


 

 

 

SPIE Terms of Use: This SPIE eBook is DRM-free for your 
convenience. You may install this eBook on any device you own, 
but not post it publicly or transmit it to others. SPIE eBooks are 
for personal use only. For details, see the SPIE Terms of Use.      
To order a print version, visit SPIE. 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

http://proceedings.spiedigitallibrary.org/ss/TermsOfUse.aspx
https://spie.org/Publications/Book/2512267




Library of Congress Cataloging-in-Publication Data

Names: Anderson, Brian P. (Brian Philip), author.
Title: Field guide to quantum mechanics / Brian P. Anderson.
Description: Bellingham, Washington: SPIE Press, [2019] | Series:
The field guide series ; FG 44 | Includes bibliographical references
and index.

Identifiers: LCCN 2019020406 (print) | LCCN 2019022377 (ebook) |
ISBN 9781510622821 (spiral : alk. paper)

Subjects: LCSH: Quantum theory.
Classification: LCC QC174.12. A53 2019 (print) | LCC QC174.12 (ebook) |
DDC 530.12–dc23

LC record available at https://lccn.loc.gov/2019020406
LC ebook record available at https://lccn.loc.gov/2019022377

Published by

SPIE
P.O. Box 10
Bellingham, Washington 98227-0010 USA
Phone: 360.676.3290
Fax: 360.647.1445
Email: Books@spie.org
Web: www.spie.org

Copyright © 2019 Society of Photo-Optical Instrumentation Engineers
(SPIE)

All rights reserved. No part of this publication may be reproduced or
distributed in any form or by any means without written permission of the
publisher.

The content of this book reflects the thought of the author. Every effort has
been made to publish reliable and accurate information herein, but the
publisher is not responsible for the validity of the information or for any
outcomes resulting from reliance thereon.

Printed in the United States of America.
First printing.
For updates to this book, visit http://spie.org and type “FG44” in the search
field.



Introduction to the Series

In 2004, SPIE launched a new book series, the SPIE Field
Guides, focused on SPIE’s core areas of Optics and
Photonics. The idea of these Field Guides is to give concise
presentations of the key subtopics of a subject area or
discipline, typically covering each subtopic on a single
page, using the figures, equations, and brief explanations
that summarize the key concepts. The aim is to give
readers a handy desk or portable reference that provides
basic, essential information about principles, techniques,
or phenomena, including definitions and descriptions,
important equations, illustrations, application examples,
design considerations, and additional resources.

The series has grown to an extensive collection that covers
a range of topics from broad fundamental ones to more
specialized areas. Community response to the SPIE Field
Guides has been exceptional. The concise and easy-to-use
format has made these small-format, spiral-bound books
essential references for students and researchers. I have
been told by some readers that they take their favorite
Field Guide with them wherever they go.

We are now pleased and excited to extend the SPIE Field
Guides into subjects in general Physics. Each Field Guide
will be written to address a core undergraduate Physics
topic, or in some cases presented at a first-year graduate
level. The Field Guides are not teaching texts, but rather
references that condense the textbooks and course notes
into the fundamental equations and explanations needed
on a routine basis. We truly hope that you enjoy using the
Field Guides to Physics.

We are interested in your suggestions for new Field Guide
topics as well as what could be added to an individual
volume to make these Field Guides more useful to you.
Please contact us at fieldguides@SPIE.org.

John E. Greivenkamp, Series Editor
James C. Wyant College of Optical Sciences

University of Arizona
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The Field Guide Series

Look for these other SPIE Field Guides:

Geometrical Optics, John E. Greivenkamp
Lasers, Rüdiger Paschotta
Nonlinear Optics, Peter E. Powers
Physical Optics, Daniel G. Smith
Solid State Physics, Marek Wartak and C.Y. Fong
Special Functions for Engineers, Larry C. Andrews
Spectroscopy, David W. Ball

Other related titles from SPIE Press:

Introduction to Photon Science and Technology, David L. Andrews
and David S. Bradshaw

The Wonder of Nanotechnology: Quantum Optoelectronic Devices
and Applications, Manijeh Razeghi, Leo Esaki, and
Klaus von Klitzing, eds.



Field Guide to Quantum Mechanics

This Field Guide is a condensed reference to the concepts,
definitions, formalism, equations, and problems of quantum
mechanics. Many topics covered in quantum mechanics courses
are included, while numerous details and derivations are
necessarily omitted. This Field Guide is envisioned to appeal to
undergraduate and graduate students engaged in quantum
mechanics research or courses; to professors, as an aid in teaching
and research; and to professional physicists and engineers
pursuing cutting-edge applications of quantum mechanics. The
mathematical formalism used here involves Dirac notation, with
which the reader should be (or become) familiar to make the most
of this Field Guide.Nevertheless, readers who are not yet familiar
with this formalism should be able to utilize various aspects of
this Field Guide, especially with extra attention directed to the
basic concepts addressed in the first few sections.

I owe sincere thanks to mentors, professors, colleagues, colla-
borators, and friends too numerous to single out by name who
have taught, motivated, and encouraged me throughout more
than three decades of studying quantum physics. Since joining the
University of Arizona faculty, the unwavering support and
partnership of local and international colleagues and collabora-
tors has been indispensable in learning and appreciating many of
the numerous facets of this fascinating subject.

I am especially grateful to two physicists in particular who set in
motion the trajectory of my eventual career while I was still in
high school: the late Jeff Chalk, who first introduced me to
Schrödinger’s equation and quantum mechanics; and Al Rosen-
berger, my first laboratory mentor, who launched my interest in
lasers, optics, and experimental physics.

This Field Guide is dedicated to Jeff and Al, and to the students
who have worked in my labs, sat through my courses, and made
my career as a mentor and educator profoundly fulfilling.

Brian P. Anderson
University of Arizona

June 2019
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Glossary of Symbols

Assorted symbols

B Magnetic field vector
E A quantum-mechanical state space
gJ g-Factor for an angular momentum J
gn Degree of degeneracy for a quantum state

with quantum number n
i ðiÞ i ≡ ffiffiffiffiffiffiffi�1

p
; (ii) a discrete index

J, J Probability current (scalar and vector). For
angular momentum symbols, see page 101.

m (i) Mass of a particle; (ii) with subscript J, a
magnetic quantum number associated with
an angular momentum quantum number J

P Probability
Pa!bðtÞ Time-dependent transition probability from

state jai to state jbi
Rn;lðrÞ (i) Radial part of energy eigenfunction for a

central potential; (ii) hydrogen radial
wavefunction

t Time
Ym

l ðu; fÞ Spherical harmonic

Position and momentum coordinates

dnp Differential volume element in n-dimensional
momentum space

dnr Differential volume element in n-dimensional
position space

p (i) 3D momentum vector: p5 ðpx;py;pzÞ;
(ii) n-dimensional momentum vector

p (i) Momentum variable in a 1D coordinate
system; (ii) magnitude of n-dimensional
momentum vector p: p5 jpj

px, py, pz Orthogonal momentum coordinates
r (i) 3D position vector: r5 ðx; y; zÞ;

(ii) n-dimensional position vector
r Magnitude of n-dimensional position vector r:

r5 jrj
x, y, z Orthogonal spatial coordinates

xii



Greek letters

a (i) Phase-space displacement coordinate;
(ii) an eigenvalue of the harmonic oscillator
annihilation operator â; (iii) fine-structure
constant

gJ Gyromagnetic ratio for an angular
momentum J

djk Kronecker delta for discrete indices j, k
d(x) Dirac delta function over a continuous

variable x
D Detuning, a difference of angular frequencies
u (i) An arbitrary angle; (ii) the polar angle in a

spherical coordinate system
l (i) Perturbation scale parameter; (ii) deBroglie

wavelength; (iii) general scalar quantity, such
as an eigenvalue

m Reduced mass: for masses m1 and m2,
m ≡ m1m2

m1þm2
; for m̂, see page xvi

s (i) Harmonic oscillator length: sj ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðmvjÞ

p
;

(ii) a Pauli spin matrix; (iii) for ŝ, see page xvii
f (i) An arbitrary angle; (ii) the azimuthal

angle in a spherical coordinate system (to be
distinguished from w)

w (i) Within a ket, denotes a quantum state
vector; (ii) a wavefunction of a continuous
parameter, such as wðxÞ (to be distinguished
from f)

c (i) Within a ket, denotes a quantum state
vector; (ii) a wavefunction of a continuous
parameter, such as cðxÞ

Ψ (i) Within a ket, denotes a time-dependent
quantum state vector; (ii) a time-dependent
wavefunction of a continuous parameter,
such as Ψðx; tÞ

v An angular frequency
vL Larmor frequency: vL ≡�gjBj
V Rabi frequency: V ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ jV0j2

p
V0 Bare or resonant Rabi frequency
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Acronyms

1D One-dimensional
2D Two-dimensional
3D Three-dimensional
AM Angular momentum
CG Clebsch–Gordan (coefficient)
CSCO Complete set of commuting observables
OAM Orbital angular momentum
SI International System of Units
SPT Stationary perturbation theory
TAM Total angular momentum (basis)
TDPT Time-dependent perturbation theory
TP Tensor product (basis)

Mathematical operations and symbols

kvk Norm of vector v: kvk5
ffiffiffiffiffiffiffiffi
v†v

p
Ff · · · g Fourier transform
F�1f · · · g Inverse Fourier transform
⊗ Denotes a tensor product
∇ 3D vector differential operator (“del”). In

Cartesian coordinates:
∇5 x̂ ∂

∂x þ ŷ ∂
∂y þ ẑ ∂

∂z
∇2 Laplacian operator: ∇25 ∇ ·∇
Refag Real part of a complex scalar a
Imfag Imaginary part of a complex scalar a
1 Identity matrixX
k

Sum over all values of discrete index k

xiv
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Quantum mechanics symbols

j · · · i Ket vector (ket)
h · · · j Bra vector (bra)
hwjci Scalar or inner product of the ordered pair of

kets ðjwi; jciÞ
Â The “hat” or caret (i) denotes an operator; (ii)

a directional unit vector when used over a
coordinate (in bold), as in x̂; (iii) Â is used
throughout this Field Guide as an arbitrary
operator

Â† The “dagger” superscript denotes the
Hermitian conjugate of operator Â

Â�1 The superscript denotes the inverse of
operator Â

h · · · jÂj · · · i A matrix element of operator Â
Ajk Matrix element of operator Â associated with

matrix row j and column k in a discrete
representation

hÂi An expectation value of operator Â
DÂ Uncertainty or standard deviation of

operator Â: DÂ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hÂ2i � hÂi2

q

[Â, B̂] Commutator of operators Â and B̂:
½Â; B̂�5 Â B̂�B̂ Â

hŝi Bloch vector: hŝi5 ðhŝxi; hŝyi; hŝziÞ
kjcik Norm of ket jci:kjcik5 ffiffiffiffiffiffiffiffiffiffiffihcjcip
jcifvg A ket jci expressed as a column vector in the

representation labeled by fvg
hcjfvg A bra hcj expressed as a row vector in the

representation labeled by fvg
Afvg An operator Â expressed as a matrix in the

representation labeled by fvg
c̃ðpÞ Momentum-space wavefunction associated

(by Fourier transform) with position-space
wavefunction cðrÞ

See page 101 for angular momentum quantum numbers.
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Glossary of Operators

Ĥ Hamiltonian
P̂5 ðP̂x; P̂y; P̂zÞ Vector momentum operator

P̂x; P̂y; P̂z Scalar momentum operators

R̂5 ðX̂ ; Ŷ ; ẐÞ5 ðR̂x; R̂y; R̂zÞ Vector position operator
X̂ ; Ŷ ; Ẑ or R̂x; R̂y; R̂z Scalar position operators
Ŵ or lŴ A perturbation Hamiltonian
m̂ Magnetic dipole moment

Angular momentum (AM): Various vector, magnitude-
squared, and û-component AM operators

F̂; F̂2
; F̂u Total atomic AM

Î; Î2; Îu Nuclear spin AM

Ĵ; Ĵ2
; Ĵu (i) Any generalized AM; (ii) sum of

electron spin AM and orbital AM
L̂; L̂2

; L̂u Orbital AM
Ŝ; Ŝ2

; Ŝu Spin AM

Harmonic oscillator: where jPfx; y; zg and sj ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðmvjÞ

p

âj 5
1ffiffi
2

p ð 1sj
R̂j þ i sj

ℏ P̂jÞ Lowering operator

â†

j 5
1ffiffi
2

p ð 1sj
R̂j � i sj

ℏ P̂jÞ Raising operator

N̂ j 5 â†

j âj Number operator

Projectors

P̂c 5 jcihcj Projector onto jci

P̂q 5
Xq

k51

jvkihvkj Projector onto the subspace Eq
spanned by fjvkig, kPf1; : : : ; qg

xvi



Unitary time evolution from t0 to t

Ûðt; t0Þ5 e� i
ℏðt�t0ÞĤ For time-independent Ĥ

Ûðt; t0Þ5 e�
i
ℏ∫

t
t0
dt0Ĥðt0Þ If and only if [ĤðtÞ, Ĥðt0Þ]5 0 for

arbitrary t and t0

Other unitary operators

Î Identity operator
Ŝðx0Þ5 e�ix0P̂x=ℏ Spatial translation by x0 in the x̂

direction
T̂ðp0Þ5 eip

0X̂=ℏ Translation by p0 of the x component
of momentum

D̂ðaÞ5 ea â†
x�a*âx Phase-space displacement (transla-

tion) in x̂-direction position and
momentum by a ≡ 1ffiffi

2
p ðx0=sþ isp0=ℏÞ,

where s ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðmvÞp

; f0 5 x0p0=ð2ℏÞ
5 eiðp0X̂�x0P̂xÞ=ℏ

5 eif0 T̂ðp0ÞŜðx0Þ
R̂uðuÞ5 e�iuĴu=ℏ Rotation through angle u about a

unit vector û
ŝu Pauli spin operator associated with

the û direction
ŝ5 ðŝx; ŝy; ŝzÞ Vector of Pauli spin operators

Commutation relations

½R̂j; P̂k�5 iℏdjk j; kP fx; y; zg
½âj; â

†

k�5 djk

Vector Operators

Angular momentum:
Ĵ5 ðĴx; Ĵy; Ĵ zÞ

Pauli spin operators:
ŝ5 ðŝx; ŝy; ŝzÞ

½Ĵx; Ĵy�5 iℏĴ z ½ŝx; ŝy�5 2iŝz

½Ĵy; Ĵ z�5 iℏĴx ½ŝy; ŝz�5 2iŝx

½Ĵ z; Ĵx�5 iℏĴy ½ŝz; ŝx�5 2iŝy
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Quantum States, Kets, and State Space

The formalism of quantum mechanics involves symbols
and methods for denoting and determining the time-
dependent state of a physical system, and a mathematical
structure for evaluating the possible outcomes and associ-
ated probabilities of measurements that can be made on
the system. Here, “state” implies everything knowable
about the dynamical aspects of a system at a certain time.

In classical mechanics, the state at time t of a particle of
mass m is given by the particle’s position rðtÞ and
momentum pðtÞ, which are determined by initial conditions
and the laws of classical mechanics. Neither m nor t are
state variables: m is assumed to be an immutable property
of the particle, and t is a parameter used in specifying the
dynamics of state variables.

In quantum mechanics, the state of a physical system at
time t is associated with a symbol such as c placed within
half-right-angled brackets: jci. This symbol is called a ket
vector or a ket. A symbol within a ket may represent a
physical quantity. For instance, if E1 is a possible energy of
a particle, then jE1i indicates that the particle is in a state
with an energy of precisely E1. Kets may contain multiple
symbols that represent multiple physical quantities.

A ket is the quantum mechanical symbol that encodes the
state of a system. The symbols within a ket explicitly
indicate or serve as an abstract placeholder for precisely
known information about the system.

The mathematical structure of quantum mechanics formal-
ism mirrors that of linear algebra (see pages 113–114) and
encapsulates rules regarding the manipulation of kets to
determine the time dependence of a system’s state and how
statistical information (such as measurement outcome
predictions) about a system may be determined from its
state. The state space E for a given physical system is the
set of all of the possible states in which it can exist. The
statement jciP E indicates that jci encodes a state in which
the given system can exist.

uantum Mechanics
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Elements of Dirac Notation

Dirac notation is a standard system of notation used in
quantum mechanics that efficiently keeps track of information
about states. Expressions given in Dirac notation can often be
replaced byexpressions involving the elements and operations of
calculus or linear algebra.However, the systemofDirac notation
is compact, adaptable to any quantum mechanics problem, and
can be related to other mathematical and notational systems as
needed. Dirac notation involves four categories of elements: kets
(page 1), complex scalars, operators, and bras.

Operators: In this Field Guide, operators are denoted in Dirac
notation with a “hat” or caret placed over a letter or symbol, as
in X̂ . Outside of Dirac notation, operators may be represented
by matrices, or by operations such as multiplication or
differentiation; in these cases the caret is not used in this Field
Guide. Most operators in this Field Guide are denoted with
capital letters, with a few exceptions (see the Glossary of
Operators, pages xvi–xvii). Formally, an operator is a quantity
that associates every ket in a given state space E with the same
or another ket. For an arbitrary operator Â and an arbitrary ket
jciP E, this association is denoted Âjci5 jc0i. Operators are
therefore said to “act to the right” on kets to produce new kets.

Many operators are associated with measurable physical
quantities. Most operators of mathematical utility that do not
correspond to physical quantities are written in this Field Guide
in a “hollow” typeface, such as Û and P̂. All projection operators
and unitary operators (except the Pauli spin operators) are
written in this typeface throughout this Field Guide.

Bras: A bra or bra vector is a symbol placed within a half-
left-angled bracket, such as hwj. A bra is a functional: it
associates a complex scalar with each ket in a given state
space, whereas operators associate a ket with another ket. A
bra placed immediately to the left of a ket creates a bra–ket
compound symbol such as hwjci that is equivalent to a complex
scalar. As with kets, the symbol(s) inside a bra designates
information about the properties of the bra. Operators may
“act to the left” on bras to produce new bras, as indicated by
the expression hwjÂ5 hw0j.

2 Quantum Mechanics Formalism



Vector Spaces and Scalar Products

The state space E of an arbitrary quantum-mechanical system
has the properties of a vector space. The dimensionless
elements of E symbolized by kets are called the state vectors
of E. The principle of superposition enables the mathemati-
cal construction of new elements of E from other elements of E;
e.g., if jw1i and jw2i are elements of E, then

c1jw1i þ c2jw2i ≡ jw0iP E

where c1 and c2 are complex scalars.

The scalar or inner product of two elements of E is denoted
by a bra–ket pair. The scalar product associated with the
ordered pair ðjwi; jciÞ is written with the second ket preceded
by a bra containing the symbol(s) within the first ket; i.e.,
hwjci. The bra hwj is called the adjoint (or Hermitian
conjugate) of jwi, and symbolizes the concept that for every
ket, there is a corresponding bra. State vectors and their
scalar products have the following properties:

1. Scalar products are generally complex. Reversing the order
of the kets in the ordered pair ðjwi; jciÞ is equivalent to
complex conjugation. This property is written in bra–ket
notation as hcjwi5 hwjci*

2. Anti-linearity in the 1st term: if jw0i ≡ c1jw1i þ c2jw2i, then

hw0jci5 c*1hw1jci þ c*2hw2jci

3. Linearity in the 2nd term: if jc0i ≡ d1jc1i þ d2jc2i, then

hwjc0i5 d1hwjc1i þ d2hwjc2i

4. Any ket jci that corresponds to a physically realizable
quantum state must be normalizable, meaning that the norm

kjcik ≡
ffiffiffiffiffiffiffiffiffiffiffi
hcjci

p

is real, finite, and positive. jci is normalized if kjcik5 1. If
kjcik ≠ 1, then dividing jci by ffiffiffiffiffiffiffiffiffiffiffihcjcip

normalizes jci.
5. If the scalar product of two normalizable state vectors is
zero, then the state vectors are said to be orthogonal.

uantum Mechanics
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Linear Operators and Commutators

The formalism of quantum mechanics involves linear opera-
tors. Consider two operators Â and B̂ that act on elements
of an arbitrary state space E. Also suppose the following:
(i) jci; jwiPE; (ii) Âjci5 jc0iPE; (iii) B̂jci5 jc00iPE; (iv) c1 and
c2 are complex scalars. Linearity implies the following:

1. Âðc1jci þ c2jwiÞ5 c1Âjci þ c2Âjwi
2. B̂ Â jci5 B̂ðÂjciÞ5 B̂jc0i
3. Â B̂ jci5 ÂðB̂jciÞ5 Âjc00i

The outcomes of the sequential operations Â B̂ and B̂ Â
are generally different. When products of operators act on
a ket, a standard order of operations is used: the right-
most operator acts first on the ket, then the next operator
to the left acts on the new ket that is the outcome of the
first operator’s action, and so on.

Commutators: The commutator of operators Â and B̂ is
denoted and defined as

½Â; B̂� ≡ Â B̂ –B̂ Â

Commutators have the following properties:

1. A commutator is itself an operator. If Ĉ ≡ ½Â; B̂�, then
Ĉjci5 Â B̂ jci � B̂ Â jci5 Âjc00i � B̂jc0i

2. If ½Â; B̂� 5 0, then Â and B̂ commute: the order in which
they act on any ket does not matter, and Âjc00i5 B̂jc0i.
3. If ½Â; B̂� ≠ 0, then the order of operations of Â and B̂ is non-
commutative: the order of operations does matter. For
arbitrary jci, if ½Â; B̂� ≠ 0, then

Â B̂ jci ≠ B̂ Â jci
4. A commutation relation for operators Â and B̂ identifies
the specific operator that is equivalent to ½Â; B̂�, which may be
identical to zero, or to a scalar multiple of the identity operator Î
(in which case Î is often omitted from the commutation relation).
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Hermitian Conjugation

Hermitian conjugation involves symbolic manipulation of
mathematical expressions. Consider elements jci and jwi of a
state space E, and a bra hxj and operator Â defined to “act on”
elements of E. Let Âjci5 jc0i. Hermitian conjugation involves
the following concepts and rules:

1. Bra–ket correspondence: for every ket jci, there is a
corresponding bra hcj. For every bra hxj, there is a correspond-
ing ket jxi that is not necessarily an element of E. jci and hcj are
Hermitian conjugates of one another, as are jxi and hxj.
2. The Hermitian conjugate, or adjoint, of Â is denoted Â†.
If Â5 Â†, then Â is said to be Hermitian.

3. An operator can act “to the right” on a ket, or “to the left” on
a bra. The quantity hwjÂjci is called a matrix element
of Â and can be evaluated as hwjÂjci5 hwjðÂjciÞ5 hwjc0i, or
equivalently as hwjÂjci5 ðhwjÂÞjci5 hw0jci, where hw0j is the

adjoint of jw0i5 Â†jwi (see item 6 below).

4. Â acting (to the left) on hjj5 l1hcj þ l2hwj is linear:

hjjÂ5 l1hcjÂþ l2hwjÂ
where l1 and l2 are complex scalars.

5. Hermitian conjugation of operators and operator sequences
adheres to the following rules, where Â, B̂, and the ket–bra
pairs jwihcj and jcihwj are operators, and l is a scalar:

ðÂ†Þ† 5 Â; ðl ÂÞ† 5 l* Â†

ðjwihcjÞ† 5 jcihwj; ðÂ B̂Þ† 5 B̂†Â†

ðÂþ B̂Þ† 5 Â† þ B̂†
5 B̂† þ Â†

5 ðB̂þ ÂÞ†

6. To obtain the Hermitian conjugate of an expression, first
take the complex conjugates of all scalars, replace kets with
their corresponding bras, replace bras with their correspond-
ing kets, and replace operators with their adjoints; then
reverse the order of all elements, noting that scalars commute
with all elements. For example, the Hermitian conjugate of
the expression Âjci5 ljc0i is hc0jl* 5 hcjÂ†.

uantum Mechanics
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Bases

A basis for E is a set of kets that are often (but not necessarily)
elements of E, and which can be used to construct any element
of E via superposition. The elements of a basis may be
discretely or continuously indexed, depending on the basis.
For the arbitrary discrete basis fjvkig, the index k numbers
the elements of the basis; e.g., fjE1i; jE2i; : : : g might be the
notation used for a basis where the labels indicate possible
energies of a particle in a potential well. For a continuous
basis fjwbig, the subscript b is a continuously varying index,
such as real numbers that might correspond to positions along
a coordinate axis. The bases used in this Field Guide have the
following properties:

1. For every jciPE, there is one and only one way to expand
jci as a superposition of the elements of any particular basis,
up to a global phase factor (page 36). The superposition is
written

jci5
X
k

ckjyki ðfor a discrete basisÞ

jci5
Z
all b

db cðbÞjwbi ðfor a continuous basisÞ

There is therefore one unique set of expansion coefficients
fckg (discrete basis) or fcðbÞg (continuous basis) for any state
vector’s expansion into any given basis, where ck 5 hvkjci for
any k, and cðbÞ5 hwbjci for any b. The sets fjvkig and fjwbig
are said to span the state space E if they are bases for E.

2. Every discrete basis used in this Field Guide is orthonor-
mal (all elements are normalized and mutually orthogonal).
This means that for a basis fjvkig, hvjjvki5 djk, where djk is the
Kronecker delta (page 112).

3. The continuous basis fjwbig is conventionally said to be
orthonormal if hwb0 jwbi5 dðb0 � bÞ, where dðb0 � bÞ is theDirac
delta function (page 112). Although this condition is not
normalization in the strictest sense, the elements of a continuous
basis are not physically realizable quantum states and do not
belong to the state space E, despite forming a basis for E.
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Eigenvalue Equations

An eigenvalue equation for an arbitrary operator Â is
similar to that of a matrix (page 114), and takes the form

Âjwmi5 lmjwmi
where m is a discretely or continuously varying index. For a
given operator Â, the equation is satisfied for a particular set of
kets fjwmig, where each ket jwmi is associated with a scalar lm
(generally complex). The kets of the set fjwmig are the eigen-
kets or eigenstates of Â. The scalars of the set flmg are the
eigenvalues of Â. The set flmg is the eigenvalue spectrum of
Â. Eigenvalue equations have the following characteristics:

1. The eigenkets are indexed, as indicated above by m. Often
the symbol that labels an eigenket is the associated eigenvalue
or the index. The eigenvalue equation above and the two below
show three equivalent ways of labeling the eigenkets of Â:

Âjlmi5 lmjlmi and Âjmi5 lmjmi
2. Quantum mechanics problems often involve finding the
eigenkets and the eigenvalues of operators. It is possible that
an operator does not have solutions to its eigenvalue equation.

3. If a basis for a state space E hasn orthonormal elements, then
E is said to have a state-space dimension of n, to be
distinguished from a coordinate-space dimension. For any
Hermitian operator that acts on elements of an n-dimensional
state space E, a set of n distinct mutually orthonormal eigenkets
of that operator can be found; this set is a basis that spans E.

4. Degeneracy means that gm . 1 different orthogonal
eigenkets of an operator are associated with the same
eigenvalue lm; gm is the degree of degeneracy. An additional
index may label these degenerate eigenkets; e.g., for a given
eigenvalue lm,

Âjwi
mi5 lmjwi

mi; iPf1; 2; · · · gmg
The superscript i is omitted from jwi

mi if gm 5 1 for a given lm. If
gm . 1 for one or more values of lm, then various sets of
mutually orthogonal eigenkets can be specified. If no degener-
acies exist, then there is one unique set of orthonormal
eigenkets (up to global phase factors; see page 36).

uantum Mechanics
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Projectors

A projector or projection operator onto jci is defined as
P̂c ≡ jcihcj. Projectors are operators, as seen in the
following:

P̂c jwi5 ðjcihcjÞ jwi5 jci hcjwi5 l jci
where l 5 hcjwi is a complex scalar, so that P̂c produces a
new (and generally unnormalized) ket proportional to jci.
If the scalar product l 5 hcjwi is non-zero, then jwi and
jci are said to overlap: hcjwi quantifies how much the
state jci and jwi have in common (and thus “overlap”) in
terms of their expansions into the same basis. If the states
have non-zero overlap, then there are basis elements that
appear with nonzero coefficients in the expansions of both
jci and jwi. P̂cjwi “projects jwi onto jci” and can be thought
of as picking out the portion of jwi that overlaps with jci. If
jwi and jci have no overlap, then hcjwi5 0, and P̂cjwi5 0.

