =U V x U V y U V z, ,1 1 2 2 3 3 , then

= ∼T r Y . (3.27)2
00

For ⃗A, let θ ϕ θ ϕ θ= = =A A A A Asin cos , sin sin , cos1 2 3 , then

θ θ ϕ± = ∼ϕ±
±A iA A e Ysin ( , ), (3.28)i

1 2 1, 1

θ θ ϕ= ∼A A Ycos ( , ). (3.29)3 10

For the Sij, again let = = = = = =U V x U V y U V z, ,1 1 2 2 3 3 , then

θ ϕ ϕ= =S xy r sin cos sin , (3.30)12
2 2

θ θ ϕ= =S yz r sin cos sin , (3.31)23
2

θ θ ϕ= =S zx r sin cos cos , (3.32)31
2

θ ϕ= − = −S x
r

r
r

3
sin cos

3
, (3.33)11

2
2

2 2 2
2

θ ϕ= − = −S y
r

r
r

3
sin sin

3
; (3.34)22

2
2

2 2 2
2

whence,

θ θ ϕ− ± = ∼ϕ±
±S S iS r e r Y2 sin ( , ), (3.35)i

11 22 12
2 2 2 2

2, 2

θ θ θ ϕ± = ∼ϕ±
±S iS r e r Ysin cos ( , ), (3.36)i

31 23
2 2

2, 1

θ θ ϕ+ = − − ∼S S
r

r Y
3

(3 cos 1) ( , ). (3.37)11 22

2
2 2

2,0

The spherical harmonics were shown to transform as

∑θ ϕ θ ϕ=
′

′
*

′Y R Y( , ) ( ) ( , ) (3.38)
m

lm R R mm
l

lm
( )D

(cf. equation (1.256)). Thus, we define a spherical tensor operator as one that
transforms under rotations as

∑ˆ ≔ ˆ
′=−

+

′
*

′( )T R T( ) , (3.39)
q k

k

q
k

R
qq
k

q
k( ) ( ) ( )D
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i.e.

∑ˆ = ˆ
′=−

+
†

′
*

′R T R R T( ) ( ) ( ) , (3.40)
q k

k

q
k

qq
k

q
k( ) ( ) ( )D D D

or

∑ˆ = ˆ
′=−

+
†

′ ′R T R R T( ) ( ) ( ) . (3.41)
q k

k

q
k

qq
k

q
k( ) ( ) ( )D D D

Equations (3.39)–(3.41) provide definitions of a spherical tensor operator of rank k.
By considering the infinitesimal form of equation (3.41), we can obtain, as we did

for vector operators, an algebraic definition of spherical tensor operators, viz.

∑ϕ ϕ ϕˆ −
⃗ · ⃗
ℏ

ˆ ˆ +
⃗ · ⃗
ℏ

= ˆ 〈 ′∣ ˆ −
⃗ · ⃗
ℏ

∣ 〉
′

′I
iJ n

T I
iJ n

T kq I
iJ n

kq , (3.42)
q

q
k

q
k( ) ( )⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

∑∴ ⃗ · ⃗ ˆ = ˆ 〈 ′∣ ⃗ · ⃗∣ 〉
′

′J n T T kq J n kq, . (3.43)
q

q
k

q
k( ) ( )⎡⎣ ⎤⎦

Then, from equation (3.43) for ⃗ = ⃗n ez

∑

∑

ˆ ˆ = ˆ 〈 ′∣ ˆ ∣ 〉

= ˆ ℏ〈 ′∣ 〉

′

′

′

′

J T T kq J kq

T q kq kq

,

,
(3.44)q

q

z q
k

q
k

z

q
k

( ) ( )

( )

⎡⎣ ⎤⎦

∴ ˆ ˆ = ℏ ˆJ T qT, . (3.45)z q
k

q
k( ) ( )⎡⎣ ⎤⎦

Similarly, from equation (3.43), for ⃗ = ⃗ ± ⃗n e ie( )1

2 x y ,

ˆ ˆ = ℏ ∓ ± + ˆ± ±J T k q k q T, ( )( 1) . (3.46)q
k

q
k( )

1
( )⎡⎣ ⎤⎦

An alternative view of spherical tensor operators can be obtained by considering
the general decomposition of an operator over a complete set of states
∣ 〉 = …p p n{ , 1, , }:

∑∑ˆ = ∣ 〉 〈 ∣ ˆ∣ 〉 〈 ∣
= =

A p p A q q , (3.47)
p

n

q

n

1 1

∑∴ ˆ = ∣ 〉〈 ∣
=

A A p q . (3.48)
p q

n

, 1

pq
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Thus, any operator Â can be decomposed into a linear combination of ‘elementary’
or ‘unit’ operators = ∣ 〉〈 ∣e p qpq made of outer products of bras and kets. This can be
done in any basis which is complete. Of particular interest is such a decomposition
over a basis which has well-defined symmetry properties with respect to a group, e.g.
∣ 〉jm{ , = ⋯j 0, , 1, ;1

2
= − − + … +m j j j, 1, , } and SU(2).

If the elementary operators are combined with amplitudes equal to the vector
coupling coefficients of the group, the operators so formed transform as irreducible
representations of the group. Thus, for SU(2), from the transformation properties of
∣ 〉jm and 〈 ∣jm , equations (1.244) and (1.248), we can construct the irreducible
spherical tensor operators:

∑ˆ = 〈 ∣ 〉∣ 〉〈 − ∣ − −T j j j m j m kq j m j m( ) , ( 1) , (3.49)
m m

q
k j m

1 2
( )

1 1 2 2 1 1 2 2

1 2

2 2

where + ⩾ ⩾ ∣ − ∣j j k j j1 2 1 2 , + =m m q1 2 , and the phase factor − −( 1) j m2 2 is
obtained and discussed in section 1.13. This construction is seen to fulfil the
definition given in equation (3.41)

∑

∑ ∑ ∑

ˆ

= 〈 ∣ 〉 ∣ 〉〈 − ∣ −

= 〈 ∣ 〉 ∣ ′ 〉 〈 − ′ ∣ −
′ ′

†

† −

′ ′
− ′

R T j j R

j m j m kq R j m j m R

j m j m kq j m R j m R

( ) ( ) ( )

( ) , ( )( 1)

( ) , ( )( 1) ,

(3.50)m m

m m m m

,

,

q
k

j m

m m
j

m m
j j m

1 2
( )

1 1 2 2 1 1 2 2

1 1 2 2 1 1
( )

2 2
( )

1 2

2 2

1 2 1

1 1
1

2

2 2
2 2 2

D D
D D

D D

where equations (1.244) and (1.248) have been used; hence using equation (2.107)
(theorem 2.2)

∑ˆ = 〈 ∣ 〉〈 ′ ′ ∣ ′〉

× 〈 ∣ 〉 ∣ ′ 〉〈 − ′ ∣ −
′ ′ ′

†

′
− ′

R T j j R j m j m kq j m j m jm

j m j m jm j m j m

( ) ( ) ( )

, ( 1) ,
(3.51)m m m m m m j, , , , , ,

q
k

m m
j j m

1 2
( )

1 1 2 2 1 1 2 2

1 1 2 2
( )

1 1 2 2

1 2 1 2

2 2

D D

D

and from the orthonormality of the Clebsch–Gordan coefficients, equation (2.66)
and (2.69),

∑
∴ ˆ

= 〈 ′ ′ ∣ ′〉 ∣ ′ 〉〈 − ′ ∣ −
′ ′

†

′
− ′

R T j j R

j m j m km R j m j m

( ) ( ) ( )

( ) , ( 1) , (3.52)

m m m, ,

q
k

m q
k j m

1 2
( )

1 1 2 2
( )

1 1 2 2

1 2

2 2

D D
D

whence

∑ˆ = ˆ
′

†
′ ′R T j j R R T j j( ) ( ) ( ) ( ) ( ) , (3.53)

m
q
k

m q
k

m
k

1 2
( ) ( )

1 2
( )D D D

where equation (3.49) has been used on the right-hand side. Equation (3.41) then
follows by identifying ′ =− − + … +m k k k( , 1, , ) with ′q .
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To test the construction manifest in equation (3.49), consider the possibilities for
=j 1

21 , =j 1
22 :

(a)

∑ˆ = − −
=−

−T m m m m
1
2

1
2

1
2

1
2

00
1
2

1
2

, ( 1) , (3.54)
m m m,

m

0

(0)

1 2 1 2
1
2

1 2 1

2
⎛
⎝⎜

⎞
⎠⎟

∴ ˆ = − −

+ − − − −

+

−

T
1
2

1
2

1
2

1
2

1
2

,
1
2

00
1
2

1
2

1
2

1
2

( 1)

1
2

,
1
2

,
1
2

1
2

00
1
2

,
1
2

1
2

,
1
2

( 1) ,

(3.55)0

(0)
1
2

1
2

1
2

1
2

⎛
⎝⎜

⎞
⎠⎟

and from table A.1

− = − − =1
2

,
1
2

,
1
2

,
1
2

00
1

2
,

1
2

1
2

1
2

,
1
2

00
1

2
, (3.56)

∴ ˆ = − + − −T
1
2

1
2

1

2

1
2

1
2

1
2

1
2

1
2

,
1
2

1
2

,
1
2

, (3.57)
0

(0)⎛
⎝⎜

⎞
⎠⎟

⎧⎨⎩
⎫⎬⎭

∴ ˆ = − ˆT I
1
2

1
2

1

2
, (3.58)

0

(0)⎛
⎝⎜

⎞
⎠⎟

i.e. a scalar (where the resolution of the identity over the basis
∣ 〉 ∣ − 〉{ , , }1

2
1
2

1
2

1
2

has been used).
(b)

∑ˆ = − −

= − −

= −

−

−

T m m m m
1
2

1
2

1
2

1
2

11
1
2

1
2

, ( 1)

1
2

1
2

1
2

1
2

11
1
2

1
2

1
2

,
1
2

( 1)

1
2

1
2

1
2

,
1
2

.

(3.59)

m m

m

1

(1)

1 2 1 2
1
2

1
2

1
2

1 2

2
⎛
⎝⎜

⎞
⎠⎟

∴ ˆ = + −T
1
2

1
2

, (3.60)
1

(1)⎛
⎝⎜

⎞
⎠⎟

where ∣+〉 ≔ ∣ 〉1
2

1
2

and ∣−〉 ≔ ∣ − 〉,1
2

1
2
.
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(c)

∑ˆ = − −

= − −

+ − − − −

−

+

−

T m m m m
1
2

1
2

1
2

1
2

10
1
2

1
2

, ( 1)

1
2

1
2

1
2

,
1
2

10
1
2

1
2

1
2

1
2

( 1)

1
2

,
1
2

,
1
2

1
2

10
1
2

,
1
2

1
2

,
1
2

( 1) .

(3.61)

m m

m

0

(1)

1 2 1 2
1
2

1
2

1
2

1
2

1
2

1 2

2
⎛
⎝⎜

⎞
⎠⎟

and from table A.1

− = − =1
2

1
2

1
2

,
1
2

10
1

2
,

1
2

,
1
2

,
1
2

1
2

10
1

2
, (3.62)

∴ ˆ = − + − −T
1
2

1
2

1

2

1
2

1
2

1
2

1
2

1
2

,
1
2

1
2

,
1
2

, (3.63)
0

(1)⎛
⎝⎜

⎞
⎠⎟

⎧⎨⎩
⎫⎬⎭

∴ ˆ = − − − + +T
1
2

1
2

1

2
{ }. (3.64)

0

(1)⎛
⎝⎜

⎞
⎠⎟

(d)

∑ˆ = − − −

= − − − − −

= − −

−

−

−

T m m m m
1
2

1
2

1
2

1
2

1, 1
1
2

1
2

, ( 1)

1
2

,
1
2

,
1
2

,
1
2

1, 1
1
2

,
1
2

1
2

1
2

( 1)

1
2

,
1
2

1
2

1
2

.

(3.65)

m m

m

1

(1)

1 2 1 2
1
2

1
2

1
2

1 2

2
⎛
⎝⎜

⎞
⎠⎟

∴ ˆ = − − +
−

T
1
2

1
2

. (3.66)
1

(1)⎛
⎝⎜

⎞
⎠⎟

The results of (b), (c) and (d),

ˆ = ∣+〉〈−∣ ˆ = ∣−〉〈−∣ − ∣+〉〈+∣ ˆ = −∣−〉〈+∣−T T T,
1

2
( ), , (3.67)1

(1)
0
(1)

1
(1)

have the matrix representation

ˆ ↔ ˆ ↔ − ˆ ↔
−−T T T0 1

0 0
,

1

2
1 0

0 1
, 0 0

1 0
. (3.68)1

(1)
0
(1)

1
(1)⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
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in the ∣+〉 ∣ − 〉{ , } basis, whence for

σˆ ≔ −
ˆ − ˆ

↔ =
−( )

T
T T

2

1

2
0 1
1 0

1

2
, (3.69)

x x

1
(1)

1
(1)

⎜ ⎟⎛
⎝

⎞
⎠

σˆ ≔ −
ˆ + ˆ

↔ − =
−( )

T i
T T

i
i2

1

2
0

0
1

2
, (3.70)

y y

1
(1)

1
(1)

⎜ ⎟⎛
⎝

⎞
⎠

σˆ ≔ − ˆ ↔
−

=T T
1

2
1 0
0 1

1

2
, (3.71)z z0

(1) ⎜ ⎟⎛
⎝

⎞
⎠

the rank-1 tensor operator (i.e. vector operator) character is revealed.
Spherical tensor operators can be formed by ‘coupling’ together other spherical

tensor operators. This is proved by theorem 3.1.

Theorem 3.1. For X̂q
k( )

1

1 , Ẑq
k( )

2

2 which are irreducible SU(2) tensors of rank k1 and k2,
respectively:

∑∑ˆ = 〈 ∣ 〉 ˆ ˆT k q k q kq X Z (3.72)
q q

q
k

q
k

q
k( )

1 1 2 2
( ) ( )

1 2

1

1

2

2

is an irreducible SU(2) tensor of rank k.

Proof.

∑

∑ ∑ ∑

ˆ = 〈 ∣ 〉 ˆ ˆ

= 〈 ∣ 〉 ˆ ˆ
′ ′

† † †

′ ′ ′ ′

R T R k q k q kq R X R R Z R

k q k q kq X R Z R

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ),
(3.73)

q q

q q q q

,

,

q
k

q
k

q
k

q
k

q q
k

q
k

q q
k

( )
1 1 2 2

( ) ( )

1 1 2 2
( ) ( ) ( ) ( )

1 2

1

1

2

2

1 2 1

1

1

1 1

1

2

2

2

2 2

2

D D D D D D

D D

where equation (3.41) has been used. Then using equation (2.107) (theorem 2.2):

∑

∑ ∑

〈 ∣ 〉 ˆ ˆ

= 〈 ∣ 〉 ˆ ˆ 〈 ′ ′ ∣ ″ ′〉〈 ∣ ″ ″〉

′ ′

′ ′ ″ ′ ″

′ ′ ′ ′

′ ′ ′ ′′
′′

k q k q kq X Z R R

k q k q kq X Z k q k q k q k q k q k q R

( ) ( )

( ),
(3.74)

q q q q

q q q q k q q

q
k

q
k

q q
k

q q
k

q
k

q
k

q q
k

1 1 2 2
( ) ( ) ( ) ( )

1 1 2 2
( ) ( )

1 1 2 2 1 1 2 2
( )

1 2 1 2

1

1

2

2

1 1

1
2 2

2

1 2 1 2

1

1

2

2

D D

D

∑

∑ δ δ

∴ 〈 ∣ 〉 ˆ ˆ

= 〈 ′ ′ ∣ ″ ′〉 ˆ ˆ
′ ′

″ ′ ′ ′ ″

′ ′ ′ ′

″ ″ ′ ′′
′′

′ ′

k q k q kq X Z R R

k q k q k q R X Z

( ) ( )

( ) ,
(3.75)

q q q q

k q q q q

q
k

q
k

q q
k

q q
k

kk qq q q
k

q
k

q
k

1 1 2 2
( ) ( ) ( ) ( )

1 1 2 2
( ) ( ) ( )

1 2 1 2

1

1

2

2

1 1

1
2 2

2

1 2

1

1

2

2

D D

D
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where the orthonormality of the Clebsch–Gordan coefficients, equation (2.69), has
been used, whence

∑ ∑= 〈 ′ ′ ∣ ′〉 ˆ ˆ
′ ′ ′

′ ′ ′k q k q kq X Z R( ) (3.76)
q q q

q
k

q
k

q q
k

1 1 2 2
( ) ( ) ( )

1 2

1

1

2

2
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟D

∑= ˆ
′

′ ′T R( ). (3.77)
q

q
k

q q
k( ) ( )D

Thus, Tq
k( ), defined by equation (3.72), obeys equation (3.53). □

The statement of theorem 3.1 should be compared with the definition of the
Clebsch–Gordan coefficients, viz.

∑∑∣ 〉 = ∣ 〉〈 ∣ 〉jm j m j m j m j m jm , (3.78)
m m

1 1 2 2 1 1 2 2

1 2

cf.

∑∑ˆ = ˆ ˆ 〈 ∣ 〉T X Z j m j m jm . (3.79)
m m

m
j

m
j

m
j( ) ( ) ( )

1 1 2 2

1 2

1

1

2

2

This similarity exists because both spherical tensor operators and angular momen-
tum eigenkets are irreducible representations of SO(3).

As an example of the construction of higher-rank spherical tensor operators out
of lower rank spherical tensor operators, consider the operators:

ˆ ≔ ˆ ˆ ≔ ˆ ± ˆ±U U U U iU, , (3.80)z x y0 1

ˆ ≔ ˆ ˆ ≔ ˆ ± ˆ±V V V V iV, , (3.81)z x y0 1

where ⃗ = ˆ ˆ ˆ ⃗ = ˆ ˆ ˆU U U U V V V V( , , ), ( , , )x y z x y z . Equations (3.80) and (3.81) define two
spherical tensors of rank 1. Then we can use theorem 3.1 to form:

ˆ = 〈 ± ± ∣ ± 〉 ˆ ˆ = ˆ ˆ

ˆ = 〈 ± ∣ ± 〉 ˆ ˆ + 〈 ± ∣ ± 〉 ˆ ˆ
± ± ± ± ±

± ± ±

T U V U V

T U V U V

1, 1, 1, 1 2, 2 ,

1, 1, 1, 0 2, 1 101, 1 2, 1
(3.82)2

(2)
1 1 1 1

1
(2)

1 0 0 1

= ˆ ˆ + ˆ ˆ± ±U V U V
1

2
( ), (3.83)1 0 0 1

and

ˆ = 〈 − ∣ 〉 ˆ ˆ + 〈 ∣ 〉 ˆ ˆ + 〈 − ∣ 〉 ˆ ˆ

= ˆ ˆ + ˆ ˆ + ˆ ˆ
+ − − +

+ − − +

T U V U V U V

U V U V U V

111, 1 2, 0 1010 20 1, 111 20
1

6
( 2 ).

(3.84)
0
(2)

1 1 0 0 1 1

1 1 0 0 1 1
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Spherical tensor operators possess a structure (with respect to rotations) that
greatly simplifies the computation of their matrix elements in many cases. This
simplification is embodied in the Wigner–Eckart theorem. This can be proved in a
variety of ways: the method used here is not unique.

3.3 Matrix elements of spherical tensor operators and the Wigner–
Eckart theorem

Theorem 3.2. (The Wigner–Eckart Theorem.) If an operator, T̂q
k( )
can be expressed

in the form ˆ ∑ ˆT T j j( )
k

j j q
k( )

1 2
( )

1 2
, where T̂

k( ) is rotationally invariant and T̂ j j( )q
k

1 2
( ) is

given by equation (3.49), then

α α〈 ′ ′ ′∣ ˆ ∣ 〉 = × 〈 ∣ ′ ′〉j m T jm C jmkq j m; ; , (3.85)q
k( )

where α α′, are quantum numbers other than the SU(2) quantum numbers ( j m, )
that are needed to label the states, and C is a rotationally invariant quantity that
depends on α α′ ′j j, , , , and k.

Proof.

∑

∑

ˆ = ˆ 〈 ∣ 〉∣ 〉〈 − ∣ −

= 〈 ∣ 〉∣ 〉 ˆ 〈 − ∣ −

−

−

T T j m j m kq j m j m

j m j m kq j m T j m

, ( 1)

, ( 1) .
(3.86)

j j m m

j j m m

, , ,

, , ,

q
k k j m

k j m

( ) ( )
1 1 2 2 1 1 2 2

1 1 2 2 1 1
( )

2 2

1 2 1 2

2 2

1 2 1 2

2 2

Further, the state α∣ 〉jm; can be written α∣ 〉 ⊗ ∣ 〉j jm where α∣ 〉j is rotationally
invariant. (An example of Tq

k( ) would be θ ϕR r Y( ) ( , )nl lm , in a position representa-
tion.) Then,

∑α α α

α

〈 ′ ′ ′∣ ˆ ∣ 〉 = 〈 ∣ 〉〈 ′ ′∣ ⊗ 〈 ′ ′∣ 〉

× ˆ 〈 − ∣ 〉 ⊗ ∣ 〉 − −

j m T jm j m j m kq j j m j m

T j m jm j

; ;

, ( 1) ,

(3.87)j j m m, , ,
q

k

k j m

( )
1 1 2 2 1 1

( )
2 2

1 2 1 2

2 2

α α α α∴ 〈 ′ ′ ′∣ ˆ ∣ 〉 = 〈 ′ ′ − ∣ 〉〈 ′ ′∣ ˆ ∣ 〉 − +j m T jm j m j m kq j T j; ; , ( 1) . (3.88)q
k k j m( ) ( )

To permute the Clebsch–Gordan coefficient, using equation (2.77):

〈 ′ − ∣ 〉 = + −
′
′ − −

− ′+ −jm j m kq k
j j k
m m q

, 2 1 ( 1) , (3.89)j j q
⎛
⎝⎜

⎞
⎠⎟

and

′
′ − −

= −
′

− ′
= −

′
− ′

′+ + ′+ +j j k
m m q

j j k
m m q

j k j
m q m

( 1) ( 1) . (3.90)j j k j j k
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
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∴ 〈 ′ ′ − ∣ 〉 = +
′ +

− 〈 ∣ ′ ′〉− ′+ − + ′+ + + − + ′j m j m kq
k

j
jmkq j m,

2 1

2 1
( 1) , (3.91)j j q j j k j k m

α α α α∴ 〈 ′ ′ ′∣ ˆ ∣ 〉 = 〈 ∣ ′ ′〉 − +
′ +

〈 ′ ′∣ ˆ ∣ 〉j m T jm jmkq j m
k
j

j T j; ; ( 1)
2 1
2 1

, (3.92)q
k j k( ) 2 ( )

where ′ = +m m q and − = +−( 1) 1j m2( ) have been used to simplify the phase. □

The Wigner–Eckart theorem can provide an enormous saving in computational
labour in many cases. Manifestly, from the Clebsch–Gordan coefficient 〈 ∣ ′ ′〉jmkq j m
it follows that:

(a)

′ = +m m q; (3.93)

(b)

+ ⩾ ′ ⩾ ∣ − ∣j k j j k . (3.94)

These are called selection rules. Thus, for a tensor operator of rank zero, = =k q0, 0,
and from (i) and (ii) ′ = ′ =j j m m, . For a vector operator, it can be expressed as a
linear combination of rank-1 spherical tensor operators and = = ±k q1, 0, 1. Then,
from (i) and (ii) Δ ≡ ′ − = ± Δ = ′ − = ±j j j m m m0, 1, 0, 1, and for = Δ =j j0, 1.
These are the selection rules for electric dipole radiation.

A more subtle consequence of the Wigner–Eckart theorem is that all matrix
elements of a spherical tensor operator (k) between states belonging to two SU(2)
irreps ( j and ′j ) are proportional to each other: they differ in the numerical values of
the Clebsch–Gordan coefficients; the constant of proportionality depends only on j,
′j , and k and is independent of m, ′m , and q. This constant of proportionality is
called a reduced matrix element. Often, one is only interested in ratios of transition
matrix elements between two SU(2) irreps for a particular rank of spherical tensor
operator and these ratios are simple ratios of Clebsch–Gordan coefficients, i.e. the
reduced matrix elements cancel and, thus, do not need to be computed.

The constant called the reduced matrix element is usually written α α〈 ′ ′∣∣ ˆ ∣∣ 〉j T j
k( ) .

An often used convention is to ‘absorb’ the factor − +k( 1) 2 1j2 into α α〈 ′ ′∣∣ ˆ ∣∣ 〉j T j
k( ) ,

i.e.

α α α α− +
′ +

〈 ′ ′∣ ˆ ∣ 〉 ≔ 〈 ′ ′∣∣ ˆ ∣∣ 〉
′ +

k
j

j T j
j T j

j
( 1)

2 1
2 1 2 1

. (3.95)j k
k

2 ( )
( )

The factor ′ +j2 1 on the right-hand side of equation (3.95) is retained explicitly:

this ensures a symmetrical relationship between α α〈 ′ ′ ′∣ ˆ ∣ 〉j m T jm; ;q
k( )

and

α α〈 ∣ ˆ ∣ ′ ′ ′〉*jm T j m; ;q
k( )

, where
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ˆ = − ˆ†( )T T( 1) (3.96)q
k q

q
k( ) ( )

and

α α α α〈 ′ ′∣∣ ˆ ∣∣ 〉 = − 〈 ∣∣ ˆ ∣∣ ′ ′〉* − ′j T j j T j( 1) . (3.97)k j j k( ) ( )

If the numerical value of α α〈 ′ ′ ′∣ ˆ ∣ 〉j m T jm; ;q
k( )

is needed, then α α〈 ′ ′∣∣ ˆ ∣∣ 〉j T j
k( ) must

still be computed. This can be done by standard techniques of integration or
operator algebra.

A useful theorem that follows from the Wigner–Eckart theorem is the projection
theorem. The proof is given as theorem 3.3.

Theorem 3.3. (The projection theorem.) For a vector operator ˆ = ±V q, 0, 1q :

α α α α〈 ′ ′∣ ˆ ∣ 〉 = 〈 ′ ∣ ⃗ · ⃗∣ 〉
ℏ +

〈 ′∣ ˆ ∣ 〉jm V jm
jm J V jm

j j
jm J jm; ;

; ;
( 1)

(3.98)q q2

(note: no ′j ).

Proof. Expressing ⃗J in spherical tensor form:

ˆ = ∓ ˆ ± ˆ = ∓ ˆ± ±J J iJ J
1

2
( )

1

2
, (3.99)x y1

ˆ = ˆJ J , (3.100)z0

then

α α α α〈 ′ ∣ ⃗ · ⃗∣ 〉 = 〈 ′ ∣ ˆ ˆ − ˆ ˆ − ˆ ˆ ∣ 〉+ − − +jm J V jm jm J V J V J V jm; ; ; ; , (3.101)0 0 1 1 1 1

α α α α

α α

α α

∴ 〈 ′ ∣ ⃗ · ⃗∣ 〉 = ℏ〈 ′ ∣ ˆ ∣ 〉

+ ℏ + − + 〈 ′ − ∣ ˆ ∣ 〉

− ℏ − + + 〈 ′ + ∣ ˆ ∣ 〉

−

+

jm J V jm m jm V jm

j m j m jm V jm

j m j m jm V jm

; ; ; ;

2
( )( 1) ; 1 ;

2
( )( 1) ; 1 ; .

(3.102)

0

1

1

Then, using the Wigner–Eckart theorem:

α α α α〈 ′ ∣ ˆ ∣ 〉 = 〈 ∣ 〉 〈 ′ ∣∣ ∣∣ 〉
+

jm V jm jm jm
j V j

j
; ; 10

; ;

2 1
, (3.103)0

α α α α〈 ′ − ∣ ˆ ∣ 〉 = 〈 − ∣ − 〉 〈 ′ ∣∣ ∣∣ 〉
+

−j m V jm jm j m
j V j

j
; , 1 ; 1, 1 , 1

; ;

2 1
, (3.104)1
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and

α α α α〈 ′ + ∣ ˆ ∣ 〉 = 〈 ∣ + 〉 〈 ′ ∣∣ ∣∣ 〉
+

+j m V jm jm jm
j V j

j
; , 1 ; 11 1

; ;

2 1
. (3.105)1

Thus,

α α α α〈 ′ ∣ ⃗ · ⃗∣ 〉 = 〈 ′ ∣∣ ∣∣ 〉jm J V jm C j V j; ; ; ; , (3.106)jm

where

= ℏ
+

〈 ∣ 〉 + + − + 〈 − ∣ − 〉

− − + + 〈 ∣ + 〉

C
j

m jm jm j m j m jm j m

j m j m jm j m

2 1
10

1

2
( )( 1) 1, 1 , 1

1

2
( )( 1) 11 , 1 ,

(3.107)
jm

⎧⎨⎩
⎫⎬⎭

i.e. Cjm is independent of α, α′, and ⃗V , and the reduced matrix elements ofV̂0, ±̂V 1 are
equal. In fact, we can argue that Cjm must be independent of m because ⃗ · ⃗J V is a
scalar operator. Hence,

α α α α〈 ′ ∣ ⃗ · ⃗∣ 〉 = 〈 ′ ∣∣ ⃗∣∣ 〉jm J V jm C j V j; ; ; ; . (3.108)j

Then, for ⃗ = ⃗V J , α α′ =

α α α α〈 ∣ ∣ 〉 = 〈 ∣∣ ∣⃗∣ 〉jm J jm C j J j; ; ; ; . (3.109)j
2

Now, applying the Wigner–Eckart theorem to V̂q and Ĵq:

α α
α α

α α
α α

〈 ′ ′∣ ˆ ∣ 〉
〈 ′∣ ˆ ∣ 〉

= 〈 ′ ∣∣ ⃗∣∣ 〉
〈 ∣∣ ∣⃗∣ 〉

jm V jm

jm J jm

j V j

j J j

; ;

; ;

; ;

; ;
. (3.110)q

q

But, from equations (3.108) and (3.109),

α α
α α

α α
α α

〈 ′ ∣∣ ⃗∣∣ 〉
〈 ∣∣ ∣⃗∣ 〉

= 〈 ′ ∣ ⃗ · ⃗∣ 〉
〈 ∣ ˆ ∣ 〉

j V j

j J j

jm J V jm

jm J jm

; ;

; ;

; ;

; ;
(3.111)2

and

α α〈 ∣ ˆ ∣ 〉 = + ℏjm J jm j j; ; ( 1) , (3.112)2 2

α α α α∴ 〈 ′ ′∣ ˆ ∣ 〉 = 〈 ′ ∣ ⃗ · ⃗∣ 〉
ℏ +

〈 ′∣ ˆ ∣ 〉jm V jm
jm J V jm

j j
jm J jm; ;

; ;
( 1)

. (3.113)q q2

□
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Exercises

3.1. By considering matrix elements 〈 ′ ′∣ ˆ ∣ 〉j m X jm , where ˆ ≔ ˆ ˆ − ℏ ˆX J T qT[ , ]z q
k

q
k( ) ( )
,

show that ′ = +m m q.
3.2. The magnetic moment operator for an atom has the form

μ ⃗ =
− ⃗ + ⃗e
m c

g L g S
2

( ), (3.114)
e

l S

where ⃗L and ⃗S are the total orbital angular momentum and total intrinsic
spin of the atom,−e and me are the charge and mass of the electron, c is the
velocity of light and gL and gS are parameters (g factors) with the
approximate values = =g g1, 2L S . Show that

α μ α〈 ′∣ ⃗∣ 〉 = − 〈 ′∣ ∣⃗ 〉JM JM
e

m c
g JM J JM; ;

2
, (3.115)

e
eff

where

= + + − + + +
+

g
J J L L S S

J J
1

( 1) ( 1) ( 1)
2 ( 1)

, (3.116)eff

⎧⎨⎩
⎫⎬⎭

which is called the Landé g factor. (Hint: use the projection theorem.)
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Chapter 4

Identical particles

An introduction to the representation of quantum mechanical many-body states is
given. The fundamental notion of symmetrization and antisymmetrization of many-
particle states is defined. The concept of a Slater determinant is sketched. The
occupation number representation or second quantization is developed in detail for
both states and operators. The use of anticommutator brackets is demonstrated.
Representations of many-boson and many-fermion systems are illustrated.
Particularly, the handling of ‘condensed’ systems—especially many-fermion systems
that exhibit superconductivity or superfluidity—is introduced. This is done using
‘quasi-spin’ and its SU(2) structure. The fundamental nature of quantum correla-
tions is illustrated; the emergence of an energy gap and the concept of Pauli blocking
is clarified. Boson-like behaviour of many-fermion systems is explained. Bardeen–
Cooper–Schrieffer (BCS) theory of superconductivity is derived. The Lipkin model,
an exactly solvable many-fermion system, is described and solved.

Concepts: symmetrization and antisymmetrization; Slater determinants; occupa-
tion number representation or second quantization; bosons and fermions; field
operators; many-particle Hamiltonians; Feynman graphs; normal ordering; pairing;
coherent correlations; Cooper pairs; quasispin algebra; correlation blocking;
dynamical symmetry; BCS theory; Lipkin model.

The most extraordinary thing about identical particles is their indistinguishabil-
ity. We know of no way to fix the identity of, e.g. an electron in a multi-electron
system so that we can keep track of it. This leads to the idea of permutation
symmetry in systems of two or more identical particles: the interchange of two
identical particles cannot result in any physically observable change. We have in
mind here that the particles occupy well-defined quantum states with specified space
and spin degrees of freedom. Thus, for the two-particle state ψ (1, 2) and the
permutation operator P̂12 we can write

ψ ψˆ =P c(1, 2) (2, 1) (4.1)12

doi:10.1088/978-0-7503-2171-6ch4 4-1 ª IOP Publishing Ltd 2020
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and

ψ ψˆ =P c(2, 1) (1, 2), (4.2)12

whence

ψ ψˆ =P c(1, 2) (1, 2); (4.3)12
2 2

and so we must have

= = ±c c1, 1. (4.4)2

Further, for any operator Â(1, 2) acting on ψ (1, 2), we must have

ˆ ˆ = ˆ = ˆP A A A(1, 2) (2, 1) (1, 2). (4.5)12

Two types of wave function for states of a system with many identical particles
thus arise,

ψ ψ= +P (1, 2) (1, 2), (4.6)12

called symmetric, and

ψ ψ= −P (1, 2) (1, 2), (4.7)12

called antisymmetric. Both types are found in nature. Particles of the first type are
called bosons and particles of the second type are called fermions.

4.1 Slater determinants
To ensure indistinguishability and symmetry or antisymmetry, for a system of two
identical particles we write

ψ ψ ψ ψ ψ= +(1, 2)
1

2
{ (1) (2) (1) (2)} (4.8)1 2 2 1

for bosons, and

ψ ψ ψ ψ ψ= −(1, 2)
1

2
{ (1) (2) (1) (2)} (4.9)1 2 2 1

for fermions. A convenient short hand notation for equations (4.8) and (4.9) is

ψ
ψ ψ
ψ ψ

=
±

(1, 2)
1

2

(1) (1)

(2) (2)
, (4.10)1 2

1 2

where the ± define the signs in the determinantal expansion (‘–’ for the conventional
definition).

For three or more identical particles the correct prescription is similar to two
identical particles, e.g.

ψ ψ= ±P (1, 2, 3) (2, 1, 3); (4.11)12
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thus (cf. equations (4.8) and (4.9)), e.g.

ψ ψ ψ ψ ψ ψ ψ
ψ ψ ψ ψ ψ ψ

= −
+ +

(1, 2, 3) (1) (2) (3) (2) (1) (3)

(3) (1) (2) (3) (2) (1)
(4.12)1 2 3 1 2 3

1 2 3 1 2 3

is an inadmissible three-particle wave function because

ψ ψ ψ ψ ψ ψ ψ
ψ ψ ψ ψ ψ ψ

= −
+ +

P (1, 2, 3) (2) (1) (3) (1) (2) (3)

(3) (2) (1) (3) (1) (2),
(4.13)

12 1 2 3 1 2 3

1 2 3 1 2 3

ψ ψ∴ ≠P c(1, 2, 3) (1, 2, 3). (4.14)12

Such states are not known in nature. The admissible wave functions for, e.g. three
identical particles are

ψ
ψ ψ ψ
ψ ψ ψ
ψ ψ ψ

=
!

±

(1, 2, 3)
1

3

(1) (1) (1)

(2) (2) (2)

(3) (3) (3)
: (4.15)

1 2 3

1 2 3

1 2 3

these are called Slater determinants, and for n identical particles they provide a
standard n × n determinantal code for writing down identical many-particle wave
functions. Equation (4.15) can be expanded (for the minus sign or fermionic case):

ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ ψ

= − −

+ + −

(1, 2, 3)
1

6
{ (1) (2) (3) (1) (2) (3) (1) (2) (3)

(1) (2) (3) (1) (2) (3) (1) (2) (3)}.
(4.16)1 2 3 1 3 2 2 1 3

2 3 1 3 1 2 3 2 1

Evidently, even for three identical particles the Slater determinant notation is very
cumbersome. The problem with this notation is that we are labelling particles that
actually cannot have labels attached to them (they are indistinguishable). Thus, to
compensate for this we have to introduce symmetrization (for bosons) or anti-
symmetrization (for fermions). A much more elegant language for handling these
systems is the occupation number representation, also called the Fock representation,
or second quantization. It is based on the use of creation and annihilation operators;
and it has its origin in the idea of the creation and annihilation of quanta in the
harmonic oscillator (cf. Volume 1, chapter 5). This does not imply that the number
of particles is changing, only that the occupancies of states are changing. In place of
equation (4.8) we write

ψ ↔ ∣ 〉 ∣ 〉† † † †a a a a(1, 2) 0 or 00 , (4.17)1 2 1 2

where ∣ 〉0 is the zero particle vacuum state. The symmetrization requirement for
equation (4.8) is fulfilled by the condition

∣ 〉 = ∣ 〉† † † †a a a a0 0 (4.18)1 2 2 1
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and, hence

=† †a a[ , ] 0. (4.19)1 2

For equation (4.9) the antisymmetrization requirement is fulfilled by the condition

= −† † † †a a a a , (4.20)1 2 2 1

i.e.

+ = =† † † † † †a a a a a a: { , } 0, (4.21)1 2 2 1 1 2

where † †a a{ , }1 2 is an anticommutator bracket.

4.2 The occupation number representation for bosons
For a system of identical bosons, we define the state of the system where there are n1
bosons in state 1, n2 bosons in state 2, etc., by

∣ … …〉 =
! !

⋯
!

⋯∣ 〉
† † †

n n n
a

n

a

n

a

n
: ( ) ( ) ( ) 0 , (4.22)i

n n
i

n

i
1 2

1

1

2

2

i1 2

i.e.

∏∣ … …〉 =
!

∣ 〉
†

n n n
a

n
( ) 0 , (4.23)

i

i
i

n

i
1 2

i

where

⎡⎣ ⎤⎦ = ∀† †a a i j, 0, , . (4.24)i j

Further,

= ∀a a i j[ , ] 0, , , (4.25)i j

and

⎡⎣ ⎤⎦ δ= ∀†a a i j, , , . (4.26)i j ij

It immediately follows from the algebra of the one-dimensional harmonic oscillator
that:

∣ … …〉 = + ∣ … + …〉†a n n n n n n n1 ( 1) , (4.27)i i i i1 2 1 2

∣ … …〉 = ∣ … − …〉a n n n n n n n( 1) , (4.28)i i i i1 2 1 2

∣ … …〉 = ∣ … …〉†a a n n n n n n n , (4.29)i i i i i1 2 1 2

〈 … …∣ … …〉 =n n n n n n 1. (4.30)i i1 2 1 2
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Note that this language keeps track of the states occupied, their occupancies, and
their symmetrization with respect to particle interchange, i.e. only those properties
of the many-particle system that are definable: there is no (artificial) labelling of
particles.

We can also define the particle number operator, N̂i,

ˆ = †N a a: , (4.31)i i i

and the total particle number operator

∑ˆ = ˆN N: . (4.32)
i

i

Evidently,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ˆ ∣ … …〉 = ∣ … …〉N n n n n n n n , (4.33)

i

i i i1 2 1 2

i.e. ∣ … …〉n n ni1 2 is an eigenstate of N̂ . However, for a state

∑α∣ 〉 = ∣ … …〉
… …

… …c n n n , (4.34)
n n n, , , ,

n n n i1 2

i

i

1 2

1 2

this will not (in general) be an eigenstate of N̂ . (There will be circumstances when
our state of knowledge will be imprecise with respect to the occupancy number.)

4.3 The occupation number representation for fermions
For a system of identical fermions, we define the state of the system in a manner
similar to that for bosons, but with =n 0i or 1, ∀ i, viz.

∏∣ … …〉 = ∣ 〉 = ∀†n n n a n i: ( ) 0 , 0 or 1, , (4.35)
i

i i
n

i1 2
i

where

= ∀† †{ }a a i, : 0, . (4.36)i j

Further,

= ∀a a i j{ , } : 0, , , (4.37)i j

and

δ= ∀†{ }a a i j, : , , . (4.38)i j ij

Equations (4.36)–(4.38) have remarkable consequences:
(a) For equation (4.36) with i = j,

+ =† † † †a a a a 0, (4.39)j j j j
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∴ =†( )a 0. (4.40)j
2

Thus, we cannot create two identical fermions in the same state. (Non-
identical fermions, both in the state j, would be described by, e.g. †a j ,

†b j ,
etc.) Similarly,

=a( ) 0. (4.41)j
2

(b) Consider

ˆ = †N a a , (4.42)j j j

then

ˆ = † †N a a a a ; (4.43)j j j j j
2

and from equation (4.38) with i = j,

Thus, the eigenvalues of N̂j must be 0 or 1. Equation (4.44) expresses the idempo-

tency of N̂j.

