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Chapter 1
Introduction

Physics does not consist only of atomic research, science does not consist only
of physics, and life does not consist only of science.

—Schrödinger in a letter to W. Wien, 1926 (cf. Moore 2015, p. 226)

1.1 Why Philosophize About Quantum Mechanics?

Sometimes upon watching a fly bump its head against a window over and over,
we might feel unpleasantly reminded of our human attempts to understand what
we call ‘the natural world’. In a more benevolent analogy, our bafflement about
many phenomena that modern science has predicted, or even brought into existence,
may remind us of the bafflement of astronaut Dr. David Bowman in Kubrick’s
classic 2001: A Space Odyssey upon gazing into the black monolith. A remarkably
successful scientific theory which reflects the analogy more clearly than any
other, as it has notoriously managed to escape our intuitive grasp, is quantum
mechanics (QM). Its predictive and technical-implementational success in the
twentieth century, witnessed in the following quotes, has inspired talk of a ‘scientific
revolution’:

Quantum mechanics is the most accurate theory in all of science. An extreme test is the
calculation of the ‘gyromagnetic ratio of the electron’ with a precision of one part in
a trillion. [. . . ] In fact, one-third of our economy involves products based on quantum
mechanics. (Rosenblum and Kuttner 2011, p. 116)

The spectacular advances in chemistry, biology, and medicine—and in essentially every
other science—could not have occurred without the tools that quantum mechanics made
possible. Without quantum mechanics there would be no global economy to speak of,
because the electronics revolution that brought us the computer age is a child of quantum
mechanics. So is the photonics revolution that brought us the Information Age. The creation
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of quantum physics has transformed our world, bringing with it all the benefits—and the
risks—of a scientific revolution. (Kleppner and Jackiw 2000, p. 893)

And yet there is still no consensus as to how to interpret QM. Feynman (1965, p.
129) once famously said: “I think I can safely say that nobody understands quantum
mechanics.” It is as if we had learned how to use the monolith, or to fly around the
window, even though we do not understand how any of the two works.

Sean Carroll (2013) has indeed gone so far as to call the lack of consensus,
reflecting the general lack of understanding, an embarrassment, alongside the fact
that the interpretation which is seemingly favored by the most physicists, as reflected
e.g. in polls by Tegmark (1998) and Schlosshauer et al. (2013), is what is usually
called the ‘orthodox’ or ‘Copenhagen’ interpretation.

What is wrong with this interpretation? John Bell, quite in the spirit of the
distinction between use and understanding that we have appealed to, once claimed
that “‘The Copenhagen interpretation’ is a very ambiguous term. Some people use
it just to mean the sort of practical quantum mechanics that you can do—like you
can ride a bicycle without really knowing what you’re doing.” (Mann and Crease
1988, p. 86) In other words: Most physicists do not care about how to understand
QM, and they do not have to in order to apply the theory successfully.

A second aspect to Bell’s quote is that it is notoriously difficult to pin down what
exactly should count as the ‘Copenhagen’ or ‘orthodox’ interpretation. And in fact,
we shall not even use the two notions synonymously in what follows. As regards
the ‘Copenhagen interpretation’, elements from the somewhat differing views of
some of the founding fathers of QM are usually summarized under this label, which
views may, upon closer inspection, not even all be compatible with one another
(cf. Gomatam 2006; Howard 2002; Strapp 1972). But what is worse is that some
of these views may even be disputed to count as ‘interpretations’ at all, and may
rather be viewed as a kind of ‘instruction manual’ for “the sort of practical quantum
mechanics” that Bell was talking about.

In his 2005 A Philosopher Looks at Quantum Mechanics (Again), Hilary Putnam,
for instance, recalls an undisclosed physicist colleague of his1 beginning a lecture
with the words “There is no Copenhagen interpretation of quantum mechanics”
(my emphasis—FB), after a period of fourteen years of continued discussion on
the subject. In a similar spirit, physicist David Mermin (1989) once summarized his
understanding of the Copenhagen view by one simple commandment: “Shut up and
calculate!” But just as physicists like Bell and Mermin did (or do, in the latter case),
many philosophers feel at unease with this attitude and prefer to “rather celebrate
the strangeness of quantum theory than deny it [. . . ].” (Mermin 1989, p. 9)

This unease has inspired what Ney and Albert (2013, p. xi) call a “joint project”
between physics and philosophy. This book is intended to provide a contribution
to that project. To this end, we will contrast attempts of furnishing QM with an
ontology that can accommodate everything that seems ‘strange’ or ‘weird’ about it

1Putnam’s intellectual autobiography reveals that it was M. Gell-Mann (cf. Putnam 2015, p. 68).
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with attempts of harvesting QM’s epistemological implications instead. These two
general approaches may be seen, in a sense, as rival programs. But of course, in
both approaches there are also subtle internal differences. There is, in particular,
an important subdivide among the interpretations that broadly count as ‘epistemic’,
as we shall see in Chap. 4, as some of these try to preserve our common sense
intuitions to the extent that this is possible while others radically challenge those
very intuitions.

More precisely, it has become fashionable again in recent years to attempt to
interpret QM epistemically by introducing new formal tools, including what is
typically known as hidden variables, ‘hidden’ (true) states of micro-systems not
described by any element of the QM formalism. If successful, such an interpretation
would allow to view QM as reflecting a lack of knowledge about an otherwise rather
‘classical’ underlying reality, i.e., one that can easily be accounted for in terms of
the configurations of systems described by those hidden variable-descriptions and
allows to explain quite directly why we see houses, chairs, tables, and so forth.

On the other hand, there have been more recent advances in making sense of QM
in terms of knowledge (or even belief ) without explicitly assuming additional such
variables or states. Approaches of this kind, however, come with the implication that
there may be irreducible limitations as to what can be known or even said about any
given object of investigation, or about the world ‘as a whole’ and our relation to it.
This, of course, reminds us of certain strains in traditional epistemology, so it will
be interesting too see how these approaches fit with those strains.

Opposed to this, we have the well-established schemes for interpreting QM by
providing some ontology of the ‘quantum world’, i.e. explaining what the world is
(or may be) like according to QM. But none of these schemes has surfaced as a
clear winner so far (Carroll’s embarrassment), and one should ask why exactly this
is. This will be a task we have to face as well, in the course of this book.

Our road to all of these interpretations will be an ‘unorthodox’ one, as we will
basically proceed from intuitive to less and less intuitive by some standards. This
means that certain well-known results will not be discussed right away, but only in
the appropriate context, to dispel the appeal of specific kinds of interpretation. We
start off, in the next chapter, with a gentle introduction to the general physics and the
general philosophical concerns raised by the theory and by experiment. This should
give philosophers who are only loosely familiar with the subject matter a chance to
tag along. Readers well-acquainted with the subject may, of course, feel free to skip
large parts, though it may be useful to see which conventions are being applied.

Additionally, in a mathematical appendix (A) we provide the mathematics
indispensable for an understanding of the discussion, and a little more beyond
that for the interested reader. It may be advisable to read (part of) that appendix
first, and then scroll back to it whenever the concepts are needed in the context of
discussion.

Finally, we note a bunch of philosophical introductions to the subject that also
provide short (and in some cases maybe more accessible) introductions to the
mathematics, in varying detail and depth. Particularly simple and accessible ones
are Albert (1992, chapter 2), Ney (2013), and Maudlin (2011, p. 260 ff.), a more
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comprehensive one is Hughes (1989), and a very compact one is given by Redhead
(1987). A non-philosophical introduction which may be recommended to absolute
beginners is Susskind and Friedman (2014); and of course other textbooks such
as those of Shankar (1994) or Sakurai (1994) provide detailed and ‘pedagogically
suitable’ expositions.2

1.2 A Few Words on Interpretation

Considering different interpretations of QM and their philosophical implications
inevitably raises the question of what constitutes an interpretation. The explication
of this concept is, however, a notoriously difficult task, as has been pointed out e.g.
by Jammer (1974, p. 9). Moreover, Jaeger (2009, p. 96) notes “a tendency [. . . ] to
inject philosophical biases or concerns into the very conception of interpretation,”
referencing the differing views of Bub (1974, p. 143), Teller (1995, p. 5), and
Mittelstaedt (1998, p. 1).

It is nonetheless desirable, and should be possible, to give a sufficiently general
characterization of what is meant by ‘interpretation’, without thereby siding with
either of the philosophically more involved conceptions or injecting own philosoph-
ical biases. To do so, let us begin by contrasting two characterizations from two
comprehensive works on the philosophy of QM, both from different eras of the
philosophy of science, which both purport to present the standard or most widely
accepted account at the time.

The first one is Jammer’s account as explained in his 1974 classic The Philosophy
of Quantum Mechanics. Jammer, obviously under the influence of logical empiri-
cism, thinks that “a physical theory is a partially interpreted formal system.” (p.
10) This he explains by dividing a given theory T into an abstract formalism F , “the
logical skeleton of the theory, [. . . ] a deductive, usually axiomatized calculus devoid
of any empirical meaning” and a set R of correspondence rules, which connect
F to experience. F not only contains constants and mathematical expressions, but
also nonlogical terms, like ‘particle’ and ‘state function’ (cf. ibid.). The ‘partial
interpretation’ now consists in connecting elements of F to experience via R, which
hence leads to the partially interpreted FR . A different set R′ of correspondence
rules would lead to a different partially interpreted theory FR′ accordingly. But
F also includes non-primitive, defined terms, which are the theoretical terms not
directly connected to experience by R.

This approach of Jammer’s is an expression of the syntactic view of theories,
rooted especially in the work of Carnap (cf. 1956; 1958). As we can see, the theory
is treated here as a predominantly linguistic entity, and a lot of weight is put on the
direct connection to experience. Nice and tidy as this approach may seem, it raises

2German readers may also profit from Nortmann (2008) and Friebe et al. (2015), both of which are
philosophical introductions to the topic.



1.2 A Few Words on Interpretation 5

various questions about axiomatizability, the observational-theoretical dichotomy,
the appropriate tools of formalization. . . which is why it was abandoned by most
philosophers of science from the late sixties on, most notably by Hempel, one of its
chief proponents up to that point (cf. Suppe 2000, pp. 102–103, for some historical
details).

A prominent alternative is the so-called semantic view of theories, rooted in
the works of Suppes (e.g. his 2002, for a detailed exposition), and endorsed
more recently by Ruetsche in her 2011 Interpreting Quantum Theories. Ruetsche
paraphrases the task of interpretation according to this view as follows:

[T]o interpret a physical theory is to characterize the worlds possible according to that
theory. Two phases of this characterization can be distinguished. One phase identifies
the theory’s structures: its states, observables, and dynamics. The other characterizes the
physical situations that count as models of the theory so structured. Interpretation is an
exercise in nomic articulation: a theory’s laws guide the characterization of its possible
worlds; the interpretation of a theory is at the same time an explication of the notion of
nomological possibility allied with the theory. (Ruetsche 2011, p. 9)

Ruetsche’s version of the semantic approach exhibits a strong emphasis on
modality, predominant in the philosophy of science at least since the writings of
Lewis and Kripke in the 1970s (cf. Soames 2014, p. 139 ff.). The semantic view
roughly construes a theory as a family of models, i.e. not in the first place a linguistic
entity. This does not mean that theories generally cannot be given a formulation in
some language or be axiomatized in favorable cases (e.g. the discussion in da Costa
and French 2003, p. 27 on ‘Suppes predicates’); it is just that the formulation is
not the theory but the family of models is. The latter is systematically prior to the
former.

The semantic view is still quite popular today, but it equally raises a bunch of
questions. For instance: it raises disagreement about how the theory, the family of
models, precisely relates to its formulation (cf. Chakravartty 2001, p. 326), what
the ontological status of the models is, or how they represent their target systems
(cf. Frigg 2006, p. 50); and Ruetsche’s own formulation obviously raises further
questions about the ontology and semantics of modal statements.

Helping ourselves to “uncomplicated and appealing (if vague) ideas”, as does
Ruetsche (2011, p. 6) in her acceptance of the semantic view, we here choose a
suitably neutral position in the light of the problems of syntactic and semantic
approaches. This neutral position constitutes a pragmatic view of theories if you
will, according to which “a theory is a more or less amorphous entity consisting
of sentences, models, problems, standards, skills, practices, etc.” (Mormann 2007,
p. 137)

Besides problems and discrepancies, there are also commonalities between
Jammer’s and Ruetsche’s approaches though, that should probably figure in any
account of theory-interpretation in physics. Both recognize that there is a part where
the abstract formal or structural ingredients of the theory are identified, including
its states and dynamics. And there is a part of connecting the abstract with the
concrete, and with empirical content. In both approaches, there is also a residue of
the theory which is not directly connected to experience; certainly not all elements
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of the nomological structure implied by a family of models are directly accessible to
sense experience, and neither, of course, are the entities presumed to be the referents
of theoretical terms in the syntactic approach.

We can hence distinguish two ‘levels’ of interpretation. In the spirit of Redhead
(1987, p. 44), and to avoid a confusion with the specific use of ‘partiality’ in the
syntactic approach, we will call a minimal interpretation of QM any set of rules
or postulates that establishes what the states and the dynamics of the theory are,
and how these connect to experience—basically the instruction manual mentioned
above. An interpretation that additionally tells us “how [. . . ] the world [could]
possibly be the way this theory says it is”, and thereby answers van Fraassen’s
(1991, p. 193) “foundational question par excellence,” will be called a non-minimal
interpretation. With this amount of clarity on general philosophy of science-issues,
we should be able to make some first sense in a concrete investigation of QM’s
foundations.



Chapter 2
Some Quantum Mechanics, Its Problems,
and How Not to Think About Them

. . . if one is not shocked about the quantum theory at first, one cannot possibly
have understood it.

—Attributed to N. Bohr by Heisenberg (cf. 1969, p. 241)

2.1 Non-relativistic Quantum Mechanics: Off to a Gentle
Start

2.1.1 A Tale of Waves and Particles?

QM is notoriously associated with a certain ‘strangeness’ or ‘weirdness’ (e.g.
Rosenblum and Kuttner 2011, p. 4; Davies 2004, p. 11) which stems, in the
first place, from the divergence of the phenomena that it describes and predicts
from our pre-quantum expectations. By ‘phenomenon’ we here mean, for practical
reasons, something along the lines of Bogen and Woodward (1988, pp. 305–
306), according to whom the phenomenon is rather what the theory predicts,
which may not even be observable, whereas the data are the observables that
serve as evidence for phenomena. A nice summary of the distinguishing features
between the two terms in Bogen and Woodward’s understanding is given by
da Costa and French (2003, p. 69; references omitted):

Data can be straightforwardly observed, are idiosyncratic to particular experimental
contexts, are the result of a “highly complex and unusual coincidence of circumstances”,
and are “relatively easy to identify, classify, measure, aggregate, and analyze in ways that
are reliable and reproducible by others”. Phenomena, on the other hand, are not observable,
are not idiosyncratic, have “stable, repeatable characteristics which will be detectable by
means of a variety of different procedures” involving different kinds of data, and in general
are constant and stable across different experimental contexts.

© Springer International Publishing AG, part of Springer Nature 2018
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Thus in the present context our use obviously diverges from the original Greek
φαινόμενον, which denotes something apparent to the senses (cf. Perschbacher
1990, p. 425), and with it from certain philosophical traditions. This is at least
somewhat in line with Pauli’s (1961, pp. 93–95) thinking on the matter, who sug-
gested that in principle any kind of conscious content such as perceptions, thoughts,
and ideas could count as phenomena, but that physical phenomena are complex
and require a theoretical-interpretational background for their description, involving
especially previous experience with certain apparatuses. Note, however, that we are
not thereby taking sides on epistemological issues here; the terminological choice
is a mere convenience that allows loose talk of ‘phenomena’ as it occurs in the
literature, without further explanation.

In essence the strangeness of QM thus lies, on the one hand, in the fact that
we may come to think of something as ‘fishy’ while looking at a computer
screen attached to some specific apparatus, say, or comparing lists of numbers
which we regard as ‘measurement outcomes’ and hence as data indicative of some
phenomenon, and that we might then feel the need to contemplate how to fit these
phenomena into the preoccupations we endorse based on the remainder of our total
experience. As Fine (1989, p. 130) puts it: “What surprises or puzzles is relative to
context, which includes at least psychological set and background beliefs.” And on
the other hand, the strangeness stems from the fact that the theory we have come
to use (with remarkable success) to accommodate all of these unusual phenomena
predicts many further ones.

QM was originally constructed1 as a theory of radiation and the fundamental
constituents of matter, i.e. atoms, electrons, and further, later discovered subatomic
particles. For now we restrict out attention to non-relativistic ‘single particle’ QM,
since the central problems thus established pervade also the more advanced forms.
Talk of ‘single particle QM’ certainly raises the question of what, precisely, is meant
by ‘particle’. Intuitively one may think of particles as tiny little ‘dot-like’ entities,
tiny carriers of properties, the fundamental ones of which are thought to be no
further divisible. These intuitions are borrowed from the concept of a ‘mass point’
endorsed in pre-quantum physics. In the light of what is established in this chapter,
however, we will already find the need for revision, and a more cautious treatment
will be provided in Sect. 2.1.3.

The first kind of ‘fishyness’ can be established very well from this intuitive
particle-notion and the fact that the very same entities that we can think of, in this
sense, as particles in some contexts seem to behave like waves in others. An example
to this effect can be set up by appeal to polarization, a property originally familiar
from electromagnetic waves.

From his equations of electromagnetism (in the vacuum), Maxwell derived a

wave equation, �E = 1
c2

∂2

∂t2
E, concluding that electromagnetic disturbances,

1Caveat: Parts of our exposition of the historical details will be quite ‘whig’ in the sense of
Butterfield (1931), meaning that one “studies the past with reference to the present[. . . ].” (ibid.,
section 2)
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Fig. 2.1 (a) A simple electromagnetic wave with linear polarization. (b) Electric field of a
circularly or elliptically polarized electromagnetic wave

fluctuating fields (or ‘waves’), should, under suitable conditions, propagate freely
in space. Here, � is the Laplacian operator (that we will meet with again shortly),
E the electric field, and c the speed of light. An analogous equation holds for
the magnetic field (B). Due to experimentation by Hertz, this consequence of the
Maxwellian theory could be confirmed in the late nineteenth century (cf. Harman
2003; Newton 2007, p. 141). And according to electromagnetic theory, visible light
is nothing but electromagnetic radiation, electromagnetic fields traveling as waves,
differing from other sorts of electromagnetic radiation only in frequency, i.e. in the
number of oscillations per second (e.g. Griffiths 1995, p. 306; Rae 2004, p. 4).

An electromagnetic wave can be visualized by a combination of two space
and time dependent vectors (‘pointers’), hence each constituting a vector-field, and
depicting the oscillating amplitudes of the electric and magnetic fields E and B

respectively (Fig. 2.1). These inevitably come together in an electromagnetic wave
phenomenon, according to Maxwell’s equations, and can eventually be identified as
two aspects of the same phenomenon in special relativity (cf. Jackson 1990, p. 558).
We can attribute a polarization to the electromagnetic wave as the direction along
which the electric field-vector oscillates.

In the simplest case, the electromagnetic wave is polarized linearly, as depicted
in Fig. 2.1a. This means that the wave has one E-vector oscillating in one plane
(here: the x-z-plane), instead of many superimposed E-vectors oscillating in all
kinds of directions, in which case the wave would be unpolarized. Moreover, E

does not rotate around the axis of propagation in this simplest case; otherwise it
would be called either circularly or elliptically polarized, depending on the ‘phase’
of its components (cf. Fig. 2.1b).

We can make things precise by representing the E-vector of polarized light by a
column2

2For the wave depicted in Fig. 2.1a the x-component is actually zero, as its E-field only oscillates
in z-direction, whereas the E-field of a more general wave as described by Eq. (2.1) would oscillate
in some direction in the x-z-plane for ϕ0 = 0 and Ex �= 0.
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E
.=
⎛
⎝
Ex · cos(ky − ωt − ϕ0)

0
Ez · cos(ky − ωt)

⎞
⎠ , (2.1)

where ω denotes the (angular) frequency of oscillation, Ex and Ez denote the
amplitudes (‘maximum heights’) of the electric field vector in y- and z-direction
respectively, and k = 2π

λ
denotes the wave-number, with λ the wavelength, i.e. the

distance between two neighboring peaks of the wave. It then holds that the wave
is polarized linearly if ϕ0 = 0, circularly if ϕ0 = π

2 and Ex = Ez, and eliptically
else (cf. Aharonov and Rohrlich 2005, p. 29; Demtröder 2009, pp. 196–199). The
arguments of the cosines are what we have called the phase above, and ϕ0 is called
a relative phase between both components.

Additionally, whether the wave rotates clockwise or counter-clockwise in the
direction of propagation depends on the signs of the components displaced by ϕ0
(here a minus-sign in front of, say, the z-component would mean that is rotates
counter-clockwise). One uses trigonometric functions (here: the cosine) in the
description of the waves since, for one, their graphs actually look like (smooth,
harmonic) waves, and, more importantly, since they solve the corresponding
(differential) wave-equation that can be found on purely theoretical grounds. Any
arbitrarily ‘ugly’-looking wave can then be ‘synthesized’ out of these trigonometric
functions by means of Fourier methods (cf. later), i.e. essentially by imagining
waves of different period (of repetition) and amplitude to be put on top of each
other, the possibility of which is ensured by the linearity of the wave equation.

Let us now consider only the simple case of linearly polarized light. One can
produce such light by sending it through a polarizer, implemented e.g. by means of
a crystal or a grid made out of a reflective materials (cf. Demtröder 2009, p. 253 ff.;
Walker et al. 2012, p. 985 ff.). The latter kind of such polarizers will only transmit
light with a particular polarization, whence they are occasionally referred to as ‘yes-
no polarizes’, whereas crystals can be used to split a beam of incident light into two
differently polarized beams. The latter fact justifies to generally think of polarizers
as resolving a beam of light into two components, “one parallel to [the polarizer’s
direction—FB], the other perpendicular”, and a yes-no polarizer, we can take it,
simply “absorbs the perpendicular component[. . . ].” (Maudlin 2011, p. 9)

Assume that we have a beam of light emanent from a yes-no polarizer. This
should count as a preparation of the light in a polarized state. A second polarizer,
then called an analyzer (cf. Fig. 2.2), can be used to check for what was prepared:
If no light passes the analyzer, the polarization of the light cannot be in line with
the analyzer’s direction of polarization; it should be perpendicular, according to the
above considerations. If the beam of light is maximally bright, then its polarization
must be exactly in line with the direction of the analyzer, as (almost) all of the
light will apparently pass. For any orientation in between, the intensity will in fact
go down depending on the degree of misalignment between the two directions of
polarization, meaning that not all of the light can have passed the analyzer.
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Fig. 2.2 The incident
unpolarized light hits the
polarizer and the fraction
which passes it can only pass
the analyzer as well if its
polarization is in line with the
analyzer’s direction
(indicated by the vertical
lines)

Unpolarized light

Polarized light

Polarizer
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But light, famously, seems to have a strange ‘double nature’. In 1905, Einstein
used Planck’s idea of a discretization of energy to explain the so called photoelectric
effect, the observation that if light is directed onto a metal plate, electrons are emitted
from the plate in consequence and in a fashion rather unexpected at that time. For
light of a particular frequency, the kinetic energy each electron acquires in the
process is the same; it can be given by Ekin = h̄ω − We (cf. Einstein 1905, p.
146; Demtröder 2010, p. 34), with ω defined as above, h̄ Planck’s reduced constant,
derived from his original quantization constant h (= 2πh̄) which he used to explain
black body radiation in terms of quantized energy emission (e.g. Gearhart 2009, pp.
39–40), andWe the work that needs to be performed on the electrons so that they can
exit the binding potential of the metal plate. Thus the energy the electrons acquire
is dependent on the frequency of the incident light, the number of oscillations per
second.

This dependence on frequency was in need of explanation, as from the point of
view of the wave picture established above, one should expect that the energy of
the electrons varies with the intensity I of the incident light-wave instead, that is,
with the average energy over time and area transmitted by the wave, which in turn
depends on its amplitude (on how strongly it ‘wiggles’).3 But with greater intensity
the number of electrons emitted over time increases in the photoelectric effect, not
the energy each electron acquires. Einstein explained this by considering the beam to
consist of discrete packets of energyE = h̄ω = hν which he named “Lichtquanten”
(Einstein 1905, p. 144), i.e. light quanta, and which only later acquired the now
common name ‘photons’ (cf. Hentschel 2009a, pp. 339–344; Rae 2004, pp. 4–7).
The more intense the beam of light, the more photons arrive and the more likely
it becomes that electrons are emitted from (‘kicked out of’) the plate. But since
the energy each photon of a particular frequency carries is identical, the energy the

3More specifically, the classical expression for intensity can be calculated from the average
magnitude of the Poynting-vector S = 1

μ0
E × B as 〈S〉 = 1

μ0
〈EB〉 = 1

cμ0
〈E2〉, with μ0 the

vacuum permeability, c the velocity of light, and E and B the magnitudes of the electric and
magnetic field vectors (e.g. Walker et al. 2012, p. 981).
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electrons acquire can only increase with the frequency of the light, i.e. the energy
h̄ω of the single photons.

Since these photons transmit energy, they can be associated with a momentum
p = E

c
= mc (c the speed of light), and a (relativistic) mass m. Thus from

E = h̄ω (⇔ ω = E

h̄
) (2.2)

we get,

p = h̄ω

c
. (2.3)

A general fact about waves is that the product of wavelength and frequency defines
a velocity,4 i.e., for electromagnetic waves c = λν = λω

2π . But inserted into Eq. (2.3)
this gives us

p = 2πh̄

λ
= h

λ
. (2.4)

λ = h
p

is called a de Broglie-wave length, after Louis de Broglie, who was the first to
also speculate about the wave nature of matter, in virtue of the fact that light waves
could exhibit properties of material particles (cf. de Broglie 1925, p. 92; Landau and
Lifshitz 1965, p. 52). The wave number k was defined by k = 2π

λ
above, so from

(2.4) we obtain

p = h̄k ⇔ k = p

h̄
. (2.5)

This means that, from the relation between energy and frequency, one finds that
the wave number k is proportional to a momentum. This seems like a weird
admixture of concepts describing waves, i.e. spread out fluctuating entities, and
concepts describing particles, i.e. tiny concentrated (typically massive) objects that
are intuitively thought to be impenetrable and incapable of spreading out.

4The frequency has the dimension 1/time, the wavelength is a length, so the product has the
dimension length/time, which is that of a velocity. Strictly speaking, what we appeal to above
is the so called phase velocity which may in fact exceed the speed of light, c, when multiple waves
travel together as a ‘packet’, a narrow lump of oscillations. So it is basically the ‘false kind of
velocity’. The velocity of interest is the group velocity dω

dk , which, however, in the present case of
a single wave coincides with the phase velocity, so that no harm comes from the simplification.
Note that no energy or information can be transported with phase velocity: pictorially it describes
how fast the ‘ripples’ in the packet propagate, but the ripples ‘diminish’ while approaching the
boundary of the packet, and so no energy or information is transmitted with a speed > c (e.g.
Griffiths 1995, pp. 47–48; Griffiths 1999, p. 399 for details, examples, and illustrations). This is,
of course, important for consistency with relativity.
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Moreover, if we take the photoelectric effect to be suggestive of the existence
of ‘light particles’ in a straightforward sense, what becomes of the polarization? Is
it associated with every single such ‘photon’? In fact there are reasons to think so.
De-exciting atoms provide a source of light that can be used in such a way that
typically only one photon (packet of energy) is emitted at a time, i.e., only ‘single
dots’, minimal energy transmissions from the atom to a suitable measuring device,
will be measured at any instant of time (cf. Grangier et al. 1986).

Sending a beam of unpolarized light through a polarizer one obtains a com-
paratively less ‘bright’ beam (its intensity goes down), and if we construe the
beam as being made up of photons, the intensity can be construed as having gone
down because photons with the ‘wrong’ polarization have been ‘sorted out’ by the
polarizer. For yes-no polarizers one hence either measures, at each instant of time,
a photon which passes the polarizer or one does not. But the case can be made even
stronger when one uses a calcite crystal that splits a beam of unpolarized light into
two beams with mutually perpendicular polarizations. Such a crystal can hence be
used to construct a device which gives off a signal after registering a photon in either
channel and thus (indirectly) determines its polarization (e.g. Rae 2004, pp. 19–23).
Photons themselves seem to possess a property that is sensitive to the adjustments
of polarizers.

What, however, still compels us to believe that waves play any role here at all? A
trademark of waves are so-called interference phenomena, and a crucial experiment
to reveal such phenomena is the (infamous) double slit experiment. Consider that
when light from a suitable source is emitted onto a metal plate with a narrow slit
carved into it, passes the slit and hits some screen behind the slit, it leaves a bright
pattern, mostly in the center of the screen but also somewhat distributed off-center
in a characteristic way (cf. Fig. 2.3a). This is so far still compatible with a particle
interpretation as suggested by the observations from the photoelectric effect. Parts
of a total beam of photons might be scattered at the slit in such a way that most of
them land in the central area but some also in the de-central bright places.

But a more compelling explanation can be given in terms of waves: Consider
a plane wave being emitted from the source and hitting the slit. In accordance
with Huygens’ principle (cf. Walker et al. 2012, p. 1072), a new set of (spherical)
waves forms due to the interaction with the slit. Depending on path difference, these
waves will interfere with each other either constructively or destructively, i.e. in
some places the peaks of two wave-crests will coincide, thus giving rise to an ‘even
more peaked’ wave, and in some places a peak and a trough will coincide, thus
erasing the wavieness altogether. And in a more thorough treatment, the existence
of the off-central part of the distribution is thus straightforwardly predicted by such
a wave-approach, as a part of an interference pattern.

Using a metal plate with two tiny slits instead, a double slit, one can add
credence to the wave approach, since in the double slit case, an even more obvious
interference pattern appears (cf. Fig. 2.3b). This pattern is also familiar from similar
experiments with water- or sound waves. But as we have noted above, the energy
of a beam of light is transmitted in a dot like fashion, i.e. related to the ‘number of
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Fig. 2.3 (a) The light emitted from the source passes the slit and gives rise to a pattern which can
be interpreted in terms of waves as well as particles. (b) Using a double slit, a pattern of intensity
characteristic of wave interference is observed. (c) An interference pattern successively builds up
as observed e.g. in an experiment with electrons by Tonomura et al. (1989) (three central maxima
are illustrated here)

photons’ it consists of; so one is confronted with the difficulty of incorporating the
particle-like aspects into this behavior.

At this point one might be tempted to think that it must be the whole collection
of particles that travels in a wavelike fashion, when together in a beam, and
hence accounts for the interference pattern. This is not a viable interpretation of
the situation though, since one can adjust the incident beam to an appropriately
low intensity so that only single dots appear on the screen, one after the other.
But one will still observe that, after sufficient time, the distribution of these dots
looks exactly like the original interference pattern (cf. Fig. 2.3c). It seems that
somehow each single photon “interferes only with itself ” (Dirac 1930, p. 9; my
emphasis—FB), which also avoids difficulties arising from energy-conservation and
the apparent annihilation of photons that would be required to otherwise account
for the interference pattern (cf. ibid.). One hence usually encounters talk of single
particle interference in this connection (e.g. Thaller 2005, p. 189).

But what does all of this mean? What kind of an entity is the photon, that it
somehow seems to be a particle that can ‘interfere with itself’? Is each photon
capable of spreading out in a wavelike fashion at the slit, only to collapse down to a
narrow point again in proximity of the screen? When one tries to sort these things out
experimentally, another remarkable thing happens. Placing detectors behind each of
the two slits to measure which path the photons ‘actually take’ will always reveal a
detection in one path only, not both. But at the same time, the interference pattern
vanishes in this kind of experiment: the distribution of transmitted energy in setups
with detectors behind the slit looks like one which would arise from ‘ordinary’
particles passing through either of the two slits and accumulating in two proximate
lumps in succession of each of the two slits.
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Do the photons alter their behavior from wave-like to particle-like when their
position is determined, either by detectors behind the slit or by the screen itself, upon
incidence? Roger Penrose (2004, p. 517) actually claims something quite similar:

the impression could be gained that the particle-like aspects of a wave/particle are what
show up in a measurement, whereas it is the wavelike ones that show up between
measurements. This is not so far from the truth of what quantum mechanics tells us [. . . ].

Still, all of this constitutes a kind of puzzle, a ‘mystery’ if you will, and Feynman
(2010 [1965a], p. 1–2; emphasis in original) even went so far as to call it “the
only mystery.” We shall eventually see that this may in fact have been a little
premature, as Feynman much later somewhat acknowledged himself (cf. Feynman
1982, p. 485). When it comes to considerations of joint states of multiple systems,
QM holds even deeper mysteries than this one.

Now we mentioned before that de Broglie speculated about the wave nature
of matter as well, and experiments of the sort described above have indeed been
performed with matter particles such as electrons (Davisson and Germer 1927;
Möllenstedt and Jönsson 1959; Tonomura et al. 1989), neutrons (Gähler and
Zeilinger 1991), as well as larger (C60, C70) molecules (Arndt et al. 1999; Arndt
et al. 2001). For the larger molecules, the interference pattern is slightly more
washed out and the ‘degree of washing out’, if you will, depends on the isolation
from an environment of air molecules in such experiments; Arndt et al. (1999), for
instance, used a vacuum chamber with a pressure of about one fifty-billionth of
normal atmospheric pressure. This is in itself a very important point: interference
phenomena (usually) require isolation from the environment. We will come back
to the role of the environment in Chaps. 6 and 7, when we confront quantum
decoherence.

What to make of the double-slit experiments discussed above? Are light and
matter indeed both waves in some sense, only exhibiting particle-like behavior under
suitable conditions, as basically suggested in the above quote by Penrose? This
is, of course, the old question of wave-particle duality that has accompanied and
maybe blurred discussions about QM for a long time. Let us formulate a first stab
at an interpretation based on the experiments and considerations investigated so far,
which we shall call the naïve view:

Conjecture 0 (The naïve view) QM is a theory about little things which
can behave in a spread-out, wavelike manner in some circumstances, and can
equally behave in a condensed, particle-like manner in other circumstances.

In a sense we are here putting up a straw man just to put it down again, because
there are numerous good reasons (that will soon become clear) why the naïve
view cannot possibly be true as it stands. And Penrose (2004, p. 517) equally
continues his considerations on wave-particle duality by the comment that “the
two wave/particle aspects are by no means so simply delineated[. . . ].” However, as
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mentioned earlier, comments suggestive of something along these lines can still be
found in textbooks, as evidenced e.g. in the following (beautifully straightforward)
introductory passage from a modern textbook on quantum field theory (QFT):

The advent of quantum mechanics convinced people that things that had previously been
thought of as particles were in fact waves. For example, it was found that electrons and
neutrons were not simply little rigid bits of matter but they obey a wave equation known
as the Schrödinger equation. [. . . ] It was also realized that things that had been previously
thought of as waves were in fact particles. (Lancaster and Blundell 2014, p. 19)

Such an attitude to the matter is certainly entertained by numerous practitioners
disinterested in interpretational subtleties. A similar observation is made by Falken-
burg (2010), who writes:

Philosophers of science are inclined to think that wave-particle duality is an obsolete
concept, because according to quantum mechanics there are neither waves nor particles
in a classical sense. But in physical practice, wave-particle duality is alive. (p. 31; emphasis
omitted—FB)

Falkenburg’s reference is, in particular, to a talk of Nobel prize winner Wolfgang
Ketterle, in which he claimed that “after several years of physical practice one gets
used to preparing waves and detecting particles.” (as cited in Falkenburg 2010, p.
34) It hence seems instructive to give some careful thought to how far the analogy
between a quantum description of certain phenomena and either a wave- or particle
description can be taken.

As for the scope of this analogy one should note that it is not only interference
phenomena in the double slit experiment that are suggestive of ‘waves being
involved’. Greenstein and Zajonc (2006), for instance, discuss the resemblance of
modulation in atomic decay to the modulation of sound waves as another example
in their introductory-level book on experimental aspects of QM. To wit, when an
atom decays from one excited level into its ground state via a large series of closely
spaced intermediate levels, it will emit light with exponentially decaying intensity.5

However, if the upper level from which the atom decays is split up (by means of a
weak magnetic field, say) into two levels E and E′, the measured intensity of light
from the decay will be modulated, much like the fluctuating sound that results from
two tuning forks of different frequency being struck at once (cf. Greenstein and
Zajonc 2006, pp. 102–105). In this sense the ‘frequencies’ ω = E/h̄ and ω′ = E′/h̄
associated with the two close-by energy levels behave like the frequencies of two
sound waves, and atomic exponential decay exhibits similarities to phenomena
traditionally explicitly understood in terms of waves.6

Thus taking the ‘wavieness’ quite seriously, a possible analysis of the double slit
experiment in terms of waves that also exhibit particle-like behavior under suitable

5E.g. Basdevant and Dalibard (2002, p. 343) for the details.
6The actual experiment described by Greenstein and Zajonc (2006, pp. 103) in fact involves
multiple atoms. Therein detectors are used, however, that accept only single photons at a time,
so that Greenstein and Zanjonc deem the arrangement “very close to an ideal experiment, in which
we work with one atom and one photon at a time.” (ibid.)
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circumstances could run as follows. When a photon hits the photographic screen
behind the double slit and is ‘detected as a particle’, “the wave function has changed
its shape. What used to be a broad wave packet representing the photon extending
across the film has collapsed to a single sharp peak centered on the atom that
registered the event.” (Greenstein and Zajonc 2006, p. 217; emphasis omitted) This
is the intuition behind a collapse or reduction of the wave packet in an experimental
situation, and it is usually traced back to Heisenberg (1927, p. 186), even though
Heisenberg—for convincing reasons—did not think of the quantum mechanical
wave packet in the sense of Conjecture 0. For now, however, let us assume that
something of this sort could explain the transition from wave-like to particle-like.

How do the wavy aspects appear in the formalism of QM? To elaborate, let us
first note the identity

eiθ = cos θ + i sin θ, (2.6)

the so called Euler formula which can easily be worked out in terms of the power
series expansions of the three functions. Here i = √−1 is the imaginary unit. Using
(2.6) one can give a very general and useful description of some arbitrary wave by
writing

ψ(θ) = Aeiθ , (2.7)

withA the wave’s amplitude (which we here take to be real-valued). In pre-quantum
physics (e.g. classical electromagnetism) the use of this complex representation is
merely a computational convenience; one usually appeals to the complex description
throughout the calculation, and then considers only the real or imaginary part (the
cosine or the sine) at the end, to describe the ‘real’, ‘physical’ wave. In QM,
however, things do not turn out this way.

We can replace θ in (2.7) by ky − ωt to obtain a description of a wave traveling
forward in y-direction. To adjust this expression such as to provide a simple model
for the double-slit experiment, we should appeal to spherical rather than plane
waves, originating at the two slits in the metal plate respectively, which we do by
using rather the radial distances rj to a respective slit j ∈ {1, 2} in the description
of the waves at a point x0 on the screen. Here rj = |x0 − xj |, with xj the position
of a respective slit, and | · | refers to the Euclidean norm (cf. Appendix A). Let
us also drop the time dependence for now, which is ultimately possible because
ei(ky−ωt) = eikye−iωt (i.e. the temporal part ‘factors out’).

For each of the slits we now obtain a description ψ1(r1) = A1e
ikr1 and ψ2(r2) =

A2e
ikr2 , and since, in the absence of detectors, our wave may pass through any of the

two slits, we should add the two functions together to obtain the total wave function

ψ1+2(r1, r2) = ψ1(r1)+ ψ2(r2) = A1e
ikr1 + A2e

ikr2 .

For ‘ordinary’ waves, one can now predict the intensity distribution w.r.t. points
x0 on the screen by computing the squared modulus of the wave function:
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|ψ1+2(x0)|2 = ψ∗1+2(x0)ψ1+2(x0)

= (A1e
−ikr1 + A2e

−ikr2) · (A1e
ikr1 + A2e

ikr2)

= A2
1 + A2

2 + 2A1A2 cos(k(r2 − r1)) (2.8)

(e.g. Greenstein and Zajonc 2006, pp. 15–17; Shankar 2010, p. 13).
2A1A2 cos(k(r2 − r1)) is called an interference term, which gives rise to the

characteristic pattern, whereas the first two terms, A2
1 and A2

2, can be interpreted
to each represent what would have been obtained in case one of the slits would have
been blocked or how particles, each traveling through one of the slits only, would
have distributed in such an experiment. And in case detectors are used to determine
through which of the slits something passes, one obtains the result A2

1 + A2
2, as

mentioned above.
But interpreting the squared modulus as an intensity distribution of a wave is

not really adequate since we also have to incorporate the dot-like properties of
the pattern into our description. Thus in QM (2.8) is reinterpreted as a probability
density, so that |ψ1+2(x0)|2d3x defines the probability of finding a dot on the screen
in a ‘small volume’ d3x around x0. According to Conjecture 0 and our subsequent
‘collapse-considerations’, this could be interpreted as the probability of the wave
collapsing to the tiny volume [x0, x0 + dx] × [y0, y0 + dy] × [z0, z0 + dz] (for

x0 =
(

x0
y0
z0

)
).

Before ((2.4) and (2.5)) we noted that k = p/h̄ and that ω = E/h̄, and we can

use these relations to define a wave function (x, t) = Ae
i(px−Et)

h̄ . With k =
(

kx
ky
kz

)

representing a wave vector, so that |k| = 2π
λ

, we can equally write (x, t) =
Ae

i(px−Et)
h̄ for a ‘3D(imensional) wave’.7 And these waves somehow ‘encode’ the

momentum and energy associated with the ‘particles’ measured upon collapse.
Since our ‘waves’ could also be ‘electron waves’, we have used the connections

given by the de Broglie wavelength in a generalized fashion here. Historically, when
Schrödinger first showed interest in de Broglie’s work on matter waves, he was
confronted with serious opposition, as was de Broglie himself for that matter. One
point of contention (raised by Debye; cf. Mehra and Rechenberg 1987, p. 421 ff.)
was the lack of a wave equation, such as that for electromagnetic waves mentioned
before. As the story goes, Schrödinger then went on to find such an equation, which
is now famously known as the Schrödinger equation (SE). Using what we have
established so far, we can give a simple heuristic ‘derivation’ of it.

We start by realizing that (x, t) = Ae
i(px−Et)

h̄ is a function of definite energy
and momentum, since it is only variable in x and t , and if we differentiate it w.r.t.
space, we will get back the same function, multiplied by something proportional

7Recall that p · x is an inner product which computes pxx+pyy+pzz, which is why E · t can be
meaningfully subtracted from it.
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to p. More precisely, one can define what is known as the momentum operator
(in position representation) by p̂ = −ih̄∇, with ∇ the partial derivative or Nabla

operator that has the simple form ∇ .=
(

∂
∂x
∂
∂y
∂
∂z

)
in Cartesian coordinates. Applying

this to our wave function, we get

p̂(x, t) = −ih̄∇Ae i(px−Et)
h̄

.= −ih̄A

⎛
⎜⎜⎝

∂
∂x
e
i(px x+py y+pzz−Et)

h̄

∂
∂y
e
i(px x+py y+pzz−Et)

h̄

∂
∂z
e
i(px x+py y+pzz−Et)

h̄

⎞
⎟⎟⎠ =

⎛
⎝
px

py

pz

⎞
⎠Ae i(px−Et)

h̄
.= p(x, t).

Equally, taking the time derivative of (x, t), multiplied by i · h̄, will simply give
back (x, t) multiplied by E. Form classical (non-relativisitc) physics one has the

total energy of a particle given as E = p2

2m +V , with V a (possibly time- and place-
dependent) potential energy function. Multiplying both sides by our wave function
 and making the (heuristic) substitutions E � ih̄ ∂

∂t
and p � −ih̄∇, we thus get

the time dependent Schrödinger equation,

(
− h̄2

2m
�+ V

)
(x, t) = ih̄

∂

∂t
(x, t) (TDSE)

with � = ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 the Laplacian operator we have already met in

the context of electromagnetic waves.8 A time-independent or ‘stationary’ form of
the Schrödinger Equation can be obtained by factoring out (and ignoring) the time
component of the wave function, provided that the potential energy is also time-
independent:

(
− h̄2

2m
�+ V

)
ψ(x) = Eψ(x). (SSE)

Ĥ := − h̄2

2m� + V is called the Hamiltonian (operator), the quantum analogue of
the Hamilton function of classical mechanics.

In the time dependent form, the SE is indeed somewhat reminiscent of a wave
equation. Not only that, but by appeal to concepts from classical (Hamiltonian)
mechanics, one can similarly give a heuristic derivation of the SSE as an actual

instance of an equation of the form � = 1
u2

∂2
∂t2

, with u = E√
2m(E−V ) a ‘wave-

velocity’, whose form is motivated by the classical considerations (cf. Capri 2002,
pp. 43–45). So far this fits rather well with our naïve view, since now we have waves
with a wave equation and with the connection to particle-like aspects spelled out in
terms of a ‘wave collapse’.

8Note that (p̂)
2

2m = (−ih̄∇)2
2m = − h̄2

2m�.
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The SE is certainly the most important equation of QM, but it comes with certain
restrictions. First of all, it is non-relativistic; and in using notions like “3D-space”
etc. we have been talking so far as if space and time were simply two entirely
separate and absolute categories. But the special and general theories of relativity
have taught us otherwise, and this should be reflected in the dynamical equations
of QM. Furthermore, the SE is not always exactly solvable. For ‘many-particle’
systems, one is forced to work with approximations instead. We will return to
both these points below, many-particle systems and relativity, in confronting some
aspects of quantum field theory (QFT).

The crucial role of the TDSE in QM is to describe the temporal evolution of a
given system, i.e. its dynamics,9 but it also selects the functions that can be used to
describe a system under given circumstances (with a given potential V , suitable
boundary conditions, etc.). Above, we have appealed to a function (x, t) =
p(x, t) of definite momentum p as a solution of the TDSE, but now assume
that for a given V it is equally solved by another function �p′(x, t) of different
momentum p′ (and energy E′ accordingly). Crucially, the TDSE is linear, which
means that (ih̄ ∂

∂t
− Ĥ )(α +β�) = α(ih̄ ∂

∂t
− Ĥ ) +β(ih̄ ∂

∂t
− Ĥ )� (α, β ∈ C),

and since (ih̄ ∂
∂t
− Ĥ ) = (ih̄ ∂

∂t
− Ĥ )� = 0, ϒ = α + β� defines another

possible solution. This leads us to a so called dynamical superposition principle:

Principle of Superposition I (Dynamical) Any two solutions of the TDSE,  and
�, can be superposed in the form α + β� (α, β ∈ C) to form a new solution.10

This superposition principle, implied by the linearity of the TDSE (and the SSE,
for that matter), actually makes much sense on account of our naïve view, and it
is of course also present in other, classical wave equations. Note, first of all, that
summing up can also be understood in terms of integration. This is the case when
the system under consideration is free, i.e. not subject to any potential. Thus setting
V = 0 in the TDSE, we obtain the general solution

(x, t) =
∫
R3
A(p)e

i
h̄
px−Etd3p. (2.9)

This wave function, or rather its real and imaginary parts taken separately,
mathematically describe(s) a so called wave packet. Recall how superposition
of waves, as discussed in the double slit experiment, leads to constructive and
destructive interference. Remembering also that p ∝ k (read: ‘p is proportional

9Terminology may be confusing here, since the Greek δύναμις, from which the term derives,
actually means ‘power, ability’ (cf. Perschbacher 1990, p. 108). The modern use of the term can
be connected to Newtonian physics, where considerations of forces give rise to the differential
equations describing the time evolution of systems. The introduction of term into physics is
typically traced back to the dynamism of Leibniz (cf. Bernstein 1981, p. 97).
10Cf. Joos et al. (2003, p. 7).
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Fig. 2.4 Example of a
narrow wave packet (the real
part is illustrated). The black
outer ‘envelope’ describes
how the group of
superimposed waves travels
as a whole

Re(ψ)

x

to k’) and |k| = 2π
λ

, the above integral can be viewed as ‘putting (plane) waves
of different wavelengths on top of one another’, whence these will have peaks and
troughs in different places and interfere such as to give rise to a particularly shaped
resulting wave.
A(p) here functions as a kind of weighting, so that the waves will mostly stem

from a certain range of values of p (and λ respectively). The resulting picture is that
of Fig. 2.4, a narrowly lumped up but still wavy entity. Thus interpreted in terms
of waves, the above superposition principle makes perfect sense, and the nice little
wave packet raises hopes for ‘solving the riddle’ in terms of waves that can behave
like (or ‘collapse into’) particles after all. But we must stress that this is a false
impression, and that quantum superposition, later understood as a kinematic feature,
will eventually turn out to be quite different from classical superposition.

From the treatment of wave packets, one also arrives at a first, intuitive version of
the infamous uncertainty relations, discovered by Heisenberg (1927). Today these
are given as �x�px ≥ h̄

2 and �E�t ≥ h̄
2 , where px is the linear momentum in

x-direction, E the energy, and x and t are position and time respectively. � here
represents a ‘spread’ in value, not the Laplacian. Let us see why the content of
the first one, that there is a lower limit as to the joint ‘uncertainties’ (or rather: well-
definednesses) of x and p, arises from wave packets. First note the so called Fourier
transformation, which makes it possible to convert some function of position x into
a function of k (and back again), and equally so for ω and t . Suppressing time
components once more, the two transformations for x and k are given as

f (x′) = 1√
(2π)3

∫
R3
eikx′ f̃ (k)d3k (2.10)

and

f̃ (k) = 1√
(2π)3

∫
R3
e−ikxf (x)d3x. (2.11)
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We note in passing that substituting (2.11) for f̃ (k) into (2.10), we obtain

f (x′) = 1√
(2π)3

∫
R3
eikx′

(
1√
2π

∫
R3
e−ikxf (x)d3x

)
d3k

=
∫
R3

(
1

(2π)3

∫
R3
eik(x

′−x)d3k

)
f (x)d3x

which means that the integral in the bracketed expression simply maps f (x) onto
value f (x′), so we can conclude that

1

(2π)3

∫
R3
eik(x

′−x)d3k = δ3(x′ − x), (2.12)

where the latter expression is the Dirac-δ discussed in Appendix A.11

Since k = p
h̄

we have dk
dpj

= 1
h̄

for each component (j ∈ {x, y, z}), and we

can (symbolically) say that d3k = 1
h̄3 d3p. Thus, substituting k � p in expression

(2.10) the integral becomes

f (x′) = 1√
(2πh̄)3

∫
R3
f̃ (p)e

i
h̄
px′d3p. (2.13)

Our wave packet from above is obviously of this general form, for the choice
A(p) = 1√

(2πh̄)3
f̃ (p) and including a time-component. Since a wave packet is a

somewhat localized entity, it will exhibit a small spread in width (directly related
to �x). But one has to use many different wavelengths to obtain such a narrow
packet and hence a large range of different momenta, so that the spread in the
value of momentum (directly related to �px) will be comparatively large for a
fairly localized packet. Fourier transforming a Gaußian bell curve in position space

for instance, i.e. allowing for the amplitude A(p) to be proportional to e
− (p−p0)

2

2(σ h̄)2

(for specifiable parameters σ,p0), leads to a broader bell curve in the momentum
space. And transforming the function f (x) = 1 which is uniform over all positions,

everywhere, or equally an unrestricted plane wave e
i
h̄
px , leads to a Dirac-δ, i.e. a

maximally concentrated wave function in momentum space.
Notably, these relations hold regardless of whether we use p or k and regardless

of whether we choose a complex representation or not; an ‘uncertainty relation’
between the width of a wave packet and the spread in its wave number is already
present in classical wave optics (cf. Demtröder 2010, p. 101).

11Equation (2.12) can also be straightforwardly proven, for instance by appeal to a convergence
generating factor.
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The interpretation of k as a momentum (up to a scaling factor), however,
leads to interpretational difficulties as regards the wave- and particle aspects. It
is not the association of momenta to waves in general that creates a problem: in
classical electrodynamics an electromagnetic field, traveling as a wave, carries a
field momentum that can be computed by integrating its Poynting-vector (divided by
c2) over some volume (e.g. Jackson 1990, p. 261). But the mathematical relations
here are different, and there is no obvious way to reinterpret the momentum in
QM as a sort of field momentum. How, then, is the momentum p, carried by the
‘particle’ when the wave ‘collapses’, related to the wave itself? What does it mean
that momentum is ‘encoded’ in the wave function, as we have claimed above?

2.1.2 Abstractions, Examples, and Further Peculiarities

The questions raised at the end of the last section surely introduce some first
unease about the naïve view. A second unease should be raised by the existence
of polarization and the fact that have not really incorporated it into our description
so far. How is the overall polarization of a wave connected to the polarization
associated with each photon?

We noted that in virtue of their polarization, single photons will do one of two
things when incident on a polarizer, go up or down, pass or be absorbed. This view
of polarization makes it a ‘two-state’ quantity, paradigmatic for a larger range of
examples. In fact, we can get access to almost all of the ‘strangeness’ associated
with QM by telling a completely different story from that of Sect. 2.1.1 in terms of
such two-state quantities.

Let us begin by considering a particular such quantity called spin. This spin is a
quantity with a sense of ‘directionality’, whence one would classically represent it
as a (Euclidean) vector s, a pointer that indicates the direction and strength of the
magnitude in question on a particular system. Spin has to be attributed to quantum
mechanical ‘systems’12 such as protons or electrons to account for the fact that they
exhibit a change in behavior under the influence of magnetic fields. This makes it
reasonable to attribute magnetic properties to them, and the spin ultimately codifies
these.

It was already known in nineteenth century physics that rotating electric fields
are inevitably accompanied by changing magnetic fields, as reflected in Faraday’s
law of induction, ∇ × E = − ∂B

∂t
(e.g. Walker et al. 2012, p. 949). Initially it was

hence theorized, first by Kronig and later by Uhlenbeck and Goudsmit, and on the
basis of such phenomena as the Zeeman-effect and multiplicity in spectral lines

12We here take the widely used notion of a ‘system’, which Bell (1990a, p. 34) complained, should
be purged from a physically precise theory altogether, to be simply ontologically as non-committal
as the term ‘entity’ in philosophy, and hence without any general implication of an involvement of,
say, parts and wholes.
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(cf. Tomonaga 1974, p. 33), that charged particles such as the electron possess an
intrinsic angular momentum, i.e. revolve around a symmetry axis as the earth does
on a daily basis, giving rise to a magnetic field. This conception of spin as a rotation
of the electron, however, proved untenable early on in the development of QM as
it lead, among other things, to the prediction of unreasonably high energies and
rotational velocities much greater than the speed of light (cf. Basdevant and Dalibard
2002, p. 232; Demtröder 2010, p. 187).

Nowadays, spin if often simply referred to as a “decidedly nonclassical concept”
(Hentschel 2009b, p. 726) which “has no classical counterpart” (Shankar 1994,
p. 373). Moreover, it is sometimes even disputed in what sense the spin of a
single electron can actually be ‘observed’ (cf. Morrison 2007), although there are
experiments that are usually taken to do just that. There is a general problem
here, associated with the contrivedness of the experiments in question, and hence a
general problem of theory-ladenness in physical experimentation and ‘observation’.
This will become more important in the later discussion.

We will here get access to the concept of spin by appeal to a series of ‘rather
straightforward’ experiments performed on silver atoms, and hence avoid deeper
discussion of the aforementioned issues with the spin of elementary particles for
now. Note that we will also restrict our attention here to one of “the usual textbook
‘caricatures’” (Busch et al. 1995, p. 7) and ignore the connection to spatial degrees
of freedom, wave packet spreading, the influence of the environment. . . and so forth,
all to be thematized later. Our ‘caricature’ will fully suffice, at this point, to introduce
what is crucial.

Thinking of the aforementioned atoms as ‘little magnets’ for now, we may
associate a ‘magnetic moment’ μ to them, proportional to their spin s13 and
characterizing the magnitude and direction of the associated magnetic properties.
The expression μ · B can then be used to compute the energy of the particle in a
magnetic field B, and−∇(μB) provides and expression for the force it experiences,
which does not vanish in case B is inhomogeneous (so that the gradient is non-zero).

The ‘directedness’ of spin can be understood, in the (faulty) image (providing,
however, a suitable ‘mental crutch’ for now), by recognizing that an intrinsic angular
momentum can go either clockwise or counterclockwise, giving rise to differently
oriented magnetic moments. One could hence identify the spin-vector, viewed as a
little pointer parallel to the direction of the magnetic moment, with the thumb on a
right handed ‘thumbs-up’, while the curled up fingers would represent the direction
of the electron’s rotational motion.

Depending on the number of electrons in an atom, spins can pair up in such a way
that any two of them ‘point in opposite directions’ and their respective magnetic
moments cancel. Silver atoms, however, have an uneven number of electrons (47 to

13The proportionality can be given in the form μ = gs
μs
h̄

s where gs varies with the particle sort,

and μs = qh̄
2m0c

is called a magneton, with h̄ Planck’s reduced constant, q the particle’s charge, c
the speed of light, and m0 its rest mass (cf. Haken and Wolf 1996, p. 188; Mayer-Kuckuk 2002, p.
58).
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Fig. 2.5 A beam of silver
atoms passes the magnetic
field and is then detected on
the glass plate N

SOven

Slits DuBois magnet
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y
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Fig. 2.6 A pattern similar to (a) would be expected to appear on the glass plate if spins were just
like little magnets; a pattern as in (b) is actually observed

be exact) and hence one spin is left over without a cancellation partner. This gives
rise to a total spin or net-magnetic moment of the atom (cf. Hughes 1989, p. 4;
Sakurai 1994, p. 2).

In 1922 Otto Stern and Walther Gerlach performed an experiment where they
heated up silver atoms in an oven, and the silver atoms thus prepared would escape
through a small opening and then be collimated into a narrow beam. This beam
would subsequently pass an inhomogeneous magnetic field produced by a specific
kind of magnet (sometimes called a DuBois magnet; cf. Hughes 1989, p. 2), and
then hit a glass plate (cf. Fig. 2.5).

Subjected to the force exerted by the inhomogeneous field, one would expect
that the orientation of the atoms’ magnetic moments (and hence, spins) should be
changed more or less strongly in accordance with their previous, random orientation.
Accordingly, a continuous blob on the screen should be expected where the silver
atoms hit it (Fig. 2.6a). But this is not what was observed, and not what QM tells us
either. Instead, only two lines, marking off the boundary of the ‘classically’ expected
area appeared in the experiment, similar to the pattern in Fig. 2.6b.

The now-standard interpretation of this outcome is that the component of the spin
of the atoms (and hence supposedly also of the electrons) in horizontal direction can
only take on one of two values: it can either point up or down, and some of the atoms
have their spin up, some have it down (e.g. Hughes 1989, p. 3; Sakurai 1994, p. 4).

We can set up a simple QM description of this experiment by appeal to the
formalism discussed in Appendix A, and represent an atom’s state with spin up
along this direction by |↑〉, and the corresponding spin down-state by |↓〉. If we only
consider the spin degrees of freedom, we can call this a two state system, since there
are only two possible states w.r.t. the direction of interest that can be recognized in
a spin measurement of the sort described above. One of course has to introduce a
reference frame (and a coordinate system) to make sense of notions such as ‘up’
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or ‘down’, and it is conventional to choose the horizontal direction along which
the spin is measured to be the z-axis (as indicated by the coordinate system in the
right upper corner of Fig. 2.5). Accordingly, we write |↑z〉 and |↓z〉 respectively.
To be more concrete, we can think of this as a two-dimensional vector space (cf.
Appendix A), and hence ‘identify’ (choosing a representation and basis)

|↑z〉 .=
(

1
0

)
, |↓z〉 .=

(
0
1

)
,

so that the two states are viewed as column-vectors forming an orthonormal basis
(ONB) of the (complex) 2D Hilbert space C

2, the space of all columns with two
complex entries.14 A state with spin along an arbitrary direction w.r.t. the z-axis can
now be represented by a linear combination of these two vectors. For example, a
(normalized) spin vector pointing to the right from the direction in which the atoms
are moving in Fig. 2.5 (out of the paper and in the positive x-direction), can be
expressed as

|→z〉 = 1√
2
(|↑z〉 + |↓z〉) = |↑x〉 , (2.14)

with column-representation

|↑x〉 .=
(

1√
2

1√
2

)
.

Equally, if we want to represent a spin pointing down along the x-axis, we can
simply represent it by

|↓x〉 = 1√
2
(|↑z〉 − |↓z〉).

These two are easily seen to correspond to another ONB of C2, since

√〈↑x |↑x〉 .=
√(

1√
2
, 1√

2

)(
1√
2

1√
2

)
=

√(
1√
2

)2 +
(

1√
2

)2 = √1 = 1,

√〈↑x |↓x〉 .=
√(

1√
2
, 1√

2

)(
1√
2

− 1√
2

)
=

√(
1√
2

)2 −
(

1√
2

)2 = 0 (and so forth).

14If terminology is starting to sound unfamiliar, please at any rate consult Appendix A.
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We can also put a number on the measurable value of the two possible spins along
the chosen axis, namely h̄

2 for spin up and − h̄
2 for spin down.15 Not all quantum

systems have this kind of spin (if any); they can rather be grouped into two general
classes: fermions, whose spin is a half-integer multiple of h̄, and bosons, whose spin
is an integer multiple of h̄, and both of these classes obey different statistical rules
(cf. Griffiths 1995, p. 179; Sakurai 1994, p. 362).16

Suppose that we do the same kind of experiment as described above, but rotate
our Stern-Gerlach apparatus by 90◦, so that the north pole of the magnet lies in
positive x-direction. What should we expect to observe? Supposedly not much
should change, except that the spin can now be up or down along the x- instead
of the z-axis; and in fact, this expectation is met in experiment. What happens if
we measure atoms along the z-axis again which have emerged, say, upwards in the
z-direction from a previous magnet? Here we will supposedly expect that not much
changes about these atoms, and they will, in fact, all still have their spins up in that
direction (cf. Fig. 2.7a).

But funny things start to happen if we measure along two different directions in
succession. Imagine, for instance, a rotated DuBois magnet behind the first one, as
in Fig. 2.7b, and the atoms that emerge in z-down direction blocked, so that only
the z-up ones are measured for x. What should we expect now? As a matter of fact,
the outcome for the x-spin is then just as it was for the z-spin in the first, simpler
experiment; sometimes the result is h̄

2 , sometimes it is − h̄
2 (e.g. Hughes 1989, p.

3; Nortmann 2008, p. 146). It seems the measurement of the z-spin as ‘up’ has no
bearing on the value of the x-spin.

Now let us make things a little more complicated by putting yet another DuBois
magnet in the row, this time aligned along the z-axis again, just as in Fig. 2.7c. We
will call atoms which have passed the first magnet ‘prepared in state |↑z〉’ when the
lower beam is blocked. Intuitively, we may expect that all of these atoms will have
their spins up when they emerge out of the third magnet, because that is what we
had prepared, and the x-measurement has seemingly no bearing on the value of the
z-spin. But they do not! The measurement along the x axis completely randomizes
the system w.r.t.z-spin again, and hence destroys the preparation effected by the first
magnet.

But can we be sure that the atoms entering the second magnet actually did all
have spin up along z? Maybe the property gets lost on the way and the atom simply
starts ‘spinning’ in a random direction again. This possibility is excluded by our
previous observation that the z-spin preparation is ‘faithful’ in a sense (Fig. 2.7a),

15In terms of units or physical dimensions we can thus see how the spin is still ‘reminiscent’ of

an angular momentum; the dimension of h̄ is energy × time which is equal to mass×lenght2

time , the
dimension of an (intrinsic) angular momentum Iω, with I the moment of inertia.
16Of course there is a debate on the existence of so called paraparticles which obey a third kind of
statistics (cf. Massimi 2005, p. 154 ff.). The connection between spin and statistics, moreover, can
only be thoroughly established in the formalism of QFT, and it here appears merely as an inductive
generalization. But we will not pursue either of these issues any further in this book.
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Fig. 2.7 (a) If we prepare the system as |↑z〉 and then measure z-spin shortly after, we will
measure |↑z〉 again. (b) If we prepare the system as in (a), then measure spin along the x-axis,
the outcome will be random. (c) If we take the beam of atoms prepared as |↑x〉 from the previous
setting, and measure the spin along the z-axis again, the z-result is completely randomized by the
intermediate x-measurement

and treating the system as free in between the magnets, this is also what QM
predicts.

So we may come to wonder what kind of a spin the system actually has before
we measure it at all. But for all we know so far, we cannot really say. All that
we can do is give a probability for the outcome of a measurement along a given
axis, conditional on our knowledge of how the system was prepared. If we know
nothing about the state of the system w.r.t. the property in question, i.e. if we have
not prepared it in a state in which it appears to assume some definite value, we
should choose a uniform distribution of probabilities over the possible results of the
measurement. If we know that the spin is up along the z-axis, then based on what we
have observed so far, we can also only predict that there is a 50–50 chance (using
‘chance’ deliberately loosely here) of the spin being up along the x-axis as well.
And in fact, QM does just this, and it does so using the squared modulus of the
inner product of |↑z〉 and |↑x〉, i.e.:

Pr|↑z〉sx (↑x) = | 〈↑x |↑z〉 |2 = 1

2
, (2.15)
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where Pr|↑z〉sx (↑x)17 denotes the probability of measuring spin up along the x-axis
given that the system was prepared in the state |↑z〉 and that spin along the x-axis is
measured for (sx).

It should be obvious18 that we are dealing with a conditional probability here.
More generally, we could thus use an expression like p(sx = + h̄

2 |M = sx, sz =
+ h̄

2 ) for an arbitrary probability function p.19 The symbols appearing on the left
hand side of the equality signs should be thought of as (random) variables, whereas
the symbols on the right may be thought of as their values. ‘Random variable’ is
meant here not necessarily in the narrow, measure-theoretic sense of Appendix A,
but in the general sense as used e.g. by Pearl (2009, p. 8):

By a variable we will mean an attribute, measurement or inquiry that may take on one
of several possible outcomes, or values, from a specified domain. If we have beliefs (i.e.,
probabilities) attached to the possible values that a variable may attain, we will call that
variable a random variable.” (emphasis in original)

The notation may still be a little confusing though, since variables are certainly
not identical to their values. We have here tacitly assumed that the random variable
pertains to something. Following e.g. Schurz and Gebharter (2016, p. 1076), we can
understand random variablesX (which we will occasionally write with an underline

for distinction) as functions D
X−−→ VX from a domain D of individuals into a set

VX of values the variable can take on. Thus we should actually write sx(S) = + h̄
2 ,

which describes the event that sx , i.e. ‘spin along the x-axis’ takes on the value ‘up’
for a system S ∈ D. Similarly M(S) = sx describes the event that the variable M
(‘physical measurement’) takes on the value sx for system S. Of course in principle
specifications of space-time points (S takes on value y for variable Y here, now)
could be added to make things more precise, but whether this is even meaningful
depends on the interpretation of the probability function (i.e. single case or not).

Events (or rather event types20) and properties (such as ‘spin up along x’) can be
understood as values of random variables in this sense. The probability function p
(or Pr, which symbol we reserve for the quantum probabilities in what follows) then
maps from an algebra (in the sense of Appendix A, Definition A.4) over the value-
set of a random variable in question, or from the Cartesian product of the value-sets
of multiple random variables in the case of a joint probability p(X1 = x,X2 =

17This is the notation also used by Redhead (1987, p. 8).
18Note that we are effectively avoiding such things as the ‘big vs. many’-debate by simply
stipulating that what is conditioned on has probabilities (cf. Wroński 2014, p. 45ff.). For
convenience, we will do so throughout this book.
19‘Function’ is meant here in the neutral, set-theoretic sense, not in the specific sense of calculus.
If you prefer this, you can replace it in thought by the more neutral ‘map’, which also covers
measures (cf. Appendix A for details).
20Again, depending on the interpretation of p, it must measure the probability that variableX takes
on a certain value for some individual S ∈ D, not a specific one.
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y, . . .),21 into the interval [0, 1] (cf. Schurz and Gebharter 2016, p. 1076). Since
the function maps an algebra of sets over the value space of some X into [0, 1],
one should actually write expressions of the form p({x}), but in line with common
practice, we will usually directly write values as the argument of the probability
function.

Let us now check why (2.15) corresponds to a 50%-chance. We know that

〈↑x |↑z〉 .=
(

1√
2

1√
2

)(
1
0

)
= 1√

2
· 1+ 1√

2
· 0 = 1√

2
(2.16)

so obviously

| 〈↑x |↑z〉 |2 =
(

1√
2

)2 = 1
2 , (2.17)

as expected.22

Note that from (2.14) we can see that 1√
2

is the expansion coefficient for both
|↑z〉 and |↓z〉 in the expansion of |↑x〉 in the basis defined by |↑z〉 and |↓z〉. It is not
hard to figure out that we could also use |↑x〉 and |↓x〉 as a basis of the same vector
space, and expand

|↑z〉 = 1√
2
(|↑x〉 + |↓x〉) .= 1√

2

((
1√
2

1√
2

)
+

(
1√
2

− 1√
2

))
=

(
1
0

)
.

Hence 1√
2

is equally the expansion coefficient for |↑z〉 in the spin-x-basis. Accord-

ing to (2.16) 〈↑x |↑z〉 is equal to 1√
2

, and so is 〈↓x |↑z〉, which we can use to write

|↑z〉 = 〈↑x |↑z〉 |↑x〉 + 〈↓x |↑z〉 |↓x〉 . (2.18)

The state of definite spin w.r.t. the z-axis is hence represented as an equal sum of
possible states w.r.t. the x-axis, and expressions such as 〈↑x |↑z〉 intuitively describe
the ‘overlap’ of states |↑x〉 and |↑z〉 or ‘how much they have in common’. A
state description like (2.18) is called a quantum superposition, and we have hence
stumbled upon a very interesting and central issue in the philosophy of QM; namely
the general aptness of such descriptions. The assumption of this ‘aptness’ constitutes
a (if not the) central postulate of the theory:

21As should be clear by now, joint probabilities are a delicate matter in QM; for what, say, is the
joint probability p(sx(S) = + h̄

2 , sz(S) = + h̄
2 ), understood as ‘equal time’? There does not seem to

be an answer; both measurement procedures mutually exclude each other. That the matter is ‘even
more delicate’ than mere limitations of joint measurability will become obvious in the following.
22Taking the squared modulus | 〈·|·〉 |2 not only ensures real values, but also that the function Pr
satisfies the first Kolmogorov axiom (cf. Appendix A) Pr(a) ≥ 0 for all a in the domain of Pr.
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Principle of Superposition II (Kinematical) Any two physical states, |1〉 and |2〉,
whatever their meaning, can be superposed in the form α1 |1〉 + α2 |2〉 (α1, α2 ∈ C)
to form a new physical state.23

The content of this principle is actually very different from that of the dynamical
superposition principle (although from a certain standpoint, both are intimately
connected in QM, as shall become clear later). We are here not talking about waves
overlapping to give new waves, or about sums of solutions to a differential equation
forming a new solution; we are talking about physical states being ‘added up’ to give
a new state. This feature is quite peculiar to QM, and Zeh points out that “while the
physical meaning of classical superpositions is usually obvious, that of quantum
mechanical superpositions has to be somehow determined.” (Joos et al. 2003, p. 8)

So in principle any kind of vector is admissible to represent a state, and in some
basis this will be a ‘superposition state’, due to the vector-space structure of the
state-space. But there are certain circumstances where it is indicated to impose
physically motivated rules that disallow certain kinds of superposition, e.g. of states
of different charges, spin-numbers, or masses (cf. Joos et al. 2003, p. 12). These
are called superselection rules. Two vectors |ψ〉 , |φ〉 are said to be separated by a
selection rule if 〈ψ |Ĥ |φ〉 = 0 (Ĥ the Hamiltonian), i.e. if transitions from one state
to the other are inhibited for the dynamical evolution as given by Ĥ . They are said
to be separated by a superselection rule if for all physically realizable observables
A (with operators Â) it holds that 〈ψ |Â|φ〉 = 0.24 A fortiori, the operators for
physically realizable observables must form a proper subset of all self-adjoint ones,
since e.g. Ô = |ψ〉〈φ| + |φ〉〈ψ | is self-adjoint, but 〈ψ |Ô|φ〉 �= 0 (cf. Giulini 2009,
p. 772).

Note that since |1〉 or |2〉 in the kinematical superposition principle may
already be superposition states, this implies arbitrarily large (countable) sums. But
we can equally generalize the principle to allow for integrals (i.e. uncountable
superpositions of states), as will become clear later. We have called this (again,
possibly confusingly) the kinematical version, as it is formulated in terms of states,
and the kinematics is generally understood as the part of a physical theory concerned
with what counts as a state, and how to determine these.25

23Cf. Joos et al. (2003, p. 7).
24That this implies that no ‘genuine’ superpositions of the form |ξ〉 = α |ψ〉 + β |φ〉 can exist
becomes clear by appeal to the density operator, thoroughly introduced later. With 〈ψ |Â|φ〉 = 0,

one has 〈ξ |Â|ξ〉 = |α|2 〈ψ |Â|ψ〉 + |β|2 〈φ|Â|φ〉 which would equally result from Tr
(
ρ̂Â

)
with

ρ̂ = |α|2 |ψ〉〈ψ |+|β|2 |φ〉〈φ| the density operator of a proper mixture (cf. 2.1.5), so that a coherent
superposition of |ψ〉 and |φ〉 is indistinguishable from a proper mixture (cf. Giulini 2009, p. 773).
25κίνεσις is (ancient) Greek for ‘motion’ (cf. Perschbacher 1990, p. 240), so the term ‘kinematics’
is again related to Newtonian physics and the fact that therein states are obtained by solving an
equation of motion. It (or rather the french cinématique) was first suggested by Ampère (1838) in
his Essai sur la philosophie des sciences, “for a field of mechanics that would be concerned with
motion independent of its causes.” (Koetsier 1994, p. 994)
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The superposition principle, construed kinematically, has been called “a hallmark
of all quantum theories” (Teller 1995, p. 7), and in what follows we will see
how far reaching its consequences are. Of no less important stature is the rule
we have appealed to in (2.15), called Born’s rule (after Max Born 1926, p. 805
ff. and especially 1927, p. 241). It provides the pivotal algorithm for computing
what outcome frequencies to expect in a measurement, according to QM. Born’s
rule obviously yields the same result as in (2.17) for the probability of |↓x〉 given
|↑z〉, and it seems that we have two properties of which we can have no definite
knowledge at the same time. We cannot design an experiment which definitely tells

us the x- and the z- or the x- and the y-component of a system’s spin s =
(
sx
sy
sz

)

simultaneously.
Quantum mechanics implements this feature by a replacement of sx , sy , and sz

with self-adjoint operators (cf. Appendix A, (A.21)) ŝx , ŝy , and ŝz respectively, and
of the vector s by the vector operator ŝ. Dividing the component operators by h̄

2 , we
obtain the (very useful) Pauli matrices

σ̂x
.=
(

0 1
1 0

)
, σ̂y

.=
(

0 −i
i 0

)
, σ̂z

.=
(

1 0
0 −1

)
,

due to Wolfgang Pauli (1927, p. 608). They have eigenvectors |↑j 〉 , |↓j 〉 (j ∈
{x, y, z}) with eigenvalues +1 and −1 respectively, and we can decompose them as

σ̂j = +1 |↑j 〉〈↑j | + (−1) |↓j 〉〈↓j | .

As mentioned before, the vector space we have appealed to is simply C
2 (or

any one isomorphic to it), i.e. the space of 2-entry columns of complex numbers,
endowed with an appropriate sum operation, scalar multiplication, and a scalar
product, and we can use ŝz’s eigenvectors E(ŝz) = {|↑z〉 , |↓z〉} as a basis of C2.
The third pair, |↑y〉 and |↓y〉, is then given by

|↑y〉 = 1√
2
(|↑z〉 + i |↓z〉) .=

(
1√
2
i√
2

)
, |↓y〉 = 1√

2
(|↑z〉 − i |↓z〉) .=

(
1√
2

− i√
2

)

(i the imaginary unit). If we want to measure the spin along some arbitrary
axis in space, given that we have chosen a certain coordinate system, the matrix
corresponding to this observable can be obtained by treating the vector operator σ̂

like an ordinary Euclidean vector and taking its (Euclidean) inner product with a
unit vector pointing in the desired direction. Call this vector nθϕ and express it in
spherical coordinates as

nθϕ =
⎛
⎝

sin θ cosϕ
sin θ sinϕ

cos θ

⎞
⎠ ,
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which can be motivated by geometric inspection (e.g. Wong 2013, p. 57). Then the
scalar product yields

σ̂ · nθϕ = sin θ cosϕ · σ̂x + sin θ sinϕ · σ̂y + cos θ · σ̂z =

=
(

cos θ sin θ cosϕ − i sin θ sinϕ
sin θ cosϕ + i sin θ sinϕ − cos θ

)
=

=
(

cos θ sin θ · e−iϕ
sin θ · eiϕ − cos θ

)
, (2.19)

and this will be very useful for later reference.
We have seen above that the order of measuring the different spin directions

makes a difference. If we measure the z-spin first and then measure it again, |↑z〉
stays |↑z〉. If we do an intermediate x-spin measurement, this is not so. The means
to express this in QM is by appeal to the commutator (cf. Appendix A, (A.25)) of
the operators, which is non-zero for two such magnitudes for which the order of
measurements makes a difference. For the present case we have:

[σ̂j , σ̂k] �= 0, ∀j, k ∈ {x, y, z} such that j �= k.26

As was mentioned in passing, physically measurable magnitudes such as the
spin, represented by self-adjoint operators, are called observables in QM, which is
intended to mean that their value can be determined by means of an experiment. σ ,
however, is not an observable (σ̂ is not self-adjoint), so QM tells us that we cannot
construct an experiment to determine the definite spin of an electron (or atom) w.r.t.
all spatial directions. But σ 2 is an observable and σ̂

2 commutes with σ̂z, say, so that
we can know the total magnitude of the spin and its z-component simultaneously,
but never its direction.

We may object at this point that experiments like the one described above can
hardly count as observations in any narrower sense of the word. Multiple abductive
inferences go into the interpretation of this process as a determination of the values
in question, whence concerns about theory-ladenness once more come to mind.
And in fact Popper (1967, p. 41) also critically remarked that “all ‘observables’
are calculated and inferred on theoretical grounds, rather than observed or directly
measured. Thus what is ‘observable’ always depends upon the theory we use.” This
very point, that the theory determines what counts as observable, was also made

26In fact, the commutator will here give back another Pauli matrix, up to a multiple of i; the
commutation relations can be summarized in the form [σ̂k, σ̂�] = i2

∑3
m=1 εk�mσ̂m with {x, y, z}

replaced by {1, 2, 3}, and where ε is the so called Levi-Civita symbol which gives back 1 if k, �,
and m are cyclical permutations of 1, 2, 3, −1 for anti-cyclical ones, and 0 if two of the numbers
are identical. In virtue of this property, the Pauli matrices form an abstract commutator algebra (a
Lie algebra), as do other types of angular momentum in QM (e.g. Schwindt 2013, pp. 197 ff. and
256 ff.).
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by Einstein, as Heisenberg recalls in his autobiographic and philosophical writings
(cf. Heisenberg 1969, p. 80, 2011, p. 31). What Einstein actually meant by this is an
intricate matter that will make a reprise in Chap. 7, and it will have some significance
for the interpretation advanced therein—although we will not follow his particular
path.

Popper, at any rate, nevertheless conceded that most of us seem to understand
what is meant by ‘observable’ in this context, and even the empiricist Reichenbach
(1944, pp. 20–21) thought that there is always a kind of physical experiment with
a quite directly observable outcome that we can regard as an indicator of the
‘observable’ in question taking on some value. So we may also avail ourselves of
standard nomenclature.27

We have seen how QM has something to say about outcome statistics of
measurements, and a second important statistical aspect of QM is that, given the
Born rule, we can define a formula for the (theoretical) average or expectation
value 〈O〉 of an observableO. The arithmetic mean over a series of measurements is
obtained by summing up all measured values, multiplied by the relative frequency of
their occurrence (their ‘sample probability’, if you will). The (theoretical) average is
accordingly given (independently of QM) by summing up (integrating) the possible
values multiplied by their respective probabilities according to some theoretically
fabricated probability distribution. Restricting ourselves to the discrete case, we can
express this quantum mechanically as

〈O〉ψ =
∑
j

Pr|ψ〉O (oj ) · oj =
∑
j

|〈oj |ψ〉|2oj =
∑
j

〈ψ |oj 〉〈oj |ψ〉oj ,

where the index ψ indicates that this average is relative to the quantum state |ψ〉 of
the measured system. Realizing that oj |oj 〉 = Ô|oj 〉, we can rewrite this expression
to yield

〈O〉ψ =
∑
j

〈ψ |Ô|oj 〉〈oj |ψ〉 = 〈ψ |Ô|ψ〉, (2.20)

where we have made use of the resolution of the identity operator 1 =∑
j |oj 〉〈oj |

in deriving the last line, and of the fact that 〈ψ | and Ô are linear (cf. Appendix A
on both points).

Form the average one can also compute the standard deviation of a physical
quantity, which is a measure for how much any measurable value of a quantity
in question is expected to differ (on average) from the quantity’s average. In an
actual sample of data-points one would compute a sample standard deviation quite

27Still, it is clear that this point is actually of greater concern and has the potential to raise
controversy. Moreover, note that not every self-adjoint operator can correspond to an observable
(cf. Footnote 24) whereas the converse might just be the case (e.g. d’Espagnat 1995, p. 98).
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intuitively by taking the square root of the sum over the squared differences28

from the arithmetic mean Q̄ over all the values, divided by the number of sample
points, i.e.:

�Qsamp. =
√∑n

j=1(Q̄− qj )2

n
.

This corresponds to taking the square root of the mean of the squared deviations
from the mean value. For the theoretically predicted quantity, one can hence use an
elegant, general expression which reads (with Q̄ replaced by 〈Q〉)

�Q =
√〈
(Q− 〈Q〉)2〉. (2.21)

The sample standard deviation may be used as an ‘estimator’ for the theoretical one
(cf. Fornasini 2008, p. 52 ff.), and the theoretical one constitutes a predictor for the
sample deviation (which is the ‘more empirical’ viewpoint). In QM contexts this is
also referred to as the uncertainty of the observable in question. The expression
under the square root, identical to

〈
Q2

〉 − 〈Q〉2, is also sometimes called the
dispersion of Q (e.g. Jaeger 2009, p. 8).

But there are some subtleties with the terminology here. Griffiths (1995, p.
112), for instance, complains about the use of the word ‘uncertainty’ instead of
‘standard deviation’ (because that is what the expression really provides), and uses
σ instead of � (the latter symbol is often also rather used for the standard error of
the mean). The more profound reason for criticism, however, is that ‘uncertainty’
suggests something merely epistemic. But does the ‘uncertainty’ associated with
a QM observable, due to QM’s probabilistic nature, merely reflect that we can
(or typically do) not know its exact value? This is not really clear from the ‘bare
formalism’, and the associated questions will be a major concern later.29

With these definitions, one can derive (cf. Griffiths 1995, p. 108 ff.; Shankar
1994, p. 128) what is sometimes called the generalized uncertainty relation,

�Q�P ≥ 1

2
|
〈
[Q̂, P̂ ]

〉
|, (2.22)

for two operators Q̂ and P̂ . Plugging in the commutator for σ̂z and σ̂x , say,
we obtain �σz�σx ≥ 1

2 |
〈
2iσ̂y

〉 | = 〈
σ̂y

〉
, a value which does not generally

vanish. Two observables which satisfy such an uncertainty relation are also called
incompatible. Of all possible observables, one can always only single out a subset

28The square ensures that all the deviations are counted positively.
29Again we stick to the standard QM-terminology here nevertheless, as was the case with
‘observable’ or ‘system’.
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of simultaneously measurable observables, then usually called a complete30 set of
compatible observables (cf. Dirac 1930, p. 57; Shankar 1994, p. 133).

Recall the two relations first found by Heisenberg (1927), �x�px ≥ h̄
2 and

�E�t ≥ h̄
2 . The former is a straightforward instance of (2.22), in virtue of the

commutator [x̂, p̂x] = ih̄1.31 The latter, however, can only be derived by appeal to
some time dependent observable, due to the nonexistence of a time-operator in QM.

Regardless of this fact, one can hence, according to QM, never ‘know to arbitrary
accuracy’ how fast a system is moving and where it is at any given time, and one
can also never gain such knowledge w.r.t. the energy a system has at a certain point
in time. This is certainly remarkable, but what, precisely, does it mean? What is
this limitation of knowledge due to? Is it the case that the two properties cannot
simultaneously exist on a given system? Or do we, as finite human beings, simply
face limitations in access to the true state of the system? Again, this is a question
that will require considerable attention below; but for now we should merely keep
it in the back of our (itching) heads.

Our treatment of spin is straightforwardly comparable to a possible treatment of
polarizations. More precisely, it is not just comparable, but in circularly polarized
photons the direction (clockwise or counter-clockwise) of the field vector rotating
(‘spinning’) around the axis of propagation of the photon, also called its helicity,
also gives rise to a kind of spin with two possible values, namely ±h̄—photons are
bosons. Hence one could define a basis B = {|�〉 , |�〉} of positive and negative
helicity states and set up a mathematical story exactly like that of the electron spin
above. Alternatively, linear polarization states |↔〉 and |�〉 (denoting horizontal and
vertical polarization respectively) could be used as a basis, where the helicity states
would appear as superpositions |±〉 = 1√

2
(|↔〉 ± i |�〉) (the plus sign is the |�〉

state). This treatment corresponds closely to that of spin, and one can also use
Pauli matrices for the description of clockwise or counterclockwise polarization
observables respectively.

How is this at all related to our discussion of waves in Sect. 2.1.1? First note that,
using the means of Fourier transformation, we can not only bring wave functions but
also the SE (in both versions) into a momentum-form. More generally speaking,
both representations may be considered as special instances of the two abstract
(‘basis invariant’) equations

30For asserting ‘completeness’ it is here assumed to be sufficient that for N -tuples of eigenvalues

(λ1, . . . λN ) of the operators in a commuting set
{
Âk

}N
k=1

there are simultaneous eigenvectors∣∣ψλ1,...λN

〉
, such that the set of these simultaneous eigenvectors span the space H (cf. Ruetsche

2011, p. 200).
31Here p̂x may be represented as −ih̄ ∂

∂x
on a space of functions of position, ψ(x), and x̂

merely multiplies the latter by x. Then one sees immediately that x
(
−ih̄ ∂ψ

∂x

)
− (−ih̄ ∂

∂x
(xψ)

) =
−ih̄x ∂ψ

∂x
+ ih̄x

∂ψ
∂x
+ ih̄ψ ∂x

∂x
= ih̄ψ . Note that in a space of momentum-dependent functions,

ψ̃(p), x̂ would be a derivative w.r.t. px , and p̂x a multiplication-operator.



2.1 Non-Relativistic QM: A Gentle Start 37

ih̄
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉 (2.23)

Ĥ |ψ〉 = E |ψ〉 . (2.24)

In fact the SSE, Ĥψ = Eψ , is now recognizable an eigenvalue-equation like the
ones we had considered in the spin examples above. Ĥ is a self-adjoint operator,
representing an observable (energy). Similarly, the momentum operator we had
introduced before is the representation of a momentum observable.

But how do wave functions and -packets relate to bras and kets? To understand
the connections between the formalisms, consider that an expression for the vector
that solves the SE in its abstract form can be given in a manner similar to that of
the spin vector in (2.18). This expansion in terms of basis vectors of some suitable
(separable or finite; cf. Appendix A) Hilbert space H with basis

{∣∣ϕj
〉}
j∈J (J a set

of indices) can then be written as

|ψ〉 = 1 |ψ〉 =
∑
j

|ϕj 〉〈ϕj | |ψ〉 =
∑
j

〈ϕj |ψ〉 |ϕj 〉 . (2.25)

For the more general case of a non-separable (rigged Hilbert) space (again, cf.
Appendix A) with ‘basis’ { |p〉}p∈Q (Q some suitable indexing set for this case)
we can write

|ψ〉 = 1 |ψ〉 =
∫
R3
|p〉〈p| |ψ〉 d3p =

∫
R3
〈p|ψ〉 |p〉 d3p , (2.26)

and multiplying from the left with 〈x|, we obtain

〈x|ψ〉 =
∫
R3
〈p|ψ〉 〈x|p〉 d3p . (2.27)

Realizing that p̂ 〈x|p〉 = 〈x|p̂|p〉 = p 〈x|p〉 and imposing a ‘normalization’
requirement (see below), the expression 〈x|p〉 can be regarded as yielding 〈x|p〉 =
(2πh̄)−3/2e

i
h̄
px , so that we retain the familiar form

ψ(x) = 1√
(2πh̄)3

∫
R3
e
i
h̄
px
ψ̃(p)d3p (2.28)

of a wave packet. The functions 〈x|p〉 = (2πh̄)−3/2e
i
h̄
px may, in fact, be thought of

as ‘normalized’ eigenfunctions of the momentum operator p̂ in position space, and
as forming an ‘orthonormal’ basis of a rigged Hilbert space or a ‘pseudo basis’ of
the Hilbert space L2(R3) of square integrable wave functions (e.g. Schwindt 2013,
p. 80 ff.). This means that for two given momenta p0 and p1 we have
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〈
p1

∣∣p0
〉 =

∫
R3

〈
p1

∣∣x〉 〈x∣∣p0
〉
d3x =

∫
R3

(
(2πh̄)−3/2

)2
e
−i p1

h̄
x
e
i

p0
h̄

xd3x

= 1

(2πh̄)3

∫
R3
e
i

p0−p1
h̄

xd3x = δ3(p0 − p1)

(which incidentally explains the factor (2πh̄)−3/2 as a ‘normalization’, in this
sense). Their Fourier transformed versions are Dirac-δs, and the Dirac-δs in position
space which constitute the eigen-‘functions’ of x̂ in that space have transforms

〈p|x〉 = (2πh̄)−3/2e
− i
h̄
px . The Fourier transformation roughly acts as a change

of basis between the two representations. We can hence see how the functions in
question also constitute a formal vector space.

Above, in the discussion of the generalized uncertainty relation, we also men-
tioned a position operator x̂, which can be generalized to a vector operator x̂ with

‘eigenvectors’ |x0〉 of eigenvalue x0.32 Since we demand x̂ |x0〉 != x0 |x0〉, we can
define such an operator either simply as ‘multiplication by x0’, or we can give it a
concrete look by appeal to the identity operator 1 in the continuous space of |x〉s,33

x̂ =
∫
R3

x |x〉〈x| d3x (2.29)

(cf. Ballentine 2000, p. 23; Manoukian 2007, p. 38) so that we obtain

x̂ |x0〉 =
∫
R3

x |x〉〈x|x0〉 d3x =
∫
R3

x |x〉 δ3(x0 − x) d3x = x0 |x0〉

as desired.
Obviously, all three spatial components are predicted to be simultaneously

measurable, which is a desirable consequence. The use of continuous kets |x〉,
however, constitutes a gross (if useful) idealization. One could think of them as
‘functions’ φx0(x) of space, in the sense that φx0(x) = 〈x|x0〉 = δ3(x0 − x).
This means that their value at position x is either zero or infinity, the latter
being incidentally the norm (‘length’) of the corresponding ket-vectors. They may
be viewed (and are typically used) as the mathematical description of perfectly
localized ‘point particles’.

But this of course suggest that not all of the QM formalism can be indicative of
something physical. The formalism needs some careful sorting-out. Teller (1995, p.
48), for instance, calls the Dirac-δ “a most effective tool in spite of constituting a
physical fiction”, and Dirac himself also speculated that “the infinite length of the
ket vectors corresponding to these eigenstates is connected with their unrealizability,

32With an eye on Appendix A and the brief discussion of rigged Hilbert spaces therein, this means,
strictly speaking, that 〈ϕx̂|x0〉 = x0 〈ϕ|x0〉 for ϕ ∈ � (cf. de la Madrid 2005, p. 302).
33A more thorough definition of the position operator is possible in terms of operator valued
measures (cf. Appendix A and Heinosaari and Ziman 2012, pp. 128–131).
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and that all realizable states correspond to ket vectors that can be normalized and
that form a Hilbert space.” (Dirac 1930, p. 48) It is clear that ‘point particles’
would not only be immeasurable, but that the very concept raises a whole bunch
of further conceptual worries—if by ‘pointlike’ one truly means extensionless. As
computational tools Dirac-δs and position kets are perfectly fine, and they simplify
a range of applications a whole lot.

Consider e.g. the generalization of (2.20) to the continuous case. Using position-
kets, we can write such things as

〈Q〉ψ = 〈ψ |Q̂|ψ〉 =
∫
〈ψ |x〉〈x| Q̂ |ψ〉 d3x =

∫
ψ∗(x)Q̂ψ(x)d3x. (2.30)

Now surprisingly, our wave function here appears merely as a ‘statistical tool’,
something akin to a probability density function; and in Sect. 2.1.1, we did use
the wave function to also define a probability density |ψ(x)|2 = ψ∗(x)ψ(x) =
〈ψ |x〉〈x|ψ〉, which we can use in expressions like Prψx (x ∈ �) =

∫
�
|ψ(x)|2 d3x

to compute the probability of finding a particle in some volume �. It may be
tempting to suppose that this is precisely and exclusively the role of the wave
function: a statistical tool. But it needs to be spelled out very carefully what that
means, as the subsequent discussion will show. Importantly, we here speak of the
probability of ‘finding a particle in some volume’, which is a standard way of putting
things—something that Bell (1990a, p. 39) found particularly objectionable—and
we will see in Chap. 4 whence the caution against ‘being’ instead of ‘finding’.

We have now abstracted very much from the suggestive use of wave functions as
representatives of waves. And we can see that the calculations can be perfectly done
without ever really talking about waves. In fact, historically an abstract calculus for
providing quantum mechanical predictions about atomic events came first, namely
Heisenberg’s (1925) matrix mechanics, extended and elaborated on subsequently
in (partly) joint work with Born and Jordan (1925) and Born et al. (1926).34

Schrödinger (1926) very soon noticed that the two formalisms could be connected
to one another. But it was not until the proof of the so called Stone-von Neumann
theorem that a rigorous sort of equivalence between Heisenberg’s matrices and
Schrödinger’s wave functions could be demonstrated.35

The talk here is of unitary equivalence. It made both original formalisms (wave
functions and matrices) identifiable as special instances of the general Hilbert space
structure which is most simply expressed in terms of kets. Two Hilbert spaces H
and H′, equipped with families of operators

{
Ôj

}
j∈J and

{
Ô ′j

}
j∈J , are called

unitarily equivalent in case there is a unitary (i.e. bijective, linear, norm-preserving)
map U which maps the vectors of H onto those of H′ and connects the operators

34Weinberg (2013, pp. 14–21) gives a nice overview of some matrix mechanics; so the interested
reader may be referred there.
35For general discussion cf. Ruetsche (2011, chapters 2 and 3); for a statement of the theorem cf.
p. 41 therein; and for proofs cf. the references therein.
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{
Ôj

}
j∈J defined on H to that defined on H′ via Ôj = U−1Ô ′jU (cf. Ruetsche

2011, p. 26). But unitary equivalence is a somewhat subtle matter: simple examples
of quantized theories—i.e., loosely speaking, theories wherein operators occur in
places where corresponding classical theories would have functions; cf. Ruetsche
(2011, chapter 2) for a by far more rigorous treatment—with a free parameter can
be constructed (using e.g. a particle confined to a ring), which are not unitarily
equivalent to one another for different values of that parameter. More generally
speaking this phenomenon occurs whenever the phase space of the underlying
classical theory is not R2n (cf. Ruetsche 2011, p. 57 ff.). For many practical purposes
these subtleties do not matter, and ordinary QM calculations can be handled by blunt
appeal to kets in virtue of the Stone-von Neumann theorem. We will touch on some
further implications of unitary inequivalence, and in how far it must be taken to
suggest physical inequivalence, in the context of QFT though (Sect. 2.2).

Another gross idealization, like the use of Dirac-δs, should be noted here: in
constructing our wave packet above, we have considered the example of a free
system which may itself constitute a kind of physical fiction. For when can a system
ever ‘truly’ count as free? As far as we know, there will always be an abundance of
other systems in the universe that it can interact with; even Neutrinos interact with
other matter, if ever so weakly. A similar remark is made by Auyang (1995, p. 37),
who calls the free particle in QFT “an approximation or idealization, for particles
form an interacting system.” But she also notes that this idealization is of course put
to good use in the form of initial and final states of scattering problems.

The same thing can be said about free particles in non-relativistic QM, in
scattering problems or, say, in solid state physics, where the free electron gas
proves to be a very useful (approximate) model for many purposes (cf. Ashcroft
and Mermin 1976, p. 29 ff.). But to investigate a certain system’s behavior, we
inevitably have to subject it to a measurement procedure and hence confine it to
the extensions of some laboratory equipment, thereby imposing a (not generally
negligible) potential upon it. Besides the fact that a discussion of the notion of
‘measurement’ is indicated (which will follow in Sects. 2.1.4 and 2.1.5), it will
hence be instructive to investigate a simple but somewhat more realistic example
with a potential.

In general the restrictions imposed upon the wave function (normalizability in
some interval, direction of travel, periodicity, smoothness at boundary points,. . . )
by a problem with given potential often lead to interesting consequences. In atomic
physics, for instance, one of QM’s first major successes, spherical coordinates
(r, ϑ, ϕ) instead of Cartesian ones (x, y, z) are preferable for the description of the
atomic electrons, due to the spherical symmetry of the problem. The Laplacian then

assumes the form � = 1
r2

∂
∂r

(
r2 ∂

∂r

) + 1
r2 sinϑ

∂
∂ϑ

(
sinϑ ∂

∂ϑ

) + 1
r2 sin2 ϑ

∂2

∂ϕ2 in virtue
of the coordinate transformation, and since one finds that the merely angular part is
proportional to the square of the orbital angular momentum operator L̂ = r×p̂, this
leads to a theory of discretized angular momentum for the electrons in question. The

eigenfunctions Y�,m(ϑ, ϕ) of L̂
2

are parametrized by an integer parameter � (e.g.
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Foot 2005, p. 23 ff) which, according to the naïve view, could be thought of (turning
a blind eye on some subtleties for the moment) as indicating how ‘electron waves’,
localized in the proximity of the nucleus, can take on various shapes for different
values of �, the familiar orbitals often depicted in textbooks (e.g. Basdevant and
Dalibard 2002, p. 199).36

While we have largely abandoned it already, atomic physics hence gives a
certain prima facie plausibility to our Conjecture 0; well known phenomena such
as discrete energy spectra could be understood somewhat intuitively in terms of
reconfigurations of ‘electron-waves’ and the associated emission of energy in the
form of photons. Still, it is not clear how the naïve view squares with everything
else that has been said, and we will shortly provide good reasons to abandon it
completely.

Let us first, however, study a simple exemplary system with a potential in a
little more detail,37 which will serve to introduce a few further (important) details,
and incidentally constitute a toy example for more involved systems of greater
philosophical relevance to be discussed later. Our example is a model of the
ammonia (NH3) molecule for low energies, in which only a finite set of energy
eigenvectors |Ej 〉 turns out to be relevant. In a simple model of the molecule, the
three hydrogen atoms (H3) together may be thought of as defining a triangle with the
nitrogen atom (N) located on either side (‘left’ or ‘right’) of it. The potential energy
function that can be used to describe the ‘confinement’ of the N-atom on either side
of the H3-triangle is a so-called double well potential (cf. Fig. 2.8a). In the present
case it may be approximated by an even simpler ‘two-box’-potential with ‘infinite
outer walls’, where the latter represent the neglect of the possibility that the N-atom
could exit the system altogether (cf. Fig. 2.8b).

In this approximation and for low energies, the SSE can be solved comparatively
easily with the aid of certain restrictive considerations (continuity in all domains,
vanishing at the boundaries. . . ). And when one does, two solutions are found that
fit the constraints equally well. One of these is called symmetric (ψs) and the other
one antisymmetric (ψa), reflecting the mirror symmetry of their graphs w.r.t. the
origin (cf. Fig. 2.8b). What is crucial is that these two solutions correspond to
different energy levels (the two lowest ones) that can be measured with the aid of
spectroscopy, and are offset by some value Ea − Es = �E.

Since we are here only concerned with two (relevant) states, the NH3-molecule
can be thought of as another example of a two-state system, at least when sufficiently
shielded so that it cannot be excited to higher energy states. The two (normalized)
eigenvectors |Es〉 and |Ea〉 of the (low-energy) Hamiltonian, corresponding to ψs

36Note, however, that atomic physics already constitutes an example where fully analytic
treatments without approximations are rare; strictly speaking this is only possible for the single-
electron problem, i.e. for the hydrogen atom.
37We here closely follow Basdevant and Dalibard (2002, p. 80 ff. and p. 120 ff.).
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Fig. 2.8 (a) The typical double well potential (solid curve) can be approximated by a potential that
is infinite at the boundaries and has a finite value (V0) in the middle (dashed lines), so as to allow
for a simple treatment. (b) The two possible wave functions which solve the SE for low energies.
(Cf. also Basdevant and Dalibard 2002, pp. 79–80)

and ψa respectively, form an ONB for this model, and the Hamiltonian can then be
put in a simple diagonal matrix form

Ĥ
.=
(
Es 0
0 Ea

)

where

|Es〉 .=
(

1
0

)
, |Ea〉 .=

(
0
1

)
, Ĥ |Es〉 = Es |Es〉 , and Ĥ |Ea〉 = Ea |Ea〉 .

According to the dynamical superposition principle, any linear combination |φ〉 =
μ |Ea〉 + ν |Es〉 is also a solution, with |μ|2 + |ν|2 = 1 in order for μ and ν to
determine the probabilities of finding Es or Ea on the system. To describe the
time evolution of the (unmeasured, isolated) system, we may consider each of
the aforementioned vectors |Ea〉 and |Es〉 as functions of time in an initial state
at an initial time t0 = 0. A so called time evolution operator that ‘encodes’ the
Schrödinger dynamics38 can then be developed as

38The more general case of t0 �= 0 would require Û (t0; t) = e
− i
h̄
Ĥ (t−t0). If we then let t − t0 = ε,

we can write |ψ(t0 + ε)〉 = e
− i
h̄
Ĥ ε |ψ(t0)〉 = (1− i

h̄
Ĥ ε+O(ε2)) |ψ(t0)〉 ⇔ ih̄

|ψ(t0+ε)〉−|ψ(t)〉
ε

=
Ĥ |ψ(t0)〉 + O(ε) |ψ(t0)〉, where O(εk) means ‘terms of order εk’ (i.e. wherein ε occurs with
powers ≥ k). The last equation obviously gives the TDSE for ε → 0.
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Û (t) = e
− i
h̄
Ĥ t =

∞∑
n=0

(−it/h̄)n
n! Ĥ n .=

∞∑
n=0

(−it/h̄)n
n!

(
Ens 0
0 Ena

)
=

=
(∑∞

n=0
(−iEs t/h̄)n

n! 0
0

∑∞
n=0

(−iEat/h̄)n
n!

)
=

(
e−iEs t/h̄ 0

0 e−iEat/h̄
)
,

where Ĥ n means n successive applications of Ĥ , here represented by an n-
fold matrix product, and where we have appealed to the power series expansion

eÂ = ∑∞
n=0

Ân

n! , which defines the exponential map on operators. Using this

time evolution operator on, say, |Es〉 gives
(
e−iEs t/h̄

0

)
, or equally 〈x|Û (t)|Es〉 =

ψs(x) · e−iEs t/h̄ =: s(x, t), if we revert back to thinking of |Es〉 in terms of a
function of position.

These solutions will represent the particle as ‘spread out’,39 much like the
momentum eigenstates we encountered before; the energy eigenstates do not
assign ‘sharp’, definite positions either, and typically energy eigenstates are also
eigenstates of momentum.40 Defining an approximate (coarse grained) position
operator X̂ with eigenvectors |L〉 (hydrogen atom approximately left of the H3
triangle) and |R〉 (hydrogen atom approximately right of the H3 triangle), it turns
out that this operator (matrix) is not diagonal in the basis {|Ea〉 , |Es〉}, so that
|R〉 = 1√

2
(|Ea〉 + |Es〉) and |L〉 = 1√

2
(|Ea〉 − |Es〉).41 Thus when the molecule is

measured to have a certain energy, the N-atom cannot be assigned a definite position,
and when the N-atom is approximately localized, the system has none of the definite
(measurable) energy values!

Assuming that we start out at t = 0 with a state approximately localized in the
right domain (R in Fig. 2.8b), we have |φ(0)〉 = |R〉 = 1√

2
(|Ea〉 + |Es〉), and

the time-evolved states is given by |φ(t)〉 = 1√
2
(|Ea〉 e−iEat/h̄ + |Es〉 e−iEs t/h̄) =

e−iEs t/h̄√
2

(|Ea〉 e−i�Et/h̄ + |Es〉). As will be demonstrated later, an overall factor like

e−iEs t/h̄ has no observable consequences, and so using the discretization of the two
energy states, �E = h̄ω, we can think of the system as oscillating back and forth
between the two localized states with frequency ω = �E/h̄ (cf. Basdevant and
Dalibard 2002, p. 83). This is so because (keeping in mind the Euler formula, (2.6))

39One sometimes reads the term ‘dislocalization’ in this connection, but it does usually more
harm than good. In solid state physics, ‘dislocalization’ has the more specialized meaning
of electron wave functions in partially filled bands of the solid having strongly overlapping
supports, whence none is really ‘localized’ at a particular nucleus. This phenomenon is in fact
connected to such familiar properties as conductivity (cf. Gross and Marx 2012, p. 134 ff.). This
is to be sharply distinguished from ‘quantum nonlocality’ though, as we shall see in Chap. 4
(cf. also Zeh 2012, p. 84 on this potential confusion).
40Subtleties arise e.g. for Bloch waves in crystals (cf. Gross and Marx 2012, p. 341).
41For the given choices X̂ = 1

2

(
R+L R−L
R−L R+L

)
or, with 1 = L = −R, X̂ = (

0 1
1 0

)
(cf. Basdevant and

Dalibard 2002, p. 122).
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for times t = (2� + 1)π/ω (� ∈ Z), the state will be proportional to |L〉, and for
times t = 2�π/ω, the state will be proportional to |R〉 again. This insight is not
‘merely academic’ but has empirical consequences: the existence of this frequency
is exploited in technological implementations such as the stimulated emission used
in a maser (read: ‘microwave-laser’; cf. Basdevant and Dalibard 2002, p. 124 ff.).

But we here also encounter another interesting quantum phenomenon not
discussed so far. Since there is a potential wall in the middle which the system is
capable of crossing, we have an instance of quantum tunneling on our hands, which
features in the explanation of well-known process such as the α-decay of nuclids or
scanning-tunneling microscopy (e.g. Bleck-Neuhaus 2013, pp. 189–190). There is
a non-zero probability of the N-atom being in the middle (i.e. inside the potential
wall) which is a situation unfamiliar from classical physics. This tunneling-feature
is another ‘decidedly quantum’-phenomenon. Again closing an eye on many details,
according to our present paradigm (Conjecture 0) this ‘tunneling’ need not appear
as so much of a shock to our intuition, since the tunneling—as we have depicted
the situation in Fig. 2.8b—could then be understood as the wave’s ability to cross
the barrier set up by the potential. And that a wavelike entity could penetrated
something like a ‘wall’ is certainly less difficult to imagine than a ‘solid ball’
suddenly appearing on the opposite side of this wall (think e.g. of a radio sounding
through concrete). This is basically the (faulty) image suggested by many a textbook
treatment.

From our example we can, however, also extract some quite general features
of the theory, regardless of interpretation. For all systems whose Hamiltonian is
not time-dependent, the time evolution is described by an operator of the general

form e
− i
h̄
Ĥ t (although not always with an actual matrix representation). For systems

with time-dependent Hamiltonian, the method of compiling the time-evolution
operator becomes sightly more involved and requires integration and time-ordering
(cf. Schwabl 2007, p. 293 ff.). This does not, however, change the fact that time
evolution hence defined is always unitary, which means that Û†Û (t) = Û Û†(t) =
1 (∀t). This, in turn, implies that inner products, viz. the probabilistic relations,
between state vectors are preserved over time.

This unitary evolution hence implies a surprising sort of determinism: the wave
function at one point in time determines the wave function at all other points in
time in a way that preserves the magnitudes relevant for probabilistic predictions;
a feature that Hughes (1989, p. 116) refers to as statistical determinism, and to
which Born (1926, p. 804) similarly remarked that, while particles described by the
wave function behave probabilistically, probability itself was governed by a ‘causal
law’.42

Despite the intuitability of the pictorial descriptions given above, our naïve view
has certainly already suffered many ‘hits’ to its plausibility from the previous
discussion. How are all these abstract features of QM to be interpreted in terms

42It is obvious that Born had a deterministic notion of causality in mind, which we know is not
necessarily always apt (e.g. Paul and Hall 2013, p. 63 ff., for some discussion).
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of a wavy, field-like entity that can collapse onto narrow spots? Moreover, it
seems that the TDSE cannot be all there is to the evolution of the system on
account of Conjecture 0, since nothing in it predicts or even allows for the kind of
‘collapse of the wave-packet’ required by that conjecture. This may merely suggest
modifications to the dynamics, but we noted in several cases that one has to ‘close
an eye on the details’ to make sense of things in terms of waves in the first place.
So while we had above given some reasons why many physicists still like to talk
in terms of waves and particles, we should now go into the decisive reasons for
abandoning our naïve view altogether, i.e. the reasons why philosophers of science
typically “think that wave-particle duality is an obsolete concept”, as Falkenburg
(2007, p. 31) had it.

2.1.3 Quantum ‘Waves’ Are No Ordinary Waves. . . Nor Are
There Ordinary Particles

The first thing to emphasize is that we have never really left the complex domain
in our discussion of quantum ‘waves’—a fact that Schrödinger (1926a, p. 139)
was well aware of in his original development of wave mechanics, and which
he considered to constitute a ‘certain difficulty’ at the time.43 Above, we have
only dealt with real-valued quantities when we were concerned with probabilities
or probability densities. So one could be tempted to think that the probability
density is actually the truly physical magnitude after all, which then collapses upon
measurement; and this temptation is also reflected, for instance, in the fact that
the aforementioned ‘wavelike’ graphs associated with atomic orbitals are actually
depictions of the probability densities (this was one subtlety that we closed our
eyes on). Yet they are often thought of as depicting the electron’s ‘real situation’ by
practitioners. In fact, Schrödinger (1926a, p. 134 ff.) himself originally attempted
to interpret |ψ |2 as a physical magnitude instead of ψ ; but straightforward reasons
can be given why this can at best be a pragmatic approximation under favorable
circumstances.

A first reason is that in computing the probability density for a double slit
experiment, say, we had to appeal to the wave functions first, and not to the
probability densities directly, in order to derive the correct predictions (|ψ1|2 +
|ψ2|2 �= |ψ1+2|2). This already strongly suggests that the interpretation of |ψ |2 as
describing the distribution of something wave-like is not at all viable. But not even
in the case of a single free particle, traveling undisturbed in space, does resorting to

43German: “Eine gewisse härte liegt ohne Zweifel zurzeit noch in der Verwendung einer komplexen
Wellenfunktion.” (emphasis in original)



46 2 QM’s Problems & How Not to Think About Them

probability densities provide a suitable physical picture, as Heisenberg discovered
already in 1927 (cf. p. 187 ff.). To see this, consider a free wave packet44

ψ(x, t) = 1√
2πh̄

∫
dpA(p)ei(px−Et)/h̄.

Assume now that the weighting A(p) is a Gaußian, centered around some value p0,

i.e., A(p) = π− 1
4 (σ h̄)− 1

2 e
− (p−p0)

2

2(h̄σ )2 . We can then execute the integral to obtain

ψ(x, t)= 1√
2σπ

3
4 h̄

∫
dp e

− (p−p0)
2

2(σ h̄)2 e
i
h̄
(px−Et)= 1√

2σπ
3
4 h̄

∫
dp e

ipx
h̄
− (p−p0)

2

2(σ h̄)2
− ip2t

2mh̄=

= 1√
2σπ

3
4 h̄
e
− p2

0
2(σ h̄)2

∫
dp e

− 1
2 (

1
(σ h̄)2

+ it
mh̄
)p2+( p0

(σ h̄)2
+ ix

h̄
)p
,

and defining a := 1
(σ h̄)2

+ it
mh̄

and b := p0
(σ h̄)2

+ ix
h̄

this computes

ψ(x, t) = 1√
2σπ

3
4 h̄
e
− p2

0
2(σ h̄)2

∫
dp e−

a
2p

2+bp = 1
√
aσπ

1
4 h̄
e
− p2

0
2(σ h̄)2 e

b2
2a =

inserting a,b= 1

π
1
4

√
1
σ
+ ih̄σ

m
t

exp

(
(

p0
(σ h̄)2

+ ix
h̄
)2

2( 1
(σ h̄)2

+ it
mh̄
)

)
e
− p2

0
2(σ h̄)2 .

It is a straightforward (if tedious) exercise to confirm that at t = 0, our wave
packet satisfies the minimum of the uncertainty relation, �x0�p0 = h̄

2 , where
�x0 = 1

σ
√

2
,�p0 = σ h̄√

2
, so we can replace σ = 1

�x0
√

2
. In another (equally tedious)

calculation, one obtains the probability density

|ψ(x, t)|2 = 1√
2π�x(t)

e
− (x−v0t)

2

2(�x(t))2 (2.31)

with �x(t) =
√
(�x0)2 +

(
�p0
m
t
)2

, and v0 = p0
m

the velocity of the center of the

wave packet.
At t = 0 this function hence describes a narrow wave packet, a nicely tied

up lump which could very well be considered as describing something capable
of accounting for particle-like behavior. But the characteristic width of this wave

44Since the generalization to 3D is straightforward, we are here limiting our attention to one
dimension, and we also omit the reference to the domain of integration for simplicity. We shall
avail ourselves of both these simplifications more often in what follows.
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packet, �x(t), is now time dependent, and the packet will spread very rapidly.45

Schlosshauer (2007, p. 117), for instance, describes the behavior of an electron as
predicted by the evolution of the wave packet above, using the experimental value
for the electron’s size as an initial spread. Initially, the electron would thus be a
well-localized entity, but in just an amount of one second the probability density
would be spread out as far as 1000 km, so that the initially localized electron should
extend from, say, Cologne to Rome, with about an equal probability of being found
as a dot-like entity anywhere in between. This certainly constitutes a massive blow
to our zeroth conjecture.

We had argued above, however, that the ‘free electron’ may in a sense be a
fictitious concept anyways, and we will later see that there are resources available
in modern QM that overcome at least this difficulty of the spreading wave-packet
when the environment is taken into account.

But even though the spreading can be overcome in principle, the interpretation
of state vectors or wave functions ψ as representing actual waves is still not
straightforwardly viable, and the most compelling reason to reject this picture of
‘real waves’ traveling in 3D space is that in the majority of cases the wave function
ψ cannot be considered as a function of merely one set of 3D coordinates (ψ(x)),
but instead depends, in an inseparable fashion,46 on many (N ) such coordinates
(ψ(x1, x2, . . . , xN)). These cases can arise when N ‘particles’ or systems have to
be considered at once, and here ψ is not defined over a 3D space anymore, but
only over an abstract configuration space, specifying the joint configuration of all
the N particles in question (e.g. Ballentine 2000, p. 99; Ney 2013, p. 15 ff.). This
insight incidentally served as a key motivation for Born (1926, p. 240) to develop
a thoroughly ‘statistical’ interpretation,47—the likes of which we will find wanting
however, by and large in virtue of exactly the same phenomenon which precludes
the naïve wave-view (non-separability/entanglement).

Schrödinger (1926b, p. 526) was of course well aware of this problem as
well, and he originally suggested to deal with it by integrating out the remaining
coordinates in the |ψ |2 of a many-particle system so as to obtain a description of
one particle alone. Via multiplication by the electric charge e, he thought, one could

45Schrödinger was, in fact, not fond of the idea of collapses at all, but sought for a theory purely in
terms of waves. Besides the conflict with (almost) point-like measurements, he also wrestled with
this difficulty of the spreading wave packet. In doing so, he discovered an outstanding example, the
coherent states of the harmonic oscillator potential, which most closely mimic classical behavior.
But the generalization was not straightforwardly possible, and the example remained a solitary one
(cf. Bitbol 1996, p. 46; Schlosshauer 2007, p. 117).
46‘Inseparability’ can have multiple levels here: for one it can mean that a separation-ansatz for
the TDSE does not work, in the sense that one cannot factor a solution of the TDSE for the different
coordinates of one system. But the meaning of interest here concerns multiple systems and will be
made precise only in Sect. 2.1.5.
47“[D]ie Schrödingerschen Wellen laufen ja gar nicht im gewöhnlichen Raume, sondern im
‘Konfigurationsraume’, der soviele Dimensionen hat, als die Anzahl der Freiheitsgrade des
betrachteten Systems beträgt (3N -Dimensionen für N Partikel).” (Born 1926, p. 240)
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then understand it as a charge density (cf. Schrödinger 1926a, p. 134). Sometimes
such a treatment is still pragmatically applied, for instance in nuclear physics (e.g.
Blatt and Weisskopf 1979, p. 24), where comparatively large masses are involved
and a ‘semi-classical’ treatment often becomes possible. But Schrödinger viewed
this only as a first approximation for various good reasons (cf. Bacciagaluppi 2010,
pp. 15–16), and it cannot yield a general solution to the dependence on multiple
coordinates, as will become clear from our later discussion of entanglement.

One particular way in which the dependence on multiple coordinates can arise
is the following. Consider two quantum systems, e.g. two electrons, which are not
distinguishable by any of their measurable, purportedly intrinsic properties (spin,
charge, mass). These could be the electrons of some atom or we could equally
think of particles in a scattering experiment. Depending on the circumstances, we
can attribute an individual quantum state to each of them, but since they are not
distinguishable in the aforementioned sense, we should recognize that it cannot
make any observable difference which of the electrons is in which of the two possible
states. This can be expressed by requiring that an exchange of the two particles in
the overall wave function (x1, x2) that describes the total two-electron system
should result in a wave function which makes the exact same predictions.

In our discussion of polarization, we mentioned a ‘phase argument’ in the
sinusoidal functions, which would shift the components of the E-vector relative
to one another. Since our ‘waves’ in QM are represented by complex exponentials,
we can introduce a phase by multiplying the wave function by eiθ , with θ the phase
argument. But eiθ is equally just a complex number of unit modulus that essentially
leaves the state vector unchanged. For consider the kets |χ〉 and

∣∣χ ′〉 = eiθ |χ〉. Then
the average of some observable O will be

〈
χ ′

∣∣Ô∣∣χ ′〉 = 〈χ |e−iθ Ôeiθ |χ〉 = 〈χ |e0Ô|χ〉 = 〈χ |Ô|χ〉 ,

and equally

∣∣〈φ∣∣χ ′〉∣∣2 = 〈
χ ′

∣∣φ〉 〈φ∣∣χ ′〉 = e−iθ 〈χ |φ〉 〈φ|χ〉 eiθ = 〈χ |φ〉 〈φ|χ〉 = |〈φ|χ〉|2,

so all statistical predictions remain unchanged. Above, we have assumed that θ
is a global phase, but multiplication by a local one, i.e. one where θ = θ(x, t),
is an entirely different matter. This requires a modification of the Schrödinger
equation, in particular the introduction of additional gauge field terms, such as the
electromagnetic potential (e.g. Aharonov and Rohrlich 2005, p. 45 ff.; Dick 2012, p.
258). And a relative phase between two vectors in a superposition state does matter
statistically (global or local), as we will see in detail later.

Since the overall global phase does not change the predictions, however, we
can rephrase the requirement of observational invariance of the total wave function
(x1, x2) under particle exchange by defining a permutation operator P12 which
simply swaps the coordinates of the two systems (P12(x1, x2) = (x2, x1)), and
by further requiring that
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P12(x1, x2) = eiθ(x1, x2).

But it should also be the case, that two switches in position bring back exactly
the old state, i.e.

P12(P12(x1, x2)) = P
2
12(x1, x2) = (x1, x2).

This can only hold if the eigenvalues of P12 are in fact +1 and −1 (i.e. θ =
nπ, n ∈ Z). Hence, there are only two possible sorts of wave functions which satisfy
the requirement, those with eigenvalue +1 for the permutation operator (called
‘symmetric’) and those with −1 (called ‘antisymmetric’).

But to cover both of these cases, it cannot generally hold that (x1, x2) =
ψa(x1)ψb(x2), because then P12(x1, x2) = (x2, x1) = ψa(x2)ψb(x1) �=
−ψa(x1)ψb(x2) (for a = b, the +1 case is obviously possible). Functions of the
form

(x1, x2) = 1√
2
(ψa(x1)ψb(x2)± ψa(x2)ψb(x1))

however satisfy the symmetry requirement. Including also spin vectors will lead
to further possibilities; one then obtains a so called Weyl- or Pauli-spinor48 which
can be represented as a column vector of wave functions and is an element (for the
special case of two fermionic particles) of the tensor product space L2(R6)⊗C

4.49

This does not change the general theme.
Experimental evidence suggests that there are indeed two general classes of

quantum systems, and these are the bosons and fermions we mentioned in the
earlier discussion of spin (cf. Sect. 2.1.2), where the former are described by an
overall symmetric wave function (+) and the latter by an overall antisymmetric one
(−). In case of multiple particles, one of course has to include more terms and the
appropriate states can be expanded in terms of determinants and permanents (cf.
Lancaster and Blundell 2014, p. 40). For fermions, a symmetric wave function has
to be combined with an anti-symmetric spin vector, whereas the anti-symmetric one
can be combined with any symmetric spin vector, and for bosons the situation is
opposite. Hence for a fermionic two particle system one obtains the (well-known)
possibilities:

48It is called a ‘Weyl spinor’ in virtue of Hermann Weyl’s (1950) extensive investigation of the
mathematics of spin, and a ‘Pauli spinor’ since it satisfies a modified version of the Schrödinger
equation with spin-terms which is due to Wolfgang Pauli (1927, p. 618; cf. also Schwabl 2007, p.
192).
49More generally, the wave function of any single particle of spin s (= 0, 1

2 , 1, 3
2 , . . .) will be an

element of the space L2(R3) ⊗ C
2s+1, or equally L2(R3;C2s+1). And for N indistinguishable

particles, this will be L2(R3N ;C(2s+1)N ) (cf. Gustafson and Sigal 2011, pp. 22 and 35).
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Anti-symmetric:
1√
2
(|↑〉 |↓〉 − |↓〉 |↑〉) (‘singlet’)

Symmetric:

⎧⎪⎨
⎪⎩

|↑〉|↑〉
|↓〉|↓〉

1√
2
(|↑〉 |↓〉+ |↓〉 |↑〉)

(‘triplet’)

From purely algebraic considerations (cf. Ballentine 2000, p. 162; Griffiths 1995, p.

148) one can work out that the square ĵ
2

of some angular momentum operator ĵ

has eigenvalues j (j + 1)h̄2, where j is called the quantum number of ĵ ; and for ŝ
2

this yields s(s + 1)h̄2, which gives 3
4 h̄

2 for the case s = 1
2 . To generalize this to the

joint states above, one can instead define single particle operators ŝ ⊗ 1,1⊗ ŝ and
a total spin operator Ŝ = ŝ ⊗ 1 + 1 ⊗ ŝ, for whose square one obtains the value 0
on the singlet and 2h̄2 on all triplet states, so that the total spin quantum number S
must be 0 for the singlet and 1 for the triplet.

Combining, say, the singlet with the symmetric position wave function yields

�(x1, x2) = 〈x1|x2〉
(

1√
2
(|ψa〉 |ψb〉 + |ψb〉 |ψa〉)⊗ 1√

2
(|↑〉 |↓〉 − |↓〉 |↑〉)

)
,

which can be represented more concretely as

�(x1, x2) = 1

2
(ψa(x1)ψb(x2)+ ψa(x2)ψb(x1)) ·

⎛
⎜⎜⎝

0
1
−1
0

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎝

0
ψa(x1)ψb(x2)+ψa(x2)ψb(x1)

2
−ψa(x1)ψb(x2)+ψa(x2)ψb(x1)

2
0

⎞
⎟⎟⎟⎠,

where we use a boldface � to indicate that the object in question has the form of a
column-vector(-field). To ensure antisymmetry for such a spinor, permutations must
be taken to also affect the ordering in the spin states though, so it is better to think
of permutations as exchanging the kets, rather than spatial coordinates:

P12�(x1, x2)=〈x1|x2〉P12

(
1√
2
(|ψa〉 |ψb〉+ |ψb〉 |ψa〉)⊗ 1√

2
(|↑〉 |↓〉− |↓〉 |↑〉)

)
=

= 〈x1|x2〉
(

1√
2
(|ψb〉 |ψa〉 + |ψa〉 |ψb〉)⊗ 1√

2
(|↓〉 |↑〉 − |↑〉 |↓〉)

)
= −�(x1, x2).
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It is certainly puzzling that the state for a system of multiple indistinguishable
particles should be given as such a complex ‘entangled’ superposition state. For
what actually is the state of any of the involved particles, in an intuitable sense of
the word?50 However, the empirical predictions derived by appeal to these kinds
of states are supported by numerous impressive confirmations such as multiplet
structures in atomic spectroscopy (e.g. Demtröder 2010, p. 198) or the significant
differences between cross sections in scattering experiments with distinguishable
and indistinguishable particles (e.g. Bleck-Neuhaus 2013, pp. 145–152).

Any state which is inevitably described as a superposition of products of single
particle states, i.e. cannot be written as a product state |ψ〉 |φ〉 in any basis, is
called entangled. Moreover, it is a theorem that any vector |〉 from a tensor
product space H1 ⊗ H2 can be written in the form |〉 = ∑d

j=1 αj |φj 〉 |ψj 〉,
with

{|φ〉j
}d1

j=1,
{|ψ〉j

}d2

j=1
orthogonal (or orthonormal) bases of H1 and H2

respectively, and d = min{d1, d2}. This is called the Schmidt- or biorthogonal
decomposition.51 A vector may then equivalently be called entangled iff there are
at least two coefficients αj which are non-zero in the Schmidt decomposition (cf.
Heinosaari and Ziman 2012, p. 263). How deep the philosophical implications of the
occurrence of such states in QM run will become clear in the subsequent discussion.

The symmetry constraints discussed above incidentally motivate the infamous
Pauli Principle: No⊗-factor in a term of a permutation-symmetric pure state occurs
more than once.52 The reason should be obvious for the two-fermion wave function
(x1, x2) = 1√

2
(ψa(x1)ψb(x2) − ψa(x2)ψb(x1)), as a = b would here simply

give  = 0. Indistinguishability considerations and the requirement of invariance
under permutations is but one source of entanglement, and other, equally important
examples will be discussed later.

With the configuration space we have yet another high dimensional space on
our hands, besides the complex, high dimensional Hilbert spaces H of which the
state functions or kets are elements. If ψ is a function describing the positions of N
quantum systems in 3D space, the number of dimensions of the configuration space
will be 3N . So only for a single, isolated quantum system will the configuration
space coincide with the ‘physical’ 3D space, which can be seen as a major source
of confusion about the status of ‘wave’-functions in QM.

50The complex of problems arising from this is incidentally one of the most thoroughly discussed
ones in the philosophy of QM (traditionally in the context of Leibniz’ principle of the identity of
indiscernibles). A nice historical and systematic overview can be found in Muller and Saunders
(2008, pp. 505–508). See also Hawley (2009), and French’s and Krause’s (2006) comprehensive
exposition of the topic for more details on the philosophical debate.
51For separable, countably infinite-dimensional spaces, the same can be established in terms of
Fock space representations (cf. Horodecki et al. 2009, p. 918).
52We here appeal to Muller’s (2014, p. 426) version which is less ambiguous than the standard
(textbook) one. The textbook version has it that no two fermions can be in the same state. But
it has been emphasized (e.g. Muller and Saunders 2008, p. 511; Muller 2014, p. 422) that each
fermion in a compound of multiple fermions of the same type may too occupy the ‘same state’ as
given by its reduced density operator (see later).
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A wave-interpretation in the sense of Conjecture 0 appears to be straight-
forwardly impossible, or at the least very hard to establish.53 The role of the
configuration space clearly requires clarification in this context. But what does
QM talk about then, if not waves? Could it simply be strangely behaving particles
instead? Duane (1923) in fact suggested a pure particle interpretation of certain
diffraction processes in crystals and Landé (1965a) based an attempted to provide
new foundations for QM on Duane’s work. These attempts, however, were at
first largely ignored (compare Landé’s complaints in his (1965b) article Why Do
Quantum Theorists Ignore the Quantum Theory?), and later harshly criticized on
various grounds (cf. Mehra and Rechenberg 1987, p. 1202 ff.). We will later turn
to Bohmian Mechanics though, an example of a particle-interpretation that is still
vividly discussed today; but we will then also see that Bohmian Mechanics requires
us to revise many of our ‘classical’ convictions about particles and measurements.

Some general clarification of the particle concept seems indicated in any case,
since the word ‘particle’ is used quite frequently in modern physics. After all, a
whole, vivid branch of modern physics carries the name ‘particle physics’; ironically
one of the most important applications of quantum field theory. What are these
‘particles’ according to QM or QFT? So far we have entertained a rather intuitive
(‘classical’) notion of ‘particles’ as tiny little objects which occupy some point (or
rather: small region) in space at any given time. But from all that has been said
so far, this image has become very unlikely. This has lead Muller (2014, p. 424),
among others, to confront the following dilemma:

must we, as philosophers of science and of physics, (i) charge modern physicists with
conceptual confusion and ontological delusion because of their persistent talk and detection
of particles whereas they have no particle concept and thus are babbling incoherently when
they utter the word “particle”, or (ii) conclude that there are particles in QM and QFT, as in
CM [classical mechanics—FB], just as there are bears in America, Asia and Europe, but that
the particles in QM, QFT and CM differ in kind, just as the cinnamon bears of Colorado,
the Tibetan blue bears and the brown bears of the Pyrenees differ in subspecies.

The case for taking horn (ii) of the dilemma has been made, among others, by
Falkenburg (2007). Falkenburg has compiled lists of requirements that anything has
to fulfill in order to either count as a classical or a quantum mechanical particle, a
light quantum, field quantum, virtual particle, or quasi particle. This is followed, in
each case, by an extensive discussion of the meanings and interrelations of these
concepts. Subsequently Muller (2014, p. 424) has condensed Falkenburg’s lists of
criteria for classical particles, QM particles, field quanta, and light quanta into one
short list of what he simply calls particles:

53A potential counterexample is Cramer’s (1986) transactional interpretation which does interpret
QM in terms of waves in spacetime—but on the cost of also accepting waves that can travel
backwards in time. Most importantly, Cramer’s interpretation is riddled with difficulties, whence
we deliberately choose not to bother with it any further here (for details, the reader is referred to
Maudlin 2011, p. 180 ff.).
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(PROP) they have some intrinsic properties,

(INDEP) are independent of each other,

(POINT) point-like in interactions,

(CONS) obey conservation laws,

(LOCD) localizable by a detector,

(DISC) discontinuous, i.e. they come in quanta (of matter or radiation).

Debatable candidates54 for intrinsic properties of light quanta (photons), say, are
spin and energy; for the equally massless gluons (the ‘force carriers’ of the strong
interaction), one could add the color charge; for other classes of particles, mass,
charge etc. come to mind.

Importantly, a definite localization at all times is not presupposed here, but
merely such features as discontinuity (i.e. only discrete spots or single clicks are
observed in experiments), localizability by detectors (either this detector in a lab
over there clicks, or the other one over here), and a weak form of independence,
in the sense of the very possibility of uncoupled states and uncorrelated initial
conditions (cf. Falkenburg 2007, p. 212). This is why it is even meaningful to talk
about particles at all. Such a restricted concept is certainly indicated, whence, when
we use the word ‘particle’ bluntly in the following, we will usually mean nothing
more than something which satisfies Muller’s condensed list of criteria. In fact, since
this is such a radical departure from the classical concept, we will occasionally refer

to particles in this sense as ‘ ˜particles’ instead, when highlighting the contrast to the
classical (or classical-like) concept is indicated.