Projectors have the following properties:

1. Projectors have the property of idempotency, meaning
that P̂2

c 5 P̂c. Since P̂2
c 5 jcihcjcihcj, the idempotency

condition is only met if hcjci5 1, so jci must be properly
normalized for jcihcj to be a projector onto jci.
2. If two kets jwi and jci are orthogonal (and therefore
have no overlap), then hcjwi5 0 and the projectors onto
these states are also said to be orthogonal, implying that

P̂cP̂w 5 jcihcjwihwj5 0

3. A sum of orthogonal projectors is a projector onto a sub-
space. Consider a discrete basis fjvkig that spans a state
space E, where kPf1; : : : ; kmaxg. For q , kmax, the sub-
space projector

P̂q ≡
Xq

k51

jvkihvkj

projects onto the subspace Eq of E, where Eq is spanned by
fjv1i; jv2i; : : : ; jvqig.
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Closure Relations

Every basis is associated with a closure relation, which is
formally a projector onto the entire state space rather than
onto a subspace. Every ket in the state space remains
unchanged when acted upon by this projector. Consider an
arbitrary state space E. Let Î be the identity operator,
such that Îjci5 jci for any jciPE. Closure relations are
expressed as follows:

Closure Relation (Discrete Basis)

For a discrete orthonormal basis fjvikig, with iPf1; 2; : : : gkg
and where gk is the degree of degeneracy for index k, the
closure relation is

X
k

Xgk
i51

jvikihvikj5 Î

Closure Relation (Continuous Basis)

For a continuous non-degenerate orthonormal basis
fjwbig, where b labels the (infinitely many) orthogonal
elements of the basis, the closure relation isZ

allb
db jwbihwbj5 Î

Because a closure relation’s sum or integral is equivalent to
the identity operator, it can be inserted into an expression
immediately before a ket or after a bra, or next to an
operator (i.e., making a product with that operator),
without changing the meaning of the expression. In this
manner, closure relations aid in problem solving and
manipulation of expressions.

Formally, a closure relation is a mathematical statement
that a basis exists and is complete; i.e, there are neither
missing nor extraneous elements in the construction of the
basis. The expression of a closure relation can be given as a
definition of the symbols used to specify the elements of a
basis.

uantum Mechanics
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Functions of Operators

A function of an operator can be defined by a Taylor
series expansion of the same function of a continuous
variable, with the operator replacing the variable. For a
variable x, a function FðxÞ has a Taylor series expansion
about x5 a given by

FðxÞ5
X∞
n50

ðx� aÞn
n!

·
dnFðxÞ
dxn

����
x5a

5
X∞
n50

bn · ðx� aÞn

where bn is the coefficient of the nth-power term. Most
commonly, expansions are taken about a5 0. The same
function of an operator Â is constructed by replacing xwith Â:

FðÂÞ5
X∞
n50

bn · ðÂ� aÞn

For example, expanding ex about x5 0 gives ex 5
P∞

n50
1
n! x

n,
so that eÂ 5 1þ Âþ 1

2! Â
2 þ : : : 5

P∞
n50

1
n! Â

n. Note that
Â0

5 Î. The identity operator Î is often omitted from
operator expansions when it is multiplied by a scalar
quantity (1 in this case).

Functions of operators are themselves operators. Consider
an operator Â that has a non-degenerate discrete spectrum
flkg and eigenkets fjvkig. Two special cases for simplifying
the actions of functions of operators are given below.

1. If jvki is an eigenket of Â with eigenvalue lk, then jvki is
an eigenket of FðÂÞ with eigenvalue FðlkÞ. This statement

can be demonstrated by expanding FðÂÞ about 0:

FðÂÞjvki5
X∞
n50

bnÂ
njvki5

X∞
n50

bnlnk jvki5 FðlkÞjvki

2. FðÂÞ acting on an arbitrary ket jci can be calculated by
first expanding jci in the fjvkig basis: jci5

P
k ckjvki, where

ck 5 hvkjci. FðÂÞjci is then evaluated using the closure
relation Î5

P
k jvkihvkj as follows:

FðÂÞjci5 FðÂÞÎjci5
X
k

FðÂÞjvkihvkjci5
X
k

ckFðlkÞjvki
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Postulates of Quantum Mechanics

The postulates of quantum mechanics are the assump-
tions upon which the mathematics and interpretations of
quantum mechanics are based. There are six basic
postulates; three are expressed below, with the remaining
three on pages 12 and 13.

1. State postulate

The state of a system (or particle), denoted at a time t as
jΨðtÞi, is an element of a vector space consisting of all
physically realizable states of the system.

Postulate 1 implies the existence of a superposition
principle, and defined scalar products (page 3). The linear
vector space is called the system’s state space (or Hilbert
space). Every given physical system has an associated
state space.

2. Observable postulate

Every measurable, dynamical physical quantity corre-
sponds to a linear Hermitian operator, called an
observable.

An observable is defined to act on all elements of a specified
state space. The word “observable” may also refer to the
physical quantity with which the Hermitian operator is
associated.

3. Evolution postulate

As a quantum system evolves over time t, the correspond-
ing dynamics of the physical state are governed by the
Schrödinger equation

iℏ
∂
∂t
jΨðtÞi5 ĤðtÞjΨðtÞi

where ĤðtÞ is the observable associated with the total
energy of the system, and is called the Hamiltonian; Ĥ
may or may not depend on time.
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Eigenvalue and Collapse Postulates

The remaining three postulates involve outcomes and
predictions of measurements. The specific outcome of any
single measurement in an actual experiment is generally
not predictable with certainty, even in principle. Measure-
ment predictions in quantum mechanics are inherently
statistical.

4. Eigenvalue postulate

The only possible results of a measurement of a physical
quantity are the eigenvalues of the Hermitian operator
associated with that quantity.

The eigenvalues of Hermitian operators are always real,
and only real quantities can be obtained in measurements.
If the eigenvalues of an operator form a discretely indexed
(rather than continuously varying) spectrum, the associ-
ated physical quantity is said to be quantized.

5. Collapse postulate

If a measurement is made on a system in state jΨðt0Þi at
time t0, then immediately after the measurement the
system is left in the eigenstate associated with the
measured eigenvalue of the corresponding observable.
The measurement is said to collapse the system into
that eigenstate. If the measured eigenvalue is degene-
rate, the system is left in a superposition of the associated
eigenstates.

Suppose that Â is the observable for the quantity measured,
lq is the eigenvalue of Â that is the measurement result, and
fjviqig is the set of gq associated degenerate eigenkets, with q
a specific index, and i P f1; 2; : : : ; gqg. Immediately after the
measurement, the system is left in the normalized state

P̂qjΨðt0Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΨðt0ÞjP̂qjΨðt0Þi

q

where P̂q projects onto the subspace Eq spanned by fjviqig.
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Probability Postulate

6. Probability postulate

If a measurement of a quantity corresponding to an
observable Â is to be made on a system in the normalized
state jΨðtÞi, then the probability (discrete spectrum) or
probability density (continuous spectrum) of obtaining
the result l is the scalar product of jΨðtÞi with the
projection of jΨðtÞi onto the state space spanned by the
eigenstates corresponding to eigenvalue l of Â.

Consider an observable Â with a discrete spectrum and
eigenvalue equation Âjviki5 lkjviki. Let lq be one possible
measurement outcome (a specific eigenvalue of Â), and fjviqig
the gq degenerate eigenstates associated with lq, where
i P f1; 2; : : : ; gqg. The probability of obtaining lq in a
measurement is

PðlqÞ5 hΨðtÞjP̂qjΨðtÞi5
Xgq

i51

jhviqjΨðtÞij2

where P̂q projects onto the subspace Eq (of the full state space)
spanned by the gq kets fjviqig. If gq5 1 for that value of q, then
lq is non-degenerate and the index (and summation over) i is
omitted. The probability of obtaining lq in a measurement of the
physical quantity associated with Â is then

PðlqÞ5 hΨðtÞjP̂qjΨðtÞi5 jhvqjΨðtÞij2 5 jcqj2

where cq 5 hvqjΨðtÞi is the jvqi term’s expansion coefficient
when jΨðtÞi is expanded into the fjvikig basis.

If Â has a continuous spectrum, where Âjwbi5 lbjwbi is the
eigenvalue equation and P̂b0 5 jwb0 ihwb0 j is a projector onto
jwb0 i, then the probability density of jΨðtÞi at lb0 is

hΨðtÞjP̂b0 jΨðtÞi5 jhwb0 jΨðtÞij2
For a probability density that is approximately constant over
the sufficiently narrow range lb0 to lb0 þ dl, the probability
that the result will lie within this range is given by

dPðlb0 Þ5 dljhwb0 jΨðtÞij2

Note that ∫ alllb0
dPðlb0 Þ5 ∫ all lb0

dljhwb0 jΨðtÞij2 5 1.
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Examples of Observables: Ĥ , X̂ , and P̂x

Hamiltonian: Ĥ is the conventional symbol for the Hamilto-
nian, the operator corresponding to the total energy of a given
system (postulate 3, page 11). Since energy is a dynamical,
measurable quantity, Ĥ is an observable and is Hermitian.
Consider a 1D potential well (such as a harmonic oscillator,
page 54) for which Ĥ has a non-degenerate discrete spectrum
and an eigenvalue equation expressed as

Ĥ jwni5 Enjwni
where En is a real eigenvalue with dimensional units of
energy, the index n varies discretely and each eigenket jwni is
associated with one specific eigenvalue En. The full set of
eigenvalues fEng is the energy spectrum of the system.
Since Ĥ is Hermitian, the set of eigenkets fjwnig is a basis for
E (see page 7) called the energy eigenstate basis, which has
the orthonormality condition

hwjjwki5 djk

Position and momentum operators: Consider a state
space Ex that corresponds to a particle whose positions and
motion are constrained to the x axis. In Ex, position and
momentum are measurable quantities. Let X̂ and P̂x denote
the associated position and momentum operators, which are
observables. Let the following eigenvalue equations define the
symbols for the eigenvalues and eigenkets of X̂ and P̂x:

X̂ jxi5 xjxi
P̂xjpi5 pjpi

Note that the eigenvalues x and p (and X̂ and P̂x) are quantities
with dimensional units. In correspondence with the eigen-
value postulate (page 12), the eigenvalues denoted by x must
be all real numbers with dimensional units of position. The
eigenvalues p are all real numbers with dimensional units of
momentum. Since both x and p are continuously distributed
(any real value is allowed), the associated bases fjxig and fjpig
are continuous and have the orthonormality conditions

hxjx0i5 dðx� x0Þ and hpjp0i5 dðp� p0Þ
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Calculating Quantities in Quantum Mechanics

Calculations of expressions that are given in Dirac notation
often involve three steps: (i) expanding the elements of Dirac
notation into known bases; (ii) representing these elements
by vectors and matrices, or functions and continuous
operations (e.g., multiplication and differentiation); and
(iii) performing the operations indicated. Step (i) involves
the use of closure relations to re-express kets, bras, and
operators, as indicated below for a discrete basis fjvkig and
a continuous basis fjwbig.

Quantity Discrete Basis (Sum Over All j, k)

Î 5
P jvkihvkj

jci5 Îjci 5
P jvkihvkjci

hwj5 hwjÎ 5
Phwjvkihvkj

Â5 Î Â Î 5
PP jvjihvjjÂjvkihvkj

Quantity Continuous Basis (Integrate Over All b, b0)

Î 5∫ dbjwbihwbj
jci5 Îjci 5∫ dbjwbihwbjci
hwj5 hwjÎ 5∫ dbhwjwbihwbj
Â5 Î Â Î 5∫ ∫ dbdb0jwbihwbjÂjwb0 ihwb0 j

Manipulation of expressions in Dirac notation further
involves the use of the following relationships:

• Discrete-basis orthonormality: hvjjvki5 djk

• Continuous-basis orthonormality: hwbjwb0 i5 dðb� b0Þ
• Scalars such as hvjjÂjvki and hwbjci commute with

operators, bras, and kets

• hwjvki5 hvkjwi* and hwjwbi5 hwbjwi*

For cases in which multiple physical quantities define a
single basis element, a single index (such as k, above) may
serve as a compound index that represents multiple
quantities, including different degenerate states.
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Calculating Quantities Using a Discrete Basis

When a discrete basis is known, the relationships given in the
upper table on page 15 can be used to manipulate expressions
that involve elements of Dirac notation. Calculations may then
proceed by re-writing the discrete sums in terms of vectors and
matrices, and performing calculations according to the methods
of linear algebra. As an example, calculation of the quantity
hwjÂjci is shown below using the arbitrary discrete basis fjvkig,
where k may serve as a compound index. Assume the following
expansions for the kets jci and jwi into this basis:

jci5
X
k

jvkihvkjci5
X
k

ckjvki where ck 5 hvkjci

jwi5
X
j

jvjihvjjwi5
X
j

djjvji where dj 5 hvjjwi

By defining the matrix element Ajk ≡ hvjjÂjvki and using the
expansions given above and the upper table on page 15, hwjÂjci
is expressed as

hwjÂjci5
X
j

X
k

hwjvjihvjjÂjvkihvkjci

5
X
j

X
k

d*
j Ajk ck

Making use of vector and matrix notation, and the standard
rules of vector and matrix multiplication that are implied by
the notation, the double-summation above is equivalent to

hwjÂjci5 ½d*
1 d*

2 · · · �

2
64
A11 A12 · · ·
A21 A22 · · ·
..
. ..

. . .
.

3
75

2
64
c1
c2
..
.

3
75

Kets and bras can be replaced by vectors of the
coefficients of expansion into a discrete basis, and
operators can be replaced by matrices of discretely
indexed elements in that basis. Calculations then proceed
by performing the implied vector and matrix multiplica-
tion, demonstrating the utility of working with a
discrete representation, defined on page 17.
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Discrete Representations

A representation is a specific basis selected to aid in the
expression of information about kets and bras, and the actions
of operators. In a discrete representation, a discrete basis is
selected. A ket is then represented by a column vector of
expansion coefficients for that basis, and the corresponding bra
is represented as the adjoint of that column vector (page 113).

The example given on page 16 illustrates the utility of a
discrete representation, and is expanded upon below. In the
example, the expansion of jci into the fjvkig basis is given by

jci5
X
k

hvkjcijvki5
X
k

ckjvki

Let jcifvg denote the column vector of expansion coefficients:

jcifvg ≡

2
64
c1
c2
..
.

3
755

2
64
hv1jci
hv2jci

..

.

3
75

The vector jcifvg is not identical to the ket jci; a different
choice of basis will have a different set of expansion
coefficients for the same ket. The corresponding bra hcj is
represented by

hcjfvg ≡
h
c*1 c*2 · · ·

i
5

h
hv1jci* hv2jci* · · ·

i

The representation is named by the basis chosen; the example
above defines the “fjvkig representation.” If the chosen basis
kets are eigenkets of some operator, then the operator or its
associated physical quantity may be used to name the
representation [e.g., the “X̂ (or position) representation” on
page 19].

In a discrete representation, operators are represented by
matrices. In the example on page 16, Â is represented by the
matrix Afvg of discretely indexed elements Ajk 5 hvjjÂjvki:

Afvg ≡

2
64
A11 A12 · · ·
A21 A22 · · ·
..
. ..

. . .
.

3
75

For the matrix element subscripts, the row index ( j) is listed
first, followed by the column index (k).
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Transformation of Discrete Representation

In a discrete representation, a ket is represented by a
column vector of scalars that are the coefficients of the
expansion of the ket into a specified basis. To construct the
representation of the same ket by a column vector of coefficients
of expansion into a different basis, the initial column vector can
be acted upon by a transformation matrix M.

Let jcifug and jcifvg denote the representations of jci obtained
by expanding jci into the fjujig and fjvkig bases, respectively.
The bases span the same n-dimensional state space, so fjujig
and fjvkig each have n elements. jcifug and jcifvg are related
by

jcifug 5 Mjcifvg and jcifvg 5 M†jcifug
where the elements of the square matrix M are given by

Mjk 5 hujjvki
Matrices representing operators are also transformed using M.
Let Afug and Afvg be the matrices representing Â in the fjujig
and fjvkig bases, respectively. Then

Afug 5 MAfvgM† and Afvg 5 M†AfugM

Example: Consider a 2D state space that is spanned by two
bases, fju1i; ju2ig and fjv1i; jv2ig, where

jv1i5
1ffiffiffi
2

p ju1i þ
iffiffiffi
2

p ju2i and jv2i5
1ffiffiffi
2

p ju1i �
iffiffiffi
2

p ju2i

Suppose that there is an operator Â that is expressed as the
following matrix in the fjujig representation:

Afug 5
�
0 �i
i 0

�

To express A{u} in the fjvkig representation, the matrix M is

M5

�
M11 M12
M21 M22

�
5

� hu1jv1i hu1jv2i
hu2jv1i hu2jv2i

�
5

�
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
i=

ffiffiffi
2

p �i=
ffiffiffi
2

p
�

which is then used to calculate Afvg:

Afvg 5
�
1=

ffiffiffi
2

p �i=
ffiffiffi
2

p
1=

ffiffiffi
2

p
i=

ffiffiffi
2

p
��

0 �i
i 0

��
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
i=

ffiffiffi
2

p �i=
ffiffiffi
2

p
�
5

�
1 0
0 �1

�
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Continuous Representations: X̂ , P̂x

In a continuous representation, a ket is expressed as a
continuous superposition of the orthonormal kets of a
continuous basis. The expansion coefficients are continu-
ously indexed, and the ket is represented by this continuous
set of numbers, which is called a wavefunction (page 20).

Examples of continuous representations are the position and
momentum representations, defined on page 20 and based on
the closure relations below. In one spatial dimension, eigenkets
of the position and momentum operators X̂ and P̂x define bases
fjxig and fjpig (page 14). In this notation, the general parameter
b previously used as a continuous index or eigenvalue (pages 9
and 15) is replaced by the eigenvalues x and p themselves, and
these eigenvalues are used to label the corresponding kets of the
bases, consistent with item 1 on page 7.

The bases fjxig and fjpig have the associated closure relations
Z

∞

�∞
dxjxihxj5 Î and

Z
∞

�∞
dpjpihpj5 Î

Since x and p carry dimensional units of length and momen-
tum, respectively, dx and dp also carry those same dimensional
units. In order for the identity operator to be dimensionless,
each bra and ket in the expressions above may be thought of as
carrying the inverse-square-root of the dimensional units of the
associated eigenvalue. Since the SI dimensional units of dx are
meters ([m]), jxi and hxj may be considered as carrying the
dimensional units [m�1/2]. The dimensional units of jpi and hpj
may be considered to be [(kg·m/s)�1/2]. However, while fjxig and
fjpig serve as bases, the elements of these bases are not
physically realizable states and these kets (and bras) are not
quantities with a physical dimension. Treating the elements of
fjxig and fjpig (and the associated bras) as having dimensional
units is a convenience that is consistent with (i) the construc-
tion of wavefunctions and the interpretation of the dimensional
units of wavefunctions (page 20); and (ii) scalar products
involving these kets, such as the quantities on pages 14 and 23,
noting that a Dirac delta function (page 112) carries dimen-
sional units that are the inverse of those of its argument.
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Continuous Representations: Wavefunctions

Let Ex be the state space associated with 1D motion
along x. The position and momentum representations that
are used to describe a state vector jciP Ex are based on the
closure relations given on page 19 as follows:

jci5 Îjci5
Z

∞

�∞
dxjxihxjci5

Z
∞

�∞
dxcðxÞjxi

jci5 Îjci5
Z

∞

�∞
dpjpihpjci5

Z
∞

�∞
dp c̃ðpÞjpi

where cðxÞ ≡ hxjci is the expansion coefficient associated

with the X̂ eigenket jxi, and c̃ðpÞ ≡ hpjci is the expansion

coefficient associated with the P̂x eigenket jpi. In this
sense, the expansion coefficient corresponding to a specific
value of x or p is the continuous-representation equivalent
of one element of a column vector representing a ket in a
discrete representation (page 17). When cðxÞ and c̃ðpÞ are
considered as functions over all possible values of x or p,
then these functions are the continuous-representation
equivalents of the entire column vector representing a
state in a discrete representation. These functions are
called wavefunctions and are defined as follows:

• The 1D position-space wavefunction cðxÞ is the
continuous distribution of expansion coefficients
obtained when expanding jci into the basis of
position-operator ðX̂ Þ eigenkets fjxig.

• The 1D momentum-space wavefunction c̃ðpÞ is the
continuous distribution of expansion coefficients
obtained when expanding jci into the basis of
momentum-operator ðP̂xÞ eigenkets fjpig.

The SI dimensional units of cðxÞ are [m�1/2], and those of
c̃ðpÞ are [(kg ·m/s)�1/2], consistent with the discussion of
dimensional units on page 19. In higher spatial dimen-
sions, the dimensional units of wavefunctions are similarly
determined by the closure relations involved. The char-
acteristics of physically realizable wavefunctions are given
on page 32.
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Calculating Quantities Using a Continuous Basis

In a continuous representation, a bra is represented by the
complex conjugate of the wavefunction representing the
associated ket, and operators are represented by actions on
functions (e.g., multiplication and differentiation). Calcula-
tions involve replacing bras, kets, and operators with func-
tions and continuous operators, then performing the
operations. To illustrate these steps, let the state space Ex

correspond to the states available to a particle with 1D motion
along x. The eigenkets fjxig of the position operator X̂ span Ex

and define the position representation, also called here the “X̂
representation” since the associated basis is formed of the
eigenkets of X̂ . Let cðxÞ and wðxÞ be wavefunctions represent-
ing the state vectors jci, jwiPEx. Using the closure relation
Î5 ∫ ∞

�∞dxjxihxj, the scalar product hwjci is evaluated as

hwjci5 hwjÎjci5
Z

∞

�∞
dxhwjxihxjci5

Z
∞

�∞
dxw*ðxÞcðxÞ

This calculation shows that in the position representation, the
scalar product hwjci is calculated by integrating the product of
the associated functions w*ðxÞ and cðxÞ over all space. This
integral is called an overlap integral since it evaluates the
overlap hwjci. Similarly, the scalar product can be calculated
in the momentum representation (or the “P̂x representation”):
hwjci5 ∫ ∞

�∞dp w̃*ðpÞc̃ðpÞ (also see page 24).

In a continuous representation, operators are not represented
by matrices of discretely indexed elements. The term general-
ized matrix element refers to quantities that have the formal
bra–operator–ket structure of a matrix element but that
involve the elements of a continuous basis. For example, an
operator Â that acts on elements of Ex has generalized matrix
elements in the X̂ representation given by Aðx; x0Þ ≡ hxjÂjx0i for
any positions x, x0. Using the closure relation for the fjxig basis
(twice, see page 15), the quantity hwjÂjci is evaluated as

hwjÂjci5
Z

∞

�∞
dx

Z
∞

�∞
dx0hwjxihxjÂjx0ihx0jci

5

Z
∞

�∞
dx

Z
∞

�∞
dx0w*ðxÞAðx; x0Þcðx0Þ
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Operators in the X̂ Representation

The examples below illustrate the use of the X̂ representation
in performing calculations involving the state space Ex and
arbitrary state vectors jci; jwiPEx. These examples also
involve the 1D momentum operator P̂x. As stated on page
23, the momentum operator P̂x has the continuously indexed
generalized matrix elements

Pxðx; x0Þ5 hxjP̂xjx0i5�iℏ
∂
∂x

dðx� x0Þ
Example 1: The ket jji defined by jji ≡ P̂xjci can be expanded
into the fjxig basis by the following steps. First, using closure
relations, P̂x can be written as P̂x 5 ∫ dxdx0 jxihxjP̂xjx0ihx0j (see
pages 15 and 21), integrating over all space. Next,

jji5 P̂xjci5
Z

∞

�∞
dx

Z
∞

�∞
dx0jxihxjP̂xjx0ihx0jci

5

Z
∞

�∞
dx

Z
∞

�∞
dx0jxiPxðx; x0Þcðx0Þ

5�iℏ
Z

∞

�∞
dx jxi ∂

∂x

Z
∞

�∞
dx0dðx� x0Þcðx0Þ

5

Z
∞

�∞
dx

�
�iℏ

∂cðxÞ
∂x

�
jxi

The last line above shows that jji is a continuous superposi-
tion of elements of the fjxig basis. The expansion coefficients
are given by �iℏ ∂cðxÞ

∂x for all x so that jji5 P̂xjci is a ket
represented by the position-space wavefunction

jðxÞ5�iℏ
∂cðxÞ
∂x

In the position representation, P̂x is represented by the
differential operator �iℏ ∂

∂x, which acts on position-space
wavefunctions.

Example 2: The quantity hwjP̂xjci, which is the scalar product
hwjji, is calculated as follows:

hwjP̂xjci5�iℏ
Z

∞

�∞
dxw*ðxÞ ∂cðxÞ

∂x
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X̂ and P̂x Representations: Eigenkets and Operators

The multiplication and differentiation operations of X̂ and
P̂x in the position and momentum representations are
given in the table below. To obtain the expressions, the
following generalized matrix elements are used, where
dðx� x0Þ is the Dirac delta function centered at position x0,
and dðp� p0Þ is the Dirac delta function centered at
momentum p0:

hxjX̂ jx0i5 x0dðx� x0Þ hxjP̂xjx0i5�iℏ
∂
∂x

dðx� x0Þ

hpjP̂xjp0i5 p0dðp� p0Þ hpjX̂ jp0i5 iℏ
∂
∂p

dðp� p0Þ

Position and momentum representations of X̂ and P̂x and
their eigenkets jx0i and jp0i are given below.

Quantity X̂ Representation P̂x Representation

X̂ x iℏ ∂
∂p

P̂x �iℏ ∂
∂x p

jx0i hxjx0i5 dðx� x0Þ hpjx0i5 1ffiffiffiffiffiffiffi
2pℏ

p e�ix0p=ℏ

jp0i hxjp0i5 1ffiffiffiffiffiffiffi
2pℏ

p eixp
0=ℏ hpjp0i5 dðp� p0Þ

Interpretation:

• hpjx0i5 1ffiffiffiffiffiffiffi
2pℏ

p e�ix0p=ℏ shows that an eigenket of X̂ is a
plane wave in the P̂x representation.

• hxjp0i5 1ffiffiffiffiffiffiffi
2pℏ

p eixp
0=ℏ shows that an eigenket of P̂x is a

plane wave in the X̂ representation.

• hxjx0i5 dðx� x0Þ shows that an eigenket of X̂ is a Dirac
delta function in the X̂ representation.

• hpjp0i5 dðp� p0Þ shows that an eigenket of P̂x is a
Dirac delta function in the P̂x representation.

Note that none of the functions above are normalizable or
physically realizable wavefunctions.
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X̂ and P̂x Representations: Fourier Transforms

Transformations between discrete representations are
covered on page 18. Transformations between continuous
representations such as the X̂ and P̂x representations are
also possible. The expressions on pages 19–23 can be used
to show that the wavefunctions cðxÞ and c̃ðpÞ are a
Fourier-transform pair. Using closure relations, this
relationship between cðxÞ and c̃ðpÞ is constructed as
follows:

c̃ðpÞ5 hpjci5 hpjÎjci

5 hpj
�Z

∞

�∞
dxjxihxj

�
jci

5

Z
∞

�∞
dxhpjxihxjci

5
1ffiffiffiffiffiffiffiffiffi
2pℏ

p
Z

∞

�∞
dx e�ixp=ℏ cðxÞ

The last line above is a Fourier transform. The Fourier
and inverse Fourier transforms for 1D wavefunctions are
defined as follows, where FfcðxÞg denotes the Fourier
transform of cðxÞ, and F�1fc̃ðpÞg denotes the inverse
Fourier transform of c̃ðpÞ.

Fourier Transforms for 1D Wavefunctions

c̃ðpÞ5 FfcðxÞg5 1ffiffiffiffiffiffiffi
2pℏ

p ∫ ∞
�∞dx e

�ixp=ℏ cðxÞ

cðxÞ5 F�1fc̃ðpÞg5 1ffiffiffiffiffiffiffi
2pℏ

p ∫ ∞
�∞dp e

ixp=ℏ c̃ðpÞ

In three spatial dimensions with 3D position and momen-
tum vectors r and p, the transforms are as follows:

Fourier Transforms for 3D Wavefunctions

c̃ðpÞ5 FfcðrÞg5 �
1

2pℏ

�
3=2∫ ∞

�∞d
3r e�ir·p=ℏ cðrÞ

cðrÞ5 F�1fc̃ðpÞg5 �
1

2pℏ

�
3=2∫ ∞

�∞d
3p eir·p=ℏ c̃ðpÞ
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Tensor Products: Merging State Spaces

E0 5 E1 ⊗ E2 indicates that the state space E 0 is the tensor
product of independent state spaces E1 and E2 with proper-
ties described below. Consider the following assumptions:

• Let fjujig and fjvkig be bases for E1 and E2,
respectively. No elements of E1 or the basis fjujig are
elements of E2, and no elements of E2 or basis fjvkig
are elements of E1.

• Let D1 and D2 be the state-space dimensions of E1
and E2. The state-space dimension is the number of
elements in a basis, which may be infinite.

• Let Â1 be any operator acting on elements of E1, but
not on elements of E2. Let Â2 be any operator acting on
elements of E2 but not on elements of E1.

• Î1 and Î2 are identity operators for E1 and E2,
respectively.

E0 has the following properties:

• One basis for E0 is the tensor-product basis denoted
as fjujijvkig or fjuj; vkig or fjj; kig. Thus the tensor
product basis consists of every possible pairing of one
element of fjujig with an element of fjvkig. The basis
has D1 · D2 elements.

• The dimension of E0 is D1 · D2.

• Â1Â2juj; vki is interpreted as ðÂ1jujiÞðÂ2jvkiÞ.
• Â1juj; vki is interpreted as ðÂ1jujiÞðÎ2jvkiÞ.
• Â2juj; vki is interpreted as ðÎ1jujiÞðÂ2jvkiÞ.

