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Introduction to the Series

In 2004, SPIE launched a new book series, the SPIE Field
Guides, focused on SPIE’s core areas of Optics and
Photonics. The idea of these Field Guides is to give concise
presentations of the key subtopics of a subject area or
discipline, typically covering each subtopic on a single
page, using the figures, equations, and brief explanations
that summarize the key concepts. The aim is to give
readers a handy desk or portable reference that provides
basic, essential information about principles, techniques,
or phenomena, including definitions and descriptions,
important equations, illustrations, application examples,
design considerations, and additional resources.

The series has grown to an extensive collection that covers
a range of topics from broad fundamental ones to more
specialized areas. Community response to the SPIE Field
Guides has been exceptional. The concise and easy-to-use
format has made these small-format, spiral-bound books
essential references for students and researchers. I have
been told by some readers that they take their favorite
Field Guide with them wherever they go.

We are now pleased and excited to extend the SPIE Field
Guides into subjects in general Physics. Each Field Guide
will be written to address a core undergraduate Physics
topic, or in some cases presented at a first-year graduate
level. The Field Guides are not teaching texts, but rather
references that condense the textbooks and course notes
into the fundamental equations and explanations needed
on a routine basis. We truly hope that you enjoy using the
Field Guides to Physics.

We are interested in your suggestions for new Field Guide
topics as well as what could be added to an individual
volume to make these Field Guides more useful to you.
Please contact us at fieldguides@SPIE.org.

John E. Greivenkamp, Series Editor
James C. Wyant College of Optical Sciences
University of Arizona
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The Field Guide Series

Look for these other SPIE Field Guides:

Geometrical Optics, John E. Greivenkamp

Lasers, Rudiger Paschotta

Nonlinear Optics, Peter E. Powers

Physical Optics, Daniel G. Smith

Solid State Physics, Marek Wartak and C.Y. Fong
Special Functions for Engineers, Larry C. Andrews
Spectroscopy, David W. Ball

Other related titles from SPIE Press:

Introduction to Photon Science and Technology, David L. Andrews
and David S. Bradshaw

The Wonder of Nanotechnology: Quantum Optoelectronic Devices
and Applications, Manijeh Razeghi, Leo Esaki, and
Klaus von Klitzing, eds.




Field Guide to Quantum Mechanics

This Field Guide is a condensed reference to the concepts,
definitions, formalism, equations, and problems of quantum
mechanics. Many topics covered in quantum mechanics courses
are included, while numerous details and derivations are
necessarily omitted. This Field Guide is envisioned to appeal to
undergraduate and graduate students engaged in quantum
mechanics research or courses; to professors, as an aid in teaching
and research; and to professional physicists and engineers
pursuing cutting-edge applications of quantum mechanics. The
mathematical formalism used here involves Dirac notation, with
which the reader should be (or become) familiar to make the most
of this Field Guide. Nevertheless, readers who are not yet familiar
with this formalism should be able to utilize various aspects of
this Field Guide, especially with extra attention directed to the
basic concepts addressed in the first few sections.

I owe sincere thanks to mentors, professors, colleagues, colla-
borators, and friends too numerous to single out by name who
have taught, motivated, and encouraged me throughout more
than three decades of studying quantum physics. Since joining the
University of Arizona faculty, the unwavering support and
partnership of local and international colleagues and collabora-
tors has been indispensable in learning and appreciating many of
the numerous facets of this fascinating subject.

I am especially grateful to two physicists in particular who set in
motion the trajectory of my eventual career while I was still in
high school: the late Jeff Chalk, who first introduced me to
Schrodinger’s equation and quantum mechanics; and Al Rosen-
berger, my first laboratory mentor, who launched my interest in
lasers, optics, and experimental physics.

This Field Guide is dedicated to Jeff and Al, and to the students
who have worked in my labs, sat through my courses, and made
my career as a mentor and educator profoundly fulfilling.

Brian P. Anderson
University of Arizona
June 2019
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Glossary of Symbols

Assorted symbols

B
&

8g
&n

Y76, ¢)

Magnetic field vector

A quantum-mechanical state space

g-Factor for an angular momentum </
Degree of degeneracy for a quantum state
with quantum number n

(i)i=+/—1; (ii) a discrete index

Probability current (scalar and vector). For
angular momentum symbols, see page 101.
(1) Mass of a particle; (i1) with subscript </, a
magnetic quantum number associated with
an angular momentum quantum number J
Probability

Time-dependent transition probability from
state |a) to state |b)

(1) Radial part of energy eigenfunction for a
central potential; (i1) hydrogen radial
wavefunction

Time

Spherical harmonic

Position and momentum coordinates

d"p
d'r
p

p

Px Dy, Pz
r

X, Y, <2

Differential volume element in n-dimensional
momentum space

Differential volume element in n-dimensional
position space

(i) 3D momentum vector: p = (p,, Py, D.);

(11) n-dimensional momentum vector

(1) Momentum variable in a 1D coordinate
system; (1) magnitude of n-dimensional
momentum vector p: p = |p|

Orthogonal momentum coordinates

(1) 3D position vector: r = (x,y, 2);

(i1) n-dimensional position vector

Magnitude of n-dimensional position vector r:
r=|r|

Orthogonal spatial coordinates




xiit

Glossary of Symbols

Greek letters

03

YJ

8jk
d(x)

(1) Phase-space displacement coordinate;

(i1) an eigenvalue of the harmonic oscillator
annihilation operator a; (iii) fine-structure
constant

Gyromagnetic ratio for an angular
momentum </

Kronecker delta for discrete indices j, k&
Dirac delta function over a continuous
variable x

Detuning, a difference of angular frequencies
(1) An arbitrary angle; (i1) the polar angle in a
spherical coordinate system

(1) Perturbation scale parameter; (ii) deBroglie
wavelength; (1i1) general scalar quantity, such
as an eigenvalue

Reduced mass: for masses m; and ms,

W= r;’ifr‘rf ; for [x, see page xvi

(i) Harmonic oscillator length: o; = \/7/(mw;);
(i1) a Pauli spin matrix; (ii1) for &, see page xvii
(1) An arbitrary angle; (i1) the azimuthal
angle in a spherical coordinate system (to be
distinguished from o)

(1) Within a ket, denotes a quantum state
vector; (1) a wavefunction of a continuous
parameter, such as ¢(x) (to be distinguished
from ¢)

(1) Within a ket, denotes a quantum state
vector; (i) a wavefunction of a continuous
parameter, such as {(x)

(1) Within a ket, denotes a time-dependent
quantum state vector; (i1) a time-dependent
wavefunction of a continuous parameter,
such as ¥(x,t)

An angular frequency

Larmor frequency: o7 = —vy|B|

Rabi frequency: Q = /A2 + |Qq|?

Bare or resonant Rabi frequency
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XiU

Glossary of Symbols

Acronyms

1D

2D

3D
AM
CG
CSCO
OAM
SI
SPT
TAM
TDPT
TP

One-dimensional

Two-dimensional

Three-dimensional

Angular momentum
Clebsch—Gordan (coefficient)
Complete set of commuting observables
Orbital angular momentum
International System of Units
Stationary perturbation theory
Total angular momentum (basis)
Time-dependent perturbation theory
Tensor product (basis)

Mathematical operations and symbols

(vl
F{---}
_7:71{...}
®

Norm of vector v: ||[v|| = Vv'v
Fourier transform

Inverse Fourier transform

Denotes a tensor product

3D vector differential operator (“del”). In
Cartesian coordinates:
V=3X2+y5+2g

Laplacian operator: V2=V -V

Real part of a complex scalar o
Imaginary part of a complex scalar o
Identity matrix

Sum over all values of discrete index &




XU

Glossary of Symbols

Quantum mechanics symbols

Ket vector (ket)

Bra vector (bra)

Scalar or inner product of the ordered pair of
Kets (o), [#))

The “hat” or caret (1) denotes an operator; (i1)
a directional unit vector when used over a
coordinate (in bold), as in x; (iii) A is used
throughout this Field Guide as an arbitrary
operator

The “dagger” superscript denotes the
Hermitian conjugate of operator A

The superscript denotes the inverse of
operator A R

A matrix element of operator A

Matrix element of operator A associated with
matrix row j and column %k in a discrete
representation .

An expectation value of operator A

Uncertainty or standard deviation of
operator A: AA= <A2> - (A)z
Commutator of operators A and B:
[A,Bj=AB-BA

Bloch vector: (&) = ((6y), (7,), (62))
Norm of ket [{s):[|[)]| = /(W)

A ket |[§s) expressed as a column vector in the
representation labeled by {v}

A bra (| expressed as a row vector in the
representation labeled by {v}

An operator A expressed as a matrix in the
representation labeled by {v}
Momentum-space wavefunction associated
(by Fourier transform) with position-space
wavefunction i(r)

| See page 101 for angular momentum quantum numbers.
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Glossary of Operators

H Hamiltonian
P= (P, P, P, Vector momentum operator
st, ﬁy, 132 Scalar momentum operators

R= (}2 , Y7 2) = (}%x, R RZ) Vector position operator

X , l}, Z or R, I%y, RZ Scalar position operators
Wor A\W A perturbation Hamiltonian
1) Magnetic dipole moment

Angular momentum (AM): Various vector, magnitude-
squared, and G-component AM operators

f‘, FZ, F u Total atomic AM
A, i2,f w Nuclear spin AM
J,J%,J, (i) Any generalized AM; (ii) sum of
o electron spin AM and orbital AM
L,L% L, Orbital AM
S,8% S, Spin AM
Harmonic oscillator: where je{x,y,z} and 0; = \/h/(mw;)
a; = % (* R + L(;{P ) Lowering operator
ol = % (;j R;—i% P;) Raising operator
N;=a & Number operator
Projectors
”54; = [P) (] Projector onto |)
q
= Z |vr) (Vg Projector onto the subspace &,

spanned by {|vp)}, ke{1,...,q}




xVil

Glossary of Operators

Unitary time evolution from ¢, to ¢

0t 1) = 4w
Ut tg) =€ Wt B ()

For time-independent H

If and only if [H(¢), H(')] = 0 for
arbitrary ¢ and ¢’

Other unitary operators

Pp>=>

() = e b, /1

-[r(p/) — eip’X'/h

ﬂ/j((x) = p¥ dl—a*d,

= ei(p,Xfxlpx>/h
= e T(p)S(x)
@u(e) — o~ i0J,/h

A

Oy

& = (6,.6,.62)

Identity operator

Spatial translation by x' in the x
direction

Translation by p’ of the x component
of momentum

Phase-space displacement (transla-
tion) in x-direction position and
momentum by « = % (* /o + iop'/h),

where 0 = \/f/(mo), ¢y = x'p'/(2h)

Rotation through angle 6 about a
unit vector a

Pauli spin operator associated with
the u direction

Vector of Pauli spin operators

Commutation relations

[R],pk} = Lh8]k
(6, &) = By

j’ke {x7y72}

Vector Operators

Pauli spin operators:

= ( vanyz) o= (a'xvé'yvé'z)
[y ,| = ife] . (6, 6,] = 2i6,
[y, oJ.] = ind, [6,,6.] = 2i6,
(.., = ind, (62,6, = 2i6,
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Quantum Mechanics Formalism 1

Quantum States, Kets, and State Space

The formalism of quantum mechanics involves symbols
and methods for denoting and determining the time-
dependent state of a physical system, and a mathematical
structure for evaluating the possible outcomes and associ-
ated probabilities of measurements that can be made on
the system. Here, “state” implies everything knowable
about the dynamical aspects of a system at a certain time.

In classical mechanics, the state at time ¢ of a particle of
mass m 1is given by the particle’s position r(f) and
momentum p(t), which are determined by initial conditions
and the laws of classical mechanics. Neither m nor ¢ are
state variables: m is assumed to be an immutable property
of the particle, and ¢ is a parameter used in specifying the
dynamics of state variables.

In quantum mechanics, the state of a physical system at
time ¢t is associated with a symbol such as | placed within
half-right-angled brackets: |§s). This symbol is called a ket
vector or a ket. A symbol within a ket may represent a
physical quantity. For instance, if E; is a possible energy of
a particle, then |E;) indicates that the particle is in a state
with an energy of precisely E,. Kets may contain multiple
symbols that represent multiple physical quantities.

A ket is the quantum mechanical symbol that encodes the
state of a system. The symbols within a ket explicitly
indicate or serve as an abstract placeholder for precisely
known information about the system.

The mathematical structure of quantum mechanics formal-
ism mirrors that of linear algebra (see pages 113-114) and
encapsulates rules regarding the manipulation of kets to
determine the time dependence of a system’s state and how
statistical information (such as measurement outcome
predictions) about a system may be determined from its
state. The state space & for a given physical system is the
set of all of the possible states in which it can exist. The
statement |§) e € indicates that |{s) encodes a state in which
the given system can exist.

uantum Mechanics



2 Quantum Mechanics Formalism

Elements of Dirac Notation

Dirac notation is a standard system of notation used in
quantum mechanics that efficiently keeps track of information
about states. Expressions given in Dirac notation can often be
replaced by expressions involving the elements and operations of
calculus or linear algebra. However, the system of Dirac notation
is compact, adaptable to any quantum mechanics problem, and
can be related to other mathematical and notational systems as
needed. Dirac notation involves four categories of elements: kets
(page 1), complex scalars, operators, and bras.

Operators: In this Field Guide, operators are denoted in Dirac
notation with a “hat” or caret placed over a letter or symbol, as
in X. Outside of Dirac notation, operators may be represented
by matrices, or by operations such as multiplication or
differentiation; in these cases the caret is not used in this Field
Guide. Most operators in this Field Guide are denoted with
capital letters, with a few exceptions (see the Glossary of
Operators, pages xvi—xvii). Formally, an operator is a quantity
that associates every ket in a given state space £ with the same
or another ket. For an arbitrary operator A and an arbitrary ket
[y € &, this association is denoted A|}) = [i'). Operators are
therefore said to “act to the right” on kets to produce new kets.

Many operators are associated with measurable physical
quantities. Most operators of mathematical utility that do not
correspond to physical quantities are written in this Field Guide
in a “hollow” typeface, such as U and P. All projection operators
and unitary operators (except the Pauli spin operators) are
written in this typeface throughout this Field Guide.

Bras: A bra or bra vector is a symbol placed within a half-
left-angled bracket, such as (¢|. A bra is a functional: it
associates a complex scalar with each ket in a given state
space, whereas operators associate a ket with another ket. A
bra placed immediately to the left of a ket creates a bra—ket
compound symbol such as (¢|{) that is equivalent to a complex
scalar. As with kets, the symbol(s) inside a bra designates
information about the properties of the bra. Operators may
“act to the left” on bras to produce new bras, as indicated by
the expression (¢|A = (¢/|.




Quantum Mechanics Formalism 3

Vector Spaces and Scalar Products

The state space & of an arbitrary quantum-mechanical system
has the properties of a vector space. The dimensionless
elements of £ symbolized by kets are called the state vectors
of £. The principle of superposition enables the mathemati-
cal construction of new elements of £ from other elements of &;
e.g., if |¢;) and |py) are elements of &, then

c1ler) +colpe) = @) e &

where ¢; and ¢, are complex scalars.

The scalar or inner product of two elements of £ is denoted
by a bra—ket pair. The scalar product associated with the
ordered pair (|¢), [¥)) is written with the second ket preceded
by a bra containing the symbol(s) within the first ket; i.e.,
(e[W). The bra (¢| is called the adjoint (or Hermitian
conjugate) of |¢), and symbolizes the concept that for every

ket, there is a corresponding bra. State vectors and their
scalar products have the following properties:

1. Scalar products are generally complex. Reversing the order
of the kets in the ordered pair (|¢),|{)) is equivalent to
complex conjugation. This property is written in bra—ket
notation as ({sle) = (¢fls)”

2. Anti-linearity in the 1% term: if |¢') = ¢1]¢@1) + cs|@s), then
(@/I) = €1 (@1d) + e (@al)

3. Linearity in the 2™ term: if [{/) = d;|U;) + ds|is5), then

(@[W) = di(@lU) + da(@lz)

4. Any ket [¢) that corresponds to a physically realizable
quantum state must be normalizable, meaning that the norm

1)1 = v/ (Wld)

is real, finite, and positive. |[{) is normalized if |||)|| = 1. If

W] # 1, then dividing ) by /(¥|{s) normalizes |{s).

5. If the scalar product of two normalizable state vectors is
zero, then the state vectors are said to be orthogonal.

uantum Mechanics



4 Quantum Mechanics Formalism

Linear Operators and Commutators

The formalism of quantum mechanics involves linear opera-
tors. Consider two operators A and B that act on elements
of an arbitrary state space £. Also suppose the following:

Q) [V), |@) €&; (i) Alb) = W) e&; (iii) Bib) = [W") e&; (iv) ¢; and
¢y are complex scalars. Linearity implies the following:

L A(er|0) + cale)) = AR + coAlg)
2. BA|y) = B(A[y)) = B|W)
3. AB|y) = A(B|p)) = A"

The outcomes of the sequential operations AB and BA
are generally different. When products of operators act on
a ket, a standard order of operations is used: the right-
most operator acts first on the ket, then the next operator
to the left acts on the new ket that is the outcome of the
first operator’s action, and so on.

A~

Commutators: The commutator of operators A and B is
denoted and defined as

[A, Bjl=AB-BA
Commutators have the following properties:
1. A commutator is itself an operator. If C = [A, B], then
Clb) =AB|y) — BAR) = AP") — B|Y)
2. If [A, B] = 0, then A and B commute: the order in which
they act on any ket does not matter, and A[y”) = B|l/).

3. If [A, B] # 0, then the order of operations of A and Bis non-
commutative: tAheA order of operations does matter. For
arbitrary ), if [A, B] # 0, then

ABl) # BAY)
4. A commutation relation for operatorsAAAand B identifies
the specific operator that is equivalent to [A, B], which may be

identical to zero, or to a scalar multiple of the identity operator [
(in which case [ is often omitted from the commutation relation).




Quantum Mechanics Formalism 5

Hermitian Conjugation

Hermitian conjugation involves symbolic manipulation of
mathematical expressions. Consider elements [{) and [¢) of a
state space &, and a bra (x| and operator A defined to “act on”
elements of £. Let A|) = |{/). Hermitian conjugation involves
the following concepts and rules:

1. Bra-ket correspondence: for every ket |§), there is a
corresponding bra (yi|. For every bra (x|, there is a correspond-
ing ket |x) that is not necessarily an element of £. [{s) and (5| are
Hermitian conjugates of one another, as are |x) and (x|.

2. The Hermitian conjugate, or adjoint, of A is denoted A'.
If A= AT then A is said to be Hermitian.

3. An operator can act “to the right” on a ket, or “to the left” on
a bra. The quantity (¢|Af}) is called a matrix element
of A and can be evaluated as (¢|A[l) = (¢|(A[l)) = (¢[V'), or
equivalently as (@|A[l) = ((¢|A)[}) = (¢'|}), where (¢'| is the

adjoint of |¢’) = A”cp) (see item 6 below).

4. A acting (to the left) on (€] = Ny (] + o (g is linear:
(EJA =N (YA + N (elA

where \; and \y are complex scalars.

5. Hermitian conjugation of operators and operator sequences
adheres to the following rules, where A, B, and the ket—bra
pairs |@)(¥| and |U)(¢p| are operators, and \ is a scalar:

~

(A" =4, (NA) =X AT
(o) (W)T = [W)(el, (AB)"=B'A’
A+B)=A"+B =B +A"= B+ A

6. To obtain the Hermitian conjugate of an expression, first
take the complex conjugates of all scalars, replace kets with
their corresponding bras, replace bras with their correspond-
ing kets, and replace operators with their adjoints; then
reverse the order of all elements, noting that scalars commute
with all elements. For example, the Hermitian conjugate of
the expression A[f) = A/ is (/[N = <111|AT.

uantum Mechanics



6 Quantum Mechanics Formalism

Bases

A basis for £ is a set of kets that are often (but not necessarily)
elements of £, and which can be used to construct any element
of £ via superposition. The elements of a basis may be
discretely or continuously indexed, depending on the basis.
For the arbitrary discrete basis {|v;)}, the index & numbers
the elements of the basis; e.g., {|E;),|E3),...} might be the
notation used for a basis where the labels indicate possible
energies of a particle in a potential well. For a continuous
basis {|wg)}, the subscript B is a continuously varying index,
such as real numbers that might correspond to positions along
a coordinate axis. The bases used in this Field Guide have the
following properties:

1. For every |{)) €€, there is one and only one way to expand
[5) as a superposition of the elements of any particular basis,
up to a global phase factor (page 36). The superposition is
written

[U) = chh}k) (for a discrete basis)
%

[¥) = dBc(B)|wg) (for a continuous basis)
all B

There is therefore one unique set of expansion coefficients
{cp} (discrete basis) or {c(B)} (continuous basis) for any state
vector’s expansion into any given basis, where ¢, = (v,|{) for
any k, and c¢(B) = (wg|y) for any B. The sets {|v)} and {|wg)}
are said to span the state space & if they are bases for £.

2. Every discrete basis used in this Field Guide is orthonor-
mal (all elements are normalized and mutually orthogonal).
This means that for a basis {|vg)}, (vj|vx) = 8z, where §j, is the
Kronecker delta (page 112).

3. The continuous basis {|wg)} is conventionally said to be
orthonormal if (wg |wg) = 8(B’ — B), where 3(B’ — B) is the Dirac
delta function (page 112). Although this condition is not
normalization in the strictest sense, the elements of a continuous
basis are not physically realizable quantum states and do not
belong to the state space &, despite forming a basis for £.
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Eigenvalue Equations

An eigenvalue equation for an arbitrary operator A is
similar to that of a matrix (page 114), and takes the form

Aley) = Nuloy)

where p is a discretely or continuously varying index. For a
given operator A, the equation is satisfied for a particular set of
kets {|¢,)}, where each ket |¢,) is associated with a scalar \,
(generally complex). The kets of the set {|¢,)} are the eigen-
kets or eigenstates of A. The scalars of the set {\,} are the
eigenvalues of A. The set {\,} is the eigenvalue spectrum of
A. Eigenvalue equations have the following characteristics:

1. The eigenkets are indexed, as indicated above by w. Often
the symbol that labels an eigenket is the associated eigenvalue
or the index. The eigenvalue equation above and the two helow
show three equivalent ways of labeling the eigenkets of A:

AN =N N,) and  Ap) =\, |w)

2. Quantum mechanics problems often involve finding the
eigenkets and the eigenvalues of operators. It is possible that
an operator does not have solutions to its eigenvalue equation.

3. Ifabasis for a state space £ has n orthonormal elements, then
£ 1s said to have a state-space dimension of n, to be
distinguished from a coordinate-space dimension. For any
Hermitian operator that acts on elements of an n-dimensional
state space &, a set of n distinct mutually orthonormal eigenkets
of that operator can be found; this set is a basis that spans £.

4. Degeneracy means that g, >1 different orthogonal
eigenkets of an operator are associated with the same
eigenvalue \,; g, is the degree of degeneracy. An additional
index may label these degenerate eigenkets; e.g., for a given
eigenvalue \,,

A|(\DL.> = )\M|('P:.L>’ ie{1,2, gp.}

The superscript i is omitted from \cpﬁ) ifg, = 1foragiven\,. If
g, > 1 for one or more values of \,, then various sets of
mutually orthogonal eigenkets can be specified. If no degener-
acies exist, then there is one unique set of orthonormal
eigenkets (up to global phase factors; see page 36).
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Projectors

A projector or projection operator onto [{s) is defined as
[P\b = ) (Y. Projectors are operators, as seen in the
following:

Py le) = (1) (W) [@) = ) (le) = M)

where N = (yi|¢) is a complex scalar, so that [ﬁ’d, produces a
new (and generally unnormalized) ket proportional to |s).

If the scalar product \ = ({j|¢) is non-zero, then |¢) and
[U) are said to overlap: (yi|¢) quantifies how much the
state |§y) and |¢) have in common (and thus “overlap”) in
terms of their expansions into the same basis. If the states
have non-zero overlap, then there are basis elements that
appear withAnonzero coefficients in the expansions of both
) and |@). Py|e) “projects |¢) onto [)” and can be thought
of as picking out the portion of |¢) that overlaps with [{). If
|¢) and |¥) have no overlap, then (y|¢) = 0, and [PMcp)

Projectors have the following properties:

1. Projectors have the property of idempotency, meaning

that ﬂsi = ﬂsw. Since Hsa, = [{) (Y|Y) (Y|, the idempotency
condition is only met if (y|s) = 1, so |§) must be properly
normalized for [{s) (| to be a projector onto |is).

2. If two kets |¢) and |§) are orthogonal (and therefore
have no overlap), then ({jj¢) =0 and the projectors onto
these states are also said to be orthogonal, implying that

Py = [U) (@) {¢| =

3. A sum of orthogonal projectors is a projector onto a sub-
space. Consider a discrete basis {|vy)} that spans a state
space &, where ke{l,..., ky.}. For q¢ < k., the sub-
space projector

Q

k=1

projects onto the subspace &, of £, where £, is spanned by

{lv1); lva), - s [vg) }-
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Closure Relations

Every basis is associated with a closure relation, which is
formally a projector onto the entire state space rather than
onto a subspace. Every ket in the state space remains
unchanged when acted upon by this projector. Consider an
arbitrary state space £. Let [ be the identity operator,
such that I|y) = |¢y) for any |U)e&. Closure relations are
expressed as follows:

Closure Relation (Discrete Basis)
For a discrete orthonormal basis {|vi)}, with ie{1,2,...g;}
and where g, is the degree of degeneracy for index k&, the
closure relation is

Closure Relation (Continuous Basis)

For a continuous non-degenerate orthonormal basis
{lwg)}, where B labels the (infinitely many) orthogonal
elements of the basis, the closure relation is

[ dplwg)wg =1
allB

Because a closure relation’s sum or integral is equivalent to
the identity operator, it can be inserted into an expression
immediately before a ket or after a bra, or next to an
operator (i.e., making a product with that operator),
without changing the meaning of the expression. In this
manner, closure relations aid in problem solving and
manipulation of expressions.

