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Preface to the EAP Series

Essential Advanced Physics

Essential Advanced Physics (EAP) is a series of lecture notes and problems with
solutions, consisting of the following four parts1:

• Part CM: Classical Mechanics (a one-semester course),
• Part EM: Classical Electrodynamics (two semesters),
• Part QM: Quantum Mechanics (two semesters), and
• Part SM: Statistical Mechanics (one semester).

Each part includes two volumes: Lecture Notes and Problems with Solutions, and
an additional file Test Problems with Solutions.

Distinguishing features of this series—in brief

• condensed lecture notes (∼250 pp per semester)—much shorter than most
textbooks

• emphasis on simple explanations of the main notions and phenomena of
physics

• a focus on problem solution; extensive sets of problems with detailed model
solutions

• additional files with test problems, freely available to qualified university
instructors

• extensive cross-referencing between all parts of the series, which share style
and notation

Level and prerequisites

The goal of this series is to bring the reader to a general physics knowledge level
necessary for professional work in the field, regardless on whether the work is
theoretical or experimental, fundamental or applied. From the formal point of view,
this level (augmented by a few special topic courses in a particular field of
concentration, and of course by an extensive thesis research experience) satisfies
the typical PhD degree requirements. Selected parts of the series may be also
valuable for graduate students and researchers of other disciplines, including
astronomy, chemistry, mechanical engineering, electrical, computer and electronic
engineering, and material science.

The entry level is a notch lower than that expected from a physics graduate from
an average US college. In addition to physics, the series assumes the reader’s
familiarity with basic calculus and vector algebra, to such an extent that the meaning
of the formulas listed in appendix A, ‘Selected mathematical formulas’ (reproduced
at the end of each volume), is absolutely clear.

1Note that the (very ambiguous) term mechanics is used in these titles in its broadest sense. The acronym EM
stems from another popular name for classical electrodynamics courses: Electricity and Magnetism.
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Origins and motivation

The series is a by-product of the so-called ‘core physics courses’ I taught at Stony
Brook University from 1991 to 2013. My main effort was to assist the development
of students’ problem-solving skills, rather than their idle memorization of formulas.
(With a certain exaggeration, my lectures were not much more than introductions to
problem solution.) The focus on this main objective, under the rigid time restrictions
imposed by the SBU curriculum, had some negatives. First, the list of covered
theoretical methods had to be limited to those necessary for the solution of the
problems I had time to discuss. Second, I had no time to cover some core fields of
physics—most painfully general relativity2 and quantum field theory, beyond a few
quantum electrodynamics elements at the end of Part QM.

The main motivation for putting my lecture notes and problems on paper, and
their distribution to students, was my desperation to find textbooks and problem
collections I could use, with a clear conscience, for my purposes. The available
graduate textbooks, including the famous Theoretical Physics series by Landau and
Lifshitz, did not match the minimalistic goal of my courses, mostly because they are
far too long, and using them would mean hopping from one topic to another,
picking up a chapter here and a section there, at a high risk of losing the necessary
background material and logical connections between the course components—and
the students’ interest with them. In addition, many textbooks lack even brief
discussions of several traditional and modern topics that I believe are necessary
parts of every professional physicist’s education3.

On the problem side, most available collections are not based on particular
textbooks, and the problem solutions in them either do not refer to any background
material at all, or refer to the included short sets of formulas, which can hardly be
used for systematic learning. Also, the solutions are frequently too short to be useful,
and lack discussions of the results’ physics.

Style

In an effort to comply with the Occam’s Razor principle4, and beat Malek’s law5, I
have made every effort to make the discussion of each topic as clear as the time/
space (and my ability :-) permitted, and as simple as the subject allowed. This effort
has resulted in rather succinct lecture notes, which may be thoroughly read by a
student during the semester. Despite this briefness, the introduction of every new

2For an introduction to this subject, I can recommend either a brief review by S Carroll, Spacetime and
Geometry (2003, New York: Addison-Wesley) or a longer text by A Zee, Einstein Gravity in a Nutshell (2013,
Princeton University Press).
3 To list just a few: the statics and dynamics of elastic and fluid continua, the basics of physical kinetics,
turbulence and deterministic chaos, the physics of computation, the energy relaxation and dephasing in open
quantum systems, the reduced/RWA equations in classical and quantum mechanics, the physics of electrons
and holes in semiconductors, optical fiber electrodynamics, macroscopic quantum effects in Bose–Einstein
condensates, Bloch oscillations and Landau–Zener tunneling, cavity quantum electrodynamics, and density
functional theory (DFT). All these topics are discussed, if only briefly, in my lecture notes.
4Entia non sunt multiplicanda praeter necessitate—Latin for ‘Do not use more entities than necessary’.
5 ‘Any simple idea will be worded in the most complicated way’.
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physical notion/effect and of every novel theoretical approach is always accom-
panied by an application example or two.

The additional exercises/problems listed at the end of each chapter were carefully
selected6, so that their solutions could better illustrate and enhance the lecture
material. In formal classes, these problems may be used for homework, while
individual learners are strongly encouraged to solve as many of them as practically
possible. The few problems that require either longer calculations, or more creative
approaches (or both), are marked by asterisks.

In contrast with the lecture notes, the model solutions of the problems (published
in a separate volume for each part of the series) are more detailed than in most
collections. In some instances they describe several alternative approaches to the
problem, and frequently include discussions of the results’ physics, thus augmenting
the lecture notes. Additional files with sets of shorter problems (also with model
solutions) more suitable for tests/exams, are available for qualified university
instructors from the publisher, free of charge.

Disclaimer and encouragement

The prospective reader/instructor has to recognize the limited scope of this series
(hence the qualifier Essential in its title), and in particular the lack of discussion of
several techniques used in current theoretical physics research. On the other hand, I
believe that the series gives a reasonable introduction to the hard core of physics—
which many other sciences lack. With this hard core knowledge, today’s student will
always feel at home in physics, even in the often-unavoidable situations when
research topics have to be changed at a career midpoint (when learning from scratch
is terribly difficult—believe me :-). In addition, I have made every attempt to reveal
the remarkable logic with which the basic notions and ideas of physics subfields
merge into a wonderful single construct.

Most students I taught liked using my materials, so I fancy they may be useful to
others as well—hence this publication, for which all texts have been carefully
reviewed.

6Many of the problems are original, but it would be silly to avoid some old good problem ideas, with long-lost
authorship, which wander from one textbook/collection to another one without references. The assignments
and model solutions of all such problems have been re-worked carefully to fit my lecture material and style.
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Preface to Quantum Mechanics:
Lecture notes

The structure of this course is more or less traditional, with most attention paid to
the non-relativistic quantum mechanics, and only chapter 9 reviewing the relativistic
effects–first in electrodynamics, and then for particles with a non-zero rest mass.

One deviation from the tradition is that, due to the counter-intuitive character of
quantum mechanics, I have found it necessary to start the course from a short
discussion, in the beginning of chapter 1, of the experimental facts that, by the 1920s,
has necessitated its development.

However, the feature that distinguishes this course most strongly from many
modern textbooks on quantum mechanics is that the discussion of Dirac’s bra-ket
formalism is postponed until chapter 4, i.e. until after the discussion of numerous
wave-mechanical effects in one- and multi-dimensional systems, respectively, in
chapters 2 and 3. One reason for that decision was the author’s serious adherence
(declared in the general Preface to the EAP Series) to the Occam Razor principle, in
particular to using only the simplest theoretical tools possible for discussions of
particular physical phenomena. Another motivation was to discuss the most
important quantum effects, including the energy band theory, without the heavy
artillery of the bra-ket formalism, to make the discussion more accessible to the
potential readership from the electrical engineering and material science commun-
ities. Finally, I believe that it is useful for the reader to see how the inconveniences
and pitfalls of the wave mechanics approach gradually accumulate, thus justifying
the eventual introduction of a more general formalism.

Another distinguishing feature of the course is its large attention to the notions of
dephasing (alternatively called ‘decoherence’) and energy relaxation–the effects
whose description needs to go beyond the usual idealization of a closed
(Hamiltonian) quantum system. A clear understanding of these effects is necessary
for any educated discussion of the conceptual issues of quantum measurements, and
also of the recent numerous experiments with macroscopic-scale quantum systems
(such as mechanical and electromagnetic resonators, superconductor qubits, etc),
because of a substantial coupling of such systems to their environment. As a result, I
felt compelled to give, in chapter 7, a discussion of open quantum systems, which is
more typically reserved for statistical mechanics courses.

One more not-very-traditional topic, quantum computation and cryptography, is
discussed at the end of chapter 8. Since this is a hot research field, with many aspects
still actively debated, the style of its discussion is closer to that of a (brief) research
review than to a textbook.

Finally, two related, still-controversial topics, quantum measurements and
interpretations of quantum mechanics, are also so special that I have found it
natural to place their discussion into a separate, albeit short, chapter 10 at the very
end of the course.
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Notation

Abbreviations Fonts Symbols

c.c. complex conjugate F, F scalar variables8 . time differentiation operator (d/dt)
h.c. Hermitian conjugate F, FF vector variables ∇ spatial differentiation vector (del)

ˆ ˆF , F scalar operators ≈ approximately equal to
ˆ ˆF, FF vector operators ∼ of the same order as
F matrix ∝ proportional to
Fjj′ matrix element ≡ equal to by definition (or evidently)

⋅ scalar (‘dot-’) product
× vector (‘cross-’) product
__ time averaging
〈 〉 statistical averaging
[ , ] commutator
{ , } anticommutator

Prime signs

The prime signs (′, ″, etc) are used to distinguish similar variables or indices (such as j
and j′ in the matrix element above), rather than to denote derivatives.

Parts of the series

Part CM: Classical Mechanics Part EM: Classical Electrodynamics
Part QM: Quantum Mechanics Part SM: Statistical Mechanics

Appendices

Appendix A: Selected mathematical formulas
Appendix B: Selected physical constants

Formulas

The abbreviation Eq. may mean any displayed formula: either the equality, or
inequality, or equation, etc.

8 The same letter, typeset in different fonts, typically denotes different variables.
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Chapter 1

Introduction

This introductory chapter briefly reviews the major experimental motivations for
quantum mechanics, and then discusses its simplest formalism—the Schrödinger’s
wave mechanics. Much of this material (perhaps besides the last section) may be found
in undergraduate textbooks1, so that the discussion is rather brief, and focused on the
most important conceptual issues.

1.1 Experimental motivations
By the beginning of the 1900s, physics (which by that time included what we now
call non-relativistic classical mechanics, classical statistics and thermodynamics, and
classical electrodynamics including the geometric and wave optics) looked an almost
completed discipline, with most human-scale phenomena reasonably explained, and
just a couple of mysterious ‘dark clouds’2 on the horizon. However, rapid
technological progress and the resulting development of more refined scientific
instruments have led to a fast multiplication of observed phenomena that could not
be explained on the classical basis. Let me list the most consequential of those
experimental findings.

(i) The blackbody radiation measurements, pioneered by G Kirchhoff in 1859, have
shown that in the thermal equilibrium, the power of electromagnetic radiation by a
fully absorbing (‘black’) surface, per unit frequency interval, drops exponentially at
high frequencies. This is not what could be expected from the combination of the
classical electrodynamics and statistics, which predicted an infinite growth of the
radiation density with frequency. Indeed, the classical electrodynamics shows3 that

1 See, for example, [1].
2 This famous expression was used in a 1900 talk by Lord Kelvin (born W Thomson) in reference to the
blackbody radiation measurements and the results of the Michelson-Morley experiments, i.e. the precursors of
the quantum mechanics and the relativity theory.
3 See, e.g. Part EM section 7.8, in particular Eq. (7.211).
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electromagnetic field modes evolve in time as harmonic oscillators, and that the
number dN of these modes in a large free-space volume V≫ λ3, in a small frequency
interval dω ≪ ω near some frequency ω, is

π
π

π
ω

π
ω= = =dN V

d k
V

k dk
V

c
d2

(2 )
2

4
(2 )

, (1.1)
3

3

2

3

2

2 3

where c ≈ 3 × 108 m s−1 is the free-space speed of light, k = ω/c the free-space wave
number, and λ = 2π/k is the radiation wavelength. On the other hand, the classical
statistics4 predicts that in the thermal equilibrium at temperature T, the average
energy E of each 1D harmonic oscillator should be equal to kBT, where kB is the
Boltzmann constant5.

Combining these two results, we readily get the so-called Rayleigh–Jeans formula
for the average electromagnetic wave energy per unit volume:

ω ω
ω

π
≡ = =u

V
dE
d

k T
V

dN
d c

k T
1

, (1.2)B
2

2 3 B

that diverges at ω → ∞. On the other hand, the blackbody radiation measurements,
improved by O Lummer and E Pringsheim, and also by H Rubens and F Kurlbaum
to reach a 1% scale accuracy, were compatible with the phenomenological law
suggested in 1900 by Max Planck:

ω
π

ω
ω

= ℏ
ℏ −

u
c k T

a
exp{ / } 1

. (1.3 )
2

2 3
B

This law may be reconciled with the fundamental equation (1.1) if the following
replacement is made for the average energy of each field oscillator:

ω
ω

→ ℏ
ℏ −

k T
k T

b
exp( / ) 1

, (1.3 )B
B

with a constant factor

ℏ ≈ × −1.055 10 J s, (1.4)34

now called the Planck’s constant6. At low frequencies (ℏω ≪ kBT), the denominator
in Eq. (1.3) may be approximated as ℏω/kBT, so that the average energy (1.3b) tends
to its classical value kBT, and the Planck law (1.3a) reduces to the Rayleigh–Jeans
formula (1.2). However, at higher frequencies (ℏω ≫ kBT), Eq. (1.3) describes the
experimentally observed rapid decrease of the radiation density—see figure 1.1.

4 See, e.g. Part SM section 2.2.
5 In the SI units, used through this series, kB ≈ 1.38 × 10−23 J K−1—see appendix B for more exact value.
6Max Planck himself wrote ℏω as hν, where ν = ω/2π is the ‘cyclic’ frequency (the number of periods per
second), so that in early texts on quantum mechanics the term ‘Planck’s constant’ referred to h ≡ 2πℏ, while ℏ
was called ‘the Dirac constant’ for a while. I will use the contemporary terminology, and abstain from using
the ‘old Planck’s constant’ h at all, in order to avoid confusion.
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(ii) The photoelectric effect, discovered in 1887 by H Hertz, shows a sharp lower
bound on the frequency of the incident light that may kick electrons out from
metallic surfaces, regardless of the light intensity. Albert Einstein, in one of his three
famous 1905 papers, noticed that this threshold ωmin could be readily explained
assuming that light consisted of certain particles (now called photons) with energy

ω= ℏE , (1.5)

with the same Planck’s constant that participates in Eq. (1.3).7 Indeed, with this
assumption, at the photon absorption by the surface, its energy E = ℏω is divided
between a fixed energy U0 (nowadays called the workfunction) of electron binding
inside the metal, and the excess kinetic energy >m /2 0e

2v of the freed electron—see
figure 1.2. In this picture, the frequency threshold finds a natural explanation as
ωmin = U0/ℏ.

8 Moreover, as was shown by S Bose in 1924, Eq. (1.5) readily explains9

the Planck’s law (1.3).

(iii) The discrete frequency spectra of the electromagnetic radiation by excited
atomic gases, known since the 1600s, could not be explained by classical physics.
(Applied to the planetary model of atoms, proposed by E Rutherford, classical
electrodynamics predicts the collapse of electrons on nuclei in ∼10−10 s, due to
electric dipole radiation of electromagnetic waves10.) Especially challenging was the
observation by J Balmer (in 1885) that the radiation frequencies of simple atoms
may be well described by simple formulas. For example, for the lightest atom, the

Figure 1.1. The blackbody radiation density u, expressed in units of u0 ≡ (kBT)
3/π2ℏ2c3, as a function of

frequency, according to: the Rayleigh–Jeans formula (blue line) and the Planck’s law (red line).

7As a reminder, A Einstein received his only Nobel Prize (in 1922) for exactly this work, which essentially
jump-started quantum mechanics, rather than for his relativity theory.
8 For most metals,U0 is between 4 and 5 electron volts (eV), so that the threshold corresponds to λmax = 2πc/ωmin

= 2πc/(U0/ℏ) ≈ 300 nm—approximately at the border between the visible light and the ultraviolet radiation.
9 See, e.g. Part SM section 2.5.
10 See, e.g. Part EM section 8.2.
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hydrogen, all radiation frequencies may be numbered with just two positive integers
n and n′:

ω ω= −
′′

n n
1 1

, (1.6)n n, 0 2 2

⎛
⎝⎜

⎞
⎠⎟

with ω0 ≡ ω1,∞ ≈ 2.07 × 1016 s−1. This observation, and the experimental value of ω0,
have found their first explanation in the famous 1913 theory by Niels Bohr, which
was a phenomenological precursor for quantum mechanics. In this theory, ωn,n′ was
interpreted as the frequency of a photon that obeys the Einstein’s formula (1.5), with
its energy En,n′ = ℏωn.n′ being the difference between two quantized (discrete) energy
levels of the atom (figure 1.3):

= − >′ ′E E E 0. (1.7)n n n n,

Bohr showed that Eq. (1.6) may be obtained from Eq. (1.7) and the non-
relativistic11 classical mechanics, augmented with just one additional postulate,
equivalent to the assumption that the angular momentum =L m rev of the electron
moving on a circular trajectory of radius r about the hydrogen’s nuclei (i.e. the
proton, assumed to stay at rest because of its much higher mass), is quantized as

= ℏL n, (1.8)

where ℏ is again the same Planck’s constant (1.4), and n is an integer. (In Bohr’s
theory, n could not be equal to zero, though in the genuine quantum mechanics, it
can.)

Indeed, it is sufficient to solve Eq. (1.8), = ℏm r nev , together with the equation

πε
=m

r
e

r4
, (1.9)e

2 2

0
2

v

which expresses Newton’s 2nd law for the electron rotating in the Coulomb field of
the nucleus, for the electron’s velocity v and the radius r. (Here e ≈ 1.6 × 10−19 C is
the fundamental electric charge, and me ≈ 0.91 × 10−30 kg is the electron’s rest
mass.) The result for r is

Figure 1.2. The Einstein’s explanation of the photoelectric effect’s frequency threshold.

11 The non-relativistic approach to the problem is justified a posteriori by the fact the resulting energy scale EH,
given by Eq. (1.13), is much smaller than electron’s rest energy, mec

2 ≈ 0.5 MeV.
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πε
= ≡ ℏ ≈r n r r

m
e

, where
/

/4
0.0529 nm. (1.10)2

B B

2
e

2
0

The constant rB, called the Bohr radius, is the most important spatial scale of
phenomena in atomic, molecular and condensed matter physics—as well as in all
chemistry and biochemistry.

Now plugging these results into the non-relativistic expression for the full
electron’s energy (with the free electron’s rest energy taken for reference),

πε
= −E

m e
r2 4

, (1.11)e
2 2

0

v

we get the following simple expression for the energy levels (which, together with
Eqs. (1.5) and (1.7), immediately gives Eq. (1.6) for the radiation frequencies):

= − <E
E
n2

0, (1.12)n
H
2

where EH is called the so-called Hartree energy constant (or just the ‘Hartree
energy’)12

πε≡
ℏ

≈ × ≈−E
e

m
a( /4 )

/
4.360 10 J 27.21eV. (1.13 )H

2
0

2

2
e

18

(Note the useful relations, which follow from Eqs. (1.10) and (1.13a):

πε
πε= = ℏ = = ℏ

E
e

r m r
r

e
E

m
E

b
4

, i.e.
/4 /

; (1.13 )H

2

0 B

2

e B
2 B

2
0

H

2
e

H

1/2⎛
⎝⎜

⎞
⎠⎟

the first of them shows, in particular, that rB is the distance at which the coefficient-
free scales of the electron’s potential and kinetic energies are equal.)

Note also that Eq. (1.8), in the form pr = ℏn, where =p mev is the electron
momentum’s magnitude, may be rewritten as the condition than an integer number
(n) of wavelengths λ of certain (then hypothetic) waves13 fits the circular orbit’s

n',n

Figure 1.3. The electromagnetic radiation of a system at a result of transition between its quantized energy
levels.

12Unfortunately, another name, the ‘Rydberg constant’, is sometimes used for either this energy unit or its
half, EH/2 ≈ 13.6 eV. To add to the confusion, the same term ‘Rydberg constant’ is used in some sub-fields of
physics for the reciprocal free-space wavelength (1/λ0 = ω0/2πc) corresponding to the frequency ω0 = EH/2ℏ.
13 This fact was first noticed and discussed in 1924 by L de Broglie (in his PhD thesis!), so that instead of
wavefunctions, especially of free particles, we are still frequently speaking of the de Broglie waves.
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perimeter: 2πr ≡ 2πℏn/p = nλ. Dividing both parts of the last relation by n, we see
that for this statement to be true, the wave number k ≡ 2π/λ of the de Broglie waves
should be proportional to the electron’s momentum =p mv:

= ℏp k, (1.14)

again with the same Planck’s constant as in Eq. (1.5).

(iv) The Compton effect14 is the reduction of frequency of x-rays at their scattering
on free (or nearly-free) electrons—see figure 1.4. The effect may be explained
assuming that the x-ray photon also has a momentum that obeys the vector-
generalized version of Eq. (1.14):

ω= ℏ = ℏ
c

p k n, (1.15)photon

where k is the wavevector (whose magnitude is equal to the wave number k, and
direction coincides with the unit vector, n, directed along the wave propagation15),
and that the momenta magnitudes of both the photon and the electron are related to
their energies E by the classical relativistic formula16

= +E cp mc( ) ( ) . (1.16)2 2 2 2

(For a photon, the rest energy is zero, and this relation is reduced to Eq. (1.5): E =
cp = ℏk = ℏω.) Indeed, a straightforward solution of the following system of three
equations,

ω ωℏ + = ℏ ′ + +m c cp m c[( ) ( ) ] , (1.17)e
2 2

e
2 2 1/2

ω ω θ φℏ = ℏ ′ +
c c

pcos cos , (1.18)

ω θ φ= ℏ ′ −
c

p0 sin sin , (1.19)

Figure 1.4. The Compton effect.

14 This effect was observed (in 1922) and explained a year later by A Compton.
15 See, e.g. Part EM section 7.1.
16 See, e.g. Part EM section 9.3, in particular Eq. (9.78).
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(which describe, respectively, the conservation of the full energy of the system, and
of the two relevant Cartesian components of its full momentum, at the scattering—
see figure 1.4), yields the following result,

ω ω
θ

ℏ ′
=

ℏ
+ −

m c
a

1 1 1
(1 cos ), (1.20 )

e
2

which is traditionally represented as the relation between the initial and final values
of the photon’s wavelength λ = 2π/k = 2π/(ω/c):

λ λ π θ λ λ θ λ π′ = + ℏ − ≡ + − ≡ ℏ
m c m c

b
2

(1 cos ) (1 cos ), with
2

, (1.20 )
e

C C
e

and is in agreement with experiment17.

(v) De Broglie wave diffraction. In 1927, following the suggestion by W Elassger
(who was excited by the de Broglie’s conjecture of ‘matter waves’), C Davisson and
L Germer, and independently G Thomson succeeded in observing the diffraction of
electrons on solid crystals (figure 1.5). Specifically, they have found that the intensity
of the elastic reflection of electrons from a crystal increases sharply when the angle α
between the incident beam of electrons and the crystal’s atomic planes, separated by
distance d, satisfies the following relation:

α λ=d n2 sin , (1.21)

where λ = 2π/k = 2πℏ/p is the de Broglie wavelength of the electrons, and n is an
integer. As figure 1.5 shows, this is just the well-known condition18 that the path

Figure 1.5. The De Broglie wave interference at electron scattering from a crystal lattice.

17 The constant λC, which participates in this relation, is close to 2.46 × 10−12 m, and is called the Compton
wavelength of the electron. This term is somewhat misleading: as the reader can see from Eqs. (1.17)–(1.19), no
wave in the Compton problem has such a wavelength—either before or after the scattering.
18 See, e.g. Part EM section 8.4, in particular figure 8.9 and Eq. (8.82). Frequently, Eq. (1.21) is called the
Bragg condition, due to the pioneering experiments by W Bragg with x-ray scattering from crystals (that started
in 1912).
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difference Δl = 2d sin α between the de Broglie waves reflected from two adjacent
crystal planes coincides with an integer number of λ, i.e. of the constructive
interference of the waves19.

To summarize, all the listed effects may be explained starting from two very simple
(and similarly looking) formulas: Eq. (1.5) (at that stage, for photons only), and
Eq. (1.15) for both photons and electrons—both relations involving the same Planck’s
constant. This might give an impression of sufficient experimental evidence to declare
the light consisting of discrete particles (photons), and, conversely, electrons being
some ‘matter waves’ rather than particles. However, by that time (the mid-1920s),
physics had accumulated overwhelming evidence of wave properties of light, such as
interference and diffraction20. In addition, there was also strong evidence for lumped-
particle (‘corpuscular’) behavior of electrons. It is sufficient to mention the famous oil-
drop experiments by R Millikan and H Fletcher (1909–13) in which only single (and
whole!) electrons could be added to an oil drop, changing its total electric charge by
multiples of electron’s charge (−e)—and never its fraction. It was apparently
impossible to reconcile these observations with a purely wave picture, in which an
electron and hence its charge need to be spread over the wave’s extension, so that its
arbitrary part could be cut out using an appropriate experimental setup.

Thus the founding fathers of quantum mechanics faced a formidable task of
reconciling the wave and corpuscular properties of electrons and photons—and
other particles. The decisive breakthrough in that task has been achieved in 1926 by
Ervin Schrödinger and Max Born, who formulated what is now known either
formally as the Schrödinger picture of non-relativistic quantum mechanics of the
orbital motion21 in the coordinate representation (this term will be explained later in
the course), or informally just as the wave mechanics. I will now formulate the main
postulates of this theory.

1.2 Wave mechanics postulates
Let us consider a spinless22, non-relativistic point-like particle, whose classical
dynamics may be described by a certain Hamiltonian functionH(r, p, t),23 where r is
the particle’s radius-vector and p is its momentum24. Wave mechanics of such

19 Later, spectacular experiments with diffraction and interference of heavier particles (with much smaller de
Broglie wavelength), e.g. neutrons and even C60 molecules, have also been performed—see, e.g. a review [2] and a
later publication [3]. Nowadays, such interference of heavy particles is used, for example, for ultrasensitive
measurements of gravity—see, e.g. a popular review [4], and recent advanced experiments [5].
20 See, e.g. Part EM section 8.4.
21 The orbital motion is the historic (and very unfortunate) term used for any motion of the particle as a whole.
22Actually, in wave mechanics, the spin of the described particle has not to be equal zero. Rather, it is assumed
that the spin’s effects on the orbital motion of the particle are negligible.
23As a reminder, for many systems (including those whose kinetic energy is a quadratic-homogeneous function
of generalized velocities, like m /22v ), H coincides with the total energy E—see, e.g. Part CM section 2.3.
24Note that this restriction is very important. In particular, it excludes from our current discussion the particles
whose interaction with their environment is irreversible, for example it provides a friction leading to particle
energy’s decay. Such ‘open’ systems need a more general description, which will be discussed in chapter 7.
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Hamiltonian particles may be based on the following set of postulates25 that are
comfortingly elegant—though their final justification is given only by the agreement
of all their corollaries with experiment.

(i) Wavefunction and probability. Such variables as r or p cannot always be
measured exactly, even at ‘perfect conditions’ when all external uncertainties,
including measurement instrument imperfection, macroscopic uncertainties of the
initial state preparation, and unintended particle interactions with its environment,
have been removed26. Moreover, r and p of the same particle can never be measured
exactly simultaneously. Instead, even the most detailed description of the particle’s
state, allowed by Nature27, is given by a certain complex function Ψ(r, t), called the
wavefunction (or ‘wave function’), which generally enables only probabilistic
predictions of the measured values of r, p, and other directly measurable variables
—in quantum mechanics, usually called observables.

Specifically, the probability dW of finding a particle inside an elementary volume
dV ≡ d3r is proportional to this volume, and hence may be characterized by a
volume-independent probability density w ≡ dW/d3r, which in turn is related to the
wavefunction as

= Ψ ≡ Ψ Ψ*w t t t ar r r( , ) ( , ) ( , ), (1.22 )2

where the sign * denotes the usual complex conjugation. As a result, the total
probability of finding the particle somewhere inside a volume Vmay be calculated as

∫ ∫= = Ψ Ψ*W wd r d r b. (1.22 )
V V

3 3

In particular, if the volume V contains the particle definitely (i.e. with the 100%
probability, W = 1), Eq. (1.22b) is reduced to the so-called normalization condition

∫ Ψ Ψ =* d r c1. (1.22 )
V

3

(ii) Observables and operators. With each observable A, quantum mechanics
associates a certain linear operatorÂ, such that, in the perfect conditions mentioned
above, the average measured value (also called the expectation value) of A is
expressed as28

25Generally, quantum mechanics, as any theory, may be built on different sets of postulates (‘axioms’) leading to
the same conclusions. In this text, I will not try to beat down the number of postulates to the absolute possible
minimum, not only because this would require longer argumentation, but chiefly because such attempts typically
result in making certain implicit assumptions hidden from the reader—a practice as common as it is regrettable.
26 I will imply such perfect conditions further on, until the discussion of particle’s interaction with environment
in chapter 7 and beyond.
27 This is one more important caveat. As will be discussed in detail in chapter 7, in many cases even
Hamiltonian systems cannot be described by certain wavefunctions, and allow only a more general (and less
precise) description, e.g. by the density matrix.
28 This key measurement postulate is sometimes called the Born rule, though sometimes this term is used for the
(less general) Eqs. (1.22).
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∫= Ψ ˆΨ*A A d r, (1.23)
V

3

where 〈…〉means the statistical average, i.e. the result of averaging the measurement
results over a large ensemble (set) of macroscopically similar experiments, and Ψ is
the normalized wavefunction, which obeys Eq. (1.22c). Note immediately that for
Eqs. (1.22) and (1.23) to be compatible, the identity (‘unit’) operator defined by the
relation

ˆΨ = ΨI , (1.24)

has to be associated with a particular type of measurement, namely with the
particle’s detection.

(iii) The Hamiltonian and the Schrödinger equation. Another particular operator,
the Hamiltonian Ĥ , whose observable is the particle’s energy E, also plays in wave
mechanics a very special role, because it participates in the Schrödinger equation,

ℏ∂Ψ
∂

= ˆ Ψi
t

H , (1.25)

that determines the wavefunction’s dynamics, i.e. its time evolution.

(iv) The radius-vector and momentum operators. In the wave mechanics, i.e. in the
coordinate representation, the (vector-) operator of particle’s radius-vector r just
multiples the wavefunction by this vector, while the operator of particle’s momen-
tum29 is proportional to the spatial derivative:

ˆ ˆ ∇= = − ℏi ar r p, , (1.26 )

where ∇ is the del (or ‘nabla’) vector operator30. Thus in the Cartesian coordinates,

ˆ ˆ= = = − ℏ ∂
∂

∂
∂

∂
∂

x y z i
x y z

br r p{ , , }, , , . (1.26 )
⎧⎨⎩

⎫⎬⎭
(v) The correspondence principle. In the limit when quantum effects are insignificant,
e.g. when the characteristic scale of action31 (i.e. the product of the relevant energy
and time scales of the problem) is much larger than Planck’s constant ℏ, all wave
mechanics results have to tend to those given by classical mechanics.
Mathematically, this correspondence is achieved by duplicating the classical
relations between various observables by similar relations between the correspond-
ing operators. For example, for a free particle, the Hamiltonian (which in this
particular case corresponds to the kinetic energy T = p2/2m alone) has the form

29For an electrically charged particle in magnetic field, this relation is valid for its canonical momentum—see
section 3.1 below.
30 See, e.g. sections 8–10 of the Selected Mathematical Formulas appendix (appendix A). Note that according
to these formulas, the del operator follows all the geometric rules of the usual vectors. This is, by definition,
true for other vector operators of quantum mechanics—to be discussed below.
31 See, e.g. Part CM section 10.3.
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ˆ = ˆ =
ˆ

= − ℏ ∇H T
p
m m2 2

. (1.27)
2 2

2

Now, even before a deeper discussion of the postulates’ physics (offered in the
next section), we may immediately see that they indeed provide a formal way toward
the resolution of the apparent contradiction between the wave and corpuscular
properties of particles. For a free particle, the Schrödinger equation (1.25), with the
substitution of Eq. (1.27), takes the form

ℏ∂Ψ
∂

= − ℏ ∇ Ψi
t m2

, (1.28)
2

2

whose particular, but most important solution is a plane, single-frequency (‘mono-
chromatic’) traveling wave32,

Ψ = ω⋅ −t aer( , ) , (1.29)i tk r( )

where a, k and ω are constants. Indeed, plugging Eq. (1.29) into Eq. (1.28), we
immediately see that the plane wave, with an arbitrary amplitude a, is indeed a
solution of this Schrödinger equation, provided a specific dispersion relation between
the wavevector k and the frequency ω:

ωℏ = ℏk
m

( )
2

. (1.30)
2

The constant a may be calculated, for example, assuming that the wave (1.29) is
extended over a certain volume V, while beyond it, Ψ = 0. Then from the
normalization condition (1.22c) and Eq. (1.29), we get33

=a V 1. (1.31)2

Now we can use Eqs. (1.23), (1.26) and (1.27) to calculate the expectation values
of the particle’s momentum p and energy E (which, for a free particle, coincides with
its Hamiltonian function H). The result is

= ℏ = = ℏ
E H

k
m

p k,
( )
2

; (1.32)
2

according to Eq. (1.30), the last equality may be rewritten as 〈E〉 = ℏω.
Next, Eq. (1.23) enables us to calculate not only the average (in the math speak,

the first moment) of an observable, but also its higher moments, notably the second
moment (in physics, usually called either the variance or dispersion):

˜ ≡ − = −A A A A A( ) , (1.33)2 2 2 2

and hence its root mean square (rms) fluctuation,

32 See, e.g. Part CM section 6.4 and/or Part EM section 7.1.
33 For infinite space (V → ∞), Eq. (1.31) yields a → 0, i.e. wavefunction (1.29) vanishes. This formal problem
may be readily resolved considering sufficiently long wave packets—see section 2.2 below.
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δ ≡ ˜A A , (1.34)2 1/2

that characterizes the scale of deviations ˜ ≡ −A A A of measurement results from
the average, i.e. the uncertainty of the observable A. In the particular case when the
uncertainty δA equals zero, every measurement of the observable A will give the
value 〈A〉; such a state is said to have a definite value of the variable. For example, in
application to the wavefunction (1.29), these relations yield δE = 0, δp = 0. This
means that in the plane-wave, monochromatic state (1.29), the energy and momen-
tum of the particle have definite values, so that the statistical average signs in
Eqs. (1.32) might be removed. Thus, these relations are reduced to the experimen-
tally-inferred Eqs. (1.5) and (1.15)—though the relation of k and ω to experimental
observations still has to be clarified.

Hence the wave mechanics postulates may indeed explain the observed wave
properties of non-relativistic particles. (For photons, we would need a relativistic
formalism—see chapter 9 below.) On the other hand, due to the linearity of the
Schrödinger equation (1.25), any sum of its solutions is also a solution—the so-called
linear superposition principle. For a free particle, this means that any set of plane waves
(1.29) is also a solution of this equation. Such sets, with close values of k and hence p =
ℏk (and, according to Eq. (1.30), of ω as well), may be used to describe spatially
localized ‘pulses’, called wave packets––see figure 1.6. In section 2.1, I will prove (or
rather reproduce HWeyl’s proof) that the wave packet’s extension δx in any direction
(say, x) is related to the width δkx of the distribution of the corresponding component
of its wave vector as δxδkx ⩾½, and hence, according to Eq. (1.15), to the width δpx of
the momentum component distribution as

δ δ⋅ ⩾ ℏ
x p

2
. (1.35)x

This is the famous Heisenberg’s uncertainty principle, which quantifies the first
postulate’s point that the coordinate and the momentum cannot be defined exactly
simultaneously. However, since Planck’s constant, ℏ ∼ 10−34 J s, is extremely small
on the human scale of things, it still allows for a particle’s localization in a very small
volume even if the momentum spread in the wave packet is also small on that scale.

Figure 1.6. (a) A snapshot of a typical wave packet propagating along axis x, and (b) the corresponding
distribution of the wave numbers kx, i.e. the momenta px.
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For example, according to Eq. (1.35), a 0.1% spread of momentum of a 1 keV
electron ( p ∼ 1.7 × 10−24 kg m s−1) allows its wave packet to be as small as ∼3 ×
10−10 m. (For a heavier particle such as a proton, the packet would be even tighter.)
As a result, wave packets may be used to describe the particles that are quite point-
like from the macroscopic point of view.

In a nutshell, this is the main idea of the wave mechanics, and the first part of this
course (chapters 1–3) will be essentially a discussion of various effects described by
this approach. During this discussion, however, we will not only evidence wave
mechanics’ many triumphs within its applicability domain, but also gradually
accumulate evidence for its handicaps, which will force an eventual transfer to a
more general formalism—to be discussed in chapter 4 and beyond.

1.3 Postulates’ discussion
The wave mechanics’ postulates listed in the previous section (hopefully, familiar to
reader from his or her undergraduate studies) may look very simple. However, the
physics of these axioms is very deep, leading to some counter-intuitive conclusions,
and their in-depth discussion requires solutions of several key problems of wave
mechanics. This is why in this section I will give only an initial, admittedly
superficial discussion of the postulates, and will be repeatedly returning to the
conceptual foundations of quantum mechanics throughout the course, especially in
chapter 10.

First of all, the fundamental uncertainty of observables, which is in the core of the
first postulate, is very foreign to the basic ideas of classical mechanics, and historically
has made the quantummechanics so hard to swallow for many star physicists, notably
including A Einstein—despite his 1905 work, which essentially launched the whole
field! However, this fact has been confirmed by numerous experiments, and (more
importantly) there has not been a single confirmed experiment which would contradict
this postulate, so that quantum mechanics was long ago promoted from a theoretical
hypothesis to the rank of a reliable scientific theory.

One more remark in this context is that Eq. (1.25) itself is deterministic, i.e.
conceptually enables an exact calculation of the wavefunction’s distribution in space
at any instant t, provided that its initial distribution, and the particle’s Hamiltonian,
are known exactly. Note that in the classical statistical mechanics, the probability
density distribution w(r, t) may be also calculated from deterministic differential
equations, for example the Liouville equation34. The quantum-mechanical descrip-
tion differs from that situation in two important aspects. First, in the perfect
conditions outlined above (the exact initial state preparation and the best possible
measurements), the Liouville equation reduces to the 2nd Newton law of classical
mechanics, i.e. the statistical uncertainty disappears. In quantum mechanics this is
not true: the quantum uncertainly, such as described by Eq. (1.35), persists even in
this limit. Second, the wavefunction Ψ(r, t) gives more information than just w(r, t),
because besides the modulus of Ψ, involved in Eq. (1.22), this complex function also

34 See, e.g. Part SM section 6.1.
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has the phase φ ≡ arg Ψ, which may affect some observables, describing, in
particular, the interference of the de Broglie waves.

Next, it is very important to understand that the relation between the quantum
mechanics and experiment, given by the second postulate, necessarily involves another
key notion: that of the corresponding statistical ensemble. This ensemble may be
defined as a set of many experiments carried out at apparently (macroscopically)
similar conditions, including the initial conditions, which nevertheless may lead to
different measurement results (outcomes). Indeed, the probability of a certain (nth)
outcome of an experiment may be only defined for a certain ensemble, as the limit

∑≡ ≡
=

→∞W
M
M

M Mlim , with , (1.36)
n

N

1

n M
n

n

where M is the total number of experiments, Mn is the number of outcomes of the
nth type, and N is the number of different outcomes.

Note that a particular choice of an ensemble may affect probabilities Wn very
significantly. For example, if we pull out playing cards at random from a standard
pack of 52 different cards of 4 suits, the probability Wn of getting a certain card (e.g.
the queen of spades) is 1/52. However, if the cards of a certain suit (say, hearts) had
been taken out from the pack in advance, the probability of getting the queen of
spades is higher, 1/39. It is important that we would also get the last number for the
probability even if we had used the full 52 card pack, but by some reason discarded
results of all experiments giving us any rank of hearts. Hence, the ensemble definition
(or its re-definition in the middle of the game) may change outcome probabilities.

In quantum wave mechanics, with its fundamental relation (1.22) between w and
Ψ, this means not only the outcome probabilities, but the wavefunction itself also
may depend on the statistical ensemble we are using, i.e. not only on the preparation
of the system and the experimental setup, but also on the subset of outcomes taken
into account. The sometimes accounted attribution of the wavefunction to a single
experiment, both before and after the measurement, may lead to very unphysical
interpretations of the results, including a wavefunction’s evolution not described by
the Schrödinger equation (the so-called wave packet reduction), subluminal action
on distance, etc. Later in the course we will see that minding the fundamentally
statistical nature of quantum mechanics, and in particular the dependence of
wavefunctions on the statistical ensembles’ definition (or re-definition), readily
resolves some, though not all, paradoxes of quantum measurements.

Note, however, that the standard quantum mechanics, as discussed in chapters 1–6
of this course, is limited to statistical ensembles with the least uncertainty of
the considered systems, i.e. with best possible knowledge about their state35. This
condition requires, first, the least uncertain initial preparation of the system, and

35The reader should not be surprised by the use of the notion of ‘knowledge’ (or ‘information’) in this context.
Indeed, due to the statistical character of experiment outcomes, quantum mechanics (or at least its relation to
experiment) is intimately related to the information theory. In contrast to much of classical physics, which may
be discussed without any reference to information, in quantum mechanics, as in classical statistical physics,
such abstraction is possible only in some very special (and not the most interesting) cases.
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second, its total isolation from the rest of the world, or at least from its disordered part
(the ‘environment’), in the course of its evolution in time. Only such ensembles may be
described by certain wavefunctions. A detailed discussion of more general ensembles,
which are necessary if these conditions are not satisfied, will be given in chapters 7, 8,
and 10.

Finally, regarding Eq. (1.23), a better feeling of this definition may be obtained by
its comparison with the general definition of the expectation value (i.e. the statistical
average) in the probability theory. Namely, let each of N possible outcomes in a set
of M experiments give a certain value An of observable A; then

∑ ∑≡ =
= =

→∞A
M

A M A Wlim
1

. (1.37)
n

N

n

N

1 1

M n n n n

Taking into account Eq. (1.22), which relates W and Ψ, the structures of Eq. (1.23)
and the final form of Eq. (1.37) are similar. Their exact relation will be further
discussed in section 4.1.

1.4 Continuity equation
The wave mechanics postulates survive one more sanity check: they satisfy the
natural requirement that the particle does not appear or vanish in the course of the
quantum evolution36. Indeed, let us use Eq. (1.22) to calculate the rate of change of
the probability W to find a particle within a certain volume V:

∫= ΨΨ*dW
dt

d
dt

d r. (1.38)
V

3

Assuming for simplicity that the boundaries of the volume V do not move, it is
sufficient to carry out the partial differentiation of the product ΨΨ* inside the
integral. Using the Schrödinger equation (1.25), together with its complex conjugate,

− ℏ∂Ψ
∂

= ˆ Ψ
*

*i
t

H( ) , (1.39)

we readily get

∫ ∫

∫

= ∂
∂

ΨΨ ≡ Ψ ∂Ψ
∂

+ Ψ ∂Ψ
∂

=
ℏ

Ψ ˆ Ψ − Ψ ˆ Ψ

* *
*

* *

dW
dt t

d r
t t

d r

i
H H d r

( )

1
[ ( ) ( ) ] .

(1.40)V V

V

3 3

3

⎛
⎝⎜

⎞
⎠⎟

Let the particle move in a field of external forces (not necessarily constant in
time), so that its classical Hamiltonian function H is the sum of the particle’s kinetic

36Note that this requirement may be violated in the relativistic quantum theory—see chapter 9.
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energy T = p2/2m and its potential energy U(r, t).37 According to the correspondence
principle, and Eq. (1.27), the Hamiltonian operator may be represented as the sum38,

ˆ = ˆ + ˆ =
ˆ

+ = − ℏ ∇ +H T U
p
m

U t
m

U tr r
2

( , )
2

( , ). (1.41)
2 2

2

At this stage we should notice that this operator, when acting on a real function,
returns a real function39. Hence, the result of its action on an arbitrary complex
function Ψ = a + ib (where a and b are real) is

ˆ Ψ = ˆ + = ˆ + ˆH H a ib Ha iHb( ) , (1.42)

where Ĥa and Ĥb are also real, while

ˆ Ψ = ˆ + ˆ = ˆ − ˆ = ˆ − = ˆ Ψ* * *H Ha iHb Ha iHb H a ib H( ) ( ) ( ) . (1.43)

This means that Eq. (1.40) may be rewritten as

∫

∫

=
ℏ

Ψ ˆ Ψ − Ψ ˆ Ψ

= − ℏ
ℏ

Ψ ∇ Ψ − Ψ∇ Ψ

* *

* *

dW
dt i

H H d r

m i
d r

1
[ ]

2
1

[ ]
(1.44)V

V

3

2
2 2 3

Now, let us use general rules of vector calculus40 to write the following identity:

∇ ∇ ∇⋅ Ψ Ψ − Ψ Ψ = Ψ ∇ Ψ − Ψ∇ Ψ* * * *( ) , (1.45)2 2

A comparison of Eqs. (1.44) and (1.45) shows that we may write

∫ ∇= − ⋅dW
dt

d rj( ) , (1.46)
V

3

where the vector j is defined as

∇ ∇≡ ℏ Ψ Ψ − ≡ ℏ Ψ Ψ* *i
m m

j
2

( c.c.) Im( ), (1.47)

where c.c. means the complex conjugate of the previous expression—in this case,
∇ ∇Ψ Ψ Ψ Ψ* * *( ) , i.e. . Now using the well-known divergence theorem41, Eq. (1.46)

may be rewritten as the continuity equation

37As a reminder, such description is valid not only for conservative forces (in that case U has to be time-
independent), but also for any force F(r, t) that may be expressed via the gradient of U(r, t)—see, e.g. Part CM
chapters 2 and 10. (A good example when such a description is impossible is given by the magnetic component
of the Lorentz force—see, e.g. Part EM section 9.7, and also section 3.1 below.)
38Historically, this was the main step made (in 1926) by E Schrödinger on the background of L de Broglie’s
idea. The probabilistic interpretation of the wavefunction was put forward, almost simultaneously, by M Born.
39 In chapter 4, we will discuss a more general family of Hermitian operators, which have this property.
40 See, e.g. Eq. (A.11.4a), combined with the del operator’s definition ∇2 ≡ ∇ · ∇.
41 See, e.g. Eq. (A.12.2).
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∫+ = ≡dW
dt

I I j d r0, with , (1.48)
S

n
2

where jn is the component of the vector j along the outwardly directed normal to the
closed surface S that limits volume V, i.e. the scalar product j · n, where n is the unit
vector along this normal.

Eqs (1.47) and (1.48) show that if the wavefunction on the surface vanishes, the
total probability W of finding the particle within the volume does not change,
providing the required sanity check. In the general case, Eq. (1.48) says that dW/dt
equals the flux I of the vector j through the surface, with the minus sign. It is clear
that this vector may be interpreted as the probability current density—and I, as the
total probability current through the surface S. This interpretation may be further
supported by rewriting Eq. (1.47) for the wavefunction represented in the polar form
Ψ = aeiφ, with real a and φ:

ϕ∇= ℏ
a

m
j . (1.49)2

Note that for a real wavefunction, or even for a wavefunction with an arbitrary but
space-constant phase φ, the probability current density vanishes. In contrast, for the
traveling wave (1.29), with a constant probability density w = a2, Eq. (1.49) yields a
non-zero (and physically very transparent) result:

= ℏ = =w
m

w
m

wj k
p

v, (1.50)

where v = p/m is particle’s velocity. If multiplied by the particle’s mass m, the
probability density w turns into the (average) mass density ρ, and the probability
current density—into the mass flux density ρv. Similarly, if multiplied by the total
electric charge q of the particle, with w turning into the charge density σ, j becomes
the electric current density. As the reader (hopefully :-) knows, both currents satisfy
classical continuity equations similar to Eq. (1.48)42.

Finally, let us recast the continuity equation, rewriting Eq. (1.46) as

∫ ∇∂
∂

+ ⋅ =w
t

d rj 0. (1.51)
V

3⎜ ⎟⎛
⎝

⎞
⎠

Now we may argue that this equality may be true for any choice of volume V only if
the expression under the integral vanishes everywhere, i.e. if

∇∂
∂

+ ⋅ =w
t

j 0. (1.52)

This differential form of the continuity equation may be more convenient than its
integral form (1.48).

42 See, e.g. respectively, Part CM section 8.3 and Part EM section 4.1.
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1.5 Eigenstates and eigenvalues
Now let us discuss the most important corollaries of wave mechanics’ linearity. First
of all, it uses only linear operators. This term means that the operators must obey the
following two rules43:

ˆ + ˆ Ψ = ˆ Ψ + ˆ ΨA A A A( ) , (1.53)1 2 1 2

ˆ Ψ + Ψ = ˆ Ψ + ˆ Ψ = ˆΨ + ˆΨA c c A c A c c A c A( ) ( ) ( ) , (1.54)1 1 2 2 1 1 2 2 1 1 2 2

where Ψn are arbitrary wavefunctions, while cn are arbitrary constants (in quantum
mechanics, frequently called c-numbers, to distinguish them from operators and
wavefunctions). The most important examples of linear operators are given by:

(i) the multiplication by a function, such as for the operator r̂ given by Eq. (1.26),
and

(ii) the spatial or temporal differentiation of the wavefunction, such as in Eqs.
(1.25)–(1.27).

Next, it is of key importance that the Schrödinger equation (1.25) is also linear.
(We have already used this fact when we discussed wave packets in the last section.)
This means that if each of several functions Ψn are (particular) solutions of Eq. (1.25)
with a certain Hamiltonian, then their arbitrary linear combination

∑Ψ = Ψc (1.55)
n

n n

is also a solution of the same equation44.
Let us use this linearity to accomplish an apparently impossible feat: immediately

find the general solution of the Schrödinger equation for the most important case
when system’s Hamiltonian does not depend on time explicitly—for example, like in
Eq. (1.41) with time-independent potential energy U = U(r), when the Schrödinger
equation has the form

ℏ∂Ψ
∂

= − ℏ ∇ Ψ + Ψi
t m

U r
2

( ) . (1.56)
2

2

First of all, let us prove that the following product,

ψΨ = a t r( ) ( ), (1.57)n n n

43 By the way, if any equality involving operators is valid for an arbitrary wavefunction, the latter is frequently
dropped from notation, resulting in an operator equality. In particular, Eq. (1.53) may be readily used to prove
that the operators are commutative: ˆ + ˆ = ˆ + ˆA A A A2 1 1 2, and associative: ˆ + ˆ + ˆ = ˆ + ˆ + ˆA A A A A A( ) ( )1 2 3 1 2 3 .
44At first glance, it may seem strange that the linear Schrödinger equation correctly describes quantumproperties
of systems whose classical dynamics is described by nonlinear equations of motion (e.g. an anharmonic oscillator
—see, e.g.Part CM section 5.2). Note, however, that statistical equations of classical dynamics (see, e.g.Part SM
chapters 5 and 6) also have this property, so it is not specific to quantum mechanics.
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qualifies as a (particular) solution of such an equation. Indeed, plugging Eq. (1.56)
into Eq. (1.25) with any time-independent Hamiltonian, using the fact that in this
case

ψ ψˆ = ˆHa t a t Hr r( ) ( ) ( ) ( ), (1.58)n n n n

and dividing both parts of the equation by anψn, we get

ψ
ψ

ℏ =
ˆi

a
da
dt

H
. (1.59)

n

n n

n

The left-hand side of this equation may depend only on time, while the right hand
one depends only on coordinates. These facts may be only reconciled if we assume
that each of these parts is equal to (the same) constant of the dimension of energy,
which I will denote as En.

45 As a result, we are getting two separate equations for the
temporal and spatial parts of the wavefunction:

ψ ψˆ =H E , (1.60)n n n

ℏ =i
da
dt

E a a. (1.61 )n
n n

The latter of these equations, rewritten in the form

= −
ℏ

da
a

i
E

dt b, (1.61 )n

n

n

is readily integrable, giving

ω ω

ω

= − + = × −

≡
ℏ

a i t a i t
E

ln const, so that const exp{ },

with .
(1.62)

n n n n

n
n

Now plugging Eqs. (1.57) and (1.62) into Eq. (1.22), we see that in the quantum state
described by Eqs. (1.57)–(1.62), the probability w of finding the particle at a certain
location does not depend on time:

ψ ψ≡ =*w wr r r( ) ( ) ( ). (1.63)n n

With the same substitution, Eq. (1.23) shows that the expectation value of any
operator that does not depend on time explicitly is also time-independent:

∫ ψ ψ≡ ˆ =*A A d rr r( ) ( ) const. (1.64)n n
3

45 This argumentation, leading to variable separation, is very common in mathematical physics—see, e.g. its
discussion in Part CM section 6.5 and Part EM section 2.5 and beyond.
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Due to this property, the states described by Eqs. (1.57)–(1.62), are called stationary;
they are fully defined by the possible solutions (called eigenfunctions46) of the
stationary (or ‘time-independent’) Schrödinger equation (1.60).47

Note that for the time-independent Hamiltonian (1.41), the stationary
Schrödinger equation (1.60),

ψ ψ ψ− ℏ ∇ + =
m

U Er
2

( ) , (1.65)n n n n

2
2

is a linear, homogeneous differential equation for the function ψn, with a priory
unknown parameter En. Such equations fall into the mathematical category of
eigenproblems, in which the eigenfunctions ψn and eigenvalues En should be found
simultaneously, i.e. self-consistently48. Mathematics tells us that for the such
equations with space-confined eigenfunctions ψn, tending to zero at r → ∞, the
spectrum of eigenvalues is discrete. It also proves that the eigenfunctions corre-
sponding to different eigenvalues are orthogonal, i.e. that space integrals of the
products ψ ψ ′

*
n n vanish for all pairs with n ≠ n′. Due to the Schrödinger equation’s

linearity, each of these functions may be multiplied by a proper constant coefficient
to make their set orthonormal:

∫ ψ ψ δ= ≡ = ′
≠ ′

*
′ ′d r

n n
n n

1, if ,
0, if .

(1.66)n n n n
3

,

⎧⎨⎩
Moreover, the eigenfunctions ψn(r) form a full set, meaning that an arbitrary
function ψ(r), in particular the actual wavefunction Ψ of the system in the initial
moment of its evolution (which I will take for t = 0, with a few exceptions), may be
represented as a unique expansion over the eigenfunction set49:

∑ ψΨ = cr r( , 0) ( ). (1.67)
n

n n

The expansion coefficients cn may be readily found by multiplying both parts of
Eq. (1.67) by ψ ′

*
n , integrating the result over the space, and using Eq. (1.66). The result is

∫ ψ= Ψ*c d rr r( ) ( , 0) . (1.68)n n
3

Now let us consider the following wavefunction

∑ ∑ψ ψΨ = = −
ℏ{ }t c a t c i
E

tr r r( , ) ( ) ( ) exp ( ). (1.69)
n n

n k k n
n

n

46 From the German root eigen, meaning ‘particular’ or ‘characteristic’.
47 For contrast, the full Schrödinger equation (1.25) is frequently called time-dependent or non-stationary.
48 Eigenvalues of energy are frequently called eigenenergies, and it is often said that eigenfunction ψn and
eigenenergy En together characterize the nth stationary eigenstate of the system.
49 If the reader has any doubt in these properties of linear, homogeneous differential equations, I may recommend
reviewing section 9.3 of the wonderful handbook by G Korn and T Korn, listed in section A.16 (ii).
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Since each term of the sum has the form (1.57) and satisfies the Schrödinger
equation, so does the sum as the whole. Moreover, if the coefficients cn are derived in
accordance with Eq. (1.68), then the solution (1.69) satisfies the initial conditions as
well. At this moment we can use one more bit of help from mathematicians, who tell
us that the linear, partial differential equation of type (1.65), with fixed initial
conditions, may have only one (unique) solution. This means that in our case of
motion in a time-independent potential Hamiltonian, Eq. (1.69) gives the general
solution of the Schrödinger equation (1.65).

So, we have succeeded in our apparently over-ambitious goal. Now let us stop this
mad mathematical dash for a minute, and discuss this key result.

1.6 Time evolution
For the time-dependent factor, an(t), of each component state (1.57) of the general
solution (1.69), our procedure gave a very simple and universal result (1.62),
describing a linear change of the phase φn ≡ arg(an) of this complex function in
time, with the constant rate

φ
ω= − = −

ℏ
d

dt
E

, (1.70)n
n

n

so that the real and imaginary parts of an oscillate sinusoidally with this frequency.
The relation (1.70) coincides with the Einstein’s conjecture (1.5) for photons, but
could these oscillations of the wavefunctions represent a physical reality? Indeed, for
photons, described by Eq. (1.5), E may be (and as we will see in chapter 9, is) the
actual, well-defined energy of one photon, and ω is the frequency of the radiation so
quantized. However, for non-relativistic particles, described by wave mechanics, the
potential energy U, and hence the full energy E, are defined to an arbitrary constant,
because we may measure them from an arbitrary reference level. How can such a
change of the energy reference level (which may be made just in our mind) alter the
frequency of oscillations of a variable?

According to Eqs. (1.22) and (1.23), this time evolution of a wavefunction does
not affect the particle’s probability distribution, or even any observable (including
the energy E, provided that it is always referred to the same origin as U), in any
stationary state. However, as will be proved later in the course using the
combination of Einstein’s formula (1.5) with Bohr’s assumption (1.7),

ωℏ = −′ ′E E , (1.71)nn n n

the difference of the eigenfrequencies ωn (evidently, independent on the energy
reference) of two eigenstates is absolutely physical, because it determines the
measurable frequency of the electromagnetic radiation (or possibly a wave of a
different physical nature) emitted or absorbed at the quantum transition between the
states.

As one more example, consider two similar, independent particles 1 and 2, each in
the same (say, the lowest, ground) eigenstate, but with the potential energies (and
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hence the ground state energies E1,2) different by a constant ΔU ≡ U1 − U2. Then,
according to Eq. (1.70), the difference φ ≡ φ1 − φ2 of their wavefunction phases
evolves in time with a reference-independent rate

φ = −Δ
ℏ

d
dt

U
. (1.72)

Certain measurement instruments, weakly coupled to each particle, may allow an
observation of this evolution, while keeping the particle’s quantum dynamics
virtually unperturbed, i.e. Eq. (1.70) intact. Perhaps the most dramatic measurement
of this type is possible using the Josephson effect in weak links between two
superconductors—see figure 1.7.

As a brief reminder50, superconductivity may be explained by a specific coupling
between conduction electrons in solids, that leads, at low temperatures, to the
formation of the so-called Cooper pairs. Such pairs, each consisting of two electrons
with opposite spins and momenta, behave as Bose particles, and form a coherent
Bose–Einstein condensate51. Most properties of such a condensate may be described
by a single, common wavefunction Ψ, evolving in time just as that of a free particle,
with the effective potential energy U = qϕ = −2eϕ, where ϕ is the electrochemical
potential52, and q = −2e is the electric charge of a Cooper pair. As a result, for the
system shown in figure 1.7, in which an externally applied voltage V fixes the
difference ϕ1 − ϕ2 between the electrochemical potentials of two bulk super-
conductors, Eq. (1.72) takes the form

φ =
ℏ

d
dt

e
V

2
, (1.73)

where V = ϕ1 − ϕ2 is the applied voltage. If the link between the superconductors is
weak enough, the electric current I of the Cooper pairs (called the supercurrent)
through the link may be approximately described by the following simple relation53,

Figure 1.7. The Josephson effect in a weak link between two bulk superconductor electrodes.

50 For a more detailed discussion, including the derivation of Eq. (1.74), see, e.g. Part EM section 6.5.
51A detailed discussion of the Bose–Einstein condensation may be found, e.g. in Part SM section 3.4.
52 For more on this notion see, e.g. Part SM section 6.3.
53 In some cases, the function I(φ) may somewhat deviate from Eq. (1.74), but these deviations do not affect its
fundamental 2π-periodicity. As a result, no corrections to the fundamental relations (1.75)–(1.76) have ever
been found (yet :-).
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φ=I I sin , (1.74)c

where Ic is some constant, dependent on the weak link’s strength. Now combining
Eqs. (1.73) and (1.74), we see that if the applied voltage V is constant in time, the
current oscillates sinusoidally, with the so-called Josephson frequency

ω ≡
ℏ
e

V
2

, (1.75)J

as high as ∼484 MHz per each microvolt of applied dc voltage. This effect may be
readily observed experimentally: though its direct detection is a bit tricky, it is easy
to observe the phase locking (synchronization)54 of the Josephson oscillations by an
external microwave signal of frequency ω. Such phase locking results in the relation
ωJ = nω fulfilled within certain current intervals, and hence in the formation, on the
weak-link’s dc I–V curve, of virtually vertical current steps at dc voltages

ω= ℏ
V n

e2
, (1.76)n

where n is an integer55. Since frequencies may be stabilized and measured with very
high precision, this effect is being used in highly accurate standards of dc voltage.

1.7 Spatial dependence
In contrast to the simple and universal time dependence (1.62) of the stationary
states, the spatial distributions of their wavefunction ψn(r) need to be calculated from
the problem-specific stationary Schrödinger equation (1.65). The solution of this
equation for various particular cases is a major focus of the next two chapters. For
now, let us consider just the simplest example, which nevertheless will be the basis
for our discussion of more complex problems, namely a particle confined inside a
rectangular hard-wall box. Such confinement may be described by the following
potential energy56:

=
< < < < < <

+ ∞
U

x a y a z a
r( )

0, for 0 , 0 , and 0 ,

, otherwise.
(1.77)x y z⎧⎨⎩

The only way to keep the product U(r)ψn in Eq. (1.65) finite outside the box, is to
have ψ = 0 in these regions. Also, the function have to be continuous everywhere, to
avoid the divergence of its Laplace operator—which would give an unphysical

54 For the discussion of this general effect, see, e.g. Part CM section 5.4.
55 If ω is not too high, the size of these current steps may be calculated from Eqs. (1.73) and (1.74). Let me leave
this task for the reader’s exercise.
56Another common name for such potentials, especially of lower dimensionality, is the potential well, in our
current case with a flat ‘bottom’, and infinitely high ‘walls’. Note that sometimes, very unfortunately, such
potential profiles are called ‘quantum wells’. (This term seems to imply that the particle’s confinement in such a
well is a phenomenon specific for quantum mechanics. However, as we will repeatedly see in this course, the
opposite is true: quantum effects do as much as they can to overcome the particle’s confinement in a potential
well, letting it partly penetrate the ‘classically forbidden’ regions beyond the well’s walls.)
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divergence of its kinetic energy (1.27). Hence, we may solve the stationary
Schrödinger equation (1.60) just inside the box, i.e. with U = 0, so that it takes a
simple form57

ψ ψ− ℏ ∇ =
m

E a
2

, (1.78 )n n n

2
2

with zero boundary conditions on all the walls. For our particular geometry, it is
natural to express the Laplace operator in the Cartesian coordinates {x, y, z} aligned
with the box sides, with the origin at one of the corners of its rectangular ax × ay × az
volume, so that we get the following boundary problem:

ψ ψ

ψ

− ℏ ∂
∂

+ ∂
∂

+ ∂
∂

=

< < < < < <
= = = =

m x y z
E

x a y a z a

x a y a z a

b
2

,

for 0 , 0 , and 0 ,

with 0 for: 0 and ; 0 and ; 0 and .

(1.78 )
n n n

x y z

n x y z

2 2

2

2

2

2

2

⎛
⎝⎜

⎞
⎠⎟

This problem may be readily solved using the same variable separation method as
in section 1.5, now to separate the Cartesian spatial variables from each other, by
looking for a partial solution of Eq. (1.78) in the form

ψ = X x Y y Z zr( ) ( ) ( ) ( ). (1.79)

(It is convenient to postpone taking care of the proper indices for a minute.)
Plugging this expression into Eq. (1.78b) and dividing all terms by the product XYZ,
we get

− ℏ − ℏ − ℏ =
m X

d X
dx m Y

d Y
dy m Z

d Z
dz

E
2

1
2

1
2

1
. (1.80)

2 2

2

2 2

2

2 2

2

Now let us repeat the standard argumentation of the variable separation method:
since each term on the left-hand side of this equation may be only a function of the
corresponding argument, the equality is possible only if each of them is a constant—
in our case, with the dimensionality of energy. Calling these constants Ex, etc, we get
three similar 1D equations

− ℏ = − ℏ = − ℏ =
m X

d X
dx

E
m Y

d Y
dy

E
m Z

d Z
dx

E
2

1
,

2
1

,
2

1
, (1.81)x y z

2 2

2

2 2

2

2 2

2

with Eq. (1.80) turning into the following energy-matching condition:

+ + =E E E E. (1.82)x y z

57Rewritten as ∇2f + k2f = 0, this is just the Helmholtz equation, which describes waves of any nature (with the
wave vector k) in a uniform, isotropic, linear medium—see, e.g. Part EM sections 7.5–7.9 and 8.5.
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All three ordinary differential equation (1.81), and their solutions, are similar.
For example, for X(x), we have a 1D Helmholtz equation

+ = ≡
ℏ

d X
dx

k X k
mE

0, with
2

, (1.83)x x
x

2

2
2 2

2

and simple boundary conditions: X(0) = X(ax) = 0. Let me hope that the reader
knows how to solve this well-known 1D boundary problem—describing, for
example, the usual mechanical waves on a guitar string. The problem allows an
infinite number of sinusoidal standing-wave eigenfunctions58,

π

π

∝ =

= = …

X k x k
n
a

X
a

nx
a

n

sin , with ,

so that
2

sin , with 1, 2, ,
(1.84)

x x
x

x

x

x

x
x

1/2⎛
⎝⎜

⎞
⎠⎟

corresponding to the eigenvalues kx = πnx/ax, and hence the following eigenenergies:

π= ℏ = ℏ ≡E
m

k
ma

n E n
2 2

. (1.85)x x
x

x x x

2
2

2 2

2
2

1
2

Figure 1.8 shows these simple results, using a somewhat odd but very graphic and
hence common way, where the eigenenergy values (frequently called the energy
levels) are used as horizontal axes for plotting the eigenfunctions, despite their
completely different dimensionality.

Due to the similarity of all Eqs. (1.81), Y(y) and Z(z) are absolutely similar
functions of their arguments, and may also be numbered by integers (say, ny and nz)
independent of nx, so that the spectrum of values of the total energy (1.82) is

π= ℏ + +E
m

n

a

n

a

n

a2
. (1.86)n n n

x

x

y

y

z

z
, ,

2 2 2

2

2

2

2

2x y z

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

Figure 1.8. The lowest eigenfunctions (solid lines) and eigenvalues (dashed lines) of Eq. (1.83) for a potential
well of length ax. Solid black lines show the effective potential energy profile for the 1D eigenproblem (1.83).

58 The front coefficient in the last expression for X ensures the (ortho)normality condition (1.66).
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Thus, in this 3D problem, the role of index n in the general Eq. (1.69) is played by
a set of 3 independent integers {nx, ny, nz}. In quantum mechanics, such integers play
a key role, and thus have a special name, the quantum numbers. Using them, the
general solution of our simple problem may be represented as the sum

∑ π π πΨ = −
ℏ=

∞

t c
n x
a

n y

a
n z
a

i
E

tr( , ) sin sin sin exp , (1.87)
n n n, , 1

n n n
x

x

y

y

z

z

n n n
, ,

, ,

x y z

x y z

x y z
⎧⎨⎩

⎫⎬⎭

with the front coefficients that may be readily calculated from the initial wave-
function Ψ(r, 0), using Eq. (1.68)—again with the replacement n → {nx, ny, nz}. This
simplest problem is a good illustration of typical results the wave mechanics gives for
spatially-confined motion, including the discrete energy spectrum, and (in this case,
evidently) orthogonal eigenfunctions. Perhaps most importantly, its solution shows
that the lowest value of the particle’s kinetic energy, reached in the so-called ground
state (in our case, the state with nx = ny = nz = 1) is above zero.

An example of the opposite case of a continuous spectrum for unconfined motion of
a free particle is given by the plane waves (1.29). With the account of relations
E = ℏω and p = ℏk, this wavefunction may be viewed as the product of the time-
dependent factor (1.62) by the eigenfunction,

ψ = ⋅a ik rexp{ }, (1.88)k k

which is the solution of the stationary Schrödinger equation (1.78a) if it is valid in
the whole space59. The reader should not be worried too much by the fact that the
fundamental solution (1.86) in free space is a traveling wave (having, in
particular, a nonvanishing value of the probability current j), while those inside
a quantum box are standing waves, with j = 0, even though the free space may be
legitimately considered as the ultimate limit of a quantum box with volume V =
ax × ay × az → ∞. Indeed, due to the linearity of wave mechanics, two traveling-
wave solutions (1.88) with equal and opposite values of the momentum (and
hence with the same energy) may be readily combined to give a standing-wave
solution, for example, exp{ik · r} + exp{−ik · r} = 2cos (k·r), with the net current
j = 0.60 Thus, depending on convenience for solution of a particular problem, we
can represent the general solution as a sum of either traveling-wave or standing-
wave eigenfunctions.

Since in the unlimited free space there are no boundary conditions to satisfy, the
Cartesian components of the wave vector k in Eq. (1.88) can take any real values.
(This is why it is more convenient to label these wavefunctions, and the correspond-
ing eigenenergies,

59 In some systems (e.g. a particle interacting with a potential well of a finite depth), a discrete energy spectrum
within a certain interval of energies may coexist with a continuous spectrum in a complementary interval.
However, the conceptual philosophy of eigenfunctions and eigenvalues remains the same in this case as well.
60 This is, of course, the general property of waves of any physical nature, propagating in a linear medium—

see, e.g. Part CM section 6.5 and/or Part EM section 7.3.
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= ℏ ⩾E
k
m2

0, (1.89)k

2 2

with their wave vector k rather than an integer index.) However, one aspect of
continuous-spectrum systems requires a bit more math caution: the summation
(1.69) should be replaced by the integration over a continuous index or indices—in
our current case, three Cartesian components of the vector k. The main rule of such
replacement may be readily extracted from Eq. (1.84): according to this relation, for
standing-wave solutions, the eigenvalues of kx are equidistant, i.e. separated by equal
intervals Δkx = π/ax (with the similar relations for other two Cartesian components
of vector k). Hence the number of different eigenvalues of the standing wave vector k
(with kx, ky, kz ⩾ 0), within a volume d3k ≫ 1/V of the k space is dN = d3k/
(ΔkxΔkxΔkx) = (V/π3)d3k. Since in the continuum it is more convenient to work with
traveling waves (1.88), we should take into account that, as was just discussed, there
are two different traveling wave numbers (say, +kx and −kx) corresponding to each
standing wave vector’s kx > 0. Hence the same number of physically different states
corresponds to a 23 = 8 fold larger k space (which now is infinite in all directions) or,
equivalently, to an 8-fold smaller number of states per unit volume d3k:

π
=dN

V
d k

(2 )
. (1.90)3

3

For dN ≫ 1, this expression is independent on the boundary conditions, and is
frequently represented as the following summation rule

∫ ∫∑
π

= =→∞ f f dN
V

f d kk k klim ( ) ( )
(2 )

( ) , (1.91)
k

k V 3
33

where f(k) is an arbitrary function of k. Note that if the same wave vector k
corresponds to several internal quantum states (such as spin—see chapter 4), the
right-hand side of Eq. (1.91) requires its multiplication by the corresponding
degeneracy factor.

1.8 Dimensionality reduction
To conclude this introductory chapter, let me discuss the conditions when the spatial
dimensionality of a wave mechanics problemmay be reduced61. Naively, one may think
that if the particle’s potential energy depends on just one spatial coordinate, say
U = U(x, t), then its wavefunction has to be one-dimensional as well: ψ = ψ(x, t). Our
discussion of the particular case U = const in the previous section shows that this
assumption is wrong. Indeed, though this potential is just a special case of the potential
U(x, t), most of its eigenfunctions, given by Eqs. (1.87) or (1.88), do depend on other
two coordinates. This is why the solutions ψ(x, t) of the 1D Schrödinger equation

61Many textbooks on quantum mechanics jump to the formal solution of 1D problems without such
discussion, and most of my beginning graduate students did not understand that in realistic physical systems,
such dimensionality restriction is adequate only under very specific conditions.
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ℏ∂Ψ
∂

= − ℏ ∂
∂

Ψ + Ψi
t m x

U x t
2

( , ) , (1.92)
2 2

2

which follows from Eq. (1.65) by assuming ∂Ψ/∂y = ∂Ψ/∂z = 0, are insufficient to
form the general solution of Eq. (1.65) for this case.

This fact is easy to understand physically for the simplest case of a stationary 1D
potential: U = U(x). The absence of the y- and z-dependence of the potential energy
U may be interpreted as a potential well which is flat in two directions, y and z.
Replicating the arguments of the previous section for this case, we see that the
eigenfunctions of a particle in such a well have the form

ψ = +{ }( )X x i k y k zr( ) ( )exp , (1.93)y z

where X(x) are the eigenfunction of the following stationary 1D Schrödinger
equation:

− ℏ + =
m

d X
dx

U x X EX
2

( ) , (1.94)
2 2

2 ef

where Uef(x) is not the full potential energy of the particle, as would follow from
Eq. (1.92), but rather its effective value including the kinetic energy of lateral motion:

≡ + + = + ℏ +( )( )U U E E U
m

k k
2

. (1.95)y z y zef

2
2 2

In plain English, the particle’s partial wavefunction X(x), and its full energy,
depends of its transverse momenta, which have continuous spectrum—see the
discussion of Eq. (1.89). This means that Eq. (1.92) is adequate only if the condition
ky = kz = 0 is somehow enforced, and in most physical problems, it is not. For
example, if a de Broglie (or any other) plane wave Ψ(x, t) is incident on a potential
step, it would be reflected exactly back, i.e. with ky = kz = 0, only if the wall’s surface
is a perfect plane and exactly normal to the axis x. Any imperfection (and there are
so many of them in real physical systems -:) may cause excitation of waves with
nonvanishing values of ky and kz, due the continuous character of the functions
Ey(ky) and Ez(kz).

62

There is essentially one, perhaps counter-intuitive way to make the 1D solutions
‘robust’ to small perturbations: that is to provide a rigid lateral confinement63 in
two other directions. As the simplest example, consider a narrow quantum wire
(figure 1.9a), provided by the potential

62 This problem is not specific for quantum mechanics. The classical motion of a particle in a 1D potential may
be also unstable with respect to lateral perturbations, especially is the potential is time-dependent, i.e. capable
of exciting low-energy lateral modes.
63 The term ‘quantum confinement’, sometimes used to describe this phenomenon, is as unfortunate as the
‘quantum well’, because of the same reason: the confinement is a purely classical effect, and as we will
repeatedly see in this course, the quantum mechanical effects reduce, rather than enable it.
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=
< < < <

+ ∞
U

U x y a z a
r( )

( ), for 0 , and 0 ,

, otherwize.
(1.96)y z⎧⎨⎩

Performing the standard variable separation (1.79), we see that the corresponding
stationary Schrödinger equation is satisfied if the partial wavefunction X(x) obeys
Eqs. (1.94)–(1.95), but now with a discrete energy spectrum in the transverse
directions:

π= + ℏ +U U
m

n

a

n

a2
. (1.97)

y

y

z

z
ef

2 2 2

2

2

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

If the lateral confinement is tight, ay, az → 0, then there is a large energy gap,

πΔ ∼ ℏ
U

ma2
, (1.98)

y z

2 2

,
2

between the ground-state energy of the lateral motion (with ny = nz = 1) and that for
all its excited states. As a result, if the particle is initially placed into the lateral
ground state, and its energy E is much smaller than ΔU, it would stay in this state,
i.e. it may be described by a 1D Schrödinger equation similar to Eq. (1.92)—even in
the time-dependent case, if the characteristic frequency of energy variations is much
smaller than ΔU/ℏ. Absolutely similarly, the strong lateral confinement in just one
dimension (say, z, see figure 1.9b) enables systems with a robust 2D evolution of the
particle’s wavefunction.

The tight lateral confinement may ensure the dimensionality reduction even if the
potential well is not exactly rectangular in the lateral direction(s), as described by
Eq. (1.96), but is described by some x- and t-independent profile, if it still provides a
sufficiently large energy gap ΔU. For example, many 2D quantum phenomena, such
as the quantum Hall effect64, have been studied experimentally using electrons confined
at semiconductor heterojunctions (e.g. epitaxial interfaces GaAs/AlxGa1 − xAs), where
the potential well in the direction perpendicular to the interface has a nearly triangular
shape, and provides the energy gap ΔU of the order of 10−2 eV.65 This splitting
energy corresponds to kBT with T ∼100 K, so that careful experimentation at liquid
helium temperatures (4 K and below) may keep the electrons performing purely 2D
motion in the ‘lowest subband’ (nz = 1).

Figure 1.9. Partial confinement in: (a) two dimensions, and (b) one dimensions.

64 To be discussed in section 3.2.
65 See, e.g. [6].
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Finally, note that in systems with a reduced dimensionality, Eq. (1.90) for the
number of states at large k (i.e. for an essentially free particle motion) should be
replaced accordingly: in a 2D system of area A ≫ 1/k2,

π
=dN

A
d k

(2 )
, (1.99)2

2

while in a 1D system of length l ≫ 1/k,

π
=dN

l
dk

2
, (1.100)

with the corresponding changes of the summation rule (1.91). This change has
important implications for the density of states on the energy scale, dN/dE: it is
straightforward (and hence left for the reader) to use Eqs. (1.90), (1.99), and (1.100)
to show that for free 3D particles the density increases with E (proportionally to
E1/2), for free 2D particles it does not depend on energy at all, while for free 1D
particles it scales as E−1/2, i.e. decreases with energy.

1.9 Problems

Problem 1.1. The actual postulate made by N Bohr in his original 1913 paper was
not directly Eq. (1.8), but an assumption that at quantum leaps between adjacent
large (quasiclassical) orbits with n ≫ 1, the hydrogen atom either emits or absorbs
energy ΔE = ℏω, where ω is its classical radiation frequency—according to classical
electrodynamics, equal to the angular velocity of electron’s rotation66. Prove that
this postulate is indeed compatible with Eqs. (1.7) and (1.8).

Problem 1.2. Use Eq. (1.53) to prove that the linear operators of quantum
mechanics are commutative: ˆ + ˆ = ˆ + ˆA A A A2 1 1 2, and associative: ˆ + ˆ + ˆ =A A A( )1 2 3
ˆ + ˆ + ˆA A A( )1 2 3 .

Problem 1.3. Prove that for any time-independent Hamiltonian operator Ĥ and two
arbitrary complex functions f(r) and g(r),

∫ ∫ˆ = ˆf Hg d r Hf g d rr r r r( ) ( ) ( ) ( ) .3 3

Problem 1.4. Prove that the Schrödinger equation (1.25) with the Hamiltonian
operator given by Eq. (1.41), is Galilean form-invariant, provided that the wave-
function is transformed as

Ψ′ ′ ′ = Ψ − ⋅
ℏ

+
ℏ

t t i
m

i
m t

r r
v r

( , ) ( , ) exp
2

,
2⎧⎨⎩

⎫⎬⎭
v

where the prime sign denotes the variables measured in the reference frame 0′ that
moves, without rotation, with a constant velocity v relatively to the ‘lab’ frame 0.
Give a physical interpretation of this transformation.

66 See, e.g. Part EM section 8.2.
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Problem 1.5.* Prove the so-called Hellmann–Feynman theorem67:

λ λ
∂
∂

= ∂
∂

E H
,n

n

where λ is some c-number parameter, on which the time-independent Hamiltonian
Ĥ , and hence its eigenenergies En, depend.

Problem 1.6.* Use Eqs. (1.73) and (1.74) to analyze the effect of phase locking of
Josephson oscillations on the dc current flowing through a weak link between two
superconductors (frequently called the Josephson junction), assuming that an
external microwave source applies to the junction a sinusoidal ac voltage with
frequency ω and amplitude A.

Problem 1.7. Calculate 〈x〉, 〈px〉, δx, and δpx for the eigenstate {nx, ny, nz} of a
particle in a rectangular, hard-wall box, described by Eq. (1.77), and compare the
product δxδpx with the Heisenberg’s uncertainty relation.

Problem 1.8. Looking at the lower (red) line in figure 1.8, it seems plausible that the
1D ground-state function (1.84) of the simple potential well (1.77) may be well
approximated with an inverted quadratic parabola:

= −X x C x a x( ) ( ),xtrial

where C is a normalization constant. Explore how good this approximation is.

Problem 1.9. A particle, placed in a hard-wall, rectangular box with sides ax, ay, and
az, is in its ground state. Calculate the average force acting on each face of the box.
Can the forces be characterized by a certain pressure?

Problem 1.10. A 1D quantum particle was initially in the ground state of a very
deep, rectangular potential well of width a:

= − < < +
+ ∞

U x
a x a

( )
0, for /2 /2,

, otherwise.

⎧⎨⎩
At some instant, the well’s width is abruptly increased to a new value a′ > a, leaving
the potential symmetric with respect to the point x = 0, and then left constant.
Calculate the probability that after the change, the particle is still in the ground state
of the system.

Problem 1.11. At t = 0, a 1D particle of mass m is placed into a hard-wall, flat-
bottom potential well

= < <
+ ∞

U x
x a

( )
0, for 0 ,

, otherwise,

⎧⎨⎩

67Despite the theorem’s common name, H Hellmann (in 1937) and R Feynman (in 1939) were not the first
ones in the long list of physicists who have (apparently, independently) discovered this fact. Indeed, it may be
traced back at least to a 1922 paper by W Pauli, and was carefully proved by P Güttinger in 1931.
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in a 50/50 linear superposition of the lowest (ground) state and the first excited state.
Calculate:

(i) the normalized wavefunction Ψ(x, t) for arbitrary time t ⩾ 0, and
(ii) the time evolution of the expectation value 〈x〉 of the particle’s coordinate.

Problem 1.12. Calculate the potential profiles U(x) for that the following
wavefunctions,

(i) Ψ = − −c ax ibtexp{ }2 , and
(ii) Ψ = − −c a x ibtexp{ },

(with real coefficients a > 0 and b), satisfy the 1D Schrödinger equation for a particle
with mass m. For each case, calculate 〈x〉, 〈px〉, δx, and δpx, and compare the
product δxδpx with the Heisenberg’s uncertainty relation.

Problem 1.13. A 1D particle of mass m, moving in the field of a stationary potential
U(x), has the following eigenfunction

ψ
κ

=x
C

x
( )

cosh
,

where C is the normalization constant, and κ is a real constant. Calculate the
function U(x) and the state’s eigenenergy E.

Problem 1.14. Calculate the density dN/dE of traveling-wave states in large
rectangular potential wells of various dimensions: d = 1, 2, and 3.

Problem 1.15.* Use the finite-difference method with steps a/2 and a/3 to find as
many eigenenergies as possible for a 1D particle in the infinitely deep, hard-wall 1D
potential well of width a. Compare the results with each other, and with the exact
formula68.
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Chapter 2

1D wave mechanics

The simplest, 1D version of wave mechanics enables a quantitative discussion of
many important quantum-mechanical effects. The order of their discussion in this
chapter is dictated mostly by the mathematical convenience—going from the simplest
potential profiles to more complex ones, so that we may build up on the previous
results. However, I would advise the reader to focus more not on the math, but rather
on the variety of the non-classical physical phenomena it describes, ranging from
the particle penetration to classically-forbidden regions, to quantum-mechanical
tunneling, to the metastable state decay, to covalent bonding and quantum
oscillations, to energy bands and gaps.

2.1 Basic relations
As was discussed at the end of chapter 1, in several cases (most importantly, at
strong confinement within the [y, z] plane), the general (3D) Schrödinger equation
may be reduced to the 1D equation, similar to Eq. (1.92):

ℏ ∂Ψ
∂

= − ℏ ∂ Ψ
∂

+ Ψi
x t
t m

x t
x

U x t x t
( , )

2
( , )

( , ) ( , ). (2.1)
2 2

2

It is important, however, to remember that according to the discussion in section 1.8,
U(x, t) in this equation is generally an effective potential energy, which may include
the energy of the lateral motion, while Ψ(x, t) may be just one factor in the complete
wavefunction Ψ(x, t)χ(y, z). If the transverse factor χ(y, z) is normalized to 1, then
the integration of Eq. (1.22a) over the 3D space within a segment [x1, x2] gives the
following probability to find the particle on this segment:

∫≡ Ψ Ψ*W t x t x t dx( ) ( , ) ( , ) . (2.2)
x

x

1

2
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If the particle under analysis is definitely somewhere inside the system, the normal-
ization of its 1D wavefunction Ψ(x, t) is provided by extending the integral (2.2) to
the whole axis x:

∫ = ≡ Ψ Ψ
−∞

+∞
*w x t dx w x t x t x t( , ) 1, where ( , ) ( , ) ( , ). (2.3)

A similar integration of Eq. (1.23) shows that the expectation value of any operator
depending only on the coordinate x (and possibly time), may be expressed as

∫= Ψ ˆ Ψ
−∞

+∞
*A t x t A x t dx( ) ( , ) ( , ) . (2.4)

It is also useful to introduce the notion of the probability current along the x-axis
(a scalar):

⎜ ⎟⎛
⎝

⎞
⎠∫ φ≡ = ℏ Ψ ∂

∂
Ψ = ℏ Ψ ∂

∂
*I x t j dydz

m x m
x t

x
( , ) Im ( , ) , (2.5)x

2

where jx is the x-component of the current density vector j(r, t). Then the continuity
equation (1.48) for the segment [x1, x2] takes the form

+ − =dW
dt

I x I x( ) ( ) 0. (2.6)2 1

The above formulas are the basis for the analysis of 1D problems of wave
mechanics, but before proceeding to particular cases, let me deliver on my earlier
promise to prove that the Heisenberg’s uncertainty relation (1.35) is indeed valid for
any wavefunction Ψ(x, t). For that, let us consider an evidently positive (or at least
non-negative) integral

∫λ λ≡ Ψ + ∂Ψ
∂

⩾
−∞

+∞
J x

x
dx( ) 0, (2.7)

2

where λ is an arbitrary real constant, and assume that at the at x → ±∞ the
wavefunction vanishes, together with its first derivative—as we will see below, a very
common case. Then the left-hand side of Eq. (2.7) may be recast as

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

∫ ∫

∫ ∫

∫

λ λ λ

λ

λ

Ψ + ∂Ψ
∂

≡ Ψ + ∂Ψ
∂

Ψ + ∂Ψ
∂

= ΨΨ + Ψ ∂Ψ
∂

+ ∂Ψ
∂

Ψ

+ ∂Ψ
∂

∂Ψ
∂

−∞

+∞

−∞

+∞ *

−∞

+∞
*

−∞

+∞ *
*

−∞

+∞ *

x
x

dx x
x

x
x

dx

x dx x
x x

dx

x x
dx.

(2.8)

2

2

2

According to Eq. (2.4), the first term in the last form of Eq. (2.8) is just 〈x2〉, while
the second and the third integrals may be worked out by parts:
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⎛
⎝⎜

⎞
⎠⎟∫ ∫

∫
∫

Ψ ∂Ψ
∂

+ ∂Ψ
∂

Ψ = ∂
∂

ΨΨ

= ΨΨ

= ΨΨ = +∞
= −∞ − ΨΨ = −

−∞

+∞ *
*

−∞

+∞
*

=−∞

=+∞
*

*
−∞

+∞
*

x
x x

dx x
x

dx

xd

x x
x dx

( )

( )

1,

(2.9)
x

x

∫ ∫ ∫

∫

∂Ψ
∂

∂Ψ
∂

= ∂Ψ
∂

Ψ = ∂Ψ
∂

Ψ = +∞
= −∞ − Ψ ∂ Ψ

∂

=
ℏ

Ψ ˆ Ψ =
ℏ

−∞

+∞ *

=−∞

=+∞
* *

−∞

+∞
*

−∞

+∞
*

x x
dx

x
d

x
x
x x

dx

p dx
p1

.

(2.10)
x

x

x
x

2

2

2
2

2

2

As a result, Eqs. (2.7) takes the following form:

λ λ λ λ λ= − +
ℏ

⩾ + + ⩾

≡ − ℏ ≡ ℏ

J x
p

a b

a
p

b
x

p

( ) 0, i.e. 0,

with , .
(2.11)

x

x x

2 2

2

2
2

2

2

2 2

2

This inequality should be valid for any real λ, so that the corresponding quadratic
equation, λ2 + aλ + b = 0, can have either one (degenerate) real root—or no real
roots at all. This is only possible if its determinant, Det = a2 − 4b, is non-positive,
leading to the following requirement:

⩾ ℏ
x p

4
. (2.12)

x
2 2

2

In particular, if 〈x〉 = 0 and 〈px〉 = 0,1 then according to Eq. (1.33), Eq. (2.12) takes
the form

˜ ˜ ⩾ ℏ
x p

4
, (2.13)

x
2 2

2

which, according to the definition (1.34) of the rms uncertainties, is equivalent to
Eq. (1.35).

Now let us notice that the Heisenberg’s uncertainty relation looks very similar to
the commutation relation between the corresponding operators:

1 Eq. (2.13) may be proved even if 〈x〉 and 〈px〉 are not equal to zero, by making the following replacements,
x → x − 〈x〉, ∂/∂x → ∂/∂x + i〈p〉/ℏ, in Eq. (2.7), and then repeating all the calculations—which in this case
become somewhat bulky. In chapter 4, equipped with the bra-ket formalism, we will derive a more general
uncertainty relation, which includes the Heisenberg’s relation (2.13) as a particular case, in a more efficient
way.
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⎜ ⎟⎡⎣ ⎤⎦ ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠ˆ ˆ Ψ ≡ ˆ ˆ − ˆ ˆ Ψ = − ℏ∂Ψ

∂
− − ℏ ∂

∂
Ψ = ℏΨ( )x p xp p x x i

x
i

x
x i a, ( ) . (2.14 )x x x

Since this relation is valid for any wavefunction Ψ(x, t), we may represent it as an
operator equality:

⎡⎣ ⎤⎦ˆ ˆ = ℏ ≠x p i b, 0. (2.14 )x

In section 4.5 we will see that the relation between Eqs. (2.13) and (2.14) is just a
particular case of a general relation between the expectation values of non-
commuting operators, and their commutators.

2.2 Free particle: wave packets
Let us start our discussion of particular problems with the free 1D motion, i.e. with
U(x, t) = 0. From Eq. (1.29), it is evident that in the 1D case, a similar ‘fundamental’
(i.e. a particular but the most important) solution of the Schrödinger equation (2.1)
is a sinusoidal (‘monochromatic’) wave

ωΨ = × −x t i k x t( , ) const exp{ ( )}. (2.15)0 0 0

According to Eqs. (1.32), it corresponds to a particle with an exactly defined
momentum2 p0 = ℏk0 and energy E0 = ℏω0 = ℏ2k0

2/2m. However, for this
wavefunction, the product Ψ Ψ* does not depend on either x or t, so that the particle
is completely delocalized, i.e. its probability is spread all over axis x, at all times.

In order to describe a space-localized state, let us form, at the initial moment of
time (t = 0), a wave packet of the type shown in figure 1.6, by multiplying the
sinusoidal waveform (2.15) by some smooth envelope function A(x). As the most
important particular example, consider the Gaussian wave packet

⎧⎨⎩
⎫⎬⎭π δ δ

Ψ = = −x A x e A x
x

x
x

( , 0) ( ) , with ( )
1

(2 ) ( )
exp

(2 )
. (2.16)ik x

1/4 1/2

2

2
0

(By the way, figure 1.6 shows exactly such a packet.) The pre-exponential factor in
this envelope function has been selected in the way to have the initial probability
density,

⎧⎨⎩
⎫⎬⎭π δ δ

= Ψ Ψ = = −* *w x x x A x A x
x

x
x

( , 0) ( , 0) ( , 0) ( ) ( )
1

(2 )
exp

2( )
, (2.17)

1/2

2

2

normalized as in Eq. (2.3), for any parameters δx and k0.
3

2 From this point on, and to the end of this chapter, I will drop the index x in the notation for the x-component
of the vectors k and p.
3 This fact may be readily proven using the well-known integral of the Gaussian function (2.17), in infinite
limits—see, e.g. Eq. (A.36b). It is also straightforward to use Eq. (A.36c) to prove that for the wave packet
(2.16), the parameter δx is indeed the rms uncertainty (1.34) of the coordinate x, thus justifying its notation.
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In order to explore the evolution of this wave packet in time, we could try to solve
Eq. (2.1) with the initial condition (2.16) directly, but in the spirit of the discussion in
section 1.5, it is easier to proceed differently. Let us first represent the initial
wavefunction (2.16) as a sum (1.67) of the eigenfunctions ψk(x) of the corresponding
stationary 1D Schrödinger equation (1.60), in our current case

ψ
ψ− ℏ = ≡ ℏ

m

d

dx
E E

k
m2

, with
2

, (2.18)k
k k k

2 2

2

2 2

which are simply monochromatic waves,

ψ = a e . (2.19)k k
ikx

Since (as was discussed in section 1.7) at the unconstrained motion the spectrum of
possible wave numbers k is continuous, the sum (1.67) should be replaced with an
integral4:

∫ ∫ψΨ = =x a x dp a e dk( , 0) ( ) . (2.20)k k k
ikx

Now let us notice that from the point of view of mathematics, Eq. (2.20) is just the
usual Fourier transform from the variable k to the ‘conjugate’ variable x, and we can
use the well-known formula of the reciprocal Fourier transform to calculate

⎧⎨⎩
⎫⎬⎭

∫

∫
π

π π δ δ

= Ψ

= − − ˜ ˜ ≡ −

−a x e dx

x
x
x

ikx dx k k k

1
2

( , 0)

1
2

1
(2 ) ( )

exp
(2 )

, where ,
(2.21)

k
ikx

1/4 1/2

2

2 0

This Gaussian integral may be worked out by the following standard method. Let us
complement the exponent to the full square of a linear combination of x and k,
adding a compensating term independent of x:

δ δ
δ δ− − ˜ ≡ − + ˜ − ˜x

x
ikx

x
x i x k k x

(2 )
1

(2 )
[ 2 ( ) ] ( ) . (2.22)

2

2 2
2 2 2 2

Since the integration in the right-hand side of Eq. (2.21) should be performed at
constant k̃, in the infinite limits of x, its result would not change if we replace dx by
dx′ ≡ d[x + 2i(δx)2 k̃].5 As a result, we get,

⎪ ⎪

⎪ ⎪

⎧⎨⎩
⎫⎬⎭

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

∫π π δ
δ

δ

π π δ δ

= − ˜ − ′ ′

= −
˜

a
x

k x
x

x
dx

k
k
k

1
2

1
(2 ) ( )

exp{ ( ) } exp
(2 )

1
2

1
(2 ) ( )

exp
(2 )

,

(2.23)

k 1/4 1/2

2 2
2

2

1/2

1/4 1/2

2

2

4 For the notation brevity, from this point on the infinite limit signs will be dropped in all 1D integrals.
5 The fact that the argument shift is imaginary is not important, because the function under the integral is
analytical, and tends to zero at Re x′ → ±∞.
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so that ak also has a Gaussian distribution, now along the k-axis, centered to the
value k0 (figure 1.6b), with the constant δk defined as

δ δ≡k x1/2 . (2.24)

Thus we may represent the initial wave packet (2.16) as

⎛
⎝⎜

⎞
⎠⎟

⎧⎨⎩
⎫⎬⎭∫π π δ δ

Ψ = − −
x

k
k k

k
e dk( , 0)

1
2

1
(2 ) ( )

exp
( )

(2 )
. (2.25)ikx

1/2

1/4 1/2
0

2

2

From the comparison of this formula with Eq. (2.16), it is evident that the rms
uncertainty of the wave number k in this packet is indeed equal to δk defined by
Eq. (2.24), thus justifying the notation. The comparison of that relation with Eq.
(1.35) shows that the Gaussian packet represents the ultimate case in which the
product δxδp = δx(ℏδk) has the lowest possible value (ℏ/2); for any other envelope’s
shape the uncertainty product may only be larger.

We could of course get the same result for δk from Eq. (2.16) using the definitions
(1.23), (1.33), and (1.34); the real advantage of Eq. (2.24) is that it can be readily
generalized to t > 0. Indeed, we already know that the time evolution of the
wavefunction is given by Eq. (1.69), for our case6

⎛
⎝⎜

⎞
⎠⎟

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭∫π π δ δ

Ψ = − − − ℏ
x t

k
k k

k
e i

k
m

t dk( , )
1

2
1

(2 ) ( )
exp

( )
(2 )

exp
2

. (2.26)ikx
1/2

1/4 1/2
0

2

2

2

Figure 2.1 shows several snapshots of the real part of the wavefunction (2.26), for a
particular case δk = 0.1 k0.

The plots clearly show the following effects:

(i) the wave packet as a whole (as characterized by its envelope) moves along the
x axis with a certain group velocity vgr,

(ii) the ‘carrier’ quasi-sinusoidal wave inside the packet moves with a different,
phase velocity vph, which may be defined as the velocity of the spatial points where
the wave’s phase φ(x, t) ≡ arg Ψ takes a certain fixed value (say, φ = π/2, where Re Ψ
vanishes), and

(iii) the wave packet’s spatial width gradually increases with time—the packet
spreads.

All these effects are common for waves of any physical nature7. Indeed, let us
consider a 1D wave packet of the type (2.26), but more general:

∫Ψ = ω−x t a e dk( , ) , (2.27)k
i kx t( )

6Note that this packet is equivalent to Eq. (2.16) and hence is properly normalized to 1—see Eq. (2.3). Hence
the wave packet introduction offers a natural solution to the problem of infinite wave normalization, which
was mentioned in section 1.2.
7 See, e.g. brief discussions in Part CM section 6.3 and Part EM section 7.2.
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let it propagate in a medium with an arbitrary (but smooth!) dispersion relation
ω(k), and assume that the wave number distribution ak is narrow: δk ≪ 〈k〉 ≡ k0—
see figure 1.6b. Then we may expand the function ω(k) into the Taylor series near the
central wave number k0, and keep only three of its leading terms:

ω ω ω ω ω ω≈ + ˜ + ˜ ˜ ≡ − ≡k
d
dk

k
d
dk

k k k k k( )
1
2

, where , ( ), (2.28)0

2

2

2
0 0 0

where both derivatives have to be evaluated at the point k = k0. In this
approximation8, the expression in the parentheses on the right-hand side of
Eq. (2.27) may be rewritten as

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

ω ω ω ω

ω ω ω

− ≈ + ˜ − + ˜ + ˜

≡ − + ˜ − − ˜

kx k t k x kx
d
dk

k
d
dk

k t

k x t k x
d
dk

t
d
dk

k t

( )
1
2

( )
1
2

,

(2.29)
0 0

2

2

2

0 0

2

2

2

so that Eq. (2.27) is reduced to the following integral

⎧⎨⎩
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥
⎫⎬⎭∫ ω ωΨ = ˜ − − ˜ ˜ω−x t e a i k x

d
dk

t
d
dk

k t dk( , ) exp
1
2

. (2.30)i k x t
k

( )
2

2

2
0 0

Figure 2.1. The time evolution of a 1D wave packet on (a) smaller and (b) larger time scales. The dashed lines
show the packet’s envelope, i.e. ± ∣Ψ∣.

8 By the way, in the particular case of de Broglie waves, described by the dispersion relation (1.30), Eq. (2.28) is
exact, because ω = E/ℏ is a quadratic function of k = p/ℏ, and all higher derivatives of ω over k vanish for any k0.
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First, let us neglect the last term in square brackets (which is much smaller than
the first term if the dispersion relation is smooth enough and/or the time interval t is
sufficiently small), and compare the result with the initial form of the wave packet
(2.27)

∫ ∫Ψ = = ≡ ˜˜x a e dk A x e A x a e dk( , 0) ( ) , with ( ) . (2.31)k
ikx ik x

k
ikx0

The comparison shows that Eq. (2.30) is reduced to

v vΨ = − −x t A x t e( , ) ( ) , (2.32)ik x t
gr

( )0 ph

where vgr and vph are two constants with the dimension of velocity:

v v
ω ω≡ ≡

= =

d
dk k

a, . (2.33 )
k k k k

gr ph

0 0

Clearly, this general result describes the effects (i) and (ii) listed above. For the
particular case of de Broglie waves, whose dispersion law is given by Eq. (1.30),
we get

v v v
vω ω≡ = ℏ ≡ ≡ = ℏ =

= =

d
dk

k
m k

k
m

b,
2 2

. (2.33 )
k k k k

gr
0

0 ph
0 gr

0 0

We see that (very fortunately) the velocity of the wave packet’s envelope equals to
that of the classical particle moving by inertia, in accordance with the correspond-
ence principle.

Next, the last term in the square brackets of Eq. (2.30) describes the effect (iii), the
wave packet’s spread. It may be readily evaluated if the packet (2.27) is initially
Gaussian, as in our example (2.25):

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭δ

= × −
˜

a
k
k

const exp
(2 )

. (2.34)k

2

2

In this case the integral (2.30) is Gaussian, and may be worked out exactly as the
integral (2.21), i.e. by representing the merged exponents under the integral as a full
square of a linear combination of x and k:

⎛
⎝⎜

⎞
⎠⎟

v

v v

δ
ω

ω

−
˜

+ ˜ − − ˜

≡ − Δ ˜ +
−
Δ

−
−
Δ

+ −

k
k

ik x t
i d

dk
k t

t k i
x t

t

x t

t
ik x

i d
dk

k t

(2 )
( )

2

( )
2 ( )

( )

4 ( ) 2
,

(2.35)

2

2 gr

2

2

2

gr
2

gr
2

0

2

2 0
2

where I have introduced the following complex function of time:

δ
ω δ ωΔ ≡ + = +t

k
i d

dk
t x

i d
dk

t( )
1

4( ) 2
( )

2
, (2.36)

2

2

2
2

2

2
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and, at the second step, used Eq. (2.24). Now integrating over k̃, we get

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟
⎫⎬⎭

v ωΨ ∝ −
−
Δ

+ −x t
x t

t
i k x

d
dk

k t( , ) exp
( )

4 ( )
1
2

. (2.37)gr
2

0

2

2 0
2

The imaginary part of the ratio 1/Δ(t) in this exponent gives just an additional
contribution to the wave’s phase, and does not affect the resulting probability
distribution

⎧⎨⎩
⎫⎬⎭

v
= Ψ Ψ ∝ −

−
Δ

*w x t
x t

t
( , ) exp

( )

2
Re

1
( )

. (2.38)gr
2

This is again a Gaussian distribution over axis x, centered to point 〈x〉 = v tgr , with
the rms width

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥
⎫⎬⎭

⎛
⎝⎜

⎞
⎠⎟δ δ ω

δ
′ ≡

Δ
= +

−

x
t

x
d
dk

t
x

a( ) Re
1
( )

( )
1
2

1
( )

. (2.39 )2

1

2
2

2

2

2

In the particular case of de Broglie waves, d2ω/dk2 = ℏ/m, so that

⎜ ⎟⎛
⎝

⎞
⎠δ δ

δ
′ = + ℏ

x x
t
m x

b( ) ( )
2

1
( )

. (2.39 )2 2
2

2

The physics of the packet spreading is very simple: if d2ω/dk2 ≠ 0, the group
velocity dω/dk of each small group dk of the monochromatic components of the
wave is different, resulting in the gradual (eventually, linear) accumulation of the
differences of the distances traveled by the groups. The most curious feature of
Eq. (2.39) is that the packet width at t > 0 depends on its initial width δx′(0) = δx in a
non-monotonic way, tending to infinity at both δx→ 0 and δx→∞. Because of that,
for a given time t, there is an optimal value of δx that minimizes δx′:

⎜ ⎟⎛
⎝

⎞
⎠δ δ′ = = ℏ

x x
t

m
( ) 2 ( ) . (2.40)min opt

1/2

This expression may be used for spreading effect estimates. Due to the smallness of
the Planck constant ℏ on the human scale of things, for macroscopic bodies this
effect is extremely small even for very long time intervals; however, for light particles
it may be very noticeable: for an electron (m = me ≈ 10−30 kg), and t = 1 s, Eq. (2.40)
yields (δx′)min ~ 1 cm.

Note also that for any t ≠ 0, the wave packet retains its Gaussian envelope, but
the ultimate relation (2.24) is not satisfied, δx′δp > ℏ/2—due to a gradually
accumulated phase shift between the component monochromatic waves. The last
remark on this topic: in quantum mechanics, the wave packet spreading is not a
ubiquitous effect! For example, in chapter 5 we will see that in a quantum oscillator,
the spatial width of a Gaussian packet (for that system, called the Glauber state of
the oscillator) does not grow monotonically but rather either stays constant or
oscillates in time.
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Now let us briefly discuss the case when the initial wave packet is not Gaussian,
but is described by an arbitrary initial wavefunction. In order to make the forth-
coming result more aesthetically appealing, it is beneficial to generalize out
calculations to an arbitrary initial time t0; it is evident that if U does not depend
on time explicitly, it is sufficient to replace t with (t − t0) in all the above formulas.
With this replacement, Eq. (2.27) becomes

∫Ψ = ω− −x t a e dk( , ) , (2.41)k
i kx t t[ ( )]0

and the reciprocal transform (2.21) reads

∫π
= Ψ −a x t e dx

1
2

( , ) . (2.42)k
ikx

0

If we want to express these two formulas with one relation, i.e. plug Eq. (2.42) into
Eq. (2.41), we should give the integration variable x some other name, e.g. x0. (Such
notation is appropriate, because this variable describes the coordinate argument in
the initial wave packet.) The result is

∫ ∫π
Ψ = Ψ ω− − −x t dk dx x t e( , )

1
2

( , ) . (2.43)i k x x t t
0 0 0

[ ( ) ( )]0 0

Changing the order of integration, this expression may be rewritten in the following
general form:

∫Ψ = Ψx t G x t x t x t dx( , ) ( , ; , ) ( , ) , (2.44)0 0 0 0 0

where the function G, usually called kernel in mathematics, in quantum mechanics is
called the propagator9. The physical sense of the propagator may be understood by
considering the following special initial conditions10:

δΨ = − ′x t x x( , ) ( ), (2.45)0 0 0

where x′ is a certain point within the domain of particle’s motion. In this particular
case, Eq. (2.44) evidently gives

Ψ = ′x t G x t x t( , ) ( , ; , ). (2.46)0

Hence, the propagator, considered as a function of its arguments x and t only, is just
the wavefunction of the particle, at the δ-functional initial conditions (2.45). Thus
just as Eq. (2.41) may be understood as a mathematical expression of the linear
superposition principle in the momentum (i.e. reciprocal) space domain, Eq. (2.44) is
an expression of this principle in the direct space domain: the system’s ‘response’
Ψ(x, t) to an arbitrary initial condition Ψ(x0, t0) is just a sum of its responses to

9 Its standard notation by letter G stems from the fact that the propagator is essentially the spatial-temporal
Green’s function of Eq. (2.18), defined very similarly to Green’s functions of other ordinary and partial differential
equations describing various physics systems—see, e.g. Part CM section 5.1 and/or Part EM sections 2.7 and 7.3.
10Note that such initial condition is not equivalent to a δ-functional initial probability density (2.2).
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elementary spatial ‘slices’ of this initial function, with the propagator G(x, t; x0, t0)
representing the weight of each slice in the final sum.

According to Eqs. (2.43) and (2.44), in the particular case of a free particle the
propagator is equal to

∫π
= ω− − −G x t x t e dk( , ; , )

1
2

, (2.47)i k x x t t
0 0

[ ( ) ( )]0 0

Calculating this integral, one should remember that here ω is not a constant but a
function of k, given by the dispersion relation for the particular waves. In particular,
for the de Broglie waves, with ℏω = ℏ2k2/2m,

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥
⎫⎬⎭∫π

≡ − − ℏ −G x t x t i k x x
k
m

t t dk( , ; , )
1

2
exp ( )

2
( ) . (2.48)0 0 0

2

0

This is a Gaussian integral again, and may be readily calculated just as done (twice)
above, by completing the exponent to the full square. The result is

⎛
⎝⎜

⎞
⎠⎟

⎧⎨⎩
⎫⎬⎭π

=
ℏ −

− −
ℏ −

G x t x t
m

i t t
m x x

i t t
( , ; , )

2 ( )
exp

( )
2 ( )

. (2.49)0 0
0

1/2
0

2

0

Please note the following features of this complex function (plotted in figure 2.2):

(i) It depends only on the differences (x − x0) and (t − t0). This is natural, because
the free-particle propagation problem is uniform (translation-invariant) both in
space and time.

(ii) The function’s shape does not depend on its arguments—they just rescale the
same function: its snapshot (figure 2.2), if plotted as a function of un-normalized x,
just becomes broader and lower with time. It is curious that the spatial broadening
scales as (t − t0)

1/2—just as at the classical diffusion, as a result of a deep
mathematical analogy between quantum mechanics and classical statistics—to be
discussed further in chapter 7.

(iii) In accordance with the uncertainty relation, the ultimately compressed wave
packet (2.45) has an infinite width of momentum distribution, and the quasi-
sinusoidal tails of the free-particle propagator, clearly visible in figure 2.2, are the
results of the free propagation of the fastest (highest-momentum) components of
that distribution, in both directions from the packet center.

In the following sections, I will mostly focus on monochromatic wavefunctions
(that, for unconfined motion, may be interpreted as wave packets of a very large
spatial width δx), and only rarely revisit the wave packet discussion. My best excuse
is the linear superposition principle, i.e. our conceptual ability to restore the general
solution from that of monochromatic waves of all possible energies. However, the
reader should not forget that, as the above discussion has illustrated, mathematically
such restoration is not always trivial.
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2.3 Particle reflection and tunneling
Now, let us proceed to the cases when a 1D particle moves in various potential
profilesU(x) that are constant in time. Conceptually, the simplest of such profiles is a
potential step—see figure 2.3.

As I am sure the reader knows, in the classical mechanics the particle’s kinetic
energy p2/2m cannot be negative, so if the particle is incident on such a step (in figure
2.3, from the left), it can only travel through the classically accessible region, where
its (conserved) full energy,

= +E
p
m

U x
2

( ), (2.50)
2

is larger than the local value U(x). Let the initial velocity v = p/m be positive, i.e.
directed toward the step. Before it has reached the classical turning point xc, defined
by equation

=U x E( ) , (2.51)c

the particle’s kinetic energy p2/2m is positive, so that it continues to move in the
initial direction. On the other hand, the particle cannot penetrate that classically
forbidden region x > xc, because there its kinetic energy would be negative. Hence
when the particle reaches the point x = xc, its velocity has to change sign, i.e. the
particle is reflected back from the classical turning point.

In order to see what the wave mechanics says about this situation, let us start from
the simplest, sharp potential step shown with the bold black line in figure 2.4:

⎧⎨⎩θ= ≡ <
<

U x U x
x

U x
( ) ( )

0, at 0,
, at 0 .

(2.52)0
0

For this choice, and any energy within the interval 0 < E < U0, the classical turning
point is xc = 0.

Let us represent an incident particle with a wave packet so long that the
spread δk ~ 1/δx of its wave number spectrum, and hence the energy uncertainty

Figure 2.2. The real (solid line) and imaginary (dashed line) parts of the 1D free particle’s propagator.
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δE = ℏδω = ℏ(dω/dk)δk is negligible in comparison with its average value E < U0, as
well as with (U0 − E). In this case, E may be considered as a given constant, the time
dependence of the wavefunction is given by Eq. (1.62), and we can calculate its spatial
factor ψ(x) from the 1D version of the stationary Schrödinger equation (1.65):11

ψ ψ ψ− ℏ + =
m

d
dx

U x E
2

( ) . (2.53)
2 2

2

At x < 0, i.e. at U = 0, the equation is reduced to the Helmholtz equation (1.78),
and may be satisfied with either of two traveling waves, proportional to exp{+ikx}
and exp{−ikx} correspondingly, with k satisfying the dispersion equation (1.30):

≡
ℏ

k
mE2

. (2.54)2
2

Thus the general solution of Eq. (2.53) in this region may be represented as

ψ = +−
+ −x Ae Be( ) . (2.55)ikx ikx

The second term on the right-hand side of Eq. (2.55) evidently describes an (infinitely
long) wave packet traveling to the left, arising because of the particle’s reflection
from the potential step. If B = −A, this solution is reduced to Eq. (1.84) for the

Figure 2.4. The reflection of a monochromatic wave from a potential step U0 > E. (This particular
wavefunction’s shape is for U0 = 5E.) The wavefunction is plotted with the same schematic vertical offset
by E as those in figure 1.8.

Figure 2.3. Classical 1D motion in a potential profile U(x).

11Note that this is not the eigenproblem like the one we have solved in section 1.4 for a potential well. Indeed,
now the energy E is considered given—e.g. by the initial conditions that launch a long wave packet upon the
potential step—in figure 2.4, from the left.
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potential well with infinitely high walls, but for our current case of a finite step height
U0, the relation between the coefficients B and A may be different.

To show this, let us solve Eq. (2.53) for x > 0, whereU =U0 > E. In this region the
equation may be rewritten as

ψ
κ ψ=+

+
d

dx
, (2.56)

2

2
2

where κ is a real constant defined by the relation similar to Eq. (2.54):

κ ≡ −
ℏ

>m U E2 ( )
0. (2.57)2 0

2

The general solution of Eq. (2.56) is the sum of exp{+κx} and exp{−κx}, with
arbitrary coefficients. However, in our case the wavefunction should be finite at
x → ∞, so only the latter exponent is acceptable:

ψ = κ
+

−x Ce( ) . (2.58)x

Such penetration of the wavefunction into the classically forbidden region, and
hence a non-zero probability to find the particle there, is one of the most fascinating
predictions of quantum mechanics, and has been repeatedly observed in experiment,
e.g. via tunneling experiments—see the next section12. From Eq. (2.58), it is evident
that the constant κ, defined by Eqs. (2.57), may be interpreted as the reciprocal
penetration depth. Even for the lightest particles this depth is usually very small.
Indeed, for E ≪ U0 that equation yields

δ
κ

≡ = ℏ

= mU
1

(2 )
. (2.59)

E 0 0
1/2

For example, for a conduction electron in a typical metal, that runs, at its surface, into
a sharp potential step whose height equals metal’s workfunction U0 ≈ 5 eV (see the
discussion of the photoelectric effect in section 1.1), δ is close to 0.1 nm, i.e. is close to a
typical size of an atom. For heavier elementary particles (e.g. protons) the penetration
depth is correspondingly lower, and for macroscopic bodies it is hardly measurable.

Returning to Eqs. (2.55) and (2.58), we still should relate the coefficients B and C
to the amplitude A of the incident wave, using the boundary conditions at x = 0.
Since E is a finite constant, and U(x) is a finite function, Eq. (2.53) says that d2ψ/dx2

should be finite as well. This means that the first derivative should be continuous:

⎛
⎝⎜

⎞
⎠⎟ ∫

∫

ψ ψ ψ

ψ

− =

=
ℏ

− =

ε
ε ε

ε
ε

ε

ε
ε

ε

→
=+ =−

→
−

+

→
−

+

d
dx

d
dx

d
dx

dx

m
U x E dx

lim lim

2
lim [ ( ) ] 0.

(2.60)x x
0 0

2

2

2 0

12Note that this effect is pertinent to waves of any type, including the electromagnetic waves propagating in a
medium—see, e.g. Part EM sections 7.3–7.7.
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Repeating this calculation for the wavefunction ψ(x) itself, we see that it also should
be continuous at all points, including the border point x = 0, so that the boundary
conditions in our problem are

ψ ψ ψ ψ
= =− +

− +d
dx

d

dx
(0) (0), (0) (0). (2.61)

Plugging Eqs. (2.55) and (2.58) into Eqs. (2.61), we get a system of two linear
equations

κ+ = − = −A B C ikA ikB C, , (2.62)

whose (easy) solution enables us to express B and C via A:

κ
κ κ

= −
+

=
+

B A
k i
k i

C A
k

k i
,

2
. (2.63)

We immediately see that the numerator and denominator in the first of these
fractions have equal moduli, so that ∣B∣ = ∣A∣. This means that, as we could expect, a
particle with energy E < U0 is totally reflected from the step—just as in classical
mechanics. As a result, at x < 0 our solution (2.55) may be represented by a standing
wave

ψ θ θ
κ

= − ≡θ
−

−iAe kx
k

2 sin( ), with tan . (2.64)i 1

Note that the shift Δx ≡ θ/k = (tan−1 k/κ)/k of the standing wave to the right, due to
the partial penetration of the wavefunction under the potential step, is commensu-
rate with, but generally not equal to the penetration depth δ ≡ 1/κ. The red line in
figure 2.4 shows the full behavior of the wavefunction, for a particular case E =U0/5,
at which k/κ ≡ [E/(U0 − E)]1/2 = 1/2.

According to Eq. (2.59), as the particle’s energy E is increased to approachU0, the
penetration depth 1/κ diverges. This raises an important issue: what happens at
E > U0, i.e. if there is no classically forbidden region in the problem? Again, in the
classical mechanics the incident particle would continue to move to the right, though
with a reduced velocity, corresponding to the new kinetic energy E − U0, so there
would be no reflection. In quantum mechanics, however, the situation is different. In
order to analyze it, it is not necessary to re-solve the whole problem; it is sufficient to
note that all our calculations, and hence Eqs. (2.63) are still valid if we take13

κ = − ′ ′ ≡ −
ℏ

>ik k
m E U

, with
2 ( )

0. (2.65)2 0
2

13Our earlier discarding of the particular solution exp{κx}, now becoming exp{−ik′x}, is still valid, but now on
a different grounds: this term would describe a wave packet incident on the potential step from the right, and
this is not the problem under our consideration.
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With this replacement, Eq. (2.63) becomes14

= − ′
+ ′

=
+ ′

B A
k k
k k

C A
k

k k
,

2
. (2.66)

The most important result of this change is that now the particle’s reflection is not
total: ∣B∣ < ∣A∣. In order to evaluate this effect qualitatively, it is more fair to use not
the B/A or C/A ratios, but rather that of the probability currents (2.5) carried by the
de Broglie waves traveling to the right, with amplitudes C and A, in the
corresponding regions (respectively, x > 0 and x < 0):

T ≡ = ′ = ′
+ ′

≡ −
+ −

I
I

k C
k A

kk
k k

E E U

E E U

4
( )

4[ ( )]

[ ( ) ]
. (2.67)C

A

2

2 2
0

1/2

1/2
0

1/2 2

(The parameterT so defined is called the transparency of the system, in our current
case of the potential step.) The result given by Eq. (2.67) is plotted in figure 2.5a as a
function of the ratio U0/E. Note its most important features:

(i) AtU0 = 0, the transparency is full,T = 1—naturally, because there is no step at all.

(ii) At U0 → E, the transparency tends to zero, giving a proper connection with
the case E < U0.

(iii) Nothing in our solution’s procedure prevents us from using Eq. (2.67) even
for U0 < 0, i.e. for the step-down (or ‘cliff’) potential profile—see figure 2.5b. Very
counter-intuitively, the particle is (partly) reflected even from such a cliff, and the
transmission diminishes (though rather slowly) at U0 → −∞.

The most important conceptual conclusion of this analysis is that the quantum
particle is partly reflected from a potential step with U0 < E, in the sense that there is

Figure 2.5. (a) The transparency of a potential step with U0 < E as a function of its height, according to Eq.
(2.75), and (b) the potential profile at U0 < 0.

14 These formulas are completely similar to those describing the partial reflection of classical waves from a
sharp interface between two uniform media, at normal incidence (see, e.g. Part CM section 6.4 and Part EM
section 7.4), with the effective impedance Z of de Broglie waves being proportional to their wave number k.
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a nonvanishing probabilityT < 1 to find it passed over the step, while there is also
some probability (1 − T ) to have it reflected.

The last property is exhibited, but for any relation between E and U0, by another
simple potential profile U(x), the famous potential (or ‘tunnel’) barrier. Figure 2.6
shows its simple, ‘rectangular’ version:

⎧
⎨⎪
⎩⎪

=
< −

− < < +
+ <

U x
x d

U d x d
d x

( )
0, for /2,

, for /2 /2,
0, for /2 .

(2.68)0

In order to analyze this problem, it is sufficient to look for the solution to the
Schrödinger equation in the form (2.55) at x ⩽ −d/2. At x > +d/2, i.e. behind the
barrier, we may use the arguments presented above (no wave source on the right!) to
keep just one traveling wave, now with the same wave number:

ψ =+ x Fe( ) . (2.69)ikx

However, under the barrier, i.e. at −d/2 ⩽ x ⩽ +d/2, we should generally keep both
exponential terms,

ψ = +κ κ− +x Ce De( ) , (2.70)b
x x

because our previous argument, used in the potential step problem’s solution, is no
longer valid. (Here k and κ are still defined, respectively, by Eqs. (2.54) and (2.57).)
In order to express the coefficients B, C, D, and F via the amplitude A of the incident
wave, we need to plug these solutions into the boundary conditions similar to
Eqs. (2.61), but now at two boundary points, x = ±d/2.

Solving the resulting system of four linear equations, we get four ratios B/A, C/A,
etc; in particular,

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥κ κ

κ
κ= + −

−
−F

A
d

i
k

k
d e acosh

2
sinh , (2.71 )ikd

1

and hence the barrier’s transparency

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥T κ κ

κ
κ≡ = + −

−
F
A

d
k

k
d bcosh

2
sinh . (2.71 )

2
2

2 2 2
2

1

Figure 2.6. A rectangular potential barrier, and the partial waves taken into account at its analysis.
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So, quantum mechanics indeed allows particles with energies E < U0 to pass
‘through’ the potential barrier—see figure 2.6. This is the famous effect of quantum-
mechanical tunneling. Figure 2.7a shows the barrier transparency as a function of the
particle energy E, for several characteristic values of its thickness d, or rather of the
ratio d/δ, with the δ is defined by Eq. (2.59).

The plots show that generally, the transparency grows gradually with the
particle’s energy. This growth is natural, because the penetration constant κ
decreases with the growth of E, i.e. the wavefunction penetrates more and more
into the barrier, so that more and more of it is ‘picked up’ at the second interface
(x = +d/2) and transferred into the wave Fexp{ikx} propagating behind the barrier.

Now let consider an important limit of a very thin and high rectangular barrier,
d ≪ δ, E ≪ U0 (giving k ≪ κ ≪ 1/d). In this limit, Eq. (2.71) yields

⎛
⎝⎜

⎞
⎠⎟

T
α α

α κ
κ

κ κ

≡ →
+

=
+

≡ − ≈ ≈
ℏ

F
A i

k
k

d
d

k
m

k
U d

1
1

1
1

, where

1
2

1
2

,

(2.72)

2

2 2

2 2 2

2 0

The last product, U0d, is just the ‘area’

W ∫≡
>

U x dx( ) (2.73)
U x E( )

of the barrier. This fact implies that the very simple result (2.72) may be correct for a
barrier of any shape, provided that it is sufficiently thin and high. In order to prove
this, let us consider the tunneling problem for a very thin barrier with κd, kd ≪ 1
approximating it with the Dirac’s δ-function (figure 2.8):

W δ=U x x( ) ( ), (2.74)

where the parameterW evidently satisfies Eq. (2.73).

Figure 2.7. The transparency of the rectangular potential barrier as a function of the particle’s energy E.
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The solutions of the tunneling problem at all points but x = 0 still may be taken in
the form of Eqs. (2.55) and (2.69), so we only need to analyze the boundary
conditions in that point. However, due to the special character of the δ-function, we
should be careful here. Indeed, instead of Eq. (2.60) we now get

W

⎛
⎝⎜

⎞
⎠⎟ ∫

∫

ψ ψ ψ

ψ

ψ

− =

=
ℏ

−

=
ℏ

ε
ε ε

ε
ε

ε

ε
ε

ε

→
=+ =−

→
−

+

→
−

+

d
dx

d
dx

d
dx

dx

m
U x E dx

m

lim lim

lim
2

[ ( ) ]

2
(0).

(2.75)

x x
0 0

2

2

0 2

2

According to this relation, at a finiteW , the derivatives dψ/dx are also finite, so that
the wavefunction itself is still continuous:

∫ψ ψ ψ− = =ε ε ε ε
ε

ε

→ =+ =+ →
−

+ d
dx

dxlim ( ) lim 0. (2.76)x x0 0

Using these two boundary conditions, we readily get the following system of two
linear equations,

W+ = − − =
ℏ

A B F ikF ikA ikB
m

F, ( )
2

, (2.77)
2

whose solution yields

Wα
α α

α= −
+

=
+

≡
ℏ

B
A

i
i

F
A i

m
k1

,
1

1
, where . (2.78)

2

(This expression for α is compatible with that in Eq. (2.72).) For the barrier
transparency T≡ ∣F/A∣2, this result again gives the first of Eqs. (2.72), which is
therefore indeed general for such thin barriers. That formula may be recast to give
the following simple expression (valid only for E ≪ Umax):

W
T

α
=

+
≡

+
≡

ℏ
E

E E
E

m1
1

, where
2

, (2.79)
2

0
0

2

2

which shows that as energy becomes larger than the constant E0, the transparency
approaches 1.

Figure 2.8. A delta-functional potential barrier.
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Now proceeding to another important limit of thick barriers (d ≫ δ), Eq. (2.71)
shows that in this case, the transparency is dominated by what is called the tunnel
exponent,

⎛
⎝⎜

⎞
⎠⎟T

κ
κ

=
+

κ−k
k

e
4

, (2.80)d
2 2

2
2

which may be clearly seen as the straight segments in semi-log plots (figure 2.7b) of
T as a function of the combination (1 − E/U0)

1/2, which is proportional to κ—see Eq.
(2.57). This exponential dependence on the barrier thickness is the most important
factor for various applications of the quantum-mechanical tunneling—from the field
emission of electrons to vacuum15 to the scanning tunneling microscopy16. Note also
very substantial negative implications of the effect for the electronic technology
progress, most importantly imposing limits on the so-called Dennard scaling of field-
effect transistors in semiconductor integrated circuits (and hence on the well-known
Moore’s law), due to the increase of tunneling both through the gate oxide and along
the channel of the transistors, from source to drain17.

Finally, one more feature visible in figure 2.7a (for case d = 3δ) are the oscillations
of the transparency as a function of energy, at E > U0, withT = 1, i.e. the reflection
completely vanishing, at some points18. This is our first glimpse at one more
interesting quantum effect: resonant tunneling. This effect will be discussed in more
detail in section 2.5 below, using another potential profile, where it is more clearly
pronounced.

2.4 Motion in soft potentials
Before moving on to exploring other quantum-mechanical effects, let us see how the
results discussed in the previous section are modified in the opposite limit of the so-
called soft (also called ‘smooth’) potential profiles, like the one sketched in figure
2.3.19 The most efficient analytical tool to study this limit is the so-called WKB (or
‘JWKB’, or ‘quasiclassical’) approximation developed by H Jeffrey, G Wentzel, A
Kramers, and L Brillouin in 1925–27. In order to derive its 1D version, let us rewrite
the Schrödinger equation (2.53) in a simpler form

ψ ψ+ =d
dx

k x( ) 0, (2.81)
2

2
2

15 See, e.g. [1].
16 See, e.g. [2].
17 See, e.g. [3], and references therein. (A brief discussion of the field-effect transistors may be found in Part SM
section 6.4.)
18 Let me mention in passing the curious case of the potential well U(x) = −(ℏ2/2m)ν(ν + 1)/cosh2(x/a), with any
positive integer ν and any real a, which is reflection-free (T = 1) for the incident de Broglie wave of any energy
E, and hence for any incident wave packet. Unfortunately, a proof of this fact would require more time/space
than I can afford. (Note that it was first discussed in a 1930 paper by P Epstein, prior to the 1933 publication
by G Pöschl and E Teller, which is responsible for the common name of this Pöschl–Teller potential.)
19Quantitative conditions of the ‘softness’ will be formulated later in this section.
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where the local wave number k(x) is defined similarly to Eq. (2.65),

≡ −
ℏ

k x
m E U x

( )
2 [ ( )]

; (2.82)2
2

besides that now it may be a function of x. We already know that for k(x) = const,
the fundamental solutions of this equation are Aexp{+ikx} and Bexp{−ikx}, which
may be represented in a single form

ψ = Φx e( ) , (2.83)i x( )

where Φ(x) is a complex function, in these two simplest cases equal, respectively, to
(kx − iln A) and (−kx − iln B). This is why we may try use Eq. (2.83) to look
for solution of Eq. (2.81) even in the general case, k(x) ≠ const. Differentiating
Eq. (2.83) twice, we get

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

ψ ψ= Φ = Φ − ΦΦ Φd
dx

i
d
dx

e
d
dx

i
d
dx

d
dx

e, . (2.84)i i
2

2

2

2

2

Plugging the last expression into Eq. (2.81) and requiring the factor before exp{iΦ(x)}
to vanish, we get

⎛
⎝⎜

⎞
⎠⎟

Φ − Φ + =i
d
dx

d
dx

k x( ) 0. (2.85)
2

2

2
2

This is still an exact, general equality. At first sight, it looks worse than the
initial Eq. (2.81), because Eq. (2.85) is nonlinear. However, it is ready for
simplification in the limit when the potential profile is very soft, dU/dx → 0.
Indeed, for a uniform potential, d2Φ/dx2 = 0. Hence, in the so-called 0th
approximation, Φ(x) → Φ0(x), we may try to keep that result, so that Eq. (2.85) is
reduced to

⎛
⎝⎜

⎞
⎠⎟ ∫Φ = Φ = ± Φ = ± ′ ′d

dx
k x

d
dx

k x x k x dx( ), i.e. ( ), ( ) ( ) , (2.86)
x

0
2

2 0
0

so that its general solution is a linear superposition of two functions (2.83), with Φ
replaced with Φ0:

∫ ∫ψ = + ′ ′ + − ′ ′{ } { }x A i k x dx B i k x dx( ) exp ( ) exp ( ) , (2.87)
x x

0

where the lower limits of integration affect only the constants A and B. The physical
sense of this result is simple: it is a sum of the forward- and back-propagating de
Broglie waves, with the coordinate-dependent local wave number k(x) that self-
adjusts to the potential profile.
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Let me emphasize the non-trivial nature of this approximation20. First, any
attempt to address the problem with the standard perturbation approach (say, ψ =
ψ0 + ψ1 +…, with ψn proportional to the nth power of some small parameter, see
chapter 6) would fail for most potentials, because as Eq. (2.86) shows, even a slight
but persisting deviation of U(x) from a constant leads to a gradual accumulation of
the phase Φ0, impossible to describe by any small perturbation of ψ. Second, the
dropping of term d2Φ/dx2 in Eq. (2.85) is not too easy to justify. Indeed, since we are
committed to the ‘soft potential limit’ dU/dx → 0, we should be ready to assume the
characteristic length a of the spatial variation of Φ to be large, and neglect the terms
that are the smallest ones in the limit a →∞. However, both first terms in Eq. (2.85)
are apparently of the same order in a, namely O(a−2); why have we neglected just
one of them?

The price we have paid for such a ‘sloppy’ treatment is substantial: Eq. (2.87) does
not satisfy the fundamental property of the Schrödinger equation, the probability
current conservation. Indeed, since Eq. (2.81) describes a fixed-energy (stationary)
spatial part of the general Schrödinger equation, its probability density w = ΨΨ* =
ψψ*, and should not depend on time. Hence, according to Eq. (2.6), we should have
I(x) = const. However, this is not true for any component of Eq. (2.87); for example
for the first, forward-propagating component on its right-hand side, Eq. (2.5) yields

= ℏ
I x

m
A k x( ) ( ), (2.88)0

2

evidently not a constant if k(x) ≠ const. The brilliance of the WKB theory is that the
problem may be fixed without revising the 0th approximation, just by amending it.
Indeed, let us explore the next, 1st approximation instead:

Φ → Φ ≡ Φ + Φx x x x( ) ( ) ( ) ( ), (2.89)WKB 0 1

where Φ0 still obeys Eq. (2.86), while Φ1 describes a correction to the 0th
approximation, which is small in the following sense21:

Φ ≪ Φ =d
dx

d
dx

k x( ). (2.90)1 0

Plugging Eq. (2.89) into Eq. (2.85), with the account of the definition (2.86), we get

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Φ + Φ − Φ Φ + Φ =i
d
dx

d
dx

d
dx

d
dx

d
dx

2 0. (2.91)
2

0
2

2
0

2
1 0 1

20 Philosophically, this space-domain method is very close to the time-domain van der Pol method in classical
mechanics, and the very similar rotating wave approximation (RWA) in quantum mechanics—see, e.g. Part
CM sections 5.2–5.5, and also sections 6.5, 7.6, 9.2, and 9.4 of this course.
21 For certainty, I will use the discretion given by Eq. (2.82) to define k(x) as the positive root of its right-hand
side.
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Using the condition (2.90), we may neglect d2Φ1/dx
2 in comparison with d2Φ0/dx

2

inside the first parentheses, and dΦ1/dx in comparison with 2dΦ0/dx inside the
second parenthesis. As a result, we get the following (still approximate) result:

⎛
⎝⎜

⎞
⎠⎟

Φ = Φ Φ = Φ = =d
dx

i d
dx

d
dx

i d
dx

d
dx

i d
dx

k x i
d
dx

k x
2 2

ln
2

[ln ( )] [ln ( )], (2.92)1
2

0
2

0 0 1/2

∫Φ∣ ≡ Φ + Φ = ± ′ ′ +i i i i k x dx
k x

( ) ln
1
( )

, (2.93)
x

WKB 0 1 1/2

∫

∫

ψ = ′ ′

+ − ′ ′ >

{ }
{ }

x
a

k x
i k x dx

b
k x

i k x dx k x

( )
( )

exp ( )

( )
exp ( ) , for ( ) 0.

(2.94)

x

x

WKB 1/2

1/2
2

(Again, the lower integration limit is arbitrary, because its choice may be
incorporated into the complex constants a and b.) This modification of the 0th
approximation (2.87) overcomes the problem of current continuity; for example, for
the forward-propagating wave, Eq. (2.5) gives

= ℏ =I x
m

a( ) const. (2.95)WKB
2

Physically, the factor k1/2 in the denominator of the WKB wavefunction’s pre-
exponent is easy to understand. The smaller the local group velocity (2.33) of the
wave packet, vgr(x) = ℏk(x)/m, the ‘easier’ (more probable) it should be to find the
particle within a certain interval dx. This is exactly the result that the WKB
approximation gives: w(x) = ψψ* ∝ 1/k(x) ∝ 1/vgr. Another value of the 1st
approximation is a clarification of the WKB theory’s validity condition: it is given
by Eq. (2.90). Plugging into this relation the first form of Eq. (2.92), and estimating
∣d2Φ0/dx

2∣ as ∣dΦ0/dx∣/a, where a is the spatial scale of a substantial change of
∣dΦ0/dx∣ = k(x), we may write the condition as

≫ka 1. (2.96)

In plain English, this means that the region where U(x), and hence k(x), change
substantially should contain many de Broglie wavelengths λ = 2π/k.

