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Chapter 1

Introduction

Real physical systems very rarely allow exact analytical solutions of the equations
describing the systems. Therefore, mathematicians and theoretical physicists over
the last several centuries invented a variety of approximate analytical methods.
Especially important are the methods going beyond the perturbation theory, such as,
e.g., the method based on the separation of rapid and slow subsystems.

The latter method relates to systems consisting of two subsystems 1 and 2, where
the characteristic time of the evolution of subsystem 1 is much smaller than the
characteristic time of the evolution of subsystem 2. The two subsystems can interact
very strongly, so that their interaction cannot be taken into account by the
perturbation theory. In distinction, the method based on the separation of rapid
and slow subsystems can provide an approximate analytical solution regardless of
the strength of the interaction of the two subsystems.

In studies of nonlinear dynamical systems, the corresponding approach is called
the method of averaging and is applied to systems allowing the time-scales
separation. The averaging method was developed by Krylov and Bogoliubov and
then further developed by Bogoliubov and Mitropolsky, as presented in the book [1]
by the latter two authors. A good historical review of their work and of their
predecessors’ works was presented by Oliveira [2]. The Krylov–Bogoliubov–
Mitropolsky’s method of averaging and some of its variations were later presented
in numerous books, such as, e.g. books [3–7].

A very important contribution to the subject was made by P L Kapitza, the Nobel
Prize winner. He was motivated by puzzling experiments with a rigid pendulum, in
which the pivot point vibrates in a vertical direction, up and down (later it was called
Kapitza’s pendulum). The vibrating suspension can cause it to balance stably in an
inverted position, with the bob above the suspension point. Kapitza was the first to
analyze it in 1951 [8, 9]. He performed experimental studies and provided an
analytical explanation of the stability by splitting the motion into ‘fast’ and ‘slow’
variables and, most importantly, by introducing the concept of an effective potential.
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The Kapitza’s effective potential describing the ‘slow’ motion was presented also in
the Mechanics volume of the Landau–Lifshitz’ Course of Theoretical Physics [10].
Here is a brief description of the Kapitza’s method.

Let us consider a particle in a static potential U(xα) and under the force f (xα) cos ωt.
We seek the solution of the equation of the motion md2(xα)/dt

2 = –dU/dxα + fα cos ωt
in the form: xα(t) = Xα(t) + ξα(t) and expand the right side in powers of the rapid
oscillations ξα:

ξ
ξ ω

+ ξ = − −
+ +

α α α α α β

α β α β

m X t m t U X U X X

f f X tX
d ( )/d d ( )/d d /d d /d d

[ ( ) d /d ]cos .
(1.1)

2 2 2 2 2

Here and below, the summation over repeated subscripts is understood.
For the oscillatory terms it is sufficient to write md2(ξα)/dt

2 = fα(X) cos ωt, so that
ξα = −[fα/(mω2)] cos ωt. Substituting the latter formula in equation (1.1)
and averaging over the period 2π/ω, one obtains the equation for the averaged
motion X(t):

ω= − −α α β α βm X t U X m f f Xd ( )/d d /d [1/(2 )] d /d . (1.2)2 2 2

In the one-dimensional case, equation (1.2) can be interpreted such that the
averaged motion of the particle occurs in the following effective potential

ω= +U U f m/(4 ). (1.3)eff
2 2

Equations (1.2) and (1.3) represent an efficient analytical tool if the force
amplitude f has gradients. A generalization of Kapitsa’s effective potential for a
spatially-uniform force amplitude f, has been provided by Nadezhdin and Oks [11]
and will be presented in chapter 3.

Both the Krylov–Bogoliubov–Mitropolsky method and the Kapitza method are
related to classical mechanics and applied to classical systems. In quantum
mechanics there is the corresponding method of separating rapid and slow
subsystems. It is briefly presented below following, for example, [12].

Let us consider a system consisting of two subsystems 1 and 2 described by the
Hamiltonian

ξ ξ ξ= + +H x H x V x H( , ) ( ) ( , ) ( ), (1.4)1 2

where x and ξ are the coordinates of subsystems 1 and 2, respectively. Here H1(x) is
the Hamiltonian of the isolated subsystem 1,H2(x) is the Hamiltonian of the isolated
subsystem 2, and V(x, ξ) is the interaction between these subsystems: the interaction
V(x, ξ) can be strong, so that the perturbation theory would be inapplicable. The
characteristic time of the evolution of subsystem 1 is much smaller than the
characteristic time of the evolution of subsystem 2. In other words, subsystem 1 is
rapid while subsystem 2 is slow.

Let us denote by Ψn(x, ξ) and En(ξ) the ‘instantaneous’ eigenfunctions and the
eigenvalues, respectively, of the truncated Hamiltonian

ξ ξ= +H x H x V x( , ) ( ) ( , ) (1.5)tr 1

Analytical Advances in Quantum and Celestial Mechanics

1-2



at any fixed value of the coordinate ξ of the slow subsystem. In other words, at this
step we ‘freeze’ the slow subsystem and consider ξ as a parameter, rather than a
dynamical variable. So:

ξ ξ ξ ξ+ Ψ = ΨH x V x x E x[ ( ) ( , )] ( , ) ( ) ( , ). (1.6)1 n n n

Ψn(x, ξ) and En(ξ) are assumed to be known for any ξ.
We seek the eigenfunctions of the complete Hamiltonian H(x, ξ) from equation

(1.4) in the form

ξΨ ξ = Φ ξ Ψ x(x, ) ( ) ( , ), (1.7)nm nm n

so that

ξ ξ ξ ξ+ + ξ Φ ξ Ψ = Φ ξ ΨH x V x H x E x[ ( ) ( , ) ( )] ( ) ( , ) ( ) ( ) ( , ). (1.8)1 2 nm n nm nm n

Here, Enm(ξ) are yet unknown eigenvalues of the complete Hamiltonian.
After taking into account equation (1.6), multiplying both parts of equation (1.8)

by Ψn*(x, ξ) on the left side, integrating over the coordinate x of the rapid
subsystem, and neglecting the action of the operator H2(ξ) on ξ inside Ψn(x, ξ)
(i.e., approximating H2ΦΨ by ΦH2Ψ), we obtain:

ξ ξ ξ ξ ξ+ Φ = ΦH E E[ ( ) ( )] ( ) ( ) ( ). (1.9)2 n nm nm nm

Equation (1.9) does not depend on the coordinate x of the rapid subsystem and
determines the approximate eigenfunctions Φnm(ξ) and eigenvalues Enm(ξ) of the
slow subsystem. It is seen that the evolution of the slow subsystem occurs in the
effective potential

ξ ξ=U E( ) ( ). (1.10)eff n

In other words, the role of the effective potential for the averaged motion of the slow
subsystem is played by the eigenvalues En(ξ) of the rapid subsystem.

In atomic and molecular physics, until recently the applications of the method
based on the separation of rapid and slow subsystems were limited virtually to only
one, though important example: the treatment of the electronic and nuclear
motions in molecules, where this method has been known as the Born–
Oppenheimer approximation [13] since 1927. To the best of my knowledge, there
is no book presenting recent advances in applying this method to other quantum
systems. This book is intended to fill this gap. It is devoted primarily to recent
advances in applying this method to other quantum systems, such as, e.g.,
hydrogen atoms in a high-frequency laser field, quantum rotator-dipole in a
high-frequency monochromatic field, one-electron Rydberg quasimolecules in a
magnetic field, the dynamical Stark broadening of hydrogen spectral lines by
plasma ions, the dynamical Stark broadening of hydrogen spectral lines by plasma
electrons, and the dynamical Stark broadening of hydrogen-like spectral lines by
plasma electrons—see, e.g., review [14].

The book also presents a novel application of the corresponding classical method
to some classical systems in general and to three-body systems in celestial mechanics
in particular. The latter application results is several particular analytical solutions
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for the unrestricted three-body problem of celestial mechanics. The term ‘unre-
stricted’means that it is really a three-dimensional motion of the third body: it is not
confined in a plane (in distinction to previous analytical solutions). For example, in
one of the cases, the orbit of the third body turns out to have a ‘corkscrew’ shape (see
papers [15, 16]).

Last but not least: the book presents also a formalism for the general analytical
treatment of quantum systems in a high-frequency field. This formalism is described
in appendix A.

As for focusing at the advances in the analytical theory (versus simulations), the
following should be noted. Of course, simulations are important as the third powerful
research methodology—in addition to theories and experiments: large-scale codes
have been created to simulate lots of complicated phenomena. However, first, not all
large-scale codes are properly verified and validated, as illustrated by some well-
known failures of large-scale codes (see, e.g., [17, 18]). Second, fully-numerical
simulations are generally not well-suited for capturing so-called emergent principles
and phenomena, such as, e.g., conservation laws and preservation of symmetries, as
explained in [17]. Third, as any fully-numerical method, they lack the physical insight.
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Chapter 2

Quantum hydrogenic atoms or ions in a
high-frequency laser field

Because of the continuing advances in developing laser of the far-ultraviolet and
x-ray ranges, studies of the behavior of atoms under a high-frequency laser field are
of theoretical and practical interest. The ‘high-frequency’ means that the laser
frequency ω is much greater than any of the atomic transition frequencies ωn′n:

ω ω≫ ′ . (2.1)n n

It is well-known [1, 2] that for quantum systems in a monochromatic field it is
convenient using the formalism of quasienergy states. The problem of finding such
states of the hydrogen-like atom/ion in a linearly-polarized high-frequency laser field
was first considered by Ritus [1]. He found quasienergies for the states of the
principal quantum number n = 1 and n = 2, for which the perturbation operator U is
diagonal in the basis of the spherical wave functions (i.e., the wave functions of the
unperturbed atom in the spherical quantization), as Ritus noted.

In papers [3, 4] there was stated without any proof that for states of n > 2, the
perturbation operator U couples the substates of l and l ± 2, where l is the orbital
momentum quantum number. In paper [4] the study of the quasienergies for n > 2
was based on the approximate analogy with the problem of finding energies for the
hydrogen molecular ion H2

+. Based on the energies for H2
+ from paper [5], for n > 2

the author of paper [4] found ‘corrections’ to the quasienergies from paper [1] due to
the coupling of the substates of l and l ± 2. However, in a later paper [6], where the
authors used the dependence of the energies for H2

+ on the internuclear distance R
from paper [7], they obtained the result that in the limit R → ∞ coincides with the
quasienergies from paper [1], which contradicts paper [4].

Thus, it remained unclear whether the perturbation U couples the substates of l
and l ± 2 at fixed n. For answering this question, one should have directly calculated
matrix elements of the perturbation between the substates of l and l ± 2 at fixed n.
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This was accomplished in paper [8], where the authors demonstrated that these
matrix elements are zeros. This meant that in reality, the perturbation operator U
does not couple the substates of l and l ± 2 for any n, so that the expression for
quasienergies from paper [1] is not limited by n = 1 and n = 2 (as asserted in paper
[1]), but is in fact valid for any n. The diagonality of the perturbation operator U in
the basis of the spherical wave functions allowed easily calculating the splitting of
any spectral line of a hydrogenic atom/ion under the high-frequency laser field. This
was the main, fundamental result of paper [8].

Under the condition (2.1), the laser field represents the rapid subsystem, while the
hydrogenic atom/ion represents a slow subsystem. The powerful method of
separating rapid and slow subsystems allows obtaining accurate analytical results
for such systems. The general description of the method can be found in appendix A.
As for implementing this method for particular physical systems, there can be some
interesting nuances or versions. It is instructive to see how this method was
implemented in paper [8], whose results we present below.

The Schrödinger equation for a hydrogen-like atom/ion in a laser field (of the
amplitude E0) described by the vector-potential A(t) = A0 sin ωt, where A0 = (0, 0,
–cE0/ω), has the following form (here and below the atomic units ħ = me = e = 1 are
used):

⎡⎣ ⎤⎦ω ω

∂Ψ ∂ = + Ψ = − +

= − −

p

A p

i t H V t H Z r A c

V t c t A c t

/ [ ( )] , /2 / /(2 ),

( ) ( / )sin /(2 ) cos 2 .
(2.2)

0 0
2

0
2

0 0
2

Here Z is the nuclear charge and r is the distance of the electron from the nucleus;
the notation A0 p stands for the scalar product (also known as the dot-product) of
these two vectors. The term A0

2/(2c) is the average vibrational energy of the free
electron in the laser field.

We seek the solution of equation (2.2) in the form

⎡⎣ ⎤⎦α α ω ω ω ωΨ = − Φ = −A pt i t t c t A c t( ) exp[ ( )] , ( ) [ /( )]cos /(8 ) sin 2 . (2.3)0 0
2 2

Substituting equation (2.3) in equation (2.2), we obtain the following equation

α
α α α

∂Φ ∂ = Φ
= α −
= + + + ⋯ = +

i t H
H i t H i t

H i H i H H H

/ ,
exp[ ( )] exp[ ( )]

[ , ] ( / 2)[ ,[ , ]] .
(2.4)

1

1 0

0 0
2

0 1,stat 1,osc

In equation (2.4), [α, H0] and [α, [α, H0]] are commutators; H1,stat and H1,osc are the
stationary (i.e., averaged over the laser field period 2π/ω) and oscillatory parts of the
HamiltonianH1. (It could be instructive to compare the second line of equation (2.1)
with the general formula (A.7) from appendix A.) Under the condition (2.1), i.e.,
since the laser field is the rapid subsystem, the primary contribution to the solution
of equation (2.4) originates from the stationary part H1,stat. According to the second
line of equation (2.4), H1,stat can be represented in the following form
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γ γ γ ω
θ

θ θ

= + + + ⋯ =
= −
= − + −

H H V V E

V Z r

V Z r

, /(2 ) ,

(1 3 cos )/ ,

3 ( 3 30 cos 35 cos )/(4 ),

(2.5)
1,stat 0 1

2
2 0

2 2 2

1
2 3

2
2 4 5

where θ is the polar angle of the atomic electron, the z-axis being parallel to the
laser field.

Assuming γ ≪ 1, we will use the perturbation theory for finding the eigenvalues
and the eigenfunctions of the Hamiltonian H1,stat. It is important to emphasize the
following counterintuitive fact: since the unperturbed system is degenerate, then
according to paper [9] the linear (with respect to γ) corrections to the eigenfunctions
will originate not only from the term γV1, but also from the term γ2V2.

It is easy to see that the radial part of the matrix element 〈nlm∣V1∣nl′m〉, where
l′ = l − 2, reduces to the following type of the integral:

∫= − >
∞

+J z z Q z Q z dz sexp( ) ( ) ( ) , ( 0), (2.6)pr
k s

r
k

0

where Qn
m(z) are the Laguerre polynomials. According to the textbook [10], for

〈nlm∣V1∣nl′m〉 with l′ = l − 2 one gets J = 0, so that <nlm∣V1∣nl′m> = 0. This means
that the spherical eigenfunctions φnlm of the unperturbed Hamiltonian H0 turn out
to be the correct eigenfunctions of the zeroth order of the truncated perturbed
Hamiltonian H0 + γV1. Therefore, according to paper [9], the eigenvalues Fnλ and
the eigenfunctions χnλ of the Hamiltonian H1,stat within the accuracy of the terms ∼γ
are expressed as follows

γ λ λ ω= + 〈 ∣ ∣ 〉 = − +λF E n V n E Z n E, /(2 ) /(2 ) , (2.7)n n n
(0)

1
(0) 2 2

0
2 2

⎪
⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

∑

∑ ∑

χ φ γ λ φ

γ μ λ φ

λ λ μ μ

μ λ φ λ λ μ μ

= + 〈 ∣ ∣ 〉 −

+ 〈 ∣ ∣ 〉〈 ∣ ∣ 〉 −

× 〈 ∣ ∣ 〉 − 〈 ∣ ∣ 〉

+ 〈 ∣ ∣ 〉 〈 ∣ ∣ 〉 − 〈 ∣ ∣ 〉

μ λ≠

λ λ

μ

μ

j V n E E

n V j j V n E E

n V n n V n

n V n n V n n V n

/( )

/[( )

( )]

/( ) .

(2.8)

j

j

j

n n j n j

n n

n

1
(0) (0)

1 1
(0) (0)

1 1

1 1 1

In equation (2.8), λ = (l, m), μ = (l′, m′), j = (n′, l′, m′), n′ ≠ n.
Substituting V1 from equation (2.5) in equation (2.8), we obtain the following for

l > 0:

ω ω= − + +
× − + + + + −

F Z n E Z E

m l l n l l l l l

/(2 ) /(2 ) ( / )

[3 ( 1)]/[ (2 3)( 1)(2 1) (2 1)].
(2.9)nlm

2 2
0

2 2 4
0

2 4

2 3

For finding Fnlm (i.e., for l = 0), instead of the formula for V1 from equation (2.5),
we use the following expression:
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θ ε θ ε= − + − ∣ ∣ ≪ε−V Z r[1 3 cos (4 cos 1)] , 1. (2.10)1
2 2 3

The expression for V1 from equation (2.10) corresponds to the quasi-Coulomb
nuclear potential –Zrε−1. This trick allows removing the uncertainty that would
otherwise arise while calculating matrix elements of the operator V1 in the basis of
the eigenfunctions φn00. For completeness we note that a similar uncertainty arises
while calculating matrix elements 〈nlm∣V2∣ n′, l′, m 〉; in this case one should use the
expression

θ θ
ε θ θ

= − + −
+ − + ε−

V Z

r

3 { 3 30 cos 35 cos

[4 46 cos (176/3)cos ]}/(4 ),
(2.11)2

2 4

2 4 5

corresponding to the quasi-Coulomb nuclear potential –Zrε−1.
After calculating the necessary matrix elements by using the potential V1 from

equation (2.10) and then setting ε = 0, we obtain the following result for the energy
Fn00 (i.e., for l = 0):

ω ω= − + +F Z n E Z E n/(2 ) /(2 ) /(3 ). (2.12)n00
2 2

0
2 2 4

0
2 3 4

It is worth noting that the above rigorously calculated result for Fn00 can be also
formally obtained from the right side of equation (2.9) in the following three steps:

1) to set m = 0;
2) to cancel out l(l + 1) in the numerator and denominator;
3) to set l = 0.

Thus, indeed the expression for quasienergies from paper [1] is not limited by
n = 1 and n = 2 (as asserted in paper [1]). The above proves that they are actually
applicable for any n.

For the validity of the above results it is necessary that the characteristic value of
the splitting of the energy level of the principal quantum number n, determined by
equations (2.9), (2.12), significantly exceeded the energy shift Δnlm caused by the
term H1,osc in equation (2.4). By limiting ourselves by the term in H1,osc, containing
the small parameter γ in the lowest degree (i.e., by the term proportional to γ1/2/ω), in
the high-frequency limit defined by equation (2.1) we obtain the following relation
(see, e.g., book [11])

∑ω θΔ = − ∣〈 ∣ ∣ ′ 〉∣ −
′≠

−
′( )ZE nlm r n lm E E/(2 ) cos , (2.13)

n n

nlm n n0
(2) 6 2 2 (0) (0)

that serves for finding the lower limit of validity with respect to the laser frequency
ω.

The above results were obtained for a linearly-polarized high-frequency laser field.
A more general case where the high-frequency laser field is elliptically-polarized was
considered in paper [12]. The vector-potential of the laser electric field was chosen in
the form

ζ ω ζ ω ω= + = −A t A t t A cE( ) (1 )(cos , sin , 0), / , (2.14)0
2

0 0
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where ζ is the ellipticity degree. For the quasi-Coulomb nuclear potential –Zrε−1, the
analog of the γV1 from equation (2.5), denoted below as V, now can be represented
as follows

ε ε= + 〈 〉 ∣ ∣ ≪ε+V Z c rB[ /(2 )]( 1) / , 1. (2.15)2 2 3

In equation (2.15), vector B(t) is the solution of the equation

=t t tBd ( )/d ( ) (2.16)

and has the zero time average; the notation <…> stands for the average over the
period of the laser field.

Substituting equation (2.14) into equation (2.15) and using the spherical coor-
dinates, paper [12] found the following:

⎡⎣ ⎤⎦ζ ω

θ ε θ ζ ζ θ

φ

= −

× − − + − +

ε+V ZE r( ) /(8 )

{(1 3 cos ) 2 cos 2 [3(1 )/(1 )]sin

cos 2 }.

(2.17)

2
0

2 4 3

2 2 2 2

In paper [13], it was shown that

∫ = = … − ′ +
∞

− ′r R r R r r r s l l( ) ( ) d 0, 2, 3, 4, , 1, (2.18)s
nl nl

0

2

where Rnl(r) are the radial wave functions of the hydrogenic atom/ion. Therefore, the
matrix elements of the operator V(ζ2) satisfy the following relation:

ζ〈 ∣ ∣ ′ ′〉 = ′ = ±nlm V nl m l l( ) 0, 2. (2.19)2

For a particular case of the circular polarization (ζ2 = 1), the term containing cos
2φ in equation (2.17) is absent. Therefore, for the case of the circular polarization,
due to the relation (2.19), the spherical eigenfunctions φnlm are the correct
eigenfunctions of the zero order for the perturbed Hamiltonian (as was the case
for the linear polarization of the laser field). The following energy eigenvalues
correspond to these eigenfunctions:

ω= − + + 〈 ∣ ∣ 〉F Z n E nlm V nlm/(2 ) /(2 ) , (2.20)nlm
2 2

0
2 2

⎡⎣ ⎤⎦ω〈 ∣ ∣ 〉 = −

× − + + + + −
>

nlm V nlm Z E

m l l n l l l l l
l

/(2 )

[3 ( 1)]/[ (2 3)( 1)(2 1) (2 1)],
0,

(2.21)

4
0

2 4

2 3

ω〈 ∣ ∣ 〉 = − =nlm V nlm Z E n l/(6 ), 0. (2.22)4
0

2 3 4

(In equation (2.22), we corrected a misprint from the corresponding expression in
equation (2.10) from paper [12].) Just as in the case of the linear polarization of the
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laser field, the result presented in equation (2.22) can be obtained from the right side
of equation (2.21) in the following three steps:

1) to set m = 0;
2) to cancel out l(l + 1) in the numerator and denominator;
3) to set l = 0.

So, the expression for quasienergies from paper [1] for the circular polarization of
the laser field is not limited by n = 1 and n = 2 (as asserted in paper [1]). The above
proves that they are actually applicable for any n—just as it was in the case of the
linear polarization of the laser field.

Now we are coming back to the situation, where the ellipticity degree of the laser
field is arbitrary. When ζ2 ≠ 1, the term containing cos 2φ in equation (2.17) will
couple the states φnlm and φnlm′ (l > 0, m′ = m − 2). However, the state φn00 would
not be coupled by this term and the state φn10 would not be coupled by this term
either. Therefore, the energy eigenvalues for these two states do not depend on the
ellipticity degree ζ and are still given by equations (2.21), (2.22).

For finding the eigenvalues of the energy for the other states in the general case of
ζ2 ≠ 1, one should solve the corresponding secular equation. For the states φnl1 and
φnl−1 (l = 1, 2), the secular equation is a quadratic one, yielding the following two
energy eigenvalues Fns (s = 1, 2):

ω

ω

ζ ζ

= − +

+ + + −

× + − + + − − ++

{ }
F Z n E

Z E n l l l

l l l

/(2 ) /(2 )

/[2 (2 3)(2 1)(2 1)]

[( 3)/( 1) ( 1) (3/2)(1 )/(1 )],

(2.23)

ns

s

2 2
0

2 2

4
0

2 4 3

2 1 2 2

where l = 1, 2; s = 1, 2. The corresponding eigenfunctions are

φ φ φ= − + = =− +
− l s2 [( 1) ], 1, 2; 1, 2, (2.24)ns

s
nl nl

1/2 1
1 1

Figure 2.1 shows the scaled splitting S = (Fn1 − Fn2)[2ω
4n3(2l + 3)(2l + 1)(2l − 1)]/

Z4E0
2 versus the ellipticity degree for the states of l = 1, 2. It is seen that as the

Figure 2.1. The scaled splitting S = (Fn1 − Fn2) [2ω
4n3(2l + 3)(2l + 1)(2l − 1)]/Z4E0

2 versus the ellipticity degree
for the states of l = 1, 2. The energies Fn1 − Fn2 are given by equation (2.23).
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ellipticity degree ζ increases, the splitting S decreases. For the circular polarization
(ζ2 = 1) the splitting S vanishes.

For the states φnl0, φnl2, and φnl−2 (l = 2, 3), the secular equation is a cubic one,
yielding the following three energy eigenvalues Fnp (p = 1, 2, 3)

ω
ω

= − + +
= − + +

× + + − − + =

F Z n E V

F Z n E

V V V V V p

/(2 ) /(2 ) ,

/(2 ) /(2 ) (1/2)

{ ( 1) [( ) 8 ] , 2, 3,

(2.25)
p

n

np

2 2
0

2 2
22

2 2
0

2 2

11 22 11 22
2

12
2 1/2

1

where

ω= + + −V Z E n l l l/[(2 (2 3)(2 1)(2 1)], (2.26)11
4

0
2 4 3

ω= − − + + + − +V Z E l l n l l l l l[12 ( 1)]/[(2 (2 3)(2 1)(2 1) ( 1)], (2.27)22
4

0
2 4 3

⎡⎣ ⎤⎦ω ζ ζ= − +

× − + + + + −

V Z E

l l l l n l l l

3 /(4 ) [(1 )/(1 )]

{( 1)( 2)/[ ( 1)]}/[ (2 3)(2 1)(2 1)].
(2.28)12

4
0

2 4 2 2

3

The corresponding eigenfunctions are as follows:

φ φ φ
φ φ φ φ

= − −
= + + =

− +
−

−a p b p p

2 [( 1) ],

( ) ( )( ), 2, 3,
(2.29)n

s
nl nl

np nl nl nl

1
1/2 1

2 2

0 2 2

where

= + − − − +
= − + − − − +

− +a p V V V V V

b p V V V V V

( ) 2 {1 ( 1) ( )/[( ) 8 ] } ,

( ) [( 1) /2]{1 ( 1) ( )/[( ) 8 ] } .
(2.30)

p p

p1/2 1
22 11 11 22

2
12

2 1/2 1/2

22 11 11 22
2

12
2 1/2 1/2

In summary, expressions (2.9), (2.12), (2.20)–(2.30) determine the splitting of
hydrogenic spectral lines in the high-frequency laser field. The intensities of the split
components can be calculated by using the well-known expressions (e.g., from book
[14]) for the matrix elements ∣〈nlm∣r−2 cos θ∣n′l′m〉∣2 in the spherical coordinates. In
particular, the allowance of the terms ∼γ in equation (2.8) would lead to the
appearance of the forbidden components (of intensities ∼γ2) in the spectra of
hydrogenic lines. In general, the observation of the splitting of the spectrum of a
hydrogenic line in two different polarizations, allows determining the following
three physical quantities:

1) the polarization of the vector-potential A(t);
2) the ellipticity degree ζ;
3) the amplitude E0 of the laser field (for the known frequency ω).
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Separating rapid and slow subsystems

Eugene Oks

Chapter 3

Classical (Rydberg) hydrogen atoms in a
high-frequency laser field: celestial analogies

We consider the situation where the laser frequency ω is much greater than the
Kepler frequency ωK = mee

4/(n3ħ3) of the highly-excited (Rydberg) hydrogen atom:

ω ω≫ . (3.1)K

Here, me and e are the electron mass and charge, respectively; n ≫ 1 is the principal
quantum number. Under the condition (3.1), the laser field constitutes the fast
subsystem, while the Rydberg atom constitutes the slow subsystem.

The Kapitsa method of splitting the motion into ‘fast’ and ‘slow’ variables and
introducing the concept of an effective potential for the slow subsystem, in its
standard form [1–3] is not applicable for the case of a spatially-uniform amplitude f
of the oscillatory force f(xα) cos ωt, as mentioned in chapter 1. A generalization of
Kapitsa’s effective potential for a spatially-uniform force amplitude f, has been
provided by Nadezhdin and Oks [4] and is presented below.

As in chapter 1, we consider a particle in a static potential U(xα) and under
the force f(xα) cos ωt. We seek the solution of the equation of the motion

ω= − +α α αm x t U x f td ( )/d d /d cos (3.2)2 2

in the form

ξ= +α α αx t X t t( ) ( ) ( ) (3.3)

and expand the right side in powers of the rapid oscillations ξα:

ξ ξ
ξ ξ

ξ ω

+ = − −
−
+ +

α α α α α β

β γ α β γ

α β α β

md X t md t U X U X X

U X X X

f f X tX

( )/d ( )/d d /d d /d d

(1/2) d /d d d

[ ( ) d /d ]cos .

(3.4)

2 2 2 2 2

3
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Here and below, the summation over repeated subscripts is understood. In
distinction to equation (1.1) from chapter 1, here the term—(1/2) ξβξγ d3U/
dXαdXβdXγ is taken into account.

For the oscillatory terms it is sufficient to write

ξ ω=α αmd t f tX( )/d ( ) cos , (3.5)2 2

so that

ξ ω ω= −α αf m t[ /( )]cos . (3.6)2

Substituting equation (3.6) in equation (3.4) and averaging over the period 2π/ω, we
obtain the equation for the averaged motion X(t):

ω

ω

= −
−

−

α α

β γ α β γ

β α β

md X t U X

m f f U X X X

m f f X

( )/d d /d

[1/(4 )] d /d d d

[1/(2 )] d /d .

(3.7)

2 2

2 4 3

2

For a spatially-uniform force f, the term proportional to 1/ω2 in equation (3.7)
vanishes, so that it becomes important to take into account the term proportional to
1/ω4. As a result, the equation for the averaged motion takes the form:

ω= − +α α β γ β γmd X t X U f f m U X X( )/d d/d { [ /(4 )]d /d d }. (3.8)2 2 2 4 2

Thus, in this situation we deal with the effective potential

ω= + β γ β γU U f f m U X X[ /(4 )]d /d d . (3.9)eff
2 4 2

Oks et al [5] applied the effective potential from equation (3.9) to the case of a
Rydberg hydrogen atom in an elliptically-polarized high-frequency laser field:

ε ω με ω= +t tE e e(t) cos sin , (3.10)x y0 0

where μ is the ellipticity degree. The peak field ε0 in expression (3.10) is connected
with the time-average of the electric field as follows:

ε ω μ ε ω ε μ⟨ ⟩ = + = +{ }E t t t( ) cos sin (1 )/2. (3.11)2
0

2 2 2
0

2 2
0

2 2

On the other hand, one can define an effective amplitude E0 through

〈 〉 =E t E( ) /2. (3.12)2
0

2

By equating the right sides of equations (3.11) and (3.12), one obtains the following
relation between E0 and ε0

ε μ= + ½E /(1 ) . (3.13)0 0
2

Analytical Advances in Quantum and Celestial Mechanics

3-2



By applying the effective potential from equation (3.9) to the case of the high-
frequency elliptically-polarized laser field from equation (3.10), Oks et al [5] found
the following effective potential

γ μ θ μ φ= − + + − − −U e r r/ ( / ){(1 ) 3 sin [1 (1 )sin ]}, (3.14)eff
2 3 2 2 2 2

where

γ ε ω= ( ) ( )e m4 , (3.15)4
0

2 2 4

θ is the polar angle, and φ is the azimuthal angle of the radius vector of the electron
(the z-axis is chosen to be perpendicular to the polarization plane).

In the particular case where the high-frequency laser field is circularly polarized
(μ = 1), the effective potential from equation (3.14) simplifies to:

θ γ θ= − + −r e r rU ( , ) / ( / )(3 cos 1). (3.16)eff
2 3 2

For this case of the circular polarization, by using equation (3.13) with μ = 1,
formula (3.15) for γ can be also expressed through the time-average square of the
laser field as follows:

γ ω= ( ) ( )e E m8 . (3.17)4
0

2 2 4

The effective potential given in equation (3.16) has the following remarkable
feature: it is identical to the potential of a satellite orbiting a prolate planet. The
motion of this satellite has been completely investigated in celestial mechanics (see,
e.g., book [6], section 10.4). It turns out that not only does the ellipse precess in its
plane with some frequency fe ≪ Ω, but the plane of orbit precesses as well with
frequency fp ~ fe.