So we have established a cautious particle-concept, with which we can proceed.
Note, however, that this does not mean that there truly is a distinguished class of
fundamental entities which satisfies even these quantum mechanically informed cri-
teria. Particles (or rather: the impression of such) could be created from something
more fundamental, something entirely different. Weinberg (1995, p. 1), for instance,
thinks that: “The underlying theory might not be a theory of fields or particles,
but perhaps of something quite different, like strings.” (emphasis in original) And
Ruetsche (2011) has even gone so far as to suggest that the particle notions used by
physicists in QFT are not even “fundamental in the ‘physicist’s’ sense.” (p. 248; my
emphasis—FB) This “physicist’s sense” is distinguished from the metaphysician’s
sense in that former is (roughly) concerned with magnitudes in terms of which
all other magnitudes can be determined, whereas for the latter this need not be
so. She contrasts such a fundamental notion with a phenomenological one, that
“makes sense of explanatory and experimental practices [. . . ].” (p. 248) The Muller-
Falkenburg list arguably provides a phenomenological particle concept.

54To each of these supposedly intrinsic properties one could obviously object that their meaning is
only defined w.r.t. the interaction of the system with some other system, which one could flesh out
to yield a thorough relationalism.
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Since probability is such a central issue in QM, it seems desirable to also assign
a more precise meaning to the word ‘probability’ as well, in order to really make
sense of what is meant by statements such as ‘the probability of finding a particle
in this or that region is p’. An exhaustive and satisfying treatment is obviously
impossible here, but we will give a quick overview of different positions in a first
philosophical interlude (I), and address some further issues in Chap. 7. For now an
important aim of ours should be to identify possible interpretational directions in
which to proceed, given that a naïve treatment in terms of waves or particles (not
˜particles) is untenable. As a very first step towards this, we should discuss what

has come to be known as the ‘orthodox’ interpretation of QM, and with it the so
called outcome problem, the central problem associated with the issues raised in
this chapter.

2.1.4 The Quantum Postulates, the Outcome Problem, and the
Orthodox Interpretation

We are now in a good position to sum up the very foundational ideas underlying
QM in the form of a few postulates. These postulates are sometimes also referred to
as ‘axioms’, but as van Fraassen (1980, p. 65) has pointed out, they do not seem to
constitute axioms in the narrower sense of the word, as used in logic or geometry.
The postulates are given in various forms in the literature; our exposition rests on
the formulations of Held (2012, p. 75), Schwindt (2013, pp. 15–16), and Shankar
(1994, p. 116).

(I) A quantum system S is associated with a Hilbert space H and its state at time
t is represented by a vector |ψ(t)〉 in H.

(II) If |a〉 , |b〉 ∈ H represent states, then so does any linear combination |ψ〉 =
λ |a〉 + μ |b〉 , λ, μ ∈ C (unless prohibited by a superselection rule).

(III) A physical observable A is represented by a (self-adjoint) operator Â on H
and the values of A for S are represented by numbers in the spectrum of Â.

(IV) The temporal evolution of the vector |ψ(t)〉 associated with S is governed
by a unitary time evolution |ψ(t)〉 = Û (t0; t) |ψ(t0)〉, where Û (t0; t) is an
exponential in the Hamilton operator Ĥ , representing the total energy of S.

(V) Observable A has value a on S iff the state of S is given by |a〉 (with Â |a〉 =
a |a〉 and Â representing A).

(VI) If S is in a state represented by the (normalized) state vector |ψ(t)〉, A is an
observable for S with some value a, and |a〉 is a state such that Â|a〉 = a|a〉,
then |〈a|ψ(t)〉|2 gives the probability of finding value a for A on S in some
measurement procedure for A.

So far this is not really news, but in essence a summary of what was established
with the aid of examples above. The sixth postulate is simply Born’s rule, which may
of course be read with ‘probability density’ instead of ‘probability’ in case Â has
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a continuous spectrum. Postulate (II) is the (kinematical) superposition principle,
which is often times omitted, presumably because many (textbook) expositions
take to be implied by (I) or (IV). But we already noted the difference between
a kinematical and a dynamical view of superposition, and nowhere in (I) it is
stated that any |ψ〉 ∈ H (not prohibited by a superselection rule) qualifies as the
representation of a state; it could just be the elements of some preferred orthonormal
basis, neither of which would then be a superposition of the others.

Postulate (V) is usually called the eigenvalue-eigenstate link (e.g. Bub 1997, p.
29; short: EE-link), which was explicitly stated by Dirac (1930, p. 35) and assumed
equally by von Neumann (1932, e.g. p. 216). The second part of the condition, that
observable A only has value a on S if S is in state |a〉, is certainly non-trivial and
raises part of the controversy in QM, as we will see later.

A bunch of questions offer themselves when we take a critical look on these
postulates. First of all, how is it that we come to ‘measure’ definite eigenvalues of
position (or coarse-grainings thereof), say, when the solutions to the TDSE hardly
represent well localized states? What happens in the measurement process? Are we
deluded about what really goes on when we believe to find definite values in certain
measurement processes? Or is QM simply an incomplete assessment of the actual
physical situation, since its unitary evolution cannot tell the whole story?

The questions arising from this tension are often subsumed under the term
measurement problem. But it is not easy to point out what exactly ‘the’ measure-
ment problem is; Maudlin (1995) alone distinguishes three separate measurement
problems, as does Schlosshauer (2007, p. 50), but not (all) the same ones. We
should hence think of ‘the measurement problem’ as short for ‘the measurement
problem-complex’, and we will touch on some further elements of this complex
later. But possibly the most important and ‘most drastic’ problem, invoked by both,
Schlosshauer and Maudlin, is what is often called the outcome problem (OP), and—
due to its importance—sometimes even identified as the measurement problem (e.g.
Esfeld 2012, p. 88; Jaeger 2009, p. 77; Bub 1997, p. 2):

The following three claims are mutually inconsistent.

A The wave-function of a system is complete, i.e. the wave-function specifies (directly or
indirectly) all of the physical properties of a system.

B The wave-function always evolves in accord with a linear dynamical equation (e.g. the
Schrödinger equation).

C Measurements of, e.g., the spin of an electron always (or at least usually) have
determinate outcomes, i.e., at the end of the measurement the measuring device is either
in a state which indicates spin up (and not down) or spin down (and not up).

(Maudlin 1995, p. 7; emphasis in original)

The truly problematic point about the postulates, stated without further qualifica-
tion, is hence that they imply a contradiction. If the unitary time evolution is taken
to be a complete description of the behavior of a system, then it should, for instance,
never (or hardly ever; cf. the oscillations between coarse-position eigenstates in the
toy example of the ammonia molecule in Sect. 2.1.1) be found in an eigenstate
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of position. Historically, the problem was ‘solved’ by Dirac (1930, p. 7) and von
Neumann (1932, p. 217) by adding a seventh postulate, usually called the projection
postulate (PP):

(VII) When observable A is measured on system S in state |ψ(t)〉, the state of S

undergoes a sudden change |ψ〉 �→ P̂a |ψ〉
‖P̂a |ψ〉‖ with probability |〈a|ψ(t)〉|2.

P̂a = |a〉〈a| is the projection operator onto the subspace spanned by |a〉, and
so upon conclusion of this process, the sate of the system is the (normalized)
eigenstate |a〉 of A. This final set of postulates we refer to (essentially following
Bub (1997) and Stapp (2009)) as the orthodox interpretation of QM. But this set
of postulates certainly only constitutes a minimal interpretation in the sense of
Sect. 1.2; it only provides an algorithm (or rather: heuristic) for how to connect
(parts of) the formalism to experience. Thus beyond ensuring physical practice, it
leaves us with a bunch of open questions as to the underlying reality, i.e., as to the
processes and structures in virtue of which this algorithm can be used.

One obvious such question is what the sudden change according to postu-
late (VII) actually amounts to. We have ruled out the naïvely plausible interpretation
in terms of collapsing waves (Conjecture 0) on the basis of wave functions being
generally defined only over an abstract 3N -dimensional configuration space, and
similar obstacles. It is thus still unclear what it is that is being reduced in the
measurement process (besides the obscure ‘quantum state’), and how this reduction
takes place: Over which time scales? In virtue of what kind of dynamics?

The view that an endorsement of the EE-link and the PP should even count
as an ‘orthodox interpretation’ has been challenged by Wallace (2016), based on
observations that seem to indicate that these postulates are not really being put to
use in practice after all. Among his reasons are that the PP does not appear in higher
level courses on QM, and that there are quarrels about the “black hole information
loss paradox”, which has at its heart a violation of unitarity that should not worry
anybody who embraces the—non-unitary—dynamics of the PP (cf. his pp. 4–5).
But these objections seem to misfire; the “black hole information loss paradox”
does not represent a measurement(like) situation, and orthodoxy only proclaims
the ‘sudden change’ for these. And regardless of whether the PP or the EE-link
are being discussed explicitly in higher level textbooks, they seem to be somewhat
presupposed (at least as limiting cases; cf. the technical details on measurement
theory in Sect. 2.1.5) by actual experimental practice. How else could, say, Vaziri
et al. (2002, p. 1) write that they “were able to demonstrate that an individual photon
can be prepared in eigenstates of external angular momentum”, if not by assuming
that, when subjected to the preparation procedure, the photons are ‘forced’ into
that particular eigenstate, and that their measurement techniques revealed that to be
the case? And photons are, strictly speaking, a subject matter theoretically treated
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by quantum electrodynamics, a higher level topic. The orthodox view seems to be
implicit in physical practice at all levels.55

This does not, however, make it satisfying at all, and it is still not very clear
what actually qualifies as a ‘measurement’; i.e., the very notion of measurement
cries out for explanation in a context as subtle as this. We will give a few more
details about how QM formally deals with measurements in the next section, and
thereby also touch on questions of the notion of a property. But for now, let us
first make the following intuitive remarks: Prima facie, a measurement consists
of someone (the ‘observer’) using something (the ‘equipment’) to determine some
property of something third (the ‘measured system’). For instance, you could be
using a ruler to measure the length of a pencil by comparing the pencil to the scale
imprinted on the ruler and reading off a value of that scale. Strictly speaking, we
may hence discern three ‘stages’ of this entire process (cf. also Boge 2016b, p. 7):
(i) interaction of the equipment with the measured system, (ii) interaction of the
observer with the equipment, and (iii) registration of a value (measurement result)
by the observer. A lot to do with the OP depends on the interpretation of (i)–(iii). We
should first confront the question of whether QM itself is the appropriate framework
for a physical analysis of stages (i) and (ii). The traditional answer to this question
was ‘no’, and QM was taken to apply to a special class of measured systems only,
whereas the entirety of physical equipment used to investigate was considered as
describable only in ‘classical terms’. This attitude is evident, for instance, in Landau
and Lifshitz’s classic, where they write:

The possibility of a quantitative description of the motion of an electron requires the
presence also of physical objects which obey classical mechanics to a sufficient degree
of accuracy. If an electron interacts with such a ‘classical object’, the state of the latter is,
generally speaking, altered. The nature and magnitude of this change depend on the state of
the electron, and therefore may serve to characterise it quantitatively. In this connection the
‘classical object’ is usually called apparatus, and its interaction with the electron is spoken
of as measurement. (Landau and Lifshitz 1965, p. 2; emphasis in original.)

The writings of Landau and Lifshitz are obviously heavily inspired by Bohr’s
views on the subject, who equally (multiply) emphasized the “distinction between
the objects under investigation and the measuring instruments which serve to define,
in classical terms, the conditions under which the phenomena appear.” (Bohr 1949,
p. 30; emphasis in original) What Bohr exactly meant by ‘classical terms’ and to
what extent these are the terms of classical physics is subject to considerable debate
(e.g. Howard 1994 vs. Bokulich and Bokulich 2005). There seems to be at least
some agreement that Bohr’s ‘classicality’ mostly subsumed “everyday concepts,
eventually refined by the terminology of classical physics[. . . ].” (Bohr 1938, p. 269)

55Note that Wallace’s (2016, p. 19) cosmological considerations hardly impair this point; Fuchs
and Peres (2000) liken the required selective applications of QM in cosmology to “a few collective
degrees of freedom” to applications of QM in SQUIDs (cf. later) and see “no difference in
principle”. All evidence gathered about the universe requires ‘definite outcomes’ in some basis,
so the orthodox interpretation or something closely related seems to be implicitly at play in the
evaluation of the data.
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Much in contrast to Landau, Lifshitz and Bohr, Wigner is sometimes quoted
to have asked: “But why must I describe it [the measurement—FB] in classical
terms? What will happen to me if I don’t?” (Wigner 1974, as quoted in Jaynes
1980, p. 40; emphasis in original) And many physicists must have felt the same way,
whence despite the insistence of Bohr and others on classicality about the measuring
apparatus, today there is a flourishing field of measurement theory in QM.

The first thing to note here is that this theory of measurement in QM “has
two branches, one dealing with the changes experienced by the measured
system, the other one considering measurements as physical processes.”
(Busch et al. 1995, p. 34) As for the first branch, we will outline some formal
details of the QM treatment of state changes in the next section, but we should here
emphasize the ‘least’ reason for this branch’s existence.

A central assumption of classical physics is that measurements could at least in
principle be as subtle and precise as desired, and would not necessarily affect the
measured system to any considerable extent. But consider yourself looking for a
football, say, which is known to lie somewhere in a room that is entirely dark before
the search begins. This search for the football may count as a ‘measurement’ of its
position. In order to see the football, one has to turn on the lights and thus hit the
football with a tremendous number of photons. Since photons carry energy, they
will definitely alter the football’s state, but the change will be so subtle that from the
point of view of the searcher, the ball may be considered effectively unaltered by the
turning on of the light. Nevertheless, for much, much smaller systems, i.e. atoms,
electrons, or muons, the changes effected by most measurement processes are not
so subtle. In comparison to them, almost anything that can be used by a human
being to gain information about them carries a considerable amount of energy, and
hence their states must (at least intuitively) be altered to a much larger degree if
information is to be gained about them at all.

Heisenberg (1930, pp. 21–22) famously concerned himself with the determina-
tion of an electron’s position through a microscope as a physical example for the
unavoidability of the uncertainty relations, a thought experiment which has become
known as the Heisenberg microscope. In 1958 (pp. 48–49) he replaced it by an
imaginary γ -ray microscope because the short wavelengths of the γ -rays would
result in an even higher accuracy in position-determination. From the resolving
power of the microscope he then deduced the uncertainty in position of the electron.
For the very narrow position determination of the γ -ray microscope, there would
be a large ‘kick’ to the electron, giving rise to a high momentum uncertainty, since
the electron receives a recoil that can be quantified (via Compton scattering) as a
function of h/λ (cf. Heisenberg 1930, pp. 21). Thus, as Heisenberg puts it in his
1958 Physics and Philosophy (p. 49),

in the act of observation at least one light quantum of the γ -ray must have passed the
microscope and must first have been deflected by the electron. Therefore, the electron has
been pushed by the light quantum, it has changed its momentum and its velocity, and one
can show that the uncertainty of this change is just big enough to guarantee the validity of
the uncertainty relations.
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These considerations suggest that the uncertainty relations, in particular, should
be understood in terms of a disturbance of the system by the act of measurement,
and that a lot of the strangeness of QM hence derives from an impossibility to
properly access a certain domain of physical investigation (‘the microcosm’ or
‘the quantum realm’). In 1930 Heisenberg in fact spoke of a “destruction of the
knowledge of a particle’s momentum by an apparatus determining its position[. . . ].”
(p. 21; my emphasis—FB) But one can give a range of arguments to the effect that
the disturbance interpretation of the uncertainty relations is incoherent (cf. Redhead
1987, p. 68), and neither did Heisenberg ultimately retain this interpretation nor did
it ever do full justice to Bohr’s more subtle convictions. In virtue of the arguments
given in Chap. 4, we will find ourselves in good company with them.

Crucially, any kind of treatment to the above effect requires the Bohrian
distinction between investigated object and apparatus as quantum and classical.
These features, however, are not present in what we have called ‘the orthodox
interpretation’ above, and at least von Neumann (1932, e.g. pp. 4 and 6) explicitly
advocated that QM should in principle be a universally applicable physical theory.

But in fact, the von Neumannian universalist stance towards QM takes the OP
to a whole new level, as can be explained by appeal to a quantum mechanical
treatment of the measurement process. Turning thus to the latter branch of quantum
measurement theory (measurements as physical processes), we note that for any
process to truly count as a precise measurement of the value of the observable
property in question (on a given system), there is a sensible requirement for part
(i) of our analysis (interaction of system and equipment), called the calibration
condition. This requirement is that “whenever the system is in an eigenstate, the
apparatus should indicate the corresponding eigenvalue unambiguously after the
interaction has ceased.” (Busch and Lahti 2009, p. 374) The requirement can
be weakened to include so called unsharp measurements which only give good
estimates of the value in question (cf. the next section). The minimal requirement
related to this kind of measurement, called the probability reproducibility condition,
“stipulates that the probability measure [for the measured system] is ‘transcribed’
into a probability measure for the pointer observable in the apparatus state reached
after a suitable measurement coupling.” (Busch et al. 1996, p. 25) Notably, the use of
“pointer observable” here already somewhat suggests that apparatus and system are
basically on the same footing, i.e. that the measuring device can be treated quantum
mechanically.

Carrying through with this assumption, we can hence model the situation as
follows. Prior to the actual observation, system S and measuring apparatus M will
interact, exchange energy, and through this common evolution, M should evolve
into a state which is indicative of that of S. This process, as we will see,56 can
be described in terms of a unitary operator, and is nowadays often referred to as

56In what follows, we provide a modified and partly extended version of the analysis given in
Mittelstaedt (1998, p. 29) and similarly in Joos et al. (2003, p. 48 ff.), which are both themselves
adaptations of von Neumann’s (1932, p. 422) original treatment.
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a premeasurement interaction (e.g. Busch and Lahti 2009, p. 375). Von Neumann
(1932, p. 351) instead called the changes effected by the unitary evolution a
second kind of intervention, and thought of these ‘interventions’ as “automatic
changes which occur with passage of time”. The process associated with the act
of measurement he called an intervention of the first kind, and analyzed it in terms
of projection operators (cf. also Joos et al. 2003, p. 20; Schlosshauer 2007, p. 58).

The premeasurement interaction ensures that the calibration condition is sat-
isfied. The simplest case, on which we will focus here, is a measurement which
hardly disturbs the state of S, sometimes called an ideal or quantum nondemolition
measurement (cf. Schlosshauer 2007, p. 52). But a generalization of the story given
in what follows is also available for the non-ideal cases (see comments below). Let
us say that S is in some definite state |Aj 〉 w.r.t. some observable A, and M is
in some ‘ready state’ |Z0〉. The premeasurement should thus shift the state of the
combined system consisting of S and M from |Aj 〉 |Z0〉 to |Aj 〉 |Zj 〉, that is, from
a state where M is ready to measure ( |Z0〉) to a state in which M is indicative of S’s
state ( |Zj 〉).

We noted before that energy and time satisfy an uncertainty relation just as much
as position and momentum do. And we also noted that a unitary operator of the form

Û (t) = e
− i
h̄
Ĥ t will effect a shift in time in a state |ψ(0)〉, i.e. Û (t) |ψ(0)〉 = |ψ(t)〉.

But the Hamiltonian is also the operator whose eigenvalues are energies, so a shift in
time is essentially effected by the operator whose corresponding observable satisfies
an uncertainty relation with time. Indeed, this theme is more general in QM and a

shift in position, say, will be effected by an operator of the form Û (x) = e
− i
h̄
xp̂.

This can easily be seen, keeping in mind the definition of the exponential of an
operator, in the application to a position state:

Û (x) |x̃〉 = Û (x)

∫
dp̃ |p̃〉〈p̃||x̃〉 =

∫
dp̃ Û (x) |p̃〉 e− i

h̄
p̃x̃ =

=
∫

dp̃ e−
i
h̄
p̃x |p̃〉 e− i

h̄
p̃x̃ =

∫
dp̃ e−

i
h̄
p̃(x̃+x) |p̃〉

=
∫

dp̃ |p̃〉〈p̃|x̃ + x〉 = |x̃ + x〉 (2.32)

(cf. Binney and Skinner 2014, p. 68; cf. also Nakahara 2003, p. 14–15 for a more
rigorous proof). Generalization to 3D is immediate (Û (x) |x̃〉 = |x̃ + x〉), and the
adjoint, acting on bras, will effect a positive shift in a given spatial wave function:
〈x|Û (x̃)†|ψ〉 = 〈x + x̃|ψ〉 = ψ(x + x̃).

This fact can be used to develop a unitary operator which represents the
transformation of the system SM57 due to the premeasurement interaction, the
calibration between the system to be measured and the measuring apparatus.

57Here we write SM to denote the otherwise unspecified composition of systems S and M;
although cf. Greaves and Wallace (2013) for some insights on how systems compose.
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Consider the observable A and a pointer observable Z, which we could think of
here, for illustrative purposes, as the position of an actual pointer, but which may
of course also refer to something much more general. Assume also that there is
a quantity P (the ‘pointer momentum’) whose associated operator satisfies the
same commutation relation with the pointer observable’s operator Ẑ as do x̂ and
p̂, i.e. [Ẑ, P̂ ] = ih̄. The unitary operator we are presently searching for should
satisfy three requirements: It should (a) bring about the time development during
the interaction, and (b) effect a shift from |Z0〉 to |Zj 〉, which (c) should indicate
the fact that A has value Aj on S. An operator which does this job is given by

ÛA = e
− i
h̄
Ĥint�t = e−iλ(Â⊗P̂ ), where Ĥint = λh̄

�t
(Â⊗ P̂ ) is the Hamiltonian of the

interaction,58 and λ is a parameter which represents duration (�t) and strength of
this interaction (cf. Mittelstaedt 1998, p. 29).

When applied to the state |Aj 〉 |Z0〉, this operator will give

ÛA |Aj 〉 |Z0〉 = e−iλ(Â⊗P̂ ) |Aj 〉 |Z0〉 =
∞∑
n=0

1

n! (−iλ)
n(Â⊗ P̂ )n |Aj 〉 |Z0〉 =

=
∞∑
n=0

1

n! (−iλ)
n(Â)n |Aj 〉 (P̂ )n |Z0〉 =

∞∑
n=0

1

n! (−iλ)
n(Aj )

n |Aj 〉 (P̂ )n |Z0〉

= |Aj 〉 e−iλ(Aj P̂ ) |Z0〉 .

We can now use the similarity of the resulting operator e−iλ(Aj P̂ ) and the position-
shift operator Û (x) from above to understand what the former does to |Z0〉: it will
effect a shift of the value Z0 to (Z0 + λAj ), a value which in turn depends on the
value measured (by M) for S’s observable A, and on the strength and duration of

the interaction, i.e., |Z0〉 e
−iλ(Aj P̂ )�−−−−−→ |Z0 + λAj 〉.

This almost establishes how the interaction shifts the pointer to the indicative
position of value Zj , but we still need to motivate why (Z0 + λAj ) should be
this value. In general, the value to be read off of the measurement device will be
a function f of the pointer observable’s value as, for instance, “a measurement
of the particle’s potential energy is equivalent to a position measurement (up to
degeneracy) if the function V (r) is given.” (Joos et al. 2003, p. 18; emphasis
omitted) In our special case we can think of the values we read off of an actual
scale with an actual pointer, which will then be the number pointed to. The
particular number will generally depend on the distance the pointer has moved
from its initial position, which in turn depends on the interaction strength. Thus
the choice f (Zj ) := Zj−Z0

λ
= Aj , i.e. letting the shift in Z relative to Z0,

scaled by the interaction strength λ, correspond to the value of A, establishes a

58We stress that not every interaction can be described by a Hamiltonian of this kind, which has
factorizing eigenstates. For a discussion see Joos et al. (2003, p. 48).
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suitable correspondence between readings on M’s scale and actual values of A on
S. Then Z0 + λAj = Zj , and hence, |Z0 + λAj 〉 = |Zj 〉. All in all, we thus have

|Aj 〉 |Z0〉 ÛA�−→ |Aj 〉 |Zj 〉.
But the same operator brings about the most peculiar features of the measurement

process (when analyzed in this fashion), and maybe the most worrisome part of the
OP, or the most confusing implication of the kinematical superposition principle.
Namely, consider a situation in which the state of the system is a superposition state∑

j αj |Aj 〉. Then we will obtain59

ÛA
∑
j

αj |Aj 〉 |Z0〉 =
∑
j

αj e
−iλ(Â⊗P̂ ) |Aj 〉 |Z0〉 =

=
∑
j

αj

∞∑
n=0

1

n! (−iλ)
n(Â⊗ P̂ )n |Aj 〉 |Z0〉 =

∑
j

αj |Aj 〉 e−iλ(Aj P̂ ) |Z0〉

=
∑
j

αj |Aj 〉 |Zj 〉 . (2.33)

The final state of this premeasurement interaction is an entangled state, like that of
the indistinguishable electrons discussed at the end of Sect. 2.1.3. But where exactly
is our pointer pointing now? The unitary time evolution has put the measuring
device into a superposition state of different outcomes, intimately connected to the
superposition state of the measured system. This is, on the face of it, an absurdity,
and we obviously need some further element in the theory which leads to just one
definite value for the pointer. After all, that is what we observe in experiments, so
this prediction of QM is, prima facie, empirically inadequate. Even worse: what, in
fact, should it even mean that the pointer is in a ‘superposition of states’?

Surely, here is where the projection postulate has to ‘kick in’. Applying a (joint)
projection operator |Aj 〉〈Aj |⊗ |Zj 〉〈Zj | to such an entangled state would reduce the
sum to a state with definite eigenvaluesAj andZj for the operators Â⊗1 and 1⊗Ẑ.
So if there is indeed a dynamical process as indicated by the projection postulate,
this would immediately solve the OP (although the dynamics would still require
specification). But where exactly is the ‘here’, where the projection postulate comes
into play? Somewhere in the larger environment of the system? In the proximity of
the measuring apparatus? In the brain of the observer? In the observer’s mind? This

59In the non-ideal case where the system is demolished by the measurement, the evolution may

usually be assumed to proceed in a similar fashion as
∑

j αj |Aj 〉 |Z0〉 Û�−→ ∑
j,k αjk |Aj 〉 |Zk〉 =∑

k α̃k |Ãk〉 |Zk〉, with |α̃k |2 ≈ |αk |2 and |Ãk〉 ≈ |Ak〉 so that all that differs is a minor change in
the coefficients and the state of the system (e.g. Bub 1997, p. 150). In the most drastic case though,
the system gets destroyed (i.e., decomposed and/or absorbed into the apparatus). One then merely
requires the apparatus states to carry, after the interaction, information about the state of S before
its destruction (e.g. Wallace 2003, p. 420).
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is the question of the so called Heisenberg cut, named after Heisenberg’s (1934)
discussion of the relation between the two evolutions (cf. also Joos et al. 2003, p.
28). Somewhere between stages (i)–(iii) in our above analysis, the reduction has
to take place, either during the interaction of equipment and system, or during the
interaction of observer and equipment, or during the recognition by the observer.

Von Neumann (1932, p. 420) viewed the situation as follows:

[T]he measurement or the related process of the subjective perception is a new entity
relative to the physical environment and is not reducible to the latter. [. . . ] We wish to
measure a temperature. If we want, we can pursue this process numerically until we have the
temperature of the environment of the mercury container of the thermometer, and then say:
this temperature is measured by the thermometer. [W]e can carry the calculation further,
[b]ut in any case, no matter how far we calculate [. . . ] at some time we must say: and this is
perceived by the observer. That is, we must always divide the world into two parts, the one
being the observed system, the other the observer.

To ensure a “psycho-physical parallelism” however (his p. 419), he was satisfied
with placing the cut somewhere outside the (conscious) observer. Schrödinger, in
contrast, was much less at ease with the measurement process described in von
Neumann’s fashion, as he noticed it to yield all kinds of bizarre consequences:

A cat is penned up in a steel chamber, along with the following diabolical device (which
must be secured against direct interference by the cat): in a Geiger counter there is a tiny
bit of radioactive substance, so small, that perhaps in the course of one hour one of the
atoms decays, but also, with equal probability, perhaps none; if it happens, the counter
tube discharges and through a relay releases a hammer which shatters a small flask of
hydrocyanic acid. If one has left this entire system to itself for an hour, one would say
that the cat still lives if meanwhile no atom has decayed. The first atomic decay would have
poisoned it. Theψ-function of the entire system would express this by having in it the living
and the dead cat (pardon the expression) mixed or smeared out in equal parts. (Schrödinger
1935b, p. 157)

Do we really have to accept that cats can be in mixed up states of being dead
and alive at the same time? Or should the cat be considered capable of observing
its own state, therefore collapsing the wave function of the atom-Geiger counter
system? Wigner (1961, p. 172), in fact, considered a similar scenario (anticipated
before him by Everett III (1973, pp. 4–6) in his at first unpublished thesis from the
1950s), which basically lead him to this exact conclusion. He, however, first put a
human being (and a less violent ‘measurement’) in place of the cat:

What is the wave function if my friend looked at the place where the flash [on a
photographic plate] might show at time t? [. . . ] One could attribute a wave function to
the joint system: friend plus object, and this joint system would have a wave function [. . . ]
after the interaction [. . . ]. I can then enter into interaction with this joint system by asking
my friend whether he saw a flash. If his answer gives me the impression that he did, the joint
wave function of friend + object will change into one in which [. . . ] the total wave function
is a product [. . . ] and the wave function of the object is ψ1. If he says no, the wave function
of the object is ψ2 [. . . ]. However, even in this case, in which the observation was carried
out by someone else, the typical change in the wave function occurred only when some
information (the yes or no of my friend) entered my consciousness. (my emphasis—FB)
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To avoid the conclusion that the friend could end up “in a state of suspended
animation”, dependent on Wigner’s own choice to ‘measure’ him, Wigner thus
attributed to “consciousness [. . . ] a different role in quantum mechanics than [to]
the inanimate measuring device [. . . ].” (p. 873; my emphasis—FB) Wigner here
gives a special significance to part (iii) of the measurement process, as we have
analyzed it above, and effectively believes that conscious observation could directly
alter physical reality.

What about large inanimate objects like chairs, tables, houses, or planets then?
Are they sitting around in funny ‘quantum states’, waiting to be observed just to
assume their to-us familiar form upon this observation? Indeed, this was the content
of John Bell’s criticism of the orthodox account of QM with the projection postulate
in place: “Was the wavefunction of the world waiting to jump for thousands of
millions of years until a single-celled living creature appeared? Or did it have to
wait a little longer, for some better qualified system. . . with a PhD?” (Bell 1990a,
p. 34) A similarly piercing remark must have been made by Einstein in a personal
discussion with Hilary Putnam, who paraphrases him as follows: “Look, I don’t
believe that when I am not in my bedroom my bed spreads out all over the room,
and whenever I open the door and come in it jumps into the corner.” (Einstein 1953,
as quoted in Putnam 2005, p. 624)

A question that naturally offers itself is whether QM is even relevant or
applicable at the scales of measuring devices, cats and the like. Why should there be
a quantum state of the cat or a ‘pointer momentum’ in the sense of QM, when QM
was originally developed as a theory of tiny atoms, and when even nuclei allow at
least for a semi-classical treatment in many respects? Maybe the Bohrian insistence
on the treatment of apparatuses as classical (in some sense), and of QM as applicable
only to a limited, microscopic domain was apt after all. And maybe this suggests a
way of dealing with the OP: The cat or the measuring device cannot be in a quantum
superposition, because they are classical objects simply in virtue of their size. In
short: Maybe the Heisenberg cut is just a matter of size.

Indeed, there exists a well-known class of results which seem to suggest
something alike. Loosely speaking, they suggest that on average a quantum system
will behave in such a way as to mimic classical behavior. These results go by the
name Ehrenfest’s theorem, and they can be derived by evaluating the change of the
average of an observable in time (cf. Ballentine 2000, p. 390; Schwabl 2007, p. 29).
One instance of Ehrenfest’s theorem is the relation d〈p〉

dt = −〈∇V (x)〉. In classical
physics, the (negative) gradient of a potential energy is a force, and so is the time
derivative of a momentum, whence this relation is indeed reminiscent of classical
mechanics, where the formula holds without the averages. With x̂ instead of p̂, we
obtain the second formula d〈x〉

dt = 1
m
〈p〉, which says that the temporal change of a

system’s average spatial coordinates corresponds to an average velocity, again just
as in classical mechanics.

This seems to indicate that QM indeed merely applies to entities on the smallest
scales and that things only become ‘weird’ at these very scales—or maybe even
just appear weird in virtue of the impact of the large on the tiny in measurement-
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interactions—whereas huge accumulations of these weird tiny entities behave just
as classical mechanics predicts. Ballentine et al. (1994, p. 2854), however, have
argued that only under the condition −〈∇V (x)〉 ≈ −∇V (〈x〉) this reasoning from
Ehrenfest’s theorem is sound, because only then will a classical force act on the
average (center of mass) coordinate of all small systems, and this requirement is
only fulfilled in special cases (cf. Joos et al. 2003, p. 87; Ballentine 2000, p. 391).
And they also (1994, p. 2858) make a (strong) case “that Ehrenfest’s theorem is
neither necessary nor sufficient to characterize the classical regime in quantum
theory”, by demonstrating how the predictions from Ehrenfest’s theorem and those
from classical physics differ significantly in many cases.

Additionally, Joos et al. (2003, p. 2) have argued that

it remains unexplained why macro-objects come only in narrow wave packets, even though
the superposition principle allows far more ‘nonclassical’ states[. . . ]. Measurement-like
processes would necessarily produce nonclassical macroscopic states as a consequence of
the unitary Schrödinger dynamics.

In summary, Ehrenfest’s theorem on its own does not really provide robust
and straightforward reasons to treat the quantum peculiarities as confined to a
‘microscopic realm’, inaccessible to the unaided senses, and the ‘weirdnesses’ as
arising merely from the problems of accessing that domain.

Another general strategy for connecting the micro- and macroscopic is the so
called h̄ → 0 approximation or quasi-classical limit, which means taking into
account that h̄ is almost negligible compared to (action) scales of macroscopic
systems. So for instance, �x�p ≈ 0, if viewed from these scales. This limiting
procedure has proven its importance in many practical applications, the earliest one
probably being Einstein’s and Planck’s observation that the classical equipartition
law follows from Planck’s radiation formula for h̄ω/kBT → 0 (cf. Landsman 2009,
p. 626).

Ballentine (2000, p. 388) nevertheless objects that in this limiting strategy the
“limit is not well defined mathematically unless one specifies what quantities
are to be held constant during the limiting process”, which implies a certain
arbitrariness, and that one has to be guided by experimentally or theoretically
informed expectations. But there is a more important conceptual problem with the
h̄→ 0 approximation.

Compare the h̄ → 0 strategy for connecting QM and classical mechanics to
case of special relativity and classical mechanics. Considering c → ∞ (i.e. only
velocities v such that v � c), with c the speed of light, one recovers the predictions
of classical mechanics from (special) relativity. Ballentine (2000, p. 389) here points
out that there is a conceptual continuity between classical and relativistic mechanics
that is missing between QM and classical mechanics. Classical mechanics and
relativity both treat of the spacetime trajectories of material objects in terms of
‘point particles’. But QM ultimately does no such thing; the state vector, as we
have demonstrated above, cannot be interpreted as describing the trajectory of an

individual ‘point particle’ (whence our notion of a p̃article). And neither does it
describe waves such as those assumed to exist in classical electrodynamics.
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Maybe the strongest reasons to be dissatisfied with considering QM to be simply
a matter of size, however, stem from the fact that the scales to which a QM
treatment is applicable and even indicated have become larger and larger over time.
We already mentioned the impressive experiments of Arndt et al. (1999, 2001),
demonstrating interference effects with larger molecules. But the most striking
examples are the ‘mesoscopic superpositions’ of current-density states. In certain
arrangements involving superconductors, so called ‘supercurrents’, consisting of
numbers of electrons in the order of 109, can be brought into states of the form

1√
2

(∣∣j�
s

〉± ∣∣j�
s

〉)
, where

∣∣j�
s

〉
and

∣∣j�
s

〉
represent states of the supercurrent (j s) in

which it moves in a clockwise or counterclockwise fashion respectively, through a
ring of superconducting material. A short (pointed) presentation of how this comes
about will be given in Appendix B, in which one profits, among other things,
form our discussion of double-well potentials and tunneling; some of the concepts
underlying the theory of superconductors however also require formal methods
established only in Sect. 2.2, whence it may be indicated to read that section first.

Finally, another thought that might have crossed one’s mind in the discussion
should be dispelled at this point: That superselection rules, by themselves, can
help to solve the OP. Assume that we simply stipulate that certain kinds of
macroscopic superpositions, of cats being dead and alive, say, are prohibited by
a superselection rule. This would also mean that for all physically realizable
observables Ô, eigenstates |Zj 〉 of the ‘pointer observable’ Ẑ, indicating the cat’s
state, would disallow transitions of the form 〈Zj |Ô|Zk〉 (j �= k). But then either
Ô would have to be codiagonal (and commuting) with Ẑ or would otherwise not
be a physically realizable observable after all (if it did possess matrix elements
〈Zj |Ô|Zk〉 �= 0, for j �= k). This also goes for the Hamiltonian Ĥint, describing the
interaction of cat and pointer—which implies that Ẑ would either be unchanged by

the interaction (ẐĤint = ĤintẐ ⇒ Ẑe
− i
h̄
Ĥint�t = e

− i
h̄
Ĥint�t Ẑ, i.e. interaction first

and then measurement = measurement and then interaction), or that the interaction
Hamiltonian is not physically realizable (cf. d’Espagnat 1995, p. 176). Both options
seem absurd. What we will see, however, is how what may be thought of as
dynamically created superselection rules do have some say in the interpretation of
QM and solutions to the OP after all.

2.1.5 A Technical Note on Measurements and Properties

So far we have generally identified a quantum state with a vector |ψ〉 in Hilbert space
H. But this abstract description is still not sufficiently general for all purposes, since
it does not admit of a statistical weighting of different (possibly non-orthogonal)
quantum states |ψ1〉 , . . . , |ψn〉. Such a weighting may sometimes be indicated,
since a given state preparation procedure might be known to have imperfections
and result in either of n quantum states. For instance, one could have an imperfect
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preparation of spinful particles that results in either the spin up state or in some state
that corresponds to spin up along an axis tilted by a small angle θ to the intended
axis of preparation. To take such possibilities into account, it is customary to define
a statistical or density operator by

ρ̂ =
n∑
j=1

pj
∣∣ψj

〉〈
ψj

∣∣ , (2.34)

where the pj correspond to statistical weights representing the (non-quantum)
probability of either state resulting.

In case there is only one such ψ in question, the density operator will simply
coincide with a projector

ρ̂ψ = P̂ψ = |ψ〉〈ψ | ,

and the state will be termed a pure (quantum) state. It satisfies the condition that
ρ̂2
ψ = ρ̂ψ . If this is not the case, the state will be referred to as a mixed state. It is

important to note that the pj are not the quantum probabilities, but are deemed to
stem from a source of uncertainty external to QM, as explained above. Thus a mixed
state involves quantum and ‘classical’ probabilities at the same time.

Ubiquitous talk of density matrices stems from the fact that for finite spaces,
the prescription ρij := 〈i|ρ̂|j 〉 defines (the elements of) an actual matrix; but one
can also use prescriptions such as ρ(x, x′) := 〈

x
∣∣ρ̂∣∣x′〉 to define (elements of) an

abstract ‘density matrix’.
As an illustration, consider a preparation method which uses a randomizer to

produce spins either definitely up or down along the x axis. The density matrix can
then be given by

ρ̂ = 1

2
(|↑x〉〈↑x | + |↓x〉〈↓x |) = 1

4

((
1 1
1 1

)
+

(
1 −1
−1 1

))
= 1

2
1.

Incidentally, a state of this particular sort, i.e. of the form 1/n·1 for n different states,
is called completely or maximally mixed (cf. Audretsch 2007, p. 79; Spekkens 2007,
p. 4). This is to be contrasted with the pure state density matrix of |↑z〉 in the x-spin
basis, which reads:

ρ̂↑z=
1

2

[
(|↑x〉+|↓x〉)(〈↑x |+〈↓x |)

]
=1

2

[
|↑x〉〈↑x |+|↓x〉〈↓x |+|↑x〉〈↓x |+|↓x〉〈↑x |

]
.

Still, a question that will require some considerable attention in subsequent
chapters is whether the quantum probabilities are in fact different in principle from
the probabilities pj . According to Spekkens (2007, p. 1), it is a widespread view
that the kinds of probability do differ, and that mixed quantum states reflect a lack
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of knowledge—as to the pure quantum state pertaining to the system in question that
is—whereas pure states are somehow descriptive of the actual state of the system.
We will see, however, that this is not as uncontroversial as it may seem, and that a
lot depends on one’s stance towards these issues.

Joint states of multiple systems as described by density operators come in three
different ‘flavors’: factorized states are of the form ρ̂1⊗ρ̂2 (with ρ̂1 and ρ̂2 operating
on spaces H1 and H2 respectively), separable states are convex combinations∑

j λj ρ̂1j ⊗ ρ̂2j of factorized states (where ‘convex’ means that
∑

j λj = 1 and
λj ≥ 0,∀j ), and entangled states are such that they are not separable (cf. Heinosaari
and Ziman 2012, p. 262).

Additionally, density operators can be equipped with dynamical equations such
as the von Neumann equation

∂

∂t
ρ̂(t) = − i

h̄
[Ĥ , ρ̂(t)] , (vNE)

which can be easily derived by taking into account the Schrödinger equation for a
bra 〈ψ(t)| (ih̄ ∂

∂t
)† = 〈ψ(t)|H 〉† ⇔ −ih̄ ∂

∂t
〈ψ(t)| = 〈ψ(t)|H 〉 (cf. Schwabl 2007,

p. 382).60 One can use a density operator to compute the average of an observable
by

〈O〉 = Tr(ρ̂Ô) (2.35)

where Tr(X̂) is the trace of operator X̂ (as defined in Appendix A). Crucially, for
any density operator ρ̂ it must hold that Tr(ρ̂) = 1, which effectively says that
probabilities must sum to one. Pure states can also be classified by appeal to their
density operator in that they must satisfy Tr(ρ̂2) = 1, whereas for a mixed state
Tr(ρ̂2) < 1 (cf. Nielsen and Chuang 2010, p. 100).

Moreover, we can generalize Born’s rule (postulate (VI)) in terms of the density
operator by realizing that61

Tr(ρ̂P̂oi ) =
∑
j

〈j |
∑
k

pk |ψk〉〈ψk| |oi〉〈oi ||j 〉 = . . . = Prρ̂O(oi), (2.36)

60It is also a direct consequence of time evolution in the Heisenberg picture introduced later. A
generalization to cases with complex environment-interactions is possible in terms of so called
master equations (cf. Schlosshauer 2007, p. 154 ff.).
61The omitted computation is somewhat similar to that subsequent to equation (2.38).
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with P̂oi = |oi〉〈oi | a projector onto the ray of eigenvalue oi for some Ô,62 and the
Hilbert space taken to be separable or finite. As an example, consider a system in the
pure state |↑x〉 or equally ρ̂↑x . Then the probability for measuring ‘spin up’ along z
is simply given by

Pr
ρ̂↑x
σz (↑z) = Tr(ρ̂↑x P̂|↑z〉) = Tr(|↑x〉〈↑x | |↑z〉〈↑z|) =

= Tr

(
1

2

(
1 1
1 1

)(
1 0
0 0

))
= 1

2
,

which is identical to the value computed by the version of Born’s rule introduced
before.

With the density operator-formalism one can also generalize the projection
postulate.63 But as a (historically interesting) matter of fact, what von Neumann
called the ‘first kind of intervention’ he formally described in terms of density
operators as

ρ̂ �−→
∑
j

Tr(ρ̂P̂oj )P̂oj , (2.37)

with P̂oj projectors onto the eigenvalues oj of a non-degenerate observable O

(cf. von Neumann 1932, p. 418; Jaeger 2007, p. 36). Thus in terms of density
operators von Neumann actually modeled this process as the passage from some
arbitrary quantum state into a mixture of eigenstates of a given observable—not as
the passage from a superposition into one such eigenstate. These two passages are
arguably quite different: in the latter case one obtains a state which indicates the
presence of a given value for a given observable on some observed systems, in the
latter case one does not. Von Neumann’s formula (2.37) also comes with serious
restrictions, as it is not suitable to describe measurements of degenerate observables
(‘non-maximal measurements’; e.g. Khrennikov 2010, p. 4 on this point).

Thus it is customary to appeal, as a generalization of the PP at any rate, to what
is called Lüders’ rule (after Lüders 1951), the general form of which is

62In case of a degenerate spectrum σ(Ô), one can sum over the n projectors onto eigenvectors span-
ning the subspace with eigenvalue oi , and then use a projection operator P̂{oij } =

∑n
j=1 |oi〉〈oi |j

hence defined instead (cf. Redhead 1987, p. 15). It is, however, crucial that the projectors |oi〉〈oi |j
are orthogonal in the sense that |oi〉〈oi |j (|oi〉〈oi |k |ψ〉) = |oi〉〈oi |k

(|oi〉〈oi |j |ψ〉
) = 0,∀ |ψ〉 ∈

H, j �= k, in order for P̂{oij } to be a projector itself. This also goes for a countably infinite subspace
(‘n = ∞’) corresponding to the same eigenvalue (cf. Heinosaari and Ziman 2012, p. 23).
63The details of mathematically generalizing the projection postulate to continuous spaces are quite
intricate though (cf. Srinivas 1980), and we shall here restrict our attention to separable or finite
dimensional spaces.



70 2 QM’s Problems & How Not to Think About Them

ρ̂ �−→ P̂oj ρ̂P̂oj

Tr(ρ̂P̂oj )
, (2.38)

with P̂oj a projector onto the (not necessarily 1D) subspace corresponding to the
eigenvalue oj of O. Measurements modeled by a family of projection operators{
P̂j

}
j∈J (J some suitable indexing set) are called projective (e.g. Wiseman and

Milburn 2010, p. 10) for obvious reasons. In case one of the projectors is being
selected in the process, as in (2.38), the measurement is called selective (cf. Jaeger
2007, p. 37). Note that

P̂j ρ̂P̂j = |j〉〈j |
[∑

k

pk |ψk〉〈ψk |
]
|j〉〈j | = |j 〉 〈j |

[∑
k

pk

(∑
�,m

α
(k)
� α(k)∗m |�〉〈m|

)]
|j〉 〈j | =

= |j〉
[∑

k

pk

(∑
�,m

α
(k)
� α(k)∗m 〈j |�〉︸ ︷︷ ︸

=δj�
〈m|j 〉︸ ︷︷ ︸
=δmj

)]
〈j | = |j〉

(∑
k

pk |α(k)j |2
)
〈j | ∝ |j〉〈j | ,

where we have used an expansion |ψk〉 = ∑
� α

(k)
� |�〉, and the proportionality is

obviously given by Tr(ρ̂P̂j ). This shows that the process described by (2.38) is
indeed selective, and Lüders’ rule is easily seen to provide a generalization of the
projection postulate as introduced in Sect. 2.1.4.

Projective measurements are always repeatable in the sense that if a system
exhibits some value corresponding to a projector, it will yield the same value again
when measured shortly after for the same observable (think of our initial Stern-
Gerlach examples). According to Nielsen and Chuang (2010, p. 91) however,

many important measurements in quantum mechanics are not projective measurements. For
instance, if we use a silvered screen to measure the position of a photon we destroy the
photon in the process. This certainly makes it impossible to repeat the measurement of the
photon’s position!

It thus seems desirable to generalize, for these occasions, the quantum repre-
sentation of observables so that one can also model non-repeatable measurements.
Such a generalization can be provided in terms of positive operator valued measures
(POVMs). For all practical purposes64 a POVM can be thought of as a set of
positive Hermitian operators, {Êm}m∈J , where the positivity means that 〈v|Êm|v〉 ≥
0,∀ |v〉 ∈ H,∀m ∈ J , and where it holds that

∑
m Êm = 1. Since the POVM is

intended to represent a generalized observable, m can in principle be replaced by a
continuous variable ω with the identity-resolution then given by

∫
�
Ê(dω) = 1 (�

the set of all ω; cf. Hayashi 2006, p. 14; Peres 2002, p. 386).65

64For a few technical details see Appendix A.
65The notation may differ though, as can be seen from the discussion of the spectral decomposition
in Appendix A. The example in Peres (2002, p. 386) is instructive w.r.t. the use of the above
notation.
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One now has Tr
(
Êmρ̂

)
= Prρ̂M(m) instead of (2.36), where m is some

measurable value and M refers to some measurement procedure (cf. Nielsen and
Chuang 2010, p. 90). Thus, the crucial thing about POVMs is that they define a
probability measure.

Comparing this to what has been established about Born’s rule above, we
may conjecture (correctly) that projectors themselves represent a (special case of)
POVM. The expectation value of any projector will be≥ 0, and they also sum to the
identity operator. Hence when all the Êm in {Êm}m∈J correspond to (orthogonal)
projectors, the measure is projector valued (PVM). The elements of a more general
POVM crucially need not equal their own squares, in contrast to those of a PVM
(cf. Busch et al. 1995, p. 8).

POVMs also allow to generalize Lüders’ rule, since one can—always, in sepa-
rable spaces, as a consequence of the so called square root lemma (cf. Heinosaari
and Ziman 2012, p. 19)—define operators M̂m, usually referred to as measurement
operators (e.g. Nielsen and Chuang 2010, p. 81), such that for every Êm of a POVM
it holds that Êm = M̂

†
mM̂m. With these, Lüders’ rule generalizes to

ρ̂ �−→ M̂mρ̂M̂
†
m

Tr(M̂mρ̂M̂
†
m)

(2.39)

(cf. Jaeger 2007, p. 42).
Moreover, POVMs can usually be understood as coarse grained PVMs, often by

appeal to the known states of an auxillary system or ‘ancilla’ to which the system of
interest is coupled (cf. Peres 2002, pp. 282–283). As an example of the graining,
take some (non-degenerate) observable Ô = ∑n

j oj |oj 〉〈oj | with n eigenstates
{|o1〉 , . . . , |on〉}, but assume that the measurement outcomes m, observable on
the measuring-device (lights flashing up, pointers pointing on a scale), cannot be
related one-to-one to the values oj . In case one can identify at least a probability
(which may arise from the experimental setup in a suitable way; cf. the example
in Busch et al. 1995, pp. 9–10) of m occurring on the device, given that the
system takes on (or is assumed to take on) value oj , a POVM can be defined by
F̂m =∑

j p(m|oj ) |oj 〉〈oj |, where p(m|oj ) provides the probability of obtaining m
given that oj obtains on the system. The measurement will then give some outcome
m, given that the system is in state |oj 〉, but no outcome m uniquely reveals a
particular pure state |oj 〉. POVMs can thus used to represent the aforementioned
unsharp measurements.

In case of the simultaneous measurement of two incompatible observables, the
only possible measurements are (of course) all unsharp. As an example (cf. Wallace
2012, p. 18), take a state |q, p〉 with position representation as a wavepacket

〈x|q, p〉 = ψp,q(x) = 1√
σ
√
π
e
− i
h̄
px
e
− (x−q)2

2σ2 , centered around some fixed position

value q. Here a suitable POVM, which gives at least an approximate position and
momentum in some range �i (a phase space cell) around q and p, can be given as
Êi = 1

2πh̄

∫
�i

dp dq |q, p〉〈q, p|.



72 2 QM’s Problems & How Not to Think About Them

But in concert with all our previous concerns, the question arises whether the sys-
tem thus measured does not have either a precise value of position q or momentum
p, but is at best ‘located in the phase space cell �i’ if the ith of a range of possible
measurement outcomes occurs. Essentially, we are here reissuing questions about
the ‘uncertainties’ appearing in QM, in virtue of noncommutative observables and
the uncertainty relations, rephrased in terms of sharp and unsharp measurements.
Due to the lack of clarity about the role of the projection postulate in the orthodox
interpretation, we are still left with the question of whether these ‘uncertainties’
and the associated need to retreat to POVMs (or unsharp measurements) for two
incompatible observables reflect something more than merely an expression of our
incomplete knowledge of the system’s ‘true state’.

We can get a better grip on these issues by first going a little deeper into the
formal aspects of unsharp measurements. With Busch et al. (1996, p. 10), call the
set of all operators Ô which are elements of some POVM the set of effects E(H) on
a Hilbert space H, the intuition being that they describe the events which may occur
as a result of some measurement. Then the (proper) subset of these effects such that
their spectrum extends both below and above 1

2 are called properties.66

To understand the intuition behind this use of ‘property’ better, first note that the
spectrum of the operators in a POVM will always be a subset (proper or improper) of
[0, 1], and for a PVM it is just {1, 0}. So projectors can be interpreted as representing
‘definite answers’ to some yes-no question that one could pose about a given value
of a given observable on a given system. Intuitively, they hence provide a way to
represent the properties of a system as exhibited in measurements: if the system’s
state is an eigenvector of some projector with eigenvalue 1 the property represented
pertains to it, for 0 it does not.

Using the formal distinction between general POVMs and PVMs, a property (in
the present use of the word) may thus be called unsharp in case the corresponding
operator does not satisfy Êm = Ê2

m (i.e. is not a projector), and, accordingly, an
associated measurement is called unsharp in case it has at least one unsharp property
in its range. As we haven seen, Busch et al. (1996, p. 10) only require for operators
to count as properties that their spectrum extend both below and above 1

2 , and this
can be non-trivially the case, of course, for the elements of a POVM.67

But now if a given operator Êm has value < 1
2 on some vector this must mean

something to the effect that the property in question is ‘rather absent’ in the state
represented by the vector, whereas if it has value > 1

2 , it is ‘rather present’. Should
this be taken to mean that a property can de facto also have only an approximate
degree of presence or absence instead of being definitely there (1) or not there (0)?
Does neither of the two possibilities have to be always realized?

66For technical reasons, the two operators O and 1 are also included in the set of properties as
‘trivial cases’ (cf. Busch et al. 1996, p. 10).
67In fact, these weak requirements preserve the orthocomplementation property, which can be
interpreted as a form of negation in the context of quantum logic (cf. Jaeger 2009, p. 268; Redhead
1987, p. 160).
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Busch and Jaeger (2010, p. 1352) in fact use the suggestive term “approximately
real” instead of ‘approximately present’, and Busch et al. (1995, p. 3) similarly
write:

The unsharpness in question should not in general be taken as an imperfect perception of
an underlying more sharply determined property. On the contrary, this term is intended to
describe possible elements of reality whose preparation and determination are subject to
inherent limitations.

What are we to make of this? It is far from clear what it means, exactly, that
a property should be ‘unsharp’, beyond the operationalistic specifications given in
the above quote. And Busch et al. (ibid.) also concede that unsharp measurements
“may or may not admit the kind of ignorance interpretation familiar from classical
physical experimentation” (my emphasis—FB). Hence ‘unsharp property’ might
be considered merely as a technical term here, fully defined by the formal
considerations given above. Whether this assessment is suitably exhaustive depends
on whether QM more generally allows for the kind of ignorance-interpretation in
question. This will be a point we essentially return to in Chap. 4.

2.2 Can Fields Help to Solve the Riddles? A Glimpse
at Quantum Field Theory

2.2.1 Relativity and Many Bodies

So far we have not concerned ourselves at all with QM’s connections to the relativity
theories. It is important here to distinguish rather sharply between connecting QM
to the general theory of relativity (GR), which is Einstein’s theory of gravity,
and connecting it to the special theory of relativity (SR), which might best be
characterized as Einstein’s investigation of the consequences of the constancy of
light’s velocity in vacuum. The quest to unite GR with QM may still be considered
pretty much as an open and active field of research, whereas SR is considered by
many to live in a (more or less) happy marriage with QM in the form of relativistic
QFT. We will mostly constrain ourselves here to a discussion of some of the basic
ingredients of QFT, and of how it relates QM to SR. We will presuppose, however,
a basic understanding of SR in what follows.68

To recall, in SR the (vacuum) speed of light is a constant, c, as was suggested
by theory and experiment in optics and electromagnetism even before the advent of
SR. c also constitutes an upper limit to possible speeds at which carriers of matter
and energy can travel. More precisely, “it is not possible to take a body travelling at
less than the speed of light and accelerate it to a velocity greater than the speed of

68Maudlin’s (2011) book on QM and relativity may be a good starting point for philosophers not
acquainted with SR at all, alongside any good textbook on the subject such as Walker et al. (2012,
chapter 37) or, for a more technical treatment, Rindler (2006, chapter 1).
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light. In fact it is not possible for a massive body even to reach the speed of light
[. . . ].” (Adams 1997, p. 79; my emphasis—FB)69

Usually, this restriction to (sub-)luminal speeds is understood in the following
sense:

The value of c is the limit for the speeds of material bodies or of the processes that could
be used for the transmission of a signal. Under the term ‘signal’ we mean the transmission
of a certain amount of energy that carries information about an event at a point r1 at the
moment t1 and can change the state of a certain physical system at a point r2 at the moment
t2. (Fayngold 2002, p. 142; my emphasis—FB)

Of course this reading of the restriction induces worries about the aptness of
the involved understanding of ‘signal’ in the unweary philosopher. But the idea is
intuitive enough; if person A wants to send a message to person B, she needs to
alter the state of B’s sense organs, which is—supposedly—only possible through
physical interaction. And the only kinds of physical interaction we know of, and
know how to control in order to get our message through, are those involving
(sub)luminal carriers of energy (air molecules propagating sound waves, photons
making up flashes of light, electrons traveling through a wire, and so forth). We can
hence accept this understanding of the constraints set up by the constancy of the
speed of light here as sufficiently plausible and intuitive. But note that the point is
ultimately not as uncontroversial as it may seem.70

To establish one particular kind of conflict that traditional QM has with the speed
limit, imagine some quantum system, a ‘single particle’, located around x = 0 at
some initial time t = 0, say. We take it that SR demands that the particle should
not be able to reach places at such a distance |x| to 0 in such times that it would
have to travel at a velocity greater than c in some frame. In fact, from the set of
transformations able to deal with the constancy of c, the Lorentz-, or more generally:
Poincaré transformations, it follows that talk about ‘places’ and ‘times’, as if these
two categories were entirely separate, is somewhat ill-founded.

Within the context of SR both concepts cannot be thought of separately but must
be unified into one common structure, the Minkowski space-time (e.g. Maudlin
2011, p. 40 ff.). Next to the constancy of c, it is a postulate of SR that in every
so called inertial frame of reference, the physics is the same, where an inertial
frame of reference is usually defined as one in which Newton’s first law applies,
i.e. in which systems that are not subject to external forces remain at rest or have
constant velocities (cf. Fließbach 2009, p. 9; Sexl and Urbantke 1992, p. 1). For each
system one can define a so called past and future light cone by centering a space-
time coordinate system on it; the space-time points which can then be reached at

69This does not preclude, however, the possibility of particles which always travel at superluminal
velocities, so called tacyhons, which could not be decelerated to subluminal velocities instead (e.g.
Maudlin 2011, p. 65 ff. for discussion). So far, however, there is no evidence for the existence of
these; and there is even a sense in which they are incompatible with QFT qua localizable entities
(cf. Sexl and Urbantke 1992, p. 27).
70Cf. in particular Maudlin (2011, p. 93 ff.) for an extensive discussion of different kinds of
possible signals, and p. 2 ff. therein for a statement of the more general potential controversy.



2.2 A Glimpse at QFT 75

Fig. 2.9 Past and future light
cone of an event. The curved
lines indicate possible
trajectories in space-time
which a particle may take to
reach the respectively
separated space-time points.
We have chosen units in
which c = 1

x1

x2

ttime-like

light-like

space-like

speeds v ≤ c from the system’s own space-time position (here the point (x, t) = 0)
constitute its future light cone, those from which it could have been reached at those
very velocities define its past light cone respectively. This light cone can be easily
visualized if one restricts the spatial degrees of freedom to 1 or 2 instead of 3 (cf.
Fig. 2.9).

Let us make things slightly more precise. In SR already, spatial distances
become frame-dependent, i.e. depend on one’s own state of motion. Phrased more
technically, the Euclidean metric dE(p, p

′) = √
(x − x′)2 + (y − y′)2 + (z− z′)2,

the ‘natural’ distance between two points p = (x, y, z) and p′ = (x′, y′, z′) in
a 3D (Euclidean) space, is not Lorentz-invariant, i.e., not invariant under changes

x �→ x̃ = γ (x − vt), say, where γ = 1/
√

1− ( v
c
)2 (v a constant, unidirectional

velocity).71 The ‘distance’ that is invariant under the Lorentz transformations, is the
quantity�s2 = −c2(t−t ′)2+(x−x′)2+(y−y′)2+(z−z′)2, the Minkowski metric,
where the signs on the right may be reversed, depending on convention (e.g. Carroll
2004, p. 7; Rindler 2006). This leads to the 4D Minkowski spacetime, which can be
described as the pair (R4, η), where R4 is endowed with a vector space structure for
four-component (column) vectors, (ct, x, y, z)T , ‘pointing to’ respective spacetime
points, and where η = (ημν) is called a metric tensor, which may be represented
(depending on convention and basis) as the matrix

η =

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ . (2.40)

η(u, v) = uT · η · v for two four-vectors u, v defines the generalization of a scalar
product.72

71Whence the Lorentz transformations? A nice heuristic introduction can be found in Walker et al.
(2012, chapter 37).
72Strictly speaking, η should be called a pseudo-metric tensor, since η(u, v) may yield values < 0.
It is otherwise symmetric and linear in both arguments, and if η(u, v) = 0,∀u ∈ R

4, then v is the
null vector (e.g. Nakahara 2003, p. 244).
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Minkowskian spacetime, however, is ‘flat’. It does not have the required mathe-
matical structure to take hold of the curvature introduced by masses that we know
from GR and its confirming observations. Thus a more general sort of spacetime is
required, and the ‘distance measure’ provided by the (pseudo-) metric tensor should
be capable of describing the ‘bending of distances’, i.e. should be allowed to vary
from point to point. The essential ingredient for such a generalization is the theory
of (differentiable) manifolds. Intuitively, such a manifold is a possibly oddly shaped
space that locally (in sufficiently small regions) ‘looks like’ R

n (in the relevant
cases: n = 4).73

The appeal, of course, is that the successful predictions of SR and non-relativsitc
physics be preserved in such a space, so that it may locally (and under suitable
conditions) be approximated by any of the more traditional spacetimes. GR hence
appeals to a more general Lorentzian manifold (of which Minkowski spacetime is a
particular example) with a metric tensor g = g(p) that may change across points (p)
on the manifold and otherwise has the same signature (number of−1s in its diagonal
matrix form) as the Minkowskian metric tensor η (e.g. Straumann 2004, p. 22). Of
course on such a manifold, the algebraic and analytic notions such as ‘derivative’
and ‘vector’ have to be generalized as well. Vectors, for instance, are construed as
tangent vectors to curves in the manifold, and are mathematically constructed as
directional derivatives of smooth functions of equivalence classes of such curves,
where curves may formally be thought of as parametrized (e.g. time-coordinate-
dependent) sets of points, and the directional derivatives are taken w.r.t. coordinates
that points are equipped with in terms of so called charts (cf. Footnote 73). We need
not really bother with the details any further here though, and the interested reader
may be referred e.g. to Nakahara (2003, p. 178 ff.) instead.

Returning, thus, to the single particle that we considered to raise a problem for
relativistic ‘single particle’ QM, we can now say that it should only be able to
access spacetime regions which lie inside the (future) cone. Any point beyond the
boundary of the light cone should not be accessible, and for massive particles the
same goes for the points on the boundary. This induces a threefold classification
of separations from the origin: points within the light cone are called timelike
separated from it, points which lie somewhere on the boundary are called lightlike
separated, and those outside are called spacelike separated. In this terminology,
spacelike separations cannot be traversed by light or (all known) matter. In terms of
the metric tensor, the notions of spacelike (g(u, u) > 0), lightlike (g(u, u) = 0),

73More precisely, a differentiable manifold is a topological space that is locally homeomorphic to
R

4. A topological space is a set X, together with a collection of subsets of X which contains X,∅
and is closed under infinite unions and finite intersections. A homeomorphism is a continuous
invertible map between topological spaces whose inverse is also continuous. A differentiable
manifold M now is a topological space, endowed with a collection {(Ui, ϕi)}i∈I (called an
‘atlas’) of pairs (called ‘charts’) of open sets Ui which jointly cover M (

⋃
i Ui = M) and

homeomorphisms ϕi that map the Ui into open sets Vi ⊆ R
n, and for which, if Ui ∩ Uj �= ∅

(i �= j ), ϕi ◦ ϕ−1
j : ϕj (Ui ∩ Uj )→ ϕi(Ui ∩ Uj ) is smooth. The ϕj equip the manifold locally (in

the sets Uj ) with coordinates (cf. Nakahara 2003, pp. 81, 85, and 171–172).



2.2 A Glimpse at QFT 77

and timelike (g(u, u) < 0) as applied to vectors can also be made precise (e.g.
Nakahara 2003, p. 246; Rindler 2006, p. 101). Understanding these as signifying
displacements between points, so that u = (c(t − t ′), (x − x′), (y − y′), (z− z′))T
(where (ct ′, x′, y′, z′)T could just be (0, 0, 0, 0)T ), the prescription η(u, u) then
computes �s2 in Minkowski spacetime.

But it turns out that single particle QM cannot always respect the requirement of
predicting only timelike trajectories (those inside the light cone). For the probability
amplitude 〈x|U 〉 (t) |x = 0〉 of finding the particle initially located at x = 0 after
some time t at x so that (x, t) (or (ct, x), in the standard 4-vector notation) lies
outside the light cone can be computed to be non-zero (cf. Lancaster and Blundell
2014, pp. 75–76; Peskin and Schroeder 1995, p. 14). In other words, there are
instances where ordinary QM yields results which prima facie make it incompatible
with SR.

QFT, in contrast, avoids this difficulty and reconciles the two theories, QM and
SR, in many further respects, by choosing a completely different starting point
(as will become clear below). Most notably, it includes a so called microcausality
condition, which states that any two self-adjoint operators that represent observables
measured at a space-like distance to one another must commute, i.e.

[Ô(x), Ô(y)] = 0 if (x − y)2 > 0 (2.41)

(x, y spacetime points). This can be understood as saying that two spacelike
separated measurements should not influence one another (cf. Teller 1995, p. 84 ff;
Greiner and Reinhardt 1993, p. 103 ff. for more details). Some (e.g. Gottfired and
Weisskopf 1986, p. 579) take this condition to constitute a basic postulate of QFT in
general, comparable in status to the postulates of QM we have discussed in the last
section. However, ‘ordinary QFT’, as used by physicists in calculating magnitudes
and predicting outcomes of experiments, proceeds in a rather heuristic fashion, as
we will see below; only in ‘axiomatic’ (algebraic) approaches is the microcausality
condition (or rather: its adaptation to the algebraic program) therefore usually really
introduced as an explicit postulate.

From where we are standing now, the simplest route to QFT74 is that via second
quantization and the Fock space formalism. However, the Fock space formalism
cannot give a full picture of the structure of QFT, the main reason being that
there will generally be unitarily inequivalent Fock spaces in QFT (cf. Friebe et al.
2015, pp. 250 and 259; Ruetsche 2011, p. 69 ff.), and the case can be made that
unitarily inequivalent representations should be taken to correspond to physically
inequivalent theories (cf. Ruetsche 2011, pp. 24–29 and pp. 70–71).75 An expression

74Note that we will sometimes use ‘QFT’ to mean the theoretical field in general, but also
occasionally talk of ‘a QFT’, thereby meaning a concrete (heuristically) quantized field theory,
such as e.g. QED.
75However, things are somewhat subtle here. Ruetsche presupposes the semantic view of theories
(cf. Sect. 1.2), as did van Fraassen (1991) before her. On this account it is possible—at least in
principle—to make two unitarily inequivalent theories come out physically equivalent, by assign-
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of this is the so called Unruh effect, according to which observers in different states
of accelerated motion should experience differences in the presence or absence of
certain particles (cf. Friebe et al. 2015, p. 250 and below), which arguably suggest
a clear physical difference. But to make things precise, we should first introduce
the Fock space formalism and return to the Unruh effect and unitary inequivalence
below.

Now consider the (entangled) wave functions for two or more indistinguishable
particles that we had met with in Sect. 2.1.3. For one whole collection of N such
particles, one can define the space of all wave functions which satisfy the appropriate
(anti-)symmetrization requirement, a subspace of the total N -fold tensor-product
Hilbert space H⊗N . Call this appropriately symmetricized subspace of H⊗N ‘FN ’.
Then by summing up all the spaces for different values of N , one obtains the so
called Fock space F = F0⊕F1⊕F2⊕ . . . Crucially, we have included a space F0
which amounts to including states with no particle at all.

The general mathematics used in this Fock space formalism can best be
understood by appeal to the QM treatment of harmonic oscillators. A harmonic
oscillator is a system which swings back and forth in a simple periodic motion.
Take, for instance, a little mass, a block of lead or something, attached to a spring
with no friction at all (e.g. in a remote region of outer space and constructed out
of some amazing material with no inner friction). Then extending the spring once
will lead to a sinusoidal motion in time, as the mass will bounce back, contract
the spring beyond the point of rest, and then bounce back again and again. The
force thus exerted on the spring must be proportional to the length of elongation
�x = x − x0 and the material it is made of, so that we can write F = −k�x,
where k is a constant associated with the spring. If we choose the point of rest
as x0 = 0, we have �x = x, and the formula simplifies to F = −kx. Since

F = ma = m d2x
dt2

(by Newton’s second law), one obtains a differential equation
d2x
dt2
= − k

m
x whose solutions are trigonometric functions cos(ωt) and sin(ωt), with

ω =
√

k
m

the frequency of oscillation (e.g. Walker et al. 2012, p. 414 ff. for a more
comprehensive introduction). Since the negative gradient of a potential energy is
a force, one can define the harmonic oscillator potential (generalized now to three
dimensions) as V (x) = 1

2mω
2x2.

This potential can be used for a QM Hamiltonian, with x replaced by x̂, so that
the corresponding SSE becomes

Eψ = − h̄2

2m
�ψ + 1

2
mω2x̂

2
ψ.

This SSE has ‘complicated looking’ solutions called Hermite polynomials (cf.
Basdevant and Dalibard 2002, p. 454; Schwabl 2007, p. 51), and solutions and

ing to them appropriately gerrymandered interpretations. Thus, physical equivalence becomes a
question about fully interpreted physical theories (cf. Ruetsche 2011, p. 29).
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energy eigenvalues turn out to be parametrized by a natural number n in each spatial
dimension. Allowing, for generality’s sake, for different oscillation frequencies (ωj )
in all three spatial directions, the energy E can be worked out to be

E =
∑

j∈{x,y,z}
(nj + 1

2 )h̄ωj ,

so that for nj = 0 (∀j), one still obtains an energy of
∑

j∈{x,y,z}
h̄ωj

2 . This
incidentally means that the oscillator will always possess a ground state- or zero
point energy, even for the lowest permitted values of all the ns.

There exists, however, an equivalent but much more elegant algebraic treatment
of the quantum harmonic oscillator (e.g. Basdevant and Dalibard 2002, p. 148),
which incidentally serves as a formal paradigm for the Fock space treatment
of multi-particle systems. The idea here is to ‘cleverly’ define (vector-)operators
(assuming all ωj s to be equal now, for simplicity)

â =
√
mω

2h̄

(
x̂ + ip̂

mω

)
(2.42)

â
† =

√
mω

2h̄

(
x̂ − ip̂

mω

)
(2.43)

with which the Hamiltonian can be rewritten as

Ĥ = (â
†
â + 1

2 1)h̄ω. (2.44)

Working in the eigenbasis of this Hamlitonian, one can use the compact notation
|n〉 = ∣∣nx, ny, nz

〉
, which is also independent of the choice of representation

(momentum or position). By ‘playing around’ with the operators, one finds some
important relations between their components (j, k ∈ {x, y, z}):

âj
∣∣nj

〉 = √nj
∣∣nj − 1

〉

â
†
j

∣∣nj
〉 = √

nj + 1
∣∣nj + 1

〉

â
†
j âj

∣∣nj
〉 =: n̂j

∣∣nj
〉 = nj

∣∣nj
〉

âj |0〉 = 0

(2.45)

[
âj , âk

] =
[
â

†
j , â

†
k

]
= 0

[
âj , â

†
k

]
= δjk = −

[
â

†
k , âj

]

[
n̂j , âk

] = −δjkâk,
[
n̂j , â

†
k

]
= δjkâ

†
k

(2.46)
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These relations, especially (2.46), turn out to be of utmost importance for the
Fock space formalism and QFT in general. They also motivate the names raising
and lowering operator for â†

j and âj respectively (since these raise and lower the
energy), number operator for n̂j (since it determines the value of the number nj ),

and ground state for |0〉. Note that any state |nj 〉 can now be written as
(â

†
j )
nj

√
nj
|0〉

(cf. Basdevant and Dalibard 2002, p. 148 ff. and Schwabl 2007, p. 49 ff. for more
details).

Now to establish a connection with the Fock space formalism, consider a
symmetricized state function of three bosons, where (for instance) two of them
occupy the first of an ordered number of possible states, ψa , and the remaining one
occupies the third of these states, ψc. The properly symmetricized state function
then is

(x1, x2, x3) = 1√
3

[
ψa(x1)ψa(x2)ψc(x3)+ ψa(x3)ψa(x2)ψc(x1)+

+ ψa(x1)ψa(x3)ψc(x2)
]
.

But since nothing is being said about which boson occupies which of the states, one
can equally resort to a much shorter representation:

|〉 = |2, 0, 1〉 . (2.47)

Here the possible states a, b, c, . . . are simply listed as an ordered sequence of
numbers indicating how often any of them is occupied. The 2 hence means that
ψa is occupied twice, the 0 that ψb is unoccupied, and so forth. For fermions,
multiple occupations of the same state are obviously prohibited when all degrees
of freedom are taken into consideration (in accord with the Pauli principle). This
kind of representation is called the occupation number representation and (2.47)
represents a state in a Fock space for three bosons.

The inclusion of a 0 into the ordered sequence of possibly occupied quantum
states is obviously necessary to include the possibility of unoccupied states, e.g.
unoccupied orbitals in an atom. But what if there is no particle present at all in some
region or configuration under consideration—what if the atom, say, is fully ionized?
This leads to the concept of the so called vacuum state, |0, 0, 0, . . .〉, reminiscent of
the ground state of the harmonic oscillator. The best analogy so far would be that of
a whole bunch of uncoupled oscillators, all in their ground state, i.e. in the lowest
possible state of excitation. But since we are talking about particles occupying or
not occupying states, this analogy is somewhat flawed, and this ‘vacuum’ requires
proper interpretation.

It should also be clear that a countable sequence of definite occupation numbers
can only be obtained for subspaces of a Hilbert space of countable dimension, unlike
the spaces for free particles we have appealed to above. This could be brought about
e.g. by imposing periodic boundary conditions (e.g. Lancaster and Blundell (2014,
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pp. 28–29) or Basdevant and Dalibard (2002, p. 75 ff.)). To wit, imagine some
quantum system confined to a (1D) box of length L. ‘Imposing periodic boundary
conditions’ now means that the wave function must behave at x = L as it does at
x = 0, i.e. e

i
h̄
p·0 = 1 = e

i
h̄
pL. But this in turn means that pL = 2πn, n ∈ Z,

because of the properties of the complex exponential (think Euler formula and
properties of sine and cosine). So one obtains a countable basis in terms of quantized
(discretized) momenta. Solutions to the SSE which are normalized inside the box are

of the form ψ(x) = 1√
L
e
i
h̄
px and have eigenvalues p̂ψ(x) = pψ(x) = 2πn

L
ψ(x).

The next key step in the developing the Fock space formalism further is to
introduce analogues of the raising and lowering operators from the harmonic
oscillator into the occupation number representation. Take one of the above states
of definite momentum, in 3D abstractly written as |p〉. Then in analogy to the
harmonic oscillator, we can take this to be â†

p |0〉, with |0〉 the single particle vacuum

state. The operator â†
p is now rather called a creation operator, as it creates a

particle in state |p〉, and its adjoint âp is accordingly called an annihilation operator
(âp |p〉 = |0〉). But now consider that (in our countable basis)

|x〉 =
∑
i

∣∣pi
〉〈
pi

∣∣x〉 =
∑
i

â†
pi
|0〉 〈pi

∣∣x〉 =
∑
i

〈
pi

∣∣x〉 â†
pi
|0〉 . (2.48)

In our so far non-relativistic treatment we have 〈p|x〉 = 1√
V
e
− i
h̄
px , with V the ‘box

volume’ (a generalization of the length L from above), or more generally we can
write 〈p|x〉 = φ∗p(x). Thus we identify the mathematical object

∑
i

φ∗pi (x)â
†
pi
=:

ψ̂†(x), acting on |0〉, as a field operator.76

Multiplying ψ̂†(x) by the adjoint ψ̂(x) from the right gives an expression
�̂(x) := ψ̂†ψ̂(x) for a number density operator; integrating over some volume
V ′,

∫
V ′

d3x �̂(x), will result in an operator N̂V ′ which has integer eigenvalues

and determines the number of ‘particles’ present in V ′ (cf. Teller 1995, p. 50).
But of course we do not generally have to restrict ourselves to the countable
case; in analogy to our free wave packet-story above, we can define ψ̂†

free(x) :=∫
d3p φ∗p(x)â

†
p as a representation of the ‘creation of a particle’ at an arbitrary point

x in free space (with uncountable values of p) out of a vacuum |0〉, and with all other
expressions adapted accordingly (cf. also Teller 1995, pp. 55–56).

From considerations of multiple applications of different or equal annihilation
and creation operators to the vacuum state, one can develop commutation relations
for these. Crucially, one finds that these relations are different for fermionic and

76Note that without the hat on â†
pi

and † replaced by ∗ this would just be a (countable) Fourier

expansion of a kind of quantum wave packet ψ∗. In virtue of this, the operator ψ̂†(x) can be
viewed as a quantization of an object that is already the solution to a quantum mechanical equation
(the ψ-function), which provides at least an intuitive (though supposedly historically inaccurate)
explanation for the name ‘second quantization’.
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bosonic operators. Call [Â, B̂]+ := ÂB̂ + B̂Â the anti-commutator. Then for
bosonic creation and annihilation operators it holds that

[
âpj , âpk

]
=

[
â†
pj
, â†

pk

]
= 0 (2.49)

[
âpj , â

†
pk

]
= δjk, (2.50)

very much in analogy to relations (2.46), and where the δjk can be replaced by
δ3(p − p′) in the continuous case. For fermionic operators, we instead need

[
ĉpj , ĉpk

]
+ =

[
ĉ†
pj
, ĉ†

pk

]
+ = 0 (2.51)

[
ĉpj , ĉ

†
pk

]
+ = δjk, (2.52)

where we have used ĉ to distinguish the two cases, and where the continuous
generalization works analogously. The same behavior also carries over to the field
operators in both cases. This anti-commutating behavior of the fermionic operators

implements the Pauli principle in this representation, because
[
ĉ

†
pk
, ĉ

†
pk

]
+ =

ĉ
†
pk
ĉ

†
pk
+ ĉ

†
pk
ĉ

†
pk
= 0 ⇒ ĉ

†
pk
ĉ

†
pk
= 0, i.e. no state with two indistinguishable

fermionic particles in it can be created (cf. Lancaster and Blundell 2014, pp. 31–
38).

So far we have only discussed space-dependent field operators, but we have
advertised QFT as a kind of unification of QM and SR, and (as noted above)
according to SR space and time cannot be properly thought of in separation. The
time dependence of the field operators is established by appeal to the so called
Heisenberg picture. This picture rests on the fact that viewing the state vector
as evolving in time, as suggested by the Schrödinger equation, is not the only
perspective one can take in QM. To see this, recall that |ψ(t)〉 = Û (t) |ψ(0)〉. But
then

〈O〉ψ(t) = 〈ψ(t)|Ô|ψ(t)〉 = 〈ψ |Û†(t)ÔÛ(t)|ψ〉 , (2.53)

and we could equally think of the object ÔH (t) := Û†(t)ÔÛ(t) as representing
the thing which evolves over time, instead of the ket vector |ψ〉. Put frankly, QM is
neutral about what it actually is that evolves in time, the state the theory attributes to
a system, or the observables on it, i.e. that which we can determine about it in terms
of experiments (in itself is an interesting point).

Taking the time derivative of the operator ÔH (t), one finds the Heisenberg
equation

dÔH (t)

dt
= i

h̄
[Ĥ , ÔH (t)] + ∂ÔH (t)

∂t
, (2.54)
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where the last term only occurs in case the Operator Ô is explicitly time dependent
(i.e. also in the Schrödinger picture; cf. Schwabl 2007, p. 177 for discussion and
examples). A time dependent field operator is thus given, in the Heisenberg picture,
by ̂†(x, t) = Û†(t)ψ̂†(x)Û(t) (e.g. Lancaster and Blundell 2014, p. 100).

To thoroughly connect QFT to SR now, it seems desirable to look for relativistic
dynamics for our new object ̂†(x, t). Two equations which provide such dynamics
have been developed in the twentieth century. The first one is called the Klein-
Gordon equation (KGE) and it can be ‘derived’ very easily in the same heuristic
way as the SE. To this end, consider the square of the relativistic energy, E2 =
p2c2 +m2

0c
4, and multiply both sides by some function φ. Then replace E � ih̄ ∂

∂t

and p � −ih̄∇ to obtain:

− h̄2 ∂
2

∂t2
φ = −c2h̄2�φ +m2

0c
4φ

⇔
(

1

c2

∂2

∂t2
−�+ m2

0c
2

h̄2

)
φ = 0. (KGE)

�C := h̄
m0c

is also called the (reduced) Compton wavelength, since it incidentally
occurs in Compton’s scattering theory (e.g. Demtröder 2010, pp. 86–88); so we

could replace
(
m0c
h̄

)2 = 1/�2
C.

So far we are treating the KGE as an equation which applies to (wave) functions
φ = φ(x, t), which in virtue of their space-time dependence and their scalar
values are called scalar fields. Moreover, the KGE corresponds exactly to the
wave equation of the electric and magnetic fields mentioned in Sect. 2.1.1, if one
sets m0 = 0, and otherwise it merely includes an ‘inhomogeneity’ 1/�2

C. All of
this seems to be indicative of waves again, but of course we know already from
Sect. 2.1.3 that ‘it’s all about waves!’ cannot be the final verdict.

Moreover, there are good reasons to replace φ by an operator φ̂(x, t) to make
sense of it in a quantum context. A first reason to this effect is that for a scalar field,
the general solution to the KGE is of the form

φ(x, t) =
∫

d3p

(2π)3/2
√

2Ep

(
a(p)e

i
h̄
(px−Ep t) + b(p)e ih̄ (px+Ep t)

)
(2.55)

with a(p) and b(p) respective amplitudes (e.g. Teller 1995, p. 67; Friebe et al.
2015, pp. 236).77 Since derivatives occur in second order for place and time, one
will generally obtain E2φ = (p2c2 + m2

0c
4)φ, which is independent of the + and

− in the exponent. But then both square roots,±
√

p2c2 +m2
0c

4, yield values for E,

77The factor 1√
2Ep

is included to ensure Lorentz-invariance (cf. Lancaster and Blundell 2014,

p. 101 ff. for discussion).



84 2 QM’s Problems & How Not to Think About Them

so that there are also negative energy solutions. For classical waves, i.e. with E/h̄
replaced by ω and the connection between the two ignored, this would simply imply
waves traveling in opposite directions. In the QM treatment, however, the form of
the solution allows for systems having arbitrarily large negative energies.

In principle, negative energy is not a problem. For instance, negative energy for
an electron in some atom means that such and such an amount of energy is needed
to ionize the atom (i.e., ‘kick the electron out of the orbit’) due to the binding
potential of the nucleus; in hydrogen the ground state energy of the electron is
(approximately)−13.6 eV. But we are here considering free fields, not subject to any
binding potential, and if there is no lower bound to this energy, this of course creates
much more of a problem and the former interpretation becomes hardly tenable.
Historically these problems ultimately lead to the introduction of antiparticles,
with positive energies and charge and momentum opposite to that of the particles
corresponding to the positive energy solutions (e.g. Lancaster and Blundell 2014,
p. 61 ff.; Teller 1995, p. 79). But this requires second quantizing the solution of
the KGE, i.e. replacing φ by φ̂ by using appropriate operators in the place of the of
amplitudes in (2.55), the first one being an annihilation operator (â(p)) for particles,
the second one a creation operator (b̂†(p)) for corresponding antiparticles (and vice
versa in φ̂†).

The need for a second quantization of the solutions to the KGE is hence
intimately connected to the negative energy solutions. But it is also connected to the
fact that the above solution does not allow for a probability interpretation: Consider
the so called probability current density, which in nonrelativistic QM is defined as

j(x, t) = h̄

2mi
[ψ∗(∇ψ)− (∇ψ∗)ψ](x, t). (2.56)

This probability current density of norelativistic QM satisfies a continuity equation
∂
∂t
�(x, t)+∇j(x, t) = 0, with �(x, t) = ψ∗ψ(x, t), expressing the conservation of

probability (e.g. Schwabl 2007, p. 31). But the quantity which satisfies an analogous
continuity equation in the case of the KGE can become negative in virtue of the
negative energies (cf. Lancaster and Blundell 2014, p. 61), whence the ordinary
QM interpretation of the Klein-Gordon field as a probability amplitude cannot be
applied.

Even though one can put these difficulties of the KGE aside by second quantizing
its solutions, it is ultimately too restrictive: it cannot handle spin degrees of freedom
and is thus only an equation for (massive) spinless particles. But we mentioned
that there are two notable relativistic equations, and it was Dirac who developed
the other one in 1928. This Dirac equation (DE) ‘automatically’ included terms
acknowledging the existence of spin, as we shall see below. Historians have it (e.g.
Cantor et al. 1990, p. 473) that Dirac was concerned with finding an equation for
relativistic quantum mechanics that was not quadratic in time, i.e. an equation of
the form Ĥψ = ih̄ ∂

∂t
ψ with relativistic Hamiltonian. To this end, Dirac sought

for a way to quantize the non-quadratic relativistic energy E =
√

p2c2 +m2
0c

4.
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Unfortunately, the heuristic substitutions E � ih̄ ∂
∂t

and p � −ih̄∇ in this case

yield ih̄ ∂
∂t
=

√
−h̄2c2�+m2

0c
4, and one might be lead to wonder what the square

root of the Laplacian is. This is not really a problem though, since the square root
of a differential operator can be defined in terms of Fourier transformation, so the
essential problem was indeed rather connected to the order of derivatives, namely
that “due to the asymmetry of space and time derivatives Dirac found it impossible
to include external electromagnetic fields in a relativistically invariant way.” (Thaller
1992, p. 2)

Dirac’s ‘trick’ ultimately was to analyze the expression under the square root as
the square of something else by introducing operators α̂ and β̂, so that

p̂
2
c2 +m2

0c
4 = (cp̂xα̂x + cp̂yα̂y + cp̂zα̂z + β̂m0c

2)2 =
= (cα̂p̂ + β̂m0c

2)2, (2.57)

and one finally obtains

(
cα̂p̂ + β̂m0c

2
)

� = ih̄
∂

∂t
�. (DE)

After studying the commutation properties of β̂ and the α̂i , one also finds that

α̂i =
(
O σ̂i

σ̂i O

)
and β̂ =

(
1 O

O −1

)

are possible representations, with O a 2×2 zero-matrix, and i ∈ {x, y, z} (for details
e.g. Shankar 1994, p. 565; Schwabl 2008, p. 123).

For the given choice of α̂ and β̂, the occurrence of the Pauli spin matrices
immediately explains how the DE with (free) Hamiltonian cα̂p̂ + β̂m0c

2 = Ĥ

acknowledges the existence of spin. Since we are now concerned with 4 × 4-
matrices rather than 2 × 2-ones (as in our previous treatment of spin), the solution
� to the equation must be given in terms of a Dirac spinor, containing two two-
component (Weyl-) subspinors. These two subspinors each correspond to different
chirality and helicity states, which means that they represent an intrinsic handedness
of particles.78

Solutions to the DE are compatible with a first quantized reading, i.e. with � as a
four component (spinor-)wavefunction that has a probabilistic interpretation as does
ψ in non-relativistic QM (e.g. Schwabl 2008, p. 121). Different niceties become

78In principle the meaning of the intrinsic handednesses is itself worth philosophizing about, since
it may be taken to have implications, say, for substantivalism or relationalism about space (e.g.
Earman 1991; Lyre 2005). But we will here rather concern ourselves with other matters more
relevant for the discussion to come.
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possible though when one phrases things in terms of operator valued fields instead
(e.g. Peskin and Schroeder 1995, p. 52 ff.), but we wont bother with details.

Note also that our notation here is quite non-standard, and we have merely chosen
it to remain within the delimiters of what has been introduced so far. In textbooks
(e.g. Lancaster and Blundell 2014, p. 322 ff.; Peskin and Schroeder 1995, p. 40
ff.), you will rather find (iγ μ∂μ − m)ψ(x) = 0, for natural constants set to 1 and
a summation convention in place according to which the same upper and lower
index appearing in immediate succession is shorthand for a sum over the index
(
∑

μ γ
μ∂μ). These upper and lower indices (μ ∈ {0, . . . , 4}) are called contra-

and covariant indices respectively, additionally taking track of the transformation
behavior of an object so indexed under coordinate changes. x = (t, x) is a spacetime
point (for c = 1), and ψ is interpreted as a 4-component spinor (operator) without
signifying this by using bold face font or the like.

The γ μ have representations as 4 × 4 matrices. They can be defined in terms of
β̂ and the α̂i by multiplying the DE through (from the left) by β̂/c (e.g. Schwabl
2008, p. 123 ff.). Acknowledging also that ∂0 := 1

c
∂
∂t

, this fully explains the latter
mentioned form of the DE.

2.2.2 Canonical Quantization and the Concept of a Quantum
Field

We started off with the Heisenberg picture as providing the time dependence
of field operators, but now we have switched to overtly relativistic dynamical
equations. This does not, however, lead to a conflict with the Heisenberg picture; one
‘rederives’, for instance, the KGE from the Heisenberg equation upon presupposing
some connections between Lagrangian and Hamiltonian theory. So far we have only
talked about Hamiltonians in a very loose manner, and with that we have hidden
a whole lot of classical mechanics from plain sight. A few details, at least, must
now be uncovered.79 First note that it is a quite general fact of classical mechanics
that the Hamiltonian function H of a problem, representing the sum of kinetic
and potential energy, is connected to the Lagrangian (function) L, representing the
difference of potential from kinetic energy, via a so called Legendre transformation,
H = ∑

j pj q̇j − L. Here q̇j is called a generalized velocity which could, e.g.,

be ∂
∂t
ϕ =: ϕ̇, with ϕ an angle, and hence need not be a position on a Euclidean

straight line. pj is a corresponding generalized momentum, which is derived by
taking the (partial) derivative of the Lagrangian w.r.t. a given generalized velocity,
such as in ∂L

∂ϕ̇
= pϕ (pϕ is then angular momentum along ϕ). Thus the Hamiltonian

and Lagrangian formulations of classical mechanics are intimately connected, and
they offer a most useful tool to compute mechanical problems in terms of problem-

79For a very gentle start cf. Susskind and Hrabovsky (2013).
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suited coordinates. In QFT the Lagrangian formulation often is of particular interest
because it ensures Lorentz invariance (cf. Peskin and Schroeder 1995, p. 16).

To establish a Lagrangian and Hamiltonian theory of fields, one takes things a
step further and understands the Hamiltonian and Lagrangian functions as integrals
over Hamiltonian and Lagrangian densities, H ,L . Here the relation π(x) = ∂L

∂φ̇

is used, in analogy to the above, to define the momentum density π(x), where
L is the Lagrangian density with

∫
d3x L = L, and φ(x) the field under

consideration. Using the quantized, operator valued analogues of both, one then
stipulates cannonical commutation relations [φ̂(x), π̂(x′)] = ih̄δ(x − x′)1, in
analogy to the momentum and position operator from ordinary QM (cf. Peskin and
Schroeder 1995, p. 18).80

We have here reverted temporarily to a time-independent view of the field
operators, which we were eager to leave behind; the commutation relations between
a field operator and its conjugated momentum should thus instead be taken as
‘equal-time’ commutation-relations (cf. Peskin and Schroeder 1995, p. 20), and
the derivation of a Lagrangian from the Lagrangian density presupposes a globally
hyperbolic81 spacetime M, which can be foliated in such a way as to separate it into
a spatial and a temporal part, M = � × R. The integration then is over the spatial
part only, but w.r.t. a time dependent measure: L(t) = ∫

�
d3μ(t)L (cf. Wallace

2006, p. 36).
What we have just sketched are the general steps of what is called canonical

(or sometimes: heuristic) field quantization, the algorithm (nay heuristic) used to
obtain a QFT from some classical field theory. Any operator ψ̂(x, t) that comes
out of such a procedure may be called a quantum field. We have thus established
how ‘quantum fields’ are formally identified by the canonical approach, namely
as specific operators that depend on spacetime-coordinates. But what do these
spacetime dependent operators represent? Are they representative of actual, physical
fields? If so, what precisely are physical fields?

To get a better grip on these questions, contrast the following two entirely
different characterizations of what ‘field’ means from a modern textbook on

80Indeed, in even closer analogy to non-relativistic QM, φ̂(x) may just be represented as ‘multi-
plication by a scalar field φ(x)’, when operated on a quantum state |φ〉, and π̂(x) as a functional
derivative operator −ih̄ δ

δφ(x)
w.r.t. φ(x). This is the functional Schrödinger representation (e.g.

Hatfield 1992, p. 199 ff.), where the theory is taken to treat of states |〉 that have functionals
〈φ|(t)〉 = [φ, t] of field configurations φ as expansion coefficients (the ‘functional analogue’
of wave functions).
81For the notion of global hyperbolicity e.g. Smeenk and Wüthrich (2010, p. 593 ff.) or Ruetsche
(2011, p. 107). Roughly, the idea is that there is a spacelike hypersurface � which has a future and
past domain of dependence (D(�)+,D(�)−) such that the union of these is the whole spacetime
M. The domains of dependence D(�)± are defined as sets of points p such that any past (+)
or future (−) directed inextendible timelike curve through p has to intersect �, where timelike
past/future directedness means that at any point the tangent vector of the curve falls into or on the
past/future light cone, and inextendibility means that the curve has no endpoints.
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QFT: A field is here (i) thought of “as some kind of machine82 that takes a
position in spacetime and outputs an object representing the amplitude of something
at that point in spacetime [. . . ]. The amplitude could be a scalar, a vector, a
complex number, a spinor or a tensor.” (Lancaster and Blundell 2014, p. 2) And
(ii) as “an unseen entity which pervades space and time” (ibid.). Both of these
characterizations convey important intuitions, but they are both also misleading in
some respects.

(i) is a(n informal) characterization of the formal aspects of a field as some math-
ematical entity that depends on spacetime coordinates. But whether the ‘output’
(value) of this field in the merely formal sense really represents the amplitude of
something at a spacetime point is not necessarily obvious. (ii) informs us rather
about the ontology of the notion ‘field’, of what a field is in the physical sense. But
neither do fields have to be “unseen”—a heat distribution on a hot plate might count
as a field and could radiate in the visible energy spectrum—, nor is it clear that all
fields can be said to ‘pervade space and time’: the metric tensor g(x) in GR is at
least formally a field, but it seems contentious to say that it ‘pervades space and
time’; it rather represents ‘an aspect of ’ spacetime.

However, the distinction between what we have called ‘formal fields’ (math-
ematical objects that depend on spacetime coordinates) and ‘physical fields’ (the
extended entities which formal fields purportedly represent) seems valid and
important. Auyang (1995, p. 47), in a similar spirit, notes that “‘[f]ield’ has at
least two senses in the physics literature. A field is a continuous dynamical system
or a system with infinite degrees of freedom. A field is also a dynamical variable
characterizing such a system or an aspect of the system.” (my emphasis—FB) The
field as an operator which creates quantum states of fixed position or momentum,
i.e. the “machine” or that which we have referred to as a ‘formal field’, is a field in
Auyang’s latter sense; the “unseen entity”, i.e. that which we have referred to as a
‘physical field’ and identified as the possible referent of the formal field, is a field in
Auyang’s former sense.

As we suggested above, in QFT the relation between formal and physical field
becomes especially delicate. The formal fields of classical electromagnetism, say,
are (in the first place) scalar and vector fields. The physical content of formal
vector fields can be represented by imagining little arrows assigned to space-time
points which then indicate, at any such point, the strength and direction of the
physical field hence represented. Strength and direction can be accessed empirically
by putting test-objects that couple to the field into the region in which it persists;
anyone familiar with magnets should have an idea of this procedure. The ontology
of a vector field is hence that of a continuous extended entity with a sense of
directionality. Quantum fields, as we have seen, are operator valued. They seem
to defy such a direct interpretation.

82The metaphor “machine” for mathematical objects which take something in and give back an
output can be traced back to John Wheeler’s use of the word for operators in QM (cf. Susskind and
Friedman 2014, pp. 52–53).
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“But”, the reader well-educated in GR may object, “what about tensor fields?
They are mathematically more complex than vectors!” This is certainly correct,
but it is rather beside the point. The tensor fields that really do occur in GR or
even in classical electromagnetism typically have (some subtleties aside) a rather
straightforward intended interpretation: Maxwell’s stress tensor or the field-strength
tensor in classical electrodynamics appear as mere conveniences for rewriting
equations in a compact form (e.g. Jackson 1990, pp. 261 and 556), and tensorial
quantities in GR typically have straightforward geometrical interpretations, such
as the Riemann curvature tensor Rρσμν , describing the curvature of a manifold
(e.g. Carroll 2004, p. 94), or the quantity hαβ(x) in the linear approximation
gαβ(x) = ηαβ + hαβ(x) of the metric (tensor), describing local disturbances of the
‘flat’ Minkowski metric, ηαβ (i.e. “metric perturbations” or “gravitiational waves”;
cf. Hartle 2003, p. 332).

For operator-valued fields in QFT, the situation is arguably different. Physicist
often times help themselves to a pragmatically healthy but all too simplistic attitude.
Steven Weinberg (1997, p. 2), for instance, puts things in a way that certainly
captures the intuitions of many (if not most) physicists: “the idea of quantum
field theory is that quantum fields are the basic ingredients of the universe, and
particles are just bundles of energy and momentum of the fields.” And similarly
Carroll (2004, p. 40): “Upon quantization, excitations of the field are observable as
particles.”

Rather in contrast to this, Teller (1995) has suggested to make sense of quantum
fields in terms of determinables, i.e. collections of properties, “such that anything
that can have one of the properties in the collection must have exactly one of the
properties.” (Teller 1995, p. 95) This notion can be applied to classical fields; a mass
density, say, is a continuous determinable that associates a mass to every spacetime
point. But the quantum field operators are not of this kind; they do not assign values
to spacetime points, they assign operators. Hence Teller suggests to liken them to
field determinables instead, which he defines as determinables “the values of which
are the full field configurations.” (1995, p. 99) Put frankly, Teller (ibid.) thinks that:

At any given space-time point, the associated operator corresponds not to the value of some
physical quantity but to the full spectrum of values of some quantity, which value being
applicable being determined by the state that happens to obtain.

Field operators (representing formal quantum fields) assign, according to Teller,
whole collections of values to spacetime points, and are thus at every space-
time point more like full determinables, instead of representing determinate field
configurations over spacetime as a whole or the amplitude of something at any
spacetime point. Since formal quantum fields are operators, this is prima facie quite
reasonable, given what we have established about ordinary QM and the operators
occurring therein so far.

But Teller’s view of quantum fields has been met with quite some criticism,
for instance by Fleming (2002) or Wayne (2002), and on various grounds. While
Fleming (roughly) criticizes the revisionary character of Teller’s writings and the
underappreciation of certain other interpretative possibilities, Wayne (2002, p. 130),
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in contrast, positively suggests to identify “[a]n actual state of a physical system
containing a quantum field” with a “specific state vector/operator combination.”
(emphasis in original) “The determinate state of a quantum field”, Wayne believes,
“is given by the association of a set of quantum field operators with a specific
quantum state vector”, and “this relationship between operators and state vector
[. . . ] fully specifies physically measurable quantities in a quantum system.” (ibid.)
Hence the very notion of a ‘quantum field’ is here straightforwardly construed in
a physical manner, and to that end separated somewhat from the formal fields or
field operators. Wayne’s interpretation rests on the fact (cf. Wightman 1956) that
a set83 of vacuum expectation values uniquely determines a given field operator
̂(x, t), whence he believes that vacuum expectation values “for field operators and
products of field operators in models of heuristic QFT correspond to field values in
physical systems containing quantum fields.” (ibid.)

However, ultimately Wayne comes up with the (complete) set of vaccuum expec-
tation values “corresponding to a Lorentzian immaterial ether, rich in structure,
which contributes to the production and explanation of QFT phenomena” (p. 131),
and this is certainly quite a stretch from the conception of classical fields as
well. It involves, as Wayne (2002, p. 130) himself notes, “widening the concepts
of field value and field configuration.” We can see that ontologically meaningful
interpretations of the term ‘quantum field’ come with radical differences and are
rather ‘metaphysically thick’.

Wallace (2012, p. 320) has indeed argued that talk of the operator-valued fields
in QFT as representatives of actual fields is misleading:

Quantum field theory uses operator-valued fields for exactly the same purpose that ordinary
quantum mechanics uses position, momentum, and spin operators: the Hamiltonian of the
theory is defined in terms of them, and the structural properties of the system are given by
the expectation values of those operators with respect to the quantum state. And in quantum
field theory, just as in quantum mechanics, we can formally speaking transfer the dynamics
from states to operators, shifting to the Heisenberg picture.

Moreover, Wallace (2006, p. 39) also—critically—remarks that according to
many interpreters of QFT, the (field-)“operators represent physical operations which
can be performed, by the observer, on the QFT state [. . . ].” Similarly Streater
(1988, p. 144) recalls: “When I was a PhD student I asked my supervisor what the
quantized field φ(x, t), is. He said: ‘It is the operator in Hilbert space assigned by the
physicist to the classical nuclear field at x at time t according to the correspondence
principle.’” And finally Cao (1997, p. 176) thinks that

the localized excitation described by a local field operator O(x) acting on the vacuum
means the injection of energy, momentum, and other special properties into the vacuum
at a spacetime point. [. . . ] As a result, the field operators no longer refer to the physical
particles and become abstract dynamical variables, with the aid of which one constructs the
physical state. (my emphasis—FB)

83Why a set? The reason is ultimately to be found in the non-local correlations between field values
at different points (cf. Wayne 2002, p. 130; Fleming 2002, p. 141).
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On these views, the concept of a quantum field obtains a decidedly anthropocen-
tric spin, and the general question arises whether QFT really indicates any serious
departure from the basic themes of ordinary QM. We can see that interpretations
of quantum fields or field operators are truly diverse and that there seems to be
little agreement (aside from use). We will certainly not be able to settle the matter
here. What we note is that it is not unambiguously clear that QFT is concerned
with ‘physical fields’ (extended entities) in the same sense as is (say) classical
electrodynamics. The belief that this is so may rest on a similar confusion as does
the belief that wavefunctions in QM describe waves.

Recall, however, that we had also seen the notion of a particle in need of
revision already in the light of ordinary QM. In relativistic QFT (and relativistic
QM, as provided by the DE, for that matter) this need is furthered by such results
as Malament’s (1996) theorem or that of Halvorson and Clifton (2002a), both of
which roughly state that in any relativistic quantum theory, localizability becomes
particularly iffy.84

So QFT introduces a new worry about the proper interpretation of ‘fields’ in
quantum mechanical terms and reissues and deepens the problems associated with a
particle-notion. Does it, however, at least offer new perspectives on solving the OP
in terms of quantum fields or field configurations (whatever they be)?

Unfortunately, the answer here is ‘no’, since, as we saw, a direct interpretation of
the field operators in terms of physical fields is forestalled, and the quantum states
to which the operators are applied play a substantial role in the interpretation of the
theory. And, as Teller (1990, p. 606) puts it, “most of the states are superpositions,
the components of which correspond not only to particles in different states but
to different numbers of particles.” Thus, since measurements in particle physics
usually reveal rather definite particle numbers (or the impression thereof), there
occurs the need for a “transition from a superposition to one of the components
of the superposition” (Teller 1990, p. 607), and the OP remains. Virtually the same
judgment is made by Barrett (2002, pp. 168–169), who writes that

relativistic quantum field theory provides no account whatsoever for how determinate
measurement records might be generated. The problem here is analogous to the problem
that arises in nonrelativistic quantum mechanics. If the possible determinate measurement
records are supposed to be represented by the elements of some set of orthogonal field
configurations, then there typically are no determinate measurement records since (given
the relativistic unitary dynamics) the state of the field in a given space-time region will
typically be an entangled superposition of different elements of the orthogonal set of field
configurations.

84Halvorson and Clifton (2002a, p. 207; emphasis in original) conclude the discussion of their
results with the remark that relativistic QFT “does permit talk about particles—albeit, if we
understand this talk as really being about the properties of, and interactions among, quantized
fields.” But they concede that QFT only gains a capability of “explaining the appearance of
macroscopically well-localized objects” in virtue of talk about the interactions of ‘quantized fields’
“modulo the standard quantum measurement problem[. . . ]” (ibid.; my emphasis—FB), whose
persistence in QFT is, of course, intimately connected to the mathematical representation of

‘quantum fields’ as operators. Our phenomenological p̃article concept is untouched by all this,
as will be explained in more detail later.
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To sum up: QFT possibly introduces further interpretational issues, complicates
old ones, and the central interpretational issue (the OP) is retained from ordinary
QM.

2.2.3 A Note on the Vacuum State

One of the further intrepretational issues that QFT raises, and that we had already
hinted at above, is the meaning of the vacuum state. For later reference, we should
spend at least a few thoughts on this concept. First we note that, in analogy to the
zero point energy of the harmonic oscillator, one in principle also always has non-
vanishing energies present in vacuum sates of QFT, and their occurrence ultimately
leads to remarkable consequences. In principle, the vacuum energy here becomes
infinite. Requiring normalization in a finite volume, the KGE-Hamiltonian can be
rewritten as Ĥ = ∑

p(â
†
pâp + 1

2 )h̄ωp (cf. Peskin and Schroeder 1995, p. 19 ff.;
Teller 1995, p. 69 ff.), which looks exactly like the sum over Hamiltonians for a
bunch of (uncoupled) harmonic oscillators of different momentum p. But the sum∑

p ranges unrestrictedly over all values of p, so that the adding up of the 1
2 · h̄ωp

diverges. According to Teller (1995, p. 72), “[a]ll standard presentations treat the
zero-point energy with the remark that only energy differences are significant, so
that a constant can always be discarded.” A concise way to effect this ‘discarding’
is by appeal to a so called normal ordering of creation and annihilation operators.
Normal ordering simply means that in a given product of operators, one puts all the
annihilation operators to the right. The term 1

2 · h̄ωp now vanishes because in the
last intermediate step of bringing the KGE Hamiltonian into the form above, the

expression for each given p reads h̄ωp

2

(
â

†
pâp + âpâ

†
p

)
85 so that a normal ordering

gives h̄ωpâ
†
pâp, and the diverging term disappears.

This normal ordering has the nice consequence that expectation values of the
form 〈0|â†

pâpâp′ â†
p′ |0〉 are reordered into 〈0|â†

pâ
†
p′ âpâp′ |0〉, so that the average

number of particles in the vacuum is (obviously) zero. Normal ordering certainly
seems very much like an ad hoc move, but it need not be viewed so: Teller (1995,
p. 131) reminds us that “it applies in the process of initially choosing the form
of a specific theory or model. Once the choice is made, one calculates with the
theory, living with whatever operator ordering arises.” With the zero-point energies
discarded and vanishing vacuum expectation values, we could be lead to think that
the vacuum state is just a vacuum in the intuitive sense of the word, a ‘mere nothing’,
an emptiness, or just the absence of anything at all (in an ontologically slim and
deflationary sense of these words). After all, it appears as a state with no particles
in the Fock space formalism.

85Since âp â
†
p = [âp, â

†
p] + â†

p âp = δpp + â†
p âp , this immediately gives the desired expression.
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But since normal ordering is used only in the initial stages of theory formation,
there are operators which will not have zero expectation value86; the value of
the square ̂2 of some field operator ̂ does not vanish in case the value
of p is definite (cf. Teller 1995, p. 108 ff.). Take, for instance, the quantized
version of the electric field in a volume V , which may be written as Ê(x, t) =
i
∑

p,π

√
h̄ωp

ε0V

(
âp,π (t)e

i
h̄
px − â

†
p,π (t)e

− i
h̄
px

)
np,π , where π is an index for dif-

ferent polarizations, np,π a normalized vector for each component, and the time
dependence is absorbed into the operators (cf. Milonni 1994, p. 45; Vedral 2005,

p. 138). Then in Ê
2
, occurring in the energy density of the electromagnetic field,

we have terms proportional to âp,π (t)â
†
p′,π ′(t) which do not vanish when 〈0|Ê2|0〉

is evaluated. For many practicing physicists this certainly represents nothing worth
worrying about, and it might (again, pragmatically healthily) be thought of in terms
of “statistical fluctuations of the electric and magnetic fields.” (Milonni 1994, p.
42) But above we have given reason to worry about the meaning of ‘electric and
magnetic fields’, appearing as operators in QFT, whence this characterization does
not really help.

Kuhlmann (2010, p. 81) has noted that “[s]ince expectation values come about
by averaging over all possible measurement outcomes according to their respective
probabilities, non-vanishing [. . . ] expectation values seem to indicate that there is
something happening in the vacuum without there being anything to which this
activity could be predicated.” But what is the appropriate interpretation of the non-
vanishing expectation values or the vacuum itself, of which this activity seems to
be predicated? Teller and Kuhlmann, e.g., both give very different analyses. Again,
this seems like a matter that we cannot possibly settle here, as was the case with the
physical meaning of ‘field’ in QFT. So let us make a few meta-theoretic remarks
about the vacuum state instead.

What we should first ask is: are these remarkable consequences of the vacuum
state even empirically accessible? In many cases the answer is ‘yes’. A prominent
example is the Casimir effect, according to which two closely spaced uncharged
but conducting metal plates in a vacuum will exert an attractive force on each
other.87 The Casimir effect exploits exactly the existence of a zero point energy
between the two plates, which comes about by the periodic boundary conditions
that the plates impose (they count as a ‘box’). The gradient of this energy is an
attractive force, and it has been tested and confirmed experimentally (more recently
e.g. by Sushkov et al. 2011) that two such plates will indeed attract each other to
the predicted amount under appropriate conditions. Another example is the Lamb
shift in atomic spectra that was known experimentally long before the completion

86Teller (1995, p. 131), in particular, highlights that these non-vanishing vacuum expectation
values (or ‘vacuum fluctuations’) are a consequence of the theory with normal ordering in place.
87E.g. Lancaster and Blundell (2014, p. 111) for a toy calculation and Ballentine (2000, p. 533 ff.)
for a more detailed treatment.
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of quantum electrodynamics (QED), and unexplained until the acknowledgement of
non-vanishing expectation values in the quantum vacuum (cf. Milonni 1994, p. 82
ff.).

Even more astonishing predictions arise from explicitly relativistic considera-
tions. The aforementioned Unruh effect, according to which an accelerated observer
in Minkowskian spacetime will be able to detect a thermal bath of particles instead
of the vacuum, whose energy is proportional to the magnitude of acceleration
(e.g. Kuhlmann 2010, p. 111), is just such an example. The Unruh effect is
relativistic in that it draws on the fact that solutions to the KGE are not form
invariant under a switch to coordinates parametrizing the rest frame of a uniformly
accelerated observer outside one’s own light cone. In a 2D Minkoski spacetime,
this observer will have a spacetime-trajectory that looks like a hyperbola (placed
under the left or right exterior of the light cone) and can be parametrized by
setting x = ξ cosh(η), t = ξ sinh(η) (with ξ and η so called Rindler coordi-
nates). The Klein-Gordon field that solves the KGE based on these coordinates
then includes creation and annihilation operators â†

h̄ωp
, âh̄ωp with an expectation

value 〈0M|â†
h̄ωp

âh̄ωp
|0M〉 = 1/(e

2πcωp
a − 1), which corresponds to an average

number of Bose-Einstein particles at temperature T = h̄a
2πckB

, where |0M〉 is the
Minkwoski-vacuum (for the unaccelerated observer), a the proper acceleration, and
kB Boltzmann’s constant (cf. Crispino et al. 2008, for details). As we mentioned
above, this incidentally demonstrates the unitary inequivalence of the Fock spaces
for these two observers, reflected in the fact that the accelerated observer will now
have a different vacuum |0R〉 �= |0M〉,88 i.e., a different state of lowest energy.

The vacuum in QFT (relativistic or not) appears as a radically new concept whose
interpretation requires much philosophical caution. More precisely, we should think
of it is a theoretical concept, meaning that what a ‘vaccum state’ is “cannot be fully
specified by a single definition, but only by the joint effect of the core axioms of a
theory.” (Schurz and Gebharter 2016, p. 1075; emphasis in original)

To make a case, consider the following. In their discussion of theoretical
concepts, Schurz and Gebharter (2016) use the concept of force in Newtonian
physics as a primary example, which is defined, according to them, only by the
joint axioms of Newtonian mechanics. Each vacuum state is equally only defined
by its role as the state of lowest eigenvalue for a given energy operator of some
particular quantized field theory, and hence by the joint assumptions of the theory
instead of one single theory-independent definition. This should be compared also
to individual forces being defined in terms of particular differential equations and
initial conditions for given physical problems. This dependence of the vacuum state
on a given field theory goes so far as to lead to two physically inequivalent vacua,
in the case of the Unruh effect, for two observers who are non-inertially related to
one another. This, in turn, may be compared to the ‘ficticious forces’ in Newtonian

88R for ‘Rindler’, since the spacetime region in which the accelerated trajectory is located for the
stationary observer is also called a Rindler wegde (cf. Crispino et al. 2008, p. 792 ff.).
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mechanics, which equally result from coordinate transformations between relatively
non-inertial frames. Hence the situation of the quantum vacuum is quite comparable
to that of Newtonian force, and no general, all-applying definition can be given. This
should give some credibility for considering ‘vacuum state’ as a theoretical term of
QFT in the aforementioned sense.

2.2.4 From Renormalization to the Algebraic Approach
(and Back)

We have left untouched, in the previous section, interactions as they occur in the
QFT-formalism. But of course interactions play a crucial role e.g. in particle physics,
one of QFT’s most important applications. A simple example of an interacting QFT
is the so called φ̂4-theory, described by a Lagrangian density (which occurs e.g. in
the description of the Higgs mechanism; cf. Peskin and Schroeder 1995, p. 77)

L̂ = 1

2

[ ˙̂
φ2 − (∇φ̂)2 −m2φ̂2

]
− λ

4! φ̂
4, (2.58)

where (for convenience) we let h̄ = c = 1, λ is a dimensionless coupling constant,
and the scaling factor 1

4! may also be thought of as a ‘mere convenience’. Now from
a so called variational principle, that the action S = ∫

d4x L be stationary, i.e. that
δS = 0 (S is a functional of L ), one can derive89 the so called Euler-Lagrange
equation,

∂L

∂φ
−

(
∂

∂t

∂L

∂φ̇
+

∑
x

∂

∂x

∂L

∂(∂φ/∂x)

)
= 0

⇔∂L

∂φ
− ∂μ

(
∂L

∂(∂μφ)

)
= 0, (2.59)

which equally applies to classical fields (whence we have omitted the hats), and
where in the last line we have appealed to the notation introduced at the end of
Sect. 2.2.1 (sum convention and covariant derivative). It provides the equation of
motion for the field φ, and applied to our above interacting Lagrangian density, it
yields

−m2φ̂ − λ

3! φ̂
3 +�φ̂ − ∂2

∂t2
φ̂ = 0

89Cf. Peskin and Schroeder (1995, pp. 15–16) for details; for a non-rigorous but intuitive treatment
in the context of non-field mechanics cf. also Susskind and Hrabovsky (2013, p. 111 ff.).
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⇔
(
∂2

∂t2
−�+m2 + λ

3! φ̂
2
)
φ̂ = 0. (2.60)

When one reinserts h̄ and c in appropriate places, this is just the KGE with an
additional term λ

3! φ̂
2 that may be interpreted as describing the ‘self-interaction’

of φ̂ (cf. Lancaster and Blundell 2014, p. 67; Peskin and Schroeder 1995, p. 77).
Such equations, however, are not strictly solvable, and in principle one could also
construct all kinds of interactions with powers higher than four in the field φ̂. But it
is typically stipulated, as a “simple and reasonable axiom” (Peskin and Schroeder
1995, p. 79), that such interacting theories be at least “renormalizable” (ibid.;
emphasis in original), which rules out a lot of possible interaction terms.

Now what exactly does that mean? That is kind of a ‘long story’, but here are
some highlights. First of all, recall that we related the Hamiltonian to the Lagrangian
in Sect. 2.2.1 via the legendre transformation H = ∑

j pj q̇j − L. This treatment

generalizes to the densities as H = πφ̇ − L , where π = ∂L
∂φ̇

is the momentum

density. Our (quantum) Hamiltonian density will thus be

Ĥ =
[ ˙̂
φ2 + (∇φ̂)2 +m2φ̂2

]
+ λ

4! φ̂
4. (2.61)

The interaction part of this density is clearly λ
4! φ̂

4, so an interaction Hamiltonian

will be defined as Ĥint =
∫

d3x λ
4! φ̂

4. When integrated over space, the rest of our

density will similarly define the free Hamiltonian, which we may call Ĥ0.
One of the most important applications of QFT certainly are scattering scenarios,

in which one typically models the initial and final states, |i〉 , |f 〉 to be asymptoti-
cally free, i.e. to be eigenstates of the free Hamiltonian Ĥ0 at t →±∞ respectively
(e.g. Binney and Skinner 2014, p. 328 ff.; Lancaster and Blundell 2014, pp. 166–
194). Now to say something about the time evolution in these scattering interactions,
first note that both Ĥint and Ĥ0 will typically be time dependent, which, as we
briefly mentioned at the end of Sect. 2.1.1, will imply the need for time ordering
and integration when one uses them to define a time evolution operator. Thus let

ÛI (t1; t2) = T exp

(
−i

∫ t2

t1

dt Ĥint(t)

)
, (2.62)

where we still set h̄ = 1, and T is the time ordering symbol which orders the terms
in the exponential from right to left according to increasing time (this will become
clear a little below). If one now uses the limits t1/2 →±∞ respectively, one obtians
the so called S-operator

Ŝ = T exp

(
−i

∫
d4x Ĥint(x)

)
= T exp

(
− iλ

4!
∫

d4x φ̂4(x)

)
, (2.63)
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where we have appealed to the spacetime-coordinate notation x = (x0, x1, x2, x3)T ,
x0 being a timelike coordinate, and integration is understood over all of spacetime.

By appeal to the asymptotically free states, one can use the matrix element
〈f |Ŝ|i〉 to evaluate the effect of the interaction on |i〉, or rather | 〈f |Ŝ|i〉 |2 as a
probability that a free state |f 〉 evolves out of an initially free state |i〉 after the
intermediate interaction described by Ŝ. More precisely, if there is no interaction,
i.e. Ĥint = 0, we have Ŝ = 1. This motivates the introduction of the transition
operator iT̂ = Ŝ−1 (where the i is basically ‘for convenience’) that evaluates how
much the evolution described by Ŝ deviates from the identity (i.e. ‘how much really
happens’). Equivalently, we thus have Ŝ = 1+ iT̂ , so that the quantity of interest is
rather 〈f |T̂ |i〉 =:Mf i , the transition matrix element.

This matrix element figures, in particular, in empirically meaningful quantities
such as (differential) scattering cross sections: In scattering events, i.e. the imagined

‘bouncing off’ of imagined little ‘particles’ (our ˜particles) of each other, the
magnitude dσ

d� will describe the ratio between the number of events per unit time in a
‘solid angle’ d� (the detection surface, construed as a fraction of a sphere’s surface)
and the number of projectiles per unit time and scattering centers per unit area (e.g.
Povh et al. 2006, p. 46). Since this scattering cross section thus basically provides
a rate of measured particles as a consequence of the scattering, it is unsurprising
that a QM-informed treatment will include the transition probability |Mf i |2, i.e.
the probability that an initially (asymptotically) free particle will in fact transition
into the (asymptotically free) state that has it travel into the detector (e.g. Povh et al.
2006, p. 48 ff.).

However, recall that an exponential of operators is fully defined by its series
expansion. So Ŝ will be of the form90

Ŝ = T

[
1− iλ

4!
∫

d4x φ̂4(x)− λ2

2!(4!)2
∫

d4y

∫
d4z φ̂4(y)φ̂4(z)+ . . .

]
,

(2.64)
which is called a Dyson expansion (cf. Lancaster and Blundell 2014, p. 170), and
Mf i = 〈f |T̂ |i〉 becomes

〈f |T
[
− λ

4!
∫

d4x φ̂4(x)+ iλ2

2!(4!)2
∫

d4y

∫
d4z φ̂4(y)φ̂4(z)+ . . .

]
|i〉 .

(2.65)
The effect of the time ordering symbol on two spacetime-dependent operators
Ô(x), Ô(y) can here be written as TÔ(x)Ô(y) = �(x0 − y0)Ô(x)Ô(y) +

90We here emphasize again that the integrals are definite and x, y, z represent four-vectors, not
Cartesian coordinates. The square of an integral means multiplying the integral by itself; but the
integration variables can always be renamed individually (in each integral), whence in the square
one will meet with an integration over two sets of variables. You can also think of it like this: A
simple integral computes the area under a curve, so multiplying two integrals means computing a
volume under two curves along different dimensions.
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�(y0 − x0)Ô(y)Ô(x), with x0, y0 the timelike coordinate of the four-vectors x, y
respectively, and �(z) the Heaviside-theta distribution that gives zero unless z ≥ 0
and 1 otherwise (cf. Schwabl 2007, p. 295; Lancaster and Blundell 2014, p. 156).

Using further methods such as propagators and contractions (e.g. Lancaster and
Blundell 2014, pp. 154 ff. 171 ff.), one can rephrase the integral terms in (2.65) as
‘tidier’ momentum integrals. However, these terms are typically divergent, tidied up
or not, and the formula therefore yields no physically meaningful expression. The
first general strategy to handle these infinities is to introduce an arbitrary momentum
cut-off, i.e.,“some large but finite momentum �” which then constitutes the upper
limit of the integration (the lower limit will be zero in the momentum integrals),
where “[a]t the end of the calculation one takes the limit � → ∞, and hopes that
physical quantities turn out to be independent of �.” (Peskin and Schroeder 1995,
p. 80) Theories that can be handled in this way are the ones called renormalizable
(cf. ibid.).

For φ̂4-theories of the sort considered above and other interacting QFTs such as
QED (e.g. Peskin and Schroeder 1995, p. 330 ff.), this can be done by introducing
additional counterterms into the Lagrangian, which then eliminate divergences to
some order when � → ∞, and can be understood in terms of corrections to the
coupling constants (cf. Lancaster and Blundell 2014, pp. 289–291). Renormalizable
theories may then be identified, more precisely, as “those in which a finite number
of counterterms cancel all divergences.” (Lancaster and Blundell 2014, p. 293)
Renormalization methods by the introduction of cut-offs were ‘revolutionized’ with
the occurrence of the so called renormalization group theory,91 whose basic idea is
that “rather than hiding the cut-off, we live with it.” (Lancaster and Blundell 2014,
p. 303) More precisely, this has the effect that “the parameters of a renormalizable
field theory can usefully be thought of as scale-dependent entities.” (Peskin and
Schroeder 1995, p. 393; my emphasis—FB) In turn, this means that one eliminates
the � → ∞ limits for the cutoffs and rather investigates how the behavior of the
corrected coupling constants changes as a function of �, i.e. when one changes
the scale of interest.92 A given renormalizable QFT may now, for a given cut-off
�, be described be described by a set of N coupling ‘constants’ gi(�) so that
(g1(�), . . . , gN(�)) constitutes a ‘point’ in a high-dimensional ‘parameter space’,
and the renormalization (semi-)group then describes the transformation of that point
under changes � �→ �/b, b ∈ R (cf. Lancaster and Blundell 2014, p. 304).

However, it seems quite ‘weird’ to base the soundness of a theory on ‘variations
of constants’ according to a scale of interest, and the corrections to the coupling
constants that provide counterterms in the Lagrangian and eliminate the divergences

91Strictly speaking, this ‘renormalization group’ of scaling transformations is only a semigroup
because there is not an inverse to every transformation (cf. Kadanoff 2013, p. 167). One also
encounters talk of the ‘Wilsonian revolution’ (e.g Kadanoff 2013, p. 162), due to the importance
of Kenneth Wilsons’s contributions to the field (e.g. Wilson 1971a,b).
92� is a momentum, so h̄/� defines a length scale that becomes smaller as �. � → ∞ means
‘increasing the fineness of grain’ of the QFT.
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may be infinite, as is the case for the ‘bare’ couplings corrected (cf. Lancaster
and Blundell 2014, p. 291). This has tipped off e.g. Haag (1996, p. 55) to judge
that “the fields in an interacting theory are more singular objects than in the free
theory”, and he also notes that “we do not have the canonical commutation relations
[. . . ].” Why “more singular”? Because, mathematically speaking, even our free
(canonical) quantum fields φ̂ are “not really” operators on a Fock space F , but only
provide finite matrix elements 〈ψ1|φ̂|ψ2〉 for vectors |ψ1〉 , |ψ2〉 from a subspace
D ⊂ F that is dense in F and “characterized by the property that the probability
amplitudes for particle configurations decrease fast with increasing momenta and
increasing particle number.” (Haag 1996, p. 45) And there are further complaints
about renormalization in canonical QFT, such as its conflicts with the Euclidean
symmetries of interest in solid state physics (e.g. Wallace 2011, p. 116).93 In
spite of the overall practical success of renormalization and renormalization group
techniques, all of this leaves kind of a foul taste to the aforementioned methods and
considerations.

All in all these complaints hence reasonably motivate an alternative research
program, i.e. to go “back to basics, and look[. . . ] for an axiomatised, fully rigourous
quantum theory” (Wallace 2011, p. 116) wherein these difficulties do not occur.
Such an alternative research project is axiomatic-algebraic QFT (AQFT). So let us
briefly review some of its fundamentals, implications, and limitations.

AQFT, as we mentioned, proceeds from ‘axoims’ or postulates like those of
ordinary QM (cf. Sect. 2.1.4), which are here formulated, however, with an eye on
the possibility of a mathematically rigorous theory that preserves the insights from
renormalization theory and the other advances of heuristic QFT. One set of such
postulates are the so called Wightman axioms, discussed e.g. by Haag (1996, p. 56).
Among these is the requirement that field operators be replaced by operator valued
distributions

φ̂(f ) =
∑
j

∫
d4x φ̂j σ (x)f

jσ (x), (2.66)

where x is a spacetime point, j, σ are indices for different particle types and spin
components repsectively, and the f jσ are suitably ‘well behaved’ (C∞0 (R4); cf.
Appendix A) functions. In other words: the operators are being ‘smeared out’. It

93More precisely, it is a consequence of Haag’s theorem that if one holds that there be unique
vacuum states |�0〉 , |�λ〉 for free and interacting theories respectively, and if one requires
that these be invariant under unitaries such as Û (a) representing Eucildean symmetries such
as a translation by a, then given that one also allows initial and final scattering states to
be asymptotically free, an interacting theory such as the φ̂4-theory discussed above can be
demonstrated to be unitarily equivalent to the free theory, which one can take to mean that it is
no interacting theory after all, i.e. that (given the previous assumptions) there are no interacting
theories (cf. Haag 1996, p. 55; cf. also Ruetsche 2011, pp. 251–253 and Teller 1995, pp. 115–116
and 122–123 for further discussion).
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is then assumed that one can approximate any operator on a suitable Hilbert space
H in terms of linear combinations and products of such operators φ̂(f ) (cf. Haag
1996, pp. 57–58).

More precisely, an operator Ô(O), local to some (open, bounded; we will
generally omit the qualifier below) region O ⊂ M of the underlying spacetime
manifold M can then be defined (neglecting the j, σ -indices) by

Ô(O) :=
∑
n

∫ ∏
k

d4xk φ̂(x1) . . . φ̂(xn)f
n(x1, . . . , xn) (2.67)

in case all f n vanish for all points xj outside O. This generates a polynomial algebra
A(O) of such operators localized to O (cf. Haag 1996, p. 84; and cf. Appendix A,
Definition A.9 for the notion of an algebra). Since there will be multiple such
algebras, one can speak of a net of algebras (cf. Haag 1996, p. 105).

Now these polynomial algebras A(O) come with certain restrictions and their
elements are unbounded operators, which induces further mathematical compli-
cations. This is why Haag (1996, p. 106) suggests to switch “without loss of
generality”, to local algebras A(O) of bounded operators, from which e.g. Ruetsche
(2011, p. 104) starts immediately in her exposition of AQFT.

In fact, bounded operators B(H) on a (separable) Hilbert space H that we know
already from ordinary QM are an instructive example. As noted in Appendix A, they
constitute a special kind of algebra, a unital *-algebra (cf. Definition A.10), where
1 is the unit element. The involution * on B(H) is, as may have been guessed, the
adjoint operation † (cf. Ruetsche 2011, p. 75). More precisely, B(H) with † is a
C∗-algebra, meaning that it is closed w.r.t. a norm (cf. Definition A.11). In the case

of B(H) the norm in question is ‖Â‖B := sup
ψ∈H

‖Âψ‖H‖ψ‖H , where ‖ · ‖H = √〈·|·〉 is

the Hilbert space norm (cf. Haag 1996, p. 112–118; Ruetsche 2011, p. 76).
The key idea of AQFT now is to start from a general local C∗-algebra A(O) and

then (‘axiomatically’) build a suitable quantum theory from it. These algebras (for
respective O) are typically referred to as algebras of local observables (e.g. Haag
1996, p. 105), and their elements are, in the generally anthropocentric sort of reading
of QFT, sometimes thought of “as representing physical operations performable
within O [. . . ].” (Haag 1996, ibid.) However, Ruetsche (2011, pp. 104–105) argues
that things need not be viewed so, and she outlines a way to associate a local algebra
with the (local) solution space of a corresponding classical theory, leaving “open the
questions of how or whether to further interpret the association [. . . ].” (ibid.)

Considering abstract local algebras of observables is certainly somewhat of a
liberation from the Hilbert space formalism in ordinary QM. But Hilbert spaces
of state vectors can still be fit into this picture. The key ‘bridging principle’
between an abstract C∗-algebra and a Hilbert space H and its elements |ψ〉 is
the Gelfand-Naimark-Segal-construction (GNS-construction; cf. Haag 1996, p. 122
ff.). For completeness’ sake, we will give a pointed review of this construction in
Appendix C, based on the expositions in Haag (1996) and Ruetsche (2011, pp. 73
ff. and 104 ff.).



2.2 A Glimpse at QFT 101

So from purely algebraic considerations one can recover the (essential) formal
methods introduced before (Hilbert spaces and state vectors). The ‘deeper’ connec-
tion to canonical QFT is, however, provided exactly by the axioms or postulates of
AQFT, which are supposed to capture the underlying intuitions while avoiding the
aforementioned difficulties. Ruetsche (2011, p. 105 ff.) discusses one set of such
postulates, and to make the connection, we will briefly sketch at least the central
implications of these.