So far I have implied that k2(x) ∝ E − U(x) is positive, i.e. particle moves in
the classically accessible region. Now let us extend the WKB approximation to the
situation where the difference E − U(x) may change sign, for example to the
reflection problem sketched in figure 2.3. Just as we did for the sharp potential step,
we first need to find the appropriate solution in the classically forbidden region, in
this case for x > xc. For that, there is again no need to redo our calculations,
because they are still valid if we, just as in the sharp-step problem, take k(x) = iκ(x),
where
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κ ≡ −
ℏ

> >x
m U x E

x x( )
2 [ ( ) ]

0, for , (2.97)2
2 c

and keep just one of two possible solutions (with κ > 0), in analogy with Eq. (2.58).
The result is

∫ψ
κ

κ κ= − ′ ′ < >{ }x
c

x
x dx k( )

( )
exp ( ) , for 0, i.e. 0, (2.98)

x

WKB 1/2
2 2

with the lower limit at some point with κ2 > 0 as well. This is a really wonderful
formula! It describes the quantum-mechanical penetration of the particle into the
classically forbidden region, and provides a natural generalization of Eq. (2.58)—
leaving intact, of course, our estimates of the depth δ ~ 1/κ of such penetration.

Now we have to do what we have done for the sharp-step problem in section 2.2: use
the boundary conditions in the interface point x = xc to relate the constants a, b, and c.
However, now this operation is a tadmore complex, because bothWKB functions (2.94)
and (2.98) diverge, albeit weakly, at the classical turning point, where both k(x) and κ(x)
tend to zero. This connection problem may be solved, however, in the following way22.
Let us use our commitment of the potential ‘softness’, assuming that it allows us to keep
just two leading terms in the Taylor expansion of the function U(x) at the point xc:

≈ + − ≡ + −
= =

U x U x
dU
dx

x x E
dU
dx

x x( ) ( ) ( ) ( ). (2.99)
x x x x

c c c

c c

Using this truncated expansion, and introducing the following dimensionless
variable for the coordinate’s deviation from the classical turning point,

⎡
⎣⎢

⎤
⎦⎥ζ ≡ − ≡ ℏ

=

x x
x

x
m dU dx

, with
2 ( / )

, (2.100)
x x

c

0
0

2 1/3

c

we reduce the Schrödinger equation (2.53) to the so-called Airy equation

ψ
ζ

ζ ψ− =d
d

0. (2.101)
2

2

This simple linear, ordinary, homogenous differential equation of the second order
has been very well studied. Its general solution may be represented as a linear
combination of two fundamental solutions, called the Airy functions Ai(ζ) and Bi(ζ),
shown in figure 2.9a.23

22An alternative way to solve the connection problem, without involving the Airy functions but using an
analytical extension of WKB formulas to the plane of complex argument, may be found, e.g. in section 47 of
textbook [4].
23Note the following (exact) integral formulas,

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎧⎨⎩
⎫⎬⎭

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦
⎥⎥∫ ∫ζ

π
ξ ζξ ξ ζ

π
ξ ζξ ξ ζξ ξ= + = − + + +

∞ ∞
d dAi( )

1
cos

3
, Bi( )

1
exp

3
sin

3
,

0

3

0

3 3

frequently more convenient for practical calculations of the Airy functions than the differential equation
(2.101).
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The latter function diverges at ζ → ∞, and thus is not suitable for our current
problem (figure 2.3), while the former function has the following asymptotic
behaviors at ∣ζ ∣ ≫ 1:

⎧
⎨
⎪⎪

⎩
⎪⎪

ζ
π ζ

ζ ζ

ζ π ζ
→ ×

− → +∞

− + → −∞

{ }
{ }

Ai( )
1

1
2

exp
2
3

, for ,

sin
2
3

( )
4

, for .
(2.102)

1/2 1/4

3/2

3/2

Now let us apply the WKB approximation to the Airy equation (2.101). Taking the
classical turning point (ζ = 0) for the lower limit, for ζ > 0 we get

∫κ ζ ζ κ ζ ζ κ ζ ζ ζ= = ′ ′ =
ζ

d( ) , ( ) , ( )
2
3

, (2.103)2 1/2

0

3/2

i.e. exactly the exponent in the top line of Eq. (2.102). Making a similar calculation
for ζ < 0, with the natural assumption ∣b∣ = ∣a∣ (the full reflection from the potential
step), we arrive at the following result:

⎧
⎨
⎪⎪

⎩
⎪⎪

ζ
ζ

ζ ζ

ζ φ ζ
= ×

′ − >

′ − + <

{ }
{ }

c

a
Ai ( )

1
exp

2
3

, for 0,

sin
2
3

( ) , for 0.
(2.104)WKB 1/4

3/2

3/2

This approximation differs from the exact solution at small values of ζ, i.e. close to
the classical turning point—see figure 2.9b. However, at ∣ζ∣ ≫ 1, Eqs. (2.104)
describe the Airy function exactly, provided that

φ π= ′ = ′
c

a
4

,
2

. (2.105)

Figure 2.9. (a) The Airy functions Ai and Bi, and (b) the WKB approximation for the function Ai(ζ).
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These connection formulas may be used to rewrite Eq. (2.104) as the following,

⎧
⎨
⎪⎪

⎩
⎪⎪

⎡
⎣⎢

⎤
⎦⎥

ζ
ζ

ζ ζ

ζ π ζ π ζ

= ′

×
− >

+ + − − − <

{ }
{ } { }

a

i
i i i i

Ai ( )
2

exp
2
3

, for 0,

1
exp

2
3 4

exp
2
3 4

, for 0,

(2.106)

WKB 1/4

3/2

3/2 3/2

and hence are described by two simple mnemonic rules:

(i) If the classical turning point is taken for lower limit in the WKB integrals in
the classically allowed and the classically forbidden regions, then the moduli of the
quasi-amplitudes of the exponents are equal.

(ii) Reflecting from a ‘soft’ potential step, the wavefunction acquires an addi-
tional phase shift Δφ = π/2, if compared with the reflection from a ‘hard’, infinite
potential wall at x = xc (for which, according to Eq. (2.63) with κ = 0, we have
B = −A).

In order for the connection formulas (2.105)–(2.106) to be valid, deviations from
the linear approximation (2.99) of the potential profile should be relatively small
within the region where the WKB approximation differs from for the exact Airy
equation: ∣ζ∣ ~ 1, i.e. ∣x − xc∣ ~ x0. The deviations may be estimated using the next term
of the Taylor expansion, (d2U/d2x)(x − xc)

2/2. As a result, the condition of validity of
the connection formulas (i.e. of the ‘softness’ of the reflecting potential profile) may be
expressed as ∣d2U/d2x∣x0 ≪ ∣dU/dx∣ at x ≈ xc (meaning the ~x0–wide vicinity of the
point xc). With the account of Eq. (2.100) for x0, this condition becomes

⎛
⎝⎜

⎞
⎠⎟≪

ℏ≈ ≈

d U
dx

m dU
dx

2
, (2.107)

x x x x

2

2

3

2

4

c c

As an example of a very useful application of the WKB approximation, let us use
the rule (ii) to calculate the energy spectrum of 1D particle in a soft 1D potential well
(figure 2.10).

Figure 2.10. The WKB treatment of an eigenstate of a particle in a soft 1D potential well.
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As was discussed in section 1.7, we may consider the standing wave describing an
eigenfunction ψn (corresponding to an eigenenergy En) as a traveling de Broglie wave
going back and forth between the walls, being sequentially reflected by each of them.
Let us apply the WKB approximation to such a traveling wave. First, according to
Eq. (2.94), propagating from the left classical turning point xL to the right point xR,
it acquires the phase change

∫φΔ =→ k x dx( ) . (2.108)
x

x

L

R

At the reflection from the soft wall at xR, according to the connection formulas
(2.105)–(2.106), the wave acquires an additional shift π/2. Now, traveling back from
xR to xL, the wave gets a shift similar to one given by Eq. (2.108): Δφ← = Δφ→.
Finally, at the reflection from xL it gets one more π/2. Summing up all these
contributions at the wave’s roundtrip, we may write the self-consistency condition
(that the wavefunction ‘catches its own tail with its teeth’) in the form

∫
φ φ π φ π

π π

Δ ≡ Δ + + Δ +

≡ + = = …

→ ←

k x dx n n

2 2

2 ( ) 2 , with 1, 2,
(2.109)

x

x

total

L

R

Rewriting this result in the terms of the particle’s momentum p(x) = ℏk(x), we arrive
at the famous 1D Bohr–Sommerfeld quantization rule

⎛
⎝⎜

⎞
⎠⎟∮ π= ℏ −p x dx n( ) 2

1
2

, (2.110)
C

where the closed path C means the full period of classical motion24.
Let us see what this quantization rule gives for the very important particular case of

a quadratic potential profile of a harmonic oscillator of frequency ω0. In this case,

ω=U x
m

x( )
2

, (2.111)0
2 2

and the classical turning points (where U(x) = E) are the roots of a simple equation

⎛
⎝⎜

⎞
⎠⎟ω ω= = > = − <−m

x E x
E
m

x x
2

, so that
2

0, 0. (2.112)n
n

0
2

c
2

R 0
1

1/2

L R

Due to potential’s symmetry, the integration required by Eq. (2.110) is also simple:

⎛
⎝⎜

⎞
⎠⎟∫ ∫ ∫

∫ ξ ξ π π
ω

= − ≡ −

≡ − = ≡

p x dx m E U x dx mE
x
x

dx

mE x d mE x
E

( ) {2 [ ( )]} (2 ) 2 1

(2 ) 2 (1 ) (2 ) 2
4

,

(2.113)
x

x

x

x

n n

x

n n
n

1/2 1/2

0

2

R
2

1/2

1/2
R

0

1
2 1/2 1/2

R
0

L

R

L

R R

24Note that at the motion in more than one dimension, a closed classical trajectory may have no turning
points. In this case, the constant 1/2 in the parentheses of Eq. (2.110), arising from the turns, should be
dropped. The simplest example is the circular motion of the electron about the proton in Bohr’s picture of the
hydrogen atom, for which the so-modified quantization (2.110) condition takes the form (1.8). (A similar
relation for the radial motion of a particle is sometimes called the Sommerfeld–Wilson quantization rule.)
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so that Eq. (2.110) yields

⎛
⎝⎜

⎞
⎠⎟ω= ℏ ′ + ′ ≡ − = …E n n n

1
2

, with 1 0, 1, 2, . (2.114)n 0

In order to estimate the validity of this result, we have to check the condition
(2.96) at all points of the classically allowed region, and Eq. (2.107) at the turning
points. A straightforward calculation shows that both conditions are valid only for
n ≫ 1. However, we will see in section 2.9 below that Eq. (2.114) is actually exactly
correct for all energy levels—thanks to special properties of potential profile (2.111).

Now let us apply the mnemonic rule (i) to examine particle’s penetration into the
classically forbidden region of a potential step of a heightU0>E. For this case, the rule,
i.e. the second of Eqs. (2.105), yields the following relation of the quasi-amplitudes in
Eqs. (2.94) and (2.98): ∣c∣= ∣a∣/2. If we nownaively applied this relation to the sharp step
sketched in figure 2.4, forgetting that it does not satisfy Eq. (2.107), we would get the
following relation of the full amplitudes, defined by Eqs. (2.55) and (2.58):

κ
= !C A

k
1
2

. (WRONG ) (2.115)

This result differs from the correct Eq. (2.63), and hence we may expect that the
WKB approximation’s prediction for more complex potentials, most importantly
for tunneling through a soft potential barrier (figure 2.11) should be also different
from the exact result (2.71) for the rectangular barrier shown in figure 2.6.

In order to analyze tunneling through such a soft barrier, we need (just as in the
case of a rectangular barrier) to take into consideration five partial ‘waves’, but now
they should be taken in the WKB form25:

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

∫

∫

∫

∫

∫
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κ

κ
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′ ′

+ − ′ ′ <

− ′ ′

+ ′ ′ < < ′

′ ′ ′ <
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{ }

{ }
{ }
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a
k x

i k x dx

b
k x

i k x dx x x

c
x

x dx

d
x

x dx x x x

f
k x

i k x dx x x

( )
exp ( )

( )
exp ( ) , for ,

( )
exp ( )

( )
exp ( ) , for ,

( )
exp ( ) , for ,

(2.116)

x

x

x

x

x

WKB

1/2

1/2 c

1/2

1/2 c c

1/2 c

where the lower limits of integrals are arbitrary (each within the corresponding range
of x). Since on the right of the left classical point we have two exponents rather than

25 Sorry, but the same letter d is used here for the barrier thickness (defined in this case as the classically
forbidden region length, xc′ − xc), and the constant in one of the wave amplitudes—see Eq. (2.116). Let me
hope that the difference between these uses is absolutely evident from the context.
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one, and on the right of the second point, one traveling wave rather than two, the
connection formulas (2.105) have to be generalized, using asymptotic formulas not
only for Ai(ζ), but also for the second Airy function, Bi(ζ). The analysis, absolutely
similar to that carried out above (though naturally a bit more bulky)26, gives a
remarkably simple result:

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭

T ∫

∫

κ≡ = −

≡ −
ℏ

−

′

′

f
a

x dx

m U x E dx

exp 2 ( )

exp
2

(2 [ ( ) ]) ,

(2.117)
x

x

x

x

WKB

2

1/2

c

c

c

c

with the pre-exponential factor equal to 1—the fact which might be readily expected
from the mnemonic rule (i) of the connection formulas.

This formula is broadly used in applied quantum mechanics, despite the
approximate character of its pre-exponential coefficient for insufficiently soft
barriers that do not satisfy Eq. (2.107). For example, Eq. (2.80) shows that for a
thick rectangular barrier, the WKB approximation (2.117) underestimates T by a
factor of [4kκ/(k2 + κ2)]2—equal, for example, to 4, if k = κ, i.e. U0 = 2E. However,
on the appropriate logarithmic scale (see figure 2.7b), such a factor, about half an
order of magnitude, still is a small correction.

Note also that when E approaches the barrier top Umax (figure 2.11), the points xc
and xc′ merge, so that according to Eq. (2.117),T → 1WKB , i.e. the particle reflection
vanishes at E = Umax. So, the WKB approximation does not describe the effect of
the over-barrier reflection at E > Umax. (This fact could be noticed already from Eq.
(2.95): in the absence of the classical turning points, the WKB probability current is
constant for any barrier profile.) This conclusion is incorrect even for apparently
smooth barriers where one could naively expect the WKB approximation to work
perfectly. Indeed, near the point x = xm where the potential reaches maximum (i.e.
U(xm) = Umax), we may always approximate a smooth function U(x) with the
quadratic term of the Taylor expansion, i.e. with an inverted parabola:

ω
≈ −

−
U x U

m x x
( )

( )
2

. (2.118)m
max

0
2 2

Figure 2.11. Tunneling through a soft 1D potential barrier of an arbitrary shape.

26 For the most important caseTWKB ≪ 1, Eq. (2.117) may be simply derived from Eqs. (2.105)–(2.106)—an
exercise left for the reader.
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Calculating the derivatives dU/dx and d2U/dx2 of this function and plugging them
into condition (2.107), we see that the WKB approximation is only valid if ∣Umax −
E∣ ≫ ℏω0. Just for the reader’s reference, an exact analysis of tunneling through the
barrier (2.118) gives the following Kemble formula27:

T
π ω

=
+ − − ℏE U

1
1 exp{ 2 ( )/ }

, (2.119)
max 0

valid for any sign of the difference (E − Umax). This formula describes a gradual
approach of T to 1, i.e. a gradual reduction of reflection at particle energy’s
increase, with T = 1/2 (rather than 1) at E = Umax.

The last remark of this section: philosophically, the WKB approximation opens a
straight way toward an alternative formulation of quantum mechanics, based on the
Feynman path integral. However, I will postpone its discussion until a more compact
notation has been introduced in chapter 4.

2.5 Resonant tunneling, and metastable states
Now let us move to other, conceptually different quantum effects, taking place in
more elaborate potential profiles. The piecewise-constant and smooth-potential
models of U(x) are not too convenient for their quantitative description, because
they both require ‘stitching’ local solutions in each classical turning point, which
may lead to very cumbersome calculations. However, we may get a very good
insight into the physics phenomena in such profiles using their approximation by sets
of Dirac’s delta-functions.

A further help in studying such profiles is provided by the notions of the scattering
and transfer matrices, very useful for other cases as well. Consider an arbitrary
but finite-length potential ‘bump’ (more formally called a scatterer), localized
somewhere between points x1 and x2, on the flat potential background, say U = 0
(figure 2.12).

From section 2.2, we know that the general solutions of the stationary
Schrödinger equation, with a certain energy E, outside the interval [x1, x2] are sets

Figure 2.12. A single 1D scatterer.

27 It was derived (in a more general form, valid for an arbitrary soft potential barrier) by E Kemble in 1935. In
some communities it is known as the ‘Hill–Wheeler formula’, after D Hill and J Wheeler’s 1953 paper where it
was spelled out for the quadratic profile (2.118). Note that mathematically Eq. (2.119) is similar to the Fermi
distribution in statistical physics, with an effective temperature Tef = ℏω0/2πkB. This similarity has some
interesting implications for the statistics of Fermi gas tunneling, and hence for the electron tunneling in solids.
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of two sinusoidal waves, traveling in the opposite directions. Let us represent them in
the form

ψ = +− − −A e B e , (2.120)j j
ik x x

j
ik x x( ) ( )j j

where the index j (for now) equals either 1 or 2, and (ℏk)2/2m = E. Note that each of
the two wave pairs (2.129) has, in this notation, its own reference point xj, because
this is very convenient for what follows.

As we have already discussed, if the de Broglie wave/particle is incident from the
left, the solution of the linear Schrödinger equation within the scatterer range (x1 < x
< x2) can provide only linear expressions for the transmitted (A2) and reflected (B1)
wave amplitudes via the incident wave amplitude A1:

= =A S A B S A, , (2.121)2 21 1 1 11 1

where S11 and S21 are certain (generally, complex) coefficients. In this case, B2 = 0.
Alternatively, if a wave, with amplitude B2, is incident on the scatterer from the
right, it also can induce a transmitted wave (B1) and reflected wave (A2), with
amplitudes

= =B S B A S B, , (2.122)1 12 2 2 22 2

where coefficients S22 and S12 are generally different from S11 and S21. Now we can
use the linear superposition principle to argue that if the waves A1 and B2 are
simultaneously incident on the scatterer (say, because the wave B2 has been partly
reflected back by some other scatterer located at x > x2), the resulting scattered wave
amplitudes A2 and B1 are just the sums of their values for separate incident waves:

= +
= +

B S A S B
A S A S B

,
.

(2.123)1 11 1 12 2

2 21 1 22 2

These linear relations may be conveniently represented using the so-called scattering
matrix S:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟= ≡B

A
A
B

S S
S S

S , with S . (2.124)1

2

1

2

11 12

21 22

Scattering matrices, duly generalized, are an important tool for the analysis of
wave scattering in more than one dimension; for 1D problems, however, another
matrix is more convenient to represent the same linear relations (2.123). Indeed, let
us solve this system for A2 and B2. The result is

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= +
= +

=A T A T B
B T A T B

A
B

A
B

,
,

i.e. T , (2.125)2 11 1 12 1

2 21 1 22 1

2

2

1

1

where T is the transfer matrix, with the following elements:

= − = = − =T S
S S

S
T

S
S

T
S
S

T
S

, , ,
1

. (2.126)11 21
11 22

12
12

22

12
21

11

21
22

12

Quantum Mechanics: Lecture notes

2-31



The matrices S and T have some universal properties, valid for an arbitrary (but
time-independent) scatterer; they may be readily found from the probability current
conservation and the time-reversal symmetry of the Schrödinger equation. Let me
leave finding these relations for the reader’s exercise. The results show, in particular,
that the scattering matrix may be rewritten in the following form:

⎛
⎝⎜

⎞
⎠⎟=

−
θ

φ

φ−e re t
t re

aS , (2.127 )i
i

i

where four real parameters r, t, θ, and φ satisfy a universal relation

+ =r t b1, (2.127 )2 2

so that only three of these parameters are independent. As a result of this symmetry,
T11 may be also represented in a simpler form, similar to T22: T11 = exp{iθ}/t =
1/S12

* = 1/S21
* . The last form allows a ready expression of the scatterer’s transparency

via just one coefficient of the transfer matrix:

T ≡ = =
=

−A
A

S T . (2.128)
B

2

1 0

2

21
2

11
2

2

In our current context, the most important property of the 1D transfer matrices is
that in order to find the total transfer matrix T of a system consisting of several (say,
N) sequential arbitrary scatterers (figure 2.13), it is sufficient to multiply their matrices.
Indeed, extending the definition (2.125) to other points xj ( j = 1, 2,…, N + 1), we can
write

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟= = =A

B
A
B

A
B

A
B

A
B

T , T T T , etc. (2.129)2

2
1

1

1

3

3
2

2

2
2 1

1

1

(where the matrix indices correspond to the scatterers’ order on axis x), so that

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟= …+

+
−

A
B

A
B

T T T . (2.130)N

N
N N

1

1
1 1

1

1

But we can also define the total transfer matrix similarly to Eq. (2.125), i.e. as

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟≡+

+

A
B

A
B

T , (2.131)N

N

1

1

1

1

Figure 2.13. A sequence of several 1D scatterers.
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so that comparing Eqs. (2.130) and (2.131) we get

= …−T T T T. (2.132)N N 1 1

This formula is valid even if the flat-potential gaps between component scatterers
are shrunk to zero, so that it may be applied to a scatterer with an arbitrary profile
U(x), by fragmenting its length into many small segments Δx = xj+1 − xj, and treating
each fragment as a rectangular barrier of the average height (Uj)ef = [U(xj+1)−U(xj)]/2
—see figure 2.14. Since very efficient numerical algorithms are readily available for
fast multiplication of matrices (especially as small as 2 × 2 in our case), this approach
is broadly used in practice for the computation of transparency of potential barriers
with complicated profiles U(x). (Computationally, this procedure is much more
efficient then the direct numerical solution of the stationary Schrödinger equation.)

In order to use this approach for several particular, conceptually important
systems, let us calculate the transfer matrices for a few elementary scatterers, starting
from the delta-functional barrier located at x = 0—see figure 2.8. Taking x1 = x2 = 0,
we can merely change the notation of the wave amplitudes in Eq. (2.78) to get

α
α α

= −
+

=
+

S
i

i
S

i1
,

1
1

. (2.133)11 21

An absolutely similar analysis of the wave incidence from the left yields

α
α α

= −
+

=
+

S
i

i
S

i1
,

1
1

, (2.134)22 12

and using Eqs. (2.126), we get

⎜ ⎟⎛
⎝

⎞
⎠

α α
α α

= − −
+α

i i
i i

T 1
1

. (2.135)

As a sanity check, Eq. (2.128), applied to this result, immediately brings us back to
Eq. (2.79).

The next example may seem strange at first glance: what if there is no scatterer at
all between points x1 and x2? If the points coincide, the answer is indeed trivial and
can be obtained, e.g. from Eq. (2.135) by takingW = 0, i.e. α = 0:

⎜ ⎟⎛
⎝

⎞
⎠= ≡T 1 0

0 1
I (2.136)0

Figure 2.14. The transfer matrix approach to a long potential barrier with an arbitrary potential profile.
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—the so-called identity matrix. However, we are free to choose the reference points
x1,2 participating in Eq. (2.120) as we wish. For example, what if x2 − x1 = a? Let us
first take the forward-propagating wave alone: B2 = 0 (and hence B1 = 0); then

ψ ψ= = ≡− − −A e A e e . (2.137)ik x x ik x x ik x x
2 1 1

( )
1

( ) ( )1 2 1 2

The comparison of this expression with the definition (2.120) for j = 2 shows that
A2 = A1 exp{ik(x2 − x1)} = A1 exp{ika}, i.e. T11 = exp{ika}. Repeating the calculation
for the back-propagating wave, we see that T22 = exp{−ika}, and since the space
interval provides no particle reflection, we finally get

⎛
⎝⎜

⎞
⎠⎟=

−
e

e
T 0

0
, (2.138)a

ika

ika

independently of a common shift of points x1 and x2. At a = 0, we naturally recover
the special case (2.136).

Now let us use these results to analyze the double-barrier system shown in figure
2.15. We could of course calculate its properties as before, writing down explicit
expressions for all four traveling waves shown by arrows in figure 2.15, and then
using the boundary conditions (2.124) and (2.125) at each of points x1,2 to get a
system of four linear equations, and then solving it for four amplitude ratios.

However, the transfer matrix approach simplifies the calculations, because we
may immediately use Eqs. (2.132), (2.135), and (2.138) to write

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

α α
α α

α α
α α

= = − −
+

− −
+α α −

i i
i i

e
e

i i
i i

T T T T 1
1

0
0

1
1

. (2.139)a

ika

ika

Let me hope that the reader remembers the ‘row by column’ rule of the multi-
plication of square matrices28; using it for the last two matrices, we may reduce
Eq. (2.139) to

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

α α
α α

α α
α α

= − −
+

− −
+− −

i i
i i

i e i e

i e i e
T 1

1
(1 )

(1 )
. (2.140)

ika ika

ika ika

Figure 2.15. The double-barrier system. The dashed lines show (schematically) the quasi-levels of the
metastable-state energies.

28 In the analytical form: ∑=′ ″ ″ ′
″=

A B(AB) jj jj j j
j

N

1

, where N is the matrix rank (in our current case, N = 2).
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Now there is no need to calculate all elements of the full product T, because,
according to Eq. (2.128), for the calculation of barrier’s transparency T we need only
one of its elements, T11:

T
α α

= =
+ −−T e i e

1 1

(1 )
. (2.141)

ika ika
11

2 2 2 2

This result is somewhat similar to that following from Eq. (2.71) for E > U0: the
transparency is a π-periodic function of the product ka, reaching its maximum
(T = 1) at some point of each period—see figure 2.16a. However, Eq. (2.141) is
different in that for α ≫ 1, the resonance peaks of transparency are very narrow,
reaching their maxima at ka ≈ kna ≡ nπ, with n = 1, 2, ….

The physics of this resonant tunneling effect29 is the so-called constructive
interference, absolutely similar to that of electromagnetic waves (for example, light)
in a Fabry–Perot resonator formed by two parallel semi-transparent mirrors30.
Namely, the incident de Broglie wave may either tunnel through the two barriers, or
undertake, on its way, several sequential reflections from these semi-transparent
walls. At k = kn, i.e. at 2ka = 2kna = 2πn, the phase differences between all these
partial waves are multiples of 2π, so that they add up in phase—‘constructively’.
Note that the same constructive interference of numerous reflections from the walls
may be used to interpret the standing-wave eigenfunctions (1.84), so that the
resonant tunneling at α ≫ 1 may be also considered as a result of the incident
wave’s resonance induction of such a standing wave, with a very large amplitude, in
the space between the barriers, with the transmitted wave’s amplitude proportion-
ately increased.

As a result of this resonance, the maximum transparency of the system is perfect
(T = 1max ) even at α → ∞, i.e. in the case of a very low transparency of each of two

Figure 2.16. Resonant tunneling through a potential well with delta-functional walls: (a) the system’s
transparency as a function of ka, and (b) calculating the resonance’s FWHM at α ≫ 1.

29 In older literature, it is sometimes called the Townsend (or ‘Ramsauer–Townsend’) effect. However, it is
more common to use that term only for the similar effect at 3D scattering—to be discussed in chapter 3.
30 See, e.g. Part EM section 7.9. Note that despite the abundance of resonance functions similar to Eq. (2.141)
in classical physics (see, e.g. Part CM section 5.1), some texts on quantum mechanics use for them the term
Breit–Wigner distribution (or the ‘Breit–Wigner function’), specific for this field.
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component barriers. Indeed, the denominator in Eq. (2.141) may be interpreted as
the squared length of the difference between two 2D vectors, one of length α2, and
another of length ∣(1 − iα)2∣ = 1 + α2, with the angle θ = 2ka + const between them—

see figure 2.16b. At the resonance, the vectors are aligned, and their difference is
smallest (equal to 1), so that T = 1max . (This result is exact only if the two barriers
are exactly equal.)

The same vector diagram may be used to calculate the so-called FWHM, a
common acronym for the Full Width [of the resonance curve at its] Half-Maximum.
By definition, this is the difference Δk = k+ − k− between such two values of k, on the
opposite slopes of the same resonance, at thatT T= /2max —see the arrows in figure
2.16a. Let the vectors in figure 2.16b, drawn for α≫ 1, be misaligned by a small angle
θ ~ 1/α2 ≪ 1, so that the length of the difference vector (of the order of α2θ ~ 1) is still
much smaller than the length of each vector. In order to double its length squared, and
hence to reduceT by a factor of 2 in comparison with its maximum value 1, the arc
α2θ between the vectors should also become equal to ±1, i.e. α2(2k±a + const) = ±1.
Subtracting these two equalities from each other, we finally get

α
Δ ≡ − = ≪+ − ±k k k

a
k

1
. (2.142)

2

Now let us use the simple system shown in figure 2.15 to discuss an issue of large
conceptual significance. For that, consider what would happen if at some initial
moment (say, t = 0) we have placed a 1D quantum particle inside the double-barrier
well with α ≫ 1, and left it there alone, without any incident wave. To simplify the
analysis, let us assume that the initial state of the particle coincides with one of the
stationary states of the infinite-wall well of the same size—see Eq. (1.84):

⎛
⎝⎜

⎞
⎠⎟ψ πΨ = = − =x x

a
k x x k

n
a

( , 0) ( )
2

sin [ ( )], where . (2.143)n n n

1/2

1

At α → ∞, this is just an eigenstate of the system, and from our analysis in section
1.5 we know the time evolution of its wavefunction:

⎛
⎝⎜

⎞
⎠⎟

ψ ω

ω ω

Ψ = −

= − − =
ℏ

=
ℏ

x t x i t

a
k x x i t

E k
m

( , ) ( )exp{ }

2
sin [ ( )]exp{ }, with

2
,

(2.144)
n n

n n n
n n

1/2

1

2

telling us that the particle remains in the well at all times with constant probability
W(t) = W(0) = 1.

However, if the parameter α is large but finite, the de Broglie wave should slowly
‘leak out’ from the well, so that W(t) would slowly decrease. Such a state is called
metastable. Let us derive the law of its time evolution, assuming that the slow
leakage, with a characteristic time τ ≫ 1/ωn, does not affect the instant wave
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distribution inside the well, besides the gradual, slow reduction of W.31 Then we can
generalize Eq. (2.144) as

⎛
⎝⎜

⎞
⎠⎟ ω

ω ω

Ψ = − −

≡ − + − +

x t
W
a

k x x i t

A i k x t B i k x t

( , )
2

sin [ ( )]exp{ }

exp{ ( )} { ( )},

(2.145)n n

n n n n

1/2

1

making the probability of finding the particle in the well equal to W ⩽ 1. This
function is the sum of two traveling waves, with equal magnitudes of their
amplitudes and probability currents

⎜ ⎟⎛
⎝

⎞
⎠

π= = = ℏ = ℏ = −A B
W

a
I

m
A k

m
W

a
n
a

I I
2

,
2

, . (2.146)A n B A

1/2
2

But we already know from Eq. (2.79) that at α ≫ 1, the delta-functional wall’s
transparencyT equals 1/α2, so that the wave carrying current IA, incident on the right
wall from the inside, induces an outcoming wave outside of the well (figure 2.17) with
the following probability current:

T
α α

π= = = ℏ
I I I

n W
ma

1 1
2

. (2.147)A AR 2 2 2

Absolutely similarly,

α
= = −I I I

1
. (2.148)BL 2 R

Now we may combine the 1D version (2.6) of the probability conservation law for
the well’s interior,

+ − =dW
dt

I I 0, (2.149)R L

with Eqs. (2.147) to write

α
π= − ℏdW

dt
n

ma
W

1
. (2.150)

2 2

Figure 2.17. The metastable state’s decay in the simple model of a 1D potential well formed by two low-
transparent walls—schematically.

31 This virtually evident assumption finds its formal justification in the perturbation theory to be discussed in
chapter 6.
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This is just the standard differential equation,

τ
= −dW

dt
W

1
, (2.151)

of the exponential decay, W(t) = W(0)exp{−t/τ}, where the constant τ, in our case
equal to

τ
π

α=
ℏ

ma
n

, (2.152)
2

2

is called the metastable state’s lifetime. Using Eq. (2.33b) for the de Broglie waves’
group velocity, for our particular wave vector giving vgr = ℏkn/m = πnℏ/ma,
Eq. (2.159) may be rewritten as a more general form,

T
τ = t

, (2.153)a

where in our case the attempt time ta is equal to a/vgr, and T = α/1 2. Eq. (2.153),
which is valid for a broad class of similar metastable systems32, may be interpreted in
the following semi-classical way. The particle travels back and forth between the
confining potential barriers, with the time interval ta between the adjacent moments
of incidence, each time making an attempt to leak through the wall, with a success
probability equal toT , so the reduction ofW per each incidence is TΔ = −W W , in
the limit α ≫ 1 (i.e.T ≪ 1) immediately leading to the differential equation (2.151)
with the lifetime (2.153).

Another useful look at Eq. (2.152) may be taken by returning to the resonant
tunneling problem in the same system, and expressing the resonance width (2.142) in
terms of the incident particle’s energy:

⎛
⎝⎜

⎞
⎠⎟ α

π
α

Δ = Δ ℏ ≈ ℏ Δ = ℏ = ℏ
E

k
m

k
m

k
k

m a
n

ma2
1

. (2.154)n n
2 2 2 2

2

2

2 2

Comparing Eqs. (2.152) and (2.154), we get a remarkably simple, parameter-
independent formula33

τΔ ⋅ = ℏE . (2.155)

This energy-time uncertainty relation is certainly more general than our simple
model; for example, it is valid for the lifetime and resonance tunneling width of
any metastable state in the potential profile of any shape. This seems very natural,

32 Essentially the only requirement is to have the attempt time ΔtA to be much longer than the effective time
(the instanton time, see section 5.3 below) of tunneling through the barrier. In the delta-functional
approximation for the barrier, the latter time is equal to zero, so that this requirement is always fulfilled.
33Note that the metastable state’s decay (2.151) may be formally obtained from the basic Schrödinger equation
(1.61) by adding an imaginary part, equal to (−ΔE/2), to its eigenenergy En. Indeed, in this case Eq. (1.62) becomes
an(t) = const × exp{−i(En − iΔE/2}t/ℏ} ≡ const × exp{−iEnt/ℏ} × exp{−ΔEt/2ℏ} = const × exp{−iEnt/ℏ} ×
exp{−t/2τ}, so that W(t) ∝ ∣an(t)∣2 ∝ exp{−t/τ}. Such formalism (which hides the physical origin of the state’s
decay) may be convenient for some calculations, but misleading in other cases, and I will not use it in this course.
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since because of the energy identification with frequency, E = ℏω, typical for
quantum mechanics, Eq. (2.155) may be rewritten as Δω·τ = 1 and seems to follow
directly from the Fourier transform in time, just as the Heisenberg’s uncertainty
relation (1.35) follows from the Fourier transform in space. In some cases, these
two relations are indeed interchangeable; for example, Eq. (2.24) for the Gaussian
wave packet width may be rewritten as δE·Δt = ℏ, where δE = ℏ(dω/dk)δk = ℏvgrδk
is the rms spread of energies of monochromatic components of the packet, while
Δt ≡ δx/vgr is the time scale of the packet passage through a fixed observation
point x.

However, Eq. (2.155) is much less general than the Heisenberg’s uncertainty
relation (1.35). Indeed, in the non-relativistic quantum mechanics, the Cartesian
coordinates of a particle, the Cartesian components of its momentum, and the
energy E are regular observables, represented by operators. In contrast, the time is
treated as a c-number argument, and is not represented by an operator, so that Eq.
(2.155) cannot be derived in such general assumptions as Eq. (1.35). Thus the time–
energy uncertainty relation should be used with caution. Unfortunately, not every-
body is so careful. One can find, for example, wrong claims that due to this relation,
the energy dissipated by any system performing an elementary (single-bit) calcu-
lation during a time interval Δt has to be larger than ℏ/Δt.34 Another incorrect
statement is that the energy of a system cannot be measured, during a time interval
Δt, with an accuracy better than ℏ/Δt.35

Now that we have a quantitative mathematical description of the metastable
state’s decay (valid, again, only if α ≫ 1, i.e. if τ ≫ ta), we may use it for discussion
for two important conceptual issues of quantum mechanics. First, this is one of the
simplest examples of systems that may be considered, from two different points of
view, as either Hamiltonian (and hence time-reversible), or open (and hence
irreversible). Indeed, from the former point of view, the system is certainly described
by a time-independent Hamiltonian of the type (1.41), with the potential energy

W δ δ= − + −U x x x x x( ) [ ( ) ( )] (2.156)1 2

(atW > 0, evidently describing the profile shown in figure 2.15, and used to obtain
the picture sketched in figure 2.17). In this picture, the wavefunction’s time
evolution, described by the Schrödinger equation (2.1) is reversible, the total
probability of finding the particle somewhere on the axis x remains equal to 1,
and the full system’s energy, calculated from Eq. (1.23),

∫= Ψ ˆ Ψ
−∞

+∞
*E x t H x t d x( , ) ( , ) , (2.157)3

34On this issue, I dare to refer the reader to my own old work [5], which presented a constructive proof (for a
particular system) that at reversible computation (the notion introduced in 1973 by C Bennett—see, e.g. Part
SM section 2.3), the energy dissipation may be lower than this apparent ‘quantum limit’.
35 See, e.g. a discussion of this issue in the monograph [6].
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remains constant and completely definite (δE = 0). On the other hand, since the
‘emitted’ wave packets would never return to the potential well36, and it makes sense
to look at the well region alone. For such a truncated, open system (for which the
open ends beyond the interval [x1, x2] serve as its environment), the probabilityW of
finding the particle in it, and hence its energy 〈E〉 = WEn, decay exponentially in
accordance with Eq. (2.151)—the decay equation typical for irreversible systems.
We will return to the discussion of dynamics of such open quantum systems in
chapter 7.

Second, the same model enables a preliminary discussion of one important aspect
of quantum measurements. As Eq. (2.151) and figure 2.17 show, at t ≫ τ, the well
becomes virtually empty (W ≈ 0), and the whole probability is localized in two
clearly separated wave packets with equal amplitudes, moving from each other with
the speed vgr, each ‘carrying the particle away’ with a probability of 50%. Now
assume that an experiment has detected the particle on the left side of the well.
Though the formalisms suitable for a quantitative analysis of the detection process
will not be discussed until chapter 10, due to the wide separation Δx = v t2 gr ≫ v2 grτ
of the packets, we may safely assume that such detection may be done without any
actual physical effect on the counterpart wave packet37. But if we know that the
particle has been found on the left side, there is no chance to find it on the right side.
If we attributed the full wavefunction to all time stages of this particular experiment,
this situation might be rather confusing. Indeed, this would mean that the wave-
function at the right packet’s location should instantly turn into zero—the so-called
wave packet reduction—a hypothetical, irreversible process that cannot be described
by the Schrödinger equation for this system, even including the particle detectors.

However, if (as was already discussed in section 1.3) we attribute the wave-
function to a certain statistical ensemble of similar experiments, there is no need to
involve such artificial notion. While the two-packet picture we have calculated
(figure 2.17) describes the full ensemble of experiments with all systems prepared in
the initial state (2.143), i.e. does not depend on the particle detection results, the
‘reduced packet’ picture (with no wave packet on the right of the well) describes only
a sub-ensemble of such experiments, in which the particles have been detected on the
left side. As was discussed on classical examples in section 1.3, for such re-defined
ensemble the probability distribution, and hence the wavefunction, may be rather
different. I will return to this important discussion in section 10.1.

2.6 Localized state coupling, and quantum oscillations
Now let us discuss one more effect specific for quantum mechanics. Its mathematical
description may be simplified using a model consisting of two very short and deep

36 Formore realistic 2Dand 3D systems, this statement is true even if the systemas awhole is confined inside some
closed volume, much larger than the potential well housing the metastable states. Indeed, if the walls providing
such confinement are even slightly uneven, the emittedwave packets will be reflected from them, but would never
return back exactly to the well. (See Part SM section 2.1 for more detailed discussion of this issue.)
37 This argument is especially convincing if the particle’s detection time is much shorter than the time
tc = v t/c2 gr , where c is the speed of light in vacuum, i.e. the maximum velocity of any information transfer.
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potential wells. But first, let us analyze the properties of a single well of this
type (figure 2.18), which may be modeled similarly to the short and high potential
barrier—see Eq. (2.74), but with a negative ‘area’:

W Wδ= − >U x x( ) ( ), with 0. (2.158)

In contrast to its tunnel-barrier counterpart (2.74), such potential sustains a
stationary state with a negative eigenenergy E < 0, and a localized eigenfunction ψ,
with ∣ψ∣→ 0 at x → ±∞. Indeed, at x ≠ 0, U(x) = 0, so the 1D Schrödinger equation
of the system is reduced to the Helmholtz equation (1.83), whose localized solutions
with E < 0 are single exponents, vanishing at large distances38:

⎧⎨⎩ψ ψ κ κ= ≡ >
<

ℏ = − >
κ

κ

−

+x x
Ae x
Ae x m

E( ) ( )
, for 0,
, for 0,

with
2

, 0. (2.159)
x

x0

2 2

(The coefficients before the exponents have been selected equal to satisfy the
boundary condition (2.76) of the wavefunction’s continuity at x = 0.) Plugging
Eq. (2.159) into the second boundary condition, given by Eq. (2.75), but now with
the negative sign beforeW , we get

Wκ κ− − + = −
ℏ

A A
m

A( ) ( )
2

, (2.160)
2

in which the common factor A ≠ 0 may be cancelled. The remaining equation39, has
one (and just one) solution for anyW > 0:

Wκ κ= ≡
ℏ

m
, (2.161)0 2

and hence the system has only one (ground) localized state, with the following
eigenenergy40:

Figure 2.18. A delta-functional potential well and its localized eigenstate (schematically).

38 See Eqs. (2.56)–(2.58), with U0 = 0.
39 Such algebraic equations for linear differential equations are frequently called characteristic.
40Note that this E0 is equal, by magnitude, to the constant E0 that participates in Eq. (2.79). Note also that this
result was actually already obtained, ‘backwards’, in the solution of problem 1.12(ii), but that solution did not
address the issue whether the calculated potential (2.158) could sustain any other localized eigenstates.
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Wκ
= ≡ −

ℏ
= −

ℏ
E E

m
m

2 2
. (2.162)0

2
0
2 2

2

Now we are ready to analyze localized states of the two-well potential shown in
figure 2.19:

W W⎜ ⎟ ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎤
⎦⎥δ δ= − − + + >U x x

a
x

a
( )

2 2
, with 0. (2.163)

Here we may still use the single-exponent solutions, similar to Eq. (2.159), for the
wavefunction outside the interval [−a/2, +a/2], but inside the interval we need to take
into account both possible exponents:

ψ κ κ= + ≡ + − ⩽ ⩽ +κ κ
+ −

−C e C e C x C x
a

x
a

sinh cosh , for
2 2

, (2.164)x x
A S

with the parameter κ defined as in Eq. (2.159). The last of these equivalent expressions
is more convenient, because due to the symmetry of the potential (2.163) with respect
to the central point x = 0, the system’s eigenfunctions should be either symmetric
(even) or antisymmetric (odd) functions of x (see figure 2.19), so that they may be
analyzed separately, and only for one half of the system, say x ⩾ 0.

For the asymmetric eigenfunction, Eqs. (2.159) and (2.164) yield

⎜ ⎟
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2
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2

,
(2.165)A A

where the front coefficient in the lower line has been selected to satisfy the condition
(2.76) of the wavefunction’s continuity at x= a/2 (and hence at x =−a/2). What remains
is to satisfy the condition (2.75), with a negative sign beforeW , for the derivative’s jump
at that point. This condition yields the following characteristic equation:

Wκ κ
κ

κ κ κ
κ

+ =
ℏ

+ =a a m a a a
a

sinh
2

cosh
2

2
sinh

2
, i.e. 1 coth

2
2

( )
( )

, (2.166)2
0

where κ0, given by Eq. (2.161), is the value of κ for a single well, i.e. the reciprocal
spatial width of its localized eigenfunction—see figure 2.18.

Figure 2.19. A system of two coupled potential wells, and its localized eigenstates (schematically).
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Figure 2.20a shows both sides of Eq. (2.166) as functions of the dimensionless
product κa, for several values of the parameter κ0a, i.e. of the normalized distance
between the two wells. The plots show, first of all, that as the parameter κ0a is
decreased, the LHS and RHS lines cross (i.e. Eq. (2.166) has a solution) at lower and
lower values of κa. At κa≪ 1, the left-hand side of the last form of this equation may
be approximated as 2/κa. Comparing this expression with the right-hand side, we see
that this transcendental equation has a solution (i.e. the system has a localized
asymmetric state) only if κ0a > 1, i.e. if the distance a between the two narrow
potential wells is larger than the following value,

Wκ
= ≡ ℏ

a
m

1
, (2.167)min

0

2

which is the characteristic spread of the wavefunction in a single well—see figure 2.18.
(At a → amin, κa → 0, meaning that the state becomes unlocalized.)

In the opposite limit of large distances between the potential wells, i.e. κ0a ≫ 1,
Eq. (2.166) shows that κa≫ 1 as well, so that its left-hand side may be approximated
as 2(1 + e−κa), and the equation yields

κ κ κ κ≈ − − ≈a(1 exp{ }) . (2.168)0 0 0

This result means that the eigenfunction is an asymmetric sum of two virtually
unperturbed wavefunctions (2.159) of each partial potential well:

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
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2
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( )
2
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2

,
(2.169)

A R L

R 0 L 0

and the front coefficient is selected in such a way that if the eigenfunction ψ0 of each
well, given by Eqs. (2.159), is normalized, so is ψA. Plugging the middle (more exact)
form of Eq. (2.168) into the last of Eq. (2.159), we can see that in this limit the

Figure 2.20. Graphical solutions of the characteristic equations of the two-well system, for: (a) the asymmetric
eigenstate (2.165), and (b) the symmetric eigenstate (2.171).
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asymmetric state’s energy is only slightly higher than the eigenenergy E0 of a single
well, given by Eq. (2.162):

Wκ δ δ κ≈ − − ≡ + ≡
ℏ

− >E E a E
m

a(1 2 exp{ }) , where exp{ } 0. (2.170)A 0 0 0

2

2 0

The symmetric eigenfunction has a form reminding Eq. (2.165), but still different
from it:
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(2.171)S S

giving a characteristic equation similar in structure to Eq. (2.166), but with a
different left-hand side:

κ κ
κ

+ =a a
a

1 tanh
2

2
( )
( )

. (2.172)0

Figure 2.20b shows both sides of this equation for several values of the parameter
κ0a. It is evident that in contrast to Eq. (2.166), Eq. (2.172) has a unique solution
(and hence the system has a localized symmetric eigenstate) for any value of the
parameter κ0a, i.e. for any distance between the partial wells. In the limit of very
close wells (i.e. their strong coupling), κ0a ≪ 1, we get κa ≪ 1, tanh(κa/2) → 0, and
Eq. (2.172) yields κ → 2κ0, leading to a four-fold increase of the eigenenergy ‘s
magnitude in comparison with that of the single well:

W κ≈ ≡ −
ℏ

≪E E
m

a4
(2 )
2

, for 1. (2.173)S 0

2

2 0

The physical meaning of this result is very simple: two very close potential wells act
(on the symmetric eigenfunction only!) together, so that their ‘areas’W = ∫U(x)dx
just add up.

In the opposite, weak coupling limit, i.e. κ0a≫ 1, κa≫ 1 as well, the left-hand side
of Eq. (2.172) may be approximated as 2(1 − e−κa), and the equation yields

κ κ κ κ≈ + − ≈a(1 exp{ }) . (2.174)0 0 0

In this limit, the eigenfunction is a symmetric combination of two virtually
unperturbed wavefunctions (2.159) of each partial potential well:

ψ ψ ψ≈ +x x x( )
1

2
[ ( ) ( )], (2.175)S R L

and the eigenenergy is also close to the energy E0 of a partial well, but is slightly lower:

κ δ δ≈ + − ≡ − − =E E a E E E(1 2 exp{ }) , so that 2 , (2.176)S 0 0 0 A S

where δ is again given by the last of Eqs. (2.170).
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So, the eigenenergy of the symmetric state is always lower than that of the
asymmetric state. The physics of this effect (which remains qualitatively the same in
more complex two-component systems, most importantly in diatomic molecules
such as H2) is evident from the sketch of the wavefunctions ψA and ψS, given by Eqs.
(2.165) and (2.171), in figure 2.19. In the antisymmetric mode, the wavefunction has
to vanish in the center of the system, so that each of its halves is squeezed to one half
of the system’s spatial extension. Such a squeeze increases the function’s gradient,
and hence its kinetic energy (1.27), and hence its total energy. Conversely, in the
symmetric mode the wavefunction effectively spreads into the counterpart well. As a
result, it changes in space more slowly, and hence its kinetic energy is also lower.

Even more importantly, the symmetric state’s energy decreases as the distance a is
decreased, corresponding to the effective attraction of the partial wells. This is a good
toy model of the strongest (and most important) type of atomic cohesion—the
covalent (or ‘chemical’) bonding41. In the simplest case of the H2 molecule, each of two
electrons of the system42 reduces its kinetic energy by spreading its wavefunction
around both hydrogen nuclei (protons), rather than being confined near one of them—

as it had to be in a single atom. The resulting bonding is very strong: in chemical units,
429 kJ mol−1, i.e. 18.6 eV per molecule. Perhaps counter-intuitively, the covalent
bonding is even stronger than the strongest classical (ionic) bonding due to electron
transfer between atoms, leading to the Coulomb attraction of the resulting ions. (For
example, the atomic cohesion in the NaCl molecule is just 3.28 eV.)

Now let us analyze dynamic properties of our model system (figure 2.19), because
two weakly coupled potential wells are our first sample of the very important class of
two-level systems43. It is easiest to do in the weak-coupling limit κ0a ≫ 1, when the
simple results (2.168)–(2.170) and (2.174)–(2.176) are quantitatively valid. In
particular, Eqs. (2.169) and (2.175) allow us to represent the quasi-localized states
of the particle in each partial well as linear combinations of its two eigenstates:

ψ ψ ψ ψ ψ ψ= + = −x x x x x x( )
1

2
[ ( ) ( )], ( )

1

2
[ ( ) ( )]. (2.177)R S A L S A

Let us perform the following thought (‘gedanken’) experiment: place the particle, at
t = 0, into one of the quasi-localized states, say ψR(x), and leave the system alone to
evolve, so that

ψ ψ ψΨ = = +x x x x( , 0) ( )
1

2
[ ( ) ( )]. (2.178)R S A

41Historically, the development of the quantum theory of such bonding in the H2 molecule (by W Heitler and
F London in 1927) was the breakthrough decisive for the acceptance of the then-emerging quantum mechanics
by the community of chemists.
42Due to the opposite spins of these electrons, the Pauli principle allows them to be in the same orbital ground
state—see chapter 8.
43As we will see later in chapter 4, these properties are similar to those of spin-1/2 particles; hence two-level
systems are frequently called the spin-1/2-like systems.
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According to the general solution (1.69) of the time-independent Schrödinger
equation, the time dynamics of this wavefunction may be obtained by just multi-
plying each eigenfunction by the corresponding complex-exponential time factor:

⎡
⎣⎢

⎤
⎦⎥ψ ψΨ = −

ℏ
+ −

ℏ{ } { }x t x i
E

t x i
E

t( , )
1

2
( )exp ( )exp . (2.179)S

S
A

A

From here, using Eqs. (2.170) and (2.176), and then Eqs. (2.169) and (2.175) again,
we get

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

ψ δ ψ δ

ψ δ ψ δ

Ψ =
ℏ

+ −
ℏ

−
ℏ

≡
ℏ

+
ℏ

−
ℏ

{ } { } { }
{ }

x t x
i t

x
i t iE t

x
t

i x
t

i
E t

( , )
1

2
( )exp ( )exp exp

( )cos ( )sin exp .

(2.180)
S A

0

R L
0

This result implies, in particular, that the probabilities WR and WL of finding the
particle, respectively, in the right and left wells change with time as

δ δ=
ℏ

=
ℏ

W
t

W
t

cos , sin , (2.181)R
2

L
2

mercifully leaving the total probability constant: WR + WL = 1. (If our calculation
had not passed this sanity check, we would be in big trouble.)

This is the famous effect of periodic quantum oscillations44 of the particle’s
wavefunction between two similar, coupled subsystems, with the frequency

ω δ=
ℏ

≡ −
ℏ

E E2
. (2.182)A S

In its last form, this result does not depend on the assumption of weak coupling,
though the simple form (2.181) of the oscillations, with its 100% probability
variations, does. (Indeed, at strong coupling of two subsystems, the very notion of
the quasi-localized states ψR and ψL is ambiguous.) Qualitatively, this effect may be
interpreted as follows: the particle, placed into one of the potential wells, tries to
escape from it via tunneling through the potential barrier separating the wells. (In
our particular system, shown in figure 2.17, the barrier is formed by the spatial
segment of length a, which has the potential energy,U = 0, higher that the eigenstate
energy −E0.) However, in the two-well system the particle can only escape into the
adjacent well. After the tunneling into that counterpart well, the particle tries to
escape from it, and hence comes back, etc—very much as a classical 1D oscillator,
initially deflected from its equilibrium position, at negligible damping.

Some care is required with using such interpretation for quantitative conclusions.
In particular, let us compare the periodT π ω≡ 2 / of the oscillations (2.181) with the

44 Sometimes they are called the Bloch oscillations, but more commonly the last term is reserved for a related,
but different effect in spatially-periodic systems—to be discussed in section 2.8 below.
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metastable state’s lifetime discussed in the previous section. For our particular
model we may use the second of Eqs. (2.170) to write

T

ω κ

π
δ

π κ κ κ

=
ℏ

−

= ℏ = ℏ = ≫

E
a

E
a

t
a a

4
exp{ },

2
exp{ }

2
exp{ }, for 1,

(2.183)

0
0

0
0

a
0 0

where ta ≡ 2π/ω0 ≡ 2πℏ/∣E0∣ is the effective attempt time. On the other hand,
according to Eq. (2.80), the transparency T of our potential barrier, in this limit,
scales as exp{−2κ0a},45 so that according to the general relation (2.153), the lifetime
τ is of the order of ta exp{2κ0a} ≫T . This is a rather counterintuitive result: the
speed of a particle tunneling into a similar adjacent well is much higher than that,
through a similar barrier, to the free space!

In order to show that this important result is not an artifact of our delta-
functional model of the potential barrier, and also compareT and τ more directly,
let us analyze the quantum oscillations between two weakly coupled wells, now
assuming that the (symmetric) potential profile U(x) is more soft (figure 2.21), so
that all its eigenfunctions ψS and ψA are at least differentiable at all points46. If the
barrier’s transparency is low, the quasi-localized wavefunctions ψR(x) and ψL(x) =
ψR(−x) and their eigenenergies may be found approximately by solving the
Schrödinger equations in one of the wells, neglecting the tunneling through the
barrier, but the calculation of δ requires a little bit more care. Let us write
the stationary Schrödinger equations for the symmetric and antisymmetric solutions
in the form

ψ
ψ

ψ
ψ

− = − ℏ − = − ℏ
E U x

m

d

dx
E U x

m

d

dx
[ ( )]

2
, [ ( )]

2
, (2.184)A A

2 2
A
2 S S

2 2
S

2

Figure 2.21. Weak coupling between two similar, soft potential wells.

45 It is hard to use Eq. (2.80) for a more exact evaluation ofT in our current system, with its infinitely deep
potential wells, because the meaning of the wave number k is not quite clear. However this is not too
important, because in the limit κ0a ≫ 1, the tunneling exponent makes the dominating contribution into the
transparency—see, again, figure 2.7b.
46 Such smooth well may have more than one quasi-localized stationary state, so that the proper index n is
implied in all remaining formulas of this section.
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multiply the former equation by ψS, and the latter one by ψA, subtract them from
each other, and then integrate the result from 0 to ∞. The result is

⎛
⎝⎜

⎞
⎠⎟∫ ∫ψ ψ

ψ
ψ

ψ
ψ− = ℏ −

∞ ∞
E E dx

m

d

dx

d

dx
dx( )

2
. (2.185)A S

0
S A

2

0

2
S

2 A

2
A
2 S

If U(x), and hence d2ψA,S/dx
2, are finite for all x, we may integrate the right-hand

side by parts to get

⎛
⎝⎜

⎞
⎠⎟∫ ψ ψ

ψ
ψ

ψ
ψ− = ℏ −

∞ ∞

E E dx
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dx
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2
. (2.186)A S
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S A

2
S

A
A

S
0

So far, this result is exact (provided that the derivatives participating in it are
finite at each point); for weakly coupled wells, it may be further simplified. Indeed, in
this case, the left-hand side of Eq. (2.186) may be approximated as

∫ ψ ψ δ− ≈ − ≡
∞

E E dx
E E

( )
2

, (2.187)A S
0

S A
A S

because this integral is dominated by the vicinity of point a, where the second terms
in each of Eqs. (2.169) and (2.175) are negligible, and the integral is equal to 1/2,
assuming the proper normalization of the function ψR(x). On the right-hand side of
Eq. (2.186), the substitution at x = ∞ vanishes (due to the wavefunction’s decay in
the classically forbidden region), and so does the first term at x = 0, because for the
antisymmetric solution, ψA(0) = 0. As a result, the energy half-split δ may be
expressed in any of the following, equivalent forms:

δ ψ
ψ

ψ
ψ

ψ
ψ

= ℏ = ℏ = − ℏ
m

d

dx m

d

dx m

d

dx2
(0) (0) (0) (0) (0) (0). (2.188)

2

S
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2

R
R

2

L
L

It is straightforward (and hence left for the reader’s exercise) to show that within
the limits of the WKB approximation’s validity, Eq. (2.188) may be reduced to

T
⎧⎨⎩

⎫⎬⎭
⎧⎨⎩

⎫⎬⎭∫ ∫δ κ π
δ

κ= ℏ − ′ ′ ≡ ℏ = ′ ′
′ ′

t
x dx

t
x dxexp ( ) , so that

2
exp ( ) , (2.189)

x

x

x

x

a

a

c

c

c

c

where ta is the time period of the classical motion of the particle, with the energy E ≈
EA ≈ ES, inside each well, the function κ(x) is defined by Eq. (2.82), and xc and xc′
are the classical turning points limiting the potential barrier at the level E of the
particle’s eigenenergy—see figure 2.21. The result (2.189) is evidently a natural
generalization of Eq. (2.183), so that the strong relation between the times of particle
tunneling into the continuum of states and into a discrete eigenstate, is indeed not
specific for the delta-functional model. We will return to this fact, in its more general
form, in the end of chapter 6.
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2.7 Periodic systems: energy bands and gaps
Let us now proceed to the discussion of one of the most important issues of wave
mechanics: a particle’s motion through a periodic system. As a precursor to this
discussion, let us calculate the transparency of the potential profile shown in figure
2.22 (frequently called the Dirac comb): a sequence of N similar, equidistant delta-
functional potential barriers, separated by (N − 1) potential-free intervals a.

According to Eq. (2.132), its transfer matrix is the following product

� ��� ���= …
− +

α α αT T T T T T ,
(2.190)

N N( 1) terms

a a

with the component matrices given by Eqs. (2.135) and (2.138), and the barrier
height parameter α defined by the last of Eqs. (2.78). Remarkably, this multi-
plication may be carried out analytically47, giving

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥T

α≡ = + −−

−

T Nqa
ka ka

qa
Nqa a(cos )

sin cos
sin

sin , (2.191 )11
2 2

2 1

where q is a new parameter, with the wave number dimensionality, defined by the
following relation:

α≡ +qa ka ka bcos cos sin . (2.191 )

For N = 1, Eqs. (2.191) immediately yield our old result (2.79), while for N = 2 they
may be readily reduced to Eq. (2.141)—see figure 2.16a. Figure 2.20 shows its
predictions for two larger numbers N, and several values of the dimensionless
parameter α. Let us start the discussion of the plots from the case N = 3, when three
barriers limit two coupled potential wells between them. The comparison of figures
2.23a and 2.16a shows that the transmission patterns, and their dependence on the
parameter α, are very similar, besides that in the coupled-well system each resonant
tunneling peak splits into two, with the ka-difference between them scaling as 1/α.
From the discussion in the last section, we may now readily interpret this result: each

Figure 2.22. Tunneling through a system of N similar, equidistant barriers, i.e. (N − 1) similar coupled
potential wells.

47 This formula will be easier to prove after we have discussed the properties of Pauli matrices in chapter 4.

Quantum Mechanics: Lecture notes

2-49



pair of resonance peaks of transparency corresponds to the alignment of the incident
particle’s energy E with the pair of energy levels EA, ES of the symmetric and
antisymmetric states of the system. However, in contrast to the system shown in
figure 2.19, these states are metastable, because the particle may leak out from these
states just as it could in the system studied in section 2.5—see figure 2.15 and its
discussion. As a result, each of the resonant peaks has a non-zero energy width ΔE,
obeying Eq. (2.155).

A further increase of N (see, e.g. figure 2.23b) results in the increase of the number
of resonant peaks per period to (N − 1), and at N → ∞ the peaks merge into the so-
called allowed energy bands (frequently called just the ‘energy bands’) with a
transparency ∼T 1, separated from similar bands in the adjacent periods of
function T (ka) by energy gaps48 where T → 0. Notice the following important
features of the pattern:

(i) at N → ∞, the band/gap edges become sharp for any α, and tend to fixed
positions (determined by α but independent of N);

(ii) the larger is the interwell coupling (α→ 0), the broader are the allowed energy
bands and the narrower are the gaps between them.

Our previous discussion of the resonant tunneling gives us an evident clue for a
semi-quantitative interpretation of this pattern: if (N − 1) potential wells are weakly
coupled by tunneling through the potential barriers separating them, the system’s
energy spectrum consists of groups of (N − 1) metastable energy levels, each group
close to one of unperturbed eigenenergies of the well. (According to Eq. (1.84), for
our current example, shown in figure 2.22, with its rectangular potential wells, these
eigenenergies correspond to kna = πn.) Now let us recall that in the case N = 2,
analyzed in the previous section, the eigenfunctions (2.169) and (2.175) differed only
by the phase shift Δφ between their localized components ψR(x) and ψL(x), with
Δφ = 0 for one of them (ψS) and Δφ = π for its counterpart. Hence it is natural to

Figure 2.23. The transparency of the Dirac comb (figure 2.22), as a function of the product ka. Since the
function T ka( ) is π-periodic (just like it is for N = 2, see figure 2.16a), only one period is shown.

48 In the solid state (especially semiconductor) physics and electronics, the term bandgaps is more common.
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expect that for other N as well, each metastable energy level corresponds to an
eigenfunction that is the set of similar localized functions in each potential well, but
with certain phase shifts Δφ between them.

Moreover, we may expect that at N → ∞, i.e. for periodic structures49, with

+ =U x a U x( ) ( ), (2.192)

when the system does not have the ends which could affect its properties, the phase
shift Δφ between the localized wavefunctions in all couples of adjacent potential
wells should be the same, i.e.

ψ ψ+ = φΔx a x e a( ) ( ) (2.193 )i

for all x.50 This equality is the (1D version of the) much-celebrated Bloch theorem51.
Mathematical rigor aside52, it is a virtually evident fact, because the particle’s
density w(x) = ψ*(x)ψ(x), that has to be periodic in this a-periodic system, may be so
only Δφ is constant. For what follows, it is more convenient to represent the real
constant Δφ in the form qa, so that the Bloch theorem takes the form

ψ ψ+ =x a x e b( ) ( ) . (2.193 )iqa

The physical sense of the parameter q will be discussed in detail below, but we may
immediately notice that according to Eq. (2.193b), an addition of (2π/a) to this
parameter yields the same wavefunction; hence all observables have to be (2π/a)-
periodic functions of q.53

Now let us use the Bloch theorem to calculate the eigenfunctions and eigenenergies
for the infinite version of the system shown in figure 2.22, i.e. for an infinite set of
delta-functional potential barriers—see figure 2.24. To start, let us consider two points
separated by one period a: one of them, xj, just left of the position of one of the
barriers, and another one, xj+1, just left of the following barrier. The eigenfunctions at
each of the points may be represented as linear superpositions of two simple waves
exp{±ikx}, and the amplitudes of their components should be related by a 2 × 2

49 This is a reasonable 1D model for solid state crystals, whose samples may feature up to ~109 similar atoms or
molecules in each direction of the crystal lattice.
50A reasonably fair classical image of Δφ is the geometric angle between similar objects—e.g. similar paper
clips—attached at equal distances to a long, uniform rubber band. If the band’s ends are twisted, the twist is
equally distributed between the structure’s periods, representing the constancy of Δφ. I am ashamed to confess
that, due to lack of time, this was the only ‘lecture demonstration’ in my QM courses.
51Named after F Bloch who applied this concept to the wave mechanics in 1929, i.e. very soon after its
formulation. Note, however, in mathematics, an equivalent statement, called the Floquet theorem, has been
known since at least 1883.
52 I will recover this rigor in two steps. Later in this section, we will see that the function obeying Eq. (2.193) is
indeed a solution of the Schrödinger equation. However, to save time/space, it will be better for us to postpone
the proof that any eigenfunction of the equation, with periodic boundary conditions, obeys the Bloch theorem,
until chapter 4. As a partial reward for this delay, that proof will be valid for an arbitrary spatial dimensionality.
53 The product ℏq, which has the dimensionality of momentum, is called either the quasi-momentum or
(especially in solid state physics) the ‘crystal momentum’ of the particle. Informally, it is very convenient (and
common) to use the name ‘quasi-momentum’ for the bare q as well, despite its evidently different
dimensionality.
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transfer matrix T of the potential fragment separating them. According to Eq. (2.132),
this matrix may be found as the product of the matrix (2.135) of one delta-functional
barrier, and the matrix (2.138) of one zero-potential interval a:
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However, according to the Bloch theorem (2.193b), the component amplitudes
should be also related as
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The condition of self-consistency of these two equations leads to the following
characteristic equation:
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In section 2.5, we have already calculated the matrix product participating in this
equation—see Eq. (2.140). Using it, we see that Eq. (2.196) is reduced to the same
simple Eq. (2.191b) that has jumped at us from the solution of the somewhat
different (resonant tunneling) problem.

Let us explore that simple result in detail. First of all, the right-hand side of Eq.
(2.191b) is a sinusoidal function of ka, with the amplitude (1 + α2)1/2—see figure
2.25, while its left-hand side is a sinusoidal function of qa with the unit amplitude. As
a result, within each half-period Δ(ka) = π of the right-hand side, there is an interval
where the characteristic equation does not have a real solution for q. These intervals
correspond to the energy gaps clearly visible in figure 2.23, while the complementary
intervals of ka, where a real solution for q exists, correspond to the allowed energy
bands. In contrast, the parameter q can take any real values, so it is more convenient
to plot the eigenenergy E = ℏ2k2/2m as the function of q (or, even more conveniently,
qa) rather than ka.54 While doing that, we need to recall that the parameter α,

Figure 2.24. The simplest periodic potential: the infinite Dirac comb.

54A more important reason for taking q as the argument is that for a general potential U(x), the particle’s
momentum ℏk is not a constant of motion, while (according to the Bloch theorem), the quasi-momentum ℏq is.
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defined by the last of Eqs. (2.78), depends on the wave vector k as well, so that if we
vary q (and hence k), it is better to characterize the structure by another, k-
independent dimensionless parameter, for example

Wβ α≡ ≡
ℏ

ka
ma

( )
/

, (2.197)
2

so that our characteristic Eq. (2.191b) becomes

β≡ +qa ka
ka

ka
cos cos

sin
. (2.198)

Figure 2.26 shows the plots of k and E, following from Eq. (2.198), as functions of
the dimensionless product qa, for a particular, moderate value of the parameter β.
The band structure of the energy spectrum is apparent. Another evident feature is
the 2π-periodicity of the pattern in the argument qa, which we have already
predicted from the general Bloch theorem arguments. (Due to this periodicity, the
complete band/gap pattern may be studied, for example, on just one interval −π ⩽ qa
⩽ + π, called the 1st Brillouin zone—the so-called reduced zone picture. For some
applications, however, it is more convenient to use the extended zone picture with
−∞ ⩽ qa ⩽ + ∞—see, e.g. the next section.)

However, maybe the most important fact, clearly visible in figure 2.26, is that
there is an infinite number of energy bands, with different energies En(q) for the same
value of q. Mathematically, it is evident from Eq. (2.198)—see also figure 2.25.
Indeed, for each value of qa there is a solution ka to this equation on each half-
period Δ(ka) = π—see also panel (a) in figure 2.26. Each of such solutions gives a
specific value of the particle energy E = ℏ2k2/2m. A continuous set of similar
solutions for various qa forms a particular energy band.

Since the energy band picture is one of the most practically important results of
quantum mechanics, it is imperative to understand its physics. It is natural to
interpret this physics in different ways in two opposite potential strength limits. In

Figure 2.25. The graphical representation of the characteristic Eq. (2.191b) for a fixed value of the parameter
α. The ranges of ka that yield ∣cos qa∣ < 1, correspond to allowed energy bands, while those with ∣cos qa∣ > 1,
correspond to energy gaps between them.
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parallel, we will use this discussion to obtain simpler expressions for the energy
band/gap structure, in each limit. An important advantage of this approach is that
both analyses may be carried out for an arbitrary periodic potential U(x), rather
than for the particular model shown in figure 2.24, and used to obtain the patterns
shown in figures 2.25 and 2.26.

(i) Tight-binding approximation. This approximation is sound when the eigenenergy
En of the states quasi-localized at the energy profile minima is much lower than the
height of the potential barriers separating them—see figure 2.27. As should be clear
from our discussion in section 2.6, essentially the only role of coupling between these
states (via tunneling through the potential barriers separating the minima) is to
establish a certain phase shift Δφ ≡ qa between the adjacent quasi-localized
wavefunctions un(x − xj) and un(x − xj+1).

To describe this effect quantitatively, let us first return to the problem of two
coupled wells considered in section 2.6, and recast the result (2.180), with restored
eigenstate index n, as

ψ ψΨ = + −
ℏ{ }x t a t x a t x i
E

t( , ) [ ( ) ( ) ( ) ( )]exp , (2.199)n
n

R R L L

where the probability amplitudes aR and aL oscillate sinusoidally in time:

δ δ=
ℏ

=
ℏ

a t t a t i t( ) cos , ( ) sin . (2.200)n n
R L

Figure 2.26. (a) The ‘real’ momentum k of a particle in an infinite Dirac comb (figure 2.24), and (b) its energy
E = ℏ2k2/2m (in units of E0 ≡ ℏ2/2ma2), as functions of the quasi-momentum q, for a particular value (β = 3) of
the dimensionless potential parameter β. Arrows in the lower right corner of the panel (b) illustrate the
definition of the energy bands (ΔEn) and energy gaps (Δn).
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This evolution satisfies the following system of two equations, whose structure is
similar to Eq. (1.61):

δ δℏ ̇ = − ℏ ̇ = −i a a i a a, . (2.201)n nR L L R

These equations may be readily generalized to the case of many similar coupled
wells. In this case, instead of Eq. (2.199), we evidently should write

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑Ψ = − −

ℏ{ }x t a t u x x i
E

t( , ) ( ) ( ) exp , (2.202)
j

n j n j
n

where En are the eigenenergies, and un the eigenfunctions of each well. In the tight
binding limit, only the adjacent wells are coupled, so that instead of Eq. (2.201) we
should write an infinite system of similar equations

δ δℏ ̇ = − −− +i a a a , (2.203)j n j n j1 1

for each well number j, where parameters δn describe the coupling between two
adjacent potential wells. Repeating the calculation outlined in the end of the last
section for our new situation, for a smooth potential we may get an expression
essentially similar to the last form of Eq. (2.188):

δ = ℏ −
m

u x
du
dx

a x( ) ( ), (2.204)n n
n

2

0 0

where x0 is the distance between the well bottom and the middle of the potential
barrier on the right of it—see figure 2.27. The only substantial new feature of this
expression in comparison with Eq. (2.188) is that the sign of δn alternates with the
level number n: δ1 > 0, δ2 < 0, δ3 > 0, etc. Indeed, the number of zeros (and hence,
‘wiggles’) of eigenfunctions un(x) of any potential well increases as n—see, e.g. figure
1.8,55 so that the difference of the exponential tails of the functions, sneaking under
the left and right barriers limiting the well also alternates with n.

The infinite system of ordinary differential equations (2.203) allows one to explore
a large range of important problems (such as the spread of the wavefunction that
was initially localized in one well, etc), but our task right now is just to find its
stationary states, i.e. the solutions proportional to exp{−i(εn/ℏ)t}, where εn is a still

Figure 2.27. The tight binding approximation (schematically).

55 Below, we will see several other examples of this behavior. This alternation rule is also described by the
Bohr–Sommerfeld quantization condition (2.110).
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unknown, q-dependent addition to the background energy En of the nth energy level.
In order to satisfy the Bloch theorem (2.193) as well, such a solution should have the
form

ε= −
ℏ

+{ }a t a iqx i t( ) exp const . (2.205)j j
n

Plugging this solution into Eq. (2.203) and canceling the common exponent, we get

ε δ δ= + = − + ≡ −−E E E e e E qa( ) 2 cos , (2.206)n n n n
iqa iqa

n n

so that in this approximation, the energy band width ΔEn (see figure 2.26b) equals
4∣δn∣.

The relation (2.206), whose validity is restricted to ∣δn∣ ≪ En, describes the lowest
energy bands plotted in figure 2.26b reasonably well. (For larger β, the agreement
would be even better.) So, this calculation explains what the energy bands really are—
in the tight-binding limit they are best interpreted as isolated well’s energy levels En,
broadened into the bands by the interwell interaction. Also, this result gives a clear
proof that the energy band extremes correspond to qa = 2πl and qa = 2π(l + 1/2), with
integer l. Finally, the sign alteration of the coupling coefficient δn (2.204) explains why
the energy maxima of one band are aligned, on the qa axis, with energy minima of the
adjacent bands—see figure 2.26.

(ii) Weak-potential limit. Amazingly, the energy band structure is also compatible with
a completely different physical picture that may be developed in the opposite limit. Let
the particle energy E be so high that the periodic potential U(x) may be treated as a
small perturbation. Naively, in this limit we could expect a slightly and smoothly
deformed parabolic dispersion relation E = ℏ2k2/2m. However, if we are plotting
energy as a function of q rather than k, we need to add 2πl/a, with an arbitrary integer l,
to the argument. Let us show this by expanding all variables into the spatial Fourier
series. For a periodic potential energy U(x) such an expansion is straightforward56:

∑ π= − ″
″

″ { }U x U i
x

a
l( ) exp

2
, (2.207)

l

l

where the summation is over all integers l″, from −∞ to + ∞. However, for the
wavefunction we should show a due respect to the Bloch theorem (2.193). To
understand how to proceed, let us define another function

ψ≡ −u x x e( ) ( ) , (2.208)iqx

and study its periodicity:

ψ ψ+ = + = =− + −u x a x a e x e u x( ) ( ) ( ) ( ). (2.209)iq x a iqx( )

We see that the new function is a-periodic, and hence we can use Eqs. (2.208) and
(2.209) to rewrite the Bloch theorem as

56 The benefits of such unusual choice of the summation index (l″ instead of, say, l ) will be clear in a few lines.
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ψ = + =x u x e u x a u x( ) ( ) , with ( ) ( ). (2.210)iqx

Now it is safe to expand the periodic function u(x) exactly as U(x):

∑ π= − ′
′

′ { }u x u i
x

a
l( ) exp

2
, (2.211)

l

l

so that, according to the Bloch theorem in the form (2.210),

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭∑ ∑ψ π π= − ′ = − ′
′ ′

′ ′{ }x e u i
x

a
l u i q

a
l x( ) exp

2
exp

2
. (2.212)

l l

iqx
l l

The only nontrivial part of plugging this expression into the stationary Schrödinger
equation (2.53) is the calculation of the product term, using the expansions (2.207)
and (2.211):

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟
⎫⎬⎭∑ψ π= − ′ + ″

′ ″
″ ′U x U u i q

x
a

l l( ) exp
2

( ) . (2.213)
l l,

l l

At fixed l′, we may change the summation over l″ to that over l ≡ l′ + l″ (so that l″ ≡
l − l′), and write:

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟
⎫⎬⎭∑ ∑ψ π= −

′
′ − ′U x i q

x
a

l u U( ) exp
2

. (2.214)
l l

l l l

Now plugging Eqs. (2.212) (with the summation index l′ replaced with l ) and (2.214)
into the stationary Schrödinger equation (2.61), and requiring the coefficients of
each spatial exponent to match, we get an infinite system of linear equations for ul:

57

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥∑ π= − ℏ −

′
− ′ ′U u E

m
q

a
l u

2
2

. (2.215)
l

l l l l

2 2

So far, this system of equations is an equivalent alternative to the initial
Schrödinger equation, for any potential’s strength58. In the weak-potential limit,
i.e. if all the Fourier coefficients Un are small59, we can complete all the calculation

57Note that by this calculation we have essentially proved that the Bloch wavefunction (2.210) is indeed a
solution of the Schrödinger equation, provided that the quasi-momentum q is selected in a way to make the
system of linear equation (2.215) compatible, i.e. is a solution of its characteristic equation—see, e.g. Eq.
(2.223) below.
58 By the way, the system is very efficient for fast numerical solutions of the Schrödinger equation for any
periodic profile U(x), even though in systems with large Un it may require taking into account a large number
of harmonics ul.
59 Besides, possibly, a constant potential U0, which, as was discussed in chapter 1, may be taken for the energy
reference. As a result, in the following calculations I will take U0 = 0.
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analytically60. Indeed, in the so-called 0th approximation we can ignore all Un, so
that in order to have at least one ul different from 0, Eq. (2.215) requires that

⎛
⎝⎜

⎞
⎠⎟

π→ ≡ ℏ −E E
m

q
l

a2
2

. (2.216)l

2 2

(ul itself should be obtained from the normalization condition). This result means
that the dispersion relation E(q) has an infinite number of similar quadratic branches
numbered by integer l—see figure 2.28.

On any branch, the eigenfunction has just one Fourier coefficient, i.e. represents a
monochromatic traveling wave

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭ψ π→ = −u e u i q
l

a
xexp

2
. (2.217)l l

ikx
l

This fact allows us to rewrite Eq. (2.215) in a more transparent form

∑ = −
′≠

′− ′U u E E u( ) , (2.218)
l l

l l l l l

which may be formally solved for ul:

∑=
− ′≠

′− ′u
E E

U u
1

. (2.219)
l l

l
l

l l l

This formula shows that if the Fourier coefficients Un are nonvanishing but small,
the wavefunctions do acquire other Fourier components (besides the main one, with
the index corresponding to the branch number), but these additions are all small,
besides narrow regions near the points El = El′ where two branches (2.216) of the
dispersion relation E(q), with some specific numbers l and l′, cross. According to Eq.
(2.216), this happens when

Figure 2.28. The energy band/gap picture in the weak potential limit (Δn ≪ E(n)), with the shading showing the
1st Brillouin zone.

60 This method is so powerful that its multi-dimensional version is not much more complex than the 1D version
described here—see, e.g. section 3.2 in the classical textbook [7].
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⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

π π− ≈ − − ′q
a

l q
a

l
2 2

, (2.220)

i.e. at q ≈ qm ≡ πm/a (with the integer m ≡ l + l′)61 corresponding to

π π π≈ ≈ ℏ + ′ − = ℏ ≡′E E
ma

l l l
ma

n E
2

[ ( ) 2 ]
2

, (2.221)l l
n

2

2
2

2 2

2
2 ( )

with integer n ≡ l − l′. (Eq. (2.221) shows that the index n is just the number of the
branch crossing on the energy scale—see figure 2.28.) In such a region, E has to be
close to both El and El′, so that the denominator in just one of the infinite number of
terms in Eq. (2.219) is very small, making the term substantial despite the smallness
of Un. Hence we can take into account only one term in each of the sums (written for
l and l′):

= −
= −

− ′

′ ′

U u E E u
U u E E u

( ) ,
( ) .

(2.222)n l l l

n l l l

Taking into account that for any real function U(x) the Fourier coefficients in series
(2.207) have to be related as U−n = Un

*, Eq. (2.222) yields the following simple
characteristic equation

− −
− −

=
*

′

E E U
U E E

0, (2.223)l n

n l

with the solution

⎜ ⎟
⎡
⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥= ± − + ≡ + =±

′ * ′E E
E E

U U E
E E

E
2

, with
2

. (2.224)l l
n n

l l n
ave

2 1/2

ave
( )

According to Eq. (2.216), close to the branch crossing point qm = π(l + l′)/a, the
fraction participating in this result may be approximated as62

γ

γ π
π

− ≈ ˜

≡ = ℏ = ˜ ≡ −

′

=

E E
q

dE
dq

n
ma

aE
n

q q q

2
,

2
, and ,

(2.225)

l l

l

q q

n

m

2 ( )

m

while the parameters Eave = E(n) and UnU
*
n = ℏUnℏ

2 do not depend on q̃, i.e. on the
distance from the central point qm. This is why Eq. (2.224) may be plotted as the
famous level anticrossing (also called ‘avoided crossing’, or ‘intended crossing’, or
‘non-crossing’) diagram (figure 2.29), with the energy gap width Δn equal to 2∣Un∣,
i.e. just double the magnitude of the nth Fourier harmonic of the periodic potential

61 Let me hope that the difference between this new integer and the particle’s mass, both called m, is absolutely
clear from the context.
62 Physically, β/ℏ = ℏ(nπ/a)m = ℏk(n)/m is just the velocity of a free classical particle with energy E(n).
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U(x). Such anticrossings are also clearly visible in figure 2.28, which shows the result
of the exact solution of Eq. (2.198) for β = 0.5.63

We will run into the anticrossing diagram again and again in the course, notably
of the discussion of spin-1/2 and other two-level systems. It is also repeatedly met in
classical mechanics, for example at the calculation of eigenfrequencies of coupled
oscillators64,65. In our current case of the weak potential limit of the band theory, the
diagram describes the interaction of two sinusoidal de Broglie waves (2.216), with
oppositely directed wave vectors, l and −l′, via the (l − l′)th (i.e. the nth) Fourier
harmonic of the potential profile U(x).66 This effect exists also in the classical wave
theory, and is known as the Bragg reflection, describing, for example, the 1D case of
the X-wave reflection by a crystal lattice (see, e.g. figure 1.5) in the limit of weak
interaction between the incident wave and each atom.

The anticrossing diagram shows that, rather counter-intuitively, even a weak
periodic potential changes the topology of the initially-parabolic dispersion relation
radically, connecting its different branches, and thus creating the energy gaps. Let
me hope that the reader has enjoyed the elegant description of this effect, discussed
above, as well as one more illustration of the wonderful ability of physics to give
completely different interpretations, and approximate quantitative approaches to
the same effect in the opposite limits.

So, we have explained analytically two asymptotic trends of the particular band
structure shown in figure 2.26. Now we may wonder how general the rest of this
structure is, i.e. how much does it depend on the peculiar properties of the delta-
function model (figure 2.24). For that, let us represent the detailed band pattern,
such as that shown in figure 2.26b (plotted for a particular value of the parameter β,

Figure 2.29. The level anticrossing diagram.

63 From that figure, it is also clear that in the weak potential limit, the width ΔEn of the nth energy band is just
E(n) − E(n − 1)—see Eq. (2.221). Note that this is exactly the distance between the adjacent energy levels of the
simplest 1D potential well of an infinite depth—cf Eq. (1.85).
64 See, e.g. Part CM section 6.1 and in particular figure 6.2.
65Actually, we could obtain this diagram earlier in this section, for the system of two weakly coupled potential
wells (figure 2.21), if we assumed the wells to be slightly dissimilar.
66 In the language of the de Broglie wave scattering, to be discussed in section 3.3, Eq. (2.220) may be
interpreted as the condition at that each of these partial waves, scattered on the nth Fourier harmonic of the
potential profile, constructively interferes with its counterpart, leading to a strong enhancement of their
interaction.
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characterizing the potential barrier strength) in a more condensed form, which
would allow us to place the results for a range of β on a single comprehensible plot.
The way to do this should be clear from figure 2.26b: since the dependence of energy
on the quasi-momentum in each energy band is not too eventful, we may plot just
the highest and smallest values of the particle’s energy E = ℏ2k2/2m, as functions of

W �β ≡ ma / 2—see figure 2.30. (As figure 2.26b shows, they may be obtained from
Eq. (2.198) with qa = 0 and qa = π.)

These plots (in mathematics, frequently called the characteristic curves) show, first
of all, that at small β, all energy gaps are equal and proportional to this parameter,
and hence toW . This feature is in a full agreement with the main conclusion (2.224)
of our analysis of the weak-potential limit, because for this potential (figure 2.24),

W ∑ δ= − +
=−∞

+∞

U x x ja( ) ( const), (2.226)
j

all Fourier harmonic amplitudes, defined by Eq. (2.207), are equal by magnitude:
W∣ ∣ =U a/l . As β is further increased, the gaps grow and the allowed energy bands

shrink, but rather slowly. This is also natural, because, as Eq. (2.79) shows, the
transparencyT of the delta-functional barriers, separating the quasi-localized states
(and hence the coupling parameters δn ∝T1/2) decrease withW β∝ very gradually.

These features may be compared with similar curves for more realistic and
relatively simple periodic functionsU(x), for example the sinusoidal potentialU(x) =
Acos(2πx/a)—see figure 2.31a. For this potential, the stationary Schrödinger
equation (2.53) takes the following form:

ψ π ψ ψ− ℏ + =
m

d
dx

A
x

a
E

2
cos

2
. (2.227)

2 2

2

By the introduction of dimensionless variables

ξ π α β≡ ≡ ≡x
a

E
E

A
E

, , 2 , (2.228)
(1) (1)

Figure 2.30. Characteristic curves of the Schrödinger equation for the infinite Dirac comb (figure 2.24).
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where E(1) is defined by Eq. (2.221), Eq. (2.227) is reduced to the canonical form of
the well-studied Mathieu equation67

ψ
ξ

α β ξ ψ+ − =d
d

( 2 cos 2 ) 0. (2.229)
2

2

(Note that this definition of β is quantitatively different from that for the Dirac comb
(2.226), but in both cases this parameter is proportional to the amplitude of the
potential modulation.)

Figure 2.32 shows the characteristic curves of this equation. We see that now at
small β the first energy gap grows much faster than the higher ones: Δn ∝ β n. This
feature is in accord with the weak-coupling result Δ1 = 2∣U1∣, which is valid only in
the linear approximation in Un, because for the Mathieu potential, Ul = A(δl,+1 +
δl,−1)/2. Another clearly visible feature is the exponentially fast shrinkage of the
allowed energy bands at 2β > α (in figure 2.32, on the right from the dashed line), i.e.
at E < A. It may be readily explained by our tight-binding approximation result
(2.206): as soon as the eigenenergy drops significantly below the potential maximum
Umax = A (see figure 2.31a), the quantum states in the adjacent potential wells are

A

A

Figure 2.31. Two other simple periodic potential profiles: (a) the sinusoidal (‘Mathieu’) potential and (b) the
Kronig–Penney potential.

Figure 2.32. Characteristic curves of the Mathieu equation. The dashed line corresponds to the equality α =
2β, i.e. E = A ≡ Umax, separating the regions of under-barrier tunneling and over-barrier motion. Adapted
from figure 28.2.1 at http://dlmf.nist.gov. (Contribution by US Government, not subject to copyright.)

67 This equation, first studied in the 1860s by É Mathieu in the context of a rather practical problem of
vibrating elliptical drumheads (!), has many other important applications in physics and engineering, notably
including the parametric excitation of oscillations—see, e.g. Part CM section 5.5.
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connected only by tunneling through the high separating potential barriers, so that
the coupling amplitudes δn become exponentially small—see, e.g. Eq. (2.189).

Another simple periodic profile is the Kronig–Penney potential, shown in figure
2.31b, which allows one to get relatively simple analytical expressions for the
characteristic curves. Its advantage is a more realistic law of the decrease of the
Fourier harmonicsUl at l≫ 1, andhence of the energy gaps in theweak-potential limit:

Δ → ∝ ~ ≫U
U
n

E E U2 , at . (2.230)n n
n0 ( )

0

Leaving a detailed analysis of the Kronig–Penney potential for the reader’s
exercise, let me conclude this section by addressing the effect of the potential
modulation on the number of eigenstates in 1D systems of a large but finite length
l ≫ a, k−1. Surprisingly, the Bloch theorem makes the analysis of this problem
elementary, for arbitraryU(x). Indeed, let us assume that l is comprised of an integer
number of periods a, and its ends are described by the similar boundary conditions—
both assumptions evidently inconsequential for l ≫ a. Then, according to Eq.
(2.210), the boundary conditions impose, on the quasi-momentum q, exactly the
same quantization condition as we had for k for a free 1D motion. Hence, instead of
Eq. (1.100) we can write

π
=dN

l
dq

2
, (2.231)

with the corresponding change of the summation rule:

∫∑
π

→f q
l

f q dk( )
2

( ) . (2.232)
q

Hence, the density of states in 1D q-space, dN/dq = l/2π, does not depend on the
potential profile at all! Note, however, that the profile does affect the density of
states on the energy axis, dN/dE. As an extreme example, on the bottom and at the
top of each energy band we have dE/dq → 0, and hence

π
= = → ∞dN

dE
dN
dq

dE
dq

l dE
dq2

. (2.233)

This effect of state concentration at the band/gap edges (which survives in higher
spatial dimensionalities as well) has important implications for the operation of
several electronic and optical devices, in particular semiconductor lasers.

2.8 Periodic systems: particle dynamics
The band structure of the energy spectrum has profound implications not only on
the density of states, but also on the dynamics of particles in periodic potentials.
Indeed, let us consider the simplest case of a wave packet composed of the Bloch
functions (2.210), all belonging to the same (say, nth) energy band. Similarly to Eq.
(2.27) for the a free particle, we can describe such a packet as
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∫Ψ = ω−x t a u x e dq( , ) ( ) , (2.234)q q
i qx q t[ ( ) ]

where the a-periodic functions u(x), defined by Eq. (2.208), are now indexed to
emphasize their dependence on the quasi-momentum, and ω(q) ≡ En(q)/ℏ is the
function of q describing the shape of the corresponding energy band—see, e.g. figure
2.26b or figure 2.28. If the packet is narrow in the q-space, i.e. the width δq of the
distribution aq is much smaller than all the characteristic q-scales of the dispersion
relation ω(q), in particular π/a, we may simplify Eq. (2.234) exactly as was done in
section 2.2 for a free particle, despite the presence of the periodic factors uq(x) under
the integral. In the linear approximation of the Taylor expansion, we again get Eq.
(2.32), but now with

v v
ω ω= =

= =

d
dq q

, and , (2.235)
q q q q

gr ph

0 0

where q0 is the central point of the quasi-momentum distribution. Despite the formal
similarity with Eq. (2.33) for the free particle, this result is much more eventful; for
example, as evident from the dispersion relation’s topology (see figures 2.26a, 2.28),
the group velocity vanishes not only at q = 0, but at all values of q that are multiples
of (π/a), at the bottom and on the top of each energy band. Even more intriguing is
that the group velocity’s sign changes periodically with q.

This group velocity alternation leads to fascinating, counter-intuitive phenomena
if a particle in a periodic potential is the subject of an additional external force F(t).
(For electrons in a crystal, this may be, for example, the Lorentz force of the applied
electric field.) Let the force be relatively weak, so that the product Fa (i.e. the scale of
the energy increment from the additional force per one lattice period) is much
smaller than both relevant energy scales of the dispersion relation E(q)—see figure
2.26b:

≪ Δ ΔFa E , . (2.236)n n

This strong relation allows one to neglect the force-induced interband transitions, so
that the wave packet (2.234) includes the Bloch eigenfunctions belonging to only one
(initial) energy band at all times. For the time evolution of its center q0, theory
yields68 an extremely simple equation of motion

̇ =
ℏ

q F t
1

( ). (2.237)0

This equation is physically very transparent: it is essentially the 2nd Newton law for
the time evolution of the quasi-momentum ℏq under the effect of the additional force
F(t) only, excluding the periodic force −∂U(x)/∂x of the background potential U(x).

68 The proof of Eq. (2.237) is not difficult, but becomes more compact in the bra-ket formalism, to be discussed in
chapter 4. This is why I recommend to the reader its proof as an exercise after reading that chapter. For a
generalization of this theory to the case of essential interband transitions see, e.g. section 55 in [8].
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This is very natural, because ℏq is essentially the particle’s momentum averaged over
the potential’s period, and the periodic force effect drops out at such an averaging.

Despite the simplicity of Eq. (2.237), the results of its solution may be highly
nontrivial. First, let us use Eqs. (2.235) and (2.237) to find the instant group
acceleration of the particle (i.e. the acceleration of its wave packet’s envelope):

v ω

ω ω ω

≡ ≡

≡ = =
ℏ =

a
d

dt
d
dt

d q

dq

d
dq

d q

dq

dq

dt

d q

dq

dq

dt
d
dq

F t

( )

( ) ( ) 1
( ).

(2.238)

q q

gr
gr 0

0

0

0

0

0
2

0

0
2

0
2

2
0

This means that the second derivative of the dispersion ω(q) relation (specific for
each energy band) plays the role of the effective reciprocal mass of the particle at this
particular value of q0:

ω
= ℏ ≡ ℏ

m
d dq d E dq/ /

. (2.239)
n

ef 2 2

2

2 2

For the particular case of a free particle, for which Eq. (2.216) is exact, this
expression is reduced to the original (and constant) mass m, but generally the
effective mass depends on the wave packet’s momentum. According to Eq. (2.239),
at the bottom of any energy band,mef is always positive, but depends on the strength
of a particle’s interaction with the periodic potential. In particular, according to Eq.
(2.206), in the tight-binding limit, the effective mass is very large:

δ π δ
= ℏ ≡ ≫π=m

a
m

E
m

2
. (2.240)q a n

n n
ef ( / )

2

2

(1)

2

Conversely, in the weak potential limit, the effective mass is close tom at most points
of each energy band, but at the edges of the (narrow) bandgaps it is much smaller.
Indeed, expanding Eq. (2.224) in the Taylor series near point q = qm, we get

⎛
⎝⎜

⎞
⎠⎟

γ∣ − ≈ ± ± ˜ = ± ± ˜± ≈
=

E E U
U

dE
dq

q U
U

q
1

2 2
, (2.241)E E n

n

l

q q

n
n

ave

2

2
2

2n

m

( )

where γ and q̃ are defined by Eq. (2.225), so that

γ
= ℏ ≡ ≪=m U m

U
E

m
2

. (2.242)q q n
n
nef

2

2 ( )m

The effective mass effects in real atomic crystals may be very significant. For
example, the charge carriers in silicon have mef ≈ 0.19 me in the lowest, normally-
empty energy band (traditionally called the conduction band), and mef ≈ 0.98 me in
the adjacent lower, normally-filled valence band. In some semiconducting com-
pounds the conduction-band electron mass may be even smaller—down to 0.0145me

in InSb!
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The absolute value of the effective mass is not the most surprising effect. The
more fascinating corollary of Eq. (2.239) is that on the top of each energy band the
effective mass is negative—please revisit figures 2.26b, 2.28, and 2.29 again. This
means that the particle (or more strictly its wave packet’s envelope) is accelerated in
the direction opposite to the force. This is exactly what electronics engineers,
working with electrons in semiconductors, call holes, characterizing them by the
positive mass ∣me∣, but compensating this sign change by taking their charge e
positive. If the particle stays in close vicinity to the energy band’s top (say, due to
frequent scattering effects, typical for the semiconductors used in engineering
practice), such double sign flip does not lead to an error in calculations of a hole’s
dynamics, because the Lorentz force is proportional to the particle’s charge, so that
the particle’s acceleration agr is proportional to the charge-to-mass ratio69.

However, at some phenomena such simple representation is unacceptable70. For
example, let us form a narrow wave packet at the bottom of the lowest energy
band71, and then exert on it a constant force F > 0—say, due to a constant external
electric field directed along axis x. According to Eq. (2.237), this force would lead to
a linear growth of q0 in time, so that in the quasi-momentum space, the packet’s
center would slide, with a constant speed, along the q axis—see figure 2.33a. Close
to the energy band’s bottom, this motion would correspond to a positive effective
mass (possibly, somewhat different than the genuine particle’s massm), and hence be
close to the free particle’s acceleration. However, as soon as q0 has reached the
inflection point, where d2E1/dq

2 = 0, the effective mass, and hence its acceleration
(2.238) change signs to negative, i.e. the packet starts to slow down (in the direct
space), while still moving ahead in the quasi-momentum space. Finally, at the
energy band’s top the particle stops at certain xmax, while continuing to move in
the q-space.

Now we have two alternative ways to look at the further time evolution of the
wave packet along the quasi-momentum axis. From the extended zone picture
(which is the simplest for this analysis, see figure 2.33a),72 we may say that the
particle crosses the 1st Brillouin zone boundary and continues to go forward in q, i.e.
down the lowest energy band. According to Eq. (2.235), this region (up to the next
energy minimum at qa = 2π) corresponds to a negative group velocity. After q0 has
reached that minimum, the whole process repeats again (and again, and again).

69More discussion of this issue may be found in Part SM section 6.4.
70 The balance of this section describes effects which are not discussed in most quantum mechanics textbooks.
Though, in my opinion, every educated physicist should be aware of them, some readers may skip them at the
first reading, jumping directly to the next section 2.9.
71 Physical intuition tells us (and the theory of open systems, to be discussed in chapter 7, confirms) that this
may be readily done, for example, by weakly coupling the system to a relatively low-temperature environment,
and letting it to relax to the lowest possible energy.
72 This phenomenon may be also discussed from the point of view of the reduced zone picture, but then it
requires the introduction of instant jumps between the Brillouin zone boundary points (see the dashed red line
in figure 2.33) that correspond to physically equivalent states of the particle. Evidently, for the description of
this particular phenomenon, this language is more artificial.
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These are the famous Bloch oscillations—the effect which was predicted, by the
same F Bloch, as early as in 1929, but evaded experimental observation until the
1980s (see below) due to the strong scattering effects in solid-state crystals. The time
period of the oscillations may be readily found from Eq. (2.237):

π πΔ = Δ =
ℏ

= ℏ
t

q
dq dt

a
F Fa/
2 /

/
2

, (2.243)B

so that their frequency is expressed by a very simple formula

ω π≡
Δ

=
ℏt

Fa2
, (2.244)B

B

and hence is independent of any peculiarities of the energy band/gap structure.
The direct-space motion of the wave packet’s center x0(t) during the Bloch

oscillation process may be analyzed by integrating the first of Eqs. (2.235) over some
time interval Δt, again using Eq. (2.237):
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If the interval Δt is equal to the Bloch oscillation period ΔtB (2.243), the initial and
final values of E(q0) = ℏω(q0) are equal, giving Δx0 = 0: in the end of the period, the
wave packet returns to its initial position in space. However, if we carry this
integration only from the smallest to the largest values of ω(q0), i.e. the adjacent
points where the group velocity vanishes, we get the oscillation swing

ω ωΔ = ℏ − ≡ Δ
x

F
E
F

( ) . (2.246)max max min
1

Figure 2.33. The Bloch oscillations (red lines) and the Landau–Zener tunneling (blue arrows) represented in:
(a) the reciprocal space of q, and (b) the direct space. On panel (b), the tilted gray strips show the allowed
energy bands, while the bold red line.
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This simple result may be interpreted using an alternative energy diagram (figure
2.33b), which results from the following arguments. The additional force F may be
described not only via the 2nd Newton law’s version (2.237), but, alternatively, by its
contribution UF = −Fx to the Gibbs potential energy73

= −ΣU x U x Fx( ) ( ) (2.247)

The direct solution of the Schrödinger equation (2.61) with such a potential may be
hard to find directly, but if the force is sufficiently weak, as we are assuming
throughout this discussion, the second term in Eq. (2.247) may be considered as a
constant on the scale of a≪ Δxmax. In this case, our quantum-mechanical treatment
of the periodic potential U(x) is still almost correct, but with an energy shift
depending on the position x0 of the packet’s center. In this approximation, the total
energy of the wave packet is

= −ΣE E q Fx( ) . (2.248)0 0

In a plot of such energy as a function of x0 (figure 2.33b), the energy dependence on
q0 is hidden, but as was discussed above it is rather uneventful, and may be well
characterized by the position of band-gap edges on the energy axis74. In this
representation, the Bloch oscillations keep the full energy EΣ constant, i.e. follow a
horizontal line in figure 2.33b, limited by the classical turning points corresponding
to the bottom and the top of the allowed energy band. The distance Δxmax between
these points is evidently given by Eq. (2.246).

Besides this second look at the oscillation swing result, the total energy diagram
shown in figure 2.33b enables one more remarkable result. Let a wave packet be so
narrow in the momentum space that δx ~ 1/δq ≫ Δxmax; then the horizontal line
segment in figure 2.33b represents the spatial extension of the eigenfunction of the
Schrödinger equation with the potential (2.247). But this equation is exactly
invariant with respect to the following simultaneous translation of the coordinate
and the energy:

→ + → −x x a E E Fa, . (2.249)

This means that it is satisfied by an infinite set of similar solutions, each
corresponding to one of the horizontal red lines shown in figure 2.33b. This is the
famous Wannier–Stark ladder75, with the step height

Δ =E Fa. (2.250)WS

73 Physically, this is just the relevant part of the potential energy of the total system comprised of our particle
(in the periodic potential) and the source of the force F—see, e.g. Part CM section 1.4.
74 In semiconductor physics and engineering, such plots are called the bandedge diagrams, and are the virtually
unavoidable components of any discussion/publication. In this series, a few examples of such diagrams may be
found in Part SM section 6.4.
75 It was first discussed in detail by G Wannier in his 1959 monograph, while the name of J Stark is associated
with virtually any effect of electric field on atomic systems, after he had discovered the first of them in 1913.
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The importance of this alternative representation of the Bloch oscillations is due
to the following fact. In most experimental realizations, the power of the electro-
magnetic radiation with the frequency (2.244), that may be extracted from the
oscillations of a charged particle, is very low, so that their direct detection represents
a hard problem76. However, let us apply to a Bloch oscillator an additional ac field
at frequency ω ~ ωB. As these frequencies are brought close together, the external
signal should synchronize (‘phase lock’) the Bloch oscillations77, resulting in certain
changes of time-independent observables—for example, a resonant change of
absorption of the external radiation. Now let us notice that the combination of
Eqs. (2.244) and (2.250) yield the following simple relation:

ωΔ = ℏE . (2.251)WS B

This means that the phase locking at ω ≈ ωB allows for an alternative (but
equivalent) interpretation—as the result of ac-field-induced quantum transitions78

between the steps of the Wannier–Stark ladder. (Again, such occasions when two
very different languages may be used for alternative interpretations of the same
phenomenon is one of the most beautiful features of physics.)

This phase-locking effect has been used for first experimental confirmations of the
Bloch oscillation theory79. For this purpose, the natural periodic structures, solid
state crystals, are inconvenient due to their very small period a ~ 10−10 m. Indeed,
according to Eq. (2.244), such structures require very high forces F (and hence very
high electric fieldsE = F e/ ) to bring ωB to an experimentally convenient range. This
problem has been overcome using artificial periodic structures (superlattices) of
certain semiconductor compounds, such as Ga1−xAlxAs with various degrees x of
the gallium-to-aluminum atom replacement, whose layers may be grown over each
other epitaxially, i.e. with very few crystal structure violations. These superlattices,
with periods a ~ 10 nm, have enabled a clear observation of the resonance at ω ≈ ωB,
and hence the measurement of the Bloch oscillation frequency, in particular its
proportionality to the applied dc electric field, predicted by Eq. (2.244).

Very soon after this discovery, the Bloch oscillations were observed80 in small
Josephson junctions, where they result from the quantum dynamics of the Josephson
phase difference φ in a 2π-periodic potential profile, created by the junction. A
straightforward translation of Eq. (2.244) to this case (left for the reader’s exercise)
shows that the frequency of such Bloch oscillations is

ω π ω
π

= ≡ =I
e

f
I
e2

, i.e.
2 2

, (2.252)B B
B

76 In systems with many independent particles (such as electrons in semiconductors), the detection problem is
exacerbated by the phase incoherence of the Bloch oscillations performed by each particle. This drawback is
absent in atomic Bose–Einstein condensates whose Bloch oscillations (in a periodic potential created by
standing optical waves) were eventually observed by M Ben Dahan et al [9].
77A simple analysis of phase locking of a classical oscillator may be found, e.g. in Part CM section 5.4. (See also
the brief discussion of the phase locking of the Josephson oscillations in the end of section 1.6 of this volume.)
78A qualitative theory of such transitions will be discussed in section 6.6 and then in chapter 7.
79 E Mendez et al [10].
80D Haviland et al [11].
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where I is the dc current passed through the junction—the effect not to be confused
with the ‘classical’ Josephson oscillations with frequency (1.75). It is curious that Eq.
(2.252) may be legitimately interpreted as a result of a periodic transfer, through the
Josephson junction, of discrete Cooper pairs (of charge −2e), between two coherent
Bose–Einstein condensates in the superconducting electrodes of the junction81.

The Bloch oscillation discussion above was based on the premise that the wave
packet of the particle stays within one (say, the lowest) energy band. However, just
one look at figure 2.28 shows that this assumption becomes unrealistic if the energy
gap separating this band from the next one becomes very small, Δ1 → 0. Indeed, in
the weak-potential approximation, which is adequate in this limit, ∣U1∣ → 0, the two
dispersion curve branches (2.216) cross without any interaction, so that if our
particle (meaning its wave packet) is driven to approach that point, it should
continue to move up in energy—see the dashed blue arrow in figure 2.33a. Similarly,
in the real-space representation shown in figure 2.33b, it is intuitively clear that at
Δ1 → 0, the particle residing at one of the steps of the Wannier–Stark ladder should
be able to somehow overcome the vanishing spatial gap Δx0 = Δ1/F and to leak into
the next band—see the horizontal dashed blue arrow on that panel.

This process, called the Landau–Zener (or ‘interband’, or ‘band-to-band’)
tunneling82 is indeed possible. In order to analyze it, let us first take F = 0, and
consider what happens if a quantum particle, described by an x-long (i.e. E-narrow)
wave packet, is incident from the free space upon a periodic structure of a large but
finite length l = Na ≫ a—see, e.g. figure 2.22. If the packet’s energy E is within one
of the energy bands, it may evidently propagate through the structure (though may
be partly reflected from its ends). The corresponding quasi-momentum may be
found by solving the dispersion relation for q; for example, in the weak-potential
limit, Eq. (2.224), valid near the gap, yields

γ

= + ˜

˜ = ± ˜ − ⩽ ˜ ˜ ≡ −±

q q q

q E U U E E E E

, with

1
[ ] , for , where ,

(2.253)
m

n n
n2 2 1/2 2 2 ( )

and γ = 2aE(n)/πn—see the second of Eqs. (2.225).
Now, if the energy E is inside one of the energy gaps Δn, the wave packet’s

propagation in an infinite periodic lattice is impossible, so that it is completely
reflected back from it. However, our analysis of the potential step problem in section
2.3 implies that the packet’s wavefunction should still have an exponential tail
protruding into the structure and decaying on some length δ—see Eq. (2.58) and
figure 2.4. Indeed, a review of the calculation leading to Eq. (2.253) shows that it
remains valid for energies within the gap as well, if the quasi-momentum is
understood as a purely imaginary number:

81 See, e.g. D Averin et al [12]. This effect is qualitatively similar to the transfer of single electrons, with the
similar frequency f = I/e, in tunnel junctions between normal (non-superconducting) metals—see, e.g. Part EM
section 2.9 and references therein.
82 It was predicted independently by L Landau and C Zener in 1932.
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κ κ
γ

˜ → ± ≡ − ˜ ˜ ⩽q i U E E U, where
1

[ ] , for . (2.254)n n
2 2 1/2 2 2

With this contribution, the Bloch solution (2.193b) indeed describes an exponential
decay of the wavefunction at length δ ~ 1/κ.

Returning to the effects of weak force F in the real-space approach, represented
by Eq. (2.248) and illustrated in figure 2.33b, we may recast Eq. (2.254) as

κ κ
γ

→ = − ˜x U Fx( )
1

[ ( ) ] , (2.255)n
2 2 1/2

where x̃ is the particle’s (i.e. the wave packet center’s) deviation from the mid-gap
point. Thus the gap creates a potential barrier of a finite width Δx0 = 2∣Un∣/F,
through which the wave packet may tunnel with a non-zero probability. As we
already know, in the WKB approximation (in our case requiring κΔx0 ≫ 1) this
probability is just the potential barrier’s transparencyT , which may be calculated
from Eq. (2.117):

T ∫

∫ ∫

κ

γ γ
ξ ξ

− =

= − ˜ ˜ = −

κ >

−

x dx
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x d
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(2.256)
x

x

x

n
n

c

( ) 0

2 2 1/2

0

1
2 1/2

c

c

2

where ±xc ≡ ±Δx0/2 = ±∣Un∣/F are the classical turning points. Working out this
simple integral (which may be viewed upon as the quarter of the unit circle’s area,
and hence equal to π/4), we get

⎧⎨⎩
⎫⎬⎭T

π
γ

= − U
F

exp . (2.257)n
2

This famous result was obtained by Landau and Zener in a more complex way,
whose advantage is a constructive proof that Eq. (2.257) is valid for an arbitrary
relation between γF and ∣Un∣2, i.e. arbitrary T , while our simple derivation was
limited to the WKB approximation, valid only at T ≪ 1.83 Returning to Eqs.
(2.225) and (2.237), we can rewrite the product γF, participating in Eq. (2.257), as

γ = − ℏ = ℏ − ≡ ℏ′

= =

′

= =′ ′

F
d E E

dq

dq

dt
d E E

dt
u1

2
( )

2
( )

2
, (2.258)l l

E E E

l l

E E E0
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l l
n l l
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where u has the meaning of the ‘speed’ of the energy level crossing in the absence of
the gap. Hence, Eq. (2.257) may be rewritten in the form

⎧⎨⎩
⎫⎬⎭T

π= −
ℏ
U
u

exp
2

, (2.259)n
2

83Note that Eq. (2.257) is limited to the hyperbolic dispersion relation, i.e. (in the band theory) to the weak-
potential limit. In chapter 6, it will be derived using a different method, based on the so-called Golden Rule of
quantum mechanics.
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which is more physically transparent. Indeed, the fraction 2∣Un∣/u = Δnu gives the
time scale Δt of the energy’s crossing the gap region, and according to the Fourier
transform, its reciprocal, ωmax ~ 1/Δt gives the upper cutoff of the frequencies
involved in the Bloch oscillation process. Hence Eq. (2.259) means that

T
ω

− ≈ Δ
ℏ

ln . (2.260)n

max

This formula allows us to interpret the Landau–Zener tunneling as the system’s
excitation across the energy gap Δn, by the maximum energy quantum ℏωmax

available from the Bloch oscillation process. This interpretation remains valid even
in the opposite, tight-binding limit, in which, according to Eqs. (2.206) and (2.237),
the Bloch oscillations are purely sinusoidal, so that the Landau–Zener tunneling is
completely suppressed at ℏωB < Δ1.

The interband tunneling is an important ingredient of several physical phenom-
ena and even some practical electron devices, for example the tunneling (or ‘Esaki’)
diodes. This simple device is just a junction of two semiconductor electrodes, one of
them so strongly n-doped by electron donors that the additional electrons form a
degenerate Fermi gas at the bottom of the conduction band. Similarly, the
counterpart semiconductor electrode is p-doped so strongly that the Fermi level in
the valence band is shifted below the band edge (figure 2.34).84

In thermal equilibrium, and in the absence of an external voltage bias, the Fermi
levels self-align, leading to the build-up of the contact potential difference ϕ/e, with ϕ
somewhat larger than the energy bandgap Δ—see figure 2.34a. This potential
difference creates an internal electric field that tilts the energy bands (just as the
external field did in figure 2.33b), and leads to the formation of the so-called depletion
layer, in which the Fermi level is located within the energy gap and hence there are no
charge carriers ready to move. In usual p–n junctions, this layer is broad and prevents
any current at applied voltagesV lower than ~Δ/e. In contrast, in a tunneling diode the
depletion layer is so thin (below ~10 nm) that the interband tunneling is possible and
provides a substantial Ohmic current at small applied voltages—see figure 2.34c.
However, at a substantial positive bias, eV ~ Δ/2, the conduction band becomes

Figure 2.34. The tunneling (‘Esaki’) diode: (a) the band edge diagram of the device at zero bias; (b) the same
diagram at a modest positive bias eV ~ Δ/2, and (c) the I–V curve (schematically). Dashed lines show the Fermi
level positions.

84Here I have to rely on the reader’s knowledge of elementary properties of semiconductors; they will be
discussed in more detail in Part SM section 6.4.
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aligned with the middle of the energy gap in the p-doped electrode, and electrons
cannot tunnel there. Similarly, there are no electrons in the n-doped semiconductor to
tunnel into the available states just above the Fermi level in the p-doped electrode—
see figure 2.34b. As a result, at such voltages the current drops significantly, to grow
again only when eV exceeds ~Δ, enabling electron motion within each energy band.
Thus the tunnel junction’s I–V curve has a part with a negative differential resistance
(dV/dI < 0)—see figure 2.34c. This effect, equivalent in its effect to a negative
kinematic friction in mechanics, may be used for the amplification of analog signals,
including the self-excitation of electronic oscillators (i.e. ac signal generation)85, and
the signal swing restoration in digital electronics.

2.9 Harmonic oscillator: brute force approach
To complete our review of the basic 1D wave mechanics, we have to consider the
famous harmonic oscillator, i.e. a 1D particle moving in the quadratic-parabolic
potential (2.111), so that the stationary Schrödinger equation (2.53) is

ψ ω
ψ ψ− ℏ + =

m
d
dx

m x
E

2 2
. (2.261)

2 2

2
0
2 2

Conceptually, on the background of the fascinating quantum effects discussed in the
previous sections, this is not a very interesting system: Eq. (2.261) is a standard 1D
eigenproblem, resulting in a discrete energy spectrum En, with smooth eigenfunctions
ψn(x) vanishing at x → ±∞ (because the potential energy tends to infinity there)86.
However, as we will repeatedly see later in the course, the problem’s solutions have
an enormous range of applications, so we have to know their basic properties.

The direct analytical solution of the problem is not very simple (see below), so let
us start with trying some indirect approaches to it. First, as was discussed in section
2.4, the WKB-approximation-based Bohr–Sommerfeld quantization rule (2.110),
applied to this potential, yields the eigenenergy spectrum (2.114). With the common
quantum number convention, this result is

⎛
⎝⎜

⎞
⎠⎟ω= ℏ + = …E n n

1
2

, with 0, 1, 2, , (2.262)n 0

so that (in contrast to the 1D rectangular potential well) the ground-state energy
corresponds to n = 0. However, as was discussed in the end of section 2.4, for the
quadratic potential (2.111) the WKB approximation’s conditions are strictly
satisfied only at En ≫ ℏω0, so that so far we can only trust Eq. (2.262) for high
levels, with n ≫ 1, rather than for the (most important) ground state.

Consequently, let us apply to Eq. (2.261) another approximate approach, called
the variational method, whose simplest form is aimed exactly at characterizing the
ground states. The method is based on the following observation. (Here I am

85 See, e.g. Part CM section 5.4.
86 The stationary states of the harmonic oscillator are sometimes called its Fock states, to distinguish them from
other fundamental Glauber states, which will be discussed in section 5.5.
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presenting its 1D wave mechanics form, though the method is much more general.)
Let ψn be the exact, full and orthonormal set of stationary wavefunctions of the
system under study, and En the set of corresponding energy levels, satisfying Eq.
(1.60):

ψ ψˆ =H E . (2.263)n n n

Then we may use this set for the unique expansion of an arbitrary trial wavefunction
ψtrial:

∑ ∑ψ α ψ ψ α ψ= =α
* * *, so that , (2.264)

n n

n n n ntrial

where αn are some (generally, complex) coefficients. Let us require the trial function
to be normalized, using the condition (1.66) of orthonormality of the eigenfunctions
ψn:

∫ ∫
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∑ ∑ ∑
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(2.265)
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3
,

where each of the coefficients Wn, defined as

α α α≡ ≡ ⩾*W 0, (2.266)n n n n
2

may be interpreted as the probability for the particle, in the trial state, to be found in
the nth stationary state. Now let us use Eq. (1.23) for the absolutely similar
calculation of the expectation value of the system’s Hamiltonian in the trial state87:

∫ ∫
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∑ ∑
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(2.267)

n n
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n n n n n
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trial trial trial
3 3

3

,

Since the exact ground state energy Eg is, by definition, the lowest one of the set En,
i.e. En ⩾ Eg, Eqs. (2.265) and (2.267) yield the following inequality:

∑ ∑⩾ ≡ =H W E E W E . (2.268)
n n

n ntrial g g g

Thus, the genuine ground state energy of the system is always lower then (or equal
to) its energy in any trial state. Hence, if we make several attempts with reasonably

87 It is easy (and hence left for the reader) to show that the uncertainty δH in any state of a Hamiltonian system,
including the trial state (2.264), vanishes, so that the 〈H〉trial may be interpreted as the definite energy of the
state. For our current goals, however, this fact is not important.
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selected trial states, we may expect the lowest of the results to approximate the
genuine ground state energy reasonably well. Even more conveniently, if we select
some reasonable class of trial wavefunctions dependent on a free parameter λ, then
we may use the necessary condition of the minimum,

λ
∂

∂
=H

0, (2.269)trial

to find the closest of them to the genuine ground state. Even better results may be
obtained using trial wavefunctions dependent on several parameters. Note, however,
that the variational method does not tell us how exactly the trial function should be
selected, or how close its final result is to the genuine ground-state function. In this
sense, this method has ‘uncontrollable accuracy’, and differs from both the WKB
approximation and the perturbation methods (to be discussed in chapter 6), for
which we have certain accuracy criteria. Because of this drawback, the variational
method is typically used as the last resort—though sometimes (as in the example
below) it works remarkably well88.

Let us apply this method to the harmonic oscillator. Since the potential (2.111) is
symmetric with respect to point x = 0, and continuous at all points (so that,
according to Eq. (2.261), d2ψ/dx2 has to be continuous as well), the most natural
selection of the ground-state trial function is the Gaussian function

ψ λ= −x C x( ) exp{ }, (2.270)trial
2

with some real λ > 0. The normalization coefficient C may be immediately found
either from the standard Gaussian integration of ∣ψtrial∣2, or just from the compar-
ison of this expression with Eq. (2.16), in which λ = 1/4(δx)2, i.e. δx = 1/2λ1/2, giving
∣C∣2 = (2λ/π)1/2. Now the expectation value of the particle’s Hamiltonian,

ωˆ =
ˆ

+ = − ℏ +H
p
m

U x
m

d
dx

m x
2

( )
2 2

, (2.271)
2 2 2

2
0
2 2

in the trial state, may be calculated as
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(2.272)

trial trial

2 2

2
0
2 2

trial

1/2 2

0

2

0
2 2 2

0

2 2

Both involved integrals are of the same well-known Gaussian type89, giving

88Note that the variational method may be used also to estimate the first excited state (or even a few lowest
excited states) of the system, by requiring the new trial function to be orthogonal to the previously calculated
eigenfunctions of the lower-energy states, though the method’s error typically grows with the state number.
89 See, e.g. Eqs. (A.36b) and (A.36c).
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λ
ω
λ

= ℏ +H
m

m
2 8

. (2.273)trial

2
0
2

As a function of λ, this expression has a single minimum at the value λopt that may be
found from the requirement (2.269), giving λopt =mω0/2ℏ. The resulting minimum of
〈H〉trial is exactly equal to ground-state energy following from Eq. (2.262),

ω= ℏ
E

2
. (2.274)0

0

Such a coincidence of the WKB and the variational-method results is very unusual.
It implies (though does not strictly prove) that Eq. (2.274) is exact. As a minimum,
this coincidence gives a strong motivation to plug the trial wavefunction (2.270),
with λ = λopt, i.e.

⎜ ⎟⎛
⎝

⎞
⎠

⎧⎨⎩
⎫⎬⎭ψ ω

π
ω=

ℏ
−

ℏ
m m x

exp
2

, (2.275)0
0

1/4
0

2

and the energy (2.274), into the Schrödinger equation (2.261). Such substitution90

shows that the equation is indeed exactly satisfied.
According to Eq. (2.275), the characteristic scale of the wavefunction’s spatial

spread91 is

⎛
⎝⎜

⎞
⎠⎟ω

≡ ℏ
x

m
. (2.276)0

0

1/2

Due to the importance of this scale, let us give its crude estimates for several
representative systems:

(i) For atom-bound electrons in solids and fluids, m ~ 10−30 kg, and ω0 ~ 1015 s−1,
giving x0 ~ 0.3 nm, of the order of the typical inter-atomic distances in condensed
matter. As a result, classical mechanics is not valid at all for the analysis of their motion.

(ii) For atomic nuclei in solids, m ≈ 10−24–10−26 kg, and ω0 ~ 1013 s−1, giving
x0∼ 0.01–0.1nm, i.e. somewhat smaller than inter-atomicdistances. Because of that, the
methods based on classical mechanics (e.g. molecular dynamics) are approximately
valid for the analysis of atomicmotion, though theymaymiss some fine effects exhibited
by lighter atoms—e.g. the so-called quantum diffusion of hydrogen atoms, due to their
tunneling through the energy barriers of the potential profile created by other atoms.

(iii) Recently, the progress of patterning technologies has enabled the fabrication
of high-quality micromechanical oscillators consisting of zillions of atoms. For
example, the oscillator used in one of the pioneering experiments in this field92

was a ~1 μm thick membrane with a 60 μm diameter, and had m ~ 2 × 10−14 kg and

90Actually, this is a twist on one of the tasks of problem 1.12.
91Quantitatively, as was already mentioned in section 2.1, x0 = √2δx = 〈2x2〉1/2.
92A O’Connell et al [13].
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ω0 ~ 3 × 1010 s−1, so that x0 ~ 4 × 10−16 m. It is remarkable that despite such extreme
smallness of x0 (much smaller than not only any atom, but even any atomic
nucleus!), quantum states of such oscillators may be manipulated and measured,
using their coupling to electromagnetic (in particular, optical) resonant cavities93.

Returning to the Schrödinger equation (2.261), in order to analyze its higher
eigenstates, we need some help from mathematics. Let us recast this equation into a
dimensionless form by introducing the dimensionless variable ξ ≡ x/x0. This gives

ψ
ξ

ξ ψ εψ− + =d
d

, (2.277)
2

2
2

where ε ≡ 2E/ℏω0 = E/E0. In this notation, the ground-state wavefunction (2.275) is
proportional to exp{−ξ2/2}. Using this clue, let us look for the solutions to Eq.
(2.277) in the form

⎧⎨⎩
⎫⎬⎭ψ ξ ξ= −C Hexp

2
( ), (2.278)

2

where H(ξ) is a new function. With this substitution, Eq. (2.277) yields

ξ
ξ

ξ
ε− + − =d H

d
dH
d

H2 ( 1) 0. (2.279)
2

2

It is evident thatH = const and ε = 1 is one of its solutions, describing the ground-
state eigenfunction (2.275) and energy (2.274), but what are the other eigenstates and
eigenvalues? Fortunately, the linear differential equation (2.274) was studied in
detail in the mid-1800s by C Hermite who has shown that all its eigenvalues are
given by the set

ε − = = …n n1 2 , with 0, 1, 2, , (2.280)n

so that Eq. (2.262) is indeed exact for any n.94 The eigenfunction of Eq. (2.279),
corresponding to the eigenvalue εn, is a polynomial (called the Hermite polynomial)
of degree n, which may be most conveniently calculated using the following explicit
formula:

ξ
ξ

ξ= − −H
d
d

( 1) exp{ } exp{ }. (2.281)n
n

n

n
2 2

It is easy to use this formula to spell out several lowest-degree polynomials—see
figure 2.35a:

ξ ξ ξ ξ
ξ ξ

= = = − = −
= − + …

H H H H

H

1, 2 , 4 2, 8 12 ,

16 48 12,
(2.282)0 1 2

2
3

3

4
4 2

93 For a recent review of such experiments, see M Aspelmeyer et al [14].
94 Perhaps the most important property of this energy spectrum is that it is equidistant: En+1 − En = ℏω0 =
const.
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The properties of these polynomials, most important for applications, are as follows:

(i) the function Hn(ξ) has exactly n zeros (crosses the ξ-axis exactly n times); as a
result, the ‘parity’ (symmetry–antisymmetry) of these functions alternates with n, and

(ii) the polynomials are mutually orthonormal in the following sense:

∫ ξ ξ ξ ξ π δ− = !
−∞

+∞

′ ′H H d n( ) ( )exp{ } 2 . (2.283)n n
n

n n
2 1/2

,

Using the last property, we may calculate, from Eq. (2.278), the normalized
eigenfunctions ψn(x) of the harmonic oscillator—see figure 2.35b:

⎧⎨⎩
⎫⎬⎭

⎛
⎝⎜

⎞
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π
=

!
−x

n x

x
x

H
x
x

( )
1

(2 )
exp

2
. (2.284)n n n1/2 1/4

0
1/2

2

0
2

0

It is very instructive to compare these eigenfunctions with those of a 1D
rectangular potential well, with its ultimately-hard walls—see figure 1.8. Let us
list their similar features:

Figure 2.35. (a) A few lowest Hermite polynomials and (b) the corresponding eigenenergies (horizontal dashed
lines) and eigenfunctions (solid lines) of the harmonic oscillator. The black dashed curve shows the potential
profile U(x), drawn on the same scale as the energies En, so that its crossings with the energy levels correspond
to the classical turning points.
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(i) The wavefunctions oscillate in the classically-allowed regions with En > U(x),
while dropping exponentially beyond the boundaries of that region. (For the
rectangular well with infinite walls, the latter regions are infinitesimally narrow.)

(ii) Each step up of the energy level ladder increases the number of the oscillation
half-waves (and hence the number of its zeros), by one95.

Here are the major features specific for the soft (e.g. the quadratic—parabolic)
confinement:

(i) The spatial spread of the wavefunction grows with n, following the gradual
widening of the classically allowed region.

(ii) Correspondingly, En exhibits a slower growth than the En ∝ n2 law given by
Eq. (1.85), because the gradual reduction of the spatial confinement moderates the
growth of the kinetic energy.

Unfortunately, the ‘brute-force’ approach to the harmonic oscillator problem,
discussed above, is not too appealing. First, the proof of Eq. (2.281) is rather
longish—so I do not have time/space for it. More importantly, it is hard to use
Eq. (2.284) for the calculation of the expectation values of observables, and the
so-called matrix elements of the system—as we will see in chapter 4, virtually the
only numbers important for applications. Finally, it is also almost evident that there
has to be some straightforward math leading to any formula as simple as Eq. (2.262)
for En. Indeed, there is a much more efficient, operator-based approach to this
problem; it will be described in section 5.4.

2.10 Problems
Problem 2.1. The initial wave packet of a free 1D particle is described by Eq. (2.20)
of the lecture notes:

∫Ψ =x a e dk( , 0) .k
ikx

(i) Obtain a compact expression for the expectation value 〈p〉 of the particle’s
momentum. Does 〈p〉 depend on time?

(ii) Calculate 〈p〉 for the case when the function ∣ak∣2 is symmetric with respect to
some value k0.

Problem 2.2. Calculate the function ak, defined by Eq. (2.20), for the wave packet
with a rectangular spatial envelope:

95 In mathematics, a slightly more general statement, valid for a broader class of ordinary linear differential
equations, is frequently called the Sturm oscillation theorem, and is a part of the Sturm–Liouville theory of such
equations—see, e.g. chapter 10 in the handbook by G Arfken et al, recommended in section A.16.
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⎧⎨⎩Ψ =
− ⩽ ⩽ +

x
C ik x a x a

( , 0)
exp { }, for /2 /2,

0, otherwise.
0

Analyze the result in the limit k0a → ∞.

Problem 2.3. Prove Eq. (2.49) for the 1D propagator of a free quantum particle,
starting from Eq. (2.48).

Problem 2.4. Express the 1D propagator, defined by Eq. (2.44), via the eigenfunc-
tions and eigenenergies of a particle moving in an arbitrary stationary potential
U(x).

Problem 2.5. Calculate the change of the wavefunction of a 1D particle, resulting
from a short pulse of an external classical force that may be approximated by the
delta-function96:

δ=F t P t( ) ( ).

Problem 2.6. Calculate the transparency T of the rectangular potential barrier,

⎧
⎨⎪
⎩⎪

=
< −

− < < +
<

U x
x d

U d x d
d x

( )
0, for /2,

, for /2 /2,
0, for /2 ,

0

for a particle of energy E > U0. Analyze and interpret the result, taking into account
that U0 may be either positive or negative. (In the latter case, we are speaking about
the particle’s passage over a rectangular potential well of a finite depth ∣U0∣.)

Problem 2.7. Prove Eq. (2.117) for the case T « 1WKB , using the connection
formulas (2.104).

Problem 2.8. Spell out the stationary wavefunctions of a harmonic oscillator in the
WKB approximation, and use them to calculate the expectation values 〈x2〉 and 〈x4〉
for the eigenstate number n ≫ 1.

Problem 2.9. Use the WKB approximation to express the expectation value of the
kinetic energy of a 1D particle confined in a soft potential well, in its nth stationary
state, via the derivative dEn/dn, for n ≫ 1.

Problem 2.10. Use the WKB approximation to calculate the transparencyT of the
following triangular potential barrier:

⎧⎨⎩=
<

− >
U x

x
U Fx x

( )
0, for 0,

, for 0,0

with F, U0 > 0, as a function of the incident particle’s energy E.

96 The constant P is called the force’s impulse. (In higher dimensionalities, it is a vector—just as the force is.)
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Hint: Be careful with the sharp potential step at x = 0.

Problem 2.11.* Prove that the element symmetry of the 1D scattering matrix S,
describing an arbitrary time-independent scatterer, allows its representation in the
form (2.127).

Problem 2.12. Prove the universal relations between elements of the 1D transfer
matrix T of a stationary (but otherwise arbitrary) scatterer, mentioned in section 2.5.

Problem 2.13. A 1D particle had been localized in a very narrow and deep potential
well, with the ‘area’ ∫U(x)dx equal to W− , whereW > 0. Then (say, at t = 0) the
well’s bottom is suddenly lifted up, so that the particle becomes free to move.
Calculate the probability density, w(k), to find the particle in a state with the wave
number k at t > 0, and the total final energy of the system.

Problem 2.14. Calculate the lifetime of the metastable localized state of a 1D
particle in the potential

W Wδ= − − >U x x Fx( ) ( ) , with 0,

using the WKB approximation. Formulate the condition of validity of the result.

Problem 2.15. Calculate the energy levels and the corresponding eigenfunctions of a
1D particle placed into a flat-bottom potential well of width 2a, with infinitely hard
walls, and a transparent, short potential barrier in the middle—see figure below.
Discuss the dynamics of the particle in the limitW → ∞.

Problem 2.16.* Consider a symmetric system of two potential wells of the type
shown in figure 2.21, but with U(0) = U(±∞) = 0—see figure below. What is the sign
of the well interaction force due to sharing a quantum particle of mass m, for the
cases when the particle is in:

(i) a symmetric localized eigenstate, with ψS(−x) = ψS(x)?
(ii) an asymmetric localized eigenstate, with ψA(−x) = −ψA(x)?
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Use an alternative approach to confirm your result for the particular case of delta-
functional wells.

Problem 2.17. Derive and analyze the characteristic equation for the localized
eigenstates of a 1D particle in a rectangular well of a finite depth (see figure below):

⎧⎨⎩=
− ⩽

U x
U x a

( )
, for /2,

0, otherwise.
0

In particular, calculate the number of localized states as a function of well’s width a,
and explore the limit U0 ≪ ℏ2/2ma2.

Problem 2.18. Calculate the energy of a 1D particle localized in a potential well of
an arbitrary shape U(x), provided that its width a is finite, and the average depth is
very small:

∫≪ ℏ ≡U
ma

U
a

U x dx
2

, where
1

( ) .
2

2 well

Problem 2.19. A particle of mass m is moving in a field with the following potential:

W δ= +U x U x x( ) ( ) ( ),0

where U0(x) is a smooth, symmetric function with U0(0) = 0, growing monotonically
at x → ±∞.

(i) Use the WKB approximation to derive the characteristic equation for the
particle’s energy spectrum, and

(ii) semi-quantitatively describe the spectrum structure evolution at the increase of
W∣ ∣, for both signs of this parameter.

Make both results more specific for the quadratic-parabolic potential (2.111):
U0(x) = mω0

2x2/2.

Problem 2.20. Prove Eq. (2.189), starting from Eq. (2.188).

Problem 2.21. For the problem discussed in the beginning of section 2.7, i.e. the 1D
particle’s motion in an infinite Dirac comb potential shown in figure 2.24,
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W W∑ δ= − >
=−∞

+∞

U x x ja( ) ( ), with 0,
j

(where j takes integer values), write explicit expressions for the eigenfunctions at the
very bottom and at the very top of the lowest energy band. Sketch both functions.

Problem 2.22. A 1D particle of mass m moves in an infinite periodic system of very
narrow and deep potential wells that may be described by delta-functions:

W W∑ δ= − <
=−∞

+∞

U x x ja( ) ( ), with 0.
j

(i) Sketch the energy band structure of the system for very small and very large
values of the potential well’s ‘area’ W∣ ∣, and

(ii) calculate explicitly the ground state energy of the system in these two limits.

Problem 2.23. For the system discussed in the previous problem, write explicit
expressions for the eigenfunctions of the system, corresponding to:

(i) the bottom of the lowest energy band,
(ii) the top of that band, and
(iii) the bottom of each higher energy band.

Sketch these functions.

Problem 2.24.* The 1D ‘crystal’, analyzed in the last two problems, now extends
only to x > 0, with a sharp step to a flat potential plateau at x < 0:

W W
⎪

⎪⎧⎨
⎩

δ
=

∑ − < >

> <
=

+∞

U x
x ja x

U x
( )

( ), with 0, for 0,

0, for 0.
j 1

0

Prove that the system can have a set of the so-called Tamm states, localized near the
‘surface’ x = 0, and calculate their energies in the limit when U0 is very large but
finite. (Quantify this condition.)97

Problem 2.25. Calculate the whole transfer matrix of the rectangular potential
barrier, specified by Eq. (2.68), for particle energies both below and above U0.