The two prototype operations on the states of a many-fermion system are:

∣ … …〉 = … … ∣ 〉† † †a n n n a a a a{( ) ( ) ( ) } 0 (4.45)i i i
n n

i
n

1 2 1 2
i1 2

and

∣ … …〉 = … … ∣ 〉† † † † †a n n n a a a a{( ) ( ) ( ) } 0 . (4.46)i i i
n n

i
n

1 2 1 2
i1 2

From equation (4.45), using equation (4.36),

∣ … …〉 = − … …∣ 〉
= − … …∣ 〉

= − … …∣ 〉∑

† † †

+ † † †

† † †
=

−

a n n n a a a a

a a a a

a a a a

( 1) ( ) ( )( ) ( ) 0

( 1) ( ) ( ) ( ) ( ) 0

( 1) ( ) ( ) ( )( ) 0 ,

(4.47)

i i
n n

i
n

i
n

n n n n
i i

n

n n n
i i

n

1 2 1 2

1 2

1 2

i

i

j

i
j i

1 1 2

1 2 1 2

1

1
1 2

and

= = = − =† † †a a a n a a a a n( ) , 0; ( ) 1 , 1; (4.48)i i
n

i i i i
n

i i i
i i

θ∴ ∣ … …〉 = ∣ … − …〉a n n n n n n n 1 , (4.49)i i i i i1 2 1 2
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where

θ ≔ − ∑ =

−

( 1) . (4.50)
i

n
j

i
j1

1

Similarly,

θ∣ … …〉 = − ∣ … − …〉†a n n n n n n n(1 ) 1 . (4.51)i i i i i1 2 1 2

4.4 Hamiltonians and other operators in the occupation number
representation

The total Hamiltonian for a many-particle system, in the absence of interactions
between the particles, is simply the sum of the single-particle Hamiltonians:

H ∑ ∑ˆ = ˆ = †E N E a a . (4.52)
k k

k k k k k

This is not very interesting. The occupation number representation doesn’t do
anything for us. We would have to solve for the Ek by standard (one-body) methods.
The occupation number representation only becomes useful when we have inter-
actions between the particles in a many-body system.

We must find out how to handle interaction operators in the occupation number
representation. We are familiar with operators in single-particle quantum mechanics
and so we start from there. Single-particle quantum mechanics is just a special case
of many-particle quantum mechanics: just one particle is present.

We define the wave function operator or field operator:

∑Ψ ⃗ = ⃗r a u r( ): ( ), (4.53)
k

op k k

where the ak are annihilation operators. The †ak and ak operate only in the many-
particle ket spaces, they do not operate on the ⃗u r( )k . The many-particle ket space is
usually termed Fock space. The ⃗u r{ ( )}k are a complete set of position eigenfunctions.
The operator Ψ ⃗r( )op can be interpreted as annihilating a particle at the point ⃗r in
physical space. The conjugate of Ψ ⃗r( )op is Ψ ⃗† r( )op . It creates a particle at the point ⃗r .
The term ‘second quantization’ becomes evident in the separate identities of the

⃗u r( )k , which are defined by the process of the quantization, and the ak,
†ak which

manifestly describe quanta (particles or field quanta).
Then, we must explore the properties of Ψ ⃗r( )op . With one-particle systems in mind,

consider

∑Ψ ⃗ ∣ … …〉 = ⃗ ∣ … …〉

= ⃗ ∣ 〉

↑ ↑
r a u r

u r

( ) 00 0 1 0 ( ) 00 0 1 0 ,

( ) 0 .

(4.54)n k nth th

op k k

n
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Then for a general one-particle state α∣ 〉,

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

∑

∑

α

ψ

Ψ ⃗ ∣ 〉 = Ψ ⃗ ∣ … …〉

= ⃗ ∣ 〉

= ⃗ ∣ 〉

↑

α

r r c

c u r

r

( ) ( ) 00 0 1 0

( ) 0

( ) 0 ,

(4.55)

n n

n

th

op op n

n n

where

∑ψ ⃗ = ⃗α r c u r( ) ( ); (4.56)
n

n n

and

α ψ〈 ∣Ψ ⃗ ∣ 〉 = ⃗αr r0 ( ) ( ). (4.57)op

It can be shown that the field operator is independent of any basis of reference
(recall, it is the operator that annihilates a particle at the point ⃗r ). It can also be
shown that

∫ Ψ ⃗ Ψ ⃗ ⃗ = ˆ† r r r N( ) ( )d . (4.58)op op total

We are now in a position to construct operators for many-particle systems from
single-particle operators and the field operator. Consider the single-particle operator
Â. We define

A ∫ˆ = Ψ ⃗ ˆΨ ⃗ ⃗† r A r r: ( ) ( )d , (4.59)op op

where Â replaces Â as the single-particle operator (describing the dynamical
quantity A) when going to a many-particle system. To see the validity of this, we
expand Ψ ⃗r( )op in terms of eigenfunctions of Â:

∑∴ Ψ ⃗ = ⃗r a u r( ) ( ), (4.60)
n

op n n

where

αˆ ⃗ = ⃗Au r u r( ) ( ). (4.61)n n n

∫ ∫

∫

∑

∑

∑

∑

α δ

α

∴ Ψ ⃗ ˆΨ ⃗ ⃗ = ⃗ ˆ ⃗ ⃗

= ⃗ ˆ ⃗ ⃗

=

=

† † *

† *

†

†

r A r r a u r Aa u r r

a a u r Au r r

a a

a a

( ) ( )d ( ) ( )d

( ) ( )d

,

(4.62)

i j

i j

i j

i

,

,

,

op op i i j j

i j i j

i j j ij

i i i
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A ∑αˆ = †a a . (4.63)
i

i i i

Equation (4.52) is formally identical to equation (4.63).
More generally, for any single-particle operator V̂ in the basis ⃗u r{ ( )}n :

∫ ∫

∫

∑

∑

∑

Ψ ⃗ ˆ Ψ ⃗ ⃗ = ⃗ ˆ ⃗ ⃗

= ⃗ ˆ ⃗ ⃗

=

† † *

† *

†

r V r r a u r Va u r r

a a u r Vu r r

a a V

( ) ( )d ( ) ( )d

( ) ( )d

,

(4.64)

i j

i j

i j

,

,

,

op op i i j j

i j i j

i j ij

where

∫= ⃗ ˆ ⃗ ⃗*V u r Vu r r( ) ( )d . (4.65)ij i j

Equation (4.64) is a one-body interaction potential in the occupation number
representation, and its components can be represented graphically as shown in
figure 4.1.

In a similar manner, using two-particle states, we can define a two-particle field
operator: e.g. for

ψ = −{ }u u u u(1, 2)
1

2
(1) (2) (2) (1) , (4.66)ij i j i j

we define

∑Ψ = −{ }a u a u a u a u(1, 2):
1

2
(1) (2) (2) (1) . (4.67)

i j,

op i i j j i i j j

∑ ψ∴ Ψ = a a(1, 2) (1, 2). (4.68)
i j,

op i j ij

Figure 4.1. Graphical representation for the scattering of a particle from state j to state i by a one-body
potential V. This is called a Feynman–Goldstone diagram or Feynman graph. The initial state is at the bottom of
the graph and the final state is at the top.
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(It is implicit that the u here are functions of ⃗r .) Consider then

∑ ψ

ψ

Ψ ∣ … … …〉 = ∣ … … …〉

= ∣ 〉

↑ ↑ ↑ ↑
a a(1, 2) 00 1 1 (1, 2) 00 1 1

(1, 2) 0

(4.69)l m i j l mth th , th th

op i j

lm

and for a general two-particle state β∣ 〉,

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

∑

∑

β

ψ

ψ

Ψ ∣ 〉 = Ψ ∣ … … …〉

= ∣ 〉

= ∣ 〉

↑ ↑

β

c

c

(1, 2) (1, 2) 00 1 1

(1, 2) 0

(1, 2) 0 ,

(4.70)

lm l m

lm

th th

op op lm

lm lm

where

∑ψ ψ=β c(1, 2) (1, 2), (4.71)lm lm

and the ψ (1, 2)lm are defined by equation (4.66) (with i = l, j = m);

β ψ∴ 〈 ∣Ψ ∣ 〉 = β0 (1, 2) (1, 2). (4.72)op

We can construct two-body interaction potentials in a manner analogous to our
one-body interaction potentials. For any two-particle operator V̂ in the basis
ψ (1, 2)ij :

∫ ∫ ∑

∑

ψ ψΨ ˆ Ψ ⃗ ⃗ = ˆ ⃗ ⃗

=

† † † *

† †

< <

V r r a a Va a r r

a a V a a

(1, 2) (1, 2)d d (1, 2) (1, 2)d d

,
(4.73)

ijkl

ijkl

op op j i ij k l kl

j i ijkl k l

1 2 1 2

i j k l,

where the condition <i j , <k l prevents double counting. Equation (4.73) is a
two-body interaction potential in the occupation number representation and its
components can be represented graphically as shown in figure 4.2.

Figure 4.2 can be viewed as a scattering of the two particles from states k l, to
states i j, . It can also be viewed as the two particles being annihilated in states k and l
and recreated in states i and j. It can further be viewed as a mixing of two-particle
configurations. The amplitude or matrix element for the process is Vijkl.

Figure 4.2. Graphical representation for a two-body scattering by the two-body interaction potential V.
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A three-particle interaction would be written

∑ † † †

< < < <

V a a a a a a .
(4.74)

ijklmn

ijklmn k j i l m n

i j k l m n,

A commonly occurring Hamiltonian form is

H ∑ ∑= +
< <

† † †E a a V a a a a , (4.75)
k i j k l,

k k k ijkl j i k l

where the first sum is over single-particle energies and the second sum is over two-
body interactions. Note that the number of particles is conserved (there are equal
numbers of annihilation and creation operators).

The procedure for carrying out computations is as follows:
(a) Compute the Ek and Vijkl using standard ‘one-body’ techniques.
(b) Write each many-body matrix element so that the many-particle kets are

expressed as creation operators acting on the vacuum (and the bras are the
corresponding adjoints). For example,

〈 ′ ′∣ ∣ 〉 = 〈 ∣
′! ′! ! !

∣ 〉
′ ′

† †
† †

n n V a a n n V
a

n

a

n
a a

a

n

a

n
0

( ) ( ) ( ) ( )
0 . (4.76)

n n n n

1 2 12 1 2 1 2 12
2

2

1

1
1 2

1

1

2

2

2 1 1 2

(c) Put the creation and annihilation operators in normal order, i.e. all the
creation operators to the left and all the annihilation operators to the right.
For example, for equation (4.76) with ′ =n 21 , ′ =n 02 , =n 11 , =n 12 , for
bosons,
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4.4.1 Exercises

4-1. From equation (4.76), put the operators in the normal order and hence
compute the matrix elements for:

v

′ ′n n n n
i
ii
iii
iv

vi

( ) 3 0 2 1
( ) 4 0 3 1
( ) 1 1 0 2
( ) 1 2 0 3
( ) 1 3 0 4
( ) 2 1 1 2.

1 2 1 2

4-2. Show that

∫ Ψ ⃗ Ψ ⃗ ⃗ = ˆ† r r r N( ) ( )d (4.78)op op total

(cf. equation (4.58)).

4.5 Condensed states (superconductors and superfluids)
Many-particle quantum systems are capable of exhibiting an extraordinary array of
behaviour—witness chemistry and condensed matter physics. The present section
considers some idealised systems with fluid properties, i.e. the particles are free to
move throughout a specified region of space, but forces are acting between them.
This is distinct from solids where at least some of the particles are localised in small
subregions of the space occupied by the system, e.g. as in a crystalline lattice.

4.5.1 Two fermions in a degenerate set of levels with a pairing force

Consider a system of two fermions that are free to move in a set of N2 states which
are all degenerate in energy and which are characterised by a quantum number k,
where = ± ± … ±k N1, 2, , . (The quantum number k might label states of well-
defined linear momentum or states of well-defined z-component of angular momen-
tum.) Further, there is a pairing force acting between the fermions such that the
pairing matrix elements, Vijrs, are

= = = − = ′ = − ′
′ = …

=

V V r k s k i k j k

k k N
V

; , , , ,

, 1, 2, , ,
0, otherwise.

(4.79)
ijrs

ijrs

Then consider the case with N = 2. In the occupation number representation the
basis states are

∣ 〉 = + + − − ≠† †a a i j i j0 , , 2, 1, 1, 2, ,i j
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i.e. ∣ 〉+
†

+
†a a 02 1 , ∣ 〉+

†
−
†a a 02 1 , ∣ 〉+

†
−
†a a 02 2 , ∣ 〉+

†
−
†a a 01 1 , ∣ 〉+

†
−
†a a 01 2 , and ∣ 〉−

†
−
†a a 01 2 . The

Hamiltonian is

∑ ∑εˆ = +
=−

=

′ =

†
′

†
− ′
†

−H a a V a a a a , (4.80)
k

k

k k2

2

, 1

2

k k k k k k

where ε is the energy of the degenerate states. The matrix elements of Ĥ contain one-
body contributions of the form ε〈 ∣ ∑ ∣ 〉=−

† † †a a a a a a0 ( ) 0j i k k k i j2
2 and two-body contri-

butions of the form 〈 ∣ ∑ ∣ 〉′ = ′
†

− ′
†

−
† †a a V a a a a a a0 ( ) 0j i k k k k k k i j, 1

2 . These yield, via the
standard process of normal ordering, the Hamiltonian

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

ε
ε

ε
ε

ε
ε

ˆ ↔ +
+

H V V
V V

2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0
0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

, (4.81)

where the ordering of the base states is = + +i j( , ) ( 2, 1), + −( 2, 1), + −( 2, 2),
+ −( 1, 1), + −( 1, 2), − −( 1, 2).
We focus on the + − + −( 2, 2), ( 1, 1) subspace for which the Hamiltonian matrix is

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

ε
ε

ε
ε

ˆ ↔ +
+

≔ ′
′H V V

V V
V

V
2

2
. (4.82)

For an attractive interaction, <V 0,

ε ε′ = − V2 , (4.83)

and if we were to neglect the off-diagonal matrix elements the energy spectrum for Ĥ
would be as depicted in the middle of figure 4.3. The results of diagonalizing the
Hamiltonian, equation (4.82), is (cf. Volume 1, chapter 6, section 6.3)

Figure 4.3. Depiction of the spectrum of the Hamiltonians, equations (4.81) and (4.82) with V = 0 in the left-
hand panel, with non-zero diagonal V in the middle panel, and the Hamiltonian equation (4.82) in the right-
hand panel (after diagonalization).
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λ ε λ ε ε= ′ ± = −V V, i. e. 2 , 2 2 , (4.84)

which can be depicted as shown on the right-hand side of figure 4.3.
The eigenstates resulting from the diagonalization of equation (4.82) are:

λ ε∣ = − 〉 = ∣ 〉 + ∣ 〉+
†

−
†

+
†

−
†V a a a a2 2

1

2
{ 0 0 }, (4.85)1 1 2 2

λ ε∣ = 〉 = ∣ 〉 − ∣ 〉+
†

−
†

+
†

−
†a a a a2

1

2
{ 0 0 }. (4.86)1 1 2 2

We call the symmetric combination, equation (4.85), a coherent superposition and
the antisymmetric combination, equation (4.86), an incoherent superposition. For

<V 0, the coherent superposition has the lowest energy. This is a significant result.
We can regard V as a small attractive two-body potential superimposed on the one-
body Hamiltonian. In figure 4.3, the two configurations that can benefit from this
particular attractive force are shown with their gain in binding energy. This is readily
understood in classical physical terms In figure 4.3, one particular linear combina-
tion of the six basis states alone has increased binding energy. This additional gain in
binding energy is called correlation energy. It has no classical analog. This is a
characteristic feature of a quantum fluid with an attractive pairing force. The ground
state of the system is called a condensate. It is characterised by being separated from
the other states by an energy gap even when the unperturbed states are all
degenerate.

4.5.2 Many fermions in a degenerate set of levels with a pairing force: the quasispin
formalism

Systems with pairing forces can be described in an elegant and economical way using
the so-called quasispin formalism. For a set of states = ± ± ± … ±k N1, 2, 3, , , we
define:

= †
−
†

+S a a: , (4.87)k k k

= −−S a a: , (4.88)k k k

= + −†
−
†

−S a a a a:
1
2

( 1). (4.89)k k k k k0

These fermion operators obey the following commutator (not anticommutator)
bracket relations:

=+ +S S S[ , ] , (4.90)k k k0

= −− −S S S[ , ] , (4.91)k k k0

=+ −S S S[ , ] 2 , (4.92)k k k0
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i.e. +Sk , −Sk and Sk0
define an su(2) algebra.

For example, consider

∴ =+ +S S S[ , ] . (4.94)k k k0

Further, we define:

∑=
=

+ +S S: , (4.95)
k

N

1

k

∑=
=

− −S S: , (4.96)
k

N

1

k

∑=
=

S S: . (4.97)
k

N

1

k0 0

These fermion operators obey the commutator bracket relations:

=+ +S S S[ , ] , (4.98)0

= −− −S S S[ , ] , (4.99)0

=+ −S S S[ , ] 2 , (4.100)0

i.e. again an su(2) algebra—this is the quasispin algebra. For example, consider

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑ ∑

∑

=

=

+ − + −

+ −

S S S S

S S

[ , ] ,

[ , ].
(4.101)k l

k l,

k l

k l
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For ≠k l

= −
= −

†
−
†

−
†

−
†

− −
†

−
†

†
−
†

−
†

−
†

−

a a a a a a a a a a a a

a a a a a a a a

[ , ]
(4.102)k k l l k k l l l l k k

k k l l k k l l

= 0. (4.103)

For k = l

=+ −S S S[ , ] 2 ,k k k0

∑∴ =

=

+ −S S S

S

[ , ] 2

2 .
(4.104)k

k

0

0

For the Hamiltonian, equation (4.80), we set the energy zero at ε = 0 (this is
arbitrary, and simplifies the details). Further, we take an attractive pairing force, i.e.

<V 0. Then,

∑ˆ = −
=

†
−
†

−H V a a a a . (4.105)
k l

N

, 1
k k l l

This Hamiltonian can be written using the quasispin language as

ˆ = − + −H VS S . (4.106)

The algebraic structure of the Hamiltonian is immediately revealed by recognis-
ing the form of equation (4.106) and the commutator brackets as being identical to
the problem of spin and angular momentum (cf. Volume 1, chapter 11) in quantum
mechanics, i.e. compare:

= = ℏ+ + + +S S S L L L[ , ] cf. [ , ] , (4.107)z0

= − = −ℏ− − − −S S S L L L[ , ] cf. [ , ] , (4.108)z0

= = ℏ+ − + −S S S L L L[ , ] 2 cf. [ , ] 2 . (4.109)z0

= − + = − ℏ ++ − + −S S S S S L L L L Lcf. , (4.110)z z
2

0
2

0
2 2

= =+ +S S L L[ , ] 0 cf. [ , ] 0, (4.111)2 2

= =− −S S L L[ , ] 0 cf. [ , ] 0, (4.112)2 2

= =− −S S L L[ , ] 0 cf. [ , ] 0, (4.113)2 2

∣ 〉 = + ∣ 〉 ∣ 〉 = + ℏ ∣ 〉
= … = …
= − − + … + = − − + … +

S sm s s sm L lm l l lm
s l

m s s s m l l l

( 1) cf. ( 1) ,
0, 1, 2, , 0, 1, 2, ,

, 1, , , , 1, , ,

(4.114)
s s

s

2 2 2
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∣ 〉 = ∣ 〉 ∣ 〉 = ℏ∣ 〉S sm m sm L lm m lmcf. . (4.115)s s s z0

Then, from equation (4.110)

ˆ = − − +H V S S S{ }, (4.116)2
0
2

0

and

ˆ ∣ 〉 = − + − + ∣ 〉H sm V s s m m sm{ ( 1) } , (4.117)s s s s
2

i.e. we have a closed-form expression for the eigenvalues of Ĥ : it only remains to
interpret the quasispin quantum numbers s and ms.

To interpret s and ms, first note that

∑= ˆ + ˆ −
=

−S N N
1
2

( 1), (4.118)
k

N

1

k k0

i.e. it is related to the number of particles in the system: let this be n, whence

∑= +
=

−n n n( ). (4.119)
k

N

1

k k

Evidently, from equations (4.119), (4.118) and (4.115), together with the recognition
that in equation (4.118), ∑ == N1k

N
1 , we have

= −m n N
1
2

( ). (4.120)s

Then, for n = 0,

= −m N
1
2

(4.121)s

and for =n N2 (the maximum possible value of n in a many-fermion system with
states = ±k 1, ±2, …, ±N )

=m N
1
2

. (4.122)s

It follows that

=s N
1
2

, (4.123)

i.e. the quasispin quantum number s describes the number of pair states in the system
and the quasispin quantum number ms is related to the number of fermion pairs in
the system. We can rewrite the eigenvalues of Ĥ , equation (4.117), as

⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎫⎬⎭= − + − − + −

E n N V
N N n N n N

( , )
2 2

1
2 2

, (4.124)
2
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whence

= − − +E n N
V

n N n( , )
4

(2 2). (4.125)

For the two-particle problem solved earlier, N was taken to be 2, thus

= − − + = −E
V

V(2, 2)
4

2(4 2 2) 2 . (4.126)

We can depict the energy eigenvalues, equation (4.125), graphically as shown in
figure 4.4. A number of observations can be made with respect to figure 4.4:

(a) Although the binding energy (−VN ) for one pair (N = 2) and N pairs
( =n N2 ) is the same, the contributions are very different. For one pair, an
amount −V comes from ‘diagonal’ pairing and − −V N( 1) comes from off-
diagonal pairing (pairing correlations). For N pairs, all the binding energy
comes from diagonal pairing: correlations are completely blocked (all states
are occupied).

(b) Pauli blocking is revealed in the saturation of the binding energy at
= +n N 1: As more and more particles are added, they ‘get in the way of

each other’ with respect to correlations. In other words, the possibilities for
scattering (correlations) decreases with increasing particle number because
an increasing number of states are occupied which blocks the scattering of
fermions as a result of the Pauli exclusion principle.

The eigenvalues that we have obtained are for the ground-state binding energy as
a function of particle number n. We next consider excited states in a system with
specified particle number n. Excited states are formed by ‘breaking’ pairs, i.e. by
forming states such as (+ +k l, ), ≠k l : for such configurations, the pair does not

Figure 4.4. A graphical view of the energy eigenvalues of the Hamiltonian (cf. equations (4.106), (4.117), and
(4.125)) for n particles occupying a set of 2N degenerate states and interacting through a pairing force
(equation (4.79)).
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contribute to the binding energy. However, this subtracts more than their diagonal
pairing energy from the total binding energy because of blocking.

Consider a one broken-pair excitation. Each fermion is in a single-particle state,
e.g. +p and +q for the pair. Thus, the pair states (+ −p p, ) and (+ −q q, ) are blocked
in the correlations of other pairs. This effectively reducesN by 2. We call the number
of unpaired fermions the seniority and denote the seniority of the system by the
quantum number v. Hence for v

2
broken pairs in a system of n fermions occupying

states + −k k( , ), = …k N1, 2, , , N is effectively reduced by v. Thus, equation
(4.123) is modified to read

v= −s N
1
2

( ), (4.127)

and E n N( , ) (equation (4.124)) is replaced by

⎜ ⎟⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎫⎬⎭

v
v v

v v v v

= − − − +

− − − − + − − −

E n N V
N N

n N n N

( , , )
2 2

1

( )
2

( )
2

,

(4.128)
2

whence

v v v= − − − − +E n N
V

n N n( , , )
4

( )(2 2). (4.129)

Equation (4.129) readily leads to the excitation spectrum of the system:
(a) For zero-broken pairs (v = 0),

= − − +E n N
V

n N n( , 0, )
4

(2 2), (4.130)

cf. equation (4.125).
(b) For one broken pair (v = 2),

= − − −E n N
V

n N n( , 2, )
4

( 2)(2 ). (4.131)

Thus,

− = − − − + −

+ −
=

E n N E n N
V

nN n N n nN

n n
VN

( , 2, ) ( , 0, )
4

{ 2 4 2 2

2 }
,

(4.132)

2

2

i.e. the excitation energy of the one broken pair states relative to the zero-
broken pair state is independent of the particle number n.
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(c) For two broken pairs (v = 4)

= − − − +E n N
V

n N n( , 4, )
4

( 4)(2 2) (4.133)

and

− = −E n N E n N V N( , 4, ) ( , 0, ) 2 ( 1), (4.134)

which, again, is independent of n.

We can depict the energy eigenvalues, equation (4.129), graphically as shown in
figure 4.5. The most remarkable result is that the excitation spectrum is independent
of n. This outcome is not at all evident in the formulation of the problem. It has its
origin in the quasispin quantum number v= −s N( )1

2
and = −m n N( )1

2s : a change
of seniority (an excitation) is a change in s, i.e. it is a change of SU(2) (quasispin)
irrep. A change of particle number is a change of ms, which is confined to a single
quasispin irrep. The excitation spectrum for a given N is shown in figure 4.6.

Observations regarding figure 4.6:
(a) The binding energy is not shown: zero binding energy corresponds to

v =n( , ) (0, 0), (2, 2), (4, 4), ….
(b) The excitations are independent of n.
(c) Successive excitations for a given n are compressed, i.e. VN, −V N( 2),

−V N( 4), …. This reflects Pauli blocking of successive broken pairs.

(d) Each value of v labels a quasispin irrep: recall v= −s N( )1
2

, = −m n N( )1
2s .

(e) The system has an SU(2) dynamical symmetry: the binding energies vary
with n and v; but v is a good quantum number.

Figure 4.5. A graphical view of the energy eigenvalues of a system of n particles with seniority v (v is the
number of unpaired particles) occupying a set of N2 degenerate states and interacting through a pairing force
(equation (4.79)). The excitation spectrum for a given n is determined by a vertical ‘cut’ through the red lines,
the lowest red line corresponding to the ground state.
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We are now in a position to summarise the physics of the system: a system of n
fermions occupying N degenerate pair states (+ −k k, ), = …k N1, 2, , and
interacting through a pairing force of the type given by equation (4.79) will exhibit
the following features:

(a) An energy gap in the excitation spectrum will be present. The magnitude of
the gap is proportional to N, and is independent of n.

(b) The ground state of the system is a highly correlated state. To see this,
consider the addition of a pair of particles to the system, as described by the
operator +S :

∑=
=

+
†

−
†S a a . (4.135)

k

N

1
k k

This will add (create) a pair to the system with equal probability amplitudes
for being in all pair configurations.

(c) Although the system is a many-fermion system, the correlated pairs do not
behave like fermions! Consider ∣ 〉+S( ) 02 : if the pair created by +S is
fermionic, then ∣ 〉+S( ) 02 should be zero. But

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑∣ 〉 = ∣ 〉

= =
+

†
−
† †

−
†S a a a a( ) 0 0 . (4.136)

k

N

l

N

1 1
k k l l

2

The product of the two sums gives N2 terms, each of which contains four
creation operators. Of these, N contain products of the type †

−
†a a( ) ( )k k

2 2

which are zero. Thus, only a fraction
N
1 of these terms are lost due to the

fermionic character of †ak and −
†a k. For very large N this is negligible. Note:

Figure 4.6. The excitation spectra of a system, with the Hamiltonian = − + −H VS S , containing n particles with
seniority v occupying N2 degenerate states. Details are discussed in the text.
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very large N is a very large number of states not a very large number of
particles.

(d) In a system with an unpaired fermion the situation is very different with
respect to approximate bosonic behaviour. Consider the operator

S ∑≡
=

+
† †

−
†

≠

a a a . (4.137)
k

N

1,

i i k k

k i

The pairing force will not scatter the unpaired fermion from the state i. Only
a fermion in the state−i can do this and, by definition, there is no fermion in
the state −i. Evidently,

S ∣ 〉 =+( ) 0 0. (4.138)i
2

Thus, an aggregate of fermions with correlated pairs (for the pairing force,
equation (4.79)) behaves like a fermion if there is an odd number of
fermions.

This system is the prototype of systems that exhibit superconductivity and
superfluidity. Such systems have an energy gap which prevents dissipation of the
current flow (no resistance) or the mass flow (no viscosity) at low temperature. That
is, there is no energy (thermal) available to excite the system out of its ground state
which would lead to dissipation of the supercurrent or super-flow. The ‘flow’ is
manifest in the highly-correlated nature of the ground state: it extends throughout
the bulk of the material. Addition of pairs at ‘one end’ and removal of pairs at the
‘other end’ can be made, effecting current (or mass) flow.

4.5.3 BCS theory

The foregoing section contains all the physics of superconductivity or superfluidity
in a many-fermion system with an attractive pairing force. The energy gap prevents
dissipation of ‘super-flow’, i.e. it results in zero resistance or zero viscosity. The
highly correlated pairs (Cooper pairs) give the extraordinary coherence properties of
these systems.

However, the Hamiltonian solved in the previous section is simplistic. All the
states are degenerate in energy and all the interactions are equal in strength.

Consider a relaxation of the degeneracy of the εk and of the identicality of the ′Vkk in

∑ ∑ε λ= − + −
= ′=

†
−
†

− ′
†

−
†

− ′ ′H a a a a V a a a a( )( ) ; (4.139)
k

N

k k

N

1 , 1

k k k k k kk k k k k

where λ has been introduced as a reference energy, with respect to which the εk are
measured.
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The two-body term can be greatly simplified by considering the operator identity

≡ − 〈 〉 − 〈 〉 + 〈 〉 + 〈 〉 − 〈 〉〈 〉AB A A B B A B B A A B( )( ) , (4.140)

where 〈 〉A and 〈 〉B are average values (numbers) with respect to some state: in the
present case—the ground state of the system. If the quantum fluctuations of A about
〈 〉A or B about 〈 〉B are small, − 〈 〉 − 〈 〉 ≈A A B B( )( ) 0, and

= 〈 〉 + 〈 〉 +AB A B B A constant. (4.141)

Thus,

∑ ∑′ ′ ≈ Δ +
′= =

′
†

−
†

−
†

−
†

−V a a a a a a a a( ) ( ), (4.142)
k k

N

k

N

, 1 1

kk k k k k k k k k k

where

∑ ∑Δ = 〈 〉 =
′= ′=

′ − ′ ′ ′ ′
†

− ′
†V a a V a a: (4.143)

k

N

k

N

1 1

k kk k k kk k k

( ψ ψ χ ψ ψ χ ψ ψ ψ ψ〈 ∣ ∣ 〉 = 〈 ∣ 〉 = 〈 ∣ 〉 =〈 ∣ ∣ 〉 =〈 ∣ ∣ 〉* † † * † †AB B A B A if 〈 〉 is real).
The Hamiltonian can be written

∑= +
=

H H constant, (4.144)
k

N

1

k

where

ε λ= − + − Δ +†
−
†

−
†

−
†

−H a a a a a a a a( )( ) ( ). (4.145)k k k k k k k k k k k

Then, using the quasispin operators

= = = + −†
−
†

−
†

−
†

−+ −S a a S a a S a a a a, ,
1
2

( 1), (4.146)k k k k k k k k k k k3

and defining

= ±±S S iS: , (4.147)k k k1 2

we obtain

= + = +†
−
†

−+ −S S S a a a a
1
2

( )
1
2

( ), (4.148)k k k k k k k1

= − − = − +†
−
†

−+ −S
i

S S
i

a a a a
2

( )
2

( ), (4.149)k k k k k k k2

and

ε δ α β γ= =αβγ γα βS S i[ , ] , , , 1, 2, 3; (4.150)k k k
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Hk can be written as

ε λ= − + − ΔH S S( )(2 1) 2 . (4.151)k k k k k3 1

This Hamiltonian can be diagonalized by a rotation, cf. α β= −H L Lz x and

D Dθ θ γ′ = =†H y H y L( , ) ( , ) . (4.152)z

Thus, introducing

θ=U i Sexp{ }, (4.153)k k k2

then (defining ε ε λ˜ = −:k k )

ε ε= ˜ − Δ + ˜† † †U H U U S U U S U2 2 . (4.154)k k k k k k k k k k k k3 1

Using the Baker–Campbell–Hausdorff lemma

and

θ θ= +θ θ−e S e S Scos sin . (4.156)i S
k

i S
k k k k

k k k k2
1

2
1 3

Hence,

ε θ θ θ θ ε= ˜ + − Δ + + ˜†U H U S S S S2 (cos sin ) 2 (cos sin ) (4.157)k k k k k k k k k k k k k k3 1 1 3

and for

ε θ θ θ
ε

˜ = −Δ = − Δ
˜

sin cos , i.e. tan , (4.158)k k k k k
k

k

and

θ ε

ε
θ

ε
= ˜

˜ + Δ
= −Δ

˜ + Δ
cos , sin , (4.159)k

k

k k

k
k

k k
2 2 2 2

ε

ε
ε ε ε∴ = ˜ + Δ

˜ + Δ
+ ˜ = + ˜ = ˜ + Δ†U H U S E S E2 ( ) 2 , . (4.160)k k k

k k

k k

k k k k k k k k

2 2

2 2

2 2
3 3
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Further,
θ θ

θ θ

= = +

= + −

θ

†
−
†

−

U e i S

a a a a

cos
2

(2 )sin
2

cos
2

sin
2

( ).
(4.161)

k
i S k

k
k

k k
k k k k

k k2
2

The new vacuum state for the system is given by

∏ ∏ θ θ∣˜〉 = ∣ 〉 = + − ∣ 〉
= =

†
−
†

−{ }U a a a a0 0 cos
2

sin
2

( ) 0 , (4.162)
k

N

k

N

1 1

k
k k

k k k k

but ∣ 〉 =−a a 0 0k k , whence

∏∣˜〉 = + ∣ 〉
=

†
−
†U V a a0 ( ) 0 , (4.163)

k

N

1

k k k k

where

θ=U : cos
2

, (4.164)k
k

θ=V : sin
2

, (4.165)k
k

+ =U V 1. (4.166)k k
2 2

This is the celebrated BCS approximation for the ground state of a pair-correlated
system.

The procedure by which this solution was obtained is illustrated in figure 4.7.
From equations (4.153) and (4.162) it can be seen that the BCS wave function is a
(quasispin) SU(2) coherent state, cf. section 1.8.

4.6 The Lipkin model
The Lipkin model, as the title of the original paper [1] suggests, was developed to
provide tests of many-body quantum mechanical approximation methods. It was
not intended as a realistic description of any many-body system. Nevertheless, it has
received wide attention from theorists working in many areas of physics, and it
has great pedagogical value. It is the latter feature and the group theoretical aspects
that are emphasized here.

The Hamiltonian for the Lipkin model is

∑ ∑

∑

ε σ= +

+

σ σ

σ

= =± ′

′

σ σ σ σ σ σ

σ σ σ σ

† †
′

†
′− −

†
′−

†
′ −

H a a V a a a a

W a a a a

1
2

1
2

1
2

,
(4.167)p

n

pp

pp

1, 1
p p p p p p

p p p p
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where (as indicated) = … ′ = …p n p n1, 2, , , 1, 2, , , σ = ±1, ε, V, and W are
(real) constants with dimensions of energy. The first term is a sum of single-particle
energies; the second and third terms are sums over two-body interaction energies.
The model can be depicted as shown in figure 4.8. The model is for a many-fermion
system containing n fermions (the number of states is n2 ).

The Hamiltonian can be reformulated as

ε= + + + ++ − + − − +H K V K K W K K K K
1
2

( )
1
2

( ), (4.168)0
2 2

where the operators Kz, K± are of the ‘quasi-spin type’ and are defined by

∑=
=

+ +
†

−K a a: , (4.169)
p

n

1
p p1 1

x

Figure 4.7. A schematic view of a many-fermion system, possessing pairing correlations, represented by a
quasispin algebra. ‘Holes’ are quasispin down, ‘particles’ are quasispin up. The analog of rotating spins of
magnetic moments in magnetic domains is sketched.
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∑=
=

− −
†

+K a a: , (4.170)
p

n

1
p p1 1

∑σ=
σ

σ σ
†K a a:

1
2

. (4.171)
p

n

p p0

Note: throughout the ‘+1’ and ‘−1’ are indices separate from ‘p’ and label σ = ±1
states. The operators K±, K0 obey

= ± =± ± + −K K K K K K[ , ] , [ , ] 2 , (4.172)0 0

i.e. they define an su(2) algebra.
To show that =+ +K K K[ , ]0 :

⎡

⎣
⎢⎢
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥∑ ∑= −+ +

†
+ −

†
− +

†
−K K a a a a a a[ , ]

1
2

, ; (4.173)
p q

p p p p q q0 1 1 1 1 1 1

for ≠p q,

⎡⎣ ⎤⎦ = −+
†

+ +
†

− +
†

+ +
†

− +
†

− +
†

+a a a a a a a a a a a a, , (4.174)p p q q p p q q q q p p1 1 1 1 1 1 1 1 1 1 1 1

using

= = = = ≠† † † †{ } { }{ }a a a a a a a a i j{ , } , , , 0, for , (4.175)i j i j i j i j

⎡⎣ ⎤⎦∴ = −+
†

+ +
†

− +
†

− +
†

+ +
†

− +
†

+a a a a a a a a a a a a, , (4.176)p p q q q q p p q q p p1 1 1 1 1 1 1 1 1 1 1 1

⎡⎣ ⎤⎦∴ =+
†

+ +
†

−a a a a, 0, (4.177)p p q q1 1 1 1

and similarly

⎡⎣ ⎤⎦ =−
†

− +
†

−a a a a, 0; (4.178)p p q q1 1 1 1

Figure 4.8. A diagrammatic representation of the Lipkin model. On the left are the available single-fermion
states. The lower block have energy ε− 1

2
, the upper block have energy ε+ 1

2
. There are n fermions and n2 single-

particle states which results in 2n n-fermion configurations. The two-body interactions are shown on the right
in a manner suggestive of Feynman diagrams.
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and for p = q,

⎡⎣ ⎤⎦ = −+
†

+ +
†

− +
†

+ +
†

− +
†

− +
†

+a a a a a a a a a a a a, , (4.179)p p p p p p p p p p p p1 1 1 1 1 1 1 1 1 1 1 1

using

= = =† † †a a a a a a{ , } 1, { , } 0, { , } 0, (4.180)i i i i i i

and equation (4.175),

⎡⎣ ⎤⎦∴ =+
†

+ +
†

− +
†

−a a a a a a, , (4.183)p p p p p p1 1 1 1 1 1

and

⎡⎣ ⎤⎦ = −−
†

− +
†

− +
†

−a a a a a a, . (4.184)p p p p p p1 1 1 1 1 1

⎡
⎣⎢

⎤
⎦⎥∴ − =+

†
+ −

†
− +

†
− +

†
−a a a a a a a a

1
2

( ), , (4.185)p p p p p p p p1 1 1 1 1 1 1 1

⎡
⎣⎢

⎤
⎦⎥∑ ∑∴ − = =+

†
+ −

†
− +

†
− +

†
− +a a a a a a a a K

1
2

( ), , (4.186)
p p

p p p p p p p p1 1 1 1 1 1 1 1

whence

=+ +K K K[ , ] . (4.187)0

Similarly,

= −− −K K K[ , ] . (4.188)0

To show that =+ −K K K[ , ] 2 0:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑ ∑=+ − +

†
− −

†
+K K a a a a[ , ] , ; (4.189)

p q
p p q q1 1 1 1

for ≠p q,

⎡⎣ ⎤⎦ = −+
†

− −
†

+ +
†

− −
†

+ −
†

+ +
†

−a a a a a a a a a a a a, , (4.190)p p q q p p q q q q p p1 1 1 1 1 1 1 1 1 1 1 1

⎡⎣ ⎤⎦∴ = −+
†

− −
†

+ −
†

+ +
†

− −
†

+ +
†

−a a a a a a a a a a a a, , (4.191)p p q q q q p p q q p p1 1 1 1 1 1 1 1 1 1 1 1
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⎡⎣ ⎤⎦∴ =+
†

− −
†

+a a a a, 0; (4.192)p p q q1 1 1 1

and for p = q,

⎡⎣ ⎤⎦ = −+
†

− −
†

+ +
†

− −
†

+ −
†

+ +
†

−a a a a a a a a a a a a, , (4.193)p p p p p p p p p p p p1 1 1 1 1 1 1 1 1 1 1 1

⎡⎣ ⎤⎦∴ = − − −+
†

− −
†

+ +
†

+ −
†

− −
†

− +
†

+a a a a a a a a a a a a, (1 ) (1 ), (4.194)p p p p p p p p p p p p1 1 1 1 1 1 1 1 1 1 1 1

⎡⎣ ⎤⎦∴ = − −

+

+
†

− −
†

+ +
†

+ +
†

+ −
†

− −
†

−

−
†

− +
†

+

a a a a a a a a a a a a

a a a a

,

,
(4.195)

p p p p p p p p p p p p

p p p p

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1

⎡⎣ ⎤⎦∴ = −+
†

− −
†

+ +
†

+ −
†

−a a a a a a a a, , (4.196)p p p p p p p p1 1 1 1 1 1 1 1

∴ =+ −K K K[ , ] 2 . (4.197)0

The su(2) basis states ∣ 〉kmk :

∣ 〉 = + ∣ 〉K km k k km( 1) , (4.198)k k
2

∣ 〉 = ∣ 〉K km m km , (4.199)k k k0

∣ 〉 = ∓ ± + ∣ ± 〉±K km k m k m km( )( 1) 1 , (4.200)k k k k

can be interpreted using

∑= −+
†

+ −
†

−( )K a a a a
1
2

, (4.201)
p

p p p p0 1 1 1 1

whence

= = −m n m n
1
2

,
1
2

, (4.202)k k
max min

i.e. mk
max corresponds to all n fermions in σ = +1 states, ml

min corresponds to all n
fermions in σ = −1 states, and mk gives the number of ‘particle–hole’ excitations.
Evidently,

=k n
1
2

. (4.203)

The number of configurations arising for a given value of n (i.e. n equals the
number of fermions and half the number of single-particle states) is quite subtle.
These are given in table 4.1 for values of n up to n = 8. Recall that for a given value
of k,

= − … −m k k k, 1, , , (4.204)k
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i.e. +k2 1 possible configurations. These configurations are depicted, for =n 1, 2,
and 3, in figure 4.9. For n = 1 we could represent the SU(2) basis states:

Table 4.1. The number of configurations in the Lipkin model as a function of n.

n No. of configurations Irrep labels k Dimension of ground-state irrep

1 2 1
2

2

2 4 1, 0 3
3 8 3

2
, 1

2
, 1

2
4

4 16 2,1,1,1,0,0 5

5 32 5
2
, ( )43

2
, ( )51

2
6

6 64 3, (2)5, (1)9, (0)5 7

7 128 7
2
, ( )65

2
, … 8

8 256 4, (3)7, … 9

Figure 4.9. Graphical depiction of all Lipkin model configurations for =n 1, 2 and 3.
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For n = 2, the operators +K , −K , and K0 are:

= ++ +
†

− +
†

−K a a a a , (4.209)1 1 1 1 2 1 2 1

= +− −
†

+ −
†

+K a a a a , (4.210)1 1 1 1 2 1 2 1

= − + −+
†

+ −
†

− +
†

+ −
†

−K a a a a a a a a
1
2

( ). (4.211)0 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1

Evidently,

∣ 〉 = ∣ + 〉+K 10 2 1, 1 (4.212)

and

∣ 〉 =+K 00 0. (4.213)

Solutions to the Lipkin model Hamiltonian (equation (4.167)) can be considered for
a number of special cases:

(a) V = 0.

