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Preface

This book is about Bohmian mechanics, a non-relativistic quantum theory based
on a particle ontology. As such it is a consistent theory of quantum phenomena, i.e.,
none of the mysteries and paradoxes which plague the usual descriptions of quantum
mechanics arise. The most important message of this book is that quantum mechan-
ics, as defined by its most general mathematical formalism, finds its explication in
the statistical analysis of Bohmian mechanics following Boltzmann’s ideas.

The book connects the physics with the abstract mathematical formalism and
prepares all that is needed to achieve a commonsense understanding of the non-
relativistic quantum world. Therefore this book may be of interest to both physicists
and mathematicians. The latter, who usually aim at unerring precision, are often
put off by the mystical-sounding phrases surrounding the abstract mathematics of
quantum mechanics. In this book we aim at a precision which will also be acceptable
to mathematicians.

Bohmian mechanics, named after its inventor David Bohm,1 is about the motion
of particles. The positions of particles constitute the primitive variables, the primary
ontology. For a quantum physicist the easiest way to grasp Bohmian mechanics
and to write down its defining equations is to apply the dictum: Whenever you say
particle, mean it!

The key insight for analyzing Bohmian mechanics lies within the foundations of
statistical physics. The reader will find it worth the trouble to work through Chap. 2
on classical physics and Chap. 4 on chance, which are aimed at the understanding
of the statistical analysis of a physical theory as it was developed by the great physi-
cist Ludwig Boltzmann. Typicality is the ticket to get to the statistical import of
Bohmian mechanics, which is succinctly captured by ρ = |ψ|2. The justification for

1 The equations were in fact already written down by the mathematical physicist Erwin Madelung,
even before the famous physicist Louis de Broglie suggested the equations at the famous 1927
Solvay conference. But these are unimportant historical details, which have no significance for the
understanding of the theory. David Bohm was not aware of these early attempts, and moreover
he presented the full implications of the theory for the quantum formalism. The theory is also
called the pilot wave theory or the de Broglie–Bohm theory, but Bohm himself called it the causal
interpretation of quantum mechanics.
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this and the analysis of its consequences are two central points in the book. One ma-
jor consequence is the emergence of the abstract mathematical structure of quantum
mechanics, observables as operators on Hilbert space, POVMS, and Heisenberg’s
uncertainty relation. All this and more follows from the theory of particles in mo-
tion.

But this is not the only reason for the inclusion of some purely mathematical
chapters. Schrödinger’s cat story is world famous. A common argument to diminish
the measurement problem is that the quantum mechanical description of a cat in a
box is so complicated, the mathematics so extraordinarily involved, that nobody has
done that yet. But, so the argument continues, it could in principle be done, and if
all the mathematics is done properly and if one introduces all the observables with
their domains of definitions in a proper manner, in short, if one does everything in
a mathematically correct way, then there is no measurement problem. This answer
also appears in disguise as the claim that decoherence solves the measurement prob-
lem. But this is false! It is precisely because one can in principle describe a cat in
a box quantum mechanically that the problem is there and embarrassingly plain to
see. We have included all the mathematics required to ensure that no student of the
subject can be tricked into believing that everything in quantum physics would be
alright if only the mathematics were done properly.

Bohmian mechanics has been around since 1952. It was promoted by John Bell
in the second half of the last century. In particular, it was the manifestly nonlocal
structure of Bohmian mechanics that led Bell to his celebrated inequalities, which
allow us to check experimentally whether nature is local. Experiments have proved
that nature is nonlocal, just as Bohmian mechanics predicted. Nevertheless there
was once a time when physicists said that Bell’s inequalities proved that Bohmian
mechanics was impossible. In fact, all kinds of criticisms have been raised against
Bohmian mechanics. Since Bohmian mechanics is so simple and straightforward,
only one criticism remains: there must be something wrong with Bohmian mechan-
ics, otherwise it would be taught. And as a consequence, Bohmian mechanics is not
taught because there must be something wrong with it, otherwise it would be taught.
We try in this book to show how Bohmian mechanics could be taught.

Any physicist who is ready to quantize everything under his pen should know
what quantization means in the simplest and established frame of non-relativistic
physics, and learn what conclusions should be drawn from that. The one conclusion
which cannot be drawn is that nothing exists, or more precisely, that what exists
cannot be named within a mathematically consistent theory! For indeed it can! The
lesson here is that one should never give up ontology! If someone says: “I do not
know what it means to exist,” then that is fine. That person can view the theory of
Bohmian mechanics as a precise and coherent mathematical theory, in which all that
needs to be said is written in the equations, ready for analysis.

Our guideline for writing the book was the focus on the genesis of the ideas and
concepts, to be clear about what it is that we are talking about, and hence to pave the
way for the hard technical work of learning how it is done. In short, we have tried
not to leave out the letter ‘h’ (see the Melville quote on p. 4).
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Chapter 1
Introduction

1.1 Ontology: What There Is

1.1.1 Extracts

Sometimes quantization is seen as the procedure that puts hats on classical observ-
ables to turn them into quantum observables.

Lewis Carroll on Hatters and Cats

Lewis Carroll (alias Charles Lutwidge Dodgson 1832–1898) was professor of math-
ematics at Oxford (where Schrödinger wrote his famous cat article):

The Cat only grinned when it saw Alice. It looked good-natured, she thought: still it had
VERY long claws and a great many teeth, so she felt that it ought to be treated with respect.
“Cheshire Puss,” she began, rather timidly, as she did not at all know whether it would like
the name: however, it only grinned a little wider. “Come, it’s pleased so far,” thought Alice,
and she went on. “Would you tell me, please, which way I ought to go from here?” “That
depends a good deal on where you want to get to,” said the Cat. “I don’t much care where
–” said Alice. “Then it doesn’t matter which way you go,” said the Cat. “– so long as I get
SOMEWHERE,” Alice added as an explanation. “Oh, you’re sure to do that,” said the Cat,
“if you only walk long enough.” Alice felt that this could not be denied, so she tried another
question. “What sort of people live about here?” “In THAT direction,” the Cat said, waving
its right paw round, “lives a Hatter: and in THAT direction,” waving the other paw, “lives a
March Hare. Visit either you like: they’re both mad.” “But I don’t want to go among mad
people,” Alice remarked. “Oh, you can’t help that,” said the Cat: “we’re all mad here. I’m
mad. You’re mad.” “How do you know I’m mad?” said Alice. “You must be,” said the Cat,
“or you wouldn’t have come here.” Alice didn’t think that proved it at all; however, she
went on “And how do you know that you’re mad?” “To begin with,” said the Cat, “a dog’s
not mad. You grant that?” “I suppose so,” said Alice. “Well, then,” the Cat went on, “you
see, a dog growls when it’s angry, and wags its tail when it’s pleased. Now I growl when
I’m pleased, and wag my tail when I’m angry. Therefore I’m mad.” “I call it purring, not
growling,” said Alice. “Call it what you like,” said the Cat. “Do you play croquet with the

D. Dürr, S. Teufel, Bohmian Mechanics, DOI 10.1007/978-3-540-89344-8 1, 1
c© Springer-Verlag Berlin Heidelberg 2009
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Queen today?” “I should like it very much,” said Alice, “but I haven’t been invited yet.”
“You’ll see me there,” said the Cat, and vanished.

Alice was not much surprised at this, she was getting so used to queer things happening.
While she was looking at the place where it had been, it suddenly appeared again.

Alice’s Adventures in Wonderland (1865) [1].

Parmenides on What There Is

The Greek philosopher Parmenides of Elea wrote as follows in the sixth century
BC:

Come now, I will tell thee – and do thou hearken to my saying and carry it away – the
only two ways of search that can be thought of. The first, namely, that It is, and that it is
impossible for it not to be, is the way of belief, for truth is its companion. The other, namely,
that It is not, and that it must needs not be, – that, I tell thee, is a path that none can learn
of at all. For thou canst not know what is not – that is impossible – nor utter it; for it is the
same thing that can be thought and that can be.

It needs must be that what can be spoken and thought is; for it is possible for it to be, and
it is not possible for what is nothing to be. This is what I bid thee ponder. I hold thee back
from this first way of inquiry, and from this other also, upon which mortals knowing naught
wander two-faced; for helplessness guides the wandering thought in their breasts, so that
they are borne along stupefied like men deaf and blind. Undiscerning crowds, who hold that
it is and is not the same and not the same, and all things travel in opposite directions!

For this shall never be proved, that the things that are not are; and do thou restrain thy
thought from this way of inquiry.

The Way of Truth [2].

It is sometimes said that, in quantum mechanics, the observer calls things into being
by the act of observation.

Schrödinger on Quantum Mechanics

Erwin Schrödinger wrote in 1935:

One can even set up quite ridiculous cases. A cat is penned up in a steel chamber, along
with the following device (which must be secured against direct interference by the cat):
in a Geiger counter there is a tiny bit of radioactive substance, so small, that perhaps in
the course of the hour one of the atoms decays, but also, with equal probability, perhaps
none; if it happens, the counter tube discharges and through a relay releases a hammer
which shatters a small flask of hydrocyanic acid. If one has left this entire system to itself
for an hour, one would say that the cat still lives if meanwhile no atom has decayed. The
psi-function of the entire system would express this by having in it the living and dead cat
(pardon the expression) mixed or smeared out in equal parts.

It is typical of these cases that an indeterminacy originally restricted to the atomic domain
becomes transformed into macroscopic indeterminacy, which can then be resolved by direct
observation. That prevents us from so naively accepting as valid a “blurred model” for
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representing reality. In itself it would not embody anything unclear or contradictory. There
is a difference between a shaky or out-of-focus photograph and a snapshot of clouds and
fog banks.

Die gegenwärtige Situation in der Quantenmechanik [3].
Translated by J.D. Trimmer in [4].

The difference between a shaky photograph and a snapshot of clouds and fog banks
is the difference between Bohmian mechanics and quantum mechanics. In itself a
“blurred model” representing reality would not embody anything unclear, whereas
resolving the indeterminacy by direct observation does. As if observation were not
part of physics.

Feynman on Quantum Mechanics

Feynman said the following:

Does this mean that my observations become real only when I observe an observer observ-
ing something as it happens? This is a horrible viewpoint. Do you seriously entertain the
thought that without observer there is no reality? Which observer? Any observer? Is a fly an
observer? Is a star an observer? Was there no reality before 109 B.C. before life began? Or
are you the observer? Then there is no reality to the world after you are dead? I know a num-
ber of otherwise respectable physicists who have bought life insurance. By what philosophy
will the universe without man be understood?

Lecture Notes on Gravitation [5].

Bell on Quantum Mechanics

According to John S. Bell:

It would seem that the theory is exclusively concerned about “results of measurement”,
and has nothing to say about anything else. What exactly qualifies some physical systems
to play the role of “measurer”? Was the wavefunction of the world waiting to jump for
thousands of years until a single-celled living creature appeared? Or did it have to wait a
little longer, for some better qualified system [. . . ] with a Ph.D.? If the theory is to apply to
anything but highly idealized laboratory operations, are we not obliged to admit that more
or less “measurement-like” processes are going on more or less all the time, more or less
everywhere? Do we not have jumping then all the time?

Against “measurement” [6].

Einstein on Measurements

But it is in principle quite false to base a theory solely on observable quantities. Since, in
fact, it is the other way around. It is the theory that decides what we can observe.

Albert Einstein, cited by Werner Heisenberg1 in [7].

1 Quoted from Die Quantenmechanik und ein Gespräch mit Einstein. Translation by Detlef Dürr.
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Melville on Omissions

While you take in hand to school others, and to teach them by what name a whale-fish is
to be called in our tongue leaving out, through ignorance, the letter H, which almost alone
maketh the signification of the word, you deliver that which is not true.

Melville (1851), Moby Dick; or, The Whale, Etymology [8].

1.1.2 In Brief: The Problem of Quantum Mechanics

Schrödinger remarks in his laconic way that there is a difference between a shaky
or out-of-focus photograph and a snapshot of clouds and fog banks.

The first problem with quantum mechanics is that it is not about what there is. It
is said to be about the microscopic world of atoms, but it does not spell out which
physical quantities in the theory describe the microscopic world. Which variables
specify what is microscopically there? Quantum mechanics is about the wave func-
tion. The wave function lives on configuration space, which is the coordinate space
of all the particles participating in the physical process of interest. That the wave
function lives on configuration space has been called by Schrödinger entanglement
of the wave function. The wave function obeys a linear equation – the Schrödinger
equation. The linearity of the Schrödinger equation prevents the wave function from
representing reality.2 We shall see that in a moment. The second problem of quan-
tum mechanics is that the first problem provokes many rich answers, which to the
untrained ear appear to be of philosophical nature, but which leave the problem
unanswered: What is it that quantum mechanics is about?

It is said for example that the virtue of quantum mechanics is that it is only about
what can be measured. Moreover, that what can be measured is defined through
the measurement. Without measurement there is nothing there. But a measurement
belongs to the macroscopic world (which undeniably exists), and its macroscopic
constituents like the measurement apparatus are made out of atoms, which quantum
mechanics is supposed to describe, so this entails that the apparatus itself is to be de-
scribed quantum mechanically. This circularity lies at the basis of the measurement
problem of quantum mechanics, which is often phrased as showing incompleteness
of quantum mechanics. Some things, namely the objects the theory is about, have
been left out of the description, or the description – the Schrödinger equation – is
not right. Mathematically the measurement problem may be presented as follows.
Suppose a system is described by linear combinations of wave functions ϕ1 and ϕ2.
Suppose there exists a piece of apparatus which, when brought into interaction with
the system, measures whether the system has wave function ϕ1 or ϕ2. Measuring

2 Even if the equation were nonlinear, as is the case in reduction models, the wave function living
on configuration space could not by itself represent reality in physical space. There must still be
some “beable” (related to the wave function) in the sense of Bell [9] representing physical reality.
But we ignore this fine point here.
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means that, next to the 0 pointer position, the apparatus has two pointer positions 1
and 2 “described” by wave functionsΨ0,Ψ1, andΨ2, for which

ϕiΨ0
Schrödinger evolution−→ ϕiΨi , i = 1,2 . (1.1)

When we say that the pointer positions are “described” by wave functions, we mean
that in a loose sense. The wave function has a support in configuration space which
corresponds classically to a set of coordinates of particles which would form a
pointer.

The Schrödinger equation is linear, so for the superposition, (1.1) yields

ϕ = c1ϕ1 + c2ϕ2 , c1,c2 ∈ C , |c1|2 + |c2|2 = 1 ,

ϕΨ0 = (c1ϕ1 + c2ϕ2)Ψ0
Schrödinger evolution−→ c1ϕ1Ψ1 + c2ϕ2Ψ2 . (1.2)

The outcome on the right does not concur with experience. It shows rather a “macro-
scopic indeterminacy”. In the words of Schrödinger, observation then resolves this
macroscopic indeterminacy, since one only observes either 1 (with probability |c1|2)
or 2 (with probability |c2|2), i.e., observation resolves the blurred description of re-
ality into one where the wave function is either ϕ1Ψ1 or ϕ2Ψ2. In Schrödinger’s cat
thought experiment ϕ1,2 are the wave functions of the non-decayed and decayed
atom andΨ0,1 are the wave functions of the live cat andΨ2 is the wave function of
the dead cat. Schrödinger says that this is unacceptable. But why? Is the apparatus
not supposed to be the observer? What qualifies us better than the apparatus, which
we designed in such a way that it gives a definite outcome and not a blurred one?

The question is: what in the theory describes the actual facts? Either those vari-
ables which describe the actual state of affairs have been left out of the description
(Bohmian mechanics makes amends for that) or the Schrödinger equation which
yields the unrealistic result (1.2) from (1.1) is false. (GRW theories, or more gen-
erally, dynamical reduction models, follow the latter way of describing nature. The
wave function collapses by virtue of the dynamical law [10].)

The evolution in (1.2) is an instance of the so-called decoherence. The apparatus
decoheres the superposition c1ϕ1 +c2ϕ2 of the system wave function. Decoherence
means that it is in a practical sense impossible to get the two wave packets ϕ1Ψ1 and
ϕ2Ψ2 superposed in c1ϕ1Ψ1 + c2ϕ2Ψ2 to interfere. It is sometimes said that, taking
decoherence into account, there would not be any measurement problem. Deco-
herence is this practical impossibility, which Bell referred to as fapp-impossibility
(where fapp means for all practical purposes), of the interference of the pointer
wave functions. It is often dressed up, for better looks, in terms of density matrices.
In Dirac’s notation, the density matrix is

ρG = |c1|2|ϕ1〉|Ψ1〉〈Ψ1|〈ϕ1|+ |c2|2|ϕ2〉|Ψ2〉〈Ψ2|〈ϕ2| .
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This can be interpreted as describing a statistical mixture of the two states |ϕ1〉|Ψ1〉
and |ϕ2〉|Ψ2〉, and one can say that in a fapp sense the pure state given by the right-
hand side of (1.2), namely

ρ = |c1ϕ1Ψ1 + c2ϕ2Ψ2〉〈c1Ψ1ϕ1 + c2Ψ2ϕ2| ,

is close to ρG. They are fapp-close because the off-diagonal element

c1c∗2|Ψ1ϕ1〉〈Ψ2ϕ2|

where the asterisk denotes complex conjugation, would only be observable if the
wave parts could be brought into interference, which is fapp-impossible. The argu-
ment then concludes that the meaning of the right-hand side of (1.2) is fapp-close
to the meaning of the statistical mixture. To emphasise the fact that such arguments
miss the point of the exercise, Schrödinger made his remark that there is a differ-
ence between a shaky or out-of-focus photograph and a snapshot of clouds and fog
banks.

To sum up then, decoherence does not create the facts of our world, but rather
produces a sequence of fapp-redundancies, which physically increase or stabilize
decoherence. So the cat decoheres the atom, the observer decoheres the cat that
decoheres the atom, the environment of the observer decoheres the observer that
decoheres the cat that decoheres the atom and so on. In short, what needs to be
described by the physical theory is the behavior of real objects, located in physical
space, which account for the facts.

1.1.3 In Brief: Bohmian Mechanics

Bohmian mechanics is about point particles in motion. The theory was invented
in 1952 by David Bohm (1917–1992) [11] (there is a bit more on the history in
Chap. 7). In a Bohmian universe everything is made out of particles. Their motion
is guided by the wave function. That is why the wave function is there. That is its
role. The physical theory is formulated with the variables qi ∈ R

3, i = 1,2, . . . ,N,
the positions of the N particles which make up the system, and the wave func-
tion ψ(q1, . . . ,qN) on the configuration space of the system. If the wave function
consists of two parts which have disjoint supports in configuration space, then the
system configuration is in one or the other support. In the measurement example,
the pointer configuration is either in the support suppΨ1 ofΨ1 (pointing out 1) or in
the support suppΨ2 ofΨ2 (pointing out 2).

Bohmian mechanics happens to be deterministic. A substantial success of Bohmian
mechanics is the explanation of quantum randomness or Born’s statistical law, on
the basis of Boltzmann’s principles of statistical mechanics, i.e., Born’s law is not
an axiom but a theorem in Bohmian mechanics. Born’s statistical law concerning
ρ = |ψ|2 says that, if the wave function is ψ , the particle configuration is |ψ|2-
distributed. Applying this to (1.2) implies that the result i comes with probability
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|ci|2. Suppose the enlarged system composed of system plus apparatus is described
by the configuration coordinates q = (x,y), where x ∈ R

m is the system configura-
tion and y ∈R

n the pointer configuration. We compute the probability for the result
1 by Born’s law. This means we compute the probability that the true (or actual)
pointer configuration Y lies in the support suppΨ1. In the following computation,
we assume that the wave functions are all normalized to unity. Then

P(pointer on1) =
∫

suppΨ1

|c1ϕ1Ψ1 + c2ϕ2Ψ2|2dmxdny (1.3a)

= |c1|2
∫

suppΨ1

|ϕ1Ψ1|2dmxdny+ |c2|2
∫

suppΨ1

|ϕ2Ψ2|2dmxdny

+2ℜ
[

c∗1c2

∫
suppΨ1

(ϕ1Ψ1)∗ϕ2Ψ2dmxdny

]
(1.3b)

= |c1|2
∫
|ϕ1Ψ1|2dmxdny = |c1|2 , (1.3c)

where ℜ in (1.3b) denotes the real part of a complex quantity. The terms involving
Ψ2 yield zero because of the disjointness3 of the supports of the pointer wave func-
tionsΨ1,Ψ2. This result holds fapp-forever, since it is fapp-impossible for the wave
function partsΨ1 andΨ2 to interfere in the future, especially when the results have
been written down or recorded in any way – the ever growing decoherence.

Suppose one removes the positions of the particles from the theory, as for ex-
ample Heisenberg, Bohr, and von Neumann did. Then to be able to conclude from
the fapp-impossibility of interference that only one of the wave functions remains,
one needs to add an “observer” who by the act of observation collapses the wave
function with probability |ci|2 to the Ψi part, thereby “creating” the result i. Once
again, we may ask what qualifies an observer as better than a piece of apparatus
or a cat. Debate of this kind has been going on since the works of Heisenberg and
Schrödinger in 1926. The debate, apart from producing all kinds of philosophical
treatises, revolves around the collapse of the wave function. But when does the col-
lapse happen and who is entitled to collapse the wave function? Does the collapse
happen at all? It is, to put it mildly, a bit puzzling that such an obvious shortcoming
of the theory has led to such a confused and unfocussed debate. Indeed, it has shown
physics in a bad light. In Bohmian mechanics, the collapse does not happen at all,
although there is a fapp-collapse, which one may introduce when one analyzes the
theory. In collapse theories (like GRW), the collapse does in fact happen. Bohmian
mechanics and collapse theories differ in that way. They make different predictions
for macroscopic interference experiments, which may, however, be very difficult to
perform, if not fapp-impossible.

We did not say how the particles are guided by the wave function. One gets
that by simply taking language seriously. Whenever you say “particle” in quantum
mechanics, mean it! That is Bohmian mechanics. All problems evaporate on the

3 The wave functions will in reality overlap, but the overlap is negligible. Therefore the wave
functions are well approximated by wave functions with disjoint supports.
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spot. In a nutshell, the quantity |ψt |2, with ψt a solution of Schrödinger’s equation,
satisfies a continuity equation, the so-called quantum flux equation. The particles in
Bohmian mechanics move along the flow lines of the quantum flux. In other words
the quantum flux equation is the continuity equation for transport of probability
along the Bohmian trajectories. Still not satisfied? Is that too cheap? Why the wave
function? Why |ψt |2? We shall address all these questions and more in the chapters
to follow.

Bohmian mechanics is defined by two equations: one is the Schrödinger equation
for the guiding field ψt and one is the equation for the positions of the particles. The
latter equation reads

Q̇ = μℑ
∇ψt(Q)
ψt(Q)

, (1.4)

where ℑ denotes the imaginary part, and μ is an appropriate dimension factor. The
quantum formalism in its most general form, including all rules and axioms, fol-
lows from this by analysis of the theory. In particular, Heisenberg’s uncertainty
relation for position and momentum, from which it is often concluded that particle
trajectories are in conflict with quantum mechanics, follows directly from Bohmian
mechanics.

Bohmian mechanics is nonlocal in the sense of Bell’s inequalities and therefore,
according to the experimental tests of Bell’s inequalities, concurs with the basic
requirements that any correct theory of nature must fulfill.

A Red Herring: The Double Slit Experiment

This is a quantum mechanical experiment which is often cited as conflicting with
the idea that there can be particles with trajectories. One sends a particle (i.e., a wave
packet ψ) through a double slit. Behind the slit at some distance is a photographic
plate. When the particle arrives at the plate it leaves a black spot at its place of ar-
rival. Nothing yet speaks against the idea that the particle moves on a trajectory. But
now repeat the experiment. The next particle marks a different spot of the photo-
graphic plate. Repeating this a great many times the spots begin to show a pattern.
They trace out the points of constructive interference of the wave packet ψ which,
when passing the two slits, shows the typical Huygens interference of two spherical
waves emerging from each slit. Suppose the wave packet reaches the photographic
plate after a time T . Then the spots show the |ψ(T )|2 distribution,4 in the sense that
this is their empirical distribution. Analyzing this using Bohmian mechanics, i.e.,
analyzing Schrödinger’s equation and the guiding equation (1.4), one immediately
understands why the experiment produces the result it does. It is clear that in each
run the particle goes either through the upper or through the lower slit. The wave
function goes through both slits and forms after the slits a wave function with an

4 In fact, it is the quantum flux across the surface of the photographic plate, integrated over time
(see Chap. 16).
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interference pattern. Finally the repetition of the experiment produces an ensemble
which checks Born’s statistical law for that wave function. That is the straightfor-
ward physical explanation.

So where is the argument which reveals a conflict with the notion of particle
trajectories? Here it is:

Close slit 1 and open slit 2. (1.5a)

The particle goes through slit 2. (1.5b)

It arrives at x on the plate with probability |ψ2(x)|2, (1.5c)

where ψ2 is the wave function which passed through slit 2. Next

close slit 2 and open slit 1. (1.6a)

The particle goes through slit 1. (1.6b)

It arrives at x on the plate with probability |ψ1(x)|2, (1.6c)

where ψ1 is the wave function which passed through slit 1. Now open both slits.

Both slits are open. (1.7a)

The particle goes through slit 1 or slit 2. (1.7b)

It arrives at x with probability |ψ1(x)+ψ2(x)|2 . (1.7c)

Now observe that in general

|ψ1(x)+ψ2(x)|2 = |ψ1(x)|2 + |ψ2(x)|2 +2ℜψ∗1 (x)ψ2(x) �= |ψ1(x)|2 + |ψ2(x)|2 .

The �= comes from interference of the wave packetsψ1,ψ2 which passed through slit
1 and slit 2. The argument now proceeds in the following way. Situations (1.5b) and
(1.6b) are the exclusive alternatives entering (1.7b), so the probabilities (1.5c) and
(1.6c) must add up. But they do not. So is logic false? Is the particle idea nonsense?
No, the argument is a red herring, since (1.5a), (1.6a), and (1.7a) are physically
distinct.

1.2 Determinism and Realism

It is often said that the aim of Bohmian mechanics is to restore determinism in
the quantum world. That is false. Determinism has nothing to do with ontology.
What is “out there” could just as well be governed by stochastic laws, as is the
case in GRW or dynamical reduction models with, e.g., flash ontology [12, 13].
A realistic quantum theory is a quantum theory which spells out what it is about.
Bohmian mechanics is a realistic quantum theory. It happens to be deterministic,
which is fine, but not an ontological necessity. The merit of Bohmian mechanics
is not determinism, but the refutation of all claims that quantum mechanics cannot
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be reconciled with a realistic description of reality. In physics, one needs to know
what is going on. Bohmian mechanics tells us what is going on and it does so in the
most straightforward way imaginable. It is therefore the fundamental description of
Galilean physics.

The following passage taken from a letter from Pauli to Born, concerning Ein-
stein’s view on determinism, is in many ways reminiscent of the present situation in
Bohmian mechanics:

Einstein gave me your manuscript to read; he was not at all annoyed with you, but only
said that you were a person who will not listen. This agrees with the impression I have
formed myself insofar as I was unable to recognise Einstein whenever you talked about
him in either your letter or your manuscript. It seemed to me as if you had erected some
dummy Einstein for yourself, which you then knocked down with great pomp. In particu-
lar, Einstein does not consider the concept of “determinism” to be as fundamental as it is
frequently held to be (as he told me emphatically many times), and he denied energetically
that he had ever put up a postulate such as (your letter, para. 3): “the sequence of such con-
ditions must also be objective and real, that is, automatic, machine-like, deterministic.” In
the same way, he disputes that he uses as a criterion for the admissibility of a theory the
question: “Is it rigorously deterministic?” Einstein’s point of departure is “realistic” rather
than “deterministic”.

Wolfgang Pauli, in [14], p. 221.
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Chapter 2
Classical Physics

What is classical physics? In fact it has become the name for non-quantum physics.
This begs the question: What is quantum physics in contrast to classical physics?
One readily finds the statement that in classical physics the world is described by
classical notions, like particles moving around in space, while in modern physics,
i.e., quantum mechanics, the classical notions are no longer adequate, so there is
no longer such a “naive” description of what is going on. In a more sophisticated
version, quantum mechanics is physics in which the position and momentum of a
particle are operators. But such a statement as it stands is meaningless. One also
reads that the difference between quantum physics and classical physics is that the
former has a smallest quantum of action, viz., Planck’s constant h̄, and that classical
physics applies whenever the action is large compared to h̄, and in many circum-
stances, this is a true statement.

But our own viewpoint is better expressed as follows. Classical physics is the
description of the world when the interference effects of the Schrödinger wave,
evolving according to Schrödinger’s equation, can be neglected. This is the case
for a tremendously wide range of scales from microscopic gases to stellar matter.
In particular it includes the scale of direct human perception, and this explains why
classical physics was found before quantum mechanics. Still, the viewpoint just ex-
pressed should seem puzzling. For how can classical motion of particles emerge
from a wave equation like the Schrödinger equation? This is something we shall
explain. It is easy to understand, once one writes down the equations of motion of
Bohmian mechanics. But first let us discuss the theory which governs the behavior
of matter across the enormous range of classical physics, namely, Newtonian me-
chanics. In a letter to Hooke, Newton wrote: “If I have seen further it is by standing
on the shoulders of giants.”

D. Dürr, S. Teufel, Bohmian Mechanics, DOI 10.1007/978-3-540-89344-8 2, 11
c© Springer-Verlag Berlin Heidelberg 2009
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2.1 Newtonian Mechanics

Newtonian mechanics is about point particles. What is a point particle? It is “stuff”
or “matter” that occupies a point in space called its position, described mathemati-
cally by q ∈ R

3. The theory describes the motion of point particles in space. Math-
ematically, an N-particle system is described by the positions of the N particles:

q1, . . . ,qN , qi ∈ R
3 ,

which change with time, so that one has trajectories q1(t), . . . ,qN(t), where the
parameter t ∈ R is the time.

Newtonian mechanics is given by equations – the physical law – which govern
the trajectories, called the equations of motion. They can be formulated in many
different (but more or less equivalent) ways, so that the physical law looks different
for each formulation, but the trajectories remain the same. We shall soon look at an
example. Which formulation one prefers will be mainly a matter of taste. One may
find the arguments leading to a particular formulation more satisfactory or convinc-
ing than others.

To formulate the law of Newtonian mechanics one introduces positive parame-
ters, called masses, viz., m1, . . . ,mN , which represent “matter”, and the law reads

miq̈i = Fi(q1, . . . ,qN) . (2.1)

Fi is called the force. It is in general a function of all particle positions. Put an-
other way, it is a function of the configuration, i.e., the family of all coordinates
(q1, . . . ,qN) ∈ R

3N . The set of all such N-tuples is called configuration space. The
quantity q̇i = dqi/dt = vi is the velocity of the i th particle, and its derivative q̈i is
called the acceleration.

Newtonian mechanics is romantic in a way. One way of talking about it is to
say that particles accelerate each other, they interact through forces exerted upon
each other, i.e., Newtonian mechanics is a theory of interaction. The fundamental
interaction is gravitation or mass attraction given by

Fi(q1, . . . ,qN) =∑
j �=i

Gmim j
q j−qi

‖q j−qi‖3 , (2.2)

with G the gravitational constant.
All point particles of the Newtonian universe interact according to (2.2). In ef-

fective descriptions of subsystems (when we actually use Newtonian mechanics in
everyday life), other forces like harmonic forces of springs can appear on the right-
hand side of (2.1). Such general forces need not (and in general will not) arise from
gravitation alone. Electromagnetic forces will also play a role, i.e., one can some-
times describe electromagnetic interaction between electrically charged particles by
the Coulomb force using Newtonian mechanics. The Coulomb force is similar to
(2.2), but may have a different sign, and the masses mi are replaced by the charges
ei which may be positive or negative.
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One may wonder why Newtonian mechanics can be successfully applied to sub-
systems like the solar system, or even smaller systems like systems on earth. That
is, why can one ignore all the rest of the universe? One can give various reasons. For
example, distant matter which surrounds the earth in a homogeneous way produces
a zero net field. The force (2.2) falls off with large distances and the gravitational
constant is very small. In various general situations, and depending on the practical
task in hand, such arguments allow a good effective description of the subsystem in
which one ignores distant matter, or even not so distant matter.

Remark 2.1. Initial Value Problem

The equation (2.1) is a differential equation and thus poses an initial value problem,
i.e., the trajectories qi(t), t ∈ R, which obey (2.1) are only determined once initial
data of the form qi(t0), q̇i(t0) are given, where t0 is some time, called the initial
time. This means that the future and past evolution of the trajectories is determined
by the “present” state qi(t0), q̇i(t0). Note that the position alone is not sufficient to
determine the state of a Newtonian system.

It is well known that differential equations need not have unique and global solu-
tions, i.e., solutions which exist for all times for all initial values. What does exist,
however, is – at least in the case of gravitation – a local unique solution for a great
many initial conditions, i.e., a solution which exists uniquely for some short period
of time, if the initial values are reasonable. So (2.1) and (2.2) have no solution if, for
example, two particles occupy the same position. Further, for the solution to exist, it
must not happen that two or more particles collide, i.e., that they come together and
occupy the same position. It is a famous problem in mathematical physics to estab-
lish what is called the existence of dynamics for a gravitating many-particle system,
where one hopes to show that solutions fail to exist globally only for exceptional
initial values. But what does “exceptional” mean? We shall answer this in a short
while. �

We wish to comment briefly on the manner of speaking about interacting particles,
which gives a human touch to Newtonian mechanics. We say that the particles at-
tract each other. Taking this notion to heart, one might be inclined to associate with
the notion of particle more than just an object which has a position. But that might
be misleading, since no matter how one justifies or speaks about Newtonian me-
chanics, when all is said and done, there remains a physical law about the motion
of point particles, and that is a mathematical expression about changes of points in
space with time. We shall explore one such prosaic description next.

2.2 Hamiltonian Mechanics

One can formulate the Newtonian law differently. Different formulations are based
on different fundamental principles, like for example the principle of least action.
But never mind such principles for the moment. We shall simply observe that it is
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Fig. 2.1 Configuration space for 3 particles in a one-dimensional world

mathematically much nicer to rewrite everything in terms of configuration space
variables:

q =

⎛
⎜⎝

q1
...

qN

⎞
⎟⎠ ∈ R

3N ,

that is, we write the differential equation for all particles in a compact form as

mq̈ = F , (2.3)

with

F =

⎛
⎜⎝

F1
...

FN

⎞
⎟⎠ ,

and the mass matrix m = (δ j
i m j)i, j=1,... ,N .

Configuration space cannot be depicted (but see Fig. 2.1 for a very special situa-
tion), at least not for a system of more than one particle, because it is 6-dimensional
for 2 particles in physical space. It is thus not so easy to think intuitively about
things going on in configuration space. But one had better build up some intuition
for configuration space, because it plays a fundamental role in quantum theory.

A differential equation is by definition a relation between the flow and the vector
field. The flow is the mapping along the solution curves, which are integral curves
along the vector field (the tangents of the solution curves). If a physical law is given
by a differential equation, the vector field encodes the physical law. Let us see how
this works.
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Fig. 2.2 Phase space descrip-
tion of the mathematically
idealized harmonically swing-
ing pendulum. The possible
trajectories of the mathemat-
ically idealized pendulum
swinging in a plane with
frequency 1 are concentric
circles in phase space. The
sets M und M(t) will be
discussed later

(

(.

.

The differential equation (2.3) is of second order and does not express the rela-
tion between the integral curves and the vector field in a transparent way. We need
to change (2.3) into an equation of first order, so that the vector field becomes trans-
parent. For this reason we consider the phase space variables

(
q
p

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

q1
...

qN

p1
...

pN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R

3N ×R
3N = Γ ,

which were introduced by Boltzmann,1 where we consider positions and velocities.
However, for convenience of notation, the latter are replaced by momenta pi = mivi.
One point inΓ represents the present state of the entire N-particle system. The phase
space has twice the dimension of configuration space and can be depicted for one
particle moving in one dimension, e.g., the pendulum (see Fig. 2.2).

Clearly, (2.3) becomes

1 The notion of phase space was taken by Ludwig Boltzmann (1844–1906) as synonymous with
the state space, the phase being the collection of variables which uniquely determine the physical
state. The physical state is uniquely determined if its future and past evolution in time is uniquely
determined by the physical law.
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(
q̇
ṗ

)
=

(
m−1p
F(q)

)
. (2.4)

The state of the N-particle system is completely determined by

(
q
p

)
, because (2.4)

and the initial values

(
q(t0)
p(t0)

)
uniquely determine the phase space trajectory (if the

initial value problem allows for a solution).
For (2.2) and many other effective forces, there exists a function V on R

3N , the
so called potential energy function, with the property that

F =−gradqV =−∂V
∂q

=−∇V .

Using this we may write (2.4) as

(
q̇
ṗ

)
=

⎛
⎜⎜⎝
∂H
∂p

(q,p)

−∂H
∂q

(q,p)

⎞
⎟⎟⎠ , (2.5)

where

H(q,p) =
1
2
(p ·m−1p)+V (q)

=
1
2

N

∑
i=1

p2
i

mi
+V (q1, . . . ,qN) . (2.6)

Now we have the Newtonian law in the form of a transparent differential equation
(2.5), expressing the relation between the integral curves (on the left-hand side,
differentiated to yield tangent vectors) and the vector field on the right-hand side
(which are the tangent vectors expressing the physics). The way we have written
it, the vector field is actually generated by a function H (2.6) on phase space. This
is called the Hamilton function, after its inventor William Rowan Hamilton (1805–
1865), who in fact introduced the symbol H in honor of the physicist Christiaan
Huygens (1629–1695). We shall see later what the “wave man” Huygens has to do
with all this. The role of the Hamilton function H(q,p) is to give the vector field

vH(q,p) =

⎛
⎜⎜⎝
∂H
∂p

−∂H
∂q

⎞
⎟⎟⎠ , (2.7)

and the Hamiltonian dynamics is simply given by
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(
q̇
ṗ

)
= vH(q,p) . (2.8)

The function H allows us to focus on a particular structure of Newtonian mechanics,
now rewritten in Hamiltonian terms. Almost all of this section depends solely on this
structure, and we shall see some examples shortly. Equations (2.5) and (2.6) with
the Hamilton function H(q,p) define a Hamiltonian system.

The integral curves along this vector field (2.7) represent the possible system

trajectories in phase space, i.e., they are solutions

(
q
(
t,(q,p)

)
p
(
t,(q,p)

)
)

of (2.8) for given

initial values

(
q
(
0,(q,p)

)
p
(
0,(q,p)

)
)

=
(

q
p

)
. Note that this requires existence and unique-

ness of solutions of the differential equations (2.8). One possible evolution of the
entire system is represented by one curve in phase space (see Fig. 2.3), which is
called a flow line, and one defines the Hamiltonian flow by the map (ΦH

t )t∈R from
phase space to phase space, given by the prescription that, for any t, a point in phase
space is mapped to the point to which it moves in time t under the evolution (as long
as that evolution is defined, see Remark 2.1):

ΦH
t

((
q
p

))
=

(
q
(
t,(q,p)

)
p
(
t,(q,p)

)
)

.

We shall say more about the flow map later on. The flow can be thought of pictorially
as the flow of a material fluid in Γ , with the system trajectories as flow lines.

Hamiltonian mechanics is another way of talking about Newtonian mechanics.
It is a prosaic way of talking about the motion of particles. The only romance left
is the secret of how to write down the physically relevant H. Once that is done,
the romance is over and what lies before one are the laws of mechanics written in
mathematical language. So that is all that remains. The advantage of the Hamilto-
nian form is that it directly expresses the law as a differential equation (2.8). And
it has the further advantage that it allows one to talk simultaneously about all pos-
sible trajectories of a system. This will be helpful when we need to define a typical
trajectory of the system, which we must do later.

However, this does not by any means imply that we should forget the Newtonian
approach altogether. To understand which path a system takes, it is good to know
how the particles in the system interact with each other, and to have some intuition
about that. Moreover, we should not lose sight of what we are interested in, namely,
the behavior of the system in physical space. Although we have not elaborated on the
issue at all, it is also important to understand the physical reasoning which leads to
the mathematical law (for example, how Newton found the gravitational potential),
as this may give us confidence in the correctness of the law. Of course we also
achieve confidence by checking whether the theory correctly describes what we see,
but since we can usually only see a tiny fraction of what a theory says, confidence
is mainly grounded on theoretical insight.

The fundamental properties of the Hamiltonian flow are conservation of energy
and conservation of volume. These properties depend only on the form of the equa-
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Fig. 2.3 The Hamilton function generates a vector field on the 6N-dimensional phase space of an
N-particle system in physical space. The integral curves are the possible trajectories of the entire
system in phase space. Each point in phase space is the collection of all the positions and velocities
of all the particles. One must always keep in mind that the trajectories in phase space are not
trajectories in physical space. They can never cross each other because they are integral curves on
a vector field, and a unique vector is attached to every point of phase space. Trajectories in phase
space do not interact with each other! They are not the trajectories of particles

tions (2.8) with (2.7), i.e., H(q,p) can be a completely general function of (q,p)
and need not be the function (2.6). When working with this generality, one calls p
the canonical momentum, which is no longer simply velocity times mass. Now, con-
servation of energy means that the value of the Hamilton function does not change
along trajectories. This is easy to see. Let

(
q(t),p(t)

)
, t ∈ R, be a solution of (2.8).

Then

d
dt

H
(
q(t),p(t)

)
= q̇

∂H
∂q

+ ṗ
∂H
∂p

=
∂H
∂p
∂H
∂q
− ∂H
∂q
∂H
∂p

= 0 . (2.9)

More generally, the time derivative along the trajectories of any function f
(
q(t),p(t)

)
on phase space is

d
dt

f
(
q(t),p(t)

)
= q̇

∂ f
∂q

+ ṗ
∂ f
∂p

=
∂H
∂p
∂ f
∂q
− ∂H
∂q
∂ f
∂p

=: { f ,H} . (2.10)

The term { f ,H} is called the Poisson bracket of f and H. It can also be defined in
more general terms for any pair of functions f ,g, viewing g as the Hamilton function
and Φg

t the flow generated by g :

{ f ,g}=
d
dt

f ◦Φg
t =

∂g
∂p
∂ f
∂q
− ∂g
∂q
∂ f
∂p

. (2.11)
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Note, that { f ,H} = 0 means that f is a constant of the motion, i.e., the value of f
remains unchanged along a trajectory (d f /dt = 0), with f = H being the simplest
example.

Now we come to the conservation of volume. Recall that the Hamiltonian flow
(ΦH

t )t∈R is best pictured as a fluid flow in Γ , with the system trajectories as flow
lines. These are the integral curves along the Hamiltonian vector field vH(q,p) (2.7).
These flow lines have neither sources nor sinks, i.e., the vector field is divergence-
free:

divvH(q,p) =
(
∂
∂q

,
∂
∂p

)
⎛
⎜⎜⎝
∂H
∂p

−∂H
∂q

⎞
⎟⎟⎠ =

∂ 2H
∂q∂p

− ∂ 2H
∂p∂q

= 0 . (2.12)

This important (though rather trivial) mathematical fact is known as Liouville’s the-
orem for the Hamiltonian flow, after Joseph Liouville (1809–1882). (It has noth-
ing to do with Liouville’s theorem in complex analysis.) A fluid with a flow that is
divergence-free is said to be incompressible, a behavior different from air in a pump,
which gets very much compressed. Consequently, and as we shall show below, the
“volume” of any subset in phase space which gets transported via the Hamiltonian
flow remains unchanged. Before we express this in mathematical terms and give the
proof, we shall consider the issue in more general terms.

Remark 2.2. On the Time Evolution of Measures.
The notion of volume deserves some elaboration. Clearly, since phase space is very
high-dimensional, the notion of volume here is more abstract than the volume of a
three-dimensional object. In fact, we shall later use a notion of volume which is not
simply the trivial extension of three-dimensional volume. Volume here refers to a
measure, the size or weight of sets, where one may in general want to consider a
biased weight. The most famous measure, and in fact the mother of all measures,
is the generalization of the volume of a cube to arbitrary subsets, known as the
Lebesgue measure λ . We shall say more about this later.2 If one feels intimidated by
the name Lebesgue measure, then take |A|=

∫
A dnx, the usual Riemann integral, as

the (fapp-correct) Lebesgue measure of A. The measure may in a more general sense
be thought of as some kind of weight distribution, where the Lebesgue measure
gives equal (i.e., unbiased) weight to every point. For a continuum of points, this is
a somewhat demanding notion, but one may nevertheless get a feeling for what is
meant. For the time being we require that the measure be an additive nonnegative set
function, i.e., a function which attributes positive or zero values to sets, and which
is additive on disjoint sets: μ(A∪B) = μ(A)+ μ(B). The role of the measure will

2 We need to deal with the curse of the continuum, which is that not all subsets of R
n actually

have a volume, or as we now say, a measure. There are non-measurable sets within the enormous
multitude of subsets. These non-measurable sets exist mathematically, but are not constructible
in any practical way out of unions and intersections of simple sets, like cubes or balls. They are
nothing we need to worry about in practical terms, but they are nevertheless there, and so must be
dealt with properly. This we shall do in Sect. 4.3.1.
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eventually be to tell us the size of a set, i.e., which sets are small and which are big.
Big sets are important, while small ones are not.

It may be best to think for now of a measure in general as some abstract way of
attributing “mass” to subsets. One is then led to ask how the measure (or the mass)
changes with a flow. That question was first asked for the Hamiltonian flow, but it
can be asked, and in fact has been asked, for flows of a general character. We shall
do the same now. Let μ be a measure on the phase space Γ , which we take for
simplicity as being R

n. We consider now a general (not necessarily Hamiltonian)
flow map on phase space, that is, a one-parameter family of maps (Φt)t∈R, with
parameter “time” t :

(
Φt(x)

)
t∈R

, x ∈ R
n : Φt ◦Φs(x) =Φt+s(x) , Φ0(x) = x . (2.13)

In general, any flow Φt on R
n (or some general phase space) naturally defines the

time evolution of the measure μt on R
n :

μt = μ ◦Φ−t , (2.14)

which means

μt(A) = μ(Φ−tA) , or μt(ΦtA) = μ(A) , (2.15)

for all (measurable) sets A and all t ∈ R. Behind this definition is the simple logic
that, if a measure μ is given at time t = 0, then the measure μt of a set A is the
measure μ of the set from which A originated by virtue of the flow. In other words
the measure changes only because the set changes.

The notion of stationary measure is very important. This is a measure that does
not change under the flow Φt , i.e.,

μt(A) = μ(A) , ∀t ∈ R , ∀A . (2.16)

The stationary measure plays a distinguished role in justifying probabilistic rea-
soning. Its importance was presumably first discovered by Boltzmann, and later on
we shall spend some time considering Boltzmann’s general ideas about statistical
physics, which are valid for a whole range of theories.

The above-mentioned preservation of volume for Hamiltonian flows as a con-
sequence of Liouville’s theorem refers to phase space volume and is the assertion
that

λ (Φ−tA) = λ (A) , (2.17)

with λ the Lebesgue measure on phase space. This means that, under the Hamilto-
nian flow, sets change their shape but not their volume. This may also be referred to
as Liouville’s theorem, since it is a direct consequence of (2.12), as we shall show
next. For the pendulum in Fig. 2.2, one sees this immediately, since the slices of the
pie just rotate. The general situation is depicted in Fig. 2.4. �
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Fig. 2.4 The preservation of volume of the Hamiltonian flow. The set M in phase space changes
under the flow but its volume remains the same

Remark 2.3. Continuity Equation
From the change in the measure (2.15) for a general flow generated by a vector field,
one can derive a differential equation which governs the change in the density of the
measure. That differential equation is called the continuity equation. If the measure
has a density ρ(x) (you may think of a mass density), then the change of measure
with time defines a time-dependent density ρ(x, t), and one has the logical relation3

μt(A) =:
∫
χA(x)ρ(x, t)dnx

| |

μ(Φ−tA) =:
∫
χΦ−t A(x)ρ(x)dnx

=
∫
χA(Φt(x))ρ(x)dnx , (2.18)

where χA is the characteristic function of the set A ⊂ Γ , also called the indicator
function of the set A, i.e., the function which is 1 on A and zero otherwise, and
Φ−tA = {x ∈ Γ | Φt(x) ∈ A}. Furthermore Φt is the solution flow map of some
vector field v(x) on R

n (or some general phase space), i.e.,

d
dt
Φt(x) = v

(
Φt(x)

)
. (2.19)

We shall now show that the density ρ(x, t) satisfies the continuity equation:

∂
∂ t
ρ(x, t)+div

[
v(x)ρ(x, t)

]
= 0 . (2.20)

3 Note in passing that ρ(x, t) can be computed from an obvious change of variables in the last
integral, namely, ρ(x, t) = ρ(Φ−t(x))|∂Φ−t(x)/∂x| .
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To see this, replace the indicator function in (2.18) by a smooth function f with
compact support:

∫
f
(
Φt(x)

)
ρ(x)dnx =

∫
f (x)ρ(x, t)dnx . (2.21)

Now differentiate (2.21) with respect to t to get

∫
dΦt(x)

dt
·
[
∇ f

(
Φt(x)

)]
ρ(x)dnx =

∫
f (x)

∂
∂ t
ρ(x, t)dnx . (2.22)

Replacing dΦt(x)/dt by the right-hand side of (2.19) and using (2.21) again with f
replaced by v(x)·

[
∇ f (x)

]
(a wonderful trick), the left-hand side of (2.22) becomes

∫
v(x)·

[
∇ f (x)

]
ρ(x, t)dnx , (2.23)

and after partial integration,

−
∫

f (x)div
[
v(x)ρ(x, t)

]
dnx . (2.24)

Since this is equal to the right-hand side of (2.22) and since f is arbitrary, we con-
clude that (2.20) holds. �

Now we ask whether there is a stationary measure (2.16). In terms of densities, the
question is: Does there exist a stationary density, that is, a density independent of
time, satisfying (2.20)? Since the time derivative part of (2.20) vanishes, i.e.,

∂
∂ t
ρ(x) = 0 ,

the density must satisfy the partial differential equation

div
[
v(x)ρ(x)

]
= 0 . (2.25)

This is in general a very difficult question. In particular, it is almost impossible to
find the solution for a general vector field. However, not so in the Hamiltonian case,
where the answer turns out to be trivial! This is a consequence of (2.12). Setting

x =
(

q
p

)
,

equation (2.12) reads divv(x) = 0 for all x. In this case, (2.20) becomes (after using
the product rule)

∂
∂ t
ρ(x, t)+v(x)·∇ρ(x, t) = 0 . (2.26)
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Now ρ(x, t) = constant, which we may choose to be unity, is obviously stationary.
Putting f = χA, A⊂ Γ , and taking into account ρ = 1, (2.21) yields

∫
χA

(
Φt(x)

)
dnx =

∫
χΦ−t A(x)dnx =

∫
χA(x)dnx = λ (A) . (2.27)

In short, (2.27) says

λ (Φ−tA) = λ (A) . (2.28)

We may as well put the future set ΦtA into (2.28), instead of A, and use Φ−tΦt = id
(identity), whence

λ (A) = λ (ΦtA) . (2.29)

In conclusion, Liouville’s theorem implies that the Lebesgue measure (≡ volume) is
stationary for Hamiltonian flows.

Remark 2.4. Time-Dependent Vector Fields
The continuity equation also holds for time-dependent vector fields v(x, t), in which
case the flow map is a two parameter groupΦt,s advancing points from time s to time
t. All one needs to do is to replace the vector field in (2.20) by the time-dependent
expression v(x, t), and the proof goes through verbatim. But now the notion of a
stationary measure seems unsuitable, since the velocity field (representing the phys-
ical law) changes with time. But remarkably the notion still applies for Hamiltonian
flows, i.e., even in the case where the Hamiltonian is time dependent (energy is not
conserved), the volume (Lebesgue measure of a set) remains unchanged under the
flow. �

Remark 2.5. On the Initial Value Problem
The Lebesgue measure in phase space plays a distinguished role for the Hamiltonian
flow. It is thus natural to weaken the problem of initial values in the sense of the
measure, so that one is happy if it can be shown that the bad set of initial conditions
for which no global solutions exist has Lebesgue measure zero. Be warned however,
that a set which has measure zero may be small in the sense of the measure, but it
is not necessarily small in the sense of cardinality (number of points in the set). The
famous Cantor set, a subset of the interval [0,1], has as many members as the reals,
but has Lebesgue measure zero.

We close this section with what is a heretical thought for modern physicists,
namely, a Newtonian universe. This is not physical (we know it ignores quantum
mechanics and much more), but we can nevertheless conceive of it, and it is a good
enough framework in which to ask a question which in an appropriate sense could
be raised in any other theory: Which initial values give rise to OUR Newtonian
universe? Put another way: According to which criteria were the initial values of
OUR universe chosen? We do not ask who chose the initial conditions, but rather:
Which physical law determines them? One possible answer to this could be that our
universe is nothing special, that it could be typical in the sense that almost all initial
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conditions would give rise to a universe very much like ours (where “almost all”
means that the Lebesgue measure of the set which does not give rise to a universe
like ours is very small). It turns out that this is not the case, but we shall address this
issue later. �

2.3 Hamilton–Jacobi Formulation

The Hamiltonian structure and phase space are intimately connected with symplec-
tic geometry. We shall say more about that at the end of the chapter. We wish to
move on to another question. The Hamiltonian formulation of Newtonian mechan-
ics is prosaic and brings out the particular structure shared by Newtonian mechanics
and all Hamiltonian flows: conservation of energy (if H is time independent) and
phase space volume. But that was not Hamilton’s aim. He had a much deeper vi-
sion for mechanics. He was looking for an analogy between mechanics and wave
optics, namely Huygens’ principle and Fermat’s extremal principle of geometric
optics, according to which light rays take the path requiring the shortest time, and
moreover follow the normals of wave fronts. Could mechanics be formulated by a
similar guidance principle, where the mechanical paths are determined by the nor-
mal vectors of wave fronts? The extremal principle replacing Fermat’s is the least
action principle δ

∫
Ldt = 0, where L(q, q̇) is called the Lagrange function. The me-

chanical (Newtonian) trajectories between t0,q0 and t,q (note that instead of initial
position and initial velocity, we consider initial position and end position) are char-
acterized as the extremals of

∫ t

t0
L
(
q(t ′), q̇(t ′)

)
dt ′ .

We omit the derivation of the Euler–Lagrange equation, which is standard, but we
recall that for Newtonian mechanics

L(q, q̇) =
1
2

q̇·mq̇−V (q) . (2.30)

For this Lagrange function, the Euler–Lagrange equations are the usual Newtonian
equations. The Lagrange function and Hamilton function are Legendre transforms
of one another.4 (It is remarkable that almost all the great mathematicians of the
19th century have left some trace in theoretical mechanics.) Starting with H, we get
L by changing from the variable p to q̇, so that (q,p) gets replaced by (q, q̇), using
the implicitly given function

q̇ =
∂H(q,p)
∂p

,

4 Here is the definition. Let f (x) be convex and let z be a given slope. Then look for the point x(z) at
which the tangent to the graph of f has slope z. You find x(z) by minimizing F(x,z) = f (x)−xz in
x. By convexity of f , this is uniquely determined. The Legendre transform of f is g(z) = F

(
x(z),z

)
.



2.3 Hamilton–Jacobi Formulation 25

where the equation is solved by p as a function of q̇.
For “normal” Hamilton functions (quadratic in the momentum), that solution is

immediate, and looking at (2.30), the Legendre transform pops right up:

L(q, q̇) = p · q̇−H(q,p) . (2.31)

Note in passing that if one starts with the least action principle as being fundamen-
tal, one can guess the form of the Lagrange function from basic principles such
as symmetry, homogeneity, and simplicity. But that is not what we wish to discuss
here.

We come now to Huygens’ principle and the definition of waves Sq0,t0(q, t)
which guide mechanical trajectories starting at q0 and moving along the vector field
p(q, t) = ∇Sq0,t0(q, t). Hamilton suggested

Sq0,t0(q, t) :=
∫ t

t0
L(γ, γ̇)dt , (2.32)

where γ : q0, t0 −→ q, t is the extremum of the action principle, i.e., the Newtonian
path. This function is often called the Hamilton–Jacobi function.

Unfortunately, this definition generally leads to a multivalued function. Take for
example the harmonic oscillator with period T . There are many extremal trajectories
for a harmonic oscillator with period T which go from (0,T ) to (0,2T ), so S is not
uniquely defined. Or again, think of a ball which bounces off a wall. The position
q in front of the wall can always be reached within a given time by two routes, one
with and one without reflection from the wall.

However, the definition is good for short enough times. So never mind this diffi-
culty, let us pursue the thought. Ignoring the dependence on (q0, t0) and considering5

dS =
∂S
∂q

dq+
∂S
∂ t

dt ,

and in view of (2.32) and (2.31), we can identify

dS = pdq−H(q,p)dt .

Then by comparison

p(q, t) =
∂S
∂q

(q, t) , (2.33)

whence

∂S
∂ t

(q, t)+H

(
q,
∂S
∂q

)
= 0 . (2.34)

5 We may ignore that dependence because we assume uniqueness of the trajectory, and this implies
that Sq0,t0(q, t) = Sq1,t1(q, t)+Sq0,t0(q1, t1).
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This is known as the Hamilton–Jacobi differential equation. For Newtonian mechan-
ics, where q̇i = pi/mi, we then obtain the following picture. On the configuration
space R

n for N particles (n = 3N), we have a function S(q, t) (“unfortunately” mul-
tivalued), whose role it is to generate a vector field

v(q, t) = m−1∇S(q, t) (2.35)

on configuration space. Integral curves Q(t) along the vector field are the possible
trajectories of the N-particle system, i.e., they solve

dQ
dt

= v
(
Q(t), t

)
.

The function S(q, t) is itself dynamical and solves the nonlinear partial differential
equation

∂S
∂ t

(q, t)+
1
2

N

∑
i=1

1
mi

(
∂S
∂qi

)2

+V (q) = 0 . (2.36)

This picture is, as we said, not quite right, because S is in general not well defined
for mechanics. On the other hand, it is almost quantum mechanics. We shall soon
understand which little quantum is missing to get the picture right.

2.4 Fields and Particles: Electromagnetism

Many hold the view that the particle is not a good concept for physics. They see it as
a classical Newtonian concept which has been made obsolete by quantum mechan-
ics. Fields on the other hand are generally well accepted, because relativity teaches
us that the right physical theory will be a field theory, eventually quantized of course.
To understand whether fields do work as well as one hopes, we shall have a quick
look at electromagnetism, where dynamical fields come into play as fundamental
objects needed to describe interactions between particles which carry a “charge”.
Electromagnetic fields act on a particle at position q ∈ R

3 via the Lorentz force:

mq̈ = e

[
E(q, t)+

q̇
c
×B(q, t)

]
, (2.37)

where E(q, t) und B(q, t) are the electric and magnetic fields, and c is the velocity
of light. While the fields act on particles as described, in electromagnetism the fields
are not independent agents living in a kingdom of their own, for they are themselves
generated by particles. They are generated by particles and they act on particles,
which is why one may say that they are there to represent the interaction between
particles. But when the particles are point particles, which is the most natural rela-



2.4 Fields and Particles: Electromagnetism 27

tivistic possibility, this does not go down well with the fields. We shall explain this
now. We shall also use the opportunity to introduce relativistic physics.

Albert Einstein (1879–1955) deduced from Maxwell’s equations of electromag-
netism that space and most importantly time change in a different way from Galilean
physics when one changes between frames moving with respect to each other. The
nature of this change is governed by the fact that the velocity of light does not
change, when one moves from one frame to another. This led to the understanding,
soon to be formalised in the four-dimensional description by Hermann Minkowski
(1864–1909), that space and time are “of the same kind”. That is, a particle needs
for its specification not only a position in space, but also a location in time, imply-
ing that the coordinates of a particle in relativistic physics should be space and time
coordinates. This is a revolution in Newtonian mechanics, where we are of course
used to particles having different positions, but not different times. So in relativistic
physics one must get used to the spacetime description of particles, with each par-
ticle having its own spacetime coordinates. In other words, the configuration space
of classical mechanics, where we collect all positions of the particles of a system
at the same time, no longer plays a fundamental role. Instead, Einstein showed that
the overthrow of absolute time brings physics closer to a true description of nature.
On this basis, he believed that physical theories must be local, in the sense that no
physical effect can move faster than light. John Bell showed that this is wrong. We
shall devote a whole chapter to this later, but now we must move on.

Minkowski introduced the so-called four-dimensional spacetime with a particular
scalar product.6 In spacetime, particles no longer move in a Newtonian way, but
according to new dynamics. The particle position is now xμ , μ = (0,1,2,3), where
x0 is selected as the time coordinate, since it is distinguished by the “signature” of
the so-called Minkowski length7

ds2 = (dx0)2−dx2 = (dx0)2−
3

∑
i=1

(dxi)2 .

In Newtonian mechanics, we are used to parameterizing paths by time, which is no
longer natural. A natural parameter now is length – Minkowski length – normalized
by 1/c, i.e., on each trajectory we select a zero mark somewhere and go from there

6 Minkowski suggested using imaginary numbers for the time coordinate in the spacetime coordi-
nates (x0 = ict,x), because then the formal Euclidean scalar product yields the Minkowski metric
s2 = (x0)2 + x2 = −ct2 +∑3

i=1(x
i)2. The advantage is that all congruences, i.e., transformations

leaving the scalar product invariant (which form the so-called Lorentz group) appear in Euclidean
guise, and so can be viewed as four-dimensional rotations and reflections. This differs from the
Galilean case, where the change to relatively moving frames (Galilean boosts) must be dealt with
separately. In the Minkowski case, the corresponding Lorentz boost is simply a “rotation”, but
with an imaginary angle. When one considers the changes of x0 and, say, x1, such a rotation yields
x0
′ = x0 cosφ −x1 sinφ , x1

′ = x0 sinφ +x1 cosφ , which requires in the Minkowski case φ = iψ , an
imaginary angle. Following the point x1 = 0 in the primed frame (moving with relative velocity v),
one then has x1

′/ct ′ = v/c = tanhψ , which yields the well-known formula for the Lorentz boost.
7 The sign of ds2 is conventional: ds2 < 0 implies a spacelike distance, while ds2 > 0 implies a
timelike distance.
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with the length element of the i th particle

dτi =
dsi

c
=

1
c

√(
dx0

i

dτi

)2

−
(

dxi

dτi

)2

dτi .

Thus

ẋ2
i = gμν ẋμi ẋνi = c2 , gμν =

(
1 0
0 −E3

)
, (2.38)

where E3 is the 3×3 identity matrix, and we use the Einstein summation convention
according to which we sum automatically over those indices appearing more than
once. The dot over xi indicates the derivative with respect to Minkowski length τi,
also called the proper time, of the i th particle (in the frame where the particle is
at rest x0

i = cτi). The metric tensor gμν which defines here the Minkowski scalar
product can be used to lower indices:

xμ := gμνxν ,

while the inverse of the metric tensor denoted by gμν is used to raise indices.
For us it is natural to parameterize the trajectory by the coordinate time x0 = ct

of our rest frame where we see the particle move with velocity v. We thus have a
new function

x̄μ(x0) =
(
x0,x(x0)

)
= xμ

(
τ(x0)

)
,

for which we get by the chain rule

dx̄μ

dx0 =
(

1,
v
c

)
= ẋμ

dτ
dx0 ,

or, taking the Minkowski square,

1− v2

c2 = c2
(

dτ
dx0

)2

, (2.39)

which allows us to switch between proper time and coordinate time.
The relativistic dynamics of a “free” particle may be defined by an extremal

principle which determines the physical spacetime path from x to y as the path with
the shortest Minkowski length. This means that the variation

δ
∫ y

x
ds = δ

∫ τ(y)

τ(x)

(
ẋμ ẋμ

)1/2
dτ = 0 .

If we wish to talk about relativistic mechanics in Newtonian terms, i.e., if we wish
to use Newtonian concepts like energy, mass, and force and the like – and we might
wish to do that because it may then be easier to arrive at Newtonian mechanics
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as a limiting description of relativistic mechanics – we can multiply the integral
by dimensional constants to get an action integral, so that the terms in the Euler–
Lagrange equation read analogously to the Newtonian terms. That is, writing S =
−mc

∫
ds and using (2.39) in the x0 = ct parametrization, the Lagrange function

becomes

L(q̇) =−mc2

√
1− v2

c2 .

The Euler–Lagrange equations lead to the canonical momentum

p =
m√

1− v2/c2
v =: m̃v ,

from which we recognize m as the rest mass, because p≈ mv when v� c.
The canonical momentum can be taken as the vector part of a canonical four-

momentum

pμ = mẋμ ,

the Minkowski length of which is [see (2.38)]

gμν pμ pν = pμ pμ = m2ẋμ ẋμ = m2c2 . (2.40)

Hence, parameterizing by x0 = ct, we find

pμ = mẋμ =
m√

1− v2/c2
(c,v) .

Observing further that

mc√
1− v2/c2

≈ mc

(
1+

1
2

v2

c2 + . . .

)
= mc+

m
2

v2

c
+ · · · ,

we are led to set E = p0c. With (2.40), we thus obtain the energy–momentum rela-
tion:

E =
√

p2c2 +m2c4 = m̃c2 .

Now we have for N particles the spacetime trajectories qi =
(
qμi (τi)

)
, μ = 0,1,2,3,

i = 1, . . . ,N. Let us introduce a force Kμ , which accelerates the particles. By virtue
of (2.38), we have

ẍμ ẋμ = 0 ,

and this suggests

Kμ ẋμ = 0 ,
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that is, the force should be orthogonal to the velocity in the sense of the Minkowski
metric. The simplest way to achieve this is to put

Kμ = Fμν ẋν ,

with Fμν = −Fνμ , an antisymmetric tensor of rank 2, i.e., an antisymmetric 4× 4
matrix. One way to generate such a tensor is to use a four-potential Aμ :

Fμν =
∂
∂xμ

Aν − ∂
∂xν

Aμ . (2.41)

The Maxwell–Lorentz theory of electromagnetic interaction has the force act on the
particles through a law that involves not only masses as parameters, but also charges
ei :

miq̈
μ
i =

ei

c
Fμν(qi)q̇νi . (2.42)

In view of (2.37), one names the matrix elements as follows:

Fμν(x) =

⎛
⎜⎜⎝

0 E1 E2 E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

⎞
⎟⎟⎠ , (2.43)

recalling that indices are lowered or raised by action of gμν = gμν , whence Fμν =
Fμλgλν .

For the three-vector qi(τi), we then obtain

miq̈i = ei

(
E+

q̇i

c
×B

)
,

where dots over symbols still refer to derivatives with respect to τi. For small veloc-
ities (compared to the velocity of light), this is close to (2.37).

But the fields Fμν are themselves generated by the particles, and this is supposed
to give the interaction between the charges. The equation which describes the gen-
eration of fields is not difficult to guess, by analogy with the gravitational potential
which is given by the potential equation ΔV =∇ ·∇V = δ(x) for a point mass at the
origin. (Note that the scalar product construction of the law is a good trick for mak-
ing the law invariant under Euclidean congruences.) Taking the four-dimensional ∇
in the Minkowski sense suggests the four-dimensional potential equation (invariant
under Minkowskian congruences)

[(
∂
∂x0

)2

−
(
∂
∂x

)2
]

Aμ = �Aμ =
4π
c

jμ , (2.44)
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where jμ is the current originating from moving particles carrying charge ei. We
discuss the current below.

Note in passing that (2.41) does not determine the vector potential uniquely, be-
cause a term of the form ∂ f /∂xμ for some well-behaved f can always be added
to Aμ without changing the forces. This is called gauge invariance. Equation (2.44)
determines the potential in what is known as the Lorentz gauge, where

∂
∂xμ

Aμ = 0 .

The current is a distribution, because the charges are concentrated at the positions
of the particles, which are points. One could think of smeared out charges, but a
charge with a certain extension (a ball, for example) would not be a relativistic object
because of Lorentz contraction, i.e., a ball would not remain a ball when moving.8

Lorentz contraction is an immediate consequence of the loss of simultaneity, since
the length of a rod is defined by the spatial distance of the end points of the rod
when taken at the same time.

The current of a point charge is by itself unproblematic. It has the following
frame-independent, i.e., relativistic, form:

jμ(x) =∑
i

eic
∫ ∞

−∞
δ 4(x−qi(τi)

)
q̇μi (τi)dτi , (2.45)

with

δ 4(x) =
3

∏
μ=0

δ (xμ) ,

and we use x for the four vector x = (x0,x), since we have used the boldface notation
for three-dimensional vectors. Better known is the form in a coordinate frame. With
x0 = ct, we obtain (writing the integral as a line integral along the trajectory in the
second equality below)

8 Suppose one did not care about relativistic invariance, and took a small ball in the rest frame of the
electron (for instance, with radius 10−16 cm, which seems to be an upper bound from experimental
data). Unfortunately, this yields an effective mass of the electron larger than the observed electron
mass. The rough argument is that the Coulomb energy of a concentrated charge (infinite for a point
charge) yields by the energy–mass relation a field mass which, since it moves with the electron
must be accelerated as well, and is effectively part of the electron mass. Extended Lorentz invariant
charge distributions entail dynamical problems as well, when strong accelerations occur [1–4].
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jμ(x) =∑
i

eic
∫ ∞

−∞
δ 4(x−qi(τi)

)
q̇μi (τi)dτi

=∑
i

eic
∫
{qi(τi)|τi∈R}

δ 4(x−qi)dqμi

=∑
i

eic
∫ ∞

−∞
δ
(
x−qi(ti)

)
δ (ct− cti)

dqμi
dti

(ti)dti

=∑
i

eiδ
(
x−qi(t)

)dqμi
dt

(t) .

From (2.45) we easily obtain the continuity equation

∂
∂xμ

jμ(x) = 0 .

Using the fact that the trajectories are timelike, we have

∂
∂xμ

jμ(x) =∑
i

eic
∫ ∞

−∞

∂
∂xμ

δ 4(x−qi)
dqμi
dτi

dτi

=∑
i

eic
∫
{qi(τi)|τi∈R}

− ∂
∂qμi

δ 4(x−qi)dqμi

=∑
i

eic

[
lim
τi→∞

δ 4(x−qi(τi)
)
− lim
τi→−∞

δ 4(x−qi(τi)
)]

= 0 , ∀x ∈ R
4 .

The system of differential equations (2.41)–(2.44) defines the theory of charges in-
teracting via fields. Now (2.42) is unproblematic if the field Fμν is given as a well-
behaved function. The linear partial differential equation (2.44) is likewise unprob-
lematic if jμ is given, even as a distribution, as in (2.45). Then one has a Cauchy
problem, i.e., in order to solve (2.44), one needs initial data Aμ(0,x1,x2,x3) and
(∂Aμ/∂ t)(0,x1,x2,x3), and there is no obstacle to finding a solution.

However, we now have to solve (2.42)–(2.44) together, rather than separately, and
this does not work. The system of differential equations is only formal, i.e., there
are no functions qμ(τ) and Aμ(x), whose derivatives would satisfy the equations.
It does not even matter whether we have more than one particle. Let us take one
particle to see what goes wrong. First solve

Aμ(x) =
(

�−1 4π
c

jμ
)

(x) =
∫

�−1
x,x′

4π
c

jμ(x′)d4x′ , (2.46)

with a Green’s function �−1
x,x′ given by

��−1
x,x′ = δ

4(x− x′) . (2.47)
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The Green’s function is not unique. The different possible Green’s functions differ
by solutions of the homogeneous equation ( j = 0), i.e., by functions in the kernel of
�. A symmetric choice is9

4π�−1
x,x′ = δ

(
(x− x′)2) = δ

(
(xμ − x′μ)(xμ − x′μ)

)
.

Why is that symmetric? Using

δ
(

f (x)
)

=∑
k

1
| f ′(xk)|

δ (x− xk) , (2.48)

where xk are the single zeros of f we get

δ (x2− y2) =
1
2
δ (x− y)

y
+

1
2
δ (x+ y)

y
,

and thus

4π�−1
x,y = δ

(
(x− y)2) = δ

(
(x0− y0)2− (x−y)2)

=
1
2

δ
(
(x0− y0)−|x−y|

)
|x−y| +

1
2

δ
(
(x0− y0)+ |x−y|

)
|x−y| ,

which is the sum of retarded and advanced Green’s function, a notion which will
become clear shortly. Any linear combination of these parts is a possible �−1

x,y , and
one commonly uses only the retarded part, using the argument that one experiences
only radiation emitted in the past. We shall say more about that later. One may
convince oneself by formal manipulations10 that (2.47) holds for this or any other
linear combination.

Now let us come to the end of the story. With (2.46) and (2.45), we get

Aμ(x) = e
∫
δ

(
(x−q(τ))2) q̇μ(τ)dτ , (2.49)

9 It is quite natural for the Green’s function to be like this. It is the most natural relativistic function
one can write down. The points which have Minkowski distance zero from one another form the
(backward and forward) light cones and they are special in a certain sense. So the function is not
eccentric in any way.
10 For example,

[(
∂
∂x0

)2

−Δ
]
δ (x0−|x|)
|x|

=
1
|x|δ

′′ −Δ
(

1
|x|

)
δ (x0−|x|)− 1

|x|Δδ (x0−|x|)−2∇
(

1
|x|

)
·∇δ (x0−|x|)

=
1

4π
δ (x)δ (x0−|x|) ,

using the chain rule on ∇δ .
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and with (2.48), we find

Aμ = e
q̇μ(τa)

2
(
xμ −qμ(τa)

)
q̇μ(τa)

+ e
q̇μ(τr)

2
(
xμ −qμ(τr)

)
q̇μ(τr)

,

where τa and τr are the solutions of

(
x−q(τ)

)2 = 0 ⇐⇒ ct− cτ =∓|x−q(τ)| .

We can now understand the terminology used. The retarded/advanced time is given
by the intersection of the forward/backward light cone based at x with the trajectory
of the particle (see Fig. 2.5, where x should be thought of as an arbitrary point).

We have thus derived a field (see for instance [5], if some manipulations seem
unclear) Aμ which is well-behaved everywhere except at points x lying on the world-
line q of the charge generating the field. For x = q(τ), we have τa = τr = τ , and we
see that the denominator is zero. But this is now the end of the story, since these are
the x values which are needed in (2.42).

This problem is well known by the name of the electron self-interaction. The
field which the electron generates acts back on the electron, and this back-reaction
is mathematically ill-defined, since the electron is a point. Hence, the field idea
for managing interactions between point charges does not work, unless one intro-
duces formal manipulations like renormalization [6], or changes electromagnetism
on small scales [7].

The Maxwell–Lorentz theory of electromagnetism works well (in the sense of
describing physical phenomena correctly) when the fields are generated by smeared
out charges (charge clouds), so one can describe the radiation from an antenna. It
also works when the fields are given as “external” fields, which act on charges by the
Lorentz force equation (see [3, 8, 9] for mathematical proofs concerning existence
and uniqueness). In short, electromagnetism is fine for most non-academic life. One
may ask why this is so. The reason may be that the Maxwell–Lorentz theory is the
macroscopic description of the fundamental theory of electromagnetism we shall
describe next. But that theory does not contain fields on the fundamental level.

2.5 No fields, Only Particles: Electromagnetism

What is bad about fields when it comes to describing interactions? The problem is
that the field naturally acts everywhere, and thus also on the very particle which
generates the field. But taking the meaning of relativistic interaction between parti-
cles seriously, why does one need fields at all? Why not get rid of the field and have
the particles interact directly? In a sense one does this when solving (2.44) for Aμ

and putting that into (2.42). Fokker thought that way [10], like many others before
him, including Gauss [11], Schwarzschild [12], and Tetrode [13]. He wrote down
the variational principle for a relativistic particle theory, which was later rediscov-
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Fig. 2.5 In Feynman–Wheeler electromagnetism particles interact along backward and forward
light cones. Here we set c = 1

ered by Wheeler and Feynman [14, 15], to explain retarded radiation. How can the
particles interact directly in a relativistic way?

There is no natural notion of simultaneity whereby a force can act at the same
time between particles, but we already know that the simplest choice is to take the
Minkowski distance and to say that particles interact when there is distance zero
from one to the other. Hence the particle at spacetime point q interacts with all other
particles at spacetime points which are intersection points of light cones based at q
with the other trajectories, that is, when

(qμi −qμj )(qiμ −q jμ) = (qi−q j)2 = 0 ,

or put another way, when δ
(
(qi−q j)2

)
is not zero.

Note, that there are always two light cones based at one point, one directed to-
wards the future and one directed towards the past (see Fig. 2.5), although of course
the physical law is not concerned about such notions as past and future.

It is rather clear that dynamics which is defined by future times and past times
can no longer be given by differential equations of the ordinary kind. But some
differential equations can nevertheless be written down from a variational principle.
The Fokker–Wheeler–Feynman action S is the simplest relativistic action one could
think of describing interacting particles:

S =∑
i

[
−mic

∫
dsi−∑

j>i

eie j

c

∫ ∫
δ
(
(qi−q j)2)dqμi dq jμ

]
. (2.50)

Writing the trajectories qμi (λi) with arbitrary parameters λi and using the notation
q̇μi = dqμi /dλi, we obtain
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S =∑
i

[
−mic

∫ (
q̇μi q̇iμ

)1/2
dλi−∑

j>i

eie j

c

∫ ∫
δ
(
(qi−q j)2)q̇μi q̇ jμdλidλ j

]
.

The most noteworthy feature is that there are no diagonal terms in the double sum.
This is the major difference with the Maxwell–Lorentz theory, where the diagonal
terms should normally be present. The contribution of the i th particle to the interac-
tion reads

−ei

c

∫
dλiq̇

μ
i

∫
∑
j �=i

e jδ
(
(qi−q j)2) q̇ jμdλ j =− 1

c2

∫
jμi (x)Aiμ(x)dx ,

with the “field”11

Aiμ(x) =∑
j �=i

e j

∫
δ

(
(x−q j)2) q̇ jμdλ j . (2.51)

In the Wheeler–Feynman formulation, fields [like (2.51)] would only be introduced
as a suitable macroscopic description, good for everyday applications of electro-
magnetism, like handling capacitors. On the fundamental level there is no radiation
field and there is no radiation. Therefore, opposite charges may orbit each other
without “losing energy” due to radiation. Famous solutions of that kind are known
as Schild solutions [16].

Equation (2.49) shows that both the advanced and the retarded Green’s functions
appear in Aμ . But it is the “emission of radiation” which we typically see and which
is solely described by the retarded Green’s function. Wheeler–Feynman and also
Maxwell–Lorentz electromagnetism are time reversible, i.e., the theory does not fa-
vor emission before absorption. The typicality of emission has become known as the
problem of the electromagnetic arrow of time. The original motivation of Wheeler
and Feynman was to reduce this arrow of time to the thermodynamic one, which
had been so successfully explained by Boltzmann, by supposing a special initial
distribution of the particles in the phase space of the universe. (We shall address this
further in the chapter on probability.)

Wheeler and Feynman therefore considered the thermodynamic description of
the particle system, i.e., they considered a distribution of charges throughout the
universe which “absorb all radiation”. In terms of the theory, this means that the sum
of the differences of the retarded and advanced forces over all particles vanish. This
is called the absorber condition. This macroscopic theory is still time-symmetric.
But supposing further that at some early time the initial distribution of the particles
was special (non-equilibrium in some sense), then time-directed radiation phenom-
ena and in particular the observed radiation damping of an accelerated charge are
reduced to Boltzmann’s explanation of irreversibility (see Sect. 4.2).

11 We computed this in (2.49), but it is important to understand that this is simply a mathematical
expression, which plays no role unless x is a point on the worldlines of the other particles. There is
no field in this theory.
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We emphasize that the Wheeler–Feynman electromagnetic theory is a mathe-
matically consistent relativistic theory with interaction. In fact it is the only such
mathematically well defined and physically relevant theory existing so far, and it is
about particles, not fields. The statistical mechanics of the theory leads to the well
known description by electromagnetic fields and smeared out charges and is thus ex-
perimentally indistinguishable from Maxwell–Lorentz electromagnetism, whenever
the latter is well defined, i.e., whenever no point charges are considered to generate
fields.

The theory is, however, unfamiliar since its dynamical law is not of the familiar
form. The intuition one has from solving differential equations with Cauchy data
fails. So why is this? In fact, the Euler–Lagrange equations of (2.50) are not or-
dinary differential equations, since advanced and retarded times appear in them.12

In contrast, the Maxwell–Lorentz theory is formally of the ordinary type, but with
the serious drawback that the fields render the equations mathematically undefined
when they are interpreted as fundamental, i.e., when point charges are considered.

Remark 2.6. On the Nature of Reality
Reality is a curious notion. Physics takes the view that something “out there” exists,
and that the world is “made out of something”. This is not curious at all. But it is
not so easy to say what it is that the world is made of, since the only access we
have to the world is through our senses and our thinking, and communication about
the experience we have. What the world is made of is specified by our physical
theory about the world, and it is only there where we can see what the world is
made of. When our physical theory is about point particles and how they move, then
there are point particles out there – if what the theory says about their motion is
consistent with our experience, of course. The connection between the entities of
the theory and our experience is often complicated, often not even spelt out in any
detailed way. Nevertheless, one has some kind of feel for how it works, and a bit of
pragmatism in this is alright.

When we wish to explain a physical phenomenon, we reduce it (in the ideal
case) to the behavior of the ontological quantities the physical theory is about. In
Maxwell–Lorentz electromagnetism, fields are ontological. Switch on your radio.
What better explanation is there than to say that the fields are out there, and they
get absorbed as radio waves by the radio antenna, and that the radio transforms
them back into air waves? Music to your ears. But in Wheeler–Feynman electro-
magnetism, there are no fields and only particles. It explains the music as well. But
the explanation is different [13, 14].

If the Maxwell–Lorentz theory (with point charges) were mathematically consist-
ent, we could chose between fields and particles as being “real”, or only particles
as being “real”. Since both would describe the macroscopic world as we see it, our
choice would then have to be made on the grounds of simplicity and beauty of the
theories. Perhaps in the future we shall find a simpler and nicer theory than the ones
we have now, one which is solely about fields. Then only fields will be “real”.

12 It is an intriguing problem of mathematical physics to establish existence and uniqueness of
solutions.
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“Reality” thus changes with the nature of our physical theory, and with it the
elements which can be measured. In the Wheeler–Feynman theory of electromag-
netism, the electromagnetic field cannot be measured. This is because it is not there.
It is not part of the theory. That is trivial. Less trivial may seem the understanding
that the theory also says what elements are there and how those elements can be
measured. In Maxwell–Lorentz theory, the electric field is measured, according to
the theory, by its action on charges.

Here is another point one may think about from time to time. Although all vari-
ables needed to specify the physical theory are “real”, there is nevertheless a differ-
ence. In a particle theory, the particle positions are primitive or primary variables,
representing what may be called the primitive ontology.13 They must be there: a par-
ticle theory without particle positions is inconceivable. Particle positions are what
the theory is about. The role of all other variables is to say how the positions change.
They are secondary variables, needed to spell out the law. We could also say that
the particle positions are a priori and the other variables a posteriori. An example of
the latter might be the electric field. In fact, secondary variables can be replaced by
other variables or can even be dispensed with, as in Wheeler–Feynman electromag-
netism. Another example which we did not touch upon at all is general relativity,
which makes the Newtonian force obsolete. �

2.6 On the Symplectic Structure of the Phase Space

With the understanding of tensors and forms, in particular differential forms, not
only did mathematics move forward, but so did our our insight into physics. It
was better appreciated what the objects “really” are. We have an example in our
relativistic description of electromagnetism (2.43). The electric and magnetic field
strengths are not vector fields, as one learns in school, but rather components of an
antisymmetric second rank tensor. Mathematical abstraction helps one to get down
to the basics of things, and that is satisfying. One such mathematical abstraction is
symplectic geometry. We shall say a few things here mainly to make sure that fur-
ther mathematical abstractions do not lead to a deeper understanding of the physics
which we have presented so far.

Mathematically deeper than conservation of energy and volume is the symplec-
tic structure of phase space, which goes hand in hand with Hamilton’s formula-
tion of mechanics [18]. Symplectic geometry needs a space of even dimensions,
and classical physics provides that. Consider the phase space R

2n with coordinates
(q1, . . . ,qn, p1, . . . , pn). Given x,y ∈R

2n, let qi(x) be the projection of x on the qi th
coordinate axis. Then

ω2
i (x,y) = qi(y)pi(x)−qi(x)pi(y) (2.52)

13 The notion and role of primitive ontology has long been ignored, but it has recently been revi-
talized and emphasized in [17].
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is the area of the parallelogram generated by x,y when projected into the (qi, pi)
plane. Set

ω2(x,y) =
n

∑
i=1

w2
i (x,y) = x·(−I)y =

(
(−I)y

)tx , (2.53)

with

I =

(
0n +En

−En 0n

)
,

where En is the n-dimensional unit matrix, 0n is the n-dimensional zero matrix, and
zt is the transpose of z, i.e., the row vector, an element in the dual space of R

2n. The
2-form ω2, or equivalently the symplectic matrix I, defines the symplectic structure
of phase space R

2n (n = 3N for N particles) and gives (like a scalar product) an
isomorphism between the vector space and its dual. From courses in analysis, we
know that the gradient ∂ f /∂x of a function f (x), x ∈ R

d , is in fact a dual element,
i.e., the row vector which acts as a linear map on h according to (∂ f /∂x)h = row
times column (matrix multiplication by a vector). Now use ω2 to identify ∂ f /∂x
with a vector∇ω f (using the Euclidean scalar product, this is the normal∇ f ). Given
z ∈ R

2n, the object ω2(·,z) is a linear form, i.e., a linear map

R
2n −→ R

x �−→ ω2(x,z) = (−Iz)tx .

which we wish to be equal to ∂ f /∂x. We thus search for a z f such that

∂ f
∂x

x = (−Iz f )tx , ∀x ,

⇐⇒
(
∂ f
∂x

)t

= (∇ f ) = (−Iz f )

⇐⇒ z f = ∇ω f = I(∇ f ) .

It follows that (2.5) can be written in the form

(
q̇

ṗ

)
= I(∇H) = I

⎛
⎜⎜⎝
∂
∂q

H

∂
∂p

H

⎞
⎟⎟⎠ .

The Hamiltonian flow respects the symplectic structure. In particular, it is area pre-
serving, which means the following. Let C be a closed curve in R

2n and define the
enclosed area as the sum of the n areas which arise from projections of C onto the
coordinate planes (qi, pi) [compare with (2.52) and (2.53)]. In the (qi, pi) plane, we
have a curve Ci with area A(Ci). The area can be transformed into a line integral by
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Stokes’ theorem in two dimensions:
∫

A(Ci)
dqi dpi =

∫
A(Ci)

curl

(
pi

0

)
dqi dpi

=
∮

Ci

(
pi

0

)
·
(

dqi

dpi

)

=
∮

Ci

pi dqi . (2.54)

In general,

A = area of C =
∮

C
p·dq =∑

i

∮
Ci

pi dqi .

Using differential forms,

ω2
i = dpi∧dqi , ω2 =∑

i
dpi∧dqi ,

and

ω2 = dω1 , ω1 =∑
i

pi dqi .

Equation (2.54) is nothing other than
∫

A(Ci)
dω1 =

∫
Ci

ω1 .

Transporting C with the Hamiltonian flow yields the area A(t), and preservation of
area means that A(t) = A. By change of variables, the integration over A(t) can be
expressed by q(t) and p(t) in the integral, so that

d
dt

A(t) =
d
dt

∮
C

p(t)dq(t) =
∮

C
ṗdq+

∮
C

pdq̇

=
∮

C
ṗdq−

∮
C

q̇dp
[
+

∮
C

d(qṗ) = 0

]

= −
∮

C

∂H
∂q

dq−
∮

C

∂H
∂p

dp

= −
∮

C
dH = 0 .

Furthermore, the volume in even-dimensional vector spaces can be thought of as
arising from a product of areas (generalizing the area in R

2 = width times length),
i.e., products of two-forms (2.52) yield the volume form:

ω = dp1∧dq1∧ . . .∧dpn∧dqn ,
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the Lebesgue measure on phase space (in form language). Then Liouville’s theorem
arises from preservation of area.

Transformations of coordinates (q,p)
ψ−→ (Q,P) are called canonical or sym-

plectic if the Jacobi matrix ∇ψ is symplectic, which is a variation on the theme of
the orthogonal matrix:

(∇ψ)tI∇ψ = I . (2.55)

They preserve areas and satisfy the canonical equations

(
Q̇

Ṗ

)
= I

⎛
⎜⎜⎝
∂
∂Q

H̃

∂
∂P

H̃

⎞
⎟⎟⎠ , H̃ ◦ψ = H .

The Poisson bracket (2.11) is invariant under canonical transformations, because
(2.11) can be written as

{ f ,g}= ∇ f ·I∇g ,

and if f (Q,P), g(Q,P), and (Q,P) = ψ(q,p) are given, since we have

∇( f ◦ψ) = ∇ψ(∇ f ◦ψ) ,

it follows that

{ f ◦ψ,g◦ψ} = ∇( f ◦ψ) · I∇(g◦ψ)

= (∇ f ◦ψ) · (∇ψ)tI∇ψ(∇g◦ψ)

= (∇ f ◦ψ) · I(∇g◦ψ) [by (2.55)]

= { f ,g}◦ψ .

Clearly,

{qi, pi}= δi j , {qi,q j}= 0 , {pi, p j}= 0 ,

and variables which satisfy this are said to be canonical. Of particular interest are
variables (Q1, . . . ,Qn,P1, . . . ,Pn), where P1, . . . ,Pn do not change with time, and
where the Hamilton function takes the form

H̃(Q,P) =
n

∑
i=1
ωiPi .

Then Q̇i = ωi, i.e., Qi = ωit +Qi,0, and Qi is like the phase of a harmonic oscillator.
Such (Pi,Qi) are called action–angle variables. Systems which allow for such vari-
ables are said to be integrable, since their behavior in time is in principle completely
under control, with their motion (in the new coordinates) being that of “uncoupled”



42 2 Classical Physics

harmonic oscillators. The solution can then be found by algebraic manipulation and
integration. The Hamiltonian motions in R

2 (H not time dependent, one particle in
one space dimension) are integrable, since H itself does not change with time, and
hence one may choose P = H. However, integrability is atypical for Hamiltonian
systems.
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Chapter 3
Symmetry

This chapter is more a footnote than a chapter on symmetry in physics. It has inten-
tionally been kept very short and old-fashioned. We wish to say just as much as is
needed to understand that Bohmian mechanics is a Galilean theory of nature. And
we wish to emphasize certain features which may lie buried in more bulky accounts
of symmetries in physics. Our emphasis is on the the role of ontology for symmetry.
Ontology is the thing we must hold on to, because that is what the law of physics is
for. At the end of the day, that is what determines which symmetries there are and
how they act.

The invariance of a physical law under a transformation of variables entering
the law defines a symmetry of that law. Invariance means this. Consider the set of
solutions of the dynamical law, i.e., a set of histories q(t), t ∈ R (not necessarily
positions of particles, but think of the variables which the theory is primarily con-
cerned with, i.e., the primitive variables which relate directly to physical reality).
Let G be a group of transformations. We do not specify them, but we suppose we
know how g ∈ G acts on the trajectory q(t) to give a transformed trajectory which
we denote by (gq)(t), where

(gq)(t) :=
(
g(qi(t))

)
i=1,... ,N .

The law is invariant if for every g ∈ G and every q(t), the transformed (gq)(t) is
also in the solution set.1 The relevant thing to note is that, with the action of g on
q, there may be “strange” actions on secondary (or derived) variables in order for
the law to be invariant. In other words the group action is not only described by the
action on the primitive variables, but also by the action on the variables which are
needed to formulate the law. We shall give examples below.

A symmetry can be a priori, i.e., the physical law is built in such a way that it
respects that particular symmetry by construction. This is exemplified by spacetime

1 There are two equivalent ways of having the transformations act. Thinking of particle trajectories,
the transformation may act actively, changing the trajectories, or passively, in which case the tra-
jectories remain unchanged but the coordinate system changes. These transformations are mutual
inverses.
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c© Springer-Verlag Berlin Heidelberg 2009



44 3 Symmetry

symmetries, because spacetime is the theater in which the physical law acts (as long
as spacetime is not subject to a law itself, as in general relativity, which we exclude
from our considerations here), and must therefore respect the rules of the theater.
An example is Euclidean space symmetries like rotations. If the theater in which the
physics takes place is Euclidean space (as in Newtonian mechanics), rotations must
leave the physical law invariant, i.e., the physical law must respect the rotational
invariance of Euclidean space.

The mathematical formulation of the law can also introduce new (secondary)
symmetries. Examples of this are the so-called gauge symmetries, which arise when
a secondary variable can be regarded as belonging to an equivalence class, defined
by gauge transformations which do not affect the histories of the primitive vari-
ables.2 The law is thus only specified up to a choice of gauge. A simple example
is the potential function V (q) in Newtonian mechanics, which can be changed by
an additive constant without changing the “physics”. Another example is given by
Aμ in (2.44), where all Aμ which differ by ∂ f /∂xμ yield the same dynamics for the
charges, the dynamics being given by Fμν which is insensitive to such differences.

Finding all symmetries of a given physical theory is technically important, since
symmetries go hand in hand with conserved quantities (well known in Lagrangian
formulations of physical laws in terms of Noether’s theorem), which restrict the
manifold of solutions. Energy (time-shift invariance), angular momentum (rota-
tional invariance), and momentum (translational invariance) are examples in New-
tonian physics.

One should not be afraid to classify symmetries according to their importance.
Some are of a purely technical character, while some are fundamental. For example
canonical transformations (q,p) �→ (Q,P), which leave Hamilton’s equations in-
variant, are invariants of symplectic geometry. These are mathematical symmetries
since the positions of particles are clearly primary or, if one so wishes, fundamental.
Likewise the unitary symmetry in quantum mechanics. Here part of the description
is encoded in the wave function, which in abstract terms is an element of a vector
space. Since a vector space does not single out any basis, the coordinate represen-
tation3 of the wave function is arbitrary. The arbitrariness of the choice of basis has
become known as unitary symmetry, which is sometimes conceived of as a fun-
damental symmetry of nature. That is nonsense, of course, since “position” plays
a fundamental role in our world and breaks the unitary symmetry in favor of the
position representation of the wave function. But naturally, these are merely words
unless one knows what position means in the physical theory, and to know that, the
theory must contain position as a primitive notion.

2 In quantum field theory, gauge transformations are viewed as a basic ingredient for finding good
quantum field theories. However, that is not our concern here.
3 This has to be taken with a grain of salt. For example, the so-called position or momentum
representations of the wave function are not coordinate representations with respect to basis choices
for the vector space. They are simply the function and its Fourier transform, which can however
be connected to self-adjoint operators via the spectral decompositions. This is part of what will be
explained in this book.



3 Symmetry 45

On the other hand the fundamental symmetries are clearly those of spacetime,
since, as we said before, that is the theater in which the physical law acts. When
one spells out the ontology specifying the primary objects the physical law is about,
the physical law should be more or less clear, given the spacetime symmetries and
metaphysical categories such as simplicity and beauty which the law should obey.

The Galilean spacetime symmetries are the Euclidean ones of three-dimensional
space (translation, rotation, and reflection invariance) as well as time translation in-
variance and time reflection invariance – all parts of Galilean invariance. The latter
expresses Galilean relativity, which uses the notion of inertial system to assert that
the law must not change under change of inertial system. By definition (based on
metaphysical insight), inertial systems can move with uniform velocities relative to
one another, and the Galilean symmetries thus include one more symmetry trans-
formation, the Galilean boost, which represents the change from one inertial frame
to another in relative motion. In relativistic four-dimensional spacetime, things are
simpler, because all symmetries are congruences of Minkowski spacetime given by
the Minkowski metric.

To see symmetry and simplicity at work, let us consider a one-particle world and
a law for the motion of that particle. Let us consider Newtonian mechanics. For
example, translations in space. Consider N particles with positions qi, i = 1, . . . ,N.
Then

g(qi) = q′i = qi +a ,

and

mq̈′i = miq̈i = Fi(q) = Fi(q′1−a, . . . ,q′N −a) = Fi(q′1, . . . ,q
′
N) ,

where the last equality uses the fact that the force is translation invariant, e.g.,

Fi(q1, . . . ,qN) =
N

∑
i �= j=1

F(qi−q j) ,

otherwise translation invariance would not hold. Hence it follows that the translated
trajectories obey the same law. Let us now consider just one particle, for simplicity
of notation.

Let us look quickly at time-shift invariance, or t �→ t + a, i.e., q′(t) = q(t + a)
holds if F does not depend on time. Then there are orthogonal transformations
R of R

3, i.e., transformations which preserve the Euclidean scalar product so that
detR =±1, RRt = E3. For these,

q′ = Rq ,

and

mq̈′ = mRq̈ = RF(q) = RF(Rtq′) = F(q′) ,
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if F transforms like a vector, that is, if

F(Rt · ) = RtF( · ) .

For F = b = constant, this does not hold, i.e., Rb �= b. But ∇= (∂/∂q)t transforms
like a vector (∇ is to be thought of as a column vector, while ∂/∂q is a row vector):

∂
∂q′

=
∂
∂q

∂q
∂q′

=
∂
∂q

Rt =⇒ ∇′ =
(
∂
∂q

Rt
)t

= R∇ .

Now let V be a scalar function, i.e.,

V ′(q′) := V (Rtq′) = V (q) ,

which is R invariant: V ′(q′) = V (q′) or V (Rq) = V (q). Then for F(q) = ∇V (q),

mq̈′ = mRq̈ = R∇V (q) = ∇′V ′(q′) = F(q′) .

The Newtonian gravitational potential is a natural example, since it is solution of
the simplest Galilean invariant equation, the potential equation ΔV = ∇ ·∇V = 0,
outside the mass distribution, with the boundary condition that V vanishes at infinity.

The special feature of Newtonian dynamics, i.e., to be of second order (with laws
of the form q̈ = . . . ) has not played any role up to now. This happens when one
considers the change to a relatively moving inertial system (a Galilean boost):

q′ = q+ut . (3.1)

Clearly q̈′ = q̈ and one sees how simply the invariance of the law under boosts (3.1)
arises (for translation invariant F). This seems to suggest that a first order theory
where the particle law has the form q̇ = . . . should have problems with Galilean
relativity. One would be inclined to think that one ought to have an equation for q̈
in order to make the law invariant. Here is a little elaboration on that idea.

Let us devise a Galilean theory for one particle. We start with a theory of second
order:

q̈ = F(q)

translation
invariance
=⇒ F = const.

rotation
invariance
=⇒ F = 0 ,

whence q̈ = 0 is the only possibility, and that is Galilean invariant. Now try a first
order theory:

q̇ = v(q, t)

translation
invariance
=⇒ v = const.

rotation
invariance
=⇒ v = 0 ,

whence q̇ = 0 would be the law, i.e., no motion. But that is not Galilean invariant!
Thus one may wish to conclude that first order theories (which could be called

Aristotelian, according to the Aristotelian idea that motion is only guidance toward
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a final destination) cannot be Galilean invariant. We already know that this cannot
be right. The Hamilton–Jacobi formulation of Newtonian mechanics, which is a
first order theory, must be Galilean invariant. We do not want to pursue this further
here, but the following aspect of symmetry transformations is helpful if one wants
to understand why Hamilton–Jacobi is Galilean invariant.