Problem 2.26. Use results of the previous problem to calculate the transfer matrix of
one period of the periodic Kronig-Penney potential shown in figure 2.31b.

97 In applications to electrons in solid-state crystals, the delta-functional potential wells model the attractive
potentials of atomic nuclei, while U0 represents the workfunction, i.e. the energy necessary for the extraction of
an electron from the crystal to the free space—see, e.g. section 1.1(ii), and also Part EM section 2.6 and Part SM
section 6.3.
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Problem 2.27. Using the results of the previous problem, derive the characteristic
equations for a particle’s motion in the periodic Kronig–Penney potential, for both
E < U0 and E > U0. Try to bring the equations to a form similar to that obtained in
section 2.5 for the delta-functional barriers—see Eq. (2.198). Use the equations to
formulate the conditions of applicability of the tight-binding and weak-potential
approximations, in terms of the system’s parameters, and the particle’s energy E.

Problem 2.28. For the Kronig–Penney potential, use the tight-binding approxima-
tion to calculate the widths of the allowed energy bands. Compare the results with
those of the previous problem (in the corresponding limit).

Problem 2.29. For the same Kronig–Penney potential, use the weak-potential limit
formulas to calculate the energy gap widths. Again, compare the results with those
of problem 27, in the corresponding limit.

Problem 2.30. 1D periodic chains of atoms may exhibit what is called the Peierls
instability, leading to the Peierls transition to a phase in which atoms are slightly
displaced by Δxj = (−1)jΔx, with Δx ≪ a, where j is the atom’s number in the chain,
and a is its initial period. These displacements lead to the alternation of the coupling
amplitudes δn (see Eq. (2.204)) between some values δn

+ and δn
−. Use the tight-

binding approximation to calculate the resulting change of the nth energy band, and
discuss the result.

Problem 2.31.* Use Eqs. (1.73) and (1.74) of the lecture notes to derive Eq. (2.252),
and discuss the relation between these Bloch oscillations and the Josephson
oscillations of frequency (1.75).

Problem 2.32. A 1D particle of mass m is placed into the following triangular
potential well:

⎧⎨⎩= + ∞ <
>

>U x
x

Fx x
F( )

, for 0,
, for 0,

with 0.

(i) Calculate its energy spectrum using the WKB approximation.
(ii) Estimate the ground state energy using the variational method, with two

different trial functions.
(iii) Calculate the three lowest energy levels, and also for the 10th level, with at least

0.1% accuracy, from the exact solution of the problem.
(iv) Compare and discuss the results.

Hint: The values of the first zeros of the Airy function, necessary for task (iii), may
be found in many math handbooks, for example, in table 10.13 of the collection
edited by Abramowitz and Stegun—see section A.16(i).
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Problem 2.33. Use the variational method to estimate the ground state energy Eg of
a particle in the following potential well:

α α= − − > >U x U x U( ) exp { }, with 0, and 0.0
2

0

Spell out the results in the limits of small and large U0, and give their interpretation.

Problem 2.34. For a 1D particle of mass m, placed into a potential well with the
following profile,

= > >U x ax a s( ) , with 0, and 0,s2

(i) calculate its energy spectrum using the WKB approximation, and
(ii) estimate the ground state energy using the variational method.

Compare the ground state energy results for the parameter s equal to 1, 2, 3, and
100.

Problem 2.35. Use the variational method to estimate the 1st excited state of the 1D
harmonic oscillator.

Problem 2.36. Assuming the quantum effects to be small, calculate the lower part of
the energy spectrum of the following system: a small bead of mass m, free to move
without friction along a ring of radius R, which is rotated about its vertical diameter
with a constant angular velocity ω—see figure below98. Formulate a quantitative
condition of validity of your results.

Problem 2.37. A 1D harmonic oscillator, with mass m and frequency ω0, had been
in its ground state; then an additional force F was suddenly applied, and then
retained constant in time. Calculate the probability of the oscillator staying in its
ground state.

Problem 2.38. A 1D particle of mass m has been placed into a quadratic potential
well (2.111),

98 This system was used as the analytical mechanics ‘testbed problem’ in Part CM of this series, and the reader
is welcome to use any relations derived there—but remember that they pertain to the classical mechanics
domain!
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ω
=U x

m x
( )

2
,0

2 2

and allowed to relax into the ground state. At t = 0, the well was fast accelerated to
move with velocity v, without changing its profile, so that at t ⩾ 0 the above formula
for U is valid with the replacement x → x′ ≡ x—vt. Calculate the probability for the
system to still be in the ground state at t > 0.

Problem 2.39. A 1D harmonic oscillator had initially been in its ground state. At a
certain moment of time, its spring constant κ is abruptly increased, so that its
frequency ω0 = (κ/m)1/2 is increased by a factor of α, and then is kept constant at the
new value. Calculate the probability that after the change, the oscillator is still in its
ground state.

Problem 2.40. A 1D particle is placed into the following potential well:

⎧⎨⎩ ω
=

+ ∞ <
⩾

U x
x

m x x
( )

, for 0,

/2, for 0.0
2 2

(i) Find its eigenfunctions and eigenenergies.
(ii) This system had been let to relax into its ground state, and then the potential

wall at x < 0 was rapidly removed, so that the system was instantly turned into
the usual harmonic oscillator (with the same m and ω0). Find the probability for
the oscillator to be in its ground state.

Problem 2.41. Prove the following formula for the propagator of the 1D harmonic
oscillator:

⎛
⎝⎜

⎞
⎠⎟

⎧⎨⎩
⎡⎣ ⎤⎦

⎫⎬⎭

ω
π ω

ω
ω

ω

=
ℏ −

×
ℏ −

+ − −( )

G x t x t
m

i t t

im

t t
x x t t xx

( , ; , )
2 sin[ ( )]

exp
2 sin[ ( )]

cos[ ( )] 2 .

0 0
0

0 0

1/2

0

0 0

2
0
2

0 0 0

Discuss the relation between this formula and the propagator of a free 1D particle.

Problem 2.42. In the context of the Sturm oscillation theorem mentioned in section
2.9, prove that the number of eigenfunction zeros of a particle confined in an
arbitrary but finite potential well, always increases with the corresponding
eigenenergy.

Hint: You may like to use the suitably modified Eq. (2.186).

Problem 2.43.* Use the WKB approximation to calculate the lifetime of the
metastable ground state of a 1D particle of mass m in the ‘pocket’ of the potential
profile
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ω
α= −U x

m
x x( )

2
.0

2
2 3

Contemplate the significance of this problem.
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Chapter 3

Higher dimensionality effects

The extension of the description of the basic quantum-mechanical effects, discussed in
the previous chapter, to multi-dimensional systems is mostly straightforward. As
a result, this chapter is focused on the phenomena (such as the AB effect and the
Landau levels) that cannot take place in one dimension due to topological reasons, and
also on a few key 3D problems (such as the Born approximation in the scattering
theory, and the axially- and spherically-symmetric systems) whose solutions are
important for numerous applications.

3.1 Quantum interference and the AB effect
In the past two chapters, we have already discussed some effects of the de Broglie
wave interference. For example, the standing waves inside a potential well, or even
on the top of a potential barrier, may be considered as a result of the constructive
interference of the incident and reflected waves. However, there are some remark-
able new effects made possible by the spatial separation of such waves, and such
separation requires a higher (either 2D or 3D) dimensionality. A good example of
wave separation is provided by the Young-type experiment (figure 3.1) in which
particles, emitted by the same source, are passed through two narrow holes (or slits)
is an otherwise opaque partition.

If the particles do not interact (which is always true if the emission rate is
sufficiently low), the average rate of particle counting by the detector is proportional
to the probability density w(r, t) = Ψ(r, t) Ψ*(r, t) to find a single particle at the
detector’s location r, where Ψ(r, t) is the solution of the single-particle Schrödinger
equation (1.25) for the system. Let us describe this experiment for the case when the
incident particles may be represented by virtually-monochromatic waves of energy E
(e.g. very r-long wave packets), so that their wavefunction may be taken in the form
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given by Eqs. (1.57) and (1.62): Ψ(r, t) = ψ(r)exp{−iEt/ℏ}. In this case, in the
free-space parts of the system, whereU(r) = 0, ψ(r) satisfies the stationary Schrödinger
equation (1.78a):

ψ ψ− ℏ ∇ =
m

E a
2

. (3.1 )
2

2

With the standard definition k ≡ (2mE)1/2/ℏ, it may be rewritten as the 3DHelmholtz
equation:

ψ ψ∇ + =k b0. (3.1 )2 2

The opaque parts of the partition may be well described as classically forbidden
regions, so if their size scale a is much larger than the wavefunction penetration
depth δ, described by Eq. (2.59), we may use on their surface S the same boundary
conditions as for the well’s walls of infinite height:

ψ = 0. (3.2)S

Eqs. (3.1) and (3.2) describe the standard boundary problem of the theory of
propagation of scalar waves of any nature. For an arbitrary geometry, this problem
does not have a simple analytical solution. However, for a conceptual discussion of
the wave interference we may use certain natural assumptions that will allow us to
find its particular, approximate solution.

First, let us discuss the wave emission, into free space, by a small-size, isotropic
source located at the origin. Naturally, the emitted wave should be spherically-
symmetric: ψ(r) = ψ(r). Using the well-known expression for the Laplace operator in
spherical coordinates1, we may reduce Eq. (3.1) to the following ordinary differential
equation:

ψ ψ+ =
r

d
dr

r
d
dr

k
1

0. (3.3)
2

2 2
⎛
⎝⎜

⎞
⎠⎟

Figure 3.1. The scheme of the ‘two-slit’ (Young-type) interference experiment.

1 See, e.g. Eq. (A.61).
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Let us introduce a new function, f(r) ≡ rψ(r). Plugging the reciprocal relation ψ = f/r
into Eq. (3.3), we see that it is reduced to the 1D wave equation,

+ =d f
dr

k f 0, (3.4)
2

2
2

whose solutions were discussed in detail in section 2.2. For a fixed k, the general
solution of Eq. (3.4) is

= ++ −
−f f e f e (3.5)ikr ikr

so that the full wavefunction

ψ

ω

= + Ψ = +

≡
ℏ
= ℏ

ω ω+ − − + − − − +f

r
e

f
r

e t
f

r
e

f
r

e

E k
m

r r( ) , i.e. ( , ) ,

with
2

.
(3.6)

ikr ikr i kr t i kr t( ) ( )

2

If the source is located at point r′ ≠ 0, the obvious generalization of Eq. (3.6)

Ψ = + ≡ ≡ − ′ω ω+ − − − +t
f

R
e

f
R

e Rr R R r r( , ) , with , . (3.7)i kR t i kR t( ) ( )

The first term of this solution describes a spherically-symmetric wave propagating
from the source outward, and the second one, a wave converging onto the source
point r′ from large distances. Though the latter solution is possible in some very
special circumstances (say, when the outgoing wave is reflected back from a
spherical shell), for our problem only the outgoing waves are relevant, so that we
may keep only the first term (proportional to f+) in Eq. (3.7). Note that the factor R
in the denominator (that was absent in the 1D geometry) has a simple physical sense:
it provides the independence of the full probability current I = 4πR2j(R), with j(R)∝
kΨΨ* ∝ 1/R2, of the distance R between the observation point and the source.

Now let us assume that the partition’s geometry is not too complicated—for
example, it is planar as shown in figure 3.1, or nearly-planar, and consider the region
of the particle detector location far behind the partition (at z ≫ 1/k), and at a
relatively small angle to it: ∣x∣ ≪ z. Then it should be physically clear that the
spherical waves (3.7) emitted by each point inside the slit cannot be perturbed too
much by the opaque parts of the partition, and their only role is the restriction of the
set of such emitting points by the area of the slits. Hence, an approximate solution of
the boundary problem is given by the following Huygens principle: the wave behind
the partition looks as if it was the sum of contributions (3.7) of point sources located
in the slits, with each source’s strength f+ proportional to the amplitude of the wave
arriving at this pseudo-source from the real source—see figure 3.1. This principle
finds its confirmation in the strict wave theory, which shows2 that with our

2For a proof of Eq. (3.8), see, e.g. Part EM section 8.5.
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assumptions, the solution of the boundary problem (3.1)–(3.2) may be represented as
the following Kirchhoff integral:

∫ψ ψ
π

= ′ ′ =c
R

e d r c
k

i
r

r
( )

( )
, with

2
. (3.8)ikR

slits

2

If the source is also far from the partition, its wave front is almost parallel to the
slit plane, and if the slits are not too broad, we can take ψ(r′) constant (ψ1,2) at each
slit, so that Eq. (3.8) is reduced to

ψ ψ= ″ ″ + ″ ″ ″ =
″

a ikl a ikl a
cA

l
r( ) exp{ } exp{ }, with , (3.9)1 1 2 2 1,2

1,2

1,2
1,2

where A1,2 are the slit areas, and l″1,2 are the distances from the slits to the detector.
The wavefunctions on the slits be calculated approximately3 by applying the same
Eq. (3.7) to the space before the slits: ψ1,2 ≈ ( f+/l′1,2)exp{ikl′1,2}, where l′1,2 are the
distances from source to the slits—see figure 3.1. As a result, Eq. (3.9) may be
rewritten as

ψ = + ≡ ′ + ′′

≡
′ ″
+

a ikl a ikl l l l

a
c f A

l l

r( ) exp{ } exp{ }, with ;

.
(3.10)

1 1 2 2 1,2 1,2 1,2

1,2
1,2

1,2 1,2

(As figure 3.1 shows, each of l1,2 is the full length of the classical path of the particle
from the source, through the corresponding slit, and further to the observation
point r.)

According to Eq. (3.10), the resulting rate of particle counting at point r is
proportional to

ψ ψ φ= = + +*w a a a ar r r( ) ( ) ( ) 2 cos , (3.11)1
2

2
2

1 2 12

where

φ ≡ −k l l( ) (3.12)12 2 1

is the difference of the total wave phase accumulations along each of two alternative
trajectories. The last expression may be evidently generalized as

∮φ = ⋅ dk r, (3.13)
C

12

with integration along the virtually closed contour C (see the dashed line in figure 3.1),
i.e. from the point 1, in the positive (i.e. counterclockwise) direction to the point 2.

3A possible (and reasonable) concern about the application of Eq. (3.7) to the field in the slits is that it ignores
the effect of opaque parts of the partition. However, as we know from chapter 2, the main role of the classically
forbidden region is providing the reflection of the incident wave toward its source (i.e. to the left in figure 3.1).
As a result, the contribution of this reflection to the field inside the slits is insignificant if A1,2 ≫ λ2, and even in
the opposite case provides just some rescaling of the amplitudes a1,2, which is unimportant for our conceptual
discussion.
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(From our discussion of the 1D WKB approximation, we may expect such general-
ization to be valid even if k changes, sufficiently slowly, along the paths.)

Our result (3.11) shows that the counting rate oscillates as a function of the
difference (l2 − l1), which in turn changes with the detector’s position, giving the
famous interference pattern, with the amplitude proportional to the product ∣a1a2∣,
and hence vanishing if any of the slits is closed. For a wave theory, this is a well-
known result4, but for particle physics, it was (and still is :-) rather shocking. Indeed,
our analysis is also valid for a very low particle emission/detection rate, so that there
is no way to interpret the pattern other than resulting from a particle’s interference
with itself, or rather the interference of its de Broglie waves passing through each of
two slits5. Nowadays, such interference is reliably observed not only for electrons,
but for such heavy particles as atoms and molecules; moreover, atomic interfer-
ometers are used as ultra-sensitive instruments for measurements of the gravity field,
rotation velocity, and tilt6.

Let us now discuss a very interesting effect of magnetic field on the quantum
interference. In order to make the discussion simpler, let us consider a slightly
different version of the two-slit experiment, in which each of the two alternative
paths is constricted to a narrow channel using a partial confinement—see figure 3.2.
(In this arrangement, moving the particle detector without changing channels’
geometry, and hence local values of k may be more problematic experimentally, so
let us think about its position r as fixed.) In this case, because of the effect of the
walls providing the path confinement, we cannot use Eqs. (3.10) for the amplitudes
a1,2. However, from the discussions in sections 1.6 and 2.2, it should be clear that the
first of the expressions (3.10) remains valid, though maybe with a value of k specific
for each channel.

In this geometry, we can now apply some local magnetic field BB, say normal to
the plane of particle motion, whose lines would pierce, but not touch the contour

Figure 3.2. The AB effect.

4 See, e.g. a detailed discussion in Part EM section 8.4.
5Here I have to mention the fascinating experiments (first performed in 1987 by C Hong et al with photons,
and recently, in 2015, by R Lopes et al, with non-relativistic particles—helium atoms) on the interference of de
Broglie waves of independent but identical particles, in the same internal quantum state and virtually the same
values of E and k. These experiments raise the important issue of the particle indistinguishability, which will be
discussed in section 8.1.
6 See, e.g. the review paper [1].
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C drawn along the particle propagation channels—see the dashed line in figure 3.2.
In classical electrodynamics7, the external magnetic field’s effect on a particle with
electric charge q is described by the Lorentz force

= ×qF v , (3.14)BBB

where BB is the field value at the point of its particle’s location, so that for the
experiment shown in figure 3.2, =F 0B , and the field would not affect the particle
motion at all. In quantum mechanics, this is not so, and the field does affect the
probability density w, even if = 0BB at all points where the wavefunction ψ(r) is not
equal to zero.

In order to describe this surprising effect, let us first develop a general framework
for account of effects of electromagnetic fields on a quantum particle, which will also
give us some important by-product results. In order to do that, we need to calculate
the Hamiltonian operator of a charged particle in the field. For an electrostatic field,
this task is easy. Indeed, from classical electrodynamics we know that this field may
be represented as a gradient of its electrostatic potential ϕ,

ϕ∇= − r( ), (3.15)EE

so that the force exerted by the field on a particle with electric charge q,

= qF , (3.16)E EE

may be described by adding the field-induced potential energy,

ϕ=U qr r( ) ( ), (3.17)

to other (possible) components of the full potential energy of the particle. As was
already discussed in section 4.1, such a potential energy may be included into the
particle’s Hamiltonian operator just by adding it to the kinetic energy operator—see
Eq. (1.41).

However, the magnetic field’s effect is peculiar: since its Lorentz force (3.14)
cannot do any work on a classical particle:

≡ ⋅ = ⋅ = × ⋅ =d d dt q dtF r F v v v( ) 0, (3.18)WW BBB B B

the field cannot be represented by any potential energy, so it may not be immediately
clear how to account for it in the Hamiltonian. The crucial help comes from the
analytical-mechanics approach to classical electrodynamics8: in the non-relativistic
limit, the Hamiltonian function of a particle in electromagnetic field looks super-
ficially like that in the electric field only:

ϕ= + = +H
m

U
p
m

q
2 2

; (3.19)
2 2v

however, the momentum p ≡ mv that participates in this expression is now the
difference

7 See, e.g. Part EM section 5.1. Note that Eq. (3.14), as well as all other formulas of this course, are in SI units.
8 See, e.g. Part EM section 9.7, in particular Eq. (9.196).
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= − qp P A. (3.20)

Here A is the vector-potential, defined by the well-known relations for the electric
and magnetic field9:

ϕ∇ ∇= − − ∂
∂

= ×
t
A

A, , (3.21)EE BB

while P is the canonical momentum whose Cartesian components may be calculated
(in classics) from the Lagrangian function L using the standard formula of analytical
mechanics,

≡ ∂
∂

P
L

. (3.22)j
jv

To emphasize the difference between the two momenta, p = mv is frequently
called the kinematic momentum (or ‘mv-momentum’). The distinction between p and
P = p + qA becomes more clear if we notice that the vector-potential is not gauge-
invariant: according to the second of Eqs. (3.21), at the so-called gauge transformation

χ∇→ +A A , (3.23)

with an arbitrary single-valued scalar gauge function χ = χ(r, t), the magnetic field
does not change. Moreover, according to the first of Eqs. (3.21), if we make the
simultaneous replacement

ϕ ϕ χ→ − ∂
∂t

, (3.24)

the gauge transformation does not affect the electric field either. With that, the gauge
function’s choice does not affect the classical particle’s equation of motion, and
hence the velocity v and momentum p. Hence, the kinematic momentum is gauge-
invariant, while P is not, because according to Eqs. (3.20) and (3.23), the
introduction of χ changes it by q∇χ.

Now the standard way of transfer to the quantum mechanics is to treat the
canonical rather than kinematic momentum according to the correspondence
postulate discussed in section 1.2. This means that in the wave mechanics, the
operator of this variable is still given by Eq. (1.26):10

ˆ ∇= − ℏiP . (3.25)

Hence the Hamiltonian operator corresponding to the classical function (3.19) is

ϕ ϕ∇ ∇ˆ = − ℏ − + ≡ − ℏ −
ℏ

+H
m

i q q
m

iq
qA A

1
2

( )
2

, (3.26)2
2 2

⎜ ⎟⎛
⎝

⎞
⎠

9 See, e.g. Part EM section 6.1, in particular Eqs. (6.7).
10 The validity of this choice is clear from the fact that if the kinetic momentum was described by this
differential operator, the Hamiltonian operator corresponding to the classical Hamiltonian function (3.19),
and the corresponding Schrödinger equation would not describe the magnetic field effects at all.
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so that the stationary Schrödinger equation (1.60) of a particle moving in an
electromagnetic field (but otherwise free) is

ψ ϕψ ψ∇− ℏ −
ℏ

+ =
m

iq
q EA

2
, (3.27)

2 2
⎜ ⎟⎛
⎝

⎞
⎠

We may now repeat all the calculations of section 1.4 for the case A ≠ 0, and
readily get the following generalized expression for the probability current density:

ψ ψ ψ ψ ψ φ∇ ˆ ∇= ℏ −
ℏ

− ≡ − ≡ ℏ −
ℏ

* *
im

iq
m m

q
j A p A

2
c.c

1
2

[ c.c] . (3.28)2⎜ ⎟ ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝

⎞
⎠

We see that the current density is gauge-invariant (as required for any observable)
only if the wavefunction’s phase φ changes as

φ φ χ→ +
ℏ
q

. (3.29)

This may be a point of conceptual concern: since the quantum interference is
described by the spatial dependence of phase φ, can the observed interference
pattern depend on the gauge function’s choice (which would not make sense)?
Fortunately, this is not true, because the spatial phase difference between two
interfering paths, participating in Eq. (3.12), is gauge-transformed as

φ φ χ χ→ +
ℏ

−q
( ). (3.30)12 12 2 1

But χ has to be a single-valued function of coordinates, hence in the limit when the
points 1 and 2 coincide, χ1 = χ2, so that Δφ, and hence the interference pattern are
gauge-invariant.

However, the difference φ may be affected by the magnetic field, even if it is
localized outside the channels in which the particle propagates. Indeed, in this case the
field cannot not affect the particle’s velocity v and the probability current density j:

∣ = ∣≠ =j r j r( ) ( ) , (3.31)0 0B B

so that the last form of Eq. (3.28) yields

φ φ∇ ∇∣ = ∣ +
ℏ≠ =
q

r r A( ) ( ) . (3.32)0 0B B

Integrating this equation along the contour C (figure 3.2), for the phase difference
between points 1 and 2 we get

∮φ φ∣ = ∣ +
ℏ

⋅≠ =
q

dA r, (3.33)
C

12 0 12 0B B

where the integral should be taken along the same contour C as before (in figure 3.2,
from point 1, counterclockwise along the dashed line to point 2). But from the
classical electrodynamics we know11 that as the points 1 and 2 tend to each other, i.e.

11 See, e.g. Part EM section 5.3.
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the contour C becomes closed, the last integral is just the magnetic flux
∫Φ ≡ d rn

2B through any smooth surface limited by the contour, so that
Eq. (3.33) may be rewritten as

φ φ∣ = ∣ +
ℏ
Φ≠ =

q
a. (3.34 )12 0 12 0B B

In terms of the interference pattern, this means a shift of interference fringes,
proportional to the magnetic flux (figure 3.3). This phenomenon is usually called the
‘Aharonov–Bohm’ (or just the AB) effect12. For particles with a single elementary
charge, q = ±e, this result is frequently represented as

φ φ π∣ = ∣ ± Φ
Φ ′≠ = b2 , (3.34 )12 0 12 0

0
B B

where the fundamental constant Φ0′ ≡ 2πℏ/e ≈ 4.14 × 10−15 Wb has the meaning of
the magnetic flux necessary to change φ12 by 2π, i.e. to shift the interference pattern
(3.11) by one period, and is called the normal magnetic flux quantum—‘normal’
because of the reasons we will soon discuss.

The AB effect may be ‘almost explained’ classically, in terms of Faraday’s
electromagnetic induction. Indeed, a change ΔΦ of magnetic flux in time causes a
vortex-like electric field ΔEE around it. That field is not restricted to the magnetic
field’s location, i.e. may reach the particle’s trajectories. The field’s magnitude (or
rather of its integral along the contour C) may be readily calculated by integration of
the first of Eqs. (3.21):

Figure 3.3. Typical results of a two-paths interference experiment by A Tonomura et al [2], showing the AB
effect for electrons well shielded from the applied magnetic field. In this particular experimental geometry, the
AB effect produces a relative shift of the interference patterns inside and outside the dark ring. (a) Φ = Φ0′/2,
(b) Φ = Φ0′. Copyright 1986 by the American Physical Society.

12 I prefer the latter, less personable name, because the effect had been actually predicted by W Ehrenberg and
R Siday in 1949, before it was rediscovered (also theoretically) by Y Aharonov and D Bohm in 1959. To be fair
to Aharonov and Bohm, it was their work that triggered a wave of interest to the phenomenon, resulting in its
first experimental observation by R Chambers in 1960 and several other groups soon after that. Later, the
experiments were improved, using ferromagnetic cores and/or superconducting shielding to provide better
separation between the electron trajectories and the applied magnetic field—as in the work whose results are
shown in figure 3.3.
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∮Δ ≡ Δ ⋅ = − Φ
V d

d
dt

r , (3.35)
C

EE

I hope that in this expression the reader readily recognizes the integral (‘under-
graduate’) form of Faraday’s induction law13. Now let us assume that the variable
separation described in section 1.5 may be applied to the end points 1 and 2 of a
particle’s alternative trajectories as two independent systems14, and that the
magnetic flux’ change by certain amount ΔΦ does not change the spatial parts ψj
of wavefunctions of these systems. Then the change (3.35) leads to the change of the
potential energy difference ΔU = qΔV between the two points, and repeating the
arguments that were used in section 1.6 at the discussion of the Josephson effect, we
may rewrite Eq. (1.72) as

φ
= −Δ

ℏ
= −

ℏ
Δ =

ℏ
Φd

dt
U q

V
q d

dt
. (3.36)12

Integrating this relation over the time of magnetic field’s change, we get

φΔ =
ℏ
ΔΦq

, (3.37)12

—superficially, the same result as given by Eq. (3.34).
However, this interpretation of the AB effect is limited. Indeed, it requires the

particle to be in the system (on the way from the source to the detector) during the
flux change, i.e. when the induced electric field E may affect its dynamics.
Conversely, Eq. (3.34) predicts that the interference pattern would shift even if the
field change has been made when there was no particle in the system, and hence field
E could not be felt by it. Experiment confirms the latter conclusion. Hence, there is
something in the space where a particle propagates (i.e. outside of the magnetic field
region), which transfers the information about even the static magnetic field to the
particle. The standard interpretation of this surprising fact is as follows: the vector-
potential A is not just a convenient mathematical tool, but a physical reality (just as
its electric counterpart ϕ), despite the large freedom of choice we have in prescribing
specific spatial and temporal dependences of these potentials without affecting any
observable—see Eqs. (3.23) and (3.24).

To conclude this section, let me briefly discuss the very interesting form taken by
the AB effect in superconductivity. In this case, our results require two changes. The
first one is simple: since superconductivity may be interpreted as the Bose–Einstein
condensate of Cooper pairs with electric charge q = −2e, Φ0′ has to be replaced by
the so-called superconducting flux quantum15.

13 See, e.g. Part EM section 6.1.
14 This assumption may seem a little bit of a stretch, but the resulting relation (3.37) may be indeed proven for a
rather realistic model, though that would take more time and space that I can afford.
15One more bad, but common term: a metallic wire can (super)conduct, but a quantum hardly can!
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πΦ ≡ ℏ ≈ × = × ⋅− −

e
2.07 10 Wb 2.07 10 Gs cm . (3.38)0

15 7 2

Second, since the pairs are Bose particles and are all condensed in the same
quantum state, described by the same wavefunction, the total electric current
density, proportional to the probability current density j, may be extremely
large—in real superconducting materials, up to ∼1012 A m−2. In these conditions,
one cannot neglect the contribution of that current into the magnetic field and hence
into its flux Φ, which (according to the Lenz rule of the Faraday induction law) tries
to compensate the changes in external flux. In order to see possible results of this
contribution, let us consider a closed superconducting loop (figure 3.4). Due to the
Meissner effect (which is just another version of the flux’ self-compensation), the
current and magnetic field penetrate into a superconductor by only a small distance
(called the London penetration depth) δL ∼ 10−7 m.16 If the loop is made of a
superconducting ‘wire’ that is considerably thicker than δL, we can draw a contour
deep inside the wire, at which the current density is negligible. According to Eq.
(3.28), everywhere at the contour,

φ∇ −
ℏ
=q

A 0. (3.39)

Integrating this equation along the contour as before (in figure 3.4, from some point 1
to the virtually coinciding point 2), we need to have the phase difference φ12 equal to
2πn, because the wavefunction ψ ∝ exp{iφ} in the initial and final points 1 and 2
should be ‘essentially’ the same, i.e. produce the same observables. As a result, we get

∮ πΦ ≡ ⋅ = ℏ ≡ Φd
q

n nA r 2 . (3.40)
C

0

This is the famous flux quantization effect17, which justifies the term ‘magnetic flux
quantum’ for the constant Φ0 given by Eq. (3.38).

Unfortunately, in this course I have no space/time here to discuss very interesting
effects of ‘partial flux quantization’, that arise when a superconductor loop is closed

Figure 3.4. The magnetic flux quantization in a superconducting loop (schematically).

16 For more detail, see Part EM section 6.4.
17 It was predicted in 1949 by F London and experimentally discovered (independently and virtually
simultaneously) in 1961 by two experimental groups: B Deaver and W Fairbank, and R Doll and M Näbauer.
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by a Josephson junction, forming the so-called Superconductor QUantum
Interference Device—‘SQUID’. Such devices are used, in particular, for super-
sensitive magnetometry and ultrafast, low-power computing18.

3.2 Landau levels and quantum Hall effect
In the last section, we have used the Schrödinger equation (3.27) for an analysis of
static magnetic field effects in ‘almost-1D’, circular geometries shown in figures 3.1,
3.2, and 3.4. However, this equation describes very interesting effects in fully-higher-
dimensions as well, especially in the 2D case. Let us consider a quantum particle free
moving in the [x, y] plane only (say, due do its strong confinement in the
perpendicular direction z—see the discussion in section 1.8). Taking the confinement
energy for the reference, we may reduce Eq. (3.27) to the similar equation, but with
the Laplace operator acting only in the directions x and y:

ψ ψ− ℏ ∂
∂
+ ∂

∂
−
ℏ

=
m x y

i
q

En n A
2

. (3.41)x y

2 2⎛
⎝⎜

⎞
⎠⎟

Let us find its solutions for the simplest case when the applied static magnetic field
is uniform and perpendicular to the motion plane:

= n . (3.42)zBBB

According to the second of Eq. (3.21), this relation imposes the following restriction
on the choice of vector-potential:

=
∂
∂
− ∂
∂

A

x
A
y

, (3.43)
y xB

but the gauge transformations still give us a lot of freedom in its choice. The
‘natural’ axially-symmetric form, ρ= φnA /2B , where ρ = (x2 + y2)1/2 is the distance
from some z-axis, leads to cumbersome math. In 1930, L Landau realized that the
energy spectrum of Eq. (3.41) may be obtained by making a much simpler, though
counter-intuitive choice:

= = −A A x x0, ( ), (3.44)x y 0B

(with arbitrary x0), which evidently satisfies Eq. (3.43), though ignores the physical
equivalence of the x and y directions.

Now, expanding the eigenfunction into the Fourier integral in the y-direction:

∫ψ = −{ }x y X x ik y y dk( , ) ( )exp ( ) , (3.45)k 0

18A brief review of these effects, and recommendations for further reading may be found in Part EM section
6.5.
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we see that for each component of this integral, Eq. (3.41) yields a specific equation

− ℏ + −
ℏ

− =
m

d
dx

i k
q

x x X EXn n
2

( ) . (3.46)x y k k

2

0

2⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥
⎫⎬⎭B

Since the two vectors inside the curly brackets are mutually perpendicular, its square
has no cross-terms, so that Eq. (3.46) reduces to

− ℏ + − ′ = ′ ≡ + ℏ
m

d
dx

X
q
m

x x X EX x x
k

q2 2
( ) , where . (3.47)k k k

2 2

2

2
2

0
2

0 0B
B

But this 1D Schrödinger equation is identical to Eq. (2.261) for a 1D harmonic
oscillator19, with the center at the point x0′, and the frequency ω0 equal to

ω = q
m

. (3.48)c
B

In the last expression, it is easy to recognize the cyclotron frequency of the classical
particle’s rotation in the magnetic field. (It may be readily obtained using the 2nd
Newton law for a circular orbit of radius r,

= ≡m
r

F q , (3.49)
2

BB
v

v

and noting that the resulting ratio = ∣ ∣r q m/ /Bv is just the radius-independent
angular velocity ωc of the particle’s rotation.) Hence, the energy spectrum for each
Fourier component of the expansion (3.45) is the same:

ω= ℏ +E n
1
2

, (3.50)n c
⎛
⎝⎜

⎞
⎠⎟

independent of either x0, or y0, or k.
This is a good example of a highly degenerate system: for each eigenvalue En,

there are many different eigenfunctions that differ by the positions {x0, y0} of their
center on axis x, and the rate k of their phase change along axis y. They may be used
to assemble a large variety of linear combinations, including 2D wave packets whose
centers move along classical circular orbits with some radius r determined by initial
conditions. Note, however, that this radius cannot be smaller than the so-called
Landau radius,

ω
≡ ℏ ≡ ℏ

r
m q

, (3.51)L
c

1/2 1/2⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟B

which characterizes the minimum size of the wave packet, and follows from
Eq. (2.276) after the replacement ω0 → ωc. This radius is remarkably independent

19 This result may become a bit less puzzling if we recall that at the classical circular cyclotron motion of a
particle, each of its Cartesian coordinates, including x, performs sinusoidal oscillations with the frequency
(3.48), just as a 1D harmonic oscillator with this frequency.
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on the particle’s mass, and may be interpreted in the following way: the scale AminB
of the applied magnetic field’s flux through the effective area Amin = 2πrL

2 of the
smallest wave packet is just one normal flux quantum Φ0′ ≡ 2πℏ/∣q∣.

A detailed analysis of such wave packets (for which we would not have time in this
course) shows that the magnetic field does not change the average density dN2/dE of
different 2D states on the energy scale, following from Eq. (1.99), but just ‘assembles’
them on the Landau levels (see figure 3.5a), so that the number of different orbital
states on each Landau level (per unit area) is

π
π ω

π

≡ = ∣ Δ ≡ ∣ Δ

=
ℏ

ℏ ≡
ℏ

≠ =n
N
A A

dN
dE

E
A

dN
d k

d k
dk dE dk

E

A
A

k
k m

q

1 1 1
/

1
(2 )

2
1

/ 2
.

(3.52)

2

L
2 2

0
2

2 0

2

2 c
B

B B

This expression may again be interpreted in terms of magnetic flux quanta:
nLΦ0′ = B , i.e. there is one particular state on each Landau level per each normal
flux quantum.

The most famous application of the Landau levels picture is the explanation of
the quantum Hall effect20. It is usually observed in the ‘Hall bar’ geometry sketched
in figure 3.6, where electric current I is passed through a rectangular conducting
sample placed into magnetic field BB perpendicular to the sample’s plane. The
classical analysis of the effect is based on the notion of the Lorentz force (3.14). As
the magnetic field is turned on, this force starts to divert the effective charge carriers
(electrons or holes) from their straight motion from one external electrode to
another, bending them to the insulated edges of the bar (in figure 3.6, parallel to the
x-axis). Here the carriers accumulate, generating a gradually increasing electric field
E , until its force (3.16) exactly balances the Lorentz force (3.14):

=q q , (3.53)y xE Bv

where xv is the drift velocity of the carriers along the bar (figure 3.6), providing the
sustained balance condition =/y xE Bv at each point of the sample.

Figure 3.5. (a) The ‘condensation’ of 2D states on Landau levels, and (b) filling the levels with electrons at the
quantum Hall effect.

20 It was first observed in 1980 by a group led by K von Klitzing, while the classical limit (3.54) of the effect was
first observed by E Hall in 1879.
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With n2 carriers per unit area, in a sample of width w, this condition yields the
following classical expression for the so-called Hall resistance RH:

≡ = =R
V

I

w

qn w qn
. (3.54)

y

x

y

x
H

2 2

E B

v

This formula is broadly used in practice for the measurement of the 2D density n2 of
the charge carriers, and of the carrier type—electrons with q = −e < 0, or holes with
the effective charge q = +e > 0.

However, in experiments with high-quality (low-defect) 2D well structures, at
very low, sub-kelvin temperatures21 and high magnetic fields, the linear growth of
RH with B , described by Eq. (3.54), is interrupted by virtually horizontal plateaus
(figure 3.7) with constant values

=R
i

R
1

, (3.55)H K

where i (only in this context, following tradition!) is a real integer, and the so-called
Klitzing constant,

π= ℏ ≈ ΩR
e

2
25.812 807 557 k , (3.56)K 2

is reproduced with an extremely high accuracy (up to ∼10−9) from experiment to
experiment and from sample to sample. Such stability is a very rare exception in
solid state physics where most results are noticeably dependent on the particular
material and the particular sample under study.

This effect may be explained using the Landau level picture. The 2D sample is
typically in weak contact with 3D electrodes whose conductivity electrons, at low
temperatures, fill all states with energies below a certain Fermi energy EF—see figure
3.5b. According to Eqs. (3.48) and (3.50), asB is increased, the spacing ℏωc between
the Landau levels increases proportionately, so that fewer and fewer of these levels
are below EF (and hence all their states are filled in equilibrium), and within broad

Figure 3.6. The Hall bar geometry. Darker rectangles show external (3D) electrodes.

21 In some crystals, such as the graphene (virtually perfect 2D sheets of carbon atoms, to be discussed in section
3.4 below), the effect may be more stable to thermal fluctuations, due to their topological properties, so that it
may be observed even at room temperature—see, e.g. [3]. Also note that in some thin ferromagnetic layers, the
quantum Hall effects may be observed in the absence of external magnetic field—see, e.g. the recent
publication [4] and references therein.
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ranges of the field variation, the number i of the filled levels is constant. (In figure
3.5b, i = 2.) So, plugging n2 = inL and q = −e into Eq. (3.54), and using Eq. (3.52) for
nL, we get

π= = ℏ
R

i qn i e
1 1 2

, (3.57)H
L

2

B

i.e. exactly the experimental result (3.55)–(3.56).
Admittedly, this oversimplified explanation of the quantum Hall effect does not

take into account at least two important factors:

(i) the nonuniformity of the background potential U(x, y) in realistic Hall bar
samples, and the role of the quasi-1D edge channels this nonuniformity produces22;
and

(ii) the Coulomb interaction of the electrons, in high-quality samples leading to the
formation ofRH plateaus with not only integer, but also fractional values of i (1/3, 2/5,
3/7, etc)23.

Figure 3.7. A typical record of the integer quantum Hall effect. The lower trace (with sharp peaks) shows the
diagonal component, Vx/Ix, of the resistance tensor. (Adapted from https://www.nobelprize.org/nobel_prizes/
physics/laureates/1998/press.html.)

22 Such quasi-1D regions, with the width of the order of rL, form along the lines were the Landau levels cross
the Fermi surface, and are actually responsible for all the electron transfer at the quantum Hall effect, giving
the most famous example of the so-called topological insulators. The particle motion along these channels is
effectively one-dimensional; because of this, it cannot be affected by modest unintentional nonuniformities of
the potential U(x, y). This fact is responsible for the extraordinary accuracy of Eqs. (3.55)–(3.56).
23 This fractional quantum Hall effect was discovered in 1982 by D Tsui, H Stormer, and A Gossard. In
contrast, the effect described by Eq. (3.55) with an integer i (figure 3.7) is now called the integer quantum Hall
effect.
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Unfortunately, a thorough discussion of these very interesting features is well
beyond the framework of this course24,25.

3.3 Scattering and diffraction
The second class of quantum effects that become more rich in multi-dimensional
spaces is typically referred to as either diffraction or scattering—depending on the
context. In classical physics, these two terms are used to describe very different
effects. The term ‘diffraction’ is used for the interference of the waves re-emitted by
many elementary components of an extended object, under the effect of a single
incident wave. (The term ‘interference’ is typically reserved for the wave re-emission
by a few components, such as two slits in the Young experiment26.)

On the other case, the term ‘scattering’ is used in classical mechanics to
describe the result of the interaction of a beam of incident particles with such an
extended object, called the scatterer27. Figure 3.8 shows the general scattering
situation.

Most commonly, the detector of the scattered particles is located at a large
distance r ≫ a from the scatterer. In this case, the main observable independent of r
is the flux (the number per unit time) of particles scattered in a certain direction, i.e.
their flux per unit solid angle. Since this flux is proportional to the incident flux of
particles per unit area, the efficiency of scattering in a particular direction may be
characterized by the ratio of these two fluxes. This ratio has is called the differential
cross-section of the scatterer:

ki

Figure 3.8. Scattering (schematically).

24 For a comprehensive discussion of these effects I can recommend, e.g. either the monograph [5], or the
review [6]. (See also the later publications cited above.)
25Note also that the quantum Hall effect is sometimes discussed in terms of the so-called Berry phase, one of
the geometric phases—the notion apparently pioneered by S Pancharatnam in 1956. However, in the ‘usual’
quantum Hall effect the Berry phase equals zero, and I believe that this concept should be saved for
topologically more involved systems. Unfortunately, I will have no time/space for a discussion of such systems
in this course, and have to refer the interested reader to special literature—see, e.g. either the key papers
collected by A Shapere and F Wilczek [7], or the monograph by A Bohm [8].
26 See, e.g. the discussion of diffraction and interference of electromagnetic waves in Part EM sections 8.3–8.8.
27 In the context of classical waves, the term ‘scattering’ is typically reserved for wave interaction with
disordered sets of small objects—see, e.g. Part EM section 8.3.
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σ
Ω
≡d

d
flux of scatterd particles per unit solid angle

flux of incident particles per unit area
. (3.58)

Such terminology and notation stem from the fact that the integral of dσ/dΩ over all
scattering angles,

∮σ σ≡
Ω
Ω =d

d
d

total flux of scattered particles
incident flux per per unit area

, (3.59)

evidently having the dimensionality of area, has a simple interpretation as the full
cross-section of scattering. For the simplest case when a solid object scatters all
classical particles hitting its surface, but does not affect the particles flying by it, σ is
just the geometrical cross-section of the scatterer, as visible from the direction of the
incident particles. In classical mechanics, we first calculate the particle’s scattering
angle as a function of its impact parameter b, and then average the result over all
values of b, considered random28.

In quantum mechanics, due to the particle/wave duality, a relatively broad,
parallel beam of incident particles of the same energy E may be fairly represented
with a plane de Broglie wave (1.88):

ψ ψ= ⋅ik rexp{ }, (3.60)i i i

with the free-space wave number ki = k = (2mE)1/2/ℏ. As a result, the particle
scattering becomes a synonym of the de Broglie wave diffraction, and (somewhat
counter-intuitively) the description of the effect becomes simpler, excluding the
notion of the impact parameter. Indeed, the wave (3.60) corresponds to a constant
probability current density (1.49):

ψ= ℏ
m

j k , (3.61)i i
2

i

which is exactly the flux of incident particles per unit area that is used in the
denominator of Eq. (3.58), while the numerator of that fraction may be simply
expressed via the probability current density js of the scattered de Broglie waves:

σ
Ω
= ≫d

d

j r

j
r a, at . (3.62)s

2

i

Hence our task is reduced to the calculation of js at sufficiently large distances
from the scatterer. For that, let us rewrite the stationary Schrödinger equation for
the elastic scattering problem (when the energy E of the scattered particles is the
same as that of the incident particles) in the form

ψ ψ− ˆ = ˆ ≡ − ℏ ∇ = ℏE H U H
m

E
k
m

r( ) ( ) , with
2

, and
2

, (3.63)0 0

2
2

2 2

28 See, e.g. Part CM section 3.5.
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where the potential energy U(r) describes the effect of scatterer. Looking for the
solution of Eq. (3.62) in the natural form

ψ ψ ψ= + , (3.64)i s

where ψi is the incident wave (3.60), and ψs has the sense of the scattered wave, and
taking into account that former wave satisfies the free-space Schrödinger equation

ψ ψˆ =H E , (3.65)0 i i

we may reduce Eq. (3.63) to either of the following equivalent forms:

ψ ψ ψ ψ ψ− ˆ = + ∇ + =
ℏ

E H U k
m

Ur r( ) ( )( ), ( )
2

( ) . (3.66)0 s i s
2 2

s 2

For applications, an integral form of this equation is more convenient. To derive
it, we may look at the second of Eqs. (3.66) as a linear, inhomogeneous differential
equation for the function ψs, thinking of its right-hand side as a known ‘source’. The
solution of such an equation obeys the linear superposition principle, i.e. we may
represent it as the sum of the waves outcoming from all elementary volumes d3r′ of
the scatterer. Mathematically, this sum may be expressed as either

∫ψ ψ=
ℏ

′ ′ ′ ′m
U G d r ar r r r r( )

2
( ) ( ) ( , ) , (3.67 )s 2

3

or, equivalently, as29

∫ψ ψ ψ= +
ℏ

′ ′ ′ ′m
U G d r br r r r r r( ) ( )

2
( ) ( ) ( , ) , (3.67 )i 2

3

where G(r, r′) is the spatial Green’s function, defined as such an elementary,
spherically-symmetric response of the 3D Helmholtz equation to a point source,
i.e. the outward-propagating solution of the following equation30

δ∇ + = − ′k G r r( ) ( ). (3.68)2 2

But we already know such a solution of this equation—see Eq. (3.7) and its
discussion:

′ = ≡ − ′+G
f

R
er r R r r( , ) , where , (3.69)ikR

so that we need just to calculate the coefficient f+ for Eq. (3.68). This can be done in
several ways, for example by noticing that at r ≪ k−1, the second term on the left-

29 This relation is sometimes called the Lipmann–Schwinger equation, though more frequently this term is
reserved for either its operator form, or the resulting equation for the spatial Fourier components of ψ and ψi.
30 Please notice both the similarity and difference between this Green’s function and the propagator discussed
in section 2.1. In both cases, we use the linear superposition principle to solve wave equations, but while
Eq. (3.67) gives the solution of the inhomogeneous equation (3.66), Eq. (2.44) does that for a homogeneous
Schrödinger equation. In the latter case the elementary wave sources are the elementary parts of the initial
wavefunction, rather than of the equation’s right-hand side as in our current problem.
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hand side of Eq. (3.68) is negligible, so that it is reduced to the well-known Poisson
equation with a delta-functional right-hand side, which describes, for example, the
electrostatic potential induced by a point electric charge. Either recalling the
Coulomb law, or applying the Gauss theorem31, we readily get the asymptote

π
→ − ≪G

R
kR

1
4

, at 1, (3.70)

which is compatible with Eq. (3.69) only if f+ = −1/4π, i.e. if

π
′ = −G

R
er r( , )

1
4

. (3.71)ikR

Plugging this result into Eq. (3.67a), we get the following formal solution of
Eq. (3.66):

∫ψ
π

ψ= −
ℏ

′ ′ ′m
U

R
e d rr r

r
( )

2
( )

( )
. (3.72)ikR

s 2
3

Note that if the function U(r) is smooth, the singularity in the denominator is
integrable (i.e. not dangerous); indeed, the contribution of the sphere with some
radius → 0R , with the center in point r′, into this integral scales as

∫ ∫ ∫π π π≡ ≡ = →
<

d R
R

R dR
R

RdR4 4 2 0. (3.73)
R

3

0

2

0

2R
R

R R

So far, our result (3.72) is exact, but its apparent simplicity is deceiving, because
the wavefunction ψ on its right-hand side generally includes not only the incident
wave ψi, but also the scattered wave ψs—see Eq. (3.64). The most straightforward,
and most common simplification of this problem, called the Born approximation32, is
possible if the scattering potential U(r) is in some sense small. (We will derive the
quantitative condition of this smallness in a minute.) Since at U(r) = 0 the scattering
wave ψs has to disappear, at small but non-zero U(r), ∣ψs∣ has to be much smaller
than ∣ψi∣. In this case, on the right-hand side of Eq. (3.73) we may ignore ψs in
comparison with ψi, getting

∫ψ
π

ψ= −
ℏ

′ ⋅ ′ ′m
U

i
R

e d rr r
k r

( )
2

( )
exp{ }

. (3.74)ikR
s 2 i

i 3

Actually, Eq. (3.74) gives us even more than we wanted: it evaluates the scattered
wave at any point, including those within of the scattering object, while in order to

31 See, e.g. Part EM section 1.2.
32Named after M Born, who was the first to apply this approximation in quantum mechanics. However, the
basic idea of this approach had been developed much earlier (in 1881) by Lord Rayleigh in the context of
electromagnetic wave scattering—see, e.g. Part EM section 8.3. Note that the contents of that section repeat
some aspects of our current discussion—perhaps regrettably but unavoidably so, because the Born
approximation is a centerpiece of the theory of scattering/diffraction for both the electromagnetic waves
and the de Broglie waves. Hence I felt I had to cover it in this volume for the benefit of readers who skipped the
EM part of my series.
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spell out Eq. (3.62), we only need to find the wave far from the scatterer, at r → ∞.
However, before going to that limit, we can use this general formula to find the
quantitative criterion of the Born approximation’s validity. For that, let us estimate
the magnitude of the right-hand side of this equation for a scatterer of a linear size
∼a, and the potential magnitude’s scale U0, in the following two limits:

(i) If ka ≪ 1, then inside the scatterer (i.e. at distances r′ ∼ a), both the exp{ik·r′}
and the second exponent under the integral in Eq. (3.74) change little, so that a
crude estimate of the solution’s magnitude is

ψ
π

ψ∼
ℏ

m
U a

2
. (3.75)s 2 i 0

2

(ii) In the opposite limit ka ≫1, the function under the integral is nearly periodic
in one of the spatial directions (that of the wave propagation), so that the integral
accumulates only on distances of the order of the de Broglie wavelength, ∼k−1, and
the integral is correspondingly smaller:

ψ
π

ψ∼
ℏ

m
U

a
ka2

. (3.76)s 2 i 0

2

These relations allow us to spell out the Born approximation condition, ∣ψs∣ ≪
∣ψi∣, as

≪ ℏ
U

ma
kamax[ , 1]. (3.77)0

2

2

In the first factor on the right-hand side, we may readily recognize the scale of the
kinetic (quantum-confinement) energy Ea of the particle inside a potential well of
size ∼ a, so that the Born approximation is valid essentially if the potential energy of
a particle’s interaction with the scatterer is smaller than Ea. Note, however, that the
estimates (3.75) and (3.76) are not valid in some special situations when the effects of
scattering accumulate in some direction. This is frequently the case for small angles θ
of scattering by extended objects (when ka ≫ 1, but kaθ ≾ 1).

Now let us proceed to large distances r ≫ r′ ∼ a, and simplify Eq. (3.74) using an
approximation similar to the dipole expansion in electrodynamics33. Namely, in the
denominator’s R, we can merely ignore r′ in comparison with r, but the exponents
require more care, because even if r′ ∼ a≪ r, the product kr′ ∼ kamay still be larger
than 1. In the first approximation in r′, we can take (figure 3.9a):

≡ − ′ ≈ − ⋅ ′R rr r n r , (3.78)r

and since the directions of the vectors k and r coincide, i.e. k = knr, we get

≈ − ⋅ ′ ≈ − ⋅ ′kR kr e e ek r , and . (3.79)ikR ikr ik r

33 See, e.g. Part EM section 8.2.
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With this replacement, Eq. (3.74) yields

∫ψ
π

ψ
= −

ℏ
′ − − ⋅ ′ ′m

r
e U i d rr r k k r( )

2
( )exp{ ( ) } . (3.80)ikr

s 2
i

i
3

This relation is a particular case of a more general formula34

ψ ψ= f
r

e
k k( , )

, (3.81)ikr
s i

i

where f(k, ki) is called the scattering function35. The physical sense of this function
becomes clear from the calculation of the corresponding probability current density
js. For that, generally we need to use Eq. (1.47) with the gradient operator having all
spherical-coordinate components36. However, at kr ≫ 1, the main contribution to
∇ψs, proportional to k ≫ 1/r, is provided by differentiating the factor eikr, which
changes in the common direction of vectors r and k, so that

ψ ψ ψ∇ ≈ ∂
∂

≈ ≫
r

krn k , at 1, (3.82)rs s s

and Eq. (1.47) yields

θ ψ≈ ℏ
m

f
r

j
k k

k( )
( , )

. (3.83)s i
2 i

2

2

Plugging this expression into Eq. (3.62), for the differential cross-section we get
simply

σ
Ω
=d

d
f k k( , ) , (3.84)i

2

Figure 3.9. (a) The long-range expansion of R, and (b) the definitions of q, χ, and θ.

34 It is easy to prove that this form is an asymptotic form of any solution ψs of the scattering problem (even that
beyond the Born approximation) at sufficiently large distances r ≫ a, k−1.
35Note that the function f has the dimension of length, and does not account for the incident wave. This is why
sometimes a dimensionless function, S = 1 + 2ikf, is used instead. This function S is called the scattering
matrix, because it may be considered a natural generalization of the 1D matrix S defined by Eq. (2.124), to
higher dimensionality.
36 See, e.g. Eq. (A.66).
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while the total cross-section is

∮σ = Ωf dk k( , ) , (3.85)i
2

so that the scattering function f(k, ki) gives us everything we need—and in fact more,
because the function also contains information about the phase of the scattered
wave.

According to Eq. (3.80), in the Born approximation the scattering function is
reduced to the so-called Born integral

∫π
= −

ℏ
− ⋅f

m
U e d rk k r( , )

2
( ) , (3.86)iq r

i 2
3

where for the notation simplicity, r′ is replaced with r, and the following scattering
vector is introduced:

≡ −q k k , (3.87)i

with the length q = 2k sin(θ/2), where θ is the scattering angle between the vectors k
and ki—see figure 3.9b. For the differential cross-section, Eqs. (3.84) and (3.86)
yield37

∫σ
πΩ

=
ℏ

− ⋅d
d

m
U e d rr

2
( ) . (3.88)iq r

2

2
3

2
⎜ ⎟⎛
⎝

⎞
⎠

This is the main result of this section; it may be further simplified for spherically-
symmetric scatterers, with

=U U rr( ) ( ). (3.89)

In this case, it is convenient to represent the exponent in the Born integral as
exp{−iqr cosχ}, where χ is the angle between the vectors k (i.e. the direction nr
toward the detector) and q (rather than the incident wave vector ki!)—see figure
3.9b. Now, for a fixed q, we can take this vector’s direction for the polar axis of a
spherical coordinate system, and reduce Eq. (3.86) to a 1D integral:

∫ ∫ ∫
∫

∫

π
φ χ χ χ

π
π

= −
ℏ

−

= −
ℏ

≡ −
ℏ

π π∞

∞

∞

f
m

r drU r d d iqr

m
r drU r

qr
qr

m
q

U r qr rdr

k k( , )
2

( ) sin exp{ cos }

2
( ) 2

2 sin

2
( ) sin( ) .

(3.90)

i 2 0

2

0

2

0

2 0

2

2 0

37Note that according to Eq. (3.88), in the Born approximation the scattering intensity does not depend on the
sign of the potential U, and also that scattering in a certain direction is completely determined by a specific
Fourier component of the function U(r), namely by its harmonic with the wave vector equal to the scattering
vector q.
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As a simple example, let us use the Born approximation to analyze scattering on
the following spherically-symmetric potential:

= −U U
r
a

r( ) exp
2

. (3.91)0

2

2

⎧⎨⎩
⎫⎬⎭

In this particular case, it is better to avoid temptation to exploit the spherical
symmetry by using Eq. (3.90), and instead use the generic Eq. (3.88), falling into a
product of three similar Cartesian factors:

∫π
= −

ℏ
≡ − +

−∞

+∞
f

mU
I I I I

x
a

iq x dxk k( , )
2
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2
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and similar integrals for Iy and Iz. From chapter 2, we already know that the
Gaussian integrals like Ix may be readily worked out by complementing the
exponent to the full square, in our current case giving

π

σ
π

π

= −

Ω
=

ℏ
=

ℏ
−

I a
q a

d
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Now, the total cross-section σ is an integral of dσ/dΩ over all directions of vector
k. Since in our case the scattering intensity does not depend on the azimuthal angle
φ, the only nontrivial integration is over the scattering angle θ—see figure 3.9b:
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∫
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Let us analyze these results. In the low-energy limit, ka≪ 1 (and hence qa≪ 1 for
any scattering angle), the scattered wave is virtually isotropic: dσ/dΩ ≈ const—a very
typical feature of a scalar-wave scattering38 by small objects, in any approximation.
Note that according to Eq. (3.77), the Born expression for σ, following from
Eq. (3.94) in this limit,

38Note that this is only true for scalar (e.g. de Broglie) waves, and different for vector ones, in particular the
electromagnetic waves, where the intensity of the dipole radiation, and hence the scattering by small objects
vanishes in the direction of the incident field’s polarization—see, e.g. Part EM Eqs. (8.26) and (8.139).
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is only valid if σ is much smaller than the scale a2 of the physical cross-section of the
scatterer. In the opposite, high-energy limit ka ≫1, the scattering is dominated by
small angles θ ≈ q/k ∼ 1/ka ∼ λ/a:

σ π θ
Ω
≈

ℏ
−d

d
a

mU a
k a2 exp{ }. (3.96)2 0
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This is, again, very typical for the diffraction. Note, however, that due to the smooth
character of the Gaussian potential (3.91), the diffraction pattern (3.98) exhibits no
oscillations of dσ/dΩ as a function of the diffraction angle θ.

Such oscillations naturally appear for scatterers with sharp borders. Indeed, let us
consider a uniform spherical scatterer, described by the potential

= <
U

U r R
r( )

, for ,
0, otherwise.

(3.97)0⎧⎨⎩
For this case, an easy integration by parts of Eq. (3.90) yields:
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According to this result, the scattered wave’s intensity drops very fast with q, so that
one needs a semi-log plot (such as shown in figure 3.10) to make visible the

Figure 3.10. The differential cross-section of the Born scattering of a particle by a ‘hard’ (sharp-border) sphere
(3.97), normalized to its geometric cross-section σg ≡ πR2 and the square of the potential’s magnitude
parameter u0 ≡ U0/(ℏ

2/2mR2), as a function of the normalized magnitude of the scattering vector q.
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diffraction fringes39, with the nth destructive interference (zero-intensity) point
tending to qR = π(n + 1/2) at n → ∞. Since, as figure 3.9b shows, q may only change
from 0 to 2k, these intensity minima are only observable at sufficiently large values of
the parameter kR, when they correspond to real values of the scattering angle θ.
(At kR ≫ 1, approximately kR/π of these minima, i.e. ‘dark rings’ of low scattering
probability, are observable.) Conversely, at kR≪ 1 all allowed values of qR are much
smaller than 1, and in this limit, the differential cross-section does not depend on qR,
i.e. the scattering by the sphere (as by any object in this limit) is isotropic.

This example shows that in quantum mechanics the notions of particle scattering
and diffraction are essentially inseparable.

The Born approximation, while being very simple and used more often than any
other scattering theory, is not without substantial shortcomings, as becomes clear
from the following example. It is not too difficult to prove the following general
optical theorem, valid for an arbitrary scatterer:

π
σ=f

k
k kIm ( , )

4
. (3.99)i i

However, Eq. (3.86) shows that in the Born approximation, the function f is purely
real at q = 0 (i.e. for k = ki), and hence cannot satisfy the optical theorem. Even more
evidently, it cannot describe such a simple effect as a dark shadow (ψ ≈ 0) cast by a
virtually opaque object (say, with U ≫ E). There are several ways to improve the
Born approximation, while still sticking to the general idea of an approximate
treatment of U.

(i) Instead of the main assumption ψs ∝ U0, we may use a complete perturbation
series:

ψ ψ ψ= + + … (3.100)s 1 2

with ψn ∝ U0
n, and find successive approximations ψn one by one. In the 1st

approximation we of course return to the Born formula, but already the 2nd
approximation yields

π
σ=f

k
k kIm ( , )

4
, (3.101)2 i i 1

where σ1 is the full cross-section calculated in the 1st approximation, so that the
optical theorem (3.99) is ‘almost’ satisfied.

(ii) As was mentioned above, the Born approximation does not work very well
for the objects elongated along the direction (say, x) of the initial wave vector ki.
This deficiency may be corrected by the so-called eikonal40 approximation, which
replaces the plane-wave representation (3.60) of the incident wave by a WKB-like
exponent, though still in the first nonvanishing approximation in U → 0:

39 Their physics is very similar to that of the Fraunhofer diffraction on a 1D scatterer—see, e.g. Part EM
section 8.4.
40 From the Greek word εικον, meaning ‘image’. In our current context, this term is purely historic.
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This approximation’s results satisfy the optical theorem (3.99) already in the 1st
approximation in U.

Another way toward quantitative results in the theory of scattering, beyond the
Born approximation, may be pursued for spherically-symmetric potentials (3.89); I
will discuss it in section 3.8, after a general discussion of the particle motion in such
potentials in section 3.7.

3.4 Energy bands in higher dimensions
In section 2.7, we have discussed the 1D band theory for potential profiles U(x) that
obey the periodicity condition (2.192). For what follows, let us notice that that
condition may be rewritten as

+ =U x X U x( ) ( ), (3.103)

where X = τa, with τ being an arbitrary integer. One may say that the set of points X
forms a periodic 1D lattice in the direct (r-) space. We have also seen that each Bloch
state (i.e. each eigenstate of the Schrödinger equation for such periodic potential) is
characterized by the quasi-momentum ℏq, and its energy does not change if q is
changed by a multiple of 2π/a. Hence if we form, in the reciprocal (q-) space, a 1D
lattice of points Q = lb, with b ≡ 2π/a and integer l, any pair of points from these two
mutually reciprocal lattices satisfies the following rule:

π τ= ≡ =π τ{ }iQX il
a

a eexp{ } exp
2

1. (3.104)i l2

In this form, the results of section 2.7 may be readily extended to d-dimensional
periodic potentials whose translational symmetry obeys the following natural
generalization of Eq. (3.103):

+ =U Ur R r( ) ( ), (3.105)

where the points R, which may be numbered by d integers τj, form the so-called
Bravais lattice41:

41Named after A Bravais, the crystallographer who introduced this notion in 1850.
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∑τ=
=

R a , (3.106)
j

d

1

j j

with d primitive vectors aj. The simplest example of a 3D Bravais lattice are given by
the simple cubic lattice (figure 3.11a), which may be described by a system of
mutually perpendicular primitive vectors aj of equal length. However, not in any
lattice these vectors are perpendicular; for example figures 3.11b,c show possible
sets of the primitive vectors describing, respectively, the face-centered cubic lattice
(fcc) and the body-centered cubic lattice (bcc). In 3D, the science of crystallography,
based on the group theory, distinguishes, by their symmetry properties, 14 Bravais
lattices grouped into 7 different lattice systems42.

Note, however, not all highly symmetric sets of points form Bravais lattices. As
probably the most striking example, the nodes of a very simple 2D honeycomb lattice
(figure 3.12a)43 cannot be described by a Bravais lattice—while the 2D hexagonal
lattice, shown in figure 3.12b, can. The most prominent 3D case of such a lattice is
the diamond structure (figure 3.12c), which describes, in particular, silicon44. In
cases like these, the band theory is much facilitated by the fact that the Bravais
lattices using some point assemblies (called primitive unit cells) may describe these
point systems45. For example, figure 3.12a shows a possible choice of the primitive
vectors for the honeycomb lattice, with the primitive unit cell formed by any two
adjacent points of the original lattice (say, within the dashed ovals on that panel).

Figure 3.11. The simplest (and most common) 3D Bravais lattices: (a) simple cubic, (b) face-centered cubic
(fcc), and (c) body-centered cubic (bcc), and possible choices of their primitive vector sets (blue arrows).

42A very clear, well illustrated introduction to the Bravais lattices is given in chapters 4 and 7 of the famous
textbook [9].
43 This structure describes, for example, the now-famous graphene—isolated monolayer sheets of carbon atoms
arranged in a honeycomb lattice with the interatomic distance of 0.142 nm.
44 This diamond structure may be best understood as an overlap of two fcc lattices of side a, mutually shifted
by the vector {1, 1, 1} × a/4, so that the distances between each point of the combined lattice and its 4 nearest
neighbors (see the solid gray lines in figure 3.12c) are all equal.
45A harder case is presented by quasicrystals (whose idea may be traced back to medieval Islamic tilings, but
was discovered in natural crystals, by D Shechtman et al, only in 1984), which obey a high (say, five-fold)
rotational symmetry, but cannot be described by a Bravais lattice with any finite primitive unit cell. For a
popular review of quasicrystals see, for example, [10].
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Similarly, the diamond lattice may be described as an fcc Bravais lattice with two-
point primitive unit cell—see figure 3.12c.

Now we are ready for the following generalization of the 1D Bloch theorem,
given by Eqs. (2.193) and (2.210), to higher dimensions: any eigenfunction of the
Schrödinger equation describing particle’s motion in the infinite periodic potential
(3.105) may be represented either as

ψ ψ+ = ⋅er R r( ) ( ) , (3.107)iq R

or as

ψ = + =⋅u e u ur r r R r( ) ( ) , with ( ) ( ), (3.108)iq r

where the quasi-momentum ℏq is again a constant of motion, but now it is a vector.
The key notion of the band theory in d dimensions is the reciprocal lattice in the
wave-vector (q) space, formed as

∑=
=

lQ b , (3.109)
j

d

1

j j

with integer lj, and vectors bj selected in such way that the following natural
generalization of Eq. (3.104) is valid for any pair of points of the direct and
reciprocal lattices:

=⋅e 1. (3.110)iQ R

One way to describe the physical sense of the lattice Q is to say that according to
Eqs. (3.80) and/or (3.86), it gives the set of the vectors k − ki for which the
interference of the waves scattered by all Bravais lattice points is constructive, and
hence strongly enhanced46. Another way to look at the reciprocal lattice follows

Figure 3.12. Some important periodic structures that require two-point primitive cells for their Bravais lattice
presentation: (a) 2D honeycomb lattice and (c) 3D diamond lattice, and their primitive vectors. For a contrast,
panel (b) shows the 2D hexagonal structure which forms a Bravais lattice with a single-point primitive cell.

46 This is why the notion of the Q-lattice is also the main starting point of x-ray diffraction studies of crystals.
Indeed, it allows rewriting the well-known Bragg condition for diffraction peaks in an extremely simple form
k = ki + Q, where ki and k are the wave vectors of the, respectively, incident and diffracted waves—see,
e.g. Part EM section 8.4 (where is was more convenient to use the notation k0 for ki).
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from the first formulation of the Bloch theorem, given by Eq. (3.107): if we add to
the quasi-momentum q of a particle any vector Q of the reciprocal lattice, the
wavefunction does not change. This means, in particular, that all information about
the system’s eigenfunctions is contained in just one elementary cell of the reciprocal
space q. Its most frequent choice, called the 1st Brillouin zone, is the set of all points q
that are closer to the origin than to any other point of the lattice Q. (Evidently, the
1st Brillouin zone in one dimension, discussed in section 2.7, falls under this
definition—see, e.g. figures 2.26 and 2.28.)

It is easy to see that the primitive vectors bj of the reciprocal lattice may be
constructed as

π π π= ×
⋅ ×

= ×
⋅ ×

= ×
⋅ ×

b
a a

a a a
b

a a
a a a

b
a a

a a a
2

( )
, 2

( )
, 2

( )
. (3.111)1

2 3

1 2 3
2

3 1

1 2 3
3

1 2

1 2 3

Indeed, from the ‘operand rotation rule’ of the vector algebra47 it is evident that
aj·bj′ = 2πδjj′. Hence, with the account of Eq. (3.109), the exponent on the left-hand
side of Eq. (3.110) is reduced to

π τ τ τ= + +⋅e i l l lexp{2 ( )}. (3.112)iQ R
1 1 2 2 3 3

Since all lj and τj are integers, the expression in the parentheses is also an integer, so
that the exponent indeed equals 1, thus satisfying the definition of the reciprocal
lattice given by Eq. (3.110).

As the simplest example, let us return to the simple cubic lattice of period a (figure
3.11a), oriented in space so that

= = =a a aa n a n a n, , , (3.113)x y z1 2 3

According to Eq. (3.111), its reciprocal lattice is also cubic:

π= + +( )
a

l l lQ n n n
2

, (3.114)x x y y z z

so that the 1st Brillouin zone is a cube with the side b = 2π/a.
Almost equally simple calculations show that the reciprocal lattice of fcc is bcc,

and vice versa. Figure 3.13 shows the resulting 1st Brillouin zone of the fcc lattice.
The notion of the reciprocal lattice makes the multi-dimensional band theory not

much more complex than that in 1D, especially for numerical calculations, at least
for the single-point Bravais lattices. Indeed, repeating all the steps that have led us to
Eq. (2.215), but now with a d-dimensional Fourier expansion of functions U(r) and
ul(r), we readily get its generalization:

∑ = −
′≠

′− ′U u E E u( ) , (3.115)
l l

l l l l l

47 See, e.g. Eq. (A.48).
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where l is now a d-dimensional vector of the integer indices lj. The summation in
Eq. (3.115) should be carried over all essential components of this vector (i.e. over all
relevant nodes of the reciprocal lattice), so writing a corresponding computer code
requires a bit more care than in 1D. However, this is just a homogeneous system of
linear equations, and numerous routines of finding its eigenvalues E are readily
available from both public sources and commercial software packages.

What is indeed more complex than in 1D is the representation (and hence the
comprehension), of the calculation results and experimental data. Typically, the
representation is limited to plotting the Bloch state eigenenergy as a function of
components of the vector q along certain special directions the reciprocal space of
quasi-momentum (see, e.g. the red lines in figure 3.13), typically plotted on a single
panel. Figure 3.14 shows perhaps the most famous (and certainly the most practi-
cally important) of such plots, the band structure of electrons in silicon. The dashed
horizontal lines mark the so-called indirect gap of the width ∼1.12 eV between the
‘valence’ (nominally occupied) and the next ‘conduction’ (nominally unoccupied)
energy bands.

In order to understand the reason for such complexity, let us see how would we
start to calculate such a picture in the weak-potential approximation, for the
simplest case of a 2D square lattice—which is a subset of the cubic lattice (3.106),
with τ3 = 0. Its 1st Brillouin zone is of course also a square, of the area (2π/a)2. Let us
draw the lines of the constant energy of a free particle (U = 0) in this zone. Repeating
the arguments of section 2.7 (see especially figure 2.28 and its discussion), we
conclude that Eq. (2.216) should be now generalized as follows,

π π
= ℏ = ℏ − + −E

k
m m

q
l

a
q

l

a2 2
2 2
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Figure 3.13. The 1st Brillouin zone of the fcc lattice, and the traditional notation of its main directions.
Adapted from http://en.wikipedia.org/wiki/Band_structure, as a public domain material.
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with all possible integers lx and ly. Considering this result only within the 1st
Brillouin zone, we see that as the particle’s energy E grows, the lines of equal energy,
for the lowest energy band, evolve as shown in figure 3.15. Just like in 1D, the weak-
potential effects are only important at the Brillouin zone boundaries, and may be
crudely considered as the appearance of narrow energy gaps, but one can see that the
band structure in q-space is complex enough even without these effects—and
becomes even more involved at higher E.

Figure 3.14. Band structure of silicon, along the special directions shown in figure 3.13. (Adapted from http://
www.tf.uni-kiel.de/matwis/amat/semi_en/.)

Figure 3.15. The lines of constant energy E of a free particle, within the 1st Brillouin zone of a square Bravais
lattice, for: (a) E/E1 ≈ 0.95, (b) E/E1 ≈ 1.05; and (c) E/E1 ≈ 2.05, where E1 ≡ π2ℏ2/2ma2.
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The tight-binding approximation is usually easier to follow. For example, for the
same square 2D lattice, we may repeat the arguments that have led us to Eq. (2.203),
to write48

δℏ ̇ = − + + +− + + −i a a a a a( ), (3.117)n0,0 1,0 1,0 0, 1 0, 1

where the indices correspond to the deviations of the integers τx and τy from an
arbitrarily selected minimum of the potential energy—and hence of the wave-
function’s ‘hump’, quasi-localized at this minimum. Now, looking for the stationary
solution of these equations, that would obey the Bloch theorem (3.107), instead of
Eq. (2.206) we get

ε
δ
δ

= +
= − + + +
≡ − +

− −
E E

E e e e e
E q a q a

( )
2 (cos cos ).

(3.118)
n n

n n
iq a iq a iq a iq a

n n x y

x x y y

Figure 3.16 shows this result, within the 1st Brillouin zone, in two forms: as the
color-coded lines of equal energy, and as a 3D plot (also enhanced by color). It is
evident that the plots of this function along different lines on the q-plane, for example
along one of axes (say, qx) and along a diagonal of the 1st Brillouin zone (say, with
qx = qy) give different curves E(q), qualitatively similar to those of silicon (figure
3.14). However, the latter structure is further complicated by the fact that the
primitive cell of its Bravais lattice contains more than two atoms—see figure 3.12c
and its discussion. In this case, even the tight-binding picture becomes more complex.
Indeed, even if the atoms at different positions of the primitive unit cell are similar (as
they are, for example, in both graphene and silicon), and hence the potential well
shape near those points and the corresponding local wavefunctions u(r) are similar as

Figure 3.16. The allowed band energy ε n ≡ E − En for a square 2D lattice, in the tight-binding approximation.

48Actually, using the same values of δn in both directions (x and y) implies some sort of symmetry of the quasi-
localized states. For example, the s-states of axially-symmetric potentials (see the next section) always have
such a symmetry.
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well, the Bloch theorem (which only pertains to Bravais lattices!) does not forbid
them to have different complex probability amplitudes a(t) whose time evolution
should be described by a specific differential equation.

As the simplest example, in order to describe the honeycomb lattice shown in
figure 3.12a, we have to prescribe different probability amplitudes to the ‘top’ and
‘bottom’ points of its primitive cell—say, α and β, correspondingly. Since each of
these points is surrounded (and hence weakly interacts) with three neighbors of the
opposite type, instead of Eq. (3.117) we have to write two equations

∑ ∑α δ β β δ αℏ ̇ = − ℏ ̇ = −
= ′=

′i i, , (3.119)
j j1

3

1

3

n j n j

where each summation is over three next-neighbor points. (In these two sums, I am
using different summation indices just to emphasize that these directions are
different for the ‘top’ and ‘bottom’ points of the primitive cell—see figure 3.12a.)
Now using the Bloch theorem (3.107) in the form similar to Eq. (2.205), we get two
coupled systems of linear algebraic equations:

∑ ∑α δ β β δ α− = − − = −
= ′=

′
′⋅ ⋅E E e E E e( ) , ( ) , (3.120)

j j1

3

1

3

n n
i

n n
iq r q rj j

where rj and r′j′ are the next-neighbor positions, as seen from the top and bottom
points, respectively. Writing the condition of consistency of this system of homoge-
neous linear equations, we get two equal and opposite values for energy correction
for each value of q:

∑δ= ± Σ Σ ≡
′=

′
′

±
⋅ +( )E E e, where . (3.121)

j j, 1

3

n n
iq r r1/2 j j

According to Eq. (3.120), these two energy bands correspond to the phase shifts (on
the top of the regular Bloch shift q·Δr) of either 0 or π between the adjacent quasi-
localized wavefunctions u(r).

The most interesting corollary of such energy symmetry, augmented by the
honeycomb lattice’s symmetry, is that for certain values qD of the vector q (that turn
out to be in each of six corners of the honeycomb-shaped 1st Brillouin zone), the
double sum Σ vanishes, i.e. the two band surfaces E±(q) touch each other. As a
result, in vicinities of these so-called Dirac points49 the dispersion relation is linear:

∣ ≈ ± ℏ ˜ ˜ ≡ −± ≈E E q q q q, where , (3.122)n nq q DD
v

with nv ∝ δn being a constant with the dimension of velocity (for graphene, close to
106 m s−1). Such a linear dispersion relation ensures several interesting transport
properties of graphene, in particular of the quantum Hall effect in it (as was already

49 This term is based on a (rather indirect) analogy with the Dirac theory of relativistic quantum mechanics, to
be discussed in chapter 9 below.
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mentioned in section 2). For their more detailed discussion, I have to refer the reader
to special literature50.

3.5 Axially-symmetric systems
I cannot conclude this chapter (and hence our review of wave mechanics) without
addressing the exact solutions of the stationary Schrödinger equation51 possible in
the cases of highly symmetric functions U(r). Such solutions are very important, in
particular, for atomic and nuclear physics, and will be used, in particular, in the later
chapters of this course.

In some rare cases such symmetries may be exploited by the separation of
variables in Cartesian coordinates. The most famous example is the d-dimensional
harmonic oscillator—a particle moving inside the potential

∑ω
=

=

U
m

r
2

. (3.123)
j

d

1
j

0
2

2

Separating the variables exactly as we did in section 1.7 for the rectangular hard-wall
box (1.77), for each degree of freedom we get the Schrödinger equation (2.261) of a
1D oscillator, whose eigenfunctions are given by Eq. (2.284), and the energy
spectrum is described by Eq. (2.162). As a result, the total energy spectrum may
be indexed by a vector n = {n1, n2,…, nd} of d independent integer quantum
numbers:

∑ω= ℏ +
=

E n
d
2

, (3.124)
j

d

1

jn 0

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

each ranging from 0 to ∞. Note that every energy level of this system, with the only
exception of the ground state,

50 See, e.g. reviews [11] and [12]. Note that the transport properties of graphene are determined by coupling of
2p-state electrons of its carbon atoms (see sections 3.6 and 3.7 below), whose wavefunctions are proportional to
exp{±iφ} rather than being axially-symmetric as implied by Eqs. (3.120). However, due to the lattice symmetry
this fact does not affect the above dispersion relation E(q).
51 This is my only chance to mention, in passing, that the eigenfunctions ψn(r) of any such problem do not
feature the instabilities typical for the deterministic chaos effects of classical mechanics—see, e.g. Part CM
chapter 9. (This is why the term quantum mechanics of classically chaotic systems is preferable to the
occasionally used term ‘quantum chaos’.) It is curious that at the initial stages of the time evolution of the
wavefunctions of such systems, their certain correlation functions still grow exponentially, reminding the
Lyapunov exponents λ of their classical chaotic dynamics. This growth stops at the so-call Ehrefect times
tE ∼ λ−1 ln(S/ℏ), where S is the action scale of the problem—see, e.g. [13]. In the stationary quantum state, the
most essential trace of the classical chaos in a system is an unusual statistics of its eigenvalues, in particular of
the energy spectra. We will have a chance for a brief look at such statistics in chapter 5, but unfortunately, I
will not have time/space to discuss this field in any detail. Perhaps the best available book for further reading is
the monograph [14].
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∏ ∑ψ ψ
π

= = −
= =

r
x x

r( )
1

exp
1

2
, (3.125)

j

d

j

d

1 1

j d d jg 0 /4
0

/2
0
2

2
⎪ ⎪
⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

is degenerate: several different wavefunctions, each with its own different set of
quantum numbers nj, but the same value of their sum, have the same energy.

However, the harmonic oscillator problem is an exception: for other central- and
spherically-symmetric problems the solution is made easier by using more appro-
priate curvilinear coordinates. Let us start with the simplest axially-symmetric
problem: the so-called planar rigid rotator (or ‘rotor’), i.e. a particle of mass m,52

constrained to move along a plane, round circle of radius R (figure 3.17)53.
The classical planar rotator may be described by just one degree of freedom, say

the angle displacement φ (or equivalently the arc displacement l ≡ Rφ) from some
reference point, with the energy (and the Hamiltonian function)
= ≡ = φH p dl dtp v n/2 , where ( / )2 m m m , nφ being the unit vector in the azimuthal

direction—see figure 3.17. This function is similar to that of a free 1D particle (with
the replacement x → l ≡ Rφ), and hence the rotator’s quantum properties may be
described by a similar Hamiltonian operator:

φ
ˆˆ =

ˆ
= − ℏ ∂

∂
≡ − ℏ ∂

∂φ φH
p

i
l

i
R

p n n
2

, with , (3.126)
2

m

whose eigenfunctions have a similar structure:

ψ = ≡ φCe Ce . (3.127)ikl ikR

The ‘only’ new feature is that in the rotator, all observables should be 2π-periodic
functions of the angle φ. Hence, as we have already discussed in the context of the
magnetic flux quantization (see figure 3.4 and its discussion), as the particle makes

Figure 3.17. The planar rigid rotator.

52 From this point on (until the chapter’s end), I will use this exotic font for the particle’s mass, in order to
avoid any chance of its confusion with the impending ‘magnetic’ quantum number m, traditionally used in
axially-symmetric problems.
53 This is a reasonable model for the confinement of light atoms, notably hydrogen, in some organic
compounds, but I am addressing this system mostly as the basis for the following, more complex problems.
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one turn about the center, its wavefunction’s phase kRφ may only change by 2πm,
with an arbitrary integer m (from −∞ to +∞):

ψ φ π ψ φ+ = πe( 2 ) ( ) . (3.128)m m
im2

With the eigenfunctions (3.127), this periodicity condition immediately gives
2πkR = 2πm. Thus, the wavenumber k can take only quantized values km = m/R, so
that the eigenfunctions should be indexed by this magnetic quantum number m:

ψ φ= ≡C im
l
R

C imexp exp{ }, (3.129)m m m
⎧⎨⎩

⎫⎬⎭
and the energy spectrum is discrete:

= =
ℏ

= ℏE
p k m

R2 2 2
. (3.130)m

m m
2 2 2 2 2

2m m m

This simple model allows an exact analysis of the external magnetic field effects
on a confined motion of an electrically charged particle. Indeed, in the simplest case
when this field is axially-symmetric (or just uniform) and directed normally to the
rotator’s plane, it does not violate the axial symmetry of the system. According to
Eq. (3.26), in this case we have to generalize Eq. (3.126) as

φ
ˆ = − ℏ ∂

∂
− ≡ − ℏ ∂

∂
−φ φH i

l
q i

R
qn A n A

1
2

1
2

. (3.131)
2 2

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟m m

Here, in contrast to the Cartesian gauge choice (3.44), which was so instrumental for
the solution of the Landau level problem, it is beneficial to take the vector-potential
in the axially-symmetric form A = A(ρ)nφ, where ρ ≡ {x, y} is the 2D radius-vector,
with the magnitude ρ = (x2 + y2)1/2. Using the well-known expression for the curl
operator in the cylindrical coordinates54, we can readily check that the requirement
∇ × A = Bnz, with B = const, is satisfied by the following function:

ρ= φA n
2

. (3.132)
B

For the planar rotator, ρ = R = const, so that the stationary Schrödinger equation
becomes

φ
ψ ψ− ℏ ∂

∂
− =i

R
q

R
E

1
2 2

. (3.133)m n m

2⎛
⎝⎜

⎞
⎠⎟m

B

A little surprisingly, this equation is still satisfied with the eigenfunctions (3.127).
Moreover, since the periodicity condition (3.128) is also unaffected by the applied

54 See, e.g. Eq. (A.63).
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magnetic field, we return to the periodic eigenfunctions (3.129), independent of B .
However, the field does affect the system’s eigenenergies:

ψ φ
ψ= − ℏ ∂

∂
−

= ℏ − ≡ ℏ − Φ
Φ ′

E i
R

q
R

m
R

q
R

R
m

1 1
2 2

1
2 2 2

,

(3.134)
m

m
m
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2 2

2
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⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

m

B

m

B

m

where Φ ≡ πR2B is the magnetic flux through the area limited by the particle’s
trajectory, and Φ0′ ≡ 2πℏ/q is the ‘normal’ magnetic flux quantum we have already
met in the AB effect’s context—see Eq. (3.34) and its discussion. The field also
changes the electric current of the particle in each eigenstate:

ψ
φ

ψ= ℏ ∂
∂
−

ℏ
− = ℏ − Φ

Φ ′
*I q

i R
iqR

q
R

C m
2 2

c.c. . (3.135)m m m m
2
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⎞
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⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟m

B

m

Normalizing the wavefunction (3.129) to haveWm = 1, we get ∣Cm∣2 = 1/2πR, so that
Eq. (3.135) becomes

π
= − Φ

Φ ′
≡ ℏ

I m I I
q
R

, with
2

. (3.136)m
0

0 0 2

⎛
⎝⎜

⎞
⎠⎟ m

The functions Em(Φ) and Im (Φ) are shown in figure 3.18. Note that sinceΦ0′ ∝ 1/q,
for any sign of the particle’s charge q, dIm/dΦ < 0. It is easy to verify that this means
that the current is diamagnetic55: the field-induced current flows in such a direction

Figure 3.18. The magnetic field effect on a charged planar rotator. Dashed arrows show possible inelastic
transitions between metastable and ground states, due to weak interaction with environment, as the external
magnetic field is increased.

55 This effect, whose qualitative features remain the same for all 2D or 3D localized states (see chapter 6 below), is
frequently referred to as the orbital diamagnetism. Inmagneticmaterials consisting of particleswith uncompensated
spins, this effect competes with an opposite effect, spin paramagnetism—see, e.g. Part EM section 5.5.
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that its own magnetic field tries to compensate the external magnetic flux applied to
the loop. This result may be interpreted as a different manifestation of the AB effect56.
In contrast to the interference experiment that was discussed in section 3.1, in the
situation shown in figure 3.17 the particle is not absorbed by the detector, but travels
around the ring continuously. As a result, its wavefunction is rigid: due to the
periodicity condition (3.128), the quantum number m is discrete, and the applied
magnetic field cannot change the wavefunction gradually. In this sense, the system is
similar to a superconducting loop—see figure 3.4 and its discussion. The difference
between these systems is two-fold:

(i) For a single charged particle, in macroscopic systems with practicable values
of q, R, andm, the scale I0 of the induced current is very small. For example, form =
me, q = −e, and R = 1 μm, Eq. (3.136) yields I0 ≈ 3 pA.57 With the ring’s inductance L
of the order of μ0R,

58 the contribution ΦI = LI ∼ μ0RI0 ∼ 10−24 Wb of such a small
current into the net magnetic flux Φ is negligible in comparison with Φ0′ ∼ 10−15 Wb,
so that the quantization of m does not lead to the magnetic flux quantization.

(ii) As soon as the magnetic field raises the eigenstate energy Em above that of
another eigenstate Em′, the former state becomes metastable, and a weak interaction
of the system with its environment (which is neglected in our simple model, but will
be discussed in chapter 7) may induce a quantum transition of the system to the
lower-energy state, thus reducing the diamagnetic current’s magnitude—see the
dashed lines in figure 3.18. The flux quantization in superconductors is much more
robust to such perturbations59.

Now let us return, once again, to the key Eq. (3.129), and see what it gives for one
more important observable, the particle’s angular momentum

≡ ×L r p, (3.137)

In this particular geometry, the vector L has just one component, normal to the
rotator plane:

=L Rp. (3.138)z

In classical mechanics, Lz of the rotator should be conserved (due to the absence of
external torque), but it can take arbitrary values. In quantum mechanics, the

56 It is straightforward to check that the last forms of Eqs. (3.134)—(3.136) remain valid even if the magnetic
field is localized well inside rotator’s ring, so that its lines do not touch the particle’s trajectory.
57 Such weak persistent, macroscopic diamagnetic currents in non-superconducting systems have been
experimentally observed by measuring the weak magnetic field induced by the currents, in systems of a large
number (∼107) of similar conducting rings—see, e.g. [15]. Due to the dephasing effects of electron scattering by
phonons and other electrons (unaccounted for in our simple theory), the effect’s observation requires
submicron samples and millikelvin temperatures.
58 See, e.g. Part EM section 5.3.
59 Interrupting a superconducting ringwith aweak link (Josephson junction), i.e. forming a SQUID,wemayget a
switching behavior similar to that shown with dashed arrows in figure 3.18—see, e.g. Part EM section 6.5.
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situation changes: with p = ℏk, our result km = m/R for the mth eigenstate may be
rewritten as

= ℏ = ℏL R k m( ) . (3.139)z m m

Thus, the angular momentum is quantized: it may be only a multiple of the Planck
constant ℏ—confirming N Bohr’s guess—see Eq. (1.8). As we will see in chapter 5, this
result is very general (though it may be modified by spin effects), and the wavefunctions
(3.129) may be interpreted as eigenfunctions of the angular momentum operator.

Let us see whether this quantization persists in more general, but still axial-
symmetric systems. In order to implement the planar rotator in our 3D world, we
needed to provide a rigid confinement of the particle both in the motion plane, and
along the 2D radius ρ. Let us consider a more general situation when only the former
confinement is strict, i.e. to the case when a 2D particle moves in an arbitrary
centrally-symmetric potential

ρρ =U U( ) ( ). (3.140)

Using the well-known expression for the 2D Laplace operator in polar coordi-
nates60, we may represent the 2D stationary Schrödinger equation in the form

ρ ρ
ρ

ρ ρ φ
ψ ρ ψ ψ− ℏ ∂

∂
∂
∂

+ ∂
∂

+ =U E
2

1 1
( ) . (3.141)
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2

2

2
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⎤
⎦⎥m

Separating the radial and angular variables as61

ψ ρ φ= ( ) ( ), (3.142)R F

we get, after the division by ψ and the multiplication by ρ2, the following equation:

ρ
ρ

ρ
ρ φ

ρ ρ ρ− ℏ + + =d
d

d
d

d
d

U E
2

1
( ) . (3.143)

2 2

2
2 2

R
R

F
F⎡

⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥m

It is clear that the fraction φd d( / )/2 2F F should be a constant (because all other
terms of the equation may be functions only of ρ), so that for the function φ( )F we
get an ordinary differential equation,

φ
ν+ =d

d
0, (3.144)

2

2
2F F

where ν2 is the variable separation constant. The fundamental solution of Eq. (3.144)
is evidently F ∝ exp{±iνφ}. Now requiring, as we did for the planar rotator, the 2π
periodicity of any observable, i.e.

60 See, e.g. Eq. (A.61) with ∂/∂z = 0.
61At this stage, I do not want to mark the particular solution (eigenfunction) ψ and corresponding eigenenergy
E with any single index, because based on our experience in section 3.1, we already may suspect that in a 2D
problem the role of this index will be played by two integers—two quantum numbers.
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φ π φ+ = πe( 2 ) ( ) , (3.145)im2F F

wherem is an integer, we see that the constant ν has to be equal to m, and get, for the
angular factor, the same result as for the full wavefunction of the rotator—cf
Eq. (3.129):

= = ± ±φC e m, with 0, 1, 2 ,... (3.146)m m
imF

Plugging the resulting relation φ = −d d m( / )/2 2 2F F into Eq. (3.143), we may
rewrite it as

ρ ρ
ρ

ρ ρ
ρ− ℏ − + =d

d
d
d

m
U E

2
1

( ) . (3.147)
2 2
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The physical interpretation of this equation is that the full energy is a sum,

= +ρ φE E E , (3.148)

of the radial-motion part

ρ ρ
ρ

ρ
ρ= − ℏ +ρE

d
d

d
d

U
2

1
( ). (3.149)

2 R⎛
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⎞
⎠⎟m

and the angular-motion part

ρ
= ℏφE

m
2

. (3.150)
2 2

2m

Now let us notice that a similar separation exists in classical mechanics62, because
the total energy of a particle moving in a central field may be represented as

ρ ρ ρ φ ρ= + = ̇ + ̇ + ≡ +ρ φE U U E E
2

( )
2

( ) ( ) , (3.151)2 2 2 2m m
v

ρ ρ φ
ρ

≡ + ≡ ̇ ≡ ≡ρ
ρ

φ
φ

E
p

U E
p L

with
2

( ), and
2 2 2

. (3.152)z
2

2 2

2 2

2m

m

m m

The comparison of the latter relation with Eqs. (3.139) and (3.150) gives us grounds
to suspect that the quantization rule Lz = mℏ may be valid not only for this 2D
problem, but in 3D cases as well. In section 5.6, we will see that this is indeed the
case.

Returning to Eq. (3.147), on the basis of our experience with 1D wave mechanics
we may expect that this ordinary, linear, second-order differential equation should
have (for a motion confined to a certain final region of its argument ρ), for any fixed
m, a discrete energy spectrum described by some other integer quantum number

62 See, e.g. Part CM section 3.5.
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(say, n). This means that the eigenfunctions (3.142), and corresponding eigenenergies
(3.148) should be indexed by two quantum numbers, m and n. Note, however, that
since the radial function obeys Eq. (3.147), which already depends on m, its
eigenfunction ρ( )R should carry both indices, so the variable separation is not so
‘clean’ as it was for the rectangular potential well. Normalizing the angular function
F to the full circle, Δφ = 2π, we may rewrite Eq. (3.142) as

ψ ρ φ
π

ρ= = φe( ) ( )
1

(2 )
( ) . (3.153)m n m n m m n

im
, , 1/2 ,R F R

A good (and important) example of a solvable problem of this type is a free 2D
particle whose motion is rigidly confined to a disk of radius R:

ρ
ρ
ρ

=
⩽ <

+∞ <
U

R
R

( )
0, for 0 ,

, for .
(3.154)

⎧⎨⎩
In this case, the solutions ρ( )m n,R of Eq. (3.147) are proportional to the first-order
Bessel functions Jm(knρ),

63 with the spectrum of possible values kn following from
the boundary condition =R( ) 0m n,R . Let me leave the detailed analysis of this
problem for the reader’s exercise.

3.6 Spherically-symmetric systems: brute force approach
Now let us proceed to the mathematically more involved, but practically even more
important case of the 3D motion in a spherically-symmetric potential

=U U rr( ) ( ). (3.155)

Let me start, again, with solving the eigenproblem for a rigid rotator—now a
spherical rotator, i.e. a particle confined to move on the spherical surface of radius R.
It has two degrees of freedom, because a position on the spherical surface is
completely described by two coordinates—say, the polar angle θ and the azimuthal
angle φ. In this case, the kinetic energy we need to consider is limited to its angular
part, so that in the Laplace operator in spherical coordinates64 we may keep only
those parts, with fixed r = R. Because of this, the stationary Schrödinger equation
becomes

θ θ
θ

θ θ φ
ψ ψ− ℏ ∂

∂
∂
∂

+ ∂
∂

=
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E
2

1
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sin
1
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. (3.156)
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(Again, I will attach indices to ψ and E in a minute.) With the usual variable
separation assumption,

ψ θ φ= Θ( ) ( ), (3.157)F

63A short summary of properties of these functions, including a few graphic plots and a useful table of values,
may be found in Part EM section 2.7.
64 See, e.g. Eq. (A.67).
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this equation, with all terms multiplied by sin2θ/Θ F , yields

θ
θ

θ
θ φ

θ− ℏ
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Θ + =
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Just as in Eq. (3.143), the fraction φd d( / )/2 2F F may be a function of φ only, and
hence has to be constant, giving Eq. (3.144) for it. So, with the same periodicity
condition (3.145), the azimuthal functions are expressed by (3.146) again; in the
normalized form,

φ
π

= φe( )
1

(2 )
. (3.159)m

im
1/2

F

With that, the fraction φd d( / )/2 2F F in Eq. (3.158) equals (−m2), and after its
multiplication by Θ/sin2θ, it is reduced to the following ordinary, linear differential
equation for the polar eigenfunctions Θ(θ):

θ θ
θ

θ θ
ε ε− Θ + Θ = Θ ≡ ℏd

d
d
d

m
E

R
1

sin
sin

sin
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It is common to recast it into an equation for a new function P(ξ) ≡ Θ(θ), with
ξ ≡ cos θ:

ξ
ξ

ξ ξ
− + + −

−
=d

d
dP
d

l l
m

P(1 ) ( 1)
1

0, (3.161)2
2

2
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⎡
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⎤
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where a new notation for the normalized energy is introduced: l(l+1) ≡ ε. The
motivation for such notation is that, according to a mathematical analysis65,
Eq. (3.161) with integer m has solutions only if parameter l is integer: l = 0, 1, 2,… ,
and only if that integer is not smaller than ∣m∣, i.e. if

− ⩽ ⩽ +l m l. (3.162)

This fact immediately gives the following spectrum of the spherical rotator’s energy E—
and, as we will see below, the angular part of the energy of any spherically-symmetric
system:

= ℏ +
E

l l
R

( 1)
2

, (3.163)l

2

2m

so that the only effect of the magnetic quantum number m here is imposing the
restriction (3.162) on the non-negative integer l—the so-called orbital quantum number.
This means, in particular, that each energy level (3.163) corresponds to (2l + 1)
different values of m, i.e. is (2l + 1)–degenerate.

65 This analysis was first carried out by A-M Legendre (1752–1833). Just as a historic note: besides many
original mathematical achievements, Dr Legendre authored a famous textbook, Éléments de Géométrie, which
dominated teaching geometry through the 19th century.
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To understand the physics of this degeneracy, we need to explore the correspond-
ing eigenfunctions of Eq. (3.161). They are naturally numbered by two integers, m
and l, and are called the associated Legendre functions Pl

m. (Note that m is an upper
index, not a power!) For the particular, simplest case m = 0, these functions are the
so-called Legendre polynomials Pl(ξ) ≡ Pl

0(ξ), which may be defined as the solutions
of the Legendre equation, following from Eq. (3.161) at m = 0:

ξ
ξ

ξ
− + + =d

d
d
d

P l l P(1 ) ( 1) 0, (3.164)2
⎡
⎣⎢

⎤
⎦⎥

but also may be calculated explicitly from the following Rodrigues formula66:

ξ
ξ

ξ=
!

− = …P
l

d
d

l( )
1

2
( 1) , 0, 1, 2, . (3.165)l l

l

l
l2

Using this formula, it easy to spell out a few lowest Legendre polynomials:

ξ ξ ξ ξ ξ ξ ξ ξ= = = − = − …P P P P( ) 1, ( ) , ( )
1
2

(3 1), ( )
1
2

(5 3 ), , (3.166)0 1 2
2

3
3

though such expressions become more and more bulky as l is increased. As these
expressions (and figure 3.19) show, as the argument ξ is decreased, all these functions
start in one point, Pl(+1) = + 1, and end up either at the same point or at the
opposite point: Pl(−1) = (−1)l. On the way between these two end points, the lth
polynomial crosses the horizontal axis exactly l times, i.e. has l roots67. Finally, it is
easy to use the Rodrigues formula (3.165) and the integration by parts to show that
on the segment −1 ⩽ ξ ⩽ +1, the Lagrange polynomials form a full orthogonal set of
functions, with the following normalization rule:

Figure 3.19. A few lowest Legendre polynomials.

66 This wonderful formula may be readily proved by plugging it into Eq. (3.164), but was not so easy to
discover! This was done independently by B O Rodrigues in 1816, J Ivory in 1824, and C Jacobi in 1827.
67 In this behavior, we may readily recognize the ‘standing wave’ pattern typical for all 1D eigenproblems—cf
figures 1.8 and 2.35, as well as the discussion of the Sturm oscillation theorem in the end of section 2.9.
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For m > 0, the associated Legendre functions (now not polynomials!), may be
expressed via the Legendre polynomials (3.165) using the following formula68:

ξ ξ
ξ

ξ= − −P
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P( ) ( 1) (1 ) ( ), (3.168)l
m m m
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2 /2

while the functions with a negative magnetic quantum number may be found as

ξ ξ= − − !
+ !

>−P
l m
l m

P m( ) ( 1)
( )
( )

( ), for 0. (3.169)l
m m

l
m

On the segment −1 ⩽ ξ ⩽ +1, the associated Legendre functions with a fixed index m
form a full orthogonal set, with the normalization relation,

∫ ξ ξ ξ δ=
+

+ !
− !−

+

′ ′P P d
l

l m
l m

( ) ( )
2

2 1
( )
( )

, (3.170)l
m

l
m

ll
1

1

which is evidently a generalization of Eq. (3.167) for arbitrary m.
Since the difference between the angles θ and φ is to much extent artificial (due to

arbitrary direction of the polar axis), physicists prefer to use not the functions Θ(θ) ∝
Pl

m(cosθ) and φ( )mF ∝ eimφ separately, but normalized products of the type (3.157),
which are called the spherical harmonics:

θ φ
π

θ≡ + − !
+ !

φY
l l m

l m
P e( , )

(2 1)
4

( )
( )

(cos ) . (3.171)l
m

l
m im

1/2⎡
⎣⎢

⎤
⎦⎥

The specific coefficient in Eq. (3.171) is chosen in a way to simplify the following two
expressions: the relation of the spherical harmonics with opposite signs of the
magnetic quantum number,

θ φ θ φ= −− *Y Y( , ) ( 1) [ ( , )] , (3.172)l
m m

l
m

and the normalization relation

∮ θ φ θ φ δ δΩ =
π

′
′ *

′ ′Y Y d( , )[ ( , )] , (3.173)l
m

l
m

ll mm
4

with the integration over the whole solid angle. The last formula shows that on a
spherical surface, the spherical harmonics form an orthonormal set of functions.
This set is also full, so that any function, defined on the surface, may be uniquely
represented as a linear combination of Yl

m.

68Note that some texts use different choices for the front factor (called the Condon–Shortley phase) in the
functions Pl

m, which do not affect the final results for the spherical harmonics Yl
m.
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Despite a somewhat intimidating formulas given above, they yield rather simple
expressions for the lowest spherical harmonics, which are most important for
applications:

π= =l Y0: (1/4 ) , (3.174)0
0 1/2

π θ
π θ

π θ

=
=
=
= −

φ

φ

− −

l

Y e

Y

Y e

1:

(3/8 ) sin ,

(3/4 ) cos ,

(3/8 ) sin ,

(3.175)
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1 1/2

1
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1
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π θ
π θ θ

π θ
π θ θ
π θ

=

= −
=
= −
= −
=

φ

φ

φ

φ

− −

− −

l

Y e

Y e

Y

Y e

Y e

2:

(15/32 ) sin ,

(15/8 ) sin cos ,

(3/16 ) (3 cos 1),

(15/8 ) sin cos ,

(15/32 ) sin ,

etc. (3.176)
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⎩
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It is important to understand the general structure and symmetry of these functions.
Since the spherical functions with m ≠ 0 are complex, the most popular way of their
graphical representation is to normalize their real and imaginary parts as69

φ

φ
≡ − ×

∝ <

∝ >

( )
( )

Y
Y m m

Y m m
2 ( 1)

Im sin , for 0,

Re cos for 0,
(3.177)lm

m
l

m

l
m

⎧
⎨⎪
⎩⎪

(for m = 0, Yl0 ≡ Yl
0), and then plot the magnitude of these real functions in the

spherical coordinates as the distance from the origin, while using two colors to show
their sign—see figure 3.20.

Let us start from the simplest case l = 0. According to Eq. (3.162), for this lowest
orbital quantum number, there may be only one magnetic quantum number, m = 0.
According to Eq. (3.174), the spherical harmonic corresponding to that state is just a
constant, so that the wavefunction of this so-called s state70, is uniformly distributed
over the sphere. Since this function has no gradient in any angular direction, it is
only natural that the angular kinetic energy (3.163) of the particle equals zero.

According to the same Eq. (3.162), for l = 1, there are three different p states, with
m = −1,m = 0, andm = +1—see Eq. (3.175). As the second row of figure 3.20 shows,

69 Such real functions Ylm, which also form the full orthonormal set, and are frequently called the real (or
‘tesseral’) spherical harmonics, are more convenient than the complex harmonics Yl

m for several applications,
especially when the variables of interest are real by definition.
70 The letter names for the states with various values of l stem from the history of optical spectroscopy—for
example, the letter ‘s’, used for the state with l = 0, originally denoted the ‘sharp’ optical line series, etc. The
sequence of the letters is as follows: s, p, d, f, g, and then continuing in the alphabetical order.
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these states are essentially identical in structure, and are just differently oriented in
space, thus readily explaining the three-fold degeneracy of the kinetic energy (3.163).
Such a simple explanation, however, is not valid for the five different d states (l = 2),
shown in the third row of figure 3.20, as well as the states with higher l: despite their
equal energies, they differ not only by their special orientation, but their structure as
well. The states with m = 0 have a non-vanishing gradient only in the θ direction. In
contrast, the states with the ultimate values ofm (±l ), change only monotonically (as
sinlθ) in the polar direction, while oscillating in the azimuthal direction. The states
with intermediate values of m provide a gradual transition between these two
extremes, oscillating in both directions, stronger and stronger in the azimuthal
direction as ∣m∣ is increased. Still, the magnetic quantum number, surprisingly, does
not affect the energy for any l.

Another counter-intuitive feature of the spherical harmonics follows from the
comparison of Eq. (3.163) with the second of the classical relations (3.152). These
expressions coincide if we interpret the constant

≡ ℏ +L l l( 1), (3.178)2 2

as the value of the full angular momentum squared L2 = ∣L∣2 (including both its θ
and φ components) in the eigenstate with the eigenfunction Yl

m. On the other hand,
the structure (3.159) of the azimuthal component φ( )F of the wavefunction is exactly
the same as in 2D axially-symmetric problems, implying that Eq. (3.139) still gives
correct values (in our notation, Lz = mℏ) for the z-component of the angular
momentum. If this is so, why for any state with l > 0, is (Lz)

2 = m2ℏ2 ⩽ l2ℏ2 less than

Figure 3.20. Radial plots of several lowest real spherical harmonics Ylm. (Adapted from https://en.wikipedia.
org/wiki/Spherical_harmonics under the CC BY-SA 3.0 license.)
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L2 = l(l + 1)ℏ2? In other words, what prevents the angular momentum vector being
fully aligned with the axis z?

Besides the difficulty of answering this question using the above formulas, this
analysis (though mathematically complete), is as intellectually unsatisfactory as the
harmonic oscillator analysis in section 2.9. In particular, it does not explain
the meaning of the extremely simple relations for the eigenvalues of the energy
and the angular momentum coexisting with rather complicated eigenfunctions.

We will obtain natural answers to all these questions and concerns in section 5.6
below, and now proceed to the extension of our wave-mechanical analysis to the 3D
motion in an arbitrary spherically-symmetric potential (3.155). In this case we have
to use the full form of the Laplace operator in spherical coordinates71. The variable
separation procedure is an evident generalization of what we have done before, with
the particular solutions of the type

ψ ρ θ φ= Θ( ) ( ) ( ), (3.179)R F

whose substitution into the stationary Schrödinger equation yields

θ θ
θ

θ θ φ
− ℏ +

Θ
Θ + + =

r
d
dr

r
d
dr

d
d

d
d

d
d

U r E
2

1 1 1
sin

sin
1

sin
1

( ) . (3.180)
2

2
2

2

2

2R
R

F
F⎡

⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥m

It is evident that the angular part of the left-hand side (the two last terms in the
square brackets) separates from the radial part, and that for the former part we get
Eq. (3.156) again, with the only change,R→ r. This change does not affect the fact that
the eigenfunctions of that equation are still the spherical harmonics (3.171). This means
that for the radial function r( )R , Eq. (3.180) gives the following equation,

− ℏ − + + =
r

d
dr

r
d
dr

l l U r E
2

1
( 1) ( ) . (3.181)

2

2
2

R
R⎡

⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥m

Note that no information about the magnetic quantum number m has crept into the
radial equation (besides setting the limitation (3.162) for the possible values of l ), so
that it includes only the latter, orbital quantum number.

Let us explore the radial equation for the simplest case when U(r) = 0, for
example to solve the eigenproblem for the 3D motion of a particle free to move only
inside the sphere of radius R—say, confined there by the potential72

= ⩽ <
+∞ <

U
r R

R r
0, for 0 ,

, for .
(3.182)

⎧⎨⎩
In this case, Eq. (3.181) is reduced to

− ℏ − + =
r

d
dr

r
d
dr

l l E
2

1
( 1) . (3.183)

2

2
2

R
R⎡

⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥m

71Again, see Eq. (A.67).
72 This problem, besides giving the simplest example of quantization in spherically-symmetric systems, is also
an important precursor for the discussion of scattering by spherically-symmetric potentials in section 3.8.
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Multiplying both parts of this equality by r2R , and introducing the dimensionless
argument ξ ≡ kr, where k2 is defined by the usual relation ℏ =k E/22 2 m , we obtain
the canonical equation,

ξ
ξ

ξ
ξ

ξ+ + − + =d
d

d
d

l l2 [ ( 1)] 0, (3.184)2
2

2
2R R R

for the so-called spherical Bessel functions of the first and second kind, jl(ξ) and
yl(ξ).

73 These functions are directly related to the Bessel functions of the semi-integer
order74,

ξ π
ξ

ξ ξ π
ξ

ξ= =+ +j J y Y( )
2

( ), ( )
2

( ), (3.185)l l l l

1/2

1
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1/2

1
2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

but are actually much simpler than even the ‘usual’ Bessel functions, such as Jn(ξ)
and Yn(ξ) of an integer order n, because the former ones may be directly expressed
via elementary functions:

ξ ξ
ξ

ξ ξ
ξ

ξ
ξ

ξ
ξ ξ

ξ
ξ

ξ

ξ ξ
ξ

ξ ξ
ξ

ξ
ξ

ξ
ξ ξ

ξ
ξ
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= = −

= − − …

= − = − −

= − − − …

j j
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y y
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( )
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, ( )
sin cos

,
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3 1
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cos , ,
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3 1
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sin , ,

(3.186)
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⎛
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⎞
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⎝⎜

⎞
⎠⎟

Figure 3.21. Several lowest-order spherical Bessel functions.

73Alternatively, yl(ξ) are called the ‘spherical Weber functions’ or the ‘spherical Neumann functions’.
74Note that the Bessel functions Jν(ξ) and Yν(ξ) of any order ν obey the universal recurrent formulas and
asymptotic formulas (discussed, e.g. in Part EM section 2.7), so that many properties of the functions jl(ξ) and
yl(ξ) may be readily derived from these relations and Eq. (3.185).
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A few of the lowest-order spherical harmonics are plotted in figure 3.21.
As these formulas and plots show, the functions yl(ξ) are diverging at ξ → 0, and

thus cannot be used in the solution of our current problem, so that we have to take

= ×r j kr( ) const ( ). (3.187)l lR

Still, even for these functions, with the sole exception of the simplest function j0(ξ),
the characteristic equation jl(kR) = 0, resulting from the boundary condition

=R( ) 0R , can be solved only numerically. However, the roots ξl,n of the equations
jl(ξ) = 0, where the integer n (= 1, 2, 3,…) is the root’s number, are tabulated in
virtually any math handbook, and we may express the eigenvalues we are
interested in,

ξ ξ
= =

ℏ
≡
ℏ

k
R

E
k

R
,

2 2
, (3.188)l n

l n
l n

l n l n
,

,
,

2
,
2 2

,
2

2m m

via these tabulated numbers. The table below lists several smallest roots, and the
corresponding eigenenergies (normalized to their natural unit ≡ ℏE R/20

2 2m ), in
the order of their growth. It shows a very interesting effect: first the eigenenergies
grow because of the increase of the orbital quantum number l, at the same (lowest)
radial quantum number n = 1, due to the growth of the first roots of functions jl(ξ),
but then suddenly the second root of j0(ξ) cuts into this orderly sequence, just to be
followed by the first root of j3(ξ). With the growth of energy, the sequences of l and
n become even more entangled.

l n ξl,n El,n/E0 = (ξl,n)
2

0 1 π ≈ 3.1415 π2 ≈ 9.87
1 1 4.493 20.19
2 1 5.763 33.21
0 2 2π ≈ 6.283 4π2 ≈ 39.48
3 1 6.988 48.83

To complete the discussion of our current problem (3.182), note again that the
energy levels, listed in the table above, are (2l + 1)-degenerate, because each of them
corresponds to (2l + 1) different eigenfunctions, each with a specific value of the
magnetic quantum number m:

ψ
ξ

θ φ= − ⩽ ⩽ +C j
r

R
Y l m l( , ), with . (3.189)n l m l n l

l n
l
m

, , ,
,⎛

⎝⎜
⎞
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3.7 Atoms
Let us proceed to the discussion of atoms, starting from the simplest, exactly
solvable Bohr atom problem, i.e. that of a particle’s motion in the so-called attractive
Coulomb potential75

= − >U r
C
r

C( ) , with 0. (3.190)

The natural scales of E and r in this problem are commonly defined by the following
requirement of equality of the kinetic and potential energy magnitude scales
(dropping all numerical coefficients):

≡ ℏ ≡E
r

C
r

, (3.191)0

2

0
2

0m

similar to its particular case (1.13b). Solving these two equations, we get76

≡ ℏ ≡
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≡ ℏ
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r
C

r
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2

0
2

2

0

2⎛
⎝⎜

⎞
⎠⎟m

m
m

In the normalized units ε ≡ E/E0 and ξ ≡ r/r0, Eq. (3.181), for our current case
(3.190), looks relatively simple,

ξ ξ ξ
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d
d
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( 1) 2
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but unfortunately its eigenfunctions may be called elementary only in the most
generous meaning of the word. With the adequate normalization,

∫ δ=
∞

′ ′r dr , (3.194)n l n l nn
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these (mutually orthogonal) functions may be represented as
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Here ξL ( )p
q are the so-called associated Laguerre polynomials, which may be

calculated as

75Historically, the solution of this problem in 1928, that reproduced the main result (1.12)–(1.13) of the ‘old’
quantum theory developed by N Bohr in 1912, without its phenomenological assumptions, was the decisive
step toward the general acceptance of the Schrödinger’s wave mechanics.
76 For the most important case of the hydrogen atom, with C = e2/4πε0, these scales are reduced, respectively,
to the Bohr radius rB (1.10) and the Hartree energy EH (1.13a). Note also that according to Eq. (3.192), for the
so-called hydrogen-like atom (actually, a positive ion), with C = Z(e2/4πε0), these two key parameters are
rescaled as r0 = rB/Z and E0 = Z2EH.
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ξ
ξ

ξ= − +L
d
d

L( ) ( 1) ( ). (3.196)p
q q

q

q p q

from the simple Laguerre polynomials Lp(ξ) ≡ Lp
0(ξ).77 In turn, the easiest way to

obtain Lp(ξ) is to use the following Rodrigues formula78:

ξ
ξ

ξ= ξ ξ−L e
d
d

e( ) ( ). (3.197)
p

p
p

p

Note that in contrast with the associated Legendre functions Pl
m, participating in the

spherical harmonics, all Lp
q are just polynomials, and those with small indices p and

q are indeed rather simple:
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Returning to Eq. (3.195), we see that the natural quantization of the radial
equation (3.193) has brought us a new integer quantum number n. In order to
understand its range, we should notice that according to Eq. (3.197), the highest
power of terms in the polynomial Lp+q is (p + q), and hence, according to
Eq. (3.196), that of Lp

q is p, so that of the highest power in the polynomial
participating in Eq. (3.195) is (n – l − 1). Since the power cannot be negative (to
avoid the unphysical divergence of wavefunctions at r → 0), the radial quantum
number n has to obey the restriction n ⩾ l + 1. Since l, as we already know, may take
values l = 0, 1, 2,…, n may only take the values

= …n 1, 2, 3, (3.199)

What makes this relation very important is the following, most surprising result of
the theory: the eigenenergies corresponding to the wavefunctions (3.179), which are
indexed with three quantum numbers:

ψ θ φ= r Y( ) ( , ), (3.200)n l m n l l
m

, . ,R

depend only on one of them, n:
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i.e. agree with Bohr’s formula (1.12). Because of this reason, n is usually called the
principal quantum number, and the above relation between it and the ‘more
subordinate’ orbital quantum number l is rewritten as

77 In Eqs. (3.196) and (3.197), p and q are non-negative integers, with no relation whatsoever to the particle’s
momentum or electric charge. Sorry for this notation, but it is absolutely common, and can hardly result in any
confusion.
78Named after the same B O Rodrigues, and belonging to the same class as his other famous result, Eq. (3.165)
for the Legendre polynomials.
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⩽ −l n 1. (3.202)

Together with the inequality (3.162), this gives us the following, very important
hierarchy of the three quantum numbers involved in the Bohr atom problem:

⩽ ⩽ ∞ ⇒ ⩽ ⩽ − ⇒ − ⩽ ⩽ +n l n l m l1 0 1 . (3.203)

Taking into account the (2l +1)-degeneracy related to the magnetic number m, and
using the well-known formula for the arithmetic progression79, we see that each
energy level (3.191) has the following orbital degeneracy:

∑ ∑ ∑= + ≡ + = − + ≡
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Due to its importance for atoms, let us spell out the hierarchy (3.203) of a few
lowest-energy states, using the traditional state notation, in which the value of n is
followed by the letter that denotes the value of l:

= = =n l s m1: 0 (one 1 state) 0. (3.205)

= = =
= = ±

n l s m
l p m

2: 0 (one 2 state) 0,
1 (three 2 states) 0, 1.

(3.206)

= = =
= = ±
= = ± ±

n l s m
l p m
l d m

3: 0 (one 3 state) 0,
1 (three 3 states) 0, 1,
2 (five 3 states) 0, 1, 2.

(3.207)

Figure 3.22 shows the plots of the radial functions (3.195) of the listed states. The
most important of them is of course the ground (1s) state with n = 1 and hence
E = −E0/2. According to Eqs. (3.195) and (3.198), its radial function is just

= −r
r

e( )
2

, (3.208)r r
1, 0

0
3/2

/ 0R

while its angular distribution is uniform—see Eq. (3.174). The gap between the
ground energy and the energy E = −E0/8 of the lowest excited states (with n = 2) in a
hydrogen atom (in which E0 = EH ≈ 27.2 eV) is as large as ∼ 10 eV, so that their
thermal excitation requires temperatures as high as ∼105 K, and the overwhelming
part of all hydrogen atoms in the visible Universe are in their ground state. Since
atomic hydrogen makes up about 75% of ‘normal’ matter80, we are very fortunate
that such simple formulas as Eqs. (3.174) and (3.208) describe the atomic states
prevalent in Mother Nature!

79 See, e.g. Eq. (A.8a).
80 Excluding the so-far hypothetical dark matter and dark energy.
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According to Eqs. (3.195) and (3.198), the radial functions of the lowest excited
states, 2s (with n = 2 and l = 0), and 2p (with n = 2 and l = 1) are also not too
complicated:

= − =− −r
r

r
r

e r
r

r
r

e( )
1

(2 )
2 , ( )

1
(2 ) 3

, (3.209)r r r r
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0
3/2

0

/2
2, 1

0
3/2 1/2

0

/20 0R R
⎛
⎝⎜

⎞
⎠⎟

with the former of these states (2s) having a uniform angular distribution, and the
three latter (2p) states, with different m = 0, ±1, having simple angular distributions,
which differ only by their spatial orientation—see Eq. (3.175) and the second row of
figure 3.20. The most important trend here, clearly visible from the comparison of
the two top panels of figure 3.22 as well, is a larger radius of the decay exponent in
the radial functions (2r0 for n = 2 instead of r0 for n = 1), and hence the larger radial
extension of the states. This trend is confirmed by the following general formula81:

= − +r
r

n l l
2

[3 ( 1)]. (3.210)n l,
0 2

The second important trend is that at a fixed n, the orbital quantum number l
determines how fast the wavefunction changes with r near the origin, and how much
it oscillates in the radial direction at larger values of r. For example, the 2s

Figure 3.22. The lowest radial functions of the Bohr atom.

81Note that even at the largest value of l, equal to (n − 1), the second term l(l + 1) in Eq. (3.210) is equal to
(n2 − n), and hence cannot over-compensate the first term 3n2.
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eigenfunction r( )2, 0R is nonvanishing at r = 0, and ‘makes one wiggle’ (has one root)
in the radial direction, while the eigenfunctions 2p equal zero at r = 0, and do not
oscillate in the radial direction. Instead, those wavefunctions oscillate as the
functions of an angle—see the second row of figure 3.20. The same trend is clearly
visible for n = 3 (see the bottom panel of figure 3.22), and continues for the higher
values of n.

The states with l = lmax ≡ n − 1 may be viewed as crude analogs of the circular
motion of a particle in a plane whose orientation defines the quantum number m,
with an almost fixed radius r ≈ r0(n

2 ± n). On the other hand, the best classical image
of the s-state (l = 0) is the purely radial, spherically-symmetric motion of the particle
to and from the attracting center. (The latter image is especially imperfect, because
the motion needs to happen simultaneously in all radial directions.) The classical
language becomes reasonable only for the highly degenerate Rydberg states, with
n ≫ 1, whose linear superpositions may be used to compose wave packets closely
following the classical (circular or elliptic) trajectories of the particle—just as was
discussed in section 2.2 for the free 1D motion.

Besides Eq. (3.210), mathematics gives us several other simple relations for the
radial functions n l,R (and, since the spherical harmonics are normalized to 1, for the
eigenfunctions as the whole), including those that we will use later in the course82:

= =
+ ½

=
+ ½ +

r n r r n l r

r n l l l r

1 1
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1 1
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1 1
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In particular, the first of these formulas means that for any eigenfunction ψn,l,m, with
all its complicated radial and angular dependences, there is a simple relation
between the potential and full energies:

= − = − = − =U C
r

C
n r

E
n

E
1

2 , (3.212)n l
n l

n,
,

2
0

0
2

so that the average kinetic energy of the particle, 〈T〉n,l = En − 〈U〉n,l, is equal to En −
2En = ∣En∣ > 0.

As in the several previous cases we have met, the simple results (3.201), (3.210)–
(3.212) are in a sharp contrast with the rather complicated expressions for the
corresponding eigenfunctions. Historically this contrast gave an additional motiva-
tion for the development of more general approaches to quantum mechanics, that
would replace, or at least complement our brute-force (wave-mechanics) analysis. A
discussion of such an approach will be the main topic of the next chapter.

Rather strikingly, the above classification of the quantum numbers, together with
very modest steals from the further theory, allows a semi-quantitative explanation of

82 The first of these relations may be readily proved using the Heller–Feynman theorem (see chapter 1); this
proof is left for the reader’s exercise, after the more general form of this theorem has been proved in chapter 6.
Note also that the last of Eqs. (3.211) diverges at l = 0, in particular in the ground state (with n = 1, l = 0).

Quantum Mechanics: Lecture notes

3-55



the whole system of chemical elements. The ‘only’ two additions we need are the
following facts, borrowed from the further chapters of this course:

(i) due to their unavoidable interaction with relatively low-temperature environ-
ments, atoms tend to relax into their lowest-energy state, and

(ii) due to the Pauli principle (valid for electrons as the Fermi particles), each
orbital eigenstate discussed above may be occupied with two electrons with
opposite spins.

Of course, atomic electrons do interact, so that their quantitative description
requires quantum mechanics of multiparticle systems, which is rather complex. (Its
main concepts will be discussed in chapter 8.) However, the lion’s share of this
interaction is reduced to simple electrostatic screening, i.e. the partial compensation
of the electric charge of the atomic nucleus, as felt by a particular electron, by other
electrons of the atom. This screening changes the qualitative results (such as the
energy scale E0) dramatically; however, the quantum number hierarchy, and hence
their classification, is not affected.

The system of atoms is most often presented as the famous periodic table of
chemical elements83, whose simple version is shown in figure 3.23. (The table in
figure 3.24 presents a sequential list of the elements and their electron configurations,
following the convention already used in Eqs. (3.205)–(3.207), with the additional
upper index showing the number of electrons with the indicated values of quantum
numbers n and l.) The numbers in the table’s cells, and in the first column of the list,

Figure 3.23. The periodic table of elements, showing their atomic numbers and chemical symbols, as well as their
color-coded basic physical/chemical properties at the so-called ambient (meaning usual laboratory) conditions.

83Also called the Mendeleev table, after D Mendeleev who put forward the concept of the quasi-periodicity of
chemical element properties as functions of Z phenomenologically in 1869. (The explanation of this periodicity
had to wait for 60 more years until the quantum mechanics’ formulation in the late 1920s.)
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are the atomic numbers Z, that physically is the number of protons in the particular
atomic nucleus, and hence the number of electrons in an electrically-neutral atom.

The simplest atom, with Z = 1, is hydrogen (chemical symbol H)—the only atom
for which each theory discussed above is quantitatively correct84. According to
Eq. (3.191), the 1s ground state of its only electron corresponds to the quantum

Figure 3.24. Atomic electron configurations. The upper index shows the number of electrons in the states with
the indicated quantum numbers n (the first digit) and l (letter-coded as was discussed above).

84 Besides very small fine-structure and hyperfine-splitting corrections—to be discussed, respectively, in chapters
6 and 8.
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number values n = 1, l = 0, and m = 0—see Eq. (3.205). In most versions of the
periodic table, the cell of H is placed in the top left corner.

In the next atom, helium (symbol He, Z = 2), the same orbital quantum state (1s)
is filled with two electrons with different spins. As will be discussed in detail in
chapter 8, electrons of the same atom are actually indistinguishable, and their
quantum states are not independent, and may be entangled. These factors are
important for several properties of helium atoms (and heavier elements as well);
however, a bit counter-intuitively, for atom classification purposes, they are not
crucial. Due to the twice higher electric charge of the nucleus of the helium atom, i.e.
the twice higher value of the constant C in Eq. (3.190), resulting in a four-fold
increase of the constant E0 given by Eq. (3.192), the binding energy of each electron
is crudely four times higher than that of the hydrogen atom—though the electron
interaction decreases it by about 25%—see section 8.2. This is why taking one
electron away (i.e. the positive ionization of the helium atom) requires a very high
energy, ∼23.4 eV, which is not available in the usual chemical reactions. On the
other hand, a neural helium atom cannot bind one more electron (i.e. form a
negative ion) either. As a result, the helium, and all other elements with fully
completed electron shells (meaning the sets of states with eigenenergies well
separated from higher energy levels) is a chemically inert noble gas, thus starting
the whole right-most column of the periodic table, allocated for such elements.

The situation changes rather dramatically as we move to the next element, lithium
(Li), with Z = 3 electrons. Two of them are still accommodated by the inner shell
with n = 1 (listed in figure 3.24 as the helium shell [He]), but the third one has to
reside in the next shell with n = 2, l = 0, and m = 0, i.e. in the 2s state. According to
Eq. (3.201), the binding energy of this electron is much lower, especially if we take
into account that according to Eqs. (3.210) and (3.211), the 1s electrons of the [He]
shell are much closer to the nucleus and almost completely compensate two thirds of
its electric charge +3e. As a result, the 2s-state electron is approximately, but
reasonably well described by Eq. (3.201) with Z = 1 and n = 2, giving a binding
energy close to just 3.4 eV (experimentally, ∼5.39 eV), so that a lithium atom can
give out that electron rather easily—to either atoms of other elements to form
chemical compounds, or into the common conduction band of the solid-state
lithium; as a result, at the ambient conditions it is a typical alkali metal. The
similarity of chemical properties of lithium and hydrogen, with the chemical valence
of one85, places Li as the starting element of the second period (row), with the first
period limited to only H and He—see figure 3.23.

In the next element, beryllium (symbol Be, Z = 4), the 2s state (n = 2, l = 0, m = 0)
picks up one more electron, with the opposite spin. Due to the higher electric charge
of the nucleus, Q = 4e, with only half of it compensated by 1s electrons of the [He]
shell, the binding energy of the 2s electrons is somewhat higher than that in lithium,

85 The chemical valence (or ‘valency’) is a not very precise term, physically describing the number of an atom’s
electrons involved in a chemical reaction. For the same atom, especially with a large number of electrons in the
outer, unfilled shell, this number may depend on the chemical compound formed. (For example, the valence of
the atoms of iron is 2 in the ferrous oxide, FeO, and is 3 in the ferric oxide, Fe2O3.)
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so that the ionization energy increases to ∼9.32 eV. As a result, beryllium is also
chemically active with the valence of two, but not as active as lithium, and is also
metallic in its solid-state phase, but with a lower electric conductivity than lithium.

Moving in this way along the second row of the periodic table (from Z = 3 to
Z = 10), we see a gradual filling of the rest of the total 2n2 = 2 × 22 = 8 different
electron states of the n = 2 shell (see Eq. (3.204), with the additional spin degeneracy
factor of 2), including two 2s states with m = 0, and six 2p states with m = 0, ±1,86

with a gradually growing ionization potential (up to ∼21.6 eV in Ne with Z = 10),
i.e. a growing reluctance to conduct electricity or form positive ions. However, the
final elements of the row, such as oxygen (O, with Z = 8) and especially fluorine (F,
with Z = 9) can readily pick up extra electrons to fill up their 2p states, i.e. form
negative ions. As a result, these elements are chemically active, with the double
valence for oxygen and the single valence for fluorine. However, the final element of
this row, neon, has its n = 2 shell completely full, and cannot form a stable negative
ion. This is why it is a noble gas, like helium. Traditionally, in the periodic table such
elements are placed right under helium (figure 3.23), to emphasize the similarity of
their chemical and physical properties. But this necessitates making an at least six-
cell gap in the 1st row. (Actually, the gap is often made larger, to accommodate next
rows—keep reading.)

Period 3, i.e. the 3rd row of the table, starts exactly like period 2, with sodium
(Na, with Z = 11), also a chemically active alkali metal whose atom features 10
electrons filling the shells with n = 1 and n = 2 (in figure 3.24, collectively called the
neon shell [Ne]), plus one electron in the 3s state (n = 3, l = 0, m = 0), which may be
again reasonably well described by the hydrogen atom theory—see, e.g. the red
curve on the last panel of figure 3.22. Continuing along this row, we could naively
expect that, according to Eq. (3.204), and with the account of double spin
degeneracy, this period of the table should have 2n2 = 2 × 32 = 18 elements, with
a gradual, sequential filling of two 3s states, then six 3p states, and then ten 3d states.
However, here we run into a big surprise: after argon (Ar, with Z = 18), a relatively
inert element with the ionization energy of ∼15.7 eV due to the fully filled 3s and 3p
shells, the next element, potassium (K, with Z = 19) is an alkali metal again!

The reason for that is the difference of the actual electron energies from those of
the hydrogen atom, which is due mostly to inter-electron interactions, and gradually
accumulates with the growth of Z. It may be semi-quantitatively understood from
the results of section 3.6. In hydrogen-like atoms, the electron state energies do not
depend on the quantum number l (as well as m)—see Eq. (3.201). However, the
orbital quantum number does affect the wavefunction of an electron. As figure 3.22
shows, the larger l the less the probability for an electron to be close to the nucleus,
where its positive charge is less compensated by other electrons. As a result of this
effect (and also the relativistic corrections to be discussed in section 6.3), the
electron’s energy grows with l. Actually, this effect is visible even in the period 2 of
the table: it manifests itself in the filling order—the p states after the s states.

86 The specific order of filling of the states within each shell follow the so-called Hund rules—see section 8.3.
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However, for potassium (K, with Z = 19) and calcium (Ca, with Z = 20), the
energies of the 3d states become so high that the energies of two 4s states are lower,
and they are filled first. As described by Eq. (3.210), and also by the first of Eqs.
(3.211), the effect of the principal number n on the distance from the nucleus is much
stronger than that of l, so that the 4s wavefunctions of K and Ca are relatively far
from the nucleus, and determine the chemical valence (equal to 1 and 2, corre-
spondingly) of these elements. The next atoms, from Sc (Z = 21) to Zn (Z = 30), with
the gradually filled ‘internal’ 3d states, are the so-called transition metals whose
(comparable) ionization energies and chemical properties are determined by the 4s
electrons.

This fact is the origin of the difference between various forms of the ‘periodic’
table. In its most popular option, shown in figure 3.23, K is used to start the next
period 4, and then a new period is started each time and only when the first electron
with the next principal quantum number (n) appears87. This topology provides a
very clear mapping on the chemical properties of the first element of each period (an
alkali metal), as well as its last element (a noble gas). This also automatically means
making gaps in all previous rows. Usually, this gap is made between the atoms with
completely filled s states and with the first electron in a p state, because here the
properties of the elements make a somewhat larger step. (For example, the step from
Be to B makes the material an insulator, but the step fromMg to Al does not make a
similar difference.) As a result, the elements of the same column have only
approximately similar chemical valence and physical properties.

In order to accommodate longer lowest rows, such representation is inconvenient,
because the whole table would be too broad. This is why the so-called rare earths,
including lanthanides (with Z from 57 to 70, of the 6th row, with a gradual filling of
the 4f and 5d states) and the actinides (Z from 89 to 103, of the 7th row, with a gradual
filling of the 5f and 6d states), are usually represented as outlet rows—see figure 3.23.
This is quite acceptable for the purposes of the standard chemistry, because the
chemical properties of the elements within each such group are rather close.

To summarize this very short review88, the ‘periodic table of elements’ is not
periodic in the strict sense of the word. Nevertheless, it has had enormous historic
significance for chemistry, as well as atomic and solid state physics, and is still very
convenient for many purposes. For our course, the most important aspect of its
discussion is the surprising possibility to describe, at least for classification purposes,
such a complex multi-electron system as an atom as a set of quasi-independent
electrons in certain quantum states indexed with the same quantum numbers n, l,
and m as those of the hydrogen atom. This fact enables the use of various
perturbation theories, which give more quantitative description of atomic properties.
Some of these techniques will be reviewed in chapters 6 and 8.

87Another popular option is to return to the first column as soon as an atom has one electron in the s state (like
for Cu, Ag, and Au, in addition to the alkali metals).
88 For a bit more detailed (but still succinct) discussion of the valence and other chemical aspects of atomic
structure, I can recommend chapter 5 of the very clear text by L Pauling, General Chemistry, Dover, 1988.

Quantum Mechanics: Lecture notes

3-60



3.8 Spherically-symmetric scatterers
The machinery of the Legendre polynomials and the spherical Bessel functions,
discussed in section 3.6, may be also used for an analysis of particle scattering by
spherically-symmetric potentials (3.155), well beyond the Born approximation
(section 3.3), provided that such a potential U(r) is also localized, i.e. reduces
sufficiently fast at r →∞. (The quantification of this condition is left for the reader’s
exercise.)