Among the postulates are multiple causality postulates such as a generalization
of the microcausality condition (2.41), namely that for two spacelike separated
regions O,O′, all elements of the respective algebras A(O),A(O′) commute; or
the primitive causality requirement that if some region O is a subset the domain of
dependence D(O′) = D−(O′) ∪ D+(O′) (cf. Footnote 81) of another region O′,
i.e. O ⊂ D(O′), then the algebras will also satisfy A(O) ⊂ A(O′). The upshot
of the latter is that in virtue of the causal constraints set up by the ‘speed limit’ c
(the speed of light), the measurable quantities in a region will be causally connected
only to measurable quantities in the areas that can be reached with speeds v ≤ c. Put
in an operationalistic parlance, the upshot of the former is (as it was above, in the
simple, heuristic version) that spacelike separated operations such as measurements
can have no direct bearing on one another (we will later see in more detail why this
is important).

There are also constraints on the ‘behavior’ of the local algebras under trans-
formations of the underlying spacetime M (or rather (M, g), g the metric tensor),
namely that isometries on M (transformations that do not change the metric) will
be reflected by automorphisms on the respective local algebras A(O) (bijective
maps from the algebra onto itself) on whose defining regions the isometries act.
These automorphisms will then provably be represented as suitable unitaires in
a representation (cf. Ruetsche 2011, pp. 105–106). Moreover, it is assumed that
there exists an irreducible faithful representation of the algebra A(M) over the
entire spacetime, and that there is a (Lorentz-invariant) vaccum state ω0 whose
representation is equally faithful, irreducible, and, basically and informally, will not
predict energy-momentum transfers backwards in time or outside the light-cone (cf.
Ruetsche 2011, pp. 107–108).

This is quite ‘nice and tidy’, and AQFT allows, in particular, to prove a range
of theorems (one of which we will encounter in Chap. 4) any QFT axiomatized
in this or a relevantly similar fashion must satisfy. Moreover, Wallace (2011, p.
119) informs us that “non-interacting quantum field theories [. . . ] can readily be
incorporated into the formal framework”, and that there is also an AQFT-based
“two-spacetime-dimensional scalar quantum field theory with an interaction term
(λφ4) which was exactly definable without cutoffs.”

But a sobering realization is that “[d]espite 40 years of work [. . . ] the only known
physically realistic algebraic quantum field theories in four dimensions are free-field
theories.” (Wallace 2011, ibid.; my emphasis—FB) In other words: some progress
can be made with nice and tidy AQFTs. But generally speaking, the successes
based on the ‘unpleasant’ introductions of cutoffs and startling scale-consideration
of canonical QFT cannot be reproduced by an AQFT to date.
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AQFT, although sometimes favored by philosophers for its mathematical clarity
(e.g. Ruetsche 2011; Friederich 2015; Halvorson 2007), should be viewed rather as
a field of active research that so far cannot help to remove or clarify the confusing
additional worries introduced by QFT, let alone the OP. So we still have the OP and
the complaints about notions such as ‘quantum field’, ‘vacuum state’, and suspect
procedures such as introducing infinities that cancel out, or cut-offs to live with. To
repeat the point: QFT in general at best seems to make the pressing interpretational
issues of QM worse—AQFT does not really help this point.

2.3 Outlook: Demands for an Interpretation

We have outlined how the OP persists in QFT, the most up-to-date version of QM,
and how the reference to fields introduces further problems at QM’s foundations.
Moreover, we had explained at the end of Sect. 2.1.4 how the limits of the
applicability of QM have been pushed back into the ‘macroscopic realm’ ever
further, such as to give rise to at least ‘mesoscopic’ superpositions. Mesoscopic
superpositions bear a certain importance in that they make the OP especially
pressing. If it is possible to gather evidence for superpositions occuring in such
comparatively large systems, why do they not also appear in everyday life objects
(such as the cat in Schrödinger’s thought experiment or the friend in Wigner’s)?
Why are we not well-acquainted with them? What, if anything, triggers the collapse
of the quantum state? How does it take place? And what do superposition states
actually represent? Should we literally think of them as ‘both options occurring at
the same time’, in some sense to be specified? And how do we consistently make
sense of that?

We here need to finally face the task of sketching possible options, possible
directions in which to proceed, in order to find a suitable interpretation of QM,
one that (re)solves as many of the conceptual problems raised by the theory as
possible. We have highlighted the OP as the central problem of QM. Arguably, it
is ultimately the problem of the unfamiliarity with ‘quantum superposition’ in the
domain of everyday life experience and QM’s implication of there potentially being
such a thing, if we do not artificially restrict it to the ‘microcosm’ or to ‘exotic
domains’. Thus for the task of interpreting QM, we may formulate the following
minimal criterion:

Minimal Adequacy Criterion (MAC) Any interpretation of QM must
either solve or avoid the OP without contradicting experimental evidence.

Above, we had discussed kinematical and dynamical aspects of the OP. On the
one hand, the difficulty is to understand what quantum superposition actually is,
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and how it relates to experience. Thus we need to figure out what exactly the
(ontological) status of quantum states or wave functions is. But a word of caution
from a philosopher is due at this point, as to what is meant when we talk about ‘the
status of the wave function’:

The topic we are trying to address is, more often than not, referred to as ‘the ontological
status of the wave function.’ But one obvious thing about the wave function is that it is a
function, that is, a mathematical object. [. . . ] In this sense, the question of the ontological
status of the wave function is trivial: it is a piece of mathematics. [. . . ] Of course, that is
not at all the question we have in mind. Rather, the question is what, if anything, does
this particular piece of mathematics represent, what physical entity (if any) corresponds to
it, and how is that correspondence to be understood? (Maudlin 2013, p. 129; emphasis in
original)

There is indeed a certain problem of confusion of semantic levels in the
interpretational debate on QM, as indicated in Maudlin’s quote, which is not as
trivial as may seem. Often suggestions to the solution of interpretational problems
are made that only refer to the mathematics and hardly have an immediate bearing
on the conceptual issues (we shall see this e.g. in the discussion of collapse models
later, and the need to supply them with an ontology). This is due, at least in part, to
a lack of clarity about what is being asked.

The ontological status of mathematical entities is itself certainly an exciting and
controversial topic, but it is not the kind of question we are concerned with here. We
are assuming that the wave function is used to represent something, or at least has
a unique, identifiable role in scientific conduct that gives a specific meaning to it.
Otherwise QM would be an empty play of symbols and experimental applications
would be impossible. But what does it represent? How ‘seriously’ do we have to take
the wave function? Does it represent the actual physical situation of something? And
if so, how? Or does it merely represent something about the experimenter, maybe
his knowledge of the actual situation? Or about the experimental setup. . . ? And so
forth. In short: we are searching for the referents and application conditions of QM
wave functions or state vectors.

On the other hand, depending on our interpretation of quantum states, we have to
tell a story about the dynamics. We saw above that the unitary dynamics at any rate
amplifies the OP, if the measurement process is described in QM terms. Thus one
should also tell a story as to how we come to experience definite outcomes—as does
the orthodox interpretation, in a somewhat incomprehensive fashion, by introducing
the projection postulate. The task of fulfilling the MAC thus is twofold:

(i) Explain what the state vector refers to, thereby elucidating the meaning of the
kinematical superposition principle and all associated issues (kinematical task).

(ii) Provide a suitable modification of the unitary dynamics if indicated by (i), and
if not, explain why not (dynamical task).

To the ‘associated issues’ of superposition we here count quantum interference,
entanglement, and the peculiar probabilistic structure, because all of these are ulti-
mately related to quantum superposition: Probability evaluations may presuppose
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specific superpositions of quantum states that give rise to interference terms. And
(pure) entangled states are of the form of superimposed product states.

How can an interpretation accomplish fulfilling the two tasks of the MAC?
To accomplish the kinematical task, there seem to be two major options: one
can either provide an ontology of the wave function that is compatible with
scientific evidence and everyday life experience, or one can explain why the wave
function should not constitute part of the ontology of the physical world at all,
and then give an alternative account of what it represents or how it relates to
scientific practice instead.94 The former class of interpretations we will refer to as
ontological interpretations of QM, the latter class as non-ontological ones (suitable
specifications will follow when indicated).

As for the dynamical task, we will call interpretations that modify the dynamics
so as to lead from the unitarily evolving quantum state to definite outcomes
collapse interpretations, in analogy to the wave-collapse suggestions appealed to
in the discussion of Conjecture 0, and thereby following standard terminology. The
remainder will be called non-collapse interpretations. Note that collapse and non-
collapse interpretations may exist in both domains, ontological and non-ontological
interpretations, as will become evident subsequently.

To devise a third coarse classificatory dimension, we note that some
interpretations suggest stronger modifications, whereas some rather avoid these.
We will call the former ones revisionary, the latter ones conservative. But the
(non-)conservativeness may appeal either to the conceptual side of the
theory or to its formal side, so that we will distinguish between formally
conservative/revisionary and conceptually conservative/revisionary interpretations.
Our standard of evaluation for conceptual conservativeness will be the orthodox
interpretation. But note that we will have to allow for some variation, on conceptual
and formal grounds, since otherwise nothing but the orthodox interpretation could
fit into the ‘conservative’ category.

To take hold of these aspects, we will use a three dimensional classificatory
scheme (cf. Fig. 2.10) to sort out where each of the interpretations discussed
in the following fits. To take hold of the formal/conceptual distinction, each of
the ‘revisionary’-cells is subdivided. Interpretations or interpretational schemes
that propose both, significant conceptual and formal revisions, will be placed on
the boundary. With this scheme in hand, we can proceed to discuss constructive
proposals to solve or avoid the OP (with its long rat tail of issues associated with
quantum superposition), and hence to interpret QM.

94Talk of a ‘physical world’ may suggest that there is a ‘non-physical world’ as well, maybe a
‘mental’ one. But we do not intend to take sides on this issue here at all. Purely on the level of
scientific description, it is not the case that physical and mental phenomena do coincide. That is, to
date there is no fully physical theory of the mind, and if ‘the hard problem’ (Chalmers 1996, p. xii)
of why there even is an experienced inner life accompanying neurophysical processes is indeed as
hard as it seems, it is not clear that there ever will be. But again, we are here only suggesting a
prima facie non-identity of physical and mental (or social, or economical, or. . . ) phenomena, not
serious mind-body dualism.
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Fig. 2.10 3D scheme for classifying interpretations of QM

However, classifying and fulfilling minimal criteria is only half the battle. Given
that we are trying to escape the minimality of the Dirac-von Neumann orthodoxy
and are striving for at least a non-minimal interpretation, we formulate the following
desideratum for an interpretation:

Desideratum of Ontological Clarity (DOC) Any non-minimal interpreta-
tion of QM should be ontologically as clear as possible. This means that it
should

(i) explain the appearance of ‘classical’ objects that seem to exhibit simul-
taneously definite but quantum mechanically incompatible properties at
all times,

(ii) explain the precise relation between the ‘quantum’ and ‘classical’ realms,
(iii) and specify the ontological significance of all formal ingredients.

By ‘classical’ we here simply mean something along the (more innocent) lines
of Bohr (1938, p. 269), i.e. objects describable by “everyday concepts, eventually
refined by the terminology of classical physics[. . . ]”, thereby emphatically not
encouraging “the mistaken thought that any use of such a description carries with it
the full content of classical physics [. . . ].” (Healey 2012d, p. 740; my emphasis—
FB) Point (iii) of the DOC may urge us, depending on where we stand on the
kinematical task of the MAC, to provide an ontology of the high-dimensional space
on which the wavefunction is defined, and points (i) and (ii) may then also urge
us to specify how 4D spacetime, wherein the classical objects ‘live’, and the high-
dimensional (‘configuration’-)space wherein the wavefunction ‘lives’ relate to one
another. We will see that fulfilling the DOC on these grounds is a major hurdle.



Chapter 3
Philosophical Interlude I: ‘Probability’
and ‘Realism’

So far we have talked about probabilities for finding a certain value for a certain
observable, or for a system to collapse into some definite state, without specifying
at all what we mean by ‘probability’. Famously, there is a whole host of differing
views of probability, and possibly the broadest dichotomy1 one can draw between
probability-concepts is that between epistemic and objective probability, as advo-
cated e.g. by Gillies (2000, p. 2). With an eye on the discussion to follow later,
it seems desirable to further subdivide both categories, epistemic and objective
probability, into suitable subcategories.2

Objective conceptions of probability include relative frequencies (of occurrences
of certain types of events in finite domains), limits of relative frequencies (in random
sequences defined over infinite domains), long-run propensities (as dispositions of
types of experiment to bring about a certain outcome with a certain rate), and single-
case propensities (as dispositions of individual experiments to bring about a certain
outcome or of single events to occur). Epistemic conceptions of probability, on the
other hand, include degrees of belief in some hypothesis (of a real or ideal agent),
and degrees of confirmation of a hypothesis (by evidence).

But of course none of these views is entirely free of problems, and the notions
are interrelated in various ways. For statistical probabilities in the sense of the limit
of a relative frequency, for instance, it is necessary to provide an account of what
counts as a random sequence of events, because otherwise all kinds of probabilities
could be fabricated by a suitable ordering of the elements of the sequence. Such

1As is well known, Carnap, in particular, also defended a two-concept view of probability, e.g. in
his 1945 and 1955 papers. But Carnap’s distinctions between degree of confirmation and relative
frequency in the long run (1945), or statistical and inductive probability (1955), are ultimately too
narrow for our purposes. So is the distinction between credences and chances, which Lewis (1987,
p. 83 ff.) put in their place.
2We appeal, in what follows, to the expositions given in Gillies (2000), Mellor (2005, p. 8 ff.), and
Schurz (2014, p. 129 ff.).
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an account was, indeed, worked out by von Mises (1957), who first assumed some
ground sequence s of all realizations of a certain kind of experiment continuing
on indefinitely into the future. In this ground sequence, there should be definite
limits for all frequencies of all occurring events, which should be invariant under
arbitrary selections of partial sequences s′ from s (where the s′ should be extendable
indefinitely as s). And to provide a notion of arbitrariness, von Mises introduced
admissible place selections for occurences of events in the sequence by requiring
an outcome-independence, i.e. that “the question whether or not a certain member
of the original sequence belongs to the selected partial sequence should be settled
independently of the result of the corresponding observation, i.e., before anything is
known about this result.” (von Mises 1957, p. 25, emphasis in original)

Von Mises’ account has, however, also been met with criticism, most notably
that “there is not just only one physically possible infinite random sequence; there
are many, indeed uncountably many. It seems arbitrary to pick out one of them and
declare it to be the ‘ground sequence.’” (Schurz 2014, p. 156; cf. also Hájek 2009b,
p. 217 for the original argument).

Moreover, it is worthy of question how to thoroughly connect an ideal mathemat-
ical concept such as the limit value of some sequence to actual experience. Hence,
as Howson and Urbach (2006, p. 47, emphasis in original) put it,

it has [. . . ] elicited from positivistically-minded philosophers and scientists the objection
that we can never in principle, not just in practice, observe the infinite n-limits. Indeed, we
know that in fact (given certain plausible assumptions about the physical universe) these
limits do not exist.

Schurz (2014, p. 156) refers to this as the problem of empirical content.
A particular solution that has been suggested to this problem is to take the

limit of some relative frequency of occurrence of a certain outcome under certain
(experimental) conditions “as an exact measure of the tendency of those conditions
to deliver the outcome in question [. . . ].” (Howson and Urbach 2006, p. 46; my
emphasis—FB) And arguably that is also what von Mises had in mind in assuming
experimental setups to produce genuinely random sequences of outcomes3:

The probability of a 6 is a physical property of a given die and is a property analogous to its
mass, specific heat, or electrical resistance. Similarly, for a given pair of dice (including of
course the total setup) the probability of a ‘double 6’ is a characteristic property, a physical
constant belonging to the experiment as a whole and comparable with all its other physical
properties. (von Mises 1957, p. 12)

This obviously links the frequentist approach to the long-run propensity approach
and gives the unobservable (and in some cases maybe even physically nonexistent)
limits a meaning. But propensities can be understood as a special kind of disposition
(cf. Mumford 1998, p. 11; Popper 1957, p. 67) which is simply not “sure fire”
(Mumford 1998, ibid.). Hence they inherit all the metaphysical and analytical
difficulties associated with the notion of a disposition.

3Cf. also Howson and Urbach (2006, p. 46) and Schurz (2014, p. 154) on this point.
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The epistemic degrees-of-belief and degrees-of-confirmation accounts are usu-
ally also jointly referred to as Bayesianism (after Reverend Thomas Bayes 1763).
The latter of these, broadly speaking, has to do with an agent’s evidence (something
objective, external), whereas the former need not. This broadly coincides with
Williamson’s (2010, p. iii) characterization of the distinction between subjective
and objective Bayesianism: “Subjective Bayesians hold that it is largely (though not
entirely) up to the agent as to which degrees of belief to adopt. Objective Bayesians,
on the other hand, maintain that appropriate degrees of belief are largely (though
not entirely) determined by the agent’s evidence.”

Moreover, Williamson characterizes objective Bayesianism as a normative the-
ory. I.e., it is not that any actual observer’s beliefs may be represented by
probabilities without difficulty, but rather:

The strengths of an agent’s beliefs should behave like probabilities: they should be
representable by real numbers in the unit interval and one should believe a disjunction
of mutually exclusive propositions to the extent of the sum of the degrees of belief of the
disjuncts. Moreover, these degrees of belief should be shaped by empirical evidence: for
example, they should be calibrated with known frequencies. (Williamson 2010, p. 1; my
emphasis—FB)

But Bayesian views of probability, sometimes also thought of as epistemological
hypotheses about how agents (should) form, update, and manage beliefs (e.g.
Williamson 2010, p. 10), can also be subdivided into ‘finer’ categories, depending
on the degree of objectivity they embrace: All forms of Bayesianism, Williamson
(ibid.) tells us, hold a probability norm, meaning that “one’s degrees of belief
at a particular time must be probabilities if they are to be considered rational.”
Empirically based subjective Bayesians add a calibration norm, meaning that
“one’s degrees of belief [. . . ] should also be calibrated with known frequencies.”
(ibid.) Objective Bayesians differ from this in that they assume an equivocation
norm as well, meaning that “one’s degrees of belief at a particular time are
rational if and only if they are probabilities, calibrated with physical probability
and otherwise equivocate between the basic possibilities.” (Williamson 2010, p.
16; my emphasis—FB) In the evidence/belief divide, empirically based subjective
Bayesians should hence rather be grouped together with objective ones than with
subjective ones.

Williamson’s is a useful distinction between three ‘flavors’ of Bayesianism which
we may appeal to, on occasion, in what follows. But it should be stressed that it is
ultimately pointless to demand too sharp and robust distinctions between different
Bayesianisms: By a simple combinatorial argument alone, I.J. Good (1983, p. 20)
makes out 46,656 varieties of Bayesianism, depending on how one stands on a
few details, and he (consciously) ignores, in his calculation, that one might even
construct a continuum of intermediate positions (i.e. an uncountably infinite number
of Bayesianisms). The most one should hence hope for is a suitable distinction
between ‘more objective’ views and ‘more subjective’ ones.

Of course epistemic approaches to probability also come with problems that in
principle deserve equal attention as those raised for objective ones; but we will defer
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the discussion of some of these problems (for radically subjectivist positions at least)
to Chap. 7, where the context demands it.

Now which category is appropriate to the quantum probabilities, as they emerge
from the formalism? This is all but a simple and uncontroversial question, and
a significant part of the task of interpreting QM concerns what one believes on
these issues. Assume, for instance, that one aims for a thoroughly operationalist
understanding of QM. Then the probabilities must of course be regarded as relative
frequencies of occurrences of a certain type of outcome in actual (finite) sequences
of experiments, because there is otherwise no possibility of ‘translating them’ or
their test-conditions into laboratory operations. But this is obviously highly prob-
lematic, since it is unclear how long a given such sequence must be to deliver the
correct probability (frequency), and hence when QM—or any probabilistic theory
for that matter—should ever count as confirmed (not to mention the difficulties with
translating non-rational probabilities into laboratory operations). Adding a few more
runs which all happen to have one particular outcome will change the frequency
again, so there is a major arbitrariness or selectiveness about when to consider
the sequence ‘long enough’. Even operationalists, it seems, must tacitly appeal
to something like von Mises account of limiting frequencies, and hence, in fact,
possibly embrace a metaphysics of dispositions.

Popper actually refrained from his originally frequentist understanding of prob-
ability, and developed his account of propensities—first in the long run sense, and
later in the single case sense (cf. Popper 1990, p. 12 ff.)—in part due to his worries
about the quantum probabilities, as he explicitly states e.g. in Popper (1959, p. 27).
His main reason was that the frequentist account is hardly capable of making sense
of single case probabilities, which QM seems to assert all the time (cf. Popper 1957,
p. 66).

But assume now that one has a large grid, i.e. essentially a ‘multi-slit’-
arrangement, a generalization of the double-slit, and assume that a photon is incident
on this grid. The wavefunction should now assign a propensity for the photon being
measured in any of these slits, should one use detectors to determine which path
it takes. As we already know, only in such an arrangement, with detectors behind
slits, will the photon behave as if it took exactly one path. This means that detection
at any one slit should alter immediately and spontaneously what happens in all the
other slits, if the wavefunction (or the associated probability amplitude) is somehow
indicative of a ‘single case propensity’. This seems hard to reconcile with relativity
in which there is no preferred frame and hence no over-arching simultaneity, i.e. no
‘definite moment’ in which the propensity ‘manifests’ in one slit and ‘ceases’ in the
others. And we will eventually see, subsequently to Chap. 4, how QM raises even
worse conflicts with relativity when construed along these lines.

A partially connected issue that has surfaced in the previous chapter on multiple
occasions is that of ‘realism’ in QM. For instance: QM does not, it seems, warrant
the assumption of pre-existing well defined properties on investigated systems,
including such important ones as positions and velocities. The assumption of such
is of course highly intuitive on the basis of everyday-life experience and its ‘relative
stability’; closing one’s eyes for a second and making one’s visual perceptions of
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a fastly seated table and laptop vanish, one may tend to firmly believe that these
perceptions will re-appear when one opens one’s eyes again. However, as Russell
put it in Our Knowledge of the External World:

We naturally believe, for example, that tables and chairs, trees and mountains, are still there
when we turn our backs upon them. I do not wish for a moment to maintain that this is
certainly not the case, but I do maintain that the question whether it is the case is not to be
settled off-hand on any supposed ground of obviousness. (Russell 1914, p. 77)

This is an attitude that we should equally entertain, as a matter of philosophical
caution if you will, in the present context, and especially w.r.t. to the ‘states’
that we would like to attribute to microscopic (or ‘quantum’) systems in certain
(experimental) situations on the basis of our successful practice of doing so with
unobserved everyday-life objects.

Quite general talk of ‘realism’ is, however, rather uninformative, as ‘realism’, not
unlike ‘probability’, is not an unequivocal notion: there is a wide variety of differing
meanings in different contexts, and it has been criticized, notably by Travis Norsen
(2007), that in certain applications in the context of QM (namely, the violations
of Bell-type inequalities to be discussed later) the discussion is blurred by the use
of the word ‘realism’; because “it is almost never clear what exactly a given user
means by the term [. . . ] and [. . . ] none of [the] possibly-meant senses of ‘realism’
turn out to have the kind of relevance that the users seem to think they have.” (Norsen
2007, pp. 311–312) Whether Norsen’s assessment as to the relevance of ‘realism’
is correct should be evaluated on the basis of later discussion. But we concede that
there is a crucial terminological problem here that one should try to fix.

To confront a concrete example, consider that Clauser and Shimony (1978, p.
1883) characterize ‘realism’ in a particular (actually: the same) QM context as “a
philosophical view, according to which external reality is assumed to exist and
have definite properties, whether or not they are observed by someone.” Denying
the existence of the external may be construed as a thorough idealism along the
lines of Berkeley (2009 [1710-13]). But denial of the second conjunct is just the
most straightforward reading of the position of Busch et al. (1995), outlined in
Sect. 2.1.5. On the one hand we can immediately see that the issue is nontrivial
for the interpretation of QM, not just for philosophy in general. On the other hand,
we can also see that there may be radically differing intuitions as to what is meant by
‘realism’, since it is far from clear that ‘realism’ implies ‘definiteness of properties’.

A related point of criticism towards uses of the word ‘realism’ in the context
of QM is expressed in a more recent paper by Maroney and Timpson (2014). The
paper specifically concerns the implications of violations of so called Leggett-Garg
inequalities (Leggett and Garg 1985), but some of the arguments carry over to
the present context. The aforementioned class of inequalities was introduced by
Leggett and Garg with the aim of testing a metaphysical position which they refer
to as “macroscopic realism” (Leggett and Garg 1985, p. 857), and flesh out as the
supposition that “[a] macroscopic system with two or more macroscopically distinct
states available to it will at all times be in one or the other of these states.” (ibid.)
Together with the assumption of “[n]oninvasive measurability at the macroscopic
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level”, i.e. that “[i]t is possible, in principle, to determine the state of the system
with arbitrarily small perturbation on its subsequent dynamics” (ibid.), Legget and
Garg believe to be able to show (by appeal to a SQUID-example as discussed in
Appendix B) that “[a] direct extrapolation of quantum mechanics to the macroscopic
level denies this [macroscopic realism].” (ibid.) Our point of contention here is not
the assessment of the experimental details, but the notion of ‘realism’ involved and
its connection to the notion of realism employed by Clauser and Shimony.

Setting aside questions of macroscopicity (as do Maroney and Timpson 2014, p.
9), the question remains whether the assumption of being in one out of a range of
possible states at all times is a necessary condition for ‘being real’. To this Maroney
and Timpson (2014, p. 10) utter the concern that the notion of ‘state’ employed
in the definition requires clarification, since such a notion usually “comes as part
of a theory, or as part of a general framework of theories.” (ibid.) The background
theory they identify in the Leggett-Garg case is (ordinary Hilbert space) QM, and
the ‘states’ in question are meso- or macroscopic current states, mentioned briefly
at the end of Sect. 2.1.4 and discussed at some length in Appendix B. But against
this, Maroney and Timpson (2014, p. 10) counter with the following slogan:

There is nothing realist about denying the existence of superpositions macroscopic or
otherwise.

This slogan they motivate (their p. 11) by the observation that

one can seek to incorporate superposition, including macroscopic superposition, into
one’s realist, descriptive, account of how the mind-independent world is—incorporate it,
moreover, in such a way as to recover the determinate nature of our experience, and of the
macroscopic world.

This is obviously correct, since, as we shall see later (and as is elaborated by
Maroney and Timpson), there are well-known ontological interpretations of QM
which do just that. How does this argument carry over as an objection to Clauser
and Shimony’s notion of realism, accroding to which “reality is assumed to [. . . ]
have definite properties, whether or not they are observed by someone”? The
answer obviously is that analogous reasoning can be applied to the notion of a
property, instead of ‘state’. The notion of property that Clauser and Shimony have
in mind is that of a ‘definite’ one, which we may equally consture as ‘sharp’, in
contrast to the ‘unsharp’ ones we introduced in Sect. 2.1.5. That is, the definite
properties in question, those whose observation-independent existence is construed
as constitutive of realism, are those that could be represented as projectors in QM.
Because the existence of these as always present observer-independently is what is
put in question by QM.

But in close analogy to Maroney and Timpson, we can dispute the intuition that
this has anything to do with realism, which we summarize in the following slogan:

There is nothing anti-realist about accepting the existence of unsharp properties.

Maybe the world just happens to be such that entities can only have an approxi-
mate degree of localization, an approximate velocity, an approximate spin. . . and so
forth. Given everyday life experience, this certainly is highly counter-intuitive. But
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prima facie that has nothing to do with the existence of a mind independent reality
altogether.

Above (Sect. 2.1.5) we indicated that the assumption of ‘unsharp properties’ is
in need of some explanation though. So to make the argument plausible, we should
here provide a rough sketch of what a ‘realism’ including unsharp properties could
look like.

An obvious possibility would be to entertain the conviction that the linguistic
expressions we form on the basis of everyday-life experience do not refer properly
to mind-independent reality, but only in an imprecise or ambiguous way, and that
this is reflected in the appeal to QM concepts such as POVMs and non-commuting
self-adjoint operators. More precisely, the ‘true constitution’ of reality could be
hidden from us altogether, thus not sanctioning the attribution of ‘properties’
in any ‘fundamental’, non-pragmatic sense. And through sense perception and
conceptualization based (partly) on our experience, we might only get access to this
reality in a semi-definite manner, i.e. by means of sometimes unsharply applying
concepts such as ‘position’ or ‘momentum’.

We see that certain applications or understandings of ‘realism’, often employed
in the QM literature, involve criteria worthy of clarification. So let us review some
philosophically more well-grounded terminology. Norsen (2007, p. 316), first of
all, appeals to a notion of naïve realism, which to him means that “whenever
an experimental physicist performs a ‘measurement’ of some property of some
physical system [. . . ] the outcome of that measurement is simply a passive revealing
of some pre-existing intrinsic property of the object.” (emphasis omitted) This,
Norsen thinks, is the physics-appropriate generalization of “the view that all features
of a perceptual experience have their origin in some identical corresponding feature
of the perceived object.” (his p. 315)

Classical physics is viewed by many to entertain exactly the former sort of episte-
mological position, as it seems to endorse that at least in principle measurements can
be as subtle and non-invasive as desired, whence to a good degree of approximation,
a pre-existing intrinsic property of the system is being revealed (almost) passively
(think again of Heisenberg’s microscope and “destruction of knowledge”, which he
apparently considered as a kind of philosophical revelation).

The most fundamental notion of ‘realism’ in the philosophical tradition is cer-
tainly that of metaphysical realism, typically identified also with external realism,
the basic statement of which can be phrased as “[t]he world [being] (largely) made
up of objects that are mind-, language-, and theory-independent.” (Button 2013,
p. 8) Since languages and theories (arguably) depend on minds, we can identify
metaphysical realism simply as the view that there exists a mind-independent
‘outside world’. Norsen (2007, p. 330), who equally acknowledges a notion of
‘metaphysical realism’, puts it in slightly different terms; metaphysical realism,
according to him, “accepts the existence of a single, objective, external world ‘out
there’ whose existence and identity is independent of anyone’s awareness [. . . ] of
it.” (ibid.)

More illuminatingly, there is the much stronger notion of scientific realism in
the philosophy of science, which, following Putnam (1975b, p. 179) and Psillos
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(1999, p. xvii) and in contrast to Norsen’s (2007, p. 320) less detailed treatment, we
can summarize as endorsing, on top of a general metaphysical realism, the central
tenets that (i) mature and well confirmed theories are capable of being true, and that
(ii) the concepts of these very theories typically do refer to entities in the external
world, in all domains (including unobservable microstates, say). Condition (i) may
be thought of as semantic; it says something about the meaning of scientific notions
(including formal-mathematical ones). Condition (ii), on the other hand, may be
viewed as epistemic; it says that we can access, or know about, the external world
by means of scientific theorizing.

Both of these tenets are nontrivial parts of the scientific realist stance,4 as
different kinds of anti-realism have challenged them separately; Dummett’s (1982)
semantic anti-realism, e.g., representing a challenge to the first statement, van
Fraassen’s (1980) constructive empiricism a challenge to the second one.5 It is also
worth pointing out that one could deny scientific realism without denying external
realism altogether. I.e., one could express reservations about science’s capability to
represent the (outside) world while reserving that there is an outside world that we
can truthfully represent by means other than science. At any rate, mystics or some
scientific layman do just that.

Notably, on a more careful view of things, the above identification of external
and metaphysical realism seems misguided. Even on basic metaphysical grounds,
more subtle versions of realism are available that do posit that there is “a [. . . ]
world ‘out there’ whose existence and identity is independent of anyone’s awareness
[. . . ] of it”, as Norsen has it, but which are more careful about the existence of
“objects that are mind-, language-, and theory-independent” (Button’s formulation;
my empahsis—FB). A contrasting position to the latter is what Putnam (1977)
calls internal realism. Internal realism “has been summarized by Putnam in several
different places and in a number of different ways” (Conant 1990, p. xix), with
implications not necessarily coincident (cf. also Putnam 1992, p. 353 ff.; Button
2013, p. 74). Moreover, internal realism has been linked closely to Kant’s (1781)
transcendental idealism (cf. in particular Brown 1988), and Conant (1990, p.
xix) even finds that “Putnam discerns a version [of internal realism—FB] in
Kant’s work[. . . ].” We here agree with (Conant’s reading of) Putnam that Kant’s
transcendental idealism can be understood as a version of internal realism.

Despite the fact that there may be multiple versions, can we say what internal
realism generally implies and how it is distinguished from external realism? To
this end, it is instructive to review (relevant) commonalities between Kant and

4This careful notion of a ‘stance’ is embraced, in particular, by van Fraassen (2002, pp. 47–48)
who identifies it with an “attitude, commitment, approach, a cluster of such—possibly including
some propositional attitudes such as beliefs as well”, but which “cannot be simply equated with
having beliefs or making assertions about what there is”.
5We should note though that van Fraassen (1980, p. 8) goes further in even disputing that the aim
of science is “a literally true story of what the world is like”, and that “acceptance of a scientific
theory involves the belief that it is true”. More on this later.
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Putnam first and then discern the central distinguishing elements in their respective
positions. Here is Brown’s (1988, p. 146) analysis:

Both consider, somewhat uncomfortably, the view that there is an unknowable noumenal
world behind the phenomena. Both are motivated in part by the threat of scepticism: Kant
by scepticism about our ability to know the external world, Putnam by scepticism about our
ability to refer to it. Both Kant and Putnam hold that the world we know and talk about
is empirically real, but both hold also that it is mind-dependent. [. . . ] Putnam, like Kant,
stresses the pervasive importance of causation, and argues that causation is partly our own
imposition on the world. (my emphasis—FB)

This characterizes internal realism reasonably well: In its broadest understanding,
it is the position that there is a mind independent world, but that the way the world
appears to us, the way ‘empirical reality’ is, is largely dependent on our minds; or
as we shall here prefer to phrase it: on our cognitive interior. Notably, this extends
even to such fundamental concepts as causation (about which we will have to say
more later).

However, from the quote we can also discern differences between Kant and
Putnam: Putnam (1990, p. 41; my emphasis—FB) describes his internal realism
as driven by a rejection of the correspondence theory of truth, i.e. as stating, in the
first place, “that truth comes to no more than idealized rational acceptability” and
that “what is supposed to be ‘true’ be warrantable on the basis of experience and
intelligence for creatures with ‘a rational and a sensible nature.’” Kant, on the other
hand, was famously concerned with

objects of sense as mere appearances,[. . . ] based upon a thing in itself, though we know not
this thing in its internal constitution, but only know its appearances, viz., the way in which
our senses are affected by this unknown something. (Kant 1783, §32)

It seems that while the former denies the semantic condition of scientific realism,
but also w.r.t. to pre-scientific domains of inquiry and everyday life conduct, the
latter does the same w.r.t. the epistemic condition.

Neither denies the very existence of a mind-independent—albeit “noumenal” (cf.
Putnam 1977, p. 492; Kant 1781, p. 248 ff.)—world though, so we identify (in
contrast to Putnam’s use of these words) internal realism as a brand of metaphysical
realism. But of course the ‘realism’ portion in internal realism is considerably
weaker than in external realism, whence Sankey (2008, p. 115; my emphasis—FB)
has it that “internal realism is [. . . ] an inherently idealist doctrine.” Idealist, maybe.
But only in the “more complex” Kantian sense that there is “an important distinction
between the mental and the physical, but that the structure of the empirical world
depend[s] on the activities of minds.” (Brown 1988, p. 145) We hence identify
internal realism as a weak metaphysical realism and external realism as a strong
one, and we will use the items in these pairs interchangeably respectively in the
following.6 Scientific realism in our present understanding presupposes strong
metaphysical realism.

6We completely forego the role of the a priori in Kant’s thought and the details of Putnam’s
theory of reference at this point, since we are here only interested in the role of ‘reality’ in both
conceptions. But both these aspects will make their way into Chap. 7.
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This clarifies how Clauser and Shimony (1978) can think that having “definite
properties, whether or not they are observed by someone” could be constitutive of
realism: They do not seem to acknowledge the possibility of an internal realism,
which, in some version or other, is perfectly compatible with our option for
embracing ‘unsharp’ properties outlined above.

The terminology introduced in this interlude will prove useful in what follows,
as we can use it to see to what extent and in what sense QM ‘threatens’ or even
concerns realism—depending, of course, on its interpretation. We may note here
that all interpretations that we classify as ‘ontological’ (to be discussed in Chap. 6)
obviously endorse scientific realism; QM, certainly being an instance of a mature
theory, is assumed to refer (successfully) to a mind-independent reality, although
its way of referring has to be pointed out by precisification of notions, rewriting of
equations, and/or the introduction of further formal elements. The same (embracing
of scientific realism) can be said about the interpretational program investigated
in the following chapter, although not w.r.t. QM. Since QM is, however, a well-
confirmed, mature theory, it clearly needs some sorting out how exactly scientific
realism is endorsed therein. In this connection, the different views of probability
introduced above will play a substantial role. The same goes for the interpretations
discussed in Chap. 7.



Chapter 4
Just a Matter of Knowledge?

The field in a many-dimensional coordinate space does not smell like
something real.

—A. Einstein, in a letter to Ehrenfest, 1926 (cf. Howard 1990, p. 83)

4.1 Prelude: Ensemble Interpretations and Hidden
Variables—The Historical Background

There is, it seems, a rather natural response to the conceptual problems raised by
QM. This response, put frankly, is to say that ‘it’s all just epistemic!’ More precisely
this would mean to deprive the quantum state of its ontological significance and
to construe the theory not as a description of the actual, real situation of physical
systems, but rather as a representation of the knowledge an actual or ideal observer
or agent has about these. So for instance, when a quantum system passes a double
slit, we cannot know exactly where it is going to turn up. But we can try to make
precise predictions about its future behavior, based on our previous experience with
similar situations and systems, and hence quantify, in a sense, our knowledge about
its future behavior and about the occurrence of spots in various regions on the screen
behind the slit. Again given past experience, a quantum mechanical state function
may be the tool of choice to accomplish this task. But in the instant we see a dot
appearing on the screen we can update our knowledge about the system’s actual
state, since we can now be rather certain (assuming that we have not visited too
many epistemology classes) that the system has occupied exactly that region on the
screen at the moment of the appearance of the dot.

But there should be no doubt, the intuition might go, that every system always has
a unique, definite state, a unique way of how it ‘actually is’, despite our ignorance
of this ‘actual how’. This should also—a slightly stronger assumption—at least in
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principle enable us to give a description of this ‘how’. The ‘weirdnesses’ elaborated
on above, the uncertainty relations, the alleged unsharpness of properties, quantum
superposition, and with it the OP, are all just expressions of our inability to properly
access the true states of certain (typically microscopic) systems, and hence they
vanish when properly construed in terms of incomplete knowledge. This natural
response, as we have coined it, we can formulate as a first serious conjecture as to
how to interpret QM while satisfying the MAC:

Conjecture 1 (The natural response) Quantum mechanical systems are
(typically tiny) objects which always possess a true, definite state with precise
values for all observable physical magnitudes. The need for a quantum
mechanical description of these systems is just an indication of our lack of
knowledge about their true states.

Thus, the need for a ‘collapse of the wave function’ in any physical sense,
i.e. for the system to be considered as a weirdly dislocalized entity inhabiting
a high-dimensional configuration space when in isolation, just to collapse into a
‘point-particle’ in physical space(time) upon certain kinds of ‘measurement-like’
interactions, is removed. The ‘collapse’ in the sense of the PP is just a sort of
informational update for the experimenter upon registration of a given result, which
may be compared to Bayesian updating (cf. also Wiseman and Milburn 2010, pp.
10–11). In this sense, the interpretations we are about to investigate should be
considered as non-ontological collapse interpretations, using the terminology we
have introduced above.

A central tenet behind this general approach is that QM is in fact an incomplete
theory, which will (hopefully) be replaced by a more complete and comprehensive
one in the future. This tenet is, indeed, a rather old one which quickly surfaced
when the peculiar features of QM became apparent in its early development. But it
has also gained attention again in recent years and our primary concern will be with
the more recent debate. The most prominent proponent of an early epistemic view
of quantum sates was Einstein. This is reflected vividly, for instance, in his 1939
correspondence with Schrödinger, where he writes:

I am as convinced as ever that the wave representation of matter is an incomplete
representation of the state of affairs, no matter how practically useful it has proved itself
to be. The prettiest way to show this is by your example with the cat (radioactive decay with
an explosion coupled to it.)1 At a fixed time parts of the ψ-function correspond to the cat
being alive and other parts to the cat being pulverized.

1At that time, Einstein knew the cat thought-experiment from a letter Schrödinger had sent him,
in which the latter described it in terms of an explosion rather than poisoning (cf. Mehra and
Rechenberg 1987, p. 743).
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If one attempts to interpret the ψ-function as a complete description of a state, independent
of whether or not it is observed, then this means that at the time in question the cat is
neither alive nor pulverized. But one or the other situation would be realized by making an
observation.
If one rejects this interpretation then one must assume that the ψ-function does not express
the real situation but rather that it expresses the contents of our knowledge of the situation.
(Einstein 1939, p. 43)

The intuition here is clear enough, and the motivation should be clear as well.
QM generally only predicts probabilities and averages, statistical magnitudes which
are familiar from contexts in which the actual conditions are simply unknown
or at least supposed to be so. QM, interpreted according to orthodoxy, arguably
has ‘unbearable’ consequences such as superpositions of dead and alive cats, and
hence cannot possibly refer to the world as it really is. Thus (early) Heisenberg’s
‘destruction of knowledge’ due to the measurement interaction is exactly apt, and it
is all there is to the quantum weirdnesses. This is certainly due to some feature of
physical particles or fields or whatever the theory ‘really’ treats of that has yet to be
understood (or so the intuition might go).

But how does one actually spell out such an epistemic interpretation of QM in
detail? Einstein’s own views are often also referred to as an ensemble interpretation2

of quantum states because of his continuing appeal to statistical ensembles, as
witnessed e.g. in his reply to criticisms in Schilpp’s volume on his life and work
(cf. Einstein 1949b, p. 668), or in his 1936 article on physics and reality: “The ψ-
function does not in any way describe a condition which could be that of a single
system; it relates rather to many systems, to ‘an ensemble of systems’ in the sense
of statistical mechanics.” (Einstein 1936, p. 375)

A view of this kind was later also explicitly defended and extended by Ballentine
(1970), who describes it (his p. 361) in the following terms:

For example, the system may be a single electron. Then the ensemble will be the conceptual
(infinite) set of all single electrons which have been subjected to some state preparation
technique (to be specified for each state), generally by interaction with a suitable apparatus.
Thus a momentum eigenstate (plane wave in configuration space) represents the ensemble
whose members are single electrons each having the same momentum, but distributed
uniformly over all positions.

Note that the “state preparation technique” must in fact be viewed rather as an
equivalence class of such techniques (cf. Busch et al. 1995, p. 5). The possibility of
using either a calcite crystal or a yes-no polarizer to prepare a photon in a certain
polarization state makes this immediately obvious, and completely different sets
of preparation procedures can be used to prepare the same mixed state, due to the
latter’s multiple decompositions (more on this in Chap. 7).

2Fine (1984), however, gives a detailed critical analysis of the historical data concerning Einstein’s
view of the quantum state and contends that the standard representation of Einsteins views is
incorrect. In essence, the point is that Einstein seems to have used talk of ensembles merely as
a means for grounding the belief in the incompleteness of QM, not as a serious suggestion for an
alternative (cf. also Whitaker 1996, p. 239, on this point).
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Now it may not be immediately obvious why this view of the quantum state
should count as ‘epistemic’, but it is obvious from the above that at least Einstein
was aiming for an epistemic interpretation. So he may have had in mind an ideal
or conceptual ensemble, as suggested in Ballentine’s quote, construed merely
as a cognitive tool for determining probabilities of experimental outcomes in
experiments on equally prepared systems. This is also the viewpoint of Harrigan
and Spekkens (2010, p. 150) who write that

[. . . ] the ensembles Einstein mentions are simply a manner of grounding talk about the
probabilities that characterize an observer’s knowledge. [. . . ] Ultimately, then, the only
difference we can discern between the ensemble view and the epistemic view concerns
how one speaks about probabilities [. . . ].

Similarly, Bartlett et al. (2012, p. 4) have it that “the thesis that quantum states
describe the statistical properties of a virtual ensemble of systems [. . . ] is equivalent
to saying that it describes one’s limited information about a single system drawn
from the ensemble.” And distinguishing, as Ballentine (1970, p. 361) suggests,
the probability of each outcome as determined by the aforementioned conceptual
ensemble from the actually observed statistical frequency is equally compatible with
this understanding of an ensemble approach as epistemic: The conceptual, infinite
ensemble may be invoked here as a means to determine a probability, a mathematical
expression of what frequencies to expect in an experimental situation, an epistemic
tool for making headway in a situation of uncertainty.

But what exactly are these ensembles composed of? From what we have
established so far, it is obvious that they cannot be composed of (conceptual)
electrons, say, in the sense of QM. Because all QM assigns is the state vector, and
this state vector, as we saw, does not—and cannot—attribute definite values for all
observables at all times. So the conceptual ensembles must be about something else,
something not exhaustively described by QM, about some additional set of hidden
variables.

This notion of ‘hidden variables’ is a widespread term used to classify a wide
range of interpretations of QM. But the name hidden variable may create confusion,
as has been objected e.g. by Belinfante (1973, p. 8). Why are these variables
‘hidden’? Hidden by what? From whom? A nice clarification is offered by Pearle
(1968, pp. 464–465):

The ‘hidden’ in the phrase ‘hidden-variable theories’ refers to the fact that at present the
variables in these theories have not been experimentally detected, so that the variables must
be averaged over in some way, in order to produce predictions which agree with experiment
and with quantum theory.

The general contention of such theories or interpretations of QM hence is
that there are some additional features in nature, typically supposed to be more
in line with the concepts of classical physics, which then allow for a more
‘complete’ theory, capable of explaining away the perplexing consequences of QM
(cf. Belinfante 1973, p. xvii ff., for a similar assessment). The hidden variables
are supplemented so that the more complete theory may refer to more than does
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QM. Applied to the ensemble in Ballentine’s quote above, described by a particular
eigenstate φp of momentum p, this would mean the following:

all members of the ensemble will have the corresponding value of momentum, but in
addition each has a precise value of position, though these values will all be different. The
values of position must be called hidden variables, because they are not related to the wave-
function. (Whitaker 1996, p. 284; emphasis in original)

As should be clear by now, and as is laid out by Home and Whitaker (1992, p.
263 ff.) and d’Espagnat (1995, p. 297 ff.) as well, the assumption of such hidden
variables has to figure in all meaningful ensemble interpretations in the sense of
Conjecture 1. But there is also a rather trivial sense in which the term ‘ensemble’
plays a role in QM itself, without the hidden variables:

When a quantum theorist wants to make some predictions about a physical system, he will
admit at once that in most cases he can make at most some probability predictions. After he
has ascertained in what way the system was prepared, he will choose an initial state vector
in Hilbert space, which in simple cases often is called the ‘wavefunction’ of the initial state.
This ψ will describe all systems that underwent a similar preparation. These systems taken
together form an ensemble (Eψ), and ψ will describe this entire ensemble. (Belinfante
1973, p. 6)

Obviously, since QM is concerned with probabilistic predictions, the state
function must always also be allowed to refer to an entire ensemble of equally
prepared systems to test these predictions. But in orthodox QM, ψ is taken as
equally representing (‘completely’) the state of an individual system, which is
decidedly not the case with probability distributions (or densities) in classical
theories. This is actually one decisive aim in advancing an ensemble interpretation
of QM, in the sense of Conjecture 1: to dispense with the idea that the quantum state
refers to one individual system, and hence with the idea that system should be in a
superposition state w.r.t. some basis.

On a classificatory note, the traditional ensemble interpretations discussed above
may be viewed as conceptually revisionary but formally conservative. This is so
since in order to makes sense, they are committed to the existence of variables
not contained in QM, i.e. further concepts which differ from those employed in
the orthodox interpretation, but neither Ballentine nor Einstein, say, proposed a
concrete modification of the formalism. QM as it is should be seen as a formal
tool for devising statistical predictions, the underlying intuition says; the possibility
of a more complete physical theory is merely left open or hoped for.

There are, however, many good reasons why ensemble interpretations of this
kind were historically considered as failures quite early on. Schrödinger (1935b,
p. 156),3 for instance, found counter-examples to the conceivability of such simple,
formally conservative ensemble interpretations right away. One of his examples was
that of a harmonic oscillator with a given fixed value of total energy (say (n+ 1

2 )h̄ω

for some fixed n), where in the corresponding quantum state of the system, an
eigenstate of energy, there would be a large uncertainty as to the oscillator’s position

3Cf. also Whitaker (1996, p. 214) for an analysis of Schrödinger’s examples.
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x. But according to the ensemble view, kinetic and potential energy, depending
on velocity and position respectively, should be well defined at all times for each
individual member of the ensemble (or rather, the actual objects formally described
by the conceptual ensemble), whence there should be a clear cut-off value for the
position. To see this, consider that the potential energy increases with position x

in an oscillatory system, and kinetic energy (increasing with velocity) cannot be
negative since this would mean that the oscillator does ‘less than not move’—
an obvious absurdity. So the limit (n + 1

2 )h̄ω in total energy implies a limit for
possible positions. But QM predicts non-vanishing probabilities for positions which
should not be reached according to this analysis, and a straightforward ensemble
interpretation hence seems untenable in this case.

A further example can be invoked by appeal to quantum tunneling, as encoun-
tered in the ammonia molecule-example in Chap. 2 or the SQUID example in
Appendix B. In radioactive α-decay, an α-particle has to tunnel through the
Coulomb barrier of the nucleus in order to be emitted. This escape is impossible in
a classical physical scenario, since the particle would have to have greater potential
than total energy at some point, which again implies negative kinetic energies.
Thus construing the wave function as a representation of an ensemble of particles
with definite kinetic and potential energies makes tunneling phenomena appear
impossible to explain (cf. Whitaker 1996, pp. 214–215).

Other arguments can be invoked by appeal to quantum interference. We have
already seen that a simple statistical particle interpretation should not predict the
observed patterns of distribution in a double slit experiment (interference patterns).
Only the incorporation of an active part of the double slit and possible detectors
behind both slits could raise hopes for a suitable statistical analysis in terms of
particles, since the interference pattern vanishes in case detectors are placed behind
the slits. But no explanation of this kind is possible with the formally conservative
ensemble interpretations.

In summary, what these and many further examples show is “how far away from
the basic [. . . ] ensemble one has to go—[. . . ] as Bohr would have stressed, one must
include the measuring device as an active participator in the measurement, not just
a recorder of a fixed value.” (Whitaker 1996, p. 217) And the failure to do so seems
to be the major crux of historical epistemic ensemble interpretations.

Modern epistemic approaches do in fact suggest a revised formal inventory that
implies the possibility to formally model an active part of the measuring device
in producing the outcome statistics, or even ‘automatic’ transformations between
preparation and measurement. And with this, they can claim some prima facie
successes in reproducing some of the predictions peculiar to QM from merely
epistemic restrictions, including examples of the infamous quantum interference
phenomena. We should hence give some deeper thought to these approaches that
would, if successful, provide a nice and intuitive solution to the OP that leaves most
of our common sense convictions untouched.
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4.2 Formal Revisions and ψ-Epistemic Models

4.2.1 General Outline and Classification of ‘Ontological
Models’

As mentioned before, today there is renewed interest in an epistemic interpretation
of quantum states. In part, this is due to the success of quantum information
theory (QIT), which is “the study of the information processing tasks that can
be accomplished using quantum mechanical systems” (Nielsen and Chuang 2010,
p. 1), and incidentally the most direct modern application of the traditional QM
formalism, as compared to e.g. QFT. Its technical-implementational successes have
lead some physicists to speak of a second quantum revolution (e.g. Dowling and
Milburn 2003), next to the technological and scientific revolution brought about by
the early development of QM, as mentioned in the introduction. And this success has
also inspired some physicists to suspect that all of QM is merely about information
(cf. Spekkens 2007, p. 2).

Timpson (2013, p. 2), however, objects to this reasoning as follows:

The conviction that quantum information theory will have something to tell us about the
interpretation of quantum mechanics seems natural when we consider that the measurement
problem is in many ways the central interpretive problem in quantum mechanics and that
measurement is a transfer of information, an attempt to gain knowledge. But this seeming
naturalness only rests on a confusion between the two meanings of ‘information’.

The ‘two meanings’ concern “‘information’ as a technical term which can
have a legitimate place in a purely physical language, and the everyday concept
of information associated with knowledge, language, and meaning [. . . ].” (ibid.)
Timpson then goes on to characterize the technical, communication-theoretic notion
of information (which he coins informationt ) in classical as well as quantum
contexts, and to distinguish it from the everyday concept. And subsequently, he
dispenses with a range of arguments (e.g. from Dretskean semantic naturalism)
which suggest a rather intimate relation between both concepts (cf. Timpson 2013,
p. 38 ff.).

But if QIT is concerned with informationt and informationt is not (intimately)
connected to the notion of knowledge (as Timpson concisely argues), does this not
preclude the more recent epistemic approaches from being serious endeavors of
resolving QM’s foundational issues in terms of knowledge in the first place? The
answer here must be ‘no’, since for one, it may be viewed as a mere historical
contingency that QIT has (partly) motivated the renewed interest in an epistemic
approach to QM, and the successes of such an approach should be evaluated
independently. And secondly, it is not clear that Timpson’s criticism applies to all
uses of the word ‘information’ in QIT—as he readily acknowledges in stating that

descriptions of the quantum state in terms of a person’s knowledge or information will
typically involve [. . . ] both the everyday semantic/epistemic concept of information and
at the same time, the distinct technical concept of informationt introduced in information
theory. (Timpson 2013, p. 147)
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At least some consequences of QIT, or rather some of the suggestive uses of the
word ‘information’ in modern applications of QM, may hence be indicative of some
observer’s knowledge being involved after all.

A particularly influential epistemic view of quantum states in the more recent
debate, developed especially in papers by Spekkens (2005) and Harrigan and
Spekkens (2010), and very much alike in style to (if not an instance of) the
formalism used by Bell (1964), is that of the so called ontological models (OMs).
What is meant by ‘model’ in this context? As Hartmann (1996, p. 80) has observed,

[q]uite often, the term ‘model’ is used [. . . ] synonymously with ‘theory’. By and large,
scientists prefer ‘model, because [. . . ] it is safer to label one’s thought products ‘models’
instead of ‘theories’ for they are most likely provisionary anyway, and the term ‘model’
seems to acknowledge this right from the beginning[. . . ].

The models concerned here should be viewed along these lines: as provisionary,
and as defining new paradigms for alternative theories that preserve QM’s success-
ful predictions but transgress its descriptive boundaries. Spekkens (2005, p. 2), more
precisely, describes OMs as “an attempt to offer an explanation of the success of an
operational theory by assuming that there exist physical systems that are the subject
of the experiment.” (my emphasis—FB) Thus, an operationalistic understanding
of QM is presupposed in this general approach, which in the words of Harrigan
and Spekkens (2010, p. 128) means that “the primitives of description are simply
preparation and measurement procedures—lists of instructions of what to do in the
lab.” The goal of QM, on such an operational reading, is then just to determine
outcome probabilities for measurement procedures. The primitives of description in
an OM for QM thus construed are the properties of micro-systems, and the goal of
the OM is to account for the measurement statistics in terms of these (cf. ibid.).

To match the operational understanding thus envisioned with the quantum
formalism, Spekkens (2005, p. 3) associates a preparation procedure Pρ̂ with a

density operator ρ̂ and a measurement M with a POVM
{
Êj

}
j∈J . Since ρ̂ may

be a pure state density operator, and hence correspond to an eigenstate of some
observable, but is not directly associated with the physical condition of any system,
the EE-link, (V), is severed in this kind of interpretation.

But how precisely is the quantum state ‘associated’ with the (equivalence class
of) preparation procedure(s), and what, if anything, does it represent about the
system? Busch et al. (1995, p. 5), for instance, write in their extensive exposition
of operational QM: “Any type of physical system is characterised by means of a
collection of preparation procedures, the application of which prepare the system
in a state T . The set of states is taken to be convex, thus accounting for the
fact that different preparation procedures can be combined to produce mixtures of
states.” (my emphasis—FB) Here the state is named in addition to the collection
of preparation procedures, as that which results from them. In accord with this, we
will make sense of the purported ‘association’ as follows: The quantum state ρ̂ of
a given system is the state of the system according to its preparation, i.e., with the
word ‘state’ read in a decidedly non-ontological fashion. ρ̂ does not represent ‘how
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the system actually is’, but rather what can pragmatically be said about it for the
context of experimentation in virtue of what was done to it.

The preparation procedure could, for instance, consist of using an arrangement
of DuBois magnets and screens (cf. Fig. 2.7a) to select only quantum systems with
their spin up along a chosen axis (say z), and the state according to that preparation
would then be ρ̂↑z = P̂↑z = |↑z〉〈↑z|. But this should not be confused with the
assertion that the system ‘really has its spin up’; there might not even be spins in the
OM supplemented to explain the statistics of the experiment. And this emancipation
from the EE-link is already a step beyond the ensemble interpretations discussed
before.

Outcomes in selective projective measurements, however, can be identified with
(pure) quantum states as well, whence quantum states should also be allowed to
represent ‘states according to measurement’. Notably, this reading fits well with
the general operationalism about QM, since the measurement is also an operation
performed on the system and generally not so much different from the preparation
procedure (think of a Stern-Gerlach measurement, where both preparation and
measurement involve magnets and screens). Indeed, we thus preserve half of the
EE-link: that when an observable A is measured to have value a on S, the state of S
is given by |a〉—albeit only in the operational reading of the word ‘state’. In accord
with this analysis, we will, in what follows, occasionally call ρ̂ (or ψ) the P/M-state

of the system. Given these prerequisites, the Born rule Prρ̂M(k) = Tr(Êkρ̂) should be
read, accordingly, as providing a probability of obtaining value k in a measurement
procedure of type M given some preparation procedure resulting in P -state ρ̂.

OMs are now defined by appeal to a bunch of formal ingredients not contained
in QM. The first ingredient is a state space �, with elements λ termed ontic
states.4 These ontic states are supposed to represent a “complete specification of
the properties of a system[. . . ].” (Harrigan and Spekkens 2010, p. 128) Talk of
‘ontic states’, however, seems rather clumsy, since every state is at least a state,
and hence it is, rather than not, regardless of what it is (a sate of an observer,
or a state of the experimental setup, or. . . ). We will hence prefer to speak of
true states—i.e. states which are true of respective systems under consideration
in a correspondence theoretic understanding of truth, because this is what the OM
approach obviously aims for. To avoid confusion, however, one should also keep the
standard terminology in mind which will occasionally resurface in the discussion
below.

In addition to the space of true states λ, two probability densities are defined. The
first one is termed epistemic state, and is intended to reflect the knowledge a possible
observer might have about the λ ∈ �. It corresponds to a conditional probability
density p(λ|ρ̂) or pρ̂(λ) of obtaining a certain true state λ, conditional on having

4Note that things might be phrased more accurately in terms of random variables λ—or even
random vectors λ—taking on values λ ∈ � (or λ in some suitable Cartesian product-space
×ni=1�i ) on systems S. Accordingly, when we occasionally speak about λ as a variable in what
follows, this should be read as short for ‘value λ of variable λ’.
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prepared P-state ρ̂. The second one, denoted by ξ(k|λ,M) or ξkM(λ), is called an
indicator- or response function, and it is supposed to reflect uncertainties in a given
measurement M leading to outcome k, conditional on the fact that state λ obtains
on a system (cf. Spekkens 2005, p. 3; Harrigan and Spekkens 2010, p. 128). This
conveys some basic intuitions, but a deeper interpretation of these two probability
densities is deliberately left unspecified (cf. Harrigan and Spekkens 2010, p. 150).
Leifer (2014, p. 70), however, notes that “calling a probability density ‘epistemic’
[. . . ] presupposes a broadly Bayesian interpretation of probability theory in which
probabilities represent an agent’s knowledge, information, or beliefs.” ‘Broadly
Bayesian’ seems still a little broad though, and below we shall utter a few comments
on the potential meaning of the probabilities involved here, when the ‘stage is set’.

In addition to epistemic state and response function, transition matrices  (λ′, λ)
(elements thereof) may be introduced (cf. Spekkens 2005, p. 3) which describe (pos-
sibly automatic) state transformations, or rather probability densities for transitions
from true state λ to true state λ′ between preparation and measurement.

These ingredients allow to tackle the MAC as follows: the kinematical task
is undertaken by depriving quantum states of their ontological significance and
letting them refer only to P/M-states. And it is such states that are ‘ambiguous’,
i.e. include superpositions or imply ‘unsharp properties’, with property read in a
merely operational sense. This is not much of a problem now, because they are not
(or need not be) indicative of the true states, λ, of investigated systems which states,
in turn, need not include any of the aforementioned properties. The OP disappears,
because the PP is only Bayesian updating in disguise. The dynamical task must be
tackled by each model individually, the dynamics then being provided in terms of
transformation matrices  , occurring in between preparation and measurement.

It would probably not be fair (or even make sense) to demand that the OM
approach in general should even satisfy the DOC; it is merely a framework for
defining possible models for QM when the latter is construed purely operationally.
But an eventual model of the right kind (cf. below) should certainly be capable of
satisfying the DOC. And we will see throughout the discussion that this is not really
the case in any of the models that are already out there.

Now for any OM to be a model of QM it is required (cf. Spekkens 2005, p. 5;
Harrigan and Spekkens 2010, p. 128) that the model’s epistemic states and response
functions satisfy

∫
dλ′ dλ ξkM(λ

′) (λ′, λ)pρ̂(λ) = Tr(Êkρ̂), (4.1)

for any given measurement M = {Ek}k∈K , and P-state ρ̂.5 That is: Summing up
(integrating) all the probabilities of obtaining a certain outcome k, given a certain
measurementM and true state λ′, weighted by the probability that the state λ′ results

5For completeness’ sake we note that Leifer (2014, p. 82), in his analysis of the approach, provides
a treatment in terms of measure-theoretic notions, using a σ -algebra � (cf. Appendix A) over �,
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via transformations prior to the measurement from state λ and the probability that
λ occurs due to some preparation Pρ̂ in the first place, must reproduce the quantum
probabilities.

This fully defines what an OM is, whence ‘ontological model’ should be rather
viewed here as a technical term; not much ontology is actually conveyed. The OM
approach sketches a road to possible modifications of QM’s formalism which would
then allow for the specification of an ontology in which the quantum state need not
figure, or at least not fundamentally. It does not provide any such ontology, besides
the introduction of additional λs.

Ipso facto we are here dealing with hidden variables again, the true states λ,
and the ‘hiddenness’ is expressed, according to formula (4.1), exactly by some
averaging out of the λs, just as suggested by Pearle (1968, pp. 464–465). Generally
λ need not be interpreted as a hidden variable though, since it can be interpreted as
the quantum state ψ itself—the OM-approach is formally neutral on this point. In
fact, Harrigan and Spekkens (2010, p. 129 ff.) draw a multifold distinction between
different classes of OMs (cf. Fig. 4.1).

The major division here is between ψ-onitc and ψ-epistemic OMs, which
intuitively concerns whether the quantum state be construed as something really
pertaining to some system after all, or just something we ascribe to that system
in virtue of a lack of knowledge about its actual physical state. Within the first
category they distinguish ψ-supplemented from ψ-complete models, where the
former category simply consists of OMs in which the quantum state is something
that pertains to reality, but is still not all there is. The notion of ψ-complete models
should be self-explaining. For obvious reasons, ψ-epistemic and ψ-supplemented
models are jointly termed ψ-incomplete.

More precisely, Harrigan and Spekkens (2010, p. 131) define ψ-completeness,
as follows.6

Definition (ψ-completeness) An ontological model is ψ-complete if the space of
true states� is isomorphic to the projective Hilbert space P(H) (the space of rays of
Hilbert space) and if every preparation procedure Pψ associated in quantum theory

equipped with a σ -additive measureμ that maps from� into the interval [0, 1]. The epistemic state
is then viewed as the (Radon-Nikodym) derivative of μ w.r.t. λ, which is only well-defined under
certain conditions (cf. below) that not all conceivable models satisfy (cf. Leifer 2014, p. 90; Leifer
and Maroney 2013, p. 4). Leaving out transition matrices, Leifer requires that

∫
dμρ̂ ξ

k
M(λ) =

Tr(Êkρ̂), where μρ̂ is the probability measure over � induced by preparation Pρ̂ . This is only
equivalent to the above condition (modulo transformation matrix) in case there is a measure λ
which dominates all measures μρ̂ over the space � (cf. Appendix A), whence one can appeal to

pρ̂(λ) = dμρ̂
dλ in the integral (cf. Leifer and Maroney 2013, p. 4). Fortunately, we can here restrict

our attention to models in which the assumption is valid and we need not bother with these details
any further.
6We slightly alter notation and wording, since Harrigan and Spekkens also call λψ and ψ

“isomorphic”, which is meaningless for elements of spaces. We have also used our notion of true
rather than ‘ontic’ states.
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Fig. 4.1 Classification of OMs according to the status of the quantum state (cf. Harrigan and
Spekkens 2010, p. 134, for a tabular representation)

with a given ray ψ is associated in the OM with a Dirac delta function centered at
the true state λψ that is the value of ψ in the isomorphism, pψ(λ) = δ(λ− λψ).

The appeal to projective Hilbert space is due to the (observational) invariance of
quantum states under multiplication by a global phase (a z ∈ C s.t. |z| = 1); so
the isomorphism between � and quantum states picks out equivalence classes [ψ]
of vectors |ψ〉 rather than individual vectors, with the equivalence relation defined
by multiplication by a(n overall global) phase.7 Put frankly, the definition tells us
that an OM is ψ-complete in case it reproduces QM tout court. The true states in �
are bijectively mapped onto rays in Hilbert space, and the probability of a true state
obtaining, given a preparation procedure associated to a ray in H, is such that it is 1
for the true state that is the value of the ray in the isomorphism and 0 for all other
true states. The quantum statistics is reproduced in a trivial fashion.

7These equivalence classes are then usually called ‘rays’ by physicists (cf. Heinosaari and Ziman
2012, p. 82), even though a ray is more precisely the set of all complex multiples of some vector.
So the ‘ray’ in the sense of [ψ] is basically a ray of normalized vectors (cf. Gustafson and Sigal
2011, p. 193). The name ‘projective’ here obviously stems from the fact that any projector |ψ〉〈ψ |
projects equally onto

∣∣eiϕψ 〉 := eiϕ |ψ〉, since
∣∣eiϕψ 〉〈

eiϕψ
∣∣ = eiϕ |ψ〉〈ψ | e−iϕ = |ψ〉〈ψ | (cf. also

Heinosaari and Ziman 2012, p. 82).
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As we saw, the notion of ψ-onticity is supposed to allow for supplementation of
ψ by elements of the model which do not simply mirror elements of QM, whence
a general ψ-ontic model is defined by the following property (cf. Harrigan and
Spekkens 2010, p. 131; notation adapted).

Definition (ψ-onticity) An ontological model is ψ-ontic if for any pair of prepa-
ration procedures, Pψ and Pφ , associated with distinct quantum states ψ and φ, we
have pψ(λ)pφ(λ) = 0 for all λ.

In other words: the supports of two epistemic states, i.e. the sets of points for
which they are non-zero, should not overlap, i.e. have intersections of non-zero
measure.

Now ψ-ontic models which do not satisfy the first definition are called ψ-
supplemented, non-ψ-ontic models are called ψ-epistemic. Since ψ-ontic and
ψ-epistemic models also exhaust the classification, the decisive criterion for a model
to be ψ-epistemic is that there be an overlap in the supports of the epistemic states
associated with distinct quantum states.8

The intuition here is that, if it may happen that λ is really the case in two instances
and we have prepared for ψ in the one, for φ in the other instance, then ψ and φ
themselves do not reflect the true state of the system. Given that the probability
densities pψ/φ(λ) were supposed to reflect “what can be known and inferred by
observers”, this could be translated more crisply into a statement of the form ‘I
cannot know/infer for sure that λ is not sometimes the case when I prepare for ψ ,
and sometimes when I prepare for φ’. Since we are concerned with ways to fill
Conjecture 1 with content, we will here only be interested in the OM approach to
the extent that it can facilitate the underlying intuitions, i.e. only with ψ-epistemic
models.

4.2.2 A Note on the Philosophical Issues at Stake

The account presented above actually connects quite nicely to the historical issues
introduced in Sect. 4.1. First of all, the idea of demonstrating the incompleteness
of QM by showing that two different ψ-functions may simultaneously pertain to
the very same physical system was also explicitly advocated by Einstein: “[. . . ]

8In some receptions (e.g. Lewis et al. 2012, p. 3 or Maroney 2012, p. 2) this requirement is
refined such that an overlap between epistemic states is required only for non-orthogonal quantum
states, as two orthogonal states |φ〉 , |ψ〉 are usually construed as indicative of mutually exclusive
preparation procedures, which one might (but need not) assume to result in mutually exclusive sets
of true states. The negation of ψ-onticity merely implies the existence of two distinct quantum
states that have densities associated to them with overlapping support. This is comparatively weak
and makes a broad range of models possible. Refinements in terms of distance measures between
the epistemic states have also been proposed (e.g. Pusey et al. 2012, p. 477; Aaronson et al. 2013,
p. 2).
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coördination of several ψ functions with the same physical condition of [some—
FB] system [. . . ] shows [. . . ] that the function cannot be interpreted as a (complete)
description of a physical condition of a unit system.” (Einstein 1936, p. 376) These
views of Einstein have served as an overt inspiration to Harrigan and Spekkens
(2010, p. 147), and since he was so philosophically involved with QM, we will meet
Einstein’s views again at multiple junctions in this book. In particular, we shall have
to say more about the infamous EPR incompleteness argument later.

But in connection to the notion of ‘completeness’, a general worry may be
expressed at this point. Bell, whose work basically laid the foundations for the OM
approach (as mentioned earlier) was cautious to talk merely of a “more complete
specification”, for which it is “a matter of indifference [. . . ] whether λ denotes a
single variable or a set, or even a set of functions, and whether the variables are
discrete or continuous.” (Bell 1964, p. 15; my emphasis—FB) ‘More complete’ may
be read in the sense of ‘with more descriptive content’, and Bell himself certainly
had classical physical theories as role models in mind, with their simultaneous
‘sharp values’ for positions and momenta or energies at precise times, a fact
evidenced by his lifelong endorsement of Bohmian mechanics (cf. Chap. 6), in
which such simultaneous assertions become bluntly possible.

For Harrigan and Spekkens (2010, p. 128), in contrast, λ is straightforwardly
supposed to provide a “complete specification of the properties of a system[. . . ].”
But in any philosophically informed reading of ‘property’, this appears quite
impossible, for the trivial reason that there is, in principle, an infinity of arbitrary
or arbitrarily complex properties (think e.g. of Goodman’s (1955) bleen and grue).
For the present case suppose, for instance, that we have prepared for ψ in the one
case and φ in the other, and that in both cases λ is supposed to occur. Then we can
say that there is a (complex) relational property of being-in-a-Pψ -situation in the
first case, and a relational property of being-in-a-Pφ-situation in the second, and
hence λ cannot concern strictly all properties.

Possibly the completeness in question is meant with regard to a specific set of
kinematical quantities similar to the phase space coordinates in classical physics
(generalized positions and momenta), quantities which are productive in the sense
that the values of all other quantities of the theory can be derived from their values.
Ruetsche (2011, p. 31) makes a point in favor of our interpretation: she identifies
generalized coordinates and momenta in classical physics as paradigmatic examples
of magnitudes she calls “fundamental in the physicist’s sense”, for which it is
precisely assumed that the value of every other magnitude pertaining to a system
can be determined by assigning values to these on the system.

QM itself, however, has the complete set of compatible observables, which is
fundamental or productive in just that sense. One must hence ask what exactly is
sought for in aiming for ‘completeness’, and, more precisely, what could possibly
single out such a set of properties independently of any background theory. If
‘completeness’ in Harrigan and Spekkens’ sense is meant as completeness as
provided by a list of all quantities that are fundamental-in-the-physicist’s-sense,
then a background theory other than QM is required to specify what these quantities
are, and hence what even should be derivable. The suspicion arises that Harrigan
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and Spekkens do have a possible background theory in mind, namely (not entirely
unlike Bell), a suitable prospective adaptation of pre-quantum physics. And in fact,
when we establish the connection to Bell’s theorem, the EPR argument, and the
Kochen-Specker theorem later, this will become all the more plausible.

The whole issue is treated, however, in a rather loose and intuitive manner by
Harrigan and Spekkens, and without any considerations of background theories. The
underlying intuition seems to be that there could be such a thing as an exhaustive
list of all natural properties pertaining to a system, i.e. “an élite minority of special
properties” a description in terms of which would “carve reality at the joints[. . . ].”
(Lewis 1983, p. 346) Such an assumption, of course, drags us deeply into the
metaphysics of natural kinds, properties, universals. . . and so forth, with all the
associated subtleties (e.g. Bird and Tobin 2015, for an overview of the natural kind-
debate). The completeness issue, in short, is quite non-trivial and much less innocent
than the casual writings of Harrigan and Spekkens make it appear.

These issues are issues of ontology, and we are driven to ask how ψ-epistemic
OMs fare w.r.t. the DOC. Now while the details depend on specific models, we can
still make some general remarks, given the above considerations. At least partly
and at least for the kinematics (virtually nothing is being said about the dynamics
in the debate), requirement (iii) is met in a rather trivial way: the quantum state is
simply a P/M-state—something to do with lab operations—, as explained above.
It does not figure in the underlying ontology. And the formal entities that contain
all the ontology are λ or λ and ξkM(λ), depending on the interpretation of the latter
(cf. below). Since these models assume that there are microsystems with definite
states (λ), these systems should be able to account for classical appearances by
mere composition, and requirement (i) is hence equally met in rather trivial way.
Point (ii), the relation between quantum and classical, is obviously tackled quite
generally in terms of epistemic restrictions: what appears to be ‘quantum’ is really
only ‘inaccessibly classical’. So up to the completeness issues, ψ-epistemic OMs
set a frame for an ontologically clear interpretation of QM in terms of missing
knowledge. But we will see that many difficulties arise in actually spelling out such
an ontology, in the context of concrete models.

There is another subtlety involved here, namely, that the assumption of ‘definite
states’ makes for a connection to the interpretive questions about probability that
we raised in interlude I. With Leifer (2014, p. 70) we already noted that “calling a
probability density ‘epistemic’ [. . . ] presupposes a broadly Bayesian interpretation
of probability[. . . ].” More precisely, the epistemic state, pρ̂(λ), is supposed to
represent “what can be known and inferred by observers.” (Harrigan and Spekkens
2010, p. 129; my emphasis—FB) This means that the ‘broad Bayesianism’ in
question cannot be radially subjective, because, as we saw in interlude I, that would
mean that agents would be largely at liberty to assign any probability they want
instead of being bound to ‘infer’ from evidence (observed frequencies). To use



132 4 Just a Matter of Knowledge?

Williamson’s coarse grained classification, the Bayesian view in question is at least
empirically based.9

All of this fits quite well with the general ‘objectivist flavor’ of the approach:
It presupposes that there is a mind-independent reality that determines, in a
rationally compelling way, how we must adjust our credences. And given the
above considerations on completeness, the hope underlying the construction of ψ-
epistemic models seems to be that there might be a future theory that allows us to
carve nature at its joints in a way that we can (more or less) understand, just as
classical theories were once taken to do. That this is ultimately hoped for is also
evidenced by the fact that the probabilities proposed here are all ‘classical’ in the
sense that they allow for a joint probability space for all the components of λ (or
rather: components of the values of λ). As is well known, such a joint probability
space does not exist for non-commuting observables in QM (e.g. Bub 1974, p. 35).

The epistemic state, to recall, is not the only probability density assumed in such
models though. Regarding the response function Harrigan and Spekkens (2010, p.
128) have it that “the model may be such that the ontic state λ determines only
the probability ξkM(λ) of different outcomes k for the measurement M .” (notation
adapted; my emphasis—FB) This use of “determines” rather smells like propensities
being involved, because a model in which the very same apparatus may respond
differently every time to the same kind of state but in such a way that at least
frequencies are foreseeable would exactly implement such propensities. The “may
be” in conjunction with the fact that Harrigan and Spekkens (2010, p. 129) also hold
that both “pρ̂(λ) and ξkM(λ) specify what can be known and inferred by observers”
(notation adapted; my emphasis—FB), however, tells a different story.

If ξkM(λ) is interpreted in terms of propensities, the latter statement is of course
trivially true as well. But by conversational implicature we infer from the quotes
that it is at least hoped for that ξkM(λ) turns out ‘just as epistemic’ as pρ̂(λ).

10 In any
such model, a Laplacian demon (cf. de Laplace 1814, p. 4; Gillies 2000, p. 14) could
avail himself of a completely deterministic description of reality taking precise note
of all micro-components, and ξkM(λ) would become obsolete.

These considerations obviously shift the debate towards questions of
(micro-)determinism, a point in favor of our comparison to intuitions underlying
classical theories. But the general accusation of assuming such determinism is
guarded against by the fact that the response function is allowed to play a non-
trivial role after all, and the central question of ψ-epistemic OMs remains one of

9In fact, in a concrete ψ-epistemic toy model investigated later, there will even be an equivo-
cation norm operative, whence it may even be seen as presupposing objective Bayesiansim in
Williamson’s sense.
10This reading is supported by further textual evidence: Harrigan and Rudolph (2007, p. 4),
for instance, concede that the response functions “could occur because of our failure to take
into account the precise ontological configurations of either [preparation or measurement]”; and
similarly Spekkens constantly refers to an “unknown disturbance” (my emphasis—FB) of the
system caused by the measurement in his 2007 paper, with obvious similarities to Heisenberg’s
original formulation of the microscope thought experiment.



4.2 Formal Revisions & ψ-Epistemic Models 133

microdefiniteness—of the very existence of true states λ that do not exhibit such
strange features as superposition or ‘unsharp properties’.

This, of course, connects to broader questions of realism as considered in
interlude I, because the assumption of such true states—any one of which, to
recall, is supposed to provide a “complete specification of the properties of a
system”—is obviously an expression of strong metaphysical realism. ψ-epistemic
models, however, are not naïvely realist in Norsen’s sense as long as the response
function is non-trivial, because then pre-existing intrinsic properties of systems are
not just passively revealed in measurements. By judging thusly we appear to be
disagreeing with Norsen (2007, p. 316), who thinks that naïve realism underlies all
non-contextual hidden variable models. But the apparent disagreement is simply
rooted in the understanding of ‘non-contextual’, as shall become clear later.

Moreover, since scientific methods are clearly endorsed here—a probability
calculus, higher order mathematics, and rough specifications of application to
experiment—these models certainly also express some sort of scientific realism.
But a remarkable thing to note is that this scientific realism is of a peculiar kind:
QM, the most well-confirmed mature theory is regarded as merely operational, and
its success is regarded to be in need of explanation ‘from the outside’, i.e. in terms
of the formalism of an entirely different theory.

It seems that scientific realism is at play here only selectively. But this imme-
diately raises the question of what the ‘selection criteria’ are. Consider e.g. Peters’
(2014, p. 377) understanding of selective scientific realism, who characterizes it as
the view “that not all the propositions of an empirically successful theory should
be regarded as (approximately) true but only those elements that are essential for
its success.” (my emphasis—FB) There is an obvious drawback to this reading
of ‘selective’, which Peters (ibid.) readily acknowledges: “It is [. . . ] not obvious
how a term like ‘essential’ is to be understood.” Plausibly, for the proponents of
ψ-epistemic OMs, an extra-empirical standard is at play in figuring out what is
essential for the success of a scientific theory: that it provide a somewhat intuitable
view of the world, ‘complete’ by standards close to common sense intuitions as
employed (in extended and modified form) in classical theories. Why else would
one read QM as merely operational and demand an explanation for its success?

The realism issues thus raised are of course philosophically non-trivial; but we
need to stress that they are also non-trivial for the particular discussion at hand,
because a fully-fledged (strong) metaphysical or scientific realism is not shared
across all interpretations of QM, not even all ‘epistemic’ ones. Leifer (2014, p. 72)
e.g. maintains that

it is important to distinguish two kinds of ψ-epistemic interpretation. The most popular
type are those variously described as anti-realist, instrumentalist, or positivist.[. . . ] The
second type of ψ-epistemic interpretation are those that are realist, in the sense that they
do posit some underlying ontology. They just deny that the wavefunction is part of that
ontology. Instead, the wavefunction is to be understood as representing our knowledge of the
underlying reality, in the same way that a probability distribution on phase space represents
our knowledge of the true phase space point occupied by a classical particle.
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As should be clear by now, we are so far only concerned with epistemic
interpretations of the second type in Leifer’s classification. ψ-epistemic models in
the sense of the OM approach will (mostly) serve as our paradigm example for such
an epistemic interpretation, since they constitute the most ‘up-to-date’ attempt. And
they also make possible a quite far-reaching discussion of limitations in terms of
formal results.

What we must first ask, though, is: Are there even any models which fit the
definitions above? Indeed, Harrigan and Spekkens provide examples of models
for each of their categories. To bring some substance to the discussion, we will
hence now consider two examples of ψ-epistemic models, one of which is formally
precisely suited to fit the definitions, the other one being conceptually more
elaborate and having more intuitive appeal. Both models have a limited domain of
application. But the first one is a perfectly fine example of how general ψ-epistemic
models can be constructed formally, and the second one for how more meaningful
ψ-epistemic models can be constructed when intuitions are allowed to play a role.
Both will ultimately help to understand the limitations of the project.

4.2.3 A Formal Example: The Kochen-Specker Model

The one model that Harrigan and Spekkens consider as an example of aψ-epistemic
model, which is hence of greatest interest here, is the so-called Kochen-Specker
model.11 As indicated above, the model is utterly formal, i.e. of low conceptual
value; it hardly serves to explain how QM is just a reflection of incomplete
knowledge of hidden true states. The model can be straightforwardly formulated
in the language of the OM approach, and it resembles in style other models such as
the ‘Bell model’ (e.g. Lewis et al. 2012) or Lewis et al.’s own one, which is just a
modified and generalized ψ-epistemic version of the former. The Kochen-Specker
model was originally devised by Kochen and Specker (1967) to make a general
formal point (namely the existence of a non-contextual hidden variable model in
two dimensions; cf. later). So recapitulating it under the same premise seems quite
appropriate.

As indicated above, the model is thus limited in scope; more precisely, it is only
concerned with systems describable by a two-dimensional Hilbert space (H = C

2)
of which we had introduced three examples above: spins, polarizations, and atoms or
molecules constrained to two possible (energy- or coarse-grained position-) states.
In the context of QIT these systems are usually referred to as qubits (quantum-bits),
in analogy to the bit as the fundamental unit of classical information theory (cf.
Nielsen and Chuang 2010, p. 13), which “corresponds to a single binary digit, or to
the answer to a yes/no question.” (Maudlin 2011, p. 153)

11We will treat their exposition of it as the only relevant reference for our purposes.



4.2 Formal Revisions & ψ-Epistemic Models 135

Fig. 4.2 Exemplary Bloch
sphere for spins. r1
corresponds to a pure state,
r2 to a mixed one

|↑z〉

|↓z〉

|↑x〉

|↓x〉
|↓y〉 |↑y〉

r1

r2

To describe such qubits, it is customary to make use of the so-called Bloch sphere
(cf. Fig. 4.2). To understand this conceptual tool, think of a three dimensional (solid)
sphere of radius one. A spin-up state, which we have represented so far by |↑z〉, or

more concretely by a 2-entry column vector
(

1
0

)
in C

2, is then associated with a unit

vector pointing in positive z-direction, the sphere’s north-pole. The spin-down state
|↓z〉 is accordingly represented as a unit vector pointing in (−z)-direction.

This is a quite natural, intuitive way to picture spins, given the treatment of
intrinsic angular momenta in classical physics. One might hence wonder, at this
point, why spins or qubits are not exclusively represented in this fashion. But
subtleties arise as follows: Spins, as represented by elements of C2, are transformed
or ‘rotated’ by unitary operators that can be defined in terms of some unit vector

n and an angle θ via Û (n, θ) = ei
θ
2 σ̂ ·n, with σ̂ the vector of Pauli matrices. This

is phrased in mathematicians terms as the Pauli matrices being the infinitesimal
generators of the (transformation) group SU(2) of unitary 2 × 2 matrices with
determinant 1. The group of transformations which rotate arrows inside the sphere
is the group SO(3) of 3 × 3 matrices A with det(A) = 1 and AT = A−1, and the
group homomorphism is 2 to 1 (e.g. Chen et al. 2007, p. 524). The crucial point
being that transformations of spinors by elements of SU(2) induce a phase of −1
for the choice θ = 2π , whereas a rotation of an arrow by 2π gives back the original
configuration.

For a single qubit this can be regarded as an overall phase with no observable
consequences, so no harm comes from the identification. More technically speaking,
this is expressed by the fact that one finds an isomorphism between the quotient
group SU(2)/{1,−1} and SO(3) (e.g. Chen et al. 2007, p. 524), i.e. if one identifies
states ± |ψ〉. Still, for composite systems the analogy breaks down due to empirical
consequences of the relative phase when ‘rotated’ and ‘non-rotated’ systems are
joined together and their states are superposed (cf. Kiefer 2003, p. 44; Werner
et al. 1975). The temptation to think of spins in terms of little pointers which
indicate the direction of rotation of some tiny charged sphere (hence giving rise
to a magnetic field) should vanish in virtue of this disanalogy, and the difference in
transformation behavior is sometimes also advanced as an invocation of the ‘decided
nonclassicality’ of the concept of spin (cf. Sect. 2.1.2).
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Now as for the use of the Bloch sphere in the description of the Kochen-Specker
model, recall how we introduced the Pauli matrices to describe observables on C

2.
Incidentally, any density operator on the space C

2 can also be defined in terms of
linear combinations of the Pauli matrices and the unit matrix 1, which should not
come as much of a surprise in the light of how operators representing observables
spectrally decompose into eigenprojectors (e.g. Appendix A). In fact, these four
matrices define a basis of the (abstract vector-)space of complex 2 × 2 matrices,
equipped with a scalar product 1

2 Tr(ÂB̂) (cf. Heinosaari and Ziman 2012, p. 62;
Shankar 1994, p. 383).

In (2.19), we also demonstrated how to construct a spin observable for an
arbitrary direction via σ̂ ·nθϕ . But since any direction of 3D space can be defined in
terms of the polar and azimutal angles, θ, ϕ, this equally amounts to just giving an
arbitrary linear combination of the three Pauli matrices (for fixed θ, ϕ). Thus using
pointers r that lie inside the three-dimensional (solid) sphere, a general description
of a density operator in C

2 can be given as

ρ̂ = 1

2
(1+ σ̂ · r). (4.2)

The factor 1
2 here stems from the fact that this operator can then be shown to

have eigenvalues μ± = 1
2 (1 ± |r|), which are μ+ = 1 and μ− = 0 for unit

vectors (|r| = 1) (cf. Heinosaari and Ziman 2012, p. 63). Hence 1
2 figures as a

normalization, and unit vectors can be used to represent pure states, whereas vectors
with a norm smaller than 1 represent mixed states (cf. Fig. 4.2).

In this representation, we can obtain the Born-probability for pure states and
projective measurements by

Tr(ρ̂ψ P̂φ) = Tr

(
1

2
(1+ σ̂ · nψ)1

2
(1+ σ̂ · nφ)

)
=

= Tr

(
1

4
(1+σ̂1nψ1+σ̂2nψ2+σ̂3nψ3)(1+σ̂1nφ1+σ̂2nφ2+σ̂3nφ3)

)
=

= 1

4

(
Tr(1)+ Tr(1nψ1nφ1)+ Tr(1nψ2nφ2)+ Tr(1nψ3nφ3)

) =

= 1

2
(1+ nψ · nφ) (4.3)

where nψ corresponds to a unit vector in ψ-direction, and nψj is its j -th compo-
nent.12

12We have here appealed to a few properties such as Tr(Â+ B̂) = Tr(Â)+ Tr(B̂), Tr(1σj ) = 0,
and σkσj = 1 · δkj , j, k ∈ {1, 2, 3} (cf. Heinosaari and Ziman 2012, p. 62 ff.). These properties are
not difficult to prove; so the interested reader is encouraged to prove them herself.
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In the Kochen-Specker model, the points on the surface S
2 of the unit (Bloch)

sphere are used as the state space�, whence unit vectors nλ can be used to represent
true states λ. The epistemic state is given by pψ(λ) = 1

π
�(nψ · nλ) nψ · nλ with �

the Heaviside step function (cf. Appendix A), and the response function by ξφM(λ) =
�(nφ · nλ). We can immediately see that the model is ψ-incomplete; pψ(λ) is not
a Dirac-δ.

Now one can demonstrate that PrψM(φ) =
∫

dλpψ(λ)ξ
φ
M(λ) = 1

2 (1 + nφ · nψ)
which is exactly the Born probability Tr(ρ̂ψ P̂φ), as given by (4.3). The calculation
is a little tedious though, and we refer the reader to De Zela (2008, p. 6) or Leifer
(2014, p. 14 ff.) for proofs. So the model is indeed an OM for QM in C

2, as it
reproduces the quantum probabilities in the required fashion. Moreover, for two
non-orthogonal states ψ and φ it holds that pψ(λ)pφ(λ) > 0, as can easily be seen
from the definition of the epistemic states. Hence this is in fact a ψ-epistemic OM.

But beyond this, the model is of little conceptual value: It does not help much in
clarifying how the probabilities arise and come to distribute in the way they do. This
is the case with many models discussed in the debate. Another qubit model which
additionally includes transformations and at least prima facie comes much further
in offering clarification on a conceptual level is Spekkens’ (2007) toy model, which
we will now turn to.

4.2.4 Gathering Evidence: Spekkens’ Toy Model

What we here call a ‘toy model’ was originally developed by Robert Spekkens
(2007) under the name “toy theory”, but it can be made to fit into the OM approach,
as shown by Leifer (2014, p. 84) and below. The toy model is also, like the
Kochen-Specker model, only concerned with qubits, but can be expanded to include
systems of multiple, coupled qubits. The analogues of qubits in the toy model are
called elementary systems (cf. Spekkens 2007, p. 3). For these elementary systems,
Spekkens postulates four possible true states, simply denoted by {1, 2, 3, 4}. There
is a ‘foundational principle’ at the heart of this model, called the knowledge balance
principle:

Knowledge Balance Principle (KB) If one has maximal knowledge, then for
every system, at every time, the amount of knowledge one possesses about the
[true—FB] state of the system at that time must equal the amount of knowledge
one lacks. (Spekkens 2007, p. 3)

This, of course, immediately raises the question of how to measure knowledge.
To provide a measure, Spekkens first defines what he calls canonical sets (cf. ibid.):

Definition (Canonical set) A canonical set is a set of yes-no questions that is
sufficient to fully specify the true state, and that has a minimal number of elements.
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This means that if one only knows that the state of the system under investigation
is in the set {1, 2, 3, 4} and one wants to find out in which of the states it actually
is, one could ask “Is it in state 1?”, “Is it in state 2?”, and so forth. Or one could be
smart instead, and just ask, say, “Is the system’s state in the set {1, 2}?”, and “Is the
system’s state in the set {2, 3}?” Two nos will give assurance that it is in state 4, two
yeses that it is in 2, and one yes and one no that it is either in 1 or 3, depending on
the order. Now the amount of knowledge one has is defined within the toy model as
“the maximum number of questions for which the answer is known, in a variation
over all canonical sets of questions.” (ibid.).

(KB) then dictates that one can always only know half the answers in such a set,
and this is somewhat reminiscent of an epistemic reading of the uncertainty relations
(Eq. 2.22). Applied to physical systems, e.g. once more spinful particles traveling,
say, in z-direction, we can understand it such that “if we know the x-coordinate
with certainty then we cannot know anything about the y-coordinate.” (Leifer 2014,
p. 73)

This immediately implies that the epistemic states of simple systems in this
model must be distributions which assign probability 1/2 to two states, and
probability 0 to two others. That is, we can always know that the state is in a subset
like {1, 2} but nothing more. To elaborate, consider the following six quantum states,
which are the ones that may be prepared and measured in the model:

|0〉 , |1〉 ,

|+〉 = 1√
2
(|0〉 + |1〉), |−〉 = 1√

2
(|0〉 − |1〉),

|+i〉 = 1√
2
(|0〉 + i |1〉), |−i〉 = 1√

2
(|0〉 − i |1〉).

These could, of course, be the spin states for z, x, and y, or equally the vacuum
state and one excited mode,13 and linear combinations of them prepared by suitable
equipment. Accordingly, our epistemic states will be of the form p

P
(λ), λ ∈

{1, . . . , 4}, P ∈ {0, 1,+,−,+i,−i}.
Since we are only concerned with a discrete set of possible true states, the

probability distributions can be represented by n-tuples (or, if desired, column-
vectors). This also means that condition (4.1) which connects the QM probabilities
with the probabilities in the OM must be changed to a sum:

Tr(Êkρ̂) =
∑
λ∈�

ξkM(λ
′) (λ′, λ)p

P
(λ). (4.4)

13One should not generally confuse |0〉 with the vacuum state in this context though. 0 is merely a
label here, reminiscent of the binary bit-language of 1s and 0s.
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Note that we can here equally use the vector formula for the Born probabilities,
as we will be concerned only with pure states and projective measurements.
Spekkens (2007, p. 4) uses a different, convenient notation for the epistemic states,
which we will also make use of in what follows. We hence make the following
identifications14:

p0 = ( 1
2 ,

1
2 , 0, 0)� 1 ∨ 2, p1 = (0, 0, 1

2 ,
1
2 )� 3 ∨ 4,

p+ = ( 1
2 , 0, 1

2 , 0)� 1 ∨ 3, p− = (0, 1
2 , 0, 1

2 )� 2 ∨ 4,

p+i = (0, 1
2 ,

1
2 , 0)� 2 ∨ 3, p−i = ( 1

2 , 0, 0, 1
2 )� 1 ∨ 4,

where we have used curvy arrows to denote the correspondence between different
notations, and boldface to indicate that the 4-tuples may be treated as ‘probability
vectors’.

As for the response functions, these turn out to be deterministic. For instance

Pr|0〉+/−(+) = | 〈+|0〉 |2 = 1/2
!= ∑

λ∈�
p0(λ)ξ

+
+/−(λ), where ‘+/−’ refers to the

measurement associated with outcomes + and −. But this must mean that ξ++/−(λ)
has to give 1 for the first of the λs, and cannot also give 1 for the second one.

Equally,
∑
λ∈�

p1(λ)ξ
+
+/−(λ)

!= | 〈+|1〉 |2 = 1/2,
∑
λ∈�

p+(λ)ξ++/−(λ)
!= | 〈+|+〉 |2 =

1,
∑
λ∈�

p−(λ)ξ++/−(λ)
!= | 〈+|−〉 |2 = 0, and so forth. All in all, we get ξ++/− =

(1, 0, 1, 0), so that the ξ for outcome+mirrors the p which is conditional on+, but
with 1s instead of 1

2 s. All the ξs can be worked out to look this way.15 So ξ actually
does not do any real work here at all, and could be omitted altogether.

With this simple setup, Spekkens is prima facie able to reproduce a bunch of
quantum phenomena. To this end, measurements are assumed to be “reproducible
in the sense that if repeated upon the same system, they yield the same outcome.”
(Spekkens 2007, p. 9; emphasis in original.) In other words: they are like the projec-
tive measurements of QM. And since all relevant quantum outcomes are associated
with an epistemic state that is assigned in consequence of the measurement, the QM
measurements mirrored or modeled are also selective. But as noted before, due to
(KB) measurements cannot reveal the true state λ, but can only change what one
knows about the system.

Before any measurement one is considered, in the model, to be in a state of total
ignorance about the λ ∈ �, i.e. a state where one only knows that λ ∈ {1, 2, 3, 4}.

14Actually, Spekkens lets quantum states directly correspond to the probability distributions; but
we are here using the OM framework, whence they should be representative of preparations P
instead.
15Note that it is not in contradiction to the Kolmogorov axioms that the entries in ξ sum up
to 2 instead of 1, as ξ expressed in this way is variable in λ, i.e., in the true state on which
it is conditional, not in the outcome. Only the sum over all outcome probabilities, given fixed
parameters (λ,M) must sum to one.
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Accordingly, one’s epistemic state is p(λ) = 1/4,∀λ ∈ �, i.e. p = ( 1
4 ,

1
4 ,

1
4 ,

1
4 )

or 1 ∨ 2 ∨ 3 ∨ 4 (Spekkens 2007, p. 4).16 Upon measurement, however, p will be
changed so that one knows one of the (symbolic) disjunctions 1 ∨ 2, 3 ∨ 4, 1 ∨
3, . . . This is represented in the model as the measurement ‘inducing a partition’
(cf. Spekkens 2007, p. 9). But frankly speaking, it amounts to a probability update
reminiscent of Bayesian conditionalization. In fact it can even be reconstructed in
terms of Bayesian conditionalization perfectly well.

To see this, let us say that some experimenter has no prior knowledge about the
true state of a system. Equivocating between the alternatives, her epistemic state
should hence be p = ( 1

4 ,
1
4 ,

1
4 ,

1
4 ). Upon measuring the value + (say), she will

instantaneously think, however, that the system must be in one of the states 1 or 3,
but she can still give no preference to any of the two. Thus her knowledge about the
system would have to be represented as p+ = ( 1

2 , 0, 1
2 , 0).

Now using the parameters of the model, we can reconstruct this situation
in terms of Bayesian conditionalization as follows. Given her knowledge of the
measurement, the experimenter will believe beforehand that the result will be
either + or −. So equivocating between these possibilities, she will assign priors
p(+) = p(−) = 1/2. Given also the nature of the response function, there
will only be four possible joint events from � × {+,−}, i.e. of true state and
measurement result that can jointly occur in consequence of the measurement,
namely (1,+), (3,+), (2,−), and (4,−). Equivocating between these as well, she
will assign 1/4 to all of them and 0 to all other events in � × {+,−}. Then
according to Bayesian conditionalization, her beliefs after measuring + will be
p+(1) = p(1|+) = p(1,+)

p(+) = 1/4
1/2 = 1

2 , p+(2) = p(2|+) = p(2,+)
p(+) = 0

1/2 = 0 and

so forth. Hence all in all the change is p = ( 1
4 ,

1
4 ,

1
4 ,

1
4 ) �→ p+ = ( 1

2 , 0, 1
2 , 0). This

is the picture of what happens in a measurement provided by the model’s formal
setup.

It is important to note that (KB) is restricted to the knowledge about a system
at a given time. This is so because given that one knows 1 ∨ 2, a measurement
which partitions � into {{1, 3}, {2, 4}} will lead to definite knowledge of the state
of the system prior to the measurement; in case one measures 1 ∨ 3, the state
must have been 1, in case of 2 ∨ 4, it must have been 2. The fact that one
still lacks complete knowledge about the system’s state after the measurement is
accounted for by an “unknown disturbance” of the state, caused by the measurement
(Spekkens 2007, p. 10). This is certainly strongly reminiscent of the ‘disturbance
interpretation’ of the uncertainty relations in Heisenberg’s electron microscope.

Given these prerequisites, the first remarkable achievement of the model is
that these measurements can be demonstrated to exhibit non-commutativity, just
as quantum measurements do. Consider two measurements A and B inducing
partitions {{1, 2}, {3, 4}} and {{1, 3}, {2, 4}} respectively, and performed on a system
in state 1∨ 2. Performing the A-measurement first will keep the system in 1∨ 2 and

16This is the equivocation norm that we had claimed was operative in the model.
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Û = 1√
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(
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Fig. 4.3 (a) Is a regular Bloch sphere for the qubit states, (b) is an analogous diagram for the
epistemic states. Two of these can be combined by operations +1, . . . ,+4 to yield one of the
respective other states, just as two quantum states can be superimposed to yield a third one. In (a),
transformations are represented by unitary operators (which can be mapped to rotations), in (b)
permutations are used instead (the elements of the upper row are replaced by those immediately
below them) (Cf. Spekkens 2007, p. 6 for a similar illustration)

theB-measurement will then yield 1∨3 and 2∨4 with equal frequencies. Performing
them the other way around, the B-measurement will first update the epistemic state
to either 1∨ 3 or 2∨ 4; but now the A-measurement will yield 1∨ 2 and 3∨ 4 with
equal frequency. This could be viewed as a model of the non-commutativity of spin
measurements along orthogonal axes in Stern-Gerlach experiments, as discussed in
Sect. 2.1.2.

The next interesting achievement of the toy model is the (partial) reproduction
of quantum superposition. This is accomplished by defining different rules for
combining the epistemic states.17 For instance, we could combine two states such
as 1 ∨ 2 and 3 ∨ 4 by taking the true states of lowest index from each and
combining them into a new state, i.e. 1 ∨ 3. This could be symbolized by writing
(1 ∨ 2) +1 (3 ∨ 4) = 1 ∨ 3. Equally, we could take the true states of highest index
to obtain 2 ∨ 4, which could be written as (1 ∨ 2) +2 (3 ∨ 4) = 2 ∨ 4. Taking one
of higher and one of lower index from both epistemic states respectively will yield
two further possibilities; +3 could be chosen to be high-low, and +4 to be low-high
(cf. Spekkens 2007, p. 6). With these four combination rules, the interrelations of all
six quantum sates which we have considered in this context can be mirrored, which
is best illustrated in terms of Bloch spheres (or Bloch sphere-like diagrams), as in
Fig. 4.3.

There are, however, a few subtleties about this analogy which lead into a first
kind of trouble. Combining, say, (2 ∨ 3) +4 (1 ∨ 4) = 2 ∨ 4 in the toy model
should, according to the Bloch sphere-image, be analogous to superposing |+i〉
and |−i〉 to get |−〉 in QM, i.e. developing |−〉 = 〈+i|−〉 |+i〉 + 〈−i|−〉 |−i〉 =

17For completeness’ sake, note that Spekkens (2007, p. 5) also introduces a notion of convex
combination for the model so that 1 ∨ 2 ∨ 3 ∨ 4 comes out as the toy-analogue of a completely
mixed state which can be decomposed into 1 ∨ 2 and 3 ∨ 4 or 1 ∨ 3 and 2 ∨ 4 or. . .
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1+i
2 |+i〉 + 1−i

2 |−i〉. It turns out, however, that combination rules +3 and +4 have
an ordering sensitivity, so that (1 ∨ 4) +4 (2 ∨ 3) = 1 ∨ 3 �= (2 ∨ 3) +4 (1 ∨ 4).
One can model this situation instead by superimposing 1√

2
(|+i〉 − i |−i〉), which is

equal to e−i π4 |−〉, because

e−i
π
4 = cos

(
−π

4

)
+ i sin

(
−π

4

)
= cos

(π
4

)
− i sin

(π
4

)
= 1√

2
(1− i),

so that

e−i
π
4 |−〉 = 1√

2
(1− i) |−〉 = 1√

2

(
1√
2
(|0〉 − |1〉)− i

1√
2
(|0〉 − |1〉)

)
=

= 1√
2

(
1√
2
(|0〉 + i |1〉 − i |0〉 − |1〉)

)

= 1√
2

(
1√
2
(|0〉 + i |1〉)− i

1√
2
(|0〉 − i |1〉)

)
=

= 1√
2
(|+i〉 − i |−i〉)

This is just |−〉 up to a(n empirically meaningless) global, overall phase. But the

superposition rule thus also induces a relative phase of 3π
2 (ei

3π
2 = −i) between

the two states superimposed, which accounts for the ordering sensitivity and, as will
become clear a little below, does matter empirically. In fact, the four combination
rules above can all be understood in terms of quantum superpositions with a relative
phase, and Spekkens (2007, p. 7) makes the following identifications:

+1 � +ei·0, +2 � +eiπ ,
+3 � +ei π2 , +4 � +ei 3π

2 .

These identifications, however, reveal the subtleties mentioned above, and show that
the analogy between combinations of epistemic states and quantum superpositions
is not—and cannot be made—perfect. In the given choice, one obtains (1 ∨ 3) +3
(2∨ 4) = 2∨ 3 and (1∨ 3)+4 (2∨ 4) = 1∨ 4, but 1√

2
(|+〉 + ei π2 |−〉) = ei

π
4 |−i〉

and 1√
2
(|+〉 + ei

3π
2 |−〉) = e−i π4 |+i〉, which, given the identifications between

combination rules and epistemic- and quantum states, should be exactly the other
way around. Exchanging identifications in the latter case will always only shift the
problem (cf. Spekkens 2007, p. 7). According to Spekkens (ibid.), “[t]his curious
failure of the analogy shows that an elementary system in the toy theory is not
simply a constrained version of a qubit.”

So here the model already fails to correctly reproduce the QM toolkit from
epistemic restriction, and is bound to do so. This need not be seen as a strong
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objection yet, because it should not be required that any successful alternative to QM
must mirror the quantum formalism isomorphically; a successful replacement of, or
alternative to QM should only be required to preserve QM’s successful predictions.
If we construe the model, however, as a means to reduce the (exact) rules of QM, in
a limited domain, to a theory about incomplete knowledge, then it must still appear
as a drawback that the model fails to do so.

Be that as it may, there are further interesting phenomena which the toy model
can reproduce to some extent, and to introduce a particularly interesting one, we
should consider how state transformations are represented in the model. We have
seen that transformations in QM are represented (mostly) by unitary operators18; the
time evolution operator, the spatial propagation operator, and the (pre-)measurement
operator discussed in the context of the measurement problem being decisive
examples. In the toy model, transformations are represented by permutations of the
true states in an epistemic state. These correspond to resamplings of the probabilities
in the epistemic state which, in the present case, in turn amount to changes in
knowledge. This means that the true state of a system does not have to change at
all when the epistemic state of an observer does, i.e. that one may always find out
some new piece of information even though the system this information pertains to
remains entirely unchanged.

The analogy between permutations and unitary transformations can be visualized
in a Bloch representation where, as we have seen, unitaries correspond to rotations
up to an overall phase, and permutations in the toy-analog of the Bloch sphere will
equally appear as rotations by integer multiples of π/2 (cf. Fig. 4.3b). But more
interestingly, permutations can be put to use in the reproduction of interference
examples within the toy model. Given what we have said about the meaning of
permutations as toy-replacements of unitaries, this, if successful, should obviously
count as a major achievement of the model: quantum interference, Feynman’s “only
mystery”, is explained away in terms of mere ignorance about the underlying reality
and the dynamics of our knowledge about it.

But can these toy examples of interference count as successful? This is a
subtle question which will require considerable discussion below. First consider
the following example, based on a setup called Mach-Zehnder interferometer
(Fig. 4.4), a widely used tool of quantum optics which is also frequently discussed
in introductory level books to explain many quantum peculiarities (e.g. Albert 1992,
p. 2 ff.; Baaquie 2013, p. 154; Jaeger 2007, p. 20 ff.; Thaller 2005, p. 184 ff.).

Imagine a beam of photons which is of very low intensity, so that only one photon
at a time enters the setup. These photons are moving one by one from a source (S)
towards a device called a beam splitter (BS1), which can be implemented by a half
silvered mirror, and has the effect that each individual photon either passes right

18In fact, unitary operators together with antiunitary ones exhaust the state-automorphisms or
symmetries on the set of all density matrices on a separable Hilbert space (e.g. Heinosaari and
Ziman 2012, pp. 29 and 92 ff.). Antiunitary operators, however, “can describe only abstract
symmetries (e.g. time inversion), not physically realizable symmetries such as rotations or
translations.” (Heinosaari and Ziman 2012, p. 91)
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Fig. 4.4 Mach-Zehnder
interferometer with an
optional phase

θ = π

d1

d2

S

BS1 BS2

through or gets reflected. In case the beam of photons is incident on BS1 at an angle
of 45◦ and the beam splitter is fabricated in an appropriate fashion, this will result in
a 50/50 chance for each photon of either moving right through the mirror or being
reflected at a right angle to its original trajectory. One can also in principle make
sure that there is always only one photon in the setup by inserting detectors in both
arms, right after BS1, either of which will then (ideally) always give off some signal
indicating the presence of a photon, but (ideally) never both at the same time.

Neglecting polarization etc., we can model this situation as a simple spatial qubit,

with one state the ‘moving up state’ |↗〉 .=
(

1
0

)
, and the other one the ‘moving down

state’ |↘〉 .=
(

0
1

)
. Now take a photon prepared in the up state |↗〉. The beam splitter

BS1 will change the state into a quantum superposition of moving up and moving
down, which can be represented (in our chosen basis) by a unitary matrix

ÛH
.= 1√

2

(
1 1
1 −1

)
, (4.5)

also called the Hadamard gate (cf. Thaller 2005, pp. 176 and 186). It is easy to
verify that

ÛH |↗〉 = 1√
2
(|↗〉 + |↘〉) =: |ψ〉 . (4.6)

Imagine now that behind each beam of photons emanating from BS1 there are
mirrors (indicated by the thick black lines in Fig. 4.4), so that both paths any
single photon could take run towards one another again. We can represent the
transformation effected by the mirrors by the σ̂x Pauli-matrix, since Pauli matrices
are not only Hermitian but also unitary. σ̂x will only exchange the flying up- and
down-components of |ψ〉 and hence essentially leave it untouched:

(
0 1
1 0

)
1√
2

(
1
1

)
= 1√

2

(
1
1

)
.

Now we could also insert an ‘obstacle’ into one of the paths, with the effect
of shifting the phase of a photon on it (or ‘delaying the wave’, in this beloved
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metaphor).19 Let us say that the phase shifter is inserted in the lower path but after
the mirrors, so that it will only affect the flying-up part of the spatial superposition
state. If we choose θ = π as our phase, we will obtain a transformation which can
be represented by the matrix

�̂(θ)
.=
(
eiθ 0
0 1

)
θ=π=

(−1 0
0 1

)
,

(which is just (−1) · σ̂z) so that we get

�̂(π) |ψ〉 .=
(−1 0

0 1

)(
1√
2

1√
2

)
=

(− 1√
2

1√
2

)
.= 1√

2
(|↘〉 − |↗〉) =: ∣∣ψ ′〉 . (4.7)

But in case we insert a second beam splitter at the point where the two paths cross
(BS2 in the figure, and again represented by ÛH as in (4.5)), the photon described
by

∣∣ψ ′〉 will experience a change as

ÛH
∣∣ψ ′〉 .= 1√

2

(
1 1
1 −1

)(− 1√
2

1√
2

)
=

(
0
−1

)
.= − |↘〉 . (4.8)

That is: our simple qubit model predicts that we will always find a down moving
photon in this setup, which has picked up an unobservable phase of π (eiπ = −1).

Computing the probability for detecting an up- or downward traveling photon
at the end of this setup is, of course, | − 〈↗|↘〉 |2 = 0 and | − 〈↘|↘〉 |2 = 1.
We now also see why relative phases between two kets in a superposition state do
matter: Here the phase is entirely responsible for the resulting behavior at BS2,20

since without it we would instead have

ÛH |ψ〉 .= 1√
2

(
1 1
1 −1

)(
1√
2

1√
2

)
=

(
1
0

)
.= |↗〉 , (4.9)

i.e. only photons moving up at the end of the setup.
Whether the predictions of this simple model are essentially correct could be

checked by installing detectors (d1 and d2 in Fig. 4.4) which would amplify the
energy deposited by incoming photons so as to give off a humanly perceivable signal
(e.g. a click or the increase of a number on some electronic counter’s display). With

19Such a phase shifter can, for instance, be implemented by a piece of matter with a refraction
index different from that of air, in which light would travel at an altered velocity (e.g. Walker et al.
2012, p. 1050).
20Note that we have assumed both arms of the interferometer to be of equal length, so that none
of the two states can pick up a phase due to a spatial delay. In fact, the spatially induced phase
difference is what accounts for the interfence pattern in the double slit experiment (Sect. 2.1.1).
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the phase shifter in place this would (ideally) mean only detections in d2 and without
it (ideally) only in d1. And indeed, the successful execution of such experiments is
reported in the literature, for instance by Grangier et al. (1986) where the predictions
are confirmed quite clearly.21

Since we assumed that only one photon at a time enters the setup, it seems
surprising that it should matter to photons traveling along the upper path whether
there is a phase shifter in the lower one. The effect observed here hence constitutes
another example of single particle quantum interference, as in the advanced double-
slit setups discussed in Sect. 2.1.1.

But, as was suggested above, the example can be reconstructed entirely within
the toy model by appeal to permutations instead of unitary matrices. The simplest
type of permutation is a swap of two elements in some ordered n-tuple (the
epistemic state in our case, being a 4-tuple of probabilities), and we will describe
all permutations occurring in the example in terms of such swaps here. Thus, let
(jk) represent the swap of elements j and k in an n-tuple. Then in the toy model
we start out with 1 ∨ 2 � p↗(λ) as the epistemic state corresponding to the
preparation of |↗〉 (= |0〉, accroding to the formerly used nomenclature). The first
beam splitter is represented by a permutation (23), which results in 1∨ 3 (i.e. 3 will
now be assigned the probability previously assigned to 2, which is 1

2 ). The mirrors
can be represented by (13), yielding 3 ∨ 1 = 1 ∨ 3, so that not much happens here,
just as in the QM treatment. In case the phase shifter is in, this can be modeled as a
permutation corresponding to two successive swaps (12) (34) which then yield 2∨4.
And the second beam splitter will again correspond to (23), so that the final state is
3 ∨ 4. But this distribution is the one corresponding to the quantum sate |1〉 = |↘〉
so that the quantum predictions are indeed preserved. Equally, if the phase shifter is
not inserted, this means that the permutation (12) (34) is left out, whence 1 ∨ 3 will
just be transformed into 1 ∨ 2 at the second beam splitter, and we obtain the state
that we started off with, again just as in QM.

All of these swaps can, of course, be represented also in the form of transforma-
tion matrices, as indicated in formula (4.4). In particular, (23) on 1∨ 2, say, may be
written as

 (23)p
T↘ =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
2
1
2
0
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
2
0
1
2
0

⎞
⎟⎟⎠ � 1 ∨ 3, (4.10)

21In fact, varying the phase somewhat more than just θ ∈ {0, π}, one can appeal to probabilities of

detection in either d1 or d2, where (say) Prψθx (d1) = | 〈↗|ψθ 〉 |2 = cos2( θ2 ) for |ψθ 〉 := 1
2

(
(1 −

eiθ ) |↘〉 + (1 + eiθ ) |↗〉
)

, as results from the setup with a general phase shift. One can equally

use a difference in path length, as mentioned in Footnote 20, and this is what Grangier et al. (1986)
actually did to confirm that the number of counts would conform to the predicted cos2-regularity
(cf. their p. 178).
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and the probability (say) of obtaining M-state |↗〉, given P-state |↘〉 and transfor-
mation  (23) as above (effected by BS1) can be computed as

ξ
↗
M (23)p

T↘ = (0, 0, 1, 1)

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
2
1
2
0
0

⎞
⎟⎟⎠ = 1/2, (4.11)

(where M = {↘,↗}). The entire example can be rewritten in this fashion
(sandwiching matrices between rows and columns) which looks strikingly similar
to our matrix representation of the original quantum example.

So the toy model can prima facie reproduce interference examples with the aid
of resamplings of probability distributions by permutations of state labels, and such
permutations can result in the toy-analog of certain superpositions just as (unitary)
QM transformations can result in the corresponding quantum superpositions. We
have here considered only a limited example with a certain fixed phase, but a
mathematical generalization of Spekkens’ work exists (Garner et al. 2013) which
can also handle arbitrary phase arguments in terms of probability vectors and
transformation matrices. This achievement has lead several authors to conclude that
“a whole host of Mach-Zehnder interferometry experiments can be qualitatively
reproduced by the theory[. . . ].” (Leifer 2014, p. 79; cf. also Hardy 2013, p. 3 or
Fuchs 2014, p. 388 for similar judgments)

“But hold on!”, you may interject, “How can a lack of knowledge account for the
fact that what I do in the lower arm of the interferometer will influence all photons
in the setup, even if they take the upper route?” And as well you should. We have
here rather ‘blindly’ applied the formal tools of the toy model, which then appeared
to nicely mirror some features of QM. But that permutations can be made to look
like unitary operations on qubits is a long shot from accepting that resamplings of a
probability distribution, a formal representation of knowledge on a Bayesian view,
can possibly account for what goes on in a Mach-Zehnder interferometer. How is it
that our knowledge should be affected by the putting in of the phase shifter? Why
should it be affected in this way?

More precisely, in any reasonable model where we can talk about something
taking this or that route, the true states should be representative of local degrees of
freedom of systems located somewhere in the setup. Hence many of the true states—
those representing something moving through the upper route—should, for all we
know, not be affected at all, whence possibly neither should our knowledge of them.
While we had claimed above that permutations can generally amount to changes
in knowledge about the true state of a system without real changes in this very
state, in the present case an appeal to this fact seems far fetched: putting in a phase
shifter physically alters the setup, and any changes in the statistics would of course
intuitively result as an effect of a change in the true states of the systems affected
by this. Building the example bottom-up, we would certainly not have guessed that
putting in a phase shifter must result in interference, in case only one photon enters
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the setup. It is only background knowledge of QM and the confirming experiments
that allows one to concoct a toy model this way, and this leaves us without any
explanation as to what is going on in these experiments.

While Spekkens (2007, p. 2) claims to develop the toy model in order to “identify
phenomena that are characteristic of states of incomplete knowledge regardless of
what this knowledge is about”, this entire toy-interference example is hence in
conflict with the overall aim of the OM approach (as would be others like it):
to provide an explanation of the operational/empirical success of QM. What do
1, 2, 3, 4 represent? How are they affected by the setup in such a way that the
kind of probability update exemplified above is indicated? How are local degrees
of freedom in any one path represented in the model and why should we accept the
kind of ‘nonlocal’ probability update of the epistemic state 1∨3, jointly representing
everything that can be said (known/inferred) about the goings on in both arms

In fact, this need for explanation seems to be widely acknowledged, whence
there is a kind of (ex post) explanation out there, discussed e.g. in Spekkens (2008),
Hardy (2013), and Leifer (2014). But we will only be able to assess this explanation
properly, and then also demonstrate difficulties with it, when we concern ourselves
more deeply with questions of locality later. So we shall defer the discussion to the
end of this chapter.

We should now also take a look at the combined states of two (or more) simple
systems as provided by the model. Spekkens represents the simultaneous occurrence
of two true states, on two distinct systems a, b respectively, simply by a (symbolic)
conjunction, which we here choose to symbolize by 1(a) ∧ 2(b), say, for true state
1 pertaining to system a and true state 2 pertaining to system b.22 Of course having
such an epistemic state is prohibited by (KB) since it would correspond to complete
knowledge of the true states of both systems. But combinations of epistemic states,
i.e. states of the form [j (a) ∨ k(a)] ∧ [�(b) ∨ m(b)], with j, k, �,m ∈ �, and
j �= k, � �= m, are of course possible. These mimic simple product states of QM for
two separate systems, such as |ψ(a)〉 |φ(b)〉 (the bracketed upper index referring to
the respective system here).

A second possibility are states of the form [j (a)∧k(b)]∨[�(a)∧m(b)]∨[n(a)∧
o(b)] ∨ [p(a) ∧ q(b)] with j �= � �= n �= p, k �= m �= o �= q, and all these letters
still representing numbers from the set {1, 2, 3, 4}. I.e.: it could be known that both
systems are in the same state, but not in which state. Or it could be known that both
are in different states, related by a certain specified permutation, but not which is in
which. States of this form are supposed to mimic entangled states and, prima facie,
they do capture the essence of such states quite well. This will become evident from
the following example.

Take two systems which have been prepared in an entangled state, say |π〉 =
1√
2
(|0, 0〉 + |1, 1〉) (we will give concrete examples of similar states later). Then

this state implies that there is a probability of 1/2 for each (sub)system to exhibit

22Spekkens uses ‘·’ instead and refrains from labeling the systems, i.e. lets the conjunction be
ordering sensitive (cf. 2007, p. 11).
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either of the two measurable values (0,1), but both systems are bound to exhibit the
same value if the same observable is measured on them. Now consider a situation
in which the two systems are spatially (spacelike) separated and two agents, A and
B or ‘Alice’ and ‘Bob’, as they are usually called, perform measurements on them.
Then at the very moment Alice measures ‘1’, she will know that Bob will measure
‘1’ as well, as long as he measures the same observable.

If we were to endorse the orthodox interpretation, with its sudden change in
the system’s actual state due to the measurement, then Alice would be capable of
‘steering’23 Bob’s system into some definite state by choosing a certain kind of
measurement on her system—and instantaneously so at arbitrarily large distances.
But from the point of view of the toy model, this surprising consequence dissolves.
Alice’s state prior to measurement should be represented as [1(a)∧ 1(b)] ∨ [2(a)∧
2(b)]∨[3(a)∧3(b)]∨[4(a)∧4(b)], since she knows that both systems are in the same
state, even though she cannot know in which one. Accordingly, the measurement
must result in something like [1(a) ∨ 2(a)] ∧ [1(b) ∨ 2(b)], say. Treating the
connectives in these symbolic formulae as actual conjunctions and disjunctions from
propositional logic for the moment, the latter statement straightforwardly follows
from [1(a) ∧ 1(b)] ∨ [2(a) ∧ 2(b)] by case distinction and adding disjuncts. But
the other direction is not valid, since [1(a) ∨ 2(a)] ∧ [1(b) ∨ 2(b)] is also true if
[1(a)∧2(b)] holds, and taking into account that states pertaining to the same system
mutually exclude each other,24 [1(a)∧1(b)]∨[2(a)∧2(b)] would actually be false.
Only with the epistemic state as given above (the fourfold disjunction) and mutual
state exclusion on the same system can Alice draw the appropriate conclusion.

However, which epistemic state will result for both of the two systems together
depends on which measurement is performed. Let us say that Alice chooses to
measure {1 ∨ 3, 2 ∨ 4} on her system and finds 1 ∨ 3. Then she will come to
know that both systems must be in either of those two true states (1 or 3). If
she decides to measure {1 ∨ 2, 3 ∨ 4} instead and finds 1 ∨ 2, then she comes to
know that both systems must be in one of these states. So in fact, performing both
measurements in a row and obtaining these respective results, Alice can come to
the conclusion that both her and Bob’s system must have been in state 1 all along.
She thus instantaneously obtains information about the distant system. But since the
act of measurement effects an unknown disturbance, the states of both systems may
now (after both measurements) be different: the state of her system (a) could have
changed to 2, in virtue of the disturbance effected by the second measurement. And
assuming Bob performs the same protocol, he need not even obtain outcome 1 ∨ 2
in the second measurement, since his system’s state could have been changed to 3
in the first measurement and then 3 ∨ 4 would result in the second case. All that
Alice can hence come to know in the second measurement is that during the first
measurement both systems were in state 1; and this setup can obviously not be used
as a means of communication.

23This is the much-used term that Schrödinger (1935a, p. 556) introduced to describe the situation.
24It would hence be more appropriate to use exclusive disjunction ∨̇ instead of ∨.
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This is reminiscent of a family of results from QM called no-signaling theorems,
one version of which goes as follows (cf. Dickson 2007, pp. 393–394). Consider
two systems in the entangled state |π〉 from above, with density matrix ρ̂π =
1
2 [(|0, 0〉 + |1, 1〉)(〈0, 0| + 〈1, 1|)], and consider a measurement of an observable

with operator Ô = ∑
i oi P̂oi , performed e.g. on the second system (with two

system-operator 1⊗Ô). Then in a selective measurement in which the k-th outcome
is measured on the second system, the state would change, according to Lüders’
rule, as

ρ̂π �→ (1⊗ P̂ok )ρ̂π (1⊗ P̂ok )/Tr
(
ρ̂π (1⊗ P̂ok )

)
, (4.12)

whereas in a non-selective one, it will change as

ρ̂π �→
∑
j

(1⊗ P̂oj )ρ̂π (1⊗ P̂oj ), (4.13)

resulting in what can be read as a sum over (possible PVM) outcomes, weighted

by their respective probabilities Tr
(
ρ̂π (1⊗ P̂oj )

)
. Since we assume (as is implied

by the state |π〉) that one cannot control which of the quantum systems will end up
in which of the two states, any setup which could be used as a kind of signaling
between the two remote systems in state ρ̂π would have to make use of multiple
different measurements on a bunch of equally prepared pairs of systems and an
observable change in the statistics of the behavior of (say) Alice’s system in virtue
of Bob’s measurements on his system. Alice and Bob could, for example, agree that
if Bob does perform a measurement (at certain evenly spaced points in time), this
counts as a 1 and if he does not, this counts as a 0. This sequence of 1s and 0s could
then be used to encode a message.

Since Alice cannot know what Bob has measured if he did indeed measure, for
her Bob’s occasional measurements will result in a mixed state of form (4.13). The
fact of the matter is that Alice, measuring system (a), will not detect a change of
statistics depending on whether Bob has or has not measured his system (b), because
if she measures an observable Q̂ =∑

j qj P̂qj on her system where the joint state is
ρ̂π (i.e. no measurement has occurred on Bob’s side), she will obtain result q� with

probability Tr
(
ρ̂π (P̂q� ⊗ 1)

)
= Tr

(
(P̂q� ⊗ 1)ρ̂π

)
; but in case she measures it in

state
∑

j (1 ⊗ P̂oj )ρ̂π (1 ⊗ P̂oj ) (i.e. a measurement has occurred on Bob’s side),
she will obtain result q� with the same probability:

Tr

⎛
⎝
⎡
⎣∑

j

(1⊗ P̂oj )ρ̂π (1⊗ P̂oj )

⎤
⎦ (P̂q� ⊗ 1)

⎞
⎠ = Tr

⎛
⎝(P̂q� ⊗ 1)

∑
j

(1⊗ P̂oj )ρ̂π (1⊗ P̂oj )

⎞
⎠ =

=
∑
j

Tr
(
(P̂q� ⊗ 1)(1⊗ P̂oj )ρ̂π (1⊗ P̂oj )

)
=

∑
j

Tr
(
(1⊗ P̂oj )(P̂q� ⊗ 1)ρ̂π (1⊗ P̂oj )

)
=
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=
∑
j

Tr
(
(1⊗ P̂oj )(1⊗ P̂oj )(P̂q� ⊗ 1)ρ̂π

)
=

∑
j

Tr
(
(1⊗ P̂oj )(P̂q� ⊗ 1)ρ̂π

)
=

= Tr

⎛
⎝∑

j

(1⊗ P̂oj )(P̂q� ⊗ 1)ρ̂π

⎞
⎠ = Tr

(
(P̂q� ⊗ 1)ρ̂π

)
,

where we have used a few properties of the trace, the fact that 1⊗ P̂oj and P̂q� ⊗ 1

commute, that P̂ 2
oj
= P̂oj , and that

∑
j (1 ⊗ P̂oj ) = 1 ⊗ 1. This no-signaling or

no-communication feature is retained in the toy model in virtue of the ‘unknown
disturbance’, as we have seen above.

The truly crucial thing to realize, however, is that, in the toy model, even if there
is no real change in the true state of Alice’s system due to Bob’s measurement
(or vice versa)—because all that happens is that Bob updates his knowledge about
Alice’s system in virtue of the information obtained on his system—it may still
appear this way, in case one confuses the epistemic state with the true state of
the system. And if this confusion were what happens in orthodox QM, this could
account for a lot of the apparent weirdness.

This example is indeed suggestive, and prima facie the ψ-epistemicist has a
major advantage here. But the example is also quite selective, and we will argue in
detail below that quantum entanglement should in fact rather count as the strongest
case against an epistemic view of quantum states in the sense of Conjecture 1, not
for it. For ‘dialectical’ purposes however, we will postpone ‘dropping the big bomb’
of Bell’s famous theorem and start off with an analysis of more recent theorems
to a similar effect—all of which ultimately have to do with entanglement, as the
discussion will show.

4.2.5 A Brief Look at Spinoffs

For completeness’ sake, it should not go unmentioned that Bartlett et al. (2012)
have worked out a model similar in spirit to Spekkens’ original toy model, which
reproduces a bunch of phenomena in continuous-range systems (not qubits).25 A
thorough discussion of this model exceeds the scope of this work, whence we
only give a brief review. In short, the authors show that putting an epistemic
restriction (similar to (KB)) on Liouville mechanics (the statistical version of
classical Hamiltonian mechanics), one obtains a theory which is “operationally
equivalent” (p. 2) with a subtheory of QM, which they spell out to mean that

there is a one-to-one mapping between the preparations, measurements, and transformations
that are allowed in the first theory and those that are allowed in the second and [that] the

25It is however not clear that the model fits into the OM approach or whether it can be made to do
so. This does not really pose a problem for us, though, since we are in principle more generally
concerned with epistemic approaches to QM here.



152 4 Just a Matter of Knowledge?

statistics predicted for every possible experiment in the first theory are precisely the same
as those predicted for the corresponding experiment in the second theory. (p. 15)

Because the model is a restricted version of classical statistical mechanics, the
true states of systems in question are points z = (q1, . . . , q3n, p1, . . . , p3n) in phase
space (for n mass points with 3 position and 3 momentum coordinates qi, pj ).

The epistemic restriction is twofold. First of all, Bartlett et al. (2012, p. 5)
define the set L+( ) :=

{
μ|μ :  → R, μ ≥ 0,

∫
 
μ(z) d6nz = 1

}
of (Liouville)

probability distributions (or rather densities) on phase space  . Then for any such μ
to be considered a valid density for their model, it is required that (i) the covariance
matrix γ (μ) satisfies the ‘classical uncertainty principle’ γ (μ) + i�� ≥ 0, where

� is a free parameter and � :=
⎛
⎜⎝

0 −1 0 0 . . .

1 0 0 0
0 0 0 −1
0 0 1 0

.

.

.

.
.
.

⎞
⎟⎠, and that (ii) μ has maximum

entropy S(μ) = − ∫
 
μ(z) ln(μ(z)) d6nz over  among all phase space distributions

with the same covariance matrix. The covariance matrix of a distribution that
depends on multiple coordinates zi, zj (in phase space, in this case) describes,

in components γij , (twice) the covariance
〈(
zi − 〈zi〉

)(
zj − 〈zj 〉

)〉
μ

, i.e. the

correlation of departures from the mean values 〈zi〉μ , 〈zj 〉μ according to μ (cf.
Jaynes 2003, p. 361). The bite of (i) is that it parallels an actual formulation of the
uncertainty relation, (2.22), and thus ensures that in restricted Liouville mechanics,
relations such as �px�x ≥ �/2 hold (for adjustable �). (ii), on the other hand,
“ensures that an agent should have the maximum uncertainty about the physical
state of the system consistent with knowing the means and the covariance matrix.”
(Bartlett et al. 2012, p. 5) The valid distributions satisfying (i) and (ii) are all of
Gaussian form.