ε= + ++ − − +H K W K K K K
1
2

( ), (4.214)I 0

and recalling equation (5.41),

ε∴ = + −H K W K K( ), (4.215)I 0
2

0
2

ε∴ ∣ 〉 = + + −H km m W k k m[ ( 1) ], (4.216)I k k k
2

i.e. HI shifts and splits but does not mix the SU(2) basis states.
(b) W = 0.

ε= + ++ −H K V K K
1
2

( ). (4.217)II 0
2 2

The terms containing +K 2 and −K 2 mix states within an irrep, but they do not
mix states from different irreps. This leads to exact solutions for =n 1, 2, 3
4, 6, and 8. To proceed, the matrix elements of K0, +K 2 and −K 2 in the ∣ 〉kmk
basis are needed:

〈 ∣ ∣ 〉 =km K km m , (4.218)k k k0

+ = − + +

× − − + +
+km K km k m k m

k m k m

2 ( )( 1)

( 1)( 2) ,
(4.219)

k k k k

k k

2
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− = + − +

× + − − +
−km K km k m k m

k m k m

2 ( )( 1)

( 1)( 2) .
(4.220)

k k k k

k k

2

It then remains to construct the Hamiltonian matrix for a given value of n
(recall =k n1

2
) and to solve its secular equation. This task is greatly

simplified by the SU(2) structure of the problem. First, for a given value
of n, the possible configurations can be grouped into SU(2) irreps (given in
table 4.1). Thus, for the 128 configurations corresponding to n = 8, for
example, the largest SU(2) irrep is only of dimension 9, i.e. it has k = 4. But
there is a further simplification: +K 2 and −K 2 only mix configurations
differing in mk by ±2, that is to say the matrices to be diagonalized can
be further reduced such that for a given matrix the mk values are either all
‘even’ or all ‘odd’. Thus for the energy eigenvalues λ:

(a) n = 1, =k 1
2
,

λ ε= ± 1
2

. (4.221)

(b) n = 2, k = 1 or 0,
k = 0,

λ = 0, (4.222)

k = 1, =m 0k‘
even’ ,

λ = 0, (4.223)

k = 1, = ±m 1k‘
odd’ ,

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

ε
ε

〈 ∣ ∣ 〉 〈 ∣ ∣ − 〉
〈 − ∣ ∣ 〉 〈 − ∣ ∣ − 〉

= −
H H

H H
V

V
11 11 11 1, 1

1, 1 11 1, 1 1, 1
, (4.224)

ε λ
ε λ

∴ −
− − =V

V
0, (4.225)

λ ε∴ = ± + V . (4.226)2 2

(c) n = 3, =k ,3
2

1
2
or 1

2
,

=k 1
2
(twice),

λ ε= ± 1
2

(twice). (4.227)

=k 3
2
, = +m 3

2k‘
even’ , − 1

2
,
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⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

ε

ε

−

− − −
=

−

H H

H H

V

V

3
2

3
2

3
2

3
2

3
2

3
2

3
2

,
1
2

3
2

,
1
2

3
2

3
2

3
2

,
1
2

3
2

,
1
2

3
2

3

3
1
2

, (4.228)

ε λ

ε λ
∴

−

− −
=

V

V

3
2

3

3
1
2

0, (4.229)

λ ε ε∴ = ± + V
1
2

3 . (4.230)2 2

=k 3
2
, = +m 1

2k‘
odd’ , − 3

2
,

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

ε

ε

−

− − −
=

−

H H

H H

V

V

3
2

1
2

3
2

1
2

3
2

1
2

3
2

,
3
2

3
2

,
3
2

3
2

1
2

3
2

,
3
2

3
2

3
2

1
2

3

3
3
2

, (4.231)

and this is identical to =k 3
2
, mk‘

even’ with ε ε→ − ,

λ ε ε∴ = − ± + V
1
2

3 . (4.232)2 2

(d) n = 4, =k 2, 1, 1, 1, 0, 0,
k = 0 (twice),

λ = 0 twice. (4.233)

k = 1 (three times),

λ ε= ± + V0, (adopted from equations (4.223) and (4.266)). (4.234)2 2

k = 2, = + −m 2, 0, 2k‘
even’ ,

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
ε

ε

〈 ∣ ∣ 〉 〈 ∣ ∣ 〉 〈 ∣ ∣ − 〉
〈 ∣ ∣ 〉 〈 ∣ ∣ 〉 〈 ∣ ∣ − 〉

〈 − ∣ ∣ 〉 〈 − ∣ ∣ 〉 〈 − ∣ ∣ − 〉
=

−

H H H
H H H

H H H

V

V V

V

22 22 22 20 22 2, 2
20 22 20 20 20 2, 2

2, 2 22 2, 2 20 2, 2 2, 2

2 6 0

6 0 6

0 6 2

, (4.235)

ε λ
λ

ε λ

∴
−

−
− −

=
V

V V

V

2 6 0

6 6

0 6 2

0, (4.236)
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λ ε∴ = ± + V0, 2 3 . (4.237)2 2

k = 2, = + −m 1, 1k‘
odd’ ,

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

ε
ε

〈 ∣ ∣ 〉 〈 ∣ ∣ − 〉
〈 − ∣ ∣ 〉 〈 − ∣ ∣ − 〉

=
−

H H
H H

V
V

21 21 21 2, 1
2, 1 21 2, 1 2, 1

3
3

, (4.238)

ε λ
ε λ

∴ −
− −

=V
V

3
3

0, (4.239)

λ ε∴ = ± + V9 . (4.240)2 2

Note that the lowest (ground-state) energies occur, in each case, for
the maximum value of k. Thus, for ⩾n 5 only the maximum value of
k is considered (the lower values of k have already been solved for
lower n).

(e) n = 5, =k 5
2

max ,

= = + + −k m, , ,5
2

5
2

1
2

3
2k‘

even’ ,

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

ε

ε

ε−

↔ →

V

V V

V

H

5
2

10 0

10
1
2

18

0 18
3
2

must be solved numerically. (4.241)

= = + − −k m, , ,5
2

3
2

1
2

5
2k‘

odd’ ,

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

ε

ε

ε

−

−

↔ →

V

V V

V

H

3
2

18 0

18
1
2

10

0 10
5
2

must be solved numerically. (4.242)

(f) n = 6, =k 3max , = = + + − −k m3, 3, 1, 1, 3,k‘
even’

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

ε
ε

ε
ε

−
−

↔

V

V V

V V

V

H

3 15 0 0

15 6 0

0 6 15

0 0 15 3

, (4.243)
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λ ε ε ε= ± + ± + +V V V5 33 6 54 . (4.244)2 2 4 2 2 4

= = + −k m3, 2, 0, 2k‘
odd’ ,

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
ε

ε−

↔
V

V V

V

H
2 30 0

30 0 30

0 30 2

, (4.245)

λ ε= ± + V0, 2 15 . (4.246)2 2

(g) n = 8, =k 4max ,

λ ε ε ε

ε ε ε

= ± + ± − +

± + ± + +

V V V

V V V

0, 10 118 2 225 ,

5 113 4 38 550 .
(4.247)

2 2 4 2 2 4

2 2 4 2 2 4
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Chapter 5

Group theory and quantum mechanics

Following the definition of a group, the role of group theory and symmetry in
quantum mechanics is introduced. This is handled by way of presenting a synoptic
view of quantum mechanics, ‘seen through a group theoretical lens’, especially the
view of angular momentum theory. Many of the concepts developed in Volume 1
and the preceding chapters, herein, have been shaped to arrive at this exposition of
group theory. The distinction between discrete and continuous groups is clarified.
Details of Lie groups and their associated algebras, suitable for quantum mechanical
applications, are presented. The fundamental concept of a group generator is
emphasized. The use of Lie algebras for model building is explained, especially
spectrum generating groups and their associated algebras (also known as dynamical
algebras). Representation of groups is introduced, including matrices and poly-
nomial functions. The distinction between compact and non-compact groups is
explained. The groups SO(n) and SU(n) are introduced, together with their Casimir
operators.

Concepts: group definition; Abelian group; translation group; rotation group;
space–time transformations; symmetry transformations in quantum mechanics;
discrete groups; continuous groups; matrix groups; Lie groups; Lie algebras; group
generator; dynamical group; dynamical algebra; spectrum generating algebra
(SGA); compact groups; non-compact groups; SO(3); SU(2); U(n); SO(n); commu-
tator bracket tables; Casimir operators.

Group theory plays a fundamental role in the processes of the world around us:
objects get translated and rotated. If a book on a closely-packed shelf has its title up-
side down, one takes the book out (translation, T) turns the title right-side up
(rotation, R) and returns the book to the shelf (inverse translation, −T 1): −T RT1 —a
similarity transformation. In the quantum world we are especially concerned with
rotations in the space around us, (3, ) and in Hilbert space, n( , ), i.e. the complex
linear space in n dimensions, where n is the number of distinct observable results of
measurements defined by a maximal set of commuting operators.
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In this chapter, a basic formal outline is given of the essential elements of group
theory, and its role in quantum mechanics. Much of this material is a restatement of
forgoing subject matter. The intent is rather akin to a first formal presentation of
language, when one is introduced to the fact that one is using ‘prose’ and that prose
can be broken down into rules of grammar, etc. One does not need to know the rules
of grammar to converse; but to write, it helps to know a few rules. To take the adage
‘the pen is mightier than the sword’, at some risk, we pose: ‘group theory is mightier
than blind numerical computation’.

The role of group theory in quantum mechanics enters at two levels: its role in
transformation theory, and its role in the algebra of infinitesimal group generators.
The algebras of group generators are introduced here, and this is formally developed
in the next chapter (chapter 6).

5.1 Definition of a group
A group is a mathematical structure defined by the following: It is a set of elements
G{ }i , where i may be discrete or continuous, such that

I.

◦ =G G G ; (5.1)j k l

where the symbol ‘◦’ denotes the group ‘product’ which may be multi-
plication or addition or some other law of mathematical combination; and
Gj, Gk, ∈G G{ }l i . This is called closure.

II.

◦ ◦ = ◦ ◦G G G G G G( ) ( ) . (5.2)j k l j k l

This is called associativity.
III.

◦ =G I G . (5.3)j j

I is called the identity. ∈I G{ }i .
IV.

◦ =−G G I. (5.4)j j
1

−G j
1 is called the inverse of Gj. ∈−G G{ }j i

1 .

It is not necessary that ◦ = ◦G G G Gi j j i, i.e. that the group product be commutative.

Definition of an Abelian group

An Abelian group is a group with a commutative product.

5.2 Groups and transformation
Transformations of physical structures (or mathematical structures) naturally give
rise to realisations of groups.
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5.2.1 Translations

Consider a quantity, f x( ), which depends on a position coordinate x. Then, for a
translation along the x-axis through a distance α described by the operation αT ( )x :

α α= −T f x f x( ) ( ) ( ). (5.5)x

Thus,

β α β α α β α β= − = − − = +T T f x T f x f x T f x( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), (5.6)x x x x

β α α β∴ = +T T T( ) ( ) ( ), (5.7)x x x

which manifestly expresses the group closure axiom. The other group axioms follow
directly for translations.

• The elements of translation groups, so expressed, form a continuous set.
• Translation groups with discrete sets of elements arise, e.g. when considering
translations that leave crystalline lattices unchanged.

• Translation groups are directly extended to any number of spatial dimen-
sions, e.g.

=T b T a T c( ) ( ) ( ), (5.8)y x n

where n and c are uniquely defined.
• Translation groups are Abelian.

5.2.2 Rotations

Rotations can be defined in two or more dimensions.
(a) Rotations in a plane: e.g.

ϕ ϕ ϕ ϕ= +R R R( ) ( ) ( ), (5.9)z z z2 1 2 1

where z is an axis perpendicular to the plane and ϕ2 and ϕ1 are angles. Such
rotations form an Abelian group. Moreover, there is a ‘compactness’ to
rotations, i.e.

ϕ π ϕ+ =R R( 2 ) ( ). (5.10)z z

(b) Rotations in three dimensions: e.g.

χ ϕ ψ=R R R( ) ( ) ( ), (5.11)y x n

where n and ψ are uniquely defined, form a group. They are compact, but
they are non-Abelian (see figure 5.1).

5.2.3 Space–time transformation

Translations and rotations in three dimensions play a vital role in the discussion of
physical space. Physical space together with time constitutes space–time or
Minkowski space. Minkowski space possesses a rich variety of transformations:
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Translations (T)
Rotations (R) Space inversion (π)
Time translations (τ)
Lorentz boosts1 (Λ) Time reversal (T )
The following groupings of the above have special names:
Poincaré or inhomogeneous Lorentz group

Tτ πΛT R, , , , ,
(Homogeneous) Lorentz group

π τΛR, , ,
Proper orthochronous Lorentz group

ΛR,
Galilean group
Λ −non relativistic (non-relativistic: v ≪ c, i.e. γ = 1)
Euclidean group in three dimensions
R T, .

Figure 5.1. Rotation of a moving frame a b c( , , ) with respect to a fixed frame x y z( , , ). On the left the
sequence ‘rotate counterclockwise through 90° about the z-axis followed by rotate through 90° about the
y-axis’ is illustrated. On the right the sequence ‘rotate counterclockwise through 90° about the y-axis followed
by rotate through 90° about the z-axis’ is illustrated. The sequential operations do not commute. The ‘right-
hand’ rule is depicted to help visualise the rotations.

1 ⎜ ⎟⎛
⎝

⎞
⎠v v vγ γ γ′ = − = − ′ = −

−

( )x x t t t x( ), 1 ,x
x x
2

2 2c c

1
2

for an x-direction boost.
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5.3 Transformation on physical systems
Physical systems are described using particles and fields. The physics of a system
with respect to transformations can be broken down into:

(i) the environment in which the system is placed,
(ii) the structure of the system itself,
(iii) the interactions between the component parts of the system.

Transformation of a system with respect to its environment leads to the concepts of:
• empty space,
• conservative systems,
• impossibility of absolute position, orientation, and velocity,
• the absolute nature of the scale of a system.

Transformations of the system itself depend on:
• the level at which the system is modelled;

which leads to the distinction between
• space–time structure;

and
• intrinsic structure (e.g. electron spin, electric charge).

Transformations of the space–time structure of a system lead to the concepts of:
• phase space,
• equations of motion,
• permutations of particles,
• shape,
• normal coordinates,
• constants of motion.

Transformations of the intrinsic structure of a system lead to the concept of:
• gauge.

Transformation of the interactions between the component parts of the system
reveals:

• the equations of motion,
• the constants of motion,

and in complex many-body systems leads to
• the collective modes of motion.
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5.4 Quantum mechanics: a synoptic view
• Quantum mechanics is a highly successful theory of the (mechanical)
behaviour of small physical systems.

• It is complete, theoretically, i.e. it is able to describe all known phenomena
observed in small physical systems (and it is essential to the understanding of
certain macroscopic physical systems, e.g. superconductors, superfluids,
quantum Hall effect devices).

The axioms on which quantum mechanics is founded can be stated in a number of
ways. The following is neither unique nor, in its entirety, necessary, but it is
sufficient:

• The state of a quantum system is completely described by an element (state
vector) of a Hilbert2 space.

• If the number of distinguishable states of the system is n, the Hilbert space is n
dimensional.

• The physical quantities (dynamical variables) associated with a system are
represented by Hermitian operators. These operators act on the elements of
the Hilbert space describing the system, to yield other elements of the space.

• If an operator Â acting on an element ψα of the Hilbert space obeys

ψ αψˆ =α αA ,

then ψα represents a state of the system with the value α for the physical
quantity represented by Â, where α is a real number. This equation is an
eigenvalue equation with eigenvalue α and eigenvector ψα. Hermitian operators
have real eigenvalues.

• If two distinguishable states of a system have the same value α for a physical
quantity A then there is a second physical quantity B with respect to which
the states ψα1

, ψα2
obey

ψ β ψ ψ β ψ β βˆ = ˆ = ≠α α α αB B, , ;1 2 1 21 1 2 2

– The states ψα1
and ψα2

are said to be degenerate with respect to the
physical quantity A.

– The physical quantities A and B are said to be compatible.
– The operators Â and B̂ commute.

• Different physical quantities, for a given physical system, are not necessarily
compatible: if this occurs, then the operators representing the incompatible
quantities do not commute.

• The number of physical quantities that provide the distinction between the
different states of the system must be determined by experiment; and these

2A complex linear space with finite inner products.
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physical quantities are represented by a set of commuting operators called a
complete set of commuting operators.

• The scale in which our world is quantized must be determined by experiment
and is described by a single parameter, commonly chosen to be

× ≡ ℏ−1.054 571 817(exact) 10 J s .34

• The manner in which the scale factor is incorporated into the axioms of
quantum mechanics must also be determined by experiment. However, the
exact manner of this incorporation is extremely abstract.

– The most commonly used axioms for incorporating ℏ into quantum
mechanics are:

δ α βˆ ˆ ≔ ˆ ˆ − ˆ ˆ = ℏ ˆ =α β α β β α αβr p r p p r i I x y z[ , ] ; , , , , (5.12)

where x, y and z span the three spatial dimensions of Minkowski space
and δ =αβ 1 if α β= , δ =αβ 0 if α β≠ ; and

ε α β γˆ ˆ ≔ ℏ ˆ =α β αβγ γS S i S x y z[ , ] ; , , , , , (5.13)

ε ε ε
ε ε ε

= = = +
= = = −

1,

1,
xyz yzx zxy

yxz xzy zyx

where Ŝx, Ŝy, and Ŝz are the three components of intrinsic spin.
• The operators of quantum mechanics are formed from the dynamical
variables of classical mechanics as follows:

α→ ˆ → ˆ =α α α αr r p p x y z, , , , , (5.14)n n n
,class ,class

→ ˆ ˆα α α α )r p r p , (5.15)n m n m
,class ,class symmetrized

→ ˆ ˆ + ˆ ˆα α α α α αr p r p p re.g.
1
2

( ). (5.16)

The states defined by the preceding axioms are stationary states, i.e. they do not
change with time.

Quantum mechanical systems may also evolve in time. There are a variety of
ways of incorporating time dependence into the description of quantum mechanical
systems. The two commonly used methods are the Schrödinger picture and the
Heisenberg picture:

• In the Schrödinger picture, time dependence is incorporated into the state
vectors according to

ψ ψℏ ∂
∂

= ˆi
t

t H t( ) ( ), (5.17)

where Ĥ is the Hamiltonian operator.
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• In the Heisenberg picture, time dependence is incorporated into the operators
according to

ˆ
=

ℏ
ˆ ˆ + ∂ ˆ

∂
A t

t i
A t H

A t
t

d ( )
d

1
[ ( ), ]

( )
, (5.18)

where Â is an operator representing a dynamical variable, and the term ∂ ˆ

∂
A t

t
( ) is

only non-zero if A has a classical time dependence.

There is one aspect of quantum mechanics, which has a time dependence, for
which no description is possible: the act of measurement! Herein lies the inherent
uncertainty in quantum mechanics. Specifically, one is dealing with probabilities and
this necessitates accumulating statistical distributions of quantities: these distribu-
tions may be ‘sharp’ or ‘diffuse’. Great caution is needed in attempting to qualify
uncertainty, in the sense that paradoxes arise if one supposes that one can talk or
think in terms of a single measurement on a given system. See below and see the
footnote on p. 8-1 for some further comments.

The probabilistic nature and consequent uncertainties of quantum mechanics are
incorporated using the following axioms:

• For a system in the state ψα, the probability of observing the system to be in the
state ψβ is ψ ψ∣ ∣α β( , ) 2, where ψ ψ ψ ψ= =α α β β( , ) ( , ) 1 and ‘(, )’ denotes an inner
product.

• For a system in the state ψ, the expectation value of the physical quantity A,
〈 〉A is given by

ψ ψ〈 〉 = ˆA A( , ), (5.19)

where ψ ψ =( , ) 1.
• Although the language used suggests that it is applicable to individual
quantum systems, the probabilistic nature of quantum mechanics only makes
sense when comparison with experiment involves many measurements either
repeatedly on an individual system or on many identical copies of that
system. To allow for experimental uncertainty (i.e. non-quantum mechanical
uncertainty) the formalism of density matrices must be used (cf. Volume 1,
section 7.4).

• A useful expression for uncertainty in a dynamical variable A with respect to a
state represented by the vector ψ is ψ ψ ψ ψˆ − ˆA A( , ) ( , )

2 2. It is variously called
the dispersion of A or the variance of A or the mean-square deviation in A.

For a system consisting of many identical particles:
• The operation of permutation of the ith and jth particles, P̂ij results in

ψ ψˆ = +P for bosons, (5.20)ij

ψ ψˆ = −P for fermions, (5.21)ij
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where ψ is a many-particle state vector.
• The quantum mechanics of many-particle systems is conveniently formulated
using the occupation number representation. A state with n1 identical particles
in state 1, n2 identical particles in state 2, etc., is written

…∣ 〉† †a a( ) ( ) 0 ,n n
1 2

1 2

where the operator †a1 creates a particle in state 1, etc., and ∣ 〉0 is the particle
vacuum, i.e. the state corresponding to no particles; 〈 ∣ 〉 =0 0 1.

• The particle creation operators, †ai and their corresponding annihilation
operators, ai obey

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦δ= = = ∀† † †a a a a a a i j, , [ , ] 0, , 0, , (5.22)i j ij i j i j

for bosons; and

δ= = = ∀† † †{ } { }a a a a a a i j, , { , } 0, , 0, , (5.23)i j ij i j i j

for fermions, where

≔ +a a a a a a{ , } (5.24)i j i j j i

is called an anticommutator bracket.

5.5 Symmetry transformations in quantum mechanics
Transformations of quantummechanical systems are of great interest when there is a
symmetry, i.e. when the transformation leaves the system unchanged.

Because the state of a quantum mechanical system is completely described by an
element of a Hilbert space, there is a one-to-one correspondence between distinct
physical transformations of a system and transformations of its Hilbert space.

Both the transformations in physical space (on the physical system) and the
transformations in Hilbert space (on the state vectors describing the physical system)
are fully-equivalent realisations of a group.

In quantum mechanics the observable quantities are probabilities and expectation
values:

• A probability is invariant under a transformation, Û of a state vector,
ψ ψ′ = Û if

ψ ψ ψ ψ ψ ψ ψ ψ′ ′ = ˆ ˆ = ˆ ˆ =†U U U U( , ) ( , ) ( , ) ( , ), (5.25)

i.e. if

ˆ ˆ = ˆ†U U I . (5.26)

Thus, the symmetry operators of quantum mechanics are unitary. In quantum
mechanics, we are only interested in unitary representations of the groups that
act in Hilbert space.
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• An expectation value is invariant under Û if

ψ ψ ψ ψ ψ ψ ψ ψ′ ˆ ′ = ˆ ˆ ˆ = ˆ ˆ ˆ = ˆ†A U AU U AU A( , ) ( , ) ( , ) ( , ), (5.27)

i.e. if

ˆ ˆ ˆ = ˆ†U AU A. (5.28)

This is a similarity transformation that obeys

ˆ ˆ =A U[ , ] 0. (5.29)

5.5.1 The unitary transformations for translations, rotations, and time evolution in
quantum mechanics

• Translations3 of state vectors are described by

⎛
⎝⎜

⎞
⎠⎟

ˆ ⃗ =
− ⃗ · ⃗

ℏ
T a

ip a
( ) exp , (5.30)op

where ⃗ = ˆ ˆ ˆp p p p( , , )x y zop and the displacement is ⃗a .
• Rotations of state vectors are described by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ϕ

ϕˆ ⃗ =
− ˆ · ⃗

ℏ
R n

iJ n
( , ) exp , (5.31)op

where ⃗ = ˆ ˆ ˆJ J J J( , , )op x y z , ⃗n is a unit vector along the axis of rotation and ϕ is the

angle of rotation. The operators, Ĵx, Ĵy, Ĵz may be components of angular

momentum, e.g. ˆ = ˆ = ˆ ˆ − ˆ ˆJ L yp zp ;x x z y or they may be components of spin, e.g.
ˆ = ˆJ S ;x x or they may be the sum of angular momentum and spin, e.g.
ˆ = ˆ + ˆJ L Sx x x. Spin and angular momentum obey ˆ ˆ = =S L i j x y z[ , ] 0, , , ,i j .

• Time evolution of state vectors is described by

⎛
⎝⎜

⎞
⎠⎟

ˆ = − ˆ
ℏ

U t
iHt

( ) exp , (5.32)

where Ĥ is the Hamiltonian and t is the time change.

3 For ψ ψˆ = −T a x x a( ) ( ) ( )x , consider a Taylor series expansion of ψ −x a( ):

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

ψ ψ

ψ

− = − +
!

+ ⋯

= − →
ˆ
ℏ

=

x a a
x

a
x

a
x

x
ip

x

( ) 1
d

d 2
d

dx
( )

exp
d

d
( )

d
d

.x

2 2

2
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5.5.2 Consequences of symmetry in quantum mechanics

If a quantum mechanical system possesses a symmetry, the system will exhibit the
following properties:

• The system will possess degeneracy. This is seen to follow from
ψ ψ ψ ψ′ ˆ ′ = ˆA A( , ) ( , ) and ψ ψ′ = Û , i.e. there is more than one state with
the same expectation value of a particular physical quantity.

• The system may possess constants of motion. These occur when the

Hamiltonian is invariant under ˆ = − ˆ

ℏ
U exp( );iKk whence

ˆ ˆ =H K[ , ] 0

and from

ˆ
=

ℏ
ˆ ˆ + ∂ ˆ

∂
K
t i

K H
K
t

d
d

1
[ , ] (5.33)

if =∂ ˆ

∂
0K

t
then =

ˆ
0K

t
d
d

and K is a constant with respect to time.

The practical consequences of the above are:
• The Hilbert space will be reduced to degenerate subspaces. The characterising
eigenvalue of this subspace can be obtained by solving a single eigenvalue
problem for any one of the state vectors within the subspace. This will solve
the particular eigenvalue problem for all the other state vectors in the
subspace. Judicious choice of a state in the subspace may facilitate the
solution. The constants of motion will provide labelling quantum numbers.
These can be found by searching for dynamical variables that commute with
the Hamiltonian. (A subspace may possess a sub-subspace, and so on: this
will lead to a set of characterising eigenvalues.)

There are more subtle consequences of symmetry in quantum mechanics. These
consequences are briefly outlined here. Their details require considerable discussion
and constitute a major theme in the application of quantum mechanics to physical
systems.

Symmetry in quantum mechanics leads to simple properties of matrix elements.
The embodiment of this is contained in the so-called Wigner–Eckart theorem:

• If the Hilbert space describing a quantum mechanical system possesses
degenerate subspaces then:

(i) Matrix elements between pairs of states, both of which are in the same
subspace, can be expressed as a common factor (which is character-
istic of the operator and the subspace) multiplied by a number which
is a coupling coefficient corresponding to a well-defined Kronecker
product. All such matrix elements are reducible to simple multiples of
each other, where the multiples are ratios of coupling coefficients.
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(ii) A similar property to (i) is possessed by matrix elements between
states that lie in different subspaces (the initial state in one subspace,
the final state in the other).

(iii) For a given operator, some pairs of subspaces are connected by non-
zero matrix elements, other pairs of subspaces are connected only by
zero matrix elements: such features of quantum mechanical systems
are referred to as selection rules.

Besides quantum mechanical systems possessing symmetry, there are quantum
mechanical systems that possess approximate symmetry. Such systems have
Hamiltonians of the form

= +H H V ,0

where H0 possesses symmetry and V breaks this symmetry, but ≪V H0. The
consequences of this are that:

• The system possesses approximately degenerate subspaces, approximately
good quantum numbers, and approximate selection rules.

• The symmetry breaking effects of V can be calculated in a straightforward
manner using the Wigner–Eckart theorem and perturbation theory.

There is one symmetry, exhibited by many quantum systems, that heavily
dominates the subject of symmetry in quantum mechanics: rotational symmetry
and the conservation of angular momentum. This topic contains many of the
paradigms of symmetry in quantum mechanics and its consequences. There is one
symmetry, exhibited by many-body quantum systems, that overwhelmingly domi-
nates the subject of symmetry in quantum mechanics: permutational symmetry. All
many-fermion states must be antisymmetric.

5.6 Models with symmetry in quantum mechanics
For many-body quantum systems, we generally resort to model descriptions. These
descriptions are simpler than the actual physical systems, and they are solvable.
Some examples are:

• In the quantum mechanics of the hydrogen atom, the quarks in the nucleus are
modelled as a single particle, the proton, to which certain intrinsic properties
are ascribed—spin, charge, magnetic moment, mass, and charge radius.

• In the quantum mechanics of molecular rotations and vibrations, the electrons
in the atoms are ignored and the molecule is modelled as an array of masses
(atoms) with inter-atomic potentials (chemical bonds). Intrinsic properties
include bond lengths, bond angles, inter-atomic potential parameters. Many
of the consequences of specified bond lengths and angles are succinctly
described by a molecular point group—the group of transformations which
keep at least one point in the molecule fixed and which leave the molecule
unchanged.
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• In the quantum mechanics of crystalline lattice vibrations, a similar approach
to molecular vibrations is taken. The crystallographic groups are groups of
rotations, reflections, translations and combinations of these that leave crystal
lattices invariant.

• In the quantum mechanics of nuclear rotations and vibrations, the nucleons
can be ignored and the nucleus is then modelled as a droplet of fluid with a
well-defined surface and shape. It is also possible to model the inertial flows of
the fluid, e.g. rigid flow or irrotational flow. In such a system, the trans-
formations that leave the shape and current flows of the nucleus invariant
constitute the intrinsic symmetry group of the nucleus.

The above examples of modelling and symmetry can be regarded as ‘geometric’ in
content. But algebraic modelling is also possible and, indeed, is the area of greatest
activity nowadays.

Permutational symmetry manifestly lacks a geometrical content: but it can be
given a geometrical representation, e.g. by putting objects in boxes.

5.7 Groups and algebras
Consider a Hamiltonian which is invariant with respect to the unitary
transformations

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

ˆ = − ˆ
ℏ

ˆ = − ˆ
ℏ

U
iK k

U
iK k

exp , exp , (5.34)1
1 1

2
2 2

then

ˆ ˆ = ˆ ˆ =H K H K[ , ] 0, [ , ] 0, (5.35)1 2

and if =∂ ˆ

∂
0K

t
1 , =∂ ˆ

∂
0K

t
2 , then =

ˆ
0K

t
d
d

1 , =
ˆ

0K
t

d
d

2 and K1 and K2 are constants of motion.
Then, from

ˆ ˆ ˆ = ˆ ˆ ˆ − ˆ ˆ ˆ =H K K H K K H K K[ , [ , ]] [ , ] [ , ] 0, (5.36)1 2 1 2 2 1

ˆ ˆK K[ , ]1 2 is also a constant of motion. If the set of all operators K̂{ }i which are
constants of motion obey

∑ˆ ˆ = ˆ ˆ ∈ ˆ ∀K K c K K K j k[ , ] , { } , , (5.37)
l

j k jk
l

l l i

and

ˆ ˆ ˆ + ˆ ˆ ˆ + ˆ ˆ ˆ =K K K K K K K K K[ , [ , ]] [ , [ , ]] [ , [ , ]] 0 (5.38)j k l l j k k l j

(called the Jacobi identity), where the c jk
l (called structure constants) are complex

numbers, then the set of operators K̂{ }i generates the symmetry Lie algebra of the
system with the Hamiltonian Ĥ .

Quantum Mechanics for Nuclear Structure, Volume 2

5-13



The pre-eminent example of a symmetry Lie algebra in quantum mechanics is
rotational symmetry and angular momentum. The generators of rotations, L̂x, L̂y,

and L̂z possess the Lie algebra given by

ε α β γˆ ˆ = ℏ ˆ =α β αβγ γL L i L x y z[ , ] ; , , , , , (5.39)

called SO(3) or SU(2).
Commonly, in quantum mechanics, the focus is (almost) entirely on the symmetry

Lie algebra, not the symmetry group, of a physical system. Indeed, sometimes a
system possesses an algebraic structure for which it makes little or no sense to seek a
geometrical type of symmetry.

A practical consequence of the emphasis on algebraic structures in quantum
mechanics is that modelling of systems is often done algebraically and there may not
be a corresponding symmetry associated with the system geometry.

An example of a simple model system with a well-defined algebraic structure, but
no specific geometrical structure, is a two-level system for identical bosons (see
figure 5.2). For a model Hamiltonian

ε εˆ = +† †H a a a a ; (5.40)1 1 1 2 2 2

if ε ε=1 2 (i.e. the two levels are degenerate in energy), then Ĥ commutes with †a a2 1

and †a a1 2 and a (trivial) algebraic structure results; for a fixed boson number, an so(3)
algebra results; and for ε ε≠1 2 this is an so(3) dynamical algebra (see next section).

5.8 Dynamical or spectrum generating algebras
Consider a model Hamiltonian of the form

α βˆ = ˆ +H L L , (5.41)z
2 2

where ˆ = ˆ + ˆ + ˆL L L Lx y z
2 2 2 2

and ˆ ˆ ˆL L L{ , , }x y z are the generators of the Lie algebra
so(3). From the theory of so(3) (the theory of angular momentum in quantum
mechanics),

ˆ ∣ 〉 = + ∣ 〉 ˆ ∣ 〉 = ∣ 〉 ℏ ≡
= … = ± ± − … ± ±

L lm l l lm L lm m lm
l m l l

( 1) , ( 1),
0, 1, 2, , , ( 1), , 2, 1, 0,

(5.42)z
2

Figure 5.2. Schematic view of a two-level ‘boson’ model. The operator †a a2 1 excites a boson from the lower
level to the upper level and †a a1 2 de-excites such a boson.
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α βˆ ∣ 〉 = + + ∣ 〉H lm l l m lm( ( 1) ) , (5.43)2

and the energy eigenvalues can be depicted as shown in figure 5.3. Note: Ĥ splits but
does not mix the ∣ 〉lm states. The Hamiltonian Ĥ is said to possess an so(3) dynamical
algebra and the structure of the algebra generates a spectrum. The algebra is called a
spectrum-generating algebra, SGA.

The two-level system described on the previous page also has an so(3) dynamical
algebra; but it has a different spectrum to the above.

5.9 Matrix groups
Matrix algebra naturally has a group structure, i.e. products of matrices possess
closure and associativity; and the identity matrix and the condition for an inverse are
defined. Within these structures there are continuous matrix groups and discrete
matrix groups. Continuous matrix groups have an infinite number of group elements
because their matrix elements depend on continuous parameters, e.g.

( )a a
a a

11 12

21 22

form an infinite set because a11, a12, a21, a22 are continuous. Discrete groups have a
finite number of elements.

5.9.1 Discrete matrix groups

Examples of discrete groups are molecular point groups, crystallographic groups,
and permutation groups. Matrix representations are realised by introducing geo-
metric manifolds or permutational diagrams. For molecules and crystals,
suitable geometric manifolds are the systems themselves. Symmetry transformations
are made up of translations (for crystals), rotations, reflections, inversions and
combinations of these. Matrix representations are straightforwardly formulated.
Permutation groups may be applied to systems with or without an inherent
geometry. Groups of permutations of identical objects are called symmetric groups.

Figure 5.3. Energy spectrum for a system with the Hamiltonian, equation (5.41) for l = 3. Note the two-fold
degeneracy in the quantum number, m.
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Example 5-1. Matrix representations for the symmetric group, S3.
The following operators for three identical objects leave the system unchanged:

They can be arranged in a multiplication table (see table 5.1). Note 1: the order of
multiplication is = +P P P12 23 , = −P P P12 13 , i.e. left-hand column first. Note 2: I is the
identity, i.e. ‘no permutation’. (The inverses are =−P P12

1
12, =+

−
−P P1 , etc.; =P Pij ji,

=i 1, 2, 3.)

5.9.2 Continuous matrix groups

Continuous matrix groups possess the remarkable property that they can be
expressed in terms of infinitesimal steps. Thus, the essence of rotations in a plane
can be expressed as ϕ ϕ ϕ+R( d , ) where the essential process is moving a vector
making an angle ϕ with respect to a reference axis through an infinitesimal angle ϕd .
It can be depicted as shown in figure 5.4.
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All rotations in a plane can be achieved by repeated multiplication of infinitesimal
rotations. This can be expressed using matrices as follows. From the basic
representation of a point x y( , ) in the plane, undergoing rotation through an angle ϕ,

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

ϕ ϕ
ϕ ϕ

′
′ =

− ( )x
y

x
y

cos sin
sin cos

, (5.44)

for counterclockwise rotations, consider the limit

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

ϕ ϕ
ϕ ϕ

ϕ
ϕ

−
→

−
ϕ→
lim

cos sin
sin cos

1
1

, (5.45)
0

where the small angle approximation, ϕ ϕ≈sin (ϕ measured in radians) has been
made. Then from

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

ϕ
ϕ

ϕ
ϕ

−
= +

−1
1

1 0
0 1

0
0

, (5.46)

⎛
⎝⎜

⎞
⎠⎟

ϕ ϕ
ϕ ϕ

ϕ
−

= +
ϕ→

I glim
cos sin
sin cos

, (5.47)
0

where I is the identity matrix for the plane and

Table 5.1. Multiplication table for the permutation group, S3.

P12 P23 P13 +P −P

P12 I +P −P P23 P13

P23 −P I +P P13 P12

P13 +P −P I P12 P23

+P P13 P12 P23 −P I

−P P23 P13 P12 I +P

Figure 5.4. Infinitesimal rotation of a vector in a plane from the position defined by ϕ (x-axis: reference axis) to
the position ϕ ϕ+ d by the rotation operator ϕ ϕ ϕ+R( d , ).

Quantum Mechanics for Nuclear Structure, Volume 2

5-17



⎜ ⎟⎛
⎝

⎞
⎠≔ −g 0 1

1 0
. (5.48)

Consider now repeating an infinitesimal rotation ϕ
N
, where N is a very large

number,N times, i.e. + ϕI( )g
N

N . The → ∞N limit of this process is ϕgexp( ). This can

be explored on a calculator by evaluating +(1 )
N
1 N for = …N 10, 10 , 10 ,3 6 and is

seen to approach …2.7183 . Here, expanding,

ϕ ϕ ϕ ϕ= + +
!

+
!

+ ⋯g I g g gexp( )
1
2

1
3

, (5.49)2 2 3 3

but

⎜ ⎟⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠= − − = −

−
= −g I0 1

1 0
0 1
1 0

1 0
0 1

, (5.50)2

whence

⎜ ⎟ ⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

ϕ ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ
ϕ ϕ

= −
!

+ ⋯ + −
!

+ ⋯

= +

= + −

=
−

g I g

I g

exp( ) 1
1
2

1
3

cos sin

1 0
0 1

cos 0 1
1 0

sin

cos sin
sin cos

.

(5.51)

2 3

One notices that g and the complex number4 i possess an isomorphic algebra, recall
ϕ ϕ= +ϕe icos sini .

5.9.3 Compact and non-compact groups

Rotations in a plane are described by a single parameter, the angle ϕ, and the
parameter is compact, i.e. ϕ π⩽ ⩽0 2 . With the operation of reflection, represented

by the matrix ⎜ ⎟
⎛
⎝

⎞
⎠−

1 0
0 1

, the groups so defined are SO( 2, ) or SO(2) and O( 2, ) or

O(2); where ‘O’ stands for orthogonal, and ‘S’ stands for ‘special’ which implies that
the determinant of the 2 × 2 matrix (group elements) have the value +1. Manifestly,
these groups preserve a length in the plane, i.e.