Indeed, directing the axis z along the direction of the incident plane de Broglie
wave ψi, and taking its origin in the center of the scatterer, we may expect the
scattered wave ψs to be (at least) axially symmetric, so that its expansion in the
series over the spherical harmonics includes only the terms with m = 0. Hence,
the solution (3.64) of the stationary Schrödinger equation (3.63) in this case may be
represented as89

∑ψ ψ ψ θ= + = +
=

∞

a e r P( ) (cos ) , (3.213)
l 0

ikz
l li s i R

⎡
⎣
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⎤
⎦
⎥⎥

where ≡ ℏk E(2 ) /1/2m is defined by the energy E of the incident particle, while the
radial functions r( )lR have to satisfy Eq. (3.181), and be finite at r → 0. At large
distances r ≫ R, where R is the effective radius of the scatterer, the potential U(r) is
negligible, and Eq. (3.181) is reduced to Eq. (3.183). In contrast to its analysis in
section 3.6, we should look for its solution using a linear superposition of the
spherical Bessel functions of both kinds, jl(kr) and yl(kr), because Eq. (3.183) is now
invalid at r → 0, and our former argument for dropping the latter functions is no
longer valid:

= + ≫r A j kr B y kr r R( ) ( ) ( ), at . (3.214)l l l l lR

Here Al and Bl are some complex coefficients, determined by the scattering potential
U(r), i.e. by the solution of Eq. (3.181) at r ∼ R.

As the explicit expressions (3.186) show, the spherical Bessel functions jl(ξ) and
yl(ξ) represent standing de Broglie waves, with equal real amplitudes, so that their
simple linear combinations (called the spherical Hankel functions of the first and
second kind),

ξ ξ ξ ξ ξ ξ≡ + ≡ −h j iy h j iy( ) ( ) ( ), and ( ) ( ) ( ), (3.215)l l l l l l
(1) (2)

represent traveling waves propagating, respectively, from the origin (i.e. from the
center of the scatterer), and toward the origin, from infinity. In particular, at ξ≫ 1, l,
i.e. at large distances r ≫ 1/k, l/k,90

89 The particular terms in the sum over l are frequently called the partial waves.
90 For arbitrary l, this result may be confirmed using Eqs. (3.185) and the asymptotic formulas for the ‘usual’
Bessel functions—see, e.g. Part EM Eqs. (2.135) and (2.152), valid for an arbitrary (not necessarily integer)
index n.
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But using the same physical argument as in the beginning of section 3.1, we may
conclude that in the case of a localized scatterer, there should be no latter waves at
r≫ R; hence, we have to require the amplitude of the term proportional to hl

(2) to be
zero. With the relations reciprocal to Eqs. (3.125),
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which enable us to rewrite Eq. (3.214) as
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this means that the combination (Al + iBl) has to be equal zero, so that Bl = iAl.
Hence we have just one unknown coefficient (say, Al) for each l,91 and may rewrite
Eq. (3.218) in an even simpler form:

= + ≡ ≫r A j kr iy kr A h kr r R( ) ( ) ( ) ( ), at , (3.219)l l l l l l
(1)R ⎡⎣ ⎤⎦

and use Eqs. (3.213) and (3.216) to write the following expression for the scattered
wave at large distances:
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Comparing this expression with the general Eq. (3.81), we see that for a
spherically-symmetric, localized scatterer,
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so that the differential cross-section (3.84) is
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91Moreover, using the conservation of the orbital momentum, to be discussed in section 5.6, it is possible to
show that this complex coefficient may be further reduced to just one real parameter, usually recast as the
partial phase shift δl between the lth spherical harmonics of the incident and scattered waves. However, I will
not use this notion, because practical calculations are more physically transparent (and not more complex)
without it.
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The last expression is more convenient for the calculation of the total cross-section
(3.59):
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where ξ ≡ cos θ, because this result may be much simplified by using Eq. (3.167):
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physically, this reduction of the double sum to a single one means that due to the
orthogonality of the spherical functions, the total scattering probability outflows due
to each partial wave just add up.

Hence the solution of the scattering problem is reduced to the calculation of the
partial wave amplitudes Al—and for the total cross-section, merely of their
magnitudes. This task is facilitated by using the following Rayleigh formula for
the expansion of the incident plane wave’s exponent into a series over the Legendre
polynomials92,

∑ θ≡ = +
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∞
θe e i l j kr P(2 1) ( ) (cos ). (3.225)
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As the simplest example, let us calculate the scattering by a completely opaque
and ‘hard’ (meaning sharp-boundary) sphere, which may be described by the
following potential:

= +∞ <
<

U r
r R
R r
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(3.226)

⎧⎨⎩
In this case, the total wavefunction has to vanish at r ⩽ R, and hence for the external
problem (r ⩾ R) the sphere enforces the boundary condition ψ ≡ ψ0 + ψs = 0 for all
values of θ, at r = R. With Eqs. (3.213), (3.220) and (3.225), this condition becomes

∑ θ+ + =
=

∞

a R i l j kR P( ) (2 1) ( ) (cos ) 0. (3.227)
l 0

l
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Due to the orthogonality of the Legendre polynomials, this condition may be
satisfied for all angles θ only if all the coefficients before all Pl(cosθ) vanish, i.e. if

= − +R i l j kR( ) (2 1) ( ). (3.228)l
l

lR

92 It may be proved using the Rodrigues formula (3.165) and integration by parts—the task left for the reader’s
exercise.
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On the other hand, for r > R, U(r) = 0, so that Eq. (3.183) is valid, and its outward-
wave solution (3.219) has to be valid even at r → R, giving

= +R A j kR iy kR( ) ( ) ( ) . (3.229)l l l lR ⎡⎣ ⎤⎦
Requiring the two last expressions to give the same result, we get
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As figure 3.25a shows, the first of these results describes an angular structure of
the scattered de Broglie wave, qualitatively similar to that given by the Born
approximation—cf Eq. (3.98) and figure 3.10. Namely, at low particle’s energies
(kR ≪ 1), the scattering is essentially isotropic93, while in the opposite, high-energy
limit kR ≫ 1, it is mostly confined to small angles θ ∼ π/kR ≪ 1, and exhibits
numerous local destructive-interference minima at angles θn ∼ πn/kR. However, in
our current (exact!) theory these minima are always finite, because the theory
describes the effective bending of the de Broglie waves along the back side of the
sphere, which smears the interference pattern.

Figure 3.25. Particle scattering by an opaque, hard sphere: (a) the differential cross-section, normalized by the
geometric cross-section σg ≡ πR2 of the sphere, as a function of the scattering angle θ, and (b) the (similarly
normalized) total cross-section and its lowest spherical components, as functions of the dimensionless product
kR ∝ E1/2.

93 In this limit, the scattering is dominated by the lowest spherical-harmonic component with l = 0—see, e.g.
figure 3.25b.
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Such bending is also responsible for a rather counter-intuitive fact, described by
the second of Eqs. (3.231), and clearly visible in figure 3.25b: even at kR → ∞, the
total cross-section σ of scattering tends to 2σg ≡ 2πR2, rather than to σg as in the
purely-classical scattering theory. (The fact that at kR ≪ 1, the cross-section is also
larger than σg, approaching 4σg at kR → 0, is much less surprising, because in this
limit the de Broglie wavelength λ = 2π/k is much longer than the sphere’s radius R, so
that the wave’s propagation is affected by the whole sphere.)

The above analysis may be readily generalized to the case of a uniform, step-like, but
finite potential (3.97)—a problem left for the reader’s exercise. For a finite and smooth
scattering potential U(r), plugging Eq. (3.225) into Eq. (3.213) and the latter one into
Eq. (3.66), requiring the coefficients before each angular function Pl(cosθ) to be
balanced, and canceling the common coefficient a0, we get the following inhomoge-
neous generalization of Eq. (3.181) for the radial functions defined by Eq. (3.213):
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This differential equation has to be solved, in the whole scatterer volume (i.e. for all
r ∼ R) with the boundary conditions for the functions r( )lR to be finite at r → 0, and
to tend to the asymptotic form (3.219) at r ≫ R. The last requirement enables the
evaluation of the coefficients Al that are needed for spelling out Eqs. (3.222) and
(3.224). Unfortunately, due to the lack of time, I have to refer the reader interested in
such cases to special literature94.

3.9 Problems
Problem 3.1. A particle of energy E is incident (see figure below, within the plane of
drawing) on a sharp potential step:

= <
<

U
x

U x
r( )

0, for 0,
, for 0 .0

⎧⎨⎩
Calculate the particle’s reflection probability R as a function of the incidence angle
θ; sketch and discuss this function for various magnitudes and signs of U0.

Problem 3.2.* Analyze how the Landau levels (3.50) are modified by an additional
uniform electric field E , directed along the plane of the particle’s motion.
Contemplate the physical meaning of your result, and its implications for the

94 See, e.g. [16].
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quantum Hall effect in a gate-defined Hall bar. (The area l × w area of such a bar
(see figure 3.6) is defined by metallic gate electrodes parallel to the 2D electron gas
plane—see figure below. The negative voltage Vg, applied to the gates, squeezes the
2D gas from the area under the gates into the complementary, Hall-bar part of the
plane.)

Problem 3.3. Analyze how the Landau levels (3.50) are modified if a 2D particle is
confined in an additional 1D potential well U(x) = mω0

2x2/2.

Problem 3.4. Find the eigenfunctions of a spinless, charged 3D particle moving in
‘crossed’ (mutually perpendicular), uniform electric and magnetic fields, with
≪ cE B . For each eigenfunction, calculate the expectation value of the particle’s

velocity in the direction perpendicular to both fields, and compare the result with the
solution of the corresponding classical problem.

Hint: Generalize Landau’s solution for 2D particles, discussed in section 3.2.

Problem 3.5. Use the Born approximation to calculate the angular dependence and
the full cross-section of scattering of an incident plane wave, propagating along the
x-axis, by the following pair of point inhomogeneities:

δ δ= − + +U
a a

r r n r n( )
2 2

.z zW ⎜ ⎟ ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎤
⎦⎥

Analyze the results in detail. Derive the condition of the Born approximation’s
validity for such delta-functional scatterers.

Problem 3.6. Complete the analysis of the Born scattering by a uniform spherical
potential (3.97), started in section 3.3, by calculation of its total cross-section.
Analyze the result in the limits kR ≪ 1 and kR ≫1.

Problem 3.7. Use the Born approximation to calculate the differential cross-section
of particle scattering by a very thin spherical shell, whose potential may be
approximated as

δ= −U r r R( ) ( ).W

Analyze the results in the limits kR ≪ 1 and kR ≫ 1, and compare them with those
for a uniform sphere considered in section 3.3.

Problem 3.8. Use the Born approximation to calculate the differential and full cross-
sections of electron scattering by a screened Coulomb field of a point charge Ze, with
the electrostatic potential
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ϕ
πε

= λ−Ze
r

er( )
4

,r

0

neglecting spin interaction effects, and analyze the result’s dependence on the
screening parameter λ. Compare the results with those given by the classical
(‘Rutherford’) formula95 for the unscreened Coulomb potential (λ → 0), and
formulate the condition of Born approximation’s validity in this limit.

Problem 3.9. A quantum particle with electric charge Q is scattered by a localized
distributed charge with a spherically-symmetric density ρ(r), and zero total charge.
Use the Born approximation to calculate the differential cross-section of the forward
scattering (with the scattering angle θ = 0), and evaluate it for the scattering of
electrons by a hydrogen atom in its ground state.

Problem 3.10. Reformulate the Born approximation for the 1D case. Use the result
to find the scattering and transfer matrices of a ‘rectangular’ (flat-top) scatterer

=
<

U x
U x d

( )
, for /2,

0, otherwise.
0⎧⎨⎩

Compare the results with the those of the exact calculations carried out earlier in
chapter 2, and analyze how their relation changes in the eikonal approximation.

Problem 3.11. In the tight-binding approximation, calculate the lowest eigenenergies
and the corresponding eigenstates of a particle placed into a system of three similar,
weakly coupled potential wells located in the vertices of an equilateral triangle.

Problem 3.12. The figure below shows a fragment of a periodic 2D lattice, with the
red and blue points showing the location of different local potentials—say, different
atoms.

(i) Find the reciprocal lattice and the 1st Brillouin zone.
(ii) Calculate the wave number k of the monochromatic de Broglie wave incident

along axis x, at which the lattice creates the first-order diffraction peak within
the [x, y] plane, and the direction toward this peak.

(iii) Semi-qualitatively, describe the evolution of the intensity of the peak when the
local potentials, represented by the different points, become similar.

95 See, e.g. Part CM section 3.5, in particular Eq. (3.73).
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Problem 3.13. For the 2D hexagonal lattice (figure 3.12b):

(i) find the reciprocal lattice Q and the 1st Brillouin zone;
(ii) use the tight-binding approximation to calculate the dispersion relation E(q) for

a 2D particle moving in a potential with such periodicity, with an energy close
to the eigenenergy of the axially-symmetric states quasi-localized at the
potential minima;

(iii) analyze and sketch (or plot) the resulting dispersion relation E(q) inside the 1st
Brillouin zone.

Problem 3.14. Complete the tight-binding approximation calculation of the band
structure of the honeycomb lattice, started in the end of section 3.4. Analyze the
results; in particular prove that the Dirac points qD are located in the corners of the
1st Brillouin zone, and express the velocity nv , participating in Eq. (3.122), in terms of
the coupling energy δn. Show that the final results do not change if the quasi-localized
wavefunctions are not axially-symmetric, but are proportional to exp{imφ}—as they
are, with m = 1, for the 2pz electrons of carbon atoms in graphene, which are
responsible for its transport properties.

Problem 3.15. Examine basic properties of the so-called Wannier functions
defined as

∫ϕ ψ≡ × − ⋅e d qr r( ) const ( ) ,i
R q

q R

BZ

3

where ψq(r) is the Bloch wavefunction (3.108), R is any vector of the Bravais lattice,
and the integration over the quasi-momentum q is extended over any (e.g. the first)
Brillouin zone.

Problem 3.16. Evaluate the long-range electrostatic interaction (the so-called
London dispersion force) between two similar, electrically-neutral atoms or mole-
cules, modeling each of them as an isotropic 3D harmonic oscillator with the electric
dipole moment d = qs, where s is the oscillator’s displacement from its equilibrium
position.

Hint: Represent the total Hamiltonian of the system as a sum of Hamiltonians of
independent 1D harmonic oscillators, and calculate their total ground-state energy
as a function of distance between the dipoles96.

Problem 3.17. Derive expressions for the eigenfunctions and the corresponding
eigenenergies of a 2D particle of mass m, free to move inside a thin round disk of
radius R. What is the degeneracy of each energy level? Calculate five lowest energy
levels with an accuracy better than 1%.

96 This explanation of the interaction between electrically-neutral atoms was put forward in 1930 by F London,
on the background of a prior (1928) work by C Wang. Note that in some texts this interaction is (rather
inappropriately) referred to as the ‘van der Waals force’, though it is only one, long-range component of the
van der Waals model—see, e.g. Part SM section 4.1.
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Problem 3.18. Calculate the ground-state energy of a 2D particle of mass m,
localized in a very shallow flat-bottom potential well

ρ
ρ
ρ

=
− <

>
< ≪ ℏ

U
U R

R
U

R
( )

, for ,
0, for ,

with 0 .0
0

2

2

⎧⎨⎩ m

Problem 3.19. Estimate the energy E of the localized ground state of a particle of
mass m, in an axially-symmetric 2D potential well of a finite radius R, with an
arbitrary but very small potential U(ρ). (Quantify this condition.)

Problem 3.20. Spell out the explicit form of the spherical harmonics θ φY ( , )4
0 and

θ φY ( , )4
4 .

Problem 3.21. Calculate 〈x〉 and 〈x2〉 in the ground state of the planar and spherical
rotators of radius R. What can you say about the averages 〈px〉 and 〈px

2〉?

Problem 3.22. A spherical rotator, with r ≡ (x2 + y2+ z2)1/2 =R = const, of massm is in
a state with the following wavefunction: ψ = const × (1/3 + sin2θ). Calculate its energy.

Problem 3.23. According to the discussion in the beginning of section 3.5,
eigenfunctions of a 3D harmonic oscillator may be calculated as products of three
1D ‘Cartesian oscillators’—see, in particular Eq. (3.125), with d = 3. However,
according to the discussion in section 3.6, the wavefunctions of the type (3.200),
proportional to the spherical harmonics Yl

m, are also eigenstates of this spherically-
symmetric system. Represent the wavefunctions (3.200) of:

(i) the ground state of the oscillator, and
(ii) each of its lowest excited states,

as linear combinations of products of 1D oscillator’s wavefunctions. Also, calculate
the degeneracy of the nth energy level of the oscillator.

Problem 3.24. Calculate the smallest depthU0 of a spherical, flat-bottom potential well

= − <
<

U
U r R

R r
r( )

, for ,
0, for ,

0⎧⎨⎩
at which it has a bound (localized) eigenstate. Does such a state exist for a very
narrow and deep well δ= −U r r( ) ( )W , with a positive and finiteW ?

Problem 3.25. A 3D particle of mass m is placed into a spherically-symmetric
potential well with −∞ < U(r) ⩽ U(∞) = 0. Relate its ground-state energy to that of
a 1D particle of the same mass, moving in the following potential well:

′ =
⩾

+∞ ⩽
U x

U x x
x

( )
( ), for 0,

, for 0.

⎧⎨⎩
In the light of the found relation, discuss the origin of the difference between the
solutions of the previous problem and problem 2.17.
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Problem 3.26. Calculate the smallest value of the parameter U0, for that the
following spherically-symmetric potential well,

= − >−U r U e U R( ) , with , 0,r R
0

/
0

has a bound (localized) eigenstate.

Hint: You may like to introduce the following new variables: ≡f rR and ξ ≡ Ce-r/2R,
with an appropriate choice of the constant C.

Problem 3.27. A particle moving in a certain central potential U(r), with U(r)→ 0 at
r → ∞, has a stationary state with the following wavefunction:

ψ θ= α β−Cr e cos ,r

where C, α, and β > 0 are constants. Calculate:

(i) the probabilities of all possible values of the quantum numbers m and l,
(ii) the confining potential, and
(iii) the state’s energy.

Problem 3.28. Use the variational method to estimate the ground-state energy of a
particle of mass m, moving in the following spherically-symmetric potential:

=U a rr( ) .4

Problem 3.29. Use the variational method, with the trial wavefunction ψtrial = const/
(r + a)b, where both a > 0 and b > 1 are fitting parameters, to estimate the ground-
state energy of the hydrogen-like atom/ion with the nuclear charge +Ze. Compare
the solution with the exact result.

Problem 3.30. Calculate the energy spectrum of a particle moving in a monotonic,
but otherwise arbitrary attractive spherically-symmetric potential U(r) < 0, in the
approximation of very large orbital quantum numbers l. Formulate the quantitative
condition(s) of validity of your theory. Check that for the Coulomb potential U(r) =
−C/r, your result agrees with Eq. (3.201).

Hint: Try to solve Eq. (3.181) approximately, introducing the same new function,
≡f r r r( ) ( )R , as was already used in section 3.1 and in the solutions of a few earlier

problems.

Problem 3.31. An electron had been in the ground state of a hydrogen-like atom/ion
with nuclear charge Ze, when the charge suddenly changed to (Z + 1)e.97 Calculate
the probabilities for the electron of the changed system to be:

(i) in the ground state, and
(ii) in the lowest excited state.

97 Such a fast change happens, for example, at the beta-decay, when one of a nucleus’s neutrons suddenly turns
into a proton, emitting a high-energy electron and a neutrino, which leave the system very fast (instantly on the
atomic time scale), and do not affect directly the atom transition’s dynamics.
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Problem 3.32. Due to a very short pulse of an external force, the nucleus of a
hydrogen-like atom, initially at rest in its ground state, starts moving with velocity v.
Calculate the probability Wg that the atom remains in its ground state. Evaluate the
energy to be given, by the pulse, to a hydrogen atom in order to reduce Wg to 50%.

Problem 3.33. Calculate 〈x2〉 and 〈px
2〉 in the ground state of a hydrogen-like atom/

ion. Compare the results with the Heisenberg’s uncertainty relation. What do these
results tell us about the electron’s velocity in the system?

Problem 3.34. Use the Hellmann–Feynman theorem (see problem 1.5) to prove:

(i) the first of Eqs. (3.211), and
(ii) the fact that for a spinless particle in an arbitrary spherically-symmetric

attractive potential U(r), the ground state is always an s-state (with the orbital
quantum number l = 0).

Problem 3.35. For the ground state of a hydrogen atom, calculate the expectation
values of E and 2E , where EE is the electric field created by the atom, at distances
r≫ r0 from its nucleus. Interpret the resulting relation between 〈 〉2E and 〈 〉2E , at the
same observation point.

Problem 3.36. Calculate the condition at which a particle of massm, moving in the
field of a very thin spherically-symmetric shell, with

δ= −U r Rr( ) ( ),W

and < 0W , has at least one localized (‘bound’) stationary state.

Problem 3.37. Calculate the lifetime of the lowest metastable state of a particle in
the same spherical-shell potential as in the previous problem, but now with > 0W ,
for sufficiently largeW . (Quantify this condition.)

Problem 3.38. A particle of massm and energy E is incident on a very thin spherical
shell of radius R, whose localized states were the subject of two previous problems.

(i) Derive the general expressions for the differential and total cross-sections of
scattering.

(ii) Spell out the contribution σ0 to the full cross-section σ, due to the spherically-
symmetric component of the scattered de Broglie wave.

(iii) Analyze the result for σ0 in the limits of very small and very large magnitudes of
W , for both signs of this parameter. In particular, in the limit → +∞W , relate
the result to the metastable state’s lifetime τ calculated in the previous problem.

Problem 3.39. Calculate the spherically-symmetric contribution σ0 to the total cross-
section of particle scattering by a uniform sphere of radius R, described by the
potential
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= <
U r

U r R
( )

, for ,
0, otherwise.

0⎧⎨⎩
Analyze the result, and give an interpretation of it most remarkable features.

Problem 3.40. Use the finite difference method with the step h = a/2 to calculate as
many eigenenergies as possible, for a particle confined to the interior of:

(i) a square with side a, and
(ii) a cube with side a,

with hard walls. For the square, repeat the calculations, using a finer step: h = a/3.
Compare the results for different values of h with each other and with the exact
formulas.

Hint: It is advisable to first solve (or review the solution of) the similar 1D problem
in chapter 1, or start from reading about the finite difference method98. Also: try to
exploit the problem’s symmetry.
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Chapter 4

Bra–ket formalism

The objective of this chapter is to describe the Dirac’s ‘bra–ket’ formalism of quantum
mechanics, which not only overcomes some inconveniences of wave mechanics, but also
allows a natural description of such intrinsic properties of particles as their spin. In the
course of discussion of the formalism I will give only a few simple examples of its
application, leaving more involved cases for the following chapters.

4.1 Motivation
As the reader could see from the previous chapter of these notes, wave mechanics
gives many results of primary importance. Moreover, it is mostly sufficient for many
applications, for example, for solid state electronics and device physics. However, in
the course of our survey we have filed several grievances about this approach. Let me
briefly summarize these complaints:

(i) Attempts to analyze temporal evolution of quantum systems within this
approach beyond the trivial time behavior of the stationary states, described by
Eq. (1.62), run into technical difficulties. For example, we could derive Eq. (2.151)
describing the metastable state’s decay, or Eq. (2.181) describing the quantum
oscillations in coupled wells, only for the simplest potential profiles, though it is
intuitively clear that such simple results should be common for all problems of this
kind. Solving such problems for more complex potential profiles would entangle the
time evolution analysis with the calculation of the spatial distribution of the
evolving wavefunctions—which (as we could see in sections 2.9 and 3.6) may be
rather complex even for simple time-independent potentials. Some separation of
the spatial and temporal dependences is possible using perturbation approaches (to
be discussed in chapter 6), but even those would lead, in the wavefunction language,
to very cumbersome formulas.
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(ii) The last statement is also correct for other issues that are conceptually
addressable within the wave mechanics, e.g. the Feynman path integral approach,
coupling to environment, etc. Pursuing them in wave mechanics would lead to
formulas so bulky that I had postponed their discussion until we have got a more
compact formalism on hand.

(iii) In the discussion of several key problems (for example the harmonic
oscillator and spherically-symmetric potentials) we have run into rather complicated
eigenfunctions coexisting with very simple energy spectra—that infer some simple
background physics. It is very important to get this physics revealed.

(iv) In the wave mechanics postulates formulated in section 1.2, the quantum
mechanical operators of the coordinate and momentum are treated rather unequally—
see Eqs. (1.26b). However, some key expressions, e.g. for the fundamental eigen-
function of a free particle,

⋅
ℏ{ }i

p r
exp , (4.1)

or the harmonic oscillator’s Hamiltonian,

ωˆ = ˆ + ˆH
m

p
m

r
1

2 2
, (4.2)2 0

2
2

just beg for a similar treatment of coordinates and momenta.

However, the strongest motivation for a more general formalism comes from
wave mechanics’ conceptual inability to describe elementary particles’ spins and
other internal quantum degrees of freedom, such as quark flavors or lepton numbers.
In this context, let us review the basic facts on spin (which is a very representative
and experimentally the most accessible of all internal quantum numbers), to
understand what a more general formalism has to explain—as a minimum.

Figure 4.1 shows the conceptual scheme of the simplest spin-revealing experi-
ment, first carried out by O Stern and W Gerlach in 1922.1 A collimated beam of

Figure 4.1. The simplest Stern–Gerlach experiment.

1 To the best of my knowledge, the concept of spin as a measure of the internal rotation of a particle was first
suggested by R Kronig, then a 20 year-old student, in January 1925, a few months before two other students,
G Uhlenbeck and S Goudsmit—to whom the idea is usually attributed. The concept was then accepted and
developed quantitatively by W Pauli.

Quantum Mechanics: Lecture notes

4-2



electrons from a natural source such as a heated cathode, is passed through a gap
between the poles of a strong magnet, whose magnetic fieldBB, (in figure 4.1, directed
along the z-axis) is non-uniform, so that both zB and d dz/zB are not equal to zero.
The experiment shows that the beam splits into two parts of equal intensity.

This result may be semi-quantitatively explained on classical, though somewhat
phenomenological grounds by assuming that each electron has an intrinsic,
permanent magnetic dipole moment m. Indeed, classical electrodynamics2 tells us
that the potential energy U of a magnetic dipole in an external magnetic field BB is
equal to (−m ⋅ BB), so that the force acting on the particle,

∇ ∇= − = − − ⋅UF m( ), (4.3)BB

has a nonvanishing vertical component

= − ∂
∂

− ⋅ ≡ ∂
∂

F
z

m m
z

( ) . (4.4)z z z z
zB

B

Hence if we further assume that the electron has an intrinsic magnetic moment, with
two equally probable discrete values of mz = ±μ (though such discreteness does not
follow from any classical model of the particle), this may explain the Stern–Gerlach
effect qualitatively. The quantitative explanation of the beam splitting angle requires
the magnitude of μ to be equal (or close) to the so-called Bohr magneton3

μ ≡ ℏ ≈ × −e
m2

0.9274 10
J
T

. (4.5)B
e

23

However, as we will see below, this value cannot be explained by any internal
motion of the electron, say its rotation about the axis z. More importantly, this semi-
classical phenomenology cannot explain, even qualitatively, the results of the set of

Figure 4.2. Three multi-stage Stern–Gerlach experiments. The boxes SG (…) denote magnets similar to one
shown in figure 4.1, with the field oriented in the indicated direction.

2 See, e.g. Part EM section 5.4, in particular Eq. (5.100).
3A good mnemonic rule is that it is close to 1 K T−1. In the Gaussian units, μB ≡ ℏe/2mec ≈ 0.9274 × 10−20 erg G−1.
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multi-stage Stern–Gerlach experiments, shown in figure 4.2. In the first of the
experiments, the electron beam is first passed through a magnetic field (and its
gradient) oriented along the z-axis, just as in figure 4.1. Then one of the two resulting
beams is absorbed (or otherwise removed from the setup), while the other one is
passed through a similar but x-oriented field. The experiment shows that this beam is
split again into two components of equal intensity. A classical explanation of this
experiment would require an even more unnatural assumption that the initial
electrons had random but discrete components of the magnetic moment simulta-
neously in two directions, z and x.

However, even this assumption cannot explain the results of the three-stage
Stern–Gerlach experiment shown on the middle panel of figure 4.2. Here, the
previous two-state setup is complemented with one more absorber and one more
magnet, now with the z-orientation again. Completely counter-intuitively, it again
gives two beams of equal intensity, as if we have not yet filtered out the electrons
with mz corresponding to the lower beam, at the first, z-stage. The only way to save
the classical explanation here is to say that maybe, electrons somehow interact with
the magnetic field, so that the x-polarized (non-absorbed) beam becomes sponta-
neously depolarized again somewhere between magnetic stages. But any hope for
such an explanation is ruined by the control experiment shown in the bottom panel
of figure 4.2, whose results indicate that no such depolarization happens.

We will see below that all these (and many more) results find a natural
explanation in the matrix mechanics pioneered by W Heisenberg, M Born and P
Jordan in 1925. However, the matrix formalism is inconvenient for the solution of
most problems discussed in chapters 1–3, and for a short time it was eclipsed by the
Schrödinger’s wave mechanics, which had been put forward just a few months later.
However, very soon P A M Dirac introduced a more general bra–ket formalism of
quantum mechanics, which provides a generalization of both approaches and proves
their equivalence. Let me describe it, begging for the reader’s patience, because (in a
contrast with my usual style), I will not be able to give particular examples for a
while—until all the basic notions of the formalism have been introduced.

4.2 States, state vectors, and linear operators
The basic notion of the general formulation of quantum mechanics is the quantum
state of a system4. To get some gut feeling of this notion, if a quantum state α of a
particle may be adequately described by wave mechanics, this description is given by
the corresponding wavefunction Ψα(r, t). Note, however, the state as such is not a
mathematical object (such as a function)5, and can participate in mathematical
formulas only as a ‘pointer’—e.g. the index of the function Ψα. On the other hand,
the wavefunction is not a state, but a mathematical object (a complex function of

4An attentive reader could notice my smuggling the term ‘system’ instead of ‘particle’, which was used in the
previous chapters. Indeed, the bra–ket formalism allows the description of quantum systems much more complex
than a single spinless particle that is a typical (though not the only possible) subject of wave mechanics.
5As was expressed nicely by A Peres, one of pioneers of the quantum information theory, ‘quantum
phenomena do not occur in the Hilbert space, they occur in a laboratory’.
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space and time) giving a quantitative description of the state—just as the classical
radius-vector r as a function of time is a mathematical object describing the motion
of a classical particle—see figure 4.3. Similarly, in the Dirac formalism a certain
quantum state α is described by either of two mathematical objects, called the state
vectors: the ket-vector ∣α〉 and bra-vector 〈α∣,6 whose relation is close to that between
the wavefunction Ψα and its complex conjugate Ψα

* .
One should be cautions with the term ‘vector’ here. The usual ‘geometric’ vectors,

such as r, are defined in the usual geometric (say, Euclidean) space. In contrast, the
bra- and ket-vectors are defined in a more abstractHilbert space of a given system—

the full set of its possible bra- and ket-vectors7. So, despite certain similarities with
the geometric vectors, the bra- and ket-vectors are different mathematical objects, so
that we need to define the rules of their handling. The primary rules are essentially
postulates and are justified only by the correct description of all experimental
observations. While there is a general consensus among physicists what the
corollaries are, there are many possible ways to carve from them the basic postulate
sets. Just as in section 1.2, I will not try too hard to beat the number of the postulates
to the smallest possible minimum, trying instead to keep their physical meaning
transparent.

(i) Ket-vectors. Let us start with ket-vectors—sometimes called just kets for short.
Their most important property is the linear superposition. Namely, if several ket-
vectors ∣αj〉 describe possible states of a quantum system, numbered by the index j,
then any linear combination (superposition)

∑α α= ∣ 〉c , (4.6)
j

j j

where cj are any (possibly complex) c-numbers, also describes a possible state of the
same system. (One may say that vector ∣α〉 belongs to the same Hilbert space as all
∣αj〉.) Actually, since ket-vectors are new mathematical objects, the exact meaning of
the right-hand side of Eq. (4.6) becomes clear only after we have postulated the
following rules of summation of these vectors,

α α α α∣ 〉 + ∣ 〉 = ∣ 〉 + ∣ 〉′ ′ , (4.7)j j j j

Figure 4.3. A particle’s state and its descriptions.

6 The terms bra and ket Q2were suggested to reflect the fact that the pair 〈β∣ and ∣α〉may be considered as the parts
of combinations like 〈β∣α〉 (see below), which recall an expression in the usual angle brackets.
7 I have to confess that this is a bit superficial definition, and I will rectify it soon.
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and their multiplication by an arbitrary c-number:

α α=c c. (4.8)j j

Note that in the set of wave mechanics postulates, the statements parallel to (4.7)
and (4.8) were unnecessary, because the wavefunctions are the usual (albeit
complex) functions of space and time, and we know from the usual algebra that
such relations are valid.

As evident from Eq. (4.6), the complex coefficient cj may be interpreted as the
‘weight’ of the state αj in the linear superposition α. One important particular case is
cj = 0, showing that the state αj does not participate in the superposition α. The
corresponding term of the sum (4.6), i.e. the product

α0 , (4.9)j

has a special name: the null-state vector. (It is important to avoid confusion between
the null-state corresponding to vector (4.9), and the ground state of the system,
which is frequently denoted by the ket-vector ∣0〉. In some sense, the null-state does
not exist at all, while the ground state does—and frequently is the most important
quantum state of the system.)

(ii) Bra-vectors and inner (‘scalar’) products. Bra-vectors 〈α∣, which obey the rules
similar to Eqs. (4.7) and (4.8), are not new, independent objects: a ket-vector ∣α〉 and
the corresponding bra-vector 〈α∣ describe the same state. In other words, there is a
unique dual correspondence between ∣α〉 and 〈α∣,8 very similar (though not identical) to
that between a wavefunction Ψ and its complex conjugate Ψ*. The correspondence
between these vectors is described by the following rule: if a ket-vector of a linear
superposition is described by Eq. (4.6), then the corresponding bra-vector is

∑ ∑α α α= =* *c c . (4.10)
j j

j j j j

The mathematical convenience of using two types of vectors, rather than just one,
becomes clear from the notion of their inner product (due to its second, shorthand
form, also called the short bracket):

β α β α≡( )( ) . (4.11)

This is a (generally, complex9) scalar c-number (frequently called just the scalar),
whose main property is the linearity with respect to any of its component vectors.
For example, if a linear superposition α is described by the ket-vector (4.6), then

8Mathematicians like to say that the ket- and bra-vectors of the same quantum system are defined in two
isomorphic Hilbert spaces.
9 This is one of the differences of bra- and ket-vectors from the ‘usual’ (geometrical) vectors whose inner
(scalar) products are always real scalars.
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∑β α β α= c , (4.12)
j

j j

while if Eq. (4.10) is true, then

∑α β α β= *c . (4.13)
j

j j

In plain English, c-numbers may be moved either into, or out of the inner products.
The second key property of the inner product is

α β β α= *. (4.14)

It is compatible with Eq. (4.10); indeed, the complex conjugation of both parts of
Eq. (4.12) gives:

∑ ∑β α β α α β α β= = =* * * *c c . (4.15)
j j

j j j j

Finally, one more rule: the inner product of the bra- and ket-vectors describing
the same state (called the norm squared) is real and non-negative,

α α α≡ ⩾ 0. (4.16)2

In order to give the reader some feeling about the meaning of this rule: we will see
below that if some state α may be described by the wavefunction Ψα(r, t), then

∫α α = Ψ Ψ ⩾α α* d r 0. (4.17)3

Hence the role of the bracket is very similar to the complex conjugation of the
wavefunction, and Eq. (4.10) emphasizes this similarity. (Note that, by convention,
there is no conjugation sign in the bra-part of the inner product; its role is played by
the angular bracket inversion.)

(iii) Operators. One more key notion of the Dirac formalism is quantum-
mechanical linear operators. Just as for the operators discussed in wave mechanics,
the function of an operator is ‘generation’ of one state from another: if ∣α〉 is a possible
ket of the system, and Â is a legitimate operator10, then the following combination,

αÂ , (4.18)

is also a ket-vector describing a possible state of the system, i.e. a ket-vector in the
same Hilbert space as the initial vector ∣α〉. Another formulation of the same rule is

10Here the term ‘legitimate’ means ‘having a clear sense in the bra–ket formalism’. Some examples of
‘illegitimate’ expressions are: α ˆ ˆA A, 〈α∣, ∣α〉∣β〉, and 〈α∣〈β∣. Note, however, that the last two expressions may
be legitimate if α and β are states of different systems, i.e. if their state vectors belong to different Hilbert
spaces. We will run into such direct products of the bra- and ket-vectors (sometimes denoted, respectively, as
∣α〉 ⊗ ∣β〉 and 〈α∣ ⊗ 〈β∣) in chapters 6–8 and 10.
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the following clarification of the notion of the Hilbert space: for the given set of the
linear operators of a system11, its Hilbert state includes all vectors that may be
obtained from each other using the operations of the type (4.18).

As follows from the adjective ‘linear’, the main rules governing the operators is
their linearity with respect to both any superposition of vectors:

∑ ∑α αˆ = ˆA c c A , (4.19)
j j

j j j j

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

and any superposition of operators:

∑ ∑α αˆ = ˆc A c A . (4.20)
j j

j j j j

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

These rules are evidently similar to Eqs. (1.53) and (1.54) of wave mechanics.
The above rules imply that an operator ‘acts’ on the ket-vector on its right;

however, a combination of the type α Â is also legitimate and represents a new bra-
vector. It is important that, generally, this vector does not represent the same state as
ket-vector (4.18); instead, the bra-vector isomorphic to the ket-vector (4.18) is

α ˆ†A . (4.21)

This statement serves as the definition of the Hermitian conjugate (also called the
‘Hermitian adjoint’) ˆ†

A of the initial operator Â. For an important class of operators,
called the Hermitian operators, the conjugation is inconsequential, i.e. for them

ˆ = ˆ†A A. (4.22)

(This equality, as well as any other operator equation below, means that these
operators act similarly on any bra- or ket-vector of the given Hilbert space12.)

To proceed further, we need one more additional postulate, sometimes called the
associative axiom of multiplication: just as an ordinary product of scalars, any
legitimate bra–ket expression, not including an explicit summation, does not change
from an insertion or removal of parentheses—meaning as usual that the operation
inside the parentheses has to be performed first. The first two examples of this

11 Such an operator set usually (if not always) implies a certain approximate model of the system. For example,
if the coupling of the spin and orbital degrees of freedom of a particle may be ignored in a particular problem
(as it may be for a non-relativistic particle in the absence of an external magnetic field), we may describe the
spin dynamics of the particle using spin operators only. In this case, the set of possible spin vectors of the
particle forms a Hilbert space separate from that of the orbital-state vectors of that particle.
12 If we consider c-numbers as a particular type of operators (which is legitimate for any Hilbert space), then
according to Eqs. (4.11) and (4.21), for them the Hermitian conjugation is equivalent to the simple complex
conjugation, so that only real c-numbers may be considered as a particular type of the Hermitian operators (4.22).

Quantum Mechanics: Lecture notes

4-8



postulate are given by Eqs. (4.19) and (4.20), but the associative axiom is more
general and means, for example, that

β α β α β αˆ = ˆ ≡ ˆA A A( ) ( ) , (4.23)

This last equality serves as the definition of the last form, called the long bracket
(evidently, also a scalar), with an operator sandwiched between a bra-vector and a
ket-vector. This definition, when combined with the definition of the Hermitian
conjugate and Eq. (4.14), yields an important corollary:

β α β α α β α βˆ = ˆ = ˆ = ˆ† * † *A A A A( ) (( ) ) , (4.24)

which is most frequently rewritten as

α β β αˆ = ˆ* †A A . (4.25)

The associative axiom also enables one to explore the following definition of one
more, outer product of bra- and ket-vectors:

β α . (4.26)

In contrast to the inner product (4.12), which is a scalar, this mathematical construct
is an operator. Indeed, the associative axiom allows us to remove the parentheses in
the following expression:

β α γ β α γ=( ) . (4.27)

But the last bracket is just a scalar; hence the mathematical object (4.26) acting on a
ket-vector (in this case, ∣γ〉) gives a new ket-vector, which is the essence of operator’s
action. Very similarly,

δ β α δ β α=( ) (4.28)

—again a typical operator’s action on a bra-vector. So, Eq. (4.26) defines an
operator.

Now let us perform the following calculation. We may use the parentheses’
insertion into the bra–ket equality following from Eq. (4.14),

γ α β δ δ β α γ= *( ) , (4.29)

to transform it to the following form:

γ α β δ δ β α γ= *( ) ( ( ) ) . (4.30)

Since this equation should be valid for any vectors 〈γ∣ and ∣ β〉, its comparison with
Eq. (4.25) gives the following operator equality

α β β α=†( ) . (4.31)

This is the conjugate rule for outer products; it recalls the rule (4.14) for inner
products, but involves the Hermitian (rather than the usual complex) conjugation.
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The associative axiom is also valid for the operator ‘multiplication’:

α α β βˆ ˆ = ˆ ˆ ˆ ˆ = ˆ ˆAB A B AB A B( ) ( ), ( ) ( ) , (4.32)

showing that the action of an operator product on a state vector is nothing more
than the sequential action of the operands. However, we have to be rather careful
with the operator products; generally they do not commute: ˆ ˆ ≠ ˆ ˆAB BA. This is why
the commutator—the operator defined as

ˆ ˆ ≡ ˆ ˆ − ˆ ˆA B AB BA[ , ] , (4.33)

is a non-trivial and very useful notion. Another similar notion is the anticommutator13:

ˆ ˆ ≡ ˆ ˆ + ˆ ˆA B AB BA{ , } . (4.34)

Finally, the bra–ket formalism broadly uses two special operators. The null
operator 0̂, defined by the following relations:

α α α αˆ ≡ ˆ ≡0 0 , 0 0, (4.35)

for an arbitrary state α; we may say that the null operator ‘kills’ any state, turning it
into the null-state.

Another useful notion is the identity operator, which is defined by its following
action (or rather ‘inaction’) on an arbitrary state vector:

α α α αˆ ≡ ˆ ≡I I, . (4.36)

4.3 State basis and matrix representation
While some operations in quantum mechanics may be carried out in the general bra–
ket formalism outlined above, many calculations are done for specific quantum
systems that feature at least one full and orthonormal set {u} of states uj, frequently
called a basis. These terms mean that any state vector of the system (i.e. of its Hilbert
space) may be represented as a unique sum of the type (4.6) or (4.10) over its basis
vectors:

∑ ∑α α α α= = *u u, , (4.37)
j j

j j j j

(so that, in particular, if α is one of the basis states, say uj′, then αj = δjj′), and that

δ=′ ′u u . (4.38)j j jj

For the systems that may be described by wave mechanics, examples of the full
orthonormal bases are represented by any orthonormal set of eigenfunctions
calculated in the previous three chapters—as the simplest example, see Eq. (1.87).

13Another popular notation for the anticommutator is ˆ ˆ
+A B[ , ] ; it will not be used in these notes.
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Due to the uniqueness of the expansion (4.37), the full set of coefficients αj gives a
complete description of the state α (in a fixed basis {u})—just as the usual Cartesian
components Ax, Ay, and Az give a complete description of a usual geometric 3D
vector A (in a fixed reference frame). Still, let me emphasize some differences
between such a representation of the quantum-mechanical bra- and ket-vectors and
the usual geometric vectors:

(i) a basis may have a large or even infinite number of states uj, and
(ii) the expansion coefficients αj may be complex.

With these reservations in mind, the analogy with geometric vectors may be
pushed further. Let us inner-multiply both parts of the first of Eqs. (4.37) by a bra-
vector 〈uj′∣ and then transform the relation using the linearity rules discussed in the
previous section, and Eq. (4.38):

∑ ∑α α α α= = =′ ′ ′ ′u u u u u , (4.39)
j j

j j j j j j j j

Together with Eq. (4.14), this means that any of the expansion coefficients in Eqs.
(4.37) may be represented as an inner product:

α α α α= =*u u, ; (4.40)j j j j

these relations are analogs of equalities Aj = nj · A of the usual vector algebra. Using
these important relations (which we will use on numerous occasions), the expansions
(4.37) may be rewritten as

∑ ∑ ∑ ∑α α α α α α= ≡ Λ̂ = ≡ Λ̂u u u u, , (4.41)
j j j j

j j j j j j

This relation shows that the outer product defined as

Λ̂ ≡ u u , (4.42)j j j

is a legitimate linear operator. Such an operator, acting on any state vector of the
type (4.37), singles out just one of its components, for example,

α α αΛ̂ = =u u u , (4.43)j j j j j

i.e. ‘kills’ all components of the linear superposition but one. In the geometric analogy,
this operator ‘projects’ the state vector on the jth ‘direction’, hence its name—the
projection operator. Probably the most important property of the projection operators,
called the closure (or completeness) relation, immediately follows from Eq. (4.41): their
sum over the full basis is equivalent to the identity operator:

∑ = ˆu u I . (4.44)
j

j j
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This means in particular that we may insert the left-hand side of Eq. (4.44) into any
bra–ket relation, at any place—the trick that we will use again and again.

Now let us see how the expansions (4.37) transform the key notions introduced in
the last section, starting from the short bracket (4.11), i.e. the inner product of two
state vectors:

∑ ∑ ∑β α β α β α δ β α= = =
′ ′

* ′ ′ * ′ ′ *u u . (4.45)
j j j j j, ,

j j j j j j jj j j

Besides the complex conjugation, this expression is similar to the scalar product of
the usual vectors. Now, let us explore the long bracket (4.23):

∑ ∑β α β α β αˆ = ˆ ≡
′ ′

* ′ ′ * ′ ′A u A u A . (4.46)
j j j j, ,

j j j j j jj j

Here, the last step uses the very important notion of matrix elements of the operator,
defined as

≡ ˆ′ ′A u A u . (4.47)jj j j

As evident from Eq. (4.46), the full set of the matrix elements completely character-
izes the operator, just as the full set of the expansion coefficients (4.40) fully
characterizes a quantum state. The term ‘matrix’ means, first of all, that it is
convenient to represent the full set of Ajj′ as a square table (matrix), with the linear
dimension equal to the number of basis states uj of the system under consideration.
By the way, this number (which may be infinite) is called the dimensionality of its
Hilbert space.

As two simplest examples, all matrix elements of the null-operator, defined by
Eqs. (4.35), are evidently equal to zero (in any basis), and hence it may be
represented as a matrix of zeros (called the null matrix):

≡
…
…

… … …
0

0 0
0 0 , (4.48)

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

while for the identity operator Î , defined by Eqs. (4.36), we readily get

δ= ˆ = =′ ′ ′ ′I u I u u u , (4.49)jj j j j j jj

i.e. its matrix (naturally called the identity matrix) is diagonal—also in any basis:

≡
…
…

… … …
I

1 0
0 1 . (4.50)

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

The convenience of the matrix language extends well beyond the representation of
particular operators. For example, let us use the definition (4.47) to calculate matrix
elements of a product of two operators:

= ˆ ˆ″ ″AB u AB u( ) . (4.51)jj j j
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Here we may use Eq. (4.44) for the first (but not the last!) time, inserting the identity
operator between the two operators, and then expressing it via a sum of projection
operators:

∑ ∑
= ˆ ˆ = ˆ ˆ ˆ

= ˆ ˆ =
′ ′

″ ″ ″

′ ′ ″ ′ ′ ″

AB u AB u u AIB u

u A u u B u A B

( )

. (4.52)

j j

jj j j j j

j j j j jj j j

This result corresponds to the standard ‘row by column’ rule of calculation of an
arbitrary element of the matrix product

=
…
…

… … …

…
…

… … …

A A
A A

B B
B BAB . (4.53)

11 12

21 22

11 12

21 22

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Hence the product of operators may be represented (in a fixed basis!) by that of their
matrices (in the same basis). This is so convenient that the same language is often
used to represent not only the long brackets,

∑β α β α β β
α
αˆ = = …

…
…

… … … …′

* ′ ′ * *( )A A
A A
A A, , , (4.54)

j
j jj j 1 2

11 12

21 22

1

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

but even the simpler short brackets:

∑β α β α β β
α
α= = …
…

* * *( ), , , (4.55)
j

j j 1 2

1

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

although these equalities require the use of non-square matrices: rows of (complex-
conjugate!) expansion coefficients for the representation of bra-vectors, and columns
of these coefficients for the representation of ket-vectors. With that, the mapping of
states and operators on matrices becomes completely general.

Now let us have a look at the outer product operator (4.26). Its matrix elements
are just

α β α β α β= =′ ′ ′
*u u( ) . (4.56)jj j j j j

These are the elements of a very special square matrix, whose filling requires the
knowledge of just 2N scalars (where N is the basis set size), rather than N2 scalars as
for an arbitrary operator. However, a simple generalization of such an outer product
may represent an arbitrary operator. Indeed, let us insert two identity operators
(4.44), with different summation indices, on both sides of any operator:

∑ ∑ˆ = ˆ ˆ ˆ = ˆ
′

′ ′A IAI u u A u u , (4.57)
j j

j j j j

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
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and use the associative axiom to rewrite this expression as

∑ˆ = ˆ
′

′ ′( )A u u A u u . (4.58)
j j,

j j j j

But the expression in the middle long bracket is just the matrix element (4.47), so
that we may write

∑ˆ =
′

′ ′A u A u . (4.59)
j j,

j jj j

The reader has to agree that this formula, which is a natural generalization of
Eq. (4.44), is extremely elegant.

The matrix representation is so convenient that it makes sense to move it by one
level lower—from state vector products to the ‘bare’ state vectors resulting from
operator’s action upon a given state. For example, let us use Eq. (4.59) to represent
the ket-vector (4.18) as

∑ ∑α α α α′ ≡ ˆ = =
′ ′

′ ′ ′ ′A u A u u A u . (4.60)
j j j j, ,

j jj j j jj j

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

According to Eq. (4.40), the last short bracket is just αj′, so that

∑ ∑ ∑α α α′ = =
′ ′

′ ′ ′ ′u A A u (4.61)
j j j j,

j jj j jj j j

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

But the expression in middle parentheses is just the coefficient α′j of the expansion
(4.37) of the resulting ket-vector (4.60) in the same basis, so that

∑α α′ =
′

′ ′A . (4.62)
j

j jj j

This result corresponds to the usual rule of multiplication of a matrix by a column,
so that we may represent any ket-vector by its column matrix, with the operator’s
action looking like

α
α

α
α

′
′

…
=

…
…

… … … …

A A
A A . (4.63)

1

2

11 12

21 22

1

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Absolutely similarly, the operator action on the bra-vector (4.21), represented by its
row-matrix, is

α α α α′ ′ … = …
…
…

… … …

* * * *

† †

† †( ) ( )
A A

A A, , , ,
( ) ( )

( ) ( ) . (4.64)1 2 1 2

11 12

21 22

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

Quantum Mechanics: Lecture notes

4-14



By the way, Eq. (4.64) naturally raises the following question: what are the
elements of the matrix on its right-hand side, or more exactly, what is the relation
between the matrix elements of an operator and its Hermitian conjugate? The
simplest way to get an answer is to use Eq. (4.25) with two arbitrary states (say, uj
and uj′) of the same basis in the role of α and β. Together with the orthonormality
relation (4.38), this immediately gives14

ˆ =†
′ ′ *A A( ) ( ) . (4.65)jj j j

Thus, the matrix of the Hermitian-conjugate operator is the complex conjugated and
transposed matrix of the initial operator. This result exposes very clearly the
difference between the Hermitian and the complex conjugation. It also shows that
for the Hermitian operators, defined by Eq. (4.22),

=′ ′
*A A , (4.66)jj j j

i.e. any pair of their matrix elements, symmetric about the main diagonal, should be
complex conjugate of each other. As a corollary, their main-diagonal elements have
to be real:

= =*A A A, i.e. Im 0. (4.67)jj jj jj

(The matrix (4.50) evidently satisfies Eq. (4.66), so that the identity operator is
Hermitian.)

In order to fully appreciate the special role played by Hermitian operators in the
quantum theory, let us introduce the key notions of eigenstates aj (described by their
eigenvectors 〈aj∣ and ∣aj〉) and eigenvalues (c-numbers) Aj of an operator Â, defined
by the equation they have to satisfy15:

ˆ =A a A a . (4.68)j j j

Let us prove that eigenvalues of any Hermitian operator are real16,

= = …*A A j N, for 1, 2, , , (4.69)j j

while the eigenstates corresponding to different eigenvalues are orthogonal:

= ≠′ ′a a A A0, if . (4.70)j j j j

14 For the sake of formula compactness, below I will use the shorthand notation in that the operands of this
equality are just A†

jj′ and A*
j′j. I believe that it leaves little chance for confusion, because the Hermitian

conjugation sign † may pertain only to an operator (or its matrix), while the complex conjugation sign *,
pertains to a scalar—say a matrix element.
15 This equation should look familiar to the reader—see the stationary Schrödinger equation (1.60), which was
the focus of our studies in the first three chapters. We will see soon that that equation is just a particular
(coordinate) representation of Eq. (4.68) for the Hamiltonian as the operator of energy.
16 The reciprocal statement is also true: if all eigenvalues of an operator are real, it is Hermitian (in any basis). This
statement may be readily proved by applying Eq. (4.93) below to the case when Akk′ = Akδkk′, with Ak

* = Ak.
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The proof of both statements is surprisingly simple. Let us inner-multiply both
sides of Eq. (4.68) by the bra-vector 〈aj′∣. On the right-hand side of the result, the
eigenvalue Aj, as a c-number, may be taken out of the bracket, giving

ˆ =′ ′a A a A a a . (4.71)j j j j j

This equality has to hold for any pair of eigenstates, so that we may swap the indices
in Eq. (4.71), and complex-conjugate the result:

ˆ =′
*

′
*

′
*a A a A a a . (4.72)j j j j j

Now using Eqs. (4.14) and (4.25), together with the Hermitian operator’s definition
(4.22), we may transform Eq. (4.72) into the following form:

ˆ =′ ′
*

′a A a A a a . (4.73)j j j j j

Subtracting this equation from Eq. (4.71), we get

= − ′
*

′( )A A a a0 . (4.74)j j j j

There are two possibilities to satisfy this relation. If the indices j and j′ are equal
(denote the same eigenstate), then the bracket is the state’s norm squared, and
cannot be equal to zero. In this case the left parentheses (with j = j′) have to be zero,
proving Eq. (4.69). On the other hand, if j and j′ correspond to different eigenvalues
of A, the parentheses cannot equal zero (we have just proved that all Aj are real!),
and hence the state vectors indexed by j and j′ should be orthogonal, e.g. Eq. (4.70) is
valid.

As will be discussed below, these properties make Hermitian operators suitable, in
particular, for the description of physical observables.

4.4 Change of basis, and matrix diagonalization
From the discussion of the last section, it may seem that the matrix language is fully
similar to, and in many instances more convenient than the general bra–ket
formalism. In particular, Eqs. (4.52), (4.54) and (4.55) show that any part of any
bra–ket expression may be directly mapped on the similar matrix expression, with
the only slight inconvenience of using not only columns, but also rows (with their
elements complex-conjugated), for state vector presentation. In this context, why do
we need the bra–ket language at all? The answer is that the elements of the matrices
depend on the particular choice of the basis set, very much as the Cartesian
components of a usual vector depend on the particular choice of reference frame
orientation (figure 4.4), and very frequently, at problem solution, it is convenient to
use two or more different basis sets for the same system. (Just a bit of patience—
numerous examples will follow soon.)

With this motivation, let us study what happens if we switch from one basis, {u},
to another one, {v}—both full and orthonormal. First of all, let us prove that for
each such pair of bases, there exists such an operator Û that, first,
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= Û u , (4.75)j jv

and, second,

ˆ ˆ = ˆ ˆ = ˆ† †UU U U I . (4.76)

(Due to the last property17, Û is called a unitary operator, and Eq. (4.75), a unitary
transformation.)

A very simple proof of both statements may be achieved by construction. Indeed,
let us take

∑ˆ ≡
′

′ ′U u , (4.77)
j

j jv

—an evident generalization of Eq. (4.44). Then

∑ ∑ δˆ = = =
′ ′

′ ′ ′ ′U u u u , (4.78)
j j

j j j j j j j jv v v

so that Eq. (4.75) has been proved. Now, applying Eq. (4.31) to each term of the sum
(4.77), we get

∑ˆ ≡
′

†
′ ′U u , (4.79)

j

j jv

so that

∑ ∑ ∑δˆ ˆ = = =
′ ′

†
′ ′ ′ ′UU u u . (4.80)

j j j j j, ,

j j j j j jj j j jv v v v v v

But according to the closure relation (4.44), the last expression is just the identity
operator, q.e.d.18 (The proof of the second equality in Eq. (4.76) is absolutely
similar.)

As a by-product of our proof, we have also got another important expression—
Eq. (4.79). It implies, in particular, that while, according to Eq. (4.77), the operatorÛ

Figure 4.4. The transformation of components of a 2D vector at a reference frame’s rotation.

17An alternative way to express Eq. (4.76) is to write ˆ = ˆ† −U U 1, but I will try to avoid this language.
18Quod erat demonstrandum (Lat.)—what needed to be proved.
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performs the transform from the ‘old’ basis {u} to the ‘new’ basis { }v , its Hermitian

adjoint ˆ †
U performs the reciprocal unitary transform:

∑ δˆ = =
′

†
′ ′U u u . (4.81)

j

j j j j jv

Now let us see what the matrix elements of the unitary transform operators look
like. Generally, as was discussed above, the operator’s elements may depend on the
basis we calculate them in, so we should be careful—initially. For example, let us
calculate the desired elements in the basis {u}:

∑∣ ≡ ˆ = =′ ′ ′ ′U u U u u u u u . (4.82)
k

jj u j j j k k j j jin

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟v v

Now performing a similar calculation in the basis {v}, we get

∑∣ ≡ ˆ = =′ ′ ′ ′U U u u . (4.83)
k

jj j j j k k j j jin

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟v v v v v vv

Surprisingly, the result is the same! This is of course true for the Hermitian conjugate
(4.79) as well:

∣ = ∣ =′
†

′
†

′U U u . (4.84)jj u jj j jin in vv

These expressions may be used, first of all, to rewrite Eq. (4.75) in a more direct
form. Applying the first of Eqs. (4.41) to a state ′jv of the ‘new’ basis, we get

∑ ∑= =′ ′ ′u u U u . (4.85)
j j

j j j j jj jv v

Similarly, the reciprocal transform is

∑ ∑= =′ ′ ′
†u u U . (4.86)

j j

j j j j jj jv v v

These equalities are very convenient for applications; we will use them later in this
section.

Next, we may use Eqs. (4.83) and (4.84) to express the effect of the unitary
transform on the expansion coefficients αj of the vectors of an arbitrary state α,
defined by Eq. (4.37). In the ‘old’ basis {u}, they are given by Eq. (4.40). Similarly, in
the ‘new’ basis {v},

α α∣ = . (4.87)j jin vv
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Again inserting the identity operator in the form of the closure (4.44), with the
internal index j′, and then using Eq. (4.84), we get

∑ ∑

∑ ∑

α α α

α α

∣ = =

= = ∣

′ ′

′ ′

′ ′ ′ ′

′
†

′ ′
†

′

u u u u

U u U .

(4.88)j j

j j

j j j j j j j

jj j jj j u

in

in

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟v vv

The reciprocal transform is (of course) performed by matrix elements of the operatorÛ :

∑α α∣ = ∣
′

′ ′U . (4.89)
j

j u jj jin in v

Both structurally and philosophically, these expressions are similar to the trans-
formation of components of a usual vector at coordinate frame rotation. For
example, for a 2D vector whose actual position in space is fixed (figure 4.4):

α
α

φ φ

φ φ

α
α

′
′

=
−

cos sin

sin cos
. (4.90)

x

y

x

y

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎛
⎝⎜

⎞
⎠⎟

(In this analogy, the equality of the determinant of the rotation matrix in Eq. (4.90)
to 1 corresponds to the unitary property (4.76) of the unitary transform operators.)
Please pay attention here: while the transform (4.75) from the ‘old’ basis {u} to the
‘new’ basis {v} is performed by the unitary operator, the change (4.88) of a state
vectors components at this transformation requires its Hermitian conjugate.
Actually, this is also natural from the point of view of the geometric analog of
the unitary transform (figure 4.4): if the ‘new’ reference frame {x′, y′} is obtained by
a counterclockwise rotation of the ‘old’ frame {x, y} by some angle φ, for the
observer rotating with the frame, the vector α rotates clockwise19.

Due to the analogy between expressions (4.88) and (4.89) on one hand, and our
old friend Eq. (4.62) on the other hand, it is tempting to skip indices in these new
results by writing

α α α α= ˆ = ˆ !†U U, . SYMBOLIC ONLY (4.91)u uin in in inv v

Since the matrix elements ofÛ and ˆ †
U do not depend on the basis, such language

is not too bad and mnemonically useful. However, since in the bra–ket formalism (or
at least its version presented in this course), the state vectors are basis-independent,
Eq. (4.91) has to be treated as a symbolic one, and should not be confused with the

19 In the formal geometry, such vector α is called contravariant, while the reference frame vectors, covariant. (A
brief discussion of these terms may be found in Part EM section 9.4.)
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strict Eqs. (4.88) and (4.89), and with the strict (basis-independent) vector and
operator equalities discussed in section 4.2.

Now let us use the same trick of identity operator insertion, repeated twice, to find
the transformation rule for matrix elements of an arbitrary operator:

∑ ∑

∑

∣ ≡ ˆ = ˆ

= ∣
′

′

′ ′ ′ ′ ′

† ′ ′ ′

A A u u A u u

U A U ;
(4.92)k k

k k,

jj j j j k k k k j

jk kk u k j

in

in

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟v v v vv

absolutely similarly, we can get

∑∣ ≡ ∣
′

′ ′ ′ ′
†A U A U . (4.93)

k k,

jj u jk kk k jin in v

In the spirit of Eq. (4.91), we may represent these results symbolically as well, in a
compact form:

ˆ∣ = ˆ ˆ∣ ˆ ˆ∣ = ˆ ˆ∣ ˆ !† †A U A U A UA U, . SYMBOLIC ONLY (4.94)u uin in in inv v

As a sanity check, let us apply this general equality to the identity operator:

ˆ∣ = ˆ ˆ ˆ = ˆ ˆ = ˆ∣† †I U IU U U I( ) ( ) (4.95)u u uin in in inv

—as it should be. One more (strict rather than symbolic) invariant of the basis
change is the trace of any operator, defined as the sum of the diagonal terms of its
matrix in a certain basis:

∑ˆ ≡ ≡A ATr TrA . (4.96)
j

jj

The (easy) proof of this fact, using the relations we have already discussed, is left
for the reader’s exercise.

So far, I have implied that both state bases {u} and {v} are known, and the
natural question is where does this information comes from in quantum mechanics
of actual physical systems. To get a partial answer to this question, let us return to
Eq. (4.68), which defines the eigenstates and the eigenvalues of an operator. Let us
assume that the eigenstates aj of a certain operator Â form a full and orthonormal
set, and calculate the matrix elements of the operator in the basis of these states. For
that, it is sufficient to inner-multiply both sides of Eq. (4.68), written for some index
j′, by the bra-vector of an arbitrary state aj of the same set:

ˆ =′ ′ ′a A a a A a . (4.97)j j j j j
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The left-hand side of this equality is the matrix element Ajj′ we are looking for, while
its right-hand side is just Aj′δjj′. As a result, we see that the matrix is diagonal, with
the diagonal consisting of the operator’s eigenvalues:

δ=′ ′A A . (4.98)jj j jj

In particular, in the eigenstate basis (but not necessarily in an arbitrary basis!), Ajj

means the same as Aj. Thus the important problem of finding the eigenvalues and
eigenstates of an operator is equivalent to the diagonalization of its matrix20, i.e.
finding the basis in which the corresponding operator acquires the diagonal form
(4.98); then the diagonal elements are the eigenvalues, and the basis itself is the
desirable set of eigenstates.

To see how this is done in practice, let us inner-multiply Eq. (4.68) by a bra-vector
of a different basis (say, {u}), in that we have happened to know the matrix elements
Ajj′. The multiplication gives

ˆ =u A a u A a . (4.99)k j k j j

On the left-hand side we can (as usual) insert the identity operator between the
operator Â and the ket-vector, and then use the closure relation (4.44) in the same
basis {u}, while on the right-hand side, we can move the eigenvalue Aj out of the
bracket, and then insert a summation over the same index as in the closure,
compensating it with the proper Kronecker delta symbol:

∑ ∑ δˆ =
′ ′

′ ′ ′ ′u A u u a A u a . (4.100)
k k

k k k j j k j kk

Moving out the sign of summation over k′, and using the definition (4.47) of the
matrix elements, we get

∑ δ− =
′

′ ′ ′( )A A u a 0. (4.101)
k

kk j kk k j

But the set of such equalities, for allN possible values of the index k, is just a system of
linear, homogeneous equations for unknown c-numbers 〈uk′∣aj〉. According to Eqs.
(4.82)–(4.84), these numbers are nothing else than the matrix elementsUk′j of a unitary
matrix providing the required transformation from the initial basis {u} to the basis {a}
that diagonalizes the matrix A. The system may be represented in the matrix form:

− …
− …

… … … …
=

A A A

A A A

U

U 0, (4.102)
j

j

j

j

11 12

21 22

1

2

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

and the usual condition of its consistency,

20Note that the expression ‘matrix diagonalization’ is a common but dangerous jargon. (Formally, a matrix is
just a matrix, an ordered set of c-numbers, and cannot be ‘diagonalized’.) It is OK to use this jargon if you
remember clearly what it actually means—see the definition above.
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− …
− …

… … …
=

A A A

A A A 0, (4.103)
j

j

11 12

21 22

plays the role of the characteristic equation of the system. This equation has N roots
Aj—the eigenvalues of the operator Â; plugging each of them back into system
(4.102), we can use it to find N matrix elements Ukj (k = 1, 2, …N) corresponding to
this particular eigenvalue. However, since equations (4.103) are homogeneous, they
allow finding Ukj only to a constant multiplier. In order to ensure their normal-
ization, i.e. the unitary character of the matrix U, we may use the condition that all
eigenvectors are normalized (just as the basis vectors are):

∑ ∑≡ ≡ =a a a u u a U 1, (4.104)
k k

j j j k k j kj
2

for each j. This normalization completes the diagonalization21.
Now (at last!) I can give the reader some examples. As a simple but very

important case, let us diagonalize the operators described (in a certain 2-function
basis {u}, i.e. in a two-dimensional Hilbert space) by the so-called Pauli matrices

σ ≡ σ ≡ − σ ≡
−

i
i

0 1
1 0

, 0
0

, 1 0
0 1

. (4.105)x y z⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

Though introduced by a physicist, with a specific purpose to describe the electron’s
spin, these matrices have a general mathematical significance, because together with
the 2 × 2 identity matrix, they provide a full, linearly-independent system—meaning
that an arbitrary 2 × 2 matrix may be represented as

= + σ + σ + σA A
A A

b c c cI , (4.106)x x y y z z
11 12

21 22

⎛
⎝⎜

⎞
⎠⎟

with a unique set of four c-number coefficients b, cx, cy, and cz.
Since the matrix σz is already diagonal, with the evident eigenvalues ±1, let us

start with diagonalizing the matrix σx. For it, the characteristic equation (4.103) is
evidently

−
−

=
A

A

1

1
0, (4.107)

j

j

and has two roots, A1,2 = ±1. (Again, the numbering is arbitrary!) So the eigenvalues
of the matrix σx are the same as of the matrix σz. (The reader may readily check that
the eigenvalues of the matrix σy are also the same.) However, the eigenvectors of the
operators corresponding to all these matrices are different. To find them for σx, let us

21A possible slight complication here is degenerate cases when the characteristic equation gives equal
eigenvalues for certain groups of different eigenvectors. In this case the requirement of the mutual
orthogonality of these states should be additionally enforced.
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plug its first eigenvalue, A1 = +1, back into equations (4.101), spelled out for this
particular case:

− + =
− =

u a u a
u a u a

0,
0.

(4.108)1 1 2 1

1 1 2 1

The equations are compatible (of course, because the used eigenvalue A1 = +1
satisfies the characteristic equation), and any of them gives

= =u a u a U U, i.e. . (4.109)1 1 2 1 11 21

With that, the normalization condition (4.104) yields

= =U U
1
2

. (4.110)11
2

21
2

Although the normalization is insensitive to the simultaneous multiplication of U11

and U21 by the same phase factor exp{iφ} with any real φ, it is convenient to keep
the coefficients real, for example taking φ = 0, i.e. to get

= =U U
1

2
. (4.111)11 21

Performing an absolutely similar calculation for the second characteristic value,
A2 = −1, we get U12 = −U22, and we may choose the common phase to get

= − =U U
1

2
, (4.112)12 22

so that the whole unitary matrix for diagonalization of the operator corresponding
to σx is22

= =
−

†U U
1

2
1 1
1 1

. (4.113)x x ⎜ ⎟
⎛
⎝

⎞
⎠

For what follows, it will be convenient to have this result expressed in the ket-
relation form—see Eqs. (4.85) and (4.86):

= + = +

= + = −

a U u U u u u

a U u U u u u
a

1

2
( ),

1

2
( ),

(4.114 )
1 11 1 21 2 1 2

2 12 1 22 2 1 2

= + = +

= + = −

† †

† †

u U a U a a a

u U a U a a a
b

1

2
( ),

1

2
( ).

(4.114 )
1 11 1 21 2 1 2

2 12 1 22 2 1 2

22Note that though this particular unitary matrix is Hermitian, this is not true for an arbitrary choice of phases φ.
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Let us put our general discussion on hold, in order to show that these results are
already sufficient to understand the Stern–Gerlach experiments described in section 4.1—
with two additional postulates. The first of them is that a particle’s interaction with the
external magnetic field may be described by the following vector operator of the dipole
magnetic moment23:

γˆ ˆ=m S, (4.115)

where the coefficient γ, specific for every particle type, is called the gyromagnetic
ratio24, and Ŝ is the vector operator25 of spin. For the so-called spin-½ particles
(including the electron), this operator may be expressed very simply, as

ˆ σ̂= ℏ
S

2
, (4.116)

via the Pauli vector operator σ̂. In turn, in the so-called z-basis, the latter operator is
represented by the following 3D vector of the Pauli matrices (4.105):

σ = σ + σ + σ ≡
−

+ −
i

i
n n n

n n n
n n n

, (4.117)x x y y z z
z x y

x y z

⎛
⎝⎜

⎞
⎠⎟

and nx,y,z are the usual Cartesian unit vectors in the geometric 3D space. (In the
quantum-mechanics sense, they are just c-numbers, or rather ‘c-vectors’.) The z-
basis, in which Eq. (4.177) is valid, is defined as an orthonormal basis of certain two
states, frequently denoted ↑ an ↓, in which the z-component of the vector-operator σ̂
is diagonal, with eigenvalues, respectively, +1 and −1, and hence the vector-operator
(4.116) of spin is also diagonal, with the eigenvalues +ℏ/2 and −ℏ/2. Note that we do
not ‘understand’ what exactly the states ↑ and ↓ are26, but loosely associate them
with a certain internal rotation of the electron about the z-axis, with either positive
or negative angular momentum component Sz. However, any attempt to use such
classical interpretation for quantitative predictions runs into fundamental difficulties
—see section 4.6 below.

The second necessary postulate describes the general relation between the bra–ket
formalism and experiment. Namely, in quantum mechanics, each real observable A
is represented by a Hermitian operator ˆ = ˆ†

A A , and a result of its measurement27 in

23 This was the key point in the electron spin’s description, developed by W Pauli in 1925–7.
24 For the electron, with its negative charge q = −e, the gyromagnetic ratio is negative: γ e = −gee/2me, where ge
≈ 2 is the dimensionless g-factor. Due to quantum-electrodynamic (relativistic) effects, this g-factor is slightly
higher than 2: ge = 2(1 + α/2π + …) ≈ 2.002 319 304…, where α ≡ e2/4πε0ℏc ≡ (EH/mec

2)1/2 ≈ 1/137 is the so-
called fine structure constant. (The origin of its name will be clear from the discussion in section 6.3.)
25 Such vector operators are transformed as usual vectors at all geometric operations—see below.
26 If you think about it, the word ‘understand’ typically means that we can explain a new, more complex notion
in terms of those discussed earlier and considered ‘known’. In our example, we cannot express the spin states
by some wavefunction ψ(r), or any other mathematical notion discussed earlier. The bra–ket formalism has
been invented exactly to enable mathematical analyses of such ‘new’ quantum states we do not initially
‘understand’, though gradually get accustomed to, and eventually, as we know more and more about their
properties, start to treat them as ‘known’.
27Here again, just like in section 1.2, the statement implies the abstract notion of ‘ideal experiments’, deferring
the discussion of real (physical) measurements until chapter 10.
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a quantum state α, described by a linear superposition of the eigenstates aj of the
operator,

∑α α α α= =a a, with , (4.118)
j

j j j j

may be only one of the corresponding eigenvalues Aj.
28 Specifically, if the ket (4.118)

and all eigenkets ∣aj〉 are normalized to 1,

α α = =a a1, 1, (4.119)j j

then the probability of a certain measurement outcome Aj is
29

α α α α α= ≡ ≡*W a a , (4.120)j j j j j j
2

This relation is evidently a generalization of Eq. (1.22) in wave mechanics. As a
sanity check, let us assume that the set of the eigenstates aj is full, and calculate the
sum of all the probabilities:

∑ ∑ α α α α= = ˆ =W a a I 1. (4.121)
j j

j j j

Now returning to the Stern–Gerlach experiment, conceptually the description of
the first (z-oriented) experiment shown in figure 4.1 is the hardest for us, because the
statistical ensemble describing the unpolarized electron beam at its input is mixed
(‘incoherent’), and cannot be described by a pure (‘coherent’) superposition of the
type (4.6) that have been the subject of our studies so far. (We will discuss the mixed
ensembles in chapter 7.) However, it is intuitively clear that its results are compatible
with the description of the two output beams as sets of electrons in the pure states ↑
and ↓, respectively. The absorber following that first stage (figure 4.2) just takes all
spin-down electrons out of the picture, producing an output beam of polarized
electrons in the definite ↑ state. For such a beam, the probabilities (4.120) areW↑ = 1
and W↓ = 0. This is certainly compatible with the result of the ‘control’ experiment
shown on the bottom panel of figure 4.2: the repeated SG (z) stage does not split
such a beam, keeping the probabilities the same.

Now let us discuss the double Stern–Gerlach experiment shown on the top panel
of figure 4.2. For that, let us represent the z-polarized beam in another basis of two
states (I will denote them as→ and←) in which, by definition, the matrix of operator
Ŝx is diagonal. But this is exactly the set we called a1,2 in the σx matrix
diagonalization problem solved above. On the other hand, the states ↑ and ↓ are
exactly what we called u1,2 in that problem, because in this basis, we know the

28As a reminder, at the end of section 4.3 we have already proved that such eigenstates corresponding to
different Aj are orthogonal. If any of these values is degenerate, i.e. corresponds to several different eigenstates,
they should be also selected orthogonal, in order for Eq. (4.118) to be valid.
29 This key relation, in particular, explains the most common term for the (generally, complex) coefficients αj,
the probability amplitudes.
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explicit matrix σ (and hence S)—see Eqs. (4.116) and (4.117). Hence, in the
application to the electron spin problem, we may rewrite Eqs. (4.114) as

→ = ↑ + ↓ ← = ↑ − ↓1

2
( ),

1

2
( ), (4.122)

↑ = → + ← ↓ = → − ←1

2
( ),

1

2
( ), (4.123)

Currently, for us the first of Eqs. (4.123) is most important, because it shows that
the quantum state of electrons entering the SG (x) stage may be represented as a
coherent superposition of electrons with Sx = +ℏ/2 and Sx = −ℏ/2. Notice that the
beams have equal probability amplitude moduli, so that according to Eq. (4.122),
the split beams → and ← have equal intensities, in accordance with experimental
results. (The minus sign before the second ket-vector is of no consequence here, but it
may have an impact on outcome of other experiments—for example if the coherent
→ and ← beams are brought together again.)

Now, let us discuss the most mysterious (from the classical point of view) multi-
stage SG experiment shown on the middle panel of figure 4.2. After the second
absorber has taken out all electrons in, say, the ← state, the remaining electrons, all
in the state→, are passed to the final, SG (z), stage. But according to the first of Eqs.
(4.122), this state may be represented as a (coherent) linear superposition of the ↑
and ↓ states, with equal amplitudes. The final stage separates these two states into
separate beams, with equal probabilitiesW↑ =W↓ = ½ to find an electron in each of
them, thus explaining the experimental results.

To conclude our discussion of the multistage Stern–Gerlach experiment, let me
note that though it cannot be explained in terms of the wave mechanics (which
operates with scalar de Broglie waves), it has an analogy in classical theories of
vector fields, such as classical electrodynamics. Indeed, let a plane electromagnetic
wave propagate perpendicular to the plane of drawing in figure 4.5, and pass
through the linear polarizer 1. Similarly to the output of the initial SG (z) stages
(including the absorbers) shown in figure 4.2, the output is a wave linearly polarized
in one direction—the vertical direction in figure 4.5. Now its electric field vector has
no horizontal component—as may be revealed by the wave’s full absorption in a
perpendicular polarizer 3. However, let us pass the wave through polarizer 2 first. In
this case, the output wave does acquire a horizontal component, as can be, again,

Figure 4.5. A light polarization sequence similar to the three-stage Stern–Gerlach experiment shown on the
middle panel of figure 4.2.

Quantum Mechanics: Lecture notes

4-26



revealed by passing it through polarizer 3. If the angles between the polarization
directions 1 and 2, and between 2 and 3, are both equal to π/4, each polarizer reduces
the wave amplitude by a factor of √2, and hence the intensity by a factor of 2,
exactly like in the multistage SG experiment, with polarizer 2 playing the role of the
SG (x) stage. The ‘only’ difference is that the necessary angle is π/4, rather than by π/
2 for the Stern–Gerlach experiment. In quantum electrodynamics (see chapter 9
below), which confirms the classical predictions for this experiment, this difference is
explained by that between the integer spin of the electromagnetic field quanta,
photons, and the half-integer spin of electrons.

4.5 Observables: expectation values and uncertainties
After this particular (and hopefully very inspiring) example, let us discuss the general
relation between the Dirac formalism and experiment in more detail. The expect-
ation value of an observable over any statistical ensemble (not necessarily coherent)
may be always calculated using the general rule (1.37). For the particular case of a
coherent superposition (4.118), we can combine that rule with Eq. (4.120) and the
second of Eqs. (4.118), and then use Eqs. (4.59) and (4.98) to write

∑ ∑ ∑

∑

α α α α

α α

= = =

= ˆ
′

*

′ ′

A A W A a A a

a a A a a .
(4.124)

j j j

j j,

j j j j j j j j

j j j j

Now using the closure relation (4.44) twice, with indices j and j′, we arrive at a very
simple and important formula30

α α= ˆA A . (4.125)

This is a clear analog of the wave-mechanics formula (1.23)—and as we will see
soon, may be used to derive it. A huge advantage of Eq. (4.125) is that it does not
explicitly involve the eigenvector set of the corresponding operator, and allows the
calculation to be performed in any convenient basis31.

For example, let us consider an arbitrary state α of spin-½,32 and calculate the
expectation values of its components. The calculations are easiest in the z-basis,
because we know the matrix elements of the spin operator components in that basis.
Representing the ket- and bra-vectors of the given state as linear superpositions of
the corresponding vectors of the basis states ↑ and ↓,

30 This equality reveals the full beauty of the Dirac’s notation. Indeed, initially the quantum-mechanical
brackets just recalled the angular brackets used for the statistical averaging. Now we see that in this particular
(but most important) case, the angular brackets of these two types may be indeed equal to each other!
31Note also that Eq. (4.120) may be rewritten in the form similar to Eq. (4.125): α α= Λ̂Wj j , where
Λ̂ ≡ a aj j j is the operator (4.42) of the state’s projection upon the jth eigenstate aj.
32 For clarity, the noun ‘spin-½’ is used, here and below, to denote the spin degree of freedom of a spin-½
particle, independent of its orbital motion.
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α α α α α α= ↑ + ↓ = ↑ + ↓↑ ↓ ↑
*

↓
*, . (4.126)

and plugging these expressions to Eq. (4.125), written for the observable Sz, we get

α α α α

α α α α

α α α α

= ↑ + ↓ ˆ ↑ + ↓

= ↑ ˆ ↑ + ↓ ˆ ↓

+ ↓ ˆ ↑ + ↑ ˆ ↓

↑
*

↓
* ↑ ↓

↑ ↑
* ↓ ↓

*

↑ ↓
* ↓ ↑

*

( )S S

S S

S S

( )

.

(4.127)

z z

z z

z z

Now there are two equivalent ways (both simple) to calculate the long brackets in
this expression. The first one is to represent each of them in the matrix form in the z-
basis, in which the bra- and ket-vectors of states ↑ and ↓ are the matrix-rows (1, 0)
and (0, 1), or the similar matrix-columns. Another (perhaps more elegant) way is to
use the general Eq. (4.59), in the z-basis, to write

ˆ = ℏ ↑ ↓ + ↓ ↑ ˆ = − ℏ ↑ ↓ − ↓ ↑

ˆ = ℏ ↑ ↑ − ↓ ↓

S S i

S

2
( ) ,

2
( ) ,

2
( ).

(4.128)
x y

z

For our particular calculation, we may plug the last of these expressions into Eq.
(4.127), and to use the orthonormality conditions (4.38):

↑ ↑ = ↓ ↓ = ↑ ↓ = ↓ ↑ =1, 0. (4.129)

Both approaches give (of course) the same result:

α α α α= ℏ −↑ ↑
* ↓ ↓

*( )S
2

. (4.130)z

This particular result might be also obtained using Eq. (4.120) for the proba-
bilities W↑ = α↑α↑

* and W↓ = α↓α↓
*, namely:

α α α α= + ℏ + − ℏ = + ℏ + − ℏ
↑ ↓ ↑ ↑

* ↓ ↓
*S W W

2 2 2 2
. (4.131)z ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

The formal way (4.127), based on using Eq. (4.125), has, however, an advantage of
being applicable, without any change, to finding the observables whose operators
are not diagonal in the z-basis, as well. In particular, the absolutely similar
calculations give

α α α α α α

α α α α α α

= ↑ ˆ ↑ + ↓ ˆ ↓ + ↓ ˆ ↑

+ ↑ ˆ ↓ = ℏ +

↑ ↑
* ↓ ↓

* ↑ ↓
*

↓ ↑
* ↑ ↓

* ↓ ↑
*( )

S S S S

S
2

,
(4.132)

x x x x

x

α α α α α α

α α α α α α

= ↑ ˆ ↑ + ↓ ˆ ↓ + ↓ ˆ ↑

+ ↑ ˆ ↓ = ℏ −

↑ ↑
* ↓ ↓

* ↑ ↓
*

↓ ↑
* ↑ ↓

* ↓ ↑
*( )

S S S S

S i
2

,
(4.133)

y y y y

y
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Similarly, we can express, via the same coefficients α↑ and α↓, the rms fluctuations
of all spin components. For example, let us have a good look at the particular spin-
up state ↑. According to Eq. (4.126), in this state α↑ = 1 and α↓ = 0, so that Eqs.
(4.130)–(4.133) yield:

= ℏ = =S S S
2

, 0. (4.134)z x y

Now let us use the same Eq. (4.125) to calculate the spin component uncertainties.
According to Eqs. (4.105), (4.116) and (4.117), the operator of each spin component
squared is equal to (ℏ/2)2Î , so that the general Eq. (1.33) yields

δ = − = ↑ ˆ ↑ − ℏ

= ℏ ↑ ˆ ↑ − ℏ =

S S S S

I

a
( )

2

2 2
0,

(4.135 )
z z z z

2 2 2 2
2

2 2

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

δ = − = ↑ ˆ ↑ −

= ℏ ↑ ˆ ↑ = ℏ
S S S S

I
b

( ) 0

2 2
,

(4.135 )
x x x x

2 2 2 2

2 2
⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

δ = − = ↑ ˆ ↑ −

= ℏ ↑ ˆ ↑ = ℏ

( )S S S S

I
c

0

2 2
.

(4.135 )
y y y y

2 2 2 2

2 2
⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

While Eqs. (4.134) and (4.135a) are compatible with the classical notion of the
spin being definitely in the ↑ state, this correspondence should not be overstretched
to the interpretation of this state as a certain (z) orientation of electron’s magnetic
moment m, because such a classical picture cannot explain Eqs. (4.135b) and
(4.135c). The best (but still imprecise!) classical image I can offer is the magnetic
moment m oriented, on the average, in the z-direction, but still having x- and y-
components strongly ‘wobbling’ (fluctuating) about their zero average values.

It is straightforward to verify that in the x-polarized and y-polarized states the
situation is similar, with the corresponding change of axis indices. Thus, in neither
state may all three components of the spin have exact values. Let me show that this is
not just an occasional fact, but reflects the perhaps most profound property of
quantum mechanics, the uncertainty relations. For that, let us consider two
observables, A and B, that may be measured in the same quantum system. There
are two possibilities here. If the (Hermitian!) operators corresponding to these
observables commute,

ˆ ˆ =A B[ , ] 0, (4.136)
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then all the matrix elements of the commutator in any orthogonal basis (in
particular, in the basis of eigenstates aj of the operator Â) also equal zero. From
here, we get

ˆ ˆ ≡ ˆ ˆ − ˆ ˆ =′ ′ ′a A B a a AB a a BA a[ , ] 0. (4.137)j j j j j j

In the first bracket of the middle expression, let us act by the Hermitian operator Â on
the bra-vector, while in the second one, on the ket-vector. According to Eq. (4.68),
such an action turns the operators into the corresponding eigenvalues, so that we get

ˆ − ˆ ≡ − ˆ =′ ′ ′ ′ ′( )A a B a A a B a A A a B a 0. (4.138)j j j j j j j j j j

This means that if eigenstates of the operator Â are non-degenerate (i.e. Aj ≠ Aj′ if
j ≠ j′), the matrix of the operator B̂ has to be diagonal in the basis {a}, i.e. the
eigenstate sets of operators Â and B̂ coincide. Such pairs of observables (and their
operators) that share their eigenstates, are called compatible. For example, in the
wave mechanics of a particle, its momentum (1.26) and the kinetic energy (1.27) are
compatible, sharing the eigenfunctions (1.29). Now we see that this is not occasional,
because each Cartesian component of the kinetic energy is proportional to the
square of the corresponding component of the momentum, and any operator
commutes with an arbitrary integer power of itself:

ˆ ˆ ≡ ˆ ˆ ˆ… ˆ = ˆ ˆ ˆ… ˆ − ˆ ˆ… ˆ ˆ =A A A AA A AAA A AA AA[ , ] , 0. (4.139)
n n n

n
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥�� � �� � �� �� � �� � �

Now, what if the operators Â and B̂ do not commute? Then the following general
uncertainty relation is valid33:

δ δ ⩾ ˆ ˆA B A B
1
2

[ , ] , (4.140)

where all the expectation values are for the same, but otherwise arbitrary state of the
system. The proof of Eq. (4.140) may be divided into two steps, the first one proving
the so-called Schwartz inequality for any two possible states, say α and β:34

α α β β α β⩾ . (4.141)2

The proof may be started by using the postulate (4.16)—that the norm of any
legitimate state of the system cannot be negative. Let us apply this postulate to the
state with the following ket-vector:

δ α β α
β β

β≡ − , (4.142)

33Note that each side of Eq. (4.140) is state-specific; the uncertainty relation statement is that this inequality
should be valid for any possible quantum state of the system; in this sense, this is an operator relation.
34 This inequality is the quantum-mechanical analog of the usual vector algebra’s result α2β2 ⩾ ∣α · β∣2.
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where α and β are possible, non-null states of the system, so that the denominator in
Eq. (4.142) is not equal to zero. For this case, Eq. (4.16) gives

α α β
β β

β α β α
β β

β− − ⩾ 0. (4.143)
⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

Opening the parentheses, we get

α α α β
β β

β α β α
β β

α β α β β α
β β

β β− − + ⩾ 0. (4.144)2

After the cancellation of one inner product 〈β∣β〉 in the numerator and the
denominator of the last term, it cancels with the 2nd (or the 3rd) term. What
remains is the Schwartz inequality (4.141).

Now let us apply this inequality to the states

α γ β γ≡ ˜̂ ≡ ˜̂A Band , (4.145)

where, in both relations, γ is the same (but otherwise arbitrary) possible state of the
system, and the deviation operators are defined similarly to the observable devia-
tions (see section 1.2):

˜̂ ≡ ˆ − ˆ̃ ≡ ˆ −A A A B B B, . (4.146)

With this substitution, and taking into account again that the observable operators
Â and B̂ are Hermitian, Eq. (4.141) yields

γ γ γ γ γ γ˜̂ ˜̂ ⩾ ˜̂ ˜̂A B AB . (4.147)
2 2 2

Since the state γ is arbitrary, we may use Eq. (4.125) to rewrite this relation as an
operator inequality:

δ δ ⩾ ˜̂ ˜̂A B AB . (4.148)

Actually, this is already an uncertainty relation, even ‘better’ (stronger) than its
standard form (4.140); moreover, it is more convenient in some cases. In order to
proceed to Eq. (4.140), we need a couple more steps. First, let us notice that the
operator product in Eq. (4.148) may be recast as

˜̂ ˜̂ = ˜̂ ˜̂ − ˆ ˆ ≡ ˜̂ ˜̂{ }AB A B
i

C C i A B
1
2

,
2

, where , . (4.149)⎡⎣ ⎤⎦
Any anticommutator of Hermitian operators, including that in Eq. (4.149), is a
Hermitian operator, and its eigenvalues are purely real, so that its expectation value
(in any state) is also purely real. On the other hand, the commutator part of Eq.
(4.149) is just
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ˆ ≡ ˜̂ ˜̂ ≡ ˆ − ˆ − − ˆ − ˆ −

= ˆ ˆ − ˆ ˆ ≡ ˆ ˆ

C i A B i A A B B i B B A A

i AB BA i A B

, ( )( ) ( )( )

( ) [ , ].
(4.150)

⎡⎣ ⎤⎦

Second, according to Eqs. (4.52) and (4.65), the Hermitian conjugate of any product
of Hermitian operators Â and B̂ is just the product of these operators swapped.
Using the fact, we may write

ˆ = ˆ ˆ = − ˆ ˆ + ˆ ˆ

= − ˆ ˆ + ˆ ˆ = ˆ ˆ = ˆ

† † † †C i A B i AB i BA

iBA iAB i A B C

( [ , ]) ( ) ( )

[ , ] ,
(4.151)

so that the operator Ĉ is also Hermitian, i.e. its eigenvalues are also real, and thus its
average is purely real as well. As a result, the square of the expectation value of the
operator product (4.149) may be represented as

˜̂ ˜̂ = ˜̂ ˜̂ + ˆ{ }AB A B C
1
2

,
1
2

. (4.152)
2 2 2

Since the first term on the right-hand side of this equality cannot be negative, we
may write

˜̂ ˜̂ ⩾ ˆ = ˆ ˆAB C
i

A B
1
2 2

[ , ] , (4.153)
2 2 2

and hence continue Eq. (4.148) as

δ δ ⩾ ˜̂ ˜̂ ⩾ ˆ ˆA B AB A B
1
2

[ , ] , (4.154)

thus proving Eq. (4.140).
For the particular case of operators x̂ and p̂x (or a similar pair of operators for

another Cartesian coordinate), we may readily combine Eq. (4.140) with Eq. (2.14b)
and to prove the original Heisenberg’s uncertainty relation (2.13). For the spin-½
operators defined by Eqs. (4.116) and (4.117), it is very simple (and highly
recommended to the reader) to show that

σ σ ε σ εˆ ˆ = ˆ ˆ ˆ = ℏ ˆ′ ′ ″ ″ ′ ′ ″ ″i S S i S, 2 , i.e. , , (4.155)j j jj j j j j jj j j
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

where εjj′j″ is the Levi-Civita permutation symbol—see, e.g. Eq. (A.83). As a result,
the uncertainty relations (4.140) for all spin-½ systems are, for example

δ δ ⩾ ℏ
S S S

2
, etc. (4.156)x y z

In particular, as we already know, in the ↑ state the right-hand side of this relation
equals (ℏ/2)2 > 0, and neither of the uncertainties δSx, δSy can equal zero. As a
reminder, our direct calculation earlier in this section has shown that each of these
uncertainties is equal to ℏ/2, i.e. their product equals the lowest value allowed by the
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uncertainty relation (4.156)—just as the Gaussian wave packets (2.16) provide the
lowest possible value of the product δxδpx, allowed by the Heisenberg relation
(2.13).

4.6 Quantum dynamics: three pictures
So far in this chapter, I shied away from the discussion of the system’s dynamics,
implying that the bra- and ket-vectors of the system are their ‘snapshots’ at a certain
instant t. Now we are sufficiently prepared to examine their time dependence. One of
the most beautiful features of quantum mechanics is that the time evolution may be
described using either of three alternative ‘pictures’, giving exactly the same final
results for the expectation values of all observables.

From the standpoint of our wave mechanics experience, the Schrödinger picture is
the most natural. In this picture, the operators corresponding to time-independent
observables (e.g. to the Hamiltonian function H of an isolated system) are also
constant in time, while the bra- and ket-vectors of the quantum state of the system
evolve in time as

α α α α= ˆ = ˆ†t t u t t t u t t t a( ) ( ) ( , ), ( ) ( , ) ( ) . (4.157 )0 0 0 0

Here û t t( , )0 is the time-evolution operator, which obeys the following differential
equation:

ℏ ∂
∂

ˆ = ˆ ˆi
t

u Hu b, (4.157 )

where Ĥ is the Hamiltonian operator of the system (which is always Hermitian:
ˆ = ˆ†

H H ). This equation remains valid even if the Hamiltonian depends on time
explicitly. Differentiating the second of Eqs. (4.157a) over t, and then using Eq.
(4.157b) twice, we can merge these relations into a single equation, without an
explicit use of the time-evolution operator:

α αℏ ∂
∂

= ˆi
t

t H t( ) ( ) , (4.158)

which is frequently more convenient. (However, for some purposes the notion of the
time-evolution operator, together with Eq. (4.157b), are useful—as we will see in a
minute.) While Eq. (4.158) is a very natural replacement of the wave-mechanical
equation (1.25), and is also frequently called the Schrödinger equation35, it still
should be considered as a new, more general postulate, which finds its final
justification (as it is usual in physics) in the agreement between its corollaries with
experiment—more exactly, in the absence of a single credible contradiction with
experiment.

35Moreover, we will be able to derive Eq. (1.25) from Eq. (4.158)—see below.
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Starting the discussion of Eq. (4.158), let us first consider the case of a time-
independent Hamiltonian, whose eigenstates an and eigenvalues En obey Eq. (4.68)
for this operator36:

ˆ =H a E a , (4.159)n n n

and hence are also time-independent. (Similarly to the wavefunctions ψn defined by
Eq. (1.60), an are called the stationary states of the system.) Let us use Eqs. (4.158)
and (4.159) to calculate the law of time evolution of the expansion coefficients αn (i.e.
the probability amplitudes) defined by Eq. (4.118), in the stationary state basis:

α α α

α α α

̇ = =

= 〈 ∣
ℏ

ˆ =
ℏ

= −
ℏ

t
d
dt

a t a
d
dt

t

a
i

H t
E
i

a t
i

E

( ) ( ) ( )

1
( ) ( ) .

(4.160)
n n n

n
n

n n n

This is the same simple equation as Eq. (1.61), and its integration yields a similar
result—cf Eq. (1.62), just with the initial time t0 rather than 0:

α α= −
ℏ

−{ }t t
i

E t t( ) ( )exp ( ) . (4.161)n n n0 0

In order to illustrate how this result works, let us consider the spin-½ dynamics in
a time-independent, uniform external magnetic field BB. To construct the system’s
Hamiltonian, we may apply the correspondence principle to the classical expression
for the energy of a magnetic moment m in the external magnetic field BB,37

= − ⋅U m . (4.162)BB

In quantum mechanics, the operator corresponding to the moment m is given by
Eqs. (4.115) and (4.116) (suggested by W Pauli), so that the spin-field interaction is
described by the so-called Pauli Hamiltonian, which may be, due to Eqs. (4.115)–
(4.117), represented in several equivalent forms:

γˆ ˆˆ = − ⋅ ≡ − ⋅H am S . (4.163 )BB BB

If the z-axis is aligned with field’s direction, this expression is reduced to

γ γ σˆ = − ˆ ≡ − ℏ
ˆH S b

2
. (4.163 )z zB B

According to Eq. (4.117), in the z-basis of the spin states ↑ and ↓, the matrix of the
operator (4.163b) is

36Here I have intentionally switched the state index from j to n, which was used for numbering stationary
states in chapter 1, to emphasize the special role played by the stationary states an in the quantum dynamics.
37 See, e.g. Part EM Eq. (5.100). As a reminder, we have already used this expression for the derivation of
Eq. (4.3).
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γ γ= − ℏ σ ≡ ℏΩ σ Ω ≡ −H
2 2

, where . (4.164)z z
B

B

The constant Ω so defined coincides with the classical frequency of the precession,
about axis z, of an axially-symmetric rigid body (the so-called symmetric top), with
an angular momentum S and the magnetic moment m = γS, induced by the external
torque τ = ×m BB.38 (For an electron, with its negative gyromagnetic ratio γe =
−gee/2me, neglecting the tiny difference of the ge-factor from 2, we get

Ω = e
m

, (4.165)
e
B

so that according to Eq. (3.48), the frequency Ω coincides with the electron’s
cyclotron frequency ωc.)

In order to apply the general Eq. (4.161), at this stage we would need to find
the eigenstates an and eigenenergies En of our Hamiltonian. However, with our
(smart :-) choice of the z-axis, the Hamiltonian matrix is already diagonal:

= ℏΩ σ ≡ ℏΩ
−

H
2 2

1 0
0 1

, (4.166)z ⎜ ⎟⎛
⎝

⎞
⎠

meaning that the states ↑ and ↓ are the eigenstates of this system, with the
eigenenergies, respectively,

= + ℏΩ = − ℏΩ
↑ ↓E E

2
and

2
. (4.167)

Note that their difference,

γΔ ≡ − = ℏ Ω = ℏ↑ ↓E E E , (4.168)B

corresponds to the classical energy ∣ ∣m2 B of flipping a magnetic dipole with the
moment’s magnitude m = γℏ/2, oriented along the direction of the fieldBB. Note also
that if the product γB is positive, then Ω is negative, so that E↑ is negative, while E↓

is positive. This is in the agreement with the classical picture of a magnetic dipole m
having a negative potential energy when it is aligned with the external magnetic field
BB—see Eq. (4.162).

For the time evolution of the probability amplitudes of these states, Eq. (4.161)
immediately yields the following expressions:

α α α α= − Ω − = Ω −↑ ↑ ↓ ↓{ } { }t t
i

t t t t
i

t t( ) ( )exp
2

( ) , ( ) ( )exp
2

( ) , (4.169)0 0 0 0

allowing a ready calculation of the time evolution of the expectation values of any
observable. In particular, we can calculate the expectation value of Sz as a function
of time by applying Eq. (4.130) to the (arbitrary) time moment t:

38 See, e.g. Part CM section 4.5, in particular Eq. (4.72), and Part EM section 5.5, in particular Eq. (5.114) and
its discussion.
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α α α α

α α α α

= ℏ −

= ℏ − =

↑ ↑
* ↓ ↓

*

↑ ↑
* ↓ ↓

*

S t t t t t

S

( )
2

( ) ( ) ( ) ( )

2
(0) (0) (0) (0) (0).

(4.170)
z

z

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

Thus the expectation value of the spin component parallel to the applied magnetic
field remains constant in time, regardless of the initial state of the system. However,
this is not true for the components perpendicular to the field. For example, Eq.
(4.132), applied to the moment t, gives

α α α α

α α α α

= ℏ +

= ℏ +

↑ ↓
* ↓ ↑

*

↑ ↓
* − Ω −

↓ ↑
* Ω −

S t t t t t

e e

( )
2

( ) ( ) ( ) ( )

2
(0) (0) (0) (0) .

(4.171)
x

i t t i t t( ) ( )0 0

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

Clearly, this expression describes sinusoidal oscillations with frequency (4.164).
The amplitude and the phase of these oscillations depend on initial conditions.
Indeed, solving Eqs. (4.132) and (4.133) for the probability amplitude products, we
get the following relations:

α α α αℏ = + ℏ = −↓ ↑
* ↑ ↓

*t t S t i S t t t S t i S t( ) ( ) ( ) ( ), ( ) ( ) ( ) ( ), (4.172)x y x y

valid for any time t. Plugging their values for t = t0 = 0 into Eq. (4.171), we get

= + + −

≡ Ω − Ω

+ Ω − − Ω −S t S i S e S i S e

S t S t

( )
1
2

(0) (0)
1
2

(0) (0)

(0) cos (0) sin .
(4.173)

x x y
i t t

x y
i t t

x y

( ) ( )0 0⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

An absolutely similar calculation using Eq. (4.133) gives

= Ω + ΩS t S t S t( ) (0) cos (0) sin . (4.174)y y x

These formulas show, for example, if at moment t = 0 the spin’s state was ↑, i.e.
〈Sx〉(0) = 〈Sy〉(0) = 0, then the oscillation amplitudes of the both ‘lateral’
components of spin vanish. On the other hand, if the spin was initially in the state
→, i.e. had the definite, maximum possible value of Sx, equal to ℏ/2 (in classics, we
would say ‘the spin ℏ/2 was oriented in direction x’), then both expectation values
〈Sx〉 and 〈Sy〉 oscillate in time39 with this amplitude, with the phase shift π/2 between
them.

39 This is one more (hopefully, redundant) illustration of the difference between averaging over the statistical
ensemble and over time: in Eqs. (4.170), (4.173) and (4.174), and quite a few relations below, only the former
averaging has been performed, so the results are still functions of time.

Quantum Mechanics: Lecture notes

4-36



So, the quantum-mechanical results for the expectation values of the Cartesian
components of spin-½ are indistinguishable from the classical results for the
precession, with the frequency γΩ = − B ,40 of a symmetric top with the angular
momentum of magnitude S = ℏ/2, about the field’s direction (our axis z), under the
effect of an external torque τ = ×m BB exerted by the field BB on the magnetic
moment m = γS. Note, however, that the classical language does not describe
the large quantum-mechanical uncertainties of the components, specified by
Eqs. (4.156), which are absent in the classical picture—at least when it starts from
a definite orientation of the angular momentum vector. Also, as we have seen in
section 3.5, the component Lz of an angular momentum at the orbital motion of
particles is always a multiple of ℏ—see, e.g. Eq. (3.139). As a result, the angular
momentum of a spin-½ particle, with Sz = ±ℏ/2, cannot be explained by any
addition of orbital angular moments of its hypothetical components, i.e. by any
internal rotation of the particle about its axis.

Now let us return to the discussion of the general Schrödinger equation (4.157b)
and prove the following fascinating fact: it is possible to write the general solution of
this operator equation. In the easiest case when the Hamiltonian is time-independent,
this solution is an exact analog of Eq. (4.161),

ˆ = ˆ −
ℏ

ˆ − = −
ℏ

ˆ −{ } { }u t t u t t
i

H t t
i

H t t( , ) ( , )exp ( ) exp ( ) . (4.175)0 0 0 0 0

To start its proof we should, first of all, understand what does a function (in this
case, the exponent) of an operator mean. In the operator (and matrix) algebra, such
functions are defined by their Taylor expansions; in particular, Eq. (4.175) means
that

∑ˆ = ˆ +
!

−
ℏ

ˆ −

≡ ˆ +
!

−
ℏ

ˆ − +
!

−
ℏ

ˆ −

+
!

−
ℏ

ˆ − + …

=

∞

u t t I
k

i
H t t

I
i

H t t
i

H t t

i
H t t

( , )
1

( )

1
1

( )
1
2

( )

1
3

( ) ,

(4.176)
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where ˆ ≡ ˆ ˆ ˆ ≡ ˆ ˆ ˆH HH H HHH, ,
2 3 etc. Working with such series of operator products

is not as hard as one could imagine, due to their regular structure. For example, let
us differentiate both parts of Eq. (4.176) over t:

40Note that according to this (classical!) relation, the gyromagnetic ratio γ may be interpreted just as the
angular frequency of the spin precession per unit magnetic field—hence the name. In particular, for electrons,
∣γe∣ ≈ 1.761 × 1011 s−1 T−1; for protons, the ratio is much smaller, γp ≈ 2.675 × 108 s−1 T−1, mostly because of
their larger mass mp, at a g-factor of the same order as for the electron: gp ≡ (2mp/e)γp ≈ 5.586. For larger spin-
½ particles, e.g. atomic nuclei with such spin, the values of γ are smaller still—e.g. γ ≈ 8.681 × 106 s−1 T−1 for
the 57Fe nucleus.
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so that the differential equation (4.158) is indeed satisfied. On the other hand, Eq.
(4.175) also satisfies the initial condition

ˆ = ˆ = ˆ†u t t u t t I( , ) ( , ) , (4.178)0 0 0 0

which immediately follows from the definition (4.157a) of the evolution operator.
Thus, Eq. (4.175) indeed gives the (unique) solution for the time evolution operator—
in the Schrödinger picture.

Now let us allow the operator Ĥ to be a function of time, but with the condition
that its ‘values’ (in fact, operators) at different instants commute with each other:

ˆ ′ ˆ ″ = ′ ″H t H t t t[ ( ), ( )] 0, for any , . (4.179)

(An important non-trivial example of such a Hamiltonian is the time-dependent part
of the Hamiltonian of a particle, due to the effect of a classical, time-dependent, but
position-independent force F(t),

ˆˆ = − ⋅H tF r( ) . (4.180)F

Indeed, the radius-vector operator r̂ does not depend explicitly on time and hence
commutes with itself, as well as with the c-numbers F(t′) and F(t″).) In this case it is
sufficient to replace, in all above formulas, the product ˆ −H t t( )0 with the
corresponding integral over time; in particular, Eq. (4.175) is generalized as

∫ˆ = −
ℏ

ˆ ′ ′u t t
i

H t dt( , ) exp ( ) . (4.181)
t

t

0
0

⎧⎨⎩
⎫⎬⎭

This replacement means that the first form of Eq. (4.176) should be replaced with
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The proof that Eq. (4.182) satisfies Eq. (4.158) is absolutely similar to the one carried
out above.
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We may now use Eq. (4.181) to show that the time-evolution operator is unitary
at any moment, even for the time-dependent Hamiltonian, if it satisfies Eq. (4.179).
Indeed, Eq. (4.181) yields

∫ ∫ˆ ˆ = −
ℏ

ˆ ′ ′ +
ℏ

ˆ ″ ″†u t t u t t
i

H t dt
i

H t dt( , ) ( , ) exp ( ) exp ( ) . (4.183)
t

t

t

t

0 0
0 0
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⎧⎨⎩
⎫⎬⎭

Since each of the exponents may be represented with the Taylor series (4.182), and,
thanks to Eq. (4.179), different components of these sums may be swapped at will,
the expression (4.183) may be manipulated exactly as the product of c-number
exponents, in particular rewritten as

∫ ∫ˆ ˆ = −
ℏ

ˆ ′ ′ − ˆ ″ ″

= ˆ = ˆ
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i
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This property ensures, in particular, that the system state’s normalization does not
depend on time:

α α α α α α= ˆ ˆ =†t t t u t t u t t t t t( ) ( ) ( ) ( , ) ( , ) ( ) ( ) ( ) . (4.185)0 0 0 0 0 0

The most difficult cases for the explicit solution of Eq. (4.158) are those when Eq.
(4.179) is violated41. It may be proven that in these cases the integral limits in the last
form of Eq. (4.182) should be truncated, giving the so-called Dyson series

∫ ∫ ∫∑ˆ = ˆ + −
ℏ

… ˆ ˆ … ˆ
=

∞
−

u t t I
i

dt dt dt H t H t H t( , ) ( ) ( ) ( ). (4.186)
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Since we would not have time/space to use this relation in our course, I will skip its
proof 42.

Let me now return to the general discussion of quantum dynamics to outline its
alternative, Heisenberg picture. For that, let us recall that according to Eq. (4.125),
in quantum mechanics the expectation value of any observable A is a long bracket.
Other quantities (for example, the rates of quantum transitions between pairs of
different states, say α and β) may also be measured in experiment; the general form
of such observable quantities is the following long bracket:

α βÂ . (4.187)

As was discussed above, in the Schrödinger picture the bra- and ket-vectors of the
states evolve in time, while the operators of observables remain time-independent (if
the corresponding variables do not explicitly depend on time), so that Eq. (4.187),
applied to a moment t, may be represented as

α βˆt A t( ) ( ) , (4.188)S

41We will run into such situations in chapter 7, but will not need to apply Eq. (4.186).
42 It may be found, for example, in chapter 5 of J Sakurai’s textbook—see References.
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where the index ‘S’ is added to emphasize the Schrödinger picture. Let us apply the
evolution law (4.157a) to the bra- and ket-vectors in this expression:

α β α βˆ = ˆ ˆ ˆ†A t u t t A u t t t( ) ( , ) ( , ) ( ) . (4.189)0 0 S 0 0

This equality means that if we form a long bracket with bra- and ket-vectors of the
initial-time states, together with the following time-dependent Heisenberg operator43

ˆ ≡ ˆ ˆ ˆ = ˆ ˆ ˆ† †A t u t t A u t t u t t A t u t t( ) ( , ) ( , ) ( , ) ( ) ( , ), (4.190)H 0 S 0 0 H 0 0

all experimentally measurable results will remain the same as in the Schrödinger picture:

α β α βˆ = ˆA t A t t t( ) ( , ) ( ) . (4.191)0 H 0 0

For full clarity, let us see how the Heisenberg picture works for the same simple
(but very important!) problem of the spin-½ precession in a z-oriented magnetic
field, described (in the z-basis) by the Hamiltonian matrix (4.164). In that basis, Eq.
(4.157b) for the time-evolution operator becomes

ℏ ∂
∂

= ℏΩ
−

≡ ℏΩ
− −( ) ( ) ( )i
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u u
u u

u u
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u u
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We see that in this simple case the equations for different matrix elements of the
evolution operator matrix are decoupled, and readily solvable, using the universal
initial conditions (4.178):44

= ≡ Ω − σ Ω− Ω

Ω
t e

e
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Now we can use Eq. (4.190) to calculate the Heisenberg-picture operators of spin
components—still in the z-basis. Dropping the index ‘H’ for brevity (the Heisenberg-
picture operators are clearly marked by their dependence on time anyway), we get

= = ℏ σ
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= ℏ = ℏ σ Ω − σ Ω

≡ Ω − Ω

† †
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(4.194)
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43Note that this strict relation is similar in structure to first of the symbolic Eqs. (4.94), with the bases { }v and
{u} loosely associated, respectively, with the time moments t and t0.
44We could of course use this solution, together with Eq. (4.157), to obtain all the above results for this system
within the Schrödinger picture. In our simple case, the use of Eqs. (4.161) for this purpose was more
straightforward, but in some cases (e.g. for time-dependent Hamiltonians) an explicit calculation of the time-
evolution matrix may be the only practicable way to proceed.
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Absolutely similar calculations of the other spin components yield
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≡ Ω + Ω

Ω

− Ωt ie
ie

t t
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A practical advantage of these formulas is that they describe system’s evolution
for arbitrary initial conditions, thus making the analysis of the initial state effects
very simple. Indeed, since in the Heisenberg picture the expectation values of
observables are calculated using Eq. (4.191) (with β = α), with time-independent bra-
and ket vectors, such averaging of Eqs. (4.194)–(4.196) immediately returns us to
Eqs. (4.170), (4.173), and (4.174), which had been obtained above in the Schrödinger
picture. Moreover, these equations for the Heisenberg operators formally coincide
with the classical equations of the torque-induced precession for c-number variables.
(Below we will see that the same exact mapping is valid for the Heisenberg picture of
the orbital motion.)

In order to see that the last fact is by no means a coincidence, let us combine Eqs.
(4.157b) and (4.190) to form an explicit differential equation of the Heisenberg
operator’s evolution. For that, let us differentiate Eq. (4.190) over time:

ˆ = ∂ ˆ
∂

ˆ ˆ + ˆ ∂ ˆ
∂

ˆ + ˆ ˆ ∂ ˆ
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†
† †d
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A u u
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t

u u A
u
t

. (4.197)H S
S

S

Plugging in the derivatives of the time evolution operator from Eq. (4.157b) and its
Hermitian conjugate, and multiplying both parts of the equation by iℏ, we get

ℏ ˆ = − ˆ ˆ ˆ ˆ + ℏ ˆ ∂ ˆ
∂

ˆ + ˆ ˆ ˆ ˆ† † †i
d
dt

A u HA u i u
A
t

u u A Hu a. (4.198 )H S
S

S

If for the Schrödinger-picture’s Hamiltonian the condition similar to Eq. (4.179) is
satisfied, then, according to Eqs. (4.177) or (4.182), the Hamiltonian commutes with
the time evolution operator and its Hermitian conjugate, and may be swapped with
any of them45. Hence, we may rewrite Eq. (4.198a) as

ℏ ˆ = − ˆ ˆ ˆ ˆ + ℏ ˆ ∂ ˆ
∂

ˆ + ˆ ˆ ˆ ˆ
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A Hu A u i u
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u u A uH
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u u A u H
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[ , ].

(4.198 )
H S

S
S

S
S

45Due to the same reason, ˆ ≡ ˆ ˆ ˆ = ˆ ˆ ˆ = ˆ† †H u H u u uH HH S S S; this is why the index of the Hamiltonian operator may
be dropped in Eqs. (4.198) and (4.199).
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Now using the definition (4.190) again, for both terms on the right-hand side, we
may write

ℏ ˆ = ℏ ∂ ˆ
∂

+ ˆ ˆi
d
dt

A i
A
t

A H[ , ]. (4.199)H H H
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This is the so-called Heisenberg equation of motion46.
Let us see how this equation looks for the same problem of the spin-½ precession

in a z-oriented, time-independent magnetic field, described in the z-basis by the
Hamiltonian matrix (4.164), which does not depend on time. In this basis,
Eq. (4.199) for the vector-operator of spin reads47
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Once again, the equations for different matrix elements are decoupled, and their
solution is elementary:

= = = =
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t t
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S S S S
S S S S
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( ) (0) , ( ) (0) .
(4.201)
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According to Eq. (4.190), the initial ‘values’ of the Heisenberg-picture matrix
elements are just the Schrödinger-picture ones, so that using Eq. (4.117) we may
rewrite this solution in either of two forms:
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The simplicity of the last expression is spectacular. (Remember, it covers any
initial conditions, and all three spatial components of spin!) On the other hand, for
some purposes the previous form may be more convenient; in particular, its
Cartesian components give our earlier results (4.194)–(4.196).

One of the advantages of the Heisenberg picture is that it provides a clearer link
between classical and quantum mechanics. Indeed, analytical classical mechanics
may be used to derive the following equation of time evolution of an arbitrary

46Reportedly, this equation was derived by P A M Dirac, who was so generous that he himself gave the name
of his junior colleague to this key result, because ‘Heisenberg was saying something like this’.
47Using the commutation relations (4.155), this equation may be readily generalized to the case of an arbitrary
magnetic field t( )BB and an arbitrary state basis—the exercise highly recommended to the reader.
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function A(qj, pj, t) of the generalized coordinates qj and momenta pj of the system,
and time t:48

= ∂
∂

−dA
dt

A
t

A H{ , }, (4.203)

whereH is the classical Hamiltonian function of the system, and {..,..} is the so-called
Poisson bracket defined, for two arbitrary functions A(qj, pj, t) and B(qj, pj, t), as
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Comparing Eq. (4.203) with Eq. (4.199), we see that the correspondence between
classical and quantum mechanics (in the Heisenberg picture) is provided by the
following symbolic relation49

↔
− ℏ

ˆ ˆA B
i

A B{ , }
1

[ , ]. (4.205)

This relation may be used, in particular, for finding appropriate operators for
system’s observables, if their form is not immediately evident from the correspond-
ence principle. We will develop this argumentation further when we revisit the wave
mechanics in section 4.7, and also in chapter 9.

Finally, let us discuss one more alternative picture of quantum dynamics. It is also
attributed to P A M Dirac, and is called either the ‘Dirac picture’, or (more
frequently) the interaction picture. The last name stems from the fact that this picture
is very useful for the perturbative (approximate) approaches to systems whose
Hamiltonians may be partitioned into two parts,

ˆ = ˆ + ˆH H H , (4.206)0 int

where Ĥ0 is the sum of relatively simple Hamiltonians of the component subsystems,
while the second term in Eq. (4.206) represents their weak interaction. (Note,
however, that all relations in the balance of this section are exact and not directly
based on the interaction weakness.) In this case, it is natural to consider, together
with the genuine unitary operator û t t( , )0 of the time evolution of the system, which
obeys Eq. (4.157b), a similarly defined unitary operator of evolution of the
‘unperturbed system’ described by the Hamiltonian Ĥ0 alone:

48 See, e.g. Part CM Eq. (10.17). Also, please excuse my use, for the Poisson bracket, of the same (traditional)
symbol {…,…} as for the anticommutator. We will not run into the Poisson brackets again in the course,
minimizing any chance of confusion.
49 Since we have run into the commutator of Heisenberg-picture operators, let me note emphasize again that
the ‘values’ of the same operator at different moments of time may not commute. Perhaps the simplest example
is the operator x̂ of coordinate of a free 1D particle, with the time-independent Hamiltonian ˆ = ˆH p m/22 .
Indeed, for this case Eq. (4.199) yields ℏ ˆ ̇ = ˆ ˆ = ℏ ˆi x x H i p m[ , ] / and ℏ ˆ ̇ = ˆ ˆ =i p p H[ , ] 0, with the following simple
solutions (similar to those for the classical motion of the corresponding observables): ˆ = = ˆp t p( ) const (0),
ˆ = ˆ + ˆx t x p t m( ) (0) (0) / , so that ˆ ˆ = ˆ ˆ ≡ ˆ ˆ = ℏ ≠ ≠x x t x p t m x p t m i t m t[ (0), ( )] [ (0), (0)] / , / / 0, if 0S S

⎡⎣ ⎤⎦ .
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ℏ ∂
∂

ˆ = ˆ ˆi
t

u H u , (4.207)0 0 0

and also the following interaction evolution operator,

ˆ ≡ ˆ ˆ†u u u. (4.208)I 0

The reason for the last definition becomes more clear if we insert the reciprocal
relation,

ˆ ≡ ˆ ˆ ˆ = ˆ ˆ†u u u u u u , (4.209)I0 0 0

and its Hermitian conjugate,

ˆ = ˆ ˆ = ˆ ˆ† † † †u u u u u( ) , (4.210)I I0 0

into the basic Eq. (4.189)—which is valid in any picture:

α β α β
α β

ˆ ≡ ˆ ˆ ˆ
= ˆ ˆ ˆ ˆ ˆ

†

† †

A t u t t A u t t t

t u t t u t t A u t t u t t t

( ) ( , ) ( , ) ( )

( ) ( , ) ( , ) ( , ) ( , ) ( ) .
(4.211)

I I

0 0 S 0 0

0 0 0 0 S 0 0 0 0

This relation shows that all calculations of the observable expectation values and
transition rates (i.e. all the results of quantum mechanics that may be experimentally
verified) are expressed by the following formula, with the standard long bracket
structure (4.187),

α β α βˆ = ˆA t A t t( ) ( ) ( ) , (4.212)I I I

if we assume that both the state vectors and the operators depend on time, with the
vectors evolving only due to the interaction operator ûI ,

α α β β≡ ˆ ≡ ˆ†t t u t t t u t t t( ) ( ) ( , ), ( ) ( , ) ( ) , (4.213)I I I I0 0 0 0

and the operators’ evolution being governed by the unperturbed operator û0:

ˆ ≡ ˆ ˆ ˆ†A t u t t A u t t( ) ( , ) ( , ). (4.214)I 0 0 S 0 0

These relations describe the interaction picture of quantum dynamics. Let me
defer an example of its use until the perturbative analysis of open quantum systems
in section 7.6, and end this section by a proof that the interaction evolution operator
(4.208) satisfies the following equation,

ℏ ∂
∂

ˆ = ˆ ˆi
t

u H u , (4.215)I I I

where ĤI is the interaction Hamiltonian transformed in accordance with the same
rule (4.214):

ˆ ≡ ˆ ˆ ˆ†H t u t t H u t t( ) ( , ) ( , ). (4.216)I 0 0 int 0 0
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The proof is very straightforward: first using the definition (4.208), and then
Eqs. (4.157b) and the Hermitian conjugate of Eq. (4.207), we may write

ℏ ∂
∂

ˆ ≡ ℏ ∂
∂

ˆ ˆ ≡ ℏ
∂ ˆ
∂

ˆ + ˆ ℏ∂ ˆ
∂

= − ˆ ˆ ˆ + ˆ ˆ ˆ

= − ˆ ˆ ˆ + ˆ ˆ + ˆ ˆ ≡ − ˆ ˆ ˆ + ˆ ˆ ˆ + ˆ ˆ ˆ

≡ − ˆ ˆ + ˆ ˆ ˆ + ˆ ˆ ˆ

†
†

† † †

† † † † †

† † †( )

( )i
t

u i
t

u u i
u
t

u u i
u
t

H u u u Hu

H u u u H H u H u u u H u u H u

H u u H u u H u

( )

.

(4.217)

I 0
0

0 0 0 0

0 0 0 0 int 0 0 0 0 0 int

0 0 0 0 0 int

Since ˆ †u0 may be represented as an integral of an exponent of Ĥ0 over time (similar to
Eq. (4.181) relating û and Ĥ ), these operators commute, so that the parentheses in
the last form of Eq. (4.217) vanish. Now plugging û from the last form of Eq.
(4.209), we get the equation,

ℏ ∂
∂

ˆ = ˆ ˆ ˆ ≡ ˆ ˆ ˆ ˆ† †( )i
t

u u H u u u H u u , (4.218)I I I0 int 0 0 int 0

which is clearly equivalent to the combination of Eqs. (4.215) and (4.216).
As Eq. (4.215) shows, if the energy scale of the interaction Hint is much smaller

than that of the background Hamiltonian H0, the interaction evolution operators ûI

and ˆ †uI , and hence the state vectors (4.213) evolve relatively slowly, without fast
background oscillations. This is very convenient for the perturbative approaches to
complex interacting systems, in particular to the ‘open’ quantum systems that
weakly interact with their environment—see section 7.6.

4.7 Coordinate and momentum representations
Now let me show that in application to the orbital motion of a particle, the bra–ket
formalism naturally reduces to the notions and postulates of wave mechanics, which
were discussed in chapter 1. For that, we first have to modify some of the above
formulas for the case of a basis with a continuous spectrum of eigenvalues—such as
the particle’s coordinate. In that case, it is more appropriate to remove discrete
indices, such as the indices j, j′, etc. broadly used above, replacing them with the
corresponding eigenvalue50. For example, the key Eq. (4.68), defining the eigenkets
and eigenvalues of an operator, may be conveniently rewritten in the form

ˆ =A a A a . (4.219)A A

More substantially, all sums over such continuous eigenstate sets should be
replaced with integrals. For example, for a full and orthonormal set of the eigenstate
∣aA〉, the closure relation (4.44) should be replaced with

∫ = ˆdA a a I , (4.220)A A

50Actually, such notation was already used earlier—see, e.g. Eqs. (1.88), (2.20), etc.
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where the integral should be taken over the whole interval of possible eigenvalues of
the observable A.51 Applying this relation to the ket-vector of an arbitrary state α,
we get the following replacement of Eq. (4.37):

∫ ∫α α α α≡ ˆ = =I dA a a dA a a . (4.221)A A A A

For the particular case when ∣α〉 = ∣aA′〉, this relation requires

δ= − ′′a a A A( ); (4.222)A A

this formula replaces the orthonormality condition (4.38).
According to Eq. (4.221), in the continuous case the bracket 〈aA∣α〉 continues to

play the role of the probability amplitude, i.e. the complex of c-number whose
modulus squared determines the state aA’s probability—see the last form of Eq.
(4.120). However, for a continuous observable, the probability to find the system
exactly in a particular state is infinitesimal; instead we should speak about the
probability density w(A) ∝ ∣〈aA∣α〉∣2 of finding the observable within a small interval
dA ≪ A about a certain value A. The coefficient in that relation may be found by
making the similar change from the summation to integration (without any addi-
tional coefficients) in the normalization condition (4.121):

∫ α α =dA a a 1. (4.223)A A

Since the total probability of the system to be in some state should also equal to
∫w(A)dA, this means that

α α α= =w A a a a( ) . (4.224)A A A
2

Now let us see how we can calculate the expectation values of continuous
observables, i.e. their ensemble averages. If we speak about the same observable A
whose eigenstates are used as the continuous basis (or any compatible observable),
everything is simple. Indeed, inserting Eq. (4.224) into the general statistical relation

∫=A w A AdA( ) , (4.225)

which is just the obvious continuous version of Eq. (1.37), we get

∫ α α=A a A a dA. (4.226)A A

Inserting a delta-function to represent this expression as a formally double integral,

∫ ∫ α δ α= ′ − ′ ′A dA dA a A A A a( ) , (4.227)A A

51 The generalization to the case when the eigenvalue spectrum consists of both a continuum range (or ranges)
plus some discrete values is straightforward, but leads to cumbersome formulas.
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and using the continuous-spectrum version of Eq. (4.98),

δˆ = − ′′a A a A A A( ), (4.228)A A

we may write

∫ ∫ α α α α= ′ ˆ ≡ ˆ′ ′A dA dA a a A a a A , (4.229)A A A A

so that Eq. (4.125) remains valid in the continuous-spectrum case without any
changes.

The situation is a bit more complicated for the expectation values of an operator
that does not commute with the basis-generating operator, because its matrix in that
basis may not be diagonal. We will consider (and overcome) this technical difficulty
very soon, but otherwise we are ready for the discussion of the relation between the
bra–ket formalism and the wave mechanics. (For the notation simplicity I will
discuss its 1D version; the generalization to the 2D and 3D cases is straightforward.)

Let us postulate the (intuitively almost evident) existence of a quantum state
basis, whose ket-vectors will be called ∣x〉, corresponding to a certain, exactly defined
value x of the particle’s coordinate. Writing the following trivial identity:

=x x x x , (4.230)

and comparing this relation with Eq. (4.219), we see that they do not contradict each
other if we assume that x on the left-hand side of this relation is considered as the
(Hermitian) operator x̂ of particle’s coordinate, whose action on a ket- (or bra-)
vector is just its multiplication by the c-number x. (This looks like a proof, but is
actually a separate, independent postulate, no matter how plausible.) This means
that we may consider the set of vectors ∣x〉 as the eigenstates of the operator x̂. Let
me hope that the reader will excuse me if I do not pursue here a strict proof that this
set is full and orthogonal52, so that we may apply to them Eq. (4.222):

δ′ = − ′x x x x( ). (4.231)

Using this basis is called the coordinate representation—the term which was already
used in the end of section 1.1, but without explanation.

In the basis of the x-states, the inner product 〈aA∣α(t)〉 becomes 〈x∣α(t)〉, and
Eq. (4.223) takes the form

α α α α= ≡ *w x t t x x t x t x t( , ) ( ) ( ) ( ) ( ) . (4.232)

Comparing this formula with the basic postulate (1.22) of wave mechanics, we see
that they coincide if the wavefunction of a time-dependent state α is identified with
that bracket53:

52Actually such a proof is rather involved mathematically, but physically this fact should be evident.
53 I do not quite like expressions like 〈x∣Ψ〉 used in some papers and even textbooks. Of course, one is free to
replace α with any other letter (Ψ including) to denote a quantum state, but then it is better not to use the same
letter to denote the wavefunction, i.e. an inner product of two state vectors, to avoid confusion.
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αΨ ≡α x t x t( , ) ( ) . (4.233)

This key formula provides the desired connection between the bra–ket formalism
and the wave mechanics, and should not be too surprising for the (thoughtful :-)
reader. Indeed, Eq. (4.45) shows that any inner product of the state vectors
describing two states is a measure of their coincidence—just as the scalar product
of two geometric vectors is; the orthonormality condition (4.38) is a particular
manifestation of this fact. In this language, the particular value (4.233) of a
wavefunction Ψα at point x and moment t characterizes ‘how much of a particular
coordinate x’ does the state α contain at this particular instance. (Of course this
informal language is too crude to describe the fact that Ψα(x, t) is generally a
complex function, which has not only a modulus, but also a phase.)

Now let us rewrite the most important formulas of the bra–ket formalism in the
wave mechanics notation. Inner-multiplying both parts of Eq. (4.219) by the ket-
vector 〈x∣, and then inserting into the left-hand side of the relation the identity
operator in the form (4.222), we get

∫ ′ ˆ ′ ′ =dx x A x x a A x a , (4.234)A A

i.e. using the wavefunction’s definition (4.233),

∫ ′ ˆ ′ Ψ ′ = Ψdx x A x x A x( ) ( ), (4.235)A A

where, for the notation brevity, the time dependence of the wavefunction is just
implied (with the capital Ψ serving as a reminder), and will be restored when needed.

For a general operator, we would have to stop here, because if it does not
commute with the coordinate operator, its matrix in the x-basis is not diagonal, and
the integral on the left-hand side of Eq. (4.235) cannot be worked out explicitly.
However, virtually all quantum-mechanical operators discussed in this course54 are
(space-) local: they depend on only one spatial coordinate, say x. For such operators,
the left-hand side of Eq. (4.235), for an arbitrary wavefunction, may be further
transformed as

∫ ∫
∫ δ

ˆ ′ Ψ ′ ′ = ′ ˆΨ ′ ′

≡ ˆ − ′ Ψ ′ ′ = ˆΨ

x A x x dx x x A x dx

A x x x dx A x

( ) ( )

( ) ( ) ( ).
(4.236)

The first step in this transformation may appear as elementary as the last two, with
the ket-vector ∣x′〉 swapped with the operator depending only on x; however, due
to the delta-functional character of the bracket (4.231), this step is in fact an
additional postulate, so that the second equality in Eq. (4.236) essentially defines the
coordinate representation of the local operator, whose explicit form still needs to be
determined.

54 The only substantial exception is the statistical operator ŵ(x, x′), to be discussed in chapter 7.
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Let us consider, for example, the 1D version of the Hamiltonian (1.41),

ˆ =
ˆ

+ ˆH
p

m
U x

2
( ), (4.237)x

2

which was the basis of all our discussions in chapter 2. Its potential-energy part U
(which may be time-dependent as well) commutes with the operator x̂, i.e. its matrix
in the x-basis has to be diagonal. For this operator, the transformation (4.236) is
indeed trivial, and its coordinate representation is given merely by the c-number
function U(x).

The situation of the momentum operator p̂x (and hence the kinetic energy p̂ m/2x
2 ),

not commuting with x̂, is less evident. Let me show that its coordinate representation
is given by the 1D version of Eq. (1.26), if we postulate that the commutation
relation (2.14),

ˆ ˆ = ℏ ˆ ˆ ˆ − ˆ ˆ = ℏ ˆx p i I xp p x i I[ , ] , i.e. , (4.238)x x

is valid in any representation55. For that, let us consider the following matrix
element, ˆ ˆ − ˆ ˆ ′x xp p x xx x . On one hand, we may use Eq. (4.238), and then Eq.
(4.231), to write

δˆ ˆ − ˆ ˆ ′ = ℏ ˆ ′ = ℏ ′ = ℏ − ′x xp p x x x i I x i x x i x x( ). (4.239)x x

On the other hand, since ˆ ′ = ′ ′x x x x and ˆ =x x x x, we may represent the same
matrix element as

ˆ ˆ − ˆ ˆ ′ = ˆ − ˆ ′ ′ = − ′ ˆ ′x xp p x x x xp p x x x x x p x( ) . (4.240)x x x x x

Comparing Eqs. (4.239) and (4.240), we get

δˆ ′ = ℏ − ′
− ′

x p x i
x x
x x
( )

. (4.241)x

As follows from the definition of the delta-function56, all expressions involving it
acquire final sense only at their integration, in our current case, at that described by
Eq. (4.236). Plugging Eq. (4.241) into the left-hand side of that relation, we get

∫ ∫ δˆ ′ Ψ ′ ′ = ℏ − ′
− ′

Ψ ′ ′x p x x dx i
x x
x x

x dx( )
( )

( ) . (4.242)x

Since this integral is evidently contributed only by an infinitesimal vicinity of the
point x′ = x, we may calculate it by expanding the continuous wavefunction Ψ(x′)
into the Taylor series in small (x′ − x), and keeping only two leading terms of the
series, so that Eq. (4.242) is reduced to

55Another popular approach to the wave mechanics axiomatics is to derive Eq. (4.238) by postulating the form,
ˆ = − ˆ ℏip Xexp{ / }X xT , of the operator that shifts any wavefunction by distance X along the axis x. In my
approach, this expression with be derived when we need it (in section 5.5), while Eq. (4.238) is postulated.
56 If necessary, please revisit section A.14.
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∫ ∫

∫

δ

δ

ˆ ′ Ψ ′ ′ = ℏ Ψ − ′
− ′

′

− − ′ ∂Ψ ′
∂ ′

∣ ′′=

x p x x t dx i x
x x
x x

dx

x x
x

x
dx

( , ) ( )
( )

( )
( )

.

(4.243)
x

x x

⎡
⎣⎢

⎤
⎦⎥

Since the delta-function may be always understood as an even function of its
argument, in our case of (x − x′), the first term on the right-hand side is proportional
to an integral of an odd function in symmetric limits, and is equal to zero, and we
get57

∫ ˆ ′ Ψ ′ ′ = − ℏ∂Ψ
∂

x p x x t dx i
x

( , ) . (4.244)x

Comparing this expression with the right-hand side of (4.236), we see that in the
coordinate representation we indeed get the 1D version of Eq. (1.26), which was
used so much in chapter 2,58

ˆ = − ℏ ∂
∂

p i
x

. (4.245)x

It is straightforward to show (and is virtually evident) that the coordinate
representation of any operator function ˆf p( )x is

− ℏ ∂
∂

f i
x

. (4.246)⎜ ⎟⎛
⎝

⎞
⎠

In particular, this pertains to the kinetic energy operator in Eq. (4.237), so the
coordinate representation of this Hamiltonian also takes the very familiar form:

ˆ = − ℏ ∂
∂

+ ≡ − ℏ ∂
∂

+H
m

i
x

U x t
m x

U x t
1

2
( , )

2
( , ). (4.247)

2 2 2

2
⎜ ⎟⎛
⎝

⎞
⎠

Now returning to the discussion of the general Eq. (4.235), and comparing its last
form with that of Eq. (4.236), we see that for a local operator in the coordinate
representation, the eigenproblem (4.219) takes the form

ˆΨ = ΨA x A x( ) ( ), (4.248)A A

even if the operator Â does not commute with the operator x̂. The most important
case of this coordinate-representation form of the eigenproblem (4.68) is the familiar
Eq. (1.60) for the eigenvalues En of the energy of a system with a time-independent
Hamiltonian.