The precessions above are found via canonical perturbation theory and by
employing action-angle formulation (see, e.g., book [7]). In this situation the
effective potential from equation (3.1) can be represented in the form of the
following perturbation Hamiltonian

θΔ = − = − =H C r C k I I M k GM m(3 cos 1)/ , ( )/(2 ), , (3.18)2 3 2
3 1 0 0

where m is the mass of the satellite, M0 is the mass of the a prolate planet mass, and
I3 and I1 are the principal moments of inertia, I1 being the moment of inertia with
respect to the axis of symmetry. The time average of the perturbation Hamiltonian is

∫τ ε θ〈Δ 〉 = − + Ψ − Ψ
π

H m k I I M M[ ( )/(2 )] (1 cos )(3 cos 1)d , (3.19)2 2
3 1 0

3

0

2
2

where ε is the eccentricity of the satellite orbit, M is the magnitude of the total
angular momentum, τ is the period, and Ψ is the angle of the radius-vector in the
orbital plane relative to the periapsis. We use the relation

θ ω− = − − Ψ +i i3 cos 1 [(1/2) (3/2)cos )] {(3/2)sin cos[2( )]}, (3.20)2 2 2
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where i is the angle between the unperturbed plane of orbit and the equatorial plane
of the planet (the angle of inclination). Employing equation (3.20) we find:

π τ〈Δ 〉 = − −H m k I I i M M( )(1 3 cos )/(2 ). (3.21)2 2
3 1

2
0

3

We relate the variable i to the action angle variables J1 and J2 as

π= = =φJ J J J M/ cosi, 2 , (3.22)z1 2 1

where Mz is the constant value of angular momentum about the polar axis,

π= + =φ θJ J J M2 . (3.23)2

Here M is the magnitude of the total angular momentum, and

π= − ½J k m E[(2 /( )] , (3.24)3

where k is the constant from the expression for the unperturbed gravitational
potential

= −V r k r( ) / (3.25)

and corresponds to e2 in the atomic problem.
The orbit undergoes two precessions, as follows. Because of the smallness of the

perturbation, the precession of the orbital plane around the polar axis shows up as a
secular change in Ω (see figure 3.1):

τ π τ π τ π⟨ Ω ⟩ = ∂ Δ ∂ = ∂ Δ ∂t H J M Hd /d /(2 ) [ ( )/ ] /(2 ) [ /(2 )] ( )/ (cosi). (3.26)1

Therefore, it follows that the frequency of precession of the orbital plane around
the polar axis is given by

ε= − − −f I I M a(3/2)( )cosi/[ (1 ) ], (3.27)p 3 1 0
2 2 2

where we have made use of the expression

ε= −M mka(1 ) (3.28)2 2

(here a is the semi-major axis).
The second one is the precession of the periapsis of the elliptical orbit in the plane

of orbit—see figure 3.2. It is given by

Figure 3.1. Precession of the orbital plane around the polar axis.
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ω τ π τ π τ π⟨ ⟩ ≡ ∂ Δ ∂ = ∂ Δ ∂t H J H Md /d /(2 ) [ ( )/ ] /(2 ) [ /(2 )] ( )/ . (3.29)2

Upon taking the derivatives, we find

ε= − − −f I I i M a3( )(5 cos 1)/[4 (1 ) ]. (3.30)e 3 1
2

0
2 2 2

The averaged Hamiltonian 〈ΔH〉 from equation (3.21) does not depend on the
angular variables of the spherical coordinate system. Consequently, the action
variables J1, J2, J3 are conserved with respect to the averaged motion. The major
semi-axis a and the eccentricity ε0 of the orbit are the following functions of J1, J2, J3

π ε= = − ½a J mk J J/(4 ), [(1 ( / ) )] . (3.31)3
2 2

2 3
2

Therefore, there is no secular change in either a or ε. Physically this means that the
shape and size of this precessing ellipse, when averaged over the orbital period, will
not change in time.

The approximate conservation of the shape and size of the precessing ellipse
means that the square of the angular momentum M2 is an approximately conserved
quantity (to within the accuracy of terms ~E0

2). Physically this means that the
averaged system has a higher symmetry than the geometrical symmetry, which was
axial symmetry. In other words, the system has an algebraic symmetry which is
spherical.

Thus not only does the unperturbed Hamiltonian H0 commute with M2 and Mz

but the perturbed Hamiltonian H0 + V commutes (approximately) withM2 andMz.
This justifies the employment of the non-degenerate classical perturbation theory in
the previous section.

This also means that in the quantum treatment of the corresponding atomic
problem, the perturbation V is diagonal (in the same approximation) in the basis of
the spherical wave functions. Consequently, due to the conservation of M2, the
perturbed energies can be found as mean values of the perturbation over the

Figure 3.2. Precession of the periapsis of the elliptical orbit in the plane of the orbit.
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unperturbed motion. Following paper [5], we find the quantum corrections to the
energy levels in the quasiclassical formalism as follows.

The perturbation term in the effective potential is

γ θΔ = −U r[ / ][3 cos 1]. (3.32)3 2

We average this expression over the period of the unperturbed motion

∫γ τ θ〈Δ 〉 = −
π

−U r t[ / ] [3 cos 1] d . (3.33)
0

2
2 3

The angular momentum can be written as M = mr2dΨ/dt, where Ψ is the angle of
the radius vector in the orbital plane relative to the periapsis. Substituting the
expression

= Ψ−t mr Md d (3.34)2 1

into equation (3.33) for the effective potential, we arrive at the following

∫γ τ θ〈Δ 〉 = − Ψ
π

−U m M r[ /( )] (3 cos 1) d . (3.35)
0

2
2 1

Using the relations

θ ε= Ψ = + Ψ =− − −r p p M mkcos sini cos , (1 cos ) , ( ) , (3.36)1 1 2 1

where k = e2, we find

∫γ τ ε

γ τ π

〈Δ 〉 = Ψ − + Ψ Ψ

= −

π
U m M i

m e M i

[ /( )] (3 sin cos 1)(1 cos )d

[( )/( )]2 [(3/2) sin 1].
(3.37)

2 3

0

2
2 2

2 2 3 2

Substituting the expressions for the period

τ π= n me2 /( ) (3.38)3 3 4

into equation (3.37), we obtain:

γ ħ〈Δ 〉 = −U m e i M n[ ][(3/2) sin 1]/[ ]. (3.39)3 6 2 3 3 3

Transforming

− = − − =i i M M[(3/2) sin 1] (1/2){[3(1 cos ) 2]}, cosi / , (3.40)z
2 2

and replacing

ħ ħ= + ½ =M l M m( ), (3.41)z 0

in equation (3.37), we finally obtain the corrections to the energy levels:

⎡
⎣⎢

⎤
⎦⎥ ⎡⎣ ⎤⎦⎡⎣ ⎤⎦ħ ω≡ 〈Δ 〉 = + ½ − + ½

− −{ }( )( )E U e mE n l m l8 ( ) 3 ( ) . (3.42)nlm
1 10

0
2 6 3 4 1 2

0
2 5
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We emphasize again that equation (3.42) is valid for n,l ≫ 1. Hence, the energy
levels are split and the degeneracy is partially removed. Because ‘m0’, the magnetic
quantum number, is squared, terms where the magnitude of m0 is the same, but the
sign differs, will remain degenerate.

Now, following paper [5], we present the study of the case where the ellipticity
degree ξ is arbitrary, but the Keplerian plane and the plane of electromagnetic
radiation are coincident. This means that Mz = M, and that the polar angle of the
radius-vector does not vary in the course of time (i.e., θ = π/2). In this case, the
perturbed motion is really only two-dimensional because all of the forces acting on
the particle are confined to the plane. Our effective potential becomes

γ ξ ξ φ= − + − − −U e r r/ ( / )[(1 2 ) 3(1 )cos ]. (3.43)eff
2 3 2 2

This problem is equivalent to a problem of celestial mechanics in which a satellite
revolves in an equatorial orbit about a slightly non-spherical planet. For this case the
plane of orbit does not change its orientation in the course of time. Therefore, the
only precession that might occur is the precession of the periapsis of the ellipse—
similar to that depicted in figure 3.2.

It turns out that Mz is an approximately conserved quantity within the accuracy
of terms ~E0

2. In this case, the system has a dynamical symmetry, which is axial;
geometrically there was originally no symmetry at all. Consequently, we simply
average this Ueff over the unperturbed motion to find the classical perturbed motion
and the quasiclassical corrections to the energy levels—in distinction to the case of
arbitrary orientations of the polarization and Keplerian planes presented in paper
[5], in its appendix.

We can see that

∫τ γ ξ γ ξ φ φ〈Δ 〉 = − − −
π

−U m M r[ /( )] [ (1 2 ) 3 (1 )cos ] d , (3.44)
0

2
2 2 2 3

where we have made use of equations (3.34) and (3.35). Calculating this integral we
obtain

π γ τ ξ〈Δ 〉 = − +U m e M( / 3 )(1 ). (3.45)2 2 2

Recalling the expression for the secular precession of the periapsis in the plane of the orbit

ω τ π τ π⟨ ⟩ = ∂⟨Δ ⟩ ∂t U M[ d /d /(2 )] [ /(2 )]( / ), (3.46)

we immediately see that the precession frequency is

γ ξ= +f m e M[3 (1 )]/(2 ). (3.47)e
2 2 2 4

For the same reason as in the case of circular polarization, there is no secular
change in either the size a of the major semi-axis of the ellipse or in the eccentricity
ε0. Again, physically this means that the shape and size of this precessing ellipse
when averaged over the orbital period will not change in time.

To find quasi-classical energy corrections, we substitute into equation (3.45)
expressions (3.36), (3.38), and finally obtain:
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⎡⎣ ⎤⎦ξ ħ ω= − + ∣ ∣ + ½ = ∣ ∣E me E m n l m(1 ) /[8( ) ], . (3.48)nlm
(1) 10

0
2 2

0
3 3 6 4

0

Like formula (3.42), this expression is valid for n,l ≫ 1. Again we can see that the
energy levels are split and the degeneracy is partially removed. Terms where the
magnitude of m0 is the same, but where the sign differs, will remain degenerate.

Now we proceed to the case of a hydrogen Rydberg atom in a linearly-polarized
high-frequency laser field E(t) = E0cos ωt. For this case, by using the expression (3.9)
for the effective potential as the starting point, Nadezhdin and Oks [4] obtained:

θ γ θ γ ω= − − − =( ) ( )U e r r e E m(r, ) / / (3 cos 1), / 4 , (3.49)eeff
2

0
3 2

0
4

0
2 2 4

where θ is the polar angle, that is, the angle between the radius-vector r of the
electron and the z-axis chosen along the vector-amplitude E0 of the laser field.

It is remarkable that the effective potential from equation (3.49) is mathemati-
cally equivalent to the effective potential of a satellite moving around an oblate
planet, such as, e.g., the Earth. Indeed, because of this slightly flattened shape, the
potential energy U(r) of a satellite in the gravitational field of the Earth slightly
differs from the potential energy U0(r) = GmM/r it would have if the Earth were a
sphere. The perturbed potential energy U(r) can be approximately represented in the
form:

ϕ ϕ= − −U r GmM r I R r P( , ) ( / )[1 ( / ) (sin )]. (3.50)2
2

2

(Formula (3.50) is approximate because it represents only the first two terms of the
expansion of the potential energy in inverse powers of r.) Here G = 6.6726 × 10−8 cm3

(s−2 g−1) is the gravitational constant (one of the fundamental constants of Nature); m
andM are the masses of the satellite and the Earth, respectively; I2 = –1.082 × 10−3 is a
constant related to the slight difference between the equatorial and polar diameters of
the Earth; R = 6.378 × 108 cm is the equatorial radius of the Earth; θ is the
geographical latitude of the satellite at any point of its orbit; P2(sin ϕ) is one of the
Legendre polynomials:

ϕ ϕ= −P (sin ) (3 sin 1)/2. (3.51)2
2

For the potential energy from equation (3.50) there exists an exact analytical
solution for the satellite motion. Details can be found, for example, in section 1.7 of
Beletsky’s book [8]. The following outcome is similar, but not identical to the case
discussed previously in this chapter, where a satellite moves around a prolate planet.

The elliptical orbit of the satellite undergoes two types of the precession
simultaneously, but without changing its shape. The first one is the precession of
the orbit in its plane—pretty much like that depicted in figure 3.2. It occurs with the
angular frequency

Ω = −I R p i(3 /4)( / ) (1 5 cos ), (3.52)precession in plane 2
2 2
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where i is the inclination, that is, the angle between the plane of the satellite orbit and
the equatorial plane of the Earth. The quantity p in formula (3.52) is related to
parameters of the unperturbed elliptical orbit of the satellite, as follows

= +p r r r r2 /( ), (3.53)min max min max

where rmin and rmax are, respectively, the minimum and maximum distances of the
satellite from the center of the Earth.

Interestingly enough, for i = 63.4°, one gets 1 − 5 cos2i = 0, so thatΩprecession in plane

vanishes. This means that satellites lunched at this inclination do not undergo the
precession in the plane of the orbit.

The second simultaneous precession is the precession of the plane of the satellite
orbit, similar to what was illustrated in figure 3.1. The precession frequency is

Ω = I R p i(3 /2)( / ) cos . (3.54)precession of plane 2
2

At i = 90°, one gets Ωprecession of plane = 0. For such inclination, which corresponds to
the plane of orbit perpendicular to the Earth equator, there is no precession of the
plane of orbit. These are so-called polar satellites.

Thus, the fact that the Earth is slightly flattened, does not affect the elliptical
shape of the satellite orbit or the inclination of the orbit. It does result, generally, in
two simultaneous precessions of the orbit with frequencies given by formulas (3.52)
and (3.54).

Taking into account that the geographical latitude ϕ in formula (3.50) and the
polar angle θ in formula (3.49) are related as ϕ = π/2 − θ (where π/2 is the 90° angle
expressed in radians), so that sin2 ϕ = cos2 θ, and that the quantity I2 in formula
(3.50) is negative (so that I2 =−∣I2∣), formula (3.50) can be re-written in the form

θ θ= − − ∣ ∣ −U r r I R r( , ) (GmM/ ) (GmM / )(3 cos 1)/2. (3.55)2
2 3 2

The comparison of formulae (3.49) and (3.55) shows that the potential energy of the
electron in a hydrogen Rydberg atom under a high-frequency linearly-polarized
laser field is in fact mathematically equivalent to the potential energy of a satellite
around the oblate Earth. Indeed, if in formula (3.55) one were to substitute GmM by
e2 and ∣I2∣R2 by 2γ/e2, one would obtain formula (3.49).

Therefore, the motion of the electron in a hydrogen Rydberg atom under a high-
frequency linearly-polarized laser field can be described in the same way as the
motion of a satellite around the oblate Earth. Namely, first of all, the shape of the
elliptical orbit and the angle between the orbital plane and the plane perpendicular
to the laser field amplitude E0 would not be affected by the laser field: they would
remain the same in the course of time. The elliptical orbit of the electron undergoes
two precessions simultaneously: the elliptical orbit precesses in its own plane with
the frequency Ωprecession in plane (similarly to the depiction in figure 3.2) and the plane
of the orbit precesses around the laser field amplitude E0 with the frequency
Ωprecession of plane (similarly to the depiction in figure 3.1), both frequencies being
proportional to E0

2.
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There is an interesting fact about the conserved quantities for both of these
physical systems (just like in the case of the circular polarization of the laser field,
discussed previously in this chapter). If the motion of a particle is characterized by a
potential energy that depends only on the magnitude r of the radius-vector r of the
particle, but not on the direction of vector r, then all directions in space are
equivalent for such a system: the system is said to have the spherical symmetry. As
the consequence of the spherical symmetry, the angular momentum vector M is
conserved both by the magnitude and by the direction for such a system. If a
linearly-polarized laser field is applied to such an atomic system, then there is no
longer the equivalence of all directions in space: the potential energy now depends
not only on the magnitude r of the radius-vector r, but also on the angle θ between
the vector r and the laser field amplitude vector E0. The latter vector defines the
preferred direction in space. Only all directions in the plane perpendicular to the
vector E0 remain equivalent: the symmetry of the system is said to be reduced from
spherical to axial. As the consequence, only the angular momentum projection Mz

on the vector E0 remains conserved.
Similarly, because the Earth is not a sphere, but the oblate spheroid, the axis

connecting the two poles defines the preferred direction in space. Only the angular
momentum projection Mz on this direction remains conserved.

However, for the specific form of the potential energy dependence on r and θ, as
in equations (3.49) and (3.55), in addition to the exact conservation the angular
momentum projection Mz, there is also the conservation of the square of the angular
momentum M2. The latter quantity is proportional to the area of the orbit.
Therefore, the fact that the shape of the elliptical orbit is not affected by the
perturbation (by the laser field for the atomic system of by the spheroidness of the
Earth in the case of the satellite) signifies the conservation of M2.

For completeness we note another physical system equivalent to the ‘satellite—
spheroidal planet’ system. Namely, nuclei of heavy atoms can have either the shape
of a prolate spheroid or the shape of the oblate spheroid. So, the motion of the
electron in a hydrogen Rydberg atom under a high-frequency laser field of the linear
or circular polarizations has also the analogy with the motion of the electron in
heavy hydrogenic ions.

It should be emphasized that there are hydrogenic atoms and ions where the
negatively charged particle orbiting the nucleus is not the electron, but the muon.
Muonic atoms and ions are more sensitive to the nuclear shape than the electronic
atoms and ions. In particular, in paper [9] it was shown how the shift of spectral lines
of muonic hydrogenic ions can serve for the experimental determination of the
parameters of the nuclear shape (such as, for example, the parameter analogous to
the constant I2 in equation (3.50)).

The bottom line is that all the three above physical systems exhibit a higher than
geometrical symmetry. This is an important result in its own right.

It should be emphasized that for the type of the potential energies given by
equations (3.49) or (3.55), the square of the angular momentum M2 is conserved
exactly. However, equations (3.49) and (3.55) were obtained by neglecting some
corrections (much smaller than the second term in (3.49) or in (3.55)). Since
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equations (3.49) and (3.55) are approximate, so is the conservation of M2.
Nevertheless, any additional quantity that is conserved (whether exactly or
approximately), is physically important.

Let us discuss now the advantages of this analytical method. We considered a
hydrogen atom in a high frequency field

ω ω» , (3.56)kn

where ωkn is an atomic transition frequency. In the standard time-dependent
perturbation theory, the transition probability can be written as (see, e.g., textbook
[10])

ħ ω ω ω≡E(d ) /( ) / , (3.57)E0
2 2 2 2 2

where ωE ≡ (dE0)/ħ may be interpreted as the peak frequency of precession of the
dipole moment of the system. Since the atomic dipole moment can be estimated as
d ∼ n2ħ2/[me2], then

ω ħ∼ n E me/( ). (3.58)E
2

0

Thus we arrive at the small parameter employed by standard perturbation theory

ε ω ω= </ 1. (3.59)Ept
2 2

In the advanced method of separating rapid and slow subsystems, the small
parameter can be found from the ratio of the energy correction to the unperturbed
energy

ε = Δ = ℏE E E me n/ , /(2 ). (3.60)our
(0) (0) 4 2 2

Using the above results for ΔE, we find

ħ ω εΔ ∼ =E E e E n/ /( ) (3.61)(0) 6
0

2 4 4 4
our

or in atomic units

ε ω ω ω ε ω= ∼ ∼ ΩE n n n/( ) [ /( )] [ /( )] , (3.62)Eour 0
2 4 4 4 2 2

pt
2 2

where Ω = (En+1
(0)−En

(0) )/ħ = n−3 is the Kepler frequency. Thus, for the high
frequency case (Ω ≪ ω), even when the method of the standard perturbation theory
is no longer applicable, i.e. when εpt ∼ 1, the advanced method of separating rapid
and slow subsystems remains valid.

Finally we discuss the connection between the above results and the transition to
chaos. Multidimensional problems, like those presented above, play the crucial role
in the fascinating transition regime between classical and quantum mechanics. While
experiments [11, 12] stimulated this interest, it is also true that the usual tools of
analysis which helped the impressive work in the ionization of hydrogen with
linearly-polarized radiation are of no use in multiple dimensions and other ways of
investigating such problems must be found. In this context, we addressed the
dynamics of Rydberg electrons placed in high-frequency circularly-polarized and
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elliptically-polarized microwave fields in this chapter. We mapped these problems
onto problems well-known from celestial mechanics, discovering approximate
constants of the motion in the process. We showed how the dynamics of a
Rydberg electron whose orbital plane differs from the plane of polarization of
circularly-polarized radiation can be mapped on the problem of a satellite orbiting a
prolate planet. Although the angular momentum precesses, its magnitude is an
approximate constant. Similarly, when the electron’s orbit plane coincides with the
plane of elliptically-polarized microwaves, it moves like a satellite orbiting a slightly
non-spherical planet in its equatorial plane. In this case, the z-component of the
angular momentum emerges as a hidden symmetry.

The high-frequency case has received less attention than the low-frequency,
resonant cases, and therefore it is desirable to explore the implications of our results
for chaos and ionization in these systems. We identified the precession frequency as
one of the important parameters of the dynamics, and we expect the onset of chaos
when the precession frequency fe is of the order of the Kepler frequency 1/n3.

In the case of circular polarization, we see from equations (3.39), (3.40), (3.42)
that the ratio of the precession frequency fe to the Kepler frequency is

ω∼f n E l/( ), (3.63)e
3

0
2 4 4

where l is the angular momentum. When this ratio is of the order of 1, a
quasicontinuum forms in the energy spectrum, and the electron diffuses through it
into the continuum, leading to ionization. This takes place approximately when

ω∼ ≡E l E , (3.64)0
2 2

nt

where ‘nt’ stands for the ‘nonresonant threshold’. In contrast, the best-known chaos
thresholds are obtained using the resonance overlap criterion of Chirikov [13] (a
review covering frequency ranges, polarizations and various initial orbits can be
found, e.g., in paper [14]). After giving the critical peak electric field strength Ert at
which to expect large-scale stochasticity in the case of linear polarization for orbits
of arbitrary shape, these authors also presented the results of calculations for such
orbits in the plane of polarization of the circular polarization field. They found that
for the overlap caused by the main resonance (corresponding to the ratio between
driving and Kepler frequencies, k, being equal to unity), or for the high-frequency
linear polarization or circular polarization cases, the thresholds obtained in paper
[14] are all of the form

∼E n1 / , (3.65)rt
4

where ‘rt’ stands for the ‘resonant threshold’—the individual cases are distinguished
by the proportionality constant, which, in the case of high-frequency circular
polarization, is a slowly varying function of the initial angular momentum l.
Their general conclusions were that the critical field decreases with increasing
angular momentum—more rapidly for linear polarization than for circular polar-
ization. There was good agreement between the critical field of 0.01 (in scaled units)
numerically obtained in paper [15], which approaches the earlier value from paper
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[16], and the critical field of 0.0109 obtained by a so-called ‘renormalization’
approach in paper [17], seemingly without being aware of the review by article
[14]. Returning to the findings presented in this chapter, it is obviously possible to
have

≪E E , (3.66)nt rt

if

ω≪l n1/( ), (3.67)2

In the notation of review [14]

ω = ≫k n k/ , 1, (3.68)3

we can re-write equation (3.67) as

≪ =l n k l/ . (3.69)nt

Since k ≫1 in our case, the nonresonant threshold value of the angular momentum
defined in equation (3.69) is much smaller than n:

≪l n. (3.70)nt

Thus we conclude that for sufficiently low l, the nonresonant threshold value of the
microwave amplitude can be much smaller than the corresponding resonant
threshold value.

This conclusion does not replace the results from review [14], but rather it
complements them as follows. On page 561 of review [14] it was written that orbits
exhibit stochastic behavior only for

ω< = ∼l l n k(3/ ) / . (3.71)rt
1/3 1/3

It is easy to see that

∼ ≪l l 1 k/ / 1. (3.72)nt rt
2/3

Thus, the following picture emerges. For l such that

< <l l l , (3.73)nt rt

the resonant terms dominate in the ionization and determine the threshold value of
E0. However, for l such that

≪l l , (3.74)nt

the nonresonant terms dominate in the ionization, resulting in a lower threshold
value of E0, compared to the resonance approximation.

The connection between the chaos threshold and the initial orbit parameters in
elliptical polarization is, predictably, more complicated. In the planar case of
elliptical polarization, from equations (3.47), (3.48) the ratio between the precession
and Kepler frequencies is the following
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μ ω ε μ ω~ + = +f n E l l(1 )/( ) (1 ) /( ), (3.75)e
3

0
2 2 4 4

0
2 2 2 4 4

where ε0 is the microwave peak field defined in equation (3.13).
In both our cases, the threshold Ecrit is proportional to l2, so that under the high

frequency microwave, low angular momentum, high-eccentricity orbits have the
lowest threshold. Of course, the validity of the quasiclassical approach requires that
l≫ 1, therefore, in the high frequency case, the orbits with the lowest threshold have
l in the range of

≫ ≫n l 1, (3.76)

rather than l ~ n/2 as in the resonant cases.
Secondly, from the above formula (3.64) it is seen that in the high frequency case,

at a fixed value of l, it is easier to ionize with circularly polarized microwaves (μ = 1)
than with the linearly polarized microwaves (μ = 0)—in distinction to the lower
frequency case. In paper [17] the resonance overlap criterion was applied to a
reduced-dimensionality version of elliptical polarization in the plane of polarization
((x,y) in their case) in which the initial angular momentum and the angle φ between
the x-axis and the Runge–Lenz vectors are constant to first order in the field. It was
found in paper [17] that the threshold for ionization is due to the overlap of
neighboring substates (m, 1) and (m + 1, 1) and they concluded that orbits with
eccentricity ~0.6 are the first to ionize—indeed, for all the ellipticity degrees, orbits
with medium eccentricity have the lowest threshold for unbounded diffusion, as
averaging their results over the angle φ shows: the scaled ionization threshold dips as
low as 0.015 for eccentricity ~0.6, rising to 0.045 for lower values of eccentricity.

Thus, there are remarkable distinctions between resonant and non-resonant cases
revealed in this chapter.
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Separating rapid and slow subsystems
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Chapter 4

Rydberg states of muonic-electronic helium
atoms or helium-like ions

Systems where one of the electrons is substituted by the heavier lepton μ−, i.e.,
muonic atoms and molecules, are subjects of studies having several applications. The
first application is the fusion catalyzed by muon (see, e.g., [1–3] and references
therein). This is because a muon replacing the electron either in the dde-molecule
(D2

+) or in the dte-molecule, leads to the decrease of the equilibrium internuclear
distance by a factor of about 200. At so dramatically decreased internuclear
distances, the fusion can occur with a significant probability. This has been observed
in ddμ or even with a higher rate in dtμ [1–3].

The second application has to do with a laser-control of nuclear processes. The
corresponding studies were performed in the context of the interaction of muonic
molecules with superintense laser fields [4].

The third application relates to the search for strongly interacting massive
particles (SIMPs). SIMPs were suggested as candidates for dark matter and as
candidates for the lightest supersymmetric particle (see, e.g., [5] and references
therein). SIMPs could become bound to the atomic nuclei, leading to anomalously
heavy isotopes of known elements. Since SIMPs drastically increase the nuclear
mass, their presence in the nucleus practically eliminates the well-known reduced
mass correction in a hydrogenic atom. It is easier to observe this effect in muonic
atoms (rather than in electronic atoms) because the muon’s much larger mass
(compared to the electron) significantly enhances the reduced mass correction [5].
Such an effect may be observable in astrophysical objects [5].

In the present paper we consider helium atoms or helium-like ions (though the
primary focus is on helium atoms) where one of the electrons is substituted by a
muon and where both leptons are in Rydberg states. In particular, the muon is
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assumed to be in a circular Rydberg state1. However, no assumption is made
concerning the shape of the electron orbit or its orientation with respect to the plane
of the muon orbit.

In the muonic-electronic helium atom or helium-like ion, the muon motion is
characterized by a much higher frequency than the electron motion. Therefore, we
apply the analytical method based on separating rapid and slow subsystems. We
demonstrate that the electron moves in an effective potential that is mathematically
equivalent to the potential, in which a satellite moves around an oblate planet (such
as, e.g., the oblate Earth).

Based on this celestial analogy, we show that the ‘unperturbed’ elliptical orbit of
the electron undergoes simultaneously two precessions. One of them is the
precession of the electron orbit in the plane of the orbit, another is the precession
of the orbital plane of the electron around the axis of symmetry of the muonic orbit.
These two precessions occur with different frequencies and we provide analytical
expressions for these two precession frequencies. We emphasize that the shape of the
elliptical orbit of the Rydberg electron does not change in the course of these two
precessions. This means that the square of the angular momentum of the Rydberg
electron is conserved (approximately), which is the manifestation of the hidden
symmetry of the system.

So, we consider a system consisting of a muon, an electron, and a nucleus of
charge Z. Both the muon and the electron are in Rydberg states, so that their
principal quantum numbers (nμ for the muon and ne for the electron) are much
greater than unity. Because of the large difference between the muon mass mμ and
the electron mass me (mμ/me = 206.8), the muon is much closer to the nucleus than
the electron. We assume that the muon is in a circular Rydberg state, so that its
angular momentum quantum number has the maximum possible value of (nμ − 1).

The frequency of the revolution of the muon and of the nucleus around their
center of mass is

ħΩ = μ μ( )m Z e n/ . (4.1)r
2 4 3 3

Here,

=μ μ μm m M m M/( ) (4.2)r nucl nucl

is the reduced mass of the pair ‘nucleus-muon’, Mnucl being the nuclear mass. In
particular, for helium atoms (Z = 2), one has Mnucl/mμ = 35.28, so that in atomic
units (ħ = me = e = 1) the reduced mass mμr = 201.1.

In the first approximation, the Rydberg electron moves in the Coulomb field of
the effective charge (Z − 1), so that the Kepler frequency of the Rydberg electron is

1We note that circular Rydberg states (CRS) of atoms were studied to a large extent [6–9] theoretically and
experimentally for several reasons. First, it was because CRS have long radiative lifetimes and strongly
anisotropic collision cross sections, so that they facilitate experiments on inhibited spontaneous emission and
cold Rydberg gases [10, 11]. Second, classical CRS are counterparts to fundamentally important quantal coherent
states. Third, in the quantal method employing the 1/n-expansion (n being the principal quantum number), the
primary term corresponds to the classical description of (see, e.g. paper [12] and references therein).
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ω = − ℏ( )m Z e n( 1) / . (4.3)K er e
2 4 3 3

Here,

= + + +μ μm m m M m m M( )/( ) (4.4)er e enucl nucl

is the reduced mass of the electron in this system. In particular, for helium atoms
(Z = 2), one has mer = 0.9999 in atomic units, so that at any Z > 1, for almost all
practical purposes it is possible to use mer = 1.

From equations (4.1) and (4.3), it is easy to see that the ratio of the frequencies

ωΩ = − ≫μ μm Z n m Z n/ /[ ( 1) ] 1 (4.5)K r e e
2 3 2 3

if

≪ −μ μn n m Z m Z/ ( ) /[ ( 1) ] . (4.6)e r e
2 1/3 2 1/3

In particular, for helium atoms equation (4.6) becomes nμ/ne ≪ 9 and equation (4.5)
becomes

ωΩ = μn n/ 804.4 ( / ) . (4.7)K e
3

For Z ≫ 1, equation (4.6) becomes nμ/ne ≪ 6 and equation (4.5) becomes

ωΩ = μn n/ 206.8 ( / ) . (4.8)K e
3

Thus, it is seen that, e.g., at nμ/ne ~ 1, the frequency of the revolution of the muon
exceeds the Kepler frequency of the electron by two or three orders of magnitude
(obviously, the ratio Ω/ωK is even greater for nμ/ne < 1). So, indeed the pair ‘nucleus-
muon’ constitutes a rapid subsystem, while the electron is a slow subsystem.

Therefore, for finding the electron orbit in the second approximation, one should
perform the averaging over the rapid subsystem. Then this brings up the following
physical picture. The electron perceives both the muon and the nucleus as circular
rings of the radii Rμ and Rnucl, respectively, the muon charge being uniformly
distributed over the ring of the radius Rμ and the nuclear charge being uniformly
distributed over the ring of the radius Rnucl. The ratio of the radii is

= ≫μ μR R M m/ / 1. (4.9)nucl nucl

In particular, for helium atoms one has Rμ/Rnucl = 35.28.
So, the effective potential energy for the electron consists of two terms U(1) and

U(2). The primary termU(1) is the effective Coulomb interaction with the nucleus and
the muon ‘combined in one’:

= − −U Z e r( 1) / . (4.10)(1) 2

The second term U(2) is due to the quadrupole interaction (since the dipole moment
of the muonic and nuclear ‘rings’ is zero). In the spherical polar coordinates with the
z-axis being the axis of the symmetry of the muonic ‘ring’, its contribution U(2)

μ to
the quadrupole potential energy is
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= − θ −μ μU e R r(3 cos 1)/(4 ). (4.11)(2) 2 2 2 3

Here r is the absolute value of the radius-vector of the electron and θ is the polar
angle of the electron.

The corresponding quadrupole contribution of the nuclear ‘ring’ is

= θ −U Ze R r(3 cos 1)/(4 ). (4.12)(2)
nucl

2
nucl

2 2 3

Taking into account equation (4.9), the ratio of absolute values ∣U(2)
μ/U

(2)
nucl∣ can be

expressed as follows:

= = ≫μ μ μ( ) ( )U U R Z R M Zm/ / / 1. (4.13)(2) (2)
nucl

2
nucl

2
nucl

2 2

In particular, for helium atoms ∣U (2)
μ/U

(2)
nucl∣ = 622≫ 1. For Z > 2, the ratio ∣U (2)

μ/
U (2)

nucl∣ is even greater than for Z = 2: since Mnucl scales roughly linearly with Z,
then ∣U (2)

μ/U
(2)

nucl∣ also scales roughly linearly with Z. Therefore, for almost all
practical purposes the contribution of the nuclear ‘ring’ to the quadrupole potential
energy can be disregarded.