′ + ′ = +x y x y( ) ( ) . (5.52)2 2 2 2

4 Indeed, complex numbers can be used to represent both operands and operators in a plane, viz.
=ϕ θ θ ϕ+e re re( )i i i( ), cf. v v= ′R .
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One can also define the group that ensures

′ − ′ = −x y x y( ) ( ) . (5.53)2 2 2 2

The matrix representation of this group is parameterised as

⎛
⎝⎜

⎞
⎠⎟χ

χ χ
χ χ

=R( )
cosh sinh
sinh cosh

, (5.54)

where χ⩽0 , i.e. it is non-compact. It is encountered in physics, e.g. for space–time
in one spatial dimension, where −x ct( )2 2 is conserved. The group is designated
SO(1,1) or O(1,1).

In three dimensions one encounters, e.g. SO(2,1) which would preserve the
quantity + −x x x1

2
2
2

3
2. Compactness is a property of the manifold on which the

group elements act. The group SO(3) describes moving a point on the surface of a
sphere; the group SO(2,1) describes moving a point on the surface of a hyperboloid.
Thus, manifolds are geometric surfaces.

5.9.4 Polynomial representation of groups

Consider

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

ϕ ϕ
ϕ ϕ

′
′ =

− ( )x
x

x
x

cos sin
sin cos

, (5.55)1

2

1

2

i.e.

ϕ ϕ′ = −x x xcos sin , (5.56)1 1 2

ϕ ϕ′ = +x x xsin cos (5.57)2 1 2

and the binomials

≔ ≔ ≔t x t x x t x, 2 , . (5.58)1 1
2

2 1 2 3 2
2

These binomials transform under SO(2), equation (5.55), as

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

′
′
′

=
−

− −
t
t
t

t
t
t

cos 2 cos sin sin

2 cos sin cos sin 2 cos sin

sin 2 cos sin cos

. (5.59)
1

2

3

2 2

2 2

2 2

1

2

3

Equation (5.59) describes the transformation of a three-component structure under
SO(2). The structure is a rank-2 polynomial constructed on the space (2, ). There is
only one parameter, the angle ϕ, which is a characteristic property of the group
SO(2). This process can be extended by defining

≔ ≔ ≔ ≔w x w x x w x x w x, 3 , 3 , . (5.60)1 1
3

2 1
2

2 3 1 2
2

4 2
3
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The factors ‘ 2 ’ in equation (5.58) and ‘ 3 ’ in equation (5.60) are not necessary,
but yield a more symmetric pattern. Polynomials of any degree are permissible.

The matrix in equation (5.59) is reducible. Calling this matrix M, the similarity
transformation

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟≔

−
C

1
2

1 0 1
0 2 0
1 0 1

(5.61)

effects

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ
= − −

−
C MC

1 0 0
0 cos sin 2 cos sin

0 2 cos sin cos sin
, (5.62)T 2 2

2 2

where CT is the transpose of C and = −C CT 1, i.e. =C C IT . This result is
straightforwardly understood when it is recognised that + = +t t x x1 3 1

2
2
2 is invar-

iant under rotations in a plane: it is a scalar. The linear combination −t t1 3 together
with t2 span an irreducible two-dimensional subspace. The space spanned by
t t t( , , )1 2 3 is said to be reducible under SO(2) transformation.

5.10 Generators of continuous groups and Lie algebras
Rotation through an angle ϕ in a counterclockwise direction in a plane is described
by (cf. equation (5.44))

⎛
⎝⎜

⎞
⎠⎟ϕ

ϕ ϕ
ϕ ϕ

=
−

R( )
cos sin
sin cos

. (5.63)

The essential operation that underlies this is the recognition that it is defined
infinitesimally by (cf. equation (5.47))

ϕ ϕ ϕ ϕ+ = +R I g( d , ) d , (5.64)

where

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠= = −I g1 0

0 1
, 0 1

1 0
. (5.65)

Any rotation in a plane (there are an infinite number of possibilities) is achieved by
repeating this process

⎜ ⎟⎛
⎝

⎞
⎠ϕ ϕ= +

→∞
R I

g
N

( ) lim . (5.66)
N

N

The process is described by a single generator g. Rotations in a plane have one
generator and one parameter (an angle, ϕ).
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5.10.1 The matrix group SO(3) and its generators

Rotations in three dimensions, in the space (3, ) (the space where we live) can be
described by three generators, say g1, g2, g3, and three parameters (three angles).
There are various ways to define these angles: they could be with respect to three
Cartesian axes, in which case =g g g g g g{ , , } { , , };x y z1 2 3 they could be with respect to
an axis and a single angle, in which case two angles are needed to specify the axis, n̂
and =g g g g g g{ , , } { , , }n a b1 2 3 , where a and b are orthogonal axes5 with respect to n̂.
The possibilities are infinite. For three Cartesian axes

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟α α α

α α
= −R ( )

1 0 0
0 cos sin
0 sin cos

, (5.67)x

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟β

β β

β β
=

−
R ( )

cos 0 sin
0 1 0

sin 0 cos
, (5.68)y

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟γ

γ γ
γ γ=

−
R ( )

cos sin 0
sin cos 0

0 0 1

. (5.69)z

The generators corresponding to these rotations are

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟= −g

0 0 0
0 0 1
0 1 0

, (5.70)x

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟=

−
g

0 0 1
0 0 0
1 0 0

, (5.71)y

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟=

−
g

0 1 0
1 0 0
0 0 0

. (5.72)z

The generators g g g{ , , }x y z do not commute with each other, viz.

=g g g[ , ] , (5.73)x y z

=g g g[ , ] , (5.74)y z x

=g g g[ , ] . (5.75)z x y

5 But no rotations take place about these axes.
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They define an algebra with three elements. It is a Lie algebra, as first communicated by
the Norwegian mathematician, Sophus Lie, ca. 1890. They also define a group under
the group product, = − =A B AB BA C[ , ] , i.e. they obey closure. It is worth
observing that, by adopting equations (5.73)–(5.75) as the essential structure of (3, )
with respect to rotations, by invoking a scale factor ℏ (which has dimensions of angular
momentum), and by requiring that operators be Hermitian, one arrives axiomatically at

ˆ ˆ = ℏ ˆL L i L[ , ] , (5.76)x y z

ˆ ˆ = ℏ ˆL L i L[ , ] , (5.77)y z x

ˆ ˆ = ℏ ˆL L i L[ , ] . (5.78)z x y

It would be fair to say that the mathematical structures that we use to represent
and conduct quantum mechanics work because of the underlying Lie algebra
structures. Lie algebras have undergone an elegant and sophisticated evolution
since Sophus Lie’s work, notably by Élie Cartan. Here and in the next chapter
(chapter 6) we provide basic details.

5.10.2 Unitary groups and SU(2)

The mathematical structure of quantum mechanics ‘resides’ in Hilbert space.
Indeed, the operators ˆ ˆ ˆL L L{ , , }x y z given in equations (5.76)–(5.78) act on elements
of Hilbert space, not on vectors in (3, ). Hilbert space is a complex linear space
with a finite norm. As such, we are concerned with unitary transformations (as well
as orthogonal transformations in (3, ), cf. equations (5.67)–(5.69)).

The simplest, non-trivial6 group associated with Hilbert space is SU(2). The
group SU(2) is not amenable to a simple pictorial view, such as presented in section
5.9.2 and figure 5.4, for SO(2). The simplest realisation of an SU(2) transformation
can be expressed as

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

′
′ ≔

− * * ( )z
z

a b
b a

z
z , (5.79)1

2

1

2

∣ ′∣ + ∣ ′∣ = ∣ ∣ + ∣ ∣z z z z , (5.80)1
2

2
2

1
2

2
2

where z1, z2 span the space (2, ) and a, b are parameters that are complex. As such,
a and b represent four parameters (each has a real and an imaginary part); but the
transformation is unitary, i.e.

⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

−
−

=
∣ ∣ + ∣ ∣

∣ ∣ + ∣ ∣
=*

* * *
a b
b a

a b
b a

a b

a b
I

0

0
(5.81)

2 2

2 2

imposes the constraint ∣ ∣ + ∣ ∣ =a b 12 2 , yielding a three-parameter group.

6There is the trivial group U(1) ≡ SU(1), which is just multiplication by a phase factor, ϕ−e i .
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As with SO(3), there are various ways to define these three parameters. If one
chooses to match the rotation angles used in SO(3), one obtains the expressions

β β= = −
α γ α γ− + − −

a e b ecos
2

, sin
2

, (5.82)
i i( )

2
( )
2

when the Euler angle representation is used, and

ϕ ϕ ϕ= − = − −a in b in ncos
2

sin
2

, ( )sin
2

, (5.83)z x y

when the axis-angle representation is used, cf. equations (1.53) and (1.56),
respectively.

5.11 The unitary and orthogonal groups in n dimensions, U(n) and
SO(n)

To see how group structures, such as SO(2), SO(3), and SU(2) can be explored and
how they might apply to quantum mechanics, it is useful to introduce the groups
U(n) and SO(n).

The U(n) group is defined by transformations in an n-dimensional field of
complex numbers …z z z( , , , )n1 2 ,

∑′ ≔ = …
=

z U z i n, 1, 2, , , (5.84)
j

n

1
i ij j

where the matrix U satisfies

∑ δ= = …
=

*U U i k n; , 1, 2, , , (5.85)
j

n

1

ij kj ik

i.e.

=†U U I. (5.86)

Consider the infinitesimal unitary transformations

ε= + ˆ + ⋯U I i S , (5.87)

where Ŝ is Hermitian and ε is an infinitesimal real number. Then, the action of Ŝ on
an arbitrary function … ≔f z z z f z( , , , ) ( )n i1 2 is

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑

∑∑

ε

ε

ˆ = ′ = +

= + ∂
∂

+ ⋯

=

= =

Sf z f z f z i S z

f z i S z
f
z

( ) ( )

( ) ,

(5.88)j

n

i

n

j

n

1

1 1

i i i ij j

i ij j
i
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i.e. to first order in ε, the infinitesimal unitary transformation is expressed by the
increment ε ∑ =i S Gi j

n
ij j

i
, 1 , where

≔ ∂
∂

G z
z

. (5.89)j
i

j
i

There are n2 such operators, and since

⎡
⎣⎢

⎤
⎦⎥ δ∂

∂
=

z
z, , (5.90)

i
j ij

δ δ= − = …G G G G i j kl n[ , ] ; , , 1, 2, , , (5.91)i
j

k
l

i
l

jk k
j

il

which defines a u(n) Lie algebra7.

Example 5-2. Derivation of the Lie algebra u(2) from the Lie group U(2).
The Lie group U(2) can be expressed as

⎛
⎝⎜

⎞
⎠⎟=

′
′( )( )c c

c c
z
z

z
z

. (5.92)11 12

21 22

1

2

1

2

The generators of infinitesimal transformations can be expressed as

= ∂
∂

= ∂
∂

= ∂
∂

= ∂
∂

G z
z

G z
z

G z
z

G z
z

, , , . (5.93)1
1

1
1

1
2

1
2

2
1

2
1

2
2

2
2

Commutator brackets for the generators can be evaluated using the identity

= + + +AB CD AC B D A B C D C A D B A C DB[ , ] [ , ] [ , ] [ , ] [ , ] , (5.94)

whence, e.g.

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥= ∂

∂
∂

∂
= ∂

∂
∂

∂
=G G z

z
z

z
z

z
z

z
G[ , ] , , . (5.95)1

1
1
2

1
1

1
2

1
1

1
2

1
2

The 16 commutator brackets that result can be depicted as in table 5.2. Note 1: the
order of the commutator brackets is, e.g. =G G G[ , ]1

1
1
2

1
2, = −G G G[ , ]1

1
2
1

2
1. Note 2:

only the upper ‘triangle’ is needed because = −A B B A[ , ] [ , ]. The group SU(2)
follows directly from U(2) by imposing the constraint

+ =G G I , (5.96)1
1

2
2

whence, SU(2) has three generators. (Note: adding entries in the columns, forG1
1 and

G2
2, always gives zero.) Then, defining

7Note, upper case letters are used to denote Lie groups, e.g. U(n), and lower case letters denote Lie algebras,
viz. u(n).
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≔ − ≔ − ≔ +g
i

G G g G G g
i

G G
2

( ),
1
2

( ),
2

( ), (5.97)0 1
1

2
2

1 1
2

2
1

2 1
2

2
1

= = =g g g g g g g g g[ , ] , [ , ] , [ , ] , (5.98)0 1 2 1 2 0 2 0 1

i.e. the Lie algebra of g g g{ , , }0 1 2 is closed and it is isomorphic to equations (5.73)–
(5.75): the algebra of so(3). The Lie algebras su(2) and so(3) are isomorphic.

The SO(n) group is defined by transformations in an n-dimensional field of real
numbers …x x x( , , , )n1 2 ,

∑′ = = …
=

x R x i n, 1, 2, , , (5.99)
j

n

1
i ij j

where the matrix R satisfies

∑ δ= = …
=

R R i k n, , 1, 2, , ; (5.100)
j

n

1

ij kj ik

i.e.

˜ =RR I , (5.101)

where R̃ is the transpose of R.
Now, consider the infinitesimal orthogonal transformations

ε= + + ⋯R I T , (5.102)

where T is a real asymmetric matrix since

ε ε ε˜ ≈ + + ˜ ≈ + + ˜ =RR I T T I T T I( )(1 ) ( ) , (5.103)

i.e.

= −T T . (5.104)ji ij

Table 5.2. Commutator bracket table for u(2).

G1
1 G1

2 G2
1 G2

2

G1
1 0 G1

2 −G2
1 0

G1
2 −G1

2 0 −G G1
1

2
2 G1

2

G2
1 G2

1 −G G2
2

1
1 0 −G2

1

G2
2 0 −G1

2 G2
1 0
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Then consider the action of T on an arbitrary function, g x( )i ,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

∑

∑

∑

ε

ε

ε

= ′

= +

= + ∂
∂

+ ⋯

= + ∂
∂

− ∂
∂

+ ⋯

=

=

=

Tg x g x

g x T x

g x T x
g
x

g x T x
g
x

x
g
x

( ) ( )

( ) ,

( ) .

(5.105)

j

n

i j

n

i j

n

1

, 1

, 1

i i

i ij j

i ij j
i

i ij j
i

i
j

We define (note: ≠i j)

Λ ≔ −G G , (5.106)ij i
j

j
i

where

≔ ∂
∂

G x
x

, etc. (5.107)j
i

j
i

There are −n n( 1)
2

such generators and

δ δ δ δΛ Λ = Λ + Λ + Λ + Λ[ , ] , (5.108)ij kl il jk jk il lj ik ki jl

where, = …i j k l n, , , 1, 2, , , which defines the Lie algebra so(n).
The commutator brackets for, e.g. so(4) follow directly from equation (5.108) (see

table 5.3). Note: Λ = −Λ12 21, etc.

5.12 Casimir invariants and commuting operators
Casimir invariants are operators that commute with all of the generators of a
particular Lie algebra.

Table 5.3. Commutator bracket table for so(4).

Λ12 Λ13 Λ14 Λ23 Λ24 Λ34

Λ12 0 −Λ23 −Λ24 Λ13 Λ14 0
Λ13 Λ23 0 −Λ34 −Λ12 0 Λ14

Λ14 Λ24 Λ34 0 0 −Λ12 -Λ13

Λ23 −Λ13 Λ12 0 0 Λ34 Λ24

Λ24 −Λ14 0 Λ12 −Λ34 0 Λ23

Λ34 0 −Λ14 Λ13 −Λ24 −Λ23 0
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5.12.1 The Casimir invariants of u(n)

∑≔
=

C G , (5.109)
i

n

1
u n i

i
( )

(1)

viz.

⎡⎣ ⎤⎦ ∑

∑ δ δ

=

= −

=

=

=

C G G G

G G

, [ , ]

( )

0.

(5.110)
i

n

i

n
1

1

u n k
l

i
i

k
l

i
l

ik k
i

il

( )
(1)

∑≔
=

C G G . (5.111)
i j

n

, 1
u n i

j
j
i

( )
(2)

∑≔
=

C G G G , (5.112)
i j k

n

, , 1
u n i

j
j
k

k
i

( )
(3)

etc. Note the index ‘contraction’.

Example 5-3. The Casimir invariants of u(2) and su(2).
From equation (5.109)

≔ +C G G , (5.113)u(2)
(1)

1
1

2
2

cf. equation (5.96) and table 5.2.
From equation (5.111),

≔ + + +C G G G G G G G G ; (5.114)u(2)
(2)

1
1

1
1

1
2

2
1

2
1

1
2

2
2

2
2

then, using ≔ −g G G( )
i
20 1

1
2
2 , ≔ −g G G( )

1
21 1

2
2
1 , ≔ +g G G( )

i
22 1

2
2
1 , cf. equations

(5.97) and (5.113), it follows that

⎡⎣ ⎤⎦= − + + +( )C g g g C8 2 . (5.115)u u(2)
(2)

0
2

1
2

2
2

(2)
(1) 2

We define

≔ + +C g g g . (5.116)su(2)
(2)

0
2

1
2

2
2

5.12.2 The Casimir invariants of so(n)

There is no first-order Casimir invariant for so(n). The second-order invariant is

∑≔ Λ Λ
=

C
1
2

. (5.117)
i j

n

, 1
so n ij ji( )
(2)
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Example 5-4. The Casimir invariant of SO(3).
From equation (5.117)

≔ Λ Λ + Λ Λ + Λ ΛC , (5.118)so(3)
(2)

12 21 13 31 23 32

cf. table 5.3, defining

≔ Λ ≔ Λ ≔ −Λg g g, , , (5.119)1 23 2 31 3 12

from which

= − + +( )C g g g (5.120)so(3)
(2)

1
2

2
2

3
2

follows. (Note:

= = =g g g g g g g g g[ , ] , [ , ] , [ , ] . ) (5.121)1 2 3 2 3 1 3 1 2
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Chapter 6

Algebraic structure of quantum mechanics

The algebraic structure of quantum mechanics is emphasized. This is illustrated by
reiterating the so(3) ∼ su(2) treatment of angular momentum and spin. The algebra
su(1,1) ∼ so(2,1) ∼ sl(2,R) is sketched. The main focus is on rank-2 Lie algebras.
Details of su(3) and the isotropic harmonic oscillator in three dimensions are
introduced. The so(4) structure of the Kepler problem (hydrogen-like systems) is
presented. Uses of so(5) and sp(3,R), as applied to nuclei are briefly outlined. Root
and weight diagrams are explained. Young diagram techniques for elucidating
SU(3) group irreps are built from first principles. First steps into Cartan theory of
Lie algebras are made, using su(3) to illustrate this language.

Concepts: commutator bracket algebra; ladder operators; Casimir operators;
so(3) ∼ su(2); su(1,1) ∼ so(2,1) ∼ sl(2,R); su(3); three-dimensional harmonic oscillator;
hw(3); root diagram; weight diagram; so(4); Kepler problem and hydrogen atom;
so(5); sp(3,R); Young diagrams; Young tableaux; highest-weight state; multiplicity of
weights; dimensions of irreps; Robinson hook-length method; sub-irreps; Kronecker
products of irreps; Cartan structure; Cartan subalgebra; Weyl reflection theorem; g(2).

At the heart of quantum mechanics is the relationship

δ δˆ ˆ ≔ ℏ = ℏ ˆ =x p i i I i j[ , ] , , 1, 2, 3, (6.1)i j ij ij

where x̂i and p̂i are operators representing position and momentum with respect to

the xi axes. The equation involves a commutator bracket viz. ˆ ˆ ≔ ˆ ˆ − ˆ ˆA B AB BA[ , ] ,
= −i 1 ,ℏ is the fundamental constant describing the scale of quantum phenomena,

δij is the Kronecker delta, δ δ= = = ≠i j i j( 1, , 0, )ij ij , and Î is the identity
operator. Equation (6.1) defines an algebra.

It is specified that operators in quantum mechanics act on elements of a Hilbert
space (a complex linear space possessing an inner product) and that outcomes of
observations in quantum mechanics are the eigenvalues of equations of the form

doi:10.1088/978-0-7503-2171-6ch6 6-1 ª IOP Publishing Ltd 2020
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α α αˆ∣ 〉 = ∣ 〉A i i i , where αi is a real number, Â is an operator corresponding to a
dynamical variable, and α∣ 〉i is an eigenvector. The set α∣ 〉 = …i n{ }, 1, , ,i where n
possible outcomes of the measurement of A are observed, span a Hilbert space which
serves to describe the physics of a system with respect to the observable A.
Probabilities are given by α β∣〈 ∣ 〉∣2, where α∣ 〉 and β∣ 〉 are any two elements of the
Hilbert space and the interpretation is ‘for a system in the state β∣ 〉, what is the
probability that it is observed in the state α∣ 〉?’ The condition imposed on α β∣〈 ∣ 〉∣2 in
order that it corresponds to probability is that the representation α∣ 〉{ } must be
unitary.

One proceeds to ‘solve’ the quantum mechanics of a system by finding the
eigenvalues of the Hamiltonian operator and of all the operators that commute
with the Hamiltonian. The condition of unitarity is imposed on the eigenvectors

α∣ 〉{ } to complete this task. Then, the processes that can occur in the system are
elucidated by computing matrix elements for all operators of interest that have an
action in the Hilbert space of the system. In this chapter the algebras associated
with some quantum mechanical systems of especial interest will be explored and an
introduction to Young diagram techniques and Cartan theory of Lie algebras will
be made.

6.1 Angular momentum theory as an application of a Lie algebra
The theory of angular momentum (and spin) in quantum mechanics is instantly
recognised by most physicists via the set of algebraic equations

ˆ ˆ = ℏ ˆJ J i J[ , ] , (6.2)x y z

ˆ ˆ = ℏ ˆJ J i J[ , ] , (6.3)y z x

ˆ ˆ = ℏ ˆJ J i J[ , ] , (6.4)z x y

or

εˆ ˆ = ℏ ˆ = ≡J J i J i j k x y z[ , ] , , , (1, 2, 3) ( , , ) (6.5)i k ijk k

and εijk is the Levi-Civita symbol. Often ≡J Li i when angular momentum is
involved, ≡J Si i when spin is involved, and ≡ +J L Si i i when a system has
contributions to total spin from both intrinsic spin and angular momentum.

Remarkably, for angular momentum, the relationships,

εˆ ˆ = ℏ ˆL L i L[ , ] , (6.6)i j ijk k

can be derived from equation (6.1). However, for intrinsic spin,

εˆ ˆ ≔ ℏ ˆS S i S[ , ] (6.7)i j ijk k
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must be stated as an axiom1. These three equations define the Lie algebra su(2); it is
isomorphic to the Lie algebra so(3). (Recall the groups SU(2) and SO(3) are
homomorphic: there is a 1:2 correspondence in group elements. This is dramatised
by the rotation of spinors, i.e. spin-1

2
states in Hilbert space which acquire a quantum

phase factor of −1 when rotated through 2π, cf. section 1.16.)
A standard procedure for ‘solving’ spin-angular problems is to define the

operators (e.g. ≡J L )i i :

ˆ ≔ ˆ + ˆ + ˆL L L L , (6.8)x y z
2 2 2 2

ˆ ≔ ˆ ± ˆ±L L iL , (6.9)x y

to arrive at the algebraic relations

ˆ ˆ = ˆ ˆ = ˆ ˆ =L L L L L L[ , ] 0, [ , ] 0, [ , ] 0, (6.10)x y z
2 2 2

ˆ ˆ = ±ℏ ˆ ˆ ˆ = ℏ ˆ± + −L L L L L L[ , ] , [ , ] 2 . (6.11)z z 0

The operator L̂
2 is termed a Casimir operator or Casimir invariant with respect to

su(2). It is the only such operator for su(2): it commutes with all of the elements
ˆ ˆ ˆL L L{ , , }x y z of the algebra and any functions of these elements, such as equation

(6.9). The operators ˆ+L and ˆ−L are termed raising and lowering operators,
respectively, or ‘ladder’ operators. One then arrives at simultaneous eigenkets, ∣ 〉lm
which obey

ˆ ∣ 〉 = + ℏ ∣ 〉L lm l l lm( 1) , (6.12)2 2

ˆ ∣ 〉 = ℏ∣ 〉L lm m lm , (6.13)z

ˆ ∣ 〉 = ∓ ± + ℏ∣ ± 〉±L lm l m l m l m( )( 1) , 1 , (6.14)

= ⋯l 0, 1, 2, , = + + − … + − … −m l l l, 1, , 1, 0, 1, , for angular momentum (and
= + + − … + − … −m j j j, 1, , , , ,1

2
1
2

if a spin-1
2
particle is present). The quantiza-

tion necessitates that only unitary representations are permitted, i.e.

ˆ = ˆ+
†

−L L( ) ( ). (6.15)

The full importance of equation (6.15) is realised, e.g. when considering the state
‘ ˆ ∣ 〉+L lm ’: in order for an inner product with a finite norm to exist, we require

ˆ ∣ 〉 ˆ ∣ 〉 =+
†

+ *L lm L lm C C( ) ( ) , (6.16)lm lm

∴ 〈 ∣ ˆ ˆ ∣ 〉 = ∣ ∣+
†

+lm L L lm C( ) , (6.17)lm
2

1 This is true in non-relativistic quantum mechanics; but in relativistic quantum mechanics, as shown by Dirac,
spin emerges from the so-called Dirac equation.
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∴ 〈 ∣ ˆ ˆ ∣ 〉 = ∣ ∣− +lm L L lm C , (6.18)lm
2

∴ 〈 ∣ ˆ − ˆ − ℏ ˆ ∣ 〉 = ∣ ∣( )lm L L L lm C , (6.19)z z lm
2 2 2

∴ + ℏ − ℏ + ℏ 〈 ∣ 〉 = ∣ ∣l l m m lm lm C{ ( 1) } , (6.20)lm
2 2 2 2

∴ = + − + ℏϕC e l l m m( 1) ( 1) , (6.21)lm
i

or

= − + + ℏϕC e l m l m( )( 1) , (6.22)lm
i

usually making the choice ϕ ≔ 0.
The entire spectrum of spin-angular momentum follows from equation (6.14) (i.e.

from the result, equation (6.22)) by repeated application of ˆ+L to the ‘lowest-weight’
state ∣ 〉 = ∣ − 〉lm l l, (or of ˆ−L to the ‘highest-weight’ state ∣ 〉 = ∣ + 〉lm l l, ) for

= …l 1, 2, 3, (l = 0 is trivial) or similarly for = …j , , ,1
2

3
2

5
2

with ±̂J acting on
∣ 〉 = ∣ ± 〉j m j j, ,j . This process is known technically as inducing representations.

From the above basic algebraic relations, irreducible representations are defined:
the term ‘irreducible’ refers to the fact that ˆ±L cannot change l (as also, rotations
cannot change the magnitude of a vector such as ⃗L). Further, irreducible tensor
operators are defined: these are called spherical tensor operators with respect to
SO(3) and SU(2) tensor operators with respect to SU(2). Then follows the
construction of new irreducible representations (irreps from here on) by taking
Kronecker products of (generally simpler) pairs of irreps. This process involves
Clebsch–Gordan coefficients, and applies to combining kets with kets, bras with
bras, outer products of kets with bras, tensor operators with tensor operators, tensor
operators with kets, and (adjoints of) tensor operators with bras, e.g.

∑∣ 〉 = 〈 ∣ 〉∣ 〉∣ 〉JM j m j m JM j m j m , (6.23)
m

1 1 2 2 1 1 2 2

1

= + + ⩾ ⩾ ∣ − ∣M m m j j J j j, , (6.24)1 2 1 2 1 2

and (cf. equation (3.72))

∑ˆ = 〈 ∣ 〉 ˆ ˆT j m j m JM T T . (6.25)
m

M
J

m
j

m
j( )

1 1 2 2
( ) ( )

1

1

1

2

2

The powerful Wigner–Eckart theorem follows (cf. section 3.3), viz.

∑〈 ∣ ˆ ∣ 〉 =
+

〈 ∣ 〉〈 ∣∣ ˆ ∣∣ 〉j m T j m
k

j m j m kq j T j
1

(2 1)
. (6.26)

m
q

k k
1 1

( )
2 2 1 1 2 2 1

( )
2

1
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All of the above stems from the relationship

ˆ ≔ ⃗ × ⃗L r p , (6.27)

and equation (6.1), for angular momentum and the algebraic isomorphism of spin in
quantum mechanics, i.e. equations (6.2)–(6.4), with ⃗ ≡ ⃗J S . Thus, the algebra of
angular momentum and (by algebraic isomorphism) of spin is the result of equation
(6.27) which is the ‘synthesis’ of a new algebraic structure, manifest in equations
(6.2)–(6.4), from the original (axiomatic) algebraic structure, equation (6.1).

Beyond the widespread applicability of the algebraic structure, defined above, to
finite many-body quantum systems, the structure leads to an enormous reduction of
the Hilbert space into subspaces labelled by l (or j), i.e. the Hilbert space for finite
many-body quantum systems is reducible. Then, at the hands of the Wigner–Eckart
theorem, computations are ‘reduced’, often to simple ratios of products and
quotients of integers (given by Clebsch–Gordan coefficients).

6.2 The Lie algebra su(1,1) ∼ sp(1,R)
In the preceding section, the algebraic consequences of ˆ ≔ ⃗ × ⃗L r p , i.e. equation
(6.27) were outlined, stemming from δˆ ˆ = ℏ ˆx p i I[ , ]i i ij , i.e. equation (6.1). One can
enquire: what other functions of x̂i, p̂i (and by implication, their corresponding
classical counterparts) have algebras that are realised in physical systems?

Consider the following three operators,

ˆ ≔ ˆ · ˆT r r, (6.28)1

ˆ ≔ ˆ · ˆ + ˆ · ˆT r p p r, (6.29)2

ˆ ≔ ˆ · ˆT p p. (6.30)3

These operators obey the closed set of commutator bracket relations,

ˆ ˆ = ℏ ˆT T i T[ , ] 4 , (6.31)1 2 1

ˆ ˆ = ℏ ˆT T i T[ , ] 4 , (6.32)2 3 3

ˆ ˆ = − ℏ ˆT T i T[ , ] 2 , (6.33)3 1 2

which follows directly from equation (6.1). Taking the linear combinations, viz.

ˆ ≔ ˆ − ˆ ˆ ≔ − ˆ ˆ ≔ ˆ + ˆK
i

T T K T K
i

T T
4

( ),
1

4
,

4
( ), (6.34)1 1 3 2 2 3 1 3

yields the commutator bracket relations

ˆ ˆ = − ℏ ˆK K i K[ , ] , (6.35)1 2 3

ˆ ˆ = ℏ ˆK K i K[ , ] , (6.36)2 3 1

Quantum Mechanics for Nuclear Structure, Volume 2

6-5



ˆ ˆ = ℏ ˆK K i K[ , ] . (6.37)3 1 2

Equations (6.35)–(6.37) bear a close resemblance to equations (6.2)–(6.4). They can
be placed in a single set of algebraic relations, viz.

γˆ ˆ ≔ ℏ ˆP P i P[ , ] , (6.38)1 2 3

ˆ ˆ ≔ ℏ ˆP P i P[ , ] , (6.39)2 3 1

ˆ ˆ ≔ ℏ ˆP P i P[ , ] ; (6.40)3 1 2

where for γ = +1, ˆ ≔ ˆP Ji i, and for γ = −1, ˆ ≔ =P K i, 1, 2, 3.i i The algebra defined
by equations (6.35)–(6.37) is called su(1,1) and the algebra defined by equations
(6.2)–(6.4) (as already detailed) is called su(2). As su(2) and so(3) are isomorphic
algebras, so su(1,1) is isomorphic to so(2,1). Recall, the group SO(2,1) describes the
invariance

− + + = − ′ + ′ + ′x x x x x x( ) ( ) ( ) , (6.41)1
2

2
2

3
2

1
2

2
2

3
2

which defines a hyperboloidal surface (much as + + =x x x const.1
2

2
2

3
2 defines a

spherical surface). The algebra su(1,1) is also isomorphic to the so-called symplectic
algebra in one dimension, sp(1, ). Symplectic transformations, and their associated
group elements are well known from how they act on phase space (phase space
describes the domain of the dynamical variables x p{ , }in in , =i 1, 2, 3, and n
designates that there are n particles) which is a real space. The scalar form of
equations (6.28)–(6.30) means that they are one dimensional, e.g. they could be used
to describe radial distributions in the phase space associated with (3, ) for a single
particle. Indeed, in Volume 1, chapter 12, this algebra is used to solve central force
problems, specifically the isotropic three-dimensional harmonic oscillator and the
hydrogen atom: Therein, one can find more details of the algebras su(1,1) ∼ sp(1, )
∼ so(2,1).

The algebra defined by equations (6.28)–(6.30) can be seen to connect directly to
the isotropic three-dimensional harmonic oscillator, via its Hamiltonian,

ˆ = ˆ + ˆH
p
m

kr
2

1
2

, (6.42)
2

2

when the scale factor α ≔ ω
ℏ

m , ω ≔ k
m

is introduced to yield

ˆ = ˆ + ˆH P Q , (6.43)2 2

α
αˆ ≔ ˆ

ℏ
ˆ ≔P

p
Q x, , (6.44)

whence, via equation (6.34),

ˆ = ˆ + ˆ = − ˆH T T iK4 . (6.45)3 1 3
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Then, defining

ˆ ≔ ˆ ± ˆ±K K iK , (6.46)1 2

∴ ˆ ˆ = ∓ ℏ ˆ± ±H K i K[ , ] 4 . (6.47)

The algebraic structure originating in equations (6.28)–(6.30), together with the
definition of Ĥ , equation (6.42), constitutes a dynamical algebra, where the
Hamiltonian is a function of the generators of the algebra and can be solved using
the ladder operators, equations (6.46) and (6.47), applied to equation (6.45) to
obtain energy eigenvalues and energy eigenvectors.

An insightful procedure for understanding the algebraic content of equations
(6.45)–(6.47) is to define the operators

α
α≔

− ˆ
ℏ

+ ˆ†a
ip

x , (6.48)i
i

i

α
α≔

ˆ
ℏ

+ ˆ =a
ip

x i, 1, 2, 3, (6.49)i
i

i

whence

∑ ωˆ = + ℏ
=

†H a a
1
2

, (6.50)
i 1

3

i i
⎛
⎝⎜

⎞
⎠⎟

and, via

α
ˆ = +†x a a

1
2

( ), (6.51)i i i

αˆ = ℏ −†p i a a( ), (6.52)i i i

we obtain the dependence of ˆ±K on †ai , ai, viz.

∑ˆ ∼ · =
=

+
† † † †K a aa a (6.53)

i 1

3

i i

and

∑ˆ ∼ · =
=

−K a aa a , (6.54)
i 1

3

i i

i.e. they are ‘double’ raising and lowering operators. In terms of the simple harmonic
oscillator, Volume 1, chapter 5, they produce two ladders, viz.

ω ω ω= ℏ ℏ ℏ …E
1
2

,
5
2

,
9
2

, (6.55)n
even

and
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ω ω ω= ℏ ℏ ℏ …E
3
2

,
7
2

,
11
2

, . (6.56)n
odd

The algebra defined by ˆ†a a I{ , , }, recall = ˆ†a a I[ , ] , is called the Heisenberg–Weyl
algebra in one dimension, hw(1); and the algebra defined by ˆ =†a a I i{ , , ; 1, 2, 3}i i
is hw(3). These algebras are examples of ‘factorization’ algebras2: note the
Hamiltonian is factorized, manifestly ˆ ∼ †H a a into the product of two operators.
The algebra hw(3) is another way in which the basic commutator algebra, equation
(6.1) can be ‘mapped’ into a new algebraic structure, albeit with scaling of xi and pi
as manifest in equations (6.48) and (6.49). (The origin of this algebra is due to Dirac
who based the definitions of †a and a on phasors, a method by which simple
harmonic oscillations can be analysed.)

6.3 Rank-2 Lie algebras
The algebras introduced in sections 6.1 and 6.2 are rank-1 Lie algebras. What this
means is that within the algebra there are no pairs of commuting operators. The
algebra hw(3) has three independent copies of hw(1) and so has rank-3: hw(3) will
reappear in this section. Rank-2 Lie algebras possess one pair of commuting
generators. By choosing various linear combinations of generators, this pair can
be adapted to address various requirements: some pairs have a physics interpreta-
tion, some pairs facilitate the ‘solving’ of the structure of the algebra, especially the
labelling of irreps. In quantum mechanics, rank-2 algebras which are functions of

=x p i{ , ; 1, 2, 3}i i are of especial interest. In sections 6.1 and 6.2 we exhausted the
simplest of such functions—a vector cross product, so(3) ∼ su(2), a vector scalar
product, so(2,1) ∼ su(1,1) ∼ sp(1, ), and hw(1). These are all rank-1 Lie algebras.
Thus, we turn to a ‘higher level’ of functions of x p,i i.

6.3.1 su(3) and the isotropic harmonic oscillator in three dimensions

The isotropic harmonic oscillator in three dimensions has already received consid-
erable attention. We summarise first what has been learned, and then the su(3)
algebraic structure is introduced.

The three-dimensional isotropic harmonic oscillator has the Hamiltonian

ˆ = ˆ + ˆH
p
m

kr
2

1
2

. (6.57)
2

2

Much can be learned about this system by treating it as three uncoupled one-
dimensional harmonic oscillators:

∑ˆ =
ˆ

+ ˆ
=

H
p

m
kr

2
1
2

. (6.58)
j x y z, , ,

j
j

2
2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

2 There are many useful factorization algebras encountered in quantum mechanics. Some examples were
developed for central force problems in Volume 1, chapter 12.
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Thus, defining

α
α

α
α≔

− ˆ
ℏ

+ ˆ ≔
ˆ
ℏ

+ ˆ†a
ip

r a
ip

r
1

2
,

1

2
, (6.59)j

j
j j

j
j

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

where α ω≔ ≔ω
ℏ ( )( ) ,m k

m

1
2

1
2 ,

δ= = =† † †a a a a a a, , [ , ] , 0, (6.60)i j ij i j i j
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

∑ ωˆ = + ℏ†H a a
1
2

, (6.61)
j

j j
⎛
⎝⎜

⎞
⎠⎟

ωˆ ∣ 〉 = + + + ℏ ∣ 〉H n n n n n n n n n
3
2

, (6.62)x y z x y z x y z
⎛
⎝⎜

⎞
⎠⎟

∣ 〉 = + ∣ + 〉†a n n n n n n n1 1, , etc., (6.63)x x y z x x x y

∣ 〉 = ∣ − 〉a n n n n n n n1, , etc., (6.64)x x y z x x x y

= … = + +n n n n n n n, , 0, 1, 2, , . (6.65)x y z x y z

The foregoing treatment of the 3D harmonic oscillator leads immediately to the
identification of SU(3) as the symmetry group of the system by considering the nine
operators

= ˆ =† †a a i j x y z H a a; , , , ; , 0. (6.66)i j i j
⎡⎣ ⎤⎦

From this set, the linear combination + +† † †a a a a a ax x y y z z is removed because it is
related to the total energy of the system which is conserved. This leaves eight
operators which define an su(3) algebra. The su(3) irreps are labelled by

= + +n n n nx y z (or by the total energy of the system). The degeneracies of the
irreps are directly computed in table 6.1, i.e. =n d[ ] 0[1], 1[3], 2[6], 3[10], 4[15], …,

+ +n n n[ ( 1)( 2)]1
2

.
Although the 3D harmonic oscillator possesses SU(3) symmetry, the foregoing

solution uses only the algebraic structure3

= ⊗ ⊗u hw hw hw(3) (1) (1) (1) , (6.67)x y z

where the ‘Heisenberg–Weyl’ algebras are defined by ˆ ≡ ˆ† †a a N a a I{ , , , ;i i i i i

=i x y x, , }.

= ˆ ˆ = ˆ = −† † †a a I a N a a N a[ , ] , [ , ] , [ , ] , (6.68)i i i i i i i i

3 u(3) is a rank-3 Lie algebra, e.g. the three operators †a a1 1,
†a a2 2, and

†a a3 3 are mutually commuting.
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ˆ = ˆ = ˆ ˆ =†a I a I N I[ , ] 0, [ , ] 0, [ , ] 0. (6.69)i i i

The algebra hw(1) is non-compact.
The solution of the 3D harmonic oscillator using = ∏ ⊗=u hw(3) (1)i x y z i, ,

reveals
none of the symmetry of the system, although the degeneracies reveal that it must be
present.

The 3D harmonic oscillator Hamiltonian commutes with L̂x, L̂y, L̂z because of its
rotational symmetry, and thus the 3D harmonic oscillator eigenstates can be labelled
with the quantum numbers l and m of the simultaneous observables L̂

2 and L̂z. The
+l(2 1) degeneracy of angular momentum irreps is less than the degeneracy of the

3D harmonic oscillator energy shells, indicating that there must be another
conserved dynamical quantity.

The 3D harmonic oscillator Hamiltonian also commutes with the components of
the tensor operator, Â,

ˆ ≔ ˆ ˆ + ˆ ˆ =A p p mkrr i j x y z
1
2

( ), , , , . (6.70)ij i j i j

It is useful to define (note: the symbol ‘k’ is serving two independent standard,
familiar roles here)

ˆ ≔ ˆ = ˆ = ˆ ˆ + ˆ ˆM A A p p mkr r
1
2

( ), (6.71)i jk kj j k j k

ˆ ≔ ˆ = ˆ + ˆ( )N A p mkr
1
2

, (6.72)i ii i i
2 2

ˆ ≔ ˆ ˆ − ˆ ˆL r p r p . (6.73)i j k k j

Table 6.1. Degeneracies of the three-dimensional harmonic oscillator elucidated
using the partitioning of n over nx, ny, nz.

n nx ny nz Degeneracy, d

0 0 0 0 1

1 1 0 0
0 1 0 3
0 0 1

2 2 0 0
0 2 0
0 0 2
1 1 0 6
1 0 1
0 1 1
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The nine operators ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆL L L M M M N N N{ , , , , , , , , }x y z x y z x y z obey 36 commutator brack-
ets (see table 6.2):

• The commutation properties of these operators with Ĥ follow from
ˆ = ˆ + ˆ + ˆmH N N Nx y z (remove this from set).