Tensor products formalize the incorporation of additional
physical properties into a given system. An example involves
increasing the spatial dimension of a system: Er5Ex ⊗ Ey ⊗ Ez
is the tensor-product state space corresponding to 3D
coordinate space (the state-space dimension of Er is infinite),
and Ex, Ey, and Ez correspond to independent state spaces
of a particle with motion constrained to the x, y, and z
spatial dimensions, respectively. Er has a tensor-product
basis denoted as fjxijyijzig, fjx; y; zig, or fjrig, although
bases other than this tensor product basis also exist for Er.
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Operator Definitions and Operator Manipulation

Inverse: The inverse of an operator Â is designated Â�1

and is defined by the property ÂÂ�1
5 Â�1Â5 Î.

Hermitian conjugate: The Hermitian conjugate or adjoint

of an operator Â is designated Â†. Â is called Hermitian if

Â†
5 Â. If Â†

5�Â, then Â is called anti-Hermitian. In a
discrete representation defined by a basis fjvkig, the matrix

representing Â† is the complex conjugate of (all elements of )

the transpose of the matrix representing Â:

A†

fvg 5
�
AT
fvg

�*

Unitary operators: An operator Q̂ is unitary if its inverse
equals its adjoint, Q̂�1

5 Q̂†, so that

Q̂†Q̂5 Q̂Q̂†
5 Î

Unitary transformations and common unitary operators
are discussed on pages 38 and 39.

Commutators of Hermitian operators: The commuta-
tor of two non-commuting Hermitian operators is anti-
Hermitian. If Â and B̂ are Hermitian operators, then
½Â; B̂�† 5�½Â; B̂�.
Commutators involving functions of operators: For
any two operators Â and B̂ that each commute with their
commutator (i.e., ½Â; ½Â; B̂��5 ½B̂; ½Â; B̂��5 0), the commuta-
tor of Â and a function FðB̂Þ is

½Â;FðB̂Þ�5 ½Â; B̂� dFðB̂Þ
dB̂

The Baker-Campbell-Hausdorff (BCH) formula (or
Glauber formula) involves exponentials of two opera-
tors. The formula is expressed for arbitrary operators Â
and B̂ as follows:

eÂeB̂ 5 eÂþB̂ e
1
2½Â;B̂� and eÂþB̂ 5 eÂeB̂e�1

2½Â;B̂�
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Expectation Values

The expectation value of an operator Â for a ket jci is
denoted hÂi and defined as

hÂi ≡ hcjÂjci
An expectation value of an observable is a real scalar that
carries the dimensional units of the corresponding physical
quantity and corresponds to the mean outcome of a large
number of identical measurements of that physical quantity
made on identically prepared systems. An expectation value
does not necessarily correspond to a possible outcome of a
single measurement; i.e., hÂi does not have to be an
eigenvalue of Â, and despite the terminology it is not
generally interpreted as an “expected” outcome of a single
measurement.

Expectation values may be calculated and further inter-
preted as follows:

• If for any discrete basis fjvkig the expansion of a state
jci is given as jci5P

k hvkjcijvki5
P

k ckjvki, then

hÂi5
X
j

X
k

c*j ckhvjjÂjvki

If it is also the case that Âjvki5 lkjvki, then
hÂi5P

k jckj2lk.
In this latter case, the expectation value of Â is a
weighted sum of eigenvalues of Â, where the weighting
for each eigenvalue is the probability (page 13) of
obtaining that particular eigenvalue in a measurement.

• If, for any continuous basis fjwbig, Â has the
generalized matrix elements Aðb;b0Þ ≡ hwbjÂjwb0 i,
and jci is represented by cðbÞ5 hwbjci, then

hÂi5
Z

∞

�∞

Z
∞

�∞
dbdb0 c*ðbÞAðb;b0Þcðb0Þ

If it is also the case that Âjwbi5 bjwbi, then
hÂi5 ∫ ∞

�∞dbb jcðbÞj2.
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Commutation Relations

Two operators Â and B̂ that are defined to act on elements
of a state space E are said to commute if ½Â; B̂�5 0. This
commutation relation implies the following:

• Â and B̂ have a common set of eigenkets, which may be
discretely or continuously indexed.

• If there are degeneracies in the spectrum of Â (or B̂),
then not every eigenket of Â (or B̂) is necessarily also

an eigenket of B̂ (or Â). ½Â; B̂�5 0 indicates that only
particular superpositions of degenerate and orthogo-
nal eigenkets of one operator are also eigenkets of the
other operator. This property also holds for matrices
and can be illustrated using the following two
matrices, which commute with each other:

�
1 0
0 1

�
and

�
0 1
1 0

�

While any two-element column vector is an eigenvec-
tor of the first matrix (the identity matrix), only

" 1ffiffi
2

p

1ffiffi
2

p

#
and

" 1ffiffi
2

p

� 1ffiffi
2

p

#

are the (normalized) eigenvectors of the second matrix
(up to a global phase factor). These two column vectors
form the unique set of eigenvectors common to both
matrices.

• If ½Â; B̂�5 0, the order of operation of Â and B̂ on a ket
is irrelevant, since Â B̂ jci5 B̂ Â jci. Physically, this
implies that the order of measurement also does not
matter if these operators correspond to observable
quantities. A measurement of both quantities in
sequence or simultaneously will leave the system in

the common eigenstate (or subspace) of Â and B̂
associated with the two eigenvalues that are the
outcomes of the measurements. Observables for which
the measurement order plays no role in determining
the final state are said to be compatible.
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Non-Commuting Operators, Uncertainty Relations

For two operators Â and B̂ that act on elements of a state
space E, if ½Â; B̂� ≠ 0, then Â B̂ jci ≠ B̂ Â jci for arbitrary
jciP E. Consequently, if Â and B̂ are observables, the
measurement order matters for the possibilities and
probabilities of measurement outcomes: measurement of
the quantity corresponding to Â collapses the system into
an eigenstate of Â, but subsequent measurement of the
quantity corresponding to B̂ collapses the system into an

eigenstate of B̂. If the state resulting from this second

measurement is not also an eigenstate of Â, then informa-

tion obtained in the first measurement (of Â) is lost. The
observables are incompatible.

With incompatible observables there is a fundamental
limit on how well the corresponding physical quantities can
be simultaneously specified or predicted. This limit is
independent of measurement apparatus performance and
is expressed by the generalized uncertainty relation

ðDÂÞðDB̂Þ$ 1
2
jh½Â; B̂�ij

where the standard deviation or uncertainty of an
operator Q̂ for a given quantum state is defined as

DQ̂5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hQ̂2i � hQ̂i2

q

The uncertainty indicates how precisely the associated
physical quantity can be predicted or specified about a
mean value for the state in question.

The Heisenberg uncertainty principle is obtained for
conjugate position and momentum operators R̂j and P̂j,
where jP fx; y; zg, for which ½R̂j; P̂j�5 iℏ, indicating the
fundamental quantum-mechanical limits of precision in
simultaneously specifying or predicting a particle’s
position and momentum:

ðDR̂jÞðDP̂jÞ$ ℏ=2
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Complete Sets of Commuting Observables

A complete set of commuting observables (CSCO) for a
state space E is a set of observables fÂ; B̂; Ĉ; : : : g for which

• All observables in the set are mutually compatible

• All observables in the set share a single, unique set of
eigenstates. In the notation below, the ket ja; b; c; : : : i is
one element of this set and is labeled with a full set of
eigenvalues of the different observables such that

Âja; b; c; : : : i5 aja; b; c; : : : i
B̂ja; b; c; : : : i5 bja; b; c; : : : i

etc:

Discrete or continuous indices may be used to label the
full sets of eigenvalues of the operators.

• While there may be degeneracy in a particular obser-
vable’s eigenvalue spectrum, any specified complete set
of eigenvalues corresponds to one and only one of the
mutual eigenstates of the CSCO, with no ambiguity.

• Multiple CSCOs may be specified for a given state space

• A CSCO may consist of a single observable if that
observable has no degeneracies in its eigenvalue
spectrum. For the 1D infinite square well (page 49)
and harmonic oscillator problems (page 54), fĤg, fX̂g,
and fP̂xg are each single-observable CSCOs.

• A CSCO has no extra elements once the above
conditions are satisfied; additional compatible observa-
bles may exist, but they are not included in that CSCO

Identification of CSCOs is necessary in order to construct
physically meaningful bases for E. Identifying a CSCO is
experimentally helpful when determining how to make a
set of sequential measurements on an unknown initial
state such that the system is left in a final state with as
many knowable properties as possible completely deter-
mined by measurement. Knowing the CSCOs that are
available tells the experimenter the possible sets of
measurements that can be made to achieve this goal.
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CSCOs for Specific Problems

The table below lists CSCOs for specific problems; see the
specific problem for definitions of the observables given
(also see page xvi). Only the most experimentally relevant,
conventional, or common CSCOs are included in the table.
The specification (e.g., through measurement) of one
eigenvalue for each observable in a CSCO determines a
state vector that is a unique common eigenstate of the
CSCO.

Problem CSCO(s)

Particle subject to arbitrary 1D
potential V(x)

fX̂g, fP̂xg

Particle subject to arbitrary 3D
potential V(r)

fX̂ ; Ŷ ; Ẑg, fP̂x; P̂y; P̂zg

Free particle, 1D (in x) (p. 48) fP̂xg, fX̂g
1D infinite square well (p. 49) fĤg
1D harmonic oscillator (p. 54) fĤg
2D harmonic oscillator in (x, y)

If isotropic, then also:

fĤx; Ĥyg
fĤ ; L̂zg (L̂z 5 X̂ P̂y � Ŷ P̂x)

3D harmonic oscillator in
(x, y, z) (p. 62)

If isotropic, then also:

fĤx; Ĥy; Ĥzg

fĤ ; L̂2
; L̂zg

An angular momentum j (p. 64) fĴ2
; Ĵ zg

Two-level systems (p. 75)

If spin 1/2 (p. 68), then also:

fŝzg
fŜzg

Two angular momenta, j1 and
j2 (p. 82)

fĴ2
1; Ĵ

2
2; Ĵ1z; Ĵ2zg;

fĴ2
1; Ĵ

2
2; Ĵ

2
; Ĵ zg

“Spinless” hydrogen (p. 97) fĤ ; L̂2
; L̂zg

Hydrogen fine-structure prob-
lem (p. 102)

fĤ ; L̂2
; Ŝ2

; L̂z; Ŝzg;
fĤ ; L̂2

; Ŝ2
; Ĵ2

; Ĵzg
Hydrogen hyperfine-structure
problem (p. 104)

fĤ ; L̂2
; Ŝ2

; Î2; L̂z; Ŝz; Î zg;
fĤ ; L̂2

; Ŝ2
; Î2; Ĵ2

; Ĵz; Î zg;
fĤ ; L̂2

; Ŝ2
; Î2; Ĵ2

; F̂2
; F̂zg
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Properties of Wavefunctions

Let jΨðtÞi denote the dynamical state of a particle in an n-
dimensional (nD) coordinate space at time t.Ψðr; tÞ5 hrjΨðtÞi
is the nD position representation of jΨðtÞi, where r is the
nD position vector. Ψðr; tÞ has dimensional units of [m�n/2].
In the conventional interpretation of quantum theory, the
wavefunction Ψðr; tÞ is also called a probability ampli-
tude and is used to determine the probability of finding the
particle near position r at time t (see page 13).

The probability density at r is jΨðr; tÞj2, with dimensional
units of [m�n]. The probability (see page 13) of finding the
particle at time t within a sufficiently small nD volume dnr
centered at r is

dPðrÞ5 jhrjΨðtÞij2 dnr5 jΨðr; tÞj2 dnr

This shows the application of the probability postulate
(page 13) in a continuous representation using wavefunc-
tion notation. The normalization condition for Ψðr; tÞ is an
integrated probability distribution,

15

Z
all space

dnrjΨðr; tÞj2

which is interpreted as indicating that “the particle must
be found somewhere in space.” Properties analogous to
those above also exist for momentum-space wavefunctions.

For Ψðr; tÞ to be physically realizable and represent the
state of a particle at time t, it must have the following
characteristics:

• Ψðr; tÞ is defined and single-valued everywhere in space

• Ψðr; tÞ is continuous everywhere in space

• The spatial gradient of Ψðr; tÞ is continuous every-
where, except where the potential energy of the
particle goes to positive or negative infinity

• Ψðr; tÞ is square-integrable, i.e., ∫ all spaced
nrjΨðr; tÞj2

is finite, implying that jΨðr; tÞj ! 0 as jrj ! ∞
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Wave-Like Properties of Matter

The wavefunction for a particle of massm characterizes the
particle’s wave-like properties. For a free particle (i.e.,
there are no external forces on the particle) with a precise
momentum of magnitude p, the deBroglie wavelength is
ldB ≡ h=p.

The energy eigenstates of a particle in a 1D time-
independent potential well V ðxÞ have wave-like character-
istics that may be graphically represented to gain under-
standing about a problem. For a particle subject to the
Hamiltonian Ĥ 5 1

2m P̂2
x þ V ðX̂Þ, with eigenstates and eigen-

values defined by the eigenvalue equation Ĥ jwni5 Enjwni,
an energy eigenfunction wnðxÞ ≡ hxjwni has the following
properties.

Energy: The local potential energy at any position x is
V ðxÞ, and the local kinetic energy is KðxÞ5 En � V ðxÞ.
Wavefunction curvature: The wavefunction curvature of
wnðxÞ is defined as CnðxÞ ≡ ∂2

∂x2 wnðxÞ. The energy eigenvalue
equation implies that

CnðxÞ5� 2mKðxÞ
ℏ2 wnðxÞ

and that the local kinetic energy is KðxÞ5� ℏ2

2m
1

wnðxÞCnðxÞ.
Classically allowed region: A classically allowed region
of a potential V ðxÞ is a region in which KðxÞ . 0. For an
energy eigenfunction wnðxÞ, CnðxÞ and wnðxÞ have opposite
signs for KðxÞ . 0, so that wnðxÞ is concave towards the
x axis and CnðxÞ changes sign when wnðxÞ crosses the x axis.
Classically forbidden region: A classically forbidden
region is one in which KðxÞ , 0. For an energy eigenfunc-
tion wnðxÞ, CnðxÞ and wnðxÞ have the same sign if KðxÞ , 0,
so that wnðxÞ curves away from and does not cross the
x axis.

Classical turning points separate the classically allowed
and forbidden regions. For wnðxÞ, they occur at points x for
which V ðxÞ5 En.
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Graphical Interpretation of the Schrödinger Equation

Qualitative graphical sketches of energy eigenfunctions in
the position representation can be made when the energy
eigenvalue equation is not readily solvable. In addition
to indicating wavefunction curvature and continuity
in classically allowed and classically forbidden regions
(page 33), the following characteristics can be graphically
illustrated:

1. A potential well is a region in the vicinity of a local or
global minimum of potential energy, and for which there
may be a finite or infinite number of discretely indexed
energy eigenstates. The shape of a potential well is often
sketched as an aid in building intuition about a problem
and about the shape of energy eigenfunctions.

2. Nodes of a wavefunction are locations where the
wavefunction magnitude is zero, so the probability density
at those locations is zero. The ground-state wavefunc-
tion solution of a 1D potential well is the energy
eigenfunction associated with the lowest energy eigen-
value, and has no nodes; i.e., the ground-state wavefunc-
tion does not cross the x axis. The first excited-state
wavefunction has one node and therefore crosses the axis
once. The nth excited state has n nodes.

3. Parity. A 1D potential V ðxÞ is symmetric about x5 0 if
V ð�xÞ5 V ðxÞ. For a 1D potential well V ðxÞ that is
symmetric about x5 0, the ground-state wavefunction is
even, such that wgroundð�xÞ5 wgroundðxÞ. The first excited-
state wavefunction is odd, such that wfirstð�xÞ5�wfirstðxÞ.
As energy increases, the discretely indexed energy eigen-
functions are alternately even and odd.

4. In regions where there is less kinetic energy and greater
potential energy, a particle would be found to move more
slowly, leading to a higher probability density of finding
the particle in such a region. Because the wavefunction
amplitude determines the probability density, the wave-
function amplitude is therefore larger in classically allowed
regions with greater potential energy.
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Graphical Interpretation: Example

The upper illustration shows classically forbidden regions
(in gray) and classically allowed regions for an example
potential well and energy eigenfunction. In this example,
the harmonic oscillator (page 54) potential well
V ðxÞ5 V 0

x2
s2 is plotted (green line, upper plot), where V0

is an energy constant, and s is a length constant. The 9th

excited-state wavefunction w9ðxÞ (arbitrary units in this
example) is shown in green in the lower plot; the associated
energy eigenvalue E9 is indicated in the upper plot. Black
dots in the lower plot indicate the 9 nodes of w9ðxÞ. In the
lower plot, note that the wavefunction curvature is always
towards the x axis in the classically allowed region, and
away from the x axis in the classically forbidden region.
Also note the larger wavefunction amplitude in classically
allowed regions of larger potential energy and smaller
kinetic energy.
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Superpositions, Relative and Global Phases

Suppose that jci and jc0i are normalized elements of the state
space E, and let fjvkig be a discrete basis for E, such that

jci5
X
k

ckjvki

jc0i5 eiujci5
X
k

eiuckjvki5
X
k

c0kjvki

where c0k 5 eiuck, and u is a real scalar. Here, u is a global phase;
it is global in the sense that eiu multiplies every element in the
superposition of basis states used to construct jci in order to
define jc0i. Global phase factors such as this can be neglected or
conveniently chosen when defining kets (such as the eigen-
states of an operator, or the elements of a basis) because there
are no measurable consequences of the global phase factor. The
expectation value of any observable is the same for both jci and
jc0i, and no measurement can differentiate between the kets jci
and jc0i. The kets jci and jc0i are therefore two ways of writing
or encoding the same physical state.

A relative phase is the phase angle between two superposi-
tion coefficients in the expansion of jci into the fjvkig basis
and is physically significant. For any two non-zero superposi-
tion coefficients cj 5 jcjjeifj and ck 5 jckjeifk , the relative phase
between the components jvji and jvki is fkj ≡ fk � fj. In the
superposition jci5 1ffiffi

2
p eiuðeif1 jv1i þ eif2 jv2iÞ, the term eiu is a

global phase factor, and f21 ≡ f2 � f1 is the relative phase
between components jv2i and jv1i.
In superpositions involving a continuous basis, relative phase
factors are expressed as continuous functions. If jci is an
element of the state space corresponding to 1D motion along x,
with the basis fjxig defining the position representation, then
jci can be expanded as follows:

jci5
Z

∞

�∞
dx jxihxjci5

Z
∞

�∞
dxcðxÞjxi

The expansion coefficients are given by cðxÞ5 jcðxÞjeifðxÞ,
where the relative phases between the continuously distrib-
uted elements of the basis fjxig are determined by fðxÞ.
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Probability Currents

A particle of mass m that is associated with the wavefunction
Ψðr; tÞ has a probability current

Jðr; tÞ5 ℏ
2mi

½Ψ*∇Ψ� Ψ∇Ψ*�

5
ℏ
m

Im½Ψ*ð∇ΨÞ�

Jðr; tÞ describes the rate of change—or flow—of probability
through regions in space and satisfies a continuity equation

∂
∂t
jΨðr; tÞj2 þ ∇ · Jðr; tÞ5 0

A 1D wavefunction can be written as Ψðx; tÞ5 jΨðx; tÞjeifðx;tÞ,
where the phase distribution fðx; tÞ is a real function. This
gives a probability current

Jðx; tÞ5 ℏ
m

Im
�
Ψ*ðx; tÞ ∂Ψðx; tÞ

∂x

�
5 jΨðx; tÞj2 ℏ

m
∂fðx; tÞ

∂x

which has dimensional units of [1/s]. Consider the wavefunction

Ψðx; tÞ5 jΨðx; tÞjeixp0=ℏ

where p0 is a scalar with units of momentum. For this case,
ℏ
m

∂fðx;tÞ
∂x 5 p0=m5 v0, where v0 is a scalar with units of velocity.

This example shows that the spatial gradient of the phase of the
wavefunction is associated with the velocity of probability flow.
For this example,

Jðx; tÞ 5 v0jΨðx; tÞj2
A 3D wavefunction can be written as Ψðr; tÞ5 jΨðr; tÞjeifðr;tÞ.
By defining a velocity distribution for the flow of probability as

vðr; tÞ5 ℏ
m

∇fðr; tÞ

the probability current can be written as the velocity distribution
v weighted by the probability density distribution:

Jðr; tÞ5 vðr; tÞjΨðr; tÞj2
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Unitary Transformations

Unitary transformations involve transforming kets, bras,
and operators by acting upon them or multiplying them with
unitary operators (see page 26). Consider an arbitrary unitary
operator Q̂ and an arbitrary operator Â, both of which are
defined to act on all elements of a state space E and the
elements of any basis that spans E. The following actions
define a unitary transformation.

• Unitary transformation of state vectors: For every
jci P E, a unitary transformation is defined by jc0i5 Q̂jci,
where jc0i is the transformed ket.

• Unitary transformation of operators: The transform
of Â is defined by Â0

5 Q̂ Â Q̂†.

Unitary transformations as defined above have the following
properties:

1. Scalar products and orthonormality are preserved when the
same unitary operation is applied to all elements and basis kets
of a state space. If jc0i ≡ Q̂jci and jw0i ≡ Q̂jwi, then

hw0jc0i5 hwjQ̂†Q̂jci5 hwjÎjci5 hwjci
2. Due to property 1, a unitary transformation of all elements
of an orthonormal basis produces a new orthonormal basis.

3. If Â has eigenvalues and eigenkets given by Âjvki5 lkjvki,
then the eigenvalues of Â0 are the same as those of Â. The
eigenkets of Â0 are the transforms of those of Â. If a
transformed eigenket of Â is defined as jv0ki ≡ Q̂jvki, then

Â0jv0ki5 ðQ̂ Â Q̂†ÞQ̂jvki5 Q̂ Â jvki5 Q̂lkjvki5 lkjv0ki

Any unitary operator Q̂ can be written as Q̂5 eiÂ, where
Â is some Hermitian operator. Also, for any Hermitian
operator Â, the operator eiÂ is unitary; e.g., for a time-
independent Hamiltonian Ĥ , the unitary time evolution
operator (page 39) is Ûðt; t0Þ5 e�iðt�t0ÞĤ=ℏ.
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Common Unitary Operators

The time evolution operator Ûðt; t0Þ evolves a state vector
from time t0 to time t under a specified Hamiltonian ĤðtÞ:

Ûðt; t0ÞjΨðt0Þi5 jΨðtÞi
• For time-independent Ĥ : Ûðt; t0Þ5 e�

i
ℏðt�t0ÞĤ

• If ½Ĥðt1Þ; Ĥðt2Þ�5 0 for arbitrary times t1 and t2, then

Ûðt; t0Þ5 e
� i

ℏ

R
t

t0
dt0Ĥðt0Þ

• Otherwise, for small enough dt so that Ĥðt0Þ � Ĥðt0 þ dtÞ
for times t0 ≤ t0 , t, with t5 t0 þNdt for some integer
N. 0:

Ûðt; t0Þ �
YN�1

n50

exp
�
� i
ℏ
dtĤðt0 þ ndtÞ

�

The product is constructed with n5 0 to n5N� 1 terms
ordered from right to left.

Position and momentum translation operators Ŝ and T̂
enable unitary operations that correspond to position and
momentum translations of a system, or of a ket’s position or
momentum expectation values. These operators and their
basic properties are defined below for the x̂-direction position
andmomentumoperators X̂ and P̂x, and translationsx0 andp0.

x0 Position Translation p0 Momentum Translation

Ŝðx0Þ5 e�ix0P̂x=ℏ T̂ðp0Þ5 eip
0X̂=ℏ

Ŝðx0Þjxi5 jxþ x0i T̂ðp0Þjpi5 jpþ p0i
hxjŜðx0Þ5 hx� x0j hpjT̂ðp0Þ5 hp� p0j
Ŝ†ðx0ÞX̂ Ŝðx0Þ5 X̂ þ x0 T̂†ðp0ÞP̂xT̂ðp0Þ5 P̂x þ p0

Ŝ†ðx0ÞX̂2Ŝðx0Þ5 ðX̂ þ x0Þ2 T̂†ðp0ÞP̂2
x T̂ðp0Þ5 ðP̂x þ p0Þ2

Example: For jc0i5 Ŝðx0Þjci, the mean position of the
wavefunction c0ðxÞ5 hxjc0i (i.e., the position expectation
value hc0jX̂ jc0i) is larger than that of cðxÞ5 hxjci by x0:

hc0jX̂ jc0i5 hcjŜ†ðx0ÞX̂ Ŝðx0Þjci5 hcjðX̂ þ x0Þjci5 hcjX̂ jci þ x0

uantum Mechanics

39Time Dependence, Transformations, “Pictures”



Conservative Systems

A conservative system is one for which the Hamiltonian
does not depend on time. The mean energy for such a system
is constant in time; it is conserved. To illustrate this concept,
consider a particle of mass m in one spatial dimension (x)
within a time-independent potential well V ðxÞ, and a
corresponding time-independent Hamiltonian Ĥ with no
degeneracies in its eigenvalue spectrum. Solving the energy
eigenvalue equation

Ĥ jwni5 Enjwni
often called the time-independent Schrödinger equation,
permits the construction of a basis fjwnig composed of energy
eigenstates.

Any initial arbitrary state of the system at time t0 can be
expanded as a superposition of the energy eigenstates:

jΨðt0Þi5
X
n

cnjwni

where the coefficients cn are time-independent complex scalars
that satisfy

P
n jcnj2 5 1 in order for jΨðt0Þi to be properly

normalized.

After evolving to time t, the system is in the state

jΨðtÞi5 Ûðt; t0ÞjΨðt0Þi5
X
n

cn e�
i
ℏðt�t0ÞĤ jwni

5
X
n

cn e�
i
ℏðt�t0ÞEn jwni

where Ûðt; t0Þ is the time evolution operator (page 39).
Property 1 on page 10 was used to produce the last line above.

The energy expectation value for jΨðtÞi is

hĤi5
X
n

jcnj2En

which shows that the mean energy of a conservative system is
constant in time, an expression of the conservation of
energy within quantum mechanics.
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Stationary States

For a conservative system that at some initial time t0 is in an
energy eigenstate jwni associated with eigenvalue En, time
evolution only introduces a time-dependent global phase
factor. Consider a state vector at time t05 0 given by
jΨð0Þi5 jwni. At a later time t, the state vector is

jΨðtÞi5 Ûðt; 0ÞjΨðt0Þi5 e�ifnðtÞjwni
where fnðtÞ5 Ent=ℏ, and Ûðt; 0Þ is the time evolution operator
(page 39). For this state vector, the only time-dependent factor
is the global phase fnðtÞ, implying that the expectation values
of any observable are constant in time, as are the probabilities
of measurement outcomes. The energy eigenstates of a
conservative system are therefore called stationary states.

If jΨðtÞi5 e�ifnðtÞjwni can be represented by the wavefunction
Ψðr; tÞ5 e�ifnðtÞwnðrÞ, where wnðrÞ5 hrjwni is an energy eigen-
function, then jΨðr; tÞj2 5 jwnðrÞj2 is the probability density
and is independent of time.

If jΨðtÞi is a superposition of different energy eigenstates, each
component of the superposition has a phase factor that evolves
in time at a rate that depends on that component’s energy
eigenvalue. In such a superposition, relative phase factors
evolve in time, leading to system dynamics: time-dependent
changes in the properties of the system.

Example: Consider a superposition of two non-degenerate
energy eigenstates jw1i and jw2i. At time t5 0, the superposi-
tion has the wavefunction Ψðr; 0Þ5 1ffiffi

2
p ½w1ðrÞ þ w2ðrÞ�. At a

later time t, the wavefunction and probability density are

Ψðr; tÞ5 1ffiffiffi
2

p ½e�iE1t=ℏw1ðrÞ þ e�iE2t=ℏw2ðrÞ�

jΨðr; tÞj2 5 1
2
jw1ðrÞj2 þ

1
2
jw2ðrÞj2 þ

1
2
eiðE2�E1Þt=ℏw1ðrÞw*

2ðrÞ

þ 1
2
e�iðE2�E1Þt=ℏw*

1ðrÞw2ðrÞ

Since jΨðr; tÞj2 depends on time, this superposition of energy
eigenstates is not a stationary state.
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Time-Dependent Reference Frames

The state of a system can be evaluated in various reference
frames that evolve in time, such as rotating frames or frames
moving at a constant velocity relative to one another. Let
jΨðtÞi be the evolving state vector of a system in a given
reference frame, where jΨðt0Þi is the initial state vector at
time t0. jΨðtÞi satisfies the Schrödinger equation

iℏ
∂
∂t
jΨðtÞi5 ĤðtÞjΨðtÞi

To reformulate the problem for a second reference frame that
may evolve in time relative to the initial one, assume the
existence of a time-dependent unitary transformation operator
F̂ðtÞ defined such that

jΨEðtÞi5 F̂ðtÞjΨðtÞi
jΨEðtÞi is the transformed state vector (see page 38), also
called the effective state that characterizes the state vector
in the second frame. The two frames are assumed to coincide
at t0 such that F̂ðt0Þ5 Î. In the second frame jΨEðtÞi obeys an
effective Schrödinger equation that is obtained by insert-
ing jΨðtÞi5 F̂†ðtÞjΨEðtÞi into the Schrödinger equation of the
initial frame. The effective Schrödinger equation and the
effective Hamiltonian for the second frame are

iℏ
∂
∂t
jΨEðtÞi5 ĤEðtÞjΨEðtÞi

ĤEðtÞ5 F̂ðtÞĤðtÞF̂†ðtÞ � iℏF̂ðtÞ ∂
∂t
F̂†ðtÞ

Frame transformations are generally used to simplify calcula-
tions and the time dependence of the Schrödinger equation.