Formally, a closure relation is a mathematical statement
that a basis exists and is complete; i.e, there are neither
missing nor extraneous elements in the construction of the
basis. The expression of a closure relation can be given as a
definition of the symbols used to specify the elements of a
basis.
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Functions of Operators

A function of an operator can be defined by a Taylor
series expansion of the same function of a continuous
variable, with the operator replacing the variable. For a
variable x, a function F(x) has a Taylor series expansion
about x = a given by

Flx) = z‘x’:(xfa)” d"F(x)

! n
— nl dx

where b, is the coefficient of the n'-power term. Most
commonly, expansions are taken about a=0. The same
function of an operator A is constructed by replacing x with A:

F(A) = Z b,

For example, expanding e* aboutx Ogivese* =3 % On,x
so that A=14+A+LA" 1. =R LA". Note that
A° =1. The identity operator I is often omitted from
operator expansions when it is multiplied by a scalar
quantity (1 in this case).

Functions of operators are themselves operators. Consider
an operator A that has a non-degenerate discrete spectrum
{\} and eigenkets {|v;)}. Two special cases for simplifying
the actions of functions of operators are given below.

1. If |v,) is an eigenket of A with eigenvalue \, then |v;) is
an eigenket of F(A) with eigenvalue F ()\k) This statement
can be demonstrated by expanding F(A ) about 0:

A)vy) = Zb AMu) =" baNjlvr) = F(\e)[vg)
n=0

2. F (A) acting on an arbitrary ket |{s) can be calculated by
first expanding [{s) in the {|v})} basis: [§f) = ), where

¢, = (). F (A)NJ) is then evaluated using the closure

relation | = 37, |vg) (v as follows:

F(A)ly) = F(A)i|y) ZF )|ve) (vpl) = chmk E)




Postulates 11

Postulates of Quantum Mechanics

The postulates of quantum mechanics are the assump-
tions upon which the mathematics and interpretations of
quantum mechanics are based. There are six basic
postulates; three are expressed below, with the remaining
three on pages 12 and 13.

1. State postulate
The state of a system (or particle), denoted at a time ¢ as
|®(t)), is an element of a vector space consisting of all
physically realizable states of the system.

Postulate 1 implies the existence of a superposition
principle, and defined scalar products (page 3). The linear
vector space is called the system’s state space (or Hilbert
space). Every given physical system has an associated
state space.

2. Observable postulate
Every measurable, dynamical physical quantity corre-
sponds to a linear Hermitian operator, called an
observable.

An observable is defined to act on all elements of a specified
state space. The word “observable” may also refer to the
physical quantity with which the Hermitian operator is
associated.

3. Evolution postulate

As a quantum system evolves over time ¢, the correspond-
ing dynamics of the physical state are governed by the
Schrodinger equation

0 -
ih— [¥(t)) = H(®)¥(2))

where H (¢) is the observable associated with the total
energy of the system, and is called the Hamiltonian; H
may or may not depend on time.
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12 Postulates

Eigenvalue and Collapse Postulates

The remaining three postulates involve outcomes and
predictions of measurements. The specific outcome of any
single measurement in an actual experiment is generally
not predictable with certainty, even in principle. Measure-
ment predictions in quantum mechanics are inherently
statistical.

4. Eigenvalue postulate
The only possible results of a measurement of a physical
quantity are the eigenvalues of the Hermitian operator
associated with that quantity.

The eigenvalues of Hermitian operators are always real,
and only real quantities can be obtained in measurements.
If the eigenvalues of an operator form a discretely indexed
(rather than continuously varying) spectrum, the associ-
ated physical quantity is said to be quantized.

5. Collapse postulate

If a measurement is made on a system in state |¥(¢;)) at
time ¢;, then immediately after the measurement the
system 1s left in the eigenstate associated with the
measured eigenvalue of the corresponding observable.
The measurement is said to collapse the system into
that eigenstate. If the measured eigenvalue is degene-
rate, the system is left in a superposition of the associated
eigenstates.

Suppose that A s the observable for the quantity measured,
A, is the eigenvalue of A that is the measurement result, and
{[vi)} is the set of g, associated degenerate eigenkets, with ¢
a specific index, and i € {1,2,...,g,}. Immediately after the
measurement, the system is left in the normalized state

Pyl ®(to))
(P(20)|P[¥(20))

where [f:q projects onto the subspace £, spanned by {|vg>}.
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Probability Postulate

6. Probability postulate

If a measurement of a quantity corresponding to an
observable A is to be made on a system in the normalized
state |¥(t)), then the probability (discrete spectrum) or
probability density (continuous spectrum) of obtaining
the result N is the scalar product of |¥(¢)) with the
projection of |¥(¢)) onto the state space spanned by the
eigenstates corresponding to eigenvalue \ of A.

Consider an observable A with a discrete spectrum and
eigenvalue equation A|vk) \p[vb). Let N\, be one possible
measurement outcome (a specific elgenvalue of A), and {[viy}
the g, degenerate eigenstates associated with \,, where
ie{l1,2,...,8,}. The probability of obtaining A\, in a
measurement 1s

P(Ng) = (F(0)|Py(2) ZI vg|'¥(t)

where [Pq projects onto the subspace 5 (of the full state space)
spanned by the g, kets {|v})}. If g, = 1 for that value of ¢, then
\q 1s non-degenerate and the index (and summation over) i is
omitted. The probability of obtaining \, in a measurement of the

physical quantity associated with A is then
P(Ng) = (P(@)|Pg[P(2)) = [(vg|P(2))]* = lcg|?

where ¢, = (v,[¥(t)) is the |v,) term’s expansion coefficient
when [¥(¢)) is expanded into the {|vi)} basis.

If A has a continuous spectrum, where A\wB) = \g|wg) is the
eigenvalue equation and Py = |wy)(wy| is a projector onto
|wg), then the probability density of [¥(¢)) at g is

(W) [Py [(2)) = | wg [¥(2)) 2

For a probability density that is approximately constant over
the sufficiently narrow range \g to Ag' + d\, the probability
that the result will lie within this range is given by

dP(\g) = dN[(wg|[¥(1))[?
Note that /all)\B/dP()\B') = /au)\p,d)\‘(wB"‘P(t)Hz =
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Examples of Observables: ﬁ, X, and st

Hamiltonian: H is the conventional symbol for the Hamilto-
nian, the operator corresponding to the total energy of a given
system (postulate 3, page 11). Since energy is a dynamical,
measurable quantity, H is an observable and is Hermitian.
Consider a 1D potential well (such as a harmonic oscillator,
page 54) for which H has a non-degenerate discrete spectrum
and an eigenvalue equation expressed as

Hle,) = E,|e,)

where E, is a real eigenvalue with dimensional units of
energy, the index n varies discretely and each eigenket |¢,) is
associated with one specific eigenvalue E,. The full set of
eigenvalues {E,} is the energy spectrum of the system.
Since H is Hermitian, the set of eigenkets {|¢,)} is a basis for
£ (see page 7) called the energy eigenstate basis, which has
the orthonormality condition

<<Pj|<Pk> =9

Position and momentum operators: Consider a state
space &, that corresponds to a particle whose positions and
motion are constrained to the x axis. In &,, position and
momentum are measurable quantities. Let X and P denote
the associated position and momentum operators, which are
observables. Let the following eigenvalue equations deﬁne the
symbols for the eigenvalues and eigenkets of X and P,:

Xx) = xlx)
P.|p) = plp)

Note that the eigenvalues x and p (and X and px) are quantities
with dimensional units. In correspondence with the eigen-
value postulate (page 12), the eigenvalues denoted by x must
be all real numbers with dimensional units of position. The
eigenvalues p are all real numbers with dimensional units of
momentum. Since both x and p are continuously distributed
(any real value is allowed), the associated bases {|x)} and {|p)}
are continuous and have the orthonormality conditions

(xl’) =d(x —«') and (p|p) =3(p —p')
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Calculating Quantities in Quantum Mechanics

Calculations of expressions that are given in Dirac notation
often involve three steps: (1) expanding the elements of Dirac
notation into known bases; (i1) representing these elements
by vectors and matrices, or functions and continuous
operations (e.g., multiplication and differentiation); and
(111) performing the operations indicated. Step (i) involves
the use of closure relations to re-express kets, bras, and
operators, as indicated below for a discrete basis {|v;)} and
a continuous basis {|wg)}.

Quantity Discrete Basis (Sum Over All j, k)

i =2 |vg) (vl

W) =) | =3 [oa) (velb)

(ol = (ell | = (olvr)(val

A=TAT | =55 v (ujldlvs) (vl

Quantity Continuous Basis (Integrate Over All B, B)
i = [dB|wg) (wg|

W) =) | =/dBlwg){wp|¥)

(el = (ol =/ dB{e|wg){wg|

A=14A1 =/ [dBdB'|wg) (wg|Alwg ) (wg |

Manipulation of expressions in Dirac notation further
involves the use of the following relationships:

* Discrete-basis orthonormality: (vj|vi) = 8

+ Continuous-basis orthonormality: (wg|wg) = 3(B — B’)

* Scalars such as (vj|A|vk> and (wg|yy) commute with
operators, bras, and kets

* (elv) = (vkle)” and (glwg) = (wple)”

For cases in which multiple physical quantities define a
single basis element, a single index (such as k, above) may
serve as a compound index that represents multiple
quantities, including different degenerate states.
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Calculating Quantities Using a Discrete Basis

When a discrete basis is known, the relationships given in the
upper table on page 15 can be used to manipulate expressions
that involve elements of Dirac notation. Calculations may then
proceed by re-writing the discrete sums in terms of vectors and
matrices, and performing calculations according to the methods
of linear algebra. As an example, calculation of the quantity
(p|A|) is shown below using the arbitrary discrete basis {|vy)},
where k& may serve as a compound index. Assume the following
expansions for the kets |§) and |¢) into this basis:

) = Z|Uk (Url¥) = chh}k where c;, = (vg[)
Z|v vjle) = Zd lvj) where d; = (vj|¢)

By defining the matrix element A, = (v; |A|vk) and using the
expansions given above and the upper table on page 15, (¢|A|l)
1s expressed as

(@lAy) = ZZ
:szj“‘ﬂe Cr
ik

Making use of vector and matrix notation, and the standard
rules of vector and matrix multiplication that are implied by
the notation, the double-summation above is equivalent to

) (Vi)

~ All A12 e Cl
QA = [df d --]|An An ||

Kets and bras can be replaced by vectors of the
coefficients of expansion into a discrete basis, and
operators can be replaced by matrices of discretely
indexed elements in that basis. Calculations then proceed
by performing the implied vector and matrix multiplica-
tion, demonstrating the utility of working with a
discrete representation, defined on page 17.
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Discrete Representations

A representation is a specific basis selected to aid in the
expression of information about kets and bras, and the actions
of operators. In a discrete representation, a discrete basis is
selected. A ket is then represented by a column vector of
expansion coefficients for that basis, and the corresponding bra
is represented as the adjoint of that column vector (page 113).

The example given on page 16 illustrates the utility of a
discrete representation, and is expanded upon below. In the
example, the expansion of |§s) into the {|v,)} basis is given by

) = (opl) o) = chh}k

k

Let [)(,y denote the column vector of expansion coefficients:

1 (v1d)
W= | e | = | )

The vector [§), 1s not identical to the ket [{); a different
choice of basis will have a different set of expansion
coefficients for the same ket. The corresponding bra (| is
represented by

<'~L’|{U}E c; C; ...}=[<Ul|¢>* <U2|\j1>* }

The representation is named by the basis chosen; the example
above defines the “{|v;)} representation.” If the chosen basis
kets are eigenkets of some operator, then the operator or its
associated physical quantity may be used to name the
representation [e.g., the “X (or position) representation” on
page 19].

In a discrete representation, operators are represented by
matrices. In the example on page 16, A is represented by the
matrix Ay, of discretely indexed elements A, = (v;|A|vy):

All A12
A{U} = A21 A22

For the matrix element subscripts, the row index () is listed
first, followed by the column index (k).
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Transformation of Discrete Representation

In a discrete representation, a ket is represented by a
column vector of scalars that are the coefficients of the
expansion of the ket into a specified basis. To construct the
representation of the same ket by a column vector of coefficients
of expansion into a different basis, the initial column vector can
be acted upon by a transformation matrix M.

Let [{) 1,y and [),y denote the representations of [{s) obtained
by expanding [) into the {|z;)} and {|v;)} bases, respectively.
The bases span the same n-dimensional state space, so {|u;)}
and {|v;)} each have n elements. |{),, and [{),, are related
by

W) gy = M)y and  [) g,y = M),
where the elements of the square matrix M are given by

Mir = (ujlvr)
Matrices representing operators are also transformed using IM.
Let A, and Ay, be the matrices representing A in the {|u;)}
and {|v,)} bases, respectively. Then

A{u} = MA{U}MT and A{U} = MTA{LL}M

Example: Consider a 2D state space that is spanned by two
bases, {|u1), |us)} and {|vy), |v2)}, where

lvg) = \/—| up) + \/_|u2> lvg) = \/—| 1)~ \/—2—|u2>

Suppose that there is an operator A that is expressed as the
following matrix in the {|u;)} representation:

0 —i
A{u}:[i 0}

To express Ay, in the {|v)} representation, the matrix M is

1= vl = (k) ][ 20l

and

which is then used to calculate Ay,,:

wa=ie e ][ o lle el = 1o 2
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Continuous Representations: X, st

In a continuous representation, a ket is expressed as a
continuous superposition of the orthonormal kets of a
continuous basis. The expansion coefficients are continu-
ously indexed, and the ket is represented by this continuous
set of numbers, which is called a wavefunction (page 20).

Examples of continuous representations are the position and
momentum representations, defined on page 20 and based on
the closure relations below. In one spatial dimension, eigenkets
of the position and momentum operators X and P, define bases
{|x)} and {|p)} (page 14). In this notation, the general parameter
B previously used as a continuous index or eigenvalue (pages 9
and 15) is replaced by the eigenvalues x and p themselves, and
these eigenvalues are used to label the corresponding kets of the
bases, consistent with item 1 on page 7.

The bases {|x)} and {|p)} have the associated closure relations

/°° dula)(x| =1 and /°° dplp)(p| =1

Since x and p carry dimensional units of length and momen-
tum, respectively, dx and dp also carry those same dimensional
units. In order for the identity operator to be dimensionless,
each bra and ket in the expressions above may be thought of as
carrying the inverse-square-root of the dimensional units of the
associated eigenvalue. Since the SI dimensional units of dx are
meters ([m]), |x) and (x| may be considered as carrying the
dimensional units [m~?]. The dimensional units of |p) and (p|
may be considered to be [(kg-m/s)~"?]. However, while {|x)} and
{lp)} serve as bases, the elements of these bases are not
physically realizable states and these kets (and bras) are not
quantities with a physical dimension. Treating the elements of
{]x)} and {|p)} (and the associated bras) as having dimensional
units is a convenience that is consistent with (1) the construc-
tion of wavefunctions and the interpretation of the dimensional
units of wavefunctions (page 20); and (ii) scalar products
involving these kets, such as the quantities on pages 14 and 23,
noting that a Dirac delta function (page 112) carries dimen-
sional units that are the inverse of those of its argument.
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Continuous Representations: Wavefunctions

Let &, be the state space associated with 1D motion
along x. The position and momentum representations that
are used to describe a state vector |§) e &, are based on the
closure relations given on page 19 as follows:

hw=ﬁw>=[fdﬂwuw>=/fdxwmw>

wwﬂw=[z@m@w=/:mwmw

where yi(x) = (x|U) is the expansion coefficient associated
with the X eigenket %), and Js(p) = (p|) is the expansion

A

coefficient associated with the P, eigenket |p). In this
sense, the expansion coefficient corresponding to a specific
value of x or p is the continuous-representation equivalent
of one element of a column vector representing a ket in a
discrete representation (page 17). When {s(x) and {s(p) are
considered as functions over all possible values of x or p,
then these functions are the continuous-representation
equivalents of the entire column vector representing a
state in a discrete representation. These functions are
called wavefunctions and are defined as follows:

* The 1D position-space wavefunction {(x) is the
continuous distribution of expansion coefficients
obtained when expanding [}) into the basis of
position-operator (X) eigenkets {|x)}.

* The 1D momentum-space wavefunction J(p) is the
continuous distribution of expansion coefficients
obtained when expanding [}) into the basis of

A

momentum-operator (P,) eigenkets {|p)}.

The ST dimensional units of ys(x) are [m~"?], and those of

U(p) are [(kg-m/s) V7], consistent with the discussion of
dimensional units on page 19. In higher spatial dimen-
sions, the dimensional units of wavefunctions are similarly
determined by the closure relations involved. The char-
acteristics of physically realizable wavefunctions are given
on page 32.




Bases and Representations 21

Calculating Quantities Using a Continuous Basis

In a continuous representation, a bra is represented by the
complex conjugate of the wavefunction representing the
associated ket, and operators are represented by actions on
functions (e.g., multiplication and differentiation). Calcula-
tions involve replacing bras, kets, and operators with func-
tions and continuous operators, then performing the
operations. To illustrate these steps, let the state space &,
correspond to the states available to a particle with 1D motion
along x. The eigenkets {|x)} of the position operator X span &,
and define the position representation, also called here the “X
representation” since the associated basis is formed of the
eigenkets of X. Let yi(x) and ¢(x) be wavefunctions represent-
ing the state vectors [§s), |¢) e &,. Using the closure relation
i= [, dx|x)(x|, the scalar product (¢|}) is evaluated as

(ol) = {olil) = / " dx{elx) () = / " dx g (0)0(x)

This calculation shows that in the position representation, the
scalar product (¢[l) is calculated by integrating the product of
the associated functions ¢*(x) and y(x) over all space. This
integral is called an overlap integral since it evaluates the
overlap (¢|P). Similarly, the scalar product can be calculated
in the momentum representation (or the “f’x representation”):

(o) = /%,dp 3*(0)(p) (also see page 24).

In a continuous representation, operators are not represented
by matrices of discretely indexed elements. The term general-
ized matrix element refers to quantities that have the formal
bra—operator—ket structure of a matrix element but that
involve the elements of a continuous basis. For example, an
operator A that acts on elements of £, has generalized matrix
elements in the X representation given by A(x,x) = <x|A|x) for
any positions x, x'. Using the closure relation for the {|x)} basis
(twice, see page 15), the quantity (¢|A[) 1s evaluated as

(oldlp) = / ® dx / * i o) (xlAl) ()

=/ dx/ da @ () A (o, )P (o)
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Operators in the X Representation

The examples below illustrate the use of the X representation
in performing calculations involving the state space &, and
arbitrary state vectors [i),|p)e&,. These examples also
involve the 1D momentum operator P,. As stated on page
23, the momentum operator P, has the continuously indexed
generalized matrix elements

Py, ) = (P, J) = —ih o3 )

Example 1: The ket |§) defined by |§) = P [U) can be expanded
into the {|x)} basis by the following steps. First, using closure
relations, P can be written as P = [dxdx’ |x) (x|P |') (x| (see
pages 15 and 21), integrating over all space. Next,

=Py = [ dx [ avin P

:/ dx/ dx|x) Py (x, 2 ) ()

——zh/ dx |x) / dx'd(x — 2 )(x)

- /700 dx(—in%ix)) )

The last line above shows that [§) is a continuous superposi-
tion of elements of the {|x)} basis. The expansion coefficients
are given by —inh 0¢xx for all x so that [§) = P ) is a ket
represented by the position-space wavefunction

&x) = —ih%ﬁcx)

In the position representation, st is represented by the
differential operator —i# a%’ which acts on position-space
wavefunctions.

Example 2: The quantity <<p|ﬁx|¢>, which is the scalar product
(¢|&), is calculated as follows:

o (x)
ox

(Gl ) = —if / * dx g*(x)
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X and ﬁx Representations: Eigenkets and Operators

The multiplication and differentiation operations of X and
P, in the position and momentum representations are
given in the table below. To obtain the expressions, the
following generalized matrix elements are used, where
d(x — «’) is the Dirac delta function centered at position «/,
and 3(p —p’) is the Dirac delta function centered at
momentum p':

x| X|¥) =x8(x—x)  (x|PJx) = —iha—ia(x — )
IR = o0 —p) WD) = in -5~ )

Position and momentum representations of X and 13x and
their eigenkets |x') and |p’) are given below.

Quantity X Representation ﬁx Representation

)%' x ihy;

P, —ing p

') (x|’ = d(x — &) (pla’) = \/%ﬁefixjp/h

') (xlp) = 5 eir'/h (plp") =3(p —p')
Interpretation:

+ (p|a') Zﬁe‘ix'p/f‘ shows that an eigenket of Xisa
plane wave in the P, representation.

< (x[p)) =\/ﬁeixp'/” shows that an eigenket of P, is a
plane wave in the X representation.

* (x[«’) = 8(x — &) shows that an eigenket of X is a Dirac
delta function in the X representation.

* (p|p’) =3(p —p’) shows that an eigenket of P, is a
Dirac delta function in the P, representation.

Note that none of the functions above are normalizable or
physically realizable wavefunctions.
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X and P, Representations: Fourier Transforms

Transformations between discrete representations are
covered on page 18. Transformations between continuous
representations such as the X and P, representations are
also possible. The expressions on pages 19-23 can be used
to show that the wavefunctions U(x) and (p) are a
Fourier-transform pair. Using closure relations, this
relationship between {i(x) and Ui(p) is constructed as
follows:

U(p) = (plw) = (p|i[w)

= 6l [ asto ol 0)

- / ™ d(plx) (el

1 0 .
= \/2—W/ dxeflxp/h lll(x)

The last line above is a Fourier transform. The Fourier
and inverse Fourier transforms for 1D wavefunctions are
defined as follows, where F{yi(x)} denotes the Fourier
transform of {(x), and F '{{((p)} denotes the inverse
Fourier transform of {i(p).

Fourier Transforms for 1D Wavefunctions

o) = FRb(x)} = s [, dxe /()

() = FHIp)} = g [Zdp e/ U(p)

In three spatial dimensions with 3D position and momen-
tum vectors r and p, the transforms are as follows:

Fourier Transforms for 3D Wavefunctions
U(p) = F{U(r)} = (25) %2 /=, dPr e ™P/M ()
P(r) = FH{l(p)} = (527) "2 /= d*p €™ P/" Ui(p)
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Tensor Products: Merging State Spaces

&'=E&; ® & indicates that the state space &' is the tensor
product of independent state spaces £; and £, with proper-
ties described below. Consider the following assumptions:

* Let {|u;)} and {Jvy)} be bases for & and &,
respectively. No elements of £; or the basis {|u;)} are
elements of &, and no elements of &; or basis {|v;)}
are elements of &;.

« Let D; and D, be the state-space dimensions of &;
and &5. The state-space dimension is the number of
elements in a basis, which may be infinite.

* Let Al be any operator acting on elements of &;, but
not on elements of £,. Let Ay be any operator acting on
elements of £ but not on elements of &;.

- I, and Iy are identity operators for & and &,
respectively.

&' has the following properties:

* One basis for £’ is the tensor-product basis denoted
as {|u;)|vr)} or {|uj,vr)} or {|j,k)}. Thus the tensor
product basis consists of every possible pairing of one
element of {|u;)} with an element of {|v;)}. The basis
has D; - Dy elements.

* The dimension of & is D; - D,.

« AyAy|uj, vy) is interpreted as (A;|u;))(As|vy)).
. A1|uj, vy) 1s interpreted as (A1|uj>)(ﬁ2|vk)).

« Ay|u;,v) is interpreted as (I ]u;))(Ag|vg)).

Tensor products formalize the incorporation of additional
physical properties into a given system. An example involves
increasing the spatial dimension of a system: £, =£, ® £, ® £,
is the tensor-product state space corresponding to 3D
coordinate space (the state-space dimension of £, is infinite),
and &,, &,, and &, correspond to independent state spaces
of a particle with motion constrained to the x, y, and z
spatial dimensions, respectively. £, has a tensor-product
basis denoted as {|x)|y)|z)}, {|x,¥,2)}, or {|r)}, although
bases other than this tensor product basis also exist for &,.
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Operator Definitions and Operator Manipulation

Inverse: The inverse of an operator A 1s designated A
and is defined by the property AATT=ATTA=1.
Hermitian conjugate: The Hermitian conjugate or adjoint
of an operator Ais designated A", A is called Hermitian if

AT=A TtA" = —A, then A is called anti-Hermitian. In a
discrete representation defined by a basis {|v;)}, the matrix

representing A" is the complex conjugate of (all elements of)
the transpose of the matrix representing A:

Al = (A{Tv})*

Unitary operators: An operator Q is unitary if its inverse
equals its adjoint, Q_l = @T, so that

0= 08’ =i

Unitary transformations and common unitary operators
are discussed on pages 38 and 39.

Commutators of Hermitian operators: The commuta-
tor of two non- commutlng Hermitian operators is anti-

Herrnltlan If A and B are Hermitian operators, then
[A B] = —[A B]

Commutators involving functions of operators: For
any two operators A and B that each commute with their
commutator (i.e., A, A, B]] [B,]A, B]] = 0), the commuta-
tor of A and a function F' (B)

.~ dF(B)

The Baker-Campbell-Hausdorff (BCH) formula (or
Glauber formula) involves exponentials of two opera-
tors. The formula is expressed for arbitrary operators A
and B as follows:

eAeB = gA+B A B

and e4tB = eAeBe—%[A,B]
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Expectation Values

The expectation value of an operator A for a ket [b) is

A

denoted (A) and defined as

(A) = (W[ AJ)

An expectation value of an observable is a real scalar that
carries the dimensional units of the corresponding physical
quantity and corresponds to the mean outcome of a large
number of identical measurements of that physical quantity
made on identically prepared systems. An expectation value
does not necessarily correspond to a possible outcome of a
single measurement; i.e., (4) does not have to be an
eigenvalue of A, and despite the terminology it is not
generally interpreted as an “expected” outcome of a single
measurement.