Thus, the effective potential energy of the Rydberg electron can be represented in
the form

θ= − − − −μU Z e r e R r( 1) / (3 cos 1)/(4 ). (4.14)eff
2 2 2 2 3

Let us compare Ueff from equation (4.14) with the following potential energy UE for
a satellite around the oblate Earth (see, e.g., Beletsky book [13])

θ= − − ∣ ∣ −U GmM r GmM I R r/ (3 cos 1)/(2 ). (4.15)E E E 2
2 2 3

Here, m is the mass of the satellite, ME is the Earth mass, R is the equatorial radius
of the Earth, and I2 is a constant characterizing the relative difference between the
equatorial and polar diameters of the Earth.

If in equation (4.15) we were to redefine (i.e., bring into the correspondence)

= − ∣ ∣ = = −μ μGmM Z e I R e R GmM R Z( 1) , /(2 ) /[2( 1)], (4.16)E
2

2
2 2 2

E
2

then the right side of equation (4.15) would become identical to the right side of
equation (4.14). So, the problem of the motion of the Rydberg electron in muonic-
electronic helium atoms or helium-like ions is indeed mathematically equivalent to
the problem of the motion of a satellite around an oblate planet (such as, e.g., the
oblate Earth). The solution for the latter problem is well-known (see, e.g., Beletsky’s
book [13]). Namely, the elliptical orbit of the satellite undergoes two types of the
precession simultaneously, but without changing its shape. The first one is the
precession of the orbit in its plane with the angular frequency

ω ω= −I R p i(3 /4)( / ) (1 5 cos ) , (4.17)E,precession in plane 2
2 2

E,K

where
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ω = +G M m A( )/ (4.18)E,K E s s
3 1/2⎡⎣ ⎤⎦

is the Kepler frequency of the satellite, ms and As being the satellite mass and the
major semi-axis of its unperturbed elliptical orbit, respectively. In equation (4.17), i
is the inclination, that is, the angle between the plane of the satellite orbit and the
equatorial plane of the Earth. The quantity p (semi-latus rectum) in formula (17) is
related to parameters of the unperturbed elliptical orbit of the satellite as follows

=p r r r r2 /( ), (4.19)min max min max

where rmin and rmax are, respectively, the minimum and maximum distances of the
satellite from the center of the Earth.

The second simultaneous precession is the precession of the plane of the satellite
orbit around the axis along the polar diameter of the Earth. The frequency of this
precession is

ω ω= I R p i(3 /2)( / ) (cos ) . (4.20)E,precession of plane 2
2

E,K

Thus, with the help of the correspondence formulas from equation (4.16) we can
immediately describe the motion of the Rydberg electron in muonic-electronic
helium atoms or helium-like ions as follows. While doing this, we take into account
the relation between the semi-latus rectum p of the unperturbed elliptical orbit of the
Rydberg electron and its angular momentum M

= − = + ħ −p M Z m e l Z m e/[( 1) ] ( 1/2) /[( 1) ], (4.21)e e e
2 2 2 2 2

where le is the angular momentum quantum number of the electron.
So, the elliptical orbit of the electron undergoes two types of the precession

simultaneously, but without changing its shape. The first one is the precession of the
orbit in its plane with the angular frequency

ω ω= − − +μ μZ Z i n l m m(3/8)[( 1) / ](1 5 cos )[ /( 1/2)] ( / ) , (4.22)e er r Kprecession in plane
2 2 4 2

where the Kepler frequency ωK of the Rydberg electron is given by equation (4.3).
For i = 63.4°, one gets 1 − 5 cos2 i = 0, so that ωprecession in plane vanishes. This means
that if the unperturbed orbital plane of the Rydberg electron has this inclination,
then there is no precession within the plane of the orbit.

The second simultaneous precession is the precession of the orbital plane of the
Rydberg electron around the axis of the symmetry of the muonic ‘ring’. The
frequency of this precession is

ω ω= − +μ μZ Z i n l m m(3/4)[( 1) / ](cos )[ /( 1/2)] ( / ) . (4.23)e er rprecession of plane
2 2 4 2

K

At i = 90°, one gets ωprecession of plane = 0. For such inclination, which corresponds to
the orbital plane of the Rydberg electron being perpendicular to the orbital plane of
the Rydberg muon, there is no precession of the plane of orbit around the axis of the
symmetry of the muonic ‘ring’.
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Interestingly enough, it turns out that the above the problem of the motion of the
Rydberg electron in muonic-electronic helium atoms or helium-like ions is mathe-
matically equivalent also to another problem from atomic physics, as follows. In
paper [14] the authors considered a hydrogen Rydberg atom in a linearly-polarized
electric field of a high-frequency laser radiation E(t) = E0 cos ωLt, the laser frequency
ωL being much greater than the Kepler frequency of the Rydberg electron. By
applying the analytical method of separating the rapid and slow subsystems, they
showed that the perturbed motion of the atomic electron that occurs is characterized
by the following effective potential energy (in spherical polar coordinates with the
z-axis along vector E0)

γ θ γ ω= − − − = ( )U e r r e E m/ ( / )(3 cos 1), / 4 . (4.24)eeff
2 3 2 4

0
2 2 4

It is seen that the effective potential energy Ueff from equation (4.24) is indeed
mathematically equivalent to the effective potential energy Ueff from equation (4.14)
for the motion of the Rydberg electron in muonic-electronic helium atoms or
helium-like ions.

The authors of paper [14] also pointed out that while the geometrical symmetry of
the above physical systems is axial, so that only the projection Mz of the angular
momentum on the axis of the symmetry is exactly conserved, there is also an
approximate conservation of the square of the angular momentum M2.2 The latter
quantity is proportional to the area of the orbit. Therefore, the fact that the shape of
the elliptical orbit is not affected by the perturbation is the manifestation of the
conservation of M2. This means that the above physical systems have a higher than
geometrical symmetry (sometimes called hidden symmetry), which is a counter-
intuitive result. Only a relatively small number of physical systems have a hidden
symmetry. So, the fact that a muonic-electronic helium atom or helium-like ion in
Rydberg states possesses the hidden symmetry should be of a general physical
interest.

For completeness we mention that in the corresponding quantum problem of a
hydrogen atom in a linearly-polarized high-frequency laser field, the analytical
solution for which was presented in paper [15], there is also a manifestation of the
hidden symmetry. Namely, despite the states of the unperturbed system being
degenerate, it turned out to be possible to apply the simpler formalism of the
perturbation theory for non-degenerate states. This was because the non-diagonal
elements of the perturbation (the perturbation being the second term in Ueff from
equation (4.24)) turned out to be zeros.

In summary, we considered muonic-electronic helium atoms or helium-like ions
(with the primary focus on helium atoms), where both the muon and the electron are
in Rydberg states, the muon being in a circular Rydberg state. We showed that the

2 It should be noted that for the type of the potential energy given by formulas (4.14) or (4.24), the square of the
angular momentumM2 is conserved exactly. However, formulas (14.4) and (4.24) were obtained by neglecting
some corrections (much smaller than the second term in (4.14) or in (4.24)). Since formulas (4.14) and (4.24)
are approximate, so is the conservation ofM2. Nevertheless, any additional quantity that is conserved (whether
exactly or approximately), is physically important.
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subsystem ‘nucleus—muon’ can be treated as the rapid subsystem, while the electron
is the slow subsystem.

We demonstrated that the motion of the Rydberg electron occurs in a modified
Coulomb potential, where the second term is due to the quadrupole interaction with
muonic ‘ring’. We showed that the effective potential energy of the Rydberg electron
is mathematically equivalent to the potential energy of a satellite moving around an
oblate planet (e.g., the oblate Earth). Based on this, we demonstrated that the
unperturbed orbital plane of the Rydberg electron undergoes simultaneously two
different precessions: one is the precession within the orbital plane, the other the
precession of the orbital plane around the axis of the muonic ‘ring’. We provided
analytical expressions for the frequencies of both precessions.

We emphasized that the shape of the elliptical orbit of the Rydberg electron is not
affected by the perturbation, which is the manifestation of the (approximate)
conservation of the square of the angular momentum of the Rydberg electron.
This means that the above physical systems have a higher than geometrical symmetry
(also known as hidden symmetry), which is a counterintuitive result of a general
physical interest.

Finally, we noted that the above problem of the motion of the Rydberg electron
in muonic-electronic helium atoms or helium-like ions is mathematically equivalent
also to another problem from atomic physics: a hydrogen Rydberg atom in a
linearly-polarized electric field of a high-frequency laser radiation.

We note that in papers [16, 17] the authors considered Rydberg states of muonic-
electronic negative hydrogen ion, the results being presented in appendix B of this
book. In another paper [18] the authors analyzed Rydberg states of muonic-
electronic helium-like atoms or ions, the results being presented in appendix C of
this book. In all the three papers [16–18], the authors used the method of separating
rapid and slow subsystems.

While the systems considered in the present chapter and in paper [18] are
identical, here is an important distinction between the approaches. The system
considered in the present chapter is truly stable, the electron orbit is generally
elliptical, but the relatively small influence of the electron on the muon was
neglected. In paper [18] the influence of the electron on the muon was taken into
account; however, in the rotating frame used in paper [18] the motion of the muon
becomes only metastable (not truly stable); besides, only the circular orbits of the
electron were considered in paper [18].
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Chapter 5

A circumbinary planet around a binary star in
Einstein’s general relativity and in Newton’s

gravity

Studies of planets around binary stars are especially important because it is
estimated that approximately one half of them could potentially support life [1–3].
Most of the published analytical results related to a simplified situation where the
planet is confined to the plane, in which the two stars orbit one another, thus
reducing the problem to two dimensions [1–9].

As for studies of a three-dimensional motion, we can mention paper [10] and
references therein concerning analytical results, and paper [11] and references therein
concerning simulations. Also, in paper [12] it was shown analytically the possibility
of a relatively stable ‘cork screw’ trajectory of the planet. The cork screw has a shape
of a cone coaxial with the interstellar axis. In paper [13] were specified the ranges of
parameters required for such trajectory to have a long-time stability.

In the present chapter, we discuss the motion of a circumbinary planet (that is, for
the situation where the stars move along circular orbits) in frames of Newton’s
gravity and in frames of Einstein’s general relativity (limiting ourselves by the first
nonvanishing relativistic correction). We focus at various types of the precession of
the planetary orbit. For the case of Newton’s gravity the results are produced by
means of the analytical method of separating rapid and slow subsystems. For the
latter case we point out that this physical system has analogies both in celestial and
quantum mechanics, and that this physical system possesses higher than geometrical
symmetry.

Let us start by considering a motion of a light planet of mass m around a heavy
central mass m0 ≫ m. The equation of the relative motion can be represented in the
form

doi:10.1088/2053-2563/ab3db0ch5 5-1 ª IOP Publishing Ltd 2020

https://doi.org/10.1088/2053-2563/ab3db0ch5


τ = − + −
+ +

m r E mc mc Gm m r L Mr

G m m L c Mr

( /2)(d /d ) [ /(2 ) /2] / /(2 )

( ) /( ).
(5.1)

2 2 2 2
0

2 2

0
2 2 3

Here, τ is the proper time, E is the energy, G is the gravitational constant, L is the
angular momentum, and M = m0m/(m0 + m) is the reduced mass. So, the radial
motion of the planet occurs in the following relativistic effective potential

= − + − +V Gm m r L Mr G m m L c Mr/ /(2 ) ( ) /( ). (5.2)r 0
2 2

0
2 2 3

By introducing notations

= =h L Gm mM g Gm mM c/(2 ), / , (5.3)2
0 0

2

h being the scaled square of the angular momentum, equation (5.2) can be re-written
in the form

= − + −V r h r hg r1/ /(2 ) / , (5.4)r s,
2 3

where

=V V Gm m/( ) (5.5)r s r, 0

is the scaled relativistic effective potential.
Figure 5.1 shows a three-dimensional plot of the scaled relativistic effective

potential Vr,s versus both the radial variable r and the scaled square of the angular
momentum h for g = 0.1.

Figures 5.2 and 5.3 present plots of the scaled relativistic effective potential Vr,s

versus the radial variable r at g = 0.1 for two values of the scaled square of the
angular momentum h = 0.5 and h = 0.1, respectively.

Figure 5.1. Three-dimensional plot of the scaled relativistic effective potential Vr,s versus both the radial
variable r and the scaled square of the angular momentum h for g = 0.1.
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From figures 5.1–5.3 it is seen that for the existence of stable planetary orbits, the
angular momentum must be sufficiently large. This is the distinction from the non-
relativistic case where stable planetary orbits are possible for any non-zero value of
the angular momentum.

Due to the third, relativistic term in the effective potential from equation (5.2), the
elliptical orbit of the planet undergoes a precession. The relativistic precession angle
δφr per one revolution over the elliptical orbit is

δφ π ε= + −G m m c a6 ( )/[ (1 )], (5.6)r 0
2 2

where a and ε are the major semi-axis and the eccentricity of the ellipse, respectively.
Now we proceed to the situation where the heavy central mass is represented by a

binary star. We consider the case where the average separation a0 between the two
stars is much smaller than the major semi-axis a of the planetary ellipse:

≪a a. (5.7)0

Figure 5.2. The scaled relativistic effective potential Vr,s versus the radial variable r at g = 0.1 for the scaled
square of the angular momentum h = 0.5.

Figure 5.3. The scaled relativistic effective potential Vr,s versus the radial variable r at g = 0.1 for the scaled
square of the angular momentum h = 0.1.
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Then in the first approximation, the radial motion of the planet can be described by
the relativistic effective potential Vr from equation (5.2) after the substitution

= +m m m , (5.8)0 1 2

where m1 and m2 are the masses of the two stars. Then the relativistic precession
angle δφ per one revolution over the elliptical orbit takes the form

δφ π ε= + + −G m m m c a6 ( )/[ (1 )]. (5.9)r 1 2
2 2

Now let us discuss this problem in frames of Newton’s gravity. We limit ourselves
by the case of a circumbinary planet, meaning that both stars move in circular orbits
around their barycenter, being separated by the fixed distance a0. The plane of the
planetary orbit, generally speaking, is not co-planar with the orbital plane of
the stars.

Under the condition (5.7), the Kepler frequency of the stars rotation
Ω = [G(m1 + m2)/a

3]1/2 is much greater than the Kepler frequency ω of the planet
ω = [G(m1 + m2 + m)/A3]1/2. Thus, the binary star can be treated as a rapid
subsystem and the circumbinary planet can be treated as a slow subsystem.
Therefore, the planet perceives each star as a circular ring of the mass mk uniformly
distributed around the ring (here k = 1, 2).

In paper [14] it was shown that the effective potential for the planet in this picture
is

μ θ= − + − −V G m m m r G r( ) / ma (3 cos 1)/(4 ), (5.10)eff 1 2
2 2 3

where

μ = +m m m m/( ). (5.11)1 2 1 2

In equation (5.10), θ is the polar angle counted from the axis of the symmetry of the
stellar ‘rings’.

The effective potential from equation (5.10) is mathematically equivalent to the
potential of a satellite orbiting an oblate planet, such as, for example the Earth. The
latter potential can be found, for instance, in book [15]. It is well-known that
the elliptical orbit of the satellite engages in two types of precession simultaneously,
while the shape of the orbit does not change [15]. First, the satellite orbit precesses in
its own plane. The ratio of the Kepler period T of the satellite to the period of this
precession t1 is [15]

ε= − −T t I R a i/ (3 /4){ /[ (1 )]} (1 5 cos ), (5.12)1 2
2 2 2

where I2 is a constant characterizing the relative difference between the equatorial
and polar diameters of the Earth, R is the equatorial radius of the Earth, and i is the
inclination, that is, the angle between the plane of the satellite orbit and the
equatorial plane of the Earth.

Second, the satellite orbital plane precesses around the axis along the polar
diameter of the Earth. The ratio of the Kepler period T of the satellite to the period
of that precession t2 is [15]:
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ε= −T t I R a i/ (3 /2){ /[ (1 )]} cos . (5.13)2 2
2 2

Similarly, the elliptical orbit of the circumbinary planet engages in two types of
precession simultaneously, while the shape of the orbit does not change. First, the
satellite orbit precesses in its own plane. The ratio of the Kepler period T of the
satellite to the period of this precession t1 is [14]:

ε= − − +T t a a i m m m m/ (3/8){ /[ (1 )]} (1 5 cos ) /( ) . (5.14)1 0
2 2 2

1 2 1 2
2

Second, the satellite orbital plane precesses around the axis of the symmetry of the
stellar ‘rings’. The ratio of the Kepler period T of the satellite to the period of that
precession t2 is [10, 14]:

ε= − +T t a a i m m m m/ (3/4){ /[ (1 )]} (cos ) /( ) . (5.15)2 0
2 2

1 2 1 2
2

Both of the above physical systems are also mathematically equivalent to a
hydrogen Rydberg atom in a linearly-polarized electric field of a high-frequency
laser radiation, the latter system being studied analytically in paper [16].

From the geometrical point of view, all the three above physical systems have
only the axial symmetry. For systems possessing the axial symmetry, only the
projection of the angular momentum on the axis of the symmetry is exactly
conserved. However, for all the three above physical systems the square of the
angular momentum is also conserved, though approximately. This is manifested by
the invariance of the shape of the elliptical orbit during the precessions.

This signifies an algebraic symmetry (sometimes called hidden symmetry) that is
higher than geometrical symmetry.

Coming back to the circumbinary planet: so, there is a relativistic precession of
the planetary orbit and two non-relativistic precessions of it. How do they compare
to each other? First, let us calculate the ratio ω1/ω2 of the periods of the two above
non-relativistic precessions:

ω ω= = − i irat / (1 5 cos )/(2 cos ). (5.16)1 2
2

Figure 5.4 shows this ratio versus the inclination i (radians). It is seen that as the
inclination increases, so does this ratio. It changes the sign at i = 1.11 radians, which
corresponds to 63.4°. The periods/frequencies of the two non-relativistic precessions
become equal to each other at i = 1.28 radians, which corresponds to 73.1°.

To simplify a further comparison let us consider the particular case where the
planetary orbit is in the plane of the star’s rotation: i = 0. In this case, the frequencies
of the two non-relativistic precessions have opposite signs, meaning that they ‘work’
in opposite directions. The absolute value of the frequency ω1 is twice as much as the
frequency ω2. So, the effective frequency of the non-relativistic precession is
ωeff = ω1 + ω2. The ratio of ∣ωeff∣ to the Kepler frequency ω of the planet is:

ω ω ε= − − +a a m m m m/ (3/4){ /[ (1 )]} /( ) . (5.17)eff 0
2 2

1 2 1 2
2

The angle of the precession δφ, corresponding to the ratio from equation (5.17) is
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δφ π ε= − − +a a m m m m(3 /2){ /[ (1 )]} /( ) . (5.18)0
2 2

1 2 1 2
2

Now let us calculate the ratio of the angle of the relativistic precession δφr from
equation (5.9) to the angle of the non-relativistic precession δφ from equation (5.18):

δφ δφ ε= − + + + −G m m m m m c m m a a a/ [2 ( ) ( )/( )][ (1 )/ ]. (5.19)r 1 2
2

1 2
2

1 2 0
2

0

In equation (5.19), the factor in the first bracket is much smaller than unity, while the
factor in the second bracket is much greater than unity. Therefore, depending on the
interplay of these two factors, the precession of the planetary orbit could be
controlled either by the relativistic precession or by the non-relativistic precession.
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Chapter 6

Particular analytical solution for the unrestricted
three-body problem of celestial mechanics: a
‘corkscrew’ orbits of a planet around a binary
star or of a moon around a star-planet system

The subject of this chapter is the following variation of the general three-body
problem in astrophysics. There are two relatively heavy bodies rotating around their
barycenter, one of the bodies being significantly heavier than the other one. In
addition, there is a third, much lighter body whose orbit is relatively close to the
lighter of the two heavy bodies, the orbit being not in the plane of the rotation of the
two heavy bodies, so that the motion of the entire three-body system is really three-
dimensional. One particular kind of such a system is the star–planet–moon system.
Another particular kind is the binary-star–planet system (i.e., a planet around a
binary star). For brevity we call such three-dimensional three-body systems
‘3D3BS’.

In papers [1–3] it was discovered that the third, much lighter body can have
stable (rigorously speaking, metastable) orbits of a conic-helical shape. For example,
in a binary-star-planet system, the planet orbit is a helix on a conical surface, whose
axis of symmetry coincides with the interstellar axis (figure 6.1).

Conic-helical orbits in 3D3BS are of interest for several reasons. First, the
possibility of stable (or metastable) conic-helical orbits in 3D3BS is a fundamental
problem in its own right, as a relatively new chapter of the centuries-old classical
three-body problem. Second, one of its applications—namely, to binary-star–planet
systems—is especially significant for the search for extraterrestrial life. Indeed,
according to estimates (see, e.g., papers [4–6]), approximately 50 per cent of binary
stars could support habitable terrestrial planets within stable orbital ranges.

The results in papers [1–3] were obtained by applying the general analytical
method for systems that can be separated into rapid and slow subsystems. The
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method was applicable because there are ranges of parameters, specified in papers
[1–3], where the primary frequency Ω of the conic-helical motion of the planet in
binary-star–planet systems is much greater than the Kepler frequency ω of the stars’
revolution around their barycenter. Even allowing for the stars’ rotation, the
trajectory of the planet is still conic-helical. The plane of the quasi-circular planetary
orbit undergoes relatively small oscillations along the rotating interstellar axis and
the radius of the planetary orbit also undergoes relatively small oscillations. Last,
but not least: in paper [1] were also obtained positive results concerning the
transitability (and thus, detectability) of such planets.

The 3D3BS have a limited analogy to one-electron Rydberg quasimolecules
(hereafter, ORQ) studied in atomic/molecular physics. The ORQ consist of two
fully-stripped ions of the nuclear charges Z and Z′ plus one highly-excited electron.
They are encountered in various plasmas containing more than one kind of ions.
Examples are (but are not limited to) magnetic fusion plasmas, laser-produced
plasmas, plasmas used for x-ray and VUV lasers, solar plasmas, etc. In these
plasmas, a fully-stripped ion of the nuclear charge Z′ can come close to a hydrogen-
like ion of the nuclear charge Z and form a short-lived molecule (i.e., quasimole-
cule). Conversely, a fully-stripped ion of the nuclear charge Z can come close to a
hydrogen-like ion of the nuclear charge Z′ and form a quasimolecule. Such
quasimolecules are a very useful playground for theoretical and experimental studies
of charge exchange, which is a physical process of primary importance for many
areas of physics (e.g., for the areas listed above).

Classical analytical studies of ORQ were first presented in papers [7, 8] and later
in the book [9]. The latest works were presented in the review [10]. The primary

Figure 6.1. Sketch of the conic-helical motion of the planet in the model binary star system where the stars are
stationary. We stretched the trajectory along the interstellar axis to make its details more visible. (Reproduced
with permission from [2]. Copyright 2015 N Kryukov and E Oks.)
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result was the discovery of classical stable electronic orbits of the shape of a helix on
the surface of a cone.

It should be emphasized that there is only a limited similarity between ORQ and
3D3BS because of the following distinctions between these two physical systems.
First, in ORQ the attractive centers (nuclei Z and Z′) can be stationary and still be
stable, while in binary star systems the rotation of the stars is necessary for the
stability.

Second, in ORQ the attractive centers can engage in oscillations (called
vibrations) and be stable without any rotation. This is not the case for 3D3BS.

Third, in ORQ the electronic degree of freedom has a much larger characteristic
frequency and energy than the nuclear degrees of freedom. This is the basis for the
standard Born–Oppenheimer approximation, where the primary contribution to the
energy of the system can be obtained by freezing the nuclear motion. If necessary,
the nuclear motion can be later taken into account by perturbation theory.

The Born–Oppenheimer approximation is a particular case of the general
analytical method for a system that can be separated into rapid and slow
subsystems. For ORQ, this method is applicable because the ratio of frequencies
(and energies) of the electronic motion, the vibrational nuclear motion, and the
rotational nuclear motion is 1: (me/Mn)

1/2: (me/Mn). Here me is the electron mass and
Mn is the total mass of the two nuclei, so that me/Mn < 1/3600 and the separation of
the slow and rapid subsystems is justified ‘automatically’. This is, generally speaking,
not the case for 3D3BS.

Indeed, for 3D3BS the analogue of molecular oscillations (vibrations) is a
periodic change of the separation between the two stars, which occurs for eccentric
stellar orbits. One distinction from ORQ is that both oscillations and rotations have
the same frequency: the Kepler frequency ω of the two stars orbiting their
barycenter. Another distinction from ORQ is that the primary frequency Ω of the
helical motion of the planet is not ‘automatically’ much greater than the star’s
Kepler frequency ω.

In papers [1–3] it was shown that there are ranges of parameters where actually
Ω ≫ ω. Further, it was demonstrated that there are ranges of parameters where the
planetary motion is stable for a model case of stationary stars and that there are
ranges of parameters where the planetary motion is stable (or metastable) for the
real case of stars rotating in circular or elliptical orbits. Below we reiterate the main
results from papers [1–3].

First, let us consider a model system consisting of two immobile stars of masses μ
and μ′, and a planet of a unit mass moving around a circle in the plane perpendicular
to the interstellar axis, on which the circle is centered. The mass μ is at the origin and
the Oz axis is directed to the mass μ′ located at z = R. After introducing notations

μ μ= ′ = ′Z G Z G, (6.1)

where G is the gravitational constant, the Hamilton function of the system is written
in the cylindrical coordinates (z, ρ, φ) as
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ρ
ρ= + + +ρ

ϕ
H p p

p
U z

1
2

( , ) (6.2)z
2 2

2

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where the potential energy is

ρ
ρ ρ

= −
+

− ′
− +

U z
Z

z

Z

R z
( , )

( )
(6.3)

2 2 2 2

The relation between the momenta and the corresponding velocities follows from the
Hamiltonian equations of the motion:

ρ ϕ
ρ

= ∂
∂

= = ∂
∂

= = ∂
∂

=
ρ

ρ
ϕ

ϕz
t

H
p

p
t

H
p

p
t

H
p

pd
d

,
d
d

,
d
d

(6.4)
z

z 2

Since H does not depend on φ, the corresponding momentum is conserved:

ρ ϕ= = =ϕp
t

M
d
d

const. (6.5)2

Physically, the separation constant M is a projection of the planet angular
momentum on the interstellar axis. Thus, the z- and ρ-motions can be determined
separately from the φ-motion. Then the φ-motion can be found from the ρ-motion
via equation (6.5).

The Hamilton function for the z- and ρ-motions can be represented in the form

ρ=
+

+ρ
H

p p
U z

2
( , ) (6.6)z

2 2

eff

where an effective potential energy (EPE) is:

ρ
ρ

ρ= +U z
M

U z( , )
2

( , ) (6.7)eff

2

2

After introducing scaled (dimensionless) variables w and v, a scaled projection of the
angular momentum m, as well as a ratio of the star masses b,

ρ μ
μ

≡ ≡ ≡ ≡ ′
w

z
R R

m
M

ZR
b, , , (6.8)v

the EPE can be re-written as

=

= −
+

−
− +

U
Z
R

u w m b u w m b

m

w

b

w

( , , , ), ( , , , )

2
1

(1 )

(6.9)
eff eff eff

2

2 2 2 2 2

v v

v v v

By equating to zero the derivative of the EPE with respect to w
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∂
∂

= ∂
∂

=U
w

Z
R

u
w

0 (6.10)eff eff

a relation was found

− +
=

− +
b

w
w

w w((1 ) ) (1 )( )
(6.11)2 2 3/2 2 2 3/2v v

which determines a line w( )0v in the plane (w, v), where the equilibrium points of the
EPE are located:

= − −
− − −w b

w w b w
b w w

( , )
(1 )

(1 )
(6.12)0

2/3 4/3 2/3 2

2/3 2/3 2/3
v

For b < 1, the equilibrium value of v exists for 0 ⩽ w < b/(1 + b) and for 1/(1 + b1/2) ⩽
w ⩽ 1. For b > 1, the equilibrium value of v exists for 0 ⩽ w ⩽ 1/(1 + b1/2) and for
b/(1 + b) < w ⩽ 1. For b = 1, the equilibrium value of v exists for the entire range of
0 ⩽ w ⩽ 1. Below we refer to these intervals as the ‘allowed ranges’ of w.

By equating to zero the derivative of the EPE with respect to v

∂
∂

= ∂
∂

=U Z
R

u
0 (6.13)eff eff

v v

and then substituting w b( , )0v from equation (6.12) instead of v, another relation was
found:

=
− +

≡
( )

m
w b

w w w b
m w b

( , )

1 ( , )
( , ) (6.14)

0
2

2
0
2 3/4 0

v

v

While deriving equation (6.14), we used equation (6.11) to eliminate an explicit
dependence on b, so that b enters equation (6.14) only implicitly—as an argument of
the function w b( , )0v . In a number of subsequent derivations, we will also use
equation (6.11) for the same purpose without further notice.

For each set of (w, b), where w belongs to the allowed ranges, equation (6.14)
determines an equilibrium value of m0(w, b)—in addition to the equilibrium value of

w b( , )0v determined by equation (6.12). Then for some value of b, there was
considered a set of equilibrium values (wi, i0v , m0i) and the EPE ueff was expanded
in terms of δw and δv, where

δ δ≡ − ≡ −w w w , (6.15)i i0v v v

The expansion has the form

δ δ δ δ≈ + + + ≡u u u
w

u u w u u w m
2 2

, ( , , ) (6.16)ww vv wv i i ieff 0

2 2

0 eff 0 0
v

v v

In the subsequent formulas the suffix i is dropped for brevity.
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Since generally uwv ≠ 0, a rotation of the reference frame is required in order to
transform the EPE to so-called ‘normal’ coordinates, diagonalizing the matrix of the
second derivatives of the EPE [11, 12]:

δ δ α δ α δ δ α δ α′ = + ′ = − +w w wcos sin , sin cos (6.17)v v v

where

α =
−

= −u
u u

w
P

tg2
2 (1 2 )

(6.18)wv

ww vv

0v

so that

α α= + = − −P Q P Q
wcos

1 /
2

, sin
1 /

2
sign(1 2 ) (6.19)

Here,

≡ − + ≡ + − +( )( )P w w Q w w(1 ) , (1 ) (6.20)0
2 2

0
2 2

0
2v v v

In the normal coordinates, the EPE takes the form

δ
ω

δ
ω

≈ + ′ + ′− +u u w
2 2

(6.21)eff 0
2

2
2

2

v

where

ω ≡
+ −

±±

( )w w
w

Q
1 1

1
3

(6.22)
2

0
2 3/4

v

The scaled (dimensionless) frequency ω+ of small oscillations around the
equilibrium in the direction of the normal coordinate δv′ is always real.
According to the notations from paper [1], any frequency F and its scaled
(dimensionless) counterpart f are related as follows:

≡f
R
Z

F (6.23)
3

As for the quantity ω–, it is real if

⩾ − − + − − − + ≡w b w w w w w w w( , ) (1 )
1
2

9 (1 ) (1 )
1
4

( ) (6.24)0
2 2

critv v

Physically, under the condition (6.24), the quantity ω– is the frequency of small
oscillations around the equilibrium in the direction of the normal coordinate δw′.

Thus, if w b( , )0v > w( )critv , the EPE has a two-dimensional minimum at the
equilibrium values of w and v = w b( , )0v , so that the equilibrium is stable. After
introducing a scaled (dimensionless) time
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τ ≡ Z
R

t (6.25)
3

the following final expression for the small oscillations around the stable equilibrium
was obtained:

δ τ ω τ ψ α ω τ ψ α
δ τ ω τ ψ α ω τ ψ α

= + + +
= + − +

− +

− +

w a a

a a

( ) cos( )cos cos( )sin

( ) cos( )sin cos( )cos
(6.26)

w w

w wv
v v

v v

Here amplitudes aw, av and phases ψw, ψv are determined by initial conditions; sin α
and cos α are given by equation (6.19). Compared to the corresponding equation
(6.28) from [1], here in equation (6.26) we corrected a typographic error in signs.

The solution for the φ-motion turned out to be

φ τ

τ ω
ω τ ψ ψ α

ω
ω τ ψ ψ α

≈ −
+ − + + −

− +
−

−
+

+

( )
f

a a

w w

( )

2

1
(sin( ) sin )sin

1
(sin( ) sin )cos

1

(6.27)
p

w w w

2
0
2 3/4

0v v

v v v

where

≡
− +( )

f
w w

1

1
(6.28)p

2
0
2 3/4

v

is a scaled (dimensionless) primary frequency of the φ-motion. Equations (6.27) and
(6.28) show that the φ-motion is a rotation about the internuclear axis with the
frequency f, slightly modulated by oscillations of the scaled radius of the orbit v at
the frequencies ω+ and ω–. In other words, for the stable motion, the planetary
trajectory is a helix on the surface of a cone, with the axis coinciding with the
interstellar axis. In this conic-helical state, the planet, while spiraling on the surface
of the cone, oscillates between two end-circles which result from cutting the cone by
two parallel planes perpendicular to its axis (figure 6.1).