Although F̂ðtÞ is unitary, ĤE is not the transformed
Hamiltonian F̂ðtÞĤðtÞF̂†ðtÞ that results from a unitary
transformation under F̂ðtÞ, as defined on page 38. The
effective Hamiltonian ĤE equals F̂ðtÞĤðtÞF̂†ðtÞ plus an
additional term whose form is an outcome of the
structure of the Schrödinger equation.
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Schrödinger, Heisenberg, and Interaction Pictures

The terms Schrödinger picture, Heisenberg picture,
and interaction picture are given to three particular
frames of reference. The pictures are distinguished from
one another by the specific time-dependent unitary
transformations involved in defining the different refer-
ence frames.

In the Schrödinger picture, state vectors evolve in time
under the action of the Hamiltonian according to the
Schrödinger equation and postulate 3 on page 11. If a time
evolution operator Ûðt; t0Þ and an initial state vector
jΨSðt0Þi are known for a given system, then the state
vector dynamics in the Schrödinger picture are found via
jΨSðtÞi5 Ûðt; t0ÞjΨSðt0Þi. The state vectors are labeled with
the subscript S here to identify that the state vectors
correspond to the Schrödinger picture. Also in the
Schrödinger picture, position and momentum operators
have no time dependence. If not explicitly stated otherwise,
the state vectors and operators of this Field Guide are
given in the Schrödinger picture. The Schrödinger picture
is the frame of reference on which the transformations to
the other two pictures are based.

The Heisenberg picture (page 45) is defined by a unitary
transformation operator F̂ðtÞ5 Û†ðt; t0Þ (see page 42) that is
the adjoint of the time evolution operator of the Schrödin-
ger picture. When this unitary transformation is applied to
a Schrödinger-picture state vector jΨSðtÞi, time dependence
vanishes: jΨH i ≡ Û†ðt; t0ÞjΨSðtÞi5 jΨSðt0Þi, where jΨH i is
the transformed ket of the Heisenberg picture. The
Heisenberg picture is therefore the specific time-dependent
reference frame in which the transformed state vectors are
constant in time, while operators (such as the position and
momentum operators) that have no time dependence in the
Schrödinger picture may depend on time in the Heisenberg
picture.

The interaction picture (page 46) is used when the
Schrödinger-picture Hamiltonian is time dependent. In this
picture, operators and state vectors generally evolve in time.
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Schrödinger Picture: Expectation Value Dynamics

Position and momentum operators have no explicit time
dependence in the Schrödinger picture. Nevertheless, other
operators that do have explicit time dependence can be
constructed. Let ÂSðtÞ be an arbitrary operator in the
Schrödinger picture that may have explicit time dependence.

For a given Schrödinger-picture state vector jΨSðtÞi evolving
under a Hamiltonian ĤSðtÞ, the expectation value of ÂSðtÞ will
generally have time dependence that results from both the
time dependence of jΨSðtÞi and any time dependence in ÂSðtÞ.
This time-dependent expectation value may be calculated as

hÂSðtÞiðtÞ5 hΨSðtÞjÂSðtÞjΨSðtÞi
Differentiating the equation above with respect to time produces
the following differential equation for the dynamics of expecta-
tion values in the Schrödinger picture, noting that ÂS, ĤS and
the expectation values are generally time dependent.

Schrödinger-picture expectation values:

d
dt

hÂSi5
1
iℏ

D
½ÂS; ĤS�

E
þ
�
∂ÂS

∂t

�

Ehrenfest’s equations (or Ehrenfest’s theorem) are obtained

by replacing ÂSðtÞ in the equation above with the position

operator R̂5 ðX̂ ; Ŷ ; ẐÞ, and also with the momentum operator

P̂5 ðP̂x; P̂y; P̂zÞ. Noting that ∂R̂
∂t 5 0 and ∂P̂

∂t 5 0, and that the
expectation value of the gradient of the potential energy

operator V ðR̂Þ is h∇V ðR̂Þi ≡
�D

∂V ðR̂Þ
∂X̂

E
;
D
∂V ðR̂Þ
∂Ŷ

E
;
D
∂V ðR̂Þ
∂Ẑ

E�
, the

pair of Ehrenfest’s equations can be solved to determine how
expectation values of position and momentum evolve for any
state of a system.

Ehrenfest’s equations (Ehrenfest’s theorem):

d
dt

hR̂i5 1
m

hP̂i
d
dt

hP̂i5�h∇V ðR̂Þi
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Heisenberg Picture: Operators and Dynamics

The adjoint Û†ðt; t0Þ of the time evolution operator Ûðt; t0Þ
defines a unitary transformation that transforms state vectors of
the Schrödinger picture into time-independent state vectors
within the Heisenberg picture. An arbitrary operator ÂSðtÞ in
the Schrödinger picture is transformed into the Heisenberg
operator

ÂHðtÞ5 Û†ðt; t0ÞÂSðtÞÛðt; t0Þ
The expectation value of an observable is a physically meaning-
ful quantity and must be the same in any picture, since
transforming between pictures is only of mathematical utility
for performing calculations. As shown below, the time-dependent
expectation value of ÂH ðtÞ calculated in the Heisenberg picture
is equivalent to that of ÂSðtÞ. In the table, ĤS and jΨSðtÞi are the
Schrödinger-picture Hamiltonian and state vector.

Heisenberg Picture Quantities and Dynamics

jΨH i ≡ Û†ðt; t0ÞjΨSðtÞi5 jΨSðt0Þi
ÂH ðtÞ ≡ Û†ðt; t0ÞÂSðtÞÛðt; t0Þ
ĤH 5 ĤS; for time-independentHS

ĤH ðtÞ 5 ĤSðtÞ; for ½ĤSðtÞ; ĤSðt0Þ�5 0

hÂH ðtÞiðtÞ 5hΨH jÂH ðtÞjΨH i
5hΨSðt0ÞjÛ†ðt; t0ÞÂSðtÞÛðt; t0ÞjΨSðt0Þi
5hΨSðtÞjÂSðtÞjΨSðtÞi5 hÂSðtÞiðtÞ

iℏ d
dt ÂH ðtÞ 5 ½ÂH ðtÞ; ĤH ðtÞ�

þ iℏÛ†ðt; t0Þ
�

d
dt ÂSðtÞ

�
Ûðt; t0Þ

The effective Hamiltonian of the Heisenberg picture is
ĤE 5 0, which is not identical to the transformed
Hamiltonian ĤH ðtÞ (see page 42). Since ĤE 5 0 in the
Heisenberg picture, the effective Schrödinger equation
iℏ ∂

∂t jΨH i5 0 is solved by jΨH i5 jΨSðt0Þi. In the Heisen-
berg picture, only operators evolve in time, satisfying the
differential equation in the last line of the table above.
These operators are then used with jΨH i in calculations
of physically meaningful quantities.
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Interaction Picture

The interaction picture is obtained with a unitary transfor-
mation of the state vectors and operators of the Schrödinger
picture. This transformation removes some of the time
dependence of the Schrödinger-picture state vectors, while also
altering the time dependence of operators. The interaction
picture is typically used with a time-dependent Schrödinger-
picture Hamiltonian ĤSðtÞ5 Ĥ0 þ Ŵ ðtÞ, where the eigenstates
of the time-independent term Ĥ0 are known, and Ŵ ðtÞ is a time-
dependent perturbation. Ŵ ðtÞ can induce time-dependent
dynamics and transitions between the eigenstates of Ĥ0,
which are not stationary states of the system. These
dynamics are often of primary interest when the interaction
picture is used.

To transform into the interaction picture, an evolution
operator Û0ðt; t0Þ ≡ e� i

ℏðt�t0ÞĤ0 is associated with Ĥ0. Note that
Û0 is not the time evolution operator associated with ĤSðtÞ. If
jΨSðtÞi is a state vector and ÂSðtÞ is an arbitrary operator, both
specified in the Schrödinger picture, then the transformed
state vector and arbitrary operator expressed in the interac-
tion picture are

jΨIðtÞi ≡ Û†

0ðt; t0ÞjΨSðtÞi
ÂIðtÞ ≡ Û†

0ðt; t0ÞÂSðtÞÛ0ðt; t0Þ
The effective Schrödinger equation in the interaction picture is

iℏ
∂
∂t
jΨI ðtÞi5 ĤEðtÞjΨI ðtÞi

where ĤEðtÞ is an effective Hamiltonian given by

ĤEðtÞ5 Û†

0ðt; t0ÞŴ ðtÞÛ0ðt; t0Þ
and is not identical to the transformed Hamiltonian
ĤI ðtÞ ≡ Û†

0ðt; t0ÞĤSðtÞÛ0ðt; t0Þ (see the boxes at the bottom of
pages 42 and 45). In the interaction picture, calculation of state
vector dynamics that are due entirely to Ŵ ðtÞ are emphasized,
since the dynamics due to Ĥ0 are removed in the transfor-
mation. If Ŵ ðtÞ5 0, then the interaction picture reduces to
the Heisenberg picture; in that case, ĤEðtÞ5 0 and
jΨI ðtÞi5 jΨSðt0Þi.
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Exactly Solvable Problems in One Dimension

There are a few common exactly solvable problems
consisting of a particle of mass m in a 1D time-independent
potential well V ðxÞ. A “problem” in this context means the
identification of a specific state space and a Hamiltonian.
A “solution” usually involves determining the energy eigen-
values and energy eigenstates, the relationships between
these quantities, and the expression of energy eigenstates in
representations that are meaningful for the given problem.
Exactly solvable problems are ones for which solutions can
be found analytically and without approximation methods.

For each of the exactly solvable 1D problems described on
the following pages, the Hamiltonian has the form

Ĥ 5
1
2m

P̂2
x þ V ðX̂ Þ

In the 1D position representation, Ĥ takes the form

Hfxg 5� ℏ2

2m
∂2

∂x2
þ V ðxÞ

If a constant energy term is added to Ĥ , all energy
eigenvalues will be shifted by that amount. However, the
physical dynamics of the system depend only on differences
between energy eigenvalues, so the dynamics remain
unchanged. Energy is therefore measured and specified
with respect to some implicit or specified reference value
for every problem.

The examples on the following pages utilize the position
representation. The problems and solutions include

• The potential V ðxÞ, which defines the problem

• The energy eigenvalue equation, which defines the
notation used to specify energy eigenvalues, quantum
numbers, and the energy eigenkets and eigenfunctions

• Solutions to the energy eigenvalue equation

• Explanatory or illustrative notes, plots, and special
features about the specific problem
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Free Particle and Delta Function Potential Well

Free particle:

V ðxÞ5 0

Hfxg wp0 ðxÞ5 Ep0 wp0 ðxÞ
Solutions:

Ep0 5
p02

2m
;
�
p0 PR jp0 :

�
kg ⋅m

s

��

wp0 ðxÞ5 1ffiffiffiffiffiffiffiffiffi
2pℏ

p eixp
0=ℏ

The functions wp0 ðxÞ are plane waves, each indexed by a
precise particle momentum p0. These solutions are non-
degenerate eigenkets of the momentum operator, expressed
in the position representation; they are non-normalizable and
are not physically realizable wavefunctions. In the momentum
representation, wp0 ðxÞ transforms (page 24) into a Dirac delta
function w̃p0 ðpÞ5 dðp� p0Þ.
For any p0 ≠ 0, wp0 ðxÞ and w�p0 ðxÞ have the same energy
eigenvalue Ep0 , so that for scalars cþ and c�, the superposition

cðxÞ5 cþwp0 ðxÞ þ c�w�p0 ðxÞ
is also an energy eigenfunction with eigenvalue Ep0 .

Dirac delta function potential well:

V ðxÞ5�adðxÞ; faPRþ ja : ½J ⋅m�g
Hfxg waðxÞ5 Ea waðxÞ

Solutions:

Ea 5�ma2

2ℏ2

waðxÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma=ℏ2

q
e�majxj=ℏ2

waðxÞ is the wavefunction for the ground state, which is also
the system’s only bound state (i.e., localized about x5 0).
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Infinite Square Well

Infinite square well:

V ðxÞ5
�
0 0 ≤ x ≤ L
∞ otherwise

Hfxg wnðxÞ5 En wnðxÞ
Solutions:

En 5
p2ℏ2n2

2mL2 ; fnPNþg

wnðxÞ5
� ffiffiffiffiffiffiffiffiffi

2=L
p

sinðnpx=LÞ 0 ≤ x ≤ L

0 otherwise

V(x) and the energy eigenvalues, eigenfunctions (in units of
L�1/2), and probability density distributions (in units of
L�1) for the first three energy eigenstates are illustrated
below. Shading indicates classically forbidden regions.

uantum Mechanics

49Exactly Solvable Problems



Potential Barrier: Transmission and Reflection

In this problem, a free particle traveling in theþx̂ direction with
total kinetic energy E (and no potential energy) encounters a
region 0 , x , L in which there is a sudden change in potential
energy of V 0. For V 0 . 0, this region is a localized barrier, and
for V 0 , 0, it is a localized potential well. The particle has a
probability R of being reflected by the barrier or well, and a
probability T of transmission beyond the region. The position
representation is used to analyze this problem. The potential
barrier is illustrated below in gray for V 0 . 0.

Using the definitions k ≡
ffiffiffiffiffiffiffiffi
2mE
ℏ2

q
and k0 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mjE�V 0j

ℏ2

q
, the

components of the (non-normalizable) wavefunctions in
regions A and C are illustrated above in green; these
wavefunctions have the functional forms

cAðxÞ5 eikx þ r e�ikx

cCðxÞ5 t eikx

where r and t are reflection and transmission amplitudes. The
wavefunction in region B is initially written as

cBðxÞ5
8<
:

Bþeik
0x þ B�e�ik0x forE . V 0

B1 þ B2x forE 5 V 0
Bþek

0x þ B�e�k0x forE , V 0

The equations are solved for T 5 jtj2 and R5 1� T 5 jrj2 by
applying the criteria for physically realizable wavefunctions
(page 32) at the boundaries of the barrier:

cAð0Þ5 cBð0Þ cBðLÞ5 cCðLÞ� ∂
∂xcA

�ð0Þ5 � ∂
∂xcB

�ð0Þ � ∂
∂xcB

�ðLÞ5 � ∂
∂xcC

�ðLÞ
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Potential Barrier: Energy above Barrier

Solutions to the potential barrier problem on page 50 are
given below for E . V 0 (above-barrier transmission) and
on page 52 for the cases E 5 V 0 and E , V 0 (tunneling). The
solutions involve a dimensionless real parameter defined as

k ≡
k2 � k02

2kk0

Transmission amplitude t and reflection amplitude r are given
in terms of a parameter D, defined separately for each case.
Transmission probability T is given; in all cases, R5 1 � T. The
wavefunction cBðxÞ in the region of the barrier is also given.

Case 1: E . V 0. The solution to this case holds for both V 0 . 0
(potential barrier) and V 0 , 0 (potential well):

t5
1
D
e�ikL

r5� ik
D
sinðk0LÞ

D5 cosðk0LÞ � i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
sinðk0LÞ

T 5 ½1þ k2sin2ðk0LÞ��1

5

"
1þ p2V 2

0

4Ee1
sinc2

 
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � V 0

e1

s !#�1

cBðxÞ5 ð1þ rÞ cosðk0xÞ þ i
k
k0
ð1� rÞ sinðk0xÞ

5 ð1þ rÞ cosðk0xÞ þ ikxð1� rÞ sincðk0xÞ
The energy e1 5

p2ℏ2

2mL2 is the ground-state energy of an infinite
square well of width L (page 49). The second expression for T
shows that when the kinetic energy E � V 0 in the barrier
region equals the energy of the nth excited state of an infinite
square well of width L ðen 5 n2e1Þ, there is a resonance that
gives a transmission probability of 1. This resonance is due to
constructive interference of the wave in the barrier region,
similar to resonant transmission of a monochromatic laser
beam through a Fabry–Perot resonator. Note that if
k0 5 0, cBðxÞ matches the solution for the E 5 V 0 case (page 52).
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Potential Barrier: Tunneling

Case 2: 0 , E , V 0. For this case, the potential barrier
problem has the following solution:

t5
1
D
e�ikL

r5� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p

D
sinhðk0LÞ

D5 coshðk0LÞ � ik sinhðk0LÞ
T 5 ½1þ ð1þ k2Þ sinh2ðk0LÞ��1

cBðxÞ5 ð1þ rÞ coshðk0xÞ þ i
k
k0
ð1� rÞ sinhðk0xÞ

The results above show that there is a non-zero probability
of transmission through the barrier when the kinetic
energy of the particle is formally negative, a condition that
is forbidden in classical mechanics. For this case, trans-
mission through the barrier is called tunneling. Tunnel-
ing of material particles is due to the wave nature of
matter, and is a phenomenon similar to the evanescent
coupling of light between closely spaced materials.

Case 3: E 5 V 0. For this case, the potential barrier
problem has the following solution:

t5
1
D
e�ikL

r5� ikL
2D

D5 1� ikL
2

T 5

�
1þ k2L2

4

��1

5

�
1þmL2V 0

2ℏ2

��1

cBðxÞ5 ð1þ rÞ þ ikxð1� rÞ
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Potential Barrier: Examples

Above-barrier transmission and reflection, and below-barrier
tunneling, are graphically illustrated below, corresponding to
cases 1 and 2, respectively, from pages 51 and 52. In the
examples, a plane wave is incident on a potential barrier from
the left and undergoes partial reflection from the barrier and
partial transmission through the barrier. The first plot shows a
barrier of width L and height V 0 5 ℏ2=ð2mL2Þ (solid line), a
dotted line representing an incident plane-wave energy above
that of the barrier height ðE1 5 1.3V 0Þ, and a dashed line
representing an incident plane-wave energy below that of the
barrier height ðE2 5 0.7V 0Þ. For a single instant in time t5 0,
the second plot shows the real (solid line) and imaginary (dot-
dashed line) parts of Ψ1ðx; 0Þ (the wave of energy E1), and the
third plot shows the probability density jΨ1ðx; 0Þj2 with a
transmission probability T � 0.85. The fourth and fifth plots
are the same as plots two and three but for incident plane-wave
energy E2, with a transmission probability T � 0.72.
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1D Quantum Harmonic Oscillator

1D harmonic oscillator:

V ðxÞ5 1
2
mv2x2 5

1
2
ℏv

	
x
s



2

Hfxg wnðxÞ5 En wnðxÞ
Definitions:

v oscillator frequency
�
rad
s

�

s ≡
ffiffiffiffiffiffi
ℏ
mv

q
oscillator length ½m�

Solutions:

En 5 ℏvðnþ 1=2Þ fnPN0g

w0ðxÞ5



1
ps2

�1
4e�

x2

2s2 ground state

wnðxÞ5 1ffiffiffiffiffiffiffi
2nn!

p w0ðxÞHn



x
s

�
nth excited state

The orthonormal set of energy eigenfunctions fwnðxÞg are
the Hermite–Gaussian functions. HnðjÞ is the Hermite
polynomial of order n.

Hermite Polynomials up to n5 9

H0ðjÞ5 1

H1ðjÞ5 2j

H2ðjÞ5 4j2 � 2

H3ðjÞ5 8j3 � 12j

H4ðjÞ5 16j4 � 48j2 þ 12

H5ðjÞ5 32j5 � 160j3 þ 120j

H6ðjÞ5 64j6 � 480j4 þ 720j2 � 120

H7ðjÞ5 128j7 � 1344j5 þ 3360j3 � 1680j

H8ðjÞ5 256j8 � 3584j6 þ 13440j4 � 13440j2 þ 1680

H9ðjÞ5 512j9 � 9216j7 þ 48384j5 � 80640j3 þ 30240j
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Harmonic Oscillator: Energy Eigenfunctions

The plots below (green lines) show the normalized harmonic
oscillator (page 54) energy eigenfunctions wnðxÞ (left column, in
units of s�1=2) for n5 0 through n5 3 and the associated
probability density distributions jwnðxÞj2 (right column, in units
of s�1). The curves shown below are for the potential energy
V ðxÞ=E0 (solid-line curve in top-row plots). Vertical dashed
lines indicate the classical turning points at �s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
for

each state. Horizontal dashed lines on the potential energy
plots indicate the quantum numbers n for the first few energy
eigenvalues.
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Harmonic Oscillator: Ladder Operators

The 1D harmonic oscillator problem can be expressed in terms
of a lowering operator â and a raising operator â† (the
adjoint of â). These operators â and â† are alternatively called
the annihilation and creation operators (respectively); â
and â† together are the harmonic oscillator ladder operators.

The ladder operators â and â† are defined in terms of the
position and momentum operators X̂ and P̂x. X̂ and P̂x
can then be written in terms of â and â†. These
relationships are given as follows:

â ≡ 1ffiffi
2

p ðX̂=sþ iP̂xs=ℏÞ X̂ 5 sffiffi
2

p ðâ† þ âÞ
â† ≡ 1ffiffi

2
p ðX̂=s� iP̂xs=ℏÞ P̂x 5

iℏ
s
ffiffi
2

p ðâ† � âÞ
The 1D harmonic oscillator Hamiltonian is written as

Ĥ 5 ℏv

	
â†âþ 1

2



5 ℏv

	
N̂ þ 1

2




where N̂ ≡ â†â is called the number operator.

The ladder operators have the following properties and
actions on the harmonic oscillator energy eigenstates fjwnig:

Ladder Operator Properties and Actions

½â; â†�5 1

â†jwni5
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jwnþ1i for anynPN0

jwni5 ðâ†Þnffiffiffiffi
n!

p jw0i
âjwni5

ffiffiffi
n

p jwn�1i fornPNþ

âjw0i5 0 or âjw0i5 0jw0i

Both expressions in the last line above are found in quantum
mechanics textbooks. The first shows that jw0i is the ground
state; i.e., there are no kets jwni for which n is negative. The
second expression is found in the context of coherent states
(also called quasi-classical states), described on page 59,
and it emphasizes that jw0i is an eigenstate of â with
eigenvalue 0.
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Harmonic Oscillator: Properties and Dynamics

Position and momentum: An energy eigenstate jwni of a 1D
harmonic oscillator centered at position x5 0 has the follow-
ing position and momentum properties:

hX̂i5 0 hP̂xi5 0

hX̂ 2i5 s2ðnþ 1=2Þ hP̂2
xi5 ℏ2

s2 ðnþ 1=2Þ
DX̂ 5 s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1=2

p
DP̂x 5

ℏ
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1=2

p

ðDX̂ÞðDP̂xÞ5 ℏðnþ 1=2Þ
Ehrenfest’s equations: For a 1D harmonic oscillator,
Ehrenfest’s equations (page 44) are

d
dt

hX̂i5 1
m

hP̂xi and
d
dt

hP̂xi5�mv2hX̂i

These equations have the time-dependent solutions shown
below, which hold for any state of the harmonic oscillator with
known initial conditions hX̂ iðt0Þ and hP̂xiðt0Þ at time t0.

Harmonic Oscillator: Schrödinger Picture

hX̂ iðtÞ5 hX̂ iðt0Þ cos½vðt� t0Þ� þ 1
mv hP̂xiðt0Þ sin½vðt� t0Þ�

hP̂xiðtÞ5 hP̂xiðt0Þ cos½vðt� t0Þ� �mvhX̂ iðt0Þ sin½vðt� t0Þ�

The expectation values hX̂iðtÞ and hP̂xiðtÞ are periodic in time.
The period t 5 2p=v defines the temporal periodicity of the
physical dynamics and characteristics of oscillator states.

Relative to the time-independent Schrödinger-picture (page
43) position ðX̂Þ, momentum ðP̂xÞ, and ladder ðâ and â†Þ
operators, the corresponding Heisenberg-picture operators
(page 45) are listed below and denoted with a subscript H.

Harmonic Oscillator: Heisenberg Picture

X̂H ðtÞ5 X̂ cos½vðt� t0Þ� þ 1
mv P̂x sin½vðt� t0Þ�

ðP̂xÞH ðtÞ5 P̂x cos½vðt� t0Þ� �mvX̂ sin½vðt� t0Þ�
âH ðtÞ5 â e�ivðt�t0Þ

â†

H ðtÞ5 â† eivðt�t0Þ
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Harmonic Oscillator: Fourier Transforms

For any state jΨðt5 0Þi of the harmonic oscillator, the position
representation of the state after a subsequent quarter-period of
evolution—that is, Ψðx; p

2vÞ5 hxjΨðt5 p
2vÞi—is a scaled and

normalized Fourier transform of Ψðx; 0Þ5 hxjΨðt5 0Þi. Specifi-
cally,

Ψ


x;

p

2v

�
5 e�ip=4

ffiffiffiffiffiffiffiffiffiffiffi
ℏ=s2

q
FfΨðx; 0Þgp5ℏx=s2

where F denotes the Fourier transform (page 24), and the
subscript indicates that after taking the Fourier transform of
Ψðx; 0Þ, all instances of p are to be replaced by ℏx=s2. The
coefficient

ffiffiffiffiffiffiffiffiffiffiffi
ℏ=s2

p
ensures proper normalization and dimen-

sional units, and e�ip=4 is a phase factor relative to the phase of
the wavefunction at time t5 0. Similarly, for the momentum
distribution, where F�1 is an inverse Fourier transform,

Ψ̃


p;

p

2v

�
5 e�ip=4

ffiffiffiffiffiffiffiffiffiffiffi
s2=ℏ

q
F�1fΨ̃ðp; 0Þgx5�s2p=ℏ

Example: Let jΨðx; 0Þj2 be a Gaussian wavefunction of 1/e
radius w (not necessarily equal to s), centered at x5 x0, and
having zero mean momentum at time t5 0. For this case,

Ψðx; 0Þ5

 1
pw2

�1=4
e�

ðx� x0Þ2
2w2

Ψ


x;

p

2v

�
5 e� ip=4


 w2

ps4

�1=4
e�

ixx0
s2 e�

x2w2

2s4

Ψ


x;
p

v

�
5� i


 1
pw2

�1=4
e�

ðxþx0Þ2
2w2

The probability density distributions for these three wavefunc-
tions are shown below, in units of 1=s, for w5 s=3 and x0 5 5s.
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Coherent States (Quasi-Classical States)

The raising operator â† does not have solutions to its
eigenvalue equation. The lowering operator â, however, does
have solutions to its eigenvalue equation âjai5 ajai given by

jai5 e�jaj2=2X∞
n50

an
ffiffiffiffiffi
n!

p jwni; faPCg

These solutions to the eigenvalue equation for â are called
coherent states or quasi-classical states. The scalar
product of two coherent states ja0i and ja00i is

ha0ja00i5 e�
1
2ja0 j2e�

1
2ja00j2 X∞

n50

ða0�a00Þn
n!

Because jha0ja00ij2 5 e�ja0�a00 j2 , coherent states are properly
normalized but not orthogonal to one another. A coherent
state’s probability density distribution in the position or
momentum representation has the same shape as that of the
ground state; however, a coherent state can have non-zero real
values of hX̂i and hP̂xi at some instant. A coherent state is
formally constructed from the ground state as follows:

1. Associate the displacements hX̂i and hP̂xi at some instant

with the complex number a 5 1ffiffi
2

p ðhX̂i=sþ ishP̂xi=ℏÞ.

2. Construct the unitary displacement operator D̂ðaÞ:

D̂ðaÞ ≡ eaâ
†�a*â 5 e

i
ℏðhP̂xiX̂�hX̂ iP̂xÞ 5 eif0 T̂ðhP̂xiÞŜðhX̂ iÞ

where f0 5
hP̂xihX̂i

2ℏ . Ŝðx0Þ5 e�ix0P̂x=ℏ and T̂ðp0Þ5 eip
0X̂=ℏ are posi-

tion and momentum translation operators, respectively.

3. Finally, D̂ðaÞjw0i5 jai. Through Ŝðx0Þ and T̂ðp0Þ, D̂ðaÞ shifts
a ground-state wavefunction in position and momentum by x0

and p0. The wavefunction for the displaced state jai has the
same shape as that of the ground state but has expectation
values hX̂i5 ffiffiffi

2
p

sRefag and hP̂xi5
ffiffiffi
2

p
ℏ
s Imfag.