Expectation values may be calculated and further inter-
preted as follows:

+ If for any discrete basis {|v)} the expansion of a state
) is given as ) =3, (W) |vi) = > cilvr), then

(A) =373 e (vilAlvy)
ik

If it is also the case that A|vk)=)\k|vk>, then
(A) = X2p lerl* .

In this latter case, the expectation value of Ais a
weighted sum of eigenvalues of A, where the weighting
for each eigenvalue is the probability (page 13) of
obtaining that particular eigenvalue in a measurement.

+ If, for any continuous basis {|wg)}, A has the
generalized matrix elements A(B,B') = (wg|A|wg),
and [{) is represented by s(B) = (wg|s), then

(4) = / i / " dp dp U (B)A(B. BV

If it is also the case that A|wﬁ>=8|w5), then
(A) = [=,dB B [W(B)*.
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Commutation Relations

Two operators A and B that are defined to act on elements
of a state space £ are said to commute if [A B] 0. This
commutation relation implies the following:

- A and B have a common set of eigenkets, which may be
discretely or continuously indexed.

« If there are degeneracies in the spectrum of A (or B),
then not every eigenket of A (or é) 1s necessarily also

an eigenket of B (or A). [A, B] = 0 indicates that only
particular superpositions of degenerate and orthogo-
nal eigenkets of one operator are also eigenkets of the
other operator. This property also holds for matrices
and can be illustrated using the following two
matrices, which commute with each other:

1 0 d 0 1

o 1] ™% {10
While any two-element column vector is an eigenvec-
tor of the first matrix (the identity matrix), only

1 L
V2 V2

are the (normalized) eigenvectors of the second matrix
(up to a global phase factor). These two column vectors
form the unique set of eigenvectors common to both
matrices.

- If [A B] = 0, the order of operation of A and Bon a ket
is irrelevant, since AB |y = BA|y). Physically, this
implies that the order of measurement also does not
matter if these operators correspond to observable
quantities. A measurement of both quantities in
sequence or simultaneously will leave the system in

the common eigenstate (or subspace) of A and B
associated with the two eigenvalues that are the
outcomes of the measurements. Observables for which
the measurement order plays no role in determining
the final state are said to be compatible.
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Non-Commuting Operators, Uncertainty Relations

For two operators A and B that act on elements of a state
space &, if [A,B] #0, then AB|}) # BA|}) for arbitrary
[&5) € €. Consequently, if A and B are observables, the
measurement order matters for the possibilities and
probabilities of measurement outcomes: measurement of
the quantity corresponding to A collapses the system into
an eigenstate of A, but subsequent measurement of the
quantity corresponding to B collapses the system into an

eigenstate of B. If the state resulting from this second
measurement is not also an eigenstate of A, then informa-

tion obtained in the first measurement (of A) is lost. The
observables are incompatible.

With incompatible observables there is a fundamental
limit on how well the corresponding physical quantities can
be simultaneously specified or predicted. This limit is
independent of measurement apparatus performance and
is expressed by the generalized uncertainty relation

A

(Ad)(AB) = J|{[4, B)|

where the standard deviation or uncertainty of an
operator @ for a given quantum state is defined as

. > A3
AQ =/ (Q") — (@)
The uncertainty indicates how precisely the associated

physical quantity can be predicted or specified about a
mean value for the state in question.

The Heisenberg uncertainty principle is obtained for
conjugate position and momentum operators R; and P;,
where j € {x,y,2}, for which [R;, P;| = iA, indicating the
fundamental quantum-mechanical limits of precision in
simultaneously specifying or predicting a particle’s
position and momentum:

(AR))(AP;) = h/2
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Complete Sets of Commuting Observables

A complete set of commuting observables (CSCO) for a
state space £ is a set of observables {A B,C,. ..} for which

All observables in the set are mutually compatible

All observables in the set share a single, unique set of
eigenstates. In the notation below, the ket |a, b,c,...) is
one element of this set and is labeled with a full set of
eigenvalues of the different observables such that

Ala,b,c,...) =dla,b,c,...)
B|a,b,c,...> =bla,b,c,...)
etc.

Discrete or continuous indices may be used to label the
full sets of eigenvalues of the operators.

While there may be degeneracy in a particular obser-
vable’s eigenvalue spectrum, any specified complete set
of eigenvalues corresponds to one and only one of the
mutual eigenstates of the CSCO, with no ambiguity.

Multiple CSCOs may be specified for a given state space

A CSCO may consist of a single observable if that
observable has no degeneracies in its eigenvalue
spectrum. For the 1D infinite square well (page 49)
and harmonic oscillator problems (page 54), {H 1, {X +
and {P } are each single-observable CSCOs.

A CSCO has no extra elements once the above
conditions are satisfied; additional compatible observa-
bles may exist, but they are not included in that CSCO

Identification of CSCOs is necessary in order to construct
physically meaningful bases for £. Identifying a CSCO is
experimentally helpful when determining how to make a
set of sequential measurements on an unknown initial
state such that the system is left in a final state with as
many knowable properties as possible completely deter-
mined by measurement. Knowing the CSCOs that are
available tells the experimenter the possible sets of
measurements that can be made to achieve this goal.
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CSCOs for Specific Problems

The table below lists CSCOs for specific problems; see the
specific problem for definitions of the observables given
(also see page xvi). Only the most experimentally relevant,
conventional, or common CSCOs are included in the table.
The specification (e.g., through measurement) of one
eigenvalue for each observable in a CSCO determines a
state vector that is a unique common eigenstate of the

CSCO.

Problem CSCO(s)

Particle subject to arbitrary 1D {X' 1, {ﬁx}
potential V(x)

Particle subject to arbitrary 3D {X’ , ?, A 1 {st, P, 132}
potential V(r)

Free particle, 1D (in x) (p. 48) {ﬁx}, {X}
1D infinite square well (p. 49) | {H}
1D harmonic oscillator (p. 54) {ﬁ }

2D harmonic oscillator in (x, y) { ﬁm H }

y
If isotropic, then also: {III L } (L.=XP,— YP,)
s Loz z y x
3D harmonic oscillator in { H_H ﬁz}
&2 0 8
If isotropic, then also: { H,12, I:Z}

An angular momentum j (p. 64) {:127 jz}

Two-level systems (p. 75) {6.}

If spin 1/2 (p. 68), then also: | {S,}

Two angular momenta, j; and {Jh J27J1Z7J22}

J2 (p 82) {J17J27 J }

“Spinless” hydrogen (p. 97) {H ,L 7L }

Hydrogen fine-structure prob- | (f 1% §* I, - S;},

lem (p. 102) (A, Lz S2 2 g }

Hydrogen hyperfine-structure { H 1.2 §27iz’ Am gZ’ AZ}7

problem (p. 104) {H 2 é2 232J.i }

) b ) r4l zJ)

(H,1°, 8 1* J* ¥° F,
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Properties of Wavefunctions

Let |¥(¢)) denote the dynamical state of a particle in an n-
dimensional (nD) coordinate space at time ¢. ¥(r,t) = (r|¥(¢))
is the nD position representation of |¥(¢)), where r is the
nD position vector. ¥(r, £) has dimensional units of [m~"?].
In the conventional interpretation of quantum theory, the
wavefunction ¥(r,¢) is also called a probability ampli-
tude and is used to determine the probability of finding the
particle near position r at time ¢ (see page 13).

The probability density at r is [¥(r,¢)|?, with dimensional
units of [m~"]. The probability (see page 13) of finding the
particle at time ¢ within a sufficiently small nD volume d"r
centered at r is

dP(r) = |(x|P())|2 d"r = [¥(r, ?)2 d'r

This shows the application of the probability postulate
(page 13) in a continuous representation using wavefunc-
tion notation. The normalization condition for ¥(r,?) is an
integrated probability distribution,

1 =/ d"r|¥(r,t)|?
all space

which is interpreted as indicating that “the particle must
be found somewhere in space.” Properties analogous to
those above also exist for momentum-space wavefunctions.

For ¥(r,¢) to be physically realizable and represent the
state of a particle at time ¢, it must have the following
characteristics:

* ¥(r,t)is defined and single-valued everywhere in space
* ¥(r,t) is continuous everywhere in space

* The spatial gradient of ¥(r,f) is continuous every-
where, except where the potential energy of the
particle goes to positive or negative infinity

* Y(r,t) is square-integrable, i.e., [, o ae@ TP (x, )
is finite, implying that |¥(r,t)| — O as rr| — o0
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Wave-Like Properties of Matter

The wavefunction for a particle of mass m characterizes the
particle’s wave-like properties. For a free particle (i.e.,
there are no external forces on the particle) with a precise
momentum of magnitude p, the deBroglie wavelength is
Nap = h/p.

The energy eigenstates of a particle in a 1D time-
independent potential well V(x) have wave-like character-
istics that may be graphically represented to gain under-
standing about a problem For a particle subject to the
Hamiltonian H = P + V(X ), with eigenstates and eigen-
values defined by the eigenvalue equation Hle,) = E,|¢,),
an energy eigenfunction ¢,(x) = (x|¢,) has the following
properties.

Energy: The local potential energy at any position x is
V(x), and the local kinetic energy is K(x) = E, — V(x).

Wavefunction curvature: The wavefunction curvature of
¢, (x) is defined as C,(x) = %cpn(x). The energy eigenvalue
equation implies that

2mK (x
Col) =~ 2R ¢
and that the local kinetic energy is K(x) = — %@ 1( 5 C,(x).

Classically allowed region: A classically allowed region
of a potential V(x) is a region in which K(x) > 0. For an
energy eigenfunction ¢,(x), C,(x) and ¢,(x) have opposite
signs for K(x) > 0, so that ¢,(x) is concave towards the
x axis and C, (x) changes sign when ¢, (x) crosses the x axis.

Classically forbidden region: A classically forbidden
region is one in which K(x) < 0. For an energy eigenfunc-
tion ¢,(x), C,(x) and ¢, (x) have the same sign if K(x) <0,
so that ¢,(x) curves away from and does not cross the
X axis.

Classical turning points separate the classically allowed
and forbidden regions. For ¢,(x), they occur at points x for
which V(x) = E,.
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Graphical Interpretation of the Schrodinger Equation

Qualitative graphical sketches of energy eigenfunctions in
the position representation can be made when the energy
eigenvalue equation is not readily solvable. In addition
to indicating wavefunction curvature and continuity
in classically allowed and classically forbidden regions
(page 33), the following characteristics can be graphically
illustrated:

1. A potential well is a region in the vicinity of a local or
global minimum of potential energy, and for which there
may be a finite or infinite number of discretely indexed
energy eigenstates. The shape of a potential well is often
sketched as an aid in building intuition about a problem
and about the shape of energy eigenfunctions.

2. Nodes of a wavefunction are locations where the
wavefunction magnitude is zero, so the probability density
at those locations is zero. The ground-state wavefunc-
tion solution of a 1D potential well is the energy
eigenfunction associated with the lowest energy eigen-
value, and has no nodes; i.e., the ground-state wavefunc-
tion does not cross the x axis. The first excited-state
wavefunction has one node and therefore crosses the axis
once. The n'* excited state has n nodes.

3. Parity. A 1D potential V(x) is symmetric about x = 0 if
V(—x) = V(x). For a 1D potential well V(x) that is
symmetric about x = 0, the ground-state wavefunction is
even, such that ¢gouna(—%) = @grouna(x). The first excited-
state wavefunction is odd, such that Qg (—%) = —@ppet (%).
As energy increases, the discretely indexed energy eigen-
functions are alternately even and odd.

4. In regions where there is less kinetic energy and greater
potential energy, a particle would be found to move more
slowly, leading to a higher probability density of finding
the particle in such a region. Because the wavefunction
amplitude determines the probability density, the wave-
function amplitude is therefore larger in classically allowed
regions with greater potential energy.
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Graphical Interpretation: Example

The upper illustration shows classically forbidden regions
(in gray) and classically allowed regions for an example
potential well and energy eigenfunction. In this example,
the harmonlc oscillator (page 54) potential well
V( ) = VO is plotted (green line, upper plot), where V
is an energy constant, and o is a length constant. The 9"
excited-state wavefunction ¢g(x) (arbitrary units in this
example) is shown in green in the lower plot; the associated
energy eigenvalue Eg is indicated in the upper plot. Black
dots in the lower plot indicate the 9 nodes of ¢g(x). In the
lower plot, note that the wavefunction curvature is always
towards the x axis in the classically allowed region, and
away from the x axis in the classically forbidden region.
Also note the larger wavefunction amplitude in classically
allowed regions of larger potential energy and smaller
kinetic energy.
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| I
| |
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away | I away
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Superpositions, Relative and Global Phases

Suppose that |[§s) and [§/) are normalized elements of the state
space &, and let {|v,)} be a discrete basis for £, such that

U) = culvg)
k
W) = e®|y) = Zel" = ¢luog)
k

where c), = ec;, and 0 is a real scalar. Here, 6 is a global phase;
it is global in the sense that ¢ multiplies every element in the
superposition of basis states used to construct |[{) in order to
define [{/). Global phase factors such as this can be neglected or
conveniently chosen when defining kets (such as the eigen-
states of an operator, or the elements of a basis) because there
are no measurable consequences of the global phase factor. The
expectation value of any observable is the same for both [{}) and
[U'), and no measurement can differentiate between the kets |i)
and |/). The kets |y) and [{/) are therefore two ways of writing
or encoding the same physical state.

A relative phase is the phase angle between two superposi-
tion coefficients in the expansion of |y) into the {|v,)} basis
and is physically significant. For any two non-zero superposi-
tion coefficients ¢; = [c;le’ and ¢;, = |c;|e'®*, the relative phase
between the components |v;) and |v;) is &g = by, — ¢;. In the
superposition ) = J-e(e “"1|v1> + ei®2|v,)), the term e is a
global phase factor, and ¢g; = ¢y — ¢; 1s the relative phase
between components |vy) and |v;).

In superpositions involving a continuous basis, relative phase
factors are expressed as continuous functions. If |[§) is an
element of the state space corresponding to 1D motion along x,
with the basis {|x)} defining the position representation, then
[¢) can be expanded as follows:

= [ " dx o) (i) = l " de())

The expansion coefficients are given by i(x) = [{s(x)[e ™
where the relative phases between the continuously distrib-
uted elements of the basis {|x)} are determined by ¢(x).
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Probability Currents

A particle of mass m that is associated with the wavefunction
W¥(r,t) has a probability current

n * *

= %Im[‘l‘*(V‘P)]

J(r,t) describes the rate of change—or flow—of probability
through regions in space and satisfies a continuity equation

%|‘P(r, D2 +V-d(x,0) =0

A 1D wavefunction can be written as ¥(x,t) = |¥(x, t)[e®(*1),
where the phase distribution &(x,t) is a real function. This
gives a probability current

J(0) = " m [xm, p 2 tq AL

which has dimensional units of [1/s]. Consider the wavefunction
W(x,t) = [W(x, )|/

where p’ is a scalar with units of momentum. For this case,
%% =p'/m =1, where V' is a scalar with units of velocity.
This example shows that the spatial gradient of the phase of the
wavefunction is associated with the velocity of probability flow.

For this example,
J(x,t) = V¥(x, 1)

A 3D wavefunction can be written as ¥(r,t) = |¥(r, t)[e™?.
By defining a velocity distribution for the flow of probability as

v(r,t) = %Vcb(r, ?)

the probability current can be written as the velocity distribution
v weighted by the probability density distribution:

J(x,t) = v(r,t)|¥(r,t)|?
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Unitary Transformations

Unitary transformations involve transforming kets, bras,
and operators by acting upon them or multiplying them with
unitary operators (see page 26). Consider an arbitrary unitary
operator Q and an arbitrary operator A both of which are
defined to act on all elements of a state space £ and the
elements of any basis that spans £ The following actions
define a unitary transformation.

* Unitary transformation of state vectors: For every
[U) € &, a unitary transformation is defined by [{/) = Q|{),
where [{/) is the transformed ket.

* Unitary transformation of operators: The transform
of A is defined by A' = QAQ".

Unitary transformations as defined above have the following
properties:

1. Scalar products and orthonormality are preserved when the
same unitary operation is applied to all elements and basis kets
of a state space. If |{/) = Q|¢) and |¢’) = Q|¢), then

(@) = (| Q Q) = (@[I|Y) = (@l

2. Due to property 1, a unitary transformation of all elements
of an orthonormal basis produces a new orthonormal basis.

3. If A has eigenvalues and eigenkets given by Alvy) = Ar.UR)s
then the elgenvalues of A’ are the same as those of A The
eigenkets of A are the transforms of those of A If a
transformed eigenket of A is defined as |v),) = Qlvg), then

A

Al = (QAQ"QIvr) = QA |vg) = Qi) = Nilvf)

Any unitary operator Q can be written as Q = ¢4, where
A is some Hermitian operator. Also, for any Hermitian
operator A, the operator e is unitary; e.g., for a time-
independent Hamiltonian H the unitary time evolution
operator (page 39) is U(¢, ty) = e i(t-t)H/n




Time Dependence, Transformations, “Pictures” 39

Common Unitary Operators

The time evolution operator U(t, £y) evolves a state vector
from time £, to time ¢ under a specified Hamiltonian H (t):

U(t, to)[¥ (ko)) = ¥ (1))
- For time-independent H: U(t, t,) = e #(t-t)H
« If [H(¢,),H(ty)] = 0 for arbitrary times ¢; and ¢, then
01, 1) = & Fa HD
- Otherwise, for small enough 8t so that H (t') ~ H (t' + dt)

for times ¢ty <t <t, with ¢t =ty + N8t for some integer
N>0:

N-1 .
U(t, o) ~ H exp {—%&H(to + nBt)}
n=0

The product is constructed with n =0ton = N — 1 terms
ordered from right to left.

Position and momentum translation operators Sand T
enable unitary operations that correspond to position and
momentum translations of a system, or of a ket’s position or
momentum expectation values. These operators and their
basic properties are defined below for the x-direction position
and momentum operators X and P, and translations x’ and p’.

x' Position Translation p' Momentum Translation
() = e P/ T(p/) = ePX/n

S(@)|x) = | + ) T®)lp) = Ip +p')

AS() = (x — /| Pl = (p-p|

§'(@)X S(x) = X + TP I(@) =P+ 1/
§'(@)X*S() = (X + ) T'(p)PLIw) = (P +p)*

Example: For [i/)=S(x)[l), the mean position of the
wavefunction {/(x) = (x[{) (i.e., the position expectation
value ({/|X[{')) is larger than that of {s(x) = (x|y) by x’:

WX = (WIS (o)X S ) = Wl(X + ) ) = (W|X ) +
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Conservative Systems

A conservative system is one for which the Hamiltonian
does not depend on time. The mean energy for such a system
is constant in time; it is conserved. To illustrate this concept,
consider a particle of mass m in one spatial dimension (x)
within a time-independent potential well V(x), and a
corresponding time-independent Hamiltonian H with no
degeneracies in its eigenvalue spectrum. Solving the energy
eigenvalue equation

Hle,) = E,|¢,)

often called the time-independent Schrodinger equation,
permits the construction of a basis {|¢,)} composed of energy
eigenstates.

Any initial arbitrary state of the system at time #, can be
expanded as a superposition of the energy eigenstates:

)= calen)

where the coefficients ¢, are time-independent complex scalars
that satisfy 3, |c,/? =1 in order for |¥(¢y)) to be properly
normalized.

After evolving to time ¢, the system is in the state
() = 00 0)¥0) = S e K- g
=S et
n

where ED(t7 tp) is the time evolution operator (page 39).
Property 1 on page 10 was used to produce the last line above.

The energy expectation value for |¥(¢)) is

= e PE,

which shows that the mean energy of a conservative system is
constant in time, an expression of the conservation of
energy within quantum mechanics.
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Stationary States

For a conservative system that at some initial time £, is in an
energy eigenstate |¢,) associated with eigenvalue E,, time
evolution only introduces a time-dependent global phase
factor. Consider a state vector at time ¢y =0 given by
[¥(0)) = |¢,). At a later time ¢, the state vector is

W(8)) = U(t, 0)[#(t0)) = e ],

where ¢, (¢) = E,t/h, and U(t,0) is the time evolution operator
(page 39). For this state vector, the only time-dependent factor
is the global phase ¢, (¢), implying that the expectation values
of any observable are constant in time, as are the probabilities
of measurement outcomes. The energy eigenstates of a
conservative system are therefore called stationary states.

If |¥(t)) = e (]|p,) can be represented by the wavefunction
Y(r,t) = e g, (r), where ¢,(r) = (r|p,) is an energy eigen-
function, then [¥(r,?)|? = |@,(r)|?> is the probability density
and is independent of time.

If |¥(t)) is a superposition of different energy eigenstates, each
component of the superposition has a phase factor that evolves
in time at a rate that depends on that component’s energy
eigenvalue. In such a superposition, relative phase factors
evolve in time, leading to system dynamics: time-dependent
changes in the properties of the system.

Example: Consider a superposition of two non-degenerate
energy eigenstates |¢;) and |ps). At time ¢ = 0, the superposi-
tion has the wavefunction ¥(r,0) =%[cp1(r) + @o(r)]. At a
later time ¢, the wavefunction and probability density are

1 . .
Y(r,t) = —=le Eit/ig (r) 4+ e 2t/ gy (1))
V2
g _ 1 9 1 2 L iE—E)n -
|P(r, ) :§|<P1(T)| +§|<P2(T)| +§e 275, (1) @y (1)

1 . *
+ 9 e iE= BNt (1) gy (1)

Since |¥(r,)|?> depends on time, this superposition of energy
eigenstates is not a stationary state.
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Time-Dependent Reference Frames

The state of a system can be evaluated in various reference
frames that evolve in time, such as rotating frames or frames
moving at a constant velocity relative to one another. Let
|¥(t)) be the evolving state vector of a system in a given
reference frame, where |¥(¢y)) is the initial state vector at
time to. |W(t)) satisfies the Schrodinger equation

0 .
ih— [¥() = H@¥(t))

To reformulate the problem for a second reference frame that
may evolve in time relative to the initial one, assume the
existence of a time-dependent unitary transformation operator

F(¢) defined such that

Wa(t) = F(6)¥ (1))

|Pz(t)) is the transformed state vector (see page 38), also
called the effective state that characterizes the state vector
in the second frame. The two frames are assumed to coincide
at to such that [(ty) = . In the second frame [¥g(¢)) obeys an
effective Schrodinger equation that is obtained by insert-
ing |¥(t)) = F'(£)|Wg(t)) into the Schrédinger equation of the
initial frame. The effective Schréodinger equation and the
effective Hamiltonian for the second frame are

in & Ws(0)) = Hy(0)5(0)

Ay (1) = FOHOF (1) - i () SF ()

Frame transformations are generally used to simplify calcula-
tions and the time dependence of the Schrédinger equation.

Although [PA_() 1s un1tAary, H gz 1s not the transformed
Hamiltonian F()H (t)F' () that results from a unitary
transformation under [(¢), as defined on page 38. The
effective Hamiltonian Hy equals F(£)H(t)F'(z) plus an
additional term whose form is an outcome of the
structure of the Schrodinger equation.
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Schrodinger, Heisenberg, and Interaction Pictures

The terms Schrodinger picture, Heisenberg picture,
and interaction picture are given to three particular
frames of reference. The pictures are distinguished from
one another by the specific time-dependent unitary
transformations involved in defining the different refer-
ence frames.

In the Schrodinger picture, state vectors evolve in time
under the action of the Hamiltonian according to the
Schrédinger equation and postulate 3 on page 11. If a time
evolution operator U(¢,fy) and an initial state vector
|Ps(tg)) are known for a given system, then the state
vector dynamics in the Schrédinger picture are found via
[Ws(t)) = U(t, ty)Ps(to)). The state vectors are labeled with
the subscript S here to identify that the state vectors
correspond to the Schrodinger picture. Also in the
Schrodinger picture, position and momentum operators
have no time dependence. If not explicitly stated otherwise,
the state vectors and operators of this Field Guide are
given in the Schrodinger picture. The Schrodinger picture
is the frame of reference on which the transformations to
the other two pictures are based.

The Heisenberg picture (page 45) is defined by a unitary
transformation operator [ (¢) = U° (t,ty) (see page 42) that is
the adjoint of the time evolution operator of the Schrédin-
ger picture. When this unitary transformation is applied to
a Schrodinger- plcture state vector |Pg(¢)), time dependence
vanishes: |Wg)=U"(¢,1)|Ws(t)) = |¥s(to)), where [Wy) is
the transformed ket of the Heisenberg picture. The
Heisenberg picture is therefore the specific time-dependent
reference frame in which the transformed state vectors are
constant in time, while operators (such as the position and
momentum operators) that have no time dependence in the
Schrédinger picture may depend on time in the Heisenberg
picture.

The interaction picture (page 46) is used when the
Schrodinger-picture Hamiltonian is time dependent. In this
picture, operators and state vectors generally evolve in time.
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Schrodinger Picture: Expectation Value Dynamics

Position and momentum operators have no explicit time
dependence in the Schrodinger picture. Nevertheless, other
operators that do have explicit time dependence can be
constructed. Let Ag(f) be an arbitrary operator in the
Schrodinger picture that may have explicit time dependence.

For a given Schrédinger-picture state vector [¥g(¢)) evolving
under a Hamiltonian H 5(t), the expectation value of Ag () will
generally have time dependence that results from both the
time dependence of [Wg(f)) and any time dependence in Ag(t).
This time-dependent expectation value may be calculated as

(As(8))(8) = (¥s(t)|As(t)|¥s (L)

Differentiating the equation above with respect to time produces
the following differential equation for the dynamics of expecta-
tion values in the Schrodinger picture, noting that AS, H s and
the expectation values are generally time dependent.