• Cannot disentangle the nine operators into two subsets of operators A{ }i and
B{ }j such that =A B[ , ] 0i j , for all i j, .

• Maximum mutually commuting subset, start with L̂z: commutes with N̂z and
ˆ + ˆN Nx y. Choose ˆ − ˆ − ˆ ≔ ˆN N N Q(2 )1

6 z x y 0

(2)
.

• Choice of Q̂0

(2)
because with

ˆ ≔ − ˆ ∓ ˆ ˆ ≔ ˆ − ˆ ± ˆ
± ±Q iM M Q N N iM,

1
2

( 2 ), (6.74)x y x y z1

(2)

2

(2)

ˆ ˆ ˆ
± ±Q Q Q{ , , }0

(2)

1

(2)

2

(2)
form a spherical tensor of rank-2, recall (cf. equations (3.45)

and (3.46))

ˆ ˆ = ℏ ˆL T q T, , (6.75)z q
k

q
k( ) ( )⎡⎣ ⎤⎦

ˆ ˆ = ∓ ± + ℏ ˆ± ±L T k q k q T, ( )( 1) . (6.76)q
k

q
k( )

1
( )⎡⎣ ⎤⎦

• Need raising and lowering operators:

From the maximal mutually commuting subset

ˆ = ˆ ˆ = ˆ − ˆ − ˆL L Q N N N( ),
1

6
(2 ), (6.77)z z x y0 0

Table 6.2. Tabulation of the 36 commutator bracket relations for the operators defined in equations
(6.71)–(6.73), where ζ = mk

4
.

L̂x L̂y L̂z M̂x M̂y M̂z N̂x N̂y N̂z

L̂x ℏ ˆi Lz − ℏ ˆi Ly ℏ ˆ − ˆi N N( )z y − ℏ ˆi Mz ℏ ˆi My 0 ℏ ˆi M2 x − ℏ ˆi M2 x

L̂y ℏ ˆi Lx ℏ ˆi Mz ℏ ˆ − ˆi N N( )x z − ℏ ˆi Mx − ℏ ˆi M2 y 0 ℏ ˆi M2 y

L̂z − ℏ ˆi My ℏ ˆi Mx ℏ ˆ − ˆi N N( )y x ℏ ˆi M2 z − ℏ ˆi M2 z 0

M̂x ζ− ℏ ˆi Lz ζℏ ˆi Ly 0 ζ− ℏ ˆi L2 x ζℏ ˆi L2 x

M̂y ζ− ℏ ˆi Lx ζℏ ˆi L2 y 0 ζ− ℏ ˆi L2 y

M̂z ζ− ℏ ˆi L2 z ζℏ ˆi L2 z 0

N̂x 0 0
N̂y 0
N̂z

Quantum Mechanics for Nuclear Structure, Volume 2

6-11



and ˆ±L

ˆ ˆ = ±ℏ ˆ± ±L L L[ , ] ; (6.78)0

we immediately obtain from ˆ ˆ = ℏL T q T[ , ]z q
k

q
k( ) ( ) (equation (6.75)):

ˆ ˆ = ±ℏ ˆ
± ±L Q Q[ , ] , (6.79)0 1 1

ˆ ˆ = ± ℏ ˆ
± ±L Q Q[ , ] 2 . (6.80)0 2 2

For the commutator brackets of ˆ±L , ˆ
±Q 1, ˆ

±Q 2 with Q̂0 (cf. equation (6.75)):

ˆ ˆ = − ℏ ˆ± ±Q L Q[ , ] 6 (6.81)0 1

and

ˆ ˆ = − ℏ ˆ
± ±Q Q mkL[ , ]

1
2

3
2

, (6.82)
0 1

ˆ ˆ =±Q Q[ , ] 0. (6.83)0 2

Evidently,

ˆ ˆ ∓ ˆ = ˆ ˆ ∓ ˆ ˆ

= − ℏ ˆ ∓ − ℏ ˆ

= ± ℏ ˆ ∓ ˆ

± ± ± ±

± ±

± ±

Q L
mk

Q Q L
mk

Q Q

Q
mk

mkL

mk L
mk

Q

,
2

[ , ]
2

[ , ]

6
2 1

2
3
2

3
2

.

(6.84)

0 1 0 0 1

1

1

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Define

ˆ ≔ ˆ ∓ ˆ ˆ ≔ ˆ ± ˆ± ± ± ± ± ±P L
mk

Q R L
mk

Q
2

,
2

, (6.85)1 1

whence κ ≔( )mk3
2

κ κˆ ˆ = ± ℏ ˆ ˆ ˆ = ∓ ℏ ˆ ˆ ˆ =± ± ± ± ±Q P P Q R R Q Q[ , ] , [ , ] , [ , ] 0, (6.86)0 0 0 2

ˆ ˆ = ±ℏ ˆ ˆ ˆ = ±ℏ ˆ ˆ ˆ = ± ℏ ˆ± ± ± ± ± ±L P P L R R L Q Q[ , ] , [ , ] , [ , ] 2 , (6.87)0 0 0 2 2

ˆ ˆ =L Q[ , ] 0. (6.88)0 0

This is the ‘Cartan’ representation for su(3) in terms of ˆ ˆ ˆ ˆ ˆ± ± ±L Q P R Q{ , , , , }0 0 2 . The
action of the raising and lowering operators can be depicted in a root diagram (see
figure 6.1).

Quantum Mechanics for Nuclear Structure, Volume 2

6-12



To find the irreducible representations of su(3) (and subsequently Kronecker
products and su(3) tensor operators) we could proceed by analogy with su(2) to map
out the weight space. However, it is very tedious. The elegant procedure is using
Cartan theory which will be developed in section 6.7. For the present, a few simple
irreps in su(3) weight space are shown in figure 6.2. From the weight diagrams,
figure 6.2 it is evident where the ‘extra’ degeneracy comes from, i.e. the degeneracy
due to the multiple angular momentum values within a given oscillator shell.

The algebraic structure embodied in the tensor, A, equation (6.70) is also a key to
its role as an invariant quantity for the classical mechanics of the three-dimensional
isotropic harmonic oscillator. Thus,

∑= + =
=

Q p p mkx x i j
1
2

( ), , 1, 2, 3, (6.89)
n

A

1
ij ni nj ni nj
class

∑∴ = + + +
=

Q

t

p

t
p p

p

t
mk

x
t

x mkx
x

t

d

d
1
2

d

d

d

d
d
d

d

d
. (6.90)

n

A

1

ij ni
nj ni

nj ni
nj ni

nj
class ⎛

⎝⎜
⎞
⎠⎟

Now, =p m x
t

d
dni

ni , etc.,

∑∴ = + + +
=

Q

t
p

p

t
kx p

p

t
kx

d

d
1
2

d

d

d

d
. (6.91)

n

A

1

ij
ni

nj
nj nj

ni
ni

class

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎫
⎬
⎭

Figure 6.1. The su(3) root diagram for P±, R±, ±Q 2, where κ = mk3
2

(and ℏ ≡ 1). The action of the arrows is
interpreted in terms of the ‘raising’ and ‘lowering’manifested in equations (6.86)–(6.88). Thus, e.g. +P raises Q0

by + κℏ and L0 by ℏ.
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But,

= = −m
x
t

F x kx
d
d

( ) , etc., (6.92)ni
ni ni

2

2

∴ = −m
t

x
t

kx
d
d

d
d

, etc., (6.93)ni
ni

⎛
⎝⎜

⎞
⎠⎟

∴ + =
p

t
kx

d

d
0, etc., (6.94)ni

ni

⎛
⎝⎜

⎞
⎠⎟

∴ =
Q

t

d

d
0, (6.95)ij

class

i.e. Qij
class does not change with time.

The dynamical variableQij
class describes the elliptical nature of the orbits under the

influence of a central force, = −F r kr( ) . The shape (major and minor axes) and

Figure 6.2. su(3) weight diagrams for the λ( ,0)D irreps with λ = 0, 1, 2, and 3. The angular momentum values
are deduced from the L0 eigenvalues.
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location (centre of ellipse at the origin) are fixed, but the orientation is not fixed
(unlike Kepler orbits, = −F r( ) k

r
).

6.3.2 so(4) and the hydrogen atom (Kepler problem)

The hydrogen atom is an example of the quantum Kepler problem, i.e.

μ
ˆ = ˆ +

ˆ
H

p k
r2

, (6.96)
2

where μ is the reduced mass of the two-body system and, in the case of the H atom,

=
πε

−k e
4

2

0
(in SI units).

The Hamiltonian Ĥ commutes with L̂x, L̂y, L̂z because of its rotational
symmetry, and thus, the H atom energy eigenstates can be labelled with the
quantum numbers l and m of the simultaneous observables L̂

2 and L̂z.
The Hamiltonian Ĥ also commutes with the components of the vector operator

⃗A,

μ
⃗ ≔ ⃗ × ⃗ − ⃗ × ⃗ − ⃗ ⃗ ⃗ ⃗A L p p L k

r
r

L p r
1
2

( ) , ( , and are also operators) (6.97)

called the Laplace–Runge–Lenz4 vector, i.e.

ˆ ˆ = ∀ = ˆ ˆ =H A i x y z H A[ , ] 0, , , , [ , ] 0. (6.98)i
2

Because, ⃗A is a vector operator, it obeys

εˆ ˆ = ℏ ˆL A i A[ , ] . (6.99)i j ijk k

Further, the components of the operator ⃗A obey

ε
μ

ˆ ˆ = ℏ − ˆ ˆA A i
H

L[ , ]
2

. (6.100)i j ijk k

⎛
⎝⎜

⎞
⎠⎟

For a given (bound-state) energy shell, Ĥ becomes a constant, −E and defining

μ⃗ ≔
∣ ∣

⃗K
E

A
2

, (6.101)

then

εˆ ˆ = ℏ ˆK K i L[ , ] . (6.102)i j ijk k

The operators ˆ ˆ ˆ ˆ ˆ ˆL L L K K K{ , , , , , }x y z x y z define an so(4) Lie algebra and the H atom
is said to possess an SO(4) symmetry or invariance group.

4 Sometimes Pauli’s name is associated with this vector because he was the first person to use it to quantize the
H atom.
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This so(4) Lie algebra possesses a quadratic Casimir invariant,

= ˆ + ˆC L K ; (6.103)so(4)
(2) 2 2

and ⃗L and ⃗A are orthogonal

⃗ · ⃗ = ⃗ · ⃗ =L A A L 0. (6.104)

The Hamiltonian can be expressed:

μˆ = −
ˆ + ˆ + ℏ

H
k

K L2
1

, (6.105)
2

2 2 2

and thus its connection to the so(4) algebra is manifest—it is a simple linear function
of Cso(4)

(2) .
Unfortunately, deriving most of the above details involves extremely heavy

commutator bracket manipulations. There appears to be no simple derivation.
There are also hidden subtleties:
• the so(4) algebra is only obtained for <E 0, i.e. for bound states;
• the so(4) algebraic structure is different for each energy shell, i.e. the K are
different for different shells;

• it appears that replacing Ĥ by −E to get ⃗K and hence the so(4) algebra
assumes the result that we are setting out to derive; however, we are only
replacing an operator Ĥ( ) with one that commutes with the Hamiltonian
(trivially) and thus can be replaced with a constant.

An so(4) Lie algebra can be directly defined using the representation introduced in
chapter 5:

Λ = ∂
∂

− ∂
∂

Λ = ∂
∂

− ∂
∂

x
x

x
x

x
x

x
x

, , (6.106)12 1
2

2
1

14 1
4

4
1

Λ = ∂
∂

− ∂
∂

Λ = ∂
∂

− ∂
∂

x
x

x
x

x
x

x
x

, , (6.107)23 2
3

3
2

24 2
4

4
2

Λ = ∂
∂

− ∂
∂

Λ = ∂
∂

− ∂
∂

x
x

x
x

x
x

x
x

, , (6.108)31 3
1

1
3

34 3
4

4
3

whence 15 commutator brackets are obtained:

Λ Λ = −Λ Λ Λ = −Λ Λ Λ = −Λ[ , ] , [ , ] , [ , ] , (6.109)12 23 31 23 31 12 31 12 23

δ δ δ δΛ Λ = − Λ … Λ Λ = Λ + Λ + Λ + Λ[ , ] , , i. e. [ , ] . (6.110)ij kl il jk jk il lj ik ki jl12 14 24

Two of these operators can be chosen as commuting operators, e.g. Λ12 and Λ34:
so(4) is a rank-2 Lie algebra.

The operators Λ Λ Λ{ , , }12 23 31 form an so(3) subalgebra.
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The so(4) algebra introduced for the H atom in terms of ˆ ˆ ˆ ˆ ˆ ˆL L L K K K{ , , , , , }x y z x y z

obeys the commutator bracket algebra =i j k x y z( , , , , ):

εˆ ˆ = ℏ ˆ −L L i L[ , ] (3 non zero Lie products), (6.111)i j ijk k

εˆ ˆ = ℏ ˆ −K K i L[ , ] (6 non zero Lie products), (6.112)i j ijk k

εˆ ˆ = ℏ ˆ −L K i K[ , ] (6 non zero Lie products); (6.113)i j ijk k

and three zero Lie products, ˆ ˆ = =L K i x y z[ , ] 0, , ,i i .
The association (cf. ≡x y z{ , , } {1, 2, 3})

ˆ = − ℏΛ ˆ = − ℏΛ ˆ = − ℏΛL i L i L i, , , (6.114)x y z23 31 12

ˆ = − ℏΛ ˆ = − ℏΛ ˆ = − ℏΛK i K i K i, , , (6.115)x y z14 24 34

can be made.
The operators ˆ ˆ ˆL L L{ , , }x y z define the angular momentum subalgebra of the

H atom.
The operators ˆ ˆ ˆK K K{ , , }x y z are ‘entangled’ with the angular momentum sub-

algebra and do not form a separate subalgebra.
Two unentangled subalgebras can be formed from

⃗ ≔ ⃗ + ⃗ ⃗ ≔ ⃗ − ⃗M L K N L K
1
2

( ),
1
2

( ), (6.116)

whence

ε εˆ ˆ = ℏ ˆ ˆ ˆ = ℏ ˆM M i M N N i N[ , ] , [ , ] , (6.117)i j ijk k i j ijk k

ˆ ˆ = ∀ =M N i j x y z[ , ] 0, , , , . (6.118)i j

Further, M̂
2 and N̂

2 are all-commuting.
These two subalgebras are both su(2). We indicate this decomposition by

= ×so su su(4) (2) (2). (6.119)

This decomposition provides the way to solve for the irreps and eigenvalues of a
system with SO(4) symmetry. (However, note that neither of these su(2) subalgebras
is the angular momentum subalgebra, or any other ‘physical’ subalgebra in the case
of the H atom.)

The two su(2) algebras, say su (2)M and su (2)N , have the standard solutions

ˆ ∣ 〉 = ℏ∣ 〉 ˆ ∣ 〉 = ℏ∣ 〉M j m m j m N j m m j m, , (6.120)z m m m m m z n n n n n

ˆ ∣ 〉 = + ℏ ∣ 〉 ˆ ∣ 〉 = + ℏ ∣ 〉M j m j j j m N j m j j j m( 1) , ( 1) . (6.121)
m m m m m m n n n n n n

2 2 2 2
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The H atom Hamiltonian can now be rewritten as

μˆ = −
ˆ + ˆ + ℏ

H
k

M N2
1

2 2
, (6.122)

2

2 2 2

whence the energy eigenvectors are ∣ 〉j m j mm m n n and the energy eigenvalues are

μ= −
ℏ + + + +{ }

E j j
k

j j j j
( )

4
1

( 1) ( 1)
. (6.123)1

2

m n

m m n n

2

2

The eigenvalue spectra of jm and jn, viz. …0, , 1, ,1
2

3
2

are not independent

because ⃗ · ⃗ = ⃗ · ⃗ =L A A L 0, whence

⃗ + ⃗ · ⃗ − ⃗ = ⃗ − ⃗ · ⃗ + ⃗ =M N M N M N M N( ) ( ) ( ) ( ) 0, (6.124)

∴ − ⃗ · ⃗ + ⃗ · ⃗ − = + ⃗ · ⃗ − ⃗ · ⃗ − =M M N N M N M M N N M N 0, (6.125)2 2 2 2

∴ ⃗ · ⃗ = ⃗ · ⃗M N N M , (6.126)

and

=M N . (6.127)2 2

Thus,

ν ν= ≡ = ⋯j j , 0,
1
2

, 1,
3
2

, (6.128)m n

and

μ
ν

= −
ℏ +νE
k

2
1

(2 1)
; (6.129)

2

2 2

and for

πε
ν= − + =k

e
n

4
, 2 1 , (6.130)2

2

0

2⎛
⎝⎜

⎞
⎠⎟

=
−

= …E
R

n
n, 1, 2, 3, , (6.131)n

y

2

where

μ
ε

=
ℏ

=R
e

8
13.606 eV. (6.132)y

4

0
2 2

The degeneracies of the problem emerge from the eigenvalue spectra of
j m j m,m m n n and
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= + = −M L K N L K
1
2

( ),
1
2

( ), (6.133)z z z z z z

whence

jm jn mm mn m m( , )l k

0 0 0 0 (0, 0)
1
2

1
2

± 1
2

± 1
2

− −(1, 0), (0, 1), (0, 1), ( 1, 0)

1 1 ±0, 1 ±0, 1 −(2, 0), (1, 1), (0, 2), (1, 1), (0, 0)
− − − − −( 1, 1), (0, 2), ( 1, 1), ( 2, 0)

Thus, using the m-scheme for ml:

= = =

= = =

= = =

j j l

j j l

j j l

0, 0,

1
2

, 0, 1,

1, 0, 1, 2,

(6.134)

m n

m n

m n

etc., i.e. the values of l occurring in each so(4) irrep are given by

= − … = + = −l l l l j j n, 1, , 1, 0, 1. (6.135)m nmax max max

These results can be depicted in weight space using weight diagrams (see figure 6.3).
The action of the raising and lowering operators can be depicted using root diagrams
(see figure 6.4).

The so(4) Lie algebra is said to have rank two because its weight space (and root
space) are two-dimensional. This reflects the two commuting so(4) generators, Lz

and Kz.
The ∣ 〉j mm m , ∣ 〉j mn n states are coupled to states of good l and m using Clebsch–

Gordan coefficients:

∑∣ 〉 = ∣ 〉〈 ∣ 〉
= −

lm j m j m j m j m lm . (6.136)
m m m m( )

l m m n n m m n n l

m n l m

6.4 so(5) and models with ‘quadrupole’ degrees of freedom (Bohr
model)

As an illustration of algebraic modelling, a few details of the algebra that lies behind
the Bohr model of nuclear quadrupole collective structure are given.

The Bohr model introduces five (collective) coordinates via an expression of the
quadrupole shape of the nucleus, treated as a liquid drop, viz.

∑θ ϕ α θ ϕ= +
μ

μ μ*R R Y( , ) 1 ( , ) , (6.137)
2,

0 2, 2,⎪ ⎪
⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭
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μ = + + − −2, 1, 0, 1, 2, where R describes a sharp surface for the liquid drop, R0 is
the equivalent spherical drop radius, θ ϕμY ( , )2 are the spherical harmonics of rank-2,
and the α μ2, are ‘collective’ coordinates for the model. (The appearance of the
complex conjugates, α μ

*
2, is to ensure that θ ϕR( , ) is real, recall the θ ϕμY ( , )2 are, in

general, complex.)

Figure 6.3. so(4) weight diagrams for the lowest three irreps. The angular momentum values are deduced from
the Lz eigenvalues.

Figure 6.4. The so(4) root diagram for M±, N±. The action of the arrows is interpreted in terms of the raising
and lowering of Kz and Lz. Thus, e.g. +M raises Kz by +1 and Lz by +1, cf. figure 6.3.
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The α μ2 , μ = ± ±2, 1, 0, constitute a five-dimensional space of collective ‘position’
coordinates. They can be used as a set of dynamical variables and, with the
introduction of their time derivatives via

α μ≔ ̇ = ± ±μ μP B , 2, 1, 0, (6.138)2 2

a collective quadrupole dynamics can be constructed, where B is an inertia
parameter and the μP2 are momenta ‘conjugate’ to the α ≡μ μQ2 2 . Thus, one can
arrive at a set of operators describing these collective quadrupole dynamics and, by
invoking the quantization axiom

δ μ νˆ ˆ ≔ ℏ ˆ = ± ±μ μ μνQ P i I[ , ] , , 2, 1, 0, (6.139)2 2

one can arrive at a Heisenberg algebra in five dimensions, cf.

δˆ ˆ ≔ ℏ ˆ =x p i I i j[ , ] , , 1, 2, 3 (6.140)i j ij

for physical space (equation (6.1)).
Model Hamiltonians can be constructed, viz.

ˆ ≔
ˆ

+ ˆ
μH

P
B

V Q
2

( ), (6.141)
2

2

where

∑ μ νˆ = 〈 ∣ 〉 ˆ ˆ
μ

ν μ=−

μ νP P P2 2 00 .
(6.142)

2
2 2

For example, a (quadrupole) vibrational model results for

ˆ = ˆ
μV Q CQ( )

1
2

, (6.143)2
2

where

∑ μ νˆ = 〈 ∣ 〉 ˆ ˆ
μ

ν μ=−

μ νQ Q Q2 2 00 .
(6.144)

2
2 2

Recall Hamiltonians are so(3) scalars.
The model Hamiltonian, equation (6.141) with the potential choice, equation (6.143)

can be solved by treating it as five copies of the Heisenberg–Weyl algebra hw(1), viz.

∏= ⊗
=

hw hw(5) (1) , (6.145)
i 1

5

i

by defining

α
α

≔ ˆ −
ℏ

ˆμ μ μ
†B Q

i
P

1

2
, (6.146)2 2 2⎜ ⎟⎛

⎝
⎞
⎠

Quantum Mechanics for Nuclear Structure, Volume 2

6-21



α
α

≔ ˆ +
ℏ

ˆμ μ μB Q
i

P
1

2
, (6.147)2 2 2⎜ ⎟⎛

⎝
⎞
⎠

where μ = ± ±2, 1, 0, and

α ω≔
ℏ

B
, (6.148)

ω ≔ C
B

. (6.149)

This leads directly to the energy eigenvalues

ω= + ℏE N
5
2

, (6.150)⎜ ⎟⎛
⎝

⎞
⎠

= …N 0, 1, 2 . The quantum number N is partitioned over the μn as shown in
table 6.3. The model is termed the five-dimensional isotropic harmonic vibrator or
quadrupole vibrator. The degeneracies can be classified in terms of angular
momentum quantum numbers. Recall, for a finite system such as a liquid drop,
angular momentum is conserved. Thus, with the implied association of spin 2 with

Table 6.3. The first few states of the quadrupole vibrator model. The dots denote that the ‘2’ and
the two ‘1’ entries must be distributed over all possible combinations of columns.
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each quantum, them-scheme yields the angular momentum values given in table 6.3,
e.g. L = 4 yields nine states with directional components = ± ± ± ±M 4, 3, 2, 1, 0.
The degeneracy in L values already for N = 2, raises the question ‘is there a richer
dynamics at work behind the scene?’. Such a dynamics emerges for su(3) and so(4) as
detailed in sections 6.3.1 and 6.3.2; and, indeed, there is further dynamics behind the
quadrupole vibrator model and it emerges from an so(5) symmetry possessed by the
model. A few details are given in the following.

The five model coordinates μQ2 can be viewed as defining an isotropic five-
dimensional space, (5, ). Just as (3, ) can be expressed in terms of radial and
angle coordinates, (5, ) can be similarly expressed: there is one radial coordinate
and four angle coordinates. This can be viewed, much as one views a spherical
surface using θ ϕr( , , ), as a hyperspherical surface using β γ θ θ θ( , , , , )1 2 3 , where β is
the radial coordinate, γ describes the axial asymmetry of the quadrupole surface, and
θ1, θ2, θ3 describe the orientation Euler angles of the ellipsoidal shape of the surface:
the coordinates ‘1, 2, 3’ are a set of body-fixed coordinates ¯

μQ2 , such that

β γ¯ ≔Q cos , (6.151)2,0

¯ ≔±Q 0, (6.152)2, 1

β γ¯ ≔±Q
1

2
sin , (6.153)2, 2

and they are connected to the laboratory coordinates μQ2 by

∑ θ ϕ= ¯
μ

μ μQ Q ( , ), (6.154)m m2 2
(2)D

where θ ϕμ ( , )m,
(2)D is a rotation matrix. The rotational invariance in five dimensions,

i.e. the SO(5) invariance, is manifest in the parameterisation used, equations
(6.151)–(6.154), viz.

∑ β¯ =
μ

μQ . (6.155)2
2 2

The SO(5) invariance of the model can be developed using the algebra introduced
in section 5.10.3. Thus, the algebra so(5) has 10 generators, Λ =−Λ( )ij ji , ≠i j ,

= …i j, 1, , 5. A table similar to table 5.2 can be constructed and one finds that
the algebra has rank-2 (among the 10 generators, there are no triples of generators
that are mutually commuting). One can proceed to define the Casimir invariant
Cso(5)

(2) , and thus arrive at an explanation of the angular momentum degeneracy for a
given value of N, the number of oscillator quanta.

A fully algebraic treatment of the Bohr model, with accommodation of deformed
potentials, follows from the above details by using the algebra so(5)⊗ su(1,1), where
the su(1,1) algebra describes the ‘radial’ dynamics manifest in the model coordinate
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β: the structure closely matches that of central force problems in (3, ), as developed
in Volume 1, section 12.7, using so(3) ⊗ su(1,1).5

6.5 The Lie algebra sp (3, ) and microscopic models of nuclear
collectivity

Using the approach adopted at the outset in this chapter, viz. the construction of
algebras from xi, pi, =i 1, 2, 3 via polynomials, there is one further algebra which is
simply defined. This involves the quadratic polynomials x xi j. To express x xi j in
familiar terms,

≔ ↔Q x x
xx xy xz
yx yy yz
zx zy zz

(6.156)ij i j

is a rank-2 symmetric Cartesian tensor. The symmetry is manifest in =xy yx,
=xz zx, =yz zy. Thus, there are six independent components to x x ;i j further, they

are reducible by recognising that

+ + ≔x y z r (6.157)2 2 2 2

is invariant under SO(3) transformations. This reduction yields the scalar, r2 and a
rank-2 spherical tensor with components, μQ (2), viz.

≔ −Q z r3 , (6.158)0
(2) 2 2

≔ − ±±Q z x iy2 ( ), (6.159)1
(2)

≔ ±±Q x iy( ) , (6.160)2
(2) 2

where the linear combinations of xy, etc., are chosen to match spherical harmonics,
cf. section 1.9.

From the =Q x xij i j, ‘quadrupole’ coordinate operators

ˆ ≔ ˆ ˆQ x x (6.161)ij i j

can be defined; and via time derivatives, ̇xi, etc., which lead to canonical momenta
ˆ ≔ ̇p mxi i, etc., the operators

ˆ ≔ ˆ ˆ + ˆ ˆS x p p x , (6.162)ij i j i i

ˆ ≔ ˆ ˆ − ˆ ˆL x p x p , (6.163)ij i j j i

5Details are given in [1].
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and

ˆ ≔ ˆ ˆK p p , (6.164)ij i j

are obtained.
The commutator brackets for ˆ ˆ ˆ ˆQ S L K{ , , , }ij ij ij ij follow from δˆ ˆ = ℏ ˆx p i I[ , ]j ij and

define the algebra sp(3, ), sp ≡ symplectic [Greek: ‘to fold together’]. This is
expressed most concisely using the Heisenberg–Weyl operators

α
α

= ˆ −
ℏ

ˆ†a x
i

p
1

2
, (6.165)i i i

⎜ ⎟⎛
⎝

⎞
⎠

α
α

= ˆ +
ℏ

ˆa x
i

p
1

2
, (6.166)i i i

⎜ ⎟⎛
⎝

⎞
⎠

where α ≔ ω
ℏ

m , ω ≔ k
m
, and thus via their inverses

α
ˆ = +†x a a

1

2
( ), (6.167)i i i

αˆ = ℏ −†p
i

a a
2

( ), (6.168)i i i

we obtain

α
ˆ = + + +† † † †{ }Q a a a a a a a a

1
2

. (6.169)ij i j i j i j i j2

Defining

ˆ ≔ † †A a a , (6.170)ij i j

ˆ ≔B a a , (6.171)ij i j

δˆ ≔ + = +† † †( )C a a a a a a
1
2

, (6.172)ij i j j i i j ij

then

α
ˆ = ˆ + ˆ + ˆ + ˆQ A B C C

1
2

( ), (6.173)ij ij ij ij ji2

ˆ = ℏ ˆ − ˆS i A B( ), (6.174)ij ij ij

ˆ = − ℏ ˆ − ˆL i C C( ), (6.175)ij ij ji
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αˆ = − ℏ ˆ + ˆ − ˆ − ˆK A B C C
2

( ). (6.176)ij ij ij ij ji

2 2

Then, commutator brackets can be evaluated via

δ= ˆ =†a a I i j[ , ] , , 1, 2, 3, (6.177)i j ij

= =† †a a a a[ , ] 0 , 0, (6.178)i j i j
⎡⎣ ⎤⎦

e.g.

δ δˆ ˆ = + +† †C C a a a a[ , ]
1
2

,
1
2

, (6.179)ij kl i j ij k l kl

⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥

and, recalling = + + +AB CD AC B D A B C D C A D B A C DB[ , ] [ , ] [ , ] [ , ] [ , ] yields

δ δˆ ˆ = ˆ − ˆC C C C[ , ] . (6.180)ij kl il jk jk il

The generators of the sp(3, ) algebra, ˆ ˆ ˆ ˆQ S L K{ , , , }ij ij ij ij total 21—6 each for Q̂ij,

Ŝij, and K̂ij, and 3 for L̂ij. Thus, there are 210 commutator brackets. This algebraic
structure is greatly simplified by defining

α
α

ˆ ≔ ˆ ˆ +
ℏ

ˆ ˆQ x x p p
1
2

1
, (6.181)ij i j i j

2
2

⎛
⎝⎜

⎞
⎠⎟

cf. equation (6.70). It follows from equations (6.167) and (6.168) that

δˆ = ˆ + ˆ = ˆ +Q C C C
1
2

( )
1
2

. (6.182)ij ij ji ij ij

The operators ˆ ˆQ L{ , }ij ij define an su(3) subalgebra for sp(3, ), and Âij, B̂ij act as
double raising and lowering operators, respectively, when acting on oscillator ‘shells’
defined by

∑ ωˆ ≔ ˆ = + ℏ
=

H Q N
3
2

, (6.183)
i 1

3

ii

⎛
⎝⎜

⎞
⎠⎟

= …N 0, 1, 2, . A further simplification is achieved by expressing the raising and
lowering operators in so(3) spherical tensor form, ˆ μA2 , viz.

ˆ ≔ ˆ − ˆ − ˆA A A A2 , (6.184)2,0 11 22 33

ˆ ≔ ∓ ˆ ± ˆ±A A iA( ), (6.185)2, 1 12 13

ˆ ≔ ˆ − ˆ ± ˆ±A A A iA2 , (6.186)2, 2 22 33 23

with similar expressions for ˆ μB2 . These raising and lowering operators describe giant
quadrupole resonances in nuclei. (It is important to emphasize here that these modes
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have nothing to do with low-energy quadrupole vibrations such as can be modelled
using the algebra in section 6.4.) Giant monopole resonances are described by

∑ˆ ≔ ˆ
=

A A , (6.187)
i 1

3

ii0,0

and

∑ˆ ≔ ˆ
=

B B , (6.188)
i 1

3

ii0,0

cf. section 6.2.
The adaptation to nuclei is via

∑≔
=

Q x x , (6.189)
n

A

1
ij ni nj

≡i j x y z, , , , for a nucleus with A nucleons (recall protons and neutrons possess
near identical masses and so do not need to be distinguished herein).

6.6 Young tableaux
Starting from the fundamental representation of a group (SU(2)—spinor represen-
tation, SU(3)—quark representations, …, etc.), all the irreducible representations of
a group can be constructed.

The method has been introduced for SU(2) where two spin-1
2
or spinor irreps were

combined in a direct or tensor or Kronecker product to yield a spin-1 and a spin-0
irrep (section 2.1). (The method is implicit in the SU(2) extensions to the generation
of the Clebsch–Gordan series (section 2.2) and the Schwinger representation (section
1.7).) There exists a very powerful language for manipulating irrep products which
was introduced by Alfred Young in a study of the permutational symmetries of
tensors. The language is variously referred to as Young tableaux or Young diagrams
or Young frames or Weyl tableaux or tensor tableaux.

Consider first a single box and the labels 1 and 2:

This is just a way of representing an SU(2) spinor. Now consider:

and
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These are just ways of representing the possible couplings of two spinors ≡ u(1 or ↑
or + 1

2
, ≡ d2 or ↓ or − )1

2
.

Some rules for these tableaux immediately are evident:
(a) For row tableaux, when moving from left to right, the numbers entered in

each successive box must not decrease.
Reason: is indistinguishable from to allow such a tableau would

result in ‘double counting’.
(b) For column tableaux, when moving from top to bottom, the numbers

entered in each successive box must increase.

Reason: and are no states at all; is indistinguishable from —it

differs only by an overall phase of −( 1).

To continue, for SU(2), following rules (1) and (2), a third box (containing a (1) or
a (2)) can be combined with the various two-box states as follows:

A third rule for tableaux has been used in the above:
(c) The size of columns cannot increase when moving from left to right.

Reason: e.g. is indistinguishable from because in either case the

‘2’ is antisymmetrized w.r.t. the ‘1’s’; to allow such a tableau would, again,

result in ‘double counting’.

A fourth rule emerges from the above:

(d) Wherever appears in an SU(2) tableau it can be removed:

Reason: It corresponds to j = 0 and so adds nothing to irrep building.

The procedure for building SU(2) irreps using tensor tableaux is now clear:
assemble all possible row tableaux, adhering to rule (1). Irreps are distinguished by
the number of boxes in the row.
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The preceding development, standing alone, is a rather laborious path to a simple
algorithm stated in the previous paragraph. The purpose was to develop the tensor
tableau calculus as a language. Its usefulness emerges when groups of rank higher
than one are encountered.

6.6.1 SU(3) tensor tableau calculus

The fundamental or ‘quark’ representation of SU(3) is depicted

in tensor tableau form.
Higher SU(3) irreps are ‘assembled’ using quark ‘building blocks’ in tensor

tableaux, following the rules developed in the discussion of SU(2). This is shown in
figure 6.5.

These tableaux can be attached to weight diagrams as shown in figure 6.6.
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Figure 6.5. Young tableaux for simple SU(3) irreps. Under the Young diagram (open boxes) the dimension of
the irrep is given.

Quantum Mechanics for Nuclear Structure, Volume 2

6-30



(a)

(c)

(e)

(b)

(d)

Figure 6.6. (a)–(e) Depiction of SU(3) weight diagrams with weight points labelled by tensor tableaux. The
diagrams present all of the low-dimension SU(3) irreps, designated by the labelling quantum numbers, λ μ( , ):
(1,0), (0,1), (1,1), (2,0), (0,2), (3,0), (2,1), (1,2), (2,2), and (0,3). The dots designate the number of weight points
at each location in the weight diagram. The tableaux for the multiplicity-3 weight point associated with the
(2,2) diagram (figure 6.6(e)) are shaded pink. The total number of dots associated with each weight diagram is
the dimension of the irrep. The ‘highest-weight’ point in each diagram is indicated by a red dot.
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6.6.2 Multiplicity of a weight state in an SU(3) irrep

Consider the tableaux

these are the permutations of the labels that obey the rules for the box entries and
they directly give the multiplicity (three) for the central weights in (2,2), cf.
figure 6.6(e).

The general pattern of weight multiplicities for SU(3) is indicated in figure 6.7:
(a) the outermost weights have multiplicity one;
(b) for a hexagonal perimeter, the next ‘ring’ inwards has weights of

multiplicity two;
(c) for each ring inwards the multiplicity increases by one until a triangular ring

is reached: thereafter the multiplicity of each weight point remains constant
and equal to that of the outermost triangular ring.
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Figure 6.7. A generic depiction of SU(3) weight diagrams identifying the multiplicity, 2-fold, 3-fold, 4-fold of
the weight points. The outermost weight points have multiplicity 1. The ‘highest-weight’ state is indicated by a
red dot. The lengths of the sides of the outermost hexagonal shape are directly related to the tableau as shown.
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6.6.3 Dimension of an SU(3) irrep: Robinson ‘hook-length’ method (figure 6.8)

Figure 6.8. Example of the Robinson ‘hook-length’ method for working out the dimensionality of an SU(3)
irrep.
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6.6.4 SU(2) irreps contained in an SU(3) irrep

Example
Consider the SU(3) tableaux from the perspective of where the ‘3’ quark labels can
be entered (figure 6.9): (the singlet contributions have been removed where they
contribute nothing).

This process is easily identified in the (1,2)D tableaux (figure 6.10):

Figure 6.9. Example of the SU(2) irreps contained in an SU(3) irrep, elucidated using Young tableaux.
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Figure 6.10. Example of the SU(2) irreps contained in an SU(3) irrep, elucidated using a weight diagram.
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6.6.5 Kronecker products

Examples (figure 6.11)

Rules (SU(n))
(a) Choose the simpler tableau (T′) and enter a in each box of the first row, b in

each box of the second row, c in each box of the third row, ….
(b) Add to tableau T one box marked with a (from T′) in all possible allowed

ways. Then add a second box marked with a to each of the obtained
tableaux (from 1). with the restriction that two a’s cannot appear in a single
column. When all the a’s have been added start with the b’s, then the c’s,…;
again two b’s are not allowed in a single column, …. There is an added
restriction that, reading from right to left, first row → second row → etc., at
any stage, cumulatively, ⩾ ⩾ ⩾ ⋯n a n b n c( ) ( ) ( ) .

Figure 6.11. Example of the Kronecker product of two SU(3) irreps.
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6.7 Introduction to Cartan theory of Lie algebras
The power of Lie algebraic theory when applied to quantum mechanics is that it
breaks up the Hilbert space into irreps that have standardised characteristics:
labelling quantum numbers, Clebsch–Gordan coefficients, tensor operators, etc.
This reduces many quantum mechanical problems to just a few types. It reduces the
Hilbert space for any finite many-body quantum system to subspaces defined by
su(2) quantum numbers which label the total spin of each state of the system. Other
reductions may be present: that is a leading challenge at the research frontier for all
of nuclear structure study. It also provides a powerful modelling principle, i.e.
solvable models can be constructed using a Lie algebra and tested against
observation. With the recognition of this methodology, the question arises: ‘can
Lie algebraic theory be formulated in a standardised way?’ The answer is yes, by
using the formulation of Lie algebras introduced by Elié Cartan.

Cartan theory of Lie algebras has two essential conceptual features:
(a) For a set of generators G{ }i defining a Lie algebra, viz.

∑=G G C G[ , ] , (6.194)
k

i j ij
k

j

the generators can be combined linearly to yield two types of operators
— …H H{ , , }i j , where =H H[ , ] 0;i j and α±E{ } which act as raising α+E( ) and
lowering α−E( ) operators or ladder operators.

(b) The raising and lowering operators can be treated as vectors with dimension
equal to the rank of the Lie algebra. The rank of a Lie algebra equals the
number of elements in H{ }i .

The identification of the subset …H H{ , , }i j of the generators G{ }i that obey

=H H[ , ] 0, (6.195)i j

the so-called Cartan subalgebra, are found by inspection of the commutator
brackets or Lie products of the G{ }i .

Removing the H{ }i from the G{ }i , the remainder constitute the α±E{ }. Generally
the α±E are formed from linear combinations of the Gi (Hi excluded). The α±E obey

α α= ± ∀α α± ±H E r E i[ , ] ( ) , , . (6.196)i i

Examples of Cartan structure are manifest in the Lie algebras encountered
already. The algebra su(2) is the simplest manifestation, which is almost trivial, but
its role in Cartan theory is fundamental. Relevant details of su(2) for present
purposes are depicted in figure 6.12. It is a rank-1 Lie algebra: the Cartan subalgebra
contains one operator, viz. Ĵ0. The action of the ladder operators on the weight
vectors is given by

ˆ ∣ 〉 = − + + ℏ∣ + 〉+J jm j m j m jm( )( 1) 1 , (6.197)
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ˆ ∣ 〉 = + − + ℏ∣ − 〉−J jm j m j m jm( )( 1) 1 . (6.198)

This ensures that the representations are unitary, i.e. that ˆ ∣ 〉 = 〈 ∣ ˆ+
†

−J jm jm J( ) . Recall,

this follows from 〈 ∣ ˆ ˆ ∣ 〉 = 〈 ∣ ˆ − ˆ − ˆ ℏ ∣ 〉− +jm J J jm jm J J J jm( )
2

0
2

0 .
The algebras so(4) and su(3) have rank-2. As such they are already far from

trivial. Relevant details for so(4) and su(3) follow.