We want to discuss time-reversal symmetry: t �→ −t, q(t) �→ q′(t) = q(−t).
Clearly, q′(t) is a solution of the Newtonian equations, since (dt)2 = (−dt)2. Again
the form q̈ = . . . for the law is responsible for this invariance. But now move to a
phase space description in terms of (q,p). We have

q̇ = p/m �−→ q̇′ =−p/m ,

ṗ = F �−→ ṗ′ =−F ,

and time-reversal invariance follows if t �→ −t goes along with (q,p) �→ (q,−p)
(clearly p′ =−p since velocities must be reversed).

It is worth saying this more generally. Let the phase point be given by X , and let
t �→ −t come along with X �→ X∗, where the asterisk denotes an involution (X∗)∗ =
X (like multiplication by −1, or, as another example, complex conjugation). That
is, the asterisk denotes a representation of time reversal. Invariance holds if X ′(t) =
X∗(−t) is a solution of the dynamics whenever X(t) is a solution. The important
fact to note is that the way this operation acts depends on the role the variables
play in the physical law. The primitive variables usually remain unchanged, while
secondary variables, those whose role is “merely” to express the physical law for
the primitive variables, may change in a “strange” way. A well-known example is
Maxwell–Lorentz electrodynamics. The state is X = (q, q̇,E,B) and

(q, q̇,E,B)∗ = (q,−q̇,E,−B) ,

which follows from the Lorentz force equation (2.37). It is clear that q̇ �→ −q̇, but
then B must follow suit to make the equation time-reversal invariant. The lesson
is that some variables may need to be changed in a strange way for the law to be
invariant. But as long as those variables are secondary, there is nothing to worry
about.

Let us close with a final remark on time-reversal invariance. One should ask why
we are so keen to have this feature in the fundamental laws when we experience the
contrary. Indeed, we typically experience thermodynamic changes which are irre-
versible, i.e., which are not time reversible. The simple answer is that our platonic
idea (or mathematical idea) of time and space is that they are without preferred
direction, and that the “directed” experience we have is to be explained from the
underlying time symmetric law. How can such an explanation be possible? This is
at the same time both easy and confusing. Certainly the difference in scales is of
importance. The symmetry of the macroscopic scale can be different from that of
the microscopic scale, if the “initial conditions” are chosen appropriately. This will
be further discussed in Sect. 4.2.



Chapter 4
Chance

Physical laws do not usually involve probabilities.1 The better known physical the-
ories are deterministic and defined by differential equations (like the Schrödinger
equation), so that a system’s evolution is determined by “initial data”. In a determin-
istic theory (like Newtonian Mechanics or Maxwell–Lorentz electromagnetism), the
physical world simply evolves like clockwork. Yet we experience randomness –
chance seems to be the motor of many physical events, like the zigzag trajectories
of a Brownian particle or the random dots left by particles which arrive at the screen
in a two slit experiment. Chance determines whether a coin falls heads or tails – we
cannot predict the actual outcome. How should we explain that in a deterministic
world?

Chance, randomness, and probability are words one uses lightly, but their mean-
ing is cloudy, and to many they seem unfit for the mathematical precision one ex-
pects of nature’s laws. The way randomness manifests itself is something of an
oxymoron, for there is lawlike behavior in random events, as attested by the law of
large numbers, asserting for example that heads and tails typically come up equally
often in the long run. On the other hand we describe coin tossing by complete lack
of knowledge of what any single outcome will be. Heads or tails each come with
probability 1/2. The main theme of this chapter will be to answer the following two
summarizing questions, once asked by Marian von Smoluchowski [3]:

1. How can it be that the effect of chance is computable, i.e., that random causes
can have lawlike effects?2

1 An example of a physical law based on probability is provided by the so-called spontaneous
collapse theory (or GRW theory). Here Schrödinger’s equation is replaced by a jump process (or
diffusion) equation, in which a macroscopic superposition of wave packets reduces quickly under
the time evolution to a collapsed wave function, and only one of the packets remains – a possi-
ble remedy for the measurement problem of quantum mechanics [1], which may also relieve the
tension between relativity and the nonlocality of quantum mechanics [2].
2 Wie ist es möglich, daß sich der Effekt des Zufalls berechnen lasse, daß also zufällige Ursachen
gesetzmäßige Wirkungen haben?
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2. How can randomness arise if all events are reducible to deterministic laws of
nature? Or in other words, how can lawlike causes have random effects?3

When correctly viewed, the answers are not difficult to find. Indeed, the answer to
both is typicality, and this answer has in principle been known since the work of
Ludwig Boltzmann (1844–1906). We say “correctly viewed” because, for various
reasons, Boltzmann’s probabilistic reasoning did not meet with the same acceptance
as the calculus of Newton and Leibniz, for example.

The various reasons are difficult to sort out and this is certainly not the place
to speculate about historical shortcomings. Some mathematical objections to Boltz-
mann’s work (physically not serious at all) were clearly much overrated, and cast
their shadows well into the twentieth century. The general idea behind Boltzmann’s
work, namely how to reason probabilistically within deterministic physics, was
overshadowed by Boltzmann’s explanation of irreversibility, the part of his work
which became most famous and was most strongly attacked. However, the main
attack against Boltzmann – which presumably hit more painfully than any tech-
nical bickering – was that Boltzmann reopened the pre-Socratic atomistic view of
the world advocated by Democritus, Leucippus, and others – now with the rigor of
mathematical language, reducing all phenomena to the motion of the unseen atoms.
Boltzmann’s contemporaries could easily dismiss this world view, which was es-
sential to all of Boltzmann’s thinking, by declaring: We do not believe in what we
do not see. But for Boltzmann, as for the pre-Socratic physicists, what counted was
the explanatory value, the gain of insight provided by atomism, explaining logically
from few basic principles what we do experience with our gross senses – so never
mind whether we can “see” atoms.

The attacks against Boltzmann’s reductionism ended immediately with Einstein’s
and Smoluchowski’s work on Brownian motion, the erratic motion of microscopi-
cally small particles suspended in a fluid, which are nevertheless visible through a
microscope. This motion had been observed since the invention of the microscope in
the 17th century, but it was Einstein and Smoluchowski who, using Boltzmann’s re-
ductionistic view, explained the erratic motion as arising from molecular collisions
of the molecules in the fluid with the Brownian particles (see Sect. 5). The atoms in
heated motion were visible after all. Boltzmann committed suicide in 1906 in Duino
near Trieste, Italy.

We shall spend much time on this subject, and Boltzmann’s view of it, because
we shall apply the ideas to quantum mechanics, where probability commonly enters
as an axiom. To see whether that axiom is sensible or not, it is good to understand
first what probability is.

3 Wie kann der Zufall entstehen, wenn alles Geschehen nur auf regelmäßige Naturgesetze
zurückzuführen ist? Oder mit anderen Worten: Wie können gesetzmäßige Ursachen eine zufällige
Wirkung haben?
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4.1 Typicality

The answer to the question: “What is geometry” is rather simple. It is the doctrine of
spatial extension and its elements are objects like points or straight lines. The answer
to the question: “What is analysis” is also simple, but less intuitive, since it involves
the doctrine of limiting processes and the handling of infinity. The elements are the
continuum and the real numbers. What is a real number? A real number between 0
and 1 is an infinite sequence consisting of digits 0,1,2, . . . ,9 like 0.0564319 . . . . In
the binary representation, one only has the digits 0 and 1, and every number between
0 and 1 is a sequence of 0s and 1s, e.g.,

0.1001 . . . = 1× 1
2

+0× 1
4

+0× 1
8

+1× 1
16

+ · · · .

What is probability theory? The doctrine of chance or randomness? But what are
chance and randomness? They are what probability theory is about. Simply playing
with different words is not helpful. What characterizations of chance can be found?
Unpredictability, not knowing what will happen? As Henri Poincaré (1854–1912)
once said [4]: “If we knew all, probability would not exist.” But knowledge and ig-
norance are very complex notions and certainly not comparable to the primitivity of
a straight line or a real number, and one cannot imagine how these complex notions
could be seen as fundamental objects of a theory of probability. Most importantly,
however, we wish to apply probability theory to a physical system, and its behavior
obviously has nothing to do with what we know or do not know about the system.
Yet physical systems do often behave in a random way (the famous erratic Brownian
motion, for example) and this is what we wish to understand.

So what is probability theory? It is the doctrine of typical behavior (of physi-
cal systems). The meaning of typicality is easy to understand. Typically one draws
blanks in a lottery, because there are so many more blanks than prizes, as can be
ascertained by simple counting. Typically, in a run of N coin tosses, one obtains an
irregular sequence of heads and tails, which is nevertheless regular in the numbers
of heads and tails. In fact, these numbers are more or less equal if N is large enough.
Why is this? It is because, for large N, the number of head–tail sequences of length
N (which equals the number of sequences of 0s and 1s of length N) with more or
less equal numbers of heads and tails is so enormously bigger than the number of
sequences that have more heads than tails, or vice versa (“allowed” fluctuations are
of the order of

√
N). In fact the number of all sequences is 2N and the number of

sequences with exactly K heads is given by the binomial coefficient
(N

K

)
. For large

N, one can use Stirling’s formula

N! =
(

N
e

)N√
2πN

[
1+O

(
1
N

)]
(4.1)

to evaluate the binomial coefficient, and a quick estimate shows that the maximum
number is



52 4 Chance

(
N

N/2

)
≈ 2×2N
√

2πN
.

But summing over all possible sequences, we have

N

∑
K=0

(
N
K

)
= 2N ,

so that the numbers of sequences with K such that |K−N/2| ≤
√

N already sum up
roughly to the total number 2N . This is essentially the

√
N fluctuation law, and one

can imagine that for huge N the difference in numbers is exponential if K exceeds
the size of the fluctuation (an easy exercise).

What about typicality in real physics? Consider a system of gas molecules in a
container. Let us assume that, at this moment, the gas molecules fill the container
in a homogeneous way. In our gross way of looking at things, we do not see the
individual gas molecules, but we experience a homogeneous density of the gas in
the container. We experience a macrostate of the gas. The detailed state of the gas,
which lists all positions and momenta of all gas molecules, i.e., the phase space
point of the gas system, is called a microstate. The microstate obviously changes
with time, since the phase point wanders through phase space (see Fig. 2.3). But in
our gross way of looking at things, we do not see that in the macrostate. So why
does the macrostate remain? For the macrostate to change in a detectable way, the
microstate has to wander into very particular regions of phase space. Why does
the phase point (the microstate) not move into that particular region of phase space
where, for example, all molecules are in the right half of the container? That we
would of course feel with our gross senses. Suppose the container were a lecture
hall and the air molecules all went into the right half of the lecture hall. Then all the
students in the left half of the hall would be without air (see Fig. 4.1). So why are
we lucky enough never to experience that? The answer is that it is atypical.

It is atypical because the number of microstates making up a macrostate which
looks like the homogeneous density gas is so overwhelmingly larger than the num-
ber of microstates which make up a macrostate with a gross imbalance in the
density profile. To get a quick feel for the sizes, number all the gas molecules
1, . . . ,N, where N ∼ 1024, and distribute Rs (the molecule is on the right) and Ls
(the molecule is on the left) over the gas molecules. Then it is again a question of
counting 0–1 sequences of length N with N huge. In fact, these numbers give good
estimates of the phase space volume of phase points corresponding to equipartition
and non-equipartition of molecules.

This way of looking at probability is due to the physicist Ludwig Boltzmann
(1844–1906), who perfected the kinetic gas theory of Rudolf Clausius (1822–1888)
and James Clerk Maxwell (1831–1879). According to Boltzmann, what is happen-
ing is the typical scenario under the given constraints. Boltzmann’s statistical rea-
soning is superior to physical theories, in the sense that it does not depend on the
particular physical law. In the following we consider Newtonian mechanics in order
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phase space

gas system

time

typical

typical

atypical

atypical

Fig. 4.1 There are 6 ways of distributing 4 objects between two containers so that there are 2
objects in each container. There is only 1 possibility for a 4–0 distribution. This difference in
numbers (6 versus 1) grows extremely fast with the number of objects, like the gas molecules in the
gas system. The typical phase points make up most of the phase space (light grey). Atypical phase
points (corresponding to configurations where all molecules are in the left half of the container)
make up only a very tiny fraction of the phase space (the darker edges). In fact, the region of
atypicality is not concentrated as depicted, but is mixed up with the region of typicality as depicted
in Fig. 4.9

to establish a connection with common notions, and later we shall apply the ideas
to Bohmian mechanics to explain where quantum probability comes from.

Note in passing that the word “typical” is synonymous with “overwhelmingly
many”.4 However, if one takes counting to heart, there is a slight difficulty here.
The number of microstates of a gas system is uncountable, like the number of real
numbers, since the positions and velocities vary over a continuum of values. In our
example of air filling either half or the whole room, it is clear that the numbers of
microstates are in both cases uncountable. How can we tell what is more and what is
less in that case? We need a generalisation of counting, and that generalisation is the
“size” or “volume” of the set of microstates. The mathematical doctrine of modern
probability theory is based on that idea. Probability theory uses a natural notion of
the content of sets, called a probability measure, where the emphasis should be put
on measure rather than probability. Overwhelmingly many phase points will then
mean that the relevant phase points make up a set of very large measure.

All this will be formalized later. For the moment it is more important to realize
that something objective is being said about the physics of systems, when one says
that a system behaves typically. It behaves in the way that the trajectories for the
overwhelming majority of initial conditions of the system behave. Because of this
we can make predictions for complex systems without the need to compute detailed
trajectories. And it is exactly that role that chance plays in physics.

4 Instead of “overwhelmingly many”, Boltzmann also used the notion of “most probable”. But the
Ehrenfests [5], who described Boltzmann’s ideas, used only the notion of “overwhelmingly many”.
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4.1.1 Typical Behavior. The Law of Large Numbers

Shortly before his death, the physicist Marian von Smoluchowski5 (1872–1917)
wrote the article [3], from which we quoted the two introductory questions above:

1. How can it be, that the effect of chance is computable, i.e., that random causes
can have lawlike effects?

2. How can randomness arise if all events are reducible to deterministic laws of
nature? Or in other words, how can lawlike causes have random effects?

Smoluchowski develops the answer to the first question. He does not answer the
second question, and we shall answer it in the sense of Boltzmann.

Starting with the first question, let us dwell a while on what he meant by lawlike
effects. In fact, he was referring to the law of the empirical mean, or in modern
terms, the law of large numbers. The chance which can be calculated reveals itself
in the predicted relative frequencies, i.e., in the predicted empirical means, which
one obtains in the irregular outcomes of long runs of an experiment like coin tossing.

Smoluchowski discusses the physical conditions which allow for such a law-
like irregular sequence of outcomes in simple dynamical situations. Basic to these
is instability of motion or as Smoluchowski puts it: small cause, big effect. Small
fluctuations in the initial conditions yield completely different outcomes. But is it
not surprising that amplification of small fluctuations should be responsible for the
lawlike behavior of chance? Well, one must not forget that we look for lawlike be-
havior in a long irregular sequence of outcomes, and what instability can do here
is to weaken influences of the past outcomes on the future outcomes. So in a cer-
tain sense, the more random the sequence is, the more simply we find the lawlike
behavior we are looking for.

An example is provided by Galton’s board (Francis Galton 1822–1911). A ball
falls through an arrangement of n rows of nails fixed on a board, where the horizontal
distance between two nails is only slightly bigger than the diameter of the ball (see
Fig. 4.2). At the bottom of the board, one has n boxes, numbered from 1 to n, and
every box marks a possible ending position of the ball. A ball ends its run in one of
the boxes. After many runs, one obtains a distribution of the number of balls over
the boxes. Suppose we let N balls drop, then if N is large, we can more or less say
what the distribution of the number of balls will look like. The number of balls in
box m will be about

1
2n

(
n
m

)
N .

In other words, the empirical frequency for balls ending in box m is about (1/2n)
(n

m

)
.

The usual argument is of course that there are 2n possible trajectories: R(ight)–L(eft)
sequences of length n with randomly distributed Rs and Ls, and the ball ends in box

5 Smoluchowski discovered the molecular explanation of Brownian motion independently of Ein-
stein, thereby opening the door for modern atomism.
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Fig. 4.2 Galton’s Board. The figure shows the run of one ball

m if there are exactly m Rs in the sequence. There are
(n

m

)
such sequences, all se-

quences are equally probable, and hence (1/2n)
(n

m

)
is the probability of ending up in

box m. Thus in a series of many runs, by the law of large numbers, we get the relative
frequencies as described. Equivalently, we can argue that the L–R decisions are in-
dependent, each occurring with probability 1/2, and then ask what is the probability
for m Rs in n independent identically distributed Bernoulli trials. These arguments
are all quite accurate, but they are not the end of the story. The arguments use words
like randomness, probability, and independence and it is the meaning of these words
that we need to understand. What exactly is the status of the above argument? What
exactly do the words mean?

Let us follow Smoluchowski. He assumes that the dynamics of the Galton board
is Newtonian. Then he observes the following. The ball enters the Galton board
with a “tiny uncertainty” concerning the position of its center (see Fig. 4.4). That
means that the ball collides almost but not completely centrally with the first nail,
so the ball goes either to the right or left nail slit. Suppose it goes to the right. Then
the ball must pass the right nail slit. Now the whole secret of the physics of the
Galton board lies in what happens during the passage through a nail slit. In fact,
during this passage, an enormous number of (slightly inelastic) collisions take place
between the ball and the two adjacent nails, as happens in a pinball machine! The
effect of the many collisions is that very tiny changes in the incoming position and
velocity of the ball, when it enters the slit, lead to drastically different outcomes for
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Fig. 4.3 (A) Two very close trajectories of a pointlike ball become separated by virtue of the
collision with the round surface of the nail. (B) The effect is enhanced through the large number
of collisions. The more collisions take place, the smaller the “initial uncertainty” need be so that
in the end left or right is “unpredictable”

the outgoing directions upon leaving the nail slit. After hitting the next nail almost
centrally, the ball can go to the left or to the right in the following row. Very tiny
changes in the incoming position and velocity of the ball (entering the slit) result in
drastically different outcomes: left or right.

Small cause, big effect! But why is this so? In fact we have a spreading of di-
rections due to the convex boundaries of the ball and the nail. In Fig. 4.3, the ball
is idealized as a point and the nail as a fat cylinder. The pointlike ball bounces off
the cylinder surface according to the rules of elastic collisions (ignoring the fact
that the collisions are in reality inelastic). We see that two very close initial trajec-
tories are far apart after so many collisions. In the Galton board, “far apart” means
that the following nail will be hit with a left-going or right-going bias. One can go
even further. Suppose we let the two incoming trajectories get closer and closer,
then left-outgoing may become right-outgoing and then again left-outgoing, then
right-outgoing again and so on and so forth. Note that the particular shape of the
initial distribution of displacements from the ideal central position becomes irrel-
evant, i.e., the particular details of the “initial randomness” with which every ball
enters the board become irrelevant.

Let us formalize this a little more with the help of Fig. 4.4, which should be read
from bottom to top. We look through a looking glass at the small initial uncertainty,
i.e., the range δ over which the positions of the centers of the balls vary when the
ball enters the hopper (this imprecision of the Galton board machine will be further
scrutinized later). δ should be thought of as both the interval and its length. Let us
assume for simplicity that the outlet of the hopper is also a nail slit. That way we
have a self-similar picture at each row, which allows us to formalize the spreading
in an idealized way. We do this in the following list:
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Fig. 4.4 Looking at the “initial randomness” of the Galton board through a magnifying glass.
The initial uncertainty of the positions of the centers of the balls lies within δ , which denotes
here an interval and also its length. δ is partitioned into cells by the functions Xk : δ → {R,L},
k = 1,2, . . . ,n, of the left or right moves of the ball when it hits a nail in row k. The partitions mix
together in a perfect way. The shape of the distribution ρ of the points in δ has no influence on the
outcomes Xk, because of the “spreading” character of the dynamics

1. Simplifying assumption. The trajectory of a ball through the Galton board is
completely determined by the initial position of the center of the ball (with re-
spect to the symmetry axis of the hopper) which may vary in δ . This means that
every left–right direction Xk, k = 1,2, . . . ,n, upon hitting a nail of the k th row is
a function of δ :

Xk : δ →
{

0
.= L,1

.= R
}

.

In particular then, the end position Y = ∑n
k=1 Xk of a ball is a function of δ .

2. Xk partitions δ into L–R cells. On points in an L cell Xk = 0
.= L, and likewise

for R cells. In other words the cells are the pre-images X−1
k (R) and X−1

k (L) of
Xk. The Xk are coarse-graining functions of the interval δ .

3. The partition of δ is very fine. Figure 4.4 shows X−1
k (R),X−1

k (L), k = 1,2. The
partition by X1 is already very fine. The instability of the motion now “spreads”
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the cells of X−1
1 further, i.e., it separates the points of every cell into L–R cells for

X2. Here there might be a source of confusion which we must be clear about. The
Xk are coarse-graining functions, i.e., in this case they map cells (a continuum!)
onto single points. The fine map which is given by the trajectories of the ball from
the actual set of initial conditions, before entering the next nail slit, to new sets of
initial conditions for entering the following slit is the one expanding in the sense
of Fig. 4.3. This expansion is now encoded by the coarse-graining functions Xk

in the finer and finer partitioning of the initial set δ into cells.
4. This mixing partitioning of the cells continues at every stage k.
5. The total size (added lengths of all intervals) of the L cells (R cells) is indepen-

dent of the stage k and equals roughly δ/2. For δk ∈ {0,1}, let |X−1
k (δk)| denote

the length of the δk cells. Then from the foregoing, and looking at Fig. 4.4, we
may expect the mixing character of the partitioning to yield the following (ap-
proximate) equality

∣∣X−1
k1

(δk1)∩ . . .∩X−1
k j

(δk j)
∣∣≈

j

∏
n=1

∣∣X−1
kn

(δkn)
∣∣≈

(
δ
2

) j

. (4.2)

This actually says that the coarse-graining functions form a family of indepen-
dent random variables, with respect to the measure given by the interval length,
or in view of point 6 below, with respect to any “decent” notion of measure for
the intervals. Note in passing that random variables are nothing but, and only,
coarse-graining functions, or if one prefers, coarse-graining variables!

6. Any “reasonable” weight ρ of the points of δ – the initial randomness, which
we shall address below – will give the same picture. Intuitively this means that
the details of this initial randomness are unimportant for the results of the Galton
board. And this is as it should be, otherwise the results would not be stable under
repairs to the board (which might be in order from time to time).

7. Theoretically (ignoring friction), the Galton board could be very large, i.e., the
number of rows could be as large as we wish, and thus ideally the partitioning
goes on forever.

Item 7 above asserts that the family of Xk, k = 1,2, . . . , can be extended to arbitrary
length. But can it in fact? How can one be sure? Of course, we can be sure. At least,
nowadays we can, but at the beginning of the 20th century, this was a burning ques-
tion: Do coarse-graining functions Xk, k = 1,2, . . . , on an interval exist, partitioning
the interval into finer and finer sets with an ideal mixing as we have described, going
on forever? The answer lies at the heart of probability theory. The existence of such
functions leads to the mathematical formulation of probability theory (as we teach it
today). Their existence is intimately connected with the existence of real numbers,
and we shall present probability theory in this genetic way.

Anticipating later sections, we shall already say what the functions are, namely
the Rademacher functions (Hans Rademacher 1892–1962)

rk : [0,1] −→ {0,1} , (4.3)
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which are simply the coordinate maps of the binary sequence representing the real
number

x ∈ [0,1] , x =
∞

∑
k=1

rk(x)2−k . (4.4)

Let us quickly think about how these coarse-graining functions act: r1 maps any
number x ∈ [0,1/2) to 0 and any x ∈ [1/2,1] to 1. Hence r1 partitions the interval
[0,1] into two equal parts. r2 then partitions [0,1/2) into [0,1/4) and [1/4,1/2)
where all x ∈ [0,1/4) are mapped to 0 and all x ∈ [1/4,1/2) to 1. And so on and so
forth. We see the mixing.

It is also useful to see the following analogy. Suppose we know that a number
in [0,1] starts with 0.0000. This means the number is between 0 and 1/24 = 1/16.
What can be concluded for the next digit? Nothing. It is either zero or one. Sup-
pose it is also zero. Then the number is smaller than 1/32, but we cannot conclude
anything for the next digit. This goes on in the same way ad infinitum. And this
corresponds perfectly to the way the ball runs through the nail slits. In particular,
whatever direction it took before, nothing can be learned from that about the new
direction. And nothing more detailed can be learned for the next ball’s trajectory,
no matter how close its initial condition is to the previous ball (as long as it is not
identical), and so it will move “unpredictably”.

Smoluchowski thus describes in this early paper what became known and cel-
ebrated much later as chaotic behavior. Following his reasoning, we have argued
intuitively that it is very reasonable to assume that the left–right moves at each
stage are statistically independent. In fact all we shall do later, when making this
precise, is to define independence of (identically distributed) random variables by
requiring the perfect mixing of partitions which are paradigmatically given by the
Rademacher functions.

So we have argued that the probability computation of m hits in n trials seems
appropriate, and on its basis we can predict the numbers of balls in the boxes by the
law of large numbers. One should reflect for a moment on the law of large numbers.
How does it read in fact, if we are to take the microscopic analysis and the coarse-
graining functions seriously? We shall say more on that later!

That is as far as Smoluchowski went. We understand more or less how random
causes (the initial uncertainty δ ) can have lawlike effects. Because of the expansion
due to instability, we have something like statistical independence (no matter exactly
what the “initial uncertainty” is) and the law is this: the relative frequency of balls
in box m is typically

(n
m

)
/2n.

But we must still face Smoluchowski’s second question: Where does the random
cause come from in the first place? What justifies the initial randomness? Let us
be sure that we understand this question correctly. The first thought should be this.
Suppose the first ball ends in box number 4. Why does the second ball not end up
in the same box number 4, and in fact why do all the other balls not end up in
the same box number 4? Impossible? Why? Think of a Galton board machine – a
machine built with the precision of a Swiss clock, in which the mechanics is such
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Fig. 4.5 A Galton board machine. We have a well insulated container at temperature T with a huge
number of balls flying around in the container. These collide elastically with one another and with
the inner walls of the container. Off and on, a ball drops through the opening and into the hopper
of the Galton board. What are the predictions for the distributions of balls over the boxes at the
bottom?

that balls are taken and sent with Swiss-made precision into the board. All the balls
have exactly the same initial data as the first ball and all balls end up in the same
box the first ball ended up in. That is clear. That is one way to always have the
balls in the same box. There may of course be other ways to ensure that the balls
are always in the same box. Now you say that in the real experiment there is some
initial randomness. That is true, but why is the initial randomness of such a kind that
not all balls end up in the same box?

To get a better grasp of this problem, we build another machine (see Fig. 4.5). A
container of balls is kept at temperature T by a huge reservoir which is isolated from
the rest of the world. The balls collide elastically with one another and with the walls
of the container, and off and on a ball drops through the opening (slightly bigger
than the diameter of a ball) at the bottom and drops through a somewhat bigger tube
into the Galton board hopper. The container contains a huge number H of balls, a
fraction of which makes up the large number N of balls which drop through the hole
into the board. Now we have a machine which has all its randomness “inside” and
we ask: What can we now assert about the relative frequency of balls ending up in
the n boxes?
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Let us be careful about this. What we have at some initial time (say the moment
before the hole in the bottom of the container is opened) is one configuration, or bet-
ter, one phase point ω = (q1, . . . ,qH ,v1, . . . ,vH), where the qk are the centers of the
balls, taking values in the space occupied by the inner part of the container (ignoring
for simplicity the fact that they have a nonzero extension and cannot overlap), and
where the velocities can take arbitrary values. The collection of all possible ω is
the phase space Ω . There is no longer any δ , so what are the Xk we had previously
now functions of? We assume as before that the nails are infinitely heavy, i.e., that
they do not move at all (in reality, the nails will oscillate and we will have material
wear under collisions). Then the Xk must now depend on ω! But we need to be even
more careful! Numbering the balls which drop through the board, we now have for
the p th ball functions X p

k , k = 1, . . . ,n. Its end position after leaving the board is
described by the coarse-graining function Y p :Ω →{0,1, . . . ,n} given by the sum

Y p(ω) =
n

∑
k=1

X p
k (ω) .

If N balls drop through the board we have Y p(ω) = ∑n
k=1 X p

k (ω), p = 1, . . . ,N.
What now describes the distribution of balls over the boxes, i.e., what is the rela-
tive frequency we wish to predict? For that we need only write down the empirical
distribution for end positions:

ρN
emp(ω,x) =

1
N

N

∑
p=1
χ{x}

(
Y p(ω)

)
, x ∈ {1, . . . ,n} , (4.5)

where χ{x}(y) is the indicator function, equal to 1 if y = x and zero otherwise. The
empirical distribution is also a coarse-graining function taking on discrete fractional
values. What is now a prediction for this function? If we can convince ourselves that
the coarse-graining functions Y p(ω) are stochastically independent (we must con-
vince ourselves that they produce a Rademacher-like mixing partition, but instead of
the interval δ , it is now the huge space Ω which is partitioned), we can prove a law
of large numbers as follows. When N is large, the empirical distribution ρN

emp(ω,x)
is typically the distribution we expect, namely

ρN
emp(ω,m)≈ 1

2n

(
n
m

)
.

“Typically” means that the values are obtained for the overwhelming majority of
ωs. But there is a catch. For stochastic independence we need a measure on Ω ,
measuring the sizes of the cells of the coarse-graining functions, and we need that
measure to tell us what “typically” or equivalently “overwhelmingly many” means.
Hence the assertion – the typicality assertion or law of large numbers – is made with
respect to some measure, which will be the analogue of the length of an interval or
the density ρ on δ , which we discussed in connection with Fig. 4.4. The appropri-
ate measure will be discussed later – let us simply call it P

T for the moment. For
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concreteness we now write down the assertion of the law of large numbers in the
familiar formal way, i.e., for all ε > 0 and all η > 0, and for N large enough,

PT

({
ω|

∣∣∣∣ρN
emp(ω,m)− 1

2n

(
n
m

)∣∣∣∣ < ε
})

> 1−η , (4.6)

where

1
2n

(
n
m

)
=

∫
Ω
ρN

emp(ω,m)dPT (ω) .

So “typically” means that the set of ωs, i.e., the set of initial phase points of the balls
in the container which lead to the observed relative frequency of balls in the boxes
has overwhelmingly large PT measure. In statistical physics, PT will commonly be
assumed quite simply to be of such and such a form. This is called a statistical
hypothesis, which must be argued for, a point we shall take up later.

Now let us be clear about what all this means for the experiment. When we start
the experiment we have in the container one and only one configuration of balls,
i.e., one phase space point ω in the phase space Ω of the container system and not
a distribution of phase space points. This phase point will produce the (1/2n)

(n
m

)
relative frequency of balls in the boxes. Why? Because overwhelmingly many such
phase points, i.e., the typical phase point, would do that. The role of the statistical
hypothesis is nothing other than to define typicality.

What about the proof? Now, if it were the case that the Y i partitioned the phase
space Ω in the mixing kind of way, and also that the Xi

k partitioned Ω in an equal-
sized-cell kind of way (where size is now determined by the measure PT ), then the
law of large numbers would be immediate. In the formalized language of probability
theory, the conditions simply mean independence of the random variables. We shall
recall in the probability section the trivial proof of the law of large numbers when
independence holds. This does not mean, however, that the law of large numbers is
trivial. By no means! What is not at all trivial, better, what is outrageously difficult,
is to prove that the conditions hold true, namely that the coarse-graining functions
partition in just the right mixing kind of way. Establishing this is so exceedingly
difficult that the proof of the law of large numbers (4.6) for the realistic Galton
board is practically impossible.

One moral of the story is this. Independence is easily said and easily modeled, but
extremely hard to establish for any realistic situation. This helps to explain the role
and meaning of probability in physics. That is, one must first reduce probabilistic
statements to their ultimate physical basis. Doing this, probability seems to go away,
since one then deals with a purely analytical statement, just as in (4.6): the law of
large numbers establishing what typical frequencies look like. Much of the confusion
about probability arises because the true depth of the law of large numbers as an
extremely hard analytical assertion is not appreciated at all.

We are almost done now. Only two questions remain: What is and what justi-
fies PT ? In a loose manner of speaking, reintroducing probabilities, one could ask:
Where does this “initial randomness” come from? This loose manner of speaking is
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easily misleading, as it suggests that the law of large numbers is a probabilistic state-
ment and PT is a probability. Up until now, our presentation has nowhere made use
of such an interpretation, and it will not do so. After this warning let us repeat the
question: Where does the randomness come from? The most common answer goes
like this. Systems like the one we constructed in Fig. 4.5 must be built, so they were
not always closed, and there is some randomness coming from the outside. This is
true. Someone must have built the machine and put the balls in the container, and
someone must have heated up the container, or even mixed the balls up by shaking
it, so randomness does seem to come from outside. But then take the larger system
including the builder of the machine and whatever it requires. The typicality asser-
tion is now shifted to a much larger phase space with a new measure PE+S (where
E + S stands for environment plus system), and new coarse-graining functions on
that larger phase space.

Thus we see that the question remains, only it is now for a larger system. What
accounts for that randomness? Is it once again the outside of that larger system?
Well then we go on and include the new outside, and we see that there seems to be
no end to that. But there is an end! The end comes when we consider the largest clo-
sed system possible, the universe itself. For the universe the question now becomes
rather embarrassing. There is no outside to which the source of randomness could
be shifted. In fact, we have now arrived at the heart of the second of Smoluchowski’s
questions: How can randomness arise if all events are reducible to deterministic laws
of nature? Or in other words, how can lawlike causes have random effects?

4.1.2 Statistical Hypothesis and Its Justification

We come now to Boltzmann’s insight. What is the source of randomness when we
have shifted the possible source to ever larger systems, until we reach the universe
itself? Let us make two remarks. Firstly, if one thinks of randomness as probability,
where probability is thought of as a notion which is based on relative frequencies in
ensembles, as many people do, then that thought must end here. There is only one
universe, our own, and sampling over an ensemble of universes gives no explanation
for the occurrence of probability in our universe. Secondly, we did put up a big
show, dramatically extending the question of the randomness from the little system
to the whole universe in which the little system is only a part, as if that escape to
the environment had any meaning. The question is, however, simple and direct. The
physical laws are deterministic. How can there be randomness?

The answer can be made clear if we revisit the Galton board machine. After
all, that could be a universe. In a typical universe we can have regular empirical
frequencies, just the way we experience them in experiments, although the universe
evolves deterministically. In a typical universe, things may look random, but they
are not. In Boltzmann’s words, for the overwhelming majority of universes it is true
that, in ensembles of subsystems of a universe, the regular statistical patterns occur
as we experience them.
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So there is something to prove, namely, a law of large numbers for the universe.
For example, for the Galton board machine as part of our universe, one would have
to prove that in a typical universe6 the balls fall into the boxes with just the right
frequency. Such an assertion is usually called a prediction of the theory. Which mea-
sure defines a typical universe? We shall come to that! It is of course impracticable
in proofs to have to deal with the whole universe, and one would therefore first see
whether one could infer from the measure, which defines typicality, a measure of
typicality for a subsystem, like the Galton board machine. That measure would be
PT .

The introduction of such measures of typicality for subsystems of the universe
is due to Boltzmann and Willard Gibbs (1839–1903). Gibbs preferred to call the
measure of typicality an ensemble. After all, for subsystems of the universe, we can
imagine having lots of copies of them, i.e., we can imagine many identical Galton
board machines, so we can imagine having a true ensemble and we can sample, in
a typical universe, the empirical distribution of ωs. Then PT would arise as relative
frequency itself.7 However, this understanding is hopeless when it comes to the
measure of typicality for the universe. It is therefore best to take the name “Gibbs
ensemble” as synonymous with “measure of typicality”. In the end it all reduces to
one typical universe, as it must, since we have only one universe at our disposal,
namely the one we live in. The best we can do is to prove an analytical statement
about statistical regularities for ensembles of subsystems within a typical universe.
A typical universe shows statistical regularities as we perceive them in a long run of
coin tosses. It looks as if objective chance is at work, while in truth it is not. There
is no chance. That is the basis of mathematical probability theory.

Is that all there is to this? Yes, more or less. We did answer Smoluchowski’s sec-
ond question, but there is a price to pay. The price is that we must prove something
that is exceedingly difficult to prove and moreover we must answer the following
question: What measure tells us which sets of the phase space of the universe are
overwhelmingly large and which sets are small? In other words: Which measure
defines the typical universe?

Now at first glance the measure of typicality does not seem to be unique. Recall
that in our discussion of the Galton board, the distribution of points in δ (which
could be such a measure of typicality) can be rather arbitrary as long as it does not
vary on the very small cell scale. That holds for all measures of typicality. Typicality
is really an equivalence class notion. All measures in a certain equivalence class
(absolute continuity of measures would be an ideal class) define the same notion of

6 Typicality with a grain of salt. A universe in which a Galton board experiment takes place might
itself not be typical. We must eventually understand typicality conditionally, conditioned by macro-
scopic constraints which govern our universe, for example. This issue will resurface in Sect. 4.2,
and when we justify Born’s statistical law for the wave function in Chap. 11.
7 There is a danger when too much emphasis is put on ensembles and distributions over ensembles.
One is easily led astray and forgets that, for the molecules in a gas, while moving erratically around,
one has at every instant of time one and only one configuration of gas molecules. The question is:
What is the typical configuration?
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typicality. Nevertheless there is a particularly nice representative of the equivalence
class which we would like to introduce next.

The measures we are talking about are a kind of volume for the subsets of the
tremendously high-dimensional phase space of the universe. Let us think of volume
as a generalization of the volume of a ball or a cube to very high-dimensional phase
spaces. Let us call the measure on phase space P. What is a good P? Let us recall
what role it has to play. It must define typicality, but it must do so in the form of
the law of large numbers for empirical distributions. That is, we must be able to
consider ensembles of subsystems of the universe now, tomorrow, and at any time
in principle, and it is intuitively clear that one particularly nice property of such a
measure would be technically very welcome: it should not change with time, so that
what is typical now is also manifestly typical at any other time.

The simplest requirement for that is that the volume measure we are looking for
should not change with time, i.e., it must be a stationary measure. Apart from the
technical advantage when proving things, the notion of typicality being timeless is
appealing in itself. Time-independent typicality is determined by the physical law,
i.e., time-independent typicality is given to us by physics. To see this more clearly,
recall our discussion about stationarity in Remark 2.2 on p. 19. For a Hamiltonian
universe, we have Liouville’s theorem (2.12), which asserts that the phase space
volume does not change with time under the Hamiltonian flow. The law of physics
gives us a physical notion of typicality based on time independence. It is as reason-
able to take that notion as relevant for our understanding of the universe as the law
itself.

It is natural to guess that the statistical hypothesis to define typicality for sub-
systems should also appeal to stationarity. Boltzmann felt this way and, indepen-
dently of Gibbs, introduced the measures which are known nowadays as the canon-
ical ensembles or Gibbs ensembles. Indeed, the mathematical physicist Gibbs saw
stationarity as a good requirement for a statistical hypothesis on which he based
an axiomatic framework of statistical mechanics for subsystems. Gibbs’ axiomatic
framework is immediately applicable to the thermostatics (equilibrium thermody-
namics) of subsystems, and explains his success, while Boltzmann’s work was less
widely recognized.

As already mentioned, Gibbs talks about distributions over ensembles and is not
concerned with the actual phase point the system occupies. On that basis, he gave a
justification for the use of Gibbs ensembles that is neither necessary nor sufficient,
connected to the so-called mixing and convergence of non-equilibrium measures to
equilibrium measures (see the next section). This is not necessary because typicality
does the job, and it is not sufficient, because it is not linked to the actual trajectory of
the system under consideration. A system is always in a particular configuration and
never “in a probability distribution”. Gibbs’ view seems to deviate from typicality
and Boltzmann’s view of the world.8 Historically Gibbs’ view seems persistent,
while Boltzmann’s understanding that the role of the hypothetical Gibbs ensembles
is to define typicality was lost.

8 The Ehrenfests criticize Gibbs’ view correctly [5].
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We now look at some stationary measures relevant in Hamiltonian subsystems.
We do that to sharpen our intuition for the quantum equilibrium analysis we shall
undertake once we have introduced Bohmian mechanics. The analysis there is much
simpler than what we do next. The important message is, however, that the basic
structures are the same, something which is not recognized in textbooks.

4.1.3 Typicality in Subsystems:
Microcanonical and Canonical Ensembles

Recall (2.26), viz.,

∂
∂ t
ρ(x, t) =−vH(x, t)·∇ρ(x, t) .

We look for stationary solutions of this equation, i.e., we search for a density ρ for
which the time derivative on the left-hand side is zero. According to Remark 2.2,
a stationary density yields a stationary measure. Now the right-hand side of the
equation is

vH ·∇ρ =
(
∂H
∂p
· ∂
∂q
− ∂H
∂q
· ∂
∂p

)
ρ

=
(

q̇· ∂
∂q

+ ṗ· ∂
∂p

)
ρ(q,p) =

d
dt
ρ
(
q(t),p(t)

)
,

which is the change in the function ρ along the system trajectories. When we ask
for this to be zero, we ask for functions which are constant along trajectories. One
such function is H(q,p), which is just energy conservation. Hence every function
f (q,p)≡ f

(
H(q,p)

)
is conserved. Two functions play a particular role, as we shall

explain. The simplest is

ρ = f (H) =
e−βH

Z(β )
, (4.7)

where β is interpreted thermodynamically as β = 1/kBT with T the temperature,
and kB is the Boltzmann constant. The latter is a dimensional factor, which allows
one to relate thermodynamic units and mechanical units. We shall say more on that
later. Z(β ) is the normalization.9 The function defined by (4.7) determines a mea-
sure which is commonly called the canonical ensemble. Its role will become clear
in a moment.

9 We wish to define typicality with this measure and we wish to call the typical (i.e., the pre-
dicted) relative frequencies simply probabilities, as physicists normally do. For this purpose it is
convenient to normalize the typicality measure like a probability measure.
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The somewhat more complicated density is the following. It arises from the pre-
served volume measure on phase space, but taking into account the fact that energy
is conserved. Energy conservation (2.9) partitions the phase space10 Ω into surfaces
of constant energy ΩE :

ΩE =
{
(q,p)|H(q,p) = E

}
, Ω =

⋃
E

ΩE .

When we think of an isolated system its phase point will remain throughout the time
evolution on the energy surface defined by the value of the system energy E. Which
function defines a stationary density on the energy surface ΩE ? Formally, this is
clear:

ρE =
1

Z(E)
δ
(
H(q,p)−E

)
, Z(E) = normalization . (4.8)

This then defines the stationary measure – the so called microcanonical ensemble:

PE(A) =
∫

A

1
Z(E)

δ
(
H(q,p)−E

)
d3Nqd3N p , A⊂ΩE . (4.9)

The δ -function may seem scary for some readers. So let us rewrite the measure,
introducing the area measure dσE on the surface. The point is that (4.8) is in general
not simply the surface measure (when the energy surface is not a ball), but it has a
nontrivial density. There are various ways to see this. Consider a surface given im-
plicitly by f (x1, . . . ,xn) = c and suppose that we can solve for xn = gc(x1, . . . ,xn−1),
i.e., we can parameterize the surface by the vector

y =
(
x1, . . . ,xn−1,gc(x1, . . . ,xn−1)

)
.

Then we know from analysis that

dσc =
||∇ f ||
|∂n f | dx1 . . .dxn−1 . (4.10)

On the other hand, for any nice function h, by change of variables

xn −→ y = f (x1, . . . ,xn) , xn = gy(x1, . . . ,xn−1) ,

we have

10 In probability theory, it is common to call the phase space probability space denoted by Ω ,
but be aware that this space has nothing to do with probability, randomness, or chance, despite its
name. Coarse-graining functions of phase space are called random variables, and they too have
nothing to do with randomness per se.
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∫
h(x1, . . . ,xn)δ

(
f (x1, . . . ,xn)− c

)
dx1 . . .dxn

=
∫

h(x1, . . . ,gy(x1, . . . ,xn−1))

∣∣∣∣∣
1

∂n f
(
x1, . . . ,gy(x1, . . . ,xn−1)

)
∣∣∣∣∣δ (y− c)dx1. . .dxn−1dy

=
∫

h
(
x1, . . . ,xn−1,gc(x1, . . . ,xn−1)

) 1
|∂n f |dx1 . . .dxn−1 .

Hence we see that the δ density acts like a surface integral, and by comparison we
find that

δ ( f − c)dx1 . . .dxn =
1
‖∇ f‖dσc . (4.11)

Hence, applying this to our case, for the microcanonical ensemble PE given by (4.9),
we have the result

PE(A) =
1∫

ΩE

dσE

‖∇H‖

∫
A

dσE

‖∇H‖ , A⊂ΩE . (4.12)

Here is a more pictorial way to arrive at that. Divide the volume element d3Nqd3N p
of Ω into the surface element dσE on ΩE and the orthogonal coordinate denoted by
l , viz.,

d3Nqd3N p = dσE dl .

The element on the left is invariant under the Hamiltonian flow, by Liouville’s theo-
rem. dH is also invariant. This is the l-coordinate difference between the two energy
surfacesΩE andΩE+dE (see Fig. 4.6), so that on the right-hand side, we should write

dσE
dl
dH

dH .

Then

Fig. 4.6 Transport of phase
space volume between two
energy surfaces

d
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dσE
dl
dH

must be invariant. It remains to be seen what dl/dH is. Now ∇H is orthogonal to
ΩE , i.e., parallel to the coordinate line l,

dH = ‖∇H‖dl ,

and hence

dl
dH

=
1

‖∇H‖ .

Look again at the Fig. 4.6. The surface measure density 1/‖∇H‖ takes into account
the fact that the system trajectories moving between two energy shells must move
faster when the shells get closer, since the phase space volume must be preserved
by the flow lines. Accordingly, in the case of spherical energy surfaces (‖∇H‖ =
constant), the surface Liouville measure is simply the surface measure.

Boltzmann’s and Einstein’s views (Einstein reworked Boltzmann’s ideas for him-
self) is that the microcanonical measure, which is the projection of the natural Liou-
ville measure onto the energy surfaces, is the typicality measure for the (Newtonian)
universe. Why should this be natural? The universe is a closed thermodynamical
system, since there is no energy exchange with an outside, i.e., the energy of the
universe does not fluctuate. The distribution (4.7) has energy fluctuations, while
(4.12) does not. So it is a natural choice. Why does (4.7) appear at all? We shall
explain that.

Let us start with the simplest thermodynamical system, namely an ideal gas in a
container. Ideal gas particles do not interact with one another and, assuming com-
plete isolation, the gas system has only kinetic energy. For N equal mass particles
with velocities (v1, . . . ,vn) ∈ R

3N , the Hamiltonian is

H(q,p) =
1
2

N

∑
i=1

mv2
i =

N

∑
i=1

p2
i

2m
,

and H = E are preserved surfaces under the ideal gas dynamics. The positions of
the gas molecules are contained in the volume V . The microcanonical measure (4.8)
for the gas system is then

PE(d3N qd3N p) =
1

V N d3Nq
1

Z(E)
δ

(
N

∑
i=1

p2
i

2m
−E

)
d3N p , (4.13)

where we now set

Z(E) =
∫

R3N
δ

(
N

∑
i=1

p2
i

2m
−E

)
d3N p ,

since for the ideal gas the volume normalization can be simply factorized.
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Since the positions are uniformly distributed, we focus attention on the momen-
tum, or what comes to the same up to a constant, the velocity distribution of that
measure, which we obtain when we integrate all positions over the volume V . Then,
with a slight abuse of notation, still denoting the normalization factor by Z(E), we
have

PE(d3Nv) =
1

Z(E)
δ

(
N

∑
i=1

mv2
i

2
−E

)
d3Nv . (4.14)

The delta distribution forces a complicated dependence among the velocities. The

velocity vector (v1, . . . ,vN) lies on the spherical surface S(3N)√
2E/m

. Changing vari-

ables, referring to (4.11), and computing

∥∥∥∇
N

∑
i=1

v2
i

∥∥∥ = 2

√
2E
m

on the spherical surface S(3N)√
2E/m

, we can express (4.14) in the form

PE(A) =

∫
A

dσ (3N)√
2E/m∣∣S(3N)√

2E/m

∣∣ , A⊂ S(3N)√
2E/m

, (4.15)

where |S(3N)√
2E/m
| is the size of the surface S(3N)√

2E/m
and dσ (3N)√

2E/m
its surface element.

This is not very informative. Suppose we would like to know the so-called marginal
distribution of only one velocity component, say (v1)x, which we obtain by choosing

A =
{

(v1, . . . ,vn) ∈ S(3N)√
2E/m

∣∣∣(v1)x ∈ [a,b]
}

,

or equivalently by integrating over all velocities in (4.14) except (v1)x ∈ [a,b].
What would we get? Or suppose we asked for the marginal joint distribution of
(v1)x,(v5)y, then what would we get?

Clearly, the answer is complicated, since all the velocities depend on each other.
But intuitively, if the number N is huge (as it is in the gas system, of the order of
Avogadro’s number), the dependencies must become weak. Better still, if N gets
large and with it the energy E, so that

E
N

=
1
N

N

∑
i=1

m
2

v2
i = c ,

we should expect the marginal distributions to attain characteristic forms depending
on the value c, but independent of N. Before we show this, let us think about c. It
does look like the empirical average of the single-particle kinetic energy. If the law
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of large numbers applies, we have

c =
E
N
≈ m

2
〈v2

1〉E,N :=
∫

m
2

v2
1

1
Z(E)

δ

(
N

∑
i=1

mv2
i

2
−E

)
d3Nv

=:
m
2

∫
v2 fc(v)d3v .

Here fc denotes the marginal distribution of the velocity of one particle in the sit-
uation where E/N = c and N is large. This average is well known, and can be
determined from a completely different view which is basic to all of Boltzmann’s
work, in fact to the whole of kinetic theory: the connection with thermodynamics!
The gas in the container obeys the ideal gas law pV = nRT . The way we have for-
mulated the law, it is already atomistic since it involves the number n of moles in
the volume V . R is the gas constant p the pressure, V the volume, and T the temper-
ature. Introducing Avogadro’s number NA, the number of molecules in the mole, we
obtain

pV = NkBT , (4.16)

with Boltzmann’s constant kB = R/NA and N = nNA the total number of gas
molecules. Boltzmann’s constant should be thought of as the heat capacity of one
gas particle. This becomes clear when we put the above average in relation with
the pressure of the gas. In kinetic theory the pressure arises from the gas molecules
hitting the walls of the gas container:

p =
force
area

=
momentum transfer during Δt

Δt× area
, (4.17)

where Δt is a short time interval in which very many molecules collide with the wall
area. Suppose the area A has normal vector in the x direction. Then the momentum
transfer is 2mvx, since the particle is elastically reflected. The number of particles
with x-components of the velocity in the range [vx,vx +dvx] colliding with the area
A and within Δt is roughly

N(vx,dvx,Δt,A) = vxΔtA fc(vx)dvx
N
V

.

Consider Fig. 4.7. vxΔtA is the volume of the cylinder (Boltzmann’s collision cylin-
der), in which a particle with this x-component of velocity must be in order to collide
with the area A in the given time interval. The “probability” for a particle to be in
that cylinder is

N
V

fc(vx)dvx ,

where N/V is the spatial density of particles and fc(vx) is the density of the x-
component of the velocity distribution. We thus obtain the above number denoted by
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Fig. 4.7 A particle with velocity v must be in the collision cylinder to hit the wall within A and
within time Δt. The volume of that cylinder is vxAΔt

N(vx,dvx,Δt,A). Actually we do not need to know what fc(vx) looks like, except that
we require the symmetry fc(vx) = fc(−vx). Each particle transfers the momentum
2mvx, so considering the symmetry and integrating over all relevant vx, we get

momentum transfer during Δt = 2m
N
V
ΔtA

∫ ∞

0
v2

x fc(vx)dvx

= m
N
V
ΔtA

∫ ∞

−∞
v2

x fc(vx)dvx .

Hence, in view of (4.17), we obtain for the pressure

p =
N
V

m
∫ ∞

−∞
v2

x fc(vx)dvx ,

that is,

pV = N〈mv2
x〉E,N .

Comparing with (4.16), we see that 〈mv2
x〉E,N = kBT . This important result is called

the equipartition theorem. The average kinetic energy of a particle is

c =
〈m

2
v2

〉
E,N

=
3
2

kBT . (4.18)

Why is this result important? The answer is that it connects two physical theories,
thermodynamics and Newtonian mechanics! Thermodynamics does not know about
molecules and Newtonian mechanics does not know about temperature. Yet they can
be connected! And the constant which gets the dimensions right is kB. In fact, kB is
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as we already said essentially the heat capacity of an atom, since heat capacity is in
general the proportionality between energy increase and temperature increase.

We now return to the question of what the marginal distribution fc looks like.
The answer is surprising! We wish to compute

PE(A) =

∫
A

dσ (3N)√
2E/m∣∣S(3N)√

2E/m

∣∣ , for A =
{

(v1, . . . ,vn) ∈ S(3N)√
2E/m

∣∣∣(v1)x ∈ [a,b]
}

.

(4.19)

Let us simplify the notation. Let

S(n)
r =

{
(x1, . . . ,xn) ∈ R

n,
n

∑
i=1

x2
i = r2

}

be the n-dimensional spherical surface, and let | · | denote the normalized surface

measure on S(n)
r . Furthermore, let

S(n)
r (a,b) =

{
(x1, . . . ,xn) ∈ R

n,
n

∑
i=1

x2
i = r2,a < x1 < b

}

be the spherical zone defined by the interval (a,b) (see Fig. 4.8). We shall prove the
following geometrical fact:

Lemma 4.1. Let σ2 > 0 and let a < b ∈ R . Then the following holds:

lim
n→∞

|S(n)√
σ2n

(a,b)|∣∣S(n)√
σ2n

∣∣ =
∫ b

a

e−x2/2σ2

√
2πσ2

dx . (4.20)

Before proving that let us translate the result back in terms of (4.19). We have n =
3N, E/N = 3kBT/2, and thus

r2 = σ2n =
2E
m

=
nkBT

m
,

that is, σ2 = kBT/m. Therefore the marginal distribution we are after turns out to
be the Maxwellian

lim
N→∞, E

N = 3T kB
2

PE

(
A =

{
(v1, . . . ,vn) ∈ S(3N)√

2E/m

∣∣∣(v1)x ∈ [a,b]
})

= lim
N→∞, E

N = 3kBT
2

∫
A

dσ (3N)√
2E/m∣∣S(3N)√

2E/m

∣∣ =
∫ b

a
dv

exp

(
− 1

kBT
mv2

2

)
√

2πkBT
m

.
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But this is the canonical distribution! It is a straightforward matter, once one under-
stands the proof of the lemma, to conclude that the marginal distribution for more
velocity components is the product of the single-component distributions. Further-
more, as an exercise, compute the mean kinetic energy of the particle! This must be
3kBT/2.

Proof of the Lemma. The most demanding step of the proof is to convince oneself
that

|S(n)
r |= rn−1|S(n)

1 | . (4.21)

Intuitively, this is clear if one thinks of the spherical surfaces in 2 and 3 dimensions.
The straightforward way to get this rigorously is to introduce n-dimensional spher-
ical coordinates and write down the parameterized surface element, or to simply
recall the general formula (4.10), which in this case reads

dσ (n)
r =

r√
r2− x2

1−·· ·− x2
n−1

dx1 . . .dxn−1 .

Now change variables yk = xk/r to get

dσ (n)
r =

rrn−1

r
√

1− y2
1− . . .− y2

n−1

dy1 . . .dyn−1 = rn−1dσ (n)
1 ,

from which (4.21) follows. Assuming |a| < r and |b| < r and recalling (4.11), we
have

|S(n)
r (a,b)| =

∫ b

a
dx1

∫ ∞

−∞
dx2 . . .

∫ ∞

−∞
dxn2rδ (x2

1 + . . .+ x2
n− r2)

=
∫ b

a
dx1

∫ ∞

−∞
dx2 . . .

∫ ∞

−∞
dxn2rδ

(
x2

2 + . . .+ x2
n− (r2− x2

1)
)

= 2r
∫ b

a
dx1

∣∣∣∣S(n−1)√
r2−x2

1

∣∣∣∣ 1

2
√

r2− x2
1

[by (4.11)]

= 2r|S(n−1)
1 |

∫ b

a
dx

√
r2− x2

(n−2) 1

2
√

r2− x2
[by (4.21)]

= r|S(n−1)
1 |

∫ b

a
dx

√
r2− x2

(n−3)
.

Once again using (4.21), we then obtain
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|S(n)
r (a,b)|
|S(n)

r |
=
|S(n−1)

1 |
|S(n)

1 |
1

rn−2

∫ b

a

(
r2− x2)(n−3)/2

dx

=
|S(n−1)

1 |
|S(n)

1 |
1
r

∫ b

a

[
1−

(x
r

)2
](n−3)/2

dx .

We now use the fact that the fraction on the left becomes unity for a = −r, b = r,
which implies that the factor in front of the integral on the right is nothing but a
normalization factor, whence

|S(n)
r (a,b)|
|S(n)

r |
=

∫ b

a

[
1−

(x
r

)2
](n−3)/2

dx

∫ r

−r

[
1−

(x
r

)2
](n−3)/2

dx

.

Now comes a tiny piece of analysis. We wish to evaluate the expression for r2 = σ2n
as n→ ∞, and for that we wish to pass the limit inside the integral. This would be
done rigorously by appealing to Lebesgue dominated convergence, observing that
1− x≤ e−x and hence

(
1− x2

nσ2

)(n−3)/2

≤ exp

[
− x2

nσ2

(
n−3

2

)]
,

which is integrable for n > 3. So we need only take the limit on the integrand

lim
n→∞

(
1− x2

nσ2

)(n−3)/2

= exp

(
− x2

2σ2

)
,

and normalize the Gaussian. Thus the lemma is proven. If one feels uncomfortable
with δ -functions, one can of course do without and compute the zone as in Fig. 4.8.

What moral should we draw from this? The measure of typicality for a subsystem
of a large system, which is typical with respect to the microcanonical ensemble,
should be the canonical ensemble, if interaction between the subsystem and the
environment is small. So let us push this a bit further. Let us return to the general
microcanonical measure (4.8) given by

1
Z(E)

δ
(
H(q,p)−E

)
d3Nqd3N p =

1∫
ΩE

dσE

‖∇H‖

dσE

‖∇H‖ ,

and recall that for the ideal gas (4.13), where the volume factor V 3N is irrelevant,
and setting n = 3N,

Z(E) =
∫
ΩE

dσE

‖∇H‖ =
1
2

√
m
2E

∣∣∣S(n)√
2E/m

∣∣∣∼
√

2E
m

n−2

,
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Fig. 4.8 Computing the spherical surface zone of a three-dimensional sphere of radius r, thereby
recalling the famous identity that the (a,b) zone is the cylindrical surface of the cylinder with base

size 2πr and height b− a. The base size of the cylinder is now
∣∣S(n−1)√

r2−x2

∣∣ and its height is dz,

yielding
∣∣S(n)

r (dx)
∣∣ =

∣∣S(n−1)√
r2−x2

∣∣dz, and by similarity of the triangles with sides x, r and dx, dz, we

have the proportionality dz : dx = r :
√

r2− x2

with E/n = kBT/2, whence Z(E) is a huge exponential! We therefore make it
smaller by taking the logarithm,

lnZ(E) =
n−2

2
lnE +O(n) ,

then take the derivative with respect to E and use

E
n

=
kBT

2

to obtain

dlnZ(E)
dE

=
n

2E
− 1

E
≈ 1

kBT
. (4.22)

This result suggests a microscopic definition of Clausius’ entropy S for which the
thermodynamic relation

∂S
∂E

=
1
T

will hold. So setting

S = kB lnZ(E) (4.23)

hits close to home. This is Boltzmann’s setting, and we shall henceforth take this as
valid in general (not only for the ideal gas).11

11 A bit of unimportant history. Boltzmann never wrote this formula down, although it is inscribed
on his tombstone. Planck wrote the formula (1900), introducing the Boltzmann constant kB in his
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But we want to focus first on the moral above. We imagine the subsystem to
consist of N1 particles with phase space coordinates

(q1, p1) =
(
q1

1, . . . ,q
N1
1 ,p1

1, . . . ,p
N1
1

)
,

and the rest of the large system to consist of N2 particles with phase space coordi-
nates (q2, p2). So the phase points of the large system are naturally split into two
coordinates: (q, p) =

(
(q1, p1),(q2, p2)

)
. Suppose also that the Hamiltonian agrees

with the splitting, i.e., H(q, p) ≈ H1(q1, p1)+ H2(q2, p2), which means that the in-
teraction energy between the subsystem and the environment is small compared to
the energies E1 and E2. We shall assume that N2� N1. Then as before for the ideal
gas case, we write

PE

({(
(q1, p1),(q2, p2)

)
|(q1, p1) ∈ A

})

=
1

Z(E)

∫
A

d3N1q1 d3N1 p1

∫
d3N2 q2 d3N2 p2 δ (H1 +H2−E)

=
1

Z(E)

∫
A

d3N1q1 d3N1 p1

∫
d3N2 q2d3N2 p2 δ

(
H2− (E−H1)

)

=:
1

Z(E)

∫
A

d3N1 q1 d3N1 p1Z2
(
E−H1(q1, p1)

)
.

As in the ideal gas case we wish to control Z2(E−H1)/Z(E) for E/N = constant,
when N gets large. Let us quickly check on the ideal gas to see how to proceed.
Roughly Z(E) ∼ EN (actually the exponent is N/2, but we simply call it N to ease
notation) and Z2(E −H1) ∼ (E −H1)N2 , where N2 ≈ N. Therefore, expanding Z2

around E, which we think of as being large compared to the range of typical values
of H1, yields

Z2(E−H1)
Z(E)

≈ (E−H1)N

EN

=
EN

EN +
NEN−1H1

EN +
1
2

N(N−1)EN−2H2
1

EN + · · ·

= 1+
N
E

H1 +
1
2

N2

E2 H2
1 + · · · .

Since E/N is approximately the mean energy of one particle, which is of the order
of the typical value H1 achieves, the important observation is now that all terms in
the above expansion are of order 1. So this expansion is no good. The terms are too
big. Therefore let us take the logarithm:

work on black body radiation (see Chap. 6). Einstein used that formula in reverse. Thinking of the
size of regions in phase space as the probability for a microstate to be in that region, he wrote (we
shall say more on this below) that the probability of fluctuation ∼ exp(Δentropy/kB).
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ln
Z2(E−H1)

Z(E)
≈ ln

(E−H1)N

EN = N ln

(
1− H1

E

)

= −N
H1

E
− 1

2
N

H2
1

E2 + · · · ,

where the second order term (and all following terms) is now of smaller order in
1/N than the first term. So this is looking better. Expanding in H1 yields

ln
Z2(E−H1)

Z(E)
= lnZ2(E−H1)− lnZ(E)

≈ ln
Z2(E)
Z(E)

− ∂ lnZ2(E)
∂E

H1

= ln
Z2(E)
Z(E)

− 1
kBT

H1 [by (4.22)] .

The first term on the right becomes the normalization factor, i.e., we obtain the
normalized canonical distribution

Z2(E−H1)
Z(E)

≈ e−H1/kBT

Z1(T )
,

or in other words

PE

({(
(q1, p1),(q2, p2)

)
|(q1, p1) ∈ A

}) N2�N1≈
∫

A
d3N1 q1d3N1 p1

e−H1/kBT

Z1(T )

=:
∫

A
d3N1 q1 d3N1 p1 pT (q1, p1) ,

which is the canonical distribution (4.7).
Since we have come this far now, let us briefly consider the Gibbs formalism

to highlight the difference between the Gibbs entropy and the Boltzmann entropy.
First note that the normalization Z(T ) of the canonical measure with Hamiltonian
H (commonly referred to as the partition function) can be written in the form

Z(T ) =
∫

d3Nqd3N p e−H/kBT

=
∫

e−E/kBT dE
∫

d3Nqd3N pδ
(
E−H(q, p)

)

=
∫

dE Z(E)e−E/kBT .

Therefore the expectation value of E is

〈E〉T =
1

Z(T )

∫
dE EZ(E)e−E/kBT =:

∫
E pT (E)dE , (4.24)
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where

pT (E) =
Z(E)
Z(T )

e−E/kBT .

The T -derivative of this is the heat capacity, which is readily computed from the
definition of Z(T ):

C =
d〈E〉T

dT
=

1
kBT 2

(
〈E2〉T −〈E〉2T

)
=:

1
kBT 2 〈ΔE2〉T .

Assume for simplicity that the heat capacity is constant, i.e., 〈E〉T = CT . Then the
above variance is simply 〈ΔE2〉T = CkBT 2, and for the relative variance, we obtain
the ratio between the heat capacity of an atom and that of the system:

〈ΔE2〉T
〈E〉2T

=
CkBT 2

C2T 2 =
kB

C
.

This noteworthy and famous result says that, since C≈NkB when there are N atoms
in the system, the relative energy fluctuation is negligible when N gets large. This
means that the typical phase points all lie in a relatively thin shell around the mean
value E := 〈E〉T . This in turn suggests that typicality is as well expressed by the
microcanonical ensemble on the surface ΩE . This is known as the equivalence of
ensembles. It can be sharpened to a rigorous statement by taking the thermodynamic
limit of infinitely large systems N→ ∞, V/N = constant.

Furthermore this suggests that it is reasonable to approximate the canonical dis-
tribution by a Gaussian with mean E := 〈E〉T and variance CkBT 2, i.e.,

pT (E) =
Z(E)
Z(T )

e−E/kBT ≈ e−(E−E)2
/CkBT 2

√
2πCkBT 2

.

Therefore,

pT (E) =
Z(E)
Z(T )

e−E/kBT ≈ 1√
2πCkBT 2

,

whence

Z(T )≈
√

2πCkBT 2 Z(E)e−E/kBT ,

and therefore

lnZ(T )≈ lnZ(E)− E
kBT

+ ln
√

2πCkBT 2 .

Then, using C ≈ N,
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lnZ(T )
N

N large
≈ lnZ(E)

N
− 1

kBT
E
N

.

In this sense,

−kBT lnZ(T ) =−kBT lnZ(E)+E , (4.25)

and in view of (4.23), this should be identified as the thermodynamic free energy
relation

F =−T S +U .

We now reverse the argument. Take a microcanonically distributed system with en-
ergy E. Then the Boltzmann entropy (the entropy) is S = kB lnZ(E). For large sys-
tems, this value is well approximated by kB lnZ(E), with the canonically distributed
system with 〈E〉T = E = E. By (4.25), we then have

S = kB lnZ(E) = kB lnZ(T )+
1
T

E = kB

[
lnZ(T )+

1
kBT
〈E〉T

]

= −kB

∫
pT ln pT d3Nqd3N p [by (4.24)] ,

where we have reverted to the canonical density notation

pT (q, p) =
1

Z(T )
e−H(q,p)/kBT .

The right-hand side of that equation is the famous Gibbs entropy

SG =−kB

∫
pT ln pT d3Nqd3N p ,

equal in value to Boltzmann’s entropy (4.23) in equilibrium. Although the two val-
ues are equal, there is a huge difference between Boltzmann’s entropy and the Gibbs
entropy, a difference which becomes critical when we turn to the issue of non-
equilibrium, irreversibility, and the second law. Boltzmann’s entropy is naturally
a function on phase space. It is constant on the set of typical phase points, where the
size of the set of typical phase points is essentially Z(E). The Gibbs entropy is not
defined on phase space, but is rather a functional of distributions on phase space – a
technically very abstract, but computationally useful tool.

4.2 Irreversibility

We understand how randomness enters into physics. It is how a typical universe
appears. The balls in a Galton board behave in the random way they do because
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that is how they behave in a typical universe. The gas in a container fills the con-
tainer in a homogeneous way because that is typical. One thing is strange, however:
Why should there be a Galton board in a typical universe, why a gas container, and
when we pick up that stone and throw it, how come we can compute its trajectory
precisely, without any randomness at all? Are our macroscopic experiences not in
fact non-random in many ways? Where is the place for all the typicality talk of the
previous section in a universe like ours?

Unfortunately, this is a hard question, because the truthful answer is that we do
not know. Our universe is not typical. For our universe there is no justification for
typicality of microcanonical or canonical distributions, because they are false in
general. For us it is typical to generate atypical situations. We can build a container
with a piston which forces all molecules into one half of the container, and we can
remove the piston and then we have a gas system where all gas molecules at that
moment are in one half of the container and the other half is empty (at least we can
do that in principle), as in Fig. 4.1. That is an atypical state. True, the gas did not do
that by itself. We did it. But that would not help. Shifting the reason to the outside
ends in atypicality for the largest system conceivable, the universe. Something needs
to be explained.

A typical universe is an equilibrium universe, the equilibrium, to which our uni-
verse evolves (to a thermal death, as Clausius referred to it). Right now we are still
very far from thermal death. Our universe is atypical or in non-equilibrium, and
that is why we can build a Galton board or pick up a stone, or look at the moon
circling the earth. But at the same time we experience the determined evolution to
equilibrium at every moment and all over the place via the second law of thermo-
dynamics. The law determines that thermal processes are directed, and that they are
irreversible, i.e., the time-reversed process does not take place. The breaking of a
glass is just such a thermal process – no one ever experienced a broken glass be-
coming whole again on its own. Never will a cold body make a warm body warmer
on its own. The law says that thermal processes will always run in such a way that
entropy increases!

This thermodynamic law is different from all the other laws of physics, which
are time-reversal invariant. In thermodynamics there is no argument to back this
law, no further insight to make the law plausible. It is a law that describes what we
see. Boltzmann explained the law by reducing thermodynamics to Newtonian me-
chanics. That seems paradoxical, since Newtonian mechanics is time reversible in
the sense that all mechanical processes can run both ways. Boltzmann’s explanation
is this.

4.2.1 Typicality Within Atypicality

Think of the atypical state of the gas in Fig. 4.1, where only half the container is oc-
cupied by gas molecules (suppose this has been achieved by a piston which was then
removed). That is now an atypical state – no way around that. What happens next
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with the gas? Typically the gas system will move in such a way that the container
becomes filled in a homogeneous way and remains in that equilibrium-like state
“forever”.12 Of course, “typicality” is no longer our clear-cut equilibrium “typical-
ity”. It is typicality with respect to the measure on phase space which arises from
conditioning under macroscopic constraints (like the piston which pushed the gas
into one half of the container). In short, it is typicality under given macroscopic
constraints. That is what remains of Boltzmann’s typicality idea in our real atypical
world. Things are as typical as possible under given constraints.

The typical process of the homogeneous filling of the container when the gas
is freed from its macroscopic constraints is basic to the famous phenomenological
Boltzmann equation, an equation which is not time-reversal invariant, but which can
be derived from the time-reversible microscopic dynamics of gas molecules. The
Boltzmann equation describes how the typical empirical density (of a constrained
low density gas) changes in time to a typical density of equilibrium. That is a typical
lawlike behavior (strongly analogous to the law of large numbers) on which the
second law is based. The second law is in that sense a macroscopic law, which holds
for a particular set of atypical initial conditions of the universe. We do not know by
which fundamental physical law this set is selected, nor do we know exactly what
the set looks like. All we know is that it is a very special set given by macroscopic
constraints which we can to some extent infer from our knowledge about the present
status of our universe (we shall expand a bit on that at the end of the chapter). But
that should not in any way diminish our respect for Boltzmann’s insight that the
second law can be reduced to and therefore explained by fundamental microscopic
laws of physics.

We shall say a bit more about the second law and entropy increase, and the way
irreversible behavior can arise from reversible behavior, or in other words, how one
can turn apples into pears. As we said, the key here is special initial conditions. We
return to the notions of micro- and macrostate, since entropy is a thermodynamic
notion. Entropy arises from the first and second laws of thermodynamics (when the
latter is phrased in terms of the impossibility of a perpetuum mobile) as a thermo-
dynamic state function S which reads in differential form

dS =
1
T

(
dE +PdV

)
, (4.26)

with energy E , pressure P , and volume V .
A thermodynamic state (or macrostate) is determined by a very small number of

thermodynamic variables: volume, density, temperature, pressure, energy, to name
a few. According to kinetic gas theory, or in more modern terms, according to sta-
tistical mechanics, the extensive variables (those which grow with the size of the
system) are functions on the phase space Ω of the system under consideration, i.e.,
extreme coarse-graining functions (random variables in other words), which do not
fluctuate, because they come about as empirical means (the law of large numbers
acting again). An example is the (empirical) density ρ(x), the average number of

12 The quotation marks on “forever” will become clear further down.
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particles per volume:

ρ(x)d3x≈ 1
N

N

∑
i=1
δ (x−qi)d3x , (4.27)

where N is the very large particle number of the system and the qi are the actual
particle positions. The values that this macroscopic ρ achieves, and which char-
acterize the macrostate Ma, partition the phase space into large cells, so that very
many phase points – microstates ω =: Mi(Ma) ∈ Ω – realize the macrostate. We
call the size of the cell the phase space volume of the macrostate: W (Ma). A simple
mathematical example is provided by the Rademacher functions (4.3). Consider the
empirical mean

ρn(x) =
1
n

n

∑
i=1

ri(x) ∈ [0,1] . (4.28)

This is certainly a macroscopic variable which coarse-grains the interval [0,1]. We
shall prove in (4.2) the rather intuitive assertion that typically

ρn(x)
n large
≈ 1

2
,

so that a very large subset (with respect to the natural notion of size as the “length”
of the set) of points in [0,1] (microstates) yields the macrostate corresponding to
value ≈ 1/2, in other words W (≈ 1/2) ≈ 1. The macrostate corresponding to the
value 1/4, for example, would be realized by only a very tiny subset in [0,1].

Entropy is extensive, but it was not originally realized as function on phase space.
It was Boltzmann who achieved that. The entropy S of a system in the macrostate
Ma with phase space volume W (Ma) [= “number” of microstates Mi(Ma), which
realize Ma] is determined by that “number” W (Ma). This is in fact what (4.23)
says, and the entropy becomes in this way a function on the microstates – a function
which is constant on the cell corresponding to the macrostate.

The Boltzmann entropy is13

SB
(
Mi(Ma)

)
= kB lnW (Ma)

[
= S (E ,V )

]
. (4.30)

13 W (Ma) must actually be normalized by N! for the entropy to become extensive. Consider the
phase space volume of the following macrostate of an ideal gas in a volume V . We have N particles
and they are distributed over one-particle phase space cells αi, i = 1, . . . ,m, so that there are Ni

particles in cell αi with |αi| = α , i = 1, . . . ,m. How large is that phase space volume? There are
N!/N1!N2! · · ·Nm! possibilities for such distributions, and for each possibility the particles have
volume α to move in, whence

W (Ma) =
N!

N1!N2! · · ·Nm!
αN . (4.29)

With Stirling’s formula (4.1) n!≈ nn and
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Fig. 4.9 The evolution to equilibrium depicted in physical space on the left and in phase space on
the right: microscopically and macroscopically. Mi1: The system starts with all gas molecules on
the left side of the container. Mi2: The corresponding phase point, the microstate, is ω . Ma1 shows
the macrostate, of which Mi1 is one realization. Ma2 shows the set Ma(VL) of all microstates
which realize Ma1. (Not to scale! It would not be visible on the proper scale.) The time evolution
on phase space is denoted by Φt . In Mi3(t), the trajectory (Φsω)s∈[0,t] is depicted. In the course of
time, the gas fills the whole volume. Ma3 shows the uniform density, as in equilibrium. Ma5 shows
the time-evolved set Φt Ma(VL) in which Φtω lies. That set of microstates is perfectly mixed up
with the equilibrium set and realizes for all practical purposes a macrostate, which is also realized
by the huge set of equilibrium microstates Ma(V ), i.e., for all practical purposes Φt Ma(VL) can be
replaced by Ma(V ). Nevertheless, the volume |Ma(VL)| of Ma(VL) is very small and, by Liouville’s
theorem, |Ma(VL)|= |ΦtMa(VL)| � |Ma(V )|

S
kB

= ln

(
N

N1, . . . ,Nm

)
= ln

N!
N1! . . .Nm!

≈
(

N lnN−
m

∑
i=1

Ni lnNi

)

= −
m

∑
i=1

Ni(lnNi− lnN) =−
m

∑
i=1

Ni ln
Ni

N
.

The thermodynamic entropy (as invented by Clausius) is extensive, which means it is additive.
If we remove from a gas container a separating wall which separated two ideal gases, then the
entropy of the “after system” will become the sum of the entropies of the “before systems”. Our
definition does not obey that, but it does when we cancel the N-dependence, i.e., when we consider
Ŵ := W/N! and set S = kB lnŴ .
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Do we now understand why entropy increases? Yes, by simple combinatorics.
Lifting macroscopic constraints like taking away the piston which held the gas
molecules on the left side of the container in Fig. 4.1, the new macrostates will
be those which correspond to larger and larger phase space volumes, i.e., for which
the number of microstates which realize the macrostate becomes larger and larger.
This is all depicted in Fig. 4.9. The number of microstates does not change under
the Hamiltonian time evolution, by Liouville’s theorem. The gas extends over the
whole container, yet the corresponding phase space region remains as small as the
one it started in.

So does that mean that the entropy does not increase then? Where did our reason-
ing go wrong? Nowhere! We only have to accept that Boltzmann’s definition (4.30)
of the entropy is more subtle than we imagined at first sight. We must always con-
sider the macrostate first! The new macrostate Ma(V ) has a very much larger phase
space volume W

(
Ma(V )

)
, and the evolved microstate Φtω realizes this macrostate

(for all practical purposes). There is a reason for the parenthetical addition of the
phrase “for all practical purposes”, which will be addressed later. But it is nothing
we should be concerned with.

Here is a very simple mathematical example which may be helpful to understand
the definition of entropy with regard to micro- and macrostates. Let Ω = [0,1] and
consider the time-one map T x = 2x|mod1 (see Fig. 4.10). The T action is most easily
understood when we write x ∈ [0,1] in the binary representation. Then

x =
∞

∑
k=1

rk(x)2−k −→ T x =
∞

∑
k=1

rk+1(x)2−k .

In other words,

rk(T x) = rk+1(x) . (4.31)

The map is obviously not invertible (so the n-fold composition of the map defines
irreversible dynamics, different from Hamiltonian dynamics). We look again at the
macro-variable (4.28)

ρ =
1
n

n

∑
k=1

rk : [0,1]→ [0,1] ,

and we shall show in Theorem 4.2 that for n large this is typically close to 1/2. We
observe that a microstate x ∈ [0,1/2n) corresponds to the macrostate Ma given by
ρ = 0. Hence all microstates realizing Ma with ρ = 0 make up the set with rk = 0
for k = 1,2, . . . ,n. Therefore

S = kB lnW
(
Ma(ρ = 0)

)
= kB ln

∣∣[0,1/2n)
∣∣ =−kBn ln2 .

Now for n very large x ∈ [0,1/2n) is atypical for a number in [0,1], since the x
starts with a lot of zeros. But for a conditionally typical x ∈ [0,1/2n), i.e., typicality
defined with respect to the conditional measure 2n|A|, A⊂ [0,1/2n), we should see,
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TT T

Fig. 4.10 The graph of the Bernoulli map T x = 2x|mod1 and iterations of an initial point x0. Note
that T is not invertible

from some large place in the binary expansion onwards, that zeros and ones occur
in an irregular but lawlike manner, in the sense of the law of large numbers. In fact
(we only look at discrete times, but that does no harm) with

T j
[

0,
1
2n

)
= T ◦T ◦T · · · ◦T

[
0,

1
2n

)
= [0,1) , j ≥ n ,

we have that, typically with respect to the conditional measure,

ρ j(x) := ρ(T jx) =
1
n

n

∑
k=1

rk(T jx) =
1
n

n

∑
k=1

rk+ j(x)
n large
≈ 1

2
, j ≥ n ,

as we shall show in Theorem 4.2. But Ma corresponding to ρ ≈ 1/2 has almost all
of [0,1] as its phase cell, and thus S = kB ln(|[0,1)|) = 0, which is of course much
larger than the non-equilibrium value −kBn ln2. That is the essence of the story.

For Boltzmann, the story did not end so happily. He could not cheat on the re-
versibility of the fundamental motion as we did. His map Tt is the Hamiltonian flow,
which is time reversible, and this leads to extra complications which we have swept
away by appeal to our catch phrase “for all practical purposes”. Does the fact that
the fundamental motion is time reversible change the qualitative picture we have
shown in Fig. 4.9? Some physicists have answered that it does! On the other hand
one can hardly fight the intuitive feeling that the picture is right. After all, there are
typically more possibilities for the gas molecules to distribute themselves equally
over the whole volume (i.e., phase space, see Fig. 4.1).

But the debate was nevertheless about this question: How can time reversible dy-
namics give rise to phenomenologically irreversible dynamics? This is a bit like a
debate about whether something tastes bitter, when there is nothing fundamentally
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like “bitterness” in nature. But the criticism was in fact more technically oriented,
with the question: How can one mathematically rigorously derive a time-irreversible
equation of motion from time-reversible equations? And that is indeed what Boltz-
mann claimed to have achieved with his famous equation,14 and the resulting H-
theorem (see below).

Boltzmann met the criticism head on and rectified his assertions, where nec-
essary, without sacrificing any of his ideas. The criticism was this. In the above
mathematical example, under the T map, the conditionally typical point x eventu-
ally becomes unconditionally typical, since the zeros in front are all cut away after
enough applications of T . Nothing in the point T jx recalls the special set x once lay
in. We cannot turn the wheel back, nor the time for that matter. The map is not time
reversible. In the gas example of Fig. 4.9, for all practical purposes, the macrostate
does not distinguish the special phase point Φtω from typical phase points, but it
is nevertheless special! To see that, all we need to do is to reverse all velocities
in Φtω : Φt(x, p)→ Φt(x,−p). What does the gas then do? It returns peacefully,
and without need for a piston to push it, into the left half of the container, which
is atypical behavior at its very best. Reversing all velocities is like reversing time!
Therefore, in a closed system, the gas carries its past history around with it all the
time. For all practical purposes, we can forget that information and replace the phase
point by a typical one, because practically speaking it is impossible to reverse the
velocities of all the gas molecules.

But so what? This proves that there are in fact “bad initial conditions”, for exam-
ple, Φt(x,−p), for which Fig. 4.9 is not right. This was spotted by Josef Loschmidt,
a friend and colleague of Boltzmann, and this “Umkehreinwand” (reversibility ob-
jection) led Boltzmann to recognize that his famous H-theorem (see below), which
in its first publication claimed irreversible behavior for all initial conditions, was
only true for typical initial conditions. Because, as Boltzmann immediately re-
sponded, these bad initial conditions are really very special, more atypical than nec-
essary. They are not conditionally typical, conditioned on macroscopic constraints,
which for example can be achieved by a piston which holds all gas molecules in the
left half of a container. The time-irreversible Boltzmann equation (on which the H-
theorem is based) holds for conditionally typical initial conditions and governs the
time evolution of the conditional typical value of the empirical density [analogous
to (4.27)]:

f (q,p)≈ relative number of particles with
phase space coordinates around (q,p) ,

where the approximation holds in the sense of the law of large numbers. The
conditional typical value is time dependent since, after removal of the macro-
scopic constraint, the phase points typically wander into the large phase space
volume defining equilibrium. Boltzmann showed in his H-theorem that H(t) =

14 For mathematically rigorous derivations of Boltzmann’s equation in the sense of mathematical
physics, the proof by Lanford is recommended [6]. See also [7].
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∫
f (t,q,p) ln f (t,q,p)d3qd3 p increases (on average) as time goes by, toward an

equilibrium value.
But the mathematician Ernst Zermelo went on to criticize Boltzmann’s view of

atomism, which is basic to Boltzmann’s understanding of irreversibility, on the basis
of a little theorem proved by Poincaré, known as the “Wiederkehreinwand” (recur-
rence objection). Poincaré’s recurrence theorem is a very simple result for dynami-
cal systems with a phase space of finite measure:

Theorem 4.1. Poincaré’s Recurrence Theorem

Let
(
Ω ,B(Ω),Φ ,P

)
be a dynamical system, that is, Ω is a phase space, B(Ω)

the σ -algebra,15 Φ : Ω → Ω a measurable16 (time-one) map, and P a stationary
measure, i.e., P(Φ−1A) = P(A), A ∈ B(Ω). Assume the finite measure condition
P(Ω) < ∞ and let M ∈ B(Ω). Then for almost all ω ∈ M (i.e., except a set of
P-measure zero), the orbit (Φnω)n∈N visits M infinitely often.

For simplicity, we prove the theorem for invertible Φ (as it was originally done for
Hamiltonian flows) and we omit the proof of the assertion that the recurrence occurs
infinitely often. Let N be the bad set,17 i.e., the set of points in M which never return
to M (and thus never to N). Then

Φn(N)∩M = /0 for all n≥ 1 ,

and for n > k,

Φn(N)∩Φk(N) =Φk
(
Φn−k(N)∩N

)
= /0 .

Therefore the measures of the sets add and, with the finite measure condition and
stationarity, which for invertible maps is equivalent to P(ΦA) = P(A), we obtain

∞> P

(
∞⋃

n=0

Φn(N)

)
=

∞

∑
n=0

P
(
Φn(N)

)
=

∞

∑
n=0

P(N) ,

hence P(N) = 0.
There is no way to escape this fact. If the gas obeys the Hamiltonian law of

motion then, when the gas started in the left half of the container, it will eventually
return to the left half of the container – if the system remains isolated. So when the
gas has expanded to fill the whole volume, it will not stay like that forever, but will
return to the left half once in a while – for sure. Well, if one waits long enough, an
equilibrium fluctuation will produce that too, and this was also Boltzmann’s answer:
If only one could live long enough to see that!

So what is the point here? The point is a mathematical technicality that must
be taken into account when one tries to derive long-time irreversible behavior from

15 See footnote 21 in Sect. 4.3.
16 See (4.39).
17 That N is measurable, i.e., N ∈B(Ω), is left as an exercise.
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time-reversible dynamics – one must ensure that the Poincaré recurrence time is
infinite. But how? By taking a limit of an infinitely large system, thereby violating
the finite measure assumption. Think of our simple example of a typical x ∈ [0,1]
and the macro-variable (4.28) ρ which depends on n. For finite n, even for typical
x ∈ [0,1], ρ(T jx) will fluctuate to value zero for j large enough. There will always
be a sequence of n consecutive zeros somewhere. But that can no longer happen if
we first take n→ ∞.

Boltzmann even gave a time scale on which a recurrence in the ideal gas situation
is to be expected. That time is, not surprisingly, ridiculously long, longer than the
cosmic time we imagine as the lifetime of our universe. Boltzmann’s estimate was
based on a new notion which he introduced and, which became a fashionable field
in mathematics: ergodic theory.18 According to Boltzmann, one should envision
that a system runs over the whole of phase space, and that the time it spends in
cells of macrostates is proportional to the cell size. The famous formula is, for the
Hamiltonian system,

lim
t→∞

1
t

∫ t

0
χA (Φsω)ds =

∫
A
ρE(ω)dω = PE(A) , (4.32)

where the left-hand side is the fraction of time the system spends in A and the right-
hand side is the microcanonical measure of A. This looks reasonable. Since the ratio
of phase space volumes of equilibrium values to non-equilibrium values is huge,
so are the time ratios. To recall the sizes, compare the numbers for equidistribution
with a fluctuation of remarkable size in a gas of n particles, viz.,

(
n

n/2

)
with

(
n

n(1− ε)/2

)
,

where n is something like 1024. From (4.1), it is an easy exercise to show that the ra-
tio of the left- and right-hand numbers is≈ exp(2nε2), i.e., the ratio of sojourn times
in equilibrium to non-equilibrium≈ exp

(
1024ε2

)
. Whatever microscopic time scale

one uses, the resulting time spent in equilibrium is ridiculously large.

4.2.2 Our Atypical Universe

Boltzmann held the following picture of our universe. The part of the universe which
lies behind the horizon of what is accessible to us right now is in equilibrium – an
equilibrium sea. We – that is we, our solar system, the galaxies we see, the past of
our universe as far as we can witness it – merely mirror a possibly giant equilibrium
fluctuation – a non-equilibrium island in an equilibrium sea. That sounds reasonable.
It does suggest that the “initial condition” of our universe is after all typical. No need
to worry any further about it.

18 “Ergoden” was Boltzmann’s name for the microcanonical measure.
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Nowadays we look much further into the universe than scientists did in Boltz-
mann’s day, and we have witnesses of a much older past than in Boltzmann’s day,
but we do not see any glimpse of global equilibrium surrounding us at the new “vis-
ible” astronomical distances, and we find no glimpse of equilibrium in the “new” far
distant past. What does that tell us? Does it tell us that the fluctuation turned out to
be more violent than one had judged in Boltzmann’s day? No, that would violate the
typicality idea: no more atypical than necessary is Boltzmann’s adage. Thus a ques-
tion arises: How giant is the fluctuation? Is there a highly ordered (lower entropy)
past of my present? But my present is already atypical and the moral of typicality
is: no more atypical than necessary! Then the past of my present should look less
atypical, i.e., the entropy of the universe should increase from NOW towards the
past and the future. The NOW is the deepest point of the fluctuation!

Actually, we do not behave as if we believed in a fluctuation. Feynman calls
Boltzmann’s fluctuation hypothesis ridiculous [8, p. 129]. We believe (and Boltz-
mann did too) that there is a very special past, and in believing that, we are in fact
reconstructing a logical past which makes sense and which proves that we are right
in our belief. Paleontologists set out to find the missing link between ape and man
and they eventually did – the Java man, or Homo erectus. Schliemann believed that
Homer’s Iliad had roots in a truly existing past, which was not just the words of the
Iliad, and he found the remains of Troy. We probe the celestial depth by sending
out the Voyager spacecraft with a golden disc containing Chuck Berry’s Johnny B.
Goode into space, hoping that, way out there, invisible and unknown to us, some-
thing will appreciate good old earthly sounds.

It is ridiculous to readjust a fluctuation after learning that non-equilibrium ex-
tended further than previously assumed. It does make sense to readjust the atypical-
ity set of initial conditions if we become aware of further macroscopic constraints.
That is actually how we think and behave. We are convinced that our initial condi-
tion is a very special one. We believe that the initial condition of the universe was
carefully selected. So carefully, that the measure of that in numbers is way beyond
our human scales (see, e.g., [9] for an estimate of the size of the special set, and for a
nice drawing of a goddess carefully aiming with a sharp needle at the chosen initial
configuration of our universe). What is the physics behind the selection? We do not
know (see, e.g., [10] for speculations on that). That ignorance of ours deserves to be
called an open problem: the problem of irreversibility.

4.2.3 Ergodicity and Mixing

Why should we need to know anything about ergodicity and mixing, if we are not
interested in doing specific technical work in the theory of dynamical systems? In
fact, it is not at all necessary. But since the time of Gibbs, these notions have been
floating around as if they were fundamentally important for understanding the role
of chance in physics, and in particular for justifying the use of equilibrium ensem-
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bles to compute the average values of thermodynamic quantities. To avoid those
misconceptions, we shall address these notions briefly.

As we already said, ergodicity was introduced by Boltzmann for the purpose of
computing times of sojourn from the formula (4.32). Boltzmann’s idea here was that
a phase point moves around and that its trajectory will eventually cover the energy
surface in a dense manner. This allowed him to estimate the enormously long times
(more or less the Poincaré recurrence time) a system stays in the overwhelmingly
large equilibrium regions, i.e., the regions of typicality, in order to address people’s
worries about early returns. And that is all ergodicity is good for, apart from some
other technical niceties.

A misconception one often encounters is that ergodicity justifies the use of equi-
librium distributions for averaging thermodynamic quantities, because the measure-
ment of thermodynamic quantities takes time, time enough for the phase point to
wander about the energy surface, so that the “time average equals the ensemble av-
erage”. But Boltzmann’s understanding is obviously quite the opposite. Given the
energy of a system, the overwhelming majority of its phase points on the energy
surface are typical, i.e., equilibrium phase points, all of which look macroscopically
more or less the same. Therefore, the value of any thermodynamic quantity is for
all practical purposes constant on that energy surface. Averaging over the energy
surface will merely reproduce that constant value, regardless of whether or not the
system is ergodic.

The mathematical definition of ergodicity focusses on the dense covering of tra-
jectories on the energy surface or more generally on phase space. Equation (4.32) is
then a theorem when ergodicity holds. It is noteworthy that ergodicity is equivalent
to the law of large numbers, and that independence is stronger than mixing, which
is stronger than ergodicity. Indeed (4.32) is technically nothing but the law of large
numbers, which we shall show later under independence conditions.

Definition 4.1. A dynamical system
(
Ω ,B(Ω),Φ ,P

)
(see Theorem 4.1) for which

P(Ω) = 1 is said to be ergodic if the invariant sets have measure zero or one:

A ∈B(Ω) with Φ−1A = A =⇒ P(A) = 0 or P(A) = 1 . (4.33)

Note that invariance of sets has been defined in accordance with the stationarity of
the measure, namely in terms of the pre-image. IfΦ is bijective we can equivalently
define ΦA = A as an invariant set.

Birkhoff’s ergodic theorem asserts that, for an ergodic system and for any (mea-
surable19) f

lim
N→∞

1
N

N

∑
n=0

f (Φnω) =
∫

f (ω)dP(ω) for P-almost all ω .

It is interesting to note that the proof has two parts. In the difficult part, only sta-
tionarity of the measure is required. From that alone, it follows that the limit on the

19 See Sect. 4.3.
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left-hand side exists for P-almost all ω . The ergodic hypothesis enters only to deter-
mine the limit. The set of ω for which the limit exists is clearly invariant. If the limit
takes different values on that set, then the pre-images of the values likewise define
invariant sets, but by ergodicity, invariant sets have measure zero or one, i.e., there
can be only one pre-image up to sets of measure zero, whence

lim
N→∞

1
N

N

∑
n=0

f (Φnω) = c for P-almost all ω .

Integrating this equation with respect to P, exchanging the limit on the left with the
integration, we see by stationarity that c =

∫
f dP(ω).

Ergodicity gives uniqueness of stationary measures in the following way. Sup-
pose

(
Ω ,B(Ω),Φ ,P

)
and

(
Ω ,B(Ω),Φ ,Q

)
are ergodic, i.e., in particular P and

Q are stationary (like microcanonical and canonical ensembles). Then Q = P or Q

is concentrated on the zero measure sets of P, and vice versa. To see this, suppose
that Q �= P, i.e., there exists a set B for which Q(B) �= P(B). Setting f (ω) = χB(ω),
the ergodic theorem implies that

lim
N→∞

1
N

N

∑
n=0

f (Φnω) =
∫

f (ω)dP(ω) = P(B) for P-almost all ω ,

and

lim
N→∞

1
N

N

∑
n=0

f (Φnω) =
∫

f (ω)dQ(ω) = Q(B) for Q-almost all ω ,

but the right-hand sides are not equal. We must conclude that Q-almost all ω is a
null set of P. The moral is that ergodic stationary measures are special among all
stationary measures.

Let us go a little further. Up until now we have talked about a process in time,
i.e., we sample at successive discrete times. But we can also think of sampling in
space, e.g., measuring the particle number in an ideal gas in various spatially sepa-
rated cells in a gas container. Let fi(ω) be the particle configuration in cell i. Instead
of moving from cell to cell, we can also stay in one cell and shift the entire configu-
ration of all gas molecules (where it is best to think of an infinitely extended gas, see
Fig. 4.11). We obtain a shift Φ : Ω −→ Ω (for simplicity, we consider cells which
arise from dividing the x-axis, so that we need only shift in the x direction). If f
denotes the configuration in cell 0, then f (Φiω) is the configuration in cell i.

It is intuitively clear that PE is shift invariant in this sense, since that is how
we imagine a homogeneous state to look. This gives rise to a dynamical system,
but this time with a spatial translation flow Φ . However, our notions were already
abstract, and everything transfers to spatial ergodicity and spatial ensembles. That
abstraction is useful and pays off. Recall our discussion of the mixing partitions
[compare (4.2)] on the Galton board. This characterizes stochastic independence
and constitutes the condition under which the law of large numbers holds “trivially”
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Fig. 4.11 Spatial shift

Fig. 4.12 Rotation on the circle

[compare (4.53)]. On the other hand, to see where ergodicity stands, we remark
that the typical ergodic system is the following (see Fig. 4.12). Consider the circle
Ω = {ω ∈ R

2, |ω|= 1} ∼= [0,1) with ω = (cos2πx,sin2πx), and

Φ : [0,1) −→ [0,1)
x �−→ x+α|mod1 .

Let P = λ = | · | be the usual length. If α is rational, the dynamical system
(
[0,1),B

(
[0,1)

)
,Φ ,λ

)

is not ergodic (it is periodic), but if α is irrational, it is ergodic. This is most easily
seen by using the equivalent definition of ergodicity:

(
Ω ,B(Ω),Φ ,P

)
is ergodic

if every measurable bounded invariant function f on Ω is P-almost everywhere
constant, i.e.,

f ◦Φ = f =⇒ f = const. P-almost everywhere .

Let us decompose f into a Fourier series
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f (x) =
∞

∑
n=−∞

cneinx2π ,

with

( f ◦Φ)(x) = f
(
(x+α)|mod1

)

=
∞

∑
n=−∞

cnein2π(x+α) =
∞

∑
n=−∞

cnein2παein2πx !=
∞

∑
n=−∞

cnein2πx .

Therefore

∞

∑
n=−∞

cn

(
1− ein2πα

)
ein2πx = 0 ,

and also

cn

(
1− ein2πα

)
= 0 ,

whence cn = 0 or 1−ein2πα = 0. But the second option cannot hold for irrational α ,
unless n = 0. If α is rational, for example, α = p/q, choose cq = 1 and all else null.
f is then invariant and not constant.

Now let us look once more at Fig. 4.9, where trajectories in phase space expand
so that a tiny concentrated set gets distorted and convoluted under the time evolution.
This looks so different from the rather dull rotation on circles. Gibbs introduced the
idea that equilibrium is “natural” because of a mixing process which takes place
in phase space. He used the analogy of a drop of ink in water, which is mixed
up very quickly by stirring the water and thus turning the water quickly light blue
throughout. Likewise – or so the analogy went in the minds of many people – any
region in phase space, no matter how small in volume, will spread out under the
dynamics after a suitably long time to points that fill out a region that is distorted
and convoluted in such a way as to be spread more or less uniformly throughout
the corresponding energy surface. Then, for any reasonable function f , the uniform
average of f over the energy surface and over the time-evolved set are more or less
the same.