Further, in papers [1–3], there was an analytical study of the effects of the stars’
rotation and the eccentricity of their orbits on the conic-helical orbit of the planet for
the situations where the Kepler frequency

ω μ μ= + ′G
R

( ) (6.29)
3

of the two stars orbiting their barycenter (which is also the frequency of oscillations
of the interstellar distance in the case of eccentric stellar orbits) is much smaller than
the primary frequency of the revolution of the planet around the interstellar axis.
This situation allows applying the standard method of the separation of rapid and
slow subsystems.

According to equation (6.23), the scaled, dimensionless counterpart of the Kepler
frequency is
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ω= = +f
R
Z

b1 (6.30)
s

3

The ratio of the scaled primary frequency fp of the planetary motion (given by
equation (6.28)) to the scaled Kepler frequency fs of the stars is

=
+ − +( )

k w b
b w w w b

( , )
1

(1 )(1 ) ( , )
(6.31)2

0
2 3/4

v

This ratio becomes sufficiently large if the projection of the planetary orbit on the
interstellar axis is either close to the star of the smaller mass (w ≪ 1) or close to
the star of the larger mass ( (1 − w) ≪ 1). Those are the ranges of parameters where
the separation into the rapid and slow subsystems is justified.

In the reference frame rotating together with the stars with the Kepler frequency
ω, there is an additional force (see, e.g., [11–13]):

ω ω ω= × − × ×F v r2 ( ) (6.32)1

Since v ~ Ωρ, where Ω is the primary frequency of the planetary motion and ρ is the
average radius of the planetary orbit, and because Ω ≫ ω, then the additional force
is approximately

ω≈ ×F v2 (6.33)1

Expression (6.33) has a clear physical meaning for the quantal counterpart-problem
of ORQ. Namely, it is a ‘Lorentz electric field’ v × Beff/c in the effective magnetic
field Beff = cω in atomic units (or Beff = mecω in the CGS units, me being the
electron mass).

In papers [1–3] the Ox axis was chosen along vector ω, which is obviously
perpendicular to the interstellar axis chosen as the Oz axis. Since the planetary
velocity v is primarily in the xy-plane perpendicular to the interstellar axis, then the
additional force F1 is primarily along the interstellar axis.

Representing r/ρ = ex cosΩt + ey sin Ωt, so that v/ρ = (–Ω sin Ωt)ex + (Ω cosΩt)ey,
and using ω = ωex, equation (6.32) yields:

ρ ω ω= − Ω Ω + Ωt tF e e( 2 cos sin ) (6.34)z y1
2

In the ranges of parameters where Ω ≫ ω, equation (6.34) becomes

ρω≈ − Ω ΩtF e2 cos (6.35)z1

Thus, for the zρ-motion (which in the scaled coordinates is wv-motion), the
situation represents a two-dimensional oscillator, having the eigenfrequencies ω+

and ω– defined by equation (6.22), that is driven by the force F1 oscillating at the
frequency Ω. Using the well-known formulas for driven oscillators (see, e.g. [13]), the
solution in the coordinates w′, v′ rotated by the angle α (defined by equation (6.18))
compared to the coordinates w, v (i.e., in the coordinates, where the two oscillators
are decoupled) can be immediately written. Then coming back to the original scaled
coordinates w, v, one obtains:
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Using the relation (ω+
2 + ω–

2)/2 = fp
2 and equation (6.19), the latter formulas can be

finally re-written in the following simple form:

δ τ
ω

ω ω
τ

δ τ

=
−

=
+ −

w
w b f

f( )
4 ( , )

cos

( ) 0

(6.37)
s p

p

0

2 2

v
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We note that in equations (6.32)–(6.37), we corrected some typographic errors
compared to the corresponding equations from paper [1].

Equation (6.37) shows, in particular, that the major term in the amplitude δv(τ) of
the oscillations of the scaled radius of the planetary orbit—the term that could have
been of the same order as the right side of δw(τ)—vanished. Physically, this means
that δv(τ)≪ δw(τ), where a small non-zero contribution to δv(τ) could be obtained by
taking into account the second, small term in equation (6.34). Thus, while the
trajectory of the planet is conic-helical, the cone is very close to a cylinder. In other
words, the forced oscillations of the ‘circular’ planetary orbit are primarily along the
interstellar axis. For the quantal counterpart-problem of ORQ this should have been
expected. Indeed, the electron in a circular orbit is like a charged ‘ring’: so, in the
monochromatic electric (Lorentz) field perpendicular to the axis of the charged ring,
the ring should oscillate along its axis.

Figure 6.2 shows the scaled amplitude δw0 = 4 0v (w, b)ωsfp/(ω+
2 − ω–

2) of the
oscillations of the planetary orbit along the interstellar axis versus the scaled

Figure 6.2. The scaled amplitude δw0 of the oscillations of the planetary orbit along the interstellar axis versus
the scaled projection w = z/R of the average plane of the planetary orbit on the interstellar axis, for three values
of the ratio b of the stellar masses: b = 100 (solid line), b = 30 (dashed line), and b = 10 (dotted line).
(Reproduced with permission from [2]. Copyright 2015 N Kryukov and E Oks.)
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projection w = z/R of the average plane of the planetary orbit on the interstellar axis,
for three values of the ratio b of the stellar masses. It is seen that δw0 ≪ 1 (i.e., the
amplitude of the oscillations is much smaller than the interstellar distance) for b
greater or of the order of 10. For the validity condition Ω ≫ ω of this result to be
satisfied with a large margin of ‘safety’, the average plane of the planetary orbit
should be very close to the star of the smaller mass (and the closer it is in the range of
w < 0.01, the smaller is the amplitude δw0, as seen from figure 6.2). As long as the
primary frequency Ω of the planet revolution about the interstellar axis exceeds by
many orders of magnitude the Kepler frequency ω of the stars’ rotation, the conic-
helical planetary orbit would remain stable for a very long time. (Rigorously
speaking, the planet is in a metastable state, which is yet another analogy with
atomic/molecular systems: they have metastable states living by many orders of
magnitude longer than other states of the system.)

Finally, the effect of the eccentric orbits of the stars was studied in papers [1–3]. In
the reference frame rotating together with the stars with the Kepler frequency ω, a
non-zero eccentricity ε of the stars’ orbits results in the oscillation of the interstellar
distance R with the frequency ω. In the ranges of parameters where Ω ≫ ω, the
oscillation of the interstellar distance is an adiabatic ‘perturbation’ of the planetary
motion. According to the principle of adiabatic invariance, the planetary motion
will adjust to the slowly varying R while keeping as the constant the average nonzero
projection M of the planetary angular momentum on the interstellar axis. The
projection of the planetary angular momentum on the interstellar axis undergoes
small oscillations (caused by stars’ rotation) around the nonzero average M, the
latter being the adiabatic invariant. Particularly, for the average plane of the
planetary orbit close to the star of the smaller mass, it was shown in papers [1–3]
that the eccentricity ε of the stars’ orbit would not affect the stability of the planetary
motion if ε does not exceed some critical value εc(b).

Now we discuss the same problem in the relativistic framework following papers
[2, 3]. The relativistic force acting on the planet (scaled by its mass, i.e., the force
divided by the mass of the planet) is given by the formula

γ
γ

= + · ̇
c

F a V V V (6.38)0
0
2

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where V is the velocity of the planet and γ0 = (1 − V2/c2)−1/2. The additional
acceleration given by equation (6.32) can be substituted into equation (6.38) as the
last factor, with V as the time derivative of the position in the rotating reference
frame

ρ ρ= Ω + Ωt tr e ecos sin (6.39)x y

After the calculation, we obtain the following values for the components of the
force:
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(here β = V/c). As ω ≪ Ω, the dominant term is the z-projection of the force (given
by the third equation in (6.40)). By analogy with the non-relativistic case, we derive
the small oscillations about the equilibrium due to the dominant force term:

δ τ ω
ω ω β

τ δ τ= ̃Ω̃
− −

Ω̃ =
+ −

w( )
4

( ) 1
cos , ( ) 0 (6.41)

2 2 2

v
v

where v = ρ/R (its equilibrium value given by equation (6.12)) and the tilde above
means scaling by multiplying by (R3/Z)1/2. We can now find the conditions, under
which the amplitude of the oscillations is small while the condition ω ≪ Ω stays
valid. In the relativistic case, the Hamiltonian, divided by the mass m of the planet
h = H/m, for the 3D3BS case is given by

ρ ρ ρ
= + + + −

+
− ′

− +
−ρ

ϕ
h c m c p p

p Z

z

Z

R z
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( )
(6.42)
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In a circular state, pz = pρ = 0 and ∣pφ∣/m = const. = L. Using the scaling

ε= = − =L
cR

R
Z

E r
Z
L

R, , (6.43)
2

l

we write the scaled energy for the circular state:
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− +
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For the relativistic motion,

ρ=
−

L
mV

V
c

1
(6.45)2

2

and, using the scaling ρ = vR from equation (6.8) and the first formula in equation
(6.43), we can find the speed of the planet in the relativistic OBSS case in the units of
the speed of light:

β =
+ p
1

1
(6.46)

2l
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where p = 2v . From the first and the third formulas in equation (6.43), ℓ2 = α/r2,
where α = (Z/(cL))2. Thus,

β

α

=
+ pr

1

1
(6.47)2

The equilibrium values for p and r can be obtained from differentiating (6.44) with
respect to w and v. The first differentiation gives the same relation as in the non-
relativistic case, so the equilibrium value of p is the squared right-hand side of
equation (6.12). The second differentiation (with respect to v), with the later
substitution of the equilibrium value of v (or p), yields the equilibrium value of ℓ,
which is related to r by ℓ

2 = α/r2 mentioned above. Using the substitution

γ = −
w
1

1 (6.48)
1/3⎛

⎝⎜
⎞
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which significantly simplifies the formulas in the two-Coulomb-center problem, we
find the speed of the planet in the circular state (in the units of the speed of light):

β α γ
γ γ

= −
− +

b( )
( 1) ( 1)

(6.49)
4 2/3 3

3 3 3

From equation (6.45) with the substituted value of V = Ωρ, the first relation in
equation (6.43), the second relation in equation (6.8) and using ℓ

2 = α/r2, we find

α βΩ = −c
R pr

1 (6.50)2

and

α βΩ̃ = −c
R
Z pr

1 (6.51)2

As given in equation (6.1), and measuring now the mass of the star μ in the units of
the mass of the Sun (in distinction to the nonrelativistic case, where the star masses
were measured in units of the mass of the planet), we get

μ= ⊙Z GM (6.52)

where ⊙M = 1.989 × 1033 g. Substituting equation (6.52) into equation (6.51), we
obtain

μ
α βΩ̃ = −R

s pr
1 (6.53)2

where the quantity s = G ⊙M /c2 (which is one half of the Schwarzschild radius of the
Sun and is approximately equal to 147 700 cm).
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As defined above, α1/2 = Z/(cL), and substituting the scaling relation for L from
equation (6.43), ℓ2 = α/r2 and equation (6.52), we have

α μ= s
R

r (6.54)

We substitute equation (6.54) into equation (6.49), and then substitute the resulting
equation for β and the solution for α into equation (6.53), obtaining the equation for
the scaled frequency of the revolution of the planet that only depends on the ratio
R/(μs) and γ (or w—see equation (6.48)). Finally, from equation (6.41), and because
ω = +∼ b(1 )1/2 from equations. (6.29) and (6.30), the amplitude of the small
oscillations about the equilibrium on the w-axis is

δ
ω ω β

=
+

− −
Ω̃

+ −

w
p b4 1

1
(6.55)0

2 2 2

and substituting the equation for the scaled frequency of the revolution of the planet
obtained previously, the equilibrium values for p and r, the equation for β and the
frequencies from equation (6.22), we derive the amplitude of the small oscillations of
the planet on the w-axis in the relativistic case:

δ
γ γ γ

γ γ
=

+ − −
− +

w
b b b

b

2 1 ( 1)

3( 1) ( 1)
(6.56)0

1/3 3 7/4 4 2/3

2/3 2 9/4 3 5/4

The amplitude in the relativistic case is the same as in the non-relativistic case.
We checked that the ratio k of the frequencies of the revolution of the planet Ω

and the Kepler frequency ω of the revolution of the stars about their barycenter is
much greater than 1. By using the previously found values of Ω and ω and
substituting the equilibrium values of p, r, α and β, we derive the formula for the
ratio k of the frequencies depending on the axial coordinate for the given interstellar
distance R and the star masses μ and μ′:

γ γ
γ γ

μ γ γ γ
γ γ

= − +
+ −

−
− − +

−
k

b

b

s
R

b b( 1) ( 1)

1 ( 1)
1

( ) ( 1)( 1)

( 1)
(6.57)

2/3 2 3/4 3 5/4

3/2 3 3/4

4 2/3 2/3 2 3

3 3/2

From equation (6.57) it can be found out that k in the relativistic case is equal to
the non-relativistic kNR multiplied by (1 − β2)1/2. Figure 6.3 shows the ratio k/kNR

versus the scaled radius of the orbit v, for the masses of the stars μ = 1 and μ′ = 100
(in the units of the mass of the Sun) and the interstellar distance R = 100 a.u. It is
seen that the relativistic effects become significant when v ~ 10−9 or smaller.

The range of v = (1 ÷ 2) × 10−9 for R = 100 a.u. corresponds to the range of the
radius of the planetary orbit ρ = (15 ÷ 30) km. Since the radius of the planet should
be smaller than ρ, in this case it should be a planetoid.

Figure 6.4 shows the dependence k(v) for the example where the mass of the
lighter star μ = 1 and the heavier star μ′ = 100 (in the units of the mass of the Sun)
and for the interstellar distance R = 100 a.u. (wide binary system). It is seen that the
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Figure 6.3. The ratio of the relativistic and non-relativistic k (which is the ratio of the frequencies of the
revolution of the planet Ω and the Kepler frequency ω of the revolution of the stars about their barycenter)
versus the scaled radius of the planetary orbit v = ρ/R, for the masses of the stars μ = 1 and μ′ = 100 (in the
units of the mass of the Sun) and the interstellar distance R = 100 a.u. (Reproduced with permission from [2].
Copyright 2015 N Kryukov and E Oks.)

Figure 6.4. The ratio of the revolution frequency of the planet and the Kepler frequency of the rotation of the
stars versus the scaled orbit radius v = ρ/R, for the example where the mass of the lighter star μ = 1 and
the heavier star μ′ = 100 (in the units of the mass of the Sun) and the interstellar distance R = 100 a.u. in the
relativistic case. (Reproduced with permission from [2]. Copyright 2015 N Kryukov and E Oks.)
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ratio of the frequencies is greater than 1012 for v < 2 × 10−9, which means that such a
system would be stable for a very long time.

In figure 6.5, we present the plot of the scaled amplitude δw0 of the axial
oscillations of the planetary orbit from equation (6.56) versus the scaled radial
coordinate v for the mass of the lighter star μ = 1 and the heavier star μ′ = 100, in the
units of the mass of the Sun. It is seen that the amplitude of the oscillations is much
(about one million times) smaller than the interstellar distance.

At the end of this chapter, we briefly discuss another example of the 3D3BS: a
star–planet–moon system [3]. We consider, as an example, an Earth-like planet
around a Sun-like star, so that the ratio of the masses μ/μ′ of the planet and the star
is 3 × 10−6. The separation between the planet and the star is R = 1 AU. The planet
has a moon.

In paper [3] it was shown analytically that the ratio Ω/ω of the frequency Ω of the
moon revolution around the planet–star axis to the frequency ω of the planet
rotation around the star is much greater than unity for the scaled projection w = z/R
of the average plane of the moon’s orbit on the planet-star axis in the range of 0 < w
< 10−4. So, the separation of rapid and slow subsystems was again justified.

It was also demonstrated in paper [3] that the scaled amplitude δw0 of the
oscillations of the moon’s orbit along the planet–star axis versus the scaled
coordinate w = z/R can be very small: δw0 ~ 10−6 at w < 10−4. Further, in paper
[3] it was demonstrated that the scaled amplitude δv of the oscillations of the scaled
radius v = ρ/R of the moon’s orbit in the plane perpendicular to the planet–star axis
versus the scaled coordinate w can also be very small:

Figure 6.5. The scaled amplitude δw0 of the oscillations of the planetary orbit along the interstellar axis versus
the scaled orbit radius v = ρ/R for the example where the mass of the lighter star μ = 1 and the heavier star
μ′ = 100 (in the units of the mass of the Sun). (Reproduced with permission from [2]. Copyright 2015 N
Kryukov and E Oks.)
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δv ~ 10−6 at w < 10−4.
In addition to the above analytical results, the authors of paper [3] also performed

exact simulations of the moon’s motion, as the moon revolves around the planet–
star axis while this axis rotates with the Kepler frequency corresponding to the star–
planet two-body problem. The simulations were performed for the initial value of
the scaled projection of the average plane of the moon’s orbit on the planet–star axis
w0 = 10−4, i.e., 15 000 km. It was found that all the three coordinates of the moon
underwent only relatively small oscillations around their equilibrium values, so that
the conic-helical orbit of the moon in the star–planet–moon system is stable.

Thus, under the influence of a relatively distant star, the plane of the moon’s orbit
could orient itself to be perpendicular to the planet–star axis. The trajectory of the
moon becomes conic-helical. This also means that the standard analytical method of
separating rapid and slow subsystems, used by the authors of paper [3], is well
justified and that this configuration will remain stable for a very long time.

References
[1] Oks E 2015 Astrophys. J. 804 106

Oks E 2016 Astrophys. J. 823 69
[2] Krjukov N and Oks E 2015 Internat. Rev. Atom. Mol. Phys. 6 7
[3] Kryukov N and Oks E 2017 J. Astrophys. Aerosp. Technol. 5 144
[4] Quintana E V and Lissauer J J In Planets in Binary Star Systems ed N Naghighipour

(Dordrecht: Springer), ch 10 265
[5] Fatuzzo M, Adams F C, Gauvin R and Proszkow E M 2006 Pub. Astron. Soc. Pacific 118

1510
[6] David E, Quintana E V, Fatuzzo M and Adams F C 2003 Pub. Astron. Soc. Pacific 115 825
[7] Oks E 2000 Phys. Rev. Lett. 85 2084
[8] Oks E 2000 J. Phys. B: Atom. Mol. Opt. Phys. 33 3319
[9] Oks E 2006 Stark Broadening of Hydrogen and Hydrogenlike Spectral Lines in Plasmas: The

Physical Insight (Oxford: Alpha Science International) appendix A
[10] Kryukov N and Oks E 2013 Inter. Rev. Atom. Mol. Phys. 4 121
[11] Landau L D and Lifshitz E M 1960 Mechanics (Oxford: Pergamon)
[12] Goldstein H 1980 Classical Mechanics (Reading, MA: Addison-Wesley)
[13] Jose J V and Saletan E J 1998 Classical Dynamics: A Contemporary Approach (Cambridge:

Cambridge University Press) section 4.2.4

Analytical Advances in Quantum and Celestial Mechanics

6-16

https://doi.org/10.1088/0004-637X/804/2/106
https://doi.org/10.3847/0004-637X/823/1/69
https://doi.org/10.1086/508999
https://doi.org/10.1086/508999
https://doi.org/10.1086/376395
https://doi.org/10.1103/PhysRevLett.85.2084
https://doi.org/10.1088/0953-4075/33/17/312


IOP Publishing

Analytical Advances in Quantum and Celestial Mechanics
Separating rapid and slow subsystems

Eugene Oks

Chapter 7

Magnetic stabilization of one-electron Rydberg
quasimolecules

In paper [1], the authors obtained an exact analytical classical solution for the
electronic terms of circular Rydberg states (CRS) in the presence of a magnetic field
B for two-Coulomb-center systems. The classical electronic terms were shown to be
significantly affected by the magnetic field. In particular, a sufficiently strong
magnetic field is shown to cause the appearance of CRS above the ionization
threshold. These CRS are the classical molecular counterparts of the quantal atomic
quasi-Landau levels (resonances).

In paper [1], the authors focused on the analytical classical description of CRS of
two-Coulomb-center systems in a magnetic field B parallel to the internuclear axis.
The system consists of two nuclei of charges Ze and Z′e, separated by a distance R,
and one electron, and is denoted by ZeZ′. Analytical results for the electronic terms
E(R) of the ZeZ′-system for the field-free case were obtained [2, 3] from first
principles within a purely classical approach. The classical approach reproduces [2,
3] several electronic terms and two of these terms undergo a V-shape crossing at
separation R*, so that CRS cannot exist for R < R*.

In paper [1] the authors obtained an exact analytical classical solution for the
electronic terms E(R,B) for CRS of the ZeZ′-system in the presence of a magnetic
field B. The solution is exact and is valid for any strength of the magnetic field. They
also studied how the classical electronic terms are influenced by the magnetic field,
including the case of a strong field. This is a fundamental problem in its own right.

Then they used the theory to explore the stability of the nuclear motion in the
ZeZ′-system. According to the method of separating rapid (electronic) and slow
(nuclear) subsystems, the electronic term E(R,B) should be added to the potential for
the nuclear motion. It was found that the term E(R,B) in the effective potential
v(R,B) = ZZ′/R+ E(R,B) for the relative motion of the nuclei plays a crucial role.
They found that the CRS-system, in the absence of the magnetic field, is not a
stable molecule, but is only a quasi-molecule with anti-bonding molecular orbitals.
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A similar classical result was obtained by Pauli [4] for the hydrogen molecular-ion
H2

+. The authors of paper [1] found that a magnetic field creates a deep minimum in
one of the branches of the effective potential V(R,B) for relative motion of the
nuclei, so as to render stable nuclear motion. The magnetic field can therefore be
used to transform a quasi-molecule into a real CRS molecule with a bonding
molecular orbital. This finding initiates a new phenomenon—the magnetically-
controlled stabilization of the CRS quasi-molecules—suitable for further studies. Let
the charge Z of the two-Coulomb-center system be fixed at the origin and the charge
Z′ be located along the OZ axis at nuclear separation R. For simplicity, let the plane
of the electron’s circular orbit of radius ρ centered at z be perpendicular to the
internuclear axis OZ. For z ≪ R or for (R − z) ≪ R when the electron is mainly
bound to the Z or the Z′ ion and is perturbed by the other fully stripped ion, these
circular orbits depict Stark states which correspond classically to zero projection of
the Runge–Lenz vector [5] on the axis OZ and quantally to zero electric quantum
number k = n1 − n2, where n1 and n2 are the parabolic quantum numbers [6]. The
classical Hamiltonian for fixed R of the ZeZ′-system in the presence of a uniform
magnetic field B parallel to the internuclear axis is given in atomic units by

ρ ρ ρ ρ
ρ

= − + − + −
+Ω + Ω Ω ≡

′H z M Z z Z z R

M B c

( , ) /(2 ) /( ) /[ ( ) ]

/2, /(2 ).
(7.1)

2 2 2 2 1/2 2 2 1/2

2 2

HereM is the constant z-component of the angular momentum and Ω is the Larmor
frequency expressed in practical units as Ω(s−1) ≈ 8.794 × 106 B(G).

Let us introduce the following scaled quantities:

ρ
ω

≡ ′ ≡ ≡ ≡
≡ ≡

b Z Z u R w z R m M ZR

WM Z h HM Z

/ , / , / , /( ) ,

/ , / ,
(7.2)

1/2

3 2 2 2

so that the scaled Hamiltonian is

ω ε ω
ε ω

ω ω

=
≡ − + − + −

+ +

h u w m u w

u w m u u w b u w

m u m

( , , ) ( , , ),

( , , ) /(2 ) 1/( ) /[ (1 ) ]

/ /(2 ).

(7.3)

2

2 2 2 2 1/2 2 2 1/2

2 2 2 6

The conditions for dynamic equilibrium are,

∂ ∂ = + − − + − =h w m w u w b w u w/ { /( ) (1 )/[ (1 ) ] } 0, (7.4)2 2 2 3/2 2 2 3/2

and

ω∂ ∂ = − + + + + − + =h u m m u u u w bu u w u m/ { / /( ) /[ (1 ) ] / } 0. (7.5)2 2 3 2 2 3/2 2 2 3/2 2 6

Equation (7.4) shows that equilibrium along the internuclear axis does not depend
on the scaled magnetic field ω. In terms of the equilibrium value w0 of w, the
equilibrium value of u can therefore be expressed as,

= − − − −{ }u w b w w b w b w w( , ) [ (1 ) ] /{ [ /(1 )] } . (7.6)0 0 0
2 2/3 2/3

0
2 1/2 2/3

0 0
2/3 1/2
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which only exists within the following ‘allowed ranges’,

⩽ < + + ⩽ ⩽ <
⩽ ⩽ + + < ⩽ >

⩽ ⩽ =

w b b b w b

w b b b w b
w b

0 /(1 ) and 1/(1 ) 1; 1;

0 1/(1 ) and /(1 ) 1; 1;
0 1; 1;

(7.7)
0

1/2
0

0
1/2

0

0

of w0. Equation (7.5), represents the condition for equilibrium in the orbital plane
and can be re-written in the form

ω =
± + + + − + +

m w b

f f j f j f f j

( , , )

{ /4 ( /4 ) /2 [ /2 ( /4)/( /4 ) ] /2} ,
(7.8)0

2 1/2 2 3 2 1/2 1/2 1/2

where, in terms of u(w0, b), given by equation (7.6),

ω ≡ +
+ + −

f w b u w b u w b w

bu w b u w b w

( , , ) ( , )/[ ( , ) ]

( , )/[ ( , ) (1 ) ] ,
(7.9)0

4
0

2
0 0

2 3/2

4
0

2
0 0

2 3/2

and

ω ω ω≡ −j w b u w b g g u w b( , , ) [ ( , ) /18] (4/ )[2 ( , ) /3] , (7.10)0
4

0
2 1/3 8

0
4 1/3

with

ω ω≡ ∣− + + ∣g w b f f u w b( , , ) 9 [81 768 ( , ) ] . (7.11)0
2 4 4

0
2 1/2 1/3

The plus and minus signs in equation (7.8) correspond, respectively to the positive
and negative projections of the angular momentum along the magnetic field. For
each set {b, m, ω} of parameters, equation (7.8) determines the equilibrium value w0

of the scaled z-coordinate of the orbital plane.
The internuclear distance R as noted above was considered to be ‘frozen’. In order

to reproduce the electronic terms, i.e., the dependence of the electronic energy on the
internuclear distance, one should now allow R to be a slowly varying adiabatic
quantity (slowly varying with respect to the electronic motion, as in the Born–
Oppenheimer approach [7]).

We consider energy terms of the same symmetry which, for the quantal ZeZ′-
problem, means terms with the same magnetic quantum number M [8–12].
Therefore, in our classical ZeZ′-problem, from now on we consider fixed projection
of the angular momentum M and study the behavior of the classical energy keeping
M constant.

We introduce the scaled internuclear distance

≡r RZ M/ (7.12)2

which, under the fourth relation in equation (7.2), reduces to

ω ω=r w b m w b( , , ) 1/ ( , , ). (7.13)0
2

0
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On substituting w = w0 into equation (7.3), then,

ω ω ε ω=h w b m w b u w b w( , , ) ( , , ) [ ( , ), , ]. (7.14)0
2

0 0 0

Thus, for any positive ratio of the nuclear charges b > 0 and for any value of the
scaled magnetic field ω, the dependence of the scaled energy h on the scaled
internuclear distance r is determined by equations (7.13) and (7.14) in terms of the
parameter w0, which takes all values from the allowed ranges specified by equation
(7.7) i.e., equations (7.13), (7.14) determine the classical electronic energy terms for
any strength of the magnetic field, including the strong field case. Particular
examples in paper [1] were chosen for the one electron quasimolecule based on
nuclei of He and Li: Z = 2 and Z′ = 3, so that b = 3/2. In the present chapter, for
demonstrating that the qualitative results of paper [1] hold not only for Z = 2 and
Z′ = 3, we choose for examples the one-electron quasimolecule based on nuclei of
He and Be: Z = 2 and Z′ = 4, so that b = 2. Figure 7.1 shows the scaled electronic
energy h versus the scaled internuclear distance r for b = 2 in the absence of magnetic
field. There are three terms of the same symmetry, a totally counterintuitive result
because there is more than one classical energy term. Moreover, two of these
classical energy terms undergo a V-shape crossing.

We note that the upper and middle energy terms terminate at some r = rmin, so
that there are no CRS at r < rmin for these two energy terms. The classical energy of
the CRS acquires an imaginary part at r < rmin, corresponding quantally to virtual
states/resonances. There may well be non-circular Rydberg states at r < rmin in the
same energy range, but this was beyond the scope paper [1].

We emphasize that the above example of Z′/Z = 3/2 is fully representative. In
fact, for any pair of Z and Z′ ≠ Z, there are three classical energy terms of the same
symmetry and the upper term always crosses the middle term. (For Z′ = Z, there is
only one term in the corresponding plot and no crossing, as expected.)

The previously published analysis [2, 3] provided the following interpretation
of these three energy terms. The lower term, as R → ∞ corresponds to the energy
E → −(Zmax/M)2/2 of the hydrogen-like ion with nuclear charge Zmax ≡ max(Z′, Z)
perturbed slightly by the other charge Zmin ≡ min(Z′, Z). As R → 0, the lower term

Figure 7.1. The scaled electronic energy h versus the scaled internuclear distance r for the ratio of the nuclear
charges b = 2 at the absence of the magnetic field (h and r are defined by equations (7.2) and (7.12),
respectively).
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translates into the energy E → (−(Z + Z′)2/M)2/2 of the hydrogen-like ion of the
nuclear chargeZ +Z′, i.e., to the united –atom limit [8–12]. Themiddle term asR→∞
corresponds to the energy E→ −(Zmin/M)2/2 of the hydrogen-like ion of nuclear charge
Zmin slightly perturbed by the charge Zmax. The upper term, as R → ∞, evolves into a
near-zero-energy state.

The analysis presented in paper [3] was not confined to circular orbits of the
electron. In order to make the present work more transparent, we briefly outline here
the scheme of that analysis. In cylindrical coordinates (z, ρ, ϕ), using the axial
symmetry of the problem, the z- and ρ-motions, due to axial symmetry, can be
separated from the ϕ-motion. The ϕ-motion can be determined from the calculated
ρ-motion. Equilibrium points of the two-dimensional motion in the zρ-space were
studied and a condition distinguishing between two physically different cases where
the effective potential energy: (a) has a two-dimensional minimum in the zρ-space,
and (b) has a saddle point in the zρ-space was explicitly derived. In particular, it
turned out that the boundary between these two cases corresponds to the point of
crossing of the upper and middle energy terms. For stable motion, the trajectory was
found [3] to be a helix on the surface of a cone, with axis coinciding with the
internuclear axis. In this helical state, the electron, while spiraling on the surface of
the cone, oscillates between two end-circles which result from cutting the cone by
two parallel planes perpendicular to its axis see figure 6.1.

We now ‘turn on’ the magnetic field—in contrast to the scope of papers [2, 3].
Figure 7.2 shows the scaled electronic energy h versus the scaled internuclear
distance r for b = 2 at ω = +1.18, i.e., at a moderate value of the magnetic field. We
note that ω > 0 corresponds to BM > 0, while ω < 0 corresponds to BM < 0;
remember B and M are the z-projections of the magnetic field and of the angular
momentum, respectively, and that the Oz axis is directed from the charge Z toward
the charge Z′.

Figure 7.2 shows that the magnetic field corresponding to ω = +1.18 and higher
values, under the condition BM > 0, lifts the entire upper and middle energy terms
into the continuum. Figure 7.3 shows the scaled electronic energy h versus the scaled
internuclear distance r for b = 2 at ω = +3.8, i.e., at a larger value of the magnetic

Figure 7.2. Same as in figure 7.1, but at the scaled magnetic field ω = +1.18. We note that ω > 0 corresponds to
BM > 0, while ω < 0 corresponds to BM < 0; here B and M are z-projections of the magnetic field and of the
angular momentum, respectively; the Oz axis is directed from the charge Z toward the charge Z′.
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field. It is seen that the magnetic field of this value (and of higher values), under the
condition BM > 0, lifts all three energy terms into the continuum.

These CRS above the ionization threshold, shown in figures 7.2 and 7.3, are
classical molecular counterparts of the quantal atomic quasi-Landau levels or
resonances. The latter were discovered experimentally by Garton and Tomkins
[13] (for theoretical references on atomic quasi-Landau resonances, see, e.g., the
book [14]).

Now we study the stability of the nuclear motion in the ZeZ′-system. As noted
above, the electronic term E(R,B) should be added to the potential for the nuclear
motion—according to the method of separating rapid (electronic) and slow (nuclear)
subsystems—see, e.g., book [15]. The electronic energy E(R, B) becomes a crucial
part of the effective internuclear potential

= ′ +V R B Z R E R B( , ) Z / ( , ). (7.15)

for the relative motion of the nuclei. The scaled internuclear potential

≡v VM Z/ , (7.16)2 2

then reduces (cf equation (7.14)) to

ω ω ε ω= + ′v w b Z m w b u w b w Z( , , , ) ( , , ){ [ ( , ), , ] }. (7.17)0
2

0 0 0

For any set {b, Z′, ω}, equations (7.13) and (7.17) therefore determine the
dependence of the scaled internuclear potential v on the scaled internuclear distance
r in terms of the parameter w0 which takes all values within the allowed ranges
specified by equation (7.7) i.e., equations (7.13) and (7.17) determine the classical
effective internuclear potential for any strength of the magnetic field, including the
strong field case.