The theory which results is thus operationally equivalent (in their sense) to what
they call “Gaussian quantum mechanics” (p. 2), the part of QM “including only
those preparations, measurements, and transformations that have Gaussian Wigner
representations [. . . ].” (ibid.) A Wigner function is a function

w(q,p) = 1

(2πh̄)3n

∫ 〈
q + s

2

∣∣∣ρ̂
∣∣∣q − s

2

〉
eisp/h̄ d3ns

= 1

h3n

∫ ∑
j

pj

〈
q + s

2

∣∣∣ψj
〉 〈
ψj

∣∣∣q − s

2

〉
eisp/h̄ d3ns

= 1

h3n

∑
j

pj

∫
ψ∗j (q − s/2)ψj (q + s/2)eisp/h̄ d3ns , (4.14)

of the positions and momenta of n particles (ρ̂ some density operator). ‘Smearing
out’ an operator Â over q,p-coordinates in the same fashion (i.e. with Â in place
of ρ̂), one obtains its so called Weyl transform Ã(q,p), and together with a given
Wigner function w(q,p), one obtains
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〈A〉ρ̂ =
∫
Ã(q,p)w(q,p) d3nq d3np , (4.15)

and equally

Prρ̂q (q ∈ �) =
∫
�

∫
w(q,p) d3np d3nq , (4.16)

and similarly for p (cf. Basdevant and Dalibard 2002, p. 442; Case 2007). So
w(q,p) shares many properties of, or ‘almost looks like’ a phase space distribution.
But Wigner functions cannot per se be considered as probability distributions on
phase space as they may become negative. Gaussian ones, however, do not. And
using Wigner representations of POVMs as representations of measurements, and
Wigner representations for completely positive (positive for composite systems; cf.
Heinosaari and Ziman 2012, p. 176) nonincreasing linear maps as the most general
sorts of transformations, Bartlett et al. (2012, pp. 19–20) establish their Gaussian
QM. With these tools in hand, they then demonstrate the claimed sort of equivalence
between the epistemically restricted version of Liouville mechanics and Gaussian
QM. And they also show, in analogy to what is being done in Spekkens’ toy
model, how some quantum phenomena such as quantum teleportation or no-cloning
constraints can be captured, as well as a case similar to the Alice-Bob scenario
(which we are going to discuss in more detail later).

However, we shall argue below that even in this more elaborate model some
quantum phenomena—and arguably the most important ones—cannot be repro-
duced. There is (yet another) model (van Enk 2007) which can reproduce them, but
only on the pains of accepting negative probabilities. Given everything that was said
in interlude I, it is hard to see how one could ever make sense of such a notion on
epistemic grounds, and we hence choose to dismiss this model as ‘too implausible’
without further consideration.

What we have seen, in summary, is that there exist some models which can
more or less reproduce a bunch of quantum phenomena26 purely from epistemic
considerations. We have here selected but a fraction, and according to Fuchs’s (2014,
p. 388) count, there is over a dozen of such phenomena that are reproduced by
Spekkens’ model alone. This is certainly suggestive of limited knowledge being
involved in some sense, in the appropriate interpretation of quantum states.

But we have also seen that many questions arise when one tries to introduce a
‘more complete’ (or more intuitive, or more classical. . . ) description which could
help us to find an explanation (and hence: interpretative elimination) of ‘weird’
quantum phenomena. What we must ask, then, is: are these weirdnesses of QM just
a matter of knowledge, as promoted by Conjecture 1? Well. . . things do not seem to
be so simple. In the next section, we will introduce more thorough arguments against

26Recall that, in concert with the Bogen-Woodward understanding of ‘phenomena’ which we
endorsed from Chap. 2 on, this may simply mean ‘implications of QM or QIT’.
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an epistemic view as introduced in this chapter, and hence in against Conjecture 1.
We will begin with more recent arguments, (more) peculiar to the OM approach.
We will then shed some light on two ‘classics’, and demonstrate how they put the
natural response very much in question as well.

4.3 Restrictions for the ψ-Epistemic Approach

4.3.1 The PBR Theorem

In 2012, Matthew Pusey, Jonathan Barrett, and Terry Rudolph (PBR) published
a theorem in Nature Physics, aimed at showing that the very assumption of ψ-
epistemic models leads to predictions which contradict those of QM, and testably so
(cf. Pusey et al. 2012). In a preprint-version of their paper, the authors proposed an
error-tolerant version of the experimental conditions described in the proof, which
allows for an actual test of the diverging predictions (cf. Pusey et al. 2011). Such
tests have been implemented and are reported to confirm the QM predictions (cf.
Nigg et al. 2012). The theorem constitutes what is usually called a no-go theorem,
supposed to demonstrate, in this case, that a ψ-epistemic interpretation of QM is not
possible or at least faces serious restrictions. The theorem is formulated by appeal to
the OM-framework, and thus somewhat specific to epistemic interpretations of QM
in the sense of this approach. Of course the proof is not free of presuppositions
and we should hence discuss these carefully. The theorem is first demonstrated
for quantum states with overlap 〈φ|ψ〉 = 1√

2
and then generalized to states with

arbitrary overlaps. We shall restrict ourselves to a discussion of the former case and
only briefly sketch how the generalization is established.

To show the incompatibility of QM with ψ-epistemic models, PBR consider two
qubit systems which are supposed to be prepared independently. The first crucial
assumption is thus that systems can be prepared entirely independently of one
another, in the range of situations of interest. The states which are assumed to result
from the preparation procedure are |0〉 and |+〉, where B = {|0〉 , |1〉} is a basis of
C

2, and |+〉 = 1√
2
(|0〉 + |1〉). Note that these states are non-orthogonal, whence,

in line with the discussion above, they are plausible candidates for P-states with
overlapping associated probability densities, signifying ψ-epistemicity.

An important thing to realize is that the independence assumption translates into
two different formal requirements in the two different formalisms (QM and OMs),
whose intertranslation hence requires a bridging assumption. In QM, independence
can be represented by the use of product states; thus, if |〉 denotes the total
quantum state of the two systems, we can translate the assumption of preparation
independence into

|〉 ∈ {|0〉 |0〉︸ ︷︷ ︸
=:|1〉

, |0〉 |+〉︸ ︷︷ ︸
=:|2〉

, |+〉 |0〉︸ ︷︷ ︸
=:|3〉

, |+〉 |+〉︸ ︷︷ ︸
=:|4〉

} =: P (Prod. 1)
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(with i, j ∈ {0,+}, and where we use P for ‘preparation’). Now in the OM-
approach two true states λ1 and λ2 need to be specified, since two systems are
concerned. The next non-trivial assumption (which basically functions as a bridging
principle) then is that the state space is separable or factorizable in an appropriate
manner, which could be represented by using a Cartesian product. I.e.:

� = �1 ×�2, (Sep.)

with �1 and �2 the state spaces of the two systems respectively (cf. also Spekkens
2012). This separability assumption amounts to assuming that, “when modeling
independent local preparations, there are no additional properties of the joint system
that are not derived from the properties of the individual systems.” (Leifer 2014,
p. 100) It is hence basically the ontological assumption which justifies the next
step (cf. also Emerson et al. 2013, p. 2). Namely, given (Sep.), the independence-
assumption can be translated into a classical probabilistic language, suitable for the
OM-approach, as

pj (λ1, λ2) = pk(λ1)p�(λ2), j ∈ {1, . . . , 4}, k, � ∈ {0,+} (Prod. 2)

(cf. Pusey et al. 2012, p. 477; Drezet 2012, p. 14), with pj (λ1, λ2) := p(λ1, λ2|j)
and pk(λ) := p(λ|k) (j ∈ {1, . . . , 4}, k ∈ {0,+}).27 The two conditions (Prod. 1)
and (Prod. 2) are neither logically equivalent, nor does (Prod. 1) straightforwardly
imply (Prod. 2). But we can make the case that (Prod. 1) conceptually implies (Sep.),
and that (Sep.) conceptually implies (Prod. 2): If we can prepare two systems in
(sufficient) isolation from one another, we use a tensor product in QM to represent
the (P-)state of a composite system. But if we use such a product state, we assume
both component systems to be (sufficiently) independent of one another. And given
that we hence assume their respective (true) states to be independent of one another,
i.e. given (Sep.), we would also model this very situation in a classical probabilistic
framework by letting the joint probability distribution for both systems be a mere
product-distribution over the true states of each individual system.28 Hence it fully
suffices to claim that (Prod. 1)→(Sep.), and that (Sep.)→(Prod. 2) to get the central
premise:

(Prod. 1) → (Prod. 2) (P.-Indep.)

27Indeed, this definition is not maximally general again, since we have appealed directly to
probability densities. Leifer (2014, p. 99) instead uses the condition that the probability measure
on the space � = �1 × �2 is the product measure μ1 × μ2(�) =

∫
�2
μ1(�λ2 ) dμ2(λ2),

where�λ2 = {λ1 ∈ �1|(λ1, λ2) ∈ � }. For our discussion, no harm comes from using the simpler
definition above.
28This of course means that pj (λ1|λ2, k

(2)) = pj (λ1), j, k ∈ {0,+}, with k(2) the preparation for
the second system, and analogously for pk(λ2).
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Preparation Measurement

Not +,+

0 or +
Not 0,0
Not 0,+
Not +,0

0 or +

Fig. 4.5 Each system is prepared in one of two quantum states; the entangled measurement
performed on both systems simultaneously then finds out which of the four possible product states
was not prepared (Cf. Pusey et al. 2012, p. 477 for a similar illustration)

Suppose now that there is a � such that λ1, λ2 ∈ � is not excluded, i.e. that both
systems can assume true states in some common range. Also, fix some lower limit
q > 0 such that pk(λ1) ≥ q, pl(λ2) ≥ q for k, l ∈ {0,+} and λ1, λ2 ∈ �. Then by
(P.-Indep.), we get that

p(λ1, λ2) ≥ q2, ∀ ∈ P ∀λ1, λ2 ∈ � (�)

We call this intermediate result ‘(�)’ because the existence of some � (i.e. the
positivity of the product density p on some set of non-zero measure), regardless of
the specific preparation on each system, is crucial. It is also crucial to realize that the
preparation procedures on both systems do the same thing, i.e., prepare either |+〉 or
|0〉, whence the (total) range of true states λ possibly resulting from the preparations
should be identical for the two systems. This (in concert with (P.-Indep.)) justifies
why it even makes sense to consider this setup for two systems as a possibility
to check for the possibility of a ψ-epistemic model, where the assumption of an
overlap is formulated w.r.t. to the states of one and the same system.

Now the measurement executed on the two systems is performed by bringing
them together in one measurement-device and measuring them jointly (cf. Fig. 4.5).
A measurement of this kind is called global, since all the systems in some total state
|�〉 are measured together. This should be contrasted with a local measurement,
where each of a bunch of systems described jointly by |�〉 is measured individually,
whence information about each of them is acquired independently. But among
the global measurements, one can further distinguish measurements which have
only product states as possible outcomes from such which have at least one
entangled state among their outcomes. Meaning that in the latter case, the operators
used to describe the measurement have entangled eigenvectors. These are then
(unsurprisingly) called entangled measurements (cf. Wootters 2006, pp. 219–220;
Giovannetti et al. 2004, p. 1333).

The measurement considered by PBR is exactly such an entangled (global)
measurement. Furthermore, it is projective, resulting in one of four states from the
set
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R :=
{
|φ1〉 = 1√

2
(|0〉 |1〉 + |1〉 |0〉), |φ2〉 = 1√

2
(|0〉 |−〉 + |1〉 |+〉),

|φ3〉 = 1√
2
(|+〉 |1〉 + |−〉 |0〉), |φ4〉 = 1√

2
(|+〉 |−〉 + |−〉 |+〉)

}

(cf. Pusey et al. 2012, p. 476), which we call ‘R’ for ‘result’.29 What we now see
is that for each of the |φj 〉 ∈ R there is a |k〉 ∈ P which is orthogonal to it
(whence the global property to be measured is which of the states was not prepared;
cf. Fig. 4.5). For instance,

〈φ1|1〉 = 1√
2
(〈0|〉 ⊗〈1| + 〈1|〉 ⊗〈0|) |0〉⊗|0〉 = 1√

2
(〈0|0〉 〈1|0〉 + 〈1|0〉 〈0|0〉) =

= 1√
2
(1 · 0+ 0 · 1) = 0, (4.17)

and (because of the way we have indexed the states) in general
〈
φj

∣∣j
〉 = 0.

But recall that the connection between the Born probabilities and the probability
densities in the OM was established by an integral over the product of the epistemic
state with a response function (formula (4.1)). This integral must now take the form

Pr|k〉R (φj ) =
∫

dλ1

∫
dλ2 pk(λ1, λ2)ξ

φj

R (λ1, λ2)

(cf. Pusey et al. 2012, p. 477; Drezet 2012, p. 14), with ξ
φj

R (λ1, λ2) the response
function for outcome φj .

Moreover, it is plausible to require that

4∑
j=1

ξ
φj

R (λ1, λ2) = 1, ∀(λ1, λ2) ∈ �, (Outc.)

i.e. that there will always be some outcome for all the states that may result from the
preparation (cf. Aaronson et al. 2013, p. 1; Schlosshauer and Fine 2014, p. 1). Of
course this is quite an idealization, and we may assume that (Outc.) is only required
to hold up to expected experimental noise and error.

But since p1(λ1, λ2) is at least q2 on a set � of non-zero measure, i.e. in virtue
of (�), at least after error correction it must hold that

29For notational simplicity we will later also use this letter to refer to the measurement (POVM)
associated with the outcome states in R.
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∃k∀j : Pr
|j 〉
R (φk) =

∫
dλ1

∫
dλ2 pj (λ1, λ2)ξ

φk
R (λ1, λ2) > 0

!= ∣∣〈φk
∣∣j

〉∣∣2 = 0 for j = k � (PBR)

(with j, k ∈ {1, . . . , 4}). This is the PBR contradiction. (Prod. 1), (P.-Indep.), and
(Outc.) taken together with the definition of ψ-epistemicity and the probabilistic
assumptions of the OM framework (short: {OM}), lead to a contradiction; hence
PBR conclude:

{OM}, (Prod. 1), (P.-Indep.), (Outc.) * ¬(ψ-epistemicity) (4.18)

Stated differently, this means that any ψ-epistemic OM can not maintain (Prod.
1), (P.-Indep.), and (Outc.) together, all of which are prima facie reasonable
assumptions.

We have restricted our attention to the two-system case, but the result of PBR is
generalized (2012, p. 476 ff.) using tensor-product states |〉 = |ψ1〉 ⊗ . . . ⊗ |ψn〉
of arbitrary finite cardinality n, where each system is prepared in either |0〉 or |+〉
(ψj ∈ {0,+}, ∀1 ≤ j ≤ n). This allows for states with an overlap different from
that between |0〉 and |+〉 to be used in the preparation.

But how deep is the impact of PBR’s result really? Should it be taken to rule
out ψ-epistemic OMs tout court? Obviously, the fact that all the aforementioned
additional assumptions have to be made in order for the proof to go through limits
the scope and depth of the PBR-theorem as a no-go result. Each of the assumptions
of the proof could well be the culprit, whence it is worth looking at each of them
separately.

Detailed criticism toward the other premises of the PBR theorem can be found
especially in an article by Schlosshauer and Fine (2012). Notably, they first of all
refrain from even using the terminology of ‘ψ-epistemic’ and ‘ψ-onitc’ models,
and refer to these classes of models as ‘mixed’ and ‘segregated’ instead (which they
find “less charged” (2012, p. 4)). Thus, the general aptness of the very definition of
a ψ-epistemic model used in the OM approach may of course be put into question
(and hence the premise {OM}), and a whole other set of criteria for understanding
the wave function as a representation of knowledge may of course be available (a
thought that we should keep in mind). Schlossauer and Fine then also show a way of
transforming mixed models into segregated ones and vice versa, thus lessening the
appeal of the definitions from Sect. 4.2 as indeed reflecting a distinction between
something that represents knowledge and something that represents something
real.30

Beyond that, Schlosshauer and Fine suggest to augment the spectrum of outcome
values associated with the measurement with so called ‘no-shows’, i.e. to allow

30These charges of transformability between the two types of models are, however, challenged by
Leifer (2014, p. 113–114).
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for measurements with no discernible outcome at all, and hence to modify the
connection between the Born probabilities and the probability densities in the
OM-framework accordingly. We have seen above that one crucial step of PBR’s
theorem is to require (Outc.) and that (Outc.) is somewhat idealized. Modifying this
requirement in such a way that, given that the true state is in the overlap region,
there will be a probability of obtaining no outcome at all, determined by the true
state itself, obviously blocks the inference to ¬(ψ-epistemicity). Schlosshauer and
Fine (2012, p. 2) refer to this as a “built-in inefficiency”, since the assumption is that
there is something about the measured system itself which lets the probability of a
(discernible) outcome dip in the appropriate region—i.e. not just regular sources of
experimental error.

A bit more precisely, the general recipe goes like this: Determine some probabil-
ity ξ∅R(λ1, λ2) of getting a null-outcome ∅ (i.e. something that cannot be recognized
properly as an outcome on the measuring device), sufficiently high for the λ ∈ �,
so that the QM statistics are reproduced, but from probabilities conditional on the
fact that a discernible outcome was measured at all (i.e. by ‘postselecting’ the
statistics for runs in which there was a determinate outcome). Then for the set of
outcomes {φ1, . . . φ4,∅}, the resulting version of (Outc.) is not violated and no
contradiction arises. Under these assumptions, all that the PBR-result shows is “how
inefficiencies arise as a fundamental property of certain hidden-variables models
[. . . ].” (Schlosshauer and Fine 2012, p. 2)

This is a kind of ‘prism model’, which the reader may be familiar with from the
context of Bell inequalities (see also later). However, there is a certain unpleasant
ad hocness to assuming that the true states from the overlap mysteriously sabotage
the measurement procedure just to recover the quantum statistics. Thus we may be
inclined, at this point, to put more doubt on the justifyability of Schlosshauer and
Fine’s no-show assessment than on PBR’s own one.

The various assumptions underlying (P.-Indep.) are also under scrutiny in
Schlosshauer and Fine’s article. They think that “[c]orrelations [. . . ] cannot be
ruled out, even if the preparations appear to be independent, because procedures
for preparing the individual subsystems may occur together closely in spacetime or
share common sources of energy, as well as a common past.” (Schlosshauer and Fine
2012, p. 3) In our reconstruction, we may take this criticism to aim at the validity
of the implication (Prod. 1)→(Sep.), and so indirectly at the validity of (P.-Indep.).
But (Sep.) can be weakened to the condition (call it ‘(Sep.∗)’) that, if there is a λ in
the support of each of the epistemic states associated with the multiple systems and
respective quantum states, then there is also some λc in the support of the common
density p associated with the product state |〉 = |ψ1〉⊗ . . .⊗|ψn〉 (cf. ibid.). The
exact nature (and structure) of λc can then be left completely unspecified. From this
one neither gets the condition (P.-Indep.), because (Sep.∗) does not imply (Prod.
2), but rather that p(λc) > 0 (call this ‘(Pos.)’). Nor does one get the (exact)
intermediate q2-result (�), which follows from (Prod. 2), not (Pos.). But since the
weaker (Pos.) is obviously sufficient to derive a contradiction (i.e. (Outc.) would
still be violated) it appears that PBR’s conclusion ¬(ψ-epistemicity) is not really
warranted, and that the theorem need not be considered as applying to ψ-epistemic
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models after all. Notably this move of Schlosshauer and Fine is only possible on the
pains of replacing (Sep.) by (Sep.∗) and hence by denying (P.-Indep.), or in other
words: by assuming that the systems in question cannot be prepared (sufficiently)
independently of one another.

Another assumption also scrutinized by Schlosshauer and Fine, which PBR
tacitly make and which we have not yet discussed so far, is that the response

functions ξ
φj

R (λ1, λ2) do not depend on . Here Schlosshauer and Fine (2012, p. 2
ff.) propose that models which avoid the problem raised by PBR can be constructed
in case the ξs are allowed to depend on. They call the class of models presupposed
by PBR state-independent. Leifer (2014, p. 111), in contrast, thinks that “this
criticism is simply a misunderstanding of what is meant by the term ‘ontic state’
in the ontological models framework”, and goes on to demonstrate an example of
how models can trivially reproduce the Born probabilities in case state dependence
is allowed (that is, in case ξ is also conditional on the prepared quantum state ).
In a similar vein, Ballentine (2014, p. 6) refers to such models as “functionally ψ-
ontic”, because

[t]he most important structure of the model is the separation of preparation from mea-
surement, with information passing only via the ontic state variables. If the state ψ has a
direct effect on the measurement outcome, then ψ should be classified as an ontic variable.
(emphasis in original)

Hence the assumption of state independence may be considered as justified (or
-fiable); the introduction of state dependence conceptually undermines the very idea
behind ψ-epistemicity in the OM-approach.

Nevertheless, Schlosshauer and Fine’s (2012, p. 4) conclusions on the impact of
the PBR theorem are overall quite de-emphasizing:

PBR show that state-independent models of composites formed using systems with mixed
[ψ-epistemic – FB] models face restrictions. It is vital to see that those restrictions do not
imply any difficulty for models of the components themselves. The PBR theorem is not a
no-go theorem for the component systems[. . . ]. (my emphasis – FB)

And indeed, the theorem is not concerned with several quantum states of a
single system, but only has an impact on overlapping epistemic states via the
detour of using product states of compound systems. One may jump in at any
point and criticize the assumptions that bridge the gap, as we have just seen.
Moreover, Lewis et al. (2012) actually have provided two variants of a ψ-epistemic
model which become possible in case (P.-Indep.) is dropped. But these models
are utterly formal—or, to use a term beloved by philosophers, appear completely
gerrymandered—and Lewis et al. (2012, p. 4) themselves also concede:

None of these models is intuitive or motivated by physical principles or considerations. The
primary motivation for exploring the possibility of ψ-epistemic models is to understand the
formal limitations of reproducing quantum theory from a deeper theory.

Their conclusion w.r.t. the latter aim is that “any similar no-go theorem will also
require nontrivial assumptions beyond those required for a well-formed ontological
model.” (Lewis et al. 2012, p. 1) We can take from this that, while restricting the
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possibility of ψ-epistemic models, the PBR theorem and similar results should not
count as a full no-go theorems for these models, in the sense of demonstrating their
impossibility. They all rely on additional assumptions and can hence maximally
limit the attractiveness of ψ-epistemic hidden variable models, or more precisely,
show their incompatibility with these very assumptions.

Regarding the existence of other such theorems, the PBR paper has indeed caused
a whole landslide of publications which put forward theorems purportedly showing
the impossibility of ψ-epistemic models (so in fact, their incompatibility with other
plausible assumptions and QM).

To name a few: Patra et al. (2013) derive a no-go theorem based on a “continuity
assumption”, which they thinkψ-epistemic models should satisfy. The motivation is
that “we assign an ontic status toψ if a variation ofψ necessarily implies a variation
of the underlying reality λ, and we assign it an epistemic status if a variation of ψ
does not necessarily imply a variation of λ.” (p. 2) The continuity assumption then
rests on interpreting ψ as associated with an ensemble of possible λs and says that
“there are real states λ in the initial ensemble that will remain part of the perturbed
ensemble, no matter how we perturb the initial state, provided this perturbation is
small enough.” (ibid.) In their words, this “captures the intuition that in a model
where the quantum state is epistemic, a small variation of ψ does not necessarily
imply a variation of the underlying real state λ.” (p. 4) Subsequently, models
satisfying (the formalization of) this condition are demonstrated to be incompatible
with QM.

Colbeck and Renner (2012) provide another theorem which they purport to show
that “the quantum wave function can be taken to be an element of reality of a system
based on two assumptions: the correctness of quantum theory and the freedom of
choice for measurement settings.” (p. 3) And the list continues.31

One such theorem that we should also take a closer look at is that of Hardy
(2013). This will give us a first chance to directly confront one of the purported
achievements of existing ψ-epistemic models (and specifically of Spekkens’ toy
model). In the course of demonstrating the impact of Hardy’s theorem, we will thus
highlight some defects in reasoning that lead to the conclusion that there even is
a true achievement of the model(s), and hence a plausibility argument for the ψ-
epistemic approach.

4.3.2 Hardy’s Theorem

The gist of Hardy’s theorem can best be captured by appeal to an interferometry
example like the ones we had met with in Sect. 4.2.4.

In Hardy’s own words, the argument based on the following example amounts to
a “version of the popular argument for something going both ways[. . . ].” (2013, p. 6)

31Leifer (2014) gives a detailed overview of at least some of the recent development.
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Fig. 4.6 (a) is the Mach-Zehnder setup as discussed in Sect. 4.2.4. In (b) the photon is emitted
somewhere along the upper trajectory, whence the phase shifter in the lower trajectory should have
no effect

Consider, in contrast to the Mach-Zehnder example we had discussed in Sect. 4.2.4,
an altered setup where the source of photons is placed somewhere along the upper
route (cf. Fig. 4.6b). In this altered setup, it should not matter whether the beam
splitter is inserted or not; whereas in the original Mach-Zehnder example we would
obtain either − |↘〉 or |↗〉 at the end of the interferometer, depending on whether
the phase shifter was in or not, we will here simply have

ÛH σ̂x |↗〉 = ÛH |↘〉 = 1√
2
(|↗〉 − |↘〉), (4.19)

whence detection at d1 and d2 will be equiprobable.
Now consider the state |ψ〉 = 1√

2
(|↗〉 + |↘〉) as prepared by the first beam

splitter in the setup of Fig. 4.6a, and the state |φ〉 = |↗〉 as prepared by the source
in the setup of Fig. 4.6b. These two states are non-orthogonal and hence could well
be taken to have overlapping supports in a ψ-epistemic model. In this context, we
can understand this claim such that it is not impossible for the first beam splitter to
prepare a photon which is actually traveling up, and that |ψ〉 is again just indicative
of our lack of knowledge about the true state, i.e. the true path that the photon takes.

But then it should make no difference for the photons actually traveling up
whether the phase shifter is inserted in the lower path or not. Thus, denote the full set
of true states associated with |φ〉 by �|φ〉, and the subset of those resulting in a click

from detector d1 or detector d2 by�d1|φ〉 and�d2|φ〉 respectively. One can also associate
a given setting of the phase shifter (in or out) to these sets, which we indicate by the

notation �
dj
|φ〉[θ ] (j ∈ {1, 2}, θ ∈ {0, π}). But since the choice of θ as 0 or π should

not alter the behavior of the photon going along the upper path, we obtain a kind of
invariance:

�
dj
|φ〉 = �

dj
|φ〉[θ = 0] = �

dj
|φ〉[θ = π ], j ∈ {1, 2}. (INVAR)
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Assume that the photon is bound to end up in one of the detectors, thereby neglecting
experimental errors, i.e., photons getting absorbed somewhere along the way or
detectors not responding upon incidence. Then it should hold that

�|φ〉 = �
d1|φ〉 ∪�d2|φ〉, (TOT)

irrespective of the choice of θ . Now consider the set of true states �|ψ〉 associated
with |ψ〉 (the state prepared by the first beam splitter). We had established above
that in case the phase shifter is in (θ = π ), the state |ψ〉 will not result in any clicks
from detector d1. Thus it should hold that

�|ψ〉 ∩�d1|φ〉[θ = π ] = ∅

⇔ �|ψ〉 ∩�d1|φ〉 = ∅, (4.20)

where the equivalence follows from (INVAR). Analogously, in case the phase shifter
is out (θ = 0), there will be no clicks in detector d2 if |ψ〉 is prepared, so that

�|ψ〉 ∩�d2|φ〉[θ = 0] = ∅

⇔ �|ψ〉 ∩�d2|φ〉 = ∅. (4.21)

But from (TOT), (4.20), and (4.21) it now follows that �|ψ〉 ∩ �|φ〉 = ∅, whence
there is no intersection in the sets of true states associated with the two non-
orthogonal states |ψ〉 and |φ〉. This in turn means that the epistemic states for the two
preparation methods associated with |ψ〉 and |φ〉 cannot have overlapping supports.
Thus, it seems, this situation cannot be understood ψ-epistemically.

Of course this is not yet a no-go theorem for ψ-epistemic OMs but merely an
example. In the remainder of his paper, Hardy provides a generalization, first for
finite Hilbert spaces, for which it is shown that non-orthogonal states with a certain
lower bound quantum probability | 〈φ|ψ〉 |2 (which depends on the dimension of the
Hilbert space) will result in distributions with non-overlapping supports (cf. his pp.
9–13). For an infinite dimensional Hilbert space, the result is then shown to hold
regardless of the quantum probability (cf. his p. 12). For a rigorous, general proof
one of course needs to abstract from beam splitters, mirrors, and phase shifters. The
phase shifter, for instance, is replaced by a general unitary transformation with some
general parameter m (instead of the phase shift θ ) to be varied (cf. his p. 10 ff.).

But of course, a few crucial assumptions also have to be made to run this proof,
just as in the PBR case. For the proof of Hardy’s theorem, the following two
principles have to be assumed (cf. Hardy 2013, pp. 4–5):

Possibilistic Completeness (PC) The ontic state, λ, is sufficient to determine
whether any outcome of any measurement has probability equal to zero of occurring
or not.
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Restricted Ontic Indifference (ROD) Any quantum transformation on a system
which leaves a particular given pure quantum state, |0〉, unchanged can be imple-
mented in such a way that it does not affect the underlying ontic states, λ ∈ �|0〉, in
the ontic support of |0〉.

Note that Hardy first assumes a stronger principle of ontic indifference, which
is supposed to hold for any arbitrary quantum state |ψ〉 instead of a particular one
(|0〉). He then demonstrates that the weaker principle (ROD) is sufficient to run the
proof (cf. Hardy 2013, p. 12). The ‘ontic support’ is of course the support of the
epistemic state, i.e., the set of true states λ which may result from the preparation
procedure associated with |ψ〉. (PC) is also a rather weak principle, since it has the
true state only determine whether an outcome has probability zero or not, instead of
determining the exact probability.

We have seen both of these principles at work in the example considered above.
(PC) is used to define the sets of states which may give rise to a click from d1
or d2 respectively. (ROD) is invoked in assuming that (INVAR) holds, i.e. that it
does not make a difference to the photon traveling in the upper path whether the
phase shifter is inserted or not. The assumption is, as Hardy (2013, p. 3) also notes,
akin to a kind of locality or local causality constraint, which informally means that
whether something is done over here should not immediately influence what happens
somewhere else. As we will see in the next section, it is open to debate whether or
in what sense QM respects such a principle, and hence whether any hidden variable
model which purports to reproduce QM’s predictions should.

The critical reader will object that we have seen Spekkens’ toy model repro-
duce interferometer examples like the one considered in this section. Is the toy
model ‘non-local’? Prima facie the answer here is ‘no’, but only on the price of
accommodating a non-trivial ‘vacuum state’, akin to that of QFT, into the ontology
presupposed by the model. Thus Hardy (2013, pp. 14–18) writes32:

[T]here are ontic variables associated with the occupation number of the path (take this to be
0 or 1) and a phase associated with the path (take this to be 0 or π ). Even if the occupation
number is 0 there is still the phase variable which will be affected by a phase shifter. Thus
a path with no particle in it still has nontrivial degrees of freedom associated with it. This
allows the model to violate ontic indifference in a local way.

And similarly Leifer (2014, p. 121) thinks that it is possible to save the
interference example from the consequences of Hardy’s theorem in this fashion:

From quantum field theory, we know that the vacuum is not a featureless void, but has some
sort of structure. Therefore, it makes sense that, at the ontological level, there might be
more than one ontic state associated with the vacuum, and a transformation that does not
affect things localized [in one arm of an interferometer – FB] might still act nontrivially
on these vacuum ontic states. [. . . ] A transformation acting locally on [one arm – FB] can
then switch the ontic states, in violation of ontic indifference, whilst leaving the distribution
invariant. (my emphasis – FB)

32Here he is referring especially to elaborations from a talk given by Spekkens (2008).
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So not: ‘something goes both ways’, but rather: ‘for each way there is something
which goes it’. As we already noted, Spekkens (2007, p. 2) describes one central
aim of finding an epistemic model for QM as identifying “phenomena that are
characteristic of states of incomplete knowledge regardless of what this knowledge
is about.” The interferometer example does obviously not constitute an example of
incomplete knowledge regardless of what this knowledge is about. For this example
to make sense, one has to admit either a direct (causal) influence between the
two arms of the interferometer (which would violate the otherwise ‘local’ spirit
of the model), or construct a specific kind of true state, capable of carrying phase
information while being otherwise hidden from detection. We should now put
some more weight on these worries by concerning ourselves with two (in)famous,
‘classic’ theorems in the context of QM.

4.3.3 EPR, Einstein, and Bell’s Theorem

The theorem we now unfold is arguably the most profound of the four discussed
here, and Strapp (1975, p. 271) has even gone so far as to call it “the most profound
discovery of science.” In virtue of the fact that Bell’s theorem makes some of the
most fundamental intuitions of many practicing physicists accessible to experiment,
Abner Shimony (1984, p. 35) has coined the term “experimental metaphysics” for
it.33 And it is certainly also one of the most thoroughly discussed results in the
philosophy of QM, whence we can only cover a tiny fraction of the literature here.

To elaborate the details, we should once more concern ourselves with an
experimental example, again possibly implemented with two spin- 1

2 atoms and
Du Bois magnets. Consider the following setup as described by Bohm (1951, p.
614 ff.), and essentially a (crucial) refinement of a thought experiment originally
suggested by Einstein et al. (1935), hence usually called an EPRB experiment.
Two systems with spin- 1

2 are prepared together at a common source, which leaves
them in an entangled state, similar to those encountered in Sect. 2.1.3 or the
PBR theorem. In Bohm’s example these are two atoms, produced as a result of
molecular decay, but similar situations are constructible with protons from scattering
process, de-excitations of nuclei or atoms with cascades of temporally coincident
photon emissions, or particle-antiparticle pair annihilation, which makes different
experimental niceties possible (more on this later).

Now in the present two atom-setup, these atoms will travel in opposite directions
after the emission and with their spins anti-aligned, so that the total spin of the pair
is zero and the spin of the molecule is conserved. But there is seemingly nothing
that predetermines which system will have its spin up and which one will have it

33It is of course open to debate whether one prefers to call something that is testable ‘physics’, and
reserves the term ‘metaphysics’ for a priori investigations. But that is rather a matter of linguistic
taste and intuition.
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Fig. 4.7 (a) A (close to) perfect anti-correlation between two entangled spin- 1
2 systems is

observed when both Du Bois magnets are aligned along a common axis. (b) If the magnets are
tilted relative to one another, the correlation will depend on the angle θ of relative tilt

down along a given axis. So we should have no particular expectations as to where
we will find ‘spin up’ and where ‘spin down’ if measure both spins after some
time of flight along a common direction. We saw, in our discussion of the Stern-
Gerlach experiments, that for any given axis, it is apparently totally random whether
a system will fly down or up in the magnet, or that we can at least not predict an
individual system’s behavior beyond the fact that it will do either of the two things.
The randomness carries over to the present case, but the two systems will always end
up having their spins anti-alinged, as long as we measure them along one common
axis (cf. Fig. 4.7a).

Now something is already fishy here, since the systems could have their spins
anti-aligned along an axis different from the one along which we are measuring.
So why would they always anti-align along the axis that we chose to measure for
as well? Imagine, more precisely, that we perform an alternative experiment by
rotating both magnets simultaneously and by the same angle, possibly even after the
emission. We will then find that in each run, no matter which axis we have chosen,
somehow the two atoms always anti-align their spins and show the appropriate
behavior for a total spin of 0.

The situation here is obviously similar to the Alice-Bob scenario that we
discussed at the end of Sect. 4.2.4; we could have Alice sit at the left magnet and
monitor the left atom’s behavior, while Bob does the same thing on the right. But the
invariance of the results under a rotation of the total setup should strike us as odd.
How can the systems ‘know’ in advance which axis we are going to chose? Assume
that they come out in a state where their spins are perfectly anti-aligned along an
axis exactly perpendicular to the axis of the magnets. Should it then not be possible,
and even happen on occasion, that the spins both flip into a spin-up configuration in
the magnets, since for each individual atom the measurement has a random effect?

The quantum state appropriate to describe the spin degrees of freedom of the
two atoms is the singlet state, |χ〉 = 1√

2
(|↑〉 |↓〉 − |↓〉 |↑〉), which we are familiar
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with from Sect. 2.1.3, and which we found to have value 0 for the square Ŝ
2 =(

ŝ ⊗ 1+ 1⊗ ŝ
)2 of the total spin operator Ŝ. Of course, we have to assign an axis to

be able to say relative to what these spins will end up being down or up respectively.
But as we saw, it does not matter which axis we choose; the state is rotation invariant.
For now let us stick to the convention of taking the z-axis of some chosen coordinate
system as our axis of measurement.

We can also do a second kind of experiment and rotate the magnets relative to one
another (cf. Fig. 4.7b). What we will then observe is that the rate of systems with
anti-aligned spins will go down (more generally: vary) as a function of the angle θ
of relative tilt. We can quantify this by appealing (once more) to the spin observable
for some arbitrary axis at angles θ and ϕ to the z-axis, σ̂ · nθϕ (cf. Eq. 2.19). But in
our given example we are only tilting along the θ -angle, so we obtain (for ϕ = 0):

σ̂θ =
(

cos θ sin θ
sin θ − cos θ

)
.

It is not a difficult exercise (e.g. McIntyre 2012, p. 38 ff., for guidance) to verify that
this matrix has eigenvectors |↑θ 〉 = cos θ

2 |↑z〉 + sin θ
2 |↓z〉 and |↓θ 〉 = sin θ

2 |↑z〉 −
cos θ

2 |↓z〉 with eigenvalues ±1 respectively, representing spin up/down along the
tilted axis respectively. We can use this fact to calculate the probabilities for both
spins being up in the tilted setup, as

Prχz,θ (+z,−θ ) = | 〈↑z,↓θ |χ〉 |2 =
1

2
cos2(θ/2) = | 〈↓z,↑θ |χ〉 |2 = Prχz,θ (−z,+θ ),

Prχz,θ (+z,+θ ) = | 〈↑z,↑θ |χ〉 |2 =
1

2
sin2(θ/2) = | 〈↓z,↓θ |χ〉 |2 = Prχz,θ (−z,−θ ),

(4.22)

where we have abbreviated 〈x|〈y| = 〈x, y|, σj = j , and ±j1 = ±j (j ∈ {z, θ}).
For now, we let the first argument in the probability function refer to the left system
and consider it as ‘system 1’, which will keep the notation simple (we will make
suitable adjustments later).

So far we have only varied the orientation of one of the two magnets, but we could
equally allow for rotations of both magnets to new axes, defined by unit vectors
na and nb. Letting one of the two magnets define the ‘new z-axis’ on each run,
it becomes immediately clear that the probabilities depend only on the angle of
relative tilt, θab. This is equivalent to working in the eigenbasis of the operator
representing the spin along the axis of one of the magnets.

We could now also arrange things such that the two magnets are sufficiently far
apart to make the measurements spacelike separated, and that we rotate them only
when both atoms have already been emitted from the source. In this way, we should
be able to secure that the atoms have no way of ‘communicating what to do’. I.e.,
drawing on the constraints set by special relativity, we would have to conclude that
the two systems have no way of anti-aligning appropriately after having left the
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Table 4.1 Possible settings
for both quantum systems
taken together for all three
axes

Number System 1 System 2

N1 (+a,+b,+c) (−a,−b,−c)
N2 (+a,+b,−c) (−a,−b,+c)
N3 (+a,−b,+c) (−a,+b,−c)
N4 (+a,−b,−c) (−a,+b,+c)
N5 (−a,+b,+c) (+a,−b,−c)
N6 (−a,+b,−c) (+a,−b,+c)
N7 (−a,−b,+c) (+a,+b,−c)
N8 (−a,−b,−c) (+a,+b,+c)

source, given that we are free to choose a setting of misalignment after the emission
has taken place. Assuming that each atom always has some definite spin value, i.e.,
that there is a true state λ on each atom that fixes the spin properties, and that the
spin state |χ〉 is hence an incomplete description of the relevant degrees of freedom,
we can now deduce a contradiction with the QM probabilities.34

Following Wigner (1970), d’Espagnat (1979), Sakurai (1994), and others, we
can give a simple quick and dirty-argument to this effect as follows. Take three
possible axes of space, defined by (all real multiples of the) unit vectors na,nb, and
nc, with different angles of misalignment θab, θac, and θbc. Then list all possible
configurations which predetermine a given measurement result w.r.t. any of the
given axes on each system, and count all such possible configurations (cf. Table 4.1).

This listing corresponds to assuming more definite states than QM ascribes; we
are here assuming a hidden configuration λ (a set of hidden variables, the true state
of the two systems) which respects the anti-alignment and assigns to each system
some definite property that predetermines what the system will do in any measure-
ment. The indices on the +/− signs again refer to the axes. The numbers Nj (j ∈
{1, . . . , 8}) are the cardinalities of the (imagined) sets of possible configurations that
predetermine the desired behavior (assumed to be finite). From this list, we can infer
the numbers of configurations which will give rise to the appropriate behavior in any
given setting of the experiment. For instance, the number of configurations such that
the first system has its spin up along the a-axis and the other one has its up along
the b-axis is given by N3 +N4. Similarly, N2 +N4 is the number of configurations
such that the first one has its spin up along a, and the second one up along c, and
correspondingly for c and b with numbers N3 +N7. But since N3 and N4 both also
occur in the last two expressions and N2 and N7 cannot become negative, it must
hold that

34Of course we could also use a quantum mechanically more complete description here, by
including spatial degrees of freedom etc. But this has no influence on the relevant predictions;
it would only make the description more complicated, since the spatial quantum state for two
indistinguishable systems has to be appropriately (anti-)symmetrized as well: two indistinguishable
fermions, say, would here have to be described by a state such as |〉 = 1√

2
(|L〉 |R〉 + |R〉 |L〉)⊗

|χ〉, where |L〉 and |R〉 are two states in position space with non-overlapping supports in R
3, and

|χ〉 is the singlet state (e.g. Ghirardi et al. 2002, p. 81 ff; Ghirardi and Marinatto 2003, p. 384).
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N3 +N4 ≤ (N2 +N4)+ (N3 +N7).

We can now straightforwardly evaluate the (a priori) probabilities p of the occur-
rences of the aforementioned settings by dividing the whole equation by the total
number

∑8
j=1 Nj of possible settings. These probabilities hence satisfy the Bell-

Wigner inequality

p(+a,+b) ≤ p(+b,+c)+ p(+c,+b) (4.23)

(e.g. Hughes 1989, p. 172; Sakurai 1994, pp. 229). But QM predicts differently.
Take, for instance, θac = θbc = π/4, θab = π/2. Then according to the QM
probabilities we have found above (for two spins being up along two different axes),
we would have

p(+a,+b) ≤ p(+a,+c)+ p(+c,+b)
QM⇔ 1

2
sin2(θab/2) ≤ 1

2
(sin2(θac/2)+ sin2(θbc/2))

⇔ 0, 5 ≤ 2 sin2(π/8) ≈ 0, 29 �

The inequality which we have derived and shown to be violated according to
QM straightforwardly demonstrates the incompatibility between QM and a set of
assumptions associated with a certain class of hidden-variable theories. Such an
equality is called a Bell-type inequality, after Bell (1964), and a whole family
of similar such results is generally referred to as Bell’s theorem (cf. Shimony
2009, p. 1). However, a more thorough derivation with much less contentious
assumptions is possible, so we should not rush to conclusions about determinism,
finite numbers of possible configurations. . . and so forth. But before we start
analyzing the assumptions really required in more detail, we should first take a look
at the theoretical and historical background of the theorem.

First of all, it is worth noting that the incompatibility is again derived in virtue
of the existence of entangled states. These states have also played a crucial role
in the derivation of the PBR theorem, and we can see why Schrödinger (1935a, p.
555) thought that entanglement is “the characteristic trait of quantum mechanics,
the one that enforces its entire departure from classical lines of thought.” (emphasis
in original)

But not all entanglement is the same; one can distinguish different strengths of
entanglement by assigning an entanglement measure (e.g. Jaeger 2007, p. 102 ff.).
An important subclass of entangled states that can be readily defined without appeal
to such a measure are the maximally entangled ones. Following e.g. Thaller (2005, p.
247), we can define this notion w.r.t. a compound system, formed of two systems ‘1’
and ‘2’ with respective Hilbert spaces of dimension n, by requiring that the reduced
density operator of each system must satisfy
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Tri �=j (ρ̂12) =: ρ̂j = 1

n
1, i, j ∈ {1, 2}, (4.24)

where ρ̂12 is the density operator of the compound system, and Tri �=j (ρ̂12) means
performing the trace operation w.r.t. the respective other system (i �= j ) (e.g.
Basdevant and Dalibard 2002, p. 444, for more details). In other words: if the
reduced density operator for each subsystem is maximally mixed, then the system is
maximally entangled. Accordingly, we can also write |〉 = 1√

n

∑
j

∣∣φj
〉⊗ ∣∣ψj

〉
for

a pure maximally entangled state. A system which is made up of two subsystems
is usually called bipartite; and maximally entangled states of two qubits are often
called Bell states (e.g. Thaller 2005, pp. 216 and 247).

Based on this existence of different strengths of entanglement, one might hence
conjecture that not all entangled states are ‘entangled enough’ to violate Bell-type
inequalities. And indeed, to date “it is unknown whether there exist Bell inequality
violations for many nonseparable mixed states.” (Jaeger 2007, p. 93) A result which
suggests that not all entangled states do is the counterexample provided by Werner
(1989), in which a (mixed) entangled state is constructed that is ‘local’ in the sense
of admitting a local hidden variable model (cf. also Vértesi and Brunner 2014, p.
2). But regarding this and similar examples, Vértesi and Brunner (2014, ibid.) note
that “it turns out that [. . . ] [i]f pre-processing by local operations and classical
communication (LOCC) is performed before the local measurements, the ‘hidden
nonlocality’ of some local entangled states can be revealed.”

Moreover, for a whole class of mixed entangled states previously conjectured to
be incapable of violating a Bell-type inequality (cf. Peres 1999, p. 609), so called
‘bound entangled states’, it has been demonstrated that some of them do violate
Bell-type inequalities after all (cf. Vértesi and Brunner 2014, pp. 2–3).

Bound sates are such that they are not distillable, where

[a] bipartite entangled state is said to be distillable if, from an arbitrary number of copies,
it is possible to extract pure entanglement by LOCC. [. . . ] The main open question now is
whether all bound entangled states can give rise to Bell inequality violation, which would
imply that entanglement and nonlocality are basically equivalent. (Vértesi and Brunner
2014, p. 2)

By local operations one means operations of the form 1 ⊗ 1 ⊗ . . . ⊗ Ô ⊗ 1 ⊗
. . . ⊗ 1, i.e. such operations which only affect one system in the total (possibly
entangled) state of multiple systems. ‘Classical communication’ refers to all means
of communication which do not straightforwardly require quantum mechanical
considerations (such as e.g. telephone calls; cf. Audretsch 2007, p. 144).

Why is this of interest? The significance of Vértesi and Brunner’s discovery for
us here is that the astonishing implications of entanglement (violations of Bell-
type inequalities) are quite widespread, much more so than previously thought. It
is hence often—or possibly always—only a matter of experimental ingenuity, not
of principled theoretical restriction, whether one can find evidence for the ‘weird’
features induced by entanglement. This underlines Schrödinger’s aforementioned
assessment of entanglement’s significance.
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Initially we noted that the general kind of experiment described in this section
(albeit entirely without misalignment considerations) was first conceived of in a
paper by Einstein and collaborators, usually referred to as the EPR-paper. Since
this is instructive for the later discussion, we should spend a few lines on its content.
The authors used an entangled wave function (x1, x2) =

∫
dp ei(x1−x2+x0)p/h̄,

describing two particles with x1 and x2 the coordinates of the respective particles
(at a given time), and x0 a fixed distance. Using the fact that this function can either
be viewed as a continuous superposition of products of momentum eigenfunctions
up(x1) = eix1p/h̄ and ψp(x2) = e−i(x2−x0)p/h̄, or equally as a superposition of
position eigenfunctions vx(x1) = δ(x − x1) and ϕx(x2) =

∫
dp ei(x−x2+x0)p/h̄ =

hδ(x − x2 + x0), they gave an argument that QM must be incomplete. To this end,
they assumed the following two premises to hold:

(i) Necessary condition for completeness A physical theory can only be considered
complete if “every element of the physical reality [has] a counterpart in the
physical theory.” (Einstein et al. 1935, p. 777)

(ii) Reasonable criterion for reality “If, without in any way disturbing a system, we
can predict with certainty (i.e., with probability equal to unity) the value of a
physical quantity, then there exists an element of physical reality corresponding
to this physical quantity.” (ibid.)

Since it is possible to predict, in virtue of the total function being an eigenfunc-
tion of the two commuting observables x̂1 − x̂2 and p̂1 + p̂2,35 with certainty and
without in any way disturbing it, the position or momentum of particle 2 from the
measured result of either the position or the momentum of particle 1 respectively,
both of these must be elements of reality by (ii). Hence, by (i), QM must be
incomplete, since it does not imply nor even allow for the existence of precise
values for both quantities, in virtue of the non-commutativity of the single particle
operators (cf. also Jammer 1974, p. 182–185).

The EPR paper is sometimes thought of a presenting a ‘paradox’. That seems
incorrect, since it is just an argument for the incompleteness of QM, and using
standard notation from first order logic and a garden-variety logical calculus, we
can represent its logical structure quite directly. Thus, let P(λ) denote ‘λ is predicted
with certainty’ (λ ranges over physical quantities), D(S) ‘S is being disturbed’ (S
ranges over physical systems), and C(T ) ‘T is complete’ (T ranges over theories).
Let also p2 be the precise value of momentum of particle 2, say, predicted from
(x1, x2) and the measurement result when particle 1 is measured for momentum,

35The operators p̂1/2 correspond to −ih̄ ∂
∂x1/2

respectively, yielding eigenvalue 0 for the total

operator p̂1+ p̂2; i.e. p2 = −p1. The respective position operators yield x and x+x0 respectively,
so that x̂1 − x̂2 gives the distance x0 between the two, and a position measurement on system 1
with result x will imply position x+x0 for system 2 (see also Aharonov and Rohrlich (2005, p. 27)
and Schrödinger (1935a, p. 559) on this point).
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but which value 2 is supposed to already have. And let Sλ be the system to which a
given λ pertains. Then the EPR argument (with p2) has the following structure36:

(1) ∀T ∀λ[C(T ) ∧ ∃x(x = λ)→ λ ∈ T ] Pr.
(2) ∀λ∀Sλ[-(P(λ) ∧ ¬D(Sλ))→ ∃x(x = λ)] Pr.
(3) p2 /∈ QM from QM
(4) P(p2) ∧ ¬D(Sp2) from QM, causal assumptions
(5) -(P(p2) ∧ ¬D(Sp2)) MP T1, (4)
(6) ∃x(x = p2) UI (2), MP (5)
(7) ¬C(QM) ∨ ¬∃x(x = p2) UI (1), MT (3), De M.
(8) ¬C(QM) DN, DS (7), (6)

As we can see, two ‘lemmas’ are needed to substantiate (3) and (4), that we will
discuss shortly. T1 here is the statement that q → -q (- being the weak modal
operator with standard interpretation ‘it is possible that. . . ’), for some proposition
q. It is a theorem of the modal system T, which is the second weakest discussed
in Hughes and Cresswell (1996, cf. p. 42). So the modal commitments are not too
worrisome here. That p2 /∈ QM can be inferred from QM itself in the orthodox
interpretation is due to the specification of p2 as ‘already existent’, when the
statefunction is (x1, x2) and before the measurement. The EE-link prohibits this
existence. This is the first ‘lemma’ to the proof: p̂2(x1, x2) �= μ(x1, x2) for any
μ ∈ C, therefore, by the EE-link, p̂2’s corresponding observable does not have a
value in (x1, x2).

EPR were also quite aware that “one would not arrive at [their—FB] conclusion
if one insisted that two or more physical quantities can be regarded as simultaneous
elements of reality only when they can be simultaneously measured or predicted.”
This would mean denying premise (2) in our reconstruction, the implication
from predictability (without disturbance) to existence; the mention of the non-
simultaneous measurability serves merely as a motivation for denial. The quote
reflects EPR’s awareness that their sufficient condition for attributing a ‘physical
reality’ (which we should construe rather as a mind- or theory-independent reality)
to the quantity that is measured is not without competition.37 Arguably, many
physicists at the time would have rather endorsed the view expressed in the last

36The notation ‘λ ∈ T ’ appealed to below is a bit sloppy, but it should be clear what is meant.
37The opinion that this is so however goes contrary to that of Maudlin (2014b, p. 6), who thinks that
“the criterion is, in the parlance of philosophers, analytic.” (emphasis in original) ‘Predicting the
value of a physical quantity with certainty’ could mean to predict the outcome of some experiment
which could still not be indicative of what the investigated system ‘really did beforehand’, which
may be the targeted ‘element of reality’. Moreover, predicting with certainty on theoretical grounds
could have no actual experimental counterpart (incompatible experimental setups) and thus not
refer to anything. These are reasons to doubt that the statement is analytic, and in fact we will see
how to put these intuitions to work in Chap. 7.
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quote, but to EPR “[n]o reasonable definition of reality could be expected to permit
this.” (Einstein et al. 1935, p. 780)

As we noted, an additional causal assumption needs to be made, in order to
infer the second conjunct in (4). This causal assumption is the denial of a direct
causal influence between the two systems: “since at the time of measurement the
two systems no longer interact, no real change can take place in the second system
in consequence of anything that may be done to the first system.” (Einstein et al.
1935, p. 779) These additional premises to make the EPR argument work require,
as we will see, some attention. This, however, is the second ‘lemma’: from p̂1 +
p̂2, (x1, x2), and a measurement on 1, we predict with certainty the value p2, i.e.
we have P(p2), and by the causal restriction (no direct causal influence) ¬D(Sp2)

follows.
It is on safe grounds now that Einstein was rather dissatisfied with the paper,

mostly because the structure of the argument was obscured. In a correspondence
with Schrödinger, he expressed his misgivings as follows: “For reasons of language,
this was written by Podolsky after many discussions. But still it has not come out
as well as I really wanted; on the contrary, the main point was, so to speak, buried
by the erudition.” (Einstein 1935, as cited in Howard 1985, p. 175) One point which
was buried by the erudition is that two different ψ functions may correspond to the
same piece of reality, which, as we saw earlier, is the very basis for considering ψ
as epistemic in the sense of Conjecture 1. This point is present in the EPR paper (cf.
their p. 779), but was most clearly pointed out in Einstein’s 1948 article Quanten-
Mechanik und Wirklichkeit.

In the above example from the EPR-paper, the two different ψ functions which
could result on the second system, from choosing at will the measurement to
perform on the first system, are the position- and momentum eigenfunctions ϕx(x2)

and ψp(x2) for particle 2; and in our initial description of the EPRB experiment in
this section they are the respective kets |↑a〉 or |↑b〉, say, given that ‘spin down’ was
observed on the other system, and depending on whether they are jointly measured
along either axis a or b. According to the projection postulate (Lüders’ rule) some
such state should result as a consequence of either of the measurements; again an
expression of the ‘remote steering’ that Schrödinger was concerned about.

In Quanten-Mechanik und Wirklichkeit Einstein also made additional assump-
tions about the separability, locality, and ‘reality’ (if you will) of the two systems
quite explicit, which have to be made in order for the argument to go through.
In particular, he believed that the ‘defenders’ of QM would be willing to give
up the “requirement [. . . ] of the independent existence of the physically real,
in the distinct parts of space [. . . ].” (Einstein 1948, p. 323; my emphasis; my
translation—FB).38 And this conveys a good intuition of what is meant by, and

38German original: “Es scheint mir keinem Zweifel zu unterliegen, dass die Physiker, welche die
Beschreibungsweise der Quanten-Mechanik für prinzipiell definitiv halten, auf diese Ueberlegung
wie folgt reagieren werden: Sie werden die Forderung [. . . ] von der unabhängigen Existenz des in
verschiedenen Raum-Teilen vorhandenen Physikalisch-Realen fallen lassen; sie können sich mit
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at stake with, the aforementioned additional assumptions. The detailed analysis of
these concepts, however, leads us directly back into the discussion of Bell’s theorem,
since ultimately the very same assumptions are at stake here, and they can be made
formally precise.

Some have taken Bell to assume, in his 1964 paper, determinism as well
as locality. But Norsen (2009, p. 274) and Maudlin (2010b, p. 123) emphasize
that this is a misunderstanding, since Bell derives determinism from locality and
the existence of (perfectly) correlated measurement results; and in Bertlmann’s
socks and the nature of reality, Bell (1981a, p. 143) himself laments that “[i]t is
remarkably difficult to get this point across, that determinism is not a presupposition
of the analysis.” (emphasis in original)

Determinism can be spelled out as the outcomes of the measurements being
functions of the settings and the values of the assumed hidden variables (Bell 1964,
p. 15; cf. also Wiseman 2014, p. 5), and we have appealed to determinism in our
quick and dirty derivation of the Bell-Wigner inequality above, by appealing to
sets of configurations predetermining the outcomes on both systems. The locality
constraint was formulated by Bell as the assumption “that the result B for particle
2 does not depend on the setting na , of the magnet for particle 1, nor A on nb.”
(Bell 1964, p. 15; notation adapted) Einstein must have had in mind basically the
same thing in writing that “an external influence on [system 1] has no immediate
influence on [system 2] [. . . ].” (Einstein 1948, pp. 321–322; emphasis in original;
my translation—FB)

However, Bell’s statement is more explicit on the nature of the influence on
system 1 which should not influence system 2; namely, the setting of the other
device (magnet) should not influence the remote system’s state. Following Jarrett
(1984, p. 572 ff., 1989, p. 69) and Wiseman (2014, p. 6), and expanding our
notation to include reference to the side on which the outcome occurs, such as
in e.g. L+a for ‘spin-up is measured on the left side for alignment along axis
a’,39 we can reconstruct Bell’s locality, which is also sometimes called parameter
independence40 after Shimony (1990, p. 35), as

p(Axj |i, j, λ, χ) = p(Axj |j, λ, χ), ∀i, j, x, λ, χ, (PI)

where A ∈ {L,R}, and i, j ∈ {a, b, c} are the settings of the left and right
device respectively, λ is an assumed (set of) hidden variable(s), x, y ∈ {+,−}

Recht darauf berufen, dass die Quanten-Theorie von dieser Forderung nirgends explicite Gebrauch
mache.”
39This kind of notation is also used by Graßhoff et al. (2005).
40The name ‘parameter independence’ is possibly misleading, since many things should certainly
count as causal or probabilistic parameters. The intended ‘parameter’ here is the distant setting,
whence Pawłowski et al. (2010, p. 2), for instance, use the name “setting independence” instead.
We will however stick to the more widespread terminology.
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are the outcomes, and χ the P-state.41 But we have thus captured only part of the
notion of locality implicit in Einstein’s writing. Assuming that the obtainment of an
outcome on one side of the experiment is in part determined by the action of the
measurement-apparatus on the system, even if allowed to be in principle arbitrarily
subtle, an influence between the obtainment of the remote outcomes should also be
excluded; whence it is in accord with the above Einstein-quote to require an outcome
independence as well:

p(Axj |Byi , i, j, λ, χ) = p(Axj |i, j, λ, χ), ∀i, j, x, y, λ, χ, (OI)

where A,B ∈ {L,R} and A �= B (cf. also Jarrett 1989, p. 69;
Shimony 1990, p. 35).

Later (1971, 1976) Bell avoided the appeal to determinism entirely (even as
a derived premise) and exclusively relied on probabilistic notions instead, most
importantly a notion of local causality (cf. also Clauser and Horne 1974, p. 526). As
in the discussion of the EPR paper, we here slide into considerations of causality,
whereas originally we were only concerned with the existence of true states of
systems beyond those ascribed by QM, i.e. the structure of mind-independent reality
(mostly) at the ‘micro-level’.

The tension between these two aspects is also noticed by Cartwright (1989, p.
237), who writes:

one needs to have a clear idea what purposes a hidden-variable theory is supposed to serve.
Why want hidden variables? There are two distinct answers: to restore realism in quantum
mechanics; and to restore causality.

But we hold here that the two notions are more intimately connected than
Cartwright apparently thinks. Suppes (1998, p. 247), for instance, describes the kind
of hidden variables in question as “causes that cannot be observed but that satisfy
more classical assumptions in generating quantum mechanical phenomena.” Hence
questions about the very existence of certain unobservable entities that also figure
as causes of observed phenomena are at stake, i.e. questions regarding what we
believe reality ‘beyond appearances’ to be. This conveys intuition enough so as to
see the role of hidden variables as restoring causation and a kind of realism: they
act as causes for observed phenomena and observed correlations, and they thereby
ensure the interpolability of correlated phenomena by appeal to unobserved entities
or events—Reichenbach’s (1944, p. 21) interphenomena—that one supposes to be
assessable in a suitably ‘classical’ manner.

Among other things, the question immediately arises whether scientific theories
are able to refer in all domains (observable and unobservable); and denying this

41In contrast to e.g. Wiseman (2014) and Bell (1990b), and in the spirit of our above discussion of
OMs, we have omitted direct reference to a preparation procedure P and instead only appealed to
the quantum state χ , interpreted as a P-state. P would denote “the values of any number of other
variables describing the experimental set-up, as admitted by ordinary quantum mechanics [. . . ]”,
(Bell 1990b, p. 108) and would hence add no relevant information beyond χ in this context.
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would mean denying the semantic condition for scientific realism (cf. interlude I).
A subtlety is involved here though: λ need not be a ‘more classical’ cause, but
could be the quantum state χ itself. We will see in interlude II, however, why this is
difficult to maintain as well, and the interpretation ultimately settled for in this book
will accept neither χ nor some λ as a cause of the correlations.

The probabilistic content of local causality, however, was originally spelled out
by Bell (1976, p. 54) as

p(Axj |Byi , i, j, λ, χ) = p(Axj |j, λ, χ), ∀i, j, x, y, λ, χ, (LC)

again using our notation and again A �= B (cf. also Norsen 2011, p. 1270).
Hence, (LC) can be viewed as the conjunction of (PI) and (OI). Since in general
p(A|B) = p(A,B)/p(B)⇔ p(A,B) = p(A|B)p(B) (assuming p(B) > 0), and
p(Axj |i, j, λ, χ) = p(Axj |j, λ, χ) in virtue of (PI), one obtains what has become
known as a (local) factorization condition:

p(Rxj , L
y
i |i, j, λ, χ) = p(Rxj |j, λ, χ) · p(Lxi |i, λ, χ), ∀i, j, x, y, λ, χ.

(FACT)

This is the central consequence of (LC) which is often appealed to directly in the dis-
cussion of Bell’s theorem (e.g. Bell 1990b, p. 109; Clauser and Horne 1974, p. 528;
Graßhoff et al. 2005, p. 666; Norsen 2011, p. 1270; Wiseman 2014, p. 13).

Next to the fact that (FACT) plays a key role in a thorough derivation of a Bell-
type inequality, it also makes the link to established principles of (probabilistic)
causality theory most obvious, to some of which we will return below. To derive
a Bell-type inequality, we need to add to (FACT) the assumption that λ itself is
independent of the measurement settings:

p(λ|i, j, χ) = p(λ|χ), ∀i, j, χ, λ. (AUT)

‘AUT’ is short for autonomy (cf. Friebe et al. 2015, p. 141; van Fraassen 1982b,
p. 31),42 and this merely corresponds to the assumption that there is no ‘cosmic
conspiracy’, as it were, since the settings of the measurement devices on each side
could be chosen during flight, and randomized (say) by a computer, so that it would
indeed amount to a weird kind of conspiracy or “superdeterminism” (Bell 1990b,
p. 110), if λ was dependent on the settings, i and j (cf. also Friebe et al. 2015,
p. 168; Shimony 2009, p. 15 ff.). Note also that if p(λ|i, j, χ) �= p(λ|χ), then
p(i, j |λ, χ) �= p(i, j |χ), assuming, as must be the case here, that p(i, j |χ) �=
0. I.e., we would also have dependence of the settings on λ which even more so
amounts to a conspiracy or superdeterminism.

42In contrast to Friebe et al. (2015, p. 141), we have allowed for λ to depend on χ , since the OM
approach requires this to be possible: χ is construed as the P-state therein, a representation of what
was done to the system in a preparation procedure.
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From (AUT) and (FACT), one of the most important Bell-type inequalities
can be derived in a straightforward manner, namely the Clauser-Horne-Shimony-
Holt (CHSH) inequality, named after Clauser et al. (1969).43 First note that for
p, q, r, s ∈ [−1, 1], it holds that −2 ≤ pr + ps + qr − qs ≤ 2 (you can
convince yourself of this fact or look up the proof e.g. in Shimony 2009, p. 5).
But all the expectation values of the spin (or photon) EPRB-experiments satisfy the
requirement that they lie in the interval [−1, 1] due to the nature of the outcomes
±1 (in the appropriate units). Hence, taking averages w.r.t. different settings for
the respective sides of the experiment, we obtain (by distributivity of sums and the
definition of an average)

−2 ≤
∑
x,y

xyp(Rxj |j, χ, λ)p(Lyi |i, χ, λ)+
∑
x,y

xyp(Rxj |j, χ, λ)p(Lyi′ |i′, χ, λ)+

+
∑
x,y

xyp(Rxj ′ |j ′, χ, λ)p(Lyi |i, χ, λ)−
∑
x,y

xyp(Rxj ′ |j ′, χ, λ)p(Lyi′ |i′, χ, λ)≤2,

(4.25)

with j ′, i′ ∈ {a, b, c} measurement settings, and everything else as before. We can
rewrite this, in virtue of (FACT), as

−2 ≤
∑
x,y

xyp(Rxj , L
y
i |j, i, χ, λ)+

∑
x,y

xyp(Rxj , L
y

i′ |j, i′, χ, λ)+

+
∑
x,y

xyp(Rxj ′ , L
y
i |j ′, i, χ, λ)−

∑
x,y

xyp(Rxj ′ , L
y

i′ |j ′, i′, χ, λ) ≤ 2. (4.26)

We require also that p(λ|χ) is normalized, i.e., that the integral of p(λ|χ) over
all λ is 1, which is a trivial requirement since p(λ|χ) is supposed to be a
probability density and χ represents a preparation procedure with resulting λs. Thus,
multiplying the whole inequality by p(λ|χ), we obtain

−2p(λ|χ) ≤
∑
x,y

xyp(Rxj , L
y
i |j, i, χ, λ)p(λ|χ)

+
∑
x,y

xyp(Rxj , L
y

i′ |j, i′, χ, λ)p(λ|χ)+

+
∑
x,y

xyp(Rxj ′ , L
y
i |j ′, i, χ, λ)p(λ|χ)

−
∑
x,y

xyp(Rxj ′ , L
y

i′ |j ′, i′, χ, λ)p(λ|χ) ≤ 2p(λ|χ), (4.27)

43For the following proof see also Shimony (1990, p. 34 ff., 2009, p. 5 ff.) or Friebe et al. (2015,
p. 142).
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which we can rewrite, in virtue of (AUT), as

− 2p(λ|χ) ≤
∑
x,y

xyp(Rxj , L
y
i |i, j, χ, λ)p(λ|i, j, χ)

+
∑
x,y

xyp(Rxj , L
y

i′ |i′, j, χ, λ)p(λ|i′, j, χ)+

+
∑
x,y

xyp(Rxj ′ , L
y
i |i, j ′, χ, λ)p(λ|i, j ′, χ)

−
∑
x,y

xyp(Rxj ′ , L
y

i′ |i′, j ′, χ, λ)p(λ|i′, j ′, χ) ≤ 2p(λ|χ). (4.28)

By appeal to the definition of conditional probability we obtain

−2p(λ|χ)≤
∑
x,y

xyp(Rxj , L
y
i , λ|i, j, χ)+

∑
x,y

xyp(Rxj , L
y

i′ , λ|i′, j, χ)+

+
∑
x,y

xyp(Rxj ′ , L
y
i , λ|i, j ′, χ)−

∑
x,y

xyp(Rxj ′ , L
y

i′ , λ|i′, j ′, χ)≤2p(λ|χ),

(4.29)

and from the normalization condition on p(λ|χ), we obtain, by integration of the
inequality over all λ (marginalization for λ),

−2 ≤
∑
x,y

xy

∫
dλp(Rxj , L

y
i , λ|i, j, χ)+

∑
x,y

xy

∫
dλp(Rxj , L
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+
∑
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xy
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y
i , λ|i, j ′, χ)−

∑
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xy

∫
dλp(Rxj ′, L

y

i′ , λ|i′, j ′, χ)≤2,

(4.30)

so that we finally have

−2 ≤
∑
x,y

xyp(Rxj , L
y
i |i, j, χ)+

∑
x,y

xyp(Rxj , L
y

i′ |i′, j, χ)+ (CHSH)

+
∑
x,y

xyp(Rxj ′ , L
y
i |i, j ′, χ)−

∑
x,y

xyp(Rxj ′ , L
y

i′ |i′, j ′, χ) ≤ 2.

The expressions in this inequality correspond to averages of products of observables
independent of λ, and may hence be compared with the averages that QM predicts.
In virtue of the angle dependence of QM probabilities (and a fortiori: averages),
this inequality is violated according to QM for the appropriate choices of angles
between the three settings (cf. Shimony 2009, p. 8).
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We can see how this derivation of the CHSH inequality has much stronger
implications than our quick and dirty one of the Bell-Wigner inequality, since it rests
on much weaker assumptions. We did not appeal to determinism here, unlike above;
we did not appeal to questionable a priori probabilities in the sense of classical
probability theory, which was also a contentious point in our above derivation (cf.
also Home and Selleri 1991, p. 22 on this point). All we assumed was the absence of
cosmic conspiracies and a form of independence of both results from remote (space-
like separated) influences; each assumption spelled out in form of a probabilistic
requirement, (AUT) and (FACT).

But this, again, raises the question of the background assumptions for (AUT) and
(FACT), and the validity of connecting the informal assumptions to desired formal
premises. We saw that (LC) can be viewed as (is equivalent to) the conjunction of
(OI) and (PI). An underlying assumption that in turn motivates these two (pairs of)
probabilistic formulae is a causal notion, sometimes referred to as causal Einstein
locality (e.g. Friebe et al. 2015, p. 128; Hofer-Szabó and Vecsernyés 2014, p. 1):

Causal Einstein Locality (CEL) Causal influences do not propagate faster than
the speed of light.

An attitude of this type is also often found in textbooks on relativity, such as
e.g. Adams (1997, p. 138 ff.) or Taylor and Wheeler (1963, p. 39). It can equally
be understood as a formulation of Bell’s own intuitive notion of local causality
(cf. Bell 1976, p. 54). And, most importantly, (CEL) is not unmotivated because,
due to the lack of an overarching notion of simultaneity in SR, denying (CEL)
would open up the possibility of effects preceding their causes, and ultimately that
of contradiction provoking causal loops (cf. Maudlin 2011, pp. 142–143 and the
discussion in interlude II).

Since we have assumed that the two magnets (measuring devices) may be at a
large distance, and the settings may be changed at any time during the flight, one
can see how (CEL) motivates (PI) and (OI). It thus seems that one is at liberty to
give up either (PI) or (OI) in the light of violations of Bell-type correlations, i.e. the
dependence of one outcome on its distant partner or the dependence of outcomes
on the distant settings. But this impression has been found wanting for several good
reasons.44

Dickson (2007, p. 391) e.g. points out that “the claim is often made that a failure
of Outcome Independence is somehow consistent with relativity, while a failure of
Parameter Independence is not.” This claim is then typically substantiated by the
belief that “experimenters are in control of parameters—they are in fact normally
assumed to be the result of a free choice of the experimenter.” (ibid.; emphasis
omitted.) This kind of reasoning, however, has been found to be flawed by several
authors (cf. Dickson 2007, p. 391; Friebe et al. 2015, p. 151; Maudlin 2011, p. 88
ff.), the main reason being that

44Maudlin (2011, p. 87) also demonstrates that (FACT) can equally be derived from two different
formulae, which could claim equal right to be called ‘parameter-’ and ‘outcome independence’. So
the exact formalization of the two intuitive requirements is already questionable.
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the probabilities in Parameter Independence and Outcome Independence are those gener-
ated by the hidden state, λ. If the experimenter is not in control of these hidden states,
then a failure of Parameter Independence will also not imply the possibility of signaling.
Moreover, control of the hidden states would mean that in fact a violation of Outcome
Independence also implies the possibility of signaling, so long as the probabilities for
the outcomes generated by different hidden states are different. (Dickson 2007, p. 391;
emphasis in original)

In short, the distinction between (OI) and (PI) as the two guiding principles
for the derivation of a Bell-type inequality may be misleading, and the case for
rejecting (PI) while keeping (OI) is rather weak.

More importantly, Näger (2013b) derives a theorem according to which models
in which “at least one of the factors [in some factorization of the joint probability for
both systems—FB] involves space-like separated variables, but none of the factors
involves both parameters [. . . ] imply Bell inequalities [. . . ].” (p. 10) Thus some
(probabilistic) dependence on the distant parameter must be assumed once outcome
dependence is allowed, on account of Näger’s investigation. A similar result is also
derived by Pawłowski et al. (2010), who “show that information about a distant
setting and outcome is not only sufficient to simulate violation of Bell’s inequality
but also necessary”; and Maudlin (2011, p. 164 ff.) gives some additional informal
arguments to a similar effect.45

What these objections conjointly show is that one cannot straightforwardly
avoid the consequences of Bell’s theorem by letting the outcomes influence each
other (causally). This neither invalidates (OI) and (PI) qua formulae nor their in-
principle capability to reflect independence of outcomes from the remote outcomes
or settings. What the complaints show in summary is that “the usual verdict”
(Butterfield 2007, p. 828), that denying (OI) and allowing a direct causal influence
among outcomes is the appropriate way to view the situation, is at best doubtful.

In spite of this we are still left with the task of thoroughly connecting causal and
probabilistic notions. This is so because causation and correlation are, of course, two
separate issues. For instance, “the correlation between ‘heads up’ and ‘tails down’
will not stand in need of an explanation in terms of a common cause[. . . ].” (Wroński
2014, p. 9) That the correlations in EPRB experiments are not of this sort needs to be
postulated, and is a consequence of the Einsteinian separability assumption that we
have already met with in the quote above. Following Howard (1989, pp. 226–227),
we can state it more precisely as follows:

Einstein Separability (SEP) The contents of any two regions of space-time
separated by a non-vanishing spatiotemporal interval constitute separable physical
systems in the sense that (1) each possesses its own, distinct physical state, and (2)
the joint state of the two systems is wholly determined by these separate states.

45Näger’s result is more straightforwardly concerned with causal influences and the latter results
concern information, so to count these arguments as in favor of the same thing, a case has to be
made that causation and information are related in an appropriate manner. Cf. Näger (2013a, p. 42
ff.) for discussion on these issues.
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Howard (ibid.) construes this as “a fundamental ontological principle governing
the individuation of physical systems and their associated states, a principle implicit
in many classical physical theories”, which seems like an apt characterization.
Einstein held this principle dearly and thought that “[w]ithout the assumption of
such a mutual independence of existence (of a ‘being thus’) of the spatially remote
things, which stems in the first place from everyday life thinking, physical thinking
in the sense familiar to us would not be possible.” (Einstein 1948, p. 321; my
translation—FB)46

(SEP) is obviously also quite similar in content to (Sep.) from the PBR theorem,
whence both carry the name of a separability assumption. Yet (SEP) is explicitly
concerned with spatiotemporal notions, whereas (Sep.) is merely used to proclaim
an independence in preparation (thereby however presupposing (SEP) for any
reasonable preparation; cf. Fig. 4.5).

Using probability theory, a correlation between events A and B can be spelled
out by requiring that p(A,B) �= p(A)p(B), because then p(A|B) �= p(A)p(B)

p(B)
=

p(A), so that A actually does depend probabilistically on B (and analogously
B on A). The events are called positively correlated if p(A,B) > p(A)p(B)

and negatively correlated if p(A,B) < p(A)p(B) (cf. Wroński 2014, p. 3). We
clearly get a correlation from the quantum probabilities in the EPRB case, since
Prχsj (R

x
j ) = 1

2 = Prχsi (L
y
i ), which follows from the respective reduced density

matrix for |χ〉 = 1√
2
(|↑〉 |↓〉− |↓〉 |↑〉), but the joint probability of the two events is

given by trigonometric functions, generally unequal to 1
4 , as we have seen above.

The move from correlation to causation however requires the appeal to a bridging
principle, and just such a bridging principle is Reichenbach’s Principle of the
Common Cause (PCC), supposedly first suggested by van Fraassen (1982b) to relate
to EPRB correlations.47 Reichenbach himself (1965, p. 157 ff.) gave an informal
statement of the PCC as follows: “If an improbable coincidence has occurred,
there must exist a common cause.” But soon enough in the following, Reichenbach
explicates that he is not interested in a treatment of single coincidences, but of
such cases where “the simultaneous happening of A and B is more frequent than
can be expected for chance coincidences” (my emphasis—FB), and where, if
“the coincidence of A and B [. . . ] has a probability exceeding that of a chance
coincidence, we assume that there exists a common cause C.” (Reichenbach 1965,
p. 157 ff.) Today, differing exact formulations of the principle exist in abundance,

46German original: “Ohne die Annahme einer solchen Unabhängigkeit der Existenz (des ‘So-
Seins’) der räumlich distanten Dinge voneinander, die zunächst dem Alltags-Denken entstammt,
wäre physikalisches Denken in dem uns geläufigen Sinne nicht möglich.”
47Terminological warning: One sometimes encounters a differentiation between EPR-correlations
and Bell-correlations, the former denoting the perfect correlation implied for the EPR-state or
measurements along the same axis on the singlet, the latter referring to the precise correlations
appealed to in Bell-inequalities, i.e. with different misalignment angles and violated by QM (e.g.
Maudlin 2010b, p. 124). When we use the term ‘EPRB’-correlations, the ‘B’ stands for Bohm; but
we allow to include the correlations predicted by QM for different misalignment angles, i.e. the
‘violating’ correlations rather than the violated ones.
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and with a variety of different implications (cf. Wroński 2014 for discussion). We
shall here only sketch the relevant ‘nuances’. The simplest basic statement of the
PCC is the following (e.g. Butterfield 2007, p. 818):

Principle of the Common Cause (PCC) Given two events A and B which are
correlated, i.e. p(A,B) �= p(A)p(B), and where neither causes the other, there
is an event C conditional on which A and B are independent: p(A,B|C) =
p(A|C)p(B|C). C is then said to ‘screen off’ A from B (and vice versa).48

In the present context, the common cause should be identified with the two true
states of the two systems after the preparation as χ , i.e. after the decay process.
Of course for the PCC to apply we have to assume here that the correlation is
not explained by some other kind of dependence; but one possible candidate for
dependence was ruled out already by the assumption of (SEP). We have assumed
that the two events are neither one and the same, nor are they like the two sides of a
coin whose up-down correlation need not be explained by a common cause since it
is basically analytic.

Now why exactly should the (anti-)correlation between the two remote spin
values be of a causal nature? A quite natural (and compelling) response here would
be to counter: ‘Well, what else could it be?’ But let us motivate this attitude a little
more strongly. Compare the correlation between the distant spins to that between
the birds’ shadows in Reichenbach’s cube: Reichenbach (1961, p. 115 ff.) imagined
the whole of mankind to live inside a cube with translucent walls. Outside the
cube’s walls there would be birds whose shadows would be reflected, by a system
of mirrors, onto those walls in such a way that the shadow of one and the same bird
would always appear simultaneously on two adjacent walls. Reichenbach imagined
a brilliant mind, a ‘Copernicus’, to figure out, by watching the correlated behavior of
these pairs of shadows, that they were “nothing but effects caused by one individual
thing situated outside the cube within free space.” (p. 118) Just as the surprising
correlation between the two shadows on adjacent walls is explained in a satisfactory
way as soon as it is realized that they are caused by the absorption of light reflected
off a mirror by one and the same bird’s body, so, it seems, would the (anti-)correlated
spin measurements be explained in a satisfactory way if understood as caused by
something unobserved which pertains to the two decay products right after the
decay, a hidden configuration λ which assigns a definite, local configuration to each
system individually and makes them behave in that particular manner.

Suggestive as the image may be, the PCC leads to the local factorization
condition (FACT). Because given (CEL) and (SEP), and given that the setup is
such that neither settings nor outcomes can influence one another via luminal
or subluminal signals, (PCC) requires us to assume that there must be some λ

(most likely just the trues states of the two decay products) which causes the

48Reichenbach also required that (i) ¬C would equally screen off A and B, and that (ii) p(A|C) >
p(A), p(B|C) > p(B). But as Butterfield (2007, p. 818) remarks, (ii) is simply appealed to by
Reichenbach to account for positive correlation, and we are here equally interested in negative
correlations. And the screening off by ¬C will be replaced shortly by a more general constraint.
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correlation, and given which each measurement only depends (statistically) on the
local parameter and the past preparation.

Moreover, a significantly weaker version of (PCC) suffices to prove a Bell-type
inequality. In the version we have given above, all the correlated pairs have one and
the same cause C. But one could, first of all, think of C as a (random) variable λ
with value space� and multiple values λ�, or equally in terms of an algebra over the
induced partition� of an underlying probability space� with multiple cells λ� (e.g.
Butterfield 2007, p. 834). This allows for a generalization of the PCC, which was
originally formulated by Reichenbach with regard only to C and ¬C, not multiple
values (cf. footnote 48). But additionally, it allows to devise the following weaker
formulation of a common cause principle (cf. Butterfield 2007, p. 834; Portmann
and Wüthrich 2007, p. 848):

Weak Principle of the Common Cause (PCC∗) Given two sets of events
{Am}m∈M and {Bm}m∈M which are correlated, i.e. ∃m ∈ M : p(Am,Bm) �=
p(Am)p(Bm), and where neither causes the other, then for every m ∈ M there
is a variable λm with values

{
λ�m

}
�∈L conditional on which all Am and Bm are

independent: p(Am,Bm|λ�m) = p(Am|λ�m)p(Bm|λ�m) ,∀m ∈ M, � ∈ L.

HereM and L are (countable) indexing sets, and the number of �s will depend on
M . Such a partition or random variable is sometimes also referred to as a screener
system (cf. Wroński 2014, p. 35). This version is weaker in that we have switched
from ‘there is a. . . such that for all’ to the reversed order of the quantifiers. Crucially,
Portmann and Wüthrich (2007) still derive an error tolerant version of the CHSH
inequality even from (PCC∗).

One central point in our discussion of the EPRB correlations that has a strong
bearing on the assumption of hidden variables in general (a fortiori: on the
assumption of true states) is that these be local, an assumption invoked in particular
in deriving (FACT) from (PCC∗). Hence if one is in for an explanation of the
correlations in EPRB experiments in terms of hidden variables, this explanation
must involve nonlocal variables (cf. Fig. 4.8). Prima facie this provokes a conflict
with SR and its locality constraints, and if one believes that this is not so, one has
to give an elaborate account of why not. A significant portion of Maudlin’s (2011)
book may be seen as an attempt to do just that, and we refer the interested reader
there for further reference.

We emphasize at this point that a lot more needs to be said about causation,
nonlocality, and realism, and in particular how (if at all) these relate to one another;
and we shall say at least a bit more in interlude II. An option that we have hitherto
not discussed is to give up (AUT), i.e. accept Bell’s superdeterminism or a kind of
cosmic conspiracy; but we deliberately choose to deem this option ‘implausible’ (as
do many commentators) and not explore it any further. The reader may be referred
to e.g. Vervoort (2013) and references therein for views more affirmative of this
option.

So far we have discussed the matters at hand on merely theoretical grounds, but
of course all of this would be meaningless if there was no experimental evidence
for the violation of Bell-type inequalities. The most prominent confirmation of such
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Fig. 4.8 Spacetime diagram of an EPRB experiment with light cones. E is the emission event,
D1/2 are detection events, and s1/2 are setting events. The dashed lines indicate the spacetime
trajectories of the two emitted particles. The dotted vertical lines indicate the spatial separation
which an at most luminal signal would still have to travel from one side to the other in order to
influence the remote detection event. The spread out region labeled λ indicates the nonlocal hidden
variable (or cause) which could account for the correlation by instantaneously communicating
settings and outcomes (Cf. also Norsen 2009, p. 282 for a similar illustration)

violations is certainly the experiment by Aspect et al. (1982). The authors used the
entangled polarizations of coincidentally emitted photons, resulting from the de-
excitation of calcium into two subsequent energy levels, and traveling collinearly in
opposite directions. Because these photons would be in an entangled state with equal
polarizations, this would allow them to count coincidences for given misalignments
of analyzers, in order to check for the violation of a Bell-type inequality.

The trick they used to exclude an at most luminal interaction (or signal)
was to use spacelike separated time varying analyzers (polarization filters), more
specifically, a setup in which the photons would be either deflected or transmitted by
an optical switch, then ending up in differently oriented analyzers, depending on the
setting of the switches. Each of the switches was connected to a different ultrasonic
standing wave (with different frequency) used as a quasi-randomizer. The switching
occurred so fast (approximately every 10 ns), and the lifetime of the intermediate
level of the cascade was so short (approx. 5 ns) that the switching events happened
during the flight of the photons (approx. 40 ns). In this way, Aspect et al. found
violations of a Bell-type inequality by five standard deviations.49

This experiment certainly constitutes an impressive and well thought-out scheme
for confirming the violations of Bell-type inequalities. But of course, there are still
restrictions. One obvious restriction is the randomization through the two standing
sound waves, which were “not truly random, but rather quasiperiodic.” (Aspect et al.
1982, p. 1807) However, since these were independent and at different frequencies,
it would amount to a kind of conspiratorial assumption to suspect them of fabricating
the results.

49We remark here that today experiments have been realized in which a violation of a Bell-type
inequality was reported using photons in a fiber that allowed them to be separated by a distance
>300 km (Inagaki et al. 2013).
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The more serious threat is the so-called detection loophole. Consider a non-
idealized setup, where the detectors will not work perfectly. Then we could have
a null outcome ∅, just as in the PBR case, and the probabilities used to judge the
violation of a Bell-type inequality would have to be ‘postselected’ probabilities of
the form

pps(R
x
j , L

y
i |i, j, λ, χ) = p(Rxj , L

y
i |Rxj �= ∅, Lyi �= ∅, i, j, λ, χ) =

= p(Rxj , L
y
i |i, j, λ, χ)

p(Rxj �= ∅, Lyi �= ∅|i, j, λ, χ)
, (4.31)

i.e. conditionalized on obtaining an outcome at all (e.g. Branciard 2011, p. 2).
Arthur Fine (1982) has suggested two models which exploit this detection

loophole. Since we cannot be sure that all photons which are produced are really
measured, one could assume that some photons simply do not provoke a response
in the detector (or rather provoke the response ∅). If this happens in a systematic
way (i.e. as a built-in inefficiency due to the system, just as in the PBR case), it is
possible to reconstruct the quantum probabilities without a violation of locality or
separability. Using response functions with selective responsivity depending on the
angular configuration of a given analyzer (or Du Bois magnet), Fine first defines
a ‘minimal model’, in which “each particle is targeted to be responsive to exactly
one analyzer position.” (p. 286) He then improves on this restricted model with a
‘maximal’ one, in which from a total of four different measurement settings for the
two arms R,L of the experiment only three out of four response functions for the
given measurements are simultaneously defined on certain measurable sets of λs (cf.
Fine 1982, p. 287).50

Strictly speaking, excluding the possibility of such models would require a very
high efficiency, i.e., making sure that almost all produced pairs of entangled systems
would also be measured. There was a period (cf. Grangier 2001, p. 775) when
the detection loophole could be closed only on the pains of opening up a locality
loophole, i.e. where (sub-)luminal signals would be possible in the experiments.
One might wonder if that really matters, though, as it seems highly questionable
that photons in one kind of EPRB experiment should refuse to provoke responses in
the measurement device just in order ‘fake’ the quantum predictions that atoms in
another kind of experiment create by exchanging (sub-)luminal signals.

Both loopholes have, in fact, been closed for a while now by appeal to so called
steering inequalities. To understand the gist, consider again Alice and Bob with
Alice sending Bob one out a pair of systems which could be entangled. If they
are, Alice can claim to ‘steer’ Bob’s system into a quantum state by performing a
measurement on hers. Assuming that the two systems are independent instead, Bob

50Both models are also discussed at length and improved in Maudlin (2011, p. 160 ff.), and the
elaborations and drawings therein are instructive. See also Maudlin’s criticism of this kind of model
(his pp. 165–166).
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can work out how “well-correlated Alice’s prediction can be with his outcome[. . . ].”
(Wittmann et al. 2012, p. 3) In doing so, he can then determine a lower bound for
quantifying possible correlations, which is known as a steering bound (cf. ibid.),
and which gives rise to a corresponding inequality. If that inequality is violated, the
pairs must be entangled and the ‘steering’ happens. In the experiment by Wittmann
et al. (2012, p. 4), such a steering inequality which already included error-terms
(detection malfunction on either side of the experiment) was violated in a setup
with spacelike separation.

Steering, however, is weaker (fulfilled by more states) than the violation of Bell-
type inequalities (cf. Wiseman et al. 2007). It is hence a welcome addition that
recently a bunch of reports on experiments with entangled photons (Giustina et al.
2015; Shalm et al. 2015) or electron spins (Hensen et al. 2015) have been published,
in the latter case with measurements separated by a (Euclidean) distance of 1,3 km
in the laboratory frame, in which the experimenters claim loophole free violations
of Bell-inequalities.

4.3.4 The Kochen-Specker Theorem and Contextuality

After our lengthy discussion of Bell’s theorem and associated issues we can now, in
as much brevity as possible, turn to another ‘classic’ theorem of QM. A version of
this theorem was first, in fact, proven by Bell (1966) as well, but independently by
Simon Kochen and E. P. Specker in 1967 (short: KS). For this reason, the theorem
is sometimes called ‘Kochen-Specker-theorem’, sometimes ‘Bell-Kochen-Specker-
theorem’ (e.g. Mermin 1993, p. 806). While acknowledging the existence of Bell’s
earlier proof, we shall simply use the acronym ‘KS’.

“The thrust of this theorem”, as Peres (1991, p. L175) puts it,

is that any purported cryptodeterministic theory which would attribute a definite result to
each quantum measurement, and still reproduce the statistical properties of quantum theory,
must necessarily be contextual. Namely, if three operators Â, B̂ and Ĉ satisfy [Â, B̂] =
[Â, Ĉ] = 0 and [B̂, Ĉ] �= 0, the result of a measurement of A cannot be independent of
whether A is measured alone, or together with B, or together with C [. . . ]. (Emphasis in
original; notation adapted – FB)

We can see that multiple issues are at stake here, and we must sort them out
carefully as well. At once we can say that (contrary to Peres’ opinion) the theorem
is not concerned specifically with determinism either; rather the issue is once more
a kind of definiteness. More precisely, the theorem derives a contradiction between
QM in Hilbert spaces H of dimension ≥ 3 and the following two assumptions (cf.
Held 2013, p. 4 ff.; Redhead 1987, p. 121 ff.):

Value Definiteness (VD) For each member of a family of observables
{
Aj

}
j∈J

with operators
{
Âj

}
j∈J on H, there always exists a unique definite value v(Aj ) on

the system S associated with H.
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Functional Composition Rule (FUNC) If two (self-adjoint) operators, Â, B̂,
representing observables, A,B, satisfy a functional relation of the form f (Â) = B̂,
then the same relation is satisfied by the unique definite values of the observables,
f (v(A)) = v(B).

For simplicity we here only concern ourselves with discrete spectra (cf. Isham
and Butterfield 1998, p. 2681 ff., for some discussion of continuous spectra). Thus,
if desired, think of positions or momenta as suitably coarse grained (a particle being
in this or that box, or in this or that arm of an interferometer, say). The values v
are of course relative to a system S on which they obtain, and should depend on
the purported true state λ, since this is the latter’s sole purpose. Hence one should
actually rather write vλS(A). In the random variable-talk, vλS(A) is the value a in
A(S) = a, say, which S takes on for A when it is in state λ. In other words, v
is a value function that maps (A, S, λ) �→ a. We will generally suppress λ and S,
however, in accord with standard notation in the literature.

(VD) can in fact be understood as the assumption of there being hidden true
states λ which subsume all the ‘hidden’ values of observables, i.e., λ would be the
kind of state that simultaneously supplies a definite momentum and position, say.
The respective values are the (real) numbers representing what would be measured
(approximately) if λ could be accessed perfectly. (FUNC), moreover, has two
important instances51:

If [Â1, Â2] = 0 and Â1 + Â2 = Â3, then v(A1)+ v(A2) = v(A3), (sum rule)

if [Â1, Â2] = 0 and Â1 · Â2 = Â3, then v(A1) · v(A2) = v(A3).

(product rule)

The emphasis on commutativity of the Âi (compatibility of the Ai) is not
without reason. Von Neumann (1932, p. 305 ff.) had given a ‘proof’ that no hidden
variables whatsoever could be supplemented to QM without contradicting it (a
short version can be found in Ballentine 1970, p. 374–375). As criticized by Bell
(1966, p. 2 ff.) and long before him Grete Hermann (cf. Jammer 1974, p. 273),
von Neumann’s proof crucially relied on the assumption that for all observables,
not just compatible ones, a sum rule would hold, which he motivated by the
additivity of expectation values in QM. Much like Hermann, Bell stressed that
this assumption is unreasonable. As an example, he considered the three operators
σ̂x, σ̂y, (σ̂x+σ̂y)/

√
2, whose expectation values are additive, but whose eigenvalues

are not, namely: σ̂x+σ̂y√
2
|ψ〉 = ±1 |ψ〉 on an eigenket |ψ〉, and the same for σ̂x/y

51Cf. Redhead (1987, pp. 121 and 123) for an actual derivation of these from (FUNC).
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respectively, but (±1±1)/
√

2 �= ±1. In 1971 (p. 32), Bell made the questionability
of the sum rule for incompatible observables very clear52:

It seems therefore that von Neumann considered the additivity [. . . ] more as an obvious
axiom than as a possible postulate. But consider what it means in terms of the actual physical
situation. Measurements of the three quantities σx, σy, (σx+σy)/

√
2 require three different

orientations of the Stern-Gerlach magnet, and cannot be performed simultaneously. It is just
this which makes intelligible the non-additivity of the eigenvalues [. . . ]. That the statistical
averages should then turn out to be additive is really a quite remarkable feature of quantum-
mechanical states, which could not be guessed a priori.

To see, however, how QM does provoke a conflict even with our more innocent
assumptions (VD) and (FUNC), we first need to review a few formal details.
For one, consider that any function of an operator can be written as f (Â) =∑

j f (aj )P̂aj (cf. Appendix A on spectral decomposition). Now in virtue of the
so called characteristic function

χak (x) :=
{

1 for x = ak,

0 else,
(4.32)

we can turn things upside down and write P̂ak = χak (Â) =
∑

j χak (aj )P̂aj .
In Sect. 2.1.5, we discussed how projectors are standardly viewed as representing
properties. Hence the idea here is that a measurement of some observable A really
measures whether a certain property is present or absent; e.g., if the value measured
for A is ak then this is taken to indicate that the investigated system has the property
represented by P̂ak . This incidentally means that the whole problem can be phrased
by appeal to projectors.

Since the projectors resolving Â project onto vectors which span the whole
underlying space, their sum must resolve the identity, i.e.

∑
j P̂aj =

∑
j P̂j = 1.

From the product rule we can infer that since P̂ 2
j = P̂j P̂j = P̂j for any projector,53

we have v(P̂ 2
j ) = v(P̂j ) = v(P̂j )v(P̂j ) = v2(P̂j ). But this implies that v(P̂j ) ∈

{0, 1}, since these are the only x ∈ R for which x2 = x.
From the sum rule and

∑
j P̂j = 1 we get that

∑
j v(P̂j ) = v(id), and since Â =

1Â, we get from the product rule that v(A) = v(idA) = v(id)v(A)⇒ v(id) = 1 (id
being construed as a ‘trivial’ identity observable, represented by 1). But then only
one of the projectors P̂j can have the value 1, and all others must be zero. Since
these projectors each project uniquely onto one of the orthogonal rays of the space
H, which in turn are defined by the (orthogonal) basis vectors of H, the problem can

52In an interview in a popular magazine (Mann and Crease 1988) Bell even went so far as to call
von Neumann’s proof “silly”—as did (independently) David Mermin in a talk (cf. Mermin 1993,
p. 805).
53The product rule applies since P̂j of course commutes with itself. And more generally, any
two projectors that project onto orthogonal rays commute as well: [|i〉〈i| , |j〉〈j |] = |i〉 〈i|j〉 〈j | −
|j〉 〈j |i〉 〈i| = 0 (for 〈i|j〉 = δij ).
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be translated into assigning value 1 to only one out of any set of orthogonal vectors
(or rays) spanning the space in question. It can equally be translated into assigning
one particular color (say red) to one of these very vectors and a second particular
color (say blue) to the rest of them. The KS theorem then is that this coloration is
impossible for any H such that dim(H) ≥ 3, and this formulation as a coloration
problem is the standard way to present its proof (e.g. Held 2013, for an overview).

Note that it is sufficient to establish the impossibility for a space of dimension
3. For consider that if the envisioned coloring was impossible in some dimension
N ≥ 3, but not for N + 1, then we could remove one of the blue vectors
from each such set, i.e., consider an appropriate N -dimensional subspace h of the
N + 1 dimensional space H, and the theorem would suddenly not hold anymore
in dimension N . Contradiction. Hence, by induction, we at least obtain the result
for all separable spaces from a proof in dimension 3. And it is also sufficient
to consider a real instead of a complex vector space, since if the coloring were
possible in a complex space, then one could construct a substructure isomorphic to
the real counterpart from it (cf. Redhead 1987, p. 124), whence by contraposition
impossibility in a real space implies impossibility in a complex one.

The following proof of the impossibility is due to Peres (1991) (cf. also Peres
2002, p. 17 ff.). Peres uses a set of 33 vectors in R

3 which belong to 16 different
bases in total. We note at this point, that some of the vectors will have to belong
to multiple bases, since 33/3 = 11, so that not all 16 bases can consist of entirely
distinct vectors. This point is actually more important than may be apparent, since
from this property derives the ‘thrust’ that was initially identified in Peres’ quote.

Moreover, the length of the vector does not play any role, and since projectors
project onto rays anyway, we can equally think of comparing mutually orthogonal
rays in the space. Peres uses rays parametrized by vectors with components x, y, z ∈{

0,±1,±√2
}

. Following his notation, we will write, as an abbreviation, triplets

of numbers like 1̄02, meaning the ray defined by the vector

(
−1
0√
2

)
. Thus 102̄ will

represent the same ray (and a fortiori, projector). From these, orthogonal triads can
be constructed which each span the whole space. But assigning blue to two of them
and red to the remaining one already leads to the desired contradiction. This can be
shown in a simple table (cf. Table 4.2).

Following Peres (1991, p. L176), we also write in boldface letters the one ray that
is chosen to be red, and in italic letters rays which have occurred before. Moreover,
in each step we list other rays that are orthogonal to the chosen red one and will be
needed later (in another row). In the third column the reason that a given ray in the
row must be red is explained.

It can easily be checked that all the vectors defining the rays in each triad are

orthogonal. But so are the vectors

(
1
0
0

)
,

(
0√
2

1

)
and

(
0
−1√

2

)
, which, according to lines

1,4 and 10 are all blue. Hence we have found a triad which by necessity does not
fulfill our criterion. This in turn proves the theorem. Note that the choice in the first
4 lines comes with no loss of generality, since the theorem is concerned with all
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Table 4.2 Contradiction derived from the assumption of being able to color one ray red and the
others blue in each orthogonal triad formable in R

3 (cf. also Peres 1991, p. L176)

Triad Also orthogonal to first Reason for redness

1 001 100 010 110 11̄0 choice

2 101 1̄01 010 — =—
3 011 01̄1 100 — =—
4 11̄2 1̄12 110 2̄01 021 — =—
5 102 2̄01 010 2̄11 orthogonal to 2nd and 3rd ray in row

6 211 01̄1 2̄11 1̄02 =

7 201 010 1̄02 1̄1̄2 =

8 112 11̄0 1̄1̄2 02̄1 =

9 012 100 02̄1 12̄1 =

10 121 1̄01 12̄1 01̄2 =

possible orthogonal triads; the choice corresponds, in the geometric image, basically
to a choice of coordinate system and orientation (cf. Peres 1991, p. L176).

Given the preliminary lemmas about the number of dimensions and real and
complex spaces, a simple table shows that there is no way of assigning the number
1 to only one out of a set of mutually commuting projectors which jointly resolve
the identity in all choices of basis of a given space H with dim(H) ≥ 3. But
this quite directly has the consequence that it cannot generally be the case that,
if [Â, B̂] = [Â, Ĉ] = 0 �= [B̂, Ĉ], then the value on A is independent of whether it
is measured together with B or with C (or alone, for that matter); because Â, B̂ and
Ĉ may be projectors, which, as we had established above, also represent (yes-no)
observables.

Moreover, the operators for three more complex observables A, B and C can
each be decomposed into projectors in their eigenbasis, which then forestalls that
the value of A be independent of B and C in this case as well: Three sets of
mutually orthogonal projectors may resolve operators for observables which satisfy
just the required commutation properties. To see this more clearly, note that in
deriving a contradiction we have considered the same ray as a member of multiple
different orthogonal bases. Now the projectors corresponding to the rays of one
orthogonal basis all commute (cf. Footnote 53); but the projectors corresponding to
the rays of different orthogonal bases generally do not, since any two (non-collinear)
vectors taken from each of the respective bases may be non-orthogonal, and then
[|ψ〉〈ψ | , |φ〉〈φ|] = |ψ〉 〈ψ |φ〉︸ ︷︷ ︸

=:c∈C
〈φ| − |φ〉 〈φ|ψ〉︸ ︷︷ ︸

=c∗
〈ψ | = c |ψ〉〈φ| − c∗ |φ〉〈ψ | �= O.54

This is the ‘thrust’ of the KS-theorem, as Peres has it, that observables are
contextual in the sense that their value will depend on the total context of the
measurement, specifically, on what else is being measured. Just as with the other

54You can easily convince yourself of this fact by assuming otherwise and multiplying by either
|ψ〉 or |φ〉 from the right. You will find a contradiction with the assumption of non-collinearity.
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theorems, however, this does not exclude the possible existence of hidden variables
or the possibility of finding ψ-epistemic models; it merely puts yet another
restriction on any such model. To see this more clearly, consider how Bell (1966, p.
9) viewed the situation:

[A]s well as Pφ3 say, one might measure either Pφ2 or Pψ2 , where φ2 and ψ2 are orthogonal
to φ3 but not to one another. These different possibilities require different experimental
arrangements; there is no a priori reason to believe that the results for Pφ3 should be the
same. The result of an observation may reasonably depend not only on the state of the
system (including hidden variables) but also on the complete disposition of the apparatus
[. . . ]. (notation adapted – FB)

So prima facie the KS-theorem by itself does not have all too daunting
implications for a ψ-epistemic interpretation of QM. It simply urges one to search
for appropriate response functions in purported ψ-epistemic models which then
encode the behavior of the apparatus as sensitive to which joint measurements
are being made.55 This seems quite harmless. It just means that the measurement
cannot suitably reveal the true state of the system, but contributes something to
what is being observed—where the contribution, in turn, depends on which total
measurement is performed.

On the other hand, assuming that there are such things as definite values
for all observables independent of their being measured, the KS theorem would
urge us to read quite carefully the postulates of orthodox QM, in particular
postulate (III), the connection between observables and operators. (III), then, must
not be (mis)understood a uniqueness claim, but merely as an existence claim: for
every observable there is an operator that represents it. The KS theorem could hence
be taken to ‘merely’ demonstrate that at least some operators will represent multiple
observables, depending on ‘context’.

But things can be assessed more systematically, and a good candidate for
delineating which of all (self-adjoint) operators may fill out the ‘some’ are operators
with degenerate spectra. That this possibility for delineation is available becomes
clear from the following observations (cf. Redhead 1987, pp. 20 and 134).

First of all, if an observable A can be expressed by two different functions, f (B)
and g(C), of two different, non-degenerate observables B and C respectively, then
if A is itself non-degenerate, it holds that [B̂, Ĉ] = 0. Conversely, if [B̂, Ĉ] �= 0
and A = f (B) and A = g(C), then A must be degenerate. To see this, note first
that for any h and Q̂, h(Q̂) and Q̂ always commute (regardless of degeneracy),
since h(Q̂) = ∑

j h(qj )P̂qj and Q̂ = ∑
j qj P̂qj in the appropriate basis, and the

(orthogonal) projectors satisfy P̂qj P̂qk = δkj P̂qk . But now suppose that Â = f (B̂)

and Â = g(Ĉ). Then B̂ = f−1(g(Ĉ)), where f−1 exists since A and B were
assumed non-degenerate (so in the spectral resolution each f (bi) can only be
assigned one aj ). Hence now B̂ = k(Ĉ), with k := f−1 ◦ g, and therefore
[B̂, Ĉ] = 0, by the above considerations on arbitrary h(Q̂) and Q̂.

55E.g. also Spekkens (2005) and Maroney and Timpson (2014, p. 20 ff.) on this point.
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This makes it “plausible if we look at how the contradiction was arrived at”
(Redhead 1987, p. 134), that any observable falling prey to the contextuality implied
by the KS-theorem must be degenerate, and suggests that degenerate observables
constitute a special case. In fact, even a formal proof exists that no KS contradiction
arises if only non-degenerate observables are considered (cf. Ma̧czyński 1971; cf.
also Redhead 1987, p. 134). The projectors in the proof, notably, are degenerate
observables: any projector in dimensions > 2 gives zero for at least two vectors (the
ones orthogonal to the one projected onto).

As an example, take some P̂1 in a three dimensional space. Then two non-
degenerate observables on which its value is contextual can be constructed by

considering it first as a part of the commuting set
{
P̂1, P̂2, P̂3

}
and then of{

P̂1, P̂
′
2, P̂

′
3

}
, which comes about by rotating around |1〉 to form a new orthonormal

basis. The two non-degenerate, non-commuting operators are then constructed as
Q̂ = q1P̂1+ q2P̂2+ q3P̂3 and R̂ = r1P̂1+ r2P̂ ′2+ r3P̂ ′3 (cf. also Redhead 1987, pp.
21–22).

But consider also what it means for an observable to be degenerate: it means that
several of its eigenvectors correspond to the same eigenvalue, so that a measurement
of such an observable may not even be indicative of some unique (pure) quantum
state. Why would it be indicative of some unique true state, assuming such a thing
exists?

Let us take this to be saying that if a degenerate observable A can be constructed
as a function of some non-degenerate observable B and equally as a function of
some incompatible non-degenerate observable C, then we construe these functions
as two different, contextual observables f (B) = AB and g(C) = AC , although
represented by the same operator Â. We need not accept v(f (B)) = v(g(C)), as
suggested by (FUNC).

Redhead (1987, p. 137) discusses a possible adaptation, namely to replace
(FUNC) by the following principle:

Contextualized Functional Composition Rule (FUNC*) If B̂ is a non-
degenerate (self-adjoint) operator, representing observable B, and (self-adjoint)
operators Â and Ĉ, representing observables A and C, satisfy functional relations
of the form Â = f (B̂), Ĉ = g(B̂), Â = h(Ĉ), then the unique definite values of
the observables satisfy v(AB) = h(v(CB)), where AB = f (B), CB = g(B).

We shall occasionally refer to this replacement of (FUNC) by (FUNC*) as
a minimal revision below, meaning a minimal revision of the basic assumptions
underlying a purported interpretation of QM in terms of hidden variables. This
notably presupposes that we read quantum postulate (III) as an existence claim only,
not one of uniqueness.

For C also non-degenerate, we have CB = C, and then (FUNC*) has the nice
property that v(AB) = v(AC) (cf. Redhead 1987, p. 137). But this only applies
in virtue of the functional relation between B and C, and (FUNC*) hence does
not generally imply that v(AB) = v(AC). So the KS-theorem cannot be derived
from it. Moreover, if we set v(AB) = f (v(B)), v(CB) = g(v(B)), then we have
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v(AB) = f (v(B)) = h ◦ g(v(B)) = h(v(CB)). So the consequent (then-part)
of (FUNC*) is an appropriate necessary condition for a context sensitive version
of (FUNC): functional relations are preserved between the context dependent
observables. (FUNC*) seems like a reasonable ‘contextualization’ of (FUNC)

The minimal revision implies that projectors cannot always correspond to unique
observables. But, again, think about what this means: it means that a quantum
state, revealed in a certain (projective) selective measurement, need not be directly
indicative of a certain value or property ‘truly’ applying to the investigated system.
I.e.: the quantum state may not be the true state of the system. This, in fact, makes
perfect sense from a ψ-epistemic point of view.

Redhead (1987, p. 133), moreover, thinks that (FUNC) is implied by three
assumptions, namely

(i) if a system is not in some eigenstate of some observable, that observable has a
definite but unknown value,

(ii) there is a 1:1 correspondence between self-adjoint operators and observables,
and

(iii) if there is an operationally well-defined number associated with a self-adjoint
operator, then there is something in reality that corresponds to it.

(ii) is targeted by the minimal revision, as we saw. As regards (i), a ψ-epistemic
model, in fact, implies something even stronger than (i), namely that for any
quantum state (even an eigenstate of some observable), the values of all actual
physical properties measured in terms of observables may be unknown even at
the time of measurement: The M-state ψ need not reveal the true state λ. (iii)
is certainly also a reasonable, if not the underlying assumption for ψ-epistemic
models. Something (λ) is already there that accounts for (‘explains’; cf. Spekkens
2005, p. 2) why we can use QM so unreasonably well. But it should be stressed
that it need not be assumed that the operationally well-defined number accurately
reveals what that something is: All quantum states (even eigenstates of measured
observables) are construed operationally, as P/M-states. And Spekkens (2005, p.
3) actually introduces a notion of measurement-contextuality, drawing on features
of the response function, which allows the in-principle possibility of generating ψ-
epistemic models that could overcome the difficulties raised by the KS-theorem
so far.

Now the ‘real thrust’, if you will, is that the KS-theorem applied to composite
systems also has implications about locality and separability. The details are quite
intricate (cf. Redhead 1987, p. 139 ff.) and we will not elaborate on them here.
Note, however, that the assumption of a so called value rule is involved (Redhead
1987, p. 120), namely that PrψQ(q) = 0 implies vψ(Q) �= q. This rule need
not be generally accepted by the ψ-epistemicist: For one, it is doubt worthy that
probability zero must be read as the value in question not obtaining at all (compare
the definition via limit frequency); but more importantly, one could, in this case too,
come up with models (similar to Fine’s prism models) in which the response of
the measuring device to the system’s state accounts for the observed statistics, i.e.
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where the measurement is ‘intrinsically defective’. Moreover, ψ is only the P-state,
and Q(S) = q could still be true for S in state λ, since automatic transformations
with density  (λ′, λ) could account for the loss of value q until the measurement.

If these strategies are rejected though, and the value rule is accepted—which is
reasonable, given that QM-probabilities do not seem to refer directly to limits of
frequencies, the prism-type-models are usually quite artificial, and the assumption
that systems always disguise their relevant properties automatically (over arbitrarily
short time intervals) seems quite conspiratorial—, then even (FUNC*) can be
demonstrated to be incompatible with upholding jointly the following two principles
(cf. Redhead 1987, pp. 139–141):

Value Separability (VSEP) Let H1 and H2 be Hilbert spaces for two spatially
separated systems S1 and S2, Â ⊗ 1 a (degenerate)56 operator on H1 ⊗ H2
(representing a local observable A1) where Â is non-degenerate on H1, and B̂, Ĉ
two non-degenerate operators on H1 ⊗ H2, with [B̂, Ĉ] �= 0. Then for the
observables represented by the operators in question, it holds that v(A1,B) =
v(A1,C).

Value Locality (VLOC) Let S1 and S2 be two spatially separated systems, Q1
an observable for S1, and O and R non-degenerate observables for the joint system
S1S2. Then if the difference between an apparatus set to measure O and one set
to measure R is only in the setting of that part of it located at S2, it holds that
v(Q1,O)O = v(Q1,O)R , where v(Q1,O)X denotes the value of observable Q1,O if
the measuring device is set to measure observable X.

(VSEP) is called ontological locality by Redhead, with the remark that it may
equally be considered as a separability assumption (as we have chosen to do here),
(VLOC) he calls environmental locality. (VSEP) tells us that the value of any
observable which is non-degenerate for one of the (spatially) separated systems is
independent of the values of incompatible observables which pertain to the system
as a whole; (VLOC) tells us that choosing to measure something else only on one
of the spatially separated systems should not change the value the other system has
for any observable Q1,O . As Redhead (1987, p. 141) puts it: “the value possessed
by a local observable cannot be changed by altering the arrangement of a remote
piece of apparatus which forms part of the measurement context for the combined
system.” (my emphasis—FB)

Both principles invoke the contextualization of an observable which is degenerate
for the joint system, but non-degenerate for one of the subsystems. The crucial point
is that considerations of contextuality alone give rise to questions of separability
and locality, because the relevant ‘context’ may be spacelike separated. Arguably,
this is ‘the real bite’ of the KS theorem, because it is hard to see how a ψ-
epistemic model should cope with this implication while saving the core intuitions
underlying Conjecture 1. Upon accepting the value rule (which, we have argued, is

56Â⊗ 1 is obviously degenerate since any state |aj 〉 ⊗ |φ〉 with Â |aj 〉 = aj |aj 〉 will give aj for
Â⊗ 1, regardless of |φ〉.
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a reasonable thing to do) (FUNC*) implies that either (VSEP) or (VLOC) must
go. And (FUNC*) still relies on (iii), i.e. that there is something in reality that
accounts for the operationally well-defined numbers associated with self-adjoint
operators; although that ‘something’ is now allowed to be influenced by the general
measurement context, as we urged it should in sophisticated ψ-epistemic models.

Redhead, in fact, calls (iii) a ‘reality principle’. But more clearly, it constitutes an
instance of abductive inference. Distinguished by Peirce (1878)57 from deduction
(truth preserving reasoning as used in mathematics and logic) and induction
(inferences from a sample to unobserved future cases, a general or a statistical
regularity),58 abduction may be viewed as a genuine kind of inference scheme
or a family thereof (cf. Schurz 2008, for an extensive classification). Abduction,
just as induction and in contrast to deduction, is ampliative (‘content-adding’) and
uncertain.

The pattern originally described by Peirce (1878, p. 194) was that of “a fact
quite different from anything observed, from which, according to known laws,
something observed would necessarily result.” One may formalize this, using
‘|∼’ to represent ‘therefore it is conjectured that’ and notation from first order
predicate logic otherwise, as ∀x[F(x) → G(x)],G(a)|∼F(a), or more generally
∀x∀y[R(y, x)→ G(x)],G(a)|∼∃yR(y, a) (where ∀x∀y[R(y, x)→ G(x)] is easily
seen to be logically equivalent to ∀x[∃yR(y, x) → G(x)]; cf. also Schurz 2008, p.
208).

In a sense, this is a deductive inference ‘upside down’, because exchanging F(a)
(or ∃yR(y, a) respectively) and G(a) would lead to a deductively valid inference.
The first premise may be construed as a known law (or lawlike connection), the
second a given datum (something that is being observed). An often used example (of
the second scheme, actually) is the inference from footprints in the sand (G(a)) and
the background knowledge that if somebody walks in the sand, they leave footprints
(∀x∀y[R(y, x)→ G(x)]), to the belief in or conjecture of somebody having walked
there in the sand (∃yR(y, a)). But arguably, a lot of inferences can be understood
as abductions, in the broader sense of non-inductive ampliative inferences that
strive for an explanation of a given observation. Abduction can hence be generally
characterized by its goal of “inferring something about the unobserved causes or
explanatory reasons of the observed events[. . . ].” (Schurz 2008, p. 202; emphasis
in original)

Importantly for us, a relevant subset of all abductive inferences can hence be
understood as an inference to a hidden cause. The above ‘reality principle’ (iii)
should be conceived of as an abductive inference to a hidden cause of a given
observation, namely the (hidden) ‘something’ that exists mind-independently and
causes the result of a measurement (the well-defined number of the self-adjoint

57In 1878, Peirce used the name ‘hypothesis’ instead of abduction. In his lectures on pragmatism,
he later introduced the now-common name ‘abduction’ (cf. Buchler 1955, p. 150 ff.).
58E.g. Schurz (2014, p. 49) for some details on induction.
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operator). In fact, the example of inferring that someone has walked along the beach
from footprints is just such an inference, since the connection is certainly causal in
this case.

But equally, the conjecture of common causes for observed correlations falls
under this general scheme of inference. The PCC (or PCC∗) is an instance of
abductive reasoning (cf. also Schurz 2008, p. 221 ff.). And, as a matter of fact, so
is EPR’s use of the ‘reality criterion’: The known law is p1 + p2 = 0 (momentum
conservation), the given datum is p1 = p, and the explanatory reason is the decay
event together with p2 = −p, i.e. the conjectured momentum of the other particle.
These factors would jointly explain the observed momentum, so appeal to the EPR
reality criterion amounts to an abductive inference to the existence of the unobserved
value p2 = −p before the execution of the measurement. In all three cases, EPR’s,
the KS- and Bell’s theorem, (causal) abductive inferences are crucially involved—
an issue that we should keep in mind.

4.4 Discussion (i): How Much Evidence and Evidence for
What?

How reasonable is it to believe in the potential success of a prospective ψ-epistemic
model, in spite of the numerous restrictions provided by the four theorems discussed
above and by others like them?

Even though these theorems do not conclusively rule out ψ-epistemic models,
their appeal is certainly drastically lessened. Many reasonable assumptions cannot
be maintained simultaneously with the assumptions of (hidden) true states and ψ-
epistemicity, as defined in Sect. 4.2.1. The strongest restriction for ψ-epistemic
models is certainly posed by the experimental violations of Bell-type inequalities,
which, as long as hidden variables-models do not explicitly include nonlocal
interactions or ‘inseparable’ true states, cannot be reproduced if we accept the
research results that claim to simultaneously close detection and locality loopholes.

Moreover, the corresponding theorems do not even specifically concern the OM-
approach; Bell’s and the KS theorem were in place long before the work of Harrigan
and Spekkens, and they hence target a quite broad range of models with hidden
variables. It is just that even the most modern versions of hidden variables-theories
fall prey to these two theorems, as the discussion has clearly shown. So despite
the fact that some of the apparent randomness and ‘weirdness’ of QM could be
accounted for in terms of lacking knowledge about underlying true states, the extent
to which QM phenomena in general can be explained in this way seems quite
limited.

Some key features of QM, however, such as superposition and interference,
were shown to have prima facie analogues in Spekkens’ toy model, and so was
even entanglement in special cases. So what are we to make of the fact that
Spekkens’ toy-analogues of superposition, interference, and certain entangled states
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appear to suggest that these features, even the observed correlations between remote
measurement outcomes, might be a consequences of a previous lack of knowledge
about the true states of the systems involved after all?

In fact, the model of Bartlett et al. (2012) provides something quite similar
to Spekkens’ treatment of entanglement but for systems with infinite degrees of
freedom. In particular, Bartlet et al. model “maximal bipartite entanglement [. . . ] by
an epistemic state that describes perfect correlations between the pair of systems.”
(p. 8) This is done by appeal to a probability density μcorr

AB (qA, pA, qB, pB) ∝
δ(qA − qB)δ(pA + pB) for two systems A and B for which it is known that
qA−qB = 0 and pA+pB = 0, i.e. which satisfies the exact conditions of the original
EPR thought experiment (with x0 = 0; cf. Sect. 4.3.3). But marginalizing for one
of the coordinate pairs of one of the two systems leads to a uniform distribution,
so that nothing is known about the true states of the single systems, and only
relational properties are known for the joint system (the total values for position
and momentum named above).

Just as the epistemic state in Spekkens’ qubit-like toy model mirrors features of
measurements on an entangled state of two qubits does the density in the restricted
version of Liouville mechanics mirror the features of measurements on the actual
EPR state.59 In essence, we here get the same kind of informational update in
consequence of a measurement on the total system. Because of her prior knowledge
of the value of the total momentum of the two systems, say, Alice can determine
the momentum value for Bob’s system at once after measuring momentum on her
system; and analogously for position.

Thus, as Bartlett et al. (2012, p. 12) put it:

All that changes as a result of this measurement is how the observer refines her knowledge of
the ontic state of particleB. She either refines her knowledge of its position or she refines her
knowledge of its momentum. No ‘spooky action at a distance’ is required to understand the
EPR experiment if one adopts the interpretation offered by [restricted Liouville] mechanics.

However, there are, admittedly, restrictions to how far one can take this view
of entanglement, since neither of the models can reproduce violations of Bell-type
inequalities or the like:

The toy theory is, by construction, a local and noncontextual hidden variable theory. Thus,
it cannot possibly capture all of quantum theory. In the face of these no-go theorems, a
proponent of the epistemic view is forced to accept alternative possibilities for the nature

59There are, however, a few difficulties with the actual preparation and measurement of EPR states
in the sense of the original paper: the state is not time dependent, and the descriptions used to
set up the argument for incompleteness would only be valid at t = 0, whereas time evolution
makes it unstable; and since a plane wave representation is used, there would be a non-vanishing
probability of the two particles being basically anywhere in space, so that the assumption of spatial
separatedness is actually unwarranted (cf. Home and Selleri 1991, p. 13). However, Praxmeyer
et al. (2005) have constructed a scheme in which the EPR state appears as the limit of a two-
mode squeezed state, and observables on it are considered which can be used to violate a Bell-type
inequality.
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of the ontic states to which our knowledge pertains in quantum theory. (Spekkens 2007,
pp. 24–25)

We emphasize that we are not arguing that a ψ-epistemic local hidden variable model could
explain all quantum correlations, only that the particular correlations described in the EPR
experiment can be so explained (in precisely the way that EPR suggested they should). This
is not at odds with Bell’s theorem because the correlations in the EPR experiment do not
violate a Bell inequality.60 Of course, because it is locally causal by construction, [restricted
Liouville] mechanics cannot hope to reproduce Bell-inequality violations. Such violations
are one of the quantum phenomena that [restricted Liouville] mechanics emphatically
cannot reproduce, not even qualitatively. (Bartlett et al. 2012, pp. 24–25)

But this means that, effectively, both examples, that of Spekkens and that of
Bartlett et al., are suggestive of something false. It is not that quantum non-
locality or contextuality can be explained in this fashion in general. It is only by
selectively choosing particular states which can be mirrored by ordinary probability
densities and particular measurements on these that the illusion appears that one
could interpret the correlations in harmony with Conjecture 1. One cannot generally
explain the correlations observed on entangled systems by mere appeal to an
‘information update’. This is exactly the gist of Bell’s theorem, as Bell stressed
in his 1981a Bertlmann’s socks and the nature of reality. None of the ψ-epistemic
models existing so far can help this fact.

What about the other achievements of Spekkens’ model? The model is supposed
to serve as ‘evidence’ for an epistemic view of quantum states (cf. Spekkens 2007).
More precisely, we take it that this paper and that of Bartlett et al. (2012) are
supposed to provide an argument for a ψ-epistemic view with the following general
structure: (i) If one can provide evidence that QM seems to be about (a lack of)
knowledge of the hidden, true states of (typically microscopic) physical systems,
then it is reasonable to interpret QM in this way. (ii) The toy model (and spin
offs) provide(s) such evidence. (iii) Therefore, by modus ponens, it is reasonable
to interpret QM in this way. Let us call this the argument from actual models. (i)
seems fairly uncontroversial and (iii) is just a logically valid step; so it is premise
(ii) that we must put under scrutiny here.

The reproduction of interference was one of the core achievements of Spekkens’
model, which was then explained, in the subsequent debate, in terms of “vacuum
ontic states” (Leifer’s phrase); states which carry the phase information and hence
alter the behavior of the true states traveling the other path or, more generally
speaking, the measurement statistics, but are otherwise undetectable. Clearly, this
has quite an ad hoc character, but this need not be considered as so much of a flaw
yet, given that these are ‘just models’ (cf. the remarks on the use of this term in
Sect. 4.2.1).

However, now, after the discussion of Bell’s and the KS theorem, we can show
that the appeal to vacuum states which, to recall, was used in particular to avoid

60Depending on the specific setup used to implement the states appealed to in the EPR paper, this
becomes a debatable claim; cf. Footnote 59.
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admitting an immediate causal influence, i.e. nonlocal causation, may be a futile
move, and strongly impacts the plausibility and evidential status of the model.

Namely, in relativistic AQFT, there is the so called Reeh-Schlieder theorem,
originally proven by Reeh and Schlieder (1961), which says that for an open
bounded region O ⊂ R

4 of spacetime and Â(O) an element of the algebra generated
from all possible combinations of adjoints, sums, and products of operators φ̂(f ) :=∫

d4x f (x)φ̂(x), f ∈ C∞0 (O), the set of vectors Â(O) |�〉 is dense in the space
H of state vectors (|�〉 the vacuum state). This means that one can approximate
(arbitrarily well) any state |ψ〉 by operations local to O, even if |ψ〉 has implications
for regions O′ at a spacelike distance to O (e.g. Fleming 2000, p. S497 ff.). Most
importantly, the theorem thus “demonstrates that the vacuum, and all other states of
bounded energy, have long-distance correlations built into them. It is therefore not
surprising to find that Bell inequalities are violated in these states—a standard sign
of non-locality.” (Dieks 2002, p. 216)

Here Dieks certainly refers to the works of Werner and Summers, who in the
1980s found “that already the vacuum fluctuations assure a maximal violation of
Bell’s inequalities for the appropriate detectors.” (Summers and Werner 1985, pp.
258–259) Thus, if ‘vacuum ontic states’ are nothing but the quantum vacuum in
disguise, then even the interferometer examples fail to work out in a local fashion—
because the element of QFT appealed to in order to restore locality is itself a decisive
expression of ‘quantum non-locality’.

There are two foreseeable rebuttals, contingent on one another, so let us discuss
them one by one. First, one may object that these implications follow only from
the highly theoretical algebraic version of QFT, and that in practice, the canonical
quantization approach is all that is needed and all that can be used. This worry
gains support by Wallace’s (2006, p. 33) observation that “no examples are known
of AQFT-compatible interacting field theories, and in particular the standard model
cannot at present be made AQFT-compatible.” (Cf. also Sect. 2.2.4 on this point.)
Hence one may suspect that these consequences of the Reeh-Schlieder theorem have
no bearing on experimental practice and do not have to be taken seriously in virtue
of a lack of empirical accessibility. But similar arguments were originally advanced
w.r.t. the strong non-local correlations predicted by ordinary QM (most notably by
Schrödinger 1935b, p. 166), and if there is anything we can learn from this example,
it is that one is better off not to dismiss the implications of the quantum formalism
easily.

The situation is arguably more subtle in the case of testing vacuum entanglement
though, since, as Summers and Werner (1985, p. 259) note, “there would be
experimental difficulties [. . . ][because] the violation of Bell’s inequality must
vanish exponentially with the spatial separation of [two separate spacetime regions]
on the length scale determined by the Compton wavelength of the lightest particle
of the theory.”

There are suggestions for other kinds of experiments, however, in which vacuum
states enter crucially into entangled states, namely states entangled with those of a
single photon. Take, as a simple example, the state prepared by the beam splitter in
Eq. (4.6). Strictly speaking, the fact that in each term there is a photon in one path
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leaves a vaccum in the other; so in the occupation number representation this should
be written rather as something like |ψ〉 = 1√

2
( |1↗〉 |0↘〉 + i |0↗〉 |1↘〉) (e.g.

Hardy 1994, p. 2280). Examples of experimental protocols that use states of this
kind to demonstrate their nonlocal features are discussed, for instance, in Tan et al.
(1991) or Hardy (1994). These protocols are typically understood as demonstrating
that even a single particle is ‘nonlocal’—in the same sense as already noticed by
Einstein in examples discussed at the 1927 Solvay conference (cf. Jammer 1974,
pp. 115–116) or by Reichenbach (1944, pp. 29): that in a double slit experiment,
say, detection at the one slit seems to influence immediately what happens in the
other slit (cf. also interlude I on this point). But since the states used to describe the
single photon are states entangled with the vacuum, they demonstrate, at the same
time, that the quantum vacuum is ‘nonlocal’ in just that sense.

Despite some original controversy (cf. Dunningham and Vedral 2007, p. 2 ff. for
discussion) today there is a broad consensus that particular experiments can be used
to test exactly for this ‘single particle nonlocality’, and the experiments that have
been performed, e.g. by Hessmo et al. (2004) or Takeda et al. (2015), are reported
to provide affirmations of the predictions.

Long story short: Provisios about the interpretation of the cited experiments
aside, there are good theoretical and empirical reasons to suspect that quantum
vacuum states are just the kinds of states which involve the problematic nonlocal
correlations.

This forces a defender of the interpretation of interference in terms of ‘vacuum
ontic states’ into the following dilemma: if one appeals to vacuum states in any
sense sufficiently close to QFT, then one has not provided a local explanation
of interference phenomena at all; if, on the other hand, one assumes an entirely
new kind of nontrivial vacuum one has merely shifted the burden from explaining
interference to explaining this new kind of state.

Let us assume, for the sake of argument, that the bullet is being bitten by
taking the second horn of the dilemma, i.e. by postulating a radically new kind of
vacuum state, called a ‘vacuum ontic state’. This is the second of the aforementioned
rebuttals, contingent on our elimination of the first. But this immediately provokes
the question: what defines these ‘vacuum ontic states’? Recall that we have argued,
in Sect. 2.2.3, that ‘vaccum state’ is a theoretical concept of QFT; it cannot
be understood in virtue of a single definition, but only by joint appeal to the
foundational parameters (‘axioms’) of QFT. Models like that of Spekkens (2007) or
Bartlett et al. (2012) operate in a (pardon the pun) theoretical vacuum, i.e. without a
(specific) supporting background theory. The ‘vaccum ontic state’ (pardon the pun
again) is vacuous, a theoretical term without a theory.

So assume now that one finds something worthy of the name ‘theory’ in the vein
of ψ-epistemic OMs with a less provisional character. Then the new concept of
‘vacuum ontic states’ therein must preserve all the successful empirical predictions
of the old one in QM—including the nonlocal correlations. And this means
that quantum interference has still not been reproduced purely in terms of local
interactions and information updates. We are back to square one.
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There is an immediate impact on the evidential status of Spekkens’ model
and other models like it. If the decisive quantum phenomena such as nonlocal
correlations and interference cannot be reproduced by a ψ-epistemic model—
at least not in any meaningful way, i.e. other than by merely replacing kets by
probability vectors and unitary operators by permutation matrices—, then these
models do not provide any evidence for an epistemic view of quantum states, at least
not in the sense envisioned in Conjecture 1, or in Spekkens’ appeal to explanatory
grounds for the quantum statistics. Premise (ii) of the argument from actual models,
in other words, arguably does not hold.

If, hence, such remarkable and remarkably counterintuitive results which can
be derived from quantum theory simply need to be presupposed and appealed to,
instead of being satisfactorily explained by ψ-epistemic models, what good are
these model then? Bartlett et al. (2012, p. 3) delineate their aims in finding epistemic
models for QM as follows: “it is only by describing a broad landscape of possible
theories that we can specify the sense in which quantum theory is special.” This
may be an honorable task and another recent investigation of the debate (Jennings
and Leifer 2015) is more benevolent in this respect than we have been here. But
we stress that if this is the only purpose of ψ-epistemic OMs, then they are hardly
of any help in resolving the conceptual difficulties arising from QM. They rather
emphasize them.

Einstein, in particular, viewed the QM of his time as “no useful point of departure
for future development.” (Einstein 1949a, p. 87) And the point of departure for
Spekkens and others must be Einsteinian worries; a significant part of Harrigan
and Spekkens’ (2010) paper is dedicated, after all, to Einstein’s work on the subject
(cf. especially p. 144 ff. therein). In part this focus on Einstein is due to the fact
that he suggested the route of showing QM to be incomplete by finding two (or
more) distinct quantum states which should correspond to the very same true states
of a system (cf. Harrigan and Spekkens 2010, p. 148; Howard 1985, p. 180; and
our discussion of the EPR-paper above). But the very reason why Einstein was
searching for ways to show that QM is incomplete was his major dissatisfaction
with the theory’s implications, especially its non-local character (cf. also Maudlin
2014b on this point). Thus, if the only purpose of OMs is to show how QM is
special (as Bartlett et al. claim), then this must certainly be seen as somewhat of a
‘surrender’ to QM. From a point of view such as Einstein’s, the aim must rather be
to search for serious alternatives because QM is ‘too special’.