6.7.1 Cartan structure of the so(4) Lie algebra

= ˆ ˆ ˆ ˆ ˆ ˆG L L L A A A{ } { , , , , , }, (6.199)i x y z x y z

= ˆ ˆ α±H L A E{ } { , }, { }: not developed, (6.200)i z z

or, via ⃗ ≔ ⃗ + ⃗M L K( )1
2

, ⃗ ≔ ⃗ − ⃗N L K( )1
2

, ⃗ ≔ ⃗
∣ ∣

K Am
E2

(cf. equation (6.101) and

(6.116)),

= ˆ ˆ ˆ ˆ ˆ ˆG M M M N N N{ } { , , , , , }, (6.201)i x y z x y z

= ˆ ˆH M N{ } { , }, (6.202)i z z

= ˆ ≔ ˆ ± ˆ ˆ ≔ ˆ ± ˆα± ± ±E M M iM N N iN{ } { ; }. (6.203)x y x y

Note: the ‘M, N’ form decomposes the so(4) algebra into two su(2) algebras, viz.
so(4) = su(2) × su(2).

The so(4) roots are shown in figure 6.4. Manifestly, this decomposition reveals
that the two su(2) subalgebras have root vectors that are orthogonal pairs. The
simplest so(4) weight diagrams are shown in figure 6.3.

J

Figure 6.12. The Cartan structure of the Lie algebra su(2). The action of the ‘root’ vectors, ±̂J on the ‘weight’
points in the weight diagram are shown. The root vectors are usually termed ladder operators. The weight
points define an irreducible su(2) representation via a specified value of j = …( 0, , 1, , 2, )1

2
3
2

and
= + + − + − … − + −m j j j j j, 1, 2, , 1, (the eigenvalues of Ĵ0 for ℏ ≡ 1). For a generic weight point m, it

can be raised by −j m( ) steps and it can be lowered by +j m( ) steps.
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6.7.2 Cartan structure of the su(3) Lie algebra

ν= ˆ ˆ ˆ = ˆ + ˆ + ˆ =ν ν νG L M N x y z N N N{ } { , , ; , , , with const.}, (6.204)i x y z

cf. table 6.2 and equations (6.71)–(6.73) and (6.77);

= ˆ ≡ ˆ ≔ ˆ − ˆ − ˆH L L Q N N N{ } ,
1

6
(2 ) ; (6.205)i z z x y0 0

⎧⎨⎩
⎫⎬⎭

α±E{ }: via (cf. equation (6.9) and (6.74))

ˆ ≔ ˆ ± ˆ±L L iL , (6.206)x y

ˆ ≔ − ˆ ∓ ˆ
±Q iM M , (6.207)x y1

ˆ ≔ ˆ − ˆ ± ˆ
±Q N N iM

1
2

( 2 ), (6.208)x y z2

and (cf. equation (6.85))

ˆ ≔ ˆ ∓ ˆ± ± ±P L
mk

Q
2

, (6.209)1

ˆ ≔ ˆ ± ˆ± ± ±R L
mk

Q
2

. (6.210)1

Thus,

= ˆ ˆ ˆ ≔ ˆα± ± ± ± ±E P R Q Q{ } { , , }. (6.211)2

The su(3) roots are shown in figure 6.1. The simplest su(3) weight diagrams are
shown in figure 6.2; many more su(3) weight diagrams are shown in figures 6.6(a)–(e).

The commutator bracket relations for the various forms of the su(3) generators
can be assembled into a ‘mosaic’ (as shown for ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆL L L M M M N N N{ , , , , , , , , }x y z x y z x y z

in table 6.2) presented in tables 6.4, 6.5, and 6.7. We refer to the forms in table 6.2 as
‘Cartesian’, in table 6.4 as ‘spherical tensor’, and in table 6.5 as ‘Cartan’. The Cartan
form is directly related to equation (6.196) as shown in table 6.6. A further useful
form, referred to as ‘canonical’, is presented in table 6.7. The term ‘canonical’ is in
reference to su(3) ⊃ su(2) subalgebra structure that is evident.

The Cartesian form provides a geometrical view of su(3), as depicted in
figure 6.13. One observes the manifest vectorial character of the α±E{ } when this
form is employed. The canonical example manifested in table 6.7 is one of three
simple choices and its relationship to the Cartesian form is clarified by comparing
figure 6.13 to figure 6.14. The algebraic relations are simply expressed using (cf.
equation (6.172))
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δˆ ≔ + = +

= =

† † †( )C a a a a a a

i j x y z

1
2

1
2

,

, 1, 2, 3 , , ;
(6.212)ij i j j i i j ij

whence

ω̂ ≔ ˆ − ˆC C
1
2

( ), (6.213)0 11 22

Table 6.4. Tabulation of the 28 commutator bracket relations for the operators defined in equations (6.205)–
(6.208) where ξ = mk

4
. Note: the operators manifest the spherical tensor form of equations (6.76) and (6.77);

and cf. chapter 3.

ˆ+L ˆ−L Q̂0
ˆ

+Q 1
ˆ

−Q 1
ˆ

+Q 2
ˆ
−Q 2

L̂0 ℏ ˆ+L −ℏ ˆ−L 0 ℏ ˆ
+Q 1 −ℏ ˆ

−Q 1 ℏ ˆ
+Q2 2 − ℏ ˆ

−Q2 2

ˆ+L ℏL̂2 0 ℏ ˆ
+Q6 1 ℏ ˆ

+Q2 2 ℏQ̂6 0 0 ℏ ˆ
−Q2 1

ˆ−L ℏ ˆ
−Q6 1 ℏQ̂6 0 ℏ ˆ

−Q2 2 ℏ ˆ
+Q2 1

0

Q̂0 ξ− ℏ ˆ+L6 ξ− ℏ ˆ−L6 0 0

ˆ
+Q 1 ξ− ℏL̂2 0 0 ξℏ ˆ−L2

ˆ
−Q 1 ξℏ ˆ+L2 0

ˆ
+Q 2 ξℏL̂4 0

Table 6.5. Tabulation of the 28 commutator bracket relations for the operators defined in equations (6.205),
(6.208)–(6.210) where κ = mk3

2
. This is the ‘Cartan’ form of su(3), and the manifestation of equation (6.196) is

clear, cf. figure 6.12 and table 6.6. See equations (6.86)–(6.88), figure 6.1, and table 6.5.

Q̂0 +̂P −̂P ˆ
+Q ˆ

−Q ˆ+R ˆ−R

L̂0 0 ℏ +̂P −ℏ −̂P ℏ ˆ
+Q2 − ℏ ˆ

−Q2 ℏ ˆ+R −ℏ ˆ−R

Q̂0 κℏ +̂P κ− ℏ −̂P 0 0 κ− ℏ ˆ+R κℏ ˆ−R

+̂P ˆ + ℏ ˆ
κ
ℏ Q L40 0

12 0 ˆ−
κℏ R

3
ˆ

+κ
ℏ Q4 6 0

−̂P ˆ+
κℏ R

3
0 0 − ˆ

−κ
ℏ Q4 6

ˆ
+Q ξℏL̂4 0 0 − +̂

κℏ P
3

ˆ
−Q − −̂

κℏ P
3

0

ˆ+R − ˆ + ℏ ˆ
κ
ℏ Q L40 0

12
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ω̂ ≔ ˆ+ C , (6.214)12

ω̂ ≔ ˆ− C , (6.215)21

ˆ ≔ ˆ + ˆ − ˆQ C C C2 . (6.216)0 11 22 33

The commutator brackets are evaluated straightforwardly using

δ δˆ ˆ = ˆ − ˆ

=
C C C C

i j k l

[ , ] ,

, , , 1, 2, 3.
(6.217)ij kl il jk jk il

Figure 6.13 depicts a representation of u(3). Its relationship to figure 6.14 is dictated
by

ˆ = ˆ + ˆ + ˆ =N C C C const. (6.218)11 22 33

Table 6.6. The αr ( )i , cf. equation (6.196), for the Cartan subalgebra
= ˆ ˆH L Q{ } { , }i 0 0 and = ˆ ˆ ˆα± ± ± ±E P R Q{ } { , , }. ℏ = 1, κ = mk3 . This

Cartan structure is manifest in figure 6.1.

Hi αr ( )i

±̂P ˆ±R ˆ
±Q 2

L̂0 ±1 ±1 ±2
Q̂0 κ± κ∓ 0

Table 6.7. Tabulation of the 28 commutator bracket relations for the operators defined in equations (6.16)–
(6.19). This is the canonical form of su(3): su(3) ⊃ su(2), where the su(2) subalgebra ω ω±{ , }0 is manifest.

ω̂0 ω̂+ ω̂− Ĉ13 Ĉ31 Ĉ23 Ĉ32

Q̂0 0 0 0 − Ĉ3 13 Ĉ3 31 − Ĉ3 23 Ĉ3 32

ω̂0 ω̂+ ω− ˆ− Ĉ13
1
2

− Ĉ31
1
2

− Ĉ23
1
2

Ĉ32
1
2

ω̂+ ω̂2 0 0 −Ĉ32 Ĉ13 0

ω̂− Ĉ23 0 0 −Ĉ31

Ĉ13
ˆ − ˆC C11 33 0 Ĉ12

Ĉ31 −Ĉ21 0

Ĉ23
ˆ − ˆC C22 33
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The algebra u(3) possesses three commuting operators viz. ˆ ˆ ˆC C C{ , , }11 22 33 and has
rank-3. The constraint, equation (6.216), results in two commuting operators: these
can be chosen to be ˆ ˆC C{ , }11 22 , or ω̂ Q̂{ , }0 0 , or other linear combinations of Ĉ11, Ĉ22

and Ĉ33. Indeed, there are many other choices, cf. equation (6.195) where an so(3)
subalgebra is obtained using ˆ ≔ ˆ ≔ − ℏ ˆ − ˆL L i C C( )k ij ij ji , where =i j k x y z, , , , yields
the angular momentum algebra.

Figure 6.13. The nine operators, =C i j, , 1, 2, 3ij defining the algebra u(3) with perspective on their vectorial
character with respect to Cartesian axes, 1, 2 and 3.

Figure 6.14. The six operators that define the root space of the su(3) subalgebra of u(3). This is specified by
≔ + + =H C C C const0 11 22 33 . It can be expressed as u(3) = su(3) × u(1).
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6.7.3 The generic Lie algebra

Starting from the set of operators α±H E{ , }i , formed from suitable linear combina-
tions of the generators G{ }i of a Lie algebra, the Cartan structure of the Lie algebra
can be elucidated. The set of operators H{ }i are mutually commuting and so they
define simultaneous eigenvectors, viz.

λ λ λ λ λ λ λ λ λ∣ … … 〉 = ∣ … … 〉H , (6.219)i i r i i r1 2 1 2

where r is the rank of the Lie algebra and = …i r1, , . Then, from
α= +α α+ +H E r E[ , ] ( )i i , cf. equation (6.196),

λ λ λ λ α λ λ λ λ
λ α λ λ λ λ

λ α λ λ λ λ

∣ … … 〉 = + ∣ … … 〉
= + ∣ … … 〉
= + ∣ ⋯ … 〉

α α α

α α

α

+ + +

+ +

+

HE E H r E
E r E

r E

( ( ) )
( ( ) )
( ( )) ,

(6.220)
i i r i i i r

i i i r

i i i r

1 2 1 2

1 2

1 2

i.e.

λ λ λ λ λ α λ α λ α λ α∣ … … 〉 ≈ ∣ + + … + … + 〉α+E r r r r( ), ( ), , ( ), , ( ) . (6.221)i r i i r r1 2 1 1 2 2

The λi and the αr( )i can be regarded as vectors

λ

λ
λ

λ

λ

α

α
α

α

α

⃗ = ⋯

⋯
⃗ = ⋯

⋯

r

r
r

r

r

, ( )

( )
( )

( )

( )

, (6.222)
i

r

i

r

1

2

1

2

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

respectively. Equation (6.221) can be depicted as shown in figure 6.15. The weight
space has dimension r, i.e. the rank of the Lie algebra, cf. figure 6.12. Thus,

λ λ α∣ ⃗〉 ≈ ∣ ⃗ + ⃗ 〉α+E r( ) . (6.223)

It follows directly that

α β α β+ = +r r r( ) ( ) ( ), (6.224)i i i

Figure 6.15. A depiction of the Cartan structure of weight vectors, λ ⃗ and root vectors, α⃗r ( ) in weight space.
Note the su(2)-like relationship for this ‘α-component’ of λ ⃗.
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α α=r N Nr( ) ( ), (6.225)i i

α α− = −r r( ) ( ), (6.226)i i

provided the laddering action of the α±E is within bounds, i.e. α β+r( )i , αNr( )i exist
(see below).

A class of Lie algebras of particular interest to physics is the compact Lie algebras,
i.e. λ∃∣ ⃗ 〉max

and λ∣ ⃗ 〉min
such that

λ∣ ⃗ 〉 =α+E 0, (6.227)max

λ α∣ ⃗ 〉 = ∀α−E 0, . (6.228)min

These are called ‘highest-weight’ and ‘lowest-weight’ states, respectively. The
extraordinary feature of Cartan theory applied to compact Lie algebras is that it
provides a simple demonstration that there are only a few classes of such algebras.
This is achieved through a few elementary theorems. (Note that equations (6.227)
and (6.228) dictate boundaries for the weight space and so conditions are imposed
on the existence of solutions to equations (6.224) and (6.225).)

Theorem 6.7.1.

∑ρ α=
=

α α+ −E E H[ , ] ( ) , (6.229)
i

r

1
i i

where the ρ α( )i are arbitrary constants.

Proof. Consider

α α α α

= −
= + − −
= − + − − −
=

α α α α α α

α α α α α α α α

α α α α α α α α

+ − + − − +

+ − + − − + − +

+ − + − − + − +

H E E H E E H E E
E H E H E E E H E H E E
E r E r E E E r E r E E

[ , [ , ]] [ , ] [ , , ]
[ , ] [ , ] [ , ] [ , ]
( ( ) ) ( ) ( ) ( ( ) )

0, (6.230)

i i i

i i i i

i i i i

where equation (6.196) has been used; thus

∑ρ α=
=

α α+ −E E H[ , ] ( ) ,
i

r

1
i i

where the ρ α( )i are arbitrary constants. □

Note, such structure is manifest in table 6.4, e.g. ξˆ ˆ = − ℏ ˆ
+ −Q Q L[ , ] 21 1 0 and in

table 6.5, e.g. ˆ ˆ = ˆ + ℏ ˆ
κ
ℏ

+ −P P Q L[ , ] 412
0 0.
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Theorem 6.7.2.

=α β αβ α β+E E N E[ , ] , (6.231)

provided α β⃗ +r ( ) exists, where (cf. equation (6.224))

α β α β⃗ + = ⃗ + ⃗r r r( ) ( ) ( ), (6.232)

and αβN is a constant.

Proof. Consider

= −
= + −

−

α β α β β α

α β α β β α

β α

H E E H E E H E E
E H E H E E E H E

H E E

[ , [ , ]] [ , ] [ , ]
[ , ] [ , ] [ , ]
[ , ] ,

(6.233)
i i i

i i i

i

and, using equation (6.196)

β α α β
α β

∴ = + − −
= +

α β α β α β β α β α

α β

H E E E r E r E E E r E r E E

r r E E

[ , [ , ]] ( ) ( ) ( ) ( )

( ( ) ( ))[ , ],
(6.234)

i i i i i

i i

whence from equations (6.196) and (6.232)

α β= +α β α β+ +H E r E[ , ] ( ) , (6.235)i i

which has equation (6.231) as a general solution. □

Note, such structure is manifest in table 6.4, e.g. ˆ ˆ = ℏ ˆ+ + +L Q Q[ , ] 21 2 and in table 6.5,

e.g. ˆ ˆ = ˆℏ
+ + +P R Q[ , ] 4 6

k
. It can further be noted that the relationship, e.g.

ˆ ˆ = ℏ ˆ+ + +L Q Q[ , ] 21 2 conforms to the spherical tensor character of ˆ
+Q 2 cf. equation

(6.76).

Theorem 6.7.3.

λ α
α α

⃗ · ⃗
⃗ · ⃗

= −r
r r

L R
2 ( )
( ) ( )

, (6.236)

where L is the number of times that λ ⃗ can be lowered in increments of α⃗r ( ) and R is the

number of times that λ ⃗ can be raised in increments of α⃗r ( ).

Proof. Consider

∑λ λ λ ρ α λ

ρ α λ

〈 ⃗∣ ∣ ⃗〉 = 〈 ⃗∣ ∣ ⃗〉

= ⃗ · ⃗

α α+ −E E H[ , ] ( )

( ) ,

(6.237)i
i i

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
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where theorem 6.7.1 has been used with the choice λ λ〈 ⃗∣ ⃗〉 = 1. From figure 6.15,
noting the basic ‘su(2)’ action of α±E , cf. figure 6.12, then for

α λ↔ ˆ ↔ ˆ ∣ ⃗ ∣ ↔ ℏ ∣ ⃗〉 ↔ ∣ 〉α± ±H J E J r jm, , ( ) , ,i 0

equation (6.237) is seen to be fulfilled by

ˆ ˆ = ˆ ℏ+ −J J J[ , ] 2 , (6.238)0

i.e.

〈 ∣ ˆ ˆ ∣ 〉 = 〈 ∣ ˆ ℏ∣ 〉 = ℏℏ+ −jm J J jm jm J jm m[ , ] 2 2 . (6.239)0

Thus, for the su(2) action of α±E , equation (6.237) holds for

ρ α α⃗ = ⃗r( ) 2 ( ). (6.240)

Further, noting that ∣ 〉jm can be raised −j m( ) times, i.e. − ↔j m R, and it can be
lowered +j m( ) times, i.e. + ↔j m L, then from equation (6.239), from the right-
hand side, α λ− = + − − = ∣ ⃗ ∣ ↔ ℏ ∣ ⃗∣ ↔ ℏL R j m j m m r m[ ( ) 2 , ( ) , ]

α α α λ− ∣ ⃗ ∣∣ ⃗ ∣ = ∣ ⃗ ∣∣ ⃗∣L R r r r( ) ( ) ( ) 2 ( ) . (6.241)

The result, equation (6.237) follows. □

Two further relationships follow from this result and equations (6.197) and
(6.198), viz.

λ α λ α∣ ⃗〉 = + ∣ ⃗ ∣∣ ⃗ + ⃗ 〉α+E R L r r
1
2

( 1) ( ) ( ) (6.242)

and

λ α λ α∣ ⃗〉 = + ∣ ⃗ ∣∣ ⃗ − ⃗ 〉α−E L R r r
1
2

( 1) ( ) ( ) . (6.243)

Theorem 6.7.4.

α β
α α

α β
β β

⃗ · ⃗
⃗ · ⃗

= ⃗ · ⃗
⃗ · ⃗

=r r
r r

r r
r r

n
2 ( ) ( )

( ) ( )
2 ( ) ( )

( ) ( )
, (6.244)

where n is an integer.

Proof. This result follows directly from the recognition that there is a formal
identity between cf. equation (6.219)
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λ λ λ∣ ⃗〉 = ∣ ⃗〉H ,i i

and cf. equation (6.196),

α=α αH E r E[ , ] ( ) ,i i

which leads to

α α α∣ ⃗ 〉 = ∣ ⃗ 〉H r r r( ) ( ) ( ) , (6.245)i i

i.e. if the representations

↔ ∣ 〉 ↔ ∣ 〉α α α αH E H E E E[ , ] , (6.246)i i

with

α↔ ⃗αE r( ) (6.247)

are made. This is called the adjoint or regular representation for the Lie algebra.
Here, the formal identity leads to the recognition that the root vectors can be weight
vectors. (This is always realised: e.g. for su(2), ˆ ˆ ↔ ∣ 〉 = = ±±J J jm j m{ , } { , 1, 0, 1};0 1

and for su(3), λ μ↔ = =± ± ±L Q P R Q{ , , , , } { 1, 1}0 0 2 , cf. figures 6.1 and 6.6(a)
(where L0, Q0 are located at the centre of the Young tableau).) Thus, adopting the
result of theorem 6.7.3 with λ β⃗ ↔ ⃗r ( ), equation (6.244) follows, with the added
recognition that α and β are interchangeable. □

Theorem 6.7.4 leads to very stringent limitations on the number of compact Lie
algebraic structures that can exist. Consider

α β α β θ⃗ · ⃗ = ∣ ⃗ ∣∣ ⃗ ∣ αβr r r r( ) ( ) ( ) ( ) cos , (6.248)

whence

θ α β
α α

α β
β β

= ⃗ · ⃗
⃗ · ⃗

⃗ · ⃗
⃗ · ⃗

= ′
αβ

r r
r r

r r
r r

nn
cos

( ) ( )
( ) ( )

( ) ( )
( ) ( ) 4

, (6.249)2

where n and ′n are integers. But θ⩽ ⩽αβ0 cos 12 ,

θ∴ =αβcos
0
4

,
1
4

,
2
4

,
3
4

, or
4
4

. (6.250)2

Further, the ratios of the lengths of the root vectors are determined by

α β α α β β⃗ · ⃗ = ⃗ · ⃗ = ′ ⃗ · ⃗r r
n

r r
n

r r( ) ( )
2

( ) ( )
2

( ) ( ), (6.251)

α
β

∴ ∣ ⃗ ∣
∣ ⃗ ∣

= ′r
r

n
n

( )
( )

. (6.252)
2

2

All possible pairwise contributions of root vectors can be tabulated as shown in
table 6.8.
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The allowed root pair configurations are encoded in principal root vector diagrams.
From these diagrams, the entire root space can be constructed for any

configuration and any rank. This is done using the Weyl reflection theorem.

Theorem 6.7.5 (The Weyl reflection theorem). If α⃗r ( ) and β⃗r ( ) are two roots; then so
is the root produced by reflecting β⃗r ( ) in a plane perpendicular to α⃗r ( ) (and so is the
root produced by reflecting α⃗r ( ) in a plane perpendicular to β⃗r ( )).

Proof. This is simply depicted as in figures 6.16–6.19: □

Table 6.8. Allowed root pair configurations for rank-2 Lie algebra.

θαβcos2 θαβcos θαβ
α
β

∣ ⃗ ∣
∣ ⃗ ∣

r
r

( )
( )

Principal root vector diagram

0
4

0 90°, 270° indeterminate

1
4

± 1
2

60°, 120° 1
1240°, 300°

2
4

± 1

2
45°, 135° 1

2
or 2

1225°, 315°

3
4 ± 3

2

30°, 150° 1

3
or 3

1210°, 330°

4
4

±1 0°, 180° 1
1
a

a 2
1
and

1
2
are excluded because β α⃗ = ± ⃗r r( ) ( ). The case

4
4
is rank-1.
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Figure 6.16. Depiction of the Weyl reflection theorem.

Figure 6.17. The root space for O(5) showing the construction using Weyl reflections. The box gives
normalized coordinate values for ⃗r i( ), = …i 1, , 4; ∑ ⃗ =r i( ) 1i

2 .
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Figure 6.18. The root space for G(2) showing the construction using Weyl reflections. The box gives
normalized coordinate values for ⃗r i( ), = …i 1, , 6; ∑ ⃗ =r i( ) 1i

2 .
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6.7.4 Irrep quantum numbers: Cartan subalgebras and Casimir operators

Our interest in Lie algebraic structures in quantum mechanics is as a means of
breaking-up a Hilbert space into irreps of a Lie group. The irrep quantum numbers
provide labelling quantum numbers and at least some of these quantum numbers
will have physical significance. The irrep dimensions provide the key to degeneracies
for a given physical system.

We must now turn to the quantum number labels and dimensions of the irreps.
The Cartan subalgebra, …H H H{ , , , }r1 2 of a Lie algebra of rank r provides a set of
commuting operators and hence a set of compatible quantum number labels. The
Casimir operators associated with a Lie algebra are operators that commute with all
the generators of the algebra. Two types of Casimir operators are commonly
encountered in physics:

(a) For the unitary group U n( ), the ‘oscillator’ representation,
= = …†G a a i j n{ , , 1, }ij i j provides the all-commuting operator

∑=
=

C G . (6.253)
i

n

1
U n ii( )
(1)

(It is a commonly used SU(n) irrep label.)

Figure 6.19. The root space for all of the compact Lie groups of rank-1 and rank-2. The Cartan structure is
indicated along with the commonly used names and the classic names, viz. Ar, Br, Cr, Dr, =r 1, 2.
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(b) Each Lie algebra possesses a quadratic Casimir operator

∑ ∑= + +
α= >

α α α α− −C H E E E E
1
2

( ). (6.254)
i

r

1 0
i

(2) 2

(There may be other quadratic Casimir operators.)

Examples

= = + ++ − − +SO C L L L L L L(3)
1
2

( ); (6.255)z
(2) 2 2

= + = ⃗ · ⃗SO C K L C K L(4) , (6.256)1
(2) 2 2

2
(2)

= = ⃗ ≡ ⃗ + ⃗ ⃗ ≡ ⃗ − ⃗C M C N M L K N L Kor , , where
1
2

( ),
1
2

( ) . (6.257)1
(2) 2

2
(2) 2

⎛
⎝⎜

⎞
⎠⎟

Theorem 6.7.6.

∑λ λ λ α λ∣ ⃗ 〉 = ⃗ · ⃗ + ⃗ ∣ ⃗ 〉
α>

C r
1
2

( ) . (6.258)
0

(2) max max max max
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

Proof From α= ∑α α− =E E r H[ , ] ( )i
r

i i1 (theorem 6.7.1)

□

Irrep quantum numbers
• λ{ }i , the eigenvalues of the H{ }i .
• λ ⃗max

, related to the eigenvalue of C (2) and fixed for an irrep.
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For a compact Lie algebra there is a highest-weight state, λ∣ ⃗ 〉max
, and a lowest-

weight state, λ∣ ⃗ 〉min
, in each irrep. A useful characterisation of λ∣ ⃗ 〉max

is the number of
times it can be lowered by each of the α−E{ }. From equation (6.236),

λ α α α⃗ · ⃗ = ⃗ · ⃗r Lr r( )
1
2

( ) ( ). (6.260)max

Example: irreps for SU(3)
The Cartesian coordinates of the SU(3) root diagram are shown in figure 6.20. The
highest-weight state, is defined

where

α β⃗ = ⃗ =
−

r r( )
1

3
0

, ( )

1

2 3
1
2

. (6.262)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

Then, for

λ λ= =
a

a
2

,
2 3

, (6.264)

1

3
1
3

1 1

λ λ λ
− +

= = +
( )( ) ( )a b

b
2

,
1
6

( 2 ), (6.265)
1

2 3

1
2

1
3

2
1 2

Figure 6.20. Cartesian coordinates of the SU(3) root diagram.
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i.e.

The maximum weight state in each irrep is given by λ λ =( , )1 2 (0,0), (1,0), (0,1),
(2,0), (1,1), (0,2), ….

(1,0)D : This is called the ‘quark’ representation (figure 6.21). The combination of
with β− ⃗r ( ) is excluded because λ = 02 and, thus, from

cannot be lowered by β−E . Figure 6.22 shows the

ladder operators that cannot raise or lower the highest-weight states in the SU(3)
irreps λ( , 0)1 , λ(0, )2 and λ λ( , )1 2 .

For the eigenvalues of the Casimir operatorC (2), equation (6.259), for the λ λ( , )1 2

irrep. from

Figure 6.22. Depiction of ladder operators that cannot raise or lower the highest-weight states of the SU(3)
irreps λ( , 0)1 , λ(0, )2 and λ λ( , )1 2 .

Figure 6.21. Cartesian coordinates of the fundamental SU(3) weight diagram.
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α β α β⃗ = ⃗ = ⃗ = ⃗ =
−

⃗ = ⃗ + =r r r r r r( )
1

3
0

, ( )

1

2 3
1
2

, ( )

1

2 3
1
2

, (6.268)1 2 3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

∣ ⃗∣ + ∣ ⃗ ∣ + ∣ ⃗ ∣ =r r r 1, (6.269)1
2

2
2

3
2

⃗ · ⃗
∣ ⃗∣

= − ⃗ · ⃗
∣ ⃗∣

= + ⃗ · ⃗
∣ ⃗ ∣

= +r r
r

r r
r

r r
r

2
1,

2
1,

2
1, (6.270)1 2

1
2

1 3

1
2

2 3

2
2

Then, for

and

α β α β⃗ = ⃗ =
−

⃗ + =r r r( )
1

3
0

, ( )

1

2 3
1
2

, ( )

1

2 3
1
2

, (6.274)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

α β α β∴ ⃗ = ⃗ + ⃗ + ⃗ + =R r r r( ) ( ) ( )
1

3
1

, (6.275)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

and

λ λ λ λ λ
λ

λ λ
⃗ · ⃗ + ⃗ =

+ +

+ +
R( )

1

2 3

2

3
2 3

1

3
2

6
1

, (6.276)
max max

1
1 2

1

1 2

⎛
⎝⎜

⎞
⎠⎟
⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

λ λ
λ λ λ λ λ λ∴ ⃗ · ⃗ + ⃗ = + + + + +

R( )
1

2 3 2 3 3

( 2 )

6 3

2

3
, (6.277)

max max 1
2

1 1 2
2

1 2
⎧⎨⎩

⎫⎬⎭
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λ λ λ λ λ λ λ λ∴ ⃗ · ⃗ + ⃗ = + + + +R( )
1
9

( 3 3 ). (6.278)max max
1
2

2
2

1 2 1 2

Multiplicities of weight points occur for some su(3) irreps (the ‘hexagonal’ ones). We
do not use the formalism herein to elucidate these, but they emerge in a
straightforward manner using Young tableaux, cf. figure 6.6(e).
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[1] Rowe D J and Wood J L 2010 Fundamentals of Nuclear Models: Foundational Models

(Singapore: World Scientific)

Quantum Mechanics for Nuclear Structure, Volume 2

6-57



IOP Publishing

Quantum Mechanics for Nuclear Structure, Volume 2
An intermediate level view

Kris Heyde and John L Wood

Chapter 7

Perturbation theory and the variational method

A standard introduction to time-independent perturbation theory is given. This is
sufficient for needs typically encountered in the study of nuclear structure. The
procedure for handling the occurrence of degeneracies is described. Procedures for
incorporating symmetry into calculations is sketched. The variational method is
covered in a standard treatment.

Concepts: choice of basis; perturbation expansion of energies and state vectors;
first-order perturbation theory; second-order perturbation theory; degeneracy; rota-
tional symmetry; inversion symmetry; variational method.

7.1 Time-independent perturbation theory
Time-independent perturbation theory is a means of determining the energy
eigenvalues and eigenkets of a system with a Hamiltonian

ˆ = ˆ + ˆ ˆ ≠ ˆH H V V V t, ( ), (7.1)0

where ∣ ˆ ∣ ≪ ∣ ˆ ∣V H0 and the exact solutions for H0 are known:

ˆ ∣ 〉 = ∣ 〉H n E n , (7.2)n0
(0) (0) (0)

i.e. we seek solutions to

ˆ + ˆ ∣ 〉 = ∣ 〉H V n E n( ) . (7.3)n0

The perturbation is V̂ . It is not necessary to include all perturbations in V̂ . For
example in calculating the spin–spin interaction in hydrogen, it can be done while
ignoring the spin–orbit interaction. Of course, to obtain the full fine and hyperfine
splitting in hydrogen all terms must be calculated, but they can be calculated
separately when they are all small.
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It is standard procedure to solve the problem in the form

λˆ + ˆ ∣ 〉 = ∣ 〉H V n E n( ) , (7.4)n0

where λ is a continuous real parameter. This provides a means of keeping track of
the number of times the perturbation enters into the calculation. (The parameter λ
can be considered to vary from 0 to 1 and can be set equal to 1 at the end of the
calculation.) Strictly speaking, we should index the energy eigenkets and energy
eigenvalues by λ, viz.

λˆ + ˆ ∣ 〉 = ∣ 〉λ
λ

λH V n E n( ) , (7.5)n0
( )

but this will be understood to be so, in writing equation (7.4), to avoid cumbersome
notation.

Perturbation theory presumes that solutions to

ˆ ∣ 〉 = ∣ 〉H n E n , (7.6)n0
(0) (0) (0)

have been obtained. Then the set ∣ 〉n{ }(0) is complete in the sense that

∑∣ 〉〈 ∣ = ˆn n I . (7.7)
n

(0) (0)

We define

Δ ≔ −E E . (7.8)n n n
(0)

Then, the equation to be solved (approximately) is

λˆ + ˆ ∣ 〉 = + Δ ∣ 〉H V n E n( ) ( ) (7.9)n n0
(0)

or

λ− ˆ ∣ 〉 = ˆ − Δ ∣ 〉E H n V n( ) ( ) . (7.10)n n
(0)

0

The basic strategy is to expand ∣ 〉n and Δn in powers of λ:

λ λ∣ 〉 = ∣ 〉 + ∣ 〉 + ∣ 〉 + ⋯n n n n , (7.11)(0) (1) 2 (2)

λ λΔ = Δ + Δ + ⋯. (7.12)n n n
(1) 2 (2)

The first energy approximation is directly obtained by substituting equations (7.11)
and (7.12) into equation (7.10):

λ λ λ λ− ˆ ∣ 〉 + ∣ 〉 + ⋯ = ˆ − Δ − ⋯ ∣ 〉 + ∣ 〉 + ⋯E H n n V n n( )( ) ( )( ), (7.13)n n
(0)

0
(0) (1) (1) (0) (1)

and expanding,

λ λ λ− ˆ ∣ 〉 + − ˆ ∣ 〉 + ⋯ = ˆ ∣ 〉 − Δ ∣ 〉 + ⋯E H n E H n V n n( ) ( ) ; (7.14)n n n
(0)

0
(0) (0)

0
(1) (0) (1) (0)

then, since ˆ ∣ 〉 = ∣ 〉H n E nn0
(0) (0) (0) , equating terms up to first order in λ,

− ˆ ∣ 〉 = ˆ ∣ 〉 − Δ ∣ 〉E H n V n n( ) . (7.15)n n
(0)

0
(1) (0) (1) (0)
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Then, taking the inner product on both sides with 〈 ∣n(0)

〈 ∣ − ˆ ∣ 〉 = 〈 ∣ ˆ ∣ 〉 − Δ 〈 ∣ 〉n E H n n V n n n( ) , (7.16)n n
(0) (0)

0
(1) (0) (0) (1) (0) (0)

and using

〈 ∣ ˆ = 〈 ∣ 〈 ∣ 〉 =n H E n n n, 1, (7.17)n
(0)

0
(0) (0) (0) (0)

∴ Δ = 〈 ∣ ˆ ∣ 〉n V n , (7.18)n
(1) (0) (0)

i.e. the first-order correction to the energy is just the expectation value of V̂ for the
state ∣ 〉n(0) . This is the most elementary and fundamental result of perturbation theory.

For ∣ 〉n(1) :

∑∣ 〉 = ∣ 〉〈 ∣ 〉n m m n , (7.19)
m

(1) (0) (0) (1)

∑∴ ∣ 〉 = ∣ 〉〈 ∣ 〉 + ∣ 〉〈 ∣ 〉
≠

n n n n m m n . (7.20)
m n

(1) (0) (0) (1) (0) (0) (1)

Then, taking the inner product of both sides of equation (7.15) with 〈 ∣m(0) , where
≠m n,

〈 ∣ − ˆ ∣ 〉 = 〈 ∣ ˆ ∣ 〉 − Δ 〈 ∣ 〉m E H n m V n m n , (7.21)n n
(0) (0)

0
(1) (0) (0) (1) (0) (0)

and using

〈 ∣ ˆ = 〈 ∣ 〈 ∣ 〉 = ≠m H E m m n m n, 0, , (7.22)m
(0)

0
(0) (0) (0) (0)

∴ 〈 ∣ 〉 = 〈 ∣ ˆ ∣ 〉
−

≠m n
m V n

E E
m n, . (7.23)

n m

(0) (1)
(0) (0)

(0) (0)

It is critical to note at this point that the present method is only valid in the absence
of degeneracies, i.e. ≠E En m

(0) (0). Perturbation theory for situations where degeneracy
is involved will be considered shortly.

∑∴ ∣ 〉 = ∣ 〉〈 ∣ 〉 + ∣ 〉 〈 ∣ ˆ ∣ 〉
−≠

n n n n m
m V n

E E
. (7.24)

m n n m

(1) (0) (0) (1) (0)
(0) (0)

(0) (0)

Thus, to order λ

∑

λ

λ λ

∣ 〉 = ∣ 〉 + ∣ 〉

= + ∣ 〉 + 〈 ∣ ˆ ∣ 〉
−

∣ 〉
≠

n n n

a n
m V n

E E
m(1 ) ,

(7.25)

m n n m

(0) (1)

(0)
(0) (0)

(0) (0)
(0)

where

≡ 〈 ∣ 〉a n n . (7.26)(0) (1)
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Normalization of ∣ 〉n to order λ requires a = 0. From equation (7.23), 〈 ∣ 〉n n(0) (1) is
undetermined and so we define ≡a 0:

〈 ∣ 〉 ≔n n 0, (7.27)(0) (1)

and

∑∣ 〉 = ∣ 〉 〈 ∣ ˆ ∣ 〉
−≠

n m
m V n

E E
. (7.28)

m n n m

(1) (0)
(0) (0)

(0) (0)

The second energy approximation is obtained from equations (7.10)–(7.12)
expanded to order λ2:

λ λ
λ λ λ λ λ

− ˆ ∣ 〉 + ∣ 〉 + ∣ 〉 + ⋯
= ˆ − Δ − Δ − ⋯ ∣ 〉 + ∣ 〉 + ∣ 〉 + ⋯
E H n n n

V n n n

( )( )

( )( ),
(7.29)n

n n

(0)
0

(0) (1) 2 (2)

(1) 2 (2) (0) (1) 2 (2)

λ λ
λ λ

∴ − ˆ ∣ 〉 + − ˆ ∣ 〉 + − ˆ ∣ 〉 + ⋯
= ˆ − Δ ∣ 〉 + ˆ − Δ ∣ 〉 − Δ ∣ 〉 + ⋯

E H n E H n E H n

V n V n n

( ) ( ) ( )

( ) {( ) } ,
(7.30)n n n

n n n

(0)
0

(0) (0)
0

(1) 2 (0)
0

(2)

(1) (0) 2 (1) (1) (2) (0)

and using ˆ ∣ 〉 = ∣ 〉H n E nn0
(0) (0) (0) and taking the inner product of both sides with 〈 ∣n(0) , to

second order in λ,

λ λ
λ λ λ
λ λ

〈 ∣ − ˆ ∣ 〉 + 〈 ∣ − ˆ ∣ 〉
= 〈 ∣ ˆ ∣ 〉 − Δ 〈 ∣ 〉 + 〈 ∣ ˆ ∣ 〉
− Δ 〈 ∣ 〉 − Δ 〈 ∣ 〉

n E H n n E H n

n V n n n n V n

n n n n

( ) ( )

.