Schrodinger-picture expectation values:

s = (s 1) + (%)

Ehrenfest’s equations (or Ehrenfest’s theorem) are obtained
by replacing As(t) in the equation above with the position
operator R-= (X , ﬁ Z), and also with the momentum operator
P = (P,,P, P,). Noting that 22 = 0 and 2 =0, and that the
expectation value of the gradlent of the potential energy
operator V(R) is (VV(R)) (<a‘;§(R)>, <a‘;(§)>, <a{;(2ﬂ)>)’ the
pair of Ehrenfest’s equations can be solved to determine how
expectation values of position and momentum evolve for any
state of a system.

Ehrenfest’s equations (Ehrenfest’s theorem):
1

d - .
E<R>:E<P>

d - .
& (B) = —~(VV(R)
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Heisenberg Picture: Operators and Dynamics

The adjoint @T(t, typ) of the time evolution operator @(t, to)
defines a unitary transformation that transforms state vectors of
the Schrodinger picture into time-independent state vectors
within the Heisenberg picture. An arbitrary operator Ag(t) in
the Schrodinger picture is transformed into the Heisenberg
operator

Ay (t) = U (t, 1) As(0)U(2, 1)

The expectation value of an observable is a physically meaning-
ful quantity and must be the same in any picture, since
transforming between pictures is only of mathematical utility
for performing calculations. As shown below, the time-dependent
expectation value of Ag(¢) calculated in the Heisenberg picture

is equivalent to that of Ag(t). In the table, Hg and |Wg(t)) are the
Schrodinger-picture Hamiltonian and state vector.

Heisenberg Picture Quantities and Dynamics

) = 0" (2, 10) s (2 ) = [¥s(to)
AH(t) =0, to)As( YU, t)

H H =H s, for time-independent H g
Hy(t) = Hg(t), for [Hg(t), Hs(t')] = 0
AN =(PylAg®)|¥y)

=(Ws(to)| U7 (¢, t0)As (£) (2, to) ¥ (to))
=(Ps(t )|As( s (t)) = (As(0)(2)
th&Ap(t) = [Ap(t), Hu(1)]

+inli(t, to)(%As(t))uJ(t, t0)

The effective Hamiltonian of the Heisenberg picture is
H g =0, which is not identical to the transformed
Hamiltonian H u(t) (see page 42). Since H £ =0 in the
Heisenberg picture, the effective Schrodinger equation
ih 2 |¥y) = 0 is solved by |Wg) = [¥s(t)). In the Heisen-
berg picture, only operators evolve in time, satisfying the
differential equation in the last line of the table above.
These operators are then used with |¥) in calculations
of physically meaningful quantities.
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Interaction Picture

The interaction picture is obtained with a unitary transfor-
mation of the state vectors and operators of the Schrodinger
picture. This transformation removes some of the time
dependence of the Schrodinger-picture state vectors, while also
altering the time dependence of operators. The interaction
picture 1s typically used with a time-dependent Schrédinger-

picture Hamiltonian Hg(¢ s(t) = Ho + W(t), where the eigenstates
of the time-independent term H. o are known, and W( ) is a time-
dependent perturbation. W(t) can induce time-dependent
dynamics and transitions between the eigenstates of H,,
which are not stationary states of the system. These
dynamics are often of primary interest when the interaction
picture is used.

To transform into the interaction picture, an evolution
operator Ug(t, ) = e~ i(l~10)Ho ig agsociated with H,. Note that
Up 1s not the time evolution operator associated with Hg(t). If

|Ws(t)) is a state vector and Ag(¢) is an arbitrary operator, both
specified in the Schrodinger picture, then the transformed
state vector and arbitrary operator expressed in the interac-
tion picture are

¥1(2)) = Ug (2, 20) [ ¥s ()

A

Ar(t) = Uj(t, to)As (1) Uo (2, o)

The effective Schrodinger equation in the interaction picture is
0 .
= 1¥1(t)) = Hy(t)¥1(2)
where H £(2) is an effective Hamiltonian given by

Hiy(t) = Uj(t, to) W () Up(t, 1)

and is not identical to the transformed Hamiltonian

H(t) = Ul (t,t0)Hg(t)Up(t, o) (see the boxes at the bottom of
pages 42 and 45). In the interaction picture, calculation of state

vector dynamics that are due entirely to W(t) are emphasized,
since the dynamics due to H, are removed in the transfor-
mation. If W(t) =0, then the interaction picture reduces to

the Heisenberg picture; in that -case, H g(t)=0 and
¥ (2)) = [¥s(to))-
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Exactly Solvable Problems in One Dimension

There are a few common exactly solvable problems
consisting of a particle of mass m in a 1D time-independent
potential well V(x). A “problem” in this context means the
identification of a specific state space and a Hamiltonian.
A “solution” usually involves determining the energy eigen-
values and energy eigenstates, the relationships between
these quantities, and the expression of energy eigenstates in
representations that are meaningful for the given problem.
Exactly solvable problems are ones for which solutions can
be found analytically and without approximation methods.

For each of the exactly solvable 1D problems described on
the following pages, the Hamiltonian has the form

. 1 a9 .
H=—P,+V(X
B+ V(X)
In the 1D position representation, H takes the form

h? 9

Hy =552

V(x)

If a constant energy term is added to H , all energy
eigenvalues will be shifted by that amount. However, the
physical dynamics of the system depend only on differences
between energy eigenvalues, so the dynamics remain
unchanged. Energy is therefore measured and specified
with respect to some implicit or specified reference value
for every problem.

The examples on the following pages utilize the position
representation. The problems and solutions include
* The potential V(x), which defines the problem

* The energy eigenvalue equation, which defines the
notation used to specify energy eigenvalues, quantum
numbers, and the energy eigenkets and eigenfunctions

+ Solutions to the energy eigenvalue equation

+ Explanatory or illustrative notes, plots, and special
features about the specific problem
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Free Particle and Delta Function Potential Well

Free particle:

V(x)=0
Hy oy (x) = Epy @p(x)

/2 ko -m
Ep'=%; {p’eRIp’:{gS ”

1 .
(x) = elxp//h
cPp( ) ST

Solutions:

The functions ¢, (x) are plane waves, each indexed by a
precise particle momentum p’. These solutions are non-
degenerate eigenkets of the momentum operator, expressed
in the position representation; they are non-normalizable and
are not physically realizable wavefunctions. In the momentum
representation, ¢, (x) transforms (page 24) into a Dirac delta

function ¢, (p) =3(p — p’).

For any p’#0, ¢y(x) and ¢_,(x) have the same energy
eigenvalue E,, so that for scalars c, and c_, the superposition

U(x) = crp(x) + c_p_p(x)
is also an energy eigenfunction with eigenvalue E,.

Dirac delta function potential well:

V(x) = —ad(x); {aeRt|a:[J - m]|}
H{x} ‘Pa(x) = EOL ('Pot(x)

Solutions:

_ 777,0(2

T

eu(x) = \/mat/n? el

¢4 (x) is the wavefunction for the ground state, which is also
the system’s only bound state (i.e., localized about x = 0).
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Infinite Square Well

Infinite square well:

V(x):{o O<x<L

co otherwise

H{x} ‘Pn(x) = En ‘Pn(x)

Solutions:
w2h2n?
" gmrrt N
2/Lsin(nmx/L) 0 <x <L
e
0 otherwise

V(x) and the energy eigenvalues, eigenfunctions (in units of
L), and probability density distributions (in units of
LY for the first three energy eigenstates are illustrated
below. Shading indicates classically forbidden regions.

Vi ©f Es 1 Vi o Es —
Ey + | Es . Ey L | Ez2 .
,,,,,,,, Eq . E;
0 L 0 [

0.5 0 0.5 1 1.5 -0.5 0 0.5 1 1.5
x/L x/L
7T T\ T
loi(@)?, L | I

\ \
0 I
TN N
lp2(2)4] | .
\ \

L
0 0.5 1 1.5

0.5 . -0.
x/L x/L
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Potential Barrier: Transmission and Reflection

In this problem, a free particle traveling in the +x direction with
total kinetic energy E (and no potential energy) encounters a
region 0 < x < L in which there is a sudden change in potential
energy of V. For V| > 0, this region is a localized barrier, and
for Vj <0, it is a localized potential well. The particle has a
probability R of being reflected by the barrier or well, and a
probability 7" of transmission beyond the region. The position
representation is used to analyze this problem. The potential
barrier is illustrated below in gray for V, > 0.

pikz /\/\/\/\, Vo
H NN Lt
“N\N\NS
0 L

re—ikx
X
~ - ~ -
region A region B region C
Using the definitions k= %”—ZE and %' = %, the

components of the (non-normalizable) wavefunctions in
regions A and C are illustrated above in green; these
wavefunctions have the functional forms

le(x) = plhx + re—tha
Ye(x) = tek

where r and t are reflection and transmission amplitudes. The
wavefunction in region B is initially written as

B.e** 4+ B_e ** forE >V,

Yp(x) = ¢ By + Box forE =V,
B.e¥*+B_e** forE <V,

The equations are solved for 7' = [t|> and R=1-T = |r|? by
applying the criteria for physically realizable wavefunctions
(page 32) at the boundaries of the barrier:

P4(0) = Up(0) Up(L) = (L)
(Z94)(0) = (£¥5)(0) (£¥p)(L) = (Zbc)(L)
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Potential Barrier: Energy above Barrier

Solutions to the potential barrier problem on page 50 are
given below for £ > V| (above-barrier transmission) and
on page 52 for the cases £ = Vjand E < V|, (tunneling). The
solutions involve a dimensionless real parameter defined as

k2 _ B2

2kE
Transmission amplitude ¢ and reflection amplitude r are given
in terms of a parameter D, defined separately for each case.
Transmission probability 7'is given; in all cases, R = 1 — T. The
wavefunction {i(x) in the region of the barrier is also given.

K

Case 1: E > V. The solution to this case holds for both V; > 0
(potential barrier) and V; < 0 (potential well):

t= le‘ikL

r=— %K sin(k'L)

D = cos(kK'L) — iV 1+ k®sin(k'L)

T =[1+ «?sin?(F'L)|~!
2

-1
w2 V2 E—-V
1 0 sinc? -0
+4E€1 sinc <Tr o >1

k .
Up(x) = (1+r)cos(kx) + LE( — 1) sin(k'x)
= (1 + r) cos(R'x) + ikx(1 — r) sinc(k'x)
The energy ¢; = 2 is the ground-state energy of an infinite

square well of Wldth L (page 49). The second expression for 7'
shows that when the kinetic energy E — V| in the barrier
region equals the energy of the n'" excited state of an infinite
square well of width L (e, = n’¢,), there is a resonance that
gives a transmission probability of 1. This resonance is due to
constructive interference of the wave in the barrier region,
similar to resonant transmission of a monochromatic laser
beam through a Fabry-Perot resonator. Note that if
k' =0, Yp(x) matches the solution for the £ = V, case (page 52).
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Potential Barrier: Tunneling

Case 2: 0 < E < V,. For this case, the potential barrier
problem has the following solution:

1
D
V14«2
——
D = cosh(F'L) — ik sinh(k'L)
T =[1+ (1+«2)sinh?(k¥'L)]~!

t = — o ikL

=

sinh(k'L)

Yp(x) = (1 + r)cosh(F'x) + i% (1 —r)sinh(F'x)

The results above show that there is a non-zero probability
of transmission through the barrier when the kinetic
energy of the particle is formally negative, a condition that
is forbidden in classical mechanics. For this case, trans-
mission through the barrier is called tunneling. Tunnel-
ing of material particles is due to the wave nature of
matter, and is a phenomenon similar to the evanescent
coupling of light between closely spaced materials.

Case 3: E =V, For this case, the potential barrier
problem has the following solution:

1 .
t=— —ikL
De
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Potential Barrier: Examples

Above-barrier transmission and reflection, and below-barrier
tunneling, are graphically illustrated below, corresponding to
cases 1 and 2, respectively, from pages 51 and 52. In the
examples, a plane wave is incident on a potential barrier from
the left and undergoes partial reflection from the barrier and
partial transmission through the barrier. The first plot shows a
barrier of width L and height Vi = #%/(2mL?) (solid line), a
dotted line representing an incident plane-wave energy above
that of the barrier height (E; = 1.3V,), and a dashed line
representing an incident plane-wave energy below that of the
barrier height (E5 = 0.7V). For a single instant in time ¢ = 0,
the second plot shows the real (solid line) and imaginary (dot-
dashed line) parts of ¥;(x, 0) (the wave of energy E;), and the
third plot shows the probability density |[¥;(x,0)[> with a
transmission probability 7' ~ 0.85. The fourth and fifth plots
are the same as plots two and three but for incident plane-wave
energy E,, with a transmission probability 7" ~ 0.72.

15 T T
1.0+
V(x)/Vy 05l
0
-20
1 \
Wi(x,0)  of
-
3 T T T T
S AVAVAVAYAVAYAY) ]
0 . | . .
_20 -
A N4 N4 N ‘s
3 - - - -
N AVAVAVAVAYA *
0 . { . .
-2 -
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1D Quantum Harmonic Oscillator

1D harmonic oscillator:

1 1 2
V(x) = 3 mo?x? = 2 ho (g)

H{x} ¢n(x) = E, @,(x)
Definitions:

® oscillator frequency [%1]
o= \/% oscillator length [m)]

Solutions:
E,=nho(n+1/2) {neN°}
12
®o(x) = (# e ground state
@n (%) = 7= 9o (X) M, (ﬁ) n't excited state

The orthonormal set of energy eigenfunctions {¢,(x)} are
the Hermite-Gaussian functions. H,(§) is the Hermite
polynomial of order n.

Hermite Polynomials up to n =9

H0§=1
H,(€) = 28
H2§=4§2—2

Hy(§) = 168+ — 4882 + 12
Hs(&
He(£) = 64£8 — 480&* 4 720¢2 — 120
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Harmonic Oscillator: Energy Eigenfunctions

The plots below (green lines) show the normalized harmonic
oscillator (page 54) energy eigenfunctions ¢, (x) (left column, in
units of o7/2) for n=0 through n=3 and the associated
probability density distributions |¢,(x)|? (right column, in units
of 0~ 1). The curves shown below are for the potential energy
V(x)/Ey (solid-line curve in top-row plots). Vertical dashed
lines indicate the classical turning points at +ov2n + 1 for
each state. Horizontal dashed lines on the potential energy
plots indicate the quantum numbers n for the first few energy
eigenvalues.

Po(x)

x/o x/o
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Harmonic Oscillator: Ladder Operators

The 1D harmonic oscillator problem can be expressed in terms
of a lowering operator & and a raising operator &' (the
adjoint of &). These operators & and &' are alternatively called
the annihilation and creation operators (respectively); a
and &' together are the harmonic oscillator ladder operators.

The ladder operators & and &' are defined in_ terms of the
position and momentum operators X and P X and P
can then be written in terms of a and a'. These
relationships are given as follows:

&E%(X/O‘-l—lpo/fl) )fz%(d“mi)

=E(X/(r—sz0'/h) P, =2 (&' — &)

The 1D harmonic oscillator Hamiltonian is written as

N ]. ¢ 1
= ata+=1) = =
H hm(a a+ ) hw(N—i— )

where N = &'4 is called the number operator.

The ladder operators have the following properties and
actions on the harmonic oscillator energy eigenstates {|¢,)}:

Ladder Operator Properties and Actions

[a,a"] =1

d'[@n) = Vn + 1|g,,,) for any neN°
t

)

dlen) = v/nlg, 1) fornel*
aleg) =0 or aley) = Olgy)

Both expressions in the last line above are found in quantum
mechanics textbooks. The first shows that |¢q) is the ground
state; i.e., there are no kets |¢,) for which n is negative. The
second expression is found in the context of coherent states
(also called quasi-classical states), described on page 59,
and it emphasizes that |pg) is an eigenstate of a with
eigenvalue 0.
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Harmonic Oscillator: Properties and Dynamics

Position and momentum: An energy eigenstate |¢,) of a 1D
harmonic oscillator centered at position x = 0 has the follow-
ing position and momentum properties:

X)=0

(X?) = o*(n+1/2) Gy =1

AX =o\/n+1/2 AP, =1 /n11/2
(AX)(AP,) = A(n+1/2)

Ehrenfest’s equations: For a 1D harmonic oscillator,
Ehrenfest’s equations (page 44) are

L&) =Ly and LBy = -mur(X)

These equations have the time-dependent solutions shown
below, which hold for any state of the l}armonic oscillator with
known initial conditions (X)(¢,) and (P,)(ty) at time ¢,.

Harmonic Oscillator: Schrédinger Picture
(X)(t) = (X)(to) cos[w(t — to)] + 71 (P.) (to) sinfo(t — to)]
(P)(1) = (P,)(ty) coslw(t — t)] — mw(X)(ty) sinfo(t — ty)]

The expectation values (X )(t) and ( ) (t) are periodic in time.
The period 7= 27/ defines the temporal periodicity of the
physical dynamics and characteristics of oscillator states.

Relative to the time-independent Schrodinger-picture (page
43) position (X), momentum ( x) and ladder (a and &)
operators, the corresponding Heisenberg-picture operators
(page 45) are listed below and denoted with a subscript H.

Harmonic Oscillator: Heisenberg Picture
#(t) = X cos[w(t — to)] + -5 P, sinfw(t — t)]
)
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Harmonic Oscillator: Fourier Transforms

For any state |¥(t = 0)) of the harmonic oscillator, the position
representation of the state after a subsequent quarter-period of
evolution—that is, W(x,q-) = (x|¥(t = 5-))—is a scaled and
normalized Fourier transform of ¥(x,0) = (x|¥(¢ = 0)). Specifi-
cally,

T .
— p—im/4 2 2
(x, o) = e i /o FLR,0) o

where F denotes the Fourier transform (page 24), and the
subscript indicates that after taking the Fourier transform of
¥(x,0), all instances of p are to be replaced by nx/c?. The
coefficient \/#/0? ensures proper normalization and dimen-
sional units, and e~/ is a phase factor relative to the phase of
the wavefunction at time ¢ = 0. Similarly, for the momentum
distribution, where 7! is an inverse Fourier transform,

¥(p, oo) = e o R F D, 0) by

Example: Let [¥(x,0)|2 be a Gaussian wavefunction of 1/e
radius w (not necessarily equal to o), centered at x = xo, and
having zero mean momentum at time ¢ = 0. For this case,

1 \1/4 _G@-x?
Y(x,0) = (—) e o’
(x,0) Tw?

2 1/4 i 2,52
. w _Bxy xfw
‘P(x, %) =g im/4 (F) e e w

1 \1/4 _exp)?

lI‘(x, E) =- z(—z) P

® W

The probability density distributions for these three wavefunc-
tions are shown below, in units of 1/, for w = ¢/3 and xy = 50.

2 T T T

¥ (x,0)|2
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Coherent States (Quasi-Classical States)

The raising operator &' does not have solutions to its
eigenvalue equation. The lowering operator a, however, does
have solutions to its eigenvalue equation aja) = a|a) given by

o :e—‘ot|2/2 N 0(7” )i aecC
o) ;\/n—!lﬂﬂ {aeC}

These solutions to the eigenvalue equation for a are called
coherent states or quasi-classical states. The scalar
product of two coherent states |o) and |a”) is

o] I* \n
<a/|a/,> _ e*%“x/|2e*%|0¢"|2 Z (0( o )

!
=0 n.

2
Because |(o/|a”)|? =e ¥~ coherent states are properly

normalized but not orthogonal to one another. A coherent
state’s probability density distribution in the position or
momentum representation has the same shape as that of the
ground state; howeveAr, a coherent state can have non-zero real
values of (X) and (P,) at some instant. A coherent state is
formally constructed from the ground state as follows:

A N

1. Associate the displacements (X) and (P,) at some instant
with the complex number a = % (X))o + io(P,)/h).

2. Construct the unitary displacement operator |]5(a):
D(a) = eod' " = H(PIX-EP) = eiuT((P,))5((X))
where &g = LX) Gy = e iwP/h and T(p') = e?X/" are posi-

tion and momentum translation operators, respectively.

3. Finally, D(a)|@o) = |o). Through S(x') and T(p'), D(a) shifts
a ground-state wavefunction in position and momentum by x’
and p’. The wavefunction for the displaced state |a) has the

same shape as that of the ground state but has expectation
values (X) = v20Re{a} and (P,) = vV22Im{a}.

The value of a associated with a coherent state evolves in
time: for an initial (¢ = 0) displacement coordinate «g, the
coherent state |¥(0)) =|ay) evolves as [P(t)) = |age ),
corresponding to the harmonic motion described on page 57.
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Phase-Space Diagrams

The properties and dynamics of 1D harmonic oscillator states
may be visualized with 2D phase-space diagrams or plots,
which show position scaled by v/2¢ on the horizontal axis, and
momentum scaled by \/2#/c on the vertical axis, where
o =+/h/(mow). The coordinates in a phase-space diagram
therefore correspond to the dimensionless displacement

coordinate
1 /x .po
a_\/é(G+L h>

where Re{a} and Im{a} are the coordinates for the horizontal
and vertical axes, respectively. A phase-space diagram indicates
the mean values of position and momentum ((X) and (P,))
for any harmonic oscillator state by placing an oval centered

at the corresponding point (Re{(a)},Im{(a)}) = <X> <px)"),

V2o’ V2h
where a is the lowering operator (page 56).

By letting the ‘horizontal and vertical radii of the oval
correspond to 4% Toe and A\%;, respectively, the area of the oval
is proportional to the uncertainty product (AX)(AP,). This
oval, which may be called an uncertainty patch, aids in

visualizing uncertainties in both X and ﬁx for any state.

Because (X)(¢) and (P,)() are harmonic and out of phase
(page 57), an uncertainty patch that is initially displaced from
the origin will subsequently orbit the origin. By plotting the
trajectory Im{(a(¢))} versus Re{(a(¢))} of the center of an
uncertainty patch, the dynamics of any state of the oscillator
correspond to circular trajectories or orbits of the uncertainty
patch. All orbits are clockwise, and the center of the
uncertainty patch moves through an angle 6 = ¢ in the time ¢.

The shape of the uncertainty patch for a given state remains
constant in time. However, as it orbits around the origin the
uncertainty patch also rotates clockwise at the angular
frequency w. Because of this rotation, for every quarter-period
of harmonic motion, the scaled position and momentum
uncertainties are exchanged; this is due to the Fourier
transformation property of the harmonic oscillator described
on page 58.
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Phase-Space Diagrams: Examples

The following phase-space diagram illustrates the dynamics of
four harmonic oscillator states and their uncertainty patches.

p
. o O Im{o} = —
(Xy=-50 AX= 3 Jan
(Px)=0
X)=0
(Pyy=-5—

Ground state: The dark gray circle at the coordinate system
origin corresponds to the ground state |¢g). The uncertainty
patch is circular, with a position and shape that are constant
in time since this is a stationary state. Its area is /4 in the
scaled units of the plot, the smallest area possible since |¢)
satisfies the minimum uncertainty product (AX )(APx) =hn/2.

First excited state: The light gray circle at the origin
corresponds to the first excited state |¢;). The associated
uncertainty patch is stationary, but its area is three times that

of [@o).

Squeezed state: The elongated white ovals show the
uncertainty patches associated with the example given at
the bottom of page 58, at the same points in time (£ = 0,¢ = T,

= T); time evolution corresponds to clockwise motion starting
frorp the right-most oval at ¢=0. For this state
(AX)(AP,) = h/2, but the uncertainties in X and P, are
alternately “squeezed” below their ground-state values, hence
the name.

Coherent state: The three green circles correspond to a
coherent state |a(t) = 2e7**), at the same points in time as
those of the squeezed-state example. The uncertainty patch
has the same shape and area as that of the ground state.
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3D Quantum Harmonic Oscillator

The 3D harmonic oscillator involves three independent 1D
harmonic oscillators. The 3D harmonic oscillator is defined by
the Hamiltonian

H=H.,+H,+H,
where
O B Ry
and je{x,y,z} runs over the three orthogonal components of
position. The energy eigenvalues are

E, nn. = hoy(ng +1/2) + hoy(ny + 1/2) 4+ ho,(n, + 1/2)
{n’xa ny,n; EINO}

In Dirac notation, the energy eigenstates are often expressed
in various equivalent ways as tensor-product states

{len)l@n)len)} or {lngny,n)} or {|nglny)in.)}
An energy eigenfunction has the position representation
(an,ny,nz (x,y, 2) = Pn, (x> : (Pny (y) *Pn, (2)

where ¢, (r;) = (rj|¢,,) = (rj|n;) is the n}h energy eigenfunction
(a Hermite—Gaussian function) of a 1D harmonic oscillator in
the coordinate r; (page 54).

Each spatial dimension is associated with a lowering operator

N 1 4 A
(and its adjoint), where o; = /h/(mw;). Each lowering (or
raising) operator acts only on the elements of the state space
&; of the corresponding spatial dimension.

The 3D isotropic harmonic oscillator is defined by a single
oscillator frequency o = 0, = w, = w, and has energy eigen-
values given by E, = ho(n + %), where n =n, +n, +n,, and
{neN°}. For an energy eigenvalue E,, the degree of
degeneracy is g, =% (n+ 1)(n+ 2). Because of this degener-
acy, the {|n,,n,,n;)} set of energy eigenstates is not the only
energy-eigenstate basis, although it is commonly used.
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Angular Momentum: Definitions

An angular momentum in quantum mechanics is a
vector operator J= (J J J) whose properties are
defined by the cornmutatlon relations

pd,)=iad,  [Jy,d.]=ind, [J,,J,]=ind,

The commutation relations show that J J and J are not
compatible observables. Therefore, J does not have eigenstates,
and a physical angular momentum vector cannot be precisely
specified or determined for any quantum-mechanical system.