Figure 7.4 shows the upper and middle branches of the scaled effective inter-
nuclear potential v versus the scaled internuclear distance r for Z = 2 and Z′ = 4 in
the absence of the magnetic field. It is seen for any starting point at the middle
branch, that the system would ‘find’ the way to lowering its potential energy without
any obstacle and would end up at an infinitely large internuclear distance, thereby

Figure 7.3. Same as in figure 7.2, but at ω = +3.8.
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resulting in dissociation. The same is true for the lower branch (not shown in
figure 7.4). In other words, in the absence of the magnetic field, the CRS-system,
associated with the middle or lower branches of the effective potential energy, is not
really a molecule, but only a quasimolecule because the molecular orbital is
antibonding. As we noted, the corresponding classical result was obtained previously
by Pauli [10] for the molecular hydrogen ion H2

+. The upper branch in figure 7.4
displays a very shallow minimum of v = −10.0444 located at r = 13.0.

We now ‘turn on’ the magnetic field. Figure 7.5 shows the upper and middle
branches of the scaled effective internuclear potential v versus the scaled internuclear
distance r for Z = 2 and Z′ = 4 at a relatively small scaled magnetic field ω = −0.3
(with BM < 0)1. It is seen that the minimum in the upper branch became significantly
deeper and moved towards lower r.

Figure 7.6 shows the same as figure 7.5, but for ω = −1. As the magnetic field
increased, it is seen that the minimum in the upper branch becomes further deepened
and moves even closer to the origin.

The ‘cusp’ formed by the upper and middle branches in figures 7.4–7.6 reflects the
fact that the upper and middle energy terms for the corresponding electronic terms
terminate at some r = rmin—as already noted above. Although present in CRS, this

Figure 7.4. The upper and middle branches of the scaled effective internuclear potential v (defined by
equations (7.15), (7.16)) versus the scaled internuclear distance r for Z = 2 and Z′ = 4 at the absence of the
magnetic field.

Figure 7.5. The same as in figure 7.4, but at the scaled magnetic field ω = −0.3 (note that BM < 0).

1 The scaled magnetic field ∣ω∣ = 0.3 would correspond to the magnetic field B ~ 105 G for ∣M∣ ~ 30. The
magnetic field B ~ 105 G would be typical for magnetic fusion devices under construction.
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cusp may not appear in non-circular Rydberg states, a topic beyond the scope of
paper [1].

Figures 7.4–7.6 reveal magnetic stabilization of the nuclear motion for the case of
BM < 0. Indeed, in the absence of the magnetic field, the potential well is very
shallow. It is known that too shallow potential wells do not have any quantal
discrete energy levels (see, e.g., the book [6]). Moreover, if this system is embedded in
a plasma, then due to the known phenomenon of the ‘continuum lowering’ by
the plasma environment (see, e.g., books/reviews [16–18] and references therein), the
minimum of this very shallow potential well in figure 7.4 could be ‘absorbed’ by the
lowered continuum. The magnetic field dramatically deepens the potential well and
therefore stabilizes the system for the case of BM < 0. The magnetic field can
therefore transform the quasimolecule into a real, classically described molecule so
that the molecular orbital becomes bonding.

The particular example of the system chosen for figures 7.4–7.6 corresponds to the
CRS of an electron in the vicinity of the nuclei of He and Be (in paper [1] the
examples were for the CRS of an electron in the vicinity of the nuclei of He and Li).
All of the above nuclei could be present in magnetic fusion plasmas. Moreover, in
such plasmas, Rydberg states of either of these nuclei result from charge exchange
with ions of higher nuclear charge that are always present in magnetic fusion
plasmas. Relatively large magnetic-field strengths are also present. It should be
therefore possible to observe magnetic stabilization of the quasimolecule HeLi4+ or
HeBe5+ present in these practically important experimental devices.

The analysis in paper [1] has also shown that a similar magnetic stabilization of
Rydberg quasimolecules in CRS is displayed by other (though not all) ZeZ′-systems
characterized by the ratio of the nuclear charges in the range: 1 < Z′/Z < 3. These
results open up this phenomenon for possible further theoretical and experimental
investigation.
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Chapter 8

One-electron Rydberg quasimolecules in a
high-frequency laser field

The problem of electron terms in the field of two stationary Coulomb centers (TCC)
of charges Z and Z′ separated by a distance R is one of the most fundamental
problems in quantum mechanics. It presents fascinating atomic physics: the terms
can have crossings and quasicrossings. On the one hand, the well-known Neumann–
Wigner general theorem on the impossibility of crossing of terms of the same
symmetry [1] is invalidated for the TCC problem of Z′ ≠ Z (see, e.g., paper [2])—so,
the terms can cross. On the other hand, when two potential wells (each correspond-
ing to separated Z- and Z′-centers) have states Ψ and Ψ′ of the same energies E = E′,
of the same magnetic quantum numbers m = m′, and of the same radial elliptical
quantum numbers k = k′, a quasicrossing of the terms occurs [3–5]. Then the
electron has a much larger probability of tunneling from one well to the other (what
constitutes charge exchange) compared to the absence of the quasicrossing.

In plasma spectroscopy, a quasicrossing of the TCC terms, by facilitating charge
exchange, can result in local dips in the spectral line profile emitted by a Z-ion from
a plasma consisting of both Z- and Z′-ions—see, e.g., theoretical and experimental
papers [6–11]. In particular, this allows determining rates of charge exchange
between multicharged ions—the reference data almost inaccessible by other exper-
imental methods [11].

When the charges Z and Z′ approach each other and share the only electron that
they have, they form a quasimolecule. When the electron is in a highly-excited state,
it is a one-electron Rydberg quasimolecule (OERQ). There are extensive analytical
studies of the OERQ by the methods of classical mechanics (which are appropriate
for Rydberg states) [12–20]—see also review [21] and book [22], chapter 3. In
particular, the following papers were devoted to studies of the QERQ in various
external fields: namely, in a static magnetic field [15], in a static electric field [16, 17,
19], and in a laser field [20]. Specifically, in our previous paper [20] we analyzed the
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situation where the laser frequency was much smaller than the highest frequency of
the unperturbed system.

In paper [23] the authors considered the situation where the OERQ is subjected to
a linearly-polarized laser field whose frequency is much greater than the highest
frequency of the unperturbed system. For obtaining analytical results they used a
generalization of the method of effective potentials [24], presented also in the current
book in appendix A. They showed that as the amplitude of the laser field increases,
the structure of the energy terms becomes more and more complicated, and the
number of the energy terms increases. They also calculated analytically the shift of
the radiation frequency of OERQ caused by the laser field. Here are the details.

The authors of paper [23] considered a TCC system with the charge Z placed at
the origin, and the Oz axis is directed at the charge Z′, which is at z = R. Atomic
units (ħ = e = me = 1) were used. The system is subjected to a high-frequency
linearly-polarized laser field of amplitude F and frequency ω, the laser field being
directed along the internuclear axis. The Hamiltonian for the electron in this
configuration is

ω
ρ

= + = + + − − ′
′ρ

ϕ
H H zF t H p p

p Z
r

Z
r

cos ,
1
2

(8.1)z0 0
2 2

2

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where r = (ρ2 + z2)1/2 is the distance from the electron to the nucleus Z,
r′ = (ρ2 + (R − z)2)1/2 is the distance from the electron to the nucleus Z′, and (ρ,
φ, z) are the cylindrical coordinates positioned in such a way that the nuclei Z and Z′
are on the z-axis at z = 0 and z = R accordingly. Due to φ-symmetry, φ is a cyclic
coordinate and its corresponding momentum is conserved:

ρ ϕ= =ϕp
t

L
d
d

(8.2)2

For the systems in a high-frequency field, whose frequency is much greater than the
highest frequency of the unperturbed system, it is appropriate to use the formalism
of effective potentials [24–26]. As a result, the Hamiltonian acquires a time-
independent term. The zeroth-order effective potential,

ω ω
= =U V V H

F1
4

[ , [ , ]]
4

(8.3)0 2 0

2

2

where V = zF and [P, Q] are the Poisson brackets, is a coordinate-independent
energy shift that does not affect the dynamics of the system. The first non-vanishing
effect on the dynamics of the system originates from the first-order effective potential
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and the Hamiltonian of the electron in the high-frequency field is

ρ ρ ρ
= + + −
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+ −
+ρ( )H p p

L Z
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(8.5)z
2 2

2

2 2 2 2 2
1

where U1 is given by equation (8.4). The electron is considered to be in a circular
state1. Therefore, pz = pρ = 0, and thus, its energy can be represented in the form

ρ ρ ρ
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Using the scaled quantities
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one obtains the scaled energy of the electron
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One can seek the equilibrium points in the (w, v)-plane by finding the two partial
derivatives of ε with respect to w and v and setting them to zero. The second
equation gives the equilibrium value of the scaled angular momentum

θ θ
=

+ + −
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− + + − −

− +

w w
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w w
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and the first equation gives the equilibrium value of v

1 Circular states of atomic and molecular systems are an important subject. They have been extensively studied
both theoretically and experimentally for several reasons (see, e.g., [12–15, 17, 27–40] and references therein):
(a) they have long radiative lifetimes and highly anisotropic collision cross sections, thereby enabling
experiments on inhibited spontaneous emission and cold Rydberg gases, (b) these classical states correspond
to quantal coherent states, objects of fundamental importance, (c) a classical description of these states is the
primary term in the quantal method based on the 1/n-expansion, and (d) they can be used in developing
atom chips.
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Figure 8.1 shows the equilibrium plot in the (w, v)-plane for b = 3 and θ = 0.1. It is
seen that, in addition to the properties described in paper [13], there is a multivalued
range in the neighborhood of w = 0 and w = 1, which increases as θ increases.

If one scales the internuclear distance R as r = (Z/L2)R, and given ε = −(R/Z)E
from equation (8.7), then E = −(Z/L)2 ε1, where ε1 = ε/r is the scaled energy whose
scaling includes only Z and L. From equation (8.7), ℓ2 = L2/(ZR), so this yields
r = 1/ℓ2, with ℓ taken from equation (8.9), giving us the expression for r(w, v, b, θ).
Then by substituting the value of ℓ from equation (8.9) into equation (8.8) and
obtaining ε(w, v, b, θ), subsequently divided by r = 1/ℓ2, with ℓ again taken from
equation (8.9), one obtains ε1(w, v, b, θ), whose explicit form is

Figure 8.1. Equilibrium plot in the (w, v)-plane for b = 3 and θ = 0.1. (Reproduced with permission from [23].
Copyright 2019 N Kryukov and E Oks.)
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Then, by solving equation (8.10) numerically for v and substituting it into equation
(8.11) and into r(w, v, b, θ), one obtains, for the given value of b and θ, the
parametric dependence ε1(r) representing the scaled energy terms, with the param-
eter w running over the allowed range determined by equation (8.10). The asymptote
w3, corresponding to v → ∞, is the same as in the case of θ = 0, and is equal to
b/(b + 1), and other limits on w can be determined numerically.

Figures 8.2 and 8.3 show the scaled energy terms for the values of the scaled
amplitude of the laser field for θ = 0.01 and θ = 0.1, respectively, in comparison to
the unperturbed energy terms for θ = 0. It is seen that for small values of θ the lower
term is the first affected, and the terms take on a more complicated form as θ further
increases. The quantity −ε1 is plotted on the vertical axis for it to have the same sign
as E.

It is seen that as the scaled amplitude θ of the laser field increases, the scaled
energy terms −ε1(r) become more and more complicated. In particular, at some
ranges of θ, the number of the scaled energy terms increases from 3 (which was the
case for θ = 0) to 4 or even 5.

At this point it might be useful to clarify the relation between the classical energy
terms −ε1(r) and the energy E. The former is a scaled quantity related to the energy
as specified above in the 1st line after equation (8.10): E = −(Z/L)2 ε1. The projection
L of the angular momentum on the internuclear axis is a continuous variable. The
energy E depends on both ε1 and L. Therefore, while the scaled quantity ε1 takes a
discrete set of values, the energy E takes a continuous set of values (as it should be in
classical physics).

The authors of paper [23] also studied the shift of the radiation frequency caused
by a high-frequency linearly-polarized laser field. The angular momentum of the
electron can be expressed as

ρ ϕ ρ= = ΩL
t

d
d

(8.12)2 2
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where Ω is the frequency of the motion of the electron. Using the scaled quantities
from equation (8.7), one has

Ω = Ω̃ Ω̃ =Z
R

, (8.13)
3 2

l

v

where Ω with the wave above denotes the scaled frequency. The relative shift of the
frequency is determined by

δ = Ω − Ω
Ω

= Ω
Ω

− = Ω̃
Ω̃

− = −1 1 1 (8.14)0

0 0 0 0

0
2

2

l

l

v
v

where the subscript index ‘0’ refers to the default case (θ = 0) and the value of v is
taken to be the equilibrium value (determined by equation (8.10)).

Figures 8.4 and 8.5 show the plot of the relative shift of the frequency for the ratio
of the nuclear charges b = 3 and the values of θ = 0.01 and θ = 0.1, respectively. It is
seen, the shift increases when θ increases, and it is the smallest around the point
w = w3 = b/(b + 1).

Thus, for a known amplitude of the laser field, by measuring the relative shift of
the radiation frequency it should be possible to determine experimentally the

Figure 8.2. The plot of the scaled energy terms −ε1(r) (with r on the horizontal axis and −ε1 on the vertical) for
the scaled amplitude of the laser field θ = 0.01, with b = 3, shown in blue, solid curves, against the terms for
θ = 0, with b = 3, shown in red, dashed curves. (Reproduced with permission from [23]. Copyright 2019 N
Kryukov and E Oks.)
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distance of the orbital plane of the electron from the nucleus of the smaller nuclear
charge.

In summary, in paper [23] the authors considered the situation where one-electron
Rydberg quasimolecules (OERQ) are subjected to a linearly-polarized laser field

Figure 8.3. The plot of the scaled energy terms −ε1(r) (with r on the horizontal axis and −ε1 on the vertical) for
the scaled amplitude of the laser field θ = 0.1, with b = 3, shown in blue, solid curves, against the terms for
θ = 0, with b = 3, shown in red, dashed curves. (Reproduced with permission from [23]. Copyright 2019 N
Kryukov and E Oks.)

Figure 8.4. The relative red shift of the radiation frequency of the electron versus its scaled axial coordinate for
b = 3 and θ = 0.01. (Reproduced with permission from [23]. Copyright 2019 N Kryukov and E Oks.)

Analytical Advances in Quantum and Celestial Mechanics

8-7



whose frequency is much greater than the highest frequency of the unperturbed
system. They found out that as the amplitude of the laser field increases, the
structure of the energy terms becomes more and more complicated. Moreover, the
number of the energy terms increases.

They also calculated analytically the shift of the radiation frequency of OERQ
caused by the laser field. As the amplitude of the laser field increases, so does the
shift. For a known amplitude of the laser field, by measuring the relative shift of the
radiation frequency it should be possible to determine experimentally the distance of
the orbital plane of the electron from the nucleus of the smaller nuclear charge.
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Chapter 9

Quantum rotator-dipole in a high-frequency
monochromatic field: a violation of the gauge

invariance caused by the constraint

In this chapter we analyze first a shift of rotational energy levels of a rigid rotator,
having an electric dipole moment, under a high-frequency monochromatic linearly-
polarized electric field. We note that Braun and Petelin [1] treated this problem by
using Kapitza’s effective potential [2–4]. The Hamiltonian of a free rigid rotator has
the form

θ θ θ θ θ φ= − ∂ ∂ ∂ ∂ + ∂ ∂H B /[(1/ sin ) / (sin ) (1/ sin ) / , (9.1)r
2 2 2

where B is the rotational constant; θ and φ are the polar and azimuthal angles of the
rotator, respectively. Following Nadezhdin [5], for simplicity of formulas we assume
that the rotator is formed by two point-like particles of the masses m and of the
charges +e and −e, separated by a distance d. Then B = ℏ2/(md2) and the dipole
moment of the rotator is equal to ed.

The interaction of the rotator with a linearly-polarized electric field F cos ωt can
be represented in the following two gauges V or W (the z-axis being chosen parallel
to vector F):

θ ω
ω θ θ ω

= −
= − ℏ ∂ ∂ =

V edF t
W t ie A mcd A cF

( cos )cos ,
sin [2 /( )](sin ) / , / .

(9.2)

In gauge W, the coordinate-independent term containing A2 has been omitted. The
field is considered to be the high-frequency one, meaning that

ωℏ ≫ B. (9.3)

The Kapitza’s effective potential in V and W gauges, respectively is
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ω θ
ω θ

θ θ θ φ

= ℏ
= − −

× ∂ ∂ + ∂ ∂

V edF B

W eA B mcd

[( ) /(2 )]sin ,

[( ) /( ) ](4 2 sin )

[(1/ sin ) / (1 / sin ) / ].

(9.4)
0

2 2 2 2

0
2 2 2

2 2 2

(For details on the formalism of the Kapitza’s effective potential see appendix A.)
We note that the expression for V0 in equation (9.4) had been obtained in paper [1].

Obviously, operators V0 and W0 are diagonal with respect to the projection M of
the angular momentum J on the axis of rotation. The average values of V0 and W0

with respect to the unperturbed states ∣JM〉 of the rigid rotator are as follows:

ω

ω ω

〈 ∣ ∣ 〉 = + − + − +

〈 ∣ ∣ 〉 = ℏ + + − −

− +

JM V JM eF m J J M J J

JM W JM eF m m d J J J J M

J J

[( ) /( )]( 1 )/[(2 1)(2 3)],

[( ) /( ) ][ /( )] 4 ( 1)(3 3 2 )

/[(2 1)(2 3)].

(9.5)

0
2 2 2 2

0
2 2 2 2 2 2

It is seen that the energy shift Ek
(2), calculated with the help of the Kapitza’s

effective potential in different gauges, yields different results. In other words, the
energy shift Ek

(2) turns out to be not gauge invariant. In particular, in the gauge V
the energy shift is proportional to 1/ω2, while in the gauge W the energy shift is
proportional to 1/ω4. Moreover, it is seen from equation (9.5) that in the two
different gauges, the energy shift has different orders of magnitude since ℏ/(mωd2)
≪ 1.

So, a question arises as to which of the two expressions in equation (9.5)
corresponds to the reality. In other words, which of the two gauges yields the
correct description of the interaction of the rigid rotator with the high-frequency
monochromatic field. Below, following Nadezhdin [5], it is shown that the violation
of the gauge invariance is caused by the fact that in the rigid rotator the distance d
between the two point-like masses is fixed, i.e., a constraint is imposed on the motion
of these two masses.

Let us consider an oscillating rotator, i.e., the rotator where the distance x
between the point-like masses can oscillate around the equilibrium distance d. Such a
system can be described by the following Hamiltonian:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

∑ ∑

∑

= + ℏ ∂ ∂

= −

= =

=

H U x m x

x x x

( ) [ /(2 )] /[ ] ,

( ) .
(9.6)

i j

j

1,2 1,2,3

1,2,3

j
i

j j

2 2 ( ) 2

(1) (2) 2

1/2

Here suffix i is the label of the two masses 1 and 2.
The internal motion of the oscillating rotator can be described in terms of the

angular variables θ and φ, determining the spatial orientation of the rotator, and the
variable distance x. As usual, we assume the two masses for a linear oscillator, so
that
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= − =U x K x d K( ) ( ) /2, const. (9.7)2

For sufficiently large K, it is possible to disregard the dependence of the rotator
moment of inertia on x (i.e., to consider ∣x − d∣ ≪ d), so that the oscillation and the
rotation can be separated, leading to the Hamiltonian

v v= + = − + ℏ ∂ ∂H H H H K x d m x, ( ) /2 ( / ) / , (9.8)r
2 2 2 2

where the partial Hamiltonian Hr (the Hamiltonian of the rigid rotator) is given by
equation (9.1). In equation (9.8) it was taken into account that the reduced mass of
the oscillator is m/2. Obviously, the system described by the Hamiltonian H from
equation (9.8) does not have constraints.

Eigenfunctions of the Hamiltonian are ∣JM〉∣v〉, where ∣JM〉 are the eigenfunc-
tions of the rigid rotator (depending on θ and φ) and v∣ 〉 are the eigenfunctions of the
linear oscillator (depending on x). The unperturbed energy of the oscillating rotator
is

v= + + ℏΩ + Ω =E BJ J K m( 1) ( 1/2), (2 / ) , (9.9)(0) 1/2

Ω being the eigenfrequency of the oscillator. Since we are interested in the limiting
transition to the rigid rotator, i.e., in the case of Ω → ∞, then we assume that

ωℏΩ ≫ ℏ ≫ B. (9.10)

The interaction of the oscillating rotator with the electric field can be represented
in the following two different gauges (in analogy with equation (9.2)):

θ ω
ω θ θ θ

= −
= ℏ ∂ ∂ − ∂ ∂

V eFx t
W t ie A mc x d

( cos )cos ,
sin [2 /( )][cos / (1/ )sin / ].

(9.11)

It is seen that equation (9.11) differs from equation (9.2). It is important that while in
gauge V the difference is simply the substitution of d by x, in gaugeW the difference
is much more substantial: in the expression for W in equation (9.11) there is a term
containing ∂/∂x, which was absent in the expression forW in equation (9.2). Below it
is shown that it is this term that is responsible for the violation of the gauge
invariance.

Indeed, let us consider the energy shift

∑ ω ω ω= ℏ −( )E V V[1/(2 )] / , (9.12)
i

k ki ik ik ik
(2) 2 2

(where ωik = (Ei
(0) − Ek

(0))/ℏ) and the similar expression with the substitution of V by
W, for the ground state of the oscillating rotator: J =M = v = 0. The corresponding
matrix elements of the operator V and W between the states of the harmonic linear
oscillator differ from zero only for the following cases:

〈 ∣ ∣ 〉 = 〈 ∣ ∣ 〉 = ℏ Ω 〈 ∣∂ ∂ ∣ 〉 = Ω ℏx d x m x m0 0 , 0 1 [ /( )] , 0 / 1 ( / ) /2. (9.13)1/2 1/2
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Therefore, in each gauge the sum E0
(2) can be broken down in two sums: the first one

over the rotational states of the state v = 0 of the oscillator, the second one over the
rotational states of the state v = 1 of the oscillator, as follows.

In gauge V:

⎡⎣ ⎤⎦∑

∑

θ ω ω ω

θ ω ω ω

= ∣〈 ∣ ∣ 〉∣ ℏ −

+ ∣〈 ∣ ∣ 〉∣ Ω + Ω − Ω +

( )E eFd JM

eF JM m

[ 00 cos ] / 2

[ 00 cos ] ( )/{2 [ ( ) ]}.
(9.14)J M

J M

,

,

JM JM

JM JM

0
(2) 2 2 2

2 2 2

In gauge W:

∑

∑

θ θ ω ω ω

θ ω ω ω

= ℏ ∣〈 ∣ ∂ ∂ ∣ 〉∣ −

+ Ω∣〈 ∣ ∣ 〉∣ Ω + − Ω +

E e A JM mcd

eA JM mc

2[ 00 (sin ) / ] /[( ) ( )]

[ 00 cos ] ( )/{2 [ ( ) ]}.
(9.15)

J M

J M

,

,

JM JM

JM JM

0
(2) 2 2 2 2

2 2 2 2

For a rigid rotator, only the first sum in equations (9.14), (9.15) is used because the
rigid rotator does not have states of the vibrational quantum number v = 1.
Therefore, the correct gauge is the one where the second sum goes to zero at Ω→∞.
From equations (9.14), (9.15) it is seen that at Ω → ∞, in gauge V the second sum
goes to zero, while in gauge W the second sum goes to the following non-zero limit

∑ θ ω θ− ∣〈 ∣ ∣ 〉∣ = − 〈 ∣ ∣ 〉e A mc JM e F m[ /(2 )] 00 cos [ /(2 )] 00 cos 00 . (9.16)
J M,

2 2 2 2 2 2 2 2

Therefore, the interaction of a rigid rotator with the electric field F cos ωt should be
represented in gauge V, but should not be represented in gauge W.

In summary, the above results can be generalized as follows. While representing
the interaction of the field F cos ωt with a constraints-having-system in different
gauges, one could get different results of the energy shift Ek

(2). In order to determine
the correct gauge, one should consider a limiting transition from some non-
constrained system to the constrained system. In particular, if the constrained
system is obtained by imposing rigid constraints (what corresponds in quantum
mechanics to moving a part of the energy spectrum to infinity), then V would be the
correct gauge.

Finally, we note that in book [6] in its section 1.3, while considering multiphoton
transitions in some ‘model’ systems having a finite number of levels, the authors
recommended using gauge V, which is consistent with the above results. But for
frequencies ω ≫ ωmn (ωmn being the unperturbed separation in the frequency scale
between the levels under consideration), the authors of book [6] recommended using
gaugeW: their justification was that A ~ cE/ω, so that at relatively large ω the vector
potential A becomes relatively small. However, the above results of chapter 8
demonstrated that at least for some physical systems one should use gauge V also for
frequencies ω ≫ ωmn.
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Separating rapid and slow subsystems

Eugene Oks

Chapter 10

Center-of-mass effects for hydrogen atoms in a
non-uniform electric field: applications to

magnetic fusion, radiofrequency discharges, and
flare stars

There is a lot of literature on center-of-mass (CM) effects for hydrogenic atoms/ions
in a uniform magnetic field—see, e.g., papers [1–3] and references therein. The CM
motion and the relative (internal) motion are coupled in a magnetic field and,
rigorously speaking, cannot be separated. For hydrogen atoms it is possible to
achieve a pseudoseparation leading to a Hamiltonian for the relative motion that
still depends on a CM integral of the motion called pseudomomentum [3].

As for hydrogenic atoms/ions in a uniform electric field, it is well-known that the
CM and relative motions can be separated rigorously (exactly)—see, e.g., [4]. As for
hydrogenic atoms/ions in a nonuniform electric field, there seemed to be nothing
about the separation (or non-separation) of the CM and relative motions in the
literature—until papers [5, 6] were published.

In papers [5, 6] the author studied this issue for hydrogenic atoms/ions in a
nonuniform electric field and obtained the following results. First, it was shown that
in the general problem of two charges in a nonuniform electric field, the CM and
relative motions, rigorously speaking, cannot be separated. Second, there was used
an approximate analytical method of the separation of rapid and slow subsystems to
achieve a pseudoseparation of the CM and relative motions for hydrogenic atoms/
ions in an arbitrary nonuniform electric field. Third, these results were further
developed for the case of a hydrogen atom in the nonuniform electric field, where the
field is due to the nearest (to the hydrogen atom) ion in a plasma. Fourth, the results
were applied to the ion dynamical Stark broadening of hydrogen lines in plasmas.
Fifth, there were present specific examples of laboratory and astrophysical plasmas
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where the allowance for these CM effects leads to a significant increase of the width
of hydrogen spectral lines. Here we present details following papers [5, 6].

We consider a system of two charges e1 and e2 of masses m1 and m2, respectively,
in a nonuniform electric field. The Lagrangian of the system is

φ φ= + − ∣ − ∣ − −L m t m t e e e er r r r r r[ (d /d ) (d /d ) ]/2 / ( ) ( ), (10.1)1 1
2

2 2
2

1 2 2 1 1 1 2 2

where r1 and r2 are radii-vectors of charges e1 and e2, respectively, and φ is the
potential of the nonuniform electric field. After the substitution

= + + = −m m m mR r r r r r( )/( ), , (10.2)1 1 2 2 1 2 2 1

so that R and r are the coordinates related to the CM motion and the relative
motion, respectively, the Lagrangian takes the form

= − +L L U LR r R R r r( , ) ( ) ( , ) ( ), (10.3)rCM

where

φ= + − +L m m t e eR R R( ) ( )(d /d ) /2 ( ) ( ) (10.4)CM 1 2
2

1 2

is the Langrangian of the CM,

μ= −L t e e rr r( ) (d /d ) /2 / (10.5)r
2

1 2

is the Lagrangian of the relative motion, and

μ= −U e m e mR r rF R( , ) ( / / ) ( ) (10.6)1 1 2 2

is the coupling of the CM and relative motions. Here

μ = +m m m m/( ) (10.7)1 2 1 2

is the reduced mass of the two particles, and

φ= −F R R R( ) d ( )/d (10.8)

is a nonuniform electric field (in the expansion of the electric potential we
disregarded terms higher than the dipole one). In equation (10.6) and below, for
any two vectors A and B, the notation AB stands for the scalar product (also known
as the dot-product) of the two vectors.

The Hamiltonian, corresponding to the Langrangian from equation (10.3), has
the form

= + +H H U HR P R r r p( , ) ( , ) ( , ), (10.9)rCM

where

φ= + + +H P m m e eR P R( , ) /[2( )] ( ) ( ) (10.10)CM
2

1 2 1 2

is the Hamiltonian of the CM, P being the momentum of the CM motion, and

μ= +H p e e rr p( , ) /(2 ) / (10.11)r
2

1 2
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is the Hamiltonian of the relative motion, p being the momentum of the relative
motion.

Thus, the above equations show that at the presence of a nonuniform electric
field, the CM motion and the relative motion are coupled (by U(R, r) from equation
(10.6)) and therefore, rigorously speaking, cannot be separated. However, in the case
where m1 ≪ m2, the CM and relative motions can be separated by using the
approximate analytical method of separating rapid and slow subsystems: in this
case, the characteristic frequency of the relative motion is much greater than the
characteristic frequency of the CM motion, so that the former and the latter are the
rapid and slow subsystems, respectively. Below are the details of this method that
can be found, e.g., in [7].

The first step is to freeze the coordinates R of the slow subsystem and to solve for
the motion of the rapid subsystem characterized by the truncated Hamiltonian

μ μ= + = + + −H H U p e e r e m e mr p R r rF R( , ) ( , ) /(2 ) / ( / / ) ( ), (10.12)rtr
2

1 2 1 1 2 2

where R is treated as a fixed parameter rather than as the dynamical variable. In the
situation where the charges e1 and e2 are of the opposite sign (say, for definiteness
e1 < 0 and e2 > 0), this becomes the Hamiltonian of a hydrogenic atom/ion in a
‘uniform’ electric field.

By treating the last term in equation (10.12) in the first order of the perturbation
theory, one obtains the following expression for the energy of the relative motion,
i.e., the rapid subsystem (see, e.g., the textbook [8])

μ ħ μ
μ ħ ħ

= − + − 〈 〉
= − − + ∣ ∣

E e e n e m e m

e e n n m e m e

R r F R

AF R

( ) /(2 ) ( / / ) ( )

/(2 ) (3 /2)[1/( ) 1/( )] ( ),
(10.13)1

2
2

2 2 2
1 1 2 2

1
2

2
2 2 2 2 2

1 2 2 1

where there was used the well-known relation between the mean value 〈r〉 of the
radius-vector and the Runge–Lenz vector A (see, e.g., [9, 10]):

μ ħ〈 〉 = − ∣ ∣ = −r e e A E E e e n3 / , /(2 ). (10.14)1 2 0 0 1
2

2
2 2 2

Here and below n is the principal quantum number.
By choosing the z-axis along the Runge–Lenz vector A, we rewrite equation

(10.13) in the form

μ ħ
ħ θ

= −
− ∣ ∣ + ∣ ∣

E e e n

n q m e m e F

R

R R

( ) /(2 )

(3 /2)[1/( ) 1/( )] ( )cos[ ( )],
(10.15)1

2
2

2 2 2

2
1 2 2 1

where θ(R) is the polar angle of the vector F(R) and q is the electric quantum number
(q = n1 − n2, where n1 and n2 are the parabolic quantum numbers). Physically, the
quantum number q is intimately connected to the conservation of the Runge–Lenz
vector A for the unperturbed hydrogen atom: the eigenvalue of the operator A is
q/n—see, e.g., the textbook [8].

The second step of the analytical method of separating rapid and slow subsystems
is to proceed to the slow subsystem (the CM motion), for which E(R) from equation
(10.15) will play the role of an effective potential. The effective Hamiltonian
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HCM,eff(R, P) for the CM motion becomes (the first, R-independent term in E(R)
has been omitted because it does not affect the CM motion)

φ
ħ θ

= + + +
− ∣ ∣ + ∣ ∣

H P m m e e

n q m e m e F

R P R

R R

( , ) /[2( )] ( ) ( )

(3 /2)[1/( ) 1/( )] ( )cos[ ( )].
(10.16)

CM,eff
2

1 2 1 2

2
1 2 2 1

Thus, the application of this analytical method allowed the pseudoseparation of
the CM motion and the relative motion for any two oppositely charged particles of
significantly different masses in a nonuniform electric field.

It should be emphasized that in papers [5, 6], the CM coordinate R is considered
as the dynamical variable (which generally depends on time) and that the
Hamiltonian HCM,eff (R, P) from equation (10.16) can be used to solve for the
CM motion. This is the primary distinction of our work from papers where the CM
coordinate of a hydrogenic atom/ion in a nonuniform electric field was considered to
be fixed1. In section 3, we actually solve for the CM motion in the situation where
the nonuniform electric field is due to the plasma ion nearest to the hydrogen atom,
and apply the solution to the dynamical Stark broadening of hydrogen lines in
plasmas. This would be impossible if the CM coordinate R was not treated as the
dynamical variable.