But the analogy is off target, since no one stirs in phase space. The system tra-
jectories wander about and explore the relevant regimes of phase space for purely
“entropic” reasons. The rough timescale over which trajectories mix all over phase
space is again given by the Poincaré recurrence time. But since the phase space
region of equilibrium is overwhelmingly large, a (typical) non-equilibrium phase
point can enter rather quickly into the equilibrium region, so that the mixing time
scale is typically reasonably short. That time scale governs the behavior of phase
point functions like the empirical density. If one is interested in the time scale on
which Ma1 goes to Ma3, then that is determined by (conditionally) typical trajec-
tories. These can, for example, be read off from the Boltzmann equation for dilute
gases, which describes the physically relevant transition to equilibrium. The concept
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of mixing in the sense of Gibbs, which concerns the evolution of a non-equilibrium
phase space distribution to let us say the microcanonical ensemble does not play any
role in that. In chap. 5 we shall discuss a much simpler equation, the heat equation
of Brownian motion, which is, however, exactly in the spirit of Boltzmann. For fur-
ther elaboration, see [11, 12], and also the classic [5], as well as the delightful essay
entitled The Pernicious Influence of Mathematics on Science, by Jacob Schwartz in
[13].

For the sake of completeness, we now give the definition of mixing:

Definition 4.2.
(
Ω ,B(Ω),Φ ,P

)
is called mixing if, for integrable functions f and

g,
∫

f (Φnω)g(ω)dP(ω) n−→∞−→
∫

f (ω)dP(ω)
∫

g(ω)dP(ω) . (4.34)

For sets A (water in a glass) and B (B for blue ink),

P( A∩ΦnB︸ ︷︷ ︸
part of blue

in set A

) n−→∞−→ P(A)P(B)︸ ︷︷ ︸
proportional to

size of A
All lightblue

. (4.35)

Let us see why mixing implies ergodicity. Let A be invariant, i.e., Φ(A) = A. Then

P(ΦnA∩A) = P(A∩A) = P(A) ,

and by mixing,

P(ΦnA∩A) n−→∞−→ P(A)2 ,

that is, P(A) = P(A)2, so P(A) = 0 or P(A) = 1.
Mixing also implies the “transition to equilibrium” of distributions. To see this,

let
(
Ω ,B(Ω),Φ ,P

)
be a mixing system and Q another measure, but which has a

density with respect to P, say ρ(ω)≥ 0, with
∫
ρ dP(ω) = 1

and
∫

f (ω)dQ(ω) =
∫

f (ω)ρ(ω)dP(ω) . (4.36)

Imagine Q being a “non-equilibrium” distribution. Then
∫

f (Φnω)dQ(ω) n−→∞−→
∫

f (ω)dP(ω) ,

which comes from (4.34) and (4.36), and
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∫
f (Φnω)dQ(ω) =

∫
f (Φnω)ρ(ω)dP(ω)

n−→∞−→
∫

f (ω)dP(ω)
∫
ρ(ω)dP(ω) .

4.3 Probability Theory

Once (in Euclid’s day) axioms in mathematics were self-evident assertions. Now
axioms are either merely useful definitions or they are the completion of a long his-
tory of technical advances and thoughts. The axioms of probability theory are like
that. The axioms, as they were formulated by Kolmogoroff in 1933, are the result
of a long and highly technical development. Behind the axioms lies typicality and
coarse-graining of points of a continuum. Underlying the axioms is Boltzmann’s
kinetic gas theory, Lebesgue’s construction of a measure on subsets of the real num-
bers, the Rademacher functions, and finally Hilbert’s quest for an axiomatization of
the technical use of probability, which Hilbert – intrigued by Boltzmann’s advances
in kinetic gas theory – formulated in the year 1900 in his famous list of 23 problems
as the sixth problem.

But of course none of this history is spelt out in the axioms. The axioms formulate
the structure within which typicality arguments and coarse-graining can be phrased.
Seen this way the prototype of a measure of typicality is the Lebesgue measure.
This chapter is very much influenced by the writings of Mark Kac, in particular by
his marvellous booklet [14].

4.3.1 Lebesgue Measure and Coarse-Graining

The Lebesgue integral is a center of mass integration. Let λ be the volume measure
of subsets of the real numbers, i.e., the natural generalization of length of an interval.
Then the Lebesgue integral is defined20 by (see Fig. 4.13)

∫
f dλ ≈∑

i
fiλ (Ui) =

∞

∑
i=0

i
n
λ

(
f−1

[
i
n
,

i+1
n

])
. (4.37)

The main point is that the Lebesgue integral starts with a partition of the y-axis, and
weights the values of f with the measure of the pre-image. Now, here is the catch.
Suppose f is fluctuating wildly, beyond any stretch of the imagination. Then the pre-
images of values of f can be awful sets – not at all obtainable in any constructive
way from intervals. The question is: Do all subsets have a measure (a “length”), as

20 First for non-negative functions, and then writing f = f +− f− with f± positive, one extends
the definition to arbitrary (measurable) functions.
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Fig. 4.13 In contrast to Riemann integration, where the x-axis is partitioned, in Lebesgue integra-
tion the y-axis is partitioned into cells of length 1/n, and the values fi = i/n are weighted with the
measure of the pre-images Ui = f−1[i/n,(i+1)/n]

we intuitively think they would have? The answer is negative. There are sets which
are not measurable.

This is an easy exercise in analysis. It forces us (it forced the mathematicians
of the early 20th century) to introduce a family of measurable sets. One should
think of these sets as “constructible” from intervals, and that family is called a Borel
algebra B(R). This is a σ -algebra.21 So f must be such that the pre-images of the
intervals on the y-axis are measurable. Such f are called measurable. It is easy to
make the above idea of integration precise. It is a rather dull exercise to establish
that all sets in B(R) are measurable. The important fact is in any case that the
intuitive notion of size of a set can be realized on the Borel algebra and is called
Lebesgue measure.22 The Lebesgue integral is the “measure” integral obtained with
the Lebesgue measure.

The relevant structure for generalizing the notions of set size and integra-
tion is

(
R,B(R),λ

)
, or for a finite measure space with the measure normalized,(

[0,1],B([0,1]),λ
)
. The generalization due to Kolmogoroff (the founder of ax-

iomatic probability theory) is
(
Ω ,B(Ω),P

)
, where in analogy with B([0,1]) being

generated by intervals on which the Lebesgue measure is “clear”, the σ -algebra
B(Ω) is now generated by some family of subsets of some “arbitrary” phase space
Ω on which the measure P is somehow clear and can be extended (in analogy with

21 A σ -algebra A (Ω) obeys:

(i) Ω ∈A ,
(ii) A ∈A =⇒ Ā ∈A ,
(iii) (Ai)i∈N ⊂A =⇒⋃

Ai ∈A .

22 There is a mathematical distinction between measurable and Borel-measurable. That distinction
comes from the fact that the Lebesgue measure can live on a larger algebra than the Borel algebra.
However, the enlargement consists of sets of Lebesgue measure zero. So forget about that.
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the Lebesgue measure) to the whole σ -algebra. But why is this triple the abstract
skeleton of probability theory?

Recall the coarse-graining description of our Galton board machine in Fig. 4.5.
The “fundamental” typicality was defined by the canonical measure on the phase
space Ω of all the balls in the container. This measure is mapped by the coarse-
graining function Y p :Ω →{0,1, . . . ,n} given by the sum Y p(ω) = ∑n

k=1 X p
k (ω) to

a discrete measure P
′ on the new phase space Ω ′ = {0,1, . . . ,n}, namely the image

space of Y p. So let us forget about the “true” space and let us do our analysis on the
image space

(
Ω ′,B(Ω ′),P′

)
. Then the general idea is this. Let

(
Ω ,B(Ω),P

)
be

a given probability space23 and suppose we are interested only in a coarse-grained
description of Ω by a coarse-graining function which is (very) many to one:

X :Ω −→Ω ′ .

Through X , the image space becomes a probability space
(
Ω ′,B(Ω ′),P′

)
,

with image measure P
′ = PX , given by

PX (A) = P
(
X−1(A)

)
. (4.38)

But this requires, and it is the only requirement a coarse-graining function must
fulfill,24 measurability:

X−1(M) ∈B(Ω) , (4.39)

for all M ∈ B(Ω ′). This allows two things. The coarse-graining function can be
integrated with P (by analogy with the Lebesgue integral), and it can transport the
“fundamental” probability space to the image space

(
Ω ′,B(Ω ′),P′

)
on which X ,

the coarse-graining function, is now the identity.
Such coarse-graining functions are called random variables, a horrible and mis-

leading terminology, because there is nothing random about them. In Euclidean ge-
ometry the axioms, if one wishes to be axiomatic about it, are no big deal. They
are obvious and readily implemented in proofs. But this is different in probability
theory. The axioms are abstractions, ready to be used, but there is a price to pay. The
price is that ontology sinks into oblivion. One easily forgets that there is a deeper
theory of which we only describe the image. Coin-tossing is trivial when described
by independent 1/2–1/2 probabilities. But how about the true physical process?

The expectation value E(X) is

23 That is just a name.
24 Because non-measurable sets exist!
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E(X) =
∫

X (ω)P(dω)

≈
∞

∑
k=0

k
n

P

(
X−1

[
k
n
,

k +1
n

])

=
∞

∑
k=0

k
n

PX

([
k
n
,

k +1
n

])

≈
∫
ω ′PX

(
dω ′

)
,

with (4.38). We shall see later that the expectation value predicts the empirical mean
(hence the name) as the image probability predicts the relative frequencies, because
the latter is E

(
χA(x)

)
= PX (A), with χA(x) the indicator function of the set A.

X can be vector-valued: X = (X1, . . . ,Xk), with Xi :Ω −→ Ω̃ , i = 1, . . . ,k. Then
PX = P(X1,... ,Xk) is a measure on

Ω ′ = Ω̃ × Ω̃ × . . .× Ω̃︸ ︷︷ ︸
k times

,

and

P(X1,... ,Xk)(M1× . . .×Mk) = P

({
X−1

1 (M1)∩X−1
2 (M2)∩ . . .∩X−1

k (Mk)
})

.

(4.40)

P(X1,... ,Xk) is called the joint distribution of the Xi. Setting some of the Mi = Ω̃ , so
that only Xi1 , . . . ,Xil remain specified, one calls the resulting distribution PXi1 ,... ,Xil

a l-point distribution and PXi the marginal distribution.25

Let us stick with
(
[0,1),B([0,1)),λ

)
for the moment and consider the coarse-

graining Rademacher functions rk(x), i.e., the numbers in the binary representa-
tion of x ∈ [0,1) (see Fig. 4.14). Take r1 : [0,1)→ {0,1}, which is clearly coarse-
graining, the image space being

(
{0,1},P({0,1}),Pr1

)
, where P({0,1}) is the

power set of {0,1} and

Pr1(0) = λ ({r−1
1 (0)}) = λ

([
0,

1
2

))
=

1
2

,

Pr1(1) = λ ({r−1
1 (1)}) = λ

([
1
2
,1

))
=

1
2

.

This is the probability space of the single coin toss: head = 0, tail = 1 and “a priori
probabilities” are each 1/2. Now go on with r1(x), . . . ,rn(x), . . . . It is clear from the
graphs that, for any choice (δ1,δ2,δ3) ∈ {0,1}3:

P(r1,r2,r3)(δ1,δ2,δ3) = λ
(
r−1

1 (δ1)∩ r−1
2 (δ2)∩ r−1

3 (δ3)
)

,

25 Note that X−1
i (Ω̃) =Ω .
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r r r

Fig. 4.14 The prototype of independent random variables as coarse-graining functions.
Rademacher functions rk given by the binary expansion of x ∈ [0,1): x = ∑∞k=1 rk2−k

and

λ
({

x|r1(x) = δ1
}
∩

{
x|r2(x) = δ2

}
∩

{
x|r3(x) = δ3

})
=

1
8

=
(

1
2

)3

= Pr1(δ1)Pr2(δ2)Pr3(δ3) .

Likewise

P(ri1 ,... ,rin )(δi1 , . . . ,δin) =
(

1
2

)n

=
n

∏
k=1

Prik
(δik) , (4.41)

and this property defines independence of the random variables ri1 , . . . ,rin . In gen-
eral, independent random variables X1, . . . ,Xn are defined by their joint distribution
being a product:

P(X1,... ,Xk) =
k

∏
i=1

PXi .

It follows that the expectation value of products of functions fi = gi(Xi) is the prod-
uct of the expectation values:

E( fi1 · · · fin) = E( fi1) · · ·E( fin) . (4.42)

In particular,

∫ n

∏
k=1

fik dP(ω) =
n

∏
k=1

∫
fik dP(ω) , (4.43)

a property which practically never holds. (Choose two functions and see whether
the integral, e.g., the usual Riemann integral, over their product equals the product
of the integrals.) One may recall also (4.34).
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The probability space generated by (r1, . . . ,rn) from
(
[0,1),B([0,1)),λ

)
is the

image space
(
{0,1}n,P({0,1}n),

n

∏
i=1

Pri

)
,

which is a perfect model for n-fold coin tossing. What is the “probability” that in
n tosses one has tails exactly l times? On the image space, this is a simple combi-
natorial exercise. There are

(n
l

)
n-tuples with 1 at exactly l places and everywhere

else zeros and each n-tuple has a priori probability 1/2n, and we add these to get the
answer (adding the measure of disjoint sets to get the measure of the union set is
intuitive and features as an axiom). But we can do this differently, taking the “funda-
mental” space seriously. And in the hope of gaining a better grasp of the difference,
we go through the tedious complication of computing from “first principles”. (This
has been copied from [14].)

The problem is to compute the measure of the set (heads=0, tails=1):

Al =
{

x
∣∣∣

n

∑
k=1

rk(x) = l

}
, i.e., λ (Al) =

∫
χAl (x)dx .

There is no need to be fancy here with the Lebesgue measure notation. Lebesgue
integration is simply Riemann integration here. The trick is now to recognize that

χAl (x) =
1

2π

∫ 2π

0
dyei[∑n

k=1 rk(x)−l]y .

We change the order of integration,

λ (Al) =
1

2π

∫ 2π

0
dy

∫ 1

0
dxei[∑n

k=1 rk(x)−l]y =
1

2π

∫ 2π

0
dye−ily

∫ 1

0
dx

n

∏
k=1

eirk(x)y ,

and by virtue of the very special property (4.41) in the form (4.43), this becomes

1
2π

∫ 2π

0
dye−ily

n

∏
k=1

∫ 1

0
dxeirk(x)y .

But
∫ 1

0
dxeirk(x)y =

1
2

+
1
2

eiy ,

and we get the answer

λ (Al) =
(

1
2

)n 1
2π

∫ 2π

0
dye−ily

(
1+ eiy

)n
=

(
1
2

)n (
n
l

)
,

with or without combinatorics, i.e., combinatorics has to come in anyway.
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4.3.2 The Law of Large Numbers

What does it mean to say that the number
(

1
2

)n (
n
l

)

is the probability for exactly l heads in n tosses? According to Boltzmann it means
that typically, in a large number N of trials of n coin tosses, one finds that the relative
fraction of outcomes with exactly l heads in n tosses is close to the above number.
In other words, it is the theoretical prediction of the empirical distribution.

Let us go through a toy model for such a prediction concerning the probability of
a single coin toss. The idea is to create an ensemble, tossing n coins simultaneously
or tossing one coin n times. We use the Rademacher coarse-graining function r1 as
the map from the fundamental phase space to the outcome. We can even produce a
dynamical picture by invoking the Bernoulli map T (see Fig. 4.10) with the prop-
erty (4.31), which is in fact isomorphic to the shift map analogous to Fig. 4.11. To
see this, we generalize to the infinite family (r1, . . . ,rn, . . .) of Rademacher func-
tions. This is nice because it gives us the chance to explain the construction of more
abstract probability spaces.

We need to construct the image Borel algebra B({0,1}N) over the image space
of infinite 0–1 sequences. We know the “infinite product” measure PB on cylinder
sets (playing the role of the intervals). These are sets specified by finitely many
coordinates, while all other coordinates are free, like a cylinder extending freely
over a base:

Zi1,... ,in(δ1, . . . ,δn) =
{
ω ∈ {0,1}N, ω = (. . . , δ1︸︷︷︸

i1th place

, . . . , δn︸︷︷︸
inth place

, . . .)
}

.

This means that, in the infinite sequences, the i1th to inth places are determined and
all other places are free. The measure of the cylinder set is defined by

PB

(
Zi1,... ,in(δ1, . . . ,δn)

)
:= P(ri1 ,... ,rin )(δ1, . . . ,δn) =

(
1
2

)n

, (4.44)

the product measure. The Borel algebra B({0,1}N) is now generated by cylin-
der sets Z...(. . .). The measure PB , fixed on cylinder sets, extends to the algebra
B({0,1}N) and is a product measure called Bernoulli measure. The shift Φs acts
on the sequence space Ω = {0,1}N, shifting to the left and cutting away entries left
of the zero. We see immediately on cylinder sets that the measure is stationary with
respect to the shift

PB

(
(Φs)−1Zi1,... ,in(δ1, . . . ,δn)

)
= PB

(
Zi1+1,... ,in+1(δ1, . . . ,δn)

)
=

(
1
2

)n

= PB

(
Zi1,... ,in(δ1, . . . ,δn)

)
, (4.45)
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and we conclude that the measure is invariant. It comes as no surprise that we now
have two isomorphic (via binary representation) dynamical systems. The one on
the left we call fundamental, while the one on the right we think of as being the
description on the coarse-grained level:26

(
[0,1),B

(
[0,1)

)
,T,λ

)
∼=

(
{0,1}N,B

(
{0,1}N

)
,Φs,PB

)
(4.46)

and

ri+1
∼= ki+1 th coordinate ofω ∈ {0,1}N

= r1(T ix)

= k1(Φ i
sω) . (4.47)

We can interpret the random variables ri or ki as arising dynamically from T or from
the shift Φs.

Now take (4.46) as the fundamental model of a coin-tossing experiment, with
r1

(
T k(x)

)
resulting from the k th toss. Suppose that in the first n tosses we obtained

results δ1, . . . ,δn. What does the theory predict for the (n+1)th toss? Put differently,
suppose we know r1

(
T i(x)

)
, i = 1, . . . ,n. What do we learn from that about x, so

that we can be smart about our guess for the next result r1
(
T n+1(x)

)
? Nothing! No

matter how often we toss, in this theory, we remain absolutely ignorant about future
results.27 In this sense a typical x ∈ [0,1] represents absolute uncertainty.

Now here is a straightforward generalization of the foregoing:

Definition 4.3. A sequence (Xi)i∈Z (Z is more comfortable than N) of identically
distributed independent random variables on

(
Ω ,B(Ω),P

)
is called a Bernoulli

sequence. The Xi are identically distributed if PXi = PX0 .

Every Bernoulli sequence represents a dynamical system. Let X0 ∈ E. Construct
(
EZ,B(EZ),Φs,PB

)
,

with the Bernoulli shift

Φs : EZ −→ EZ ,

a shift of one place to the left, and

PB =∏
i∈Z

PXi .

On the new space Xi becomes ki
(
(en)n∈Z

)
, where en ∈ E for all n ∈ Z, or equiva-

lently k0

(
Φ i

s

(
(en)n∈Z

))
. With (Xi)i∈N, then

(
f (Xi)

)
i∈N

is also a Bernoulli sequence.

26 There is of course the one-to-one map of the binary expansion between the two phase spaces,
since the phase space on the right contains infinitely extended sequences.
27 This sounds almost like the irreducible probability in quantum mechanics, does it not?
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Finally we can arrive at the empirical distribution ρ(N)
emp, the object of interest

our mathematical theory of probability should predict. The prediction will be of
Boltzmann-type certainty, i.e., not certain but typical. The overwhelming majority
of ωs will agree upon what the empirical distribution will be. The empirical distri-
bution or relative frequency is a random variable, a density for that matter. For the
Rademacher functions,

ρ(N)
emp(y,x) =

1
N

N

∑
k=1

δ
(
rk(x)− y

)

=
1
N

N−1

∑
k=0

δ
(

r1
(
T k(x)

)
− y

)
[by (4.47)] ,

or equivalently on the image space,

ρ(N)
emp(y,ω) =

1
N

N−1

∑
k=0

δ
(

k1
(
Φk

s (ω)
)
− y

)
[by (4.47)] .

If one feels uncomfortable with the δ -density, one can simply integrate a function
of interest, e.g., the indicator function of a set (which yields the relative frequency
of ending up in that set) or simply the identity, yielding the empirical mean of the
random variable:

ρ(N)
emp( f ,x) :=

∫
f (y)ρ(N)

emp(y,x)dy (4.48)

=
1
N

N

∑
k=1

f
(
rk(x)

)
(4.49)

=
1
N

N−1

∑
k=0

f
(

r1
(
T k(x)

))
(4.50)

=
1
N

N−1

∑
k=0

f
(

k1
(
Φk

s (ω)
))

. (4.51)

This not only looks like, but actually is an ergodic mean [compare (4.32)], and
since independence is stronger than ergodicity, we could conclude from Birkhoff’s
theorem that

ρ(N)
emp( f ) N−→∞−→ E

(
ρ(N)

emp( f )
)

= E
(

f (r1)
)

=
1
2

f (1)+
1
2

f (0) , (4.52)

for almost all x, i.e., the exceptional set will have Lebesgue measure zero, equiva-
lently for PB-almost all ω . We rephrase this for f (y) = χ{1}(y), observing that rk

takes only values zero or one, in the form:

Theorem 4.2. For all ε > 0,

λ

({
x ∈ [0,1)

∣∣∣ lim
N→∞

∣∣∣∣∣
1
N

N

∑
k=0

rk(x)−
1
2

∣∣∣∣∣ > ε

})
= 0 .



4.3 Probability Theory 105

This theorem, which has a rather simple proof when one knows a bit of Lebesgue
integration theory, says that the typical number in the interval [0,1) is a normal
number, meaning that the binary expansion28 yields a 0–1 sequence with relative
frequency 1/2 of 1s. It is the fundamental theorem about numbers in the contin-
uum and the Lebesgue measure. It marks the beginning of probability theory as a
purely mathematical discipline, and it is moreover the prototype of the prediction
for empirical densities we can only hope for in physically relevant situations.

We shall be content with a weaker assertion, namely where the limit is taken out-
side the measure. In mathematics this is then called the weak law of large numbers,
while Theorem 4.2 is referred to as the strong law of large numbers. We prove the
weak law in the abstract setting:

Theorem 4.3. Let (Xi)i∈N be a Bernoulli sequence of identically distributed random
variables Xi on

(
Ω ,B(Ω),P

)
. Let E(X2

i ) = E(X2
0 ) < ∞. Then, for any ε > 0,

P

({
ω

∣∣∣
∣∣∣∣∣

1
N

N

∑
k=1

Xk(ω)−E(X0)

∣∣∣∣∣ > ε

})
≤ 1

Nε2

[
E(X2

0 )−E(X0)2
]

. (4.53)

Let us make a few remarks:

(i) For simplicity of notation and without loss of generality, we have used Xi

instead of f (Xi), where f is some function of interest.
(ii) Under the conditions assumed here (ergodicity is sufficient, we assume in-

dependence), the theoretical prediction for the empirical distribution is given
by the theoretical expectation of the empirical distribution. Here, because of
“stationarity” or identical distribution,

E

(
1
N

N

∑
k=1

Xk(ω)

)
=

1
N

N

∑
k=1

E(Xk) =
1
N

NE(X0) = E(X0) .

(iii) Taking the limit N→ ∞, we obtain zero on the right-hand side.
(iv) What does this theorem say? The typical value for the empirical distribution

is its theoretical expectation. The latter is commonly referred to as “probabil-
ity”.

Rephrasing this in a formula, the theorem asserts that, for a Bernoulli sequence
X0, . . . ,XN ,

P

({
ω

∣∣∣
∣∣∣∣ρ(N)

emp( f ,ω)−
∫

f (ω)dPX0

∣∣∣∣ > ε
})

N−→∞−→ 0 . (4.54)

Proof. Start with the set whose measure is taken and rewrite it

28 It is easy to see that this is true for every p-adic expansion.
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AN
ε =

{
ω

∣∣∣
∣∣∣∣∣

1
N

N

∑
k=1

Xk(ω)−E(X0)

∣∣∣∣∣ > ε

}
(4.55)

=

⎧⎨
⎩ω

∣∣∣
[

1
N

N

∑
k=1

[
Xk−E(Xk)

]]2

> ε2

⎫⎬
⎭ . (4.56)

Then observe that

P(AN
ε ) = E

(
χAN

ε

)
=

∫
χAN

ε
(ω)dP(ω) .

It is always good to have an integral over a function, because that can be estimated
by a bound on the function. In this case, we use a trivial upper bound, which obvi-
ously holds true in view of the above rewriting of the set AN

ε :

χAN
ε
(ω)≤

[
1
N

N

∑
k=1

[
Xk−E(Xk)

]]2

ε2 .

Hence,

P(AN
ε )≤

∫
[

1
N

N

∑
k=1

[
Xk−E(Xk)

]]2

ε2 dP(ω)

=
1

N2ε2 E

([ N

∑
k=1

Xk−E(Xk)
]2

)

=
1

N2ε2 E

(
N

∑
k=1

[
Xk−E(Xk)

]2

)
+

1
N2ε2 E

⎛
⎜⎜⎝

N

∑
k, j=1
k �= j

[
Xk−E(Xk)

][
Xj−E(Xj)

]
⎞
⎟⎟⎠ ,

and using the fact that the variables are identically distributed and independent
(4.42), we continue

=
1

Nε2 E

([
X0−E(X0)

]2
)

+
1

N2ε2

N

∑
k, j=1
k �= j

E
(
Xk−E(Xk)

)
E

(
Xj−E(Xj)

)

=
1

Nε2

[
E(X2

0 )−E(X0)2
]

.

We have also used the trivial fact that E
(
X−E(X)

)
= 0.

This computation is instructive and should be thoroughly mastered.29

29 The first inequality is Tchebychev’s. As trivial as the inequality is, it is very useful.
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Chapter 5
Brownian motion

Brownian motion has been observed since the invention of the microscope (circa
1650). The biologist Robert Brown (1773–1858) published systematic experimental
studies of the erratic motion of pollen and of other microscopically visible grains
swimming in drops of water. He called them primitive molecules, and it was unclear
what made them move. In 1905, Albert Einstein predicted a diffusive motion of
mesoscopic particles (i.e., macroscopically very small, but still visible through a
microscope) immersed in a fluid, by adopting Boltzmann’s view of atomism. When
the molecules in the fluid undergo heat motion and hit the mesoscopic particle in
a random manner, they force the particle to move around erratically. He suggested
that this might be the already known Brownian motion.

We shall give Einstein’s argument, which has surprisingly little to do with the
microscopic motion of atoms, and illustrates his genius once again. Independently
of Einstein, Smoluchowski explained Brownian motion as arising from molecular
collisions. His argument is stochastic and is based on the

√
N “density fluctuations”,

thereby disproving claims by his contemporaries that the molecular collisions, if
happening at all, would average out to zero net effect. We shall also discuss this for
a toy example.

Brownian motion proved to the unbelievers of Boltzmann’s time that atoms do
in fact exist. The quantitative prediction – diffusive motion – was experimentally
verified by Perrin, who received the Nobel prize for that. Although based on the
atomistic nature of matter, Brownian motion is not a quantum phenomenon. The
reader should therefore ask why we need to know more about Brownian motion,
when we have long since accepted the atomistic view of nature? The answer is that
it is a physical phenomenon of the uttermost importance, because it bridges a gap
between the microscopic and the macroscopic worlds, very much as Boltzmann’s
equation does, except that Brownian motion is simpler. It is good to see the transi-
tion from microscopic to macroscopic dynamics at work. It shows that macroscopic
motion can look totally different (diffusive and irreversible) from microscopic mo-
tion (ballistic and reversible). Finally, the heat equation which governs the probabil-
ity of Brownian motion is Schrödinger’s equation with imaginary time, a technical
feature that is sometimes put to use.

D. Dürr, S. Teufel, Bohmian Mechanics, DOI 10.1007/978-3-540-89344-8 5, 109
c© Springer-Verlag Berlin Heidelberg 2009
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5.1 Einstein’s Argument

This is taken from [1]. Imagine very many Brownian particles in a fluid. Very many,
but not enough to form a crowd, i.e., a low density dilution. The Brownian particles
themselves do not meet. The dilution can be treated as an ideal gas. For simplicity
imagine that the density depends only on the x-coordinate. We thus have an en-
semble of independent Brownian particles in the fluid, and according to the law of
large numbers, the empirical density (Boltzmann’s view!) is given by the probability
density, i.e.,

ρ(x, t) =
N(Adx, t)

Adx
,

where A is the area perpendicular to the x-axis and N is the number of Brownian
particles in the volume Adx (see Fig. 5.1).

The aim is to derive an equation for the probability density ρ , the determination
of which has been transferred by the law of large numbers to that of a thermody-
namic quantity, which is all Einstein uses. The microscopic picture ends here. So
far, this is all there is in Boltzmann’s way of thinking. Now comes Einstein’s inno-
vation. Let mB be the mass of the Brownian particle. Then ρ(x, t)mB = ν(x, t) gives
the gram-moles per unit volume. The mass flux in the x-direction is governed by the
continuity equation

∂ν(x, t)
∂ t

=−∂ j
∂x

,

where j is the mass flux through A. We now make a phenomenological ansatz, to be
justified shortly. We shall assume that the flux is proportional to the gradient of ν
and that the flux goes from high concentration to low concentration, bringing in the
minus sign (the factor 1/2 is chosen for later convenience):

j =−1
2

D
∂ν
∂x

, (5.1)

whence we obtain the desired equation

∂ν(x, t)
∂ t

=
1
2

D
∂ 2ν
∂x2 . (5.2)

d x

A A’

Fig. 5.1 Formulating the problem of Brownian motion
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The constant D needs to be determined. The determination of D, and in fact the
“derivation” of (5.1), is where Einstein’s genius shows through.

We first derive the osmotic force acting on a Brownian particle. Let p and p′ be
the pressures exerted by the Brownian gas on the areas A and A′, respectively. The
pressure difference is known as the osmotic pressure, and the osmotic force per unit
volume (Adx) is (ignoring the time dependence to simplify the notation):

(p− p′)A
Adx

=
dp
dx

.

Now p obeys the gas law pAdx = n(x)RT , so p = n(x)RT , with n(x) the number of
moles per unit volume, which depends here on x. Hence

(p− p′)A
Adx

= RT
∂n(x)
∂x

.

From this we deduce the osmotic force F per particle, observing that, in terms of
Avogadro’s number NA, the total osmotic force (p− p′)A = Fn(x)NA. Hence,

F =
1

n(x)
kBT

∂n(x)
∂x

,

where we have used the definition of Boltzmann’s constant kB = R/NA.
The osmotic force accelerates the Brownian particle but the particle also suffers

friction FR = −γv, where γ is the friction coefficient and v the velocity. In equilib-
rium the osmotic force equals the friction force, so that

−γv =
1

n(x)
kBT

∂n(x)
∂x

and

−n(x)v =
kBT
γ
∂n(x)
∂x

,

and since

n∼ ν
mB

,

we obtain

−ν(x)v =
kBT
γ
∂ν(x)
∂x

.

So what has been achieved? We have derived (5.1), i.e., we have determined D! The
reason is simply that ν(x)v = j, the mass flux through A. Hence,

1
2

D =
kBT
γ

,
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the Einstein relation, one of the most famous formulas of kinetic theory. Here is
one reading of it. The fluid molecules are responsible for pushing the Brownian
particle, and at the same time, by the very same effect, namely collisions, they slow
the particle down. Fluctuation (D, which is measurable!) and dissipation (γ , which
is measurable!) have one common source: the molecular structure of the fluid. It
is no wonder then that they are related. The greatness of Einstein’s contribution is,
however, that it is directly aimed at the determination of the diffusion constant in
terms of thermodynamic (i.e., measurable) quantities. We give a realistic example
for D below.

Let us immediately jump to three dimensions and rephrase the result (5.2) as the
diffusion equation for p(x, t;x0), where p(x, t;x0)d3x is the probability of finding
the particle within d3x around x at time t, when the particle is put into the fluid at
the position x0 at time 0:

∂
∂ t

p(x, t;x0) =
1
2

D
∂ 2

∂x2 p(x, t;x0) , (5.3)

with

p(x,0;x0) = δ (x−x0) . (5.4)

Let us make some remarks on the equation and its solution. The initial condition
(5.4) defines the fundamental solution of (5.3), which generates solutions for any
initial distribution by integration:

ρ(x, t) =
∫

p(x, t;x0)ρ(x0)d3x0 .

It also solves (5.3) and is the probability density for finding the particle at x at time t
when at time 0 the initial distribution of the position is ρ(x0), with

∫
ρ(x0)d3x0 = 1.

Note that (5.3) is not time-reversal invariant. The equation describes the time-
irreversible spreading of diffusive motion. Temperature does spread in that way
through a medium. Hence the name heat equation. One solves (5.3) by Fourier
decomposition, viz.,

p̂(k, t;x0) = (2π)−3/2
∫

e−ik·x p(x, t;x0)d3x ,

and obtains

p̂(k, t;x0) = e−k2Dt/2 p̂(k,0;x0)

= (2π)−3/2e−k2Dt/2e−ik·x0 . (5.5)

Hence,

p(x, t;x0) =
1

(2π)3

∫
eik·xe−k2Dt/2e−ik·x0d3k , (5.6)
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a straightforward Gaussian integration:

p(x, t;x0) =
1

(2π)3

∫
eik·(x−x0)e−k2Dt/2d3k

=
1

(2π)3

(
2

Dt

)3/2

exp

[
− (x−x0)2

2Dt

]∫
e−y2

d3y

= (2πDt)−3/2 exp

[
− (x−x0)2

2Dt

]
, (5.7)

where one should know that
∫

e−y2
d3y =

∫
e−x2

dx
∫

e−y2
dy

∫
e−z2

dz = π3/2 . (5.8)

In one dimension,

p(x, t;x0) =
1√

2πDt
e−(x−x0)2/2Dt . (5.9)

Imagine now the zigzag paths X(t), t ∈ [0,∞) of the Brownian particle. The distri-
bution p(x, t;x0) is the image distribution of the coarse-graining variable X(t), the
position of the Brownian particle at time t. The position is diffusive, which means
that the expectation value of X2(t) is proportional to t with proportionality given by
D:

E

((
X(t)−x0

)2
)

=
1

√
2πDt

3

∫
(x−x0)2e−(x−x0)2/2Dtd3x

=
3

√
2πDt

3

(∫
e−z2/2Dtdz

)2 ∫
y2e−y2/2Dtdy

=
3(2π)Dt
√

2πDt
3 (−2Dt)

d
dα

∫
e−αy2/2Dtdy

∣∣∣∣
α=1

= 3Dt .

It was this diffusive behavior 〈X2(t)〉 ∼ t that Perrin verified. D can be determined
(Stokes’ friction law for the friction of a ball in a fluid brings in the viscosity) and
that can also be checked quantitatively. For a Brownian ball with radius a in a fluid
with viscosity η ,

D =
kBT

6πηa
.

The friction can be measured (as can η and a), and T can be measured. Then since
D can be determined from the measured variance of X(t), one can determine kB or
Avogadro’s number [2].
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This is a masterpiece of theoretical thought, comparable to Boltzmann’s deriva-
tion of the Boltzmann equation. While the latter is far more complicated, because it
does not focus on the special Brownian particles but on the fluid itself, resulting in
a nonlinear equation for the phase space density, the former allows a direct view of
the molecular motion via the mesoscopic Brownian particle as mediator. This might
explain why physicists were converted to atomism only after the work of Einstein
and Smoluchowski had become known in 1905/1906.

5.2 On Smoluchowski’s Microscopic Derivation

The microscopic dynamics of the fluid molecules is time-reversal invariant. The mo-
tion of the Brownian particle is governed by a time-irreversible equation. The idea
that the Brownian particle is kicked from all sides by the fluid molecules suggests
that the effects should balance out, whence no net motion should be visible. So why
do the collisions have a nonzero net effect? Why is the motion diffusive? Why is
the probability Gaussian? Smoluchowski gives answers based on microscopic prin-
ciples. We do not present his work (see, for example, the collection [3]), but rather
jump to a toy model which is in the same spirit, and quite adequate to understand the
basic idea. It is a purely mathematical model of Brownian motion, which we phrase
in physical terms, but it lacks essentially all of the physical ingredients which make
Brownian motion (diffusion) a very difficult problem of mathematical physics when
one starts from first principles and aims for rigor.

The model is one-dimensional. All molecules move on the x-axis. At time 0,
the system has the following state. It consists of infinitely many identical parti-
cles {qi,vi}i∈Z, qi = il (i.e., qi ∈ lZ), vi ∈ {−v,v}, where one should think of l
as representing the mean distance between the molecules in a real fluid. The vi

are independently drawn from {−v,v} with probability 1/2. The phase space is
Ω = {ω|ω = (il,±v)i∈Z} with product probability PB . The particles interact via
elastic collisions. Since they all have equal masses, the worldline picture of the sys-
tem is simply given by spacetime trajectories which cross each other as shown in
Fig. 5.2.

Focus on the particle starting at X = 0, i.e., color it brown and follow the brown
trajectory Xt , which is a zigzag path. We call it the Brownian particle. All other
particles represent the molecules of the fluid. (Xt)t≥0 is a coarse-graining function
depending on ω , and

(
Xt(ω)

)
t≥0 is a stochastic process.

What is non-equilibrium about that? The answer is: putting the Brownian particle
at the origin at time zero. What is artificial in the model?

• The dynamics is not given by differential equations.
• The system is infinite, which must eventually be the case for sharp mathematical

statements. Poincaré cycles must be “broken”.
• The brown particle is only distinguished by color, not by its dynamics. It is in

reality very much bigger and heavier.
• The fluid particles should be distributed according to the canonical distribution.
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Fig. 5.2 A microscopic Brownian path. Note that the initial positions of the “bath particles” are
drawn randomly. They may be distributed according to a Poisson distribution, but in the text we
handle the simpler case where the particles start on a lattice with spacing l

Having said all this, the model nevertheless shows the characteristic macroscopic
behavior we are after, without all the extreme complications a realistic model would
introduce.

So let us move on to Xt(ω), the brown path. It can be described as follows. Every
Δt = l/2v, there is a change of direction with probability 1/2, and

Xt ≈ ∑
1≤k≤[t/Δt]

Δxk , (5.10)

where the Gauss bracket [a] means the greatest whole number ≤ a, and Δxk ∈
{−l/2, l/2} are independently identically distributed random variables assuming
values Δxk = ±l/2 with probability 1/2. The approximation in (5.10) concerns the
last time interval

[
[t/Δt]Δt, t

]
and is unimportant. This is simply a nuisance to carry

around and we shall ignore it here. Xt is thus a sum of independent random variables.
The expectation value is

E(Xt) = E

(
∑

1≤k≤[t/Δt]
Δxk

)

= ∑
1≤k≤[t/Δt]

E(Δxk)

=
[ t
Δt

][
1
2

(−l)
2

+
1
2

l
2

]

= 0 , (5.11)

and its variance (which we should know by now, having proven the law of large
numbers) is
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E(X2
t ) = ∑

1≤k≤[t/Δt]
E(Δx2

k)

=
[ t
Δ t

](
1
2

l2

4
+

1
2

l2

4

)

=
l2

4

[ t
Δt

]

∼ t . (5.12)

Hence heuristically X(t) ∼
√

t. This is what we are interested in. We do not care
about single collisions on the molecular scale, but only about the macroscopic
growth of brown’s position. We investigate that by scaling. We go to a larger scale in
space and time. The interesting thing is to see how this is done. We go on the diffu-
sive scale, i.e., when time gets enlarged by a factor 1/ε . Then when ε gets small, the
Brownian motion will vanish from sight. To maintain eye contact, we must rescale
its position by a factor

√
ε . For ε → 0,

Xεt = εXt/ε2 . (5.13)

One second for Xεt corresponds to 1/ε2 seconds for the brown path, which means
∼ 1/ε2 collisions have occurred. Moreover,

E
(
(Xεt )2) = ε2

E(X2
t/ε2)∼ ε2 t

ε2 = t .

What is the distribution pε(x, t) of Xεt ? We get this via the Fourier transform of the
distribution p̂ε(k, t). This is so important that it has a name all of its own, viz., the
characteristic function:

(2π)3/2 p̂ε(k, t) =
∫

e−ikx pε(x, t)dx = E(e−ikXεt ) .

We see immediately why this is useful, because introducing (5.10) yields
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(2π)3/2 p̂ε(k, t) = E

[
exp

(
− ik ∑

n≤[t/ε2Δt]

εΔxn

)]

= E

(
∏

n≤[t/ε2Δt]

e−ikεΔxn

)

= ∏
n≤[t/ε2Δt]

E
(
e−ikεΔxn

)

= ∏
n≤[t/ε2Δt]

E

(
1− ikεΔxn−

1
2

k2ε2(Δxn)2 +o(ε2)
)

= ∏
n≤[t/ε2Δt]

[
1− 1

2
k2ε2 l2

4
+o(ε3)

]
.

The third equality is obtained because, by independence, expectation and product
can be interchanged, and the fourth equality is obtained by expanding the exponen-
tial. In addition, we have used (5.11) and (5.12). Choosing a sequence of ε so that
t/ε2Δt = N ∈ N,

(2π)3/2 p̂ε(k, t) =
[

1− 1
N

k2l2t
8Δt

+o

(
1
N

)]N

.

For N→ ∞, i.e., ε → 0, this converges to

(2π)3/2 p̂(k, t) = exp

(
−k2l2

8Δt
t

)
,

and observing that Δt = l/2v, we obtain

p̂(k, t) = (2π)−3/2 exp

(
−k2lv

4
t

)
.

Comparing with (5.5), we see that

D =
1
2

lv ,

whence

p(x, t) =
1√

2πDt
e−x2/2Dt =

1√
πlvt

e−x2/lvt . (5.14)

Setting ρ = 1/l as the fluid density and η = vρ as the viscosity, this allows for a
somewhat artificial macroscopic interpretation of the diffusion coefficient, namely
D = v2/2vρ ∼ kBT/η . This is physically reasonable. The diffusion is greater when
the fluid is less viscous and when the “temperature” increases. One should observe
that the limit ε→ 0 means that we consider the microscopic motion in infinite time,
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whence the system must consist of infinitely many particles and extend infinitely in
space to avoid cycles. It is only in the limit that irreversibility becomes “true”.

What we have done mathematically is to “prove” what is known as the central
limit theorem for independent variables.1

5.3 Path Integration

In (5.14), we only looked at the scaled position at time t. What can be said about
the scaled process (Xεt )t∈[0,∞)? We look at cylinder sets in the set of continuous
functions on the interval [0,T ], T < ∞, denoted by C([0,T ]). For this purpose we
consider, at arbitrarily chosen times t1, . . . , tn, what we call gates Δi⊂R, i = 1, . . . ,n,
through which the functions are required to pass (see Fig. 5.3). This defines a set of
functions, namely the cylinder set

Zt1,... ,tn(Δ1, . . . ,Δn) =
{
ω(t) ∈C([0,T ])

∣∣ω(t1) ∈ Δ1, . . . ,ω(tn) ∈ Δn

}
,

the measure of which is induced by the process Xεt :

P
ε(Zt1,... ,tn(Δ1, . . . ,Δn)

)
= PB

({
ω|Xεt1(ω) ∈ Δ1, . . . ,X

ε
tn(ω) ∈ Δn

})
. (5.15)

This can be read as follows. A trajectory which lies in Zt1,... ,tn(Δ1, . . . ,Δn) starts at
zero and goes to X1 ∈ Δ1, and from there to X2 ∈ Δ2, and so forth. We can view
(5.14) as the probability that a trajectory goes from 0 to x1 in time t1 :

p(x1, t1;0) =
1√

2πDt1
e−x2

1/2Dt1 .

Consider now the process Xεt starting in x1 at time t1. It is intuitively clear that the
distribution of Xεt2 is

p(x2, t2;x1, t1) =
1√

2πD(t2− t1)
e−(x2−x1)2/2D(t2−t1) .

Putting this together, we expect an n-dimensional Gaussian distribution for (5.15)
in the limit ε → 0:

1 It is easily made mathematically rigorous and the assertion is as follows. Let (Xi)i∈N be a se-
quence of identically independently distributed random variables with E(Xi) = 0, E(X2

i ) = σ2 �= 0
on

(
Ω ,B(Ω),P

)
and assume (for an easy proof) that E(|X |3) is finite. Then for Sn = ∑n

i=1 Xi,

lim
n→∞

P

({
ω

∣∣∣ 1√
n

Sn(ω) ∈ [a,b]
})

=
b∫

a

1√
2πσ

e−x2/2σdx .

This tells us how big fluctuations about the typical value are, which is the
√

N law.
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Fig. 5.3 Cylinder set

P
(
Zt1,... ,tn(Δ1, . . . ,Δn)

)
(5.16)

=
∫
Δ1

dx1

∫
Δ2

dx2 . . .

∫
Δn

dxn

exp

[
− x2

1

2Dt1

]
√

2πDt1

exp

[
− (x2− x1)2

2D(t2− t1)

]
√

2πD(t2− t1)
· · ·

exp

[
− (xn− xn−1)2

2D(tn− tn−1)

]
√

2πD(tn− tn−1)
.

The cylinder sets generate the Borel algebra B(C[0,T ]).
One needs a bit of reflection to convince oneself that B(C[0,T ]) is the Borel

algebra generated by open sets in the uniform topology |ω|∞ = supt∈[0,T ] |ω(t)|.
The corresponding measure on function space C([0,T ]) is then the so-called Wiener
measure μW, which is a Gaussian measure. The process (Wt)t∈[0,∞), the distribution
of which is given by (5.16), is called a Wiener process or Brownian motion process.
Having a measure on function space, we can integrate functions C([0,T ]) �→ R

n

(analogously to Lebesgue integration). This integration is sometimes referred to as
functional integration, Feynman–Kac path integration, or simply path integration.
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Chapter 6
The Beginning of Quantum Theory

We shall keep this short. Classical physics, by which we mean Newton’s laws and
the Maxwell–Lorentz theory (see Chap. 2), fails to explain many atomistic phenom-
ena, apart from the coarse-grained phenomena we discussed in previous chapters.
This means that attempts to explain atomistic detail look artificial, and are no longer
believable. In other words, straightforward application of classical physics yields
descriptions that contradict experience in certain situations. In that sense, for exam-
ple, Newtonian mechanics is superior to the theory of epicycles, which was invented
to save Ptolemy’s geocentric astronomy, because the Newtonian explanation of the
motion of heavenly bodies is straightforward and reduces to a single equation: New-
ton’s equation. The failures of classical physics in the atomistic regime are mirrored
in the names of certain effects, such as the anomalous Zeeman effect. This refers to
the complicated splitting of spectral lines in magnetic fields that was found experi-
mentally, while Lorentz’s classical analysis led to the “normal” Zeeman effect.

A famous example leading to quantum mechanics is black body radiation. This
is the radiation in a box, the walls of which are kept at a fixed temperature T , so that
a thermodynamic equilibrium between radiation and walls is achieved. The distri-
bution of the energy H of the radiation is then given by the canonical distribution
(4.7):

exp

(
− 1

kBT
H

)

Z(T )
. (6.1)

In view of (2.44) with jμ = 0 (and c = 1), we have

(
∂ 2

∂ t2 −Δ
)

Aμ = 0 , (6.2)

and with Fourier transformation,
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Aμ(x, t) =
1

(2π)3/2

∫
d3k e−ik·xÂμ(k, t) , (6.3)

the Fourier modes are found from (6.2) to be

¨̂Aμ(k, t) =−k2Âμ(k, t) . (6.4)

For k fixed, (6.4) is the harmonic oscillator equation with oscillator frequency
ω(k) = ‖k‖, i.e.,

q̈ =−k2q (=−ω2q) . (6.5)

Therefore electromagnetic radiation consists of uncoupled harmonic oscillators.1

Every k-mode Âμ(k, t) has frequency ω = ‖k‖. The functional dependence ω(k) is
called a dispersion relation.

Let us now consider one oscillator (6.5) and determine its mean energy at tem-
perature T :

H =
1

2m
p2 +

1
2

mω2q2

and

E(ω) =
∫

e−βHHdqdp∫
e−βHdqdp

= − d
dβ

ln

{∫
exp

[
−β

(
1

2m
p2 +

1
2

mω2q2
)]

dqdp

}

= − d
dβ

ln
2π
ω

1
β

=
1
β

= kBT .

Hence every ω-mode has the average energy kBT and the number of modes in
[ω,ω + dω] is given by the number of k′ ∈ [k,k + dk] which is 4πk2dk, whence
the number of modes is 4πω2dω . We thus obtain the average energy U(ω,T ) of
radiation at temperature T :

U(ω,T )dω ∼ kBTω2dω , (6.6)

which is called the Rayleigh–Jeans distribution. Experimentally, one finds some-
thing else, something more reasonable for large ω . What one finds is what the physi-
cist Wien had predicted in (1896) when he was working on the Stefan–Boltzmann
law, according to which there is a function f such that

U(ω,T )dω ∼ ω f
(ω

T

)
ω2dω .

Wien argued that

1 jμ in (2.44) can be thought of as generating oscillations.



6 The Beginning of Quantum Theory 123

f
(ω

T

)
= h̄e−h̄ω/kBT ,

so that

U(ω,T )dω ∼ h̄ωe−h̄ω/kBTω2dω (Wien’s law) . (6.7)

The new constant h̄ = h/2π is to be determined by experiment. Planck then found
an interpolation between Wien and Rayleigh–Jeans which in fact reproduced the
observed E(ω) in its totality. To his own discontent he had to assume in an ad hoc
manner that the oscillators he hypothesised in the walls of the black body could only
absorb and emit discrete energies nh̄ω , n = 0,1,2, . . . .

The whole paper was very involved. But then Einstein came into the picture. He
took the field – the radiation – as physically real, and assumed that it satisfied a dif-
ferent law from what had previously been thought. But, with typical genius, he noted
that we do not need to know what the law looks like. In fact it suffices to suppose
that the energy of radiation of frequency ω can only be an integer multiple of h̄ω .
Then everything is suddenly trivial. We take the usual thermodynamical statistics,
but with a different dynamics of which we only know En(ω) = nh̄ω . Then,

E(ω) = − d
dβ

ln
∞

∑
n=0

e−βEn =− d
dβ

ln
∞

∑
n=0

e−βnh̄ω (6.8)

= − d
dβ

ln

(
1

1− e−β h̄ω

)
=

h̄ωe−β h̄ω

1− e−β h̄ω , (6.9)

which gives Planck’s celebrated radiation formula

U(ω,T )dω ∼ h̄ωe−h̄ω/kBT

1− e−h̄ω/kBT
ω2dω . (6.10)

For kBT � h̄ω (high temperature, small frequency), we obtain approximately

E(ω)≈
h̄ω

(
1− h̄ω

kBT

)

h̄ω
kBT ≈ kBT .

When inserted in (6.10), this yields (6.6). And for kBT � h̄ω , we have

E(ω)≈ h̄ωe−h̄ω/kBT ,

from which we get Wien’s law (6.7).
The new description of the electromagnetic field in terms of energy quanta – pho-

tons of energy h̄ω – also provided a straightforward explanation of the photoelectric
effect, discovered by Hertz in 1880. Einstein did that in the second of his funda-
mental 1905 works, and received the Nobel prize for it. A strange thing about this
is that neither Einstein (and he did not pursue the question any further, but moved
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on to gravitation) nor ourselves know today what “photons” really are. Are they
particles? Are they extended objects? Are they anything at all?

A similar ansatz was given by Bohr in 1913 for the angular momentum of an
electron moving around the nucleus. He assumed that

L = nh̄ , n ∈ N . (6.11)

The Bohr–Sommerfeld quantization condition for the action of periodic orbits was
similar:

∮
pdq = nh̄ . (6.12)

This yields the spectral lines of hydrogen and hydrogen-like atoms with surprising
precision and simplicity.

This is all well known and has been retold often enough, so let us now move
on to Louis-Victor de Broglie’s ideas back in 1923. The notion of plane wave eik·x,
k ∈ R

3 is clear. A wave packet is a superposition of plane waves centered around a
value k0 :

f (x) =
∫

eik·x f̂k0(k)d3k , (6.13)

with f̂k0(k) centered around k0, as in

f̂k0(k) =
1

(2π)3/2σ3
e−(k0−k)2/2σ2

. (6.14)

Then

f (x) = eik0·xe−x2σ2/2 .

This means that f is concentrated on a region of size 1/σ . Nothing special about
that. The wavy character appears when we consider the time evolution of waves.
What is special is that the frequency ω is a function of k. The wave character lies
in the dispersion relation ω(k), a relation basic to all wave phenomena. It regu-
lates the spreading of wave packets which group around different wavelengths, a
phenomenon of great importance for Bohmian mechanics.

The dispersion relation contains a way of relating wave phenomena to Newtonian
notions like momentum and energy. This will be further elaborated in Sect. 9.4.
The dispersion relation of electromagnetic waves in vacuum is ω2 = c2k2, and this
means that packets of light waves around different wavelengths do not separate, i.e.,
they do not spread. Electromagnetic waves in matter behave differently, for one has
phenomenologically different dispersion relations.

A characteristic property of waves is the ability to interfere, i.e., the superposition
of waves creates new wavy pictures with new amplitudes and new nodal areas. This
is most relevant when waves in a wave packet separate.
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The time evolution of (6.13) is

f (x, t) =
∫

ei[k·x−ω(k)t] f̂k0(k)d3k . (6.15)

We focus on (x, t) values for which f (x, t) is large. To this end we expand the phase
S(k) in the integral of (6.15) around k0 :

S(k) = k ·x−ω(k)t

= k0·x−ω(k0)t +(k−k0)·x− (k−k0)·∇ω(k0)t

−1
2

[
(k−k0)·ω ′′(k0)(k−k0)

]
t + · · · ,

with the Hessian ω ′′(k0) (a matrix of second derivatives). S(k) varies most in the
linear k term, so we choose x and t in such a way that this term vanishes. Then
for such values (x, t), there will be little “destructive interference” and f (x′, t ′) will
have maximal amplitude around (x, t). This idea underlies the so-called stationary
phase argument, and a great many quantum phenomena are explained by it. It will
appear over and over again, for example in (9.18) and Remarks 15.8 and 15.9.

One defines the group velocity of the wave packet2 f (x, t) by

vg :=
x
t

=
∂w
∂k

(k0) , (6.16)

so that f (vgt, t) always has maximal amplitude. For stationary points (x, t), the
phase S(k) has no linear k term, and introducing this in (6.15) yields

f (x, t)≈ eik0·x−ω(k0)t
∫

exp

{
− i

2

[
(k−k0) ·ω ′′(k0)(k−k0)

]
t

}
f̂k0(k)d3k .

(6.17)

In view of (6.14) we see that the k width has changed. For simplicity replace ω ′′(k0)
by γ E3, where E3 is the 3×3 identity matrix, and note that the k width becomes

√
ℜ

1
σ−2 + itγ

=

√
1

σ−2 +σ2t2γ2 .

The position width [of (6.13) with (6.14)] is the reciprocal, i.e.,
√
σ−2 +σ2t2γ2 ≈ σγt , for t→ ∞ . (6.18)

This is referred to as the spreading of the wave packet. It spreads faster for smaller
initial position widths (σ large). We merely mention this in passing.

2 The group velocity is the “phenomenological” velocity of a wave. It is determined by the motion
of the maximal amplitude which is influenced by interference. The phase velocity of an almost
plane wave is determined by the (x, t) pairs of constant phase, k0·x−ω(k0)t = 0.
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Let us go on with de Broglie’s idea. In spacetime, electromagnetic radiation
moves along light cones. That is to say, the trajectories of what we would like to
call photons, if they exist, should lie on light cones, where ds2 = 0. Thus proper
time is no good for parameterizing photon trajectories. To get a consistent picture of
these photons as particles in some sense, the energy–momentum relation must read
E2/c2− p2 = 0, i.e., the rest mass of photons must be zero. A photon with frequency
ω has E = h̄ω and hence h̄2ω2/c2− p2 = 0.

Since the dispersion relation for electromagnetic waves is ω = c|k|, it is natural
to set p = h̄k. Hence the energy–momentum four-vector for photons would be

(
h̄ω
c

, h̄k
)

.

Let us connect with Hamilton’s idea of reading Newtonian mechanics by analogy
with the geometric optics of a wave theory, and Einstein’s idea of introducing pho-
tons into a wave theory. Then we arrive at de Broglie’s 1923 idea of attempting once
again to unite wave and particle, which gave the de Broglie matter waves.

It should be noted that this early attempt differed from Hamilton’s. De Broglie
had in mind one wave per particle. The basic idea is this. Insert E = h̄ω and p = h̄k
into the energy–momentum relation for a particle of rest mass m, viz.,

E2

c2 − p2 = m2c2 ,

and out comes the dispersion relation

ω(k) =

√
m2c4

h̄2 + k2c2 . (6.19)

This is almost too good to be true. Bohr’s quantization condition emerges at once,
requiring the “electron wave” circling the nucleus to be a standing wave. Then with
λ = 2π/k as wavelength, put

2πr = nλ = n
2π
k

= n
2π h̄

p
,

which yields

L = rp = nh̄ .

But a particle should be associated with a wave packet around some k0. The par-
ticle’s velocity should be the group velocity vg given by (6.16). Is that consistent?
The momentum was already fixed to be p = h̄k0, while on the other hand

h̄k0 = p = m̃vg = m̃
∂w
∂k

(k0) (6.20)
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should hold. But (6.19) is already fixed. It is rather surprising that (6.19) solves the
equation (6.20). According to (6.19), we get

m̃
∂w
∂k

(k0) =
m̃k0c2

ω(k0)
=

m̃c2

h̄ω(k0)
h̄k0 =

m̃c2

E
p = p .

Equation (6.19) is the relativistic dispersion relation for a particle of mass m. Making
the Newtonian approximation yields the Galilean dispersion relation (dropping the
constant phase)

ω(k) =
1
2

h̄k2

m
. (6.21)

This is the key to Schrödinger’s equation.
The careful reader will have noticed that we did not spell out exactly how wave

and particle were brought together. Louis de Broglie had various ideas about that.
He tried one idea – after the advent of Schrödinger’s wave equation, which he subse-
quently used – and wrote the equations of Bohmian mechanics on the blackboard at
the famous fifth Solvay conference in 1927. His colleagues did not like it and gave
him a hard time, especially Wolfgang Pauli, who actually reformulated de Broglie’s
suggestion as in (7.16). Discouraged by the general animosity of his colleagues, he
did not pursue his idea any further, and it was not until 1952 that David Bohm [1]
published the equations again without being aware of the Solvay history (more de-
tails of this history can be found in [2] and [3]). However, Bohm did not only write
down the equations, which incidentally are quite obvious. He also analyzed the new
theory, explaining non-relativistic quantum theory. All mysteries evaporated under
Bohm’s analysis, except maybe one: Where does quantum randomness come from?
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Chapter 7
Schrödinger’s Equation

Over the period 1925–1926, Werner Heisenberg, Max Born, Pasqual Jordan, Paul
Dirac and Erwin Schrödinger discovered “modern” quantum theory almost si-
multaneously. Schrödinger’s first steps were rather different from Heisenberg’s.
Schrödinger turned de Broglie’s 1923 idea of matter waves into a mathematical
theory connecting them to the eigenvalue problem of partial differential operators
– a prospering topic in mathematical physics at the time: eigenmodes and discrete
eigenvalues fitted well with the discreteness of spectral lines. Schrödinger found the
partial differential equation which governed all that.

7.1 The Equation

Consider the de Broglie wave packet

ψ(q, t) =
∫

f (k)ei[k·q−ω(k)t]d3k .

Introducing the dispersion relation (6.21), viz.,

ω(k) = h̄k2/2m , (7.1)

we realize that differentiation with respect to time can also be achieved by differen-
tiating with respect to position:

i
∂ψ
∂ t

=− h̄
2m

∂ 2

∂q2ψ .

In a manner of speaking this equation governs the freely moving wave packet of a
particle of “mass” m.

Now according to de Broglie h̄ω = E, which suggests an analogy with the Hamil-
tonian of a freely moving particle:
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h̄ω(k) =
(h̄k)2

2m
=

p2

2m
= H(p) .

We may therefore view

− h̄2

2m
∂ 2

∂q2

as the analogue of H(p). Extending this to the general form of the Hamiltonian

H =
p2

2m
+V (q) ,

it seems plausible to add V (q) to −(h̄2/2m)(∂ 2/∂q2), leading to

ih̄
∂
∂ t
ψ(q, t) =

[
− h̄2

2m
∂ 2

∂q2 +V (q)
]
ψ(q, t) .

The nice thing about the analogy is that the Hamiltonian is a function on phase
space. Therefore, extending the analogy to an N-particle system, we arrive at

ih̄
∂
∂ t
ψ(q, t) =

[
N

∑
i=1
− h̄2

2mi

∂ 2

∂q2
i

+V (q)

]
ψ(q, t) . (7.2)

Here q = (q1, . . . ,qN), and the wave function ψ for an N-particle system comes out
“naturally” as a function of configuration and time, i.e., ψ(q, t) = ψ(q1, . . . ,qN , t).
Equation (7.2) is the celebrated Schrödinger wave equation for an N-particle system.

Schrödinger’s way of arriving at his equation was different from ours, but by
no means more straightforward. The differential operator (including the potential
as a multiplication operator) on the right-hand side of (7.2) is commonly called the
Hamilton operator. The main reason for this name is that it is built from the old
Hamilton function, but with pi replaced by the momentum operator

p̂i :=−ih̄
∂
∂qi

,

while qi becomes the position multiplication operator q̂i := qi: multiply by qi. For
some, the essence of quantum physics is to “put hats” on classical observables to
turn them into operators.

Why is it nice that the wave function is a function on configuration space, when
this is so very different from de Broglie’s original idea of having a particle and a
wave – one wave per particle? The answer is that this turns out to be the correct
description of nature. Spectral lines for many-electron atoms result correctly from
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ground states and excited states,1 just because the corresponding wave functions are
bona fide functions on configuration space, i.e., they do not factorize into “single-
particle” wave functions. Schrödinger’s wave function was, and will always be, a
function on configuration space.

It was recognized, mainly by Schrödinger and Einstein, that this fact might be
a revolution in physics. It is in fact the revolution brought upon us by quantum
mechanics. Not wave and/or particle, not operator observable, not uncertainty prin-
ciple, and certainly not philosophical talk, even when filled with good sense (if
that is possible). These are no revolution with respect to good old classical physics.
What is new is that the description of nature needs a function on the configuration
space of all particles in the system. And why is that revolutionary? The point is that
such a description involves all particles in the universe at once, whence all particles
are “entangled” with each other, and there is no obvious reason why particles that
are very far apart from each other should become disentangled. Entanglement was
the word Schrödinger used, acknowledged and celebrated almost a century later.
Entanglement is the source of nonlocality. We shall discuss that in the chapter on
nonlocality.

Now here is a less profound assertion: the Schrödinger equation is the simplest
Galilean invariant wave equation one can write down. That is in the end how we
should view that equation. Never mind how we came to it! Mathematicians may
want to argue about the terminology “simple”, and others may argue about Galilean
invariance, although physicists do not usually argue with that. What is there to argue
about Galilean invariance? Clearly, V has to be a Galilean invariant potential, so
there is nothing to argue about there. What may seem puzzling, however, is that
the Schrödinger equation contains a first order derivative in time, so what about
time-reversal invariance? Another disquieting observation is the imaginary unit i
multiplying the time derivative. That means that ψ will in general be complex. As if
complex numbers could suddenly achieve physical reality! They do in fact, and we
shall come to that.

Before that we begin with the simple things. We may forget about the potential,
which must be a Galilean invariant expression and nothing more needs to be said
about that. Let us look for simplicity at the one-particle equation

ih̄
∂ψ
∂ t

(q, t) =− h̄2

2m
Δψ(q, t) . (7.3)

First check translation invariance in space (q′ = q+a) and time (t ′ = t + s), as well
as rotation invariance (q′ = Rq, t ′ = t). The invariance is easy to see. Both

ψ ′(q′, t ′) := ψ(q′ −a, t ′ − s)

and

1 V can be taken as sum of Coulomb potentials between the electrons surrounding the nucleus
and the Coulomb potential between the electrons and the nucleus, “binding” the electrons to the
nucleus.
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ψ ′(q′, t ′) := ψ(Rtq′, t ′)

satisfy (7.3) in the primed variables. (Note that Δ = ∇t∇ = ∇ ·∇ is a scalar and
hence automatically rotation invariant.)

In order to see time reversibility, one must open up a new box. Suppose t ′ =−t,
q′ = q, and suppose that ψ ′(q′, t ′) = ψ(q′,−t ′). Equation (7.3) contains only one
derivative with respect to time, and therefore the left-hand side of (7.3) changes sign,
while the right-hand side remains unchanged. This is not good. Chapter 3 helps us
to move on. To t �→ −t and (q′ = q), we adjoin complex conjugation i �→ −i, i.e.,
ψ �→ ψ∗. Then setting

ψ ′(q′, t ′) = ψ∗(q′,−t ′) ,

we see thatψ ′ satisfies (7.3) (in primed variables). How is this? We take the complex
conjugate of (7.3) and see that there is an extra minus sign. But hold on! What if
there is a potential function V (q) in the equation, as there generally will be? Then
taking the complex conjugate of the equation (7.2), the resulting equation contains
V ∗. Time reversal holds only if V = V ∗, i.e., if V is real!

Now, the way we argued that the Schrödinger equation comes about, it seems nat-
ural that V , as the classical potential, should be real. But once the equation is there,
the meaning of V must emerge from the analysis of the new theory, and V could in
principle be any Galilean invariant function. Since ψ is complex, why not V ? Here
we now see that V must be real for the “theory” to be time-reversal invariant.

We come now to Galilean boosts when the coordinate system is changed to a
frame which moves with relative velocity −u. Then

q′ = q+ut (v′ = v+u) , t ′ = t . (7.4)

Suppose

ψ ′(q′, t ′) = ψ(q′ −ut ′, t ′) . (7.5)

But then (in the following q stands for q′ −ut ′)

ih̄
∂
∂ t ′
ψ ′(q′, t ′) = ih̄

∂
∂ t ′
ψ(q′ −ut ′, t ′)

= ih̄
∂
∂ t ′
ψ(q, t ′)− ih̄u ·∇ψ(q, t ′)

= − h̄2

2m
Δψ(q, t ′)− ih̄u ·∇ψ(q, t ′)

= − h̄2

2m
Δ′ψ ′(q′, t ′)− ih̄u ·∇′ψ ′(q′, t ′), (7.6)

and we obtain an extra term in the Schrödinger equation. The transformation of ψ
under boosts must be more complicated than (7.5). No wonder you might say. It is
after all a wave which we wish to boost in this way.
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So let us consider the de Broglie plane wave ei[k·q−ω(k)t], with dispersion

ω(k) =
1
2

h̄k2

m
.

Applying (7.5), setting ku = mu/h̄, and doing simple binomial analysis using the
dispersion, we obtain

ei[k·(q′−ut ′)−ω(k)t ′]

= exp

{
i

[
k ·q′ −

(
k· h̄

m
ku +ω(k)

)
t ′
]}

= exp
{

i
[
k·q′ −ω(k+ku)t ′+ω(ku)t ′

]}

= exp
{

i
[
(k+ku)·q′ −ω(k+ku)t ′

]}
exp

{
− i

[
ku·q′ −ω(ku)t ′

]}
.

This suggests boldly putting, rather than (7.5),

ψ ′(q′, t ′) =Φku(q
′, t ′)ψ(q′ −ut ′, t ′) , (7.7)

with the plane wave

Φku(q
′, t ′) = ei[ku·q′−ω(ku)t ′] . (7.8)

Instead of (7.6), we now have (recalling that q stands in the following for q′ −ut ′)

ih̄
∂
∂ t ′
ψ ′(q′, t ′) = ih̄

∂
∂ t ′

{
ei[ku·q′−ω(ku)t ′]ψ(q′ −ut ′, t ′)

}

= ei[ku·(q+ut ′)−ω(ku)t ′]
[

h̄ωψ(q, t ′)− h̄2

2m
Δψ(q, t ′)− ih̄u ·∇ψ(q, t ′)

]
,

which equals −h̄2Δ′ψ ′(q′, t ′)/2m, as can be seen from the following:

− h̄2

2m
Δ′ψ ′(q′, t ′)

=− h̄2

2m
Δ′

[
Φku(q

′, t ′)ψ(q′ −ut ′, t ′)
]

=− h̄2

2m

[
Δ′Φku(q

′, t ′)
]
ψ(q′ −ut ′, t ′)− h̄2

2m
Φku(q

′, t ′)Δ′ψ(q′ −ut ′, t ′)

− h̄2

m

[
∇′Φku(q

′, t ′)
]
·
[
∇′ψ(q′ −ut ′, t ′)

]

= ei[ku·(q+ut ′)−ω(ku)t ′]
[

h̄ωψ(q, t ′)− h̄2

2m
Δψ(q, t ′)− ih̄2ku

m
·∇ψ(q, t ′)

]
,

where we have made use of u = h̄ku/m and (7.1).
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The transformation (7.7), viz.,

ψ ′(q′, t ′) = eiku·q′ψ(q′ −ut ′, t ′)e−iω(ku)t ′ ,

contains the phase factor e−iω(ku)t ′ which, if ignored, would result in an additive
constant in the wave equation, i.e., the potential V (when we put that back in) gets
“gauged” by the constant h̄ω(ku), which should not have any effect on the physics.2

This would imply that the physics is described by an equivalence class of wave
equations which all differ by constants added to the potential. Put another way,
wave functions which differ by a position-independent phase factor describe the
same physics. In technical terms, we can say that the Galilean group is represented
in the projective space consisting of the rays

(ψ) :=
{

cψ,c ∈ C,c �= 0
}

.

A common argument to support this goes as follows. The translation Ta and boost
Bu are transformations which commute in the Galilean group, whereas acting on
waves, and ignoring the phase factors e−iω(ku)t ,

BuTa yields eiku·q′ψ(q′ −a−ut ′, t ′) = ψ ′(q′, t ′) ,

TaBu yields e−iku·aeiku·q′ψ(q′ −a−ut ′, t ′) = e−iku·aψ ′(q′, t ′) ,

so that we should view ψ ′(q′, t ′) and e−iku·aψ ′(q′, t ′) as equivalent.
The way the wave function transforms may be a bit upsetting. Why should a

fundamental description of nature change its appearance so drastically when the
coordinate frame is changed? Maybe it would all become more understandable if
we knew what role the ψ function really played? Perhaps the ψ function is not the
primary ontological variable and its role is understood only in connection with some
primary variables still to be determined, like the B field in electromagnetism, which
changes its sign under time reversal? In the latter case, we understand that this must
be so by the role the B field plays in the dynamics of charged particles.

Schrödinger’s equation is a wave equation, a wave evolving in time. However, the
first use of the equation was to explain the stationary electronic states of an atom,
i.e., wave functions which depend only trivially on time (through a simple phase
factor eiEt/h̄). They are solutions of the so-called stationary Schrödinger equation.
The contact made with the real world is very indirect, via spectral lines. But what,
we must ask, is the physical meaning of the wave function? What role does it play?
What does a traveling (i.e., non-stationary) wave mean?

2 Whether it should or should not have any effect is of course not decidable on a priori grounds.
We should really withhold any definitive claim until we have completely understood what the new
theory is.
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Heisenberg also wanted a theory behind the spectral lines, but he did not think of
waves at all. What he did was in a sense much more ingenious, by seeing the discrete
spectral energies emerging from a new calculus of arrays of numbers – the matrix
calculus of infinitely extended matrices. In that view, quantization meant that the
Poisson bracket of Hamiltonian mechanics is to be replaced by the commutator
[ · , · ]/ih̄ and thereby forming an operator algebra. The important output from this
was the famous Heisenberg uncertainty principle, which in a lax manner of speaking
says that one cannot simultaneously determine the position and momentum of a
particle. This became the principle of indeterminism in the new physics.

After Schrödinger had established the equivalence between his wave mechan-
ics and Heisenberg’s matrix mechanics, everything eventually found its place in
Dirac’s formalism. Dirac established the powerful formalism of quantum mechan-
ics, by adopting a notation for infinite-dimensional vectors whereby the vectors can
be effortlessly represented relative to a suitable “orthonormal basis”. This is a tech-
nical tool of great power, although the terminology “orthonormal basis” is in most
cases mathematically incorrect. But having said this, the final result of such for-
mal computations is always correct. Dirac’s formalism is what one usually learns in
courses on quantum mechanics.

But let us return to 1926. Heisenberg did not like Schrödinger’s waves, and hoped
that this path would eventually turn into a mere meander. Born, however, immedi-
ately saw the descriptive power of the time-dependent Schrödinger equation, and
applied it to scattering. In this application he discovered that the wave function ψ
has an empirical meaning as a “probability amplitude”. In fact, through its modulus
squared |ψ(x, t)|2, the wave function, which is generally a complex function, de-
livers the theoretical prediction for the empirical density of finding the particle at
position x at time t.

There are two famous quotes from Born’s two papers. The first [1] is an an-
nouncement, and the second [2], an elaboration on it. The quotes show that Born
had an absolutely correct, and one must say frankly ingenious, intuition about the
meaning of the wave function, namely that it guides the particles and that it deter-
mines the probabilities of particle positions. This probability was understood as irre-
ducible3 (backed, of course, by the uncertainty principle). The intrinsic randomness
fascinated the scientific community for decades, and the second quote in particular
shows that “dark” discussions on that were taking place. In truth, quantum random-
ness is good old Boltzmannian statistical equilibrium, albeit for a new mechanics:
Bohmian mechanics. But more on that later. Here is the quote from [1]:

I want to tentatively follow the idea: The guiding field, represented by a scalar function of
the coordinates of all particles taking part and the time, evolves according to Schrödinger’s
differential equation. Momentum and energy will however be transferred as if corpuscles
(electrons) were indeed flying around. The trajectories of these corpuscles are only re-
stricted by energy and momentum conservation; apart from that the choice of a particular

3 Born received the Nobel prize for this discovery, although very late and mainly because of re-
peated recommendations by Einstein.
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trajectory is only determined by probability, given by the values of the function ψ . One
could, somewhat paradoxically, summarize this as follows: The motion of the particles fol-
lows probabilistic laws, while the probability itself evolves according to a causal law.4

In the main paper [2], Born surprisingly felt the need to relativize the strong inde-
terminism:

In my preliminary note I have strongly emphasized this indeterminism, since that seems to
me to best conform with the praxis of experimenter. But anybody who is not satisfied with
that is free to assume that there are more parameters, which have so far not been introduced
into the theory, and which determine the individual event. In classical physics these are the
“phases” of the motion, for example the coordinates of the particles at a certain moment. It
seemed to me at first improbable that one could casually introduce variables which corre-
spond to such phases into the new theory; but Mr. Frenkel told me that this may be possible
after all. In any case, this possibility would not change the practical indeterminism of the
collision processes, since one cannot give the values of the phases; it must lead to the same
formulas, like the “phaseless” theory proposed here.5

Born is close to Bohmian mechanics in his preliminary note, although his naive
insistence on the Newtonian momentum and energy conservation for the particle
trajectories6 is completely gratuitous and is not in fact correct for Bohmian me-
chanics. Why should the new mechanics, which is based on a guidance principle,
obey Newtonian principles?

In the second quote he says that he thought it improbable (meaning something
like impossible) that particle trajectories could be introduced in a casual (meaning
natural) way. But that is exactly what can be done, and it is trivial! The reference
to Mr. Frenkel is amusing, and historians may find pleasure in finding out what the
Frenkel story was about, and what he had in mind.

Why are the quotes so important? Because they show the advent of a new the-
ory of physics, supplementing Schrödinger’s wave function description by an idea

4 Ich möchte also versuchsweise die Vorstellung verfolgen: Das Führungsfeld, dargestellt durch
eine skalare Funktion der Koordinaten aller beteiligten Partikeln und der Zeit, breitet sich nach der
Schrödingerschen Differentialgleichung aus. Impuls und Energie aber werden so übertragen, als
wenn Korpuskeln (Elektronen) tatsächlich herumfliegen. Die Bahnen dieser Korpuskeln sind nur so
weit bestimmt, als Energie- und Impulssatz sie einschränken; im übrigen wird für das Einschlagen
einer bestimmten Bahn nur eine Wahrscheinlichkeit durch die Werteverteilung der Funktion ψ
bestimmt. Man könnte das, etwas paradox, etwa so zusammenfassen: Die Bewegung der Partikeln
folgt Wahrscheinlichkeitsgesetzen, die Wahrscheinlichkeit selbst aber breitet sich im Einklang mit
dem Kausalgesetz aus.
5 Ich habe in meiner vorläufigen Mitteilung diesen Indeterminismus ganz besonders betont, da
er mir mit der Praxis des Experimentators in bester Übereinstimmung zu sein scheint. Aber es
ist natürlich jedem, der sich damit nicht beruhigen will, unverwehrt, anzunehmen, da es weitere,
noch nicht in die Theorie eingeführte Parameter gibt, die das Einzelereignis determinieren. In der
klassischen Mechanik sind dies die “Phasen” der Bewegung, z.B. die Koordinaten der Teilchen in
einem bestimmten Augenblick. Es schien mir zunächst unwahrscheinlich, daß man Größen, die
diesen Phasen entsprechen, zwanglos in die neue Theorie einfügen könne; aber Herr Frenkel hat
mir mitgeteilt, da dies vielleicht doch geht. Wie dem auch sei, diese Möglichkeit würde nichts
an dem praktischen Indeterminismus der Stoßvorgänge ändern, da man ja die Werte der Phasen
nicht angeben kann; sie muß übrigens zu denselben Formeln führen, wie die hier vorgeschlagene
“phasenlose” Theorie.
6 As if the notion of particle alone forced Newtonian behavior.
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which can be trivially brought to completion. It could easily have been done by Born
himself. What were Born’s grounds for bringing in probability at all? Of course,
there was Heisenberg’s uncertainty principle, but that alone was not sufficient, as
Schrödinger had pointed out to him. There was an extra equation (also derived
by Schrödinger) – an identity which follows from Schrödinger’s equation – which
corroborated the interpretation of the wave function as determining the probabili-
ties. From that equation the guided trajectories are transparently obvious, as will be
shown in Sect. 7.3. But apart from Born, either Einstein or Schrödinger could have
done that.

In fact the equation for the trajectories, albeit interpreted as fluid lines, was im-
mediately seen by Erwin Madelung (a mathematical physicist and friend of Born)
[3], and at the 1927 Solvay conference de Broglie introduced the same Madelung
fluid lines as particle trajectories. But this was ridiculed by all the other participants.
Einstein in particular found that a guiding wave on configuration space made no
sense whatsoever: physics must not be like that. However, Einstein had no prob-
lem with probability being on configuration space, just as the classical canonical
ensembles are measures on many-particle phase space, so that the statistical part of
Born’s thesis was fine for him. Einstein nevertheless felt, and Schrödinger likewise,
that the wave function guiding particles on configuration space meant a revolution
in physics – if that turned out to be a true feature of nature.

It is very difficult these days to appreciate what really blocked physicists’ minds
in this context, preventing them from focusing on the obvious – a new mechanics,
even if it did turn out to be revolutionary. In our own time people come up with all
kinds of crazy ideas in physics and are applauded for it. So why did nobody probe
Born’s guidance idea and see what it could achieve? Why only Mr. Frenkel and
nobody else? What really prevented anyone from saying loud and clear that particles
exist and move (what else can they do when they exist)? This is what historians
should work to find out, because what happened is really beyond understanding.
But it may take many good historians of science to sort out the mess.

Ignoring de Broglie’s attempt in the 1927 Solvay conference, and ignoring Mr.
Frenkel’s and Born’s feeble attempts, the question: What is quantum mechanics re-
ally about? never quite surfaced as a clear-cut and burning question in the minds
of physicists, with the exceptions of Einstein and Schrödinger. Instead there was
a muddle of philosophical talk about what Heisenberg’s findings really meant for
physics, and whether Schrödinger’s wave function provided a complete description
of a physical system, in the sense that nothing more is needed (except talk perhaps).
Early on, Einstein and Bohr were the leading figures in that discussion, and they
were both right and wrong in some ways.

Schrödinger originally thought that the wave function provided a complete de-
scription, in that it described matter, but in the end he could not adhere to that view,
because the wave spreads while atomistic matter in all experiments came out point-
like. Let a wave impinge on a double slit. Then on the screen at the other side of the
slit, a black point appears randomly (in time and space).

More dramatically Einstein and Schrödinger were concerned about the linearity
of the wave equation and entanglement. If the wave function is the complete descrip-
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tion of the physics, this leads to the measurement problem (known most prominently
as Schrödinger’s cat paradox), which we talked about in the introduction and shall
do again in the next section. Schrödinger and Einstein (among a few others) had to
hold on to the view that the quantum mechanical description of nature is incomplete.

In opposition to this, Bohr, Heisenberg, Dirac, Pauli, and most physicists held
that the new findings necessitated a new philosophical view of nature. The new
philosophical view was that the question “What is going on in nature?” is unphysi-
cal, unscientific, and uneverything. In other words, the incompleteness idea became
rather heavily outlawed. The new philosophical view also endorsed the understand-
ing that one does not necessarily mean what one says. For example, when one says
that the particle hits the screen (where the black spot appears in the two slit ex-
periment), one does not mean that there is a particle hitting the screen, but rather
something else. However, this something else cannot be expressed other than by
saying that a particle hits the screen.

It was as if our human capabilities were not far-reaching enough to actually grasp
and describe what really happens when we say that a particle hits the screen. The
mystery which historians have to work out is why there was a need to forbid the
meaning that a particle hits the screen, when it does seem that a particle hits the
screen, especially when this is theoretically very simple to describe. Bohmian me-
chanics does it with consummate ease. The great mystery is why the majority of
physicists took to heart the idea that physics must not be about ontology. But what
else could it be about?

Perhaps the time has come for something positive. In the end all the founding
fathers of quantum mechanics were right to some extent. Bohr’s insistence that “ob-
servables” only have meaning in connection with an experiment and represent no
properties of a system is largely justified. Einstein and Schrödinger were right in
their conviction that the wave function cannot represent the complete description
of the state of a system. Born was right in seeing that, at the end of the day, the
empirical feature emerging from the complete state description is the |ψ|2 statis-
tics. Bohmian mechanics combines all these views into one theory in a surprisingly
trivial manner.

Remark 7.1. On Solutions of Schrödinger’s Equation
The Schrödinger equation is a linear partial differential equation. As such it does not
conceal any of the exciting features which make nonlinear partial differential equa-
tions so appealing to mathematicians: shock waves, explosions, and so on. And yet
the theory of classical solutions of the Schrödinger equation, i.e., solutions which
are nice differentiable functions and which solve the Schrödinger equation in just
the way a normal person would expect, is not usually textbook material. Mathemati-
cal physics focuses more on the Hilbert space theory of solutions which is connected
to the self-adjointness of the Schrödinger operator and the unitarity of the time evo-
lution. We also do that in Chap. 14. In Bohmian mechanics, which we discuss in the
next chapter, the wave function must be differentiable, and so one needs classical
solutions of the Schrödinger equation. The relevant assertions about the classical
solutions of Schrödinger’s equation can be found in [4, 5]. �
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In books and seminars on quantum mechanics, there is so much talk about interpre-
tation. One talks about interpretations of quantum mechanics: Copenhagen, many
worlds, Bohmian , and so on. As if the laws of quantum mechanics were a Delphic
oracle which required high priests to be deciphered. What is special about quantum
mechanics as compared to Newtonian mechanics, where only a few scientists (in-
fluenced by quantum mechanics) would insist that Newtonian mechanics needed an
interpretation? Newton certainly did not think this way, and nor did Leibniz (actu-
ally the equations in the form we are used to seeing them were written by Leibniz).

Interpretation has become a multipurpose concept in quantum mechanics. The
interpretation of the wave functions is that |ψ|2 is a probability density. That is
interpretation in the good sense. We shall look at that in this section. Bohmian me-
chanics is often said to be an interpretation of quantum mechanics, which should
indicate redundancy, i.e., that it is merely an interpretation. But Bohmian mechan-
ics is not an interpretation of anything. We shall come to that in the next chapter.
It should be clear from the above quotes that Born would also have called the the-
ory with trajectories (with “phases”) a new theory. On the other hand, in some very
vague sense, Bohmian mechanics is an interpretation of quantum mechanics. It is a
complete theory where nothing is left open, and above all, it does not need an inter-
pretation. It is a theory of nature, and it has a precise link to quantum mechanics.
Indeed, it explains its rules and formalisms, so when someone says that the momen-
tum and the position of a particle are non-commutative operators, which does sound
like a Delphic oracle, Bohmian mechanics fills in all the ideas needed to see what
this could possibly mean.

All interpretations in quantum mechanics are linked to one essential question:
What is the role of the wave function in physics? As already mentioned, Schrödinger
originally thought that the wave function represented the stuff the world was made
of – a matter wave, so to speak. Indeed, it is a matter wave, on a strangely high-
dimensional space, the configuration space of all the particles as it were. But since
there are no particles, only a wave, it is not the configuration space of particles, but
simply a curious high-dimensional space.

One could just live with that. But other things speak against the “interpretation”
of the wave function as a matter wave. Even thinking of the wave packet of a sin-
gle electron, that wave packet spreads according to the dispersion relation, whereas
spread out electrons are not observed. They are always pointlike. Send an electron
wave through a slit, and the wave evolves after the slit according to Huygens’ prin-
ciple into a spherical wave. Yet on the photographic plate somewhere behind the
slit, we see a black spot where the particle has arrived, and not the gray shade of the
extended wave.

The idea of matter waves becomes grotesque when one considers measurement
situations and the measurement apparatus is itself described by a matter wave. Since
the Schrödinger evolution is linear, superpositions of wave functions evolve into
superpositions. We arrive at Schrödinger’s cat. We do not really need to repeat this
here, but let us do so anyhow, just to make the point. Suppose a system is described
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by two wave functions ϕ1 and ϕ2, and an apparatus is built such that its interaction
with the system (the “measurement”) results in the following situation: the pointer
points out 1 if the system is described by the wave function ϕ1 or 2 if the system
is described by ϕ2. That is, the apparatus is described by the two wave functions
Ψ1 andΨ2 (when the pointer points to 1 or 2, respectively) and the pointer 0 wave
functionΨ0, so that

ϕiΨ0
Schrödinger evolution−→ ϕiΨi . (7.9)

However, the Schrödinger evolution is linear and it follows from (7.9) that, if the
wave function of the system is

ϕ = c1ϕ1 + c2ϕ2 , c1,c2 ∈ C ,

then one obtains

ϕΨ0 = (c1ϕ1 + c2ϕ2)Ψ0
Schrödinger evolution−→ c1ϕ1Ψ1 + c2ϕ2Ψ2 . (7.10)

This is a bizarre matter wave on the right where the apparatus points simultaneously
to 1 and 2. This conflicts with the way the apparatus was built, or if one prefers,
with what our experience tells us about the way pointers show facts: either 1 or 2.

Schrödinger was well aware of this, as we explained in the introductory chapter.7

The conclusion is that either the Schrödinger evolution is not right, or the description
is incomplete. The Schrödinger evolution not being right lends support to a serious
competitor of Bohmian mechanics, namely the dynamical reduction theory or GRW
theory.8 The description not being complete leads straightforwardly to Bohmian
mechanics.

Let us now return to Born. We quoted above from his scattering paper, and the
question is: On what grounds could Born corroborate his intuition for the proba-
bilistic interpretation of the wave function? With Schrödinger’s help,9 an identity
was established for any solution of the Schrödinger equation. This identity involves
the “density” |ψ(q, t)|2 =ψ∗(q, t)ψ(q, t) and has the form of a continuity equation,
called the quantum flux equation:

∂ |ψ|2
∂ t

+∇ · jψ = 0 , (7.11)

7 A helpful discussion of the possibility of “assigning matter to the wave function” can be found
in [6].
8 GRW stands for Ghirardi, Rimini, and Weber, who formulated a nonlinear random evolution law
for wave functions in such a manner that, in measurement situations, the theory reproduces the
correct Born statistical law. See [7] for an extensive overview. It is remarkable that this nonlocal
random collapse theory can be formulated in a Lorentz invariant way [8].
9 Born’s first idea was that |ψ| was the probability density, but Schrödinger pointed out that |ψ|
does not satisfy a continuity equation, while |ψ|2 does. This meant that, with the latter choice,
probability would be conserved.
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where ∇= (∇k)k=1,... ,n := (∂q1 ,∂q2 , . . . ,∂qN) and jψ = (jψ1 , . . . , jψN ) is the so-called
quantum flux with

jψk =
h̄

2imk
(ψ∗∇kψ−ψ∇kψ∗) =

h̄
mk
ℑψ∗∇kψ , (7.12)

or in configurational terms, introducing the mass matrix m,

jψ =
h̄
2i

m−1(ψ∗∇ψ−ψ∇ψ∗) = h̄m−1ℑψ∗∇ψ . (7.13)

What one usually observes is that, integrating (7.11) over the whole of (configura-
tion) space and using Gauss’ theorem, the integral over the divergence term yields
zero when ψ falls off fast enough at spatial infinity, whence

∫ ∂ |ψ|2
∂ t

d3Nq =−
∫
∇ · jψd3Nq =− lim

R→∞

∫
BR

jψ ·dσ = 0 , (7.14)

where BR is a ball of radius R. The vanishing of the flux through an infinitely distant
surface will later be taken up in rigorous mathematical terms when we discuss the
self-adjointness of the Schrödinger operator.

So
∫

q|ψ(q, t)|2 d3Nq does not change with time, and
∫

q|ψ(q, t)|2 d3Nq =
∫

q|ψ(q,0)|2 d3Nq ,

which is usually expressed by saying that probability does not get lost. The reader
who has absorbed Chap. 2 will have little problem in rephrasing (7.11) as a bona
fide continuity equation. Just write

∇ · jψ = ∇· jψ

|ψ|2 |ψ|
2 =: ∇ ·vψ |ψ|2 , (7.15)

so that we have a vector field

vψ(q, t) =
jψ(q, t)
|ψ(q, t)|2 = h̄m−1ℑ

∇ψ
ψ

(q, t) , (7.16)

along which the density ρ(q, t) = |ψ(q, t)|2 is transported, i.e., we have the conti-
nuity equation

∂ |ψ|2
∂ t

+∇·
(
vψ |ψ|2

)
= 0 . (7.17)

The integral curves along this vector field are the trajectories Born might have had
in mind. Particles moving along these trajectories are guided by the wave function,
since the vector field is induced by the wave function. But unfortunately Born in-
sisted on momentum and energy conservation, which do not hold here, because the
integral curves are in fact the Bohmian trajectories. Why was this not accepted and
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the theory thereby completed? No one knows. In any case ρ(q, t) = |ψ(q, t)|2 be-
came the accepted interpretation of the wave function: it determines the probability
of finding the system in the configuration q when its wave function is ψ(q, t).

And here enters another confusing issue. There was a debate about whether the
right word was “finding” or “is”, because the latter would insist on particles actually
being there, i.e., the system is in the configuration q with probability |ψ(q, t)|2,
and the former would not say anything of substance. However, the source of the
debate can be located somewhere else, namely, in the measurement formalism of
quantum mechanics. Bohmian mechanics will explain that it is correct to say “is”
for the positions of the system particles, but that it is not correct to say “is” for other
“observables”. This sounds deeper than it really is, but the clarification of this point
is absolutely essential for a rational understanding.

We now compute the identity (7.11) with jψ given by (7.12). Starting with
Schrödinger’s equation

ih̄
∂ψ
∂ t

=−∑ h̄2

2mk
Δkψ+Vψ ,

since V is a real function (by time reversibility!), complex conjugation yields

−ih̄
∂ψ∗

∂ t
=−∑ h̄2

2mk
Δkψ∗+Vψ∗ . (7.18)

Multiply the first equation by ψ∗ and the second by ψ . The resulting equations have
the same Vψψ∗ term on the right, so subtract the equations and observe that the
time derivative terms add to a time derivative of |ψ|2. Hence,

ih̄
∂ |ψ|2
∂ t

= −∑ h̄2

2mk
(ψ∗Δkψ−ψΔkψ∗)

= −∑ h̄2

2mk
∇k(ψ∗∇kψ−ψ∇kψ∗) (by the product rule)

= −ih̄∇ · jψ , (7.19)

with jψ given by (7.12).
So what happens next? The reader who has come this far and who appreciates

the statistical mechanics we prepared in previous sections may find the situation
thrilling. Many analogies may come to mind, and many questions: What is this par-
ticle theory whose trajectories are so clearly stated in the trivial rewriting (7.17)?
What is the status of ρ = |ψ|2 in this theory? And what about the uncertainty prin-
ciple? Is that an extra metaphysical principle for the new theory with trajectories?
Does ρ = |ψ|2 bear any analogy with the Liouville measure of classical statistical
mechanics? What new things can be learned from the new particle theory? What
about entanglement? So many exciting questions to ask, and so many easy answers
to give! The following chapters will address all these questions. The simplicity and
ease with which all these issues are explained is stunningly beautiful.



References 143

References

1. M. Born: Z. Phys. 37, 863 (1926)
2. M. Born: Z. Phys. 38, 803 (1926)
3. E. Madelung: Zeitschrift für Physik 40 (3/4), 322 (1926)
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Chapter 8
Bohmian Mechanics

Bohmian mechanics is the new mechanics for point particles. In the equations for
Bohmian mechanics there are parameters m1, . . . ,mN which we shall call masses.
We do so because in certain physical situations the particles will move along New-
tonian trajectories and then these masses are Newtonian masses, and there is no
point in inventing new names here. Although the theory is not at all Newtonian, it is
nevertheless close in spirit to the Hamilton–Jacobi theory and an implementation of
Born’s guiding idea. The theory is in fact the minimal non-trivial Galilean theory of
particles which move. We already gave the defining ingredients in the last chapter.
Now we shall spell things out in detail.

An N-particle system with “masses” m1, . . . ,mN is described by the positions
of its N particles Q1, . . . ,QN , Qi ∈ R

3. The mathematical formulation of the law
of motion is on configuration space R

3N , which is the set of configurations Q =
(Q1, . . . ,QN) of the positions. The particles are guided by a function

ψ : R
3N×R −→ C

(q, t) �−→ ψ(q, t)

in the following way. ψ defines a vector field vψ(q, t) on configuration space

vψ(q, t) = h̄m−1ℑ
∇ψ
ψ

(q, t) , (8.1)

where m is the mass matrix as in (2.3) and the possible particle trajectories are
integral curves along the vector field:

dQ
dt

= vψ
(
Q(t), t

)
. (8.2)

In other words the k th particle trajectory Qk(t) obeys

dQk

dt
=

h̄
mk
ℑ
∇kψ
ψ

(Q, t) , k = 1, . . . ,N . (8.3)
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ψ obeys the Schrödinger equation

ih̄
∂ψ
∂ t

(q, t) =−∑ h̄2

2mk
Δkψ(q, t)+V (q)ψ(q, t) , (8.4)

where V is a Galilean invariant function. The operator on the right of the Schrödinger
equation is often called the Schrödinger Hamiltonian or simply the Hamiltonian. We
shall use this name in the sequel.

Equations (8.1)–(8.4) define Bohmian mechanics. Looking at them, one grasps
immediately that this mechanical theory is different from Newtonian mechanics.
Given the two equations, it is now only a matter of analyzing the theory to see what
it says about the world. We stress this point: what is required now is not philosophy,
and not interpretation, but the very thing that physicists are supposed to do best. The
task is to analyse the equations, and only the equations, and see what they say about
our world. We shall do that in the following chapters, but first we allow ourselves
an interlude.

Everybody (except perhaps mathematicians) must admit that equation (8.1) looks
a bit ugly. The vector field was already introduced in the previous chapter [see
(7.16)]. So in principle we know “where it comes from”. It comes from interpreting
the squared modulus of the wave function as a probability density, whose transport
is given by the quantum flux equation (7.11). Bohmian trajectories are nothing but
the flux lines along which the probability gets transported. The velocity field is thus
simply the tangent vector field of the flux lines. That is the fastest way, given the
Schrödinger equation (or for that matter any wave equation which allows for a con-
served current) to define a Bohmian theory, a way which was often chosen by John
Bell [1] to introduce Bohmian mechanics.1

But one must admit that this does not say much to support the integrity of the
velocity field, since as we understand it probability is a secondary concept, arising
only when one analyzes typical behavior. Nevertheless the reader who is eager to
see the theory at work, and who is happy with the mechanics as given, may skip
the next section, whose only purpose is to explain that Bohmian mechanics follows
from arguments of minimality, simplicity, and symmetry.2

1 Bell’s way of defining Bohmian mechanics via the current can be generalized to more general
Hamiltonians (i.e., more general than the usual Schrödinger Hamiltonian) which appear in quantum
field theory [2, 3].
2 The quantum flux as defined by the quantum flux equation (7.11) is not uniquely defined. It
can be changed by adding the curl of a vector field, because the divergence of such an object is
zero. This then leads to the idea that the Bohmian trajectories, when defined as flux lines, are not
uniquely defined, i.e., there exist other versions of Bohmian mechanics [4]. However, these are
neither simple nor minimal in any sense of the words. The flux is nevertheless a good guidance
principle for generalizing Bohmian mechanics to more general Schrödinger equations, which may
involve higher order terms.
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8.1 Derivation of Bohmian Mechanics

We wish to find a theory of particles from “first principles”. Moving particles agree
with our experience of the microscopic world. In a double slit experiment, a particle
is sent onto a double slit and later caught on a screen. We see the spot on the screen
(where the particle hits the screen), and since the particle came from somewhere
else it had to move.

Particles have coordinates Qk ∈ R
3. An N-particle system is then given by a

collection Q = (Q1, . . . ,QN) ∈R
3N . Particle positions are the primary variables we

need to be concerned with. Naturally, the particles move according to some law. The
simplest possibility is to prescribe the velocities

dQ
dt

= v(Q, t) , (8.5)

where v is a vector field on configuration space R
3N (analogous to the Hamiltonian

vector field on phase space). For simplicity we begin with one particle. We need to
find a Galilean covariant expression for the velocity vector, and the most demanding
transformation for a vector is rotation. From Chap. 3, we recall that the gradient of a
scalar function transforms just right [see (2.35)]. This gives the idea that the velocity
field should be generated by a function ψ :

vψ(q, t)∼ ∇ψ(q, t) . (8.6)

Another symmetry which may be informative when we prescribe only the velocity
is time-reversal invariance. The velocity changes sign when t �→ −t. How can one
cope with that? We are already prepared to have complex conjugation do the job.
Let ψ be complex, then with t �→ −t, let ψ(q, t) �→ ψ∗(q,−t) and consider only the
imaginary part in (8.6):

vψ(q, t)∼ ℑ∇ψ(q, t) . (8.7)

That takes care of time-reversal invariance.
Now consider a Galilean boost v: vψ �→ vψ +u, i.e.,

ℑ∇ψ+u = ℑ∇′ψ ′ .