The value of a associated with a coherent state evolves in
time: for an initial (t5 0) displacement coordinate a0, the
coherent state jΨð0Þi5 ja0i evolves as jΨðtÞi5 ja0e�ivti,
corresponding to the harmonic motion described on page 57.
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Phase-Space Diagrams

The properties and dynamics of 1D harmonic oscillator states
may be visualized with 2D phase-space diagrams or plots,
which show position scaled by

ffiffiffi
2

p
s on the horizontal axis, and

momentum scaled by
ffiffiffi
2

p
ℏ=s on the vertical axis, where

s 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðmvÞp

. The coordinates in a phase-space diagram
therefore correspond to the dimensionless displacement
coordinate

a 5
1ffiffiffi
2

p
	
x
s
þ i

ps
ℏ




where Refag and Imfag are the coordinates for the horizontal
and vertical axes, respectively. A phase-space diagram indicates
the mean values of position and momentum ðhX̂i and hP̂xiÞ
for any harmonic oscillator state by placing an oval centered

at the corresponding point ðRefhâig; ImfhâigÞ5



hX̂iffiffi
2

p
s
; hP̂xisffiffi

2
p

ℏ

�
,

where â is the lowering operator (page 56).

By letting the horizontal and vertical radii of the oval
correspond to DX̂ffiffi

2
p

s
and DP̂xsffiffi

2
p

ℏ
, respectively, the area of the oval

is proportional to the uncertainty product ðDX̂ÞðDP̂xÞ. This
oval, which may be called an uncertainty patch, aids in
visualizing uncertainties in both X̂ and P̂x for any state.

Because hX̂iðtÞ and hP̂xiðtÞ are harmonic and out of phase
(page 57), an uncertainty patch that is initially displaced from
the origin will subsequently orbit the origin. By plotting the
trajectory ImfhâðtÞig versus RefhâðtÞig of the center of an
uncertainty patch, the dynamics of any state of the oscillator
correspond to circular trajectories or orbits of the uncertainty
patch. All orbits are clockwise, and the center of the
uncertainty patch moves through an angle u 5 vt in the time t.

The shape of the uncertainty patch for a given state remains
constant in time. However, as it orbits around the origin the
uncertainty patch also rotates clockwise at the angular
frequency v. Because of this rotation, for every quarter-period
of harmonic motion, the scaled position and momentum
uncertainties are exchanged; this is due to the Fourier
transformation property of the harmonic oscillator described
on page 58.
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Phase-Space Diagrams: Examples

The following phase-space diagram illustrates the dynamics of
four harmonic oscillator states and their uncertainty patches.

Ground state: The dark gray circle at the coordinate system
origin corresponds to the ground state jw0i. The uncertainty
patch is circular, with a position and shape that are constant
in time since this is a stationary state. Its area is p=4 in the
scaled units of the plot, the smallest area possible since jw0i
satisfies the minimum uncertainty product ðDX̂ÞðDP̂xÞ5 ℏ=2.

First excited state: The light gray circle at the origin
corresponds to the first excited state jw1i. The associated
uncertainty patch is stationary, but its area is three times that
of jw0i.
Squeezed state: The elongated white ovals show the
uncertainty patches associated with the example given at
the bottom of page 58, at the same points in time ðt5 0; t5 p

2v,
t5 p

vÞ; time evolution corresponds to clockwise motion starting
from the right-most oval at t5 0. For this state
ðDX̂ÞðDP̂xÞ5 ℏ=2, but the uncertainties in X̂ and P̂x are
alternately “squeezed” below their ground-state values, hence
the name.

Coherent state: The three green circles correspond to a
coherent state jaðtÞ5 2e�ivti, at the same points in time as
those of the squeezed-state example. The uncertainty patch
has the same shape and area as that of the ground state.
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3D Quantum Harmonic Oscillator

The 3D harmonic oscillator involves three independent 1D
harmonic oscillators. The 3D harmonic oscillator is defined by
the Hamiltonian

Ĥ 5 Ĥx þ Ĥy þ Ĥz

where

Ĥ j 5
1
2m

P̂2
j þ

1
2
mv2

j R̂
2
j

and jPfx; y; zg runs over the three orthogonal components of
position. The energy eigenvalues are

Enx;ny;nz
5 ℏvxðnx þ 1=2Þ þ ℏvyðny þ 1=2Þ þ ℏvzðnz þ 1=2Þ

fnx;ny;nzPN0g
In Dirac notation, the energy eigenstates are often expressed
in various equivalent ways as tensor-product states

fjwnx
ijwny

ijwnz
ig or fjnx;ny;nzig or fjnxijnyijnzig

An energy eigenfunction has the position representation

wnx;ny;nz
ðx; y; zÞ5 wnx

ðxÞ ⋅ wny
ðyÞ ⋅ wnz

ðzÞ
where wnj

ðrjÞ5 hrjjwnj
i5 hrjjnji is the nth

j energy eigenfunction
(a Hermite–Gaussian function) of a 1D harmonic oscillator in
the coordinate rj (page 54).

Each spatial dimension is associated with a lowering operator

âj 5
1ffiffiffi
2

p ðR̂j=sj þ iP̂jsj=ℏÞ

(and its adjoint), where sj 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðmvjÞ

p
. Each lowering (or

raising) operator acts only on the elements of the state space
Ej of the corresponding spatial dimension.

The 3D isotropic harmonic oscillator is defined by a single
oscillator frequency v5 vx 5 vy 5 vz and has energy eigen-
values given by En 5 ℏvðnþ 3

2Þ, where n5 nx þ ny þ nz, and
fnPN0g. For an energy eigenvalue En, the degree of
degeneracy is gn 5 1

2 ðnþ 1Þðnþ 2Þ. Because of this degener-
acy, the fjnx;ny;nzig set of energy eigenstates is not the only
energy-eigenstate basis, although it is commonly used.
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Angular Momentum: Definitions

An angular momentum in quantum mechanics is a
vector operator Ĵ5 ðĴ x; Ĵy; Ĵ zÞ whose properties are
defined by the commutation relations

½Ĵx; Ĵy�5 iℏĴz ½Ĵy; Ĵ z�5 iℏĴx ½Ĵ z; Ĵx�5 iℏĴy

The commutation relations show that Ĵx; Ĵy; and Ĵ z are not
compatible observables. Therefore, Ĵ does not have eigenstates,
and a physical angular momentum vector cannot be precisely
specified or determined for any quantum-mechanical system.

However, the operator Ĵ2 ≡ Ĵ ⋅ Ĵ5 Ĵ2
x þ Ĵ2

y þ Ĵ2
z is an observ-

able that corresponds to the square of the magnitude of the
physical angular momentum. Ĵ2 commutes with each compo-
nent of Ĵ:

½Ĵ2
; Ĵx�5 ½Ĵ2

; Ĵy�5 ½Ĵ2
; Ĵ z�5 0

Ĵ2 and one of the components of Ĵ can be chosen as a pair of
commuting observables for simultaneously specifying the
(square) magnitude of an angular momentum vector, and one
of the components of the angular momentum vector. Typically,
fĴ; Ĵzg is chosen as the CSCO for angular momentum
problems; the z axis is then called the quantization axis.
Other angular momentum operators used in calculations are

Ĵþ 5 Ĵx þ iĴy Ĵx 5
1
2 ðĴþ þ Ĵ�Þ

Ĵ� 5 Ĵx � iĴy Ĵy 5� i
2 ðĴþ � Ĵ�Þ

where Ĵþ and Ĵ� are non-Hermitian angular momentum
ladder operators that have the following relations:

½Ĵz; Ĵþ�5 ℏĴþ

½Ĵz; Ĵ��5�ℏĴ�

½Ĵ2
; Ĵþ�5 ½Ĵ2

; Ĵ��5 0

ĴþĴ� 5 Ĵ2 � Ĵ2
z þ ℏĴz

Ĵ�Ĵþ 5 Ĵ2 � Ĵ2
z � ℏĴz

uantum Mechanics

63Angular Momentum



Angular Momentum: Eigenvalues and Eigenstates

The eigenvalue equations for Ĵ2 and Ĵz are

Ĵ2j j;mji5 jðjþ 1Þℏ2j j;mji
Ĵzj j;mji5mjℏj j;mji

fj P N0g or fjPN0 þ 1=2g ða “half-integer”Þ
For any specific j : mj P f�j;�jþ 1; : : : ; j�1; jg

In the eigenvalue equations, j can be an integer or half-integer
(i.e., half of an odd integer) greater than or equal to zero. For
any given j, there are 2jþ 1 possible values of mj. The state
j j;mji is interpreted as having a magnitude of angular
momentum that is precisely ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp

, and a z-component of
angular momentum of precisely mjℏ.

When a particle with physical angular momentum is placed in
an external magnetic field that points in the ẑ direction, the
total energy of the particle depends on the magnitude of the
field and on mj, as described on page 71. For this reason, mj is
called the magnetic quantum number. Note that unless
explicitly stated otherwise, the magnetic quantum numbers in
this Field Guide are always associated with the z-component
of angular momentum, although magnetic quantum numbers
can be associated with any spatial direction.

Angular momentum ladder operators act on j j;mji as
follows:

Ĵþj j;mji5 ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ �mjðmj þ 1Þ

q
j j;mj þ 1i

for �j ≤ mj ≤ j� 1 ðĴþj j;mj 5 ji5 0Þ

Ĵ�j j;mji5 ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ �mjðmj � 1Þ

q
j j;mj � 1i

for �jþ 1 ≤ mj ≤ j ðĴ�j j;mj 5�ji5 0Þ

For a given j, the discretely indexed orthonormal basis
fj j;mjig spans the (2jþ 1)-dimensional state space Ej.
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Orbital Angular Momentum: Operators

Orbital angular momentum (OAM) is one type of
angular momentum in quantum mechanics for which

• The angular momentum quantum number j is neces-
sarily a positive integer

• The angular momentum eigenstates fj j;mjig can be
expressed in the position representation as functions
of position coordinates; these functions are the
spherical harmonics (page 100)

Instead of the generic quantum-number letters j andmj, and
the operator Ĵ5 ðĴx; Ĵy; ĴzÞ, the letters l andml are usually
used for OAM quantum numbers, and L̂5 ðL̂x; L̂y; L̂zÞ
usually specifies an OAM vector operator.

The OAM eigenstates and eigenvalues are defined by the
eigenvalue equations

L̂2jl;mli5 lðl þ 1Þℏ2jl;mli
L̂zjl;mli5mlℏjl;mli

flPN0g
For any specific l:ml P f�l;�l þ 1; : : : ; l � 1; lg

Physically, OAM corresponds to the motion of a particle or
the flow of a probability current through positions in space
that periodically or momentarily orbit about some coordi-
nate system’s origin. For this reason, the OAM eigenstates
fjl;mlig may be expressed in the position representation.
OAM is involved when characterizing (for example):

• Angular momentum of an electron about an atomic
nucleus

• The motion of particle about the center of a 2D or 3D
harmonic oscillator potential well

• Rotation of a molecule
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Orbital Angular Momentum: Position Representation

For a particle with position and momentum vector operators
R̂ and P̂, the vector operator associated with OAM about the
coordinate system origin is

L̂5 ðL̂x; L̂y; L̂zÞ5 R̂3 P̂

In Cartesian coordinates and with r5 ðx; y; zÞ, the position
representation of L̂ is obtained by substituting the position-
representation operations of R̂ and P̂ (i.e., r and �iℏ∇,
respectively) into the expression above, giving

Lfrg 5�iℏðr3 ∇Þ

5�iℏ
h�

y
∂
∂z

� z
∂
∂y

�
;
�
z
∂
∂x

� x
∂
∂z

�
;
�
x
∂
∂y

� y
∂
∂x

�i

In spherical coordinates (page 115), ∇ is given by

∇5 r̂
∂
∂r

þ û
1
r
∂
∂u

þ f̂
1

r sin u

∂
∂f

and the x, y, and z components of L̂ are written in the position
representation as

ðLxÞfrg 5 iℏ
�
sinf

∂
∂u

þ cosf cot u
∂
∂f

�

ðLyÞfrg 5 iℏ
�
� cosf

∂
∂u

þ sinf cot u
∂
∂f

�

ðLzÞfrg 5�iℏ
∂
∂f

In spherical coordinates, Lfrg and L2
frg are

Lfrg 5�iℏ
�
f̂

∂
∂u

� û
1

sin u

∂
∂f

�

L2
frg 5�ℏ2

�
1

sin u

∂
∂u

�
sin u

∂
∂u

�
þ 1

sin2u

∂2

∂f2

�

which have an orthonormal set of eigenfunctions called the
spherical harmonics, described on page 100. These func-
tions are the position-representation wavefunctions corre-
sponding to the state vectors fjl;mlig. Also see page 116.
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Spin Angular Momentum

Spin angular momentum, or spin, is the second type of
angular momentum in quantum mechanics. While the
magnitude and one component of a spin vector can be
specified, in the absence of orbital angular momentum
neither a particle with spin nor any portion of the particle’s
mass density can be said to “orbit” around that axis as if it
were a spinning object. Spin states and spin operators do
not have position representations.

Instead of a general angular momentum operator Ĵ and the
quantum numbers j and mj (pages 63–64), spin is often

denoted by the operator Ŝ5 ðŜx; Ŝy; ŜzÞ and quantum
numbers s and ms.

The spin eigenstates and eigenvalues are defined by the
eigenvalue equations

Ŝ2js;msi5 sðs þ 1Þℏ2js;msi
Ŝzjs;msi5msℏjs;msi

fsPN0g or fsPN0 þ 1=2g ða half-integerÞ
For any given s: msPf�s;�sþ 1; : : : ; s�1; sg

The spin quantum number s can be an integer or half-
integer. An elementary particle’s spin s is an immutable
property of the particle, like its mass and electric charge.
Composite particles formed from elementary particles also
have an associated spin. For example, every electron, quark,
proton, and neutron has a spin quantum number s5 1/2.

The equations given on pages 63–64 hold for any angular
momentum: a single particle’s orbital or spin angular
momentum, or the total angular momentum of a system
(page 82). Therefore, it is common to use symbols other

than Ĵ, L̂, and Ŝ (and their associated quantum numbers)
to differentiate various angular momentum quantities.
Symbols used to express the various angular momenta of
atoms are given on page 101.
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Spin Angular Momentum: s5 1/2

The s5 1/2 problem has a 2D state space Es51=2, meaning that
any orthonormal basis that spans Es51=2 has exactly two
elements. The basis elements can be denoted jþiu and j�iu,
which are respectively read as “spin up and spin down along
the û direction.” The x, y, and z components of the unit vector
û are written using spherical coordinates (page 115) as

û5 ðsin u cosf; sin u sinf; cos uÞ
For example, the pair of angles u5p/2 and f5 0 indicates the
unit vector û5 ð1; 0; 0Þ, which is the x̂ direction.

jþiu and j�iu are the common eigenstates of Ŝ2 and Ŝu, where

Ŝu 5 Ŝ ⋅ û5 Ŝx sin u cosfþ Ŝy sin u sinfþ Ŝz cos u

j�iu 5 js5 1=2;mu 5�1=2i
In the case above, the magnetic quantum number mu is
associated with the component of spin about û, which does not
necessarily equal ẑ. The eigenvalues of Ŝu are �ℏ=2: jþiu is
associated with the eigenvalue ℏ/2, and j�iu is associated with
the eigenvalue� ℏ/2:

Ŝuj�iu 5� ℏ
2
j�iu

The eigenstates of Ŝu can be expanded into the fj�izg basis
where jþiz ≡ js5 1=2;ms 5 1=2i is the ket for “spin up along ẑ,”
and j�iz ≡ js5 1=2;ms 5�1=2i is the ket for “spin down
along ẑ” (see page 67). The following normalized state vectors
follow the global phase conventions specified on page 114
(i.e., the first non-zero expansion coefficient—associated with
jþiz in this case—is real and positive):

jþiu 5 cosðu=2Þjþiz þ sinðu=2Þeifj�iz
j�iu 5 sinðu=2Þjþiz � cosðu=2Þeifj�iz

Expressing the eigenstates of Ŝx (for which u5 p/2 and
f5 0) and Ŝy (for which u5p/2 and f5p/2) in terms of the
fj�izg basis is then straightforward:

Spin along x Spin along y

Spin up jþix 5 1ffiffi
2

p jþiz þ 1ffiffi
2

p j�iz jþiy 5 1ffiffi
2

p jþiz þ iffiffi
2

p j�iz
Spin down j�ix 5 1ffiffi

2
p jþiz � 1ffiffi

2
p j�iz j�iy 5 1ffiffi

2
p jþiz � iffiffi

2
p j�iz
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Pauli Spin Operators

The s5 1/2 spin operators Ŝx, Ŝy, and Ŝz can be written in
terms of the Pauli spin operators ŝx, ŝy, and ŝz:

Ŝx 5
ℏ
2 ŝx Ŝy 5

ℏ
2 ŝy Ŝz 5

ℏ
2 ŝz

These three relations are compactly expressed together as
Ŝ5 ℏ

2 ŝ, where ŝ5 ðŝx; ŝy; ŝzÞ. Each Pauli spin operator ŝu
(where uP fx; y; zg) has the eigenvalues ±1, with the same
eigenstates as those of Ŝ2 and Ŝu for a system with s5 1/2.

Using the fj�izg representation, the Pauli spin operators
are expressed as 2 3 2 Pauli spin matrices. Following
standard notation conventions, these are defined as

sx ≡
�
0 1
1 0

�
sy ≡

�
0 �i
i 0

�
sz ≡

�
1 0
0 �1

�

The eigenvectors of the Pauli spin matrices are given below
(each eigenvector is listed below its associated eigenvalue).

Eigenvectors of Pauli Spin Matrices

Matrix sx sy sz

Eigenvalues 1 �1 1 �1 1 �1

Eigenvectors
2
4

1ffiffi
2

p

1ffiffi
2

p

3
5

2
4

1ffiffi
2

p

�1ffiffi
2

p

3
5

2
4

1ffiffi
2

p

iffiffi
2

p

3
5

2
4

1ffiffi
2

p

�iffiffi
2

p

3
5

2
4
1

0

3
5

2
4
0

1

3
5

The Pauli spin operators have the commutation relations

½ŝx; ŝy�5 2iŝz ½ŝy; ŝz�5 2iŝx ½ŝz; ŝx�5 2iŝy

The Pauli spin operators, matrices, and their eigenvalues
and eigenvectors are also commonly used in two-level
problems that do not necessarily involve a physical spin
angular momentum (page 75).
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Angular Momentum j5 1

For a system with the generalized angular momentum
quantum number j5 1, the eigenstates of Ĵ2 and Ĵ z form
the three-element basis

fj j5 1;mj 5 1i; j j5 1;mj 5 0i; j j5 1;mj 5�1ig
that spans the state space Ej51. In a representation defined by
this basis, the three components of the j5 1 angular momen-
tum operator Ĵ, and their eigenvalues and orthonormal
eigenvectors, are given in the following table. For each
operator, the associated matrix is given below the operator.
For each matrix, the eigenvectors are listed immediately below
their associated eigenvalues ℏ, 0, and �ℏ.

j5 1 Angular Momentum Matrices, Eigenvectors

Ĵx Ĵy Ĵz

ℏffiffi
2

p

2
4
0 1 0
1 0 1
0 1 0

3
5 ℏffiffi

2
p

2
4
0 �i 0
i 0 �i
0 i 0

3
5 ℏ

2
4
1 0 0
0 0 0
0 0 �1

3
5

ℏ 0 �ℏ ℏ 0 �ℏ ℏ 0 �ℏ
2
664

1
2
1ffiffi
2

p

1
2

3
775

2
664

1ffiffi
2

p

0
�1ffiffi
2

p

3
775

2
664

1
2
�1ffiffi
2

p

1
2

3
775

2
664

1
2
iffiffi
2

p

�1
2

3
775

2
664

1ffiffi
2

p

0
1ffiffi
2

p

3
775

2
664

1
2
�iffiffi
2

p

�1
2

3
775

2
664
1

0

0

3
775

2
664
0

1

0

3
775

2
664
0

0

1

3
775

The j5 1 case can apply to various systems, including spin
and orbital angular momentum problems. For example, the
electron of hydrogen (page 97) can exist in an excited state
with orbital angular momentum quantum number l5 1. In
this case, there are three possible outcomes of a measurement
of the electron’s component of orbital angular momentum
about any direction: ℏ, 0, and –ℏ. As another example, two
spin-1/2 particles might together form a system with a net
spin quantum number s5 1 (see the rules for addition of
angular momenta, page 82). In this case, also, ℏ, 0, and �ℏ are
the possible outcomes of a measurement of the component of
the system’s net spin about any spatial direction.
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Magnetic Dipole Moments and Magnetic Fields

When placed in an external vector magnetic field B,
a classical magnetic dipole moment m has a potential
energy due to its interaction with the field that is given by

WB 5�m ⋅B

In quantum mechanics, magnetic dipole moments may corre-
spond to a particle or system’s spin, orbital, or net angular
momentum. For a system with a generalized angular momen-
tum operator Ĵ, the magnetic dipole moment operator is

m̂5 gĴ

where g is the gyromagnetic ratio, a constant of proportion-
ality between m̂ and Ĵ that has a numerical value that depends
the specific particle or system. As is the case with angular
momentum, the direction of a particle’s magnetic moment
cannot be precisely specified, and the operator m̂ is therefore
not an observable (although its magnitude jm̂j can be precisely
specified and is proportional to the magnitude of angular
momentum).

In atomic and nuclear physics, the magnitudes of magnetic
dipole moments are commonly specified in terms of either mB

or mN. The Bohr magneton mB is used to quantify the
magnetic dipole moments of electrons with spin or orbital
angular momenta, or of atoms with net angular momenta
arising from a sum of the net spin and orbital angular
momenta of all electrons and the nuclear spin. The nuclear
magneton mN is used to express magnetic dipole moments
arising from the spin of neutrons, protons, and atomic nuclei.
The Bohr and nuclear magnetons are

mB 5
eℏ
2me

� 9.2743 10�24 J=T

mN 5
eℏ
2mp

� 5.0513 10�27 J=T

where e is the fundamental unit of electric charge, and me and
mp are the masses of the electron and proton, respectively.
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Gyromagnetic Ratios and g-Factors

Gyromagnetic ratios in nuclear- and atomic-physics
problems are commonly expressed in terms of either the
Bohr magneton mB or the nuclear magneton mN and a
dimensionless number called the g-factor, denoted as g.
The table below lists the relationships between angular
momenta, magnetic dipole moments, gyromagnetic ratios,
and g-factors for the angular momenta associated with an
atom.

In the table, Ŝ is the vector spin operator for the particle in
question (the spin quantum number s5 1/2 applies to a
single electron, proton, and neutron) or for the net spin
angular momentum of all electrons in an atom. Î is the
operator for nuclear spin, and L̂ is an OAM operator for a
single electron or the net OAM of all electrons in an atom.

Angular
Momentum

Magnetic
Dipole
Moment

Gyromagnetic
Ratio g-Factor

Electron spin m̂e 5 geŜ ge 5 gemB=ℏ ge � �2.002

Proton spin m̂p 5 gpŜ gp 5 gpmN=ℏ gp � �5.586

Neutron spin m̂n 5 gnŜ gn 5 gnmN=ℏ gn � �3.826

Nuclear spin m̂I 5 gI Î gI 5 gImN=ℏ jgI j varies
(on the order of 1)

Electron
OAM

m̂L 5 gLL̂ gL 5�gLmB=ℏ gL 5 1� me
MN

(for
nuclear mass MN)

gL5 1 (in the limit
MN � ∞)

An alternative expression for the nuclear gyromagnetic
ratio is gI5 gI mB/ℏ, in which case jg

I
j ,, 1.
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Magnetic Moment Dynamics: Uniform Fields

For problems in which the only energy involved is the
energy of a magnetic moment m̂ interacting with an
external magnetic field B, the Hamiltonian is (see page 71)

Ĥ 5�m̂ ⋅B5�gĴ ⋅B

where g is the gyromagnetic ratio (pages 71–72), and Ĵ is a
generalized angular momentum (spin, orbital, or net
angular momentum) associated with an angular momen-
tum quantum number j.

Uniform magnetic field: For this case, B is constant in
time and is spatially homogeneous, with a magnitude B0.
Here it is assumed that B points in the ẑ direction. For
these conditions,

Ĥ 5�gB0Ĵz

The energy eigenstates are therefore the fj j; mjig eigen-

states of Ĵz. The energy eigenvalues are

Em 5�gB0ℏmj 5 ℏvLmj

where vL ≡�gB0 is called the Larmor frequency. Note
that the determination of whether a given state has a
higher or lower energy eigenvalue than another state
depends on the sign of g.

Spin precession: Consider a particle with spin quantum
number s5 1/2 in a uniform magnetic field of magnitude B0

that points in the ẑ direction. The energy eigenvalues are
given by � 1

2 ℏvL 5� 1
2 gB0ℏ. Suppose also that the particle

has a spin expectation value at time t5 0 that points in the
û direction: hŜiðt5 0Þ5 ℏ

2 û: For t . 0, the vector hŜiðtÞ
precesses about ẑ with angular frequency vL. This preces-
sion of hŜiðtÞ is called spin precession or Larmor preces-
sion. Note that it is hŜi that precesses, not a physical
angular momentum vector itself, since the latter quantity
cannot be precisely specified in quantum mechanics. Spin
precession is illustrated on pages 80–81 for a spin-1/2
system.
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Magnetic Moment Dynamics: Gradient Fields

A particle associated with a magnetic-dipole-moment operator
m̂5 gĴ will experience a state-dependent force when the
particle moves through an inhomogeneous magnetic field
B(x, y, z). For simplicity, a magnetic field that points along the
ẑ direction is considered, with a magnitude that varies
linearly with z: B(x, y, z)5 (0, 0, zB0), where B0 is a constant
value that is the spatial gradient of the magnetic field.

Neglecting kinetic energy and considering only the magnetic
dipole interaction energy, the Hamiltonian in the region of the
field gradient is

Ĥ 5�gzB0Ĵ z

The energy eigenstates in the field gradient are the fj j; mjig
eigenstates of Ĵ z. However, the energy eigenvalues are spatially
dependent; they are given by EmðzÞ5�gzB0 ℏmj. Due to the
gradient B0, there is an mj-dependent force in the ẑ direction:

Fm 5�∇EmðzÞ5 gB0 ℏmjẑ

If a particle in the state j j;mji has a trajectory (along x̂, say)
that passes through a region with the field gradient given
above, the particle will experience a positive or negative force
and therefore receive a positive or negative momentum kick
along the ẑ direction; the direction and magnitude of the
momentum kick depend on mj.

If the particle is in a superposition of j j;mji states, each
superposition component will be associated with a different
momentum kick, therefore correlating or entangling the
different superposition components with different propagation
directions. This is the Stern–Gerlach effect. The deflections
are quantized, with the deflection for each component of the
superposition depending on that component’s magnetic quan-
tum number, which is then correlated with a final measured
position of the particle. With various orientiations of the
magnetic field gradient, the Stern–Gerlach effect can be used
to measure the possible values of mj for a sample or beam of
identical particles, the fraction of particles with each mj value,
and the angular momentum quantum number j for the particles.
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Two-Level Systems

Two-level systems are systems that have a state-space
dimension of two. Any basis for the system consists of exactly
two elements; a spin-1/2 system is an example. A simple
generalized two-level problem begins with a time-independent
Hamiltonian Ĥ0 with eigenstates and eigenvalues defined by

Ĥ0jai5 Eajai and Ĥ0jbi5 Ebjbi
Now consider the Hamiltonian Ĥ 5 Ĥ0 þ Ŵ , where Ŵ is time-
independent and has off-diagonal matrix elements in the
fjai; jbig representation, so that jai and jbi are not stationary
states of the full Hamiltonian Ĥ . Ŵ may be called a coupling
or perturbation Hamiltonian. In the fjai; jbig representa-
tion Ŵ can be expressed in terms of its matrix elements as

W fabg 5
�
Waa Wab
Wba Wbb

�
5

�
Waa 0
0 Wbb

�
þ ℏ

2

�
0 V*

0
V0 0

�

where V0 5 2Wba=ℏ5 2hbjŴ jai=ℏ is a complex number, and
jV0j quantifies the strength of coupling between jai and jbi.
Ĥ can then be represented by

Hfabg 5 Ec

�
1 0
0 1

�
þ ℏ

2

�
D V*

0
V0 �D

�

where

Ec ≡ ðEa þ EbÞ=2þ ðWaa þWbbÞ=2
D ≡ ðEa � EbÞ=ℏþ ðWaa �WbbÞ=ℏ

The parameter D is an angular frequency called the detuning.
The eigenvalue equation for Ĥ is written as Ĥ j�i5 E�j�i,
where Eþ $ E�, and is solved by

E� 5 Ec �
ℏV
2

jþi5 cosðu=2Þjai þ sinðu=2Þeifjbi
j�i5 sinðu=2Þjai � cosðu=2Þeifjbi

where V, u, and f are defined by

tanðuÞ5 jV0j=D V0 5 jV0jeif V 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ jV0j2

q
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Rabi Oscillations

When the eigenstates jai and jbi of a two-level Hamiltonian
Ĥ0 are coupled by Ŵ , as in the two-level system defined on
page 75, the probabilities of finding the system in either state
jai or jbi become time dependent.