Still, these models do serve an important purpose after all: Recall how, in
a standard reception, Carnap’s Aufbau is often hailed as an attempt to actually
execute what others had merely claimed ‘was possible’, but that at the same time it
signaled, to many, the demise of logical empiricism; because despite his remarkable
efforts, Carnap was not able to reduce theoretical terms used in the sciences to
an observational language (e.g. Friedman 1999, pp. 89–99). While these views
about the Aufbau can be challenged on various grounds (cf. Friedman 1999, p.
90 ff.; Leitgeb 2011; Chalmers 2012) and while the models of Spekkens (2007),
Bartlett et al. (2012), and others are, of course, much more limited in their scope
than the Aufbau, we take it that their failure to reproduce core features of QM ψ-
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epistemically signals the demise of the underlying project: to find an interpretation
of QM in terms of incomplete knowledge about hidden states λ.

4.5 Intermediate Conclusions (i)

What the above discussion has shown at least is that meaningful OMs are bound
to look like QM itself in many important respects. The move to such curiosities as
‘vacuum ontic states’ which nonetheless have to share certain peculiar features with
vacuum states from QFT bears as witness. All the creativity and formal ingenuity
used in the general approach and in particular models apparently cannot bring us
past this point. In a similar vein, Timpson (2013, pp. 146–147) argues that opting
for hidden-variables

is unlikely to be attractive to anyone who is trying to appeal to information as a way
of avoiding the problems caused by the seemingly odd behaviour of the quantum state.
The aim, roughly speaking, was to circumvent the problems associated with collapse or
nonlocality by arguments of the form: there’s not really any physical collapse, just a
change in our knowledge; there’s not really any nonlocality, it’s only Alice’s knowledge
of (information about) Bob’s system that changes when she performs a measurement on her
half of an EPR pair. But we all know that if we are to have hidden variables lurking around
then these are going to be very badly behaved indeed in quantum mechanics (nonlocality,
contextuality). (emphasis omitted)

We have given reasons to believe that contextuality by itself constitutes less
of a hurdle than the confirmed violations of Bell-type inequalities, since it only
requires a minimal revision of plausible assumptions for a ψ-epistemic hidden
variable approach. However, contextuality constraints alone turned out to raise
questions of locality and separability for observables on composite systems. Thus
the central difficulty remains the ‘grossly non-local character’ that QM implies for
any hidden-variable model. And this nonlocal character manifests itself in apparent
reproductions of interference examples from ‘purely’ epistemic restrictions as well.

Moreover, we once more emphasize that not only are there many restrictions
on ψ-epistemic models, but that conceptually meaningful models which reproduce
QM to a significant degree are still missing to date, i.e. models which allow for an
actual ontology of the underlying physical states λ in a less technical and more
philosophical sense. This, however, was basically the original aim, to find “an
explanation of the success of an operational theory” in terms of “physical systems
that are [. . . ] presumed to have attributes regardless of whether they are being
subjected to experimental test, and regardless of what anyone knows about them”,
where these “attributes describe the real state of affairs of the system.” (Spekkens
2005, p. 2) Given the modest success in pursuing this goal ‘ψ-epistemically’, it is
understandable why more recently even Spekkens (2014, p. 7) has conceded that

the investigation of [epistemically restricted] theories is best considered as a first step in a
larger research program wherein the framework of ontological models [. . . ] is ultimately
rejected, but where one holds fast to the notion that a quantum state is epistemic.
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Maybe the latter is indeed an interesting option, and we will give further thought
to it in Chap. 7.

All in all it seems that the interpretation of QM cannot be just a matter of
incomplete knowledge. If the conceptual problems associated with QM are a matter
of knowledge in some sense, then this knowledge still is knowledge about something
rather peculiar. We sum up the worries at this point with a mutilated version of one
of Einstein’s own comments on Schrödinger’s wave mechanics:

The successes of [Harrigan and Spekkens’ – FB] theory make a great impression, and yet
[we – FB] do not know whether it is question [sic] of anything more than the old quantum
rules [. . . ]. Has one really come closer to a solution of the riddle? (after Einstein 1926; as
cited in Howard 1990, pp. 83–84)

To look for an ontology in the ‘more philosophical sense’ appealed to above
should be our guiding principle for the next chapter. We may generally summarize
it as “endeavouring to make sense of issues we should otherwise find perplexing”
(Heil 2003, p. 3), or more specifically as a “careful analysis” of one of our “best
scientific theories [. . . ] with the goal of determining” what it implies “about the
constitution of the physical world.” (Maudlin 2007, p. 104) We will hence, after a
second interlude, give some thought to interpretations of QM which allow for such
sense-making—for obtaining a picture of what the world according to QM may be
like.



Chapter 5
Philosophical Interlude II: Locality,
Causality, Reality (Again)

How do the issues of ‘realism’, ‘locality’ and ‘causality’ raised in Chap. 4 connect?
While we have already said something about the first two issues, it seems that
we should now ask what we really mean when we talk of ‘causation’, as in the
case of the common cause principle discussed in Sect. 4.3.3. That is all but a
simple question, as was the case with ‘probability’.1 Following Hüttemann (2013),
however, we can make the following general observations:

First of all note that, when we ask for causes, we typically have at least one of
four desiderata in mind: (i) we want to be able to explain and (ii) predict events
and processes, (iii) manipulate them, and (iv) attribute moral responsibilities (cf.
Hüttemann 2013, p. 5). E.g.: (i) Why did a certain building collapse? (ii) Which
building could collapse next, for the same reason? (iii) How can we keep that from
happening? (iv) Whose actions lead to the building’s collapse, who should pay?

Different accounts of causation typically focus more strongly on different ones
of the desiderata (i–iv). However, one can equally easily list some core intuitions
that any account of cause-effect relations should possibly respect (cf. Hüttemann
2013, p. 7): (1) cause and effect are spatiotemporally located, (2) causes precede
their effects, (3) a cause ‘produces’ or ‘enforces’ its effect, and (4) the same does
not hold the other way around (effects do not produce their causes).

Prima facie the common cause principle may seem to violate (3); the statement
is merely probabilistic, and it is questionable whether (though not excluded that)
a probabilistic connection may count as ‘production’. But recall that the PCC (or
the PCC∗) treats of events types, not of singular (event) tokens. Thus there is an
important distinction between type- and token-causation, and an analysis might
provide an account of either one or both. Incidentally, one could ask whether token-
causation can reasonably be probabilistic; typically, we would assume that only

1The reader capable of the German language may be referred to Hüttemann’s concise (2013)
introductory exposition for details. Otherwise Psillos (2002, pp. 19–133) is a good starting point.
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on the level of event types do we have to resort to statements of probabilities and
predictions of correlations, in virtue of condition (3). But it is, again, not clear that
this must be so, and Cartwright (1989, p. 105 ff.) defends an account of causation in
which also singular causes can operate probabilistically (cf. also below).

Notable non-probabilistic theories capable of providing token-level accounts are
e.g. Lewis’ (1974) counterfactual account or process theories of causation such
as that of Salmon (1998). Besides individual difficulties (e.g. Hüttemann 2013, p.
173, for discussion) both these approaches certainly latch onto out intuitions (1–
4), to some extent and in different respects. The approaches that arguably have
the greatest success regarding the practical concerns (ii) and (iii) do not merely
recapture our intuitions though, but provide formal frameworks (e.g. Spirtes et al.
2000; Woodward 2003; Pearl 2009), in which specific conditions are stated for
finding causal connections and exploiting these to manipulate the course of events.
However, finding such connections and manipulating them presupposes that they
occur on a regular basis; once a particular event has occurred, it is gone (cf. also
Hüttemann 2013, p. 200). These theories are hence all—or at least primarily concern
the—type-level.

Type-level theories will typically not be (fully) deterministic; quantum consid-
erations aside, we still live in an ‘imperfect world’, where even the most cleverly
contrived laboratory-experiments require averaging and statistical analysis. These
considerations, moreover, are not merely pragmatic but also epistemic: When do we
really have justification to believe in the fact that person X’s smoking caused her
cancer? Only after reference to sufficiently many known cases of smoking-cancer
and non-smoking-no-cancer could we possibly convince a skeptic that she had better
stop smoking.2 And an even stronger case can be made in the case of drinking
alcohol and getting headaches, where an outright intervention on the drinking is
easily possible.

This notion of an ‘intervention’ is central to Woodward’s (2003) framework
for studying causation, and he introduces the notion intuitively (which will mostly
suffice for our purposes) in the following terms: “an intervention on X with respect
to Y changes the value of X in such a way that if any change occurs in Y , it occurs
only as a result of the change in the value of X and not from some other source.” (p.
14; notation adapted) This requires, of course, to hold (most) other variables fixed
(cf. ibid.)

Having somewhat justified a focus on (type-level) probabilistic approaches to
causality, we must ask what we should conclude from the fact that even the
PCC∗ implies Bell-type inequalities. Does QM straightforwardly imply a failure
of causation? Is it impossible to account for Bell-type correlations in a causal way?
The answer here cannot be an unqualified ‘yes’, even if van Fraassen (1982b, p. 28)
basically thought so, as he believed EPRB experiments to constitute “a conceivable
phenomenon [. . . ] in which there is a correlation for which there can exist no

2Of course a strong inductive skeptic might still not be convinced (a little more on this in Chap. 7).
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common cause.” (my emphasis—FB) This assertion is certainly too strong, as shall
become apparent below.

First, we note, as a remark on the scope and meaning of (PCC) or (PCC∗), that
not every ‘screener’ or ‘screener system’ in the sense of Sect. 4.3.3 should count
as a common cause (system); Wroński (2014, p. 36) gives two simple examples in
which there is a screener system, but none of the cells in the partition (values of
the variable) is positively statistically relevant for the correlated events (A and B),
where he spells out positive statistical relevance as the conditional probability of
A and of B given the various λ� ∈ {λ�}�∈L being greater than given some λk /∈
{λ�}�∈L, i.e. p(A|λ�) > p(A|λk), p(B|λ�) > p(B|λk),∀� ∈ L, k /∈ L (Wroński
2014, p. 5).3

Arguably, statistical relevance is a necessary condition for a screener (system)
to count as a common cause (system), and this requirement was also present in
Reichenbach’s original formulation (cf. Footnote 48). But obviously, it is not a
problem that not every screener is a common cause: We have inferred the existence
of a (hidden) common cause from the correlated behavior, (CEL), and (SEP), and
now merely expect to find a screener, on account of the PCC(∗). Our question is to
the converse, whether all common causes have to be screeners, viz. have to satisfy
(PCC) or (PCC∗), and hence imply (FACT).

Supposedly the most prominent opponent to this view is Nancy Cartwright.
Cartwright (1988, p. 184; 1989, p. 234) considers an atom which collides with
a particle and subsequently emits two new particles. These particles are then
emitted with probability 1/2 either at fixed angle θ̃ or at fixed angle θ̃ ′. Since
momentum is conserved, if particle one is emitted at angle θ1 = θ̃ , then particle
two must be emitted at θ2 = −θ̃ , and analogously for θ̃ ′. But now suppose also
that there is a (probabilistic) common cause λ such that when λ is present, the
atom decays at ±θ̃ with probability r , and if λ is not present it decays at ±θ̃ ′.
From this setup we immediately get that, since λ either occurs or does not, and
since emission takes place at the respective angels 50% of the time, p(θ1 =
θ̃ , θ2 = −θ̃ , λ) + p(θ1 = θ̃ , θ2 = −θ̃ ,¬λ)︸ ︷︷ ︸

=0

= 1/2, and since p(θ1 = θ̃ |λ) = r ,

we get from the definition of conditional probability that p(λ) = 1
2r . But then

p(θ1 = θ̃ , θ2 = −θ̃ |λ) = 1/2
1/(2r) = r �= r2 = p(θ1 = θ̃ |λ)p(θ2 = −θ̃ |λ). Hence the

common cause λ does not screen off.
As the argument goes, it may be the case that the EPRB-situations are of

similar kind and that a non-screening common cause may be found. More explicitly
Cartwright (1989, p. 243) suggests, that “the quantum state consequent on the
interaction operates, in conjunction with the separated apparatuses, as a joint cause
of the results in each wing, with no direct causal connection between one wing and
the other.”

3One can similarly spell out negative statistical relevance for talking about negative correlation.
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But there are several reasons to reject Cartwright’s reasoning. Näger (2013a, p.
34) first of all shows how to redescribe the situation in terms of a (deterministic,
hidden) two valued variable λ with values λ1, λ2, which determines exactly whether
the particles will fly off at θ̃ or not, and which does screen off.4 But of course it need
not be assumed (as Näger (2013a, p. 34) equally points out), that this is actually the
case; it just makes the example less impressive since it could simply be a misguided
description of a deterministic common-cause-scenario.

What is worse for Cartwright’s case, however, is Näger’s aforementioned
observation that some dependence of an outcome on the remote setting needs to be
assumed to avoid the derivability of a Bell-type inequality. Hence a non-screening
off common cause “with no direct causal connection between one wing and the
other” (as Cartwright has it) does not suffice to establish an adequate assessment of
the situation.

Cartwright (1989), moreover, offers positive proposals for non-screening-off
common cause models of EPRB scenarios, based on the formal theory of linear
causal models, which include the “significant innovation” of a “built-in distinction
between a cause being present and a cause’s action (‘firing’) to bring about
its effect.” (Cachro and Placek 2003, p. 215; my emphasis—FB). But one of
Cartwright’s (1989, pp. 238–239) models has been found to suffer from mathe-
matical deficits (imply probabilities >1; cf. Cachro and Placek 2003, p. 218) and
the other one (Cartwright 1989, pp. 242–243), which avoids this difficulty, has been
identified as being of a conspirational nature, in the same sense as violating (AUT)
(cf. Cachro and Placek 2003, p. 219 ff.), whence it does not really suggest a relevant
innovation after all.

Finally, it is not clear what the general plausibility of the non-EPRB models is,
e.g. the appeal to atomic decay in Cartwright’s plausibilizing example of causation
without a screener (or screener system): scattering and atomic decay are processes
for which a quantum treatment is indicated, and it is as doubtworthy that a causal
assessment of the situation is apt in this case as it is in the EPRB case. Now suppose,
for the sake of argument, that one was a strong ‘quantum skeptic’ or would accept
the model as a statistical model of some possible, non-quantum world. Then one
could still always take it that in this model there is a statistical parameter (λ) that
simply does not qualify as a cause.

In fact, van Fraassen (1982a, p. 198) has provided similar non-quantum examples
of (perfect) positive correlation in which a factor x exists that is probability-
increasing but does not screen off. His conclusion, however, is exactly that the
factor is not a common cause (e.g. his p. 200), i.e. that no common cause exists
for the correlation. There hence seem to be two principled options for dealing with
the problems raised the EPRB correlations, as regards the PCC∗: (i) accept (PCC∗)

4A somewhat similar but much more general result is proved by Hofer-Szabó et al. (1999). Here
the authors show that any classical probability space containing pairs of correlated events but no
screeners for some of these can be extended in such a way that the extension preserves the old
probability measure but contains screeners for all the correlations (cf. also Wroński 2014, p. 70 ff.
on this point).
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as a suitable formalization of causal intuitions and accept that there are (unintuitive)
cases where no cause can be found, or (ii) reject (PCC∗) on the grounds of implying
a failure of causation in situations which should be explained causally. For obvious
reasons (i) has been called van Fraassen’s horn, (ii) Cartwright’s horn (cf. Näger
2015).

A good prima facie reason to accept Cartwright’s horn is Salmon’s discovery
of interactive forks5 (e.g. Salmon 1998, p. 133 ff.) which he (ibid.) introduced by
way of a Compton scattering-example that we reconstruct (in a slightly idealized
fashion) as follows. Imagine that we have a photon (γ ) incident with energy E0 on
an electron (e−) and, as a consequence of Compton scattering, a resulting e− and γ
with energies Eγ +Ee− = E0 due to energy conservation (neglecting the electron’s
rest energy). Now let A be the event that Eγ = E1, B the event that Ee− = E2, and
C the event that the scattering happens. Due to the conservation of energy, we should
always have p(A|B,C) = 1 = p(B|A,C), i.e. the energies of e−, γ will assume
the respective values, as soon as the scattering takes place and the scattering-partner
assumes the other respective value. This, however, means that

p(A,C) = p(B,C) = p(A,B,C), (5.1)

in virtue of the definition of conditional probability. Now assume that p(A,B|C) ≤
p(A|C)p(B|C). Then we have

p(A,B,C)

p(C)
≤ p(A,C)

p(C)
p(B,C)
p(C)

(5.1)= p(A,B,C)
p(C)

p(A,B,C)
p(C)

⇔ p(A,B|C) ≤ p2(A,B|C), (5.2)

which is false for all values< 1, and true for p(A,B|C) = 1, i.e. in the (empirically
false) case that C will always effect Eγ = E1 and Ee− = E2. This implies that we
must have p(A,B|C) > p(A|C)p(B|C)—Reichenbach’s screening off condition
does not hold!

Notably, the example is again a quantum one, as was the case with Cartwright’s
atomic decay. Why does Salmon choose this example and not rather, say, billiard
balls colliding? “[B]ecause there is good reason to believe that events of that
type [Compton scattering—FB] are irreducibly statistical.” (Salmon 1998, p. 134;
my emphasis—FB) The point is, we take it, that the case for p(A,B|C) = 1
could easily be made in the billiard ball example if one resorts to a kind of

5Author’s note: I was made aware of the debate on interactive forks by Paul Weingartner (private
communication). Note, however, that in contrast to e.g. Suárez (2004, p. 289), Salmon himself
does not even invoke the interactive fork against anti-causal appeals to EPRB correlations but
rather accepts van Fraassen’s arguments as “cogent” (cf. Salmon 1984, pp. 251–254). van Fraassen
(1982a, p. 206), moreover, suggests that interactive forks lead to why-questions that only terminate
when one ultimately reaches a Reichenbachian, non-interactive (‘conjunctive’) fork. So the appeal
to interactive forks may be somewhat of a red herring in the first place.
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graining-argument: as soon as C is sufficiently fine-grained, the case is perfectly
deterministic, and p(A,B|C) = 1 (specific energies, given specific scatterings) is
entirely reasonable. Only certain views on quantum theory make it plausible that
such graining will not do any work.

But herein (‘certain views’) lies the problem with appeals to such examples. We
can hold, without a problem, that the scattering event in Compton scattering is not
the common cause of the resulting energies because there is no cause of these very
energies. The scattering does not ‘produce’ the respective energies; nothing does.
They simply occur. In a sense this is even somewhat of a traditionalist view on
the situation of causality in QM (e.g. Bohr 1948, p. 313), although in early debates
the distinction between ‘causality’ and ‘determinism’ was not sufficiently clarified.
Assuming that there must be a common cause and then demonstrating that this
common cause must be non-screening is, in other words, question begging.

The problem of the two horns has been reformulated in the framework of causal
graph theory.6 Causal graph theory models causal connections in virtue of directed

acyclic graphs (DAGs) over a set of variables V =
{
Xj

}
j∈J

7 relative to which

cause-effect relations can be identified. The graphs, G , consist of variables, possibly
put into squares and circles (G ’s vertices), where certain of these variables will be
connected by arrows (then called directed edges). Acyclicity means what it should:
there are no direct paths from a vertex to itself. Uncaused vertices may be called
exogenous, all other ones endogenous (cf. Wood and Spekkens 2015, p. 4).

Now the DAGs of interest in the present case are all probabilistic, meaning
that the structure of a given graph must be inferred from probabilistic relations
(in turn inferred deductively from theory or inductively from experiment), or that,
conversely, only statistical correlations could be predicted from a given graph. In
deterministic models, in contrast, only exogenous variables may be associated with
a probability distribution, and all other relations between vertices are specified in
terms of functional dependencies among variables (cf. Wood and Spekkens 2015,
p. 4).

6Cf. Spirtes et al. (2000) and Pearl (2009) for detailed expositions. We here restrict our attention
to the relevant points in the brief expositions given by Wood and Spekkens (2015), Näger (2016),
and Schurz and Gebharter (2016) respectively.
7In this interlude we generically use curvy letters to denote sets of variables. We here again allow
for a mixed notation wherein sets and variables may both appear as arguments of probability
functions. As a side remark, note what it means that cause-effect relations are identified at the
variable level: A causal relation could, e.g., be ‘color (causally) influences visibility’, where
the values of the variable ‘color’ could be all the specific shades (or suitable classes thereof)
perceivable by the relevant set of perceivers, and the values of the variable ‘visibility’ could e.g.
be ‘good’ and ‘bad’ (or a suitable fine-graining of these, and possibly averaged over different
perceptual conditions). Only a subset of all value attributions to the variable ‘color’ would then
cause the value ‘good’ for ‘visibility’. Since the assumption of a value by some variable describes
an event-type, the theory of causal DAGs is even above type level, in relating whole variables to
one another (cf. also Schurz and Gebharter 2016, p. 1075).
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In this theory of causal DAGs, one can define two sorts of dependencies between
sets of variables which are subsets of the variables in some graph: probabilistic
conditional dependence, which we denote by DP (X ,Y|Z), means that there are
X ∈ X , Y ∈ Y and values x, y such that it holds that p(X = x|Y = y,Z) �=
p(X = x|Z), where, of course, one or multiple (though not all) variables in Z
and/or some of their values could be redundant (cf. Schurz and Gebharter 2016, p.
1076). This dependence, moreover, allows for two subcases: p(X|Y ,Z) > p(X|Z)
and p(X|Y ,Z) < p(X|Z) (value ascriptions omitted), the former of which we
call positive conditional probabilistic dependence and denote by D+P (X ,Y|Z),
and the latter of which we call negative conditional probabilistic dependence and
denote by D−P (X ,Y|Z). DP (X ,Y|Z) is the case iff either of the two holds, and
its negation ¬DP (X ,Y|Z) is easily seen to be equivalent to the screening-off
condition p(X, Y |Z) = p(X|Z)p(Y |Z) of the PCC∗.8

Following Schurz and Gebharter (2016, p. 1084) and Näger (2016, p. 1132),
we can now understand the causal dependencies between sets X ,Y , relative to
some (non-overlapping) set Z , as (exactly) the condition that there is at least one
path π (a set of directed edges and vertices) from an X ∈ X to a Y ∈ Y such
that no intermediate or common cause on π is in Z and every common effect on
π is in Z or has effects in Z . The intuition of the first part is clear: there is a
causal influence between X and Y but not ‘mediated by’ ‘or jointly received from’
Z . The intuition of the second part becomes clear when one interprets things in
terms of independence: we would then, should X and Y be causally independent
relative to Z , expect to have only joint effects not in Z . We will denote (relative)
causal dependence byDC(X ,Y|Z), and if Z = ∅, one may speak of unconditional
dependence in both cases (causal/probabilistic).

The generalization of the PCC to causal graph theory can then be stated as9:

Causal Markov Condition (CMC) In any causal DAG G , if a set of variables
X is probabilistically dependent on a set Y of variables conditional on some set
of variables Z , then it is also causally dependent on Y given Z . Formally (‘→’
denoting logical implication):

DP (X ,Y|Z)→ DC(X ,Y|Z).

The CMC is a generalized version of the PCC since it tells us that, should we
discover that DP (X ,Y|Z), i.e. the elements of X and Y are not screened off by the
elements of Z , X and Y are causally dependent relative to Z (DC(X ,Y|Z)). So we
might want to look for causal connections between elements in X and Y , other than
being effects of some common cause.

8We take it as understood that p(Z) �= 0 if one conditionalizes on Z .
9Note that this is not the standard formulation in the literature, but cf. Schurz and Gebharter (2016,
p. 1085) for references on equivalence-proofs. These proofs, however, presuppose that the set of
all variables, V , be finite (cf. ibid.).
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Now there is an additional principle in the theory of causal DAGs that states the
converse of (CMC):

Faithfulness (F) In any causal DAG G , if a set of variables X is causally
dependent on a set Y of variables conditional on some set of variables Z , then it
is also probabilistically dependent on Y given Z . Formally:

DC(X ,Y|Z)→ DP (X ,Y|Z).

Whatever our interpretation of ‘probability’, we will typically appeal to fre-
quency data to justify the acceptance of probabilistic statements; even if we
combinatorially infer p(heads) = 1/2 in a coin toss, we might want to perform
a series of trials to check whether the coin is fair.10 Hence, if we interpret both
principles as prescriptions for finding causal structures, we can loosely understand
(CMC) as telling us to ‘draw arrows wherever the (frequency) data suggests to’,
while (F), stated contrapositively, loosely tells us to ‘not draw arrows where the
(frequency) data does not suggest to’. For instance, if we have a correlation between
X and Y , but conditional on Z it vanishes (screening off), then we should not draw
an arrow directly between X and Y (by modus tollens on (F)). On the other hand, if
we do have the correlation and the statistical dependency of X and Y on Z, then we
should draw appropriate arrows from Z to X and Y (by modus ponens on (CMC)).

The dilemma between Cartwright’s and van Fraassen’s horn can now, in the
framework of causal DAGs, be formulated as the dilemma between giving up either
the condition (F) or the condition (CMC), and lately, the case for Cartwright’s horn
in this sense has been made by Wood and Spekkens (2015) and Näger (2016). Note
that this is completely independent of any locality concerns: These two principles
by themselves (assuming also a suitable independence of the preparation method
and acyclcity) lead to a conflict with the empirically confirmed violations of Bell-
type inequalities. Näger (2016, p. 1139) refers to this as the causal problem of
entanglement, whereas considerations involving locality assumptions are referred
to as the spatiotemporal problem of entanglement (Näger 2016, p. 1131). We shall
have to say something about the connection between these two a little below.

A motivating reason for this strategy is that (F) is obviously somewhat restrictive:
there could be cause-effect relations that do not show up in the data. One such
example would be canceling causal paths. E.g., we could have a common effect Z
of variables X and Y (where we again omit assumed values) such that D−P (Y ,X),
and¬DP (X, Y |Z), because bothX and Y have a positive causal influence on Z, but
X has a negative (preventive) causal influence on Y such that these influences always
cancel. In a graph, this would be depicted by the vertex-directed edge combinations

X
+−→ Z

+←− Y and X
−−→ Y , where ± indicate positive and negative causal

influences respectively (e.g. Schurz and Gebharter 2016, p. 1082). Why is this a

10This also justifies loose interchange of ‘probabilistic’ and ‘statistical’ in parts of the discussion;
we do not intend to claim thereby that the meaning of ‘probability’ is ‘relative frequency’ though.
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violation of (F)? Because Z is a common effect, not a common cause, and there are
no common or intermediate causes between

{
X
}

and
{
Y
}

contained in
{
Z
}
. Hence

DC(X, Y |Z), even though ¬DP (X, Y |Z).
The central suggestion of Wood and Spekkens (2015, p. 7) exactly is that

there could be a violation of (F), in virtue of some fine-tuning of the causal-
statistical parameters. The causal-statistical parameters here are the probabilistic
dependencies of a vertex X on its direct causes or ‘parents’ Pa(X), i.e. the
probabilities p(X|Pa(X)) (e.g. Schurz and Gebharter 2016, p. 1086). Fine-tuning
now means that there could be conditional probabilistic independencies as “a result
of the causal-statistical parameters taking some particular set of values.” (Wood
and Spekkens 2015, p. 7; my emphasis—FB) However, any such fine-tuning will
not be robust under small changes of the causal-statistical parameters. Change the
conditional probabilities by a small amount, and the structure cannot hold true. This
is exactly why it is a ‘fine-tuning’; it depends on the precise probabilities assigned.11

How plausible is it, though, that there is some such fine-tuning involved in the
EPRB-case? Näger (2016, p. 1148) suggests that what he calls “unfaithfulness by
internal cancelling paths [. . . ] is the way how the quantum mechanical formalism
secures the unfaithful independences.” (emphasis in original) How does this sort
of unfaithfulness work? While in the canceling paths-scenario above the causal
dependence is on the variable level, in Näger’s internal canceling paths it occurs
on the value level.12 This means that for any pair of values xj , yj of variables
X, Y respectively, one specifies causal-statistical dependencies. It is then possible
that one has (positive and negative) dependencies among the values of three vari-
ables X, Y ,Z such that DP (Y ,X),DP (Z, Y ), but ¬DP (Z,X), i.e. that causation
becomes (statistically) intransitive (cf. Näger 2016, p. 1149, for illustrations and
examples).

Now using unfaithfulness due to internal canceling paths, Näger (2016, p. 1151)
ultimately comes up with the following causal structure for the EPRB case: The
quantum state itself causes a later (time evolved) quantum state that will be causally
influenced by both distant settings (rotations of the DuBois magnets, say), and then
collapses into two independent quantum states that in turn cause the respective
results in the measurements. The internal canceling paths occur, in this causal
model, between setting, collapsed state, and outcome, thereby ensuring that no
signaling is possible (there is no probabilistic information about the distant setting
in the local outcome alone, due to the intransitivity). And, moreover, due to the

11Take the three variables X, Y ,Z of the above canceling paths-structure. Then statistical
dependencies implied by that would be p(Y |X) < p(Y ) and p(Y ,X|Z) = p(Y |Z)p(X|Z). Then,
using the definition of conditional probability multiple times, we get that p(X,Z)p(Y ,Z) <
p(X)p(Y )p(Z), which would easily be violated for, say, p(X,Z) = p(Y ,Z) = 1/2, p(X) =
p(Y ) = p(Z) = 1/3, since this would imply 1/4 < 1/9 (�).
12Assume that in our above canceling paths-example,X, Y ,Z are binary, taking on values±. Then
the proclaimed statistical (in)dependencies could mean that e.g. p(Y = ±|X = ±) < p(Y = ±)
and p(Y = ±, X = ±|Z = ±) = p(Y = ±|Z = ±)p(X = ±|Z = ±) and the example
otherwise repeats.
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Fig. 5.1 Three events (�, �,
✚) with causal relations as
specified and variable
temporal order according to
primed and unprimed
reference frame. The solid
lines indicate the future and
past light cones of � and �
respectively

t=0

t t′

t′ =0

causes
causes
prevents

unitarity of all transformations but measurement-interactions, Näger (2016, p. 1152)
claims to be able to prove the stability of this particular sort of unfaithfulness
(the proof is deferred to another paper, unpublished at the time of writing of this
document).

While this is an inventive result and clearly refutes van Fraassen’s impossibility
claim for a causal explanation of the phenomenon, the causal structure suggested
has a bunch of quite undesirable features: (i) It is inevitably nonlocal: the quantum
state previous to collapse is instantaneously influenced by both remote measuring
devices. (ii) It requires the particular sort of unfaithfulness suggested by Näger;
and unfaithful causal models in general otherwise “rarely occur in contemporary
practice, and when they do, the fact that they have properties that are consequences
of unfaithfulness is taken as an objection to them.” (Spirtes et al. 2000, p. 29) In
this sense it is ‘doubly ad hoc’. (iii) By the failure of (F), the common cause, the
time-evolved quantum state, is hence exactly a common cause that does not screen
off, and we had argued above that stipulating such causes is predicated on question
begging arguments. (iv) The entire model presupposes a collapse-interpretation and
hence becomes interpretation-relative.13

We had claimed, in the previous chapter, that nonlocality provokes a conflict with
relativity, but we had not elaborated on this in detail. To see how conflicts can arise,
consider Fig. 5.1. The special theory of relativity tells us that both time-parameters,
t and t ′, are related by t ′ = γ (t − vx/c2) (e.g. Rindler 2006, p. 45), assuming
v is uniform and the ‘primed frame’ (t ′ and doted hyperplanes of simultaneity)
is associated with an observer moving in positive x-direction only (with v). This
implies that if t = 0, t ′ is at −γ vx/c2 (γ = 1/

√
1− (v/c)2), which is generally

�= 0. Hence the lack of overarching simultaneity for both frames. Since the speed
of light is c in both frames, the axes must, in appropriate units,14 still be such that c

13Näger is, in fact, an adherent of GRW-like objective collapse interpretations (private communi-
cation), the likes of which we will discuss in Chap. 6. Possibly Näger’s model could be adapted
to a Bohmian interpretation with decohering wave packets though (cf. also Chap. 6). This would
lessen the impact of (iv).
14If we set c = 1 then t ′ = ct ′ and hence x = ct ′ = t ′ for photons; so a photon’s trajectory must
also separate equal sectors in the primed frame.
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separates two sectors in each frame by the same amount. Hence the tilting of both,
the t ′ axis and the t ′ = 0 hyperplanes. Now if supeluminal causation is possible in
principle, then nothing forbids a situation in which event � causes event � which
in the primed frame precedes event ✚ and therefore may (superluminally) cause ✚,
which in turn prevents � in the first place (�).

But, as we already known, there is a no-signalling constraint enforced by the
probabilistic independence¬DP (A

x
j , i) (for all relevantA, x, j, i), where, to recall,

i denotes the distant setting andAxj is the event that on one side (A) a particular value
(x) is measured in a given local setting (j ). The upshot is this: Assuming a causal
model such as Näger’s, nature has these causal connections that would in principle
allow us to produce ‘live contradictions’ (branching spacetimes etc. aside), but she
prevents us from using them by cleverly contriving the statistics of our interventions
to be such that we simply cannot ‘see’ the causal connections. So we have a nonlocal
common cause-structure without screening off, i.e. where the common cause cannot
be inferred from the statistics in the usual way, and where the nonlocal character of
the causal connection cannot be used to create causal paradoxes only in virtue of a
lack of access or information. If anything is ‘conspiratiorial’, this certainly is.

Above we had also claimed that the spatiotemporal and causal problems of
entanglement are not detached but connected. One sort of connection is the fact that
the inference to a hidden common cause λ by the PCC(∗) is driven by the observation
that the local measurement events should not influence each other causally in virtue
of spacelike separation. The entire search for common causes hence has to do with
the spatiotemporal setup and the relativity theories. But the dawning danger of
causal paradoxes even in common cause-scenarios makes for another connection:
the same feature of the relativity theories (no spacelike causation) that suggests that
there should be a common cause in the first place can be seen to suggest that there
should not be one after all—because that common cause would still transmit causal
influences superluminally. There is, in other words, not a spatiotemporal and a
causal problem, but two causal problems; one motivated by spatiotemporal concerns
and their causal implications, the other directly by concerns of causal modeling.

These are no rigorous arguments to strictly refute the causal account(s) suggested
above, but one may certainly feel encouraged to look for alternatives at this point.
While Näger (cf. 2016, p. 1142) thinks that accepting a failure of the CMC, i.e. the
existence of uncaused correlations other than maybe those, say, between heads up
and tails down in a coin toss, is basically ‘giving up on science’,15 Glymour (2006,
p. 124) reminds us that “[i]t is not a truth of logic that all experimental associations
have a causal explanation [. . . ].” And Adrian Wüthrich (2014, p. 603), a recent
advocate of an acausal interpretation of EPRB-correlations, sets van Fraassen’s
impossibility claims of causal explanations aright: it constitutes “an empirical
hypothesis” that “causal completeness, or ‘closedeness’, may fail.” (my emphasis—
FB)

15This makes him an “essentialist” in Fine’s (1989, p. 182) sense.
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Recall, moreover, that we can ‘beat’ EPR’s, Bell’s, and the KS theorem all at
once if we reject causal reasoning in certain places: in Sect. 4.3.3, we identified
EPR’s reality criterion as invoking an abductive inference from an observed
measurement result to a hidden cause; and in Sect. 4.3.4, we identified Redhead’s
‘reality principle’ as an instance of abductive inference to a hidden cause as well. So
if we reject that this sort of inference is generally valid (since reality is not ‘causally
closed’), we do not have to infer that QM is incomplete. And neither are we then
motivated to accept (FUNC) or (FUNC*), so that no KS-contradiction arises. These
are positive reasons to reject a causal interpretation of EPRB correlations and other
aspects of QM.

We have seen how causality considerations are intimately connected to locality-
considerations. But how, precisely, does this supposed lack of ‘causal closedness’
relate to issues of realism, as we had also suggested above? d’Espagnat (1997, p.
79) has it that “cause-effect relationships linking some phenomena with one another
[are] considered by some upholders of conventional realism16 as constituting a
strong argument in favor of their conception.” And van Fraassen (1980, pp. 23–28)
similarly finds that

arguments for realism [. . . ] point to explanatory power as a criterion for theory choice.
[. . . ] The regularities in the observable phenomena must be explained in terms of deeper
structure, for otherwise we are left with a belief in lucky accidents and coincidences on
a cosmic scale. [. . . ] The principle of the common cause [. . . ] may be regarded as a
formulation of the conviction that lies behind such arguments [. . . ] requiring the elimination
of ‘cosmic coincidence’ by science.

We already outlined, in Sect. 4.3.3, that giving up on the quantum state χ as a
cause and rejecting additional causes λ leads to a partial rejection of the semantic
condition of scientific realism: We cannot, if we accept the present course, always
interpolate what we observe by (the behavior of) further, unobserved entities, and
therefore not speak about or refer to everything using scientific methods. Parts of
reality that require a quantum treatment would indeed become “unspeakable”, as
Bell (1984b, p. 171) would have it.

However, we have so far not even given serious thought to how the quantum state
might describe reality after all, and how plausible causal accounts that take it to be
a relevant (if peculiar) cause really are. The next chapter will give some thorough
thought to the three currently most prominent ontological interpretations of QM, i.e.
interpretations according to which the quantum state should figure in one’s ontology.

16By “conventional realism”, d’Espagnat means the conviction “that science is able to reach
at mind-independent reality” (d’Espagnat 2011, pp. 1703–1704), which we understand as full
endorsement of scientific realism.



Chapter 6
ψ-Ontology, or, Making Sense
of Quantum Mechanics

Go to any meeting, and it is like being in a holy city in great
tumult. You will find all the religions with all their priests pitted
in holy war [. . . ]. They all declare to see the light, the ultimate
light. Each tells us that if we will accept their solution as our
savior, then we too will see the light.

—C. Fuchs (2002, p. 1)

6.1 Bohmian Mechanics: Taking Wave-Particle Duality
Seriously

6.1.1 General Outline and Connections to Orthodoxy

In Chap. 2, we located the importance of de Broglie’s research for the development
of QM in his speculating about matter waves, and hence in his indirect contribution
to Schrödinger’s discovery of the SE. But de Broglie’s contributions to the early
development of QM of course exceeded this point. In particular, he also proposed
a so called pilot wave theory, in which there would be waves and particles, and
which he hoped to be a precursor to a future (fully developed) ‘theory of the
double solution’. In the latter there would be additional singular solutions to the
SE or the KGE, highly peaked field amplitudes with a phase coinciding with that of
the regular solutions, replacing genuine, additional particles (cf. Bacciagaluppi and
Valentini 2009, p. 60; Jammer 1966, pp. 292 and 357; Mehra and Rechenberg 1987,
p. 1209). Pilot wave theory and the theory of the double solution were certainly
both motivated by the duality of wave-like and particle-like aspects exhibited in
experiments and discussed at some length in Chap. 2. In contrast to the naïve
(collapse) approach discussed therein, however, de Broglie’s pilot wave theory
would have particles be present at all times and only be guided or piloted by a

The term ‘ψ-ontology’, having a peircing phonetic ring to it (read: ‘siontology’), has been traced
back to Chris Granade by M. Leifer (2011).
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simultaneously occurring wave-phenomenon. The theory of the double solution, he
hoped, would then explain everything in terms of waves (fields) alone (cf. Dürr et al.
2012, p. 7; Mehra and Rechenberg 1987, p. 1209).

In a paper published in 1927, de Broglie developed his ideas by considering the

KGE for a function u(x, t) = f (x, t)e
i
h̄
ϕ(x,t) in addition to a solution of the form

ψ(x, t) = Ae
i
h̄
ϕ(x,t). From this he derived the condition

v = ∇ ϕ
m
, (6.1)

describing the velocity of a particle, or rather, the singularity-solution u in which f
would be of a divergent form at some point (the singularity, mimicing a particle) and
fall off quickly everywhere else. Equation (6.1) is analogous to the formula p = ∇S
in the Hamilton-Jacobi formulation of classical mechanics, where S is the action
of a classical particle (e.g. Bacciagaluppi and Valentini 2009, p. 55 ff.; Jammer
1974, pp. 47–49). At the 1927 Solvay conference, de Broglie avoided the appeal
to the function u and directly presented his approach as applying to particles (cf.
Bacciagaluppi and Valentini 2009, p. 69). Equation (6.1) is usually called a guidance
equation. It describes the localized particles as moving with definite velocities at
all times; not in a Newtonian fashion, but rather guided by the ψ-function via the
gradient of its phase ϕ, i.e. as being ‘pushed’ by the wavefronts.

But the ψ-function, of course, had to fulfill a dual role to connect to the
probabilistic content of QM: as a guiding wave and as a ‘probability wave’. This
was acknowledged by de Broglie, but he still failed to demonstrate how the orthodox
description of measurement processes could be recaptured within his formalism.
According to Jammer (1966, p. 357) and others (e.g. Dürr et al. 2012), the harsh
criticism of Pauli about this and related problems in particular lead de Broglie
to abandon his work on the pilot wave theory, and as Bohm (1952a, p. 167)
and Bacciagaluppi and Valentini (2009, p. 229) note, he discovered additional
difficulties himself shortly after.

In 1952, however, David Bohm developed, in two subsequent papers (Bohm
1952a,b), an account similar to, or in many respects identical with de Broglie’s pilot
wave theory, without being aware of de Broglie’s work at first. His starting point was

to consider the time dependent SE on a wave function ψ(x, t) = R(x, t) · e ih̄ S(x,t)
with S and R real valued. Plugged into the TDSE with potential V , this yields

ie
i
h̄
S
h̄
∂R

∂t
− Re

i
h̄
S ∂S

∂t
= − h̄2

2m
e
i
h̄
S

[
�R + 2

i

h̄
∇R · ∇S + i

h̄
R�S − 1

h̄2
R(∇S)2

]

1You can easily verify this by restricting attention to one of the coordinates, differentiating ψ twice
using product- and chain rule, and realizing that ∇R · ∇S = ∂R

∂x
· ∂S
∂x
+ ∂R

∂y
· ∂S
∂y
+ ∂R

∂z
· ∂S
∂z

(and so
forth).
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+ V · Re ih̄ S .1 (6.2)

Up to the exponential (which cannot generally vanish; cf. the Euler formula) and
sorted for real and imaginary part, this in turn reads

i

(
h̄
∂R

∂t
+ h̄2

2m

[
2

1

h̄
∇R · ∇S + 1

h̄
R�S

])

−
(
R
∂S

∂t
− h̄2

2m

[
�R − 1

h̄2R(∇S)2
]
+ V · R

)
= 0 (6.3)

(6.3) nicely decouples into the two equations

∂R

∂t
= − 1

m

[
∇R · ∇S + 1

2
R�S

]
(6.4)

∂S

∂t
= −

[
1

2m
(∇S)2 + V − h̄2

2m

�R

R

]
, (6.5)

since both real and imaginary part must vanish individually for the entire expression
on the LHS of (6.3) to be zero. Remarkably, one obtains the Hamilton-Jacobi
equation from (6.5) if h̄ is treated as zero, i.e. as a kind of ‘h̄ → 0-limit’. Stated
differently, (6.5) can be read as describing the motion of a classical particle with
momentum p = ∇S (as in de Broglie’s approach), subject to a potential V and an
additional ‘quantum-potential’

Q = − h̄2

2m

�R

R
. (6.6)

The expression −∇ (V +Q) could then be used by Bohm as an expression of a
force, exactly as in classical mechanics. Using also that R2 defines the probability
density � = |ψ |2, Eq. (6.4) in turn implies the continuity equation ∂�

∂t
+∇(� ·v) = 0,

where v = ∇ S
m

, and � · v defines a probability current j .
Based on this setup, Bohm provided treatments of stationary states, scattering

problems, angular momentum, and may other aspects of QM, thereby exceeding
de Broglie’s previous treatment and curing it of certain problems. In virtue of the
importance of Bohm’s contributions to this version of QM, it is sometimes referred
to as Bohmian mechanics (BM) (e.g. Dürr and Teufel 2009; Dürr et al. 2012),
sometimes, to honor de Broglie’s early contributions, the de Broglie-Bohm theory
(e.g. Holland 1995; Friebe et al. 2015). For convenience, and convenience alone, we
will use the acronym ‘BM’ throughout.

The central conjecture to be investigated here now is the following dual ontology:
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Conjecture 2 (The dual ontology) Quantum mechanical systems are tiny
objects which always possess a true, definite state, with precise values of
position and momentum at all times. They move on usually non-Newtonian
trajectories, guided, in some way, by a wave function defined on configuration
space.

Above we have referred to BM as a ‘version’ of QM. Indeed, the physical
interpretation is so much at variance with orthodox QM that BM has sometimes
been thought of as an alternative theory (e.g. Dürr et al. 2012, p. 24; Ivanova 2014,
p. 211 ff.). However, the same could be said about any ‘non-orthodx’ interpretation
of QM, and we have seen that the essential ingredients of BM are already present in
the QM formalism. Thus, BM is actually formally conservative. What is true though
is that BM is conceptually highly revisionary: it assumes the existence of particles –

not ˜particles – at all times, and the wave function merely plays the role of a guiding
or piloting field.

There is a sense in which this dual ontology is very appealing: we now can
picture the situation such that a tiny lump of matter (a ‘point particle’) is being
pushed through space by a wave (symbolized by ψ), and the influence of the
wave explains the funny statistics that characterize the particle’s behavior. And
in fact, single-particle single- and double slit experiments can be emulated with
oil droplets in vibrated baths of the same fluid, wherein the (bouncing) droplet
creates a wavepacket around itself and the joint dynamics statistically reproduce
characteristic single-particle interference patterns (cf. Couder and Fort 2006).
Apparently our dual ontology hence comes quite close to fulfilling the ‘dream’ of
Chap. 4, to give a clear, ontologically meaningful explanation of the success of QM
when the latter is construed in a merely operational or instrumental fashion.

But we know already that theψ-function is not a simple field on 3D-space or 4D-
spacetime, but instead an often-times inseparable function on configuration space—
a fact that we have taken into account in the formulation of our present conjecture.
We have seen how far-reaching the consequences of this are in the discussion of
Bell’s theorem and associated issues. It is hence of utmost importance to understand
the role of the ψ-function in BM more clearly, whence we will turn to a detailed
analysis thereof in the next section.

Let us now first look at the central connections of BM to orthodox QM in a
little more detail though. How is the ‘dual role’ of the wave function as guiding-
and ‘probability-wave’ established? To some extent, its probabilistic content, which
Dürr et al. (2012) refer to as the quantum equilibrium hypothesis, is always
postulated2: Bohm (1952a, p. 171) explicitly introduced this as a fundamental
assumption; Dürr et al. (2012, p. 44 ff.) go through some means to demonstrate

2Cf. Passon (2004, p. 7) for an overview of attempts to get around this feature.
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that, if, possibly as a matter of incomplete knowledge about initial conditions, one
assumes the actual configuration of the entire universe at a supposed initial time to
be distributed according to the squared modulus of a universal wave function, then
the configurations of all subsystems at later times will be distributed according to the
squared modulus of a conditional wave function describing these systems alone.3

From this (motivated) assumption ofψ’s probabilistic content follow basically all
the further connections to orthodox QM and its predictions. The significance of self-
adjoint operators as observables is taken to flow from their spectral decomposability
Â = ∑

j aj P̂j and the statistical content of expressions like 〈ψ |P̂j |ψ〉 = |ψj |2.
But Dürr et al. (2012) emphasize that this means that self-adjoint operators only
play a role in the statistical description of certain experiments, and do not generally
represent the statistics for obtainment of a value in a genuine measurement, i.e. “the
ascertaining of the value of a quantity” (Dürr et al. 2012, p. 81):

the notion of operator-as-observable in no way implies that anything is genuinely measured
in the experiment, and certainly not the operator itself! In a general experiment no system
property is being measured, even if the experiment happens to be measurement-like. (Dürr
et al. 2012, p. 97)

By a “measurement-like” experiment, they mean “one which is reproducible
in the sense that it will yield the same outcome as originally obtained if it is
immediately repeated.” (Dürr et al. 2012, p. 95) Given this view of self-adjoint
operators as statistical devices, it is then a small step to introduce POVMs as
describing the statistics of a more general set of (not necessarily reproducible)
experiments (cf. Dürr et al. 2012, p 115 ff. for details).

The de-valuation of self-adjoint operators in particular has important implica-
tions for how the consequences of the KS theorem are viewed. Here Bohm and
Hiley (1993, p 120; notation adapted; my emphasis – FB) write:

In our interpretation we do not assign values such as v(A), v(B), v(C), . . . to the operators.
For these operators do not correspond to beables in our approach. Rather the beables are the
overall wave function together with the coordinates of the particles, both of the observed
system, x, and the [sic] of the observing apparatus, y. These beables determine the results
R(A),R(B), R(C), . . . of each individual measurement operation. But these results are not
present before the measurement operation has been completed. [T]here is no pre-existing
quantity that is actually revealed in this process.

This notion of a ‘beable’ (read: ‘be-able’)—or rather: local beable—stems from
Bell (1976), and Bell introduced the term to denote something that is and is there,
in contrast to QM’s observables. Essentially, Bohm and Hiley here deny the very
foundation of the KS theorem: the value definiteness rule (VD). Moreover, they
seem to embrace contextuality w.r.t. QM’s observables, and trace it back to the total
interaction of system and apparatus (both being constituted by particles). Similar
but slightly more specific remarks are made by Dürr et al. (2012, p. 149; notation
adapted; my emphasis – FB):

3We will introduce the notion of a conditional wave function thoroughly below.
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in Bohmian mechanics the random variables ZE giving the results of experiments E
depend, of course, on the experiment, and there is no reason that this should not be the case
when the experiments under consideration happen to be associated with the same operator.
Thus with any self-adjoint operator Â, Bohmian mechanics naturally may associate many
different random variables ZE , one for each different experiment E �→ Â associated
with Â.

The point, again, is that no self-adjoint operator truly represents a dynamical
quantity of a system that can take on definite values, revealed by a suitable
experiment, but rather represents a set of different experiments (or specific features
thereof), each of which may be contextual in the sense that it depends on the total
experimental setup. This is somewhat stronger than what we have presupposed
for our minimal revision in Sect. 4.3.4; it is not that only degenerate operators
are associated with multiple observables, but rather all (self-adjoint) operators are
associated with multiple experiments. Talk of ‘observables’ is viewed as misleading
here, since ‘observables’ are typically features of experiments, and the only ‘real
observable’ is position (e.g. Dürr et al. 2012, p. 82). This special role for position
has some intuitive appeal when one considers that usually the positions of pointers,
pixels, or flashing light bulbs are ultimately observed in experiments.4

So far so good. But we noted in Sect. 4.3.4 that, when considered w.r.t. composite
systems, the KS theorem has the implication that certain assumptions about
separability and/or locality cannot be maintained (precisely: (VSEP) and (VLOC)).
As Dürr et al. (2012, p. 154) put it: “whenever the relevant context is distant,
contextuality implies nonlocality.” Im BM, this feature of non-locality is built into
the wave function for (certain) many-body systems. This leads us back to the
necessity of confronting the ontological significance of the wave function in BM.

6.1.2 Non-locality and the Ontological Status of the
ψ-Function

As we noted above, the ψ-function also has, besides its probabilistic content, the
more directly ontological meaning of something that guides or pilots particles
through space. Since it is defined on configuration space though, it is in need of
explanation how ψ can act on the particles, situated in spacetime.

In particular, we need to turn to the Bohmian treatment of many-body systems to
shed more light on this issue. Formally, there is not much difference to the single-
body treatment considered above; since ψ is a complex-valued function, one can

write it in the polar form ψ = R(x1, . . . , xN)e
i
h̄
S(x1,...,xN) for N particles all the

same. The Hamiltonian of the SE will then be of the form

4A ‘measurement of the position operator’ need not be a measurement of the actual position of a
particle though; cf. the example in Dürr et al. (2012, pp. 142–143).
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Ĥ = − h̄
2

2

N∑
j=1

�j

mj

+ V (x1, . . . , xN), (6.7)

where �j is the Laplacian w.r.t. xj , and the quantum potential will be of the form

Q = − h̄2

2R

N∑
j=1

�j

mj

R(x1, . . . , xN) (6.8)

(cf. Bohm 1952a, p. 175). Moreover, the expression

vj = ∇j S
m

= h̄

mj

Im
ψ∗∇jψ
ψ∗ψ

(6.9)

then defines a velocity for the j -th particle, where this form of the guidance equation
is introduced, in particular, by Dürr et al. (2012). It can be easily seen that this is
equivalent to (6.1) in the simple case of a spinless particle, since ∇jψ = ∇jR · ψR +
i
h̄
∇j S · ψ by product and chain rule. It is also easy to confirm that this is equal to

j j
�

, with j j defined in analogy to (2.56), and � = |ψ |2. In the case of a (Pauli-)

spinor �
.=
(
ψ+(x)
ψ−(x)

)
, enumerator and denominator in (6.8) are simply interpreted in

terms of inner products on C
2 (cf. Bell 1971, p. 33; Dürr et al. 2012, p. 89). Indeed,

we here notice another crucial feature of BM, namely that spin does not appear as a
property of the particles, but of the wave function only.

To this extent, that BM introduces particles, characterized by definite velocities
(momenta) and positions, and reduces ‘decidedly nonclassical concepts’ such as
spin to the particles’ behavior, or to a feature of that which governs them, it
constitutes somewhat of a return to classical mechanics. But of course this is only
possible in an empirically adequate fashion via the acceptance of the somewhat
mysterious ‘piloting’ wave function and its statistical content.

Dürr et al. (2012, p. 30), moreover, explicitly introduce actual positions Xj

of the particles in contrast to the ‘generic’ configuration space variables xj , and
these actual positions together with the ψ-function are then construed as a complete
description of the system in question. These actual coordinates also determine actual

velocities, or rather, can be computed by solving
dXj

dt = h̄
mj

Im
ψ∗∇jψ
ψ∗ψ (X1, . . .XN).

It was noticed early on by Bohm (1952a, p. 168) that this assumption of existing
definite positions and momenta in his interpretation would make it count as a
hidden variables-approach, the hidden variables being the definite particle positions
and momenta. But did we not see hidden variables approaches suffer from so
many incapabilities in the last chapter? BM is not a ψ-epistemic hidden variables
interpretation of QM, in the sense of Chap. 4. In fact, it is not even clear that it can
be made to fit into the OM approach, for formal reasons (cf. Feintzeig 2014). And
even if it could, it would (at least prima facie) rather qualify as ψ-supplemented in
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Harrigan and Spekkens’ terminology; ψ appears to play some role other than a mere
representation of the knowledge of an observer. Whether this view of BM is correct,
however, strongly depends on what ψ’s role really is, as the subsequent discussion
will show.

It also seems worth emphasizing that BM does not suffer from the objections
we advanced against the historical ensemble interpretations in Sect. 4.1. BM can
reproduce double-slit interference with single particles and quantum tunneling in
virtue of the quantum potential Q, and even examples of (or analogous to) Mach-
Zehnder interferrometry (for details e.g. Holland 1995, p. 200 ff.). The essence of
the interference examples is that the measuring device will influence the quantum
potential, and that particles will travel in curved trajectories that depend on the total
setup, thus accounting for the observed patterns and frequencies. The essence of
the tunneling example is that the quantum potential constitutes additional energy,
whence a few particles will always escape the binding potential.

Notably though, since ψ depends on all the coordinates x1, . . . , xN , (6.8)
implies that the same goes for vj : the velocity of each particle in an N -particle
configuration depends irreducibly on the coordinates of all the otherN−1 particles,
and (via S) on the ψ-function.5 Bell (1966, p. 11) noticed this to imply that BM had
“in general a grossly non-local character” (my emphasis – FB).6 It hence seems to
embrace the consequences of Bell’s theorem in the most direct sense possible; but
there is a sense in which it is nonetheless not in conflict with SR, while it is clear
that the correlatedness and pre-measurement definiteness of positions and momenta
raises worries about the possibility of superluminal signaling – and hence causal
paradoxes. We will turn to this issue below, when we confront BM’s relation to
relativity in more detail.

So far we have seen that the wavefunction seems to play, among other things,
a physical role, and that it somehow influences the particles, thus correlating them
‘non-locally’. Given that ψ is defined on configuration space though, this still does
not answer how it manages to transmit its ‘non-local influence’ to the particles. A
first thing to note is that “in a universe governed by Bohmian mechanics there is a
priori only one wave function, namely that of the universe, and there is a priori only
one system governed by Bohmian mechanics, namely the universe itself.” (Dürr
et al. 2012, p. 85) To make sense of practice however, wherein the wave function
of the universe never occurs, Dürr et al. introduce the notions of conditional and
effective wave functions, used to describe the behavior of subsystems.

Consider the wave function of the entire universe, call it ‘Ψ(x, y)’, here
conveniently split for (generic) configuration space coordinates x = (x1, . . . xN)

and y = (y1, . . . yM), where the first ones (x) correspond to the coordinates of a
system of interest and the second ones (y) to its environment (‘the rest’). Now the
distinction of actual from generic coordinates defines a conditional wave function

5This only holds, of course, if the wavefunction is not factorizable, because otherwise all the factors
in (6.8) that do not depend on xj can be ‘divided off’.
6However, cf. Norsen (2010) for an interesting first step towards a fully local view of BM.
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for the x-system as the function ψ(x, t) = Ψ(x, Y (t), t), i.e., one singled out by
the actual configuration Y of the rest of the universe. However, the conditional
wave function will not always evolve in accord with the SE. So it is useful to
also introduce an effective wavefunction (at any given time; we suppress the t

below) for the x-system, which is the function ψ(x) for Ψ(x, y) being of the form
ψ(x)�(y) + Ψ⊥(x, y), with the actual coordinates Y in the support of �, and
where � and Ψ⊥ are supposed to have ‘macroscopically distinct’ supports in the y-
coordinates (cf. Dürr et al. 2012, p. 85–86). The effective wave function will always
obey the SE, and thus corresponds to the wave functions used in practice. Note
however that the other terms of the (highly entangled) wavefunction of the universe,
Ψ⊥(x, y), are thus empty.

The use of the conditional wave function also leads to an ‘apparent collapse’.
Take an entangled state |〉 = ∑

i ci |ψi〉 |φi〉 of some system and apparatus,
as results from their joint unitary evolution (cf. Chap. 2). Since only one part of
|〉, projected onto configuration space variables (x, y), will contain the actual
coordinates (e.g. pointer position) Y of the apparatus, only one of the possible
outcomes will be measured, and we can thus assign the conditional wave function
ψi(x) = Ψ(x, Y ) to the system after the measurement. This ‘collapse’, which is then
merely an “act of convenience” (Dürr and Teufel 2009, p. 180), comes at the price of
neglecting something that may or may not ‘still be there’ – the empty, non-effective
wave functions – depending on one’s view of Ψ. But this alleged price, Dürr and
Teufel (2009, ibid.) have it, “amounts to nothing”, because interference with them
will quickly become very hard to establish due to environmental interactions.7

Again, so far so good. But we still do not know what the wave function
‘really is’, and how it ‘interacts’ with particles located in space(time). In fact,
the accounts of what exactly the wavefunction represents differ grossly among
‘Bohmians’. Bohm must have expressed his major dissatisfaction with Dürr et al.’s
views being termed ‘Bohmian mechanics’ (cf. Hiley 1999, p. 117), broadly speaking
because his account of BM is ontologically much ‘richer’. It may hence not even
be fair to discuss both Bohm and Hiley’s and Dürr et al.’s views, as well as
de Broglie’s original attempts at a double solution, all under the same heading.
But we have focused here mostly on commonalities, and some differences should
become obvious from the discussion and the quotes therein. We stress that these
are not all the differences though (e.g. Passon (2004) and Friebe et al. (2015, pp.
194–196) for a deeper discussion), and one crucial, further difference is e.g. the
abandonment of the quantum potential by Dürr et al. (2012, p. 10) and others (e.g.
Valentini 1996, p. 47).

Now Bohm (1952a, p. 170) himself thought of the wavefunction as

an objectively real field [that] exerts a force on the particle in a way that is analogous to, but
not identical with, the way in which an electromagnetic field exerts a force on a charge, and
a meson field exerts a force on a nucleon.

7This will become clear after the discussion of decoherence in Sect. 6.3.2.
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And Bell (1981b, p. 128) equally believed that:

No one can understand this theory until he is willing to think of ψ as a real objective field
rather than just a ‘probability amplitude’. Even though it propagates not in 3-space but in
3N -space. (emphasis omitted)

But there is a bunch of troubles with this view. The wave function behaves, for
instance, unlike classical fields in that “there’s no back action, no effect in the other
direction, of the configuration upon the wave function[. . . ].” (Dürr et al. 2012, p.
266) The more pressing problem is of course that it is far from clear how the
wave function, residing in configuration space, effects the changes in spacetime.
Bell (1981b, p. 128) merely referred to the determination of velocities by the wave
function as “rather original”; and Bohm and Hiley (1993) helped themselves to an
understanding by introducing a (somewhat elusive) notion of “active information”
(p. 36), which was “ordered in the configuration space” (p. 60) and therefore implied
that certain systems are “wholes guided by a pool of common information” (p. 61).

More concretely, Bohm and Hiley (1993, pp. 31–32) likened the situation of
particle and guiding wave to “a ship on automatic pilot being guided by radio
waves.” Here the radio waves would equally not exert a mechanical force on the
ship to effect the guided motion. But of course this analogy easily breaks down
since, unlike the quantum wave function, the ‘information’ the ship acquires can
be analyzed into classical physical processes ‘ordered’ in spacetime, effecting, in
conjunction with the physics of the ship’s motor, its total behavior. It is hence hard
to see how it helps us to a proper understanding to replace a wave propagating in a
configuration space by ‘active information ordered in configuration space’, both of
which would have to somehow influence the goings on in spacetime. Not to mention
the fact that the former concept (wave), in contrast to the latter (active information),
is at least well understood on spacetime.

BM as presented by Dürr et al., in contrast, could be cashed out as essentially
just a theory of strangely behaving particles. The particles are referred to by them
as the primitive ontology of their theory, that which primarily exists. This concept
of a primitive ontology is certainly heavily inspired by Bell’s (1976) notion of local
beables, and we will use both notions somewhat interchangeably.8 About the wave
function, they suggest that “one should think about [. . . ] the possibility that it’s
nomological, nomic—that it’s really more in the nature of a law than a concrete
physical reality.” (Dürr et al. 2012, p. 266) That this is plausible they motivate (pp.
267–268) by comparing the wavefunction to the Hamiltonian function, which is
equally defined over configuration space, but about whose interpretation no one
wonders (or at any rate by far not to the same extent).

But Dürr et al. (2012, p. 268 ff.) also concede that we should neither be able to
alter the laws of nature, which we do with wave functions all the time, nor should
they be dynamical, i.e., subject to (automatic) change.9 To solve this difficulty, they
rely on their belief that only the wave function of the universe, Ψ, is ‘fundamental’,

8It should be noted though that at least S. Goldstein (private communication) thinks that there are
subtle but important conceptual differences.
9Cf. however Maudlin (2007, pp. 11–12) for some dissenting views.
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and this wave function, they argue, is neither controllable nor dynamical. That
Ψ may not be dynamical they gather from the timeless Wheeler-DeWitt equation,
Ĥ Ψ = 0, where Ĥ is a (kind of) general-relativistic Hamiltonian, and where on
the right hand side the familiar ih̄ ∂

∂t
from the TDSE is missing.10

This is an interesting suggestion, to be sure, and it reduces our dual ontology
to a ‘unal’ one; as Callender (2015, p. 3157) puts it: “no dualistic ontology [. . . ]
therefore no interaction problem.” But it is still not sufficiently clear what these
claims of ‘nomicity’ amount to. Roughly, the claim is that there are particles (the
primitive ontology) that behave in a particular manner which, at times, is rather
strongly and surprisingly correlated. That they do so is a law of nature. This law
is or is encoded in/dependent on Ψ. But what notion of a law of nature is being
invoked here? For there is, of course, not one unified account of the laws of nature,
but instead (as was the case e.g. with probability) a plethora of grossly differing
accounts.

Consider the following two basic options: either the term ‘laws of nature’
signifies something in the real world, its ‘modally robust structure(s)’ if you will,
or it does not. In the latter case, the appearance of law-like behavior, i.e. our so-far
success in using inductive practices, typically summarized in terms of mathematical
formulae, seems worthy of further explanation; what replaces the ‘laws qua real
entities’, so as to account for the seeming uniformity of nature? A natural response,
typically traced back to Hume’s skeptical investigation of induction and necessary
connections, summarized nicely in his remark that “[a]ll events seem entirely loose
and separate” (Hume 1748, §26), is to state that laws are just that: apparent
regularities, summarizable by a statement or mathematical formula. For obvious
reasons such a view is often referred to as Humean (e.g. Psillos 2002, p. 5). But
merely stating that laws are expressions of regularities is obviously insufficient,
since there are all kinds of regularities that supposedly should not qualify as ‘laws
of nature’.

The most sophisticated version of a regularity view is the account precisified by
David Lewis (1994), and advocated independently by Mill and Ramsey before him
(cf. Psillos 2002, pp. 9 and 139 ff.). This is the so called best system analysis (BSA).

Lewis (1994, p. 478) put the BSA’s foundational idea as follows:

Take all deductive systems whose theorems are true. Some are simpler, better systematized
than others. Some are stronger, more informative, than others. These virtues compete: an
uninformative system can be very simple, an unsystematized compendium of miscellaneous
information can be very informative. The best system is the one that strikes as good a
balance as truth will allow between simplicity and strength. How good a balance that is will
depend on how kind nature is. A regularity is a law iff it is a theorem of the best system.

Now of course the BSA is not free of complications (what measures simplicity?
what strength? how can laws of nature depend on our systematization?) but it
nonetheless constitutes a serious contestant in an active field of research (the philos-

10Ψwould here in fact be a functional on a space of three-metrics and Ĥ contains a functional
derivative (cf. Kiefer 2007, p. 141 ff. for details).



228 6 ψ-Ontology: Making Sense of QM

ophy of the laws of nature), in which (once more) none of the contestant accounts
is free of complications.11 Of more interest to us should be the consequences of
a Humean view for BM. If the laws of nature are merely theorems (or axioms)
of a best system, then this still means that ‘things just happen to be the way the
theorem/axiom says’. Period. If Ψ hence figures in a law of nature, describing the
behavior of particles as correlated over large distances, then they just happen to
behave in this astonishingly correlated way. Period. This is not to say that such
an account cannot be maintained,12 but it is certainly somewhat discomforting that
particles should ‘just’ behave in such a peculiar manner.

We must ask, however, whether there is really much of an asymmetry between
quantum and classical cases here. In particular, the ‘brute factivity’ of correlations
could be viewed as no more mysterious in the quantum case than in the classical
case.13 Is it not equally ‘spooky’ that material particles scatter off each other in
the way they do, i.e. that there are these particular correlations that we regularly
observe after ‘action by contact’, once we accept a Humean view? Indeed, one could
flesh this out into a somewhat ‘therapeutic’14 stance towards the laws of nature and
our intuitions about them, and the apparent objection might be turned into a mere
feature. Nevertheless, the explanatory value of ψ or Ψ and the guidance equation(s)
is thereby grossly reduced15; and the nice feature outlined in Sect. 6.1.1 – that we
now have strangely behaving particles whose strange behavior we can understand
in virtue of a guiding field – vanishes. Again, this is a feature that Humeanism
arguably bestows upon any kind of law (or lawlike entity): “on Humeanism, the
laws of fundamental physics do not have any explanatory function. They sum up, at
the end of the universe, what has happened in the universe, but they do not answer
the question concerning why what has happened did in fact happen, given certain
initial conditions.” (Esfeld et al. 2014, p. 783)

There is an interesting additional feature that ψ has on a nomological view in
general and a Humean one in particular. On any nomological account, ψ becomes
somewhat epistemic again, although its ‘epistemicity’ is not formally explicated in
the way it was in Chap. 4. The possibility of introducing an epistemic interpretation

11Of course it may also seem quite counter-intuitive that, on the BSA, it appears to depend on the
existence of minds, being the carriers of descriptive systems, whether there are laws of nature or
not. Even Lewis (1994, p. 479; emphasis in original) admitted that “if nature were unkind, and
if disagreeing rival systems were running neck-and-neck, then lawhood might be a psychological
matter [. . . ].” We should appreciate, though, that at least the entities regularly exhibiting the same
behavior do reside in the outside world and they do behave so mind-independently, even if they do
not have to; and given certain standards, the best system may also be precisely (objectively) fixed.
So there is certainly no radical subjectivism here (cf. also Psillos 2002, pp. 153–154).
12Cf. in particular Callender (2015) for a detailed treatment of some problems and potential
solutions.
13Author’s note: I owe this objection essentially to Sheldon Goldstein and Christian Loew
independently (private communication in both cases).
14Cf. also Friederich’s (2015) book-length investigation of a Wittgensteinian-therapeutic approach
to QM, in this connection.
15Author’s note: I owe thanks to Andreas Hüttemann for making me aware of this issue.



6.1 Taking Wave-Particle Duality Seriously 229

in this alternative fashion is acknowledged, in particular, by Harrigan and Spekkens
(2010, p. 153); the distinction between the wave function Ψ of the universe and
the effective wave function ψ of a given system is taken to indicate that at least
the latter codifies knowledge in some sense. Accepting, however, that Ψ might
be ‘nomological’, they believe that “it is presumably a category mistake to try to
characterize the universal wave function as ontic or epistemic[. . . ].” (ibid.)

According to our present analysis, this opinion is clearly flawed. Callender (2015,
p. 3158) provides a similar analysis of laws into either ‘its or bits’, where the
‘bits’ are understood as “an aspect of our knowledge.” (Callender 2015, p. 3154)
Moreover, “for the Humean”, Callender (2015, p. 3159) has it, the laws “are a
special kind of Bit.” (my emphasis – FB) They hence represent an aspect of our
knowledge about something else (the particles, in BM). That this should be so
is motivated by one particular way to spell out the BSA. Here is how Hall (as
paraphrased by Callender 2015, p. 3160) puts things:

(roughly) a proposition is a law iff an ideal observer, someone who is rational and has full
information about what is being systematized and embraces our sciences’ standards (which
include simplicity and comprehensiveness), declares the proposition a law. (my emphasis –
FB)

And similarly Schrenk (2014, p. 1788): “suppose you knew everything and you
organised it as simply as possible in various competing deductive systems[. . . ].”
(my emphasis – FB)

On a Humean view, Ψ may thus come out just as epistemic as ψ , referring, to
some degree, to the mental states of some observer and how she relates to the ‘real
goings on’. But if this is so, it appears prima facie problematic that we do not seem to
know Ψ—so it codifies basically and aspect of no one’s knowledge. Note, however,
that in the above quotes, the BSA is cashed out in counterfactual terms and refers to
an ideal (or future) scientist. The ‘best system’ hence plays a merely definitional role
on this reading, and some solution Ψ to the fundamental equation of a future theory
of quantum gravity could still be interpreted epistemically in the sense indicated.

Lewis (1994, p. 479), moreover, believed, or at least hoped (cf. ibid.) that “the
best system will be robustly best—so far ahead of its rivals that it will come out
first under any standards of simplicity and strength and balance.” (emphasis in
original) So Ψ might still be ‘bit’ rather than ‘it’, but an objectively preferred
bit: it does not directly signify anything in reality, but the total behavior (or the
totality of worldlines) of all particles in the universe makes some specific law
(generalized guidance equation) in which Ψ occurs inevitably true. This makes Ψ no
less epistemic; it aids in summarizing our knowledge of the behavior of something
else (the entities contained in the ‘primitive ontology’ or the ‘beables’). But this
summary now comes in an objectively preferred way.

Still, not everybody is convinced by Humeanism, especially in the light of having
to accept ‘spooky’ correlations as ontological bedrock. What alternatives do we
hence have if we want to hold fast to a nomological reading of Ψ but do not want to
swallow that particles just coordinate their behavior over large distances such as to
give rise to the peculiar EPRB-correlations? A prominent alternative that adds a ‘real
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something’ to escape the apparent arbitrariness or contingency is the ADT account
of laws (after Armstrong 1978, Dretske 1977, and Tooley 1977). This account is
nicely summarized by Psillos (2002, p. 163) as follows:

It is a law that all F s are Gs if and only if there is a relation of nomic necessitation
N(F,G) between the properties (universals) F -ness and G-ness such that all F s are Gs.
(my emphasis – FB)

A first drawback of the ADT account is that physical laws are typically expressed
as differential equations, and there is a general difficulty of how to relate these to
statements of the form “all F s are Gs” (cf. Smart 1993, p. 154; Maudlin 2007,
pp. 11–12). Take, for instance, Faraday’s Law of induction ∇ × E = − ∂B

∂t
, one of

Maxwell’s equations. It identifies the rotation of an electric field E with the temporal
change in a magnetic field B. It is not of a conditional form, but could rather be
translated into two conditional statements (‘all rotating E-fields are16 changing B-
fields and vice versa’). What ‘nomically necessitates’ what?

Moreover, assume that we have found an ‘order’ for these terms, i.e. that we can
identify one side of the equation as privileged over the other, e.g. by taking practical
considerations into sight (i.e. what is usually determined in virtue of what) that tell
us how to read such equations. For instance, we would probably first find a universal
wavefunction Ψ (from its dynamical law) and then determine particle trajectories
from a corresponding guidance equation, so we might speculate that something to
do with Ψ necessitates the particle trajectories.

So assume for the sake of argument17 that we can make sense of some such

universal, generalized guidance equation of the form vj = f (
Ψ∗∇jΨ

Ψ∗Ψ
), where f

would be any suitable kind of mapping, Ψ may depend non-trivially on all the
coordinates of all particles in the universe, may be atemporal, may be of any desired
mathematical complexity (a functional, a spinor-, tensor-, operator-valued function),
and ∇ and ∗ may be replaced by whatever necessary generalization (cf. then next
section for hints). Then the difficulty of transferring the treatment of the (classical)
electromagnetic fields to the treatment of velocities in BM is that the field Ψ still
‘lives’ on configuration space, and that the latter sort of law hence does not treat
(exclusively) of properties instantiated in spacetime.

“But”, the alert reader may interject, “did we not liken the wavefunction to
the classical Hamiltonian which equally ‘lives’ on configuration space?” This is
certainly correct, but on the ADT account, we are looking for relations between
universals, and the candidate universals on the RHS of our supposed universal
guidance equation are gradients, ratios, proportionality constants. . . and Ψ. Now a
classical Hamiltonian, once written out, does not occur as an additional universal
in classical mechanical equations, and the terms Vjk(xj − xk) in some such

16It may be tempting to say ‘are associated with’; but in SR a simple coordinate transformation can
turn E-field components into B-field components and vice versa, whence they are often viewed as
two sides to the same phenomenon (cf. Griffiths 1999, p. 529 ff.), as we already noted in Chap. 2.
17Cf. the next section for difficulties of generalizing guidance equations.
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HamiltonianH =∑
j

p2
j

2m+ 1
2

∑
j,k Vjk(xj−xk), relating the behaviors of multiple

particles at positions xj (e.g. Schwabl 2006, p. 55 ff.), represent interactions as
mediated by potentials Vjk that fall off at some power of the distance |xj − xk|
between the particles (i.e. decrease in strength with distance). So the candidate
universals (relevant for comparison) that are being lawfully related in classical
mechanics are fields and particles that are instantiated in spacetime.

The general point is that the situation of the crucial functions in classical
mechanics (such as the Hamilton function) is notably different from that of Ψ (or ψ)
in QM. This becomes most obvious when one tries to cast both theories in the same
formal mold. This possibility has been explored in some detail by Holland (1995,
p. 55 ff.) and Callender (2015, p. 3164 ff.), following him, makes us aware of the
fact that classical mechanics can be rewritten in terms of a “classical wavefunction”
ψc�. = Re

i
h̄
S , satisfying a “classical Schrödinger equation” that includes Bohm’s

quantum potential Q as an additional term, which then does not occur in the
corresponding Hamilton-Jacobi equation. Here h̄ merely occurs as a scaling for the
appropriate units and i = √−1 as a mere convenience to express two equations at
once. It is, in other words, possible to make both formalisms, those of classical and
of quantum mechanics, look remarkably similar.

But there is then still “a precise sense in which the wavefunction is forced upon us
in the quantum case but not classical case.” (Callender 2015, p. 3169; my emphasis
– FB) The difference lies in the fact that the phase-function S is not needed to
determine the exact trajectories in classical mechanics whereas it is in BM (cf. also
Holland 1995, p. 55 ff. for examples). This makes the instantaneous dependence of
magnitudes describing particles on those describing distant ones inevitable in BM,
and Callender (2015, p. 3171) thinks it also is “the reason why most Bohmians have
agreed with Bell that it [the wavefunction – FB] must be treated ontologically.”

Now if we accept this argument, we are back to square one. Wavefunctions are
still fields on high-dimensional configuration spaces, determining the trajectories of
particles in spacetime, even if there is a necessitation relation between the universals
‘wavefunction’ and ‘particle trajectory’. However, even on the ADT account, where
the laws are something over and above the behavior of the beables and may be
said to govern the latter, our treatment need not be so naïve as to think of Ψ as
field instantiated on configuration space. Callender (2015, p. 3159) e.g. urges us to
not “mistake the mathematical representation of [. . . ] governors with their physical
reality.” Thus Ψ in the supposed universal guidance equation could symbolize
a property distributed across spacetime or simultaneously insantiated in multiple
locations,18 depending on the details of that supposed equation.

But even on such a sophisticated reading of the nomological understanding of Ψ
in the ADT sense, not much is gained. This is due to a threefold complex of prob-

18In fact, any universal is simultaneously instantiated at many points in space, or cast in relativistic
terms, instantiated on multiple points of the same spacelike hypersurface. The key point is that in
BM the dependence of one quantity (velocity) is on the multiple instantiations (particle positions)
on that hypersurface, not on only one of them (the particle’s own one).
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lems: van Fraassen’s (1989, p. 96) “obviously related” problems of identification
and inference, and the general problems with instantiation in the metaphysics of
universals. Let us look at the three separately and then find their commonalities.

The identification problem is the problem that we may well wonder what kind
of relation the relation N between two universals is, and the inference problem
is how N ‘does its job’, i.e. entails that all F s are Gs. The two are connected
since solving the first problem must include solving the second (that is what N
was introduced for). But neither task is easily fulfilled, if solvable at all; van
Fraassen (1989, p. 97) considers, as a first approach to identifying N , the relation
of extensional inclusion, namely: “A is extensionally included in B exactly if all
instances of A are instances of B.” IfN were extensional inclusion, this would solve
the inference problem, but: “if this qualifies as a necessitation relationship, then all
ordinary universal regularities become matters of law.” (ibid.) A strengthening of N
(extensional inclusion +X) does not remove this trivialization, but any alternative
seems to eschew the inference problem. There is a crucial gap between universals
and their instances, which makes the problem appear unsolvable: N(A,B) “is a
singular statement about universals A and B. The conclusion to be drawn from it is
about another sort of things, the particulars which are instances of A and B.” (ibid.)

On the other hand, we have the basic metaphysical problems of instantiation.
Instantiation is a cross-categorical relation between universals and particulars (the
instances), of which it has been suspected, in virtue of philosophical argument,
that it “cannot be explicated by any analysis, definition, or metaphor.” (Armstrong
1989, p. 108) This alone may tip us off as being a problem, given that we
were facing an interaction problem between high-dimensional configuration spaces
and lower dimensional spacetimes before, and were attempting to remove it by
reinterpreting the role of the Ψ-function. But now we have a no more illuminating
‘interaction’ between universals and their instances on our hands, a primitive
unanalyzable relation of instantiation. Worse: instantiation itself appears to be a
universal; every case of instantiation of a universal by a particular instantiates the
universal of instantiation. This immediately leads to a “vicious or at least viciously
uneconomical” infinite regress (Armstrong 1989, ibid.). Since both, the inference
(and associated identification) problem and the problems of instantiation concern
the ‘gap’ between universals and their instances, we may think of this (somewhat
metaphorically) as another kind of ‘interaction problem’—between entities in
platonic heaven and spacetime, if you will.

The problems here encountered constitute a dilemma,19 which we may call Dürr
et al.’s dilemma for obvious reasons. If we think of Ψ as nomological, we apparently
reduce the interaction problem, that Ψ resides in configuration space whereas the
particles do not, to the problem of explicating what ‘nomological’ means. But if
one accepts a Humean view, the explanatory value of Ψ and of guidance equations
is greatly reduced (and with it the advantages of BM over orthodoxy). And if, on

19Author’s note: Again thanks to Andreas Hüttemann are in order for the observation that the
situation constitutes a dilemma.
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the other hand, one accepts a realist (or non-reductionist) account of laws such as
the ADT account, one either has to interpret Ψ as a real field—on configuration
space—after all, thus falling back onto the interaction problem, or one simply faces
a different ‘interaction problem’ between universals and their instances.

There are two further options that are seriously discussed in the literature on the
laws of nature, but we can see quite easily why they do not resolve the dilemma in
a satisfying way either. To wit, one might (a) accept laws as metaphysical entities
sui generis (e.g. Maudlin 2007, p. 157 ff.),20 or alternatively (b) replace them by
other metaphysical entities such as (causal) powers or dispositions (e.g. Cartwright
1983, 1989, 1999; Mumford 2004). In either case, one would of course have to tell a
compelling story about the occurrence of the strong Bell-type correlations, and how
the laws (being ‘primitive entities’) effect them, or how the causal powers account
for their occurrence.

Now (a) seems hardly more attractive than simply accepting the correlations
as primitive, i.e. accepting the Humean view, or hardly more illuminating than
introducing Bohm and Hiley’s elusive concept of ‘active information’. It is now a
‘law’ that somehow mysteriously guides and correlates the distant particles. So upon
accepting (a), we face yet another ‘interaction problem’, though this time rather
between a ‘nomological realm’ and the ‘realm of (local) beables’.

The same can in fact be said about some versions of (b). Esfeld et al. (2014,
p. 791) resort to introducing “a disposition of motion as a holistic property of the
totality of the particles in the universe as primitve.” But what this means beyond
‘all particles in the universe move the way they do’ is rather unclear. If a fanciful
metaphysical story about the actual and possible is invoked to elucidate the ‘holistic
disposition of motion’, on the other hand, wherein the disposition, a catalog of
coordinated possibilities if you will, transitions into the actual behavior of the
particles, then one faces the next interaction (or maybe transition) problem: how
can the set of merely possible configurations effect the actual ones? How, in other
words, is the disposition’s transition from potential to actual to be understood? What
would such an analysis add to a Humean account, other than a ‘soft (metaphysical)
pillow to rest one’s head on’?

If one turns to ‘non-holistic’ dispositions instead, (b) appears as an endeavor not
easily pursued if possible at all. We clearly saw the difficulties with establishing a
causal interpretation of Bell type inequalities in the second interlude, and relying on
‘non-holistic’ dispositions or causal powers would imply that the local disposition
of a distant particle would manifest instantaneously in virtue of what was done to its
distant, EPRB-correlated partner—thus creating room for causal paradoxes again.

The bottom line is this: The move from interpreting Ψ as a field on configuration
space to treating it as a ‘nomolocial entity’ certainly has the advantage of reducing
two problems to one, as has been pointed out by Callender (2015, p. 3159). But
unless any of the aforementioned accounts has been worked out in quite some detail

20In fact, Maudlin (2013, p. 151) basically suggests the same about the quantum state – that it may
be an entity sui generis.
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and is freed of its problems, one faces Dürr et al.’s dilemma—that one either, on the
one horn, has to accept even spookier correlations than before and is rid of Ψs basic
explanatory value or, on the other horn, retains the interaction problem between
configuration space and spacetime or merely replaces it by an ‘interaction problem’
between nomological and beable realms, the actual and the possible, or between
spacetime and platonic heaven.21

6.1.3 Relativity, Fields, and Possible Limitations of Bohmian
Mechanics

The last section introduced a philosophical difficulty of BM that may not be
insurmountable, but at least demonstrates that there are essential ambiguities at its
basis. In this section we will point to some physical difficulties that may account for
why not most physicists accept a Bohmian interpretation.

Let us first take stock of our findings, however, evaluated against the agenda set
out in Sect. 2.3. BM accepts, on a variety of readings, a dual ontology in which both,
wave function and particles with well-defined trajectories play a crucial role. We
already identified BM as formally conservative above, since the guidance equations
‘pop out’ by a mere rewriting of the TDSE. But at the same time BM is conceptually
revisionary, since it embraces proper particles and their positions as additional
variables. It should also be classified as non-collapse, since any ‘collapse’ at best
occurs as a finding out of a trajectory.22

Now is BM ontological or non-ontological w.r.t. the wave function? This
question cannot be unambiguously answered, as the previous discussion has
demonstrated. We claimed that “on a variety of readings”, the wave function does
signify something in reality, and this is certainly the case in non-nomological and
non-Humean nomological versions of BM, whence these should all be classified as
ontological. A Humean version may, in contrast, be classified as non-ontological,
since the wavefunction does not (directly) describe anything; it does not itself form
part of the ontology. We will acknowledge this need for classificational refinements
in Sect. 6.4, where we will compare multiple interpretations of QM directly.

How does BM fare w.r.t. the MAC and the DOC? The dynamical task of
the MAC is tackled by modifying the dynamics – again: by a mere rewriting –
in accepting, in addition to the TDSE, the guidance equation, taken to describe
the movement of actual particles. The kinematical task is taken on by accepting
that the wave function (of the universe) is either a somewhat mysterious entity
(‘active information’, a ‘real law’, an entity sui generis, or a ‘wave on configuration

21Cf. however Dorato (2015) for a quite different and somewhat more benevolent discussion on
this context.
22One might thus be tempted to think of BM as a subjective collapse interpretation; but that would
surely be misleading, since collapse plays no substantial role therein.
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space’) guiding the particles, or just our most convenient way of describing their
behavior. No outcome problem really arises. Particles travel on definite—though
classically unexpected and sometimes surprisingly correlated—trajectories with
definite velocities. Their positions may be generally unknown, but they reveal
themselves in suitable experiments. QM’s observables are, in general, taken to
represent features of experiments, not systems. Thus the sudden appearance of a
value for some observable that seems like a ‘collapse’ of the quantum state is in a
sense an illusion, accounted for by the funny behavior of material particles.

All of this has an immediate impact on the DOC. If one accepts a Humean-
nomological view, BM is very clear on all three fronts: (i) ‘classical’ macroscopic
objects are straightforwardly constituted by tiny particles (ii) whose strongly
correlated (and ‘non-classical’) behavior can only be demonstrated when they are
sufficiently isolated from one another, and (iii) the guidance equation and the TDSE
in concert describe the behavior of these particles (the wavefunction becomes a
mere ‘calculation device’ for the correct statistics). This is ontologically pretty clear,
even if one has to swallow the weird correlations (which will be demonstrated to be
even weirder a little below). This is not so on all other versions, where one faces
interaction problems, i.e. where point (iii) of the DOC cannot generally be viewed
as satisfied, as the discussion should have made clear. On grounds of ontological
clarity, the Humean-nomological view seems preferable.

However, all our considerations so far were based on non-relativistic QM, which
arguably provides the most ‘natural setting’ for BM. Herein lies the major crux:
BM does not generalize so ‘neatly’ to even a special relativistic setting. But let us
proceed step by step. First of all, we noted that the non-local character of the wave
function and the implied immediate dependence of velocities on distant coordinates
in BM raise worries about its compatibility wit SR. But we also claimed that there is
some sense in which BM is not in conflict with relativity. This is the same sense in
which the QM formalism generally is not in conflict with relativity, namely, in the
sense that it does not allow for the transmission of superluminal signals. The reason
is that, in virtue of the quantum equilibrium hypothesis, the very same arguments
apply as in orthodox QM (cf. Dürr and Teufel 2009, p. 208): If signaling is to be
established, it has to be in virtue of statistical changes, since we cannot control
hidden parameters (in this case: the unmeasured and often times unmeasurable
positions of particles). But in virtue of the quantum formalism, these changes cannot
be detected, as was demonstrated in Sect. 4.2.4.

We must ask, though, whether this is a satisfying sort of ‘compatibility’. Recall
that the problem with superluminal signaling was that, if we accept it at least as
a sufficient condition for superluminal causation, this potentially leads to causal
paradoxes, because in virtue of relativistic geometry and the lack of an overarching
simultaneity an agent could change her (causal) past with the aid of superluminal
signals, thereby somehow stopping herself from doing so (�). The point of the
quantum equilibrium hypothesis and no-signaling constraints is that we, users of
QM or BM, cannot signal into the past. But Bell (1990a, p. 111) once piercingly
asked: “Who do we think we are?” (emphasis in original) His point (ibid.) was
that “the ‘no signalling. . . ’ notion rests on concepts which are desperately vague,
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or vaguely applicable”, and that it was unclear whether “we include[d] chemists,
or only physicists, plants, or only animals, pocket calculators, or only mainframe
computers” (emphasis in original). The general worry that transpires is that there
could, in fact, be entities (maybe future scientists) who knew how to get around the
(no signaling-) constraints set up by the quantum equilibrium hypothesis, by gaining
control over particle positions and velocities. Recall that the quantum equilibrium
hypothesis only holds in virtue of assuming it to hold on the universal level at an
initial time; it is thus a contingent hypothesis, or rather, only a conditional necessity.
But even if it were a straightforward theorem of BM, then the very existence of
mutual dependence at a distance would still raise worries about the possibility
of better physics being found in the future, in which the quantum equilibrium
hypothesis would be obsolete and one could signal at superluminal speeds.

At the very least, it seems quite ‘odd’ that BM and relativity should be compatible
only in virtue of such a possibly contingent feature, a human shortcoming if you
will. But is there not, since BM and orthodox QM share the prediction of violations
of Bell-type inequalities and the no signaling theorems, a general such conflict
between QM and relativity? The answer must be ‘that depends!’ It depends, that
is, on whether one believes that the connection between the distant, correlated
particles (nay, ˜particles) is causal in orthodox QM, as it appears to be in BM. And
in particular, BM assumes a piece of ontology that is not present in QM, namely
definite particle positions at all times, from which the entire trouble transpires. It
is these considerations that have prompted (Egg and Esfeld 2014, p. 190) to state
that “Bohmian mechanics is [. . . ] not committed to superluminal causation in an
operational sense, but it is so committed in a metaphysical sense: given any initial
particle configuration, the theory supports counterfactual claims of the type: ‘If
Alice had chosen a different setting, Bob would have obtained a different outcome’.”

Whether Egg and Esfeld’s analysis is correct is open to debate, since one can
make a case that no causal counterfactuals are implied or even sanctioned by QM,
and one could equaly make a case that the same holds for BM.23 In the present
context, however, the most obvious way to avoid the conclusion of a metaphysical
commitment to causation is a Humean view of laws, where we have found the
correlations to constitute ‘ontological bedrock’, and wherein the (faulty) impression
of causation in EPRB-scenarios arises from the observed regularities.

Be that as it may, there are of course also formal difficulties in reconciling BM
with relativity, in virtue of the non-local character of guidance equations. Recall
(from Sect. 2.2.1 and the second interlude) that in both, SR and GR, spacetime is

23Here is how (in brief; Chap. 7 presents the argument for QM in more detail): In Healey (2012a,
p. 22 ff.) and Friederich (2015, p. 132) it is argued that there can be no interventions IA, IB
for two agents (Alice and Bob) in remote places, sharing among them a pair of electrons in the
singlet state, such that both Alice and Bob could perform their respective intervention to fix one
of the possible values: “manipulability by the distant outcome always undermines the local control
required for a genuine intervention.” (Boge 2016a, p. 4) This is why causal counterfactuals are not
‘sanctioned’ by QM (the argument goes), if one accepts interventionism as definitive of causation.
Since dependence is mutual in BM, this argument seems to transfer seamlessly.
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conceived of as a unified whole (a Lorentzian manifold) without a preferred slicing
into space- and time-components. What acts as the time parameter is dependent on
one’s own state of motion and the distribution of masses in the manifold. Here is
where the troubles originate.

Consider the N particle treatment of the DE in the context of BM, first
championed by Bohm and Hiley (1993, p. 274). Interpreting ψ as taking values
in the space (C4)⊗N of four component spinors for N particles,24 and including the
possibility of external electric and magnetic fields, one ends up (in units in which
h̄ = c = 1) with

i
∂ψ

∂t
=

N∑
j=1

[
−iα̂(j)∇j − eα(j)A+ e�+ β̂(j)mj

]
ψ, (6.10)

where α̂
(j) = (α̂

(j)

1 , α̂
(j)

2 , α̂
(j)

3 )T is the vector of Dirac-α-matrices for the j -th

particle, α̂(j)� = 1⊗ . . .⊗1⊗ α̂�⊗1⊗ . . .⊗1 (with � ∈ {1, 2, 3}, and analogously
for β̂(j)), ∇j is the gradient w.r.t. xj (the j -th particle’s configuration space
coordinates), and where � and A are electric and magnetic potentials respectively.
From (6.10), the guidance equation

vk = ψ†α̂
(k)
ψ

ψ†ψ
(6.11)

quite naturally follows, where † indicates transposition and complex conjugation,
and the term ψ†α̂(k)ψ is to be understood as computing a three entry column vector

of products ψ†α̂
(k)
� ψ (� ∈ {1, 2, 3}).

Now the DE itself is Lorentz invariant (e.g. Bohm and Hiley 1993, pp. 276–278;
Peskin and Schroeder 1995, p. 42 ff.), but the guidance equation of course still has
an obviously nonlocal character as soon as ψ is entangled—the velocity of each
particle depends, as was the case in the non-relativistic treatment, on the positions
of all other particles whose generic coordinates appear in ψ—and it is far from clear
how this ‘squares with the spirit’ of the relativity theories. Here is how Bohm and
Hiley (1993, p. 285) phrase the problem:

the entire calculation of the particle velocity will be ambiguous until we specify the frame
in which the nonlocal connections are instantaneous. The concept of a particle guided in
a nonlocal way will, in general, not be Lorentz invariant. [O]ne has therefore to assume
some definite frame in which the connections are to be described as instantaneous, while in
other frames they are described as working either backwards or forwards in time [. . . ]. (my
emphasis – FB)

24Note that ψ may be ‘multi-time’, i.e. depend on N 4-tuples of spacetime coordinates where the
time coordinates do not necessarily coincide (e.g. Dürr et al. 2014, p. 227; Galvan 2015, p. 4).
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More generally (and technically) speaking, this is the problem of a preferred
foliation of spacetime M̃ into ‘leaves’ � that can be ‘stacked up’ to give back
M̃ and provide, intuitively, a representation of ‘space at different times’. Notably,
Dürr et al. (2012, p. 227 ff.) provide such a foliation of the Minkowski spacetime
M into 3D (spacelike) hypersurfaces, i.e. possibly curved submanifolds that can
be ordered along a (then preferred) time-parameter. This foliation, F , they define
in terms of a smooth function f : M → R, so that the sets M(3)(τ ) :=
{p ∈M|f (p) = τ, τ ∈ R}, the level sets of f (e.g. Frankel 2004, p. 46), provide
the leaves, i.e. intuitively the spaces at given times (τ ). The foliation F thus given
also uniquely provides a (future directed) vectorfield n(p) which is normal, at any
p ∈M, to the hypersurface � through p and is defined as the normalization of the
(generalized) gradient ∂f .25

Now using the γ -matrices in the DE instead of α̂
(k) and β̂(k), one can ulti-

mately rewrite the enumerator in (6.11), which provides a (probability) current
for the k-th particle in an N particle system (recall that v = j/�), as j (k) =
ψ̄(γ (1)n(p1)) . . . γ

(k) . . . (γ (N)n(pN))ψ , where ψ̄ := ψ†γ 0,26 γ (k) is the (four
component) vector of γ -matrices for the k-th particle, and n(pk) is the (four
component) normal vector to a leaf in the foliation (a hypersurface of simultaneity)
at point pk where the kth particle’s spacetime path (its worldline) intersects it. The
velocity for the kth particle is then ultimately given by

dX(k)

ds
= j (k)

∂f · j (k) , (6.12)

where s = f (X(k)) and X(k) = X(k)(s) defines a parametrized path through
spacetime thus foliated.

All of this is certainly an improvement; it liberates the dependence of one parti-
cle’s state from the slicing of spacetime into different hyperplanes of simultaneity
and makes different foliations into curved spaces possible, thereby making a step
into a ‘more relativistic’ or at any rate more general direction. But it does not impair
the fact that a (preferred) foliation F is needed to specify the dependence of one
particle on the configuration of all other particles at some particular instant, or on
some ‘hypersurface of simultaneity’.

How, in fact, should one expect to arrive at a preferred such foliation? One
hope expressed by Bohmians is that it be “not simply posited as a novel piece

25∂f is a generalized gradient for calculus on manifolds which can be locally written in a suitable
coordinate representation (cf. Footnote 73 of Chap. 2) as ∂f = ∑

μ,ν g
μν ∂f

∂xν
∂
∂xμ

, with gμν the

manifold’s metric and where the ∂
∂xμ

are conceived of as vectors in a ‘tangent space’ at a given
point in the manifold for which the local coordinates xμ are defined (e.g. Frankel 2004, p. 45 ff.;
Nakahara 2003). Frankel (2004, p. 47) uses the notation ‘∇f ’ instead; we here follow that of Dürr
et al. (2012, p. 227).
26This is the adjoint spinor that makes for a Lorentz-invariant scalar product ψ̄ψ (cf. Griffiths
2008, p. 236).
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of absolute space-time structure, but is instead regarded as a dynamical object,
itself obeying a Lorentz invariant law.” (Dürr et al. 2014, p. 5) It is then hoped
for that this law be somehow determined by Ψ itself; but there is not yet any worked
out suggestion as to how this should come about, and even basic examples of
how the wavefunction determines structures in spacetime (more precisely: tensorial
quantities via operators in QFT) exhibit technical difficulties such as the non-well-
definedness of a possibly resulting foliation in certain cases of interest (cf. Dürr
et al. 2014, pp. 5–6).

Alternatively, one could deny that there even is the need for one preferred or
dynamically selected foliation. This is what Galvan (2015) has recently attempted,
by appeal to typicality conditions for spacetime trajectories of all existing particles,
from which the statistical (and hence: empirical) content of BM follows but no
preferred foliation; the typicality is rather evaluated over all possible foliations.
Typicality is a probabilistic notion though, and it is hard to see in what sense it
is meaningful to talk about the probability of a “trajectory of the universe” being
“chosen at random” (Galvan 2015, p. 7). And it is equally hard to see how the
conceptual difficulties are resolved by these considerations on an ontological level,
arising from the explicitly non-local dependencies among particles.

We introduced relativistic notions in Chap. 4 in connection with QFT, and
devising a Bohmian QFT is certainly a second major hurdle. Without going into
too much detail, we here recapture a few features and restrictions that Bohmian
QFTs face.27 The general ‘quest’ for Bohmians is to find the ‘beables’ that any
given QFT prescribes. Bohm (1952b, p. 189 ff.) first set out to find a Bohmian
version of QED, by considering actual (though coarse grained, i.e. discontinuous)
sets of field configurations φ(x, t) as beables, over which “an objectively real
superfield” (ibid.)  would be defined, which is then mathematically a functional
[φ1(x, t), . . . , φN(x, t)], or more abstractly (avoiding reference to a countable
index): [. . . φ(x, t) . . .]. This is the functional Schrödinger approach to QFT
mentioned in Footnote 80, where, to recall, φ(x, t) is the value of a multiplica-
tion operator φ̂(x, t), evaluated on (field-)states |φ〉. In Bohm and Hiley (1993,
p. 238 ff.), this treatment would be extended by letting [. . . φ(x, t) . . .] =
R[. . . φ(x, t) . . .]e ih̄ S[...φ(x,t)...], making generalizations of the guidance equation
to ∂φ

∂t
= δS

δφ
28 and of the quantum potential to the “super-quantum potential”

Q = − h̄2

2R

∫
d3x

δ2R[...φ(x,t)...]
δφ(x,t)2

possible (Bohm and Hiley 1993, p. 240 ff.; cf. also
Holland 1995, p. 520).

However, electromagentic fields are bosonic, and Bohm and Hiley (1993, p. 276)
noticed an asymmetry between fermionic and bosonic QFTs, since “fermionic field

27The most important reference for further details is Struyve (2010).
28The functional derivative δF [f ]

δf
of a functional F [f ] obtains a quite ‘natural’ understanding in

close analogy to derivatives in ordinary calculus as lim
ε→0

1
ε
(F [f (x)+ εδ(x− x′)]−F [f (x)]), with

δ(x − x′) a Dirac-δ (e.g. Greiner and Reinhardt 1993, p. 37; Lancaster and Blundell 2014, p. 12),
i.e. where one lets f vary with tiny ‘strengths’ (ε).
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operators have only two possible states and cannot be put in correspondence with
field beables that would change continuously”, whereas “bosonic operators with
their infinity of states can be represented in terms of continuous fields.” To some
this may suggest that a fermionic QFT treats of particles whereas a bosonic QFT
treats of fields. This is true, for instance, in the model discussed by Dürr et al.
(2012, p. 239 ff.), which they call a “Bell type QFT” (p. 240), due to Bell’s (1984a)
early contributions to the general agenda. Here the time dependent configuration
Q(t) of all particles in the universe behaves continuously for certain intervals and
then jumps between different configuration space-sectors of definite particle number
when particles are created or annihilated. The dynamics for these two types of
process are then described by continuous and stochastic equations respectively (cf.
Dürr et al. 2012, pp. 242–243), and field operators are taken to obtain their meaning
only via determining PVMs (for probabilistic predictions) in terms of sets of number
operators (cf. their p. 245).

It is not so clear, however, whether all of the successful predictions of modern
QFT can be recaptured in this fashion (cf. in particular the comments in Wallace
2008, p. 84); and not all models generated to introduce Bohmian dynamics for
fermionic field theories are alike. Struyve and Westman (2007), for instance,
introduce a ‘minimalist model’ for QED, in which the fermionic degrees of freedom
do not correspond to beables at all, but rather only appear as an index of the
wavefunction (integrated out or summed over). And from basically two assumptions
or features of the model, namely “the equilibrium distribution for the beables,
together with the fact that wave functions representing macroscopically distinct
systems have negligible overlap” (Struyve and Westman 2007, p. 3124), they claim
to be able to generally reproduce QED’s predictions.

The upshot (cf. Struyve and Westman 2007, p. 3125) is that, in a measurement
involving a needle on some scale, there will be “particle positions representing the
needle, so that the orientation of the needle [. . . ] will be recorded and displayed in
the particles’ positions.” When a field interacts with the needle, “on the level of the
quantum state, the direction of the macroscopic needle will be correlated with the
radiation that is scattered off [. . . ] the needle.” This leads to the field beable carrying
“an image of a macroscopic needle, in a similar way to that in classical mechanics
[. . . ].”

This informal explanation of measurements, however, has the undesirable feature
of presupposing significant chunks of non-relativistic (and non-field) BM, the
particle positions. And even though the authors “see no problem in principle to
construct a similar model [. . . ] in the context of the standard model” (their p. 3124),
it remains to be seen whether such a model can indeed be found and whether
it reproduces the standard model in a convincing way. So far these are merely
suggestions.

Valentini (1996) proposed yet another model, in which fermions correspond to
“an objective field of Grassmann numbers evolving in time, guided by a wave
functional .” (Valentini 1996, p. 55) But not only are there technical difficulties
with Valentini’s approach (cf. Struyve 2010, pp. 26–27), it is also very hard to
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understand what kinds of ‘beables’ Grassman numbers29 at spacetime points are
supposed to be, and how they get us any closer to an understanding of QFT than did
the operator-valued fields in Sect. 2.2.2.

Without going into any details about the remaining models (cf. Struyve 2010,
for further reference), we here summarize that (a) in many cases – especially for
fermionic fields – it becomes hard to see what the beables should be in Bohmian
QFTs, that (b) it is in many cases still unclear how the project should be executed
formally, that (c) it is not clear that all QFTs (or all successful predictions thereof)
can be reproduced (compellingly), and that (d) the concerns about compatibility
with relativity of course carry over from particle BM, whence models are often
judged to be “not [. . . ] Lorentz covariant at the fundamental level”, whereas
“Lorentz covariance is regained at the statistical level.”30 (Struyve and Westman
2007, p. 3116; my emphasis – FB). All of this leaves a foul taste to the advances
in Bohmain QFT and relativity; but of course it does not mean that the project is
impossible to execute or should be abandoned altogether (we will return to this
issue in the discussion later).

Nevertheless, we have hence highlighted some of the current difficulties of BM
and given reasons to be skeptical about its general aptness as an interpretation
of QM. And we had claimed above that the ‘most natural’ setting is a non-
relativistic particle setting, in which the only real difficulty is the interpretation of
the wavefunction. Moreover, it seems that at least non-relativistic BM, especially
in its nomological-Humean reading, comes quite far in recapturing the intuitions of
our natural response discussed in Chap. 4, and that BM in general also provides a
clear ontological basis for a theory of material objects in terms of tiny particles with
definite states at all times that are, ultimately, ‘simply unknown’.

There are, however, some further features of BM that make it hard to swallow
already at the non-relativistic level. For one, we noted in Sect. 6.1.1 that position
plays kind of a special role as an observable; and we equally noted that particles
always possess definite velocities, as a consequence of the guidance equation(s).
But these velocities are immeasurable: due to the measurement dynamics (i.e. the
entangling unitary dynamics of system and apparatus), it becomes impossible to
measure any quantity that “has a possible value (one with non-vanishing probability
or probability density) when the wave function of the system is ψ1 + ψ2 that is
neither a possible value when the wave function is ψ1 nor a possible value when the
wave function is ψ2.” (Dürr et al. 2012, p. 139; emphasis omitted)

Recall that the unitary dynamics will couple the terms (ψ1 and ψ2 respectively)
in the system’s wave function to suitable terms in the wave function of the apparatus.

29E.g. Nakahara (2003, p. 40 ff.) for an introduction to Grassmann numbers.
30‘Covariance’, strictly speaking, is not the same as invariance; it rather means that “a [. . . ] quantity
‘changes in the same way’.” (Cheng 2005, p. 14) However, if all the quantities in an equation
transform covariantly, the entire equation retains the same form (cf. ibid.), which is why the terms
‘Lorentz invariant’ and ‘Lorentz covariant’ are sometimes used interchangably in the literature, as
regards equations and theories. Cf. also Friedman (1983, p. 45) for a deeper discussion and some
subtleties in the transition from SR to GR.
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But then obviously none of the apparatus-terms, one of which will contain the
resulting particle configuration (the ‘pointer position’), will be indicative of the
true value of a quantity that is not possible in any single one of the system-
terms (has vanishing probability therein). Now take any given wave function ψ and
rewrite it, recalling that it spits out a complex number, as Re(ψ)+ iIm(ψ) (so that
ψ1 := Re(ψ) and ψ2 := iIm(ψ)). The velocity of a particle would then have to

be either of the quantities v1/2 = h̄
m

Im
ψ∗1/2∇ψ1/2

ψ∗1/2ψ1/2
, both of which are always zero

because the fractions in both cases are purely real (so their imaginary part is zero).
Since this can be done with any given wavefunction, particles would always have

to be motionless if measurements of their Bohmian velocities were correct. But
BM takes the unitary dynamics of QM for granted for (effective) wavefunctions
(from which the remarkable success of QM is regained) and velocities are obviously
not always zero. So the conclusion that velocities, together with other interesting
quantities (cf. Dürr et al. 2012, p. 140), are immeasurable seems inevitable.

Another such ‘feature’ is the existence of what have been called “surrealistic”
trajectories (Englert et al. 1992). To elaborate, consider a two slit experiment with
atoms and with wave functions ψup and ψdown representing those associated with
upper and lower slit respectively. Due to the symmetry of the arrangement, ψdown
may be viewed as ψup reflected along the z-axis (chosen to be the middle axis
between the two slits), i.e. ψdown(x, y, z; t) = ψup(x, y,−z; t). Then vz, the z
component of the particle velocity will be an odd function w.r.t. the z-axis as
well, which implies that vz = 0 on the z = 0-plane. This means that particles
do not cross the mid plane through the double slit (cf. also Bell 1980, p. 113 or
Dürr and Teufel 2009, p. 156). If one now places subtle, qubit-like detectors in
front of the slits however, which make a transition between states upon passage
of an atom, and where the “transition happens with virtual certainty and [. . . ]
the atom’s center-of-mass wave function is not altered noticeably in the process”
(Englert et al. 1992, p. 1178), the wavefunction will (approximately) become
�(x, t) = ψup(x, t) |yes

no 〉 + ψdown(x, t) |no
yes〉. Since the detectors behave like two-

state systems, this is effectively a spinor and the velocity is then given by the
spinor-version of the guidance equation. The symmetry of the velocity vector is
thereby preserved (no crossing of the z = 0-plane); but the probability density
is now only |ψup|2 + |ψdown|2, i.e. interference terms vanish (as should have been

expected from the discussion in Sect. 2.1.1), which is easily seen since
{
|yes
no 〉 , |no

yes〉
}

may be taken to form an ONB of C2.
But there is now the unpleasant consequence that, since |ψup|2, say, does not

vanish below the z = 0-plane, the particle may be detected in the upper slit and still
end up below z = 0—so that, in virtue of the guidance equation, it will be detected
at a slit which it never passed (cf. Englert et al. 1992, p. 1178). The crucial fact is
that both wavefunctions are almost unperturbed by the detectors, so they are both
still relevant to the guidance equation.
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To see this feature as a flaw can, of course, always be regarded as a failure to
acknowledge the general non-local character of BM though. As Passon (2004, p. 9)
puts it:

The arrangement which has been considered by Englert et al. can be viewed as a special
case in which ‘empty waves’ [. . . ] show an effect if they are still coherent. In fact, the non-
locality of the de Broglie-Bohm theory makes it possible to explain how the which-way
detector can be excited even without any trajectory passing through it [. . . ].

The wavefunction itself, which may, to recall, be mostly a representation of
correlations between particles—in this case between the atom in the double slit
arrangement and those constituting the detector—is what makes the detector ‘go
off’. What has (merely?) been demonstrated, to quote Passon (2004, ibid.) again, is
that “the trajectories behave completely unclassical and that the de Broglie-Bohm
theory is as unintuitive as the usual quantum theory.”31 As long as matters are not
settled on the ontological status of wavefunctions, we do not seem to come that
close to fulfilling the ‘dream’ of Chap. 4 after all.

6.2 Spontaneous and Induced Localizations: Taking Collapse
Seriously

6.2.1 GRW’s and Pearle’s Formal Modifications and Two
Ontologies

Our naïve view of Sect. 2.1.1 introduced the ‘duality’ between waves and particles
differently than does BM, namely by means of a ‘collapse’ of wave-like extended
entities into tiny lumps that could then, upon collapse, be thought of as particles.
The advantages of this collapse are retained in the projection postulate of the
orthodox interpretation in the sense that one finds, upon suitable measurement,
˜particles in definite positions. But the projection postulate is devoid of meaning as a

physical postulate; it does not provide a dynamics for the collapse, it does not ‘tell
a story’ as to how the quantum state ‘collapses’—it does not suggest a non-minimal
interpretation.

So here is an alternative suggestion: Interpret ψ as an objectively real field,
regardless of all its peculiar properties, and embrace some sort of more sophisticated
collapse-dynamics to make sense of the particle-like findings in practice and the
occurrence of non-quantum objects. Thus, we formulate another conjecture, which

31A lot more could be—and has been; cf. Passon (2004, p. 9) for references—said on this problem
of ‘surreal’ trajectories, but for our present purposes the discussion seems fully sufficient. We
briefly also mention the recent experimental work by Mahler et al. (2016), who show, by advanced
experimental methods, that “the trajectories seem surreal only if one ignores their manifest
nonlocality.” (p. 1) Interpreting the results as being concerned with particle trajectories at all,
however, obviously presupposes a Bohmianm understanding of QM.
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we call, with reference to the prima facie similarity to the view discussed in Chap. 2,
the informed view:

Conjecture 3 (The informed view) The quantum wavefunction ψ repre-
sents an objectively real field. The appearance of tiny particles in spacetime
is accounted for by a sophisticated collapse-dynamics.

The first serious such proposal was the ‘unified dynamics’ of Ghirardi, Rim-
ini, and Weber (1986) (short: GRW). To represent the dynamics, GRW used
the density matrix formalism and the vNE with additional, stochastic collapse
terms. More precisely, GRW (1986, p. 34) introduced a superoperator T̂ [ρ̂] =(
α
π

)3/2 ∫ d3x̃ e−
α(x̂−x̃)2

2 ρ̂e−
α(x̂−x̃)2

2 , acting on density operators ρ̂. Here α is an
unspecified new constant (where 1/

√
α is a length, representing the “sharpness of

the localization”; Ghirardi et al. 1988, p. 386) and x̂ is simply the position operator.
If one computes the matrix elements of ρ̂ in the position basis, this yields, for a
single particle pure state density operator ρ̂ = |ψ〉〈ψ |,32

〈
x
∣∣T̂ [ρ̂]∣∣x′〉 =

(α
π

)3/2
∫

d3x̃
〈
x
∣∣e− α(x̂−x̃)2

2 |ψ〉〈ψ | e− α(x̂−x̃)2
2

∣∣x′〉 =

=
(α
π

)3/2
∫

d3x̃ ψ(x)ψ∗(x′)e−
α(x−x̃)2+α(x′−x̃)2

2 =

= ψ(x)ψ∗(x′)e−
α(x−x′)2

4

(α
π

)3/2
∫

d3x̃ e−α(x̃+(x+x′)/2)2

= ψ(x)ψ∗(x′)︸ ︷︷ ︸
ρ(x,x′)

e−
α(x−x′)2

4 , (6.13)

so that the diagonal terms ρ(x, x) of the density matrix in position basis remain
untouched (e0 = 1) and off-diagonal terms will be damped away exponentially,
depending on distance.33 In other words: superpositions of states of different
localization vanish quickly for larger distances.

To find a generalized evolution for the density operator, one can now appeal to
the intuition that ρ̂ evolves over short times ε according to the vNE with probability
(1−λε) and with the remaining probability λε in accord with the evolution described

32The generalization to non-pure density matrices and multiple (distinguishable) particles is
straightforward in virtue of the properties of tensor products and the linearity of sums.
33That the third line follows from the second can be verified by comparing the exponents; the fourth
line may be derived by substituting a variable ξ := −√α(x−x′) in all three spatial dimensions, so
that the measure is rescaled by (

√
α)−1 and the exponent becomes just−ξ2 in all three dimensions.

The integral can then be computed using Gauß’s ‘trick’.
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by the superoperator T̂ [ρ̂(t)] (cf. Bassi and Ghirardi 2003, p. 300). Writing out the
differential operator ∂

∂t
as a limit for small ε and neglecting the limit, the vNE takes

on the form ρ̂(t+ε) = ρ̂(t)− i
h̄

[Ĥ , ρ̂(t)] ε. Thus one arrives, according to the above
considerations, at the following ‘master equation’ (Ghirardi et al. 1986, p. 473):

ρ̂(t + ε) = (1− λε)

[
ρ̂(t)− i

h̄
[Ĥ , ρ̂(t)] ε

]
+ λεT̂ [ρ̂(t)]

⇔ ρ̂(t + ε)− ρ̂(t)

ε
= − i

h̄
[Ĥ , ρ̂(t)] + i

h̄
[Ĥ , ρ̂(t)] λε − λ(ρ̂(t)− T̂ [ρ̂(t)])

ε→0−−−→ ∂

∂t
ρ̂(t) = − i

h̄
[Ĥ , ρ̂(t)] − λ(ρ̂(t)− T̂ [ρ̂(t)]), (6.14)

with λ (of dimension 1/time) an average collapse frequency (i.e. λ dt a probability
for the damping of off-diagonal terms in the tiny time interval dt). The additional

terms in (6.14) have a position representation λ(1−e− α(x−x′)2
4 )ρ(x, x′; t), so that the

dynamics of diagonal elements is again unperturbed and obeys the vNE (1−e0 = 0).
Defining

�̂(x̃) :=
(α
π

)3/2
exp

(
−α(x̂ − x̃)2

)
(6.15)

as the collapse rate operator, which is essentially a smeared out position oper-
ator (cf. Tumulka 2006b, p. 1899), the superoperator then becomes T̂ [ρ̂] =∫

d3x̃ �̂1/2(x̃)ρ̂�̂1/2(x̃). The treatment for N particles can then be generalized by
multiplying the λρ̂(t)-term in (6.14) by N and summing over N superoperators
T̂j [ρ̂] (cf. Goldstein et al. 2012, p. 144). In principle one could allow also for
different collapse rates λj depending, e.g., on the mass of the respective ‘particle
sort’ (cf. Pearle and Squires 1994, p. 3), or allow for different localization accuracies
1/
√
αj (e.g. Bassi and Ghirardi 2003, p. 305).

The prima facie appeal of this model34 is that we can go back, to some extent, to
our very basic intuitions about wavefunctions and collapse, as nurtured in Chap. 2.
The wavefunction somehow describes a real physical entity that has a tendency
to collapse, repeatedly, so as to give rise to the impression of well localized
‘particles’ in spacetime, which in turn explains our experience of well-localized
macroscopic objects. But of course, given everything that we know about the
quantum wavefunction, there are many subtleties involved that we must elaborate
on.

34Talk of ‘models’ here should be understood along the same lines as in Chap. 4: as highlighting
the somewhat provisionary character. Ultimately all such ‘models’ here aim to provide an
interpretation of the QM formalism, an explanation of our empirical success in using it. Of course
the same considerations as in Sect. 6.1.1 hence come to mind; considerations of such collapse
interpretations really constituting alternative theories.
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First note, however, that the above proposal faces the “aesthetic drawback” that
it “is not expressed in terms of a compact mathematical equation for the statevector
[. . . ]”, and the “physical problem [. . . ] that the dynamics does not preserve the
symmetry character of wavefunctions describing systems of identical particles.”
(Bassi and Ghirardi 2003, p. 312)35

This difficulty was overcome by so called continuous spontaneous localization
models (CSL models), originating with the work of Pearle (1989) and developed
further in joint work with Ghirardi and Rimini (Ghirardi et al. 1990b). Essentially,
the state vector evolves in CSL according to a modified stochastic TDSE like the
following one36:

d |ψ(t)〉
dt

=
[
− i

h̄
Ĥ0 +

∑
k

∫
d3x̃ N̂k(x̃)wk(x̃, t)− γ

∑
k

∫
d3x̃ N̂2

k (x̃)

]
|ψ(t)〉 .

(6.16)

Here Ĥ0 is a suitable ‘traditional’ Hamiltonian, N̂k(x̃) = ∑
σ

∫
d3x�1/2(x̃)φ̂

†
k,σ

(x)φ̂k,σ (x) is the number operator for the k-th ‘particle type’ involved, where
φ̂

†
k,σ (x) and φ̂k,σ (x) are creation- and annihilation operators for points x in space

and particle types k respectively (σ is a spin-index that could also simply range from
1 to 1, for a spinless system), �1/2(x̃) is the position representation of the collapse
rate operator, and γ is typically defined as a suitable function of the frequency λ (e.g.
Bassi and Ghirardi 2003, p. 323). The wk(x, t) are a family (one for each particle
type, k) of real valued functions describing a “white noise” (Bassi and Ghirardi
2003, p. 322) or a “universal fluctuating classical field” (Collett and Pearle 2003,
p. 1495; cf. also Bassi et al. 2013, p. 478) interacting with the wavefunction via the
particle number N̂k(x̃) such as to give rise to the collapsing behavior. So the collapse
is induced in CSL models, and due to the coupling with the number operator, the
‘more particles in a volume’, the more frequent the collapse.

Certainly, the dynamical content of CSL is an improvement over GRW. But
one can still say something about the behavior of the wavefunction in the original
GRW model as well: Over certain time intervals τ , it will simply evolve unitarily
and is then spontaneously affected, at random times, by the process described by
�̂1/2(x), so that it undergoes a ‘spontaneous collapse’. For a general wavefunction
(x1, . . . , xN ; t0) = 〈x1, . . . , xN |(t0)〉 on configuration space at some initial
time t0, this means that the state vector at a later time tf will be given by

35Ghirardi et al. (cf. 1988, p. 386) proposed a model for systems of ‘indistinguishable particles’,
using a symmetrization of a then joint superoperator, so that individual positions of localization
would not matter. The model however has the unsatisfying feature that it prescribes simultaneous
localizations of allN particles, thereby leaving “no hope for a Lorentz-invariant version.” (Tumulka
2006b, p. 1906)
36Cf. Ghirardi et al. (1995, pp. 8–11), Ghirardi and Pearle (1990a,b, pp. 30 and 35), or Bassi and
Ghirardi (2003, p. 322 ff.).
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|(tf )〉 =
�̂

1/2
ik
(x̃k)Û (τk) . . . �̂

1/2
i2
(x̃2)Û(τ2)�̂

1/2
i1
(x̃1)Û(τ1) |(t0)〉

‖�̂1/2
ik
(x̃k)Û (τk) . . . �̂

1/2
i2
(x̃2)Û(τ2)�̂

1/2
i1
(x̃1)Û(τ1) |(t0)〉 ‖

,

(6.17)

for k collapse events in the time-interval tf − t0, and where ij ∈ {1, . . . , N},∀1≤
j≤ k. I.e.: the wavefunction will again and again ‘collapse according to its ij -th
coordinate’, around a random point x̃j , where that point is (randomly) chosen with

probability Pr−xij
(x̃j ∈ d3x) = 〈−|�̂ij (x)|−〉 d3x, with ij and the times equally

chosen at random with rate λ 〈−|�̂ij (x)|−〉 (cf. Allori et al. 2008, p. 357–358;
Goldstein et al. 2012, pp. 149–150). The subscript xij in the probability function
means that the ij -th coordinate of − is affected, where − is the wavefunction
right after τj , i.e. up until the collapse event. While in GRW this behavior occurs
without any particular reason, in CSL the ‘universal fluctuating fields’ wk(x, t) are
to be blamed for the occurrence of a continuous process to a quite similar effect.

Both, GRW and CSL, share a bunch of appealing features; this should in fact be
so as CSL preserves GRWs conditions on the density operator as expressed in (6.14)
(cf. Bassi and Ghirardi 2003, p. 323). According to Bassi and Ghirardi (2003, pp.
297–298), GRW were driven, in the development of their original model, by the two
following desiderata:

1. The ‘preferred basis’—the basis on which reductions take place—must be chosen in
such a way to guarantee a definite position in space to macroscopic objects.

2. The modified dynamics must have little impact on microscopic objects, but at the same
time must reduce the superposition of different macroscopic states of macro-systems.
There must then be an ‘amplification’ mechanism when moving from the micro to the
macro level.

Both these desiderata are satisfied in both models. Now we know already how
desideratum 1 is fulfilled: in GRW by spontaneous localization processes, and
in CSL by the interaction with the randomly fluctuating field, both having the
effect that off-diagonal terms in the density matrix in position representation are
suppressed, i.e. the terms that signify interference behavior. Desideratum 2, in
contrast, is fulfilled in GRW in virtue of the fact that on single systems the non-
Hamiltonian part of the density matrix evolution (6.14) has little effect, but “when
a large number of ‘particles’ interact with each other in appropriate ways, they
end up being always extremely well localized in space, leading in this way to a
situation which is perfectly adequate for characterizing what we call a ‘macroscopic
object’.” (Bassi and Ghirardi 2003, p. 299) And in CSL, the coupling of the classical
field to the number density ensures the fulfillment of desideratum 2, since the
interaction strength now depends on the density of ‘particles’ in some volume (cf.
Bassi and Ghirardi 2003, p. 321 ff.; and cf. ibid., p. 304 ff. for technical details in
general). Both of these modifications are stochastic and nonlinear, where the former
condition is required to reproduce the quantum statistics and disallow superluminal
signaling (cf. Bassi et al. 2013, p. 482), and the latter one to ensure the approximate
occurrence of definite properties such as localization (cf. Ghirardi 2016, pp. 6–7).
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In the terminology introduced in Sect. 2.3, the class of all actual or possible
models that satisfy similar parameters as GRW or CSL obviously constitute, or
at least pave the way for, ontological collapse interpretations of QM. Due to the
(necessarily) modificatory nature of the formal models, all such interpretations
are clearly formally revisionary: they interpret by way of formal modifications to
the TDSE or at least the vNE. Since these formal revisions pertain to the dynamics,
it is also immediately obvious how the dynamical task of the MAC is fulfilled:
the introduction of stochastic and nonlinear terms implies a quick suppression
of the validity of the dynamical superposition principle (whereas under suitable,
low-mass conditions it is at least still approximately valid) which in turn can
be understood as a dynamical suppression of superpositions in the kinematical
sense. Both models are also conceptually revisionary insofar as a spontaneous
or continuous ‘random collapse mechanism’ is invoked to account for the non-
observability of superpositions at a macroscopic level, and it is not, generally
speaking, the measurement process alone that ‘reduces the state vector’. Collapses
are being considered as a real process, as they were in our first naïve approach,
although now in an informed way. The kinematical task is a more subtle matter—
essentially because one can, again, go either way, deny or allow the wavefunction a
status independent of events in spacetime—and we will hence tackle it a little below.

Our discussion of the models so far, however, inevitably raises two questions:
(a) How do the orthodox QM-measurement statistics arise, and (b) what about the
experimentally confirmed mesoscopic superpositions as they occur in SQUIDs (cf.
appendix B)? Question (a) has been adressed in most detail by Goldstein et al.
(2012), and the reader is referred there for general reference. The upshot is that
POVMs can here, as was the case with BM, be introduced to characterize statistical
features of experiments. However, the POVMs in collapse models will not generally
be the same (they arise by taking the collapse-inducing operators into account), so
there will be small deviations in prediction from the orthodox quantum formalism
(cf. Goldstein et al. 2012, p. 169 ff.).

Such deviations make it possible in principle to test for the aptness of GRW and
similar collapse models, once all parameters such as the average collapse rate λ
and width α−1/2 are fixed or reduced to known constants (cf. the next section).
This possibility is discussed e.g. by Ghirardi and Pearle (1990a, p. 23), where
they conclude that, regarding some exemplary neutron-interferometry experiment,
“all that is needed is an improvement by a factor of 1015” to “determine whether
reduction dynamics really takes place.” This is, of course, an immense improvement,
and one might hence wonder whether empirical (dis-)confirmation is really ever
possible in practice.

Question (b) has also been addressed in the literature (cf. Bassi and Ghirardi
2003, pp. 419–420 and references therein) with the upshot that the localization
mechanism for individual electrons would only “break one of the Cooper pairs,
which would result in the supercurrent being reduced by about one part in 1020”
(ibid., p. 419), i.e. that the overall influence of localizations is negligible in this case,
which goes even more so if the reformation of Cooper pairs is taken into account
(cf. ibid., p. 420). Given these considerations, Rae (2004, p. 106) has suggested that
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“it is possible that the model only really applies to an object like a pointer that is in
a superposition of states that are separated in space.” (my emphasis – FB)

So the formal models we have discussed so far are compatible – up to as yet
unachieved measurement accuracies – with everything that has been said about QM
before. Nevertheless, both models, GRW and CSL, also face inherent ambiguities.
The wavefunction still resides in configuration space, and it is not entirely clear
from the formulae how it ‘manifests itself’ in a particle-like fashion in spacetime
or interacts (in CSL) with the classical fields wk(x, t) located therein. Here is how
Bell (1987, pp. 204–205) put things w.r.t. GRW:

It is in the wavefunction that we must find an image of the physical world, and in particular
of the arrangement of things in ordinary three-dimensional space. But the wavefunction
as a whole lives in a much bigger space, of 3N -dimensions. It makes no sense to ask for
the amplitude or phase or whatever of the wavefunction at a point in ordinary space. It
has neither amplitude nor phase nor anything else until a multitude of points in ordinary
three-space are specified.

We know, of course, something about the joint dynamics in the CSL case in virtue
of equations like (6.16); but it is one thing to write down a differential equation that
describes interactions and another thing to interpret these interactions.

There are two basic ontologies that have been proposed to make sense of the
GRW formalism, only one of which can be straightforwardly transferred to CSL
(for reasons expounded on below). Let us hence first focus on GRW and then
turn to CSL again. The two ontologies in question are the so called flash-ontlogy
(GRWf) and the mass-density ontology (GRWm), the former originating with Bell’s
(1987) investigation of GRW’s original model, the latter going back to Ghirardi et al.
(1995).

The upshot of GRWf is that “matter consists of millions of so called flashes, phys-
ical events that are mathematically represented by space-time points.” (Tumulka
2006b, p. 1898; emphasis in original) Phrased differently, “histories of matter are
not made of world lines but of world points.” (Goldstein et al. 2012, p. 151) It is
these ‘events’, the collapses of the (high-dimensional) wavefunction, that represent,
nay replace the point-particles of classical physics; they (or collections of them)
should account for the satisfaction of all requirements of our phenomenological

p̃article-concept from Sect. 2.1.3. And these flashes, accounting for the impression

of ˜particles, will occur in random locations distributed according to the squared
modulus of the wavefunction that results from the collapse processes described in
(6.17) at the respective times of collapse (cf. Goldstein et al. 2012, p. 150; Tumulka
2006b, pp. 1899–1900).

In GRWm one defines, in contrast, a matter field

m(x, t) :=
N∑
j=1

mj

∫
d3x1 . . . d

3xN δ(xj − x)|(x1, . . . xN ; t)|2

=
N∑
j=1

mj�
(j)(xj , t)

∣∣∣
xj=x

(6.18)
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describing the mass- or matter density37 throughout space and time, where the mj

are the masses of the respective ‘particles’ going into the wavefunction, and where

by �(j)(xj , t)
∣∣∣
xj=x

we mean the quantity |(x1, . . . xN ; t)|2 marginalized for all

but the j -th coordinates and evaluated at x. This means that the distribution of matter
across space and time is determined, at any point in space at any given time, by
adding up the contributions of all the respective ‘particles’ to the squared amplitude
of the wavefunction (at that very point at that very time) multiplied by the respective
‘particle mass’, where the wavefunction is again determined by the evolution law
(6.17). Of course ‘particles’ here become a mere metaphor, a manner of speaking
for taking track of the structure of the wavefunction or its contributions to the matter
field.

This treatment is somewhat similar to what Schrödinger (1926b) originally had
in mind (cf. Sect. 2.1.3), as has been noted by Bacciagaluppi (2010, p. 16 ff.). But of
course, due to the collapse-law, the situation is remarkably better in the GRW case,
since the collapse dynamics avoids, for instance, Schrödinger-cat-like situations:
Allowing for the metaphorical particle-way-of-speaking, a superposition α | 〉 +
β | 〉 of dead and alive cat inside a box will represent a superposition of different
(spatial) ‘particle configurations’, and if a single particle in the cat’s heart will be
‘hit’ by the GRW mechanism, the entire superposed cat will quickly evolve into
either | 〉 or | 〉, “since the positions of the rest of the particles in the cat’s
heart are entangled with the position of this particle[. . . ].” (Maudlin 2011, p. 228;
emphasis in original)

It seems worth noting, at this point, that GRWf and GRWm have been argued
to be entirely empircially equivalent, i.e. that “there is no experiment we could
possibly perform that would tell us whether we are in a GRWm world or in a GRWf
world, assuming we are in one of the two.” (Allori et al. 2008, p. 362) The simple
reason is that, whatever the micro-ontology, the perceivable macroscopic matter will
ultimately display the very same behavior at the end of any conceivable experiment
since GRWm and GRWf share the GRW collapse law, the equation determining the
observable behavior of matter density and flashes (cf. ibid.). This is not so w.r.t.
other (ontological) interpretations such as BM, say, since the collapse mechanism
introduces tiny deviations in the statistics (cf. the discussion above).