(7.31)
n n

n

n n

(0) (0)
0

(1) 2 (0) (0)
0

(2)

(0) (0) (1) (0) (0) 2 (0) (1)

2 (1) (0) (1) 2 (2) (0) (0)

Then, from 〈 ∣ ˆ = 〈 ∣n H E nn
(0)

0
(0) (0) , 〈 ∣ 〉 =n n 1(0) (0) , 〈 ∣ 〉 =n n 0(0) (1) (equation (7.27)), and

Δ = 〈 ∣ ˆ ∣ 〉n V nn
(1) (0) (0) (equation (7.18)),

∴ Δ = 〈 ∣ ˆ ∣ 〉n V n , (7.32)n
(2) (0) (1)

and for ∣ 〉n(1) from equation (7.28)

∑∴ Δ = 〈 ∣ ˆ ∣ 〉〈 ∣ ˆ ∣ 〉
−≠

n V m m V n

E E
. (7.33)

m n
n

n m

(2)
(0) (0) (0) (0)

(0) (0)

For ∣ 〉n(2) :

∑∣ 〉 = ∣ 〉〈 ∣ 〉n p p n , (7.34)
p

(2) (0) (0) (2)

∑∴ ∣ 〉 = ∣ 〉〈 ∣ 〉 + ∣ 〉〈 ∣ 〉
≠

n n n n p p n . (7.35)
p n

(2) (0) (0) (2) (0) (0) (2)

Then, taking the inner product of both sides of equation (7.30) with 〈 ∣p(0) , where
≠p n,
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λ λ

λ λ λ λ λ

〈 ∣ − ˆ ∣ 〉 + 〈 ∣ − ˆ ∣ 〉 + 〈 ∣ − ˆ ∣ 〉 + ⋯

= 〈 ∣ ˆ ∣ 〉 − Δ 〈 ∣ 〉 + 〈 ∣ ˆ ∣ 〉 − Δ 〈 ∣ 〉 − Δ 〈 ∣ 〉

p E H n p E H n p E H n

p V n p n p V n p n p n

( ) ( ) ( )

,
(7.36)n n n

n n n

(0) (0)
0

(0) (0) (0)
0

(1) 2 (0) (0)
0

(2)

(0) (0) (1) (0) (0) 2 (0) (1) 2 (1) (0) (1) 2 (2) (0) (0)

and using ˆ ∣ 〉 = ∣ 〉H n E nn0
(0) (0) (0) , 〈 ∣ ˆ = 〈 ∣p H p Ep

(0)
0

(0) (0), 〈 ∣ 〉 = ≠p n p n0,(0) (0) ,

λ λ

λ λ λ

∴ − 〈 ∣ 〉 + − 〈 ∣ 〉

= 〈 ∣ ˆ ∣ 〉 + 〈 ∣ ˆ ∣ 〉 − Δ 〈 ∣ 〉

( ) ( )E E p n E E p n

p V n p V n p n .
(7.37)

n p n p

n

(0) (0) (0) (1) 2 (0) (0) (0) (2)

(0) (0) 2 (0 (1) 2 (1) (0) (1)

But, from equation (7.23) with →m p, the terms of order λ are equal. Thus, for the
terms of order λ2

〈 ∣ 〉 = 〈 ∣ ˆ ∣ 〉
−

− Δ 〈 ∣ 〉
−( )

p n
p V n

E E

p n

E E
. (7.38)

n p
n

n p

(0) (2)
(0) (1)

(0) (0)
(1)

(0) (1)

(0) (0)

Then, using equation (7.28) for ∣ 〉n(1) and equation (7.23) with →m p

∑〈 ∣ 〉 =
−

〈 ∣ ˆ ∣ 〉 〈 ∣ ˆ ∣ 〉
−

− Δ 〈 ∣ ˆ ∣ 〉

−≠ ( )
p n

E E
p V m

m V n

E E

p V n

E E

1
, (7.39)

m nn p n m
n

n p

(0) (2)
(0) (0)

(0) (0)
(0) (0)

(0) (0)
(1)

(0) (0)

(0) (0) 2

∑ ∑

∑

∴ ∣ 〉 = ∣ 〉〈 ∣ 〉 + ∣ 〉 〈 ∣ ˆ ∣ 〉〈 ∣ ˆ ∣ 〉
− −

− ∣ 〉 〈 ∣ ˆ ∣ 〉〈 ∣ ˆ ∣ 〉

−

≠ ≠

≠

( )

( )

n n n n p
p V m m V n

E E E E

p
n V n p V n

E E

( )

,

(7.40)
p n m q

p n

n p n m

n p

(2) (0) (0) (2) (0)
(0) (0) (0) (0)

(0) (0) (0) (0)

(0)
(0) (0) (0) (0)

(0) (0) 2

where equation (7.18) has been used for Δn
(1). Thus, to order λ2,

λ λ∣ 〉 = ∣ 〉 + ∣ 〉 + ∣ 〉n n n n , (7.41)(0) (1) 2 (2)

∑

∑ ∑ ∑

λ λ

λ

∴ ∣ 〉 = + ∣ 〉 + ∣ 〉
Δ

+ ∣ 〉
Δ Δ

− ∣ 〉
Δ

≠

≠ ≠ ≠

n b n m
V

p
V V

p
V V

(1 )

( )
,

(7.42)
m n

p n m n p n

mn

mn

pm mn

np nm

nn pn

np

2 (0) (0)

2 (0) (0)
2⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

where = 〈 ∣ ˆ ∣ 〉V p V mpm
(0) (0) , etc., Δ = −E Enp n p

(0) (0), etc., and

= 〈 ∣ 〉b n n . (7.43)(0) (2)

Normalization of ∣ 〉n to order λ2 requires

∑= − ∣ ∣
Δ≠

b
V1

2 ( )
. (7.44)

m n

nm

nm

2

2
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Hence,

∑ ∑ ∑ ∑∣ 〉 = − ∣ 〉 ∣ ∣
Δ

+ ∣ 〉
Δ Δ

− ∣ 〉
Δ≠ ≠ ≠ ≠

n n
V

p
V V

p
V V1

2 ( ) ( )
. (7.45)

m n p n m n p n

nm

nm

pm mn

np nm

nn pn

np

(2) (0)
2

2
(0) (0)

2

This procedure is straightforwardly iterated to any order. For practical purposes,
it is rare that orders higher than ∣ 〉n(1) and Δn

(2) are needed. Exact matrix diagonal-
ization is always available as an alternative and, when degeneracies are present (see
the next section), it must be used to solve at least part of the problem.

7.1.1 Exercises

7.1. Consider a two-level system with the Hamiltonian

ˆ = ˆ + ˆH H V ,0

where ˆ ∣Ψ 〉 = ∣Ψ 〉H E0 1 1 1 , ˆ ∣Ψ 〉 = ∣Ψ 〉H E0 2 2 2 , ˆ ∣Ψ 〉 = ∣Ψ 〉V 1 2 , ˆ ∣Ψ 〉 = ∣Ψ 〉V 2 1 , ≠E E1 2.
(a) Solve for the exact energy eigenvalues using matrix diagonalization.
(b) Solve for the energy eigenvalues using (non-degenerate) perturba-

tion theory. How does your answer compare to the solution in (a)?
7.2. A one-dimensional harmonic oscillator with Hamiltonian

ˆ = ˆ + ˆH
p
m

kx
2

1
2

2
2

is subjected to a constant perturbation αx̂1
2

2.
(a) Solve for the energy eigenvalues using (non-degenerate) perturba-

tion theory.
(b) Solve for the exact energy eigenvalues.

7.3. Solve for the energy eigenvalues and eigenvectors of

ε ε
ε ε
ε ε

ˆ =H
1

2
3

,
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where ε is small, using (non-degenerate) perturbation theory.

7.2 Time-independent perturbation theory for systems with
degeneracy

If degeneracies are present, e.g. =E En m
(0) (0) for ≠m n in equation (7.23), this is a

catastrophe for the above treatment: zeros will appear in some of the denominators!
This problem is avoided by first diagonalizing the matrix for the degenerate
subspace. Usually, degenerate subspaces are not that large and so this task is
simple. One only needs to diagonalize the degenerate subspace containing the state
of interest! Other degenerate subspaces may be present, but their states are not
degenerate with the state of interest.
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Usually, diagonalization in the degenerate subspace containing the state of
interest will remove the degeneracies associated with this state. Then one can
proceed by using standard non-degenerate perturbation theory. However, it is
possible that the degenerate subspace is already diagonal, e.g.

ˆ =H
E V

E V
V V E

0
0 , (7.46)

1 13

1 23

31 32 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

where

≡ + = +E E V E V , (7.47)1 1
(0)

11 2
(0)

22

≡ +E E V , (7.48)2 3
(0)

33

and

= 〈 ∣ ˆ ∣ˆ 〉V i V j . (7.49)ij

In these circumstances, one first applies second-order perturbation theory, viz.

∑Δ = ∣ ˆ ∣ ∣ ˆ ∣
−∉∈

i V n n V j

E E( )
, (7.50)

n D
ij

i j D D n,

(2)
(0) (0) (0) (0)

(0)

where n is not an element of the subspace D and ED is the energy of the degenerate
subspace. Equation (7.50) is a generalisation of equation (7.33). It is discussed
shortly. First an example is solved to illustrate the method.

7.3 An example of (second-order) degenerate perturbation theory
The Hamiltonian

ˆ =
* *

H
E b

E c
b c E

0
0 , (7.51)

1

1

2

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

is an example where a degeneracy cannot be removed in first order.
The exact solution is given by solutions to

λ
λ

λ

−
−

−
=

* *

E b
E c

b c E

0
0 0, (7.52)

1

1

2

i.e.

λ λ λ λ− − − − ∣ ∣ + − − =*E E E c b E b( ){( )( ) } { ( ) } 0, (7.53)1 1 2
2

1
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whence we obtain the first root, λ1,

λ = E , (7.54)1 1

and

λ λ− ∣ ∣ − ∣ ∣ − + + =E E b c E E( ) 0. (7.55)1 2
2 2

1 2
2

Equation (7.55) yields the roots

λ =
+ + + − − ∣ ∣ − ∣ ∣E E E E E E b c( ) 4( )

2
(7.56)

2
1 2 1 2

2
1 2

2 2

and

λ =
+ − + − − ∣ ∣ − ∣ ∣E E E E E E b c( ) 4( )

2
. (7.57)

3
1 2 1 2

2
1 2

2 2

Noting that

+ − + ∣ ∣ + ∣ ∣ = − + ∣ ∣ + ∣ ∣E E E E b c E E b c( ) 4 4( ) ( ) 4( ) , (7.58)1 2
2

1 2
2 2

1 2
2 2 2

for ∣ ∣ + ∣ ∣ ≪ −b c E E2 2
1 2

− + ∣ ∣ + ∣ ∣ ≈ − + ∣ ∣ + ∣ ∣
−

E E b c E E
b c

E E
( ) 4( ) ( ) 1

2( )
( )

. (7.59)1 2
2 2 2

1 2

2 2

1 2
2

⎧⎨⎩
⎫⎬⎭

Thus

λ ≈ + ∣ ∣ + ∣ ∣
−

E
b c
E E( )

(7.60)2 1

2 2

1 2

and

λ ≈ − ∣ ∣ + ∣ ∣
−

E
b c
E E( )

. (7.61)3 2

2 2

1 2

If one attempts a solution using second-order perturbation theory in the form of
equation (7.33), one obtains

Δ = ∣ ∣
−

+ ∣ ∣
−

V

E E

V

E E
, (7.62)1

(2) 12
2

1
(0)

2
(0)

13
2

1
(0)

3
(0)

and it is tempting to ignore the catastrophe of = =E E E1
(0)

2
(0)

1 because =V 012 .
Whence, one obtains

Δ = ∣ ∣
−
b

E E( )
. (7.63)1

(2)
2

1 2

Quantum Mechanics for Nuclear Structure, Volume 2

7-8



Similarly,

Δ = ∣ ∣
−
c

E E( )
(7.64)2

(2)
2

1 2

and

Δ = ∣ ∣ + ∣ ∣
−

= − ∣ ∣ + ∣ ∣
−

b c
E E

b c
E E( )

( )
( )

. (7.65)3
(2)

2 2

2 1

2 2

1 2

Comparison of equations (7.54), (7.60) and (7.61) with (7.63), (7.64) and (7.65)
(together with (7.51)) reveals failure! Evidently, dividing zero by zero is, as always,
inadvisable!

However, if one attempts a solution using second-order perturbation theory in the
form of equation (7.50) then the submatrix for the degenerate subspace can be
written

ˆ ′ =
+ Δ Δ
Δ + Δ

H
E

E
, (7.66)1 11

(2)
12
(2)

21
(2)

1 22
(2)

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where

Δ = ∣ ∣
−

= ∣ ∣
−

V

E E

b
E E( )

, (7.67)11
(2) 13

2

1 3
(0)

2

1 2

Δ =
−

=
−

*V V

E E

bc
E E( )

, (7.68)12
(2) 13 32

1 3
(0)

1 2

Δ = Δ *, (7.69)21
(2)

12
(2)

and

Δ = ∣ ∣
−

= ∣ ∣
−

V

E E

c
E E( )

. (7.70)22
(2) 23

2

1 3
(0)

2

1 2

Thus, the secular equation for ˆ ′H , viz.

λ λ+ Δ − + Δ − − Δ Δ =E E( )( ) 0, (7.71)1 11
(2)

1 22
(2)

12
(2)

21
(2)

becomes

λ λ− + ∣ ∣
−

− + ∣ ∣
−

− ∣ ∣ ∣ ∣
−

=E
b

E E
E

c
E E

b c
E E( ) ( ) ( )

0. (7.72)1

2

1 2
1

2

1 2

2 2

1 2
2

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭

Hence,

λ λ− + − ∣ ∣ + ∣ ∣
−

=E E
b c
E E

( ) ( )
( )
( )

0, (7.73)1
2

1

2 2

1 2
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which yields

λ = E (7.74)1 1

and

λ = + ∣ ∣ + ∣ ∣
−

E
b c
E E( )

, (7.75)2 1

2 2

1 2

cf. equations (7.74) and (7.75) with equations (7.54) and (7.60) (also cf. equation
(7.61) with equation (7.65)).

The derivation of equation (7.50) follows from equation (7.30) for n = j, ∈j D,

λ λ

λ λ

− ˆ ∣ 〉 + − ˆ ∣ 〉 + − ˆ ∣ 〉 + ⋯

= ˆ − Δ ∣ 〉 + ˆ − Δ ∣ 〉 − Δ ∣ 〉 + ⋯{ }
( ) ( ) ( )

( ) ( )
E H j E H j E H j

V j V j j .
(7.76)

j j j

j j j

(0)
0

(0) (0)
0

(1) 2 (0)
0

(2)

(1) (0) 2 (1) (1) (2) (0)

Then, taking the inner product on both sides with 〈 ∣i (0) , ∈i D, and noting that
ˆ ∣ 〉 = ∣ 〉H j E jj0

(0) (0) (0) , to second order in λ

λ λ

λ λ λ

λ λ

〈 ∣ − ˆ ∣ 〉 + 〈 ∣ − ˆ ∣ 〉

= 〈 ∣ ˆ ∣ 〉 − Δ 〈 ∣ 〉 + 〈 ∣ ˆ ∣ 〉

− Δ 〈 ∣ 〉 − Δ 〈 ∣ 〉

( ) ( )i E H j i E H j

i V j i j i V j

i j i j .

(7.77)

j j

j

j j

(0) (0)
0

(1) 2 (0) (0)
0

(2)

(0) (0) (1) (0) (0) 2 (0) (1)

2 (1) (0) (1) 2 (2) (0) (0)

Thus, from 〈 ∣ ˆ = 〈 ∣i H i Ei
(0)

0
(0) (0), =E Ei j

(0) (0), 〈 ∣ ˆ ∣ 〉 =i V j 0(0) (0) , δ〈 ∣ 〉 =i j ij
(0) (0) , and

〈 ∣ 〉 =j j 0(0) (1) (cf. equations (7.26) and (7.27) with n = j),

δ〈 ∣ ˆ ∣ 〉 = Δ 〈 ∣ 〉 + Δi V j i j . (7.78)j j ij
(0) (1) (1) (0) (1) (2)

Now, from equation (7.20) for n = j

∑ ∑∣ 〉 = ∣ 〉〈 ∣ 〉 + ∣ 〉〈 ∣ 〉
∈ ∉

j k k j m m j . (7.79)
k D m D

(1) (0) (0) (1) (0) (0) (1)

Then, from equation (7.15) for n = j,

− ˆ ∣ 〉 = ˆ ∣ 〉 − Δ ∣ 〉( )E H j V j j , (7.80)j j
(0)

0
(1) (0) (1) (0)

taking the inner product on both sides with 〈 ∣m(0) , where ∉m D,

〈 ∣ − ˆ ∣ 〉 = 〈 ∣ ˆ ∣ 〉 − Δ 〈 ∣ 〉( )m E H j m V j m j . (7.81)j j
(0) (0)

0
(1) (0) (0) (1) (0) (0)

Thus, from 〈 ∣ ˆ = 〈 ∣m H m Em
(0)

0
(0) (0), 〈 ∣ 〉 =m j 0(0) (0) ,

〈 ∣ 〉 = 〈 ∣ ˆ ∣ 〉
−

m j
m V j

E E
(7.82)

j m

(0) (1)
(0) (0)

(0) (0)

and from equation (7.79),
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∑ ∑∴ ∣ 〉 ∣ 〉〈 ∣ 〉 + ∣ 〉 〈 ∣ ˆ ∣ 〉
−∈ ∉

j k k j m
m V j

E E
. (7.83)

k D m D j m

(1) (0) (0) (1) (0)
(0) (0)

(0) (0)

Finally, from equations (7.78) and (7.83),

∑ ∑

δΔ 〈 ∣ 〉 + Δ

= 〈 ∣ ˆ ∣ 〉〈 ∣ 〉 + 〈 ∣ ˆ ∣ 〉〈 ∣ ˆ ∣ 〉
−∈ ∉

i j

i V k k j
i V m m V j

E E
.

(7.84)

k D m D

j j ij

j m

(1) (0) (1) (2)

(0) (0) (0) (1)
(0) (0) (0) (0)

(0) (0)

But, 〈 ∣ ˆ ∣ 〉 =i V m 0(0) (0) and =E Ej D
(0) (0),

∑δ∴ Δ 〈 ∣ 〉 + Δ = 〈 ∣ ˆ ∣ 〉〈 ∣ ˆ ∣ 〉
−∉

i j
i V m m V j

E E
. (7.85)

m D
j j ij

D m

(1) (0) (1) (2)
(0) (0) (0) (0)

(0) (0)

Defining δΔ ≡ Δj ij jj
(2) (2) and Δ 〈 ∣ 〉 ≡ Δi jj ij

(1) (0) (1) (2), the desired result is obtained.

7.4 Perturbation theory and symmetry
The identification of the symmetries of a particular unperturbed system, i.e. of Ĥ0,
greatly facilitates the delineation of the computational effort required to find the
eigenvalues and eigenvectors of ˆ + ˆH V0 . This is true whether the solutions are
obtained by a complete matrix diagonalization or by perturbation theory. This
comes about because symmetry can tell us which matrix elements ofV̂ are zero. Two
commonly occurring symmetries are used to illustrate this point.

Rotational symmetry is characteristic of central force problems and is manifested
in the energy eigenkets being simultaneous eigenkets of L̂

2 and (e.g.) L̂z. If V̂ is
expanded in terms of spherical tensors, this leads immediately to the identification of
the zero matrix elements of V̂ by use of the Wigner–Eckart theorem.

7.4.1 Example

αˆ = ˆV z; Ĥ0: hydrogen atom, α: a constant; ∣ 〉 = ∣ 〉n nlm m{ } { }l s
(0) .

θ π π= = ˆ = ˆ ˆz r r Y z r Tcos
4
3

:
4
3

.10 0
(1)

α
π α

〈 ′ ′ ′ ′ ∣ ˆ ∣ 〉 = 〈 ′ ′ ′ ′ ∣ ˆ∣ 〉

= 〈 ′ ′ ′ ′ ∣ˆ ˆ ∣ 〉

n l m m V nlm m n l m m z nlm m

n l m m r T nlm m
4
3

.

l s l s l s l s

l s l s0
(1)

Then, using the Wigner–Eckart theorem

〈 ′ ′ ′ ′ ∣ ˆ ∣ 〉 = 〈 ∣ ∣ ′ ′ 〉 ×n l m m V nlm m lm l m C0 ,l s l s l l
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where C is a constant. Evidently, we must have

= ′ ′ = ∣ ± ∣m m l l l, , 1l l

to ensure a non-zero Clebsch–Gordan coefficient and therefore for a non-zero
〈 ′ ′ ′ ′ ∣ ˆ ∣ 〉n l m lm V nlm ms l s .

7.4.2 Inversion symmetry

Any system1 in any state is either even or odd under space inversion. This property is
called parity, π, where

π = + +1 or (even), (7.86)

π = − −1 or (odd). (7.87)

A unitary transformationÛp can be associated with space inversion. For a system in
a state ∣ 〉k ,

ˆ ∣ 〉 = ± ∣ 〉U k k1 . (7.88)p

Then consider 〈 ∣ ˆ ∣ 〉k V k : under space inversion

〈 ∣ ˆ ˆ ˆ ∣ 〉 = 〈 ∣ ˆ ∣ 〉†
k U VU k k V k (7.89)p p

because either ˆ ∣ 〉 = +∣ 〉U k kp , 〈 ∣ ˆ = +〈 ∣k U kp or ˆ ∣ 〉 = −∣ 〉U k kp , 〈 ∣ ˆ = −〈 ∣
†

k U kp . But we can
consider equation (7.89) as

〈 ∣ ˆ ∣ 〉 = 〈 ∣ ˆ ∣ 〉k V k k V k , (7.90)p

where

ˆ ≡ ˆ ˆ ˆ†
V U VU . (7.91)p p p

If ˆ = − ˆV Vp then, from equation (7.90), the matrix elements of V̂ are zero.

7.4.3 Example

α αˆ = ⃗V r ;op : a constant.
Evidently:

α αˆ ⃗ ˆ = − ⃗
†

U r U r .p p opop

Thus, from equation (7.89)

α α− 〈 ∣ ⃗ ∣ 〉 = 〈 ∣ ⃗ ∣ 〉
∴ 〈 ∣ ⃗ ∣ 〉 =

k r k k r k

k r k

,

0.
op op

op

1Well, this is almost true of most systems! However, the weak interaction (which, for example, controls beta
decay) produces minute amounts of parity admixing in most systems.

Quantum Mechanics for Nuclear Structure, Volume 2

7-12



It follows that in the example given for rotational symmetry, since z is just ⃗r in a
specified direction, we must have 〈 ∣ ˆ∣ 〉 =nlm m z nlm m 0l s l s (note this is the case ′ =n n,
′ =l l , ′ =m ml l , ′ =m ms s ).

7.4.4 Exercises

7.4. Show that under space inversion

θ ϕ θ ϕ→ −Y Y( , ) ( 1) ( , ). (7.92)lm
l

lm

(Hint: consider → −x x, etc., and the transformation between Cartesian
and spherical polar coordinates.)

7.5. Show that α〈 ′ ′ ′ ′ ∣ ∣⃗ 〉 =n l m m r nlm m 0l s l s if ′ + + =l l 1 odd using the position
representation and

(a) the property of spherical harmonics obtained in exercise 7-4
(equation (7.92)).

(b) equation (2.114).

7.5 The variational method
Perturbation theory can be used only when a major portion of the Hamiltonian can
be isolated and solved exactly. Failing this, matrix diagonalization is the only
general method that can give a solution. However, if only an estimate of the ground-
state energy is needed, a very simple method is provided by the variational method.
This provides a means of estimating an upper bound for the ground-state energy of
the system. It is dependent on the following theorem:

Theorem 7.5.1. For any ket ∣˜〉0 , for a system with Hamiltonian Ĥ and ground-state
energy E0,

〈 ˆ 〉 ≡ 〈˜∣ ˆ ∣˜〉
〈˜ ∣˜〉

⩾H
H

E
0 0

0 0
, (7.93)0

where the denominator is unity if ∣˜〉0 is normalized.

Proof. Expand ∣˜〉0 in terms of eigenkets of Ĥ ,

∑∣˜〉 = ∣ 〉〈 ∣˜〉
=

∞

k k0 0 , (7.94)
k 0

where

ˆ ∣ 〉 = ∣ 〉H k E k (7.95)k

(the proof does not depend on knowing what the eigenkets of Ĥ are, it only depends
on their existence). Substituting equation (7.94) into (7.93)
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Clearly,

∑ ∣〈 ∣˜〉∣
∑ ∣〈 ∣˜〉∣

⩾
∑ ∣〈 ∣˜〉∣

∑ ∣〈 ∣˜〉∣
=

∞

=
∞

=
∞

=
∞

E k

k

E k

k

0

0

0

0
, (7.97)k

k

k

k

0

0

0

0

k
2

2

0
2

2

where the equality sign holds if ∣˜〉 = ∣ 〉0 0 . But the right-hand side of equation (7.97) is
equal to E0. Thus, the theorem follows. □

The practical consequence of the variational theorem is that if 〈 ˆ 〉H depends on
some parameter, which can be introduced into the trial ground-state ket ∣˜〉0 , then
minimising 〈 ˆ 〉H with respect to the parameter will still fulfil 〈 ˆ 〉 ⩾H E0.

Quantum Mechanics for Nuclear Structure, Volume 2

7-14



IOP Publishing

Quantum Mechanics for Nuclear Structure, Volume 2
An intermediate level view

Kris Heyde and John L Wood

Chapter 8

Time-dependent perturbation theory

A standard introduction to time-dependent perturbation theory is given. This is
sufficient to introduce Fermi’s golden rule as used for the coupling of nuclei to
electromagnetic fields. A few details of the interaction picture and the Dyson series
are given.

Concepts: interaction picture; Dyson series; Fermi’s golden rule.
Time-dependent processes are the means by which things are made to happen in

quantum mechanics1. Generally, such processes are ‘weak’, i.e. if the process is
described by V t( ), ≪V t H( ) , where H is the Hamiltonian describing the system.
Thus, perturbation theory provides a procedure by which the time-dependence of the
process can be described.

Time-dependent processes are discussed in Volume 1, chapter 9; here we follow
on from the end of section 9.10. We introduce a picture, similar to the Heisenberg
and Schrödinger pictures of time dependence, called the ‘interaction picture’.

8.1 The interaction picture
Time-dependent phenomena can be incorporated directly into the Heisenberg and
Schrödinger pictures (cf. Volume 1, section 9.5). A particularly useful formulation
along the lines of these two descriptions is the so-called interaction picture, which is
defined for the Hamiltonian

1We emphasize at the outset that with respect to the measurement process in quantum mechanics, while it has
a dependence on time, it lies entirely outside any framework of description. All we possess in the measurement
process is ‘more uncertainty before the measurement, less uncertainty after the measurement’. The
probabilistic content and change in state of knowledge is not a physical process. Such pictorial language as
‘quantum jumps’ and ‘collapse of the wave function’, while amusing as a way to dramatise the difference
between the quantum world and our everyday world, are dangerously misleading: they do not describe
physical processes. We leave it to the reader to decide what happens when a change occurs in their state of
knowledge regarding the world around them. We recommend ‘On Quantum Theory’ by Berthold-Georg
Englert, [1] for further, indeed essential, reading in these matters.
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ˆ = ˆ + ˆH H V t( ) (8.1)s0

by

α α∣ = 〉 ≡ ∣ = 〉
ˆ
ℏt t e t t, 0; , 0; (8.2)

I
iH t

s
0

and

ˆ ≡ ˆ
ˆ
ℏ

− ˆ
ℏA e A e ; (8.3)

I
iH t

s
iH t0 0

cf.

α α∣ 〉 ≡ ∣ = 〉
ˆ
ℏe t t, 0; (8.4)

H
iHt

s

and

ˆ ≡ ˆˆ
ℏ

− ˆ
ℏA e A e . (8.5)

H
iHt

s
iHt

The content of the interaction picture can be realised by considering the action of
ℏ ∂

∂
i

t
on equation (8.2):

α αℏ ∂
∂

∣ = 〉 = ℏ ∂
∂

∣ = 〉
ˆ
ℏi

t
t t i

t
e t t, 0; , 0; , (8.6)I

iH t
s

0⎧⎨⎩
⎫⎬⎭

α α α∴ ℏ ∂
∂

∣ = 〉 = − ˆ ∣ = 〉 + ˆ + ˆ ∣ = 〉
ˆ
ℏ

ˆ
ℏi

t
t t H e t t e H V t t t, 0; , 0; ( ( )) , 0; , (8.7)I

iH t
s

iH t
s0 0

0 0

where

α αℏ ∂
∂

∣ = 〉 = ˆ ∣ = 〉i
t

t t H t t, 0; , 0; (8.8)s s

has been used. Thus,

α αℏ ∂
∂

∣ = 〉 = ˆ ∣ = 〉
ˆ
ℏi

t
t t e V t t t, 0; ( ) , 0; , (8.9)I

iH t
s s

0

α α∴ ℏ ∂
∂

∣ = 〉 = ˆ ∣ = 〉
ˆ
ℏ

− ˆ
ℏ

ˆ
ℏi

t
t t e V t e e t t, 0; ( ) , 0, , (8.10)I

iH t
s

iH t iH t
s

0 0 0

α α∴ ℏ ∂
∂

∣ = 〉 = ˆ ∣ = 〉i
t

t t V t t t, 0; ( ) , 0; , (8.11)I I I

where equation (8.3) for ˆ = ˆA V t( )I I and equation (8.2) have been used. Equation
(8.11) closely resembles the Schrödinger equation for the time evolution of a state
ket, but with Ĥ replaced by V̂ t( )I , i.e. α∣ = 〉t t, 0; I would be time independent for
ˆ =V t( ) 0I .
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Further, from equation (8.3), differentiating with respect to time:

ˆ
=

ˆ
ℏ

ˆ + + − ˆ
ℏ

ˆ
ℏ

− ˆ
ℏ

ˆ
ℏ

− ˆ
ℏ

ˆ
ℏ

− ˆ
ℏ

A
t

iH
e A e e

A
t

e e A
iH

e
d
d

d
d

; (8.12)I iH t
s

iH t iH t s iH t iH t
s

iH t0 00 0 0 0 0 0
⎛
⎝⎜

⎞
⎠⎟

whence using equation (8.3),

ˆ
=

ℏ
ˆ ˆ − ˆ ˆ +

ˆˆ
ℏ

− ˆ
ℏ

A
t

i
H A A H e

A
t

e
d
d

{ }
d
d

, (8.13)I
I I

iH t s iH t
0 0

0 0

and recalling that Âs is time independent,

∴
ˆ

=
ℏ

ˆ ˆA
t i

A H
d
d

1
[ , ]. (8.14)I

I 0

Equation (8.14) closely resembles the Heisenberg equation for the time evolution of
an operator, but with Ĥ replaced by Ĥ0. If ÂI commutes with Ĥ0, then ÂI is time
independent.

The relationship between the Heisenberg, Schrödinger and interaction pictures is
summarised in table 8.1. The interaction picture can be regarded as a hybrid of the
other two.

The base kets of the interaction picture can be expanded in the basis ∣ 〉n{ }
( ∣ 〉 = ∣ 〉H n E n0 0 ) where,

∑α∣ = 〉 = ∣ 〉− ℏt t c t e n, 0; ( ) , (8.15)
n

s n
iE tn

as

∑α∣ = 〉 = ∣ 〉t t c t n, 0, ( ) , (8.16)
n

I n

where the c t( )n are the same as the c t( )n in equation (8.15). This is seen by applying
− ˆ

ℏe
iH t0

to both sides of equation (8.16) from the left:

∑α∣ = 〉 = ∣ 〉
− ˆ

ℏ
− ˆ

ℏe t t c t e n, 0; ( ) , (8.17)
n

iH t
I n

iH t0 0

then from equation (8.2) and (8.15)

Table 8.1. The relationship between the Heisenberg, Schrödinger and interaction pictures.

Heisenberg picture Interaction picture Schrödinger picture

State ket No change Evolution determined
by V̂ t( )I

Evolution determined
by Ĥ

Observable Evolution determined
by Ĥ

Evolution determined by Ĥ0 No change
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∑α∣ = 〉 = ∣ 〉
− ˆ

ℏt t c t e n, 0; ( ) . (8.18)
n

s n
iH t0

The equation for the ̇c t( )m ,

∑̇ =
ℏ

ωc t
i

V t e c t( )
1

( ) ( ), (8.19)
n

m mn
i t

n
mn

can be deduced from the interaction picture by taking the inner product of both sides
of equation (8.11) with 〈 ∣m and using the completeness relation:

∑α αℏ ∂
∂

〈 ∣ = 〉 = 〈 ∣ ˆ ∣ 〉〈 ∣ = 〉i
t

m t t m V n n t t, 0; , 0; ; (8.20)
n

I I I

but from equation (8.2),

〈 ∣ ∣ 〉 = 〈 ∣ ˆ ∣ 〉

=

ˆ
ℏ

− ˆ
ℏ

−
ℏ

m V t n m e V t e n

V t e

( ) ( )

( ) ,
(8.21)I

iH t
s

iH t

mn

i E E t( )m n

0 0

and from equation (8.16)

α= 〈 ∣ = 〉c t m t t( ) , 0; , (8.22)m I

whence

∑ℏ ∂
∂

= ωi
t

c t V t e c t( ) ( ) ( ), (8.23)
n

m mn
i

n
mn

cf. equation (8.19), where ω = −
ℏ

E E( )
mn

m n .
Finally, we can define a time evolution operator in the interaction picture by:

α α∣ = 〉 ≡ ˆ ∣ = 〉t t U t t, 0; ( , 0) , 0 . (8.24)I I I

Then, from equations (8.11) and (8.24):

ℏ ∂
∂

ˆ = ˆ ˆi
t

U t V t U t( , 0) ( ) ( , 0). (8.25)I I I

Equation (8.25) has the initial condition

ˆ = = ˆU t I( 0, 0) , (8.26)I

and is equivalent to the integral equation

∫ˆ = ˆ −
ℏ

ˆ ′ ˆ ′ ′U t I
i

V t U t t( , 0) ( ) ( , 0)d . (8.27)I

t

I I
0

This leads, by iteration of equation (8.27), to the Dyson series for the time evolution
operator in the interaction picture:
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∫ ∫ˆ = ˆ −
ℏ

ˆ ′ ˆ −
ℏ

ˆ ″ ˆ ″ ″ ′
′

U t I
i

V t I
i

V t U t t t( , 0) ( ) ( ) ( , 0)d d , (8.28)I

t

I

t

I I
0 0

⎧⎨⎩
⎫⎬⎭

∫ ∫ ∫

∫ ∫ ∫

∴ ˆ = ˆ −
ℏ

′ ˆ ′ + −
ℏ

′ ″ ˆ ′ ˆ ″

+ ⋯ + −
ℏ

′ ″⋯ ˆ ′ ˆ ″ ⋯ ˆ

′

′ −
−

U t I
i

t V t
i

t t V t V t

i
t t t V t V t V t

( , 0) d ( ) d d ( ) ( )

d d d ( ) ( ) ( ).

(8.29)
I

t

I

t

o

t

I I

n t t t n
n

I I I
n

0

2

0

0 0 0

( 1)
( 1)

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

Approximate solutions are obtained for equation (8.29) by terminating the series at
any desired point. (The question of the convergence of the Dyson series is not
discussed here beyond specifying that V̂ t( )I must be ‘sufficiently small’.)

Once Û t( , 0)I is found, the time evolution of any state ket can be predicted. For
example, if the initial state ket at t = 0 is an energy eigenket of Ĥ0, then

∣ = 〉 = ˆ ∣ = 〉m t t U t m t, 0; ( , 0) , 0 (8.30)I I

∑= ∣ 〉〈 ∣ ˆ ∣ = 〉n n U t m t( , 0) , 0 (8.31)
n

I

and comparing with equation (8.16),

〈 ∣ ˆ ∣ = 〉 =n U t m t c t( , 0) , 0 ( ), (8.32)I n

i.e. the matrix elements ofÛ t( , 0)I in the ∣ 〉n{ } basis of the energy eigenkets of Ĥ0 are
just the transition amplitudes for going from t = 0 to t = t.

8.2 Time-dependent perturbation theory
Time-dependent perturbation theory is a means of determining probabilities of
change and rates of change in systems governed by Hamiltonians of the form

ˆ = ˆ + ˆH t H V t( ) ( ), (8.33)0

when ∣ ˆ ∣ ≪ ∣ ˆ ∣V t H( ) 0 . This is very useful because many time-dependent problems in
quantum mechanics are of this type. For example, a system described by Ĥ0 could
interact with another system such as a colliding projectile or an electromagnetic
field, where V̂ t( ) describes the interaction. It is presumed that the solutions to

ˆ ∣ 〉 = ∣ 〉H n E n (8.34)n0

can be found.
We consider the time-dependent Hamiltonian in the form

λˆ = ˆ + ˆH t H V t( ) ( ), (8.35)0
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where λ is a continuous real parameter, λ⩽ ⩽0 1, that is introduced to keep track of
the number of times the perturbation enters the calculation. We define the c t( )n in the
set of coupled differential equations,

∑λ̇ =
ℏ

ωc t
i

V t e c t( )
1

( ) ( ), (8.36)
k

j jk
i t

k
jk

cf. equations (8.19) and

ℏ

̇
̇
̇

⋮

=

⋯

⋮ ⋮
⋮ ⋮ ⋮ ⋮

ω

ω−
i

c
c
c

V V e
V e V

V

c
c
c

.

.
, (8.37)

i t

i t
1

2

3

11 12

21 22

33

1

2

3

12

12

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

in terms of the following power series in λ:

λ λ= + + + ⋯c t c t c t c t( ) ( ) ( ) ( ) . (8.38)k k k k
(0) (1) 2 (2)

Substituting equation (8.38) into equation (8.36) and equating the coefficients of
equal powers of λ:

̇ =c t( ) 0, (8.39)j
(0)

∑̇ =
ℏ

⋯

ωc t
i

V t e c t( )
1

( ) ( ), (8.40)
k

j jk
i t

k
(1) (0)jk

∑̇ =
ℏ

⋯

ω −c t
i

V t e c t( )
1

( ) ( ), (8.41)
k

j
r

jk
i t

k
r( ) ( 1)jk

Thus, the set of coupled equations, equation (8.36) have been decoupled and
equations (8.39)–(8.41) can be successively integrated, in principle, to any
desired order.

For an initial state ∣ 〉a with energy Ea, integrating equation (8.39):

δ= = = =c c tconstant ( 0) ; (8.42)j j ja
(0) (0)

then equation (8.40) can be written

̇ =
ℏ

ωc t
i

V t e( )
1

( ) , (8.43)j ja
i t(1) ja

and integrating,

∫=
ℏ

′ ′ω ′c t
i

V t e t( )
1

( ) d . (8.44)j

t

ja
i t(1)

0

ja
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Equation (8.44) is the fundamental equation of time-dependent perturbation theory.
Note that c t( )j

(1) is the Fourier component of V t( )ja with frequency ωja. The
probability that at time t the system will be found in the state ∣ 〉j , i.e. the probability
for the transition ∣ 〉 → ∣ 〉a j , is then given by

=P t c t( ) ( ) . (8.45)ja j
(1) 2

This is the lowest order approximation to P t( )ja . To second order,

= +P t c t c t( ) ( ) ( ) : (8.46)ja j j
(1) (2) 2

c t( )j
(2) is obtained by integrating (cf. equation (8.41))

∑̇ =
ℏ

ωc t
i

V t e c t( )
1

( ) ( ), (8.47)
k

j jk
i t

k
(2) (1)jk

where c t( )k
(1) is given by equation (8.44) (with j = k); whence

∫ ∫∑=
ℏ

′ ″ ′ ″ω ω
′

′ ″c t
i

t t e V t e V t( )
1

( )
d d ( ) ( ). (8.48)

k
j

t t
i t

jk
i t

ka
(2)

2 0 0

jk ka

Thus, we have an iterative procedure for decomposing the transition amplitude:
the zeroth-order amplitude is c t( )j

(0) which, from equation (8.42), is the amplitude for

the system to remain unchanged; the first-order amplitude is c t( )j
(1) which describes

transitions direct from the initial to the final state; the second-order amplitude is
c t( )j

(2) which describes two-step transitions. The two-step transitions occur via any

intermediate state from the set ∣ 〉n{ } of eigenstates of Ĥ0. These intermediate states
should be regarded as virtual, i.e. they are not observed. In fact, energy conservation
is not even a condition on their involvement.

The various orders of the transition amplitude can be obtained directly from the
Dyson series, equation (8.29), by using equation (8.31),

= 〈 ∣ ˆ ∣ 〉c t n U t m( ) ( , 0) , (8.49)n I

equation (8.36) with λ = 1 and k = n,

= + + + ⋯c t c t c t c t( ) ( ) ( ) ( ) , (8.50)n n n n
(0) (1) (2)

and equation (8.4) with ˆ = ˆA V t( ),

ˆ = ˆ
ˆ
ℏ

− ˆ
ℏV t e V t e( ) ( ) . (8.51)

I
iH t

s
iH t0 0
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For example, the first-order term in the Dyson series gives

∫
∫
∫

= −
ℏ

′〈 ∣ ˆ ′ ∣ 〉

= −
ℏ

′〈 ∣ ˆ ′ ∣ 〉

= −
ℏ

′〈 ∣ ˆ ′ ∣ 〉

ˆ ′
ℏ

− ˆ ′
ℏ

′
ℏ

− ′
ℏ

− ′
ℏ

c t
i

t n e V t e m

i
t n e V t e m

i
t n V t m e

( ) d ( )

d ( )

d ( ) ,

(8.52)

n

t iH t
s

iH t

t iE t
s

iE t

t

s

i E E t

0

0

0

( )

n m

n m

0 0

from which equation (8.44) follows directly for n = j, m = a.

8.3 Constant perturbations and Fermi’s golden rule
As an application of time-dependent perturbation theory, consider a constant
perturbation turned on at t = 0:

= ⩽V t t( ) 0, 0, (8.53)

= >V t V t( ) (a constant), 0, (8.54)

for some system. Further, the system is in the state ∣ 〉s with probability unity for
⩽t 0. Then

δ= =c t c( ) (0) , (8.55)n n sn
(0) (0)

∫= −
ℏ

′ω ′c t
i
V e t( ) d , (8.56)n ns

t
i t(1)

0

ns

∴ =
−

− ωc t
V

E E
e( ) (1 ), (8.57)n

ns

n s

i t(1) ns

and

ω= ∣ ∣
−

−c t
V

E E
t( )

( )
(2 2 cos ), (8.58)n

ns

n s
ns

(1) 2
2

2

∴ = ∣ ∣
−

−
ℏ

c t
V

E E
E E t

( )
4

( )
sin

( )
2

. (8.59)n
ns

n s

n s(1) 2
2

2
2

⎧⎨⎩
⎫⎬⎭

Evidently, the transition probability for →s n depends on ∣ ∣Vns
2 and

−E E

1

( )n s 2 .

To gain further insight into ∣ ∣c t( )n
(1) 2, defining

ω∣ − ∣
ℏ

≔E E
2

, (8.60)n s

ω
ω

∴ = ∣ ∣
ℏ

c t
V s t t

t
( )

sin
( )

. (8.61)n
n(1) 2

2 2

2

2

2
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The expression on the right-hand side of equation (8.61) is plotted as a function of ω
in figure 8.1. The transition probability is clearly very small unless ω < π

t
, i.e.

∣ − ∣ <E E h
tn s . Hence, as time increases, it is more and more probable that the final

state will have the same energy as the initial state. In considering the meaning of this
result, it seems to imply that for large t nothing will happen unless =E En s and hence
only transitions between degenerate states in the system could occur! However, this
is not a problem when one considers the ‘other’ system to which the system is
coupled. The other system is the sink or source of energy and we have in mind a
system with a smoothly-varying continuous energy spectrum, e.g. a radiation field or
a projectile. Strictly speaking, both systems (e.g. an atom plus a radiation field)
should have their Hamiltonians included in Ĥ0. This is not commonly done because
the system serving as the energy source–sink can be viewed as not being of primary
interest. (Also, leaving it out of the description avoids the difficulties of working with
continuous basis states and problems of orthogonality and completeness.) To make
sense of the result that for large t, =E En s, we now append the source–sink energy ε
to the energy E of the system under discussion and specify

ε ε∣ + − + ∣ <E E
h
t

( ) ( ) , (8.62)n n s s

whence for large t, the condition for a transition is

ε ε+ = +E E . (8.63)n n s s

Equation (8.63) is just the statement of the conservation of energy! It is convenient to
reinterpret En and Es in our development as containing εn and εs, respectively.