57One more useful expression of this type, which may be proved similarly, is (∂/∂x)δ(x − x′) = δ(x − x′)∂/∂x′.
58 This means, in particular, that in the sense of Eq. (4.236), the operator of differentiation is local, despite the
fact that its action on a function f may be interpreted as the limit of the fraction Δf/Δx, involving two points.
(In some axiomatic systems, local operators are defined as arbitrary polynomials of functions and their
derivatives.)
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The operator locality also simplifies the expression for its expectation value.
Indeed, plugging the completeness relation in the form (4.231) into the general Eq.
(4.125) twice (written in the first case for x and in the second case for x′), we get

∫ ∫
∫ ∫

α α= ′ ˆ ′ ′

= ′ Ψ ˆ ′ Ψ ′α α*

A dx dx t x x A x x t

dx dx x t x A x x t

( ) ( )

( , ) ( , ).
(4.249)

Now, Eq. (4.236) reduces this result to just

∫ ∫
∫

δ= ′Ψ ˆΨ − ′

≡ Ψ ˆΨ

α α

α α

*

*

A dx dx x t A x t x x

x t A x t dx

( , ) ( , ) ( )

( , ) ( , ) .
(4.250)

i.e. to Eq. (1.23), which had to be postulated in chapter 1.
Now let us discuss the time evolution of the wavefunction, in the Schrödinger

picture. For that, we may use Eq. (4.233) to calculate the (partial) time derivative of
the wavefunction of some state α:

αℏ∂Ψ
∂

= ℏ ∂
∂

αi
t

i
t

x t( ) . (4.251)

Since the coordinate operator x̂ does not depend on time explicitly, its eigenstates x
are stationary, and we can swap the time derivative and the time-independent bra-
vector 〈x∣. Now using the Schrödinger-picture Eq. (4.158), and then inserting the
identity operator in the continuous form (4.220) of the closure relation, written for
the coordinate eigenstates,

∫ ′ ′ ′ = ˆdx x x I , (4.252)

we may continue to develop the right-hand side of Eq. (4.251) as

∫
∫

α α αℏ ∂
∂

= ˆ = ′ ˆ ′ ′

= ′ ˆ ′ Ψ ′α

x i
t

t x H t dx x H x x t

dx x H x x

( ) ( ) ( )

( ),
(4.253)

If the Hamiltonian operator is local, we may apply Eq. (4.236) to the last expression,
to get the familiar form (1.28) of the Schrödinger equation:

ℏ∂Ψ
∂

= ˆ Ψα
αi

t
H , (4.254)

in which the coordinate representation of the operator Ĥ is implied.
So, for the local operators that obey Eq. (4.236), we have been able to derive all

the basic notions and postulates of the wave mechanics from the bra–ket formalism.
Moreover, the formalism has allowed us to get the very useful equation (4.248) for
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an arbitrary local operator, which will be repeatedly used below. (In the first three
chapters of this course, we have only used its particular case (1.60) for the
Hamiltonian operator.)

Now let me deliver on my promise to develop a more balanced view at the
monochromatic de Broglie waves (4.1), which would be more respectful to the
evident r ↔ p symmetry of the coordinate and momentum. Let us do this for the 1D
case when the wave may be represented as

ψ =
ℏ

− ∞ < < +∞{ }x a i
px

x( ) exp , for all . (4.255)p p

(For the sake of brevity, from this point to the end of the section, I am dropping the
index x in the notation of the momentum—just as was done in chapter 2.)

Let us have a good look at this function. Since it satisfies Eq. (4.248) for the 1D
momentum operator (4.245),

ψ ψˆ =p p , (4.256)p p

ψp is an eigenfunction of that operator. But this means that we can also write Eq.
(4.219) for the corresponding ket-vector:

ˆ =p p p p , (4.257)

and according to Eq. (4.233), the wavefunction (4.255) may be represented as

ψ =x x p( ) . (4.258)p

This expression is quite remarkable in its x ↔ p symmetry—which may be
pursued further on. Before doing that, however, we have to discuss the normal-
ization of such wavefunctions. Indeed, in this case, the probability density w(x)
(4.18) is constant, so that its integral

∫ ∫ ψ ψ=
−∞

+∞

−∞

+∞
*w x dx x x dx( ) ( ) ( ) (4.259)p p

diverges if ap ≠ 0. Earlier in the course, we discussed two ways to avoid this
divergence. One is to use a very large but finite integration volume—see Eq. (1.31).
Another way is to work with wave packets of the type (2.20), possibly of a very large
length and hence a very narrow spread of the momentum values. Then the integral
(4.54) may be required to equal 1 without any conceptual problem.

However, both these methods, convenient for the solution of many particular
problems, violate the x ↔ p symmetry, and hence are inconvenient for our current
conceptual discussion. Instead, let us continue to identify the eigenvectors 〈p∣ and ∣p〉
of the momentum with the bra- and ket-vectors 〈aA∣ and ∣aA〉 of the general theory,
developed in the beginning of this section. Then the normalization condition (4.222)
becomes

δ′ = − ′p p p p( ). (4.260)
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Inserting the identity operator in the form (4.252) (with the integration variable x′
replaced by x) into the left-hand side of this equation, and using Eq. (4.258), we can
translate this normalization rule to the wavefunction language:

∫ ∫ ψ ψ δ′ ≡ = − ′*
′dx p x x p dx x x p p( ) ( ) ( ). (4.261)p p

For the wavefunction (4.255), this requirement turns into the following condition:

∫ π δ δ− ′
ℏ

≡ ℏ − ′ = − ′* ′
−∞

+∞
a a i

p p x
dx a p p p pexp

( )
2 ( ) ( ), (4.262)p p p

2⎧⎨⎩
⎫⎬⎭

so that, finally, ap = eiϕ/(2πℏ)1/2, where ϕ is an arbitrary (real) phase, and Eq. (4.255)
becomes59

ψ
π

ϕ= =
ℏ ℏ

+x x p i
px

( )
1

(2 )
exp , (4.263)p 1/2

⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠
⎫⎬⎭

Now let us represent an arbitrary wavefunction ψ(x) as a wave packet of the type
(2.20), based on the wavefunctions (4.263), taking ϕ = 0 for the notation brevity,
because the phase factor may be incorporated into the (generally, complex) envelope
function φ(p):

∫ψ
π

φ=
ℏ ℏ{ }x p i

px
dp( )

1
(2 )

( ) exp . (4.264)
1/2

From the mathematical point of view, this is just a 1D Fourier spatial transform,
and its reciprocal is

∫φ
π

ψ≡
ℏ

−
ℏ{ }p x i
px

dx( )
1

(2 )
( ) exp . (4.265)

1/2

These expressions are completely symmetric, and represent the same wave packet;
this is why the functions ψ(x) and φ(p) are frequently called the reciprocal
representations of a quantum state of the particle—respectively, its coordinate (x-)
and momentum (p-) representations. Using Eq. (4.258), and Eq. (4.263) with ϕ = 0,
they may be recast into simpler forms,

∫ ∫ψ φ φ ψ= =x p x p dp p x p x dx( ) ( ) , ( ) ( ) , (4.266)

in which the scalar products satisfy the basic postulate (4.14) of the bra–ket
formalism:

π
=

ℏ
−

ℏ
= *{ }p x i

px
x p

1
(2 )

exp . (4.267)
1/2

59Repeating this calculation for each Cartesian component of a plane monochromatic wave of arbitrary
dimensionality d, we get ψp = (2πℏ)−d/2exp{i(p·r/ℏ + φ)}.
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Next, we already know that in the x-representation, i.e. in the usual wave
mechanics, the coordinate operator x̂ is reduced to the multiplication by x, and the
momentum operator is proportional to the partial derivative over the coordinate:

ˆ∣ = ˆ ∣ = − ℏ ∂
∂

x x p i
x

, . (4.268)x xin in

It is natural to guess that in the p-representation, the expressions for operators would
be reciprocal:

ˆ∣ = ℏ ∂
∂

ˆ ∣ =x i
p

p p, , (4.269)p pin in

with the difference of one sign, which is due to the opposite signs of the Fourier
exponents in Eqs. (4.264) and (4.265). The proof of Eqs. (4.269) is straightforward;
for example, acting by the momentum operator on the arbitrary wavefunction
(4.264), we get

∫

∫

ψ ψ

π
φ

π
φ

ˆ = − ℏ ∂
∂

=
ℏ

− ℏ ∂
∂ ℏ

=
ℏ ℏ

{ }
{ }

p x i
x

x

p i
x

i
px

dp

p p i
px

dp

( ) ( )

1
(2 )

( ) exp

1
(2 )

( ) exp ,

(4.270)1/2

1/2

⎛
⎝⎜

⎞
⎠⎟

and similarly for the operator x̂ acting on the function φ(p). Comparing the final
expression with the initial Eq. (4.264), we see that the action of the operators (4.268)
on the wavefunction ψ (i.e. the state’s x-representation) gives the same results as the
action of the operators (4.269) on the function φ (i.e. its p-representation).

It is illuminating to have one more, different look at this coordinate-momentum
duality. For that, notice that according to Eqs. (4.82)–(4.84), we may consider the
bracket 〈x∣p〉 as an element of the (infinite-size) matrix Uxp of the unitary transform
from the x-basis to the p-basis. Let us use this fact to derive the general operator
transform rule that would be a continuous version of Eq. (4.92). Say, we want to
calculate the general matrix element of some operator, known in the x-representation,
in the p-representation:

ˆ ′p A p . (4.271)

Inserting two identity operators (4.252) into this bracket, and then using Eq. (4.258)
and its complex conjugate, and also Eq. (4.236) (again, valid only for space-local
operators!), we get
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∫ ∫
∫ ∫

∫ ∫

∫

ψ ψ

π
δ

π

ˆ ′ = ′ ˆ ′ ′ ′

= ′ ˆ ′ ′

=
ℏ

′ −
ℏ

− ′ ˆ ′ ′
ℏ

=
ℏ

−
ℏ

ˆ ′
ℏ

*
′

{ }
{ }

{ }
{ }

p A p dx dx p x x A x x p

dx dx x x A x x

dx dx i
px

x x A i
p x

dx i
px

A i
p x

( ) ( )

1
2

exp ( ) exp

1
2

exp exp .

(4.272)
p p

As a sanity check, for the momentum operator itself, this relation yields:

∫

∫
π

π
δ

ˆ ′ =
ℏ

−
ℏ

− ℏ ∂
∂

′
ℏ

= ′
ℏ

′ −
ℏ

= ′ ′ −
−∞

+∞

{ }{ }p p p dx i
px

i
x

i
p x

p
i

p p x
dx p p p

1
2

exp exp

2
exp

( )
( ).

(4.273)

⎜ ⎟⎛
⎝

⎞
⎠

⎧⎨⎩
⎫⎬⎭

Due to Eq. (4.257), this result is equivalent to the second of Eqs. (4.269).
From a thoughtful reader, I anticipate the following natural question: why is the

momentum representation used much less frequently than the coordinate represen-
tation—i.e. the wave mechanics? The answer is purely practical: besides the special
case of the 1D harmonic oscillator (to be revisited in section 5.4), in most systems the
orbital-motion Hamiltonian (4.237) is not x ↔ p symmetric, with the potential
energy U(r) typically being a more complex function than the kinetic energy p2/2m.
Because of that, it is easier to analyze such systems treating this potential energy
operator just as a c-number multiplier, as it is in the coordinate representation—as
was done in chapters 1–3.

The most significant exception is the motion in a periodic potential in the presence
of an external force F. As was discussed in sections 2.7 and 3.4, in such periodic
systems the eigenenergies En(q), playing the role of the effective kinetic energy of the
particle, may be rather involved functions of its quasi-momentum ℏq, while its
effective potential energy Uef = −F(t) · r, due to the additional force F(t), is a simple
function of coordinates. This is why detailed analyses of the quantum effects briefly
discussed in section 2.8 (the Bloch oscillations, etc) and also such statistical
phenomena as drift, diffusion, etc60, in solid state theory are typically based on
the momentum (or rather the quasi-momentum) representation.

4.8 Problems

Problem 4.1. Prove that if Â and B̂ are linear operators, and C is a c-number, then:

(i) ˆ = ˆ† †A A( ) ;

(ii) ˆ = ˆ† * †
CA C A( ) ;

60 In this series, a brief discussion of these effects may be found in Part SM chapter 6.
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(iii) ˆ ˆ = ˆ ˆ† † †
AB B A( ) ;

(iv) the operators ˆ ˆ†
AA and ˆ ˆ†

A A are Hermitian.

Problem 4.2. Prove that for any linear operators ˆ ˆ ˆ ˆA B C D, , , and ,

ˆ ˆ ˆ ˆ = ˆ ˆ ˆ ˆ − ˆ ˆ ˆ ˆ + ˆ ˆ ˆ ˆ − ˆ ˆ ˆ ˆAB CD A B C D AC B D A C DB C A D B[ , ] { , } { , } { , } { , } .

Problem 4.3. Calculate all possible binary products σjσj′ (for j, j′ = x, y, z) of the
Pauli matrices, defined by Eqs. (4.105), and their commutators and anticommuta-
tors (defined similarly to those of the corresponding operators). Summarize the
results, using the Kronecker delta and Levi-Civita permutation symbols61.

Problem 4.4. Calculate the following expressions

(i) (c · σ)n, and then
(ii) (bI + c · σ)n,

for the scalar product c · σ of the Pauli matrix vector σ ≡ nxσx + nyσy + nzσz by an
arbitrary c-number vector c, where n ⩾ 0 is an integer, and b is an arbitrary scalar c-
number.

Hint: For task (ii), you may like to use the binomial theorem62, and then transform
the result in a way enabling you to use the same theorem backwards.

Problem 4.5. Use the solution of the previous problem to derive Eqs. (2.191) for the
transparency T of a system of N similar, equidistant, delta-functional potential
barriers.

Problem 4.6. Use the solution of problem 4.4(i) to spell out the following matrix:
exp{iθn · σ}, where σ is the vector of Pauli matrices, n is a c-number vector of unit
length, and θ is a c-number scalar.

Problem 4.7. Use the solution of problem 4.4(ii) to calculate exp{A}, where A is an
arbitrary 2 × 2 matrix.

Problem 4.8. Express elements of the matrix B = exp{A} explicitly via those of the
2 × 2 matrix A. Spell out your result for the following matrices:

φ φ
φ φ= ′ =( )a a

a a
i i
i i

A , A ,
⎛
⎝⎜

⎞
⎠⎟

with real a and φ.

Problem 4.9. Prove that for arbitrary square matrices A and B,

=Tr (AB) Tr (BA).

61 See, e.g. Eqs. (A.82) and (A.83).
62 See, e.g. Eq. (A.12).
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Is each diagonal element (AB)jj necessarily equal to (BA)jj?

Problem 4.10. Calculate the trace of the following 2 × 2 matrix:

σ σ σ≡ ⋅ ⋅ ⋅a b cA ( )( )( ),

where σ is the Pauli matrix vector, while a, b, and c are arbitrary c-number vectors.

Problem 4.11. Prove that the matrix trace of an arbitrary operator does not change
at its arbitrary unitary transformation.

Problem 4.12. Prove that for any two full and orthonormal bases {u}, { }v of the
same Hilbert space,

=′ ′( )u uTr .j j j jv v

Problem 4.13. Is the 1D scattering matrix S, defined by Eq. (2.124), unitary? What
about the 1D transfer matrix T defined by Eq. (2.125)?

Problem 4.14. Calculate the trace of the following matrix:

σ σ⋅ ⋅i ia bexp{ } exp{ },

where σ is the Pauli matrix vector, while a and b are c-number geometric vectors.

Problem 4.15. Prove the following vector-operator identity:

σ ˆ σ ˆ ˆ ˆ σ ˆ ˆ⋅ ⋅ = ⋅ + ⋅ ×ir p r p r p( )( ) I ( ),

where I is the 2 × 2 identity matrix.

Hint: Take into account that the vector operators r̂ and p̂ are defined in the orbital-
motion Hilbert space, independent of that of the Pauli vector-matrix σ, and hence
commute with it—even though they do not commute with each other.

Problem 4.16. Let Aj be eigenvalues of some operator Â. Express the following two
sums,

∑ ∑Σ ≡ Σ ≡A A, ,
j j

j j1 2
2

via the matrix elements Ajj’ of this operator in an arbitrary basis.

Problem 4.17. Calculate σz of a spin-½ in a quantum state with the following ket-
vector:

α = × ↑ + ↓ + → + ←const ( ),

where (↑, ↓) and (→, ←) are the eigenstates of the Pauli matrices σz and σx,
respectively.

Hint: Double-check whether the solution you are giving is general.
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Problem 4.18. A spin-½ is fully polarized in the positive z-direction. Calculate the
probabilities of the alternative outcomes of a perfect Stern–Gerlach experiment with
the magnetic field oriented in an arbitrary different direction, performed on a
particle in this spin state.

Problem 4.19. In a certain basis, the Hamiltonian of a two-level system is described
by the matrix

= ≠E
E

E EH
0

0
, with ,1

2
1 2

⎛
⎝⎜

⎞
⎠⎟

while the operator of some observable A of this system, by the matrix

=A 1 1
1 1

.⎜ ⎟
⎛
⎝

⎞
⎠

For the system’s state with the energy definitely equal to E1, find the possible results
of measurements of the observable A and the probabilities of the corresponding
measurement outcomes.

Problem 4.20. Certain states u1,2,3 form an orthonormal basis of a system with the
following Hamiltonian

δˆ = − + + +H u u u u u u( ) h.c.,1 2 2 3 3 1

where δ is a real constant, and h.c. means the Hermitian conjugate of the previous
expression. Calculate its stationary states and energy levels. Can you relate this
system with any other(s) discussed earlier in the course?

Problem 4.21. Guided by Eq. (2.203) of the lecture notes, and by the solutions of
problems 3.11 and 4.20, suggest a Hamiltonian describing particle’s dynamics in an
infinite 1D chain of similar potential wells in the tight-binding approximation, in the
bra–ket formalism. Verify that its eigenstates and eigenvalues correspond to those
discussed in section 2.7.

Problem 4.22. Calculate the eigenvectors and eigenvalues of the following matrices:

= =A
0 1 0
1 0 1
0 1 0

, B

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

.
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

Problem 4.23. A certain state γ is an eigenstate of each of two operators Â and B̂.
What can be said about the corresponding eigenvalues a and b, if the operators
anticommute?

Problem 4.24. Derive a differential equation for the time evolution of the expect-
ation value of an observable, using both the Schrödinger picture and the Heisenberg
picture of quantum dynamics.
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Problem 4.25. At t = 0, a spin-½ system whose interaction with an external field is
described by the Hamiltonian

σ σ σσ̂ˆ = ⋅ ≡ ˆ + ˆ + ˆH c c cc ,x x y y z z

(where cx,y,z are real and time-independent c-numbers, and σ̂x y z, , are the Pauli
operators), was in the state ↑, one of the two eigenstates of the operator σ̂z. In the
Schrödinger picture, calculate the time evolution of:

(i) the ket-vector α of the system (in any time-independent basis you like),
(ii) the probabilities to find the system in the states ↑ and ↓, and
(iii) the expectation values of all three Cartesian components (Ŝ ,x etc) of the spin

vector operator ˆ σ̂= ℏS ( /2) .

Analyze and interpret the results for the particular case cy = cz = 0.

Hint: Think about the best basis to use for the solution.

Problem 4.26. For the same system as in the previous problem, use the Heisenberg
picture to calculate the time evolution of:

(i) all three Cartesian components of the spin operator ŜH(t), and
(ii) the expectation values of the spin components.

Compare the latter results with those of the previous problem.

Problem 4.27. For the same system as in two last problems, calculate the matrix
elements of the operator σ̂z in the basis of the stationary states of the system.

Problem 4.28. In the Schrödinger picture of quantum dynamics, certain three
operators satisfy the following commutation relation:

ˆ ˆ = ˆA B C[ , ] .

What is their relation in the Heisenberg picture, at a certain time instant t?

Problem 4.29. Prove the Bloch theorem, given by either Eq. (3.107) or Eq. (3.108).

Hint: Consider the translation operator R̂T , defined by the following result of its
action on an arbitrary function f(r):

ˆ = +f fr r R( ) ( ),RT

for the case when R is an arbitrary vector of the Bravais lattice (3.106). In particular,
analyze the commutation properties of this operator, and apply them to an
eigenfunction ψ(r) of the stationary Schrödinger equation for a particle moving in
the 3D periodic potential described by Eq. (3.105).
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Problem 4.30. A constant force F is applied to an (otherwise free) 1D particle of
mass m. Calculate the eigenfunctions of the problem in:

(i) the coordinate representation, and
(ii) the momentum representation.

Discuss the relation between the results.

Problem 4.31. Use the momentum representation to re-solve the problem discussed
in the beginning of section 2.6, i.e. calculate the eigenenergy of a 1D particle of mass
m, localized in a very short potential well, of the ‘area’W .

Problem 4.32. In the momentum representation, an operator of the 1D orbital
motion equals p−1. Find its coordinate representation.

Problem 4.33.* For a particle moving in a 3D periodic potential, develop the bra–
ket formalism for the q-representation, in which a complex amplitude similar to aq in
Eq. (2.234) (but generalized to 3D and all energy bands) plays the role of the
wavefunction. In particular, calculate the operators r and v in this representation,
and use the result to prove Eq. (2.237) for the 1D case in the low-field limit.

Problem 4.34. A uniform, time-independent magnetic fieldBB is induced in one semi-
space, while the other semi-space is field-free, with a sharp, plane boundary between
these two regions. A monochromatic beam of electrically-neutral spin-½ particles with
a nonvanishing gyromagnetic ratio γ,63 in a certain spin state, and with a kinetic
energy E, is incident on this boundary, from the field-free side, under angle θ—see
figure below. Calculate the coefficient of particle reflection from the boundary.

63 The fact that γ may be different from zero even for electrically-neutral particles, such as neutrons, is
explained by the Standard Model of the elementary particles, in which a neutron ‘consists’ (in a broad sense of
the word) of three electrically-charged quarks.
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Chapter 5

Some exactly solvable problems

The objective of this chapter is to describe several relatively simple but very important
applications of the bra–ket formalism, notably including a few core wave-mechanics
problems we have already started to discuss in chapters 2 and 3.

5.1 Two-level systems
The discussion of the bra–ket formalism in the previous chapter was peppered with
numerous illustrations of its main concepts on the example of ‘spin-½’—the system
with the smallest non-trivial, two-dimensional Hilbert space, in which the bra- and
ket-vectors of an arbitrary quantum state α may be represented as a linear
superposition of just two basis vectors, for example

α α α= ↑ + ↓↑ ↓ , (5.1)

where the states ↑ and ↓ are defined as the eigenstates of the Pauli matrix σz—see
Eq. (4.105). This particular system is described by the Pauli Hamiltonian (4.163),
and the states ↑ and ↓ are the Hamiltonian’s stationary ‘spin-up’ and ‘spin-down’
states, with the corresponding two energy levels (4.167) split by the applied magnetic
field. However, as was mentioned above, and will be proved in the next chapter, an
approximate but adequate quantum description of some other important systems
may also be given in such a two-dimensional Hilbert space. For example, as was
mentioned in section 2.6, weak coupling of two space-localized orbital states is
sufficient for an approximate description of quantum oscillations of a spin-free
particle between two potential wells. A similar coupling of two traveling waves
explains the energy band splitting in the weak-potential approximation of the band
theory—section 2.7.

As will be shown in chapter 6, in systems with time-independent Hamiltonians,
such a situation almost unavoidably appears each time when two energy levels are
much closer to each other than to other levels. Moreover, as will be shown in section
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6.5, a similar truncated description is adequate in cases when two levels En and En′ of
an unperturbed system are not close to each other, but the corresponding states become
coupled by an applied ac field of a frequency ω very close to the difference (En − En′)/ℏ.
Such two-level systems (alternatively called ‘spin-½-like’ systems) are nowadays the
focus of additional attention in the view of prospects of their use for quantum
information processing and encryption1. For this reason let me spend a bit more time
reviewing the main properties of a two-level system.

First, the most general form of the Hamiltonian (and of any operator) of the two-
level system, in an arbitrary basis, is given by a 2 × 2 matrix

⎛
⎝⎜

⎞
⎠⎟= H H

H H
H . (5.2)11 12

21 22

According to the discussion in sections 4.3–4.5, since the Hamiltonian operator has
to be Hermitian, the diagonal elements of the matrix H have to be real, and its off-
diagonal elements be complex conjugates of each other: H21 = H12

*. As a result, we
may represent H via a combination of the identity matrix and the Pauli matrices—
just as in Eq. (4.106):

⎛
⎝⎜

⎞
⎠⎟ σ=

+ −
+ −

≡ + σ + σ + σ ≡ + ⋅
b c c ic

c ic b c
b c c c b cH I I , (5.3)

z x y

x y z
x x y y z z

where the scalar b and the Cartesian components of the vector c are real c-number
coefficients:

= + = + ≡

= − ≡ = −

b
H H

c
H H

H

c
H H

i
H c

H H
2

,
2

Re ,

2
Im ,

2
.

(5.4)
x

y z

11 22 12 21
21

21 12
21

11 22

If the Hamiltonian does not depend on time, the corresponding characteristic
equation (4.103) for the system’s energy levels E±,

+ − −
+ − −

=
b c E c ic

c ic b c E
0, (5.5)

z x y

x y z

is a simple quadratic equation, with the solutions

⎜ ⎟
⎡
⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥

= ± ≡ ± + +

≡ + ± − +

± ( )E b c b c c c

H H H H
H

2 2
.

(5.6)
x y z
2 2 2 1/2

11 22 11 22
2

21
2

1/2

1 In the last context, to be discussed in section 8.5, the two-level systems are usually called qubits.
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The parameter b = (H11 + H22)/2 evidently gives the average energy E(0) of the
system, which does not contribute to the level splitting

Δ ≡ − = ≡ + + ≡ − ++ − ( )E E E c c c c H H H2 2 [( ) 4 ] . (5.7)x y z
2 2 2 1/2

11 22
2

21
2 1/2

So, the splitting is a hyperbolic function of the coefficient cz = (H11 − H22)/2. A plot
of this function is the famous level-anticrossing diagram (figure 5.1), which has
already been discussed in section 2.7 in a particular context of the weak-potential
limit of the 1D band theory.

The physics of the diagram becomes especially clear if the two states of the basis
used to write the matrix (5.2) may be interpreted as the stationary states of two
potentially independent subsystems, with the energies, respectively, H11 and H22.
(For example, in the case of two weakly coupled potential wells, discussed in section
2.6, these are the ground-state energies of two distant wells.) Then the off-diagonal
elements H12 and H21 = H12

* describe the subsystem coupling, and the level
anticrossing diagram shows how the energies of the coupled system depend (at
fixed coupling) on the difference of the subsystems. As was already discussed in
section 2.7, the most striking feature of the diagram is that any non-zero coupling
changes the topology of the energies of the coupled states (shown in figure 5.1 with
dashed lines), creating a gap between its two branches, with the minimum width
ΔEmin = 2∣H21∣ ≡ 2∣H12∣, which is reached at cz = 0, i.e. when the subsystems become
similar, with H11 = H22.

As follows from the discussions of particular two-level systems in sections 2.6 and
4.6, their time dynamics has one general feature—quantum oscillations. Namely, if
we put any two-level system into an initial state different from one of its eigenstates
±, and then let it evolve on its own, the probability of its finding the system in any of
the ‘partial’ states exhibits oscillations with the frequency

Ω = Δ
ℏ

≡ −
ℏ

+ −E E E
, (5.8)

lowest at the exact subsystem symmetry (H11 = H22), when it is proportional to the
coupling strength: Ωmin = 2∣H21∣/ℏ. In the case discussed in section 2.6, these are
the oscillations of a particle between the two coupled potential wells (or rather the

Figure 5.1. The level-anticrossing diagram for an arbitrary two-level system.
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probabilities to find it in either well)– see, e.g. Eqs. (2.181). On the other hand, for a
spin-½ in an external magnetic field, these oscillations take the form of the spin
precession in the plane normal to the field, with the periodic oscillations of its
Cartesian components (or rather their expectation values)—see, e.g. Eqs. (4.173) and
(4.174).

Some other examples of the quantum oscillations in two-level systems may be
rather unexpected; for example, the ammonium molecule NH3 (figure 5.2) has two
symmetric states that differ by the inversion of the nitrogen atom relative to the
plane of the three hydrogen atoms, and are coupled due to quantum-mechanical
tunneling of the nitrogen atom through the plane of the hydrogen atoms2. Since for
this particular molecule, in the absence of external fields, the level splitting ΔE
corresponds to an experimentally convenient frequency Ω/2π ≈ 24 GHz, it played an
important historic role in the initial development of the atomic frequency standards
and microwave quantum generators (masers) in the early 1950s,3 which paved the
way toward the development of the laser technology.

Let us now return to the convenient spin-½ notation, ↑ and ↓, of the basis states to
discuss a very convenient geometric representation of an arbitrary state α of (any!)
two-level system. As Eq. (5.1) shows, it is completely described by two complex
coefficients (c-numbers)—say, α↑ and α↓. If the vectors of the basis states ↑ and ↓ are
normalized, then these coefficients must obey the following restriction:

α α α α α α

α α α α α α

= = ↑ + ↓ ↑ + ↓

= + = + =
Σ ↑

*
↓
* ↑ ↓

↑
* ↑ ↓

* ↓ ↑ ↓

( )( )W

1.
(5.9)

2 2

This requirement is automatically satisfied if we take the moduli of α↑ and α↓ equal
to the sine and cosine of the same (real) angle. Thus we may write, for example,

α θ α θ= =γ γ φ
↑ ↓

+e ecos
2

, sin
2

. (5.10)i i( )

Figure 5.2. An ammonia molecule and its inversion.

2 Since the hydrogen atoms are much lighter, it is fairer to speak about the tunneling of their triangle around
the (nearly immobile) nitrogen atom.
3 In particular, these molecules were used in the demonstration of the first maser by C Townes’ group in 1954.
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Moreover, according to the general Eq. (4.125), if we deal with just one system4, the
common phase factor exp{iγ} drops out of the calculation of any expectation value,
so that we may take γ = 0, and Eq. (5.10) is reduced to

α θ α θ= = φ
↑ ↓ ecos

2
, sin

2
. (5.11)i

The reason why the argument of these sine and cosine functions is usually taken
in the form θ/2, becomes clear from figure 5.3a: Eq. (5.11) conveniently maps each
state α of a two-level system on a certain representation point of a unit-radius Bloch
sphere5, with the polar angle θ and the azimuthal angle φ.

In particular, the basis state ↑, described by Eq. (5.1) with α↑ = 1 and α↓ = 0,
corresponds to the North Pole of the sphere (θ = 0), while the opposite state ↓, with
α↑ = 0 and α↓ = 1, to its South Pole (θ = π). Similarly, the eigenstates → and ← of
the matrix σx, described by Eqs. (4.122), i.e. having α↑ = 1/√2 and α↓ = ±1/√2,
correspond to the equator (θ = π/2) points with, respectively, φ = 0 and φ = π. Two
more special points (denoted in figure 5.3a as ⊙ and ⊗) are also located on the
sphere’s equator, at θ = π/2 and φ = ±π/2; it is easy to check that they correspond to
the eigenstates of the matrix σy (in the same z-basis). In order to understand why
such mutually perpendicular locations of these three special point pairs on the
Bloch sphere are not occasional, let us plug Eqs. (5.11) into Eqs. (4.131)–(4.133)
for the expectation values of the spin-½ components. In terms of the Pauli vector
σ ≡ S/(ℏ/2),

σ θ φ σ θ φ σ θ= = =sin cos , sin sin , cos , (5.12)x y z

showing that the radius-vector of any representation point is just the expectation
value of σ.

Figure 5.3. The Bloch sphere: (a) notation and the basic state representations, and (b, c) the two-level system’s
evolution: (b) in a constant ‘field’ c directed along the axis z, and (c) in an arbitrary field.

4 If you need a reminder why this condition is crucial, please revisit the discussion in the end of section 1.6.
Note also that the mutual phase shifts between different qubits are important, in particular, for quantum
information processing (see section 8.5 below), so that most discussions of these applications have to start from
Eq. (5.10) rather than Eq. (5.11).
5Named after the same F Bloch who pioneered the energy band theory, which was discussed in chapters 2–3.
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Now let us use Eq. (5.3) to see how the representation point moves in various
cases, ignoring the term bI—which, again, describes the offset of the total energy of
the system relative to some reference level, and does not affect its dynamics. First of
all, according to Eq. (4.158), in the case c = 0 (when the Hamiltonian operator
vanishes, and hence the state vectors do not depend on time) the point does not move
at all, and its position is determined by initial conditions, i.e. by the system state’s
preparation. If c ≠ 0, we may re-use some results of section 4.6, obtained for the
Pauli Hamiltonian (4.163a), which coincides with Eq. (5.3) with6

BBγ= − ℏ
c

2
. (5.13)

In particular, if the field BB, and hence the vector c are directed along the z-axis and
are time-independent, Eqs. (4.170), (4.173) and (4.174) show that the representation
point 〈σ〉 on the Bloch sphere rotates within a plane normal to this axis (see figure
5.3b) with the angular velocity

B
φ γ≡ Ω = − ≡

ℏ
d
dt

c2
. (5.14)z

z

Almost evidently, since the selection of the coordinate axes is arbitrary, this
picture should remain valid for any orientation of the vector c, with the representa-
tion point rotating, on the Bloch sphere, around its direction, with the angular speed
∣Ω∣ = 2cℏ—see figure 5.3c. This fact may be proved using any picture of the quantum
dynamics, discussed in section 4.6. Actually, the reader may already have done that
by solving problems 4.25 and 4.26, just to see that even for the particular, simple
initial state of the system (↑), the results for the Cartesian components of the vector
〈σ〉 are rather bulky. However, this description may be readily simplified, even for an
arbitrary time dependence of the ‘field’ vector c(t) in Eq. (5.3), using the (geometric)
vector language.

Indeed, let us rewrite Eq. (5.3) (again, with b = 0) in the operator form,

σ̂ˆ = ⋅H tc( ) , (5.15)

valid in an arbitrary basis. According to Eq. (4.199), the corresponding Heisenberg
equation of motion for the jth Cartesian components of the vector-operator σ̂ (which
does not depend on time explicitly, so that σ∂ ˆ ∂ =t/ 0) is

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ ⎡⎣ ⎤⎦∑ ∑σ σ σ σ σ σ σσ̂ℏ ˆ̇ = ˆ ˆ ≡ ˆ ⋅ ≡ ˆ ˆ ≡ ˆ ˆ

′= ′=
′ ′ ′ ′i H t c t c tc, , ( ) , ( ) ( ) , . (5.16)

j j1

3

1

3

j j j j j j j j j

6 This correspondence justifies using the use of term ‘field’ for the vector c.
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Now using the commutation relations (4.155), which are valid in any basis, and in
any picture of time evolution7, we get

∑σ σ εℏ ˆ̇ = ˆ
′=

′ ″ ′ ″i i c t2 ( ) . (5.17)
j 1

3

j j j jj j

But it is straightforward to use the definition of the Levi-Civita symbol8 to verify
that the usual vector product of two 3D vectors may be represented in a similar
Cartesian-component form:

∑ ε× = =
′=

′ ″ ′ ″a a a
b b b

aH ba b
n n n

( ) . (5.18)
j 1

3

j

j

j j jj j

1 2 3

1 2 3

1 2 3

As a result, Eq. (5.17) may be rewritten in a vector form—or rather several
equivalent forms:

σ σ̂ σ σ̂ σ σ̂

σ Ω σ̂

ℏ ˆ̇ = × ℏˆ̇ = × ˆ̇ =
ℏ

×

ˆ̇ = ×

i i t i i t t

t

c c c2 [ ( ) ] , i.e. 2 ( ) , or
2

( ) ,

or ( ) ,

(5.19)
j j

where the vector Ω is defined as

Ωℏ ≡t tc( ) 2 ( ) (5.20)

—an evident generalization of Eq. (5.14).9 As we have seen in section 4.6, any linear
relation between two Heisenberg operators is also valid for the expectation values of
the corresponding observables, so that the last form of Eq. (5.19) yields:

σ Ω σ˙ = ×t( ) . (5.21)

But this is the well-known kinematic formula10 for the rotation of a constant-
length vector 〈σ〉 around the instantaneous direction of the vector Ω(t), with the
instantaneous angular velocity Ω(t). So, the time evolution of the representation
point on the Bloch sphere is quite simple, especially in the case of a time-independent

7 Indeed, if three operators in the Schrödinger picture are related as ˆ ˆ = ˆA B C[ , ]S S S, then according to Eq.
(4.190), in the Heisenberg picture

ˆ ˆ = ˆ ˆ ˆ ˆ ˆ ˆ ≡ ˆ ˆ ˆ ˆ ˆ ˆ − ˆ ˆ ˆ ˆ ˆ ˆ

≡ ˆ ˆ ˆ ˆ ≡ ˆ ˆ ˆ = ˆ

† † † † † †

† †
A B u A u u B u u A uu B u u B uu A u

u A B u u C u C

[ , ] [ , ]

[ , ] .

H H H H H H H H

S S S H
8 See, e.g. Eq. (A.57).
9 It is also easy to check that in the particular case Ω = Ωnz, Eqs. (5.19) are reduced to Eqs. (4.200) for the
spin-½ vector S = (ℏ/2)σ.
10 See, e.g. Part CM section 4.1, in particular Eq. (4.8).
11 The bulkiness of the solutions of problems 4.25 and 4.26 (which were offered just as useful exercises in
quantum dynamic formalisms) reflects just the awkward expression of the resulting circular motion of the
vector 〈σ〉 (see figure 5.3c) in its Cartesian components.
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c, and hence Ω—see figure 5.3c.11 Note that it is sufficient to turn off the field to stop
the precession instantly. (Since Eq. (5.21) is the first-order differential equation, the
representation point has no effective inertia12.) Hence, changing the direction and
the magnitude of the effective external field, it is possible to drive the representation
point of a two-level system from any initial position to any final position on the
Bloch sphere, i.e. make the system take any of its possible quantum states.

In the particular case of a spin-½ in a magnetic fieldBB t( ), it is more customary to
use Eqs. (5.13) and (5.20) to rewrite Eq. (5.21) as the following equation for the
expectation value of the spin vector S = (ℏ/2)σ:

BBγ˙ ≡ × tS S ( ). (5.22)

As we know from the discussion in chapter 4, such a classical description of the
spin’s evolution does not give a full picture of the quantum reality; in particular, it
does not describe the possible large uncertainties of its components—see, e.g.
Eqs. (4.135). The situation, however, is different for a collection of N ≫ 1 similar,
non-interacting spins, initially prepared to be in the same state—for example by
polarizing all spins with a strong external field BB0, at relatively low temperature T,
with Bγ≪ ℏk TB 0 . (A practically important example of such a collection is a set of
nuclear spins in a macroscopic condensed matter sample, where the spin interaction
with each other and the environment is typically very small.) For such an collection,
Eq. (5.22) is still valid, while the relative uncertainty of the resulting sample’s
magnetization M = n〈m〉 = nγ〈S〉 (where n ≡ N/V is the spin density) is proportional
to 1/N1/2 ≪ 1. Thus, the evolution of magnetization may be described, with good
precision, by the essentially classical equation (valid for any spin):

BBγ˙ = × tM M ( ). (5.23)

This equation, or the equivalent set of three Bloch equations13 for its Cartesian
components, with the right-hand side augmented with small terms describing the
effects of dephasing and relaxation (to be discussed in chapter 7), is used, in
particular, for the description of magnetic resonance, taking place when the
frequency (4.164) of the spin’s precession in a strong constant magnetic field
approaches the frequency of an additional ac field—see the next chapter.

5.2 The Ehrenfest theorem
In section 4.7, we have derived all the basic relations of wave mechanics from the
bra–ket formalism, which will also enable us to get some important additional
results in that area. One of them is a pair of very interesting relations, together called
the Ehrenfest theorem. In order to derive them, for the simplest case of the 1D orbital
motion, let us calculate the following commutator:

12 This is also true for the classical angular momentum L at its torque-induced precession—see, e.g. Part CM
section 4.5.
13 They were introduced by the same F Bloch in 1946.
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⎡⎣ ⎤⎦ˆ ˆ ≡ ˆ ˆ ˆ − ˆ ˆ ˆx p xp p p p x, . (5.24)x x x x x
2

Let us apply the commutation relation (4.238),

ˆ ˆ = ˆ ˆ + ℏ ˆxp p x i I , (5.25)x x

to the first term of the right-hand side of Eq. (5.24) twice, in order to sequentially
move the coordinate operator to the right:

ˆ ˆ ˆ = ˆ ˆ + ℏ ˆ ˆ ≡ ˆ ˆ ˆ + ℏ ˆ

= ˆ ˆ ˆ + ℏ ˆ + ℏ ˆ ≡ ˆ ˆ ˆ + ℏ ˆ

( )
( )

xp p p x i I p p xp i p

p p x i I i p p p x i p2 .
(5.26)

x x x x x x x

x x x x x x

The first term of this result cancels with the second term of Eq. (5.24), so that the
commutator becomes rather simple:

⎡⎣ ⎤⎦ˆ ˆ = ℏ ˆx p i p, 2 . (5.27)x x
2

Let us use this equality to calculate the Heisenberg-picture equation of motion of
the operator x̂, by applying the general Heisenberg equation (4.199) to the 1D
orbital motion described by the Hamiltonian (4.237), but possibly with a time-
dependent potential energy U:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

ˆ
=

ℏ
ˆ ˆ =

ℏ
ˆ

ˆ
+ ˆdx

dt i
x H

i
x

p

m
U x t

1
[ , ]

1
,

2
( , ) . (5.28)x

2

The potential energy operator commutes with the coordinate operator. Thus, the
right-hand side of Eq. (5.28) is proportional to the commutator (5.27), and we get

ˆ
=

ˆdx
dt

p

m
. (5.29)x

In this operator equality, we readily recognize the full analog of the classical relation
between the particle’s momentum and its velocity.

Now let us see what a similar procedure gives for the momentum’s derivative:

⎡⎣ ⎤⎦
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

ˆ
=

ℏ
ˆ ˆ =

ℏ
ˆ

ˆ
+ ˆ

dp

dt i
p H

i
p

p

m
U x t

1
,

1
,

2
( , ) . (5.30)x

x x
x
2

The kinetic energy operator commutes with the momentum operator, and hence
drops from the right-hand side of this equation. In order to calculate the remaining
commutator of the momentum and potential energy, let us use the fact that any
smooth (infinitely differentiable) function may be represented by its Taylor
expansion:

∑ˆ =
!

∂
∂ ˆ

ˆ
=

∞

U x t
k

U
x

x( , )
1

, (5.31)
k 0

k

k
k
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where the derivatives of U may be understood as c-numbers (evaluated at x = 0, and
the given time t), so that we may write

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟��� ���∑ ∑ˆ ˆ =

!
∂
∂ ˆ

ˆ ˆ =
!

∂
∂ ˆ

ˆ ˆ ˆ ˆ − ˆ ˆ… ˆ ˆ
=

∞

=

∞

p U x t
k

U
x

p x
k

U
x

p xx x xx xp, ( , )
1

,
1

.. . (5.32)
k k k k0 0 times times

x

k

k x
k

k

k x x

Applying Eq. (5.25) k times to the last term in the parentheses, exactly as we did it in
Eq. (5.26), we get

⎡⎣ ⎤⎦ ∑ ∑ˆ ˆ = −
!

∂
∂ ˆ

ℏ ˆ = − ℏ
− !

∂
∂ ˆ

ˆ
=

∞

=

∞
− −p U x t

k
U

x
ik x i

k
U

x
x, ( , )

1 1
( 1)

. (5.33)
k k1 1

x

k

k
k

k

k
k1 1

But the last sum is just the Taylor expansion of the derivative ∂U/∂x. Indeed,

⎜ ⎟⎛
⎝

⎞
⎠∑ ∑ ∑∂

∂ ˆ
=

′!
∂
∂ ˆ

∂
∂ ˆ

ˆ =
′!

∂
∂ ˆ

ˆ =
− !

∂
∂ ˆ

ˆ
′=

∞

′=

∞

=

∞′

′
′

′+

′+
′ −U

x k x

U
x

x
k

U

x
x

k
U

x
x

1 1 1
( 1)

, (5.34)
k k k0 0 1

k

k
k

k

k
k

k

k
k

1

1
1

where at the last step the summation index was changed from k’ to k − 1. As a result,
Eq. (5.30) yields:

ˆ
= − ∂

∂ ˆ
ˆ

dp

dt x
U x t( , ). (5.35)x

This equation again coincides with the classical equation of motion! Moreover,
averaging Eqs. (5.29) and (5.39) over the initial state (as Eq. (4.191) prescribes), we
get similar results for the expectation values14:

= = − ∂
∂

d x
dt

p

m

d p

dt
U
x

, . (5.36)x x

However, it is important to remember that the equivalence between these quantum-
mechanical equations and similar equations of classical mechanics is superficial, and
the degree of the similarity between the two mechanics very much depends on the
problem. As one extreme, let us consider the case when a particle’s state, at any
moment between t0 and t, may be accurately represented by one, relatively px-narrow
wave packet. Then we may interpret Eqs. (5.36) as the equations of the essentially
classical motion of the wave packet’s center, in accordance with the correspondence
principle. However, even in this case it is important to remember about the purely
quantum mechanical effects of nonvanishing wave packet width and its spread in
time, which were discussed in section 2.2.

As the opposite extreme case, let us revisit the ‘leaky’ potential well discussed in
section 2.5—see figure 2.15. Since both the potential U(x) and the state of the system
are symmetric relative to point x = 0 at all times, the right-hand sides of both
Eqs. (5.36) identically equal zero. Of course, the result (that the average values of

14 The set of equations (5.36) constitute the Ehrenfest theorem, named after its author, P Ehrenfest.
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both the coordinate and the momentum stay equal to zero at all times) is correct, but
this fact does not tell us too much about the rich dynamics of the system (the finite
lifetime of the metastable state, the formation of two wave packets, their waveform
and propagation speed, see figure 2.17), and about the important insight the solution
gives for the quantum measurement theory and the system’s irreversibility. Another
similar example is the energy band theory (section 2.7), with its purely quantum
effect of the allowed energy bands and forbidden gaps, of which Eq. (5.36) gives no
clue.

To summarize, the Ehrenfest theorem is important as an illustration of the
correspondence principle, but its predictive power should not be exaggerated.

5.3 The Feynman path integral
As has been already mentioned, even within the realm of wave mechanics, the bra–
ket language allows one to simplify some calculations that would be very bulky
using the notation used in chapters 1–3. Probably the best example is the famous
alternative, path-integral formulation of quantum mechanics, developed in 1948 by
R Feynman15. I will review this important concept—admittedly cutting one math
corner for the sake of brevity16. (This shortcut will be clearly marked below.)

Let us inner-multiply both parts of Eq. (4.157a), which is essentially the definition
of the time-evolution operator, by the bra-vector of state x,

α α= ˆx t x u t t t( ) ( , ) ( ) , (5.37)0 0

insert the identity operator before the ket-vector on the right-hand side, and then use
the closure condition in the form of Eq. (4.252), with x′ replaced by x0:

∫α α= ˆx t dx x u t t x x t( ) ( , ) ( ) . (5.38)0 0 0 0 0

According to Eq. (4.233), this equality may be represented as

∫Ψ = ˆ Ψα αx t dx x u t t x x t( , ) ( , ) ( , ). (5.39)0 0 0 0 0

Comparing this expression with Eq. (2.44), we see that the bracket in this relation is
nothing other than the 1D propagator, which was discussed in section 2.2, i.e.

= ˆG x t x t x u t t x( , ; , ) ( , ) . (5.40)0 0 0 0

Let me hope that the reader sees that this equality corresponds to the physical sense
of the propagator.

Now let us break the time segment [t0, t] intoN (for the time being, not necessarily
equal) parts, by inserting (N − 1) intermediate points (figure 5.4)

15According to Feynman’s memories, his work was motivated by a ‘mysterious’ remark by P AMDirac in his
pioneering 1930 textbook on quantum mechanics.
16A more thorough discussion of the path-integral approach may be found in the famous text R Feynman and A
Hibbs, Quantum Mechanics and Path Integrals first published in 1965. (For its latest edition by Dover in 2010,
the book was emended by D Styler.) For a more recent monograph, which reviews more applications, see [1].
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< < … < < … < <−t t t t t, (5.41)k N0 1 1

and use the definition (4.157) of the time evolution operator to write

ˆ = ˆ ˆ … ˆ ˆ− − −u t t u t t u t t u t t u t t( , ) ( , ) ( , ) ( , ) ( , ). (5.42)N N N0 1 1 2 2 1 1 0

After plugging Eq. (5.42) into Eq. (5.40), let us insert the identity operator, again in
the closure form (4.252), but written for xk rather than x′, between each of the two
partial evolution operators including the time argument tk. The result is

∫ ∫ ∫= … ˆ

× ˆ … ˆ

− − − −

− − − −

G x t x t dx dx dx x u t t x

x u t t x x u t t x

( , ; , ) ( , )

( , ) ( , ) .
(5.43)N N N N

N N N N

0 0 1 2 1 1 1

1 1 2 2 1 1 0 0

The physical sense of each integration variable xk is the wavefunction’s argument at
time tk—see figure 5.4.

The key Feynman’s breakthrough was the realization that if all intervals are
taken similar and sufficiently small, tk − tk−1 = dτ → 0, all the partial brackets
participating in Eq. (5.43) may be expressed via the free-particle’s propagator, given
by Eq. (2.49), even if the particle is not free, but moves in a stationary potential
profile U(x). To show that, let us use either Eq. (4.175) or Eq. (4.181), which, for a
small time interval dτ, give the same result:

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟
⎫⎬⎭τ τ τ τ τ τˆ + = −

ℏ
ˆ = −

ℏ
ˆ

+ ˆ{ }u d
i

Hd
i p

m
d U x d( , ) exp exp

2
( ) . (5.44)

2

Generally, an exponent of a sum of two operators may be treated as that of
c-number arguments, and in particular factored into a product of two exponents,
only if the operators commute. (In this case we can use all the standard algebra for
the exponents of c-number arguments.) In our case, this is not so, because the
operator p̂ m/22 does not commute with x̂, and hence with U(x̂). However, it may be
shown17 that for an infinitesimal time interval dτ, the nonvanishing commutator

⎡
⎣⎢

⎤
⎦⎥τ τ

ˆ ˆ ≠p
m

d U x d
2

, ( ) 0, (5.45)
2

Figure 5.4. Time partition and coordinate notation at the initial stage of the Feynman path integral’s
derivation.

17 This is exactly the mathematical corner I am going to cut, because a strict proof of this (intuitively evident)
statement would take more space and time than I can afford.
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proportional to (dτ)2, may be ignored in the first, linear approximation in dτ. As a
result, we may factorize the right-hand side in Eq. (5.44) by writing

⎧⎨⎩
⎫⎬⎭τ τ τ τ τˆ + → −

ℏ
ˆ

−
ℏ

ˆτ→ { }u d
i p

m
d

i
U x d( , ) exp

2
exp ( ) . (5.46)d 0

2

(This approximation is very much similar in spirit to the trapezoidal-rule approx-
imation in the usual 1D integration18, which is also asymptotically impeachable.)

Since the second exponential function on the right-hand side of Eq. (5.46)
commutes with the coordinate operator, we may move it out of each partial bracket
participating in Eq. (5.43), with U(x) turning into a c-number function:

⎧⎨⎩
⎫⎬⎭τ τ τ τ

τ

ˆ + = −
ℏ

ˆ

× −
ℏ

τ τ τ τ τ τ+ +

{ }
x u d x x

i p
m

d x

i
U x d

( , ) exp
2

exp ( ) .

(5.47)
d d

2

But the remaining bracket is just the propagator of a free particle, and we can use
Eq. (2.49) for it:

⎜ ⎟
⎧⎨⎩

⎫⎬⎭
⎛
⎝

⎞
⎠

⎧⎨⎩
⎫⎬⎭τ

π τ τ
−

ℏ
ˆ

=
ℏ ℏτ τ τ+x

i p
m

d x
m
i d

i
m dx

d
exp

2 2
exp

( )
2

. (5.48)d

2 1/2 2

As the result, the full propagator (5.43) takes the form

⎜ ⎟

⎪ ⎪

⎪ ⎪

⎛
⎝

⎞
⎠

⎧
⎨
⎩

⎡
⎣⎢

⎤
⎦⎥
⎫
⎬
⎭

∫ ∫ ∫

∑

π τ

τ
τ

=
ℏ

×
ℏ

−
ℏ=

τ→
→∞

− −G x t x t dx dx dx
m
i d

i
m dx

d
i
U x

d

( , ; , ) lim ..
2

exp
( )

2
( )

.

(5.49)

k

N

1

d
N

N N

N

0 0 0 1 2 1

/2

2

At N → ∞ and hence dτ ≡ (t − t0)/N → 0, the sum under the exponent in this
expression may be approximated with the corresponding integral:

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥∫∑

τ
τ

τ
τ

ℏ
− →

ℏ
−

=
τ=

i m dx
d

U x d
i m dx

d
U x d

2
( )

2
( ) , (5.50)

k

N

1

t
t

t2 2

k
0

and the expression in the square brackets is just the particle’s Lagrangian function
L .19 The integral of this function over time is the classical actionS calculated along
a particular ‘path’ x(τ).20 As a result, defining the (1D) path integral as

⎜ ⎟⎛
⎝

⎞
⎠∫ ∫ ∫ ∫τ

π τ
… ≡

ℏ
…τ→

→∞
− −D x

m
i d

dx dx dx a( ) [ ( )] lim
2

.. ( ), (5.51 )d
N

N

N N0

/2

1 2 1

18 See, e.g. Eq. (A.26).
19 See, e.g. Part CM section 2.1.
20 See, e.g. Part CM section 10.3.
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we can bring our result to a superficially simple form

S∫ τ τ=
ℏ{ }G x t x t
i

x D x b( , ; , ) exp [ ( )] [ ( )]. (5.51 )0 0

The name ‘path integral’ for the mathematical construct (5.51a) may be readily
explained if we keep the number N of time intervals large but finite, and also
approximate each of the enclosed integrals by a sum over M ≫ 1 discrete points
along the coordinate axis—see figure 5.5a. Then the path integral is a product of
(N − 1) sums corresponding to different values of time τ, each of them withM terms,
each of those representing the function under the integral at a particular spatial
point. Multiplying those (N − 1) sums, we get a sum of (N − 1)M terms, each
evaluating the function at a specific spatial-temporal point [x, τ]. These terms may be
now grouped to represent all possible different continuous classical paths x[τ] from
the initial point [x0, t0] to the finite point [x, t]. It is evident that the last interpretation
remains true even in the continuous limit N, M → ∞—see figure 5.5b.

Why does such path representation of the sum have sense? This is because in the
classical limit the particle follows just a certain path, corresponding to the minimum
of the action S . Hence, for all close trajectories, the difference S S−( )cl is
proportional to the square of the deviation from the classical trajectory. Hence,
for a quasiclassical motion, with S ≫ ℏcl , there is a substantial bunch of close
trajectories, with S S− ≪ ℏ( )cl , that give similar contributions to the path integral.
On the other hand, strongly non-classical trajectories, with S S− ≫ ℏ( )cl , give
phases S ℏ/ rapidly oscillating from one trajectory to the next one, and their
contributions to the path integral are averaged out21. As a result, for the quasi-
classical motion, the propagator’s exponent may be evaluated on the classical path
only:

Figure 5.5. Several 1D classical paths: (a) in the discrete approximation and (b) in the continuous limit.

21 This fact may be proved expanding the difference S S−( )cl in the Taylor series in path variations (leaving
only the leading quadratic terms) and working out the resulting Gaussian integrals. It is interesting that the
integration, together with the pre-exponential coefficient in Eq. (5.51a), gives exactly the pre-exponential factor
that we have already found in section 2.4, refining the WKB approximation.
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S
⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎫
⎬
⎭∫ τ

τ∝
ℏ

=
ℏ

−{ }G
i i m dx

d
U x dexp exp

2
( ) . (5.52)

t

t

cl cl

2

0

The sum of the kinetic and potential energies is the full energy E of the particle, that
remains constant for motion in a stationary potential U(x), so that we may rewrite
the expression under this integral as22

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥τ

τ
τ

τ
τ

τ− = − = −m dx
d

U x d m
dx
d

E d m
dx
d

dx Ed
2

( ) . (5.53)
2 2

With this replacement, Eq. (5.52) yields

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭

∫

∫
τ

∝
ℏ

−
ℏ

−

=
ℏ

−
ℏ

−

{ }
{ }

G
i

m
dx
d

dx
i

E t t

i
p x dx

i
E t t

exp exp ( )

exp ( ) exp ( ) ,

(5.54)
x

x

x

x

cl 0

0

0

0

where p is the classical momentum of the particle. But (at least, leaving the pre-
exponential factor alone) this is the WKB approximation result that was derived and
studied in detail in chapter 2!

One may question the value of such a complicated calculation that yields the
results that could be readily obtained from the Schrödinger’s wave mechanics. The
Feynman’s approach is indeed not used too often, but it has its merits. First, it has
an important philosophical (and hence heuristic) value. Indeed, Eq. (5.51) may be
interpreted by saying that the essence of quantum mechanics is the exploration, by
the system, of all possible paths x(τ), each of them classical-like, in the sense that the
particle’s coordinate x and velocity dx/dτ are exactly defined simultaneously at each
point. The resulting contributions to the path integral are added up coherently to
form the final propagator G, and via it, the final probability W ∝ ∣G∣2 of the
particle’s propagation from [x0, t0] to [x, t]. As the scale of action (i.e. the energy-by-
time product) of the motion decreases and becomes comparable to ℏ, more and more
paths produce a substantial contribution to this sum, and hence to W, ensuring a
larger and larger difference between the quantum and classical properties of the
system.

Second, the path integral provides a justification for some simple explanations of
quantum phenomena. A typical example is the quantum interference effects
discussed in section 3.1—see, e.g. figure 3.1 and the corresponding text. At that
discussion, we used the Huygens principle to argue that at the two-slit interference,
the WKB approximation might be restricted to contributions from two paths that
pass through different slits, but otherwise consist of straight-line segments. To have
another look at that assumption, let us generalize the path integral to multi-

22 The same trick is often used in analytical classical mechanics—say, for proving the Hamilton principle, and
for the derivation of the Hamilton–Jacobi equations (see, e.g. Part CM sections 10.3–10.4).
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dimensional geometries. Fortunately, the simple structure of Eq. (5.51b) makes such
generalization virtually evident:

S

S
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥L

∫

∫ ∫

τ τ

τ
τ

τ
τ

=
ℏ

≡ = −

{ }G t t
i

D

d
d

d
m d

d
U d

r r r r

r
r r

r

( , ; , ) exp [ ( )] [ ( )],

,
2

( ) .
(5.55)

t

t

t

t

0 0

2

0 0

where definition (5.51a) of the path integral should be also modified correspond-
ingly. (I will not go into these technical details.) For the Young-type experiment
(figure 3.1), where a classical particle could reach the detector only after passing
through one of the slits, the classical paths are the straight-line segments shown
in figure 3.1, and if they are much longer than the de Broglie wavelength,
the propagator may be well approximated by the sum of two integrals of
L τ = · ℏd i dp r r( ) / —as was done in section 3.1.

Last but not least, the path integral allows simple solutions of some problems that
would be hard to obtain by other methods. As the simplest example, let us consider
the problem of tunneling in multi-dimensional space, sketched in figure 5.6 for the
2D case—just for the graphics’ simplicity. Here, the potential profile U(x, y) has the
‘saddle’ shape. (Another helpful image is a mountain path between two summits, in
figure 5.6 located on the top and at the bottom of the shown region.) A particle of
energy E may move classically in the left and right regions with U(x, y) < E, but if E
is not sufficiently high, it can pass from one of these regions to another one only via
the quantum-mechanical tunneling under the pass. Let us calculate the transparency
of this potential barrier in the WKB approximation, ignoring the possible pre-
exponential factor23.

Figure 5.6. A saddle-type 2D potential profile and the instanton trajectory of a particle of energy E
(schematically).

23Actually, one can argue that the pre-exponential factor should be close to 1, just like in Eq. (2.117),
especially if the potential is smooth, in the sense of Eq. (2.107), in all spatial directions. (Let me remind the
reader that for most practical problems of quantum tunneling, the pre-exponential factor is of minor
importance.)
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According to the evident multi-dimensional generalization Eq. (5.54), for the
classically forbidden region, where E < U(x, y), and hence p(r)/ℏ = iκ(r), the
contributions to the propagator (5.55) are proportional to

∫ κ−
ℏ

− ≡ ⋅− { }e
i

E t t I dr rexp ( ) , where ( ) , (5.56)I
r

0
r0

where the magnitude of the vector κ at each point may be calculated just in the 1D
case—cf Eq. (2.97):

κℏ = −
m

U E
r

r
( )

2
( ) . (5.57)

2 2

Hence the path integral in this region is actually much simpler than in the classically-
allowed region, because the spatial exponents are purely real and there is no complex
interference between them. Because of the minus sign before I in the exponent (5.56),
the largest contribution to G evidently comes from the trajectory (or rather a narrow
bundle of trajectories) for which the integral I has the smallest value, so that the
barrier transparency may be calculated as

⎧⎨⎩
⎫⎬⎭T ∫ κ≈ ≈ ≡ − ′ ⋅ ′−G e dr rexp 2 ( ) , (5.58)I

r

r
2 2

0

where r and r0 are certain points on the opposite classical turning-point surfaces:
U(r) = U(r0) = E—see figure 5.6.

Thus the barrier transparency problem is reduced to finding the trajectory
(including the points r and r0) that connects the two surfaces and minimizes the
functional I. This is of course a well-known problem of the calculus of variations24,
but it is interesting that the path integral provides a simple alternative way of solving
it. Let us consider an auxiliary problem of a particle’s motion in the potential profile
Uinv(r) that is inverted relative to the particle’s energy E, i.e. is defined by the
following equality:

− ≡ −U E E Ur r( ) ( ). (5.59)inv

As was discussed above, at fixed energy E, the path integral for the WKB motion in
the classically allowed region of potential Uinv(x, y) (that coincides with the
classically forbidden region of the original problem) is dominated by the classical
trajectory corresponding to the minimum of

S ∫ ∫= ′ ⋅ ′ = ℏ ′ ⋅d dp r r k r r( ) ( ) , (5.60)
r

r

r

r

inv inv inv
0 0

where kinv should be determined from the WKB relation

ℏ
≡ −

k
m

E U
r

r
( )

2
( ). (5.61)

2
inv
2

inv

24 For a concise introduction to the field see, e.g. [2] or [3].
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But comparing Eqs. (5.57), (5.59), and (5.61), we see that kinv = κ at each point! This
means that the tunneling path (in the WKB limit) corresponds to the classical (so-
called instanton25) trajectory of the same particle moving in the inverted potential
Uinv(r). If the initial point r0 is fixed, this trajectory may be readily found by the
means of classical mechanics. (Note that the initial kinetic energy, and hence
the initial velocity of the instanton launched from point r0 should be zero, because by
the classical turning point definition, Uinv(r0) = U(r0) = E.) Thus the problem is
further reduced to a simpler task of maximizing the transparency (5.58) by choosing
the optimal position of r0 on the equipotential surface U(r0) = E—see figure 5.6.
Moreover, for many symmetric potentials, the position of this point may be readily
guessed even without calculations—as it is in the problem given for the reader’s
exercise.

Note that besides the calculation of the potential barrier’s transparency, the
instanton trajectory has one more important implication: the so-called traversal time
τt of the classical motion along it, from the point r0 to the point r, in the inverted
potential defined by Eq. (5.59), plays the role of the most important (though not the
only) time scale of the particle’s tunneling under the barrier26.

5.4 Revisiting harmonic oscillator
Now let us return to the 1D harmonic oscillator, now understood as any system,
regardless of its physical nature, described by the Hamiltonian (4.237) with the
potential energy (2.111):

ωˆ =
ˆ

+
ˆ

H
p
m

m x
2 2

. (5.62)
2

0
2 2

In section 2.9 we have used a ‘brute-force’ (wave-mechanics) approach to analyze
the eigenfunctions ψn(x) and eigenvalues En of this Hamiltonian, and found that,
unfortunately, this approach required a relatively complex mathematics, which does
not enable an easy calculation of its key characteristics. Fortunately, the bra–ket
formalism helps to make such calculations.

First, introducing normalized (dimensionless) operators of coordinates and
momentum27:

ξ ζ
ω

ˆ ≡
ˆ ˆ ≡

ˆx
x

p
m x

, , (5.63)
0 0 0

where x0 ≡ (ℏ/mω0)
1/2 is the natural coordinate scale, discussed in detail in section

2.9, we can represent the Hamiltonian (5.62) in a very simple and x ↔ p symmetric
form:

25 In the quantum field theory, the instanton concept may be formulated somewhat differently, and has more
complex applications—see, e.g. [4].
26 For more on this interesting issue see, e.g. [5] and references therein.
27 This normalization is not really necessary, it just makes the following calculations less bulky—and thus more
aesthetically appealing.
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ω ξ ζˆ = ℏ ˆ + ˆ( )H
2

. (5.64)0 2 2

This symmetry, as well as the discussion of the very similar coordinate and
momentum representations, hints that much may be gained by treating the operators
ξ ζˆ ˆand on an equal footing. Inspired by this clue, let us introduce a new operator

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

ξ ζ ω
ω

ˆ ≡
ˆ + ˆ

≡
ℏ

ˆ +
ˆ

a
i m

x i
p

m
a

2 2
. (5.65 )0

1/2

0

Since both operators ξ ζˆ ˆand correspond to real observables, i.e. have real
eigenvalues and hence are Hermitian (self-adjoint), the Hermitian conjugate of the
operator â is simply its complex conjugate:

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

ξ ζ ω
ω

ˆ ≡
ˆ − ˆ

≡
ℏ

ˆ −
ˆ†a

i m
x i

p
m

b
2 2

. (5.65 )0
1/2

0

Because of the reason that will be clear very soon, ˆ ˆ†a aand (in this order!) are called
the creation and annihilation operators.

Now solving the simple system of two equations (5.65) for ξ ζˆ ˆand , we get the
following reciprocal relations:

⎛
⎝⎜

⎞
⎠⎟

ξ ζ

ω
ω

ˆ =
ˆ + ˆ ˆ =

ˆ − ˆ

ˆ = ℏ ˆ + ˆ ˆ = ℏ
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† †

a a a a
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x
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a a
p m

a a

i

2
,

2
,

i.e.
2

, ( )
2

.

(5.66)

0

1/2

0
1/2

Our Hamiltonian (5.64) includes squares of these operators. Calculating them, we
have to be careful to avoid swapping the new operators, because they do not
commute. Indeed, for the normalized operators (5.63), Eq. (2.14) gives

ξ ζ
ω

ˆ ˆ ≡ ˆ ˆ = ˆ
x m

x p iI[ , ]
1

[ , ] , (5.67)
0
2

0

so that Eqs. (5.65) yield

ξ ζ ξ ζ ξ ζ ζ ξˆ ˆ = ˆ + ˆ ˆ − ˆ = − ˆ ˆ − ˆ ˆ = ˆ†a a i i
i

I[ , ]
1
2

[( ), ( )]
2

([ , ] [ , ]) . (5.68)

With such due caution, Eq. (5.66) gives

ξ ζˆ = ˆ + ˆ + ˆ ˆ + ˆ ˆ ˆ = − ˆ + ˆ − ˆ ˆ − ˆ ˆ† † † † † †a a aa a a a a aa a a
1
2

( ),
1
2

( ). (5.69)2 2 2 2 2 2

Plugging these expressions back into Eq. (5.64), we get

ωˆ = ℏ ˆ ˆ + ˆ ˆ† †H aa a a
2

( ). (5.70)0
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This expression is elegant enough, but may be recast into an even more
convenient form. For that, let us rewrite the commutation relation (5.68) as

ˆ ˆ = ˆ ˆ + ˆ† †aa a a I , (5.71)

and plug it into Eq. (5.70). The result is

⎛
⎝⎜

⎞
⎠⎟

ω ωˆ = ℏ ˆ ˆ + ˆ = ℏ ˆ + ˆ†H a a I N I
2

(2 )
1
2

, (5.72)0
0

where, in the last form, one more (evidently, Hermitian) operator,

ˆ ≡ ˆ ˆ†N a a, (5.73)

has been introduced. Since, according to Eq. (5.72), the operators Ĥ and N̂ differ
only by the addition of the identity operator and the multiplication by a c-number,
these operators commute. Hence, according to the general arguments of section 4.5,
they share the set of stationary (‘Fock’) eigenstates n, and we can write the standard
eigenproblem (4.68) for the new operator as

ˆ =N n N n , (5.74)n

where Nn are some eigenvalues that, according to Eq. (5.72), determine also the
energy spectrum of the oscillator:

⎛
⎝⎜

⎞
⎠⎟ω= ℏ +E N

1
2

. (5.75)n n0

So far, we know only that all eigenvalues Nn are real; in order to calculate them,
let us carry out the following calculation—splendid in its simplicity and efficiency.
Consider the result of action of the operator N̂ on the ket-vector â†∣n〉. Using the
definition (5.73) and then the associative rule of the bra–ket formalism, we may write

ˆ ˆ ≡ ˆ ˆ ˆ = ˆ ˆ ˆ† † † † †N a n a a a n a aa n( ) ( )( ) ( ) . (5.76)

Now using the commutation relation (5.71), and then Eq. (5.74), we may continue as

ˆ ˆ ˆ = ˆ ˆ ˆ + ˆ = ˆ ˆ + ˆ

= ˆ + = + ˆ

† † † † †

† †

a aa n a a a I n a N I n

a N n N a n

( ) ( ) ( )

( 1) ( 1)( ).
(5.77)

n n

Let us summarize the result of this calculation:

ˆ ˆ = + ˆ† †N a n N a n( ) ( 1)( ). (5.78)n

Performing an absolutely similar calculation with the operator â, we get a similar
formula:

ˆ ˆ = − ˆN a n N a n( ) ( 1)( ). (5.79)n

It is time to stop and translate these results into plain English: if ∣n〉 is an eigenket
of the operator N̂ with eigenvalue Nn, then â†∣n〉 and â∣n〉 are also eigenkets of that
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operator, with the eigenvalues (Nn + 1), and (Nn − 1), respectively. This statement
may be vividly represented with the so-called ladder diagram shown in figure 5.7.
The operator â† moves the system one step up this ladder, while the operator â
brings it one step down. In other words, the former operator creates a new excitation
of the system28, while the latter operator kills (‘annihilates’) this excitation. This is
exactly why â† is called the creation operator, and â, the annihilation operator. On
the other hand, according to Eq. (5.74) inner-multiplied by the bra-vector 〈n∣, the
operator N̂ does not change the state of the system, but ‘counts’ its position on the
ladder:

ˆ = =n N n n N n N . (5.80)n n

This is why N̂ is called the number operator, in our current context meaning the
number of the elementary excitations of the oscillator.

This calculation still needs completion. Indeed, we still do not know whether the
ladder shown in figure 5.7 shows all eigenstates of the oscillator, and what exactly
the numbers Nn are. Fascinatingly enough, both questions may be answered by
exploring just a single paradox. Let us start with some state n (a step of the ladder),
and keep going down it, applying the operator â again and again. Each time, the
eigenvalue Nn is decreased by one, so that eventually it should become negative.
However, this cannot happen, because any real eigenstate, including the states
represented by kets ≡ ˆd a n and ∣n〉, should have a positive norm—see Eq. (4.16).
Comparing the norms,

= = ˆ = ˆ =†n n n d n a a n n N n N n n, , (5.81)n
2 2

we see that the both of them cannot be positive simultaneously if Nn is negative.
To resolve this paradox let us notice that the action of the creation and

annihilation operators on the stationary states n may consist in not only their
promotion to another step of the ladder diagram, but also by their multiplication by
some c-numbers:

Figure 5.7. The ‘ladder diagram’ hierarchy of eigenstates of a 1D harmonic oscillator. Arrows show the
actions of the creation and annihilation operators on the eigenstates.

28 For the electromagnetic field oscillators, such excitations are called photons; for the mechanical wave
oscillators, phonons, etc.
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ˆ = − ˆ = ′ +†a n A n a n A n1 , 1 . (5.82)n n

(The linear relations (5.78)–(5.79) clearly allow that.) Let us calculate the coefficients
An assuming, for convenience, that all eigenstates, including the states n and (n − 1),
are normalized:

= − − =
ˆ ˆ

= ˆ = =

†

*

* *

n n n n n
a
A

a
A

n

A A
n N n

N
A A

n n

1, 1 1

1
1.

(5.83)n n

n n

n

n n

From here, we get ∣An ∣ = (Nn)
1/2, i.e.

ˆ = −φa n N e n 1 , (5.84)n
i1/2

n

where φn is an arbitrary real phase. Now let us consider what happens if all numbers
Nn are integers. (Because of the definition of Nn, given by Eq. (5.74), it is convenient
to call these integers n, i.e. to use the same letter as for the corresponding eigenstate.)
Then when we have come down to state with n = 0, an attempt to make one more
step down gives

ˆ = −a 0 0 1 . (5.85)

But in accordance with Eq. (4.9), the state on the right-hand side of this equation is
the ‘null-state’, i.e. does not exist29. This gives the (only known :-) resolution of the
state ladder paradox: the ladder has the lowest step with Nn = n = 0.

As a by-product of our discussion, we have obtained a very important relation
Nn = n, which means, in particular, that the state ladder shown in figure 5.7 includes
all eigenstates of the oscillator. Plugging this relation into Eq. (5.75), we see that the
full spectrum of eigenenergies of the harmonic oscillator is described by the simple
formula

⎛
⎝⎜

⎞
⎠⎟ω= ℏ + = …E n n

1
2

, 0, 1, 2 , (5.86)n 0

which was already discussed in section 2.9. It is rather remarkable that the bra–ket
formalism has allowed us to derive it without calculation of the corresponding
(rather cumbersome) wavefunctions ψn(x)—see Eqs. (2.284).

Moreover, the formalism may be also used to calculate virtually any matrix
element pertaining to the oscillator, without using ψn(x). However, in order to
do that, we should first calculate the coefficient A′n participating in the second of
Eqs. (5.82). This may be done absolutely similarly to the above calculation of An;
alternatively, since we already know that ∣An∣ = (Nn)

1/2 = n1/2, we may notice that

29 Please note again the radical difference between the null-state on the right-hand side of Eq. (5.85) and the
state described by ket-vector ∣0〉 on the left-hand side of that relation. The latter state does exist and, moreover,
represents the most important, ground state of the system, with n = 0—see Eqs. (2.274) and (2.275).
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according to Eqs. (5.73) and (5.82), the eigenproblem (5.74), which in our new
notation for Nn becomes

ˆ =N n n n , (5.87)

may be rewritten as

= ˆ ˆ = ˆ − = ′† †
−n n a a n a A n A A n1 . (5.88)n n n 1

Comparing the first and the last form of this equality, we see that ∣A′n − 1∣ = n/∣An∣ =
n1/2, so that A′n = (n + 1)1/2exp(iφn′). Taking all phases φn and φn′ equal to zero for
simplicity, we may spell out Eqs. (5.82) as30

ˆ = + + ˆ = −†a n n n a n n n( 1) 1 , 1 . (5.89)1/2 1/2

Now we can use these formulas to calculate, for example, the matrix elements of
the operator x̂ in the Fock state basis:

ξ′ ˆ ≡ ′ ˆ = ′ ˆ + ˆ

= ′ ˆ + ′ ˆ

= ′ − + + ′ −

†

†

n x n x n n
x

n a a n

x
n a n n a n

x
n n n n n n

2
( )

2
( )

2
[ 1 ( 1) 1 ].

(5.90)

0
0

0

0 1/2 1/2

Taking into account the Fock state orthonormality:

δ′ = ′n n , (5.91)n n

this result becomes

⎛
⎝⎜

⎞
⎠⎟

δ δ

ω
δ δ

′ ˆ = + +

≡ ℏ + +

′ − ′ +

′ − ′ +

n x n
x

n n

m
n n

2
[ ( 1) ]

2
[ ( 1) ].

(5.92)

n n n n

n n n n

0 1/2
, 1

1/2
, 1

0

1/2
1/2

, 1
1/2

, 1

Acting absolutely similarly, for the momentum’s matrix elements we get a similar
expression:

⎜ ⎟⎛
⎝

⎞
⎠

ω δ δ′ ˆ = ℏ − + +′ − ′ +n p n i
m

n n
2

[ ( 1) ]. (5.93)n n n n
0

1/2
1/2

, 1
1/2

, 1

Hence the matrices of both operators in the Fock-state basis have only two
diagonals, adjacent to the main diagonal; all other elements (including the main-
diagonal ones) are zeros.

30A useful mnemonic rule for these key relations is that the c-number coefficient in any of them is equal to the
square root of the largest number of the two states it relates.
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The matrix elements of higher powers of these operators, as well as their products,
may be handled similarly, though the higher the power, the bulkier the result. For
example31,

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

∑

∑ δ δ

δ δ

δ

δ δ

′ ˆ = ′ ˆ ˆ = ′ ˆ ″ ″ ˆ

= ″ + ″ +

× + +

= −

+ + + + +
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∞
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∞

′ ″− ′ ″+

″ − ″ +

′ −

′ + ′
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x
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n n

x
n n

n n n

2
( ) ( 1)

( 1)

2
{[ ( 1)]

[( 1)( 2)] (2 1) }.

(5.94)
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For applications, the most important of these matrix elements are those on its
main diagonal:

≡ ˆ = +x n x n
x

n
2

(2 1). (5.95)2 2 0
2

This expression shows, in particular, that the expectation value of the oscillator’s
potential energy in the nth Fock state is

⎛
⎝⎜

⎞
⎠⎟

ω ω≡ = ℏ +U
m

x n
2 2

1
2

. (5.96)0
2

2 0

This is exactly ½ of the total energy (5.86) of the oscillator. As a sanity check, an
absolutely similar calculation for the momentum squared, and hence for the kinetic
energy p2/2m, yields

⎛
⎝⎜
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⎛
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ω ω

ω

= ˆ = + ≡ ℏ +
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n

( )
2

(2 1)
1
2

, so that

2 2
1
2

,

(5.97)

2 2
0

2 0
2

0

2
0

i.e. both partial energies are equal to En/2, just as in a classical oscillator32.
Note that according to Eqs. (5.92) and (5.93), the expectation values of both x

and p in any Fock state are equal zero:

≡ ˆ = ≡ ˆ =x n x n p n p n0, 0, (5.98)

31 The first line of Eq. (5.94), evidently valid for any time-independent system, is the simplest of the so-called
sum rules, which will be repeatedly discussed below.
32 Still note that operators of the partial (potential and kinetic) energies do not commute either with each other
or with the full-energy (Hamiltonian) operator, so that the Fock states n are not their eigenstates. This fact
maps on the well-known oscillations of these partial energies (with the frequency 2ω0) in a classical oscillator,
at the full energy staying constant.
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This is why, according to the general Eqs. (1.33) and (1.34), the results (5.95) and
(5.97) also give the variances of the coordinate and the momentum, i.e. the squares
of their uncertainties, (δx)2 and (δp)2—see the general Eq. (1.34). In particular, for
the ground state (n = 0), these uncertainties are

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠δ

ω
δ ω ω= ≡ ℏ = ≡ ℏ

x
x

m
p

m x m

2 2
,

2 2
. (5.99)0

0

1/2
0 0 0

1/2

In the theory of measurements, these expressions are called the standard quantum
limit.

5.5 Glauber states and squeezed states
There is evidently a huge difference between a quantum stationary (Fock) state of
the oscillator and its classical state. Indeed, let us write the well-known classical
equations of motion33 of the oscillator (using capital letters to distinguish the
classical variables from the arguments of quantum wavefunctions):

ω˙ = ˙ = −∂
∂

= −X
P
m

P
U
x

m X, . (5.100)0
2

On the so-called phase plane, with the Cartesian coordinates x and p, these equations
describe a clockwise rotation of the representation point {X(t), P(t)} along an elliptic
trajectory starting from the initial point {X(0), P(0)}. (The normalization of the
momentum by mω0, similar to the one performed by the second of Eqs. (5.63),
makes the trajectory pleasingly circular, with a constant radius equal to the
oscillation’s amplitude A, reflecting the constant full energy

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

ω
ω ω

= = + = = +E
m

A A X t
P t
m

X
P
m2

, [ ( )]
( )

const [ (0)]
(0)

, (5.101)0
2

2 2 2

0

2
2

0

2

determined by the initial conditions—see figure 5.8.)
For the forthcoming comparison with quantum states, it is convenient to describe

this classical motion by the following dimensionless complex variable

⎡
⎣⎢

⎤
⎦⎥α

ω
≡ +t

x
X t i

P t
m

( )
1

2
( )

( )
, (5.102)

0 0

which is essentially the standard complex-number representation of system’s
position on the 2D phase plane, with ∣α∣ ≡ A/√2x0. With this definition,
Eqs. (5.100) are conveniently merged into one equation,

α ω α˙ = −i , (5.103)
0

33 If Eqs. (5.100) are not evident, please consult a classical mechanics course—e.g. Part CM sections 3.2
and/or 10.1.
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with an evident, very simple solution

α α ω= −t i t( ) (0)exp{ }, (5.104)0

where the constant α(0) may be complex, and is just the (normalized) classical
complex amplitude of oscillations34. This equation describes sinusoidal oscillations
of both X(t) ∝ Re[α(t)] and P ∝ Im[α(t)], with a phase shift of π/2 between them.

On the other hand, according to the basic Eq. (4.161), the time dependence of a
Fock state, as of a stationary state of the oscillator, is limited to the phase factor
exp{−iEnt/ℏ} not in observables, but rather in the probability amplitude, and as a
result, gives time-independent expectation values of x, p, or of any function thereof.
(Moreover, as Eqs. (5.98) show, 〈x〉 = 〈p〉 = 0.) Taking into account Eqs. (5.96) and
(5.97), the closest (though very imperfect) geometric image35 for such a state on the
phase plane is a circle of the radius An = x0(2n + 1)1/2, along which the wavefunction
is uniformly spread as a wave—see the blue rings in figure 5.8. For the ground state
(n = 0), with the wavefunction (2.275), a better image may be a blurred round spot,
of a radius ~x0, at the origin. (It is easy to criticize such blurring, intended to
represent the nonvanishing spreads (5.99), because it fails to reflect the fact that the
total energy of the oscillator in the state, E0 = ℏω0/2 is defined exactly, without any
uncertainty.)

Figure 5.8. Representations of various states of a harmonic oscillator on the phase plane. The bold black point
represents a classical state with a complex amplitude α, with the dashed line showing its trajectory. The (very
imperfect) classical images of the Fock states with n = 0, 1, and 2 are shown in blue. The blurred red spot is the
(equally schematic) image of a Glauber state α. Finally, the magenta elliptical spot is a classical image of a
squeezed ground state. Arrows show the direction of the states’ evolution in time.

34 See, e.g. Part CM chapter 5, especially Eq. (5.4).
35 I have to confess that such geometric mapping of a quantum state on the phase plane [x, p] is not exactly
defined; you may think about colored areas in figure 5.8 as the regions of the observable pairs {x, p} most
probably obtained in measurements. A quantitative definition of such a mapping will be given in section 7.3
using the Wigner function, though, as we will see, even such imaging has certain internal contradictions. Still
such cartoons as figure 5.8 have a substantial cognitive/heuristic value, if their limitations are kept in mind.
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So, the difference between a classical state of the oscillator and its Fock state n is
very profound. However, the Fock states are not the only possible quantum states of
the oscillator: according to the basic Eq. (4.6), any state described by the ket-vector

∑α α=
=

∞

n (5.105)
n 0

n

with an arbitrary set of (complex) c-numbers αn, is also its legitimate state, subject
only to the normalization condition 〈α∣α〉 = 1, giving

∑ α =
=

∞

1. (5.106)
n 0

n
2

It is natural to ask: could we select the coefficients αn in such a special way that the
state properties would be closer to the classical one; in particular the expectation
values 〈x〉 and 〈p〉 of the coordinate and momentum would evolve in time as the
classical values X(t) and P(t), while the uncertainties of these observables would be,
just as in the ground state, given by Eqs. (5.99), and hence have the smallest possible
uncertainty product, δxδp = ℏ/2. Let me show that such a Glauber state36, which is
schematically represented in figure 5.8 by a blurred red spot around the classical
point {X(t), P(t)}, is indeed possible.

Conceptually the simplest way to find the corresponding coefficients αn would be to
calculate 〈x〉, 〈p〉, δx and δp for an arbitrary set of αn, and then try to optimize these
coefficients to reach our goal. However, this problem may be solved much more easily
using the wave mechanics. Indeed, let us consider the following wavefunction

⎜ ⎟⎛
⎝

⎞
⎠

⎧⎨⎩
⎫⎬⎭

ω
π

ωΨ =
ℏ

−
ℏ

− +
ℏα x t

m m
x X t i

P t x
( , ) exp

2
[ ( )]

( )
, (5.107)0

1/4
0 2

Its comparison with Eqs. (2.275) shows that this is just the ground-state wave-
function, but with the center shifted from the origin into the classical point {X(t), P
(t)}. A straightforward (though a bit bulky) differentiation over x and t shows that it
satisfies the oscillator’s Schrödinger equation, provided that the functions X(t) and P
(t) obey the classical equations (5.100). Moreover, a similar calculation shows that
the wavefunction (5.107) also satisfies the Schrödinger equation of an oscillator
under the effect of a pulse of classical force F(t), provided that the oscillator initially
was in its ground state, and that the classical evolution law {X(t), P(t)} in Eq. (5.107)
takes this force into account37. Since for many incarnations of the harmonic

36Named after R J Glauber who studied these states in detail in 1965, though they had been discussed in brief
by E Schrödinger as early as in 1926. Another popular name, ‘coherent’, for the Glauber states is very
misleading, because all the quantum states we have studied so far (including the Fock states) may be
represented as coherent (pure) superpositions of the basis states.
37 For its description, it is sufficient to solve Eqs. (5.100), with F(t) added to the right-hand side of the second of
these equations.

Quantum Mechanics: Lecture notes

5-27



oscillator, the ground state may be readily formed (for example, by providing a weak
coupling of the oscillator to a low-temperature environment), the Glauber state is
usually easier to form experimentally than any Fock state with n > 0. This is why the
Glauber states are so important, and deserve more discussion.

In such discussion, there is a substantial place for the bra–ket formalism. For
example, in order to calculate the corresponding coefficients in the expansion (5.105)
by wave-mechanical means,

∫ ∫α α α ψ= = = Ψα*n dx n x x x x dx( ) ( , 0) , (5.108)n n

we would need to use not only the simple Eq. (5.107), but also the Fock state
wavefunctions ψn(x), which are not very appealing—see Eq. (2.284) again. Instead,
this calculation may be readily done in the bra–ket formalism, giving us one
important byproduct result as well.

Let us start from expressing the double shift of the ground state (by X and P), that
has led us to Eq. (5.107), in the operator language. Forgetting about the P for a
minute, let us find the translation operatorT X̂ that would produce the desirable shift
of an arbitrary quantum state by the c-number distance X along the coordinate
argument x. In the coordinate representation, this means

T ψ ψˆ ≡ −x x X( ) ( ). (5.109)X

Representing the wavefunction as the standard wave packet (4.264), we see that

T
⎧⎨⎩

⎫⎬⎭∫

∫

ψ
π

φ

π
φ

ˆ =
ℏ

−
ℏ

≡
ℏ ℏ

−
ℏ{ }{ }

x p i
p x X

dp

p i
px

i
pX

dp

( )
1

(2 )
( )exp

( )

1
(2 )

( )exp exp .
(5.110)

X 1/2

1/2

Hence, the shift may be achieved by the multiplication of each Fourier component
of the packet, with the momentum p, by exp{−ipX/ℏ}. This gives us a hint that the
general form of the translation operator, valid in any representation, should be

T ˆ = −
ˆ
ℏ{ }i

pX
exp . (5.111)X

The proof of this formula is provided merely by the fact that, as we know from
chapter 4, any operator is uniquely determined by the set of its matrix elements in
any full and orthogonal basis, in particular the basis of momentum states p.
According to Eq. (5.110), the analog of Eq. (4.235) for the p-representation, applied
to the translation operator (which is evidently local), is

T∫ φ φˆ ′ ′ = −
ℏ{ }dp p p p i

pX
p( ) exp ( ), (5.112)X

so that the operator (5.111) does exactly the job we need it to.
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The operator that provides the shift of momentum by a c-number P is absolutely
similar—with the opposite sign under the exponent, due to the opposite sign of the
exponent in the reciprocal Fourier transform, so that the simultaneous shift by both
X and P may be achieved by the following translation operator:

T ˆ =
ˆ − ˆ

ℏα { }i
Px pX

exp . (5.113)

As we already know, for a harmonic oscillator the creation–annihilation operators
are more natural, so that we may use Eqs. (5.65) to recast Eq. (5.113) as

T Tα α α αˆ = ˆ − ˆ ˆ = ˆ − ˆα α
† * † * †a a a aexp{ }, so that exp{ }, (5.114)

where α (which, generally, may be a function of time) is the c-number defined by
Eq. (5.102). Now, according to Eq. (5.107), we may form the Glauber state’s ket-
vector just as

Tα = α̂ 0 . (5.115)

This formula, valid in any representation, is very elegant, but using it for practical
calculations (say, of the expectation values of observables) is not too easy because of
the exponent-of-operators form of the translation operator. Fortunately, it turns out
that a much simpler representation for the Glauber state is possible. To show this, let
us start with the following general (and very useful) property of exponential
functions of an operator argument: if

⎡⎣ ⎤⎦ μˆ ˆ = ˆA B I, , (5.116)

(where Â and B̂ are arbitrary linear operators, and μ is a c-number), then38

μ+ ˆ ˆ − ˆ = ˆ + ˆA B A B Iexp{ } exp{ } . (5.117)

Let us apply Eqs. (5.116) and (5.117) to two cases, both with

T Tα αˆ = ˆ − ˆ + ˆ = ˆ − ˆ = ˆα α* † †A a a A A, so that exp{ } , exp{ } . (5.118)

First, let us take ˆ = ˆB I ; then Eq. (5.116) is valid with μ = 0, and Eq. (5.107) yields

T Tˆ ˆ = ˆα α
† I , (5.119)

This equality means that the translation operator is unitary—not a big surprise,
because if we shift a classical point on the phase plane by a complex number (+α)
and then by (−α), we certainly must come back to the initial position. Eq. (5.119)
means merely that this fact is true for any quantum state as well.

38A proof of Eq. (5.117) may be readily achieved by expanding the operator λ λ λˆ ≡ + ˆ ˆ − ˆf A B A( ) exp{ } exp{ } in
the Taylor series with respect to the c-number parameter λ, and then evaluating the result at λ = 1.
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Second, let us take ˆ = ˆB a; in order to find the corresponding parameter μ, let us
calculate the commutator on the left-hand side of Eq. (5.116) for this case. Using, at
the due stage of the calculation, Eq. (5.68), we get

α α α αˆ ˆ = ˆ − ˆ ˆ = − ˆ ˆ = ˆ* † †A B a a a a a I[ , ] [ , ] [ , ] , (5.120)

so that in this case μ = α, and Eq. (5.117) yields

T T αˆ ˆ ˆ = ˆ + ˆα α
†a a I . (5.121)

We have approached the summit of this beautiful calculation. Let us consider the
operator

T T Tˆ ˆ ˆ ˆα α α
†a . (5.122)

Using Eq. (5.119), we may reduce this product to Tˆ α̂a , while the application of
Eq. (5.121) to the same expression (5.122) yields T Tαˆ ˆ + ˆ

α αa . Hence, we get the
following operator equality:

T T Tαˆ ˆ = ˆ ˆ + ˆα α αa a , (5.123)

which may be applied to any state. Now acting by both sides of this equality on the
ground state ∣0〉, and using the fact that â∣0〉 is the null-state, whileT αˆ ∣ 〉 ≡ ∣ 〉α 0 , we
finally get a very simple and elegant result39:

α α αˆ =a . (5.124)

Thus any Glauber state α is one of eigenstates of the annihilation operator,
namely the one with the eigenvalue equal to the c-number parameter α of the state,
i.e. to the complex representation (5.102) of the classical point which is the center of
the Glauber state’s wavefunction40. This fact makes the calculations of all Glauber
state properties much simpler. As an example, let us calculate 〈x〉 in the Glauber
state with some c-number α:

α α α α

α α α α

= ˆ = ˆ + ˆ

= ˆ + ˆ

†

†( )

x x
x

a a

x
a a

2
( )

2

(5.125)

0

0

In the first term in the parentheses, we can apply Eq. (5.124) directly, while in the
second term, we can use the bra-counterpart of that relation, α α α〈 ∣ ˆ = 〈 ∣† *a . Now

39This result is also rather counter-intuitive. Indeed, according to Eq. (5.89), the annihilation operator â,
acting upon a Fock state n, ‘beats it down’ to the lower-energy state (n − 1). However, according to Eq.
(5.124), the action of the same operator on a Glauber state α does not lead to the state change and hence to any
energy change! The resolution of this paradox is given by the representation of the Glauber state as a series of
Fock states—see Eq. (5.134) below. The operator â indeed transfers each Fock component of this series to a
lower-energy state, but it also re-weighs each term, so that the complete energy of the Glauber state remains
constant.
40Note that the spectrum of eigenvalues α of Eq. (5.124), viewed as an eigenproblem, is continuous—it may be
any complex number.
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assuming that the Glauber state is normalized, 〈α∣α〉 = 1, and using Eq. (5.102),
we get

α α α α α α α α= + = + =* *x
x x

X
2

( )
2

( ) , (5.126)
0 0

Acting absolutely similarly, we may readily extend this sanity check to verify that
〈p〉 = P, and that δx and δp do indeed obey Eq. (5.99).

As one more sanity check, let us use Eq. (5.124) to re-calculate the Glauber state’s
wavefunction. Inner-multiplying both sides of that relation by the bra-vector 〈x∣,
and using the definition (5.65a) of the annihilation operator, we get

⎛
⎝⎜

⎞
⎠⎟ω

α α αˆ +
ˆ

=
x

x x i
p

m
x

1

2
. (5.127)

0 0

Since 〈x∣ is the bra-vector of the eigenstate of the Hermitian operator x̂, they may be
swapped, with the operator giving its eigenvalue x; acting on that bra-vector by the
(local!) operator of momentum, we have to use it in the coordinate representation—
see Eq. (4.245). As a result, we get

⎛
⎝⎜

⎞
⎠⎟α

ω
α α α+ ℏ ∂

∂
=

x
x x

m x
x x

1

2
. (5.128)

0 0

But 〈x∣α〉 is nothing else than the Glauber state’s wavefunction Ψα, so that
Eq. (5.128) gives for it a first-order differential equation

⎛
⎝⎜

⎞
⎠⎟ω

αΨ + ℏ ∂
∂

Ψ = Ψα α α
x

x
m x

1

2
. (5.129)

0 0

Chasing Ψα and x to the opposite sides of the equation, and using the definition
(5.102) of the parameter α, we bring this equation to the form

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥

ω
ω

∂Ψ
Ψ

=
ℏ

− + + ∂α

α

m
x X i

P
m

x. (5.130)0

0

Integrating both parts, we return to Eq. (5.107) that had been derived earlier by
wave-mechanics means.

Now that we can use Eq. (5.124) for finding the coefficients αn in the expansion
(5.105) of the Glauber state α in the series over the Fock states n. Plugging Eq.
(5.105) into both sides of Eq. (5.124), using the second of Eqs. (5.89) on the left-hand
side, and requiring the coefficients at each ket-vector ∣n〉 in both parts of the resulting
relation to be equal, we get the following recurrence relation for the coefficients αn:

α α α=
++

n( 1)
. (5.131)n n1 1/2

Quantum Mechanics: Lecture notes

5-31



Assuming some value of α0, and applying the relation sequentially for n = 1, 2, etc,
we get

α α α=
!n( )

. (5.132)n

n

1/2 0

Now we can find α0 from the normalization requirement (5.106), getting

∑α α
!

=
=

∞

n
1. (5.133)

n 0

n

0
2

2

In this sum, we may readily recognize the Taylor expansion of the function
exp{∣α∣2}, so that the final result (besides an arbitrary common phase multiplier) is

⎧⎨⎩
⎫⎬⎭∑α α α= −

!=

∞

n
nexp

2 ( )
. (5.134)

n 0

n2

1/2

It means in particular that if the oscillator is in the Glauber state α, the
probabilities Wn ≡ αnαn* of finding the system on the nth energy level (5.86) obey
the well-known Poisson distribution (figure 5.9):

=
!

−W
n
n

e , (5.135)n

n
n

where 〈n〉 is the statistical average of n (which is not necessarily integer!):

∑=
=

∞

n n W ; (5.136)
n 0

n

in our particular case

α=n . (5.137)2

Figure 5.9. The Poisson distribution (5.135) for several values of 〈n〉. Note thatWn are defined only for integer
values of n; the lines are only guides for the eye.

Quantum Mechanics: Lecture notes

5-32



For applications, perhaps the most important mathematical property of this
distribution is

δ˜ ≡ − = ≡ ˜ =n n n n n n n( ) , so that . (5.138)2 2 2 1/2 1/2

Another important property is that at 〈n〉 ≫ 1, the Poisson distribution approaches
the Gaussian (‘normal’) one, with a small relative rms fluctuation: δn/〈n〉 ≪ 1—a
trend visible in figure 5.9.

Now let us discuss the Glauber state’s evolution in time. In the wave mechanics
language, it is completely described by the dynamics (5.100) of the c-number shifts
X(t) and P(t) participating in the wavefunction (5.107). Note again that, in contrast
to the spread of the wave packet of a free particle, discussed in section 2.2, in the
harmonic oscillator the Gaussian packet of the special width (5.99) does not spread
at all!

An alternative and equivalent way of dynamics description is to use the
Heisenberg equation of motion. As Eqs. (5.29) and (5.35) tell us, such equations
for the Heisenberg operators of coordinate and momentum have to be similar to the
classical equations (5.100):

ωˆ̇ =
ˆ

ˆ̇ = − ˆx
p

m
p m x, . (5.139)H

H
H 0

2
H

Now using Eqs. (5.66), for the Heisenberg-picture creation and annihilation
operators we get the equations

ω ωˆ̇ = − ˆ ˆ̇ = + ˆ
† †a i a a i a, , (5.140)

H 0 H H 0 H

which are completely similar to the classical Eq. (5.103) for the c-number parameter
α and its complex conjugate, and hence have the solutions identical to Eq. (5.104):

ˆ = ˆ ˆ = ˆω ω− † †a t a e a t a e( ) (0) , ( ) (0) . (5.141)i t i t
H H H H

0 0

As was discussed in section 4.6, such equations are very convenient, because they
enable simple calculation of time evolution of observables for any initial state of the
oscillator (Fock, Glauber, or any other) using Eq. (4.191). In particular, Eq. (5.141)
shows that regardless of the initial state, the oscillator always returns to it exactly
with the period 2π/ω0.

41 Applied to the Glauber state with α = 0, i.e. the ground state
of the oscillator, such a calculation confirms that the Gaussian wave packet of the
special width (5.99) does not spread in time at all—even temporarily.

Now let me briefly mention the states whose initial wave packet is still Gaussian,
but has a different width, say δx < x0/√2. As we already know from section 2.2, the
momentum spread δp will be correspondingly larger, still with the smallest possible

41Actually, this fact is also evident from the Schrödinger picture of the oscillator’s time evolution: due to the
exactly equal distances ℏω0 between the eigenenergies (5.86), the time functions an(t) in the fundamental
expansion (1.69) of its wavefunction oscillate with frequencies nω0, and hence they all share the same time
period 2π/ω0.
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uncertainty product: δxδp = ℏ/2. Such squeezed ground state ζ, with zero expectation
values of x and p, may be generated from the Fock/Glauber ground state:

Sζ = ζ̂ a0 , (5.142 )

using the so-called squeezing operator,

S ζ ζˆ ≡ ˆ ˆ − ˆ ˆζ * † †{ }aa a a bexp
1
2

( ) , (5.142 )

which depends on a complex c-number parameter ζ = reiθ, where r and θ are real.
The parameter’s modulus r determines the squeezing degree; if ζ is real (i.e. θ = 0),
then

δ δ ω δ δ
ω

= = = ≡ ℏ−x
x

e p
m x

e x p
m x

2
,

2
, so that

2 2
. (5.143)r r0 0 0 0 0

2

On the phase plane (figure 5.8), this state, with r > 0, may be represented by an oval
spot squeezed along the axis x (hence the state’s name) and stretched by the same
factor er along the axis p; the same formulas but with r < 0 describe the opposite
squeezing. On the other hand, the phase θ of the squeezing parameter ζ determines
the angle θ/2 of the oval’s turn about the phase plane origin—see the magenta ellipse
in figure 5.8; if θ ≠ 0, Eqs. (5.143) are valid for the variables {x′, p′} obtained from
{x, p} via clockwise rotation by that angle. For any of such origin-centered squeezed
states, the time evolution is reduced to an increase of the angle with the rate ω0, i.e.
to the clockwise rotation of the ellipse, without its deformation, with the angular
velocity ω0—see the magenta arrows in figure 5.8. As a result, the uncertainties δx
and δp oscillate in time with the double frequency 2ω0. Such squeezed ground states
have and may be formed, for example, by a parametric excitation of the oscillator42,
with a parameter modulation depth close to, but still below the threshold of the
excitation of degenerate parametric oscillations.

By action of an additional external force, the center of a squeezed state may be
displaced from the origin to an arbitrary point {X, P}. Such a displaced squeezed
state may be described by the action of the translation operator (5.113) upon the
ground squeezed state, i.e. by the action of the operator productT Sˆ ˆα ζ on the usual
(Fock/Glauber, i.e. non-squeezed) ground state. Calculations similar to those that
led us from Eq. (5.114) to Eq. (5.124), show that such a displaced squeezed state is an
eigenstate of the following mixed operator:

ˆ ≡ ˆ + ˆ θ†b a r a e rcosh sinh , (5.144)i

with the same parameters r and θ, with the eigenvalue

β α α= + θ*r e rcosh sinh , (5.145)i

42 For a discussion and classical theory of this effect, see, e.g. Part CM section 5.5.
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thus generalizing Eq. (5.124), which corresponds to r = 0. For the particular case
α = 0, Eq. (5.145) yields β = 0, i.e. the action of the operator (5.144) on the squeezed
ground state ζ yields the null-state. Just as Eq. (5.124) in the case of the Glauber
states, Eqs. (5.144) and (5.145) makes the calculation of the basic properties of the
squeezed states (for example, the proof of Eqs. (5.143) for the case α = θ = 0) very
straightforward.

Unfortunately, I do not have time here for a further discussion of the squeezed
states—which have important implications for sensitive quantum measurements43.

5.6 Revisiting spherically-symmetric systems
One more blank spot to fill has been left by our study, in section 3.6, of the wave
mechanics of particle motion in spherically-symmetric 3D potentials. Indeed, while
the azimuthal components of the eigenfunctions (the spherical harmonics) of such
systems are very simple,

ψ
π

= = ± ± …φe m
1

(2 )
, with 0, 1, 2, , (5.146)m

im
1/2

their polar components include the associated Legendre functions Pl
m(cosθ), which

may be expressed via elementary functions only indirectly—see Eqs. (3.165) and
(3.168). This makes all the calculations less than transparent and, in particular, does
not allow a clear insight into the origin of the very simple energy spectrum of such
systems—see, e.g. Eq. (3.163). The bra–ket formalism, applied to the angular
momentum operator, not only enables such insight and produces a very convenient
tool for many calculations involving spherically-symmetric potentials, but also
opens a clear way toward the unification of the orbital momentum with the
particle’s spin—the task to be addressed in the next section.

Let us start from using the correspondence principle to spell out the quantum-
mechanical vector operator of the orbital angular momentum L ≡ r × p of a point
particle:

∑ εˆ ˆ ˆ≡ × = ˆ ˆ ˆ
ˆ ˆ ˆ

ˆ ≡ ˆ ˆ
′=

′ ″ ′ ″r r r
p p p

L r pL r p

n n n

, i.e. , (5.147)
j 1

3x y z

j j j jj j1 2 3

1 2 3

where each of the indices j and j′ and j″ may take any of the values 1, 2, and 3, and
εjj’j’ is the Levi-Civita permutation symbol, which we have already used in section
4.5, and also in section 5.1, in the similar expression (5.18). From this definition, we

43 See a brief discussion of this issue in section 10.1 below. For more on the squeezed states see, e.g. chapter 7 in
the monograph by Gerry and Knight [6]. Also, note the spectacular measurements of the Glauber and
squeezed states of electromagnetic (optical) oscillators by Breitenbach et al [7], a large (ten-fold) squeezing
achieved in such oscillators by Vahlbruch et al [8], and first results on the ground state squeezing in
micromechanical oscillators, with resonance frequencies ω0/2π as low as a few MHz, using their parametric
coupling to microwave electromagnetic oscillators—see, e.g. [9] and/or [10].

Quantum Mechanics: Lecture notes

5-35



can readily calculate the commutation relations for all Cartesian components of
operators ˆ ˆ ˆL r p, , and ; for example,

⎡⎣ ⎤⎦
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡⎣ ⎤⎦∑ ∑

∑ ∑

ε ε

δ ε ε ε

ˆ ˆ = ˆ ˆ ˆ ≡ − ˆ ˆ ˆ

= − ℏ ˆ ≡ ℏ ˆ ≡ ℏˆ

= =

= =

′ ″ ″ ′ ′ ″ ″

′ ″ ″ ′ ″ ′ ″

L r r p r r r p

i r i r i r

, , ,

.

(5.148)k k

k k

1

3

1

3

1

3

1

3

j j k j jkj j k j j jkj

k j j jkj k jj k j jj j

The summary of all these calculations may be represented in a similar compact form:

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ε ε εˆ ˆ = ℏˆ ˆ ˆ = ℏ ˆ ˆ ˆ = ℏ ˆ′ ″ ′ ″ ′ ″ ′ ″ ′ ″ ′ ″L r i r L p i p L L i L, , , , , ; (5.149)j j j jj j j j j jj j j j j jj j

they show, in particular, that the commutator of L̂j with a different (j′th) Cartesian
component of this vector-operator is proportional to the complementary component
(with the number j″ ≠ j, j′) of that operator.

Also introducing in the natural way a (scalar!) operator of the observable L2 ≡ ∣L∣2,

∑ˆ ≡ ˆ + ˆ + ˆ ≡
=

L L L L L , (5.150)
j 1

3

x y z j
2 2 2 2 2

it is straightforward to check that this operator commutes with each of the Cartesian
components:

⎡⎣ ⎤⎦ˆ ˆ =L L, 0. (5.151)j
2

This result, at first sight, may seem to contradict the last of Eqs. (5.149). Indeed,
haven’t we learned in section 4.5 that commuting operators (e.g. L̂

2 and any of L̂j)
share their eigenstate sets? If yes, doesn’t this set have to be common for all four
operators? The resolution in this paradox may be found in the condition that was
mentioned just after Eq. (4.138), but (sorry!) was not sufficiently emphasized there.
According to that relation, if an operator has degenerate eigenstates (i.e. if Aj = Aj′
even for j ≠ j′), they should not be necessarily all shared by another compatible
operator.

This is exactly the situation with the orbital angular momentum operators, which
may be schematically shown on a Venn diagram (figure 5.10):44 the eigenstates of
the operator L̂

2 are highly degenerate45, and their set broader than those of the

44 This is just a particular example of the Venn diagrams (introduced in the 1880s by J Venn) that show
possible relations (such as intersections, unions, complements, etc) between various sets of objects, and are a
very useful tool in the general set theory.
45Note that this particular result is consistent with the classical picture of the angular momentum vector: even
when its length is fixed, the vector may be oriented in various directions, corresponding to different values of its
Cartesian components. However, in the classical picture, all these components may be fixed simultaneously,
while in the quantum picture this is not true.
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component operators L̂j (that, as will be shown below, are non-degenerate until we
consider a particle’s spin).

Let us focus on just one of these three joint sets of eigenstates—by tradition, of the
operators L̂

2 and L̂z. (This tradition stems from the canonical form of the spherical
coordinates, in which the polar angle is measured from the z-axis. Indeed, in the
coordinate representation we may write

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠ φ

ˆ ≡ ˆ − ˆ = − ℏ ∂
∂

− − ℏ ∂
∂

= − ℏ ∂
∂

L xp yp x i
y

y i
x

i . (5.152)z y x

Writing the standard eigenproblem for the operator in this representation,
ψ ψˆ =L Lz m z m, we see that it is satisfied by the eigenfunctions (5.146), with eigenvalues

Lz = ℏm—which was already conjectured in section 3.5.) More specifically, let us
consider a set of eigenstates {l, m} corresponding to a certain degenerate eigenvalue
of the operator L̂

2, but all possible eigenvalues of operator L̂z, i.e. all possible
quantum numbers m. (At this point, l is just some parameter that determines the
eigenvalue of L̂

2; it will be defined more explicitly in a minute.) In order to analyze
this set, it is instrumental to introduce the so-called ladder (also called, respectively,
‘raising’ and ‘lowering’) operators46

ˆ ≡ ˆ ± ˆ±L L iL . (5.153)x y

It is simple to use this definition and the last of Eqs. (5.149) to calculate the following
commutators:

ˆ ˆ = ℏ ˆ ˆ ˆ = ±ℏ ˆ+ − ± ±L L L L L L[ , ] 2 , and [ , ] , (5.154)z z

and also to use Eqs. (5.149) and (5.150) to prove two other important relations:

ˆ = ˆ + ˆ ˆ − ℏ ˆ ˆ = ˆ + ˆ ˆ + ℏ ˆ+ − − +L L L L L L L L L L, . (5.155)z z z z
2 2 2 2

Figure 5.10. The Venn diagram showing the partitioning of the set of eigenstates of the operator L̂2. Each
inner sector corresponds to the states shared with one of Cartesian component operators L̂j , while the outer
(shaded) ring represents the eigenstates of L̂2 that are not shared with either of L̂j—for example, all linear
combinations of the eigenstates of different component operators.

46Note a substantial similarity between this definition and Eqs. (5.65) for the creation/annihilation operators—
defined in a different (harmonic oscillator’s) Hilbert space.
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Now let us rewrite the last of Eqs. (5.154) as

ˆ ˆ = ˆ ˆ ± ℏ ˆ± ± ±L L L L L , (5.156)z z

and act by both of its sides upon the ket-vector ∣l, m〉 of an arbitrary common
eigenstate specified above:

ˆ ˆ = ˆ ˆ ± ℏ ˆ± ± ±L L l m L L l m L l m, , , . (5.157)z z

Since the eigenvalues of the operator L̂z are equal to ℏm, in the first term of the right-
hand side of Eq. (5.157) we may write

ˆ = ℏL l m m l m, , . (5.158)z

With that, Eq. (5.157) may be recast as

ˆ ˆ = ℏ ± ˆ± ±L L l m m L l m( , ) ( 1) ( , ). (5.159)z

In a spectacular similarity with Eqs. (5.78) and (5.79) for the harmonic oscillator,
Eq. (5.159) means that the states ˆ ∣ 〉±L l m, are also eigenstates of the operator L̂z,
corresponding to the eigenvalues (m ± 1). Thus the ladder operators act exactly as
the creation and annihilation operators of a harmonic oscillator, moving the system
up or down a ladder of eigenstates—see figure 5.11.

The most significant difference is that now the state ladder must end in both
directions, because an infinite increase of ∣m∣, with whatever sign of m, would cause
the expectation values of the operator

ˆ + ˆ ≡ ˆ − ˆL L L L , (5.160)x y z
2 2 2 2

which corresponds to a non-negative observable, becoming negative. Hence there
have to be two states on both ends of the ladder, with ket-vectors ∣l, mmax〉 and
∣l, mmin〉, such that

ˆ = ˆ =+ −L l m L l m, 0, , 0. (5.161)max min

Figure 5.11. The ladder diagram hierarchy of the common eigenstates of the operators L̂2 and L̂z.
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Due to the symmetry of the whole problem with respect to the replacementm→ −m,
we should have mmin = −mmax. This mmax is exactly the quantum number
traditionally called l, so that

− ⩽ ⩽ +l m l. (5.162)

Evidently, this relation of quantum numbers m and l is semi-quantitatively
compatible with the classical image of the angular momentum vector L, of the same
length L, pointing in various directions, thus affecting the value of its component Lz.
In this classical picture, however, L2 would be equal to the square of (Lz)max, i.e. to
(ℏl )2; however, this is not so. Indeed, applying both parts of the second of the
operator equalities (5.155) to the top state’s vector ∣l, mmax〉 ≡ ∣l, l〉, we get

ˆ = ℏ ˆ + ˆ + ˆ ˆ

= ℏ + ℏ + = ℏ +
− +L l l L l l L l l L L l l

l l l l l l l l l l

, , , ,

, , 0 ( 1) , .
(5.163)z z

2 2

2 2 2 2

Since by our initial assumption, all eigenvectors ∣l, m〉 correspond to the same
eigenvalue of operator L̂

2, this result means that all these eigenvalues are equal to
ℏ2l(l + 1). Just as in case of the spin-½ vector operators discussed in section 4.5, the
deviation of this result from ℏ2l2 may be interpreted as the result of unavoidable
uncertainties (‘fluctuations’) of the x- and y-components of the angular momentum,
which give non-zero positive contributions to 〈Lx

2〉 and 〈Ly
2〉, and hence to 〈L2〉

even if the angular momentum vector is aligned with the z-axis in the best possible
way.

(For various applications of the ladder operators (5.153), one more relation is
convenient:

ˆ = ℏ + − ± ±±L l m l l m m l m, [ ( 1) ( 1)] , 1 . (5.164)

It may be readily proved from the above relations in the same way as the parallel
Eqs. (5.89) for the harmonic-oscillator operators (5.65) were proved in section 5.4;
due to this similarity, the proof is left for the reader’s exercise47.)

Now let us compare our results with those of section 3.6. Using the expression of
Cartesian coordinates via the spherical ones exactly as this was done in Eq. (5.152),
we get the following expressions for the ladder operators (5.153) in the coordinate
representation:

⎛
⎝⎜

⎞
⎠⎟θ

θ
φ

ˆ = ℏ ± ∂
∂

+ ∂
∂

φ
±

±L e icotan . (5.165)i

47 The reader is also challenged to use the commutation relations discussed above to prove one more important
property of the common eigenstates of L̂z and L̂2:

〈 ∣ ˆ ∣ ′ ′〉 = ′ = ± ′ = ±l m r l m l l and m m m, , 0, unless 1 either 1 or .j

This property gives the selection rule for the orbital electric-dipole quantum transitions, to be discussed later in
the course, especially in section 9.3. (The final selection rules at these transitions may be affected by the
particle’s spin—see the next section.)
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Now plugging this relation, together with Eq. (5.152), into any of Eqs. (5.155), we get

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥θ θ

θ
θ θ φ

ˆ = −ℏ ∂
∂

∂
∂

+ ∂
∂

L
1

sin
sin

1
sin

. (5.166)2 2
2

2

2

But this is exactly the operator (besides its division by the constant parameter mR2 2)
that stands on the left-hand side of Eq. (3.156). Hence that equation, which was
explored by the ‘brute-force’ (wave-mechanical) approach in section 3.6, may be
understood as the eigenproblem for the operator L̂

2 in the coordinate representation,
with the eigenfunctions Yl

m(θ,φ) corresponding to the eigenkets ∣l, m〉, and the
eigenvalues m=L R E22 2 . As a reminder, the main result of that, rather involved
analysis was expressed by Eq. (3.163), which now may be rewritten as

m≡ = ℏ +L R E l l2 ( 1), (5.167)l l
2 2 2

in full agreement with Eq. (5.163), which was obtained by much more efficient
means based on the bra–ket formalism. In particular, it is fascinating to see how easy
it is to operate with the eigenvectors ∣l, m〉, while the coordinate representations of
these ket-vectors, the spherical harmonics Yl

m(θ,φ), may be only expressed by rather
complicated functions—please have one more look at Eq. (3.171) and figure 3.20.

Note that all relations considered in this section are not conditioned by any
particular Hamiltonian of the system under analysis, though they (as well as those
discussed in the next section) are especially important for particles moving in
spherically-symmetric potentials.

5.7 Spin and its addition to orbital angular momentum
Surprisingly, the theory described in the last section is useful for much more than the
orbital motion analysis. In particular, it helps to generalize the spin-½ results
discussed in chapter 4 to other values of spin s—the parameter still to be defined. For
that, let us notice that the commutation relations (4.155) for spin-½, which were
derived from the Pauli matrix properties, may be rewritten in exactly the same form
as Eqs. (5.149) and (5.151) for the orbital momentum:

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦εˆ ˆ = ℏ ˆ ˆ ˆ =′ ″ ′ ″S S i S S S, , , 0. (5.168)j j j jj j j
2

It had been postulated (and then confirmed by numerous experiments) that these
relations hold for quantum particles with any spin. Now note that all the
calculations of the last section have been based almost exclusively on such
relations—the only exception will be discussed imminently. Hence, we may repeat
them for the spin operators, and get the relations similar to Eqs. (5.158) and (5.163):

ˆ = ℏ ˆ = ℏ +
⩽ − ⩽ ⩽ +

S s m m s m S s m s s s m
s s m s

, , , , ( 1) , ,
0 , ,

(5.169)z s s s s s

s

2 2
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where ms is a quantum number parallel to the orbital magnetic number m, and the
non-negative constant s is defined as the maximum value of ∣ms∣. This parameter s is
exactly what is called the particle’s spin.

Now let us return to the only part of our orbital moment calculations that has not
been derived from the commutation relations. This was the fact, based on the solution
(5.146) of the orbital motion problems, that the quantum numberm (the analog ofms)
may be only integer. For the spin, we do not have such a solution, so that the spectrum
of numbers ms (and hence its limits ±s) should be found from the more loose
requirement that the eigenstate ladder, extending from −s to + s, has an integer
number of steps. Hence, 2s has to be integer, i.e. the spin s of a quantum particle may
be either integer (as it is, for example, for photons, gluons, and massive bosonsW± and
Z0), or half-integer (e.g. for all quarks and leptons, notably including electrons)48. For
s = ½, this picture yields all properties of the spin-½, which were derived in chapter 4
from Eqs. (4.115)–(4.117). In particular, the operators Ŝ

2 and Ŝz have two common
eigenstates (↑ and ↓), with Sz = ℏms = ±ℏ/2, both with S2 = s(s +1)ℏ2 = (3/4)ℏ2.

Note that this analogy with the angular momentum sheds new light on the
symmetry properties of spin-½. Indeed, the fact that m in Eq. (5.146) is integer was
derived in section 3.5 from the requirement that making a full circle around axis z,
we should find a similar value of wavefunction ψm, which differs from the initial one
by an inconsequential factor exp{2πim} = +1. With the replacement m → ms = ±½,
such operation would multiply the wavefunction by exp{±πi} = −1, i.e. reverse its
sign. Of course, spin cannot be described by a usual wavefunction, but this odd
parity of electrons, and all other spin-½ particles, is clearly revealed in properties of
multiparticle systems (see chapter 8 below), and as a result, in their statistics (see, e.g.
Part SM chapter 2).

Now we are sufficiently equipped to analyze the situations in which a particle has
both the orbital momentum and the spin—as an electron in an atom. In classical
mechanics, such an object, with the spin S interpreted as the angular moment of its
internal rotation, would be characterized by the total angular momentum vector J =
L + S. Following the correspondence principle, we may make an assumption that
quantum-mechanical properties of this observable may be described by the similarly
defined vector operator:

ˆ ˆ ˆ≡ +J L S, (5.170)

with the Cartesian components

ˆ ≡ ˆ + ˆJ L S , etc., (5.171)z z z

and the magnitude squared equal to

ˆ ≡ ˆ + ˆ + ˆJ J J J . (5.172)x y z
2 2 2 2

48As a reminder, in the Standard Model of particle physics, such hadrons as mesons and baryons (notably
including protons and neutrons) are essentially composite particles. However, at non-relativistic energies,
protons and neutrons may be considered fundamental particles with s = ½.
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Let us examine the properties of this vector operator. Since its two components
(5.170) describe different degrees of freedom of the particle, i.e. belong to different
Hilbert spaces, they have to be completely commuting:

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ˆ ˆ = ˆ ˆ =′L S L S, 0, , 0. (5.173)j j
2 2

The above equalities are sufficient to derive the commutation relations for the
operator Ĵ, and unsurprisingly, they turn out to be absolutely similar to those of its
components:

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦εˆ ˆ = ℏ ˆ ˆ ˆ =′ ″ ′ ″J J i J J J, , , 0. (5.174)j j j jj j j
2

Now repeating all the arguments of the last section, we may derive the following
expressions for the common eigenstates of operators Ĵ

2 and Ĵz:

= ℏ ˆ = ℏ +

⩽ − ⩽ ⩽ +

J j m m j m J j m j j j m

j j m j

, , , , ( 1) , ,

0 , ,
(5.175)

z j j j j j

j

2 2

where j and mj are new quantum numbers49. Repeating the arguments just made for
s and ms, we may conclude that j and mj may be either integer or half-integer.

Before we proceed, one remark on notation: it is very convenient to use the same
letter m for numbering eigenstates of all momentum components participating in
Eq. (5.171), with corresponding indices ( j, l, and s), in particular, to replace what we
called m with ml. With this replacement, the main results of the last section may be
summarized in the form similar to Eqs. (5.168), (5.169), (5.174), and (5.175):

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦εˆ ˆ = ℏ ˆ ˆ ˆ =′ ″ ′ ″L L i L L L, , , 0, (5.176)j j j jj j j
2

ˆ = ℏ ˆ = ℏ +
⩽ − ⩽ ⩽ +

L l m m l m L l m l l l m
l l m l

, , , , ( 1) , ,
0 , .

(5.177)z l l l l l

l

2 2

In order to understand which eigenstates participating in Eqs. (5.169), (5.175),
and (5.177) are compatible with each other, it is straightforward to use Eq. (5.172),
together with Eqs. (5.168), (5.173), (5.174), and (5.176) to get the following relations:

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ˆ ˆ = ˆ ˆ =J L J S, 0, , 0, (5.178)2 2 2 2

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ˆ ˆ ≠ ˆ ˆ ≠J L J S, 0, , 0. (5.179)z z
2 2

This result is represented schematically in the Venn diagram shown in figure 5.12, in
which the crossed arrows indicate the only non-commuting pairs of operators.

49 Let me hope that the difference between the quantum number j, and the indices j, j′, j″ numbering the
Cartesian components in the relations like Eqs. (5.168) or (5.174), is absolutely clear from the context.
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This means that there are eigenstates shared by two groups of operators encircled
with colored lines in figure 5.12. The first group (encircled red), consists of all these
operators but Ĵ .

2 This means that there are eigenstates shared by the five remaining
operators, and these states correspond to certain values of the corresponding
quantum numbers: l, ml, s, ms, and mj. Actually, only four of these numbers are
independent, because due to Eq. (5.171) for these compatible operators, for each
eigenstate of this group, their ‘magnetic’ quantum numbers m have to satisfy the
following relation:

= +m m m . (5.180)j l s

Hence the common eigenstates of the operators of this group are fully defined by
just four quantum numbers, for example, l, ml, s, and ms. For some calculations,
especially those for the systems whose Hamiltonians include only the operators of
this group, it is convenient50 to the use this set of eigenstates as the basis; frequently
this is called the uncoupled representation.

However, in some situations we cannot ignore interactions between the orbital
and spin degrees of freedom (in the common jargon, the spin–orbit coupling), which
leads in particular to splitting (called the fine structure) of the atomic energy levels
even in the absence of external magnetic field. I will discuss these effects in detail in
the next chapter, and now will only note that they may be described by a term
proportional to the product ˆ ˆ⋅L S, in the system’s Hamiltonian. If this term is
substantial, the uncoupled representation becomes inconvenient. Indeed, writing

ˆ ˆ ˆ ˆ ˆ ˆˆ = + = ˆ + ˆ + ⋅ ⋅ = ˆ − ˆ − ˆJ L S J L SL S L S L S( ) 2 , so that 2 , (5.181)2 2 2 2 2 2 2

and looking at figure 5.12 again, we see that the operator ˆ ˆ⋅L S, describing the spin–
orbit coupling, does not commute with the operators L̂z and Ŝz. This means that
stationary states of the system with this term in the Hamiltonian do not belong to the
uncoupled representation’s basis. On the other hand, Eq. (5.181) shows that the
operator ˆ ˆ⋅L S does commute with all four operators of another group, encircled
blue in figure 5.12. According to Eqs. (5.178), (5.179), and (5.181), all operators of
that group also commute with each other, so that they have common eigenstates,

Figure 5.12. The Venn diagram of angular momentum operators, and their mutually-commuting groups.

50 This is especially true for motion in spherically-symmetric potentials, whose stationary states correspond to
definite l and ml; however, the relations discussed in this section are important for some other problems as well.
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described by quantum numbers, l, s, j, and mj. This group is the basis for the so-
called coupled representation of particle’s states.

Excluding, for notation briefness, the quantum numbers l and s, common for the
both groups, it is convenient to denote the common ket-vectors of each group as,
respectively,

m m

j m

, , for the uncolpled representation’s basis,

, , for the coupled representation’s basis.
(5.182)

l s

j

As we will see in the next chapter, for solution of some important problems (e.g. the
fine structure of atomic spectra, and the Zeeman effect), we will need the relation
between the kets ∣ j, mj〉 and the kets ∣ml, ms〉. This relation may be represented as the
usual linear superposition,

∑=j m m m m m j m, , , , , (5.183)
m m,

j l s l s j

l s

whose brackets (c-numbers), essentially the elements of the unitary matrix of the
transformation between two eigenstate bases (5.182), are called the Clebsch–Gordan
coefficients.

The best (though imperfect) classical interpretation of Eq. (5.183) I can offer is as
follows. If the lengths of the vectors L and S (in quantum mechanics associated with
the numbers l and s, respectively), and also their scalar product L · S, are all fixed,
then so is the length of the vector J = L + S—whose length in quantum mechanics is
described by the number j. Hence, the classical image of a specific eigenket ∣ j, mj〉, in
which l, s, j, and mj are all fixed, is a state in which L2, S2, J2, and Jz are fixed.
However, this fixation still allows for an arbitrary rotation of the pair of vectors L
and S (with a fixed angle between them, and hence fixed L · S and J2) about the
direction of vector J—see figure 5.13.

Hence the components Lz and Sz in these conditions are not fixed, and in classical
mechanics may take a continuum of values, two of which (with the largest and
smallest possible values of Sz) are shown in figure 5.13. In quantum mechanics, these
components are quantized, with their states represented by eigenkets ∣ml,ms〉, so that
a linear combination of such kets is necessary to represent a ket ∣ j, mj〉. This is
exactly what Eq. (5.183) does.

Figure 5.13. A classical image of two quantum states with the same l, s, j, and mj, but different ml and ms.
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Some of properties of the Clebsch–Gordan coefficients 〈ml, ms∣j, mj〉 may be
readily established. For example, the coefficients do not vanish only if the involved
magnetic quantum numbers satisfy Eq. (5.180). (In our current case, this relation is
not an elementary corollary of Eq. (5.171), because in the Clebsch–Gordan
coefficients, with the quantum numbers ml, ms in one state vector, and mj in the
other state vector, characterize the relation between different groups of the basis
states, so we need to prove this fact.) All matrix elements of the null-operator

ˆ − ˆ + ˆ = ˆJ L S( ) 0 (5.184)z z z

should equal zero in any basis; in particular

ˆ − ˆ + ˆ =j m J L S m m, ( ) , 0. (5.185)j z z z l s

Acting by the operator Ĵz upon the bra-vector, and by the sum ˆ + ˆL S( )z z upon the
ket-vector, we get

⎡⎣ ⎤⎦− + =m m m j m m m( ) , , 0, (5.186)j l s j l s

thus proving that

≡ = ≠ +*m m j m m m j m m m m, , , , 0, if . (5.187)l s s l s s j l s

For the most important case of spin-½ particles (with s =½, and hence ms = ±½),
whose uncoupled representation basis includes 2 × (2l + 1) states, the restriction
(5.187) enables the representation of all nonvanishing Clebsch–Gordan coefficients
on the simple ‘rectangular’ diagram shown in figure 5.14. Indeed, each coupled-
representation eigenket ∣ j, mj〉, with mj = ml + ms = ml ± ½, may be related by non-
zero Clebsch–Gordan coefficients to at most two uncoupled-representation eigen-
states ∣ml, ms〉. Since ml may only take integer values from −l to +l, mj may only take
semi-integer values on the interval [− l − ½, l + ½]. Hence, by the definition of j as
(mj)max, its maximum value has to be l + ½, and for mj = l + ½, this is the only
possible value with this j. This means that the uncoupled state withml = l andms =½
should be identical to the coupled-representation state with j = l + ½ and mj = l + ½:

= + ½ = + ½ = = − ½ = +½j l m l m m m, , . (5.188)j l j s

Figure 5.14. A graphical representation of possible basis states of a spin-½ particle with a fixed l. Each dot
corresponds to an uncoupled-representation ket-vector ∣ml, ms〉, while each sloped line corresponds to one
coupled-representation ket-vector ∣j, mj〉, related by Eq. (5.183) to the kets ∣ml, ms〉 whose dots it connects.
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In figure 5.14, these identical states are represented with the top-rightmost point (the
uncoupled representation) and the sloped line passing through it (the coupled
representation).

However, already the next value of this quantum number, mj = l − ½, is
compatible with two values of j, so that each ∣ml, ms〉 ket has to be related to two
∣ j, mj〉 kets by two Clebsch–Gordan coefficients. Since j changes in unit steps, these
values of j have to be l ± ½. This choice,

= ± ½j l , (5.189)

evidently satisfies all lower values of mj as well—see figure 5.14.51 (Again, only one
value, j = l + ½, is necessary to represent the state with the lowest mj = −l − ½—see
the bottom leftmost point of that diagram.) Note that the total number of the
coupled-representation states is 1 + 2 × 2l + 1 ≡ 2(2l + 1), i.e. the same as those in the
uncoupled representation. So, for spin-½ systems, each sum (5.183), for fixed j and
mj (plus the fixed common parameter l, plus the common s = ½), has at most two
terms, i.e. involves at most two Clebsch–Gordan coefficients.

These coefficients may be calculated in a few steps, all but the last one rather
simple even for an arbitrary spin s. First, the similarity of the vector operators
ˆ ˆJ Sand to the operator L̂, expressed by Eqs. (5.169), (5.175), and (5.177), may be
used to argue that the matrix elements of the operators ˆ ˆ± ±S Jand , defined similarly to
ˆ±L , have the matrix elements similar to those given by Eq. (5.164). Next, acting by
the operator ˆ = ˆ + ˆ± ± ±J L S upon both parts of Eq. (5.183), and then inner-multiplying
the result by the bra vector 〈ml, ms∣ and using the above matrix elements, we may
get recurrence relations for the Clebsch–Gordan coefficients with adjacent values
of ml, ms, and mj. Finally, these relations may be recurrently applied to the
adjacent states in both representations, starting from any of the two states common
for them—for example, from state with the ket-vectors (5.188), corresponding to
the top right point in figure 5.14. Let me leave these straightforward but somewhat
tedious calculations for the reader’s exercise, and just cite the final result of this
procedure for s = ½:52

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= − ½ = +½ = ± ½ = ±
± + ½

+

= + ½ = −½ = ± ½ = +
∓ + ½

+

m m m j l m
l m

l

m m m j l m
l m

l

, ,
2 1

,

, ,
2 1

.

(5.190)
l j s j

j

l j s j
j

1/2

1/2

51 Eq. (5.189) allows a semi-qualitative classical interpretation in terms of the vector diagrams shown in figure
5.13: since, according to Eq. (5.169), ℏs gives the scale of the length of the vector S, if it is small (s = ½), the
length of vector J (similarly scaled by ℏj) cannot deviate much from the length of the vector L (scaled by ℏl )
for any spatial orientation of these vectors, so that j cannot differ from l too much. Note also that for a fixed
mj, the alternating sign in Eq. (5.189) is independent of the sign of ms—see also Eqs. (5.190).
52 For arbitrary spin s, the calculations and even the final expressions for the Clebsch–Gordan coefficients are
rather bulky. They may be found, typically in a table form, mostly in special monographs—see, e.g. [11].
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In this course, this relation will be used in section 6.4 for an analysis of the
anomalous Zeeman effect. Moreover, most of the angular momentum addition
theory described above is also valid for the addition of angular momenta of
multiparticle system components, so we will revisit it in chapter 8.

To conclude this section, I have to note that the Clebsch–Gordan coefficients (for
arbitrary s) participate also in the so-called Wigner–Eckart theorem that expresses
the matrix elements of spherical tensor operators, in the coupled-representation basis
∣ j, mj〉, via a reduced set of matrix elements. This theorem may be useful, for
example, for calculation of the rate of quantum transitions to/from high-n states in
spherically-symmetric potentials. Unfortunately, a discussion of this theorem and its
applications would require a higher mathematical background than I can expect
from my readers, and more time/space than I can afford53.

5.8 Problems

Problem 5.1. Use the discussion in section 5.1 to find an alternative solution of
problem 4.18.

Problem 5.2. A spin-½ is placed into an external magnetic field, with a time-
independent orientation, its magnitude B t( ) being an arbitrary function of time.
Find explicit expressions for the Heisenberg operators and the expectation values of
all three Cartesian components of the spin, as functions of time, in a coordinate
system of your choice.

Problem 5.3. A two-level system is in a quantum state α described by the ket-vector
∣α〉 = α↑∣↑〉 + α↓∣↓〉, with given (generally, complex) c-number coefficients α↑↓. Prove
that we can always select a three-component vector c = {cx, cy, cz} of real c-numbers,
such that α is an eigenstate of the operator σ̂⋅c , where σ̂ is the Pauli vector-
operator. Find all possible values of c satisfying this condition, and the second
eigenstate (orthogonal to α) of the operator σ̂⋅c . Give a Bloch-sphere interpretation
of your result.

Problem 5.4.* Analyze the statistics of the spacing S ≡ E+ − E− between the energy
levels of a two-level system, assuming that all elementsHjj′ of its Hamiltonian matrix
(5.2) are independent random numbers, with equal and constant probability
densities within the energy interval of interest. Compare the result with that for a
purely diagonal matrix, with the similar probability distribution of the random
diagonal elements.