This suggests putting ψ ′ = eiq′·uψ as the simplest possibility. However, it leads to
an adjustment of the velocity, namely,

vψ(q, t) = αℑ
∇ψ
ψ

(q, t) (8.8)

and

ψ ′ = eiq′·u/αψ , (8.9)
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where α is a real constant with dimensions of [length2/time]. vψ is therefore homo-
geneous of degree 0 as a function of ψ , i.e., vcψ = vψ for all c ∈ C.

So far so good, but how should we choose ψ? Its role for the motion of parti-
cles is clear, but what determines the function? We need a Galilean invariant law for
that. The simplest law that comes to mind is the Poisson equation for the gravita-
tional potential. However, one may find many arguments as to why ψ should be a
dynamical object itself. For example, the fact that ψ transforms “strangely” under
time reversal suggests that ψ should obey an equation which contains time. We are
therefore led to a minor extension of the Poisson equation to the simplest Galilean
invariant dynamical equation for a complex function, observing that time reversal
goes along with complex conjugation:

i
∂ψ
∂ t

(q, t) = βΔψ(q, t) .

In the last chapter we discussed the equation with β =−h̄/2m. The Galilean boost
to a frame with relative velocity u was implemented using the extra factor eimu·q/h̄,
i.e., using e−iu·q/2β , so that

ψ ′ = e−iu·q/2βψ .

Comparison with (8.9) shows that α =−2β . We end up with one-particle Bohmian
mechanics in the form

dQ
dt

= vψ(Q, t) = αℑ
∇ψ
ψ

(Q, t) , (8.10)

where ψ(q, t) is a solution of

i
∂ψ(q, t)
∂ t

=−α
2
Δψ(q, t) . (8.11)

The linearity of the equation blends well with the homogeneity of the velocity.
Galilean invariance allows the addition of a Galilean real (because of time-reversal
invariance) scalar function G(q), so that the most general such equation reads

i
∂ψ(q, t)
∂ t

=−α
2
Δψ(q, t)+G(q)ψ(q, t) . (8.12)

The generalization to many particles is immediate by reading q as a configuration.
Before we do so, we would like to determine the proportionality constant α ,

by connecting the new fundamental theory with the particle mechanics we already
know: Newtonian mechanics. We suspect that the connection is most easily made via
the Hamilton–Jacobi formulation – at least for short times. In view of the velocity
field (8.10), we write

ψ(q, t) = R(q, t)eiS(q,t)/h̄ , (8.13)
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with real functions R and S. The factor 1/h̄ is nothing but a dimensional unit (and
will later be recognized as Planck’s constant) to ensure that S has the dimensions of
an action. Then (8.10) becomes

dQ
dt

=
α
h̄
∇S . (8.14)

Hence comparison with the first Hamilton–Jacobi equation suggests that α/h̄ = 1/m
[see (2.35)], with m as the mass of the particle. With this identification we recognize
(8.11) as the one-particle Schrödinger equation.

Of course, one would like to see whether this is consistent with an analogue of
the second Hamilton–Jacobi equation. In fact, introducing (8.13) into (8.11), we
obtain

i
∂R
∂ t
− 1

h̄
R
∂S
∂ t

=−α
2

[
ΔR+2i∇R·1

h̄
∇S−R

(
1
h̄
∇S

)2

+ iR
1
h̄
ΔS

]
+GR .

Collecting the imaginary parts of that equation yields

∂R
∂ t

=−α
2

(
2∇R·1

h̄
∇S +R

1
h̄
ΔS

)
,

or

∂R2

∂ t
=−α 1

h̄
∇·

(
R2∇S

)
=−∇·

(
vψR2) , (8.15)

while the real parts give

∂S
∂ t
− α

2
h̄
ΔR
R

+ h̄G+
1
2
α
h̄

(∇S)2 = 0 . (8.16)

Comparing (8.16) with (2.36), the identification α = h̄/m is consistent, but observe
the extra term −α h̄ΔR/2R which, compared with (2.36), “adds” to the potential
V

.= h̄G. Bohm called this extra term the quantum potential. In any case, if that extra
term is zero (or negligible), the Bohmian trajectories follow classical trajectories.
The term is small, for example, when ψ is essentially a plane wave ψ = eik·q. Then
S = h̄k ·q, and obviously

vψ =
h̄k
m

.

That is, the Bohmian particle moves at least for a short time3 along a straight line
with velocity h̄k/m, and then as a classically moving particle we can assign to it a
classical momentum p = mh̄k/m = h̄k.

3 For a definite assertion about classical motion we need to know how ψ changes in time, and we
shall say more on this in the next chapter.
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Only in special situations are the Bohmian trajectories Newtonian in character,
namely those where the guiding wave can be approximated (locally, i.e., where the
particle is) by an almost plane wave (where the wave number k may be a slowly
varying function of position). Such situations may be described as classical. In many
such scenarios these trajectories can be seen. A particle track in a cloud chamber, or
the moon on its orbit are examples. But in so-called quantum mechanical situations,
where the “wavy” character of the guiding wave plays a role (for example, through
interference effects), the trajectories will be disturbed by the act of observation and
therefore change under observation. Thus there may in general be a huge differ-
ence between “measured” trajectories and “unmeasured” trajectories. We shall give
examples later.

Heisenberg concluded from this that there are no trajectories, and that one must
not talk about a particle having a position. Many physicists found that conclusion
logical and even banned the notion of particle altogether from physics. Here is fur-
ther subject matter for historians, to find out how this could have happened. After all,
classical physics is supposed to be incorporated in quantum mechanics, but when
there is nothing, then there is nothing to incorporate, and hence no classical world.

The reader may wonder about equation (8.15). What is it good for? Well, look-
ing at it once again one sees that this is the identity (7.11) which any solution
of Schrödinger’s equation fulfills. It will be the key to the statistical analysis of
Bohmian mechanics. Having said that, we may add that the identity is for Bohmian
mechanics what the Liouville theorem is for Hamiltonian mechanics. We shall say
more about this in a moment.

Let us first note that generalizing to many particles leads to the defining equa-
tions (8.1)–(8.4), where V

.= h̄G can now be identified as what will be, in classical
situations, the “classical” potential.

Remark 8.1. Bohmian Mechanics Is Not Newtonian
David Bohm [5, 6] and many others, e.g., [7] present Bohmian mechanics as be-
ing Newtonian in appearance. This can easily be achieved by differentiating (8.3)
with respect to t. Next to −∇V , the resulting right-hand side contains the extra term
−∇(quantum potential), which has been called the quantum force. But this takes us
off target. Differentiation of (8.3) with respect to t is redundant. Bohmian mechan-
ics is a first order theory. The velocity is not a “phase” variable as in Newtonian
mechanics, i.e., its initial value must be chosen (and can indeed be freely chosen).
It becomes a phase variable in certain situations, which one may refer to as clas-
sical regimes. Casting Bohmian mechanics into a Newtonian mould is not helpful
for understanding the behavior of the trajectories in quantum mechanical situations,
because understanding means first explaining things on the basis of the equations
which define the theory. Redundancies are more disturbing than helpful. Analogies
may of course help, but they are secondary. �
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8.2 Bohmian Mechanics and Typicality

Now we come to the trajectories. We have a theory of particles in motion and we are
now eager to compute them in situations of interest. Just as we compute the orbits
of planets, we would like to compute the orbits of the Bohmian particles around
the nucleus in an atom. Why should we be eager to do that? Because the theory
allows us to do that? So the electron moves around the nucleus in some way. Is
that exciting? Yes, you may say, because all kinds of exciting questions come up.
For example, Heisenberg’s uncertainty relation seems to contradict the existence of
trajectories, so who is right?

Well, computing them would not help to decide on that. When the electron moves
around the nucleus, why does it not radiate (since the electron will surely undergo
accelerations) and fall into the nucleus? Compared to orthodox quantum mechanics,
where there is nothing, nothing can fall into nothing? But joking aside, the mechan-
ics here is Bohmian, not Newtonian, and one has to see what this new mechanics is
like. Force and acceleration are not elements of the new theory, so any arguments
based on that line of thought are off target. But the relevance for Heisenberg’s un-
certainty principle is something one needs to look into. In fact, the principle is a
consequence of Bohmian mechanics. Let us see now how this works.

Boltzmann returns to the stage. What we have is a new mechanics, with the old
statistical reasoning. The only difference is this. While in the Newtonian world non-
equilibrium was the key to understanding why the world is the way we see it, equi-
librium opens the door to understanding the microscopic world. Just as we describe
a gas in a box by the equilibrium ensemble, we now describe a Bohmian particle
in quantum equilibrium. While Boltzmann’s reasoning was embarrassed in classical
statistical mechanics by atypicality, which renders the justification of equilibrium
ensembles almost impossible, we shall now meet a situation where Boltzmann’s
reasoning works right down the line.

Quantum equilibrium refers to the typical behavior of particle positions given the
wave function. If you ask what happens to irreversibility, atypicality, and the arrow
of time when everything is in equilibrium, then you must read the last sentence
again. The particles are in equilibrium given the wave function. Non-equilibrium
resides within the wave function. The following analogy may be helpful. The wave
function generates a velocity vector field (on configuration space) which defines the
Bohmian trajectories. This is the analogue of the idea that the Hamiltonian generates
a vector field (on phase space) which defines classical trajectories. The Hamiltonian
also defines the measure of typicality. Analogously, the wave function defines the
measure of typicality. Does that not sound very much like what Born had in mind
(see Chap. 7)?

Therefore, as in classical physics, we seek a measure of typicality, which is dis-
tinguished by the new physical law. As in the Boltzmann–Gibbs ensemble, we first
seek such a measure with which we can form a statistical hypothesis about the typ-
ical empirical distribution over an ensemble of identical subsystems. The starting
point for finding a measure of typicality is the continuity equation [see (2.3)] for the
density ρ(q, t) transported along the Bohmian flow of an N-particle system:
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Φψt,t0 : R
3N �−→ R

3N , t ∈ R

Φψt,t0q = Q(t,q) = solution of (8.2) with Q(t0) = q .

The equation reads

∂ρ(q, t)
∂ t

+∇·
[
vψ(q, t)ρ(q, t)

]
= 0 . (8.17)

Since the guiding field ψ(q, t) depends in general on time, the velocity field depends
in general on time, and thus there is in general no stationary density. Nevertheless
we require typicality, defined by the guiding field, to be time independent, so we
look for a density which is a time-independent function of ψ(q, t). This property,
called equivariance, generalizes stationarity. That density was found by Born and
Schrödinger, namely ρ = |ψ|2 = ψ∗ψ . Putting this into (8.17), we obtain

∂ |ψ|2
∂ t

+∇·
(
vψ |ψ|2

)
= 0 , (8.18)

which we know is satisfied from the previous chapter, because we compute

vψ |ψ|2 = h̄m−1ℑ
∇ψ
ψ
|ψ|2 = h̄m−1ℑψ∗∇ψ = jψ ,

so that (8.18) is identical to the quantum flux equation (7.11). We may view this
result as analogous to the Liouville theorem. The physics gives us a distinguished
measure of typicality.4

So what does all this mean? In fact it tells us that, if Q0 is distributed according
to the density |ψ(·,0)|2 then Φψt Q0 = Q(Q0, t) is distributed according to |ψ(·, t)|2,
where ψ(·, t) is the wave function of the system. In terms of expectation values,

E
ψ
(

f
(
Q(t)

))
:=

∫
f
(
Q(t,q)

)
|ψ(q,0)|2dnq =

∫
f (q)|ψ(q, t)|2dnq =: E

ψt ( f ) .

(8.19)

But this is Born’s statistical law, which says that ρψ(q, t) = |ψ(q, t)|2 is the prob-
ability density that the particle configuration is Q = q. Of course, in saying this
we assume ψ to be normalized, i.e.,

∫
|ψ(q, t)|2d3Nq = 1. And in particular (as

remarked in the last chapter)
∫
|ψ(q, t)|2d3Nq is independent of time. In the Boltz-

mannian way of thinking we are therefore led to formulate the following statistical
hypothesis, which is the analogue of the Boltzmann–Gibbs hypothesis of thermal
equilibrium in statistical mechanics:

4 Is this density unique? Recall that in classical mechanics the stationarity requirement allows a
great many densities, among which we discussed the microcanonical and canonical examples. In
[8], it is shown that the ρ = |ψ|2 density is the unique equivariant measure (under reasonable
conditions of course).
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Quantum Equilibrium Hypothesis. For an ensemble of identical systems, each
having the wave function ψ , the typical empirical distribution of the configurations
of the particles is given approximately by ρ = |ψ|2. In short, Born’s statistical law
holds.

All this will be elaborated and the hypothesis justified in Chap. 11.

Remark 8.2. On the Existence and Uniqueness of Solutions of Bohmian Mechanics
In classical mechanics the question of existence and uniqueness of solutions of say
gravitational motions is exceedingly hard. How about the new mechanics? Can it
be that there is absolutely no problem with electrons moving around? After all, in
most textbooks on quantum mechanics, it is asserted that particles cannot have a
position and move. The equations are there, but perhaps, you might think, they do
not have solutions. In fact (8.3) looks potentially dangerous, since the wave function
is in the denominator, and the wave function can have nodes! It can and will be
zero at various places! Trajectories can run into the nodes, and that finishes the
mechanics. But typically they do not. One has existence and uniqueness of Bohmian
trajectories for all times for almost all initial conditions (in the sense of Remarks
2.1 and 2.5), where “almost all” refers to the quantum equilibrium distribution [9,
10]. Note that in Bohmian mechanics the wave function must be differentiable, and
therefore one needs the classical solutions of the Schrödinger equation we talked
about in Remark 7.1. �

8.3 Electron Trajectories

Maybe the most exciting feature is the Bohmian trajectory of an “electron” guided
by the ground state wave function of a hydrogen atom. To find that, one considers
the one-particle stationary Schrödinger equation with V (q) as the Coulomb potential
for a fixed point charge nucleus, i.e., one solves the eigenvalue equation

− h̄2

2m
Δψ+V (q)ψ = Eψ .

The solutions ψ which are normalizable (i.e., square integrable) and bounded are
called eigenstates. The ground state ψ0 is the one which corresponds to the lowest
eigenvalue. The eigenvalues E are commonly referred to as energy eigenvalues, and
the lowest energy value is commonly referred to as the ground state energy. Given
the underlying ideas, which we partly discussed in the lead-up to Schrödinger’s
equation, the name “energy” may seem appropriate. Of course, more elaboration
would be needed to actually feel comfortable with calling objects of the new theory
by names which have a clear connotation from classical physics. If we are to call
the eigenvalues “energy”, they had better bear some convincing relation to what we
usually mean by energy.
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0

Fig. 8.1 Ground state wave function distribution (dark regions correspond to high probability) for
an ensemble of hydrogen atoms in the ground state, with |ψ0|2 random electron positions

So let us consider the ground state. In principle, there could be many such states.
But not for hydrogen. It is a mathematically rigorous statement that the ground state
can always be chosen real (and everywhere positive). This is more than we need to
know! If the guiding field is real, then the imaginary part is zero, so the velocity
is zero, i.e., Q̇ = 0, and Q = Q0, so nothing moves! The reader should beware of
the following idea, which is better considered as a bad joke: since the electron does
not move it cannot radiate, and that explains why the electron does not fall into the
nucleus.

But jokes aside, this finding is very much in contradiction with Bohr’s naive
model of electrons circling the nucleus. Moreover, it sharply contradicts Heisen-
berg’s uncertainty principle. Although the position has some finite spread (we shall
say what that means in a moment), the velocity, i.e., the momentum, is precisely
zero! Is Heisenberg’s uncertainty principle false after all? Of course, it is not! We
must simply understand what it is telling us, and that means we must understand
what the momentum spread refers to in quantum mechanics.

Clearly, Bohmian mechanics is a radical innovation, so different from what one
naively thought! What else is new? What can we say about Q0? Only that it is
|ψ0|2-distributed, by virtue of the quantum equilibrium hypothesis. This means that,
in an ensemble of hydrogen atoms in the ground state (see Fig. 8.1), the empirical
distribution of Q is typically close to |ψ0|2. That can be checked by experiment. The
spread in position is then simply the variance of the |ψ0|2-distribution.

Stationary states belonging to higher energy values, called excited states, will
be of the form ψ1 = f (r,ϑ)eiϕ (which is due to the way the angle ϕ occurs in the
Laplace operator), writing q in spherical coordinates (r,ϑ ,ϕ). Then S = h̄ϕ and

vψ(q) =
1
m
∇S =

h̄
m

1
r sinϑ

eϕ
∂
∂ϕ
ϕ =

h̄
m

1
r sinϑ

eϕ ,

so that we find periodic orbits:
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Q(t) =
(

r = r0 , ϑ = ϑ0 , ϕ =
h̄
m

1
r0 sinϑ0

t +ϕ0

)
. (8.20)

But that should not excite anybody.
What happens to the motion of the particle when it is guided by a superposition

of two real wave functions ψ1 and ψ2, for each of which v = 0? It should be noted
that

ψ = ψ1 +αψ2 , α ∈ C ,

may produce a very complicated motion.
Is it in fact useful to compute Bohmian trajectories in various quantum mechan-

ical situations we deem of interest? In general, it is not! But in certain asymptotic
situations, when the trajectories are close to classical ones, that knowledge is useful
and even crucial for understanding the microscopic physics. That is the case in scat-
tering theory, which we shall deal with in a later chapter. But what about the above
negative response? What we learn in general from the trajectories is that, at each
moment of time t, the particles have positions which are distributed according to the
quantum equilibrium hypothesis |ψ(q, t)|2. Moreover, the theory is first order:

Q̇ = vψ(Q, t) .

From this it follows that the possible trajectories cannot cross in extended configu-
ration space R

3N×R, while this is possible in Newtonian mechanics.
With this observation, one can easily construct the trajectory picture in the fa-

mous double slit experiment for a stationary wave (see Figs. 8.2 and 8.3). In this
experiment one sends particles one after the other (think of one particle per year, if
you have enough time) towards a double slit. As any wave would do, after passage
through the slits, the guiding wave ψ of every particle forms a diffraction pattern
according to Huygens’ principle. After the slit, this diffracted wave determines the

Fig. 8.2 Interference of spherical waves after a double slit
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Particles which arrive here
passed the upper slit

Particles which arrive here
passed the lower slit

Axis of symmetry

Trajectories cannot cross this axis

Fig. 8.3 Possible trajectories through the double slits

possible trajectories of the particle. The particles arrive one after the other (every
year if you have the time) at the photographic plate and leave a black spot at their
point of arrival.

If we wait long enough, the random black spots will eventually form a recog-
nizable interference pattern, which is essentially the quantum equilibrium |ψ|2 dis-
tribution5 [11]. This is clear enough, because that is what the quantum equilibrium
hypothesis says: in an ensemble of identical particles each having wave function ψ ,
the empirical distribution of positions is |ψ|2-distributed. This is a rather dull obser-
vation, and yet the interference pattern of the double slit experiment is often taken
in textbooks as proof that one cannot have moving particles in atomistic physics.
We can say a bit more about the trajectories in the essentially two-dimensional ex-
perimental setup.

1. The trajectories cannot cross the axis of symmetry.
2. The trajectories move mostly along the maxima (hyperbola) of |ψ|2 and spend

only short times in the valleys of |ψ|2 (|ψ|2 ≈ 0).
3. The trajectories cross the valleys since, right after the slits, the trajectories expand

radially. This is turn happens because the guiding wave is a spherical wave close
behind the slits (see Fig. 8.2), and while first feeding the nearest maxima, they
must observe quantum equilibrium. Most trajectories will have to lie in the region
of the main maximum (around the symmetry axis, which is the most clearly
visible on the screen), i.e., trajectories must cross over from adjacent maxima to
the main maximum.6

4. The arrival spot on the screen is random, in particular the slit through which each
particle goes is random. The randomness is due to the random initial position Q0

of the particle with respect to the initial wave packet. By always preparing the
same wave packet ψ , one prepares an ensemble of |ψ|2-distributed positions.

5 In fact it is the quantum flux across the surface of the photographic plate integrated over time
(see Chap. 16).
6 The double slit trajectory picture Fig. 8.3 can thus be more or less drawn by hand, or by numerical
computation as done by Dewdney et al. [6].
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Fig. 8.4 Tunneling through a barrier

In many quantum mechanical situations one computes numbers from a stationary
analysis, i.e., from a stationary wave picture. One must be clear about the meaning of
such stationary computations. In the section on scattering theory, we shall examine
the applicability of stationary pictures, but for now we shall only discuss the simple
one-dimensional, textbook example of the stationary analysis of tunneling through a
barrier. The latter is a potential of height V as shown in Fig. 8.4. One solves the time-
independent Schrödinger equation in the three regions separately, with an incoming
plane wave from the left:

(1) x≤ 0 : − h̄2

2m
Δψ = Eψ , ψ = eikx +Ae−ikx , k =

√
2mE
h̄

,

(2) 0 < x < a : − h̄2

2m
Δψ+Vψ = Eψ , ψ = Belx +Ce−lx , l =

√
2m(V −E)

h̄
,

(3) a≤ x : − h̄2

2m
Δψ = Eψ , ψ = Deikx ,

where the constants A,B,C,D are determined by the requirement that the trajectories
should be differentiable across the boundaries of the regions. This is commonly
expressed by requiring jψ to be continuous.

In the region x≤ 0, we have a superposition of two wave functions, one incoming
and one reflected, yielding a complicated current, while for x≥ a, we have a simple
current. But the motion is one-dimensional and therefore particle trajectories cannot
cross each other. Observing that the wave function on the left is in any case periodic,
there cannot be two types of trajectory on the left side, moving towards and away
from the barrier. By computation, one finds that all trajectories do in fact move
towards the barrier, which seems to contradict the idea of back-scattering, since
particles clearly get reflected.

The situation becomes more dramatic if the potential barrier becomes infinitely
high, so that nothing can get through and everything is reflected (A becomes −1).
Then on the left the wave is purely imaginary and nothing moves! Bohmian mechan-
ics forces us to realize that the stationary picture is an idealization. This idealization
is useful for computing the so-called transmission and reflection coefficients, which
are computed from the ratios of the “incoming” and “outgoing” quantum fluxes,
and are equal to |D|2 and |A|2. But it is only clear that A and D achieve this meaning
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when one considers the physically realistic setting where a wave packet ψp runs to-
wards the barrier and part of the wave packet gets reflected, while part goes through.

If ψp represents the initial wave packet (the prepared one, which may look ap-
proximately like a plane wave), we can split the support of ψp into two intervals T
and R. T is the area of initial positions giving rise to trajectories which reach x ≥ a
(these are the positions in the front part of the wave packet), and R is the interval
(Q0 ∈ R , Q̃0 ∈ T =⇒ Q0 ≤ Q̃0) of initial points giving rise to trajectories which
move towards −∞. The probability that the particle starts in T is

∫
T
|ψp|2dq = |D|2 .

In the section on scattering theory, we shall say more about the meaning of the
quantum flux, but we already have a pretty good understanding of how Bohmian
mechanics works.

8.4 Spin

The reader who has come this far must eventually stumble across spin. Granted
that particles have positions, that accounts for position, maybe even for momentum,
once we understand what that refers to, but what is spin? How can a point have
spin? What does rotation even mean for a point? Spin is indeed a truly quantum
mechanical attribute. Wolfgang Pauli referred to it as nonclassical two-valuedness.
Spin is in fact as quantum mechanical as the wave function, which is no longer
simply complex-valued, but can be a vector with two, three, four, or any number of
components.

While it is easy to handle and not at all strange or complicated, to explain from
pure reasoning alone why spin arises would nevertheless go somewhat beyond the
scope of this textbook. Spin plays a role only in connection with electromagnetic
fields, and the ultimate reasoning must therefore invoke relativistic physics. We do
not want to go that far here. So let us be pragmatic about it at this point, and simply
consider the phenomenological facts.

A silver atom is electrically neutral and inherits a total magnetic moment from
the spin of its one valence electron. If such an atom is sent through a Stern–Gerlach
magnet, which produces a strongly inhomogeneous magnetic field, the guiding wave
splits into two parts.7 Each part follows a trajectory which resembles that of a mag-
netic dipole when it is sent through the Stern–Gerlach magnet, and when its orien-

7 If one sent an electron through the Stern–Gerlach magnet, the splitting would not be as effective,
due to strong disturbances from the Lorentz force which also acts on the electron. The reader
might enjoy the following historical remark on this point. Bohr envisaged the impossibility of ever
“seeing” the electron spin as a matter of principle: the spin being “purely quantum” and the results
of experiments always being classically describable, the spin must not be observable!
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z
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Fig. 8.5 In a Stern–Gerlach apparatus (strong inhomogeneous magnetic field), whose pole shoes
are drawn schematically, a spinor wave function splits into two parts. If one of the parts goes
through a Stern–Gerlach magnet of the same orientation, no further splitting occurs. If one of the
parts goes through a magnet with a different orientation, a further splitting occurs

tation is either parallel (spin +1/2) or antiparallel (spin−1/2) to the gradient of the
magnetic field.8

Suppose a Stern–Gerlach setup is oriented in the z-direction, and suppose the
triangular pole shoe lies in the positive z-direction (see Fig. 8.5). This prepares a
spin +1/2 and a spin −1/2 guiding wave, one moving towards positive z values
(upwards), let us say in the direction of the triangular pole shoe, and one moving
towards negative z values (downwards), i.e., in the direction of the rectangular pole
shoe. Of course, when the wave packets are clearly separated, the particle will be in
only one of the two wave packets. If we block let us say the downward-moving wave
packet by a photographic screen, and if no black point appears, the particle must be
in the other, upward-moving packet. In a manner of speaking that particle then has
z-spin +1/2, and one might say that it has been prepared in the z-spin +1/2 state.

If one now sends that packet through a second Stern–Gerlach setup, also oriented
in the z-direction, that packet does not split, but continues to move further upwards.
But if the packet is sent through a Stern–Gerlach magnet which is oriented, say,
in the y-direction (any direction orthogonal to the z-direction), then the wave splits
again, and with probabilities of 1/2 the particle will be traveling in the positive or
negative y-direction.

8 The value 1/2 stands without explanation at this point. For the considerations in this book, we
may as well replace 1/2 by unity. The reason why one chooses to talk about spin ±1/2 has to do
with putting spin into analogy with rotation. This analogy is not so far-fetched, since spinors, as
we shall see shortly, are acted on by a special representation of the rotation group.
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Choosing a different non-orthogonal direction, the probabilities for the splitting
vary with the angle. An angle of 90◦ yields probabilities of 1/2 for up and down,
while another direction will give more weight to the spin axis closest to the z-
direction. This has been observed experimentally.

The guiding field of the particle must obey the rules of the splitting and the
simplest way to accomplish this is for the wave function itself to possess two degrees
of freedom. It thus becomes a two-component wave function, i.e., a spinor wave
function:

ψ(q) =

(
ψ1(q)
ψ2(q)

)
∈ C

2 .

Bohmian mechanics for spinor wave functions is simple. Start with one particle and
write (8.1), viz.,

vψ =
h̄
m
ℑ

(ψ,∇ψ)
(ψ,ψ)

, (8.21)

where

(ψ,ϕ) =

(
ψ∗1
ψ∗2

)
·
(
ϕ1

ϕ2

)
= ∑

i=1,2
ψ∗i ϕi ,

i.e., take the scalar product on the spinor degrees of freedom.
The Schrödinger equation is replaced by the so-called Pauli equation, which is

an equation for the two-component wave function, in which the potential V is now
a function with Hermitian matrix values. A Hermitian matrix can be decomposed in
a special basis, comprising the Pauli matrices

σx =

(
0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
,

and the unit 2×2 matrix E2 :

V (q)E2 +B(q)·σ = V (q)E2 +
3

∑
k=1

Bk(q)σk ,

where V ∈ R, B ∈ R
3, σ := (σx,σy,σz). The Pauli equation for an uncharged, i.e.,

neutral, particle in a magnetic field B then reads:

ih̄
∂ψ
∂ t

(q, t) =− h̄2

2m
Δψ(q, t)−μσ ·B(q)ψ(q, t) , (8.22)
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where μ is a dimensional constant called the gyromagnetic factor. This equation
ensures that ρψ = (ψ,ψ) is equivariant,9 i.e., the four-divergence

(∂t ,∇)·(ρψ ,vψρψ) = 0 ,

another way of expressing the continuity equation. So ρψ is the quantum equilib-
rium distribution.

We said at the beginning of the section that we do not want to engage in a dis-
cussion about the question of how spin arises from pure thought about nature. To
do this, we would need to rework the arguments leading to the Dirac equation, of
which (8.22) is a non-relativistic approximation for an uncharged particle like the
silver atom sent through the Stern–Gerlach apparatus. However, it may be helpful
to describe the mathematical reason for the appearance of spinors. The point here
is that the rotation group SO(3) has a double-valued representation, namely SU(2),
the group of unitary 2×2 matrices with unit determinant. This is called the spin 1/2
representation.

This becomes clear once one understands that SO(3) is a Lie group, i.e., both a
group and a manifold, and that, in the case of SO(3), it is not simply connected.
There is thus a topological reason for the double-valued covering. When we talk
about “identical particles”, we must return to topological considerations, but we
shall not elaborate on this connection between SO(3) and SU(2). We shall limit
ourselves to showing the double-valued representation at work.

Consider the rotation of a vector through an angle 2γ about the z-axis:

⎛
⎝ x′

y′

z′

⎞
⎠ =

⎛
⎜⎝

cos2γ −sin2γ 0

sin2γ cos2γ 0

0 0 1

⎞
⎟⎠

⎛
⎝ x

y
z

⎞
⎠ .

Using the Pauli matrices, any vector x can be mapped to a Hermitian matrix

x∼= xσx + yσy + zσz =

(
z x− iy

x+ iy −z

)
,

a representation which originates from Hamilton’s quaternions. It is easy to check
that

(
z′ x′ − iy′

x′+ iy′ −z′

)
=

(
e−iγ 0

0 eiγ

)(
z x− iy

x+ iy −z

)(
eiγ 0

0 e−iγ

)
,

where

U(γ) =

(
eiγ 0

0 e−iγ

)
∈ SU(2) .

9 The potential matrix being Hermitian goes hand in hand with the Hamilton operator being Her-
mitian, which we shall discuss in detail later.
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Spinors are now introduced as a kind of square root of the matrix, by writing it as
sum of dyadic products of C

2 vectors, which are called spinors in this context:
(

z x− iy

x+ iy −z

)
= s1s+

2 + s2s+
1 ,

where s =
(

a
b

)
∈ C

2 and s+ = (a∗ b∗). For example,

(
0 −iy

iy 0

)
=

(
0
y

)
(i ,0)+

(
−i
0

)
(0 ,y) .

Then we can view U(γ) as acting naturally by left and right (adjoint) action on
the spinor factors, producing the rotation through 2γ in physical space. So while a
rotation through 2π in physical space brings a vector back to its starting direction,
the spinor rotates through only a half turn in its space. This explains why the spin is
attributed the value of 1/2. We close this short interlude by observing that both U(γ)
and −U(γ) represent the physical rotation through 2γ , which is why this is called a
double-valued representation.

The Dirac equation is the simplest equation which relates the two Pauli spinors,
now taken as functions on spacetime. In another representation of the Dirac equa-
tion, one collects the two Pauli spinors into a four-spinor, also called a Dirac spinor.
Spinors are thus geometric objects on which the SU(2) elements act naturally, and
which carry a representation of the rotations.

We stress once again that this cannot be seen in the ad hoc Bohm–Pauli theory
presented here. The vector character of the velocity (8.21) comes from the gradient,
and the remaining spinor character is “traced out” by the scalar product. However,
when one starts from the Dirac equation, one achieves the more fundamental view
[12] we alluded to above. Then the velocity vector field can be constructed as a
bilinear form from the Dirac spinors without invoking any gradient. A timelike vec-
tor jμ can be written as a sesquilinear product of spinors jμ = ψ†γ0γμψ , where
γμ , μ = 0,1,2,3, are the so-called γ matrices, 4× 4 matrices containing the Pauli
matrices as blocks.

One can also view the Dirac equation is the simplest equation which renders jμ

divergence free, i.e., ∂μ jμ = 0, whence jμ can be viewed as a current, obeying the
continuity equation. The Bohm–Pauli theory emerges as a non-relativistic approxi-
mation of the Bohm–Dirac theory.

But now we must move on. What is of more interest right now is to see how
the splitting of the wave function emerges from the Pauli equation (8.22). Consider
a Stern–Gerlach magnet oriented in the z-direction. For simplicity, the inhomoge-
neous magnetic field is assumed to be of the form B =

(
Bx(x,y),By(x,y),bz

)
(such

that ∇ ·B = 0), and the initial wave function is chosen to be
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Φ0 = ϕ0(z)ψ0(x,y)
[
α

(
1
0

)
+β

(
0
1

)]
, (8.23)

where
(1

0

)
and

(0
1

)
are eigenvectors of σz with eigenvalues10 1,−1. (We have cho-

sen the same function of position for both spinors merely for notational simplicity.)
By virtue of the product structure of the function of position, the x,y evolution of
the wave function separates from the z evolution, i.e., we obtain two Pauli equa-
tions, one for the x,y evolution and one for the z evolution. This is a straightforward
consequence, whose demonstration is left to the reader.

We do not care about the x,y part, but focus instead on the z part of the evolution.
We also assume that the velocity in the x-direction is rather large (the particle moves
quickly through the magnetic field, which has only a small extension in the x,y-
directions). So there is also a large inhomogeneity of the magnetic field in the x-
direction, but since the particle is moving quickly, this should not matter much. In
short, the x velocity essentially determines the amount of time τ the particle spends
in the magnetic field.

Let us now focus on the z motion through the magnetic field. Due to the short-
ness of the time τ , we shall also ignore the spreading of the wave function. This
amounts to ignoring the Laplace term in the equation. Then by linearity, we need
only concentrate on the parts

Φ (1) = ϕ(z)
(

1
0

)
, Φ (2) = ϕ(z)

(
0
1

)
.

The wave packet

ϕ0(z) =
∫

eikz f (k)dk (8.24)

is assumed to be such that f (k) peaks around k0 = 0. We have thus reduced the
problem to an investigation of

ih̄
∂Φ (n)

∂ t
(q, t) = μ(−1)nbzΦ (n)(q, t) , n = 1,2 .

Hence

Φ (n)(τ) = exp

[
−i(−1)n μbτ

h̄
z

]
Φ (n)

0 ,

and after leaving the magnetic field, so that they are once again in free space, the z
waves of the wave packet (8.24) have wave numbers

k̃ = k− (−1)n μbτ
h̄

.

10 To avoid confusion, we talk about spin±1/2, but the number 1/2 and the dimensional factor are
of no importance for our considerations and absorbed in the factor μ .
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As solutions of the free wave equation, they must therefore have frequency

ω(k̃) =
h̄k̃2

2m
.

The group velocity of this wave is then (observing that k0 = 0)

∂ω(k̃)
∂ k̃

=−(−1)n μbτ
m

,

whence the wave packet Φ (1) moves in the positive z-direction, i.e., the direction
of the gradient of B (spin up), while Φ (2) moves in the negative z-direction (spin
down). However, the superposition of both wave packets remains with the weights
defined by the initial wave function (8.23), and hence, in quantum equilibrium, the
particle will move upwards with probability |α|2. One then says that the particle
has spin up with probability |α|2. And likewise, the particle moves downwards with
probability |β |2, and one says that it has spin down with probability |β |2. Which
spin the particle “ends up with” depends only on the initial position of the particle
in the support of the initial wave function. That is were the “probability” comes
from.

We close with an observation that will be used later. The “expectation value” of
the spin is

1
2

(
|α|2−|β |2

)
.

This can be computed using the following scalar product, which will play an impor-
tant role in later chapters:

〈
Φ

∣∣∣1
2
σzΦ

〉
=

1
2

∫
dxdydzΦ∗·σzΦ =

1
2

(
|α|2−|β |2

)
. (8.25)

This is easily verified.
The a-spin 1/2 spinors are defined as eigenvectors of the matrix a·σ/2, where the

a-spin +1/2 spinor and the a-spin −1/2 spinor are orthogonal, and where a stands
for some abitrary direction. If we choose

(
1
0

)
and

(
0
1

)

as above for the z spinor, then an arbitrary normalized wave function will look like
(
ψ1(x)
ψ2(x)

)
.

Sending this wave function through the Stern–Gerlach apparatus, the z-spin +1/2
will appear with probability

∫
dx

∣∣∣∣
(
ψ1(x)
ψ2(x)

)
·
(

1
0

)∣∣∣∣
2

=
∫

dx|ψ1|2(x) .
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Fig. 8.6 Combination of two Stern–Gerlach experiments. Curved lines represent the paths of the
wave packets

Finally, to crystallise our ideas on spin, let us consider a thought experiment
devised by Tim Maudlin.11 Send a y-spin −1/2 particle in the z-direction through
a Stern–Gerlach apparatus. Then the wave function splits into two wave packets of
equal weights belonging to a z-spin +1/2 particle and a z-spin −1/2 particle. Now
let both wave packets pass through a Stern–Gerlach magnet which has opposite
orientation (rotated through 180◦), so that the two packets move towards each other,
move through each other, and then hit a screen (see Fig. 8.6). If the particle hits the
screen above (o) the symmetry axis S, then the particle must have z-spin −1/2, and
if the particle hits the screen at u (below the axis), it must have z-spin +1/2. But
the symmetry axis is still a topological barrier for the trajectories in a sufficiently
symmetric setup. (As in the two slit experiment, we can even think of letting the
wave go through a double slit.) This means that a particle that hits o was always
above S, while a particle that hits u was always below S. What does this tell us? In
fact it tells us that the particle changes its spin as a person changes his or her shirt.
In other words, spin is not a property of a particle. It is dangerously misleading to
speak of a particle with spin such and such. Spin is a property of the guiding wave
function, which is a spinor. The particle itself has only one property: position.

In this thought experiment, the particle “has z-spin +1/2 once and z-spin −1/2
once”, meaning that the particle is once guided by a z-spin +1/2 spinor and once
by a z-spin −1/2 spinor. What spin the particle “has”, i.e., in which packet the
particle ends up, is decided by the initial position of the particle in the support of
the y-spin initial wave function. In a totally symmetric setup (see Fig. 8.6), all initial
positions in + will move so as to pass the first Stern–Gerlach apparatus upwards
(z-spin +1/2), while all initial positions in − will move downwards (z-spin −1/2).

Let us push this idea a bit further. Returning to Fig. 8.5 and considering the lower
outcome, imagine a series of Stern–Gerlach setups which split the wave packet fur-
ther and further by having the magnets oriented as follows: z-direction, y-direction,
z-direction, y-direction, for each outgoing wave packet. What we have then is ob-
viously a quantum mechanical version of the Galton board. No matter how many

11 Private communication.
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magnets we put one after the other, the typical initial position will generate a typ-
ical run through this quantum mechanical Galton board which can be extended in
principle ad infinitum.12

As a final remark, the wave function for many particles is an element of the
tensorial spin space.13 A typical N-particle wave function is a linear superposition
of N-fold tensor products of one-particle spinor wave functions.

8.5 A Topological View of Indistinguishable Particles

In his talk about future physics entitled Our Idea of Matter,14 Schrödinger specu-
lates on what will remain of quantum mechanics, and whether a return to classical
physics will be possible? Above all else, Schrödinger is firmly convinced that the
return to discrete particles is impossible. By “discrete particles” he means particles
in the sense we intend it in this book, that is, point particles which have a position.
Now what is his reason for such a firm conviction?

To understand this we must consider the Bose–Fermi alternative. In many-
particle quantum mechanics, the indistinguishability of particles is encoded in the
symmetry (boson) or antisymmetry (fermion) of the wave function under exchange
of particle coordinates. For example, a two-particle wave function of indistinguish-
able particles ψ(x1,x2) is either symmetric (bosonic) ψ(x1,x2) = ψ(x2,x1), or anti-
symmetric (fermionic) ψ(x1,x2) =−ψ(x2,x1). According to Schrödinger, this can-
not be if particles exist as discrete entities. Moreover many textbooks suggest that
the quantum mechanical indistinguishability of particles forbids them from having
positions. For if they had positions, then we could say that one particle is here and
one particle is over there. And when they move, the one over here moves along
here and the one over there moves along over there, so they are in fact perfectly
distinguishable by the fact that one is here and one is over there.

The moral seems to be that quantum mechanical indistinguishability of particles
is something fantastic, something new or even revolutionary, which absolutely ne-
cessitates the understanding that particles are not particles. But this is nonsense, and
Schrödinger’s conviction was unfounded. He was completely wrong, and so is any
statement about the impossibility of a particle reality. Indeed, quite the opposite is
true. Because one has particles, one can easily understand the symmetry properties
of the wave function. To put it succinctly, the Bose–Fermi alternative is a straight-
forward prediction of Bohmian mechanics.

We wish to give an idea why this is so. What does it mean to have indistinguish-
able particles? One thing is clearly this: the labeling of particle positions, as we

12 It may be interesting to note that, according to Wigner [13], von Neumann drew his intuition that
“deterministic hidden variables” in quantum mechanics are not possible from this Gedankenexper-
iment. His intuition seemed to suggest that a “classical deterministic evolution” cannot produce an
ideal Bernoulli sequence of “infinite” length.
13 See Chap. 12 for the definition of tensor space.
14 Unsere Vorstellung von der Materie [14].
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did in this section when we wrote Qi , i = 1, . . . ,N, plays no physical role, i.e., it is
purely for mathematical convenience. The particles are not physically distinguished,
so it is better not to put any labels at all. But do we not then lose our nice configura-
tion space picture R

3N? The answer is that we do. The true configuration space of N
indistinguishable particles is this. One has N positions in R

3, and these N positions
are N points of R

3, so that we have a subset of R
3 with N elements. Therefore the

configuration space is

Q =
{

q⊂ R
3 : |q|= N , i.e., q = {q1, . . . ,qN} , qi ∈ R

3
}

.

That space looks quite natural and simple, but topologically it is not. It is a far richer
space than R

3N .
For example, take a wave function defined on this space. Then it is a function

depending on sets. Since the set has elements, it is a function also of elements, but
as such it is symmetric, since exchanging the order of elements in a set does not
change the set. Hence if we insist on writing the function ψ(q) as a function of the
elements qi, i = 1, . . . ,N, of the set q (this is like introducing coordinates on Q),
then ψ(q1, . . . ,qN) will be symmetric under any permutation σ of the N indices:

ψ(qσ(1), . . . ,qσ(N)) = ψ(q1, . . . ,qN) .

This is pretty straightforward and implies that indistinguishable particles are bosons,
i.e., they are guided by symmetric wave functions.

Interestingly, this is only half the truth. Since the discovery of Pauli’s princi-
ple, usually phrased as saying that two or more electrons cannot occupy the same
quantum state, together with the relativistic Dirac equation for electrons,15 physi-
cists have known that electrons are guided by antisymmetric wave functions. In the
scalar case, these are wave functions for which

ψ(qσ(1), . . . ,qσ(N)) = sign(σ)ψ(q1, . . . ,qN) ,

where sign(σ) is the signature of the permutation, i.e., −1 if σ decomposes into
an odd number of transpositions, and +1 if it decomposes into an even number of
transpositions.

15 Dirac’s equation builds heuristically on a square root of the negative Laplacian, and contains
a continuum of negative as well as positive energy states. To rule out unstable physics, Dirac in-
vented the Dirac sea, which ensures that all negative energy states are occupied by particles. By
Pauli’s principle, no more than two particles can occupy one state, therefore particles of negative
energy cannot radiate energy and thereby acquire an even more negative energy, because all nega-
tive energy states are already occupied. If that were not so, Dirac’s equation would yield nonsensi-
cal physics, because all electrons would radiate endlessly, acquiring ever more negative energies.
Dirac’s sea is a way out, and it requires that electrons be described by antisymmetric wave func-
tions (which is the mathematical formulation of Pauli’s principle). Dirac’s sea is reformulated in
modern quantum field theory by using the notion of vacuum together with creation and annihilation
operators which satisfy so-called anticommutation relations, and which describe the net balance of
particles missing in the sea and particles “above” the sea.
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But how can one understand that there are also antisymmetric wave functions? In
fact, there is a principle that can be supported in the context of quantum field theory
which says that half-integer-valued spinor representations of the rotation group for
many particles must be antisymmetric wave functions, while integer-valued repre-
sentations of the rotation group are to be described by symmetric wave functions. In
the former case, the wave functions are said to be fermionic, and the particles guided
by such wave functions are called fermions. In the latter case, they are described as
bosonic, and the guided particles are called bosons. This principle is commonly
referred to as the spin–statistics theorem.

However, we cannot go that far here, since a complete analysis would have to
be relativistic. What we can do, however, is to explain a little further just where the
antisymmetric wave functions are hiding when we look at things from a nonrela-
tivistic standpoint (for an elaboration of topological effects in Bohmian mechanics,
see [15]). To this end we observe a crucial topological characteristic of the configu-
ration space Q. This space can be expressed as

Q
.= (R3N\Δ3N)/SN =: R

3N
�= /SN .

The right-hand side means that we delete from R
3N the diagonal set

Δ3N =
{

(q1, . . . ,qN) ∈ R
3N

∣∣qi = q j for at least one i �= j
}

,

to yield the set we have denoted by R
3N
�= := R

3N\Δ3N , and than identify all those

N-tuples in R
3N
�= which are permutations of one another. The latter construction of

equivalence classes is expressed as factorization by the permutation group SN of N
objects.

To understand what this factorization can do, let us consider a much simpler
manifold, namely a circle, which arises from [0,1] by identifying the points 0 and
1, or if one so wishes, from R by identifying the integers n ∈ Z ⊂ R with zero. In
terms of factorization, this is expressed by R/∼, where x∼ y if and only if one has
x− y ∈ Z. R is topologically as simple as anything could be, but the circle is not. It
contains closed curves winding around the circle, which cannot be homotopically
deformed to a point. All closed curves on the circle fall into different equivalence
classes (indexed by the winding number of the closed curve, which can be positive
as well as negative). A class consists of all curves which can be homotopically
deformed into one another. Closed curves with different winding numbers belong
to different classes (a curve which winds around the circle 3 times clockwise and
once counterclockwise belongs to class −2) and the set of classes can be made
(with a rather straightforward definition of multiplication by joining curves) into a
group called the fundamental group Π of the manifold. In the example of the circle,
Π = Z.

So the first lesson to learn from factorizing a topologically simple manifold (e.g.,
a simply connected manifold, which means that all closed curves can be deformed
homotopically to a point) by an equivalence relation is that the resulting manifold
will not in general be topologically simple (e.g., it may become multiply connected).
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By analogy, R
3N
�= /SN will be multiply connected. The manifold will have “holes”, so

that classes of closed curves exist. We now switch to a different viewpoint. We wish
to define a Bohmian vector field on such a strange manifold. The Bohmian vector
field is the gradient of the phase of the wave function, and the phase is therefore
the anti-derivative of the vector field. This parallels the integration of a vector field
along a curve in the punctured plane, e.g., 1/z integrated over a circle around zero
in the complex plane C \ {0}. To construct the global anti-derivative, namely lnz,
Riemann sheets were invented. Quite analogously, one invents a covering of the
circle by a winding staircase, so that the covering is R twisted into a spiral.

For the manifold Q = R
3N
�= /SN , the analogous construction leads to the univer-

sal covering space Q̂ = R
3N
�= , which is a simply connected manifold covering the

multiply connected manifold in the following sense. The covering space is mapped
by a local diffeomorphism π : Q̂→Q to the basis manifold, where the map is also
referred to as a projection. This map is a coordinate map. What is local about it?
Well, if one moves one flight up the staircase, one arrives at different (permuted)
coordinates for the same point of the basis manifold. To any open neighborhood
U ⊂Q there corresponds a set of coordinate neighborhoods (leaves) π−1(U). All
these different coordinates make up a covering fiber π−1(q), which is the set of all
points in Q̂ = R

3N
�= which are projected down to q. If q = {q1, . . . ,qN}, then

π−1(q) =
{

(qσ(1), . . . ,qσ(N)) , σ ∈ SN

}
.

Now there is another group, the group of covering transformations. A covering
transformation is an isomorphism which maps the covering space to itself, while
preserving the covering fibers. The group of covering transformations is denoted
by Cov(Q̂,Q). For two elements q̂ and r̂ in the same covering fiber, there is one
element Σ ∈Cov(Q̂,Q) such that q̂ = Σ r̂. Since the fiber consists of permuted N-
tuples, it is clear that Cov(Q̂,Q) is isomorphic to the permutation group SN . It can
be shown (and this may not come as a surprise) that the fundamental group Π(Q)
is isomorphic to Cov(Q̂,Q), whence the fundamental group is isomorphic to SN .

We have now a good grasp of the connectedness of the true configuration space
Q, on which we wish to define a Bohmian vector field. We can thus look for wave
functions ψ̂ defined on the covering space. However, we must require such wave
functions to behave properly under the projection along the fibers. Proper behavior
means that the wave function must obey a certain periodicity condition. This is plain
to see, otherwise the wave function cannot define a vector field on the configuration
space. To begin with, ψ̂ defines a Bohmian vector field v̂ψ̂ on Q̂ in the usual way,
and that vector field will have to be projected down to the configuration space. A
vector field v̂ on Q̂ is projectable16 if and only if

π(q̂) = π(r̂) =⇒ v̂(q̂) = v̂(r̂) .

16 The projection π generates a push forward π∗ on vector fields which does the job of projecting
the vector field to the manifold, but we do not want to formalize this any further.
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The periodicity condition for the wave function is as follows. For Σ ∈Cov(Q̂,Q),

ψ̂(Σ q̂) = γΣ ψ̂(q̂) ,

where γΣ ∈ C\{0}. But this implies that ψ̂ must be a an element of the representa-
tion space of the group of covering transformations represented by C\{0}, since

ψ̂(Σ2 ◦Σ1q̂) = γΣ2γΣ1ψ̂(q̂) .

When we require that|γΣ |2 = 1, i.e., |γΣ |= 1, we can project the equivariant evolu-
tion of the Bohmian trajectories on the covering space to the motion on the config-
uration space, where the probability density

|ψ̂(Σ q̂)|2 = |γΣ |2|ψ̂(q̂)|2 = |ψ̂(q̂)|2

projects to a function |ψ(q)|2 on Q. We thus obtain a unitary group representation,
also called the character representation of the group. Translating this into coordinate
language, we have

ψ̂(Σ q̂) = ψ̂(qσ(1), . . . ,qσ(N)) = γσ ψ̂(q1, . . . ,qN) , (8.26)

where we put the element from the group of covering transformations in correspon-
dence with a permutation.

This is a formula that can be found in standard textbooks (perhaps without the
hats), and we could have written it down immediately at the beginning of this sec-
tion. Since we started the chapter with labeled particles and labeling is unphysical,
we could have concluded that, because the |ψ|2-distribution must not change under
permutation of the arguments, the wave function should at best change by a phase
factor when labels are permuted. But then we would have missed the truth behind
indistinguishability, which lies in the topology of the configuration space.

But let us end the argument as briefly as possible. Consider (8.26) for σ a trans-
position τ . We have τ ◦ τ = id, and hence γ2

τ = 1, so that γτ = ±1. So there we
are. There exist two character representations of the permutation group, one with
γτ = 1, which takes us back to the bosonic wave functions, and one with γτ = −1,
which leads us to the fermionic wave functions. And moreover, we found that this
is all there is. But as we pointed out earlier, this is not all there is to say. The whole
construction should be done for spinor-valued wave functions. This is a bit more
involved, but the principle is the same. On the basis of our present knowledge, the
spin–statistics theorem seems not to be purely grounded on topology, and we shall
not say more on this issue.

Here is a final remark. Let us return to R
3N
�= := (R3N \Δ3N). Since the diagonal

is taken out, this will produce holes in the space, and one may wonder whether this
now allows for closed curves around those holes that cannot be deformed to zero
curves. But the codimension of the diagonal set is the dimension of the physical
space d. Consider therefore the following analogy. In a space of d = 3 dimensions,
a set of codimension 3 is a point, and removing a point from R

3 does not produce
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anything interesting, because all closed curves can still be deformed while avoiding
the point. In d = 2, the diagonal has codimension two. That corresponds to a line in
R

3, and removing a line makes the space multiply connected!
The moral is that the configuration space of indistinguishable particles in two

dimensions is again multiply connected, and its fundamental group is no longer
isomorphic to the permutation group, but rather to a group which takes into account
the extra obstacles arising from taking away the diagonal. This group is called the
braid group. It allows for the continuum of characters of unit length, so any phase
factor is allowed. The wave functions have therefore been called anyons.
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Chapter 9
The Macroscopic World

We need to cope with an unwanted heritage, namely the idea that physics is about
measurements and nothing else. Bohmian mechanics is obviously not about mea-
surements. However, since quantum mechanics is about measurements and at the
same time plagued with the measurement problem, and since Bohmian mechanics
is supposed to be a correct quantum mechanical description of nature, one may want
to understand how Bohmian mechanics resolves the measurement problem. Mea-
surements, the reading of apparatus states, belong to the non-quantum, i.e., classical
world. Therefore the more general question, and a question of great interest on its
own is this: How does the classical world arise from Bohmian mechanics? Con-
cerning the latter we shall never, except for now, talk about h̄→ 0. While this is
a mathematically sensible limit procedure, it is physically meaningless because h̄
is a constant that is not equal to zero. The physically well-posed question here is:
Under what circumstances do Bohmian systems behave approximately like classical
systems?

9.1 Pointer Positions

Since Bohmian mechanics is not about measurements but about ontology, namely
particles, it has no measurement problem. However, since quantum mechanics does
have the measurement problem, one may wonder whether Bohmian mechanics
might not have another problem, namely that it is not a correct description of nature.
As we shall argue, Bohmian mechanics is a correct description. To show this it may
be quite helpful to phrase the measurement process in Bohmian terms.

First note that the very term “measurement process” suggests that we are concer-
ned with a physical process during which a measurement takes place. But this in turn
suggests that something is measured, and we are compelled to ask what this quantity
is? In Bohmian mechanics two things spring to mind as quantities that could be mea-
sured: particle position and wave function. Apart from having a position, particles
have no further properties. The wave function on the other hand does two things.
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physical space configuration space

Fig. 9.1 Pointers in physical space and the supports of the pointer wave function in configuration
space

Firstly, it guides the particle’s motion, and secondly, it determines the statistical dis-
tribution of its position. The latter fact already suggests that at least the statistical
distribution should be experimentally accessible, i.e., the particle’s position should
be measurable, for example by putting a photographic plate behind a double slit.

Even more famous than position measurement is “momentum measurement”,
since the Heisenberg uncertainty relation is about momentum and position mea-
surements. But momentum is not a fundamental notion in Bohmian mechanics. On
the other hand, particles do have velocities, so can they be measured? We need to
say something about that, too. At the end of the day the moral to be drawn is sim-
ply this message from Bohr: in most cases a measurement is an experiment where
nothing has been measured (in the sense the world is normally understood), but the
experiment ends up with a classical pointer pointing to some value on a scale of
values. In Bohmian terms one may put the situation succinctly by saying that most
of what can be measured is not real and most of what is real cannot be measured,
position being the exception.

So let us move on to the measurement problem. Consider a typical measurement
experiment, i.e., an experiment in which the system wave function gets correlated
with a pointer wave function. The latter is a macroscopic wave function, which
can be imagined as a “random” superposition of macroscopically many (∼ 1026)
one-particle wave functions, with support1 tightly concentrated around a region in
configuration space (of ∼ 1026 particles) that makes up a pointer in physical space
pointing in some direction, i.e., defining some pointer position. So different pointer
positions belong to macroscopically disjoint wave functions, that is, wave functions
whose supports are macroscopically separated in configuration space (see Fig. 9.1).

1 The support of a function is the domain on which it is not equal to zero. The notions of support,
separation of supports, and disjointness of supports have to be taken with a grain of salt. The sup-
port of a Schrödinger wave function is typically unbounded and consists of (nearly) the whole of
configuration space. “Zero” has thus to be replaced by “appropriately small” (in the sense that the
square norm over the region in question is negligible). Then, the precise requirement of macro-
scopic disjointness is that the overlap of the wave functions is extremely small in the square norm
over any macroscopic region.
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The coordinates of the system particles will be denoted by X in some m-
dimensional configuration space, and for simplicity we assume that the system
wave function is a superposition of the two wave functions ψ1(x) and ψ2(x) alone.
The system interacts with an apparatus with particle coordinates Y in some n-
dimensional configuration space. Possible wave functions of the apparatus will be
a pointer “null” wave function Φ0(y) (Y ∈ suppΦ0 =̂ 0) and two additional pointer
position wave functions Φ1(y) (Y ∈ suppΦ1 =̂ 1) and Φ2(y) (Y ∈ suppΦ2 =̂ 2).
We call an experiment a measurement experiment whenever the interaction and the
corresponding Schrödinger evolution of the coupled system is constructed in such a
way that

ψiΦ0
t−→T−→ ψiΦi , i = 1,2 , (9.1)

where T is the duration of the experiment and the arrow stands for the Schrödinger
evolution. This means that the pointer positions correlate perfectly with the system
wave functions.2 We shall say that the pointer points to the outcomes 1 (resp. 2) if
ψ1 (resp. ψ2) is the system wave function.

Concerning the initial wave function of the system and apparatus, we can make
the following remark. Starting the measurement experiment with a product wave
functionΨ(q) =Ψ(x,y) =ψi(x)Φ0(y) expresses the fact that the system and appa-
ratus are initially independent physical entities. The Schrödinger equation (8.4) for
a product wave function separates into two independent Schrödinger equations, one
for each factor, if the interaction potential V (x,y) ≈ 0. A warning is in order here:
V (x,y)≈ 0 on its own does not imply that the x and y parts develop independently,
because the wave functionΨ(x,y) need not be a product. To have physical indepen-
dence, we also require the velocity field vΨ of the X system to be a function of x
alone. In view of (8.1), we observe that

∇Ψ
Ψ

= ∇ lnΨ ,

so that

∇ lnΨ(x,y) = ∇ ln
(
ψi(x)Φ0(y)

)
= ∇ lnψi(x)+∇ lnΦ0(y)

=

(
∇x lnψi(x)
∇y lnΦ0(y)

)
.

Hence the particle coordinates X are indeed guided by the system wave function ψi

if the combined system is guided by a product wave function. The arrow in (9.1)
stands for a time evolution where the interaction is not zero, i.e., V (x,y) �= 0. How-

2 The wave function at the end of the experiment need not have the idealized product structure
ψiΦi. It can be replaced by an entangled wave function Ψi(x,y) without changing the following
arguments.
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ever, in this measurement experiment, these particular initial wave functions guaran-
tee that, at the end of the experiment, we once again obtain a product wave function.

The measurement problem (see also Remark 9.1) is a trivial mathematical con-
sequence of (9.1) and the linearity of the Schrödinger evolution. It comes about
whenever the system wave function is a nontrivial superposition

ψ(x) = α1ψ1(x)+α2ψ2(x) , |α1|2 + |α2|2 = 1 . (9.2)

Then, by virtue of the linearity of the Schrödinger equation, (9.1) yields

ψΦ0 = ∑
i=1,2

αiψiΦ0
t−→T−→ ∑

i=1,2
αiψiΦi , (9.3)

which is a macroscopic superposition of pointer wave functions. If one has nothing
but wave functions, this is a bad thing, because such a macroscopic superposition
has no counterpart in the macroscopic, i.e., classical world. What could this be?
A pointer pointing simultaneously to 1 and 2? Did the apparatus become a mushy
marshmallow?

In Bohmian mechanics on the other hand the pointer is there and it points at
something definite. In Bohmian mechanics we have the evolution of the real state of
affairs, namely the evolution of the coordinates given by (8.1). And by virtue of the
quantum equilibrium hypothesis, we do not even need to worry about the detailed
trajectories. If we are interested in the pointer position after the measurement exper-
iment, i.e., in the actual configuration of the pointer particles Y(T ) (see Fig. 9.2),
we need only observe the following. Given the wave function on the right-hand side

T T

Fig. 9.2 Evolution of the system–pointer configuration in the measurement experiment. The Y -
axis (the pointer axis) represents the configuration space of macroscopic dimensions, while the
X-axis (the system axis) may be thought of as low-dimensional. Depending on the initial values
(X0,Y0), at time T , the Bohmian trajectory ends up either in the upper or the lower of the two
macroscopically distant subsets that the support is split into in the system–pointer configuration
space
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of (9.3), by the quantum equilibrium hypothesis, the probability that the pointer
“points to k”, i.e., the probability that its configuration is in the support of Φk, is
given by

P
Ψ(

Y(T ) =̂ k
)

= P
Ψ(

Y(T ) ∈ suppΦk
)

=
∫
{(x,y)|y∈suppΦk}

∣∣∣ ∑
i=1,2

αiψi(x)Φi(y)
∣∣∣2

dmxdny

= ∑
i=1,2

∫
{(x,y)|y∈suppΦk}

|αi|2 |ψi(x)|2 |Φi(y)|2 dmxdny

+2ℜ
[∫
{(x,y)|y∈suppΦk}

α1α∗2ψ1(x)ψ∗2 (x)Φ1(y)Φ∗2 (y)dmxdny

]

∼= |αk|2 .

Note that suppΦ1∩ suppΦ2
∼= /0, and hence for i �= k,
∫

suppΦk

|Φi(y)|2 dny∼= 0 ,

and likewise for the mixed terms
∫

suppΦk

Φ1(y)Φ2(y)dny∼= 0 .

Therefore the pointer points to position 1 with probability |α1|2 and to position 2
with probability |α2|2. Which pointer position results depends solely on the initial
coordinates (X0,Y0) of the particles, as depicted in Fig. 9.2. Note that, while not
necessary for measurement experiments, but possibly in line with one’s intuition,
it may often be the case that the pointer’s final position is determined essentially
by the initial positions X0 of the system particles alone and not by the coordinates
Y0 of the pointer particles. This is the case in a “spin measurement” using a Stern–
Gerlach apparatus (where the measurement is simply the detection of already split
trajectories).

Remark 9.1. The Song and Dance about the Measurement Problem
Without Bohmian mechanics the result (9.3) has no physical meaning, unless one
interprets the wave function as an instrument for computing the probabilities that
this or that pointer position results. But this then means that there is a pointer, and
this might as well be the Bohmian one, whence nothing more needs to be said.
However, physicists have been convinced that the innovation of quantum mechanics
is something like this: the macroscopic world is real, but it cannot be described by
microscopic constituents governed by a physical law. On the other hand the pointer
moves from 0 to 1 or 2, just as Schrödinger’s cat either dies or stays alive, so some
movement is going on. Why should that not be describable?

It seems therefore an inevitable consequence that one must deny altogether that
there is anything real besides the wave function. This is a clean attitude, and one ar-
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rives at the clearest form of the measurement problem, because (9.3) is not what one
sees. To overcome this defect the notion of “observer” was introduced. The observer
makes everything alright, because it/he/she collapses the pointer wave function to a
definite outcome. The observer brings things into being, so to speak, by observing,
where “observing” is just a fancy way of saying “looking”. As if the apparatus alone
could not point to anything in particular, but rather – well what? As if the cat could
not know whether it was alive, its brain being in a grotesque state of confusion, and
it therefore had to wait to become definitely alive or dead until somebody looked at
it.

But what qualifies an object to be an observer? Is a cat not an observer? Must the
moon be observed in order to be there? Can only a subject with a PhD in physics
act as an observer, as John Bell and Richard Feynman liked to ask with suitable
irony? The observer is macroscopic alright, but how big is macroscopic? One must
admit that these are all funny questions, but they have been earnestly discussed by
physicists.

But let us get back to reason. An observer is simply another albeit huge pointer!
This means that, when the observer looks, i.e., when she/he interacts with the system
(the apparatus) in question, the disjointness of the wave function supports (now sub-
sets of the system–apparatus–observer configuration space) becomes even greater,
and we have the same line of argument again: the huge wave function (including
the observer) splits into a macroscopic superposition and the measurement problem
remains.

So now what? Well, nothing. Some say that decoherence comes to the rescue.
When applied to the measurement problem, decoherence theory (which we dis-
cuss a little further below, in the context of effective collapse) attempts to explain
or prove or argue the obvious: that it is impossible for all practical purposes to
bring such macroscopically disjoint macroscopic wave functions into interference.
In other words, for all practical purposes – fapp, to use John Bell’s abbreviation – it
is essentially impossible to bring the macroscopically disjoint supports of the wave
functions together so that there is any significant overlap. Just as it is essentially
impossible to have the wave functions of the dead and alive cat interfere. Just as it is
essentially impossible for a gas which has left a bottle and filled a box to go back into
the bottle. Of course, in principle it can be done, because one just has to reverse all
the velocities at the same time and take care that there is no uncontrolled interaction
with the walls of the box. So interference of macroscopically separated macroscopic
wave packets is fapp impossible. Wave functions which consist of macroscopically
separated macroscopic wave packets are fapp indistinguishable from statistical mix-
tures (which we also discuss further below) of two non-entangled wave functions.
This is true. This is why Schrödinger needed to add in his cat example that there was
a difference between a shaky or out-of-focus photograph and a snapshot of clouds
and fog banks.3

Besides Bohmian mechanics, the only other serious approach to resolving the
measurement problem is to make the evolution (9.3) theoretically impossible. This

3 Es ist ein Unterschied zwischen einer verwackelten oder unscharf eingestellten Photographie und
einer Aufnahme von Wolken und Nebelschwaden.
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means that the linear Schrödinger evolution is not valid. It has to be replaced by one
that does not allow macroscopic superpositions, i.e., wave packet reduction becomes
part of the theoretical description. This is known as the GRW theory or dynamical
reduction model, and good accounts can be found in [1–4]. �

Remark 9.2. The Wave Function Is Not Measurable
One is sometimes told that the virtue of quantum mechanics is that it only talks
about quantities that can be measured, and since by Heisenberg’s uncertainty rela-
tion the momentum and position of a particle cannot be measured simultaneously,
one must not introduce particles and their positions into the theory. We shall discuss
this nonsense in more detail later, but first let us take the opportunity to point out a
simple consequence of (9.3), namely that the wave function cannot be measured.

Here is the argument. Imagine a piece of apparatus which measures wave func-
tions. This means that, for every wave function ψ a system can have, there is a
pointer position such that, in view of (9.1), one has ψΦ0→ ψΦψ , i.e., ψ is pointed
at if ψ is the wave function the system happens to be in. Now such an apparatus does
not exist. This is actually what (9.3) tells us! For suppose such an apparatus did point
out either ψ1 or ψ2. Then if the system wave function is the superposition (9.2), the
apparatus wave function must evolve by virtue of mathematical logic into (9.3), i.e.,
into a superposition of pointer positions, and not to (α1ψ1 +α2ψ2)Φ(α1ψ1+α2ψ2).
So it is easy to find a quantum mechanical quantity that cannot be measured. Fortu-
nately, one has Bohmian mechanics and the particle positions, because they can be
measured. And because of that, we can sometimes find out what the wave function
is, using the Bohmian positions and the theory, of course. �

9.2 Effective Collapse

Now let us return to (9.3) and more important issues. If the pointer points to 1, i.e.,
if

Y(T ) ∈ suppΦ1 , (9.4)

we can fapp forget the wave packet ψ2Φ2 in the further physical description of the
world. In view of (8.1), and because supp vΦ1 ∩ supp vΦ2 = /0, the velocity field on
the combined configuration space for the system and apparatus induced by the wave
function on the right-hand side of (9.3) becomes (the α s do not matter)

vψ1Φ1+ψ2Φ2 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vψ1Φ1 =

(
vψ1

x

vΦ1
y

)
for y ∈ suppΦ1 ,

vψ2Φ2 =

(
vψ2

x

vΦ2
y

)
for y ∈ suppΦ2 ,

(9.5)
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so that only ψ1Φ1 “guides” if (9.4) holds, i.e., if the pointer position is 1. Fapp
ψ2Φ2 will not become effective again, as that would require ψ1Φ1 and ψ2Φ2 to
interfere, either by controlling 1026 “random phases”, an impossible task, or by
Poincaré recurrence (see Sect. 9.5.2), which would take a ridiculously long lapse of
time. Hence, as far as the further evolution of our world is concerned, we can forget
about ψ2Φ2, i.e., Bohmian mechanics provides us with a collapsed wave function.
If Y(T ) ∈ suppΦ1, the effective wave function is ψ1Φ1 and that means, by the
argument (9.2), that the effective wave function of the system is ψ1. Put another
way, we might say that, due to the measurement process ψ collapses to ψ1.

This collapse is not a physical process, but an act of convenience. It is introduced
because it would simply be uneconomical to keep the ineffective wave functions,
and the price we pay for forgetting them amounts to nothing. In just the same way,
we can safely forget the fact that the velocities of gas molecules that have escaped
from a bottle into a (much larger) container are such that reversing them all at the
same time would result in the gas rushing back into the bottle. The gas molecules
will interact with the walls of the box (exchanging heat for example) and the walls of
the box will further interact with the outside world. In the end, reversal of velocities
will no longer be sufficient to get the gas back into the bottle, as the information that
the gas was once in the bottle is now spread all over the place.

We have exactly the same effect in quantum mechanics, where it is called deco-
herence. The separation of waves happens more or less all the time, and more or
less everywhere, because measurement experiments that measure position are ubiq-
uitous. The pointer (as synonymous with the apparatus) looks at where the particle
is, the air molecules in the lab look at where the pointer is (by bouncing off the
pointer), the light passing through the lab looks at how the air molecules bounced
off the pointer, and so it goes on.

Here is an example along these lines. A particle is initially in a superposition
of two spatially separated wave packets ψL(x)+ψR(x), where ψL moves to the left
and ψR moves to the right (see Fig. 9.3). To the right there is a photographic plate. If
the particle hits the plate, it will blacken it at its point of arrival. So the photographic
plate is a piece of apparatus and in this case the “pointer points” either at a black
spot or nothing. If the particle is guided by ψR, then the plate will eventually feature
a black spot. If no black spot shows up, then the particle travels with ψL. As in (9.3),
Schrödinger evolution thus leads to

[
ψL(x)+ψR(x)

]
Φ(y) t−→T−→ ψL(x,T )Φ(y)+ΦB(y,x,T ) , (9.6)

where ΦB stands for the blackened plate.
Can it happen that the position X is in the support ofψL and the plate nevertheless

shows a black spot? In fact it cannot, because the supports of Φ(y) and ΦB(y,x,T )
are disjoint. Why is this? Because the black spot arises from a macroscopic chemical
reaction at the particle’s point of arrival (macroscopic because the black spot can
be seen with the naked eye). Bohmian dynamics thus precludes the possibility of
simultaneously having X ∈ suppψL(T ) and Y ∈ suppΦB(T ) (see Fig. 9.4).
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Fig. 9.3 The measurement process. Where is the particle?

Fig. 9.4 Measurement of a particle’s position, depicted in the configuration space of the photo-
graphic plate and particle

In the foregoing we described a position measurement with the help of a photo-
graphic plate. Is there anything special about the plate? Of course, there is nothing
at all special about it! We could just as well have used light waves that scatter off
the particle and measured its position in that way. Light rays scattered off a parti-
cle are different from undisturbed light rays. So just like a photographic plate, light
rays produce decoherence. The particle wave function gets entangled with the wave
function of the photons in the light ray. So once again we can effectively collapse the
particle wave function to where the particle is. After all, since we wish to describe
the world as we experience it, it is relevant to us where the particle is. So it is now
the light waves that act as pointer (see Fig. 9.5).

But the procedure does not stop there. The light interacts with other things and
so changes configurations in the environment (wherever the light goes, there will
be changes). So the entanglement, the fapp impossibility of interference, continues
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Fig. 9.5 Light waves as pointer

to grow. This is decoherence at work. But decoherence alone does not create facts.
The facts are already there in the form of the Bohmian positions! Only the fapp
description of that real state of affairs is a collapsed one. Schrödinger once thought
that a cat was a big enough pointer to get that point across, and that some description
of the real state of affairs was needed for a physical description.

The effective collapse becomes even more stable once the results of a measure-
ment have been recorded. Interference of what was once the particle wave function
now means that all the records must also be brought under control and made to in-
terfere. That does seem hopeless. The collapse is stable for all times relevant to us.
The moral is that interactions typically destroy coherence, since they “measure” the
particle positions. Fapp collapse of wave functions is the rule, and that is essential
for understanding how the classical macroscopic world emerges.

In Remark 9.1, we mentioned an alternative approach for solving the measure-
ment problem, which involved introducing the collapse as a fundamental physical
event. Such a fundamentally random theory, in which a random collapse is part of
the theoretical description, will ensure that the collapse is effective only for large
systems. How is it possible to distinguish experimentally between Bohmian me-
chanics and a collapse theory? The answer is, by experimentally achieving a macro-
scopic superposition, i.e., by forcing the wave functions of a dead and alive cat to
interfere. But perhaps we had better not use a cat. Some less cruel and smaller sized
experiment would do. However, one should realize the problematic nature of such
experiments. For how can one hope to control the effects of decoherence? Without
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control over the ubiquitous decoherence, it does not prove much, if one cannot see
interference of mesoscopic/macroscopic systems. On the other hand, if one could
experimentally achieve interference, well then everything depends on whether the
interfering system is big enough to be sure that it will be collapsed according to the
collapse theory, which of course contains parameters that can be adjusted to cover
quite a wide range. It will be a long time before we can hope for experimental help
on deciding which of these theories, Bohmian mechanics or spontaneous localiza-
tion, is physically correct.

9.3 Centered Wave packets

Let us follow the particle in Fig. 9.5 for a while. Suppose the particle is alone in the
universe, “in” a wave packet of the form (6.15), viz.,

ψ(x, t) =
∫

ei[k·x−ω(k)t] f̂k0(k)d3k ,

with ω(k) = h̄k2/2m. This is the solution of the one-particle Schrödinger equation
(8.4) with V = 0. The wave moves with group velocity (∂ω/∂k)(k0) = h̄k0/m, and
according to the stationary phase argument, the width of the k distribution given
by the exponential function is proportional to 1/t [see (6.18)]. The wave there-
fore spreads linearly with t. This spreading is a generic wave phenomenon for the
Schrödinger evolution that results from the special dispersion relation. However,
according to (6.18) (with γ = h̄/2m), the larger the mass, the smaller the spreading
rate, i.e., the wave function of a very massive particle stays localized (around its
center) for quite a long time.

Now consider a wave packet over such a period of time that spreading can be ne-
glected. Let us follow the evolution of the position X of a Bohmian particle. Due to
quantum equilibrium, X(t) moves with the packet. But how does the packet move?
According to Schrödinger’s equation, of course:

ih̄
∂ψ
∂ t

(x, t) =− h̄2

2m
Δψ(x, t)+V (x)ψ(x, t) = Hψ(x, t) , (9.7)

with

H =− h̄2

2m
Δ+V (x) (9.8)

as Hamilton operator. For X(x, t) with initial value x, we get

Ẋ(x, t) =
h̄
m
ℑ
∇ψ
ψ

(
X(x, t), t

)
.
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Since the packet is well localized in position, instead of X(x, t), we consider its
expectation value E

ψ(
X(t)

)
. According to the quantum equilibrium hypothesis and

equivariance, this is given by

〈X〉ψ(t) := E
ψ(

X(t)
)

=
∫

X(x, t)|ψ(x,0)|2d3x

=
∫

x|ψ(x, t)|2d3x . (9.9)

For ease of notation we shall omit the superscript ψ from now on. Using (7.17), we
obtain

d
dt
〈X〉(t) =

∫
x
∂
∂ t
|ψ(x, t)|2d3x

= −
∫

x∇ · j(x, t)d3x

=
∫

j(x, t)d3x (9.10)

=
〈
vψ

(
X(t), t

)〉
,

where we have used partial integration and set the boundary terms to zero. Intu-
itively, a Schrödinger wave that does not spread should move classically. Therefore
we consider d2〈X〉/dt2. For this we need ∂ j/∂ t. Using (7.12), we get

∂
∂ t

j =− ih̄
2m

∂
∂ t

(ψ∗∇ψ−ψ∇ψ∗) ,

and with (7.11) and (9.7),

∂
∂ t

j =
1

2m

[
(Hψ∗)∇ψ−ψ∗∇(Hψ)+(Hψ)∇ψ∗ −ψ∇(Hψ∗)

]
.

Further, by partial integration, we have for wave packets ψ and ϕ
∫
ψ∗Hϕd3x =

∫
(Hψ∗)ϕd3x ,

a property which we shall later call symmetry (see Chap. 14). So
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d2

dt2 〈X〉(t) =
∫ ∂
∂ t

j(x, t)d3x

=
1

2m

∫ [
ψ∗H∇ψ−ψ∗∇(Hψ)+ψH∇ψ∗ −ψ∇(Hψ∗)

]
d3x

=
1

2m

∫ [
ψ∗V∇ψ−ψ∗∇(Vψ)+ψV∇ψ∗ −ψ∇(Vψ∗)

]
d3x [by (9.8)]

=
1

2m

∫ [
− (∇V )ψ∗ψ− (∇V )ψψ∗

]
d3x

=
1
m

〈
−∇V (X)

〉
(t) .

Hence we arrive at Newtonian equations in the mean, so to speak, a version of the
Ehrenfest theorem:

m〈Ẍ〉=
〈
−∇V

(
X(t)

)〉
, (9.11)

and we would have the classical limit and the final identification of the parameter m
with Newtonian mass if

〈
∇V

(
X(t)

)〉
= ∇V

(
〈X(t)〉

)
. (9.12)

For this, however, we would have

Var(X) =
〈
(X−〈X〉)2

〉
≈ 0 ,

which means that ψ(x, t) would be a very well localized wave.
Let us make that a little more precise. Expand V up to third order around 〈X〉 :

V (X) ≈ V (〈X〉)+
(
X−〈X〉

)
∇V (〈X〉)+

1
2

[(
X−〈X〉

)
·∇

]2
V (〈X〉)

+
1
3!

[(
X−〈X〉

)
·∇

]3
V (〈X〉) . (9.13)

So the expectation value of ∇V (X) is given by

〈∇V (X)〉 ≈ ∇V (〈X〉)+
1
2

〈[(
X−〈X〉

)
·∇

]2
〉
∇V (〈X〉) .

We thus establish as a rule of thumb that, in order to have classicality of the motion
in a potential, the width of the wave function should obey

Var(X)�
√

V ′

V ′′′
. (9.14)

So far so good. But now we have to admit that the spreading will eventually become
effective. But the particle is not alone in the universe. It will interact with everything
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it can in its environment. If this interaction is strong enough, it may result in a
measurement-like process (as we have discussed before), and an effective collapse
will thus take place, countering the effect of spreading. So the collapsed wave packet
remains localized and the above reasoning about classicality seems to be alright
if we take into account the fact that the environment acts like a piece of position
measuring apparatus. In other words, we do generically have (9.12), and hence with
(9.11), classical physics.

However, this argument is faulty, because we have assumed the validity of the
Schrödinger evolution. But why should that hold true for a wave function that col-
lapses all the time due to interactions with the environment? Is the disturbance of the
environment such that it only decoheres (i.e., counters the spreading of) the wave
function, without disturbing the evolution of the center of the wave packet? The sit-
uation is reminiscent of Browian motion, where the effects of the environment lead
to diffusion and friction (dissipation of energy). The question is therefore: Does
the “reading” of the particle’s position by the environment happen on a different
(shorter) time scale than friction and dissipation, which are also generated by the
interaction? The answer must be sought in the proper derivation of an appropri-
ate new phenomenological equation which should describe the “reading” process in
such a way that spreading is suppressed, i.e., (9.11) holds, only very little (or no)
friction and diffusion is present, and (9.12) still holds. We shall say more about this
in Sect. 9.4.

9.4 The Classical Limit of Bohmian Mechanics

In Bohmian mechanics the question of the classical limit is simply this: Under what
physical conditions are the Bohmian trajectories close to Newtonian trajectories?
In the previous section we discussed one possibility, in a rather hand-waving way,
namely the evolution of narrow wave packets. If they move classically, the Bohmian
trajectories do so, too, because they are dragged along, as it were. But now we
would like to find a more general answer. At some point the narrow wave packets
will certainly play a (technical) role, but they do not provide a fundamental answer.
In fact the best hopes for a fundamental answer lie in exactly the opposite direction:
a freely moving wave packet that spreads all over the place! In the long run the
Bohmian trajectories of a freely moving wave packet become classical.

To see this we have to specify what we mean by “in the long run”. We shall have
to look at the wave function on a macroscopic scale (in time and space). Where
else would we expect to see classical behavior? We have already encountered such
a macroscopic scaling in our treatment of Brownian motion. However, the scaling
here is a bit different, since we do expect ballistic rather than diffusive motion. Now,
the macroscopic position of the Bohmian particle at a macroscopic time is

Xε(x, t) = εX
(x
ε
,

t
ε

)
. (9.15)
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Here we think of ε as being very small, eventually even going to zero for precise
limit statements. Note that Ẋε(x, t) = vψ(x/ε, t/ε) is of order one. The wave func-
tion on this scale is

ψε(x, t) = ε−3/2ψ
(x
ε
,

t
ε

)
,

so the quantum equilibrium density (with norm one) becomes |ψε(x, t)|2. This is
easily seen by computing any expectation value. A simple change of variables gives

E
ψ [

f
(
Xε(t)

)]
=

∫ ∣∣∣ψ
(

x,
t
ε

)∣∣∣2
f (εx)d3x

=
∫
ε−3

∣∣∣ψ
(x
ε
,

t
ε

)∣∣∣2
f (x)d3x = E

ψε
[

f
(
X(t)

)]
.

The Schrödinger equation for the free evolution becomes after rescaling

ih̄ε
∂ψε(x, t)
∂ t

=− h̄2ε2

2m
Δxψε(x, t) . (9.16)

Now note that ε appears only in the combination ε h̄. Thus the unphysical limit h̄→ 0
can in fact be interpreted as the macroscopic limit ε → 0.

If the Schrödinger equation contains a potential V , then (9.16) becomes

ih̄ε
∂ψε(x, t)
∂ t

=− h̄2ε2

2m
Δxψε(x, t)+V

(x
ε

)
ψε(x, t) .

We make this observation in order to establish the following point. For classical be-
havior, one will have to assume that the potential varies on the macroscopic scale,
i.e., V (x/ε) = U(x). But the potential is given by the physical situation so, if any-
thing, it is the potential that defines the macroscopic scale, i.e., it is the potential that
defines the scaling parameter ε . More precisely, ε will be given by the ratio of two
length scales, the width of the wave function and the characteristic length on which
the potential varies [for the latter compare with (9.14)]. We do not wish to pursue
this further here (but see [5]).

We continue with the free evolution. We wish to find an expression for ψε(x, t)
when ε ≈ 0. The solution of (9.16) is a superposition of plane waves and this is done
with mathematical rigor in Remark 15.7. This involves nothing other than solving
the equation via Fourier transformation (as we did for the heat equation). We should
be able to do that with our eyes shut, never mind all the rigorous mathematics it may
be shrouded in:

ψε(x, t) = (ε)−3/2ψ
(x
ε
,

t
ε

)

= (2πε)−3/2
∫

exp

[
i

(
k·x
ε
− h̄k2

2m
t
ε

)]
ψ̂(k)d3k

= (2πε)−3/2
∫

exp

[
i
ε

(
k ·x− h̄k2

2m
t

)]
ψ̂(k)d3k , (9.17)
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where ψ̂(k) is the Fourier transform of the wave function ψ at time zero.
Now let us go on with the stationary phase argument. It says that for small ε the

only contribution comes from that k value for which the phase

S(k) = k ·x− h̄k2

2m
t

is stationary. This value is given by k0 = mx/h̄t. Expanding around the stationary
point,

1
ε

S(k) =
mx2

2th̄ε
− h̄t

2mε
(k−k0)

2 ,

putting this into (9.17), and multiplying by the phase factor, this gives

exp

(
− i

h̄ε
mx2

2t

)
ψε(x, t) = (2πε)−3/2 exp

(
−i
h̄ε

mx2

2t

)∫
exp

[
i
ε

S(k)
]
ψ̂(k)d3k

= (2πε)−3/2
∫

exp

[
− it

2mh̄ε
h̄2 (k−k0)

2
]
ψ̂(k)d3k

= (2πε)−3/2
∫

exp

[
− it

2mh̄ε

(
p−m

x
t

)2
]
ψ̂

(p
h̄

) 1

h̄3 d3 p

= (2πε)−3/2
∫

exp

(
− it

2mh̄ε
u2

)
ψ̂

(u
h̄

+
m
h̄

x
t

) 1

h̄3 d3u

=
( m
π h̄t

)3/2 ∫
exp

(
−iu2) ψ̂

(√
2mε√
h̄t

u+
m
h̄

x
t

)
d3u .

(9.18)

Next we let ε → 0. (In Remark 15.8 we shall do these asymptotics in a rigorous
manner, but for now we do not care about rigor.) The integral becomes a complex
Gaussian integral,

∫
exp

(
−iu2)d3u =

(π
i

)3/2
. (9.19)

Since the integrand is holomorphic, (9.19) is easily verified by a simple deformation
of the integration path that changes the integral into a typical Gaussian integral [see
(5.8)]. Thus

exp

(
− i

h̄ε
mx2

2t

)
ψε(x, t)≈

( m
ith̄

)3/2
ψ̂

(m
h̄

x
t

)
,

or

ψε(x, t)≈
( m

ith̄

)3/2
exp

(
i

h̄ε
mx2

2t

)
ψ̂

(m
h̄

x
t

)
. (9.20)
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We introduce

Sclass(x, t) :=
mx2

2t
, R(x, t) :=

( m
ith̄

)3/2
ψ̂

(m
h̄

x
t

)
,

to get

ψε(x, t)≈ R(x, t)exp

[
i

h̄ε
Sclass(x, t)

]
. (9.21)

Thus on the macroscopic scale the Bohmian velocity field is given by

vψε (x, t) : = vψ
(x
ε
,

t
ε

)
=

h̄
m
ℑ
∇yψ(y, t/ε)
ψ (y, t/ε)

∣∣∣∣
y=x/ε

=
ε h̄
m
ℑ
∇ψε(x, t)
ψε(x, t)

≈ 1
m
∇Sclass(x, t) =

x
t

, (9.22)

since the contribution coming from R or ψ̂ , which is complex and thus contributes to
the derivative, is of order ε and thus negligible. Evaluated for macroscopic Bohmian
trajectories, this gives

Ẋε (x, t) = vψε
(
Xε (x, t) , t

)
≈ Xε (x, t)

t
, (9.23)

so macroscopically the Bohmian trajectories will indeed become classical, in the
sense that they become straight lines with the macroscopic velocities Xε (x, t)/t. We
can reformulate this as a result holding for the long time asymptotics of Bohmian
trajectories which are guided by a freely evolving wave function. In view of (9.15),
we can write

Ẋ(x, t/ε) = Ẋε (εx, t)≈ Xε (εx, t)
t

=
X(x, t/ε)

t/ε
. (9.24)

This shows that, in the case of free motion in the long run, i.e., asymptotically
(t/ε→∞ for ε→ 0), the Bohmian trajectories become straight lines with the asymp-
totic velocity X(x, t)/t, for t big [6]. In particular we shall see in Chap. 16 on scat-
tering that, after leaving the scattering center, a scattered particle will move asymp-
totically along a straight line, just as one observes in cloud chambers.

The moral of (9.20) is best understood when we forget ε (put it equal to unity)
and consider x, t large! Equation (9.20) gives us the asymptotic form of the wave
function for large times (or for large distances, depending on one’s point of view):

ψ(x, t)
t large
≈

( m
ith̄

)3/2
exp

(
i
h̄

mx2

2t

)
ψ̂

(m
h̄

x
t

)
. (9.25)

This says that, for large times, the wave function will be localized at positions x
such that the “momentum” mx/t, or more precisely the wave vector (m/h̄)(x/t),
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lies in the support of the Fourier transform ψ̂ of ψ . That is why the “momentum
distribution” is given by |ψ̂|2, as we shall now show in a little more detail.

For ε small, let us call

V∞ =
Xε(x, t)

t

the asymptotic velocity. In (9.23), we identified this as the velocity of the (straight)
macroscopic Bohmian trajectory. Using the feature (8.19) of the quantum equilib-
rium distribution and the asymptotic form (9.20), we show that V∞ is distributed
according to |ψ̂|2. For any function f ,

E
ψ
(

f
(
(V∞)

))
=

∫
f

(
Xε (x, t)

t

)
|ψ (x,0) |2d3x

=
∫

f
(x

t

)
|ψε (x, t) |2d3x

≈
∫

f
(x

t

)∣∣∣ψ̂
(m

h̄
x
t

)∣∣∣2 ( m
h̄t

)3
d3x

=
∫

f (v)
∣∣∣ψ̂

(m
h̄

v
)∣∣∣2 (m

h̄

)3
d3v , (9.26)

where we have used the natural substitution v = x/t. We shall reconsider this in
a rigorous manner in Chap. 15. To sum up, what we see on the macroscopic scale
are straight trajectories starting at the origin, with velocity distribution |ψ̂|2. In other
words, the classical phase space ensemble δ (x)|ψ̂|2(k) is transported along classical
force free trajectories. If one wants to have another starting point x0, the initial wave
function must be chosen to be supported around that point, ψ(·−x0/ε,0).

All the above ultimately results from the dispersion of wave groups (waves of dif-
ferent wavelengths have different speeds), which we already alluded to in Chap. 6.
We remark in passing that the distribution of the free asymptotic velocity [which
according to (9.24) and (9.26) is given by |ψ̂|2] has some meaning for Heisenberg’s
uncertainty relation. The latter relates this distribution to that of the initial position
of the particle. We can already guess that, when all is said and done, Heisenberg’s
uncertainty relation will be recognized as a simple consequence of Bohmian me-
chanics and quantum equilibrium.

Let us go on with Sclass(x, t) := mx2/2t, the Hamilton–Jacobi function of a free
particle of mass m. Let us call wave functions of the form (9.21) local plane wave
packets. They consist of “local” plane waves, where each of them produces a straight
line as trajectory. We can lift this picture to the situation where a wave moves in
some potential V that varies on a macroscopic scale, meaning for example that a
relation like (9.14) is satisfied. Then one expects the wave to obtain the form (9.21)
once again, but now with the Hamilton–Jacobi function Sclass(V ) that contains the
potential V . Moreover, the local plane waves will be guided by the potential, chang-
ing the wavelengths in an analogous way to what happens when light passes through
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an optical medium. The classical phase space ensemble δ (x−x0)|ψ̂|(k)2 will now
be transported along the classical trajectories governed by Sclass(V ).

In Sect. 2.3, we said that the Hamilton–Jacobi function was useless because typ-
ically it cannot be defined in a unique manner, at least, not if there are two separate
points in configuration space that are, in a given time interval, connected by more
than one (classical) trajectory, as we mentioned for the case of a ball reflected by a
wall. Here we encounter this difficulty once more. If two different (classical) trajec-
tories can pass from one point in configuration space to another, then this means that
two local plane waves can originate from one (macroscopic) point and meet again
in another, thereby interfering! The classical trajectories simply move through each
other, while Bohmian trajectories cannot do that. Thus whenever the local plane
waves meet again, we do not have classicality. But this is a typical situation! So have
we uncovered a serious problem with Bohmian mechanics? Of course, we have not.
We have simply ignored the fact that there is a world surrounding the particles we
wish to look at. We have ignored the effects of decoherence, the “reading” of the
environment.

So the full picture is as follows. Dissipation produces local plane waves that
cannot interfere any more because of decoherence, each of them being multiplied
by a wave function for the environment, as in the measurement experiments. We are
thus left with one local plane wave, the one which guides the particle, which moves
along a classical trajectory.

9.5 Some Further Observations

9.5.1 Dirac Formalism, Density Matrix,
Reduced Density Matrix, and Decoherence

Effective wave functions, as we discussed them above, emerge from decoherence,
which arises from interaction of the system in question with its environment. The
environment may be a piece of apparatus (pointer) in a carefully designed experi-
ment or simply the noisy environment that is always present. In the latter case, it is
feasible that a random evolution for the effective wave function of the system might
emerge from an analysis of the combined system and environment, in the same way
as a Wiener process emerges from the analysis of the motion of a Brownian particle
in its environment.

The types of evolution one would expect to emerge are those that have been sug-
gested in the so-called spontaneous localization models [1]. These describe Brow-
nian motion as a process on the space of wave functions, which, mathematically
speaking, will be chosen to be the Hilbert space of square (Lebesgue) integrable
functions. The wave functions thus follow diffusion-like paths through Hilbert
space. The probability distribution of random wave functions is given by density
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matrices. But beware! A density matrix need not have the meaning of a probability
distribution of random wave functions. We shall see this in a moment.

Phenomenological evolution equations for the so-called reduced density matri-
ces (the analogue of the heat equation for Brownian motion) have been rather ex-
tensively studied and for a long time now. The evolution of a density matrix through
such phenomenological equations, which in the course of time lead to a vanishing of
the “off-diagonal” elements, has become a celebrated solution of the measurement
problem. Celebrated because it is a solution from “within” quantum mechanics.
However, the vanishing of the off-diagonal elements is nothing but a rephrasing of
the fapp impossibility of bringing wave packets belonging to different pointer posi-
tions into interference. The sole purpose of the following section is to acquaint the
reader with the basic technicalities so that she/he need not feel intimidated if she/he
encounters the overwhelming technical arguments that are often claimed to be “so-
lutions” to the measurement problem. We shall also quickly introduce the Dirac
formalism, which is a wonderful formalism for vector spaces with a scalar product.

Remark 9.3. On the Dirac and Density Matrix Formalisms
The Dirac formalism is a symbolism which is well adapted to the computation of
expectation values in quantum equilibrium, since they become expressions of scalar
product type. In Sect. 15.2.1, we shall review the Dirac formalism with more math-
ematical background in hand.

A wave function ψ (i.e., an element of the Hilbert space) is represented by the
symbol |ψ〉, and the projection (in the sense of scalar products) of ϕ onto ψ is
denoted by

〈ψ|ϕ〉 :=
∫
ψ∗(x)ϕ(x)d3x .

That is, 〈·|·〉 stands for the scalar product on the Hilbert space. |x〉 symbolizes the
wave function which is “localized” at x, and one reads as follows:

√
〈ψ|ψ〉= ‖ψ‖ ≡ norm of ψ ,

〈x|ψ〉= ψ(x) = value of ψ at x ,

〈ψ|x〉= ψ∗(x) ,

〈x′|x〉= δ (x′ −x) ,

|x〉〈x|= orthogonal projection on |x〉 .

The wave function ψ is the following superposition of the |x〉:

|ψ〉=
∫
|x〉〈x|ψ〉d3x , (9.27)

which is simply the coordinate representation of the vector |ψ〉 in the basis |x〉. In
particular, for the identity I, we obtain
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∫
|x〉〈x|d3x = I , (9.28)

and the scalar product is simply

〈ψ|ψ〉=
∫
〈ψ|x〉〈x|ψ〉d3x .

We introduce the operator x̂ by defining its action on the basis |x〉 as

x̂|x〉= x|x〉 , (9.29)

or alternatively by its matrix elements

〈x′|x̂|x〉= xδ (x′ −x) .

One finds (rather easily) that the matrix elements of the ∇ operator are

〈x′|∇|x〉= δ (x′ −x)∂x . (9.30)

Likewise for Δ

〈x′|Δ|x〉= δ (x′ −x)∂ 2
x . (9.31)

The Schrödinger equation now reads

ih̄
∂
∂ t
|ψt〉= H|ψt〉 ,

with H as Hamilton operator. As for any linear equation, the (formal) solution is
given by

|ψt〉= exp

(
− i

h̄
Ht

)
|ψ0〉 .

Using the Dirac notation, the expectation value of the Bohmian position can be
written as

〈X〉ψ(t) = E
ψ(

X(t)
)

=
∫

x|ψ(x, t)|2d3x

= 〈ψt |x̂|ψt〉

=
∫

d3x〈ψt |x〉〈x|x̂|ψt〉

= tr(x̂|ψt〉〈ψt |)
= tr(x̂ρt) , (9.32)
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where ρt = |ψt〉〈ψt | is called the density matrix or statistical operator, and tr denotes
the trace. Note that

∂
∂ t
ρt =

∂
∂ t

(|ψt〉〈ψt |)

=
(
∂
∂ t
|ψt〉

)
〈ψt |+ |ψt〉

(
∂
∂ t
〈ψt |

)

= − i
h̄

H|ψt〉〈ψt |+ |ψt〉〈ψt |
(

i
h̄

H

)

= − i
h̄
[H,ρt ] , (9.33)

where [A,B] = AB−BA denotes the commutator of the two operators A and B. This
is the quantum mechanical analogue of Liouville’s equation. It is called the von
Neumann equation.

Now to the point. The object ρ = |ψ〉〈ψ| has matrix elements

ρ(x,x′) = 〈x|ψ〉〈ψ|x′〉= ψ(x)ψ∗(x′) , (9.34)

and in view of (9.27), we may write ρ in the form

ρ = |ψ〉〈ψ|=
∫∫

d3xd3x′ψ(x)ψ∗(x′)|x〉〈x′| . (9.35)

This is often called a pure state.4 In contrast, the diagonal density matrix

ρ =
∫

d3x|ψ(x)|2|x〉〈x| (9.36)

can be read as a statistical mixture of the localized wave packets |x〉, where each
packet appears with probability |ψ(x)|2. This is why the density matrix is also called
the statistical operator.