However, the operator Ji=d.Jd= jz + Jz + jZ is an observ-
able that corresponds to the square of the magnitude of the
physical angular momentum. J? commutes with each compo-
nent of J:

(3%, d,] = 3%, d,] = 3%, J.] =

J? and one of the components of J can be chosen as a pair of
commuting observables for simultaneously specifying the
(square) magnitude of an angular momentum vector, and one
of the components of the angular momentum vector. Typically,
{J,J.} is chosen as the CSCO for angular momentum
problems; the z axis is then called the quantization axis.
Other angular momentum operators used in calculations are

J,=d,+id, J.=1(J, +J)
J_=dJd,—id, Jy=—iJ —d)

where o . and J_ are non-Hermitian angular momentum
ladder operators that have the following relations:
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Angular Momentum: Eigenvalues and Eigenstates

The eigenvalue equations for J% and J , are
I1j,my) =G+ VA2 j,my)
{ e N°} or {jeN®+1/2} (a “half-integer”)

For any specific j: mj e {—j,—j+1,...,j—1,j}

In the eigenvalue equations, j can be an integer or half-integer
(i.e., half of an odd integer) greater than or equal to zero. For
any given j, there are 2j+ 1 possible values of m;. The state
|j,m;) is interpreted as having a magnitude of angular
momentum that is precisely #+/j(j + 1), and a z-component of
angular momentum of precisely m;h.

When a particle with physical angular momentum is placed in
an external magnetic field that points in the z direction, the
total energy of the particle depends on the magnitude of the
field and on m;, as described on page 71. For this reason, m; is
called the magnetic quantum number. Note that unless
explicitly stated otherwise, the magnetic quantum numbers in
this Field Guide are always associated with the z-component
of angular momentum, although magnetic quantum numbers
can be associated with any spatial direction.

Angular momentum ladder operators act on |j,m;) as
follows:

J o1 my) = myf5G+ 1) = my(m; + D) jom; + 1)

for —j<m;<j—1 (J,|j,m;=j)=0)

J1jomg) = ny i+ 1) = mi(m; = Dlj,m; = 1)

for —j +1<m;<j (J_|j,mj=~j)=0)

For a given j, the discretely indexed orthonormal basis
{lj,m;)} spans the (2j + 1)-dimensional state space &;.




Angular Momentum 65

Orbital Angular Momentum: Operators

Orbital angular momentum (OAM) is one type of
angular momentum in quantum mechanics for which

* The angular momentum quantum number j is neces-
sarily a positive integer

* The angular momentum eigenstates {|j,m;)} can be
expressed in the position representation as functions
of position coordinates; these functions are the
spherical harmonics (page 100)

Instead of the generic quantum-number letters j and m;, and
the operator J = (J,, J,, J,), the letters / and m; are usually
used for OAM quantum numbers, and L= (L,, L,, L)
usually specifies an OAM vector operator.

The OAM eigenstates and eigenvalues are defined by the
eigenvalue equations

L2\, my) = U1+ 1)R2|l, my)
I:2|la my) = myh|l, m;)
{l e N%}

For any specific I:m; e {-1,—-l+1,...,l— 1,1}

Physically, OAM corresponds to the motion of a particle or
the flow of a probability current through positions in space
that periodically or momentarily orbit about some coordi-
nate system’s origin. For this reason, the OAM eigenstates
{|l,m;)} may be expressed in the position representation.
OAM is involved when characterizing (for example):

* Angular momentum of an electron about an atomic
nucleus

+ The motion of particle about the center of a 2D or 3D
harmonic oscillator potential well

* Rotation of a molecule
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Orbital Angular Momentum: Position Representation

For a particle with position and momentum vector operators
R and P, the vector operator associated with OAM about the
coordinate system origin is

f,= ([ L, ) =R x P
In Cartesian coordinates and with r = (x,y,z), the position
representation of L is obtained by substituting the position-

representation operations of R and P (l.e.,, r and —ihV,
respectively) into the expression above, giving

L{r} = —ih(r X V)

— (e d) (22 (2 -y 2]

In spherical coordinates (page 115), V is given by
.0 ~10 -~ 1 0
V=r—+0—— —_—
T +o rsin 6 db

ar r a0
and the x, y, and z components of L are written in the position
representation as

. . d 0
(Lx){r} =1h (sm b % + cos dpcot O %)

. o . 0
(Ly){r} =ih (— cos d)% +sin¢ ot £>

.0
(L) gy = —zh£

In spherical coordinates, Ly, and L%r} are
~0 ~ 1 0
Lihn=-ihldb——0——
ey = <¢ " smea¢>

1 0 0 1 0
L2, = —n2(————(sinf— | + ———
) ( sin 0 00 (Sm ae) T sin% a¢2>
which have an orthonormal set of eigenfunctions called the
spherical harmonics, described on page 100. These func-

tions are the position-representation wavefunctions corre-
sponding to the state vectors {|/,m;)}. Also see page 116.
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Spin Angular Momentum

Spin angular momentum, or spin, is the second type of
angular momentum in quantum mechanics. While the
magnitude and one component of a spin vector can be
specified, in the absence of orbital angular momentum
neither a particle with spin nor any portion of the particle’s
mass density can be said to “orbit” around that axis as if it
were a spinning object. Spin states and spin operators do
not have position representations.

Instead of a general angular momentum operator J and the
quantum numbers j and m; (pages 63—64), spin is often

denoted by the operator S = (.S,:’x,SAy,S’Z) and quantum
numbers s and m.

The spin eigenstates and eigenvalues are defined by the
eigenvalue equations

S?[s, my) = s(s + 1)h%[s, my)
Sz|S> ms> = msh|s, ms>

{seN°} or {seN°+1/2} (a half-integer)

For any given s: mye{—s,—s+1,...,s—1,s}

The spin quantum number s can be an integer or half-
integer. An elementary particle’s spin s is an immutable
property of the particle, like its mass and electric charge.
Composite particles formed from elementary particles also
have an associated spin. For example, every electron, quark,
proton, and neutron has a spin quantum number s = 1/2.

The equations given on pages 63—64 hold for any angular
momentum: a single particle’s orbital or spin angular
momentum, or the total angular momentum of a system
(page 82). Therefore, it is common to use symbols other

than J , f‘, and S (and their associated quantum numbers)
to differentiate various angular momentum quantities.
Symbols used to express the various angular momenta of
atoms are given on page 101.
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Spin Angular Momentum: s = 1/2

The s = 1/2 problem has a 2D state space £;— /2, meaning that
any orthonormal basis that spans £/, has exactly two
elements. The basis elements can be denoted |+), and |-),,
which are respectively read as “spin up and spin down along
the u direction.” The x, v, and z components of the unit vector
U are written using spherical coordinates (page 115) as

a = (sinfcosd, sinhsind, cosh)

For example, the pair of angles 6 = w/2 and ¢ = 0 indicates the
unit vector u = (1,0,0), which is the x direction.

|+), and |-), are the common eigenstates of S* and S‘u, where
S’u =S.a-= éxsin6c0s¢ + Sy sin 0 sin ¢ + Szcose
|£), = s =1/2,my, = £1/2)

In the case above, the magnetic quantum number m, is
associated with the component of spin about &, which does not
necessarily equal z. The eigenvalues of S, are +h/2: |+), is
associated with the eigenvalue #/2, and |—), is associated with
the eigenvalue — 7/2:

A n

The eigenstates of S, can be expanded into the {|+),} basis
where |[+), =|s = 1/2, m; = 1/2) is the ket for “spin up along z,”
and |—),=[s=1/2,mg=—1/2) is the ket for “spin down
along z” (see page 67). The following normalized state vectors
follow the global phase conventions specified on page 114
(i.e., the first non-zero expansion coefficient—associated with
|[+), in this case—is real and positive):

[+), = cos(8/2)|+), + sin(6/2)e™|—),
=)y = sin(6/2)|+), — cos(6/2)e’|-),

Expressing the eigenstates of S’x (for which 6 =m/2 and
¢ =0) and S, (for which 6 = /2 and ¢ = w/2) in terms of the
{|£).} basis 1s then straightforward:

Spin along x Spin along y
Spinup  [[Hh =+ Jgl-)e |1y = JgHe+ ).

Spin down

_>x:%|+>2_%|_>z |7>y:%‘+>27%|7>2
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Pauli Spin Operators

The s = 1/2 spin operators éx, §y, and SZ can be written in
terms of the Pauli spin operators 6,, 6,, and 6,:

S, =16, S, =16, S, =16,
These three relations are compactly expressed together as
S = 2§, where ¢ = (6,,6,,6,). Each Pauli spin operator 6,
(where u € {x,y,z}) has the eigenvalues +1, with the same
eigenstates as those of S” and S, for a system with s = 1/2.

Using the {|+),} representation, the Pauli spin operators
are expressed as 2 X 2 Pauli spin matrices. Following
standard notation conventions, these are defined as

o = 0 1 _ |10 -1 _(1 0

*=11 0 Elioo 9e=10 -1
The eigenvectors of the Pauli spin matrices are given below
(each eigenvector is listed below its associated eigenvalue).

Eigenvectors of Pauli Spin Matrices
Matrix Oy oy o
Eigenvalues 1 -1 1 -1 1 -1
Eigenvectors [%:| [%} {%} [%:| [1:| [0:|

The Pauli spin operators have the commutation relations

[(}xv 6y] = 2i6, [6'yv 6'2] = 2i6, [6-2,6'x] = 2i6y

The Pauli spin operators, matrices, and their eigenvalues
and eigenvectors are also commonly used in two-level
problems that do not necessarily involve a physical spin
angular momentum (page 75).
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Angular Momentum j =1

For a system with the generalized angular momentum
quantum number j =1, the eigenstates of J? and J, form
the three-element basis

{li=1,mj=1),1j=1,m;=0), |j=1,m;=-1)}

that spans the state space £;—;. In a representation defined by
this basis, the three components of the j =1 angular momen-
tum operator J, and their eigenvalues and orthonormal
eigenvectors, are given in the following table. For each
operator, the associated matrix is given below the operator.
For each matrix, the eigenvectors are listed immediately below
their associated eigenvalues A, 0, and —#.

Jj =1 Angular Momentum Matrices, Eigenvectors
J, J, J.
[0 1 0 0 — O 1 0 O
hi1 0 1 Ly 0 —i AlO O O
V2 10 1.0 V2 0 17 O 0 0 -1
n 0 —h n 0 —h h 0 —h
1 1
AEIRIBEIBIEIGIC
1 =1 i =i
73 0 73 7 0 75 0 1 0
1 =1 1 -1 L -1
2 V2 2 2 V2 2 0 0 1

The j =1 case can apply to various systems, including spin
and orbital angular momentum problems. For example, the
electron of hydrogen (page 97) can exist in an excited state
with orbital angular momentum quantum number /= 1. In
this case, there are three possible outcomes of a measurement
of the electron’s component of orbital angular momentum
about any direction: #, 0, and —#A. As another example, two
spin-1/2 particles might together form a system with a net
spin quantum number s=1 (see the rules for addition of
angular momenta, page 82). In this case, also, #, 0, and —#% are
the possible outcomes of a measurement of the component of
the system’s net spin about any spatial direction.
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Magnetic Dipole Moments and Magnetic Fields

When placed in an external vector magnetic field B,
a classical magnetic dipole moment p has a potential
energy due to its interaction with the field that is given by

WBZ—}L-B

In quantum mechanics, magnetic dipole moments may corre-
spond to a particle or system’s spin, orbital, or net angular
momentum. For a system with a generalized angular momen-
tum operator J, the magnetic dipole moment operator is

po=yd

where v is the gyromagnetic ratio, a constant of proportion-
ality between [1 and J that has a numerical value that depends
the specific particle or system. As is the case with angular
momentum, the direction of a particle’s magnetic moment
cannot be precisely specified, and the operator ju is therefore
not an observable (although its magnitude |f1| can be precisely
specified and is proportional to the magnitude of angular
momentum).

In atomic and nuclear physics, the magnitudes of magnetic
dipole moments are commonly specified in terms of either pp
or py. The Bohr magneton pp is used to quantify the
magnetic dipole moments of electrons with spin or orbital
angular momenta, or of atoms with net angular momenta
arising from a sum of the net spin and orbital angular
momenta of all electrons and the nuclear spin. The nuclear
magneton py is used to express magnetic dipole moments
arising from the spin of neutrons, protons, and atomic nuclei.
The Bohr and nuclear magnetons are

R 99274 %1020 3/T

e

~ 5.051 X 1027J/T

eh
My =
2m,,
where e is the fundamental unit of electric charge, and m, and
m, are the masses of the electron and proton, respectively.
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Gyromagnetic Ratios and g-Factors

Gyromagnetic ratios in nuclear- and atomic-physics
problems are commonly expressed in terms of either the
Bohr magneton ppg or the nuclear magneton ny and a
dimensionless number called the g-factor, denoted as g.
The table below lists the relationships between angular
momenta, magnetic dipole moments, gyromagnetic ratios,
and g-factors for the angular momenta associated with an
atom.

In the table, S is the vector spin operator for the particle in
question (the spin quantum number s = 1/2 applies to a
single electron, proton, and neutron) or for the net spin
angular momentum of all electrons in an atom. I is the
operator for nuclear spin, and L is an OAM operator for a
single electron or the net OAM of all electrons in an atom.

Magnetic
Angular Dipole Gyromagnetic
Momentum Moment Ratio g-Factor
Electron spin | fi, = .S |V, = goitp/h | 8o ~ —2.002
Proton spin n, = yps Yp = 8pun/h | g, =~ —5.586
Neutron spin |, = yné Yo =&uln/h | 8~ —3.826
Nuclear spin | p; = 'yIi Yr = 81un/h || varies
(on the order of 1)
Electron b=y L |y = —grps/h |8 =1- a7 (for
OAM nuclear mass My)
g7, =1 (in the limit
MN ~ OO)

An alternative expression for the nuclear gyromagnetic
ratio is y; = g7 ug/h, in which case |g,| << 1.
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Magnetic Moment Dynamics: Uniform Fields

For problems in which the only energy involved is the
energy of a magnetic moment v interacting with an
external magnetic field B, the Hamiltonian is (see page 71)

1=—p-B=—J B

where +y is the gyromagnetic ratio (pages 71-72), and Jisa
generalized angular momentum (spin, orbital, or net
angular momentum) associated with an angular momen-
tum quantum number j.

Uniform magnetic field: For this case, B is constant in
time and is spatially homogeneous, with a magnitude B,.
Here it is assumed that B points in the z direction. For
these conditions,

ﬁ = —’YBoch

The energy eigenstates are therefore the {|j, m;)} eigen-
states of JZ. The energy eigenvalues are

Em = —’YBoflm] = fzwLmj

where w;, = —yB, is called the Larmor frequency. Note
that the determination of whether a given state has a
higher or lower energy eigenvalue than another state
depends on the sign of .

Spin precession: Consider a particle with spin quantum
number s = 1/2 in a uniform magnetic field of magnitude B,
that points in the z direction. The energy eigenvalues are
given by +1#w;, = F1yByh. Suppose also that the particle
has a spin expectation value at time ¢ = 0 that points in the
U direction: (S)(¢=0)=24. For ¢t >0, the vector (S)(¢)
precesses about z with angular frequency wz. This preces-
sion of (S)(¢) is called spin precession or Larmor preces-
sion. Note that it is (S) that precesses, not a physical
angular momentum vector itself, since the latter quantity
cannot be precisely specified in quantum mechanics. Spin
precession is illustrated on pages 80-81 for a spin-1/2
system.
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Magnetic Moment Dynamics: Gradient Fields

A particle associated with a magnetic-dipole-moment operator
i =vd will experience a state-dependent force when the
particle moves through an inhomogeneous magnetic field
B(x, v, z). For simplicity, a magnetic field that points along the
z direction is considered, with a magnitude that varies
linearly with z: B(x, y, z2) = (0, 0, zB'), where B’ is a constant
value that is the spatial gradient of the magnetic field.

Neglecting kinetic energy and considering only the magnetic
dipole interaction energy, the Hamiltonian in the region of the
field gradient is

H= —’YZB/ch

The energy eigenstates in the field gradient are the {|j, m;)}
eigenstates of J,. However, the energy eigenvalues are spatially
dependent; they are given by E,,(z) = —yzB' hm;. Due to the
gradient B, there is an mj-dependent force in the z direction:

F,, = —VE,,(2) = yB hm;

If a particle in the state |j, m;) has a trajectory (along X, say)
that passes through a region with the field gradient given
above, the particle will experience a positive or negative force
and therefore receive a positive or negative momentum kick
along the z direction; the direction and magnitude of the
momentum kick depend on m;.

If the particle is in a superposition of |j, m;) states, each
superposition component will be associated with a different
momentum kick, therefore correlating or entangling the
different superposition components with different propagation
directions. This is the Stern-Gerlach effect. The deflections
are quantized, with the deflection for each component of the
superposition depending on that component’s magnetic quan-
tum number, which is then correlated with a final measured
position of the particle. With various orientiations of the
magnetic field gradient, the Stern—Gerlach effect can be used
to measure the possible values of m; for a sample or beam of
identical particles, the fraction of particles with each m; value,
and the angular momentum quantum number j for the particles.
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Two-Level Systems

Two-level systems are systems that have a state-space
dimension of two. Any basis for the system consists of exactly
two elements; a spin-1/2 system i1s an example. A simple
generalized two-level problem begins with a time-independent
Hamiltonian H, o with eigenstates and eigenvalues defined by

Hola) =E,Ja) and  Hylb) = Ey|b)

Now consider the Hamiltonian H = H, o+ W, where W is time-
independent and has off-diagonal matrix elements in the
{la),|b)} representation, so that |a) and |b) are not stationary
states of the full Hamiltonian H. W may be called a coupling
or perturbation Hamiltonian. In the {|a),|b)} representa-
tion W can be expressed in terms of its matrix elements as

W — Waa Wab — Waa 0 0 Q
@} = | W, W, 0 Wy QO 0

where Qg = 2W,,/h = 2(b|W|a)/h is a complex number, and
Q| quantifies the strength of coupling between |a) and [b).
H can then be represented by

1 0 A Q
Hi, =E, +—= [ }
{ab} [0 1] Q -A

where
Ec = (Ea JrEb)/z + (Waa + vvbb)/2
AE(Ea_Eb)/h+(Waa_Wbb)/h

The parameter A is an angular frequency called the detuning.
The eigenvalue equation for H is written as H |£) = EL|£),
where E, = E_, and is solved by

hQ
2
|4+) = cos(0/2)|a) + sin(0/2)e'*|b)
|-) = sin(0/2)|a) — cos(0/2)e®|b)
where (), 0, and ¢ are defined by

tan(0) = [(Q[/A Qo = [Qle’® Q= AZ + Q2
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Rabi Oscillations

When the eigenstates |a) and [b) of a two-level Hamiltonian
H, are coupled by W, as in the two-level system defined on
page 75, the probabilities of finding the system in either state
|a) or |b) become time dependent.

The typical case is one in which the system is known to be in
state |a) (or |b)) at time t=0 and to then determine the
transition probability P,_;, (or P,_,) that the system would
be found in state |b) (or |a)) at a later time ¢. Consider the case
that the system is in state |a) at time ¢ = 0:

[W(t=0)) =|a)

Using the symbols defined on page 75, the transition
probability P,_,(t) from state |a) to |b) is sinusoidal in time
with a frequency (), called the Rabi frequency. Q) is called
the resonant or bare Rabi frequency. The probability
oscillations are called Rabi oscillations. For |{i(f = 0)) = |a),
the probability that the system would be found in state |b) is

given by
Q) . Ot
Pa(l) = "gz-sin® (5

The plot below illustrates Rabi oscillations for three values of
the detuning A.

0 ¢ 4m 67
1Q0 1Q0l

In the plot, points A and B, for which P,_;, = 0.5, indicate
times when the system is in an equal-probability superposi-
tion of states |a) and |b); point A is for A =0 (green line),
and point B is for A = |Qg| (dot-dashed line). For the A =0
curve, point C indicates the total time ¢ = 7/|Q| (a “m pulse”)
at which there is a transition probability P,_, = 1. Also
for A=0, point D indicates the total time ¢= 2m/|Q]
(a “2m pulse”) at which the transition probability is P,_,; = 0.
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The Bloch Vector

In a two-level system with a 2D state space £, spanned by a
basis {|a),|b)}, any arbitrary state vector |}) € £, can be
written as |[§) = c¢4|a) + ¢|b). The Pauli spin operators (page 69)
are used to construct the Bloch vector for state |{s), defined as

(@) = (Ulab) = ((bl6x[b), (W6 ), (bl6- b))

The Bloch vector is used in generalized two-level problems
even when the problem does not have a physical spin. The
components of the Bloch vector for state [&s) are

(&) = cocp + cacz = 2Re{c,cp}
(6,) = —i(cacy — a¢y) = 2Im{cecy}
(62) = leal® = les|?
By defining 6 and ¢ via the relations

) c, ¢
cos0 = |cg|? — |p|? and ei® =2 .0
lcal  lcol
so that ¢ is the phase of ¢, with respect to ¢, (unless |c,| or |cp|
equals 0 or 1, for which ¢ is undefined), the state vector |§s) can
be expressed as

&) = cos(0/2)|a) + sin(0/2)e'|b)

up to a negligible global phase factor. The Bloch vector can
then be written as

(6) = (sin 6 cos ¢, sin O sin d, cos 0)

From this it is straightforward to determine that the Bloch
vector associated with any state vector has unit magnitude:

{a)]| = \/|<6'x>|2 +(6,)[2 + [(6:)P =1

The results above show that there is a one-to-one correspon-
dence between any given state vector |s) of a 2D state space
and a Bloch vector (&) that has unit magnitude and points in a
direction (in an abstract 3D coordinate space) that 1is
completely determined by ). This correspondence results from
the fact that both |{) and (&) are uniquely determined by the
same pair of angles 6 and ¢, where 0 < 6 <, and 0 < ¢ < 2.

uantum Mechanics



78 Two-Level Systems and Spin 1/2

The Bloch Sphere

Due to the one-to-one correspondence between all unit-
magnitude Bloch vectors (page 77) and the state vectors of
a two-level system, the dynamics of quantum states in a
two-level system can be characterized by the dynamics of a
3D Bloch vector. Since the Bloch vector corresponding to a
state vector |y) has unit magnitude, the associated Bloch
vector dynamics correspond to the motion of a point on the
surface of a unit sphere. This abstract sphere is called the
Bloch sphere, below, and exists in the same abstract 3D
coordinate system as that of the Bloch vector (in green).
The Bloch vector that corresponds to the state |s) is defined
by the angles 6 and ¢.

A 2 2
(62) = leal® —lepl

(6y)=—ilcgep —cacy)
=2Imf{c}cp}
=sin0 sind

(Gy)=cpcp + cacz
=2Re{ccp}
=sin0 cos d

The Bloch sphere provides a powerful means of visualizing
the dynamics of the state of a two-level system under the
influence of a Hamiltonian that couples the two elements of
the chosen basis, which are visually represented by the
north and south poles of the sphere. If the Hamiltonian H
is time independent, then there is an abstract stationary
vector in the Bloch sphere diagram about which the time-
dependent Bloch vector (&)(t) precesses. Plotting Bloch
vector dynamics on the Bloch sphere is a graphical
visualization alternative to Rabi oscillation plots, as shown
on page 76. The example presented on pages 79-81
illustrates Bloch vector precession for a spin-1/2 particle
in a uniform magnetic field.
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Spin 1/2 in a Uniform Magnetic Field

The problem of a spin-1/2 particle in a uniform magnetic field
ties together the concepts of spin precession, Rabi oscillations,
and Bloch vector dynamics. The following example assumes
that a spin-1/2 particle is initially in the |+), (spin-up along z)
eigenstate of a Hamiltonian

. 1
Hy,= -B, = flwz()'z

where B, = B.(0, 0, 1) is a uniform magnetic field of magnitude
B. that points in the z direction, and w, = —yB,, where v is the
gyromagnetic ratio. At time ¢=0, a second magnetic field
B, = Bi(cosd,sind,0) is instantaneously applied, and is
associated with a second Hamiltonian term

A . 1 . a
W=—pn-BL =§hm¢(0xcos¢+(rys1nd>)

where w3 = —yB;. The problem now is to determine the
dynamics of the particle’s spin state under the influence of the
full Hamiltonian H = H o+ w.

The eigenstates and eigenvalues of H are first found using the
solutions given on pages 68 and 75. In the {|+),,|-).}
representation (labeled below as {m, due to the fact that
|[+), and |-), correspond to the quantum numbers m; = 1/2
and mg = —1/2), the Hamiltonian His expressed as

H, =l o e A O
b =9 |wre®  —w, 210, —A

where A = 0, and Q, = o, e’® following the definitions intro-
duced on page 75. The total field B, + B, points in the
direction

a= (%cosd)7 %sind), %)
where O = \/m Defining 6 by tan0 = w./w, = B, /B.,
the spin-up and spin-down eigenstates of H along u are
[+), = cos(68/2)|+), + sin(6/2)e’|—),
=) = sin(0/2)[+), — cos(6/2)e"| ),

The respective energy eigenvalues are E. = +1n0Q.

uantum Mechanics



80 Two-Level Systems and Spin 1/2

Spin 1/2 in a Uniform Magnetic Field: Dynamics

For the Hamiltonian H given on page 79, and an initial state
at time ¢ = 0 of [y(0)) = |+),, the state at time ¢ is given by

[(2)) = U(£,0)|+).
where U is the time evolution operator for H. In the representa-
tion labeled as {m} (see page 79), U(¢,0) is expressed as

efiQt/Z 0
Ui,y (2,0) = { 0 el2

.. 1—cos® —sinfe ™
+ i sin(Q4/2) [— sinfe®  cos®—1

The time-dependent spin state is then

¥ Ot RN
[s(¢)) = <COSZ_ i coses1n2)|+>2 -3 Slnﬂsm?elﬂ—)z

with a Bloch vector that has the time-dependent components
(G,)(2) = sin 6{cos B cos [1 — cos(Q22)] + sin ¢ sin(Q¢)}
(6,)(t) = sin 6{cos B sin b[1 — cos({2¢)] — cos ¢ sin(€2¢)}
(6,)(t) = 1 — sin20[1 — cos(Qt)]

These components define a unit vector (¢)(t) precessing at an
angular frequency () about & = (3Fcosd, rsind, F); that is,
the Bloch vector precesses about a vector corresponding to
the magnetic field direction, demonstrating spin precession
(page 73).