Now as we mentioned before, for CSL matters of ontology are a bit more subtle.
First note that an equation like (6.16) (a generalization thereof) can be derived (cf.
Nicrosini and Rimini 1990, p. 1320 ff.) as a special case of the infinite frequency
limit of GRW processes, i.e. where the system is constantly ‘being hit’ by the
collapse mechanism (cf. also Bacciagaluppi 2010, p. 13 on this point). However,
as soon as one identifies the ‘flashes’ as the ‘beables’, i.e. that which exists in space
and time, one encounters problems. The well-definedness of the limit in the above

37Allori et al. (2014, p. 330 ff.) have argued that it is contentious to use mass as the defining
property, since one could set up a quite similar distribution using charges instead of masses, as was
originally attempted by Schrödinger. It is hence preferable to use the more neutral term ‘matter
density’.
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procedure requires that one sets λ · α = cst., but this means that α→ 0 as λ→∞.
It can then be shown, in virtue of connections found by Diósi (1988, cf. p. 421),
that the variance of the flash-positions becomes divergent (so the flashes typically
occur anywhere). This has tipped off (Bacciagaluppi 2010, p. 14) to judge that “this
picture of CSL as a beable theory turns out not to be viable.”

The matter density ontology of GRWm, on the other hand, was in fact first
postulated as a way to make sense of the CLS dynamics (cf. Ghirardi et al. 1995).
Here the operators N̂k(x) from equation (6.16) were multiplied by respective masses
mk for respective ‘particle types’, and γ was rescaled by m−2

ref (mref an unspecified

reference mass). From the resulting operators M̂(x) =∑
k mkN̂k(x), a mass density

function would then be defined as m(x, t) = 〈(t)|M̂(x)|(t)〉 for a suitable
(normalized) |(t)〉 (cf. Ghirardi et al. 1995, p. 16).

To sum up: in both, GRW and CSL, we have a wavefunction defined on
configuration space, subject to either (GRW) spontaneous ‘collapse events’, i.e. sup-
pressions of interference terms, each (random) time w.r.t. one (random) coordinate
triple, or (CSL) to continuous dynamics, inducing the suppression of superpositions
in the position basis via coupling to a randomly fluctuating function, representing
a field in spacetime or a family of such, where the coupling is mediated by the
particle number density. Then we have (at least) two ontologies to make sense of
these (mostly) formal models: The flash ontology (GRWf) in which the spontaneous
collapse events are interpreted as the occurrence of ‘flashes’, i.e. spontaneously
occurring ‘events’ in spacetime, so that any macroscopic material object is then
“a galaxy of such events.” (Bell 1987, p. 205) And the matter density ontologies
(GRWm, CSLm) according to which there is a matter density in spacetime whose
dynamics is determined by the wavefunction, which is itself subject to either the
spontaneous or the continuous collapse dynamics.

A bunch of obvious questions remain when these models and ontologies are taken
under close scrutiny though. Let us talk ontology first. The question that obviously
comes to mind is what role wavefunction and configuration space really play in
these ontologies, as was the case in BM in the last section. Is the wavefunction
an objectively existing field? Do spacetime and flashes or matter density ‘emerge’
from the dynamics of the wavefunction as the ‘less fundamental reality’? Or are
the (local) ‘beables’, matter density or flashes respectively, ‘more real’, and the
wavefunction has a different, maybe merely derivative or possibly nomological
status?

Prima facie virtually the same set of strategies for dealing with these questions
(and hence with the kinematical task of the MAC) is available here as was the case
in the discussion of BM and the role of the wavefunction therein (Sect. 6.1.2): One
could take the wavefunction for real and would then end up, in this case, with
something more similar maybe to de Broglie’s ‘double solution’, i.e. something
where flashes or matter densities emerge out of the wavefunction itself and are not
postulated independently; but one would still face the problem of understanding
the interaction between the wavefunction in configuration space and the points
in spacetime wherein the flashes or matter density amplitudes occur. Or, on the
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other hand, one might try to relegate the wavefunction to the nomological again,
opening up the possibility of turning it into a ‘mere mathematical device’ for a most
effective (ideally: the preferred) description of stuff in spacetime; but one would,
of course, have to tell a story about the laws of nature that is suitable for GRWf,
GRWm, or CSLm. This means that we could equally refine our classification in this
case (nomological, nomological-Humean, non-nomological) and repeat virtually the
same arguments regarding the DOC as in Sect. 6.1.

The situation, in fact, involves some further subtleties in the case of the collapse
ontologies though. First of all note that a Humean view of laws seems to fit quite
well with GRWf, wherein the flashes simply occur in a regular statistical pattern
described jointly by statistical and dynamical laws involving a suitable  (maybe
ultimately Ψ), then construed as a mere ‘calculation device’ or ‘convenience’.
Notably, Dowker and Herbauts (2005) demonstrate, for a simple discretized field
model wherein binary field values (0,1) on lattice points play the role of the flashes
in GRWf (cf. their pp. 503–504), that the dependence of predictions on an initial
state |ψ0〉 “dies away as time goes on until all we need to know to make predictions
[. . . ] is the field configuration back to a certain depth in time.” (their p. 505) This
prompts them to think of the wavefunction as “a convenient way of keeping the
probability distribution up to date, given past events.” (ibid.) If the laws (theorems,
axioms) of GRWf involving  turn out to be the most convenient (simplicity-fit-
and-strength optimized) way, this fits perfectly well with a Humean understanding
of these laws. The situation is comparable to that in BM.

On the other hand, Egg and Esfeld (2015, p. 3240) have argued that there is

reason to be less attracted to Humeanism in GRWm than in BM. While Humeanism holds
that the quantum state supervenes on the complete history of the primitive ontology, the
mathematical structure of GRWm seems to imply just the opposite[. . . ]. (my emphasis –
FB)

To recall, Humean supervenience is the hypothesis “that every contingent
property instantiation at our world holds in virtue of the instantiation of Humean
properties”, where a property is called ‘Humean’ “if its instantiation requires
no more than a spatiotemporal point and its instantiation at that point has no
metaphysical implications concerning the instantiations of fundamental properties
elsewhere and eslewhen.” (Loewer 1996, p. 102; emphasis in original) Of course the
BSA can be construed as an implementation of Humean supervenience in the case
of laws: whichever laws are true of our world are true in virtue of what happens
here and now for varying heres and nows.

Now the matter density m(x, t) itself specifies a local value for matter at every
spacetime point and may hence be seen as a continuous collection of Humean prop-
erties. But m(x, t) is defined in equation (6.18) in virtue of |(x1, . . . , xN ; t)|2,
and there is no obvious way to infer  from m(x, t) in virtue of (6.18)—Egg
and Esfeld’s argument has a prima facie plausibility. But it is (a) important not to
confuse deductive inference with metaphysical dependence: Just because we infer
the distribution of matter over space and time from the  function does not force
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us to believe that either supervenes on the other.38 And (b), more importantly,
a regularity account of laws such as the BSA should not be confused with the
metaphysical hypothesis of Humean supervenience. Cohen and Callender (2009,
p. 3) e.g. have it that “the doctrine of Humean supervenience [. . . ] is logically
distinct from [the BSA]. Indeed, many versions of [the BSA] [. . . ] are at odds
with Humean supervenience.” Nothing about the BSA commits us to believe in
the supervenience of everything else on Humean properties, and since GRWf
and GRWm are empirically equivalent, why should we not equally write down
wavefunctions and laws such as the TDSE or (6.17) in virtue of the observed
behavior of the matter density?

In any case, Humeanism about laws leaves us with the same discomforting
feeling about correlations in spatially widely separated local values of the matter
density or the local occurrences of flashes as it did about the particle velocities in
the case of BM. Equally, the explanatory value of  (Ψ) is thereby significantly
reduced: Flashes just occur, matter densities just fuzz around somewhat randomly,
all the while exhibiting EPRB-correlations in both cases. According to a flash
ontology, moreover, there is typically nothing at all in between source and screen in
a (sufficiently evacuated) double slit experiment, because a flash only occurs in the
presence of other masses (cf. Maudlin 2011, p. 237 for illustrations).

If, on the other hand, one would, for instance, take the arguments from Humean
supervenience as crucial against the BSA and/or take the mathematics seriously and
the direction of inference as indicative of metaphysical dependence, then one would
end up with some kind of interaction problem between configuration space and
spacetime (or nomological and beable realms or. . . ) again since the wavefunction,
being taken seriously, would still not describe anything residing in spacetime,
whereas flashes and matter densities do. Ultimately, the impact of granting  (Ψ)
a nomological status seems to leave us in no better situation in objective collapse
interpretations than it did in Bohmian ones.

We have mostly left CSLm out of the discussion, since it plays kind of a special
role when it comes to ontology. A reference to GRW instead of CSL is in fact
widespread in the philosophical literature on QM, as has been noticed by Egg and
Esfeld (cf. 2015, p. 3236). They, however, have it that

if we remember that both theories were primarily introduced to explain the localization
of macroscopic objects, then the difference between them does not seem so significant
anymore: in systems consisting of a large number of constituents, the localization process
is so fast that the difference between an instantaneous and a gradual process becomes
negligible. (ibid.)

Again the argument is prima facie plausible, but ultimately not: CSLm contains
the universal fluctuating field(s) wk(x, t), whose ontological status raises questions

38This is acknowledged by Egg and Esfeld (2015, p. 3240), who recognize a “considerable flexi-
bility in implementing the thesis of Humean supervenience of the quantum state on the primitive
ontology.” But they believe the “non-Humean options” to be “clearly [. . . ] less revisionary” (p.
3241), which is reason enough for them to prefer those options.
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beyond those occurring in GRWm. Bassi et al. (2013, p. 492) e.g. find it “tempting
to suggest that such a field has a cosmological nature,” but they concede that “at this
stage this is only a speculation.”

This, in fact, leads us back to the general properties of the formal models that
we claimed raise obvious questions as well. The general worry is that there is a
lot of arbitrariness in these models. Why the form of the operators �̂(x) (which,
in fact, need not be that of equation (6.15); cf. Bassi and Ghirardi 2003, pp. 298–
299)? Whence the average collapse rate λ and localization width α−1/2? Whence the
universal fluctuating fields? Why should we accept all this non-Occamism? Before
we flesh this out into a concise criticism though, let us first look at a class of related
proposals that attempt to remove some of the arbitrariness in a more concrete fashion
than by mere speculations about cosmological fluctuations.

6.2.2 Can Gravity Account for Collapse?

Certainly the most interesting proposal for a collapse model with a randomly
fluctuating field just as in CSL, but where the nature of the field is specified, is that
first investigated by Diósi and Lukács (1987) and Diósi (1987). To understand the
basic proposal of these papers, first recall that the familiar formula for Newtonian
force, F = ma, is FG = mg(x, t) when applied to gravitation, where g(x, t) is
the local gravitational acceleration (with familiar mean value |g| ≈ 9, 81 m/s2 on
earth’s surface). Moreover, Newton found that, when considered as a force exerted
by a mass M on some other mass m, the force law reads FG = −GmM

r2 nr , where
r = |x−x′| is the distance between massesm andM at points x and x′ respectively,
G is the gravitational constant, and nr is a unit vector pointing along a (Euclidean)
straight line in the direction of m from M . So we can see that g(x, t) = −GM

r2 nr

(the t comes from the time-dependence of x and x′).
Now if one writes �(x) = − GM

|x−x′| , one easily finds that

− ∇�(x) = −GM x − x′

|x − x′|3 = −G
M

r2
nr , (6.19)

where nr := x−x′
|x−x′| . So the simple force law becomes FG = −m∇�(x, t), and we

can identify �(x, t) as a gravitational potential and m�(x, t) as a gravitational
potential energy (e.g. Hartle 2003, p. 38 ff.), in virtue of the connection F =
−∇V (x, t) for V some potential energy and F conservative.

The original suggestion of Diósi and Lukács (1987, pp. 491 ff.) and Diósi (1987,
pp. 378 ff.) now was to introduce a stochastically fluctuating gravitational potential
� into the TDSE which satisfies 〈�〉St. = �N for 〈·〉St. some suitable stochastic
average and �N the Newtonian potential. The resulting TDSE is then of the form

ih̄
∂

∂t
|ψ〉 =

[
Ĥ0 +

∫
d3x�(x, t)f̂ (x)

]
|ψ〉 , (6.20)
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where f̂ (x) is a local mass density operator and Ĥ0 the non-gravitational part of the
Hamiltonian.

Using standard techniques for deriving master equations (as can be gathered e.g.
from Le Bellac 2006, p. 526 ff. or Schlosshauer 2007, p. 153 ff.) and imposing also
that � at different spacetime points correlates as

〈
�(x, t)�(x′, t ′)

〉
St. = h̄G

|x−x′|δ(t−
t ′),39 Diósi (1987, pp. 379) derived from the form of the total Hamiltonian in (6.20)
the following master equation:

∂

∂t
ρ̂(t) = − i

h̄
[Ĥ0, ρ̂(t)] − G

2h̄

∫ ∫
d3x d3x′

|x − x′| [f̂ (x), [f̂ (x
′), ρ̂(t)]]. (6.21)

Crucially, in a suitable coordinate representation |X(N)〉 := |x1, . . . , xN 〉, one
again obtains a damping of all off-diagonal terms 〈X(N)|ρ̂|X′(N)〉 by a factor
1/τd(X(N),X′(N)), with τd(X(N),X′(N)) some damping time defined in terms of
the mass densities f (x|X(N)), f (x′|X′(N)) at points x and x′ given configurations
X(N) and X′(N) respectively (cf. Diósi 1987, p. 379; Bassi et al. 2013, p. 507). So
based on gravitational considerations, spatial superpositions for larger systems will
be quickly suppressed in this model as well, just as they should.

Again we have a fulfillment of the two main desiderata (well localized macro-
scopic objects and little effect on microscopic dynamics) that drove GRW, since
the damping also depends on the mass density. In 1989, Diósi additionally “took
the inevitable step of casting the master equation in the equivalent language of a
stochastic Schrödinger equation” (Bassi et al. 2013, p. 508; my emphasis – FB),
which made his model straightforwardly comparable to CSL (cf. Diósi 1989, for
details).

But the resulting model clearly has an advantage over CSL in that the collapse-
inducing field occurring therein is non-arbitrary—it is the gravitational potential.
There also are no free parameters like λ and α from GRW: λ is replaced by
the inverse of τd which depends only on natural constants and the mass density
operators, which in turn do not introduce a new (average) localization length.40

However, the mass density operators themselves still constitute an element of
choice, and the choice of operators f̂ (x) in actual examples computed by Diósi
(1989, p. 1171) turned out to be quite unfortunate, since it implied an unreasonable
increase in energy over time. This is, in fact, a general worry about collapse models:
due to the modification of dynamical equations, there is a non-conservation of
energy that is already present in the original GRW model.

39The scaling can be motivated from considerations of the effect of the uncertainty relations on the
gravitational acceleration, when it is assumed that �N vanishes (cf. Diósi and Lukács 1987, p. 489
ff.; Bassi et al. 2013, p. 507).
40In fact, the ratio λα still occurs in the paper, but it is treated as a constant and “assume[d] its
order is of unity.” (Diósi 1989, p. 1169) Subsequent discussions drop the factor altogether (e.g.
Ghirardi et al. 1990a, p. 1059).
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Solving their equation (6.14) in position representation, Ghirardi et al. (1986, p.

474) found that the square of the momentum operator satisfies
〈
p̂2

〉 = 〈
p̂2

〉
0+ αλh̄2

2 t

when averaged w.r.t. the resulting density matrix, where
〈
p̂2

〉
0 is the average that

would result for the usual Schrödinger dynamics. Since 〈E〉 =
〈
p̂2

〉
2m , this implies a

linear increase in energy over time. Now while in GRW this increase was estimated
to be minute for ‘realistic’ values of α and λ (cf. Ghirardi et al. 1986, p. 481),
Ghirardi et al. (1990a, pp. 1061 and 1064) also estimated the average energy
increase in Diósi’s (1989) model, which, for a system of nucleons in the order of
1023 constituents and based on the stochastic Hamiltonian, turns out to be about 0,1
mW—that is close to the power range of modern smartphones in standby.

But Ghirardi et al. (1990a, pp. 1058 and 1061) also demonstrated that one
can avoid these difficulties if one uses the Gaußian-smeared operators M̂k(x) =
mk

∑
σ

∫
d3x�1/2(x̃)φ̂

†
k,σ (x)φ̂k,σ (x) that we already mentioned in the discussion

of the CSL model. We can see that the ideas of CSL and Diósi’s gravitational model
fit together quite nicely, and indeed, Pearle and Squires (1996, p. 292) have also
investigated the possibility of interpreting w(x, t) as a mass density, related to the
gravitational potential via the Newton-Poisson equation w(x, t) = 1

4πG��(x, t),
which reappears in GR as a limit for a static weak-field metric (cf. Hartle 2003, pp.
38 ff. and 485 ff. for details).

These models raise interesting possibilities, but they still all suffer from an
obvious deficit: They are semi-classical, and there are numerous good reasons
to be skeptical about the aptness of a semi-cassical treatment of gravity, among
them empirically false predictions about the behavior of a cavendish balance in a
suitably contrived experiment (cf. Kiefer 2007, p. 20 and p. 15 ff. and references
therein for further discussion). In agreement with these objections, Penrose (1996)
has offered a quite different treatment for gravitational collapse models. He starts
from considering “a rigid lump of material” (his p. 584) put into a superposition
|ψ〉 = α |ξ〉 + β |ϕ〉 of spatially non-overlapping localizations by some clever
mechanism, where |ξ 〉 , |ϕ〉 are eigenstates of some suitable Hamiltonian with the
same energy E0. This means, of course, that the total state |ψ〉 = α |ξ 〉 + β |ϕ〉
for given coefficients α, β would also be of energy E0, and hence stationary w.r.t.
the action of the Hamiltonian, whence it “must [. . . ] persist unchanged for all time”
(Penrose 1996, p. 585) unless affected by a different process.

Penrose then considers the (stationary) gravitational fields created by the two
‘lumps’ and equips them with quantum states |Gξ 〉 and |Gϕ〉 which should incor-
porate “whatever is to be meant by the quantum state of a stationary gravitational
field – including all the internal degrees of freedom of the field[. . . ].” (Penrose
1996, p. 588) The resulting state would hence be the entangled state |〉 =
α |ξ〉 |Gξ 〉 + β |ϕ〉 |Gϕ〉; but the crucial question now is whether |〉 is still stable
(qua being a stationary state), since the states |ξ〉 |Gξ 〉 and |ϕ〉 |Gϕ〉 each “must
involve a reasonably well-defined (stationary) space-time geometry, where these
two space-time geometries differ significantly from each other.” (Penrose 1996,
ibid.)
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Crucially, the ‘stationarity’ of quantum states becomes a subtle matter in two
superposed spacetimes: for each spacetime, there will be a Killing vector that
genreralizes the operator ∂

∂t
, i.e. a vector that ‘lies in the direction’ of a translation

t �→ t+ε along which the metric does not change (cf. Hartle 2003, p. 176; Nakahara
2003, p. 279), as long as that spacetime is itself stationary,41 so that a notion of
‘stationary state’ is well defined therein. However, here two spacetimes are being
superposed, and one must wonder whether an operator can be found that represents
‘time translations’ for superposed spactimes. Penrose’s (1996, p. 589; emphasis in
original) conclusion is that “the notion of time-translation operator is essentially ill
defined” in this context, but that one can give “a clear-cut measure of the degree of
this ill-definedness for such a superposed state”, and that the associated “fuzziness”
in the concept of energy for such a state “is consistent with the view that such
a superposed state is unstable[. . . ].” A “lifetime” (ibid.), τ , of the state can then
be quantified in virtue of a measure that exploits an energy-time uncertainty, i.e.
τ ∝ h̄/�E.42

This is an equally interesting and remarkably different proposal, compared to that
of Diósi, although to a similar effect (fast collapse of large-scale spatial superposi-
tions). Given that there are independent reasons for subjecting gravitational fields to
a quantization procedure (e.g. Kiefer 2007, p. 3 ff.) and reasons to be skeptical about
semi-classical approaches to gravity, a ‘fully quantum’ treatment of gravitational
fields is certainly an improvement. But Penrose’s considerations do not constitute a
fully worked-out proposal,43 and to the present author’s knowledge, none exists to
date.

In summary, gravitational considerations help to remove some of the arbitrari-
ness, but in semi-classical ones it is not clear whether they can be made compatible
with a prospective future theory of quantum gravity. The approach of Penrose
(1996) lays interesting ground work for quantum-gravitational concerns, but no
fully worked out model is presented, and any prospective one may (or may not)
face difficulties such as the fact that “if the evolution is deterministic and nonlinear,
the possibility of superluminal propagation appears to be present”, or that “[i]t is
not clear [. . . ] how the Born rule will be recovered dynamically.” (Bassi et al. 2013,
pp. 508 and 509) These details obviously depend on the eventual model though.

41For details on the stationarity of spacetimes e.g. Ruetsche (2011, p. 207).
42A first estimate for �E is also computed by Penrose from squared differences in gravitational
accelerations for different spacetimes in a Newtonian limit (cf. Penrose 1996, p. 594 ff. for details).
43In particular, that would require a “precise measure of uncertainty that is to be assigned to the
‘superposed Killing vector’ and to the corresponding notion of ‘stationarity’ for the superposed
space-time.” (Penrose 1996, p. 596)
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6.2.3 Ad Hocness and Loose Ends

As we have seen in the last section, gravitational models still face a bunch of inherent
difficulties or are not (yet) developed in sufficient detail. This leaves us with the
objection raised at the end of Sect. 6.2.1, that there is a lot of arbitrariness in CSL
and GRW. In fact, the whole introduction of stochastic collapses, be they dynamical
or spontaneous, parametrized by new constants (λ, α) or induced by unidentified
fields (wk(x, t)), has a very unpleasant ad hoc character to it.

Based on the desire to fulfill the desiderata 1 and 2 of Sect. 6.2.1 (localization
of macroscopic objects and little effect on microscopic ones), moreover, Ghirardi
et al. (1986, p. 480) have provided estimates for λ and α. In fact, setting λmicro =
λmacro/N , where N is the number of particles involved, they gave the values
λmicro ≈ 10−16/sec, λmacro ≈ 107/sec and α−1/2 ≈ 10−7 m, which would mean
that tiny particles are almost never well localized and that macroscopic objects
almost never in (spatial) superposition states. But this only means that the model
is being fitted (in a somewhat ad hoc fashion) to data known beforehand. Fitting
of parameters is of course a widespread scientific practice, but it would still be
preferable to remove the ad hocness, and to account for the occurrence of the
(apparent) macroscopic world of chairs, tables, and houses in a less arbitrary
fashion.

The same worry of arbitrariness and ad hocness of course carries over to CSL;
the universal fluctuating field implies a new parameter, nay, a continuous collection
thereof. And the same also goes for Pearle and Squires’ (1996) aforementioned
gravitational modification of CSL, where they would investigate models for the
spontaneous localization of massive monopoles and dipoles, but had to concede that
they simply “have no good argument for choosing” (their p. 301) certain values
for parameters such as a localization probability and mass density to ultimately
determine a localization length. This is a pathological problem for the entire
endeavor of defining collapse models.

But the occurrence of parameters to fit is, of course, not the only ad hocness
concern. Here is a maybe philosophically more serious worry. The introduced
stochastic Schrödinger equations or master equations formally do not have the
effect that a mass density suddenly occurs in spacetime or that well defined flashes
occur at spacetime points, i.e. that the multi-coordinate wavefunction is replaced by
some suitable function of three spatial coordinates and one temporal one. The two
ontologies have to be imposed upon the formalism and do not ‘arise naturally’ from
it.

This is quite in contrast to BM where at least in the non-relativistic particle
case the guidance equation, describing the motion of a particle in space, is derived
straightforwardly from the TDSE. In GRW, the modified (density matrix) dynamics
has the implication that “linear superposition is consequently transformed into a
statistical mixture of states” (Ghirardi et al. 1986, p. 478; my emphasis – FB), not
that a multi-coordinate function is replaced by a unique set of single-coordinate
functions, individually describing pieces of matter in space(time). The mass density
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formula (6.18) or the interpretation of the ‘collapse events’ as ‘flashes’ have to be
imposed in addition. Thus w.r.t. ontological matters, collapse models arguably fare
slightly worse than does BM, which is equally Maudlin’s (2010a, p. 126) judgement:
“it is not at all obvious how the GRW collapses, by themselves, can do any of
the work that makes the Bohmian account comprehensible.” In other words: while
part (i) of our DOC is somewhat satisfied in virtue of the collapse mechanisms,
(ii) is not, and neither is (iii) really: the relation between objects in spacetime and
the collapsing wavefunction requires an additional narrative, and the ontological
significance of the wavefuntion depends strongly on that narrative.

There are also some further loose ends in this connection, such as so called tails
problems (e.g. Bassi and Ghirardi 2003, p. 357 ff.; Ghirardi and Pearle 1990b, p. 37
ff.; Wallace 2008, p. 56 ff.). Wallace (2008, p. 56) distinguishes two different such
problems, namely the problem of bare tails and that of structured ones. The bare
tails problem concerns the fact that the localization in collapse models is typically
Gaußian or similarly ‘smeared’, which implies that it has vanishing support nowhere
(or equally: has infinitely long ‘tails’). There is lots of things to say, however, that
make it appear that the problem “has little or nothing to do with the GRW theory.”
(Wallace 2008, p. 57). The main reason is that such ‘tails’ occur, of course, already
in orthodox QM; we discussed the spreading of the wavepacket in Sect. 2.1.3, but
we also (consciously) merely claimed that wavepackets ‘raise hopes’ for suitably
describing well-localized particles in Sect. 2.1.1—which, strictly speaking, they do
not describe. Replacing, in some collapse model, the Gaußian operators by ones
with compact support would be of little help, since whenever “the evolution equation
contains the kinetic energy term, any function, even if it has compact support at a
given time, will instantaneously spread acquiring a tail extending over the whole of
space.” (Ghirardi 2016, p. 21)

In a mass density ontology, this is not so much of a problem though (some
subtleties about, say, mind-brain supervenience aside), as Monton (2004, p. 418)
has argued: “macroscopic objects appear highly localized” therein, because “most
all [sic] of their mass is concentrated in a small region of space, the region where
the object appears to be localized.”

The occurrence of structured tails is different and poses a more serious problem,
even for collapse ontologies with mass density. Recall that we claimed that
Schrödinger-cat situations would not arise because the collapse dynamics would
quickly drive a state like α | 〉 + β | 〉 into either of the two superposed states.
But this is not quite right; rather the collapse mechanism will yield something like√

1− ε2 | 〉 + ε | 〉, which still has a dead and a live cat in it, no matter how
small ε becomes. This problem is more serious; there should also be a ‘low density
dead cat’, if the mass density formula is taken seriously. Suggested solutions to this
problem appeal to unjustified talk of different ‘worlds’ (e.g. Egg and Esfeld 2015, p.
3235) or to introducing operators with compact support after all (e.g. Wallace 2014,
p. 4), thereby ‘fully eliminating’ the dead cat—by essentially another ad hoc move.

Of course worries about relativistic generalizations also come to mind for
collapse models as they did in BM. But it appears that matters are considerably
better for collapse models than for BM: Work by Bedingham (2009, 2011) on a rel-
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ativistic CSL-like model avoids earlier worries about the possibility of superluminal
signaling in collapse models (cf. Squires 1992), problems of divergent increases
in energy in previous relativistic versions of CSL (cf. Bassi and Ghirardi 2003, p.
331 ff.), limitations of previous relativistic and field theoretic models as regards
interactions (cf. Tumulka 2006a,b),44 and can be supplemented with a relativistic
law for the matter density function (cf. Bedingham et al. 2014). Bedingham’s
relativistic model also requires some foliation for its formulation, but Bedingham
(2011, p. 692) thinks that this foliation “has no physical consequences since given
a fixed initial state and a complete realized set of stochastic information [. . . ],
for any two foliations which share a common leaf, the assigned state on that leaf
is unique.” This does not impair the ad hocness worries raised before, however;
Bedingham introduces a relativistic replacement of the CSL universal field that
simply constitutes a “nonlocal hidden variable[. . . ].” (Bedingham 2011, p. 693; my
emphasis – FB)

6.3 Many Worlds: Taking Superposition Seriously

6.3.1 Everett’s Brave Proposal

So far we have seen moderately successful attempts at interpreting QM by either
rewriting and reinterpreting the dynamical equations or by explicitly modifying
them so as to remove the conflict between projection postulate and unitary evolution.
Here is an (apparently) entirely different suggestion: Just drop the projection
postulate. How could a serious proposal along these lines work? One would have to
specify a mechanism that creates the illusion of the occurrence of definite outcomes
as are predicted by quantum postulate (VII) and observed in experiment. The
first to champion such an approach was Hugh Everett III in his PhD thesis, first
published in 1957 in a version “cut down to a quarter of its size on Wheeler’s [his
supervisor’s – FB] insistence” (Saunders 2010, p. 6), and only later (1973) published
in its ‘full glory’ and with a more overt statement of the remarkable philosophical
consequences.

The basic proposal goes as follows (cf. Everett, 1973, p. 64 ff.).45 Recall
(once more) from (2.33) that the unitary evolution on a system S interacting
with a measurement apparatus A will have the effect ÛS,A

∑
j αj |Sj 〉 |A0〉 =∑

j αj |Sj 〉 |Aj 〉, if S is in a suitable superposition state and A in some ‘ready

state’ |A0〉, and if ÛS,A effects a suitable joint evolution.46 One of Everett’s (1973)

44Cf. also Maudlin (2011, p. 243 ff.) for an accessible informal analysis of at least Tumulka’s
relativistic model.
45Cf. also Saunders (2010) for a general introduction to the subject.
46For obvious reasons, we will here generically use |Sj 〉 to refer to system states, |Aj 〉 to apparatus
states. . . and so on.
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suggestions now was to think of an observer O as a physical system with a memory
register [. . .], where the dots indicate arbitrary memories of past interactions with
an environment up to a certain point. This would allow to equip the observer with
a quantum state |O0[. . .]〉 before she interacts with the apparatus A to read out
an outcome, i.e. in between stages (i) and (ii) of the measurement process as we
had analyzed it in Sect. 2.1.4. Taking QM seriously, there should also be a suitable
interaction Hamiltonian describing the physical interaction, (ii), between observer
O and apparatus A. The result would then (neglecting once more state perturbations
due to the interaction) be of the form

|SAO〉 :=
∑
j

αj |Sj 〉 |Aj 〉 |O0[. . .]〉 ÛSA,O�−−−→
∑
j

αj |Sj 〉 |Aj 〉 |Oj [. . . , j ]〉

=: | ′SAO〉 , (6.22)

where we have used ÛSA,O to denote the unitary operator that describes the state
change, the index SAO on the quantum state refers to the fact that the state is the
joint state of S, A, and O, and where the j indices in O’s final state indicate that
O has a state ‘coupled’ to the j -th state of the joint system SA in which she has
registered the j -th outcome on A. In other words: There should now be several
‘relative states’ (cf. Everett, 1957, p. 456) ofO of having registered all the outcomes
respectively.

Put even more straightforwardly, the unitary evolution here puts O into a certain
superposition state as well, entangled with that of S and A. And that is all there is, a
global entangled state vector, subject to unitary dynamics. In other words, we here
investigate the following ‘unal ontology’:

Conjecture 4 (The unal ontology) The quantum mechanical state vector is
a truthful representation of all the systems in the universe. It and the unitary
dynamics that pertain to it are all there is.

But how can we even make sense of such a proposal, given that we ourselves do
not know, from introspection, what it is like to be in a superposition of states? We
will return to this issue in the next section, but now first review some reasons to even
accept such a ‘preposterous’ suggestion in the first place.

An explicit concern of Everett (1973, pp. 8 and 118–119) was that QM be
applicable universally, i.e. also in the form of some prospective final quantum
theory of the gravitational field, which we mentioned in Sect. 6.2.2 to be indicated
by empirical evidence and theoretical concerns. After much initial resistance (cf.
Byrne 2010a), this and similar reasons ultimately served as a motivation for a whole
range of other physicists to accept Everett’s ideas; and today Everett’s interpretation
is, in fact, among the most widely accepted ones, as reflected in some recent and
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less recent polls (cf. Tegmark 1998; Schlosshauer et al. 2013). One of the first
‘Everettians’ was Bryce DeWitt, who found that “Everett’s view of the world is a
very natural one to adopt in the quantum theory of gravity, where one is accustomed
to speak without embarassment of the ‘wave function of the universe.’” (1967, p.
1141)

Another advantage is that at least prima facie this approach does not require
additional interpretive or formal elements; just take the quantum state to represent
what it seems to represent. Or as DeWitt (1970, p. 160; emphasis omitted) had it:
“The mathematical formalism of the quantum theory is capable of yielding its own
interpretation.” And similarly Wallace (2012, p. 38): “The ‘Everett interpretation of
quantum mechanics’ is just quantum mechanics itself, ‘interpreted’ the same way
we have always interpreted scientific theories in the past: as modelling the world.”

DeWitt (1971, p. 182), in fact, also coined the now-familiar talk of “many
worlds”, referring to the individual terms in a superposition state such as | ′SAO〉.
So Everett’s interpretation is a many worlds interpretation (MWI) of the quantum
formalism. It tackles the MAC by leaving the (unitary) dynamics alone but taking
them seriously (the dynamical task) and by simply interpreting the meaning of the
quantum state to be an accurate description of reality at all scales—as an expression
of multiplicity, not indefiniteness (cf. Wallace 2012, p. 37)—even if what is real
thereby exists inevitably partly unperceived by ‘us’ (the kinematical task). The
MWI, moreover, is formally quite conservative and avoids the difficulty of collapses:
one simply has to remove one of the postulates from the list (I)–(VII), namely the
contentious projection postulate, (VII). And, as in the two interpretations reviewed
in the previous two sections, we (apparently) also remove the ‘dawning danger’ of
Wigner’s friend, that consciousness has anything to do with inducing the (physical)
‘collapse’ of the state vector, simply because there is no collapse.

But the MWI of course implies conceptual revisions w.r.t orthodoxy, and
clarifications are certainly in order in many places. First of all note that the sort
of evolution needed to lead to superpositions of apparatus, observers, laborato-
ries. . . and so forth, is ubiquitous. Here is DeWitt (1970, p. 161) again:

This universe is constantly splitting into a stupendous number of branches, all resulting
from the measurementlike interactions between its myriads of components.

So basically any old kind of interaction between any old pair of systems ‘splits’
the universe into a multitude of ‘different branches’. This does not explain, however,
how conscious observers are located or ‘dynamically created’ in these branches, and
how it comes that they not observe each other. How are the ‘branches’ even well
defined in the first place? And how many of them are there? Let us start shedding
some light on these issues and their possible resolutions.
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6.3.2 Quantum Decoherence and Its Importance for the Many
Worlds Interpretation

There is something quite problematic about a state like | ′SAO〉 =
∑

j αj |Sj 〉 |Aj 〉
|Oj [. . . , j ]〉, namely, that it could be rewritten in a different basis. To make our
point with the aid of a simple example (analogously given in Albert and Loewer
1988, p. 202 ff. or Schlosshauer 2007, p. 53 ff.), imagine a simple spin measurement
with a detector (the ‘apparatus’, A) that is itself a two-state system. Then we could
have an evolution like

|ψi
SA〉 =

1√
2
( |↑z〉 + |↓z〉) |A0〉 �→ |ψf

SA〉 =
1√
2

( |↑z〉 |A↑z〉 + |↓z〉 |A↓z〉
)
,

(6.23)
where the superscripts i and f indicate initial and final states of the interaction
respectively, and Ax are labels for suitable states of the detector (of having
registered nothing, up, or down respectively). But

{ |A↑z〉 , |A↓z〉
}

is construed as a
basis of C2, so with an eye on connections like (2.14), we can immediately rewrite
|ψf

SA〉 in (6.23) as

|ψf
SA〉=

1√
2

1

2

[
( |↑x〉 + |↓x〉)( |A↑x 〉+ |A↓x 〉)+ ( |↑x〉 − |↓x〉)( |A↑x 〉 − |A↓x 〉)

]

= 1√
2

( |↑x〉 |A↑x 〉 + |↓x〉 |A↓x 〉
)
. (6.24)

What did the detector detect? What, in fact, did happen at all? Quantum states,
unless specified instrumentally for a specific purpose, have an inherent ambiguity
in them in virtue of the possibility of a basis change in a vector space. What ‘right’
do we have to claim that O in our earlier state | ′SAO〉 is in all the observational
|Oj [. . . , j ]〉 states after the interaction, not in some entirely different set of states,
expressed by viewing each of the |Oj [. . . , j ]〉 in some alternate basis? It seems
that the MWI “must add something if it is to support its position that the worlds
split along a preferred basis.” (Albert and Loewer 1988, p. 203; my emphasis – FB)

We do (or at least consider ourselves to) observe certain outcomes and not
others. So maybe consciousness does at least single out a preferred basis (as the
one being observed), even if it does not collapse quantum states. Albert and Loewer
(1988, p. 206) have in fact suggested to equip the system O with an infinity of
minds, and that only certain distinguished brain states would be capable of carrying
such a (conscious) mind, thereby singling out a preferred basis. This ‘many minds’
interpretation was subsequently picked up and improved by Lockwood (1996), but
in (any of) its original version(s) has never become the standard way to understand
the MWI. This is mostly due to the fact that
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it adds to the Everettian formalism a collection of ad hoc postulates which [. . . ] undercut
the motivation for taking Everett seriously, namely that it purports to explain how to make
sense of quantum theory without adding extra equations or interpretational postulates. (Kent
2010, p. 311)

The general situation for understanding the MWI with a preferred basis, and
possibly also the locus of conscious observers therein, became arguably much
better, however, with the advent of decoherence theory.47 Discovered and outlined
first by H. D. Zeh (1970), and later developed further by Zurek (1982), and with
contributions by E. Joos, C. Kiefer, and others (cf. Joos et al. 2003), decoherence
essentially describes the vanishing of interference terms, the selection of a suitable
preferred basis, and the ‘emergence of classicality’ in virtue of interaction of a
system with its environment.

Thus take, again, a system already coupled to an apparatus and consider in
addition a larger environment E—which would be indicated for any ‘realistic’
description of almost all experimental or other situations anyway—and equip E

with quantum states |Ej 〉.48 After a suitable interaction, one would end up this time
with a state |SAE〉 = ∑

j αj |Sj 〉 |Aj 〉 |Ej 〉, and the projector |SAE〉〈SAE |
onto this state defines a pure state density matrix ρ̂SAE . Now we can compute a
density matrix for S and A alone by executing a partial trace over E’s degrees of
freedom, which yields:

ρ̂SA = TrE(ρ̂SAE) =
∑
i,j

αiα
∗
j |Si〉〈Sj | ⊗ |Ai〉〈Aj |Tr

( |Ei〉〈Ej |
) =

=
∑
i,j

αiα
∗
j |Si〉〈Sj | ⊗ |Ai〉〈Aj |

∑
k

〈φk|
(∑
�,�′

β
(i)
� β

(j)∗
�′ |φ�〉〈φ�′ |

)
|φk〉 =

=
∑
i,j

αiα
∗
j |Si〉〈Sj | ⊗ |Ai〉〈Aj |

∑
k

β
(i)
k β

(j)∗
k

=
∑
i,j

αiα
∗
j |Si〉〈Sj | ⊗ |Ai〉〈Aj | 〈Ej |Ei〉 , (6.25)

where we have assumed that the environment states can be written as |Ej 〉 =∑
� β

(j)
� |φ�〉 in some suitable (orthonormal) basis of the space of environmental

states. If we assume also that the environment states |Ej 〉 are sufficiently ‘dis-

47Some of the following is discussed in more detail in Boge (2016b, p. 12 ff.).
48Why the (larger) environment? Because the treatment given below would not lead to stable states
if it were applied to the state of system and apparatus only; the preferred basis is selected as
the basis that is stable w.r.t. the action of the environment on the apparatus, i.e. as the basis of
eigenstates (‘pointer states’) of some observable (‘pointer observable’) that commutes with the
interaction Hamiltonian (cf. Joos et al. 2003, p. 166; Schlosshauer 2007, p. 77). Why only the
interaction Hamiltonian? Because it can usually reasonably be assumed that this part dominates
the total Hamiltonian; this is called the “quantum measurement limit” (cf. Schlosshauer 2007,
p. 77; emphasis omitted).
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tinguishing’ between different system-apparatus states, i.e. that 〈Ej |Ei〉 ≈ 0 if
i �= j , then we have ρ̂SA ≈ ∑

j |αj |2 |Si〉〈Sj | ⊗ |Ai〉〈Aj |, which very much
looks like a statistical mixture in which the ‘true’ quantum state is simply unknown.
Note, moreover, that the supposition that the environment states are orthogonal for
different system-apparatus states is not an empty formal requirement. There are,
for instance, concrete scattering models (cf. Boge 2016b, p. 13 ff.; Joos et al.
2003, p. 64 ff.; Schlosshauer 2007, p. 119 ff.) from which, given certain well-
established physical considerations, a differential equation for the density matrix
in position representation follows that has off-diagonal (interference) terms damped
away exponentially over time and as a function of the distance of points in space
(i.e., loosely speaking, 〈E(x)|E(x′)〉 −→ 0 for x �= x′ as t −→∞). The details of
the damping depend on the respective scattering cross section.

This implies the proclaimed ‘emergence of classicality’ due to decoherence:
Systems will usually be driven, by decoherence, into states that are quite definite
in a position representation (‘well localized’), but still sufficiently ‘unsharp’ therein
so as to also allow for a quite definite ascription of momentum. Incidentally
this means that the infamous spreading of the wave packet will be suppressed
in any ‘realistic’ environment: what is (approximately) ‘well localized’, stays
well localized in any such environment, due to the scattering with environmental
particles. Moreover, decoherence implies the dynamical creation of an approximate
or ‘effective’ superselection rule (mentioned briefly at the end of Sect. 2.1.4),
because “the interaction with the environment forces the system to be in one of
the eigenstates of the pointer observable, rather than in some arbitrary superposition
of such eigenstates.” (Zurek 1982, p. 1836)

However, it must be stressed that the resulting density matrix still represents a
collection of multiple (well localized) states, not a single one. This is the reason
why Bell (1990a, p. 24) found himself “quite puzzled” by claims that decoherence
alone would solve the outcome problem: the reduced density matrix still appears to
represent an ‘and’ rather than an ‘or’. Moreover, the above approximate ‘statistical
mixture’ due to decoherence comes about by tracing out the environment which
means ‘neglecting’ its degrees of freedom—the mixture is an improper one. This
implies that in principle there are observables that could be exploited to distinguish
the resulting decohered state from one represented by a proper mixture, in virtue of
different resulting expectation values (cf. d’Espagnat 1990, p. 1154 ff. for details).

Note that this is not all unlike the situation in GRW or other collapse models,
where “linear superpositions of states separated by distances larger than 10−4 cm are
transformed into statistical mixtures.” (Ghirardi et al. 1986, p. 481; my emphasis –
FB) But collapse models come, as they are discussed in the literature, as a ‘package
deal’ with one of the two ontologies, flash- and matter density, and as long as one
does not supply anything alike for the decoherence case, the situation is different.
More importantly, the mixtures in decoherence are improper (they include Born
rule weights) whereas those in GRW are approximate proper ones (they include
stochastic weights). This should also make for a significant difference, given the
above considerations on the in-principle distinguishability of proper and improper
mixtures (cf. also Ghirardi et al. 1987, p. 3288, on this point).
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Still, it is not entirely unreasonable to suppose that the influence of environmental
degrees of freedom can be utilized to ultimately find some sort of less arbitrary
collapse model in which the collapse is ‘mutually induced’, i.e. wherein systems
enforce the damping of interference terms on each other via interaction, which
process is then construed, with the aid of a suitable additional ontology, as the
occurrence of well-localized objects in spacetime.

This is also the opinion of Schlosshauer (2004, p. 1296), who thinks that
“the similarity of the governing equations [in decoherence theory and collapse
models – FB] might enable one to choose the free parameters in collapse models
on physical grounds rather than on the basis of empirical adequacy.” Numerical
models by Tegmark (1993) have shown how decoherence effects are typically much
stronger than those effects brought about by the dynamics of the GRW model; so
decoherence in any case constrains collapse models – which may not be the worst
thing if one attempts to interpret decoherence in terms of collapse.49

Moreover, in its foundational ideas at least, decoherence is also quite compatible
with BM: Since it induces the loss of coherence (the vanishing of interference
terms), it can be taken to specify the conditions under which ‘empty waves’ do
not influence particles associated with a certain conditional wave function anymore,
i.e. under which conditions the ‘surrealism’ of the trajectories vanishes and certain
correlations will not occur. In a sense, this leads to a reoccurrence of quasi-
classical trajectories under suitable circumstances. However, “while the basic idea
of employing decoherence-related processes to yield the correct classical limit of
Bohmian trajectories seems reasonable,” Schlosshauer (2004, p. 1298) informs us,
“many details of this approach still need to be worked out”, as classical trajectories
can not always be recovered in BM by appeal to decoherence where they should. For
instance, “even when coherence is fully lost, and thus interference is absent,” it can
be shown that in a double-slit experiment “nonlocal quantum correlations remain
that influence the dynamics of the particles in the Bohm theory, demonstrating
that in this example decoherence does not suffice to achieve the classical limit in
Bohmian mechanics.” (Schlosshauer 2004, p. 1298; cf. also the references therein
for further problems and achievements)

So while decoherence does not straightforwardly enforce acceptance of the MWI,
it certainly aids to rid it of fundamental ambiguities while many open questions as
to decoherence’s compatibility with BM and collapse models remain. Moreover,
decoherence theory has produced various empirically successful predictions such
as the precise conditions for the vanishing of discernible interference patterns in
experiments with C70 molecules (cf. Hackermüller et al. 2004), or how correlations
between states of Rydberg atoms (effective two-state systems) vanish as a function

49On the other hand, if one employs collapses in addition to decoherece, this “might actually
allow for an experimental disproof of collapse theories” (Schlosshauer 2004, p. 1296), since then
there could be experimentally realizable situations in which a respective collapse model predicts
localizations where decoherence would not. But such experimental protocols would be extremely
difficult to realize, due to the approximate ‘omnipresence’ of decoherence effects (cf. Schlosshauer
2004, ibid.).
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of time when these atoms are successively sent through a cavity that contains a
field (cf. Brune et al. 1996; cf. also Schlosshauer 2007, p. 246 ff. for a detailed
and accessible analysis of the experiment). Decoherence, in other words, is ‘here to
stay’; it has an empirical impact that has to be recognized by any interpretation of
QM.

So we now have reasons to believe in a preferred basis due to interactions
between quantum systems in the MWI. But how, exactly, does the “splitting” into
“branches” occur that DeWitt (1970) was talking about? This is often elucidated
in the literature by appeal to the so called decoherent histories-formalism, first
investigated by Gell-Mann and Hartle (1989). The upshot is the following: define,
for a given time tj , a time-dependent PVM

{
P̂k(tj )

}
k∈K , in the Heisenberg picture,

i.e. where every element of the PVM is of the form

P̂
j
k := P̂k(tj ) := e

i
h̄
Ĥ tj P̂ke

− i
h̄
Ĥ tj , (6.26)

(ignoring the possible time-dependence of Ĥ ). Then a sequence P̂ j
k P̂

j−1
m . . . P̂ 0

� of
such projectors from j +1 respective time-dependent PVMs (with times decreasing
from left to right) defines a history operator Ĉα for the history α of a system,
described by some initial quantum state |ψ〉 at t = 0. Applying this operator to
|ψ〉 then leads to

Ĉα |ψ〉 = e
i
h̄
Ĥ tj P̂ke

i
h̄
Ĥ (tj−1−tj )P̂me

i
h̄
Ĥ (tj−2−tj−1) . . . e

i
h̄
Ĥ (t0−t1)P̂�e−

i
h̄
Ĥ t0 |ψ〉 .

(6.27)

In the orthodox interpretation, this would be interpreted as the system being
successively projected (by suitable measurements) onto states |φk〉 , |φm〉 . . . and
evolving unitarily for time intervals �tn = tn − tn−1 in between. For the MWI,
this formalism is used to define branching histories of the universe instead, i.e. the
aforementioned branches.50 Two histories α, β will be said to be branching in case
for any given |ψ〉 and time tj , P̂ j

k P̂
j−1
m |ψ〉 �= 0 and P̂ j

k P̂
j−1
� |ψ〉 �= 0 implies that

P̂
j−1
m = P̂

j−1
� , or in words: “there is a unique way to connect projectors at later

times to projectors at earlier times [. . . ].” (Wallace 2012, p. 88; my emphasis – FB)
Sated differently this means that two histories α, β described by Ĉα, Ĉβ will

agree on the past up to some time tj , and thereafter possibly diverge from each
other in content. Moreover, the expression D(α, β) = 〈ψ |Ĉ†

αĈβ |ψ〉 now defines
a decoherence functional, and a set H of histories can be said to be decoherent

50We critically remark at this point, however, that the ontological significance of the projectors
is somewhat opaque in the MWI; Saunders’ (2010, p. 42) appeal to von Neumann’s (1932, p.
409) construal of projectors as the “elementary building blocks of the macroscopic description of
the world”, for instance, does not really help this fact. Maybe we can think of them, in virtue of
the branching-decoherence theorem mentioned below, as representing ‘emergent structures’ due to
decoherence in some sense. But it would certainly be desirable to find more clarity on this issue in
the literature.
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(relative to |ψ〉) if any two (classically) incompatible histories γ, δ ∈ H satisfy
D(γ, δ) = 0.51 Crucially now, there is the so called branching-decoherence
theorem (cf. Wallace 2012, p. 93 and references therein) which, by appeal to
these quantities, establishes “that branching entails decoherence and (up to possible
coarse-grainings) vice versa [. . . ].” (Wallace 2012, ibid.)

Using this formalism, we can understand DeWitt’s earlier quote much better:
when we take all the mutual interactions between the myriads of systems in the
universe into account, it will look as if a multitude of histories is created, in virtue
of these interactions, that pairwise agree up to a certain point in time and then
‘branch of’ to represent different ‘worlds’. This, basically, constitutes the now-
standard way of thinking about the MWI. Importantly though, decoherence never
strictly implies disconnected worlds. Off-diagonal elements in a density matrix will
be zero at temporal or spatial infinity only, so strictly speaking never.

What about the locus of consciousness in the MWI, that we had claimed above,
might obtain a clearer status in a decoherence based MWI? Wallace (2012, p. 3)
here has it that

Everettian quantum mechanics really is both a many-worlds and a many-minds theory, in the
sense that it entails that there are a great many versions of myself, living in surroundings
much like my own and interacting with other versions of yourself, elsewhere in physical
reality.

Zeh (2000, p. 226), in contrast, finds the entire talk of ‘many worlds’ “mislead-
ing”:

The quantum world (described by a wave function) would correspond to one superposition
of myriads of components representing classically different worlds. They are all dynami-
cally coupled (hence ‘actual’), and they may in principle (re)combine as well as branch. It
is not the real world (described by a wave funtion [sic]) that branches in this picture, but
consciousness (or rather the state of its physical carrier), and with it the observed (apparent)
‘world’ [. . . ]. Once we have accepted the formal part of quantum theory, only our experience
teaches us that consciousness is physically determined by (factor) wave functions in certain
components of the total wave function. (emphasis in original)

So some factors in certain components of the highly entangled but decohered
wavefunction can be identified as carriers of consciousnesses according to Zeh,
while Wallace straightforwardly embraces many worlds and minds. But both views
ultimately boil down to the same thing52: Wallace equally relies on decoherence
which, strictly speaking, leaves the one ‘undivided’ quantum universe (or multi-
verse) intact. And Wallace’s sense in which the many worlds exist is in relation to
‘selves’, ‘living’ in environments, components of the state vector of the universe.

51More precisely, one can distinguish different degrees of decoherence in virtue of D(α, β) being
complex valued: one can make a difference between the whole functional vanishing or only the
real or imaginary part. The details do not matter for the present context though, so we refer the
interested reader to Joos et al. (2003, p. 241 ff.).
52There may be important differences between the two authors’ views on the role of the
wavefunction in the MWI though that will become apparent in the subsequent discussion.
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Notably, there is, then, a decisive role for consciousness in this MWI after all,
according to both Wallace and Zeh: only in relation to the experience of conscious
beings can these (classical) ‘worlds’ really be said to exist, because decoherence
preserves one (highly entangled) state vector and never fully eliminates the off-
diagonal terms in a density matrix, while ‘we’ (the somehow dynamically created
conscious beings) do not perceive ourselves as simultaneously ‘partly’ in this and
partly in that ‘branch’.

6.3.3 The Problem of Probabilities

As we noted initially, the MWI has a bunch of appealing features. It does not raise
specific concerns as regards compatibility with SR, since there are fully Lorentz
covariant QFTs, telling us how interactions between systems proceed in a Lorentz
covariant way. And a key motivation for endorsing it is, as we have seen, that one
can talk, in a very straightforward sense, about the wavefunction of the universe,
which is conducive to such projects as quantum cosmology and gravity.

Moreover, Wallace (2012, p. 310) thinks that “in Everettian quantum mechanics,
violations of Bell’s inequality are relatively uninteresting.” The reason is that
there are no objectively unique ‘outcomes’ anymore – without collapse, the state
vector contains all possible outcomes – but only subjectively perceived ones.
Now the objectively evolving state vector predetermines which observers will find
their results coinciding (or ‘anticoinciding’) with those in the other arm of an
EPRB experiment whenever they meet and compare. So a certain divide between
interactions and states accounts for the observed correlations, because, as Wallace
(2012, ibid.) puts it, “in Everettian quantum mechanics interactions are local but
states are nonlocal.” This includes, of course, the interactions between carriers of
consciousness. It was (supposedly) first discovered by Albert and Loewer (1988,
p. 210) in their original ‘many minds’-proposal, that if two observers “measured
the same spin component they will end up (after communication) believing that
they obtained opposite values”, where the communication is, of course, a local
interaction, and ‘in reality’, there are now multiple versions of both observer
having observed different possible outcomes. This feature remains true within a
decoherence-informed MWI.

However, the precise situation of violations of Bell-type inequalities becomes
more subtle if one does not exactly follow Albert and Loewer’s approach, because
Albert and Loewer (1988, p. 208) explain the probabilities involved in these
violations in terms of fractions of observers (or suitable limits of such) that observe
any one outcome. It is not clear whether this treatment can be carried over to
a decoherence based MWI, wherein one does not stipulate that there are these
desired fractions. More generally speaking: even if the MWI comes with all the
aforementioned desirable features, and is, as we must stress against the background
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of the previous discussion, certainly no ‘stranger’ than any of its alternatives, it
still equally faces some serious problems. The central one of which is the indicated
problem of probabilities.

Recall that orthodox QM embraces the Born rule, and that the statistical averages
QM predicts of course equally depend on the probabilistic content of the theory. This
probabilistic content is hence intimately connected to the theory’s empirical success:
whenever we predict and confirm an interference pattern, this will constitute a
statistical distribution predicted by Born’s rule; whenever we predict and confirm
the general value of a certain magnitude, this prediction will imply averaging
some operator w.r.t. a quantum state. Now given that, apparently, everything that
can happen according to the state vector does happen in the MWI, what sense is
there to predicting a probability for its happening? All events potentially subject to
Born’s rule (the observation of certain outcomes by observers) will happen—with
probability 1. This difficulty of even making sense of the word ‘probability’ in the
MWI has been coined the incoherence problem by Wallace (2008, p. 47). But a
second problem arises even if one assumes that there be some sense to ‘probability’
in the MWI after all, namely: why would these probabilities conform to Born’s rule?
This Wallace (2008, p. 49) calls the quantitative problem.

Historically, Everett (1973, p. 71 ff.) believed to have proven that the Born rule
would hold at least subjectively, i.e. that the squared modulus of the amplitudes
would quantify the statistics of the observations of a typical observer. His treat-
ment, however, has been characterized as wanting “on the grounds of insufficient
motivation” (Graham 1973, p. 236), as “circular and question-begging” (Wallace
2012, p. 127), or at any rate conceptually confused (cf. Byrne 2010b, pp. 260–261).
Similar accusations of circularity were made against Graham’s (1973) attempt of
an improvement in terms of the relative frequencies of outcomes in the branching
Everettian universe (cf. Kent 1990, p. 1752), and it seems that comparable criticisms
can be advanced against all other historical proposals (cf. Schlosshauer and Fine
2005, p. 198, for references).

In Boge (2016b, p. 21 ff.), two more recent approaches were compared and
discussed individually at some length and we will here merely summarize the central
results instead of going into the proofs again. Some more emphasis will be laid
here, in contrast, on the associated philosophical issues. The upshot, however, is
that both approaches ultimately cannot solve the quantitative problem because they
appeal to premises that suffer from the incoherence problem—premises connected
to meanings of ‘probability’ that do not make sense or are hard to entertain once one
takes the MWI seriously.

The first kind of approach is the decision-theoretic program first proposed by
Deutsch (1999). The underlying idea is to define a utility function

u(a) :=
∑
x∈SM

p(x|M)π(x), (6.28)

where a = (M, π) is an act, consisting of a chance setup M , a situation where
any one out of a given set of events might occur but it is impossible to tell which
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(as with the rolling of dice), and a payoff function π that maps from a set SM of
states compatible with M (the ‘possible results in M’) to their consequences.53

p(x|M) is a decision weight for the states compatible with M , given that M is the
case. Intuitively, this ‘weight’ of course denotes the probability of result x occurring
given that chance setup M obtains, and the formula thus tells us that we (should)
evaluate how useful some act is to us by summing up possible rewards π in some
‘chance setup’ (not necessarily an actual game), weighted by the probability that
the state associated with the respective reward occurs, conditional on participating
in the setup in the first place.

The strategy to prove the Born rule by appeal to u then is to demonstrate that,
given that u and π satisfy some plausible constraints and M = ( |ψ〉 , Ô) is a
quantum measurement where one receives payoffs for the eigenvalues of Ô, p(x|M)

must be the Born probability PrψO(o) = | 〈o|ψ〉 |2 (for details cf. Deutsch 1999;
Wallace 2002, 2003, pp. 418–431; Boge 2016b, pp. 22–26).

In Wallace (2012, p. 172 ff.) a much-advanced treatment is given: a whole range
of specifications on ‘quantum decision problems’ are made, a large list of axioms
is presented, subdivided into ‘richness’ and ‘rationality’ axioms, and the theorem is
phrased in terms of the (Born-rule) utility function representing the preference order
of a rational agent. But the general agenda is exactly the same.

This Deutsch-Wallace approach has, however, been met with a range of serious
criticisms. The first problematic feature is the mere occurrence of a decision weight.
What does it quantify? We had intuitively related it to the probability of some
outcome (state) occurring in the chance setup. But how does this talk of ‘chance
setups’ and probabilities even make sense in the present context? This is, basically,
a restatement of the incoherence problem, so we should maybe make this point more
explicit.

Let us first ask: What does a probability assertion express in general? As
interlude I should have made clear, there is no unified answer to this question.
But both kinds of probability conceptions, the objective and epistemic ones, may
be said to express or rely on some sort of uncertainty or indeterminacy. Take a
propensity account of probability; single case or long run, no matter. What does the
assertion of a propensity of some setup/system to exhibit a certain outcome/behavior
with probability p < 1 express? It expresses an objective indeterminacy of the
setup/system before an appropriate stimulus condition is realized, and quantifies the
strength of a tendency that in turn determines the frequency with which a given
outcome will be realized in a longer run of similar experiments on similar systems.
Of course this also implies a subjective uncertainty as to which outcome/behavior
will be displayed; a firm belief in the occurrence some particular outcome/behavior
would simply be mistaken, before the stimulus conditions are realized. What, on
the other hand, does probability as a degree of belief or confirmation quantify? Of

53We here take it that π is real valued for convenience, but one can of course introduce an additional
‘intermediate’ map that assigns real values to consequences such as ‘I am being handed a sandwich’
(cf. Wallace 2002, p. 6).



272 6 ψ-Ontology: Making Sense of QM

course p < 1 directly expresses the subjective uncertainty of a real or ideal agent or
observer, even in situations where the outcome or observed behavior might actually
be predetermined.

Relative frequency accounts may appear to play kind of a special role, but they
need not be viewed so: Assume that a deterministic mechanism were known that
exactly specifies which outcome will occur under which precise conditions, in some
experimental setup. Then counting the frequency of a given outcome in a number
of runs with varied initial conditions (and correspondingly varying outcomes) and
abstracting from it a ‘probability’ would not formally be objectionable; but it would
certainly create confusion due to a violation of Grice’s (1975, p. 46) relevance
maxim: why even state a probability when it is perfectly known which outcome
would occur when and in virtue of what? So the assertion of probabilities, we
here take it, is generally only meaningful in contexts of subjective uncertainty or
objective indeterminacy. Neither of these seems to fit the MWI.

Not so, has argued Saunders (1998, pp. 383–384). He considers a scenario
wherein an observer, let us call her O0, performs a spin measurement upon
the conclusion of which there will be two observers, O↑ and O↓, with obvious
associated observations. Now Saunders asks who O0 should anticipate to be after
the measurement, (i) none of the two, (ii) both of the two, or (iii) only one of the two.
(i) is dismissed by Saunders on the grounds that the only reason to expect none of
the options would be that O0 does not exist anymore after the measurement; but any
state at some time equally does not exist anymore at later times in (deterministic)
classical physics, which does not lead us to “expect nothing at all” (p. 383). (ii),
on the other hand, is dismissed as “straightforwardly inconsistent”, because O↑ and
O↓ “do not speak in unison; they do not share a single mind; they witness different
events.” (ibid.) So the conclusion seems to be thatO0 has to expect to become either
O↑ or O↓. This has been coined the subjective uncertainty view (e.g. Greaves 2007,
p. 116).

This view, however, is hard to defend, once one takes the MWI seriously. Who
is the ‘rightful heir’ of O0’s memories, O↑ or O↓? Which one has O0 become?
Moreover, Saunders’ (1998) arguments against the other two options are not fully
compelling. (i) could e.g. be defended as follows. Note, first of all, that questions of
expectations about the future in the light of ceasing to exist only become relevant
when applied to conscious beings: We cannot meaningfully ask a ‘classical particle’,
say, for its expectations about its future experience. Depending on one’s views on
diachronic identity in the philosophy of mind, one could of course argue that O0
does cease to exist, in a relevant sense, when ‘giving birth’ to O↑ and O↓, and that
O0 herself should hence not expect anything about her future experiences at all. In
contrast, an observer in a classical scenario will have one unique successor so that
the question as to one’s expectations about the future unambiguously refers to that
successor’s experiences.
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And (ii) is defensible on similar grounds, namely, if one believes in the superve-
nience of (conscious) mental states on brain states,54 then after the branching there
will be two different (approximately non-overlapping) brain states on which O↑’s
and O↓’s consciousnesses supervene, and these each bear a sufficient continuity to
the brain states of O0 to say that O0 ‘has become both’, in a relevant sense.55 This
is essentially the view of Greaves (2004, p. 441), who, building on Parfit (1984,
p. 215 ff.), defends the view that O0 is sufficiently psychologically connected and
continuous to both O↑ and O↓ to be certain about her future experience, once she
accepts the MWI. O0 will indeed become both.

Greaves, however, also thinks that the Deutsch-Wallace approach is defensible
nevertheless, if one interprets p(x|M) in formula (6.28) as a “caring measure”
(Greaves 2004, p. 430; my emphasis – FB), i.e. as a quantification of how much
an agent should care about her future selves, given that they will receive different
rewards for their actions. This is an interesting approach, to be sure, and Greaves
(2004, ibid.) argues that such a measure can satisfy all the requirements of a
probability measure as a consequence of so called ‘Dutch book coherence’.56 But it
has been objected that this hardly suffices to establish that agents should care about
their future selves as quantified by the Born-rule caring measure in an Everettian
universe. In particular, Albert (2010, p. 362) has suggested, as a reductio, to use a
‘fatness measure’ instead, whereby one cares more about the branches with ‘more
of oneself’ on them (why should one not?).

Whether one can or cannot make sense of such caring measures may be irrelevant
in the end though, because there are good reasons to suspect that the very axioms
used by Deutsch (1999) and Wallace (2012) respectively are unjustified in the
context of the MWI. The most concise criticism to this effect has been given by
Maudlin (2014a, p. 803 ff.). Maudlin considers, following Wallace (2012, p. 193),57

a scenario in which a student, maybe our O0, really desires to study history and
physics, but only has the (cognitive, financial. . . ) resources to study one of the two,
whence she settles for physics, say. She then meets an experimental physicist who

54Note that a decoherence-based MWI effectively rules out mind-brain identity, because (as was
our earlier observation) the brain states will still be (very weakly) overlapping, even if decoherence
has taken place, but the conscious states will not: O0 will never, we take it, have the experience of
observing both, ↑ and ↓, not even ‘remotely’.
55Note briefly that there is also the possibility of interpreting the situation in terms of divergence
(cf. Greaves 2007, p. 117): there could be multiple copies of oneself all along, coexisting together
as O0 up until the measurement and then just ‘leaving off’ into different branches. This would
sanction the subjective uncertainty view, but it has the obvious deficit of introducing Albert-
Loewer-like many minds after all, and hence undesirable ad hoc surplus structure.
56Cf. Chap. 7 for some details and cf. Boge (2016b, p. 27) for a brief discussion of the details of
Greaves’ proposal.
57. . . who in turn adapts the scenario from Adam Elgar (cf. Wallace 2012, p. 193). Note that Wallace
(2012, ibid.) of course presents own arguments for why he thinks his strategy is immune to the
criticism; but we here agree with Maudlin (2014a, p. 803), that “Wallace’s response [. . . ] fails to
make contact with the case considered.”
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offers her to perform a spin measurement on a spin- 1
2 system, depending on whose

result O0 may reconsider (stay with physics if she observes ↑, switch if ↓).
Now according to the MWI, there will be two students, O↑ and O↓, after the

measurement, one of which will study physics and the other of which will study
history. Since studying both subjects ‘on one branch’ was deemed impossible for
O0 and, as we have argued above, O↑ and O↓ both bear sufficient continuity to O0,
this comes as close as it gets to fulfillingO0’s dream (cf. Maudlin 2014a, p. 802 ff.).

The point is that the Deutsch-Wallace approach treats ‘outcomes’ of a ‘chance
setup’ (or a ‘how much to care’-setup, in Greaves’ version), in which decisions are
due, as mutually exclusive. But if the MWI is correct, there is a common outcome
to all the ‘observations of eigenvalues’ in the different branches which is not even
recognized in the very formulation of the decision problem, namely: the branching
itself. Here is how Maudlin (2014a, p. 804; emphasis in original) puts it: “Wallace’s
decision theory has been set up in its axioms to rule out a rational agent acting in a
way that takes Everettian quantum mechanics seriously.”

Maudlin’s reference is specifically to an axiom (cf. Wallace 2012, p. 175;
Maudlin 2014a, p. 804) which states that outcomes are always mutually orthogo-
nal—which |physics〉 and |history〉+ |physics〉 would not be. But there are further,
related axioms with similarly unconvincing implications. While in Deutsch (1999)
this is only a tacit assumption (outcomes being identified with eigenvalues of a
self-adjoint operator), Wallace (2012, p. 170) also states an axiom of branching
indifference:

An agent doesn’t care about branching per se: if a certain operation leaves his future selves
in N different macrostates [represented by subspaces of a separable Hilbert space – FB] but
doesn’t change any of their rewards, he is indifferent as to whether or not the operation is
performed.

Somewhat in line with Maudlin (2014a), Dizadji-Bahmani (2013, p. 7) has
argued that branching indifference “is highly counter-intuitive as an axiom of
rationality”, since it “is not saying that you need not care about the number of your
future descendants”, but rather that “it is rationally required that you do not care!”
(my emphasis – FB) Why would Wallace believe such a thing? His central reason
seems to be that “branching is uncontrollable and ever-present in an Everettian
universe.” (Wallace 2012, p. 170). All kinds of minute interactions between systems
can trigger branching processes, whence we would care about something entirely
out of our hands if we cared about branching (or so the argument might go). This
would clearly make us irrational.

The latter appears to be a non-sequitur though, as can be seen when the situation
is applied to moral matters. Maudlin (2014a, p. 805) considers an additional
scenario in a nuclear power plant in which a catastrophic development is imminent
and one is faced with the following choice: perform action A, which has a Born
probability of 99,99% of saving everybody and 0,01% of killing 1000 people, or
perform action B with the (certain) result of killing half a dozen but saving everyone
else. On the MWI, option A would mean sending 1000 people to death on some
‘low Born weight’-branch(es). It is far from clear that under these circumstances we
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would necessarily be irrational if we wanted to avoid the branching (i.e. were not
indifferent about it).

However, the scenario above does not really target branching indifference (nor is
it supposed to) because branching indifference presupposes that the rewards are the
same on all resulting branches. But imagine the same imminent catastrophe without
any of the two options to avoid it, and imagine also that someone would deliberately
perform a spin measurement before the catastrophe happens, thereby effecting a
twofold split and (at least) twice as many branches on which 1000 people died.

It does not matter whether there is a precise branch count delivered by decoher-
ence (which is more than controversial, as we shall see below), because it is still
safe to say that there will be well-distinguished conscious experiences, including
horrible suffering due to the catastrophe, associated with the spin-up and the spin-
down parts of the universal state vector. And it equally does not matter that all the
other aforementioned minute interactions will multiply these branches further—
the person performing the spin measurement would still have caused a multitude of
additional horrible deaths due to his inconsiderate actions leading to branching. The
point is this: Just because we cannot control all branching events does not mean that
we cannot control some of them. That we are required to not care about branching
per se to not count as irrational seems by far too strong a requirement.58

On top of these concerns it has been suggested, in particular by Baker (2007), that
the entire approach suffers from a vicious circularity. Recall how we identified the
branching structure by decoherence and how decoherence relies on the partial trace
to define when branches are ‘approximately separated’. But why do we even use
the partial trace? Typically, the use of the partial trace is motivated entirely in virtue
of its statistical/probabilistic properties, namely, that it is the “the unique operation
which gives rise to the correct description of observable quantities for subsystems
of a composite system” (Nielsen and Chuang 2010, p. 107; emphasis in original), in
the sense that it preserves the (probabilistic) predictions generated for single-system
observables with operators of the form 1 ⊗ Â (cf. ibid.). And of course, the trace
operation on one of the subspaces computes Born probabilities. Thus, Baker (2007,
p. 164) argues, “the employment of decoherence to identify branches depends upon
the unlikeliness of low-weight events, the framework of quantum games in which
the theorem is formulated presumes its conclusion.” (my emphasis – FB)

58More technically phrased, Wallace (2012, p. 163) represents an ‘act’ by a unitary Û and one’s
quantum state |ψ〉 is assumed to be in a ‘macrostate’ M which is a subspace of the Hilbert space
H, as is the ‘reward’, R, because not every detail about these quantum states matters. So to avoid
the language of measurements, self-adjoint operators, and eigenvalues, Wallace (2012) appeals
only to unitary operators and subspaces to model reward situations and actions. He then (p. 179)
defines branching indifference such that if one’s own quantum state |ψ〉 is in M and M ⊂ R,
then one is indifferent at |ψ〉 about either performing Û such that Û |ψ〉 ∈ R or leaving |ψ〉 alone
(performing 1M). This makes the problem quite obvious: in our scenario above, the macrostate
would lie in the ‘reward’ space (imminent catastrophe), but we could still dislike a unitary with the
effect of ‘more catastrophes happening’ due to branching, i.e. we could rationally want to avoid
multiplication within R.
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Wallace (2012, p. 253), in contrast, urges us to “think of the significance of the
Hilbert space metric [as occurs in the partial trace – FB] as telling us when some
emergent structure really is robustly present, [. . . ] a perfectly objective feature of
the physics, prior to any considerations of probability.” It is unclear what the force
of this suggestion is though, since the standard reason to use the partial trace rather
than some other operation is that it gives rise to the correct subsystem statistics.

An additional worry about the Deutsch-Wallace approach is that the targeted
explanandum is a different one. What really startles us are our observations in
experimental situations that conform to the Born rule (correlated distant spins,
build-ups of interference patterns. . . ). So in asking about the validity of the Born
rule in the MWI, we were inquiring rather how and whether it predicts appropriate
frequencies. Even if the argument that rational agents would let the Born rule guide
their actions could succeed, this would hardly explain the (surprising) frequency
data.

The second aforementioned approach to proving the Born rule, due to Zurek
(2003, 2005), is far better off in this respect. But it requires a lot of philosophical
clarification and ultimately also suffers from (different) problems.59

Zurek’s (2003, 2005) approach rests on the following observations. Recall (from
Sect. 2.1.3) that one can write any entangled state (in a separable Hilbert space)
of system S and environment E in a bi-orthogonal (or ‘Schmidt’) form, |SE〉 =∑

j αj |Sj 〉 |Ej 〉, wherein
{ |Sj 〉

}
j∈J and { |Ek〉}k∈K are ONBs of the system space

HS and the environment space HE respectively. Since the αj are complex numbers,
one can always write them as |αj |eiϕj , where |αj |, ϕj ∈ R (|αj | the modulus).
Given these preliminaries, Zurek (2003, p. 1) points out that one can perform
certain actions (represented, of course, by operators) on the system states alone and
subsequently perform other actions on the environment states alone, and then end up
with the original state, so that it is as if one had not done anything to the system at
all. In other words: quantum states have a kind of ‘environment-assisted invariance’
or envariance (cf. Zurek 2003, ibid.).

To make things precise,60 take the following definition (as gathered in Boge
2016b from Zurek’s somewhat more casual writings):

Definition (Envariance) Let |SE〉 ∈ H = HS ⊗HE be a joint state of a system
of interest S and its environment E, and let ÛS = ûS ⊗ 1E be a unitary operator
acting non-trivially solely on the space HS . Then |SE〉 is called envariant under
ÛS iff there is an ÛE = 1S ⊗ ûE , acting non-trivially solely on HE , s.t.

ÛEÛS |SE〉 = |SE〉 .

59Again, we will only give highlights; the reader interested in details of the proof may be referred
either to the original papers or to Boge (2016b, p. 32–41) and references therein.
60In what follows, we focus on the details given in Zurek (2005) and recaptured in Boge (2016b,
p. 31 ff.), since these are already informed by criticism (e.g. Barnum 2003; Caves 2004; Mohrhoff
2004; Schlosshauer and Fine 2005).
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Operators may also be called envariant on a given set of states if all states in the
set are envariant under them. A crucial thing to note is that Zurek considers only
unitary transformations, and that he has to do so in order to derive certain lemmas,
but that other, non-norm preserving operations are thinkable without problem (cf.
Boge 2016b, p. 32) for which these lemmas would not hold. One thing at a time
though.

To see envariance at work, take the simple example of two qubits S, E with joint
Schmidt state |�SE〉 = |α1|eiϕ1 |S1〉 |E1〉 + |α2|eiϕ2 |S2〉 |E2〉. Now take the two
operators

ÛS :=
(
|S1〉〈S1| ei(ϕ2−ϕ1) + |S2〉〈S2| ei(ϕ1−ϕ2)

)
⊗ 1E, (6.29)

ÛE := 1S ⊗
(
|E1〉〈E1| ei(ϕ1−ϕ2) + |E2〉〈E2| ei(ϕ2−ϕ1)

)
(6.30)

These are clearly unitary (just complex conjugate the phases to see this), and acting
with ÛS on |�SE〉 has the effect of switching the phases,

ÛS |�SE〉 = |α1|ei(ϕ1+ϕ2−ϕ1) 〈S1|S1〉︸ ︷︷ ︸
=1

|S1〉 |E1〉 + |α1|ei(ϕ1+ϕ1−ϕ2) 〈S2|S1〉︸ ︷︷ ︸
=0

|S2〉 |E1〉

+ |α2|ei(ϕ2+ϕ1−ϕ2) 〈S2|S2〉︸ ︷︷ ︸
=1

|S2〉 |E2〉 + |α2|ei(ϕ2+ϕ2−ϕ1) 〈S1|S2〉︸ ︷︷ ︸
=0

|S2〉 |E2〉

= |α1|eiϕ2 |S1〉 |E1〉 + |α2|eiϕ1 |S2〉 |E2〉 , (6.31)

whereas ÛE will basically do the same thing in reverse on HE , and we have
ÛSÛE |�SE〉 = |�SE〉 as desired.

It can then be proven, as a lemma, that an operator ÛS is envariant on some
Schmidt state |SE〉 = ∑

j |αj |eiϕj |Sj 〉 |Ej 〉 iff the system-part ûS of ÛS can be

represented as ûS = ∑
k e

iϕ̃k |Sk〉〈Sk| (ϕ̃k ∈ R), and more importantly, that a state
|SE〉 =∑

j |αj |eiϕj |Sj 〉 |Ej 〉 is envariant under a swap (we only give the system
part here)

ûS(j � k) =
(
eiϕj,k |Sj 〉〈Sk| + e−iϕj,k |Sk〉〈Sj | +

∑
j �=� �=k

|S�〉〈S�|
)

(6.32)

iff |αj | = |αk|. Swaps are exchanges of states (just contemplate their effect on a
given state by a calculation comparable to that in (6.31)) with an additional arbitrary
modification of the phase. Both of these lemmas require that one presupposes the
transformations to be unitary. In the first case this is because the uniqueness of the
representation would obviously fail (one would have the modulus |αj | as another
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degree of freedom). And in the second case it is because swaps are undone by
counterswaps on the environment,61

ûE (j � k) = e−j (ϕj,k+ϕj−ϕk) |Ej 〉〈Ek| + ei(ϕj,k+ϕj−ϕk) |Ek〉〈Ej | +
∑
j �=� �=k

|E�〉〈E�| ,
(6.33)

and in case one would allow for a rescaling due to the initial swap, i.e. a
multiplicative argument that has the effect |αj | �→ |αj | · |αk ||αj | , then the counterswap

would merely have to do the opposite, |αk| �→ |αk|· |αj ||αk | , and the original state would

be restored without the implication |αj | = |αk| (cf. also Boge 2016b, p. 32).62

Why are these two lemmas important anyway? Zurek (2005, p. 4) uses them
to derive two intermediate results, namely, that probabilities cannot depend on
the phases, basically because these can be exchanged without affecting the state
of the system that is supposed to be associated with a respective probability, and
that component states |Sj 〉 |Ej 〉 and |Sk〉 |Ek〉 in a global (Schmidt) state |SE〉
are associated with equal probabilities if they are associated with equal moduli
(|αj | = |αk|).

How can Zurek establish these things? To that end, he has to assume, first of all,
the following three premises63:

Premise 1 To represent the alteration of the state of a system S by a unitary operator
û, û must act on the Hilbert space HS of that system.

Premise 2 All measurable quantities pertaining to a system S and their respective
probabilities are fully and exclusively specified by S’s state.

Premise 3 The state of a subsystem Sj included in a larger system Stot =
S1S2 . . . Sj . . . SN−1SN is fully and exclusively specified by the state of Stot.

Premise 1 seems fairly uncontroversial, given the structure of QM; Premise 3 is
an equally uncontroversial (almost ‘analytic’) statement about the composition of
systems.64 Premise 2 may strike us as somewhat odd though: Did we not inquire
where the probabilities come from in the first place? That observation is certainly
correct, but Premise 2 should be understood more as a bridging principle; it would
be unreasonable to derive probabilities from an inherently non-probabilistic theory,
or, as Schlosshauer and Fine (2005, p. 211) put it: “we need to ‘put probabilities in
to get probabilities out.’” In other words: In embracing Premise 2 we merely assume
that there may be probabilities somehow, and we take it that they are (exclusively)

61We omit the additional phase degree of freedom that is effectively 1 (cf. Zurek 2003, p. 2).
62Author’s note: I am indebted to Rochus Klesse for raising my awareness on this point.
63We here use the paraphrases also given in Boge (2016b, pp. 32–33).
64Note that the converse would be much less uncontroversial, due to the considerations of ‘holism’
that have long pervaded the philosophy of QM (e.g. Teller 1986; Healey 2009).
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associated with a system’s state. What these probabilities are is then determined by
the details of the proof (as we shall see).

To derive the result that equal moduli are associated with equal probabilities, and
to subsequently derive the Born rule, Zurek (2005), however, has to assume one
of three further premises. In Boge (2016b, p. 39) it was argued that one of these
additional premises is inherently implausible (Premise (4b) on p. 33 therein), so we
will here focus only on the remaining two:

Premise 4(a) If swaps of two orthonormal states in a joint Schmidt state |SE〉
leave the state of S unchanged, the probabilities for the outcomes associated with
these states must be equal.

Premise 4(b) The outcomes associated with states in a tensor term |Sj 〉 |Ej 〉 of
some Schmidt state |ΨSE〉 are perfectly correlated, i.e., if state |Sj 〉 is measured on
|SE〉 = ∑

j αj |Sj 〉 |Ej 〉, state |Ej 〉 will be measured with probability 1 as well
(and vice versa).

The proof from premise 4(b) is fairly straightforward and requires in addition
only premises 1–3 and the definition of conditional probability. But this proof does
not convey any meaning to the word ‘probability’ in the context of the MWI (does
not address the incoherence problem). We knew already that quantum states imply
the observation of perfect correlations (after sufficient post-selection and general
correction for noise etc.). How does that tell us anything about the occurrence
of certain frequencies of observations of a given type on any one branch in an
Everettian universe?

The proof from premise 4(a) is pretty much immediate, given the other premises
and aforementioned lemmas. However, it is not really clear here why we should
accept premise 4(a) either. Zurek (2005, p. 5) relates his approach to Laplace’s
(1814, p. 6) principle of indifference (only later named thus) and considers it as a
kind of ‘objectivization’ thereof, as he believes to show the “‘objective indifference’
of the physical state of the system in question rather than the observer’s subjective
indifference based on his state of knowledge.” (Zurek 2005, p. 5; emphasis omitted)

As it stands, this is hardly a meaningful statement. ‘Indifference’ is a state
of conscious beings with preferences, at least if taken non-metaphorically. So it
cannot be (straightforwardly) applied to an unconscious physical system. Laplace’s
(1814) original intention in devising the principle of indifference presumably was
a rationality constraint, that one should not believe in one out of a bunch of
equal-appearing options simply ‘out of a hunch’. And it is treated this way in
objective Bayesian approaches to probability and formal epistemology (cf. interlude
I and the ‘equivocation norm’), wherein the principle of indifference, which itself
ultimately leads to paradoxes, is typically replaced (or ‘approximated’) by entropy
maximization (cf. Williamson 2010, pp. 21 ff. and 25 for reference).

Now in order for his approach to even address the incoherence problem of the
MWI, Zurek has to supply some suitable meaning to ‘probability’. While this is not
being done in early stages of the proof, more insight transpires when one consults
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the final proof of the Born rule,65 including also cases of unequal coefficients, and
Zurek’s (2005, pp. 9–10) subsequent discussion.66

In this proof (that, to recall, presupposes the intermediate equal-modulus result)
Zurek (2005, p. 7) first discusses the case in which the moduli are of the form |αj | =√
mj
M

, for mj ,M ∈ N, i.e. are all square roots of positive rational numbers. He
then extracts from the environment in a Schmidt state |SE〉 a “counterweight-
counter” (ibid.; emphasis in original), which could be the measuring apparatus, and
which is assumed to have a sufficiently high-dimensional Hilbert space to count
the multiplicities mj , i.e. to ‘spawn off’ mj subsequent branches for a tensor term

|Sj 〉 |Ej 〉 that has coefficient αj =
√
mj
M
eiϕj . In other words: The probability of the

occurrence of a state |Sj 〉 under environmental conditions |Ej 〉 can be interpreted
as a tendency (propensity) to ‘spawn off’ mj further branches, in which the state
is still |Sj 〉. This leads to the prediction of a frequency mj/M in longer runs of
experiments on similarly prepared states and nicely explains our observations as
‘observers’ in these branches.67

In principle, this is a quite brilliant approach; but one smells trouble when one
confronts the possibility of such a branch counting, as is employed in the proof at the
stage where the ‘counterweight counter’ takes track of the multiplicities. There are
two general reasons. The first is the reason multiply appealed to by Wallace (2012),
that “the branching structure is given by decoherence, and decoherence does not
deliver a structure with a well-defined notion of branch count.” (his p. 120) His
reason to believe so is that

[v]ery small changes in how the decoherence basis is defined, or the fineness of grain
that is chosen for that basis, will lead to wild swings in the branch count. Insofar as a
particular mathematical formalism for decoherence does deliver something that looks like
a branch count (and many do not), that something is a mathematical artefact of no physical
significance. (ibid.; my emphasis – FB)

A similar opinion is expressed by Dawid and Thébault (2015, pp. 1561–1562),
who write:

Since there is no unique way to specify at which stage two branches have fully decoupled
and therefore must be counted separately, it is impossible to specify one definitive branching
structure for a quantum process. This in turn implies that no definitive probabilistic
conclusions can be drawn from branch counting since the number of branches is inherently
indeterminate.

65The proof is first only given for finite dimensional spaces. All other cases are treated in a quite
straightforward and compelling manner by Zurek (2003, p. 3 and 2005, p. 27 ff.) though, once one
accepts the proof in finite dimensions (cf. also Boge 2016b, pp. 36 and 37 ff.).
66It should be noted that Zurek does not commit to the MWI directly (e.g. Zurek 2009, p. 185), but
his method of proof has been picked up in this context (cf. the discussion below), and ubiquitous
talk of ‘branches’ in Zurek’s writings (e.g. Zurek 2005, 2009) certainly invites for this.
67We have been careful to appeal to a propensity rather than directly to frequencies, so that cases
with moduli that are not square roots of rational numbers and are treated by a limiting procedure
(cf. Zurek 2003, p. 3) may be understood on equal terms.
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Fig. 6.1 Branching structure
with unequal distribution of
an event over branches at
different times
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Whether these arguments are compelling is open to debate. We have argued
multiple times that consciousness must ‘cut off’ in a way that the physical states do
not, even after the decoherence process has taken place. No conscious observer ever
feels like being only ‘mostly’ in a state of having observed ‘spin up’, say, and still
‘a little bit’ like having observed ‘spin down’. Nor is it even clear what a perceptual
state of that sort would be like. Since the probabilities only pose a pressing problem
in relation to (conscious) observations, it is not entirely unreasonable to suggest
that consciousness may induce ‘states with compact support’ which at least fully
eliminate the overlap between Zeh’s (2000, p. 226) observed or apparent worlds
(cf. also Boge 2016b, pp. 42–43). But of course the appeal of the MWI as entirely
providing an interpretation of QM ‘from within’ is thereby significantly reduced.

There is a second, independent reason to be suspicious of counting-based proofs
of the Born probabilities in a branching structure like the MWI, which is also
discussed by Wallace (2012, p. 120). Consider, following Wallace, a very simple
branching toy-universe as depicted in Fig. 6.1, and assume that one gets handed
a coin at t1 in the A-world but not in the B-world and that having the coin persists
throughout allAworlds, whereA splits further intoA1 andA2 at t2. If one identifies
the probability p(coint1≤t<t2) of having a coin for the specified times with the
fraction of branches on which one has the coin, then this would clearly be 1

2 .
However, in all A-worlds the having of the coin remains constant, so that for times
t ≥ t2 this probability becomes 2

3 . But by the law of total probability, one would
have

p(coint2≤t ) = p(coint2≤t |coint1≤t<t2) · p(coint1≤t<t2)+

+ p(coint2≤t |no coint1≤t<t2) · p(no coint1≤t<t2) = 1 · 1

2
+ 0 · 1

2
�= 2

3
. �

(6.34)

The very laws of probability would have to be changed if one were to make sense
of probabilities in terms of branch counting, and it is not even straightforwardly
foreseeable how this should be done: Assume, for instance, that the A worlds after

the splitting would have respective modulus-weights of
√

1
3 and

√
2
3 . Then according

to a Zurek-style argument, there would be four worlds in total, one A1 world, two
A2 worlds, and one B world. So p(coint2≤t ) would be 3

4 which is still not 1
2 , as

required by the law of total probability.
Fixing this problem would spare us modifications of the (unitary part of the)

quantum formalism, but it would presumably imply, at the same time, massive
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modifications of the classical probability calculus—which seems like quite a
burden, given that this calculus has been put to good use in the sciences long before
the advent of QM.

There is a kind of ‘middle way’ in between the two approaches discussed so far
that has been suggested by Carroll and Sebens (2014). Their proof is, in its central
steps, virtually the same as that of Zurek (2005), in that they reduce, for instance,
“the problem of two branches with unequal amplitudes to that of three branches with
equal amplitudes.” (Carroll and Sebens 2014, p. 166) However, extending a basic
proposal by Vaidman (2012, p. 304 ff.), they interpret this probability they derive
in terms of a self-locating uncertainty. Shortly after the physical measurement
process, when O0 has already become O↑ and O↓ (or died off to give life to them),
and immediately before O↑ and O↓ have the conscious result ↑ or ↓ respectively
(between stages (ii) and (iii) in our analysis of the measurement process; cf.
Sect. 2.1.4), there will be ‘room for’ an uncertainty as to which observer one is:

The timescale for decoherence for a macroscopic apparatus is extremely short, generally
much less than 1020 sec. Even if we imagine an experimenter looking directly at a quantum
system, the state of the experimenter’s eyeballs would decohere that quickly. The timescale
over which human perception occurs, however, is tens of milliseconds or longer. Even the
most agile experimenter will experience some period of self-locating uncertainty in which
they don’t know which of several branches they are on, even if it is too brief for them to
notice. (Carroll and Sebens 2014, p. 161)

Since the probabilities do hence not concern O0’s credences but rather “how the
various future selves into which you will evolve should apportion their credences”
(Carroll and Sebens 2014, p. 168), this immediately avoids the difficulties sur-
rounding the subjective uncertainty view that we discussed in the Deutsch-Wallace
approach.

But there are still serious difficulties: First of all, the very meaning of ‘proba-
bility’ now depends on somewhat uninteresting subjective uncertainties during tiny
timescales of some “tens of milliseconds”, which impairs on the question of the
correct explanandum again (frequency data). One might come to terms with this
‘insight’, but keeping in mind that the proof is basically the same as Zurek’s, it still
implies a branch counting strategy. Even if the decoherence-induced problems with
branch counting might be overcome by leaving some room for consciousness the
MWI (which has to be incorporated anyways), the difficulties arising from the rules
of the probability calculus seem much harder to tackle. And Carroll and Sebens
(2014, p. 162), in fact, only address difficulties with branch counting by appeal to
the naïvest kind of strategy, wherein each branch is simply associated with an equal
weight or multiplicity.

In conclusion, there are many open questions, and there is still a general lack of
clarity in all these approaches. As Kent (2015, pp. 215–216) puts it, in a piercing
remark:

Wherever one thinks of the scientific status of many worlds quantum theory, one cannot
reasonably [. . . ] think it is so obvious how to translate equations into statements about a
many-worlds reality that arguments and explanations are redundant.
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6.3.4 Matters of Ontology

Kent’s observation at the end of the previous section, that translations of equations
into statements about a many-worlds reality are typically not that obvious, also has
an impact in the non-probabilisitic part of the MWI. Recall that Zeh (2000, p. 226)
has the quantum world “described by a wave function” that corresponds to “one
superposition of myriads of components” where the “branches” rather correspond
to “the observed (apparent) ‘world’”.

If we take this to mean that for Zeh the world really is ‘all wavefunction’,
the MWI presented in this fashion comes out as an instance of what Wallace and
Timpson (2010) refer to as wavefunction realism. This general ontological stance in
the foundations of QM was especially popularized by David Albert (1996, p. 277;
my emphasis – FB) who describes it, in a different context, as follows:

the space we live in, the space in which any realistic understanding of quantum mechanics
is necessarily going to depict the history of the world as playing itself out (if space is the
right name for it [. . . ]) is configuration-space. And whatever impression we have to the
contrary (whatever impression we have, say, of living in a three-dimensional space, or in a
four-dimensional space-time) is somehow flatly illusory.

As formulated above, this makes the position representation of the state vector
somewhat preferred, as representing a real (waving) field on a high-dimensional
space (cf. also Wallace and Timpson 2010, p. 706, on this point). One finds
similar passages in Everett (1973), namely that “the wave function itself is [. . . ]
the fundamental entity, obeying at all times a deterministic wave equation” (p.
115), and one also finds Everett struggle to relate “the existence of macroscopic
objects, and [. . . ] their ordinary (classical) behavior in the three dimensional world
to the underlying wave mechanics in the higher dimensional space.” (p. 86) Only in
the modified version published first did he more modestly present his theory such
that the wavefunction is “the basic physical entity with no a priori interpretation.”
(Everett, 1957, p. 455; emphasis in original).

Wavefunction realism seems to be deeply connected to the MWI. Yet there are
many good reasons to object to wavefunction realism. Maudlin (2010a, p. 127;
emphasis in original), for instance, observes that in many expositions of the MWI,
macroscopic objects are still described as being “somehow [. . . ] ‘made up’ of a
very large number of atoms that all are located in a common space and therefore
can have particular configurations. [H]ow, in a truly monistic theory, to get from a
high-dimensional space to a configuration space is not even asked.” The point is that
the wavefunction cannot evolve as an object on ‘configuration’-space if there are,
strictly speaking, no configurations of lower-dimensional particles. But even if one
were to make sense of these configurations as some sort of ‘mere metaphor’, the
following basic question remains:

if all there is the wavefunction, an extremely high-dimensional object evolving in some
specified way, how does that account for the low-dimensional world of localized objects that
we start off believing in, whose apparent behavior constitutes the explanandum of physics
in the first place? (Maudlin 2010a, p. 132–133; emphasis in original)
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How does Albert’s ‘flat illusion’ really arise, and how does acceptance that it
may be an illusion help us to understand the existence and behavior of the apparent
lower-dimensional objects?

Monton (2002), moreover, argues against wavefunction-realism on the grounds
that there is not even supervenience of possible three-dimensional spaces on the
wavefunction in a 3N -dimensional space. Among other things this is so because
“nowhere in the 3N -dimensional space is it specified which dimensions correspond
to which particles” (p. 267), so that “given the state of the objects in 3N -dimensional
space, one cannot establish the state of the objects in three-dimensional space.” (p.
268) This implies, by definition (e.g. McLaughlin and Bennett 2011, p. 1), that no
supervenience holds—there can be changes in the 3-dimensional spaces without
there being changes in the 3N -dimensional space.

It is hard to understand how the apparent objects in spacetime precisely relate
to the high dimensional space on which the wavefunction ‘lives’, and as Monton’s
arguments show, there are reasons to suspect that there is no clear-cut connection
such as supervenience. This is related, of course, to the plain old interaction problem
that was present in BM and collapse interpretations. As long as one appeals to
wavefunction-realism, similar such concerns are present in the MWI.

Considerations like these have motivated Wallace and Timpson (2010, p. 709
ff.) to suggest an alternative which they call spacetime state realism. Basically,
the suggestion here is to “associate a set of properties (represented by a density
operator) to each region of spacetime.” (Wallace and Timpson 2010, p. 712) How
can this association be effected? Recall, from Sect. 2.2.4 and Appendix C, that in
virtue of the GNS-construction, one can represent a C∗-algebra of local observables
by operators in a Hilbert space, and that the folium of the representation will define
local density operators. This is basically the route ultimately taken by Wallace and
Timpson (2010, p. 711), although they also suggest that “one can even remain at
the more abstract level, forego the representation theorems and just take the C∗-
algebraic state itself as denoting the properties of a region.” (their p. 712)

Applied to the MWI, the implication in both cases is that, for any given
‘observable’, there will be a collection of values associated to a spacetime region.
Assume also that one has a state ρ̂O∪O′ for two spacelike separated regions O and
O′. Then by tracing over the degrees of freedom for one of these regions, say O′,
one obtains a state ρ̂O for the respective other region. But of course the properties
measurable in O can be correlated with the values measurable in O′ in virtue of
entanglement. Thus local spacetime states will not generally be separable, in the
sense that respective information about O and O′ will not suffice to determine the
state of O ∪ O′ (cf. Wallace and Timpson 2010, pp. 712–713) This is, of course,
exactly the sort of separability at stake in our (Howard’s) SEP from Sect. 4.3.3,68

and what is being denied here is part (2) thereof.
Using spacetime state realism, ‘quantum states’ do not occur as ineffable fields

on configuration space in the MWI, but rather as multivalued properties associated

68Wallace and Timpson refer back to Healey (1991, p. 406) instead.
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with spacetime points, where the multiple values will rarely interfere with one
another and will otherwise typically quickly cease to do so in virtue of decoherence.
This is certainly a massive improvement over wavefunction realism: wavefunction
realism does not properly satisfy our DOC, mostly because (ii) is not addressed (how
do high-dimensional space and lower-dimensional spactimes relate?). (i) and (iii),
in contrast, are more or less satisfied even on wavefunction realism: (i) ‘classical’
objects ‘emerge’ out of the wavefunction in virtue of decoherence, and (iii) the
only thing with real ontological significance are the wavefunction and its dynamics.
Spacetime state realism removes the difficulty associated with satisfying (ii); the
multiplicity is found in spacetime regions, and (i) is satisfied in virtue of observers
being ‘trapped’ inside decohered branches for most of their lives.

However, spacetime state realism only works out for the MWI and on point (iii)
of the DOC once one is willing to accept the additional prose of density operators
representing ‘multivalued properties’, as we have called them, because otherwise
the meaning of density operators as representatives of properties becomes elusive.
Not so, say Wallace and Timpson (2010, p. 701), as they think of their conception
as interpretation-neutral. Moreover, they find the association of density operators
to spacetime points or regions comparable to the association of vectors to points
or regions via vector-valued fields in classical electromagnetism, since they “know
of no rule of segregation which states that only those mathematical items to which
one is introduced sufficiently early on in the schoolroom get to count as possible
representatives of physical quantities [. . . ]!” (Wallace and Timpson 2010, p. 710)

These considerations miss an important point, and the epistemically more
cautious or more empirically-minded philosopher may respond to the polemic
as follows: When one specifies, say, some particular classical magnetic field B

over some region of points {x}x∈O⊆R3 , generated e.g. by some electric current
with density j and computed with the aid of the Biot-Savart law B(x) =
μ0
4π

∫
d3x′ j(x′)×(x−x′)

|x−x′|3 (cf. Jackson 1990, p. 178), one knows exactly what to expect
in a single case observation. The vector valued field B(x) specifies the behavior of
(strength and direction of the field’s effect on) test-objects with magnetic properties
for any such singular observation, and while deviations are possible and one resorts
to multiple trials to confirm the underlying theory, the prediction is still single-case.
Not so in the quantum case: only when we specify a long series of repeated trials
do we know what to expect, as single, ‘non-multivalued’ observes, and we do so in
virtue of the Born-rule statistics predicted by the local density operator ρ̂O. There
is all the difference in the world between the two associations, and it has nothing to
do with early exposure to concepts in schoolrooms.

Our conclusion from this is the following: While spacetime state realism is a
great improvement over wavefunction realism for the MWI, it can only help to
clarify the ontology once the probability problem is solved—in both its dimensions,
quantitative and incoherence-wise. The problem of probabilities is the central
problem of the MWI. And since statistical predictions form the “empirical heart”
of QM (Lewis 2007, p. 62), as long as the MWI “has not been shown to recover
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the astounding empirical success of the textbook quantum recipe” (the orthodox
interpretation), it “cannot appeal to that success for empirical support.” (Maudlin
2014a, p. 808)

6.4 Discussion (ii): No Clear Winner?

Let us take stock of our findings, first on ‘dialectically neutral’ or merely classifi-
catory grounds, and then in the form of the promised discussion of advantages and
disadvantages of respective interpretations. BM introduces particles with definite
positions and velocities at all times as a primitive ontology, and explains quantum
phenomena in terms of the statistics of these. The statistics, in turn, depend on an
effective wavefunction ψ or ultimately on the wavefunction Ψ of the universe, and
it becomes a matter of debate what ψ really represents: (a) a guiding field, residing
in a different, higher-dimensional space, or active information ordered therein; or
(b) an expression of a law-like connection.

In the latter case one can either understand Ψ or a respective law featuring it
as an expression of something real and independent of the particles, or merely
as an expression of their regular behavior as described by a ‘best system’. Let us
denote the ‘pure interpretation(s)’ that embrace (a), i.e. where both, particles and
ψ (or Ψ) have an independent ontological significance as real, independent and
non-nomological entities, simply by BM. Then the other two options may be called
BMN

O and BMN
H respectively, where N stands for nomological, O for ontological

(meaning not-merely-regularity-like), and H for Humean.
As we have seen, the same clarification is possible w.r.t. GRW, CSL, and

gravitational collapse interpretations. Since all of these could respectively fall under
the three respective (coarse) categories, we here refer to the ‘pure interpretation(s)’
(GRWm, GRWf, CSLm, interpreted gravitational models) wherein the wavefunc-
tion is ‘the real stuff’ as CI (short for ‘collapse interpretations’), and to the two
nomological versions as CINO and CINH respectively. So as promised in Sects. 6.1
and 6.2, we can use the introduced terminology to devise a more fine-grained
classification (cf. Fig. 6.2).

As for the MWI, the distinction between spacetime state realism and wavefunc-
tion realism does not seem to validate a similar distinction between ‘nomological’
and ‘non-nomological’ versions. Moreover, we introduced our notion of ontological
interpretations in Sect. 2.3 w.r.t. wavefunction or state vector, and when we used
the term ‘wavefunction’, we did not generally and exclusively intend to refer to
the position representation of the wavefunction, as is being done in wavefunction
realism. Thus, since state vectors and density operators are still intimately con-
nected, at the very least via algebraic states in the GNS-construction, we take it that
there is no ‘non-ontological’ MWI in our sense, regardless of whether one endorses
wavefunction- or spacetime state realism.

It is interesting to see which spaces are filled and empty respectively in Fig. 6.2
and why. Note first that, if the wavefunction is interpreted nomologically in CI
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Fig. 6.2 Classification of different interpretations according to the scheme from Sect. 2.3. The
nomenclature is explained in the text

or BM and one embraces a Humean account of laws (in the sense of BSA, not
necessarily with Humean supervenience), then according to our terminological
choices, these versions should be classified as non-ontological. Our choices for
CI/CINO , BM/BMN

O , and the MWI have been justified before, so they need no
further explanation. We have set the ‘orhtodoxy’, i.e. the minimal Dirac-von
Neumann interpretation into the ontological non-revisionary collapse corner, since
the quantum state is taken to represent the physical state of the system, and since all
revisions were evaluated w.r.t. this very interpretation (so it cannot be revisionary,
by definition).
ψ-epistemic models are set on the boundary of the formally and conceptually

revisionary interpretations, since they suggest to revise both, the formalism and the
orthodox interpretation (the quantum state here does not refer to the physical state of
the system). Why are there no conservative non-collapse interpretations? Because if
one removes the collapse, this is already a conceptual revision, regardless of whether
one also deprives the wavefunction of its ontological significance or not. These
options are forestalled by default, given our terminological choices. The same may
be said about merely formally revisionary non-collapse interpretations; dropping the
projection postulate is a conceptual revision. However, any full version of BM may
be set on the boundary of the formal/conceptual dichotomy, since a Bohmian QFT
or in general a relativistic BM seems to introduce the need for formal revisions as
well, even if a Bohmian guidance equation in the non-relativistic domain is ‘already
in’ the TDSE.

What options are still possible and underrepresented in our scheme? A possibility
is to reinterpret the orthodox scheme, i.e. leave the formalism and the postulates
intact as they are and interpret the quantum state as the physical state of the
system, but assign a different physical meaning to other parts of the theory (upper
rear left corner). Or one could keep the formalism and the postulates intact, but
not interpret the quantum state as a full description of the physical state of the
system (upper rear right corner). This is basically what the historical ensemble-
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interpretations attempted—unsuccessfully—and may also be what some advocates
of modal interpretations have in mind (e.g. Lombardi and Dieks 2012, for an
overview). We will also find another sort of interpretation that fits into this corner in
the next section.

A final option seems to be to adopt the following strategy: accept that the
quantum state is the physical state, as in the orthodox interpretation, and embrace all
the postulates, but redefine what is meant by ‘physical state’ in such a way that the
ontological commitment of the term is loosened. This would be an interpretation
that fits into the front upper right corner, and we will ultimately suggest an
interpretational strategy that is of this sort.

How do the interpretations discussed so far fare in comparison to one another and
w.r.t. our two guiding principles, MAC and DOC? We have argued that both BM
and CI suffer from a lack of ontological clarity as regards the connection between
the realm of the wavefunction and spacetime if one interprets the wavefunction
ontologically, regardless of whether it is construed as a ‘real law’ or not. Humean-
nomological versions were argued to be ontolgically much clearer, on the other
hand, but they come with a loss of explanatory value. The MWI can be made
ontologically clear if one adopts spacetime state realism; but as long as the
probability problem is not solved, it does not predict the observed statistics and
hence has a problem with the constraint of empirical adequacy involved in the MAC.

Moreover, BM in general was said to (still) be in conflict with relativity, and
all CIs were said to involve too much of an ad hoc character. And due to the
non-conservation of energy in CIs, one may here equally arrive at an empirical
inadequacy, should experimental accuracies improve significantly. Finally, we found
ψ-epistemic OMs to be incapable of successfully reproducing the QM predictions
entirely (thereby immediately not satisfying the MAC) and/or to be ontolgically
unclear (‘vacuum ontic states’, gerrymandered formal models. . . ), and we may also
say that the existing models ultimately all involve ad hoc moves, either formally (cf.
the model of Lewis et al. 2012, for comparison) or conceptually (cf. the model of
Spekkens 2007, and our discussion on ‘vacuum ontic states’).

Table 6.1 summarizes our findings. ‘✓’ symbolizes an advantage, ‘✗’ a disadvan-
tage of the respective interpretation or interpretational program/paradigm; if there
is no (unambiguous) answer (yet), we write ‘?’. Some further important features,

Table 6.1 Comparison of different interpretations. ‘✓’ symbolizes an advantage, ‘✗’ a disadvan-
tage, ‘?’ that there is no unambiguous answer or no answer yet

Empirical adequacy Compatibility with SR Ontological clarity ad hocness

ψ-epistemic OMs ✗ ? ✗ ✗

BMN
O /BM ✓ ✗ ✗ ✓

BMN
H ✓ ✗ ✓ ✓

CINO /CI ? ✓ ✗ ✗

CINH ? ✓ ✓ ✗

MWI ✗ ✓ ✓ ✓
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aside from overall ontological clarity and empirical adequacy, have crystallized from
the debate that need to be taken into account here as well: that an interpretation
may have difficulties in compatibility with the relativity theories, and that it may
introduce additional elements in an ad hoc fashion. As we can see, ψ-epistemic
OMs fare worst, followed by CINO /CI, according to our analysis. In the case of ψ-
epistemic OMs, this may be at least partly due to the fact that we do not have any
full ψ-epistemic interpretation yet, but only a collection of partially plausibilizing
models. And in the case of CINO or CI, evidence for an objective collapse (e.g.
measurable increases of energy) would massively tip the balance towards these
interpretations anyway, since the other points (ontological clarity and ad hocness)
are ‘merely philosophical’: maybe the world happens to be hard to understand and
can only be understood by appeal to ad hoc moves.

The interpretations that fare best are the MWI and BMN
H , since they only have

one ‘✗’ respectively. However, as long as no contradicting evidence is (or even can
be) found, CINH fares equally well. In fact, from a purely ‘philosophy of science’-
point of view, that all CI make deviating predictions should count as a virtue, not a
vice: They are not immune to falsification.

Notably, the collapse- and Bohmian interpretations that fare best according to our
catalog also have to be amended with a suitably therapeutic attitude: one ‘simply has
to accept’ certain kinds of phenomena and certain correlations, such as flashy events
occurring out of nowhere and for no reason (CINH ), detectors indicating particles
where there are none on a regular basis (BMN

H ), and correlations between particles
or flashes over large distances, again for no reason.

The MWI avoids all these complications, but it does so at a remarkably high
price: due to the persistence of the probability problem, one looses empirical
adequacy. BM in general additionally suffers from difficulties of reconciliation with
SR (not to mention GR), which is not the case with the MWI.

But none of these disadvantages force one to give up either of the associated
research programs. Maybe one can find a way to reconcile decoherence, branch
counting, standard probability calculus, and the Born rule in the MWI after all.
Maybe one can argue for the possibility of a reconciliation of BM and relativity
on the grounds of reinterpreting the content of the relativity theories, or modifying
them to the extent that evidence allows. And so forth.

The latter sort of strategy is, in fact, basically suggested by Bohm and Hiley
(1993, p. 288):

We have to be careful [. . . ] not to assume that a theory has an absolute and unlimited validity
just because it has agreed with a very wide range of experiments and because its form is
aesthetically pleasing. From these reasons it does not follow that the theory of relativity is
an absolute truth.

This is certainly a valid point, and it leads them (ibid., p. 290) to speculate about
an alternative to SR (and presumably GR) that

would be reminiscent of the Lorentz-type ether theory within which there were large scale
objects with structures undergoing processes that would change with velocity in such a way
as to bring about Lorentz invariance in terms of frames defined through these structures.
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However, no such theory exists to date and GR, containing the predictions of
SR, continues to make successful predictions (e.g. Castelvecchi and Witze 2016,
for a more recent, ‘spectacular’ one). Note, finally, that we went only briefly into
the reasons to believe that CI fare better than BM on grounds of compatibility with
SR, and of course these reasons could be disputed as well. This would then change
things in disfavor of all CI and turn the advantages in this respect into disadvantages.

6.5 Intermediate Conclusions (ii)

The insight that crystallizes from the foregoing debate is that there is as yet no clear
winner among the interpretations considered. Note that our choice in considering
only BM, CI, and the MWI was not without reason: these are the currently
most hotly debated (ontological) interpretations, since (arguably) all remaining
interpretations suffer from even worse fundamental deficits, whence some of them
have already largely been ‘purged from the debate’.

Once more we hit a road block. None of the ontological interpretations discussed
so far strikes us as preferable, none of the priests has shown us the light (cf. the quote
by Fuchs at the beginning of this chapter), and we have given detailed reasons for
why that is. Moreover, the natural response discussed in Chap. 4 and its execution
in terms of ψ-epistemic OMs seem to be among the worst faring interpretational
schemes. So QM neither promotes a unique and clear ontology, nor is it reducible
to a ‘mere lack of knowledge’.

There are, however, still good reasons to think that QM does have to do with
knowledge in some sense. We had focused mostly on the deficits of Spekkens’ toy
model w.r.t. explanations of the ‘classics’ of QM (interference and entanglement)
in terms of true states λ. But the treatment of non-commutativity and collapse as
belief-update were somewhat convincing nonetheless, and we mentioned that there
are further examples, specifically from QIT, that Spekkens reproduces in terms
of knowledge. We also demonstrated in detail how the assumption of true states
λ leads to all kinds of trouble, among other things to the derivability of Bell-
type inequalities from the PCC. Fuchs (2014, p. 388) similarly judges that “the
phenomena [that Spekkens’ model reproduces – FB] arise in the uncertainties, never
in the mechanical configurations. It is the states of uncertainty that mimic the formal
apparatus of quantum theory, not the toys’ so-called ontic states[. . . ].” (my emphasis
– FB) So maybe there is a way to make sense of QM ‘epistemically’ but without the
λs.

Moreover, there are reasons to suspect that QM is an inherently probabilistic
theory, and depending on one’s interpretation of probability (or the probabilities
at play, at any rate) this could again be fleshed out to mean that knowledge or
information or belief. . . are at stake in some sense in the interpretation of QM all
along. Recall how we argued in Sect. 6.3.3 that crucial parts of Zurek’s (2005, 2003)
proof are impossible if one does not presuppose a restriction to unitary operators
as representations of state-transformations. Why does one, in fact, use unitary
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operators to describe state changes in QM? Hughes (1989, p. 115 ff.) motivates
the use and structure of unitaries as state transformations entirely from probabilistic
concerns; and similarly (Mohrhoff 2004, p. 228), in analyzing Zurek’s (2003) proof,
asks why the operators encoding the evolution given by the TDSE are unitary,
and answers: “Because probability is conserved whenever the system in question
persists (is stable).” (my emphasis – FB)

This and the fact that a whole brand of interpretations of ‘probability’ make
it an expression of epistemic uncertainty, together with the apparent failure of
the ontological interpretations discussed, certainly suffice to motivate a return to
broadly ‘epistemic’ considerations in the next chapter.

But even if we thereby give up on the attempt to say what the ‘world according
to QM’ is like, we must acknowledge, as a result of the discussion in the previous
two chapters, that QM does put constraints on what the ‘world in spite of QM’ can
be like. By and large, this is due to entanglement, the feature of QM that “enforces
its entire departure from classical lines of thought.” (Schrödinger 1935a, p. 555)
And all of the ontological interpretations acknowledge this fact: Either one is faced
with unexplained correlations in the behavior of distant (Bohmian) particles, flashes,
or the local values of a mass density, or one must embrace novel metaphysics of
‘holistic dispositions of motion’ or ‘nomological entities sui generis’ to account
for the correlated observations, or, alternatively, accept that one is ‘tricked’ into
experiencing the appearance of such correlations in virtue of the dynamics of
multiple possibilities that are concurrently realized in spacetime regions and ‘branch
off’ after suitable interactions. These are (basically) the possibilities laid out by the
ontological interpretations discussed in this chapter for dealing with entanglement
and its implications.



Chapter 7
Reconsidering Knowledge, or, Coming
to Terms With Quantum Mechanics

There is no quantum world. There is only an abstract quantum mechanical
description. It is wrong to think that the task of physics is to find out how
Nature is. Physics concerns what we can say about Nature.

—Attributed to N. Bohr by Petersen (1963, p. 12)

7.1 Preliminaries: A Change in Perspective

In conclusion of the previous chapter, we argued that the strong involvement
of probabilities in the formalism of QM and the fact that one is not bound to
introducing (formally explicit) hidden variables λ justifies to reconsider knowledge.
We also briefly mentioned that there are further reasons in QIT to consider quantum
states as being concerned with knowledge. There is, for instance, a theorem1 that
any pure quantum state |ψ〉 cannot be reliably distinguished from any other, non-
orthogonal one, |φ〉, by means of any measurement representable as a POVM. Based
on this, Caves et al. (2002a, p. 3) have argued that the only means of reliably
identifying the pure state assigned to some system “requires consulting the assigner
or the records he leaves behind”, which they take as a strong indication for quantum
state-assignments being expressions of the assigner’s knowledge or information.

However, that this helps us understand QM only holds if one can find an
‘epistemic’ interpretation that works out without talk of hidden states λ, can accom-
modate the fact that we have to use the QM formalism for certain applications, that

Author’s note: I owe the contrast between ‘making sense’ and a mere ‘coming to terms’ to Markus
Schrenk (private communication).
1Cf. Nielsen and Chuang (2010, p. 87); the proof is quite straightforward.
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we do find the correlations predicted in certain experiments, and that QM has lead
us to a great many practical applications that we could not even have dreamed
of before its advent. Arguably, the concepts surrounding the term ‘Copenhagen
interpretation’ are roughly of this kind; but we argued already in Chap. 1 that there
is no well-defined, indisputable core to this interpretation, and that many different
(sometimes incompatible) ideas are typically subsumed under the label. A more
unified contestant interpretation of the same sort, only advanced in more recent
years, goes by the name Quantum Bayesianism.

Before going into details, let us make some general remarks. First of all, the
interpretations presented in this chapter all aim at (re)solving the OP by largely
embracing QM as it is being put to use, while reassessing the content or meaning
of the state vector. This means, however, that grossly the same strategy for dealing
with the kinematical part of the MAC is employed as in Chap. 4; the quantum state
is deprived of its ontological significance, whence the PP, when applied, does not
pose a problem anymore: we do not believe that the system ‘literally’ undergoes a
‘sudden change’ from a superposition of eigenstates of some observable to one of
the eigenstates of that observable—because neither the superposition state nor the
eigenstate represents the ‘outside world conditions’ of a physical system.

The crucial difference to the project discussed in Chap. 4 is that no formal
revisions, or at least none on the ‘ontological side’, i.e. w.r.t. the states and dynamics
standardly supposed to represent mind-independently evolving systems, are being
suggested here. We hence formulate the following more cautious conjecture (which,
for want of a better name, we call ‘purely epistemic’ for now):

Conjecture 5 (The purely epistemic view) The quantum mechanical state
vector somehow has to do with the epistemic conditions of real or ideal
observers.

An immediate worry might be this: ‘Are we then, dropping formal revisions,
not back to the old ensemble-interpretations?’ The answer is ‘no’, because no
unmentioned, ‘(quasi-)classical’ hidden variables like hidden momenta etc. are
assumed here either, and a ‘position eigenstate’ is not at all assumed to represent
an ensemble of systems in a definite position but with varying momenta. In fact it
remains to be seen if and what the quantum state represents at all.

How can any such proposal work? How can it satisfy the DOC, if talk of
the mind-independent states of systems is altogether avoided? The answer is that
it cannot, and that we here explicitly take a step back and re-evaluate what an
interpretation of QM should provide, given that all ontological interpretations
considered seemed to fail on some grounds. All the interpretations discussed in
the following have to do with epistemology rather than ontology. So while we may
appreciate ontological clarity to the extent that it can still be provided by such an
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approach (e.g. regarding the subject-object relation), it seems sensible to formulate
an alternative to our DOC at this point:

Desideratum of Epistemological Clarity (DEC) Any non-minimal but
also non-ontological interpretation of QM that does not introduce additional
formal elements for alternative ontological considerations (‘hidden variables’)
should be epistemologically as clear as possible. This means that it should

(i) explain the use of words like ‘classical objects’, and of definite property-
assertions,

(ii) explain the switch from ‘quantum’ to ‘classical’ concepts as precisely as
possible,

(iii) and specify the significance of all (formal and informal) ingredients as
regards the epistemic situation of a user of QM.

Applying (DEC) rather than (DOC) implies a switch in perspective. QM is a
physical theory that was developed during the course of the twentieth century.
Undoubtedly, it has philosophical consequences because it confronts us with the task
of accommodating new empirical evidence and new phenomena into our world view
that do not fit well with world views established in the context of previous physics.
But who ever said that the physics up to the nineteenth century are a suitable guide
to philosophy in the first place, just because they fit somewhat nicely with most
of our everyday convictions and life and common sense intuitions? We stand on
an equally long history of philosophical investigation and argument, developed, to
a considerable extent, independently of the specific contents of the sciences, and
with an appeal in their own right. Why not rather try to understand QM against this
background than trying to mold it into a ‘more physically sounding’ cast, as the
interpretational programs presented in Chaps. 4 and 6 arguably do?

In fact, this may be seen as the general agenda underlying this entire chapter,
and equally, of course, as a project that has its roots already in the writings of
Bohr, Heisenberg, Pauli, Schrödinger,2 and others of that era.3 In the following,

2. . . who, however, was not so comfortable with this “Deliberate About-Face of the Epistemological
Viewpoint” (cf. Schrödinger 1935b, p. 157 ff.).
3Zeh (2012, p. 19) points out that the ‘founding fathers’, especially those who contributed to the
‘Copenhagen’ tradition, were driven, in their interpretive efforts, by their respective world views,
not necessarily even by well worked-out philosophies. To some extent this is certainly correct and
to some extent it even emphasizes our point; that one might seek for answers consulting sources
outside physics. But one should also caution against attributing a false systematic value to the
insight. For one can equally localize the reasons for endorsing any of the ontological interpretations
discussed in Chap. 6 in strong ‘realistic’ intuitions that may in turn be influenced by a naïvely realist
‘world view’. To infer from this (which Zeh does not, at least not overtly) the inferiority of any
of the respective views would simply mean to confound the context of their discovery with the
context of their justification.
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we investigate ways to take this program seriously, and ultimately show how to
combine different strands therein into a proper ‘epistemological’ interpretation of
QM, i.e. one that takes QM as an expression of how we generate knowledge out of
experience.

Now we will successively see that the desiderata of the DEC are met by different
such interpretations to varying degree and with varying presuppositions. And we
will use this insight to develop a viewpoint from which some of them should count
as formally and conceptually revisionary w.r.t. orthodoxy while others may be said
to be conservative on all fronts, given an appropriate reading of the notions occurring
in the quantum postulates.

7.2 The Quantum Bayesian Program and QBist
Epistemology

7.2.1 The Formal Epistemological Background

The first interpretation of interest here is the aforementioned Quantum Bayesianism,
and the heart of Quantum Bayesianism is a subjective Bayesian view of probability.
The heart of the subjective Bayesian view of probability, in turn, are so called
Dutch book theorems, as originally developed by Ramsey (1926) and De Finetti
(1937).4 Dutch book theorems presuppose that one can quantify one’s degrees of
belief in the occurrence of some event A in the form of some belief-function, which
we suggestively call p(A). This is not too far-out an assumption, as it is usually
not difficult to at least order one’s beliefs according to strength, as we also do in
everyday life (cf. Hájek 2009a, p. 173 for some examples). So it is not too large a
step to map them to suitable numbers either.

Dutch book theorems now provide a mark for rational belief in proving that if
one’s beliefs p(A) do not conform to the Kolmogorov axioms (cf. Appendix A), a
Dutch book can be made against one, i.e. a bet or a (finite) series thereof in which
one is certain to loose. Non-Dutch-bookable behavior is often called coherent (e.g.
Earman 1992). These theorems are usually supplemented by converse Dutch book
theorems, that if one’s beliefs p(A) do conform to the Kolmogorov axioms, then a
Dutch book cannot be made against one. And such converse theorems are clearly
indicated to sustain an interpretation of probability in terms of rational belief, since
Dutch book theorems alone provide only a necessary condition for coherence, not a
sufficient one (e.g. Earman 1992, p. 39; Hájek 2009a, p. 177).

The above already indicates in what terms degrees of belief are assumed to be
quantifiable, and we have basically also touched on this in the context of the MWI,
namely in terms of betting behavior. Dutch book theorems hence proceed from

4The origin of the term is not unambiguously clear, but folklore has it that it stems from the bad
reputation of seventeenth century dutch bookmakers (cf. Hájek 2009a, p. 174).
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a betting situation in which a bookie offers a (potential) bettor some amount of
w = ae (w for ‘win’), say, in case event A occurs, and in which the bettor bets
� = be (� for ‘loose’) on A’s occurrence. Then the ‘stakes’ is s = (w + �) and the
‘betting odds’ arew/� (cf. Earman 1992, p. 38). One’s willingness to bet r ·(a+b)e
in a bet where one receives 0e if A does not occur and (a + b)e if it does (which
means that the net win is (1−r) ·(a+b)e if A occurs and the net loss is r ·(a+b)e
else) is then taken to reflect the fact that one’s degree of belief in A is p(A) = r .
Now assume that s may be positive or negative, i.e., that both parties to the bet use
the same criterion for their willingness to bet on A. The first Kolmogorov axiom,
p(A) ≥ 0, then follows straightforwardly, because if one allows p(A) = q < 0,
the betting party for whom s < 0 would be willing to indulge in bets where her
net win is (1 − q)s < 0 if A occurs, and her net loss is q · s > 0 else—a Dutch
book. Disobeying the other Kolmogorov axioms leads to Dutch books in a similar
way, and the converse theorems proceed by the same basic scheme (e.g. Williamson
2010, p. 35 ff.).

So far so good, but subjective Bayesianism has been confronted with a bunch
of objections, most of them based on one’s freedom to choose initial probability
assignments therein, combined with the practice of belief-updating via condition-
alization. Conditionalization proceeds from some prior probability (short: prior)
p(H) for a hypothesis H , which may be based on one’s total beliefs and evidence
E in some present state (whence we may write pE (H)). The dependence or non-
dependence on E is not clear a priori though—one could not believe something
in spite of evidence—and the allowance of a neglect of E in the formation of a
prior can in fact be taken to mark off the radically subjectivist stance from what
Williamson (2010, p. 15) calls empirically based subjective Bayesianism (cf. the
first interlude). If E does not imply anything aboutH though, pE (H) can be chosen
arbitrarily even by the empirically based subjectivist, aside from being constrained
by the Kolmogorov axioms.

After obtaining some new evidence E, however, one’s degrees of belief must
be changed to pE∪{E}(H) = pE (H |E) in evidence-based Bayesianisms, which
is exactly the method of conditionalizing on evidence. In fact, Bayes’ theorem,
p(H |E) = p(E|H)p(H)/p(E) (here given in its simplest form) provides a means
for updating one’s degrees of belief, based on the prior p(H), the likelihood p(E|H)
of the evidence obtaining given that the hypothesis is true, and the degree p(E) to
which the evidence is believed to occur (cf. Howson and Urbach 2006, p. 21).

But apparent problems arise from this freedom to assign priors and the practice of
conditionalization. Assume for instance (cf. Bacchus et al. 1990, p. 490) that some
agent’s beliefs are such that p(A) = 1, p(B) = 0, 2, p(C) = 0, 8, p(D) = 0, 2,
and p(B,D) = p(C,D) = 0, 1, whereA could mean that Peterson is Scandinavian,
B that Peterson is a Swede, C that Peterson is a Norwegian, and D that 80%
of all Scandinavians are Swedes. Upon learning that D is the case, the agent
would have to update her belief that Peterson is a swede, the argument goes, to
p(B|D) = p(D|B)p(B)/p(D) = p(B,D)/p(D) = 1/2. But this is unequal to
0, 8, which should be assumed, according to the belief in the hypothesis that 80%
of all Scandinavians are Swedes.
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Prima facie this means trouble for conditionalization and free choice of priors,
but the argument is easily seen to be question begging: It is simply assumed here that
the statistical statement provides the ‘correct’ probability assignment. Indeed, since
the Scandinavian population is finite, D could (under very favorable circumstances)
just express an analytic probability for ‘drawing’ one Swede from an ‘urn’ of
Scandinavians. But it is still far from clear that this analytic probability provides
the ‘correct’ degree of belief: maybe the agent remains more skeptical than 0,8
about Peterson being a Swede for good reasons contained in his background beliefs
and evidence E , even in the light of the new evidence; maybe she never assigns
probability 1 to the statistical (or analytical) hypothesis in the first place, keeping
in mind possible counting errors and imperfection of statistical methods. And, more
importantly, if one takes the subjectivist stance seriously, then there is just no such
thing as a ‘correct probability assignment’ at all. Indeed, de Finetti (1970, p. x)
put it in bold letters: “PROBABILITY DOES NOT EXIST”. But of course even
de Finetti accepted probabilities as existing qua expressions of belief of (ideal)
agents; what he meant to deny certainly were propensity- or similar accounts (cf.
Healey 2012d, p. 734), wherein probability occurs as “a property of something in
the physical world independent of the epistemic state of anyone making judgments
about it.” (ibid.)

There are many arguments similar to that of Bacchus et al., and they typically
ultimately fail for the same reason: they are question begging. Williamson (2010)
e.g. argues against the background of a “physical chance function” (p. 28), as
does (e.g.) Schurz (2014, p. 160) somewhat more subtly. It is hence unclear that
subjective accounts of probability are doomed to failure due to a miscorrespondence
to objective chances and their acceptance of conditionalization and free choice
for priors—since the existence of objective chance is disputed in the first place.
If the world just happens to be such that one cannot make sense of objective
‘propensities’ or ‘chances’, and the most sense that can be made of the word
‘probability’ is that it quantifies one’s (informed) beliefs (against a background
of subjective uncertainty), or rather, provides a normative guide to acknowledging
certain rationality constraints (avoidance of a Dutch book), then appeals to a “chance
function” or other objective notions are simply deluded.

For now, let us provisionally accept this line of reasoning, which provides
grounds enough to take subjective Bayesianism seriously in the first place. Addi-
tionally we can, to superficially defend subjectivist accounts of probability further,
appeal to tu quoque arguments: in interlude I we laid out how other conceptions of
probability suffer from fundamental difficulties, and how none of them seems to be
clearly preferred (somewhat ironically not all unlike interpretations of QM). These
are no positive arguments for endorsing a subjectivist view though (empirically
based or not) and we should later reevaluate if and to what extent it is positively
plausible to accept any such view, specifically in the context of QM. Let us not
settle this matter yet, but rather focus on how the subjective Bayesian account of
probability relates to quantum states first.
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7.2.2 How to Carry the Program Over to Quantum Mechanics?

In principle, the generalization of the subjective Bayesian framework for prob-
abilities to the quantum case is quite straightforward: interpret all probabilities,
even those appearing in QM, as quantifying degrees of belief of some agent.
Since quantum states are associated with probabilities, this also means that they
themselves should be taken as quantifying something to do with the agent, not the
system. As already noted, the Quantum Bayesian approach only posits the epistemic
role of the quantum state |ψ〉 but no hidden states λ are assumed. We will spell out
the philosophical implications of this in more detail below, in particular what it
means in regard to an agent’s or observer’s relation to (mind-independent) reality.
But we should first focus on the details of the formal treatment of quantum states in
Quantum Bayesianism.

Some central ideas have been developed in joint papers by Caves et al. (2002a,b).
Here (2002a, p. 3 ff.) the authors identify a family of orthogonal, one-dimensional

projectors
{
P̂j

}
j∈J with a set of answers to (experimental) yes-no questions that

can be posed about a system. They then appeal to Gleason’s famous (1957) theorem,

which states that for any such family
{
P̂j

}
j∈J with |J | ≥ 3 and any function μ that

maps the P̂j into [0, 1] and satisfies μ(
∑m

j=1 P̂j ) =
∑m

j=1 μ(P̂j ) (m ≤ |J |) and

μ(1) = 1, there exists a density operator ρ̂ such that μ(P̂j ) = Tr(ρ̂P̂j ), which is

of course a Born probability Prρ̂M(j) (M the measurement represented by the P̂j
and j the j -th outcome).5 The appeal for Quantum Bayesianism here is that the
assumptions on μ are an implementation of the Kolmogorov axioms for projectors,
whence μ can be interpreted as a coherent degree of belief in the Dutch book sense.
I.e.: even subjective Bayesian probabilities must apparently satisfy the Born rule in
the quantum context.

Next, Caves et al. (2002a, ibid.) consider a case of maximal information and
demonstrate why they think one is urged by coherence to assign pure states in this
case. They first consider the ‘classical case’, in which it is assumed that maximal
information implies certainty as to an event A’s occurrence, whence assigning
p(A) = r < 1 would lead to a Dutch book as follows: in the betting-analysis
of probability, p(A) = r < 1 would mean that one was willing to accept a bet in
which one receives r · s up front (as bookie), and then pays s if A occurs (which it
is assumed to do), leading to a sure net loss of (1− r) · s > 0.

It appears somewhat problematic though, that it is not specified in this analysis
what the ‘classical case’ really is. One can easily imagine worlds where there
are fundamental epistemic restrictions (as investigated in Chap. 4), in spite of
these worlds being otherwise ‘classical’ (in then sense of not requiring a quantum
treatment), whence A could never be assumed to ‘occur with certainty’. In fact, if it

5For a generalization to elements of a POVM see Busch (2003). Note also the similarity to the
discussion of folia in AQFT in Sect. 2.2.4.
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were not for the empirical evidence forestalling any compelling ψ-epistemic model
or interpretation, one might even have been inclined to believe that we live in exactly
such a ‘classical world’.

Let us grant, however, that there could be a classical world as required for the
previous Dutch book argument. Then (the argument might go) an agent in that world
who would use QM and would be certain that some outcome j will occur would
have to assign, in accordance with Gleason’s theorem, a pure quantum state ρ̂ =
|j 〉〈j | to the system to ensure that p(j) = 1, and to avoid the Dutch book. The point
being that there is no other means for expressing certainty in QM than by pure states
assignments (projectors). But even then, a quantum state will represent a situation
of ‘maximal information’ and incomplete knowledge, since it will still not allow for
answers to all possible experimental questions: think non-commuting observables
and projectors.