For any kind of density matrice we can compute averages according to (9.32). But
sometimes a density matrix is neither a pure state nor a mixture of states. Consider
Fig. 9.5 and the scattered light waves, which are different depending on whether
ψL = |l〉 or ψR = |r〉 is effective. We shall symbolize the light waves by “pointer”
wave functions Φ0 = |0〉, ΦL = |L〉 and ΦR = |R〉. We can then describe the process
as follows. Initially, we have (αl |l〉+αr|r〉)|0〉, where the environment (the light)
is represented by the unscattered state |0〉. From this we obtain αl |l〉|L〉+αr|r〉|R〉.
The wave function of the system is understood to be time dependent, so that |l〉
denotes a wave function moving to the left and |r〉 denotes a wave function moving
to the right. The density matrix is a pure state of the form (9.35), and its change in
time is given by

4 For any pure state we have ρ2 = ρ , which does not hold for a mixture (9.36).
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ρ = |αl |2|l〉|0〉〈l|〈0|+ |αr|2|r〉|0〉〈r|〈0|+αlαr
∗|l〉|0〉〈r|〈0|+αrαl

∗|r〉|0〉〈l|〈0|
t−→T−→

ρT = |αl |2|l〉|L〉〈l|〈L|+ |αr|2|r〉|R〉〈r|〈R|+αlαr
∗|l〉|L〉〈r|〈R|+αrαl

∗|r〉|R〉〈l|〈L| .
(9.37)

This looks more complicated than it really is. Let us focus on the position of the
particle, i.e., we are interested in expectation values of functions of the particle
position alone. In that case we can “trace out” the environment. That is, in (9.32),
we take the trace over all the states |Y 〉 of the environment. This partial tracing yields
the reduced density matrix

ρred
T (x,x′) = [trYρT ](x,x′)

=
∫

dY
〈

Y
∣∣∣
[
|αl |2〈x|l〉|L〉〈l|x′〉〈L|+ |αr|2〈x|r〉|R〉〈r|x′〉〈R|

+αlα∗r 〈x|l〉|L〉〈r|x′〉〈R|+αrαl
∗〈x|r〉|R〉〈l|x′〉〈L|

]∣∣∣Y
〉

= |αl |2〈x|l〉〈l|x′〉
∫

dY |〈L|Y 〉|2 + |αr|2〈x|r〉〈r|x′〉
∫

dY |〈R|Y 〉|2

+αlα∗r 〈x|l〉〈r|x′〉
∫

dY 〈Y |L〉〈R|Y 〉+αrαl
∗〈x|r〉〈l|x′〉

∫
dY 〈Y |R〉〈L|Y 〉 ,

(9.38)

which can be used to compute all the relevant expectations.
Now we must think as follows. Let us picture the scattering states |R〉 and |L〉

as pointer states which have macroscopically disjoint supports in (light wave) con-
figuration space. The light waves occupy different regions. Since 〈Y |R〉 contributes
only with those Y that are in the support of |R〉, and 〈Y |L〉 contributes only with
those Y in the support of |L〉, this then shows that, according to the very small
overlap of |L〉 and |R〉, the last two integrals in (9.38) are very small. We thus ar-
rive at a result which easily ranks among the most severely misinterpreted results
in science: the reduced density matrix acquires almost diagonal form. Therefore
it looks like the density matrix of the mixture of the wave functions |l〉 and |r〉
with weights |αl |2 and |αr|2, respectively, where we have used the normalization∫

dY |〈Y |R〉|2 =
∫

dY |〈Y |L〉|2 = 1:

ρred
T = trYρT ≈ |αl |2|l〉〈l|+ |αr|2|r〉〈r| . (9.39)

Why is this result often misunderstood? Suppose we do not know the wave function
of a system, but our ignorance about it can be expressed in terms of probabilities,
viz., with probability |αl |2 the wave function is |l〉 and with probability |αr|2 it is
|r〉. Then the corresponding density matrix would be exactly the right-hand side of
(9.39). Therefore one may easily be trapped into thinking that the left-hand side of
(9.39), which approximately equals the right-hand side, also submits to the igno-
rance interpretation. In short, decoherence seems to turn “and” into “or”. But (9.39)
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is nothing but a rephrasing of (9.3). The only difference is the mathematical formu-
lation.

Many physicists have nevertheless taken (9.39) as the solution to the measure-
ment problem, as if Schrödinger had not been aware of this calculation. Of course,
that is nonsense. Schrödinger based his cat story on the fapp impossibility of the
interference of macroscopically disjoint wave packets. So let us repeat [7]:5 There
is a difference between a shaky or out-of-focus photograph and a snapshot of clouds
and fog banks.

Everything else that needs to be said has already been pointed out in Remark 9.1.
Only with Bohmian mechanics can (9.39) be interpreted as a mixture. �

Remark 9.4. Collapse Equations
In Bohmian mechanics the result (9.39) means that just one of the wave functions
will actually guide the particle. Moreover, the environment will continue to “read”
the particle position, so the effective guiding wave will continue to be a localized
wave packet. We wish to discuss briefly the type of equations that govern the cor-
responding reduced density matrix, which represents the probability distribution of
the random wave function. That is, we wish to describe the time evolution of the
reduced density matrix.

The evolution equation arises from the full quantum mechanical description of
system and environment in an appropriate scaling, and it must satisfy two desiderata:
the off-diagonal elements must go to zero and the Newtonian equations of motion
should be satisfied in the mean. Otherwise we could not expect Newtonian behavior
of Bohmian trajectories for highly localized wave functions. As a (mathematical)
example we give the simplest such equation for ρt , namely,

∂
∂ t
ρt =− i

h̄
[H,ρt ]+Σt , (9.40)

with (Λ > 0)

〈x|Σt |x′〉=−Λ(x−x′)2ρt(x,x′) . (9.41)

For H = 0, the solution is

ρt(x,x′) = e−Λ t(x−x′)2
ρ0(x,x′) ,

and one sees that the off-diagonal elements vanish at the rate Λ . However, this is
an unphysical model in the sense that the strength of decoherence saturates when
the distance x−x′ has achieved a certain macroscopic value. Notwithstanding these
shortcomings, equations of this type have been studied and “physical values” for Λ
have been proposed [9]. However, we have seen that (9.40) and (9.41) describe at
least roughly the emergence of a statistical mixture.

Next let us check whether the Newtonian equations of motion hold in the mean.
We differentiate the last equality of (9.32), and with (9.40), we obtain

5 Translation by John D. Trimmer in [8].
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d
dt
〈X(t)〉 =

d
dt

tr(x̂ρt)

= tr

(
x̂
∂
∂ t
ρt

)

= − i
h̄

tr
(
x̂[H,ρt ]

)
+ tr(x̂Σt) .

Differentiating once more yields6

d2

dt2 〈X(t)〉= 1
m

〈
−∇V

(
X(t)

)〉
− i

h̄
tr
(
x̂[H,Σt ]

)
+ tr

(
x̂
∂
∂ t
Σt

)
.

Note that we have already derived the first part of the equation in (9.11), without
using abstract operator calculus. The result is consistent with classical motion if

tr

(
x̂
∂
∂ t
Σt

)
= 0 (9.42)

and

tr
(
x̂[H,Σt ]

)
= tr(x̂HΣt)− tr(x̂ΣtH) = 0 . (9.43)

For (9.42), it suffices that tr(x̂Σt) be constant. One requires

0 = tr(x̂Σt) =
∫

dxx〈x|Σt |x〉 , (9.44)

where in the last step we have computed the trace and used (9.29). The above cer-
tainly holds if the kernel 〈x′|Σt |x〉 vanishes on the diagonal. Concerning (9.43), note
that the trace is invariant under cyclic permutations:

tr(x̂ΣtH) = tr(Hx̂Σt) , (9.45)

so that from (9.43) we obtain the requirement

tr
(
x̂[H,Σt ]

)
= tr

(
[x̂,H]Σt

)
= 0 . (9.46)

Next we observe that, since V is a function of the position operator x̂, we have

[x̂,V (x̂)] = 0 ,

and thus

6 The untrained reader may have difficulty checking the computation. It is in fact straightforward,
but one may need some practice. For example, one should first compute [H, x̂] for a Schrödinger
Hamiltonian of the usual form H =−(h̄2/2m)Δ+V (x̂). Moreover, it should be understood that the
trace remains unchanged under cyclic permutations of the arguments [see (9.45)].
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〈
x|[x̂,H]|x′

〉
=− h̄2

2m

〈
x|[x̂,Δx]|x′

〉
+

〈
x|[x̂,V (x̂)]|x′

〉
=− h̄2

2m

〈
x|[x̂,Δx]|x′

〉
.

The first commutator can be handled using (9.31). Then, using (9.28), we may
straightforwardly compute

tr([x̂,H]Σt) =
∫

d3x
∫

d3x′
〈
x|[x̂,H]|x′

〉〈
x′|Σt |x

〉

=
∫

d3x
∫

d3x′δ
(
x−x′

) h̄2

m
∂x′

〈
x′|Σt |x

〉
.

Thus (9.46) and hence (9.43) certainly hold if not only the kernel 〈x′|Σt |x〉 but also
its differential (with respect to one of the variables) vanishes on the diagonal. Our
choice (9.41) is one example that fulfills both these requirements.

Equation (9.40) with (9.41) is a special case of a general class of evolution equa-
tions for density matrices, the class of equations of Lindblad form [1, 9, 10]. Among
other things, the Lindblad form guarantees that the solution ρt remains positive
definite, so that its interpretation as a statistical operator remains consistent. The
general form of Σ for a self-adjoint operator A (see Chap. 14 for the notion of self-
adjointness) is (see, for instance, [1, 9])

Σ = AρA− 1
2
(A2ρ+ρA2) , (9.47)

The choice A =
√

2Λ x̂ yields

〈
x|Σ |x′

〉
=

〈
x

∣∣∣∣AρA− 1
2
(A2ρ+ρA2)

∣∣∣∣x′
〉

= 2Λx ·x′
〈
x|ρ|x′

〉
−Λx2〈x|ρ|x′

〉
−Λx′2

〈
x|ρ|x′

〉
= −Λ(x−x′)2〈x|ρ|x′

〉
.

Of course, if we wish to keep the Newtonian equations in the mean, A must commute
with x̂, i.e., it must be a function of x̂. However, this is not the place to pursue this
further. �

9.5.2 Poincaré Recurrence

Recurrence also appears in quantum mechanics, in the following sense [11]. Con-
sider a system with discrete eigenvalues7 En. Let ψ0 be the system wave function at
time 0, and ε > 0. Then there exists a time T > 0, such that the distance

‖ψ(T )−ψ0‖< ε .

7 This corresponds to the finite measure condition in the classical argument of Theorem 4.1.
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Wave functions that are close in this sense yield almost the same statistics. Here is
the argument for recurrence. Suppose

H|n〉= En|n〉 ,

where |n〉, n ∈ N, defines a basis of eigenfunctions. Then

|ψt〉 = exp

(
− i

h̄
Ht

)
|ψ0〉

=
∞

∑
n=0

exp

(
− i

h̄
Ht

)
|n〉〈n|ψ0〉

=
∞

∑
n=0

exp

(
− i

h̄
Ent

)
|n〉〈n|ψ0〉 .

Hence

|ψt〉− |ψ0〉=
∞

∑
n=0

(
e−iEnt/h̄−1

)
|n〉〈n|ψ0〉

and

∥∥|ψt〉− |ψ0〉
∥∥2 =

∞

∑
n=0

∣∣∣e−iEnt/h̄−1
∣∣∣2
|〈n|ψ0〉|2

= 2
∞

∑
n=0

[
1− cos

(
En

h̄
t

)]
|〈n|ψ0〉|2 .

For appropriate N,

∞

∑
n=N

[
1− cos

(
En

h̄
t

)]
|〈n|ψ0〉|2 ≤ 2

∞

∑
n=N
|〈n|ψ0〉|2

will be arbitrarily small, since

∞

∑
n=0

∣∣〈n|ψ0〉
∣∣2 = 〈ψ0|ψ0〉= ‖ψ0‖= 1 .

Therefore we need only show that, for appropriately chosen T , the quantity

2
N−1

∑
n=0

[
1− cos

(
En

h̄
T

)]
|〈n|ψ0〉|2

also becomes arbitrarily small. This can be done because any frequency can be ap-
proximated arbitrarily well by a rational frequency. Since T can be chosen as large
as we wish, rational frequencies multiplied by T can be turned into integer multiples
of 2π . This underlies the rigorous proof using almost periodic functions [12].
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Chapter 10
Nonlocality

Bohmian mechanics is about particles guided by a wave. This is new, but not rev-
olutionary physics. This chapter will now present a paradigm shift. It is about how
nature is, or better, it is about how any theory which aims at a correct description
of nature must be. Any such theory must be nonlocal. We do not attempt to define
nonlocality (see [1] for a serious examination of the notion), but simply take it prag-
matically as meaning that the theory contains action at a distance in the true meaning
of the words, i.e., faster than light action between spacelike separated events. Since
we shall exemplify the idea shortly, this should suffice for the moment.

We note that the action at a distance in question here is such that no information
can be sent with superluminal speed, whence no inconsistency with special relativity
arises. However, action at a distance does seem to be at odds with special relativity.
Einstein held the view that nonlocality is unphysical, and referred to nonlocal ac-
tions as “ghost fields”, a notion which expressed his contempt for nonlocal theories.
But such theories are not unfamiliar in physics. For example, Newtonian mechanics,
which is non-relativistic, is nonlocal. Bohmian mechanics is nonlocal, too. But there
is a noteworthy difference between the nonlocality of Newtonian mechanics and that
of Bohmian mechanics. For the latter is encoded in the wave function which lives
on configuration space and is by its very nature a nonlocal agent. All particles are
guided simultaneously by the wave function, and if the wave function is entangled,
the nonlocal action does not get small with the spatial distance between the particles,
in contrast to what happens in a Newtonian system with gravitational interaction.

In a two-particle system, with coordinates X1(t) and X2(t), we have

Ẋ1(t) =
h̄

m1
ℑ

⎡
⎢⎢⎢⎣

∂
∂x
ψ

(
x,X2(t)

)∣∣∣∣
x=X1(t)

ψ
(
X1(t),X2(t)

)

⎤
⎥⎥⎥⎦ ,

whence the velocity of X1 at time t depends in general on X2 at time t, no matter
how far apart the positions are. “In general” means here that the wave function
ψ(x,y) is entangled and not a product ψ(x,y) = ϕ(x)Φ(y), for example. There is

D. Dürr, S. Teufel, Bohmian Mechanics, DOI 10.1007/978-3-540-89344-8 10, 201
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no immediate reason why the wave function should become a product when x and
y are far apart.1 Therefore, if some local interaction changes the wave function at
X2(t), that will immediately affect the velocity of particle 1.

Bohmian mechanics is definitely nonlocal, because the wave function is a func-
tion on configuration space. In fact, since the wave function is an object of all quan-
tum theories, Bohmian or not, quantum mechanics is nonlocal. One may dislike
nonlocality. In that case one should ask: Can one do better? Is it possible to describe
nature by a local theory? For Einstein, Podolsky, and Rosen (EPR) [2] the answer
was unquestionably affirmative. They presented an argument based on their belief
that all theories of nature must be local, which was supposed to prove that quantum
mechanics is incomplete. Besides the (nonlocal) wave function (which Einstein con-
sidered as merely expressing “probability”, which is naturally a function on phase
space in classical physics, and hence also on configuration space), there are other –
local – hidden variables that have been left out of the physical description.

We no longer need to argue that quantum mechanics is incomplete, but the EPR
argument is nevertheless of interest, as it constitutes one part of Bell’s proof of
the nonlocality of nature. Bell’s response to the question as to whether one can do
better is Bell’s theorem, and it answers in the negative: one cannot do better. Nature
is nonlocal.

Bell’s theorem has two parts. The first is the Einstein–Podolsky–Rosen argument
[2] applied to the simplified version of the EPR Gedanken experiment considered
by David Bohm [3], viz., the EPRB experiment. It is based on the fact that one
can prepare a special pair (L, R) of spin 1/2 particles which fly apart in opposite
directions (L to the left and R to the right), and which behave in the following
well determined way. When both particles pass identically oriented Stern–Gerlach
magnets, they get deflected in exactly opposite directions, i.e., if L moves up, R
moves down, and vice versa. In quantum language, if L has a-spin +1/2, then R
has a-spin −1/2, and vice versa, where a is the orientation of the magnets (see
Fig. 10.1). This is true for all directions a. Moreover, the probability for (L up, R
down) is 1/2. The two-particle wave function is called a singlet state [see (10.4)].
The total spin of this singlet state is zero. We shall give details later and simply note
for now that such is the physical reality, and it is correctly described by quantum
mechanics. We obtain opposite values for the spins when the particles move through
a-directed magnets, for any a.

Now we come to the first part of the nonlocality argument. Measuring first the a-
spin on L, we can predict with certainty the result of the measurement of the a-spin
on R. This is true even if the measurement events at L and R are spacelike sepa-
rated. Suppose therefore that the experiment is arranged in such a way that a light
signal cannot communicate the L-result to the R-particle before the R-particle passes
SGM-R. Suppose now that “locality” holds, meaning that the spin measurement on
one side has no superluminal influence on the result of the spin measurement on
the other side. Then we must conclude that the value we predict for the a-spin on R
is preexisting. It cannot have been created by the result obtained on L, because we

1 However, decoherence is always lurking there, awaiting an opportunity to destroy coherence, i.e.,
to produce an effective product structure.
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Fig. 10.1 The EPR experiment. Two particles in the singlet spin state (10.4) fly apart and move
towards the Stern–Gerlach magnets SGM-L und SGM-R. In situation (A), the Stern–Gerlach mag-
nets are parallel, while in situation (B), the directions of the magnets are rotated shortly before the
particles arrive. The measurements are made in such a short time that no communication of results
transmitted with the speed of light between the left and the right is possible within the duration of
the measurement process

assume locality. Now let us reflect on that. If the value preexists, then that means
that it exists even before the decision was taken in which direction a the spin on the
left is to be measured. Hence the value preexists for any direction a. By symmetry
this holds also for the values obtained on L. Therefore, by locality, we obtain the
preexisting values of spins on either side in any direction. We collect the preexist-

ing values in a family of variables X (L)
a ,X (R)

a ∈ {−1,1}, with a indexing arbitrary

directions and with X (L)
a =−X (R)

a .
The locality check is now simply to ask whether such preexisting values actually

exist. In other words, do the preexisting values accommodate the measured correla-
tions? This leads to the second part of Bell’s proof, namely to show that the answer
is negative. One might think that this would be a formidable task. One might think
that because we make no assumptions about the nature of the variables. They can
conspire in the most ingenious way. Contradicting Einstein’s famous: “Subtle is the
lord, but malicious He is not”, we might say: “The lord could have been malicious”
in correlating the variables in such an intricate manner that they do whatever they
are supposed to do. Of course, the particles can no longer conspire when they are
far apart, because that is forbidden by the locality assumption. But at the time when
the particles are still together in the source, before they fly apart, they can conspire
to form the wildest correlations.

But no, this part of the proof is trivial. There is no way the variables can repro-
duce the quantum mechanical (which are the Bohmian) correlations. Choose three
directions, given by unit vectors a,b,c, and consider the corresponding 6 variables

X (L)
y ,X (R)

z , y,z ∈ {a,b,c}. They must satisfy
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(
X (L)

a ,X (L)
b ,X (L)

c

)
=

(
−X (R)

a ,−X (R)
b ,−X (R)

c

)
. (10.1)

We wish to reproduce the relative frequencies of the anti-correlation events

X (L)
a =−X (R)

b , X (L)
b =−X (R)

c , X (L)
c =−X (R)

a .

Adding the probabilities and using the rules of probability in the inequality, we get

P

(
X (L)

a =−X (R)
b

)
+P

(
X (L)

b =−X (R)
c

)
+P

(
X (L)

c =−X (R)
a

)

= P

(
X (L)

a = X (L)
b

)
+P

(
X (L)

b = X (L)
c

)
+P

(
X (L)

c = X (L)
a

)
[by (10.1)]

≥ P

(
X (L)

a = X (L)
b or X (L)

b = X (L)
c or X (L)

c = X (L)
a

)

= P(sure event) = 1 ,

because X (i)
y , i = L,R, y ∈ {a,b,c}, can only take two values.

This is thus one version of Bell’s inequality:

P

(
X (L)

a =−X (R)
b

)
+P

(
X (L)

b =−X (R)
c

)
+P

(
X (L)

c =−X (R)
a

)
≥ 1 . (10.2)

We shall show in a moment that the quantum mechanical value (which is of course
the Bohmian one) for the probability of perfect anti-correlations is 3/4 if the angles
between a,b,c are each 120◦. Therefore quantum mechanics contradicts (10.2).

The logical structure of Bell’s nonlocality argument is thus as follows [4]. Let P
be the hypothesis of the existence of preexisting values XL,R

a,b,c for the spin compo-
nents relevant to this EPRB experiment. Then

First part quantum mechanics+ locality =⇒ P ,

Second part quantum mechanics =⇒ not P ,

Conclusion quantum mechanics =⇒ not locality .

(10.3)

To save locality, one could hope that the quantum mechanical value would be false.
So let us forget about quantum mechanics and all other theories and simply take
the experimental facts. They show quite convincingly2 that (10.2) is violated by
the observed relative frequencies [5]. There is no doubt that better experiments will
corroborate the finding that (10.2) is violated. In (10.3) we can therefore replace
“quantum mechanics” by “experimental facts”. This then is independent of any the-
ory and yields a conclusion about nature: nature is nonlocal. The practical meaning
is that, if you devise a theory about nature, you had better make sure that it is non-
local, otherwise it is irrelevant. Bohmian mechanics violates Bell’s inequalities and

2 The experiments done up until now contain so-called loopholes, which are based on detector
deficiencies and the belief that nature behaves in a conspiratorial way. Since the experiments agree
well with the quantum mechanical predictions, such beliefs seem unlikely to be well founded.
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furthermore predicts the values measured in experiments. Concerning nonlocality,
one cannot do better than Bohmian mechanics.

10.1 Singlet State and Probabilities for Anti-Correlations

The spin part of the singlet wave function is the antisymmetric vector

ψs =
1√
2

(
| ↑〉1| ↓〉2−| ↓〉1| ↑〉2

)
. (10.4)

This factor multiplies the position dependent symmetric wave function

ψ(x1,x2) = ψL(x1)ψR(x2)+ψR(x1)ψL(x2) ,

which arranges for one particle to move to the left and one to move to the right. This
spatial arrangement is not contained in the spin part (10.4). For the purpose of com-
puting the probabilities, the spatial symmetrization is rather irrelevant. Furthermore,
computing everything while maintaining the symmetrization is a bit demanding and,
for the sake of simplicity, we focus only on the termψL(x1)ψR(x2)ψs, thereby view-
ing the first factor in (10.4) as belonging to the particle on the left and the second
factor as belonging to the particle on the right. Then, for the purpose of computing
averages, we can forget about the position part altogether and focus on the spin part
alone. But the reader should bear in mind that it is in fact the trajectory of each
particle that determines the value of the spin.

Now for a few facts concerning (10.4). First | ↑〉 is the spinor for spin up (+1/2)
in an arbitrarily chosen direction, because the singlet is completely symmetric under
change of basis. Suppose we express | ↑〉k, | ↓〉k in another orthogonal basis ik, jk,
viz.,

| ↑〉k = ik cosα+ jk sinα , | ↓〉k =−ik sinα+ jk cosα ,

then one readily computes

ψs =
1√
2
(i1j2− j1i2) .

We note immediately that the total spin in the singlet state is zero. The following
computation shows what is meant by this. One considers the spin operator for the
combined system, i.e., for the two particles, which is given by

a ·σ (1)⊗ I+ I⊗a ·σ (2) ,

where a ·σ (1)⊗ I (and analogously the second summand) is to be read as follows.
The operator describes the statistics of the measurement of spin in the direction a on
SGM-L, and technically the first operator factor acts on the first spinor factor, while
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the second acts on the second spinor factor. The sum a ·σ (1)⊗ I+ I⊗a ·σ (2) is thus
the operator describing the statistics of measurements of spin on the left and on the
right, which we call measurement of the total spin.

Now using (8.25) in Chap. 8, we compute the average value, in the singlet wave
function, of the square of the total spin in an arbitrary direction, which we chose
here as the a direction. We conveniently choose | ↑〉 and | ↓〉 in the singlet wave
function as eigenvectors of the spin matrix a ·σ (k). In the calculation, we use the
fact that 〈↑ |I| ↓〉= 0 and 〈↑ |a ·σ (k)| ↓〉=±〈↑ | ↓〉= 0, and we suppress the indices
1,2 on the spin factors. Then ignoring the dimension and scale factors h̄/2 for the
spin 1/2 particle, we compute
〈
ψs

∣∣∣(a ·σ (1)⊗ I+ I⊗a ·σ (2))2
∣∣∣ψs

〉

=
1
2

[〈
↑

∣∣∣(a ·σ (1))2
∣∣∣ ↑

〉〈
↓

∣∣I2∣∣ ↓ 〉
+

〈
↓

∣∣∣(a ·σ (1))2
∣∣∣ ↓

〉〈
↑

∣∣I2∣∣ ↑ 〉]

+
1
2

[〈
↑

∣∣I2∣∣ ↑ 〉〈
↓

∣∣∣(a ·σ (2))2
∣∣∣ ↓

〉
+

〈
↓

∣∣I2∣∣ ↓ 〉〈
↑

∣∣∣(a ·σ (2))2
∣∣∣ ↑

〉]

+
〈
↑

∣∣∣(a ·σ (1))∣∣∣ ↑
〉〈
↓

∣∣∣(a ·σ (2))∣∣∣ ↓
〉

+
〈
↓

∣∣∣(a ·σ (1))∣∣∣ ↓
〉〈
↑

∣∣∣(a ·σ (2))∣∣∣ ↑
〉

=
1
2

[
(−1)2 +12]+

1
2

[
12 +(−1)2]−1−1

= 0 .

Let us now turn to the correlations

E
ψs
a,b =

〈
ψs

∣∣∣a ·σ (1)⊗b ·σ (2)
∣∣∣ψs

〉
.

This expression is bilinear in a and b, and rotationally invariant. Therefore the ex-
pression must be a multiple of a ·b, i.e., E

ψs
a,b = λa ·b, where λ is determined by the

value one gets for a = b. For the singlet, this is (the spin values are exactly opposite)
E
ψs
a,a =−1. Hence,

E
ψs
a,b =−a ·b . (10.5)

With this we can determine the quantum mechanical anti-correlation probability

P
ψs
a,b := P

ψs
(

S(1)
a =−S(2)

b

)
,

where S(1)
a ,S(2)

b are the “spin values”, without the need to introduce the quantum
formalism of joint measurement statistics. According to the rules of probability,

E
ψs
a,b =−P

ψs
a,b +

(
1−P

ψs
a,b

)
=−2P

ψs
a,b +1 ,

that is,
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P
ψs
a,b =

1
2

+
1
2

a ·b .

Choosing 120◦ for the angles between a,b, and c, we get

P
ψs
a,b =

1
2
− 1

4
=

1
4

, P
ψs
a,c =

1
4

, P
ψs
b,c =

1
4

.

Hence for the sum of the probabilities on the left-hand side of (10.2), we obtain the
value 3/4, as already claimed.

Let us rephrase the argument for later reference to hidden variables. The EPR ar-
gument yields, by the locality assumption, local hidden variables for spin, the ones

we denoted by X (L,R)
a,b,c . The second part of Bell’s theorem shows that the existence

of spin hidden variables contradicts Bohmian mechanics (or quantum mechanics
for that matter). In other words, local hidden variables cannot reproduce the exper-
imental correlations. Expressed in yet another way, there exist no random variables

X (L,R)
a,b,c which have the quantum mechanical correlations (10.5).

The following terminology, which yields absolutely no new insights, has also
been used to describe Bell’s theorem. The spin measurement on the right side de-
pends on the context in which the experiment is done, i.e., in the present case, it
depends on what happens on the left, i.e., the hidden variable is, if it exists at all,
“contextual”. Hence Bell’s theorem asserts that non-contextual hidden variables are
not possible.

We conclude this section with some light entertainment:

• Bell’s theorem has (quite often) been cited as proving that Bohmian mechanics
is impossible. Why? Presumably because Bohmian mechanics was viewed as a
hidden variable theory and the hearsay on Bell’s theorem was that it proved that
hidden variable theories conflict with quantum mechanics.

• It has also been said that quantum mechanics is local despite (10.3). How can
that be? By forbidding or not believing that the steps in (10.3) are valid. How can
that be? We do not know.

• It has also been said that Bell’s nonlocality is nothing more than “learning at a
distance”. Wittgenstein’s blue and brown book are wrapped in packages. Now
suppose you and your friend each get a package without knowing which of the
two books it contains. Your friend leaves for the moon with his package. When
the spacecraft lands, you open your package and you unwrap the blue book. You
know immediately that your friend on the moon has the brown book. Again one
may wonder how anyone could reach the misunderstanding that this is a possible
reading of Bell’s nonlocality. Presumably because Bell’s article was not actually
read, and conclusions were drawn from hearsay about Bell’s work. In his nice
article entitled Bertlmann’s Socks and the Nature of Reality [6], Bell elaborates
on the distinction between this unspectacular effect of learning at a distance and
the spectacular effect of nonlocality.
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10.2 Faster Than Light Signals?

Bohmian mechanics is nonlocal. The wave function acts in a nonlocal way on the
particles. Why can one not send signals faster than light? One cannot, because of the
quantum equilibrium hypothesis. The action at a distance which the wave function
mediates is randomized in such a way that it is unusable. If quantum equilibrium
were false, superluminal signalling might perhaps be possible. Since there is no evi-
dence that quantum equilibrium is false, there is no reason to speculate any further.3

Let us show for the sake of completeness how quantum equilibrium acts here.
Let us take a general entangled two-particle state

ψ = a| ↑〉1| ↓〉2 +b| ↓〉1| ↑〉2 + c| ↓〉1| ↓〉2 +d| ↑〉1| ↑〉2 ,

with |a|2 + |b|2 + |c|2 + |d|2 = 1. The probability of getting the spin value | ↑〉2
at SGM-R is |b|2 + |d|2. We now do a measurement, first on the left side in an
arbitrarily chosen direction γ at SGM-L, where γ is the angle between the z-direction
and the chosen direction. That is the freedom the experimenter has, and with which
the experimenter can hope to affect the outcome on the right-hand side. Expressing
the z-spin basis vectors in the corresponding γ-basis,

| ↑〉1 = i1 cosγ+ j1 sinγ , | ↓〉1 =−i1 sinγ+ j1 cosγ ,

we rewrite the above state as

ψ = i1
[

cosγ
(
a| ↓〉2 +d| ↑〉2

)
− sinγ

(
b| ↑〉2 + c| ↓〉2

)]

+j1

[
sinγ

(
a| ↓〉2 +d| ↑〉2

)
+ cosγ

(
b| ↑〉2 + c| ↓〉2

)]

=: ψi1 +ψj1 ,

from which we read off that ||ψi1 ||2 and ||ψj1 ||2 are the probabilities for the out-
comes spin up or spin down when measuring first at SGM-L(γ). That measurement
will “produce” a collapse of the entangled state. The collapse is the nonlocal ef-
fect which could be the source for nonlocal signalling. The collapsed wave function
will be the one in the support of which the particle is located after leaving SGM-
L(γ), i.e., it will be either ψi1/||ψi1 || or ψj1/||ψj1 ||, depending on the outcome at
SGM-L(γ).

And what is now the effect of this measurement on the probability for the out-
come at SGM-R? To find out, we now compute the quantum equilibrium probability
that the particle, when going through SGM-R (oriented in the z-direction), is in the
support of, let us say, the spin-up wave function | ↑〉2. Repeating the argument now
with the new wave function ψi1/||ψi1 ||, the probability will be

3 That quantum equilibrium prevents superluminal signalling is taken, however, as a motivation for
research on quantum non-equilibrium [7].
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∥∥i1| ↑〉2(d cosγ−bsinγ)
∥∥2

||ψi1 ||2
,

while for ψj1/||ψj1 ||, it will be

∥∥j1| ↑〉2(bcosγ+d sinγ)
∥∥2

||ψj1 ||2
.

From this, we obtain the probability for the outcome spin up on SGM-R(γ) by sum-
ming the “joint probabilities”

||ψi1 ||2
∥∥i1| ↑〉2(d cosγ−bsinγ)

∥∥2

||ψi1 ||2
+ ||ψj1 ||2

∥∥j1| ↑〉2(bcosγ+d sinγ)
∥∥2

||ψj1 ||2
,

which yields

|b|2 + |d|2 .

There is therefore no effect on the statistics of the outcomes on the right-hand side.
They are the same, whether or not a measurement on SGM-L takes place first.

The key property we have used here is that we can infer from the “joint distribu-
tion” the probability for the outcome on the right by summing the joint probability
over the possible values of the left outcome. We shall learn in Chap. 12 that the
shorthand notation for this is that “observables” commute. The commutation of the
spin observables on the left and on the right is in this sense an expression of the
fact that one can perform “local operations” on the quantum system, i.e., that the
pieces of apparatus SGM-L and SGM-R are decoupled, meaning that they function
independently of one another.
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Chapter 11
The Wave Function and Quantum Equilibrium

After introducing Bohmian mechanics we described how macroscopic physics
emerges from it, and how the microscopic wave function of a system determines
probabilities for pointer positions. All this is based on the quantum equilibrium hy-
pothesis. We used the notion “wave function of a system” rather loosely, without
scrutinizing its meaning in any depth. In this chapter, we shall complete that de-
scription and justify the quantum equilibrium hypothesis. The basic idea as how to
approach this justification has been presented in Chap. 4. We need to show that the
empirical distribution of configurations is typically close to the quantum equilibrium
distribution, which has been established experimentally to be empirically adequate.
This can be done with surprising ease, and Bohmian mechanics thus recommends
itself as the paradigm for Boltzmann’s view of chance in physics.

11.1 Measure of Typicality

Equations (8.3) and (8.4) define Bohmian mechanics for an N-particle system which
has no environment to interact with. It is an N-particle Bohmian universe. Following
Boltzmann’s understanding of chance in physics, the justification of the quantum
equilibrium hypothesis must begin with a Bohmian universe, huge enough to allow
for many subsystems, so that one can form an ensemble of subsystems. This allows
for empirical distributions and statistical testing. We start with

(Q,ΦΨt ,PΨ ) (11.1)

as dynamical system with Q as configuration space, andΨ as the wave function of
the universe generating ΦΨt , the Bohmian flow on Q:

∀ t ∈ R , ΦΨt (q) = Q(t,q) = solution of (8.3) .

P
Ψ is the equivariant measure, the quantum equilibrium measure. This means the

following. LetΨt be the solution of (8.4) with initial conditionΨ . An equivariant
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measure is a measure P
Ψ , depending onΨ in a particular way, viz.,

P
Ψ
t (A) := P

Ψ ◦ (ΦΨt )−1(A)≡ P
Ψ

(
(ΦΨt )−1(A)

)
= P

Ψt (A) , (11.2)

where the last equality expresses the condition for equivariance. In terms of expec-
tation values of a function f : Q→ R ,

E
Ψ

(
f
(
Q(t)

))
= E

Ψt ( f ) . (11.3)

This means that the mapping from Ψ to P
Ψ is invariant under the time evolution

P
Ψ
t = P

Ψt . Diagrammatically,

Ψ −→ P
Ψ

Ut
⏐D ⏐D ◦(ΦΨt )−1

Ψt −→ P
Ψt

where Ut denotes the evolutionΨt = UtΨ according to Schrödinger’s equation and
◦(ΦΨt )−1 stands for the flow map defining the time evolution of the measure P

Ψ
t :=

P
Ψ ◦ (ΦΨt )−1 along the Bohmian flow.

Equivariance generalizes stationarity and defines the quantum equilibrium mea-
sure, the measure singled out by the dynamical law itself, and which defines typical-
ity. The equivariance property ensures that typicality is time independent. The gen-
eralization to equivariance is required, because stationarity has no meaning when
the velocity field vΨ (q, t) [see (8.1)] depends on time, since the wave function is
time dependent. Finding an equivariant measure is potentially a hard task! In clas-
sical mechanics the stationary measure was easy to find because the divergence
of the Hamiltonian vector field on phase space is zero (Liouville’s theorem). No
such property holds for the Bohmian vector field. Nevertheless, thanks to Born
and Schrödinger, we already know the equivariant measure P

Ψ [see (7.11)– (7.14)],
namely

P
Ψ (A) =

∫
A
|Ψ(q)|2dnq , (11.4)

normalized to unity,
∫
|Ψ(q)|2dnq = 1 . (11.5)

Of course, we have no idea what the universal wave function looks like. Is it time de-
pendent? One reason to think that the wave function of the universe is not stationary
is macroscopic irreversibility, so that the wave function can be held responsible for
the global non-equilibrium character of the universe. It is not unreasonable to think
that the non-equilibrium character of the universe is encoded in a special initial wave
function of the universe (for a discussion of typicality of wave functions, see [1]).
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Assuming a special initial wave function allows one to separate the justification of
the statistical hypothesis for the Bohmian particles from the issue of macroscopic
irreversibility, which then resides solely in the wave function.

Note, however, that the assumption of a non-equilibrium universal wave function
is plausible, but not necessary. To understand this better, suppose the universal wave
function were stationary, not evolving in time. How is it possible then for things
to move around? In orthodox quantum mechanics the world would be forever still.
Not so in Bohmian mechanics. If the wave function contains a nontrivial phase,
Bohmian particles move around and a world like ours is still possible. We give
a simple example of a time-evolving Bohmian world with a stationary universal
wave function in Remark 11.1. The irreversibility we experience in all macroscopic
processes will then have to be explained by a special configuration of the Bohmian
particles.

Readers who have absorbed the following sections may come back to this point
and wonder how much of the following analysis remains valid when the wave func-
tion of the universe is stationary. Presumably the result will no longer be as easy
to prove, but it might be worthwhile noting that there is no reason to think that
the set of special initial configurations which yield a macroscopic non-equilibrium
universe like ours is also the set of atypical Bohmian configurations for which the
quantum equilibrium hypothesis does not hold. In other words, conditioning the
quantum equilibrium measure on the set of initial conditions responsible for ther-
mal non-equilibrium may imply that the quantum equilibrium hypothesis typically
holds. Since we lack a good understanding of what the wave function of the universe
looks like, these last remarks are a subject for future research, and we turn now to
more modest and practical questions.

11.2 Conditional Wave Function

Given the Bohmian universe, how does one describe a subsystem? Asking the same
question for a Newtonian universe, the answer is clear: just apply the Newtonian
laws to the subsystem. Thinking about this for a moment, one understands that the
answer is based on the possibility that influences from outside the system are neg-
ligible. If we throw a stone, it is not just the Newtonian laws of the arm giving
momentum to the stone, but also the gravitational interaction between the stone and
the earth which is relevant for its motion; but by all means forget the mass of the
sun! It is too far away!

However, in Bohmian mechanics “too far away” has no obvious meaning. The
universal wave function is a function on the configuration space of the universe.
What does it mean to neglect “distant Bohmian bodies”? We need to analyze this.
The last chapter already tells us that “far away” is not the essential feature on which
an autonomous description of a subsystem can be based. It is rather a product struc-
ture of the wave function in conjunction with fapp-impossibility of interference.
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We consider an m-dimensional subsystem (x-system) of particles given by their
configuration X, and denote the n-dimensional particle configuration of the rest of
the universe by Y, i.e., the total environment of the x-system is the y-system. The
universal configuration therefore splits according to

Q = (X,Y)
(
q = (x,y)

)
. (11.6)

The x-system we should have in mind now is a physical system which one studies
in a laboratory. That means that the experimenter is part of the environment. Ev-
erything the experimenter learns, writes down, or otherwise secures belongs to Y.
From a macroscopic point of view, we may say that we know the “relevant region”
of configuration space in which Y lies quite well. What we do not know is the wave
function of the universeΨ . We need a concept to describe the x-system in Bohmian
terms. Since we already have the Bohmian positions, all that is needed is the notion
of the wave function for the system.

The Bohmian equation for the x-system is

Ẋ(t) = vΨx
(
X(t),Y(t)

)
∼ ℑ

∇xΨ
(
x,Y(t)

)
Ψ

(
x,Y(t)

)
∣∣∣∣∣
x=X(t)

,

suggesting the definition of a conditional wave function for the x-system:

ϕY(x) =
Ψ(x,Y)
‖Ψ(Y)‖ , (11.7)

with the norm

∥∥Ψ(Y)
∥∥ =

[∫ ∣∣Ψ(x,Y)
∣∣2

dmx

]1/2

.

Hence,

Ẋ(t) = vϕ
Y(

X(t)
)

.

We obtain the conditional wave function by replacing the y-part in the configuration
coordinate q = (x,y) of the universal wave function by the actual configuration Y
and then normalizing. The conditional wave function is in general unknown and
it will not generally evolve according to a Schrödinger equation for the x-system.
However, look at the example in 11.1.

On the other hand, the conditional wave function connects directly with the con-
ditional quantum equilibrium measure. Suppose we would like to make a typicality
statement about the x-system. Which measure is relevant to that purpose? Since the
environment of the x-system is macroscopically factual, i.e., the laboratory and the
experimenter at work in it are facts, we must condition the quantum equilibrium
measure on these facts.
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The conditional measure P(A|B) of A given the event B is simply the measure
restricted to B and appropriately renormalized:

P(A|B) = P(A∩B)/P(B) .

When we condition on a set b of measure zero, which will be the case relevant for
us, since we wish to condition on the macroscopic facts encoded in the point Y, we
can consider the limit of P(A∩B)/P(B) as P(B)→ P(b) = 0. This exists when the
measure has a density, as is the case for

P
Ψ (dmx,dny) = |Ψ(x,y)|2dmxdny .

The conditional measure is then simply given by

P
Ψ

({
Q = (X,Y),X ∈ dmx

}∣∣Y
)

=

∣∣Ψ(
(x,Y)

)∣∣2
dmx∫ ∣∣Ψ(

(x,Y)
)∣∣2

dmx

=
∣∣ϕY(x)

∣∣2
dmx . (11.8)

In (11.8) the specification of the environment to the configuration Y is much too
specific for the formula to be applicable in relevant physical situations. We only
know a few macroscopic facts about Y, so the conditioning on Y seems ridiculous.
However, we can gain a valuable formula from (11.8) by making the following
observation. We can collect all Qs which yield the same conditional wave function
for the x-system into a set, say

{
ϕY = ϕ

}
:=

{
(x,Y) ∈Q

∣∣ϕY (x) = ϕ(x)
}

.

Then use the following simple property of conditional probabilities. Let B =
⋃

Bi

be a pairwise disjoint partition and let P(A|Bi) = a for all Bi. Then by the additivity
of the measure, viz.,

P(B)a =∑
i

P(A|Bi)P(Bi) =∑
i

P(A∩Bi) = P(A∩B) ,

and hence P(A|B) = a. Therefore,

P
Ψ

({
Q = (X,Y),X ∈ dmx

}∣∣{ϕY = ϕ
})

= |ϕ|2dmx , (11.9)

which for ease of notation we simply write as

P
Ψ(

X ∈ dmx
∣∣ϕY = ϕ

)
= |ϕ|2dmx . (11.10)

This formula is crucial for justifying the quantum equilibrium hypothesis. We wish
to apply it to a situation where the conditional wave function of the x-system does
not depend (at least for a certain amount of time) on Y. That is what we believe to be
the case in our world, i.e., that subsystems sometimes behave autonomously. This
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brings us then to the concept of a Bohmian subsystem, meaning that the subsystem
has its own wave function, its own Schrödinger evolution, and hence an autonomous
law for Bohmian trajectories.

11.3 Effective Wave function

If the universal wave function has a product structure, then in view of (9.5) the
velocity field of the x-system is determined by ψ:

Ψ(x,y) = ψ(x)Φ(y) =⇒ vΨx = vψx . (11.11)

But (11.11) is much too special, since any interaction between the x-system and
the environment will destroy the product structure, leading to an entangled wave
function as in the measurement process. It is unreasonable to assume that the uni-
versal wave function has product structure. Generically, it will be a superposition of
products, i.e., a bona fide entangled wave function.

But we also know that for macroscopically disjoint wave packets when seen as
functions of the macroscopic environment configuration y (see Fig. 9.2),

Ψ(x,y) =Ψ1(x,y)+Ψ2(x,y) , (11.12)

and only one of the packets will be effective in Bohmian mechanics, either Ψ1 (if
Y ∈ suppΨ1) orΨ2 (if Y ∈ suppΨ2) [see (9.5)], and we can fapp forget about the
ineffective packet. The idea which leads to the relevant concept of the effective wave
function of a subsystem comes from combining (11.11) and (11.12). As already
remarked in Chap. 8, one must take the macroscopic disjointness of the packets in
(11.12) with a pinch of salt. It will only be approximately satisfied, for example, in
the sense of L2, which means that

Ψ ≈ Ψ̃ ⇐⇒ P
Ψ ≈ P

Ψ̃ .

We introduce the concept of effective wave function for the x-system, which is the
well-defined expression of the collapsed wave function of orthodox quantum me-
chanics. The effective wave function is the conditional wave function for a special
physical situation. The x-system has an effective wave function ϕ if

Ψ(x,y) = ϕ(x)Φ(y)+Ψ⊥(x,y) , (11.13)

where Φ andΨ⊥ have macroscopically disjoint y-supports and in addition

Y ∈ suppΦ . (11.14)

It is helpful to recall that the splitting (11.13) happens in the “measurement process”.
As in the discussion of the measurement experiment we can fapp forget the wave
packet Ψ⊥ if the environment is guided by Φ , i.e., if Y ∈ suppΦ . We can forget
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it for as long as we wish, since interference is fapp impossible (until the universe
comes to an end). In view of vϕΦ , we see that the x-system will now be guided by
ϕ . If the interaction term V (x,y)ϕ(x)Φ(y) in the Schrödinger equation is negligible
(at least for a certain length of time), the x-system and the environment will be
dynamically decoupled, and ϕ will obey a Schrödinger equation on its own. The
x-system is then an isolated Bohmian system for that period of time. To repeat, the
conditional wave function always exists, and it becomes an effective wave function
when (11.13) holds with (11.14). We stress therefore that the effective wave function
is a mathematically precise concept of the collapsed wave function of orthodox
quantum theory.

Remark 11.1. Stationary Universal Wave Function with Random Conditional Wave
Function and an Effective Wave Function with Nontrivial Time Dependence

We consider here a two-particle universe with “masses” mx = m, my = M, and q =
(x,y) ∈ R

2. Let the wave function be stationary:

Ψ(x,y) = R1(x+ y)R2(y)eik(x−y) +R3(x)R4(y) ,

with real functions R1,R2,R3,R4 and R2(y) = 0 for y ≥ 0 and R4(y) = 0 for y < 0.
According to the equations of Bohmian mechanics, we have

Y1(t) = Y0−
h̄k
M

t ,

for Y0 < 0, and

Y2(t) = Y0 ,

for Y0 ≥ 0. Suppose that
∫
|R1|2dx =

∫
|R3|2dx = 1. Then, with probability p1 =∫

R2
2(y)dy, the conditional wave function for the x-particle is (in the projective sense)

ϕ1(x, t) =
Ψ

(
x,Y1(t)

)
[∫

dxR1
(
x+Y1(t)

)2
R2

(
Y1(t)

)2]1/2

= c1R1

(
x+Y0−

h̄k
M

t

)
eik(x−Y0+h̄kt/M)

=̂ c̃1R1

(
x+Y0−

h̄k
m

t

)
eikx ,

for Y0 < 0, and

ϕ2(x, t) =
Ψ

(
x,Y2(t)

)
[∫

dxR3(x)2R4(Y0)2
]1/2

= c2R3(x) ,

for Y0 ≥ 0. We see that the conditional wave function is random.
Let us now slightly change the focus of the example and consider
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Ψ(x,y) = cos
[
k(x+ y)

]
eik(x−y)

as “universal wave function”. This happens to be a stationary solution of the Hamil-
tonian

H =− h̄2

2m
d2

dx2 −
h̄2

2M
d2

dy2 .

The conditional wave function for the x-system is now

ϕ(x, t) = cos

(
kx+ kY0−

h̄k2

M
t

)
ei(kx−kY0+h̄k2t/M) .

Observing once again that the overall phase factors depending only on time are
projective, and thus physically irrelevant, we obtain

ϕ(x, t)=̂ϕ̃(x, t) := c
[
e2i(kx+2Y0−h̄k2t/M) +1

]
.

Observe next that the conditional wave function satisfies a Schrödinger equation on
its own, so that we may consider it as an effective wave function, namely that of a
free particle with mass M :

ih̄
∂
∂ t
ϕ̃ =− h̄2

2M
d2

dx2 ϕ̃ .

The examples are interesting because the Bohmian positions and the effective wave
function of a subsystem turn out to be non-trivial functions of time, even though the
universal wave function is stationary (see also [2] for more on the meaning of wave
functions). �

11.4 Typical Empirical Distributions

We now justify the quantum equilibrium hypothesis as being the theoretical predic-
tion for typical empirical distributions, which is known as Born’s statistical interpre-
tation of the wave function, and which we have already addressed in Chap. 8. The
hypothesis reads as follows. If a subsystem has effective wave function ϕ , then its
particle coordinates are |ϕ|2-distributed. What does this mean? According to our
understanding of Boltzmann’s view, we ought to know by now! In an ensemble of
similar subsystems, which all have effective wave function ϕ , the relative frequen-
cies of the configuration coordinates will typically be close to the |ϕ|2-distribution.
We need to prove a law of large numbers!

Let us therefore consider the situation where the x-system consists of many sim-
ilar microscopic subsystems x1, . . . ,xN , i.e., where x = (x1, . . . ,xN). Each of the
xi-systems is assumed to have (simultaneously) the effective wave function ϕi. If N
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is not too large (not macroscopically large!), the x-system has effective wave func-
tion

ϕ(x1, . . . ,xN) =
N

∏
i=1
ϕi(xi) . (11.15)

This somewhat remarkable fact can be seen as follows. For each i we have, by virtue
of (11.13) and (11.14),

Ψ(x,y) = ϕi(xi)Φi(yi)+Ψ⊥i (xi,yi) ,

where Φi andΨ⊥i have macroscopically disjoint yi-supports and Yi ∈ suppΦi. But
the xi are microscopically few coordinates and the number N of subsystems is not
too large, so Φi and Ψ⊥i must already have macroscopically disjoint y-supports,
where q = (x1, . . . ,xN ,y). Furthermore we have

Y ∈ suppΦ1∩ suppΦ2∩ . . .∩ suppΦN .

Therefore, for this Y and all i,

Ψ(x1, . . . ,xN ,Y) = ϕi(xi)Φi(Y, x̂i) , (11.16)

with

x̂i = (x1, . . . ,xi−1,xi+1, . . . ,xN) .

Hence let us write as an ansatz

Ψ(x1, . . . ,xN ,Y) =
N

∏
i=1
ϕi(xi)Φ̃(Y,x) .

Division by ∏ϕi(xi) shows that, in view of (11.16),

Φ̃(Y,x) =Φ(Y) .

So (11.15) is true.
Let us now move on to an ensemble of N subsystems which all have the same

effective wave function ϕ . More precisely, we fix the same coordinate frame in all
subsystems and ϕ is the effective wave function relative to that coordinate system.
Each xi-subsystem has coordinates xi, also relative to the chosen coordinate system.
Then by virtue of (11.15), according to (11.8), we obtain for the distribution of the
coordinates x1, . . . ,xN ,

P
Y(X1 ∈ dx1, . . . ,XN ∈ dxN) := P

Ψ (X1 ∈ dx1, . . . ,XN ∈ dxN |Y)

=
N

∏
i=1
|ϕ(xi)|2dxi , (11.17)
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where Y represents the environment of the (x1, . . . ,xN)-system. This formula en-
ables us to predict the empirical distribution of the coordinates of what we might
refer to as a |ϕ|2-ensemble. Under the measure P

Y, according to (11.17), the coarse-
graining functions (Xi)i=1,... ,N defined on Q form a Bernoulli sequence of |ϕ|2-
distributed random variables. For such a sequence, we showed at the end of Chap. 4
that the law of large numbers (4.54) holds. Adjusting that assertion to the present
setting, it implies that the relative frequencies of x-coordinates, i.e., the empirical
distribution of the X1, . . . ,XN , is close to the |ϕ|2-distribution for P

Y-typical config-
urations. This is exactly what the quantum equilibrium hypothesis says. Note that
we acquire good information about the effective wave function, at least about its
modulus squared, via the empirical statistics. The quantum equilibrium hypothesis,
which is now no longer a hypothesis but a theorem, is the link (actually the only
link) between theory and experience.

We formulate the theorem precisely as follows. Suppose that, say, at time t the
x-system consists of N systems with coordinates x1, . . . ,xN (relative to the same
frame in each system), and that the configurations are Xt = (X1, . . . ,XN). Suppose
the effective wave function is

ϕt(x) = ϕ(x1) . . .ϕ(xN) ,

and let Yt = Y be the environmental configuration at that time, in accordance with
the fact that the effective wave function of the ensemble is ϕt(x). Then

P
Ψt

({
Q

∣∣∣
∣∣∣∣∣

1
N

N

∑
i=1

f (Xi)−
∫

f (x)|ϕ(x)|2 dx

∣∣∣∣∣ < ε

}
|Yt = Y

)

= P
Y
t

({
Q

∣∣∣
∣∣∣∣∣

1
N

N

∑
i=1

f (Xi)−
∫

f (x)|ϕ(x)|2 dx

∣∣∣∣∣ < ε

})

= 1−δ (ε, f ,N) , (11.18)

and δ (ε, f ,N)→ 0 for N→ ∞.
Think of f as a characteristic function χA in (11.18). Then for a family χAα

defining the relative frequencies of the measured values (∈ Aα ) and for N large
enough, we have

∑
α
δ (ε, fα ,N)� 1 .

The bad set of initial configurations Q, for which the empirical distribution is not
close to the quantum equilibrium value, has very small P

Y
t -measure. There are so

to speak only a few points Q ∈QY
t = {Q|Yt = Y} in the given environment which

fail.
The reader may have many concerns with this assertion. We shall address two.

The first may be this: What is special about the equivariance property of the uni-
versal measure P

Ψ defining typicality? Would another measure P̃, say the one with
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density |Ψ |4 (which is not equivariant), not yield typicality for the empirical distri-
bution |ϕ|4 by the same argument? In fact, it would, but only at exactly that moment
of time where the measure has the |Ψ |4 density. Since the measure is not equivariant,
its density will soon change to something completely different. If P̃ is supposed to
be the “initial measure” of typicality at the “initial time” when the universe started,
then who knows what the measure of typicality will look like today? That measure
has no special significance. Why that measure and not some other? The equivariant
measure of typicality on the other hand is special – as in Boltzmann’s way of looking
at statistical physics. Typicality defined by this measure does not depend on time.
It is singled out by the physics itself. Time evolution does play a role, although
so far we have only considered an ensemble at a single time (like tossing 10 000
coins at the same time). We shall say a bit more about repetitions of an experiment
(ensemble in time, like tossing the same coin 10 000 times) later.

Another concern the reader may have is that the conditioning is much too strong
and therefore irrelevant. Since we can never know what the exact environmental
configuration Y is, we should condition on less, indeed condition only on the fact
that an experiment of the kind we describe has been carried out and whatever else
seems relevant for the experiment. But we have already observed in (11.10) that
coarse-graining the conditioning to a set on which only the conditional (here effec-
tive) wave function is given makes no difference to the right-hand side. The con-
clusion holds just the same. Moreover, we need the assertion in the strongest pos-
sible form, which is the way we formulated it. Indeed, we must be sure that further
knowledge of the environment, for example concerning the history of the ensemble
system and whatever else we may deem relevant, does not affect the conditional
distribution, given the effective wave function. Is it relevant that the experimenter
chose a red tie that morning? Is it relevant that his car had a flat tire on the way to
work? Who knows beforehand? The assertion (11.18) tells us that all those details
are irrelevant.

It is crucial that the conditional measure P
Y
t of the configurations for which the

empirical statistics deviate from |ϕ|2 should be small. Suppose we could only show
that for the unconditional measure P

Ψ . That would tell us nothing, because the set
of environments which are in accordance with the experiments taking place may
already have small P

Ψ -measure, so this alone could be responsible for the smallness
of the result. This is what happens in classical statistical mechanics. The set of initial
conditions of the universe we happen to live in has extremely small equilibrium
measure. Therefore, conditioning is crucial. Without it we would be empty-handed.

We could even condition – if that were necessary, for example, if the universal
wave function were stationary – on such special environments as could explain irre-
versible evolution. But then, to justify the quantum equilibrium hypothesis, it must
be the case that the set of special initial conditions N ⊂Q responsible for thermal
non-equilibrium (in Remark 11.1 this could be taken as the set of positive Y0 val-
ues) is not the bad set of Qs for which the quantum equilibrium hypothesis fails to
be true.

We conclude this series of remarks with one more point. Suppose we forget all
the metaphysics and say that we do not believe in all this talk about the physics
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determining its measure of typicality. But we must still prove a law of large num-
bers for empirical distributions, otherwise we have no link between the theory and
experience. In this view the equivariant measure is a highly valuable technical tool,
because this is the measure which allows us to prove the theorem! At time t, let
us say today when we do the experiment, any other measure would look so odd
(it would depend onΨt in such an intricate way) that we would have no chance of
proving anything! And if it did not look odd today, then it would look terribly odd
tomorrow! The equivariant measure always looks the same and what we prove today
about the empirical distribution will hold forever.

We also remark that any measure P which is absolutely continuous with respect
to the equivariant measure P

Ψ (P and P
Ψ have a density with respect to each other)

defines the same sense of typicality. The observation we have just made about the
technical advantage of the equivariant measure applies here, too. To prove the law
of large numbers with another measure from the equivalence class of measures of
typicality would be an awkward thing to do, since it changes its form all the time,
and would look so odd that we would have no chance of proving anything. In other
words, equivariance is also technically crucial!

But now on to more practical concerns! So far our statistical analysis has been
restricted to a spatially distributed ensemble (x1, . . . ,xN) at one time. But what re-
ally happens in experiments is that they are repeated. For example, in the two slit
experiments, one sends a beam of particles through the slit and thereby creates an
ensemble of independent subsystems. But it is an ensemble distributed over time
(like letting balls drop through the Galton board). One can actually handle this too
[3], but it is definitely more complicated. Here there is a subtlety that must be taken
into account in the analysis of time ensembles. In the universe the times at which
the experiments are done are also “random”, i.e., functions of Q, like the spatial
locations of the systems.

For example, suppose an experimenter, eager to win the Nobel prize, starts an
experiment which is supposed to measure the EPR correlations in a very fine way.
Suppose the experiment shows in the first 100 runs that, when a particle is registered
on the left, no particle is registered on the right. That makes the experimenter so
upset that he destroys the laboratory in a fit of anger. No further experiment is done.
Alternatively, the experimenter rethinks the experimental setup, finds a problem, and
calls the repair man, only to find that he is away on holiday. The moral is that the
times when the experiments are done are random! That must be taken into account
in the mathematics.

And that is not all. In the single time ensemble, all we need to look at are the ac-
tual configurations. No measurement talk is needed. In the time ensemble, however,
we must take into account the fact that measurements do take place. The position of
the electron in the ground state does not change in time. For X(t1),X(t2), . . . ,X(tN)
in the ground state ϕ , we have X(t1) = X(t2) = . . . = X(tN). In other words, the
random variables are not at all independent. By measuring the ground state distri-
bution of a hydrogen atom, we disturb the state, e.g., we ionize the electron, let it
fall back, ionize again, let it fall back and so on. It is important here that we ionize
it and then let it fall back again. The positions after settling back in the ground state
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are independent random variables. It is not difficult to see why this is so. Imagine
N pointer wave functions Φ1, . . . ,ΦN with configurations Z1, . . . ,ZN , which indi-
cate the measured values of the positions of the electron in the ground state. At the
end of the day we have a product wave function of pointer positions ∏Φi for the
measured values X1, . . . ,XN , i.e., the distribution of the measured values is again a
product distribution, and so we have independence. Therefore the law of large num-
bers applies as before. The principle which underlies the “many-times analysis”
should thus be reasonably clear, even though the precise analysis is, as mentioned,
somewhat demanding [3].

We have understood and justified the quantum equilibrium hypothesis. It is in
fact Born’s statistical law for the wave function, sometimes called the Born rule,
or Born interpretation of the wave function, and we understand that the wave func-
tion ϕ one talks about is the conditional or effective wave function. The hypothesis
concerns the empirical distribution of coordinates of particles in an ensemble. The
justification tells us that the quantum equilibrium distribution ρ = |ϕ|2 is what we
should always be experiencing. That is all.

But some more lessons can nevertheless be learned. When we know, say by mea-
suring the position of a particle, that the particle is in some spatial region, then we
know by the quantum equilibrium distribution that the effective wave function will
have its support in that region. If that region happens to be tiny, then the effective
wave function will be sharply localized. If the wave function is sharply localized, its
Fourier decomposition into plane waves will involve a great spread of wave num-
bers k. Suppose the wave function now evolves freely. The plane wave packets will
move apart due to the dispersion relation, and eventually separate. Depending on the
exact initial position of the Bohmian particle, this particle will eventually be guided
by one of the almost plane wave packets, i.e., it will eventually move along a straight
line. We explained that in Sect. 9.4.

The initial randomness of the particle position translates into the randomness of
the particle’s asymptotic velocity, which is given by the modulus squared of the
Fourier transform of the initial localized wave packet. That distribution is all the
more spread out as the initial wave packet is sharply localised. This is Heisenberg’s
uncertainty relation. Obviously, the relation is a direct consequence of the quantum
equilibrium distribution, i.e., Born’s statistical law.

Can we by any clever tricks whatever know more about the particle position than
that it is |ϕ|2-distributed when the effective wave function is ϕ? The answer is that
we cannot. That is what the quantum equilibrium hypothesis says, and what we
have proven to be typical. Equilibrium, here quantum equilibrium, entails absolute
uncertainty about the Bohmian positions, beyond the |ϕ|2-distribution.

11.5 Misunderstandings

We have discussed the justification of the statistical hypothesis in classical statistical
mechanics and in Bohmian mechanics. The hypothesis concerns the typical empiri-
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cal distribution of the values in an ensemble. Typicality is defined via a measure of
typicality. Can the measure of typicality be misunderstood as an empirical distribu-
tion? Hardly so, because the measure of typicality is a measure on the configuration
space of the universe, and since we only have access to one universe, namely the one
we live in, an ensemble of universes is meaningless for physics. It so happens that
the quantum equilibrium measure of the universe defining typicality has the same
form, namely |Ψ |2, as the predicted empirical distribution of a system with effec-
tive wave function ϕ , namely |ϕ|2. Although they look similar, they do not mean
the same thing, since the effective wave function is a fundamentally different object
from the wave function of the universe.

We recall that, in classical statistical mechanics, we have the microcanonical
measure as a measure of typicality, and the empirical distributions of subsystems
are typically canonical or grand canonical ensembles which look different from the
microcanonical measure. In quantum equilibrium the situation is simpler. Bohmian
mechanics is simpler than classical mechanics, and because of that we are able to
justify the quantum equilibrium hypothesis with great ease. The price to pay is that
we need to be careful not to treat things which are not the same as being the same.

11.6 Quantum Nonequilibrium

The second law of thermodynamics captures irreversibility, and at the same time
points towards the problem of irreversibility, which is to justify the special atypical
initial conditions on which, according to Boltzmann, the second law is based. Atypi-
cal initial conditions (which are synonymous with non-equilibrium) do of course ex-
ist. So do even grotesquely atypical initial conditions, as in the “Umkehreinwand”.
While typicality is a clear-cut concept which needs no further justification, atypi-
cality is tricky, and we (humankind) should consider ourselves lucky that we have
found the second law of thermodynamics. It tells us that we should not worry about
grotesquely atypical initial conditions, and it tells us more or less how special the
initial configurations are.

One could nevertheless spend one’s time worrying about what very atypical ini-
tial conditions would produce. As a believer in strong atypicality, one could sit in
front of a stone and wait for the stone to jump into the air, because in a very atyp-
ical world, that could happen, now, tomorrow, maybe the day after tomorrow. The
second law tells us that there are better ways to spend one’s time, but for some
there may still be the bitter pill to swallow, that the second law is based on non-
equilibrium. There is no question that we do need to worry about what justifies
these special initial conditions, although we may safely say that this is a problem
for future generations to handle.

The situation in a Bohmian universe is irrevocable. There is no need for a sec-
ond law for the configurations in Bohmian mechanics. Quantum equilibrium, which
like equilibrium needs no justification, is fortunately all we need to describe the
empirical import of Bohmian mechanics.
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Chapter 12
From Physics to Mathematics

The foundations of quantum mechanics are concerned with Hilbert spaces, linear
operators on Hilbert spaces, unitary operators, and self-adjoint operators and their
spectra. The foundations of Bohmian mechanics contain nothing of that sort and
nothing of that sort seems relevant. Of course, the Schrödinger equation is a partial
differential equation and contains differential operators, but so does the Maxwell–
Lorentz theory of electromagnetism, which one learns about without all those ab-
stract notions. Why is quantum mechanics different? Why does it need to be based
on such abstract mathematical notions?

The quantity which determines the empirical import of Bohmian mechanics is
the effective wave function, the “collapsed” wave packet which guides the particles.
Its modulus squared gives the statistical distribution of the particle configuration.
That is all. It seems a meager content. But we shall explain in this chapter why
the statistical import of Bohmian mechanics, which seems so meager, is in fact ex-
tremely rich. The quantum formalism in its most general formulation follows from
it, and so does much more (see [1] for a detailed analysis). Readers who know quan-
tum mechanics from textbooks will find this chapter to be a revelation. It prepares
the insight needed for the abstract mathematics to be discussed in the next part of
the book, the mathematics which is usually viewed as forming the foundations of
quantum mechanics.

12.1 Observables. An Unhelpful Notion

It is natural to think that an observable is a variable that can be observed. In quan-
tum mechanics, a self-adjoint operator is an observable. Sometimes it is said that one
measures the observable, which would then mean that one measures the operator.
For example, one can say that one measures the operator Δ. But this is clearly not
intended to mean that one determines the area of the symbol Δ. So what is meant?
In fact, something very abstract. And this is an abstraction that one should not be
surprised about. After all, an operator on a Hilbert space is a very abstract object,
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which has no obvious or direct relation to things going on in physical space. One
should expect the bridge from the physics to the mathematics to be a bold construc-
tion. But in fact it is not. It is quite the opposite, in many ways rather boring: the
operator observables of quantum mechanics are book-keeping devices for effective
wave function statistics. Let us explain that.

Consider an experiment E in which a system (in our usual notation x, m-
dimensional) and a piece of apparatus (y, n-dimensional) with discrete pointer states
Φα become entangled. Under an appropriate Schrödinger evolution, the pointer
wave functions get entangled with certain wave functions ϕα of the system:

ϕα(x)Φ(y)
Schrödinger evolution−→ ϕα(x)Φα(y) , (12.1)

and by linearity we obtain for

ϕ =∑
α

cαϕα

the result

ϕ(x)Φ(y)
Schrödinger evolution−→ ∑

α
cαϕα(x)Φα(y) , (12.2)

which means that the initial effective wave function ϕ =∑cαϕα changes with prob-
ability |cβ |2 to the effective wave function ϕβ . Why is this? Because by virtue of the
quantum equilibrium distribution we have Y ∈ suppΦβ with probability

∫
{x,y|y∈suppΦβ }

∣∣∣∣∑
α

cαϕα(x)Φα(y)
∣∣∣∣
2

dmxdny (12.3)

= |cβ |2
∫
|ϕβ (x)|2dmx

∫
|Φβ (y)|2dny = |cβ |2 ,

where we have used suppΦα ∩ suppΦβ ≈ /0 for α �= β and the fact that the wave
functions are normalized to unity. According to our definition of the effective wave
function and our understanding of the fapp collapse from previous chapters, ϕβ is
the new effective wave function of the system, and the wave parts involvingΦα with
α �= β can be ignored fapp forever.

The wave functions ϕα and probabilities |cα |2 are associated with the experiment
E given by (12.1–12.2), and we wish to handle both these aspects in a comfortable
way. To identify the right way, we recall (7.11) and the ensuing discussion, which
says that the Schrödinger evolution preserves the norm ‖ ‖2 (and hence the norm
itself), which is the integrated modulus squared of the wave function (assumed nor-
malized to unity). The relation (12.2) then implies that
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‖ϕΦ‖2 :=
∫
|ϕ(x)Φ(y)|2 dmxdny

=
∫ ∣∣∣∣∑

α
cαϕα(x)Φ(y)

∣∣∣∣
2

dmxdny

=
∫ ∣∣∣∣∑

α
cαϕα(x)Φα(y)

∣∣∣∣
2

dmxdny

= ∑
α
|cα |2

∫
|ϕα(x)|2

∫
|Φα(y)|2 dmxdny

= ∑
α
|cα |2 . (12.4)

Factoring out and integrating the right-hand side of the second equality, we obtain
by comparison

∑
α �=β

c∗αcβ

∫
ϕ∗α(x)ϕβ (x)dmx = 0 .

Since the cα can be chosen arbitrarily, we obtain
∫
ϕ∗α(x)ϕβ (x)dmx = 0 ,

for α �= β . This is reminiscent of the notion of orthogonality when we view

〈ϕ|ψ〉 :=
∫
ϕ∗(x)ψ(x)dmx (12.5)

as a scalar product on the space of square-integrable wave functions. Hence,

〈ϕα |ϕβ 〉= δα,β =

{
0 for α �= β ,

1 for α = β .
(12.6)

Why do we find orthogonality for the ϕα? The answer is of course that Φα and Φβ
are macroscopically disjoint pointer positions! In other words, to actually have an
evolution like (12.1–12.2), the ϕα must be orthogonal.

Now we have the power of unitary geometry at our disposal. We can compute
with the scalar product

cα =
∫
ϕ∗α(x)ϕ(x)dmx := 〈ϕα |ϕ〉

as the orthogonal projection of ϕ onto ϕα . Let Pϕα denote the orthogonal projector
onto that direction

Pϕαϕ = ϕα〈ϕα |ϕ〉 ,
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and assume for the moment that the ϕα form a basis, in the sense that we can expand
any ϕ in the form

ϕ =∑
α

Pϕαϕ .

Hence we can associate the family of projectors (Pϕα )α with the following proper-
ties with the experiment (12.1–12.2):

Pϕαϕ = ϕα〈ϕα |ϕ〉 , (12.7a)

PϕαPϕβ = 0 , for α �= β , (12.7b)

P2
ϕα = PϕαPϕα = Pϕα , (12.7c)

∑α Pϕα = I (unit matrix) . (12.7d)

These properties characterize (Pϕα )α as a family of orthogonal projectors. We re-
mark in passing that these projectors are self-adjoint, i.e., 〈Pϕ,ψ〉 = 〈ϕ,Pψ〉, de-
noted in this book by P∗ = P.

Suppose now that the pointer points to values (numbers displayed by the ap-
paratus) {λ1, . . . ,λN}, and suppose that Y ∈ suppΦβ means that the value λβ
is pointed at. The experiment is thus also characterized by the displayed values
λα ∈Λ = {λ1, . . . ,λN}. The quantum equilibrium statistics translate to the statisti-
cal distribution of the λ values, and one may want to know the average value and
variance of the displayed λ values in the long run (repeating the experiment many
times). The answer is encoded in one operator, namely,

Â =∑λαPϕα , (12.8)

the quantum Swiss army knife, containing all that we need – fapp.
To understand this better we need some mathematical facts, and these will all

be detailed in the coming chapters on mathematics. First Â inherits self-adjointness
from the projectors. The relation between a self-adjoint operator and the family of
projectors is one-to-one and called the spectral theorem. This is trivial from right to
left in (12.8), but from left to right one needs some linear algebra, and in general one
needs the infinite-dimensional version of linear algebra called functional analysis.
The λα are eigenvalues and the projector Pϕα can be defined as the characteristic
function of Â for the value λα :

Pϕα = χ{λα}(Â) .

We can now express “everything of interest” in terms of Â. The probability for the
value λα , computed in (12.3), can be expressed in various ways using (12.7a–d):
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Pϕ(λα) = |cα |2 = |〈ϕα |ϕ〉|2

= 〈ϕ|ϕα〉〈ϕα |ϕ〉
= 〈ϕ,Pϕαϕ〉=

〈
ϕ|χ{λα}(Â)ϕ

〉
= 〈Pϕαϕ,Pϕαϕ〉

= ‖Pϕαϕ‖2 . (12.9)

The probability of the sure event is unity:

Pϕ(Λ) =∑
α

Pϕ(λα) =∑
α
〈ϕ|Pϕαϕ〉

=
〈
ϕ

∣∣∣∑
α

Pϕαϕ
〉

= 1 . (12.10)

The mean value of the λ values is

Eϕ(λ ) =∑
α
λαPϕ(λα)

=∑
α
λα〈ϕ|Pϕαϕ〉

=
〈
ϕ

∣∣∣∑
α
λαPϕαϕ

〉

= 〈ϕ|Âϕ〉 , (12.11)

and the variance of the λ values is

Eϕ(λ 2) =∑
α
λ 2
αPϕ(λα)

=
〈
ϕ

∣∣∣∑
α
λ 2
αPϕαϕ

〉

=

〈
ϕ

∣∣∣∑
α
λαPϕα ∑

β
λβPϕβ ϕ

〉
[by (12.7b)]

= 〈ϕ|Â2ϕ〉 . (12.12)

We emphasize the use of (12.7b) in the computation of the variance. It makes
the book-keeping operator Â in (12.8) technically powerful, as a result of its self-
adjointness, if one treats the operator as a priori. From the way in which Â arises,
it is automatically self-adjoint, because the display is made up of real numbers. If
someone put imaginary units in front of the numbers in the display, the values would
be imaginary and the book-keeping operator would no longer be self-adjoint.

Let us collect together these results. We may associate with the experiment E
a family of orthogonal projectors Pϕα and values λα ∈ {λ1, . . . ,λN}, both encoded



232 12 From Physics to Mathematics

in Â through (12.8). In short E =⇒ Â, where the association denoted by the arrow
means that we can use Â to compute the statistics of the values when the experiment
is repeated many times. Now we may understand why the idea of an operator ob-
servable has become such a dominant notion in quantum physics. In the experiment,
pointers point to numbers and a situation where pointers point to numbers has, of
course, measurement appeal.

Now, turning things upside-down, any self-adjoint operator Â (think of it as a
Hermitian matrix right now) uniquely defines a family of projectors Pϕα , namely the
projectors onto its eigenvectors, and a set of values, namely its eigenvalues. Now call
the values “measured values”, or again “measurable values”, and call the operator
“measurable”. The experiment E with which Â is associated can be referred to as
the “measurement of Â”. So there you have it. Confusion is programmed, since each
Â is now an “observable” and hence has a life of its own. But are all self-adjoint
operators observables? If not, then which ones are? Is there a “classical” hidden
variable behind the observable whose value is really measured? And in this way,
many irrelevant questions arise.

An example for (12.1–12.2) and its association with an operator Â is provided by
our discussion of spin. Suppose the spinor wave function is

(
ψ1(x)
ψ2(x)

)
,

in the eigenbasis of σz, and suppose the Stern–Gerlach magnet is oriented in the
a-direction. Then the wave function will split into two wave packets φ+ and φ−, the
eigenfunctions of a ·σ , as the example shows. The particle will be in the ± packet
with probability

∫
d3x

∣∣∣∣φ±·
(
ψ1(x)
ψ2(x)

)∣∣∣∣
2

=
∥∥∥∥Pa
±

(
ψ1

ψ2

)∥∥∥∥
2

,

where Pa
± denotes the projector onto the corresponding spinor component. The as-

sociated operator is simply

Âa = +
1
2

Pa
+−

1
2

Pa
− =

1
2

a ·σ , (12.13)

the spin operator in the direction of a, ‖a‖= 1.
This example reveals an interesting feature, namely that we did not have to talk

about measurement apparatus in order to get the orthogonality of the possible effec-
tive wave functions. The Schrödinger evolution of the particle through the Stern–
Gerlach magnet has already taken care of that. In the end one only needs to detect
which of the wave packets the particle is riding along with. This adds something to
the false intuition that there is a genuine quantity behind the observable “which is
measured”.

The moral of the foregoing is that one can associate operators with experiments
as book-keeping devices for the statistics, where an “orthogonal” splitting of the
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wave function often comes for free. The apparatus is not even needed for that. In the
end, the apparatus detects where the particle sits.

Let us summarize the mathematical structures that emerge from the statistics.
The space of wave functions will be a linear space (reflecting the linearity of the
Schrödinger evolution!) with a scalar product. A Hilbert space H will therefore be
the most convenient setting. The space will in general be infinite-dimensional, as
it contains the set of wave functions on configuration space. The set of values Λ
which the pointer points at has so far been chosen as a discrete set (but that will
change in the next section). For simplicity, we considered above the situation where
one eigenvector ϕα corresponds to each value λα . In general this will not be so,
because in general the orthogonal projector corresponding to a value λ , which we
denote by Pλ , will not be one-dimensional, but rather will project onto a higher-,
even infinite-dimensional subspace Hλ which contains all wave functions correlat-
ing appropriately with the pointer position, i.e., which lead to the displayed value λ .
The (Pλ )λ∈Λ form a family of orthogonal (and hence self-adjoint) projections.

The statistical outcome of the experiment E can be encoded in the operator

Â = ∑
λ∈Λ

λPλ , with ∑
λ∈Λ

Pλ = I , (12.14)

or in short

E =⇒ (λ ,Pλ )λ∈Λ ⇐⇒ Â = ∑
λ∈Λ

λPλ . (12.15)

We shall focus below on the first arrow. The second arrow is mathematics, the sub-
ject of the so-called spectral representation of a self-adjoint operator. The backwards
arrow is mathematically somewhat difficult when the operator Â is unbounded and
has a continuous spectrum. Such operators will be discussed next.

12.2 Who Is Afraid of PVMs and POVMs?

We showed in the previous discussion of the experiment (12.1–12.2), where pointers
display values, that the quantum equilibrium distribution for the probabilities of the
values may be conveniently computed from a family of orthogonal projectors. The
orthogonality of the projector arises in general from the orthogonality of pointer
wave functions, since they have disjoint supports in configuration space. But the spin
example shows that orthogonality may sometimes come without invoking pointers.
The apparatus merely detects the position of the particle. In fact, from a Bohmian
perspective, pointers are not needed to create facts or values. The Bohmian particle
has a position, and one only needs to detect where it is. So sometimes the apparatus
does not need to be mentioned at all, if all it does is to detect the actual state of
affairs.
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From a Bohmian perspective we should therefore formulate the experimental
situation in much more general terms. A system (configuration x) which may get
coupled to some apparatus (configuration y) defines (together with the apparatus,
if the apparatus plays some role) the configuration space Q. On the latter, one has
a coarse-graining function F : Q→ Λ which maps configurations to the displayed
values (e.g., pointer positions) in Λ . Quantum equilibrium determines the statistics
of the values. Therefore the most general formalism encoding quantum equilibrium
and the statistics of measurement experiments emerges from the sequence

ϕ(x)⏐D system couples (possibly) to apparatus

Ψ(x,y) = ϕ(x)Φ(y)⏐D Schrödinger evolution

ΨT (x,y) (12.16a)GH quantum equilibrium distribution

ρΨT = |ΨT (x,y)|2 (12.16b)⏐D and we are only interested in

Pϕ(A) := P
ΨT

(
F−1(A)

)
, A⊂Λ , (12.16c)

where single arrows denote linear maps and the double arrow denotes a bilinear or,
more correctly, a sesquilinear (because of the complex conjugation of one of the
factors) map. The “possibly” on the first arrow expresses the possibility that there
need not be any coupling to a piece of apparatus, so that we focus only on the system
configuration. As always, T is the duration of the experiment.

Before we become more abstract, let us discuss a few examples. In (12.1–12.2),
we have

F(x,y) = F(y) ∈ {λ1, . . . ,λN}=Λ ,

and in view of (12.9)

P
ΨT

(
F−1({λi})

)
= Pϕ({λi}) . (12.17)

In the Stern–Gerlach experiment,

F(x,y) = F(x) ∈
{
−1

2
,

1
2

}
.

The most direct and simple example, however, is the position of a particle x ∈ R
3

with effective wave function ϕ , without apparatus, and with T = 0, i.e., ΨT = ϕ .
Taking F = id on Λ = R

3, the sequences reduce to

ϕ(x) =⇒ |ϕ(x)|2 , or Pϕ(d3x) = |ϕ(x)|2d3x . (12.18)
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We would like now to shift the emphasis from the meaning of the family of pro-
jectors introduced in the previous section towards the idea of a projection-valued
measure (PVM), a notion which comes naturally with (12.16a–c) and which com-
bines discrete values with continuous values, as in (12.18). From the sequence, we
read the bilinear map from “wave function space” to measures. In the case of (12.1–
12.2), the measure is a discrete projection-valued measure (PVM) on subsets of the
value space Λ . Using the rules of probability and the orthogonality of the projectors
corresponding to different values, (12.17) implies

Pϕ
(
{λα1 , . . . ,λαn}

)
= P

ΨT
(
F−1({λα1 , . . . ,λαn})

)

= P
ΨT

({
(x,y)

∣∣F(x,y) ∈ {λα1 , . . . ,λαn}
})

=∑
i

P
ΨT

(
F−1({λαi})

)
=∑

i
P
ϕ({λαi}

)

=∑
i
‖Pλαi

ϕ‖2 =∑
i
〈ϕ|Pλαi

ϕ〉

=
〈
ϕ|∑

i
Pλαi

ϕ
〉

=: 〈ϕ|P{λα1 ,... ,λαn}ϕ〉 . (12.19)

Hence to every subset of values {λα1 , . . . ,λαn} corresponds a projector

P{λα1 ,... ,λαn} =∑
i

Pλαi
,

indexed by that set. Hence we can view this as a family (PA)A⊂Λ of projectors which
acts like a (discrete) measure on the subsets of Λ : a PVM.

Since we are used to thinking of a measure on subsets of a continuum, the ab-
straction to the PVM structure becomes evident if the value set is continuous. So
let us look at the position of the Bohmian particle (12.18), where the value space is
now the continuum Λ = R

3. In this case F = id and

Pϕ(A) = P
ϕ(F−1(A)

)
=

∫
χA|ϕ|2d3x

= 〈ϕ|χAϕ〉

=
∫

A
〈ϕ|χ{d3x}ϕ〉 . (12.20)

What replaces the projectors Pλ ? Obviously, χ{d3x} takes on the role of Pλ . This

suggests defining the continuous PVM O of (measurable) subsets ofΛ(= R
3) taking

values in the space of orthogonal (self-adjoint) projectors:

OA : ϕ �−→ χAϕ(x) =

{
ϕ(x) , x ∈ A⊂ R

3 ,

0 , otherwise ,
(12.21)

so that
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Pϕ(A) = 〈ϕ|OAϕ〉=
∫

A
|ϕ(x)|2d3x (12.22)

comes out just right. The orthogonality

OAOBϕ(x) = χA(x)χB(x)ϕ(x) = χA∩B(x)ϕ(x) = 0 , (12.23)

for A∩B = /0 is obvious, and so is the projector property

O2
A = OA , (12.24)

and the normalization

O
R3 = I , (12.25)

the identity operator.
In Dirac’s shorthand notation, we write

〈x|ψ〉= ψ(x) (12.26)

and

dOx = |x〉〈x|d3x , (12.27)

with

〈x|x′〉= δ (x−x′) (12.28)

representing the orthogonality of the projectors, while
∫
|x〉〈x|d3x = I (12.29)

represents the normalization, often referred to as the completeness relation. We put

X̂ :=
∫

xdOx =:
∫

x|x〉〈x|d3x . (12.30)

Therefore with the measurement of position (if one cares to detect where the par-
ticle is) one can associate a hatted position X̂ , an observable which encodes all the
statistics. As in (12.12), we can compute the variance of the position distribution,
viz.,

E
ϕ(X2)−E

ϕ(X)2 ,

by virtue of (12.28), whence
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E
ϕ(X2)−E

ϕ(X)2 =
∫

x2|ϕ(x)|2d3x−
(∫

x|ϕ(x)|2d3x

)2

=
∫

x2〈ϕ|dOxϕ〉−
(∫

x〈ϕ|dOxϕ〉
)2

=
〈
ϕ|X̂2ϕ

〉
−

〈
ϕ|X̂ϕ

〉2
, (12.31)

using (12.28) to obtain the last equality.
A related and rather important example dealing with a continuum of values is

provided by the asymptotic velocity and its distribution, which we calculated in
(9.26):

E
ϕ( f (V∞)

)
≈

∫
f
(x

t

)∣∣∣ϕ̂
(m

h̄
x
t

)∣∣∣2 ( m
h̄t

)3
d3x

=
∫

f (v)
∣∣∣ϕ̂

(m
h̄

v
)∣∣∣2 (m

h̄

)3
d3v

=
∫

f

(
h̄
m

k
)
|ϕ̂(k)|2 d3k . (12.32)

Taking f = χA, we can rephrase this in the sense of our sequence (12.16a–c), choos-
ing T = t, a time-dependent coarse-graining function

Ft(x) =
x
t

,

and no apparatus, i.e.,Ψ t = ϕt . We then obtain

E
ϕ(χA(V∞)

)
= lim

t→∞
P
ϕt

(
F−1(A)

)
=

∫
χA

(
h̄
m

k
)
|ϕ̂(k)|2 d3k

= 〈ϕ̂|χmA/h̄ϕ̂〉= 〈ϕ|F−1χmA/h̄Fϕ〉
=: 〈ϕ|VAϕ〉 , (12.33)

where V is also a PVM, since F acts isometrically on the Hilbert space of square-
integrable functions (see Sect. 13.1.2).

Let us rephrase this in a less prosaic way. Let us recall what a measurement
experiment for the asymptotic velocity might look like. Prepare a particle with a
wave packet around here, let it evolve freely for quite some time, and catch the
particle on a screen or with some other appropriate detector far away. Then take
the ratio of the distance traveled to the time taken, and run the experiments many
times to get the statistics. That is given by |ϕ̂|2, as we computed from the quantum
equilibrium distribution in Chap. 9, after (9.25).

To recall the simple explanation for that, let us remember what happens during
the free evolution. The wave packet ϕ will spread according to the dispersion rela-
tion. Why is this? It is because the packet ϕ is composed of “plane wave packets”
with wave numbers k, and each such plane wave moves with velocity h̄k/m. That is
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the meaning of the dispersion relation. Hence the plane wave packets separate and
after a long time occupy separate regions in configuration space. That is, they be-
come orthogonal. Therefore the orthogonal plane wave parts eik·x will thus replace
the ϕα in the discrete examples.

Dirac invented the notation |k〉〈k| [already used in (12.26)] for the projector onto
the plane wave 〈x|k〉 = eik·x, meaning that 〈k|ϕ〉 = ϕ̂(k), the Fourier transform of
ϕ . As for position, a subset of Λ = R

3 gets mapped to a projector. In fact, A ⊂ R
3

is mapped to the orthogonal projection given by

VA =
∫
χA

(
h̄
m

k
)
|k〉〈k|d3k =

∫
mA/h̄
|k〉〈k|d3k . (12.34)

The probability for the asymptotic velocity to lie within A when the wave function
is ϕ is

P
ϕ(V∞ ∈ A) = 〈ϕ|VAϕ〉=

∫
mA/h̄
〈ϕ|k〉〈k|ϕ〉d3k =

∫
mA/h̄
|〈ϕ|k〉|2d3k .

When A = R
3, we have V

R3 = I, the identity operator. In terms of the sandwich with
a wave packet, this is simply Plancherel’s identity

〈ϕ|V
R3ϕ〉=

∫
R3
|〈ϕ|k〉|2d3k =

∫
R3
|ϕ(x)|2d3x = 1 .

The orthogonality is again captured by

〈k|k′〉= δ (k−k′) ,

and one has V
R3 = I, the so-called completeness relation:

∫
R3
|k〉〈k|d3k = I .

We find that the asymptotic velocity can also be associated with a hatted observable,
namely

V̂∞ :=
∫

h̄
m

k|k〉〈k|d3k . (12.35)

Multiplying this by m, the mass of the particle, we get a hatted momentum, usually
called the momentum operator.

Mathematically, this is nothing but a kind of diagonal representation. Indeed,
a PVM is (in functional analytical terms) the spectral resolution of a self-adjoint
operator. There is a one-to-one correspondence between PVMs dPλ and self-adjoint
operators Â. The former defines a self-adjoint operator Â =

∫
λdPλ and the latter

defines a projection-valued measure via its spectral representation. All this, and all
the examples above, will be put on a mathematically rigorous basis in Chap. 15.
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Let us make a historical remark. The move from classical variables to opera-
tor observables was Heisenberg’s invention to explain the discreteness of atomic
spectra. But he did so without Schrödinger’s equation and quantum equilibrium.
He postulated that this abstract kind of observable is the new measurable quantity.
Many physicists hoped that some “ordinary” quantities would underlie these ab-
stract observables, and that whilst these quantities remained hidden, they could be
held responsible for the outcome in a measurement.

Bohr on the other hand held the clear and correct view that, in an experiment
which “measures an observable”, nothing is actually being measured. We can un-
derstand why that is correct. The role of the observables is just a book-keeping role
for the statistics of an experiment. More generally, we may rewrite (12.15) using the
notion of PVM, which can be a discrete measure as in (12.15) or a continuous mea-
sure like Lebesgue measure, to highlight once again the association of an operator
with the experiment (12.16a):

E =⇒ (Λ ,dPλ ) ⇐⇒ Â =
∫
Λ
λdPλ . (12.36)

But sometimes something is measured: the Bohmian positions.
Note in passing that the position observable and the momentum observable are

non-commuting! This is easily seen, since |k〉〈k| does not commute with |x〉〈x|. But
this is no world-shattering discovery, for there is absolutely no reason why it should
be the case. And that the variance in a position measurement of a particle with
effective wave function ϕ is roughly inverse to the variance of the asymptotic ve-
locity of the particle is also rather unexciting. Or better, it is trivially so in quantum
equilibrium, once one understands the dispersion of waves. In short, Heisenberg’s
uncertainty relation is wholly unsurprising once quantum equilibrium has been un-
derstood.

Remark 12.1. On the Dirac Formalism
In the Dirac formalism one uses bra 〈·| and ket |·〉 symbols to denote dual vectors
and vectors, as in (12.5). But the symbolism becomes technically powerful when the
same symbols are used in the PVMs, as in (12.27). One must be aware, however,
that |ϕ〉 denotes a vector in Hilbert space which has a finite length

√
〈ϕ|ϕ〉, and that

|x〉 has no such meaning since 〈x|x′〉= δ (x−x′). But then, once one has that clear
in one’s mind, it does not hurt to think heuristically of |x〉 as a wave packet which is
“highly” peaked at x. �

Now we come to POVMs. What is the general abstract structure emerging from
(12.16a–c)? At the end of (12.16c) stands a positive measure (a probability measure)
onΛ , and that is built from a bilinear map acting on wave functions. In other words,
wave functions are mapped (sesquilinearly) to positive measures. Without the wave
function sandwich, the measure is operator-valued. Nothing says that the operators
must be projectors, but they must be positive operators. A positive operator is one
for which the sandwich with a wave function is always a positive number. We denote
the POVM simply by dPλ , as a measure on Λ . PVMs are special cases of POVMs.
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Thus the most general structure one can infer from the experiment (12.16a) is

E =⇒ (Λ ,dPλ ) , (12.37)

without the further double arrow to a book-keeping operator. We shall see from the
following example why there is no point in introducing a book-keeping operator
when the POVM is not a PVM. Imagine a detection of position. Realistically, such
a detection will come with a measurement error. How does quantum mechanics
handle that with the position observable?

We know how to deal with this trivially in Bohmian mechanics. Let p(x) be
the probability density on R

3 which describes the error due to the apparatus. The
measured position X̃ is therefore the sum of two random variables X + Y, with X
distributed according to |ϕ|2 and Y distributed according to p. It is reasonable to
assume that X and Y are independent, which implies that the distribution of X̃ is the
convolution1

ρ̃(x) =
∫

p(x−y)|ϕ(y)|2 dny .

The probability is therefore

P
ϕ(X̃ ∈ A) =

∫
A
ρ̃(x)dnx =

∫
A

∫
p(x−y)|ϕ(y)|2 dnydnx

=
∫ [∫

χA(x)p(x−y)dnx

]
|ϕ(y)|2 dny

=: 〈ϕ|ÕAϕ〉 , (12.38)

where we have introduced the POVM

ÕA =
∫

p(x−y)χA(x)dnx ,

ÕA : ϕ �−→
∫

A
p(x−y)dnx ϕ(y) . (12.39)

In general,

Õ2
A �= ÕA ,

where equality holds only if p(x) = δ (x), i.e., when the POVM is a PVM.

1 Consider the Fourier transform

ˆ̃ρ = E

(
eiλ ·X̃

)
= E

(
eiλ ·(X+Y)

)
= E

(
eiλ ·X

)
E

(
eiλ ·Y

)
= |̂ϕ|2 p̂ ,

where we use the independence of X and Y to obtain the third equality. Now recall that the Fourier
transform of a product is a convolution.
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Suppose we want to know the variance of X̃ and compare that with (12.31). Then
computing the second moment, we obtain

E(X̃2) =
∫

x2ρ̃(x)dnx =
∫

x2〈ϕ|dÕxϕ〉

=
∫∫

x2 p(x−y)|ϕ(y)|2 dnydnx , (12.40)

and that is all there is to it. Compare this with (12.31) to understand why the intro-
duction of an operator observable serves no purpose.

12.2.1 The Theory Decides What Is Measurable

It has been said that a theory must only be about measurable quantities. But that
is not a very intelligent thing to say. How does one know beforehand, before the
theory is built, what is measurable and what is not? If the theory does not contain
an electric field, the electric field is not measurable. If it contains an electric field
then obviously the theory will have to tell us whether and how the electric field
is measurable. It is the theory which reveals the world to us in notions that are
particular to the theory, and which make known to us the correct elements of the
world, if the theory has the appeal of beauty and elegance. Recall the discussion
on Wheeler–Feynman electromagnetism. In this theory, there is no electromagnetic
field, so nothing of that kind could ever be measured. In Maxwell–Lorentz theory,
there is. It is true that in these examples the variables entering the theories turn out to
be measurable, but measurability was not the key consideration when constructing
the theories. It turned out that way, accidentally as it were. But it need not be the
case. Here is an example.

Bohmian mechanics contains variables which are not measurable in the sense of
the experiment (12.16a). There is no apparatus measuring wave functions and no
apparatus measuring the Bohmian velocity. The fact that there is no apparatus mea-
suring wave functions has already been said, and the fact that there is no apparatus
measuring the Bohmian velocity (and the trajectory) is of course related to this. But
beware! Any Newtonian motion, i.e., classical motion which we see and measure,
for example an apple falling from a tree or an electron in a cloud chamber, is a
Bohmian motion, albeit one where the particle moves with the classically moving
localized wave packet. Some care is therefore in order with such statements, and it
is important to be clear about what is meant.

The question intended is as follows: In a situation where quantum mechanical
interference acts, can one measure the actual velocity of the particle? Here is a
quick and very general argument based on POVMs which answers in the negative.
The distribution of the values of the velocity must be given by the sesquilinear form
(quantum equilibrium distribution)

P
ψ(A) = sesquilinear form(ψ)(A) ,
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on the subsets A ⊂ R
3. For sesquilinear forms, we have the binomial formula esti-

mate

P
ψ1+αψ2(A)≤ 2P

ψ1(A)+2P
ψ2(A) , (12.41)

where |α| = 1. Now take two real wave functions ψ1, ψ2, and α a complex phase
factor. Then ψ1 +αψ2 will generate some velocity field that is not everywhere zero,
while on the right-hand side the probabilities are concentrated on zero. So for a set
A not containing 0, we get a contradiction since the right-hand side is zero.

What should we conclude? That Bohmian mechanics is not a physical theory,
just because of the rather foolish and unsubstantiated claim that a theory must only
be about measurable quantities. Of course, we could not conclude in that way. Fur-
thermore, one should not go too far with all this formalism. Suffice it to say that we
sometimes know the velocity even without measuring it.2 In the hydrogen ground
state, the electron is at rest. Measuring its position we know where it was and what
velocity it had. And if the reader now points out that we only know the velocity
because the theory tells us what it is, then she or he has understood. It is always
the theory that tells us what exists, whether what exists is measurable, and if it is
measurable, how to measure it. The reader should revisit the double slit experiment
in Chap. 8 in order to understand that this provides another example of the maxim
that it is the theory that decides what is measurable.

12.2.2 Joint Probabilities

We shall shortly discuss a sequence of measurements, performed one after the other,
and we do so in the case of a discrete PVM. Suppose we have two pieces of mea-
surement apparatus with pointers Φα , α ∈ I, andΨβ , β ∈ J, which point to values
λα ∈Λ and μβ ∈Π . How is this described? As always, of course. We simply have
a slightly more complicated Schrödinger evolution (12.2), with the only difference
that it ends in

∑
α∈I,β∈J

ϕα,βΦαΨβ , (12.42)

where we keep the new effective wave functions ϕα,β := PβPαϕ non-normalized for
reasons of notational simplicity. As a consequence, no cα,β appear.

Repeating the computation (12.3), measuring first with the α apparatus, we see
that the values λα ,μβ come with “joint probability”

Pϕ(λα ,μβ ) = ‖PβPαϕ‖2 . (12.43)

2 One can, however, measure the Bohmian velocity in a so-called weak measurement [2].
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This is all very simple, but there is something malicious going on, as indicated by
the quotation marks on “joint probability”. Let us now bring this to light.

When we wish to interpret the left-hand side as the probability distribution of
two random variables, it should be the case that if we ignore the outcome of one of
the measurements, i.e., if we sum over all values of one variable, then we should get
the probability of the other variable:

∑
α∈I

Pϕ(λα ,μβ ) = Pϕ(μβ ) , ∑
β∈J

Pϕ(λα ,μβ ) = Pϕ(λα) . (12.44)

This is pure logic applied to the joint probability.3 Summing over all values of one
random variable amounts to ignoring it, and we are only left with the probability
distribution of the other random variable. But is this true? Well, it is true if the
following computation can be carried out:

‖PβPαϕ‖2 = 〈PβPαϕ,PβPαϕ〉 = 〈ϕ,(PβPα)∗PβPαϕ〉
= 〈ϕ,Pα

∗Pβ
∗PβPαϕ〉

= 〈ϕ,PαPβPβPαϕ〉
= 〈ϕ,PαPβPαϕ〉
= 〈ϕ,PβPαPαϕ〉= 〈ϕ,PβPαϕ〉 .

This computation uses self-adjointness of the projectors P∗ = P, the projector prop-
erty P2 = P, and the commutativity

[Pα ,Pβ ] := PαPβ −PβPα = 0 . (12.45)

Now we can sum over either of the values in (12.44), using (12.7a). But we must
note that the requirement (12.45) is very special and by no means natural. Think of
the position and asymptotic velocity PVMs. We have already remarked that they do
not commute.

For a discrete example, we may take the “spin measurement” in some direction
a, with which we may associate the operator Âa. One easily checks that [Âx, Ây] �= 0,
whence their PVMs do not commute. We note, however, that the spin observables
discussed in the EPR–Bohm setup a ·σ (1)× I and I× b ·σ (2) do commute, a fact
which is basic to the insight that, due to quantum equilibrium, Bohmian nonlocality
cannot be used for faster than light signalling. If the PVMs do not commute, then
(12.43) is all there is, and

Pϕ(λα ,μβ ) = ‖PβPαϕ‖2 �= 〈ϕ,PβPαϕ〉 in general . (12.46)

Summing now over α , (12.44) does not hold in general.

3 For more than two entries, one speaks of a consistent family of joint distributions, where the
(n−k)-point distribution (with n−k entries) of the family is given by the sum over k entries of the
n-point distribution of the family. For two random outcomes this is (12.44).
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Suppose the observables corresponding to the PVMs are Â, B̂, and suppose we
first “measure” (the reader hopefully understands by now what the notion “measur-
ing an observable” means) Â =∑α λαPα and then B̂ =∑β μβPβ . Recall now a basic
fact of linear algebra, where one learns that two Hermitian matrices have a common
eigenbasis if and only if they commute. The same goes here, i.e., Â and B̂ commute
if and only if their PVMs commute. If Â and B̂ do not commute, the sequential mea-
surement of Â, B̂ cannot be described by a PVM and thus not by an observable. But
it is a measurement! A measurement which is not a measurement of an observable?
Disaster? Of course not. It is described by a POVM.

The moral is this. In general, i.e., in the case of non-commuting observables,
the probability formula (12.43) does not define a joint probability. Only commuting
observables have joint probabilities. Is there anything deep in all this? Well, no, there
is not. Any measurement experiment (12.2) channels the system’s wave function
into orthogonal pieces, thereby leading to a new effective wave function that will be
the input for the next experiment. Then summing over the possible values of the first
experiment does not undo the physical change which the systems underwent during
that experiment.