The figures on page 81 illustrate trajectories of (6)(t) for a spin-
1/2 particle’s spin state for three cases. By is assumed to be the
same 1n each case, with B, pointing in the x direction so that
¢ = 0. The spin state at time £ =0 is [{)(0)) = |4), (the vertical
black arrow represents the initial Bloch vector). The trajectories
are shown at periodic times throughout nearly one full orbit of
the Bloch vector. The vector u corresponding to the direction of
the total magnetic field (green arrow) is shown for each case; the
Bloch vector precesses about G in a direction that assumes a
positive value for the angular frequencies o, and w; .
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Bloch Vector Dynamics: Examples

The three Bloch sphere figures below illustrate the
precession of a Bloch vector (¢) (darker arrows represent
earlier times) about a unit vector u (in green) that
corresponds to the direction of an applied constant
magnetic field. The figures correspond to the problem
defined on pages 79 and 80. These three cases also
correspond to the three Rabi oscillation plots on page 76.
For this example problem, Qj=w,=—-vyBL (assu-
med the same for all figures below), A=w2=%90,

and Q = Qy,/1+ B?/B%. Values of B, A, Q, and 6 (where
tan 6 = |Qy|/A = B1/B,) are given for each figure.

* B,=0

e 0=m/2

* A=0

e 0=Q

* B,=B,
* O=m/4

e A=Qy

e 0=+20
e B,=2B;
e 9=0.157
e A=2Q
e O=50Q
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Addition of Two Angular Momenta

The total angular momentum of a system may consist of
individual angular momenta combined together. The addition
of two generalized angular momenta is considered here. The
two individual angular momentum vector operators J; and Jo
(with z components oJ 1 and J 92, Tespectively) are associated
with the following eigenvalue equations:

29 . . . .
J1lj1. ma) = j1(h + DA% ji, mq)
29 . . . .
J3)Jo, ma) = ja(jo + 1)A%[ jo, mo)
J1zlJ1, my) = myhlji, my)

Jolja, ma) = mahljo, my)

The two pairs of individual quantum numbers (j;,m;) and
(jo, mo) separately follow the constraints given on page 64.

The eigenvalues and eigenstates related to the system’s total
angular momentum are determined by first constructing the
vector operator for the total angular momentum:

j = jl + ei2 = (jxvjya jz) = (Jlx + ijajly + ijvjlz + j22)

from which is obtained J° = J - J = eﬁ + 33 + 231 . jz.

Tensor-product (TP) basis: When the state spaces associ-
ated with j; and j, are merged, one basis that spans the
merged state space is the TP basis expressed as

{|jlam1>|j2am2>} or {|j17j2am17m2>}

These tensor-product states are eigenstates of the CSCO
{jf, Ji . d 22} The individual angular momentum quantum
numbers that appear in these kets may be simultaneously
specified or measured to uniquely identify one of the states of
the tensor-product basis. However, neither oJ 1z nor J 9z
commute with 32, so the states of the TP basis are generally
not eigenstates of J?. This means that if the magnitude of the
system’s total angular momentum is measured, the system
would subsequently be found in an eigenstate of J%, as
described on page 83, and not in one of the TP basis states.
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Total Angular Momentum Basis

When the state spaces associated with individual angular
momenta are merged, one basis for the merged state space is
the tensor-product basis (page 82). Another basis is the total
angular momentum (TAM) basis, written as

{|j17 jZaJv mJ)}

where j; and j; are the individual angular momentum
quantum numbers. This basis consists of eigenstates of j?
and j§ (as does the TP basis) and of J% and jz (instead of cjlz
and JZZ). The CSCO {j%, J%, jZ,jz} is associated with the set
of eigenvalue equations

A9 . . .. ..
J1lj1, Jod my) = j1(1 + DA%y, jo, I, my)
292 . . . . . .
JIslj1, Jod,my) = jaljs + )h2| jy, jo,d , my)
29 . . . .
J |Jla]2,Ja mJ> :J(J+1>h2|J1)]2,Ja mJ>

Jz|jl’j2,J7 mJ> = th|j17j27J7 mJ>

Note that o/ is a quantum number, whereas J 2 J 2, and J are
explicitly labeled as operators. The new quantum numbers </
and m s follow the quantization rules on page 64: J must be an
integer or half-integer, and mj can only take values from —<J
to J in integer steps. o/ is restricted further: given two values j;
and jo, JJ can only take any value from |j;—js| to |j;+Jjs| in
integer steps:

Jel{lji—jal lii=Jel + 1, .oy Ji+ie—1, Jit+is}
For each possible o/, there is a range of possible m_; values:
mje{—dJ, —J+1,...,J-1,J}

If j; and j; are both integers (j;,j,eN?) or half-integers
(j1, Joe{NO +1/2}), then J and hence m; must be integers.
Otherwise: J, m;e{N® + 1/2}.

By letting J vary over all allowed values, and by letting m._s
vary over all allowed values for each oJ, it is seen that the TAM
basis has the same number of elements as the TP basis, and
either basis can be used in problems involving the addition of
two angular momenta.
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Addition of Angular Momentum: Example

The example below illustrates the addition of two angular
momenta and the construction of two different bases.
Suppose that two particles with spin quantum numbers
$1=3/2 and s,=1/2 form a composite particle that has a
total spin quantum number S. Each of these quantum
numbers has an associated magnetic quantum number;
they are m, ms, and mg, respectively. In this example, the
quantum number S is used in place of the generic angular
momentum quantum number </ of pages 82—83.

The possible values of S for the composite particle are given
by the general formula (see page 83)

Se{ls;—sg|, [s1—=sa|+1, ..., 81 +83—1, 87+53}

which means that S can have the values S=1 (for which
mge{—1,0,1}) and S = 2 (for which mge{—2,-1,0,1,2}).

The elements of the TP basis and the TAM basis are given
below. Each basis has eight orthogonal elements. The
quantum numbers s; and sy are omitted from all kets
because they are common to all kets of both bases in
the merged state space. Generally, any element of one
basis is a superposition of multiple elements of the other
basis, with the exception of the first and last items in
each list (for which |m;=3/2,my=1/2)=[S=2,mg=2)
and |m;=-3/2,my=—-1/2)=|S = 2, mg=—2)).

TP Basis TAM Basis
|m,;=3/2,my=1/2) |IS=2,mg=2)
|m,=3/2,mgy=-1/2) [IS=2,mg=1)
|m=1/2,my=1/2) IS=1,mg=1)
Imi=1/2,my=-1/2) |S=2,mg=0)
|mi=-1/2,my=1/2) [IS=1,mg=0)
|my=—-1/2,my=-1/2) [S=2,mg=-1)
|mi=-3/2,my=1/2) IS=1,mg=-1)
|my=-3/2,my=—-1/2) [S=2,mg=-2)
CSCO: §%,82.8... S,. CSCO: §%,82.8% S,
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Addition of Angular Momentum: Comments

Standard ordering: When constructing TAM and TP
bases for angular momentum problems, as on page 84, the
following convention is used to order the elements in each
basis:

+ Choose indices 1 and 2 for ji, jo, m;, and msy such that
J1=J2 and m; appears before ms in the TP basis kets;
1.e., if the magnitude of one angular momentum is
larger than the other, the larger one is assigned the
index 1

* For two angular momentum quantum numbers j; and
Jo, basis elements are arranged in order of decreasing
m1 + mo (TP basis) or decreasing m_ (TAM basis)

* The elements of the TP basis that have identical values
of m; + my are arranged in order of decreasing m;

* The elements of the TAM basis that have identical
values of m_ are arranged in order of decreasing

Conservation of angular momentum: When two indi-
vidual angular momenta with quantum number pairs
(j1,my) and (jg,msg) are added together, the system’s
TAM quantum number J can take a range values as
described on page 83. When expressing an element of the
TP basis as a superposition of elements of the TAM basis,
the superposition will generally include elements of the
TAM basis that have different values of J. However, every
one of these elements in the superposition must have a
total magnetic quantum number that equals the sum of the
individual magnetic quantum numbers; i.e., mj; = m; + ms.
This statement expresses the conservation of angular
momentum about the z direction.

Similarly, if angular momentum quantum numbers j; and
jeo are given and the TAM basis element |J,m;) is
expressed as a superposition of TP basis elements, there
may be multiple combinations of m; and msy in the
superposition of TP states. In all cases, however, the sum
mq + mg for any TP basis state in the superposition must
match the value of m_ of the TAM state: m; = my + ms.
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Clebsch-Gordan Coefficients

When a system has a total angular momentum that arises
from the addition of two individual angular momenta, the
system’s angular momentum quantum states can be expanded
into the TAM basis (page 83) or the TP basis (page 82).
Clebsch-Gordan (CG) coefficients, described below, are
the superposition coefficients of the expansion of an element of
one of these bases into the other basis. The CG coefficient
tables on pages 118-121 provide these coefficients for angular
momentum quantum numbers 1/2<j; =2 and 1/2=j, =j;
where j; = j,.

The notation below follows that of pages 82-83 and
assumes the convention j; = j, usually adopted for the
tabulation of CG coefficients. For brevity, the quantum
numbers j; and js are often omitted from the TAM kets
and bras.

For two individual angular momenta with quantum numbers
J1 and js, the expansion of a TP basis element into the TAM
basis is written (using a closure relation) as
Jitje J
1, Jos my, mg) = Z Z (J, mylj1, J2, m1, ma)|d, my)
J=|j1—jo| my=—=J

where (J, my|ji, jo, m1, mg) is a CG coefficient. The expan-
sion of a TAM basis element into the TP basis is written as

J1 J2
|J7 mJ> = Z Z <il7j2: my, My |J7 mJ> ‘j17j27 my, m2>

mi=-j1 M2=-J2

By convention, the CG coefficients are defined to be real, so
that (ji, jo, my, mg |, my) = (J, my|ji, ja, my, my).

Note the following:
+ For the case J = j; + Jjo:
(J, mg =dl|j1, jo, my =J1, mg =jg) =1
+ Also for J = j; + jo:
(J, my=—dJlj1,Jo, my = —j1, Mg = —j3) =1
« If mq + mg # my, then (J, my|ji, jo, my, mg) =0
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Clebsch-Gordan Coefficients: Usage

When merging the state spaces of two systems character-
ized by angular momentum quantum numbers j; and js,
the steps below are used to determine the associated CG
coefficients using the tables given on pages 118-121. As is
done on pages 84-86, the quantum numbers j; and j, are
omitted from the row and column labels (explained below)
in a given CG table because they are associated with every
ket in the given table. CG coefficient tables are used as
follows:

1. Identify the relevant tabular group. The two numbers in
the upper-left corner of each grouping of tables are j; and
Jo, with j; assumed to be the larger of the two values if they
are not equal.

2. Within a table, the column labels are J and m; (J is
above m_). The row labels are m; and my (m; is to the left of
ms). Note the order of m; and msy: m, is associated with j,
the larger of the two angular momenta.

3. Every number (on a white background) in the tables is
associated with a pair of values (J, m_;) given by the column
label above that number and a pair of values (m,, ms) given
by the row label to the left of that number. The CG
coefficient 1s the square root of that number within the
table, with any minus sign (if present) placed outside of the
radical.

4. Using the steps described above, the expansion of a
TAM basis element |J,m;) into the TP basis involves
reading a column of numbers in the column headed by </
and mj Each CG coefficient is the coefficient for the
associated TP basis element |m;, my) in the superposition.
All coefficients are zero for which there is not a correspond-
ing pair of m; and ms row labels within that section of the
table; such is the case if mj; # m; + my. Similarly, the
expansion of a TP basis element into the TAM basis
involves reading a row of numbers to the right of the
relevant m; and ms labels.
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Clebsch-Gordan Coefficients: Examples

The following examples incorporate the rules for addition of
angular momentum given on pages 83-87 and the usage of
the CG coefficient tables on pages 118-121. The examples
are based on the addition of two spins s; = 3/2 and sy = 1/2,
following the example and table given on page 84.

Example 1: The ket [s1=3/2,s5=1/2,m1=-3/2,my=1/2)
is compactly written |m;=-3/2,my=1/2) by omitting
the quantum numbers s; and s, from all kets and bras below.
To expand this TP basis state into the TAM basis {|S, mg)},
the % X % CG coefficient table on page 118 is used. Since
mg=m,+ my = —1 (for this case), the only elements of the
superposition with non-zero coefficients are |S=2 m,=—1)
and |S=1,m,=-1).

The coefficients are determined by the numbers to the
right of the row labels —3/2 (left) and +1/2 (right). The
number 1/4 is found in the column headed by 2 (above)
and —1 (below). This column corresponds to the TAM
state |S=2,mg=—1), and the corresponding CG coefficient
is y/1/4. The number —3/4 is found in the column headed
by 1 (above) and —1 (below). This column corresponds
to the TAM state |S=1,mg=-1), and the corres-
ponding CG coefficient is —y/3/4. The expansion of
|m,=—3/2,my =1/2) into the TAM basis is then written as

|m1=—— \ﬂs 2,mg= —\/§|S=1,ms=—1>

Example 2: Expanding a TAM basis state into the TP basis
is similar to the above example, but the numbers in a column
(rather than a row) of a section of the table determine the
expansion coefficients. For s; = 3/2 and s; = 1/2, the TAM
state |[S=1, mg=1) is written in the TP basis as

1 1 1 1
IS=1,mg=1) \/1’”1 —§>—\/£|m1—§,m2—§)

Note that the sum of the squares of the CG coefficients in
the expansion of any state into another basis must equal 1.
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Ritz Variational Method

The Ritz variational method is useful for estimating or
placing an upper bound on the ground-state energy
eigenvalue in problems that are difficult or impossible to
solve analytically. The primary concept involved is the
following: for any “trial” normalized quantum state |{s), the
true ground-state energy E, of a system can be no larger
than (H) = (|HI); i.e,

E, = ($|H|W)

for any physically acceptable [s). This principle implies
that a guess can be made for a trial solution [{s) in order to
find the energy expectation value for that guess, and the
actual ground-state energy must be less than or equal to
that value.

Example: Using the 1D position representation, a poten-
tial well V(x) may be given for which the ground-state
wavefunction and energy are not analytically obtainable.
A guess can be made for a ground-state wave function
Pguess(x,N) that includes an adjustable variational
parameter \. By minimizing the energy expectation value
(H) for Wigyess (x, \) with respect to N, an upper bound on the
ground-state energy is obtained.

To demonstrate this procedure, let a 1D potential well be
defined as V(x) = Jhw(x/0)*, where o= /n/(mw). Con-
sider a normalized trial wavefunction

1 1/4 a2
ll’guess(xv )\) = (—) e %’

mA\2g2

Calculating (I—:T> and then minimizing the result with
respect to N determines that (H) is minimized for
N~ 0.833. The minimum value of (H) for this trial
wavefunction is 0.54Aw. This result shows that the true
ground-state energy F, of the given potential V(x) must be
less than or equal to 0.54Aw. Other trial wavefunctions
closer to the true ground-state wavefunction may help set
even lower limits to the true ground-state energy.
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Stationary Perturbation Theory

Stationary perturbation theory (SPT) constructs approxi-
mate energy eigenvalues and eigenstates of a time-independent
Hamiltonian H = H o+ AW, for which

- Hy|¢l) = E%¢l), where all EY and |¢,) are known. For
each eigenvalue E9, the superscript i accounts for
degeneracy, ie{1,2,...,8,}.

* M\ is a positive or negative real scalar, |\|<<1

- AW is a small perturbation, meaning that the matrix
elements of A\W are much smaller in magnitude than the
differences between the eigenvalues of H.

* The eigenvalues and eigenstates of H are defined by
Hl,j) = E,jlU,;). For a given n, the eigenvalues {E,,}
and eigenstates {|l,;)} may be different than the
associated unperturbed quantities E9 and {|¢})}, where
i,je{1,2,...,8,}. The index j labels the different solu-
tions to the eigenvalue equation for H in cases where
g, > 1. The indices i and j associated with a given n may
be omitted if g, = 1.

Non-degenerate SPT is used to find approximate solutions to
the eigenvalue equation for H for a given n when there is no
degeneracy in the H|, eigenvalue E? (i.e., g, = 1). H, may have
degeneracies associated with other eigenvalues E), where
p # n. Solutions are expanded as power series in \.

The non-degenerate SPT solutions to second order in A\
for E, and to first order in A\ for |¢n) are

[0 | W)
E, ~ Ef) + Mew|Wlen) “i:Zﬁ
p#Fn i=1 0 P
|‘-Pn g
W) =~ [@n) HZZ |@h)
p#n i=1

The approximate [§,) must be then be normalized.
Expansions to first order in \ for E,, and to zeroth order
in N for |§,) are obtained by omitting the double-
summation terms in the two expressions above.
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Degenerate Stationary Perturbation Theory

Degenerate SPT applies SPT (page 90) to treat a g,-fold

degeneracy (g, > 1) in an unperturbed eigenvalue E9 of H o0- As
with the non-degenerate case, solutions to the eigenvalue

equation for H are expressed as power series in \. Solutions to
first order in \ for the eigenvalues of H and to zeroth order in
\ for the eigenstates are described below. In this limit, the g,
eigenstates {|is,;)} of H that are associated with eigenvalues
{E,;} are found to be superpositions of the g, degenerate

eigenstates {|¢i)} of Hy, with i, je{1,2,...,g,}. Some or all of
these degeneracies may be removed when the perturbation is
present. Given specific values of n and g,, solutions to first
order in X for the set {E, ;} and to zeroth order in \ for the set
{|¥,.;)} are obtained by the following steps:

1. Given a state space &, identify the subspace &, that
is spanned by the degenerate state vectors {|¢.)}, with
ie{1,2,...,8,}

2. Define H, (()n> and \W" as the unperturbed Hamiltonian and
the perturbation that act within subspace &,. The Hamilto-
nian acting within this subspace is then H" = H f)n) NN AR

3. Find the g, eigenstates and eigenvalues of W(n); that is,
solve the eigenvalue equation

<n>|Un,j> = en.,j|Un,j>

This step is performed by first constructing the g, X g,
matrix that represents W™ in the representation defined by
the basis {|eL),|@2),...,|e5")} that spans the subspace &,

The matrix elements are given by WSZI (B W™ %)

(p,qef{1,2,...,8,})-

Results: The eigenvalues (to first order in \) and eigenstates
(to zeroth order in N\) of H that are associated with the
unperturbed energy eigenvalue EY are

En’j ~ E%+ Y
N’n,j> ~ |Un,j>
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Time-Dependent Perturbation Theory

Time-dependent perturbation theory (TDPT) is used
to find an approximate time-dependent expansion of a
quantum state [¥(¢)) into a known basis; the basis states
are the eigenstates of a time-independent Hamiltonian H,
but not eigenstates of the full time-dependent system
Hamiltonian H(t¢). TDPT is commonly used to find the
approximate time-dependent probability P(t) of measuring
that a transition has occurred from some known initial
state to some specified final state. The system Hamiltonian
is given by H(t) = Hy + AW (¢) for which

. I:Io|cpn> = E,|¢,), where all E,, and |¢,) are known. The
index n may be a compound index representing a set of
quantum numbers, including indices that indicate
energy degeneracy.

* M\ is a positive or negative real scalar, \|<<1

. )\W(t) is a weak perturbation, or timescales of interest
are short enough, so that P(¢) <1

* |¥(t)) is expanded into the {|¢,)} basis as follows:
) =D cald)len) = Zb e =M, )

where the terms b, (t) = c,(t)e!f»(t-0)/" are the expan-
sion coefficients in the interaction picture (page 46)

+ Each interaction- plcture coeff1c1ent bn(t) s expanded
1npowersof)\b() b+ \by;! () FNBY () e
where b\ ( ) 1s the r"order coeff1c1ent in the expan-
sion of |¢,), b =b »(to) is the expansion coefﬁc1ent of
|@,) for the initial initial state |¥(¢y)), and b (to) =0
for r > 0 for every n

The TDPT solution for the r*-order term (r > 0) is
oLt . -
NbD () =+ / S dt ont W ()0 (¢)
o 1

12

where o, =255 and W (¥) = (o W(E)|er)-
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TDPT: First-Order Solution

The first-order transition probability ngl) from a
known initial eigenstate |¢;) of H, to a final eigenstate
los) of HO 1s determined by first specifying the 1n1t1a1
condition at time tfo: |[¥(Z)) = |¢;), so that S =3,
(Kronecker delta) for each n.

The first-order term in the expansion of b,(f) (n #1) is
1) gy = A Lay o4 (¢t
) ih/to dt' ol W, (¢)

The time-dependent transition probability P, (¢) from the
initial state [¥(ty)) =|¢;) to |¥(f)) =|¢;) (f #1i) is then
approximated as 735; >, where the superscript indicates that
the probability is associated with expansion of b;(¢) to first

order:

9 )\2 2

W = hp
PR@ = o =2

dt’ it Wf (t’)

Pulse perturbations are perturbations for which AW =0
when the system is known to be in the initial state |¢;). The
perturbation then turns on and off again, after which the
probability P;; of finding the system in state |¢;) is
determined. In such cases, the temporal limits in the
)\bgll)(t) integral can formally be extended to —co and 0. The
integral for )\bgll)(t) 1s then
1 A
Nop! = S FAW(E)}

W=—wf

where F{W(t)} = [ _dt' et Wp(¢') is the time-
domain Fourier transform (page 94) of W/,(#') evaluated
at frequency o = —wy;.

O=—0f;

For a pulse perturbation, the first-order transition
probability from an initial state |¢;) to a final state |¢f) is

Py =—f{Wﬁ<t/>} ?

O=—0f;
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Fourier Transform Pairs for Pulse Perturbations

A time-domain function f(¢) has a corresponding frequency-
domain function F(w) that is the Fourier transform of f(¢).

The Fourier and inverse Fourier transform relationships
between f(t) and F(w) are

F(o) = F{f(1)} = / * dre-iotf (1)

£(t) = F- 1 {F(0)} = % K * do e F (o)

Note that these transforms are defined differently than
the transforms between the position and momentum
representations of a wavefunction (page 24).

Each row of the following table gives a Fourier transform
pair of functions f(¢) and F(w) that can be associated with
pulse perturbations. Note that for all examples given, f(¢) is
free of dimensional units and has a peak value of 1.

Fourier Transform Pairs

f@ | Fw)
eftz/(Z’rz) T\/Eefw%j/z
|
W Trre—lolT/(2m)

rect(t/7)
rect(t/t — 1/2) | Te *"2sinc(wt/2)
) | TrectjoT/(2m)]

(11—t |lfr=1 | Isinc3(wr/4)
Alt/7) = { 0 otherwise

7 sinc(wt/2)

sinc(wt/T

The special functions rect and sinc are defined as follows:

_[1 —i=esy
rect(8) {0 otherwise

sinc(§) = ésin(g)
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TDPT: Harmonic Perturbations

The special case of harmonic perturbations involves time-
dependent perturbations A\W(¢) = MWV sin(wt) with matrix
elements Wy;(t) = Wy, sin(ot), where W is time indepen-
dent. The ¢t = 0 initial state is assumed to be |¥(0)) = |¢;),
and the time and frequency-dependent transition probabil-
ity Py(t,0) to a final state [¢f) is to be approximately
determined.

To reach the solutions given below, the following assump-
tions are made:

o| is sufficiently near |os| such that the conditions
“0.)ﬁ| — |(.|.)|| <<|(J.)ﬁ| and ||(‘0fl| — |(,0H <<|0.)| are satisfied.
These conditions allow for a simplification in the
calculation of Py (¢,w) that is called the resonant
approximation or the rotating wave approxima-
tion.

+ The duration of the perturbation is long enough that w
is well defined (i.e., there are many cycles of the
harmonic perturbation during the interaction time).

* The transition probability remains small: Py (¢, w) <1
for all ¢t and w considered.

The last two assumptions above are together expressed as
the double inequality (for ¢ > 0)

1 h
i
|oo] [NV

Within these limits and approximations, the first-order
transition probability as a function of ¢ and w is given by

(1) :|)\Wﬁ|2 sm(tA/Z) 2: %2 ) %
P (t, o) P A2 A | ST

where A = w — wy;, and Qy; =MWy, /h. When )\W(t) primarily
couples [¢;) to |¢;) and no other states, this result is
approximately equal to the results for Rabi oscillations of a
two-level system (page 76) in the limit that A is much
larger than the resonant Rabi frequency.
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Central Potential Problems

A 3D central potential problem consists of a particle of mass
m in a spherically symmetric potential well V(r), where
r=|r|, and r = (x,y,2). For a time-independent potential, a
general central-potential Hamiltonian is written in the
position representation as

hZ
H{r} = —%VQ + V(}")

Because [ﬁ , f;z} = [I:I , iz] =0 for a central potential, there
exists a set of quantum states that are common eigenstates of

the CSCO {H,L* L.}. These eigenstates are often labeled
with the quantum numbers n, [, and m;, defined by the set of
eigenvalue equations

fJ|n7 l7 ml> = En,l|n7 l7 ml>
L?|n, 1, my) = (1 + 1)h2|n, 1, m;)
L.|n,1,m)) = mjhn, 1, my)

where the energy eigenvalues E,; depend on a principal
quantum number n and the OAM quantum number /, and
can only be determined once V(r) is specified. For any central
potential, the energy eigenvalues do not depend on m;, and [
and m; are limited to the ranges

{leN®}; mye{-1l,—-1+1,...,1-1,1} for any!

The quantum number [ is further constrained by n. In the
position representation, the {|n,l,m;)} state vectors are
expressed in spherical coordinates as

lbn,l,ml(ra 9, ¢) = <I‘|n, l, ml> = Rn,l(r) Y;nl((% d))

where the angular functions Y;"(6,¢) are spherical harmo-
nics, and the radial functions R, ;(r) can only be determined
once V(r) is specified. The “spinless” hydrogen problem (pages
97-98) and the 3D isotropic harmonic oscillator (page 62) are
examples of central potential problems, although the energy
eigenfunctions of the latter problem are usually expressed as
products of Hermite—Gaussian functions (page 54) rather than
as products of radial functions and spherical harmonics.
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“Spinless” Hydrogen: Energy Eigenvalues

A hydrogen atom consists of an electron and proton bound
together by the Coulomb interaction, given in SI units as

V()=

4meyr

where —e is the charge of an electron, €, is the permittivity of
free space (values of physical constants are given on page 125),
and r=|r| is the coordinate for the distance between the
electron and proton.