Assuming that Dutch book coherence thus requires pure state assignments for
cases of maximal information, one can also gather that probability assignments will
coincide with long-run frequency predictions in suitable cases as follows. According
to the foregoing (Dutch book/probabilistic certainty) argument, a joint quantum state
assignment for N systems to which the exact same maximal information applies
would be of the form6

ρ̂(N) = |ψ〉〈ψ | ⊗ . . .⊗ |ψ〉〈ψ |︸ ︷︷ ︸
N times

, (7.1)

and if a measurement of N projectors from a set
{
P̂oj

}D
j=1

is performed on these

systems (the P̂oj being single system projectors for D measurable values oj ), then
the probability of finding a given sequence o1, . . . , oN is immediately given by

p(o1, . . . , oN) = Tr

(
ρ̂(N)

N⊗
i=1

P̂oji

)
, (7.2)

which is factorizing (p(o1, . . . , oN) = p(o1) · . . . · (oN)), and where 1≤ji≤D,∀1≤
i≤N . This corresponds to an assignment for independent and identically distributed
outcomes of repeated measurements (cf. Caves et al. 2002a, p. 4). Crucially, the
probability for measuring outcome oj nj times can, on account of this assignment,
be pieced together (by mere considerations of independence and the possibility of
multiple occurrences of each oj ; cf. de Finetti 1970, p. 182) as being given by a
multinomial distribution

6Of course convictions of independence go into the very formulation of such a quantum state. Note
also that the N systems could be investigated in temporal succession, i.e. that our concern here is
not with a box of interacting particles or the like.
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p(n1, . . . , nD) = N !
n1! . . . nD!p(o1)

n1 · . . . · p(oD)nD , (7.3)

with D here the Hilbert space dimension. This distribution can be shown to peak
at nj ≈ Np(oj ) for large N , so that it predicts relative frequencies nj/N close
to p(oj ) (cf. Caves et al. 2002a, p. 4). This basically provides a law of large
numbers for QM (cf. ibid.). Again, given the acceptance of the aforementioned
Dutch book-argument, this is an impressive carry-over of a subjectivist attitude
towards probability to QM.

Another strategy invoked by Caves et al. (2002b, p. 4546) is to argue that “if
a density operator is even partially a reflection of one’s state of knowledge, the
multiplicity of ensemble decomposition means that a pure state must also be a state
of knowledge”, since the multiplicity of ensemble decompositions implies that “the
distinction between subjective and objective becomes hopelessly blurred.” (p. 4545)
The problem can be illustrated as follows (cf. ibid.).

Consider how we expressed a general density operator in the Bloch sphere
representation as ρ̂ = 1

2 (1 + σ̂ · r), where |r| < 1 for a mixed state. Now
the Euclidean vector r can be expressed as a linear combination of three unit
vectors nj (j ∈ {1, 2, 3}, |nj | = 1), drawn from an arbitrary (uncountably
infinite) number of triplets of such unit vectors. Interpreting unit-length pointers
in the sphere as pure states, this means that there is an arbitrary number of
probability-weighted sums r = ∑3

j=1 pjnj , or equally, an arbitrary number of

decompositions ρ̂ = ∑3
j=1 pj

1
2 (1 + σ̂ · nj ) = ∑3

j=1 pj |nj 〉〈nj |. For instance

we have ρ̂ = 3
4 |nz〉〈nz| + 1

4 |−nz〉〈−nz| = 1
2 ( |n+〉〈n+| + |n−〉〈n−|), where nz is

the unit vector pointing in positive z-direction in a Cartesian coordinate frame, and

n± := 1
2nz±

√
3
4nx . But the former decomposition seems to be a biased expression

of ignorance as to whether nz or −nz is really the case (representing e.g. |↑z〉 and
|↓z〉) whereas the latter seems to be an unbiased expression of ignorance as to the
pertaining of n+ or n− respectively.

Now the probability of finding nz (or ↑z) on ρ̂ is 〈nz|ρ̂|nz〉 = 3
4 | 〈nz|nz〉 |2 =

3
4 , or equally (from the second decomposition), 〈nz|ρ̂|nz〉 = 1

2 | 〈nz|n+〉 |2 +
1
2 | 〈nz|n−〉 |2 = 2 · 1

2 · |
√

3
2 |2 = 3

4 .7 The problem with this is that if the
Born probabilities are here taken to reflect something objective, then in the first
decomposition it looks as though the z-value was objectively determined, but
subjectively only expected with a certain bias, due to (e.g.) ambiguities in the

7To see the latter, just consider that both n± lie in the x-z plane, so the azimuthal angle ϕ is

zero; a trigonometric consideration then gives cos
(
π
2 − θ

) = ±
√

3
2 ⇔ θ = ± π

3 . Using (2.19),

one obtains two matrices σ̂± π
3

.=
(

1
2 ±

√
3

2
±
√

3
2 − 1

2

)
, each with (obvious) eigenvalues ±1 respectively

and +1-eigenvectors |n±〉 .=
(
±
√

3
2

1
2

)
(in the standard z-spin basis). To avoid confusion, note that

|n−〉 �= |−n+〉, i.e. the two are not related as spin-up-π/3 and spin-down-π/3.
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preparation method; whereas in the second decomposition, the probability of ↑z in
state ρ̂ would be objectively 3/4. Objective and epistemic probabilities are indeed
“hopelessly blurred” in this example.

To conclude from this, though, that “pure state[s] must also be [. . . ] state[s] of
knowledge” (my emphasis—FB) seems to be a non sequitur. All that the previous
argument shows is that mixed states, assuming that one thinks of them as reflecting
incomplete knowledge in the first place, are extremely ambiguous representations of
incomplete knowledge. And one could argue that dependent on context, one or the
other decomposition of a given ρ̂ is preferred: if one toys with a preparation method
that is believed to be certain to prepare |nz〉〈nz|, and one uses a computer program
to smuggle in, in a deterministic but unknown fashion, |−nz〉〈−nz|-states with
presumed long run occurrence of 1/4, then one might prefer the first decomposition;
if one does something similar with |n+〉〈n+|, |n−〉〈n−|, and occurrences of 1/2, the
second decomposition is supposedly preferred. All of this, of course, depends on
how one understands probabilities in the first place—but it is surely enough to show
that the ‘must’ in Caves et al.’s claim is too strong.

Still, the arguments do make it plausible to (re)consider the possibility that (all)
quantum states are ‘epistemic’ in a sense; but in what sense? Hidden variables, as
endorsed by the ψ-epistemic approach, are not present in the Quantum Bayesian
program, as we pointed out above, nor is a straightforwardly operational reading
of quantum states in which they are only P/M-states. Since a subjectivist Bayesian
understanding of probabilities is assumed though, and since in a subjectivist under-
standing of probabilities these quantify beliefs (in hypotheses or the occurrence of
events), the quantum state, being considered as an ‘extension’ or ‘liberalization’
of a classical probability assignment, should be called a doxastic state.8 At the
same time, the view of QM provided here should be called epistemological rather
than epistemic, since it is concerned with how belief is quantified and assigned
in a specific sort of uncertain context, and with the question of how we make
inferences about the future or the unobserved, in the light of a particular sort of
empirical evidence. In contrast, the ‘epistemic’ view discussed in Chap. 4 was rather
concerned with how QM ‘disguises’ a lack of knowledge about an otherwise pretty
domestic outside world.

Is this all there is, then, to the Quantum Bayesian program, a reduction of quan-
tum states to states of belief ? The answer here depends on what one understands as
‘the Quantum Bayesian program’, since this subjectivist approach to probabilities
and quantum states has spawned off many philosophical considerations that exceed
the merely formal-epistemological part by far, and are not necessarily shared ‘in
full glory’ by all of the original contributors. These philosophical considerations
are generally subsumed under the label ‘QBism’, and QBism is what interests us
here in the first place. We will consider the informal side of QBism in the following
section, but to round things off, we should now first take a look at a ‘hurdle’ that
Quantum Bayesianism (in the formal-epistemological sense) takes, in making sense

8This point is also significantly clarified in Mermin (2012, p. 8).
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of the notion of an unknown quantum state; a notion endemic to ‘quantum state
tomography’ (cf. Nielsen and Chuang 2010, p. 336).

An obvious way for making sense of an ‘unknown quantum state’ within
the Quantum Bayesian program, given that we have identified quantum states
as doxastic therein, would be the denial of the principle that one knows one’s
own beliefs,9 in analogy to the rejection of the KK-principle—that if one knows
some proposition p, then one knows that one knows p, as defended e.g. by
Hintikka (1962, p. 103 ff.)—by externalists and externalism-affine philosophers
(e.g. Williamson 2002, p. 135 ff.). But of course denial of such a principle being
generally valid does not mean that all of one’s beliefs are unknown to oneself. And
the sorts of beliefs supposedly expressed by quantum states do not really qualify as
suitable candidates of doxastic states that one unknowingly entertains—they rather
constitute explicit judgments.

The Quantum Bayesians indeed take a completely different route to making sense
of ‘unknown quantum states’, in proving a quantum analogue of a representation
theorem that goes back to de Finetti (1930). Following Caves et al. (2002b,
p. 4543 ff.), we can summarize it as follows: Take a probability distribution
p(x1, . . . , xN), which is symmetric under any permutation π (i.e. p(x1, . . . , xN) =
p(xπ(1), . . . , xπ(N)),∀π ∈ SN, SN the permutation group for N items), and which
satisfies p(x1, . . . , xN) = ∑

xN+1,...,xN+M pN+M(x1, . . . , xN , xN+1, . . . , xN+M),
for arbitrary M ∈ N, where pN+M is equally permutation symmetric, meaning
that p can be extended indefinitely in a permutation symmetric fashion. Such a
distribution is usually called exchangeable (cf. de Finetti 1970, p. 215; Caves et al.
2002b, p. 4543). The theorem then states that any exchangeable distribution can be
written as

p(x1, . . . , xN) =
∫
Sk

dp �(p)p(x1) · . . . · p(xN) =
∫
Sk

dp �(p)p
n1
1 · . . . · pnkk ,

(7.4)

where p = (p1, . . . , pk),Sk =
{
p|∀1≤j≤k : pj ≥ 0,

∑k
j=1 pj = 1

}
, and∫

Sk dp �(p) = 1, �(p) ≥ 0,∀p ∈ Sk . The probability density �(p) is interpreted
as quantifying belief about the ‘unknown probabilities’ pj ; p(x1, . . . , xN) is
interpreted as a prior probability, quantifying belief about the occurrences of
outcomes or events.

This innocent looking result has the forceful implication that the assumed
‘unknown probabilities’ pj can be taken to merely appear objective; condition-
alizing p(x1, . . . , xN)—which is specified solely by exchangability considerations
of the observed events—on observed frequencies, �(p) will peak around some
particular value (cf. Caves et al. 2002b, p. 4555 ff.), otherwise almost regardless
of the form of p(x1, . . . , xN) and �(p), up to the fact that �(p) must also be non-
zero everywhere on Sk , even if arbitrarily close to it (cf. Fuchs 2002, p. 46). The
point is that different agents, assigning possibly different priors, will come to an

9This is sometimes assumed as an axiom in doxastic logics (e.g. Kraus and Lehmann 1988).
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agreement on the ‘unknown probabilities’, solely on the basis of obtained frequency
data, modest restrictions (exchangeability) on their conception of the experimental
setup, and no ad hoc exclusion of possibilities (�(p) > 0 everywhere). As Timpson
(2013, p. 199) puts it: “homing in is coming to agreement.”

This result is carried over to the quantum case by Caves et al. (2002b, p. 4546
ff.) by requiring that the matrix elements of an N -system density operator ρ̂(N) be
permutation symmetric, and that ρ̂(N) be (permutation symmetrically) extendable
via ρ̂(N) = TrMρ̂(N+M). To effect the Bayesian updating, Caves et al. also introduce
a quantum Bayes rule

�(ρ̂|DK) = �(DK |ρ̂)�(ρ̂)
�(DK)

, (7.5)

where DK is some measurement result (with POVM element D̂K ) for K measured
systems (ρ̂ = ρ̂⊗K := ρ̂ ⊗ . . .⊗ ρ̂︸ ︷︷ ︸

K times

), and

�(DK) =
∫

dρ̂ �(DK |ρ̂)�(ρ̂), (7.6)

which corresponds to a continuous version of the law of total probability applied to
density operators. Here dρ̂ is a suitable measure, �(ρ̂) a probability density, and the
integral is taken over the space (convex set) of density operators.

Using these ingredients, it is then proven that

ρ̂(N) =
∫

dρ̂ �(ρ̂)ρ̂⊗N, (7.7)

i.e., that the exchangeable ρ̂(N), assigned by an agent, can be used to replace
the ‘unknown’ quantum state prepared on N systems. The quantum Bayes rule is
here used to generate a state-update prescription, which for large enough K again
enforces an agreement

∫
dρ̂ �(ρ̂|DK)ρ̂

⊗N �→ ρ̂⊗NDK
. (7.8)

This is an important step for the Quantum Bayesians, since, as we noted, state-
tomographic methods in QIT suggest that there should be such a thing as an
unknown quantum state that can be found out.

Once more a worry arises at this point though: is the condition of exchangability
not an expression of equivocation between different alternatives? I.e., do Quantum
Bayesians not retreat from their decidedly subjective (even though empirically
based) Bayesian stance in assuming exchangable priors? In fact, Williamson (2010,
p. 19) believes it to be a “hitch [. . . ] that under de Finetti’s strict subjectivism,
there is no reason to suppose that degrees of belief will be exchangeable.” But we
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need to be careful here, since the theorem is of a conditional form: if one assigns
an exchangable prior (quantum state) and is sufficiently admissive (�(p) > 0),
then there will be agreement with others that also satisfy these constraints, after
a sufficiently long time and ‘repeated trials’. What the theorem provides is not
so much a guide to suitable priors, but only a replacement of the notion of an
‘unknown quantum state’ by long-run agreement between certain kinds of agents
under suitable circumstances. To that extent, the objection misfires;10 but it still
demonstrates that the scope of the quantum de Finetti theorem’s implications is
limited—an issue that we will return to a little below.

7.2.3 Quantum States Do Not Exist, Nor Do Hidden
Variables. . . But Then What Does?

Let us grant for the moment that subjectivism about probabilities is somewhat
plausible in the light of Dutch book theorems and de Finetti’s representation
theorem. And let us also grant that the Quantum Bayesians make a somewhat
convincing case for carrying over the subjective Bayesian program to QM. Then
of course this prima facie success and the fact that QM is such a remarkably
successful physical theory together imply the need for a cautious clarification of
many philosophical issues.

As mentioned earlier, the philosophical views that have arisen from the quantum
Bayesian project are usually conjoined under the name QBism by their proponents,
where the meaning of this term has been loosened from a mere shorthand for
‘Quantum Bayesianism’ to denoting multiple possible alternatives (cf. Fuchs 2010;
Mermin 2013). It is clear that not all contributors to the original project share all of
the views discussed in the followings to an equal extent; but we will nevertheless
use ‘QBism’ or ‘QBist views’ as umbrella terms to collectively refer to them.

Given that we have identified quantum states as doxastic on the QBist account,
the question ‘beliefs about what?’ offers itself. In fact, there is a well-known objec-
tion of unclarity by Bell (1990a, p. 34) against information-based interpretations,
which he phrased in terms of a similar question: “Whose information? Information
about what?” (emphasis in original) Now the question of ‘whose beliefs?’ is easily
answered on the doxastic-QBist view: the beliefs of the agent who makes the
particular assignment (cf. Fuchs 2002; Fuchs et al. 2014; Fuchs and Schack 2014).
To the second question, ‘beliefs about what?’, the QBists’ answer is: “the potential
consequences of our experimental interventions into nature” (Fuchs 2002, p. 991),
where by ‘our’ any single agent/observer/intervenor is meant, and by the “potential
consequences” they mean “the content of her subsequent experience.” (Mermin
2012, p. 8; my emphasis) A measurement, according to the QBists, “is any action an
agent takes to elicit a set of possible experiences. The measurement outcome is the

10Author’s note: I am indebted to Chris Timpson for helping me sort this issue out.
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particular experience of that agent elicited in this way.” (Fuchs et al. 2014, p. 749;
emphasis in original)

What we end up with is a view of QM in which, as Fuchs (2002, p. 41)
has emphasized, “QUANTUM STATES DO NOT EXIST”, in the same sense in
which probabilities do not on de Finetti’s account. But neither, to recall, do hidden
variables or hidden true states λ. Here is how the QBists think of such λs in the
context of EPRB-correlations and violations of Bell-type inequalities:

What the parameter λ expresses is a classical intuition that correlations in the experiences
of agents in widely separated regions ought to find their explanation in correlations in
conditions prevailing in those regions. In particular when the local experiences are mediated
by the arrival of particles originating at a common source, λ is supposed to represent
common objective features of those particles imposed on them at that source. These features
affect the outcomes Alice and Bob experience. It is an important fact, surprising to one’s
classical intuition that the correlations in Alice’s and Bob’s outcomes cannot be accounted
for in this way. But this does not mean that anything in Alice’s experience is influenced by
Bob’s choice of setting, or vice-versa. The variable λ is nothing more than a version of the
discredited EPR elements of reality. For a QBist the nonexistence of such objective facts-
on-the-ground as λ no more implies nonlocality than does the nonexistence of elements of
reality in the original EPR argument. (Fuchs et al. 2014, pp. 752–753)

This is somewhat in agreement with many of our findings in Chap. 4 and interlude
II, that one can avoid the consequences of EPR’s, Bell’s, and the KS theorem if
one disallows certain (abductive) inferences to a (hidden, and sometimes common)
cause for (correlated) measurement outcomes.

As we can see, Fuchs et al. (2014) also refer back to the original EPR paper
here, and EPR’s famous ‘reasonable criterion for reality’ that we briefly discussed
in Sect. 4.3.3. This criterion of EPR, to recall, is of conditional from and introduces
a prediction “with certainty (i.e., with probability equal to unity)” as a sufficient
condition for the assumption of an “element of physical reality”. But, the QBists
argue, “probability-1 (or probability-0) judgments are still judgments, like any other
probability assignments[. . . ].” (Fuchs et al. 2014, p. 752)

To support their views on probability, Fuchs et al. refer to Hume’s (1748, p. 112
ff.) problem of induction, anticipated already by the Pyrrhoneans in antiquity (cf.
Sextus Empiricus, §204), the problem of how to justify the inductive inferences we
constantly make. To date, no all-agreed and unproblematic solution to this problem
exists,11 and one might suspect that none can be found.

11Cf. Schurz (2014, p. 80 ff.) for a general overview of purported solutions and their problems.
Schurz’s own proposal does provide an optimality-based justification for induction on the object-
level under certain epistemological background assumptions—which, however, means that object-
induction might still do pretty baldy but that (even under the respective, favorable circumstances)
we just have no better alternative. Arnold (2010), moreover, assesses some general limitations to
Schurz’s solution when applied to the meta-level of prediction methods, which is where cleverly
adapted (meta-)inductive practices are proven, for a whole range of possible scenarios, to have the
same long-run success rates as the best of all other epistemically accessible prediction methods
(e.g. Schurz 2009).
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What is compelling about this appeal is that induction of course lies at the heart
of all reasoning from observed evidence to general or predictive claims invoking
regularities, be they statistical or particulate (cf. Carnap 1950, p. 207 ff.) And
induction is an uncertain inference with an as yet shaky status of epistemological
justification, no matter how dearly we hold it and how much we rely on it. On this
line of reasoning even probability-1 assertions—unless, maybe, devoid of content
qua being about tautological or analytical claims—, as they are appealed to in the
EPR argument, cannot be more than an expression of subjective certainty on the
basis of previous evidence.

Now while inductive skepticism in general is in good support of the QBist’s
views, in the present context the appeal to induction seems misguided. Inductive
skepticism ultimately questions the uniformity of nature and perceivable events (in
the future or as regards synchronously unobserved cases), or rather the justification
for our beliefs in it. In the EPR scenario, uniformity or regularity are not at stake;
the doubted inference is from something observed (the momentum of the particle
on one side) and a ‘known law’ (momentum conservation) to something unobserved
(the momentum of the particle on the other side)—an instance of abduction rather
than induction, as we had already pointed out in Chap. 4.

All of this connects to long-standing debates in the philosophy of QM. As a
matter of historically well-established fact, Bohr was quite baffled by the EPR paper.
His assistant Rosenfeld (1967, p. 142) famously described it as an “onslaught” that
“came down upon [them—FB] as a bolt from the blue”, and reported how Bohr
would abandon all other work to concern himself immediately and exclusively with
EPR’s argument. How deep and what exactly the impact on Bohr’s philosophical
views ultimately was is a matter of considerable debate (e.g. Beller and Fine 1994
vs. Halvorson and Clifton 2002b; and cf. Whitaker 2004 for a nice overview and
reassessment). But Bohr certainly retained a substantial amount of his previous
beliefs, and he apparently even believed to have answered the incompleteness
problem in a satisfying way.

His main line of criticism towards EPR, justifying this retention of beliefs,
was that there was, in his opinion, “an essential ambiguity” in EPR’s reality
criterion, more specifically in the phrase “without in any way disturbing”, since any
measurement on one of the two entangled particles would of course non-negligibly
(and ‘uncontrollably’) alter its (quantum) state, and thereby exert, in Bohr’s opinion,
“an influence on the very conditions which define the possible types of predictions
regarding the future behavior of the system.” (my emphasis—FB) These he believed
to “constitute an inherent element of the description of any phenomenon to which
the term ‘physical reality’ can be properly attached [. . . ].” (Bohr 1935, pp. 696 and
700)

Bohr’s elaborations are somewhat confusing, e.g. his appeal to the word “influ-
ence” while allowing “no question of a mechanical disturbance [. . . ].” (p. 700) We
here ‘choose to’ read the comments as supplying a stronger necessary condition for
the assumption of ‘elements of reality’ in terms of future predictability, maybe in
the sense of re-identifiability of ‘the same thing’. While this may be an imposition
on Bohr, we hence understand him here as disencouraging an abductive inference
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from observed phenomena to something ‘real’, and as seeing his necessary criterion
for ‘physically real phenomena’ violated in the EPR scenario—thereby ultimately
embracing some sort of view of reality that EPR had deemed ‘unreasonable’.

The QBists’ argument against EPR, in comparison, is much more straightforward
but ultimately to the same effect: they hold it to be an “unwarranted assumption
that probability-1 judgments are necessarily backed up by objective facts-on-
the-ground—elements of physical reality[. . . ].” (Fuchs et al. 2014, p. 752) We
emphasize again that they too effectively argue against (the universal applicability
of) abduction here as well (“objective facts-on-the-ground”), not against induction.
If our analysis is correct, then both Bohr and the QBists ultimately attack the same
point as did we in Chap. 4, albeit each on slightly different grounds.

David Mermin (2014a, p. 422) has pointed out that Schrödinger once com-
mented, in a letter to Sommerfeld, that “in Quantum Mechanics, statements about
what ‘really’ is, statements about the object, are forbidden, they only treat of the
relation object-subject—and that obviously in a much more decisive sense than
is the case, after all, in any description of nature.” (Schrödinger 1931, p. 490;
emphasis in original; my translation—FB)12 Intriguingly, when one consults the
original letter, one also finds that Schrödinger, building on discussions he must
have had in Berlin and which possibly included Einstein (cf. Schrödinger 1931,
p. 490; von Meyenn 2011, pp. 442 ff.; Moore 1994, p. 175), reports a kind of
crude EPR-example, basically (though not explicitly) involving entanglement with
macroscopic degrees of freedom—an ‘EPRS-Cat’, if you will: Bouncing a photon
in a highly localized state off a mirror with precisely prepared momentum (zero),
one can use the mirror—which will receive twice the original momentum of the
photon by momentum conservation and hardly experience a change in position
due to its comparatively large mass—to indirectly measure either the position or
the momentum of the photon to accuracies jointly forbidden by the uncertainty
relations.

Since one is at liberty to chose between these two measurements at will, even
though one cannot perform both at the same time, both quantities should already
exist—unless one were to allow that the photon would only assume a specific
momentum or position in virtue of the measurement performed on the mirror (action
at a distance). The latter option Schrödinger rejected out of hand, but the possibility
of the simultaneous existence of position and momentum he also considered “too
strict and paradoxical” (Schrödinger 1931, p. 490; my translation—FB) in the
light of all that was already known by the time.13 So he could only retreat, as

12German original: “in der Quantenmechanik sind Aussagen über das, was ‘wirklich’ ist, Aussagen
über das Objekt, verboten, sie handeln nur von der Relation Objekt-Subjekt—und zwar offenbar in
einem noch viel einschneidenderen Sinn, als dies schließlich von jeder Naturbeschreibung gilt.”
13German original: “Man möchte darum schließen, daß das Lichtquant jederzeit einen ganz
bestimmten Ort und einen ganz bestimmten Impuls besitzt—eine Auffassung, die wir doch
eigentlich längst als zu hart und paradox verlassen haben.”
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an “emergency decree” (ibid.; my translation—FB),14 to QM being most radically
about the subject-object relation.

Now the QBists bite the same bullet. But for them, this is an insight, not an
emergency decree:

For the QBist, there is [. . . ] a split [. . . ] between the world in which an agent lives and
her experience of that world. [. . . ] Vagueness and ambiguity only arise if one fails to
acknowledge that the splits reside not in the objective world, but at the boundaries between
that world and the experiences of the various agents who use quantum mechanics. (Mermin
2012, p. 8)

We can see how QBism nicely connects to the debates that have been around
since the advent of QM, and the outlined connections to Bohr put it in the proximity
of the Copenhagen tradition. Certainly though, QBism is much clearer on many
issues regarding the role and meaning of the quantum state than is the elusive
Copenhagen interpretation. And indeed, it is quite helpful in dealing with some
of the puzzles raised by QM. Consider, for instance, Wigner’s friend again:

in QBism Wigner’s Friend is transformed from a paradox to a fundamental parable. Until
Wigner manages to share in his friend’s experience, it makes sense for him to assign her and
her apparatus an entangled state in which her possible reports of her experiences (outcomes)
are strictly correlated with the corresponding pointer readings (digital displays, etc.) of the
apparatus. (Mermin 2014b, p. 8)

Still, there are many open ends to QBism on philosophical grounds. The quantum
state, as we have outlined above, is doxastic in QBism. As such it quantifies what is
believed by the assigner about the consequences of her interventions into nature, and
only that. QBists believe this to include situations of ‘maximal knowledge’, meaning
that the quantum state may contain ‘all there is to say’ about an investigated system
for a respective assigner. And they also reject the assumption of hidden variables λ
as a mere appeal to unnecessary ‘classical intuitions’. But prima facie this creates
quite a dilemma: if the quantum state is not the true state of a given system, and
if no hidden variable model delivers the true state of the system. . . and if there
is no foreseeable way in which we can otherwise talk about the true state of the
system. . . then there is just not true state of the system!

7.2.4 What is the QBists’ Epistemology?

Let us try to make some sense of all that has been said so far. We took the fact that
pure quantum states codify maximal but incomplete knowledge in QBism to mean
that they may contain all there is to say about a system, from the perspective of some
assigner. This cannot be quite right though, as there are of course many additional
things to say about any kind of system in a non-quantum vocabulary. So let us take

14German: “Notverordnung”
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a pure quantum state plus everything there is to say about a system without using
QM, to specify a doxastic state of some agent, codifying ‘maximal but incomplete
knowledge’. Let us call this, in an abuse of terminology introduced by Healey (e.g.
2012d, p. 760), the ‘quantum state assignment+’ (short: QSA+). Then the claim
that there is no true state of the system in spite of everything contained in the QSA+
may be taken to mean that in spite of the QSA+, we still lack any description of that
part of mind-independent reality, but that there is also nothing closer to a description
than the QSA+.

Hence, if quantum states are non-descripitve of the underlying reality, there may
be just no description whatsoever. That is: on an interpretation such as QBism,
we would have to understand the remarkable success in using a theory like QM to
imply a limit of conceivability of the external world, a limitation of our capacities to
refer to and conceptualize it in certain respects. At the same time, QBists, in some
of their writings, tend to think of themselves as ‘realists’ (e.g. Fuchs 2002, 2016)
and endorse a notion of “the world” on which actions are performed (e.g. Fuchs
et al. 2014; Fuchs and Schack 2014). But how can it fit with any reasonable kind
of ‘realism’ that for a whole range of situations we lack any tools whatsoever to
describe and conceptualize them? This clearly needs some spelling out.

A possible reply would be that the foregoing does not imply metaphysical anti-
realism, when ‘metaphysical realism’ is read in the weak sense; one may still grant
that there is such a thing as a mind-independent world. But it does commit one
to a certain degree of scientific anti-realism, in that we are thereby denying the
semantic condition, at the very least for the broad domain of applications requiring
a ‘quantum treatment’.

A lot about the QBists’ views is also revealed in the two quotes by Fuchs et al.
and Mermin on pages 306 and 309 in this document. First of all, we notice the
primacy of the concept of ‘experience’, which is taken as a “primitive concept
[. . . ].” (Fuchs et al. 2014, p. 749) Experience is also used to explain how and
when correlations come into play, namely, at the interface between two—time-like
separated—experiences of a single agent. In particular, the correlation in the EPRB
scenario comes about when Alice and Bob compare their ‘measurement results’, i.e.
report to each other what they have ‘observed’ or ‘experienced’ (thereby inducing
new experiences in one another). Since no single agent can move faster than light,
all her experiences will be related to one another in a time-like fashion, so even the
correlations involved in EPRB scenarios are not ‘created nonlocally’, the argument
goes (cf. Fuchs et al. 2014, pp. 750–751).

A second point to note is the strong affinity to dispensing with ‘classical
intuitions’, those which we identified in Chap. 4 to be the key motivation for
designing ψ-epistemic models. QBists bite the bullet and accept that our usual
explanatory practices of supplementing hidden causes to account for aspects of our
experience are not ubiquitously applicable.

And thirdly, we notice the particular view of science indicated in the above
considerations; correlations “cannot be accounted for” (Fuchs et al. 2014, p. 753;
my emphasis – FB) by stipulating further elements of reality, λ, and the central
concept of experience is even treated as “fundamental to an understanding of
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science.” (Fuchs et al. 2014, p. 752; my emphasis – FB) According to QBism,
scientific investigation is thus not about ‘nature’, ‘mind-independent reality’, ‘the
external world’, or whatever you prefer to call it, at least not directly. Instead, the
QBists explicitly side with Bohr to the extent15 of believing that “in our description
of nature the purpose is not to disclose the real essence of the phenomena but only
to track down, so far as it is possible, relations between the manifold aspects of our
experience.” (Bohr 1934, p. 18)

Thus presented, there are decisively empiricist elements in this view of science.
But anyone with a background in the philosophy of science knows how difficult
it is to spell out and defend such an empiricist view. As is well known, logical
empiricism was the dominating philosophy of science in the early twentieth century
and the dominating version of empiricism deemed capable of providing an analysis
of scientific practice. Logical empiricism departed from traditional empiricism in
embracing the falliblity of observation sentences such as ‘there is a table’ (cf.
Schurz 2014, p. 6); but such sentences were nevertheless believed to “have an
epistemically favored role within the whole system of discovery [. . . ].” (ibid.)
Its most extreme form, logical positivism, endorsed a verificationist account of
meaning, i.e. that “a synthetic proposition [. . . ] should, in principle at least, be
conclusively verifiable” (Ayer 1936, p. 147), where the (im)possibility of such a
verification was viewed as a demarcation between “literal sense and nonsense[. . . ].”
(ibid.) This means, in other words, “that the meaning of a proposition was its
mode of its verification[. . . ].” (Kenny 2007, p. 58) Verificationism, however, was
easily seen to be problematic, since the status of the verification principle itself as
meaningful appeared doubtworthy by its own lights (cf. Kenny 2007, ibid.).

A more general characteristic trait of early logical empiricism was a form
of reductionism, endorsing that terms of theories not referring directly to sense
experience should be reducible, via chains of definitions, to terms directly referring
to sense experience (e.g. Schurz 2014, p. 6). By the 1950s, however, the project of
reductionism was largely abandoned qua lack of adequate executability (e.g. Carnap
1956, p. 48), and with it (arguably) the core of logical empiricism.

Van Fraassen’s (1980) younger constructive empiricism, certainly the most
widely discussed form of empiricism (or in general: anti-realism) in modern
philosophy of science—hence worthy of a brief review, in the present context—is of
a different flavor. First of all, van Frassen views the aim of science to be the point of
contention between scientific realism and the position he has in mind: according to
scientific realism, van Fraassen (1980, p. 8) believes, science (the entire enterprise
as a whole) “aims to give us, in its theories, a literally true story of what the world
is like; and acceptance of a scientific theory involves the belief that it is true.”
(emphasis omitted) This excludes (“literally”) construals of theories according to
which the terms have to be interpreted correctly first, as e.g. religious scripture does
according to most modern theologians. And it is considerably weak (“aims to”),

15Cf. Mermin (2014b) and Faye (2016) for further discussion of differences and commonalities
between QBism and Bohr’s (or ‘Copenhagen’) views.
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so as to target an otherwise broad class of ‘realisms’. According to van Frassen’s
own constructive empiricsm, however, “[s]cience aims to give us theories which are
empirically adequate; and acceptance of a theory involves as belief only that it is
empirically adequate.” (his p. 12; my emphasis—FB)

Empirical adequacy of a theory T is spelled out here as T being true w.r.t.
all observable phenomena (ibid.), and as a “rough guide” to what is meant by
‘observable’, he proposes the following (his p. 16):

X is observable if there are circumstances which are such that, if X is present to us under
those circumstances, then we observe it.

Thus ‘observable’ is construed here as an indexical concept (“us”, “we”), the
index referring to a specific, possibly time-variant, epistemic community (his p. 18).
And some emphasis is laid on the possibility of observing by the unaided senses, so
bubble-chamber ‘observations’ do not count as genuine observations (of elementary
particles) in van Fraassen’s sense (cf. his p. 17).

In contradistinction to logical positivism and (other) kinds of semantic anti-
realism (e.g. Dummett 1982), van Frassen hence holds that scientific theories are
capable of being true, in all areas, even when endorsing concepts not referring
to observable entities; it is just that we cannot be certain as to their truth in
those domains, and we are not committed to such, in pursuing science. But
while constructive empiricism thus manages, by its comparative moderateness,
to get around a whole host of difficulties that logical empiricism did not (cf.
Ladyman 2000, pp. 840–845 for a short survey), there still remains a somewhat
non-empiricist—qua modal—flavor to the use of the notion ‘observable’ and the
general vocabulary crucially relied on by van Fraassen (cf. in particular Ladyman
2000, p. 849 ff. for detailed criticism). These difficulties have been answered to
some extent (cf. Monton and Van Fraassen 2003), but on the pains of appealing
to elements not ‘endemic’ to constructive empiricism (e.g. Stalnaker-like semantics
for counterfactual conditionals; cf. Monton and Van Fraassen 2003, p. 410) and with
several rebuttals by Ladyman (2004).

Our general point, again, is that an empiricist philosophy of science is not easily
facilitated, even in spite of the caution exhibited in van Fraassen’s ‘constructive’
version. The QBist view, however, does not seem to be a variant of either
logical- or constructive empiricism, but rather borrows elements from both. To
the extent that one important (mature, well-confirmed) scientific theory (QM) is
not viewed as capable of being true (of an external reality) QBism is closer to
positivism rather than to constructive empiricism; the quantum state is a means of
quantifying beliefs, and not descriptive. Beyond that, however, QBism neither seems
to promote verificationism nor a specifically reductionist agenda regarding scientific
vocabulary. All that is being claimed is that ‘experience’ and (cor)relations therein
are the subject matter of science—not the goings on in mind-independent reality. On
the other hand, Fuchs (2010, p. 21) wishes to include “everything experienceable”
(my emphasis—FB) into the scope of science, which brings him ‘dangerously’ close
to the problems encountered by van Fraassen.
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Additionally, the QBists seem to be committed to a degree of instrumentalism,
in viewing quantum states as non-descriptive but useful for making predictions (cf.
also Bub 2016, p. 232, on this issue), despite their reluctance to the label (cf. in
particular Fuchs 2016, pp. 2–3). QM, to wit, is called “a user’s manual” (Fuchs
2010, p. 9), and “a single user theory” (Fuchs and Schack 2014, p. 3), which sound
quite instrumentalist.16

Finally, we can identify another label that the QBists eschew even though their
position seems to be characterized quite well by it, namely: solipsism. QM is, after
all “a single user theory” on their account (cf. also Norsen 2016, p. 215 ff. on this
point).

Possibly ambiguity is to blame for their reluctance to at least the label ‘solipsism’:
Introductory texts on epistemology (e.g. Borst 2010) tell us that we should
distinguish between metaphysical, epistemological, and methodological solipsism,
only the first of these being the single-mind pendant to Berkeleyan idealism, i.e.
the thesis that all that exists is one mind. Epistemological solipsism, in contrast,
rather characterizes the position that only the own mind’s existence is certain;
and methodological solipsism is usually characterized as either the program of
constructing ‘the world’ and ‘other minds’ out of the experiences of the inquiring
self, a position quite often associated with Carnap (e.g. Carnap 1936, p. 423 ff.), or
(more weakly) as a general method of inquiry, starting from the inquiring subject,
as was the case at some stage in Descartes’ (1642) famous meditations.

Now QBists have it that “any user’s own experience constitutes all of the raw
material out of which she constructs her world.” (Fuchs et al. 2014, p. 753) Like
it or not, this is at least a statement of methodological solipsism. But once more
trouble transpires from philosophical conduct, as was the case with empiricism.
Putnam (1982, p. 10) once noticed that “a methodological solipsist [. . . ] kindly adds
that you, dear reader, are the ‘I’ of this construction when you perform it [. . . ].”
(emphasis omitted) This he found “ludicrously incompatible” with the fact that from
the methodological solipsist point of view, “your experiences [. . . ] are a construction
out of your bodily behavior, which [. . . ] is a construction out of my experiences”
(ibid.; emphasis in original) and that “if it’s really true that the ‘you’ of the system
is the only ‘you’ he can understand, then [that] the ‘you’ he addresses [. . . ] cannot
be the empirical ‘you’ of the system [. . . ] is unintelligible.” (p. 11; emphasis in
original)

The force of Putnam’s argument is unclear though, since it is equally unclear that
the methodological solipsist must embrace an unintelligibility stance towards that
which is not constructed out of her experience: She can certainly entertain the belief
that what she has constructed (other minds) is ‘paralleled by’ something which has
an existence independent of herself, and is not only a construction. This may commit
her to a degree of (weak) metaphysical realism after all, at least about other minds—
but this is why it is called methodological solipsism in the first place.

16Somewhat ironically, Fuchs (2010, p. 7) also happily refers back to Pierce’s claims of theories
as instruments, despite his strong reluctance to the label.
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Still, a methodological solipsist is certainly much closer to the epistemological
and metaphysical solipsist than is the full blown realist: Accepting, as a method-
ological step, an epistemological basis in one’s own mind and experience, there
may be a remainder of doubt about the existence and content of other minds and
of the external world, even after one has dared the extra step of imagining that the
construction is indicative of or paralleled by something external.

So the QBists are metaphysical realists to the extent that they believe in nature
responding to our interventions. And even though they dislike most of these labels,
they are committed to a degree of empiricism, as they place experience at the center
of scientific inquiry; to a degree of scientific anti-realism, as they deny the semantic
condition of scientific realism w.r.t. quantum states and view science in general not
to be about the “real essence of the phenomena”; to a degree of instrumentalism,
as they find quantum states to be useful even if non-descriptive; and to a kind of
methodological solipsism, as they view construction out of the experience of a single
‘user’ to be at play, when we form a vision of ‘the world’ or ‘other minds’.17

The crux of the matter is this: While QBism certainly exceeds the Copenhagen
tradition in clarity in many respects, it presents, as it stands, not a well worked out
interpretation either, but rather a collection of intriguing ideas—not entirely unlike
the ‘Copenhagen interpretation’ itself. To highlight the problems more clearly, we
should make use of our desiderata and adequacy criterion in this context as well.

QBism does satisfy the MAC ‘by default’, so to speak: QM is simply viewed
here as a quantitative description of expectations, and quantum states may hence
be spontaneously updated when new information is available. No outcome problem
arises since the quantum state does not represent the conditions of a system, so there
is no transition from multiple outcomes to just one. But QBism does not satisfy
desiderata of ontological clarity to the extent that we had deemed this still possible:
the subject-object relation is not being sufficiently specified. And, as we shall see
a little below, the appeal to ‘consequences of interventions’ as crucial makes this
relation all the more obscure.

But, more importantly, neither does QBism really satisfy the DEC: Point (ii) is
mostly fine: there basically is no ‘classical world’, according to QBism, and QM is
supposed to be applicable, in principle, to any situation (e.g. Fuchs et al. 2014, p.
750). So no switch from ‘quantum’ to ‘classical’ either, quantum states can be quite
generally used to quantify expectations about consequences of interventions. Still,
when and how do we come to apply a suitably ‘classical’ description anyways, in
terms of which we describe these consequences of interventions? This bears on point
(i) of the DEC: there is not too much of an explanation being offered, at least not
in any systematic way, of how we can make sense of objects we treat ‘classically’
in many circumstances—i.e. when we do not assign quantum states de facto—,
given the split between a user’s experience and the world. And part (iii) of the DEC
appears to be unfulfilled in QBism as well: whence, say, the role of unitary operators,

17Cf. however Fuchs (2010, p. 20) for a quite different characterization of the project (which is
partially his).
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appealed to in so many places e.g. in Fuchs (2002) or Caves et al. (2007)? And how
should we understand decoherence?

7.3 How Much Subjectivity Is There and How Much
Is Good?

7.3.1 Objectivism About Probabilities and Objectivism About
Quantum States

We have identified many difficulties in the epistemological basis of QBism above,
but there are also difficulties at a systematically prior stage. QBism relies on
Quantum Bayseianism, Quantum Bayesianism relies on (some sort of) subjective
Bayesianism. The plausibility of the latter has an impact on the former two.
How plausible are the arguments for subjective (Quantum) Bayesianism, given in
Sect. 7.2.2?

In fact, many of the plausibilizing arguments are ultimately rather unsatisfying.
Recall that pure state-assignments were argued to be rationally compelling in the
case of maximal information, in virtue of a loss of Dutch book-coherence otherwise.
But the Dutch book argument proceeds from a p(A) = 1 assignment, in the case
of ‘certainty’, and concludes that one would face a sure loss if one would choose
a different probability assignment. What could enforce such an assignment? What
could justify, rationally compellingly, the belief that one would otherwise face a sure
loss? If a subjectivist account of probability is taken seriously, then the answer must
be: nothing!

Probability assignments are understood as expressions of belief only, and one
should be at liberty to remain uncertain (p(A) < 1). Judging that there could be
a case where p(A) < 1 leads to a sure loss because it is certain—for everyone—
that A will happen means to abandon the entire approach on the meta-level: There
can be no such judgment, or at least not one that everyone is committed to. If the
statement of the theorem is intended to be ‘purely semantic’, on the other hand, i.e.
if it means that a pure state assignment encodes subjective certainty, then the most
that the theorem would demonstrate is that ‘I am certain that A is the case’ should
be translated into ‘I fear that I will loose a bet if I do not bet on A occurring’. In any
case, the Dutch book argument either cannot get off the ground or merely establishes
something quite weak, as it otherwise appears as much question-begging as do the
arguments of opponents to subjectiv Bayesianism(s) that appeal to ‘objective chance
functions’ etc.

Much depends on this Dutch book argument though, as we have seen (subsequent
arguments build on it), and so with it the overall appeal of the Quantum Bayesian
project is put in question. And note that we already provided critical remarks about
another plausibilizing argument, namely the inference from multiple decomposi-
tions of mixed states to the subjectivity of Born probabilities in Sect. 7.2.2.
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What about the quantum de Finetti theorem, the result that different agents who
assign initial states that satisfy certain (rather weak) structural constraints, and who
have an ‘open mind’ (�(ρ̂) > 0 on the entire space of density matrices), will
converge in their opinions, i.e. will agree on some ‘unknown’ quantum state, given a
large range of observations? Now this result still depends on a notion of “frequency
data” (Caves et al. 2002b, p. 4554; my emphasis – FB), and what precise state the
different agents will agree upon will depend on those data.

While we acknowledged that the statement of the theorem is merely of the
conditional form ‘if you accept states of this and that sort, you will come to an
agreement with others’, a satisfying explanation of the practice of ‘finding out’
some particular ‘unknown’ quantum state, which the theorem is supposed to ensure,
does depend on two quite non-subjective sources: (a) intersubjective agreement on
what sort of quantum state to assign and on which states are at least possible, and
(b) an external source that provides the appropriate frequency data. That makes the
entire approach much less subjectivist than it appeared to be in the first place, since
even Williamson (2010, p. 24) has it that his “apparently unparsimonious appeal to
chance is in fact eliminable in favour of talk of indicators of chances such as sample
frequencies and symmetries.” (my emphasis—FB)

Why, however, would the theorem be of interest, other than for sociological
reasons, if one was not interested in how we can come to an agreement? Why,
in other words, would a mere conditional statement about the agreement of certain
agents be interesting in the context of questions about the nature of physical reality?
The worry here is similar to our concerns about a false explanandum in the Deutsch-
Wallace approach to Born probabilities in the MWI: We are interested in why those
frequencies occur, why long-run evidence suggests certain state assignments to us,
not just under what conditions different agents may come to agree on how to take
track of frequencies. The quantum-de Fintetti theorem targets only the latter aim.

Criticism towards the plausibility of certain similar arguments of the QBists is
also uttered by Stairs (2011, p. 161 ff., in particular). Stairs argues that just because
different agents may assign different quantum states for the same system, this does
not imply any sort of (radical) subjectivism. For suppose, e.g., that Alice and Bob
share an electron pair in the singlet state, and Alice measures spin up along the z-axis
of some agreed coordinate frame, assigning |z+〉 to her electron in consequence.
She would then supposedly also, in virtue of her measurement and conditional on
the assumption that Bob also measures for z, assign the state |z−〉 to Bob’s electron.
But:

suppose that Bob did not measure z-spin at all, but measured spin in direction d, skew to z,
and got the result −1. Bob will assign the state |d−〉. Do he and Alice disagree? Not at all.
They are making use of different information. (Stairs 2011, p. 164; my emphasis – FB)

Just because the ‘best’ or preferred quantum state assigned by different users
of QM to the very same system may differ from situation to situation, this does not
mean that there is no such best or preferred state relative to that respective situation.
It merely means that each state is subject relative, in the sense of being sensitive to
the totality of an individual agent’s epistemic conditions.



7.3 How Much Subjectivity? 317

Stairs (2011, p. 164–165), moreover, thinks that

Alice’s state assignment does, of course, go with a subjective probability—a willingness to
bet conditionally, if you like. Should she find out that Bob actually measured z-spin, she
will be certain that the result was −1. But Alice, objectivist that she is, will add that this
credence reflects something about the world: the objective probability that Bob found result
−1, conditional on Alice and Bob both measuring z-spin and Alice getting result +1, is
one.

As much as the QBist view on QM lifts the ‘paradoxical’ character from
Wigner’s friend or Schrödinger’s cat, it bestows a paradoxical character on EPRB-
correlations. Why on earth would Alice and Bob (almost) always find opposite
values, when they get together and compare their results on runs in which they
happened to measure for the same direction? Why if not due to a ‘rigidity’
or ‘recalcitrance’ in nature? However, we have claimed multiple times that this
recalcitrance is not well explained causally (by abducing a hidden common cause)
and Stairs (2011, p. 165) basically agrees with this:

when Alice makes her probability-one claim about Bob’s qubit, she does not need to infer
pre-existing properties nor attribute counterfactuals. On the contrary, if she wants to square
her objectivism with causal locality, those are exactly the things she should not do.

But how else could we ‘explain’ the apparent recalcitrance? This will be another
headache, deferred at this point to Sect. 7.4. At the same time, we shall then have to
say something about the involvement of counterfactuals there.

The objectivism of Stairs is, in the first place, an objectivism about the probabil-
ities and correlations predicted by QM. Related views are expressed by Friederich
(2015, p. 79), who thinks that quantum probabilities are “objective inasmuch as
they are fixed as soon as all relevant features of the epistemic conditions of the
agents ascribing them are made explicit.” (emphasis in original) His main reason to
reject the radically subjectivist views at the heart of Quantum Bayesianism is that
“quantum Bayesianism denies the existence of a determinate answer to the question
of which observable is measured[. . . ].” (Friederich 2015, p. 62; emphasis in original)

Assuming that one also accepts the Lüders rule as an ‘objective feature’ of the
measurement, the argument to this conclusion is simple (cf. Fuchs 2002, p. 39):
If we resolve an observable as Q̂ = ∑

j qj P̂j and perform a selective projective
measurement on it, then the objective final state, according to Lüders’ rule, is one
of the P̂j , in contradiction to the very foundation of Quantum Bayesianism. So
it cannot be an objective feature that Q was measured. This is reason enough
for Friederich (2015, p. 66 ff.) to regard Quantum Bayesianism as (at least) an
implausible account of physical practice.

Friederich (2015, p. 75 ff.) additionally struggles with the question “Probabilities
of what?”, and while this is only half the battle and not at all in contradiction
to the QBists allusions to future experiences, it is certainly a significant point
of clarification that the claims at stake in probability assertions provided by the
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Born rule are non-quantum magnitude claims (NQMCs), as pointed out by Healey
(2012d, p. 740) and embraced by Friederich (2015, ibid.).18

Recall how our probability expressions are of the form PrψO(oj ) = p, or more

restrictively and realistically, PrψO(O ∈ �) = p. The ‘non-quantum’ part is here the
magnitude claim O ∈ � or O = oj , which should be read, to recall, as O(S) = oj
or O(S) ∈ �, with S either variable or fixed, meaning that the value of variable
(observable magnitude) O on some system S lies in range � or is oj .

Now the quantum part to this is the fact that these probabilities are given by
the Born rule and that “[t]here is no joint probability space for the statistical
relations specified by the quantum algorithm for two incompatible magnitudes.”
(Bub 1974, p. 35; my emphasis – FB; cf. also Healey 2012c, p. 14) In other words:
While QM positively advises us to assign particular degrees of belief to NQMCs in
specific contexts, it negatively advises us to refrain from asserting certain kinds of
(‘incompatible’) NQMCs at the same time.

To a large extent, this is the upshot of Healey’s (2012d) views on QM, where

quantum probabilities given by the Born rule do not describe any natural property of the
system or systems to which they pertain, or of any other physical system or situation: nor
is it their function to describe any actual agent’s state of belief, knowledge, or information.
Their function is to offer advice to any actual or hypothetical agent on the extent of its19

commitment to [NQMCs][. . . ]. (p. 735; my emphasis—FB)

The conditions under which a state may be assigned are called its backing
conditions, those about which it offers advice its advice conditions (cf. Healey 2015,
p. 1). Moreover, Healey, like Stairs and Friederich, embraces a form of objectivism,
but his objectivism is quite strong and directly concerned with quantum states:

Knowing a state’s backing conditions, one is justified in assigning that state: but one would
be warranted in assigning the state whether or not one knew these conditions, just as a test
result may warrant a diagnosis whether or not the doctor knows about it. (Healey 2015, p.
4; emphasis in original)

We may read this as expressing the conviction that the advice a quantum state
offers is ‘dictated’ by an external source, and it is hence not entirely up to the agent
which quantum state to assign: Given that one is interested in having long-run future
success, there is a preferred quantum state that is to be assigned in a given physical
situation. Notably, Healey thus also captures the upshot of Stair’s earlier mentioned
comments on possible divergence in quantum state assignments by different agents:
“Any application of a quantum model is perspectival—it is from the perspective of
a hypothetical, physically situated, agent.” (Healey 2015, p. 2)

18Why ‘only half the battle’? Because immediately the question arises: ‘The probability of. . . these
NQMCs being true? Appropriate to future experience? Assertible. . . ?’
19‘It’ here refers to the agent. Healey wishes to include also non-conscious ‘agents’.
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7.3.2 Healeyan Views and the Involvement of ‘Meaning’

Healey (2012d) calls his approach pragmatist, not least because he accepts pragma-
tist views on semantic content. His specific pragmatist stance towards meaning or
semantic content has its roots in Carnap (1937, p. 42), where the logical content of
some statement s or a class thereof is identified, within a specific formal language,
as the “class of non-analytic sentences [. . . ] which are consequences of [s or the
class—FB] respectively [. . . ].” (my emphasis—FB) Carnap (1937, p. 27) also had
it that by so called “transformation rules, [. . . ] we determine under what conditions
a sentence is a consequence of another sentence or sentences (the premisses).”
(emphasis in original) This should be evident for a formal first-order predicate
language and a logical calculus defined thereover. But Carnap (1937, p. 180) also
allowed for extra-logical transformation rules being operative in some suitable
language, which he called “P-rules” (“P” for physical, construed broadly).

As an example for a P-valid inference, Carnap (1937, p. 185) names the inference
from ‘a is made of iron’ to ‘a cannot float on water’. From the point of view of the
logician this is merely an enthymeme: the inference would be logically valid if one
introduced the additional premise ‘for all x it holds that if x is made of iron, it cannot
float on water’, so it appears as a mere abbreviation.

While Carnap (1937, p. 180) thought of the addition of P-rules to a language
as “a matter of convention and hence, at most, a question of expedience”, i.e.
believed that they were completely dispensable, Sellars (1953, p. 320) has argued
that they should be viewed as drawn from a class of inferences sui generis, which
he calls material inferences. The class of these inferences is probably not precisely
delineated, or at least it is hard to find precise specifications; Brandom (1994, p. 97)
describes them as “[t]he kind of inference whose correctnesses essentially involve
the conceptual contents of its premises and conclusions”, whereas Healey (2012d,
p. 746; my emphasis – FB) describes them as “inferences of the kind anyone with a
normal understanding of [some sentence—FB] will naturally make[. . . ].” Material
inferences hence are clearly connected to pragmatism in the sense of linguistics, i.e.
to Gricean maxims and implicatures (cf. Grice 1975), not merely in the sense of
epistemology.

To substantiate his views, Sellars (1953, p. 323) let a “Metaphysicus” argue that

we must interpret [certain—FB] subjunctive conditionals [. . . ] as expressions of material
rules of inference. ‘If there were to be a flash of lightning, there would be thunder’, giving
expression to some such rule as ‘There is thunder at time t-plus-n may be inferred from
there is lightning at time t’, and this rule is not in any obvious way a specification of a
purely logical rule of inference. (my emphasis—FB)

Sellars’ investigation was before Stalnaker (1968) and Lewis (1973), and in prin-
ciple the quote cries out for an investigation in terms of the logic of (counterfactual)
subjunctive conditionals.20 But this is not the place, and we merely acknowledge

20Point of clarification: a subjunctive conditional has the (schematic) natural language-form ‘if
it were the case that x, then y would be the case as well’. A subjunctive counterfactual has a
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that certain ‘material rules of inference’ are being thought of here as expressed
by (typically counterfactual; we will use that term generically below) subjunctive
conditionals.

The position of Sellars (1953) and others (e.g. Brandom 1994, 2000), called
inferentialist pragmatism, now is that the material inferences that can be drawn
from some sentence are constitutive of that sentence’s meaning: “the meanings
of linguistic expressions and the contents of intentional states [. . . ] should be
understood [. . . ] in terms of playing a distinctive kind of role in reasoning.”
(Brandom 2000, p. 1; emphasis in original) Below, we will give reasons to doubt
that this inferentialism can provide an appropriate, exhaustive theory of meaning;
but we still acknowledge here that in everyday life we certainly do ‘infer materially’
(from lightning to thunder, say, or from being made of iron to not being able to float
on water), whether we interpret this act of inference as performing an enthymeme
in some logic (regardless of the involvement of subjunctive conditionals) or not.
And of course the inferences we can draw from an expression are connected to its
semantic content, even though the latter is probably not exhausted by them.

What does all this have to do with QM? Healey (2012d, p. 746) suggests that
QM, construed as a normative calculus for quantifying expectations, limits our
capacity to draw certain material inferences, and thereby, according to inferentialist
pragmatism, the content of certain statements. His example is an interference
experiment with molecules (fullerenes), and a disjunctive statement (which he calls
‘sor’) about the positions of the molecules on a suitable screen where the interference
fringes occur: ‘The position of molecule S is x1 ± ε, or x2 ± ε, or x3 ± ε, . . . ’ (The
εs represent experimental errors.)

Now according to Healey, once one accepts QM, the definiteness of positions as
predicted by decoherence does “license” (his p. 744) endorsement of sor when the
screen is investigated, but endorsement of sor, in turn, does not license inferences
to statements such as “It is possible reliably to observe through which slit each
particle passed without altering the interference pattern”, or “If this is not so, then
that can only be because any physical mechanism that permitted reliable observation
of which slit each particle passed through would inevitably disturb the particle while
doing so.” (Healey 2012d, p. 746)

On the basis of the (specific kind of) inferentialism accepted by Healey, this
means that “the content of sor must be understood very differently within a
community that has accepted a quantum theoretic analysis of the situation[. . . ].”
(Healey 2012d, ibid.; notation adapted; my emphasis – FB) This conviction of
Healey’s certainly stands in some continuity to Bohr’s (1935, p. 700) emphasis
on “the very conditions which define the possible types of predictions regarding
the future behavior of the system”, and Healey (2012b, p. 3) in fact believes that

false antecedent (x is not the case), whereas subjunctive conditionals in general may also express
epistemic uncertainty as to the truth of the antecedent. Note also that Lewis (1973, p. 4) cites
a case where the expression is not (or at least not overtly) subjunctive but still a counterfactual
conditional.
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“inferentialist pragmatism about content promises a better treatment of meaning
than that offered by Bohr and his followers.” It seems safe to say that Healey’s
treatment is more up to date than Bohr’s because where Bohr (1935, p. 696) insisted
that “[t]he extent to which an unambiguous meaning can be attributed to such
an expression as ‘physical reality’ [. . . ] must be founded on a direct appeal to
experiments and measurements”, Healey (2012d, p. 744) has it that “decoherence
licenses [. . . ] any suitably physically situated agent, human, conscious, or neither,
to make some [particular NQMC—FB].” (my emphasis—FB)

More precisely Healey (2012d, p. 747; notation adapted; my emphasis – FB)
thinks that, applied to the fullerene-interference case,

it becomes more and more appropriate to think and speak of the fullerenes as having a well-
defined path through the interferometer as the degree of thermally-induced electromagnetic
decoherence into their environment increases. But note that on the present inferentialist
view of content, this progressive definition of content has no natural limit such that one
could say that, when this limit is reached, a statement like sor is simply true because one has
finally succeeded in establishing a kind of natural language-world correspondence relation
in virtue of which the statement correctly represents some radically mind- and language-
independent state of affairs.

Connections to Putnam’s version of internal realism should come to mind at this
point. Recall, from the first interlude, that Putnam was eager to leave the correspon-
dence theory of truth behind on behalf of a “idealized rational acceptability”-theory
of truth, where creatures with “a rational and sensible nature” were invoked to
delineate what counts as rationally acceptable. Much in the same way, material
inferences constitutive of semantic content are those drawn by “anyone with a
normal understanding” for Healey. The connections are not accidental: Healey was
a student of Putnam, and Putnam (1977, p. 485) also calls his realism “Peircean”, in
honor of the arch-pragmatist C. S. Peirce.21

And there is an obvious connection to another twentieth century philosopher
here, namely to Wittgenstein: The pragmatist inferentialism Healey endorses is
heavily influenced by the specific rule-based account of meaning put forward by the
later Wittgenstein. Here is Brandom (1994, p. xii): “One of the overarching method-
ological commitments that orients this [Brandom’s—FB] project is to explain the
meanings of linguistic expressions in terms of their use—an endorsement of one
dimension of Wittgenstein’s pragmatism.”

But despite the fact hat Healey’s pragmatist approach, like QBism, lets certain
riddles of QM disappear, these considerations on reference and meaning make
it arguably ‘even more radical’ than the QBists’ one, much in the same way as
skepticism about meaning, such as that of Wittgenstein (1968), has been judged to
be “more radical than epistemological scepticism” (Miller 2006, pp. 91–92) or even

21For historical details on Peirce’s role in the development of pragmatism e.g. Kenny (2007, p. 34
ff.). Burch (2014, p. 8), in particular, argues that “even when Peirce calls himself a ‘realist’ or is
called by others a ‘realist,’ it must be kept in mind that Peirce was always a realist of the Kantian
‘empirical’ sort and not a Kantian ‘transcendental realist.’” We identified Kant as a specific kind
of internal realist in interlude I, so the connections run quite deep.
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“the most radical and original sceptical problem that philosophy has seen to date”
(Kripke 1982, p. 60). It seems that on Healey’s views, it is not only that QM implies a
failure of knowledge and certainty about the truth of certain propositions or a failure
to conceptualize certain aspects of the external world; it ultimately implies a failure
of successful reference to mind-independent reality at all, at least in the sense of
a mind-world correspondence. Healey’s considerations have an impact on the very
meaningfulness of non-quantum claims (his NQMCs), i.e. statements expressed in
terms of everyday language.

But what is ‘reference’? What ‘meaning’? These are, of course, deep philosoph-
ical questions well beyond the scope of this book. Quine, for instance, has been
accredited with the quite devastating view that “[n]o scientifically satisfactory sense
can be made of the concept meaning, and not even [. . . ] of reference[. . . ]: the
use of those concepts is inescapably intuitive, unpredictably interest-relative, and
subject to radical indeterminacy and even paradox.” (Kemp 2012, p. 2; emphasis
omitted) We succumb to Quine’s purported authority at this point, but relative to
our particular interests, we should make some distinctions for the sake of clarity. In
particular, we reserve the intuition that meaning has a component purely internal to
the speaker’s mind—which even the semantic externalist Putnam (1975a) allowed
(cf. also Neander 2006, p. 377)—and that reference is specifically “a relation that
obtains between certain sorts of representational tokens [. . . ] and objects.” (Reimer
and Michaelson 2014, p. 1; my emphasis – FB) So reference ‘crosses boundaries’
whereas meaning need not; and when it comes to the merely possible, there are good
reasons to sharply distinguish the two (cf. Quine 1939, pp. 702–703; Quine 1948,
p. 26). This distinction allows us the freedom to largely agree with Healey when
it comes to questions regarding the language-world relation while disagreeing with
him about meaning.

What, however, are the reasons for disagreeing with Healey on the impact of
QM on the meaning of specific statements? Now we had readily acknowledged
that Healey offers an improvement on Bohr’s appeals to meaning, in virtue of his
inclusion of decoherence, and we had also admitted that the material inferences
that may be drawn from a statement have something to do with its meaning. But it
seems far fetched to embrace full inferentialism about meaning: Carnap’s (1937, p.
42) inferentialism was carefully formulated w.r.t. logical content only, and taken to
apply with certainty “so long as nothing psychological or extra-logical is intended
by it.” (my emphasis—FB) Fodor and Lepore (2001, pp. 468 and 473), moreover,
argue that neither is Brandom (2000) clear on which inferences are constitutive to
meaning—even among the ‘material’ ones, which we found rather vaguely defined
in the first place—, nor can inferentialist pragmatism in principle, ever account
for compositionality, the “uncontroversial” assumption “that, apart from idioms,
the meaning of any complex expression-type (such as a sentence) depends on the
meanings of its component words and on how those words have been combined with
one another.” (Horwich 2006, pp. 47–48)

This is also the point where Friederich (2015) branches off from Healey, whose
conception is otherwise quite strongly influenced by the latter. Friederich (ibid., p.
79), however, only takes the scope of the Born rule to be at stake, instead of semantic
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content, i.e. the range of NQMCs about which it (the Born rule) licenses particular
inferences. We can only partly agree. Certainly, the scope of the Born rule is at stake
as well. But what Healey seeks to clarify is the Bohrian heritage which promotes the
view that QM has an impact on language use and meaning and is still prevalent in
physical conduct, as witnessed by the following textbook passages (my emphases—
FB):

In the example of the Stern-Gerlach experiment, sorting into the two categories μz = +μ0
and μz = −μ0 loses all its meaning if one attempts to sort the systems into subcategories
μx = +μ0 and μx = −μ0. (Basdevant and Dalibard 2002, p. 166)

Before quantum mechanics was born, the thermodynamic properties of an ideal gas [. . . ]
were obtained by summing over the phase-space locations of each molecule independently.
[. . . ] Quantum mechanics teaches that the state of the gas is completely specified by listing
the three occupied states, |1〉, |2〉 and |3〉 for it is meaningless to say which molecule is in
which state. (Binney and Skinner 2014, pp. 157–158)

it is not meaningful to regard a quantum particle as possessing any intrinsic property,
independent of the (classical) measuring apparatus used to observe it. This interpretation
is remarkably useful, and is used unthinkingly by thousands of physicists. (Le Bellac 2006,
p. 186)

Healey’s considerations, we take it, establish is in what sense and to what extent
our use of QM has an impact on the meaning or the content of certain statements
(NQMCs) in certain contexts. It may be a useless practice to state that the path of
a fullerene, electron, or photon in a suitable and suitably isolated interferometer is
such and such—but we urge that this does not make the statement meaningless
altogether: we still seem to understand it very well22; classical physics would
otherwise not have been possible.

In other words: We appreciate that QM has an impact on the inferential content
of certain NQMCs, where the inferences that are not being promoted need not be
deductively valid ones. But we deny that a statement’s meaning is exhausted by its
inferential content, and hence, as Healey seems to think, that its capacity to mean
anything can depend on e.g. the degree of thermally induced decoherence. The more
restricted impact on inferential content only is probably also closer to what (most)
physicists have in mind, or would subscribe to when pushed on this issue, when
they talk about the ‘meaningfulness’ of this or that statement as in the three quotes
above: From the quantum state |μx = +μ0〉 we cannot infer anything about the
states |μz = ±μ0〉; from the listing of three distinct states in occupation number
representation, we cannot infer anything about the thermodynamic properties of the
individual molecules; from the properties exhibited in measurement, we cannot infer
anything about the properties outside any observational situation. This seems to be
the intended meaning of ‘meaning’ here. But to re-emphasizes our conclusions from

22Davies (2006, p. 23) equally refers to the understanding of a sentence as an explication of what
it is to know its meaning. Since knowledge implies truth on most conceptions, we may take it that
a sentence has to have a meaning in order for a competent speaker to understand it. Here is Quine
(1939, p. 703, emphasis in original): “The noun ‘Pegasus’ is meaningful. If asked its meaning, we
could reply with a translation into other words: ‘the winged horse captured by Bellerophon.’”
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Chap. 4: in all three cases, it is a mistake to think that this is a result of a limitation
in epistemic access alone, as the thermodynamic example, involving entanglement,
shows most forcefully.

7.3.3 What to Make of Decoherence?

While Healey relies heavily on decoherence, “there is”, much in contrast to this, “no
foundational place for decoherence in the Quantum Bayesian program.” (Fuchs and
Schack 2012, p. 246) Fuchs and Schack aim to replace the decoherence mechanism
by a story based on van Fraassen’s (1984, p. 244) reflection principle, that our degree
of belief in the occurrence in some event A at time t , given that we assign the degree
of belief q to it at time t+δ, should be q as well, i.e. pt (A|pt+δ(A) = q) = q. They
fist argue (their pp. 239–240) for the adoption of this principle from a diachronic
Dutch book argument, and then, subsequently (their pp. 244–245), that the principle,
translated to the quantum formalism, implies an update rule for measurement
situations with two subsequent measurements according to which the updated state
“has the form of a ‘decohered’ state,” which then “is the agent’s quantum state [. . . ]
as far as the second measurement is concerned.” (Fuchs and Schack 2012, p. 245;
emphasis in original)

This is hardly an apt replacement of the decoherence mechanism with all its
implications though. What about decoherence times and confirming experimental
evidence? What about concrete implementations such as scattering models or
decoherence based on spin-couplings (cf. Schlosshauer 2007, p. 88 ff.)? It is
doubtworthy that the argument from the reflection principle can capture the full
content of decoherence theory, which, we have argued, ‘is here to stay’.

A question that should be bugging us by now, however, is what the status of
decoherence actually is, in Healey’s pragmatist account or any conception relevantly
similar to it. In Sect. 6.3.2, decoherence was treated more or less directly as a
physical process, aiding the MWI to some extent, while also creating problems for
reconciliation with the Born rule. We also made reference to experimental evidence
supporting the predictions of decoherence theory, and should this evidence not
commit us to a belief in there being a physical process that is described by the
decoherence mechanism after all? And are we then not faced with Bell’s problem
of retrieving an ‘or’ from an ‘and’ again, i.e. of how to interpret QM “the same way
we have always interpreted scientific theories in the past: as modelling the world”,
as Wallace (2012, p. 38) urged us to?

Now we could pose Bell’s “Who do we think we are?”-question against, and
even shed doubts on the historical accuracy of Wallace’s comment (e.g. Mach 1910;
or Cantor et al. 1990, p. 191 ff., for an overview of some ‘anti-realist’ contentions
in the histroy of science). But compare, more illuminatingly, a typical situation in
which decoherence becomes relevant to the following situation (cf. Schwabl 2006,
p. 429 ff.) of (semi-)classical particles, subject to some stochastic dynamics driven
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by a force − ∂V
∂x

with suitable damping  , and described by a (time dependent)
probability density P(x, t) over particle positions x. The temporal evolution of the
probability density is given, in this context, by the Smoluchowski equation

∂P

∂t
=  

∂

∂x
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∂x

)
P

]
, (7.9)

where β = 1/(kBT ), kB Boltzmann’s constant and T the temperature. An ansatz for
this equation is P(x, t) = ρ(x, t)e−Vβ/2, where ρ can be separated for x and t and

developed as ρ(x, t) =∑∞
n=0 cnϕn(x)e

−  En
β
t , according to (discretized, and hence

semi-quantum) energy contributions En. Using that P is normalized, one finds the
zeroth contribution c0ϕ0 to be

c0ϕ0 = e−Vβ/2∫
dx e−Vβ

. (7.10)

This factor is independent of time, and multiplying by the factor e−Vβ/2 of the
ansatz, one obtains

P(x, t) = e−Vβ∫
dx e−Vβ

+ e−Vβ/2
∞∑
n=1

ϕn(x)e
−  En

β
t
. (7.11)

As we can see, the distribution will approximately evolve into an equilibrium

distribution Peq = e−Vβ∫
dxe−Vβ for large enough t , since deviations are given by the

rest of the series (n > 0) and vanish exponentially for t →∞.
We have put some physical considerations into this sketch, and it appears that

over a short time, the ‘ensemble’ represented by P evolves into a familiar form—
a process accessible to thermodynamic experiment. Does this, however, give any
credibility to P representing anything physical at all? Does it mean that there
is a real, physical process, described by the above steps, according to which a
(‘real, physical’) substance, the ‘probability density’, evolves over time into a (‘real,
physical’) equilibrium density? Clearly the answer is: no! It only means that insofar
as P and Peq have empirical significance (can be connected to experience), we
should believe that there is something in reality that requires us to switch from
using P to using Peq after appropriate intervals of time τ , when the suitable initial
conditions are given to use the Smoluchowski equation and the above ansatz.

Healey (2012b, p. 1538; emphasis in original) similarly has it that his

pragmatist interpretation does not deny that environmental decoherence involves a physical
process: but it does deny that the role of a system’s quantum state is to describe or represent
properties of systems involved in such a process.

Quite in contrast to this,

[f]or a Quantum Bayesian, the only physical process in a quantum measurement is what
was previously seen as ‘the selection step’—i.e., the agent’s action on the external world
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and its unpredictable consequence for her, the data that leads to a new state of belief about
the system. (Fuchs and Schack 2012, p. 246; emphasis in original)

This is (too) much of a fallback onto Heisenberg’s disturbance theory and onto
the ‘other side’ of Bohr’s thinking, with its emphasis on “sources of uncontrollable
interaction between objects and measuring instruments.” (Bohr 1948, p. 52) It is all
but clear how these considerations help to understand the use of the decoherence
formalism or elucidate the ‘weirdnesses’ of QM more generally (cf. in particular
the comments on EPRB correlations above).

Surprisingly, our above treatment of the semi-classical particles and probabilities
can, in fact, be described quite well in terms of Healey’s aforementioned backing
and advice conditions: only under suitable such backing conditions can we justify
our use of the Smoluchowski equation and the appropriate ansatz to infer the ‘evo-
lution into equilibrium’—and we do so to thereby successfully form expectations
about future observations in appropriate advice conditions, so these conditions even
warrant the use. There seems to be much more continuity between classical physics
and QM than expected, when viewed from this perspective.

All in all, our conclusion w.r.t. decoherence is the following: Once the assump-
tion is dropped that quantum states are representational w.r.t. anything ‘external’,
the thrust of arguments from decoherence to particular ontological interpretations
such as the MWI or prospective decoherence-based collapse interpretations, or even
to the loss of interference with ‘empty waves’ in BM, vanishes. Anyone familiar
with the way in which physicists use, say, charts and diagrams to depict all kinds of
connections not directly indicative of (‘real, physical’) processes should find some
appeal in this argument. Emphatically, we are not claiming that quantum states ‘are
just’ probability densities like those discussed above, which would be obviously
false. The appeal to the dynamics of classical probability densities here serves
merely as a plausibilization for viewing quantum states and their dynamics more
like probability densities, on an appropriate reading of the latter: as cognitive tools
for making predictions about future experience.

The OP, as we already noted, basically dissolves once one denies an ‘ontic’ status
to quantum states. If one appreciates the Born rule as well, empirical adequacy is
built into one’s interpretation. And if one accepts the unitary time evolution as a
preferred norm-preserving time evolution on (partly) empirical grounds, one can
even appreciate that there is no need to quarrel over dynamical questions. Given
these ingredients to a specific interpretation, the MAC is fulfilled quite trivially and,
in contrast to QBism, even on dynamical grounds.

Note that Healey also believes decoherence to help solve what he calls “the
residual measurement problem”, which loosely coincides with Pitowsky’s (2006, p.
233) or Bub’s (2016, p. 208) ‘small’ measurement problem(s): “Given a superposed
entangled state (such as that of quantum system and quantum detector), under what
circumstances is it legitimate to infer that (at least) one of the entangled systems has
some definite property, with probability given by the Born Rule?” (Healey 2012c,
p. 8; my emphasis – FB)
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How can decoherence do the trick? While in some places Healey (e.g. 2012c,
p. 12) resorts to the standard realist vocabulary of environmental interactions
‘dislocalizing the phase’ of a system ‘into the environment’, which becomes
somewhat elusive against the background of his inferentialist pragmatism, in his
2015 he is much clearer:

The Born rule may be legitimately applied to [some system—FB] only when [. . . ] deco-
herence has occurred, and then only to those privileged magnitude claims corresponding to
projection operators onto subspaces in the relevant pointer basis. Such decoherence is never
perfect, and nor is a ‘pointer basis’ precisely determined and perfectly constant. But the
advice provided by the Born rule concerning only magnitude claims privileged by pointer
bases in the same narrow neighborhood will be consistent and typically prove reliable:
the corresponding advice conditions will typically obtain with relative frequencies closely
corresponding to their Born rule probabilities. (p. 3; my emphasis—FB)

We take it that decoherence, in virtue of its (statistical) empirical adequacy,
should be seen as just that: an important (if not QM’s unique) normative guide
to expectations about observing this or that value for a measurable magnitude,
i.e. as ‘legitimizing’ expectations about certain NQMCs. This implies a sort of
relationalism about quantum states (cf. Healey 2012d, p. 752 ff.): A suitable
preparation on a photon may warrant the assignment of a superposition state in
the basis in which a suitable detector measures, and the decohering measurement
interaction may then, in turn, warrant one of the states from that basis, i.e.:

the quantum state of the photon’s polarization is a superposition of horizontal and vertical
relative to the situation of an agent prior to the decohering interaction with the detector and
its environment, but horizontal relative to the situation of an agent after that interaction.
(Healey 2012d, p. 753; my emphasis – FB)

And, importantly, decoherence should be viewed as legitimizing expectations
about particular NQMCs in a much broader context than merely Bell’s (1990a, p.
34) “piddling laboratory operations”:

Much of what we know about the solar system, and almost everything we know about
what lies outside it, is based on evidence provided by analyzing electromagnetic radiation,
especially that emitted or absorbed by excited atoms and molecules. [. . . ] No single, simple
model of decoherence can be expected to encompass all such phenomena. But in many
cases the atoms and molecules involved will be in an environment that decoheres their
internal states in an energy basis [. . . ]. It is such decoherence that justifies one in assuming
that emission or absorption occurs between states of well-defined internal energy, and so
applying the Born Rule to calculate absorption or emission probabilities. (Healey 2012b, p.
1552; my emphasis – FB)

Suggested correction to avoid the descriptivist touch: It is not decoherence,
construed as a ‘real’, ‘physical’ process, that justifies these assumptions, but
whatever ‘dooms’ us to use the decoherence description of state changes, or rather,
legitimizes our preference for one basis over the other and advises us to quantify our
expectations about NQMCs suggested by that basis in accord with the Born rule.
This will always imply that we cannot think of the system of interest as isolated,
but must rather regard it as embedded in an environment. And the most interesting
part is that this advice comes dynamically: decoherence times, computed in virtue
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of scattering models etc., tell us over which time scales and in what ways our
expectations should change, given that we know the backing conditions for states of
both, system of interest and environment.

7.4 From an Epistemological Point of View: Piecing Together
a Positive Proposal

7.4.1 Material Inferences and Abduction

A major complaint in Sect. 7.2.3 was that QBism does not really offer an episte-
mologically clear interpretation, and while Healey’s views certainly help to resolve
some issues, many questions still remain unanswered here as well.

Above, we have sided with Healey, Stairs, and Friederich and against QBism
in that quantum states are not merely an expression of the beliefs of some
agent. They provide a normative calculus that, when applied under typically well-
understood ‘backing conditions’, gives advice about what to expect in specific future
circumstances (‘advice conditions’). The timescales under relevant (de-isolating)
conditions that determine when to expect what and with what probability (frequency
in repeated similar circumstances) are also provided by the decoherence mechanism.
In particular this has the implication that the correlations implied by QM do not
depend on the beliefs of agents; there is a sense in which they are ‘objectively there’.

We do, however, agree with the QBists on the meta-level: the belief in the
appropriateness of the normative content of QM is just a belief: the hypothesis that
QM will continue to enable our remarkable scientific success as it has done in the
past is merely a hypothesis, formed on the basis of induction. It expresses a belief
in a certain uniformity of nature. And we agree with the QBists also on the (object-
level) issue that “there is [. . . ] a split [. . . ] between the world in which an agent lives
and her experience of that world.” (Mermin 2012, p. 8)

A split between mind and world is, however, also tacitly acknowledged by Healey
(2012d, p. 747), when he denies that a statement ‘licensed’ on the basis of sufficient
decoherence “correctly represents some radically mind- and language-independent
state of affairs.” But Healey (2015, p. 12; my emphasis – FB) commits an apparent
crime against this attitude when he writes: “There are real patterns of statistical
correlation in the physical world. Correctly assigned quantum states reliably track
these through legitimate applications of the Born rule.” How, if QM never perfectly
allows for the establishment of a “natural language-world correspondence”, is the
term ‘physical world’ even to be understood? How can we ‘rely’ on QM or the
NQMCs it licenses, if we cannot establish their truth in the sense of mind-world
correspondence?

This is the point where we find Healey’s pragmatism unsatisfactory and to
equally not satisfy the DEC. (i) seems fine in Healey’s account: ‘classical objects’
come out as those (we take it) that are well-described by those (strictly incompatible)
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NQMCs which are simultaneously licensed by decoherence to a satisfactory degree.
(ii) is fine as well: the quantum-classical transition is given by decoherence,
understood as a guide to advice conditions wherein one can make use of the
Born rule, and somehow ‘backed up’ by a physical process. The ‘somehow’ in the
previous sentence however indicates where the trouble lies: What ‘licenses’ even the
notion of a ‘physical world’, when the correspondence theory of truth is given up?
More precisely: What is meant by that term? What is meant by the process ‘involved
in’, but not described by, decoherence? Part (iii) of our DEC is not appropriately
addressed.

Another, ultimately closely related point of contention with Healey’s views was
with the role of material inferences and their impact on meaning. While we found
the class of material inferences to be rather ill-defined, we appreciated that standard
examples are typically formulated as counterfacutals. This makes for an interesting
connection to a reoccurring theme in this book: Rosenberg (1974, p. 76), a student of
Sellars, suggests to “call the credibility attaching to [. . . ] a material rule of inference
or system of such rules by virtue of the fact that their acceptance or espousal
enhances our explanatory competence ‘abductive credibility’.” (my emphasis—
FB) Recall from Sect. 4.3.4 that abductive inferences follow the general scheme
from known laws and a given datum to the conjecture of an explanation. So if
the material inferences that we draw (typically) express, in a more familiar albeit
problematic parlance, ‘lawlike’ connections, as evidenced by previous examples like
the inference from lightning to thunder, acceptance of them of course enhances our
ability to infer, abductively, explanatory reasons for observed data.

Since QM disencourages material inferences like ‘we measured μz = ±μ0 on S
in a |μx = +μ0〉-state because S already had this and that property/was disposed to
do this and that w.r.t. μz in state |μx = +μ0〉’, it thereby disencourages abductive
inferences to the existence of a definite property w.r.t. μz; or to the existence of a
particular thermodynamic configuration in the number representations |1〉 , |2〉, and
|3〉; or to the existence of particular pre-existing properties in general. This is the
connection to, nay restriction on, abduction that, as we have multiply emphasized in
the course of this book, should be seen as playing a major role in the interpretation of
QM, given the negative results from Chaps. 4 and 6. The general limitation implied
by QM, we take it, is hence better phrased in terms of abductive than material
inference: we cannot abductively infer that there ‘really was a particle all along’ at
any given, particular position within an interferometer from the fact that we observe
a spot on some screen or hear a click from some detector. So we cannot appeal
to the particle’s causal history as an explanation of our present observations in the
same sense as this is possible according to pre-quantum intuitions. The situation
is radically different from footsteps in the sand and the inference to some person
having been walking there.

But which counterfactuals—and hence: which abductive inferences—are disen-
couraged and which ones are not is, in fact, a quite subtle matter. Stairs (2011,
p. 164), considering the entangled electron pair of Alice and Bob, measured at a
spacelike distance and with Alice measuring +1 for z-spin, points out that Alice
should not assert that
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if Bob were to measure z-spin, he would find −1. Instead, she will say that if Bob did
measure z-spin, he did find −1. But if he did not, she will say nothing about what he would
have found if he had. (emphasis in original)

Why should Alice act this way? Since both events are at a spacelike distance,
asserting that Bob were to measure −1 for z-spin must be understood either
nonlocally causal or superdeterministic: if the assertion is not intended to mean that
the course of events predetermines Bob’s −1 measurement anyway (and Alice’s
+1 one, and her choice of axis. . . ), it can only be taken to mean that Alice’s +1
measurement makes it so that Bob measures −1, i.e. causes it, or vice versa—
nonlocally, in each case. How else could it be understood?

Stairs nonetheless believes that there is a “lawful, counterfactual-supporting
generalization” (his p. 165): Given that the probabilities are construed as objective
and the correlations as objectively occurring, one can safely say that if Bob and
Alice were to measure along the same axis, they would find opposing spin values.
This basic opinion is also expressed by Healey (2012a, p. 24), but while Stairs (2011,
p. 165) eschews discussion on which counterfactuals QM encourages and which
ones it does not, and remains with the “vague remark” that it “seems plausible that
whether we attribute counterfactuals has to do with what we actually interact with”,
Healey, using the Alice-Bob case, manages to narrow things down much better.

Recall from Chap. 6 (in particular Footnote 23) that we shed doubts on whether
QM supports certain causal counterfactuals. Woodward (2003, p. 15), in particular,
believes “that the sorts of counterfactuals that matter for purposes of causation [. . . ]
are just such counterfactuals that describe how the value of one variable would
change under interventions that change the value of another.” This is quite plausible:
Woodward (2003, pp. 14–15) appeals, as a motivating example, to the correlation in
barometer readings and storms occurring, and while ‘if the barometer reading were
to fall, a storm would occur’ seems to be true (or is at least supported by evidence),
‘if one were to intervene on barometer readings, a storm would/would not occur’ is
clearly false. So only the latter seems to capture the causal relation appropriately, in
virtue of the intervention terms.

Now given this interventionist touch to causal counterfactuals, there will be no
causal connection between Alice and Bob, because there can be no interventions
IA, IB such that Alice and Bob could perform IA or IB respectively to fix their
system to one of the possible values. To see this, consider that for some I to count as
a genuine intervention on a variable X w.r.t. variable Y , it is required (among other
things) that “certain values of I are such that when I attains those values, X ceases
to depend on the values of other variables that cause X and instead depends only
on the value taken by I .” (Woodward 2003, p. 98; notation adapted) Now assume
that there could be an IB which would allow Bob to fix his spin-value to ↑z, say,
which would (causally) fix Alice’s outcome to ↓z. Since the singlet state is perfectly
symmetric, the same thing would apply to Alice and some IA, whence Bob’s value
would still depend on Alice’s distant value, in spite of IB . This is in contradiction to
Woodward’s requirement of independence from all other variables; there can hence
be no such interventions.
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This argument is executed by Healey (2012a, pp. 23–24) and repeated by
Friederich (2015, p. 132), and Healey (2012a, p. 2) concludes that “the only coun-
terfactuals that hold in this case manifest epistemic rather than causal connections
between distant events.” What is being demonstrated, more precisely, is that QM
does not encourage causal reasoning in specific contexts such as EPRB-experiments,
in the sense of hidden common causes or direct causation. It is in this sense that
“quantum mechanics as a means of ordering an immense amount of evidence”
suggests a “departure from accustomed demands of causal explanation[. . . ]” (Bohr
1963, p. 3), much more so than in the sense Bohr probably had in mind.

But these considerations still fall short of a general characterization of which
counterfactuals are or are not being rendered moot. Stairs (2011, p. 165) refers to a
counterfactual of the form ‘if we were to prepare a single spin as |↑z〉 and measure
it shortly after, we would measure ↑z again’. This counterfactual is supported by
QM, since for short enough times and sufficient isolation the effect of decoherence
may be regarded as negligible, and the free Schrödinger-evolution
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of a spinor ψ(x, t) = ψ(x, t) |↑z〉 between two Du Bois magnets aligned along
the z-axis will leave the spin-up character of the state, as well as the probabilistic
predictions for spin up along z, entirely untouched. The spin up-state may hence be
said to cause a later, time evolved spin up-state and the counterfactual does seem to
be of the required causal sort.

This is closely related to the point emphasized by Born (1926, p. 804), that
probability itself was governed by a causal law in QM. It is hence the probability-
assertions implied (via the Born rule) by quantum states that are related to one
another by a unitary evolution which can be summarized in terms of lawful
counterfactuals, counterfactuals that could be viewed as ‘causal’ in even the strong
sense of deterministic causality. In fact, we should provide a more encompassing
analysis of the role of (unitary) transformations in the interpretation of QM, the
lack of which we found wanting in QBism.

7.4.2 From Bohr and Einstein to the Constitution of a
‘Quantum Reality’

In Sect. 7.3.2, we noted Healey’s connections to Putnam. And we also noted, in
the first interlude, that according to Brown’s (1988) analysis, Putnam and Kant
both “hold that the world we know and talk about is empirically real, but [. . . ]
also [. . . ] mind-dependent”, and that both also “consider [. . . ] the view that there
is an unknowable noumenal world behind the phenomena.” Due to his denial of our
representational access to “some radically mind- and language-independent state
of affairs”, when Healey talks about the ‘physical world’, this can only be in the
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‘phenomenal’ sense, i.e. as referring to an ‘empirical’, ‘mind-dependent’ world—
or put less philosophically bloated: the world as it appears. ‘Physical reality’, if
understood this way, is dependent to some degree on our cognitive interior and
perceptive inventory.

We cautioned against embracing Healey’s pragmatist inferentialism in full,
arguing that there is more to ‘meaning’ than the (material) inferences promoted by
some statement. What we took QM to signal, however, is: (a) a failure of reference
of formal and natural languages, at least whenever one has to resort to QM to
‘reason about’ a given situation and no ‘classical description’ is available; and (b)
a failure of causal interpolability, because e.g. neither the endorsement of direct
causation nor of a hidden common cause in EPRB-scenarios are promoted by the
quantum calculus. As a first approximation, we can hence, if a separation between
two ‘worlds’ is acknowledged, take both our conclusions, (a) and (b), to signify that
empirical reality has ‘gaps’.

Causal interpolability is here taken as a constitutive feature of an empirical
world, as was somewhat justified by the realism-considerations in interlude II.
And this, of course, is quite a Kantian point. Kant (1783, p. 70; my emphasis –
FB) believed, in particular, to “have amply shown” that causality, understood as
“the reference of the existence of one thing to the existence of another, which
is necessitated by the former”, could be “firmly established a priori” and had
an “undoubted objective value, though only with regard to experience.” Now
‘necessitation’ of effect by cause is not endorsed by everyone anymore, as we
saw in interlude II, and Kant’s (1781, pp. 176–177) ‘proof’ of the “the principle
of sufficient reason” (where ‘reason’ is construed causally) is certainly wanting in
many respects.

But we already noted in interlude II that the ‘production’ of effect by cause is
at least a typical intuition associated with causation, and there is certainly also a
strong intuitive reluctance to accepting an ‘uncaused correlation’ in a situation like
that described by EPRB or actual experimental realizations thereof. Why else would
almost 1/3 of the over 10,000 citations of Bell’s (1964) famous paper contain the
word ‘explanation’, as can be gathered using modern search engines? Thus while
causal reasoning may fall short of an a priori principle with the objective strength
claimed by Kant, it is still certainly well routed in our intuitive modes of thinking
and conceptualizing, and a failure of causality might still count as signaling a ‘gap’
in reality as experienced.

More generally speaking, Kant’s synthetic a priori, which lies at the heart of
his ‘necessity’ claims, has been identified as a central deficit in his philosophy,
especially in the light of developments in non-Euclidean geometry in the late
nineteenth century (e.g. Friedman 1999, p. 6). And it has also been suggested to
connect to inconsistencies, or at any rate incoherences, in Kant’s own philosophy
(e.g. Moore 2012, p. 134): Kant suggests that “[t]he concept of a noumenon is
[. . . ] merely limitative, and intended to keep the claims of sensibility within proper
bounds, therefore of negative use only” (Kant 1781, p. 255; emphasis in original),
while also declaring, in some places, that space and time are “pure forms of sensuous
intuition” (Kant 1781, p. 22), a crucial step for promoting the principles of Euclidean
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geometry to a priori valid synthetic judgments (his p. 24). But it looks as though he is
thereby immediately lead into claiming at least negative knowledge of the nuomenon
as a-spatial and a-temporal.23

Moreover, Kant’s (1781, p. 18) doctrine that “[a]ll thought [. . . ] must, directly
or indirectly, go back to intuitions (Anschauungen)”, where the form of empirical
intuitions would be determined by the synthetic, has been suspected to be at
least partly responsible for Schrödinger’s initial insistence on visualizable wave-
concepts (e.g. d’Espagnat 1995, p. 314). And equally, Einstein’s (1948, p. 321)
aforementioned insistence on e.g. the separability principle, without which, he
thought, “physical thinking in the sense familiar to us would not be possible”
(my emphasis and translation—FB) may have been partly due to Kant’s impact
on his thinking.24 Einstein, for instance, once argued (1944, p. 22) that while Kant’s
concepts of pure reason had “nothing of the [. . . ] inherent necessity, which Kant had
attributed to them” (my emphasis—FB), it still appeared to him “correct in Kant’s
statement of the problem” (of a basis for “assured knowledge”) that “in thinking we
use, with a certain ‘right,’ concepts to which there is no access from the materials of
sensory experience[. . . ].”

It is quite ironic that Einstein was so influenced by Kant in his thinking which
furthered his resistance to QM, when at the same time Bohr has been characterized
by Folse (1994, p. 121) as a “pragmatized Kantian”. The irony is somewhat
lifted though, when one realizes that Bohr and Einstein seem to have fixated on
different aspects of Kantian philosophy. And this also helps to sort out what parts
of Kant’s philosophy we can (and cannot) make good use of, in interpreting QM
‘epistemologically’.

First note that while Einstein (1944, p. 22) insisted that “the concepts which
arise in our thought and in our linguistic expressions are all [. . . ] the free creations
of thought which cannot inductively be gained from sense experiences”, Folse
(1994, p. 121) describes the pragmatized Kantianism which he attributes to Bohr as
characterized by the fact that “it is not Reason but Nature as that which is subsumed
under the concepts provided by the organizing mind which grounds the applicability
of the concepts.” In other words: Both, Bohr and Einstein, give up on the a priori
validity of certain synthetic judgements. But while Bohr also allows experience to
alter our categories or their application quite substantially, Einstein does not.

A remarkable difference also occurs, of course, in the role of ‘reality’ in both
views. In his Reply to Criticisms, Einstein (1949b, p. 680) puts the for him crucial
message of Kantian philosophy thus:

There is such a thing as a conceptual construction for the grasping of the inter-personal, the
authority of which lies purely in its validation. This conceptual construction refers precisely

23E.g. Kant (1781, pp. 26 and 34–35): “Space does not represent any quality of objects by
themselves, or objects in their relation to one another”; “time is no longer objective, if we remove
the sensuous character of our intuitions, [. . . ] and speak of things in general.”
24Cf. also Beller (2000) for historical details on Einstein’s life-long exposure to Kantian thought.
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to the ‘real’ (by definition), and every further question concerning the ‘nature of the real’
appears empty.

Reference to a “conceptual construction for the grasping of the inter-personal”
and the ‘emptiness’ of further questions makes Einstein appear as the subtle kind of
realist that Fine (1986) depicts him as. But it has often been claimed that “mature
Einstein was a realist [. . . ] and that the ‘prescriptive principles’ [. . . ] that he put
forth [. . . ] were quite unambiguously interpreted by him [. . . ] as referring to mind-
independent reality.” (d’Espagnat 2011, p. 1705) This is not without reason; in
Einstein (1950, p. 46 ff.), for instance, the latter describes a definitive scientifically
realist stance as the framework of physical thinking up to the twentieth century,
and expresses his affinities to it and to a belief in causal laws. And while young
Einstein’s thinking clearly had empiricist elements—as he acknowledged himself
e.g. in conversations with Heisenberg (1969, cf. p. 80)—, as early as 1934 he
held “it to be true that pure thought is competent to comprehend the real, as the
ancients dreamed”, and confessed to “still believe in the possibility of giving a
model of reality, a theory, that is to say, which shall represent events themselves
and not merely the probability of their occurrence.” (Einstein 1934, pp. 167–169;
my emphasis – FB)

Our original point of contention however was the synthetic a priori in Kant’s
thinking, and it seems useful for making sense of grounds for disagreement to
take into account the notion of a relativized or constitutive a priori, as endorsed
more recently by Friedman (1999, p. 62) and traced back by him to Reichenbach
(1920, cf. in particular p. 47). The conviction underlying the constitutive a priori
is that there are to any theory certain principles, ‘axioms of coordination’, which
contrast with ‘axioms of connection’ (cf. Reichenbach 1920, p. 51; Friedman 1999,
p. 61). The former “must be laid down antecedently to ensure [. . . ] empirical well-
definedness in the first place” (Friedman 1999, p. 61; my emphasis – FB), whereas
the latter axioms are simply “empirical laws in the usual sense involving terms and
concepts that are already sufficiently well defined.” (ibid.) Don Howard (2010, p.
337) understands Friedman’s version of the constitutive a priori “structurally and
functionally as that without which the rest of a theory would lack content.” In other
words: constitutive a priori principles provide what is (objectively) there, according
to the theory.

Notably, Bernard d’Espagnat (2011, p. 1704) suggests to distinguish two ‘tenets’
in Kantian philosophy, namely that (I) “science might just be a construction
grounded on prescriptive principles chosen a priori” and (II) “the view that the
principles in question are given a priori—that is, once and for all—by the very
structure of our sensibility and understanding.” (my emphasis—FB) Moreover,
d’Espagnat (2011, p. 1705) notes that “the expression ‘a priori’ does not carry the
same meaning in the two tenets”, since in (I) a priori concepts may be allowed to
vary in a way which (II) forbids. The constitutive a priori is freed from tenet (II).

Friedman, in fact, finds a distinction between the two inedependent uses of ‘a
priori’ already in Reichenbach (1920, cf. p. 46): “according to Reichenbach, the a
priori had two independent aspects in Kant: the first involves necessary and unre-
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visable validity, but the second involves only the [. . . ] feature of ‘constitutivity.’”
(Friedman 1999, p. 7) This is just (I) and (II) in reverse.

Under the influence of Schlick (cf. Friedman 1999, p. 62 ff.), Reichenbach must
have come to accept that his ‘constitutive a priori’ was merely terminologically
distinguished from what Schlick referred to as conventions. But Friedman (1999,
p. 64; my emphasis – FB) believes that “when Reichenbach [. . . ] buys into
Schlick’s underlying conception [. . . ] the most important element in his own earlier
conception of the relativized a priori is actually lost.” What is the difference?
According to Friedman (1999, p. 67; emphasis in original), “Schlick’s conception
does not, in fact, yield a distinction between the constitutive and the empirical,
between the conventional and factual parts of science at all—even relative to a
particular given theory.”

To give an example of how conventionalism eliminates this distinction, Friedman
(1999, p. 67) refers back to Einstein (1921, p. 236) in his endorsement of Poincaré’s
(1905, p. 48 ff.) ideas on geometry and physics. Geometric laws (G), Einstein therein
declares, only predicate anything about the behavior of real things in concert with
physical laws (P). “Thus (G) may be chosen arbitrarily, and also parts of (P); all
these laws are conventions.” (Einstein 1921, p. 236; my emphasis – FB)

Such considerations of conventionalism were possibly what Einstein had in mind
when he told Heisenberg that the theory decides what even counts as observable
(cf. Sect. 2.1.2). But at the same time, declaring all laws conventions—and hence
on the same footing in the theory—ultimately makes it possible to hold fast to
certain principles across theory change, and to give them a much higher status on
epistemological or metaphysical grounds than merely constitutive a priori principles
(we shall lay this out in more detail below).

The way that Friedman (1999, p. 66) now suggests to single out what parts of
a theory should be considered as having a constitutive a priori character, is by
appeal to the theory’s invariance group(s): While in Newtonian physics, the group of
Galilean transformations singles out a unique geometry of the spactime, in GR this
is watered down to diffeomorphism-invariance, and “only the underlying topology
and manifold structure remain constitutively a priori” (Friedman 1999, p. 66), not
the geometry of the spacetime.

In modern physico-philosophical discourse, one usually encounters talk of
symmetries rather than invariances, where “the symmetry of a ‘something’ (a figure,
an equation,. . . ) is defined in terms of its invariance with respect to a specified
transformation group, its symmetry group.” (Castellani 2003, p. 322) The basic
intuition here is this: the elements of the group represent transformations of some
‘object’ (e.g. a spacetime manifold), and if that object has features which occur
when ‘viewed from all angles or perspectives’, where switches between these
‘angles and perspectives’ are provided by the group’s elements, then these features
must really pertain to the object, not just as a ‘perspectival effect’. This is quite
similar to the ‘eidetic variation’ endorsed by phenomenologist philosophers in the
philosophy of mind (cf. Gallagher and Zahavi 2008, p. 27).

But there is a ‘trick’ employed with the constitutive a priori here, which basically
means turning the symmetry intuition upside down: instead of postulating specific
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sorts of objects ad hoc and then looking into their invariant properties, we let the
theory define what sorts of objects there are by looking into what invariants it
prescribes. Of course we find the same basic reasoning in Kant’s ‘transcendental
deductions’ already, e.g. in the deduction of transcendental consciousness from
invariance under different observational situations25:

it is the one consciousness which unites the manifold that has been perceived successively,
and afterwards reproduced into one representation. This consciousness may often be very
faint, and we may connect it in the effect only, and not in the act itself, with the production
of a representation. But in spite of this, that consciousness, though deficient in pointed
clearness, must always be there, and without it, concepts, and with them, knowledge of
objects are perfectly impossible. (Kant 1781, pp. 103–104; emphasis in original)

But in Kant, there is no recursion to a specific theory. And a merely constitutive a
priori allows that a given theory and its prescriptions may be found by appeal to all
sorts of however pragmatic considerations, to encompass more (and new) evidence.
The invariants (symmetries) implied are then a priori, definitive of objects, but only
relative to that theory.

An interesting corollary that strongly connects to the previous discussion derives
from this relativity to theory. Friedman (1999, p. 69) suggests “that Carnap’s L-
rules [. . . ] can be profitably viewed as a precise explication of Reichenbach’s
notion of the constitutive or relativized a priori.” (my emphasis—FB) These L-
rules contrast with the aforementioned P-rules that Sellars and others identify with
material inferences. L-rules are the “logico-mathematical transformation rules” of
some language (Carnap 1937, p. 180; my emphasis – FB). The suggestion that
these (or maybe only some of them) connect to, or even represent constitutive a
priori principles is based on Friedman’s (1999, ibid.) observation that Carnap (1937,
e.g. pp. 178–179 and 327–328) considers formulae containing the metric tensor
in geometries of constant curvature as L-rules, but in GR, where there is a mass-
energy-dependent curvature, these become P-rules. Thus in Carnap’s exposition,
“geometry has itself undergone a transition from a nonempirical and constitutive
status to an empirical and thus nonconstitutive status” (Friedman 1999, p. 69), much
in the same way as suggested by Reichenbach (1920). P-rules (material inferences),
to recall, may be seen as supplying at least inferential content to certain statements.
So with theory change certain a priori principles may be demoted to merely factual
statements that can become false under certain circumstances, and accordingly,
the inferential content of one’s belief-system may be altered or diminished quite
drastically in the process.

On the one hand this insight can be used to explain how we can still talk of
(material) ‘objects’ in QM, even if certain features are missing (certain NQMCs
about them are ‘disallowed’) that we might have though must be there on any
‘object’. We shall demonstrate this in more detail below, but the general reason
is that what is constitutive of an object of a given sort may radically change with
acceptance of a new theory.

25Cf. also Allison (2015, ch. 7) on this point.
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There is, then, an impact on the semantic/referential gap here, that we claimed
above was there in virtue of the loss of descriptivity of quantum states (cf. point
(a) on p. 332 in this document): It seems that, once one is willing to accept those
‘objects’ that QM prescribes, there really is no such referential gap anymore. QM
has components that make reference to objects possible just as much—however
much that may be—as it is possible in classical theories and ordinary language,
even if the quantum state is not a description of the system but a predictive tool
that allows or disallows certain purported descriptions to greater or lesser extent. In
particular, objects simply do not have to have the same sort of ‘causal etiology’ in
QM as they do in classical mechanics. The ‘causal story’ provided by the unitary
evolution, which ensures that there is an object between creation and annihilation
events to which we can (contextually) assign some properties, is enough.

But we also see, on the other hand, that inferential content may be altered or
diminished with theory change in far more cases than just in the case of QM. This
incidentally seems like a much ‘deeper’ connection between QM and GR than the
similarities pointed out by Bohr (1935, pp. 701–702) at the end of his reply to
EPR—or possibly, it is an elucidation of Bohr’s underlying thoughts. This relativizes
the often acclaimed ‘weirdness’ of QM.

To see the connections more clearly, take the following example. While it is
constitutive of a triangle in Euclidean geometry to have angles that sum to π , in
non-Euclidean spaces ‘this is a triangle, so it has angles that sum to π ’ becomes a
material inference that may or may not be supported by the underlying geometry.
Now imagine, more concretely, a possible world in which physical space behaves
geometrically like the surface of a solid sphere. Here the angles of some triangle
would sum to π +A/a2 instead of π , where A is the triangle’s area and a the radius
of the sphere (e.g. Hartle 2003, p. 18). For creatures living in such a physical space,
the material inference just mentioned would be ‘licensed’ by that geometry only
for very small scales, compared to the size of the sphere. And encountering only
small scales could be the normal, everyday-life circumstances for these creatures,
so the fact that their space is curved like a sphere’s surface could go unnoticed for
long periods of time, and recognition of it would require extraordinary evidence.
This should be compared to the licensing of statements about definite properties of
systems by their degree of immersion into an environment, which we can consider as
quite high under normal, everyday-life circumstances, and to the fact that ‘quantum
features’ went unnoticed for a long period of time in physics.

These are important but still frail connections to QM, and to make the connection
more intimate, the procedure of determining what may count as constitutively a
priori should be applied to QM just in the same way as suggested by Friedman for
spacetime theories: Determine the (relevant) invariance group(s) of the theory and
then find out the invariants.
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For the a priori constraints on what it is to be an object in non-relativistic QM,
this was already executed by Mittelstaedt (1995, 2009),26 with the upshot (cf.
Mittelstaedt 2009, p. 857) that the object is that which will be invariant under a
unitary representation of the groupG10 of Galilean transformations.27 For any given
situation, one can (ideally) single out a set of commuting projectors, each from
a different PVM, in turn representing a different respective quantum observable.
These projectors are then construed as propositions, i.e. property ascriptions in the
sense of Sect. 2.1.5. However, it is a well-known fact that the totality of projectors
so construed forms a non-distributive set or ‘lattice’,28 such that not all properties
that could be ascribed classically can be simultaneously ascribed via projectors. In
any given situation one can hence single out only a subset (sublattice) of commuting
projectors which then is distributive (‘Boolean’). Since the entire lattice is invariant
under a(n irreducible) unitary representation of G10, and so also the ascribability
of a sublattice from the total lattice to any observational situation, an object in QM
can be constituted as “a carrier of properties” from the non-distributive lattice, “but
not only in one contingent situation, which is given by the [measurement] apparatus
and its space time coordinates, but also in all situations which can be obtained by
Galilei-transformations.” (Mittelstaedt 2009, p. 857; my emphasis – FB)

This is exactly an expression of the fact that QM licenses only a restricted set
of NQMCs in conjunction: objects constituted in terms of these ‘properties’ do not
feature sharp positions and momenta at the same time; NQMCs like ‘system S is
exactly this and that fast’ and ‘system S is here’ are not both simultaneously licensed
by QM, in any given reference frame. But the lattice itself remains.

Mittelstaedt’s reasoning, however, only concerns non-relativistic QM, and did
we not say that theorems by Malament (1996) and Halvorson and Clifton (2002a)

put restrictions on localizability of ˜particles in relativistic QM? True, but this does
not affect the attribution of properties, even approximate localizations in a given
situation, since the same procedure can be repeated using the Poincaré group instead
of G10.

26Mittelsteadt makes no mention of Friedman or Reichenbach or of the difficulties with the
synthetic a priori and d’Espagnat’s tenet (II). But his aim is to show how “objects can be constituted
as new entities by means of invariance properties of the theories in question.” (Mittelstaedt 2009,
p. 847; my emphasis – FB) Since this is understood by him as an execution of the “Kantian way of
reasoning” (p. 851), he seems to unconsciously appeal to a relativized a priori.
2710 is the number of independent parameters needed to specify the elements of the group: 3
rotational, 1 time- and 3 space-translational, and 3 for velocity-shifts (e.g. Ballentine 2000, p. 68).
28Lattices are algebraic structures, certain of which (‘Boolean’ ones) can be understood as an
abstract formulation of propositional logic. Lattices, interpreted thus, are basically sets of proposi-
tions which allow for combination by material implication, dis-, and conjunction. A complemented
lattice has a negation and a Boolean one additionally allows for the usual distribution laws between
disjunction and conjunction. Orthogonal projectors on a Hilbert space can be used to construct
a non-Boolean qua non-distributive lattice in virtue of non-commutativity, and so define a non-
classical ‘quantum logic’. Cf. Redhead (1987, p. 176) for an elementary introduction and Piron
(1976) or Bub (1997) for more detailed treatments.
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In fact, using the same basic group theoretical methods with the Poincaré group
singles out two properties as identifiers for classes of particles:

The state space of a free elementary particle is the Hilbert space for an irreducible
representation of the Poincare group.[. . . ] The group-theoretic analysis shows there are two
characteristics that are invariant under relativistic transformations. These characteristics are
identified as the mass m and spin s. [P]ure relativistic considerations single out mass and
spin as indices for the classification of various free elementary particles and put certain
constraints on their values. (Auyang 1995, p. 37; emphasis omitted)

This is a consequence of a famous investigation by Wigner (1939), and we can

see that the exact same general recipe is at play for constituting a p̃article as a
‘carrier of properties’ in the relativistic domain: finding out what is invariant under
the relevant transformation group. Letting the theory constitute objects as carriers
of properties in this way explains much of the talk of somewhat philosophically
minded theoretical physicists, e.g. how Streater (1988, p. l44) can claim that

Wigner [. . . ] did not merely say that a particle is well described by [an irreducible projective
representation of the Poincaré group]: this would leave the word particle still undefined.
Thus a particle is a pair (H, Ûm,s )where H is a Hilbert space, and Û is a unitary continuous
action of [the Poincaré group] on H [. . . ]. (notation adapted; my emphasis—FB)

However, ˜particles were supposed to be pointlike in interactions. Surely this
fact is impaired by the aforementioned results in relativistic QM and QFT? Again
the answer is ‘no’, in relevant cases, since once more considerations of invariance
under transformations give rise to the constitution of objects which are ‘pointlike’ in
interactions, in the sense of being ‘structureless’. This was demonstrated as follows
by Falkenburg (2007, p. 133 ff.), herself following Drell and Zachariasen (1961,
p. 8).

Quite generally, scattering cross sections can be made ‘dimensionless’ by multi-

plying through by the appropriate terms, such as in
(
h̄c
E

)2
(ZZ′α)2

16 sin4(θ/2)
�→ (ZZ′α)2

16 sin4(θ/2)
for Rutherford scattering (cf. Falkenburg 2007, p. 134) If such a dimensionless
quantity turns out to be scale invariant, i.e. “does not depend on any length, one
concludes that the scattering center and the probe particles are structureless or
pointlike.” (Falkenburg 2007, p. 133; emphasis in original) This length scale is of
course also coupled, through the de Broglie relations, to the energy scale used in the
scattering.

In QFT, cross sections will include a matrix element which is then often trans-
formed into so called ‘form factors’, generally dependent on the momentum transfer
in the scattering. This is the case, for instance, in the cross section for Rosenbluth
scattering as discussed by Drell and Zachariasen (1961, p. 8), where two form
factors F1/2(q

2) are involved (q the momentum transfer between two scattering
˜particles). Anticipating Falkenburg’s analysis, Drell and Zachariasen (1961, ibid.)

have it that “a particle has [. . . ] structure—i.e. is not a point particle—if and only
if the functions F1(q

2) and/or F2(q
2) are not constant.” (my emphasis—FB) Hence

it is ‘pointlike’ just in case they are constants, and the p̃article’s scattering behavior
does not depend on the momentum it receives. Or, using a pragmatic, pictorial lingo:
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if two ˜particles always scatter in the same way, no matter how ‘hard we smash them
together’, they have no substructures that make them ‘breakable into finer pieces’
through ‘harder smashing’. They are hence structureless or ‘pointlike’.

But how can we ever talk of ‘this p̃article’, when for ˜particles independent of
any measurement, it is ‘inadmissible’ (inferentially meaningless) to attribute any

properties? I.e., how can we even re-identify a particular given p̃article over time?
Here Mittelstaedt (1995, p. 1623) provides a treatment in terms of repeated mea-
surements and answers some difficulties in terms of POVMs and weak requirements
on probabilities and ‘narrowness’ of the measurement.

But of course for almost all situations, the much more satisfying specification
comes from decoherence theory. Schlosshauer (2007, p. 67), for instance, describes
decoherence in terms of “the environment” functioning “as a ubiquitous ‘measuring
device’ which continuously performs effective measurements [. . . ] on the system”
and emphasizes “that this monitoring process does not require a human observer of
any sort.” In other words: when specific isolation conditions are not met, we can
constitute persistent objects with properties specified by the theoretical mechanism
(decoherence). The probabilistic part (the Born rule) just functions as a guide to
(long run) expectations about the behavior of the objects thus constituted.

Decoherence, notably, also involves an invariance that one appeals to in order
to specify the properties of the objects in question: A ‘pointer observable’ Ô
is selected as an observable for which [Ô, Ĥint] = 0, i.e. which is invariant
under the dynamics prescribed by the interaction Hamiltonian (cf. Zurek 1982, p.
1869). The invariance occurring in decoherence, in other words, determines which
properties are constitutive of ‘quantum objects’ when the latter are immersed in an
environment. And these properties will typically include ‘unsharp’ (approximate)
positions and momenta. This ultimately allows the switch to a description in terms
of NQMCs so favored, i.e. a return to a ‘classical constitution’ of objects, when
these are sufficiently large and one can disregard the ‘unsharpness’.

Above we noted that theory change can bring about the demotion of a priori
principles to empirical contingencies on the relativized a priori-view. And one
arguably encounters such a demotion when one moves from classical field theories
to QFTs. Recall that renormalization methods form a corner stone of success in
canonical QFTs, and that this seems ‘odd’ because certain quantities like charges
become scale-dependent if (semi-)group theoretic methods are taken seriously.
Moreover, the fact that ‘bare quantities’ may come out as infinite in renormalization
schemes creates a prima facie problem. This is typically dealt with by claiming that
it “is OK since e [the bare charge—FB] is not observable” (Schwartz 2014, p. 309),
supplemented with a story about screening by vacuum polarization (e.g. Peskin and
Schroeder 1995, p. 256). But the result is the specification of a ‘running coupling
constant’ which depends on the energy (or momentum) scale and the immeasurable,
formally infinite ‘bare quantity’. As Auyang (1995, pp. 192–193) puts it:

Renormalization is crucial for the triumph of quantum field theory and the standard model in
elementary particle physics. It also shows the limitation of our conceptual ability to analyze
the world. The theory is unable to specify the real parameters for the physically significant
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entities; finally it has to appeal to experiments. Physicists regard this as a blemish of the
theory.

From the present perspective, there is no such ‘blemish’. What is and is not

constitutive of some p̃article is relative to a given theory; what constitutes an
electron in classical electrodynamics may be different from what constitutes an elec-
tron in QED. If coupling ‘constants’ such as (specifically valued) electric charges
become scale dependent, i.e., are not invariants under a relevant transformation
(semi-)group in an interacting QFT, they (the specific values) should not be viewed
as properties constitutive of the respective objects anymore.29 The measured,
‘physical’ quantities center around certain stable regions of the ‘running constants’;
and, put frankly, they are basically just the values of parameters occurring in a
specific model of the respective set of experiments, since we can “not compute them
from first principles.” (Peskin and Schroeder 1995, p. 266; my emphasis – FB)

A little more specifically one finds that, as long as the corresponding Dyson series
is valid, with “large energy-momentum transfer [. . . ] the coupling constant gets
larger and larger”, which in turn provides “the physical picture that electric charge
is largest close to a charged source (that is at small length scales), and dies away at
large distances.” (Lancaster and Blundell 2014, p. 307) This is perfectly acceptable
on the view advocated here, and there is not even a need to appeal to infinite
‘bare charges’ as the ‘true’ replacements for constant ones, and ‘virtual particles’
or ‘vacuum polarizations’ as screenings for these to account for the measured finite
values.30

Finally, we recognize that the precise correlations implied by, say, the singlet
state also come out as a consequence of basically two invariances in the following
way. The singlet state, first of all, implies |S| = 0, meaning that the total spin
is zero. This should be so, given an appropriate previous decay-situation; but in
the quantum case, it holds regardless of the axis (cf. the discussion in Sect. 4.3.3
and e.g. Arntzenius 2012, p. 78 or Basdevant and Dalibard 2002, p. 276 for some
calculations). The state is rotation invariant. So a preferred axis along which the
˜particles are ‘spinning’ is not constitutive for conservation of angular momentum

(spin) anymore. Moreover, the joint unitary evolution of the two has another
important invariant: the moduli of the amplitudes. And this, we have urged in
Sect. 6.5, should be seen as an implementation of probability conservation. This is
one important sense, then, in which the correlations implied come out as objective
features of such entangled pairs: They are a consequence of invanriances that are

constitutive for the total p̃article-pair, and these invariances only secure perfect
correlation for a joint axis of measurement, not a preferred axis.

29In principle the fact that the scaling transformations only form a semigroup (do not all have
inverses) introduces a subtlety; but that much of the literature suppresses the ‘semi’ can at least be
seen as evidence for the fact that these scaling transformations are typically viewed as similarly
important for the theory as are proper transformation groups.
30Cf. Teller (1988, p. 86) and Falkenburg (2007, p. 238), for some discussion on problems with
these notions.
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But with a new theory there may come a new a priori: Portmann and Wüthrich
(2007, p. 849) have it that “there are theoretical grounds on which to expect a
violation of the quantum mechanical prediction of perfect correlations. Some of
the different approaches to quantum gravity, that is, suggest that tiny violations of
Lorentz group invariance are to be expected.” And we would not, upon acceptance
of the aforementioned approaches to quantum gravity, expect an explanation of all
violations of perfectly (anti-)correlated behavior in terms of experimental error. This
is what it means to demote certain principles from a priori to empirical laws. Still,
the correlations would be at least approximately invariant, similar to the pointer
observable in decoherence. In other words: the strongly correlated character would
remain objective in the flat space limit just as quasi-classical behavior is objective
under suitable environmental circumstances.

With an eye on the earlier invariants/symmetries identification, the view of
invariants as functioning constitutively in modern physical theories gains evidence
e.g. from Weinberg’s famous (1992, p. 142) observation that “there are symmetry
principles that dictate the very existence of all the known forces of nature.” Simi-
larly, Weyl (1952, p. 126) thought that “we are [. . . ] enabled to make predictions
a priori on account of symmetry for special cases,” and he even went so far as to
suspect that “all a priori statements in physics have their origin in symmetry.” (my
emphasis—FB)

How do these considerations connect to the Bohr-Einstein-Kant problematic
above, and what do they suggest for interpreting QM ‘epistemologically’? Fine
(1986, p. 97) holds, on the basis of textual evidence, that for Einstein causality—
albeit in the quite strong sense of non-probabilistic laws—formed a crucial part of
realism and physical thinking altogether, and in his Physics and Reality, Einstein
(1936, p. 377) declared it “contrary” to his “scientific instinct”, that “we shall never
get any inside view of [. . . ] alterations in the single systems, in their structure
and their causal connections [. . . ].” It seems that when Einstein declares such
principles or foundational concepts as “the concept of causality [. . . ] freely chosen
conventions” (Einstein 1949a, p. 13), this ultimately allows him to give them a much
more fundamental status than merely theory-relative axioms of coordination.

There is good evidence for an influence of Poincaré’s philosophical writings on
Einstein and Einstein’s ultimately favoring Poincaré’s conventions over the Kantian
notion of an a priori altogether (cf. Howard 2010, p. 340 ff. and references therein).
And Poincaré (1918, pp. 148–149) appeals to “a sure instinct” as a guide to the
choice of conventions, or the ‘grasp’ (“vague consciousness”) “of I know not what
profounder and more hidden geometry” in the context of choosing geometrical
axioms. It is at any rate conceivable that Einstein reserved a similar place for
the choice of conventions in his thinking. He famously laid great emphasis, for
instance, on the simplicity of the chosen conventions (cf. Einstein 1934, p. 167),
and at the same time believed “that in Nature is actualized the ideal of mathematical
simplicity” (ibid.; my emphasis—FB). This once more expresses his underlying
(external and scientific) realism.

Einstein was also influenced by considerations of theory holism in the Duhemian,
confirmational sense (cf. Fine 1986, p. 89; Howard 2010, p. 341), as evidenced by
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the fact that he believed the geometry/physics divide could be shifted quite arbi-
trarily. His only concerns regarding such holism were contingent, time-dependent
limitations of incomplete theories; to him Poincaré was right sub specie aeternis
(cf. Einstein 1921, p. 236). Thus Einstein, as we have reconstructed him, is at liberty
to ‘conventionally’ accept such principles as (SEP) and (CEL) as suggested to him
‘by a sure instinct’, as indispensable, eventually, for science as a whole, and as
ultimately referring to an external reality.

The alternative that we have advocated above now is to systematically shift the
boundary between what counts as an axiom of coordination and what counts as
an axiom of connection, i.e. what counts as a priori and what as empirical; and
this requires relativization to a given theory—the theory that currently fares best
regarding empirical success. This strong reference to success may be counted as a
pragmatic element regarding theory choice, a pragmatic element of the kind that
Folse (1994, p. 123) believes was also endorsed by Bohr:

The original Kantian defense of the categories was based on the grounds of their pure
necessity. For the pragmatized Kantians the defense of the categories lies in their utter
practical contingency.

This “defense of the categories” certainly manifested in Bohr’s writings in his
claims that “however far the phenomena transcend the range of ordinary experience,
the description of the experimental arrangement and the recording of observations
must be based on common language”, and that the “formalism, known as quantum
mechanics, in which the elementary physical quantities are replaced by symbolic
operators [. . . ] can be regarded as a rational generalization of the conceptual
framework of classical physics.” (Bohr 1963, pp. 11–12)

But how does this pragmatism in the form of a ‘rational generalization’ of
physical quantities relate to the constitutive a priori? Whether this is (once more)
entirely fair to Bohr or not, a clear example for the sort of pragmatism we want to
suggest here can be given by appeal to local gauge invariance.31 Electromagnetism
has, as is well known, a gauge freedom in the choice of the electromagnetic
potentials. This means that in the ‘gauge field’ Aμ = (φ,−A), a shift Aμ �→ A′μ =
(φ + ∂χ

∂t
,−A − ∇χ), short: Aμ �→ Aμ + ∂μχ , for some arbitrary (differentiable)

function χ leaves the measurable quantities E and B invariant.
Now in the electromagnetic Hamiltonian, one will have to include eφ as a term

for the potential energy contributed by E and replace p in the kinetic energy by
p − eA to ensure that the Lorentz-Coulomb force law F = e(E + v × B) derives
from it. In the Hamiltonian operator of the corresponding SE, however, this means

that (−ih̄∇−eA)
2

2m now acts on a wavefunction ψ instead of just (−ih̄∇)
2

2m (similarly for
the DE; e.g. Griffiths 2008, p. 358). A shiftAμ �→ Aμ+∂μχ now in turn implies the

need for a simultaneous shift ψ �→ ψe
− i
h̄
χ , where χ , since it depends on x and t , is

a local phase. In QED, Aμ is replaced by an operator-valued field Âμ, and it, being
the creation operator of the photon, becomes the object of primary interest. Thus

31E.g. Healey (2007, p. 5 ff.) for the following.
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the local gauge invariance of QED ultimately derives from practical considerations
such as the conservation of the phenomenologically valid Lorentz-Coulomb force
law.

Subsequent QFTs “share with electrodynamics the attractive feature[. . . ] that the
existence and some of the properties of the gauge fields follow from a principle of
invariance under local gauge transformations.” (Weinberg 1996, p. 1) An originally
pragmatically endorsed principle thus dictates, if promoted to an a priori constraint,
the very structure of the theory or the features that are objectively there according
to it. This we take to be the essence of a ‘pragmatized Kantianism’, with an added
(explicit) endorsement of constitutive a priori principles.

That this is at least somewhat in line with Bohr’s thinking can be gathered from
Faye’s book-length investigation of Bohr’s philosophical thinking. Faye (1991, p.
78), who has Bohr heavily influenced by the Danish philosopher Harald Høffding,
holds that for Høffding

categories of cognition emerge from an analysis of different kinds of judgments. [. . . ] But
opposite to what Kant thinks this does not make them a priori, since the logic of concepts
is not fixed, according to Høffding. He holds the pragmatic view that the categories of
cognition reflect the need to synthesize experience, and are thus relative both to our needs
and to the experience which must be synthesized.

Separating choice a priori from a prior givenness, as suggested by Reichenbach
(1920) and d’Espagnat (2011), we can say that it still makes them a priori, but only
relative to the needs catered by a certain theory.

What is the philosophical lesson to be drawn from all this? Accepting a ‘split’
between the world as experienced and the world as it is, in concert with both,
pragmatic values in theory choice and an a priori in the theory-relative, constitutive
sense, one finds a path to a properly so called epistemological interpretation of
QM: QM is just the most startling expression of how we construct a reality out of
experience. And by trusting the theory in its guidance to expectations about future
observations as well as its invariant properties as a guide to what is objectively there,
we come to a world-construction that by far exceeds our ordinary modes of thinking.

This attitude allows one to come to terms with the apparent radically counter-
intuitive character of QM as a science32: It is not like we ever had a privileged
epistemic access in our pre-scientific intuitions anyway or that the categories of

32This ‘coming to terms’ is certainly reminiscent of Friederich’s (2015) therapeutic approach to
QM (therapeutic in the sense of Wittgenstein (1968)), whereby one is ‘cured’ from the OP by
viewing QM (very roughly) as an activity that is constituted by certain rules (state assignment,
decoherence mechanism, Born rule,. . . ) and proceeds without problem. In Boge (2016a, p. 6), it
was argued though, that this still raises the question why exactly that activity results, when one
applies the rules; and for that reason we here pursue a quite different course. Friederich’s own turn
to the block universe to make sense of EPRB-correlations (his p. 143 ff.) and his defense of the in-
principle possibility of sharp values for all observables (in the sense of hidden variables; his p. 161
ff.) may serve as evidence that his therapy has not really worked on himself—both considerations
would otherwise be obsolete.
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our ‘ordinary’ understanding were privileged in that sense. Why not let scientific
progress guide us to entirely new ‘categories’?

But now who do we agree with, Einstein or Bohr, the scientific realist conven-
tionalist or the pragmatic Kantian? For did we not say, at some point, that causal
interpolability is somewhat constitutive of an empirical reality, and that failure of
such signals a ‘gap’ therein? And did we not deny that such causal interpolability
is, in a relevant sense, secured for all physical situations? The answer is this: we
agree with neither completely and with both in certain respects. Einstein is driven
by certain intuitions, of which, we have argued, causality is a particularly important
one. Thus when Einstein claims the ‘right’ to ‘freely choose conventions’ and
lets his gut intuition guide him to principles like (CEL) or (SEP), he denies the
possibility that scientific progress can spawn off theories that so radically change
what is or is not constitutive of what is or is not there as does, arguably, QM.

We agree with Einstein to the extent that giving up on certain principles, such
as ‘causal closure’, i.e. the in-principle possibility of finding a cause for any
instance where we intuitively demand it (e.g. strong correlations between distant
events), signals quite a radical departure from common sense intuitions, formative,
to some extent, for previous scientific practice. But we disagree that sticking to these
principles is a recommendable practice. Embracing merely constitutively a priori
principles (‘axioms of coordination’), rooted in a given theory, lifts the problematic
aura from the break with common sense intuitions: It is our (empirically) best
scientific theories that should guide us to an ‘image’, an ‘empirical reality’, formed
by immediate sense experience (something like Carnap’s (1928, p. 86) “Erlebnis-
strom”) and those theoretical concepts and principles that figure constitutively in
those theories.

Since QM is understood here as having normative content (it ‘licenses’ only
certain inferences, counterfactuals, NQMCs, etc., to recall), it seems perfectly
capable of so guiding us to a constitution or construction of an empirical reality
that strongly diverges from previous such constructions. And if the empirical reality
thus constructed has causal gaps in the sense suggested here (no common cause for
the outcomes in EPRB scenarios; no direct causation either), so be it. We thus agree
with Bohr to the extent that scientific inquiry may undergo quite radical changes and
require such things as “a final renunciation of the classical ideal of causality and a
radical revision of our attitude towards the problem of physical reality.” (Bohr 1935,
p. 697)

To put things more clearly let us, with Putnam (1977, p. 487), refer to empirical
reality as “the image”; and let us also acknowledge Sellars’ (1963, p. 5) distinction
between a manifest and a scientific image. Then we can, first of all, acknowledge
that Kant may have been right about certain principles that are ‘unconsciously
operaitve’ in experience and can only be made explicit by thorough epistemological
investigation. And he may have also been right to assert that these are constitutive
and a priori for low level, pre-scientific ‘theories’, leading to the formation of a
manifest image. But he was wrong about the status of the science of his day as
providing synthetic a priori judgements of general validity (tenet (II)). And he may,
as a matter of fact, have even been wrong about the continuity between the principles
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that underlie (constitutively) the manifest image and those that underlie the scientific
image of his day (e.g. also Gopnik and Meltzoff 1997, p. 212, for a critical appraisal
along these lines). It is conceivable that Einstein was thus fooled, in his insistence
on certain principles, by Kant into believing that there should be such a continuity.

Put in terms of the ‘images’, our above suggestion now is to embrace the
scientific image (or patchwork of images; different sciences will generate different
ones) as the best way to handle, in many respects, our difficult relation to mind-
independent reality—regardless of how radical the break with our manifest image
may be, and especially when there are suitable bridging principles (such as provided
by decoherence) that specify under which circumstances we can resort to our
everyday-life practice of entertaining the manifest image after all.

7.4.3 Issues of Truth and Our Access to the External World

While the relativization of certain a priori principles to a given theory eliminates the
problematic status of the synthetic a priori (eliminates d’Espagnat’s tenet (II)), and
also somewhat lifts the problematic aura from the fact that we should find causal
gaps in our scientific image, it does not thereby lift the ‘radical spirit’ off Kant’s
internally realist doctrine, relative to any metaphysically stronger realism. Putnam
(1981, p. 63; my emphasis – FB), e.g., notices the following elements to the Kantian
distinction between an empirical world and a noumenal one, which are independent
of the status of the a priori:

On Kant’s view, any judgment about external33 or internal objects (physical things or
mental entities) says that the noumenal world as a whole is such that this is the description
that a rational being (one with our rational nature) given the information available to a
being with our sense organs (a being with our sensible nature) would construct. In that
sense, the judgment ascribes a Power. But the Power is ascribed to the whole noumenal
world; you must not think that because there are chairs and horses and sensations in our
representation, that there are correspondingly noumenal chairs and noumenal horses and
noumenal sensations. There is not even a one-to-one correspondence between things-for-us
and things in themselves.

There are three crucial aspects to this quote: (i) that the noumenal world may
have a degree of ‘wholeness’ not suggested to us by low-level theorizing, (ii) that the
noumenal world is attributed a ‘power’ to affect our senses, and (iii) that a thorough
internal realism might urge one to give up on the correspondence theory of truth.
We will confront these in the order (ii), (i), (iii).

33NB: ‘external’ is here meant, as the quote makes explicit, in the ‘sensuously external sense’. Kant
(1781, p. 22) famously declared space and time “pure forms of intuition”, and ‘external objects’
are meant here as objects situated in space and time. When we have talked about an ‘external
reality’ above (and when we do so below), we thereby meant what Kant (1781, p. 372) means by
“something [. . . ] transcendentally [. . . ] outside us[. . . ].” (my emphasis—FB).
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As a first thing, note that (ii) in part demarcates the fine line between internal
realism and thorough idealism, according to which there simply is no external world.
But why would we even suppose such a thing as the existence of a mind-independent
world, given that we were eager to make the significance of QM depend on an
agent’s epistemic situation, i.e. that we let that which is ‘objectively there’ (in the
scientific image) depend on the theory we use, and that we maintained that the very
structure of the experienced world is at least in part a function of ‘our’ (every single
user’s, to borrow the QBists’ phrase) cognitive interior and perceptive limitations?34

Strictly speaking, one cannot gain ‘absolute certainty’ as to the existence of such
a mind-independent reality, as Kant was well aware (cf. his “Criticism of the Fourth
Paralogism” in the first edition of the Critique (p. 367)). But we argued above that it
would be puzzling if the correlations implied by entangled quantum states were not
due to a ‘rigidity’ or ‘recalcitrance’ in nature; and this experienced recalcitrance is
the strongest reason to infer something ‘external’ at all:

We sometimes build up quite beautifully rational theories that experiments falsify. Some-
thing says no. This something cannot be ‘us.’ There must be something else than just ‘us.’
(d’Espagnat 1995, p. 314)

Schrödinger is accredited by Moore (2015, p. 348) with a quote that goes in the
same direction: “Science is a game—but a game with reality, a game with sharpened
knives. . . ” With Schrödinger and d’Espagnat we take it, in other words, that besides
our cognitive interior there is an external source of our sense-experience—a source
which may be called a (mind-)independent or external reality, nature, the noumenon,
the world in itself, or what have you, and that sometimes disappoints or ‘punishes’
certain of our convictions, formed (in part) on an a priori basis. If a theoretical
expectation is disappointed by experiment, and we here include low-level ‘theories’
and ‘experiments’ formative of the manifest image, we will call this ‘punishment
by nature’.35 If an expectation is met, this may accordingly be called ‘reward by
nature’; if we do not form expectations, we are simply not playing.