12.2.3 Naive Realism about Operators

The notion of observable and the wording “measurement of an observable” have
lured quite a few physicists into thinking that a measurement of an observable which
results in pointing out a value reveals the actual value of a variable, a variable which
for some reason is, however, not yet part of the theoretical description, i.e., a hid-
den variable, which is merely represented by the observable. We referred to this in
Chap. 10 in the context of the EPR argument as measurement of a preexisting value.
Naively, the observable describes a factual property of the system which is actually
being measured in an experiment. The following question then arose: Could hidden
variables be responsible for the outcome of measurements?

How could one phrase this question in mathematical terms? One way might be
to ask: Is there a map from observables to random variables which is such that
the joint statistics of any family of commuting observables are preserved, i.e., the
corresponding family of random variables has the same joint statistics? The answer
here is negative. There is no such map. This is sometimes dramatically referred
to as a no-go theorem. The name “theorem” suggests that it might involve heavy
mathematical machinery. However, it does not. Actually, the nonlocality proof in
Chap. 10 is an example. We shall give two arguments which make it clear why the
no-go theorem is nothing but a simple fact. The first is technical and throws light
on the strategy of proof, while the second is obvious and shows that one should not
waste time trying to prove the obvious.

Take observables Â, B̂, and Ĉ, and assume that Â commutes with B̂ and B̂ with Ĉ,
but that Â does not commute with Ĉ. Then we have joint probabilities for Â and B̂
as well as for B̂ and Ĉ, but not for Â and Ĉ. Do such observables exist? Yes they do.
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An example is the spin observable a ·σ in the a-direction, which does not generally
commute with b ·σ , the spin observable in the b-direction. Then as in an EPR situa-
tion, we consider the two-particle spin observables a ·σ (1)⊗ I and I⊗b ·σ (2). These
commute trivially. But c ·σ (1) ⊗ I does not in general commute with a ·σ (1) ⊗ I.
Now random variables XA, XB, and XC always have joint probabilities, no matter
what. That is the trivial conflict on which the no-go theorems are based [1, 3].

Trivial it is, but food for mysticism nevertheless. One measures B̂ jointly with
Â, which can be done since the PVMs commute, or one measures B̂ simultane-
ously with Ĉ, and one says that the properties which these observables represent are
“contextual”, that is, they depend on the context in which they are measured. On
the one side observables, contextual properties, “non-classical” logic, complemen-
tarity, wave–particle duality, uncertainty, intrinsic probability, cat paradox, no-go
mysticism. And on the other side, the two equations defining Bohmian mechanics,
governing the whole of the (non-relativistic) world. Which side should physics be
on?

We promised a second argument which makes all thoughts about hidden vari-
ables obsolete. It goes as follows. The observable is a book-keeping device for the
quantum equilibrium statistics in experiments. The observable is associated with the
experiment, i.e., there is a map

E =⇒ Â .

The experiment is the “real thing”, even for a quantum hardliner. That, if anything,
must be real. There is a map from reality to the observable. Can this map be inverted?
Well, no, of course not, because the map is many-to-one. How would one ever come
up with the idea that the association of the book-keeping device with the experiment
could be a one to one correspondence? Only if one thinks that the experiment is truly
a measurement of the observable. But who would be so naive?

Remark 12.2. Measuring the Position Operator
Measuring an operator means doing an experiment, the values and the statistics of
which are encoded in Â, and in particular in the PVM: E =⇒ Â. We gave as example
the trivial position PVM of a particle and the corresponding position operator X̂ .
Now “measure” X̂ . Does that mean that one measures the position of the particle?
No, not by any means. Why should it mean that? It simply means that we carry out
an experiment whose values and statistics are those determined by X̂ . We give an
example in Remark 15.4. �

12.3 Schrödinger’s Equation Revisited

Should we talk about existence and uniqueness of solutions of the Schrödinger equa-
tion? The answer is that we should not, unless something really catastrophic might
happen. But the Schrödinger equation is linear, hence rather boring (see Remark 7.1
on that). What would be bad in this context? Well, we would be in difficulty if the
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quantum equilibrium distribution ρ = |ψ|2 were to be called into question. For recall
the continuity equation (7.17),

∂ |ψ|2
∂ t

=−∇ · jψ =
−h̄
2im

∇·(ψ∗∇ψ−ψ∇ψ∗) .

The integral form of this guarantees that the probability always remains normalized
because, by Gauss’ theorem and assuming that the wave function goes to zero at
spatial infinity, we have

∫ ∂ |ψ|2
∂ t

dnx =−
∫
∇ · jψdnx =−

∫
jψ ·dσ = 0 . (12.47)

But does (12.47) hold without further requirements? Let us consider a simple one-
dimensional example, namely a “free” particle moving along the half-line x > 0.
This means that we consider the Schrödinger equation on the half-line:

ih̄
∂
∂ t
ψ =− h̄2

2m
d2

dx2ψ , x ∈ (0,∞) , (12.48)

and we read (12.47) on the half-line. For notational simplicity, we now put h̄/m = 1.
The solution of (12.48) reads [see (5.9) with D = 1 and it instead of t]

ψ(x, t) =
∫

dy
1√
2πit

exp

[
i
(x− y)2

2t

]
ψ0(y) . (12.49)

We start with ψ(y,0) = ψ0(y) as a function which has compact support on the pos-
itive real line R

+, so that ψ0(y) = 0 for y ≤ 0. But the solution (12.49) will not be
zero for x≤ 0 (actually as soon as t > 0). This is easily seen for large t by recalling
(9.25), viz.,

ψ(x, t)≈ 1√
2πit

eix2/2tψ̂0

(x
t

)
,

where ψ̂0 is the Fourier transform of ψ0. This will not generally be zero for x < 0,
since the Fourier transform of a compactly supported function is analytic.

We can also compute the current jψ(0, t) through the origin for t large. We see
then that, for some time,

∫ ∞

0
|ψ(x, t)|2dx <

∫ ∞

0
|ψ0(x)|2dx = 1 .

This means that (12.47) is false, i.e., jψ(0, t) �= 0. The lesson is that equation (12.48)
does not suffice to capture the idea of a free particle moving along the half-line R

∗.
What is missing are the boundary conditions at x = 0. In this simple example

the boundary conditions are immediate. The particle trajectory must not cross the
origin, i.e.,
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v∼ Im
∇ψ
ψ

(x, t) = 0 , at x = 0 ,

which means that

∇ψ
ψ

(0, t) ∈ R ,

or

∇ψ(0, t) = aψ(0, t), a ∈ R , (12.50)

seems “good” as boundary condition. For each choice of a the condition is linear,
so that it holds for superpositions of wave functions, each of which satisfies the
boundary condition. This is a good point, but one still needs to check that the time
evolution respects the chosen boundary condition. Given a ∈ R, we require that, at
t = 0,

∇ψ0(0) = aψ0(0) .

We then show that, for ψ(x, t), a solution of (12.48) with ψ(x,0) = ψ0(x) satisfies

∇ψ(0, t) = aψ(0, t) .

More important than this, once we understand that boundary conditions are needed,
we understand that the solution of (12.48) with a given initial wave function is not
unique. When the support of ψ0(y) is away from y = 0, ψ0(y) does not feel the
presence of the boundary. Then there are arbitrarily many solutionsψ(y, t) of (12.48)
with ψ(y,0) = ψ0(y). Here is another, different from (12.49):

ψ(x, t) =
∫

dy
1√
2πit

{
exp

[
−i

(x− y)2

2t

]
− exp

[
−i

(x+ y)2

2t

]}
ψ0(y) , x≥ 0 ,

for which we actually have ψ(0, t) = 0 for all t ≥ 0.
Putting this together we see something nice emerging. The problem of boundary

conditions, which we need for the quantum equilibrium hypothesis to hold true for
all times, goes hand in hand with the existence and uniqueness of solutions of the
Schrödinger equation. Mathematically, the quantum equilibrium hypothesis requires
wave functions to remain normalized during the time evolution. The norm of the
wave function is, according to the geometrical picture we have developed so far, the
unitary one:

‖ψt‖ :=
√
〈ψt |ψt〉 :=

√∫
ψt(q)∗ψt(q)dnq .

The time evolution must therefore be given by a group of unitary operators, gen-
erated by the Schrödinger equation. This is all captured in the self-adjointness of
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the differential operator on the right-hand side of the Schrödinger equation, the so-
called Hamilton operator.

A related remark is this. We shall see that each choice of a∈R is a good boundary
condition. This means that for each choice a ∈ R, we have the physics of the free
particle moving on the half-line. In other words, the phrase “free particle on the
half-line” does not describe a unique physical system. Only the boundary conditions
define the physical theory uniquely.

The reader may well get the impression that we are insisting on an artificial sce-
nario of a particle moving on a half-line, something which will never occur like
that in nature, since one needs a potential to constrain a particle, and a boundary
condition is merely an idealization. This is correct, but the example is very infor-
mative and only prepares the ground for the more realistic physics of atoms. The
Schrödinger equation for a particle in a Coulomb potential V (x) =−e1e2/‖x‖ reads

ih̄
∂
∂ t
ψ =

(
− h̄2

2m
Δ− e1e2

‖x‖

)
ψ , x �= 0 ,

i.e., it is only defined for x �= 0. There is nothing one can do about that. The origin
is a no-go point. We do not want the particle ever to reach the origin, otherwise it
might vanish there, and that would be the end of quantum mechanics as we know it.
The singular point x = 0 is a boundary point of the physical theory, and boundary
conditions are therefore needed. In three dimensions, we can consider the radial
motion of the particle, and we do not want the radial trajectory to hit zero. We see
that our half-line example is not so artificial after all.

12.4 What Comes Next?

We are ready to go on with the mathematics. We need to give a proper description
of the vector space of functions which contains the physically relevant wave func-
tions. We shall introduce the scalar product and with it a norm, and for technical
reasons we shall want a complete vector space. This is the mathematics of Hilbert
spaces. We also need to give a proper description of the (boundary) conditions under
which the Hamilton operator generates a unitary evolution, so that quantum equi-
librium will be valid. We shall give a more precise introduction of POVMs and
PVMs, which describe the empirical import of quantum equilibrium, describing the
relations between PVMs and observables so that we may link them to the textbook
quantum formalism.

The one-to-one correspondence is called the spectral theorem. This is techni-
cally very important because it incorporates the diagonalization of the operators and
allows one to compute formulas. We will then have a complete grasp of the free
Schrödinger evolution and understand the structure of the spectrum of Schrödinger
Hamiltonians when an interaction potential is present. A particularly relevant com-
bination of interaction and free evolution forms the mathematical basis of scattering
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theory. In Chap. 16, we shall return to physics to discuss scattering theory (and
more) from the standpoint of Bohmian mechanics.
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Chapter 13
Hilbert Space

The Schrödinger equation is a linear equation: linear superpositions of solutions
are again solutions. We also need square integrability of the solutions. Thus one is
naturally led to a vector space of square integrable functions for the space of wave
functions. It turns out that this space has additional mathematical structure, namely
the structure provided by an inner product.

Definition 13.1. An inner product (scalar product) on a complex vector space H is
a positive definite sesquilinear form, i.e., a map

〈 · | · 〉 : H ×H → C

with the following properties. Let ϕ,ψ ∈H and α ∈ C, then:

(i) 〈ϕ|ϕ〉 ≥ 0 and 〈ϕ|ϕ〉= 0 ⇐⇒ ϕ = 0,
(ii) 〈ϕ|ϕ+ψ〉= 〈ϕ|ϕ〉+ 〈ϕ|ψ〉 ,
(iii) 〈ϕ|αψ〉= α〈ϕ|ψ〉 ,
(iv) 〈ϕ|ψ〉= 〈ψ|ϕ〉∗ .

Property (i) is called positive definiteness, and properties (ii)–(iv) define sesquilin-
earity.

Note that (iii) and (iv) imply antilinearity in the first argument, i.e.,

〈αϕ|ψ〉= α∗〈ϕ|ψ〉 .

As first examples, we have C
n with the inner product

〈z|w〉=
n

∑
i=1

z∗i wi , zi,wi ∈ C ,

and C([a,b]), the space of continuous complex-valued functions on the interval
[a,b], with

〈 f |g〉=
∫ b

a
f ∗(x)g(x)dx .
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The role of the inner product is to introduce the notion of orthogonality of vectors.
Two vectors ϕ and ψ in H are said to be orthogonal if 〈ϕ|ψ〉 = 0. A sequence
(ϕi)i∈N ∈H is called an orthonormal sequence if its elements are pairwise orthog-
onal and normalized, i.e., 〈ϕi|ϕ j〉= δi j.

Next we consider orthogonal decompositions. Let (ϕi)i∈N be an arbitrary or-
thonormal sequence. Then, for all ϕ ∈H and each N ∈ N, the decomposition

ϕ =
N

∑
i=1
〈ϕi|ϕ〉ϕi

︸ ︷︷ ︸
ψN

+ϕ−
N

∑
i=1
〈ϕi|ϕ〉ϕi

︸ ︷︷ ︸
ψ⊥N

, (13.1)

is orthogonal, meaning that ψN and ψ⊥N are orthogonal. Hence

‖ϕ‖2 := 〈ϕ|ϕ〉=
N

∑
i=1
|〈ϕi|ϕ〉|2 +

∥∥∥ϕ−
N

∑
i=1
〈ϕi|ϕ〉ϕi

∥∥∥2
,

and (i) implies

‖ϕ‖2 ≥
N

∑
i=1
|〈ϕi|ϕ〉|2 (Bessel inequality) . (13.2)

For ϕ1 = ψ/‖ψ‖ and N = 1, we obtain as a special case the important Schwarz
inequality:

|〈ϕ|ψ〉| ≤ ‖ϕ‖‖ψ‖ , ∀ϕ,ψ ∈H . (13.3)

We can now easily show that ‖ ·‖=
√
〈 · | · 〉 defines a norm,1 which turns H into a

normed linear space. It is positive definite and homogeneous by Definition 13.1 (i),
(iii), and (iv), and the triangle inequality

‖ϕ+ψ‖ ≤ ‖ϕ‖+‖ψ‖

follows from the Schwarz inequality as an easy exercise.
Such a normed linear space with inner product is very similar to R

n (or C
n). What

is missing? Analysis in R is based on completeness. Having completeness means not
having to worry about infinite sequences and limits. However, there is a price to pay.
In the case of wave functions, the price of the comfort of having completeness – or
better for considering the norm closure of the space of physical wave functions – is
rather high. As we shall see, most elements in the completion of the vector space
of wave functions are irrelevant and abstract. They cannot be considered as wave
functions, i.e., as physical states. They are not differentiable, nor even continuous.

1 Recall that a norm ‖·‖ on a vector space V is a map ‖·‖ :V → [0,∞) such that (i) ‖v‖= 0⇔ v = 0,
(ii) ‖αv‖= |α|‖v‖ for all α ∈ C, v ∈V , and (iii) ‖v+w‖ ≤ ‖v‖+‖w‖ for all v,w ∈V .
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13.1 The Hilbert Space L2

A complete normed space is called a Hilbert space if its norm is given by an
inner product, ‖ · ‖ =

√
〈 · | · 〉. Completeness means that every Cauchy sequence

(ϕn)n∈N ∈H with respect to the norm ‖ · ‖ in H converges in H . Obvious ex-
amples are R

n and C
n. But we are interested in completeness of the space of wave

functions with respect to the integral norm

‖ψ‖2 :=
∫

Rn
ψ∗(x)ψ(x)dnx .

Here the integral must be understood as a Lebesgue integral, otherwise the result-
ing normed space of square integrable functions would not be complete, i.e., there
would exist Cauchy sequences that did not converge to a Riemann square integrable
function. But with the Lebesgue integral we obtain (as will be shown) a Hilbert
space

L2(Rn,dnx) =

{
ϕ : R

n→ C measurable with ‖ϕ‖=
√∫

|ϕ|2dnx < ∞

}
,

with inner product given by

〈ϕ|ψ〉=
∫
ϕ∗(x)ψ(x)dnx .

Note that the Schwarz inequality (13.3) implies 〈ϕ|ψ〉< ∞ for all ϕ,ψ ∈ L2.

Remark 13.1. About Equality in L2

The notion of equality of elements in L2 is a rather special one. The relation ϕ = ψ
in L2 means that ‖ϕ−ψ‖= 0, which in turn means that ϕ = ψ almost surely,2 i.e.,
the equality ϕ(x) = ψ(x) might be violated for a Lebesgue null set of x values. The
elements of L2 are thus actually equivalence classes of functions. Each equivalence
class consists of functions which are equal almost everywhere. But this need not
worry us most of the time. We just go on talking about “functions” f ∈ L2, although
they are actually equivalence classes of functions. Most of the time the distinction
between functions and equivalence classes is irrelevant. It is only if one needs point-
wise evaluations of functions that one has to be careful. In general f (x) makes no
sense for an element of L2, but of course

∫
| f (x)|2dx does. If an equivalence class

contains a continuous or even differentiable representative (which is then unique),
one naturally associates the class with this special function and pointwise evaluation
becomes meaningful again. �

The fact that L2 is complete and thus a Hilbert space, and indeed the completeness
of any Lp space,

2 “Almost surely” is synonymous with “almost everywhere”.
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Lp(Rn,dnx) =

{
ϕ : R

n→ C measurable with ‖ϕ‖=
(∫
|ϕ|pdnx

)1/p

< ∞

}
,

is the content of the Riesz–Fischer theorem:

Theorem 13.1. The space L2(Rn,dnx), and indeed every space Lp(Rn,dnx) with
1≤ p≤ ∞, is complete, i.e., every Cauchy sequence with respect to the norm in L2

converges in the norm to an element of L2.

Only when p = 2 is the norm given by an inner product, which makes this value
special. The idea of the proof is simple. Convergence of a subsequence of a Cauchy
sequence implies convergence of the whole sequence. Thus we can pick a subse-
quence (ϕk)k∈N := (ϕ̃nk)k∈N of a given Cauchy sequence (ϕ̃n)n∈N, such that

‖ϕk−ϕk+1‖< 2−k . (13.4)

Then chose any sequence of representatives ϕk(x) and put

ψm(x) =
m−1

∑
k=1

∣∣ϕk(x)−ϕk+1(x)
∣∣

and ψ∞(x) = limm→∞ψm(x), which may be infinite. [Note that
(
ψm(x)

)
m∈N

is
monotonically increasing.] But because of (13.4), we have ‖ψm‖< 1, i.e.,

∫
|ψm|2dnx≤ 1 .

Lebesgue’s theorem of monotone convergence implies that |ψ∞|2 is integrable, i.e.,
that ψ∞ ∈ L2. Hence |ψ∞|2 can be infinite only on a Lebesgue null set, and we have
pointwise convergence of

ϕm = ϕ1 +
m−1

∑
k=1

(ϕk+1−ϕk)

almost everywhere to a function ϕ . Since

|ϕm|2 ≤ 2
(
|ϕ1|2 + |ψm|2

)
≤ 2

(
|ϕ1|2 + |ψ∞|2

)
∈ L1 , (13.5)

we can apply Lebesgue’s theorem of dominated convergence to conclude that |ϕ|2 ∈
L1, and hence ϕ ∈ L2. The sequence hm := ϕm−ϕ converges almost surely to zero.
From (13.5), it follows that

|hm|2 ≤ 2
(
|ϕm|2 + |ϕ|2

)
≤ 2

[
2
(
|ϕ1|2 + |ψ∞|2

)
+ |ϕ|2

]
∈ L1 ,

and a second application of dominated convergence gives |hm|2 −→ 0 in L1, and
finally

hm→ 0 in L2 =⇒ ϕm→ ϕ in L2 .
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13.1.1 The Coordinate Space �2

While completeness allows us to do analysis, the inner product structure allows
us to transfer our geometric intuition from finite-dimensional spaces to infinite-
dimensional ones. For us (and for almost everybody else), only so called separable
Hilbert spaces are interesting, because they admit countable orthonormal bases. An
orthonormal sequence (ϕn)n∈N ∈H is an orthonormal basis if every ϕ ∈H can be
represented through an orthonormal decomposition with respect to (ϕn)n∈N ∈H :

ϕ = ∑
k∈N

〈ϕk|ϕ〉ϕk . (13.6)

Here the equality means that the series on the right-hand side converges in the norm
of H to ϕ .

Remark 13.2. The Notion of Separability
A topological space is called separable if it contains a countable dense subset. Hence
H is separable if there is a sequence (ψn)n∈N such that, for every element φ ∈H
and ε > 0, there is an index n ∈ N with ‖ψn−φ‖< ε . But this is clearly equivalent
to the existence of a countable orthonormal basis: by inductively removing those
elements from (ψn)n∈N which are finite linear combinations of the preceding ones,
we can construct a linearly independent subsequence (ψnk)k∈N such that (ψn)n∈N

can be recovered from finite linear combinations of elements in (ψnk)k∈N, i.e., such
that span(ψnk)k∈N = span(ψn)n∈N. The Gram–Schmidt orthonormalization proce-
dure applied to (ψnk)k∈N finally yields an orthonormal basis (ϕk)k∈N. On the other
hand we can construct a countable dense set from an orthonormal basis (ϕk)k∈N by
approximating the complex coefficients 〈ϕk|ϕ〉 by rational (complex) coefficients.
(Recall that countable unions of countable sets are countable.) �

It is in general not easy to check whether (13.6) holds for a given orthonormal
sequence. However, using the fact that ϕ −∑〈ϕk|ϕ〉ϕk must be zero gives the fol-
lowing more practical reformulation of (13.6).

Remark 13.3. On Orthonormal Bases
An orthonormal sequence (ϕk)k∈N is an orthonormal basis if and only if

〈ϕk|ϕ〉= 0 , for all k ∈ N =⇒ ϕ = 0 . (13.7)

To see that (13.7) implies (13.6), note that (13.2) implies, for arbitrary N,

∞> ‖ϕ‖2 ≥
N

∑
k=1

|〈ϕk|ϕ〉|2 .

Hence (ϕ̃N)N∈N with

ϕ̃N =
N

∑
k=1

〈ϕk|ϕ〉ϕk
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is a Cauchy sequence which converges to some ϕ̃ . But for all k, we have

〈ϕ̃−ϕ|ϕk〉 = lim
N→∞
〈ϕ̃N −ϕ|ϕk〉= lim

N→∞

〈 N

∑
l=1

〈ϕl |ϕ〉ϕl−ϕ
∣∣∣ϕk

〉

= 〈ϕk|ϕ〉∗ −〈ϕ|ϕk〉= 0 .

With (13.7), we may thus conclude that ϕ̃ = ϕ . �

From (13.6) it follows that, for an orthonormal basis, the Bessel inequality (13.2)
turns into an equality, called the Pythagorean theorem, or in this context, the Parse-
val equality:

‖ϕ‖2 =
∞

∑
k=1

|〈ϕk|ϕ〉|2 (Parseval equality) . (13.8)

This motivates the introduction of a further important Hilbert space, which is the co-
ordinate representation of any separable Hilbert space: �2 is the space of all square-
integrable sequences, viz.,

�2 =

{
(xn)n∈N : xn ∈ C,

∞

∑
n=1
|xn|2 < ∞

}
,

with the inner product

〈x|y〉=
∞

∑
n=1

x∗nyn .

It is not a very difficult exercise in analysis to show that this space is complete, and
we skip the proof here.

From (13.6) and (13.8), we conclude that any separable infinite-dimensional
Hilbert space H is isomorphic to �2, H ∼= �2, i.e., there exists a bijective linear
isometry U : H −→ �2. Such an operator U is said to be unitary, and is character-
ized by the property that U is surjective and isometric, i.e., for all ϕ ∈H ,

‖Uϕ‖�2 = ‖ϕ‖H .

Note that isometries are always injective, and it follows from the polarization iden-
tity,

〈ϕ|ψ〉= 1
4

[(
‖ϕ+ψ‖2−‖ϕ−ψ‖2)− i

(
‖ϕ+ iψ‖2−‖ϕ− iψ‖2)] , (13.9)

that any isometry, and hence any unitary operator, satisfies

〈Uϕ|Uψ〉�2 = 〈ϕ|ψ〉H , ∀ϕ,ψ ∈H . (13.10)

For any orthonormal basis (ϕk)k∈N of H , the coordinate map
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U : H → �2 , ϕ �→Uϕ = (〈ϕk|ϕ〉)k∈N

is such a unitary operator. It is surjective by definition and an isometry by Parseval
(13.8). The Fourier series of a function in L2([0,2π]) is a prominent example of such
a coordinate representation. The elements of the orthonormal basis are

1√
2π

eikx , k ∈ Z ,

and the coefficients of the series are the coordinate sequence in �2.
As we will try to understand in the following, L2(Rn,dnx) is also separable. This

might be surprising at first sight, since the elements ϕ(x), x ∈ R
n, could be naively

interpreted as “uncountable vectors” ϕx (with x as index like the i in yi for y∈R
n, i =

1, . . . ,n). From this analogy one would expect uncountable bases for L2(Rn,dnx).
[Think also of (9.27), where we wroteψ(x) =

∫
|x〉〈x|ϕ〉dx.] Of course, this intuition

would also apply to L2([0,2π]), where we have already seen that it is wrong. Indeed,
the arbitrary assignment of a value ϕx to every x would typically yield very irregular
functions, and functions in L2 are not that irregular. However, note that the space of
essentially bounded functions L∞([0,2π]) is not separable, although L∞([0,2π]) ⊂
L2([0,2π]). So separability really depends on the norm, i.e., on how we measure the
distance between functions.

We now show that L2(R,dx) is separable by explicitly constructing a countable
orthonormal basis. Then separability of L2(Rn,dnx) follows because of the tensor
product structure, which we discuss later on. We will see that

span
{(

xne−x2/2
)

n∈N0

}
= L2(R,dx) , (13.11)

which is a natural guess, since the monomials xn are linear independent and e−x2/2

makes them square integrable. The Gram–Schmidt orthogonalization procedure
turns this linearly independent sequence into an orthonormal sequence

Hn(x) = Pn(x)e−x2/2 , n ∈ N ,

where the Hn are called Hermite functions and the Pn are polynomials of degree n,
the Hermite polynomials. According to Remark 13.3, for (Hn)n∈N0 to be a basis as
claimed, we must have

∀n ∈ N0 , 〈Hn|ϕ〉= 0 =⇒ ϕ = 0 . (13.12)

But since the Pn are polynomials of degree n, (13.12) is equivalent to the requirement
that the original system is a basis, i.e., that

∀n ∈ N0 ,
〈
xne−x2/2|ϕ

〉
= 0 =⇒ ϕ = 0 , (13.13)

and we now show (13.13). Assuming that
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∀n ∈ N0 ,
〈
xne−x2/2|ϕ

〉
= 0 ,

then also

∀k ∈ R ,
〈
eikxe−x2/2|ϕ

〉
= 0 ,

since

eikxe−x2/2 =
∞

∑
m=0

(ik)m

m!
xme−x2/2 , (13.14)

in the L2 sense. So the Fourier transform of e−x2/2ϕ must be identically zero:

1√
2π

〈
eikxe−x2/2|ϕ

〉
= F

(
e−x2/2ϕ

)
(k) = 0 .

As we shall see in the next section, the Fourier transformation F : L2 −→ L2 is a
unitary map, and hence ϕ = 0. So L2(R) is separable.

Remark 13.4. Proof of Convergence
Since it is not completely obvious that (13.14) really converges in L2, we give the
argument in this remark. The sequence of partial sums

N

∑
m=0

(ik)m

m!
xme−x2/2

is a Cauchy sequence, because for each k ∈ R we have

∥∥∥∥ (ik)m

m!
xme−x2/2

∥∥∥∥
2

=
k2m

(m!)2

∫ ∞

−∞
x2me−x2

dx

=
k2m

m!
2m

∫ ∞

−∞

(
x2

2

)m
1

m!
e−x2

dx

≤ k2m

m!
2m

∫ ∞

−∞
e−x2/2dx =

(2k2)m

m!

√
2π .

So it converges, not only pointwise, but also in L2. �

13.1.2 Fourier Transformation on L2

On L2([0,2π]), the Fourier transformation is just the orthogonal decomposition with
respect to the orthonormal basis (eikx)k∈Z :
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F : L2([0,2π]) −→ �2 ,

f �−→ ( f̂k)k∈Z = (〈eikx, f 〉)k∈Z .

But the plane waves eikx are not square integrable over R and thus, in particular, do
not form a basis of L2(R). The Fourier transformation is now a unitary map

F : L2(Rn) �−→ L2(Rn) ,

f �−→ f̂ ,

with

〈g| f 〉=
〈
ĝ
∣∣ f̂

〉
(Plancherel equality) , (13.15)

where the Fourier transform of integrable functions is defined as usual by

F f = f̂ (k) =
(

1
2π

)n/2 ∫
Rn

e−ik·x f (x)dnx (13.16)

and

F ∗ f̂ = F−1 f̂ = f (x) =
(

1
2π

)n/2 ∫
Rn

eik·x f̂ (k)dnk . (13.17)

Integrable functions ( f or f̂ ) are L1-functions. While on bounded domains, L2 is
contained in L1, this no longer holds on unbounded domains. Thus for some L2-
functions, we cannot define the Fourier transform by (13.16). In order to define
Fourier transformation on all of L2(Rn), one first analyses the behavior of “nice”
functions under the Fourier transformation, as defined by the above integrals. For
“not so nice” L2-functions, we define the transformation by approximating with
nice functions, which must therefore be dense.

It is convenient to begin by analyzing the Fourier transformation on “very nice”
functions. The Schwartz space of rapidly decaying smooth functions S (Rn) ⊂
L2(Rn) is the space of all C∞-functions (functions for which all partial derivatives
of any order exist and are continuous), which decay faster than any inverse polyno-
mial as |x| → ∞, and for which the same holds for all their partial derivatives. Since
C∞0 (Rn), the space of smooth compactly supported functions is contained in S (Rn)
and dense in L2(Rn), so S (Rn) is dense in L2(Rn).

Schwartz functions are certainly integrable, and S (Rn) is invariant under the
Fourier transformation [1–3]:3

F : S −→S , F−1 : S −→S . (13.18)

This follows in a rather straightforward way from the definition. To get (13.18), we
must first show that arbitrary partial derivatives Dβk f̂ (k) of f̂ (k) multiplied by any

3 The reference [1] is highly recommended reading.
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polynomial kα remain bounded. Here we use the multi-index notation

α ∈ N
n
0 , kα := kα1

1 . . .kαn
n , Dαy :=

∂ |α|

∂yα1
1 . . .∂yαn

n
, |α|= α1 + · · ·+αn .

Referring to dominated convergence, we can differentiate the integral by differenti-
ating the integrand to obtain

kαDβk f̂ (k) =
(

1
2π

)n/2 ∫
kα (−ix)β e−ik·x f (x)dnx

=
(

1
2π

)n/2 ∫
i|α|

[
Dαx

(
e−ik·x

)]
(−ix)β f (x)dnx

=
(

1
2π

)n/2

(−i)|α|
∫

e−ik·xDαx
[
(−ix)β f (x)

]
dnx ,

integrating |α|-times by parts to get the last equality. Hence

sup
k

∣∣kαDβk f̂ (k)
∣∣≤

(
1

2π

)n/2 ∫ ∣∣∣Dαx (
xβ f (x)

)∣∣∣dnx .

From this one easily concludes that F , F ∗ : S →S . We still need to show that
F ∗ = F−1. To get this, we consider compactly supported smooth functions, i.e., in
C∞0 , because we can continue such a function periodically and consider its Fourier
series. The Fourier series of a smooth function converges uniformly to the function.
Thus the idea is to approximate functions f from S by sequences ( fk) from C∞0 .
However, to conclude this density argument, we need continuity of F as a map
from S to S in a suitable sense.

In order to define a suitable notion of convergence of sequences in S , we con-
tinue the above estimate and introduce the following family of seminorms (“semi”
means that ‖ f‖= 0 does not necessarily imply f = 0):

‖ f‖α,β := sup
y

∣∣yαDβy f (y)
∣∣ , for arbitrary multi-indices α,β .

Then the previous estimate yields (one should remember the following trick for later
use)
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‖F f‖α,β = ‖ f̂‖α,β ≤
(

1
2π

)n/2 ∫ ∣∣∣Dαx (
xβ f (x)

)∣∣∣dnx

≤
(

1
2π

)n/2 ∫
1+ x2n

1+ x2n

∣∣∣Dαx (
xβ f (x)

)∣∣∣dnx

≤
(

1
2π

)n/2

sup
x

∣∣∣(1+ x2n)Dαx
(
xβ f (x)

)∣∣∣
∫

1
1+ x2n dnx

≤ C (α,β ) ∑
|γ |≤|β |+2n,|δ |≤|α|

‖ f‖γ ,δ . (13.19)

The same holds for F ∗. (This family of seminorms defines a metric4 on S . Con-
vergence of sequences in S with respect to this metric is equivalent to convergence
with respect to ‖ · ‖α,β for all α and β . For details see, for example, [2, 3]. How-
ever, this is not really important for the following.) For us it is important that we can
approximate f ∈S by f0 ∈C∞0 in such a way that F ( f − f0) is also small. More
precisely, we want to show that

F ∗F f = f , or F ∗ = F−1 , on S .

We will show that

F ∗ f̂0 = f0 , f0 ∈C∞0 .

Then a simple triangulation together with (13.19) (for F ∗ and F ) yields
∥∥F ∗ f̂ − f

∥∥
0,0 ≤

∥∥F ∗ f̂ −F ∗ f̂0
∥∥

0,0 +
∥∥F ∗ f̂0− f0

∥∥
0,0 +

∥∥ f − f0
∥∥

0,0

≤ C ∑
|γ |≤2n

∥∥ f − f0
∥∥
γ ,0 .

Hence we need to approximate f by f0 with respect to the seminorms ‖ · ‖γ ,0, |γ| ≤
2n. To do this we first define a C∞0 -function Φ that is a “smooth version” of the
characteristic function of the unit ball: Φ(x) = 1 for |x| ≤ 1, Φ(x) = 0 for |x| ≥ 2,
and Φ is smooth and monotonic for 1≤ |x| ≤ 2. In dimension n = 1, this looks like
a snake that swallowed an elephant. It is easy to construct such a function Φ using,
e.g.,

exp

(
− 1

1− y2 +1

)
, 0 < y < 1 ,

which smoothly interpolates the values 1 for y ≤ 0 and 0 for y ≥ 1. Then the func-
tions Φm(x) := Φ(x/m) are 1 on the ball of radius m and have derivatives of order
1/m. Hence the sequence fΦm in C∞0 approximates f with respect to all the semi-
norms ‖ · ‖α,β .

4 We will refer to this metric later on when we discuss the dual space of S .
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Now we go on with f0 ∈ C∞0 . Let L be such that supp f0 ⊂ [−L,L]n, the cen-
tered cube in R

n with edges of length 2L. We can consider f0 as a smooth periodic
function over the cube decomposition of R

n. With the orthonormal basis

φl =
(

1
2L

)n/2

exp
(

i
π
L

l ·x
)

, l ∈ Z
n ,

the Fourier coefficients are

cl = 〈φl| f0〉=
(

1
2L

)n/2 ∫
[−L,L]n

exp
(
−i
π
L

l ·x
)

f0(x)dnx . (13.20)

From standard analysis, we know that the Fourier series of f0 converges uniformly
to f0, and we now apply this. To relate to the Fourier transform of f0, we note that
(13.20) implies

f̂0

(π
L

l
)

=
(

L
π

)n/2

cl ,

which suggests taking the limit L→ ∞ of the L-Fourier series of f0. The latter con-
verges uniformly and is given by

f0(x) =∑
l
φl (x)cl

=∑
l

(
1

2L

)n/2

exp
(

i
π
L

l ·x
)(

2π
2L

)n/2

f̂0

(π
L

l
)

=
(

1
2π

)n/2 (π
L

)n

∑
l

exp
(

i
π
L

l ·x
)

f̂0

(π
L

l
)

.

But the right-hand side is just a Riemann sum for the integral F ∗ f̂0, and it converges
to exactly this integral for L→ ∞, since f̂0 ∈ S . Hence f0(x) = F ∗ f̂0, and we
can conclude that F ∗ = F−1, i.e., (13.18).5 From this we easily get (13.15) for
g, f ∈S :

5 Note that our computation was just a mathematical way of expressing the fact that

1√
2π

∫
eikxdk = δ (x) .

We will comment on this formula later on.
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〈g| f 〉 =
∫

g∗(x) f (x)dnx

=
∫

g∗(x)

[(
1

2π

)n/2 ∫
eik·x f̂ (k)dnk

]
dnx

=
∫

f̂ (k)

[(
1

2π

)n/2 ∫
eik·xg∗(x)dnx

]
dnk

=
∫

ĝ∗(k) f̂ (k)dnk

= 〈ĝ| f̂ 〉 ,

where interchanging the order of integration is unproblematic because the integrals
converge absolutely. In addition, this immediately implies

‖ f‖L2 = ‖ f̂‖L2 , (13.21)

for f ∈ S , and thus the continuity of the map F : S → S with respect to the
L2-norm.

Another useful property of the Fourier transformation is that the Fourier trans-
form of a product of two functions is given by the convolution of the Fourier trans-
forms of the two functions.

Remark 13.5. Convolution
For f ,g ∈S

F ( f g)(k) =
(

1
2π

)n/2 ∫
f̂ (k−k′) ĝ(k′)dnk′ =:

(
1

2π

)n/2 (
f̂ ∗ ĝ

)
(k) ,

and

F ( f ∗g)(k) =
(

1
2π

)n/2 ∫
e−ik·x

∫
f (x−y)g(y)dnydnx

=
(

1
2π

)n/2 ∫ ∫
e−ik·(z+y) f (z)g(y)dnzdny

= (2π)n/2 f̂ (k) ĝ(k) .

Note that the convolution integral f ∗g is also well defined for f ,g ∈ L2:

( f ∗g)(x) =
〈

f̃ (·−x),g
〉

L2 ,

where f̃ (y) := f (−y). �

In the next step, we use a density argument again, in order to extend the Fourier
transformation to a unitary map on L2. One way of doing this is to say that, with
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(13.21), the map F defines a continuous (with respect to the L2-norm) linear opera-
tor on the dense subspace S ⊂ L2, and thus uniquely extends to a continuous linear
operator on the whole space L2. But since we have not introduced these notions yet,
we shall work out the argument in more detail.

Let f ∈ L2 and let fn be a sequence in S such that fn converges to f in the L2-
norm. Such a sequence always exists, since S is dense in L2. Then fn is a Cauchy
sequence in L2, and with (13.15) f̂n is also a Cauchy sequence in L2. By com-
pleteness it therefore has a limit φ ∈ L2. This limit is independent of the choice of
the original sequence fn. For let f ′n be another Cauchy sequence converging to f .
Then ( f1, f ′1, f2, f ′2, . . .) converges to f as well, and so is Cauchy. But then by the
same reasoning as before, ( f̂1, f̂ ′1, f̂2, f̂ ′2, . . .) is Cauchy and converges to φ , since the
subsequence fn converges to φ . So every other subsequence, and in particular f ′n,
converges to φ .

Consequently, we can define the Fourier transform of f ∈ L2 to be given by the
unique limit φ ,

f̂ = F f := φ .

It remains to show that (13.15) (which we showed for f ,g∈S ) extends to f ,g∈ L2.
But this follows immediately from the norm continuity of the inner product 〈·, ·〉. Let
( fn),(gn)⊂S converge to f ,g∈ L2 in norm. Then 〈 fn,gn〉 also converges to 〈 f ,g〉.
This follows from the Schwarz inequality (13.3):

∣∣〈 fn,gn〉−〈 f ,g〉
∣∣ ≤ ∣∣〈 fn− f ,g〉

∣∣+ ∣∣〈 fn,g−gn〉
∣∣

≤ ‖ fn− f‖‖g‖+‖ fn‖‖gn−g‖ .

Hence F is a unitary operator on L2.
If one wants to compute F f in the case where f is indeed only an L2-function,

then one can approximate f for example by the L1 ∩L2-function f χ[−l,l]n , and ap-

proximate f̂ as in

f̂ =
(

1
2π

)n/2

L2-lim
l→∞

∫
χ[−l,l]n(x)e−ik·x f (x)dnx .

Remark 13.6. Distributions
We extended the Fourier transformation from S to L2 by using the L2 continuity of
F : S →S . But as we have seen, F : S →S is continuous in a much stronger
sense, namely with respect to the family of seminorms ‖ · ‖α,β . This allows one to
extend F to a much larger class of “functions”, called tempered distributions. A
tempered distribution ϕ ∈S ′ is a continuous linear functional on S , i.e., a linear
map ϕ : S →C such that ‖ fn− f‖α,β → 0 for all α,β ∈N

n
0 implies ϕ( fn)→ ϕ( f )

in C. The space of linear continuous functionals on a topological vector space T is
called its dual space, denoted by T ′. So the space of tempered distributions S ′ is
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just the dual space of S with respect to the topology on S induced by the family
of seminorms ‖ · ‖α,β .6

For example, every function in S itself defines a tempered distribution as fol-
lows. For ϕ ∈S let

Tϕ( f ) :=
∫
ϕ(x) f (x)dnx = 〈ϕ∗| f 〉L2 , ∀ f ∈S . (13.22)

Motivated by the “similarity” with L2, one often extends the inner product notation
to the natural pairing of linear functionals with vectors, e.g., in the present case, for
T ∈S ′ and f ∈S , one writes

T ( f ) =: (T | f )S ′,S . (13.23)

For any continuous linear map A : S → S , one can now define the adjoint map
A∗ : S ′ →S ′ through

(A∗ϕ)( f ) := ϕ(A f ) .

This simple trick allows one to extend the Fourier transform (and, of course, also its
inverse) from S to S ′. Let ϕ ∈S ′. Then Fϕ ∈S ′ is defined by

Fϕ( f ) := ϕ(F f ) , ∀ f ∈S , (13.24)

or symbolically

ϕ̂( f ) := ϕ( f̂ ) , ∀ f ∈S .

This is indeed an extension of the Fourier transformation on S in the sense of
(13.22). For ϕ, f ∈S , we have

T̂ϕ( f )
(13.24)

= Tϕ( f̂ )
(13.22)

=
∫
ϕ(x) f̂ (x)dnx

= 〈ϕ∗| f̂ 〉 (13.15)
= 〈ϕ̂∗| f 〉

=
∫
ϕ̂(x) f (x)dnx

= Tϕ̂( f ) .

However, the identification of a function ϕ with a distribution Tϕ as in (13.22) makes
sense for a much larger class of functions than S . A sufficient condition would be,
for example, that ϕ is measurable and polynomially bounded or, alternatively, that
ϕ ∈ L2. In both cases, Tϕ defines a tempered distribution. An interesting example of

6 One can carry out a similar construction replacing S by D := C∞0 . The dual space D ′ of D
is called the space of distributions. For the purposes of Fourier transformation, S and S ′ are
advantageous, because, as we have already seen, S , and as a consequence also S ′, is invariant
under F .
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this kind is the constant function

ϕ =
(

1
2π

)n/2

,

i.e., the distribution

Tϕ( f ) =
(

1
2π

)n/2 ∫
f (x)dnx .

Its Fourier transform is given by

T̂ϕ( f ) = Tϕ( f̂ ) =
(

1
2π

)n/2 ∫
f̂ (k)dnk = f (0)

[
=

∫
δ (x) f (x)dnx

]
,

so that, heuristically (hence the inverted commas),

“ ϕ̂ =
(

1
2π

)n ∫
dnk e−ik·x = δ (x) ” .

This is the heuristic formula F1 = δ/(2π)n/2, or more simply,
∫

dnk e−ik·x = (2π)nδ (x) .

It provides a powerful heuristic computational tool. For example, one obtains the
inversion formula simply through

(
F ∗ f̂

)
(x) =

(
1

2π

)n/2 ∫
eik·x f̂ (k)dnk

=
(

1
2π

)n ∫∫
eik·xe−ik·x′ f (x′)dnk dnx′

=
(

1
2π

)n ∫
f (x′)dnx′

∫
eik·(x−x′)dnk

=
∫

dnx′ f (x′)δ (x−x′)

= f (x) .

In the same way as for the Fourier transformation, one can extend other continuous
linear mappings from S to S to mappings from S ′ to S ′. An important example
are the partial derivatives ∂x j : S (Rn)→ S (Rn), where one defines the distribu-
tional derivative for ϕ ∈S ′ by

(
∂
∂x j

ϕ
)

( f ) := ϕ
(
− ∂
∂x j

f

)
, ∀ f ∈S .
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Here the minus sign on the right-hand side ensures that the distributional derivative
does indeed extend the usual derivative, in the sense that, for ϕ ∈S , one has

(
∂x j Tϕ

)
( f ) = T∂x jϕ

( f ) , ∀ f ∈S .

In this way one can, for example, understand the Laplace operator Δx appearing in
the Schrödinger equation as an operator acting on distributions, and thus in particu-
lar also as an operator acting on L2-functions. One can read Schrödinger’s equation

i
d
dt
ψ(t) =−1

2
Δxψ(t)

as an equality for distributions, and would say that ψ(t) solves the Schrödinger
equation in the distributional sense. What we really mean then is that, for every test
function f ∈S , the time-dependent distribution ψ(t) ∈S ′ satisfies [and here the
alternative notation (13.23) is convenient]

i
d
dt

(
ψ(t)| f

)
S ′,S =

(
−1

2
Δxψ(t)

∣∣∣ f

)
S ′,S

:=
(
ψ(t)

∣∣∣− 1
2
Δx f

)
S ′,S

,

which is now an equality in C.
Another example is convolution, where for ψ ∈S the map

ψ∗ : S −→ S ,

ϕ �−→ ψ ∗ϕ ,

can be extended to a map

ψ∗ : S ′ −→ S ′ ,

ϕ �−→ ψ ∗ϕ .

�

Remark 13.7. Uniqueness of the Extensions
Both extensions of the Fourier transform, the one to L2 and the one to S ′, are
unique. This is because in both cases the extensions are continuous maps which are
uniquely defined by their values on the dense set S . [Although we did not show
that S with the identification (13.22) is dense in S ′, this is in fact true.] Now we
saw that L2-functions can also be identified with distributions by the identification
(13.22), i.e., L2 ⊂ S ′. It is also true, and easily seen, that the restriction of F :
S ′ →S ′ to L2 ⊂S ′ agrees with the Fourier transform which was directly defined
on L2 previously. �

Remark 13.8. On the Decay of L2-Functions
One might naively expect (square) integrable functions to decay at ∞. The example
e−x2(sinx)2

shows that this is not true in general. However, for L2(R), the following
shows what happens. If, not only ϕ , but also ϕ ′ is square integrable, i.e., ϕ,ϕ ′ ∈ L2,
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then ϕ(x) −→ 0 for x −→ ±∞. Here ϕ ′ ∈ S ′ is first defined as the distributional
derivative of ϕ ∈ L2, but we say ϕ ′ ∈ L2 if the distribution ϕ ′ is indeed given as the
distribution associated with the L2-function ϕ ′. It turns out that, for ϕ,ϕ ′ ∈ L2(R),
one has the usual theorem of calculus

ϕ(x) =
∫ x
ϕ ′(y)dy+C ,

where ϕ is an absolutely continuous function of x [4]. Hence we can do integration
by parts and find that

1
2

∣∣ϕ2(b)−ϕ2(a)
∣∣ =

∣∣∣∣
∫ b

a
ϕ(x)ϕ ′(x)dx

∣∣∣∣

≤
[∫ b

a
|ϕ(x)|2dx

∫ b

a
|ϕ ′(x)|2dx

]1/2

[by (13.3)]

−→ 0 ,

for a,b −→ ∞, since both integrands are integrable. Hence ϕ2(x) converges, since
every subsequence ϕ(xn) is Cauchy and therefore convergent. But the limit must be
zero, otherwise |ϕ|2 could not be integrable. �

13.2 Bilinear Forms and Bounded Linear Operators

We now return from L2 to the abstract Hilbert space setting. Our aim is to under-
stand that the symmetric bilinear (more precisely sesquilinear) forms are in one-
to-one correspondence with the bounded symmetric operators. This is completely
analogous to the same statement in linear algebra and rooted in the self-duality of
Hilbert spaces.

A bounded linear functional � on H is a linear map � : H →C, for which there
is a constant c < ∞ such that

|�(ϕ)| ≤ c‖ϕ‖ , ∀ϕ ∈H .

Clearly, every ψ ∈H defines a bounded linear functional via the inner product, i.e.,

ψ : H −→ C ,

ϕ �−→ 〈ψ|ϕ〉 .

But are these all the bounded linear functionals on H ? The answer is affirmative:

Theorem 13.2. Let � be a bounded linear functional on H . Then there is a unique
vectorΨ� ∈H such that �(ϕ) = 〈Ψ�|ϕ〉 for all ϕ ∈H .

This means that, to each linear functional �, there corresponds a unique vector onto
which � projects. As mentioned before, the space of bounded linear functionals on
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H is called the dual space of H and is denoted by H ∗. The unique identification
of � ∈H ∗ with ψ ∈H claimed in the theorem yields H ∗ ∼= H , i.e., H is dual to
itself. Before we come to the simple but not completely trivial proof of the theorem,
we need to understand some general geometric properties of Hilbert spaces.

Let M ⊂H be some arbitrary subset of H . Then one defines the orthogonal
complement of M in H as

M⊥ :=
{
ψ ∈H : 〈ϕ,ψ〉= 0 , for allϕ ∈M

}
. (13.25)

The linearity and continuity of the inner product imply immediately that M⊥ is a
closed subspace of H . The following theorem also holds for non-separable Hilbert
spaces, but we prove it only for separable ones.

Theorem 13.3. Let M ⊂H be a closed subspace of a separable Hilbert space H .
Then one has H = M ⊕M⊥, i.e., each vector ϕ ∈H can be uniquely decomposed
as ϕ = ψ+ψ⊥, with ψ ∈M and ψ⊥ ∈M⊥.

To prove this, we first note that, as closed subspaces of a separable Hilbert space, M
and M⊥ are by themselves separable Hilbert spaces, and as such allow for orthonor-
mal bases (φn)n∈N and (φ⊥m )m∈N, respectively. We will show that the orthonormal
sequence (φn)n∈N ∪ (φ⊥m )m∈N is an orthonormal basis for H , using the criterion
(13.7). Assume that

〈φn,ϕ〉= 0 = 〈φ⊥m ,ϕ〉 , (13.26)

for all n,m ∈ N. The first equality implies that 〈φ ,ϕ〉 = 0, for all φ ∈M , and
therefore ϕ ∈M⊥. Since (φ⊥m )m∈N is by assumption an orthonormal basis of M⊥,
the second equality in (13.26) implies that ϕ = 0. Hence by (13.7), we see that
(φn)n∈N ∪ (φ⊥m )m∈N is an orthonormal basis of H . Moreover, for any ϕ ∈H , we
have ϕ = ψ+ψ⊥, with

ψ =
∞

∑
n=1
〈φn,ϕ〉φn ∈M , ψ⊥ =

∞

∑
m=1
〈φ⊥m ,ϕ〉φ⊥m ∈M⊥ .

Uniqueness of the decomposition is a very easy exercise.
We now come to the proof of Theorem 13.2. Pick any bounded linear functional

� on H . We are looking for a corresponding vector ψ ∈H on which � projects. In
particular, all vectors orthogonal to ψ are mapped to zero by �. Hence we look at
the null space of �, viz.,

M =
{
ϕ ∈H |�(ϕ) = 0

}
.

Note that M is a closed subspace of H , since � is bounded and therefore con-
tinuous. If M = H , we could pick ψ = 0 and we would be done. Otherwise, by
Theorem 13.3, the orthogonal complement M⊥ is at least one-dimensional. Indeed,
M⊥ is exactly one-dimensional, which is basically the statement of the theorem. To
see this, let ψ0,ψ1 ∈M⊥ \{0}. Then
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�(ψ0−αψ1) = �(ψ0)−α �(ψ1) = 0 ,

for α = �(ψ0)/�(ψ1), and thus

ψ0−
�(ψ0)
�(ψ1)

ψ1 ∈M ∩M⊥ = {0} .

Hence M⊥ is one-dimensional, and with a normalized ψ0 ∈M⊥, we can use The-
orem 13.3 (and its proof) to uniquely decompose any ϕ ∈H as

ϕ = ψ+ψ⊥ = ψ+ 〈ψ0|ϕ〉ψ0 ,

with ψ ∈M . But then we find the desired result

�(ϕ) = �(ψ+ψ⊥) = �(ψ)+ �
(
〈ψ0|ϕ〉ψ0

)
= �(ψ0)〈ψ0|ϕ〉= 〈Ψ�|ϕ〉 ,

withΨ� = �(ψ0)∗ψ0, where we used antilinearity in the first argument of the inner
product.

Now we come to the equivalence of bounded linear operators and bounded bilin-
ear, or more precisely sesquilinear, forms. A linear operator Â : H →H is bounded
if there is a constant C < ∞ such that

‖Âϕ‖ ≤C‖ϕ‖ , for allϕ ∈H .

The norm of Â is the smallest such C,

‖Â‖ := sup
ϕ

‖Âϕ‖
‖ϕ‖ = sup

‖ϕ‖=1
‖Âϕ‖ , (13.27)

and it is quite easy to see that this definition turns the space of bounded linear op-
erators on H into a complete normed space. Note that a bounded operator is obvi-
ously continuous, but the converse is true as well: every continuous linear operator
is bounded.

Theorem 13.4. Let B( · , · ) be a map from H ×H to C with the following prop-
erties. For all ϕ,ψ,χ ∈H and α,β ∈ C one has

(i) B(ϕ,αψ+βχ) = αB(ϕ,ψ)+βB(ϕ,χ) ,

(ii) B(ϕ,ψ) = B(ψ,ϕ)∗ ,

(iii) |B(ϕ,ψ)| ≤C‖ϕ‖‖ψ‖ .

Then there exists a unique symmetric bounded linear operator Â on H such that

B(ϕ,ψ) = 〈Âϕ|ψ〉 , for allϕ,ψ ∈H .

This is an immediate consequence of Theorem 13.2, since B(ϕ, · ) is obviously a
bounded linear functional. Hence the action of B(ϕ, · ) is given by projecting onto
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a unique vector ϕ̃ , viz.,

B(ϕ,ψ) = 〈ϕ̃|ψ〉 .

The mapping ϕ −→ ϕ̃ defines an operator Â through Âϕ = ϕ̃ with the property
that 〈Âϕ|ψ〉= B(ϕ,ψ). But the properties (i)–(iii) of B imply immediately that Â is
linear and bounded. Linearity is obvious and boundedness is

‖Âϕ‖2 = 〈Âϕ|Âϕ〉= B(ϕ, Âϕ)≤C‖ϕ‖‖Âϕ‖ ,

whence

‖Âϕ‖ ≤C‖ϕ‖ .

Finally (ii) implies symmetry of Â, which means that for all ϕ,ψ ∈H ,

〈Âϕ|ψ〉= B(ϕ,ψ) = B(ψ,ϕ)∗ = 〈Âψ|ϕ〉∗ = 〈ϕ|Âψ〉 . (13.28)

13.3 Tensor Product Spaces

Now we come to the question of how to describe entanglement of wave functions
for N particles. Let us proceed in a purely axiomatic way for the moment. For one
particle, the state space is the Hilbert space of what we shall call wave functions
L2(R3,d3x). For two particles7 we have several possibilities, if we proceed axiomat-
ically, without taking the physical theory into account. For example, one could take
the direct sum of the one-particle spaces H1 and H2:

H1⊕H2 =
{(

ϕ1

ϕ2

)
,ϕ1 ∈H1,ϕ2 ∈H2

}
, (13.29)

with the inner product
〈(

ϕ1

ϕ2

)∣∣∣
(
ψ1

ψ2

)〉
= 〈ϕ1|ψ1〉H1 + 〈ϕ2|ψ2〉H2 .

Physically, this amounts to de Broglie’s conception of having one wave per particle
(the dimensions of the spaces add up). However, we know already that the wave
function lives on configuration space, i.e., it lies in L2(R6,d6x). And this is not the
direct sum of the one particle spaces L2(R3,d3x), but the tensor product, i.e., the
space of linear superpositions of products ϕ1(x1)ϕ2(x2).

Formally, one can form the tensor product of two given spaces H1 and H2, by
just taking linear combinations of “formal products” φ1⊗φ2, φi ∈Hi. One then de-
fines an inner product on that vector space of sums of formal products in a natural

7 We leave it to the reader to formulate the results of this section for N particles. To simplify the
notation, we exemplify with 2 particles only.
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way, in order to turn it, after completion, into a Hilbert space once again. However,
this is so formal that we should hold on for a second and ask ourselves why we
should be interested in getting the many-particle spaces in such an abstract manner.
The reason is that in many models one would like to couple different systems with
different kinds of degrees of freedom. With the notion of tensor product, one obtains
the full Hilbert space of such coupled systems in a straightforward and unambigu-
ous way, by just taking the tensor product of the single-particle Hilbert spaces. For
example one can now easily combine spatial degrees of freedom with spin degrees
of freedom.

We will discuss this later in more detail, but the moral is that we are not so much
concerned about the many-particle L2-space, which is given by physics anyway. In-
stead we want a convenient way to include new degrees of freedom into our models.
Still we do not wish to proceed too abstractly, and choose a slightly more concrete
road to introduce the tensor product. For ϕ1 ∈H1 and ϕ2 ∈H2, we define the bi-
linear (for N factors an N-linear) map

ϕ1⊗ϕ2 : H1×H2 −→ C ,

ϕ1⊗ϕ2(ψ1,ψ2) := 〈ϕ1|ψ1〉H1〈ϕ2|ψ2〉H2 . (13.30)

Then we take all finite linear combinations with coefficient in C, i.e.,

spanC(⊗) := spanC(ϕ1⊗ϕ2,ϕ1 ∈H1,ϕ2 ∈H2) ,

and on that space define the inner product as the linear extension of

〈ϕ1⊗ϕ2|ψ1⊗ψ2〉⊗ = 〈ϕ1|ψ1〉H1〈ϕ2|ψ2〉H2 . (13.31)

What is still missing for spanC(⊗) to be a Hilbert space? Completeness, i.e., closed-
ness under Cauchy convergence! We therefore define H⊗ = H1⊗H2 as the com-
pletion of span(⊗) under the norm ‖ · ‖⊗ :=

√
〈 · | · 〉⊗ .

Remark 13.9. About Completion
We should say a few words about the general idea of completion. Completing a
unitary space M means finding a complete unitary space H , i.e., a Hilbert space,
in which M can be isometrically and densely embedded. The canonical way to
construct H is to consider equivalence classes of Cauchy sequences. Two Cauchy
sequences fn,gn ∈M are equivalent, if limn→∞ ‖ fn− gn‖ = 0. This obviously de-
fines an equivalence relation and H can be defined as the space of equivalence
classes of Cauchy sequences. One can now define an inner product on H through
limn→∞〈 fn|gn〉, which is independent of the chosen representatives, due to conti-
nuity of the inner product. Finally, one can prove completeness of H along the
following lines. From a given Cauchy sequence Fn ∈H (a sequence of sequences
in M ) extract the diagonal sequence f = (Fn,n)n, which is again a Cauchy sequence
in M (use the triangle inequality here), i.e., f ∈H . Finally convince yourself that
f is the limit of the Cauchy sequence Fn. One can now recover M in H by identi-
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fying with f ∈M the constant Cauchy sequence fn = f in H . By construction the
constant sequences are dense in H , and isometry is evident. �

However, we were a bit hasty when we talked about extending (13.31) by linearity to
span(⊗) (resp., H⊗), since it is not a priori clear whether this procedure is unique.
More precisely, if for Φ ,Ψ ∈ span(⊗) we define 〈Φ |Ψ〉⊗ through linear extension
of (13.31), the result must be independent of the representation ofΦ andΨ . In other
words, if Φ is the zero form, then 〈Φ |Ψ〉⊗ = 0 must hold for allΨ ∈ span(⊗). To
see this let

Ψ =
N

∑
k=1

αkϕk⊗ηk .

Then, because of linearity,
〈
Φ

∣∣∣∣∣
N

∑
k=1

αk ϕk⊗ηk

〉

⊗
=

N

∑
k=1

α∗k 〈Φ |ϕk⊗ηk〉⊗ =
N

∑
k=1

α∗kΦ(ϕk,ηk) = 0 ,

since Φ is the zero form.
Moreover, the inner product must be positive, i.e., 〈Ψ |Ψ〉⊗ > 0 for Ψ �= 0. To

check this, let

Ψ =
N

∑
k=1

αkϕk⊗ηk .

By decomposing the vectors (ϕk)k=1,... ,N and (ηk)k=1,... ,N with respect to orthog-
onal bases (ϕ̃k) and (η̃k) of the corresponding subspaces span(ϕk) ⊂ H1 and
span(ηk)⊂H2, we can write

Ψ =
N

∑
k,l=1

αklϕ̃k⊗ η̃l ,

whence we find that

〈Ψ |Ψ〉⊗ =

〈
N

∑
k,l=1

αklϕ̃k⊗ η̃l

∣∣∣∣∣
N

∑
n,m=1

αnm ϕ̃n⊗ η̃m

〉

⊗

=
N

∑
k,l,m,n=1

α∗klαnm〈ϕ̃k⊗ η̃l |ϕ̃n⊗ η̃m〉⊗

=
N

∑
k,l,m,n=1

α∗klαnm〈ϕ̃k|ϕ̃n〉H1〈η̃l |η̃m〉H2

=
N

∑
k,l,m,n=1

α∗klαnmδknδlm =
N

∑
k,l=1

α∗klαkl =
N

∑
k,l=1

|αkl |2 > 0 .
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Remark 13.10. Warning: Product Functions Are Not Typical
Generically,Ψ ∈H⊗ is not of product formΨ = ϕ1⊗ϕ2, but of the form

Ψ =
∞

∑
i, j=1

αi jϕi⊗ϕ j .

Note also that the dimension of the tensor product space is the product of the dimen-
sions of the single spaces. This is a clear statement for finite-dimensional spaces, and
it also holds true for infinite-dimensional spaces in the following sense.

Theorem 13.5. If (ϕk) and (ψl) are orthonormal bases of H1 and H2, then the set
(ϕk⊗ψl)kl is an orthonormal basis of H1⊗H2.

Clearly, the (ϕk ⊗ψl)kl are an orthonormal system. One way to see that they do
indeed form a basis is to show that the closure S of spanC

(
(ϕk ⊗ψl)kl

)
contains

spanC(⊗) and therefore also its closure H1⊗H2. But this follows if we just show
that ϕ⊗ψ ∈ S, for all ϕ ∈H1 and ψ ∈H2. Now let

ϕ =
∞

∑
k=1

αkϕk , ψ =
∞

∑
l=1

βlψl ,

and define

ϕ(N) =
N

∑
k=1

αkϕk , ψ(N) =
N

∑
l=1

βlψl .

Then ϕ(N)⊗ψ(N) = ∑N
k,l=1α∗k βlϕk⊗ψl , and we see that the difference

∥∥ϕ⊗ψ−ϕ(N)⊗ψ(N)
∥∥

goes to zero as N→ ∞ :

∥∥ϕ⊗ψ−ϕ(N)⊗ψ(N)
∥∥ =

∥∥∥[
ϕ−ϕ(N)

]
⊗ψ−ϕ(N)⊗

[
ψ(N)−ψ

]∥∥∥
≤ ‖ϕ−ϕ(N)‖‖ψ‖+‖ϕ(N)‖‖ψ(N)−ψ‖
≤ ‖ϕ−ϕ(N)‖+‖ψ(N)−ψ‖ −→ 0 .

�

After these abstract considerations, let us look at a concrete example. The tensor
product L2(R,dx)⊗L2(R,dy) is naturally isomorphic to L2(R2,dxdy). If we iden-
tify an elementΨ of L2(R,dx)⊗L2(R,dy) with a linear combination of products of
functions,

Ψ =∑
k,l

αklϕk⊗ψl =̂ ∑
k,l

αklϕk(x)ψl(y) =Ψ(x,y) ,
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then the functionΨ(x,y) is indeed an element of L2(R2,dxdy), since

∫∫
|Ψ(x,y)|2dxdy = ∑

k,l,m,n

α∗klαmn

[∫
ϕ∗k (x)ϕm(x)dx

][∫
ψ∗l (y)ψn(y)dy

]

=∑
k,l

|αkl |2 < ∞ .

Here and in the following, (ϕk)k and (ψl)l are orthonormal bases of L2(R,dx). To
see that this map from L2(R,dx)⊗ L2(R,dy) to L2(R2,dxdy) is indeed an iso-
morphism, we show that products

(
ϕk(x)ψl(y)

)
kl form an orthonormal basis of

L2(R2,dxdy). We see this by once again using our criterion (13.6) for orthonormal
bases. LetΨ ∈ L2(R2,dxdy) be such that

∫∫
Ψ ∗(x,y)ϕk(x)ψl(y)dxdy = 0 , ∀k, l .

We show that the only vector orthogonal to all
(
ϕk(x)ψl(y)

)
kl isΨ = 0. This follows

from Fubini’s theorem:
∫ [∫

Ψ ∗(x,y)ϕk(x)dx

]
ψl(y)dy = 0 , ∀ l ,

implies that the function

gk(y) =
∫
Ψ ∗(x,y)ϕk(x)dx ∈ L2(R,dy)

vanishes outside a null set Nk. Hence, for y �∈⋃
Nk, we have

∫
Ψ ∗(x,y)ϕk(x)dx = 0 , ∀k .

But thenΨ ∗(x,y) vanishes almost everywhere (with respect to “dx”) andΨ(x,y) is
zero almost everywhere with respect to “dxdy”. Thus

(
ϕk(x)ψl(y)

)
kl is an orthonor-

mal basis of L2(R2,dxdy).
As a consequence, the mapping

U : ϕk⊗ψl −→ ϕk(x)ψl(y)

maps the orthogonal basis L2(R,dx)⊗ L2(R,dy) onto an orthogonal basis of the
space L2(R2,dxdy), and we can extend it to a unitary operator

U : L2(R,dx)⊗L2(R,dy)−→ L2(R2,dxdy)

by linearity.
In this sense L2(R,dx)⊗ L2(R,dy) is canonically isomorphic to L2(R2,dxdy),

and in general
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3N⊗
i=1

L2(R,dxi)∼= L2(R3N ,d3Nx) . (13.32)

In Bohmian mechanics product functions ϕ(x)ψ(y) (or ϕ ⊗ψ) in the tensor space
describe statistical and metaphysical independence of the x- and y-systems. In
general, however, the wave function evolves, through interaction potentials in the
Schrödinger equation, into a typical element of the tensor space that cannot be writ-
ten as a product, but is of the form

∑
k,l

αklϕk⊗ψl =̂ ∑
k,l

αklϕk(x)ψl(y) =Ψ(x,y) .

Remark 13.11. On Spinor Wave Functions
For the space L2(R3,d3x ; C

2) of spinor-valued wave functions
(
ϕ1

ϕ2

)
,

we also find a natural isomorphism with the tensor space L2(R3,d3x)⊗C
2, viz.,

L2(R3,d3x ; C
2)∼= L2(R3,d3x)⊗C

2 ,

through the identification

U : ϕ⊗ v−→ ϕ(x)v ,

for ϕ ∈ L2(R3,d3x) and v ∈ C
2 and its linear extension. One can replace C

2 by an
arbitrary Hilbert space. In particular, for the wave function space of N particles with
spin,

N⊗
k=1

L2(R3,C2) =
N⊗

k=1

[
L2(R3)⊗C

2
]

=

[
N⊗

k=1

L2(R3)

]
⊗

(
N⊗

k=1

C
2

)

= L2(R3N)⊗C
2N

.

In many applications, one reduces spin-related problems to involve only the “spin
degrees of freedom”. This is possible if the full wave functionΨ ∈ L2(R3N)⊗C

2N

has a product formΨ = ψ⊗φ with ψ ∈ L2(R3N) and φ ∈ C
2N

, and if this product
structure is (approximately) conserved under the time evolution, i.e., if there is no
coupling between translational motion and spin dynamics. However, even if the
decoupling condition is not satisfied, e.g., when discussing the EPR experiment,
one often only explicitly considers the spin factor φ ∈ C

2N
and its dynamics. In

these cases it is very important to bear the full picture in mind. �
Remark 13.12. On the Schmidt Basis in Tensor Spaces
A given function ψ(x,y) can always be represented in a bi-orthogonal basis with
non-negative coefficients, i.e.,
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ψ(x,y) =∑
n
αnϕ̃n(x)ψ̃n(y) , (13.33)

where (ϕ̃n) and (ψ̃n) are orthonormal bases and αn ≥ 0. This is emphasized, for
example, in the context of the wave function of the universe, because (13.33) has
a formal similarity with the superposition emerging from a measurement process.
Mathematically, this observation goes back to work by Schmidt [5]. Although the
physical implications of (13.33) are overrated, it is often convenient to have the
representation (13.33) for other reasons, so we shall explain briefly how to get it.

In general, we showed that, for orthonormal bases (ϕn) and (ψn), one has

ψ(x,y) =∑
n,m
αnmϕn(x)ψm(y) .

For simplicity, we consider only finite sums and do some linear algebra with

ψ(x,y) =
N

∑
n,m=1

αnmϕn(x)ψm(y) .

Under unitary transformations S and T , i.e., S∗S = T ∗T = I, the orthonormal bases
(ϕn) and (ψn) are mapped to orthonormal bases:

S∗ϕn = ϕ̃n , T ∗ψn = ψ̃n .

With A = (αnm), we write

ψ(x,y) =
N

∑
n,m=1

(SAT )nmϕ̃n(x)ψ̃m(y) ,

and hence (13.33) follows if we can show that there exist S and T that diagonalize
A, i.e.,

SAT = D , (13.34)

for some diagonal matrix D. To see that such matrices exist, let (ek) denote the
canonical basis of R

N . With T ek =: tk and Ssk := ek, we can write (13.34) as

SAT ek = SAtk = Sδksk = δkek ,

whenever

Atk = δksk . (13.35)

Then D = (δk). So the question now is whether there are bases sk and tk such that
(13.35) holds, and the answer is affirmative: they do indeed exist. With the adjoint
matrix A∗, we have that A∗A and AA∗ are positive self-adjoint matrices and hence
diagonalizable with positive eigenvalues α2

k and α̃2
n , and an orthonormal eigenbasis
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tk and sn. But

A∗Atk = α2
k tk

implies

AA∗Atk = α2
k Atk ,

i.e., Atk is an eigenvector of AA∗, whose eigenvalues are α̃2
n with eigenvectors sn.

After renumbering where necessary, we have α̃2
k = α2

k and Atk = δksk, with

δ 2
k = (δksk,δksk) = (Atk,Atk) = (A∗Atk, tk) = α2

k (tk, tk) = α2
k ,

i.e., δk = αk. �

From now on, we shall say that the wave function is an element of a Hilbert space
H , and we shall usually mean

H = L2(R3N ,d3Nx) .

We know that only the nice smooth functions in that space, the real wave functions,
are physically relevant.
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Chapter 14
The Schrödinger Operator

In Bohmian mechanics, the dynamics of the wave function is determined by the
Schrödinger equation (8.4) and the dynamics of the particle positions is determined
by the guiding equation (8.3). In Remarks 7.1 and 8.2, we noted that in Bohmian
mechanics the wave function must be differentiable, i.e., Bohmian mechanics is
based on classical solutions of Schrödinger’s equation. We will not be concerned
with classical solutions in the present chapter, which develops the point of view
already initiated in Chap. 12. We discuss here a new notion of solution in the sense
that the Schrödinger equation gives rise to a unitary time evolution on Hilbert space.

14.1 Unitary Groups and Their Generators

As in every physical theory, the mathematical equations should be specified in such a
way that, for suitable initial data, the solutions are uniquely determined for all times.
In this chapter we discuss in particular the mathematical problem of setting up the
Schrödinger equation in such a way that the solutions are uniquely determined for
all times by the initial wave function at some arbitrary initial time. Moreover, the
solution ψ(t) of the Schrödinger equation also enters the guiding equation for the
particles, for which we also expect the existence of solutions at all times. But if
(almost) all trajectories exist for all times, then equivariance of the |ψ|2-distribution
leads to a further minimal requirement on ψ(t), namely the conservation of the total
probability

∫
|ψ(t)|2dnx = 1, i.e., conservation of the L2-norm.

However, for singular potentials, like the physically relevant Coulomb potential,
or for configuration spaces with boundary, the mere fact of specifying the potential
does not lead to either uniqueness or, in general, conservation of norm for the so-
lution of Schrödinger’s equation. Indeed, in these cases, for any given initial data
ψ0, there exist many solutions of Schrödinger’s equation, some with growing or de-
creasing norm. As we understood already in Chap. 12, one needs additional bound-
ary conditions in order to make the physical situation described by the equations
unique, and thus to select the correct physical solution. As we shall explain, using

D. Dürr, S. Teufel, Bohmian Mechanics, DOI 10.1007/978-3-540-89344-8 14, 279
c© Springer-Verlag Berlin Heidelberg 2009
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the concept of self-adjointness one can at the same time enforce uniqueness of the
solution and conservation of norm. Then one is left to select the physically correct
self-adjoint version of the equation in order to get unique solutions.

We treat this problem as a mathematical problem, whence physical constants and
dimensions will be irrelevant, and we put h̄ = m = 1 so that the Schrödinger equation
becomes

i
∂ψ(x, t)
∂ t

=− 1
2Δxψ(x, t)+V (x)ψ(x, t) =: H(Δ,V )ψ(x, t) , (14.1)

with ψ(t = 0) =ψ0 ∈ L2 as initial condition.1 Thinking of ψ(t,x) as a vector-valued
function ψ : R→ L2, t �→ ψ(t), we can also understand (14.1) as an ordinary linear
differential equation.

i
d
dt
ψ(t) = Hψ(t) .

Then at least formally we obtain ψ(t) = e−itHψ0 as the solution and, since H is
“real”, we have, with the i in the exponent, that U(t) = e−itH is a bounded linear
operator on the Hilbert space H . Indeed, formally we even expect U(t) = e−itH

to be unitary, so that ‖ψ(t)‖ = ‖U(t)ψ(0)‖ = ‖ψ(0)‖. Our formal expectations
motivate the following definition:

Definition 14.1. A (strongly continuous) unitary one-parameter group

U(t) : H −→H

is a family of linear operators (one operator for each t ∈ R) on a Hilbert space H ,
such that:

(i) t �→U(t)ψ is continuous for each ψ ∈H ,
(ii) U(t + s) = U(t)U(s), U(0) = I ,
(iii) ‖U(t)ψ‖= ‖ψ‖ for all t ∈ R and all ψ ∈H .

Condition (i) is called strong continuity, and it means that ‖U(t)ψ −U(s)ψ‖ → 0
for t → s. From (ii), it follows that U(t) is invertible with inverse U(−t). Hence,
together with (iii), it follows that U(t) is indeed unitary [see also the paragraph
above (13.10)]. Note also that, for unitary groups, strong continuity is equivalent to
weak continuity, since

lim
t→0

∥∥∥[
U(t)− I

]
ψ

∥∥∥2
= 2‖ψ‖2−2 lim

t→0
Re

〈
ψ|U(t)ψ

〉
= 0 .

This definition captures all our requirements for the Schrödinger flow on the space
of wave functions: existence, uniqueness, and conservation of norm. The only thing

1 In the last chapter, we saw that derivatives can be defined in a weak or distributional sense, so we
know how Δx acts on an L2-function, even if the latter is not differentiable.
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missing is the connection with the Schrödinger equation, namely the requirement
that

i
d
dt

U(t) = HU(t)

should hold with H as the Hamilton operator, or for short, the Hamiltonian, on H .
At this point we must be careful to distinguish between H(Δ,V ) in (14.1) and the
Hamilton operator H. Why is this?

In fact, H(Δ,V ) is just a differential operator defined on a subset of differentiable
L2-functions, e.g., on C∞0 . In particular, while densely defined, H(Δ,V ) is certainly
not an operator defined on all of L2. And if we define it on all of L2 in the distribu-
tional sense, then it does not map L2 into L2. Hence we have to specify on precisely
which set we want H to act,2 i.e., we have to specify its domain D(H).

Recall the simple example of the particle on the half-line. There the prescrip-
tion for “solving” the Schrödinger equation only for x > 0 and for initial data ψ0

with suppψ0 ∈ (0,∞) does not yield a unique solution. We had to specify bound-
ary conditions – but this just means that, for each boundary condition a ∈ R that
we impose [see (12.50)], we pick a domain of definition D(Ha) for H. Hence we
actually talk about different operators Ha that all act like −Δ/2 on the functions in
their domain, but the domains D(Ha) differ. And this is exactly the subtlety we need
to consider when introducing the Schrödinger operator H together with its domain
D(H).

But what exactly are good boundary conditions? Just specifying some domain
D(H) will not do anything for us, as the simple example of the half-line shows. By
just putting

H = L2((0,∞),dx
)

, H =−1
2

d2

dx2 , D(H) =
{
ϕ ∈C∞0

(
(0,∞)

)}
,

everything is precisely defined, but our problem is not solved. For an initial ϕ ∈
D(H), there is no solution with ϕ(t) ∈D(H) for t > 0, but many different solutions
with ϕ(t) /∈D(H).

Hence “good” boundary conditions, or more generally “good” domains D(H),
should be such that, for any initial state ϕ(0) in the domain, there is a unique so-
lution ϕ(t) of (14.1) which remains in the domain for all times. In other words the
unitary group U(t) corresponding to H with domain D(H) should leave the domain
invariant:

U(t)D(H) = D(H) , for all t ∈ R .

We now turn the desired connection between the unitary solution group U(t) and its
generator H with domain D(H) into a definition. By doing this, we adopt a rather

2 Linear operators that cannot be defined on the whole Hilbert space, but only on a dense subspace,
are called densely defined unbounded operators. If a densely defined operator were bounded, it
could be uniquely extended to the whole space by continuity.
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non-standard approach, turning everything upside down, as it may seem. But, at
least for the present purpose of understanding the time evolution in Bohmian (and
thus in quantum) mechanics, this is indeed the proper way to proceed.

To recapitulate, we want to identify operators H and domains D(H) such that the
solutions of Schrödinger’s equation are given by a unique unitary group U(t), i.e.,
the unique solution to

i
d
dt

U(t) = HU(t) .

As we shall see, all requirements are captured by the following definition.

Definition 14.2. A densely defined operator H is called the generator of a unitary
group U(t) if the following holds:

(i) D(H) =
{
ϕ ∈H | t �→U(t)ϕ is differentiable

}
,

(ii) i
d
dt

U(t)ϕ = HU(t)ϕ , for all ϕ ∈D(H) .

Note. The statement that t �→U(t)ϕ is differentiable means (using the group prop-
erty) that there is an element ψ ∈H such that

lim
t→0

∥∥∥∥U(t)ϕ−ϕ
t

−ψ
∥∥∥∥ = 0 .

It then follows from Definition 14.2 (ii) that this ψ is actually given by −iHϕ .
This motivates the notation U(t) = e−itH (see also Remark 14.3). In particular, we
can also differentiate within the inner product (actually within any bounded linear
functional):

d
dt
〈ψ |U(t)ϕ〉

∣∣∣∣
t=0

= lim
t→0

〈
ψ

∣∣∣ U(t)ϕ−ϕ
t

〉

= lim
t→0

〈
ψ

∣∣∣ U(t)ϕ−ϕ
t

+ iHϕ
〉
−〈ψ | iHϕ〉

= −〈ψ | iHϕ〉 ,

where the first term is zero by continuity of the inner product.

The definition is very compact. For example, Definition 14.2 (i) together with the
group property of U(t) implies the invariance of the domain D(H), i.e., for all t ∈R,
one has U(t)D(H) = D(H). Moreover, it follows that U(t)Hϕ = HU(t)ϕ for all
t ∈ R, since

U(t)Hϕ = U(t)i
d
ds

U(s)ϕ
∣∣∣∣
s=0

= i
d
ds

U(s)U(t)ϕ
∣∣∣∣
s=0

= HU(t)ϕ .

Hence, ‖HU(t)ϕ‖= ‖Hϕ‖.
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It is also easy to see that the group U(t) is uniquely determined by H. Let Ũ(t)
be a unitary group, also generated by H, and consider

d
dt

∥∥∥[
U(t)−Ũ(t)

]
ϕ

∥∥∥2
= 2

d
dt

[
‖ϕ‖2−ℜ

〈
U(t)ϕ|Ũ(t)ϕ

〉]

= −2ℜ
[〈
− iHU(t)ϕ|Ũ(t)ϕ

〉
+

〈
U(t)ϕ|− iHŨ(t)ϕ

〉]

= −2ℜ
[
i
〈
HU(t)ϕ|Ũ(t)ϕ

〉
− i

〈
U(t)ϕ|HŨ(t)ϕ

〉]
.

This is zero if H is symmetric and then we would have uniqueness, since
∥∥∥[

U(t)−Ũ(t)
]
ϕ

∥∥∥ =
∥∥∥[

U(0)−Ũ(0)
]
ϕ

∥∥∥ = 0 ,

by (ii) in Definition 14.1.

Definition 14.3. An operator H is called symmetric (or Hermitian), if 〈ϕ|Hψ〉 =
〈Hϕ|ψ〉 holds for all ϕ,ψ ∈D(H).

And indeed we have that

H generator =⇒ H symmetric , (14.2)

since, for ϕ,ψ ∈D(H), it follows that

0 =
d
dt
〈ϕ|ψ〉= d

dt

〈
U(t)ϕ

∣∣U(t)ψ
〉

=
〈
− iHU(t)ϕ

∣∣U(t)ψ
〉
+

〈
U(t)ϕ

∣∣− iHU(t)ψ
〉

= i
〈
U(t)Hϕ

∣∣U(t)ψ
〉
− i

〈
U(t)ϕ

∣∣U(t)Hψ
〉

= i
(
〈Hϕ|ψ〉−〈ϕ|Hψ〉

)
.

In conclusion, if the Schrödinger operator is the generator of a unitary group, then
we have all we were asking for: existence, uniqueness, and conservation of norm.
Hence all we are missing is a good criterion to actually determine whether a given
operator generates a unitary group.

To this end, first recall (12.47), the vanishing of the flux integral that yields the
conservation of probability:

∫ ∂ |ψ(t)|2
∂ t

dx = −i
∫ [
ψ(t)∗H(Δ,V )ψ(t)−ψ(t)H(Δ,V )ψ(t)∗

]
dx

= −
∫
∇ · jψ(t)dx =−

∫
jψ(t)·dσ = 0 . (14.3)

Hence, we find the criterion
∫
ψ∗H(Δ,V )ψdx =

∫
ψH(Δ,V )ψ∗dx , (14.4)
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which is just the symmetry we already have. It is clear that this cannot be the end of
the story. In our example,

H0 =−1
2

d2

dx2 on D(H0) = C∞0
(
(0,∞)

)

is symmetric [see (14.11)]. But H cannot be a generator because the time evolution
is not uniquely determined.

How can (14.4) hold, when (14.3) does not? In the example, we saw that the
left-hand side of (14.3) can be negative, since there are solutions where the particle
leaves the half-line at the origin and vanishes. But such solutions are not zero at
the origin, ψ(t,x = 0) �= 0, and hence ψ(t) /∈ D(H0). Our notation in (14.4) was
sloppy, since (14.4) must hold for ψ(t). And in general it can happen that ψ(0) ∈
D(H) but ψ(t) /∈ D(H), and then (14.4) is not defined. We thus need to pick the
domain D(H) of H so that it remains invariant under the time evolution. The domain
D(H0) = C∞0

(
(0,∞)

)
for H0 = −(1/2)d2/dx2 is certainly not invariant under the

time evolution, since sooner or later (actually sooner) the solution will reach the
origin.

14.2 Self-Adjoint Operators

So far so good. The invariance of the domain was already part of Definition 14.2, but
we have come a good way towards uncovering the difference between “symmetric”
and “generating”. Let us repeat what we have understood so far. If the domain is
too small, there may be no solutions that stay within the domain. On the other hand,
if the domain is too big, there may be more than one solution. So exactly how big
should the domain of a generator be? Let us try to answer that question heuristically
to begin with.

Consider a symmetric operator H0 with a – possibly too small – domain D(H0).
Let Hmax be the “same operator” on a domain D(Hmax) ⊃ D(H0) on which it is
maximally symmetric. More precisely, we assume that Hmax|D(H0) = H0, that Hmax

is still symmetric, but that there is no larger domain to which Hmax can be extended
and still be a symmetric operator. Now let us assume that, at least for small times
|t|< t0 and ψ(0) ∈D(H0), the Schrödinger equation

i
d
dt
ψ(t) = Hmaxψ(t)

has a solution ψ(t) with ψ(t) ∈ D(Hmax), but not necessarily ψ(t) ∈ D(H0). But
where can ψ(t) go when it leaves D(H0)? Because of the symmetry of Hmax, and
because Hmax extends H0, i.e., D(Hmax) ⊃ D(H0) and Hmax|D(H0) = H0, we have,
for all ϕ ∈D(H0),

〈
ϕ|Hmaxψ(t)

〉
=

〈
Hmaxϕ|ψ(t)

〉
=

〈
H0ϕ|ψ(t)

〉
. (14.5)
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Hence ψ(t) always ends up in the domain of the adjoint operator H∗0 , which we now
define with (14.5) in mind.

Definition 14.4. Let H be a densely defined linear operator on H . Let D(H∗) be
the set of all ψ ∈H for which there exists an η ∈H such that

〈ψ|Hϕ〉= 〈η |ϕ〉 , for all ϕ ∈D(H) . (14.6)

For each ψ ∈ D(H∗), we define H∗ψ = η and call H∗ the adjoint operator to H.
Hence we have 〈ψ|Hϕ〉= 〈H∗ψ|ϕ〉 for all ϕ ∈D(H) and ψ ∈D(H∗).

Since D(H) is dense, η in (14.6) is unique if it exists, and the operator H∗ is
thus also uniquely defined. The star notation is reminiscent of complex conjuga-
tion. This is intended, since the adjoint of a complex number c, or more precisely
of the operator cI, is just the complex conjugate number c∗. While D(H∗) need not
be dense in general, for symmetric operators H, the adjoint H∗ is again a densely
defined operator. This is because H is symmetric (see Definition 14.3) if and only if
D(H)⊂D(H∗) and Hϕ = H∗ϕ for all ϕ ∈D(H). We now formulate the result of
our heuristic argument (14.5) as a theorem.

Theorem 14.1. H is the generator of a strongly continuous unitary group if and
only if H = H∗, i.e., H is symmetric and D(H) = D(H∗). Such an operator H is
said to be self-adjoint.

This is the main content of Stone’s theorem [1]. Stone’s theorem states in addition
that any strongly continuous unitary group has a generator, which by the above
statement must be self-adjoint. Self-adjointness is a property of operators that is of
general mathematical interest. As such, it is usually considered independently of
the property of being a generator, and this is why we did not introduce only the
terminology “self-adjoint”. However, in the following, we will use it synonymously
with “generator”.

The following argument shows once again why we expect any generator H of a
unitary group to be self-adjoint. Let ψ ∈D(H∗). Then we have, for all ϕ ∈D(H),

〈ψ|Hϕ〉=
〈
ψ

∣∣∣i d
dt

U(t)ϕ
〉∣∣∣

t=0
= i

d
dt

〈
ψ|U(t)ϕ

〉∣∣∣
t=0

= i
d
dt

〈
U(−t)ψ|ϕ

〉∣∣∣
t=0

.

Since ψ ∈D(H∗), there exists η ∈H such that 〈ψ|Hϕ〉= 〈η |ϕ〉 and thus

i
d
dt

〈
U(−t)ψ|ϕ

〉∣∣∣
t=0

= 〈η |ϕ〉 ,

i.e., U(t)ψ is weakly differentiable at t = 0. If we assume for the moment that this
implies also strong differentiability of U(−t)ψ , then it would follow thatψ ∈D(H),
and therefore D(H) = D(H∗), i.e., H∗ = H.

In order to close the gap in the above argument and to understand that the con-
verse is also true, i.e., H self-adjoint =⇒ H generates a unitary group, we need
to develop the idea of self-adjointness. In particular, we need to find a convenient
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criterion for self-adjointness, since explicitly determining the domain of the adjoint
operator is not practicable in many cases.

The way we would like to proceed for the Schrödinger operator is the following.
We start with a simple set of “nice” functions, e.g., C∞0 (Rn), on which the operator
H(Δ,V ) is symmetric. Then we extend this set further by adding, e.g., all twice
differentiable functions ϕ with H(Δ,V )ϕ ∈ L2, and so on. But we have already
seen that, if we add too much, the operator may no longer be symmetric. On the
other hand, if the domain D(H) is too small, then D(H∗) is too big, i.e., D(H∗) �

D(H). One can study the question of “balancing” the domains most conveniently
by considering the graph of an operator.

Definition 14.5. The graph of an operator H is the linear subspace

Γ (H) =
{
(ϕ,Hϕ)|ϕ ∈D(H)

}
⊂H ⊕H .

We say that H is closed, if Γ (H) is a closed subset of H ⊕H .

Clearly two operators are the same if and only if their graphs are the same.

Definition 14.6. Let H1 and H be operators on H . If Γ (H) ⊂ Γ (H1), then H1 is
an extension of H, in short H ⊂ H1. An operator H is called closable if it has a
closed extension. The smallest closed extension of a closable operator H is called
the closure of H and denoted by H. Clearly, Γ (H) = Γ (H).

For symmetric operators H, we have seen that the adjoint H∗ is an extension of H,
so in a certain sense D(H∗) contains all that was missing in D(H). It is not therefore
too surprising to find that the following theorem holds.

Theorem 14.2. Let H be a densely defined operator on H . Then H∗ is closed.

The proof uses concepts that turn out to be useful for the following. According to
Definition 14.4, we have

(ψ,η) ∈ Γ (H∗)⇐⇒ 〈ψ|Hϕ〉= 〈η |ϕ〉 , for all ϕ ∈D(H) ,

⇐⇒ 〈ψ|Hϕ〉−〈η |ϕ〉= 0 , for all ϕ ∈D(H) ,

or equivalently, with the inner product on H ⊕H [see (13.29)],
〈
(ψ,η)|(−Hϕ,ϕ)

〉
= 0 , for all ϕ ∈D(H) . (14.7)

Geometrically, this means that (ψ,η) is orthogonal to (−Hϕ,ϕ), which is essen-
tially the graph of H. Introducing the unitary map

W : H ⊕H −→ H ⊕H ,

(ϕ,ψ) �−→ W (ϕ,ψ) = (−ψ,ϕ) ,

equation (14.7) says that (ψ,η) ∈ Γ (H∗) if and only if (ψ,η) ∈W
(
Γ (H)

)⊥
, i.e.,
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Γ (H∗) = W
(
Γ (H)

)⊥
. (14.8)

Since orthogonal complements are always closed [see (13.25)], Γ (H∗) is closed.

Now, if H is symmetric, H is closable since H ⊂H∗. But H∗ need not be the closure
H of H, and H is not necessarily the adjoint of H∗.

Corollary 14.1. Let H be densely defined and closable and assume that H∗ is also
densely defined. Then H = H∗∗ := (H∗)∗ and (H)∗ = H∗∗∗ = H∗ .

Proof. It is easy to see that, for arbitrary subspaces M ⊂ H ⊕H , one has
W (M⊥) = W (M )⊥. From (14.8), we conclude that

Γ (H∗∗) = W
(
Γ (H∗)

)⊥ = W
(

W
(
Γ (H)

)⊥)⊥
= W

((
W

(
Γ (H)

)⊥)⊥)

= W
(

W
(
Γ (H)⊥

)⊥)
= W

(
W

((
Γ (H)⊥

)⊥))
.

For general subspaces M , we have

(M⊥)⊥ = M

(not M but its closure, since orthogonal complements are always closed). Hence
with W 2 =−I, we finally get

Γ (H∗∗) = Γ (H) = Γ (H) .

By the same reasoning,

Γ (H∗∗∗) = Γ (H∗) = Γ (H∗) ,

since H∗ is closed.

For symmetric H, we thus have

(i) H ⊂ H∗∗ = H ⊂ H∗ ,

(ii) H
∗ = H∗ ,

(14.9)

and, if H is self-adjoint,

H = H∗∗ = H∗ . (14.10)

From (14.9) (i) we see immediately that, if H∗ is symmetric, i.e., H∗ ⊂ H∗∗, then

H∗∗ = H = H∗ ,

and thus H∗ = H is self-adjoint. This motivates the following definition.
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Definition 14.7. A symmetric operator H is essentially self-adjoint if its closure H
is self-adjoint.

Corollary 14.2. A symmetric operator H is essentially self-adjoint if and only if H∗

is symmetric. Then H = H∗.

Proof. We have already shown that H∗ symmetric =⇒ H essentially self-adjoint
and H = H∗. For the other direction, let H be essentially self-adjoint, i.e., H = H

∗
.

With (14.9) (ii), we have H
∗ = H∗, and with the equality H = H∗∗ in (i), it follows

that H∗ = H∗∗. Thus H∗ is self-adjoint and in particular symmetric.

Essential self-adjointness is sufficient for characterizing a self-adjoint operator
uniquely. We only need to know a domain of essential self-adjointness or a core
of a self-adjoint operator H, where D ⊂D(H) is a core for H if

H|D = H ,

i.e., if the closure of the restriction of H to D is again H itself.

Let us examine the concept of self-adjointness for two simple but very instructive
examples. The free Hamiltonian

H0 =− d2

dx2 , with domain D(H0) = C∞0 (R) , (14.11)

is essentially self-adjoint. For ϕ ∈C∞0 and ψ ∈ L2 such that ψ ′ ∈ L2, we have

〈ψ|H0ϕ〉 =
∫ ∞

−∞
ψ∗H0ϕ dx =−

∫ ∞

−∞
ψ∗ϕ ′′dx =

∫ ∞

−∞
ψ∗′ϕ ′dx−ψ∗ϕ ′

∣∣∣∞
−∞

= −
∫ ∞

−∞
ψ∗′′ϕ dx+ψ∗′ϕ

∣∣∣∞
−∞
−ψ∗ϕ ′

∣∣∣∞
−∞

, (14.12)

where the derivatives on ψ∗ are taken in the distributional sense. From this we read
off the following facts:

1. H0 is symmetric on C∞0 (R), since for ϕ ∈C∞0 the boundary terms vanish, and thus
for ψ,ϕ ∈C∞0 , the right-hand side equals 〈H0ψ |ϕ〉L2 .

2. The domain of the adjoint operator H∗0 is

D(H∗0 ) =
{
ψ ∈ L2

∣∣ψ ′′ ∈ L2
}

=
{
ψ ∈ L2

∣∣ |k|2ψ̂ ∈ L2
}

,

since exactly for ψ ∈D(H∗0 ), we have

−
∫ ∞

−∞
ψ∗′′ϕ dx = 〈−ψ ′′|ϕ〉L2 .

3. H∗0 is symmetric and thus, according to Corollary 14.2, H∗0 = H is self-adjoint.
Symmetry of H∗0 follows most directly in the Fourier representation,
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〈ψ|H∗0ϕ〉 = 〈ψ̂|Ĥ∗0ϕ〉= 〈ψ̂|k2ϕ̂〉= 〈k2ψ̂|ϕ̂〉= 〈H∗0ψ|ϕ〉 .

Alternatively, we can show symmetry of H∗0 along the lines of (14.12). From
Remark 13.8, we take

ψ ′ ∈ L2 ⇐⇒ k ψ̂ ∈ L2 ,

and since k2ψ̂ ∈ L2 and ψ̂ ∈ L2, we have

〈ψ̂|k2ψ̂〉= 〈kψ̂|kψ̂〉= ‖kψ̂‖2 ,

i.e., kψ̂ ∈ L2 and therefore ψ ′ ∈ L2. From this we get that ψ,ψ ′,ψ ′′ ∈ L2 as well
as ψ(x) −→ 0 and ψ ′(x) −→ 0, for |x| −→ ∞. Hence, the boundary terms also
vanish for ψ ∈D(H∗0 ).

On the other hand,

H0 =− d2

dx2 , with domain D(H0) = C∞0
(
(0,∞)

)
⊂ L2(R+,dx) (14.13)

is not essentially self-adjoint. For ϕ ∈C∞0
(
(0,∞)

)
, one has

∫ ∞

0
ψ∗H0ϕ dx = −

∫ ∞

0
ψ∗ϕ ′′dx

= −
∫ ∞

0
ψ∗′′ϕ dx+ψ∗′ϕ

∣∣∣∞
0
−ψ∗ϕ ′

∣∣∣∞
0

. (14.14)

As in the previous example one reads off directly that:

1. H0 is symmetric on C∞0
(
(0,∞)

)
.

2. The domain of H∗0 is D(H∗0 ) =
{
ψ ∈ L2(R+,dx)

∣∣ψ ′′ ∈ L2(R+,dx)
}

.

3. H∗0 is not symmetric on D(H∗0 ), since the boundary terms at 0 no longer van-
ish. (The boundary terms at ∞ vanish by the same argument as in the previous
example.) Hence H0 is not essentially self-adjoint on C∞0

(
(0,∞)

)
.

The problem in this example is clearly that D(H∗0 ) is too big for −d2/dx2 to still be
symmetric. By inspecting (14.14), we see that we can shrink D(H∗0 ) by enlarging
D(H0). But we have to do it carefully in order not to destroy the symmetry of H0. In
this simple example, the solution is easy to guess: if the boundary terms in (14.14)
at 0 do not vanish individually, they must at least cancel out. This happens if, for
a ∈ R, we define the operator

H0,a =− d2

dx2

with domain

D(H0,a) =
{
ϕ ∈ L2(R+,dx)

∣∣ϕ ′′ ∈ L2(R+,dx),ϕ ′(0) = aϕ(0)
}

.
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And indeed, H0,a is self-adjoint [see also (12.50)], since, for ϕ ∈D(H0,a), we have

∫ ∞

0
ψ∗H0,aϕ dx = −

∫ ∞

0
ψ∗′′ϕ dx−ψ∗′(0)ϕ(0)+ψ∗(0)ϕ ′(0)

= −
∫ ∞

0
ψ∗′′ϕ dx−ψ∗′(0)ϕ(0)+aψ∗(0)ϕ(0) .

Now ψ ∈ D(H∗0,a) if and only if the boundary terms vanish and ψ ′′ ∈ L2(R+,dx).
However, the boundary terms vanish if and only if ψ ′(0) = aψ(0), and therefore
D(H∗0,a) = D(H0,a).

In general, however, one cannot explicitly compute the domain of the adjoint op-
erator, and what we need is an abstract and at the same time accessible criterion for
self-adjointness. To recapitulate, in order to have H = H∗ for a symmetric operator
H, necessary and sufficient conditions are that H is closed (since adjoints are always
closed) and that H∗ is symmetric. Since symmetric operators have real eigenvalues,
a necessary condition for H∗ to be symmetric is that neither i nor−i are eigenvalues.
The following theorem states that this last condition is indeed sufficient to ensure
self-adjointness of H.