The “spinless” hydrogen atom problem assumes non-
relativistic electron motion and that the electron and proton
have zero spin. This model is an exactly solvable central
potential problem and provides a good approximation to the
energy eigenvalues of the “real” hydrogen atom. Once the
solutions are known, better approximations can be obtained
using stationary perturbation theory. In the center-of-mass
frame of the atom, the spinless hydrogen problem is defined by
the Hamiltonian
1 A9 62 1

IEI =5 - ——
0 Z}LP 4'rreo|R|

The reduced mass . is defined as

me,m

= P

=—)m,
me + m,

where m, and m,, are electron and proton masses (not angular
momentum quantum numbers). In the position representa-
tion, where division by |R| acts as division by r, the
Hamiltonian is
2 2
= e

2u 4megr

Opp —
The eigenvalues of H o are given by

E, = —E;/n? {neN*}

where E; ~ 13.6 eV is the ground-state ionization energy of
hydrogen, and n is the principal quantum number.
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Spinless Hydrogen: Energy Eigenfunctions

The spinless hydrogen energy-eigenvalue problem is solved in
the position representation using spherical coordinates. Since
this is a central potential problem, the angular parts of the
energy eigenfunctions are spherical harmonics Y}"(6.$) (see
page 100). The full expression for the hydrogen energy
eigenfunctions (in the position representation) is

Wy 1, (1,0, 0) = Ryt (r) Y7 (6, )
{neN*; 1eN°|0<i<n; meZ|-1<m<l}

where R, ;(r) are the radial wavefunctions for hydrogen (see
page 99). The radial wavefunctions are expressed in terms of

the Bohr radius ay = 4;26[’;’ 0.5 X 10719 m, a length constant

used in atomic physics that defines an approximate radius
of a ground-state hydrogen atom. The spherical harmonics and
the radial wavefunctions are separately normalized, and while
the spherical harmonics form an orthonormal basis for
functions of 6§ and ¢, the radial wavefunctions do not separately
constitute an orthogonal basis set for functions of r.

The energy eigenfunctions give the wavefunction for the
electron, with the proton’s position defining the coordinate
system origin. Each energy eigenfunction s, ; ,,, is the position
representation of the energy eigenstate |n, [, m;). The energy
eigenstates form an orthonormal basis {|n,[, m;)}

<nl, lla my ‘n’a la ml>

o0 71' 21 .
:/ drrZ/ do Sine/ dd) (lljn’,l’,mlr) lbn,l,ml
</ drr*R ’Z’Rnl) (/ do s1n6/ do Y ml' Y;"l])

( )(81 l’)(Sml mlr)

The ground state of “spinless” hydrogen is denoted
|n=1,1=0,m;=0), or |1,0,0), with energy eigenvalue
E, = —FE; and a spherically symmetric wavefunction:

¢1,070(r)=R1,0(r)Y8(9,¢) ("Tao) 1/2 g-r/ag

Because [ = 0, the electron in the hydrogen ground state
has no orbital angular momentum and therefore should
not be described as “orbiting” the proton.
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Hydrogen Radial Wavefunctions

The radial wavefunctions R, ;(r) of hydrogen are given by

(2N [(n—=1-1)/2r\! _ - g (2
Rai) = (o) £ ) © 8 (1)
where ag 1s the Bohr radius;

ot = (17 () Tt

is an associated Laguerre polynomial; and

Ly(u)=e* (%) q(e‘”uq)

is the ¢'® Laguerre polynomial. The radial wavefunc-
tions are not all mutually orthogonal. However, radial
wavefunctions with the same quantum number [ are
orthogonal (note that the radial wavefunctions are all real):

oo
2 —
/ drr Rn’,an,l = 8n,n’
0

Radial Wavefunctions of Hydrogen through n =4

RI,O = 2(163/2 e"/“o

\/E Qo

—3/2( r\
Roa :ﬁao / (a_o)e r/2a0

-3/2 r r\2\ -
R30 = =9 / (1_%%+%(%) )e 713

~3/2 _
Rsq1 = —sz/gao / (1 - %é) (aLo)e /a0

Roo = Laa?’/? (1 _ %L) e 7/2a

Rsg = 81;\4/% aa3/2(a%)2 o—7/3a0

Rio =fag”* (135 + 3G — 1 G)°)e /'
Res = igfso (14 + 3 () )
Ris =gt (1) ()"

— 1 -3/2 T 3 —r/4ay
Rz 768v/35 20 a) €

uantum Mechanics



100 Hydrogen and Atomic Structure

Spherical Harmonics

The spherical harmonics are special functions defined on the
surface of a sphere of arbitrary radius. They are denoted Y7*(6, ¢)
with {{,meN’| -l <m<I}. Following the usual conventions
of quantum physics, the spherical harmonics are given by

. 21+ 1) (I - !
R e

where

rro=a-e% ()" o (%) @ - )

is an associated Legendre polynomial. The quantity in curly
brackets is the Legendre polynomial P;(§). The spherical
harmonics form a basis for functions of 6 and ¢. Their
orthonormality is expressed as

T . 2 -
/ do smG/ do[Y] (YT = (810)(Smn)
0 0

Spherical Harmonics through I =3

Y8 =\/&

Y9 = \/7 cos 0

Yil = :F\/% sin § eFi®

Y9 = \/%(3 cos?0—1)

Y3l = :F\/g sin 0 cos § et
Y32 = \/31? sin? f e*2id
Y= \/;(5cos36 3cos0)

Y3l =F,/3L sin6(5cos? 6 — 1)eti®

+2 /105
Y3 - 327

sinZ 0 cos § e*2i®

+3 3 ,+3ib
Y; F 6411- sin’ fe
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Atomic Angular Momentum Quantum Numbers

Various types of angular momenta associated with atoms
are listed in the table below, represented by a letter that is
conventionally used as the quantum number associated
with the magnitude of the angular momentum. The symbol
for the associated z-component magnetic quantum number
in all cases is m with the given angular momentum
quantum number as a subscript. For example, since I is the
quantum number for the magnitude of nuclear spin, m; is
the z-component magnetic quantum number for the
nuclear spin.

The standard symbol for an angular momentum quantum
number is often the same as the standard symbol for the
angular momentum operator, so the meaning of a symbol
must often be determined by the context in which it is used.
In this Field Guide, operators are always indicated with
carets (or “hats”) over the symbols to aid in the interpreta-
tion of expressions. Vector notation and subscripts further
help identify the meaning of a symbol. Note that operators
are not necessarily denoted with carets in other books and
resources.

Quantum Number Angular Momentum (AM) Type

l orbital AM of a single electron

s spin AM of a single electron

L net orbital AM of all electrons in an
atom

S net spin AM of all electrons in an atom

J net orbital + spin AM of all electrons in
an atom; vector AM operator:
J=L+S

1 spin AM of an atomic nucleus
total atomic AM; vector AM
operator: F=J +1
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Fine Structure of Hydrogen: Perturbation Terms

The spinless hydrogen model (page 97) neglects physical effects
arising from the electron’s spin, relativistic motion, and small-
scale rapid position oscillations (called zitterbewegung)
that require the evaluation of the Coulomb potential over a
spatial volume. When the dominant terms associated with
these corrections are included in the hydrogen problem, the
energy levels from the spinless hydrogen model are found to
shift and to split; this energy-level structure is called the fine
structure of hydrogen. When the nuclear spin is also
considered, an even finer splitting of the energy levels is found;
this is the hyperfine structure of hydrogen.

The fine-structure problem is exactly solvable using the Dirac
equation, which is beyond the scope of this Field Guide, or
approximately solved using stationary perturbation theory. In
the latter approach, discussed below, the small expansion
parameter is a?, where a is the dimensionless fine-structure
constant:

1 &  n
4meg he  mecag

® ~ 1/137

where the constants are defined on page 125. The unperturbed
Hamiltonian is given by the spinless hydrogen Hamiltonian H,,
(page 97) with the eigenvalues E, = —E;/n® and eigenstates
{|n,l,m;)}. The electron spin states {|s =1/2,my = £1/2)} are
incorporated using a tensor-product basis often denoted as
either {|n,l, m;)|s,m)} or {|n,l,s; m;, m,)}.

The fine-structure Hamiltonian is H FS =H, o+ WFS The com-
ponents of the perturbation WF g = Wso +a? WR +a? WD are
defined as

A 2 ~ -
+ Spin-orbit coupling: a2Wgg = o? - 7:;3 o5 R, §
N 2
+ Relativistic term: «?Wp = —a? - 8,: P p*
e

- “Darwin” term: a2Wp = o2 - sad V2V(R) = o2 - (;g—:; 5(R)
where IA’f = (f’ . f’)z, R= |1€€|, V(R) is the Coulomb interaction
energy, L is the electron OAM operator, and S is the s=1/2
electron spin operator.
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Fine Structure of Hydrogen: Solutions

The fine-structure perturbations break some of the degenera-
cies of the {|n, [, s; m;, m,)} states. Under the perturbatlon the
eigenstates of H S remam eigenstates of I’ and SE They are
also eigenstates of J? and J where J=L+8, so they are
therefore not eigenstates of L and S Due to this, the
eigenstates of H rs involve new quantum numbers J and m,
(associated with J? and J ., respectively) instead of m; and m.

The notation used below involves the standard symbols for
atomic angular momentum quantum numbers (page 101).
Note that it is common to use capital letters L and S as the
quantum numbers for the total orbital angular momentum and
the total spin of all electrons in an atom, respectively. In
hydrogen, with one electron, L is equivalent to /, and S is
equivalent to s. The eigenstates of H g can therefore be labeled
|n, L, S;J, my). Transformations between the {|n,L,S;J, m;)}
basis and the {|n,L,S;mj;,mg)} basis are accomplished
through the use of Clebsch—Gordan coefficients.

The quantum numbers J and m; are defined through the
eigenvalue equations
32|n7 L7 S; Ja mJ> = J<J + 1)h2|n7 La S; JJ mJ>
cA]Z|n7 L,S;J,my)=mghln,L,S;J, my)

For arbitrary L and S, J can be any value in the range
{IL-S8|,|IL-S|+1,....L+S—-1,L+S}. Since S=1/2 for
hydrogen, </ can be either L+ 1/2 or L — 1/2 for L>0.If L =0,
then J = 1/2. For each J:mje{-J,—J +1,...,J — 1,J}.

Stationary perturbation theory to first order in o? gives
the following approximate energy eigenvalues for the
hydrogen fine-structure problem:

o n 3
E”*J_E{H <J+1/2 4)}
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Hyperfine Structure of Hydrogen

The hydrogen nucleus is a single proton, so the nucleus has a
spin quantum number I = 1/2. The nuclear spin and electronic
state spaces are merged to give a tensor-product basis
{In,L,S;J,my)|I,mr)}. These are not eigenstates of the full
atomic Hamiltonian due to coupling of the magnetic dipole
moment of the proton with the electron’s magnetic dipole
moment. This coupling leads to the hyperfine structure of
hydrogen and associated shifts in the energy eigenvalues of
hydrogen that are even smaller than the fine-structure energy
shifts.

Hydrogen’s hyperfine structure is calculated using a perturba-
tion Hamiltonian Wy (not given here) that is much weaker
than Wrg; the approximate energy eigenstates of the perturbed
Hamiltonian are {|n,L,S,J,I;F,mp)}. Quantum numbers F
and my are associated w1th the observables 2 and F where
F=J+1is the vector operator for the total angular momen-
tum of the atom. F? and F, have the eigenvalue equations

¥°|n,L,S,J,I;F,mp) = F(F + 1)i%n,L,S,J,I;F, mp)
F.n,L,S,J,IF,mp) = mph|n,L,S,J,I,F, mp)
Fe{lJ=I|,|J—1|+1,....d+I1-1,J+1}
mpe{-F,—F+1,...,F—1, F}for each F

Since I = 1/2 for hydrogen, F has the values J+1/2 and J—1/2
for each J. The unperturbed, fine-structure, and hyperfine-
structure energy levels, shifts, and eigenstates are shown
below for the n = 1 level. The kets omit the quantum numbers
n=1,L=0,S=1/2,J=1/2,I=1/2, and m; =0

I:I:I:Io H:H@+Wps ﬁ=ﬁ0+Wps+WHF
w,-&
Ims=+3, mi=+3)

\8Eps = 2mh x (43.8GHz) _
o Eip=1=-Er

11
1+o (= -—
e (4 493)]

b o[
e ] By [F=1, mpe(1,0,-1)
|mJ:i%’m1: %> \ SE pgr =~ 2nh x (1.42GHz)
1 3
Eip-o=-Er|1+c?|=+—
) 1,F=0 1|1+ 4+493)‘7

|F=0,mp=0)
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Zeeman Effect in Hydrogen: n =1

In the presence of a uniform magnetic field B, the energy
eigenvalue for the state |n,L,S,J,I;F,mg) is shifted by an
amount that depends on the angular momentum quantum
numbers; this energy shift is the Zeeman effect. Let the
direction of the magnetic field define the z direction, so that
B = Bz leads to a perturbation Hamiltonian

W,=-i-B
with

ﬁ=%< —g;L+g.8S +t8p I)

where g;, ~ 1, g, = —2.002, and g, ~ 5.586 (see page 72).

For n = 1, the electron has no orbital angular momentum, so
the L term can be neglected, and S = J for this case. Since
me << my,, the atomic magnetic moment is approximately

Defining o = pgBy/h, the Zeeman perturbation (for n = 1) is
WZ = 2(1)OJ s
The hydrogen Hamiltonian is then
H=Hy+Wps+Wyp+ W,

For weak magnetic fields, WZ < WHF, and the Zeeman effect
is treated as a small perturbation to the hyperfine structure of
hydrogen. This leads to the weak-field Zeeman effect. For
larger magnetic fields, with WHF < WZ < WFS, the Zeeman
effect shifts the fine-structure energy levels according to the
value of m; the hyperfine term Wy is then treated as a small
perturbation on the levels |n, L, S, J, I; m , m;) that are shifted
in energy by the magnetic field. This is the strong-field
Zeeman effect. The energy eigenvalues within both limits, as
well as the intermediate-field Zeeman effect, can be found
using stationary perturbation theory; results for the n = 1 level
are given and illustrated on page 106.
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Zeeman Effect in Hydrogen: n =1 Solutions

The approximate energy eigenvalues and eigenstates for the
n = 1 level of hydrogen in the presence of a uniform magnetic
field B = Byz are given and plotted below in terms of the
n =1 level’s hyperfine splitting 8 Eyx (defined in the figure
on page 104), o = wBy/h, and 0 = tan~!(2hw, /SEgr).

For all of the n=1 states, L=0, S=1/2, J=1/2, and
I=1/2; these labels are omitted from the kets given below.
Furthermore, m, is used instead of m_ since my, = 0 for this
case.

Energy Eigenvalues Energy Eigenstates

4

'SEL;HF _|_th |F = l,mF - 1>
01 — _
SE SEn) 2 9 cosg|F =1,mp =0)
-t \/<%) + (o) +sin§|F =0,mp = 0)
M*h(})o |F:17mF:_1>

=8 J(35)° 4

—sing|F=1,mp=0)
+cos§|F =0,mp = 0)

SEgp ~2mh x

-

0.327

(1.42GHz)

0.127

0.21n 0 o.28n 0357

200

200 600 800 1000
By [Gauss]
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Spectroscopic Notation and Term Symbols

Spectroscopic notation is used to indicate the value of the
OAM quantum number of a single electron within an atom.
The lowest few values of [ are assigned the following letters:

[=0 & s
=1 & p
=2 & d
=3 & f
=4 o g

These letters are used immediately following the principal
quantum number n to identify an energy level. For example,
the 4p level of hydrogen denotes n =4 and [ = 1. The 4p level
consists of the set of three |n,l, m;) states |4,1,1), |4,1,0), and
14,1,-1).

When OAM quantum numbers are associated with the net
OAM of all electrons in an atom (i.e., L instead of /), the same
spectroscopic notation is used but the letters are capitalized.
In either case, symbols must be interpreted in context, as
various meanings are assigned to these letters throughout
quantum and atomic physics.

The angular momentum quantum numbers S, L, and o/ for all
electrons of an atom can also be incorporated into an atomic
term symbol, following the notation

2S+1 LJ

where the superscript 2S5+1 is the spin multiplicity (the
number of orthogonal spin states for total electron spin
quantum number S), L is the total electron OAM quantum
number and is replaced by the equivalent (capitalized) letter
given by the spectroscopic notation convention, and <J is the
quantum number associated with the sum of the net electron
spin and OAM for a given level. For example, all states of
hydrogen have S =1/2, so the spin multiplicity is 2. For a
hydrogen atom in a state that has L = 1 and J = 3/2, the term
symbol is 2P4 /2, and the possible values of m  associated with
this level are 3/2, 1/2, —1/2, and —3/2.
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Identical Particles: Two Particles

A spin quantum number is associated with every quantum-
mechanical particle, whether the particle is elementary (such
as an electron), composite (such as an atom), or force-mediating
(such as a photon). The many-body states available to a
system of identical particles each having spin s may be
tentatively described as if each particle could be separately
labeled and assigned an individual single-particle state. The
actual quantum states physically available to a system of
identical particles are then constructed, as shown below.

Consider two identical particles in states [li4) and [{ig). At first
consideration, a two-particle state might be labeled |y4)|¥p),
where the first ket is the state of (nominal) “particle 1,” and the
second is that of (nominal) “particle 2.” However, since the
particles are identical, no measurement can distinguish this
state from [Ug)|U4) (i.e., “particle 17 in state [{5) and “particle 2”
in state [{iq)), so these two tensor product kets cannot be
different elements of the state space of the two-particle system.
The physically available two-particle states are rather

_ B
V2

The plus sign is used if the particles have integer (including 0)
spin; these particles are called bosons. The minus sign is used
if the particles have half-integer spin (1/2, 3/2, etc.); these
particles are called fermions. The normalization coefficient 3
depends on states |Ui4) and [lg): B = 1 if (Y4|lg) = 0, but B#1
otherwise and must be found after constructing the superpo-
sition so that (¥|¥) = 1.

|¥) ([a) W) = [UB)[Wa))

If [i4) = |Wp), then (after normalizing the boson case)

p) = {51A>|¢A> (bosons)

(fermions)

The boson state above is an element of the two-particle state
space; the fermion case is not (|¥) = 0 is not a physical state).
The conclusion from this result is that two identical fermions
cannot occupy the same single-particle quantum state; this is
the Pauli exclusion principle.
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Identical Particles: Three or More Particles

Three-particle case: The physical state of three identical
fermions in orthogonal single-particle quantum states [{i4),

[Ug), and [c) is given by

) [ba) [bB)  |be)
W) =—=|[ba) [UB) [bc)
ve [ba) [bB)  |be)

LG(|¢A>|¢B>‘¢C> = [a) ) B) + [UB) [e) [Ua)

— [B)[Wa) [be) + [We) [Ba)bp) — [e) [bp)[ba))

The right side of the first expression is a Slater determinant.
It is evaluated as a matrix determinant, although a proper
order must be kept when constructing each tensor product of
three kets. The first row is associated with (nominal) particle 1;
the elements of this row appear first in each tensor product.
The second row is associated with particle 2; these kets appear
second, etc. The second expression above is the evaluated
determinant. Again, these expressions show that two identical
fermions cannot occupy the same single-particle state.

S

The three-particle quantum state (prior to finding the
normalization coefficient B) of identical bosons is

= \/B€(|‘~’—‘A>|‘~'—‘B>¢C> + [Ua) ) W) + [Up)[bc)[Wa)

+ [Wg) [a) [e) + [be) ba) [Ws) + (o) [s) [ba))

N-particle case: For N identical fermions in states [{;) to
[Un), the N-particle state is given by the Slater determinant

¥)

T

1 1 2) .- N

S, 1 EE R R
L 7 N 1175

For N identical bosons in states [§;) to |ly), the same
sequence of tensor-product states as above is constructed,
except all of the minus signs from the Slater determinant are
replaced by plus signs (this is a matrix permanent rather
than a determinant). |¥) is then normalized.
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Identical Particles: Occupation Number Basis

For a system of N identical particles, the formalism given on
pages 108-109 describes the physical states that are elements
of the state space £y of the entire many-body system. A basis
for £y can be constructed using a simplified notation that
enables the specification of the number of particles n;, that can
be found in each single-particle state of a discrete basis {|U,)}
that spans the state space for a single particle; ny, is called the
occupation number for state |is,).

For example, if N identical particles are confined in a 1D
potential well, and if |[{s;) is the single-particle ground state of
the well, then n; = 3 indicates that there are three particles in
the ground state (necessarily implying that the particles are
bosons). Correspondingly, N — 3 particles must occupy excited
states. The occupation-number formalism avoids the need to
invoke language and terminology that artificially label the
particles.

The many-particle occupation number basis for Ey is
specified by {|n,ng, -+, ny, -+ )}, where ny is the occupation
number for the &*® single-particle state and is found in the &2
position within the many-body ket, and N =}, n,.

For example, the state |0,1,0,1,0,---) (with all other
occupation numbers being zero) indicates that there is one
particle in the single-particle state |[{5;) and one particle in the
single-particle state [{5,). This is a physical state available to a
system of two identical particles, either bosons or fermions.
However, the superpositions of tensor-product states are
different for the boson and fermion cases. For idential bosons,
the occupation-number state |0,1,0,1,0, ---) coincides with
the two-particle state

L
V2

whereas for fermions it coincides with the two-particle state

|¥) ([W2) [g) + [bg) [2))

) = = (Wadl) — )li)




Identical Particles 111

Identical Particles: Occupation Number Basis States

The occupation number basis states {|ny,ng, -+, ng, +-)}
defined on page 110 have the following properties:

The basis is orthonormal:
li i i
<n17n27 "'vnka ‘n17n27 RO >

= (8n1,n’1)(8n2,n’2) o (8nkn}4) e

For a system of NV fermions, the Pauli exclusion principle
constrains each occupation number to be either 0 or 1,
along with the constraint N =5, n,

For a system of bosons, each occupation number may be
any non-negative integer, limited only by N = >, n,

For the occupation number n,, the index k& may be a
compound index that represents or is replaced by a set of
single-particle indices. For example, consider a 3D
isotropic harmonic oscillator potential of frequency .
The energy eigenvalues for the single-particle Hamilto-
nian are

Enx_’ny’nz = ho(n, +n, +n, +3/2)
{nxv ny, Nz E[NO}

following the notation defined on page 62. The occupation-
number basis states for three identical particles (bosons
or fermions) in this potential may be written as

{|no7o,o’ 110,05 0,1,0, 10,0,15 " >}

where the subscripts indicate the degree of excitation of
each of the three orthogonal dimensions of the oscillator.
If there is no energy of interaction between the three
particles, then the energy of the occupation-number state
10,1,1,1,0, ---) is 3 - 3 hw.

The occupation number basis is used in problems that
involve quantifying the states and dynamics of systems
of interacting particles, and in the formalism of
second quantization.
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Miscellaneous Symbols and Notation

Notation for Sets of Numbers
z the set of all integers
NO the set of all integers greater than or equal to 0
INF the set of all integers greater than or equal to 1
R the set of all real numbers
R* the set of all real numbers greater than 0
C the set of all complex numbers

Dimensional units: Square brackets indicate the dimen-
sional units of a quantity. For example, {x € R|x: [m]} is
interpreted as “x belongs to the set of real numbers such
that x has dimensional units of meters.”

Vectors and unit vectors (directional vectors with a norm
of 1 and no dimensional units) are written in bold. For
example, if xg, yo, and z, are real numbers, rq = (xg, Yo, 20)
is a 3D vector pointing from the coordinate-system origin to
the point (xg,¥0,2)- ¥ = (0,1,0) is a unit vector.

Complex conjugation is indicated with an asterisk
superscript. For example, (2 4+ 4i) = 2 — 4i.

The Kronecker delta is indicated by the Greek letter
with two subscripts, 3;,, for example. §;, =1 if j =k, and
9, = 0 if j # k. The indices are usually integers.

The Dirac delta function of a continuous parameter x is
denoted 3(x), where 8(0) = oo and d(x) = 0 for x # 0. For a
general function f(x),

[ dst@nt ) = )

The dimensional units of 8(x) are the inverse of those of x; if
x 1s a scalar and dx has units of meters, for example, then
3(x) has units of inverse meters.
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Linear Algebra Basics

Quantum mechanics utilizes the structure and terminology of
linear algebra. Especially common are operations of the form
Av =V, where

* A is an N-dimensional (N rows by N columns) matrix of
scalars that are generally complex

+ vand v’ are column vectors (IN rows, 1 column) of scalars
that are generally complex; A is said to “act to the right”
on v to produce a new column vector v/

The following terms and symbols associated with matrices are
also found in the formalism of quantum mechanics:

+ AT the transpose of A, is obtained by exchanging the
rows and columns of A: the n'" row of A is the n'" column
of AT, and the n'® column of A is the n'" row of A7, where
the order of the elements is maintained

« A7l the inverse of A, is defined by AA 1=A"14=1,
where 1 is the identity matrix

« A", the adjoint of A, is the complex conjugate of
(all elements of) AT

« If A= A", then A is said to be Hermitian
« If A-1 = AT, then A is said to be unitary

The following terms and symbols associated with vectors are
found in the formalism of quantum mechanics:

+ v7T, the transpose of v, is a row vector created by placing
the elements of v in a row with NV columns, maintaining
the order of all elements

* The adjoint operation applies to vectors as well as
matrices. Let v be the adjoint of v. The row vector v’
is the complex conjugate of (all elements of) v7.