34There are, in fact, also attempts more recent than Berkeley’s (who in the end, to recall, merely
replaced the external world by an all-perceiving god anyways; e.g. §66 of the Principles) of
constructing the impression of a mind-independent world purely out of “interacting conscious
agents” (Hoffman and Prakash 2014, p. 1), and with the ambitious aim to “show that [. . . ]
the quantum free [. . . ] wave function [. . . ] is identical in form to the harmonic functions that
characterize the asymptotic dynamics of conscious agents [. . . ].” (ibid.) While certainly interesting,
these results have at best a preliminary character though, and rest, among other things, on
questionable (formal) notions of what counts as a ‘conscious agent’.
35We have used the term ‘nature’ here to emphasize the dynamical character (usually associated
with the term) that this punishment has, within experienced reality. We have also used ‘nature’
above as a synonym for ‘mind-independent reality’ though, and d’Espagnat (1987, p. 527) equally
identifies the use of this word as an indicator that his colleagues who otherwise decree versions
of phenomenalism do endorse realist intuitions after all. But we have been careful to separate the
dynamical content of ‘nature’ (which is within experience) from its strong metaphysical realist
content (which expresses the conviction that the source of this punishment is external). We are
silent, in other words, about the (non-)spatiotemporality of a mind-independent reality here, in
contrast to Kant.
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But besides the expression of a weak metaphysical realism, there is a second
component to (ii), namely that the source is attributed a power to affect our senses
in a particular way. This sounds as if causation was at play between this source and
sense-impressions; and it was (again) Schrödinger (1964, p. 64) who commented
that

any effective causal relation between that ‘existent’ something and the ideal world
constructed of simple data would be an entirely new relation and very much in need of
explanation, having nothing whatever to do with the nexus of causality within the ideal
world[. . . ].36

We fully agree with Schrödinger here that the relation between the source and
the experienced world cannot be causation proper, and that ‘causation’ would
mean something entirely different if one would use the term in that context. But
we disagree that the relation is in much need of explanation; for what could
that explanation look like? We could only ever hope to accidentally ‘grasp’ the
true nature of such a relation, e.g. by Poincaré’s ‘sure instinct’, or by privileged
metaphysical intuition.

The concept of an external source is introduced exactly for what we have used it:
as a tout court explanation of the fact that certain correlations occur to us that we had
never dreamed of, that some expectations are being disappointed in experiment and
observation, that our actions and successful theorizing are in many ways limited. In
other words: it acts as a stabilizer for the structure of experience; and the relation
between source and empirical world is hence best described as that: a stabilization
of the latter by the former.

Calling the source a cause of the correlations in EPRB-scenarios would inci-
dentally run the risk of replacing the small λs by a capital �, and to give a causal
account after all. This need not be construed so, since that � could be thought of
merely as the cause of the experienced correlations, not of the correlated values.37

Still, in the light of all that has been said it seems more sensible to say that the
correlations, to the extent that they occur in actual experiments (or in experience
more generally), are stabilized by an external source. Period. That is why we can
endorse counterfactuals such as ‘if Alice and Bob were to measure along the same
axis, they would find opposing spin values’. We have been guided, by experience
and formation, reformation, and reevaluation of relatively a priori principles, to a
theory which has these implications. And we endorse it since it predicts successfully
and robustly unlike almost any other theory. So we assume that it picks out stable
facts in experience.

36Cf. also Allison (2004, chapter 3), for a detailed discussion of this problem.
37An interesting proposal along somewhat similar lines is defended by Gebharter A, Retzlaff N (A
new proposal how to handle counterexamples to Markov causation à la Cartwright, or: fixing
the chemical factory, unpublished manuscript), who introduce what they call “common cause
triggered non-causal dependencies”. The suggestion is to take, in the EPRB case, the quantum
state as a common cause of the two subsequent detection events, but not of the correlated values.
The correlated values are then rather explained in terms of a different, nomological dependency
that does not allow for the kind of intervention that a causal connection would.
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We can thus also make sense of the ‘authoritative’, normative character of QM
that we accepted on account of the arguments by Healey, Stairs, and Friederich;
and we can equally make sense of how it could be that a physical situation should
warrant a state-assignment, even if one is not aware of this warrant (cf. Healey
2015, p. 4): Whenever one faces suitable backing conditions (in experience) for
a particular QSA, one is punished by nature in the advice conditions in case one
fails to assign that particular state so ‘backed’; and if one makes that particular
QSA, then one is rewarded by nature in the advice conditions instead. Backing
and advice conditions are empirical, but reward and punishment are stabilized by
an external source. In this way, we make up for the lack of fulfilling part (iii) of
the DEC in Healey’s account, the underspecification of the meaning of terms like
‘physical reality’, ‘warrant’, and so forth.

Turning, thus, to point (i) in the quote, the ‘wholeness’-aspect Putnam attributes
to Kant’s noumenal world, we shall only say this much: Clearly, objects in
experience are constituted or constructed in accord with contingent, theory-relative
a priori principles that are subject to pragmatic revisions, on our account. So we can
perfectly well allow that there are ‘not really really’ separate ‘noumenal electrons’,
‘within’ the source. And QM, of course, has holistic features that allow us to reason
about experience, in which we do discern multiple objects,38 in a way that these
objects need not be ‘mirrored’ by multiple noumenal ones. But we must be careful
as to how much we ‘ontologize’ these features, because we here understand QM
precisely not in an ontological fashion.

Healey (2009, pp. 295–296), moreover, distinguishes three types of holism: (a)
explanatory-, (b) property-, and (c) ontological holism; the convictions that (a) the
behavior of a system cannot be explained in terms of its parts, that (b) the properties
of a whole are not determined by the properties of its parts, and that (c) some object
does not even have proper parts. Explanatory holism Healey finds in interference
experiments of composite molecules like fullerenes, explanations of which are not
provided in terms of the behavior of the fullerenes’ parts, and property holism in e.g.
the singlet state that specifies properties of the joint system (if any) which cannot
be analyzed in terms of properties of the components. This is an important point:

We claimed that, in virtue of an invariance (rotation), QM constitutes the p̃article-
pair in a singlet state to have properties that do not reduce to or are not determined

by the properties of the individual ˜particles (Ŝ
2 |χ〉 = 0 |χ〉, whereas, say, ŝ2 ⊗

1 |χ〉 �∝ |χ〉). So the p̃article-pair has property-holistic features in the image; the
image violates Einstein’s (SEP).

But the temptation to also ascribe an ontological holism, in the sense that the
noumenal world ‘really is’ indivisible in some respects, should be resisted. All that
Putnam claims in the quote from which we have gathered (i) is that one is not at
liberty to conclude, from the fact that we experience and theoretically constitute

38Cf. in particular the investigations of Muller and Saunders (2008), Muller and Seevinck (2009),
and Caulton (2013), in this connection.



350 7 Reconsidering Knowledge: Coming to Terms With QM

several objects, that for every object thus constituted there is a noumenal one.
Reading into this that the noumenon or external source is just an ‘indivisible whole’
would fly in the face of the underlying internal realism. What QM allows, with
its holistic features, is to renegotiate what counts as ‘two separate objects’ in the
scientific image and what does not. This also allows for the possibility that the
external source may stabilize our experience in whatever holistic ways. But nothing
of that sort may be concluded about its ‘mind-independent constitution’.

Another source of holism in QM was first proclaimed by Bohr (1963, p. 2). He
therein has it that “Planck’s discovery of the elementary quantum of action[. . . ]
revealed a feature of wholeness inherent in atomic processes” (emphasis in original)
which he explicates (his p. 4) such that “interaction between object and apparatus
[. . . ] in quantum physics [. . . ] forms an inseparable part of the phenomenon.” In
other words: what really counts as ‘the phenomenon’ cannot be strictly separated
from what counts as ‘the apparatus used to investigate it’; both form an ‘indivisible
whole’. Based on the modern treatment of measurement interactions, Zurek (2007,
p. 3) similarly takes note of the somewhat arbitrary character of distinguishing
between ‘system’, ‘apparatus’, ‘environment’, and so forth, in any entangled state.
Building on this, he thinks that “in absence of systems measurement problem
disappears [sic]: Schrödinger equation provides a deterministic description of
evolution of such an indivisible Universe [sic], and questions about outcomes cannot
be even posed.” (my emphasis—FB) But Zurek’s holism is thus just a holism of the
ontological sort and hence not of interest to us here.

What about Bohr’s? Bohr is aiming to introduce his notion of complementary
here, which becomes clear when he later (Bohr 1963, p. 4) writes that “any attempt
at a well-defined subdivision would demand a change in the experimental arrange-
ment incompatible with the definition of the phenomena under investigation”, and
that “the notion of complementarity simply characterizes the answers we can receive
by such inquiry, whenever the interaction between the measuring instruments and
the objects forms an integral part of the phenomena.” (ibid.; emphasis in original) In
other words: To fully charatcterize the object (in terms of position, momentum,. . . ),
we would have to use a different aparatus; so one can never perfectly discern the
object ‘itself’, but must resort to ‘complementary’ descriptions, based on mutually
exclusive setups. In this sense, the phenomenon cannot strictly be separated from
the respective setup; the ‘momentum of the particle’ is a feature of the entire setup
designed to measure it.

To us, Bohr has parts of the story somewhat upside down. Relying on the role of
theory-relative a priori principles, QM in full, with decoherence, provides a better
guide to the—context sensitive—constitution of objects, since it also specifies under
which conditions one can resort to a classical physical picture or rely on elements of
our manifest image. Bohr’s comments are mostly of interest for a partial restoration
of classical physics in the historical context. Still, in practice one certainly often
shifts between different scientific images, ‘classical’ and quantum, and appeals to
everyday-life vocabulary in a quite arbitrary manner and without any considerations
of decoherence. And we are, of course, more acquainted with the non-quantum
images. To the extent that this is what Bohr (who could not have availed himself
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of decoherence yet) basically had in mind in stating such things as “the description
of the experimental arrangement and the recording of observations must be given in
plain language, suitably refined by the usual physical terminology” (Bohr 1963, p.
3), it seems completely agreeable.39

As we have seen, both these latter allusions to holism are of relatively low
significance for the present investigation, and the freedom QM leaves to group
together certain systems into an ‘environment’ only acquires relevance through
backing conditions for quantum states, the decoherence mechanism, and the
symmetries involved therein.

Finally, we turn to point (iii) in the Putnam-quote on Kant, the need to abandon
the correspondence theory of truth on account of internal realism. While our
discussion must fall short of an exhaustive treatment of the subject matter, we should
nevertheless utter some comments.

We have clearly seen Healey advocate an abandonment of the correspondence
theory of truth, which is why we had identified his position as closely related
to internal realism. But we had cautioned against accepting his inferentialist
pragmatism in full as a theory of meaning, and have offered ways to make sense
of the uses of ‘meaning’ in physics which do not impair the fact that we can still
understand those statements whose ‘meaningfulness’ is disputed. Here, however,
truth is at stake. Note first that in interlude I, we argued, following Brown (1988),
that Putnam is concerned with semantic considerations, whereas Kant is concerned
with epistemic ones, in the formation of an internal realism. But now we have seen
Putnam attribute to the Kantian position the consequence that one cannot entertain
the correspondence theory of truth, which is so intimately connected with reference.

The crucial point is that Putnam (1981, p. 60 ff.) reads Kant as in need of
disposing of the correspondence theory of truth in his defense against Berkeley,40

who appeals to a “similitude theory of reference” (Putnam 1981, ibid.; my emphasis
– FB) to dispute the existence of a bare substratum (cf. Berkeley 1710, §16), after
having declared all sensible qualities secondary, i.e. dependent on the existence
of minds (cf. Berkeley 1710, §9–10). In other words: while Putnam is motivated
more directly by model-theoretic concerns and by considerations of reference (cf.
in particular Putnam 1977) and Kant was motivated by epistemological ones (cf.
in particular Kant 1781, p. 374 ff.) both ultimately end up, to a large extent,
with the same conception (internal realism) and both feel the need to reject the
correspondence theory of truth. This seems like a reasonable, reconciliatory view
on these issues.

39In a quite similar vein, Camilleri and Schlosshauer (2015, p. 74) understand decoherence as
“only the last step in a long line of attempts to undergird (or supplant) Bohr’s doctrines by an
explicit dynamical and physical account”, noting that “[s]uch approaches were already pursued by
a number of Bohr’s followers [. . . ]in the 1960s, who, far from seeing it as an invalidation of Bohr’s
basic insight, regarded it as providing a justification of his views.”
40It has sometimes been argued that Kant was not even well-acquainted with Berkeley’s writings
when he wrote the first edition of the Critique, but there is also good historical evidence to the
contrary (cf. Turbayne 1955).
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Let us make things a little more precise though, and thereby reap some systematic
insights about the palatability of the correspondence theory of truth, rather than just
supplying Kant/Putnam exegesis. First of all note that the correspondence theory
of truth, to recall, goes back at least to Aristotle’s Metaphysics (1011b), where
“truth” is identified as “the assertion that that which is is and that that which is
not is not.” Tarski (1944), trying to capture the intuition behind the Aristotelian
notion, advanced his famous (T)-scheme, “X is true if, and only if, p” (his p. 344),
where ‘p’ may be replaced by any sentence of some language, capable of being
true, and ‘X’ by the ‘name’ of that sentence (cf. ibid.). To avoid such things as the
liar-antinomy, Tarski (1944, p. 349) famously introduced a meta-language which
would contain the names (X) of the sentences as well as the truth predicate.

Thus, investigating properties of languages, Tarski (1944, p. 345) called his
conception of truth “semantic”, where by ‘semantics’ he meant “a discipline which,
speaking loosely, deals with certain relations between expressions of a language
and the objects (or ‘states of affairs’) ‘referred to’ by those expressions.” (my
emphasis—FB) We have expressed reservations about ‘meaning’ being exhausted
by considerations of reference, so semantics, the study of (linguistic) meaning, may
be concerned with more than Tarski says. The crucial point, though, is that on the
correspondence theory of truth, truth and reference become inseparable. Put frankly,
truth may be thought of as the successful reference of a declarative sentence of some
language to an external states of affairs.

Herein lies the crux indeed. If correspondence requires reference to external
states of affairs, then this means that the relations and properties expressed by the
predicates of the language refer to relations and properties in the outside world.
This cannot be an account of truth appropriate to an internally realist view, for then
it would immediately collapse into strong metaphysical realism. But it is crucial
to note that the correspondence-view of truth, stated in these terms, is already
problematic by itself.

To wit, da Costa and French (2003, p. 10), referring back to Tarski’s (1935) more
detailed investigation of formal languages, have it that

in order to talk rigorously of truth [. . . ], we require not only a language L but also an
interpretation I of L in a structure A. This is what the metalanguage provides. A sentence
of L is then true or false only with reference to I; that is, truth and falsity are properties of
sentences of a particular language L, in accordance with an interpretation I for L in some
structure A. (my emphasis—FB)

A structure, A, is (in the simplest case) formally defined as an n-tuple〈
A,Rj

〉
j∈J , where A is a non-empty set of elements, representing a universe of

discourse, and the Rj are kj -ary relations defined thereover (cf. da Costa and French
2003, p. 38 for details). Note that kj could also be 1, whence the ‘relation’ would
really be a monadic property, and that any relation could be (e.g.) so constrained that
it is really a function. The relations in such a structure are themselves constructed
out of A by means of the cartesian product and power set operations, i.e. as sets
of tuples of elements from A, or sets of tuples of tuples, or sets of tuples in
which elements from A and tuples occur, or. . . and the interpretation I then assigns
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values in A to the constant symbols of L and values in
〈
Rj

〉
j∈J to the predicates

(cf. da Costa and French 2003, pp. 10 and 35 ff.). A structure thus specifies the
properties of and relations among the referents of language L that we believe to
obtain when we utter declarative sentences of L. A may hence be said to provide a
model of L.

A formal language is obviously conceived of here as entirely syntactic. If
that language is not interpreted, it is merely a concoction of symbols according
to formation rules. These considerations may not transfer seamlessly to natural
languages, but they can nonetheless be put in the service of natural-language
semantics in multiple ways (e.g. Cresswell 2006, for an appraisal). Since there
is, however, typically an intended interpretation for the sentences in a (formal or
informal) language L, “we may assert S of L as being true, without explicit mention
of the interpretation, and may even forget that S is part of L. If we are to be rigorous,
however, we must consider the interpretation.”

Given these prerequisites, a foundational problem for the correspondence theory
of truth now arises as follows. According to da Costa and French (2003, p. 17),
“[w]hen we say that some sentence S is ‘true,’ we may interpret it as strictly saying
that S is true in a certain structure or model that represents a portion of reality”
and that this means that “S can be said to ‘point’ to the world by means of a model
[. . . ].” (my emphasis—FB) But the relation that we are really interested in, in the
correspondence theory of truth, is not the relation between model and sentence
(syntactically conceived), but between interpreted sentence and ‘world’, i.e. the
‘representation’ or ‘pointing to’, as da Costa and French have it.

More precisely, da Costa and French (2003, p. 17) let a “domain of knowledge�”
(which we can identify as the aforementioned “portion of reality”) be represented,
aspect wise, “by a ‘data structure’ D”, to which sentences of language L refer by
means of some model A: “aspects of A model D[. . . ].” (ibid.) Here we (typically)
encounter isomorphisms, at least partial ones, between the model A that supplies
meaning to the sentences of L and the model of the data D. A then “effectively
substitutes for� in our thought.” (ibid.) In other words: we believe to ‘grasp’ reality,
�, by means of some model A of language that isomorphically models aspects of
(structured) data, D.

Now a first difficulty with this is that “the manner in which the various elements
of D are related to the ‘objects’ (for want of a better word) of � is [. . . ]
problematic”, and da Costa and French even acknowledge that “it may be that,
as Wittgenstein suggested, the nature of this relationship lies beyond linguistic
expression.” (da Costa and French 2003, ibid.) A second difficulty is that “strictly
speaking, [. . . ] an isomorphism cannot be said to hold between A and �, since
this relation is rigorously defined as holding between formal structures only.” (my
emphasis—FB)

A correspondence view of truth clearly aims for an isomorphism, i.e. a (bijective)
structure preserving map between an external reality and a(n interpreted) language.
Our formal and informal languages, when interpreted, are supposed to (ideally)



354 7 Reconsidering Knowledge: Coming to Terms With QM

match exactly, or at least to a considerable extent,41 the relational and non-relational
facts, the states of affairs that are ‘really there’, by means of their predicates,
function symbols, constants, etc. But an isomorphism cannot even be strictly
defined between something that is not a formal structure and something that is; and
suggesting that the relation between ‘objects’ of �—which one only talks of for
want of a better word—and elements in D (the “data structure”) is beyond linguistic
expression does not imply any stronger commitments than does our ‘stabilization’-
condition above. In other words: A careful investigation such as that of da Costa and
French already pretty much ‘internalizes’ truth.

What, then, are truth and reference? Putnam’s (1990, p. 41) appeal to “idealized
rational acceptability” and “creatures with ‘a rational and a sensible nature[. . . ]’”
seems to replace a problematic notion (‘truth’) by a host of other problematic
notions (‘rationality’, ‘ideal’, ‘sensible nature’. . . ). Putnam (1981, e.g. pp. 14 ff.
and 42 ff.) famously also advanced a causal theory of reference, according to
which “a close causal connection” (his p. 14) between the use of a specific word
of some language and its referent is required for (successful) reference. But this
either makes reference a relation internal to the image as well (basically Putnam’s
choice) or else verges on questions of the possibility of causation between empirical
and independent reality again; and, much worse, the justification for such causal
theories of reference arguably relies far too much on specific intuitions, some of
which have been put into doubt by cross-cultural studies with radical differences in
linguistic intuition between westerners and far easterners (cf. Machery et al. 2004,
2013).

We shall refrain from advancing a theory of reference or truth here (or meaning
for that matter), but only state the following comments, at least partly affirmative
of Putnam’s thinking on these issues: Firstly, however a given ‘data structure’ may
be stabilized by an external source, as we here call it, all that a theory of truth
really needs to provide in order to be satisfactory in pre-philosophical thinking
is that there be sufficient agreement between different agents on the basis of
any such ‘data structure’—insofar as we can think of this structure as ‘shared’
among them—, such that these agents will know when to accept that someone is
‘telling the truth’; e.g. in court, or under similar circumstances when assertions
of ‘truth’ even matter. Such agreement could come about by watching a video
tape from a surveillance camera or by consulting finger prints. That is far less
than requiring (structural) correspondence to, or even ‘truthmaking’42 in virtue
of, a ‘transcendentally’ external world or source, and it only has to do with the
experienced world. As can be seen, we are here aiming at a theory of empirical
truth.

And secondly, regardless of whether one embraces a causal, descriptivist, or
what-have-you theory of reference (e.g. Schwartz 2006, for discussion), this theory

41Cf. also da Costa and French (2003, p. 18 ff.) for considerations on partial truth.
42Cf. Button (2013, pp. 9 and 18 ff.), for a brief discussion of the relation between correspondence
theories and truthmaking.
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need only secure that we be able to refer to ‘that old chair in the attic’, ‘the car in
the parking lot’, ‘grandma in the wheelchair’, or ‘the ions in that ion-trap’, each of
which items or states of affairs is, for the agent or user of language uttering these
sentences, part of her image, scientific or manifest, and not part of the source.

Why can we even allow talk of other ‘agents’ or ‘users of language’, when we
here take quite a methodologically solipsist stance? Because our abductive infer-
ences to the existence of ‘others’ are not punished by nature, much in the same way
as the general (abductive) inference to the existence of a source (the abandonment
of thorough idealism) is not. On the contrary: many expectations are met precisely
when we ‘breathe life’ into our image (in the sense of external stabilization) and
‘breathe consciousness’ into certain aspects thereof. The expectations formed on the
basis of these inferences are rewarded by nature, in contrast to certain expectations
formed on the basis of accepting classical physics, say.

Notably, we have been completely silent, for instance, about spatiotemporality in
regard to the source, much in contrast to Kant. And we do not mean to disencourage
educated speculations about the very nature of mind-independent reality altogether,
since these have often proven fruitful in the past. But we do maintain that the
structure of experience alone and the depth of past changes in relatively a priori
concepts still allows for doubt—even about the existence of ‘other minds’ or a
spacetime manifold.43

We do owe one final debt to make the general philosophical stance advertised
here as a means of coming to terms with QM work. Namely, we have accepted
a notion of ‘experience’ and even reserved a certain immediacy for it, despite the
fact that we had outlined foundational difficulties for empiricist positions in the
philosophy of science. These difficulties, to recall, arose from the fact that what
counts as experience, and in particular what counts as a possible experience, is (a)
notoriously hard to pin down, and (b) requires considerations of modality that go
beyond any actual experience.

Our answer to both problems is, in part, immediate, and both answers are tightly
connected. First off, we have not advocated any straightforward empiricism here,
and have reserved a rather important place for a priori considerations (albeit in a
theory-relative sense). This allows us to embrace theoretically informed constraints
with a (relativized) a priorist character on what even counts as an ‘experience’—
which e.g. Nagel (2000), in fact, diagnoses van Fraassen to be in need of, or
to entertain somewhat tacitly. Put frankly: to some extent what, (a), counts as
an experience at one time, thereby shaping the face of science, may serve as a
normative corrective for what should count as an experience at a later time, given
e.g. progress in perceptual or cognitive psychology or in science more generally.
This in turn implies, (b), that what is experiencable becomes a theoretical matter.

43Consider, in this connection, the understanding of time as “only an approximate concept”
which “emerges from the separation into [. . . ] different subsystems” (Kiefer 2009, p. 6) in some
approaches to quantum gravity or the fact that treating GR as “an effective theory seriously involves
rethinking physics without spactime” (Markopoulou 2009, p. 148).
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Astrophysics, say, may well tell us what we ‘could experience’ on other planets if
we had warp-drive or the like.

However, we maintain here, regarding (a), that there is still an ‘impenetrable
immediate core’ to experience that is only so constrained by what is constitutive
for the ‘manifest image’ in the narrowest sense—this much we had granted Kant.44

And this immediacy and what these constraints are is, ultimately, not even a subject
matter for intersubjective science but for introspection. This we invest as a premise
not further justified.

We hence respond to both problems in a twofold, ‘commanding’ fashion: (i) let
science, physical, social, biological, and psychological, be a guide to what counts as
‘observable’, and what as ‘experience’ in any more involved sense, and (ii) reflect
on your own conscious content to find out what an experience is, in the immediate,
pre-scientific sense.

7.4.4 A Brief Summary of the Proposal

We have helped ourselves to an epistemological basis for coming to terms with
QM through a complicated analysis of different positions, intertwined with bits of
history. Let us hence summarize our findings and sympathies in a brief, compact
fashion.

We agree with the QBists that science should be viewed as concerned with
experience, that there is a split between each ‘user’s’ experienced world and an
assumed mind-independent reality, and that the involvement of probabilities has
something to do with the information or knowledge of users or agents. But we deny
that probabilities or quantum states themselves are a representations of any actual
agent’s beliefs (doxastic states), that the ‘weirdness’ of QM only arises in virtue of
the split between experience and that mind-independent reality, or that it arises in
virtue of the effect of our interventions on the latter. A main reason for this denial
are the strong, observed correlations predicted by QM, whose existence becomes
completely elusive on such a view as QBism.

We agree, then, with Healey, Stairs, and Friederich that QM’s probabilities have
an objective character, that quantum states are objective relative to an agent’s
epistemic situation, and that QM does not support certain causal counterfactuals.
With Healey and Friederich we agree, furthermore, that the probabilities supply
a normative guide to future expectation, that decoherence provides a guide to
situations in which the Born rule can be applied, and with Healey that this implies an
impact on the pragmatic-inferential content of certain statements. We also endorse
the notions of backing and advice conditions and that, within a given physical
situation, a QSA can be warranted. Unlike Healey or the inferentialism he endorses,

44This view, of course, gains direct support from the debate on cognitive impenetrability of
preception; Müller-Lyer illusions are an impressive, simple example (e.g. Pylyshyn 1999, p. 344).
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however, we deny that there is an impact on all components of a statement’s very
meaning, i.e. that QM may render statements such as ‘the electron took this and
that path’ literally meaningless. Based on the fact that we seem to understand such
sentences very well, we here reserve a completely internal/mental component to
meaning, much like Quine (1939, pp. 702–703).

Also unlike Healey, we hold the central impact of QM to be a limitation of the
range of abductive inferences that we are entitled to draw based on observations,
including and especially to hidden common causes when these seem to be dis-
encouraged by QM (KS-theorem, Bell’s theorem). A bridging principle between
both views is provided by ‘material inferences’, expressing lawlike connections
that can figure as a basis of the respective abduction (as ‘known laws’), and which
Healey claims not to be licensed by QM in some (surprising) cases. To make sense
of statements like ‘a physical situation warrants this and that QSA’, we urge, in
agreement with considerations of a ‘split’ between experienced and independent
reality, to flesh out the conglomerate of the above considerations as promoting an
internal realism, as endorsed by Kant and Putnam (at some stage). Unlike Kant,
though, we do not endorse a synthetic a priori with unlimited, eternal validity, but
merely a theory-relativized, constitutive one, like Reichenbach and Friedman. This
enables us to let the theory dictate, to some extent, what ‘is there’; objects such as
˜particles can be constituted as ‘bearers of properties’, in the sense of being invariants

under a relevant transformation group (e.g. an irreducible unitary representation of
the Galilei or Poincaré group).

The endorsement of a relativized a priori allows for a shift in what is constitutive
of objects or objective facts: In non-relativistic QM and special relativistic QFT,

strict correlations are constitutive of a p̃article-pair in the singlet state qua the latter’s
rotation invariance; in quantum graivity this may not be the case anymore, and the
strictness of the correlation becomes an empirical matter.

Much like empiricists such as van Frassen, we claim a certain immediacy for
‘experience’; but in contrast to him (them), we allow for a priori principles being
operative that determine what is or could be experienced, at an unconscious level in
the manifest image and at a (more or less) conscious level in ‘the’ scientific image,
or in a patchwork of such images. This allows to make sense of what counts as
‘experiencable’.

Like Putnam, Healey, and Putnam’s Kant, we express reservations about the
correspondence theory of truth and our ability to successfully refer to a mind-
independent reality altogether. But we refrain from advancing a positive, alternative
account of these notions (truth and reference) at this point. We merely acknowledge
that for everyday life and scientific conduct, much less is required of these notions
than philosophical investigation may sometimes suggest.
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7.5 Discussion (iii): Giving up on Science and Common
Sense?

Certainly, our epistemological proposal is not the kind of interpretation everyone
would want to accept, so we should confront at least a few possible objections.

Objection: This is nothing new! It is just Copenhagen all over again.
Reply: Granted, the interpretation suggested above stands in some continuity to the

project undertaken by Bohr (in case that is what is meant by ‘Copenhagen’).
The same has been said about QBism, but there are also crucial differences
(cf. Mermin 2014b). And Healey, in turn, admits influences from QBism (cf.
Healey 2012d, p. 751), but also rejects many of its crucial ingredients. The
interpretation advanced above bears connections to those of Healey, Bohr, and
the QBists, but diverges from all of them in several respects. If one would like
to classify it as ‘neo-Copenhagen’, then that is fine. All of this is hardly an
objection: Bohr, as we noted, was himself influenced by Høffding who in turn
was influenced by Kant (cf. Faye 1991, p. xix), and the Kantian elements in
Bohr’s thinking have long been acknowledged (e.g. Hooker 1972; Folse 1994;
Bitbol and Osnaghi 2013). Multiple independent arguments and opinions have
been developed and expressed above and these set the interpretation presented
apart from all its influences. Should that not have been so, it would still hardly
make for an objection.

Objection: It was argued before that logical empiricism was abandoned for good
reasons and that constructive empiricism must endorse non-empirical modal
notions. The interpretation proposed has it that the subject matter of science is
experience; it hence falls prey to the same objections.

Reply: This objection was answered by the endorsement of constitutive a priori
principles; a theory may dictate what can be experienced, and hence what may
be expected to be experienced, should the appropriate conditions occur (e.g.
interstellar flight).

Objection: All of this is too radical, too revisionary compared with the ways we
normally think.

Reply: That is debatable, since many physicists talk quite nonchalantly and with
pragmatic ease about the ‘objects’ that we have let QM constitute, and thereby
(apparently) typically do not require much more of them than have we. In a
sense, we are quite conservative w.r.t. scientific practice here—a feature we share
with Friederich (2015)—, while acknowledging fundamental epistemological
restrictions that many physicists, or scientists more generally, may not even
have a definite opinion about. Moreover, there is no ‘non-radical’ option, as the
discussion should have shown. ψ-epistemic models that preserve common sense
intuitions can hardly be put to work; and otherwise one is faced with guiding
fields on configurations spaces, myriads of worlds branching off, suddenly
occurring and highly correlated flashes. . . common sense is lost!

Objection: Such an ‘epistemological interpretation’ means shying away from the
‘real battle’. In a sense this is just giving up on science!



7.5 Discussion (iii): Giving up on Science and Common Sense? 359

Reply: A point of departure for us were the actual difficulties exhibited by all the
ontological interpretations. So none of them suggests itself as ‘the real deal’, and
searching for alternatives seems indicated. But another important motivation for
embracing internal rather than external realism are considerations of epistemic
humility.45 How could we ever claim to arrive at a ‘god’s eye view’, how could
we be certain to have sorted out the factors contributed by us from the factors
‘imposed upon us’? By some means, our attitude is hence not anti-scientific,
but rather as scientific as it gets. We allow to put basically everything under
close scrutiny and let it be subject to revision in the face of evidence, instead
of resorting to dogma.

Objection: The no-go theorems have shown that epistemic interpretations are
impossible. Just not mentioning hidden variables does not make them go away.
This knowledge has to be knowledge of something.

Reply: The no-go theorems do not show any such thing; they only impose restric-
tions on a certain brand of epistemic interpretation. Moreover, our interpretation
here is radically different from hidden variables approaches. We do not, to recall,

even assume that there is a ‘real, outside world’-particle for every p̃article, i.e.
every ‘stream of impressions’, if you will, that we reify into an object via
constitutional principles. This obviates hidden variables λ that could subsume,
say, definite particle momenta and positions. Still, with van Fraassen (1991, p.
243) we appreciate that, so long as there can be different interpretations of some
theory, “an interpretation introduces factors not found in the theory originally—
and what else does ‘hidden variables’ mean?” In this modest sense we can admit
to also embrace ‘hidden variables’, but hidden variables very different from those
occurring in ψ-epistemic models and not disallowed by the no-go theorems.

We still owe a classification of QBism, Healey’s pragmatist approach (which we
represent by PQM in the scheme) and our ‘epistemological interpretation’ (which
we represent by EQM). QBism, to the extent that it relies on Quantum Bayesianism,
modifies QM formally, since the latter introduces such things as ‘quantum Bayes
rules’ and other adaptations from probability theory (cf. Fuchs and Schack 2011). It
is obviously non-ontological and arguably conceptually revisionary, since quantum
states are construed doxastically, not as pertaining to systems. It also accepts the PP
(Lüders’ rule) in the sense of a state update, so it should be classified as a collapse
interpretation.

As for PQM, quantum states are not de- but prescripitive, whence they do not
describe anything at all. So the approach should count as non-ontological. And
since Healey suggests a story in terms of “informational bridges” (cf. Healey 2015),
this approach seems conceptually revisionary as well. Moreover, after decoherence,
some NQMCs that correspond to projectors are preferred, so in that sense the
interpretation is also ‘collapse’ (Fig. 7.1).

45Langton (1998) e.g. provides a book-length investigation of this aspect of Kant’s internal realism.
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How could our EQM differ? We suggest that, since the physical world, that which
physics treats of, can only be the empirical world on our view, and since quantum
states are assigned by physicists to whatever they constitute as ‘objects’ of the
theory, a quantum state may well count as ‘the physical state of the system’, insofar
as any such thing exists, even though by that no reference to a radically mind-
independent world is implied. In other words: our interpretation is conceptually
and formally conservative, as much as this is possible without repeating orthodoxy,
and up to the fact that we construe everything in terms of an empirical, partially
theoretically constructed reality only.

Much like that of Friederich (2015), our interpretation thus respects physi-
cal practice. But we have gone beyond Friederich’s Wittgensteinian, therapeutic
approach, in advancing our considerations of stabilization, punishment and reward
by an external source, the scope of valid abductions, constitution of objects. . . and
so forth.

The ability to remain conservative in this sense and with the help of these accom-
modations seems like a valuable achievement. In agreement with e.g. Maudlin
(2014b, p. 796) and pace Wallace (2016), to recall, we had argued Chap. 2 that
the ‘textbook recipe’ is operative—with suitable generalizations in terms of density
matrices, POVMs, field operators and the like—in the actual use of QM, and that
the theory harvests its success from this textbook recipe or orthodox approach.
Any interpretation should respect that success, and as should have become obvious
from the discussion in Chap. 6, all the ontological interpretations considered are
ultimately aimed at harvesting it. Why else would one want to make sense of the
appearance of definite outcomes distributed according to the Born rule in the MWI
or include PVMs and POVMs into the description of measurements in BM or CI?

Certainly, many of the above claims are debatable, controversial, and counter-
intuitive, depending on one’s intuitions. But again, we must stress that there are
no alternatives without these features. Lord Kelvin’s (1901, p. 1) infamous “two
clouds” have developed into raging thunderstorms from which there is no escape,
and we have even highlighted some connections between both ‘clouds’ (QM and
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relativity) at a fundamental epistemological level (demotion of a priori principles of
predecessor theories to empirical connections).

7.6 Conclusions (iii) and Coda

The treatment provided in this last chapter has lead to somewhat of a reduction of
the specific problems associated with QM to general themes in the philosophy of
science and epistemology. This, too, seems like a valuable step: if we can see QM
and the problems raised by it by the same lights as those raised by other, previous
theories, then the interpretation of QM does not pose a special problem at last. After
all, Schrödinger (1931, p. 490) reminds us that there is a sense in which all of science
treats of the subject-object relation.

A widespread objection to interpretations of this general sort is that ‘the observer’
figures crucially therein, which it should not do in a physical theory. But we have
seen that there are important respects in which conscious observes do figure even
in the MWI—being in a sense ‘the most physical interpretation of them all’, the
one that tries to take the successful physical theory that is QM at face value—,
namely in providing precise cut-offs for branches-as-experienced. And from the
epistemological perspective taken on here, the inclusion of ‘observes’ seems like
a virtue, not a vice.

Similar judgment has been advanced, of course, by the QBists. In particular, they
(cf. Mermin 2014a, p. 421; Fuchs and Schack 2014, p. 2) refer back to Schrödinger
(1954) who identifies an important pillar of modern science, as rooted in the ancient
Greek tradition, in the fact that “[t]he scientist subconsciously, almost inadvertently,
simplifies his problem of understanding Nature by disregarding or cutting out of the
picture to be constructed, himself, his own personality, the subject of cognizance.”
(p. 92) This, Schrödinger (ibid.) thinks, “leaves gaps, enormous lacunae, leads to
paradoxes and antinomies whenever, unaware of this initial renunciation, one tries
to find oneself in the picture or to put oneself, one’s own thinking and sensing mind,
back into the picture.” Mermin (2014b, p. 5) finds similar considerations in Freud
(1961, p. 56) who regards “the problem of the nature of the world without regard
to our percipient mental apparatus [. . . ] an empty abstraction, devoid of practical
interest.”

Put less poetically, the upshot is this: A ‘theory of everything’ cannot be a theory
of everything if it disregards the fact that it is being applied by someone, that it
is relative to the epistemic conditions of an individual or an epistemic community.
We do not have ‘god’s eye-view’, and a neglect of this fact leaves out something
scientifically important.

A final fly in the ointment we must admit though: How, if one allows that the
correspondence theory of truth must be put in question, can the conception of
internal realism itself even be accepted? I.e.: How could it be accepted as correctly
depicting our epistemic situation, how could it be true? Stated differently, what
would acceptance of that conception amount to? There seem to be two principled
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options: (a) accept the ‘rational acceptability’-standard advanced by Putnam and
apply it to internal realism itself, or (b) claim that the only TRUTH, if you will,
in a stronger, structural correspondence-sense is the foundational conception of the
subject-object relation at play in internal realism.

Now (a) seems ‘a little weak’ and too much contingent (to recall) on a
problematic notion such as ‘rationality’. But maybe feeling this way is just an
over-endorsement of intuitions that should be disposed of anyways, and the suitable
‘philosophical therapy’ could cure one of these worries. (b), on the other hand seems
quite ad hoc, and it seems to fall prey to the ‘limit argument’, as Moore (2012, p.
135) calls it. This argument states that “in order to be able to draw a limit to thought,
we should have to find both sides of the limit thinkable (i.e. we should have to be
able to think what cannot be thought).” (Wittgenstein 1961, p. 3) In other words: if
we do recognize that we are so limited in our ability to conceptualize the external,
‘nuomenal’ world, how can we still entertain even a “merely limitative” (Kant 1781,
p. 255; emphasis omitted) concept of such a world?

But think of it this way: Imagine a wall rising up at some place, and imagine
yourself interested in what is behind that wall. Now if the wall extends sufficiently
far and is sufficiently high, there may be no way around it. The only method of
finding out what is behind it may consist in throwing rocks and listening to the
resulting sounds. But imagine that there be a distortion-mechanism that radically
modifies the sounds you hear, thereby creating distinctive patterns. Based on these
patterns, you may draw an image, a structural diagram relating the elements
suspected behind the wall to one another. But that diagram would only depict what
you can gather based on your limited methods and the distorted information you
obtain. That is, it will be informed in some sense by what is behind, but not depict
the latter at all (not even structurally).

It seems to be no problem to think that wall, that something behind, and the
distortion mechanism, even if all relevant information is missing about the realm
behind the wall. All ‘truths’ within the diagram, that could be accepted, say, when
one is able to predict, from the diagram, sounds that result when throwing rocks in a
particular way, would be different from the TRUTH that one does sit in front of that
wall and is merely throwing rocks. And note that one could never be certain that the
sounds do originate from behind the wall, and that the rocks do not merely vanish
at the boundary.

Is the metaphor compelling at all? Well. . . the dear reader should decide that for
herself.



Appendix A
Required Mathematics (and a Little
More)

In the following, we give a quick review of the central mathematical concepts.
References to more detailed accounts will be given accordingly. In general, the
expositions by Gustafson and Sigal (2011) and Heinosaari and Ziman (2012)
may be used as comprehensive and somewhat complementary introductions to the
mathematics of QM. Most textbooks on QM also provide sufficient introductions,
presupposing however basic calculus and linear algebra (as shall we, to some
extent).

A.1 Vector Spaces

In Schödinger’s version of QM, the state of a system is mathematically represented
by a state function ψ , in Heisenberg’s version it is represented by a sort of ‘matrix’
(table of numbers). These collections of functions and matrices each form a vector
space over the field of complex numbers. Very loosely speaking, a vector space is
just a collection of mathematical objects that can be multiplied by numbers and
added up. Imagine, for instance, a collection of little arrows that can be stretched or
shortened, i.e. scaled (mathematically represented as multiplication by a number or
‘scalar’), and glued together (mathematically represented as vector addition). Two
arrows glued together tip to bottom count as a third one that points directly from the
bottom of the first to the tip of the second.

Choosing three arrows as a ‘basis’ of some three dimensional vector space, joined
together at their bottoms and not all lying in one plane, all other arrows can be
described by a collection of three entries, loosely speaking specifying the respective
steps one would have to go in the direction of each of the three ‘basis arrows’ to
reach the point the arrow so represented would be pointing to if it were also glued
to the basis at its bottom (without change in orientation). Vectors ‘lying around’
somewhere in space are identified with ones of same length and direction attached
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Fig. A.1 Arrows as a means
of depicting vectors

b
ca

e1

e2

e3

to the origin of the basis. This makes perfect sense in their representation as triplets
of numbers. It helps to familiarize oneself with these notions by adding columns of
numbers (componentwise) and drawing arrows.

As a quick example hence take the six arrows depicted in Fig. A.1. We have
conveniently chosen the basis arrows e1, e2, e3 to be at right angles, and we choose
them to be of unit length. They have standard representations

e1
.=
(

1
0
0

)
, e1

.=
(

0
1
0

)
, and e3

.=
(

0
0
1

)
,

where we use ‘
.=’ (as in the remainder of this book) to indicate the fact that this is

actually a choice of representation. Then we can write

a = 0 · e1 + 1

6
· e2 + 1

3
· e3,

or equally

a
.= 0 ·

(
1
0
0

)
+ 1

6
·
(

0
1
0

)
+ 1

3
·
(

0
0
1

)
=

(
0

1/6
1/3

)
.

Since

a + b = c and c
.=
(

0
1/2
1/2

)
,

we must have

b = c − a
.=
(

0
1/2− 1/6
1/2− 1/3

)
.=
(

0
1/3
1/6

)
.



A Required Mathematics (and a Little More) 365

As ‘
.=’ indicates, there are different choices of columns of numbers that can

represent the relations between a, b, and c just as well. We can now also see that b

is described by a column of numbers that equally describes an arrow glued to the
bottom of the basis, which justifies their identification.

Now a vector is formally speaking an element of some vector space. And what
precisely is a vector space? To define this appropriately, one first needs the concept
of a field.

Definition A.1 (Field) Let F be a nonempty set over which two operations, + and
· are defined, which map every pair1 (x, y) ∈ F× F to some element x + y ∈ F or
x · y ∈ F respectively. If ∀x, y, z ∈ F

(i) (x+y)+z = x+ (y+z) and (x ·y) ·z = x · (y ·z), i.e.+ and · are associative,
(ii) x + y = y + x and x · y = y · x, i.e. + and · are commutative,

(iii) ∃0, 1 ∈ F such that x + 0 = x and y · 1 = y (0 is called the neutral element
w.r.t. +, and 1 w.r.t. ·),

(iv) −x + x = 0 and x · x−1 = 1 in case x �= 0, i.e. there exist a negative element
(−x) and an inverse element (x−1),

(v) x · (y + z) = x · y + x · z, i.e. · is distributive over +,

(F, (+, 0), ( · , 1)) is called a field.

0 and 1 can be demonstrated to be unique (cf. Kerner and von Wahl 2013, p. 4).
It is customary to abbreviate (F, (+, 0), ( · , 1)) simply by F. Notable fields are the
real and complex numbers, R and C. Any c ∈ C is of the form c = α + iβ with
i = √−1 the imaginary unit and α, β ∈ R. c∗ = α − iβ is called the complex
conjugate of c. For z ∈ R, i.e. z = α + i · 0, complex conjugation simply makes no
difference.
(F, (+, 0)) and (F, ( · , 1)) each define a group in virtue of the properties (i),

(iii), and (iv); in case (ii) is also satisfied, the group is called Abelian (cf. Kerner and
von Wahl 2013, p. 113).

Given these notions, a vector space is defined as follows.

Definition A.2 (Vector space) A vector space, defined over some field F is a triple
(V,+V , ·V ) consisting of a set V , and two connections +V (vector addition) and ·V
(scalar multiplication) such that, ∀v,w ∈ V,∀λ,μ ∈ F,

V × V
+V−−→ V, (v,w) �−→ v + w, F× V

·V−−→ V, (λ, v) �−→ λ ·V v = λv

and

(i) (V,+V ) is an Abelian group
(ii) λ(μv) = (λμ)v (assoc. ·V /· ),

1We here use rounded brackets to denote k-tuples, to avoid confusion with the bras and kets
introduced below. In the text the notation with angled brackets, 〈x, y, z, . . .〉, which is more
widespread in philosophy, is used when no ambiguity arises.
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(iii) (λ+ μ)v = λv + μv (dist. ·V over +)
(iv) λ(v +V w) = λv +V λw (dist. ·V over +V )
(v) 1v = v

(cf. Kerner and von Wahl 2013, p. 118). Here we have used an index (V ) to
distinguish the field operations from the vector operations. It is, however, customary
to omit indexation, and equally to refer to the triple (V,+V , ·V ) simply by V . Note
that (i) implies the existence of a zero element in V , called a null vector, which we
will denote by 0V .

A.2 Hilbert Spaces

Hilbert spaces are strictly speaking just a special kind of vector space. They can be
understood intuitively as a generalization of the underlying ideas in such a way that
there may be arbitrarily large collections of basis-arrows that could still be joined
together at their bottoms all at right angles, and where any of the arrows in the
collection could be scaled (‘stretched’) by complex numbers, not just real ones. Of
course, such a space of ‘arrows’ becomes unimaginable and the vectors in a Hilbert
space would be representative of something more abstract.

In a Hilbert space of functionsψ , these functions, taking the place of the pictorial
arrows, must satisfy the restriction that they be square-integrable, i.e.:

∫

Rn

ψ∗(λ)ψ(λ)dnλ =
∫

Rn

|ψ(λ)|2dnλ <∞. (A.1)

The set of these functions is often denoted by L2(Rn), as their argument (λ) is
an n-tuple of real numbers. The tuples λ themselves constitute vectors of a different
space, and for n = 3 they can easily be depicted as our neat little arrows from above.
They could e.g. denote positions x

.= (x, y, z) in the three dimensional space that
we ordinarily consider ourselves to live in, or rather pointers (arrows) pointing to
such points.

A function, to recall, maps elements from some set (or space) to numbers (the
function’s values). The values of the functions ψ may either be complex numbers
or k-tuples thereof, where the latter is the case if one uses them to describe systems
with spin (cf. Chap. 2). In that case one may write ψ(λ) for notational consistency,
and speak of a ‘vector valued function’.

Integrals, to recall, are usually introduced as computing the area under some
curve between points a and b: One coarse grains that area into rectangles either
directly above or below the curve and then lets the width of these shrink to zero. In
case these two approximations from above and below converge to a common limit
(the ‘true’ area under the curve), this defines the (definite) Riemann integral of the
curve between a and b. A function F , unique up to an arbitrary constant, that can
be used to compute the area between arbitrary points x and y on the curve by taking
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the difference F(y)− F(x) is then the indefinite integral F(x′) = ∫
f (x′) dx′. The

fundamental theorem of calculus tells us that f = dF
dx , making differentiation and

integration inverse operations of one another (cf. Kerner and von Wahl 2013, p. 81
ff.).

Of course one is typically not really interested in areas. Integrals are hence
better understood as generalizations of sums, used where there is a continuum of
items to be summed up. The items are then of the form f (x) dx or morel generally
f (λ) dnλ, and dnλ can then be understood as a (metaphorical) tiny ‘volume’ in the
space defined by the λs, f (λ) loosely as the (metaphorical) ‘density’ of something
distributed across volumes of that space.

The ‘L’ in L2(Rn) indicates, moreover, that the integrability is actually meant
w.r.t. the Lebesgue measure, a different method of assigning a ‘volume’ or ‘weight’
to sets in the space of λs than in Riemann’s theory. The details typically do not
matter much in philosophical investigations of QM, and we will hence hardly
concern ourselves with them here.2 But due to their involvement in mathematical
probability theory, we will say something more about measures in general below,
and then also touch on the Lebesgue measure as an example.

A Hilbert space is generically denoted by the symbol H and it is common practice
to use a special notation for its elements. This notation is due to Paul Dirac (1930),
and called the bra-ket notation (from English: bracket). Thus, let |ψ〉 stand for a
ket-vector (short: ket) and 〈ψ | for a corresponding bra. This notation allows for
creativity in labeling, as e.g. in |♣〉 , | 〉 , |�〉, or simply |1〉 , |2〉 , |3〉 and so forth.
The space H only contains kets, and the bras form a so called dual space H∗,
isomorphic to H in virtue of the Riesz-Fréchet theorem (e.g. Tarasov 2008, p. 23).
Formally, bras 〈v| correspond to linear maps v : H −→ C, also referred to as
linear functionals, which (linearly) map entire functions to numbers. Such linear
functionals are usually denoted as v[·] (‘·’ a slot to fill in some function), and an
example are definite integrals I [f ] = ∫ b

a
f (x) dx.

All Hilbert spaces are (by definition) equipped with an inner or scalar product.

Definition A.3 (Inner product) An inner (or scalar) product on a complex vector

space V is a map V × V 〈·|·〉−−→ C, such that

(i) 〈v|w〉 = 〈w|v〉∗ (skew-symmetry or hermiticity)
(ii) 〈v|v〉 ≥ 0 and 〈v|v〉 = 0 iff |v〉 = 0V (positive semidefiniteness)

(iii) 〈v|(α |w〉 + β |z〉) = α〈v|w〉 + β〈v|z〉, α, β ∈ C (linearity in the ket)

(cf. Goldhorn et al. 2009, p. 358; Heinosaari and Ziman 2012, pp. 1–2). (iii)
together with (i) implies a form of linearity in the first argument, but with complex
conjugated factors α∗ and β∗. This property is referred to as anti-linearity in the
bra. Note that the linearity in the ket coincides with the fact that the bras are linear
functionals on H, since in functional notation 〈v|(α |w〉 + β |z〉) = v[αw + βz] =

2An overview is provided e.g. in Tetschl (2000, p. 259 ff.).
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Fig. A.2 Orthogonal
projection of |ψ〉 onto |ξ〉

〈ξ|ψ〉

|ξ〉|ψ〉

αv[w] + βv[z] = α〈v|w〉 + β〈v|z〉. One can easily check that (i) also ensures that
〈v|v〉 is always real.

So applying a bra to a ket is loosely speaking the same thing as computing the
inner product of two vectors from H, and one can intuitively think of the functionals
(bras) as ‘half filled’ scalar products 〈v|·〉.

In the arrow-image, the inner product can be quite literally understood as
computing the (orthogonal) projection of one vector onto the other (cf. Fig. A.2).
Think of one vector as an arrow lying on the ground and another one stuck in the
ground at some angle, right at the foot of the first one. When light shines directly
from above, the part of arrow 1 shadowed by arrow 2 corresponds to the orthogonal
projection. In this image, the scalar product computes the length of the shadow.
Even though this image breaks down again in H, 〈v|w〉 is still sometimes called the
projection of |w〉 onto |v〉.

The scalar product also induces a norm

‖v‖ = √〈v|v〉 (A.2)

on H, for which two inequalities can be derived (stated here without proof): the
Schwartz inequality

| 〈v|w〉 | ≤ ‖v‖ · ‖w‖
⇔ | 〈v|w〉 |2 ≤ 〈v|v〉 〈w|w〉 , (A.3)

and triangle inequality

‖ |v〉 + |w〉 ‖ ≤ ‖v‖ + ‖w‖ (A.4)

(cf. Heinosaari and Ziman 2012, pp. 2 and 4).
Moreover, a family (indexed set) of vectors, {|j 〉}j∈I from H (with I ⊆ N),

which satisfies

〈i|j 〉 = δij =:
{

1, if i = j

0 else
, (A.5)

is called orthonormal, as are the vectors that are its elements. The ‘if’ fixes their
normality, i.e. their norm ‖j‖ being finite (here: 1), the ‘else’ their orthogonality.
δij is called the Kronecker-δ(-function).
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Using these relations, we can thoroughly introduce the notion of an orthonormal
basis. Call a family of vectors G = {|j 〉}j∈I from H (or more generally: V) a
generating set of H (V) if every vector |v〉 ∈ H (V) can be written as a linear
combination

|v〉 = α1 |1〉 + α2 |2〉 + α3 |3〉 + . . . =
n∑
j=1

αj |j 〉 , (A.6)

with |j 〉 ∈ G, n = |I |, | · | denoting the cardinality of the indexing set I , and αj ∈
C (more generally: F),∀j ∈ I . We can then say that the vectors in G span the space
H (V). In case I = N (i.e. ‘n = ∞’), this formula is only applicable for an important
subclass of Hilbert spaces (cf. below). The sum is then actually a series of vectors,
where a series is defined as a limit of partial sums,

∑∞
j=1 aj := lim

n→∞
∑n

j=1 aj , so

long as that limit exists.
If no |�〉 in some family {|j 〉}j∈I can itself be expanded as a linear combination

|�〉 =∑
j λj |j 〉 of |j 〉 ∈ {|j 〉}j∈I , or equally, if it holds that

∑
j

λj |j 〉 = 0 iff λj = 0,∀j ∈ I,

then the |j 〉 ∈ {|j 〉}j∈I are called linearly independent. A generating set of linearly
independent vectors defines a basis B of H. The dimension dim(H) of H is then
given by the maximum number of linearly independent vectors in H. A linear
combination |v〉 = ∑

j αj |j 〉 , where |j 〉 ∈ B,∀j ∈ I, is also called an expansion
of |v〉 in B, and the αj are called the expansion coefficients. They are computed by
〈j |v〉, as becomes clear if one expands |v〉 in the respective basis and then computes
the inner product with a given |j 〉 (minding the Kronecker-δ).

Using the notion of an orthonormal basis, the norm induced by the Hermitian
inner product can be understood more intuitively by comparison to the length of an
arrow in our initial pictorial representation of vector spaces. It parallels, in this sense,

the Euclidean norm |a| = √a · a =
√
a2

1 + a2
2 + a2

3 , with a = a1e1 + a2e2 + a3e3,
where a · b is a real valued inner product, defined over an R-vector space, which
becomes symmetric (a · b = b · a) and linear in both arguments due to the exclusive
involvement of real numbers. Given that the ei are at right angles to one another, this
length can be straightforwardly understood by appeal to the Pythagorean theorem
in three dimensions. The norm introduced by the inner product on complex and
high-dimensional vector spaces is an abstracting generalization of this intuitively
accessible notion of a length.

Along with many a physicist, we will denote bases by sets in this book,
even though they must strictly rather be represented as ordered n-tuples B =
(|1〉 , . . . , |m〉), since sets are invariant under repetitions, i.e. { |ψ〉} = { |ψ〉 , |ψ〉},
but bases are supposed to be collections of linearly independent vectors; and |ψ〉 is
not linearly independent of itself ( |ψ〉 = 1 · |ψ〉 +∑

j 0 · |φj 〉).
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Now while we have introduced most of the relevant features of Hilbert spaces
somewhat informally already, a Hilbert space H may be more formally defined as
a complex vector space with an inner product which is complete w.r.t. the norm
induced by that product (cf. Goldhorn et al. 2009, pp. 200–201; Heinosaari and
Ziman 2012, p. 6). Completeness w.r.t. the norm means that any sequence of vectors
|1〉 , |2〉 , |3〉 , . . . in H which eventually come closer and closer to one another in that
norm with growing index—in the sense that ∀ε > 0∃N∀n,m > N : ‖ |n〉−|m〉 ‖ <
ε—will converge to some limit |v〉 ∈ H. That |v〉 is also an element of H is the
decisive point.

Not all Hilbert spaces will allow for basis expansions in terms of series∑∞
j=1 αj |j 〉. Those that do, however, are usually called separable (e.g. Heinosaari

and Ziman 2012, p. 6). This means that the space has a countable orthonormal basis.
Finite-dimensional complex vector spaces with an inner product, i.e. spaces where
the ∞ in the basis expansion can be replaced by some n ∈ N, may also be called
(finite) Hilbert spaces, as they are ‘trivially’ complete: the difference |φ〉− |ψ〉 will
always give back another vector of the space.

That there is always an orthonormal basis is actually secured by the following
theorem (e.g. Shankar 1994, p. 14).

Theorem (Gram-Schmidt) Given an arbitrary basis B of a space H, one can
always construct an orthonormal basis B′ out of B by means of linear combination.

It is also a general theorem of linear algebra that vector spaces over some field F

of the same finite dimension are all isomorphic to one another, i.e. can be mapped
onto one another linearly and bijectively (cf. Fischer 2014, p. 118) The same holds
for all separable Hilbert spaces by another theorem (cf. Heinosaari and Ziman 2012,
p. 6). This justifies occasional loose talk of ‘Hilbert space’ in general, rather than of
some particular Hilbert space.

For finite Hilbert spaces, one may hence, in virtue of this isomorphism, bluntly
appeal to the (respective) space C

n of complex column vectors to represent
the elements of the space. Equipped with an inner product, these are Hilbert
spaces. Addition of vectors then means adding up the entries from the same row,
multiplication by a scalar z ∈ C means multiplying all entries by it. A bra is then
obtained by forming the complex conjugated transpose of a ket, i.e.

if |v〉 .=
⎛
⎜⎝
v1

v2
...

⎞
⎟⎠ then 〈v| = (|v〉T )∗ .= (

v∗1 v∗2 . . .
)
,

and the inner product can be computed as

〈v|w〉 .= (
v∗1 v∗2 · · ·

) ·
⎛
⎜⎝
w1

w2
...

⎞
⎟⎠ = v∗1w1 + v∗2w2 + · · ·
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This in fact coincides with matrix multiplication for a (complex) 1 × 3 matrix and
a (complex) 3 × 1 one, where matrix multiplication (denoted here simply by ·)
can informally be summarized by the mantra ‘row times column and then sum
over’. More precisely, take two matrices A,B which can be described as collections
(aij ), (bij ) of entries aij , bij , the first index referring to the row, the second one
to the column. Then the first entry of the first row, m11, of the resulting matrix
(mij ) = M = A · B is the sum a11b11 + a12b21 + a13b31 + . . . and the second
entry of the first row is a21b12 + a22b22 + a23b32 + . . . and so forth. It may worth
familiarizing oneself with these concepts, if not familiar with them yet.

The standard inner product for vectors ψ from L2(Rn) is the integral

〈φ|ψ〉 :=
∫
φ∗(λ)ψ(λ)dnλ. (A.7)

A function spits out values for a continuous infinity of points, so the intuition behind
definition (A.7) is that as the number of arguments to sum up becomes infinite and at
the same time denser and denser, the sum must become an integral, the continuous
generalization of a sum.

λ can again be identified with a real column vector and usually either represents
momenta p or positions in space x. Setting e.g. λ = x and allowing x to be defined
in arbitrary, generalized coordinates qi , we can write more explicitly:

〈φ|ψ〉 =
∫
· · ·

∫
φ∗(q1, · · · , qn)ψ(q1, · · · , qn)dq1 · · · dqn =

∫
φ∗(x)ψ(x)dnx.

(A.8)
Setting n = 3, the qi of which φ and ψ are functions could for instance be
spherical coordinates, r, θ, ϕ, where r is the (variable) radius of some sphere and
ϕ and θ are two angles that locate any point on that sphere. d3x = dq1dq2dqr =
r2 sin(θ) dr dθ dϕ then is the corresponding 3-dimensional volume-element, which
includes the so called functional determinant r2 sin(θ), a ‘scaling factor’ that takes
track of the coordinate change (cf. Kerner and von Wahl 2013, p. 250 ff.). One must
also not confuse dnx with dx which should be read as an infinitesimal line segment
for integrating along some (possibly curved) line.

The product thus defined fulfills all of the requirements (i)-(iii) from defini-
tion A.3. The integral is meant as a definite integral over the set of points over
which the functions are defined. This may be some subset � ⊂ R

n, in which case
the space isL2(�) instead ofL2(Rn). The n comes from the fact that the coordinates
(or momenta) of multiple (N ) systems must be considered all at once in many cases.
λ is thus often replaced by coordinates X = (x1, . . . , xN) of points in an abstract
(3N -dimensional) configuration space, or P = (p1, . . . ,pN) in a corresponding
momentum space (we omit capitalization below). The space H = L2(Rn) with
the norm introduced by this scalar product is a complete and separable Hilbert
space, with a countable, orthonormal basis that can be provided in terms of Hermite
functions (cf. Johnston 2014, for a nice proof).
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A.3 Beyond the Hilbert Space

‘Proper’ Hilbert spaces, however, come with restrictions for application in physics.
There are certain kinds of kets (e.g. |x〉 or |x〉) often used in QM, which are
neither countable nor properly normalizable (‘are of infinite norm’), whence the
convergence criterion cannot even be applied. Further reasons why Hilbert spaces
may not always be the most convenient setting lie in facts about boundedness
and unboundedness of operators (cf. de la Madrid 2005, p. 289, and below). One
hence often appeals to an extension of H, the rigged Hilbert space (e.g. Ballentine
2000, pp. 27–29; de la Madrid 2005). A rigged Hilbert space consist of a triple
(�,H,�×), where it holds that � ⊂ H ⊂ �×. The space � is dense in H, and H
can be considered as the completion of�w.r.t. the norm induced by a scalar product
(e.g. Tarasov 2008, p. 34). � is basically a space of test functions (see below). The
space �× is called the anti-dual of �, and it contains all antilinear functionals over
�, loosely speaking all the kets |v〉 (cf. de la Madrid 2005, pp. 300 ff. and 311).

An extensive discussion of the rigged Hilbert space can be found in Bohm
and Gadella (1969) and de la Madrid (2005) provides a quite accessible and
intuitive introduction. Some subtleties actually arise from the fact that � must
strictly speaking satisfy a (topological) property called nuclearity (cf. Bohm and
Gadella 1969, p. 11), which puts restrictions on the operators one may introduce
(cf. de la Madrid 2005, p. 310 and references therein for details) and hence limits
the generality of the rigged Hilbert space-formalism. For the purposes of this book,
the details again do not matter much, and we will restrict ourselves to introducing a
few basic ideas to convey an understanding of certain formulae.

For any x ∈ R
3, one can then, using kets from a rigged Hilbert space, understand

〈x|ψ〉 as the projection of |ψ〉 onto |x〉, and interpret this as the value of ψ at x:

ψ(x) = 〈x|ψ〉 . (A.9)

But one may equally write 〈p|ψ〉 = ψ̃(p), which strictly speaking defines a
different function ψ̃ . When given as a ket, a function is thus treated as an object
somewhat independent of its domain (positions or momenta), and one also speaks
of ψ(x) and ψ̃(p) as the position- and momentum space representations of |ψ〉
respectively.

It is important not to confuse position vectors x ∈ R
n of which the ψ ∈ H

are functions with the ket-vectors |x〉. The position vectors x correspond to points
a n = 3N -dimensional configuration space for N systems. The kets do not. Every
|x〉 corresponds to a (generalized) basis vector of some rigged Hilbert space, whence
there are uncountably many basis vectors in that space. The three dimensional vector
space R

3 for a single system e.g. only has three basis vectors. It should hence be
clear that these spaces are not identical (nor isomorphic).

The orthonormality-conditions for basis vectors in countable spaces were sum-
marized, in (A.5), by appeal to the Kronecker-δ. For a rigged Hilbert space, this
condition cannot be satisfied as a continuous number of basis vectors is needed.
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Instead, a mathematical device called the Dirac delta distribution δ(x − x′) (short:
Dirac-δ) can be introduced, which leads to a similar condition. The Dirac-δ (inside
an integral Iδ[·] =

∫ b
a
δ(x − x′) · dx) actually constitutes a functional, which (to

recall) means that it maps a whole function to a single number. It is defined by the
following two conditions:

(i) δ(x − x′) = 0 if x �= x′

(ii)
b∫
a

δ(x − x′)dx = 1 for a < x′ < b

Strictly speaking, the expression δ(x − x′) is not even well-defined outside of an
integral; a fact that physicists love to ignore, as shall we in this book. Functionals of
this kind are also called distributions, and they are generally defined by appeal to so
called test functions, i.e. suitably well-behaved functions such as smooth functions
with compact support, where the former means that one can differentiate them
arbitrarily often and will always get back a continuous function (with ‘no jumps
or gaps’), and the latter that they vanish somewhere on their domain (cf. Goldhorn
et al. 2009, p. 350 ff.; Kerner and von Wahl 2013, p. 339 ff.).

One standardly writes Cn(�) to refer to the set of functions which are n-times
differentiable on some domain � with the n-th derivative still continuous, and
Cn0 (�) for the set of functions which also have compact support in �. Note that
n may be∞, and � may be Rk (for some k ∈ N), in which case one would have the
spaceC∞0 (Rk) as a space of test functions on R

k . Another example for test functions

would be a space of C∞-functions that ‘vanish sufficiently fast’, like xke−ax2
on R,

where 0 < a ∈ R (e.g. Tarasov 2008, p. 30 or Tetschl 2000, p. 139, for details).
The Dirac-δ is then defined as the joint limit of particular sequences of functions

parameterized by some σ , e.g. of Gaussian bell-curves 1√
2πσ

e−(x−x′)2/2σ 2
, so that

δ(x − x′) = lim
σ→0

1√
2πσ

e−(x−x′)2/2σ 2
, but where the limit is actually taken within

some integral over a test function f ∈ C∞0 (R) (cf. Kerner and von Wahl 2013, p.
342 ff.). More intuitively, the δ-distribution can be thought of as a highly narrow
and peaked curve which encloses a unit area and is centered around some value
x′. The limit can then be understood as the width approaching zero while the
height increases to infinity, notwithstanding the fact that the area enclosed is still
1. Figure A.3 depicts some functions that converge to δ(x − 0) = δ(x) in the above
sense.

When integrated over some suitable test function f between points a and b,
δ(x − x′) just gives back the value of f at x′ so long as x′ ∈ (a, b):

b∫

a

f (x)δ(x − x′)dx = f (x′) (A.10)

Using the Dirac-δ we can now define the promised sort of ‘orthonormality’ for
basis vectors in spaces of uncountable dimension by
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Fig. A.3 As the solid curves are narrowed down, they approximate a highly peaked and localized
graph that can in turn be viewed as an approximate graph of the δ-distribution

〈
λ
∣∣λ′〉 = 〈

λ1
∣∣λ′1

〉 · . . . · 〈λn
∣∣λ′n

〉 = δn(λ− λ′) :=
:= δ(λ1 − λ′1) · . . . · δ(λn − λ′n), for λ ∈ R

n.
(A.11)

Note that this actually ‘normalizes’ the vectors |x〉 to infinity, as (informally)〈
x
∣∣x′〉 = δ(x−x′) = ∞ for x = x′. The definition, however, provides what is needed

in the given contexts. The Dirac-δ can again be given in arbitrary coordinates, which
may imply the the need to divide it by the respective functional determinant (cf.
Nolting 2013, p. 7).〈

x′
∣∣x〉 = δ3(x′ − x) may, finally, also be thought of as a position space

representation of the ket |x〉. One may hence also think of 〈x|ψ〉 as computing
a scalar product

〈
δ3(x − x′)

∣∣ψ(x′)〉 as defined in (A.8) (e.g. Manoukian 2007, p.
38).

A.4 Rules for Combination

To combine the state vectors of multiple systems or of multiple independent (and
compatible) degrees of freedom of the same system, one appeals to the tensor
or direct product in QM. A little more mathematically, the tensor product is a

multilinear map H1 × H2 × . . . × Hk
⊗−−→ H1 ⊗ H2 ⊗ . . . ⊗ Hk , where the

Hi (i ∈ {1, . . . , k}) may be of different dimensionality, and H1 ⊗H2 ⊗ . . . ⊗Hk
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is called the tensor product space. If all dimensions are finite, i.e. dim(H1) =
n, dim(H2) = m, dim(H3) = � . . . and n,m, �, . . . ∈ N, then the tensor product
space will be of dimension n · m · � · . . . The resulting space will also be an inner
product space (cf. Fischer 2014, p. 353; Heinosaari and Ziman 2012, p. 42 ff.).

When considered on vectors, ‘⊗’ is fully defined by the following properties:

(i) c(|v1〉 ⊗ |w1〉) = c |v1〉 ⊗ |w1〉 = |v1〉 ⊗ c |w1〉,
(ii) (|v1〉 + |v2〉)⊗ |w1〉 = |v1〉 ⊗ |w1〉 + |v2〉 ⊗ |w1〉,

(iii) |v1〉 ⊗ (|w1〉 + |w2〉) = |v1〉 ⊗ |w1〉 + |v1〉 ⊗ |w2〉,
with |v1〉 , |v2〉 ∈ H1, |w1〉 , |w2〉 ∈ H2, c ∈ C, and where H1,H2 may already
be a tensor product spaces. Loosely speaking, ‘⊗’ hence simply defines a non-
commutative product for kets. For vectors |v〉 ⊗ |w〉 from a tensor product space
H1 ⊗H2, we will usually just write |v〉 |w〉 or even |v,w〉. The key feature is that
either vector can be operated on individually by an appropriate operator (see below).

For kets from some H isomorphic to C
n, we can also represent ‘⊗’ by the

Kronecker product between two matrices (e.g. van Loan 2000), which we denote
by the same symbol. For instance, let |v〉 ∈ H .= C

2, |w〉 ∈ H′ .= C
3. Then we can

write

|v〉 |w〉 .=
(
v1

v2

)
⊗

⎛
⎝
w1

w2

w3

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v1w1

v1w2

v1w3

v2w1

v2w2

v2w3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

The inner product of tensored vectors |v1〉⊗ . . .⊗|vn〉 , |w1〉⊗ . . .⊗|wn〉 computes
as

(〈v1|〉 . . .⊗ 〈vn|) |w1〉 ⊗ . . .⊗ |wn〉 = 〈v1|w1〉 · . . . · 〈vn|wn〉

A product between a ket |w〉 and a bra 〈v| (in that order) is sometimes called
an outer or matrix product |w〉〈v|. The result formally corresponds to a linear

map or operator (see below) H |w〉〈v|−−−→ H′
that acts on vector space H, since

(|w〉〈v|) |u〉 = |w〉 〈v|u〉 = |w〉α = α |w〉 gives another vector. A more natural
understanding is that of an element from a tensor product space H′ ⊗ H∗, for
two (possibly identical) spaces H,H′ (cf. Bongaarts 2014, p. 402), whence one
may also write |w〉 ⊗ 〈v|. Using the Kronecker product again, we can give it a
concrete representation in favorable cases. Letting e.g. |v〉 , |w〉 ∈ C

3 (or rather:
spaces isomorphic to it), we have

|w〉〈v| = |w〉 ⊗ 〈v|〉
⎛
⎝
w1

w2

w3

⎞
⎠⊗ (

v∗1 v∗2 v∗3
) =

⎛
⎝
w1v

∗
1 w1v

∗
2 w1v

∗
3

w2v
∗
1 w2v

∗
2 w2v

∗
3

w3v
∗
1 w3v

∗
2 w3v

∗
3

⎞
⎠ ,
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which this time also coincides with a matrix multiplication for a 3 × 1 and a 1 × 3
matrix.

Finally, we introduce the (direct) sum of two (or more) vector spaces. Let
{
hj

}
j∈I

be a family of subspaces of some H, i.e.nonempty sets of elements from H which
satisfy the requirements of definition A.2 and are closed under the vector space
addition and scalar multiplication. Then h1 + h2 + . . . + hN is the set of vectors{
H 2 |v〉 =∑

j αj |wj 〉
∣∣ ∀j∃1≤k≤N : |wj 〉 ∈ hk, αj ∈ C

}
. In case all the hk

have only the null vector 0H in common, the sum is called direct and one writes
h1 ⊕ h2 ⊕ . . .⊕ hN .

A.5 Linear Operators

Linear operators constitute the second key ingredient to QM, next to abstract vector

spaces. A linear operator Ô on H is a linear map H ⊇ dom(Ô)
Ô−−→ H′. The set

dom(Ô) which the operator maps to H′ is called its domain, the set of its values
in H′ is called its range ran(Ô) ⊆ H′, just as with functions (e.g. Goldhorn et al.
2009, p. 225; Kerner and von Wahl 2013, p. 473). H and H′ need not coincide, but
for many operators of interest they do. Less formally one may think of operators
as devices for transforming vectors, i.e.: Ô |v〉 = ∣∣v′〉. One may also sometimes

encounter the notation Ô |v〉 = |Ôv〉 = ∣∣v′〉.
To give a concrete example for some general operator on a space of functions,

consider that differentiating a function with respect to one of its variables, such as in
∂ψ(x,t)
∂t

or ∂ψ(x,t)
∂x

, may also be understood in terms of a differential operator, ∂
∂t

or
∂
∂x

, acting on ψ . To recall, differentiation of a function f (x1, . . . , xj , . . . xn) w.r.t.
one of its arguments xj means taking the limit

lim
ε→0

f (x1, . . . , xj + ε, . . . xn)− f (x1, . . . , xj , . . . xn)

ε

(
=:∂f (x1, . . . , xj , . . . xn)

∂xj

)
.

(A.12)
This corresponds to looking at how f changes over tiny length scales ε in the
direction of xj . But differentiation can equally be understood as a map ∂

∂x
: f �→

f ′ = ∂f
∂x

, whence ∂
∂x

‘has a life of its own’ as the partial differentiation operator
w.r.t. x.

In finite spaces, linear operators can often times be expressed by matrices,
whence we may write3

3In mathematics texts (e.g. Fischer 2014, p. 139) a reference to the particular bases B′,B w.r.t.
which the operator has the given matrix form is sometimes included, which bases could be the
same or could equally be bases of different spaces. For simplicity, we will make no such reference
in this book.
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Ô
.=
⎛
⎜⎝
O11 · · · O1m
...

. . .
...

On1 · · · Onm

⎞
⎟⎠

Operators may equally be combined by a tensor product to simultaneously
operate on all the vectors from a tensor product space. This should be understood in
the sense that

Â⊗ B̂ |v〉 ⊗ |w〉 = Â |v〉 ⊗ B̂ |w〉 = (Â |v〉)(B̂ |w〉) = |Âv〉 |B̂w〉 , (A.13)

using the simplification |φ〉 ⊗ |ψ〉 = |φ〉 |ψ〉. For two operators Â and B̂ with
matrix representations A and B on some finite space(es), one can again appeal to
the Kronecker product and compute

Â⊗ B̂
.=
⎛
⎜⎝
a11 · · · a1n
...
. . .

...

am1 · · · amn

⎞
⎟⎠⊗

⎛
⎜⎝
b11 · · · b1�
...
. . .

...

bk1 · · · bk�

⎞
⎟⎠ =

⎛
⎜⎝
a11B · · · a1nB
...

. . .
...

am1B · · · amnB

⎞
⎟⎠ (A.14)

where B in the last part denotes the whole second matrix. More concretely, take

(
a b

c d

)
⊗

(
e f g

h i j

)
=

⎛
⎜⎜⎝

ae af ag be bf bg

ah ai aj bh bi bj

ce cf cg de df dg

ch ci cj dh di dj

⎞
⎟⎟⎠ ,

with the horizontal and vertical lines merely visual aides.
The simplest operator one can think of (which incidentally turns out to be quite

important) is the identity or unit operator, 1, that maps any given vector onto itself,
1 |v〉 = |v〉. In fact, there is not one unique unit operator but rather one for each
space, so it would be more precise to write 1H for a given H, or 1n for the unit
matrix on some C

n. But we will omit the index (again, for notational simplicity)
and take it as understood from context on which space a given 1 operates.

1 can be expanded in some space H in terms of the basis vectors of H, e.g. for
H .= C

2 with basis vectors

|0〉 .=
(

1
0

)
and |1〉 .=

(
0
1

)
,

we obtain the matrix representation

1 =
2∑

j=1

|j 〉〈j | = |1〉〈1| + |2〉〈2| .=
(

1 0
0 0

)
+

(
0 0
0 1

)
=

(
1 0
0 1

)
.
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It can easily be verified that multiplying this matrix to some vector |v〉 .=
(
α

β

)
from

the left just gives back the original vector. The abstract formula 1 = ∑
j |j 〉〈j | is

generally valid for finite and separable spaces and is usually called a resolution of
the identity. This can be seen as

1 |ψ〉 =
∑
j

|j 〉〈j | |ψ〉 =
∑
j

〈j |ψ〉 |j 〉 =
∑
j

αj |j 〉 , (A.15)

which is just the expansion of |ψ〉 in the basis { |j 〉}j∈I with expansion coefficients
αj = 〈j |ψ〉.

Having familiarized ourselves with vector spaces of non-denumerable dimen-
sion, we can also generalize the resolution of 1 to

1 =
∫

Rn

|λ〉〈λ| dnλ , λ ∈ R
n. (A.16)

This allows for the following generalization of formula (A.15):

1 |ψ〉 =
∫

Rn

|λ〉〈λ| |ψ〉 dnλ =
∫

Rn

〈λ|λ〉 |ψ〉 |λ〉 dnλ =
∫

Rn

ψ(λ) |λ〉 dnλ , (A.17)

where ψ(λ) dnλ appears as a generalization of the expansion coefficient αj .
As already noted, objects like |0〉〈0| and |1〉〈1| are themselves operators, which,

when applied to a vector, only leave behind the component of the vector it has in
common with |0〉 or |1〉 respectively: |0〉〈0| |ψ〉 = 〈0|ψ〉 |0〉. Thus operators of
this form are called projection operators or projectors, as they basically ‘project’
a vector |ψ〉 onto another vector |φ〉 = 〈0|ψ〉 |0〉 ∝ |0〉, parallel to the one that
defines the projector (think back to our arrow-illustration with shadows and light
shining from above; cf. Fig. A.2). Another common notation to denote projectors is
P̂0 = |0〉〈0| , P̂1 = |1〉〈1|, or more generally P̂v = |v〉〈v|.

As indicated above, the relevant operators in QM satisfy a linearity condition,
which (as in the case of inner products or functionals) means that

Ô(α |v〉 + β |w〉) = αÔ |v〉 + βÔ |w〉 (α, β ∈ C). (A.18)

Of particular importance are so called Hermitian and self-adjoint operators. To
understand these, first note that applying an operator Ô to a basis vector |j 〉 ∈
dom(Ô), and taking the inner product 〈i|Ô|j 〉 with another basis vector |i〉 ∈
dom(Ô) yields a number called the i-j -th matrix element

〈i|Ô|j 〉 = Oij , (A.19)
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which can be construed to define an actual entry in a matrix representation O =
(Oij ) of Ô in the basis B = { |j〉}j∈I , whenever this representation exists. For
spaces with a continuum of basis vectors, the notation

〈
λ
∣∣Ô∣∣λ′〉 = O(λ,λ′) (A.20)

is quite common.
An operator Ô is now called Hermitian if for any two vectors |i〉 , |j 〉 ∈ dom(Ô),

it holds that

〈i|Ô|j 〉 = 〈j |Ô|i〉∗ ⇔ Oij = O∗j i . (A.21)

Thus we equally call a matrix O Hermitian in case it holds that

O = (OT )∗, (A.22)

where OT is the transpose of matrix O, computed by exchanging element Oij with
Oji , i.e., ‘flipping of entries over the main (left-to-right) diagonal’. The complex
conjugation ∗ then applies to the entries Oji of OT . Thus, for instance,

O =
(

3 5− 2i
5+ 2i 7

)

is a Hermitian matrix, since transposing it and then complex conjugating the entries
just gives back the very same matrix.

An important feature meets the eye here: the diagonal elements of this matrix
must all be real, since the act of transposing the matrix leaves them in place and
complex conjugation would then otherwise yield a different matrix. A unit matrix
1, e.g., is trivially Hermitian.

A self-adjoint operator is an operator which is equal to its adjoint Ô†, where the
adjoint Ô† of an operator Ô on H is formally defined by the property

〈
v

∣∣∣Ôw
〉
=

〈
Ô†v

∣∣∣w
〉
, (A.23)

for |v〉 , |w〉 ∈ H. A widespread convention thus lets Ô† always operate on bras
from the dual space H∗, i.e.

if Ô |v〉 = ∣∣v′〉 then 〈v| Ô† = 〈
v′
∣∣ .

This is kind of an ad hoc move, but captures the essence of a bunch of theorems.
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If Ô is self adjoint, i.e. Ô = Ô†, we have

〈v|Ô|w〉 = 〈v|Ô†|w〉 =
〈
Ô†v

∣∣∣w
〉

skew symmetry=
〈
w

∣∣∣Ô†v
〉∗

= 〈w|Ô†|v〉∗ = 〈w|Ô|v〉∗ ,

so that every self-adjoint operator is Hermitian. A self-adjoint operator, in other
words, is a Hermitian operator that satisfies the additional requirement that the
domains of Ô and Ô† coincide.

The operators that represent observables in QM are self-adjoint. That this holds
for the position operator(s) x̂j , the momentum operator(s) −ih̄ ∂

∂xj
, or the free

Hamiltonian − h̄2

2m� is not so trivial but provable.4 This only holds on ‘natural’
subspaces of H however; for a space of square integrable functions, the domain of
−ih̄ ∂

∂xj
, say, is the subset of such functions, f , whose derivative exists and where

−ih̄ ∂
∂xj
f is also square integrable (e.g. de la Madrid 2005, p. 296).

A self-adjoint operator Ô can be associated with a set E(Ô) of vectors called
its eigenvectors. These satisfy the requirement that when Ô acts on them, they are
simply multiplied by a (complex) number, i.e.:

Ô |oi〉 = oi |oi〉 , oi ∈ C, ∀ |oi〉 ∈ E(Ô). (A.24)

The number oi is then called the eigenvalue of Ô on |oi〉, or equally, the eigenvalue
of |oi〉 for Ô.

Denote the set of eigenvalues of an operator by σe(Ô) := {λ ∈ C
∣∣ ∃ |v〉 :

Ô |v〉 = λ |v〉}. This set may be a subset of what is called the operator’s spectrum
σ(Ô) ⊇ σe(Ô). To define the spectrum, note that since Ô |v〉 = λ |v〉 ⇔ Ô |v〉 =
λ1 |v〉 ⇔ (Ô − λ1) |v〉 = 0 for some non-trivial |v〉 ∈ E(Ô), we must assume that
(Ô − λ1) now maps vectors onto 0. But this means that it cannot have an inverse5

(Ô − λ1)−1 (where generally Â−1 is defined by Â−1Â = 1) since there is a whole
set of vectors mapped to the same value, 0, not just the null vector 0H. So σ(Ô) is
defined by the condition that λ ∈ σ(Ô) iff (Ô−λ1)−1 does not exist (cf. Heinosaari
and Ziman 2012, p. 16). σe(Ô) may also be called the eigenvalue spectrum of Ô.

Moreover, the discrete spectrum of some operator Ô is defined as the set
σd(Ô) =

{
oj

}
j∈J ⊆ σe(Ô) of it’s eigenvalues oj for which there is a finite number

of eigenvectors to each oj ∈ σd(Ô) and where it holds that for any oj ∈ σd(Ô) there
is a ‘neighborhood’ Uε(oj ) =

{
λ ∈ C

∣∣ |oj − λ| ≤ ε
}

for some ε ∈ R,6 such that

Uε(oj )∩ (σ (Ô) \
{
oj

}
) = ∅; in words: the eigenvalues from the discrete spectrum

4E.g. Gustafson and Sigal (2011, p. 309) for a proof that −ih̄ ∂
∂xj

is self-adjoint.
5More precisely: no bounded (see below) inverse (cf. Gustafson and Sigal 2011, p. 47).
6|c| = √c∗c here is the ‘modulus’ on complex numbers c ∈ C.
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‘lie isolated’ in σ(Ô). The remainder σ(Ô) \ σd(Ô) of an operator’s spectrum is
called its continuous spectrum, and an operator may have a purely discrete spectrum,
no discrete spectrum, or a mixed spectrum where both conditions apply to parts of
the spectrum (cf. Gustafson and Sigal 2011, pp. 317–318; de la Madrid 2005, pp.
291–294). In the latter two cases, the operator’s eigenvectors will obviously form a
non-denumerable set.

The eigenvalues of self-adjoint operators are of special interest in QM, and we
note the following important theorem (e.g. Ballentine 2000, p. 16).

Theorem The eigenvalues of a Hermitian operator Ô are all real.

Proof Let Ô |v〉 = c |v〉. Then taking the inner product with the same vector
yields 〈v|Ô |v〉 = 〈v|c |v〉 ⇔ 〈v|Ô |v〉 = c〈v|v〉. Complex conjugating both
sides gives 〈v|Ô|v〉∗ = c∗〈v|v〉. By presupposition, Ô is Hermitian, so that
〈v|Ô|v〉∗ = 〈v|Ô|v〉, whence we obtain 〈v|Ô |v〉 = c∗〈v|v〉. By subtracting this
from 〈v|Ô |v〉 = c〈v|v〉, we get 0 = (c − c∗)〈v|v〉 ⇔ c = c∗ which follows from
positive semi-definiteness. 45

The theorem of course implies that the same holds for self-adjoint operators.
This is a crucial property for the interpretation of self-adjoint operators as physically
measurable magnitudes or observables and their eigenvalues as measurable values
of these observables.

We have not assumed here that there always exists a unique eigenvector for every
eigenvalue of an operator, and in fact, this is not so. If there are |v〉 , |w〉 with |v〉 �=
|w〉 for which there is an Ô such that Ô |v〉 = α |v〉 , Ô |w〉 = α |w〉, then σ(Ô) is
called degenerate.

For many purposes it is useful to consider only bounded operators. An operator
T̂ on H is called bounded if there is a t ≥ 0 such that ‖T̂ ψ‖ ≤ t‖ψ‖,∀ |ψ〉 ∈ H.

The expression sup
ψ∈H

‖T̂ ψ‖
‖ψ‖ then defines a norm for such operators (cf. Heinosaari

and Ziman 2012, pp. 11–12). The bounded operators B(H) define a special kind
of algebra (discussed below) which makes them particularly interesting. However,
many important operators such as the position or the momentum operator are in fact
unbounded, if no restrictions are imposed on their domains (cf. de la Madrid 2005,
p. 292 ff.).

Call an operator Ô diagonal if ∀i, j : Oij = cij δij . Then the following theorem
holds (cf. Shankar 1994, p. 36 ff.; Tarasov 2008, p. 26):

Theorem To every bounded self adjoint operator Ô on a separable Hilbert space
H, there exists a basis B, consisting of orthonormal eigenvectors of Ô, and Ô is
diagonal in this basis, with the diagonal elements its eigenvalues.

For unbounded operators the following more general theorem holds in a rigged
Hilbert space (e.g. Tarasov 2008, p. 38):

Theorem A self-adjoint operator on a rigged Hilbert space has a complete set of
generalized eigenvectors corresponding to real eigenvalues.
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A complete set here means a family {|j 〉}j∈I such that the condition 〈w|j 〉 =
0,∀j ∈ I , with |w〉 in the rigged Hilbert space as well, implies that |w〉 is the
null vector of that space. Generalized eigenvectors of some operator Ô are strictly
speaking anti-linear functionals ξ ∈ �× such that for φ ∈ � it holds that ξ [Ôφ] =
oξ [φ]. Since these are anti-linear functionals, one can treat them directly as kets and
write Ô |ξ 〉 = o |ξ 〉, or even |o〉 instead of |ξ〉 to indicate the eigenvalue for Ô (cf.
Tarasov 2008, p. 39). We will call the set E(Ô) of (generalized) eigenvectors of an
operator Ô its eigenbasis.

Since the mathematical steps for calculating an eigenvector |o〉 of operator Ô
for some eigenvalue o never directly pick out a unique vector even in the non-
degenerate case, but instead sets {λ |o〉 |λ ∈ C}, i.e. |o〉 up to a complex scaling
λ, each eigenvector spans a one dimensional subspace of H, also called a ray.
Multiple eigenvectors |v〉 , |w〉with the same eigenvalue in σ(Ô) that do not satisfy
|w〉 = λ |v〉 (λ ∈ C) can be said to span a degenerate subspace of H.

Notably, one can generally build new operators out of products (successive
application) and/or linear combinations of other operators. A special kind of such a
‘built’ operator is the commutator [Â, B̂] of two operators Â and B̂, defined by

[Â, B̂] = ÂB̂ − B̂Â. (A.25)

In case [Â, B̂] |ψ〉 = 0 |ψ〉 for any given |ψ〉 ∈ H, we say that Â and B̂ commute.
This allows to state the following theorem (e.g. Ballentine 2000, p. 24):

Theorem If Â and B̂ are commuting self-adjoint operators, each of which pos-
sesses a complete set of eigenvectors, then there exists a complete set of vectors
which are eigenvectors of both Â and B̂.

For bounded operators with discrete spectra, this is unproblematic. More gener-
ally one can show that for a subclass of so called essentially self adjoint operators
(i.e., Hermitian ones with a unique self adjoint extension), a joint eigenbasis in the
generalized sense exists if they commute (cf. Bohm and Gadella 1969, p. 31 for
further reference).

Expressions like Â1 . . . Ânψ for any number n of operators are interpreted as the
successive application of the Âi to ψ , starting with the innermost operator Ân and
then going from right to left. This means, in other words, that for any i, Âi is applied
to the result of applying the Âi+1 . . . Ân to ψ . A notation such as Â1(Â2(Â3(ψ)))

also makes this order more vivid, and it is reflected also in the rules of matrix
multiplication for operators on finite spaces.

Furthermore define, depending on the dimension of the space, the trace of an
operator Tr(Ô) as the sum or definite integral over the relevant domain � of its
diagonal elements, i.e.

Tr(Ô) =
∑
i

〈i|Ô|i〉 or Tr(Ô) =
∫
�

〈λ|Ô|λ〉 dλ . (A.26)
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Clearly the trace is not well-defined for all operators since it may be infinite when
the space has an infinite number of basis vectors. Operators Ô for which the
expression (Ô†Ô)1/2 has a finite trace are called trace class. These are linear as well
(cf. Heinosaari and Ziman 2012, p. 32). The relevant example for this book are the
so called density operators, ρ̂ (cf. Heinosaari and Ziman 2012, p. 50), encountered
from Chap. 2 on.

Another important class of linear operators besides self-adjoint and trace class
ones are unitary operators, defined by the property that

Û Û† = Û†Û = 1. (A.27)

A particular example is the time evolution operator Û (t1, t0), which takes some
initial vector |v(t0)〉 as an input and gives back its value at some later time t1:

Û (t1, t0) |v(t0)〉 = |v(t1)〉 . (A.28)

It thus mathematically describes the time evolution of a system’s quantum state.
Here, again, we note an important theorem (e.g. Shankar 1994, p. 28).

Theorem Unitary operators preserve the inner product between the vectors they
act on.

Proof Let Û |v〉 = ∣∣v′〉 and Û |w〉 = ∣∣w′〉. Then 〈w′|v′〉 = 〈w|Û†Û |v〉 =
〈w|1 |v〉 = 〈w|v〉. 45

A.6 Probability and Measures

The interpretation of the word ‘probability’ is a complicated endeavor (cf. the
first philosophical interlude in the text), but mathematically there is much less
of a problem. Probability in the purely mathematical sense is usually introduced
axiomatically as a function (or rather: map) p on a space of events, modeled by a
collection A of sets called an algebra or field of sets (e.g. Heinosaari and Ziman
2012, p. 109; Williamson 2010, p. 11).

Definition A.4 (Algebra of sets) A collection A of subsets of a nonempty set �
(A ⊆ P(�)) such that

(i) ∅ ∈ A,
(ii) � ∈ A,

(iii) A is closed under finite unions,
(iv) A is closed under complements.

is called an algebra of sets.

We here use the qualifier ‘of sets’ to distinguish this notion of an algebra from
the one introduced below (*-algebras etc.). The elements ω of � may be considered
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as the outcomes of some experiment or more general observation, whence � is
sometimes called an outcome or sample space (e.g. Williamson 2010, p. 11). The
sets containing the ω ∈ � are then understood as the events of their occurrence,
whence A is also called an event space (cf. ibid.). (iii) and (iv) together imply that,
by de Morgan, A is also closed under finite intersections. (i) is also actually implied
by (ii) and (iv).

Philosophers may, in fact, be more inclined to think of probability as attaching
to sentences α, β of some language L. So long as logically equivalent sentences
of L are attributed identical probabilities, one can indeed straightforwardly define
everything equivalently by appeal to L’s sentences. The events in A will then be
interpreted as the propositions expressed by those sentences (e.g. Huber 2009, p. 3;
Williamson 2010, p. 27). Using sentences rather than sets, a conjunction α ∧ β will
replace the intersection A ∩ B of the respective propositions from A, a disjunction
α ∨ β the union A ∪ B, and a negation ¬α the complement Ac = � \ A (cf. also
Schurz 2015, p. 9).

A probability function p on A is now required to satisfy the following (Kol-
mogorov) axioms (e.g. Roussas 2007, pp. 33–34):

(i) p(A) ≥ 0, ∀A ∈ A,
(ii) p(�) = 1,

(iii) p(
⋃N
j=1 Aj) =

∑N
j=1 p(Aj ), ∀Aj ∈ A, in case Aj ∩ Ak = ∅ for j �= k, and

where N ∈ N.

Note that (iii) implies that p(∅) = 0, since for any A ∈ A, A ∪ ∅ = A, so that
p(A) = p(A ∪ ∅), and since A ∩ ∅ = ∅, p(A) = p(A ∪ ∅) = p(A) + p(∅) by
(iii) (cf. also Roussas 2007, p. 36). ∅ is sometimes also referred to as the impossible
event, � as the certain event (cf. Roussas 2007, p. 7). They correspond to falsum ⊥
and tautology 6 respectively; Aj ∩Ak = ∅ then e.g. means that αj ∧αk ↔⊥ (‘↔’
denoting logical equivalence).

Additionally, a conditional probability function for an event A, given that B is
the case, is defined (or equally introduced axiomatically) as

p(A|B) = p(A ∩ B)
p(B)

. (A.29)

In this book, we will write A,B for the joint occurrence of the events A and B,
which set-theoretically corresponds to their intersection A ∩ B.

For applications in mathematical probability theory, the function p is typically
generalized to a measure μ. This requires the extension of the concept of an algebra
of sets to that of a σ -algebra:

Definition A.5 (σ -algebra) An algebra of sets � defined over a nonempty set �
which is also closed under countable unions is called a σ -algebra.

In case� = R, one can make use of the so called Borel Algebra B(R), which can
be defined as the smallest σ -algebra containing all open sets on R (cf. Heinosaari
and Ziman 2012, p. 115), or more intuitively as the σ -algebra generated by all
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intervals (open, closed, half open) on R (cf. Roussas 2014, p. 3). With the aid of
a σ -algebra, we can now say precisely what a measure is (cf. Tetschl 2000, p. 210).

Definition A.6 (Measure) A map μ : � −→ [0,∞] on a σ -algebra � is called a
measure, in case

(i) μ(∅) = 0,

(ii) μ(
⋃∞
j=1 Aj) =

∞∑
j=1

μ(Aj ), ifAj ∩Ak = ∅,∀j �= k (countable or σ -additivity)

(�,�) may be called a measurable space, (�,�,μ) a measure space (cf.
Roussas 2014, p. 19).

We initially hinted at the importance of the Lebesgue measure λ for the functions
in spaces L2(Rn). λ can be said to measure the ‘volume’ of n-dimensional
‘rectangles’, i.e. intervals I ⊂ R

n of the form I = [a1, b1]× . . .×[an, bn]where the
intervals [ai, bi] could also be half open to the left or open. The Lebesgue measure
then takes I and gives back the volume, i.e. the product of all the lengths in each of
the n dimensions: λ(I) = (b1− a1) · . . . · (bn− an). Sets which are contained in any
union of such rectangles with an arbitrarily small sum of measures are said to be of
zero measure (w.r.t. λ). This goes, for instance, for singletons {p} of points p ∈ R

n,
or countable unions thereof (cf. Kerner and von Wahl 2013, p. 275 ff.).
λ then also allows to define the Lebesgue integral which makes a larger range of

functions integrable, e.g. functions which are only defined on the rational numbers
Q. In this book, the (cumbersome) details will not matter, so we refer to the literature
for further reference (e.g. Capinski and Kopp 2004, p. 20 ff.).

Due to the probabilistic nature of QM, we are, however, interested in the notion of
a probability measure (cf. Roussas 2014, p. 19), as a generalization of the probability
function p.

Definition A.7 (Probability measure) A map μ : � −→ [0, 1] on a σ -algebra �
over non-empty set � is called a probability measure, in case

(i) μ(A) ≥ 0, ∀A ∈ �,
(ii) μ(�) = 1,

(iii) μ is σ -additive.

(�,�,μ) and (�,A, p), with p finitely additive and A only closed under finite
unions, may then be called probability spaces; (�,A, p) may be called a finite one.

The requirement of countable or σ -additivity cannot be endorsed in all interpre-
tations of probability without problem though, so it should be treated with caution.
The reason is that, if μ is construed as describing the limit of the relative frequency
of some sequence of events, and if each of a countable set of mutually exclusive and
exhaustive events Ej in fact occurs only finitely often, then each μ(Ej ) will be 0,
but μ(E1 ∪ E2 ∪ . . .) must still be 1, since by presupposition one of the events is
bound to happen. Similar concerns can be raised from the point of view of epistemic
interpretations of probability (cf. Howson and Urbach 2006, pp. 27–28).

In mathematical probability theory, the notion of a random variable also plays
quite an important role. It has a somewhat specific meaning therein, however, which
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is softened in the text (chapter 2). The specific meaning is that of a map X : � −→
R where the inverse image X−1([a,∞)) = {ω ∈ �|X(ω) ≥ a} is an element of
some σ -algebra � or algebra A over � respectively (cf. Capinski and Kopp 2004,
p. 66). The pair (R,B(R)) will then define a measurable space for the (real) values
of the random variable. In this sense, a random variable may be construed as a
means of assigning numbers to the outcomes of some experiment or observation. If
the variable maps to R

n instead and one has the measurable space (Rn,Bn(R)), one
may also talk of a random vector X (e.g. Roussas 2014, p. 8).

If we have some probability space (�,�, P ) and a random variableX defined on
�, then the map PX : B(R) −→ [0, 1], where for B ∈ B(R) it holds that PX(B) =
P(X−1(B)), defines the probability distribution of X (cf. Roussas 2014, p. 66).
(R,B(R), PX) will constitute a probability space, and PX measures the probability
that X(ω) ∈ B, i.e. measures how probable it is that the value of X falls in some
Borel set B (some union or join of intervals from R).

With PX one can now define the expectation value of random variable X or a
measurable, real valued function g thereof by

〈
X
〉
P
:=

∫
�

X dP (A.30)

〈
g(X)

〉
P
:=

∫
�

g(X) dP =
∫
R

g(x) dPX , (A.31)

where it is a theorem that the last equality holds (cf. Roussas 2014, pp. 59 and 66).
The case g(x) = x provides the corresponding expression for (A.30). For a random
vector X one may replace R by R

n and PX by PX.
With these definitions, one can also state the following theorem (cf. Roussas

2014, p. 129):

Theorem Let μ, ν be σ -finite measures on (�,�) and μ � ν, and let X be a
random variable for which the integral

∫
�
X dμ exists. Then

∫
A

X dμ =
∫
A

X
dμ

dν
dν ,∀A ∈ �.

The derivative here is the so called Radon-Nikodym derivative (cf. Capinski and
Kopp 2004, p. 194; Roussas 2014, p. 129). A measure μ is called σ -finite in case
μ(�) = ∞ but there is a partition

{
Aj

}
j∈J⊆N of �, such that μ(Aj ) < ∞,∀j ∈

J (cf. Roussas 2014, p. 19). A measure ν is said, moreover, to dominate another
measure μ, and one writes μ � ν, if it holds that ν(A) = 0 implies μ(A) = 0 for
any set A in the σ -Algebra over which both μ and ν are defined (cf. Roussas 2014,
p. 122).

The interesting part of this theorem is that it allows the often encountered use of
probability density functions or probability densities. If one evaluates 〈g(X)〉P on
some set A which is the inverse image X−1(B) for some B ∈ B(R) one can now
write
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∫
A

g(X) dP =
∫
B

g(x) dPX =
∫
B

g(x)�(x) dλ (A.32)

in case PX � λ, and where �(x) := dPX
dλ (x) is the probability density function (cf.

Roussas 2014, p. 130). λ is usually the Lebesgue measure, and in practice one can
often even write �(x) dx instead.

Note that so long as � exists, PX((−∞, x]) = ∫ x
−∞ �(x′) dx′. FX(x) =

PX((−∞, x]) is also sometimes called the cumulative distribution or distribution

function ofX, and �(x) can then be understood more directly as
dFX(x)

dx (cf. Capinski
and Kopp 2004, pp. 109–110; Roussas 2014, pp. 66 and 129). In physics contexts,
moreover, it is often simply assumed that a probability density exists and some such
density is simply defined according to given needs. This approach is rather ‘bottom
up’.

To reconnect these concepts to QM, we turn to positive operator valued measures
(POVMs). First note that a Hermitian operator Ô on H is called positive in case
〈v|Ô|v〉 ≥ 0,∀ |v〉 ∈ H. Then the relation Q̂ ≤ P̂ on linear operators can be
understood in the sense that P̂ − Q̂ is a positive operator (cf. Heinosaari and Ziman
2012, pp. 18). With this, one can define the set of operators Ê such that O ≤ Ê ≤ 1
(with O a zero operator that gives zero when applied to any arbitrary vector in H)
and call it the set of effects E(H) on a given H (cf. Heinosaari and Ziman 2012, p.
70).7

A POVM is then defined as follows.

Definition A.8 (POVM) A map Ê : � −→ E(H) for a measurable space (�,�)
is called a positive operator valued measure (POVM), in case

(i) Ê(∅) = O,
(ii) Ê(�) = 1

(iii) Ê(
⋃∞
j=1 Aj) =

∞∑
j=1

Ê(Aj ), if Aj ∩ Ak = ∅,∀j �= k

The convergence in the third condition is meant ‘weakly’, i.e. lim
n→∞

∣∣∣ 〈φ|T̂ |ψ〉−
〈φ|T̂n|ψ〉

∣∣∣ = 0 for T̂ = Ê(
⋃∞
j=1 Aj) and T̂n =

n∑
j=1

Ê(Aj ) (cf. Heinosaari

and Ziman 2012, pp. 35 and 109). Details concerning the use and construction of
POVMs can be found in, e.g., Busch et al. (1995, p. 25 ff.), Nielsen and Chuang
(2010, p. 90 ff.), or Peres (2002, p. 282 ff.), and some details are also given in
Chap. 4.

7In fact, the set of effects is defined over the set of bounded self-adjoint operators (cf. Heinosaari
and Ziman 2012, p. 70). This is, however, implicit in the requirement that O ≤ Ê ≤ 1,∀Ê ∈ E(H),
as σ(Ê) ⊆ [0, 1].
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The simplest case of a POVM is a family of projectors {|j 〉〈j |}j∈I . These also
allow for the so-called spectral decomposition of a self-adjoint operator, which is
ensured by the following theorem (cf. Tarasov 2008, p. 198).

Theorem (Spectral Theorem) For each self-adjoint linear operator Â on a

separable Hilbert space H, there exists a resolution of the identity
{
Êλ|λ ∈ R

}

such that Â can be presented by the Êλ via

〈v|Â|w〉 =
∞∫

−∞
λ 〈v|dÊλ|w〉 , for |w〉 ∈ dom(Â).

|v〉 ∈ H belongs to dom(Â) iff

‖Âv‖ =
∞∫

−∞
λ2 〈v|dÊλ|v〉 <∞.

That the Êλ resolve the identity means that
∫∞
−∞ dÊλ = 1, and from the theorem

it becomes apparent that we can use expressions of the form dÊλ = |λ〉〈λ| dλ.

For λ = x, say, we would then have 〈ψ |x̂|ψ〉 =
∞∫
−∞

x 〈ψ |x〉 〈x|ψ〉 dx =
∞∫
−∞

xψ∗(x)ψ(x) dx =
∞∫
−∞

x|ψ(x)|2 dx, which is the expectation value for position

w.r.t. ψ , as |ψ(x)|2 defines a probability density.
A self-adjoint operator Â with a discrete spectrum can be expanded as a sum (or

series)

Â =
∑
i

ai P̂ai , (A.33)

with ai the eigenvalues of Â and P̂ai = |ai〉〈ai |. This follows from the spectral
theorem if the measure is chosen to be of the form dÊλ =∑

i δ(λ − ai)P̂ai dλ (cf.
Tarasov 2008, p. 199). Examples of spectral decompositions are found in the text.
Using the spectral decomposition, one can also write a function f of operator Â as

f (Â) =
∑
j

f (aj )P̂aj , (A.34)

which proves extremely useful on occasion.
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A.7 Abstract Algebras

Especially in the context of quantum field theory, notions from the abstract
mathematical theory of algebras become important. An algebra in the present sense,
however, is not the same as an algebra of sets as defined above. Here we mean by an
algebra something that can be informally characterized as “a collection of elements
along with a way of taking their products and linear combinations.” (Ruetsche 2011,
p. 73)

More precisely, an algebra A over a field F can be defined as follows.

Definition A.9 (Algebra) A set A of mathematical objects will be called an
algebra over the field F if there are two operations +, · defined over A such that

(i) + is associative, commutative and has a null element (A + 0 = 0 + A =
A,∀A ∈ A),

(ii) · is associative and distributive w.r.t. addition (A · (B + C) = A · B + B ·
C, (A+ B) · C = A · C + B · C,∀A,B,C ∈ A),

(iii) A is closed w.r.t. +, ·.
Associativity and commutativity are exactly defined as in the definition of a field,

and we here equally use A to refer to the set with the operations defined on it. In
the multiplication, we will generally omit the · (i.e. A · B = AB). If A also has a
multiplicative identity or unit element I , s.t. IA = AI = A, then it is called unital.

Moreover, for the QM context, there are special classes of algebras that are of
interest. For the following, we only concern ourselves with the case F = C, since
this is the case of interest in QM.8

Definition A.10 (*-algebra) An algebra A is called a *-algebra if it is closed under
an involution ∗ : A→ A which satisfies for all A,B ∈ A, c ∈ C that

(i) (A∗)∗ = A, (A+ B)∗ = A∗ + B∗
(ii) (cA)∗ = c∗A∗,

(iii) (AB)∗ = B∗A∗,

where c∗ means the complex conjugate for c ∈ C .

There are two interesting subclasses of *-algebras, namely:

Definition A.11 (C∗-algebra) A *-algebra A is called a C∗-algebra if it is com-
plete w.r.t. a norm ‖ · ‖ that satisfies

(i) ‖A∗A‖ = ‖A‖2,
(ii) ‖αA‖ = |α|‖A‖(α ∈ C),

(iii) ‖A+ B‖ ≤ ‖A‖ + ‖B‖,
(iv) ‖AB‖ ≤ ‖A‖‖B‖,∀A,B ∈ A,

8The subsequent definitions are gathered from Ruetsche (cf. 2011, p. 75 ff.) and Haag (1996,
p. 112–118).
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and where only the null element 0 has zero norm.

The most important example of a C∗-algebra are the B(H) on a Hilbert space
H. The involution * is then the adjoint operation †. The second interesting case is a
special case of a C∗-algebra, the von Neumann algebra (cf. Ruetsche 2011, pp. 78
and 86–87).

Definition A.12 (von Neumann-algebra) A von Neumann algebra M is the
closure of a C∗-algebra of bounded operators B(H) on some Hilbert space H w.r.t.
the strong and weak operator topologies, i.e. the union of B(H) with the set of
operators Â such that | 〈ψ |(Ân − Â)|φ〉 | → 0 as n → ∞,∀ |ψ〉 , |φ〉 ∈ H and
where Ân ∈ B(H),∀n ∈ N (where in the strong case the same holds without 〈ψ |).

A von Neumann algebra M is also its own double commutant M′′, where M′ =
{B ∈ B(H)|BA = AB,∀A ∈M}.



Appendix B
Mesoscopic Quantum Superposition

We here give a brief overview of the phenomenon of mesoscopic (quantum)
superposition, i.e. superposition of states of comparatively large objects. To elab-
orate on this, we first need to introduce some of the basics of superconductivity.
Superconductivity is a phenomenon in which an electric current can flow (almost)
without any dissipation, i.e. without loss of (kinetic) energy into the surrounding
medium. The surrounding medium in question will be a solid that can be modeled
as a periodic lattice of evenly spaced nuclei (a ‘crystal’). In such a solid, electrons
can form so called Cooper pairs, whose occurrence can be plausibilized as follows
(cf. Blundell 2009, p. 56 ff.).

In principle two electrons obviously repel each other since they are both equally
negatively charged. But they also attract the positively charged nuclei of the lattice-
like solid. The result is a distortion in the periodicity of the lattice which persists
for some time after an electron has passed, and in turn attractively affects other
electrons, since now some of the positive charge of the nuclei is accumulated more
strongly. This leads to a pairwise coupling of electrons so brought into proximity of
one another, mediated by the distortion of the lattice. This distortion, propagating
with the electrons as a vibration of the lattice, will come in energetically discretized
form. This leads to the notion of phonons, quanta of the lattice-vibration, not unlike
the photons, construed as quanta of the electromagentic field. The electron-electron
interaction which results in Cooper pairing is hence mediated by such a phonon.
Notably, this only happens in materials in which the electrons interact more strongly
with the vibrations (phonons), so in materials which are otherwise bad conductors.

The most successful formal model of superconductivity that describes this
situation is known as the BCS model, after John Bardeen, Leon Cooper and Robert
Schrieffer (1957). They found an effective Hamiltonian

Ĥ =
∑
pσ

εp ĉ
†
pσ ĉpσ −

( g

2V

)2 ∑
pp′

ĉ
†
p′↑ĉ

†
−p′↓ − ĉp↑ĉ−p↓, (B.1)
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the first term describing the kinetic energy of all pairs involved, and the second one
the attractive potential energy between pairs of electrons with opposite spins and
momenta (cf. Lancaster and Blundell 2014, p. 401). εp is some fixed (kinetic) energy
for given p, g a momentum-independent potential, V a volume and σ ∈ {↑,↓} a
spin index. More importantly, Schrieffer ‘invented’ a trial many-particle state that
can be written as

|BCS〉 =
∏
p

(up1+ vp ĉ
†
p↑ĉ−p↓) |0〉 , (B.2)

where for any given p one finds that |vp|2 gives the average pair-occupation number
for states of momentum p and with a given fixed spin direction (so that 2

∑
p |vp|2

gives the total average number of occupied states), and |up|2 the number of
unoccupied states with momentum p. However, the number of electrons described
by this state vector only has a fixed average, meaning that there is generally not a
fixed number of electrons present in it (cf. Lancaster and Blundell 2014, pp. 402–
403; Blundell 2009, p. 61).

Crucially, in many situations there is such a large (average) number of pairs
involved, that the state is called ‘macroscopically occupied’. Moreover, the
state is an example of a coherent state, which formally means that it is an
eigenstate of an annihilation operator, and implies that its position-representation

BCS

(x1σ1, . . . , xnσn) is a quite narrow wave-packet (in configuration space) for
high occupation numbers that maintains a somewhat narrow spread over time (cf.
Lancaster and Blundell 2014, p. 278).1

The paired up electrons in the BCS-state can be construed as forming quasi
particles2 called bogolons, which somewhat behave like bosons in virtue of
the pair-creating operators ĉ

†
p↑ĉ−p↓ satisfying commutation-relations, not anti-

commutation. However, the anti-commutation relations are not exactly those of
ordinary bosons, as given in (2.50), whence the pairs should not literally be viewed
as bosons (cf. Lancaster and Blundell 2014, p. 410).

Working out the energies of the BCS-Hamiltonian, one finds some value �

that separates the ground state energy from that of the first excited state. More
precisely, this holds for any individual one of the Cooper pairs, crucially implying
that if all the pairs are in the low-lying ground state, they cannot be excited
by small thermal vibrations of the lattice. In turn, this results in the resistance-
and dissipationless current advertised above, sometimes also referred to as a
supercurrent (cf. Schlosshauer 2007, p. 271).

1We here represent the spin degrees of freedom rather as ‘coordinates’ σi than by appeal to a
column vector, which is a widespread notational convenience. For a single particle this can be

read, for instance, as ψ(x)χ(σ ), with χ(↑) .=
(

1
0

)
, and so forth (e.g. Annett 2004, p. 149). The

fermionic BCS-wave function is of course overall antisymmetric.
2These are “excitations of a macroscopic many-particle system[. . . ] [which] do not come on their
own but belong to collective effects.” (Falkenburg 2007, p. 238).
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Such supercurrents can be used to bring about mesoscopic superpositions in a
device called a superconducting quantum interference device (SQUID) (we focus
on the simplest example; e.g. Schlosshauer 2007, p. 272 for some details). Such
SQUIDs exploit what is called the Josephson effect, namely the (experimentally
supported) fact that in ring-shaped superconducting materials with a thin insulating
barrier inserted (a ‘Josephson junction’), Cooper pairs will start to tunnel through
the barrier, resulting in a supercurrent without any voltage applied (cf. Schlosshauer
2007, ibid.).

As we saw, the totality of all the Cooper pairs together is described by one
total quantum state or wave function. But at least in the limit of a certain critical
temperature, one can also describe each Cooper pair in terms of a joint wave
function ψ(xcm, t) = |ψ |eiϕ(xcm,t) (xcm being the center of mass coordinate) with
local phase ϕ(xcm, t) (cf. Leggett 2002, p. R439; Annett 2004, p. 127). This wave
function appears in the BCS model as an ‘order parameter’ which depends on the
energy gap � (cf. Annett 2004, pp. 127–128). One can use it to describe many
properties of the total current of Cooper pairs and define, for instance, a kind of
current density, similar to the probability current density (2.56), but multiplied
by the charge −2e of the Cooper pairs (−e the charge of the electron), and with
effective mass 2me (i.e. twice the electron mass).

If in addition an external magnetic field Bext is applied to the SQUID, the
Schrödinger equation has to be modified by replacing p̂ �→ p̂ − 2eA, with A

the vector potential of Bext (i.e. Bext = ∇ × A). However, the corresponding
modification of the Schrödinger equation together with a requirement that it remains
form invariant in spite of the spacetime dependence of ϕ implies the need to perform
a gauge transformation A �→ A− h̄

2e∇ϕ which leaves the measurable quantity Bext
unchanged (as ∇ × (∇ϕ) = 0).

This gauge transformation in turn implies a change in the current expression,

namely the appearance of a term − 2e2A
me

ψ∗ψ . Executing this equation on ψ(xcm, t)

from above, one can derive the condition

h̄∇ϕ = me

|ψ |2ej s + 2eA (B.3)

(j s now being construed as the ‘supercurrent density’). Taking the superconducting
ring of the SQUID to be closed without the junction for the moment, and the wave
function ψ(xcm, t) to be confined to the ring, we would have to require that it has a
unique value at any point inside the ring (in order for ψ to be single-valued). This
is equivalent to requiring that

∮
γ

∇ϕ dr = n · 2π, n ∈ N, 3 (B.4)

3The reason that we are only appealing to the natural numbers, not all integers, becomes clear
below.
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i.e. that along any closed curve γ inside the ring, the integral change of the phase ϕ
is an integer multiple of 2π , so that ψ(xcm, t) has a unique value at the coinciding
initial and final points of the integral.

But using expression (B.3) in (B.4), we now have

∮
γ

me

|ψ |2ej s + 2eA dr = n · 2πh̄ = nh

⇔
∮
γ

me

|ψ |2ej s dr + 2e
∫
S

Bext ds

︸ ︷︷ ︸
=�ext

= nh

⇔� = n · (h/2e)︸ ︷︷ ︸
=:�0

.

Here the second line follows from Stokes’ theorem and the definition of the
magnetic flux �ext as the integral amount of Bext that passes through some surface
S . � is called a fluxoid rather than a flux, as it also encompasses the magnitude∮
γ

me
|ψ |2ej s dr not present in the classical flux. And �0 defines the so called flux

quantum, meaning that the total fluxoid � is discretized, with �0 the unit of
discretization (cf. Annett 2004, p. 30 ff.; Caldeira 2014, p. 57).

However, the SQUID includes a junction (made out of a different material) and
so there will be a phase shift �ϕj in addition to the 2πn = 2π�/�0. But since
�ϕj is determined by the properties of the junction (and hence a fixed quantity) and
�0 is a constant, the behavior of all the Cooper pairs together is determined solely
by the behavior of �, whence one can describe the whole collection in terms of a
‘macroscopic wave function’ n(�) = 〈�|n〉, with n as above (cf. Schlosshauer
2007, p. 273).

Some ‘ordinary’ physical considerations (e.g. Caldeira 2014, p. 61) now lead to
the definition of a Hamiltonian

Ĥ� = p̂2
�

2C
+ U(�) = − h̄2

2C

d2

d�2 +
(
(�−�ext)

2

2L
− I0�0

2π
cos(2π�/�0)

)

(B.5)
under which n(�) evolves. Here L is the (self-) inductance of the loop, C is its
capacitance, and I0 is the peak of the current of tunneling Cooper pairs. � and
p̂� := −ih̄ d

d� play the role of position and momentum in the usual SE, C acts as a
mass.

The most important ingredient of Ĥ�, however, is the potential U(�). For the
appropriate values of �ext it has the shape of a double well, just as encountered
in Sect. 2.1.1 (cf. Fig. 2.8). But the present double well potential U(�) is, first
of all, not situated in position space, but rather in ‘flux space’. Hence, the two
wells correspond not to positions, but rather, “[b]roadly speaking, [. . . ] to the two
possible directions (clockwise and counterclockwise) of the supercurrent around the
loop.” (Schlosshauer 2007, p. 273) And secondly, under the influence of the external
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magnetic field Bext, the double well can be made unequally deep on both sides, as
can be seen from the presence of �ext in the first term of U(�) (cf. Caldeira 2014,
p. 62).

Both wells contain a number of narrow states |k〉 which are eigenstates of Ĥ�,
meaning that we have a bunch of clockwise (left well) and counterclockwise (right
well) supercurrent states, which represent approximate classical currents and each
correspond to a narrow range of fluxoids �. However, due to the possibility of
tunneling (which now occurs in the flux space), the states |k〉 have a non-vanishing
possibility of states from one well ending up in the other well (e.g. by excitation
and subsequent de-excitation into a state not located in the original well). These
tunneling processes are accompanied by a change in flux (or fluxoid) which in turn
can be accessed by measuring changes in the magnetic moment of the system (cf.
Schlosshauer 2007, p. 274).

Most importantly, the SQUID (or the setup containing it) can be engineered in
such a way that only two possible energies are relevant, since all the other states |k〉
become inaccessible. This means that we once more have a kind of qubit system,
albeit this time with ‘macroscopic’ states of clockwise and counterclockwise
supercurrent,

∣∣j�
s

〉
,
∣∣j�
s

〉
. The Hamiltonian now takes the form Ĥ = −εσ̂z − δσ̂x ,

where
∣∣j�
s

〉
and

∣∣j�
s

〉
are eigenstates of σ̂z, 2ε ∝ �ext − �0/2 is the ‘difference

in height’ between the two wells, and δ is a matrix element for transition between∣∣j�
s

〉
and

∣∣j�
s

〉
due to tunneling (cf. Leggett 2002, p. R444; Schlosshauer 2007,

pp. 274–275).4

The two relevant energy states can now be expanded as |0〉 = cos θ
∣∣j�
s

〉 +
sin θ

∣∣j�
s

〉
and |1〉 = cos θ

∣∣j�
s

〉− sin θ
∣∣j�
s

〉
, where tan 2θ = δ/ε. Thus for the case

that ε 7 δ, the two energy eigenstates approximate the clockwise/counterclockwise
states, in virtue of the properties of the trigonometric functions in question.
However, for �ext = �0/2,5 ε vanishes (the potential becomes symmetric), and the
states |0〉 , |1〉 go over into the equal superpositions |0〉 = 1√

2

(∣∣j�
s

〉+ ∣∣j�
s

〉)
, |1〉 =

1√
2

(∣∣j�
s

〉− ∣∣j�
s

〉)
(cf. Schlosshauer 2007, p. 276).

In other words, the totality of all the cooper pairs will be jointly in a quantum
superposition of flowing clockwise and counterclockwise as a supercurrent. This is,
on the face of it, almost as ‘absurd’ as a cat in a superposition of being dead and
alive. But the situation of the two current directions is notably different in that it
is experimentally accessible. In fact, Leggett’s original intention was exactly that,
when he first described the experimental situation elaborated on here: to find an
experimental realization of a Schrödinger-cat-like situation (cf. Leggett 1980). The
SQUIDs considered are of course still all much, much smaller.

4Choosing
∣∣j�
s

〉 .=
(

1
0

)
and

∣∣j�
s

〉 .=
(

0
1

)
, we can see that σ̂x

∣∣∣j�
s

〉
.=
(

0 1
1 0

)(
1
0

)
=

(
0
1

)
.=
∣∣∣j�s

〉
, which is

why σ̂x can be used to describe transitions.
5Strictly speaking, this must be construed as a limiting procedure, since letting �ext−→�0/2 we
have ε −→ 0 and thus δ/ε −→∞. We can see that this is satisfied for θ −→ π/4, which justifies
the superposition states below.
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How are measurements performed, and why should they count as evidence for
the presence of a mesoscopic quantum superposition? First of all we note that in
actual experiments currents were used which consisted of numbers of Cooper pairs
in the order of 106 (cf. van der Wal et al. 2000, p. 773) or even 109 (Friedman
et al. 2000, p. 45), meaning pretty large collections of microscopic systems. But
the SQUIDs in question still only had sizes in the order of some μm, which is
why we have preferred to call them ‘meso-’ rather than ‘macroscopic’. Secondly, as
regards methods of detecting the superposed states, one can exploit the fact that |0〉
and |1〉 are separated by some energy difference �E = 2

√
ε2 + δ2 (which simply

becomes 2δ for �ext = �0/2). Exciting, for various ‘geometries’ of the double-
well for different values of epsilon, states in the one well by microwaves and then
determining the probability of tunneling into the other well by de-excitation, one
can map out whether energies must ‘cross’, i.e. become degenerate at some point
(cf. Friedman et al. 2000). If they do not, this is taken to indicate the presence of the
two well-seperated superposition states; a feature referred to as ‘anticrossing’. Such
an anticrossing was observed by Friedman et al. with the energy gap corresponding
closely to the theoretical predictions. Other kinds of measurement can be performed
in terms of Rabi oscillations (cf. Schlosshauer 2007, pp. 246 ff. and 276 for further
reference).

The crucial point is that these measurements do not differ in principle from
methods used to access the (superposed) quantum states of atoms or molecules,
whence, if we do not doubt the existence of quantum superposition in the latter
cases, we have no special reason to do so in the much larger SQUID-cases.



Appendix C
The GNS Construction

The GNS construction starts off from the realization that a positive linear form1 ω :
A → C over a C∗-algebra2 A will define a Hilbert space Hω and a representation
πω of the elements of A as linear operators on Hω.

What is a representation in the present sense? Such a representation could
be viewed as a ‘representation of a representation’ by empirically-minded, non-
Platonist philosophers. The elements of some algebra A and their interrelations are
typically already used to represent, in a structurally-abstracting fashion, physical
operations/properties/events that we encounter in experience and experiment. The
representation in the present sense maps the more abstract objects from A into
(although not generally ‘onto’, i.e. not necessarily surjectively) a set of mathemat-
ically more concrete objects (in this case: the operators), in a structure-preserving
way, i.e. such that the relations in π(A) mirror those in A.

In the case of C∗-algebras, the map π is linear, and it generally preserves the
structure of the product operation and involution in A (cf. Ruetsche 2011, pp. 77 and
83). Moreover, a representation is called faithful iff it maps only the zero-element of
A onto zero, and irreducible iff the only (closed) subspaces of H that are invariant
under the action of the Â ∈ π(A) are H itself and {0H} (0H the null-vector of H;
cf. appendix A).

Because of its addition and scalar-multiplication properties, the algebra A is also
a C-vector space, and the positive linear form can be understood as providing a
(skew symmetric, positive semi-definite; cf. appendix A) scalar product 〈A|B〉 =
ω(A∗B) for the A,B ∈ A. There will be a subset I ⊂ A such that 〈X|X〉 = 0

1Linearity, to recall, means ω(αA+βB) = αω(A)+βω(B),A,B ∈ A, α, β ∈ C, positivity here
means ω(A∗A) ≥ 0 (cf. Haag 1996, p. 122).
2Strictly speaking, only a weaker Banach *-algebra is required for most of the construction, which
need not satisfy condition (i) of def. A.11 (cf. Haag 1996, pp. 112, 118, and 122–123). But we here
focus on C∗-algebras right away for simplicity.
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and AX ∈ I for X ∈ I, A ∈ A, and the set A/I of equivalence classes [A]
such that A′ ∈ [A] iff A′ = A + X for some X ∈ I will form a pre-Hilbert
space (a Hilbert space up to completeness induced by the scalar product). A class
[A] hence defines a vector ψ . The completion of A/I w.r.t. the norm induced by
ω(ψ∗ψ) = 〈ψ |ψ〉 = ‖ψ‖2 then leads to the desired Hilbert space Hω.

Ifω is normed, i.e. ifω(I) = 1 (I the unit element),3 it will be called an algebraic
state (cf. Haag 1996, p. 122; Ruetsche 2011, p. 89). Intuitively, algebraic states
provide expectation values of the operators that are the representation of the algebra.
Moreover, if πω is cyclic, one regains, setting πω(Ã) = Â, the familiar form 〈A〉ψ =
〈ψ |Â|ψ〉 = 〈ψ |πω(Ã)|ψ〉 =: ωψ(Ã), and the ωψ(Ã) are then called vector states
(cf. Haag 1996, p. 124).4 What does ‘cyclic’ mean? It means that there is a (‘cyclic’)
vector � ∈ A/I such that πω(A)� is dense in Hω, i.e. that any ψ ∈ Hω can be
approximated arbitrarily well by applications of elements of the representation of
the algebra A to �. Intuitively, � is a vacuum state from which all other states are
created. The action of the operators πω(A) on vectors ψ = [B] here corresponds to
the equivalence class [AB] of respective products in A.

In such a cyclic representation one obtains ω(A) = 〈�|πω(A)|�〉, which
justifies the expression ωψ(A) = 〈ψ |πω(A)|ψ〉, since some B� approximates
ψ (where, to recall, B may be an arbitrary product of elements from A) and
ω(B∗AB) = 〈�|πω(B∗)πω(A)πω(B)|�〉 approximates ωψ(A). One then says that
ω is represented by � (cf. Haag 1996, p. 122–124). Moreover, the trace functional
ωρ̂(A) = Tr

(
ρ̂πω(A)

)
, where ρ̂ ∈ B(Hω) is positive and trace class, defines a set

of states called the folium of πω, i.e. the set of all states ω that can be so constructed
out of density operators (cf. Haag 1996, p. 124; Ruetsche 2011, p. 96).

The algebraic states ω on a C∗-algebra A constitute a convex set, i.e. if ω1, ω2
are states, then so is ω = λω1 + (1 − λ)ω2,∀λ ∈ [0, 1]; this makes probabilistic
weighting possible. Additionally, it is a theorem that the GNS-representation of
pure algebraic states, i.e. those which cannot be non-trivially expressed as convex
combinations are exactly those with an irreducible representation (cf. Ruetsche
2011, pp. 89 and 93).5

If one closes the representation πω(A) in either the weak or strong operator
topology, i.e. includes operators Â such that sequences | 〈φ|Ân|ψ〉 − 〈φ|Â|ψ〉 |
(with 〈φ| omitted in the strong topology) converge to 0 as n → ∞ and with
Ân ∈ πω(A),∀n ∈ N, this leads to a von Neumann algebra M. Again the algebra
of bounded operators B(H) is an example. But the algebra M obtained by the

3This definition of ‘normed’ obviously only works in a unital algebra; otherwise normalization has
to be defined in terms of the Hilbert space norm again (cf. Haag 1996, p. 122).
4We emphasize the distinction between A and Ã again: Ã is an element of A, an abstract
mathematical symbolism. A is supposed to be the ‘real world observable’, i.e. a universal, a class
of tropes, a set of operations, or whatever your favored metaphysics spits out.
5However, there is a subtlety involved since non-pure algebraic states will nonetheless be
represented in terms of state vectors on a Hilbert space. That this is possible can be understood
best when the ‘behavior’ of state vectors in the presence of superselection rules is considered (cf.
footnote 24 and Ruetsche 2011, p. 93).
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closure-procedure may be only a proper subalgebra of B(H). M is also the double
commutant π(A)′′ of π(A), i.e. if we take all the operators in B(H) that commute
with all the operators in π(A) and then again take the operators that commute with
those, they will constitute the von Neumann algebra M = π(A)′′ (cf. Ruetsche
2011, pp. 86–89).

Why is π(A)′′ of interest? Because in contrast to a C∗-algebra, a von Neumann
algebra will be “rich with projections” (Ruetsche 2011, p. 88), whence algebraic
states on π(A)′′ will allow for familiar probability-expressions such as ωψ(P̂j ) =
〈ψ |P̂j |ψ〉 = 〈ψ |j 〉 〈j |ψ〉 = | 〈j |ψ〉 |2 = Prψ(j).6 However, not all algebraic

states will be countably additive (will satisfy ω
(∑∞

j=1 P̂j

)
= ∑∞

j=1 ω
(
P̂j

)
on a

countable set
{
P̂
}
j∈N of projectors), and those that are are usually called normal

(cf. Ruetsche 2011, p. 90).
Now the set of normal states on π(A)′′ and the folium of the state ω generating

the representation πω coincide (cf. Haag 1996, p. 124; Ruetsche 2011, p. 95). In
other words: all algebraic states ω′ that produce a countably additive probability
measure on the projectors P̂j in the von Neumann algebra π(A)′′ that is the
(weak/strong) closure of the representation πω generated by some ω will be of the

form ωρ̂(P̂j ) = Tr
(
ρ̂P̂j

)
, i.e. can be provided by density operators. This anticipates

(or rather generalizes) the conclusion of Gleason’s famous theorem that is briefly
discussed in Chap. 7. Moreover, two unitarily equivalent representations πω, πω′ of
a C∗-algebra A, generated from states ω,ω′ respectively, will have coinciding folia
(cf. Ruetsche 2011, p. 96). This demonstrates the importance of unitary equivalence
also in this context.

6Note that the reconstruction of the the probability density ψ∗ψ(x) from this algebraic basis will
need some extra effort, since a ‘point-projection operator’ |x〉〈x| on L2(�) (� ⊆ R) would
correspond to a characteristic function f (x′) = χ{x}(x′) when the ‘expectation value’

〈
f (x′)

〉
ψ

is supposed to generate a probability measure for finding the value x. But by its construction, a von
Neumann-algebra can only provide such multiplication-by-f (x)-operators as equivalence classes
of (Lebesgue-)measurable functions up to sets of measure zero, and a set {x} is of Lebesgue-
measure 0. The solution is a convergence-construction from characteristic functions for larger,
measurable sets, discussed e.g. in Ruetsche (2011, p. 91).
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