We can argue with complete generality that the possible final states of any time-
dependent process form a continuum. This is manifestly true for interactions
between a system (with discrete levels) and a radiation field or a moving projectile.
Thus, we define the density of final states in the interval +E E E( , d ) to be ρ E E( )d ,

Figure 8.1. The first-order transition probability, ∣ ∣c t( )n
(1) 2, as a function of ω for a specified value of t. The

maxima at π
t

3
2

and π
t

5
2

have amplitudes ∣ ∣
ℏ

V s0.045 n
2 2

2
t and ∣ ∣

ℏ
V s0.016 n

2 2

2
t , respectively.
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where ρ E( ) is assumed to be a smoothly-varying continuous function. Then for the
total transition probability, P

∫∑ ρ= ⇒

≈
−

+
P c t E E c t( ) d ( ) ( ) , (8.64)

n
E E

n
E h

t

E h
t

n n n
(1) 2 (1) 2

n s

s

s

i.e. we have replaced a sum over n in the vicinity of n where ≈E En s by an integral
over En in the interval − ≲ ≲ +E E Eh

t
h
ts n s . Therefore, from equations (8.61) and

(8.60),

∫ ρ= ∣ ∣
−

−
ℏ

−

+
P E E V t

E E

E E t
d ( )4

sin ( )

[( ) ]
, (8.65)

t
2

E h
t

E h
t

n n ns
n s

n s

2 2
2

2
s

s

∫ ρ∴ = ∣ ∣
− −

−
ℏ

−

+
P E E V

E E

E E
d ( )2

[1 cos( ) ]

[ ]
. (8.66)

t

E h
t

E h
t

n n ns
n s

n s

2
2

s

s

We are interested in the rate of change of P with time

∫ ρ= ∣ ∣
ℏ

−

−
ℏ

−

+P
t

E E
V E E

E E
d
d

d ( )
2 sin( )

[ ]
. (8.67)

t

E h
t

E h
t

n n
ns n s

n s

2

s

s

The integral in equation (8.67) can be computed using

πδ=
→∞

gx
x

xlim
sin( )

( ). (8.68)
g

The justification of equation (8.68) can be argued using figure 8.2.
Thus, noting that ∫ ∫δ δ=ax x y y( )d ( )d

a
1 ,

Figure 8.2. A depiction of ∫→∞ −∞
∞

xlim dg
g gx

gx
sin( ) . Pairs of shaded areas cancel for → ∞g , and the central

peak at x = 0 with height g and width π
g
remains. Its area is π≈ and equals π for → ∞g .
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πδ∴
−

= −
→∞

ℏ
−
ℏ

E E
E Elim

sin( )
( ), (8.69)

t

t

E E[ ]

n s

n s n s

and

π ρ=
ℏ

∣ ∣ ≈
P
t

V E
d
d

2
( ) . (8.70)ns n E E

2
n s

Note that for very sharp
−

−
ℏ

E E

E E

sin( )

[ ]

n s

n s

t

, and ρ E( )n , ∼V const.ns , and can be taken out

from under the integral. Equation (8.70) is usually called Fermi’s Golden Rule.

Exercise
8.1. Derive the Golden Rule for

ˆ = ˆ + ˆω ω† −V t Ve V e( ) ,i t i t

where ω is a real constant.
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Chapter 9

Electromagnetic fields in quantum mechanics

A standard introduction to the electromagnetic (EM) field in quantum mechanics is
given. This employs second quantization formalism, cf. chapter 4. The interaction of
the EM field with matter is outlined. An application to the interaction of the
hydrogen atom with the EM field and calculation of an excited state lifetime is
illustrated in full detail. The calculation of the density of modes in the EM field is
given in appendix B.

Concepts: Maxwell’s equations; scalar and vector potentials; gauge transforma-
tion; Coulomb gauge; harmonic oscillator description; EM vacuum; EM interaction
Hamiltonian; induced and spontaneous emission; absorption; dipole approximation.

9.1 The quantization of the electromagnetic field
The starting point of any discussion of electromagnetic fields is Maxwell’s equations.
For a discussion of the quantization of the electromagnetic field it is sufficient to
consider a region of space where there are no charges or currents, i.e. the source(s) of
the field are implied to be outside of the region. For such an empty region of space,
Maxwell’s equations are

∇⃗ × ⃗ = − ∂ ⃗
∂

E
B
t

, (9.1)

μ
ε∇⃗ × ⃗ = ∂ ⃗

∂
B

E
t

1
, (9.2)

0
0

∇⃗ · ⃗ =E 0, (9.3)

∇⃗ · ⃗ =B 0; (9.4)
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where μ0 and ε0 are the permeability and permittivity of free space, respectively, ⃗E
and ⃗B are the electric and magnetic fields, respectively; and the units are MKS or SI.

The electric and magnetic fields are commonly re-expressed in terms of the scalar
and vector potentials, ϕ and ⃗A, respectively:

ϕ⃗ = −∇⃗ − ∂ ⃗
∂

E
A
t

, (9.5)

⃗ = ∇⃗ × ⃗B A . (9.6)

The potentials ϕ, ⃗A are not unique. The relations between ⃗E , ⃗B and ϕ, ⃗A in
equations (9.5) and (9.6), are unaffected by the changes:

χ⃗ → ′⃗ = ⃗ + ∇⃗A A a , (9.7)

ϕ ϕ ϕ χ→ ′ = − ∂
∂t

, (9.8)

where χ χ= ⃗r t( , ) is an arbitrary scalar function. This change in ϕ and ⃗A is called a
gauge transformation.

For the quantization of the electromagnetic field, we work in the Coulomb gauge
defined by:

∇⃗ · ⃗ =A 0, (9.9)

ϕ = 0. (9.10)

This choice leads to

∇ ⃗ − ∂ ⃗
∂

=A
c

A
t

1
0. (9.11)2

2

2

2

Equation (9.11) looks suspiciously like a wave equation! The wave properties of ⃗A
are conveniently elucidated by making an expansion in a Fourier series:

∑⃗ ⃗ = ⃗ + ⃗
⃗

⃗ ·⃗ ⃗ ⃗
* − ·⃗ ⃗{ }A r t

V
A t e A t e( , )

1
( ) ( ) , (9.12)

k

k
ik r

k
ik r

where we specify that the plane waves in the expansion are real and satisfy periodic
boundary conditions within a large cube of side =L V

1
3 . Thus, the components of

the wavevector ⃗k take the values:

π π π= = =k
n

L
k

n

L
k

n
L

2
,

2
,

2
, (9.13)x

x
y

y
z

z

with

= …n n n, , 0, 1, 2, . (9.14)x y z
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The choice of the Coulomb gauge, equation (9.10), gives

⃗ · ⃗ = ⃗ · ⃗ =⃗ ⃗
*k A t k A t( ) ( ) 0, (9.15)k k

i.e. the Fourier coefficients are perpendicular to the propagation vector ⃗k .
Consequently, ⃗ ⃗A t( )k has only two components. A vector with this property is
described as transverse. The absence of a third (or longitudinal) component to the
electromagnetic field can be attributed to its gauge symmetry.

We can write

∑ε α⃗ ≡ ˆ =
α

α α⃗ ⃗ ⃗A t c t( ) ( ), 1, 2, (9.16)k k k

where α indexes the two independent transverse components or states of polarization
for each Fourier component ⃗k . Substituting equation (9.12) into (9.11),

⃗ + ∂ ⃗
∂

=⃗
⃗

k A t
c

A t
t

( )
1 ( )

0, (9.17)k
k2

2

2

2

where the Fourier components with different ⃗k are independent. A similar equation

is obtained for ⃗ ⃗
*A t( )k . Hence, the Fourier components oscillate harmonically with

frequencies

ω ω≡ ∣ ∣⃗ ≡⃗ c k , (9.18)k k

and they can be expressed as

⃗ = ⃗ ω⃗ ⃗ −A t A e( ) (0) ; (9.19)k k
i tk

whence, from equation (9.16)

=α α
ω⃗ ⃗ −c t c e( ) (0) . (9.20)k k

i tk

Thus,

∑ω ε ε⃗ ⃗ = ˆ − ˆ
α⃗

α α
ω

α α
ω⃗ ⃗ ·⃗ ⃗− *⃗ ⃗ − ·⃗ ⃗+{ }E r t

i

V
c e c e( , ) (0) (0) , (9.21)

k,

k k k
ik r i t

k k
ik r i tk k

and

∑ ε ε⃗ ⃗ = ⃗ ˆ + ˆ
α⃗

α α
ω

α α
ω⃗ ⃗ ·⃗ ⃗− *⃗ ⃗ − ·⃗ ⃗+{ }B r t

i

V
kx c e c e( , ) (0) (0) , (9.22)

k,
k k

ik r i t
k k

ik r i tk k

where the ε̂ α⃗k are real. This is the famous prediction due to Maxwell that equations
(9.1)–(9.4) give rise to electromagnetic waves.

To carry out the quantization of the electromagnetic field, we then turn to its
Hamiltonian:

⎛
⎝⎜

⎞
⎠⎟∫ ε

μ
= +H E B V

1
2

1
d . (9.23)

V
0

2

0

2
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Substituting equations (9.21) and (9.22) into equation (9.23) and integrating,

∑ε ω∴ = ∣ ∣
α⃗

α⃗H c t2 ( ) . (9.24)
k

k k0
2 2

Equation (9.24) can be transformed to standard Hamiltonian form by defining:

ε≡ +α α α⃗ ⃗ *⃗( )Q t c t c t( ) ( ) ( ) , (9.25)k k k0

ω ε≡ − −α α α⃗ ⃗ *⃗( )P t i c t c t( ) ( ) ( ) . (9.26)k k k k0

Then

ω ε
ω= +α α α⃗ ⃗ ⃗c t Q t iP t( )

1
2

( ( ) ( )), (9.27)k
k

k k k
0

and

∑ ω= +
α⃗

α α⃗ ⃗( )H P Q
1
2

, (9.28)
k

k k k
2 2 2

where the time dependence is omitted because H is independent of time.
Equation (9.28) looks like a sum over independent harmonic oscillators. This is

borne out by the identification of α⃗Pk and α⃗Qk as canonically conjugate ‘momenta’
and ‘positions’ by noting that:

=
∂

∂α
α

⃗
⃗

P
Q

t
, (9.29)k

k

which follows from equations (9.25), (9.26) and (9.20); and

̇ = ∂
∂α

α
⃗

⃗
Q

H
P

, (9.30)k
k

̇ = − ∂
∂α

α
⃗

⃗
P

H
Q

, (9.31)k
k

i.e. α⃗Pk and α⃗Qk satisfy Hamilton’s equations.
We now adopt the standard recipe for quantization by assuming that the

commutator bracket relations for mechanical position and momentum apply also
to the electromagnetic position and momentum, viz.

ˆ ˆ = ˆ ˆ =α α α α⃗ ′⃗ ′ ⃗ ′⃗ ′P P Q Q[ , ] [ , ] 0, (9.32)k k k k

δ δˆ ˆ = ℏα α αα⃗ ′⃗ ′ ⃗ ′⃗ ′Q P i[ , ] . (9.33)k k kk

Then, all of the results for the one-dimensional harmonic oscillator can be adopted
(in the form of a sum of independent oscillators). Thus, defining raising and lowering
operators:
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ω
ω≡

ℏ
ˆ + ˆ

α α α⃗ ⃗ ⃗b Q iP
1

2
( ), (9.34)k

k
k k k

ω
ω≡

ℏ
ˆ − ˆ

α α α⃗
†

⃗ ⃗b Q iP
1

2
( ), (9.35)k

k
k k k

⎡⎣ ⎤⎦ δ δ=α α αα⃗ ′⃗ ′
†

⃗ ′⃗ ′b b, , (9.36)k k kk

⎛
⎝⎜

⎞
⎠⎟∑ ωˆ = + ℏ

α⃗
α α⃗

†
⃗H b b

1
2

, (9.37)
k,

k k k

and

ˆ =α α α⃗ ⃗
†

⃗N b b . (9.38)k k k

The operators ˆ α⃗N{ }k form a complete set of commuting operators. The eigenkets are
written in the form

∣ … …〉α β α α⃗ ⃗ ⃗ ⃗n n n n, , ,k k k ki i1 1 1 1 2 2

where the ordering must be specified, but can be freely chosen; and the independent
pairs of states of polarization are labelled α and β. Then

∣ … …〉 = + ∣ … + …〉α α β α α α β α⃗
†

⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗b n n n n n n n1 ( 1) , (9.39)k k k k k k k k
i i i i i i i i1 1 1 1 1 1 1 1

∣ … …〉 = ∣ … − …〉α α β α α α β α⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗b n n n n n n n( 1) , (9.40)k k k k k k k ki i i i i i i i1 1 1 1 1 1 1 1

∑ ωˆ ∣ … …〉 = + + ℏ ∣ … …〉
=

∞

α β α α β α β α⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗H n n n n n n n n( 1) , (9.41)
i 1

k k k k k k k k ki i i i i i i i i1 1 1 1 1 1 1 1

∏∣ … …〉 =
! !

∣ …〉
=

∞

α β α
α

α

β

β
⃗ ⃗ ⃗

⃗
†

⃗

⃗
†

⃗

α β⃗ ⃗( )( )
n n n

b

n

b

n
00 , (9.42)

i 1
k k k

k

n

k

k

n

k
i i

i i

ki i

i i

i i

ki i

i i

1 1 1 1

and

∏ δ δ〈 … …∣ … …〉 =
=

∞

α β α α β α⃗ ⃗ ⃗ ⃗ ⃗ ⃗ α α β β⃗ ⃗ ⃗ ⃗n n n n n n . (9.43)
i j, 1

k k k k k k n n n ni i i i ki i kj j ki i kj j1 1 1 1 1 1 1 1

The components of the electromagnetic field labelled by ⃗ki (with their associated
pairs of independent states of polarization αi, βi) are called normal modes. The
quanta represented by α⃗nki i

, etc., are called photons, a term introduced by G N Lewis
in 1926. The ket ∣ ⋯〉00 appearing in equation (9.42) is called the electromagnetic
vacuum or simply the vacuum. The vacuum is the state that is devoid of field quanta
of any kind—electromagnetic (photons), strong (gluons), weak (intermediate vector
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bosons), gravitational (gravitons), and any (as yet) unknown fields. Although there
are zero photons (or field quanta of any kind) in the vacuum, the vacuum is not
empty! It contains the zero-point energy; however this cannot be considered in terms
of photons.

The electromagnetic field is more than just photons. Photons are a convenient
concept for what is added to or subtracted from the electromagnetic field,
e.g. through the process of emission or absorption of energy by atoms, molecules,
nuclei; but no photons does not mean no electromagnetic field. One might question
whether or not the vacuum has a real existence: indeed, the vacuum leads to
observable effects. Most notably, it leads to the spontaneous emission of electro-
magnetic radiation from excited states of quantum systems. At a more subtle
(i.e. difficult to observe) level the vacuum leads to quantum electrodynamic effects
such as the Lamb shift, the anomalous magnetic moment of the electron, and the
Casimir effect (the existence of an attractive force between two closely-spaced
conducting plates). Most dramatically of all, it lies at the heart of a major subarea of
physics called cavity quantum electrodynamics [1, 2].

The creation and annihilation operators,
α α⃗

†
⃗b b,

k k , provide an explicit ‘quantum
language’ in which all quantities can be expressed. Their time evolution is
immediately obtained from the Heisenberg picture:

ω=
ℏ

ˆ = −α
α α

⃗
⃗ ⃗

b t
t i

b t H i b t
d ( )

d
1

[ ( ), ] ( ), (9.44)k
k k k

whence

=α α
ω⃗ ⃗ −b t b e( ) (0) , (9.45)k k

i tk

and similarly

=α α
ω

⃗
†

⃗
†b t b e( ) (0) . (9.46)k k

i tk

Thus, from equations (9.34) and (9.35), equation (9.27) can be written

ε ω
= ℏ

α α
ω⃗ ⃗ −c t b e( )

2
(0) . (9.47)k

k
k

i t

0

k

From this, using equations (9.16) and (9.12), the vector field operator can be
written:

∑
ε ω

ε⃗ ⃗ = ℏ ˆ +
α⃗

α α
ω

α
ω⃗ ⃗ ·⃗ ⃗−

⃗
† − ·⃗ ⃗−{ }A r t

V
b e b e( , )

2
(0) (0) . (9.48)

k, k
k k

i k r t
k

i k r t
op

0

( ) ( )k k

Further using equations (9.20), (9.21) and (9.47), ⃗ ⃗E r t( , )op can be written:

∑ ω
ε

ε⃗ ⃗ = ℏ ˆ −
α⃗

α α
ω

α
ω⃗ ⃗ ·⃗ ⃗−

⃗
† − ·⃗ ⃗−{ }E r t i

V
b e b e( , )

2
(0) (0) ; (9.49)

k,

k
k k

i k r t
k

i k r t
op

0

( ) ( )k k
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and, using equations (9.20), (9.22), and (9.47), ⃗ ⃗B r t( , )op can be written:

∑
ε ω

ε⃗ ⃗ = ℏ ⃗ × ˆ −
α⃗

α α
ω

α
ω⃗ ⃗ ·⃗ ⃗−

⃗
† − ·⃗ ⃗−{ }B r t i

V
k b e b e( , )

2
( ) (0) (0) . (9.50)

k, k
k k

i k r t
k

i k r t
op

0

( ) ( )k k

9.2 The interaction of the electromagnetic field with matter
The Hamiltonian for a field interacting with matter can be written,

ˆ = ˆ + ˆ + ˆH H H H . (9.51)field matter int

We have in mind an atom such as a hydrogen atom constituting the matter part and
an electromagnetic field with which this atom is interacting. Thus,

⎛
⎝⎜

⎫⎬⎭∫ ε
μ

ˆ = ˆ = ˆ + ˆH H E B V
1
2

1
d , (9.52)

V
field em 0

2

0

2

and, e.g. for such an H atom,

μ πε
ˆ = ˆ = ˆ + ˆ −

ˆ
H H

p
m

p e
r2 2 4

, (9.53)matter H atom

2 2 2

0

where equation (9.52) is identical to equation (9.23); and equation (9.53) contains
the kinetic energy resulting from the centre-of-mass motion, the kinetic energy
resulting from the relative motion, and the potential energy resulting from the
electrostatic interaction between the proton and the electron, respectively.

Provided Ĥint. is small1, we can regard it as a perturbation and, for

ˆ = ˆ + ˆH H H , (9.54)0 int.

ˆ = ˆ + ˆ + ˆH H H H , (9.55)0 em H atom
rel.

H atom
C of M

we have already obtained solutions to Ĥem and ĤH atom
C of M

, viz.

⎛
⎝⎜

⎞
⎠⎟∑ ω= + ℏ

α⃗
α⃗E n

1
2 (9.56)

k,
k kem

(from equation (9.37)), and

= − = − = …E
Ry
n n

n
13.6 eV

, 1, 2, 3, (9.57)H atom
rel.

2 2

(where equation (9.57) is identical to equations (6.131) and (6.132)).

1 The Coulomb potential for hydrogen in its ground state is = = ×−× ×
2.6 101

1 11
11E

ea e

13.6

5.29 10
V m−1.
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The expression for Ĥint. is obtained from the Hamiltonian in classical electro-
dynamics for a charged particle moving in an electromagnetic field,

ϕ= ⃗ − ⃗ +H
m

p qA q
1

2
( ) ; (9.58)2

where the particle has mass m, electrical charge q, and kinematic momentum ⃗p ; the
field is characterised by vector and scalar fields ⃗A and ϕ, respectively, at the location
of the particle; and the units are MKS or SI. With the standard prescription for the
quantum mechanical position representation, ⃗ → − ℏ∇⃗p i , equation (9.58) can be
expanded to give

ϕˆ = −ℏ ∇ + ℏ ∇⃗ · ⃗ + ⃗ · ∇⃗ + +H
m

i q
m

A A
q
m

A q
2 2

( )
2

. (9.59)
2

2
op op

2

op
2

op

In the Coulomb gauge

∇⃗ · ⃗ =A 0, (9.60)op

whence

ψ ψ ψ

ψ

∇⃗ · ⃗ = ∇⃗ · ⃗ + ⃗ · ∇⃗

= ⃗ · ∇⃗

A A A

A

( ) ( ) ( )

.
(9.61)

op op op

op

Further, except for the most intense laser beams, the term containing Aop
2 is

negligible. Thus,

ϕˆ = ℏ ⃗ · ∇⃗ +H
i q
m

A q . (9.62)int. op op

Only the ⃗ · ∇⃗Aop term in equation (9.62) will couple to electromagnetic radiation.
The ϕq op term describes coupling to an electrostatic field. Thus, we will usually write

ˆ = − ⃗ · ⃗H
q

m
A p , (9.63)int. op op

where − ℏ∇⃗i has been replaced with ⃗pop. Equation (9.63) also describes the
interaction between a charged particle and a magnetic field. For the hydrogen
atom, there will be interactions between electromagnetic radiation and both the
proton and the electron. However, the

m
1 dependence of Ĥint. has the consequence

that the interaction with the proton is negligible.
The above ‘derivation’ of Ĥint. does not allow for the particle having spin. Dirac

has suggested an elegant recipe that incorporates spin in a way that gives results in
agreement with experiment, viz.

σ
→

⃗ · ⃗p

m

p

m2

( )

2
, (9.64)op

2
op

2
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and for

⃗ → ⃗ − ⃗p p qA , (9.65)op op op

σ σ→ ⃗ · ⃗ − ⃗ ⃗ · ⃗ − ⃗
p

m m
p qA p qA

2
1

2
( ) ( ), (9.66)op

2

op op op op

where σ ⃗ is the Pauli spin operator. Recall the identity (equation (1.35)):

σ σ σ⃗ · ⃗ ⃗ · ⃗ = ⃗ · ⃗ ˆ + ⃗ · ⃗ × ⃗a b a bI i a b( )( ) ( ). (9.67)

Thus, in equation (9.64)

σ ⃗ · ⃗ =p p( ) , (9.68)op
2

op
2

i.e. one recovers the familiar form of the momentum operator from this recipe.
However, for equation (9.66), using equation (9.67),

σ

σ

→ ⃗ − ⃗ + ⃗ · ⃗ − ⃗ × ⃗ − ⃗

→ ⃗ − ⃗ − ⃗ · ⃗ × ⃗ + ⃗ × ⃗

{ }
p

m m
p qA

i
m

p qA p qA

m
p qA

iq
m

p A A p

2
1

2
( )

2
( ) ( )

1
2

( )
2

( ).

(9.69)

op
2

op op
2

op op op op

op op
2

op op op op

Then, from ⃗ → − ℏ∇⃗p iop , ∇⃗ × ⃗ = ⃗A Bop op (equation (9.6)), ⃗ × ⃗ = − ⃗ × ⃗a b b a , and

ψ ψ ψ

ψ ψ

− ℏ∇⃗ × ⃗ = − ℏ ∇⃗ × ⃗ + ℏ ⃗ × ∇⃗

= − ℏ ⃗ − ⃗ × ⃗

i A i A i A

i B A p

( )

,
(9.70)

op op op

op op op

σ∴
ˆ

→ ⃗ − ⃗ − ℏ
⃗ · ⃗

p

m m
p qA

q
m

B
2

1
2

( )
2

, (9.71)op
2

op op
2

op

For an interaction between the electromagnetic field and a charged particle with spin
1
2
we have, therefore:

ϕ σˆ = − ⃗ · ⃗ − ℏ
⃗ · ⃗H q

q
m

A p
q
m

B
2

. (9.72)int. op op op op

The operators ⃗Aop and ⃗Bop are given by equations (9.48) and (9.50). The operator ⃗pop

only acts on the spatial degrees of freedom of the particle; the operator σ ⃗ only acts
on the spin degrees of freedom of the particle; the operators ⃗Aop and ⃗Bop (cf.
equations (9.48) and (9.49)) depend on the spatial degrees of freedom of the particle
and operate on the degrees of freedom of the electromagnetic field.
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9.3 The emission and absorption of photons by atoms
The emission and absorption of photons by atoms (or by molecules or nuclei) is a
fundamental process of great importance to experimental quantum mechanics.

We will be concerned with state vectors that are the direct product of energy
eigenstates of the atom and energy eigenstates of the electromagnetic field
(cf. equation (9.42)). The interaction between the atom and the electromagnetic
field resulting from the ⃗ · ⃗A pop op term in equation (9.72) is described by

ε ω
ε

ε ω
ε

〈 − ∣ ˆ ∣ 〉 = − 〈 − ∣

× ℏ · ⃗ ∣ 〉

= −
ℏ

〈 ∣ ˆ · ⃗ ∣ 〉

α α α

α
ω

α α

α
α

ω

⃗ ⃗ ⃗

⃗
⃗ · ⃗− ⃗ ⃗

⃗ ⃗ · ⃗ ⃗ −

t n H s n
q
m

t n

V
b e p s n

q
m

n

V
t e p s e

; 1 ; ; 1

2
(0) ;

2
,

(9.73)

k int k k

k
k

i k r t
k k

k

k

ik r
k

i t

0
,

( )
op

0
op

i i i i i i

i

i i
i ki

i i i i

i i

i

i
i i

ki

for the process where the atom undergoes the excitation ∣ 〉 → ∣ 〉s t by absorbing a

photon from the mode ⃗ki with polarization αi. We have in mind the response of a
single electron, otherwise we must include a summation over all electrons and would
replace ε̂ · ⃗α

⃗ · ⃗ ⃗e pik r
k , op

i
i i

by ε∑ ˆ · ⃗ν α ν
⃗ · ⃗ ⃗νe pik r

k ,
i

i i op
where ν labels the electrons.

The result in equation (9.73) uses

∣ 〉 = ∣ − 〉α α α α⃗ ⃗ ⃗ ⃗b n n n(0) 1 . (9.74)k k k k,i i i i i i i i

We have implicitly used the fact that only a photon with the right energy and
polarization will be absorbed from the field, i.e.

ω− = ℏE E . (9.75)t s ki

The second term in ⃗ ⃗A r t( , )op (equation (9.48)), i.e. the term containing
α⃗

†b (0)
k ,i i

, is

responsible for emission. The matrix element for the photon part for emission is

+ = +α α α α⃗ ⃗
†

⃗ ⃗n b n n1 1 . (9.76)k k k k,i i i i i i i i

Evidently, this is non-zero even when =α⃗n 0ki i
: this is the case for spontaneous

emission. The matrix element for the spatial part for emission is

ε ω
ε〈 + ∣ ˆ ∣ 〉 = −

+ ℏ
〈 ∣ ˆ · ⃗ ∣ 〉α α

α
α

ω⃗ ⃗
⃗ − ⃗ · ⃗ ⃗t n H s n

q
m

n

V
t e p s e; 1 ;

( 1)

2
. (9.77)k int k

k

k

ik r
k

i t

0
, opi i i i

i i

i

i
i i

k

We can apply Fermi’s golden rule directly, using equation (9.77), for spontaneous
emission =α⃗n( 0)ki i

:

π
ε ω

ε ρ=
ℏ

ℏ ∣〈 ∣ ˆ · ⃗ ∣ 〉∣α
− ⃗ · ⃗ ⃗ ≈

P
t

e
m V

t e p s E
d
d

2
2

( ) . (9.78)
k

ik r
k t E E

2

2
0

, op
2

i

i
i i t s

Quantum Mechanics for Nuclear Structure, Volume 2

9-10



It is necessary to obtain an expression for ρ ≈E( )t E Et s
. Because the atomic states are

discrete, this is determined just by the density of modes in the electromagnetic field.
In an energy interval ω ω ω+ = ℏ ℏ +E E E{ , d } { , ( d )} this is given, for emission
into a solid angle Ωd , by (see appendix B)

ρ ω
π

= Ω
ℏωℏ Ω

V
c(2 )

d
. (9.79),d

2

3 3

Then, the rate of emission into a solid angle Ωd is

⎞
⎠⎟

ω
π ε

ε= ∣ ⃗ ∣
ℏ

∣〈 ∣ ˆ · ⃗ ∣ 〉∣ Ωα
Ω

− ⃗ · ⃗
P
t

k e
m c

t e p s
d
d 8

d , (9.80)i ik r
k

d

2 2

2
0

2 2 , op
2i

i i

where equation (9.18) has been used; and note that V has cancelled.
Now, in typical atomic transitions

ƛ ≡
∣ ∣⃗

≫
k

r
1

, (9.81)photon atom

where ratom is the atomic radius; e.g. for the →p s2 1 transition in hydrogen (Lyman
α transition), λ = 121.5 nm and ≈r 0.2 nmatom . Thus, we can make the
approximation

= − ⃗ · ⃗ − ⃗ · ⃗ + ⋯ ≈− ⃗ · ⃗e ik r k r1
1
2

( ) 1. (9.82)ik r
i i

2i

This is called the electric dipole approximation.

ω
π ε

ε∴ = ∣ ⃗ ∣
ℏ

∣ ˆ · 〈 ∣ ⃗ ∣ 〉∣ Ωα
Ω

⃗
P
t

k e
m c

t p s
d
d 8

d . (9.83)i
k

d

2 2

2
0

2 2 , op
2

i i

Hence, we must compute the matrix element 〈 ∣ ⃗ ∣ 〉t p sop .
The matrix element 〈 ∣ ⃗ ∣ 〉t p sop is derived by using the relationship:

⃗ ˆ = − ℏ ⃗p r i p[ , ] 2 , (9.84)2
op op

whence

⎡
⎣⎢

⎤
⎦⎥

ˆ
⃗ = − ℏ ⃗p

m
r

i
m

p
2

, , (9.85)
2

op op

and

ˆ ⃗ = − ℏ ⃗H r
i

m
p[ , ] , (9.86)0 op op

for

ˆ = ˆ + ˆH
p
m

V r
2

( ). (9.87)0

2
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Thus,

〈 ∣ ⃗ ∣ 〉 =
ℏ

〈 ∣ ˆ ⃗ ∣ 〉t p s
im

t H r s[ , ] , (9.88)op 0 op

∴ 〈 ∣ ⃗ ∣ 〉 =
ℏ

− 〈 ∣ ⃗ ∣ 〉t p s
im

E E t r s( ) . (9.89)t sop op

We can immediately write down the selection rules for electric dipole radiation by
recognising ⃗r to be a spherical tensor of rank one that is odd under parity, hence

∣ − ∣ = →L L 1, 0 0 0 forbidden, (9.90)t s

πΔ = yes. (9.91)

Then, using (cf. equation (9.18))

ω
∣ ⃗ ∣ = = −

ℏ
k

c
E E

c
, (9.92)i

k t si

π ε
ε=

ℏ
− ˆ · 〈 ∣ ⃗ ∣ 〉 ΩαΩ ⃗

P
t

e
c

E E t r s
d
d 8

( ) d . (9.93)t s kd

2

2
0

4 3
3

op

2

i i

To calculate the total transition rate, we must integrate over all solid angles and sum
over the two states of polarization. Defining ⃗ ≡ 〈 ∣ ⃗ ∣ 〉r t r sts op , and with reference to
figure 9.1,

ε θ ϕˆ · ⃗ = ∣ ⃗ ∣ Θ = ∣ ⃗ ∣α α⃗ r r rcos sin sin , (9.94)k ts ts ts,i i i

and

ε θ ϕˆ · ⃗ = ∣ ⃗ ∣ Θ = ∣ ⃗ ∣β β⃗ r r rcos sin cos . (9.95)k ts ts ts,i i i

Thus, the sum over the polarizations is

ε ε θ∣ ˆ · ⃗ ∣ + ∣ ˆ · ⃗ ∣ = ∣ ⃗ ∣α β⃗ ⃗r r r sin . (9.96)k ts k ts ts
2 2 2 2

i i i i

Figure 9.1. A depiction of the sum over the two states of polarization for equation (9.93).
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Then, integrating over all solid angles:

∫ ∫

∫
π ε

ϕ θ θ θ

π ε
π θ θ

=
ℏ

− ∣ ∣

=
ℏ

− ∣ ∣ − −

π π

π

P
t

e
c

E E r

e
c

E E r

d
d 8

( ) d sin sin d

8
( ) 2 (1 cos )d( cos )

(9.97)
t s ts

t s ts

2

2
0

4 3
3 2

0

2

0

2

2

2
0

4 3
3 2

0

2

and the integral has the value 4
3
, whence

πε
=

ℏ
− ∣〈 ∣ ⃗ ∣ 〉∣P

t
e

c
E E t r s

d
d 3

( ) . (9.98)t s

2

0
4 3

3
op

2

To proceed any further, the matrix element 〈 ∣ ⃗ ∣ 〉t r sop must be computed. For a
central force problem, this can be carried out in the position representation by
making use of the results of section 1.9 for the angular coordinates. First, we can
choose θ= =r z r cos by defining the direction of emission of the photon to be the

z-axis. Then using θ θ ϕ= π Ycos ( , )4
3 10 , ∣ 〉 = ∣ ′ ′ ′〉s n l m , ∣ 〉 = ∣ 〉t nlm :

∫ ∫
∫

ϕ θ θ θ ϕ π θ ϕ θ ϕ∣→ ∣ ↔

×

π π
* ′ ′

∝
* ′ ′

t r s Y Y Y

r rR r rR r

d sin d ( , )
4
3

( , ) ( , )

d ( ) ( ) ,

(9.99)
lm t l m s

nl t n l s

op
0

2

0
10

0

2

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

∫

∴ ∣→ ∣ ↔ − ′ + + ′ ′
′ −

×
∝

* ′ ′

t r s l l l l l l
m m

r rR r rR r

( 1) (2 1)(2 1) 1
0 0 0

1
0

d ( ) ( ) ,

(9.100)

m

nl t n l s

op

0

2

where equation (2.114) has been used to evaluate the angular dependent part.
Evidently,

′ = = ∣ ′ ± ∣m m l l, 1 . (9.101)

To proceed beyond this, we must specify the type of central force problem and
determine −E E( )t s

2 (equation (9.98)) and the radial integral in equation (9.100). As
an example, we will consider the →p s2 1 transition in hydrogen, i.e. we will
calculate the lifetime of the hydrogen p2 state. Then,

⎛
⎝⎜

⎞
⎠⎟ε

− = − = =E E
me

h
t s

8
1
1

1
2

( 1, 2) (9.102)t s

4

0
2 2 2 2

and (cf. Volume 1, appendix B)
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⎪ ⎪
⎪ ⎪

⎜ ⎟⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠
⎫⎬⎭

⎧
⎨
⎩

⎫
⎬
⎭

⎧⎨⎩
⎫⎬⎭

∫

∫

π
ε

π
ε

=

×

∴ =

→

∞
− −

→

∞
−

P
t

m e
h c

a

r
a

e r
a

e r r

P
t

m e
h c a

e r r

d
d

3
2

3 1 1 0
0 0 0

1 1 0
0 0 0

1

24

2
d

d
d

3
2

1
3

1

6

1
d .

(9.103)

p s

r
a

r
a

p s

r
a

2 1

2 3 3 14

11
0
7 10 3

2

0
0
3 0

2

0
3

2

2

2 1

2 3 3 14

11
0
7 10 3

0
4

0

3
2 4

2

0 0

0

The integral in equation (9.103) is of the standard form ∫ =
α

!α∞ −
+e r rd nr n

n0 1 .

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭
π
ε

∴ = !
→

P
t

m e
h c a

ad
d

3
2

1

6

1
4

2
3

; (9.104)
p s2 1

3 3 14

11
0
7 10 3

0
4

0
5 2

and using

ε
π

=a
h

me
, (9.105)0

0
2

2

π
ε

α∴ = =
ℏ→

P
t

me
h c

mcd
d

2
3

2
3

, (9.106)
p s2 1

4 10

8
0
5 6 3

8

8

2 5

where

α
ε

= =e
hc2

1
137.035 999 084

, (9.107)
2

0

this gives

= ×
→

−P
t

d
d

6.2683 10 s , (9.108)
p s2 1

8 1

whence the lifetime of the p2 state in hydrogen is

τ =
×

=1
6.2683 10

1.5953 ns. (9.109)p2
theory

8

This can be compared with an experimental value of τ = ±1.600 0.004p2
expt ns [3] and

1.60 ± 0.01 ns [4].
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Chapter 10

Epilogue

In the first volume we have endeavoured to introduce the reader to the basic
elements of quantum mechanics in a form that can eventually be put to use in the
theory of nuclear structure. It is essentially a one-body formulation of quantum
mechanics. In this second volume, basic steps into many-body formulations are
made starting with the representation and coupling of spin-angular momentum
states and associated operators. Herein, we have emphasized the algebraic structure
of quantum theory. Algebraic structure is an essential aspect of the mathematical
formulation of many-body quantum systems.

We have avoided introducing facets of nuclear structure in the formalism because
this necessitates familiarity with nuclear data. There will be forthcoming books in
the series that will introduce nuclear data, and separately that will introduce
quantum mechanical modelling for nuclei. The present material provides the reader
with much of the formalism that is needed to describe actual nuclei. Application to
many-body quantum systems requires a substantial body of experimental data to
guide model building. This is a matter of the historical record: model building for
nuclear structure has advanced hand-in-hand with the accumulation of nuclear data.

Many-body quantum systems are in general too complex for ab initio approaches
unless there is some idea of the manner in which such systems self organize. This has
been true of condensed matter systems. Thus, high-temperature superconductors
were not predicted to exist. The quantum Hall effects were not anticipated.
Currently, graphene continues to surprise investigators.

A number of techniques in quantum mechanics, that play a key role in the study
of nuclear structure, have been deferred. Most notably, the variational method will
play a central role in some of the forthcoming books planned in this e-book series
‘Nuclear Spectroscopy and Nuclear Structure’. In particular, when describing how
mean-fields can be constructed in nuclei, one starts from a given effective nucleon–
nucleon interaction and a suitable basis and seeks a linear combination of basis
states that minimizes the energy. This goes under the name ‘self-consistent
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many-body theory’ with the Hartree–Fock method as the leading technique. This
determines the optimal mean-field experienced by each nucleon treated as an
independent particle.

Algebraic methods provide a powerful approach to modelling collective dynamics
in many-body quantum systems. The leading feature of such models is that they are
solvable. The details provided in the present two volumes take only the first
rudimentary steps into this aspect of the quantum mechanical formalism. Indeed,
developments of key techniques for handling algebraic structures have barely kept
up with model building. Some examples are treated in detail, in the monograph by
David Rowe and J L Wood [1]. Algebraic modelling of nuclear bound states is a
planned feature in future books in the series.

A further major issue in nuclear structure physics is the need for a unified view of
bound states and unbound states, as manifested in nuclear reaction theory.
A quantum mechanical treatment of nuclear reaction theory requires input
information for the structure of the target nucleus and the projectile nucleus.
Further, key details of nuclear structure depend on reactions for their elucidation.
As such, the present two-volume work does not cover key quantum mechanical
techniques used in formulating a theory of reactions, even at the most elementary
level. This limitation has been intentional and future books in the series are planned
to handle this.

We leave the reader with the following closing thought. The theory of quantum
systems introduces a language that ensures we do not specify more than can be
known by observation: the mathematical structure enforces this limitation in
knowledge.
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Appendix A

Clebsch–Gordan coefficients and 3-j symbols

A.1 Clebsch–Gordan coefficients (tables A.1–A.4)

A.2 3-j symbols (table A.5)

A.3 Tables of 3-j symbol numerical values
There are two outstanding sets:

(a) ‘The 3-j and 6-j symbols’ [1].
(b) ‘Numerical tables for angular correlation computations in α-, β-, and

γ-spectroscopy: 3-j, 6-j, 9-j symbols, F- and Γ-coefficients’ [2].

A.4 A worked example using 3-j symbols
To evaluate the expansion coefficients in (cf. figure 2.3)

∣ 〉 = ∣ 〉〈 ∣ 〉 + ∣ 〉〈 ∣ 〉43 2122 2122 43 2221 2221 43 .

From equation (2.75)

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

〈 ∣ 〉 = − × +
−

= −
−

= − −
−

− + −

+ +

2122 43 ( 1) 2 4 1 2 2 4
1 2 3

3 2 2 4
1 2 3

3( 1) 4 2 2
3 2 1

;

2 2 3

4 2 2

and

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

〈 ∣ 〉 = − × +
−

= −
−

− + −2221 43 ( 1) 2 4 1 2 2 4
2 1 3

3 4 2 2
3 2 1

.

2 2 3
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Then, from
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Table A.5. Some 3-j coefficients. Their use requires permutations of columns so that the maximum J is on the left.
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Appendix B

The mode density for the electromagnetic field

For a specified volume of space V, possible values of ⃗k form a lattice as shown in
figure B.1. From

π π π= = =k
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L
k

n
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2
,

2
,

2
, (B.1)x

x
y

y
z

z

=L V , (B.2)1
3

each point in the lattice is surrounded by an empty volume (in k-space!) of π( )
L
2 3.

Then, the number of modes +Nd k k k, d with wave vectors between k and +k kd equals
the number of lattice points in a spherical shell of radius k and thickness kd ,

⎛
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⎞
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π
π
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k k
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d
4 d
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(B.3)k k k, d

2

3

Figure B.1. A depiction of the distribution of values of ⃗ =k k k k( , , )x y z for the electromagnetic field.
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Thus, for a photon emitted into a solid angle element Ωd , the number of allowed
states in an energy interval ω ω ωℏ ℏ +{ , ( d )} can be written as ρ ωℏωℏ Ωd,d , where

ρ ω
π

ℏ = Ω
ωℏ Ω +Nd d

d
4

; (B.4)k k k,d , d
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