We also note that higher order terms (quadrupole, octupole, etc) in the expansion
of the potential φ(R) in equation (10.4) can be easily taken into account, if necessary,
and this analytical method for the pseudoseparation of the CM motion and the
relative motion, with R considered as the dynamical variable, would still work.

In the particular case of hydrogen atoms one has

μ= = − = +e e e e m m m m, , /( ), (10.17)e p e p1 2

where e > 0 is the electron charge, me and mp are the electron and proton masses,
respectively. Then equation (10.16) simplifies to

ħ μ θ= − ∣ ∣
= +

H P m n q e F

m m m

R P R R( , ) /(2 ) [3 /(2 )] ( )cos[ ( )],

( ).
(10.18)

e p

CM,eff
2 2

Now we consider the situation where the nonuniform electric field is due to the
nearest (to the hydrogen atom) ion of the positive charge Ze and massmi in a plasma
located at the distance R from the hydrogen atom. Then the Hamiltonian from
equation (10.18) can be rewritten as

1An example of such papers is Bekenstein and Krieger article [11]. In that article, while considering hydrogen
atoms in a nonuniform electric field, the authors did not treat the CM coordinate as the dynamical variable,
but rather considered it fixed, and did not provide any way to solve for the CM motion. We note in passing
that among such papers on hydrogen atoms in a nonuniform electric field, Bekenstein and Krieger’s article of
1970 [11] was in no way a pioneering work. Bekenstein and Krieger seemed unaware of Sholin’s paper of 1969
[12], where he showed that the primary source of the asymmetry of hydrogen spectral line shapes is the
nonuniformity of the plasma ion nearest to the hydrogen atom; moreover, Sholin took into account
quadrupole and octupole interactions, while Bekenstein and Krieger allowed only for the quadrupole
interaction.
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θ
ħ μ θ

= −
= ∣ ∣ =

H P m D R

D n q Z

R P

AR

( , ) /(2 ) ( / )cos ,

[3 /(2 )] , cos /AR.
(10.19)CM,eff

2 2

2

This Hamiltonian represents a particle of mass m in the dipole potential. Since this
particle is relatively heavy (m ≫ me), its motion can be described classically and the
corresponding classical solution is well-known—see, e.g., paper [13]. For this
physical system, the radial motion can be exactly separated from the angular
motion resulting in the following radial equation:

+ =m R R t R t E[ (d /d ) (d /d ) ] , (10.20)2
CM

where ECM is the total energy of the particle. This equation allows the following
exact general solution:

= + + = = =R t E t m R t R R R R t( ) (2 / 2 ) , (0), (d /d ) . (10.21)tCM
2

0 0 0
2 1/2

0 0 0v v

It is well-known that in plasmas of relatively low electron densities Ne, the Stark
broadening of the most intense hydrogen lines, i.e., the lines corresponding to the
radiative transitions between the levels of the low principal quantum numbers (such
as, e.g., Ly-alpha, Ly-beta, H-alpha, etc), is dominated by the ion dynamical
broadening—see, e.g., publications [14–20]. Let us discuss the corresponding
validity condition in more detail.

The ion dynamical Stark broadening of hydrogen spectral lines is effective when
the number νWi of perturbing ions in the sphere of the ion Weisskopf radius is
smaller than unity—see, e.g., review [9]. (In the opposite case of νWi ≫ 1, the
perturbing ions can be treated in the quasistatic approximation.) By using the ion
Weisskopf radius RWA(C) defined in equation (10.50), one arrives at the following
validity condition:

ν π ħ μ= − ′ <C C m T n n Z N( ) [3 /(2 )]( / ) [( ) / ] 1. (10.22)r eWi
1/2 3/2 3/2 2 2 3 2

For C = 3/2 (which is the choice of the strong collision constant in the conventional
theory by Griem [21]) the numerical coefficient in the first brackets in the right side
of equation (10.22) becomes 21/2π/3. Thus, the ion dynamical Stark broadening can
become effective for the most intense hydrogen spectral lines (i.e., for low values of n
and n′) in plasmas of relatively low electron densities.

Under the condition (10.22), for the overwhelming majority of perturbing ions,
the frequency of the variation of the ion field R/i Nv , where RN is the mean interionic
distance, exceeds the instantaneous Stark splitting in the ion field. Therefore the
above requirement is called the modulation-type condition.

We note that there is another condition in Griem’s book [21], his equation (82):
γ>R/i N ev , where γe is the electron impact width. This kind of requirement is called

the damping-type condition. While both the modulation-type condition and the
damping-type condition are necessary, the modulation-type condition (10.22)
is more restrictive: it requires the electron (and ion) density to be by the factor
∼ (mp/me)

3/4 ∼ 300 smaller than the damping-type condition. Thus, the modulation-
type condition overrides the damping-type condition.
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In the so-called ‘conventional theory’ of the dynamical Stark broadening (also
known as the ‘standard theory’) [21–23], the relative motion within the pair ‘radiator—
perturber’ was assumed to occur along a straight line—as for a free motion (in our case
the radiator is a hydrogen atom and the perturber is the perturbing ion). However,
from the preceding discussion it follows that in the more advanced approach, the
relative motion within the pair ‘radiator–perturber’ should be treated as the motion in
the dipole potential—(D/R2) cos θ, as seen from equation (10.19). The relevant setup of
the problem is to choose the instant t = 0 as the instant of the smallest distance (the
closest approach) within the pair ‘radiator–perturber’. Then = ==R t(d /d ) 0t0 0v , so
that equation (10.21) simplifies to

= +( )R t E t m R( ) 2 / . (10.23)CM
2

0
2 1/2

The energy ECM can be represented in the form

θ θ θ= − = =( )E P m D R P P/(2 ) / cos , (0), (0). (10.24)CM 0
2

0
2

0 0 0

By considering the motion within the pair ‘radiator–perturber’ in the reference frame
where the perturbing ion is at rest, so that P0 = mV0, where V0 is the relative velocity
within the pair ‘radiator–perturber’ at t = 0, the energy ECM can be rewritten as

θ= − ( )E mV D R/2 / cos . (10.25)CM 0
2

0
2

0

Then equation (10.22) becomes

θ= − +{ }( )R t V D mR t R( ) 2 cos . (10.26)0
2

0 0
2 2

0
2

1/2⎡⎣ ⎤⎦
By introducing the effective velocity

θ θ= − ( )V R V D mR( , ) 2 cos , (10.27)eff 0 0 0
2

0 0
2

1/2⎡⎣ ⎤⎦
we can make equation (10.26) formally equivalent to the usual case of the rectilinear
trajectories:

θ= +{ }R t V R t R( ) ( , ) . (10.28)eff 0 0
2 2

0
2

1/2⎡⎣ ⎤⎦
Now we consider a radiative transition between hydrogen energy levels a and b. In

the general case, the ion dynamical broadening operator Φab is defined as follows (by
analogy with the electron dynamical broadening operator defined, e.g., in paper [24]):

∫ σ θΦ = − 〈 〉θt V f V NV V t( ) d ( ) ( , , ) . (10.29)ab i0 0 0 0 0 o

Here 〈…〉θo denotes the averaging over the angle θ0, and the operator σ(V0, θ0, t) has
the form:

∫σ θ π= − *θ θV t R R U t U t( , , ) d 2 [1 ( , 0) ( , 0)] . (10.30)R V o
a

R V o
b0 0 0 0

( , , ) ( , , )
ang.av

0 0 0 0
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Here Ni is the ion density, f(V0) is the distribution of the velocities (usually assumed
to be Maxwellian), ρ is the impact parameter of the perturbing ion, Ua and Ub are
the corresponding time-evolution operators, the symbols * and […]ang.av stand for
the complex conjugation and the angular average, respectively. If time t were to be
considered as a parameter, then the diagonal elements of the operator σ(V0, t) would
have the physical meaning of cross-sections of so-called optical collisions, i.e., the
cross-sections of collisions leading to virtual transitions inside level a between its
sublevels and to virtual transitions inside level b between its sublevels, resulting in
the broadening of Stark components of the hydrogen spectral line.

By using the trajectories from equation (10.26) and averaging over the polar angle
θ0, one can obtain the evolution operators and then the ion dynamical broadening
operator with the allowance for the effect of the CM motion. However, in this
general case, the results cannot be obtained analytically.

Therefore, for obtaining the final results analytically (which should help getting
the message across in the simple form), we now employ the so-called impact
approximation and substitute the evolution operators by the corresponding scatter-
ing matrices (see, e.g., papers [22, 23] or books [20, 21]):

∫ σ θΦ = − 〈 〉θV f V NV Vd ( ) ( , ) , (10.31)ab i o0 0 0 0 0

∫σ θ π θ θ= − *V R R S R V S R V( , ) d 2 [1 ( , , ) ( , , )] . (10.32)a b0 0 0 0 0 0 0 0 0 0 ang.av

In the case where non-diagonal matrix elements of the Φab are relatively small, the
lineshape is a sum of Lorentzians, whose width γαβ and shift Δαβ are equal (apart
from the sign) to the real and imaginary parts of diagonal matrix elements
〈α∣〈β∣Φab∣β〉∣α〉, respectively:

γ = − Δ = −αβ αβ βα αβ αβ βαF FRe[ ( ) ], Im[ ( ) ]. (10.33)ab ab

Here α and β correspond to upper and lower sublevels of the levels a and b,
respectively. Here and below, for any operator G, for brevity we denote its matrix
elements 〈α∣〈β∣G∣β〉∣α〉 as αβGβα.

As we calculate the scattering matrices by the standard time-dependent pertur-
bation theory, we obtain the following expression for the operator σ

∫σ θ π θ=R V R R K Q R V R( , , ) d 2 ( , , )/ . (10.34)0 0 0 0
2

0 0 0 0
2⎡⎣ ⎤⎦

Here

θ ħ μ θ

θ

ħ μ

=

= −

=

( )
Q R V V R

Q D mV R

Q Z V

( , , ) 2 /[3 ( , ) ]

/ 1 2 cos / ,

2 /(3 ),

(10.35)

0 0 0
2 2

eff 0 0
2

0 0 0
2

0
2

0
2 2 2

0
2

⎡⎣ ⎤⎦

and
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ħ μ
= + + =
= − * = * =

K K K K K a
K a K a a e

r
r r r

, / ,
2 , , /( ),

(10.36)a b a a

a b b b

2 2
interf

2 2 2
B

2

interf B
2 2 2

B
2

B
2 2

where aB is the Bohr radius, Kinterf represents the so-called interference term. In the
conventional theory [21–23], in equation (10.35) instead of Veff(R0, θ0), it would be
V0

2.
The next step is the averaging of 1/Veff(R0, θ0)

2 in equation (10.35) over the
angle θ0:

∫ θ θ−

= + −

−
( )

( ) ( ) ( )

V D mR

R R V R R R R

(1/2) d(cos ) 2 cos

2 ln ,
(10.37)

D D D

1

1

0 0
2

0 0
2

0
2 2

0
2

0
2 2

0
2 2

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

where

= ( )R D mV2 , (10.38)D 0
2

1/2⎡⎣ ⎤⎦
so that the quantity Q(R0, θ0) after the averaging over θ0 becomes

= + −( ) ( ) ( )Q R Q R R R R R R( ) 2 ln (10.39)D D D0 0 0
2 2

0
2 2

0
2 2⎡⎣ ⎤⎦ ⎡⎣ ⎤

⎦⎥
with Q0 defined in equation (10.35).

The way the quantityD (entering equation (10.38) was defined in equation (10.19)
as D = [3n∣q∣ħ2/(2μ)] Z is valid only for the Lyman lines. For all other hydrogen lines
one should use the arithmetic average of the values of D for the upper and lower
Stark sublevels—as suggested in the similar case in paper [25] and used in paper [26].
Therefore, in the present paper for all other hydrogen lines we use the following
value of D

= ∣ ∣ + ′∣ ′∣D n q n q Ze a3( ) /4, (10.40)B
2

where the quantum numbers with the prime symbol and without it relate to the
lower and upper levels, respectively.

The next step is the averaging over R0. The integral over R0 in equation (10.34)
has a weak, logarithmic divergence at both small and large impact parameters—just
like in the conventional theory [21–23]. Therefore, as in the conventional theory, we
subdivide collisions into ‘weak’ (R0 > Rmin) and ‘strong’ (R0 < Rmin), and introduce
also the upper cutoff Rmax (just as in the conventional theory) discussed later. Then
the diagonal elements of the cross-section of optical collisions can be represented in
the form

∫ ∫σ π π= +αβ βα αβ βαR R K Q R R R R C( ) d 2 ( ) ( )/ ) d 2 , (10.41)
R

R R

0

D, 0 0
2

0 0
2

0 0

min

max min⎡⎣ ⎤⎦

where Rmin is defined by the condition:
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=

× + − =

αβ βα αβ βα

( ) ( )
K Q R R K Q R

R R R R C

( ) ( )/ ( ) [ /(2 )]

ln (10.42)
D

D D

2
min min

2 2
0

2

min
2 2

min
2 2⎡⎣ ⎤⎦

(naturally, Rmin > RD). Here and below the subscript ‘D’ in αβ(σ)βα,D signifies that
this cross-section was obtained with the allowance for the CM motion. The constant
C in equation (10.42) is called ‘strong collision constant’ in the conventional theory.
It arises from the preservation of the unitarity of the S-matrices:

θ θ∣ − * ∣ = ⩽S R V S R V C C1 ( , , ) ( , , ) , 2. (10.43)a b0 0 0 0 0 0

For example, according to Griem’s book [21], page 43, his choice was C = 3/2. More
details can be found in paper [27]2.

As for the upper cutoff Rmax, following the conventional theory we choose it as
the Debye radius

π= =R R T e N[ /(4 )] , (10.44)emax Debye
2 1/2

though more rigorously, it should have been Rmax = min(RDebye, V0/Δω), where Δω
is the detuning from the center of the spectral line; physically, the requirements
Rmax < V0/Δω being the allowance for incomplete collisions).

By integrating analytically over R0 in equation (10.41) and substituting into the
result the expression for the strong collision constant C from equation (10.42) we
obtain:

σ π= − −

+ + −

αβ βα αβ βα {
}

( ) ( )

( ) ( )

K Q R R R R

R R R R R R

( ) 2 ( ) ln

/(4 ) ln .
(10.45)

D D D

D D D

,
2

0 max
4 4 1/4

min
4 4 1/4

max
2 2

max
2 2

max
2 2

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
The boundary Rmin between the weak and strong collisions in equation (10.45) is the
solution of equation (10.42) with respect to Rmin:

=

+ −αβ βα αβ βα

R

R

CR K Q CR K Qexp 2 / ( ) 1 exp(2 / ( ) ) 1 .

(10.46)
D

D D

min

2 2
0

2 2
0

1/2

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥
⎫
⎬
⎭

2On page 43 of his book [21], Griem explicitly chose 3/2 for the quantity ∣1 − Sa(R0, V0, θ0) Sb * (R0, V0, θ0)∣
that we denoted as C. To avoid any confusion we note that what Griem called ‘strong collision term’ was C/2.
The extra factor 1/2 arises from the following integral for the strong collision term:

∫ρ ρ ρ =C C(1 / ) d /2.
r

min
2

0

min
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The next step is the averaging of several quantities from the above equations over
Stark sublevels of the upper and lower levels, so that each of these quantities will
have the unique value for the particular hydrogen spectral line. First, the square root
of the averaged matrix element (〈α∣〈β∣K2∣β〉∣α〉) is asserted to be

= −αβ βα
α

α
β

β
)( ) (K K K[ ( ) ] (10.47)a b

2
av

1/2 2 1/2 2 1/2

av

⎡
⎣⎢

⎤
⎦⎥

following the conventional theory justification [21] that in this form it allows for the
partial cancellation of terms in αβ(W

2)βα when the principal quantum number nʹ of
the lower level is close to the principal quantum number n of the upper level. The
diagonal elements of the operators Ka

2 and Kb
2 have the following form in the

parabolic coordinates (see, e.g. [10, 28])

= + − −

= ′ ′ + ′ − ′ −

α
α

β
β

( )
( )
K n n q m

K n n q m

(9 / 8) ( 1),

(9 / 8) ( 1)].
(10.48)

a

b

2 2 2 2 2

2 2 2 2 2

The averaging over Stark sublevels (since (q2)av = (m2)av) results in the following
leading term in the quantity [αβ(K

2)βα]av
1/2:

= − ′αβ βαK n n[ ( ) ] (9 / 8)( ). (10.49)2
av

2 2

We mention that the same result (10.49) can be obtained after the corresponding
averaging in the spherical quantization.

We denote

μ= = − ′ ℏαβ βαR C K Q C C n n V( ) {[ ( ) ] } (3 ) ( ) Z/(2 ). (10.50)WA
2

av 0
1/2 1/2 2 2

0

This quantity has the meaning of the so-called Weisskopf radius: it is defined here
more accurately than in the conventional theory by Griem [21] (which is why here
and below the superscript ‘A’ stands for ‘accurate’)—see appendix B of paper [6].

The next quantity to be averaged over Stark sublevels of the upper and lower
levels, so that it will have the unique value for the particular hydrogen spectral line,
is the quantity D from equation (10.40). The result reads:

〈 〉 = + ′D n n Ze a( ) /4. (10.51)Bav
2 2 2

After substituting this into the definition of RD in equation (10.38), we obtain:

ħ μ〈 〉 = + ′R n n Z V[( ) /2] /( ). (10.52)D av
2 2 1/2

0

Thus, from equations (10.46), (10.50), and (10.52), we get the unique value 〈Rmin〉av
for the entire hydrogen spectral line:

〈 〉

=〈 〉 〈 〉 + 〈 〉 −{ }
R

R R R C R R Cexp(2 / ( ) ) 1 exp(2 / ( ) ) 1 .
(10.53)

D D D

min av

av av
2

WA
2

av
2

WA
2

1/2⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
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As the last step we substitute Rmin by 〈Rmin〉av and RD by 〈RD〉av in equation
(10.45), and also introduce dimensionless parameters

= 〈 〉 = 〈 〉
= + ′ − ′

w R R b R R C

C Z n n n n

/ , / ( )

[2 /(3 )] ( ) /( ).
(10.54)D Dav max av WA

1/2 2 2 1/2 2 2

By doing so, we finally obtain:

σ π= − −
− + + −

αβ βα αβ βαK Q b w

b w w w

( ) 2 ( ) { ln[(exp(2 ) 1) (1 / 1) /2 ]

/2 [1/(4 )]ln[(1 )/(1 )]},
(10.55)A D, ,

2
0

2 1/2 4 1/4 1/2

2 2 2 2

where Q0 was defined in equation (10.35) and

= + − −
− ′ ′ + ′ ′ + ′ − ′ −

αβ βαK n n q m

nqn q n n q m

( ) (9/8)[ ( 1)

4 ( 1)].
(10.56)

2 2 2 2 2

2 2 2 2

From equation (10.54) it is seen that the ratio Z1/2b/C1/2 is just a combination of
the principal quantum numbers n and n′ specific for each hydrogen spectral line: it is
independent of the temperature T and of the electron density Ne of the plasma. Since
the strong collision constant C ⩽ 2, it follows from equation (10.54) that b < 1
always. It reaches maximum values for n′ = n − 1, i.e., for the most intense hydrogen
spectral line of each spectral series. Here are examples for the case where the charge
of the perturbing ions is Z = 1. For the Balmer-alpha line (Hα) we get b = 0.59C1/2.
For the Paschen-alpha, Brackett-alpha, and higher alpha lines, the ratio b/C1/2

rapidly approaches 1/31/2 = 0.58. For the Lyman lines the expression for the ratio
b/C1/2 should be 2/(31/2n) instead of equation (10.54), so that for the Lyman-alpha
line one gets b/C1/2 = 1/31/2 since n = 2.

The other dimensionless parameter w = 〈RD〉av/Rmax, which enters equation
(10.55), significantly depends on plasma parameters. In the most frequent case,
where Rmax is equal to the Debye radius RD (given in equation (10.38)), the
parameter w can be expressed as follows

ħ μ= + ′
= × + ′−

w e T n n Zm N

n n ZN m m T

[2 /( )][( ) ]

8.99 10 [( ) / ] / ,
(10.57)r e

e r p

2 2 1/2

10 2 2 1/2

where

= + + +m m m m m m m( ) /( ). (10.58)r e p i e p i

In the utmost right part of equation (10.57), the temperature T is in eV and the
electron density Ne is in cm−3. While deriving equation (10.56), the quantity 1/V0 in
the expression for 〈RD〉av (given by equation (10.52)) was substituted by its average
over the Maxwell distribution 〈1/V0〉 = [2mr/(πT)]

1/2—just as in the conventional
theory [21]. For the Lyman-lines, the expression for w should be modified to

ħ μ= = × −w e n T m ZN n ZN m m T[ /( )](2 ) 1.27 10 [ / ] / , (10.59)r e e r p
1/2 9 1/2
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For presenting the effect of the CM motion in the universal form, it is convenient
to introduce the ratio of the cross-section αβ(σ)βα,A,D to the corresponding cross-
section αβ(σ)βα,G from the conventional theory by Griem [21]. Since the parameter w
in equation (10.57) was obtained by averaging over the Maxwell distribution of the
velocities, then the ratio of the cross-sections is essentially the same as the ratio of
widths γαβ,A,D/γαβ,G:

σ σ γ γ= =

= − − − +
× + − +

αβ βα αβ βα αβ αβ

b w b w

w w b

ratio ( ) / ( ) / ,

{ ln[(exp(2 ) 1) (1 / 1) /2 ] /2 [1/(4 )]

ln[(1 )/(1 )]}/{ ln [ /(wC )] 0.356}.

(10.60)
A D G A D G, , , , ,

2 1/2 4 1/4 1/2 2 2

2 2 1/2

The matrix element αβ(W
2)βα cancels out from this ratio, so that it becomes indeed a

universal function of just two dimensionless parameters w and b applicable for any
set of the five parameters Ne, T, n, n′, and C.

Below we provide numerical examples for some laboratory and astrophysical
plasmas where the allowance for the CM motion significantly affects the ion
dynamical Stark width. The first example is edge plasmas of magnetic fusion machines
(such as, e.g., tokamaks), characterized by the electron density Ne = (1014–1015) cm−3

and the temperature of one or few eV (see, e.g., review [29]). For these plasma
parameters, the Stark broadening of the most intense hydrogen spectral lines
(Ly-alpha, Ly-beta, H-alpha, etc) can be dominated by the ion dynamical broadening
(see, e.g., [14–20]).

The second example is plasmas in the atmospheres of flare stars. They are
characterized by practically the same range of plasma parameters as the edge
plasmas of magnetic fusion machines—see, e.g., book [30] and paper [31].

For both the edge of magnetic fusion machines and the atmospheres of flare stars,
for theHα line emitted from a hydrogen plasma at Ne = 5 × 1014 cm−3 and T = 1 eV,
the ratio from equation (10.60) yields 1.19 for C = 2 and 1.13 for C = 3/2.
Figure 10.1 presents this ratio (for the Hα line emitted from a hydrogen plasma)
versus the electron density Ne at T = 1 eV for C = 2 (solid line) and for C = 3/2
(dashed line). It is seen that the allowance for the CM motion increases the ion
dynamical Stark width of the Hα line in these kinds of plasmas by up to (15–20)%.

Our third example relates to plasmas of radiofrequency discharges, such as, e.g.,
those studied in papers [32–34]. The plasma parameters, e.g., in the experiments
[32, 33], are Ne = 1.2 × 1013 cm−3 and T = (1850–2000) K, i.e., T = (0.16–0.17) eV.
For the Hα line emitted from such a hydrogen plasma, the ratio from equation
(10.60) yields 1.18 for C = 2 and 1.13 for C = 3/2. Figure 10.2 presents this ratio (for
the Hα line emitted from a hydrogen plasma) versus the electron density Ne at
T = 0.17 eV for C = 2 (solid line) and for C = 3/2 (dashed line). It is seen that the
allowance for the CMmotion increases the ion dynamical Stark width of theHα line
in these kinds of plasmas by up to (15%–20%).

In summary, in paper [5, 6] there was studied the general problem whether the
CM motion and the relative motion can be separated for hydrogenic atoms/ions in a
nonuniform electric field. It was demonstrated that, strictly speaking, they cannot be
separated. Then the author of papers [5, 6] used the approximate analytical method
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of the separation of rapid and slow subsystems to achieve the pseudoseparation of
the CM and relative motions for hydrogenic atoms/ions in an arbitrary nonuniform
electric field.

Next, in papers [5, 6] these results were further applied for the case of a hydrogen
atom in the nonuniform electric field, where the field is due to the nearest (to the
hydrogen atom) ion in a plasma. It was shown that the effect of the CM motion can
be formally taken into account via the substitution of the initial relative velocity V0

Figure 10.2. The ratio of the ion dynamical Stark width with the allowance for the CM motion to the ion
dynamical Stark width from the conventional theory [21] versus the electron density Ne (cm

−3) for the Hα line
emitted from a hydrogen plasma at T = 0.17 eV for C = 2 (solid line) and for C = 3/2 (dashed line). Plasma
parameters correspond to radiofrequency discharges. Reproduced with permission from [6]. Copyright 2018 E
Oks.

Figure 10.1. The ratio of the ion dynamical Stark width with the allowance for the CM motion to the ion
dynamical Stark width from the conventional theory [21] versus the electron density Ne (cm

−3) for the Hα line
emitted from a hydrogen plasma at T = 1 eV for C = 2 (solid line) and for C = 3/2 (dashed line). Plasma
parameters correspond to edge plasmas of magnetic fusion machines and to atmospheres of flare stars.
Reproduced with permission from [6]. Copyright 2018 E Oks.
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in the pair ‘atom–ion’ by an effective velocity Veff that depends on the quantum
numbers of the hydrogen atom, as well as on the initial separation R0 in the pair
‘atom–ion’ and on the ion charge Z.

Finally, in papers [5, 6] the results were applied to the ion dynamical Stark
broadening of hydrogen lines in plasmas. There were obtained analytical results for
the cross-sections of the optical collisions that control the corresponding Stark
width. There were presented specific examples of laboratory plasmas (such as
magnetic fusion plasmas or plasmas of radiofrequency discharges) and astrophysical
plasmas (such as in atmospheres of flare stars) where the allowance for these CM
effects leads to a significant increase of the width of hydrogen spectral lines—by up
to 15%–20%.

Thus, in addition to the fundamental importance, the results of papers [5, 6] have
also practical importance for spectroscopic diagnostics of laboratory and astro-
physical plasmas.
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Chapter 11

Advanced treatment of the Stark broadening of
hydrogen spectral lines by plasma electrons

The Stark broadening (SB) of hydrogen lines (H-lines, including deuterium and
tritium lines) is important for many applications in plasma physics (including
controlled fusion and plasma processing), in laser-induced breakdown spectroscopy,
and in astrophysics. The most ‘user-friendly’ are semiclassical theories of the SB of
H-lines—because their results can be expressed analytically in a relatively simple
form for any H-line.

Within the semiclassical theories, the simplest is the so-called conventional theory
(CT)—also known as the ‘standard theory’. In the CT, it is assumed that from the
viewpoint of the radiator, the ion microfield (i.e., the electric field due to ionic
perturbers) is quasistatic, while the electron microfield is treated dynamically in the
so-called impact approximation [1, 2]. (The CT is frequently referred to as Griem’s
theory—as presented in the Kepple–Griem paper [2] and in Griem’s book [3].) A
more accurate version of the collisional theory of the SB is called the unified theory.
Physically, the primary distinction of the unified theory from the CT is the allowance
for incomplete collisions [4, 5]. A significant analytical advance within the CT was
presented in papers [6, 7], where it was found that the Stark profile of hydrogenic
spectral lines caused by the electrons at the absence of the ion microfield reduces to a
single Lorentzian. Analytical advances going beyond the CT have been exact (non-
perturbative—in distinction to the CT) analytical solutions of the problem—but
only if all ‘perturbing’ charges were of the same sort [8, 9].

The next advance in analytical theories of the SB beyond the CT was called
generalized theory (GT). It demonstrated for the first time that the coupling of the
electron and ion microfields can be strong [10, 11]—see also book [12], chapter 4. (In
paper [13] there was previously found only a weak, logarithmic coupling between the
electron and ion microfields.) This indirect coupling (facilitated by the radiator)
increases with the growth of the electron density Ne and/or the principal quantum
number n, as well as with the decrease of the temperature T [10–12]. The GT
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accomplished this by going beyond the fully-perturbative description of the electron
microfield used in the CT.

Griem’s version of the CT presented in Kepple–Griem paper [2] is still used by a
number of groups performing laboratory experiments or astrophysical observations
(especially, by the latter groups) for comparison with their experimental or
observational results. Therefore, in papers [14, 15] the author came back to the
CT for H-lines (still using the impact approximation for electrons and the quasistatic
approximation for ions, just as in Griem’s CT) and develop a refined CT by taking
into account the following. The characteristic frequency of the variation of the
perturbing electron electric field at the location of the radiating atom is much smaller
than the atomic transition frequency (speaking quantally) or the Kepler frequency of
the atomic electron (speaking quasi-classically). So, the perturbing electron repre-
sents a slow subsystem while the radiation atom represents the rapid subsystem.
After averaging over the rapid subsystem, the perturbing electron moves in the
effective potential caused by the fact that hydrogen atoms possess permanent dipole
moments (in the overwhelming majority of the atomic states). This fact is intimately
related to the existence of an additional conserved vector quantity—the Runge–Lenz
vector A (discussed, e.g., in textbook [16]).

The average value of the dipole moment is antiparallel to the vector A (see, e.g.,
[17–19]). Therefore perturbing electrons move in a dipole potential

= 〈 〉•V e R r r/ , (11.1)2 3

where r is the radius-vector of the perturbing electrons and 〈 〉R is the mean value of
the radius-vector of the atomic electron:

〈 〉 = − ∣ ∣e ER A3 /(4 ), (11.2)2
at

where Eat is the energy of the atomic electron. Hence the perturbing electrons
actually do not move as free particles—in distinction to Griem’s CT.

Another refinement of the CT in papers [14, 15] had to do with the fact that
Griem’s definition of the so-called Weisskopf radius (defined in the next section) was
not quite accurate. Also, in his book [3] Griem suggested changing so-called strong
collision constant (defined in the next section) without changing the Weisskopf
radius, while in reality the choices of the Weisskopf radius and of the strong collision
constant are interrelated: changing the strong collision constant necessitates the
corresponding change of the Weisskopf radius.

One of the primary analytical results from papers [14, 15] is the following ratio of
Stark widths calculated with (γαβ,A,d) and without (γαβ,A) the allowance for the
scattering of the perturbing electrons on the atomic electric dipole (both γαβ,A,d and
γαβ,A being calculated using the more accurate definition of the Weisskopf radius,
which is why they have the subscript A):

γ γ= = − − −

+ + − +
αβ αβ b x b

x x x b x

ratio / {ln[(exp(2 ) 1) (1 / 1) /2 ] /2

[1/(4 )]ln[(1 )/(1 )]}/{ln[ / ] 1/2}.
(11.3),A d A, ,

2 1/2 4 1/4 1/2 2

2 2 2
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Here, α and β correspond to upper and lower sublevels of the levels a and b involved
in the radiative transition, respectively. In equation (11.3)

= + ′ − ′b C n n n n(2 /3) ( ) /( ), (11.4)1/2 2 2 1/2 2 2

where n and nʹ are the principal quantum numbers of the upper and lower energy
levels, involved in the radiative transition, respectively; C is the strong collision
constant discussed below, and

ħ= + ′ = × + ′−x e T n n N m n n N T(2 / )[( ) / ] 2.097 10 [( ) ] / , (11.5)e e e
2 2 1/2 11 2 2 1/2

where in the last, ‘practical’ part of equation (11.5), the temperature T is in eV and
the electron density Ne is in cm−3.

The strong collision constant in the CT shows up in the condition of the unitarity
of the scattering matrices Sa and Sb

ρ ρ∣ − * ∣ = ⩽S S C C1 ( , ) ( , ) , 2, (11.6)a bv v

where ρ and v are the impact parameter and the velocity of the perturbing electron,
respectively; the symbol * stands for the complex conjugation.

For comparison with Griem’s CT, a modification has to be made to the
corresponding ratio of widths. After taking into account that Griem’s choice of
the Weisskopf radius, the corresponding ratio becomes

γ γ= = − − −

+ + −
+

αβ αβA G b x b

x x x b xC

ratio to / {ln[(exp(2 ) 1) (1/ 1) /2 ] /2

[1/(4 )]ln[(1 )/(1 )]}/{ln[ /( )]
0.356}.

(11.7)
A d G, , ,

2 1/2 4 1/4 1/2 2

2 2 2 1/2

Figure 11.1 presents the ratio of the Stark widths from equation (11.7) for the Hα

line versus the dimensionless parameter x (given by equation (11.5)) for three
different choices of the strong collision constant: C = 2 (solid curve), C = 3/2 (dotted
curve), as suggested on page 70 of Griem’s book [3], and C = 1 (dashed curve).