Problem 5.5. For a periodic motion of a single particle in a confining potential U(r),
the virial theorem of non-relativistic classical mechanics54 is reduced to the following
equality:

53 For the interested reader I can recommend either section 17.7 in [12] or section 3.10 in [13].
54 See, e.g. Part CM problem 1.12.
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∇¯ = ⋅T Ur
1
2

,

where T is particle’s kinetic energy, and the top bar means averaging over the time
period of motion. Prove the quantum-mechanical version of the theorem for an
arbitrary stationary quantum state, in the absence of spin effects:

∇= ⋅T Ur
1
2

,

where the angular brackets mean the expectation values of the observables.

Hint: Mimicking the proof of the classical virial theorem, consider the time
evolution of the following operator:

ˆ ˆˆ ≡ ⋅G r p.

Problem 5.6. Calculate, in the WKB approximation, the transparency T of
tunneling of a 2D particle with energy E < U0 through a saddle-shaped potential
‘pass’

⎜ ⎟⎛
⎝

⎞
⎠= +U x y U

xy
a

( , ) 1 ,0 2

where U0 > 0 and a are real constants.

Problem 5.7. Calculate the so-called Gamow factor55 for the alpha decay of atomic
nuclei, i.e. the exponential factor in the transparency of the potential barrier
resulting from the following simple model of the alpha-particle’s potential energy
as a function of its distance from the nuclear center:

⎧
⎨⎪
⎩⎪ πε

=
< <
′ <

U r
U r R
ZZ e

r
R r

( )
0, for ,

4
, for ,

0
2

0

(where Ze = 2e > 0 is the charge of the particle, Z′e > 0 is that of the nucleus after the
decay, and R is the nucleus’ radius), in the WKB approximation.

Problem 5.8. Use the WKB approximation to calculate the average time of
ionization of a hydrogen atom, initially in its ground state, made metastable by
the application of an additional weak, uniform, constant electric field EE. Formulate
the conditions of validity of your result.

Problem 5.9. For a 1D harmonic oscillator with mass m and frequency ω0,
calculate:

55Named after G Gamow, who made this calculation as early as in 1928.
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(i) all matrix elements 〈 ∣ ˆ ∣ ′〉n x n3 , and
(ii) the diagonal matrix elements 〈 ∣ ˆ ∣ 〉n x n4 ,

where n and n′ are arbitrary Fock states.

Problem 5.10. Calculate the sum (over all n > 0) of the so-called oscillator strengths,

≡
ℏ

− ˆf
m

E E n x
2

( ) 0 ,n n2 0
2

(i) for a 1D harmonic oscillator, and
(ii) for a 1D particle confined in an arbitrary stationary potential.

Problem 5.11. Prove the so-called Bethe sum rule,

∑ − ′ = ℏ

′
′

ˆE E n e n
k
m

( )
2

,
n

n n
ikx 2

2 2

valid for a 1D particle moving in an arbitrary time-independent potential U(x), and
discuss its relation with the Thomas–Reiche–Kuhn sum rule whose derivation was the
subject of the previous problem.

Hint: Calculate the expectation value, in a stationary state n, of the following double
commutator,

ˆ ≡ ˆ ˆ − ˆD H e e[[ , ], ],ikx ikx

in two ways—first, just spelling out both commutators, and, second, using the
commutation relations between operators p̂ and ˆeikx, and compare the results.

Problem 5.12. Given Eq. (5.116), prove Eq. (5.117), using the hint given in the
accompanying footnote.

Problem 5.13. Use Eqs. (5.116) and (5.117) to simplify the following operators:

(i) + ˆ ˆ − ˆiax p iaxexp{ } exp{ }x , and
(ii) + ˆ ˆ − ˆiap x iapexp{ } exp{ }x x ,

where a is a c-number.

Problem 5.14. For a 1D harmonic oscillator, calculate:

(i) the expectation value of energy, and
(ii) the time evolution of the expectation values of the coordinate and momentum,

provided that in the initial moment (t = 0) it was in the state described by the
following ket-vector:
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α = +1

2
( 31 32 ),

where ∣n〉 are the ket-vectors of the stationary (Fock) states of the oscillator.

Problem 5.15.* Re-derive the London dispersion force’s potential of interaction of
two isotropic 3D harmonic oscillators (already calculated in problem 3.16), using
the language of mutually-induced polarization.

Problem 5.16. An external force pulse F(t), of a finite time duration T , has been
exerted on a 1D harmonic oscillator, initially in its ground state. Use the
Heisenberg-picture equations of motion to calculate the expectation value of the
oscillator’s energy at the end of the pulse.

Problem 5.17. Use Eqs. (5.144) and (5.145) to calculate the uncertainties δx and δp
of a squeezed ground state, and in particular prove Eqs. (5.143) for the case θ = 0.

Problem 5.18. Calculate the energy of a harmonic oscillator in the squeezed ground
state ζ.

Problem 5.19.* Prove that the squeezed ground state, described by Eqs. (5.142),
(5.144) and (5.145), may be sustained by a sinusoidal modulation of a harmonic
oscillator’s parameter, and calculate the squeezing factor r as a function of the
parameter modulation depth, assuming that the depth is small, and the oscillator’s
damping is negligible.

Problem 5.20. Use Eqs. (5.148) to prove that the operators L̂j and L̂
2 commute with

the Hamiltonian of a spinless particle placed in any central potential field.

Problem 5.21. Use Eqs. (5.149), (5.150) and (5.153) to prove Eqs. (5.155).

Problem 5.22. Derive Eq. (5.164), using any of the prior formulas.

Problem 5.23. In the basis of common eigenstates of the operators L̂z and L̂
2,

described by kets ∣l, m〉:

(i) calculate the matrix elements 〈 ∣ ˆ ∣ 〉l m L l m, ,x1 2 and 〈 ∣ ˆ ∣ 〉l m L l m, ,x1
2

2 ;
(ii) spell out your results for diagonal matrix elements (with m1 = m2) and their y-

axis counterparts; and
(iii) calculate the diagonal matrix elements 〈 ∣ ˆ ˆ ∣ 〉l m L L l m, ,x y and 〈 ∣ ˆ ˆ ∣ 〉l m L L l m, ,y x .

Problem 5.24. For the state described by the common eigenket ∣l, m〉 of the
operators L̂z and L̂

2 in a reference frame {x, y, z}, calculate the expectation values
〈Lz’〉 and 〈Lz’

2〉 in the reference frame whose axis z′ forms angle θ with the axis z.

Problem 5.25. Write down the matrices of the following angular momentum
operators: ˆ ˆ ˆ ˆ±L L L L, , , andx y z , in the z-basis of the {l, m} states with l = 1.
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Problem 5.26. Calculate the angular factor of the orbital wavefunction of a particle
with a definite value of L2, equal to 6ℏ2, and the largest possible value of Lx. What is
this value?

Problem 5.27. For the state with the wavefunction ψ = Cxye−λr, with a real, positive
λ, calculate:

(i) the expectation values of the observables Lx, Ly, Lz and L2, and
(ii) the normalization constant C.

Problem 5.28. The angular state of a spinless particle is described by the following
ket-vector:

α = = = + = =l m l m
1

2
( 3, 0 3, 1 ).

Calculate the expectation values of the x- and y-components of its angular
momentum. Is the result sensitive to a possible phase shift between two component
eigenkets?

Problem 5.29. A particle is in the state α with the orbital wavefunction proportional
to the spherical harmonic θ φY ( , ).1

1 Find the angular dependence of the wave-
functions corresponding to the following ket-vectors:

(i) αˆ ∣ 〉Lx ,
(ii) αˆ ∣ 〉Ly ,

(iii) αˆ ∣ 〉Lz ,
(iv) αˆ ˆ ∣ 〉+ −L L , and

(v) αˆ ∣ 〉L
2 .

Problem 5.30. A charged, spinless 2D particle of massm is trapped in a soft in-plane
potential well mω= +U x y x y( , ) ( )/20

2 2 2 . Calculate its energy spectrum in the
presence of a uniform magnetic field BB, normal to the plane.

Problem 5.31. Solve the previous problem for a spinless 3D particle, placed (in
addition to a uniform magnetic field BB) into a spherically-symmetric potential well

mω=U rr( ) /20
2 2 .

Problem 5.32. Calculate the spectrum of rotational energies of an axially-symmetric,
rigid body.

Problem 5.33. Simplify the following double commutator: ˆ ˆ ˆ ′r L r[ , [ , ]]j j
2 .

Problem 5.34. Prove the following commutation relation:

⎡⎣ ⎡⎣ ⎤⎦⎤⎦ˆ ˆ ˆ = ℏ ˆ ˆ + ˆ ˆ( )L L r r L L r, , 2 .j j j
2 2 2 2 2
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Problem 5.35. Use the commutation relation proved in the previous problem, and
Eq. (5.148), to prove the orbital electric-dipole selection rules mentioned in section
5.6 of the lecture notes.

Problem 5.36. Express the commutators listed in Eq. (5.179), ˆ ˆJ L[ , ]z
2 and ˆ ˆJ S[ , ]z

2 ,
via L̂j and Ŝj.

Problem 5.37. Find the operatorT ϕ̂ describing a quantum state’s rotation by angle ϕ
about a certain axis, using the similarity of this operation with the shift of a
Cartesian coordinate, discussed in section 5.5. Then use this operator to calculate the
probabilities of measurements of spin-½ components of a beam of particles with
z-polarized spin, by a Stern–Gerlach instrument turned by angle θ within the [z, x]
plane, where y is the axis of particle propagation—see figure 4.1.56

Problem 5.38. The rotation (‘angle translation’) operator T ϕ̂ analyzed in the
previous problem, and the coordinate translation operatorT X̂ discussed in section
5.5, have a similar structure:

T λˆ = − ˆ ℏλ iCexp{ / },

where λ is a real c-number, characterizing the shift, and Ĉ is a Hermitian operator,
which does not explicitly depend on time.

(i) Prove that such operatorsT λ̂ are unitary.
(ii) Prove that if the shift by λ, induced by the operatorT λ̂, leaves the Hamiltonian

of some system unchanged for any λ, then 〈C〉 is a constant of motion for any
initial state of the system.

(iii) Discuss what does the last conclusion mean for the particular operators T X̂

and T ϕ̂.

Problem 5.39. A particle with spin s is in a state with definite quantum numbers l
and j. Prove that the observable L · S also has a definite value, and calculate it.

Problem 5.40. For a spin-½ in a state with definite quantum numbers l, ml, and ms,
calculate the expectation value of the observable J2, and the probabilities of all its
possible values. Interpret your results in the terms of the Clebsh–Gordan coefficients
(5.190).

Problem 5.41. Derive the general recurrence relations for the Clebsh–Gordan
coefficients.

Hint: Using the similarity of the commutation relations discussed in section 5.7,
write the relations similar to Eqs. (5.164), for other components of the angular
momentum, and apply them to Eq. (5.170).

56Note that the last task is just a particular case of problem 4.18 (see also problem 5.1).
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Problem 5.42. Use the recurrence relations derived in the previous problem to prove
Eqs. (5.190) for the spin-½ Clebsh–Gordan coefficients.

Problem 5.43. A spin-½ particle is in a state with definite values of L2, J2, and Jz.
Find all possible values of the observables S2, Sz, and Lz, the probability of each
listed value, and the expectation value for each of these observables.

Problem 5.44. Re-solve the Landau-level problem, discussed in section 3.2, for a
spin-½ particle. Discuss the result for the particular case of an electron, with the g-
factor equal to 2.

Problem 5.45. In the Heisenberg picture of quantum dynamics, find an explicit
expression for the operator of acceleration,

ˆ ˆ≡ d dta v/ ,

of a spin-½ particle with electric charge q, moving in an arbitrary external electro-
magnetic field. Compare the result with the corresponding classical expression.

Hint: For the orbital motion’s description, you may use Eq. (3.26).

Problem 5.46. A byproduct of the solution of problem 5.41 is the following relation
for the spin operators (valid for any spin s):

± ˆ = ℏ ± + ∓±m S m s m s m1 [( 1)( )] .s s s s
1/2

Use this result to spell out the matrices Sx, Sy, Sz, and S2 of a particle with s = 1, in
the z-basis—defined as the basis in which the matrix Sz is diagonal.

Problem 5.47.* For a particle with an arbitrary spin s, find the ranges of the
quantum numbers mj and j that are necessary to describe, in the coupled-
representation basis:

(i) all states with a definite quantum number l, and
(ii) a state with definite values of not only l, but also ml and ms.

Give an interpretation of your results in terms of the classical geometric vector
diagram (figure 5.13).

Problem 5.48. A particle of massm, with electric charge q and spin s, free to move
along a plane ring of a radius R, is placed into a constant, uniform magnetic fieldBB,
directed normally to the ring’s plane. Calculate the energy spectrum of the system.
Explore and interpret the particular form the result takes when the particle is an
electron with the g-factor ge = 2.
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Chapter 6

Perturbative approaches

This chapter discusses various perturbative approaches to problems of quantum
mechanics, and their simplest but important applications including the fine structure
of atomic levels, and the effects of external dc and ac electric and magnetic fields of
these levels. It continues with a discussion of the perturbation theory of transitions to
continuous spectrum and the Golden Rule of quantum mechanics, which will naturally
bring us to the issue of open quantum systems—to be discussed in the next chapter.

6.1 Eigenproblems
Unfortunately, only a few problems of quantum mechanics may be solved exactly in
the analytical form. Actually, in the previous chapters we have solved a substantial
part of such problems for a single particle, and for multiparticle problems the exactly
solvable cases are even more rare. However, most practical problems of physics
feature a certain small parameter, and this smallness may be exploited by various
approximate analytical methods. Earlier in the course, we have explored one of
them, the WKB approximation, which is adequate for a particle moving through a
soft potential profile. In this chapter we will discuss other techniques that are more
suitable for other cases. The historic name for these techniques is the perturbation
theory, but it is fairer to speak about several perturbative approaches, because they
are substantially different for different cases.

The simplest version of the perturbation theory addresses the eigenproblem for
systems described by time-independent Hamiltonians of the type

ˆ = ˆ + ˆH H H , (6.1)(0) (1)

where the operator Ĥ
(1), describing the system’s ‘perturbation’, is relatively small—

in the sense that its addition to the unperturbed operator Ĥ
(0) results in a relatively

small change of the eigenenergies En of the system, and the corresponding

doi:10.1088/2053-2563/aaf3a3ch6 6-1 ª Konstantin K Likharev 2019

https://doi.org/10.1088/2053-2563/aaf3a3ch6


eigenstates. A typical problem of this type is the 1D weakly anharmonic oscillator
(figure 6.1), described by the Hamiltonian (6.1) with

ω
α βˆ =

ˆ
+ ˆ ˆ = ˆ + ˆ + …H

p
m

m
x H x x

2 2
, (6.2)(0)

2
0
2

2 (1) 3 4

with small coefficients α, β, ….
I will use this system as our first particular example, but let me start from

describing the perturbative approach to the general time-independent Hamiltonian
(6.1). In the bra–ket formalism, the eigenproblem for the perturbed system is

ˆ + ˆ =H H n E n( ) . (6.3)n
(0) (1)

Let the eigenstates and eigenvalues of the unperturbed Hamiltonian, which satisfy
the equation

ˆ =H n E n , (6.4)n
(0) (0) (0) (0)

be considered as known. In this case, the solution of problem (6.3) means finding,
first, its perturbed eigenvalues En and, second, the coefficients 〈n′(0)∣n〉 of the
expansion of the perturbed state’s vectors ∣n〉 in series over the unperturbed ones,
∣n′(0)〉:

∑= ′ ′
′

n n n n . (6.5)
n

(0) (0)

Let us plug Eq. (6.5), with the summation index n′ replaced with n″ (just to have a
more compact notation in our forthcoming result), into the both parts of Eq. (6.3):

∑ ∑ ∑″ ˆ ″ + ″ ˆ ″ = ″ ″
″ ″ ″

n n H n n n H n n n E n , (6.6)
n n n

n
(0) (0) (0) (0) (1) (0) (0) (0)

and then inner-multiply all terms by an arbitrary unperturbed bra-vector 〈n′(0)∣
of the system. Assuming that the unperturbed eigenstates are orthonormal,
〈n′(0)∣n″(0)〉 = δn′n″, and using Eq. (6.4) in the first term of the left-hand side, we
get the following system of linear equations

Figure 6.1. The simplest application of the perturbation theory: a weakly anharmonic 1D oscillator. (Dashed
lines characterize the unperturbed, harmonic oscillator.)
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∑ ″ = ′ −
″

′ ″ ′( )n n H n n E E , (6.7)
n

n n n n
(0) (1) (0) (0)

where the matrix elements of the perturbation are calculated, by definition, in the
unperturbed brackets:

≡ ′ ˆ ″′ ″H n H n . (6.8)n n
(1) (0) (1) (0)

The linear equation system (6.7) is still exact1, and is frequently used for
numerical calculations. (Since the matrix coefficients (6.8) typically decrease when
n′ and/or n″ become sufficiently large, the sum on the left-hand side of Eq. (6.7) may
usually be truncated, still giving an acceptable accuracy of the solution.) For getting
analytical results we need to make approximations. In the simple perturbation
theory we are discussing now, this is achieved by the expansion of both the
eigenenergies and the expansion coefficients into the Taylor series in a certain small
parameter μ of the problem:

= + + …E E E E , (6.9)n n n n
(0) (1) (2)

′ = ′ + ′ + ″ …n n n n n n n n , (6.10)(0) (0) (0) (0) (1) (0) (2)

where

μ∝ ′ ∝E n n . (6.11)n
k k k( ) (0) ( )

In order to explore the 1st-order approximation, which ignores all terms O(μ2)
and higher, let us plug only the two first terms of the expansions (6.9) and (6.10) into
the basic equation (6.7):

∑ δ δ+ ″ = + ′ + −
″

′ ″ ″ ′ ′( )H n n n n E E E( ) ( ) . (6.12)
n

n n n n n n n n n
(1) (0) (1) (0) (1) (0) (1) (0)

Now let us open the parentheses, and disregard all the remaining terms O(μ2). The
result is

δ= + ′ −′ ′ ′( )H E n n E E , (6.13)n n n n n n n
(1) (1) (0) (1) (0) (0)

This relation is valid for any set of indices n and n′; let us start from the case n = n′
and immediately get a very simple (and practically, the most important!) result:

= ≡ ˆE H n H n . (6.14)n nn
(1) (1) (0) (1) (0)

1 Please note the similarity of Eq. (6.7) with Eq. (2.215) of the 1D band theory. Indeed, the latter equation is
not much more than a particular form of Eq. (6.7) for the 1D wave mechanics, and a specific (periodic)
potential U(x) considered as the perturbation. Moreover, the whole approximate treatment of the weak-
potential limit in section 2.7 is essentially a particular case of the perturbation theory we are discussing now (in
the 1st approximation).
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For example, let us see what this result gives for two first perturbation terms in the
weakly anharmonic oscillator (6.2):

α β= ˆ + ˆE n x n n x n . (6.15)n
(1) (0) 3 (0) (0) 4 (0)

As the reader knows (or should know :-) from the solution of problem 5.9, the first
bracket equals zero, while the second one yields2

β= + +E x n n
3
4

(2 2 1). (6.16)n
(1)

0
4 2

Naturally, there should be some contribution to the energies from the (typically,
larger) term proportional to α, so we need to explore the 2nd approximation of the
perturbation theory. However, before doing that, let us complete our discussion of
its 1st order.

For n′ ≠ n, Eq. (6.13) may be used to calculate the eigenstates rather than the
eigenvalues:

′ =
−

′ ≠′

′
n n

H

E E
n n, for . (6.17)n n

n n

(0) (1)
(1)

(0) (0)

This means that the eigenket’s expansion (6.5), in the 1st order, may be represented as

∑= +
−

′
′≠

′

′
n C n

H

E E
n . (6.18)

n n

n n

n n

(1) (0)
(1)

(0) (0)
(0)

The coefficient C cannot be found from Eq. (6.17); however, requiring the final state
n to be normalized, we see that other terms may provide only corrections O(μ2), so
that in the 1st order we should take C = 1. The most important feature of Eq. (6.18)
is its denominator: the closer the unperturbed eigenenergies of two states, the larger
is their mutual ‘interaction’ due to the perturbation.

This feature also affects the 1st approximation’s validity condition, which may be
quantified using Eq. (6.17): the magnitudes of the brackets it describes have to be
much less than the unperturbed bracket 〈n∣n〉(0) = 1, so that all elements of the
perturbation matrix have to be much less than the difference between the
corresponding unperturbed energies. For the anharmonic oscillator’s energy cor-
rections (6.16), this requirement is reduced to En

(1) ≪ ℏω0.
Now we are ready to go after the 2nd-order approximation to Eq. (6.7). Let us

focus on the case n′ = n, because as we already know, only this term will give us a
correction to the eigenenergies. Moreover, since the left-hand side of Eq. (6.7)
already has a small factor H(1)

n′n″ ∝ μ, the bracket coefficients in that part may be
taken from the 1st-order result (6.17). As a result, we get

2A useful exercise for the reader: analyze the relation between Eq. (6.16) and the result of the classical theory
of such weakly anharmonic (‘nonlinear’) oscillator—see, e.g. Part CM section 5.2, in particular, Eq. (5.49).
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∑ ∑= ″ =
−″ ″≠

″
″ ″

″
E n n H

H H

E E
. (6.19)

n n n
n nn

n n nn

n n

(2) (0) (1) (1)
(1) (1)

(0) (0)

Since Ĥ
(1) represents an observable (energy), and hence has to be Hermitian, we may

rewrite this expression as

∑ ∑=
−

≡
′ ˆ

−′≠ ′≠

′

′ ′
E

H

E E

n H n

E E
. (6.20)

n n n n
n

n n

n n n n

(2)
(1) 2

(0) (0)

(0) (1) (0)
2

(0) (0)

This is the much-celebrated 2nd-order perturbation result, which frequently (in
sufficiently symmetric problems) is the first nonvanishing correction to the state
energy—for example, from the cubic term (proportional to α) in our weakly
anharmonic oscillator problem (6.2). In order to calculate the corresponding
correction, we may use another result of the solution of problem 5.9:

⎛
⎝⎜

⎞
⎠⎟ δ δ

δ δ

′ ˆ = × − − +

+ + + + + +

′ − ′ −

′ + ′ +

n x n
x

n n n n

n n n n

2
{[ ( 1)( 2)] 3

3( 1) [( 1)( 2)( 3)] }.

(6.21)n n n n

n n n n

3 0
3

1/2
, 3

3/2
, 1

3/2
, 1

1/2
, 3

So, according to Eq. (6.20), we need to calculate

⎪ ⎪
⎪ ⎪

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭∑

α

δ δ

δ δ

ω

=

×

− − +

+ + + + + +
ℏ − ′′≠

′ − ′ −

′ + ′ +

E
x

n n n n

n n n n

n n

2

[ ( 1)( 2)] 3

3( 1) [( 1)( 2)( 3)]

( )
.

(6.22)

n n

n

n n n n

n n n n

(2) 2 0
6

1/2
, 3

3/2
, 1

3/2
, 1

1/2
, 3

2

0

The summation is actually not as cumbersome as it may look, because all mixed
products are proportional to the products of different Kronecker deltas and hence
vanish, so that we need to sum up only the squares of each term, getting:

⎛
⎝⎜

⎞
⎠⎟

α
ω

= −
ℏ

+ +E
x

n n
15
4

11
30

. (6.23)n
(2)

2
0
6

0

2

This formula shows that all energy level corrections are negative, regardless of the
sign of α.3 In contrast, the 1st order correction En

(1), given by Eq. (6.16), does
depend on the sign of β, so that the net correction, En

(1) + En
(2), may be of any sign.

The results (6.18) and (6.20) are clearly inapplicable to the degenerate case where,
in the absence of perturbation, several states correspond to the same energy level,

3Note this is correct for the ground-state energy correction Eg
(2) of any system, because for this state, the

denominators of all terms of the sum (6.20) are negative, while their numerators are always positive.
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because of the divergence of their denominators4. This divergence hints that the
largest effect of the perturbation in that case is the degeneracy lifting, e.g. splitting of
the initially degenerate energy level E(0) (figure 6.2), and that for the analysis of this
case we can, to the first approximation, ignore the effect of all other energy levels. (A
careful analysis shows that this is indeed the case until the level splitting becomes
comparable with the distance to other energy levels.)

Limiting the summation in Eq. (6.7) to the group of N degenerate states with
equal En′

(0) ≡ E(0), we reduce it to

∑ ″ = ′ −
″=

′ ″n n H n n E E( ). (6.24)
n

N

1
n n n

(0) (1) (0) (0)

where now n′ and n″ number the N states of the degenerate group5. For n = n′,
Eq. (6.24) may be rewritten as

∑ δ− ″ ′ = ≡ −
″=

′ ″ ″ ′ ″( )H E n n E E E0, where . (6.25)
n

N

1
n n n n n n n
(1) (1) (0) (1) (0)

For each n′ = 1, 2, …N, this is a system of N linear, homogenous equations (with N
terms each) for N unknown coefficients 〈n″(0)∣n′〉. In this problem, we readily
recognize the problem of diagonalization of the perturbation matrix H(1)—cf section
4.4 and in particular Eq. (4.101). As in the general case, the condition of self-
consistency of the system is:

− …
− …

… … …

=
H E H

H H E 0, (6.26)
n

n

11
(1) (1)

12
(1)

21
(1)

22
(1) (1)

where now the index n numbers the N roots of this equation, in an arbitrary order.
According to the definition (6.25) of En

(1), the resulting N energy levels En may be

Figure 6.2. Lifting the energy level degeneracy by a perturbation (schematically).

4 This is exactly the reason why such perturbation theory runs into serious problems for systems with
continuous spectrum, and other techniques (such as the WKB approximation) are often necessary.
5Note that here the choice of the basis is to some extent arbitrary, because due to the linearity of equations of
quantum mechanics, any linear combination of the states n″(0) is also an eigenstate of the unperturbed
Hamiltonian. However, for using Eq. (6.25), these combinations have to be orthonormal, as was supposed at
the derivation of Eq. (6.7).
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found as E(0) + En
(1). If the perturbation matrix is diagonal in the chosen basis n(0),

the result is extremely simple,

− ≡ =E E E H , (6.27)n n nn
(0) (1) (1)

and formally coincides with Eq. (6.14) for the non-degenerate case, but now it may
give a different result for each of N previously degenerate states n.

Let us see what this theory gives for several important examples. First of all, let us
consider a system with two degenerate states with an energy far enough from all
other levels. Then, in the basis of these two degenerate states, the most general
perturbation matrix is

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟=

H H

H H
H (6.28)(1) 11

(1)
12
(1)

21
(1)

22
(1)

Besides the upper index, this matrix coincides with the general matrix (5.2) of a two-
level system. Hence, we come to the very important conclusion: for a weak
perturbation, all properties of double-degenerate system are identical to those of
the genuine two-level systems, which were the subject of numerous discussions in
chapter 4 and again in section 5.1. In particular, its eigenenergies are given by Eq.
(5.6), and may be described by the level-anticrossing diagram shown in figure 5.1.

6.2 The Stark effect
As a more involved example of the level degeneracy lifting by a perturbation, let us
discuss the linear Stark effect6—the atomic level splitting by an external electric field.
Let us study this effect, in the linear approximation, for a hydrogen-like atom.
Taking the direction of the external electric field EE (which is practically always
uniform on the atomic scale) for the z-axis, the perturbation may be represented by
the following Hamiltonian:

E E θˆ = − ˆ = − ˆ = −H Fz q z q r cos . (6.29)(1)

(In the last form, the operator sign is dropped, because we will work in the
coordinate representation.)

As you (should :-) remember, energy levels of a hydrogen-like atom depend only
on the principal quantum number n—see Eq. (3.201); hence all the states, besides the
ground state n = 1 (‘1s’ in the spectroscopic nomenclature) in which l = m = 0, have
some degeneracy, which grows rapidly with n. I will carry out the calculations only
for the lowest degenerate level with n = 2. Since, according to Eq. (3.203), 0 ⩽ l ⩽ n
−1, at this level the orbital quantum number l may be equal either 0 (one 2s state,

6 The effect was discovered experimentally in 1913 by J Stark and (independently) by A Lo Surdo, and is
sometimes (and more fairly) called the ‘Stark–Lo Surdo effect’. Sometimes this name is used with the qualifier
‘dc’ to distinguish it from the ac Stark effect—the energy level shift under the effect of an ac field—see section 6.5.
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with m = 0) or 1 (three 2p states, with m = 0, ±1). Due to this four-fold degeneracy,
H(1) is a 4 × 4 matrix with 16 elements:

However, please do not be scared. First, due to the Hermitian nature of the
operator, only 10 of the matrix elements (four diagonal ones and six off-diagonal
elements) may be substantially different. Moreover, due to a high symmetry of the
problem, there are a lot of zeros even among these elements. Indeed, let us have a look
at the angular components Yl

m of the corresponding wavefunctions, with l = 0 and l =
1, described by Eqs. (3.174) and (3.175). For the states with m = ±1, the azimuthal
parts of wavefunctions are proportional to exp{±iφ}; hence the off-diagonal elements
H34 and H43 of the matrix (6.30), relating these functions, are proportional to

∮ ∫ φΩ ˆ ∝ =
π

φ φ±* ∓ ± * ∓d Y H Y d e e( ) ( ) 0. (6.31)i i
1

(1)
1

0

2

The azimuthal-angle symmetry also kills the off-diagonal elements H13,H14,H23,
H24 (and hence their complex conjugates H31, H41, H32, and H42), because they
relate the states with m = 0 and m ≠ 0, and are proportional to

∮ ∫ φΩ ˆ ∝ =
π

φ* ± ±d Y H Y d e 0. (6.32)i
1
0 (1)

1
1

0

2

For the diagonal elements H33 and H44, corresponding to m = ±1, the azimuthal-
angle integral does not vanish, but since the corresponding spherical functions
depend on the polar angle as sin θ, the matrix elements are proportional to

∮ ∫
∫

θ θ θ θ θ

θ θ θ

Ω ˆ ∝ =

− ×

π
±* ±

−

+

d Y H Y d

d

sin sin cos sin

cos (1 cos ) (cos ),
(6.33)

1
(1)

1
0

1

1
2

and are equal to zero—as any limit-symmetric integral of an odd function. Finally,
for the states 2s and 2p with m = 0, the diagonal elementsH11 andH22 are also killed
by the polar-angle integration:

∮ ∫ ∫θ θ θ θ θΩ ˆ ∝ = =
π

*

−
d Y H Y d dsin cos cos (cos ) 0, (6.34)0

0 (1)
0
0

0 1

1

∮ ∫ ∫θ θ θ θ θΩ ˆ ∝ = =
π

*

−

+
d Y H Y d dsin cos cos (cos ) 0. (6.35)0

1 (1)
0
1

0

3

1

1
3
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Hence, the only nonvanishing elements of the matrix (6.30) are two off-diagonal
elements H12 and H21, which relate two states with the same m = 0, but different
l = 0, 1, because they are proportional to

∮ ∫ ∫θ
π

φ θ θ θΩ = = ≠
π π

*d Y Y d dcos
3

4
sin cos

1

3
0. (6.36)0

0
1
0

0

2

0

2

What remains is to use Eqs. (3.209) for the radial parts of these functions to
complete the calculation of those two matrix elements:

R RE ∫= = −
∞

H H
q

r dr r r r
3

( ) ( ). (6.37)12 21
0

2
2, 0 2, 1

Due to the additive structure of the functionR r( )2, 0 , the integral falls into a sum of
two table integrals, both of the type (A.34d ), finally giving

E= =H H q r3 , (6.38)12 21 0

where r0 is the scale given by Eq. (3.192); for the hydrogen atom it is just the Bohr
radius rB (1.10).

Thus, the perturbation matrix (6.30) is reduced to

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

E

E=

q r
q rH

0 3 0 0
3 0 0 0

0 0 0 0
0 0 0 0

, (6.39)(1)

0

0

so that the condition (6.26) of the self-consistency of the system (6.25),

E

E

−
−

−
−

=

E q r

q r E

E

E

3 0 0

3 0 0

0 0 0

0 0 0

0, (6.40)

n

n

n

n

(1)
0

0
(1)

(1)

(1)

gives a very simple characteristic equation

⎡⎣ ⎤⎦E− =( ) ( )E E q r(3 ) 0. (6.41)n n
(1) 2 (1) 2

0
2

with the roots

E= = ±E E q r0, 3 . (6.42)1, 2
(1)

3, 4
(1)

0

so that the degeneracy is only partly lifted—see figure 6.3.
Generally, in order to understand the nature of states corresponding to these

levels, we should return to Eq. (6.25) with each calculated value of En
(1), and find the

corresponding expansion coefficients 〈n″(0)∣n′〉, which describe the perturbed states.
However, in our simple case the outcome of this procedure is clear in advance.
Indeed, since the states with l = 1 and m = ± 1 are not affected by the perturbation at
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all (in the linear approximation in the electric field), their degeneracy is not lifted,
and energy unaffected—see the middle line in figure 6.3. On the other hand, the
partial perturbation matrix connecting the states 2s and 2p, i.e. the top left 2 × 2 part
of the full matrix (6.39), is proportional to the Pauli matrix σx, and we already know
the result of its diagonalization—see Eqs. (4.113) and (4.114). This means that the
upper and lower split levels correspond to very simple linear combinations of the
previously degenerate states with m = 0,

± = ±s p
1

2
( 2 2 ). (6.43)

Finally, let us estimate the magnitude of the linear Stark effect for a hydrogen
atom. For a very high electric field of EE = 3 × 106 V m−1,7 ∣q∣ = e ≈ 1.6 × 10−19 C,
and r0 = rB ≈ 0.5 × 10−10 m, we get a level splitting of 3qEEr0 ≈ 0.8 × 10−22 J ≈
0.5 meV. This number is much lower than the unperturbed energy of the level,
E2 = −EH/(2 × 22) ≈ −3.4 eV, so that the perturbative result is quite applicable. On
the other hand, the calculated splitting is much larger than the resolution limit
imposed by the natural linewidth (∼ 10−7 E2, see chapter 9), so that the effect is quite
observable even in substantially lower electric fields.

6.3 Fine structure of atomic levels
Now let us use the same perturbation theory analyze, also for the simplest case of a
hydrogen-like atom, the so-called fine structure of atomic levels—their degeneracy
lifting even in the absence of external fields. In the limit when the effective speed v of
the electron motion is much smaller than the speed of light c (as it is in the hydrogen
atom), the fine structure may be analyzed as a sum of two small relativistic effects. To
analyze the first of them, let us expand the well-known classical relativistic expression8

for the kinetic energy m= −T E c2 of a free particle with the rest mass m,9

Figure 6.3. The linear Stark effect for the level n = 2 of a hydrogen-like atom.

7 This value approximately corresponds to the threshold of electric breakdown in air at ambient conditions,
due to the impact ionization on typical metallic electrode surfaces. (Reducing the air pressure only enhances
the ionization and lowers the breakdown threshold.) As a result, experiments with higher dc fields are rather
difficult.
8 See, e.g. Part EM Eq. (9.78)—or any undergraduate text on the relativity theory.
9 This fancy font is used, as in sections 3.5–3.8, to distinguish the massm from the magnetic quantum numberm.
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⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥m m m

m
= + − ≡ + −T c p c c c

p
c

( ) 1 1 , (6.44)2 4 2 2 1/2 2 2
2

2 2

1/2

into the Taylor series with respect to the small ratio (p/mc)2 ≈ (v/c)2:

⎜ ⎟ ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥m

m m m m
= + − + …− ≡ − + …T c

p
c

p
c

p p
c

1
1
2

1
8

1
2 8

, (6.45)2
2 4 2 4

3 2

and drop all the terms besides the first (non-relativistic) one and the next spelled-out
term, which represents the first relativistic correction to T.

Following the correspondence principle, the quantum-mechanical problem in this
approximation may be described by the perturbative Hamiltonian (6.1), where the
unperturbed (non-relativistic) Hamiltonian of the problem, whose eigenstates and
eigenenergies were discussed in section 3.5, is

m
ˆ =

ˆ
+ ˆ ˆ = −H

p
U r U r

C
r2

( ), ( ) , (6.46)(0)
2

while the kinetic-relativistic perturbation is

⎛
⎝⎜

⎞
⎠⎟m m m

ˆ = −
ˆ

≡ −
ˆ

H
p

c c
p

8
1

2 2
. (6.47)(1)

4

3 2 2

2 2

Using Eq. (6.46), we may rewrite the last formula as

m
ˆ = − ˆ − ˆH

c
H U r

1
2

[ ( )] , (6.48)(1)

2

(0) 2

so that its matrix elements participating in the characteristic equation (6.25) for a
given degenerate energy level (3.201), i.e. a given principal quantum number n, are

m
ˆ ′ ′ = − ˆ − ˆ ˆ − ˆ ′ ′nlm H nl m

c
nlm H U r H U r nl m

1
2

[ ( )] [ ( )] , (6.49)(1)

2

(0) (0)

where the bra- and ket-vectors describe the unperturbed eigenstates, whose eigen-
functions (in the coordinate representation) are given by Eq. (3.200): ψ =n l m, ,

R θ φr Y( ) ( , )n l l
m

, .
It is straightforward (and hence left for the reader) to prove that all off-diagonal

elements of the set (6.49) are equal to 0. Thus we may use Eq. (6.27) for each set of
the quantum numbers {n, l, m}:
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(6.50)

n l m n l m n

n l m

n n n l n l

n l n l

, ,
(1)

, ,
(0) (1)

2

(0) 2

, ,

2
2

,
2

,

2
0
2

4
0
2

,

2
2

,

where the indexm has been dropped, because the radial wavefunctionsR r( )n l, , which
affect these expectation values, do not depend on that quantum number. Now using
Eqs. (3.191), (3.201) and the first two of Eqs. (3.211), we finally get

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

m

m
= −

ℏ + ½
− ≡ −

+ ½
−E

C
c n

n
l

E
c

n
l2

3
4

2 3
4

. (6.51)n l
n

,
(1)

2

2 2 4

2

2

Let us discuss this result. First of all, its last form confirms that that the correction
(6.51) is indeed much smaller than the unperturbed energy En (and hence the
perturbation theory is valid) if the latter is much smaller than the relativistic rest
energy mc2 of the particle—as it is for the hydrogen atom. Next, since in the Bohr
problem’s solution n ⩾ l + 1, the first fraction in the parentheses of Eq. (6.53) is
always larger than 1, and hence than 3/4, so that the kinetic relativistic correction to
energy is negative for all n and l. (Actually, this could be predicted already from
Eq. (6.47), which shows that the perturbation’s Hamiltonian is a negatively defined
form.) Finally, at a fixed principal number n, the negative correction’s magnitude
decreases with the growth of l. This fact may be classically interpreted using
Eq. (3.210): the larger l is (at fixed n), the smaller is the particle’s average distance
from the center, and hence the smaller is its effective velocity, i.e. the smaller is the
magnitude of the quantum-mechanical average of the negative relativistic correction
(6.47) to the kinetic energy.

The result (6.51) is valid for the Coulomb interaction U(r) = −C/r of any physical
nature. However, if we speak specifically about hydrogen-like atoms/ions, there is also
another relativistic correction to energy, due to the so-called spin–orbit interaction
(alternatively called the ‘spin–orbit coupling’). Its physics may be understood from the
following semi-qualitative, classical reasoning: from the ‘the point of view’ of an
electron rotating about the nucleus at constant distance r with velocity v, it is the
nucleus, of the electric charge Ze, that rotates about the electron with the velocity ( v− )
and hence the time periodT π= r v2 / . From the point of view of magnetostatics, such
circular motion of the electric charge Q = Ze, is equivalent to a circular dc electric
current T π= =I Q Ze v r/ ( )( /2 ) which creates, at the electron’s location, i.e. in the
center of the current loop, the magnetic field with the following magnitude10:

10 See, e.g. Part EM section 5.1, in particular, Eq. (5.24). Note that such effective magnetic field is induced by
any motion of electrons, in particular that in solids, leading to a variety of spin–orbit level-splitting effects
there—see, e.g. a concise review by R Winkler et al, in [1], p 211.
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μ μ

π
μ

π
= = ≡

r
I

r
Zev

r

Zev

r2 2 2 4
. (6.52)a

0 0 0
2

The field’s direction n is perpendicular to the apparent plane of the nucleus’s rotation
(i.e. that of the real rotation of the electron), and hence its vector may be readily
expressed via the similarly directed vector L = mevrn of the electron’s angular
(orbital) momentum:

BB
μ

π
μ
π

μ
π πε

= ≡ ≡ ≡
Zev

r

Ze

r m
m vr

Ze

r m
Ze
r m c

n n L L
4 4 4 4

, (6.53)a
0

2
0

3
e

e
0

3
e 0

3
e

2

where the last step used the basic relation between the SI unit constants: μ0 ≡ 1/c2ε0.
A more careful (but still classical) analysis of the problem11 brings both good and

bad news. The bad news is that the result (6.53) is wrong by the so-called Thomas
factor of 2 even for the circular motion, because the electron moves with
acceleration, and the reference frame bound to it cannot be considered inertial (as
was implied in the above reasoning), so that the effective magnetic field felt by the
electron is actually

BB
πε

= Ze
r m c

L
8

. (6.54)
0

3
e

2

The good news is that, so corrected, the result is valid not only for circular but for
an arbitrary orbital motion in the Coulomb field U(r). Hence from the discussion in
sections 4.1 and 4.4 we may expect that the quantum-mechanical description of the
interaction between this effective magnetic field and the electron’s spin moment
(4.115) is given by the following perturbation Hamiltonian12

⎛
⎝⎜

⎞
⎠⎟BB γ

πε πε
ˆ = − ˆ ⋅ ˆ = − ˆ ⋅ ˆ ≡ ˆ ⋅ ˆH

Ze
r m c m c

Ze
r

m S L S L
8

1
2 4

1
, (6.55)(1)

e
0

3
e

2
e
2 2

2

0
3

where at spelling out the electron’s gyromagnetic ratio γe ≡ −gee/2me, the small
correction to the value ge = 2 of the electron’s g-factor (see section 4.4) has been
ignored, because Eq. (6.55) is already a small correction. This expression is
confirmed by the fully-relativistic Dirac theory, to be discussed in section 9.7 below:
it yields, for an arbitrary central potential U(r), the following spin–orbit coupling
Hamiltonian:

ˆ = ˆ ⋅ ˆH
m c r

dU r
dr

S L
1

2
1 ( )

. (6.56)
(1)

e
2 2

For the Coulomb potential U(r) = −Ze2/4πε0r, this formula is reduced to Eq. (6.55).

11 It was carried out first by L Thomas in 1926; for a simple review see, e.g. [2].
12 In the Gaussian units, Eq. (6.55) is valid without the factor 4πε0 in the denominator; while Eq. (6.56), ‘as is’.
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As we already know from the discussion in section 5.7, the angular factor of this
Hamiltonian commutes with all the operators of the coupled-representation group
(inside the blue line in figure 5.12): L̂

2, Ŝ
2, Ĵ

2, and Ĵz, and hence is diagonal in the
coupled-representation basis with definite quantum numbers l, j, and mj (and of
course s = ½). Hence, using Eq. (5.181) to rewrite Eq. (6.56) as

πε
ˆ = ˆ − ˆ − ˆH

m c
Ze

r
J L S

1
2 4

1 1
2

( ), (6.57)
(1)

e
2 2

2

0
3

2 2 2

we may again use Eq. (6.27) for each set {s, l, j, mj}, with the common n:

πε
= 〈 ˆ − ˆ − ˆ 〉E

m c
Ze

r
J L S

1
2 4

1 1
2

, (6.58)n j l
n l

j s, ,
(1)

e
2 2

2

0
3

,

2 2 2
,

where the indices irrelevant for each particular factor have been dropped. Now using
the last of Eqs. (3.211), and similar expressions (5.169), (5.175), and (5.177), we get
an explicit expression for the spin–orbit corrections13

πε
= ℏ + − + − ¾

+ +

≡ + − + − ¾
+ +

E
m c

Ze
r

j j l l
n l l l

E
m c
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j j l l
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2 4 2

( 1) ( 1)
( 1/2)( 1)

( 1) ( 1)
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(6.59)
n j l
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e
2 2

2
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2
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3 3

2

e
2

with l and j related by Eq. (5.189).
The last form of its result shows clearly that this correction has the same scale as

the kinetic correction (6.51).14 In the 1st order of the perturbation theory, they may
be just added (with m = me), giving a surprisingly simple formula for the net fine
structure of the nth energy level:

⎛
⎝⎜

⎞
⎠⎟= −

+ ½
E

E
m c

n
j2

3
4

. (6.60)n
fine
(1)

2

e
2

This simplicity, as well as the independence of the result of the orbital quantum
number l, will become less surprising when (in section 9.7) we see that this formula
follows in one shot from the Dirac theory, in which the Bohr atom’s energy spectrum
in numbered only with n and j, but not l.

Let us recall that for an electron (s =½), according to Eq. (5.189) with 0 ⩽ l ⩽ n − 1,
the quantum number j may take n positive half-integer values, from ½ to n − ½.
Hence, Eq. (6.60) shows that the fine structure of the nth Bohr’s energy level has
n sub-levels—see figure 6.6.

13 The factor l in the denominator does not give a divergence at l = 0, because in this case j = s = ½, so that
j( j + 1) = 3/4, and the numerator turns into 0 as well. A careful analysis of this case (which may be found,
e.g. in [3]), as well as the exact analysis of the hydrogen atom using the Dirac theory (see section 9.7), show that
Eq. (6.60), which does not include l, is valid even in this case.
14 This is natural, because the magnetic interaction of charged particles is essentially a relativistic effect, of the
same order (∼v2/c2) as the kinetic correction (6.47)—see, e.g. Part EM section 5.1, in particular Eq. (5.3).
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Please note that according to Eq. (5.175), each of these sub-levels is still (2j + 1)-
times degenerate in the quantum number mj. This degeneracy is very natural,
because in the absence of external field the system is still isotropic. Moreover, on
each fine-structure level, besides the lowest ( j = ½) and the highest ( j = n −½) ones,
each of themj-states is doubly-degenerate in the orbital quantum number l = j ∓½—

see the labels of l in figure 6.4. (According to Eq. (5.190), each of these states, with
fixed j and mj, may be represented as a linear combination of two states with
adjacent values of l, and hence different electron spin orientations, ms = ±½,
weighed with the Clebsch–Gordan coefficients.)

These details aside, one may crudely say that the relativistic corrections combined
make the total eigenenergy grow with l, contributing to the effect already mentioned
with our analysis of the periodic table of elements in section 3.7. The relative scale of
this increase may be scaled by the largest deviation from the unperturbed energy En,
reached for the state with j = ½ (and hence l = 0):
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. (6.61)
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2
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2
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2

where α is the fine structure (‘Sommerfeld’s’) constant,

α
πε

≡
ℏ

≈e
c4

1
137

, (6.62)
2

0

already mentioned in section 4.4, which characterizes the strength (or rather the
weakness :-) of the electromagnetic effects in quantum mechanics—which in
particular makes the perturbative quantum electrodynamics possible15. These
expressions show that the fine-structure splitting is a very small effect (∼α2

∼ 10−6) for the hydrogen atom, but it rapidly grows (as Z2) with the nuclear charge
(i.e. the atomic number) Z, and becomes rather substantial for the heaviest stable
atoms with Z ∼ 100.

Figure 6.4. The fine structure of a hydrogen-like atom’s level.

15 The alternative expression α = EH/mec
2, where EH is the Hartree energy (1.13), i.e. the scale of all energies

En, is also very revealing.
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6.4 The Zeeman effect
Now, we are ready to review the Zeeman effect—the atomic level splitting by an
external magnetic field16. Using Eq. (3.26), with q = −e, for the description of
the electron’s orbital motion in the field, and the Pauli Hamiltonian (4.163), with
γ = −e/me, for the electron spin’s interaction with the field, we see that even for a
hydrogen-like (i.e. single-electron) atom/ion, neglecting the relativistic effects, the
full Hamiltonian is rather involved:

BB
πε

ˆ = ˆ + ˆ − + ⋅ ˆH
m

e
Ze

r
e

m
p A S

1
2

( )
4

. (6.63)
e

2
2

0 e

There are several simplifications we may make. First, let us assume that the
external field is spatial-uniform on the atomic scale (which is a very good
approximation for most cases), so that we can take the vector-potential in an
axially-symmetric gauge—cf Eq. (3.132):

BB= ×A r
1
2

. (6.64)

Second, let us neglect the terms proportional to B 2, which are small in practical
magnetic fields of the order of a few tesla17. The remaining term in the effective
kinetic energy, describing the interaction with the magnetic field, is linear in the
momentum operator, so that we may repeat the standard classical calculation18 to
reduce it to the product of B by the orbital magnetic moment’s component
mz = −eLz/2me—besides that both mz and Lz should be understood as operators
now. As a result, the Hamiltonian (6.63) reduces to Eq. (6.1), ˆ + ˆH H ,

(0) (1) where Ĥ
(0)

is that of the atom at B = 0, and

Bˆ = ˆ + ˆH
e
m

L S
2

( 2 ). (6.65)z z
(1)

e

This expression immediately reveals the major complication with the Zeeman
effect’s analysis. Namely, in comparison with the equal orbital and spin contribu-
tions to the total angular momentum (5.171) of the electron, the spin produces a
twice larger contribution to the magnetic moment, so that the right-hand side of
Eq. (6.65) is not proportional to the total angular moment J. As a result, the effect’s
description is simple only in two limits.

If the magnetic field is so high that its effects are much stronger than the
relativistic (fine-structure) effects discussed in the previous section, we may treat the

16 It was discovered experimentally in 1896 by P Zeeman who, amazingly, was fired from the University of
Leiden for an unauthorized use of lab equipment for this work—just to receive a Nobel Prize for it in a few
years.
17Despite its smallness, the quadratic term is necessary for description of the negative contribution of the
orbital motion to the magnetic susceptibility χm (the so-called orbital diamagnetism, see Part EM section 5.5),
whose analysis, using Eq. (6.63), is left for the reader’s exercise.
18 See, e.g. Part EM section 5.4, in particular Eqs. (5.95) and (5.100).
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two terms in Eq. (6.65) as independent perturbations of different (orbital and spin)
degrees of freedom. Since each of the perturbation matrices is diagonal in its own
z-basis, we can again use Eq. (6.27) to write

B

B

Bμ

− = ˆ + ˆ

= ℏ + ℏ

≡ ±

( )E E
e
m

n l m L n l m m S m

e
m

m m

m

2
, , , , 2

2
( 2 )

( 1).

(6.66)

l z l s z s

l s

l

(0)

e

e

B

This result describes the splitting of each 2×(2l + 1)-degenerate energy level, with
certain n and l, into (2l + 3) levels (figure 6.5), with the adjacent level splitting of
BμB , of the order of ∼10−23 J ∼ 10−4 eV per tesla. Note that all the levels, these

besides the top and bottom one, remain doubly degenerate. This limit of the Zeeman
effect is sometimes called the Paschen–Back effect—whose simplicity was recognized
only in the 1920s, due to the need in very high magnetic fields for its observation.

In the opposite limit of relatively low magnetic fields, the Zeeman effect takes
place on the background of the much larger fine-structure splitting. As was discussed
in section 6.3, at B = 0 each split sub-level has a 2(2l + 1)-fold degeneracy
corresponding to (2l + 1) different values of the half-integer quantum number mj,
ranging from −j to +j, and 2 values of the integer l = j ∓ ½—see figure 6.4. The
magnetic field lifts this degeneracy19. Indeed, in the coupled representation discussed
in section 5.7, the perturbation (6.65) is described by the matrix with elements

B B

B δ

= ˆ + ˆ ′ ≡ ˆ + ˆ ′

= ℏ + ˆ ′

′ ′

′′( )

H
e
m

j m L S j m
e
m

j m J S j m

e
m

m j m S j m

2
, 2 ,

2
, ,

2
, , .

(6.67)
j z z j j z z j

j m m j z j

(1)

e e

e
j j

To spell out the second term, let us use the general expansion (5.183) for the
particular case s =½, when (as was discussed in the end of section 5.7) it has at most
two nonvanishing terms, with the Clebsch–Gordan coefficients (5.190):

Figure 6.5. The Paschen–Back effect.

19 In almost-hydrogen-like, but more complex atoms (such as those of alkali metals), the degeneracy in l is
lifted by the electron–electron Coulomb interaction even in the absence of the external magnetic field.
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Taking into account that the operator Ŝz gives non-zero brackets only for ms = ms′,
the 2 × 2 matrix of elements 〈 = ± ½ = ∓½∣ ˆ ∣ = ± ½ = ∓½〉m m m S m m m, ,l j z l js s is
diagonal, so we may use Eq. (6.27) to get
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(6.69)
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e
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where the two signs correspond to the two possible values of l = j ∓½—see figure 6.6.
We see that the magnetic field splits each sub-level of the fine structure, with a

given l, into 2j + 1 equidistant levels, with the distance between the levels depending
on l. In the late 1890s, when the Zeeman effect was first observed, there was no
notion of spin at all, so that this puzzling result was called the anomalous Zeeman
effect. (In this terminology, the normal Zeeman effect is the one with no spin
splitting, i.e. without the second terms in the parentheses of Eqs. (6.66), (6.67), and
(6.69); it may be observed experimentally in atoms with zero net spin.)

The strict quantum-mechanical analysis of the anomalous Zeeman effect for
arbitrary s (which is important for applications to multi-electron atoms) is
conceptually not complex, but requires explicit expressions for the corresponding
Clebsch–Gordan coefficients, which are rather bulky. Let me just cite the unexpect-
edly simple result of this analysis:

BμΔ =E m g a, (6.70 )jB

Figure 6.6. The anomalous Zeeman effect in a hydrogen-like atom.
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where g is the so-called Lande factor20:

= + + + + − +
+

g
j j s s l l

j j
b1

( 1) ( 1) ( 1)
2 ( 1)

. (6.70 )

For s = ½ (and hence j = l ± ½), this factor is reduced to the parentheses in the last
form of Eq. (6.69).

It is remarkable that Eqs. (6.70) may be readily derived using very plausible
classical arguments, similar to those used in section 5.7—see figure 5.13 and its
discussion. As was discussed in section 5.6, in the absence of spin, the quantization
of the observable Lz is an extension of the classical picture of the torque-induced
precession of the vector L about the magnetic field’s direction, so that the interaction
energy, proportional toB BB=Lz ·L, remains constant—see figure 6.7a. At the spin–
orbit interaction without an external magnetic field, the Hamiltonian function of the
system includes the product S·L, so that it has to be constant, together with J2, L2,
and S2. Hence, this system’s classical image is a rapid precession of vectors S and L
about the direction of the vector J = L + S, so that the spin–orbit interaction energy,
proportional to the product L·S, remains constant (figure 6.7b). On this backdrop,
the anomalous Zeeman effect in a relatively weak magnetic field BB = Bnz corre-
sponds to a slow precession of the vector J (‘dragging’ the rapidly rotating vectors L
and S with it) about the axis z.

This picture allows us to conjecture that what is important for the slow precession
rate are only the vectors L and S averaged over the period of the much faster
precession about vector J—in other words, only their components LJ and SJ along
the vector J. Classically, these components may be calculated as

= ⋅ = ⋅
J J

L
L J

J S
S J

J, and . (6.71)J J2 2

The scalar products participating in these expressions may be readily expressed via
the squared lengths of the vectors, using the following evident formulas:

Figure 6.7. Classical images of (a) the orbital angular momentum’s quantization in a magnetic field, and
(b) the fine-structure level splitting.

20 This formula is frequently used with capital letters J, S, and L, which denote the quantum numbers of the
atom as a whole.
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As a result, we get the following time average:
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The last move is to smuggle in some quantum mechanics by using, instead of the
vector lengths squared, and the z-component of Jz, their eigenvalues given by Eqs.
(5.169), (5.175), and (5.177). As a result, we immediately arrive at the exact result
given by Eqs. (6.70). This coincidence encourages thinking about quantum mechanics
of angular momenta in the classical terms of torque-induced precession, which turns
out to be very fruitful in more complex problems of atomic and molecular physics.

The high-field limit and low-field limits of the Zeeman effect, described respec-
tively by Eqs. (6.66) and (6.69), are separated by a medium field range, in which the
Zeeman splitting is of the order of the fine-structure splitting analyzed in section 6.3.
There is no time in this course for a quantitative analysis of this crossover21.

6.5 Time-dependent perturbations
Now let us proceed to the case when the perturbation Ĥ

(1) in Eq. (6.1) is a function
of time, while Ĥ

(0) is time-independent. The adequate perturbative approach to this
problem, and its results, depend critically on the relation between the characteristic
frequency (or the characteristic reciprocal time) ω of the perturbation and the
distance between the initial system’s energy levels:

ωℏ ↔ − ′E E . (6.74)n n

In the case when all essential frequencies of a perturbation are very small in the
sense of Eq. (6.74), we are dealing with the so-called adiabatic change of parameters,
that may be treated essentially as a time-independent perturbation (see the previous
sections of this chapter). The most interesting observation here is that the adiabatic
perturbation does not allow any significant transfer of the system’s probability from
one eigenstate to another. For example, in the WKB limit of the orbital motion, the
Bohr–Sommerfeld quantization rule (2.110), and its multi-dimensional general-
izations, guarantee that the integral

21 For a more complete discussion of the Stark, Zeeman, and fine-structure effects in atoms, I can recommend,
for example, either the monograph by G Woolgate, cited above, or the one by I Sobelman [4].
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∮ ⋅ dp r, (6.75)
C

taken along the particle’s classical trajectory, is an adiabatic invariant, i.e. does not
change at a slow change of system’s parameters. (It is curious that classical
mechanics also guarantees the invariance of the integral (6.75), but its proof there22

is much harder than the quantum-mechanical derivation of this fact, carried out in
section 2.4.) This is why even if the perturbation becomes large with time (while
changing sufficiently slowly), we can expect the eigenstate and eigenvalue classi-
fication to persist.

Let me proceed to the case when both sides of Eq. (6.74) are comparable, using for
this discussion the Schrödinger picture of quantum dynamics, given by Eq. (4.158).
Combining it with Eq. (6.1), we get the Schrödinger equation in the form

α αℏ ∂
∂

= ˆ +( )i
t

t H H t t( ) ( ) ( ) (6.76)(0) (1)

Very much in the spirit of our treatment of the time-independent case in section 6.1,
let us represent the time-dependent ket-vector of the system with its expansion,

∑α α=t n n t( ) ( ) , (6.77)
n

over the full and orthonormal set of the unperturbed, stationary ket-vectors defined
by equation

ˆ =H n E n . (6.78)n
(0)

(Note that these kets ∣n〉 are exactly what was called ∣n(0)〉 in section 6.1; we just may
afford a less bulky notation in this section.) Plugging the expansion (6.77), with n
replaced with n′, into both sides of Eq. (6.76), and then inner-multiplying both its
sides by the bra-vector 〈n∣ of another unperturbed (and hence time-independent)
state of the system, we get a set of linear, ordinary differential equations for the
expansion coefficients:

∑α α αℏ = + ′
′

′i
d
dt

n t E n t H t n t( ) ( ) ( ) ( ) , (6.79)
n

n nn
(1)

where the matrix elements of the perturbation in the unperturbed state basis, defined
similarly to Eq. (6.8), are now functions of time:

≡ ˆ ′′H t n H t n( ) ( ) . (6.80)nn
(1) (1)

The set of differential equations (6.79), which are still exact, may be useful for
numerical calculations23. However, Eq. (6.79) has a certain technical inconvenience,

22 See, e.g. Part CM section 10.2.
23 Even if the problem under analysis may be described by the wave-mechanics Schrödinger equation (1.25), a
direct numerical integration of that partial differential equation is typically less convenient than that of the
ordinary differential equations (6.79).
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which becomes clear if we consider its (evident) solution in the absence of
perturbation24:

α α= −
ℏ{ }n t n i
E

t( ) (0) exp . (6.81)n

We see that the solution oscillates very fast, and its numerical modeling may represent
a challenge for even the fastest computers. These spurious oscillations (whose
frequency, in particular, depends of the energy reference level) may be partly tamed
by looking for the general solution of Eqs. (6.79) in a form inspired by Eq. (6.81):

α ≡ −
ℏ{ }n t a t i
E

t( ) ( )exp . (6.82)n
n

Here an(t) are new functions of time (essentially, the stationary states’ probability
amplitudes), which may be used, in particular, to calculate the time-dependent level
occupancies, i.e. the probabilities Wn to find the perturbed system on the corre-
sponding energy levels of the unperturbed system:

α= =W t n t a t( ) ( ) ( ) . (6.83)n n
2 2

Plugging Eq. (6.82) into Eq. (6.79), for these functions we readily get a slightly
modified system of equations:

∑ℏ ̇ =
′

ω
′ ′

′i a a H t e( ) , (6.84)
n

n n nn
i t(1) nn

where the factors ωnn′, defined by the relation

ωℏ ≡ −′ ′E E (6.85)nn n n

have the physical sense of frequencies of potential quantum transitions between the
nth and n′th energy levels of the unperturbed system. (The conditions when such
transitions indeed take place will be clear soon.) The advantages of Eq. (6.84) over
Eq. (6.79), for both analytical and numerical calculations, is their independence of
the energy reference, and lower frequencies of oscillations of the right-hand side
terms, especially when the energy levels of interest are close to each other25.

In order to continue our analytical treatment, let us restrict ourselves to a
particular but very important case of a sinusoidal perturbation turned on at some
moment—which may be taken for t = 0:

⎧⎨⎩
ˆ =

<
ˆ + ˆ ⩾ω ω− † +

H t
t

Ae A e t
( )

0, for 0,

, for 0,
(6.86)

i t i t

(1)

24 This is of course just a more general form of Eq. (1.62) of the wave mechanics of time-independent systems.
25Note that the relation of Eq. (6.84) to the initial Eq. (6.79) is very close to the relation of the interaction
picture of quantum dynamics, discussed in the end of section 4.6, to its Schrödinger picture, with the
perturbation Hamiltonian playing the role of the interaction one—compare Eqs. (6.1) and Eq. (4.206). Indeed,
Eq. (6.84) could be readily obtained from the interaction picture, and I did not do this just to avoid using this
heavy bra–ket artillery for our (relatively) simple problem, and hence to keep its physics more transparent.
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where the perturbation amplitude operators Â and ˆ†A ,26 and hence their matrix
elements,

ˆ ′ ≡ ˆ ′ =′
†

′
*n A n A n A n A, , (6.87)nn n n

are time-independent. In this case, Eq. (6.84) yields

⎡⎣ ⎤⎦∑ℏ ̇ = + >
′

ω ω ω ω
′ ′

−
′
* +′ ′i a a A e A e t, for 0. (6.88)

n

n n nn
i t

n n
i t( ) ( )nn nn

This is, generally, still a nontrivial system of coupled differential equations;
however, it allows simple and explicit solutions in two very important limits. First,
let us assume that our system initially was definitely in one eigenstate n′ (usually,
though not necessarily, in the ground state), and that the occupanciesWn of all other
levels stay very low all the time. (We will find the condition when the second
assumption is valid a posteriori—from the solution.) With the corresponding
assumption

= ≪ ≠ ′′a a n n1; 1, for , (6.89)n n

Eq. (6.88) may be readily integrated, giving

ω ω ω ω
= −

ℏ −
− −

ℏ +
− ≠ ′ω ω ω ω′

′

− ′
*

′

+′ ′a
A

e
A

e n n
( )

[ 1]
( )

[ 1], for . (6.90)n
nn

nn

i t n n

nn

i t( ) ( )nn nn

This expression describes what is colloquially called the ac excitation of (other)
energy levels. Qualitatively, it shows that the probability Wn (6.83) of finding the
system in each state (‘on each energy level’) of the system does not tend to any
constant value but rather oscillates in time—the so-called Rabi oscillations. It also
shows that that the ac-field-induced transfer of the system from one state to the other
one has a clearly resonant character: the maximum occupancy Wn of a level grows
infinitely when the corresponding detuning27

ω ωΔ ≡ −′ ′, (6.91)nn nn

tends to zero. This conclusion is clearly unrealistic, and is due to our initial
assumption (6.89); according to Eq. (6.90), it is satisfied only if28

ω ω≪ ℏ ±′ ′A , (6.92)nn nn

and hence does not allow a more deep analysis of the resonance excitation.

26 The notation of the amplitude operators in Eq. (6.86) is justified by the fact that the perturbation
Hamiltonian has to be self-adjoint (Hermitian), and hence each term on the right-hand side of that relation
has to be a Hermitian conjugate of its counterpart, which is evidently true only if the amplitude operators are
also the Hermitian conjugates of each other. Note, however, that each of these amplitude operators is generally
not Hermitian.
27 The notion of detuning is also very useful in the classical theory of oscillations (see, e.g. Part CM chapter 5),
where the role of ωnn′ is played by the own frequency ω0 of the oscillator.
28 Strictly speaking, one more condition is that the number of ‘resonance’ levels is also not too high—see
section 6.6.
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In order to overcome this limitation, we may perform the following trick—very
similar to the one we used for the transfer to the degenerate case in section 6.1. Let us
assume that for a certain level n,

ω ω ω ω ωΔ ≪ ± ± ″ ≠ ′′ ″ ″ ′ n n n, , , for all , (6.93)nn n n n n

—the condition illustrated in figure 6.8. Then, according to Eq. (6.90), we may
ignore the occupancy of all but two levels, n and n′, and also the second, non-
resonant term with frequency ωnn′ + ω ≈ 2ω≫ ∣Δnn′∣ in Eqs. (6.88),29 now written for
two probability amplitudes, an and an′.

The result is the following system of two linear equations:

ℏ ̇ = ℏ ̇ =′
− Δ

′ * Δi a a Ae i a a A e, , (6.94)n n
i t

n n
i t

which uses the shorthand notation A ≡ Ann′ and Δ ≡ Δnn′. (I will use it for a while—
until other energy levels become involved, in the beginning of the next section.) This
system may be readily reduced to a form without an explicit time independence—for
example, by introducing the following new probability amplitudes, which the same
moduli:

≡ ≡Δ
′ ′

− Δb a e b a e, , (6.95)n n
i t

n n
i t/2 /2

so that

= =− Δ
′ ′

Δa b e a b e, . (6.96)n n
i t

n n
i t/2 /2

Plugging these relations into Eq. (6.94), we get two usual linear first-order differ-
ential equations:

ℏ ̇ = −ℏΔ + ℏ ̇ = + ℏΔ
′ ′ * ′i b b Ab i b A b b

2
,

2
. (6.97)n n n n n n

As the reader knows very well by now, the general solution of such a system is a
linear combination of two exponential functions, exp{λ±t}, with the exponents λ±
that may be found by plugging any of these functions into Eq. (6.97), and requiring

Figure 6.8. The resonant excitation of an energy level.

29 The second assumption, i.e. the omission of non-resonant terms in the equations for the amplitudes is called the
Rotating Wave Approximation (RWA); the same idea in the classical theory of oscillations is the basis of what is
usually called the van der Pol method, and its result, the reduced equations—see, e.g. Part CM sections 5.3–5.5.
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the consistency of two resulting linear algebraic equations. In our case, the
consistency condition (i.e. the characteristic equation of the system) is

λ
λ

− ℏΔ − ℏ
ℏΔ − ℏ

=
*

i A
A i
/2

/2
0, (6.98)

with roots λ± = ±iΩ, where

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟Ω ≡ Δ +

ℏ
Ω = Δ +

ℏ
A A

4
, i.e. 2 4 . (6.99)

2 2

2

1/2
2

2

2

1/2

The coefficients at the exponents are determined by initial conditions. If, as was
assumed before, the system was completely on the level n′ initially, at t = 0, i.e.
an′(0) = 1, an(0) = 0, so that bn′(0) = 1, bn(0) = 0 as well, then Eqs. (6.97) yield, in
particular:

= −
ℏΩ

Ωb t i
A

t( ) sin , (6.100)n

so that the nth level occupancy is

= =
ℏ Ω

Ω ≡
+ ℏΔ

ΩW b
A

t
A

A
tsin

( /2)
sin . (6.101)n n

2
2

2 2
2

2

2 2
2

This is the famousRabi formula30. If the detuning is large in comparison with ∣A∣/ℏ,
though still small in the sense of Eq. (6.93), the frequency 2Ω of the Rabi oscillations is
completely determined by the detuning, and their amplitude is small:

=
ℏ Δ

Δ ≪ ≪ ℏΔW t
A t

A( ) 4 sin
2

1, for ( ) , (6.102)n

2

2 2
2 2 2

—the result which could be obtained directly from Eq. (6.90), just neglecting the
second term on its right-hand side. However, now we may also analyze the results of
an increase of the perturbation amplitude ∣A∣: it leads not only to an increase of the
amplitude of the probability oscillations, but also of their frequency—see figure 6.9.
Ultimately, at ∣A∣ ≫ ℏ∣Δ∣ (for example, at the exact resonance, Δ = 0, i.e. ωnn′ = ω,
so that En = En′ + ℏω), Eqs. (6.101) and (6.102) give Ω = ∣A∣/ℏ and (Wn)max = 1,
i.e. describe a periodic, full ‘repumping’ of the system from one level to another and
back, with a frequency proportional to the perturbation amplitude31.

This effect is a close analog of the quantum oscillations in two-level systems with
time-independent Hamiltonians, which were discussed in sections 2.6 and 5.1.
Indeed, let us revisit, for a moment, their discussion started in the end of section
6.1, now paying more attention to the time evolution of the system under the
perturbation. As was argued in that section, the most general perturbation

30 It was derived in 1952 by I Rabi, in the context of his group’s pioneering experiments with the ac (practically,
microwave) excitation of quantum states, using molecular beams in vacuum.
31As Eqs. (6.82), (6.96), and (6.99) show, the lowest frequency in the system is ωl = ωn′ − Δ/2 +Ω, so that at A→ 0,
ℏωl ≈ ℏωn′ + 2∣A∣2/ℏΔ. This effective shift of the lowest energy level (which may be measured by another ‘probe’
field of a different frequency) is a particular case of the ac Stark effect, which was already mentioned in section 6.2.
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Hamiltonian lifting the two-fold degeneracy of an energy level, in an arbitrary basis,
has the matrix (6.28). Let us describe the system’s dynamics using, again, the
Schrödinger picture, representing the ket-vector of an arbitrary state of the system in
the form (5.1), where ↑ and ↓ are the time-independent states of the basis in which
Eq. (6.28) is written (now without any obligation to associate these states with the
z-basis of a spin-½). Then, the Schrödinger equation (4.158) yields

⎜ ⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

α

α

α

α
α
α

α α

α α
ℏ

̇

̇
= ≡ ≡

+

+

↑

↓

↑

↓

↑

↓

↑ ↓

↑ ↓
i

H H

H H

H H

H H
H . (6.103)(1) 11

(1)
12
(1)

21
(1)

22
(1)

11
(1)

12
(1)

21
(1)

22
(1)

As we know (for example, from the discussion in section 5.1), the average of the
diagonal elements of the matrix gives just a common shift of the system’s energy; for
the purpose of the dynamics analysis, it may be absorbed into the energy reference
level. Also, the Hamiltonian operator has to be Hermitian, so that the off-diagonal
elements of its matrix have to be complex-conjugate. With this, Eqs. (6.103) are
reduced to the form,

α ξ α α α α ξ α ξℏ ̇ = − ̇ + ℏ ̇ = ̇ + ℏ ≡ −↑ ↑ ↓ ↓ * ↑ ↓i H i H H H
2

,
2

, with , (6.104)12 12 22
(1)

22
(1)

which is absolutely similar to Eqs. (6.97). In particular, these equations describe the
quantum oscillations of the probabilities W↑ = ∣α↑∣2 and W↓ = ∣α↓∣2 with the
frequency32

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ξΩ = +

ℏ
H

2 4 . (6.105)2 12
(1) 2

2

1/2

The similarity of Eqs. (6.97) and (6.104), and hence of Eqs. (6.99) and (6.105),
shows that the Rabi oscillations and the ‘usual’ quantum oscillations have essentially

Figure 6.9. The Rabi oscillations.

32 By the way, Eq. (6.105) gives a natural generalization of the relations obtained for the frequency of such
oscillations in section 2.6, where the coupled potential wells were assumed to be exactly similar, so that ξ = 0.
Moreover, Eqs. (6.104) give a long-promised proof of Eqs. (2.201), and hence a better justification of Eqs. (2.203).
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the same physical nature, besides that in the former case the external ac signal
quantum ℏω bridges the separated energy levels, effectively reducing their difference
(En − En′) to a much smaller difference −Δ ≡ (En − En′)—ℏω. Also, since the
Hamiltonian (6.28) is similar to that given by Eq. (5.2), the dynamics of such a
system with two ac-coupled energy levels, within the limits (6.93) of the perturbation
theory, is completely similar to that of a time-independent two-level system. In
particular, its state may be similarly represented by a point on the Bloch sphere
shown in figure 5.3, with its dynamics described, in the Heisenberg picture, by Eq.
(5.19). This fact is very convenient for the experimental implementation of quantum
information systems (to be discussed in more detail in section 8.5), because it enables
one to manipulate qubits using a broad variety of physical systems, with well separated
energy levels, using controlled external ac (usually microwave or optical) sources.

Note, however, that according to Eq. (6.90), if the system has energy levels other
than n and n′, they also become occupied to some extent. Since the sum of all
occupancies equals 1, this means that (Wn)max may approach 1 only if the excitation
amplitude is very small, and hence the state manipulation time scale
T π π= Ω = ℏ ∣ ∣A2 / 2 / is very long. The ultimate limit in this sense is provided by
the harmonic oscillator where all energy levels are equidistant, and the probability
repumping between all of them occurs with the same rate. In particular, in this
system the implementation of the full Rabi oscillations is impossible even at the
exact resonance33.

However, I would not like these quantitative details to obscure from the reader
the most important qualitative (OK, maybe semi-quantitative :-) conclusion of this
section’s analysis: a resonant increase of the interlevel transition intensity at ω →
ωnn′. As will be shown later in the course, this increase is accompanied by a sharp
increase of the external field’s absorption, which may be readily measured. This
effect has numerous practical applications including systems based on the electron
paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectros-
copies, which are broadly used in material science, chemistry, and medicine.
Unfortunately, I will not have time to discuss the related technical issues and
methods (in particular, interesting ac pulsing techniques, including the so-called
Ramsey interferometry) in detail, and have to refer the reader to special
literature34.

6.6 Quantum-mechanical golden rule
One of the results of the past section, Eq. (6.102), may be used to derive one of the
most important and nontrivial results of quantum mechanics. For that, let us
consider the case when the perturbation causes quantum transitions from a discrete
energy level En′ into a group of eigenstates with a dense (essentially continuous)
spectrum En—see figure 6.10a.

33 From section 5.5, we already know what happens to the ground state of an oscillator at its external sinusoidal
(or any other) excitation: it turns into a Glauber state, i.e. a superposition of all Fock states—see Eq. (5.134).
34 For introductions see, e.g. [5, 6].
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If, for all states n of the group, the following conditions are satisfied

ω≪ ℏΔ ≪ ℏ′ ′ ′A ( ) ( ) , (6.106)nn nn nn
2 2 2

then Eq. (6.102) coincides with the result that would follow from Eq. (6.90). This
means that we may apply Eq. (6.102), with indices n and n′ duly restored, to any
level n of our tight group. As a result, the total probability of having our system
transferred from the initial level n′ to that group is

∑ ∑= =
ℏ Δ

Δ
Σ

′

′

′W t W t
A t

( ) ( )
4

sin
2

. (6.107)
n n

n
nn

nn

nn
2

2

2
2

Now comes the main, absolutely beautiful trick: let us assume that the summation
over n is limited to a tight group of very similar states whose matrix elements Ann′ are
virtually similar (we will check the validity of this assumption later on), so that we
can take it out of the sum (6.107) and then replace the sum with the corresponding
integral:

∫

∫ρ

=
ℏ Δ

Δ

≡
ℏ Δ

Δ −Δ

Σ
′

′

′

′

′

′
′

W t
A t
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A t

t
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d t
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4 1
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2

4 1
( )
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2
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(6.108)
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nn

nn
nn

2

2 2
2

2

2
2

where ρn is the density of the states n on the energy axis:

ρ ≡ dn
dE

. (6.109)n
n

This density, as well as the matrix element Ann′, have to be evaluated at Δnn′ = 0, i.e.
at energy En = En′ + ℏω, and are assumed to be constant within the final state group.
At fixed En′, the function under integral (6.108) is even and decreases fast at ∣Δnn′t∣ ≫
1—see figure 6.10b. Hence we may introduce a dimensionless integration variable
ξ ≡ Δnn′t, and extend the integration over it formally from −∞ to +∞. Then the
integral in Eq. (6.108) is reduced to a table one35, and yields

nn't

Figure 6.10. Deriving the Golden Rule: (a) the energy level scheme, and (b) the function under the integral
(6.108).

35 See, e.g. Eq. (A.39).
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ξ ξ
ρ π=
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=

ℏ
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′

−∞

+∞ ′W t
A t
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A t
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4 1
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2
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, (6.110)nn n nn n
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where the constant

π ρΓ =
ℏ ′A

2
. (6.111)nn n

2

is the called the transition rate36.
This is one of the most famous and useful results of quantum mechanics, its Golden

Rule (sometimes, rather unfairly, called the ‘Fermi Golden Rule’37), which deserves
much discussion. First of all, let us reproduce the reasoning already used in section 2.5
to show that the meaning of the rate Γ is much deeper than Eq. (6.110) seems to imply.
Indeed, due to the conservation of the total probability,Wn′ +WΣ = 1, we can rewrite
that equation as

˙ = −Γ′ =W . (6.112)
n t 0

Evidently, this result cannot be true for all times, otherwise the probability Wn′
would become negative. The reason for this apparent contradiction is that Eq.
(6.110) was obtained in the assumption that initially the system was completely on
the level n′:Wn′(0) = 1. Now, if in the initial moment the value ofWn′ is different, the
result (6.110) has to be multiplied by that number, due to the linear relation (6.88)
between dan/dt and an′. Hence, instead of Eq. (6.112) we get a differential equation
similar to Eq. (2.159),

˙ = −Γ′ ⩾ ′W W , (6.113)
n t n0

which, for a time-independent Γ, has the evident solution,

=′ ′
−ΓW t W e( ) (0) , (6.114)n n

t

describing the exponential decay of the initial state’s occupancy, with the time
constant τ = 1/Γ.

I am inviting the reader to review this fascinating result again: by the summation
of periodic oscillations (6.102) over many levels n, we have got an exponential decay
(6.114) of the probability. This becomes possible because the effective range ΔEn of
the state energies En giving substantial contributions into the integral (6.108),
shrinks with time: ΔEn ∼ ℏ/t.38 By the way, since most of the decay takes place

36 In some texts, the density of states in Eq. (6.111) is replaced with a formal expression Σnδ(En − En′ − ℏω).
Indeed, applied to a finite energy interval ΔEn with Δn ≫ 1 levels, it gives the same result: Δn ≡ (dn/dEn)ΔEn ≡
ρnΔEn. Such replacement may be technically useful in some cases, but is incorrect for Δn ∼ 1, and hence should be
used with utmost care, so that for most applications the more explicit form (6.111) is preferable.
37Actually, this result was developed mostly by the same P A M Dirac in 1927; E Fermi’s role was not much
more than advertising it, under the name of ‘Golden Rule No. 2’, in his lecture notes on nuclear physics, which
were published much later, in 1950. (To be fair to Fermi, he has never tried to pose as the Golden Rule’s
author.)
38Here we have run again, in a more general context, into the ‘energy-time uncertainty relation’ which was
already discussed in the end of section 2.5.
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within the time interval of the order of τ ≡ 1/Γ, the range of the participating final
energies may be estimated as

τ
Δ ∼ ℏ ≡ ℏΓE . (6.115)n

This estimate is very instrumental for the formulation of conditions of the Golden
Rule’s validity. First, we have assumed that the matrix elements of the perturbation
and the density of states are independent of the energy within the interval (6.115).
This gives the following requirement

ωΔ ∼ ℏΓ ≪ − ∼ ℏ′E E E , (6.116)n n n

Second, for the transfer from the sum (6.107) to the integral (6.108), we need the
number of states within that energy interval, ΔNn = ρnΔEn, to be much larger than 1.
Merging Eq. (6.116) with Eq. (6.92) for all the energy levels n″ ≠ n, n′ not
participating in the resonant transition, we may summarize all conditions of the
Golden Rule validity as

ρ ω ω≪ ℏΓ ≪ ℏ ±−
′ ″ . (6.117)n n n

1

(The reader may ask whether I have neglected the condition expressed by the first of
Eqs. (6.106). However, for Δnn′ ∼ ΔEn/ℏ ∼ Γ, this condition is just ∣Ann′∣2 ≪ (ℏΓ)2, so
that plugging it into Eq. (6.111),

π ρΓ ≪
ℏ
ℏΓ2

( ) , (6.118)n
2

and canceling one Γ and one ℏ, we see that it coincides with the left relation in Eq.
(6.117) above.)

Let us have a look at whether these conditions may be satisfied in practice, at least
in some cases. For example, let us consider the optical ionization of an atom, with the
released electron confined in a volume of the order of 1 cm3 ≡ 10−6 m3. According to
Eq. (1.90), with E of the order of the atomic ionization energy En − En′ = ℏω ∼ 1 eV,
the density of electron states in that volume is of the order of 1017 1/eV, while the
right-hand side of Eq. (6.117) is of the order of En ∼ 1 eV. Thus the conditions (6.117)
provide an approximately 17 orders-of magnitude range for acceptable values of ℏΓ.
This illustration should give the reader a taste of why the Golden Rule is applicable
to so many situations.

Finally, the physical picture of the initial state’s decay (which will also be the key
for our discussion of quantum-mechanical ‘open’ systems in the next chapter) is also
very important. According to Eq. (6.114), the external excitation transfers the system
into the continuous spectrum of levels n, and it never comes back to the initial level n′.
However, it was derived from the quantummechanics of Hamiltonian systems, whose
equations are invariant with respect to time reversal. This paradox is a result of the
generalization (6.113) of the exact result (6.112), which breaks the time reversal
symmetry. This is a trick of course, but a trick absolutely adequate for the physics
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under study. Indeed, some gut feeling of the physical sense of this irreversibility may
be obtained from the following observation. As Eq. (1.86) illustrates, the distance
between the adjacent orbital energy levels tends to zero only if the system’s size goes to
infinity. This means that the assumption of the continuous energy spectrum of the
finial states n essentially requires these states to be broadly extended in space—being
free, or essentially free de Broglie waves. Thus the Golden Rule corresponds to the
(physically justified) assumption that in an infinitely large system, the traveling de
Broglie waves excited by a local source and propagating outward from it, would never
come back, and even if they did, the unpredictable phase shifts introduced by the
uncontrollable perturbations on their way would never allow them to sum up in the
coherent way necessary to bring the system back into the initial state n′. (This is
essentially the same situation which was discussed, for a particular 1D wave-
mechanical system, in section 2.5.39)

To get a better feeling of the Golden Rule, let us apply it to the following simple
problem—which is a toy model of the photoelectric effect, briefly discussed in
section 1.1(ii). A 1D particle is initially trapped in the ground state of a narrow
potential well, described by Eq. (2.158):

W Wδ= − >U x x( ) ( ), with 0. (6.119)

Let us calculate the rate Γ of the particle’s ‘ionization’ (i.e. its excitation into a group
of extended, delocalized states) by a weak classical sinusoidal force of amplitude F0
and frequency ω, suddenly turned on at some instant.

As a reminder, the initial, localized state (in our current notation, n′) of such a
particle was already found in section 2.6:

W Wψ κ κ κ κ= − ≡
ℏ

≡ −ℏ = −
ℏ′ ′x x

m
E

m
m

( ) exp{ }, with ,
2 2

. (6.120)n n
1/2

2

2 2 2

2

The final, extended states n, with a continuous spectrum, for this problem exist only
at energies En > 0, so that the excitation rate is different from zero only for
frequencies

Wω ω> ≡
ℏ

=
ℏ

′E m
2

. (6.121)n
min

2

3

The weak sinusoidal force may be described by the following perturbation
Hamiltonian,

ωˆ = − ˆ = − ˆ = − ˆ + >ω ω−H F t x F x t
F

x e e t( ) cos
2

( ), for 0, (6.122)i t i t(1)
0

0

so that according to Eq. (6.86), which serves as the amplitude operator definition, in
this case

39 This situation is also very much similar to the entropy increase in macroscopic systems, which is postulated
in thermodynamics, and justified in statistical physics, even though it is based on time-reversible laws of
mechanics—see, e.g. Part SM sections 1.2 and 2.2.

Quantum Mechanics: Lecture notes

6-31



ˆ = ˆ = − ˆ†A A
F

x
2

. (6.123)0

Now the matrix elements Ann′ that participate in Eq. (6.111) may be calculated in the
coordinate representation:

∫ ∫ψ ψ ψ ψ= ˆ = −′
−∞

+∞
*

′
−∞

+∞
*

′A x A x x dx
F

x x x dx( ) ( ) ( )
2

( ) ( ) . (6.124)nn n n n n
0

Since, according to Eq. (6.120), the initial ψn′ is a symmetric function of x,
nonvanishing contributions to this integral are given only by asymmetric functions
ψn(x), proportional to sin knx, with the wavenumber kn related to the final energy by
the well-familiar equality (1.89):

ℏ
=

k
m

E
2

. (6.125)n
n

2 2

As we know from section 2.6 (see in particular Eq. (2.167) and its discussion), such
asymmetric functions, with ψn(0) = 0, are not affected by the zero-centered delta-
functional potential (6.119), so that their density ρn is the same as that in a
completely free space, and we can use Eq. (1.100). (Actually, since that relation
was derived for traveling waves, it is more prudent to repeat the calculation that has
led to that result, confining the waves on an artificial segment [−l/2, +l/2]—so long,

κ ≫k l l, 1, (6.126)n

that it does not affect the initial localized state and the excitation process. Then the
confinement requirement ψn(±l/2) = 0 immediately yields the condition knl/2 = nπ, so
that Eq. (1.100) is indeed valid, but only for positive values of kn, because sin knx
with kn → −kn does not describe an independent standing-wave eigenstate.) Hence
the final state density is

ρ
π π

≡ = = ℏ ≡
ℏ

dn
dE

dn
dk

dE
dk

l k
m

lm
k2 2

. (6.127)n
n n

n

n

n

n

2

2

It may look troubling that the density of states depends on the artificial segment’s
length l, but the same l also participates in the final wavefunctions’ normalization
factor40,

⎛
⎝⎜

⎞
⎠⎟ψ =

l
k x

2
sin , (6.128)n n

1/2

and hence in the matrix element (6.124):

40 The normalization to infinite volume, using Eq. (4.263), is also possible, but physically less transparent.
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⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

∫

∫ ∫

κ

κ

= −

= − −

κ

κ κ

′
−

+
−

− − +

A
F

l
k x e xdx

F
i l

e xdx e xdx

2
2

sin .

2
2

.

(6.129)
nn

l

l

n
x

l
ik x

l
ik x

0
1/2

0
1/2

0

( )

0

( )n n

These two integrals may be readily worked out by parts. Taking into account that,
according to the condition (6.126), their upper limits may be extended to ∞, the
result is

⎛
⎝⎜

⎞
⎠⎟

κ κ
κ

= −
+′A

l
F

k
k

2 2
( )

. (6.130)nn
n

n

1/2

0 2 2 2

Note that the matrix element is a smooth function of kn (and hence of En), so that the
main assumption of the Golden Rule, the virtual constancy of Ann′ in the interval
ΔEn ∼ ℏΓ ≪ En, is satisfied. So, Eq. (6.111) is reduced to the expression

⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

π κ κ
κ π

κ
κ

Γ =
ℏ + ℏ

≡
ℏ +l

F
k

k
lm

k
F mk

k
2 2 2

( ) 2
8

( )
, (6.131)n

n n

n

n

1/2

0 2 2 2

2

2
0
2 3

3 2 2 4

which is independent of the artificially introduced l—thus justifying its use.
Note that due to the above definitions of kn and κ, the expression in parentheses in

the denominator of the last expression does not depend on the potential well’s ‘area’
W , and is a function of only the excitation frequency ω (and the particle’s mass):

κ
ω

ℏ +
= − = ℏ′

k
m

E E
( )

2
. (6.132)n

n n

2 2 2

As a result, Eq. (6.131) may be recast simply as

W
ω

ℏΓ =
ℏ

F k
2( )

. (6.133)n0
2 3

4

What is still hidden here is that kn, defined by Eq. (6.125) with En = En′ + ℏω, is a
function of the external force’s frequency, changing as ω1/2 at ω ≫ ωmin (so that Γ
drops as ω−7/2 at ω → ∞), and as (ω − ωmin)

1/2 when ω approaches the ‘red
boundary’ (6.121) of the ionization effect, so that Γ ∝ (ω − ωmin)

1/2 → 0 in that limit
as well. So, our toy model does describe this main feature of the photoelectric effect,
whose explanation by A Einstein was essentially the starting point of quantum
mechanics—see section 1.1.

The conceptually very similar, but a bit more involved analysis of this effect in a
more realistic 3D case, namely the hydrogen atom’s ionization by an optical wave, is
left for the reader’s exercise.
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6.7 Golden rule for step-like perturbations
Now let us reuse some of our results for a perturbation being turned on at t = 0, but
after that time-independent:

⎧⎨⎩
ˆ =

<
ˆ = ⩾

H t
t

H t
( )

0, 0,

const, 0.
(6.134)(1)

(1)

A superficial comparison of this equality and the former Eq. (6.86) seems to indicate
that we may use all our previous results, taking ω = 0 and replacing ˆ + ˆ†A A with Ĥ

(1).
However, that conclusion (which would give us a wrong factor of 2 in the result) does
not take into account the fact that in analyzing both the two-level approximation in
section 6.5, and the Golden Rule in section 6.6, we have dropped the second (non-
resonant) term in Eq. (6.90). This is why it is more prudent to use the general Eq. (6.84),

∑ℏ ̇ =
′

ω
′ ′

′i a a H e , (6.135)
n

n n nn
i t(1) nn

in which the matrix element of the perturbation is now time-independent at t > 0.
We see that it is formally equivalent to Eq. (6.88) with only the first (resonant) term
kept, if we make the following replacements:

ω ω ωˆ → ˆ Δ ≡ − → −′ ′ ′A H , . (6.136)nn nn nn
(1)

Let us use this equivalency to consider the results of coupling between a discrete-
energy state n′, into which the particle is initially placed, and a dense group of states
with a quasi-continuum spectrum, in the same energy range. Figure 6.11a shows an
example of such a system: a particle is initially (say, at t = 0) placed into a potential
well separated by a penetrable potential barrier from a formally infinite region with
a continuous energy spectrum. Let me hope that the physical discussion in the last
section makes the outcome of such an experiment evident: the particle will gradually
and irreversibly tunnel out of the well, so that the probability Wn′(t) of its still
residing in the well will decay in accordance with Eq. (6.114). The rate of this decay
may be found by making the replacements (6.136) in Eq. (6.111):

π ρΓ =
ℏ ′H

2
, (6.137)nn n

(1) 2

where the states n and n′ now have virtually the same energy41.

Figure 6.11. Tunneling coupling of a discrete-energy state n′ to: (a) a state continuum, and (b) another
discrete-energy state n.

41 The condition of validity of Eq. (6.137) is again given by Eq. (6.117), but with ω = 0 in the upper limit.
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It is very informative to compare this result, semi-quantitatively, with Eq. (6.105)
for a symmetric (En = En′) system of two potential barrier separated by a similar
potential barrier—see figure 6.11b. For the symmetric case, i.e. ξ = 0, Eq. (6.105) is
reduced to simply

Ω =
ℏ ′H
1

(6.138)nn
(1)

con

Here I have used index ‘con’ (from ‘confinement’) to emphasize that this matrix
element is somewhat different from the one participating in Eq. (6.137), even if the
potential barriers are similar. Indeed, in the latter case, the matrix element,

∫ ψ ψ= ˆ ′ = ˆ′ ′
*H n H n H dx, (6.139)nn n n

(1) (1) (1)

has to be calculated for two wavefunctions ψn and ψn′ confined to spatial intervals of
the same scale lcon, while in Eq. (6.137), the wavefunctions ψn are extended to a much
larger distance l ≫ lcon—see figure 6.11. As Eq. (6.129) tells us, in the 1D model this
means an additional small factor of the order of (lcon/l )

1/2. Now using Eq. (6.128) as
a crude but suitable model for the final-state wavefunctions, we arrive at the
following estimate, independent of the artificially introduced length l:

π ρ π
π

ℏΓ ∼ ∼
ℏ

∼
Δ

≡ ℏΩ
Δ′ ′

′

′ ′
H

l
l

H
l
l

lm
k

H

E E
2 2

2
( )

, (6.140)
nn n nn

n

nn

n n

(1)
con

2 con (1)
con

2 con
2

(1)
con

2
2

where ΔEn′ ∼ ℏ2/ml2con is the scale of the differences between the eigenenergies of the
particle in an unperturbed potential well. Since the condition of validity of Eq.
(6.138) is ℏΩ ≪ ΔEn′, we see that

ℏΓ ∼ ℏΩ
Δ

ℏΩ ≪ ℏΩ
E

. (6.141)
n

This (sufficiently general42) perturbative result confirms the conclusion of a more
particular analysis carried out in the end of section 2.6: the rate of the (irreversible)
quantum tunneling into a state continuum is always much lower than the frequency
of (reversible) quantum oscillations between discrete states separated with the same
potential barrier—at least for the case when both are much lower than ΔEn′/ℏ, so
that the perturbation theory is valid. A very handwaving interpretation of this result
is that the confined particle oscillates between the confined state in the well and some
state behind the barrier many times before finally ‘deciding’ to perform an
irreversible transition into the unconfined continuum. This picture is consistent
with the experimentally observable effects of dispersive electromagnetic environ-
ment on the electron tunneling43.

42 It is straightforward to check that the estimate (6.141) is valid for similar problems of any spatial
dimensionality, not just the 1D case we have analyzed.
43 See, e.g. [7].
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Let me conclude this section (and this chapter) with the application of Eq. (6.137)
to a very important case, which will provide a smooth transition to the next chapter’s
topic. Consider a composite system consisting of two parts (‘components’), a and b,
with the energy spectra sketched in figure 6.12. Let the systems be completely
independent initially. The independence means that in the absence of their coupling
(say, at t < 0), the total Hamiltonian of the system may be represented as a sum of
two operators:

ˆ = ˆ + ˆH H a H b( ) ( ), (6.142)a b
(0)

where the arguments a and b symbolize the non-overlapping sets of the degrees of
freedom of the two systems. Such operators, belonging to their individual, different
Hilbert spaces, naturally commute. Similarly, the eigenkets of the system may be
naturally factored as

= ⊗n n n (6.143)a b

The direct product sign⊗ is used here (and below) to denote the formation of a joint
ket-vector from the kets of the independent systems, belonging to different Hilbert
spaces. Evidently, the order of operands in such a product may be changed at will.
As a result, its eigenenergies separate into a sum, just as the Hamiltonian (6.142)
does:

ˆ = ˆ + ˆ ⊗
≡ ˆ ⊗ + ˆ ⊗ = +

H n H H n n

H n n H n n E E n

( )

( ) ( ) ( ) .
(6.144)a b a b

a a b b b a na nb

(0)

In such a composite systems, the relatively weak interaction of its components
may be usually represented as a bilinear product of two Hermitian operators, each
depending only on the degrees of freedom of only one component system:

ˆ = ˆ ˆH A a B b( ) ( ) (6.145)(1)

A very common example of such an interaction is the electric-dipole interaction
between an atomic-scale system (with a linear size of the order of the Bohr radius

Figure 6.12. Energy relaxation in system a due to its weak coupling to system b (which serves as the
environment of a).
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rB ∼ 10−10 m) and the electromagnetic field at optical frequencies ω ∼ 1016 s−1, with
the wavelength λ = 2πc/ω ∼ 10−6 m ≫ rB:

44

EE ∑ˆ = −ˆ ⋅ ˆ ˆ ≡ ˆH qd d r, with , (6.146)
k

k k
(1)

where the dipole electric moment d depends only on the positions rk of the charged
particles (numbered with index k) of the atomic system, while that of electric field EE
is a function of only the electromagnetic field’s degrees of freedom—to be discussed
in chapter 9 below.

Returning to the general situation shown in figure 6.12, if the component system a
was initially in an excited state n′a , the interaction (6.145) may bring it into another
discrete state na of a lower energy—for example, the ground state. In the process of
this transition, the released energy, in the form of an energy quantum

ωℏ ≡ −′E E , (6.147)n a na

is picked up by the system b:

ω= + ℏ ≡ + −′ ′ ′E E E E E( ), (6.148)nb n b n b n a na

so that the total energy E = Ea + Eb of the system does not change. (If the states na and
n′b are the ground states of the two component systems, as they are in most
applications of this analysis, and we take the ground state energy Eg = Ena + En′b
of the composite system for the reference, then Eq. (6.148) gives merely Enb = En′a.) If
the final state nb of the system b is inside a state group with a quasi-continuous energy
spectrum (figure 6.12), the process has the exponential character (6.114)45 and may be
interpreted as the effect of energy relaxation of the system a, with the released energy
quantum ℏω absorbed by the system b. Note that since the quasi-continuous spectrum
essentially requires a system of a large spatial size, such a model is very convenient for
description of the environment b of the quantum system a. (In physics, the ‘environ-
ment’ typically means all the Universe—less the system under consideration.)

If the relaxation rate Γ is sufficiently low, it may be described by the Golden Rule
(6.137). Since the perturbation (6.145) does not depend on time explicitly, and the
total energy E does not change, this relation, with the account of Eqs. (6.143) and
(6.145), takes the form

π ρΓ =
ℏ

≡ ˆ ′

= ˆ ′

′ ′ ′

′

A B A n A n

B n B n

2
, where ,

and ,
(6.149)

nn nn n nn a a

nn b b

2 2

where ρn is the density of the final states of the system b at the relevant energy
(6.148). In particular, Eq. (6.149), with the dipole Hamiltonian (6.146), enables a

44 See, e.g. Part EM section 3.1, in particular Eq. (3.16), in which letter p is used for the electric dipole moment.
45 Such a process is spontaneous: it does not require any external agent, and starts as soon as either the
interaction (6.145) has been turned on, or (if it is always on) as soon as the system a is placed into the excited
state n′a.
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very straightforward calculation of the natural linewidth of atomic electric-dipole
transitions. However, such calculation has to be postponed until chapter 9, in which
we will discuss the electromagnetic field quantization—i.e., the exact nature of the
states nb and n′b for this problem, and hence will be able to calculate Bnn′ and ρn.
Instead, I will now proceed to a general discussion of the effects of interaction of
quantum systems with their environment, toward which the situation shown in
figure 6.12 provides a clear conceptual path.

6.8 Problems

Problem 6.1. Use Eq. (6.14) to prove the following general form of the Hellmann–
Feynman theorem (whose proof in the wave-mechanics domain was the task of
problem 1.5):

λ λ
∂
∂

= ∂ ˆ
∂

E
n

H
n ,n

where λ is an arbitrary c-number parameter.

Problem 6.2. Establish a relation between Eq. (6.16) and the result of the classical
theory of weakly anharmonic (‘nonlinear’) oscillations for negligible damping.

Hint: Use the N Bohr’s reasoning, discussed in problem 1.1.

Problem 6.3. A weak, time-independent additional force F is exerted on a 1D
particle that was placed into a hard-wall potential well

⎧⎨⎩= < <
+∞

U x
x a

( )
0, for 0 ,

, otherwise.

Calculate, sketch, and discuss the 1st-order perturbation of its ground-state
wavefunction.

Problem 6.4. A time-independent force F = μ(nxy+nyx), where μ is a small constant,
is applied to a 3D harmonic oscillator of mass m and frequency ω0. Calculate, in the
first order of the perturbation theory, the effect of the force upon the ground state
energy of the oscillator, and its lowest excited energy level. How small should the
constant μ be for your results to be quantitatively correct?

Problem 6.5. A 1D particle of mass m is localized at a narrow potential well that
may be approximated with a delta-function:

W Wδ= − >U x x( ) ( ), with 0.

Calculate the change of its ground state’s energy by an additional weak, time-
independent force F, in the first nonvanishing approximation of the perturbation
theory. Discuss the limits of validity of this result, taking into account that at F ≠ 0,
the localized state of the particle is metastable.
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Problem 6.6. Use the perturbation theory to calculate the eigenvalues of the
observable L2 (where L is the orbital angular momentum) in the limit |m| ≈ l ≫ 1,
by purely wave-mechanical means.

Hint: Try the following substitution: Θ(θ) = f(θ)/sin1/2 θ.

Problem 6.7. In the first nonvanishing order of the perturbation theory, calculate the
shift of the ground-state energy of an electrically charged spherical rotator (i.e. a
particle of mass m, free to move over a spherical surface of radius R) due to a weak,
uniform, time-independent electric field EE.

Problem 6.8. Use the perturbation theory to evaluate the effect of a time-independ-
ent, uniform electric field EE on the ground state energy Eg of a hydrogen atom. In
particular:

(i) calculate the 2nd-order shift of Eg, neglecting the extended unperturbed states
with E > 0, and bring the result to the simplest analytical form you can,

(ii) find the lower and the upper bounds on the shift, and
(iii) discuss the simplest manifestations of this quadratic Stark effect.

Problem 6.9. A particle of massm, with electric charge q, is in its ground s-state with
a given energy Eg < 0, being localized by a very short-range, spherically-symmetric
potential well. Calculate its static electric polarizability α.

Problem 6.10. In some atoms, the charge-screening effect of other electrons on the
motion of each of them may be reasonably well approximated by the replacement of
the Coulomb potential (3.190), U = −C/r, with the so-called Hulthén potential

⎧⎨⎩= −
−

→ − ×
≪

− ≪
U

C a
r a

C
r r a

r a a a r
/

exp{ / } 1
1/ , for ,
exp{ / }/ , for ,

where a is the effective screening radius. Assuming that a ≫ r0, use the perturbation
theory to calculate the energy spectrum in this model, in the lowest order needed to
lift the l-degeneracy of the levels.

Problem 6.11. In the first nonvanishing order of the perturbation theory, calculate
the correction to energies of the ground state and all lowest excited states of a
hydrogen-like atom/ion, due to electron’s penetration into its nucleus, modeling it as
a spinless, uniformly charged sphere of a radius R ≪ rB/Z.

Problem 6.12. Prove that the kinetic-relativistic correction operator (6.48) indeed
has only diagonal matrix elements in the basis of unperturbed Bohr atom states
(3.200).

Problem 6.13. Calculate the lowest-order relativistic correction to the ground-state
energy of a 1D harmonic oscillator.
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Problem 6.14. Use the perturbation theory to calculate the contribution to the
magnetic susceptibility χm of a dilute gas, that is due to the orbital motion of a single
electron inside each gas’s particle. Spell out your result for a spherically-isotropic
ground state of the electron, and give an estimate of the magnitude of this orbital
susceptibility.

Problem 6.15. How to calculate the energy level degeneracy lifting, by a time-
independent perturbation, in the 2nd order of the perturbation in Ĥ ,

(1)
assuming that

it is not lifted in the 1st order? Carry out such calculation for a plane rotator of mass
m and radius R, carrying electric charge q, and placed into a weak, uniform,
constant electric field EE.

Problem 6.16.* The Hamiltonian of a quantum system is slowly changed in time.

(i) Develop a theory of quantum transitions in the system, and spell out its result
in the 1st order in the speed of the change.

(ii) Use the 1st-order result to calculate the probability that a finite-time pulse of a
slowly changing force F(t) drives a 1D harmonic oscillator, initially in its
ground state, into an excited state.

(iii) Compare the last result with the exact one.

Problem 6.17. Use the single-particle approximation to calculate the complex
electric permittivity ε(ω) of a dilute gas of similar atoms, due to their induced
electric polarization by a weak external ac field, for a field frequency ω very close to
one of quantum transition frequencies ωnn′. Based on the result, calculate and
estimate the absorption cross-section of each atom.

Hint: In the single-particle approximation, an atom’s properties are determined by Z
similar, non-interacting electrons, each moving in a similar static attracting
potential, generally different from the Coulomb one, because it is contributed not
only by the nucleus, but also by other electrons.

Problem 6.18. Use the solution of the previous problem to generalize the expression
for the London dispersion force between two atoms (whose calculation in the
harmonic oscillator model was the subject of problems 3.16 and 5.15) to the single-
particle model with an arbitrary energy spectrum.

Problem 6.19. Use the solution of the previous problem to calculate the potential
energy of interaction of two hydrogen atoms, both in their ground state, separated
by distance r ≫ rB.

Problem 6.20. In a certain quantum system, distances between three lowest energy
levels are slightly different—see figure below (|ξ|≪ ω1,2). Assuming that the involved
matrix elements of the perturbation Hamiltonian are known, and are all propor-
tional to the external ac field’s amplitude, find the time necessary to populate the first
excited level almost completely (with a given precision ε ≪ 1), using the Rabi
oscillation effect, if at t = 0 the system is completely in its ground state.
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Problem 6.21.* Analyze the possibility of a slow transfer of a system from one of its
energy levels to another one (in the figure below, from level 1 to level 3), using the
scheme shown in that figure, in which the monochromatic external excitation
amplitudes A+ and A− may be slowly changed at will.

Problem 6.22. A weak external force pulse F(t), of a finite time duration, is applied
to a 1D harmonic oscillator that initially was in its ground state.

(i) Calculate, in the lowest nonvanishing order of the perturbation theory, the
probability that the pulse drives the oscillator into its lowest excited state.

(ii) Compare the result with the exact solution of the problem.
(iii) Spell out the perturbative result for a Gaussian-shaped waveform,

τ= −F t F t( ) exp{ / },0
2 2

and analyze its dependence on the scale τ of the pulse duration.

Problem 6.23. A spatially-uniform, but time-dependent external electric field EE t( ) is
applied, starting from t = 0, to a charged plane rotator, initially in its ground state.

(i) Calculate, in the lowest nonvanishing order in the field’s strength, the
probability that by time t > 0, the rotator is in its nth excited state.

(ii) Spell out and analyze your results for a constant-magnitude field rotating, with
a constant angular velocity ω, within the rotator’s plane.

(iii) Do the same for a monochromatic field of frequency ω, with a fixed polarization.

Problem 6.24. A spin-½ with a gyromagnetic ratio γ is placed into a magnetic field
including a time-independent componentBB0, and a perpendicular field of a constant
magnitude Br, rotated with a constant angular velocity ω. Can this magnetic
resonance problem be reduced to one already discussed in chapter 6?

Problem 6.25. Develop the general theory of quantum excitations of the higher
levels of a discrete-spectrum system, initially in the ground state, by a weak time-
dependent perturbation, up to the 2nd order. Spell out and discuss the result for the
case of a monochromatic excitation, with a nearly perfect tuning of its frequency ω
to the half of a certain quantum transition frequency ωn0 ≡ (En − E0)/ℏ.
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Problem 6.26. A heavy, relativistic particle, with electric charge q = Ze, passes by a
hydrogen atom, initially in its ground state, with an impact parameter (the shortest
distance) b within the range rB ≪ b ≪ rB/α, where α ≈ 1/137 is the fine structure
constant. Calculate the probability of atom’s transition to its lowest excited states.

Problem 6.27.* A particle of mass m is initially in the localized ground state, with
the known energy Eg < 0, of a very small, spherically-symmetric potential well.
Calculate the rate of its delocalization by an applied force F(t) with time-
independent amplitude F0, frequency ω, and direction nF.

Problem 6.28.* Calculate the rate of ionization of a hydrogen atom, initially in its
ground state, by a classical, linearly polarized electromagnetic wave with an electric
field’s amplitude E0, and a frequency ω within the range

ωℏ ≪ ≪m r c r/ / ,e B
2

B

where rB is the Bohr radius. Recast your result in terms of the cross-section of this
electromagnetic wave absorption process. Discuss briefly what changes of the theory
would be necessary if either of the above conditions had been violated.

Problem 6.29.* Use the quantum-mechanical Golden Rule to derive the general
expression for the electric current I through a weak tunnel junction between two
conductors, biased with dc voltage V, treating the conductors as Fermi gases of
electrons, with negligible direct interaction. Simplify the result in the low-voltage
limit.

Hint: The electric current flowing through a weak tunnel junction is so low that it
does not substantially perturb the electron states inside each conductor.

Problem 6.30.* Generalize the result of the previous problem to the case when a
weak tunnel junction is biased with voltage V(t) = V0 + Acosωt, with ℏω generally
comparable with eV0 and eA.

Problem 6.31.* Use the quantum-mechanical Golden Rule to derive the Landau–
Zener formula (2.257).
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Chapter 7

Open quantum systems

This chapter discusses the effects of weak interaction of a quantum system with its
environment. Some part of this material is on the fine line between the quantum
mechanics and the (quantum) statistical physics. Here I will only cover those aspects
of the latter field1 that are of key importance for the major goals of this course,
including the discussion of quantum measurements in chapter 10.

7.1 Open systems, and the density matrix
All the way until the very end of the previous chapter, we have discussed quantum
systems isolated from their environment. Indeed, from the very beginning we have
assumed that we are dealing with the statistical ensembles of systems as similar to each
other as is only allowed by the laws of quantum mechanics. Each member of such an
ensemble, called pure or coherent, may be described by the same quantum state α—in
the wave mechanics case, by the same wavefunction Ψα. Even our discussion in the
end of the last chapter, in which one component system (in figure 6.13, system b) may
be used as a model of the environment of its counterpart (system a), was still based on
the assumption of a pure initial state (6.143) of the composite system. If the interaction
of two component systems is described by a certain Hamiltonian (the one given by Eq.
(6.145), for example), for its state α at an arbitrary instant we may write

∑ ∑α α α= = ∣ 〉 ⊗ ∣ 〉n n n , (7.1)
n n

n n a b

with a unique correspondence between the eigenstates na and nb.

1 For a broader discussion of statistical mechanics and physical kinetics, including those of quantum systems,
the reader is referred to the Part SM of this series.
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However, in many important cases our knowledge of a quantum system’s state is
incomplete2. These cases fall into two different categories. The first case is when a
relatively simple quantum system s of our interest (say, an electron or an atom) is in
a weak3 but substantial contact with its environment e—here understood in the most
general sense, say, as the whole Universe less system s—see figure 7.1. Then there is
virtually no chance of making two or more experiments with exactly the same
composite system, because it would imply a repeated preparation of the whole
environment (including the experimenter :-) in a certain quantum state—a rather
challenging task, to put it mildly. It makes much more sense to consider a statistical
ensemble of another kind—a mixed ensemble, with random quantum states of the
environment, though possibly with its macroscopic parameters (e.g. temperature,
pressure, etc) known with a high precision. Such ensembles will be the focus of the
analysis in this chapter.

Much of this analysis will pertain also to another category of cases, namely when
the system of interest is isolated from its environment, at present, with an acceptable
precision, but our knowledge of its state is still incomplete by some other reason. The
most common of such reasons is that the system and its environment had been in
contact at some previous time. So, this second category of cases may be considered
as a particular case of the first one, and may be described by the results of its
analysis, with certain simplifications—which will be spelled out in appropriate places
of my narrative.

In classical physics, the analysis of mixed statistical ensembles is based on the
notion of the probability W (or the probability density w) of each detailed (‘micro-
scopic’) state of the system of interest4; let us see how this ensemble may be described
in quantum mechanics. In the case when the coupling between the system of our
interest and its environment is sufficiently weak, so that they may be clearly
separated, we can, as in the perturbation theory, use the bra- and ket-vectors of
their unperturbed states, defined in completely different Hilbert spaces. Then the

Figure 7.1. A quantum system and its environment (VERY schematically).

2 Indeed, I am unaware of a single case when a system would be exactly coherent, though in many cases, such
as the ones discussed in the previous chapters, deviations from the coherence may be ignored with acceptable
accuracy.
3 If the interaction between a system and its environment is very strong, their very partition is impossible.
4 See, e.g. Part SM section 2.1.
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most general quantum state of the whole Universe, still assumed to be pure5, may be
described as the following linear superposition:

∑α α= ∣ 〉 ⊗ ∣ 〉s e . (7.2)
j k,

jk j k

The ‘only’ difference between the description of such an entangled state, and the
superposition of separable states described by Eq. (7.1), is that the coefficients αjk on
the right-hand side of Eq. (7.2) are numbered with two indices: the index j listing the
quantum states of the system s, and the index k numbering the (enormously large) set
of quantum states of the environment. So, in a mixed ensemble6, a certain quantum
state sj of the system of interest may coexist with different states of its environment.
Of course, the enormity of the Hilbert space of the environment, i.e. the number of
the k-factors in the superposition (7.2), strips us of any practical opportunity to
make direct calculations using that sum. For example, according to the basic
Eq. (4.125), in order to find the expectation value of an arbitrary observable A in the
state (7.2), we would need to calculate the long bracket

∑α α α α= ˆ ≡ 〈 ∣ ⊗ 〈 ∣ ˆ∣ 〉 ⊗ ∣ 〉
′ ′

* ′ ′ ′ ′A A e s A s e . (7.3)
j j k k, ; ,

jk j k k j j k

Even if we assume that each of the sets {s} and {e} is full and orthonormal, Eq. (7.3)
still includes a double sum over the enormous basis state set of the environment!

However, let us consider a limited, but the most important subset of operators—
those of intrinsic observables, which depend only on the degrees of freedom of the
system of our interest (s). These operators do not act upon environment’s degrees of
freedom, and hence in Eq. (7.3) we may move the environment bra-vectors 〈ek∣ over
all the way to the ket-vectors ∣ek′〉. Assuming, again, that the set of environmental
eigenstates is full and orthonormal, Eq. (7.3) is now reduced to

∑ ∑ ∑α α α α= 〈 ∣ ˆ∣ 〉 =
′ ′ ′

* ′ ′ ′ ′ ′ * ′A s A s e e A . (7.4)
j j k k jj k, ; ,

jk j k j j k k jj jk j k

This is already a big relief, because we have ‘only’ a single sum over k, but the
main trick7 is still ahead. After the summation over k, the second sum in the last
form of Eq. (7.4) is some function w of the indices j and j′, so that, according to
Eq. (4.96), this relation may be represented as

∑= =
′

′ ′A A w Tr(Aw) , (7.5)
jj

jj j j

where the matrix w, with the elements

5Whether this assumption is true is an interesting issue, still being debated (more by philosophers than by
physicists), but it is widely believed that its solution is not critical for the validity of the results of this approach.
6 Besides its ‘pathological’ particular case when it may be reduced to the pure ensemble (7.1), i.e. when the
overwhelming majority of the coefficients αjk vanish.
7 It was suggested in 1927 by J von Neumann.
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∑ ∑α α α α≡ ≡′ * ′ ′ ′
*w w, i.e. , (7.6)

k k

j j jk j k jj jk j k

is called the density matrix of the system. Most importantly, Eq. (7.5) shows that the
knowledge of this matrix allows the calculation of the expectation value of any
intrinsic observable A (and, according to the general Eqs. (1.33) and (1.34), its rms
fluctuation as well, if necessary), even for the very general mixed statistical ensemble
(7.2). For this reason let us have a very good look at the density matrix.

First of all, we know from the general discussion in chapter 4, fully applicable to
the pure state (7.2), the expansion coefficients in superpositions of this type may be
always expressed as brackets; in our current case, we may write

α α= 〈 ∣ ⊗ 〈 ∣( )e s . (7.7)jk k j

Plugging this expression into Eq. (7.6), we get

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑α α α α≡ = 〈 ∣ ⊗ ⊗ ∣ 〉 = 〈 ∣ ˆ ∣ 〉′ ′

*
′ ′w s e e s s w s . (7.8)

k k

jj jk j k j k k j j j

We see that from the point of our system (i.e. in its Hilbert space whose basis states
may be numbered by the index j only), the density matrix is indeed just the matrix of
some construct8,

∑ α αˆ ≡w e e , (7.9)
k

k k

which is called the density (or ‘statistical’) operator. As follows from the definition
(7.9), in contrast to the density matrix this operator does not depend on the choice of
a particular basis sj—just as all linear operators considered earlier in this course. In
contrast to them, the density operator does depend on the composite system’s state α,
including the state of the system s as well. However, in the j-space it is mathemati-
cally still just an operator whose matrix elements obey all relations of the bra–ket
formalism.

In particular, due to its definition (7.6), the density operator is Hermitian:

∑ ∑α α α α= = =′
* * ′ ′ * ′w w , (7.10)

k k
jj jk j k j k jk j j

so that according to the general analysis of section 4.3, in the Hilbert space of the
system s, there should be a certain basis {w} in which the matrix of this operator is
diagonal:

δ=′ ′w w . (7.11)jj w j jjin

8Of course the ‘brackets’ in this expression are not c-numbers, because state α is defined in a larger Hilbert
space (of the environment plus the system of interest) than the basis states ek (of the environment only).
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Since any operator, in any basis, may be represented in the form (4.59), in the basis
{w} we may write

∑ˆ = ∣ 〉 〈 ∣w w w w . (7.12)
j

j j j

This expression recalls, but is not equivalent to Eq. (4.44) for the identity operator,
that has been used so many times in this course, and in the basis wj has the form

∑ˆ = ∣ 〉〈 ∣I w w . (7.13)
j

j j

In order to comprehend the meaning of the coefficients wj participating in Eq.
(7.12), let us use Eq. (7.5) to calculate the expectation value of any observable A
whose eigenstates coincide with those of the special basis set {w}:

∑ ∑δ= = =
′

′ ′A A w A wTr (Aw) , (7.14)
jj j

jj j jj j j

where Aj is just the expectation value of observable A in the state wj. Hence, in order
to comply with the general Eq. (1.37), the real c-number wj must have the physical
sense of the probability Wj of finding the system in the state j. As a result, we may
rewrite Eq. (7.12) in the form

∑ˆ = ∣ 〉 〈 ∣w w W w . (7.15)
j

j j j

In one ultimate case when only one of the probabilities (say,Wj″) is different from
zero,

δ= ″W , (7.16)j jj

the system is in a coherent (pure) state wj″. Indeed, it is fully described by one ket-
vector ∣wj″〉, and we can use the general rule (4.86) to represent it in another
(arbitrary) basis {s} as a coherent superposition

∑ ∑∣ 〉 = ∣ 〉 = ∣ 〉
′ ′

″
†

′ ′ ′
*

′w U s U s( ) , (7.17)
j j

j jj j jj j

where U is the unitary matrix of transform from the basis {w} to the basis {s}.
According to Eqs. (7.11) and (7.16), in such a pure state the density matrix is
diagonal in the {w} basis,

δ δ∣ =′ ″ ′ ″w a, (7.18 )jj w j j j jin , ,

but not in an arbitrary basis. Indeed, using the general rule (4.92), we get

∑∣ = = =
′

′
†

′ ′ ′ ″
†

″ ′ ″
* ″ ′w U w U U U U U b. (7.18 )

l l,

jj s jl ll w l j jj j j j j j jin in
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To make this result more transparent, let us denote the matrix elements Uj″j =
〈wj″∣sj〉 (which, for a fixed j″, depend on just one index j) by αj; then

α α=′ * ′w , (7.19)jj s j jin

so that N2 elements of the whole N × N matrix is determined by just one string of N
c-numbers αj. For example, for a two-level system (N = 2),

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟α α α α

α α α α
∣ =

* *

* *
w . (7.20)sin

1 1 2 1

1 2 2 2

We see that the off-diagonal terms are, colloquially, ‘as large as the diagonal ones’,
in the following sense:

=w w w w . (7.21)12 21 11 22

Since the diagonal terms have the sense of the probabilitiesW1,2 to find the system in
the corresponding state, we may represent Eq. (7.20) in the form

⎛
⎝⎜

⎞
⎠⎟∣ =

φ

φ−

W WW e

WW e W
w

( )

( )
. (7.22)

i

ipure state
1 1 2

1/2

1 2
1/2

2

The physical sense of the (real) constant φ is the phase shift between the coefficients
in the linear superposition (7.17), which represents the pure state wj″ in the
basis {s1,2}.

Now let us consider a different statistical ensemble of two-level systems, that
includes the member states identical in all aspects (including similar probabilitiesW1,2

in the same basis s1,2), besides that the phase shifts φ are random, with the phase
probability uniformly distributed over the trigonometric circle. Then the ensemble
averaging is equivalent to the averaging over φ from 0 to 2π,9 which kills the off-
diagonal terms of the density matrix (7.22), so that the matrix becomes diagonal:

⎛
⎝⎜

⎞
⎠⎟∣ = W

W
w

0
0

. (7.23)classical mixture
1

2

The mixed statistical ensemble with the density matrix diagonal in the stationary
state basis is called the classical mixture, and represents the limit opposite to the pure
(coherent) state.

After this example, the reader should not be much shocked by the main claim10 of
statistical mechanics that any large ensemble of similar systems in thermodynamic (or
‘thermal’) equilibrium is exactly such a classical mixture. Moreover, for systems in the

9For a system with a time-independent Hamiltonian, such averaging is especially plausible in the basis of the
stationary states n of the system, in which the phase φ is just the difference of integration constants in Eq.
(4.158), and its randomness may be naturally produced by minor fluctuations of the energy difference E1 − E2.
In section 7.3 below, we will study the dynamics of this dephasing process.
10 This fact follows from the basic postulate of statistical physics, called the microcanonical distribution—see,
e.g. Part SM section 2.2.
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thermal equilibrium with a much larger environment of a fixed temperature T (such an
environment is usually called a heat bath or a thermostat) the statistical physics gives11

a very simple expression, called the Gibbs distribution, for the probabilities Wn:

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭∑= − ≡ −W

Z
E

k T
Z

E
k T

1
exp , with exp . (7.24)

n

n
n n

B B

where En is the eigenenergy of the corresponding stationary state, and the normal-
ization coefficient Z is called the statistical sum.

A detailed analysis of classical and quantum ensembles in thermodynamic
equilibrium is a major focus of statistical physics courses (such as Part SM of this
series) rather than this course of quantum mechanics. However, I would still like to
attract reader’s attention to the key fact that, in contrast with the similar-looking
Boltzmann distribution for single particles12, the Gibbs distribution is general and is
not limited to classical statistics. In particular, for a quantum gas of indistinguish-
able particles, it is absolutely compatible with the quantum statistics (such as the
Bose–Einstein or Fermi–Dirac distributions) of the component particles. For
example, if we use Eq. (7.24) to calculate the average energy of a 1D harmonic
oscillator of frequency ω0 in thermal equilibrium, we easily get13

⎧⎨⎩
⎫⎬⎭

⎛
⎝⎜

⎧⎨⎩
⎫⎬⎭

⎞
⎠⎟

⎧⎨⎩
⎫⎬⎭

⎛
⎝⎜

⎧⎨⎩
⎫⎬⎭

⎞
⎠⎟

ω ω

ω ω

= − ℏ − − ℏ

= − ℏ − − ℏ

W n
k T k T

Z
k T k T

exp 1 exp ,

exp
2

1 exp .

(7.25)

n
0

B

0

B

0

B

0

B

∑ ω ω ω ω
ω

≡ = ℏ ℏ ≡ ℏ + ℏ
ℏ −=

∞

E W E
k T k T

a
2

coth
2 2 exp{ / } 1

. (7.26 )
n 0

n n
0 0

B

0 0

0 B

An alternative form of the last result,

⎧⎨⎩

ω ω

ω
ω

ω ω

= ℏ + ℏ

=
ℏ −

→ ≪ ℏ
ℏ ℏ ≪

E n

n
k T

k T
k T k T

b
2

, with

1
exp{ / } 1

0, for ,
/ , for ,

(7.26 )

0
0

0 B

B 0

B 0 0 B

may be interpreted as the addition, to the ground-state energy ℏω0/2, of the average
number 〈n〉 of thermally-induced excitations, with the energy ℏω0 each. In the
harmonic oscillator, whose energy levels are equidistant, such a language is
completely appropriate, because the transfer of the system from any level to the

11 See. e.g. Part SM section 2.4. The Boltzmann constant kB is only needed if temperature is measured in non-
energy units, say in kelvins.
12 See, e.g. Part SM section 2.8.
13 See, e.g. Part SM section 2.5—but mind a different energy reference level, E0 = ℏω0/2, used for example in
Part SM Eqs. (2.68) and (2.69), affecting the expression for Z. Actually, the calculation, using Eqs. (7.24) and
(5.86), is so straightforward that it is highly recommended to the reader as a simple exercise.
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one just above it adds the same amount of energy, ℏω0. Note that the above
expression for 〈n〉 is actually the Bose–Einstein distribution (for the particular case
of zero chemical potential); we see that it does not contradict the Gibbs distribution
(7.24) of the total energy of the system, but rather immediately follows from it14.

7.2 Coordinate representation, and the Wigner function
For many applications of the density operator, its coordinate representation is
convenient. (I will only discuss it for 1D case; the generalization to multi-dimension
case is straightforward.) Following Eq. (4.47), it is natural to define the following
function of two arguments (traditionally, also called the density matrix):

′ ≡ ˆ ′w x x x w x( , ) . (7.27)

Inserting, into the right-hand side of this definition, two closure conditions (4.44) for
an arbitrary (but full and orthonormal) basis {s}, and then using Eq. (4.233), we get15

∑ ∑ψ ψ′ = 〈 ∣ 〉 〈 ∣ ˆ ∣ 〉 〈 ∣ ′〉 = ∣ ′
′ ′

′ ′ ′ ′
*w x x x s s w s s x x w x( , ) ( ) ( ). (7.28)

j j j j, ,

j j j j j jj s jin

In the special basis {w}, in which the density matrix is diagonal, this expression is
reduced to

∑ψ ψ′ = ′*w x x x W x( , ) ( ) ( ). (7.29)
j

j j j

Let us discuss the properties of this function. At coinciding arguments, x′ = x, this
is just the probability density16:

∑ ∑ψ ψ= = =*w x x x W x w x W w x( , ) ( ) ( ) ( ) ( ). (7.30)
j j

j j j j j

However, the density matrix gives more information about the system than just the
probability density. As the simplest example, let us consider a pure quantum state,
with Wj = δj,j′, so that ψ(x) = ψj′(x), and

ψ ψ ψ ψ′ = ′ ≡ ′′ ′
* *w x x x x x x( , ) ( ) ( ) ( ) ( ). (7.31)j j

We see that the density matrix carries the information not only about the modulus,
but also the phase of the wavefunction. (Of course one may argue rather

14 Because of the fundamental importance of Eq. (7.26) for virtually all fields of physics, let me draw the
reader’s attention to its main properties. At low temperatures, kBT ≪ ℏω0, there are virtually no excitations,
〈n〉 → 0, and the average energy of the oscillator is dominated by that of its ground state. In the opposite limit
of high temperatures, 〈n〉 → kBT /ℏω0 ≫ 1, and 〈E〉 approaches the classical value kBT (complying with the
classical equipartition theorem that assigns energy kBT/2 to each quadratic contribution to the system’s
Hamiltonian function—in the 1D oscillator case, one to the potential-energy term and one to the kinetic-
energy term).
15 For now, I will focus on a fixed time instant (say, t = 0), and hence write ψ(x) instead of Ψ(x, t).
16 This fact is the origin of the density matrix’ name.
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convincingly that in this ultimate limit the density-matrix description is redundant,
because all this information is contained in the wavefunction itself.)

How may the density matrix be interpreted? In the simple case (7.31), we can
write

ψ ψ ψ ψ′ ≡ ′ ′ = ′ ′ = ′* * *w x x w x x w x x x x x x w x w x( , ) ( , ) ( , ) ( ) ( ) ( ) ( ) ( ) ( ), (7.32)2

so that the modulus squared of the density matrix is just as the joint probability
density to find the system at point x and point x′. For example, a simple wave packet
with a spatial extent δx, w(x, x′) has an appreciable magnitude only if both points
are not farther than δx from the packet center, and hence from each other. The
interpretation becomes more complex if we deal with an incoherent mixture of
several wavefunctions, for example the classical mixture describing the thermody-
namic equilibrium. In this case, we can use Eq. (7.24) to rewrite Eq. (7.29) as follows:

⎧⎨⎩
⎫⎬⎭∑ ∑ψ ψ ψ ψ′ = ′ = − ′* *w x x x W x

Z
x

E
k T

x( , ) ( ) ( )
1

( )exp ( ). (7.33)
n n

n n n n
n

n
B

As the simplest example, let us see what is the density matrix of a free (1D)
particle in the thermal equilibrium. As we know very well by now, in this case, the
set of energies Ep = p2/2m of stationary states (monochromatic waves) forms a
continuum, so that we need to replace the sum (7.33) with an integral, using for
example the ‘delta-normalized’ traveling-wave eigenfunctions (4.264):

⎧⎨⎩
⎫⎬⎭∫π

′ =
ℏ

−
ℏ

− ′
ℏ−∞

+∞ { }{ }w x x
Z

ipx p
mk T

ipx
dp( , )

1
2

exp exp
2

exp . (7.34)
2

B

This is a usual Gaussian integral, and may be worked out, as we have done
repeatedly in chapter 2 and beyond, by complementing the exponent to the full
square of the momentum p plus a constant. The statistical sum Zmay be also readily
calculated17,

π=Z mk T(2 ) , (7.35)B
1/2

However, for what follows it is more useful to write the result for the product wZ
(the so-called un-normalized density matrix):

⎛
⎝⎜

⎞
⎠⎟

⎧⎨⎩
⎫⎬⎭π

′ =
ℏ

− − ′
ℏ

w x x Z
mk T mk T x x

( , )
2

exp
( )
2

. (7.36)B
2

1/2
B

2

2

17Due to the delta-normalization of the eigenfunction, the density matrix (7.34) for the free particle (and any
system with a continuous eigenvalue spectrum) is normalized as

∫ ∫′ ′ = ′ =
−∞

+∞

−∞

+∞
w x x Zdx w x x Zdx( , ) ( , ) 1.
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This is a very interesting result: the density matrix depends only on the difference
of its arguments, dropping to zero fast as the distance between the points x and x′
exceeds the following characteristic scale (called the correlation length)

≡ 〈 − ′ 〉 = ℏ
x x x

mk T
( )

( )
. (7.37)c

2 1/2

B
1/2

This length may be interpreted in the following way. It is straightforward to use Eq.
(7.24) to verify that the average energy 〈E〉 = 〈p2/2m〉 of a free particle in the thermal
equilibrium, i.e. in the classical mixture (7.33), equals kBT/2. Hence the average
momentum’s magnitude may be estimated as

≡ 〈 〉 = =p p m E mk T(2 ) ( ) , (7.38)c
2 1/2 1/2

B
1/2

so that xc is of the order of the minimal length allowed by the Heisenberg-like
‘uncertainty relation’:

= ℏx p/ . (7.39)c c

Note that with the growth of temperature, the correlation length (7.37) goes to
zero, and the density matrix (7.36) tends to a delta-function:

δ′ → − ′→∞w x x Z x x( , ) ( ). (7.40)T

Since in this limit the average kinetic energy of the particle is not smaller than its
potential energy in any fixed potential profile, Eq. (7.40) is the general property of
the density matrix (7.33).

Let us discuss the following curious feature of Eq. (7.36): if we replace kBT with ℏ/i
(t − t0), and x′ with x0, the un-normalized density matrix wZ for a free particle turns
into the particle’s propagator—cf Eq. (2.49). This is not just an occasional coinci-
dence. Indeed, in chapter 2 we saw that the propagator of a system with an arbitrary
stationary Hamiltonian may be expressed via the stationary eigenfunctions as

∑ψ ψ= −
ℏ

− *{ }G x t x t x i
E

t t x( , ; , ) ( )exp ( ) ( ). (7.41)
n

n
n

n0 0 0 0

Comparing this expression with Eq. (7.33), we see that the replacements

−
ℏ

→ → ′i t t
k T

x x
( ) 1

, , (7.42)0

B
0

turn the pure-state propagator G into the un-normalized density matrix wZ of
the same system in thermodynamic equilibrium. This important fact, rooted in
the formal similarity of the Gibbs distribution (7.24) with the Schrödinger
equation’s solution (1.69), enables a theoretical technique of the so-called
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thermodynamic Green’s functions, which is especially productive in condensed
matter physics18.

For our current purposes, we can employ Eq. (7.42) to re-use some of the wave
mechanics results, in particular the following formula for the harmonic oscillator’s
propagator

⎛
⎝⎜

⎞
⎠⎟

⎧⎨⎩
⎫⎬⎭

ω
π ω

ω ω
ω

=
ℏ −

× −
+ − −

ℏ −

G x t x t
m

i t t

m x x t t xx
i t t

( , ; , )
2 sin[ ( )]

exp
[( )cos[ ( )] 2 ]

2 sin[ ( )]
.

(7.43)
0 0

0

0 0

1/2

0
2

0
2

0 0 0

0 0

which may be readily proved to satisfy the Schrödinger equation for the Hamiltonian
(5.62), with the appropriate initial condition: G(x, t0; x0, t0) = δ(x − x0). Making the
substitution (7.42), we immediately get

⎛
⎝⎜

⎞
⎠⎟

⎧⎨⎩
⎫⎬⎭

ω
π ω

ω ω
ω

′ =
ℏ ℏ

× − + ℏ − ′
ℏ ℏ

′

w x x Z
m

k T

m x x k T xx
k T

( , )
2 sinh[ / ]

exp
[( )cosh[ / ] 2 ]

2 sinh[ / ]
.

(7.44)

0

0 B

1/2

0
2 2

0 B

0 B

As a sanity check, at very low temperatures, kBT ≪ ℏω0, both hyperbolic functions
participating in this expression are very large and nearly equal, and it yields

⎜ ⎟

⎜ ⎟

⎡
⎣⎢
⎛
⎝

⎞
⎠

⎧⎨⎩
⎫⎬⎭

⎤
⎦⎥

⎧⎨⎩
⎫⎬⎭

⎡
⎣⎢
⎛
⎝

⎞
⎠

⎧⎨⎩
⎫⎬⎭

⎤
⎦⎥

ω
π

ω ω

ω
π

ω

′ →
ℏ

−
ℏ

× − ℏ

×
ℏ

− ′
ℏ

→w x x Z
m m x

k T

m m x

( , ) exp exp
2

exp .

(7.45)
T 0

0
1/4

0
2

0

B

0
1/4

0
2

In each of the expressions in square brackets we can readily recognize the ground
state’s wavefunction (2.275) of the oscillator, while the middle exponent is just the
statistical sum (7.24) in the low-temperature limit, when it is dominated by the
ground-level contribution:

⎧⎨⎩
⎫⎬⎭

ω∣ → − ℏ
→Z

k T
exp

2
. (7.46)T 0

0

B

As a result, Z in both parts of Eq. (7.45) may be cancelled, and the density matrix in
this limit is described by Eq. (7.31), with the ground state as the only state of the
system. This is natural when temperature is too low for the thermal excitation of any
other state.