The typical case is one in which the system is known to be in
state jai (or jbi) at time t5 0 and to then determine the
transition probability Pa!b (or Pb!a) that the system would
be found in state jbi (or jai) at a later time t. Consider the case
that the system is in state jai at time t5 0:

jcðt5 0Þi5 jai
Using the symbols defined on page 75, the transition
probability Pa!bðtÞ from state jai to jbi is sinusoidal in time
with a frequency V, called the Rabi frequency. V0 is called
the resonant or bare Rabi frequency. The probability
oscillations are called Rabi oscillations. For jcðt5 0Þi5 jai,
the probability that the system would be found in state jbi is
given by

Pa!bðtÞ5
jV0j2
V2 sin2

�
Vt
2

�

The plot below illustrates Rabi oscillations for three values of
the detuning D.

In the plot, points A and B, for which Pa!b 5 0.5, indicate
times when the system is in an equal-probability superposi-
tion of states jai and jbi; point A is for D5 0 (green line),
and point B is for D5 jV0j (dot-dashed line). For the D5 0
curve, point C indicates the total time t5 p=jV0j (a “p pulse”)
at which there is a transition probability Pa!b 5 1. Also
for D5 0, point D indicates the total time t5 2p=jV0j
(a “2p pulse”) at which the transition probability is Pa!b 5 0.
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The Bloch Vector

In a two-level system with a 2D state space E2 spanned by a
basis fjai; jbig, any arbitrary state vector jci P E2 can be
written as jci5 cajai þ cbjbi. The Pauli spin operators (page 69)
are used to construct the Bloch vector for state jci, defined as

hŝi5 hcjŝjci5 ðhcjŝxjci; hcjŝyjci; hcjŝzjciÞ
The Bloch vector is used in generalized two-level problems
even when the problem does not have a physical spin. The
components of the Bloch vector for state jci are

hŝxi5 c*acb þ cac
*
b 5 2Refc*acbg

hŝyi5�iðc*acb � cac
*
bÞ5 2Imfc*acbg

hŝzi5 jcaj2 � jcbj2

By defining u and f via the relations

cos u 5 jcaj2 � jcbj2 and eif 5
c*a
jcaj

·
cb
jcbj

so that f is the phase of cb with respect to ca (unless jcaj or jcbj
equals 0 or 1, for which f is undefined), the state vector jci can
be expressed as

jci5 cosðu=2Þjai þ sinðu=2Þeifjbi
up to a negligible global phase factor. The Bloch vector can
then be written as

hŝi5 ðsin u cosf; sin u sinf; cos uÞ
From this it is straightforward to determine that the Bloch
vector associated with any state vector has unit magnitude:

jjhŝijj5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhŝxij2 þ jhŝyij2 þ jhŝzij2

q
5 1

The results above show that there is a one-to-one correspon-
dence between any given state vector jci of a 2D state space
and a Bloch vector hŝi that has unit magnitude and points in a
direction (in an abstract 3D coordinate space) that is
completely determined by jci. This correspondence results from
the fact that both jci and hŝi are uniquely determined by the
same pair of angles u and f, where 0 ≤ u ≤ p, and 0 ≤ f , 2p.
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The Bloch Sphere

Due to the one-to-one correspondence between all unit-
magnitude Bloch vectors (page 77) and the state vectors of
a two-level system, the dynamics of quantum states in a
two-level system can be characterized by the dynamics of a
3D Bloch vector. Since the Bloch vector corresponding to a
state vector jci has unit magnitude, the associated Bloch
vector dynamics correspond to the motion of a point on the
surface of a unit sphere. This abstract sphere is called the
Bloch sphere, below, and exists in the same abstract 3D
coordinate system as that of the Bloch vector (in green).
The Bloch vector that corresponds to the state jci is defined
by the angles u and f.

The Bloch sphere provides a powerful means of visualizing
the dynamics of the state of a two-level system under the
influence of a Hamiltonian that couples the two elements of
the chosen basis, which are visually represented by the
north and south poles of the sphere. If the Hamiltonian Ĥ
is time independent, then there is an abstract stationary
vector in the Bloch sphere diagram about which the time-
dependent Bloch vector hŝiðtÞ precesses. Plotting Bloch
vector dynamics on the Bloch sphere is a graphical
visualization alternative to Rabi oscillation plots, as shown
on page 76. The example presented on pages 79–81
illustrates Bloch vector precession for a spin-1/2 particle
in a uniform magnetic field.
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Spin 1/2 in a Uniform Magnetic Field

The problem of a spin-1/2 particle in a uniform magnetic field
ties together the concepts of spin precession, Rabi oscillations,
and Bloch vector dynamics. The following example assumes
that a spin-1/2 particle is initially in the jþiz (spin-up along ẑ)
eigenstate of a Hamiltonian

Ĥ0 5�m̂ · Bz 5
1
2
ℏvzŝz

where Bz5Bz(0, 0, 1) is a uniform magnetic field of magnitude
Bz that points in the ẑ direction, and vz ≡�gBz, where g is the
gyromagnetic ratio. At time t5 0, a second magnetic field
B┴ 5 B┴ðcosf; sinf; 0Þ is instantaneously applied, and is
associated with a second Hamiltonian term

Ŵ 5�m̂ · B┴ 5
1
2
ℏv┴ðŝx cosfþ ŝy sinfÞ

where v┴ 5�gB┴. The problem now is to determine the
dynamics of the particle’s spin state under the influence of the
full Hamiltonian Ĥ 5 Ĥ0 þ Ŵ .

The eigenstates and eigenvalues of Ĥ are first found using the
solutions given on pages 68 and 75. In the fjþiz; j�izg
representation (labeled below as {ms} due to the fact that
jþiz and j�iz correspond to the quantum numbers ms5 1/2
and ms5�1/2), the Hamiltonian Ĥ is expressed as

Hfmsg 5
ℏ
2

�
vz v┴e

�if

v┴e
if �vz

�
5

ℏ
2

�
D V*

0
V0 �D

�

where D5 vz and V0 5 v┴e
if following the definitions intro-

duced on page 75. The total field Bz þB┴ points in the
direction

û5

�
v┴

V
cosf;

v┴

V
sinf;

vz

V

�

where V5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
z þ v2

┴

q
. Defining u by tan u 5 v┴=vz 5 B┴=Bz,

the spin-up and spin-down eigenstates of Ĥ along û are

jþiu 5 cosðu=2Þjþiz þ sinðu=2Þeifj�iz
j�iu 5 sinðu=2Þjþiz � cosðu=2Þeifj�iz

The respective energy eigenvalues are E� 5� 1
2 ℏV.
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Spin 1/2 in a Uniform Magnetic Field: Dynamics

For the Hamiltonian Ĥ given on page 79, and an initial state
at time t5 0 of jcð0Þi5 jþiz, the state at time t is given by

jcðtÞi5 Ûðt; 0Þjþiz
where Û is the time evolution operator for Ĥ . In the representa-
tion labeled as {ms} (see page 79), Ûðt; 0Þ is expressed as

Ufmsgðt; 0Þ5
�
e�iVt=2 0

0 eiVt=2

�

þ i sinðVt=2Þ
�
1� cos u � sinu e�if

� sinu eif cos u� 1

�

The time-dependent spin state is then

jcðtÞi5
�
cos

Vt
2

� i cos u sin
Vt
2

�
jþiz � i sin u sin

Vt
2

eifj�iz

with a Bloch vector that has the time-dependent components

hŝxiðtÞ5 sin ufcos u cosf½1� cosðVtÞ� þ sinf sinðVtÞg
hŝyiðtÞ5 sin ufcos u sinf½1� cosðVtÞ� � cosf sinðVtÞg

hŝziðtÞ5 1� sin2u½1� cosðVtÞ�
These components define a unit vector hŝiðtÞ precessing at an
angular frequency V about û5 ðv┴

V cosf; v┴
V sinf; vz

V Þ; that is,
the Bloch vector precesses about a vector corresponding to
the magnetic field direction, demonstrating spin precession
(page 73).

The figures on page 81 illustrate trajectories of hŝiðtÞ for a spin-
1/2 particle’s spin state for three cases. B┴ is assumed to be the
same in each case, with B┴ pointing in the x̂ direction so that
f5 0. The spin state at time t5 0 is jcð0Þi5 jþiz (the vertical
black arrow represents the initial Bloch vector). The trajectories
are shown at periodic times throughout nearly one full orbit of
the Bloch vector. The vector û corresponding to the direction of
the total magnetic field (green arrow) is shown for each case; the
Bloch vector precesses about û in a direction that assumes a
positive value for the angular frequencies vz and v┴.
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Bloch Vector Dynamics: Examples

The three Bloch sphere figures below illustrate the
precession of a Bloch vector hŝi (darker arrows represent
earlier times) about a unit vector û (in green) that
corresponds to the direction of an applied constant
magnetic field. The figures correspond to the problem
defined on pages 79 and 80. These three cases also
correspond to the three Rabi oscillation plots on page 76.
For this example problem, V0 5 v┴ 5�gB┴ (assu-
med the same for all figures below), D5 vz 5

Bz
B┴

V0,

and V5V0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

z=B2
┴

q
. Values of Bz, D, V, and u (where

tan u 5 jV0j=D 5 B┴=Bz) are given for each figure.
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Addition of Two Angular Momenta

The total angular momentum of a system may consist of
individual angular momenta combined together. The addition
of two generalized angular momenta is considered here. The
two individual angular momentum vector operators Ĵ1 and Ĵ2

(with z components Ĵ1z and Ĵ2z, respectively) are associated
with the following eigenvalue equations:

Ĵ2
1j j1;m1i5 j1ðj1 þ 1Þℏ2j j1;m1i

Ĵ2
2j j2;m2i5 j2ðj2 þ 1Þℏ2j j2;m2i
Ĵ1zj j1;m1i5m1ℏj j1;m1i
Ĵ2zj j2;m2i5m2ℏj j2;m2i

The two pairs of individual quantum numbers ð j1;m1Þ and
ð j2;m2Þ separately follow the constraints given on page 64.

The eigenvalues and eigenstates related to the system’s total
angular momentum are determined by first constructing the
vector operator for the total angular momentum:

Ĵ5 Ĵ1 þ Ĵ2 5 ðĴx; Ĵy; Ĵ zÞ5 ðĴ1x þ Ĵ2x; Ĵ1y þ Ĵ2y; Ĵ1z þ Ĵ2zÞ

from which is obtained Ĵ2
5 Ĵ · Ĵ5 Ĵ2

1 þ Ĵ2
2 þ 2Ĵ1 · Ĵ2.

Tensor-product (TP) basis: When the state spaces associ-
ated with j1 and j2 are merged, one basis that spans the
merged state space is the TP basis expressed as

fj j1;m1ij j2;m2ig or fj j1; j2;m1;m2ig
These tensor-product states are eigenstates of the CSCO
fĴ2

1; Ĵ
2
2; Ĵ1z; Ĵ2zg. The individual angular momentum quantum

numbers that appear in these kets may be simultaneously
specified or measured to uniquely identify one of the states of
the tensor-product basis. However, neither Ĵ1z nor Ĵ2z

commute with Ĵ2, so the states of the TP basis are generally
not eigenstates of Ĵ2. This means that if the magnitude of the
system’s total angular momentum is measured, the system
would subsequently be found in an eigenstate of Ĵ2, as
described on page 83, and not in one of the TP basis states.
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Total Angular Momentum Basis

When the state spaces associated with individual angular
momenta are merged, one basis for the merged state space is
the tensor-product basis (page 82). Another basis is the total
angular momentum (TAM) basis, written as

fj j1; j2;J ;mJ ig
where j1 and j2 are the individual angular momentum
quantum numbers. This basis consists of eigenstates of Ĵ2

1

and Ĵ2
2 (as does the TP basis) and of Ĵ2 and Ĵ z (instead of Ĵ1z

and Ĵ2z). The CSCO fĴ2
1; Ĵ

2
2; Ĵ

2
; Ĵ zg is associated with the set

of eigenvalue equations

Ĵ2
1j j1; j2;J ;mJ i5 j1ðj1 þ 1Þℏ2j j1; j2;J ;mJ i

Ĵ2
2j j1; j2;J ;mJ i5 j2ðj2 þ 1Þℏ2j j1; j2;J ;mJ i

Ĵ2j j1; j2;J ;mJi5 JðJ þ 1Þℏ2j j1; j2;J ;mJ i
Ĵzj j1; j2;J ;mJ i5mJℏj j1; j2;J ;mJ i

Note that J is a quantum number, whereas Ĵ z, Ĵ
2, and Ĵ are

explicitly labeled as operators. The new quantum numbers J
and mJ follow the quantization rules on page 64: J must be an
integer or half-integer, and mJ can only take values from �J
to J in integer steps. J is restricted further: given two values j1
and j2, J can only take any value from j j1�j2j to j j1þ j2j in
integer steps:

JPfj j1�j2j; j j1�j2j þ 1; : : : ; j1þ j2�1; j1þ j2g
For each possible J, there is a range of possible mJ values:

mjPf�J ; �Jþ1; : : : ; J�1; Jg
If j1 and j2 are both integers ðj1; j2PN0Þ or half-integers
ðj1; j2PfN0 þ 1=2gÞ, then J and hence mJ must be integers.
Otherwise: J ; mJPfN0 þ 1=2g.
By letting J vary over all allowed values, and by letting mJ

vary over all allowed values for each J, it is seen that the TAM
basis has the same number of elements as the TP basis, and
either basis can be used in problems involving the addition of
two angular momenta.
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Addition of Angular Momentum: Example

The example below illustrates the addition of two angular
momenta and the construction of two different bases.
Suppose that two particles with spin quantum numbers
s153/2 and s251/2 form a composite particle that has a
total spin quantum number S. Each of these quantum
numbers has an associated magnetic quantum number;
they are m1, m2, and mS, respectively. In this example, the
quantum number S is used in place of the generic angular
momentum quantum number J of pages 82–83.

The possible values of S for the composite particle are given
by the general formula (see page 83)

SPfjs1�s2j; js1�s2jþ1; : : : ; s1 þ s2�1; s1þs2g
which means that S can have the values S5 1 (for which
mSPf�1; 0; 1g) and S5 2 (for whichmSPf�2;�1; 0; 1; 2g).
The elements of the TP basis and the TAM basis are given
below. Each basis has eight orthogonal elements. The
quantum numbers s1 and s2 are omitted from all kets
because they are common to all kets of both bases in
the merged state space. Generally, any element of one
basis is a superposition of multiple elements of the other
basis, with the exception of the first and last items in
each list (for which jm153=2;m251=2i5 jS52;mS52i
and jm15�3=2;m25�1=2i5 jS5 2;mS5�2iÞ.

TP Basis TAM Basis

jm153=2;m251=2i jS52;mS52i
jm153=2;m25�1=2i jS52;mS51i
jm151=2;m251=2i jS51;mS51i
jm151=2;m25�1=2i jS52;mS50i
jm15�1=2;m251=2i jS51;mS50i
jm15�1=2;m25�1=2i jS52;mS5�1i
jm15�3=2;m251=2i jS51;mS5�1i
jm15�3=2;m25�1=2i jS52;mS5�2i
CSCO: Ŝ2

1; Ŝ
2
2; Ŝ1z; Ŝ2z CSCO: Ŝ2

1; Ŝ
2
2; Ŝ

2
; Ŝz
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Addition of Angular Momentum: Comments

Standard ordering: When constructing TAM and TP
bases for angular momentum problems, as on page 84, the
following convention is used to order the elements in each
basis:

• Choose indices 1 and 2 for j1, j2, m1, and m2 such that
j1$ j2 and m1 appears before m2 in the TP basis kets;
i.e., if the magnitude of one angular momentum is
larger than the other, the larger one is assigned the
index 1

• For two angular momentum quantum numbers j1 and
j2, basis elements are arranged in order of decreasing
m1þm2 (TP basis) or decreasing mJ (TAM basis)

• The elements of the TP basis that have identical values
of m1þm2 are arranged in order of decreasing m1

• The elements of the TAM basis that have identical
values of mJ are arranged in order of decreasing J

Conservation of angular momentum: When two indi-
vidual angular momenta with quantum number pairs
ð j1;m1Þ and ð j2;m2Þ are added together, the system’s
TAM quantum number J can take a range values as
described on page 83. When expressing an element of the
TP basis as a superposition of elements of the TAM basis,
the superposition will generally include elements of the
TAM basis that have different values of J. However, every
one of these elements in the superposition must have a
total magnetic quantum number that equals the sum of the
individual magnetic quantum numbers; i.e.,mJ 5m1 þm2.
This statement expresses the conservation of angular
momentum about the ẑ direction.

Similarly, if angular momentum quantum numbers j1 and
j2 are given and the TAM basis element jJ ;mJ i is
expressed as a superposition of TP basis elements, there
may be multiple combinations of m1 and m2 in the
superposition of TP states. In all cases, however, the sum
m1þm2 for any TP basis state in the superposition must
match the value of mJ of the TAM state: mJ 5m1 þm2.
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Clebsch–Gordan Coefficients

When a system has a total angular momentum that arises
from the addition of two individual angular momenta, the
system’s angular momentum quantum states can be expanded
into the TAM basis (page 83) or the TP basis (page 82).
Clebsch-Gordan (CG) coefficients, described below, are
the superposition coefficients of the expansion of an element of
one of these bases into the other basis. The CG coefficient
tables on pages 118–121 provide these coefficients for angular
momentum quantum numbers 1=2# j1 # 2 and 1=2# j2 # j1
where j1 $ j2.

The notation below follows that of pages 82–83 and
assumes the convention j1 $ j2 usually adopted for the
tabulation of CG coefficients. For brevity, the quantum
numbers j1 and j2 are often omitted from the TAM kets
and bras.

For two individual angular momenta with quantum numbers
j1 and j2, the expansion of a TP basis element into the TAM
basis is written (using a closure relation) as

j j1; j2; m1; m2i5
Xj1þj2

J5j j1�j2j

XJ

mJ5�J

hJ ; mJ j j1; j2; m1; m2ijJ ; mJi

where hJ ; mJ j j1; j2; m1; m2i is a CG coefficient. The expan-
sion of a TAM basis element into the TP basis is written as

jJ ; mJi5
Xj1

m15�j1

Xj2
m25�j2

hj1; j2; m1; m2 jJ ; mJi j j1; j2; m1; m2i

By convention, the CG coefficients are defined to be real, so
that h j1; j2; m1; m2 jJ ; mJ i5 hJ ; mJ j j1; j2; m1; m2i.
Note the following:

• For the case J 5 j1 þ j2:
hJ ; mJ 5 J j j1; j2; m1 5 j1; m2 5 j2i5 1

• Also for J 5 j1 þ j2:
hJ ; mJ 5�J j j1; j2; m1 5�j1; m2 5�j2i5 1

• If m1 þm2 ≠ mJ , then hJ ; mJ j j1; j2; m1; m2i5 0
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Clebsch–Gordan Coefficients: Usage

When merging the state spaces of two systems character-
ized by angular momentum quantum numbers j1 and j2,
the steps below are used to determine the associated CG
coefficients using the tables given on pages 118–121. As is
done on pages 84–86, the quantum numbers j1 and j2 are
omitted from the row and column labels (explained below)
in a given CG table because they are associated with every
ket in the given table. CG coefficient tables are used as
follows:

1. Identify the relevant tabular group. The two numbers in
the upper-left corner of each grouping of tables are j1 and
j2, with j1 assumed to be the larger of the two values if they
are not equal.

2. Within a table, the column labels are J and mJ (J is
abovemJ). The row labels arem1 andm2 (m1 is to the left of
m2). Note the order of m1 and m2: m1 is associated with j1,
the larger of the two angular momenta.

3. Every number (on a white background) in the tables is
associated with a pair of values (J, mJ) given by the column
label above that number and a pair of values (m1,m2) given
by the row label to the left of that number. The CG
coefficient is the square root of that number within the
table, with any minus sign (if present) placed outside of the
radical.

4. Using the steps described above, the expansion of a
TAM basis element jJ ;mJ i into the TP basis involves
reading a column of numbers in the column headed by J
and mJ. Each CG coefficient is the coefficient for the
associated TP basis element jm1;m2i in the superposition.
All coefficients are zero for which there is not a correspond-
ing pair of m1 and m2 row labels within that section of the
table; such is the case if mJ ≠ m1 þm2. Similarly, the
expansion of a TP basis element into the TAM basis
involves reading a row of numbers to the right of the
relevant m1 and m2 labels.
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Clebsch–Gordan Coefficients: Examples

The following examples incorporate the rules for addition of
angular momentum given on pages 83–87 and the usage of
the CG coefficient tables on pages 118–121. The examples
are based on the addition of two spins s15 3/2 and s25 1/2,
following the example and table given on page 84.

Example 1: The ket js153=2; s251=2;m15�3=2;m251=2i
is compactly written jm15�3=2;m251=2i by omitting
the quantum numbers s1 and s2 from all kets and bras below.
To expand this TP basis state into the TAM basis fjS;mSig,
the 3

2 3
1
2 CG coefficient table on page 118 is used. Since

mS5m1þm25�1 (for this case), the only elements of the
superposition with non-zero coefficients are jS52;ms5�1i
and jS51;ms5�1i.
The coefficients are determined by the numbers to the
right of the row labels �3/2 (left) and þ1/2 (right). The
number 1/4 is found in the column headed by 2 (above)
and �1 (below). This column corresponds to the TAM
state jS52;mS5�1i, and the corresponding CG coefficient
is

ffiffiffiffiffiffiffiffi
1=4

p
. The number �3/4 is found in the column headed

by 1 (above) and �1 (below). This column corresponds
to the TAM state jS51;mS5�1i, and the corres-
ponding CG coefficient is � ffiffiffiffiffiffiffiffi

3=4
p

. The expansion of
jm15�3=2;m251=2i into the TAM basis is then written as

jm15�3
2
;m25

1
2
i5

ffiffiffi
1
4

r
jS52;mS5�1i�

ffiffiffi
3
4

r
jS51;mS5�1i

Example 2: Expanding a TAM basis state into the TP basis
is similar to the above example, but the numbers in a column
(rather than a row) of a section of the table determine the
expansion coefficients. For s15 3/2 and s25 1/2, the TAM
state jS51;mS51i is written in the TP basis as

jS51;mS51i5
ffiffiffi
3
4

r
jm15

3
2
;m25�1

2
i�

ffiffiffi
1
4

r
jm15

1
2
;m25

1
2
i

Note that the sum of the squares of the CG coefficients in
the expansion of any state into another basis must equal 1.
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Ritz Variational Method

The Ritz variational method is useful for estimating or
placing an upper bound on the ground-state energy
eigenvalue in problems that are difficult or impossible to
solve analytically. The primary concept involved is the
following: for any “trial” normalized quantum state jci, the
true ground-state energy Eg of a system can be no larger
than hĤi5 hcjĤ jci; i.e,

Eg # hcjĤ jci
for any physically acceptable jci. This principle implies
that a guess can be made for a trial solution jci in order to
find the energy expectation value for that guess, and the
actual ground-state energy must be less than or equal to
that value.

Example: Using the 1D position representation, a poten-
tial well V ðxÞ may be given for which the ground-state
wavefunction and energy are not analytically obtainable.
A guess can be made for a ground-state wave function
cguessðx; lÞ that includes an adjustable variational
parameter l. By minimizing the energy expectation value
hĤi for cguessðx; lÞ with respect to l, an upper bound on the
ground-state energy is obtained.

To demonstrate this procedure, let a 1D potential well be
defined as V ðxÞ5 1

2 ℏvðx=sÞ4, where s 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðmvÞp

. Con-
sider a normalized trial wavefunction

cguessðx; lÞ5
�

1
pl2s2

�
1=4

e�
x2

2l2s2

Calculating hĤi and then minimizing the result with
respect to l determines that hĤi is minimized for
l � 0.833. The minimum value of hĤi for this trial
wavefunction is 0.54ℏv. This result shows that the true
ground-state energy Eg of the given potential V ðxÞ must be
less than or equal to 0.54ℏv. Other trial wavefunctions
closer to the true ground-state wavefunction may help set
even lower limits to the true ground-state energy.
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Stationary Perturbation Theory

Stationary perturbation theory (SPT) constructs approxi-
mate energy eigenvalues and eigenstates of a time-independent
Hamiltonian Ĥ 5 Ĥ0 þ lŴ, for which

• Ĥ0jwi
ni5 E0

njwi
ni, where all E0

n and jwi
ni are known. For

each eigenvalue E0
n, the superscript i accounts for

degeneracy, iPf1; 2; : : : ; gng.
• l is a positive or negative real scalar, jlj,,1

• lŴ is a small perturbation, meaning that the matrix
elements of lŴ are much smaller in magnitude than the
differences between the eigenvalues of Ĥ0.

• The eigenvalues and eigenstates of Ĥ are defined by
Ĥ jcn;ji5 En;jjcn;ji. For a given n, the eigenvalues fEn;jg
and eigenstates fjcn;jig may be different than the
associated unperturbed quantities E0

n and fjwi
nig, where

i; jPf1; 2; : : : ; gng. The index j labels the different solu-
tions to the eigenvalue equation for Ĥ in cases where
gn. 1. The indices i and j associated with a given n may
be omitted if gn5 1.

Non-degenerate SPT is used to find approximate solutions to
the eigenvalue equation for Ĥ for a given n when there is no
degeneracy in the Ĥ0 eigenvalue E0

n (i.e., gn5 1). Ĥ0 may have
degeneracies associated with other eigenvalues E0

p, where
p≠ n. Solutions are expanded as power series in l.

The non-degenerate SPT solutions to second order in l
for En and to first order in l for jcni are

En � E0
n þ lhwnjŴ jwni þ l2

X
p≠n

Xgp

i51

jhwi
pjŴ jwnij2
E0

n � E0
p

jcni � jwni þ l
X
p≠n

Xgp

i51

hwi
pjŴ jwni

E0
n � E0

p
jwi

pi

The approximate jcni must be then be normalized.
Expansions to first order in l for En and to zeroth order
in l for jcni are obtained by omitting the double-
summation terms in the two expressions above.

90 Approximation Methods



Degenerate Stationary Perturbation Theory

Degenerate SPT applies SPT (page 90) to treat a gn-fold

degeneracy (gn. 1) in an unperturbed eigenvalue E0
n of Ĥ0. As

with the non-degenerate case, solutions to the eigenvalue

equation for Ĥ are expressed as power series in l. Solutions to

first order in l for the eigenvalues of Ĥ and to zeroth order in
l for the eigenstates are described below. In this limit, the gn
eigenstates fjcn;jig of Ĥ that are associated with eigenvalues
fEn;jg are found to be superpositions of the gn degenerate

eigenstates fjwi
nig of Ĥ0, with i; jPf1; 2; : : : ; gng. Some or all of

these degeneracies may be removed when the perturbation is
present. Given specific values of n and gn, solutions to first
order in l for the set fEn;jg and to zeroth order in l for the set
fjcn;jig are obtained by the following steps:

1. Given a state space E, identify the subspace En that
is spanned by the degenerate state vectors fjwi

nig, with
iPf1; 2; : : : ; gng.
2. Define Ĥ ðnÞ

0 and lŴðnÞ as the unperturbed Hamiltonian and
the perturbation that act within subspace En. The Hamilto-
nian acting within this subspace is then Ĥ ðnÞ

5 Ĥ ðnÞ
0 þ lŴ ðnÞ.

3. Find the gn eigenstates and eigenvalues of Ŵ ðnÞ; that is,
solve the eigenvalue equation

Ŵ ðnÞjvn; ji5 en; jjvn; ji
This step is performed by first constructing the gn3 gn
matrix that represents Ŵ ðnÞ in the representation defined by
the basis fjw1

ni; jw2
ni; : : : ; jwgn

n ig that spans the subspace En.
The matrix elements are given by W ðnÞ

pq 5 hwp
njŴ ðnÞjwq

ni
ðp; qPf1; 2; : : : ; gngÞ.
Results: The eigenvalues (to first order in l) and eigenstates
(to zeroth order in l) of Ĥ that are associated with the
unperturbed energy eigenvalue E0

n are

En; j � E0
n þ len; j

jcn; ji � jvn; ji
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Time-Dependent Perturbation Theory

Time-dependent perturbation theory (TDPT) is used
to find an approximate time-dependent expansion of a
quantum state jΨðtÞi into a known basis; the basis states
are the eigenstates of a time-independent Hamiltonian Ĥ0
but not eigenstates of the full time-dependent system
Hamiltonian ĤðtÞ. TDPT is commonly used to find the
approximate time-dependent probability PðtÞ of measuring
that a transition has occurred from some known initial
state to some specified final state. The system Hamiltonian
is given by ĤðtÞ5 Ĥ0 þ lŴ ðtÞ for which

• Ĥ0jwni5 Enjwni, where all En and jwni are known. The
index nmay be a compound index representing a set of
quantum numbers, including indices that indicate
energy degeneracy.