Theorem 14.3. Let H be a densely defined symmetric operator on a Hilbert space
H . Then the following assertions are equivalent:3

(i) H is self-adjoint.
(ii) H is closed and Ker(H∗ ± i) = {0} .
(iii) Ran(H± i) = H .

Proof. (i) =⇒ (ii). As argued before, if H is self-adjoint then H∗ = H is symmetric
and thus only has real eigenvalues. The argument for this is the same as in linear
algebra. Let A be symmetric and Aϕ = λϕ for ϕ ∈D(A)\{0}. Then,

λ 〈ϕ|ϕ〉 = 〈ϕ|λϕ〉= 〈ϕ|Aϕ〉= 〈Aϕ|ϕ〉= 〈λϕ|ϕ〉
= λ ∗〈ϕ|ϕ〉 .

So Ker(H∗− i) = {0}. Closedness of H∗ and thus of H was shown in Theorem 14.2.
(ii)⇐⇒ (iii). We formulate as a lemma.

Lemma 14.1. Let T : H ⊃ D(T )→H be densely defined. Then,

1. Ker(T ∗ ∓ i) = Ran(T ± i)⊥ and hence, in particular,

Ker(T ∗ ∓ i) = {0} ⇐⇒ Ran(T ± i) is dense in H .

2. If T is closed and symmetric, then Ran(T ± i) is closed.

3 We recall the definitions of the kernel and the range of a linear operator, which are the subspaces
Ker(T ) :=

{
ψ ∈ D(T )

∣∣Tψ = 0
}

and Ran(T ) :=
{
ϕ ∈H |ϕ = Tψ for some ψ ∈ D(T )

}
.
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For (1), note that (T + i)∗ = T ∗ − i and therefore

ψ ∈ Ran(T + i)⊥ ⇐⇒
〈
ψ|(T + i)ϕ

〉
= 0 , ∀ϕ ∈ D(T )

⇐⇒ ψ ∈ D(T ∗) and (T ∗ − i)ψ = 0

⇐⇒ ψ ∈ Ker(T ∗ − i) .

The other sign is treated analogously.
For (2), one uses the fact that, for symmetric T and ϕ ∈ D(T ), one always has

〈ϕ,Tϕ〉 ∈ R. Thus

‖(T + i)ϕ‖2 = ‖Tϕ‖2 +‖ϕ‖2 +2Re〈iϕ,Tϕ〉 (14.15)

= ‖Tϕ‖2 +‖ϕ‖2 ≥ ‖ϕ‖2 ,

which implies that T + i is injective and (T + i)−1 : Ran(T + i)→D(T ) is bounded.
Now let ψn be a sequence in Ran(T + i) with ψn → ψ . Then ϕn := (T + i)−1ψn

converges to ϕ = (T + i)−1ψ . Since the graph of T is closed, the graph of T + i
is also closed, and it follows that (ϕ,ψ) ∈ Γ (T + i), and thus ψ ∈ Ran(T + i). So
Ran(T + i) is closed.

It remains to show (iii) =⇒ (i). We have already shown that H ⊂H∗ for symmet-
ric operators [see (14.9)], and it remains to show D(H∗)⊂D(H). So letψ ∈D(H∗).
Since Ran(H− i) = H , there exists ϕ ∈D(H) such that

(H− i)ϕ = (H∗ − i)ψ .

But from H ⊂ H∗, we get

(H∗ − i)ϕ = (H∗ − i)ψ or (H∗ − i)(ϕ−ψ) = 0 .

By Lemma 14.1, it follows that ψ = ϕ ∈D(H).

Since a self-adjoint operator is usually characterized by providing a core, the fol-
lowing corollary is very useful.

Corollary 14.3. Let H be a densely defined symmetric operator on a Hilbert space
H . Then the following assertions are equivalent:

(i) H is essentially self-adjoint.
(ii) Ker(H∗ ± i) = {0} .
(iii) Ran(H± i) is dense.

While (ii)⇐⇒(iii) is again Lemma 14.1, the equivalence (i)⇐⇒(ii) follows from:

H essentially self-adjoint ⇐⇒ H = H∗∗ self-adjoint

⇐⇒ H∗∗ closed and Ker(H∗∗∗ ± i) = {0}
⇐⇒ Ker(H∗ ± i) = {0} .
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Remark 14.1. Instead of only looking at the points ±i in Theorem 14.3 (ii) and (iii)
and Corollary 14.3 (ii) and (iii), we could refer to all λ ∈ C\R, i.e., Imλ �= 0. One
can see this from the proof, or just convince oneself that

H self-adjoint ⇐⇒ aH +b self-adjoint for a,b ∈ R on D(H) .

�

If H is a differential operator, as in the Schrödinger case, i.e., H = −Δ+V , then
with Corollary 14.3 (ii), we can show that an operator is not essentially self-adjoint
by looking for solutions of the corresponding stationary Schrödinger equation

[
−Δx +V (x)

]
ψ(x) = iψ(x) or

[
−Δx +V (x)

]
ψ(x) =−iψ(x)

within the domain of the adjoint operator. Of course, we must allow not only for
smooth solutions, but also for solutions in the distributional sense. However, in con-
crete applications, the potentials are smooth away from singular points and the cor-
responding distributional solutions are also smooth away from the singular points.
In example (14.11), we can either conclude from the symmetry of H∗0 that H0 is
self-adjoint, or we can use Corollary 14.3, since

D(H∗0 ) =
{
ϕ ∈ L2

∣∣ |k|2ϕ̂ ∈ L2} ,

and a linear ordinary differential equation −ϕ ′′ = iϕ has only the two linearly inde-
pendent solutions

exp

(
±1− i√

2
x

)
,

which are not in L2(R,dx). The same holds for the solutions of −ϕ ′′ = −iϕ , and
hence Ker(H∗0 ± i) = {0}.

On the other hand, in (14.13) the solutions of −ϕ ′′ = iϕ are again

exp

(
±1− i√

2
x

)
, x ∈ (0,∞) ,

where now, on the half-line,

exp

(
−1− i√

2
x

)
∈ L2 (

R
+,dx

)
,

that is,

exp

(
−1− i√

2
x

)
∈ Ker(H∗0 − i) .

Therefore, H0 is not essentially self-adjoint, but we expect dim Ker(H∗0 − i) =
dim Ker(H∗0 + i).
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Remark 14.2. Deficiency Index
The dimensions dim Ker(H∗ ± i) = n± of the kernels are called deficiency indices
of the operator H. When does a symmetric operator have self-adjoint extensions? If
and only if the deficiency indices are the same, i.e., n+ = n−. If n+ = n− �= 0, then
H does indeed have infinitely many self-adjoint extensions, more precisely a family
of self-adjoint extensions parameterized by n+ real parameters. This is covered by
von Neumann’s theory of self-adjoint extension (see, for example, [2]). Like most
things, this is not surprising, since for n+ = n− one can balance the mass-loss so-
lutions (+i) with the mass-gain solutions (−i). It is also clear that this is connected
to time-reversal invariance. If H commutes with complex conjugation, i.e., if the
Schrödinger equation is invariant under time reversal, then one has n+ = n−. �

Remark 14.3. On Self-Adjointness and Generators
As announced previously, we would like to make it at least plausible that the re-
verse direction of Theorem 14.1 should hold, i.e., that self-adjoint operators should
generate unitary groups. First of all, in the case of a bounded self-adjoint operator
H, one can define the corresponding unitary group directly through the convergent
exponential series

U(t) := e−iHt :=
∞

∑
n=0

(−iHt)n

n!
,

and just check by explicit computations that this really defines a unitary group in
the sense of Definition 14.1.

In order to understand why, for unbounded operators H, the more technical no-
tion of self-adjointness becomes relevant, we explain how Theorem 14.3 and, in par-
ticular, Ran(H± i) = H [which is as good as Ran(H± iλ ) = H with 0 �= λ ∈ R]
enters into the construction of the unitary group U(t) = e−itH . In the case of un-
bounded H, we can no longer define the exponential e−itH through the series. How-
ever, an alternative approach which is closer to the idea of a group is

e−itH = lim
n→∞

(
1+

itH
n

)−n

= lim
n→∞

i−n
(

tH
n
− i

)−n

, (14.16)

where the thinking behind the negative exponent−n will become clear in a moment.
With Theorem 14.3, we have Ran(αH− i) = H and Ker(αH− i) = {0} for α ∈R.
Hence (αH− i) is invertible on H and

∥∥(αH− i)ϕ
∥∥2 = α2‖Hϕ‖2 +‖ϕ‖2 ≥ ‖ϕ‖2 ,

i.e., for ϕ = (αH− i)−1ψ , one has
∥∥(αH− i)−1ψ

∥∥≤ ‖ψ‖ .

With Ran(αH− i) = H , it follows that

(αH− i)−1 : H −→D(H) ,
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and therefore (tH/n− i)−n : H −→ D(H) is bounded for any n ∈ N. Hence, the
product on the right-hand side of (14.16) defines a bounded operator with norm
bounded by one for any n ∈ N, and we can expect the limit to exist. �

14.3 The Atomistic Schrödinger Operator

Let us now apply these ideas to the atomistic Hamiltonian with Coulomb potential.
We consider

HC =−Δ− 1
r

, on D(HC) = C∞0
(
R

3 \{0}
)

,

where |x| = r and we put the electric charge equal to 1. Why C∞0 (R3 \ {0})? The
reason is that r = 0 is clearly a singular point, and the Schrödinger equation can
only hold for r > 0. Recall the example of the particle on the half-line. There the
origin could not be crossed. But this was in one dimension, and here we have three
dimensions, so taking out a single point could be less problematic. However, this is
true only from dimension four upwards, and we must still be careful here.

One can understand the situation by looking at the simpler problem H0 = −Δ
with D0 = C∞0

(
R

3 \{0}
)
. Even the free Laplacian without any singular potential is

not essentially self-adjoint on a domain with a missing point. To see this, according
to Corollary 14.3, we need to find solutions of H∗0ψ± =∓iψ±. We know that, on a
suitable domain, we have H∗0 =−Δ, and thus we first look for solutions of

−Δxψ±(x) =∓iψ±(x) , (14.17)

for which we will show later that ψ± ∈ D(H∗0 ). Equation (14.17) is most conve-
niently solved in spherical coordinates, and seeking spherically symmetric solu-
tions, one arrives at

(
− d2

dr2 −
2
r

d
dr

)
ψ±(r) =∓iψ±(r) . (14.18)

This is an ordinary differential equation with two linearly independent solutions

ψ±(r) =
e−(1±i)r

r
.

Clearly, ψ± ∈ L2(R3), since the 1/|x| singularity is square integrable in three space
dimensions. However, we still need to show that ψ± are in the domain of H∗0 . This
follows from the usual computation using integration by parts. Let ϕ ∈D(H0). Then
ϕ(0) = 0 and the boundary terms vanish:
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〈
ψ±|H0ϕ

〉
L2(R3) = −

∫
R3

dxψ±(x)∗Δxϕ(x)

= −
∫

S2
dΩ

∫ ∞

0
r2drψ±(r)∗

(
d2

dr2 +
2
r

d
dr

+
1
r2Δω

)
ϕ(r,ω)

= −
∫

S2
dΩ

∫ ∞

0
r2dr

[(
d2

dr2 +
2
r

d
dr

)
ψ±(r)

]∗
ϕ(r,ω)

=
〈
∓ iψ±|ϕ

〉
L2(R3) ,

whence ψ± ∈D(H∗0 ) and H∗0ψ±=∓iψ±. Thus not even H0 =−Δ is essentially self-
adjoint on the domain D0 = C∞0 (R3 \{0}). It has many different self-adjoint exten-
sions.4 There is of course no problem with that. It is a matter of physics to select the
correct “physical” extension. We would have come to exactly the same conclusion
with the Coulomb potential added to H0. Hence the atomistic Schrödinger operator
HC with D(HC) = C∞0

(
R

3 \{0}
)

is not essentially self-adjoint, but has many differ-
ent self-adjoint extensions. But the different self-adjoint extensions have different
eigenvalues and generate different time evolutions, i.e., they correspond to different
physics.

Remark 14.4. About Self-Adjoint Extensions
What should one do now? For the Schrödinger operator with the Coulomb potential,
we have the same problem as in the simple example (14.13), where we were able
to select self-adjoint extensions by posing proper boundary conditions. In principle,
we should be able to do the same in the case of the Coulomb potential. However,
this will be more complicated, since the potential is singular at the boundary. The
origin is a singular point of the potential, where the wave function need not and
will not be differentiable. In spherical coordinates, the eigenvalue equation for the
Coulomb problem reads [see (14.18)]

(
− d2

dr2 −
2
r

d
dr

+
1
r

)
ψ = Eψ . (14.19)

The “physical” ground state eigenfunction of the hydrogen atom corresponding to
the ground state energy E0 =−1/4 is

ψ0(x) = exp

(
−|x|

2

)
.

While ψ0 is not differentiable at the origin, it is bounded. And being bounded is
also a sort of boundary condition. To see that there are also unbounded solutions of
(14.19), note that ψ solves (14.19) if and only if f = rψ solves

4 One of these extensions with D(H0) =
{
ϕ ∈ L2

∣∣ |k|2ϕ̂ ∈ L2
}

is the generator of the free time
evolution. The other extensions correspond to so called δ -interactions, i.e., to Dirac delta potentials
of various strengths at the origin.
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− f ′′ − 1
r

f = E f . (14.20)

With each solution of this equation,

F( f ) = f (r)
∫ r

0

1[
f (s)

]2 ds

is also a solution of (14.20). In particular, f1 = F( f0) yields a solution f1/r of
(14.19) which diverges at the origin as ψ ∼ 1/r, but is still square integrable at the
origin. However, since f1 ∼ er for r→ ∞, one needs to go to F( f1) to obtain a so-
lution with good decay properties at infinity, but which is still nonzero at the origin.
The corresponding singular but square integrable ψ-functions are usually excluded
as being unphysical in the physics textbooks, because they are not defined at the
origin (like the Coulomb Hamiltonian itself!). Note that, being unbounded, they too
cannot be contained in the domain D(H0). As the following clever computation
shows, each ϕ ∈D(H0) =

{
ϕ ∈ L2

∣∣ |k|2ϕ̂ ∈ L2
}

is bounded. With

ϕ(x) = (2π)−3/2
∫

eik·xϕ̂(k)d3k ,

the usual trick yields

‖ϕ‖∞ ≤ (2π)−3/2
∫
|ϕ̂(k)|d3k

= (2π)−3/2
∫

1
1+ k2 |ϕ̂(k)|(1+ k2)d3k

(∗)
≤ C

[∫
|ϕ̂(k)|2(1+ k2)2d3k

]1/2

≤
√

2C

[∫
|ϕ̂(k)|2(1+ k4)d3k

]1/2

= C̃
(
‖ϕ̂‖2 +‖Ĥ0ϕ‖2

)1/2

(∗∗)
≤ C̃

(
‖ϕ‖+‖H0ϕ‖

)
. (14.21)

In (∗), we used the Cauchy–Schwarz inequality with
∫

d3k/(1 + k2)2 < ∞, and in
(∗∗), the Plancherel equality (13.15). This shows that the self-adjoint extensions of
the Coulomb Hamiltonian with such unbounded eigenfunctions cannot be defined
on the natural domain D(H0)∩D(V ). [We will soon see that this is actually equal
to D(H0).] �

Back to the general question. It was Kato’s idea to ignore the problem of boundary
conditions and to focus on the domain. The natural domain is clearly D(H0)∩D(V ),
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and on that domain the “physical” Coulomb Hamiltonian should be self-adjoint. We
first convince ourselves that D(V )⊂D(H0).

To this end, we split the potential into V = c/r = V1 +V2, where ‖V1‖ ≤ ε and

‖V2‖∞ = sup |V2(x)|= a < ∞ ,

that is,

V1 =−c
r
χ{r<ε/4πc2} , V2 =−c

r
χ{r≥ε/4πc2} .

With this splitting and for ϕ ∈D(H0) with (14.21), we obtain

‖Vϕ‖ ≤ ‖V1ϕ‖+‖V2ϕ‖ ≤ ‖V1‖‖ϕ‖∞+‖V2‖∞‖ϕ‖
≤ εC̃

(
‖ϕ‖+‖H0ϕ‖

)
+a‖ϕ‖ . (14.22)

We can now finish the argument. We try to interpret V (r) as a “perturbation” of the
free Hamiltonian H0 = −Δ, where the domain D(H0) of the self-adjoint operator
H0 should determine the “correct” self-adjoint version of H = H0 +V . Since the
domain D(V ) of V (as a multiplication operator) contains D(H0), one can define
the operator H = H0 +V on D(H0). We now continue abstractly. For H = H0 +V
to be self-adjoint, according to Theorem 14.3, we must have

Ran(H0 +V +λ ) = H ,

for λ ∈ C\R. This follows if (H0 +V +λ )−1 exists as a bounded operator on H .
But,

(H0 +V +λ )−1 =
1

1+V (H0 +λ )−1

1
H0 +λ

=
[
1+V (H0 +λ )−1]−1(H0 +λ )−1 ,

where (H0 +λ )−1 is a well defined bounded operator, since H0 is self-adjoint and
therefore

Ran(H0 +λ )−1 = H , Ker(H0 +λ ) = {0} .

Bearing in mind that

1
1− x

=
∞

∑
n=0

xn ,

[
1+V (H0 +λ )−1

]−1
can be represented as a geometric series if

∥∥V (H0 + iλ )−1
∥∥ < 1 ,

that is, if
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∥∥V (H0 +λ )−1ϕ
∥∥ < ‖ϕ‖

holds for all ϕ ∈H . (We will discuss this in more detail in the next chapter.) Now
put ψ = (H0 +λ )−1ϕ , so that

‖Vψ‖<
∥∥(H0 +λ )ψ

∥∥ .

Since
∥∥(H0 +λ )ψ

∥∥2 = ‖H0ψ‖2 +λ 2‖ψ‖2 ,

we can equivalently require that

‖Vψ‖2 ≤ α̃2‖H0ψ‖2 + β̃ 2‖ψ‖2 , (14.23)

for all ψ ∈D(H0) with α̃ < 1. Finally, observe that (14.23) is equivalent to

‖Vψ‖ ≤ α‖H0ψ‖+β‖ψ‖ , (14.24)

for all ψ ∈ D(H0). The fact that (14.23) =⇒ (14.24) is obvious, and (14.24) =⇒
(14.23) can be seen with α̃2 = (1+ε)α2 and β̃ 2 = (1+1/ε)β 2 for arbitrary ε > 0.

Definition 14.8. Let H0 with domain D(H0) be self-adjoint, and let V with domain
D(V ) be symmetric. One says that V is relatively bounded with respect to H0 (or
more briefly, H0-bounded), if D(H0)⊂D(V ) and if (14.24) or equivalently (14.23)
holds for some α,β ∈ R

+, or α̃, β̃ ∈ R
+. The infimum of all admissible α is called

the relative bound and agrees with the infimum of all admissible α̃ .

From the above argument we obtain the following theorem due to Kato.

Theorem 14.4. Let H0 on D(H0) be self-adjoint. Let V be H0-bounded with relative
bound α < 1. Then H = H0 +V is self-adjoint on D(H) = D(H0).

According to (14.22), the Coulomb potential is H0-bounded with relative bound
equal to zero and if we refer to the Coulomb Hamiltonian we mean exactly the
one defined on D(H0) as a self-adjoint operator in Theorem 14.4. And if physicists
compute the spectrum of the Coulomb Hamiltonian, they only take the eigenvalues
with bounded eigenfunctions, i.e., they consider H on D(H) = D(H0).
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Chapter 15
Measures and Operators

We now discuss the operator calculus anticipated in Chap. 12. This calculus allows
us to do computations within quantum equilibrium in a very efficient and concise
way. The core element is the spectral theorem for self-adjoint operators, which es-
tablishes a precise connection between operator-valued measures and self-adjoint
operators.

In (12.16a), we reduced the quantum equilibrium statistics to the map

ψ �→ P
ΨT

(
F−1(A)

)
=

∫
F−1(A)

|ΨT (x,y)|2dxdy

=
〈
ψ⊗Φ

∣∣U(T )∗χF−1(A)U(T )ψ⊗Φ
〉

=: BA(ψ,ψ) , (15.1)

where ψ is the effective wave function of the system, U(T ) is the unitary time
evolution, ψ ⊗Φ is the initial condition, andΨT is the wave function of the entire
system (including possibly a piece of apparatus) at some large time T (when the
experiment ends, e.g., when the result is displayed). Most importantly, the function
F is a coarse-graining of configuration space. It maps microscopic configurations
of the entire system to the macroscopic outcome of the experiment, e.g., to pointer
positions. If Λ ⊂ R

n is the range of F , i.e., the set of possible outcomes, then for
A ⊂ Λ the probability of finding an outcome in A is given by the quadratic form
BA(ψ,ψ).

According to Theorem 13.4, we can associate a bounded linear operator PA with
the sesquilinear form BA(ψ,ϕ) such that

BA(ψ,ϕ) = 〈PAψ |ϕ〉 , for all ψ,ϕ ∈H ( = L2) .

With BA(ϕ,ϕ)≥ 0 for all ϕ , we also have 〈PAϕ|ϕ〉 ≥ 0 for all ϕ , and such operators
are said to be positive. Positive operators on complex Hilbert spaces are self-adjoint.
From

0≤ 〈Pϕ|ϕ〉= 〈ϕ|Pϕ〉∗ = 〈ϕ|Pϕ〉 ,

D. Dürr, S. Teufel, Bohmian Mechanics, DOI 10.1007/978-3-540-89344-8 15, 299
c© Springer-Verlag Berlin Heidelberg 2009
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we see that P is symmetric with respect to the diagonal, and polarization yields

〈Pϕ|ψ〉= 〈ϕ|Pψ〉 ∀ϕ,ψ ∈H .

Now A ⊂ Λ , or more precisely A ∈ B(Λ), if F is a Borel measurable function.
Hence there is a family of positive operators (PA)A∈B(Λ) which has the properties
of a probability measure, but with values in the positive operators instead of [0,1].

Definition 15.1. Let Λ ⊂ R
n be a measurable set with the corresponding σ -algebra

B(Λ). A family (PA)A∈B(Λ) of bounded linear operators PA ∈L (H ) is called a
positive operator valued measure (POVM) if it has the following properties:

(i) Each PA is positive.
(ii) P/0 = 0, PΛ = IH .
(iii) If (A j) j∈N are pairwise disjoint measurable sets, i.e., A j ∈ B(Λ) and also

Ai∩A j = /0 for i �= j, then

P∪A j
= s-lim

N→∞

N

∑
j=1

PA j ,

where s-lim is the strong limit, i.e.,

lim
N→∞

∥∥∥
(

P∪A j
−

N

∑
j=1

PA j

)
ψ

∥∥∥ = 0 , for all ψ ∈H .

Remark 15.1. Integration with Respect to a POVM
For each ϕ ∈H , it follows that

Pϕ : B(Λ) −→ [0,∞) ,

A �−→ Pϕ(A) := 〈ϕ|PAϕ〉 ,

defines a bounded positive Borel measure on Λ , which we can use to integrate
bounded measurable functions on Λ , and we thus define

〈
ϕ

∣∣∣
[∫
Λ

f (λ )dPλ

]
ϕ

〉
:=

∫
Λ

f (λ )dPϕ(λ ) .

In order to define the operator
∫
Λ f (λ )dPλ using the representation result of Theo-

rem 13.4, we need to introduce the complex Borel measures

Pψ,ϕ : B(Λ) −→ C ,

A �−→ Pψ,ϕ(A) := 〈ψ|PAϕ〉 ,

and define
〈
ψ

∣∣∣
[∫
Λ

f (λ )dPλ

]
ϕ

〉
:=

∫
Λ

f (λ )dPψ,ϕ(λ ) .
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Note that according to the polarization identity, the complex measure Pψ,ϕ is just
the following sum of positive measures:

Pψ,ϕ = Pψ+ϕ −Pψ−ϕ + iPψ−iϕ − iPψ+iϕ ,

and this provides a way of defining integration with respect to such a complex mea-
sure. �

The simplest example of (15.1) isΨT =ψ and F = id, which leads us to the position
POVM (OA)A∈B(Rn) on L2(Rn,dnx) [see (12.21)]. It is given by multiplication by
the characteristic function,

OA : ϕ �−→ χA(x)ϕ(x) =

{
ϕ(x) , x ∈ A ,

0 , otherwise .
(15.2)

The probability for the configuration to be in A is

Oψ(A) = 〈ψ|OAψ〉=
∫
|ψ(x)|2χA(x)dnx =

∫
A
|ψ(x)|2dnx . (15.3)

It is easy to see that the properties (i–iii) in Definition 15.1 hold for OA. With the
position POVM, we can use (15.3) to compute the probability distribution of the
system configuration if its wave function isψ . The position POVM has an additional
property, which was mentioned in Chap. 12. In fact, it satisfies

Definition 15.1 (iv) PA1∩A2 = PA1 PA2 ,

since OA1∩A2 = χA1∩A2 = χA1χA2 = OA1 OA2 , and, as a consequence, in particular

Definition 15.1 (iv)′ P2
A = PA .

This structure plays an important role, as it is responsible for the quantum formal-
ism. A linear operator P that satisfies P2 = P is called a projector. If a projector P
is also self-adjoint, then P is positive:

〈ϕ|Pϕ〉= 〈ϕ|P2ϕ〉= 〈Pϕ|Pϕ〉 ≥ 0 .

To see that not all projections are self-adjoint, consider the projection onto a one-
dimensional subspace of R

2 along a family of parallel lines that are not orthogonal
to the subspace (see Fig. 15.1).

The self-adjoint projections are therefore called orthogonal projections. They
satisfy P2 = P and P∗ = P.

Definition 15.2. A family (PA)A∈B(Λ) of bounded linear operators PA ∈L (H ) is
called a projection-valued measure (PVM), if it satisfies Definition 15.1(i–iv), or
equivalently, Definition 15.1(i–iii) and (iv′).



302 15 Measures and Operators

Fig. 15.1 Projection
(
‖ϕ‖= 1

)

Hence a PVM is a POVM in which all operators are orthogonal projections.

Remark 15.2. Indeed (15.1)(i–iii) together with (iv′) implies (iv). This follows from
PAPB\A = 0 for A⊂ B, which can be seen as follows. First,

PB = P2
B = (PA +PB\A)2 = PA +PAPB\A +PB\APA +PB\A

= PB +PAPB\A +PB\APA

implies that

PAPB\A +PB\APA = 0 .

Multiplying this by PA once from the left and once from the right yields

PAPB\A = PB\APA =−PAPB\APA ,

and therefore PAPB\A = PB\APA = 0. �

We will return to PVMs shortly, but first let us recall our example POVM (12.39)
for a position measurement with some uncertainty. We defined

ÕA =
∫

p(y−x)χA(y)dny ,

that is,

ÕA : ϕ �−→
∫

A
p(y−x)dny ϕ(x) ,
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where

Õ2
A �= ÕA ,

whenever p(x) �= δ (x).
After this example let us emphasize once more that the statistics of any experi-

ment in the sense of the sequence (15.1) are described by a POVM. These are all
experiments where in the end the result can be read off from the configuration of the
system or some apparatus. Therefore it might be surprising to find that these POVMs
play little or no role in theoretical physics. The reason is that PVMs give rise to an el-
egant mathematical formalism, while POVMs give rise to nothing. They are merely
abstract descriptions of the statistics of some measurement, and one could just as
well do without them, i.e., just stop after the first equality in (15.1). The justification
for the abstraction lies in the idealized description of the measurement process, as
in (12.3) to (12.9). The book-keeping operators which stem from special POVMs,
namely the PVMs, give rise to an elegant and compact formalism – a textbook for-
malism – for computing expectation values, variances, and higher moments. We
will shortly discuss three such operators which arise in the relevant measurement
situations.

But before that, we should emphasize that the idea of a measurement where one
can “stick in” an arbitrary wave function and always get out some measurement
result in the form of a pointer position is completely unrealistic. Any experiment
will only lead to sensible outcomes for a quite special class of initial wave func-
tions. Take for example scattering experiments. Here we are only interested in wave
functions where the particle (that is the system) moves towards a target and scatters.
Most initial wave functions will never reach the region of the target and will never
be detected. They are irrelevant. The moral is that experiments are designed and
conducted for a small class of special initial data. As a consequence, the general
structure of a POVM or PVM defined on the full Hilbert space is quite uninteresting
and irrelevant from the point of view of the physics.

15.1 Examples of PVMs and Their Operators

We have already noted that quantum equilibrium, i.e., Born’s statistical law, leads
trivially to the position POVM. For a single particle, we have (OA)A∈B(R3) and
can use OA to compute the moments E

ϕ(Xn) of the position distribution. Since
the position x ∈ R

3 is a vector, we need to specify what we mean by xn. Most
straightforwardly, we take xn as meaning any of the possibilities

xn = xl
1xk

2xm
3 , with l + k +m = n , l,k,m ∈ N ,

for x = (x1,x2,x3), or any linear combination thereof.
Approximating the integral with sums over a disjoint decomposition Δk of R

3,
we write formally
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E
ϕ(Xn) =

∫
xn|ϕ(x)|2 d3x

= lim
N→∞

N

∑
k=1

xn
k

∫
|ϕ(x)|2χΔk(x)d3x

= lim
N→∞

N

∑
k=1

xn
k 〈ϕ |OΔkϕ〉

= lim
N→∞

〈
ϕ

∣∣∣
N

∑
k=1

xn
kOΔkϕ

〉

= lim
N→∞

〈
ϕ

∣∣∣
( N

∑
k=1

xkOΔk

)n

ϕ
〉

, (15.4)

where we have used OΔk OΔ j = δk jOΔ j . Hence we obtain

E
ϕ(Xn) =

〈
ϕ

∣∣∣
(∫

xd3Ox

)n

ϕ
〉

=: 〈ϕ |x̂nϕ〉 .

This motivates the definition of the self-adjoint operator x̂, the position operator. We
will discuss its domain later on:1

x̂ =
∫

xd3Ox , (15.5)

and we have

x̂n =
∫

xn d3Ox . (15.6)

Remark 15.3. Vector Operators
When speaking of the position operator x̂, we always have in mind the family
(x̂1, x̂2, x̂3) of commuting self-adjoint operators (see Sect. 12.2.2)

x̂i =
∫

xi dOxi ,

with

[x̂i, x̂ j] = x̂ix̂ j− x̂ j x̂i = 0 ,

as follows from (15.5). The position operator x̂ is thus a map

1 We say this rather lightly here, although we know that, for an unbounded operator, the domain
plays an important role. This is because, for multiplication operators like x̂, the domain of self-
adjointness is straightforward: it is just the maximal domain.
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x̂ : L2(R3) −→ L2(R3)⊕L2(R3)⊕L2(R3) ,

ψ(x) �−→ x̂ψ(x) =

⎛
⎝ x1ψ(x)

x2ψ(x)
x3ψ(x)

⎞
⎠ .

This is often called the position representation of the position operator. We shall say
more about that later. �

The abstract one-to-one correspondence (15.5) between self-adjoint operators and
PVMs is the content of the spectral theorem, which we will discuss in detail later
on.

15.1.1 Heisenberg Operators

Let us move to the second operator. It comes out of the sequence (15.1), where
again the apparatus plays no role, i.e., we just look at the system at time T = t, viz.,
ΨT = ψt und F = id. Then for A ∈B(R3) we have

P
ψt (A) =

∫
A
|ψ(x, t)|2 d3x

=
∫

R3
ψ∗(x, t)χA(x)ψ(x, t)d3x

=
〈
U(t)ψ

∣∣OAU(t)ψ
〉

=
〈
ψ

∣∣U(t)∗OAU(t)ψ
〉

,

with the POVM

OA(t) := U(t)∗OAU(t) .

Not only OA, but also OA(t) is actually a PVM:

OA(t)2 = U(t)∗OAU(t)U(t)∗OAU(t) = U(t)∗OAOAU(t) = U(t)∗OAU(t) .

And as in (15.5), we can introduce the corresponding self-adjoint operator

x̂(t) =
∫

xd3Ox(t) = U∗(t) x̂U(t) , (15.7)

the so-called Heisenberg position operator at time t.
The Heisenberg position operator at time t captures the statistics of the particle

position at time t. But we should not forget that this is just a way of rewriting equiv-
ariance. The (Bohmian) position X(t,x) of the particle at time t is a random variable
with distribution
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P
ψt (A) = P

ψ({
x
∣∣X(t,x) ∈ A

})
. (15.8)

The position at time t is random because the initial position of the particle is random!
We will use this again for the third operator, where we have the same situation, but
with a nontrivial function F .

15.1.2 Asymptotic Velocity and the Momentum Operator

We come back now to Sect. 9.4 and ask for the asymptotic velocity of a freely
moving particle, i.e., X(t,x)/t. To simplify the notation, we once again set h̄/m = 1
and thus look at the Schrödinger equation

i
∂
∂ t
ϕ(x, t) =−1

2
Δϕ(x, t) , ϕ(x,0) = ϕ0(x) , x ∈ R

3 . (15.9)

We need an asymptotic expression for ϕ(x, t) at large times, which we will justify
rigorously in Remark 15.8. This is not a big issue, but the mathematics fits bet-
ter there than here. The stationary phase argument from Sect. 9.4 suffices for the
moment, where we found for the asymptotics of the solution of (15.9) that

ϕ(x, t)∼ eix2/2t

(it)3/2
ϕ̂0

(x
t

)
, for t→ ∞ . (15.10)

The Bohmian trajectories following the asymptotic wave function are straight lines.
We pick up (9.26) once more, and recall how we get the following nice and relevant
example from (15.10), bringing us back to (15.1) and the PVMs.

Consider the function Ft(x) = x/t. Then, with (15.8), we find

lim
t→∞

P
ϕt

(
F−1

t (A)
)

= lim
t→∞

P
ϕt

(
X
t
∈ A

)

= lim
t→∞

P
ϕ

({
x
∣∣∣X(t,x)

t
∈ A

})

= lim
t→∞

∫
|ϕ(x, t)|2χA

(x
t

)
d3x

= lim
t→∞

∫
1
t3

∣∣∣ϕ̂0

(x
t

)∣∣∣2
χA

(x
t

)
d3x [by (15.10)]

= lim
t→∞

∫
|ϕ̂0(k)|2χA(k)d3k

= 〈ϕ̂ |OAϕ̂〉 , (15.11)

where we substituted k = x/t. This is now a very interesting result. If we interpret
the random variable
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Vt(x) :=
X(t,x)

t

as an approximation to the velocity of the Bohmian particle, then we have shown
that Vt(x) converges in distribution to

V∞(x) = lim
t→∞

Vt(x) ,

where the random variable V∞ has distribution with density |ϕ̂(k)|2. And this brings
us to the momentum operator of quantum mechanics.

We now have the random variable V∞, the asymptotic velocity. In order to con-
tinue as in (15.4), we need to express the probability

P
ϕ(V∞ ∈ A) = 〈ϕ̂ |OAϕ̂〉

in terms of a POVM, say (VA)A∈B(R3). With the Fourier transformation F [see

(13.15)], which is unitary on L2, we find that

〈ϕ̂ |OA ϕ̂〉= 〈ϕ |F ∗OAF ϕ〉=: 〈ϕ |VAϕ〉 . (15.12)

Thus VA = V ∗A (since OA = O∗A) and

V 2
A = F ∗OAFF ∗OAF = F ∗OAFF−1OAF = F ∗O2

AF = F ∗OAF = VA ,

whence (VA)A∈B(R3) is a PVM.
The asymptotic velocity is experimentally an easily accessible quantity, and it is

therefore convenient to introduce the corresponding self-adjoint velocity operator
v̂∞ (or the momentum operator p̂ = mv̂∞). It is constructed from (VA)A∈B analo-
gously to (15.5) [see (15.3)] through

v̂∞ =
∫

kd3Vk . (15.13)

Again we delay the discussion about its domain.
Analogously to (15.4), the moments E

ϕ(Vn
∞) of the asymptotic velocity are given

by

E
ϕ(Vn

∞) = 〈ϕ | v̂n
∞ϕ〉 , (15.14)

where

v̂n
∞ =

∫
kn dVk .

Hence with (15.12), we have

Vϕ(A) = 〈ϕ |VAϕ〉= 〈ϕ̂ |OA ϕ̂〉= Oϕ̂(A) ,

and thus
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E
ϕ(Vn

∞) =
∫

kn dVϕ(k) =
∫

kn dOϕ̂(k) =
∫

kn|ϕ̂(k)|2d3k .

What about the domains now? We emphasized in the previous chapter that an opera-
tor is only well defined if its domain is specified, which is a tricky matter in general.
However, for x̂ and v̂∞, this is simple. Each component x̂i (i = 1,2,3) is a self-adjoint
operator on D(x̂i), and the action of x̂i on ψ ∈D(x̂i) is just multiplication:

x̂i : ψ −→ xiψ(x) .

It is straightforward to see that real-valued multiplication operators are self-adjoint
on their maximal domain (if the latter is dense). Hence,

D(x̂i) =
{
ψ ∈ L2

∣∣ ‖xiψ‖< ∞
}

, D(x̂) =
{
ψ ∈ L2

∣∣ ∥∥|x|ψ∥∥ < ∞
}

,

are the proper domains for the position operator. To be precise, in (15.4), we thus
have to pick ϕ in the domain.

For the asymptotic velocity operator, we find with (13.15) that

〈ϕ|v̂∞ψ〉=
∫
ϕ̂∗(k)k ψ̂(k)d3k =

〈
ϕ̂| ̂(−i∇ψ)

〉
= 〈ϕ|(−i∇)ψ〉 .

Hence, for

ψ ∈D(v̂∞) =
{
φ ∈ L2

∣∣ ∥∥|∇φ |∥∥ < ∞
}

,

we have

v̂∞ : ψ �→ 1
i
∇ψ . (15.15)

Thus x̂ and v̂∞ are unbounded self-adjoint operators.
We should note that there is a noteworthy correspondence between the distribu-

tions |ϕ|2 and |ϕ̂|2. The variances are in some sense inverse. For Gaussians, this is
easy to see. The Fourier transform of a Gaussian is again a Gaussian, with width
inversely proportional to the width of the original. In general, one can only say that
the product of the variances is greater than or equal to 1/4. Here is an elegant proof.
For the variances Δx and Δv∞, and for ϕ ∈D(x̂)∩D(v̂∞), one has

(Δx)2 =
〈
ϕ|x̂2ϕ

〉
−〈ϕ|x̂ϕ〉2 =:

〈(
x̂−〈x̂〉

)2
〉

=:
〈
x̄2〉 ,

(Δv∞)2 =
〈
ϕ|v̂2

∞ϕ
〉
−

〈
ϕ|v̂∞ϕ

〉2 =:
〈(

v̂∞−〈v̂∞〉
)2

〉
=:

〈
v̄2
∞
〉

,

where xy is the matrix (xiy j)i, j, and thus

Δx =
〈
x̄2〉1/2

, Δv∞ =
〈
v̄2
∞
〉1/2

.
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Cauchy–Schwarz and self-adjointness imply

〈|x̄v̄∞|〉 ≤
〈
x̄2〉1/2 〈

v̄2
∞
〉1/2

, 〈|v̄∞x̄|〉 ≤
〈
x̄2〉1/2 〈

v̄2
∞
〉1/2

.

Now (15.15) suggests looking at

∣∣〈x̄v̄∞− v̄∞x̄〉
∣∣ =

∣∣〈[x̄, v̄∞]
〉∣∣ =

∣∣〈[x̂, v̂∞]
〉∣∣≤ 2

〈
x̄2〉1/2 〈

v̄2
∞
〉1/2

,

since, with the unit matrix E3, we have

[x̂, v̂∞]ϕ = x
(

1
i
∇ϕ

)
(x)− 1

i
∇

(
xϕ(x)

)
=−1

i
ϕ(x)E3 . (15.16)

For ϕ ∈D(v̂∞)∩D(x̂), we thus have

ΔxΔv∞ =
〈
x̄2〉1/2 〈

v̄2
∞
〉1/2 ≥ 1

2
E3 . (15.17)

Recall that we put h̄/m = 1, since we are focused on mathematics in this chapter.
Reinstating h̄ and m, we find that

v̂∞ =
1
m

h̄
i
∇ ,

and with the momentum operator

mv̂∞ =
h̄
i
∇= p̂ , (15.18)

our result (15.17) is just Heisenberg’s uncertainty principle for position and momen-
tum. The relation (15.16) is Heisenberg’s famous commutation relation

[
x̂, p̂

]
= ih̄E3 . (15.19)

Now this is mathematically interesting, but not especially exciting, since the phys-
ical mechanism behind it is absolutely trivial: the more the support of the initial
wave function ϕ0 is localized, the faster it spreads under the time evolution. Hence,
the better one knows the initial position of the particle (i.e., the smaller the width of
|ϕ0|2), the broader will be the distribution of the asymptotic position of the freely
moving particle.

Although that is really all there is to say, we remark as an aside that we can
differentiate the Heisenberg position operator (15.7) with respect to time to find,
using U(t) = exp(−itH/h̄), that

d
dt

x̂(t) = i
[
H, x̂(t)

]
= iU∗(t)

[
H, x̂

]
U(t) .

With (15.18), we can write
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H =
p̂2

2m
+V

(
x̂
)

,

and the commutator between x̂ and H becomes, using (15.16),

i
[
H, x̂

]
=

p̂
m

,

and therefore

d
dt

x̂(t) =
p̂(t)
m

.

Hence, with (15.19), we get for small t that

[
x̂, x̂(t)

]
≈

[
x̂, x̂+ t

d
dt

x̂(t)
∣∣∣
t=0

]
=

ih̄t
m

E3 .

This is an uncertainty relation between the initial position and the position after
some short time, and once again it just expresses the fact that the wave function
spreads. If the wave function can evolve freely, it separates into a superposition of
wave packets with locally well defined velocity, and we find the situation considered
before.

Differentiating once more yields

d
dt

p̂(t) = ∇V (x̂)(t) ,

which is another form of Ehrenfest’s theorem, called Heisenberg’s equation of mo-
tion. The simplicity and conciseness of this operator equation are impressive, and
might prompt one to rethink the role of these operators. Maybe they are indeed more
fundamental than we have been ready to admit? Why do these equations come out
so nicely? Maybe the particle does have a momentum after all? Now the answer is
simple. In Bohmian mechanics, the particle has no momentum, while in Newtonian
or Hamiltonian mechanics it has momentum. That is all there is to it.

Remark 15.4. The Position Operator for the Harmonic Oscillator
Heisenberg’s equation of motion for the harmonic oscillator is easily solved, and
one finds that the position operator is periodic with period T , i.e., x̂(T ) = x̂(0).
The statistics of the particle positions at time T and time 0 are identical. Therefore,
according to Remark 12.2, we can “measure the position operator at time 0” by
measuring the position of the particle at time T . However, for this to be true, the
position of the particle at time T need not agree with the position at time 0, since
only the distributions actually need to agree. One can easily see from the example
in (8.20) that, in general, the trajectory is not periodic in position space.

In conclusion, we have found that a “measurement of the position operator” (a
nonsensical statement anyway) is not always a measurement of the position. This is
as unimportant as anything could be, but nevertheless often leads to confusion, and
we should therefore take note of that. �
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15.2 The Spectral Theorem

15.2.1 The Dirac Formalism

We now return to the statistical calculus based on self-adjoint operators. Recall the
book-keeping operator (12.14), viz.,

Â =∑λαPα , (15.20)

which contains the statistics of a measurement process with possible outcomes λα ∈
Λ . The orthogonal projectors Pα project onto the orthogonal subspaces Hα of initial
states leading to the outcome λα . If the possible results λα are real, then A is self-
adjoint. Why should measurement results be real? Because, they typically count the
number of some units, and we use real numbers to count.

If we compare (15.20) with (15.5) or (15.13), and write Pλα for Pα , we see that
the structure is the same. Moreover, the projectors Pλα form a PVM (at least on the
range of ∑Pλα ), but this time we obtain a discrete measure supported on the points
λα :

Pϕ(A) = ∑
{α |λα∈A}

〈ϕ|Pλαϕ〉 .

In the Dirac notation, one writes one-dimensional orthogonal projectors Pλα as

Pλα = |ϕλα 〉〈ϕλα | ,

where the ϕλα ∈ RanPλα satisfy

〈ϕλα |ϕλβ 〉= δα,β .

If (ϕλα )α forms a basis, then

∑
λα
|ϕλα 〉〈ϕλα |= idH .

One immediately sees that λα are the eigenvalues of Â, with Hα the correspond-
ing eigenspaces, spanned by the eigenvectors ϕλα . The advantage of this spectral
representation is that one can take functions of the operator:

f (Â) =∑ f (λα)Pλα . (15.21)

This is one reason for diagonalizing matrices.2 Does such a representation also exist
for x̂ or v̂∞? In fact, we can use the Dirac notation as a powerful formalism for doing
just that [see (9.27)]. Write

2 This is just another way of writing the diagonal form of a self-adjoint matrix.
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d3Ox = |x〉〈x|d3x , (15.22)

〈x|x′〉= δ (x−x′) ,

∫
R3

d3Ox = O
R3 = IL2(R3) =

∫
R3
|x〉〈x|d3x ,

and

d3Vk = |k〉〈k|d3k ,

〈k|k′〉= δ (k−k′) ,

∫
R3

d3Vk = V
R3 = IL2(R3) =

∫
R3
|k〉〈k|d3k ,

where, for ψ,ϕ ∈ L2(R3,d3x), we put

〈ϕ|x〉〈x|ψ〉= ϕ∗(x)ψ(x)

and

〈ϕ|k〉〈k|ψ〉= ϕ̂∗(k)ψ̂(k) . (15.23)

One can now easily guess what 〈x|k〉 should look like. From here on, everybody
can find his or her own way of thinking about (15.22) to (15.23). For example, we
can pretend that |x〉 and |k〉 are elements of L2(R3) in order to associate the usual
geometric pictures with the formulas. We then write

x̂ =
∫

x|x〉〈x|d3x , (15.24)

instead of (15.5), and

v̂∞ =
∫

k|k〉〈k|d3k , (15.25)

instead of (15.13). For example, by showing the version of (15.6) and (15.14) in the
Dirac notation, i.e.,

x̂n =
∫

xn|x〉〈x|d3x , v̂n
∞ =

∫
kn|k〉〈k|d3k ,

we see how nicely and intuitively we can work with this formalism.
We now have (15.24) and (15.25), and it very much resembles (15.20). Formally,

we can even call x (and analogously k) the eigenvalues of the position operator x̂



15.2 The Spectral Theorem 313

corresponding to the eigenvectors |x〉, although we must not of course take this too
seriously. Clearly, the “eigenfunction” |x〉 is not an element of L2, and for this reason
one often calls it a generalized eigenfunction.

Remark 15.5. Almost Eigenvalues and Approximate Eigenfunctions
Now any λ ∈ R is almost an eigenvalue of the (one-dimensional) position operator
in the following sense.3 For ε > 0, consider ψελ (x) = (2ε)−1/2χ[λ−ε ,λ+ε ](x). Then
‖ψελ‖= 1 and

∥∥(x̂−λ )ψελ
∥∥2 =

∫
R

|x−λ |2|ψελ (x)|2 dx =
∫ λ+ε

λ−ε
|x−λ |2|ψελ (x)|2 dx≤ ε2 ‖ψελ‖

shows that ψελ is a sequence of normalized vectors such that

lim
ε→0

(x̂−λ )ψελ = 0 .

�

One thus has a unified language without a uniform meaning. This carries with it a
danger of confusion, and for the mathematical formulation we therefore introduce
new names: spectrum, spectral family (=PVM), and spectral measure. The spectrum
of the operator Â is the set of its eigenvectors {λα}, and the spectrum of the opera-
tors x̂ and v̂∞ is just R

3. The PVM of Â is (PA = ∑λα∈A Pλα )A∈B(R), and the PVM
of x̂ or v̂∞ is (OA)A∈B(R3) or (VA)A∈B(R3), respectively.

The corresponding spectral measures are 〈ψ|PAψ〉, 〈ψ|OAψ〉, and 〈ψ|VAψ〉,
where 〈ψ|PAψ〉 = ∑λα∈A〈ψ|Pλαψ〉 is a discrete measure. Moreover, note that x̂ is
diagonal, in the sense that x̂ acts as a multiplication operator on L2(R3,d3x) (“po-
sition representation”). In the same way v̂∞ is diagonal after Fourier transformation
(“momentum representation”). More precisely [see (15.12)],

1
i
∂
∂x

= v̂∞ on L2 corresponds to x̂ = F v̂∞F ∗ on L2 .

It is this simple action as a multiplication operator in the corresponding “represen-
tation” which lies at the heart of Dirac’s formalism.

15.2.2 Mathematics of the Spectral Theorem

Now recall the Schrödinger equation and the Schrödinger operator, which must also
be self-adjoint, and recall the lesson from linear algebra that it is very fruitful to
look at the world, i.e., the vector space, from the point of view of the operator under
consideration. This means going to the eigenbasis of the operator, i.e., its spectral

3 Analogous statements hold for operators with a continuous spectrum, something to which we
shall come soon.
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representation. So can we do this for the Schrödinger operator H? Is there also a
spectrum, a PVM, and the corresponding spectral measure for H? The answer is
that there is indeed a corresponding calculus for general self-adjoint operators T ,
called a T -representation. This is the content of the spectral theorem. It comes in
several different flavors which are, in a sense, all equivalent:

• The functional calculus form of the spectral theorem says that one can take func-
tions f (T ) of self-adjoint operators T in a consistent way.

• The multiplication operator form says that any self-adjoint operator T becomes
a multiplication operator in a suitable representation.

• The PVM form says that any self-adjoint operator T has a unique associated
PVM PA such that

T =
∫
λdPλ .

We have already seen how all these various aspects can be very useful when working
with concrete operators like x̂ or v̂∞. So in this section, we will discuss all three
aspects in some detail. We start with some basic definitions. One central object is
the spectrum of an operator, which is the generalization of the set of eigenvectors of
a matrix. Since in general we no longer have eigenvalues, we need to generalize the
eigenvalue equation in a clever way.

Definition 15.3. Let T be a closed operator with dense domain D(T ) on a Hilbert
space H . The resolvent set ρ(T ) is the set of all λ ∈ C such that

(λ −T )−1 : H −→D(T )⊂H

exists as a bounded operator in L (H ). Rλ (T ) = (λ −T )−1 is called the resolvent
of T at λ . The complement σ(T ) of ρ(T ) in C is the spectrum of T .

Remark 15.6. On the Resolvent and the Spectrum

(i) Let T be bounded. For λ > ‖T‖, we can express the resolvent as a convergent
Neumann series,

Rλ (T ) =
1

λ −T
=

1
λ

1
I−T/λ

=
1
λ

[
I+

∞

∑
n=1

(
T
λ

)n
]

. (15.26)

Note that with ‖T n‖ ≤ ‖T‖n, which is immediate from the definition

‖T‖= sup
‖ψ‖=1

‖Tψ‖ ,

we have

‖Rλ (T )‖ ≤ 1
|λ |

∞

∑
n=0

‖T n‖
|λ |n ≤

1
|λ |

∞

∑
n=0

‖T‖n

|λ |n . (15.27)
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Hence the series converges in the operator norm and one can see, as in

(1− x)
N

∑
n=0

xn = 1− xN+1 −→ 1 , N→ ∞ ,

that the limit is indeed the resolvent.
(ii) The resolvent set ρ(T ) is open and as a consequence the spectrum σ(T ) is

closed. This can be seen as follows. Let λ0 ∈ ρ(T ). The series expansion

1
λ − t

=
1

λ −λ0 +λ0− t
=

1
λ0− t

1

1− λ0−λ
λ0− t

=
1

λ0− t

∞

∑
n=0

(
λ0−λ
λ0− t

)n

, for
|λ0−λ |
|λ0− t| < 1 ,

suggests defining the operator

R̃λ (T ) = Rλ0
(T )

∞

∑
n=0

(λ0−λ )nRλ0
(T )n , (15.28)

which is well defined for |λ −λ0| < ‖Rλ0
(T )‖−1. One checks as in (i) that

(λ − T )R̃λ (T ) = I = R̃λ (T )(λ − T ), and therefore R̃λ (T ) = Rλ (T ). Hence
λ ∈ ρ(T ) and ρ(T ) is open. At the same time we have shown that the map

ρ(T )→L (H ) , λ �→ Rλ (T ) ,

is analytic, i.e., that it can be expressed locally as the convergent power series
(15.28) with coefficients in L (H ).

(iii) If λ ∈ C is an eigenvalue of T , i.e., Tϕλ = λϕλ holds for some ϕλ ∈H
with ϕλ �= 0, then λ −T is not invertible, and thus λ is in the spectrum σ(T ).
The set of eigenvalues is called the point spectrum σp(T ) of T , and we have
σp(T )⊂ σ(T ). �

Theorem 15.1. Let T be self-adjoint. Then

(i) σ(T )⊂ R and ‖(T − z)−1‖ ≤ |ℑ(z)|−1 .
(ii) supλ∈σ(T ) |λ |= ‖T‖ .
(iii) For λ ,λ ′ ∈ σp(T ) and λ �= λ ′, one has 〈ϕλ |ϕλ ′ 〉= 0 .

Proof. (i) Let λ = x+ iy with x,y∈R and y �= 0. Then like T , the operator y−1(x−T )
is also self-adjoint. According to Theorem 14.3, S = y−1(x−T )+ i is a bijection and
thus has a bounded inverse by the open mapping theorem (see, e.g., [1]). But then
yS = λ − T also has a bounded inverse and λ ∈ ρ(T ) follows. The bound on the
norm of the resolvent follows from

∥∥(T − x− iy)ψ
∥∥2 =

∥∥(T − x)ψ
∥∥2 +‖yψ‖2 ≥ y2‖ψ‖2 , for all ψ ∈ D(T ) ,

for z = x+ iy.
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(ii) We showed already in the previous remark that λ̄ := supλ∈σ(T ) |λ | ≤ ‖T‖. The
other direction is intuitively clear, when thinking of diagonal matrices with the
eigenvalues on the diagonal. To see it in general, we use analyticity of the resolvent.
Since the Neumann series (15.26) is the Laurent series for Rλ (T ) with expansion
point +∞, it converges for all λ > λ̄ . The radius of convergence is limited by the
singularity at λ̄ . Hence

∞

∑
n=0

(
T
λ

)n

converges absolutely for λ > λ̄ . However, for self-adjoint operators, one has

‖T n‖= ‖T‖n , (15.29)

and therefore

∞

∑
n=0

‖T n‖
|λ |n =

∞

∑
n=0

‖T‖n

|λ |n < ∞ ,

which implies that λ > ‖T‖ and thus λ̄ ≥ ‖T‖. We still need to show (15.29), which
will follow immediately once we have the spectral theorem. For the argument above,
it suffices to show ‖T 2n‖ = ‖T‖2n, which can be seen as follows. For any bounded
operator T , one has ‖T 2‖ ≤ ‖T‖2, and also for self-adjoint T ,

‖T‖2 = sup
‖ψ‖=1

‖Tψ‖2 = sup
‖ψ‖=1

〈Tψ,Tψ〉= sup
‖ψ‖=1

〈ψ,T 2ψ〉 ≤ ‖T 2‖ ,

where we used Cauchy–Schwarz in the last step.

(iii) is shown as in linear algebra. �

For later use we note that, for self-adjoint T , we have just seen that

‖T 2‖= sup
‖ψ‖=1

|〈Tψ|Tψ〉| ,

which suggests that

‖T‖=
(

sup
‖ψ‖=1

∣∣〈√Tψ|
√

Tψ〉
∣∣
)

= sup
‖ψ‖=1

|〈ψ|Tψ〉| , (15.30)

where the bracketed part in the middle is completely formal at the moment. But the
equality does indeed hold. Reality of the norm implies

‖T‖= sup
‖ψ‖=1

ℜ
〈

Tψ
‖T‖ |Tψ

〉
≤ sup
‖ϕ‖=1,‖ψ‖=1

ℜ〈ϕ|Tψ〉 ,
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and with polarization, we get, for self-adjoint T and ‖ϕ‖= ‖ψ‖= 1,

ℜ〈ϕ|Tψ〉 =
1
4

[〈
ϕ+ψ

∣∣T (ϕ+ψ)
〉
−

〈
ϕ−ψ

∣∣T (ϕ−ψ)
〉]

≤ 1
4

(
‖ϕ+ψ‖2 +‖ϕ−ψ‖2) sup

‖η‖=1
〈η |Tη〉

= sup
‖η‖=1

〈η |Tη〉 ≤ ‖T‖ .

Hence (15.30) follows.

For a not too technical start, we first construct the PVM associated with a bounded
self-adjoint operator T . The case of unbounded operators will be treated later on.
The idea of the construction is quite simple. It is clear that the PVM is supported
on the spectrum σ(T ), and with (15.21) in mind, we should build the characteristic
function χA(T ) of a subset A ∈ σ(T ), since χλα (Â) = Pλα .

The characteristic functions of all Borel subsets of the spectrum yield the PVM of
T . However, this involves slightly more work than one would initially expect. One
might want to start with polynomials of T – no problem with that – and then ap-
proximate characteristic functions in a suitable sense. But here comes the problem.
What is a suitable sense? One probably has pointwise convergence of polynomials
pn in mind. To conclude the existence of a limiting operator χ(T ), one would like
to use completeness of the space L (H ) of linear bounded operators on a Hilbert
space H with respect to the operator norm. This completeness does indeed hold
true and is easily shown as an exercise. This works analogously to showing that the
space of continuous functions on a compact set is complete under the sup-norm.

So we know that L (H ) with the operator norm ‖ · ‖ is complete. Now we need
to show that convergence of polynomials pn → f implies convergence of the cor-
responding operators pn(T )→ f (T ). However, one quickly realizes that pointwise
convergence is not the right notion to start with here. It is much easier to consider
uniform convergence first, as the sup-norm goes well with the operator norm. Con-
sider a polynomial p : σ(T )−→ C. Then

‖p(T )‖= ‖p‖∞ := sup
λ∈σ(T )

|p(λ )| . (15.31)

The proof is not completely trivial, since we allow p to have complex coefficients.
We do not really need this now, but it will help us later on, when considering the
notion of a cyclic vector.

For real polynomials p(T ) is self-adjoint, but for complex polynomials only
p∗(T )p(T ) is self-adjoint. But we planned ahead for this when showing (15.30):
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‖p(T )‖2 = sup
‖ψ‖=1

〈
p(T )ψ

∣∣p(T )ψ
〉

= sup
‖ψ‖=1

〈
ψ

∣∣p∗(T )p(T )ψ
〉

=
∥∥p∗(T )p(T )

∥∥ = sup
λ∈σ(p∗(T )p(T ))

|λ |= sup
λ∈σ(T )

∣∣p∗(λ )p(λ )
∣∣

= ‖p‖2
∞ .

However, we are not quite through yet, since we used the fact that, for polynomials
p, one has

σ
(

p(T )
)

= p
(
σ(T )

)
:=

{
μ |μ = p(λ ), λ ∈ σ(T )

}
, (15.32)

which then implies the equality

sup
λ∈σ(p(T ))

|λ |= sup
λ∈σ(T )

|p(λ )| .

To see (15.32), let λ ∈σ(T ). Note that p(x)− p(λ ) = (x−λ )q(x) with a polynomial
factor q(x), since λ is a zero of the left-hand side. This implies

p(T )− p(λ ) = (T −λ )q(T ) .

Since (T − λ ) is not invertible for λ ∈ σ(T ), p(T )− p(λ ) is not invertible for
λ ∈ σ(T ). We thus have p(λ ) ∈ σ

(
p(T )

)
, and therefore p

(
σ(T )

)
⊆ σ

(
p(T )

)
.

Conversely, let μ ∈ σ
(

p(T )
)
. According to the fundamental theorem of algebra,

p(x)−μ factorizes and therefore

p(T )−μ =
N

∏
i=1

(T −λi) ,

with the zeros λ1, . . . ,λN . Since p(T )− μ is not invertible, there is at least one λi

such that T −λi is not invertible, and with p(λi) = μ we conclude that σ
(

p(T )
)
⊆

p
(
σ(T )

)
.

We can now make precise the idea of taking functions of operators on L (H ). The
following theorem usually comes under the heading of a functional calculus for
self-adjoint operators.

Theorem 15.2. Let T ∈L (H ) be self-adjoint. There exists a unique mapping (the
functional calculus)

Φ : C
(
σ(T )

)
−→L (H ) ,

such that

Φ( f ) = “ f (T )” ,
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where the latter is defined by the following requirements. For all f ,g ∈ C(σ(T ))
and α,λ ∈ C :

(i) Φ(1) = IH ,
(ii) f (x) = x =⇒ Φ( f ) = T ,
(iii) Φ is linear, i.e., Φ( f +g) =Φ( f )+Φ(g) and Φ(α f ) = αΦ( f ) ,
(iv) Φ is multiplicative, i.e., Φ( f g) =Φ( f )Φ(g) ,
(v) Φ( f ∗) =Φ( f )∗ ,
(vi) σ(Φ( f )) = f (σ(T )) :=

{
μ ∈ C

∣∣μ = f (λ ), λ ∈ σ(T )
}

,
(vii) ‖Φ( f )‖= ‖ f‖∞ ,
(viii) Tψ = λψ =⇒ Φ( f )ψ = f (λ )ψ .

Conditions (i–iv) imply that, for polynomials p, we must define Φ(p) := p(T ).
Since the remaining statements are evident or have been shown before for polyno-
mials p(T ), we have a unique functional calculus for polynomials. The lift to con-
tinuous functions goes by density. Since σ(T ) is compact, polynomials are dense in
C

(
σ(T )

)
for the sup-norm. With (vii), this translates nicely to the level of operators.

Lemma 15.1. There is a unique extension ofΦ from the linear space of polynomials
to its closure C

(
σ(T )

)
satisfying (i–viii).

Sketch of the Proof. Since Φ is a bounded linear map from a dense subspace (the
polynomials) of the normed space

(
C

(
σ(T )

)
,‖·‖∞

)
into the complete normed space(

L (H ),‖ ·‖
)
, it has a unique bounded extension to all of C

(
σ(T )

)
.4 We just need

to show that the properties (i–viii) in Theorem 15.2 survive the limit.
For (iv), approximate f and g by polynomials, pn→ f and qn→ g. Then pnqn→

f g and a simple triangulation using uniform boundedness ofΦ(pn) yields the result.
Straightforward approximation also yields (v), (vii), and (viii). For (vi), first let μ /∈
Ran( f ). Then g = ( f − μ)−1 exists as a bounded function and Φ(g)Φ( f − μ) =
Φ(1) = I implies that

Φ(g) =
(
Φ( f −μ)

)−1 =
(
Φ( f )−μ

)−1

is bounded. Thus μ /∈ σ
(
Φ( f )

)
. Conversely, let μ ∈ Ran( f ), i.e., μ = f (λ ), for

some λ ∈ σ(T ). How can we show that μ ∈ σ
(
Φ( f )

)
? We already know that,

for any polynomial pn in an approximating sequence pn → f , we do indeed have
pn(λ ) ∈ σ

(
Φ(pn)

)
. Hence for any ε > 0 there exists an almost eigenvector ψn with

‖ψn‖= 1 such that
∥∥∥[
Φ(pn)− pn(λ )

]
ψn

∥∥∥ < ε .

4 Pick a Cauchy sequence pn of polynomials that converges uniformly to f ∈C
(
σ(T )

)
. Then by

∥∥Φ(pn)−Φ(pm)
∥∥ = ‖Φ(pn− pm)‖= ‖pn− pm‖∞ ,

we also know that Φ(pn) is a Cauchy sequence in the complete space L (H ). Its limit defines the
unique extension.
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Choosing n large enough to ensure that
∥∥Φ(pn)−Φ( f )

∥∥ < ε and |pn(λ )−μ |< ε ,
it follows that∥∥∥[

Φ( f )−μ
]
ψn

∥∥∥ =
∥∥∥[
Φ( f )−Φ(pn)+Φ(pn)− pn(λ )+ pn(λ )−μ

]
ψn

∥∥∥
≤

∥∥Φ( f )−Φ(pn)
∥∥+

∥∥∥[
Φ(pn)− pn(λ )

]
ψn

∥∥∥+
∣∣pn(λ )−μ

∣∣
≤ 3ε .

Since ε > 0 was arbitrary,
(
Φ( f )−μ

)−1
cannot be bounded.

Now we can use continuous functions to approximate measurable functions, which
is where we want to get to in the end. While this approximation can no longer
be done with respect to the sup-norm, we recall that, under an integral, pointwise
convergence is usually enough. Clearly, the mapping

l : C
(
σ(T )

)
−→ C ,

f �−→ l( f ) := 〈ψ| f (T )ψ〉 ,

is linear and bounded. Moreover, it is positive in the sense that it takes non-negative
values l( f ) on non-negative functions f , since for f ≥ 0 and g :=

√
f , we have

l( f ) =
〈
ψ

∣∣ f (T )ψ
〉

=
〈
ψ

∣∣g(T )g(T )ψ
〉

=
〈
g(T )ψ

∣∣g(T )ψ
〉

=
∥∥g(T )ψ

∥∥2 ≥ 0 .

Therefore, we can quote a classical representation theorem – the Riesz–Markov
theorem – which tells us that there is a unique measure μψT on σ(T ), associated
with this linear functional, such that

l( f ) =
〈
ψ

∣∣ f (T )ψ
〉

=
∫
σ(T )

f (λ )dμψT (λ ) , for all f ∈C
(
σ(T )

)
. (15.33)

Indeed, the theorem states that μψT is a regular Borel measure.5 We do not give the
proof here, which is somewhat laborious, but not very demanding.6

5 A Borel measure μ is a measure defined on the Borel σ -algebra B(Ω) of a topological space
Ω . It is regular if compact sets have finite measure and if it is compatible with approximation by
compact sets from inside and open sets from outside:

μ(A) = sup
{
μ(C)

∣∣C ⊂ A, C compact
}

= inf
{
μ(O)

∣∣A⊂ O, A open
}

,

for all A ∈B.
6 The idea is simple. One can use continuous functions to approximate characteristic functions of
Borel subsets of the compact set σ(T ) in order to define an outer measure

μ∗(C) = inf
{

l( f )
∣∣ f ∈C

(
σ(T )

)
, f ≥ χC

}
,

for closed C ⊂ σ(T ) and

μ∗(A) = sup
{
μ∗(C)

∣∣C ⊂ A, C closed
}

,
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Definition 15.4. The measure μψT on σ(T ) defined in (15.33) is called the spectral
measure of T for the vector ψ .

The rest is straightforward. By polarization, we define the complex measures

μϕ,ψ
T :=

1
4

(
μϕ+ψ

T −μϕ−ψT + iμϕ−iψ
T − iμϕ+iψ

T

)
,

where the map (ϕ,ψ) �→ μϕ,ψ
T is sesquilinear by construction. Hence, for bounded

Borel-measurable functions f , we can turn (15.33) into a definition:

〈
ϕ

∣∣ f (T )ψ
〉

:=
∫
σ(T )

f (λ )dμϕ,ψ
T (λ ) .

Again this uniquely defines the operator f (T )∈L (H ) according to Theorem 13.4.
Since we can now work with the integral representation of Φ( f ) = f (T ), pointwise
approximation of measurable functions by continuous functions7 suffices to lift the
properties (i–viii) of Φ to M (σ(T )), the space of bounded Borel functions on the
spectrum. This functional calculus on M

(
σ(T )

)
is unique if we add the following

property to Theorem 15.2:

(ix) If a uniformly bounded sequence ( fn) in M
(
σ(T )

)
converges pointwise to f ,

then

s-lim
n→∞

fn(T ) = f (T ) .

In conclusion, we now have Theorem 15.2 for functions in M (σ(T )) with the ad-
ditional property (ix). This is all we need! It follows directly from (i–ix) that the
family of characteristic functions (χA(T ))A∈B(σ(T )) defines a PVM. Each operator
χA(T ) is an orthogonal projector because of (iv) and (v), χσ(T )(T ) = IH is just (i),
and sigma additivity follows from (iii) and (ix). Furthermore, by construction, the
spectral measure is given in terms of the PVM through

μψT (A) =
∫
σ(T )

χA(λ )dμψT (λ ) =
〈
ψ

∣∣χA(T )ψ
〉

.

Thus we have

f (T ) =
∫
σ(T )

f (λ )dχλ (T ) . (15.34)

This allows us to formulate the spectral theorem for bounded self-adjoint operators.

for arbitrary subsets A⊂ σ(T ). Then Carathéodory’s construction yields the desired Borel measure
μψT .
7 Lebesgue’s theorem of dominated convergence is used here once again.
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Theorem 15.3. There is a one-to-one correspondence between bounded self-adjoint
operators and compactly supported PVMs on R given by

T −→
(
χA(T )

)
A∈B(σ(T )) , with (15.34) ,

and

(PA)A∈B(Λ) −→ T =
∫
λ dPλ .

But is it really clear that a given PVM on a compact subset of R defines a self-
adjoint operator as claimed in the theorem? The answer is affirmative here because,
by Remark 15.1, we have

〈ψ |Tϕ〉 =
∫
Λ
λ dPψ,ϕ(λ ) =

∫
Λ
λ dPϕ,ψ(λ ) =

∫
Λ
λ dPϕ,ψ(λ ) = 〈ϕ |Tψ〉

= 〈Tψ |ϕ〉 .

15.2.3 Spectral Representations

In this short section, we make some remarks concerning spectral measures and “di-
agonalization” of self-adjoint operators. The idea is to write a self-adjoint operator
T as a multiplication operator on L2

(
σ(T ),dμ

)
with a suitable measure μ . The po-

sition operator, for example, is already given in this form. This is another variant of
the spectral theorem and essentially an elaboration of (15.33).

Let T ∈ L (H ) be self-adjoint. We are looking for a measure μ on σ(T ) and
a unitary map U : H → L2

(
σ(T ),dμ

)
, such that UTU−1 on L2

(
σ(T ),dμ

)
is di-

agonal, i.e., multiplication by the function h(λ ) = λ . To get the analogy with the
diagonal representation of a self-adjoint n×n matrix A, one should think of a vector
v∈C

n as a function on the n distinct eigenvalues of A, i.e., on σ(A) = {λ1, . . . ,λn}.8
Now multiplication by the diagonal matrix diag(λ1, . . . ,λn) translates into multipli-
cation by the function λ on L2

(
σ(T ),∑n

i=1 δ (λ −λi)
)
.

How can we get an analogous result for operators? One idea would be to look, not
only for eigenvectors, but also for “generalized eigenvectors”, that is, for “all” solu-
tions of Tϕ = λϕ (ϕ not necessarily in H ). For example, the operator of asymptotic
velocity can be diagonalized by Fourier transformation, which can be seen as repre-
sentation with respect to the “generalized eigenfunctions” eikx. However, it clearly
makes no sense, for abstract Hilbert spaces H , to ask for solutions of Tϕ = λϕ out-
side of H . So we present a slightly different point of view which works in general,
and come back to generalized eigenfunctions later on.

Definition 15.5. Let T be a bounded self-adjoint operator on H . A vector η ∈H
is called a cyclic vector for T if span(T nη)∞n=0 is dense in H .

8 The case of degenerate eigenvalues requires one more step, as explained below.
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We will give an example that shows that there need not be a cyclic vector, but that
will present no problem. One can always split H into a direct sum of orthogonal
subspaces for which cyclic vectors exist. But now assume that a cyclic vector η
exists. Then, for ψ,ϕ ∈H , there are bounded Borel functions g and f such that
ψ = g(T )η and ϕ = f (T )η . It follows that

〈ψ |Tϕ〉 =
〈
g(T )η

∣∣T f (T )η
〉

=
〈
η

∣∣g(T )∗T f (T )η
〉

=
∫
σ(T )

g(λ )∗λ f (λ )d
〈
η

∣∣χλ (T )η
〉

[by (15.34)]

=
∫
σ(T )

g(λ )∗ f (λ )λ dμηT (λ ) , (15.35)

where dμηT is the spectral measure corresponding to the cyclic vector η . Now we
simply define

U : H −→ L2(σ(T ), dμηT (λ )
)

,

ψ �−→ g ,

and observe that U is unitary:

〈Uψ |Uϕ〉L2(σ(T ),dμηT (λ )) =
∫

g∗(λ ) f (λ )dμηT (λ ) =
〈
η

∣∣g∗(T ) f (T )η
〉
H

=
〈
g(T )η

∣∣ f (T )η
〉
H

= 〈ψ |ϕ〉H . (15.36)

As (15.35) shows, T acts as multiplication by λ on L2
(
σ(T ),dμηT

)
:

(
UTU−1g

)
(λ ) = λg(λ ) .

However, the spectral measure dμηT is not unique, since there will be many cyclic
vectors. If η is cyclic and f ∈M

(
σ(T )

)
is strictly positive, i.e., f (λ ) ≥ c > 0,

then f (T ) is invertible and commutes with T , whence f (T )η is also cyclic. It is
not hard to see that multiplication by λ on L2

(
σ(T ),dμ

)
and multiplication by λ

on L2
(
σ(T ),dν

)
are unitarily equivalent if and only if the measures are equivalent,

i.e., if and only if they have the same sets of measure zero.

Let us note finally that the non-existence of cyclic vectors in general, and the result-
ing need to split the Hilbert space into a direct sum of cyclic subspaces, is related
to the existence of degenerate eigenvalues. Let us give a simple example. Consider
H = R

3 and T = Pe1 , the orthogonal projection onto the first canonical basis vector
e1. Then

span
(
(Pe1)

nv
)∞

n=0 = span(v,Pe1 v) = span(v,e1)
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is at most a two-dimensional plane, spanned by v and e1. Hence there is no cyclic
vector for Pe1 . This is due to the twofold degenerate eigenvalue 0, so that we need
two vectors v and v∧ e1 as “cyclic” vectors. Then

R
3 = span

(
Pn

e1
v
)∞

n=0
⊕ span

(
Pn

e1
(v∧ e1)

)∞
n=0

= span(v,e1)⊕ span(v∧ e1) .

If T on R
3 has three different eigenvalues with eigenvectors vi, then each v =∑αivi

with αi �= 0 is cyclic.

15.2.4 Unbounded Operators

Life would be easier if we could avoid this topic altogether. But the Schrödinger
operator is unbounded, so we should say briefly how the spectral theorem can also
be obtained for unbounded self-adjoint operators. The reader should bear in mind
that we made heavy use above of the fact that σ(T ) is a compact set, which is true
only for bounded operators. There are several different ways to derive the functional
calculus, the spectral representation, and the spectral measures for unbounded self-
adjoint operators. Instead of describing one method in detail, it is more instructive
to sketch the different approaches.

One way to proceed is to make use of the spectral theorem for bounded self-
adjoint operators. More precisely, one could look for a bounded self-adjoint oper-
ator in the form of a bounded function of T and use its spectral representation to
get the same for T . However, this idea is somewhat circular, because only the spec-
tral theorem for unbounded operators would allow us to talk about functions of T .
However, there is one bounded function of T that gets defined independently of the
functional calculus, namely the resolvent. Recall that, according to Theorem 15.1
for self-adjoint T , we know that σ(T ) ⊂ R and therefore (T ± i)−1 are bounded
operators. On the other hand, they are not self-adjoint, since with

〈
(T − i)−1ψ

∣∣ϕ〉
=

〈
(T − i)−1ψ

∣∣(T + i)(T + i)−1ϕ
〉

=
〈
(T + i)∗(T − i)−1ψ

∣∣(T + i)−1ϕ
〉

=
〈
ψ

∣∣(T + i)−1ϕ
〉

,

we have
[
(T − i)−1

]∗ = (T + i)−1. However, not only self-adjoint matrices, but
also normal ones are diagonalizable. We can prove the spectral theorem for normal
bounded operators9 in the same way as we did for self-adjoint bounded operators.
Since (T + i) and (T − i) commute, (T + i)−1 and (T − i)−1 also commute. Thus
(T − i)−1 is normal and one can represent it as a multiplication operator on a suit-

9 Each bounded operator can be written as the sum of two self-adjoint operators:

R =
R+R∗

2
+ i

R−R∗

2i
.

They can be diagonalized simultaneously if and only if they commute, which is the case if and
only if R and R∗ commute. Such operators are said to be normal.
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able L2-space. We skip the construction of spectral measures for normal bounded
operators and also the construction of the spectral measures of T from the one for
the resolvent, but instead follow an alternative route to the spectral theorem for un-
bounded operators.

Recall that the first step in the case of bounded self-adjoint operators was the
construction of a functional calculus in Theorem 15.2. There the starting point was
to consider polynomials. However, for an unbounded operator T , any polynomial
p(T ) is itself an unbounded operator, and approximation by polynomials is not an
option. The next idea would be to take polynomials of the resolvent Rz = (T − z)−1,
for z in the resolvent set of T . Such polynomials are dense in C∞(R), and one could
indeed use them in order to set up a functional calculus for unbounded self-adjoint
operators, if one could show the analogue of (vii) in Theorem 15.2. In the following
we will pursue the idea of writing f (T ) in terms of the resolvent (T − z)−1, but
in a more explicit way than just saying “by density”. It turns out that the resulting
explicit formula is very useful in applications.

To motivate the formula, consider first a compactly supported function f : R
2→

C which is continuously differentiable. In the following, we will identify the do-
main R

2 with C via z = x + iy. However, f is not assumed to be holomorphic (it
cannot be, since it is compactly supported). The reader may know that the Cauchy
integral formula of complex analysis is just an application of Stokes’ theorem. We
will now repeat the corresponding derivation, however, for our function f , which
is not holomorphic. Let z0 be a point in the support of f , Γ a compact subset of C

with smooth boundary ∂Γ such that supp f is contained in the interior Γ ◦ of Γ , and
Bδ (z0) the ball of radius δ around z0. Interpreting

ω = f (z)(z0− z)−1dz

as a complex 1-form on the complement of Bδ (z0), one finds that

dω =
∂
∂ z

[
f (z)(z0− z)−1]dz∧dz+

∂
∂ z̄

[
f (z)(z0− z)−1]dz̄∧dz

=
∂ f
∂ z̄

(z)(z0− z)−1dz̄∧dz ,

where dz∧ dz and ∂z̄(z0− z)−1 both vanish. Note that dz̄∧ dz = 2idxdy, and take
δ > 0 small enough to ensure that Bδ (z0)⊂ Γ ◦. Then Stokes’ theorem implies

∫
∂ (Γ \Bδ (z0))

ω =
∫
∂Γ
ω−

∫
∂Bδ (z0)

ω =
∫
Γ \Bδ (z0)

dω . (15.37)

By continuity of ∂z̄ f (z) and integrability of (z0−z)−1, the right-hand side of (15.37)
is given in the limit δ → 0 by
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lim
δ→0

∫
Γ \Bδ (z0)

dω = 2i lim
δ→0

∫
Γ \Bδ (z0)

∂ f
∂ z̄

(z)(z0− z)−1dxdy

= 2i
∫
Γ

∂ f
∂ z̄

(z)(z0− z)−1dxdy .

For the left-hand side of (15.37), we get, by continuity of f ,

lim
δ→0

∫
∂Bδ (z0)

ω = lim
δ→0

∫
∂Bδ (z0)

f (z)(z0− z)−1dz =−2πi f (z0) ,

and since f |∂Γ = 0,
∫
∂Γ
ω =

∫
∂Γ

f (z)(z0− z)−1dz = 0 .

Putting everything together, we have thus shown that

f (z0) =
1
π

∫
Γ

∂ f
∂ z̄

(z)(z0− z)−1dxdy . (15.38)

Note that, for holomorphic f , one has dω = 0, but then the integral over ∂Γ con-
tributes. In that case (15.37) yields the Cauchy integral formula.

Back to operators. The idea is now to replace the variable z0 in (15.38) by a
possibly unbounded self-adjoint operator T , and to define

f (T ) =
1
π

∫
Γ

∂ f
∂ z̄

(z)(T − z)−1dxdy .

There are two problems with this formula. One is that, while the integrand is singular
at a point in (15.38) and thus integrable, (T − z)−1 is singular on the spectrum of
T , which might contain intervals of the real line. On the other hand, we aim at a
functional calculus for functions on σ(T )⊂ R, and the second problem is that it is
not clear what ∂z̄ f (z) should mean for a function on R.

The clever trick in the construction is now to solve both problems together. We
extend f : R→ C to a function f̃ : C→ C in such a way that ∂z̄ f̃ (z) vanishes as
|ℑ(z)| when z approaches the real axis, and thus compensates the possible |ℑ(z)|−1

divergence of the resolvent [see Theorem 15.1 (i)]. Such extensions are said to be
almost analytic, since ∂z̄ f̃ (z) would vanish identically for an analytic extension. This
also suggests a way to construct almost analytic extensions.

Let f ∈ Cn+1
0 (R). Then we can define f̃ (x + iy) by Taylor expansion at x, pre-

tending that the Cauchy–Riemann equation ∂y f̃ (z) = i∂x f̃ (z) holds:

f̃ (z) :=
n

∑
j=0

f ( j)(x)
j!

(iy) j .

It is easy to check that
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∂
∂ z̄

f̃ (z) =
1
2

f (n+1)(x)
n!

(iy)n ∼ |y|n = |ℑ(z)|n , as |ℑ(z)| → 0 ,

and thus f̃ is an almost analytic extension. Now f̃ is neither compactly supported
nor integrable, and therefore we need to multiply f̃ by a smooth cutoff function χ(y)
such that χ|[−1,1] = 1. But then the integral

f (T ) =
1
π

∫
Γ

∂ f̃
∂ z̄

(z)(T − z)−1dxdy (15.39)

converges in norm and defines a bounded operator f (T ).
It is not difficult to show that this f (T ) is independent of n and the specific form

of the cutoff, and that this formula defines a functional calculus for functions f ∈
C2

0

(
σ(T )

)
satisfying ‖ f (T )‖ ≤ ‖ f‖∞. One can then pass by density to the closure

C2
0

(
σ(T )

)‖·‖∞
= C∞

(
σ(T )

)
,

the set of continuous functions vanishing at infinity. Using Riesz–Markov again,
which yields finite measures μψT on B(σ(T )), one finally extends the functional
calculus to bounded Borel functions M

(
σ(T )

)
. In this way one obtains the follow-

ing result.

Theorem 15.4. Let T with domain D(T ) be a self-adjoint operator on H . There
exists a unique functional calculus

Φ : M
(
σ(T )

)
→L (H )

with the following properties:

(i) Φ is linear and multiplicative.
(ii) Φ( f ∗) =Φ( f )∗ .
(iii) ‖Φ( f )‖= ‖ f‖∞ .
(iv) For z ∈ C\R and rz(x) = (x− z)−1, one has Φ(rz) = (T − z)−1 .
(v) If a uniformly bounded sequence ( fn) in M

(
σ(T )

)
converges pointwise to

f , then

s-lim
n→∞

Φ( fn) =Φ( f ) .

Note that (iv) replaces requirement (ii) in the bounded case and guarantees that the
functional calculus is compatible with the definition of the resolvent. The proof of
(iv) is actually the most difficult part, and for this one extends formula (15.39) to a
class of functions containing rz(x) (see [2]).

Given the functional calculus, we can now define the PVM associated with a
self-adjoint operator T as

(
χA(T )

)
A∈B(σ(T )), where for bounded functions f ∈

M
(
σ(T )

)
, we once again have, by construction,
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f (T ) =
∫
σ(T )

f (λ )dχλ (T ) .

However, for unbounded operators T , the spectrum σ(T ) is not bounded, and thus
the function f (λ ) = λ is not bounded on σ(T ). Hence,

T =
∫
σ(T )

λ dχλ (T )

is not an immediate consequence of the functional calculus. To understand this pre-
cisely in the situation of unbounded operators, it is convenient to look first at the
spectral representation.

Assume for simplicity that T has a cyclic vector η , i.e., every ψ ∈H can be
written as g(T )η for some g ∈M

(
σ(T )

)
. Then one can construct the unitary map-

ping

U : H −→ L2(σ(T ), dμηT (λ )
)

,

ψ �−→ g ,

as in the case of bounded operators. We find once again that bounded functions of T
are mapped to multiplication by the corresponding function, i.e., for f ∈M

(
σ(T )

)
,

U f (T )U−1 = f (λ ) . (15.40)

The only additional point to show is that T is indeed mapped under U to multipli-
cation by λ . To see this, note first that (15.40) applied to the resolvent implies that
the range of the resolvent is mapped to the range of r(λ ) = (λ − i)−1, i.e.,

UD(T ) =
{
ψ ∈ L2(σ(T )

)∣∣λψ(λ ) ∈ L2(σ(T )
)}

.

But then, for ψ ∈UD(T ), we have ψ = rϕ for some ϕ ∈ L2
(
σ(T )

)
, and

UTU−1ψ = UTU−1rϕ = UT (T − i)−1U−1ϕ = (ir +1)ϕ = λ rϕ = λψ .

At this point, let us formulate our findings as a theorem. However, before we do so,
we should get rid of the assumption that a cyclic vector exists. The following lemma
is not hard to show.

Lemma 15.2. Let T with domain D(T ) be a self-adjoint operator on the separa-
ble Hilbert space H . Then there exists a sequence of pairwise orthogonal cyclic
subspaces Ln ⊂H with cyclic vectors10 ηn such that

H =
⊕N

n=1
Ln ,

where N can be finite or ∞. Note that one only needs to take the closure for N = ∞.

10 Recall that η is a cyclic vector for L⊂H if L = span
{

f (T )η
∣∣ f ∈M

(
σ(T )

)}
. It is clear that

a cyclic subspace is invariant for T , i.e., f (T )L = L for any f ∈M
(
σ(T )

)
.
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Using the cyclic vector ηn, we can map each cyclic subspace Ln unitarily to
L2

(
σ(T ),dμηn

)
. In summary, we then obtain the following multiplication opera-

tor version of the spectral theorem.

Theorem 15.5. Let T with domain D(T ) be a self-adjoint operator on a separable
Hilbert space H . Let (Ln,ηn)N

n=1 be a sequence of cyclic subspaces Ln with cyclic
vectors ηn, as in Lemma 15.2. Then there is a unitary mapping

U : H =
⊕N

n=1
Ln −→

N⊕
n=1

L2
(
σ(T ),dμηn

T

)
=: L2(σ(T )×{1, . . . ,N},dμ

)
,

such that, for f ∈M
(
σ(T )

)
and ψ ∈ L2

(
σ(T )×{1, . . . ,N},dμ

)
=: L2(dμ),

(
U f (T )U−1ψ

)
(λ ,n) = f (λ )ψ(λ ,n) .

Moreover,

UD(T ) =
{
ψ ∈ L2(dμ)

∣∣λψ(λ ,n) ∈ L2(dμ)
}

,

and for all ψ ∈UD(T ),
(
UTU−1ψ

)
(λ ,n) = λψ(λ ,n) .

We can now use this spectral representation to formulate the precise connection be-
tween unbounded self-adjoint operators and PVMs. To simplify the notation, we
assume that there is a cyclic vector η for T or, equivalently, we reduce our con-
siderations to one cyclic subspace. The key observation is that, with g = Uψ and
f = Uϕ , we have, by construction,

〈
ψ

∣∣χA(T )ϕ
〉

=
〈
η

∣∣g∗(T )χA(T ) f (T )η
〉

=
∫

A
g∗(λ ) f (λ )dμηT ,

and hence

d
〈
ψ

∣∣χλ (T )ϕ
〉

= g∗(λ ) f (λ )dμηT . (15.41)

Thus for ϕ ∈ D(T ) and ψ ∈H , it follows that

〈ψ |Tϕ〉=
∫
σ(T )

g∗(λ )λ f (λ )dμηT (λ ) =
∫
σ(T )

λ d
〈
ψ

∣∣χλ (T )ϕ
〉

.

This yields the first part of the PVM version of the spectral theorem.

Theorem 15.6. There is a one-to-one correspondence between self-adjoint opera-
tors and PVMs on R:

(i) Let T be self-adjoint. Then
(
χA(T )

)
A∈B(σ(T )) is a PVM and, for f ∈M

(
σ(T )

)
,
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f (T ) =
∫
σ(T )

f (λ )dχλ (T ) .

For ϕ ∈ D(T ) and ψ ∈H , one has

〈ψ |Tϕ〉=
∫
σ(T )

λ d
〈
ψ |χλ (T )ϕ

〉
.

(ii) Given a PVM (PA)A∈B(Λ), let

D(T ) :=
{
ϕ ∈H

∣∣ ∫
R

λ 2 d
〈
ϕ |Pλϕ

〉
< ∞

}
.

Then

〈ψ |Tϕ〉 :=
∫

R

λ d〈ψ |Pλϕ〉 , for ψ,ϕ ∈ D(T ) ,

defines a self-adjoint operator T with domain D(T ).

To understand the second part of the theorem, take a sequence of simple functions

fn(λ ) := ∑n
j=1λ

(n)
j χ

Δ(n)
j

(λ ) that converges monotonically to f (λ ) = |λ |. Then, for

ψ,ϕ ∈ D(T ), we have
∫

R

λ 2 d
〈
ϕ+ψ

∣∣Pλ (ϕ+ψ)
〉

= lim
n→∞

∫
R

f 2
n (λ )d

〈
ϕ+ψ

∣∣Pλ (ϕ+ψ)
〉

= lim
n→∞

n

∑
j=1

(
λ (n)

j

)2〈ϕ+ψ
∣∣P
Δ(n)

j
(ϕ+ψ)

〉

≤ lim
n→∞

n

∑
j=1

(
λ (n)

j

)2
[〈
ϕ

∣∣P
Δ(n)

j
ϕ

〉
+

〈
ψ

∣∣P
Δ(n)

j
ψ

〉
+2

∣∣〈ϕ ∣∣P
Δ(n)

j
ψ

〉∣∣
]

≤
∫

R

λ 2 d〈ϕ |Pλϕ〉+
∫

R

λ 2 d〈ψ |Pλψ〉

+ lim
n→∞

n

∑
j=1

(
λ (n)

j

)2〈ϕ ∣∣P
Δ(n)

j
ϕ

〉1/2〈ψ ∣∣P
Δ(n)

j
ψ

〉1/2
< ∞ ,

since ψ,ϕ ∈ D(T ), and
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lim
n→∞

n

∑
j=1

(
λ (n)

j

)2〈ϕ ∣∣P
Δ(n)

j
ϕ

〉1/2〈ψ ∣∣P
Δ(n)

j
ψ

〉1/2

≤ lim
n→∞

[
n

∑
j=1

(
λ (n)

j

)2〈ϕ ∣∣P
Δ(n)

j
ϕ

〉]1/2 [
n

∑
j=1

(
λ (n)

j

)2〈ψ ∣∣P
Δ(n)

j
ψ

〉]1/2

=
(∫

R

λ 2 d〈ϕ |Pλϕ〉
)1/2 (∫

R

λ 2 d〈ψ |Pλψ〉
)1/2

< ∞ .

Hence, ϕ+ψ ∈D(T ), and D(T ) is indeed a subspace. It is also dense, since for any
ψ ∈H , we clearly have P[−n,n]ψ ∈ D(T ) and, by Definition 15.1(i), and (iii),

lim
n→∞

P[−n,n]ψ = ψ .

To see that the integral
∫
R
λ d〈ψ |Pλϕ〉 exists for ψ,ϕ ∈D(T ), note that the explicit

decomposition of the complex measure μψ,ϕ
T (A) := 〈ψ |PAϕ〉 is

μψ,ϕ
T =

1
4

(
μψ+ϕ

T −μψ−ϕT + iμψ−iϕ
T − iμψ+iϕ

T

)
.

Let φ ∈
{
ψ+ϕ,ψ−ϕ,ψ+ iϕ,ψ− iϕ

}
. Then φ ∈ D(T ) and

∫
R

|λ |d〈φ |Pλ φ〉 ≤
〈
φ

∣∣P[−1,1]φ
〉
+

∫
R

|λ |2 d〈φ |Pλ φ〉< ∞ .

Thus T is a densely defined and obviously symmetric operator. To conclude that T
is self-adjoint, we use the criterion of Theorem 14.3, i.e., we show that Ran(T± i) =
H . So let ψ ∈H and define

ϕ :=
∫

(λ + i)−1dPλψ .

We will show that, for any φ ∈H ,

d〈φ |Pλϕ〉=
1
λ + i

d〈φ |Pλψ〉 , d〈ϕ |Pλϕ〉=
1

λ 2 +1
d〈ψ |Pλψ〉 . (15.42)

From this it immediately follows that ϕ ∈ D(T ) and, for any φ ∈H ,

〈
φ

∣∣(T + i)ϕ
〉

=
∫

(λ + i)d〈φ |Pλϕ〉=
∫

d〈φ |Pλψ〉= 〈φ |ψ〉 .

Hence (T + i)ϕ = ψ and T is therefore self-adjoint.
In order to prove (15.42), it is convenient to remark that, for any bounded Borel

function f , one can define the integral with respect to a PVM as a norm-convergent

limit of operators. Let fn = ∑n
j=1λ

(n)
j χ

Δ(n)
j

be a sequence of simple functions con-

verging uniformly to f . Then



332 15 Measures and Operators

lim
n→∞

∫
fn(λ )dPλ := lim

n→∞

n

∑
j=1
λ (n)

j P
Δ(n)

j

converges in norm, and the limit is independent of the sequence fn and equal to
the operator

∫
f (λ )dPλ , as defined in Remark 15.1. This follows from the easily

checked fact that, for any simple function g = ∑n
j=1λ jχΔ j , one has

∥∥∥∥
∫

g(λ )dPλ

∥∥∥∥ :=
∥∥∥∥

n

∑
j=1
λ jPΔ j

∥∥∥∥≤ ‖g‖∞ .

Now back to (15.42). Let ∑n
j=1α

(n)
j χΔ(n)

j
be a sequence of simple functions converg-

ing uniformly to (λ+ i)−1. We can assume that, for each n, the sets Δ(n)
j are pairwise

disjoint. Then for any Borel set A⊂ R and any ψ ∈H , we find that

〈φ |PAϕ〉 = lim
n→∞

〈
φ

∣∣∣PA

n

∑
j=1
α(n)

j P
Δ(n)

j
ψ

〉
= lim

n→∞

n

∑
j=1
α(n)

j

〈
φ

∣∣P
Δ(n)

j ∩A
ψ

〉

=
∫

A

1
λ + i

d〈φ |Pλψ〉 .

This proves the first equality in (15.42). The second follows analogously by

〈ϕ |PAϕ〉 = lim
n→∞

〈 n

∑
k=1

α(n)
k P

Δ(n)
k
ψ

∣∣∣PA

n

∑
j=1
α(n)

j P
Δ(n)

j
ψ

〉

= lim
n→∞

n

∑
j=1

∣∣α(n)
j

∣∣2〈ψ ∣∣P
Δ(n)

j ∩A
ψ

〉

=
∫

A

1
λ 2 +1

d〈ψ |Pλψ〉 .

15.2.5 Unitary Groups

Recall that one motivation for looking at self-adjoint operators was the expectation
that self-adjoint operators are the generators of unitary groups. With the spectral
theorem to hand it is now straightforward to show the following theorem.

Theorem 15.7. Let H with domain D(H) be a self-adjoint operator. Then

U(t) = e−iHt

defined by the functional calculus is a strongly continuous unitary group and H is
its generator.
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Proof. The group property and unitarity follow from properties (i) and (ii) of the
functional calculus of Theorem 15.4. Strong continuity follows from (v), because
e−ixt converges pointwise to 1 for t→ 0, so we have

s-lim
t→0

e−iHt = IH .

Hence U(t) is indeed a strongly continuous unitary group. To show that H is indeed
the generator, we need to show that e−iHtψ is differentiable if and only if ψ ∈D(H),
and that the derivative is −iHψ . Note first that the difference quotient

∥∥∥∥e−iHt − I

t
ψ

∥∥∥∥
2

=
∫ ∣∣∣∣e−iλ t −1

t

∣∣∣∣
2

︸ ︷︷ ︸
→λ 2 as t→0

d〈ψ |Pλψ〉

remains bounded as t → 0 if and only if ψ ∈ D(H). For ψ ∈ D(H), the limit is
indeed −iHψ , as can be seen from

lim
t→0

∥∥∥∥e−iHt − I

t
ψ+ iHψ

∥∥∥∥
2

= lim
t→0

∫ ∣∣∣∣e−iλ t −1
t

+ iλ
∣∣∣∣
2

︸ ︷︷ ︸
→0 as t→0

d〈ψ |Pλψ〉= 0

and dominated convergence.

Stone’s theorem now states that any strongly continuous unitary group is generated
by a self-adjoint operator. This is comforting since it means that we can focus on the
self-adjoint generators without taking the risk of missing some interesting unitary
evolution groups.

Theorem 15.8. (Stone’s Theorem) Every strongly continuous unitary group U(t)
has a self-adjoint generator H, i.e., U(t) = e−iHt .

The proof is not difficult with the machinery we have developed. But that is enough
abstract mathematics for now. Let us return to quantum mechanics.

15.2.6 H0 =−Δ/2

Now we have more or less proved that there is a PVM for every self-adjoint op-
erator, in particular also for the Schrödinger operator H, or any other operator that
seems relevant to us. But what is the PVM for H = H0 +V ? Good question! In gen-
eral we do not know, but what we are looking for are basically eigenfunctions in a
suitable generalized sense. More precisely, we also look for eigenfunctions for the
continuous spectrum. We shall now explain this for H0 and discuss the extension to
Schrödinger operators with a potential in the next chapter. So for the moment, we
shall look for suitable solutions of
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H0ϕ =−1
2
Δϕ = λϕ , λ ∈ R ,

in which we ignore physical constants. The suitable solutions are of course the plane
waves, i.e., the Fourier “basis functions”

ϕ = e±ik·x , λ =
1
2

k2 .

This is nice, since we already know that the Fourier transformation is unitary on L2

and that, in the Fourier representation, H0 becomes the operator for multiplication
by k2/2. We can thus write the PVM of H0 explicitly as

PH0(A) = F−1χA(k2)F ,

where A is a Borel subset of R. We see immediately that the support of PH0 , i.e., the
spectrum, is σ(H0) = [0,∞). More explicitly we have

(
PH0(A)ψ

)
(x) =

1
(2π)3

∫
{k |k2/2∈A}

e+ik·x
[∫

e−ik·yψ(y)d3y

]
d3k .

Recall the Dirac notation where this is written formally as

PH0(A) =
∫
{k |k2/2∈A}

|k〉〈k|d3k ,

i.e., as projection onto the generalized eigenfunction |k〉. To get the result in the x
representation, we need to project onto |x〉 :

〈x|PH0(A)|ψ〉=
∫
{k |k2/2∈A}

〈x|k〉〈k|ψ〉d3k =
∫
{k |k2/2∈A}

eik·x ψ̂(k)d3k .

Finally, we can write H0 as

H0 =
∫

1
2

k2|k〉〈k|d3k ,

which is just another notation for the statement we started with, i.e.,

H0 = F−1 1
2

k2F .

This is a good point to use this representation in order to compute a few functions
of H0 explicitly.