18 I will have no time to discuss this technique, and have to refer the interested reader to special literature.
Probably, the most famous text of that field is A Abrikosov, L Gor’kov, and I Dzyaloshinski, Methods of
Quantum Field Theory in Statistical Physics, Prentice-Hall, 1963. (Later reprintings are available from Dover.)
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Returning to arbitrary temperatures, Eq. (7.44) in coinciding arguments gives the
following expression for the probability density19:

⎛
⎝⎜

⎞
⎠⎟

⎧⎨⎩
⎫⎬⎭

ω
π ω

ω ω= =
ℏ ℏ

−
ℏ

ℏ
w x x Z w x Z

m
k T

m x
k T

( , ) ( )
2 sinh[ / ]

exp tanh
2

. (7.47)0

0 B

1/2
0

2
0

B

This is just a Gaussian function of x, with the following variance:

ω
ω〈 〉 = ℏ ℏ

x
m k T2

coth
2

. (7.48)2

0

0

B

In order to compare this result with our earlier ones, it is useful to recast it as

ω ω ω= 〈 〉 = ℏ ℏ
U

m
x

k T2 4
coth

2
. (7.49)0

2
2 0 0

B

Comparing this expression with Eq. (7.26), we see that the average value of potential
energy is exactly one half of the total energy—the other half being the average
kinetic energy. This is what we could expect, because according to Eqs. (5.96) and
(5.97), such a relation holds for each Fock state and hence should also hold for their
classical mixture.

Unfortunately, besides the trivial case (7.30) of coinciding arguments, it is hard to
give a straightforward interpretation of the density function in terms of the system’s
measurements. This is a fundamental difficulty, which has been well explored in
terms of the Wigner function (sometimes called the ‘Wigner–Ville distribution’)20

defined as

⎛
⎝⎜

⎞
⎠⎟

⎧⎨⎩
⎫⎬⎭∫π

≡
ℏ

+
˜

−
˜

−
˜

ℏ
˜W X P w X

X
X

X iPX
dX( , )

1
2 2

,
2

exp . (7.50)

–

Figure 7.2. The coordinates X and X̃ employed in the Weyl–Wigner transform (7.50). They differ from the
coordinates obtained by the rotation of the reference frame by the angle π/2 only by coefficients√2, describing
a scale stretch.

19 I have to confess that this notation is imperfect, because from the point of view of rigorous mathematics, w
(x, x′) and w(x) are different functions, and so are w(p, p′) and w(p) used below. In the perfect world, I would
use different letters for them all, but I desperately want to stay with ‘w’ for all the probability densities, and
there are not so many good different fonts for this letter. Let me hope that the difference between these
functions is clear from their arguments, and from the context.
20 It was introduced in 1932 by E Wigner on the basis of a general (Weyl–Wigner) transform suggested by
H Weyl in 1927, and then re-derived in 1948 by J Ville on a different mathematical basis.
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From the mathematical standpoint, this is just the Fourier transform of the
density matrix in one of two new coordinates, defined by the relations illustrated in
figure 7.2:

≡ + ′ ˜ ≡ − ′ ≡ +
˜

′ ≡ −
˜

X
x x

X x x x X
X

x X
X

2
, , so that

2
,

2
. (7.51)

Physically, the new argument X may be interpreted as the average position of the
particle during the time interval (t − t′), while X̃ , as the distance passed by it during
that time interval, so that P characterizes the momentum of the particle during that
motion. As a result, the Wigner function is a mathematical construct intended to
characterize the system’s distribution simultaneously in the coordinate and the
momentum space—for 1D systems, on the phase plane [X, P], which we had
discussed earlier—see figure 5.8. Let us see how fruitful this intention is.

First of all, we may write the Fourier transform reciprocal to Eq. (7.50):

⎛
⎝⎜

⎞
⎠⎟

⎧⎨⎩
⎫⎬⎭∫+

˜
−

˜
=

˜
ℏ

w X
X

X
X

W X P
iPX

dP
2

,
2

( , ) exp . (7.52)

For the particular case ˜ =X 0, this relation yields

∫≡ =w X w X X W X P dP( ) ( , ) ( , ) . (7.53)

Hence the integral of the Wigner function over the momentum P gives the
probability density to find the system at point X—just as it does for a classical
distribution function wcl(X, P).

21

Next, the Wigner function has the similar property for integration over X. To
prove this fact, we may first introduce the momentum representation of the density
matrix, in the full analogy with its coordinate representation (7.27):

′ ≡ ˆ ′w p p p w p( , ) . (7.54)

Inserting, as usual, two identity operators, in the form given by Eq. (4.252), into the
right hand part of this equality, we can get the following relation between the
momentum and coordinate representations:

∫ ∫
∫ ∫π

′ = ′ ˆ ′ ′ ′

=
ℏ

′ −
ℏ

′ ′ ′
ℏ{ }{ }

w p p dxdx p x x w x x p

dxdx
ipx

w x x
ip x

( , )

1
2

exp ( , )exp .
(7.55)

This is of course nothing other than the unitary transform of an operator from the x-
basis to p-basis, similar to the first form of Eq. (4.272).22 For coinciding arguments,
p = p′, Eq. (7.55) is reduced to

21 Such a function, used to express the probability dW to find the system in a small area of the phase plane as
dW = wcl(X, P)dXdP, is the basic notion of (1D) classical statistics—see, e.g. Part SM section 2.1.
22Note that the last line of Eq. (4.272) is invalid for the density operator ŵ, because it is not local!
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⎧⎨⎩
⎫⎬⎭∫ ∫π

≡ =
ℏ

′ ′ − − ′
ℏ

w p w p p dxdx w x x
ip x x

( ) ( , )
1

2
( , )exp

( )
. (7.56)

Using Eq. (7.29) and then Eq. (4.265), this function may be represented as

⎧⎨⎩
⎫⎬⎭∫ ∫∑

∑
π

ψ ψ

φ φ

=
ℏ

′ − − ′
ℏ

=

*

*

w p W dxdx x x
ip x x

W p p

( )
1

2
( ) ( )exp

( )

( ) ( ),
(7.57)j

j

j j j

j j j

and hence interpreted as the probability density of the particle’s momentum at point
p. Now, in the variables (7.51), Eq. (7.56) has the form

⎛
⎝⎜

⎞
⎠⎟

⎧⎨⎩
⎫⎬⎭∫ ∫π

=
ℏ

+
˜

−
˜

−
˜

ℏ
˜w p w X

X
X

X ipX
dXdX( )

1
2 2

,
2

exp . (7.58)

Comparing this equality with the definition (7.50) of the Wigner function, we see
that

∫=w P W X P dX( ) ( , ) . (7.59)

Thus, according to Eqs. (7.53) and (7.59), the integrals of the Wigner function
over either the coordinate or momentum give the probability densities to find them
at certain values of these variables. This is of course the main requirement to any
quantum-mechanical candidate for the best analog of the classical probability
density, wcl(X, P).

Let us see how the Wigner function looks for the simplest systems in the
thermodynamic equilibrium. For a free 1D particle, we can use Eq. (7.34), ignoring
for simplicity the normalization issues:

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭∫∝ −

˜
ℏ

−
˜

ℏ
˜

−∞

+∞
W X P

mk TX iPX
dX( , ) exp

2
exp . (7.60)B

2

2

The usual Gaussian integration yields:

⎧⎨⎩
⎫⎬⎭= × −W X P

P
mk T

( , ) const exp
2

. (7.61)
2

B

We see that the function is independent of X (as it should be for this translational-
invariant system), and coincides with the Gibbs distribution (7.24). We could get the
same result directly from the classical statistics. This is natural, because as we know
from section 2.2, the free motion is essentially not quantized—at least in terms of its
energy and momentum.

Now let us consider a substantially quantum system, the harmonic oscillator.
Plugging Eq. (7.44) into Eq. (7.50), for that system in thermal equilibrium it is easy
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(and hence is left for reader’s exercise) to show that the Wigner function is also
Gaussian, now in both its arguments:

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎡
⎣⎢

⎤
⎦⎥
⎫
⎬
⎭

ω
= × − +W X P C

m X P
m

( , ) const exp
2 2

, (7.62)0
2 2 2

though the coefficient C is now different from 1/kBT, and tends to that limit only at
high temperatures, kBT≫ ℏω0. Moreover, for the Glauber state the Wigner function
also gives a very plausible result—a Gaussian distribution similar to Eq. (7.62), but
shifted to the central point of the state—see section 5.5.23 Unfortunately, for some
other possible states of the harmonic oscillator, e.g. any pure Fock state with n > 0,
the Wigner function takes negative values in some regions of the [X, P] plane—see
figure 7.3.24 (Such plots were the basis of my, admittedly very imperfect, classical
images of the Fock states in figure 5.8.)

The same is true for most other quantum systems and their states. Indeed, this fact
could be predicted just by looking at the definition (7.50) applied to a pure quantum
state, in which the density function may be factored—see Eq. (7.31):

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎧⎨⎩
⎫⎬⎭∫π

ψ ψ=
ℏ

+
˜

−
˜

−
˜

ℏ
˜*W X P X

X
X

X iPX
dX( , )

1
2 2 2

exp . (7.63)

Changing the argument P (say, at fixed X), we are essentially changing the spatial
‘frequency’ (wave number) of the wavefunction product’s Fourier component we are
calculating, and we know that Fourier images typically change sign as the frequency
is changed. Hence the wavefunctions should have some high-symmetry properties to
avoid this effect. Indeed, the Gaussian functions (describing, for example, the
Glauber states, and as the particular case, the ground state of the harmonic
oscillator) have such a symmetry, but many other functions do not.

Figure 7.3. The Wigner functions W(X, P) of a harmonic oscillator, in a few of its stationary (Fock) states n:
(a) n = 0, (b) n = 1; (c) n = 5. Graphics by J S Lundeen; adapted from http://en.wikipedia.org/wiki/
Wigner_function as public-domain material.

23 Please note that in notations of that section, the capital letters X and P mean not the arguments of the
Wigner function, but the Cartesian coordinates of the central point (5.102), i.e. the classical complex amplitude
of the oscillations.
24 Spectacular experimental measurements of this function (for n = 0 and n = 1) were carried out recently by
E Bimbard et al [1].
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Hence if the Wigner function was taken seriously as the quantum-mechanical
analog of the classical probability density wcl(X, P), we would need to interpret the
negative probability of finding the particle in certain elementary intervals dXdP—
which is hard to do. However, the function is still used for a semi-quantitative
interpretation of mixed states of quantum systems.

7.3 Open system dynamics: dephasing
So far we have discussed the density operator as something given at a particular time
instant. Now let us discuss how is it formed, i.e. its evolution in time, starting from
the simplest case when the probabilities Wj participating in Eq. (7.15) are time-
independent—by this or that reason, to be discussed below. In this case, in the
Schrödinger picture, we may rewrite Eq. (7.15) as

∑ˆ = ∣ 〉 〈 ∣w t w t W w t( ) ( ) ( ) . (7.64)
j

j j j

Taking a time derivative of both parts of this equation, multiplying them by iℏ, and
applying Eq. (4.158) to the basis states wj, with the account of the fact that the
Hamiltonian operator is Hermitian, we get

∑

∑

∑ ∑

ℏ ˆ̇ = ℏ ∣ ˙ 〉 〈 ∣ + ∣ 〉 〈 ˙ ∣

= ˆ ∣ 〉 〈 ∣ − ∣ 〉 〈 ∣ ˆ

≡ ˆ ∣ 〉 〈 ∣ − ∣ 〉 〈 ∣ ˆ

i w i w t W w t w t W w t

H w t W w t w t W w t H

H w t W w t w t W w t H

[ ( ) ( ) ( ) ( ) ]

[ ( ) ( ) ( ) ( ) ]

( ) ( ) ( ) ( ) .

(7.65)

j

j

j j

j j j j j j

j j j j j j

j j j j j j

Now using Eq. (7.64) again (twice), we get the so-called von Neumann equation25

ℏ ˆ̇ = ˆ ˆi w H w[ , ]. (7.66)

Note that this equation is similar in structure to Eq. (4.199) describing the time
evolution of time-independent operators in the Heisenberg picture operators:

ℏ ˆ̇ = ˆ ˆi A A H[ , ], (7.67)

besides the opposite order of the operators order in the commutator. (This change,
of course, changes only the sign of the right-hand side.) This should not be too
surprising, because Eq. (7.66) belongs to the Schrödinger picture, while Eq. (7.67)
belongs to the Heisenberg picture of the quantum dynamics.

The most important case when the von Neumann equation is (approximately)
valid is when the ‘own’ Hamiltonian Ĥs of the system s of our interest is time-
independent, and its interaction with the environment is so small that its effect on the

25 In some texts, it is called the ‘Liouville equation’, due to the philosophical proximity to the classical Liouville
theorem for the distribution function wcl(X, P)—see, e.g. Part SM section 6.1, in particular Eq. (6.5).
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system’s evolution during the considered time interval is negligible, but it had lasted
so long that it gradually put the system into a non-pure state—for example, but not
necessarily, into the classical mixture (7.24).26 (This is an example of the second case
discussed in section 7.1, when we need the mixed-ensemble description of the system,
even if its current contact with the environment is negligible.) If the interaction with
the environment is stronger, and hence is not negligible at the considered time
interval, Eq. (7.66) is generally not valid27, because the probabilities Wj may change
in time. However, this equation may still be used for a discussion of one major effect
of the environment, namely dephasing (also called ‘decoherence’), within a simple
model.

Let us start with the following general model a system interacting with its
environment, which will be used throughout this chapter:

λˆ = ˆ + ˆ + ˆH H H H{ } , (7.68)s e int

where {λ} denotes the (huge) set of the degrees of freedom of the environment28.
Evidently, this model is useful only if we may somehow tame the enormous size of
the Hilbert space of these degrees of freedom, and so work out the calculations all
the way to a practicably simple result. This turns out to be possible mostly if the
elementary act of interaction of the system and its environment is in some sense
small. Below, I will describe several cases when this is true; the classical example is
the Brownian particle interacting with the molecules of the surrounding gas or
fluid29. (In this example, a single hit by a molecule changes the particle’s momentum
by a minor faction.) On the other hand, the model (7.68) is not very productive for a
particle interacting with the environment consisting of similar particles, when a
single collision may change its momentum dramatically. In such cases, the methods
discussed in the next chapter are more relevant.

Now let us analyze a very simple model of a open two-level quantum system, with
its ‘own’ Hamiltonian having the form

26 In the last case, the statistical operator is diagonal in the stationary state basis and hence commutes with the
Hamiltonian. Hence the right-hand side of Eq. (7.66) vanishes, and it shows that in this basis, the density
matrix in completely time-independent.
27 Very unfortunately, this fact is not explained in some textbooks, which cite the von Neumann equation
without proper qualifications.
28Note that by writing Eq. (7.68), we are treating the whole system, including the environment, as a
Hamiltonian one. This can always be done if the accounted part of the environment is large enough, so that the
processes in the system s of our interest do not depend on the type of boundary between this part and the
‘external’ (even larger) environment; in particular we may assume the total system closed, i.e. Hamiltonian.
29 The theory of the Brownian motion, the effect first observed experimentally by biologist R Brown in the
early 1800s, was pioneered by A Einstein in 1905 and developed in detail by M Smoluchowski in 1906–7, and
A Fokker in 1913. Due to this historic background, in some older texts the whole approach described in this
chapter is called the ‘quantum theory of Brownian motion’. Let me, however, emphasize that due to the later
progress of experimental techniques, quantum-mechanical behaviors, including the environmental effects on
them, have been observed in a growing number of various quasi-macroscopic systems—for example, the
micromechanical oscillators mentioned in section 2.9, each with many more than 1010 atoms. Moreover,
Eq. (7.68) is adequate for most systems explored as possible qubits of prospective quantum computing systems
—see section 8.5 below.
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σˆ = ˆH c , (7.69)s z z

similar to the Pauli Hamiltonian (4.163),30 and a factorable, bilinear interaction—cf
Eq. (6.145) and its discussion:

λ σˆ = ˆ ˆH f{ } , (7.70)zint

where f̂ is a Hermitian operator depending only on the set {λ} of environmental
degrees of freedom (‘coordinates’), describing the Hilbert space different from that
of the two-level system. As a result, the operators λf̂ { } and λĤ { }e commute with
σ̂z—and with any other intrinsic operator of the two-level system. Of course, any
realistic λĤ { }e is extremely complex, so that how much we will be able to achieve
without specifying it, may be a pleasant surprise for the reader.

Before we proceed to the analysis, let me recognize two examples of two-level
systems that may be described by this model. The first example is a spin-½ in an
external magnetic field of a fixed direction (taken for the axis z), which includes both
an average component B¯ and a random (fluctuating) component Bz̃(t) induced by
the environment. As follows from Eq. (4.163b), it may be described by the
Hamiltonian (7.68)–(7.70) with

B B
γ γ= − ℏ ¯ ˆ = − ℏ ̃ˆc f t

2
,

2
( ). (7.71)

z z z

Another important example is a particle in a symmetric double-well potential Us

(figure 7.4), with a barrier between them sufficiently high to be practically
impenetrable, and an additional force F(t), including the fluctuations exerted by
the environment, so that the total potential energy is U(x, t) = Us(x) − F(t)x. If the
force is sufficiently weak, we can neglect its effects on the shape of potential wells
and hence on the localized wavefunctions ψL,R, so that the force effect is reduced to
the variation of the difference EL − ER = F(t)Δx between the eigenenergies. As a
result, the system may described by Eqs. (7.68)–(7.70) with

= − ¯Δ ˆ = − ˜̂ Δc F x f F t x/2; ( ) /2. (7.72)
z

Figure 7.4. Dephasing in a double-well system.

30As we know from sections 4.6 and 5.1, such Hamiltonian is sufficient to lift the energy level degeneracy.
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Let us start from writing the equation of motion for the Heisenberg operator σ̂z:

σ σ σ σℏ ˆ̇ = ˆ ˆ = + ˆ ˆ ˆ =i H c f[ , ] ( )[ , ] 0, (7.73)z z z z z

showing that in our simple model (7.68)–(7.70), the operator σ̂z does not evolve in
time. What does this mean for the observables? For an arbitrary density matrix of
any two-level system,

= ( )w
w w
w w , (7.74)11 12

21 22

we can readily calculate the trace of the operator σ̂z. Indeed, since the operator traces
are basis-independent, we can do this in any basis, in particular in the usual z-basis:

⎜ ⎟
⎡
⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥σ̂ ˆ = σ =

−
= − = −( )w

w w
w w w w W WTr( ) Tr( w) Tr 1 0

0 1
. (7.75)z z

11 12

21 22
11 22 1 2

Since, according to Eq. (7.5), σ̂z may be considered the operator for the observable
W1 − W2, in the case (7.73) the difference W1 − W2 does not depend on time, and
since the sum of the probabilities is also fixed, W1 + W2 = 1, both of them are
constant. The physics of this result is especially clear for the model shown in figure
7.4: since the potential barrier separating the potential wells is so high that tunneling
through it is negligible, the interaction with environment cannot move the system
from one well into another one. It may look like nothing interesting may happen in
such simple situation, but in a minute we will see that this is not true.

Due to the time independence ofW1 andW2 in this particular system, we may use
the von Neumann equation (7.66) to describe its density matrix evolution—now in
the Schrödinger picture. In the usual z-basis:
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(7.76)
z z
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21 22

11 12

21 22

12

21

This result means that though the diagonal elements, i.e. the probabilities of the
states, do not evolve in time (as we already know), the off-diagonal coefficients do
change; for example,

ℏ ˙ = + ˆi w c f w2( ) , (7.77)z12 12

with a similar but complex-conjugate equation for w21. The solution of the linear
differential equation (7.77) is straightforward, and yields

∫= −
ℏ

−
ℏ

ˆ ′ ′{ } { }w t w i
c

t i f t dt( ) (0)exp
2

exp
2

( ) . (7.78)z
t

12 12
0

The first exponent is a deterministic c-number factor, while in the second one
λˆ ≡ ˆf t f t( ) { ( )} is still an operator in the Hilbert space of the environment, and, from
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the point of view of the two-level system of our interest, a random function of time.
The time-average part of this force may be included into cz, so in what follows, we
will assume that it equals zero.

Let us start from the limit when the environment behaves classically31. In this
case, the operator in Eq. (7.78) may be considered as a classical random function of
time f(t), provided that we average its effects over a statistical ensemble of many
functions f(t) describing many (macroscopically similar) experiments. For a small
time interval t = dt→ 0, we can use the Taylor expansion of the exponent, truncating
it after the quadratic term:
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(7.79)

dt dt

dt dt

dt

dt dt

dt dt

f

0 0

0 0

0

2 0 0

2 0 0

Here we have used the fact that the statistical average of f(t) is equal to zero, while
the second average, called the correlation function, in a statistically- (i.e. macro-
scopically-) stationary state of any environment may only depend on the time
difference τ ≡ t′ − t″:

τ′ ″ = ′ − ″ ≡f t f t K t t K( ) ( ) ( ) ( ). (7.80)f f

If this difference is much larger than some time scale τc, called the correlation time of
the environment, the values f(t′) and f(t″) are completely independent (uncorrelated),
as illustrated in figure 7.5a, so that the correlation function has to tend to zero. On
the other hand, at τ = 0, i.e. t′ = t″, the correlation function is just the variance of f:

= 〈 〉K f(0) , (7.81)f
2

and has to be positive. As a result, the function looks (semi-quantitatively) as shown
in figure 7.5b.

Hence, if we are only interested in time differences τmuch longer than τc, which is
typically very short, we may approximate Kf(τ) with a delta-function of the time
difference. Let us take it in the following convenient form

31This assumption is not in contradiction with the need for the quantum treatment of the two-level system,
because a typical environment is large, and hence has a very dense energy spectrum, with the distances adjacent
levels that may be readily bridged by thermal excitations of small energies, often making its essentially
classical.
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τ δ τ≈ ℏ φK D( ) ( ), (7.82)f
2

where Dφ is a positive constant called the phase diffusion coefficient. The origin of
this term stems from the very similar effect of classical diffusion of the Brownian
particles in a highly viscous medium. Indeed, the particle’s velocity in such a medium
is approximately proportional to the external force. Hence, if the random hits of a
particle by the molecules may be described by a force that obeys a law similar to Eq.
(7.82), the velocity (along any Cartesian coordinate) is also delta-correlated:

v v v δ= ′ ″ = ′ − ″t t t D t t( ) 0, ( ) ( ) 2 ( ). (7.83)

Now we can integrate the kinematic relation v˙ =x , to calculate particle’s displace-
ment from its initial position, and its variance:

v∫− = ′ ′x t x t dt( ) (0) ( ) , (7.84)
t

0

v v v v∫ ∫ ∫ ∫

∫ ∫ δ

〈 − 〉 = ′ ′ ″ ″ = ′ ″ ′ ″

= ′ ″ ′ − ″ =

x t x t dt t dt dt dt t t

dt dt D t t Dt

( ( ) (0)) ( ) ( ) ( ) ( )

2 ( ) 2 .
(7.85)

t t t t

t t

2

0 0 0 0

0 0

This is the famous law of diffusion, showing that the rms deviation of the particle
from the initial point grows with time as (2Dt)1/2, where the constant D is called the
diffusion coefficient.

Returning to the diffusion of the quantum-mechanical phase, with Eq. (7.82) the
last double integral in Eq. (7.79) yields ℏ2Dφdt, so that the statistical average of Eq.
(7.78) is

〈 〉 = −
ℏ

− φ{ }w dt w i
c

dt D dt( ) (0)exp
2

(1 2 ). (7.86)z
12 12

Applying this formula to sequential time intervals,

〈 〉 = 〈 〉 −
ℏ

−

= −
ℏ

−

φ

φ

{ }
{ }

w dt w dt i
c

dt D dt

w i
c

dt D dt

(2 ) ( ) exp
2

(1 2 )

(0)exp
2

2 (1 2 ) ,
(7.87)

z

z

12 12

12
2

Figure 7.5. (a) A typical random process and (b) its correlation function—schematically.
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etc, for a finite time t = Ndt, in the limit N → ∞ and dt → 0 (at fixed t) we get

⎛
⎝⎜

⎞
⎠⎟〈 〉 = −

ℏ
× − φ→∞{ }w t w i

c
t D t

N
( ) (0)exp

2
lim 1 2

1
. (7.88)z

N

N

12 12

By the definition of the natural logarithm base e,32 this limit is just exp{−2Dφt}, so
that, finally:
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2
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12 12

12
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So, due to coupling to environment, the off-diagonal elements of the density
matrix decay with some dephasing time T2 = 1/2Dφ, providing a natural evolution
from the density matrix (7.22) of a pure state to the diagonal matrix (7.23), with the
same probabilitiesW1,2, describing a fully dephased (incoherent) classical mixture33.

This simple model offers a very clear look at the nature of the decoherence: the
random ‘force’ f(t), exerted by the environment, ‘shakes’ the energy difference between
two eigenstates of the system and hence the instantaneous velocity 2(cz + f )/ℏ of their
mutual phase shift φ(t)—cf Eq. (7.22). Due to the randomness of the force, φ(t) performs
a random walk around the trigonometric circle, so that the average of its trigonometric
functions exp{±iφ} over time gradually tends to zero, killing the off-diagonal elements
of the density matrix. Our analysis, however, has left open two important issues:

(i) Is this approach valid for quantum description of a typical environment?
(ii) If yes, what is physically the Dφ that was formally defined by Eq. (7.82)?

7.4 Fluctuation–dissipation theorem
Similar questions may be asked about a more general situation, when the
Hamiltonian Ĥs of the system of interest (s), in the composite Hamiltonian (7.68),
is not specified at all, but the interaction between that system and its environment
still has the bilinear form similar to Eqs. (7.70) and (6.130):

λˆ = − ˆ ˆH F x{ } , (7.90)int

where x is some observable of the subsystem s (say, its generalized coordinate or
generalized momentum). It may look incredible that in this very general situation
one may make a very simple and powerful statement about the statistical properties

32 See, e.g. Eq. (A.2a) with n = −N/2Dφt.
33Note that this result is valid only if the approximation (7.82) may be applied at time interval dt which, in
turn, should be much smaller than the T2 in Eq. (7.88), i.e. if the dephasing time is much longer than the
environment’s correlation time τc. This requirement may be always satisfied by making the coupling to
environment sufficiently weak. In addition in typical environments, τc is very short. For example, in the
original Brownian motion experiments with a-few-μm ink particles in water, it is of the order of the average
interval between sequential molecular impacts, of the order of 10−21 s.
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of the generalized external force F, under only two (interrelated) conditions—which
are satisfied in a huge number of cases of interest:

(i) the coupling of system s of interest to environment e is weak—in the sense that
the perturbation theory (see chapter 6) is applicable, and

(ii) the environment may be considered as staying in thermodynamic equili-
brium, with a certain temperature T, regardless of the process in the system of
interest34.

This famous statement is called the fluctuation–dissipation theorem (FDT)35. Due
to the importance of this fundamental result, let me derive it36. Since by writing Eq.
(7.68) we treat the whole system (s + e) as a Hamiltonian one, we may use the
Heisenberg equation (4.199) to write

ℏ ˆ̇ = ˆ ˆ = ˆ ˆi F F H F H[ , ] [ , ], (7.91)e

because, as was discussed in the last section, the operator λF̂{ } commutes with the
operators Ĥs and x̂. Generally, very little may be done with this equation, because
the time evolution of the environment’s Hamiltonian depends, in turn, on that of the
force. This is where the perturbation theory becomes indispensable. Let us decom-
pose the external force’s operator into the following sum:

λˆ = ˆ + ˜̂ 〈 ˜̂ 〉 =F F F t F t{ } ( ), with ( ) 0, (7.92)

where (here and on, until further notice) the sign 〈…〉means the statistical averaging
over the environment alone, i.e. over an ensemble in similar quantum states to
system s, but random states of its environment37. From the point of view of the
system s, the first term of the sum (still an operator!) describes the average response
of the environment to the system dynamics (possibly, including such irreversible
effects as friction), and has to be calculated with account of their interaction—as we
will do later in this section. On the other hand, the second term in Eq. (7.92)

34 The most frequent example of violation of these conditions is the environment’s overheating by the energy
flow from the subsystem. I leave it to the reader to estimate the overheating of a standard physical laboratory
room by a typical dissipative quantum process—the emission of an optical photon by an atom. (Hint: it is
extremely small.)
35 The FDT was first derived by H Callen and T Welton in 1951, on the background of an earlier derivation of
its classical limit by H Nyquist in 1928, and the already mentioned pioneering 1905 work by A Einstein.
36 The FDT may be proved in several ways that are shorter than the one given below—see, e.g. either the proof
in Part SM sections 5.5 and 5.6 (based on H Nyquist’ s arguments), or the original paper by H Callen and
T Welton [2]—wonderful in its clarity. The longer approach I describe here, besides giving the important
Green–Kubo formula (7.109) as a byproduct, is a very useful exercise in the operator manipulation and the
perturbation theory in its integral form—different from the differential form used in chapter 6. If the reader is
not interested in this exercise, (s)he may skip the derivation and jump straight to the result, expressed by Eq.
(7.134), which uses the notions defined by Eqs. (7.114) and (7.123).
37 For usual (‘ergodic’) environments, without intrinsic long-term memories, this statistical averaging over an
ensemble of environments is equivalent to averaging over relatively short times—much longer than the correlation
time τc of the environment, but still much shorter than the characteristic time of evolution of the system under
analysis, such as the dephasing time T2 and the energy relaxation time T1—both still to be calculated.
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represents fluctuations of the environment, which exist even in the absence of system
s. Hence, in the first nonvanishing approximation in the interaction strength, the
fluctuation part may be calculated ignoring the interaction, i.e. treating the environ-
ment as being in the thermodynamic equilibrium:

ℏ ˜̂̇ = ˜̂ ˆ ∣i F F H[ , ].
(7.93)

e eq

Since in this approximation the environment’s Hamiltonian does not have an
explicit dependence on time, the solution of this equation may be written combining
Eqs. (4.190) and (4.175):

ˆ =
ℏ

ˆ ˆ −
ℏ

ˆ ∣{ } { }F t
i

H t F
i

H t( ) exp (0) exp . (7.94)e eeq eq

Let us use this relation to calculate the correlation function of the fluctuations
F(t), defined similarly to Eq. (7.80), but taking care of the order of the time
arguments (very soon we will see why):
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(7.95)
e e

e e

(Here, for the notation brevity, the thermal equilibrium of the environment is just
implied.) We are at will to calculate this expectation value in any basis, and the best
choice is evident: in the environment’s stationary-state basis, the density operator of
the environment, its Hamiltonian, and hence the exponents in Eq. (7.95) are all
represented by diagonal matrices. Using Eq. (7.5), the correlation function becomes
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Here Wn are the Gibbs distribution probabilities given by Eq. (7.24), with the
environment’s temperature T, and Fnn′ ≡ Fnn′(0) are the Schrödinger-picture matrix
elements of the interaction force operator.

We see that though the correlator (7.96) is a function of the difference τ ≡ t − t′
only (as it should be for fluctuations in a macroscopically stationary system), it may
depend on the order of its arguments. For this reason let us mark this particular
correlation function with the upper index ‘+’,

⎧⎨⎩
⎫⎬⎭∑τ τ≡ ˜ ˜ ′ =

˜
ℏ

˜ ≡ −
′

+
′ ′K F t F t W F

iE
E E E( ) ( ) ( ) exp , where , (7.97)

n n,
F n nn n n

2

and its counterpart, with the swapped times t and t′, with the upper index ‘-’:

⎧⎨⎩
⎫⎬⎭∑τ τ τ≡ − = ˜ ′ ˜ = −

˜
ℏ′

− +
′K K F t F t W F

iE
( ) ( ) ( ) ( ) exp . (7.98)

n n,
F F n nn

2

So, in contrast with classical processes, in quantum mechanics the correlation
function of fluctuations F̃ is not necessarily time-symmetric:

∑

τ τ τ τ
τ

− ≡ − − = ˜ ˜ ′ − ˜ ′ ˜
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(7.99)
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2

so that F̂ t( ) gives one more example of a Heisenberg-picture operator whose
‘values’, taken in different moments of time, generally do not commute—see
footnote 49 in chapter 4. (A good sanity check here is that at τ = 0, i.e. at t = t′,
the difference (7.99) between KF

+ and KF
− vanishes.)

Now let us return to the force’s decomposition (7.92), and calculate its first
(average) component. In order to do that, let us write the formal solution of Eq.
(7.91) as follows:

∫ˆ =
ℏ

ˆ ′ ˆ ′ ′
−∞

F t
i

F t H t dt( )
1

[ ( ), ( )] . (7.100)
t

e

On the right-hand side of this relation, we still cannot treat the Hamiltonian of the
environment as an unperturbed (equilibrium) one, even if the effect of our system (s)
on the environment is very weak, because this would have zero statistical average of
the force F(t). Hence, we should make one more step of our perturbative treatment,
taking into account the effect of the force on the environment. To do this, let us use
Eqs. (7.68) and (7.90) to write the (so far, exact) Heisenberg equation of motion for
the environment’s Hamiltonian,

ℏ ˆ̇ = ˆ ˆ = − ˆ ˆ ˆi H H H x H F[ , ] [ , ], (7.101)e e e

and its formal solution, similar to Eq. (7.100), but for the time t′ rather than t:
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Plugging this equality into the right-hand side of Eq. (7.100), and averaging the
result (again, over the environment only!), we get

∫ ∫ˆ =
ℏ

′ ″ ˆ ″ ˆ ′ ˆ ″ ˆ ″
−∞ −∞

′
F t dt dt x t F t H t F t( )

1
( ) [ ( ), [ ( ), ( )] ] . (7.103)

t t

e2

This is still an exact result, but now it is ready for an approximate treatment,
implemented by averaging its right-hand side over the unperturbed (thermal-
equilibrium) state of the environment. This may be done absolutely similarly to
that in Eq. (7.96), at the last step using Eq. (7.94):
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Now, if we try to integrate each term of this sum, as Eq. (7.103) seems to require,
we will see that the lower-limit substitution (at t′, t″ → −∞) is uncertain, because the
exponents oscillate without decay. This mathematical difficulty may be overcome by
the following physical reasoning. As illustrated by the example considered in the
previous section, coupling to a disordered environment makes the ‘memory horizon’
of the system of our interest (s) finite: its current state does not depend on its history
beyond a certain time scale38. As a result, the functions under the integrals of
Eq. (7.103), i.e. the sum (7.104), should self-average at a certain finite time. A
simplistic technique for expressing this fact mathematically is just dropping the lower-
limit substitution; this would give the correct result for Eq. (7.103). However, a better
(mathematically more acceptable) trick is to first multiply the function under each
integral by, respectively, exp{ε(t − t′)} and exp{ε(t′ − t″)}, where ε is a very small
positive constant, then carry out the integration, and after that take the limit ε → 0.
The physical justification of this procedure may be provided by saying that system’s
behavior should not be affected if its interaction with the environment was not kept
constant but rather turned on gradually—say, exponentially with an infinitesimal rate
ε. With this modification, Eq. (7.103) becomes
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0

38Actually, this is true for virtually any real physical system—in contrast to idealized models such as a
dissipation-free oscillator that swings for ever and ever with the same amplitude and phase, thus ‘remembering’
the initial conditions.
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This double integration is over the area shaded in figure 7.6, so that the order of
integration may be changed to the opposite one as

∫ ∫ ∫ ∫ ∫ ∫
∫ ∫ τ
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0

where τ′ ≡ t − t′, and τ ≡ t − t″.
As a result, Eq. (7.105) may be rewritten as a single integral,
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does not depend on the particular law of evolution of the subsystem (s) under study,
i.e. provides a general characterization of its coupling to the environment.

In Eq. (7.107) we may readily recognize the most general form of the linear
response of a system (in our case, the environment), taking into account the causality
principle, where G(τ) is the response function (also called the ‘temporal Green’s
function’) of the environment. Now comparing Eq. (7.108) with Eq. (7.99), we get a
wonderfully simple universal relation,

τ τ〈 ˜̂ ˜̂ 〉 = ℏF F i G[ ( ), (0)] ( ). (7.109)

that emphasizes once again the quantum nature of the correlation function’s time
asymmetry. (This relation, called the Green–Kubo (or just ‘Kubo’) formula after the

Figure 7.6. The 2D integration area in Eqs. (7.105) and (7.106).
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works by M Green (1954) and R Kubo (1957), does not come up in the easier
derivations of the FDT, mentioned at the beginning of this section.)

However, the relation between G(τ) and the force’s anti-commutator,

τ τ τ
τ τ

〈 ˜̂ + ˜̂ 〉 ≡ 〈 ˜̂ + ˜̂ + ˜̂ ˜̂ + 〉
≡ ++ −

F t F t F t F t F t F t

K K

{ ( ), ( )} ( ) ( ) ( ) ( )

( ) ( ),
(7.110)

F F

is much more important, because of the following reason. Eqs. (7.97) and (7.98)
show that the so-called symmetrized correlation function,
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which is an even function of the time difference τ, looks very similar to the response
function (7.108), ‘only’ with another trigonometric function under the sum, and a
constant front factor39. This similarity may be used to obtain an exact algebraic
relation between the Fourier images of these two functions of τ. Indeed, the function
(7.111) may be represented as the Fourier transform40

∫ ∫τ ω ω ω ωτ ω= =ωτ

−∞

+∞
−

+∞
K S e d S d( ) ( ) 2 ( )cos , (7.112)F F

i
F

0

with the reciprocal transform

∫ ∫ω
π

τ τ
π

τ ωτ τ= =ωτ

−∞

+∞ +∞
S K e d K d( )

1
2

( )
1

( )cos , (7.113)F F
i

F
0

of the symmetrized spectral density of variable F, defined as

ω δ ω ω− ′ ≡ 〈 ˆ ˆ + ˆ ˆ 〉 ≡ 〈 ˆ ˆ 〉ω ω ω ω ω ω− ′ − ′ − ′S F F F F F F( ) ( )
1
2

1
2

{ , } , (7.114)F

where the function ω̂F (also an operator rather than a c-number!) is defined as

∫ ∫π
ωˆ ≡ ˜̂ ˜̂ = ˆω

ω
ω

ω

−∞

+∞

−∞

+∞
−F F t e dt F t F e d

1
2

( ) , so that ( ) . (7.115)i t i t

39 For the heroic reader who has suffered through the calculations up to this point: our conceptual work is
done! What remains is just some simple math to bring the relation between Eqs. (7.108) and (7.111) to an
explicit form.
40Due to their practical importance, and certain mathematical issues of their justification for random
functions, Eqs. (7.112) and (7.113) have their own grand name, the Wiener–Khinchin theorem, though the
math rigor aside, they are just a straightforward corollary of the standard Fourier integral transform (7.115).
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The physical meaning of the function SF(ω) becomes clear if we write Eq. (7.112)
for the particular case τ = 0:

∫ ∫ω ω ω ω≡ 〈 ˜̂ 〉 = =
−∞

+∞ +∞
K F S d S d(0) ( ) 2 ( ) . (7.116)F F F

2

0

This formula infers that if we pass the function F(t) through a linear filter cutting
from its frequency spectrum a narrow band dω of real (positive) frequencies, then the
variance 〈Ff

2〉 of the filtered signal Ff(t) would be equal to 2SF(ω)dω—hence the
name ‘spectral density’41.

Let us use Eqs. (7.111) and (7.113) to calculate the spectral density of fluctuations
F̃ t( ) in our model, using the same ε-trick as at the deviation of Eq. (7.108), to quench
the upper-limit substitution:
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Now it is a convenient time to recall that each of the two summations here is over the
eigenenergies of the environment, whose spectrum is virtually continuous because of
its large size, so that we may transform each sum into an integral—just as was done
in section 6.6:

∫ ∫∑ ρ… → … = …dn E dE( ) , (7.118)
n

n n

where ρ(E) ≡ dn/dE is the density of environment’s states at a given energy. This
transformation yields

⎡
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⎤
⎦⎥
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ω ε ω ε
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1
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(7.119)

F n n n n n nn0
2

Since the expression inside the square bracket depends only on a specific linear
combination of two energies, namely ˜ ≡ − ′E E E ,n n it is convenient to introduce also
another, linearly-independent combination of the energies, for example, the average
energy ¯ = + ′E E E( )/2n n , so that the state energies may be represented as

41An alternative popular measure of the spectral density of a process F(t) is S ν ν π ω≡ 〈 〉 =F d S( ) / 4 ( )F Ff
2 ,

where ν = ω/2π is the ‘cyclic’ frequency (measured in Hz).
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With this notation, Eq. (7.119) becomes
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F nn0
2

Due to the smallness of the parameter ℏε (which should be much less than all
genuine energies of the problem, including kBT, ℏω, En, and En′), each of the internal
integrals is dominated by an infinitesimal vicinity of one point, ω˜ = ±ℏ±E , in which
the state densities, the matrix elements, and the Gibbs probabilities do not change
considerably, and may be taken out of the integral, which may be then worked out
explicitly42:

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦⎥

∫ ∫

∫

∫ ∫

∫

∫

ω
π

ρ ρ
ω ε

ω ε

π
ρ ρ ω ε

ω ε

ω ε
ω ε

ρ ρ

= − ℏ ¯
˜

˜−ℏ − ℏ

+
˜

− ˜−ℏ − ℏ

= − ℏ ¯ − ˜−ℏ − ℏ
˜−ℏ + ℏ

˜

+
˜+ℏ − ℏ

˜+ℏ + ℏ
˜

= ℏ + ¯

ε

ε

→ + − + +
−∞

+∞

− −
−∞

+∞

→ + − + +
−∞

+∞

− −
−∞

+∞

+ − + + − −

S dE W F
dE

i E

W F
dE

i E

dE W F
i E

E
dE

W F
i E
E

dE

W F W F dE

( )
2

lim
( )

( )

2
lim [

( )
( ) ( )

( )
( ) ( )

2
[ ] ,

(7.122)
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where the indices ± mark the functions’ values at the special points ω˜ = ±ℏ±E , i.e.
En = En′ ± ℏω. The physics of these points becomes simple if we interpret the state n,
the argument of the equilibrium Gibbs distribution function Wn, as the initial state
of the environment, and n′ as its final state. Then the top-sign point corresponds to

42Using, e.g. Eq. (A.32a). (The imaginary parts of the integrals vanish, because the integration in infinite limits
may be always re-centered to the finite points ±ℏω.) A math-enlightened reader may have noticed that the
integrals might be taken without the introduction of small ε, using the Cauchy theorem—see Eq. (A.91).

Quantum Mechanics: Lecture notes

7-30



En′ = En − ℏω, i.e. to the result of an emission of one energy quantum ℏω of the
‘observation’ frequency ω by the environment into the system s of our interest, while
the bottom-sign point En′ = En + ℏω, corresponds to the absorption of such a
quantum by the environment. As Eq. (7.122) shows, both processes give similar,
positive contributions into the force fluctuations.

The situation is different for the Fourier image of the response function G(τ),43

∫χ ω τ τ≡ ωτ
+∞

G e d( ) ( ) , (7.123)i

0

that is usually called either the generalized susceptibility or the response function—in
our case, of the environment. Its physical meaning is that according to Eq. (7.107),
the complex function χ(ω) = χ′(ω) + iχ″(ω) relates the Fourier amplitudes of the
generalized coordinate and the generalized force44:

χ ω〈 ˆ 〉 = ˆω ωF x( ) . (7.124)

The physics of its imaginary part χ″(ω) is especially clear. Indeed, if xω represents a
sinusoidal classical process, say
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2 2
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2
, (7.125)i t i t

0
0 0 0

then, in accordance with the correspondence principle, Eq. (7.124) should hold for
the c-number complex amplitudes Fω and xω, enabling us to calculate the time
dependence of the force as

χ ω χ ω
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(7.126)
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i t i t

0

0

0

We see that χ″(ω) weighs the force’s part (frequently called quadrature) that is π/2-
shifted from the coordinate, i.e. is in phase with the velocity, and hence characterizes

43 The integration in Eq. (7.123) may be extended to the whole time axis, −∞ < τ < +∞, if we complement the
definition (7.107) of the function G(τ) for τ > 0 with its definition as G(τ) = 0 for τ < 0, in correspondence with
the causality principle.
44 In order to prove this relation, it is sufficient to plug expression ˆ = ˆω ω−x x es

i t, or any sum of such exponents,
into Eqs. (7.107) and then use the definition (7.123). This (simple) exercise is highly recommended to the
reader.
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the time-average power flow from the system into its environment, i.e. the energy
dissipation rate45:

P χ ω ω χ ω ω ω ω

ωχ ω

¯ = − ˙ = − ′ + ″ −

= ″

F t x t x t t x t

x

( ) ( ) [ ( ) cos ( ) sin ] ( sin )

2
( ).

(7.127)
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Let us calculate this function from Eqs. (7.108) and (7.123), just as we have done
for the spectral density of fluctuations:
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Making the transfer (7.118) from the double sum to the double integral, and then the
integration variable transfer (7.120), we get
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Now using the same argument about the smallness of parameter ε as above, we may
take the spectral densities, matrix elements of force, and the Gibbs probabilities out
of the integrals, and work out the integrals, getting a result very similar to Eq.
(7.122):

∫χ ω π ρ ρ″ = − ¯
+ − − − + +W F W F dE( ) [ ] . (7.130)2 2

45 The sign minus in Eq. (7.127) is due to the fact that according to Eq. (7.90), F is the force exerted on our
system (s) by the environment, so that the force exerted by our system on the environment is −F. With this sign
clarification, the expression P v= − ˙ = −Fx F for the instant power flow is evident if x is the usual Cartesian
coordinate of a 1D particle. However, according to analytical mechanics (see, e.g. Part CM chapters 2 and 10),
it is also valid for any [generalized coordinate–generalized force] pair which forms the interaction Hamiltonian
(7.90).

Quantum Mechanics: Lecture notes

7-32



In order to relate these two results, it is sufficient to notice that according to Eq.
(7.24), the Gibbs probabilities W± are related by a coefficient depending on only the
temperature T and observation frequency ω:
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B B

so that both the spectral density (7.122) and the dissipative part (7.130) of the
generalized susceptibility may be expressed via the same integral over environment
energies:

⎛
⎝⎜

⎞
⎠⎟ ∫ω ω ρ ρ= ℏ ℏ ¯ + ¯

+ − + −S
k T

W E F F dE( ) cosh
2

( ) [ ] , (7.132)F
B

2 2

⎛
⎝⎜

⎞
⎠⎟ ∫χ ω π ω ρ ρ″ = ℏ ¯ + ¯

+ − + −
k T

W E F F dE( ) 2 sinh
2

( ) [ ] , (7.133)
B

2 2

and hence are universally related as
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This is, finally, the famous Callen–Welton’s fluctuation–dissipation theorem
(FDT). It reveals a fundamental, intimate relation between these two effects of
the environment (‘no dissipation without fluctuation’)—hence the name. A curious
feature of the FDT is that Eq. (7.134) includes exactly the same function of
temperature as the average energy (7.26) of a quantum oscillator of frequency ω,
though, as the reader could witness, the notion of the oscillator was by no means
used in its derivation. As we will see in the next section, this fact leads to rather
interesting consequences and even conceptual opportunities.

In the classical limit, ℏω ≪ kBT, the FDT is reduced to

ω
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ω π
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In most systems of interest, the last fraction tends to a finite (positive) constant in a
substantial range of relatively low frequencies. Indeed, expanding the right-hand
side of Eq. (7.123) into the Taylor series in small ω, we get

∫ ∫
χ ω χ ωη

χ τ τ η τ τ τ

= + + …

= ≡
∞ ∞

i

G d G d

( ) (0) , with

(0) ( ) , and ( ) .
(7.136)

0 0

Since the temporal Green’s function G is real by definition, the Taylor expansion of
χ″(ω) ≡ Im χ(ω) starts with the linear term ωη, where η is a certain real coefficient,
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and unless η = 0, is dominated by this term at small ω. The physical sense of the
constant η becomes clear if we consider an environment that provides friction
described by a simple, well-known kinematic friction law

η ηˆ = − ˆ̇ ⩾F x, with 0, (7.137)

where η is called the drag coefficient. For the Fourier images of coordinate and force
this gives the relation Fω = iωηxω, so that according to Eq. (7.124),

χ ω ωη χ ω
ω

χ ω
ω

η= ″ ≡ = ⩾i( ) , i.e.
( ) Im ( )

0. (7.138)

Within this approximation, and in the classical limit, the FDT (7.134) is reduced to
the well-known Nyquist formula46:

ω
π

η η ν= =S
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F k T d( ) , i.e. 4 . (7.139)F
B

f
2

B

According to Eq. (7.112), if such a constant spectral density47 persisted at all
frequencies, it would correspond to a delta-correlated process F(t), with

τ π δ τ ηδ τ= =K S k T( ) 2 (0) ( ) 2 ( ), (7.140)F F B

cf. Eqs. (7.82) and (7.83). Since in the classical limit the right-hand side of Eq. (7.109)
is negligible, and the correlation function may be considered an even function of
time, the symmetrized function under the integral in Eq. (7.113) may be rewritten
just as 〈F(τ)F(0)〉. In the limit of relatively low observation frequencies (in the sense
that ω is much smaller than not only the quantum frontier kBT/ℏ, but also the
frequency scale of the function χ″(ω)/ω), Eq. (7.138) may be used to recast Eq.
(7.135) in the form48

∫η χ ω
ω

τ τ≡ ″ =ω→

∞

k T
F F dlim

( ) 1
( ) (0) . (7.141)0

B 0

46Actually, the 1928 work by H Nyquist was about the electronic noise in resistors, just discovered
experimentally by his Bell Labs colleague J Johnson. For an Ohmic resistor, as the dissipative ‘environment’
of the electric circuit it is connected with, Eq. (7.137) is just the Ohm’s law, and may be recast as either 〈V〉 =
−R(dQ/dt) = RI, or 〈I〉 = −G(dΦ/dt) = GV. Thus for the voltage V across an open circuit, η corresponds to its
resistance R, and for current I in a short circuit, to its conductance G = 1/R. In this case, the fluctuations
described by Eq. (7.139) are referred to as the Johnson–Nyquist noise. (Because of this important application,
any model leading to Eq. (7.138) is commonly referred to as the Ohmic dissipation, even if the physical nature
of the variables x and F is quite different.)
47A random process whose spectral density may be reasonably approximated by a constant is frequently called
the white noise, because it is a random mixture of all possible sinusoidal components with equal weights,
recalling natural white light’s composition.
48Note that in some fields (especially in physical kinetics and chemical physics), this particular limit of the
Nyquist formula is called the Green–Kubo (or just ‘Kubo’) formula. However, in the view of the FDT
development history, discussed above, it is much more reasonable to associate these names with Eq. (7.109)—
as is done in most fields of physics.
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To conclude this section, let me return for a minute to the questions formulated in
our earlier discussion of dephasing in the two-level model. In that problem, the
dephasing time scale is T2 = 1/2Dφ. Hence the classical approach to the dephasing,
used in section 7.3, is adequate if ℏDφ ≪ kBT. Next, we may identify the operators f̂
and σ̂z participating in Eq. (7.70) with, respectively, the operators −F̂ and x̂ of the
general Eq. (7.90). Then the comparison of Eqs. (7.82), (7.89) and (7.140) yields

η≡ =
ℏφ

T
D

k T1
2

4
, (7.142)

2

B
2

so that, for the model described by Eq. (7.137) with a temperature-independent drag
coefficient η, the rate of dephasing by a classical environment is proportional to its
temperature.

7.5 The Heisenberg–Langevin approach
The fluctuation–dissipation theorem opens a very simple and efficient, though
limited way for the analysis of the system of interest (s in figure 7.1). It is to write
its Heisenberg equations (4.199) of motion of the relevant operators, which would
now include the environmental force operator, and explore these equations using the
Fourier transform and the Wiener–Khinchin theorem (7.112)–(7.113). This
approach to classical equations of motion is commonly associated with the name
of Langevin49, so that its extension to dynamics of Heisenberg-picture operators is
frequently referred to as the Heisenberg–Langevin (or ‘quantum Langevin’, or
‘Langevin–Lax’50) approach to open system analysis.

Perhaps the best way to describe this method is to demonstrate how it works for the
very important case of a 1D harmonic oscillator, so that the generalized coordinate x
of section 7.4 is just the oscillator’s coordinate. For the sake of simplicity, let us
assume that the environment provides the simple Ohmic dissipation described by Eq.
(7.137)—which is a good approximation in many cases. As we already know from
chapter 5, the Heisenberg equations of motion for operators of coordinate and
momentum of the oscillator, in the presence of an external force F(t), are

ωˆ̇ =
ˆ ˆ̇ = − ˆ + ˆx
p
m

p m x F, , (7.143)0
2

so that using Eqs. (7.92) and (7.137), we get

ω ηˆ̇ =
ˆ ˆ̇ = − ˆ − ˆ̇ + ˜̂x
p
m

p m x x F t, ( ). (7.144)0
2

49A 1908 work by P Langevin was the first systematic development of the Einstein’s ideas (1905) on the
Brownian motion, using the random force language, as an alternative to M Smoluchowski’s approach using
the probability density language—see section 7.6 below.
50 Indeed, perhaps the largest credit for the extension of the Langevin approach to quantum systems belongs to
M Lax, whose work in the early 1960s was motivated mostly by quantum electronics applications—see, e.g. his
monograph M Lax, Fluctuation and Coherent Phenomena in Classical and Quantum Physics, Gordon and
Breach, 1968, and references therein.
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Combining Eqs. (7.144), we may write their system as a single differential equation

η ωˆ ̈+ ˆ̇ + ˆ = ˜̂mx x m x F t( ),
(7.145)

0
2

which is absolutely similar to the well-known classical equation of motion of a
damped oscillator under the effect of an external force. In the view of Eqs. (5.29) and
(5.35), whose corollary the Ehrenfest theorem (5.36) is, this may look not surprising,
but please note again that the approach discussed in the previous section justifies a
qualitative description of the drag force in quantum mechanics—necessarily in
parallel with the accompanying fluctuation force.

For the Fourier images of the operators, defined similarly to Eq. (7.115), Eq.
(7.145) gives the following relation,

ω ω ηω
ˆ =

ˆ

− −ω
ωx

F
m i( )

, (7.146)
0
2 2

which should be also well known to the reader from the classical theory of forced
oscillations51. However, since these Fourier components are still Heisenberg-picture
operators, and their ‘values’ for different ω generally do not commute, we have to
tread carefully. The best way to proceed is to write a copy of Eq. (7.146) for the
frequency (−ω′), and then combine these equations to form a symmetrical
combination similar that used in Eq. (7.114). The result is

ω ω ηω
〈 ˆ ˆ + ˆ ˆ 〉 =

− −
〈 ˆ ˆ + ˆ ˆ 〉ω ω ω ω ω ω ω ω− ′ − ′ − ′ − ′

( )
x x x x

m i
F F F F

1
2

1 1
2

. (7.147)
0
2 2

2

Since the spectral density definition similar to Eq. (7.114) is valid for any observable,
in particular for x, Eq. (7.147) allows us to relate the symmetrized spectral densities
of coordinate and force:

ω ω

ω ω ηω

ω

ω ω ηω
=

− −
=

− +( ) ( )
S

S

m i

S

m
( )

( ) ( )

( )
. (7.148)x

F F

0
2 2

2 2
0
2 2 2 2

Now using an analog of Eq. (7.116) for x, we can calculate the coordinate’s variance:

∫ ∫ω ω ω ω

ω ω ηω
〈 〉 = = =

− +−∞

+∞ +∞

( )
x K S d

S d

m
(0) ( ) 2

( )

( )
, (7.149)x x

F2

0 2
0
2 2 2 2

where now, in contrast to the notation used in section 7.4, the sign 〈…〉 means the
averaging over the usual statistical ensemble of many systems of interest—in our
current case, of many harmonic oscillators.

If the coupling to the environment is so weak that drag coefficient η is small (in the
sense that the oscillator’s dimensionlessQ-factor is large,Q ≡mω0/η≫ 1), this integral

51 If necessary, see Part CM section 5.1.
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is dominated by the resonance peak in a narrow vicinity, ∣ω − ω0∣ ≡ ∣ξ∣ ≪ ω0, of its
resonance frequency, and we can take the relatively smooth function SF(ω) out of the
integral, thus reducing it to a table form52:

∫

∫

∫

ω ω

ω ω ηω

ω ξ
ω ξ ηω

ω
ηω

ξ
ξ η

ω
ηω

πη π ω
η ω

〈 〉 ≈
− +

≈
+

=
+

= =

+∞

−∞

+∞

−∞

+∞

( )
x S

d

m

S
d

m

S
d

m

S
m

S
m

2 ( )
( )

2 ( )
(2 ) ( )

2 ( )
1

( ) (2 / ) 1

2 ( )
1

( ) 2
( )

.

(7.150)

F

F

F

F
F

2
0

0 2
0
2 2 2 2

0
0

2
0

2

0
0

2 2

0
0

2
0

0
2

With the account of the FDT (7.134) and of Eq. (7.138), this gives53

π
η ω π

ηω ω
ω

ω〈 〉 = ℏ ℏ = ℏ ℏ
x

m k T m k T2
coth

2 2
coth

2
. (7.151)2

0
2 0

0

B 0

0

B

But this is exactly Eq. (7.48), which was derived in section 7.2 from the Gibbs
distribution, without any explicit account of the environment—though keeping it in
mind by using the notion of the thermally-equilibrium ensemble54. (Notice that the
drag coefficient η, which characterizes the oscillator-to-environment interaction
strength, has cancelled!) Does this mean that in section 7.4 we toiled in vain?

By no means. First of all, the result (7.150), augmented by the FDT (7.134), has
an important conceptual value. For example, let us consider the low-temperature
limit kBT ≪ ℏω0, when Eq. (7.151) is reduced to

ω
〈 〉 = ℏ ≡x

m
x

2 2
. (7.152)2

0

0
2

Let us ask a naïve question: What exactly is the origin of this coordinate’s
uncertainty? From the point of view of the usual quantum mechanics of absolutely
closed (Hamiltonian) systems, there is no doubt: this nonvanishing variance of the
coordinate is the result of the final spatial extension of the ground-state wave-
function, reflecting the Heisenberg’s uncertainty relation (which in turn results from
the fact that the operators of coordinate and momentum do not commute)—see
either Eq. (2.275), or Eq. (5.95) with n = 0. However, from the point of view of the
Heisenberg–Langevin equation (7.145), the variance (7.152) is an unalienable part of

52 See, e.g. Eq. (A.32a).
53Note that this calculation remains correct even if the dissipation’s dispersion deviates from the Ohmic model
(7.138), provided if the drag coefficient η is replaced with its effective value Imχ(ω0)/ω0, because the effects of
the environment are only felt, by the oscillator, at its oscillation frequency.
54 By the way, the simplest way to calculate SF(ω), i.e. to derive the FDT, is to require that Eqs. (7.48) and
(7.150) give the same result for an oscillator with any eigenfrequency ω. This is exactly the approach used by H
Nyquist (for the classical case)—see also Part SM section 5.5.
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the oscillator’s response to the fluctuation force F̃ t( ) exerted by the environment at
frequencies ω ≈ ω0. Though it is impossible to refute the former, absolutely
legitimate point of view, in many applications it is much easier to subscribe to the
latter standpoint, and treat the coordinate’s uncertainty as the result of the so-called
quantum noise of the environment—which tends to the fixed value (7.152) when the
coupling to the environment tends to zero. This notion has received numerous
confirmations in experiments that did not include any oscillators with eigenfrequen-
cies ω0 close to the noise measurement frequency ω.55

The second advantage of the Heisenberg–Langevin approach is that it is possible
to use Eq. (7.148) to calculate the (experimentally measurable!) distribution Sx(ω),
i.e. decompose the fluctuations into their spectral components. This procedure is not
restricted to the limit of small values of η (i.e. to large Q-factors); for any damping
we may just plug the FDT (7.134) into Eq. (7.148). As an example, let us have a look
at the so-called quantum diffusion. A free 1D particle, moving in a medium with the
Ohmic damping (7.137), may be considered as the particular case of a 1D harmonic
oscillator (7.145) with ω0 = 0, so that combining Eqs. (7.134) and (7.149), we get

∫

∫

ω ω
ω ηω

η
ω ηω

ω
π

ω ω

〈 〉 =
+

=
+

ℏ ℏ

+∞

+∞

x
S d

m

m k T
d

2
( )

( ) ( )

2
1

( ) ( ) 2
coth

2
.

(7.153)

F2

0 2 2 2

0 2 2 2
B

This integral has two divergences. The first one, of the type ∫dω/ω2 at the lower
limit, is just a classical effect: according to Eq. (7.85), the particle’s displacement
variance grows with time, so it cannot have a finite time-independent value that Eq.
(7.153) tries to calculate. However, we still can use that result to single out the
quantum effects on diffusion—say, by comparing it with a similar but purely
classical case. These effects are prominent at high frequencies, especially if the
quantum noise overcomes the thermal noise before the dynamic cut-off, i.e. if

η
ℏ

≪k T
m

. (7.154)B

In this case there is a broad range of frequencies where the quantum noise gives a
substantial contribution to the integral:

∫ ∫η
ηω

ω
π

ω
πη

ω
ω πη

η
η

〈 〉 ≈ ℏ ≡ ℏ = ℏ ℏ ∼ ℏη η

ℏ ℏ
x d

d
mk T

2
1

( ) 2
ln . (7.155)Q

k T

m

k T

m
2

/

/

2 /

/

BB B

Formally, this contribution diverges at either m → 0 or T → 0, but this logarithmic
(i.e. extremely weak) divergence is readily quenched by almost any change of the
environment model at very high frequencies, where the ‘Ohmic’ approximation
given by Eq. (7.136) becomes unrealistic.

55 See, for example, [3].
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The Heisenberg–Langevin approach is very powerful, because its straightforward
generalizations enable analyses of fluctuations in virtually arbitrary linear systems,
i.e. the systems described by linear differential (or integro-differential) equations of
motion, including those with many degrees of freedom, and distributed systems
(continua), and such systems prevail in many fields of physics. However, this approach
also has its limitations. The main one of them is that if the equations of motion of the
Heisenberg operators are not linear, there is no linear relation, such as Eq. (7.146),
between the Fourier images of the generalized forces and the generalized coordinates,
and as the result there is no simple relation, such as Eq. (7.148), between their spectral
densities. In other words, if the Heisenberg equations of motion are nonlinear, there is
no regular simple way to use them to calculate statistical properties of the observables.

For example, let us return to the dephasing problem described by Eqs. (7.68)–(7.70),
and assume that the deterministic and the fluctuating parts of the effective force −f,
exerted by the environment, are characterized by relations similar, respectively, to
Eqs. (7.124) and (7.134). Now writing the Heisenberg equations of motion for the two
remaining spin operators, and using the commutation relations between them, we get

σ σ σ σ σ

σ ησ

ˆ̇ =
ℏ

ˆ ˆ =
ℏ

ˆ + ˆ ˆ = −
ℏ

ˆ + ˆ

= −
ℏ

ˆ + ˆ + ˜̂
i

H
i

c f c f

c f

1
[ , ]

1
[ , ( ) ]

2
( )

2
( ),

(7.156)
x x x z z y z

y z z

and a similar equation for σ̂y. Such nonlinear equations cannot be used to calculate
the statistical properties of the Pauli operators exactly—at least analytically.

For some calculations, this problem may be circumvented by linearization: if we
are only interested in small fluctuations of the observables, their nonlinear
Heisenberg equations of motion, such as Eq. (7.156), may be linearized with respect
to small deviations of the operators about their (generally, time-dependent) deter-
ministic ‘values’, and the resulting linear equations for the operator variations solved
either as has been demonstrated above, or (if the deterministic ‘values’ evolve in time)
using their Fourier expansions. Sometimes such an approach gives relatively simple
and important results56, but for many other problems, this approach is insufficient.

7.6 Density matrix approach
The main alternative approach to the dynamics of open quantum systems, which is
essentially a generalization of the one discussed in section 7.2, is to extract the final
results from the dynamics of the density operator of our subsystem s of interest. Let
us discuss this approach in detail57.

We already know that the density matrix allows the calculation of the expectation
value of any observable of system s—see Eq. (7.5). However, our initial recipe (7.6)

56 For example, the formula used for processing of the experimental results by R Koch et al (mentioned above),
had been derived in this way. (This derivation is suggested to the reader as an exercise.)
57As in section 7.4, the reader not interested in the derivation of the basic Eq. (7.181) of the density matrix
evolution may immediately jump to the discussion of this equation and its applications.
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for the density matrix element calculation, which requires the knowledge of the exact
state (7.2) of the whole Universe, is not too practicable, while the von Neumann
equation (7.66) for the density matrix evolution is limited to cases in which
probabilities Wj of the system states are fixed—thus excluding such important
effects as the energy relaxation. However, such effects may be analyzed using a
different assumption—that the system of interest interacts only with a local
environment that is very close to its thermally-equilibrium state, described, in the
stationary-state basis, by a diagonal density matrix with the elements (7.24).

This calculation is facilitated by the following general observation. Let us number
the basis states of the full local system (the system of our interest plus its local
environment) by l, and use Eq. (7.5) to write

∑ ∑= ˆ ˆ ≡ = ˆ ′ ′ ˆ
′ ′

′ ′A Aw A w l A l l w lTr( ) , (7.157)
l l l l, ,

l ll l l l

where ŵl is the density operator of this full local system. At a weak interaction
between the system s and the local environment e, their states reside in different
Hilbert spaces, so that we can write

= ∣ 〉 ⊗ ∣ 〉l s e . (7.158)j k

and if the observable A depends only on the coordinates of the system s of our
interest, we may reduce Eq. (7.157) to Eq. (7.5):

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∑

∑ ∑

= 〈 ∣ ⊗ 〈 ∣ ˆ ∣ 〉 ⊗ ∣ 〉〈 ∣ ⊗ 〈 ∣ ˆ ∣ 〉 ⊗ ∣ 〉

= 〈 ∣ ⊗ 〈 ∣ ˆ ∣ 〉 ⊗ ∣ 〉 = ˆ ˆ

′ ′

′

′ ′ ′ ′

′ ′

A e s A s e e s w s e

A s e w e s AwTr ( ),
(7.159)

j j k k

j j k

, ; ,

,

k j j k k j l j k

jj j k l k j j

where

∑ˆ ≡ 〈 ∣ ˆ ∣ 〉 = ˆw e w e wTr , (7.160)
k

k l k k l

showing how exactly the density operator ŵ of the system s may be calculated
from ŵl.

Now comes the key physical assumption of this approach: since we may select the
local environment e to be much larger than the system s of our interest, we may
consider the composite system (s + e) as Hamiltonian, with time-independent
probabilities of its stationary states, so that for the description of time evolution
of its full density operator ŵl (again, in contrast to that, ŵ, of the system of our
interest) we may use the von Neumann equation (7.66). Partitioning its right-hand
side in accordance with Eq. (7.68), we get:

ℏ ˆ̇ = ˆ ˆ + ˆ ˆ + ˆ ˆi w H w H w H w[ , ] [ , ] [ , ]. (7.161)l s l e l lint

The next step is to use the perturbation theory to solve this equation in the lowest
order in Ĥint, that would yield, for the evolution of w, a nonvanishing contribution
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due to the interaction. For that, Eq. (7.161) is not very convenient, because its right-
hand side contains two other terms, of a much larger scale than the interaction
Hamiltonian. To mitigate this technical difficulty, the interaction picture that was
discussed in the end of section 4.6, is very natural. (It is not necessary though, and I
will use this picture mostly as an exercise of its application—unfortunately, the only
example I can afford in this course.)

As a reminder, in that picture (whose entities will be marked with index I, with the
unmarked operators assumed to be in the Schrödinger picture), both the operators
and the state vectors (and hence the density operator) depend on time. However, the
time evolution of the operator of any observable A is described by an equation
similar to Eq. (7.67), but with the unperturbed part of the Hamiltonian only—see Eq.
(4.214). In the model (7.68), this means

ℏ ˆ̇ = ˆ ˆi A A H[ , ]. (7.162)I I 0

where the unperturbed Hamiltonian consists of two parts defined in different Hilbert
spaces:

ˆ ≡ ˆ + ˆH H H . (7.163)s e0

On the other hand, the state vector’s dynamics is governed by the interaction
evolution operator ûI that obeys Eqs. (4.215). Since this equation, using the
interaction-picture Hamiltonian (4.216),

ˆ ≡ ˆ ˆ ˆ†H u H u , (7.164)I 0 int 0

is absolutely similar to the ordinary Schrödinger equation using the full
Hamiltonian, we may repeat all arguments given in the beginning of section 7.3
to prove that the dynamics of the density operator in the interaction picture of a
Hamiltonian system is governed by the following analog of the von Neumann
equation (7.66):

ℏ ˆ̇ = ˆ ˆi w H w[ , ], (7.165)I I I

where the index l is dropped for the notation simplicity. Since this equation is similar
in structure (with the opposite sign) to the Heisenberg equation (7.67), we may use
the solution Eq. (4.190) of the latter equation to write its analog:

ˆ = ˆ ˆ ˆ †w t u t w u t( ) ( , 0) (0) ( . 0). (7.166)I I l I

It is also straightforward to verify that in this picture, the expectation value of any
observable A may be found from an expression similar to the basic Eq. (7.5):

= ˆ ˆA A wTr( ), (7.167)I I

showing again that the interaction and Schrödinger pictures give the same final
results.

Quantum Mechanics: Lecture notes

7-41



In the most frequent case of the factorable interaction (7.90),58 Eq. (7.162) is
simplified for both operators participating in that product—for each one in its own
way. In particular, for ˆ = ˆA x, it yields

ℏ ˆ̇ = ˆ ˆ ≡ ˆ ˆ + ˆ ˆi x x H x H x H[ , ] [ , ] [ , ]. (7.168)I I I s I e0

Since the coordinate operator is defined in the Hilbert space of the system s, it
commutes with the Hamiltonian of the environment, so that we finally get

ℏ ˆ̇ = ˆ ˆi x x H[ , ]. (7.169)I I s

On the other hand, if ˆ = ˆA F , this operator is defined in the Hilbert space of the
environment, and commutes with the Hamiltonian of the unperturbed system s. As a
result, we get

ℏ ˆ̇ = ˆ ˆi F F H[ , ]. (7.170)I I e

This means that with our time-independent unperturbed Hamiltonians, Ĥs and
Ĥe, the time evolution of the interaction-picture operators is rather simple. In
particular, the analogy between Eqs. (7.170) and (7.93) allows us to immediately
write the following analog of Eq. (7.94):

ˆ =
ℏ

ˆ ˆ −
ℏ

ˆ{ } { }F t
i

H t F
i

H t( ) exp (0) exp , (7.171)I e e

so that in the stationary-state basis n of the environment,

ˆ =
ℏ

−
ℏ

≡ − −
ℏ

′ ′ ′

′
′{ }

{ } { }F t
i

E t F
i

E t

F i
E E

t

( ) ( ) exp (0)exp

(0)exp ,
(7.172)

I nn n nn n

nn
n n

and similarly (but in the basis of the eigenstates of the system s) for operator x̂. As a
result, the right-hand side of Eq. (7.164) may be also factored:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

ˆ ≡ ˆ ˆ ˆ

=
ℏ

ˆ + ˆ − ˆ ˆ −
ℏ

ˆ + ˆ

= −
ℏ

ˆ ˆ −
ℏ

ˆ

×
ℏ

ˆ ˆ −
ℏ

ˆ

≡ − ˆ ˆ

†

{ } { }
{ } { }
{ } { }

H t u t H u t

i
H H t xF

i
H H t

i
H t x

i
H t

i
H t F

i
H t

x t F t

( ) ( , 0) ( , 0)

exp ( ) ( ) exp ( )

exp exp

exp (0)exp

( ) ( ).

(7.173)

I

s e s e

s s

e e

I I

0 int 0

58A similar analysis of a more general case, when the interaction with environment has to be represented as a
sum of several products of the type (7.90), may be found, for example, in the monograph by K Blum [4].

Quantum Mechanics: Lecture notes

7-42



So, the transfer to the interaction picture has taken some time, but now it enables
a smooth ride59. Indeed, just as in section 7.4, we may rewrite Eq. (7.165) in the
integral form:

∫ˆ =
ℏ

ˆ ′ ˆ ′ ′
−∞

w t
i

H t w t dt( )
1

[ ( ), ( )] ; (7.174)I

t

I I

plugging this result, for time t′, into the right-hand side of Eq. (7.174) again, we get

∫
∫

ˆ̇ = −
ℏ

ˆ ˆ ′ ˆ ′ ′

= −
ℏ

ˆ ˆ ˆ ′ ˆ ′ ˆ ′ ′

−∞

−∞

w t H t H t w t dt

x t F t x t F t w t dt

( )
1

[ ( ), [ ( ), ( )]]

1
[ ( ) ( ), [ ( ) ( ), ( )]] ,

(7.175)
I

t

I I I

t

I

2

2

where, for the notation’s brevity, from this point on I will strip the operators x̂ and F̂
of their index I. (Their time dependence indicates the interaction picture clearly
enough.)

So far, this equation is exact (and cannot be solved analytically), but this is a good
time to notice that even if we take the density operator on its right-hand side equal to
its unperturbed, factorable ‘value’ (corresponding to no interaction between the
system s and its thermally-equilibrium environment e)60,

δˆ ′ → ˆ ′ ˆ 〈 ∣ ˆ ∣ 〉 =′ ′w t w t w e w e W( ) ( ) , with , (7.176)I e n e n n nn

where en are the stationary states of the environment, and Wn are the Gibbs
probabilities (7.24), Eq. (7.175) still describes a nontrivial time evolution of the
density operator. This is exactly the first nonvanishing approximation (in the weak
interaction) we are looking for. Now using Eq. (7.160), we find the equation of
evolution of the density operator of the system of our interest:

∫ˆ̇ = −
ℏ

ˆ ˆ ˆ ′ ˆ ′ ˆ ′ ˆ ′
−∞

w t x t F t x t F t w t w dt( )
1

Tr [ ( ) ( ), [ ( ) ( ), ( ) ] ] , (7.177)
t

n e2

where the trace is over the stationary states of the environment. In order to spell out
the right-hand side of Eq. (7.177), note again that the coordinate and force operators
commute with each other (but not with themselves at different time moments!) and
hence may be swapped at will, so that we may write

59 If we used either the Schrödinger or the Heisenberg picture instead, the forthcoming Eq. (7.175) would pick
up a rather annoying multitude of fast-oscillating exponents, of different time arguments, on its right-hand
side.
60 For the notation simplicity, the fact that here (and in all following formulas) the density operator ŵ of the
system s of our interest is taken in the interaction picture, is just implied.
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x t w t x t F t W F t
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Since the summation on both indices n and n′ in this expression is over the same
energy level set (of all eigenstates of the environment), we may swap these indices in
any of the sums. Doing this only in the terms including the factorsWn′, we turn them
into Wn, so that this factor becomes common:

∑… … … = ˆ ˆ ′ ˆ ′ ′

− ˆ ˆ ′ ˆ ′ ′
− ˆ ′ ˆ ˆ ′ + ˆ ˆ ′ ˆ ′

′
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′ ′ ′ ′

W x t x t w t F t F t

x t w t x t F t F t
x t wx t F t F t wx t x t F t F t

Tr [ , [ , ]] [ ( ) ( ) ( ) ( ) ( )
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Now using Eq. (7.172), we get
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Comparing the two double sums participating in this expression with Eqs. (7.108)
and (7.111), we see that they are nothing other than, respectively, the symmetrized
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correlation function and the temporal Green’s function (multiplied by ℏ/2) of the time-
difference argument τ = t − t′ ⩾ 0. As a result, Eq. (7.177) takes a compact form:

∫
∫

ˆ̇ = −
ℏ

− ′ ˆ ˆ ′ ˆ ′ ′

−
ℏ

− ′ ˆ ˆ ′ ˆ ′ ′
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w t K t t x t x t w t dt

i
G t t x t x t w t dt

( )
1

( ) [ ( ), [ ( ), ( )]]

2
( ) [ ( ), { ( ), ( )}] .

(7.181)
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Let me hope that readers (especially the ones who have braved through this
derivation) enjoy this beautiful result as much as I do. It gives an equation for the
time evolution of the density operator of the system of our interest (s), with the
effects of its environment represented only by two real, c-number functions of τ—
one (KF) describing the fluctuation force exerted by the environment, and another
one (G) representing its ensemble-averaged response to the system’s evolution. And
most spectacularly, these are exactly the same functions as participate in the
alternative, Heisenberg–Langevin approach to the problem, and hence related to
each other by the fluctuation–dissipation theorem (7.134).

After a short celebration, let us acknowledge that Eq. (7.181) is still an integro-
differential equation, and needs to be solved together with Eq. (7.169) for the system
coordinate’s evolution. Such equations do not allow explicit analytical solutions,
with the exception of very simple (and not very interesting) cases. For most
applications, further simplifications should be made. One of them is based on the
fact (which was already discussed in section 7.3) that both environmental functions
participating in Eq. (7.181) tend to zero when their argument τ becomes larger than
the environment’s correlation time τc, independent of the system-to-environment
coupling strength. If the coupling is sufficiently weak, the time scales Tnn′ of the
evolution of the density matrix elements, following from Eq. (7.181), are much
longer than this correlation time, and also the characteristic time scale of the
coordinate operator’s evolution. In this limit, all arguments t′ of the density
operator, giving substantial contributions to the right-hand side of Eq. (7.181),
are so close to t that it does not matter whether its argument is t′ or just t. This
simplification, w(t′) ≈ w(t), is known as the Markov approximation61.

However, this approximation alone is still insufficient for finding the general
solution of Eq. (7.181). Substantial further progress is possible in two important
cases. The most important of them is when the intrinsic Hamiltonian Ĥs of the
system s of our of interest is time-independent, and has a discrete eigenenergy
spectrum En,

62 with well-separated levels:

61Named after A Markov (1856–1922; in older literature, ‘Markoff’), a mathematician famous for his general
theory of the so-called Markov process, whose future development is completely determined by its present
state, rather than its pre-history.
62Here, rather reluctantly, I will use this standard notation, En, for the eigenenergies of our system of interest
(s), in the hope that the reader would not confuse these discrete energy levels with the quasi-continuous energy
levels of its environment (e), participating in particular in Eqs. (7.108) and (7.111). As a reminder, by this stage
of our calculations the environment levels have disappeared from our formulas, leaving behind their
functionals KF(τ) and G(τ).
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Let us see what this condition yields for Eq. (7.181), rewritten for the matrix
elements in the stationary state basis:

∫
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(7.183)
nn

t

F nn

t

nn

2

After spelling out the commutators, the right-hand side of this expression includes
four operator products, which differ ‘only’ by the operator order. Let us first have a
look at one of these products,

∑ˆ ˆ ′ ˆ ≡ ′
′

′ ′ ′ ′x t x t w x t x t w[ ( ) ( ) ] ( ) ( ) , (7.184)
m m,

nn nm mm m n

where the indices m and m′ run over the same set of eigenenergies of the system s of
our interest as the indices n and n′. According to Eq. (7.169) with a time-independent
Hs, the matrix elements xnn′ (in the stationary state basis) oscillate in time as
exp{iωnn′t}, so that

∑ ω ωˆ ˆ ′ ˆ = + ′
′

′ ′ ′ ′ ′x t x t w x x i t t w[ ( ) ( ) ] exp{ ( )} , (7.185)
m m,

nn nm mm nm mm m n

where on the right-hand side, the coordinate matrix elements are in the Schrödinger
picture, and the usual notation (6.85) is used for the quantum transition frequencies:

ωℏ ≡ −′ ′E E . (7.186)nn n n

According to the condition (7.182), frequencies ωnn′ with n ≠ n′ are much higher than
the speed of evolution of the density matrix elements (in the interaction picture!)—
on both the left-hand and right-hand sides of Eq. (7.183). Hence, on the right-hand
side of Eq. (7.183) we may keep only the terms that do not oscillate with these
frequencies ωnn′, because rapidly-oscillating terms would give negligible contribu-
tions to the density matrix dynamics63. For that, in the double sum (7.185) we should
save only the terms proportional to the difference (t − t′), because they will give
(after the integration over t′) a slowly changing contribution to the right-hand side64.
These terms should have ωnm + ωmm′ = 0, i.e. (En − Em) + (Em − Em′) ≡ En − Em′ = 0.
For a non-degenerate energy spectrum, this requirement means m′ = n; as a result,
the double sum is reduced to a single one:

63 This is essentially the same rotating-wave approximation (RWA) as was used in section 6.5.
64As was already discussed in section 7.4, the lower-limit substitution (t′ = −∞) in the integrals participating in
Eq. (7.183) gives zero, due to the finite-time ‘memory’ of the system, expressed by the decay of the correlation
and response functions at large values of the time delay τ = t − t′.

Quantum Mechanics: Lecture notes

7-46



∑

∑

ω

ω

ˆ ˆ ′ ˆ ≈ − ′

≡ − ′

′ ′

′

x t x t w w x x i t t

w x i t t

[ ( ) ( ) ] exp{ ( )}

exp{ ( )}.
(7.187)m

m

nn nn nm mn nm

nn nm nm
2

Another product, ˆ ˆ ′ ˆ ′wx t x t[ ( ) ( )]nn , which appears on the right-hand side of Eq. (7.183),
may be simplified absolutely similarly, giving

∑ ωˆ ˆ ′ ˆ ≈ ′ −′ ′ ′ ′wx t x t x i t t w[ ( ) ( )] exp{ ( )} . (7.188)
m

nn n m n m nn
2

These expressions hold whether n and n′ are equal or not. The situation is
different for two other products on the right-hand side of Eq. (7.183), with w
sandwiched between x and x′. For example,

∑

∑ ω ω

ˆ ˆ ˆ ′ = ′

= + ′
′

′

′ ′ ′ ′

′ ′ ′ ′ ′

x t wx t x t w x t

x w x i t t

[ ( ) ( )] ( ) ( )

exp{ ( )}.
(7.189)
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For this term, the same requirement of having a fast oscillating function of (t − t′)
only, yields a different condition: ωnm + ωm′n′ = 0, i.e.

− + − =′ ′E E E E( ) ( ) 0. (7.190)n m m n

Here the double sum’s reduction is possible only if we make an additional
assumption that all interlevel energy distances are unique, i.e. our system of interest
has no equidistant levels (such as in the harmonic oscillator). For the diagonal
elements (n = n′), the RWA requirement is reduced to m = m′, giving sums over all
diagonal elements of the density matrix:

∑ ωˆ ˆ ˆ ′ = − ′x t wx t x i t t w[ ( ) ( )] exp{ ( )} . (7.191)
m

nn nm nm mm
2

(Another similar term, ˆ ′ ˆ ˆx t wx t[ ( ) ( )]nn, is just a complex conjugate of Eq. (7.191).)
However, for off-diagonal matrix elements (n ≠ n′), the situation is different: Eq.
(7.190) may be satisfied only if m = n and also m′ = n′, so that the double sum is
reduced to just one, non-oscillating term:

ˆ ˆ ˆ ′ = ≠ ′′ ′ ′ ′x t wx t x w x n n[ ( ) ( )] , for . (7.192)nn nn nn n n

The second similar term, ˆ ′ ˆ ˆx t wx t[ ( ) ( )]nn, is exactly the same, so that in one of the
integrals of Eq. (7.183), these terms add up, while in the second one, they cancel.

This is why the final equations of evolution look differently for diagonal and off-
diagonal elements of the density matrix. For the former case (n = n′), Eq. (7.183) is
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reduced to the so-called master equation65 relating diagonal elements wnn of the
density matrix, i.e. the energy level occupancies Wn:

66
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⎤
⎦⎥
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0 2

where τ ≡ t − t′. Changing the summation index notation from m to n′, we may
rewrite the master equation in its canonical form

∑˙ = Γ − Γ
′≠

′→ ′ → ′W W W( ), (7.194)
n n

n n n n n n n

where the coefficients

⎡
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ℏ
−

ℏ
′′→ ′

∞

′ ′x K G dt
2

( ) cos
1

( ) sin , (7.195)n n nn F nn nn
2

0 2

are called the interlevel transition rates67. Eq. (7.194) has a very clear physical
meaning of the level occupancy dynamics (i.e. the balance of the probability flows
ΓW ) due to the quantum transitions between the energy levels (see figure 7.7), in our
current case caused by the interaction between the system of our interest and its
environment.

The Fourier transforms (7.113) and (7.123) enable us to express the two integrals
in Eq. (7.195) via, respectively, the symmetrized spectral density SF(ω) of environ-
ment force fluctuations and the imaginary part χ″(ω) of the generalized

Figure 7.7. Probability dynamics in a discrete-spectrum system: solid arrows: the exchange between two
energy levels, n and n′, described by one term in the master equation (7.194); dashed arrows—other transitions
to/from these levels.

65 The master equations, first introduced to quantum mechanics in 1928 by W Pauli, are sometimes called the
‘Pauli master equations’, or ‘kinetic equations’, or ‘rate equations’.
66As Eq. (7.193) shows, the term with m = n would vanish, and thus may be legitimately excluded from the
sum.
67As Eq. (7.193) shows, the result for Γn→n′ is described by Eq. (7.195) as well, provided that indices n and n′
are swapped in all components of its right-hand side, including the swap ωnn′ → ωn′n = −ωnn′.
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susceptibility, both at frequency ω = ωnn′. After that we may use the fluctuation–
dissipation theorem (7.134) to exclude the former function, getting finally68
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Note that since the imaginary part of the generalized susceptibility is an odd
function of frequency, Eq. (7.196) is in compliance with the Gibbs distribution for
arbitrary temperature. Indeed, according to this equation, the ratio of the ‘up’ and
‘down’ rates for each pair of levels equals

⎧⎨⎩
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On the other hand, according to the Gibbs distribution (7.24), in the thermal
equilibrium the level populations should be in the same proportion. Hence, Eq.
(7.196) is in compliance with the so-called detailed balance equation,

Γ = Γ→ ′ ′ ′→W W , (7.198)n n n n n n

valid in the equilibrium for each pair {n, n′}, so that all right-hand sides of all Eqs.
(7.194), and hence the time derivatives of all Wn vanish—as they should. Thus, the
stationary solution of the master equations indeed describes the thermal equilibrium.

The system of master equations (7.194), frequently complemented by additional
terms on their right-hand sides, which describe interlevel transitions due to other
factors (e.g. by an external ac force with a frequency close to one of ωnn′), is the key
starting point for practical analyses of many quantum systems, notably including
optical quantum amplifiers and generators (lasers). It is important to remember that
they are strictly valid only in the rotating-wave approximation, i.e. if Eq. (7.182) is
well satisfied for all n and n′ of substance.

For a particular but very important case of a two-level system (with, say, E1 > E2),
the rate Γ1→2 may be interpreted (especially in the low-temperature limit kBT≪ ℏω12 =
E1 − E2, when Γ1→2 ≫ Γ2→1) as the reciprocal characteristic time 1/T1 ≡ Γ1→2 of
the energy relaxation process that brings the diagonal elements of the density matrix

68 It is straightforward (and highly recommended to the reader) to show that at low temperatures (kBT≪ ∣En′ −
En∣), Eq. (7.196) gives the same result as the Golden Rate formula (6.111), with A = x. (The low temperature
limit is necessary to ensure that the initial occupancy of the excited level n is negligible, as was assumed at the
derivation of Eq. (6.111).)
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to their thermally-equilibrium values (7.24). For the Ohmic dissipation described by
Eqs. (7.137) and (7.138), Eq. (7.196) yields

⎧⎨⎩η ω ω
ω

≡ Γ =
ℏ

× ℏ ≪ ℏ
ℏ ≪→

T
x

k T
k T k T

1 2 , for ,
, for .

(7.199)
1

1 2 2 12
2 12 B 12

B 12 B

This relaxation time T1 should not be confused with the characteristic time T2 of
the off-diagonal element decay, i.e. dephasing, which was already discussed in
section 7.3. In this context, let us see what do Eqs. (7.183) say about the dephasing
rates. Taking into account our intermediate results (7.187)–(7.192), and merging the
non-oscillating components (with m = n and m = n′) of the sums Eqs. (7.187) and
(7.188) with the terms (7.192), which also do not oscillate in time, we get the
following equation69:
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In contrast with Eq. (7.194), the right-hand side of this equation includes both a real
and an imaginary part, and hence it may be represented as

˙ = − + Δ′ ′ ′ ′w T i w(1/ ) , (7.201)nn nn nn nn

where both factors 1/Tnn′ and Δnn′ are real. As Eq. (7.201) shows, the second term in
the right-hand side of this equation causes slow oscillations of the matrix elements
wnn′, which, after returning to the Schrödinger picture, add just small corrections70 to
the unperturbed frequencies (7.186) of their oscillations, and are not important for
most applications. More important is the first term, proportional to

69 Sometimes Eq. (7.200) (in any of its numerous alternative forms) is called the Redfield equation, after the
1965 work by A Redfield. Note, however, that several other authors, notably including (in alphabetical order)
H Haken, W Lamb, M Lax, W Louisell, and M Scully, also made key contributions into the very fast
development of the density-matrix approach to open quantum systems in the mid-1960s.
70 Such corrections are sometimes called the Lamb shift, because such an effect was first observed experimentally
in 1947 by W Lamb and R Retherford, as a minor, ∼1 GHz shift between energy levels of 2s and 2p states of
hydrogen, due to the electric-dipole coupling of hydrogen atoms to the free-space electromagnetic environment.
(These energies are equal not only in the non-relativistic theory (section 3.6), but also in the relativistic, Dirac
theory (section 9.7), if the electromagnetic environment is ignored.) The explanation of the shift, by H Bethe,
also in 1947, essentially launched the whole field of quantum electrodynamics—to be briefly discussed in
chapter 9.
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because it describes the effect completely absent without the environment: an
exponential decay of the off-diagonal matrix elements, i.e. the dephasing.
Comparing the first two terms of Eq. (7.202) with Eq. (7.195), we see that the
dephasing rates may be described by a very simple formula:
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where the low-frequency drag coefficient η is again the defined as limω→0χ″(ω)/ω—
see Eq. (7.138).

This result shows that two effects yield independent contributions into the
dephasing. The first of them may be interpreted as a result of ‘virtual’ transitions
of the system, from the levels n and n′ of our interest, to other energy levels m;
according to Eq. (7.195), this contribution is proportional to the strength of coupling
to environment at relatively high frequencies ωnm and ωn′m. (If the energy quanta ℏω
of these frequencies are much larger than the thermal fluctuation scale kBT, only the
lower levels, with Em < max[En, En′] are important.) In contrast, the second
contribution is due to low-frequency, essentially classical fluctuations of the
environment, and hence to the low-frequency dissipative susceptibility. In the
Ohmic dissipation case, when the ratio η ≡ χ″(ω)/ω is frequency-independent, both
contributions are of the same order, but their exact relation depends on the relation
between the matrix elements xnn′ of a particular system.

For example, returning for a minute to the two-level system discussed in section
7.3, described by our current theory with the replacement σˆ → ˆx z, the high-frequency
contributions to dephasing vanish because of the absence of transitions between the
energy levels, while the low-frequency contribution yields

η η η≡ =
ℏ
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ℏ

σ − σ =
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T T
k T

x x
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thus exactly reproducing the result (7.142) of the Heisenberg–Langevin approach71.
Note also that the expression for T2 is very close in structure to Eq. (7.199) for T1 (in
the high-temperature limit). However, for the simple interaction model (7.70) that
was explored in section 7.3, the off-diagonal elements of the operator σˆ = ˆx z in the
stationary-state z-basis vanish, so that T1 → ∞, while T2 says finite. The physics of
this result is very clear, for example, from the two-well implementation of the model
(see figure 7.4 and its discussion): it is suitable for the case of a very high energy the
barrier between the wells, which inhibits tunneling, and hence any change of the well
occupancies. However, T1 may become finite, and comparable with T2, if tunneling
between the wells is substantial72.

Because of the reason explained above, the derivation of Eqs. (7.200)–(7.204) is
not valid for systems with equidistant energy spectra—for example, the harmonic
oscillator. For this particular, but very important system, with its simple matrix
elements xnn′, given by Eqs. (5.92), it is longish but straightforward to repeat the
above calculations, starting from (7.183), to obtain an equation similar in structure
to Eq. (7.200), but with two other terms, proportional to wn±1,n′±1, on its right-hand
side. Neglecting the minor Lamb–shift term, the equation reads
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Here δ is the effective damping coefficient73,
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equal to just η/2m for the Ohmic dissipation, while ne is the equilibrium number of
oscillator’s excitations, given by Eq. (7.26b), with the environment’s temperature T.
(I am using this new notation because in dynamics, the instant expectation value 〈n〉
may be time-dependent, and is generally different from its equilibrium value ne.)

(Actually, the derivation of Eq. (7.205) might be started at a somewhat earlier
point, from the Markov approximation applied to Eq. (7.181), expressing the

71 The first form of Eq. (7.203), as well as the analysis of section 7.3, imply that low-frequency fluctuations of
any other origin, not taken into account in their own current analysis (say, an unintentional noise from
experimental equipment), may also cause dephasing; such ‘technical fluctuations’ are indeed a very serious
challenge for experimental implementation of coherent qubit systems—see section 8.5 below.
72As was discussed in section 5.1, the tunneling may be described by using, instead of Eq. (7.70), the full two-
level Hamiltonian (5.3). Let me leave for the reader’s exercise to spell out the equations for the time evolution
of the density matrix elements of this system, and of the expectation values of the Pauli operators, for this case.
73 This coefficient participates prominently in the classical theory of damped oscillations (see, e.g. Part CM
section 5.1), in particular defining the oscillator’s Q-factor as Q = ω0/2δ, and the decay time of the amplitude A
and the energy E of free oscillations: A(t) = A(0)exp{-δt}, E(t) = E(0)exp{−2δt}.
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coordinate operator via the creation–annihilation operators (5.65). This procedure
gives the result in the operator (basis-independent) form74:

δˆ̇ = − + ˆ ˆ ˆ − ˆ ˆ ˆ + ˆ ˆ ˆ − ˆ ˆ ˆ† † † †w n a a w awa n aa w a wa[( 1)({ , } 2 ) ({ , } 2 )].
(7.207)

e e

In the Fock state basis, this equation immediately reduces to Eq. (7.205). However,
Eq. (7.207) may be more useful for some applications.)

Returning to Eq. (7.205), we see that it relates only the elements wnn′ located at
the same distance (n − n′) from the principal diagonal of the density matrix. This
means, in particular, that the dynamics of the diagonal elements wnn of the matrix,
i.e. the Fock state probabilities Wn, is independent of the off-diagonal elements, and
may be represented in the form (7.194), truncated to the transitions between the
adjacent energy levels only (n′ = n ± 1):

˙ = Γ − Γ + Γ − Γ+ → + → + − → − → −W W W W W( ) ( ) (7.208)
n n n n n n n n n n n n n1 1 1 1 1 1

with the rates

δ δ
δ δ

Γ = + + Γ = +
Γ = Γ = +

+ → → +

− → → −

n n n n
n n n n

2 ( 1)( 1), 2 ( 1) ,
2 , 2 ( 1).

(7.209)n n n n

n n n n

1 e 1 e

1 e 1 e

Since according to the definition of ne, given by Eq. (7.26b),

ω
ω

ω ω

=
ℏ −

+ = ℏ
ℏ −

≡ −
−ℏ −

n
k T

n
k T

k T k T

1
exp{ / } 1

, so that

1
exp{ / }

exp{ / } 1
1

exp{ / } 1
,

(7.210)
e

0 B

e
0 B

0 B 0 B

taking into account Eqs. (5.92), (7.186), (7.206), and the asymmetry of the function
χ″(ω), we see that these rates are again described by Eq. (7.196), despite the fact that
the last formula was derived for non-equidistant energy spectra.

Hence the only substantial new feature of the master equation for the harmonic
oscillator, is that the decay of the off-diagonal elements of its density matrix is scaled
by the same parameter (2δ) as that of the decay of its diagonal elements, i.e. there is
no radical difference between the dephasing and energy-relaxation times T2 and T1.
This fact may be interpreted as the result of the independence of the energy level
distances, ℏω0, of the fluctuations F(t) exerted on the oscillator by the environment,
so that their low-frequency density, SF(0), does not contribute into the dephasing.

74 Sometimes Eq. (7.207) is called the Lindblad equation, but I believe this terminology is inappropriate.
Though its structure indeed falls into the general category of equations, suggested by G Lindblad in 1976 for
the density operators in the Markov approximation, whose diagonalized form in the interaction picture is

∑γˆ̇ = ˆ ˆ ˆ − ˆ ˆ ˆ† †
w L wL L L w(2 { , }),j j j j j

j

Eq. (7.207) was derived much earlier (by L Landau in 1927 for zero temperature, and by M Lax in 1960 for an
arbitrary temperature), and in contrast to the general Lindblad equation, spells out the participating operators
and coefficients γj for a particular physical system—the harmonic oscillator.
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(This fact formally follows also from Eq. (7.203) as well, taking into account that for
the oscillator, xnn = xn′n′ = 0.)

The simple equidistant structure of the oscillator’s spectrum makes it possible to
readily solve the system of Eqs. (7.208), with n = 0, 1, 2, …, for some important
cases. In particular, if the initial state of the oscillator is a classical mixture, with no
off-diagonal elements, its further relaxation proceeds as such a mixture: wnn′(t) = 0
for all n′ ≠ n.75 In particular, it is straightforward to use Eq. (7.208) to verify that if
the initial classical mixture obeys the Gibbs distribution (7.25), but with a temper-
ature Ti different from that of the environment (Te), then the relaxation process is
reduced to a simple exponential transient of the effective temperature from Ti to Te:

⎧⎨⎩
⎫⎬⎭

⎛
⎝⎜

⎧⎨⎩
⎫⎬⎭

⎞
⎠⎟

ω ω= − ℏ − − ℏ

= + −δ δ− −

W t n
k T t k T t

T t Te T e

( ) exp
( )

1 exp
( )

,

with ( ) (1 ),

(7.211)
n

t t

0

B ef

0

B ef

ef i
2

e
2

with the corresponding evolution of the expectation value of the energy E—cf
Eq. (7.26b):

ω ω
ω

= ℏ + ℏ =
ℏ −

→ →∞E n n
k T t

n
2

,
1

exp{ / ( )} 1
. (7.212)t

0
0

0 B ef
e

However, if the initial state of the oscillator is different (say, corresponds to some
upper Fock state), the relaxation process described by Eqs. (7.208) and (7.209) is
more complex—see, e.g. figure 7.8. At low temperatures (figure 7.8a), it may be
interpreted as a gradual ‘roll’ of the probability distribution down the energy
staircase, with a gradually decreasing velocity dn/dt ∝ n. However, at substantial

Figure 7.8. Relaxation of a harmonic oscillator, initially in its 5th Fock state, at: (a) T = 0, and (b) T > 0. Note
that in the latter case, even the energy levels with n > 5 get populated, due the their thermal excitation.

75Note, however, that this is not true for many applications, in which a damped oscillator is also under the
effect of an external time-dependent field, which should be described by additional, typically off-diagonal
terms on the right-hand side of Eqs. (7.205).

Quantum Mechanics: Lecture notes

7-54



temperatures, with kBT ∼ℏω0 (figure 7.8b), this ‘roll-down’ is saturated when the
level occupancies Wn(t) approach their equilibrium values (7.25).76

The analysis of this process may be simplified in the case when W(n, t) ≡ Wn(t) is a
smooth function of the energy level number n, limited to high levels: n≫ 1. In this limit,
we may use the Taylor expansion of this function (written for the points Δn = ±1),
truncated to three leading terms:

≡ ± ≈ ± ∂
∂

+ ∂
∂±W t W n t W n t

W n t
n

W n t
n

( ) ( 1, ) ( , )
( , ) 1

2
( , )

. (7.213)n 1

2

2

Plugging this expression into Eqs. (7.208) and (7.209), we get for the functionW(n, t),
a partial differential equation, which may be recast in the following form:

δ δ

∂
∂

= − ∂
∂

+ ∂
∂

≡ − ≡ + ½

W
t n

f n W
n

d n W

f n n n d n n n

[ ( ) ] [ ( ) ],

with ( ) 2 ( ), ( ) 2 ( ) .

(7.214)

2

2

e e

Since at n ≫ 1, the oscillator’s energy E is close to ℏω0n, this energy diffusion
equation (sometimes incorrectly called the Fokker–Planck equation—see below)
essentially describes the time evolution of the continuous probability density w(E, t),
which may be defined as w(E, t) ≡ W(E/ℏω0, t)/ℏω0.

77

This continuous approximation naturally reminds us of the need to discuss
dissipative systems with a continuous spectrum. Unfortunately, for such systems the
few (relatively) simple results that may be obtained from the basic equation (7.181)
are essentially classical in nature, and will be discussed in detail in Part SM of this
series. Here, I will give only a simple illustration. Let us consider a 1D particle that
interacts weakly with a thermally-equilibrium environment, but otherwise is free to
move along the x-axis. As we know from chapters 2 and 5, in this case the most
convenient basis is that of the momentum eigenstates p. In the momentum
representation, the density matrix is just the c-number function w(p, p′), defined
by Eq. (7.54), which was already discussed in brief in section 7.2. On the other hand,
the coordinate operator, which participates in the right-hand side of Eq. (7.181), has
the form given by the first of Eqs. (4.269),

ˆ = ℏ ∂
∂

x i
p

, (7.215)

dual to the coordinate-representation formula (4.268). As we already know, such
operators are local—see, e.g. Eq. (4.244). Due to this locality, the whole right-hand
side of Eq. (7.181) is local as well, and hence (within the framework of our
perturbative treatment) the interaction with environment affects essentially only

76 The reader may like to have a look at the results of nice measurements of such functionsWn(t) in microwave
oscillators, performed using their coupling with Josephson-junction circuits [5] and with Rydberg atoms [6].
77 In the classical limit ne ≫ 1, this equation is analytically solvable for any initial conditions—see, e.g. the
paper by B Zeldovich et al [7], which also gives some more intricate solutions of Eqs. (7.208) and (7.209). Note,
however, that most important properties of the damped harmonic oscillator (including its relaxation dynamics)
may be analyzed more simply using the Heisenberg–Langevin approach discussed in the previous section.
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the diagonal values w(p, p) of the density matrix, i.e. the momentum probability
density w(p).

Let us find the equation governing the evolution of this function in time in the
Markov approximation, when the time scale of the density matrix evolution is much
longer than the correlation time τc of the environment, i.e. the time scale of the
functions KF(τ) and G(τ). In this approximation, we may take the matrix elements
out of the first integral of Eq. (7.181),

∫
∫ τ τ

π η

−
ℏ

− ′ ′ ˆ ˆ ′ ˆ ′

≈ −
ℏ

ˆ ˆ ˆ

= −
ℏ

ˆ ˆ ˆ = −
ℏ

ˆ ˆ ˆ

−∞
∞

K t t dt x t x t w t

K d x x w

S x x w
k T

x x w

1
( ) [ ( ), [ ( ), ( )]]

1
( ) [ , [ , ]]

(0)[ , [ , ]] [ , [ , ]],

(7.216)
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and calculate the last double commutator in the Schrödinger picture. This may be
done either using an explicit expression for the matrix elements of the coordinate
operator, or in a simpler way, using the same trick as at the derivation of the
Ehrenfest theorem in section 5.2. Namely, expanding an arbitrary function f(p) into
the Taylor series in p,
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and using Eq. (7.215), we can prove the following simple commutation relation:
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Now applying this result sequentially, first to w and then to the resulting
commutator, we get
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It may look like the second integral in Eq. (7.181) might be simplified similarly.
However, it vanishes at p′ → p, and t′ → t, so that in order to calculate the first
nonvanishing contribution from that integral for p = p′, we have to take into account
the small difference τ ≡ t − t′ ∼ τc between the arguments of the coordinate operators
under that integral. This may be done using Eq. (7.169) with the free-particle’s
Hamiltonian consisting of the kinetic-energy contribution alone:
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where the exact argument of the operator on the right-hand side is already
unimportant, and may be taken for t. As a result, we may use the last of Eqs.
(7.136) to reduce the second term on the right-hand side of Eq. (7.181) to

⎡
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t

0

In the momentum representation, the momentum operator and the density matrix w
are just c-numbers and commute, so that applying Eq. (7.218) to the product pw,
we get
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and may finally reduce the integro-differential equation (7.181) to a partial differ-
ential equation:
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This is the 1D form of the famous Fokker–Planck equation describing the classical
statistics of motion of a particle (in our particular case, of a free particle) in an
environment providing a linear drag characterized by the coefficient η; it belongs to
the same drift–diffusion type as Eq. (7.214). The first, drift term on its right-hand
side describes the particle’s deceleration due to the friction force (7.137),

vη η= − = −F p m/ , provided by the environment. The second, diffusion term on
the right-hand side of Eq. (7.223) describes the effect of fluctuations: the particle’s
momentum’ random walk about its average (drift-affected, and hence time-depend-
ent) value. The walk obeys the law similar to Eq. (7.85), but with the momentum-
space diffusion coefficient

η=D k T. (7.224)p B

This is the reciprocal-space version of the fundamental Einstein relation between the
dissipation (friction) and fluctuations, in this classical limit represented by their
thermal energy scale kBT.

78

Just for the reader’s reference, let me note that the Fokker–Planck equation
(7.223) may be readily generalized to the 3D motion of a particle under the effect of

78Note that Eq. (7.224), as well as the original Einstein’s relation between the diffusion coefficient D in the
direct space and temperature, may be derived much more simply by other means—for example, from the
Nyquist formula (7.139). These issues are discussed in detail in Part SM chapter 5.
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an additional external force79, and in this more general form is the basis for many
important applications; however, due to its classical character, its discussion is also
left for Part SM of this series80.

To summarize our discussion of the two alternative approaches to the analysis of
quantum systems interacting with a thermally-equilibrium environment, described
in the last three sections, let me emphasize that they give different descriptions of the
same phenomena, and are characterized by the same two functions G(τ) and KF(τ).
Namely, in the Heisenberg–Langevin approach we describe the system by operators
that change (fluctuate) in time, even in the thermal equilibrium, while in the density-
matrix approach the system is described by non-fluctuating probability functions,
such as Wn(t) or w(p, t), which are stationary in equilibrium. In the cases when a
problem may be solved to the end by either method (for example, for a harmonic
oscillator), they give identical results for all observables.

7.7 Problems

Problem 7.1. Calculate the density matrix of a two-level system described by the
Hamiltonian matrix

σ= ⋅ ≡ σ + σ + σc c ccH ,x x y y z z

where σk are the Pauli matrices, and cj are c-numbers, in thermodynamic equilibrium
at temperature T.

Problem 7.2. In the usual z-basis, spell out the density matrix of a spin-½ with
gyromagnetic ratio γ:

(i) in the pure state with the spin definitely directed along the z-axis,
(ii) in the pure state with the spin definitely directed along the x-axis,
(iii) in the thermal equilibrium at temperature T, in a magnetic field directed along

the z-axis, and
(iv) in the thermal equilibrium at temperature T, in a magnetic field directed along

the x-axis.

Problem 7.3. Calculate the Wigner function of a harmonic oscillator in:

(i) at the thermodynamic equilibrium at temperature T,
(ii) in the ground state, and
(iii) in the Glauber state with dimensionless complex amplitude α.

Discuss the relation between the first of the results and the Gibbs distribution.

79Moreover, Eq. (7.223) may be generalized to the motion of a quantum particle in an additional periodic
potential U(r). In this case, due to the band structure of the energy spectrum (which was discussed in sections
2.7 and 3.4), the coupling to the environment produces not only a continuous drift–diffusion of the probability
density in the space of the quasi-momentum ℏq, but also quantum transitions between discrete energies of
different bands at the same ℏq—see, e.g. [8].
80 See Part SM sections 5.6–5.7. For a more detailed discussion of quantum effects in dissipative systems with
continuous spectra see, e.g. either [9] or [10].
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Problem 7.4. Calculate the Wigner functions of a harmonic oscillator, with mass m
and frequency ω0, in its first excited stationary state (n = 1).

Problem 7.5.* A harmonic oscillator is weakly coupled to an Ohmic environment.

(i) Use the rotating-wave approximation to write the reduced equations of motion
for the Heisenberg operators of the complex amplitude of oscillations.

(ii) Calculate the expectation values of the correlators of the fluctuation force
operators, participating in these equations, and express them via the average
number 〈n〉 of thermally-induced excitations in equilibrium, given by the second
of Eqs. (7.26b).

Problem 7.6. Calculate the average potential energy of long-range electrostatic
interaction between two similar isotropic, 3D harmonic oscillators, each with the
electric dipole moment d = qs, where s is the oscillator’s displacement from its
equilibrium position, at arbitrary temperature T.

Problem 7.7. A semi-infinite string with mass μ per unit length is attached to a wall,
and stretched with a constant force (tension)T . Calculate the spectral density of the
transverse force exerted on the wall, in thermal equilibrium.

Problem 7.8.* Calculate the low-frequency spectral density of small fluctuations of
the voltage V across a Josephson junction, shunted with an Ohmic conductor, and
biased with a dc external current ¯ >I Ic.

Hint: You may use Eqs. (1.73)–(1.74) to describe the junction’s dynamics, and
assume that the shunting conductor remains in thermal equilibrium.

Problem 7.9. Prove that in the interaction picture of quantum dynamics, the
expectation value of an arbitrary observable A may be indeed calculated using
Eq. (7.167).

Problem 7.10. Show that the quantum-mechanical Golden Rule (6.149) and the
master equation (7.196) give the same results for the rate of spontaneous quantum
transitions n′ → n in a system with discrete energy spectrum, weakly coupled to a
low-temperature heat bath (kBT ≪ ℏωnn′).

Hint: Establish a relation between the function χ″(ωnn′), which participates in Eq.
(7.196), and the density of states ρn, which participates in the Golden Rule formula,
by considering a particular case of sinusoidal classical oscillations in the system of
interest.

Problem 7.11. For a harmonic oscillator with weak Ohmic dissipation, use Eqs.
(7.208)–(7.209) to find the evolution of the expectation value 〈E〉 of oscillator’s
energy in time at arbitrary initial state, and compare the result with that following
from the Heisenberg–Langevin approach.
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Problem 7.12. Derive Eq. (7.219) in an alternative way, using an expression dual to
Eq. (4.244).

Problem 7.13. A particle in a system of two coupled potential wells (see, e.g. figure
7.4 in the lecture notes) is weakly coupled to an Ohmic environment.

(i) Derive equations describing time evolution of the density matrix elements.
(ii) Solve these equations in the low-temperature limit, when the energy level

splitting is much larger than kBT, to calculate the time evolution of the
probability of finding the particle in one of the wells, after it had been placed
there at t = 0.

Problem 7.14.* A spin-½ with gyromagnetic ratio γ is placed into magnetic field
BB BB BB= + ˜t t( ) ( )0 with an arbitrary but relatively small time-dependent component,
and is also weakly coupled to a dissipative environment. Derive differential
equations describing the time evolution of the expectation values of spin’s
Cartesian components, at arbitrary temperature.
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Chapter 8

Multiparticle systems

This chapter provides a brief introduction to quantum mechanics of systems of similar
particles, with special attention on the case when they are indistinguishable. For such
systems, theory predicts (and experiment confirms) very specific effects, even in
the case of negligible explicit (‘direct’) interaction between the particles. These
effects notably include the Bose–Einstein condensation of bosons, and the exchange
interaction of fermions.

8.1 Distinguishable and indistinguishable particles
The importance of quantum systems of many similar particles is probably self-
evident; just the very fact that most atoms include several/many electrons is sufficient
to attract our attention. There are also important systems where the number of
electrons is much higher than in one atom; for example, a cubic centimeter of a
typical metal houses ∼1023 conduction electrons that cannot be attributed to
particular atoms, and have to considered as common parts of the system as the
whole. Though quantum mechanics offers virtually no exact analytical results for
systems of substantially interacting particles1, it reveals very important new
quantum effects even in the simplest case when particles do not interact, and least
explicitly (directly).

If non-interacting particles are either different from each other by their nature, or
physically similar but still distinguishable because of other reasons, everything is
simple—at least, conceptually. Then, as was already discussed in section 6.7, a

1As was emphasized in section 7.3, for such systems of similar particles the powerful methods discussed in the
last chapter, based on the separation of the whole Universe into the ‘system of our interest’ and the
‘environment’, typically do not work well—mostly because the quantum state of the ‘particle of interest’ may
be substantially correlated (in particular, entangled) with those of similar particles of its ‘environment’—see
below.
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system of two particles, 1 and 2, each in a pure quantum state, may be described by a
ket-vector being a direct product,

α β β= ⊗ ′ a, (8.1 )1 2

of the single-particle ket-vectors, describing their states β and β′ defined in different
Hilbert spaces. (Below, I will frequently use, for the direct product, the following
convenient shorthand:

α ββ= ′ b, (8.1 )

in which the state symbol’s position within the vector codes the particle’s number.)
Hence the permuted state

Pˆ ββ β β β β′ ≡ ′ ≡ ′ ⊗ , (8.2)1 2

where Pˆ is the permutation operator (defined by this equality), is clearly different
from the initial one.

Such operator may be also used for states of systems of identical particles. This
term may be used to describe:

(i) the ‘really elementary’ particles like electrons, which (at least at this stage of
development of physics) are considered as structure-less entities, and hence are all
identical;

(ii) any objects (e.g. hadrons or mesons) that may be considered as a system of
‘more elementary’ particles (e.g. quarks and gluons), but still are reliably placed in
the same quantum state—most simply, though not necessarily, to the ground state2.

It is important to note that identical particles still may be distinguishable—say by
their clear spatial separation. Such systems of similar but distinguishable particles
(or subsystems) are broadly discussed nowadays, for example in the context of
quantum computing and encryption—see section 8.5 below. This is why it is
insufficient to use the term ‘identical particles’ if we want to say that they are
genuinely indistinguishable, so below I will use the latter term, despite it being rather
unpleasant grammatically.

It turns out that for a quantitative description of systems of indistinguishable
particles we need to use, instead of direct products of the type (8.1), linear
combinations of products such products, for example of ∣ββ′〉 and ∣β′β〉.3 To see

2Note that from this point of view, even complex atoms or molecules, in the same quantum state, may be
considered on the same footing as the ‘really elementary’ particles. For example, the already mentioned recent
spectacular interference experiments by R Lopes et al, which require particle identity, were carried out with
couples of 4He atoms in the same internal state.
3A very legitimate question is why, in this situation, we need to introduce the particles’ numbers to start with.
A partial answer is that in this approach, it is much simpler to derive (or guess) the system Hamiltonians from
the correspondence principle—see, e.g. Eq. (8.27) below. Later in this chapter, we will discuss an alternative
approach (the so-called ‘second quantization’), in which particle numbering is avoided. While this approach is
more logical, writing adequate Hamiltonians (which, in particular, would avoid spurious self-interaction of the
particles) in it is much more challenging—see section 8.3 below.
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this, let us discuss properties of the permutation operator defined by Eq. (8.2).
Consider an observable A, and a system of eigenstates of its operator:

ˆ∣ 〉 = ∣ 〉A a A a . (8.3)j j j

If the particles are indistinguishable, the observable’s expectation value should not
be affected by their permutation. Hence the operators Â andPˆ have to commute,
and share their eigenstates. This is why eigenstates of the operator Pˆ are so
important: in particular, they include the eigenstates of the Hamiltonian, i.e. the
stationary states of a system of indistinguishable particles.

Let us have a look at the action of the permutation operator squared, on an
elementary ket-vector product:

P P P Pˆ ββ ˆ ˆ ββ ˆ β β ββ′ = ′ = ′ = ′( ) , (8.4)2

i.e. Pˆ 2 brings the state back to its original form. Since any pure state of a two-
particle system may be represented as a linear combination of such products, this
result does not depend on the state, and may be represented as the following
operator relation:

Pˆ = Î . (8.5)2

Now let us find the possible eigenvaluesP j of the permutation operator. Acting by
both sides of Eq. (8.5) on any of eigenstates ∣αj〉 of the permutation operator, we get
a very simple equation for its eigenvalues:

P = 1, (8.6)j
2

with two possible solutions:

P = ±1. (8.7)j

Let us find the eigenstates of the permutation operator in the simplest case when
each of the component particles can be only in one of two single-particle states—say,
β and β′. Evidently, none of the simple products ∣ββ′〉 and ∣β′β〉, taken alone, does
qualify for the eigenstate—unless the states β and β′ are identical. For this reason let
us try their linear combination

α ββ β β∣ 〉 = ′ + ′a b , (8.8)j

so that

P Pˆ α α β β ββ∣ 〉 = ∣ 〉 = ′ + ′a b . (8.9)j j j

For the caseP = +1j we have to require the states (8.8) and (8.9) to be the same, so
that a = b, giving the so-called symmetric eigenstate4

4As in many situations we have met earlier, the kets given by Eqs. (8.10) and (8.11) may be multiplied by
exp{iφ} with an arbitrary real phase φ. However, until we discuss coherent superpositions of various states α,
there is no good motivation for taking the phase different from 0; that would only clutter the notation.
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α ββ β β∣ 〉 = ′ + ′+
1

2
( ), (8.10)

where the front coefficient guarantees the orthonormality of the two-particle state,
provided that the single-particle states are orthonormal. Similarly, forP = −1j we
get a = − b, i.e. an antisymmetric eigenstate

α ββ β β∣ 〉 = ′ − ′−
1

2
( ). (8.11)

These are the simplest (two-particle, two-state) examples of entangled states, defined
as multiparticle system’s states whose vectors cannot be factored into a direct
product (8.1) of single-particle vectors.

So far, our math does not preclude either sign ofP j, in particular the possibility
that the sign depends on the state (i.e. on the index j). Here, however, comes in a
crucial experimental fact: all indistinguishable particles fall into two groups5:

(i) bosons, particles with integer spin s, for whose statesP = +1j , and
(ii) fermions, particles with half-integer spin, withP = −1j .

In the non-relativistic theory we are discussing now, this key fact should be
considered as an experimental one. (The relativistic quantum theory, whose elements
will be discussed in chapter 9, offers a proof that the half-integer-spin particles
cannot be bosons and the integer-spin ones cannot be fermions.) However, our
discussion of spin in section 5.7 enables the following plausible interpretation of the
fermion–boson difference. In the free space, the permutation of particles 1 and 2
may be viewed as a result of this pair’s rotation by angle ±π about a certain axis. As
we have seen in section 5.7, at the rotation by such an angle, the state vector ∣β〉 of a
particle with a quantum number ms (which ranges from −s to +s, and hence may
take only integer values for integer s, and only half-integer values for half-integer s)
changes by the factor exp{±iπms}, so that the state product ∣ββ′〉 has to change by
exp{±i2πms}, i.e. by the factor +1 for any integer s, and by the factor (−1) for any
half-integer s.

The most impressive corollaries of Eqs. (8.10) and (8.11) are for the case when the
partial states of the two particles are the same: β = β′. The corresponding Bose state
α+ is possible; in particular, at sufficiently low temperatures, a set of non-interacting
Bose particles condenses on the ground state of each of them—the so-called Bose–
Einstein condensate (‘BEC’).6 Perhaps the most fascinating feature of a Bose–
Einstein condensate is that the dynamics of its observables is governed by laws of

5 Sometimes this fact is described as having two different ‘statistics’: the Bose–Einstein statistics of bosons, and
Fermi–Dirac statistics of fermions, because their statistical distributions in thermal equilibrium are indeed
different—see, e.g. Part SM section 2.8. However, this difference is actually deeper: we are dealing with two
different quantum mechanics.
6 For a quantitative discussion of the Bose–Einstein condensation see, e.g. Part SM section 3.4. Examples of
such condensates include superfluids like helium, Cooper-pair condensates in superconductors, and BECs of
weakly interacting atoms.
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quantum mechanics, while (for nearly all purposes) they may be treated as c-
numbers—see, e.g. Eqs. (1.73) and (1.74).7

On the other hand, if we take β = β′ in Eq. (8.11), we see that state α− becomes the
null-state, i.e. cannot exist at all. This is the mathematical expression of the Pauli
exclusion principle8: two indistinguishable fermions cannot be in the same quantum
state. (As will be discussed below, this is true for systems with more than two
fermions as well.) Probably, the key importance of this principle is self-evident: if it
was not valid for electrons (that are fermions), all electrons of each atom would
condense on its ground (1s-like) level, and all the usual chemistry (and biochemistry,
and biology, including dear us!) would not exist. The Pauli principle makes fermions
implicitly interacting even if they do not interact directly, i.e. in the usual sense of
this word.

8.2 Singlets, triplets, and the exchange interaction
Now let us discuss possible approaches to quantitative analyses of identical particles,
starting from a simple case of two spin-½ particles (say, electrons), whose interaction
with each other and the external world does not involve spin. The description of such
a system may be based on factorable states with ket-vectors

α∣ 〉 = ∣ 〉 ⊗ ∣ 〉− o s , (8.12)12 12

with the orbital function ∣o12〉 and the spin function ∣s12〉 (that depends on the state of
both spins of the pair) belonging to different Hilbert spaces. It is frequently
convenient to use the coordinate representation of such a state, sometimes called
the spinor:

α ψ= ⊗ ∣ 〉 ≡ ∣ 〉− o s sr r r r r r, , ( , ) . (8.13)1 2 1 2 12 12 1 2 12

Since the spin-½ particles are fermions, the particle permutation has to change the
sign:

P ψ ψ ψˆ ∣ 〉 ≡ ∣ 〉 = − ∣ 〉s s sr r r r r r( , ) ( , ) ( , ) , (8.14)1 2 12 2 1 21 1 2 12

of either the orbital factor of the spinor, or its spin factor.
In particular, in the case of a symmetric orbital factor,

ψ ψ=r r r r( , ) ( , ), (8.15)2 1 1 2

the spin factor has to obey the relation

∣ 〉 = −∣ 〉s s . (8.16)21 12

7 For example, for the Bose–Einstein condensate of N ≫ 1 particles, the Heisenberg uncertainty relation may
be reduced to δNδφ > 1, where φ is the condensate wavefunction’s phase, so that it may have δN/〈N〉 ≪ 1 and
δφ ≪ 1 simultaneously.
8 It was formulated by W Pauli in 1925, on the basis of less general rules suggested by G Lewis (1916), I
Langmuir (1919), N Bohr (1922), and E Stoner (1924) for the explanation of experimental spectroscopic data.
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Let us use the ordinary z-basis (where z, in the absence of external magnetic field, is
an arbitrary spatial axis) for both spins. In this basis, the ket-vector of any two-spin
state may be represented as a linear combination of the four following basis vectors:

↑↑ ↓↓ ↑↓ ↓↑, , , and . (8.17)

The first two kets evidently do not satisfy Eq. (8.16), and cannot participate in the
state. Applying to the remaining kets the same argumentation as has resulted in
Eq. (8.11), we get

∣ 〉 = ∣ 〉 ≡ ↑↓ − ↓↑−s s
1

2
( ). (8.18)12

Such an orbital-symmetric and spin-asymmetric state is called the singlet.
The origin of this term becomes clear from the analysis of the opposite (orbital-

asymmetric and spin-symmetric) case:

ψ ψ= − ∣ 〉 = ∣ 〉s sr r r r( , ) ( , ), . (8.19)2 1 1 2 12 21

For the composition of such a symmetric spin state, the first two kets of Eq. (8.17)
are completely acceptable (with arbitrary weights), and so is an entangled spin state
that is a symmetric combination of the two last kets, similar to Eq. (8.10):

∣ 〉 ≡ ↑↓ + ↓↑+s
1

2
( ), (8.20)

so that the general spin state is a triplet:

∣ 〉 = ↑↑ + ↓↓ + ↑↓ + ↓↑+ −s c c c
1

2
( ). (8.21)12 0

Note that such a state, with values of the coefficients c (satisfying the normalization
condition), corresponds to the same orbital wavefunction and hence the same
energy. However, each of these three states has a specific value of the z-component
of the net spin—evidently equal to, respectively, +ℏ, −ℏ, and 0. Because of this, even
a small external magnetic field lifts their degeneracy, splitting the energy level in
three; hence the term ‘triplet’.

In the particular case when the particles do not interact at all, for example

ˆ = ˆ + ˆ ˆ =
ˆ

+ ˆ =H h h h
p

m
u kr,

2
( ), with 1, 2, (8.22)k

k
k1 2

2

the two-particle Schrödinger equation for the symmetrical orbital wavefunction
(8.15) is obviously satisfied by the direct products,

ψ ψ ψ= ′r r r r( , ) ( ) ( ), (8.23)n n1 2 1 2

of single-particle eigenfunctions, with arbitrary sets n, n′ of quantum numbers. For
the particular but very important case n = n′, this means that the eigenenergy of the
(only acceptable) singlet state,
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ψ ψ↑↓ − ↓↑ r r
1

2
( ) ( ) ( ), (8.24)n n1 2

is just 2εn, where εn is the single-particle energy level9. In particular, for the ground
state of the system, such singlet spin state gives the lowest energy Eg = 2εg, while any
triplet spin state (8.19) would require one of the particles to be in a different orbital
state, i.e. in a state of higher energy, so that the total energy of the system would be
also higher.

Now moving to the systems in which two indistinguishable spin-½ particles do
interact, let us consider, as their simplest but important10 example, the lower energy
states of a neutral atom11 of helium—more exactly, 4He. Such an atom consists of a
nucleus with two protons and two neutrons, with the total electric charge q = +2e,
and two electrons ‘rotating’ about the nucleus. Neglecting the small relativistic
effects that were discussed in section 6.3, the Hamiltonian describing the electron
motion may be expressed as

πε πε
ˆ = ˆ + ˆ + ˆ ˆ =

ˆ
− ˆ =

−
H h h U h

p

m
e

r
U

e
r r

,
2

2
4

,
4

. (8.25)k
k

k
1 2 int

2 2

0
int

2

0 1 2

As most problems of multiparticle quantum mechanics, the eigenvalue/eigenstate
problem for this Hamiltonian does not have an exact analytical solution, so let us
carry out its approximate analysis considering the electron–electron interaction Uint

as a perturbation. As was discussed in chapter 6, we have to start with the ‘0th-order’
approximation in which the perturbation is ignored, so that the Hamiltonian is
reduced to the sum (8.22). In this approximation, the ground state of the atom is the
singlet (8.24), with the orbital factor

ψ ψ ψ=r r r r( , ) ( ) ( ), (8.26)g 1 2 100 1 100 2

and the energy 2εg. Here each factor ψ100(r) is the single-particle wavefunction of
the ground (1s) state of the hydrogen-like atom with Z = 2, with quantum numbers
n = 1, l = 0, m = 0. According to Eqs. (3.174) and (3.208),

Rψ θ φ
π

= = = =−Y r
r

e r
r
Z

r
r( ) ( , ) ( )

1

4

2
, with

2
, (8.27)r r

100 0
0

1,0
0
3/2

/
0

B B0

so that according to Eqs. (3.191) and (3.201), in this approximation the total ground
state energy is

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟ε ε= = − = − = − ≈ −

= = =

E
n

Z E
E2 2

2
2

2
4 109 eV. (8.28)

n Z Z
g
(0)

g
(0) 0

2
1, 2

2
H

2

H

9 In this chapter, I try to use lower-case letters for all single-particle observables (in particular, ε for their
energies), in order to distinguish them as clearly as possible from system’s observables (including the total
energy E of the system), typeset in capital letters.
10 Indeed, helium makes up more than 20% of all ‘ordinary’ matter of our Universe.
11 Evidently, the positive ion He+1 of this atom, with just one electron, is fully described by the hydrogen-like
atom theory with Z = 2, whose ground-state energy, according to Eq. (3.191), is −Z2EH/2 = −2EH ≈ − 55.4 eV.
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This is still somewhat far (though not terribly far!) from the experimental value Eg ≈
−78.8 eV—see the bottom level in figure 8.1a.

Making a small (but useful) detour from our main topic, let us note that we can
get a much better agreement with experiment by calculating the electron interaction
energy in the 1st order of the perturbation theory. Indeed, in application to our
system, Eq. (6.14) reads

∫ ∫ ψ ψ= ˜ = *E U d r d r Ur r r r r rg g ( , ) ( , ) ( , ). (8.29)g
(1)

int
3

1
3

2 g 1 2 int 1 2 g 1 2

Plugging in Eqs. (8.25)–(8.27), we get

⎛
⎝⎜

⎞
⎠⎟

⎧⎨⎩
⎫⎬⎭∫ ∫π πε

=
−

− +
E

r
d r d r

e r r
rr r

1
4

4
4

exp
2( )

. (8.30)g
(1)

0
3

2
3

1
3

2

2

0 1 2

1 2

0

As may be readily evaluated analytically (this exercise is left for the reader), this
expression equals (5/4)EH, so that the corrected ground state energy,

≈ + = − + = −E E E E( 4 5/4) 74.8 eV, (8.31)g g
(0)

g
(1)

H

is much closer to experiment.
There is still room for ready improvement, using the variational method discussed

in section 2.9. For our particular case of a 4He atom, we may try to use, as the trial
state, the wavefunction given by Eqs. (8.26) and (8.27), but with the atomic number

Figure 8.1. The lower energy levels of a helium atom: (a) experimental data and (b) a schematic structure of
an excited state in the first order of the perturbation theory. On panel (a), all energies are referred to that
(−2EH ≈ −55.4 eV) of the ground state of the positive ion He+1, so that their magnitudes are the (readily
measurable) energies of atom’s ionization starting from the corresponding bound state. Note that the ‘spin
direction’ nomenclature on panel (b) is rather crude: it does not reflect the difference between the entangled
states s+ and s−.
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Z considered as an adjustable parameter Zef < Z = 2 rather than a fixed number.
The physics behind this approach is that the electric charge density ρ(r) = −e∣ψ(r)∣2 of
each electron forms a negatively charged ‘cloud’ that reduces the effective charge of
the nucleus, as seen by another electron, to Zefe

2, with some Zef < 2. As a result, the
single-particle wavefunction spreads further in space (with the scale r0 = rB/Zef > rB/
Z), while keeping its functional form (8.27) nearly intact. Since the kinetic energy T in
system’s Hamiltonian (8.25) is proportional to r0

−2 ∝Zef
2, while the potential energy is

proportional to r0
−1 ∝ Zef

1, we can write

⎜ ⎟⎛
⎝

⎞
⎠= 〈 〉 + 〈 〉= =E Z

Z
T

Z
U( )

2 2
. (8.32)Z Zg ef

ef
2

g 2
ef

g 2

Now we can use the fact that according to Eq. (3.212), for any stationary state of
a hydrogen-like atom (just as for the classical circular motion in the Coulomb
potential), 〈U〉 = 2E, and hence 〈T〉 = E − 〈U〉 = −E. Using Eq. (8.30), and adding
the correction Ug

(1) = −(5/4)EH, calculated above, to the potential energy, we get

⎜ ⎟ ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥= + − +E Z

Z Z
E( ) 4

2
8

5
4 2

. (8.33)g ef
ef

2
ef

H

This expression allows an elementary calculation of the optimal value of Zef, and the
corresponding minimum of the function Eg(Zef):

⎜ ⎟⎛
⎝

⎞
⎠= − = ≈ − ≈ −Z E E( ) 2 1

5
32

1.6875, ( ) 2.85 77.5 eV. (8.34)ef opt g min H

Given the trial state’s crudeness, this number is in a surprisingly good agreement
with experimental value cited above, with a difference of the order of 1%.

Now let us return to the basic topic of this section—the effects of particle (in this
case, electron) indistinguishability. As we have just seen, the ground level energy of
the helium atom is not affected directly by this fact, but the situation is different for
its excited states—even the lowest ones. The reasonably good convergence of the
perturbation theory, which we have seen for the ground state, tells us that we can
base our analysis of wavefunctions (ψe) of the lowest excited state orbitals, on
products like ψ100(rk)ψnlm(rk′), with n > 1. However, in order to satisfy the fermion
permutation rule,P = −1j , we have to take the orbital factor of the state in the either
symmetric or asymmetric form:

ψ ψ ψ ψ ψ= ±r r r r r r( , )
1

2
[ ( ) ( ) ( ) ( )], (8.35)nlm nlm1e 2 100 1 2 1 100 2

with the proper total permutation asymmetry provided by the corresponding spin
factor (8.18) or Eq. (8.21), so that the upper/lower sign in Eq. (8.35) corresponds to
the singlet/triplet spin state. Let us calculate the expectation values of the total
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energy of the system in the first order of the perturbation theory. Plugging Eq. (8.35)
into the 0th-order expression

∫ ∫ ψ ψ〈 〉 = ˆ + ˆ*E d r d r h hr r r r( , )( ) ( , ), (8.36)e
(0) 3

1
3

2 e 1 2 1 2 e 1 2

we get two groups of similar terms that differ only by the particle index. We can
merge the terms of each pair by changing the notation as (r1 → r, r2 → r′) in one of
them, and (r1 → r′, r2 → r) in the other term. Using Eq. (8.25), and the mutual
orthogonality of wavefunctions ψ100(r) and ψnlm(r), we get the following result:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

∫

∫

ψ
πε

ψ

ψ
πε

ψ ε ε

〈 〉 = −
ℏ ∇

−

+ ′ −
ℏ ∇

−
′

′ ′ ≡ +

*

* ′

E
m

e
r

d r

m
e

r
d r

r r

r r

( )
2

2
4

( )

( )
2

2
4

( ) .

(8.37)

nlm nlm nlm

r

r

e
(0)

100

2 2 2

0
100

3

2 2 2

0

3
100

It may be interpreted as the sum of eigenenergies of two separate single particles, one
in the ground state 100, and another in the excited state nlm—despite the fact that
actually the electron states are entangled. Thus, in the 0th order of the perturbation
theory, the electron entanglement does not affect their energy.

However, the potential energy of the system also includes the interaction term
Uint, which does not allow such separation. Indeed, in the 1st approximation of the
perturbation theory, the total energy Ee of the system may be expressed as ε100 + εnlm
+ Eint

(1), with

∫ ∫ ψ ψ= 〈 〉 = *E U d r d r Ur r r r r r( , ) ( , ) ( , ), (8.38)int
(1)

int
3

1
3

2 e 1 2 int 1 2 e 1 2

Plugging Eq. (8.35) into this result, using the symmetry of the function Uint with
respect to the particle number permutation, and the same particle coordinate re-
numbering as above, we get

= ±E E E , (8.39)int
(1)

dir ex

with the following, deceivingly similar expressions for the two terms:

∫ ∫ ψ ψ ψ ψ≡ ′ ′ ′ ′* *E d r d r Ur r r r r r( ) ( ) ( , ) ( ) ( ), (8.40)nlm nlmdir
3 3

100 int 100

∫ ∫ ψ ψ ψ ψ≡ ′ ′ ′ ′* *E d r d r Ur r r r r r( ) ( ) ( , ) ( ) ( ). (8.41)nlm nlmex
3 3

100 int 100

Since the single-particle orbitals can be always made real, both components are
positive (or at least non-negative). However, their physics is completely different.
The integral (8.40), called the direct interaction energy, allows a simple semi-classical
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interpretation as the Coulomb energy of interacting electrons, each distributed in
space with the electric charge density ρ ψ ψ= − *er r r( ) ( ) ( ):12

∫ ∫ ∫
∫

ρ ρ
πε

ρ ϕ

ρ ϕ

= ′
′

− ′
≡

≡

E d r d r d r

d r

r r
r r

r r

r r

( ) ( )

4
( ) ( )

( ) ( ) ,
(8.42)

nlm
nlm

nlm

dir
3 3 100

0
100

3

100
3

where ϕ(r) are the electrostatic potentials created by the electrons’ ‘electric charge
clouds’:13

∫ ∫ϕ
πε

ρ
ϕ

πε
ρ

= ′
′

− ′
= ′

′
− ′

d r d rr
r

r r
r

r
r r

( )
1

4

( )
, ( )

1
4

( )
. (8.43)nlm

nlm
100

0

3 100

0

3

However, the integral (8.41), called the exchange interaction energy, evades a
classical interpretation, and (as is clear from its derivation) is the direct corollary of
electrons’ indistinguishability. The magnitude of Eex is also very much different from
Edir, because the function under the integral (8.41) disappears in the regions where
single-particle wavefunctions do not overlap. This is in a full agreement with the
discussion in section 8.1: if two particles are identical but well separated, i.e. their
wavefunctions do not overlap, the exchange interaction disappears, i.e. measurable
effects of particle indistinguishability vanish.