• l is a positive or negative real scalar, jlj,,1

• lŴ ðtÞ is a weak perturbation, or timescales of interest
are short enough, so that PðtÞ,,1

• jΨðtÞi is expanded into the fjwnig basis as follows:

jΨðtÞi5
X
n

cnðtÞjwni5
X
n

bnðtÞe�iEnðt�t0Þ=ℏjwni

where the terms bnðtÞ5 cnðtÞeiEnðt�t0Þ=ℏ are the expan-
sion coefficients in the interaction picture (page 46)

• Each interaction-picture coefficient bn(t) is expanded
in powers of l: bnðtÞ5bð0Þn þ lbð1Þn ðtÞþ · · · þlrbðrÞn ðtÞþ · · · ,
where bðrÞn ðtÞ is the rth-order coefficient in the expan-
sion of jwni, bð0Þn 5 bnðt0Þ is the expansion coefficient of
jwni for the initial initial state jΨðt0Þi, and bðrÞn ðt0Þ5 0
for r. 0 for every n

The TDPT solution for the rth-order term (r. 0) is

lrbðrÞn ðtÞ5 lr

iℏ

Z
t

t0

X
k

dt0 eivnkt0Wnkðt0Þbðr�1Þ
k ðt0Þ

where vnk ≡
En�Ek

ℏ and Wnkðt0Þ5 hwnjŴ ðt0Þjwki.
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TDPT: First-Order Solution

The first-order transition probability Pð1Þ
if from a

known initial eigenstate jwii of Ĥ0 to a final eigenstate
jwf i of Ĥ0 is determined by first specifying the initial
condition at time t0: jΨðt0Þi5 jwii, so that bð0Þn 5 dni
(Kronecker delta) for each n.

The first-order term in the expansion of bn(t) (n≠ i) is

lbð1Þn ðtÞ5 l

iℏ

Z
t

t0
dt0 eivnit0Wniðt0Þ

The time-dependent transition probability Pif ðtÞ from the
initial state jΨðt0Þi5 jwii to jΨðtÞi5 jwf i ðf ≠ iÞ is then

approximated as Pð1Þ
if , where the superscript indicates that

the probability is associated with expansion of bf ðtÞ to first
order:

Pð1Þ
if ðtÞ5

���lbð1Þf ðtÞ
���2 5 l2

ℏ2

����
Z

t

t0
dt0 eivf it0Wfiðt0Þ

����
2

Pulse perturbations are perturbations for which lŴ 5 0
when the system is known to be in the initial state jwii. The
perturbation then turns on and off again, after which the
probability Pif of finding the system in state jwf i is
determined. In such cases, the temporal limits in the

lbð1Þn ðtÞ integral can formally be extended to �∞ and∞. The

integral for lbð1Þn ðtÞ is then

lbð1Þf 5
l

iℏ
FfWfiðt0Þgv5�vf i

where FfWfiðt0Þgv5�vf i
5 ∫ ∞

�∞dt
0 eivf it0Wfiðt0Þ is the time-

domain Fourier transform (page 94) of Wfiðt0Þ evaluated
at frequency v 5�vf i.

For a pulse perturbation, the first-order transition
probability from an initial state jwii to a final state jwf i is

Pð1Þ
if 5

l2

ℏ2

���FfWfiðt0Þgv5�vf i

���2
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Fourier Transform Pairs for Pulse Perturbations

A time-domain function f ðtÞ has a corresponding frequency-
domain function FðvÞ that is the Fourier transform of f ðtÞ.

The Fourier and inverse Fourier transform relationships
between f ðtÞ and FðvÞ are

FðvÞ5 Fff ðtÞg5
Z

∞

�∞
dt e�ivtf ðtÞ

f ðtÞ5 F�1fFðvÞg5 1
2p

Z
∞

�∞
dv eivtFðvÞ

Note that these transforms are defined differently than
the transforms between the position and momentum
representations of a wavefunction (page 24).

Each row of the following table gives a Fourier transform
pair of functions f ðtÞ and FðvÞ that can be associated with
pulse perturbations. Note that for all examples given, f ðtÞ is
free of dimensional units and has a peak value of 1.

The special functions rect and sinc are defined as follows:

rectðjÞ5
�
1 � 1

2 # j # 1
2

0 otherwise

sincðjÞ5 1
j
sinðjÞ

Fourier Transform Pairs

f(t) F(w)

e�t2=ð2t2Þ t
ffiffiffiffiffiffi
2p

p
e�v2t2=2

e�jtj=t 2t
1þv2t2

1
1þt2=t2 pte�jvjt=ð2pÞ

rectðt=tÞ t sincðvt=2Þ
rectðt=t� 1=2Þ t e�ivt=2sincðvt=2Þ

sincðpt=tÞ t rect½vt=ð2pÞ�

Lðt=tÞ5
�
1� jtj=t jtj=t # 1
0 otherwise

t
2 sinc

2ðvt=4Þ
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TDPT: Harmonic Perturbations

The special case of harmonic perturbations involves time-
dependent perturbations lŴ ðtÞ5 lŴ sinðvtÞ with matrix
elements WfiðtÞ5Wf i sinðvtÞ, where Ŵ is time indepen-
dent. The t5 0 initial state is assumed to be jΨð0Þi5 jwii,
and the time and frequency-dependent transition probabil-
ity Pif ðt;vÞ to a final state jwf i is to be approximately
determined.

To reach the solutions given below, the following assump-
tions are made:

• jvj is sufficiently near jvf ij such that the conditions��jvf ij � jvj��,, jvf ij and
��jvf ij � jvj��,, jvj are satisfied.

These conditions allow for a simplification in the
calculation of Pif ðt;vÞ that is called the resonant
approximation or the rotating wave approxima-
tion.

• The duration of the perturbation is long enough that v
is well defined (i.e., there are many cycles of the
harmonic perturbation during the interaction time).

• The transition probability remains small: Pif ðt;vÞ,,1
for all t and v considered.

The last two assumptions above are together expressed as
the double inequality (for t. 0)

1
jvj,, t,,

ℏ
jlWf ij

Within these limits and approximations, the first-order
transition probability as a function of t and v is given by

Pð1Þ
if ðt;vÞ5 jlWf ij2

4ℏ2

�
sinðtD=2Þ

D=2

�
2
5

����
Vf i

D

����
2
sin2

�
tD
2

�

where D ≡ v� vf i, and Vf i ≡ lWf i=ℏ. When lŴ ðtÞ primarily
couples jwii to jwf i and no other states, this result is
approximately equal to the results for Rabi oscillations of a
two-level system (page 76) in the limit that D is much
larger than the resonant Rabi frequency.
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Central Potential Problems

A 3D central potential problem consists of a particle of mass
m in a spherically symmetric potential well V ðrÞ, where
r5 jrj, and r5 ðx; y; zÞ. For a time-independent potential, a
general central-potential Hamiltonian is written in the
position representation as

Hfrg 5� ℏ2

2m
∇2 þ V ðrÞ

Because ½Ĥ ; L̂2�5 ½Ĥ ; L̂z�5 0 for a central potential, there
exists a set of quantum states that are common eigenstates of
the CSCO fĤ ; L̂2

; L̂zg. These eigenstates are often labeled
with the quantum numbers n, l, and ml, defined by the set of
eigenvalue equations

Ĥ jn; l;mli5 En;ljn; l;mli
L̂2jn; l;mli5 lðl þ 1Þℏ2jn; l;mli

L̂zjn; l;mli5mlℏjn; l;mli
where the energy eigenvalues En,l depend on a principal
quantum number n and the OAM quantum number l, and
can only be determined once V ðrÞ is specified. For any central
potential, the energy eigenvalues do not depend on ml, and l
and ml are limited to the ranges

flPN0g; mlPf�l;�l þ 1; : : : ; l � 1; lg for any l

The quantum number l is further constrained by n. In the
position representation, the fjn; l;mlig state vectors are
expressed in spherical coordinates as

cn;l;ml
ðr; u;fÞ5 hrjn; l;mli5Rn;lðrÞYml

l ðu;fÞ
where the angular functions Yml

l ðu;fÞ are spherical harmo-
nics, and the radial functions Rn;lðrÞ can only be determined
once V ðrÞ is specified. The “spinless” hydrogen problem (pages
97–98) and the 3D isotropic harmonic oscillator (page 62) are
examples of central potential problems, although the energy
eigenfunctions of the latter problem are usually expressed as
products of Hermite–Gaussian functions (page 54) rather than
as products of radial functions and spherical harmonics.
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“Spinless” Hydrogen: Energy Eigenvalues

A hydrogen atom consists of an electron and proton bound
together by the Coulomb interaction, given in SI units as

V ðrÞ5 �e2

4pe0r

where �e is the charge of an electron, e0 is the permittivity of
free space (values of physical constants are given on page 125),
and r5 jrj is the coordinate for the distance between the
electron and proton.

The “spinless” hydrogen atom problem assumes non-
relativistic electron motion and that the electron and proton
have zero spin. This model is an exactly solvable central
potential problem and provides a good approximation to the
energy eigenvalues of the “real” hydrogen atom. Once the
solutions are known, better approximations can be obtained
using stationary perturbation theory. In the center-of-mass
frame of the atom, the spinless hydrogen problem is defined by
the Hamiltonian

Ĥ0 5
1
2m

P̂2 � e2

4pe0

1

jR̂j
The reduced mass m is defined as

m 5
me mp

me þmp
� me

where me and mp are electron and proton masses (not angular
momentum quantum numbers). In the position representa-
tion, where division by jR̂j acts as division by r, the
Hamiltonian is

H0frg 5� ℏ2

2m
∇2 � e2

4pe0r

The eigenvalues of Ĥ0 are given by

En 5�EI=n2; fnPNþg
where EI � 13.6 eV is the ground-state ionization energy of
hydrogen, and n is the principal quantum number.
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Spinless Hydrogen: Energy Eigenfunctions

The spinless hydrogen energy-eigenvalue problem is solved in
the position representation using spherical coordinates. Since
this is a central potential problem, the angular parts of the
energy eigenfunctions are spherical harmonics Yml

l ðu;fÞ (see
page 100). The full expression for the hydrogen energy
eigenfunctions (in the position representation) is

cn;l;ml
ðr; u;fÞ5Rn;lðrÞYml

l ðu;fÞ
fnPNþ; lPN0 j 0 ≤ l , n; mlPZ j � l ≤ ml ≤ lg

whereRn;lðrÞ are the radial wavefunctions for hydrogen (see
page 99). The radial wavefunctions are expressed in terms of
the Bohr radius a0 ≡

4pe0ℏ2

me e2
� 0.53 10�10 m, a length constant

used in atomic physics that defines an approximate radius
of a ground-state hydrogen atom. The spherical harmonics and
the radial wavefunctions are separately normalized, and while
the spherical harmonics form an orthonormal basis for
functions of u and f, the radial wavefunctions do not separately
constitute an orthogonal basis set for functions of r.

The energy eigenfunctions give the wavefunction for the
electron, with the proton’s position defining the coordinate
system origin. Each energy eigenfunction cn;l;ml

is the position
representation of the energy eigenstate jn; l;mli. The energy
eigenstates form an orthonormal basis fjn; l;mlig:
hn0; l0;ml0 jn; l;mli

5

Z
∞

0
dr r2

Z
p

0
du sin u

Z
2p

0
df ðcn0;l0;ml0 Þ*cn;l;ml

5

�Z
∞

0
dr r2Rn0;l0Rn;l

��Z
p

0
du sin u

Z
2p

0
df ½Yml0

l0 �*½Yml
l �

�

5 ðdn;n0 Þðdl;l0 Þðdml ;ml0 Þ
The ground state of “spinless” hydrogen is denoted
jn5 1; l5 0;ml 5 0i, or j1; 0; 0i, with energy eigenvalue
E15�EI and a spherically symmetric wavefunction:

c1;0;0ðrÞ5R1;0ðrÞY 0
0ðu;fÞ5 ðpa3

0Þ�1=2 e�r=a0

Because l5 0, the electron in the hydrogen ground state
has no orbital angular momentum and therefore should
not be described as “orbiting” the proton.
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Hydrogen Radial Wavefunctions

The radial wavefunctions Rn;lðrÞ of hydrogen are given by

Rn;lðrÞ5
�

2
na0

�
3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� l � 1Þ!
2n½ðnþ lÞ!�3

s �
2r
na0

�
l
e�

r
na0L2lþ1

n�l�1

�
2r
na0

�

where a0 is the Bohr radius;

Lp
q�pðuÞ ≡ ð�1Þp

�
d
du

�
p
LqðuÞ

is an associated Laguerre polynomial; and

LqðuÞ ≡ eu
�

d
du

�
q
ðe�uuqÞ

is the qth Laguerre polynomial. The radial wavefunc-
tions are not all mutually orthogonal. However, radial
wavefunctions with the same quantum number l are
orthogonal (note that the radial wavefunctions are all real):

Z
∞

0
dr r2Rn0;lRn;l 5 dn;n0

Radial Wavefunctions of Hydrogen through n5 4

R1;0 5 2a�3=2
0 e�r=a0

R2;0 5
1ffiffi
2

p a�3=2
0

�
1� 1

2
r
a0

�
e�r=2a0

R2;1 5
1ffiffiffiffi
24

p a�3=2
0

�
r
a0

�
e�r=2a0

R3;0 5
2ffiffiffiffi
27

p a�3=2
0

�
1� 2

3
r
a0
þ 2

27

�
r
a0

�
2
�
e�r=3a0

R3;1 5
8

27
ffiffi
6

p a�3=2
0

�
1� 1

6
r
a0

��
r
a0

�
e�r=3a0

R3;2 5
4

81
ffiffiffiffi
30

p a�3=2
0

�
r
a0

�
2 e�r=3a0

R4;0 5
1
4 a

�3=2
0

�
1� 3

4
r
a0
þ 1

8 ð r
a0
Þ2 � 1

192 ð r
a0
Þ3�e�r=4a0

R4;1 5
ffiffi
5

p
16

ffiffi
3

p a�3=2
0

�
1� 1

4
r
a0
þ 1

80

�
r
a0

�
2
��

r
a0

�
e�r=4a0

R4;2 5
1

65
ffiffi
5

p a�3=2
0

�
1� 1

12
r
a0

��
r
a0

�
2
e�r=4a0

R4;3 5
1

768
ffiffiffiffi
35

p a�3=2
0

�
r
a0

�
3
e�r=4a0
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Spherical Harmonics

The spherical harmonics are special functions defined on the
surface of a sphere of arbitrary radius. They are denotedYm

l ðu;fÞ
with fl;mPN0 j �l ≤ m ≤ lg. Following the usual conventions
of quantum physics, the spherical harmonics are given by

Ym
l ðu;fÞ5 ifmþjmjg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l þ 1Þ

4p
ðl � jmjÞ!
ðl þ jmjÞ!

s
eimfPm

l ðcos uÞ

where

Pm
l ðjÞ5 ð1� j2Þjmj

2

�
d
dj

�jmj	 1
2ll!

�
d
dj

�
l
ðj2 � 1Þl




is an associated Legendre polynomial. The quantity in curly
brackets is the Legendre polynomial Pl(j). The spherical
harmonics form a basis for functions of u and f. Their
orthonormality is expressed as

Z
p

0
du sin u

Z
2p

0
df½Ym0

l0 �*½Ym
l �5 ðdl;l0 Þðdm;m0 Þ

Spherical Harmonics through l5 3

Y 0
0 5

ffiffiffiffiffi
1
4p

q

Y 0
1 5

ffiffiffiffiffi
3
4p

q
cos u

Y�1
1 5∓

ffiffiffiffiffi
3
8p

q
sin u e�if

Y 0
2 5

ffiffiffiffiffiffiffi
5

16p

q
ð3 cos2 u�1Þ

Y�1
2 5∓

ffiffiffiffiffi
15
8p

q
sin u cos u e�if

Y�2
2 5

ffiffiffiffiffiffiffi
15
32p

q
sin2 u e�2if

Y 0
3 5

ffiffiffiffiffiffiffi
7

16p

q
ð5 cos3 u�3 cos uÞ

Y�1
3 5∓

ffiffiffiffiffiffi
21
64p

q
sin uð5 cos2 u� 1Þe�if

Y�2
3 5

ffiffiffiffiffiffiffi
105
32p

q
sin2 u cos u e�2if

Y�3
3 5∓

ffiffiffiffiffiffi
35
64p

q
sin3 u e�3if
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Atomic Angular Momentum Quantum Numbers

Various types of angular momenta associated with atoms
are listed in the table below, represented by a letter that is
conventionally used as the quantum number associated
with the magnitude of the angular momentum. The symbol
for the associated z-component magnetic quantum number
in all cases is m with the given angular momentum
quantum number as a subscript. For example, since I is the
quantum number for the magnitude of nuclear spin, mI is
the z-component magnetic quantum number for the
nuclear spin.

The standard symbol for an angular momentum quantum
number is often the same as the standard symbol for the
angular momentum operator, so the meaning of a symbol
must often be determined by the context in which it is used.
In this Field Guide, operators are always indicated with
carets (or “hats”) over the symbols to aid in the interpreta-
tion of expressions. Vector notation and subscripts further
help identify the meaning of a symbol. Note that operators
are not necessarily denoted with carets in other books and
resources.

Quantum Number Angular Momentum (AM) Type

l orbital AM of a single electron

s spin AM of a single electron

L net orbital AM of all electrons in an
atom

S net spin AM of all electrons in an atom

J net orbitalþ spin AM of all electrons in
an atom; vector AM operator:
Ĵ5 L̂þ Ŝ

I spin AM of an atomic nucleus

F total atomic AM; vector AM
operator: F̂5 Ĵþ Î

uantum Mechanics

101Hydrogen and Atomic Structure



Fine Structure of Hydrogen: Perturbation Terms

The spinless hydrogen model (page 97) neglects physical effects
arising from the electron’s spin, relativistic motion, and small-
scale rapid position oscillations (called zitterbewegung)
that require the evaluation of the Coulomb potential over a
spatial volume. When the dominant terms associated with
these corrections are included in the hydrogen problem, the
energy levels from the spinless hydrogen model are found to
shift and to split; this energy-level structure is called the fine
structure of hydrogen. When the nuclear spin is also
considered, an even finer splitting of the energy levels is found;
this is the hyperfine structure of hydrogen.

The fine-structure problem is exactly solvable using theDirac
equation, which is beyond the scope of this Field Guide, or
approximately solved using stationary perturbation theory. In
the latter approach, discussed below, the small expansion
parameter is a2, where a is the dimensionless fine-structure
constant:

a ≡
1

4pe0

e2

ℏc
5

ℏ
meca0

� 1=137

where the constants are defined on page 125. The unperturbed
Hamiltonian is given by the spinless hydrogen Hamiltonian Ĥ0

(page 97) with the eigenvalues En5�EI /n
2 and eigenstates

fjn; l;mlig. The electron spin states fjs5 1=2;ms 5�1=2ig are
incorporated using a tensor-product basis often denoted as
either fjn; l;mlijs;msig or fjn; l; s;ml;msig.
The fine-structure Hamiltonian is ĤFS 5 Ĥ0 þ ŴFS. The com-
ponents of the perturbation ŴFS 5 a2ŴSO þ a2ŴR þ a2ŴD are
defined as

• Spin–orbit coupling: a2ŴSO 5 a2 · a2
0

2ℏ2R̂
dV ðR̂Þ
dR̂

L̂ · Ŝ

• Relativistic term: a2ŴR 5�a2 · a20
8meℏ2 P̂

4

• “Darwin” term: a2ŴD 5 a2 · 18 a
2
0 ∇2V ðR̂Þ5 a2 · a

2
0e

2

8e0
dðR̂Þ

where P̂4
5 ðP̂ · P̂Þ2, R̂ ≡ jR̂j, V ðR̂Þ is the Coulomb interaction

energy, L̂ is the electron OAM operator, and Ŝ is the s5 1/2
electron spin operator.

102 Hydrogen and Atomic Structure



Fine Structure of Hydrogen: Solutions

The fine-structure perturbations break some of the degenera-
cies of the fjn; l; s;ml;msig states. Under the perturbation, the
eigenstates of ĤFS remain eigenstates of L̂2 and Ŝ2. They are
also eigenstates of Ĵ2 and Ĵ z where Ĵ5 L̂þ Ŝ, so they are
therefore not eigenstates of L̂z and Ŝz. Due to this, the
eigenstates of ĤFS involve new quantum numbers J and mJ

(associated with Ĵ2 and Ĵ z, respectively) instead of ml and ms.

The notation used below involves the standard symbols for
atomic angular momentum quantum numbers (page 101).
Note that it is common to use capital letters L and S as the
quantum numbers for the total orbital angular momentum and
the total spin of all electrons in an atom, respectively. In
hydrogen, with one electron, L is equivalent to l, and S is
equivalent to s. The eigenstates of ĤFS can therefore be labeled
jn;L;S;J ;mJ i. Transformations between the fjn;L;S;J ;mJig
basis and the fjn;L;S;mL;mSig basis are accomplished
through the use of Clebsch–Gordan coefficients.

The quantum numbers J and mJ are defined through the
eigenvalue equations

Ĵ2jn;L;S;J ;mJ i5 JðJ þ 1Þℏ2jn;L;S;J ;mJi
Ĵzjn;L;S;J ;mJ i5mJℏjn;L;S;J ;mJi

For arbitrary L and S, J can be any value in the range
fjL� Sj; jL� Sj þ 1; : : : ;Lþ S � 1;Lþ Sg. Since S5 1/2 for
hydrogen, J can be either Lþ 1/2 or L� 1/2 for L. 0. If L5 0,
then J5 1/2. For each J :mJPf�J ;�J þ 1; : : : ;J � 1;Jg.

Stationary perturbation theory to first order in a2 gives
the following approximate energy eigenvalues for the
hydrogen fine-structure problem:

En;J 5 En

�
1þ a2

n2

�
n

J þ 1=2
� 3

4

��
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Hyperfine Structure of Hydrogen

The hydrogen nucleus is a single proton, so the nucleus has a
spin quantum number I5 1/2. The nuclear spin and electronic
state spaces are merged to give a tensor-product basis
fjn;L;S;J ;mJijI ;mI ig. These are not eigenstates of the full
atomic Hamiltonian due to coupling of the magnetic dipole
moment of the proton with the electron’s magnetic dipole
moment. This coupling leads to the hyperfine structure of
hydrogen and associated shifts in the energy eigenvalues of
hydrogen that are even smaller than the fine-structure energy
shifts.

Hydrogen’s hyperfine structure is calculated using a perturba-
tion Hamiltonian ŴHF (not given here) that is much weaker
than ŴFS; the approximate energy eigenstates of the perturbed
Hamiltonian are fjn;L;S;J ; I ;F ;mF ig. Quantum numbers F
and mF are associated with the observables F̂2 and F̂z where
F̂5 Ĵþ Î is the vector operator for the total angular momen-
tum of the atom. F̂2 and F̂z have the eigenvalue equations

F̂2jn;L;S;J ; I ;F ;mFi5 FðF þ 1Þℏ2jn;L;S;J ; I ;F ;mF i
F̂zjn;L;S;J ; I ;F ;mF i5mFℏjn;L;S;J ; I ;F ;mFi

FPfjJ� I j; jJ� I j þ1; : : : ;Jþ I�1;Jþ Ig
mFPf�F ;�Fþ1; : : : ;F�1;Fg for eachF

Since I5 1/2 for hydrogen, F has the values Jþ1/2 and J�1/2
for each J. The unperturbed, fine-structure, and hyperfine-
structure energy levels, shifts, and eigenstates are shown
below for the n5 1 level. The kets omit the quantum numbers
n5 1, L5 0, S5 1/2, J5 1/2, I5 1/2, and mL5 0.
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Zeeman Effect in Hydrogen: n5 1

In the presence of a uniform magnetic field B, the energy
eigenvalue for the state jn;L;S;J ; I ;F ;mF i is shifted by an
amount that depends on the angular momentum quantum
numbers; this energy shift is the Zeeman effect. Let the
direction of the magnetic field define the ẑ direction, so that
B5 B0ẑ leads to a perturbation Hamiltonian

ŴZ 5�m̂ · B

with

m̂5
mB

ℏ

�
�gLL̂þ geŜþ gp

me

mp
Î
�

where gL � 1, ge � �2.002, and gp � 5.586 (see page 72).

For n5 1, the electron has no orbital angular momentum, so
the L̂ term can be neglected, and Ŝ5 Ĵ for this case. Since
me ,,mp, the atomic magnetic moment is approximately

m̂ � 2mB

ℏ
Ŝ5

2mB

ℏ
Ĵ

Defining v0 ≡ mBB0=ℏ, the Zeeman perturbation (for n5 1) is

ŴZ � 2v0Ĵz

The hydrogen Hamiltonian is then

Ĥ 5 Ĥ0 þ ŴFS þ ŴHF þ ŴZ

For weak magnetic fields, ŴZ ,, ŴHF , and the Zeeman effect
is treated as a small perturbation to the hyperfine structure of
hydrogen. This leads to the weak-field Zeeman effect. For
larger magnetic fields, with ŴHF ,, ŴZ ,, ŴFS, the Zeeman
effect shifts the fine-structure energy levels according to the
value ofmJ; the hyperfine term ŴHF is then treated as a small
perturbation on the levels jn;L;S;J ; I ;mJ ;mI i that are shifted
in energy by the magnetic field. This is the strong-field
Zeeman effect. The energy eigenvalues within both limits, as
well as the intermediate-field Zeeman effect, can be found
using stationary perturbation theory; results for the n5 1 level
are given and illustrated on page 106.
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Zeeman Effect in Hydrogen: n5 1 Solutions

The approximate energy eigenvalues and eigenstates for the
n5 1 level of hydrogen in the presence of a uniformmagnetic
field B5 B0ẑ are given and plotted below in terms of the
n5 1 level’s hyperfine splitting dEHF (defined in the figure
on page 104), v0 ≡ mBB0=ℏ, and u ≡ tan�1ð2ℏv0=dEHF Þ.
For all of the n5 1 states, L5 0, S5 1/2, J5 1/2, and
I5 1/2; these labels are omitted from the kets given below.
Furthermore, ms is used instead of mJ since mL5 0 for this
case.

Energy Eigenvalues Energy Eigenstates

dEHF
4 þ ℏv0 jF 5 1;mF 5 1i

� dEHF
4 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dEHF
2

�
2 þ ðℏv0Þ2

r
cos u

2 jF 5 1;mF 5 0i
þ sin u

2 jF 5 0;mF 5 0i
dEHF
4 � ℏv0 jF 5 1;mF 5�1i

� dEHF
4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dEHF
2

�
2 þ ðℏv0Þ2

r
� sin u

2 jF 5 1;mF 5 0i
þ cos u

2 jF 5 0;mF 5 0i
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Spectroscopic Notation and Term Symbols

Spectroscopic notation is used to indicate the value of the
OAM quantum number of a single electron within an atom.
The lowest few values of l are assigned the following letters:

l5 0 ↔ s

l5 1 ↔ p

l5 2 ↔ d

l5 3 ↔ f

l5 4 ↔ g

These letters are used immediately following the principal
quantum number n to identify an energy level. For example,
the 4p level of hydrogen denotes n5 4 and l5 1. The 4p level
consists of the set of three jn; l;mli states j4; 1; 1i, j4; 1; 0i, and
j4; 1;�1i.
When OAM quantum numbers are associated with the net
OAM of all electrons in an atom (i.e., L instead of l ), the same
spectroscopic notation is used but the letters are capitalized.
In either case, symbols must be interpreted in context, as
various meanings are assigned to these letters throughout
quantum and atomic physics.

The angular momentum quantum numbers S, L, and J for all
electrons of an atom can also be incorporated into an atomic
term symbol, following the notation

2Sþ1LJ

where the superscript 2Sþ1 is the spin multiplicity (the
number of orthogonal spin states for total electron spin
quantum number S), L is the total electron OAM quantum
number and is replaced by the equivalent (capitalized) letter
given by the spectroscopic notation convention, and J is the
quantum number associated with the sum of the net electron
spin and OAM for a given level. For example, all states of
hydrogen have S5 1/2, so the spin multiplicity is 2. For a
hydrogen atom in a state that has L5 1 and J5 3/2, the term
symbol is 2P3=2, and the possible values of mJ associated with
this level are 3/2, 1/2, �1/2, and �3/2.
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Identical Particles: Two Particles

A spin quantum number is associated with every quantum-
mechanical particle, whether the particle is elementary (such
as an electron), composite (such as an atom), or force-mediating
(such as a photon). The many-body states available to a
system of identical particles each having spin s may be
tentatively described as if each particle could be separately
labeled and assigned an individual single-particle state. The
actual quantum states physically available to a system of
identical particles are then constructed, as shown below.

Consider two identical particles in states jcAi and jcBi. At first
consideration, a two-particle state might be labeled jcAijcBi,
where the first ket is the state of (nominal) “particle 1,” and the
second is that of (nominal) “particle 2.” However, since the
particles are identical, no measurement can distinguish this
state from jcBijcAi (i.e., “particle 1” in state jcBi and “particle 2”
in state jcAi), so these two tensor product kets cannot be
different elements of the state space of the two-particle system.
The physically available two-particle states are rather

jΨi5 bffiffiffi
2

p ðjcAijcBi � jcBijcAiÞ

The plus sign is used if the particles have integer (including 0)
spin; these particles are called bosons. The minus sign is used
if the particles have half-integer spin (1/2, 3/2, etc.); these
particles are called fermions. The normalization coefficient b
depends on states jcAi and jcBi: b5 1 if hcAjcBi5 0, but b≠ 1
otherwise and must be found after constructing the superpo-
sition so that hΨjΨi5 1.