* The scalar product associated with the ordered vector
pair (u, v) is the complex scalar result of the vector
multiplication ufv

* The norm of v is defined as ||v|| = Vv'v and is real and
positive (unless all elements of v equal zero, in which
case ||v|| = 0). The norm is a generalized magnitude of v
for complex vectors of arbitrary dimension.
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Eigenvalue Equations in Linear Algebra

Eigenvalue equations for matrices and vectors are of the
form Av;, = \;v;, where

* A is an N-dimensional square matrix; its elements may
be complex

* v; 1s one element of a set of particular column vectors,
indexed by ke{1,2,...,N}. Each element of the set {v,}
solves the eigenvalue equation in conjunction with a
specific associated scalar \;. v;, is an eigenvector of A.

* )\, 1s an element of a set of particular scalars and may be
complex. \;, is an eigenvalue of A. The set of eigenvalues
of A, denoted {\.}, is the eigenvalue spectrum of A.

+ Multiple eigenvectors may be associated with the same
eigenvalue; e.g., \; =\, for j# k. In this case there is
degeneracy in the spectrum of A. The degree of
degeneracy for a given eigenvalue is the number of
eigenvectors that solves the eigenvalue equation for that
eigenvalue.

+ If A is Hermitian, then a set of N eigenvectors of A can
be found such that v}vk =0 for any two different
eigenvectors v; and v,. The eigenvectors v; and v, are
then said to be orthogonal, and {v;} denotes the full set
of mutually orthogonal eigenvectors. If the spectrum of A
has degeneracies, a set {v,} is not unique (i.e, there are
multiple ways to construct sets of orthogonal eigenvec-
tors).

If v, is an eigenvector of A associated with eigenvalue \;, then
for any two real scalars ¢ and ¢, wy, = ce’®v,, also solves the
eigenvalue equation and is associated with the eigenvalue \;,.
To remove this ambiguity in specifying eigenvectors, this Field
Guide uses the following eigenvector conventions:

+ Every eigenvector v;, of a matrix A is normalized to 1,
meaning that its norm ||v,|| is 1: ||v,|| = \/v;vk =1.

* When the eigenvectors of the set {v,} are found and
defined independently of each other, the first non-zero
element of each vector vy, is chosen to be real and positive.
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Spherical Coordinates

Spherical coordinates and expressions for the conversion

between rectilinear and spherical coordinate systems are
defined below.

Conventionally, x, y, and z indicate orthogonal spatial
coordinates in a 3D rectilinear coordinate system, where
r=(x,y,2) = xX +yy + 22

is a position vector. Vectors are denoted in bold. Unit
(directional) vectors have a norm of 1 and are denoted with
a hat or caret over a coordinate symbol, e.g., x = (1,0, 0).

Coordinate Conversion

r=|r|=/x?+)?+2¢ | Magnitude of r
0 =tan! (% Va?+ yz) Polar angle

¢ = tan™? (%) Azimuthal angle

x = rsin6 cos ¢
y =rsinfsin ¢
z=rcosb

Unit (Directional) Vector Conversion

r=sinfcosbx +sinfsindy +cos0z
0=cosBcosdpx+cosOsindy —sinbz
(i) =—sindx+cosdy

= 1n600sd)r+cos€)cosd>6—s1nd)¢
$7 1n951nd>r+cosesm¢ﬁ+cosd)(b
2=cos0F —sin60

Spherical coordinates are illustrated on page 116.
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Operators in Spherical Coordinates

The spherical coordinates defined on page 115 are
illustrated below.

The vector differential operator V is given by

0 10 - 1 9
V: - 0—— —
T n Y sne e

The Laplacian V2 is given by

r2or\' or) r?sin@d@ 00/ r?sinZ0 o¢?
The 3D differential volume element d°r, given in Cartesian

coordinates as d°r =dxdydz, is expressed in spherical
coordinates as

d3r = r?sin 0 drdo dd

/dd)/desine/drrzf(r,e,d))

is an indefinite volume integral of function f(r, 6, ).

so that




Appendix: Mathematics Reference, Tables, and Constants 117

Properties of 1D Gaussian Wavefunctions

A normalized 1D Gaussian wavefunction over the position
coordinate x has the form

W
First and second derivatives:

9 2
MO Zuw T L1

0x? w

ox w
Probability density distribution:
1 2 2
2 — —x* Jw!
WP = e

Standard deviation in the coordinate x:

Ax—{/ doc x| (x) (/ dox x| (x |2H/2 %

For a particle whose wavefunction is given by {i(x), the
net probability of finding the particle within the range
—a<x<a is the probability density distribution |{s(x)|?
integrated over this range:

P(x] < a) = /_ a dxfi(x)[? = ext ()

where erf(2) is the error function (page 122). Probabilities
associated with various ranges are given below:

P(]x| < Ax) ~ 0.68
P(|x| < 2Ax) ~ 0.95
The Fourier transform of i(x) is a Gaussian over the

momentum coordinate p (see pages 24 and 57):

w?p?

W) = Flu() = (%) R
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Clebsch-Gordan Coefficient Tables: J; X 1/2

Tables of Clebsch—Gordan coefficients are given below and
on pages 119-121. Two individual angular momentum
quantum numbers are denoted J; and J,, with J; = /5.
The corresponding z-component magnetic quantum num-
bers are m; and ms. The columns are labeled by the total-
angular-momentum quantum numbers J (magnitude) and
myj (z-component magnetic quantum number) on a green
background, with J above m_. The rows are labeled by m;
(left) and ms (right) on a green background. The square-root
is to be taken of every number in a table, and any minus
sign (if present) is placed outside of the radical. For example,
a table entry of —4/5 is interpreted as —y/4/5. See page 88
for an example that uses Clebsch—Gordan-coefficient tables.

Notation Guide

J1X 2 J J
[ 1/2 x 1/2| 1
| : +1 1 0
mi | ma Coefficients | EVEVE IR U
; = +1/2i-1/2| 1/2 1 1/2 [T
-1/2i+1/2| 1/2 i-1/2 -1
1 X 1/2 |3/2 -1/2:-1/2| 1
43724 3/2 | 1/2
Lz a2 1 J5i/a 50
+1 i-1/2 | 1/3 P 2/3 |55 10
o i+1/2] 2/3 i-1/3)1/5 C1)
3/2 x 1/2| 2 o :-1/2 2/3 i 1/3 |[ 3,5
2 2 1 -1 i+1/2] 1/3 i-2/3 |3/
Lszisae] o +1 | +1 | -2 i-12] 1
+3/2:-1/2| 174 | 3/4 |, 2
+1/2:+1/2| 3/4 i-1/4 0 0
+1/2 i -1/2 1/2 1/2 2 1
-1/2; +1/2 1/2 i-1/2 -1 -1
2 X 1/2 |s5/2 -1/2-1/2 | 3/4 | 1/4 2
*5/24 5/2 | 3/2 _3/2 i +1/2 | 1/4 {-3/4|[7;
IEEEEIIEN Py [z372i-1/2] 1
+2 i-1/2| 1/5 i a/5 [0 ot 5/,
+1 i+1/2 ) 4/5 i-1/5 10175 e

+1 i-1/2| 2/5 i 3/5 (T57 | 372
o i+1/2| 3/5 i-2/5 |15 1)

o i-1/2| 3/5 i 2/5 [ 5,2 | 3/2
-1 i+1/2| 2/5 i-3/5)|-3/2i-3/2

-1 :-1/2| 4/5 i 1/5 5/2
-2 i+1/2| 1/5 i-4/5)| _5/2

| 2 i-1/2] 1
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Clebsch-Gordan Coefficient Tables: J; X 1

1x1 2
it2 2 1
| +1 @+ 1 T
+1 i 0 |1/21 172 > 1 5
o i+ |12 2|7 o o
+1 -1 | 1/6 i 1/2 § 1/3
0 o |23i o ia13lM 1
-1 i o+ | 1/6 i-1/2 173 [T
) -1 |12 1172 >
-1 oo |12 i-a2fTT
3/2 x 1 5/2 I n
+5/2 | 5/2 | 3/2
[+3/2¢ +1 1 N 372 vasa
#3721 0 | 275 i35 |57 T ara T /e
+1/2; +1 3/5 1-2/5 1| 4172 | +1/2 | +1/2
+3/21 -1 [1/10] 2/5 | 1/2
+1/2 0 | 3/5 {1/15;-1/3
-1/2 0 +1 |3/10i-8/15i 1/6
5/2 | 3/2 i 1/2
—1/2-1/2 i-1/2
+1/2 -1 | 3/10 i8/15 1/6
-1/2: 0 |35 i-17150-1/3 M0 T e
-3/2 41 |1/10 i -2/5 i 1/2 |55 T8,
EIEN EEREE e
-3/2; o | 2/5 i-3/5
_5/2
2 x1 3 T !
[-3/2: -2 | 1
it 3 2
| +2 1 1 P R
+2 i o | 1/3 1 2/3 5 2 1
+1 +1 2/3 {-1/3 +1 +1 41
42 © -1 |1/15% 173 | 3/5
+1 i 0 |s/15 1/6 i-3/10| P 1
o i +1 | 2/5 i-172 1710 |7 o o
+1 § -1 | 1/5 | 1/2 [ 3/10
0 o |3/5: o i-2/5
3 2 1
-1 i o+1 | 1/5 i-1/23/10
-1 -1 -1
o | -1 | 2/5 i 1/2 i1/10
-1 o |8/15i-1/6 i-3/10|[ >
—2 i 41 |1/15i-1/3 1 3/5 |7,
1 i -1 | 2/3 0 1/3 5
B o | 1/3 23|77
[ =7 2 1
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Clebsch-Gordan Coefficient Tables: J; X 3/2

3/2 x 3/2 3
+3

|+372 +3/2] 1 2 | 42

+3/2 1 +1/2| 1/2 | 1/2
+1/2 1 +3/2 | 1/2 i-1/2 +1 +1 +1

+3/2-1/2 | 1/5 i 1/2 i3/10
+1/2i+1/2 | 3/5 1 o0 i-2/5
-1/2 i +3/2 | 1/5 i -1/2 i 3/10 |[77 ® o o

+3/2 i -3/2|1/20: 1/4 :9/20: 1/4

+1/2 | -1/2 | 9/20 | 1/4 i-1/20! -1/4
3 2 1 -1/2 { +1/2 | 9/20 ;i -1/4 i-1/20} 1/4
-1 -1 -1 -3/2 | +3/2 | 1/20 i -1/4 i 9/20 | -1/4
+1/2 {-3/2 | 1/5 | 1/2 {3/10
-1/2 {-1/2 | 3/5 0 i-2/5 3 2
-3/2 i+1/2 | 1/5 i-1/2 i3/10 ||, e
-1/2 i -3/2 | 1/2 i 1/2 3
-3/2 i -1/2 | 1/2 i-1/2 |73

| -372i-3/2] 1

2 X 3/2 7/2
+7/2

7/2 | 5/2
| +2 i+3/2] 1 +5/2 | +5/2

+2 i +1/2 | 3/7 | 4/7 S/2h s az
X1 4372 4/7 i -3/7 || +3/2 i +3/2 | +3/2
+2 i-1/2| 1/7 i16/35: 2/5
+1 [ +1/2| 4/7 11/35i-2/5

7/2 | 5/2 | 3/2 i 1/2
o +3/2| 2/7 18/35 1/5 |17 5 v 0 v1y2

+2 -3/2 | 1/35:6/35: 2/5 2/5
+1 -1/2 |12/35; 5/14 0 -3/10
o +1/2 |18/35;-3/35; -1/5; 1/5
-1 +3/2 | 4/35 -27/70; 2/5 {-1/10

7/2 | 5/2 i 3/2 i 1/2
-1/2{-1/2 | -1/2 | -1/2
+1 i -3/2|4/35i27/70; 2/5 i 1/10
0 |-1/2|18/35{3/35-1/5:-1/5
-1 +1/2 |12/35-5/14} 0 i3/10 [FORET SEET
-2 i+3/2 | 1/35 i-6/35i 2/5 i-2/5 |55 15,5 5,

o -3/2 | 2/7 :18/35; 1/5
-1 -1/2 | 4/7 i-1/35; -2/5
-2 :+1/2 | 1/7 =16/35 2/5

-1 -3/2
-2 -1/2
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Clebsch-Gordan Coefficient Tables: 2 X 2

2 X 2
i 4 3
+2 0 +2 +3 +3
+2 1/2 | 1/2 4 3 2
+1 1/2 =172 75 42 42
+2 o [3/14i 172 ¢ 2/7
+1 +1 4/17 0 -3/7 A 3 2 1
0 +2 | 3/14i-1/2 i 2/7 1 1 1 +1
+2 -1 | 1/14{3/10 i 3/7 i 1/5
+1 0 3/7 1/5 i-1/14:i-3/10
o +1 3/7 i -1/5 :-1/14: 3/10
-2 +2 1/14 {-3/10; 3/7 i -1/5
4 5 2 1 ()
o 0 0 1] 0
+2) -2 1/70 i 1/10 2/7 2/5 1/5
+1 -1 8/35 2/5 1/14 {-1/10} -1/5
0 0 18/35 0 -2/17 0 1/5
-1 +1 8/35:-2/5:1/14 ; 1/10 ; -1/5
-2 +2 1/70 :-1/10: 2/7 :-2/5 1/5
4 o 2 1
-1 -1 -1 -1
+1 -2 1/14 { 3/10 ¢ 3/7 1/5
o -1 3/7 1/5 i-1/14:-3/10
-1 0 3/7 i-1/5i-1/14; 3/10 4 3 2
=7 +1 | 1/14 i-3/10f 3/7 i-1/5 |75 2 2
0 -2 | 3714 1/2 | 2/7
-1 -1 4/7 0 -3/17 4 3 I
-2 o |3/14i-1/2% 2/7 3
—il —
-2 -1
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Integrals of Exponential Forms

[1]  [xe® dx = b (bx — 1)/b?
[2] [x"eP*dx = x"e* /b — (n/b) [x" teP*dx  for{n e N*}
8] [exte b*dx =n!/bt  forRe{b} >0,{n e N°}

]

]

]

1 [exl2e*dx = /2
[6] [rxd2e*dx=3\/m/4

]

]

]

]

=

[yedx=/m/2
[exedx=1/2
[eate ¥ dx = \/m/4
[exde ™ dx=1/2
[exte ™ dx = 3/m/8
[exde¥dx =1

[12] [exbe*dx = 15\/m/16
[13] [ex?e®dx=[1-3-5-... (2n—1)]y/m/2" for{n e Nt}
[14] [= e /2 ebrdx=+/2m - a ¥/ for{a e Rla =0}

[exe 2 by = a2 + | /Ta® be®V/? {1 + erf (%) ]

The error function is defined as

erf(y) = %Ay dxe

with erf(co) = 1. The value of erf(y) for a real number y
can be numerically computed or found in tables.
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Identities and Series Expansions

Trigonometry Identities with sin and cos
[1] | €® =cos0+ isin®
[2] | cos?B +sin?0 =1
[3] | cos® =1[e® + e~
[4] | sin6 =% [e® —e )
[5] | cos(26) = cos? — sin?0 = 2cos?6 — 1 = 1 — 2sin20
[6] | sin(26) = 2sin6cos6
[7] | cos?® = 1[1+ cos(26)]
[8] | sin?6 = 1[1 — cos(26)]
[9] | sinch={sin6 [wheresinc(0) = 1]
Hyperbolic sin and cos (sinh and cosh)
[1] | € = cosh® + sinh 6
[2] | cosh?6 — sinh? =1
[3] | cosh6 = cos(if) = 1[e + e
[4] | sinh 6 = isin(—i6) = J[e® — e

Power Series Expansions of F(x) about x =0
(1] 2 x" d"F(x)
F(x)= il
(x) ;On' dx” x=0

2 © 1

(2] e =1+x+x2/21+x3/31+ ... =men
n=0""

3 L -1 n/2

Bl sty =1 -y patar— = 30 CV
n=0|neven n:

4 o -1 n/2

. sin(x) =x—a%/3l+ 27/l — ... = > ( 2 X
n=1|nodd n:
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Dimensional Units (SI)

Base Units

Unit | Name Dimension

S second time interval

m meter length, distance

kg kilogram | mass

K kelvin temperature

A ampere electric current

¢ candela luminous intensity

mol mole amount of substance

Derived Units

Unit Name Measures
m/s velocity
kg-m/s momentum
m/s” acceleration
Hz=1/s hertz cycle frequency
radians/s (rad/s) angular frequency
N = kg - m/s? newton | force
J = kg m%s® joule energy
W=J/s watt power
Pa = N/m? pascal pressure
C=A-s coulomb | electric charge
V=J/C=W/A volt voltage
Wb=V.s=J/A weber magnetic flux
T = Whb/m? tesla magnetic flux density
H=J/A>=Wb/A | henry magnetic inductance

Dimensional Unit Conversions

Unit | Name Equivalent SI value
eV electron-volt | ~1.602 % 1071°J
G gauss 10747
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Common Physical Constants (to Four Significant Digits)

h

kg

29\
me

€0

Ko

=2.998 X 10® m/s
=6.626X10 % J-s
=4.136 X 10 %V s
=1.055 X 10 J-s
=6.582 X 10710 eV-s
=1.381 X 10723 J/K
=9.274 X 10724 J/T
=5.051 X 10727 J/T
=9.109 X 1073" kg
=1.673 X 107" kg
=1.602x 107 C

=8.854 X 1072 C%(J - m)
=47 X 107" T-m/A

speed of light in vacuum
Planck’s constant

reduced Planck’s constant;
h=hl2w

Boltzmann’s constant
Bohr magneton

nuclear magneton
electron rest mass

proton rest mass
elementary charge;
electron charge is —e
permittivity of free space

magnetic constant
(permeability of free space)

Hydrogen atom

2

fine-structure constant

e ©
4meghe
=17.297 X 1073
~ 1/137
_dmegh® R Bohr radius
@0 = m,e>  am,c

=5.292 X 10" m

2

1
EI = *0L2m802 =

2 2a2m,
=2.180 X 10718J
=13.61eV

= h-(3.290 X 10"°Hz)
= he-(91.13 X 10~%m) !

ionization energy

=1.097 X 10"m"!
=(91.13 X 10~%m)""

Rydberg constant

uantum Mechanics
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2w pulse, 76
7 pulse, 76

above-barrier
transmission, 51, 53
addition of angular
momentum, 88
adjoint, 3, 5, 113
angular momentum, 63
ladder operators, 63, 64
annihilation operator, 56
anti-Hermitian, 26
anti-linearity, 3
associated Laguerre
polynomial, 99
associated Legendre
polynomial, 100

Baker—Campbell—-
Hausdorff (BCH)
formula, 26

bare Rabi frequency, 76

basis, 6

Bloch sphere, 78

Bloch vector, 77

Bohr magneton, 71

Bohr radius, 98

boson, 108

bra, 2

bra—ket correspondence, 5

bra vector, 2

central potential, 96

classical mechanics, 1

classical turning points,
33

classically allowed region,
33

classically forbidden
region, 33

Clebsch—Gordan (CG)
coefficients, 86

closure relation, 9

coherent states, 56, 59

collapse postulate, 12

commutation relation, 4, 28

commutator, 4

commute, 4

compatible observables, 28

complete set of commuting
observables (CSCO), 30

complex conjugation, 112

compound index, 15

conservation of angular
momentum, 85

conservation of energy, 40

conservative system, 40

continuity equation, 37

continuous basis, 6

continuous representation,
19

conventions, 68

coupling, 75

Coulomb interaction, 97

creation operator, 56

Darwin term, 102

deBroglie wavelength, 33

degeneracy, 7, 114

degenerate stationary
perturbation theory, 91

degree of degeneracy, 7,
114

detuning, 75

dimension (of state space),
7

dimensional units, 112

Dirac delta function, 6, 48,
112

uantum Mechanics
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Dirac equation, 102

Dirac notation, 2

discrete basis, 6

discrete representation,
16-18

displacement coordinate,
60

displacement operator, 59

displacement, 59

dynamics, 41

effective Hamailtonian, 42

effective Schrodinger
equation, 42

effective state, 42

Ehrenfest’s equations
(Ehrenfest’s theorem),
44, 57

eigenket, 7

eigenstate, 7

eigenvalue, 7, 114
equation, 7, 114
postulate, 12, 14

eigenvector, 114

eigenvector conventions,
114

electron, 97

energy, 33

energy eigenfunction, 33

energy eigenstate basis,
14

energy eigenvalue
equation, 40

energy spectrum, 14

entangling, 74

error function, 122

evanescent coupling, 52

even wavefunction, 34

evolution postulate, 11

exactly solvable problems,
47

expansion coefficient, 6

expectation value, 27

Fabry—Perot resonator, 51

fermion, 107

fine structure, 102

fine-structure constant,
102

first-order transition
probability, 93

Fourier transform, 24, 94
harmonic oscillator

states, 60

Fourier transform pair, 94

free particle, 33

function of an operator, 10

functional, 2

Gaussian wavefunction,
58

generalized matrix
element, 21

generalized uncertainty
relation, 29

g-factor, 72

Glauber formula, 26

global phase, 6, 36

gradient, 74

ground-state
wavefunction, 34

gyromagnetic ratio, 71, 72

half-integer, 64

Hamiltonian, 11, 14

harmonic oscillator, 14, 35

Heisenberg picture, 43, 45

Heisenberg uncertainty
principle, 29
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Hermite—Gaussian, 54

Hermite polynomial, 54

Hermitian, 5, 113, 114

Hermitian conjugate, 3, 5,
26

Hilbert space, 11

hydrogen, 97

hyperfine structure, 102

idempotency, 8

identical particles, 108

identity operator, 9

incompatible observables,
29

index, 6

inner product, 3

interacting particles, 111

interaction picture, 43

intermediate-field Zeeman
effect, 105

International System of
Units (SI), 20

inverse, 26, 113

lonization energy, 97

isotropic harmonic
oscillator, 62

ket, 17

ket vector, 17

kinetic energy, 33
Kronecker delta, 6, 112

ladder operators, 56
Laguerre polynomial, 99
Laplacian, 116

Larmor frequency, 73
Larmor precession, 73
Legendre polynomial, 100
linear algebra, 1, 113
linear operator, 4, 11

linearity, 3—4
lowering operator, 56

magnetic dipole moment, 71
magnetic field, 71
gradient, 74
uniform, 73
magnetic quantum
number, 64
many-body states, 108
matrix, 113
matrix element, 5, 16
momentum
representation, 19
operator, 23
momentum-space
wavefunction, 20
momentum translation
operator, 39

nodes, 34
non-commutative
operators, 4
non-degenerate stationary
perturbation theory, 90
norm, 3, 113
normalizable, 3
normalized, 3, 114
nuclear magneton, 71
number operator, 56

observable, 11

observable postulate, 11

occupation number, 110
basis, 110

odd wavefunction, 34

operator, 2

orbital angular
momentum (OAM), 65

orbits (in phase space), 60
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order of operations, 4
orthogonality, 3
orthogonal projectors, 8
orthonormal, 6
oscillator length, 54
overlap, 8

overlap integral, 21

parity, 34
Pauli exclusion principle,
108
Pauli spin matrices, 69
Pauli spin operators, 69
permanent (of a matrix),
109
perturbation, 46
perturbation Hamiltonian,
74
phase-space diagram, 60
physically realizable
wavefunction, 32
pictures, 43
Heisenberg, 43, 45
Interaction, 43, 46
Schrodinger, 43—-44
plane waves, 48
polynomial
associated Laguerre,
99
associated Legendre,
100
Hermite, 54
Laguerre, 99
Legendre, 100
position-space
wavefunction, 20
position operator, 23
position representation, 19

position translation
operator, 39
postulates of quantum
mechanics, 11-13
potential barrier, 50-52
potential energy, 33
potential well, 34
principal quantum
number, 96
probability, 13
amplitude, 32
current, 37
density, 13
postulate, 31
projection operator, 8
projector, 8
proton, 97
pulse perturbation, 93

quantization, 12

quantization axis, 63

quasi-classical states,
56, 59

Rabi frequency, 76

Rabi oscillations, 76

radial wavefunctions,
98, 99

raising operator, 56

rect function, 94

reduced mass, 97

reference frames, 42

relative phase, 36

relativistic term, 102

representation, 17

resonant approximation,
95

resonant Rabi frequency,
76
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Ritz variational method,
88

rotating wave
approximation, 95

scalar product, 3, 113

Schréodinger equation, 11

Schrédinger picture, 43, 44

second quantization, 111

sinc function, 94, 123

Slater determinant, 109

span, 6, 8

spectroscopic notation, 107

spectrum, 7, 12, 114

spherical coordinates, 115

spherical harmonics, 66,
96, 98, 100

spin, 67

spin angular momentum,
67

spin multiplicity, 107

spin—orbit coupling, 102

spin precession, 73

“spinless” hydrogen, 97

square-integrable, 32

standard deviation, 29

standard ordering, 85

state, 1

state postulate, 11

state space, 1

state-space dimension, 7

state vector, 3

stationary perturbation
theory (SPT), 90

stationary state, 41

Stern—Gerlach effect, 74

strong-field Zeeman effect,
105

subspace, 8

subspace projector, 8
superposition, 3, 6
symmetric potential, 34

Taylor series expansion,
10
tensor product, 25
basis, 25
states, 62, 81
term symbol, 107
time-dependent
perturbation theory
(TDPT), 92
time-domain Fourier
transform, 93
time evolution operator,
40
time-independent
Schrédinger equation,
40
total-angular-momentum
(TAM) operator, 82
total-angular-momentum
basis, 83
transformation matrix,
18
transition, 46
transition probability,
76
transpose, 113
tunneling, 51-52
two-level systems, 69, 75

uncertainty, 29
uncertainty patch, 60
unit vectors, 112
unitary, 26, 113
operator, 26
transformations, 38
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variational parameter, 89 odd, 34
vector, 112, 113 weak-field Zeeman effect,
vector space, 3 105
. even, 34
wavefunction, 19 odd, 34

amplitude, 34
curvature, 33
even, 34

Gaussian, 117

Zeeman effect, 105
zitterbewegung, 102
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