Remark 15.7. The Free Propagator
In n dimensions, the so-called free propagator is

〈
y
∣∣e−itH0

∣∣x〉
=

1

(2πit)n/2
ei|y−x|2/2t .
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This integral kernel yields the solutions of the free Schrödinger evolution. For an
initial wave function ϕ ∈ L2(Rn), we have

ϕ(x, t) =
(
e−itH0ϕ

)
(x) = L2-lim

1

(2πit)n/2

∫
ei|y−x|2/2tϕ(y)dny

“=”
∫ 〈

x|e−itH0 |y
〉
〈y|ϕ〉dny .

�

One can compute the free propagator as follows. In the Fourier representation we
have

e−itH0 = F−1e−itk2/2F .

Recalling that (inverse) Fourier transformation turns multiplication into convolu-
tion, we can compute this directly for ϕ ∈S :

F−1 e−itk2/2︸ ︷︷ ︸
=:G(k)

Fϕ = (2π)−n/2(F−1G)∗ϕ ,

and the inverse Fourier transform of a Gaussian is again a Gaussian [see (5.7) and
(9.19)]:

(F−1G)(x) =
1

(2πit)n/2
ei|x|2/2t .

To see that the integral representation holds for all functions in L2 is somewhat
technical, and we refer the interested reader to [3].

From the explicit formula, one can directly read off the spreading of the wave
packet:

sup
x

∣∣e−itH0ϕ(x)
∣∣≤ 1

(2π|t|)n/2
‖ϕ‖1 ,

or the sojourn probability in a domain G⊂ R
n :

∫
G

∣∣(e−itH0ϕ
)
(x)

∣∣2
dnx≤ 1

(2πt)n ‖ϕ‖
2
1|G| .

We already anticipated the precise asymptotics of the free time evolution for t→ ∞
when discussing v∞, using the heuristic argument in Sect. 9.4. Now the time has
come to give a proof.

Remark 15.8. The “Free Asymptotics” and Stationary Phase
We will show that, for ϕ ∈ L2(Rn),
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∥∥∥∥e−itH0ϕ− 1

(it)n/2
eix2/2t ϕ̂

(x
t

)∥∥∥∥−→ 0 , for t→ ∞ . (15.43)

It suffices to prove this for ϕ in the dense subset of Schwartz functions S , since our
claim is that the difference between two t-dependent families of unitary operators
converges strongly to zero. And for ϕ ∈S the proof is just a simple computation.
Multiplying out the square in the exponent in

(
e−iH0tϕ

)
(x) = ϕ(x, t) =

∫
1

(2πit)n/2
exp

[
i
(x−y)2

2t

]
ϕ(y)dny ,

we find that

ϕ(x, t)=
1

(it)1/2
exp

(
i
x2

2t

)∫
1

(2π)1/2
exp

(
−i

x ·y
t

)
exp

(
i
y2

2t

)
ϕ(y)dny

=
exp

(
ix2/2t

)
(it)1/2

2ϕ̂
(x

t

)
+

exp
(
ix2/2t

)
(2πit)1/2

∫
exp

(
−i

x ·y
t

)[
exp

(
i
y2

2t

)
−1

]
ϕ(y)dny

︸ ︷︷ ︸
rt

.

Put

ht(y) =
[

exp

(
i
y2

2t

)
−1

]
ϕ(y) ∈ L2 .

Then

rt =
1

(it)1/2
exp

(
i
x2

2t

)
ĥt

(x
t

)

and

‖rt‖2 =
∫

1
tn ĥ∗t

(x
t

)
ĥt

(x
t

)
dnx = 〈ĥt |ĥt〉= 〈ht |ht〉= ‖ht‖2 .

Now ht(y) converges pointwise to zero for t→∞ and, with |ht(y)|2≤ 4|ϕ(y)|2 ∈ L1,
we can use dominated convergence to conclude that ‖ht‖2→ 0 for t→ ∞.

Now recall (15.11). In the fourth step there, we really get

lim
t→∞

∫
|ϕ(x, t)|2χA

(x
t

)
dnx = lim

t→∞

∫
1
tn

∣∣∣ϕ̂
(x

t

)∣∣∣2
χA

(x
t

)
dnx+R(t) ,

and it remains to show that the remainder R(t) goes to zero. With the above result,
Cauchy–Schwarz, and Parseval, this follows directly:

R(t) =
∫
|rt(x)|2χA

(x
t

)
dnx+2ℜ

[∫
1
tn ϕ̂

(x
t

)
ĥt

(x
t

)
χA

(x
t

)
dnx

]

≤ ‖rt‖2 +2‖ϕ‖‖ht‖ t→∞−→ 0 .

�
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Remark 15.9. The Stationary Phase Method away from the Stationary Point
In (9.18), we discussed the stationary phase argument and just described the leading
order term rigorously. We can now also study the error terms, since we know how
a free wave packet moves for large times. Indeed, for large t, the wave function is
supported at positions x in such a way that x/t lies in the support of the Fourier
transform. Everywhere else, the wave function goes to zero. And it is easy to esti-
mate how fast it goes to zero. Here is a precise statement.

Theorem 15.9. Let ϕ ∈ S and K = supp(ϕ̂) be compact. Let U be an open ε-
neighborhood of K, i.e., dist(U c,K) = ε > 0. Then for any N ∈N, there is a constant
CN, such that, for any pair x, t with x/t /∈U and |t| ≥ 1,

∣∣(e−itH0ϕ
)
(x)

∣∣≤CN
(
1+ |t|

)−N
.

This simple “no stationary phase” statement is just based on integration by parts.
Observe that

(
e−itH0ϕ

)
(x) =

1

(2πit)1/2

∫
K

exp

[
i

(
k ·x− 1

2
k2t

)]
ϕ̂(k)dnk

=
1

(2πit)1/2

∫
K

exp

[
i
(
1+ |t|

)(
k ·x− k2t/2

1+ |t|

)]
ϕ̂(k)dnk ,

and put α = 1+ |t|. Then the integrand contains the oscillating exponential eiαS with
the “phase function”

S(k) =
k ·x− k2t/2

1+ |t| , where ∇kS =
x−kt
1+ |t| .

But by assumption, on the support K of ϕ̂ , we have

∣∣∇kS(k)
∣∣ =

∣∣∣x
t
−k

∣∣∣
1
|t| +1

≥ 1
2

dist(U c,K) =
1
2
ε > 0 .

The gradient of S is therefore bounded from below by ε/2, and we get the identity

eiαS(k) =
[

1
iα

∣∣(∇S)(k)
∣∣−2∇S(k)·∇

]N

eiαS(k) ,

where we have dropped the x and t dependence in the notation. Integration by parts
then yields (ϕ ∈S )

∫
K

eiαS(k)ϕ̂ (k)dnk = (−1)N
(

1
iα

)N ∫
K

eiαS(k)

⎧⎨
⎩

[
∇· (∇S)(k)∣∣(∇S)(k)

∣∣2

]N

ϕ̂(k)

⎫⎬
⎭dnk .
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Now it is easy to see that the integrand is bounded independently of x and t, whence
the absolute value of the integral yields exactly the constant CN .

Note that, in Theorem 15.9, the stronger statement

∣∣(e−itH0ϕ
)
(x)

∣∣≤CN
(
1+ |t|+ |x|

)−N

actually holds. This can be shown by putting α = 1+ |t|+ |x| in the proof. However,
estimating ∇kS and the integrand above then takes more effort. We have skipped
this in order to focus on the simple structure of the argument. Moreover, for the
following application, our simple result is sufficient.

Assume that ϕ̂ ∈ C∞0 (Rn \ {0}), i.e., there is a > 0, such that k > a for all k ∈
supp(ϕ̂). It is now a simple consequence of the above computation that the domain
from which the wave function escapes grows with time. More precisely, it holds that

∥∥χ(
|x|< a|t|

)
e−itH0ϕ

∥∥≤CN
(
1+ |t|

)−N
. (15.44)

The proof of this estimate comes immediately out of the constraint that |x|/t ≤ a < k
and the resulting estimate

∣∣∣(e−itH0ϕ)(x)
∣∣∣≤CM

(
1+ |t|

)−M
,

which yields
∫
χ
(
|x|< a|t|

)(
e−itH0ϕ

)
(x)dnx≤C′M

(
1+ |t|

)−M(
a|t|

)n ≤C′′M
(
1+ |t|

)−N
,

for appropriate constants C, C′, C′′, and M large enough. �

As we saw from the support of its PVM, the spectrum of H0 is [0,∞). Thus the
resolvent (H0−λ )−1 exists on C\R

+ and we will now compute its integral kernel.

Remark 15.10. The Resolvent of −Δ
We will show that for all κ ∈ C with ℜκ > 0 and all ϕ ∈ L2(R3),

[
(−Δ+κ2)−1ϕ

]
(x) =

1
4π

∫
e−κ|x−y|

|x−y| ϕ(y)d3y . (15.45)

Before we give the derivation of this formula, note that the integral kernel or Green’s
function

G(x) :=
1

4π
e−κ|x|

|x|

is integrable and square integrable, i.e., G∈ L1(R3)∩L2(R3). Hence by the Cauchy–
Schwarz inequality, the integral on the right-hand side of (15.45) exists for all ϕ ∈
L2(R3) and x ∈ R

3. By Young’s inequality, convolution with G defines a bounded
operator on L2(R3). More precisely, let ψ := G∗ϕ . Then with Fubini, we have that
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‖ψ‖2
L2 ≤

∫∫
G∗(y)G(ỹ)

[∫ ∣∣ϕ∗(x−y)ϕ(x− ỹ)
∣∣d3x

]
d3yd3ỹ

≤ ‖G‖2
L1‖ϕ‖2

L2 .

Hence both sides in (15.45) define bounded operators on L2 and it suffices to prove
the equality for ϕ in the dense set of Schwartz functions S . To show this, we use
the Fourier representation again:

(−Δ−λ )−1 = F−1 1
k2−λF ,

where it is convenient to put λ =−κ2 and to assumeℜκ > 0. (We thereby cover the
whole resolvent set C \R

+ of −Δ. But we could just as well take the other square
root of λ . Then in the application of the residue theorem below, we would close the
path of integration through the lower half plane instead of the upper half plane.)

Let f (k) := (k2 +κ2)−1 and fR(k) = χk<R(k) f (k), where χk<R(k) is the char-
acteristic function of the ball BR around the origin with radius R. Then according to
Remark 13.5, we have, for ϕ ∈S and for all x,

(
(−Δ+κ2)−1ϕ

)
(x) =

(
F−1 f ϕ̂

)
(x) = lim

R→∞

(
F−1 fRϕ̂

)
(x)

= lim
R→∞

(
1

2π

)3/2 ∫
(F−1 fR)(x−y)ϕ(y)d3y .

Here we have used the fact that fRϕ̂ converges to ϕ̂ in L1, whence the inverse Fourier
transform even converges uniformly.

We will now show that

lim
R→∞

(
1

2π

)3/2

F−1 fR = G ,

in L2. Then, by Cauchy–Schwarz, (15.45) follows. Now,

lim
R→∞

(
1

2π

)3/2 (
F−1 fR

)
(x) = lim

R→∞

(
1

2π

)3 ∫
BR

eik·x

k2 +κ2 d3k

= lim
R→∞

(
1

2π

)3 ∫ R

0

∫ 2π

0

∫ 1

−1

eikxcosθ

k2 +κ2 k2 d(cosθ)dϕ dk

= lim
R→∞

(2π)−2

ix

∫ R

−R

eikx

(k− iκ)(k + iκ)
k dk .

Now we can apply the residue theorem. We close the integration along a rectangular
path in the upper half plane, going from R to R+ i

√
R, from there to −R+ i

√
R, and

finally to −R. For R large enough, this path encircles the pole at k = iκ . Hence we
find that
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lim
R→∞

(
1

2π

)3/2 (
F−1 fR

)
(x) =

1
4π

e−κ|x|

|x| ,

granted that the contributions of the extra pieces of the path vanish in the limit
R→ ∞. We show this for the piece γ(t) = R + ti

√
R, t ∈ [0,1], from R to R + i

√
R.

Observe that

∣∣∣∣ 1
ix

∫
γ

eikx

k2 +κ2 k dk

∣∣∣∣ =

∣∣∣∣∣
1
ix

∫ 1

0

ei(R+ti
√

R)x(R+ ti
√

R)i
√

R

(R+ ti
√

R)2 +κ2
dt

∣∣∣∣∣

≤ Cκ
x

∫ 1

0

e−t
√

Rx
√

R
dt

=
Cκ
x2

(1− e−
√

Rx)
R

,

with a κ-dependent constant Cκ . In spherical coordinates, ignoring constants, we
find for the L2-norm,

∫ ∞

0

(
1− e−

√
Rx

)2
x2

x4R2 dx =
∫ ∞

0

(
1− e−

√
Rx

)2

x2R2 dx

=
∫ 1/R

0

(
1− e−

√
Rx

)2

x2R2 dx+
∫ ∞

1/R

(
1− e−

√
Rx

)2

x2R2 dx

≤
∫ 1/R

0

Rx2

x2R2 dx+
∫ ∞

1/R

1
x2R2 dx

≤ 1
R2 +

1
R
−→ 0 , as R→ ∞ .

�

Remark 15.11. The Resolvent of −c2Δ
In the case of H0, one has a prefactor in front of −Δ, whence

((
−c2Δ+κ2)−1ϕ

)
(x) = c−2

((
−Δ+

κ2

c2

)−1

ϕ

)
(x)

=
1

4πc2

∫
e−|x−y|κ/c

|x−y| ϕ(y)d3y .

�
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15.2.7 The Spectrum

We understand now that a self-adjoint operator can be written as a sum or an integral
over a family of pairwise orthogonal projections, i.e., in terms of its associated PVM.
The PVM is a measure supported on the spectrum of the operator, and we may ask
what further relevance the spectrum has. This is a very natural question, given that
the quick acceptance of quantum mechanics was mainly based on the successful
explanation of spectral lines of atoms in terms of eigenvalues of the Schrödinger
operator. The eigenvalues are part of the spectrum. But the spectrum can also be
continuous, as in the case of H0 or x̂. Or it can have both eigenvalues and continuous
parts, like the Hamiltonian of the hydrogen atom, for example. How can one see
what type of spectrum a given operator has?

The spectral measure corresponding to an eigenvector ϕ0 with eigenvalue λ0 is a
point measure μϕ0

H = δ (λ − λ0)‖ϕ0‖2. To see this, note first that (H − z)−1ϕ0 =
(λ0 − z)−1ϕ0 and the functional calculus of Theorem 15.4 imply that, for any
bounded Borel function f , we have f (H)ϕ0 = f (λ0)ϕ0. But then it follows for all
f ∈M

(
σ(H)

)
that

f (λ0)‖ϕ0‖2 =
〈
ϕ0

∣∣ f (H)ϕ0
〉

=
∫

f (λ )dμϕ0
H (λ ) ,

and thus μϕ0
H = δ (λ −λ0)‖ϕ0‖2.

In contrast to the spectral measure of an eigenvector, the spectral measure μηH
generated by a cyclic vector η is supported on all of σ(H), and we can therefore
think of it as “the” spectral measure of H. It will have continuous parts and parts
supported on points. This suggests first looking at general measures μ on the spec-
trum, independently of a corresponding vector. But this is once again abstract and
simple mathematics: a regular Borel measure, which in particular is finite on com-
pact sets, can be decomposed into three parts. Let P := {x ∈ R |μ({x}) �= 0} be the
set of points which have nonzero measure and define, for measurable A ⊂ R, the
point measure part of μ as

μpp(A) := ∑
x∈P∩A

μ({x}) = μ(P∩A) .

If μ = μpp, we say that μ is a point measure. Naturally, one defines the continu-
ous part of μ as μc = μ − μpp. Applied to spectral measures, the idea is that μc is
supported on the continuous part of the spectrum. But this continuous support can
be very different from what we think of as the “continuum”. For example, the Can-
tor set has the same cardinality as the continuum. And what we have in mind is a
measure like Lebesgue measure. Let us say more precisely what we mean by “like”
Lebesgue measure.

Definition 15.6. We say that a measure μ on R is absolutely continuous with respect
to Lebesgue measure λ , and write μ � λ , if

λ (A) = 0 =⇒ μ(A) = 0 ,
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i.e., if all Lebesgue null sets are also μ-null sets.

The Radon–Nikodym theorem states that μ � λ implies that μ has a density with
respect to λ , i.e., that dμ = ρ dλ for some locally integrable function ρ . Let us give
a short sketch of the proof. Let

(
R,B(R),P

)
with P = μ+λ and L2(R,dP). With

spectral measures in mind, we can assume that μ(R) < ∞, which implies that, for
any μ-integrable f , we have

∫
| f |dμ ≤ μ (R)

(∫
| f |2dμ

)1/2

≤ μ (R)
(∫
| f |2dP

)1/2

.

Hence, �( f ) :=
∫

f dμ defines a bounded linear functional on L2(R,dP), and ac-
cording to Theorem 13.2, there is a unique vector g ∈ L2(R,dP) with

�( f ) =
∫

f dμ =
∫

f gdP =
∫

f gdμ+
∫

f gdλ ,

or, rearranged,
∫

f (1−g)dμ =
∫

f gdλ .

Let G1 be the set on which g ≥ 1. Then, by inserting f = χG1 ∈ L2(R,dP) into
this equation, it follows that λ (G1) = 0. Analogously, one sees that the set G2 with
g < 0 is a Lebesgue null set. The assumption of absolute continuity then implies
that μ(G1∪G2) = 0. Let G = G1∪G2. Then for A ∈B(R) and

f =
1

1−g
χAχGc ,

we find that
∫
χA dμ =

∫
χAρ dλ ,

with the non-negative density

ρ =
g

1−g
χG .

The next observation is that any regular Borel measure μ can be split into a part μac

which is absolutely continuous with respect to Lebesgue measure and a part μsing

which is singular and contains, in particular, its pure point part. This is easy to see.
Trivially, we have μ � μ+λ , and hence there is a density ρ such that

μ(A) =
∫

A
ρ dμ+

∫
A
ρ dλ ,

with ρ ≤ 1. Let F =
{

x
∣∣ρ(x) < 1

}
and Fc =

{
x
∣∣ρ(x) = 1

}
. Then clearly λ (Fc) = 0,

and therefore μac(A) = μ(A∩ F) and μsing(A) = μ(A∩ Fc). Note that μac � λ ,
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since, for λ (N) = 0 and μac(N) = μ(N ∩F) > 0, we would get the contradiction
that

μ(N∩F) =
∫

N∩F
ρ dμ+

∫
N∩F

ρ dλ =
∫

N∩F
ρ dμ < μ(N∩F) .

Hence, μac(N) = 0.
Now we can subtract the pure point part from the singular part and define the sin-

gular continuous part of a regular Borel measure as μsc = μsing−μpp. In summary,
we get the decomposition

μ = μpp +μac +μsc . (15.46)

Let us return now to the spectral measure μηH of a cyclic vector η . Its decomposition
immediately yields a decomposition of the Hilbert space in the form

L2(σ(H),dμηH
)

= L2(σ(H),dμηpp

)
⊕L2(σ(H),dμηac

)
⊕L2(σ(H),dμηsc

)
,

and by inverting the unitary map U from H to L2
(
σ(H),dμηH

)
, we get the decom-

position

H = Hpp⊕Hac⊕Hsc . (15.47)

We can also understand this in the following way. Suppose for example that ϕ ∈
Hac. Then the corresponding spectral measure μϕH is absolutely continuous. This is
because f = Uϕ ∈ L2

(
σ(H),dμηac

)
, and therefore, with (15.41),

dμϕH(λ ) =
∣∣ f (λ )

∣∣2
dμηac(λ ) =

∣∣ f (λ )
∣∣2ρη(λ )dλ .

This shows in particular that the ambiguity in the spectral measure (the cyclic vector
is never unique) has no influence on the decomposition (15.47). The latter is unique!

Finally, one can also decompose the spectrum into different, not necessarily dis-
joint components. One defines

σpp(H) := σ(H|Hpp) = supp(μηpp) ,

σac(H) := σ(H|Hac) = supp(μηac) ,

σsc(H) := σ(H|Hsc) = supp(μηsc) .

Here the pure point spectrum σpp is the closure of the set of eigenvalues, where the
latter was previously denoted by σp.

Remark 15.12. On the Spectrum of Unitarily Equivalent Operators
Let S and T be self-adjoint, and let T =USU∗ with U unitary. Then, clearly, σ(S) =
σ(T ) because λ − S is invertible if and only if λ −T = U(λ − S)U∗ is invertible.
Let us go quickly through an argument which shows that even more is true, viz., the
spectral types agree. This follows once we show that the PVMs PS of S and PT of T
transform according to
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PS = UPTU∗ , (15.48)

since the spectral measures then agree:

μψS (A) =
〈
ψ|PS

Aψ
〉

=
〈
U∗ψ|PT

A U∗ψ
〉

= μU∗ψ
T (A) .

For (15.48), recall that PS
A = χA(S) and PT

A = χA(T ). Using (15.39) and approx-
imating as in Theorem 15.4 (v), we find that (15.48) follows from (T − z)−1 =
U(S− z)−1U∗. �

Now back to physics. Think of the Schrödinger operator H. The subspace Hpp con-
tains linear combinations of eigenfunctions. These are the bound states, i.e., states
which stay within bounded regions during the time evolution. In Hac, there are the
wave functions which spread and propagate to infinity, while in Hsc, there are all
the wave functions which behave neither way, and which one would like to ignore
altogether. As an example let us compute

〈
ϕ

∣∣e−iHtψ
〉

for ψ ∈Hac and ϕ ∈H :

〈
ϕ

∣∣e−iHtψ
〉

=
∫

e−iλ td〈ϕ |Pλψ〉=
∫

e−iλ tρϕ,ψ(λ )dλ = ρ̂ϕ,ψ(t) t→∞−→ 0 ,

where we have used the fact that, like μψH , μϕ,ψ
H is also absolutely continuous, and

we have applied the Riemann–Lebesgue lemma. So the overlap of ψ(t) = e−iHtψ
with any fixed wave function ϕ goes to zero for t→∞, or, in other words, ψ(t) goes
to zero weakly. While this does not yet show that ψ(t) goes to spatial infinity, it
gives a first idea of how spectral and dynamical properties are related.

There is an area of mathematical physics called scattering theory, which makes
this picture much more precise for the case of spatially decaying interactions. In
particular one tries to show that states in Hac move asymptotically according to
the “free” dynamics, and such states are called scattering states. As a byproduct,
one often obtains Hsc = {0}, and such Hamiltonians are said to be asymptotically
complete. Among other more important things, this will be touched upon in the next
and final chapter.
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Chapter 16
Bohmian Mechanics on Scattering Theory

The quantum equilibrium distribution tells us the probability for a system to be in a
certain configuration at a given time t. That is the basis for the quantum formalism
of POVMs, PVMs, and self-adjoint observables on a Hilbert space. In this last chap-
ter we shall return to the beginning of it all, namely to Born’s 1926 papers [1, 2], in
which he applies Schrödinger’s wave equation to a scattering situation. In this ap-
plication, Born recognized the importance of the quantum equilibrium distribution
ρ = |ψ|2 as the distribution of the random position of the particle after scattering.

Curiously though, the application of quantum mechanics to scattering situations
comes along with a shift of emphasis on the meaning of the quantum equilibrium
distribution. In scattering theory, the crossing probability of spacetime surfaces be-
comes meaningful. This is naively clear when one pictures the scattering situation as
in Fig. 16.1. There are detectors surrounding the scattering potential. The question
is: What is the probability that the detector will click?

Prior to answering that one must first clarify the following question: Is the time at
which a detector clicks a fixed given time, i.e., a time the experimenter can choose?
Intuitively and correctly, the answer is no. The time is random. The detector clicks
when the particle arrives at the detector surface and crosses it. So both the where
and the when of the detection event are random.

It is immediately clear that these are questions which Bohmian mechanics is
tailored-made to answer, since the notion of where and when the particle crosses a
surface is a natural one when trajectories exist. It is another matter to find a closed
formula for the crossing probability. A nice formula can be found when one con-
siders the scattering regime, which is a space regime where the particles move es-
sentially along straight lines. There are plenty of books on scattering theory, and we
shall not invent scattering theory anew. But true to our intention to provide a clear
ontological picture and true to our maxim expressed by Melville:

While you take in hand to school others, and to teach them by what name a whale-fish is
to be called in our tongue leaving out, through ignorance, the letter H, which almost alone
maketh the signification of the word, you deliver that which is not true. – HACKLUYT

Melville (1851), Moby Dick, Chap. 32 [3]

D. Dürr, S. Teufel, Bohmian Mechanics, DOI 10.1007/978-3-540-89344-8 16, 345
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 16.1 A scattering experiment. A particle with wave function ψ is sent to a target, here a
potential V . The detectors sit far away from the target and wait for the particle to arrive. The
scattering experiment is in principle very much like the first-exit experiment in Fig. 16.2, with the
difference that, in a scattering experiment, the particle comes into the target region from far away
and the detection is far away from the target

we shall elaborate on surface-crossing probabilities for Bohmian trajectories. Then
following this line of thought, we shall examine the essential elements of scattering
theory, until we end with Born’s formula for the scattering cross-section.

16.1 Exit Statistics

Consider the experiment sketched in Fig. 16.2. A particle is located within the region
G at time t = 0. The wave function of the particle is ψ and suppψ ⊂G at time t = 0.
The wave function obeys Schrödinger’s equation. When and where does the particle
leave G? That question is in general not well posed, because the particle can leave
and reenter the region G. A good question would be: When and where does the
particle leave the region for the first time. In other words, when and where does the
particle cross the boundary ∂G of G for the first time?

This problem is not the common textbook problem of quantum mechanics. The
reason is that time is not an observable. There are various arguments for that, but
they are not important for us, since we have learnt that any experiment which ends
with pointers pointing to values has POVM statistics. The same holds here. More-
over, we shall have no need to address the question as to whether a unique form of
the associated POVM exists, and if it does, what it is. Why should we worry about
the POVM, which by its very meaning handles all wave functions? If one is inter-
ested only in very special wave functions, as we are, for example, those which are
well localized at time zero within G, we do not need an abstract formalism.
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supp 	

Fig. 16.2 Experiment to determine the exit position and exit time from a region G. A detector
clicks at a random position and random time

Another question which might be worrisome is whether the interaction with the
detectors must be taken into account to obtain the observed scattering statistics. In
other words, why is the unmeasured crossing probability equal to the measured one?
Detectors interact with the particle and interaction means change of wave function,
which means change of trajectory, which means change of exit statistics. All this is
true. So the experimenter must be careful with the choice of detectors, so that the
effect of the detection on the wave function is small enough, or of such a quality,
that the trajectories are not substantially altered. This may be particularly important
when measuring first-exit times of the general kind we discuss below. It is presum-
ably less important in the scattering situation which we discuss after that, because
in scattering setups, the interaction energy between the particles and the detector is
small compared with the energy of the particles. Having said this, we shall follow
the common practice of quantum physics and henceforth not worry about the pres-
ence of detectors, simply taking it for granted that the detection is designed in such
a way that it does not mess up the trajectories too much.

Let us now start with a simple argument which deals with the first-exit time of
the particle from G. That time is a random variable on the initial positions within
the support of the initial wave function ψ . It is defined by

τ(x) = inf
{

t
∣∣X(t,x) /∈ G, x ∈ suppψ

}
. (16.1)

Then, using the quantum equilibrium distribution, we can attempt to compute the
“distribution function”
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P
ψ({

x
∣∣τ(x) > t

})
= P

ψ(
X(s,x) ∈ G for all s≤ t

)
“ = ” P

ψ(
X(t,x) ∈ G

)
= P

ψt (G)

=
∫

G

∣∣ψ(x, t)
∣∣2

d3x . (16.2)

This is simple enough, but the second equality is only correct if the particle never
returns once it has left G. The third equality is equivariance. As usual one obtains
the exit-time density ρψe (t) from the distribution function P

ψ(τ > t) of τ by differ-
entiation

ρψe (t) = − d
dt

P
ψ(τ > t) =−

∫
G

∂ |ψ(x, t)|2
∂ t

d3x

= − ∂
∂ t
〈ψt |OGψt〉

=
i
h̄

(
〈Hψt |OGψt〉−〈ψt |OGHψt〉

)
. (16.3)

We have introduced the position PVM OG to make it look like advanced quantum
mechanics. We have also used the notation ψt to highlight the time dependence of
the wave function ψ(x, t). For [t1, t2]⊂ R

+, we get

P
ψ(
τ ∈ [t1, t2]

)
=

∫ t2

t1
ρψe (t)dt .

So we have a bilinear form, but is it positive? Do we get a POVM? In fact, we do
not, because of the inverted commas on one of the equals signs in (16.2).

Returning to (16.3), we introduce the quantum flux jψ = |ψ|2vψ in the third
equality, recalling the quantum flux equation (7.17). Using Gauss’s theorem with
dS as oriented surface element of ∂G,

ρψe (t) = −
∫

G

∂ |ψ(x, t)|2
∂ t

d3x =
∫

G
∇ · jψ(x, t)d3x

=
∫
∂G

jψ(x, t)·dS .

Therefore,
∫ t2

t1
ρψa (t)dt =

∫ t2

t1

∫
∂G

jψ(x, t)·dSdt

is the “net flow” through the spacetime surface ∂G× [t1, t2], which can be negative.
It can be interpreted as a probability if the following positivity condition holds.
Suppose we define the normal vectors to ∂G as pointing outwards. Then

jψ(x, t)·dS≥ 0 , for all x, t ∈ ∂G× [t1, t2] . (16.4)
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Fig. 16.3 Signed crossings of the boundary ∂G of G

If (16.4) holds, then

jψ(x, t)·dSdt = − ih̄
2m

[
ψ∗(x, t)∇ψ(x, t)−ψ(x, t)∇ψ∗(x, t)

]
·dSdt

= “crossing probability of the surface element dS in dt” . (16.5)

Now this is news. But can we trust it? What does the flux integral mean if (16.4)
does not hold?1 Bohmian mechanics gives the answers. Let us look at the Bohmian
trajectories.

The Bohmian trajectories X(t)t≥0 are randomly distributed according to the ran-
dom distribution of initial values X(0), which are |ψ(0)|2-distributed. The trajec-
tories define the random number N(Δ∂G,Δt) of crossings of X(t)t≥0 through Δ∂G
within the time interval Δt. This number is a function of the initial positions of
the trajectories, and inherits its randomness from the |ψ|2-distribution of the initial
positions. The number is naturally decomposable into two random numbers

N(Δ∂G,Δt) = N+(Δ∂G,Δt)+N−(Δ∂G,Δt) ,

with N+(Δ∂G,Δt) as outward crossings and N−(Δ∂G,Δt) as returning inward cross-
ings of Δ∂G within Δt, as shown in Fig. 16.3. The number of signed crossings is the
difference

Ns(Δ∂G,Δt) := N+(Δ∂G,Δt)−N−(Δ∂G,Δt) .

We now cut the set Δ∂G× Δt into small pieces Δ∂G j × Δti, which are assumed
to be so small that they can only be crossed once, either positively or negatively:
Ns(Δ∂G j,Δti)∈{±1,0}. Then the total number N(Δ∂G j,Δti) becomes the indicator
function of Boltzmann’s collision cylinder, as we shall explain now.

1 The positivity condition on the quantum flux and the relation to mathematical scattering theory
is discussed further in [4].
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Boltzmann’s statistical mechanics argument, which is crucial for crossing prob-
abilities, observes that the particle can only cross Δ∂G j within the time interval Δti
if it is at time ti in the volume (the collision cylinder2)

ΔCi, j =
∣∣vψtiΔti·ΔS j

∣∣ .

Therefore

N
(
Δ∂G j,Δti

)
= χΔCi, j

(
X(ti)

)
.

The probability for the particle to be in the cylinder is given by the quantum equi-
librium (qu. eq.) distribution and thus by equivariance

E
ψti

(
N

(
Δ∂G j,Δti

))
= E

ψti

(
χΔCi, j

(
X(ti)

))

= P
ψti (ΔCi, j)

qu.eq.
= |ψti |2

∣∣vψtiΔti·ΔS j
∣∣ =

∣∣jψti ·ΔS j
∣∣Δti .

Using

N(Δ∂G,Δt) =∑
i, j

N
(
Δ∂G j,Δti

)
,

and by linearity of the expectation value, we can compute the expectation value of
the total number of crossings through the boundary of G :

E
ψ
(

N
(
Δ∂G, [t1, t2]

))
=

∫
Δ∂G×[t1,t2]

∣∣jψ ·dS
∣∣dt .

Observing that we obtain a−1 from the scalar product of the velocity and the surface
normal when a trajectory returns, we likewise obtain the expectation of the number
of signed crossings Ns

(
Δ∂G, [t1, t2]

)
:

E
ψ
(

Ns
(
Δ∂G, [t1, t2]

))
=

∫
Δ∂G×[t1,t2]

jψ ·dSdt . (16.6)

The flux integrated across a surface and over some time interval is therefore in gen-
eral the expected number of signed crossings of the trajectories of the surface in that
time interval. It is important to understand that it is the expected value of signed
crossings and not the probability. The expectation is additive, while the probability
is not in general. The crossing probability is in general not additive because a trajec-
tory may cross the surface more than once. Therefore the events where a trajectory
crosses the surface Δ∂G say at time t1 and at time t2 are not disjoint, as one immedi-
ately sees when one follows the trajectory back in time to its starting region. Hence

2 The name “collision” comes from its use in the statistical mechanics of interacting particles. In
our context, “collision” means “crossing”.
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the probabilities of these two events do not add to give the corresponding crossing
probability.

Additivity holds, however, when each trajectory crosses only once, which is en-
sured by the positivity condition (16.4). Assuming jψt ·dS > 0 for all times means
assuming that the scalar product between the Bohmian velocity and the surface el-
ement is positive, so that the trajectory crosses from inside to outside. This in turn
means that the trajectory can cross the surface only once, whence the signed number
equals the total number of crossings, which is either zero or unity. Then denoting
the first-exit time from G by τ(x) [see (16.1)], and denoting the first-exit position
by Xτ := X

(
τ(x)

)
, where x is the starting point of the trajectory, we obtain

E
ψ
(

N
(
Δ∂G, [t1, t2]

))
= E

ψ
(

Ns
(
Δ∂G, [t1, t2]

))

= 0 ·Pψ
(
τ /∈ [t1, t2] or Xτ /∈ Δ∂G

)
+1 ·Pψ

(
τ ∈ [t1, t2] and Xτ ∈ Δ∂G

)
.

Hence, by virtue of (16.6) and the positivity condition (16.4), the crossing probabil-
ity is

P
ψ(

Xτ ∈ Δ∂G;τ ∈ [t1, t2]
)

= E
ψ
(

Ns
(
Δ∂G, [t1, t2]

))

=
∫ t2

t1

∫
Δ∂G

jψ ·dSdt . (16.7)

If the positivity condition does not hold, the flux integral on the right of (16.7) is
in general not positive, and the exit probability is not given by a simple expression.
It is easy to see that the set of “good” wave functions which satisfy the positivity
condition (16.4) is not a linear set, which means that the superposition of two “good”
wave functions is not in general a “good” wave function. A first-exit statistics POVM
will only be given by the flux on “good” wave functions, and it is not clear what it
will look like in general. Thus we have an example of a measurement situation where
we are only interested in the statistics of particular wave functions, and where we do
not care at all about the general quantum formalism. Is this in any way problematic?
Of course, it is not!

To help appreciate the fact that Bohmian mechanics yields in the most straight-
forward manner that the crossing probability is determined by the quantum flux, we
contrast this with other versions of quantum theories with trajectories. For exam-
ple in stochastic mechanics [5, 6], where the trajectories are like Brownian motion
paths, the distribution of the first-exit time will bear no relation whatsoever with the
quantum flux.

Remark 16.1. A Four-Dimensional View
The quantum flux equation (7.17) for one particle can be viewed (like any conti-
nuity equation) as the assertion that the current jμ , μ = 0,1,2,3, j = (ρψ , jψ) is
divergence-free:
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∂μ jμ = 0 . (16.8)

In this four-dimensional view, a four-current jμ defines the particle worldlines Xμ

by requiring that these worldlines are integral curves along the four-current vector
field. Choosing an appropriate parametrization, we can write

dXμ

dτ
= jμ(Xμ) .

The four-current version of the quantum flux equation gives another perspective on
equivariance. Let F denote a (three-dimensional) smooth hypersurface in space-
time, which is crossed only once by each worldline. If the worldlines do not turn
backward in time, as is the case of interest here, the assumption is simply that the
surface has a timelike normal at each point. Then for a subset ΔF ∈F , we read

∫
ΔF

j ·dσ = P
ψ(
ΔF is crossed by a worldline

)
, (16.9)

where we take the probability as being unity on F .
This reading of the integrated four-current as crossing probability is consistent,

because the analogous statement holds for any other surface F ′ which is also
crossed only once by each trajectory, and the two probabilities are connected by
the current. To see this, consider the worldline cylinder C with base ΔF and cap
ΔF ′ ∈F ′, which is the image of ΔF under the flow map given by the four cur-
rent. In other words, the lateral surface of the cylinder is made up of worldlines. The
cylinder surface is taken to be oriented with outward pointing normal vectors. Then,
by Gauss’s theorem, and by virtue of (16.8), we obtain

∫
∂C

j ·dσ =−
∫
ΔF

j ·dσ +
∫
ΔF ′

j ·dσ =
∫

C

∂ jμ

∂xμ
d4x = 0 , (16.10)

where, in the last equality, we used the fact that the current is orthogonal (by con-
struction of the current cylinder) to the lateral surface of the cylinder. Hence the
crossing probability is preserved when the current is divergence-free.

In Bohmian mechanics the natural type of surface F is a x0 = t = const. hy-
perplane with normal (1,0,0,0), and for that (16.9) yields the quantum equlibrium
distribution, i.e., Born’s statistical law, because j ·dσ = |ψt |2d3x. Furthermore, the
expression always has the same form, a property which we called equivariance.

But we can also consider skewed hypersurfaces. In the above, we considered
surfaces given by the parametrization

Σ(x0,u,v) =
(
x0,x1(u,v),x2(u,v),x3(u,v)

)
∈ R

4 , x0 ∈ [t1, t2] , (u,v) ∈ G⊂ R
2 .

The scalar product j ·dΣ can be computed as the determinant of the enlarged four-
dimensional matrix made from the Jacobi matrix of Σ and j as fourth column. [Re-
call that, if instead we list the canonical unit vectors ek, k = 0,1,2,3, as fourth
column, we obtain the surface normal in Σ(x0,u,v) by expanding the determinant
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with respect to the fourth column.] With σ(u,v) =
(
x1(u,v),x2(u,v),x3(u,v)

)
∈R

3,
we obtain

j ·dΣ = det

⎛
⎜⎜⎜⎝

1 0 0 j0

0 ∂ux1 ∂vx1 j1

0 ∂ux2 ∂vx2 j2

0 ∂ux3 ∂vx3 j3

⎞
⎟⎟⎟⎠dt dudv = j·∂uσ ∧∂vσdt dudv .

In the language of forms, j is a 3-form

ω j = j0dx1∧dx2∧dx3− j1dx0∧dx2∧dx3 + j2dx0∧dx1∧dx3− j3dx0∧dx1∧dx2 .

The 3-form is by its very meaning an object which is to be integrated over a three-
surface, and by definition,

∫
Σ
ω j =

∫
ω j(∂x0 ,∂u,∂v)dt dudv ,

where dxk(∂y) is defined as dxk(∂y) = ∂xk/∂y. Naturally, this yields the same as the
determinant above.

The 3-form is to be replaced by a 3N-form in the case of N particles. The
corresponding current is (3N + 1)-dimensional and it gets integrated over 3N-
dimensional hypersurfaces, e.g., over the t = const. hyperplanes, yielding the quan-
tum equilibrium distribution. �

16.2 Asymptotic Exits

We shall now analyze a physical situation where we expect the positivity condition
(16.4) to apply, and hence also (16.7), and we thus have a formula for the crossing
probability. This is the situation in which the detectors are far away from where
the wave function is initially localized, or where, in Fig. 16.3, the boundary ∂G
is far away. We connect this now with the asymptotic form of the wave function
which we discussed in Remark 15.8, and which says heuristically that the Bohmian
trajectories move asymptotically along straight lines.

For simplicity, we take for G a ball of radius R, and consider the exit position
Xe of the particle through a piece of the spherical surface ΣR = RΣ , Σ ⊂ B1 (see
Fig. 16.4) when R gets large, i.e., we take the large R limit of (16.7), and with t
integrated over all times (since we are only interested in the position), we should
have

lim
R→∞

P
ψ(Xe ∈ ΣR) = lim

R→∞

∫ ∞

0

∫
ΣR

∣∣jψ ·dS
∣∣dt = lim

R→∞

∫ ∞

0

∫
ΣR

jψ ·dSdt . (16.11)
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Fig. 16.4 Geometry for the computation of a flux across a surface

Note that the equality of the last two integrals ensures that the flux integral is posi-
tive, whence it does indeed give the crossing probability.

To compute this, we recall (15.10) (setting h̄/m = 1 for notational convenience)

ψ(x, t)
x,t large∼ 1

(it)3/2
eix2/2tψ̂

(x
t

)
, (16.12)

where ψ̂ is the Fourier transform of the wave function ψ at time zero. This asymp-
totic form of the wave function says that, at large times, the wave function will be
at positions x for which x/t ∈ supp ψ̂ .

We shall now carry out an instructive calculation which, in some sense, has al-
ready been done in (15.11), whence the result will not be particularly surprising. It
is nevertheless gratifying to see how everything fits together. We replace the flux
in (16.11) by the flux of the asymptotic wave function (16.12) for which we first
observe that, in

∇
1

(it)3/2
eix2/2tψ̂

(x
t

)
=

1

(it)3/2
i
x
t

eix2/2tψ̂
(x

t

)
+

1
t

1

(it)3/2
eix2/2tψ̂ ′

(x
t

)
,

the second term is of smaller order since x/t = O(1), due to the support condition
just mentioned. Therefore, for large x, t,

jψ (x) = ℑ(ψ∗t ∇ψt)≈
x
t

(
1
t

)3 ∣∣∣ψ̂
(x

t

)∣∣∣2
. (16.13)

This means that the flux is asymptotically radial, i.e., jψ(x)∼ x = R, so that on the
surface,

jψ ·dS≥ 0 .
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This takes care of the equality of the integrated absolute flux and the integrated flux
in (16.11). To compute (16.11), observe the following:

1. The surface element reads dS = RRd2ω , with d2ω as the surface element of the
unit sphere.

2. Substituting k = R/t for t yields dk = −kdt/t as the new integration variable in
the integral.

3. CΣ denotes the cone with solid angle Σ , as depicted in Fig. 16.4.

Then

∫ ∞

0

∫
ΣR

jψ ·dSdt
(16.13)
≈

∫ ∞

0

∫
ΣR

(
1
t

)3 ∣∣∣∣ψ̂
(

R
t

)∣∣∣∣
2 R

t
·dSdt (16.14)

by (1)
=

∫ ∞

0
dt

∫
Σ

(
1
t

)3 ∣∣∣∣ψ̂
(

R
t

)∣∣∣∣
2 R3

t
d2ω

by (2)
=

∫ ∞

0
dk k2

∫
Σ

d2ω |ψ̂ (k)|2 =
∫

CΣ
|ψ̂ (k)|2 d3k .

Hence, for (16.11), we get

lim
R→∞

P
ψ(Xe ∈ ΣR) = lim

R→∞

∫ ∞

0

∫
ΣR

jψ ·dSdt =
∫

CΣ
|ψ̂(k)|2 d3k ,

or a little less precisely,

P
ψ(Xe ∈ ΣR)

R large
≈

∫
CΣ
|ψ̂(k)|2 d3k . (16.15)

There are various mathematically rigorous assertions around (16.15). The asymp-
totic equality between the integrated absolute flux and the integrated flux in (16.11)
is part of the so-called flux-across-surfaces theorem, of which many versions have
been proven (see Remark 16.2). The above result is made rigorous in [7].

The formula (16.15) is basic to scattering theory. In scattering situations, the
detectors are far away from the scattering centers, and after the scattered wave has
left the scattering potential, i.e., when it is far away, it does move freely. Therefore
(16.15) applies to scattering, with one caveat, however. The Fourier transform of
the wave function ψ at time zero appears in (16.15). Of course, time zero could be
any time, but which ψ is appropriate in formula (16.15) when the wave function
also interacts with a potential, i.e., when it does not move freely all the time? One
might have the idea of taking ψT for some large T , a time whereafter the wave
function does move freely. But such a time is not sharply defined. Mathematically at
least, there will always be some part of the wave function overlapping the potential.
The question then is: Does there exist an asymptotic expression for a given ψ for
large times, with which we can compute large time statistics? We shall address this
question next. In fact, we shall compute the exit distribution now in the physically
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relevant situation of scattering. In doing so, we shall restrict ourselves to the simplest
case of one-particle potential scattering.

16.3 Scattering Theory and Exit Distribution

We continue with our discussion of the exit distribution and consider its relevance
for scattering situations. In scattering theory the wave does not evolve freely. There
is a scattering potential V which influences the evolution of the wave, as shown in
Fig. 16.1, i.e., the Schrödinger operator is H = H0 +V. In scattering theory, we pic-
ture a wave approaching the scattering potential from far away, interacting, and then
leaving as a “scattered wave”. Far away from the potential, where the detectors wait
for the particle to arrive, the wave should move freely (assuming that the potential
falls off fast enough). Such wave functions will be called scattering states.

How can one phrase in mathematical terms the fact that a wave moves asymptot-
ically freely? The easiest way to approach this is perhaps to think of asymptotics in
time rather than spatial asymptotics, since these should be roughly equivalent points
of view. The question is then: What is the asymptotic form of e−itHψ for large t?
Tracing the time evolution of the wave function e−itHψ as a path in Hilbert space
helps to answer this (see Fig. 16.5). We can picture free motion asymptotically in
time by the path approaching an asymptote which is defined by a freely moving
wave function

(
e−itH0ψout

)
t∈R

, sketched in Fig. 16.5 as a “straight line” in Hilbert
space. This suggests making the requirement

lim
t→∞

∥∥e−itHψ− e−itH0ψout
∥∥ = 0 . (16.16)

This is a requirement for the existence of the wave function ψout whose free evolu-
tion defines the asymptote for the evolution of ψ . All wave functions ψ for which
such an outgoing (and ingoing, see below) asymptote exists are called scattering
states of the Hamiltonian H.

Since ψout(t) evolves freely in time, we know of course that (16.12) holds for
ψout, and (16.16) then suggests that

ψ(x, t)
x,t large∼ 1

(it)3/2
eix2/2tψ̂out

(x
t

)
. (16.17)

One may hope that the amount of time in which the scattering wave is influenced
by the potential is in a reasonable sense limited, so that the replacement we made
in (16.13) to compute the flux integral (16.14) can also be made with (16.17). Then
from (16.15), replacing ψ̂ by ψ̂out, we obtain the formula

P
ψ(Xe ∈ ΣR)

R large
≈

∫
CΣ
|ψ̂out(k)|2d3k . (16.18)
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Fig. 16.5 Schematic representation of wave function evolution in Hilbert space. The time evolution
of a scattering state ψ0 is shown at some arbitrary time, e.g., t = 0. Associated with it are two
states ψ0in and ψ0out which evolve freely. The backwards-in-time evolved ψ0in is the asymptote
for t→−∞ (16.43) and the forward-in-time evolved ψ0out is the asymptote for t→ ∞. See text for
explanation

Remark 16.2. On Scattering into Cones and the Flux Across Surfaces
The formula (16.18) can be turned into a mathematically rigorous assertion, usu-
ally referred to as the flux-across-surfaces theorem [7–11]. It holds for a large class
of potentials. The expression (16.18) gives the probability that the particle exits
through the surface piece ΣR (i.e., gets detected by the detector which covers that
solid angle). The explanation as to why the probability is given by the momentum
distribution of ψout is that the particle gets scattered into the (spatial) cone CΣ . In
other words, because the particle moves more or less along a straight line – a ray,
given by the direction of the momentum h̄k in CΣ which lies in that cone – it crosses
the detector surface. This idea also underlies the so-called scattering-into-cones the-
orem [12, 13], which asserts that the probability that the particle is in the cone CΣ at
time T is given by the probability that the momentum lies in the cone, provided T
is large enough. In other words this probability is also given by the right-hand side
of (16.18):

lim
t→∞

∫
CΣ
|ψ(x, t)|2d3x =

∫
CΣ
|ψ̂out(k)|2d3k .

In contrast, the flux-across-surfaces theorem connects directly with the crossing of
the detector surface at random times, and its proof supports the picture of straight
line trajectories. But the rigorous assertion that the Bohmian trajectories become
straight lines requires a few more technicalities, and has been established in [11].
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The scattering-into-cones theorem, and in particular the flux-across-surfaces the-
orem, have been put forward as fundamental assertions for many-particle scattering
theory [14]. There is of course no problem with writing down the N-particle quan-
tum flux

jψ(x1, . . . ,xN , t) = ℑ
(
ψ∗(x1, . . . ,xN , t)∇ψ(x1, . . . ,xN , t)

)
,

but what does it mean? For many-particle scattering there is not just one random
time at which the detector clicks, but rather N random times at which the N par-
ticles arrive at the detectors. The N-particle quantum flux does not handle that.
It has therefore been observed [15] that, in many-particle scattering, the quantum
flux loses its meaning, and that the relevant crossing probabilities of the scattered
particles through various detectors must be based on the Bohmian trajectories and
the Boltzmann collision cylinder argument leading to (16.6). This argument can be
straightforwardly generalized to the case of many particles. A many-particle scatter-
ing version of (16.18) based on Bohmian trajectories has accordingly been advanced
in [16]. �

16.4 More on Abstract Scattering Theory

Formula (16.16) leads directly to the definition of the operator

W+ = s-lim
t→∞

eitHe−itH0 , (16.19)

where s-limt→∞ indicates the strong L2-limit

lim
t→∞

∥∥∥(
W+− eitHe−itH0

)
ϕ

∥∥∥ = 0 , for all ϕ ∈ L2 .

In other words,

ψ = W+ψout . (16.20)

Figure 16.5 shows the maps W± (where W− will be introduced further below) at
time t = 0, which is an arbitrary time. It will soon become clear that shifting time
will only produce an irrelevant phase factor in the formulas relevant for us. That is
why we omit the time index 0.

We have cheated a bit in representing the situation in such an innocent-looking
way. We really want to find ψout for given ψ , so that the true aim is the inverse
operator W−1

+ , which is defined on Ran(W+), the range of W+. On that,

W−1
+ = W ∗+ = s-lim

t→∞
eitH0e−itH . (16.21)
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To know the domain of W−1
+ , i.e., to know Ran(W+) is a way of phrasing the so-

called completeness problem, which we shall elaborate on below. In short, we do not
know beforehand which wave functions are scattering states. In fact, this is exactly
what we wish to find out. On the other hand, the operator W+ acts naturally on L2

(provided the limit exists), because all states evolve under the free dynamics into
almost plane outgoing wave packets which, when evolved backwards in time with
the full time evolution, become scattering states, provided the Hilbert space sketch
of the asymptotic approach shown in Fig. 16.5 is correct. The latter should be the
case if the potential falls off “fast enough” at infinity.

The operator is called the wave operator, and it was one of the earliest inventions
in scattering theory. In other accounts of scattering theory the wave operator W+ is
often written as Ω−, where the difference is mainly a sign convention, explained in
footnote 3. In our notation, the + sign indicates that the time limit in the definition
of W+ is for large positive times. Later on we shall introduce W−, in which the limit
towards large negative times is considered.

How can one get a handle on the limit in the definition of the wave operator? With
a simple trick, as old as the wave operator itself. Since the wave operator encodes
the potential V , we need a condition on the potential which ensures the existence of
the limit. So how can we make the potential visible in the wave operator W+? The
answer is, by writing

W+ = lim
T→∞

eiT He−iT H0 = 1+ lim
T→∞

∫ T

0

d(eitHe−itH0)
dt

dt

= 1+ lim
T→∞

∫ T

0
ieitH(H−H0)e−itH0dt

= 1+ lim
T→∞

∫ T

0
ieitHV e−itH0dt . (16.22)

This gives us now the opportunity to see the stationary phase method (15.44) at
work. The task of establishing that the wave operator W+ is well defined is now
reduced by (16.22) to showing the existence of the integral on L2. Thus it is sufficient
to establish that, on a dense set of wave functions,

lim
T→∞

∫ T

0

∥∥eitHV e−itH0ψ
∥∥dt = lim

T→∞

∫ T

0

∥∥V e−itH0ψ
∥∥dt ≤C‖ψ‖ .

In view of (15.44), this is easy if we lay down some conditions which we choose
here for the sake of simplicity, while preserving the spirit of what needs to be done.
The dense set we choose is the set of wave functions with support in Fourier space
bounded away from zero, let us say by a distance a, so that k ∈ supp ψ̂ =⇒ k > a .
Then we split the integrand, introducing the characteristic function χ ,

∥∥V e−itH0ψ
∥∥ =

∥∥V
(
χ(x < at)+χ(x≥ at)

)
e−itH0ψ

∥∥
≤

∥∥Vχ(x < at)e−itH0ψ
∥∥+

∥∥Vχ(x≥ at)e−itH0ψ
∥∥ .
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If V is bounded in the operator norm, we can pull ‖V‖ out of the first term, and what
remains is integrable in time by virtue of the stationary phase argument (15.44). For
the second term, we assume that |V (x)| ∼ x−1−ε , so that

∥∥Vχ(x≥ at)e−itH0ψ
∥∥ ≤ ∥∥Vχ(x≥ at)

∥∥
∞‖ψ‖

∼ t−1−ε ,

which is also integrable in time.

Remark 16.3. On the Scattering Program in Mathematical Physics
Since we are talking about the behavior of wave functions, let us take the oppor-
tunity of talking about a classification of wave functions which is of interest in the
mathematical physics of scattering theory. Given a Schrödinger operator there are
three different spectral subspaces of the Hilbert space, as discussed at the end of
Chap. 15. There is the subspace Hpp belonging to the pure point spectrum spanned
by eigenfunctions. These are stationary or bound states, and they do not move to
infinity, whence the particles also remain in finite regions.

Then there is the subspace Hcont belonging to the continuous spectrum. Can
the wave functions in that subspace also be dynamically characterized? Now, the
continuous spectrum splits into two spectra, the absolutely continuous spectrum and
the singular one. Correspondingly, one has two more subspaces Hac and Hsc. What
can be said about these spaces? Writing

ei(t+s)He−i(t+s)H0 = eisHeitHe−itH0e−isH0 ,

we obtain the so called intertwining property

e−isHW+ = W+e−isH0 , (16.23)

from which we infer that the range Ran(W+) is invariant under the H-time evolution.
Strong differentiation with respect to s of (16.23) yields

HW+ = W+H0 , (16.24)

and thus, since

W−1
+ = W ∗+

on Ran(W+), we have

W ∗+HW+ = H0 . (16.25)

This says that the restriction of H to Ran(W+) is unitarily equivalent to H0. And
this in turn means that the restriction has absolutely continuous spectrum (see Re-
mark 15.12), so that we get the important “a priori” result

Ran(W+)⊂Hac . (16.26)
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Completeness of the scattering problem now means that Ran(W+) = Hac, and the
next task is to show that. For the singular part of the spectrum, one wants to show
asymptotic completeness, namely that it is an empty set, so that one does not need
to worry about what those wave functions do. In other words, Hcont = Hac (see for
instance [4, 17, 18]). �

We may now invert (16.20), i.e., we write

ψout = W−1
+ ψ , (16.27)

and introducing this into (16.18), we can also express the exit distribution as

P
ψ(Xe ∈ ΣR)

R large
≈

∫
CΣ
|ψ̂out(k)|2d3k =

∫
CΣ

∣∣ ̂W−1
+ ψ(k)

∣∣2
d3k . (16.28)

This is the formula from which the scattering cross-section, the basic empirical im-
port of scattering theory, arises. Note also that changing the origin of time produces a
phase factor e−ik2t/2 in the Fourier transform, becauseψout evolves with the free time
evolution or because of the intertwining property (16.24). This factor then drops out.

Before we compute the scattering cross-section, we shall allow ourselves a short
interlude at this point to introduce another technically important notion, namely the
notion of generalized eigenfunctions. They can also be used to phrase the long time
asymptotics of the wave function, but they do much more than that: they diagonalize
the Hamiltonian on the subspace Hac.

16.5 Generalized Eigenfunctions

Another important and somewhat less abstract notion, but equivalent to the idea of
wave operators, is the notion of generalized eigenfunctions. They can be introduced
in a straightforward manner, but since we have already talked about the wave oper-
ator, we shall introduce them using the wave operator. Let us get more familiar with
the wave function in (16.28):

ψ̂out(k) = ̂W−1
+ ψ(k) = 〈k|W−1

+ ψ〉 , (16.29)

By unitarity of the wave operator W−1
+ = W ∗+ on Ran(W+), this may be written as

̂W−1
+ ψ(k) = 〈W+k|ψ〉 . (16.30)

Recalling that

−1
2
Δeik·x =

k2

2
eik·x ,
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which means that

H0|k〉=
k2

2
|k〉 ,

and in view of (16.24), we see that the vector

|+,k〉 := W+|k〉 (16.31)

is an eigenvector of H, albeit a generalized one:

H|+,k〉= HW+|k〉= W+H0|k〉=
k2

2
W+|k〉=

k2

2
|+,k〉 . (16.32)

The “x representation” yields the generalized eigenfunction

ϕ+(x,k) := (2π)3/2W+|k〉= (2π)3/2〈x|+,k〉 , (16.33)

which is not square integrable, and hence not an element of L2. But this is in no way
disquieting since we are already familiar with

〈x|k〉= (2π)−3/2eik·x ,

the generalized eigenfunctions of H0, which are normalized to 〈k|k′〉 = δ (k−k′).
This is exactly how we should think of the generalized eigenfunctions ϕ+(x,k)
[likewise normalized to δ (k−k′)], namely as wave functions which diagonalize H
restricted to Ran(W+) in the very same sense as the Fourier transform diagonalizes
H0. The generalized eigenfunctions play the same role as the plane waves for the
free Hamiltonian. They solve the eigenvalue equation

Hϕ(x,k) =
k2

2
ϕ(x,k) (16.34)

in the space of bounded functions, and one can take this as the starting point for
scattering theory.

The problem of completeness is now expressible as the problem of establishing
an isometry between L2 and Hac via a generalized Fourier transform, taking as
“basis” elements the generalized eigenfunctions. This is completely analogous to
the way plane waves define the Fourier transformation. Combining (16.29), (16.30),
(16.31), and (16.33), we see that the function ψ̂out, which is the Fourier transform
of ψout, is also the generalized Fourier transform of ψ ∈Hac :

ψ̂out(k) = (2π)−3/2
∫
ϕ+(x,k)∗ψ(x)d3x . (16.35)

[We have ignored here the mathematical detail that the Fourier transform is not
an integral transformation in general, i.e., the integral is in general defined via an
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approximation (see Chap. 14).] Like the ordinary Fourier transform, the generalized
Fourier transform on L2 is an isometry, represented here by the wave operators.

The eigenfunction expansion (16.35) is a powerful tool for studying the time
evolution of the wave function, which, for the free Hamiltonian, is of course
well known. One can get a good handle on the generalized eigenfunctions when
one rewrites the eigenvalue equation (16.34) in integral form. This is called the
Lippmann–Schwinger equation. We start with the eigenvalue equation (16.32),

H|+,k〉= (H0 +V )|+,k〉= k2

2
|+,k〉 ,

and reorder the terms to get

(
H0−

k2

2

)
|+,k〉= V |+,k〉 .

We want to solve this for |+,k〉, but the operator (H0−k2/2) is not invertible, since

(
H0−

k2

2

)
|k〉= 0 .

Observing this, we may write the inversion formally in a suggestive way as

|+,k〉=
(

H0−
k2

2

)−1

V |+,k〉+ |k〉 ,

with the idea in mind that the generalized eigenfunctions should be asymptotically,
i.e., far from the range of the potential, like plane waves, and where (H0− k2/2)−1

must be defined in an appropriate way, as spelt out below. In other words, we look for
solutions of the eigenvalue equation (16.34) which satisfy the boundary condition

lim
|x|→∞

[
ϕ±(x,k)− eik·x] = 0 .

This is the formal Lippmann–Schwinger equation, but we still need to find the
proper Green’s function, i.e., the kernel of (H0− k2/2)−1.

There are various ways to arrive at the Green’s function. Since we introduced the
eigenfunction as kernel function of the wave operator in (16.33), the straightforward
way starts from a variant of (16.22). By virtue of (16.33),

|k〉= W ∗+|+,k〉 ,

and in view of (16.22), we write

W ∗+ = 1− lim
T→∞

∫ T

0
ieitH0V e−itHdt . (16.36)

Combining these, we compute
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|k〉 = W ∗+|+,k〉= |+,k〉− lim
T→∞

∫ T

0
ieitH0V e−itH |+,k〉dt

= |+,k〉− lim
T→∞

∫ T

0
ieitH0−itk2/2V |+,k〉dt

= |+,k〉− lim
T→∞

∫ T

0
ieit(H0−k2/2)V |+,k〉dt ,

using the intertwining property e−itH |+,k〉= e−itk2/2|+,k〉 in the third equality. The
integral is again the undefined inverse of H0−k2/2, but we now take the Abel limit,
which exists:

|k〉= |+,k〉− lim
ε↓0

∫ ∞

0
iexp

[
it

(
H0−

k2

2
+ iε

)]
V |+,k〉dt .

But we have already computed this! The integral is the resolvent

(
H0−

k2

2
+ iε

)−1

=
(
−1

2
Δ− k2

2
+ iε

)−1

,

which we discussed in Remark 15.10. Substituting t/2 for t yields a factor of 2
in front of the integral, and then we put κ2 = −k2 + 2iε and limε↓0κ = ik in Re-
mark 15.10, in accordance with our agreement to take the positive real part. Hence
in the “x representation” this becomes

〈x|k〉= 〈x|+,k〉+ 1
2π

∫
e−i|x−y|k

|x−y| V (y)〈y|+,k〉d3y ,

where the integrand kernel is the Green’s function of the Schrödinger equation in
three dimensions. Using (16.33) and reordering yields the Lippmann–Schwinger
equation

ϕ+(x,k) = eik·x− 1
2π

∫
e−i|x−y|k

|x−y| V (y)ϕ+(y,k)d3y . (16.37)

The equation provides a handle on ϕ+(x,k), for example by using iterative proce-
dures. One may start at zeroth order with eik·x replacing ϕ+(x,k) inside the integral.
Iterating this gives the so-called Born series.

In view of the decay of the Green’s function, (16.37) seems to suggest that, far
from the scattering potential, the generalized eigenfunctions become ordinary plane
waves. However, the decay of the Green’s function is not strong enough to support
the assertion that this also holds in the L2-sense. For that we must appeal to the
stationary phase argument of Remark 15.9, which in fact yields a much stronger
decay in space and time. Expanding ψ in terms of generalized eigenfunctions [see
(16.35)], we get
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ψ(x, t) = (2π)−3/2
∫

e−ik2t/2ϕ+(x,k)ψ̂out(k)d3k (16.38)

= (2π)−3/2
∫

e−ik2t/2eik·xψ̂out(k)d3k

−(2π)−3/2
∫

e−ik2t/2

[
1

2π

∫
e−i|x−y|k

|x−y| V (y)ϕ+(y,k)d3y

]
ψ̂out(k)d3k .

The first term contains the phase term of the free evolution, which yields, by the
stationary phase argument, in accordance with (15.10), the new general asymptotics
(16.17). The second term contains the phase function −|x−y|k− k2t/2, which has
no stationary point for positive times t, and hence by the stationary phase argument
in Remark 15.9, the term shows arbitrary polynomial decay in time and space, pro-
vided ψ̂out is smooth enough. Hence the long time and long distance behavior for
positive times is governed by the first term, the free evolution. This is therefore
another less abstract, and consequently more physical way to capture asymptotic
free motion. There is no need to appeal to wave operators: simply use generalized
eigenfunctions.

For reasons to be explained below, we introduce another equally important
“eigenbasis” which is given by another class of solutions ϕ−(x,k) of the eigen-
value equation (16.34). They appear when we agree to take the negative real part
κ =−ik in the derivation of Remark 15.10. The difference is a change of sign in the
exponent of the integrand in (16.37):

ϕ−(x,k) = eik·x− 1
2π

∫
ei|x−y|k

|x−y|V (y)ϕ−(y,k)d3y . (16.39)

These functions define a generalized Fourier transform as well. But instead of
(16.35), we now define

ψ̂in(k) := (2π)−3/2
∫
ϕ−(x,k)∗ψ(x)d3x . (16.40)

To understand the subscript “in”, we reconsider the stationary phase argument we
just went through in (16.38) for this class of eigenfunctions, and obtain analogously

ψ(x, t) = (2π)−3/2
∫

e−ik2t/2ϕ−(x,k)ψ̂in(k)d3k (16.41)

= (2π)−3/2
∫

e−ik2t/2eik·xψ̂in(k)d3k

−(2π)−3/2
∫

e−ik2t/2

[
1

2π

∫
ei|x−y|k

|x−y|V (y)ϕ−(y,k)d3y

]
ψ̂in(k)d3k .

The sign makes all the difference. The phase in the second term has no stationary
point for negative times, so it vanishes when t→−∞. The first term thus dominates
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the large negative time behavior and shows that, for large negative times, the wave
function approaches another asymptotic free evolution, that of ψin.

This leads us to the “incoming side” of the scattering process, which has not yet
been discussed. It is also important, perhaps even more important than the outgoing
side, because this is after all the part of the scattering experiment which is supposed
to be under the control of the experimenter. The experimenter usually prepares the
incoming wave packet with great care. We shall say more on the nature of the in-
coming wave in the next section. At the moment it suffices to understand how one
describes mathematically the fact that the incoming wave is prepared, i.e., that it is
under the control of the experimenter. This means that at the time of preparation,
the state is not yet influenced by the scattering potential.

Physically, the preparation is done far enough from the scattering center to ensure
that, at the preparation place, the scattering potential is not felt, i.e., e−itH ≈ e−itH0 .
In other words, the wave function starts to evolve with the free time evolution. This
is of course to be taken with a pinch of salt. The Schrödinger evolution will immedi-
ately produce a spread-out wave function, so – mathematically – the potential is al-
ways felt, but its influence is “physically negligible” at the time and place where the
wave packet is prepared. The idea is then that, at the time and place of preparation of
the scattering state ψ , the state is close (in the L2 sense) to ψin, i.e., ‖ψ−ψin‖ ≈ 0.
We shall come back to this below.

Obviously, since the generalized eigenfunctions diagonalize H, they provide a
powerful analytical tool to come to grips with the time evolution of wave functions
for a general H. Curiously though, the generalized Fourier transform has become
something of a wallflower in mathematical scattering theory. It has been revitalized
in recent works on what is called time-dependent scattering theory [9, 10, 19–21],
and what we present in this chapter is based on these references.

We can restate the above in terms of a wave operator W− which, in accordance
with (16.31) and (16.33), is related to ϕ− according to3

ϕ−(x,k) =: (2π)3/2〈x|W−k〉=: (2π)3/2〈x|−,k〉 . (16.42)

The definition of W− goes like the definition of W+, but with time reversed. Intro-
duce an asymptotic wave function, namely ψin, evolving with the free Hamiltonian,
and the scattering state ψ converges under its evolution for t →−∞ (see Fig. 16.5)
to that freely evolving state. This reads in mathematical terms as

3 The sign convention which introduces Ω− instead of W+ arises from the minus sign in the ex-
ponent of the integrand. Accordingly, W− is denoted by Ω+. One may wonder about the physi-
cal meaning of the different signs in the exponent e±i|x−y|k/|x− y| appearing in the Lippmann–
Schwinger equations. They represent outgoing and incoming spherical waves. Their appearance is
directly related to the way the wave operators W± are defined. For example, in W+ [see (16.19)],
the full time evolution acts backwards in time, developing the scattered state ψ ≈ ψout (for
t→ ∞) backwards in time. Therefore from the scattering picture of outgoing spherical waves (see
Fig. 16.6), the time-backwards evolved spherical waves must appear in the representation of W+,
whence ϕ+ appears. By the same token the scattering picture of outgoing spherical waves will be
captured by ϕ−. Equivalently, we can understand the roles of ϕ± by virtue of the stationary phase
arguments in (16.38) and (16.41).
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lim
t→−∞

∥∥e−itHψ− e−itH0ψin
∥∥ = 0 , (16.43)

yielding the wave operator

W− = s-lim
t→−∞

eitHe−itH0 . (16.44)

Put another way,

ψ = W−ψin . (16.45)

Inserting this into (16.29) and recalling (16.33), we get

〈k|W−1
+ ψ〉= 〈k|W ∗+W−ψin〉=: 〈k|Sψin〉= ψ̂out(k) . (16.46)

The operator combination W ∗+W− =: S is called the S-matrix. It maps (unitarily) ψin

to ψout: ψout = Sψin. Introducing this into (16.28), we obtain

P
ψ(Xe ∈ ΣR)

R large
≈

∫
CΣ
|〈k|Sψin〉|2 d3k . (16.47)

At every moment of time t, the map W−1
− maps the scattering state ψt to the corre-

sponding ψt,in (see Fig. 16.5).
In (16.45) above, ψ can be the scattering state at any arbitrary time and ψin

the corresponding in state at that time. For the physical interpretation, however, it
is useful to observe that the right-hand side of (16.47) does not change in states
taken at different times, since the S-matrix commutes with the free time evolution
Se−itH0 = e−itH0S. This holds because the intertwining property (16.24) holds for W−
as well, i.e., e−itHW− = W−e−itH0 , as one readily sees by repeating the argument for
W− in place of W+. Applying the corresponding intertwining properties twice then
yields the commutation property of S. By the intertwining property, we have ψt,in =
W ∗−e−itHψ = e−itH0ψin, and therefore the replacement of ψin by ψt,in produces a

phase factor e−ik2t/2, which arises by evolving the plane wave |k〉. This phase factor
drops out, since one takes the absolute square in (16.47).

As already mentioned above, for the physical interpretation one should think of
ψin as taken at a time where ‖ψ −ψin‖ ≈ 0, so that we may think of ψin as the
scattering state ψ prior to the time of interaction with the scattering potential. In
that case, we have approximately

P
ψ(Xe ∈ ΣR)

R large
≈

∫
CΣ

∣∣〈k|Sψ〉∣∣2
d3k , (16.48)

with ψ being the scattering state prior to the interaction with the potential. We shall
come back to this in the last section.
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16.6 Towards the Scattering Cross-Section

In a scattering experiment, one focuses on directions k different from the incoming
directions k′ which we assume to be well localized around k0. This helps to simplify
formulas, because we can subtract the identity from S, and this is a subtraction of
the unscattered part. The resulting operator is called the T -matrix. The following
computation is for the main part already known to us. We compute T := S− I, i.e.,

〈k|Tψin〉 =
〈
k
∣∣(S− I)ψin

〉
=

〈
k
∣∣(W ∗+W−− I)ψin

〉

=
∫ 〈

k
∣∣(W ∗+W−− I)

∣∣k′〉〈k′|ψin〉d3k′

=
∫ 〈

k
∣∣(W ∗+W−− I)

∣∣k′〉ψ̂in(k′)d3k′ , (16.49)

and we determine the kernel

〈k|T |k′〉=
〈
k
∣∣(W ∗+W−− I)

∣∣k′〉 . (16.50)

Since I = W ∗−W−, we obtain
〈
k
∣∣(W ∗+W−−W ∗−W−)

∣∣k′〉 =
〈
k
∣∣(W ∗+−W ∗−)W−

∣∣k′〉 ,

which is excellent because, in view of (16.36) and its analogue for W ∗−, we have

W ∗+−W ∗− =−
∫ ∞

−∞
ieitH0V e−itHdt . (16.51)

Everything now fits beautifully together:

〈k|T |k′〉 =
〈

k
∣∣∣−

∫ ∞

−∞
ieitH0V e−itHdt W−

∣∣∣k′
〉

=−
∫ ∞

−∞

〈
k
∣∣ieitH0V e−itHW−

∣∣k′〉dt

= −
∫ ∞

−∞

〈
k
∣∣ieitH0VW−e−itH0

∣∣k′〉dt =−
∫ ∞

−∞

〈
k
∣∣ieit(k2/2−k

′2/2)VW−
∣∣k′〉dt

=
∫ ∞

−∞
exp

[
it

(k2− k′2)
2

]
〈k|iV |−,k′〉dt ,

where we have introduced (16.42). Now use the fact that

∫ ∞

−∞
exp

[
it

(k2− k′2)
2

]
dt = 2πδ

(
k2

2
− k′2

2

)
, (16.52)

to get for (16.49)

〈k|Tψin〉=−
∫

2πδ

(
k2

2
− k′2

2

)
〈k|iV |−,k′〉ψ̂in(k′)d3k′ . (16.53)
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Performing the integration in (16.53) in spherical coordinates (k′,ω ′), with appro-
priate substitution

d3k′ = k′2dk′d2ω ′ = k′d
k′2

2
d2ω ′ ,

yields k = k′, and we are left with the integration over the solid angle ω ′. Writing
k = (k′,ω), we get for (16.53)

〈
(k′,ω)

∣∣Tψin
〉

= 2πi
∫

k
〈
(k′,ω)

∣∣V ∣∣−,(k′,ω ′)
〉
ψ̂in(k′,ω ′)d2ω ′ . (16.54)

The potential term in the integrand
〈
(k′,ω)

∣∣V ∣∣−,(k′,ω ′)
〉

is customarily written as
the kernel function

〈
(k′,ω)

∣∣V ∣∣−,(k′,ω ′)
〉

=: T
(
(k′,ω),k′

)
=

1
(2π)3

∫
e−ik′ω·xV (x)ϕ−(x,k′)d3x ,

(16.55)

where we have introduced (16.42).
We can now insert this into (16.47) by restricting the integration to cones CΣ

bounded away from the incoming direction (which in a scattering experiment is
rather sharply defined), so that we may replace S by T = S− I. Collecting all terms,
we obtain under this condition, for large R,

P
ψ(Xe ∈ ΣR)≈ 4π2

∫ ∞

0

∫
CΣ

∣∣∣∣
∫

T
(
(k,ω),(k,ω ′)

)
ψ̂in

(
(k,ω ′)

)
d2ω ′

∣∣∣∣
2

k4d2ω dk .

(16.56)

Our final goal is to deal with the realistic scattering situation, where the (normal-
ized4) incoming wave packet has a well defined incoming momentum and the lateral
(transverse to the incoming momentum) shape does not vary within the range of the
potential. In other words, on the length scale of the target, the incoming wave packet
looks almost like a plane wave eik0·x. In this situation, the exit distribution yields the
basic object of scattering theory, the scattering cross-section. Turning back now to
physics, we return also to physical units.

16.7 The Scattering Cross-Section

Scattering theory is a cornerstone for verifying our understanding of the universe ex-
perimentally. The central quantity in a scattering experiment is the scattering cross-
section σk0(Σ). The cross-section is an area which has the following meaning. One

4 Needless to say, physics demands that the wave packet be normalized, even when it becomes
almost a plane wave! A formal way to think of the incoming wave is that |ψ̂|2(k)≈ δ (k−k0).
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prepares a beam of “identical” particles, whose wave packets are almost like plane
waves with respect to the size of the target (see Fig. 16.6). This means that each
wave packet is very sharply peaked around the wave vector k0 with lateral wave
number, i.e., perpendicular to k0, close to zero. We shall be more specific about
what this means in physical units later on, but the picture in physical space should
be clear: each wave packet has almost flat wave fronts widely overlapping the target.

Now place a surface perpendicular to k0, centered on the beam in front of the
target. Then count the number of particles crossing that surface per unit time. The
scattering cross-section σk0(Σ) is the size of the surface for which the number of
particles crossing per unit time equals the number ṄΣ of particles scattered per unit
time into directions in Σ . By the law of large numbers, the number ṄΣ is determined
by the crossing probability (16.56), so when ṄB is the number of particles per unit
time within the beam (i.e., the number of particles crossing the cross-section of the
beam per unit time), then

ṄΣ ≈ ṄBP
ψ(Xe ∈ ΣR) . (16.57)

We must now evaluate P
ψ(Xe ∈ ΣR) under the conditions typically satisfied in scat-

tering situations, to obtain the theoretical prediction for the cross-section σk0(Σ).
Before doing this, in order to obtain a more complete perspective, we recall the

famous derivation of the scattering cross-section by Born. In the following, we think
of the origin as the place where the target is put. The distance R is the distance of
the detectors from the origin. R is assumed to be very large compared to the target
size.

16.7.1 Born’s Formula

In his famous 1926 papers [1, 2], Born derived a theoretical expression for the scat-
tering cross-section using a stationary picture. The derivation starts with the ansatz
of an idealized wave picture, where a plane wave and an outgoing spherical wave
with scattering amplitude f are superposed:

Φ(x) = eik0·x + fk0(ω)
eik0x

x
, (16.58)

with

ω =
x
x

. (16.59)

From this one computes the quantum flux

jϕ(x, t) =
h̄
m
ℑ

(
ϕ∗(x, t)∇ϕ(x, t)

)
(16.60)
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arising from the plane wave part eik0·x, yielding h̄k0/m, and the quantum flux arising
from the spherical wave part fk0(ω)eik0x/x, yielding

h̄
m

∣∣ fk0(ω)
∣∣2 k0

x2ω .

The first flux is interpreted as the flux of an incoming beam of particles with mo-
mentum h̄k0, and the second flux as the flux of the scattered particles through a
detector surface covering the solid angle Σ . The quotient of the modulus of these
fluxes is taken to be the cross-section for the solid angle Σ :

σk0(Σ) =
∫
Σ

| fk0(ω)|2 k0

x2

k0
x2d2ω =

∫
Σ

∣∣ fk0(ω)
∣∣2

d2ω . (16.61)

To determine | fk0(ω)|2 in a physical situation where particles are scattered off
a potential V (x), i.e., where the wave function is governed by the one-particle
Schrödinger equation with Schrödinger operator

H =− h̄2

2m
Δ+V ,

one compares (16.58) with the generalized eigenfunctions ϕ±(x,k) solving the
Lippmann–Schwinger equations (16.37) and (16.39):

ϕ±(x,k) = eik·x− 1
2π

∫
e∓ik|x−xp|

|x−xp| V (xp)ϕ±(xp,k)d3x′ .

This can be used to read off the asymptotic (large x) behavior of the eigenfunctions.
The bit of computation required for this involves estimating the absolute value

|x−xp|= x

√
1+

x′2

x2 −2ω·xp
x
≈ x−ω ·xp ,

for large x, where we have introduced (16.59). Neglecting terms of order 1/x2, one
readily sees that ϕ−(x,k) is the stationary solution which is asymptotically of the
form (16.58). This is of course no surprise, because we already anticipated that in
footnote 3. We have

ϕ−(x,k)≈ eik·x− eikx

x
1

2π

∫
e−ikω·x′V (x′)ϕ−(x′,k)d3x′ . (16.62)

Comparing this asymptotic form of ϕ−(x,k) for large x with (16.58) suggests that

fk0(ω)∼− 1
2π

∫
e−ik0ω·xV (x)ϕ−(x,k0)d3x .

Therefore,
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∣∣ fk0(ω)
∣∣2 =

1
4π2

∣∣∣∣
∫

e−ik0ω·xV (x)ϕ−(x,k0)d3x

∣∣∣∣
2

. (16.63)

Recalling the T -matrix kernel (16.55) and appropriately renaming the variables, we
find by comparison that we may also express the scattering amplitude f in the form

∣∣ fk0(ω)
∣∣ = 4π2

∣∣T(
(k0,ω),k0

)∣∣ . (16.64)

Equation (16.61) then becomes

σk0(Σ) = 16π4
∫
Σ

∣∣T(
(k0,ω),k0

)∣∣2
d2ω . (16.65)

The expression looks familiar! It is very similar to the right-hand side of the crossing
probability (16.56), as indeed it should be, and yet it is not the same. The difference
is that, in (16.56), the T -kernel is inside the squared d2ω ′ integration and integrated
against ψ̂in

(
(k,ω ′)

)
. We now come to the evaluation of (16.56) yielding (16.65).

16.7.2 Time-Dependent Scattering

The explanation also answers a question which has been around since Born’s deriva-
tion: Why is Born’s stationary analysis appropriate? Scattering is a time-dependent
physical process with normalized wave packets that move. Therefore a fundamental
analysis must start with a normalized wave packet satisfying the conditions which
a scattering experiment provides. From that we must calculate, under conditions
appropriate for a scattering experiment, the probability for scattering. The general
idea is of course that, in the scattering situation, the moving wave packet will look
on the incoming side of the target almost like a plane wave packet. Here the word
“almost” has to be taken with a pinch of salt, since the packet will always be square
integrable. On the outgoing side it will almost look like a spherical wave, and a
quasi-stationary picture emerges (see Fig. 16.6).

We can see this using the expansion (16.41) and introducing the approximation
(16.62). With the identification of the scattering amplitude f , we have approximately

ψ(x, t) ≈ (2π)−3/2
∫

exp

(
−i

h̄k2t
2m

)
eik·xψ̂in(k)d3k

+(2π)−3/2
∫

exp

(
−i

h̄k2t
2m

)
eikx

x
fk(ω)ψ̂in(k)d3k .

The phase in the first term has a stationary point at h̄k/m = x/t. For an incoming
wave (ψ ≈ ψin) with a sharply defined momentum h̄k0, the stationary point is ap-
proximately x/t ∼ k0, so that this terms contributes to the wave packet moving in
the direction k0. In other words, it concerns the unscattered part of the wave. The
scattered part is to be computed from the second term. For example, one may use
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Fig. 16.6 Schematic representation of a scattering experiment. Also shown at the bottom is the
support of the Fourier transform of the wave function ψ , which is a member of a beam of identical
wave functions impinging on the target. See the text for further explanation

it to compute the probability of scattering into the cone CΣ (see Remark 16.2). But
since we already have the the crucial formula (16.56) for the crossing probability,
which directly connects with the clicks in the detector, we shall now go on with that
formula.

As we did with (16.48), we may replace ψin in (16.56) by the incoming scattering
state ψ prior to a time where the interaction with the scattering potential becomes
effective. We shall refer to the spatial location of ψ at that time by saying “in front
of the target” (see Fig. 16.6). We assume that the wave packet ψ moves towards the
origin (where the target sits) with a well defined momentum h̄k0 such that k ·k0 > 0,
for all k ∈ supp ψ̂ . We assume further that k0 is parallel to the e3 direction. To
understand that the steps we take in the following are mathematically reasonable,
it is perhaps best to think of ψ̂ as a Gaussian function. We shall formulate further
conditions on ψ along the way, in particular, conditions which are typically fulfilled
in scattering situations and which we shall discuss at the end.

Replacing ψin by ψ and introducing (16.64), equation (16.56) becomes

P
ψ(Xe ∈ ΣR)≈ 1

(2π)2

∫
Σ

∫ ∞

0

∣∣∣∣
∫

f(k,ω ′)(ω)ψ̂
(
(k,ω ′)

)
d2ω ′

∣∣∣∣
2

k4dkd2ω .

We assume that the scattering amplitude varies only slowly as a function of k on the
support of ψ̂ (see Fig. 16.6):

fk(ω)≈ fk0(ω) , on supp ψ̂ . (16.66)

If this condition is fulfilled, the scattering amplitude may be pulled out of the inte-
gral, whence

P
ψ(Xe ∈ ΣR)≈

∫
Σ

∣∣ fk0(ω)
∣∣2

d2ω
1

(2π)2

∫ ∞

0

∣∣∣∣
∫
ψ̂

(
(k,ω ′)

)
d2ω ′

∣∣∣∣
2

k4dk . (16.67)
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Comparison with (16.61) suggests that we are nearly done. We need only understand
what the factor

1
(2π)2

∫ ∞

0

∣∣∣∣
∫
ψ̂

(
(k,ω)

)
d2ω

∣∣∣∣
2

k4dk (16.68)

is doing there. (We have renamed the integration variableω ′ byω .) For this purpose,
introduce (k1,k2) as new variables for the solid angle variables (ϑ ,ϕ). A short cal-
culation shows that

k2d2ω =
k3(k1,k2)

k
dk1dk2 , where k3(k1,k2) =

√
k2− k2

1− k2
2 .

This yields

1
(2π)2

∣∣∣∣
∫
ψ̂

(
(k,ω)

)
k2d2ω

∣∣∣∣
2

=
1

(2π)2

∣∣∣∣
∫
ψ̂(k1,k2,k3)

k3(k1,k2)
k

dk1dk2

∣∣∣∣
2

.

(16.69)

We now assume that

|k1|, |k2| � k3 , i.e., k ≈ k3 , (16.70)

and that

ψ̂(k1,k2,k3)≈ ψ̂(k1,k2,k) . (16.71)

Under these conditions and using (16.69), equation (16.68) becomes

1
(2π)2

∫ ∞

0

∣∣∣∣
∫
ψ̂

(
(k,ω)

)
k2d2ω

∣∣∣∣
2

dk =
1

(2π)2

∫ ∞

0

∣∣∣∣
∫∫
ψ̂(k1,k2,k)dk1dk2

∣∣∣∣
2

dk .

(16.72)

Denoting the partial (inverse) Fourier transform by

ψ̃(0,0,k) :=
1

(2π)2

∫∫
ψ̂(k1,k2,k)dk1dk2 ,

we have

1
(2π)2

∫ ∞

0

∣∣∣∣
∫∫
ψ̂(k1,k2,k)dk1dk2

∣∣∣∣
2

dk =
∫ ∞

0
|ψ̃(0,0,k)|2dk .

Observing that k3 > 0 on the support of ψ̂ and using the Plancherel identity, we
finally obtain

1
(2π)2

∫ ∞

0

∣∣∣∣
∫
ψ̂

(
(k,ω)

)
k2d2ω

∣∣∣∣
2

dk =
∫ ∞

−∞

∣∣ψ(0,0,x3)
∣∣2

dx3 =
∫ 0

−∞

∣∣ψ(0,0,x3)
∣∣2

dx3 ,
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since ψ(x1,x2,x3) = 0 for x3 ≥ 0.
What is the meaning of the quantity on the right? Let A be an area perpendicular

to k0 in front of the target, much larger than the target area but smaller than the
cross-section of the beam (see Fig. 16.6), on which the wave function satisfies

∣∣ψ(x1,x2,x3)
∣∣≈ ∣∣ψ(0,0,x3)

∣∣ , (x1,x2) ∈ A , (16.73)

i.e., on which the lateral shape of the wave function is flat. Introduce

pA :=
1
|A|

∫
A

∫ 0

−∞

∣∣ψ(x1,x2,x3)
∣∣2

dx1dx2dx3 ≈
∫ 0

−∞

∣∣ψ(0,0,x3)
∣∣2

dx3 . (16.74)

pA|A| is the probability that the particle is in the cylinder A×(−∞,0). Assuming that
the wave packet does not spread too much laterally during the time the wave packet
crosses the surface A, the particle will cross A with this probability, and hence we
arrive at the meaning of pA as the probability per unit area that the incoming particle
crosses the surface A.

Introducing pA into (16.67), we get

P
ψ(Xe ∈ ΣR)≈ pA

∫
Σ

∣∣ fk0(ω)
∣∣2

d2ω . (16.75)

Now recall (16.57). We multiply the probability density pA accordingly by ṄB, the
number of particles per unit time in the beam, and get (by the law of large numbers)
the number of particles per unit area per unit time crossing A, i.e., ṄA/|A| ≈ ṄB pA.
The scattering cross-section is by definition the area we need to multiply ṄA/|A| by
to obtain ṄΣ . We thus identify the scattering cross-section theoretically as Born’s
expression (16.61).

The remaining question is whether the conditions we employed along the way
are consistent with the experimental scattering situation. The most demanding con-
dition is perhaps (16.66). What does this mean in spatial terms? To see that, we
approximate the generalized eigenfunction in (16.63) by a plane wave. The scatter-
ing amplitude then becomes, in this first order approximation, the so-called Born
approximation, the Fourier transform of the potential, also referred to as the form
factor:

fk(ω) = V̂ (k− kω) . (16.76)

For a rough understanding, let us use the reciprocal relation known from Gaussian
shapes of the width ΔF x of a function F in space and ΔF̂ k of the Fourier transform
F̂ , namely

ΔF x∼ (ΔF̂ k)−1 .

In terms of the form factor condition, (16.66) says that

V̂ (k− kω)≈ V̂ (k0) , for k ∈ supp ψ̂ ,
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whence V̂ must vary on a much larger scale than ψ̂ , i.e., ΔV̂ k� Δψ̂k. This means
for the widths in space that ΔV x� Δψx. In other words, the wave must be very
much spread out compared to the spatial extent of the potential.

Now we come to conditions (16.70) and (16.71), of which (16.71) is the more
demanding. As already mentioned at the beginning, in order to understand what
is involved, we should think of ψ̂ as having a Gaussian shape (in particular it is
positive), e.g.,

ψ̂(k1,k2,k3)∼ exp

[
− (k1 + k2)2

2σ2
⊥

− (k3− k0)2

2σ2
‖

]
.

Then (16.71) means roughly that, for k1,k2,k3 varying within the widths σ⊥,σ‖,
∣∣ψ̂(k1,k2,k3)− ψ̂(k1,k2,k)

∣∣� ψ̂(k1,k2,k3) ,

which leads to
∣∣∂k3ψ̂(k1,k2,k3)(k− k3)

∣∣� ψ̂(k1,k2,k3) ,

that is,

k3− k0

σ2
‖

(k− k3)� 1 .

Observing that

k− k3 =
√

k2
1 + k2

2 + k2
3− k3 ≈

1
2

k2
1 + k2

2

k3
∼ σ

2
⊥

k0
,

one then has

k3− k0

σ2
‖

σ2
⊥

k0
∼
σ‖
σ2
‖

σ2
⊥

k0
=
σ2
⊥

σ‖k0
� 1 .

We introduce the positional spreads, i.e., the longitudinal spread σ x
‖ = σ−1

‖ and the

lateral spread σ x
⊥ = σ⊥−1, whereupon

σ⊥
σ x
⊥

σ x
‖

k0
� 1 . (16.77)

This is so simple that one must wonder what it means. The answer is quite remark-
able, as this condition is equivalent to another condition, which we mentioned in
passing, to get the interpretation below (16.73). The point is that the wave function
should not spread too much in the lateral direction when passing through the surface
A. Multiplying the numerator and denominator of (16.77) by h̄/m and observing that
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σ x
‖m

h̄k0
= T

is the time it takes for the wave function to cross the surface A, we set Δx
⊥= h̄σ⊥T/m

for the lateral spread during that time, and we see that (16.77) amounts to the simple
relation:

Δx
⊥
σ x
⊥
� 1 ,

which is the no-spreading condition.
This insight also helps with another question one might raise, since there is a

certain arbitrariness in the notion “in front of the target”. Where exactly should the
surface A be put? As long as the longitudinal spread of the wave function is large
compared to the distance at which A is put in front of the target, the no-spreading
condition ensures that the exact place where A is put does not matter.

In textbook treatments of scattering, another, much stronger no-spreading condi-
tion is often required, namely that the wave does not spread from the time of prepa-
ration to the time of detection (see, e.g., [22]). Its purpose is merely to simplify the
mathematical argument, although this argument is simple enough without it, as can
be seen from the above. However, one cannot do without the weaker condition we
have employed here.

In real scattering experiments, the condition (16.73) is satisfied approximately for
A extending over the cross-section of the beam, i.e., the decay of the wave function
at the edges of the beam is concentrated in a very small region compared to the
cross-section of the beam. In this case pA ≈ 1/|A| [see (16.74)]. When the cross-
section of the beam is very much larger than the extension of the scatterer potential,
one may worry that only a very tiny fraction of the particles are being scattered.
Therefore realistic scattering experiments like Rutherford scattering are done with
an extended target foil, on which many scatterers are randomly distributed [23]. The
incoming wave then overlaps a great many small scatterers.

Under certain conditions, which ensure no multiple scattering and no coherence
effects (unlike Bragg scattering, where coherence is the key feature), the scatter-
ers contribute independently to the numbers ṄΣ of scattered particles per unit time.
Therefore, if the incoming wave overlaps nA scatterers, the relevant probability den-
sity which ṄB multiplies is no longer pA, but

ptarget foil
A ≈ nA pA ≈

nA

|A| = ρ ,

the density of scatterers on the target. In this case, the formula for the scattering
cross-section thus reads

σΣ =
ṄΣ

ṄBρ
.



378 16 Bohmian Mechanics on Scattering Theory

A mathematically rigorous treatment of a scattering situation along the lines dis-
cussed in this chapter for a beam of random wave functions, which also intuitively
models the random scatterer situation, can be found in [24], which includes many
references on this subject.
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Chapter 17
Epilogue

Finally: It was stated at the outset, that this system would not be here, and at once, perfected.
You cannot but plainly see that I have kept my word. But I now leave my cetological System
standing thus unfinished, even as the great Cathedral of Cologne was left, with the cranes
still standing upon the top of the uncompleted tower. For small erections may be finished by
their first architects; grand ones, true ones, ever leave the copestone to posterity. God keep
me from ever completing anything. This whole book is but a draught – nay, but the draught
of a draught. Oh, Time, Strength, Cash, and Patience!

Melville (1851), Moby Dick, Chap. 32 [1]

What is a Bohmian quantum theory? A quantum theory that spells out what it is
about. In other words a theory with a clear (primitive) ontology. A theory which has
no place for mysticism, paradoxes, and superstition, and in which observation does
not play an irreducible fundamental role. This does not mean that observation has
no effect, or only a slight effect on an observed system. It does not mean that at all,
as Bohmian mechanics proves. This chapter only draws one moral and its role is
to encourage young scientists not to give up reason and rationality in their quest to
understand how the physical world functions.

The moral is this. It has been claimed that quantum mechanics proves that a
reasonable (some call that classical) understanding of the world is impossible, and
that it is impossible to write down the laws of nature in terms of a clear ontology.
Bohmian mechanics proves that such claims are false, even embarrassingly false,
because Bohmian mechanics is an utterly straightforward completion of quantum
mechanics. Indeed, it is quantum mechanics.

A satisfactory Lorentz invariant Bohmian theory still needs to be found. The fact
that it has not been found yet does not prove that it is impossible to do so. It may
prove, if anything, that we need to think harder, and work harder, and that we need
to scrutinize our established modes of thinking and remain open to reasonable ideas.
Here, reasonable means simply something like this: change our idea about space-
time, change the structure of Schrödinger’s equation, change the ontology, make
it points, fields, strings, or make it whatever seems right for describing nature, but
never give up ontology!

D. Dürr, S. Teufel, Bohmian Mechanics, DOI 10.1007/978-3-540-89344-8 17, 379
c© Springer-Verlag Berlin Heidelberg 2009
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1. V. Allori, D. Dürr, S. Goldstein, and N. Zanghı̀: Seven steps towards the classical world, Journal
of Optics B 4, 482–488 (2002)

2. V. Allori, S. Goldstein, R. Tumulka, and N. Zanghı́: On the common structure of Bohmian me-
chanics and the Ghirardi–Rimini–Weber theory, British Journal for the Philosophy of Science.

3. W.O. Amrein and D.B. Pearson: Flux and scattering into cones for long range and singular
potentials, J. Phys. A 30, no. 15, 5361–5379 (1997)

4. W. Appel and M.K.-H. Kiessling: Mass and spin renormalization in Lorentz electrodynamics,
Ann. Physics 289, no. 1, 24–83 (2001)

5. A. Aspect, J. Dalibard, and G. Roger: Experimental test of Bell’s inequalities using time-
varying analyzers, Phys. Rev. Lett. 49, no. 25, 1804–1807 (1982)

6. G. Bacciagaluppi and A. Valentini: Quantum Theory at the Crossroads: Reconsidering the 1927
Solvay Conference, to be published by Cambridge University Press 2008 (2006) p. 553

7. A.O. Barut: Electrodynamics and Classical Theory of Fields & Particles, Dover Publications
Inc., New York, 1980, corrected reprint of the 1964 original

8. A. Bassi and G. Ghirardi: Dynamical reduction models, Phys. Rep., 379, no. 5–6, 257–426
(2003)
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45. D. Dürr, T. Moser, and S. Römer: On the Exit Statistics Theorem of N-Particle Quantum Scat-
tering, preprint
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Hamilton, 130
Hermitian, 283
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symmetric, 283
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Orthodox quantum mechanics, 216
Orthogonal complement, 269
Orthogonal decomposition, 252
Orthogonality, 252

of wave functions, 229
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Partition function, 78
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Positivity of quantum current, 351
Potential
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classical, 132, 150
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quantum, 149
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definition, 300
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Probability, 49

measure, 53
space, 67, 98
theory, 96
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Projector, 301
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distribution, 237, 352
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measure, 212
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Quantum randomness, 6
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Rademacher, Hans, 58
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Random variable, 67, 98
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Relativistic force, 29
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S-matrix, 367
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Scattering, 135, 140
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and exit distribution, 346
asymptotic completeness, 361
Born on, 345
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derivation of Born’s cross-section, 372
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intuitive picture of, 356

potential, 356
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Rutherford, 377
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stationary treatment, 370, 372
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time-dependent treatment, 372–378

Scattering amplitude, 370
calculation of, 371
in terms of T -matrix, 372

Scattering cross-section, 361, 369–378
Born’s formula, 346, 370–372
definition of, 371, 375
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theoretical, 370
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classical solution of, 138, 153, 279
existence and uniqueness of solutions, 247,
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Spacetime, 27
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Spectral measure, 321
Spectral representation
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Stirling’s formula, 51, 83
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Stone’s theorem, 285, 333
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Strong limit, 300
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T -matrix, 368, 372
relation to cross-section, 372

Tchebychev inequality, 106
Tensor product, 271
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Thermodynamic
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Time in quantum mechanics, 346
Time reversal, 87, 112
Time reversibility of electromagnetism, 36
Time-reversal symmetry, 147
Time-shift invariance, 45
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Triangle inequality, 252
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Unitary time evolution, 279
Universal covering space, 169

Variable
hidden, 244–245
primary, 38
primitive, 47
secondary, 38, 47

Variance, 231
Vector field, 14, 145, 147

divergence free, 19
Velocity vector field, 147
von Neumann equation, 194

Wave function
asymptotic form of, 354
collapse of, 5, 7, 180–182, 186, 208, 216,

227, 228
conditional, 214–218, 223
effective, 180, 191, 216–221, 223, 224, 227,

228, 232, 234, 239, 244, 299
effective collapse of, 179–183, 228
entangled, 201
non-measurability of, 179
of N particles with spin, 276
of the universe, 212
on macroscopic scale, 187
product structure of, 216
spreading of, 237

Wave operator, 359
definition of, 358, 367
existence of, 360–361
intertwining property, 360
inverse of, 358, 360

Wave packet, 124
classical behavior of, 183–186
group velocity of, 183
spreading of, 124, 125, 163, 183, 185, 335

Wave packet collapse, see Wave function,
collapse of

Weak continuity, 280
Weak derivative, see distributional derivative
Weak measurement, 242
Wiederkehreinwand, 88
Wiener process, 119
Worldline, 352

Zeeman effect, 121
Zermelo, Ernst, 88
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