If jcAi5 jcBi, then (after normalizing the boson case)

jΨi5
� jcAijcAi ðbosonsÞ
0 ðfermionsÞ

The boson state above is an element of the two-particle state
space; the fermion case is not (jΨi5 0 is not a physical state).
The conclusion from this result is that two identical fermions
cannot occupy the same single-particle quantum state; this is
the Pauli exclusion principle.
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Identical Particles: Three or More Particles

Three-particle case: The physical state of three identical
fermions in orthogonal single-particle quantum states jcAi,
jcBi, and jcCi is given by

jΨi5 1ffiffiffi
6

p

�������

jcAi jcBi jcCi
jcAi jcBi jcCi
jcAi jcBi jcCi

�������

5
1ffiffiffi
6

p ðjcAijcBijcCi � jcAijcCijcBi þ jcBijcCijcAi

� jcBijcAijcCi þ jcCijcAijcBi � jcCijcBijcAiÞ
The right side of the first expression is a Slater determinant.
It is evaluated as a matrix determinant, although a proper
order must be kept when constructing each tensor product of
three kets. The first row is associated with (nominal) particle 1;
the elements of this row appear first in each tensor product.
The second row is associated with particle 2; these kets appear
second, etc. The second expression above is the evaluated
determinant. Again, these expressions show that two identical
fermions cannot occupy the same single-particle state.

The three-particle quantum state (prior to finding the
normalization coefficient b) of identical bosons is

jΨi5 bffiffiffi
6

p ðjcAijcBijcCi þ jcAijcCijcBi þ jcBijcCijcAi

þ jcBijcAijcCi þ jcCijcAijcBi þ jcCijcBijcAiÞ
N-particle case: For N identical fermions in states jc1i to
jcN i, the N-particle state is given by the Slater determinant

jΨi5 1ffiffiffiffiffiffi
N !

p

���������

jc1i jc2i : : : jcN i
jc1i jc2i : : : jcN i
..
. ..

. . .
. ..

.

jc1i jc2i : : : jcN i

���������

For N identical bosons in states jc1i to jcN i, the same
sequence of tensor-product states as above is constructed,
except all of the minus signs from the Slater determinant are
replaced by plus signs (this is a matrix permanent rather
than a determinant). jΨi is then normalized.
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Identical Particles: Occupation Number Basis

For a system of N identical particles, the formalism given on
pages 108–109 describes the physical states that are elements
of the state space EN of the entire many-body system. A basis
for EN can be constructed using a simplified notation that
enables the specification of the number of particles nk that can
be found in each single-particle state of a discrete basis fjckig
that spans the state space for a single particle; nk is called the
occupation number for state jcki.
For example, if N identical particles are confined in a 1D
potential well, and if jc1i is the single-particle ground state of
the well, then n15 3 indicates that there are three particles in
the ground state (necessarily implying that the particles are
bosons). Correspondingly, N� 3 particles must occupy excited
states. The occupation-number formalism avoids the need to
invoke language and terminology that artificially label the
particles.

The many-particle occupation number basis for EN is
specified by fjn1;n2; · · · ;nk; · · · ig, where nk is the occupation
number for the kth single-particle state and is found in the kth

position within the many-body ket, and N 5
P

k nk.

For example, the state j0; 1; 0; 1; 0; · · · i (with all other
occupation numbers being zero) indicates that there is one
particle in the single-particle state jc2i and one particle in the
single-particle state jc4i. This is a physical state available to a
system of two identical particles, either bosons or fermions.
However, the superpositions of tensor-product states are
different for the boson and fermion cases. For idential bosons,
the occupation-number state j0; 1; 0; 1; 0; · · · i coincides with
the two-particle state

jΨi5 1ffiffiffi
2

p ðjc2ijc4i þ jc4ijc2iÞ

whereas for fermions it coincides with the two-particle state

jΨi5 1ffiffiffi
2

p ðjc2ijc4i � jc4ijc2iÞ
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Identical Particles: Occupation Number Basis States

The occupation number basis states fjn1;n2; · · · ;nk; · · · ig
defined on page 110 have the following properties:

• The basis is orthonormal:

hn0
1;n

0
2; · · · ;n

0
k; · · · jn1;n2; · · · ;nk; · · · i

5 ðdn1;n0
1
Þðdn2;n0

2
Þ: : : ðdnk;n0

k
Þ: : :

• For a system of N fermions, the Pauli exclusion principle
constrains each occupation number to be either 0 or 1,
along with the constraint N 5

P
k nk

• For a system of bosons, each occupation number may be
any non-negative integer, limited only by N 5

P
k nk

• For the occupation number nk, the index k may be a
compound index that represents or is replaced by a set of
single-particle indices. For example, consider a 3D
isotropic harmonic oscillator potential of frequency v.
The energy eigenvalues for the single-particle Hamilto-
nian are

Enx;ny;nz
5 ℏvðnx þ ny þ nz þ 3=2Þ
fnx;ny;nzPN0g

following the notation defined on page 62. The occupation-
number basis states for three identical particles (bosons
or fermions) in this potential may be written as

fjn0;0;0;n1;0;0;n0;1;0;n0;0;1; · · · ig
where the subscripts indicate the degree of excitation of
each of the three orthogonal dimensions of the oscillator.
If there is no energy of interaction between the three
particles, then the energy of the occupation-number state
j0; 1; 1; 1; 0; · · · i is 3 · 52 ℏv.

• The occupation number basis is used in problems that
involve quantifying the states and dynamics of systems
of interacting particles, and in the formalism of
second quantization.
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Miscellaneous Symbols and Notation

Notation for Sets of Numbers

Z the set of all integers
N0 the set of all integers greater than or equal to 0
Nþ the set of all integers greater than or equal to 1
R the set of all real numbers
Rþ the set of all real numbers greater than 0
C the set of all complex numbers

Dimensional units: Square brackets indicate the dimen-
sional units of a quantity. For example, fx P Rjx : ½m�g is
interpreted as “x belongs to the set of real numbers such
that x has dimensional units of meters.”

Vectors and unit vectors (directional vectors with a norm
of 1 and no dimensional units) are written in bold. For
example, if x0, y0, and z0 are real numbers, r0 5 ðx0; y0; z0Þ
is a 3D vector pointing from the coordinate-system origin to
the point ðx0; y0; z0Þ. ŷ5 ð0; 1; 0Þ is a unit vector.

Complex conjugation is indicated with an asterisk
superscript. For example, ð2þ 4iÞ* 5 2� 4i.

The Kronecker delta is indicated by the Greek letter d
with two subscripts, djk, for example. djk5 1 if j5 k, and
djk5 0 if j ≠ k. The indices are usually integers.

The Dirac delta function of a continuous parameter x is
denoted dðxÞ, where dð0Þ5∞ and dðxÞ5 0 for x ≠ 0. For a
general function f ðxÞ,

Z
∞

�∞
dx f ðxÞdðx� x0Þ5 f ðx0Þ

The dimensional units of dðxÞ are the inverse of those of x; if
x is a scalar and dx has units of meters, for example, then
dðxÞ has units of inverse meters.
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Linear Algebra Basics

Quantum mechanics utilizes the structure and terminology of
linear algebra. Especially common are operations of the form
Av5 v0, where

• A is an N-dimensional (N rows by N columns) matrix of
scalars that are generally complex

• v and v0 are column vectors (N rows, 1 column) of scalars
that are generally complex; A is said to “act to the right”
on v to produce a new column vector v0

The following terms and symbols associated with matrices are
also found in the formalism of quantum mechanics:

• AT, the transpose of A, is obtained by exchanging the
rows and columns of A: the nth row of A is the nth column
of AT, and the nth column of A is the nth row of AT, where
the order of the elements is maintained

• A�1, the inverse of A, is defined by AA�1 5 A�1A5 1,
where 1 is the identity matrix

• A†, the adjoint of A, is the complex conjugate of
(all elements of ) AT

• If A5 A†, then A is said to be Hermitian

• If A�1 5 A†, then A is said to be unitary

The following terms and symbols associated with vectors are
found in the formalism of quantum mechanics:

• vT, the transpose of v, is a row vector created by placing
the elements of v in a row with N columns, maintaining
the order of all elements

• The adjoint operation applies to vectors as well as
matrices. Let v† be the adjoint of v. The row vector v†

is the complex conjugate of (all elements of ) vT.

• The scalar product associated with the ordered vector
pair (u, v) is the complex scalar result of the vector
multiplication u†v

• The norm of v is defined as kvk ≡
ffiffiffiffiffiffiffiffi
v†v

p
and is real and

positive (unless all elements of v equal zero, in which
case kvk5 0). The norm is a generalized magnitude of v
for complex vectors of arbitrary dimension.

uantum Mechanics

113Appendix: Mathematics Reference, Tables, and Constants



Eigenvalue Equations in Linear Algebra

Eigenvalue equations for matrices and vectors are of the
form Avk 5 lkvk, where

• A is an N-dimensional square matrix; its elements may
be complex

• vk is one element of a set of particular column vectors,
indexed by kPf1; 2; : : : ;Ng. Each element of the set fvkg
solves the eigenvalue equation in conjunction with a
specific associated scalar lk. vk is an eigenvector of A.

• lk is an element of a set of particular scalars and may be
complex. lk is an eigenvalue of A. The set of eigenvalues
of A, denoted flkg, is the eigenvalue spectrum of A.

• Multiple eigenvectors may be associated with the same
eigenvalue; e.g., lj 5 lk for j ≠ k. In this case there is
degeneracy in the spectrum of A. The degree of
degeneracy for a given eigenvalue is the number of
eigenvectors that solves the eigenvalue equation for that
eigenvalue.

• If A is Hermitian, then a set of N eigenvectors of A can
be found such that v†

j vk 5 0 for any two different
eigenvectors vj and vk. The eigenvectors vj and vk are
then said to be orthogonal, and fvkg denotes the full set
of mutually orthogonal eigenvectors. If the spectrum of A
has degeneracies, a set fvkg is not unique (i.e, there are
multiple ways to construct sets of orthogonal eigenvec-
tors).

If vk is an eigenvector of A associated with eigenvalue lk, then
for any two real scalars c and f, wk ≡ ceifvk also solves the
eigenvalue equation and is associated with the eigenvalue lk.
To remove this ambiguity in specifying eigenvectors, this Field
Guide uses the following eigenvector conventions:

• Every eigenvector vk of a matrix A is normalized to 1,

meaning that its norm kvkk is 1: kvkk ≡
ffiffiffiffiffiffiffiffiffiffiffi
v†

kvk

q
5 1.

• When the eigenvectors of the set fvkg are found and
defined independently of each other, the first non-zero
element of each vector vk is chosen to be real and positive.
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Spherical Coordinates

Spherical coordinates and expressions for the conversion
between rectilinear and spherical coordinate systems are
defined below.

Conventionally, x, y, and z indicate orthogonal spatial
coordinates in a 3D rectilinear coordinate system, where

r5 ðx; y; zÞ5 xx̂þ yŷþ zẑ

is a position vector. Vectors are denoted in bold. Unit
(directional) vectors have a norm of 1 and are denoted with
a hat or caret over a coordinate symbol, e.g., x̂5 ð1; 0; 0Þ.

Coordinate Conversion

r5 jrj5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p

u 5 tan�1
�
1
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p �

f5 tan�1
�
y
x

�

Magnitude of r

Polar angle

Azimuthal angle

x5 r sin u cosf
y5 r sin u sinf
z5 r cos u

Unit (Directional) Vector Conversion

r̂5 sin u cosf x̂þ sin u sinf ŷþ cos u ẑ
û5 cos u cosf x̂þ cos u sinf ŷ� sin u ẑ
f̂5� sinf x̂þ cosf ŷ

x̂5 sin u cosf r̂þ cos u cosf û� sinf f̂

ŷ5 sin u sinf r̂þ cos u sinf ûþ cosf f̂

ẑ5 cos u r̂� sin u û

Spherical coordinates are illustrated on page 116.
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Operators in Spherical Coordinates

The spherical coordinates defined on page 115 are
illustrated below.

The vector differential operator ∇ is given by

∇5 r̂
∂
∂r

þ û
1
r
∂
∂u

þ f̂
1

r sin u

∂
∂f

The Laplacian ∇2 is given by

∇2 5
1
r2

∂
∂r

�
r2

∂
∂r

�
þ 1

r2 sin u

∂
∂u

�
sin u

∂
∂u

�
þ 1

r2sin2u

∂2

∂f2

The 3D differential volume element d3r, given in Cartesian
coordinates as d3r5 dx dy dz, is expressed in spherical
coordinates as

d3r5 r2 sin udrdudf

so that
Z

df
Z

du sin u

Z
dr r2f ðr; u;fÞ

is an indefinite volume integral of function f(r, u, f).
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Properties of 1D Gaussian Wavefunctions

A normalized 1D Gaussian wavefunction over the position
coordinate x has the form

cðxÞ5
�

1
pw2

�
1=4

e�
x2

2w2

First and second derivatives:

∂cðxÞ
∂x

5� x
w2 cðxÞ

∂2cðxÞ
∂x2

5
1
w2

�
x2

w2 � 1
�
cðxÞ

Probability density distribution:

jcðxÞj2 5 1ffiffiffiffi
p

p
w
e�x2=w2

Standard deviation in the coordinate x:

Dx5
�Z

∞

�∞
dx x2jcðxÞj2 �

�Z
∞

�∞
dx xjcðxÞj2

�
2
�
1=2

5
wffiffiffi
2

p

For a particle whose wavefunction is given by cðxÞ, the
net probability of finding the particle within the range
�a, x, a is the probability density distribution jcðxÞj2
integrated over this range:

Pðjxj , aÞ5
Z

a

�a
dxjcðxÞj2 5 erf

�a
w

�

where erfðawÞ is the error function (page 122). Probabilities
associated with various ranges are given below:

P

�
jxj , Dx

2

�
� 0.38

P

�
jxj , 2

3
Dx

�
� 0.50

Pðjxj , DxÞ � 0.68

Pðjxj , 2DxÞ � 0.95

The Fourier transform of cðxÞ is a Gaussian over the
momentum coordinate p (see pages 24 and 57):

c̃ðpÞ5 FfcðxÞg5
�

w2

pℏ2

�1=4

e�
w2p2

2ℏ2
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Clebsch–Gordan Coefficient Tables: J13 1/2

Tables of Clebsch–Gordan coefficients are given below and
on pages 119–121. Two individual angular momentum
quantum numbers are denoted J1 and J2, with J1 $ J2.
The corresponding z-component magnetic quantum num-
bers are m1 and m2. The columns are labeled by the total-
angular-momentum quantum numbers J (magnitude) and
mJ (z-component magnetic quantum number) on a green
background, with J above mJ. The rows are labeled by m1

(left) and m2 (right) on a green background. The square-root
is to be taken of every number in a table, and any minus
sign (if present) is placed outside of the radical. For example,
a table entry of �4/5 is interpreted as � ffiffiffiffiffiffiffiffi

4=5
p

. See page 88
for an example that uses Clebsch–Gordan-coefficient tables.
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Clebsch–Gordan Coefficient Tables: J13 1
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Clebsch–Gordan Coefficient Tables: J13 3/2
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Clebsch–Gordan Coefficient Tables: 23 2
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Integrals of Exponential Forms

[1] ∫ xebx dx5 ebxðbx� 1Þ=b2
[2] ∫ xnebxdx5 xnebx=b� ðn=bÞ∫ xn�1ebxdx for fn P Nþg
[3] ∫ ∞

0 x
ne�bxdx5 n!=bnþ1 forRefbg . 0; fn P N0g

[4] ∫ ∞
0 x

1=2e�xdx5
ffiffiffiffi
p

p
=2

[5] ∫ ∞
0 x

3=2e�xdx5 3
ffiffiffiffi
p

p
=4

[6] ∫ ∞
0 e

�x2dx5
ffiffiffiffi
p

p
=2

[7] ∫ ∞
0 xe

�x2dx5 1=2

[8] ∫ ∞
0 x

2e�x2dx5
ffiffiffiffi
p

p
=4

[9] ∫ ∞
0 x

3e�x2dx5 1=2

[10] ∫ ∞
0 x

4e�x2dx5 3
ffiffiffiffi
p

p
=8

[11] ∫ ∞
0 x

5e�x2dx5 1

[12] ∫ ∞
0 x

6e�x2dx5 15
ffiffiffiffi
p

p
=16

[13] ∫ ∞
0 x

2ne�x2dx5 ½1 · 3 · 5 · : : : · ð2n� 1Þ� ffiffiffiffi
p

p
=2nþ1 for fn P Nþg

[14] ∫ ∞
�∞e

�x2=2a2
ebxdx5

ffiffiffiffiffiffi
2p

p
· a ea

2b2=2 for fa P Rja$ 0g
[15] ∫ ∞

0 xe
�x2=2a2

ebxdx5 a2 þ ffiffiffi
p
2

p
a3 b ea

2b2=2
h
1þ erf

�
abffiffi
2

p
� i

The error function is defined as

erfðyÞ5 2ffiffiffiffi
p

p
Z

y

0
dx e�x2

with erfð∞Þ5 1. The value of erf(y) for a real number y
can be numerically computed or found in tables.
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Identities and Series Expansions

Trigonometry Identities with sin and cos

[1] eiu 5 cos uþ i sin u

[2] cos2uþ sin2u 5 1

[3] cos u 5 1
2 ½eiu þ e�iu�

[4] sin u 5 1
2i ½eiu � e�iu�

[5] cosð2uÞ5 cos2u� sin2u 5 2cos2u� 15 1� 2 sin2u

[6] sinð2uÞ5 2 sin u cos u

[7] cos2u 5 1
2 ½1þ cosð2uÞ�

[8] sin2u 5 1
2 ½1� cosð2uÞ�

[9] sinc u 5 1
u sin u ½where sincð0Þ5 1�

Hyperbolic sin and cos (sinh and cosh)

[1] eu 5 cosh uþ sinh u

[2] cosh2u� sinh2u 5 1

[3] cosh u 5 cosðiuÞ5 1
2 ½eu þ e�u�

[4] sinh u 5 i sinð�iuÞ5 1
2 ½eu � e�u�

Power Series Expansions of F(x) about x5 0

[1]
FðxÞ5

X∞
n50

xn

n!
dnFðxÞ
dxn

				
x50

[2]
ex 5 1þ xþ x2=2!þ x3=3!þ : : : 5

X∞
n50

1
n!

xn

[3]
cosðxÞ5 1� x2=2!þ x4=4!� : : : 5

X∞

n50jn even

ð�1Þn=2
n!

xn

[4]
sinðxÞ5 x� x3=3!þ x5=5!� : : : 5

X∞

n51jn odd

� ð�1Þn=2
n!

xn

uantum Mechanics

123Appendix: Mathematics Reference, Tables, and Constants



Dimensional Units (SI)

Base Units

Unit Name Dimension

s second time interval

m meter length, distance

kg kilogram mass

K kelvin temperature

A ampere electric current

c candela luminous intensity

mol mole amount of substance

Derived Units

Unit Name Measures

m/s velocity

kg ·m/s momentum

m/s2 acceleration

Hz5 1/s hertz cycle frequency

radians/s (rad/s) angular frequency

N5 kg ·m/s2 newton force

J5 kg ·m2/s2 joule energy

W5 J/s watt power

Pa5N/m2 pascal pressure

C5A · s coulomb electric charge

V5 J/C5W/A volt voltage

Wb5V · s5 J/A weber magnetic flux

T5Wb/m2 tesla magnetic flux density

H5 J/A25Wb/A henry magnetic inductance

Dimensional Unit Conversions

Unit Name Equivalent SI value

eV electron-volt �1.6023 10�19 J

G gauss 10�4 T
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Common Physical Constants (to Four Significant Digits)

c 5 2.9983 108 m/s speed of light in vacuum
h 5 6.6263 10�34 J · s Planck’s constant

5 4.1363 10�15eV · s
ħ 5 1.0553 10�34 J · s reduced Planck’s constant;

5 6.5823 10�16 eV · s ħ5 h/2p
kB 5 1.3813 10�23 J/K Boltzmann’s constant
mB 5 9.2743 10�24 J/T Bohr magneton
mN 5 5.0513 10�27 J/T nuclear magneton
me 5 9.1093 10�31 kg electron rest mass
mp 5 1.6733 10�27 kg proton rest mass
e 5 1.6023 10�19 C elementary charge;

electron charge is –e
e0 5 8.8543 10�12 C2/(J ·m) permittivity of free space
m0 5 4p3 10�7 T ·m/A magnetic constant

(permeability of free space)

Hydrogen atom

a 5
e2

4pe0ℏc
5 7.2973 10�3

� 1=137

fine-structure constant

a0 5
4pe0ℏ2

mee2
5

ℏ
amec

5 5.2923 10�11 m

Bohr radius

EI 5
1
2
a2mec2 5

ℏ2

2a2
0me

5 2.1803 10�18J
5 13.61 eV
5 h ⋅ ð3.2903 1015HzÞ
5 hc ⋅ ð91.133 10�9mÞ�1

ionization energy

R∞ 5
EI

hc
5 1.0973 107m�1

5 ð91.133 10�9mÞ�1

Rydberg constant
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2p pulse, 76
p pulse, 76

above-barrier
transmission, 51, 53

addition of angular
momentum, 88

adjoint, 3, 5, 113
angular momentum, 63
ladder operators, 63, 64

annihilation operator, 56
anti-Hermitian, 26
anti-linearity, 3
associated Laguerre
polynomial, 99

associated Legendre
polynomial, 100

Baker–Campbell–
Hausdorff (BCH)
formula, 26

bare Rabi frequency, 76
basis, 6
Bloch sphere, 78
Bloch vector, 77
Bohr magneton, 71
Bohr radius, 98
boson, 108
bra, 2
bra–ket correspondence, 5
bra vector, 2

central potential, 96
classical mechanics, 1
classical turning points,
33

classically allowed region,
33

classically forbidden
region, 33

Clebsch–Gordan (CG)
coefficients, 86

closure relation, 9
coherent states, 56, 59
collapse postulate, 12
commutation relation, 4, 28
commutator, 4
commute, 4
compatible observables, 28
complete set of commuting
observables (CSCO), 30

complex conjugation, 112
compound index, 15
conservation of angular
momentum, 85

conservation of energy, 40
conservative system, 40
continuity equation, 37
continuous basis, 6
continuous representation,
19

conventions, 68
coupling, 75
Coulomb interaction, 97
creation operator, 56

Darwin term, 102
deBroglie wavelength, 33
degeneracy, 7, 114
degenerate stationary
perturbation theory, 91

degree of degeneracy, 7,
114

detuning, 75
dimension (of state space),
7

dimensional units, 112
Dirac delta function, 6, 48,
112
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Dirac equation, 102
Dirac notation, 2
discrete basis, 6
discrete representation,
16–18

displacement coordinate,
60

displacement operator, 59
displacement, 59
dynamics, 41

effective Hamiltonian, 42
effective Schrödinger
equation, 42

effective state, 42
Ehrenfest’s equations
(Ehrenfest’s theorem),
44, 57

eigenket, 7
eigenstate, 7
eigenvalue, 7, 114
equation, 7, 114
postulate, 12, 14

eigenvector, 114
eigenvector conventions,
114

electron, 97
energy, 33
energy eigenfunction, 33
energy eigenstate basis,
14

energy eigenvalue
equation, 40

energy spectrum, 14
entangling, 74
error function, 122
evanescent coupling, 52
even wavefunction, 34
evolution postulate, 11

exactly solvable problems,
47

expansion coefficient, 6
expectation value, 27

Fabry–Perot resonator, 51
fermion, 107
fine structure, 102
fine-structure constant,
102

first-order transition
probability, 93

Fourier transform, 24, 94
harmonic oscillator
states, 60

Fourier transform pair, 94
free particle, 33
function of an operator, 10
functional, 2

Gaussian wavefunction,
58

generalized matrix
element, 21

generalized uncertainty
relation, 29

g-factor, 72
Glauber formula, 26
global phase, 6, 36
gradient, 74
ground-state
wavefunction, 34

gyromagnetic ratio, 71, 72

half-integer, 64
Hamiltonian, 11, 14
harmonic oscillator, 14, 35
Heisenberg picture, 43, 45
Heisenberg uncertainty
principle, 29
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Hermite–Gaussian, 54
Hermite polynomial, 54
Hermitian, 5, 113, 114
Hermitian conjugate, 3, 5,
26

Hilbert space, 11
hydrogen, 97
hyperfine structure, 102

idempotency, 8
identical particles, 108
identity operator, 9
incompatible observables,
29

index, 6
inner product, 3
interacting particles, 111
interaction picture, 43
intermediate-field Zeeman
effect, 105

International System of
Units (SI), 20

inverse, 26, 113
ionization energy, 97
isotropic harmonic
oscillator, 62

ket, 17
ket vector, 17
kinetic energy, 33
Kronecker delta, 6, 112

ladder operators, 56
Laguerre polynomial, 99
Laplacian, 116
Larmor frequency, 73
Larmor precession, 73
Legendre polynomial, 100
linear algebra, 1, 113
linear operator, 4, 11

linearity, 3–4
lowering operator, 56

magnetic dipole moment, 71
magnetic field, 71
gradient, 74
uniform, 73

magnetic quantum
number, 64

many-body states, 108
matrix, 113
matrix element, 5, 16
momentum
representation, 19
operator, 23

momentum-space
wavefunction, 20

momentum translation
operator, 39

nodes, 34
non-commutative
operators, 4

non-degenerate stationary
perturbation theory, 90

norm, 3, 113
normalizable, 3
normalized, 3, 114
nuclear magneton, 71
number operator, 56

observable, 11
observable postulate, 11
occupation number, 110
basis, 110

odd wavefunction, 34
operator, 2
orbital angular
momentum (OAM), 65

orbits (in phase space), 60
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order of operations, 4
orthogonality, 3
orthogonal projectors, 8
orthonormal, 6
oscillator length, 54
overlap, 8
overlap integral, 21

parity, 34
Pauli exclusion principle,
108

Pauli spin matrices, 69
Pauli spin operators, 69
permanent (of a matrix),
109

perturbation, 46
perturbation Hamiltonian,
74

phase-space diagram, 60
physically realizable
wavefunction, 32

pictures, 43
Heisenberg, 43, 45
interaction, 43, 46
Schrödinger, 43–44

plane waves, 48
polynomial
associated Laguerre,
99

associated Legendre,
100

Hermite, 54
Laguerre, 99
Legendre, 100

position-space
wavefunction, 20

position operator, 23
position representation, 19

position translation
operator, 39

postulates of quantum
mechanics, 11–13

potential barrier, 50–52
potential energy, 33
potential well, 34
principal quantum
number, 96

probability, 13
amplitude, 32
current, 37
density, 13
postulate, 31

projection operator, 8
projector, 8
proton, 97
pulse perturbation, 93

quantization, 12
quantization axis, 63
quasi-classical states,
56, 59

Rabi frequency, 76
Rabi oscillations, 76
radial wavefunctions,
98, 99

raising operator, 56
rect function, 94
reduced mass, 97
reference frames, 42
relative phase, 36
relativistic term, 102
representation, 17
resonant approximation,
95

resonant Rabi frequency,
76
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Ritz variational method,
88

rotating wave
approximation, 95

scalar product, 3, 113
Schrödinger equation, 11
Schrödinger picture, 43, 44
second quantization, 111
sinc function, 94, 123
Slater determinant, 109
span, 6, 8
spectroscopic notation, 107
spectrum, 7, 12, 114
spherical coordinates, 115
spherical harmonics, 66,
96, 98, 100

spin, 67
spin angular momentum,
67

spin multiplicity, 107
spin–orbit coupling, 102
spin precession, 73
“spinless” hydrogen, 97
square-integrable, 32
standard deviation, 29
standard ordering, 85
state, 1
state postulate, 11
state space, 1
state-space dimension, 7
state vector, 3
stationary perturbation
theory (SPT), 90

stationary state, 41
Stern–Gerlach effect, 74
strong-field Zeeman effect,
105

subspace, 8

subspace projector, 8
superposition, 3, 6
symmetric potential, 34

Taylor series expansion,
10

tensor product, 25
basis, 25
states, 62, 81

term symbol, 107
time-dependent
perturbation theory
(TDPT), 92

time-domain Fourier
transform, 93

time evolution operator,
40

time-independent
Schrödinger equation,
40

total-angular-momentum
(TAM) operator, 82

total-angular-momentum
basis, 83

transformation matrix,
18

transition, 46
transition probability,
76

transpose, 113
tunneling, 51–52
two-level systems, 69, 75

uncertainty, 29
uncertainty patch, 60
unit vectors, 112
unitary, 26, 113
operator, 26
transformations, 38
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variational parameter, 89
vector, 112, 113
vector space, 3

wavefunction, 19
amplitude, 34
curvature, 33
even, 34
Gaussian, 117

odd, 34
weak-field Zeeman effect,
105
even, 34
odd, 34

Zeeman effect, 105
zitterbewegung, 102
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