It is seen that in the more advanced version of the CT, the Stark width of the Hα

line can exceed the corresponding width from Griem’s CT by up to 150%. We note
that the corresponding figure 2 from papers [14, 15], presenting the same ratio A to G
for C = 1 and C = 2, is regrettably erroneous.

Figures 11.2 and 11.3, corresponding to figures 3 and 4 from papers [14, 15],
present the comparison of the experimental widths of the Hα line from two different
benchmark experiments with several theories. Namely, in figure 11.2 the exper-
imental data was obtained by Kunze’s group in a gas-liner pinch plasma [20], while
in figure 11.3 the experimental data was obtained by Vitel’s group in a flash tube
plasma. In both figures the experimental widths are presented by separated dots. As
for the theories, in both figures the solid curve corresponds to the refined CT from
the present paper, the dotted curve—to Griem’s CT, and the dashed curve—to the
generalized theory (GT). It should be emphasized that the theoretical widths based
on the refined CT, developed in papers [14, 15], have been calculated taking into
account both diagonal and nondiagonal matrix elements of the electron impact
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Figure 11.1. The ratio of the Stark widths from equation (11.7) for the Hα line versus the dimensionless
parameter x (given by equation (11.5)) for three different choices of the strong collision constant: C = 2 (solid
curve), C = 3/2 (dotted curve), as suggested on page 70 of Griem’s book [3], and C = 1 (dashed curve).

Figure 11.2. Comparison of the experimental widths of theHα line (separated dots) obtained by Kunze’s group
in a gas-liner pinch plasma [20] at the temperatures (6–8) eV with the following theories: the refined CT from
the present paper (solid line), Griem’s CT (dotted line), the GT (dashed line). (Reprinted by permission from
[15]. Copyright 2015 Elsevier.)

Figure 11.3. Comparison of the experimental widths of the Hα line (separated dots) obtained by Vitel’s group
in a flash tube plasma [21] at the temperatures (1–1.5) eV and the initial gas pressure 600 Torr with the
following theories: the refined CT from the present paper (solid line), Griem’s CT (dotted line), the GT (dashed
line). (Reprinted by permission from [15]. Copyright 2015 Elsevier.)
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broadening operator, as well as the quasistatic broadening by ions, i.e., in the same
way as in Griem’s CT. We also note that the theoretical widths based on the GT
were not a new result, but rather were those that had been previously calculated and
presented in book [12] in sections 9.1 and 9.2.

Thus, the above refinements of the CT increase the electron broadening. This is
especially evident for warm dense plasmas emitting H-lines.

References
[1] Baranger M 1958 Phys. Rev. 111 481
[2] Kepple P and Griem H R 1968 Phys. Rev. 173 317
[3] Griem H R 1974 Spectral Line Broadening by Plasmas (New York: Academic)
[4] Smith E, Cooper J and Vidal C 1969 Phys. Rev. 185 140
[5] Vidal C, Cooper J and Smith E 1970 J. Quant. Spectrosc. Rad. Transf. 10 1011
[6] Stehle C and Feautrier N 1984 J. Phys. B: Atom. Mol. Phys. 17 1477
[7] Stehle C 1995 Astron. & Astrophys. 305 677
[8] Lisitsa V S and Sholin G V 1972 Sov. Phys. JETP 34 484
[9] Derevianko A and Oks E 1996 Physics of Strongly Coupled Plasmas ed W D Kraeft and M

Schlanges (Singapore: World Scientific), p 286
[10] Ispolatov Y and Oks E 1994 J. Quant. Spectrosc. Rad. Transf. 51 129
[11] Oks E, Derevianko A and Ispolatov Y 1995 J. Quant. Spectrosc. Rad. Transf. 54 307
[12] Oks E 2006 Stark Broadening of Hydrogen and Hydrogenlike Spectral Lines in Plasmas: The

Physical Insight (Oxford: Alpha Science International)
[13] Sholin G V, Demura A V and Lisitsa V S 1973 Sov. Phys. JETP 37 1057
[14] Oks E 2013 Intern. Rev. Atom. Mol. Phys. 4 49
[15] Oks E 2015 J. Quant. Spectrosc. Rad. Transf. 152 74
[16] Landau L D and Lifshitz E M 1965 Quantum Mechanics (Oxford: Pergamon)
[17] Kotkin G L and Serbo V G 1971 Collection of Problems in Classical Mechanics (Oxford:

Pergamon) problem 3.32
[18] Lisitsa V S 1977 Sov. Phys. Uspekhi 122 603
[19] Lisitsa V S 1994 Atoms in Plasmas (Berlin: Springer), p 13
[20] Büscher S, Wrubel T, Ferri S and Kunze H J 2002 J. Phys. B: Atom. Mol. Opt. Phys. 35 2889
[21] Flih S A, Oks E and Vitel Y 2003 J. Phys. B: Atom. Mol. Phys. 36 283

Analytical Advances in Quantum and Celestial Mechanics

11-5

https://doi.org/10.1103/PhysRev.111.481
https://doi.org/10.1103/PhysRev.173.317
https://doi.org/10.1103/PhysRev.185.140
https://doi.org/10.1016/0022-4073(70)90121-4
https://doi.org/10.1088/0022-3700/17/8/010
https://doi.org/10.1016/0022-4073(94)90073-6
https://doi.org/10.1016/0022-4073(95)00065-S
https://doi.org/10.1016/j.jqsrt.2014.10.022
https://doi.org/10.1070/PU1977v020n07ABEH005446
https://doi.org/10.1088/0953-4075/35/13/304
https://doi.org/10.1088/0953-4075/36/2/309


IOP Publishing

Analytical Advances in Quantum and Celestial Mechanics
Separating rapid and slow subsystems

Eugene Oks

Chapter 12

Advanced treatment of the Stark broadening of
hydrogen-like spectral lines by plasma electrons

The theory of the Stark broadening of hydrogen-like spectral lines by plasma
electrons, developed by Griem and Shen [1] and later presented also in books [2, 3],
is usually referred to as the conventional theory, hereafter CT, also known as the
standard theory. (Further advances in the theory of the Stark broadening of
hydrogen-like spectral lines by plasma electrons can be found, e.g., in books [4, 5]
and references therein.) In the CT, the perturbing electrons are considered moving
along hyperbolic trajectories in the Coulomb field of the effective charge Z − 1 (in
atomic units), where Z is the nuclear charge of the radiating ion. In other words, in
the CT there was made a simplifying assumption that the motion of the perturbing
electron can be described in frames of a two-body problem, one particle being the
perturbing electron and the other ‘particle’ being the charge Z − 1.

However, in reality one has to deal with a three-body problem: the perturbing
electron, the nucleus, and the bound electron. Therefore, trajectories of the
perturbing electrons should be more complicated.

In paper [6], the authors took this into account by using the standard analytical
method of separating rapid and slow subsystems—see, e.g., book [7]. The character-
istic frequency of the motion of the bound electron around the nucleus is much
higher than the characteristic frequency of the motion of the perturbing electron
around the radiating ion. Therefore, the former represents the rapid subsystem and
the latter represents the slow subsystem. This approximate analytical method allows
a sufficiently accurate treatment in situations where the perturbation theory fails—
see, e.g., book [7].

By applying this method the authors of paper [6] obtained more accurate
analytical results for the electron broadening operator than in the CT. They showed
by examples of the electron broadening of the Lyman lines of He II that the
allowance for this effect increases with the electron density Ne, becomes significant
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already at Ne ∼ 1017 cm−3 and very significant at higher densities. Here are the
details.

In the CT the electron broadening operator is expressed in the form (see, e.g.,
paper [1])

v ∫π ρρΦ ≡ −*N d S S2 { 1}. (12.1)ab e a b

where Ne, v, and ρ are the electron density, velocity, and impact parameter,
respectively; S (0)a and S (0)b are the S matrices for the upper (a) and lower (b) states
involved in the radiative transition, respectively; {…} stands for the averaging over
angular variables of vectors v and ρ. Further in the CT, the collisions are subdivided
into weak and strong. The weak collisions are treated by the time-dependent
perturbation theory. The impact parameter, at which the formally calculated
expression {SaSb* − 1} for a weak collision starts violating the unitarity of the
S-matrices, serves as the boundary between the weak and strong collisions and is
called Weisskopf radius ρWe.

So, in the CT the integral over the impact parameter diverges at small ρ.
Therefore, in the CT this integral is broken down into two parts: from 0 to ρWe

(strong collisions) and from ρWe to ρmax for weak collisions. The upper cutoff ρmax

(typically chosen to be the Debye radius ρD = [T/(4πe2Ne)]
1/2, where T is the electron

temperature) is necessary because this integral diverges also at large ρ.
In the CT, after calculating the S matrices for weak collisions, the electron

broadening operator becomes (in atomic units)

∫ ∫ρρ ρ ρΦ ≡ Θ = Θ
Θ

Θ
ρ

ρ

Θ

Θ
C d

C
d

d
d

sin
( )
2 2

sin
2

, (12.2)ab
weak 2

2
2

we

max

min

max

where Θ is the scattering angle for the collision between the perturbing electron and
the radiating ion (the dependence between Θ and ρ being discussed below) and the
plasma electron and the operator C is

⎡
⎣⎢

⎤
⎦⎥vv v∫π= −

−
−

∞
*r rC N d f

m
Z

4
3

( )
( 1)

( ) . (12.3)e a b
0

3
2

2
2

Here f(v) is the velocity distribution of the perturbing electrons, r is the radius-vector
operator of the bound electron (which scales with Z as 1/Z), and m is the reduced
mass of the system ‘perturbing electron—radiating ion’.

In the CT the scattering occurs in the effective Coulomb potential, so that the
trajectory of the perturbing electron is hyperbolic and the relation between the
impact parameter and the scattering angle is given by

v
ρ = − ΘZ

m
1

cot
2

. (12.4)(0)
2

In paper [6] for a more realistic description of the situation, the authors used the
standard analytical method of separating rapid and slow subsystems [6], as noted
above. It is applicable here because the characteristic frequency vTe/ρWe of the
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variation the electric field of the perturbing electrons at the location of the radiating
ion is much smaller than the frequency Ωab of the spectral line (the latter, e.g., in case
of the radiative transition between the Rydberg states would be the Kepler frequency
or its harmonics).

Indeed, the characteristic frequency of the motion of the perturbing electron
around the radiating ion in the process of the Stark broadening of spectral lines is the
so-called Weisskopf frequency

v v
ω

ρ
= ∼

− ℏ
∼

− ℏ( ) ( )
Zm

n n

ZT

n n
. (12.5)

T T

a b a b

We
We

2

2 2 2 2

The characteristic frequency of the motion of the bound electron around the nucleus
is the frequency of the spectral line

⎛
⎝⎜

⎞
⎠⎟Ω =

ℏ
−Z U

n n
1 1

, (12.6)
b a

2
H

2 2

where UH is the ionization potential of hydrogen. The ratio of these two frequencies
is

⎛
⎝⎜

⎞
⎠⎟
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

ω
Ω

∼
−( )

T
ZU

n n

n n
. (12.7)a b

a b

We

H

2 2

2 2 2

For the simplicity of estimating this ratio, let us consider na ≫ nb, so that

⎛
⎝⎜

⎞
⎠⎟

ω
Ω

∼ ≪T
Zn U

1 (12.8)
a

We
2

H

as long as

≪T Zn(eV) (13.6 eV) . (12.9)a
2

For

≪T n(eV) (27.2 eV) (12.10)a
2

and is satisfied for a broad range of temperatures, at which He II spectral lines are
observed in plasmas.

The first step in this method is to ‘freeze’ the slow subsystem (perturbing electron)
and to find the analytical solution for the energy of the rapid subsystem (the
radiating ion) that would depend on the frozen coordinates of the slow subsystem (in
our case it will be the dependence on the distance R of the perturbing electron from
the radiating ion). To the first non-vanishing order of the R-dependence, the
corresponding energy in the parabolic quantization is given by

= − +E R
Z
n

nq
ZR

( )
3

2
, (12.11)nq

2

2 2
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where n and q = n1 − n2 are the principal and electric quantum numbers,
respectively; n1 and n2 are the parabolic quantum numbers.

The next step in this method is to consider the motion of the slow subsystem
(perturbing electron) in the ‘effective potential’ Veff(R) consisting of the actual
potential plus Enq(R). Since the constant term in equation (12.11) does not affect the
motion, the effective potential for the motion of the perturbing electron can be
represented in the form

α β α= − + = −V R
R R

Z( ) , 1. (12.12)eff 2

For the spectral lines of the Lyman series, since the lower (ground) state b of the
radiating ion remains unperturbed (up to/including the order ∼1/R2), the coefficient
β is

β =
n q

Z

3

2
. (12.13)a a

For other hydrogenic spectral lines, for taking into account both the upper and
lower states of the radiating ion, the coefficient β can be expressed as

β =
−n q n q

Z

3( )

2
. (12.14)a a b b

The motion in the potential from equation (12.12) allows an exact analytical
solution. In particular, the relation between the scattering angle and the impact
parameter is no longer given by equation (12.4), but rather becomes (see, e.g., book
[8])

⎛
⎝⎜

⎞
⎠⎟π

β α
βΘ = −

+
+

m
M

E M
m

2

1
2

arctan
4

2
. (12.15)

2

2

2

Here, E and M are the energy and the angular momentum of the perturbing
electron, respectively. We can rewrite the angular momentum in terms of the impact
parameter ρ as

vρ=M m (12.16)

Then a slight rearrangement of equation (12.15) yields

⎛
⎝⎜

⎞
⎠⎟v

v
v

π β
ρ α

ρ β− Θ + = +
m

m mtan
2

1
2

2 . (12.17)
2 2

2 2 2

After solving equation (12.17) for ρ and substituting the outcome in equation
(12.2), a more accurate expression for the electron broadening operator can be
obtained. However, equation (12.17) does not have an exact analytic solution for ρ
so that this could be done only numerically.
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In the paper [6] for getting the message across in the simplest form, the authors
provided an approximate analytical solution of equation (12.17) by expanding it in
powers of β. This yields (keeping up to the first power of β)

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎡
⎣⎢

⎛
⎝

⎞
⎠
⎤
⎦⎥ v

vπ π π β
ρ

ρ
α

β
αρ

− Θ + − Θ + − Θ ≈ +
m

m
tan

2 2
1 tan

2
. (12.18)2

2 2

2

The analytical solution for ρ was sought in the form ρ ρ ρ≈ +(0) (1), where ρ(0)

corresponds to β = 0 (and was given by equation (12.4)) and ρ ρ≪(1) (0).
Substitution of ρ ρ ρ≈ +(0) (1) into equation (12.18) yields the expression

v

vπ β

ρ

β
αρ

ρ
α

− Θ
Θ − ≈

m

m( )

2 sin
2

. (12.19)2 (0)2 2
(0)

2 (1)

After solving equation (12.19) for ρ(1), the following expression for ρ was obtained in
paper [6]:

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟v
ρ α β

α
≈ Θ + π − Θ

Θ − Θ
m

cot
2 2cos

2

tan
2

. (12.20)
2

2

As a reminder, the goal is to perform the integration in equation (12.1) for
obtaining a more accurate analytical result for the electron broadening operator.
This can be more easily accomplished by performing the integration over Θ instead
of ρ. For this purpose, first the authors of paper [6] squared equation (12.20)

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟v v
ρ α β≈ Θ + π − Θ

Θ Θ −
m m

cot
2 sin

2
cos

2

1 . (12.21)2
2

2 4
2

2

where only the first-order terms in β have been kept for consistency. To make
formulas simpler, they denoted ϕ = Θ/2. After differentiating equation (12.21) with
respect to ϕ, they obtained

⎜ ⎟
⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠
⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥

v v
ρ
ϕ

α ϕ
ϕ

β

ϕ ϕ
π ϕ

ϕ ϕ

≈ − −

× + − −

m m
d
d

2 cot
sin

2

1
sin cos 2

1
sin

1
cos

(12.22)

2 2

2 4 2 2

2 2

After substituting in the utmost right side of equation (12.2) first ϕΘ = 2 and then
ρ
ϕ

d
d

2
from equation (12.22), the contribution of the weak collisions to the electron

broadening operator becomes
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⎜ ⎟

⎡

⎣
⎢⎢⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

v v

v

∫ ∫

∫

α ϕ ϕ β ϕ ϕ

β π ϕ ϕ ϕ

Φ = − +

+ − −

ϕ

ϕ
π

π

C
m

d
m

d

m
d

cot tan

2
(1 tan ) .

(12.23)
0

2

0

2

ab
weak

2

2 4 2

2
2

min

max

In equation (12.23), in the two correction terms proportional to β, the authors of
paper [6] extended the integration over the full range of the variation of the angle ϕ.
The corresponding minor inaccuracy would not contribute significantly to the
electron broadening operator, since the terms involving β are considered to be a
relatively small correction to the first term in equation (12.23).

Performing the integrations in equation (12.23) they obtained:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥

v
v

v

v

∫π

ϕ
ϕ

β π

Φ = − −

× +
−

−

*
∞

N
f

m
Z

r r
4
3

( ) d
( )

log
sin

sin ( 1) 4
1 .

(12.24)

ab e a b
weak 2

0

max

min

2

2

2

Here and below the expression (ra − rb*)
2 stands for the scalar product (also known

as the dot-product) of the operator (ra − rb*) with itself. In the theory of the
dynamical Stark broadening of spectral lines in plasmas by electrons, the corre-
sponding matrix elements are calculated with respect to the unperturbed wave
functions.

Then the authors of paper [6] added the CT estimate for the contribution of
strong collisions

vπ ρΦ ≈ N . (12.25)ab e
strong

We
2

where ρWe corresponds to ϕmax. Expressions for ϕmax and ϕmin are given in paper [1]
(in equations (9) and (10a)) as follows

v
ϕ = −

−( )
Z Z

n n m
sin

3
2

( 1)
, (12.26)

a b
max 2 2

v

v

ϕ
ρ

ρ

=

−

+ −

Z
m

Z
m

sin

1

1
( 1)

(12.27)min

2
D

2

2 4
D
2

It should be emphasized that the factor −n n( )a b
2 2 in the denominator of the right

side of equation (12.26) was an approximate allowance by the authors of paper [1]
for the contribution of the lower level b while estimating the operator ( − *r ra b ) for
hydrogenic lines of spectral series other than the Lyman lines. However, for the
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Lyman lines the lower (ground) level does not contribute to electron broadening
operator, so that for the Lyman lines equation (12.26) should be simplified as
follows:

v
ϕ = −Z Z

n m
sin

3
2

( 1)
. (12.28)

a
max 2

At relatively small velocities of perturbing electrons, the right side of equation
(12.26) or equation (12.28) could exceed unity. In this case one should set

ϕ =sin 1max , which corresponds to ρmin = 0, so that there would be no contribution
from strong collisions. Typically, the range of such small velocities has a very low
statistical weight in the electron velocity distribution.

After substituting the above formulas for ϕsin max and ϕsin min into equation
(12.23), and combining the contributions from weak and strong collisions, the
authors of paper [6] obtained the final results for the electron broadening operator:
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(12.29)
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for the non-Lyman lines and
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(12.30)
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for the Lyman lines. Here and below log […] stands for the natural logarithm.
In order to determine the significance of this effect, it is necessary to evaluate the

ratio
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a a b b

a b a b

2

2

2

2 2

2 2 2 2 2

D
2 2 2

D

2

for the non-Lyman lines or the ratio
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for the Lyman lines.
The authors of paper [6] presented numerical examples for several Lyman lines.

As is customary in the Stark broadening theory, instead of the integration over
velocities, for the numerical examples they used the mean thermal velocity vT of the
perturbing electrons. In atomic units, the mean thermal velocity vT, the Debye
radius ρD, and the reduced mass can be expressed as follows

v ρ= = × =
+

+
−

T T
N

m

m
Am

m
Am

0.1917
(eV)
m

1.404 10
(eV)
(cm )

1

1
2

, (12.33)
e

e

p

e

p

T D
11

3

where me is the electron mass, mp is the proton mass, and A is the atomic number of
the radiating ion ( ≈A Z2 ).

Table 12.1 presents the values of the ratio from equation (12.33) for several
Lyman lines of He II at the temperature T = 8 eV and the electron density

= ×N 2 10e
17 cm−3.

Figure 12.1 shows the ratio from equation (12.33) versus the electron density Ne

for the Stark components of the electric quantum number ∣q∣ = 1 of Lyman-alpha
(n = 2), Lyman-beta (n = 3), and Lyman-gamma (n = 4) lines of He II at the
temperature T = 8 eV.

It is seen that for the electron broadening of the Lyman lines of He II, the
allowance for the effect under consideration indeed becomes significant already at
electron densities Ne ∼ 1017 cm−3 and increases with the growth of the electron
density. It should be noted that when the ratio, formally calculated by equation
(12.33), becomes comparable to unity, this is the indication that the approximate

Table 12.1. Ratio from equation (12.33) for the Stark components of several Lyman lines of He II at the
temperature T = 8 eV and the electron density = ×N 2 10e

17 cm−3. Reproduced with permission from [6].
Copyright 2018 P Sanders and E Oks.

N ∣q∣ Ratio

2 1 0.3261
3 1 0.3748
3 2 0.7496
4 1 0.5156
4 2 1.0311
4 3 1.5467
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analytical treatment based on expanding equation (12.17) up to the first order of
parameter β, is no longer valid. In this case the calculations should be based on
solving equation (12.17) with respect to ρ without such approximation.

In summary, the authors of paper [6] considered the electron broadening of
hydrogenlike spectral lines in plasmas more accurately than in the CT. In distinction
to the CT, they treated it as a three-body problem involving the perturbing electron,
the nucleus, and the bound electron. They employed the standard analytical method
of separating rapid and slow subsystems by using the fact that the characteristic
frequency of the motion of the bound electron around the nucleus is much higher
than the characteristic frequency of the motion of the perturbing electron around the
radiating ion.

With the help of this method they obtained more accurate analytical results for
the electron broadening operator compared to the CT. By examples of the electron
broadening of the Lyman lines of He II, they demonstrated that the allowance for
this effect becomes significant at electron densities Ne ∼ 1017 cm−3 and very
significant at higher densities. It is well-known that for relatively low-Z radiators,
the broadening by electrons is comparable to the broadening by ions, so that the
correction to the broadening by electrons, introduced in paper [6], should be
significant for the total Stark width.

It is important to emphasize that the authors of paper [6] were able to obtain the
above analytical results primarily due to the underlying fundamental symmetry of the
class of potentials V(R) = −A/R + B/R2, where A and B are constants. Namely, this
class of potentials possesses an additional conserved quantity Meff

2 = M2 + 2mB,

Figure 12.1. Ratio from equation (12.33) versus the electron density Ne for the Stark components of the
electric quantum number ∣q∣ = 1 of Lyman-alpha (n = 2), Lyman-beta (n = 3), and Lyman-gamma (n = 4) lines
of He II at the temperature T = 8 eV. (Reproduced with permission from [6]. Copyright 2018 P Sanders and
E Oks.)
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whereM is the angular momentum and m is the mass of a particle, so thatMeff is the
effective angular momentum. As for the impact approximation, it was not crucial to
their work—they used it only for the following two purposes: first, to get the message
across in a simple form, and second, for the comparison with the CT (in which the
impact approximation was crucial), so that they would compare ‘apples to apples’
rather than ‘apples to oranges’.

The authors of paper [6] mentioned that in 1981, Baryshnikov and Lisitsa [9]
published very interesting results for the electron broadening of hydrogen-like
spectral lines in plasmas (also presented later in book [10]) in frames of the quantum
theory of the dynamical Stark broadening, while in paper [6] the results were
obtained in frames of the semiclassical theory of the dynamical Stark broadening,
just as in the CT. (For clarity: in the semiclassical theory, the radiating atom/ion is
treated quantally, while perturbing electrons classically; in the quantum theory both
the radiating atom/ion and perturbing electrons are treated quantally.) Both in paper
[9] and in paper [6], they used the underlying symmetry of the class of potentials V
(R) = −A/R + B/R2 for obtaining analytical solutions.

A specific result for the line width Baryshnikov and Lisitsa [9] obtained for
Lyman lines in the classical limit using the impact approximation, as presented in
their equations (4.5) and (4.6). The authors of paper [6] compared Baryshnikov–
Lisitsa’s results from their equations (4.5) and (4.6) with the CT [1] for He II Lyman
lines. It turned out that for Ne ∼ (1017–1018) cm−3, i.e. for the range of electron
densities, in which the overwhelming majority of measurements of the width of He II
lines were performed, Baryshnikov–Lisitsa’s line width exceeds the CT line width by
two orders of magnitude or more. In view of the fact that the width of He II lines,
measured by various authors in benchmark experiments (i.e., experiments where
plasma parameters were measured independently of the line widths), never exceeded
the CT width by more than a factor of two (see, e.g., benchmark experiments [11–
13]), this seems to indicate that something might be incorrect in equations (4.5) and
(4.6) from paper [9] (though methodologically it was a very interesting paper). In
distinction, the corrections to the CT introduced paper [6], do not exceed the factor
of two for He II lines in the range of Ne ∼ (1017–1018) cm−3.
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Chapter 13

Concluding remarks

Separating rapid and slow subsystems is one of the most powerful analytical
methods in theoretical physics. It can take various embodiments mentioned in
chapter 1, such as, e.g., the ‘method of averaging’ [1, 2], the ‘method of the effective
potential’ [3–5], and so on. Nevertheless, all the variations have the same thing in
common: the separation of rapid and slow subsystems.

The current book assembled under one ‘roof’ modern applications of this method
in quantum mechanics, as well as in classical mechanics in general and celestial
mechanics in particular. Concerning applications to quantum mechanics, the book
covered from hydrogen atoms in a high-frequency laser field to the quantum rotator-
dipole in a high-frequency field, to the dynamical Stark broadening of spectral lines
in plasmas—plus a formalism for the general analytical treatment of quantum
systems in a high-frequency field (appendix A).

As for applications to classical mechanics in general and celestial mechanics in
particular, the book presented several particular analytical solutions for the
unrestricted three-body problem of celestial mechanics, as well as the classical
treatment of one-electron Rydberg quasimolecules in various fields and Rydberg
states of muonic-electronic helium atoms or helium-like ions—plus a generalization
of the method of the effective potentials (the generalization developed in paper [6]).

We hope that the book would motivate theoretical physicists to seek, find, and
implement further applications of this powerful analytical method to other quantum
and classical systems. In this way, a better physical insight can be developed into
complicated systems both in the micro-world (atoms, molecules and so on) and in
the macro-world (the Universe).

References
[1] Bogoliubov N N and Mitropolski Y A 1961 Asymptotic Methods in the Theory of Nonlinear

Oscillations (New York: Gordon and Breach)
[2] Oliveira A R E 2017 Adv. Hist. Stud. 6 40

doi:10.1088/2053-2563/ab3db0ch13 13-1 ª IOP Publishing Ltd 2020

https://doi.org/10.4236/ahs.2017.61003
https://doi.org/10.1088/2053-2563/ab3db0ch13


[3] Kapitza P L 1951 Sov. Phys. JETP 21 588
[4] Kapitza P L 1951 Uspekhi Fiz. Nauk 44 7
[5] Landau L D and Lifshitz E M 1976 Mechanics (Amsterdam: Elsevier) section 30
[6] Nadezhdin B B and Oks E 1986 Sov. Tech. Phys. Lett. 12 512

Analytical Advances in Quantum and Celestial Mechanics

13-2

https://doi.org/10.3367/UFNr.0044.195105b.0007


IOP Publishing

Analytical Advances in Quantum and Celestial Mechanics
Separating rapid and slow subsystems

Eugene Oks

Appendix A

General analytical treatment of quantum
systems in a high-frequency field

Let us consider a quantum system in a monochromatic, high-frequency field. It is
described by the Hamiltonian

ω= +H H V tx x x( ) ( ) ( ) cos , (A.1)0

where x is the coordinate vector (such as, e.g., the radius-vector). To simplify
formulas in the initial discussion, let us assume that the energy levels Ek

(0) of the
unperturbed Hamiltonian H0(x) are non-degenerate (this assumption will be relaxed
later). In this situation, the quasienergies of the system contain corrections that are
quadratic with respect to V: Ek = Ek

(0) + Ek
(2). In the second order of the standard

time-dependent perturbation theory, the expression for Ek
(2) has the form:

∑ ω ω ω ω= ℏ − = − ℏ( ) ( )E V V E E[1/(2 )] / , / . (A.2)
i

k ki ik ik ik ik i k
(2) 2 2 (0) (0)

Here Vik are the time-independent matrix elements of the perturbation and the
summation is performed over all states ∣i>, including the continuum states. Formula
(A.2) for Ek

(2) is valid if Ek
(2)/ħ ≪ min(∣ωik∣, ω), so that, in particular, there are no

resonances between the transition frequencies ωik and the field frequency ω or its
harmonics.

Calculating Ek
(2) by equation (A.2) requires summing up, a generally infinite

number of terms. This makes such calculation very inefficient.
The idea behind introducing an effective potential operator Ueff serves the

following goal: to substitute the infinite summation in equation (A.2) by calculating
just one integral:

= < ∣ ∣ >E k U k . (A.3)k
(2)

eff
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This goal can be achieved indeed for the high-frequency field, i.e., under the
following condition:

ω ω> ∣ ∣. (A.4)ik

For constructing Ueff, let us first expand the denominator in equation (A.2) in
powers of (ωik/ω)

2:

∑ ∑ ω ω= ℏ
=

∞
+ +E V V[ /(2 )] ( ) / . (A.5)

i s 0

k ki ik ik
s s(2) 2 1 2 2

Of course, the summation over s converges under the condition (A.4). Now let us
interchange the order of summations in equation (A.5):

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑ ∑ ω ω= ℏ

=

∞
+ +E V V ( ) /(2 ) . (A.6)

s i0

k ki ik ik
s s(2) 2 1 2 2

Nadezhdin [1] proved that if the sum over i in equation (A.6) converges, then this
sum coincides with the average value <k∣Us∣k> of the following operator (below for
any operators A and B, the notation [A, B] is their commutator):

ω= − ℏ … … … …
+

+ + +U V H H V H H[( 1) /(4 )] [[ [ , ], ], [ [ , ] , ]]. (A.7)
H s H stimes ( 1) times

s
s s s1 2 2 2 2

0 0 0 0
0 0

The corresponding classical effective potentials Us
class are expressed through the

classical Poisson brackets {, }, rather than the commutators [, ], as follows:

ω= … … … …
+

+U V H H V H H[1/(4 )] {{ { , }, }, { { , }, }}. (A.8)
H s H stimes ( 1) times

s
sclass 2 2

0 0 0 0
0 0

Here is one of the examples, where it is necessary to use Us with s > 0. let us
consider a hydrogen atom in a uniform electric field F cos ωt under the condition

ω ≫ Ω = ℏm e n/( ) , (A.9)n e
4 3

so that F cos ωt is the high-frequency field. (In equation (A.9), n is the principal
quantum number.) The unperturbed Hamiltonian in Cartesian coordinates can be
written as

= − ℏ ∂ ∂ ∂ −H m x x e r[ /(2 )]( / ) / . (A.10)e j j0
2 2 2

Here and below the summation over suffix repeated twice is understood—in this
case, over the suffix j ( j = 1, 2, 3). The interaction potential can be represented in the
form

ω ω= −V x t eF x t( )cos cos . (A.11)j j j

By using equation (A.7) with s = 0, we find:

ω=U e F m/(4 ). (A.12)e0
2 2 2
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The above quantity U0 coincides with Kapitza’s effective potential (details on
Kapitza’s effective potential can be found in [2–4]). From equation (A.12), it is seen
that in this case Kapitza’s effective potential does not depend on coordinates and
therefore cannot affect the atomic energy levels.

So, it is necessary to calculate the effective potential U1. According to equation
(A.7), we have

ω= ℏU V H V H H[1/(4 )] [[ , ], [[ , ], ]]. (A.13)1
4 4

0 0 0

The result of the calculation is as follows:

ω= ℏ − ∂ ∂ ∂ =− − −U F F e r x x r x x[1/(4 )] ( / ), ( ) . (A.14)j k j k m m1
4 4 2 2 1 1 1/2

By using equation (A.14) in the spherical polar coordinates (r, θ, φ) with the polar
axis parallel to vector F, we find that the motion of the atomic electron occurs in the
following effective potential:

γ θ γ ω= − − − =U e r r e F m/ (3 cos 1)/ , /(4 ). (A.15)eeff
2 2 3 2 2 2 4

As for Us with s > 1, Nadezhdin [1] showed that for a hydrogen atom in a
uniform, high-frequency electric field F cos ωt, the sum over i in equation (A.6)
converges as long as s does not exceed

= +s l l( ) 5/4 /2. (A.16)max

We recall that if the sum over i in equation (A.6) converges, then it coincides with the
corresponding value of Us. For s > smax, the sum over i in equation (A.6) diverges
because of the contribution of the continuous spectrum.

Now let us present Nadezhdin’s [1] generalization of the formalism of effective
potentials to the situation where the interaction of a quantum system with a field has
the form V cos ωt + W sin ωt. The most important example is the interaction of an
atom with an elliptically-polarized electromagnetic (e.g., laser) field. In this case, the
energy shift quadratic with respect to the field is

⎡⎣∑ ω ω ω

ω ω ω

= ℏ + −

+ − −

( )

( )

E V V W W

i V V W W

[1/(2 )] ( )

( ) .
(A.17)m

k km mk km mk mk mk

km mk km mk mk

(2) 2 2

2 2

It turns out to be possible to represent Ek
(2) in the form

∑= < ∣ ∣ >E k U k , (A.18)
s

k s
(2)
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where

ω

ω

= − ℏ … … … …

+ … … … …

+ − ℏ … … … …

+

+

+ + +

+ +

U V H H V H H

W H H W H H

i V H H W H H

[( 1) /(4 )]{[[ [ , ], ], [ [ , ], ]]

[[ [ , ], ], [ [ , ], ]]}

[( 1) /(2 )][[ [ , ], ], [ [ , ], ]].

(A.19)

H s H s

H s H s

H s H s

times ( 1) times

times ( 1) times

times times

s
s s s

s s s

1 2 2 2 2
0 0 0 0

0 0 0 0

2 1 2 1
0 0 0 0

0 0

0 0

0 0

In particular, for Kapitza’s effective potential, the corresponding generalization has
the form

ω ω= − ℏ + + ℏU V V H W W H i V W[ 1/(4 )]{[ , [ , ]] [ , [ , ]]} [ /(2 )][ , ]. (A.20)0
4 4

0 0

Now let us remove the assumption made at the beginning of appendix A that the
energy levels of the unperturbed system are non-degenerate. As in the standard time-
independent perturbation theory for degenerate states, the task is to find correct
eigenfunctions of the zeroth order ∣kα> and then the energy corrections Ekα

(2). In the
field Vcos ωt + Wsin ωt, the correct states of the zeroth order will be those that
diagonalize the following matrix Vkα,kγ built on all states ∣kα>, ∣kγ> of the
unperturbed energy Ek

(0):

∑ ω ω ω

ω ω ω

= ℏ + −

+ − −

α γ α β β γ α β β γ

α β β γ α β β γ

β
{

}

( )

( )

( )

( )

V V V W W

i V W U W

[1/(2 )]

,
(A.21)

k k k ,m m ,k k ,m m ,k mk mk

k ,m m ,k k ,m m ,k mk

,
2 2

2 2

m,

where, e.g., Vkα,mβ = <kα∣V∣mβ>. Accordingly, while approximating Ek
(2) by the

effective potentials from formula (A.19), the operators Us from (A.19) should be
diagonal, i.e., in the basis of the correct functions of the zeroth order ∣kα>, ∣kγ>, the
matrix elements <kα∣Us∣kγ> should be proportional to δαγ (the latter being the
Kroneker delta). The shifts of the energies Ek

(2) are then represented by the diagonal
elements of the matrix Vkα,kγ from (A.19) or, respectively, by the matrix elements
<kα∣Us∣kα>.

Finally, let us address the issue of whether the effective potentials are gauge
invariant. Following Nadezhdin [1], we limit ourselves by one-dimensional systems.
The interaction of a quantum system (such as, e.g., an electron in a time-independent
potential) with a monochromatic field Fcosωt can be written in the following two
representations V and W

ω
ω ω

ω

= −
= − + ℏ

=

V eFx t

W t e A mc i t e mc x

A cF

cos ,

(1 sin 2 ) /(4 ) (sin )[ /( )]d/d ,

/ .

(A.22)2 2 2

In gauge V, equation (A.2 takes the form
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∑= < ∣ ∣ >
=

∞

E k V k , (A.23)
s 0

k V s,
(2)

where

ω= − ℏ … … … …
+

+ + +V e F x H H x H H[( 1) /(4 )] [[ [ , ], ], [ [ , ], ]]. (A.24)
H s H stimes ( 1) times

s
s s s1 2 2 2 2 2 2

0 0 0 0
0 0

In gauge W, equation (A.2) takes the form

∑= < ∣ ∣ > + < ∣ ∣ >
=

∞

E k W k k e A mc k/(4 ) , (A.25)
s 0

k W s,
(2) 2 2 2

where

ω= − ℏ ℏ
… … … …

+

+ + +W e A m c
i x H H i x H H

[( 1) /(4 )]
[[ [ d/d , ], ], [ [ d/d , ], ]]. (A.26)

H s H stimes ( 1) times

s
s s s1 2 2 2 2 2 2 2 2 2

0 0 0 0
0 0

Let us prove that Ek,V
(2) = Ek,W

(2), i.e., the energy shift is gauge invariant, and that

< ∣ ∣ > = < ∣ ∣ >k V k k e A mc k/(4 ) , (A.27)0
2 2 2

< ∣ ∣ > = < ∣ ∣ > ⩾+k V k k W k s, 0. (A.28)s s1

Indeed, <k∣V0∣k> = <k∣e2F2/(4mω2)∣k> = <k∣e2A2/(4mc2)∣k>, since A = cF/ω. As for
proving equation (A.28), it is sufficient to show that for s ⩾ 0 one has

… … … …

= ℏ … … … …
+

+ +

i x H H i x H H

m x H H x H H

[[ [ d/d , ], ], [ [ d/d , ], ]]

( / ) [[ [ , ], ], [ [ , ], ]].
(A.29)

H s H s

H s H s

times ( 1) times

( 1) times ( 2) times

0 0 0 0

2 4
0 0 0 0

0 0

0 0

Indeed:

= − ℏ + = ℏx H x m x U x m x[ , ] [ , ( /(2 )d /d ( )] ( / )d/d , (A.30)0
2 2 2 2

where U(x) is the potential energy. So, equations (A.28) and (A.29) are the
consequences of equation (A.30).

Equation (A.28) is quite interesting. It shows that in different gauges the
operators Us with the same s have different physical meanings. For example, for
the above one-dimensional quantum system, Kapitza’s effective potential in gauge V
is a constant, coordinate-independent value given by equation (A.27), while in gauge
W Kapitza’s effective potential is some function of coordinate—according to
equation (A.28).

Thus, Kapitza’s effective potential is not gauge invariant. A similar situation
could occur in other physical problems.
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Appendix B

Analytical solution for Rydberg states of
muonic-electronic negative hydrogen ion

In papers [1, 2] the authors combined two lines of research: studies of negative
hydrogen ion and studies of muonic atoms/molecules (the results of these papers are
also presented in appendix A of book [3]). Namely, they considered a muonic
negative hydrogen ion, i.e. μpe-system and studied the possibility of circular states in
such a system. They showed that the muonic motion can represent a rapid
subsystem, while the electronic motion is a slow subsystem.

As the first step, the authors of papers [1, 2] obtained analytically classical energy
terms (the meaning of classical energy terms is explained below) for the rapid
subsystem at the frozen slow subsystem, i.e., for the quasimolecule where the muon
rotates around the axis connecting the immobile proton and the immobile electron,
and found that the muonic motion is stable.

Then the authors of papers [1, 2] unfroze the slow subsystem and studied a slow
revolution of the axis connecting the proton and electron. They derived the
condition, under which the separation into the rapid and slow subsystems is valid.

Finally, the authors of papers [1, 2] demonstrated that the spectral lines, emitted
by the muon in the quasimolecule μpe, are red-shifted compared to the correspond-
ing spectral lines that would have been emitted by the muon in a muonic hydrogen
atom (in the μp-subsystem). The experimental observation of this red shift should be
one of the possibilities of detecting the formation of such muonic negative
hydrogen ions.

Below we present details following paper [1].
So, we consider a hydrogen atom with a muon rotating in a circle perpendicular

to and centered at the axis connecting the proton and the electron—see figure B.1.
As we show below, in this configuration the muon may be considered the rapid
subsystem while the proton and electron will be the slow subsystem, which
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essentially reduces the problem to the two stationary Coulomb center problem,
where the effective stationary ‘nuclei’ will be the proton and electron. The straight
line connecting the proton and electron will be called here ‘internuclear’ axis. We use
the atomic units in this study.

A detailed classical analytical solution of the two-stationary-Coulomb-center
problem, where an electron revolves around nuclei of charges Z and Z′, has been
presented in papers [4, 5]. In papers [1, 2] some results were based on the results
obtained in papers [4, 5].

The Hamiltonian of the rotating muon is

ρ ρ ρ= + + − + − ′ − +ρ φ( )H p p p m Z z Z R z/ (2 ) /( ) /[( ) ], (B.1)z
2 2 2 2 2 2 1/2 2 2

wherem is the mass of the muon (in atomic unitsm = 206.7682746), Z and Z′ are the
charges of the effective nuclei (in our case, Z = 1 and Z′ = –1), R is the distance
between the effective nuclei, (ρ, φ, z) are the cylindrical coordinates, in which Z is at
the origin and Z′ is ar z = R, and (pρ, pφ, pz) are the corresponding momenta of
the muon.

Since φ is a cyclic coordinate, the corresponding momentum is conserved:

∣ ∣ = =φp Lconst . (B.2)

With this substituted into equation (B.1), we obtain the Hamiltonian for the z- and
ρ-motions

ρ= + +ρ ρ( )H p p U z/2 ( , ), (B.3)z z
2 2

eff

where an effective potential energy is:

ρ ρ ρ ρ= − + − ′ − +U z L m Z z Z R z( , ) /(2 ) /( ) /[( ) ]. (B.4)eff
2 2 2 2 1/2 2

Since in a circular state pz = pρ = 0, the total energy E(z, ρ) = Ueff(z, ρ).
With Z = 1, Z′ = –1 and the scaled quantities

ρ ε= = = − = =w z R R ER ℓ L mR r mR L/ , / , , /( ) , / , (B.5)1/2 2v

we obtain the scaled energy ε of the muon:

ε = + − − + −w w ℓ1/( ) 1/[(1 ) ] /(2 ) (B.6)2 2 1/2 2 2 1/2 2 2v v v

The equilibrium condition with respect to the scaled coordinate w is ∂ε/∂w = 0; the
result can be brought to the form:

Figure B.1. Amuon rotating in a circle perpendicular to and centered at the axis connecting the proton and the
electron. (Reproduced with permission from [3]. Copyright 2015 World Scientific.)
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− + + = −w w w w[(1 ) ] /( ) ( 1)/ . (B.7)2 2 3/2 2 2 3/2v v

Since the left side of equation (B.7) is positive, the right side must be also positive:
(w − 1)/w > 0. Consequently, the allowed ranges of w here are −∞ < w < 0 and 1 < w
< +∞. This means that equilibrium positions of the center of the muon orbit could
exist (judging only by the equilibrium with respect to w) either beyond the proton or
beyond the electron, but there are no equilibrium positions between the proton and
electron.

Solving equation (B.7) for 2v and denoting 2v = p, we obtain:

= − + −p w w w w w( ) ( 1) [ ( 1) ]. (B.8)2/3 2/3 2/3 2/3

The equilibrium condition with respect to the scaled coordinate v is ε∂ ∂ =/ 0v ,
which yields:

= + − − +ℓ p w p w p{1/( ) 1/[(1 ) ] }. (B.9)2 2 2 3/2 2 3/2

Since the left side of equation (B.9) is positive, the right side must be also positive.
This entails the relation w2 + p < (1 − w)2 + p, which simplifies to 2w − 1 < 0, which
requires w < 1/2.

Thus, the equilibrium with respect to both w and v is possible only in the range
−∞ < w < 0, while in the second range, 1 < w < +∞ (derived from the equilibrium
with respect to w only) there is no equilibrium with respect to v.

From the last two relations in equation (B.5), we find r = 1/ℓ2; thus

= + − − +− −r p w p w p{1/( ) 1/[(1 ) ] } , (B.10)2 2 3/2 2 3/2 1

where p is given by equation (B.8). Therefore, the quantity r in equation (B.10) is the
scaled ‘internuclear’ distance dependent on the scaled internuclear coordinate w.

Now we substitute the value of ℓ from equation (B.9), as well as the value of p
from equation (B.8) into equation (B.6), obtaining ε(w)—the scaled energy of the
muon dependent on the scaled internuclear coordinate w. Since E = –ε/R and
R = rL2/m, then E = −(m/L2)ε1 where ε1 = ε/r. The parametric dependence ε1(r) will
yield the energy terms.

The form of the parametric dependence ε1(r) can be significantly simplified by
introducing a new parameter γ = (1 − 1/w)1/3. The region −∞ < w < 0 corresponds to
1 < γ < ∞. The parametric dependence will then have the following form:

ε γ γ γ γ γ γ γ= − + − + + +( ) (1 ) (1 ) /[2(1 ) (1 )], (B.11)1
4 2 2 2 2 2 4

γ γ γ γ γ= + + +r( ) (1 ) /[ (1 ) ], (B.12)2 4 3/2 2 2

Classical energy terms given by the parametric dependence of the scaled energy
ε1 = (L2/m)E on the scaled internuclear distance r = (m/L2)R are presented in
figure B.2.

Figure B.2 actually contains two coinciding energy terms: there is a double
degeneracy with respect to the sign of the projection of the muon angular
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momentum on the internuclear axis. We remind readers that L is the absolute value
of this projection—in accordance with its definition in equation (B.2).

The minimum value of R, corresponding to the point where the term starts, can be
found from equation (B.12). The term starts at w = −∞, which corresponds to γ = 1;
taking the value of equation (B.12) at this point, we find

=R L m(3 /4) / . (B.13)min
3/2 2

With the value of m = 206.7682746, equation (B.13) yields R = 0.00628258 L2.
The following note might be useful. The plot in figure B.1 represents two

degenerate classical energy terms of ‘the same symmetry’. (In the physics of diatomic
molecules, the terminology ‘energy terms of the same symmetry’ means the energy
terms of the same projection of the angular momentum on the internuclear axis.)
For a given R and L, the classical energy E takes only one discrete value. However,
as L varies over a continuous set of values, so does the classical energy E (as it should
be in classical physics).

The revolution frequency of the muon Ω is

ρΩ = = =L m L mR L mR p/( ) /( ) /( ) (B.14)2 2 2 2v

in accordance with the previously introduced notations p = 2v = (ρ/R)2. Since
R = L2r/m (see equation (B.5)), then equation (B.14) becomes Ω = (m /L3)f, where
f = 1/(pr2). Using equation (B.12) for r(γ) and equation (B.8) for p(w) with the
substitution w = 1/(1 − γ3), where γ > 1, we finally obtain:

γ γ γ γ γ γΩ = = + − + +m L f f( / ) ( ), ( ) (1 ) (1 ) /(1 ) , (B.15)3 2 3 3 2 2 4 3

where f(γ) is the scaled muon revolution frequency. Figure B.3 shows the scaled
muon revolution frequency f = (L3/m)ω versus the scaled internuclear distance
r = (m/L2)R.

Figure B.2. Classical energy terms: the scaled energy −ε1 = (L2/m)E versus the scaled internuclear distance
r = (m/L2)R. (Reproduced with permission from [3]. Copyright 2015 World Scientific.)
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It is seen that for almost all values of the scaled internuclear distance r = (m/L2)R,
the scaled muon revolution frequency f = (L3/m)Ω is very close to its maximum value
fmax = 1, corresponding to large values of R. (The quantity fmax can be easily found
from equation (B.15) given that large values of R correspond to γ ≫ 1 and that this
limit yields fmax = 1.) In other words, for almost all values of R, the muon revolution
frequency Ω is very close to its maximum value

Ω = m L/ . (B.16)max
3

Further, below we will compare the muon revolution frequency with the corre-
sponding frequency of the electronic motion and derive the condition of validity of
the separation into rapid and slow subsystems.

For analysing the stability of the muon motion, corresponding to the degenerate
classical energy terms, we use the same approach as in paper [5]. Namely, in paper
[5], while considering a classical circular motion of a charged particle (which was the
electron in [5]) in the field of two stationary Coulomb centers, using the same
notations as in the present paper, it was shown that the frequencies of small
oscillations of the scaled coordinates w and v of the circular orbit around its
equilibrium position are given by

ω = − ± +± w w Q w p[1/(1 ) 3 / ] /( ) (B.17)1/2 2 3/4

where

= + − +Q w p w p( ) [(1 ) ] (B.18)2 1/2 2 1/2

These oscillations are in the directions (w′, ′v ) obtained by rotating the (w, v)
coordinates by the angle α:

α α α αδ ′ = δ + δ δ ′ = −δ + δw w wcos sin sin cos (B.19)v v v

Figure B.3. The scaled muon revolution frequency f = (L3/m)Ω versus the scaled internuclear distance
r = (m/L2)R. (Reproduced with permission from [3]. Copyright 2015 World Scientific.)
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where the ‘δ’ symbol stands for the small deviation from equilibrium. The angle α is
determined by the following relation:

α = − − +− w p w w p(1/2) tan {(1 2 ) /[ (1 ) ]} (B.20)1 1/2

The quantity Q in equation (B.18) is always positive since it contains the squares of
the coordinates. From equation (B.17), it is seen that the condition for both
frequencies to be real is

− ⩾w w Q1/(1 ) 3 / (B.21)

For the frequency ω– to be real, equation (B.17) requires Q ⩾ 3w(1 − w). For any
w < 0 (which is the allowed range of w), this inequality is satisfied: the left side is
always positive while the right side is always negative.

For the frequency ω+ to be real, the following function F(w) must be positive (in
accordance with equations (B.17) and (B.18)):

= + − + − −F w w p w p w w( ) ( )[(1 ) ] 9 (1 ) (B.22)2 2 2 2

After replacing w by γ = (1 − 1/w)1/3, expression (B.22) becomes

γ γ γ γ γ γ= − + + −F ( ) ( 1) (1 4 )/( 1) (B.23)2 2 2 2 4 3 4

Since the allowed range of w < 0 corresponds to γ > 1, it is seen that F(γ) is always
positive.

Thus, the corresponding classical energy terms correspond to the stable motion.
Now we discuss the electronic motion and the validity of this entire scenario. We

unfreeze the slow subsystem and analyse a slow revolution of the axis connecting the
proton and electron, the electron executing a circular orbit. In accordance to the
concept of separating rapid and slow subsystems, the rapid subsystem (the revolving
muon) follows the adiabatic evolution of the slow subsystem. This means that the
slow subsystem can be treated as a modified ‘rigid rotator’ consisting of the electron,
the proton, and the ring, over which the muon charge is uniformly distributed, all
distances within the system being fixed (see figure B.1).

The potential energy of the electron in atomic units (with the angular-momentum
term) is

ρ= − + + −E M R R R z/(2 ) 1/ 1/[ ( ) ] (B.24)e
2 2 2 2 1/2

where M is the electronic angular momentum. Its derivative by R must vanish at
equilibrium, which yields

ρ= − + − − + − =E R M R R R z R zd /d / 1/ ( )/[ ( ) ] 0 (B.25)e
2 3 2 2 2 3/2

which gives us the value of the scaled angular momentum

=ℓ M R/ (B.26)e
1/2

corresponding to the equilibrium:
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= − − − +ℓ w w p1 (1 )/[(1 ) ] (B.27)e
2 2 3/2

where the scaled quantities w, p of the muon coordinates are defined in equation
(B.5). Using the muon equilibrium condition from equation (B.7) with 2v denoted as
p, we can represent equation (B.27) in the form:

= + +ℓ w w p1 /( ) . (B.28)e
2 2 3/2

After replacing w by γ = (1 − 1/w)1/3, we obtain

γ γ γ γ γ γ= − − + + − +ℓ ( ) [1 (1 ) (1 ) /(1 ) ] (B.29)e
2 2 1/2 2 3/2 1/2

The electron revolution frequency is ω =M/R2 = ℓe(γ)/R
3/2 given thatM = ℓe(γ)R

1/2 in
accordance with equation (B.26). Since R = L2r(γ)/m (see equation (B.5)) with r(γ) given
by equation (B.12), then from ω = ℓe(γ)/R

3/2 we obtain

γ γω = m ℓ L r( )/{ [ ( )] }. (B.30)3/2
e

3 3/2

From equations (B.15) and (B.30), we find the following ratio of the muon and
electron revolution frequencies:

ω γ γ γΩ = m f r ℓ/ (1/ ) ( )[ ( )] / ( ), (B.31)1/2 3/2
e

where f(γ) is given in equation (B.15).
In addition to the above relation R = L2r(γ)/m, the same quantity R can be

expressed from equation (B.26) as R = M2/[ℓe(γ)]
2. Equating the right sides of these

two expressions, we obtain the equality L2r(γ)/m =M2/[ℓe(γ)]
2, from which it follows:

γ γ=L M m ℓ r/ /{ ( )[ ( )] }. (B.32)1/2
e

1/2

The combination of equations (B.31) and (B.32) represent an analytical depend-
ence of the ratio of the muon and electron revolution frequencies Ω/ω versus the
ratio of the muon and electron angular momenta L/M via the parameter γ as the
latter varies from 1 to ∞. This dependence is presented in figure B.4.

For the separation into the rapid and slow subsystems to be valid, the ratio of
frequencies Ω/ω should be significantly greater than unity. From figure B.4, it is seen
that this requires the ratio of angular momenta L/M to be noticeably greater
than 20.

There is another validity condition to be checked for this scenario. Namely, the
revolution frequency Ω of the muon must be also much greater than the inverse
lifetime of the muon 1/Tlife, where Tlife = 2.2 μs = 0.91 × 1011 a.u.: ΩTlife ≫ 1. Since
for almost all values of R, the muon revolution frequency Ω is very close to its
maximum value Ωmax = m/L3, as shown above, then the second validity condition
can be estimated as (m/L3)Tlife ≫ 1, from which it follows

≪ = =L L m T( ) 26 600 (B.33)max life
1/3

(we remind that m = 206.7682746 in atomic units). So, the second validity condition
is fulfilled for any practically feasible value of the muon angular momentum L.
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Thus, for the ratio of angular momenta L/M noticeably >20, we deal here with a
muonic quasimolecule where the muon rapidly rotates about the axis connecting the
proton and electron following a relatively slow rotation of this axis.

The authors of paper [1] also performed simulations of the muonic and electronic
motion by solving numerically the corresponding Newton’s equation. The simu-
lations confirmed their analytical results.

Now we discuss the red shift of spectral lines of the muonic–electronic negative
hydrogen ions in comparison with muonic hydrogen atoms. The muon, rotating in a
circular orbit at the frequency Ω(R), should emit a spectral line at this frequency.
The maximum value Ωmax = m/L3 corresponds to the frequency of spectral lines
emitted by the muonic hydrogen atom (by the μp-subsystem). For the equilibrium
value of the proton–electron separation—just as for almost all values of R—the
frequency Ω is slightly smaller than Ωmax. Therefore, the spectral lines, emitted by
the muon in the quasimolecule μpe, experience a red shift compared to the
corresponding spectral lines that would have been emitted by the muon in a muonic
hydrogen atom. The relative red shift δ is defined as follows

δ λ λ λ= − = Ω − Ω Ω( )/ ( )/ , (B.34)0 0 max

where λ and λ0 are the wavelength of the spectral lines for the quasimolecule μpe and
the muonic hydrogen atom, respectively. Using equation (B.15), the relative red shift
can be represented in the form

Figure B.4. The ratio of the muon and electron revolution frequencies Ω/ω versus the ratio of the muon and
electron angular momenta L/M. (Reproduced with permission from [3]. Copyright 2015 World Scientific.)
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γ γδ = −f( ) 1/ ( ) 1, (B.35)

where f(γ) is given in equation (B.15).
The combination of equations (B.35) and (B.32) represents an analytical depend-

ence of the relative red shift δ on the ratio of the muon and electron angular
momenta L/M via the parameter γ as the latter varies from 1 to ∞. Figure B.5
presents the dependence of δ on L/(m1/2M). In this form the dependence is
‘universal’, i.e., valid for different values of the mass m: for example, it is valid
also for the quasimolecule πpe where there is a pion instead of the muon. Figure B.6
presents the dependence of δ on L/M specifically for the quasimolecule μpe.

It is seen that the relative red shift of the spectral lines is well within the spectral
resolution Δλres/λ of available spectrometers: Δλres/λ ~ (10−4–10−5) as long as the
ratio of the muon and electron angular momenta L/M < 80. Thus, this red shift can
be observed and this would be one of the ways to detect the formation of such
muonic negative hydrogen ions.

Figure B.7 presents the dependence of the relative red shift δ on the ratio of the
muon and electron revolution frequencies Ω/ω. It is seen that the relative red shift
decreases as the ratio of the muon and electron revolution frequencies increases, but
it remains well within the spectral resolution Δλres/λ of available spectrometers.

In summary, in papers [1, 2] the authors studied the existence of a muonic
negative hydrogen ion (a ‘molecule’ μpe consisting of a proton, an electron and a
muon) with the muon and electron being in circular states. They found out that this
is indeed possible. In this case, the muonic motion can represent a rapid subsystem
while the electronic motion is a slow subsystem.

The authors of papers [1, 2] demonstrated that the system has a classical double-
degenerate energy term, corresponding to a stable motion. Then they studied a slow

Figure B.5. Universal dependence of the relative red shift δ of the spectral lines of the quasimolecule μpe (or
πpe) on L/(m1/2M), which is the ratio of the muon and electron angular momenta L/M divided by the square
root of the mass m of the muon or pion. (Reproduced with permission from [3]. Copyright 2015 World
Scientific.)
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revolution of the axis connecting the proton and electron and derived the validity
condition for the analytical method they used.

Finally, they found out the red shift of the spectral lines, emitted by the muon in
the quasimolecule μpe, compared to the corresponding spectral lines that would
have been emitted by the muon in a muonic hydrogen atom. It turned out that the
relative values of this red shift, are significantly greater than the resolution of
available spectrometers. Thus, the experimental observation of this red shift is

Figure B.6. Dependence of the relative red shift δ of the spectral lines of the quasimolecule μpe on the ratio of
the muon and electron angular momenta L/M. (Reproduced with permission from [3]. Copyright 2015 World
Scientific.)

Figure B.7. Dependence of the relative red shift δ on the ratio of the muon and electron revolution frequencies
Ω/ω. (Reproduced with permission from [3]. Copyright 2015 World Scientific.)
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possible and it would be one of the possibilities of detecting the formation of such
muonic negative hydrogen ions.
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Appendix C

An alternative analytical solution for Rydberg
states of muonic–electronic helium-like atoms or

ions

In appendix B, we followed papers [1, 2] to present the study of a system consisting
of a proton, a muon, and an electron, where the muon and the electron were in
circular states. In appendix C, we briefly present a generalization of that study where
the proton in the μpe quasimolecule is replaced by a fully-stripped ion of a nuclear
charge Z > 1 (quasimolecules as μZe). It turns out that just as in the previously
studied case of Z = 1, the muonic motion can represent a rapid subsystem while the
electronic motion can represent a slow subsystem. Below we present selected
excerpts from paper [3] where such a study was presented.

The equation for the effective potential energy is the same as equation (B.4) from [1]

ρ
ρ ρ ρ

= −
+

− ′
− +

U z
L
m

Z

z

Z

R z
( , )

2 ( )
(C.1)eff

2

2 2 2 2 2

where (ρ, φ, z) are the cylindrical coordinates, m is the mass of the muon (in atomic
units m = 206.768 2746), Z and Z′ are the charges of the effective nuclei (in our case,
Z′ = −1), R is the distance between the effective nuclei. Using the scaled quantities
defined by equation (B.5) from [1]

ρ ε= = = − = =w
z
R

v
R

ER
L

mR
r

mR
L

, , , , (C.2)2
l

one gets the following equation for the scaled energy of the muon:
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ε =
+

−
− +

−Z

w p w p p
1

(1 ) 2
(C.3)

2 2

2l

where p ≡ v2 is the squared scaled radial coordinate. The requirement for the
derivative of the scaled energy with respect to the axial and radial coordinates (w, p)
to vanish at equilibrium, yields the following two equations:

= − − −
− −

p w w
Z w w
w Z w

( 1)
( 1)

( 1)
(C.4)2/3 2/3

2/3 4/3 4/3

2/3 2/3 2/3

=
+

−
− +

p
Z

w p w p( )
1

((1 ) )
(C.5)2 2

2 3/2 2 3/2

⎛
⎝⎜

⎞
⎠⎟l

Since the left-hand sides of equations (C.4) and (C.5) are always positive, this
imposes the conditions on the equilibrium range. For Z = 1, it was w < 0. In the case
of Z > 1 it is not half-infinite—it has a lower limit:

−
−

< <
Z

w
1

1
0 (C.6)

The analysis of (C.4) and (C.5) also shows that there are no equilibrium points for
w > 0,

On substituting the value of ℓ2 from equation (C.5) into equation (C.3) and then
the value of p from equation (C.4) into the resulting equation, one obtains ε(w)—the
dependence of the scaled energy of the muon on the scaled internuclear coordinate w
for a given value of Z. From the scaling (C.2) one has r = 1/ℓ2. It is convenient to
redefine the scaled energy as ε1 = ε/r: it has the same scaling as r.

After defining

γ = −
w

1
1 (C.7)
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the parametric dependence ε1 versus r (via parameter γ) yields the energy terms for a
given Z:

ε γ γ γ γ
γ γ

= − + − −
− +

Z Z( 1) ( ( 2) 2 1)
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(C.8)1
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Figure C1 spresents the energy terms for the values of Z = 2, 3, 4 and 5.
The behavior of the muon revolution frequency is similar to the case of Z = 1, but

now the maximum value of it is Z2m/L3, which is the Kepler frequency for the
muonic hydrogen-like ion of the nuclear charge Z.
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The condition for the separation of the rapid and slow subsystems was that the
ratio Ω/ω of the muon and electron revolution frequencies should be much greater
than unity. For this to be valid, the case of Z = 1 required the ratio L/M of the muon
and electron angular momenta to be noticeably greater than 20. Calculations show
that as Z increases, the required ratio L/M increases to maintain the same condition
for Ω/ω.

The equations for the frequency of the muon (Ω) and of the electron (ω) are as
follows:

ν ν γ
γ γ

Ω = = −
− +

m
L

Z
,

( 1)
( 1)( 1)

(C.10)
3

2/3 4 3

3 3 3

ω = m
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3/2

3 3/2

l

where r is given by equation (C.9) and ℓe is the equilibrium value of the scaled
electron angular momentumM/R1/2 (M is the electron angular momentum in atomic
units):

γ γ γ
γ γ

= −
− + +

− +
Z 1

(1 ) 1

(1 )
(C.12)e

2 2

2 3/2
l

From these equations, the ratio of the muon’s and electron’s frequencies as well as
the ratio of the angular momenta are as follows:

ω
νΩ =

m
r1

(C.13)
e

3/2

l

Figure C1. Classical energy terms: the scaled energy −ε1 = (L2/m)E versus the scaled internuclear distance
r = (m/L2)R for Z = 2 (solid curve), Z = 3 (dashed curve), Z = 4 (dot-dashed curve) and Z = 5 (dotted curve).
(Reproduced with permission from [3]. Copyright 2014 N Kryukov and E Oks.)
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Figure C2 shows the mutual dependence of these two ratios for selected values of
Z. It is seen that, for example, for Z = 5, the ratio L/M must be noticeably greater
than 34 in order to satisfy the validity condition Ω/ω ≫ 1.

The spectral lines emitted by the muon experience a red shift compared to the
spectral lines of the corresponding muonic hydrogen-like ions. The relative red shift,
defined as

δ = Ω − Ω
Ω

(C.15)max

is represented as

δ
ν γ

= −1
( )

1 (C.16)

Figure C3 shows the dependence of the relative red shift with respect to the ratio of
muon and electron angular momenta for some typical values of Z (log x = log10 x)—
the dependence given by the parametric equations (C.16) and (C.14).

Figure C4 shows the dependence of the relative red shift on the ratio of muon and
electron frequencies for the same values of Z—the dependence given by the
parametric equations (C.16) and (C.13).

It is seen that the relative red shift decreases as Z increases. However, it remains
within the spectral resolution of available spectrometers (10−4 – 10−5) at least up to
Z = 5.

Figure C2. The ratio of the muon and electron revolution frequencies Ω/ω versus the ratio of the muon and
electron angular momenta L/M for Z = 2 (solid curve), Z = 3 (dashed curve), Z = 4 (dot-dashed curve) and
Z = 5 (dotted curve). (Reproduced with permission from [3]. Copyright 2014 N Kryukov and E Oks.)
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Figure C3. Dependence of the relative red shift δ of the spectral lines of the quasi-molecule μZe on the ratio of
the muon and electron angular momenta for Z = 2 (solid curve), Z = 3 (dashed curve), Z = 4 (dot-dashed
curve) and Z = 5 (dotted curve). (Reproduced with permission from [3]. Copyright 2014 N Kryukov and
E Oks.)

Figure C4. Dependence of the relative red shift δ of the spectral lines of the quasi-molecule μZe on the ratio of
the muon and electron frequencies for Z = 2 (solid curve), Z = 3 (dashed curve), Z = 4 (dot-dashed curve) and
Z = 5 (dotted curve). (Reproduced with permission from [3]. Copyright 2014 N Kryukov and E Oks.)
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