Figure 8.1b shows the structure of an excited energy level, with certain quantum
numbers n > 1, l, and m, given by Eqs. (8.39)–(8.41). The upper, so-called
parahelium14 level, with the energy

ε ε ε ε= + + + > +E E E( ) , (8.44)nlm nlmpara 100 dir ex 100

corresponds to the symmetric orbital state and hence to the singlet spin state (8.18),
while the lower, orthohelium level, with

ε ε= + + − <E E E E( ) , (8.45)nlmorth 100 dir ex para

corresponds to the degenerate triplet spin state (8.21). This degeneracy may be lifted
by an external magnetic field, whose effect of the electron spins15 is described by the
following evident generalization of the Pauli Hamiltonian (4.163),

12 See, e.g. Part EM section 1.3, in particular Eq. (1.54).
13Note that the result for Edir correctly reflects the basic fact that a charged particle does not interacts with
itself, even if its wavefunction is quantum-mechanically spread over a finite space volume. Unfortunately, this
is not true for some other approximate theories of multiparticle systems—see section 8.4 below.
14 This traditional terminology reflects the historic fact that the observation of two different hydrogen-like
spectra, corresponding to opposite signs in Eq. (8.39), was first taken as an evidence for two different species of
4He, which were called, respectively, the ‘orthohelium’ and the ‘parahelium’.
15As we know from section 6.4, the field also affects the orbital motion of the electrons, so that the simple
analysis based on Eq. (8.46) is strictly valid only for the s excited state (l = 0, and hence m = 0). However,
orbital effects of a very weak magnetic field do not affect the triplet level splitting we are analyzing now.
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BB BB BBγ γ γ γ γ μˆ ˆ ˆˆ = − ⋅ − ⋅ ≡ − ⋅ = ≡ − ≡ −
ℏ

H
e

m
s s S , with

2
, (8.46)field 1 2 e

e
B

where

ˆ ˆ ˆ≡ +S s s , (8.47)1 2

is the operator of the (vector) sum of the system of two spins16.
In order to analyze this effect, we need first to make one more detour, to address

the general issue of spin addition. The main rule17 here is that in a full analogy with
the net spin of a single particle, defined by Eq. (5.170), the net spin operator (8.47) of
any system of two spins, and its component Ŝz along an arbitrary axis, obey the same
commutation relations (5.168) as the component operators, and hence have proper-
ties similar to those expressed by Eqs. (5.169) and (5.175):

ˆ ∣ 〉 = ℏ + ∣ 〉
ˆ ∣ 〉 = ℏ ∣ 〉 − ⩽ ⩽ +

S S M S S S M

S S M M S M S M S

, ( 1) , ,

, , , with ,
(8.48)S S

z S S S S

2 2

where the ket vectors correspond to the coupled basis of joint eigenstates of the
operators of S2 and Sz (but not necessarily all component operators—see again the
Venn shown in figure 5.12 and its discussion, with the replacements S, L → s1,2 and
J → S). Repeating the discussion of section 5.7 with these replacements, we see that
in both coupled and uncoupled bases, the net magnetic number MS is simply
expressed via those of the components

= +M m m( ) ( ) . (8.49)S s s1 2

However, the net spin quantum number S (in contrast to the Nature-given spins s1,2
of its elementary components) is not quite certain, and we may immediately say only
that it has to obey the following analog of the relation ∣l − s∣ ⩽ j ⩽ l + s, discussed in
section 5.7:

− ⩽ ⩽ +s s S s s . (8.50)1 2 1 2

What exactly S is (within these limits), depends on the spin state of the system.
For the simplest case of two spin-½ components, with each s = ½ and ms = ±½,

Eq. (8.49) gives three possible values of MS, equal to 0 and ±1, while Eq. (8.50)
limits the possible values of S to just either 0 or 1. Using the last of Eqs. (8.48), we
see that the possible combinations of the quantum numbers are

16Note that similarly to Eqs. (8.22) and (8.25), here the uppercase notation of the component spins is replaced
with their lowercase notation, to avoid any possibility of their confusion with the total spin of the system.
17 Since we already know that the spin of a particle is physically nothing more than a (specific) part of its
angular momentum, the similarity of the properties (8.48) of the sum (8.47) of spins of different particles to
those of the sum (5.170) of different spin components of the same particle is very natural, but still has to be
considered as a new law of Nature—confirmed by a vast body of experimental data.
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⎧⎨⎩
⎧⎨⎩

=
=

=
= ±

S
M

S
M

0,
0,

and
1,
0, 1.

(8.51)
S S

It is virtually evident that the singlet spin state s− belongs to the first class, while the
simple (separable) triplet states ↑↑ and ↓↓ belong to the second class, with MS = +1
andMS = −1, respectively. However, for the entangled triplet state s+, evidently with
MS = 0, the value of S is less obvious. Perhaps the easiest way to recover it18 is to use
the ‘rectangular diagram’, similar to that shown in figure 5.14, but redrawn for our
case, i.e. with the replacements ml → (ms)1 = ±½, ms → (ms)2 = ±½—see figure 8.2.

Just as at the addition of angular momenta of a single particle, the top-right and
bottom-left corners of this diagram correspond to the factorable triplet states ↑↑ and
↓↓, which participate in both the uncoupled-representation and coupled-representa-
tion bases, and have the largest value of S, i.e. 1. However, the entangled states s±,
which are linear combinations of the uncoupled-representation states ↑↓ and ↓↑,
cannot have the same value of S, so that for the triplet state s+, S has to take the
value different from that (0) of the singlet state, i.e. 1. With that, the first of Eqs.
(8.48) gives the following expectation values for the square of the net spin operator:

⎧⎨⎩〈 〉 = ℏ
S

2 , for each triplet state,
0, for the singlet state.

(8.52)2
2

Note that for the entangled triplet state s+, whose ket-vector (8.20) is a linear
superposition of two kets of states with opposite spins, this result is highly counter-
intuitive, and shows how careful we should be interpreting quantum entangled
states. (As will be discussed in chapter 10, the entanglement brings even more
surprises for quantum measurements.)

Now returning for a moment to the particular issue of the magnetic field effect on
the spins of 4He atom’s electrons, directing the axis z along the field, we may reduce
Eq. (8.46) to

Figure 8.2. The ‘rectangular diagram’ showing the relation between the uncoupled-representation states (dots)
and the coupled-representation states (straight lines) of a system of two spins-½—cf. figure 5.14.

18Another, somewhat longer but perhaps more prudent way is to directly calculate the expectation values of Ŝ2

for the states s±, and then find S by comparing the results with the first of Eqs. (8.48); it is highly recommended
to the reader as a useful exercise.
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B Bγ μˆ = − ˆ ≡
ˆ

ℏ
H S

S
2 . (8.53)z

z
field e B

Since all three triplet states (8.21) are eigenstates, in particular, of the operator Ŝz,
and hence of this Hamiltonian, we may use the second of Eqs. (8.48) to calculate
their energy change simply as

⎧
⎨⎪
⎩⎪

B Bμ μΔ = = ×
+ ↑ ↑

− ↓ ↓
+E M s2 2

1, for the factorable triplet state ,
0, for the entangled triplet state ,
1, for the factorable triplet state .

(8.54)Sfield B B

This splitting of the ‘orthohelium’ level is schematically shown in figure 8.1b.19

8.3 Multiparticle systems
Leaving several other problems on two-particle systems for the reader’s exercise, let
me proceed to the discussion of systems with N > 2 indistinguishable particles,
whose list notably includes atoms, molecules, and condensed-matter systems. In this
case, Eq. (8.7) for fermions is generalized as

Pˆ α α∣ 〉 = −∣ 〉 ′ = …′ − − k k N, for all , 1, 2, , , (8.55)kk

where the operatorPˆ ′kk permutes particles with numbers k and k′. As a result, for
systems with non-directly-interacting fermions, the Pauli principle forbids any state
in which any two particles have similar single-particle wavefunctions. Nevertheless,
it permits two fermions to have similar orbital wavefunctions, provided that their
spins are in the singlet state (8.18), because this satisfies the permutation requirement
(8.55). This fact has the paramount importance for the ground state of the systems
whose Hamiltonians do not depend on spin, because it allows the fermions to be in
their orbital single-particle ground states, with two electrons of the spin singlet
sharing the same orbital state. Hence, for the limited (but very important!) goal of
finding ground-state energies of multi-fermion systems with negligible direct
interaction, we may ignore the actual singlet spin structure, and reduce the Pauli
exclusion principle to the simple picture of single-particle orbital energy levels, each
‘occupied’ with two fermions.

As a very simple example, let us find the ground energy of five fermions, confined
in a hard-wall, cubic-shaped 3D volume of side a, ignoring their direct interaction.
From section 1.7, we know the single-particle energy spectrum of the system:

19 It is interesting that another very important two-electron system, the hydrogen (H2) molecule, which was
briefly discussed in section 2.6, also has two similarly named forms, parahydrogen and orthohydrogen.
However, their difference is due to two possible (respectively, singlet and triplet) states of the system of two
spins of the hydrogen nuclei (protons), which are also spin-½ particles. The resulting energy of the
parahydrogen is lower than that of the orthohydrogen by only ∼45 meV per molecule—the difference
comparable with kBT at room temperature (∼26 meV). As a result, at the ambient conditions, the equilibrium
ratio of these two spin isomers is close to 3:1. Curiously, the theoretical prediction of this minor effect by W
Heisenberg (together with F Hund) in 1927 was cited in his 1932 Nobel Prize award as the most noteworthy
application of quantum theory.
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ε ε ε π= + + ≡ ℏ = …( )n n n
ma

n n n, with
2

, and , , 1, 2, (8.56)n n n x y z x y z, , 0
2 2 2

0

2 2

2x y z

so that the lowest-energy states are:

– one ground state with {nx,ny,nz} = {1,1,1}, and energy ε111 = (12 + 12 + 12)ε0 =
3ε0, and

– three excited states, with {nx,ny,nz} equal to {2,1,1}, {1,2,1}, and {1,1,2}, with
equal energies ε211 = ε121 = ε112 = (22 + 12 + 12)ε0 = 6ε0.

According to the above simple formulation of the Pauli principle, each of these
orbital energy levels can accommodate up to two fermions. Hence the lowest-energy
(ground) state of the five-fermion system is achieved by placing two of them on the
ground level ε111 = 3ε0, and the remaining three particles, in any degenerate ‘excited’
states of energy 6ε0, so that the ground-state energy of the system is

ε ε ε π= × + × ≡ ≡ ℏ
E

ma
2 3 3 6 24

12
. (8.57)g 0 0 0

2 2

2

Moreover, in many cases a relatively weak interaction between fermions does not
blow up such a simple quantum state classification scheme qualitatively, and the
Pauli principle allows tracing the order of single-particle state filling. This is exactly
the simple approach that has been used at our discussion of atoms in section 3.7.
Unfortunately, it does not allow for a more specific characterization of the ground
states of most atoms, in particular the evaluation of the corresponding values of the
quantum numbers S, L, and J that characterize the net angular momenta of the
atom, and hence its response to external magnetic field. These numbers are defined
by relations similar to Eqs. (8.48), for the vector-operators of total angular
momenta:

∑ ∑ ∑ˆ ˆ ˆ ˆ ˆ ˆ≡ ≡ ≡
= = =

S s L l J j, , ; (8.58)
k

N

k

N

k

N

1 1 1

k k k

note that these definitions are consistent with Eq. (5.170) applied both to the angular
momenta sk, lk, and jk of each particle, and to the full vectors S, L, and J. When the
numbers S, L, and J for a state are known, they are traditionally recorded in the
form of the so-called Russell–Saunders symbols20:

L+ , (8.59)S
J

2 1

where S and J are the corresponding values of these quantum numbers, whileL is a
capital letter, encoding the quantum number L via the same spectroscopic notation
as for single particles (see section 3.6):L = S for L = 0,L = P for L = 1,L = D for
L = 2, etc. (The reason why the front superscript of the Russel–Saunders symbol lists
2S + 1 rather than S, is that according to the last of Eqs. (8.48), it shows the number

20Named after H Russell and F Saunders, whose pioneering (circa 1925) processing of experimental spectral-
line data has established the very idea of vector addition of electron spins, described by the first of Eqs. (8.58).
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of possible values of the quantum number MS, which characterizes the state’s spin
degeneracy, and is called its multiplicity.)

For example, for the simplest, hydrogen atom (Z = 1), with its single electron in the
ground1s state,L= l= 0,S= s=½,and J=S=½, so that itsRussell–Saunders symbol is
2S1/2. Next, the discussion of the helium atom (Z = 2) in the previous section has shown
that in its ground state L= 0 (because of the 1s orbital state of both electrons), and S= 0
(becauseof the singlet spin state), so that the total angularmomentumalsovanishes:J=0.
As a result, theRussell–Saunders symbol is 1S0.The structure of the next atom, lithium (Z
= 3) is also easy to predict, because, as was discussed in section 3.7, its ground-state
electron configuration is 1s22s1, i.e. includes two electrons in the ‘helium shell’, i.e. on the
1s orbitals (nowwe know that they are actually in a singlet spin state), and one electron in
the 2s state, of much higher energy, also with zero orbital moment, l = 0. As a result, the
totalL in this state is evidently equal to 0, andS is equal to½, so that J=½,meaning that
the Russell-Saunders symbol of lithium is 2P1/2. Even the next atom, beryllium (Z = 4),
with the ground-state configuration 1s22s2, is readily predictable, because none of its
electronshasorbitalmomentum,givingL=0.Also, eachelectronpair is in the singlet spin
state, i.e. we haveS= 0, so that J= 0—the quantumnumber set described by theRussell-
Saunders symbol 1S0—just as for helium.

However, for the next, boron atom (Z = 5), with its ground-state electron
configuration 1s22s22p1 (see, e.g. figure 3.24), there is no obvious way to predict the
result. Indeed, this atom has two pairs of electrons, with opposite spins, on its two
lowest s-orbitals, giving zero contributions to the net S, L, and J. Hence these total
quantum numbers may be only contributed by the last, fifth electron with s = ½ and
l = 1, giving S =½, L = 1. As was discussed in section 5.7 for the single-particle case,
the vector addition of the angular momenta S and L enables two values rather than
one of the quantum number J: either L + S = 3/2, or L − S = ½. Experiment shows
that the difference between the energies of these two states is very small (∼2 meV), so
that at room temperature they are both occupied, with the genuine ground state
having J = ½, so that its Russell–Saunders symbol is 2P1/2.

Such energy differences, which become larger for heavier atoms, are determined
both by the Coulomb and spin–orbit21 interactions between the electrons. Their
quantitative analysis is rather involved (see below), but the results tend to follow
simple phenomenological Hund rules, with the following hierarchy:

Rule 1. For a given electron configuration, the ground state has the largest
possible S, and hence the largest multiplicity.

Rule 2. For a given S, the ground state has the largest possible L.

Rule 3. For given S and L, J has its smallest possible value, ∣L − S∣, if the given
sub-shell {n, l} is filled not more than by half, while in the opposite case, J has its
largest possible value, L + S.

21 In light atoms, the spin–orbit interaction is so weak that it may be reasonably well described as interaction of
the total momenta L and S of the system—the so-called LS (or ‘Russell–Saunders’) coupling. On the other
hand, in very heavy atoms, the interaction is effectively between the net momenta jk = lk + sk of the individual
electrons—the so-called jj coupling. This is the reason why in such atoms the Hund’s Rule 3 may be violated.
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Let us see how these rules work for the boron atom. For it, the Hund Rules 1 and
2 are satisfied automatically, while the sub-shell {n = 2, l = 1}, which can house up to
(2l + 1)s = 6 electrons, is filled less than by half with just one 2p electron. As a result,
the Hund Rule 3 predicts the ground state’s value J = ½, in agreement with
experiment. Generally, for lighter atoms the Hund rules are well obeyed. However,
the lower down the Hund rule hierarchy, the less ‘powerful’ the rules are, i.e. in more
heavier atoms they are violated.

Now let us discuss possible approaches to a quantitative theory of multiparticle
systems—not only atoms. As was discussed in section 8.1, if fermions do not interact
directly, the stationary states of the system have to be the antisymmetric eigenstates
of the permutation operator, i.e. satisfy Eq. (8.55). In order to understand how such
states may be formed from the single-electron ones, let us return for a minute to the
case of two electrons, and rewrite Eq. (8.11) in the following compact form:

(8.60a)

where the direct product signs are just implied. In this way, the Pauli principle is
mapped on the well-known property of matrix determinants: if any of two columns
of a matrix coincide, its determinant vanishes. This Slater determinant approach22

may be readily generalized to N fermions in N (not necessarily the lowest) single-
particle states β, β′, β″, etc:

⎫
⎬⎪

⎭⎪� ����� �����

α

β β β
β β β
β β β

→

∣ 〉 =
!

′ ″ …
′ ″ …
′ ″ …

… … … … ↓
−

N
N b

state list

1
( )

particle
list (8.60 )

N

1/2

Even though the Slater determinant form is extremely nice and compact (in
comparison with direct writing of a sum of N! products, each of N ket factors), there
are two major problems with using it for practical calculations:

(i) For the calculation of any bra–ket product (say, within the perturbation
theory) we still need to spell out each bra- and ket-vector as a sum of component
terms. Even for a limited number of electrons (say N ∼ 102 in a typical atom), the
number N! ∼ 10160 of terms in such a sum is impracticably large for any analytical
or numerical calculation.

(ii) In the case of interacting fermions, the Slater determinant does not describe
the eigenvectors of the system; rather the stationary state is a superposition of such

22 It was suggested in 1929 by J Slater.
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basis functions, i.e. the Slater determinants—each for a specific selection of N states
from the general set of single-particle states—that is generally larger than N.

For atoms and simple molecules, whose filled-shell electrons may be excluded
from an explicit analysis (by describing their effects, approximately, with effective
pseudo-potentials), the effective number N may be reduced to a smaller number Nef

of the order of 10, so that Nef! < 106, and the Slater determinants may be used for
numerical calculations—for example, in the Hartree–Fock theory—see the next
section. However, for condensed-matter systems, such as metals and semiconduc-
tors, with the number of free electrons is of the order of 1023 per cm3, this approach
is generally unacceptable, though with some smart tricks (such as using crystal
periodicity) it may be still used for some approximate (also numerical) calculations.

These challenges make the development of a more general theory that would not
use particle numbers (which are superficial for indistinguishable particles to start
with) a must for getting any final analytical results for multiparticle systems. The
most effective formalism for this purpose, that avoids particle numbering at all, is
called the second quantization23. Actually, we have already discussed a particular
version of this formalism, for the case of 1D harmonic oscillator, in section 5.4. As a
reminder, after the definition (5.65) of the ‘creation’ and ‘annihilation’ operators via
those of the particle’s coordinate and momentum, we have derived their key
properties (5.89),

ˆ = − ˆ = + +†a n n n a n n n1 , ( 1) 1 , (8.61)1/2 1/2

where n were the stationary (Fock) states of the oscillator. This property allows an
interpretation of the operators’ actions as the creation/annihilation of a single
excitation with the energy ℏω0—thus justifying the operator names. In the next
chapter, we will show that such an excitation of an electromagnetic field mode may
be interpreted as a massless boson with s = 1, called the photon.

In order to generalize this approach to arbitrary bosons, not appealing to a
specific system, we may use relations similar to Eq. (8.61) to define the creation and
annihilation operators. The definitions look simple in the language of the so-called
Dirac states, described by ket-vectors

∣ … …〉N N N, , , , (8.62)j1 2

where Nj is the state occupancy, i.e. the number of bosons in the single-particle state
j. Let me emphasize that here the indices 1, 2, …j,… number single-particle states
(including their spin parts) rather than particles. Thus the very notion of an
individual particle’s number is completely (and for indistinguishable particles,
very relevantly) absent from this formalism. Generally, the set of single-particle

23 It was invented (first for photons and then for arbitrary bosons) by P Dirac in 1927, and then modified in
1928 for fermions by E Wigner and P Jordan. Note that the term ‘second quantization’ is rather misleading for
the non-relativistic applications we are discussing here, but finds certain justification in the quantum field
theory.
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states participating in the Dirac state may be selected in an arbitrary way, provided
that it is full and orthonormal in the sense

δ δ δ′ ′… ′ … … … = … …′ ′ ′′N N N N N N, , , , , , , (8.63)j j N N N N N N1 2 1 2
j j1 1 2 2

though for systems of non- (or weakly) interacting bosons, using the stationary states
of individual particles in the system under analysis is almost always the best choice.

Now we can define the particle annihilation operator as follows:

ˆ ∣ … …〉 ≡ ∣ … − …〉a N N N N N N N, , , , , 1, . (8.64)j j j j1 2
1/2

1 2

Note that the pre-ket coefficient, similar to that in the first of Eqs. (8.61), guarantees
that an attempt to annihilate a particle in an unpopulated state gives the non-
existing (‘null’) state:

ˆ ∣ … …〉 =a N N, , 0 , 0, (8.65)j j1 2

where the symbol 0j means zero occupancy of the jth state. According to Eq. (8.63),
an alternative way to write Eq. (8.64) is

δ δ δ′ ′ … ′ … ˆ … = … …′ ′ ′ −N N N a N N N N, , , , . , , .., , (8.66)j j j j N N N N N N1 2 1 2
1/2

, 1j j1 1 2 2

According to the general Eq. (4.65), the matrix element of the Hermitian conjugate
operator ˆ †a j is

δ δ δ

δ δ δ

′ ′ … ′ … ˆ … …

= … … ˆ ′ ′ … ′ …

= … … ′ ′ ′ … ′ − …

= ′ … …

= + … …

′ ′ ′

′ ′ ′

†

*

−

+

( )

( )

N N N a N N N

N N N a N N N

N N N N N N N

N

N

, , , , , , ,

, , , , , , , ,

, , , , , , , 1,

( 1) ,

(8.67)

j j j

j j j

j j j

j N N N N N N

j N N N N N N

1 2 1 2

1 2 1 2

1 2

1/2

1 2

1/2

, 1

1/2
1,

j j

j j

1 1 2 2

1 1 2 2

meaning that

ˆ ∣ … …〉 = + ∣ … + …〉†a N N N N N N N, , , , ( 1) , , , 1, , (8.68)j j j j1 2
1/2

1 2

in the total compliance with the second of Eqs. (8.61). In particular, this particle
creation operator allows the description of the generation of a single particle from
the vacuum (not null!) state ∣0, 0, …〉:

ˆ ∣ … … 〉 = ∣ … … 〉†a 0, 0, , 0 , , 0 0, 0, , 1 , 0 , (8.69)j j j
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and hence a product of such operators may create, from the vacuum, a multiparticle
state with an arbitrary set of occupancies24:

� �� �� � �� ��ˆ ˆ … ˆ ˆ ˆ … ˆ … … = ! !… ∣ …〉† † † † † †a a a a a a N N N N0, 0, ( ) , , .
(8.70)

N Ntimes times

1 1 1 2 2 2 1 2
1/2

1 2

1 2

Next, combining Eqs. (8.64) and (8.68), we get

ˆ ˆ ∣ … …〉 = ∣ … …〉†a a N N N N N N N, , , , , , , , (8.71)j j j j j1 2 1 2

so that, just as for the particular case of harmonic oscillator excitations, the operator

ˆ ≡ ˆ ˆ†N a a (8.72)j j j

‘counts’ the number of particles in the jth single-particle state, while preserving the
whole multiparticle state. Acting on a state by the creation–annihilation operators in
the reverse order, we get

ˆ ˆ ∣ … …〉 = + ∣ … …〉†a a N N N N N N N, , , , ( 1) , , , , . (8.73)j j j j j1 2 1 2

Eqs. (8.71) and (8.73) show that for any state of a multiparticle system (which always
may be represented as a linear superposition of Dirac states with all possible sets of
numbers Nj), we may write

ˆ ˆ − ˆ ˆ ≡ ˆ ˆ = ˆ† † †a a a a a a I[ , ] , (8.74)j j j j j j

again in agreement with what we had for the 1D oscillator—cf. Eq. (5.68).
According to Eqs. (8.63), (8.64) and (8.68), the creation and annihilation operators
corresponding to different single-particle states do commute, so that Eq. (8.74) may
be generalized as

δˆ ˆ = ˆ′
†

′a a I[ , ] , (8.75)j j jj

while the similar operators commute, regardless of which states do they act upon:

⎡⎣ ⎤⎦ˆ ˆ = ˆ ˆ = ˆ†
′

†
′a a a a, [ , ] 0. (8.76)j j j j

As was mentioned earlier, a major challenge in the Dirac approach is to rewrite
the Hamiltonian of a multiparticle system, that naturally carries particle numbers k
(see, e.g. Eq. (8.22) for k = 1, 2), in the second quantization language, in which there
are not these numbers. Let us start with single-particle components of such
Hamiltonians, i.e. operators of the type

∑ˆ = ˆ
=

F f . (8.77)
k

N

1
k

24 The resulting Dirac state is not an eigenstate of every multiparticle Hamiltonian. However, we will see below
that for a set of non-interacting particles it is a stationary state, so that the full set of such states may be used as
a good basis in perturbation theories of systems of weakly interacting particles.
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where all N operators f̂k are similar, besides that each of them acts on one specific
(kth) particle, and N is the total number of particles in the system, which is evidently
equal to the sum of single-particle state occupancies:

∑=N N . (8.78)
j

j

The most important examples of such operators are the kinetic energy of N similar
single particles, and their potential energy in an external field:

∑ ∑ˆ =
ˆ ˆ = ˆ

= =

T
p

m
U u r

2
, ( ). (8.79)

k

N

k

N

1 1

k
k

2

For bosons, instead of the Slater determinant (8.60), we have to write a similar
expression, but without the sign alternation at permutations:

⎛
⎝⎜

⎞
⎠⎟ � �� ��∑ ββ β∣ … …〉 =

!… !…
!

… ′ ″…N N
N N

N
, , , (8.80)

P N operands

j
j

1
1

1/2

sometimes called the permanent. Note again that the left-hand side of this relation is
written in the Dirac notation (that does not use particle numbering), while on its
right-hand side, just in relations of sections 8.1 and 8.2, the particle numbers are
coded with the positions of the single-particle states inside the ket-vectors, and the
sum is over all different permutations of the states in the ket—cf. Eq. (8.10).
(According to the basic combinatorics25, there are N!/(N1!…Nj!…) such permuta-
tions, so that the front coefficient in Eq. (8.80) ensures the normalization of the
Dirac state, provided that the single-particle states β, β′, …are normalized.) Let us
use Eq. (8.80) to spell out the following matrix element for a system with (N − 1)
particles:

∑ ∑ ∑ββ β ββ β

〈… … − …∣ ˆ∣… − … …〉

=
!… − !… − !…

− !

× … ′ ″… ˆ … ′ ″…
− − =

−

′ ′

′
′

N N F N N

N N N

N
N N

f

, 1, 1, ,

( 1) ( 1)

( 1)
( )

,

(8.81)

P N P N k

N

1 1 1

1

j j j j

j j
j j

k

1 1/2

where all non-specified occupation numbers in the corresponding positions of the
bra- and ket-vectors are equal to each other. Each single-particle operator f̂k,
participating in the operator sum, acts on the bra- and ket-vectors of states only in
one (kth) position, giving the result, which does not depend on the position number:

25 See, e.g. Eq. (A.6).
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β β β β〈 ∣ ˆ ∣ 〉 = 〈 ∣ ˆ ∣ 〉 ≡′ ′ ′f f f . (8.82)j k k j k j j jjin position in positionth th

Since in both permutation sets participating in Eq. (8.81), with (N − 1) state vectors
each, all positions are equivalent, we can fix the position (say, take the first one) and
replace the sum over k with the multiplication by of the bracket by (N − 1). The
fraction of permutations with the necessary bra-vector (with number j) in that
position is Nj /(N − 1), while that with the necessary ket-vector (with number j′) in
the same position in Nj′/(N − 1). As a result, the permutation sum in Eq. (8.81)
reduces to

∑ ∑ ββ β ββ β−
− −

… ′ ″… … ′ ″…
− −

′
′N

N

N

N

N
f( 1)

1 1
, (8.83)

P N P N2 2

j j
jj

where our specific position k is now excluded from both the bra- and ket-vector
permutations. Each of these permutations now includes only (Nj − 1) states j and
(Nj′ − 1) states j′, so that, using the state orthonormality, we finally arrive at a very
simple result:

〈… … − …∣ ˆ∣… − … …〉

=
!… − !… − !…

− !
−

×
− −

− !
!… − !… − !…

≡

′ ′

′
′

′
′

′
′ ′

N N F N N

N N N

N
N N N

N

N

N

N
f

N
N N N

N N f

, 1, 1, ,

( 1) ( 1)

( 1)
( ) ( 1)

1 1
( 2)

( 1) ( 1)
( ) .

(8.84)

j j j j

j j
j j

j j
jj

j j
j j jj

1 1/2

1

1/2

On the other hand, let us calculate matrix elements of the following operator:

∑ ˆ ˆ
′

′
†

′f a a . (8.85)
j j,

jj j j

A direct application of Eqs. (8.64) and (8.68) shows that the only nonvanishing of
the elements are

〈… … − …∣ ˆ ˆ ∣… − … …〉 =′ ′
†

′ ′ ′ ′N N f a a N N N N f, 1, 1, , , ( ) . (8.86)j j jj j j j j j j jj
1/2

But this is exactly the last form of Eq. (8.84), so that in the basis of Dirac states, the
operator (8.77) may be represented as

∑ˆ = ˆ ˆ
′

′
†

′F f a a . (8.87)
j j,

jj j j

This beautifully simple equation is the key formula of the second quantization
theory, and is essentially the Dirac-language analog of Eq. (4.59) of the single-
particle quantum mechanics. Each term of the sum (8.87) may be described by a very
simple mnemonic rule: for each pair of single-particle states j and j′, kill a particle in
the state j′, create one in the state j, and weigh the result with the corresponding
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single-particle matrix element. One of corollaries of Eq. (8.87) is that the expectation
value of an operator whose eigenstates coincide with the Dirac states, is

∑≡ 〈… …∣ ˆ∣… …〉 =F N F N f N, , , (8.88)
j

j j jj j

with an evident physical interpretation as the sum of single-particle expectation
values over all states, weighed by the occupancy of each state.

Proceeding to fermions, which have to obey the Pauli principle, we immediately
notice that any occupation number Nj may only take two values, 0 or 1. In order to
account for that, and also make the key relation (8.87) valid for fermions as well, the
creation–annihilation operators are now defined by the following relations:

ˆ ∣ … …〉 =
ˆ ∣ … …〉 = − ∣ … …〉Σ −

a N N

a N N N N

, , , 0 , 0,

, , , 1 , ( 1) , , , 0 , ,
(8.89)

j j

j j
j

j

1 2

1 2
(1, 1)

1 2

ˆ ∣ … …〉 = − ∣ … …〉

ˆ ∣ … …〉 =

† Σ −

†

a N N N N

a N N

, , , 0 , ( 1) , , , 1 , ,

, , , 1 , 0,
(8.90)

j j
j

j

j j

1 2
(1, 1)

1 2

1 2

where the symbol Σ(J, J′) means the sum of all occupancy numbers in the states with
numbers from J to J′, including the border points:

∑Σ ′ ≡
=

′

J J N( , ) , (8.91)
j J

J

j

so that the sum participating in Eqs. (8.89) and (8.90) is the total occupancy of all
states with the numbers below j. (The states are supposed to be numbered in a fixed
albeit arbitrary order.) As a result, these relations may be conveniently summarized
in the following verbal form: if an operator replaces the jth state’s occupancy with
the opposite one (either 1 with 0, or vice versa), it also changes the sign before the
result if (and only if) the total number of particles in the states with j′ < j is odd.

Let us use this (perhaps somewhat counter-intuitive) sign alternation rule to spell
out the ket-vector ∣11〉 of a completely filled two-state system, formed from the
vacuum state ∣00〉 in two different ways. If we start from creating a fermion in the
state 1, we get

ˆ = − ≡
ˆ ˆ = ˆ = − ≡ −

†

† † †

a

a a a
a

0, 0 ( 1) 1, 0 1, 0 ,

0, 0 1, 0 ( 1) 1, 1 1, 1 ,
(8.92 )1

0

2 1 2
1

while if the operator order is different, the result is

ˆ = − ≡
ˆ ˆ = ˆ = − ≡

†

† † †

a

a a a
b

0, 0 ( 1) 0, 1 0, 1 ,

0, 0 0, 1 ( 1) 1, 1 1, 1 ,
(8.92 )2

0

1 2 1
0
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so that

ˆ ˆ + ˆ ˆ =† † † †( )a a a a 0, 0 0. (8.93)1 2 2 1

Since the action of any of these operator products on any initial state rather than the
vacuum one also gives the null ket, we can write the following operator equality:

ˆ ˆ + ˆ ˆ ≡ ˆ ˆ = ˆ† † † † † †{ }a a a a a a, 0. (8.94)1 2 2 1 1 2

It is straightforward to check that this result is valid for the Dirac vector of an
arbitrary length, and does not depend on the occupancy of other states, so that we
can always write

ˆ ˆ = ˆ ˆ = ˆ†
′

†
′{ }a a a a, { , } 0; (8.95)j j j j

these equalities hold for j = j′ as well. On the other hand, an absolutely similar
calculation shows that the mixed creation–annihilation commutators do depend on
whether the states are different or not26:

δˆ ˆ = ˆ′
†

′a a I{ , } . (8.96)j j jj

These equations look very much like Eqs. (8.75) and (8.76) for bosons, ‘only’ with
the replacement of commutators with anticommutators. Since the core laws of
quantum mechanics, including the operator compatibility (section 4.5) and the
Heisenberg equation (4.199) of operator evolution in time, involve commutators
rather than anticommutators, one might think that all the behavior of bosonic and
fermionic multiparticle systems should be dramatically different. However, the
difference is not as huge as one could expect; indeed, a straightforward check shows
that the sign factors in Eqs. (8.89) and (8.90) just compensate those in the Slater
determinant, and thus make the key relation (8.87) valid for the fermions as well.
(Indeed, this is the very goal of the introduction of these factors.)

To illustrate this fact on the simplest example, let us examine what the second
quantization formalism says about the dynamics of non-interacting particles in the
system whose single-particle properties we have discussed repeatedly, namely two
nearly-similar potential wells, coupled by tunneling through the separating potential
barrier—see, e.g. figures 2.21 or 7.4. If the coupling is so small that the states
localized in the wells are only weakly perturbed, then in the basis of these states, the
single-particle Hamiltonian of the system may be represented by the 2 × 2 matrix
(5.3). With the energy reference selected at the middle between the energies of
unperturbed states, the coefficient b vanishes, this matrix is reduced to

σ= ⋅ ≡ − ≡ ±−

+ ±( )c c
c c c c icch , with , (8.97)z

z
x y

26A by-product of this calculation is a proof that the operator defined by Eq. (8.72) counts the number of
particles Nj (now equal to either 1 or 0), just at it does for bosons.
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and its eigenvalues to

ε = ± ≡ ≡ + +± ( )c c c c cc, . (8.98)x y z
2 2 2 1/2

Now following the recipe (8.87), we can use Eq. (8.97) to represent the Hamiltonian
of the whole system of particles in terms of the creation–annihilation operators:

ˆ = ˆ ˆ + ˆ ˆ + ˆ ˆ − ˆ ˆ†
−

†
+

† †H c a a c a a c a a c a a , (8.99)z z1 1 1 2 2 1 2 2

where ˆ †a1,2 and â1,2 are the operators of creation and annihilation of a particle in the
corresponding potential well. (Again, in the second quantization approach the
particles are not numbered at all!) As Eq. (8.72) shows, the first and the last terms
of the right-hand side of Eq. (8.99) describe the particle energies ε1,2 = ±cz in
uncoupled wells,

ε εˆ ˆ = ˆ ≡ ˆ − ˆ ˆ = − ˆ ≡ ˆ† †c a a c N N c a a c N N, , (8.100)z z z z1 1 1 1 1 2 2 2 2 2

while the sum of the middle two terms is the second-quantization description of
tunneling between the wells.

Now we can use the general Eq. (4.199) of the Heisenberg picture to spell out the
equations of motion of the creation–annihilation operators. For example,

ℏ ˆ ̇ = ˆ ˆ = ˆ ˆ ˆ + ˆ ˆ ˆ + ˆ ˆ ˆ − ˆ ˆ ˆ†
−

†
+

† †i a a H c a a a c a a a c a a a c a a a[ , ] [ , ] [ , ] [ , ] [ , ]. (8.101)z z1 1 1 1 1 1 1 2 1 2 1 1 2 2

Since the Bose and Fermi operators satisfy different commutation relations, one
could expect the right hand part of this equation to be different for bosons and
fermions. However, it is not so. Indeed, all commutators on the right-hand side of
Eq. (8.101) have the following form:

ˆ ˆ ˆ ≡ ˆ ˆ ˆ − ˆ ˆ ˆ′
†

″ ′
†

″ ′
†

″a a a a a a a a a[ , ] . (8.102)j j j j j j j j j

According to Eqs. (8.74) and (8.94), the first pair product of the operators may be
recast as

δˆ ˆ = ˆ ± ˆ ˆ′
†

′ ′
†a a I a a , (8.103)j j jj j j

where the upper sign pertains to bosons and the lower one to fermions, while
according to Eqs. (8.76) and (8.95), the very last pair product is

ˆ ˆ = ± ˆ ˆ″ ″a a a a , (8.104)j j j j

with the same sign convention. Plugging these expressions into Eq. (8.102), we see
that regardless of the particle type, we arrive at a universal (and generally very
useful) commutation relation

δˆ ˆ ˆ = ˆ′
†

″ ″ ′a a a a[ , ] , (8.105)j j j j jj
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valid for both bosons and fermions. As a result, the Heisenberg equation of motion
for the operator â1, and the equation for â2 (which may be obtained absolutely
similarly), are also universal27:

ℏ ˆ ̇ = ˆ + ˆ
ℏ ˆ ̇ = ˆ − ˆ

−

+

i a c a c a

i a c a c a

,

.
(8.106)z

z

1 1 2

2 1 2

This is a system of two coupled, linear differential equations, which is similar to
the equations for the c-number probability amplitudes of single-particle wave-
functions of a two-level system—see, e.g. Eq. (2.201) and the model solution of
problem 4.25. Their general solution is a linear superposition

∑α λˆ = ˆ
±

±
±a t t( ) exp{ }. (8.107)1,2 1,2

( )

As usual, in order to find the exponents λ±, it is sufficient to plug in a particular
solution α λˆ = ˆa t t( ) exp{ }1,2 1,2 into Eq. (8.106) and require that the determinant of the
resulting homogeneous, linear system for the ‘coefficients’ (actually, time-independent
operators) α̂1,2 equals zero. This gives us the following characteristic equation

λ
λ

− ℏ
− − ℏ =−

+

c i c
c c i

0, (8.108)z

z

with two roots λ± = ±iΩ/2, where Ω ≡ 2cℏ—cf. Eq. (5.20). Now plugging each of the
roots, one by one, into the system of equations for α̂1,2, we can find these operators,
and hence the general solution of system (8.98) for arbitrary initial conditions.

Let us consider the simple case cy = cz = 0 (meaning in particular that the wells are
exactly aligned, see figure 2.21), so that ℏΩ/2 ≡ c = cx; then the solution of Eq.
(8.106) is

ˆ = ˆ Ω − ˆ Ω

ˆ = − ˆ Ω + ˆ Ω

a t a
t

ia
t

a t ia
t

a
t

( ) (0)cos
2

(0)sin
2

,

( ) (0)sin
2

(0)cos
2

.
(8.109)

1 1 2

2 1 2

Multiplying the first of these relations by its Hermitian conjugate, and ensemble-
averaging the result, we get

〈 〉 ≡ 〈 ˆ ˆ 〉 = 〈 ˆ ˆ 〉 Ω + 〈 ˆ ˆ 〉 Ω

− 〈 ˆ ˆ + ˆ ˆ 〉 Ω Ω

† † †

† †

N a t a t a a
t

a a
t

i a a a a
t t

( ) ( ) (0) (0) cos
2

(0) (0) sin
2

(0) (0) (0) (0) sin
2

cos
2

.
(8.110)

1 1 1 1 1
2

2 2
2

1 2 2 1

27 Equations of motion for the creation operators ˆ †a1,2 are just the Hermitian-conjugates of Eqs. (8.106), and do
not add any new information about system’s dynamics.
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Let the initial state of the system be a Dirac state, i.e. have a definite number of
particles in each well; in this case only the two first terms on the right hand side of
Eq. (8.110) are different from zero, giving28:

〈 〉 = Ω + Ω
N N

t
N

t
(0)cos

2
(0)sin

2
. (8.111)1 1

2
2

2

For one particle, initially placed in either well, this gives us our old result (2.181)
describing quantum oscillations of the particle between two wells with the frequency
Ω. However, Eq. (8.111) is valid for any set of initial occupancies; let us use this fact.
For example, starting from two particles, with initially one particle in each well, we get
〈N1〉 = 1, regardless of time. So, the occupancies do not oscillate, and no experiment
may detect the quantum oscillations, though their frequency Ω is still formally present
in the time evolution equations. This fact may be interpreted as the simultaneous
quantum oscillations of two particles between the wells, exactly in anti-phase. For
bosons, we can go to even larger occupancies by preparing the system, for example, in
the state with N1(0) =N, N2(0) = 0. The result (8.111) says that in this case we see that
the quantum oscillation amplitude increases N-fold; this is a particular manifestation
of the general fact that bosons can be (and evolve in time) in the same quantum state.
On the other hand, for fermions we cannot increase the initial occupancies beyond 1,
so that the largest oscillation amplitude we can get is if we initially fill just one well.

The Dirac approach may be readily generalized to more complex systems. For
example, Eq. (8.99) implies that an arbitrary system of potential wells with weak
tunneling coupling between the adjacent wells may be described by the Hamiltonian

∑ ∑ε δˆ = ˆ + ˆ +
′

†
′

†
′H a a a a h.c., (8.112)

j j j,

j j j jj j j

where the symbol 〈j,j′〉 means that the second sum is restricted to pairs of next-
neighbor wells—see, e.g. Eq. (2.203) and its discussion. Note that this Hamiltonian
is still a quadratic form of the creation–annihilation operators, so the Heisenberg-
picture equations of motion of these operators are still linear, and its exact solutions,
though possibly cumbersome, may be studied in detail. Due to this fact, the
Hamiltonian (8.112) is widely used for the study of some phenomena, for example
the very interesting Anderson localization effects, in which a random distribution of
the localized-site energies εj prevents tunneling particles, within a certain energy
range, from spreading to unlimited distances29.

8.4 Perturbative approaches
The situation becomes much more difficult if we need to account for direct
interactions between the particles. Let us assume that the interaction may be
reduced to that between their pairs (as is the case at their Coulomb interaction

28 For the second well’s occupancy, the result is complementary, N2(t) = N1(0)sin
2Ωt + N2(0)cos

2Ωt, giving in
particular a good sanity check: N1(t) + N2(t) = N1(0) + N2(0) = const.
29 For a review of the 1D version of this problem, see, e.g. [1].
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and most other interactions30), so that it may be described by the following ‘pair-
interaction’ Hamiltonian

∑ˆ = ˆ
′=

≠ ′

′U u r r
1
2

( , ), (8.113)
k k
k k

N

, 1
k kint int

with the front factor ½ compensating the double-counting of each particle pair. The
translation of this operator to the second-quantization form may be done absolutely
similarly to the derivation of Eq. (8.87), and gives a similar (though naturally more
involved) result

∑ˆ = ˆ ˆ ˆ ˆ
′ ′

′ ′
†

′
†

′U u a a a a
1
2

, (8.114)
j j l l, , ,

jj ll j j l lint

where the two-particle matrix elements are defined similarly to Eq. (8.82):

β β β β≡ 〈 ∣ ˆ ∣ 〉′ ′ ′ ′u u . (8.115)jj ll j j l lint

The only new feature of Eq. (8.114) is a specific order of the indices of the creation
operators. Note the mnemonic rule of writing this expression, similar to that for
Eq. (8.87): each term corresponds to moving a pair of particles from states l and l′ to
states j′ and j (in this order!) factored with the corresponding two-particle matrix
element (8.115).

However, with the account of such term, the resulting Heisenberg equations of time
evolution of the creation/annihilation are nonlinear, so that solving them and calculat-
ing observables from the results is usually impossible, at least analytically. The only case
when some general results may be obtained is the weak interaction limit. In this case the
unperturbed Hamiltonian contains only single-particle terms such as (8.79), and we can
always (at least conceptually) find such a basis of orthonormal single-particle states βj in
which that Hamiltonian is diagonal in the Dirac representation:

∑εˆ = ˆ ˆ†H a a . (8.116)
j

j j j
(0) (0)

Now we can use Eq. (6.14), in this basis, to calculate the interaction energy as a first-
order perturbation:

∑

∑

= 〈 …∣ ˆ ∣ …〉

= 〈 …∣ ˆ ˆ ˆ ˆ ∣ …〉

= 〈 …∣ ˆ ˆ ˆ ˆ ∣ …〉

′ ′

′ ′

′ ′
†

′
†

′

′ ′
†

′
†

′

E N N U N N

N N u a a a a N N

u N N a a a a N N

, , , ,
1
2

, , , ,

1
2

, , , , .

(8.117)j j l l

j j l l

, , ,

, , ,

jj ll j j l l

jj ll j j l l

int
(1)

1 2 int 1 2

1 2 1 2

1 2 1 2

30A simple but important example from the condensed matter theory is the so-called Hubbard model, in which
there may be only two particles on each of localized sites, which strongly interact, with negligible interaction of the
particles on different sites—though the next-neighbor sites are still connected by tunneling—as in Eq. (8.112).
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Since, according to Eq. (8.63), the Dirac states with different occupancies are
orthogonal, the last bracket is different from zero only for three particular subsets of
its indices:

(i) j ≠ j′, l = j, and l′ = j′. In this case the four-operator product in Eq. (8.117) is
equal to ˆ ˆ ˆ ˆ†

′
†

′a a a a ,j j j j and applying the commutation rules twice, we can bring it to the
so-called normal ordering, with each creation operator standing to the right of the
corresponding annihilation operator, thus forming the particle number operator
(8.72):

ˆ ˆ ˆ ˆ = ± ˆ ˆ ˆ ˆ = ± ˆ ± ˆ ˆ ˆ = ˆ ˆ ˆ ˆ = ˆ ˆ†
′

†
′

†
′

†
′

†
′

†
′

†
′

†
′ ′a a a a a a a a a a a a a a a a N N( ) , (8.118)j j j j j j j j j j j j j j j j j j

with the similar sign of the final result for bosons and fermions.

(ii) j ≠ j′, l = j′, and l′ = j. In this case the four-operator product is equal to
ˆ ˆ ˆ ˆ†

′
†

′a a a aj j j j , and bringing it to the form ˆ ˆ ′N Nj j requires only one commutation:

ˆ ˆ ˆ ˆ = ˆ ± ˆ ˆ ˆ = ± ˆ ˆ ˆ ˆ = ± ˆ ˆ†
′

†
′

†
′

†
′

†
′

†
′ ′a a a a a a a a a a a a N N( ) , (8.119)j j j j j j j j j j j j j j

with the upper sign for bosons and the lower sign for fermions.

(iii) All indices equal to each other, giving ˆ ˆ ˆ ˆ = ˆ ˆ ˆ ˆ†
′

†
′

† †a a a a a a a aj j l l j j j j. For fermions,
such operator (that ‘tries’ to create or to kill two particles in a row, in the same state)
immediately gives the null vector. In the case of bosons, we may use Eq. (8.74) to
commute the internal pair of operators, getting

ˆ ˆ ˆ ˆ = ˆ ˆ ˆ − ˆ ˆ = ˆ ˆ − ˆ† † † † ( )a a a a a a a I a N N I( ) . (8.120)j j j j j j j j j j

Note, however, that this expression formally covers the fermion case as well (always
giving zero). As a result, Eq. (8.117) may be rewritten in the following universal
form:

∑ ∑= ± + −
′

≠ ′

′ ′ ′ ′ ′E N N u u N N u
1
2

( )
1
2

( 1) .
(8.121)j j

j j
j,

j j jj jj jj j j j j jjjjint
(1)

The corollaries of this important result are very different for bosons and fermions.
In the former case, the last term usually dominates, because the matrix elements
(8.115) are typically the largest when all basis functions coincide. Note that this term
allows a very simple interpretation: the number of the diagonal matrix elements it
sums up for each state ( j) is just the number of interacting particle pairs residing in
that state.

In contrast, for fermions the last term is zero, and the interaction energy is the
difference of the two terms inside the first parentheses. In order to spell them out, let
us consider the case when there is no direct spin–orbit interaction. Then the vectors
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∣β〉j of the single-particle state basis may be represented as direct products ∣oj〉⊗ ∣mj〉
of their orbital and spin-orientation parts. (Here, for brevity, I am using m instead of
ms.) For spin-½ particles, including electrons, these orientations mj may equal only
either +½ or −½; in this case the spin part of the first matrix element, ujj′jj′, equals

⊗ ′ ⊗ ′m m m m , (8.122)

where, as in the general Eq. (8.115), the position of a particular vector in a direct
product codes the particle’s number. Since the spins of different particles are defined
in different Hilbert spaces, we may move their vectors around to get

⊗ ′ ⊗ ′ = × ′ ′ =m m m m m m m m( ) ( ) 1, (8.123)1 2

for any pair of j and j′. On the other hand, the second matrix element, ujj′j′j, is
proportional to

δ⊗ ′ ′ ⊗ = ′ × ′ = ′m m m m m m m m( ) ( ) . (8.124)mm1 2

In this case, it is convenient to rewrite Eq. (8.121) in the coordinate representa-
tion, using single-particle wavefunctions called spin–orbitals

ψ β≡ = ⊗o mr r r( ) ( ) . (8.125)j j j

They differ from the spatial parts of the usual orbital wavefunctions of the type
(4.233) only in that their index j should be understood as the set of the orbital-state
and the spin-orientation indices31. Also, due to the Pauli-principle restriction of
numbers Nj to either 0 or 1, Eq. (8.121) may be also rewritten without the explicit
occupancy numbers, with the understanding that the summation is extended only
over the pairs of occupied states. As a result, it becomes

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥∫ ∫∑

ψ ψ ψ ψ

ψ ψ ψ ψ
= ′

′ ′ ′

− ′ ′ ′′
≠ ′

*
′
*

′

*
′
*

′

E d r d r
u

u

r r r r r r

r r r r r r

1
2

( ) ( ) ( , ) ( ) ( )

( ) ( ) ( , ) ( ) ( )
. (8.126)

j j
j j
,

j j j j

j j j j
int
(1) 3 3

int

int

In particular, for a system of two electrons, we may limit the summation to just
two states ( j, j′ = 1, 2). As a result, we return to Eqs. (8.39)–(8.41), with the bottom
(minus) sign in Eq. (8.39), corresponding to the triplet spin states. Hence, Eq. (8.126)
may be considered as the generalization of the direct and exchange interaction
balance picture to an arbitrary number of orbitals and an arbitrary total number N
of electrons. Note, however, that this equation cannot correctly describe the energy
of the singlet spin state, corresponding to the plus sign in Eq. (8.39), and also of the

31 The spin–orbitals (8.125) are also close to spinors (8.13), besides that the former definition takes into
account that the spin s of a single particle is fixed, so that the spin–orbital may be indexed by the spin’s
orientation m ≡ ms only. Also, if an orbital index is used, it should be clearly distinguished from j, i.e. the set
of the orbital and spin indices. This is why I believe that the frequently met notation of spin-orbitals as ψj,s(r)
may lead to confusion.
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entangled triplet state32. The reason is that the description of entangled spin states,
given in particular by Eqs. (8.18) and (8.20), requires linear superpositions of
different Dirac states. (A proof of this fact is left for the reader’s exercise.)

Now comes a very important fact: the approximate result (8.126), added to the
sum of unperturbed energies εj

(0), equals the sum of exact eigenenergies of the
so-called Hartree–Fock equation33:

⎛
⎝⎜

⎞
⎠⎟

∫∑

ψ

ψ ψ ψ ψ ψ ψ ε ψ

− ℏ ∇ +

+ ′ ′ ′ − ′ ′ ′ =
′≠

′
*

′ ′
*

′

m
u

u u d r

r r

r r r r r r r r r r r

2
( ) ( )

[ ( ) ( , ) ( ) ( ) ( ) ( , ) ( ) ( )] ( ),
(8.127)

j j

j

j j j j j j j j

2
2

int int
3

where u(r) is the external-field potential acting on each particle separately—see the
second of Eqs. (8.79). An advantage of this equation in comparison with Eq. (8.126)
is that it allows the (approximate) calculation of not only the energy spectrum of the
system, but also the corresponding spin–orbitals, taking into account their electron–
electron interaction. Of course Eq. (8.127) is an integro-differential rather than just
differential equation. There are, however, efficient methods of numerical solution of
such equations, typically based on iterative methods. One more important trick is
the exclusion of the filled internal electron shells (see section 3.7) from the explicit
calculations, because the shell states are virtually unperturbed by the valence
electron effects involved in typical atomic phenomena and chemical reactions. In
this approach, the Coulomb field of the shells, described by fixed, pre-calculated and
tabulated pseudo-potentials, is added to that of the nuclei. This approach dramat-
ically cuts the computing resources necessary for systems of relatively heavy atoms,
enabling a pretty accurate simulation of electronic and chemical properties of rather
complex molecules, with thousands of electrons34. As a result, the Hartree–Fock
approximation has become the de-facto baseline of all so-called ab initio (‘first-
principle’) calculations in the most important field of quantum chemistry35.

In departures from this baseline, there are two opposite trends. For larger
accuracy (and typically smaller systems), several ‘post-Hartree–Fock methods’,
notably including the configuration interaction method36, that are more complex
but may provide higher accuracy, have been developed.

32 Indeed, due to the condition j′ ≠ j, and Eq. (8.124), the calculated negative exchange interaction is limited to
electron state pairs with the same spin direction—such as the factorable triplet states (↑↑ and ↓↓) of a two-
electron system, in which the contribution of Eex, given by Eq. (8.41), to the total energy is also negative.
33 This equation was suggested in 1929 by D Hartree for the direct interaction, and extended to the exchange
interaction by V Fock in 1930. In order to verify its equivalence to Eq. (8.126), it is sufficient to multiply all
terms of Eq. (8.127) by ψ* r( ),j integrate them over all r space (so that the right-hand side would give εj), and
then sum these single-particle energies over all occupied states j.
34 For condensed-matter systems, this and other computational methods are applied to single elementary
spatial cells, with a limited number of electrons in them, using cyclic boundary conditions.
35 See, e.g. [2].
36 That method, in particular, allows the calculation of proper linear superpositions of the Dirac states (such as
the entangled states for N = 2, discussed above) which are missing in the generic Hartree–Fock approach—see,
e.g. the just-cited monograph by Szabo and Ostlund.
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There is also a strong opposite trend of extending ab initio methods to larger
systems, while sacrificing the results’ accuracy and reliability. The ultimate case of
this trend is applicable when the single-particle wavefunction overlaps are small and
hence the exchange interaction is negligible, the last term in the square brackets of
Eq. (8.127) may be ignored, the term ψj(r) may be taken out of the integral, and it is
reduced to a differential equation, which is formally just the Schrödinger equation
for a single particle in the following self-consistent effective potential:

∫∑ ψ ψ= + = ′ ′ ′ ′
′≠

′
*

′u u u u u d rr r r r r r r r( ) ( ) ( ), ( ) ( ) ( , ) ( ) . (8.128)
j j

j jef dir dir int
3

This is the so-called Hartree approximation—that gives reasonable results for some
systems37, especially those with low electron density. However, in dense electron
systems (such as typical atoms, molecules, and condensed matter) the exchange
interaction, described by the second term in the square brackets of Eqs. (8.126) and
(8.127), may be as high as ∼30% of the direct interaction, and frequently cannot be
ignored.

The tendency of taking this interaction in the simplest possible form is currently
dominated by the Density Functional Theory38, universally known by its acronym
DFT. In this approach, the equation solved for each eigenfunction ψj(r) is a
differential, Schrödinger-like Kohn–Sham equation

⎡
⎣⎢

⎤
⎦⎥ ψ ε ψ− ℏ ∇ + + + =

m
u u ur r r r r

2
( ) ( ) ( ) ( ) ( ), (8.129)j j j

2
2

dir
KS

xc

where

∫ϕ ϕ
πε

ρ ρ= − = ′ ′
− ′

= −u e d r enr r r
r

r r
r r( ) ( ), ( )

1
4

( )
, ( ) ( ), (8.130)dir

KS

0

3

and n(r) is the total electron density in a particular point, calculated as

∑ψ ψ≡ *n r r r( ) ( ) ( ). (8.131)
j

j j

The most important feature of the Kohn–Sham Hamiltonian is the simplified
description of the exchange and correlation effects by the effective exchange-
correlation potential uxc(r). This potential is calculated in various approximations,
most valid only in the limit when the number of electrons in the system is very high.
The simplest of them (proposed by Kohn et al in the 1960s) is the Local Density
Approximation (LDA) in which the effective exchange potential at each point is a

37An extreme example the Hartree approximation is the Thomas–Fermi model of heavy atoms (with Z≫ 1), in
which atomic electrons, at each distance r from the nucleus, are treated as an ideal, uniform Fermi gas, with a
certain density n(r) corresponding to the local value uef(r), but a common value of their highest full single-
particle energy, ε = 0, to ensure the equilibrium. (The analysis of this model is left for the reader’s exercise.)
38 It had been developed by WKohn and his associates in 1965–66, and eventually (in 1998) was marked with a
Nobel Prize in Chemistry.
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function only of the electron density (8.131) at the same point, taken from the theory
of a uniform gas of free electrons39. However, for many tasks of quantum chemistry,
the accuracy given by the LDA is insufficient, because inside molecules the density n
typically changes very fast. As a result, the DFT has become widely accepted in this
field only after the introduction, in the 1980s, of more accurate, though more
cumbersome models for uxc(r), notably the so-called Generalized Gradient
Approximations (GGAs).

Due to its relative simplicity, the DFT enables the calculation, with the same
computing resources and reasonable precision, some properties of much larger
systems than the methods based on the Hartree–Fock theory. As a result, is has
become a very popular tool of ab initio calculations40. Please note, however, that
despite this undisputable success, this approach has its problems. From my personal
point of view, the most offensive of them is the implicit assumption of the unphysical
Coulomb interaction of an electron with itself (by dropping, on the way from
Eq. (8.128) to Eq. (8.130), the condition j′ ≠ j at the calculation of udir

KS). As a result
of these issues, for a reasonable description of some effects, the available DFT
packages are either inapplicable at all or require substantial artificial tinkering41.
Unfortunately, because of lack of time, for details I have to refer the reader to
specialized literature42.

8.5 Quantum computation and cryptography
Now I have to review the emerging fields of quantum computation and encryption43.
These fields are currently the subject of a very intensive research effort, which has
already brought (besides much hype) some results of general importance. My
coverage, by necessity short, will focus on these results, referring the reader
interested in details to special literature44. Because of the very active stage of the
fields, I will also provide, in the last part of the section, quite a few references to
recent publications, making its style closer to a brief research review than to a part of
a textbook.

Presently, most work on quantum computation and encryption is based on
systems of spatially-separated (and hence distinguishable) two-level systems—in this
context, commonly called qubits45. Due to this distinguishability, the issues that were

39 Just for the reader’s reference: for a uniform, degenerate Fermi-gas of electrons (with the Fermi energy εF ≫
kBT), the most important, exchange part ux of uxc may be calculated analytically: ux = −(3/4π)e2kF/4πε0, where
the Fermi momentum kF = (2meεF)

1/2/ℏ is defined by the electron density: n = 2(4π/3)kF
3/(2π)3 ≡ kF

3/3π2.
40 This popularity is enhanced by the availability of several advanced DFT software packages, some of them
(such as SIESTA, see https://departments.icmab.es/leem/siesta/) in public domain.
41As just a few examples, see [3–5].
42 See, e.g. either the monograph by [6], or the later textbook [7]. For a popular recent review, and references to
more recent work in this still-developing field, see [8].
43 Since these fields are much related, they are often referred to under the common title of ‘quantum
information science’, though this term is somewhat misleading, obscuring the physical aspects of the field.
44Despite the recent flood of new books on the field, one of its first surveys, [9], is perhaps still the best one.
45 In some texts, the term qubit (or ‘Qbit’, or ‘Q-bit’) is used instead for the information contents of a two-level
system—very much like the classical bit of information (in this context, frequently called ‘Cbit’ or ‘C-bit’)
describes the information contents of a classical bistable system—see, e.g. Part SM section 2.2.
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the focus of the first sections of this chapter, including the second quantization
approach, are irrelevant here. On the other hand, systems of qubits have some
interesting properties that have not been discussed in this course yet.

First of all, a system of N ≫ 1 qubits may contain much more information than
the same number ofN classical bits. Indeed, according to the discussions in chapter 4
and section 5.1, an arbitrary pure state of a single qubit may be represented by its ket
vector (4.37)—see also Eq. (5.1):

α α α= ∣ 〉 + ∣ 〉= u u , (8.132)N 1 1 1 2 2

where {uj} is any orthonormal two-state basis. It is natural and common to employ,
as uj, the eigenstates aj of the observable A that is eventually measured in the
particular physical implementation of the qubit—say, a certain Cartesian compo-
nent of spin-½. It is also common to write the kets of these base states as ∣0〉 and
∣1〉,46 so that Eq. (8.132) takes the form

∑α = + ≡
=

= a a a j0 1 . (8.133)
j 0,1

N j1 0 1

(Here, and in the balance of this section, the letter j is used to denote an integer equal
to either 0 or 1.) According to this relation, any state α of a qubit is completely
defined by two complex c-numbers aj, i.e. by four real numbers. Moreover, due to
the normalization condition ∣a1∣2 + ∣a2∣2 = 1, we need just three independent real
numbers—say, the Bloch sphere coordinates θ and φ (see figure 5.3), plus the
common phase γ, which becomes important only when we consider coherent states
of a several-qubit system.

This is a good time to note that a qubit is very different from any classical bistable
system used to store single bits of information—such as two possible voltage states of
the usual SRAM cell (a positive-feedback loop of two transistor-based inverters).
Namely, the stationary states of a classical bistable system, due to its nonlinearity, are
stable with respect to small perturbations, so that they may be rather robust with
respect to unintentional interaction with its environment. In contrast, the qubit’s state
may be readily disturbed (i.e. its representation point on the Bloch sphere shifted) by
even minor perturbations, because it does not have such internal state stabilization
mechanism47. Due to this reason, qubit-based systems are rather vulnerable to
environment-induced drifts, including the dephasing and relaxation discussed in the
previous chapter, creating major experimental challenges—see below.

Now, if we have a system of 2 qubits, the vector (4.37) of its arbitrary pure state
may be represented as a sum of 22 = 4 terms48,

46 In this notation, at the Bloch sphere representation (figure 5.3), the North Pole state (that is traditionally
denoted as ↑ in quantum mechanics) is taken for 0, and the South Pole state ↓ for 1, so that in Eq. (8.133), a0 =
cos(θ/2), a1 = sin(θ/2)exp{iφ}.
47 In this aspect as well, the information processing systems based on qubits are closer to classical analog
computers (which were popular once, but are now virtually abandoned) rather than classical digital ones.
48Here and in most instances below I use the same shorthand notation as was used in the beginning of this
chapter—cf. Eq. (8.1). In this short form, qubit’s number is coded by the order of its state index inside the
single ket-vector, while in the long form, such as in Eq. (8.137), it is coded by the order of single-qubit vectors.
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∑α = + + + ≡ ∣ 〉
=

= a a a a a j j00 01 10 11 , (8.134)
j j, 0,1

N j j2 00 01 10 11 1 2

1 2

1 2

with four complex coefficients, i.e. 4 × 2 = 8 real numbers, subject to just one
normalization condition, which follows from the requirement α α = 1:

∑ =
=

a 1. (8.135)
j 0,1

j j
2

1,2

1 2

The evident generalization of Eqs. (8.133) and (8.134) to an arbitrary pure state of
an N-qubit system is given by a sum of 2N terms:

∑α = ∣ … 〉
=

…a j j j , (8.136)
j j j, ,.. 0,1

N j j j N1 2

N

N

1 2

1 2

including all possible combinations of 0s and 1s inside the ket, so that the state is
fully described by 2N complex numbers, i.e. 2 · 2N = 2N+1 real numbers, with only
one constraint, similar to Eq. (8.135), imposed by the normalization condition. Let
me emphasize that this exponential growth of the information contents would not be
possible without the qubit state entanglement. Indeed, in the particular case when
qubit states are unentangled (factorable),

α α α α= ∣ 〉∣ 〉…∣ 〉, (8.137)N N1 2

where each ∣αn〉 is described by an equality similar to Eq. (8.133) with its individual
expansion coefficients, the system state description requires only 3N − 1 real
numbers—e.g. N sets {θ, φ, γ} less one common phase.

However, it would be wrong to project this exponential growth of information
contents directly on the capabilities of quantum computation, because this process
has to include the output information readout, i.e. qubit state measurements. Due to
the fundamental intrinsic uncertainty of quantum systems, the measurement of a
single qubit even in a pure state (8.133) generally may give either of two results, with
probabilities W0 = ∣a0∣2 and W1 = ∣a1∣2. In order to comply with the general notion
of computation, any quantum computer has to provide certain (or virtually certain)
results, and hence the probabilities Wj have to be very close to either 0 or 1, so that
before the measurement, each measured qubit has to be in a basis state—either 0 or
1. This means that the computational system with N output qubits, just before the
final readout, has to be in one of the factorable states

α = ∣ 〉∣ 〉…∣ 〉 ≡ ∣ … 〉j j j j j j , (8.138)N N N1 2 1 2

which is a very small subset even of the set of all unentangled states (8.137), and
whose maximum information contents is just N classical bits.

Now the reader may start thinking that this constraint strips quantum compu-
tations of any advantages over their classical counterparts, but this view is also
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superficial. In order to show that, let us consider the scheme of the most actively
explored type of quantum computation, shown in figure 8.3.49

Here each horizontal line (sometimes called a ‘wire’50) corresponds to a single
qubit, tracing its time evolution in the same direction as at the usual time function
plots: from left to right. This means that the left column ∣α〉in of ket-vectors describes
the initial state of the qubits51, while the right column ∣α〉out describes their final (pre-
measurement) state. The box labeled U represents the qubit evolution in time due to
their specially arranged interactions between each other and/or external drive
‘forces’. Besides these forces, during this evolution the system is supposed to be
ideally isolated from the dephasing and energy-dissipating environment, so that the
evolution may be described by a unitary operator defined in the 2N-dimensional
Hilbert space of N qubits:

α α= Û . (8.139)out in

With the condition that the input and output states have the simple form (8.138), this
equality reads

∣ … 〉 = ˆ ∣ … 〉j j j U j j j( ) ( ) ( ) ( ) ( ) ( ) . (8.140)N N1 out 2 out out 1 in 2 in in

Figure 8.3. The baseline scheme of quantum computation.

49Numerous modifications of this ‘baseline’ scheme have been suggested, for example with the number of
output qubits different from that of input qubits, etc. Some other options are discussed at the end of this
section.
50 The notion of ‘wires’ stems from the similarity between these diagrams and the drawings used to describe
classical computation circuits (see, e.g. figure 8.4a below); in the classical case the lines may be indeed
understood as physical wires connecting physical devices: logic gates and/or memory cells. In this context, note
that classical computer components also have nonvanishing time delays, so that even in this case the left-to-
right device ordering is useful to indicate the timing of (and frequently the causal relation between) the signals.
51As follows from our discussions in chapter 7, the preparation of a pure state (8.133) is (conceptually)
straightforward. Placing a qubit into a weak contact with an environment of temperature T≪ Δ/kB, where Δ is
the difference between energies of the eigenstates 0 and 1, we may achieve its relaxation into the lowest-energy
state. Then, if the qubit must be set into a different pure state, it may be driven there by the application of a
pulse of a proper external classical ‘force’. For example, if an actual spin-½ is used as qubits, a pulse of
magnetic field with proper direction and duration may be applied to arrange its torque-induced precession to
the required Bloch sphere point—see figure 5.3c. In most qubit systems, using a proper part of the Rabi
oscillation period (see section 6.5) is more practicable for this purpose.
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The art of quantum computer design consists of selecting such unitary operators Û
that would:

– satisfy Eq. (8.140),
– be physically implementable, and
– enable substantial performance advantages of the quantum computation over
its classical counterparts with similar functionality, at least for some digital
functions (algorithms).

I will have time/space to demonstrate the possibility of such advantages on just
one, perhaps the simplest example—the so-called Deutsch problem52. Let us consider
the family of single-bit classical Boolean functions jout = f( jin). Since both j are
Boolean variables, i.e. may take only values 0 and 1, there are evidently only four
such functions53:

(8.141) 

f f(0) f(1) class F f(1)-f(0)
f1 0 0 constant 0 0 
f2 0 1 balanced 1 1 
f3 1 0 balanced 1 -1 
f4 1 1 constant 0 0 

Of them, the functions f1 and f4, whose values are independent of their arguments,
are called constants, while the functions f2 (called ‘YES’ or ‘IDENTITY’) and f3
(‘NOT’ or ‘INVERSION’) are called balanced. The Deutsch problem is to determine
the class of a single-bit function, implemented with a ‘black box’, as being either
constant or balanced, using just one experiment.

Classically, this is clearly impossible, and the simplest way to perform the
function’s classification involves two similar black boxes f—see figure 8.4a.54 This
solution uses the so-called exclusive-OR (for short, XOR) gate whose output is
described by the following function F of its two Boolean arguments j1 and j2:

55

⎧⎨⎩= ⊕ ≡
=
≠

F j j j j
j j

j j
( , )

0, if ,

1, if .
(8.142)1 2 1 2

1 2

1 2

In the particular circuit shown in figure 8.4a, the gate produces the following output:

= ⊕F f f(0) (1), (8.143)

52 It is named after D Deutsch, whose 1985 paper (motivated by an inspirational but not very specific
publication by R Feynman in 1982) launched the whole field of quantum computation.
53 The function F will be defined imminently—see Eq. (8.142).
54Alternatively, we may perform two sequential experiments on the same black box f, first recording and then
recalling the first experiment’s result. However, the Deutsch problem calls for a single experiment.
55 The XOR sign ⊕ should not be confused with the sign ⊗ of the direct product of state vectors (which in this
section is just implied).
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which is equal to 1 if f(0) ≠ f(1), i.e. if the function f is balanced, and to 0 in the
opposite case—see the 5th column in Eq. (8.141).

On the other hand, as will be proved below, all four functions f may be
implemented quantum-mechanically, for example as a unitary transform of two
input qubits, acting as follows on each basis component ∣ j1 j2〉 ≡ ∣ j1〉∣ j2〉 of the
general input state (8.134):

ˆ ∣ 〉∣ 〉 = ∣ 〉∣ ⊕ 〉f j j j j f j( ) , (8.144)1 2 1 2 1

where f is any of the classical Boolean functions listed in the table of Eq. (8.141)—see
figure 8.5a.

In the particular case when f in Eq. (8.144) is just the YES function: f( j) = f2( j) =
j, this ‘circuit’ is reduced to the so-called CNOT gate, a key ingredient of many other
quantum computation schemes, performing the following two-qubit transform:

ˆ ∣ 〉 = ∣ 〉∣ ⊕ 〉C j j j j j a. (8.145 )1 2 1 2 1

Let us use Eq. (8.142) to spell out this function for all four possible input qubit
combinations:

ˆ = ˆ = ˆ = ˆ =C C C C b00 00 , 01 01 , 10 11 , 11 10 . (8.145 )

In plain English, this means that acting on a basis state j1j2, the CNOT gate leaves
the state of the first, source qubit (shown by the upper lines in figure 8.5) intact, but
flips the state of the second, target qubit if the first one is in the basis state 1. In even
simpler words, the state j1 of the source qubit controls the NOT function acting on
the target qubit—hence the gate’s name CNOT (the semi-acronym of ‘Controlled
NOT’).

Figure 8.5. Two-qubit quantum gates: (a) a two-qubit function f and (b) its particular case C (CNOT), and
their actions on a basis state.

Figure 8.4. The simplest (a) classical and (b) quantum ways to classify a single-bit Boolean function f.
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For the quantum function (8.144), with an arbitrary and unknown f, the Deutsch
problem may be solved within the general scheme shown in figure 8.3, with the
particular structure of the unitary-transform box U spelled out in figure 8.4b, which
involves just one implementation of the function f. Here the singe-qubit quantum
gate H performs the so-called Hadamard (or ‘Walsh–Hadamard‘) transform56,
whose operator is defined by the following actions on the qubit’s basis states:

H Hˆ ˆ= + = −0
1

2
( 0 1 ), 1

1

2
( 0 1 ), (8.146)

—see also the two leftmost state label columns in figure 8.4b.57 Since its quantum-
mechanical operator has to be linear (to be physically realistic), it needs to perform
the action (8.146) on the basis states even when they are parts of an arbitrary linear
superposition—as they are, for example, for the two right Hadamard gates in figure
8.4b. For example, as immediately follows from Eqs. (8.146) and the operator’s
linearity,

H H H H H
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

ˆ ˆ ˆ ˆ ˆ= + = +

= + + − =
a

( 0 )
1

2
( 0 1 )

1

2
( 0 1 )

1

2

1

2
( 0 1 )

1

2
( 0 1 ) 0 ,

(8.147 )

Absolutely similarly, we may get58

H Hˆ ˆ = b( 1 ) 1 . (8.147 )

Now let us carry out a sequential analysis of the ‘circuit’ shown in figure 8.4b.
Since the input states of the gate f in this particular circuit are described by
Eqs. (8.146), its output state’s ket is

H H
⎛
⎝⎜

⎞
⎠⎟

ˆ ˆˆ = ˆ + −

= ˆ − ˆ + ˆ − ˆ

f f

f f f f

( 0 1 )
1

2
( 0 1 )

1

2
( 0 1 )

1
2

( 00 01 10 11 ).

(8.148)

Now we may apply Eq. (8.144) to each basis ket to get:

56 In order to exclude any chance of confusion between the Hadamard transform’s operator Hˆ and the
Hamiltonian operator Ĥ , they are typeset using different fonts.
57Note that according to Eq. (8.146), the operatorHˆ does not belong to the classÛ described by Eq. (8.140)—
while the whole ‘circuit’ shown in figure 8.4b, does—see below.
58 Since the states 0 and 1 form a full basis of a single qubit, both Eqs. (8.147) may be summarized as an operator
equality:Hˆ = Î

2 . It is also easy to check that the Hadamard transform of an arbitrary state may be represented
on the Bloch sphere (figure 5.3) as a π-rotation about the axis that bisects the angle between x and z.
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ˆ − ˆ + ˆ − ˆ

≡ ˆ − ˆ + ˆ − ˆ

= ⊕ − ⊕ + ⊕ − ⊕

≡ ⊕ − ⊕ + ⊕ − ⊕

f f f f

f f f f

f f f f

f f f f

00 01 10 11

0 0 0 1 1 0 1 1

0 0 (0) 0 1 (0) 1 0 (1) 1 1 (1)

0 ( 0 (0) 1 (0) ) 1 ( 0 (1) 1 (1) ).

(8.149)

Note that the expression in the first parentheses, characterizing the state of the target
qubit, is equal to (∣0〉 − ∣1〉) ≡ (−1)0 (∣0〉 − ∣1〉) if f(0) = 0 (and hence 0⊕ f(0) = 0 and
1⊕ f(0) = 1), and to (∣1〉 − ∣0〉) ≡ (−1)1(∣0〉 − ∣1〉) in the opposite case f(0) = 1, so that
both cases may be described in one shot by rewriting the parentheses as (−1) f(0)(∣0〉 −
∣1〉). The second parentheses is absolutely similarly controlled by the value of f(1), so
that the outputs of the gate f are unentangled:

H Hˆ ˆˆ = − + − −

= ± + − −

f ( 0 1 )
1
2

(( 1) 0 ( 1) 1 )( 0 1 )

1

2
( 0 ( 1) 1 )

1

2
( 0 1 ),

(8.150)

f f

F

(0) (1)

where the last step has used the fact that the classical Boolean function F, defined by
Eq. (8.142), equals ±[ f(1) − f(0)]—please compare the last two columns in
Eq. (8.141). The front sign ± in Eq. (8.150) may be prescribed to any of the
component ket-vectors—for example to that of the target qubit, as shown by the
third column of state labels in figure 8.4b.

This intermediate result is already rather remarkable. Indeed, it shows that,
despite the impression one could get from figure 8.5, the gates f and C, being
‘controlled’ by the source qubit, may change that qubit’s state as well! This fact
(partly reflected by the vertical direction of the control lines in figures 8.4 and 8.5,
symbolizing the same stage of system’s time evolution) shows how careful one
should be interpreting quantum-computational ‘circuits’, thriving on qubits’ entan-
glement, because the ‘signals’ on different sections of a ‘wire’ may differ—see figure
8.4b again.

At the last stage of the circuit shown in figure 8.4b, the qubit components of
the state (8.150) are fed into one more pair of Hadamard gates, whose outputs
therefore are

H H H

H H H

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

ˆ ˆ ˆ

ˆ ˆ ˆ

+ − = + −

± − = ± −

1

2
( 0 ( 1) 1 )

1

2
( 0 ( 1) 1 ), and

1

2
( 0 1 )

1

2
( 1 0 ).

(8.151)

F F

Now using Eqs. (8.146) again, we see that the output state ket-vectors of the source
and target qubits are, respectively,

+ − + − − ±1 ( 1)
2

0
1 ( 1)

2
1 , and 1 . (8.152)

F F
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Since, according to Eq. (8.142), the Boolean function F may take only values 0 or 1,
the final state of the source qubit is always one of its basis states j, namely the one
with j = F. Its measurement tells us whether the function f, participating in
Eq. (8.144), is constant or balanced—see Eq. (8.141) again59.

Thus, the quantum circuit shown in figure 8.4b indeed solves the Deutsch
problem in one shot. Reviewing our analysis, we may see that this is possible
because the unitary transform performed by the quantum gate f is applied to the
entangled states (8.146) rather than to the basis states. Due to this trick, the quantum
state components depending on f(0) and f(1) are processed simultaneously, in
parallel. This quantum parallelism may be extended to circuits with many (N ≫ 1)
qubits and, for some tasks, provide a dramatic performance increase—for example,
reducing the necessary circuit component number from O(2N) to O(Np), where p is a
finite (and not very big) number.

However, this efficiency comes at a high price. Indeed, let us discuss the possible
physical implementation of quantum gates, starting from the Hadamard gate, which
performs a single-qubit transform—see Eq. (8.146). With the linearity requirement,
its action on the arbitrary state (8.133) should be

H H Hˆ α ˆ ˆ= + = + + −

= + + −

a a a a

a a a a

0 1
1

2
( 0 1 )

1

2
( 0 1 )

1

2
( ) 0

1

2
( ) 1 ,

(8.153)
0 1 0 1

0 1 0 1

meaning that the state probability amplitudes in the end ( T=t ) and beginning
(t = 0) of the qubit evolution in time have to be related as

T T= + = −
a

a a
a

a a
( )

(0) (0)

2
, ( )

(0) (0)

2
. (8.154)0

0 1
1

0 1

This task may be again performed using the Rabi oscillations, which were
discussed in section 6.5, i.e. by applying to the qubit (a two-level system), for a
limited time periodT , a weak sinusoidal external signal of frequency ω equal to the
intrinsic quantum oscillation frequency ωnn′ defined by Eq. (6.85). A perturbative
analysis of the Rabi oscillations was carried out in section 6.5, even for nonvanishing
(though small) detuning Δ = ω − ωnn, but only for the particular initial conditions
when at t = 0 the system was in one on the basis states (there labeled as n′), i.e.
another state (there labeled n) was empty. For our current purposes we need to find
the amplitudes a0,1(t) for arbitrary initial conditions a0,1(0), subject only to the time-
independent normalization condition ∣a0∣2 + ∣a1∣2 = 1. For the case of exact tuning,

59Note that the last Hadamard transform of the target qubit (i.e. the Hadamard gate shown in the lower right
corner of figure 8.4b) is not necessary for the Deutsch problem’s solution—though it should be included if we
want the whole circuit to satisfy the general condition (8.140).
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Δ = 0, the solution of the system (6.94) is elementary60, and gives the following
solution61:

= Ω − Ω
= Ω − Ω

φ

φ−

a t a t ia e t

a t a t ia e t

( ) (0)cos (0) sin ,

( ) (0)cos (0) sin ,
(8.155)

i

i
0 0 1

1 1 0

where Ω is the Rabi oscillation frequency (6.99), in the exact-tuning case propor-
tional to the amplitude ∣A∣ of the external ac drive A = ∣A∣exp{iφ}—see Eq. (6.86).
Comparing these expressions with Eqs. (8.154), we see that for t =T π= Ω/4 and φ =
π/2 they ‘almost’ coincide, besides the opposite sign of a1(T ). Conceptually the
simplest way to correct this deficiency is to follow the ac ‘π/4-pulse’, just discussed,
by a short dc ‘π-pulse’ of the durationT π δ= / , which temporarily creates a small
additional energy difference δ between the basis states 0 and 1. According to the
basic Eq. (1.62), such a difference creates an additional phase difference T δ= ℏ/
between the states, equal to π for the ‘π-pulse’.

Another way (that may be also useful for two-qubit operations) is to use another,
auxiliary energy level E2 whose distances from the basic levels E1 and E0 are
significantly different from the difference (E1 − E0)—see figure 8.6a. In this case, the
weak external ac field tuned to any of three potential quantum transition frequencies
ωnn′ ≡ (En − En′)/ℏ initiates such transitions between the corresponding states only,
with a negligible perturbation of the third state. (Such transitions may be again
described by Eqs. (8.155), with the appropriate index changes.) For the Hadamard
transform implementation, it is sufficient to apply (after the already discussed π/4-
pulse of frequency ω10, and with the initially empty level E2), an additional π-pulse
of frequency ω20, with any phase φ. Indeed, according to the first of Eqs. (8.155),
with the due replacement a1(0) → a2(0) = 0, such a pulse flips the sign of the
amplitude a0(t), while the amplitude a1(t), not involved in this additional transition,
remains unchanged.

Now let me describe the conceptually simplest (though, for some qubit types, not
the most practically convenient) scheme for the implementation of the CNOT gate,
whose action is described by a linear unitary operator satisfying Eq. (8.145). For

Figure 8.6. Energy-level schemes used for unitary transformations of (a) single qubits and (b, c) two-qubit
systems.

60An alternative way to analyze the qubit evolution is to use the Bloch equation (5.21), with an appropriate
function Ω(t) describing the control field.
61 To comply with our current notation, the coefficients an’ and an of section 6.5 are replaced with a0 and a1.
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that, evidently, the involved qubits have to interact for some time T . As was
repeatedly discussed in the two last chapters, in most cases such interaction of two
subsystems is factorable—see Eq. (6.145). For qubits, i.e. two-level systems, each of
the component operators may be represented by a 2 × 2 matrix in the basis of the
states 0 and 1. According to Eq. (4.106), such a matrix may be always expressed as a
linear combination (bI + c · σ), where b and three Cartesian components of the
vector c are c-numbers. Let us consider the simplest form of such factorable
interaction Hamiltonian:

T⎧⎨⎩
κσ σˆ = ˆ ˆ < <

H t
t

( )
, for 0 ,

0, otherwise,
(8.156)z z

int

(1) (2)

where the upper index is the qubit number, and κ is a c-number constant62

According to Eq. (4.175), by the end of the interaction period, this Hamiltonian
produces the following unitary transform:

T Tκσ σˆ = −
ℏ

ˆ ≡ −
ℏ

ˆ ˆ{ } { }U
i

H
i

exp exp . (8.157)z zint int
(1) (2)

Since in the basis of unperturbed two-bit basis states ∣ j1 j2〉, the product operator
σ σˆ ˆz z

(1) (2) is diagonal, so is the unitary operator (8.157), with the following action on
these states:

θσ σˆ ∣ 〉 = ∣ 〉{ }U j j i j jexp , (8.158)z zint 1 2
(1) (2)

1 2

where Tθ κ= − ℏ/ , and σz are the eigenvalues of the Pauli matrix σz for the basis
states of the corresponding qubit: σz = +1 for ∣ j〉 = ∣0〉, and σz = −1 for ∣ j〉 = ∣1〉. Let
me, for clarity, spell out Eq. (8.158) for the particular case θ = −π/4 (corresponding
to the qubit coupling timeT π κ= ℏ/4 ):

ˆ = ˆ =
ˆ = ˆ =

π π

π π

−

−

U e U e

U e U e

00 00 , 01 01 ,

10 10 , 11 11 .
(8.159)

i i

i i

int
/4

int
/4

int
/4

int
/4

In order to compensate the undesirable parts of this joint phase shift of the basis
states, let us now apply similar individual ‘rotations’ of each qubit by angle θ′ = +π/4,

62 The assumption of simultaneous time independence of the basis state vectors and the interaction operator
(within the time interval T< <t0 ) is possible only if the basis state energy difference Δ of both qubits is
exactly the same. For this case, the simple physical explanation of the time evolution (8.156) follows from
figure 8.6b, c, which shows the spectrum of the total energy E = E1 + E2 of the two-bit system. In the absence
of interaction (figure 8.6b), the energies of two basis states, ∣01〉 and ∣10〉, are equal, enabling even a weak qubit
interaction to cause their substantial evolution in time—see section 6.7. If the qubit energies are different
(figure 8.6c), the interaction may still be reduced, in the rotating-wave approximation, to Eq. (8.156), by
compensating the energy difference (Δ1 − Δ2) with an external ac signal of frequency ω = (Δ1 − Δ2)/ℏ—see
section 6.5.
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using the following product of two independent operators, plus (just for the result
clarity) a common, and hence inconsequential, phase shift θ′ = −π/4:63

θ σ σ θ π σ π σˆ = ′ ˆ + ˆ + ″ ≡ ˆ ˆ π−{ } { }{ }U i i i i eexp ( ) exp
4

exp
4

. (8.160)z z z z
i

com
(1) (2) (1) (2) /4

Since this operator is also diagonal in the ∣j1j2〉 basis, it is easy to calculate the change
of the basis states by the total unitary operator ˆ ≡ ˆ ˆU U Utot com int:

ˆ = ˆ =
ˆ = ˆ = −

U U

U U

00 00 , 01 01 ,

10 10 , 11 11 .
(8.161)tot tot

tot tot

This result already shows the main ‘miracle action’ of two-qubit gates, such as the
one shown in figure 8.4b: the source qubit is left intact (only if it is in a basis state!),
while the state of the target qubit is altered. True, this change (of the sign) is still
different from the CNOT operator’s action (8.145), but may be readily used for its
implementation by sandwiching of the transform Utot between two Hadamard
transforms of the target qubit alone:

H Hˆ = ˆ ˆ ˆC U
1
2

. (8.162)(2)
tot

(2)

So, we have spent quite a bit of time on the discussion of the CNOT gate64, and
now I can reward the reader for his/her effort with a bit of good news: it has been
proved that an arbitrary unitary transform that satisfies Eq. (8.140), i.e. may be used
within the general scheme outlined in figure 8.3, may be decomposed into a set of
CNOT gates, possibly augmented with simpler single-qubit gates—for example, the
Hadamard gate plus the π/2 rotation discussed above65. Unfortunately, I have no
time for a detailed discussion of more complex circuits66. The most famous of them
is the scheme for integer number factoring, suggested in 1994 by P Shor67. Due to its
potential practical importance for breaking broadly used communication encryption

63 It Eq. (4.175) shows, each of component unitary transforms θ σ′ ˆiexp{ }z may be created by applying to each
qubit, for a time periodT θ κ= ℏ ′ ′/ , a constant external field described by Hamiltonian κ σˆ = − ′ ˆH z. We already
know that for a charged, spin-½ particle, this Hamiltonian may be created by applying z-oriented external
constant magnetic field—see Eq. (4.163). For most other physical implementations of qubits, the organization
of such Hamiltonian is also straightforward—see, e.g. figure 7.4 and its discussion.
64As was discussed above, this gate is identical to the two-qubit gate shown in figure 8.5a for f = f3, i.e. f( j) = j.
The implementation of the gate of f for 3 other possible functions f requires straightforward modifications,
whose analysis is left for reader’s exercise.
65 This fundamental importance of the CNOT gate was perhaps a major reason why DWineland, the leader of
the NIST group that had demonstrated its first experimental implementation in 1995 (following the theoretical
suggestion by J Cirac and P Zoller), was awarded the 2012 Nobel Prize in Physics—shared with S Haroche, the
leader of another group working towards quantum computation.
66 For that, the reader may be referred to either the monographs by Nielsen–Chuang and Reiffel–Polak, cited
above, or to a shorter (but much more formal) textbook [10].
67A clear description of this algorithm may be found in several accessible sources, including Wikipedia—see
the article Shor’s Algorithm.
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schemes such as the RSA code68, this opportunity has incited a huge wave of
enthusiasm, and triggered experimental efforts to implement quantum gates and
circuits using a broad variety of two-level quantum systems. By now, the following
experimental options have given most significant results69:

(i) Trapped ions. The first experimental demonstrations of quantum state
manipulation (including the already mentioned first CNOT gate) have been carried
out using deeply cooled atoms in optical traps, similar to those used in frequency
and time standards. Their total spins are natural qubits, whose states may be
manipulated using the Rabi transfers excited by suitably tuned lasers. The spin
interactions with the environment may be very weak, resulting in large dephasing
times T2—up to a few seconds. Since the distances between ions in the traps are
relatively large (of the order of a micron), their direct spin–spin interaction is even
weaker, but the ions may be made effectively interacting either via their mechanical
oscillations about the potential minima of the trapping field, or via photons in
external electromagnetic resonators (‘cavities’)70. Perhaps the main challenge of
using this approach for quantum computation is a poor ‘scalability’, i.e. the
enormous experimental difficulty of creating large, ordered systems of individually
addressable qubits. So far, only a-few-qubit systems have been demonstrated71.

(ii) Nuclear spins are also typically very weakly connected to environment, with
dephasing times T2 exceeding 10 s in some cases. Their eigenenergies E0 and E1 may
be split by external dc magnetic fields (typically, of the order of 10 T), while the
interstate Rabi transfers may be readily achieved by using the nuclear magnetic
resonance, i.e. the application of external ac fields with frequencies ω = (E1 − E0)/ℏ—
typically, of a few hundred MHz. The challenges of this option include the weakness
of spin–spin interactions (typically mediated through molecular electrons), resulting in
a very slow spin evolution, whose time scale ℏ/κmay become comparable with T2, and
also very small level separations E1 − E0, corresponding to a few K, i.e. much smaller
than the room temperature, creating a challenge of qubit state preparation72. Despite
these challenges, the nuclear spin option was used for the first implementation of the
Shor algorithm for factoring of a small number (15 = 5 × 3) as early as in 200173.
However, the extension of this success to larger systems, beyond the set of spins inside
one molecule, is extremely challenging.

68Named after R Rivest, A Shamir, and L Adleman, the authors of the first open publication of the code in
1977, but actually invented earlier (in 1973) by C Cocks.
69 For a discussion of other possible implementations (such as quantum dots and dopants in crystals) see, e.g.
[11], and references therein.
70A brief discussion of such interactions (so-called Cavity QED) will be given in section 9.4 below.
71 See, e.g. [12]. Note also the related work on arrays of trapped, optically-coupled neutral atoms—see, e.g. [13]
and references therein.
72 This challenge may be partly mitigated using ingenious spin manipulation techniques such as refocusing—
see, e.g. either section 7.7 in Nielsen and Chuang, or the J Keeler’s monograph cited in the end of section 6.5.
73 [14].
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(iii) Josephson-junction devices. Much better scalability may be achieved with
solid state devices, especially using superconductor integrated circuits including
weak contacts—Josephson junctions (see their brief discussion in section 1.6). The
qubits of this type all based on the fact that the energy U of such a junction is a
highly nonlinear function of the Josephson phase difference φ—see section 1.6.
Indeed, combining Eqs. (1.73) and (1.74), we can readily calculate U(φ) as the work
W of an external circuit increasing the phase from, say, zero to some value φ:

W∫ ∫ ∫φ φ φ

φ

− = = =
ℏ

′ ′

=
ℏ

−

φ

φ φ

φ

φ φ

φ

φ φ

′=

′=

′=

′=

′=

′=

U U d IVdt
eI d

dt
dt

eI

( ) (0)
2

sin

2
(1 cos ).

(8.163)0 0

c

0

c

There are several options of using this nonlinearity for creating qubits74; currently
the leading option, called the phase qubit, is using two lowest eigenstates localized in
one of the potential wells of the periodic potential (8.163). A major problem of such
qubits is that at the very bottom of this well the potential U(φ) is almost quadratic,
so that the energy levels are nearly equidistant—cf. Eqs. (2.262), (6.16), and (6.23).
This is even more true for the so-called ‘transmons’ (and ‘Xmons’, and ‘Gatemons’,
and several other similar devices75)—the currently used phase qubits versions, where
a Josephson junction is made a part of an external electromagnetic oscillator,
making its relative net nonlineartity (anharmonism) even smaller. As a result, the
external rf drive of frequency ω = (E1 − E0)/ℏ, used to arrange the state transforms
described by Eq. (8.155), may induce simultaneous undesirable transitions to (and
between) higher energy levels. This effect may be mitigated by a reduction of the ac
drive amplitude, but at a price of the proportional increase of the operation time. (I
am leaving a quantitative estimate of this increase for the reader’s exercise.)

Since the coupling of Josephson-junction qubits may be most readily controlled
(and, very importantly, kept stable if so desired), they have been used to
demonstrate the largest prototype quantum computing systems to date, despite
quite modest dephasing times T2—for purely integrated circuits, in the tens of
microseconds at best, even at the operation temperatures in tens of mK. By the time
of this writing (mid-2018), several groups have announced chips with more than 10

74 The ‘most quantum’ option in this technology is to use Josephson junctions very weakly coupled to their
dissipative environment (so that the effective resistance shunting the junction is much higher than the quantum
resistance unit RQ ≡ (π/2) ℏ/e2 ∼ 104 Ω). In this case, the Josephson phase variable φ behaves as a coordinate of
a 1D quantum particle, moving in the 2π-periodic potential (8.163), forming the energy band structure E(q)
similar to those discussed in section 2.7. Both theory and experiment show that in this case, the quantum states
in adjacent Brillouin zones differ by the charge of one Cooper pair 2e. (This is exactly the effect responsible for
the Bloch oscillations of frequency (2.252).) These two states may be used as the basis states of a charge qubit.
Unfortunately, such a qubit is rather sensitive to random charged impurities in the junction’s vicinity, causing
uncontrollable changes of it parameters, so that currently, to the best of my knowledge, this option is not
actively pursued.
75 For a recent review of these devices see, e.g. [15], and references therein.
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qubits, but to the best of my knowledge, only their smaller subsets could be used for
high-fidelity quantum operations76.

(iv) Optical systems, attractive because of their inherently enormous bandwidth,
pose a special challenge for quantum computation: due to the virtual linearity of
most electromagnetic media at reasonable light power, the implementation of qubits
(i.e. two-level systems), and interaction Hamiltonians such as the one given by
Eq. (8.156), is problematic. In 2001, a very smart way around this hurdle was
invented77. In this KLM scheme (also called the ‘linear optical quantum comput-
ing’), nonlinear elements are not needed at all, and quantum gates may be composed
just of linear devices (such as optical waveguides, mirrors and beam splitters), plus
single-photon sources and detectors. However, estimates show that this approach
requires a much larger number of physical components than those using nonlinear
quantum systems such as usual qubits78, so that right now it is not very popular.

So, despite more than two decades of large-scale efforts, the progress of the
quantum computing development has been rather modest. The main culprit here is the
unintentional coupling of qubits to environment, leading most importantly to their
state dephasing, and eventually to errors. Let me discuss this major issue in detail.

Of course, some error probability exists in classical digital logic gates and memory
cells as well79. However, in this case, there is no conceptual problem with the device
state measurement, so that the error may be detected and corrected in many ways;
perhaps the simplest one is the so-called majority voting. For that, the input bit set is
reproduced in several (say, three) copies and sent to three similar devices whose outputs
are measured and compared. If the outputs differ, at least one of the devices has made
at error. This error may be not only detected, but also corrected by taking the two
coinciding outputs for the correct one. If the probability of a single device error isW≪
1, the probability of error of one device pair is close to W2, and that of two pairs (and
hence of the whole majority voting scheme) is close to W3. Since for the currently
dominating CMOS integrated circuits, W is extremely small (<10−5 even for relatively
complex logic blocks), even such a simple error correction circuit creates a dramatic
fidelity improvement—at the cost of higher circuit complexity and consumed power.

For quantum computation, the general idea of using several devices (say, qubits)
for coding the same information remains valid; however, there are two major
complications, both due to the analog nature of qubit states. First, as we know from
chapter 7, the dephasing effect of environment may be described as a slow random
drift of the probability amplitudes aj, leading to the deviation of the output state αfin
from the required form (8.140), and hence to a nonvanishing probability of wrong
qubit state readout—see figure 8.3. Hence the quantum error correction has to

76 See, e.g. [16] and references therein.
77 [17].
78 See, e.g. [18].
79 In modern integrated circuits, such ‘soft’ (runtime) errors are created mostly by the high-energy neutron
component of cosmic rays, and also by the α-particles emitted by radioactive impurities in silicon chips and
their packaging.
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protect the result not against possible random state flips 0 ↔ 1, as in the classical
digital computer, but against these ‘creeping’ analog errors.

Second, the qubit state is impossible to copy exactly (clone) without disturbing it,
as follows from the following simple calculation80. Cloning some state α of one qubit
to another qubit that is initially in an independent state (say, the basis state 0),
without any change of α, means the following transformation of the two-qubit ket:
∣α0〉 → ∣αα〉. If we want such a transform to be performed by a real quantum system
whose operation is described by a unitary operator û, and to be correct for an
arbitrary state α, it has to work not only for both basis states of the qubit:

ˆ = ˆ =u u00 00 , 10 11 , (8.164)

but also for their arbitrary linear combination (8.133). Since the operator û has to be
linear, we may use that relation, and then Eq. (8.164) to write

αˆ ≡ ˆ + ≡ ˆ + ˆ
= +

u u a a a u a u
a a

0 ( 0 1 ) 0 00 10
00 11 .

(8.165)0 1 0 1

0 1

On the other hand, the desired result of the state cloning is

αα = + +
≡ + + +

a a a a

a a a a

( 0 1 )( 0 1 )

00 ( 10 01 ) 11 ,
(8.166)

0 1 0 1

0
2

0 1 1
2

i.e. is evidently different, so that, for an arbitrary state α, and an arbitrary unitary
operator û,

α ααˆ ≠u 0 , (8.167)

meaning that the qubit state cloning is indeed impossible81.
This problem may be partly circumvented—for example, in the way shown in

figure 8.7a. Here the CNOT gate, whose action is described by Eq. (8.145), entangles
an arbitrary input state (8.133) of the source qubit with a basis initial state of an

Figure 8.7. (a) Quasi-cloning, and (b) detection and correction of dephasing errors in a single qubit.

80Amazingly, this simple no-cloning theorem was discovered as late as in 1982 (to the best of my knowledge,
independently by W Wooters and W Zurek, and by D Dieks), in the context of work toward quantum
cryptography—see below.
81Note that this does not mean that the two (or several) qubits cannot be put into the same, arbitrary quantum
state—theoretically, with arbitrary precision. Indeed, they may be first set into their lowest-energy stationary
states, and then driven into the same arbitrary state (8.133) by exerting on them similar classical external fields.
So, the no-cloning theorem pertains only to qubits in unknown states α—but this is exactly what we need for
error correction—see below.
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ancillary target qubit—frequently called the ancilla. Using Eq. (8.145), we may
readily calculate the output two-qubit state’s vector:

α = ˆ + ≡ ˆ + ˆ
= +

= C a a a C a C
a a

( 0 1 ) 0 00 10
00 11 .

(8.168)N 2 0 1 0 1

0 1

We see that this circuit does perform the operation (8.165), i.e. gives the initial
source qubit’s probability amplitudes a0 and a1 equally to two qubits, i.e. duplicates
the input information. However, in contrast with the ‘genuine’ cloning, it changes
the state of the source qubit as well, making it entangled with the target (ancilla)
qubit. Such ‘quasi-cloning’ is the key element of most suggested quantum error
correction techniques.

Consider, for example, the three-qubit ‘circuit’ shown in figure 8.7b, which uses
two ancilla qubits (see two lower lines). At its first two stages, the double application
of the quasi-cloning produces an intermediate state A with the following ket-vector:

= +A a a000 111 , (8.169)0 1

which is an evident generalization of Eq. (8.168).82 Next, subjecting the source qubit
to the Hadamard transform (8.146), we get the three-qubit state B represented by the
vector

= + + −B a a
1

2
( 0 1 ) 00

1

2
( 0 1 ) 11 . (8.170)0 1

Now let us assume that at this stage, the source qubit comes into a contact with a
dephasing environment (in figure 8.7b, symbolized by the single-qubit ‘gate’ φ). As we
know from section 7.3, its effect (besides some inconsequential shift of the common
phase) may be described by a random mutual phase shift of the basis states83:

→ →φ φ−e e0 0 , 1 1 . (8.171)i i

As a result, for the intermediate state C (see figure 8.7b) we may write

= +

+ −

φ φ

φ φ

−

−

C a e e

a e e

1

2
( 0 1 ) 00

1

2
( 0 1 ) 11 .

(8.172)

i i

i i

0

1

At this stage, in this simple theoretical model, the coupling with environment is
completely stopped (ahhh, if this could be possible! we might have quantum

82 Such a state is also the 3 qubit example of the so-called Greeenberger–Horne–Zeilinger (GHZ) states, which
are frequently called the ‘most entangled’ states of a system of N > 2 qubits.
83 For example, in the Hilbert space of this qubit, the model Hamiltonian (7.70), which was explored in section
7.3, is diagonal in the z-basis of states 0 and 1, so that the unitary transform it provides is also diagonal, giving
phase shifts described by Eq. (8.171). Let me emphasize again that Eq. (8.171) is strictly valid only if the
interaction with environment is a pure dephasing, i.e. does not include the energy relaxation of the qubit or its
thermal activation to the higher eigenstate; however, it is a reasonable description of errors at T2 ≪ T1.
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computers by now :-), and the source qubit is fed into one more Hadamard gate.
Using Eqs. (8.146) again, for the state D after this gate we get

φ φ
φ φ

= +
+ +

D a i
a i
(cos 0 sin 1 ) 00

( sin 0 cos 1 ) 11 .
(8.173)0

1

Now the qubits are passed through the second, similar pair of CNOT gates—see
figure 8.7b. Using Eq. (8.145), for the resulting state E we readily get the following
expression:

φ φ φ
φ

= + +
+

E a a i a i
a

a
cos 000 sin 111 sin 011

cos 100 ,
(8.174 )0 0 1

1

whose right-hand side may by evidently grouped as

φ
φ

= +
+ +

E a a
a a i

b
( 0 1 )cos 00

( 0 1 ) sin 11 .
(8.174 )0 1

1 0

This is already a rather remarkable result. It shows that if we measured the ancilla
qubits at the stage E, and both results corresponded to states 0, we might be 100%
sure that the source qubit (which is not affected by these measurements!) is in its
initial state even after the interaction with environment. The only result of an
increase of this unintentional interaction (as quantified by the magnitude of the
random phase shift φ) is the growth of the probability,

φ=W sin , (8.175)2

of getting the opposite result, which signals a dephasing-induced error in the source
qubit. Such implicit measurement, without disturbing the source qubit, is called the
quantum error detection. An even more impressive result may be achieved by the last
component of the circuit, the so-called Toffoli (or ‘CCNOT’) gate, denoted by the
rightmost symbol in figure 8.7b. This 3 qubit gate is conceptually similar to the
CNOT gate discussed above, besides that it flips the basis state of its target qubit
only if both its source qubits are in the state 1. (In the circuit shown in figure 8.7b, the
former role is played by our source qubit, while the latter role, by the two ancilla
qubits.) According to its definition, the Toffoli gate has no effect on the first
parentheses in Eq. (8.174b), but flips the source qubit’s states in the second
parentheses, so that for the output 3 qubit state F we get

φ φ= + + +F a a a a i a( 0 1 )cos 00 ( 0 1 ) sin 11 . (8.176 )0 1 0 1

Obviously, this result may be factored as

φ φ= + +F a a i b( 0 1 )(cos 00 sin 11 ), (8.176 )0 1

showing that now the source qubit is again fully unentangled from the ancilla qubits.
Moreover, calculating the norm squared of the second operand, we get

φ φ φ φ φ φ− + = + =i i(cos 00 sin 11 ) (cos 00 sin 11 ) cos sin 1, (8.177)2 2
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so that the final state of the source qubit always, exactly coincides with its initial state.
This is the famous miracle of quantum state correction, taking place ‘automatically’—
without any qubit measurements, and for any random phase shift φ.

The circuit shown in figure 8.7b may be further improved by adding Hadamard
gate pairs, similar to that used for the source qubit, to the ancilla qubits as well. It is
straightforward to show that if the dephasing is small in the sense that the W given
by Eq. (8.175) is much less than 1, this modified circuit may provide a substantial
error probability reduction (to ∼W2) even if the ancilla qubits are also subjected to a
similar dephasing and the source qubits, at the same stage—i.e. between two
Hadamard gates. Such perfect automatic correction of any error (not only an inner
dephasing of a qubit and its relaxation/excitation, but also the mutual dephasing
between qubits) of any used qubit needs even more parallelism. The first circuit of
that kind, based on 9 parallel qubits, which is a natural generalization of the circuit
discussed above, had been invented in 1995 by the same P Shor. Later, 5qubit
circuits enabling similar error correction were suggested. (The further parallelism
reduction has been proved impossible.)

However, all these results assume that the error correction circuits as such are
perfect, i.e. completely isolated from the environment. In the real world this cannot
be done. Now the key question is what maximum levelWmax of the error probability
in each gate (including those in the used error correction scheme) can be automati-
cally corrected, and how many qubits with W < Wmax would be required to
implement quantum computers producing important results—first of all, factoring
of large numbers84. To the best of my knowledge, estimates of these two related
numbers have been made only for some very specific approaches, and they are rather
pessimistic. For example, using the so-called surface codes, which employ many
physical qubits for coding an informational one, and hence increase its fidelity,Wmin

may be increased to a few times 10−3, but then we would need ∼108 physical qubits
for the Shor’s algorithm implementation85. This is very far from what currently
looks doable.

Because of this hard situation, the current development of quantum computing is
focused on finding at least some problems that could be within the reach of either the
existing systems, or their immediate extensions, and simultaneously would present
some practical interest—a typical example of a technology in search for applica-
tions. Currently, to my knowledge, all suggested problems of this kind address
properties of some simple quantum systems—such as the molecular hydrogen86 or
the deuteron (the deuterium’s nucleus, i.e. the proton–neutron system)87. In the
simplest option of this approach, the interaction between the qubits of a system is

84 In order to compete with the existing classical factoring algorithms, such numbers should have at least 103

bits.
85 [19].
86 [20].
87 [21].
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organized so that the system’s Hamiltonian is similar to that of the quantum system
of interest88.

A similar work direction (for which ‘quantum system modeling’ would be a more
appropriate name than ‘quantum computation’) is pursued by the teams using
schemes different from that shown in figure 8.3. Of those, the most developed is the
so-called adiabatic quantum computation89, which drops the hardest requirement of
negligible interaction with the environment. In this approach, the qubit system is
first prepared in a certain initial state, and then is allowed to evolve on its own, with
no effort to couple-uncouple qubits by external control signals during the evolu-
tion90. Due to the interaction with the environment, in particular the dephasing and
the energy dissipation it imposes, the system eventually relaxes to a final incoherent
state, which is then measured. (This recalls the scheme shown in figure 8.3, with the
important difference that the transform U should not necessarily be unitary.) From
numerous runs of such an experiment, the outcome statistics may be revealed. Thus,
at this approach the interaction with the environment is allowed to play a certain role
in the system evolution, though every effort is made to reduce it, thus slowing down
the relaxation process—hence the word ‘adiabatic’ in the name of this approach. This
slowness allows the system to exhibit some quantum properties, in particular quantum
tunneling91 through the energy barriers separating close energy minima in the multi-
dimensional space of states. This tunneling may create a substantial difference of the
finite state statistics from that in purely classical systems, where such barriers may be
overcome only by thermally-activated jumps over them92.

Due to technical difficulties of the organization and precise control of long-range
interaction in multi-qubit systems, the adiabatic quantum computing demonstra-
tions so far have been limited to a few simple arrays described by the so-called
extended quantum Ising (‘spin-glass’) model

∑ ∑σ σ σˆ = − ˆ ˆ − ˆ
′

′
H J h , (8.178)

j j j{ , }
z
j

z
j

j z
j( ) ( ) ( )

where the curly brackets denote the summation over pairs of close (though not
necessarily closest) neighbors. Though the Hamiltonian (8.178) is the traditional
playground of phase transitions theory (see, e.g. Part SM chapter 4), to the best of
my knowledge there are not many practically important tasks that could be achieved
by studying the statistics of its solutions. Moreover, even for this limited task, the

88 By the moment of this writing (mid-2018), even for such specially-tailored problems, the performance of
existing quantum computing systems has been still below that of classical computers—see, e.g. [22].
89Note that the qualifier ‘quantum’ is important in this term, to distinguish this research direction from the
classical adiabatic (or ‘reversible’) computation—see, e.g. Part SM section 2.3 and references therein.
90Recently, some hybrids of this approach with the ‘usual’ scheme of quantum computation have been
demonstrated, in particular, using some control of inter-bit coupling during the relaxation process—see, e.g. [23].
91As a reminder, this process was repeatedly discussed in this course, starting from section 2.3.
92A quantitative discussion of such jumps may be found in Part SM section 5.6.
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speed of the largest experimental adiabatic quantum ‘computers’, with several
hundreds of Josephson-junction qubits93 is still comparable with that of classical,
off-the-shelf semiconductor processors (with the dollar cost lower by many orders of
magnitude), and no dramatic change of this comparison is predicted for realistic
larger systems.

To summarize the current situation with the quantum computation development,
it faces a very hard challenge of mitigating the effects of unintentional coupling with
the environment. This problem is exacerbated by the lack of algorithms, beyond the
Shor’s number factoring, that would give quantum computation a substantial
advantage over the classical competition in solving real-world problems, and hence
a potential customer base much broader that the communication encryption
community, that would provide the field with the necessary long-term motivation
and resources. So far, the leading experts in this field abstain from predictions on
when the quantum computation may become a self-supporting commercial
technology94.

There seem to be better prospects for another application of entangled qubit
systems, namely to telecommunication cryptography95. The goal here is to replace
the currently dominating classical encryption, based on the public-key RSA code
mentioned above, that may be broken by factoring very large numbers, with a
quantum encryption system that would be fundamentally unbreakable. The basis
of this opportunity are the measurement postulate and the no-cloning theorem: if a
message is carried over by a qubit, it is impossible for an eavesdropper (in
cryptography, traditionally called Eve) to either measure or copy it faithfully,
without also disturbing its state. However, as we have seen from the discussion of
figure 8.7a, state quasi-cloning using entangled qubits is possible, so that the issue
is far from being simple, especially if we want to use a publicly distributed
quantum key, in some sense similar to the classical public key used at the RSA
encryption.

Unfortunately, I would not have time/space to discuss various options for
quantum encryption, but cannot help demonstrating how counter-intuitive they
may be, on the famous example of the so-called quantum teleportation (figure 8.8).96

Suppose that some party A (in cryptography, traditionally called Alice) wants to
send to party B (Bob) the full information about the pure quantum state α of a qubit,
unknown to either party. Instead of sending her qubit directly to Bob, Alice asks him

93 See, e.g. [24]. Similar demonstrations with trapped-ion systems so far have been on a smaller scale, with a
few tens of qubits—see, e.g. [25].
94 See, e.g. [26].
95 This field was pioneered in the 1970s by S Wisener. Its important theoretical aspect (which I, unfortunately,
also will not be able to cover) is the distinguishability of different but close quantum states—for example, of an
original qubit set, and that slightly corrupted by noise. A good introduction to this topic may be found, for
example, in chapter 9 of the monograph by Nielsen and Chuang, cited above.
96 This procedure had been first suggested in 1993 by the same C Bennett, and then repeatedly demonstrated
experimentally—see, e.g. [27], and literature therein.

Quantum Mechanics: Lecture notes

8-53



to send her one qubit (β) of a pair of other qubits, prepared in a certain entangled
state, for example in the singlet state described by Eq. (8.11); in our current notation

ββ′ = −1

2
( 01 10 ). (8.179)

The initial state of the whole 3 qubit system may be represented in the form

αββ ββ′ = + ′

= − + −

a a
a a a a a

( 0 1 )

2
001

2
010

2
010

2
111 , (8.180 )

0 1

0 0 1 1

which may be equivalently rewritten as the following linear superposition,

αββ αβ αβ

αβ αβ

′ = − + + +

+ − + + − −

+ −

+ −

a a a a

a a a a
b

1
2

( 0 1 )
1
2

( 0 1 )

1
2

( 0 1 )
1
2

( 0 1 ),
(8.180 )

s 1 0 s 1 0

e 0 1 e 0 1

of the following four states of the qubit pair αβ:

αβ αβ≡ ± ≡ ±± ±1

2
( 00 11 ),

1

2
( 01 10 ). (8.181)s e

After having received the qubit β from Bob, Alice measures which of these four
states the pair αβ has. This may be achieved, for example, by measurement of one
observable represented by the operator σ σˆ ˆα β

z z
( ) ( ) and another one corresponding to

σ σˆ ˆα β
x x
( ) ( )—cf. Eq. (8.156). (Since all four states (8.181) are eigenstates of both these

operators, these two measurements do not affect each other and may be performed
in any order.) The measured eigenvalue of the former operator enables distinguish-
ing the couples of states (8.181) with different values of the lower index, while the
latter measurement distinguishes the states with different upper indices.

Then Alice reports the measurement result (which may be coded with just 2
classical bits) to Bob over a classical communication channel. Since the

Figure 8.8. Sequential stages of a ‘quantum teleportation’ procedure: (a) the initial state with entangled qubits
β and β′, (b) back transfer of the qubit β, (c) measurement of the pair αβ, (d) forward transfer of 2 classical bits
with the measurement results, and (e) the final state, with the state of the qubit β′ mirroring the initial state of
the qubit α.
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measurement places the pair αβ definitely into the corresponding state, the remaining
Bob’s bit β′ is now definitely in the unentangled single-qubit state that is represented
by the corresponding parentheses in Eq. (8.180b). Note that each of these
parentheses contains both coefficients a0,1, i.e. the whole information about the
initial state that the qubit α had initially. If Bob likes, he may now use appropriate
single-qubit operations, similar to those discussed earlier in this section, to move his
qubit β′ into the state exactly similar to the initial state of qubit α. (This fact does not
violate the no-cloning theorem (8.167), because the measurement has already
changed the state of α.) This is of course a ‘teleportation’ only in a very special
sense of this term, but a good example of the importance of qubit entanglement’s
preservation at their spatial transfer97.

Returning for just a minute to quantum cryptography: since its most common
quantum key distribution protocols98 require just a few simple quantum gates,
whose experimental implementation is not a large technological challenge, the main
focus of the current effort is on decreasing the single-photon dephasing in long
electromagnetic-wave transmission channels99, with sufficiently high qubit transfer
fidelity. The recent progress was rather impressive, with demonstrated transfer of
entangled qubits over landlines longer than 100 km,100 and over at least one satellite-
based line longer than 1000 km,101 and also the whole quantum key distribution over
a comparable distance, though as yet at a very low rate102. Let me hope that if not
the author of these notes, then their readers will see this technology used in practical
secure telecommunication systems.

8.6 Problems

Problem 8.1. Prove that Eq. (8.30) indeed yields Eg
(1) = (5/4)EH.

Problem 8.2. For a diluted gas of helium atoms in their ground state, with n atoms
per unit volume, calculate its:

(i) electric susceptibility χe, and
(ii) magnetic susceptibility χm,

and compare the results.

Hint: You may use the model solution of problems 6.8 and 6.14, and the results of
the variational description of the helium atom’s ground state in section 8.2.

97 For this course, this is also a good primer for the forthcoming discussion of the EPR paradox and the Bell’s
inequalities in chapter 10.
98 Two of them are the BB84 suggested in 1984 by C Bennett and G Brassard, and the EPRBE suggested in
1991 by A Ekert. For details, see, e.g. either section 12.6 in the repeatedly cited monograph by Nielsen and
Chuang, or the review [28].
99 For their quantitative discussion see, e.g. Part EM section 7.8.
100 See, e.g. [29], and references therein.
101 [30].
102 [31].
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Problem 8.3. Calculate the expectation values of the following observables: s1 · s2,
S2 ≡ (s1 + s2)

2 and Sz ≡ s1z + s2z, for the singlet and triplet states of the system of two
spins-½, defined by Eqs. (8.18) and (8.21), directly, without using the general rule
(8.48) of spin addition. Compare the results with those for the system of two classical
vectors of magnitude ℏ/2 each.

Problem 8.4. Discuss the factors ±1/√2 that participate in Eqs. (8.18) and (8.20) for
the entangled states of the system of two spins-½, in terms of Clebsh–Gordan
coefficients similar to those discussed in section 5.7.

Problem 8.5.* Use the perturbation theory to calculate the contribution into the so-
called hyperfine splitting of the ground energy of the hydrogen atom103, due to the
interaction between spins of the nucleus (proton) and the electron.

Hint: The proton’s magnetic moment operator is described by the same Eq. (4.115)
as the electron, but with a positive gyromagnetic factor γp = gpe/2mp ≈ 2.675 × 108

s−1 T−1, whose magnitude is much smaller than that of the electron (∣γe∣ ≈ 1.761 ×
1011 s−1 T−1), due to the much higher mass, mp ≈ 1.673 × 10−27 kg ≈ 1,835 me. (The
g-factor of the proton is also different, gp ≈ 5.586.104)

Problem 8.6. In the simple case of just two similar spin-interacting particles,
distinguishable by their spatial location, the famous Heisenberg model of ferromag-
netism105 is reduced to the following Hamiltonian:

BBγˆ ˆ ˆ ˆˆ = − ⋅ − ⋅ +H J s s s s( ),1 2 1 2

where J is the spin interaction constant, γ is the gyromagnetic ratio of each particle,
and BB is the external magnetic field. Find the stationary states and eigenenergies of
this system for spin-½ particles.

Problem 8.7. Two particles, both with spin-½, but different gyromagnetic ratios γ1
and γ2, are placed into external magnetic field BB. In addition, their spins interact as
in the Heisenberg model:

ˆ ˆˆ = − ⋅H J s s .int 1 2

Find the eigenstates and eigenenergies of the system106.

103 This effect was discovered experimentally by A Michelson in 1881, and explained theoretically by W Pauli
in 1924.
104 The anomalously large value of the proton’s g-factor results from the composite quark–gluon structure of
this particle. (An exact calculation of gp remains a challenge for quantum chromodynamics.)
105 It was suggested in 1926, independently by W Heisenberg and P Dirac. A discussion of temperature effects
on this and other similar systems (especially the Ising model of ferromagnetism) may be found in Part SM
chapter 4.
106 For similar particles (in particular, with γ1 = γ2) the problem is evidently reduced to the previous one.
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Problem 8.8. Two similar spin-½ particles, with the gyromagnetic ratio γ, localized
at two points separated by distance a, interact via the field of their magnetic dipole
moments. Calculate the spin eigenstates and eigenvalues of the system.

Problem 8.9. Consider the permutation of two identical particles, each of spin s.
How many different symmetric and antisymmetric spin states can the system have?

Problem 8.10. For a system of two identical particles with s = 1:

(i) List all possible spin states in the uncoupled-representation basis.
(ii) List all possible pairs {S, MS} of the quantum numbers describing the states of

the coupled-representation basis—see Eq. (8.48).
(iii) Which of the {S, MS} pairs describe the states symmetric, and which the states

antisymmetric, with respect to the particle permutation?

Problem 8.11. Represent the operators of the total kinetic energy and the total
orbital angular momentum of a system of two particles, with masses m1 and m2, as
combinations of terms describing the center-of-mass motion and the relative motion.
Use the results to calculate the energy spectrum of the so-called positronium—a
metastable ‘atom’107 consisting of one electron and its positively charged antipar-
ticle, the positron.

Problem 8.12. Two particles with similar masses m and charges q are free to move
along a round, plane ring of radius R. In the limit of strong Coulomb interaction of
the particles, find the lowest eigenenergies of the system, and sketch the system of its
energy levels. Discuss possible effects of particle indistinguishability.

Problem 8.13. Low-energy spectra of many diatomic molecules may be well
described modeling the molecule as a system of two particles connected with a light
and elastic, but very stiff spring. Calculate the energy spectrum of a molecule in this
approximation. Discuss possible effects of nuclear spins on the spectra of so-called
homonuclear molecules, formed by two similar atoms.

Problem 8.14. Two indistinguishable spin-½ particles are attracting each other at
contact:

W Wδ= − − >U x x x x( , ) ( ), with 0,1 2 1 2

but are otherwise free to move along the x-axis. Find the energy and the wave-
function of the ground state of the system.

Problem 8.15. Calculate the energy spectrum of the system of two identical spin-½
particles, moving along the x-axis, which is described by the following Hamiltonian:

107 Its lifetime (either 0.124 ns or 138 ns, depending on the parallel or antiparallel configuration of the
components spins), is limited by the weak interaction of its components, which causes their annihilation with
the emission of several gamma-ray photons.
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and the degeneracy of each energy level.

Problem 8.16.* Two indistinguishable spin-½ particles are confined to move around
a circle of radius R, and interact only at a very short arc distance l = Rφ ≡ R(φ1 − φ2)
between them, so that the interaction potential U may be well approximated with a
delta-function of φ. Find the ground state and its energy, for the following two cases:

(i) the ‘orbital’ (spin-independent) repulsion: W δ φˆ =U ( ),
(ii) the spin–spin interaction: W δ φˆ ˆˆ = − ⋅U s s ( )1 2 ,

both with constantW > 0. Analyze the trends of your results in the limitsW → 0
andW → ∞.

Problem 8.17. Two particles of mass M, separated by two much lighter particles of
mass m ≪ M, are placed on a ring of radius R—see figure below. The particles
strongly repulse at contact, but otherwise each of them is free to move along the ring.
Calculate the lower part of the energy spectrum of the system.

Problem 8.18. N indistinguishable spin-½ particles move in a spherically-symmetric
quadratic potential U(r) = mω0

2r2/2. Neglecting the direct interaction of the
particles, find the ground-state energy of the system.

Problem 8.19. Use the Hund rules to find the values of the quantum numbers L, S,
and J in the ground states of the atoms of carbon and nitrogen. Write down the
Russell–Saunders symbols for these states.

Problem 8.20. N ≫ 1 indistinguishable, non-interacting quantum particles are
placed in a hard-wall, rectangular box with sides ax, ay, and az. Calculate the
ground-state energy of the system, and the average forces it exerts on each face of the
box. Can we characterize the forces by certain pressureP ?

Hint: Consider separately the cases of bosons and fermions.

Problem 8.21.* Explore the Thomas–Fermi model108 of a heavy atom, with the
nuclear charge Q = Ze ≫ e, in which the interaction between electrons is limited to
their contribution to the common electrostatic potential ϕ(r). In particular, derive

108 It was suggested in 1927, independently, by L Thomas and E Fermi.
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the ordinary differential equation obeyed by the radial distribution of the potential,
and use it to estimate the effective radius of the atom.

Problem 8.22.* Use the Thomas–Fermi model, explored in the previous problem, to
calculate the total binding energy of a heavy atom. Compare the result with that for
the simpler model, in which the Coulomb electron–electron interaction is completely
ignored.

Problem 8.23. A system of three similar but distinguishable spin-½ particles is
described by the Heisenberg Hamiltonian (cf. problems 8.6 and 8.7):

ˆ ˆ ˆ ˆ ˆ ˆˆ = − ⋅ + ⋅ + ⋅H J s s s s s s( ),1 2 2 3 3 1

where J is the spin interaction constant. Find the stationary states and eigenenergies
of this system, and give an interpretation of your results.

Problem 8.24. For a system of three distinguishable spins-½, find the common
eigenstates and eigenvalues of the operators Ŝz and Ŝ

2, where

ˆ ˆ ˆ ˆ≡ + +S s s s1 2 3

is the vector operator of the total spin of the system. Do the corresponding quantum
numbers S and MS obey Eqs. (8.48)?

Problem 8.25. Explore basic properties of the Heisenberg model (which was the
subject of problems 8.6, 8.7, and 8.23), for a 1D chain of N spins-½:

BB∑ ∑γˆ ˆ ˆˆ = − ⋅ − ⋅ >
′

′H J Js s s , with 0,
j j j{ , }

j j j

where the summation is over allN spins, with the symbol {j, j′} meaning that the first
sum is only over the adjacent spin pairs. In particular, find the ground state of the
system and its lowest excited states in the absence of external magnetic field BB, and
also the dependence of their energies on the field.

Hint: For the sake of simplicity, you may assume that the first sum includes the term
ˆ ˆ⋅s sN 1 as well. (Physically, this means that the chain is bent into a closed loop109.)

Problem 8.26. Compose the simplest model Hamiltonians, in terms of the second
quantization formalism, for systems of indistinguishable particles moving in the
following systems:

(i) two weakly coupled potential wells, with on-site particle-pair interactions
(giving additional energy J per each pair of particles in the same potential
well), and

109Note that for dissipative spin systems, differences between low-energy excitations of open-end and closed-
end 1D chains may be substantial even in the limit N → ∞—see, e.g. Part SM section 4.5. However, for our
Hamiltonian (and hence dissipation-free) system, the differences are relatively small.
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(ii) a periodic 1D potential, with the same particle-pair interactions, in the tight-
binding limit.

Problem 8.27. For each of the Hamiltonians composed in the previous problem,
derive the Heisenberg equations of motion for particle creation operators, for

(i) bosons, and
(ii) fermions.

Problem 8.28. Express the ket-vectors of all possible Dirac states for the system of
three indistinguishable

(i) bosons, and
(ii) fermions,

via those of their single-particle states β, β′, and β″ they occupy.

Problem 8.29. Explain why the general perturbative result (8.126), when applied to
the 4He atom, gives the correct110 expression (8.29) for the ground singlet state, and
correct Eqs. (8.39)–(8.42) (with the minus sign in the first of these relations) for the
excited triplet states, but cannot describe these results, with the plus sign in
Eq. (8.39), for the excited singlet state.

Problem 8.30. For a system of two distinct qubits (i.e. two-level systems), introduce
a reasonable uncoupled-representation z-basis, and find in this basis the 4 × 4 matrix
of the operator that swaps their states.

Problem 8.31. Find a time-independent Hamiltonian that may cause the qubit
evolution described by Eqs. (8.155). Discuss the relation between your result and the
time-dependent Hamiltonian (6.86).
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Chapter 9

Introduction to relativistic quantum mechanics

This chapter gives a brief introduction to relativistic quantum mechanics. It starts
with a discussion of the basic elements of the quantum theory of the electromagnetic
field (usually called the quantum electrodynamics, QED), including the quantization
scheme, photon statistics, radiative atomic transitions, the spontaneous and stimu-
lated radiation, and the so-called cavity QED. We will see, in particular, that the
QED may be considered as the relativistic quantum theory of quasi-particles with
zero rest mass—photons. The second part of the chapter is a brief review of the
relativistic quantum theory of particles with non-zero rest mass, including the Dirac
theory of spin-½ particles. These theories mark the point of entry into a more
complete relativistic quantum theory—the quantum field theory—which is beyond
the scope of this course1.

9.1 Electromagnetic field quantization
Classical physics gives us2 the general relativistic relation between the momentum p
and energy E of a free particle with rest mass m, which may be simplified in two
limits—non-relativistic and ultra-relativistic:

⎧⎨⎩= + → + ≪
≫

E pc mc
mc p m p mc
pc p mc

[( ) ( ) ]
/2 , for ,

, for .
(9.1)2 2 2 1/2

2 2

In both limits, the transfer from classical to quantum mechanics is easier than in the
arbitrary case. Since all the previous part of this course was committed to the first,
non-relativistic limit, I will now jump to a brief discussion of the ultra-relativistic

1Note that some material of this chapter is frequently taught as a part of the quantum field theory. I will focus
on the most important results that may be obtained without starting the heavy engines of that theory.
2 See, e.g. Part EM chapter 9.
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limit p ≫ mc, for a particular but very important system—the electromagnetic field.
Since the excitations of this field, called photons, are currently believed to have zero
rest mass m,3 the ultra-relativistic relation E = pc is valid for any photon energy E,
and the quantization scheme is rather straightforward.

As usual, the quantization has to be based on the classical theory of the system, in
this case the Maxwell equations. As the simplest case, let us consider the electro-
magnetic field inside a free-space volume limited by ideal walls, which reflect
incident waves perfectly4. Inside the volume, the Maxwell equations may be reduced
to a simple wave equation5 for the electric field

EE
EE∇ − ∂
∂

=
c t
1

0, (9.2)2
2

2

2

and an absolutely similar equation for the magnetic field BB. We may look for the
general solution of Eq. (9.2) in the variable-separating form

EE ∑=t p tr e r( , ) ( ) ( ). (9.3)
j

j j

Physically, each term of this sum is a standing wave whose spatial distribution and
polarization (‘mode’) is described by the vector function ej(r), and the temporal
dynamics, by the function pj(t). Plugging an arbitrary term of this sum into Eq. (9.2),
and separating the variables exactly as we did, for example, in the Schrödinger
equation in section 1.5, we get

∇
=

̈
= ≡ −

c

p

p
k

e

e
1

const , (9.4)
j

j

j

j
j

2

2
2

so that the spatial distribution of the mode satisfies the 3D Helmholtz equation:

∇ + =ke e 0. (9.5)j j j
2 2

The set of solutions of this equation, with appropriate boundary conditions,
determines the set of the functions ej, and simultaneously the spectrum of wave
number moduli kj. The latter values determine the mode eigenfrequencies, following
from Eq. (9.4):

ω ω̈ + = ≡p p k c0, with . (9.6)j j j j j
2

There is a big philosophical difference between the quantum-mechanical
approach to Eqs. (9.5) and (9.6), despite their single origin (9.4). The first

3 By now this fact has been verified experimentally with an accuracy of at least ∼10−22 me—see [1].
4 In the case of finite energy absorption in the walls, or in the wave propagation media (say, described by
complex constants ε and μ), the system is not energy-conserving, i.e. interacts with the dissipative environment.
Specific cases of such interaction will be considered in sections 9.2 and 9.3 below.
5 See, e.g. Part EM Eq. (7.3), for the particular case ε = ε0, μ = μ0, so that v2 ≡ 1/εμ = 1/ε0μ0 ≡ c2.

Quantum Mechanics: Lecture notes

9-2



(Helmholtz) equation may be rather difficult to solve in realistic geometries6, but it
remains intact in the basic quantum electrodynamics, with the scalar components of
vector functions ej(r) still treated (at each point r) as c-numbers. In contrast, the
classical Eq. (9.6) is readily solvable (giving sinusoidal oscillations with frequency
ωj), but this is exactly where we can make a transfer to quantum mechanics, because
we already know how to quantize a mechanical 1D harmonic oscillator, which in
classics obeys the same equation.

As usual, we need to start with the appropriate Hamiltonian corresponding to the
classical Hamiltonian function H of the proper set of generalized coordinates and
momenta. The electromagnetic field’s Hamiltonian function (which in this case
coincides with the field’s energy) is7

⎛
⎝⎜

⎞
⎠⎟

E B∫ ε
μ

= +H d r
2 2

. (9.7)3 0
2 2

0

Let us represent the magnetic field in a form similar to Eq. (9.3),8

BB ∑ω= −t q tr b r( , ) ( ) ( ). (9.8)
j

j j j

Since, according to the Maxwell equations, in our case the magnetic field satisfies the
equation similar to Eq. (9.2), the time-dependent amplitude qj of each of its modes
obeys the equation similar to Eq. (9.6), i.e. in the classical theory also changes in
time sinusoidally, with the same frequency ωj. Plugging Eqs. (9.3) and (9.8) into Eq.
(9.7), we may recast it as

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∫ ∫∑ ε

ω

μ
= +H

p
e d r

q
b d rr r

2
( )

2
1

( ) . (9.9)
j

j
j

j j
j

2

0
2 3

2 2

0

2 3

Since the distribution of constant factors between two multiplication operands in
each term of Eq. (9.3) is arbitrary, we may fix it by requiring the first integral in
Eq. (9.9) to equal 1. It is straightforward to check that according to the Maxwell
equations, which give a specific relation between vectors EE and BB,9 this normal-
ization makes the second integral in Eq. (9.9) equal 1 as well, and Eq. (9.9) becomes

∑
ω

= = +H H H
p q

,
2 2

. (9.10)
j

j j
j j j
2 2 2

6 See, e.g. various problems discussed in Part EM chapter 7, especially in section 7.9.
7 See, e.g. Part EM section 9.8, in particular, Eq. (9.225). Here I am using SI units, with ε0μ0 ≡ c−2; in the
Gaussian units, the coefficients ε0 and μ0 disappear, but there is an additional common factor 1/4π in
the equation for energy. However, if we modify the normalization conditions (see below) accordingly, all the
subsequent results, starting from Eq. (9.10), look similar in any system of units.
8Here I am using letter qj, instead of xj, for the generalized coordinate of the field oscillator, in order to
emphasize the difference between the former variable, and one of the Cartesian coordinates, i.e. one of
arguments of the c-number functions e and b.
9 See, e.g. Part EM Eq. (7.6).
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Now we can carry out the standard quantization procedure, namely declare Hj,
pj, and qj the quantum-mechanical operators related exactly as in Eq. (9.10),

ω
ˆ =

ˆ
+

ˆ
H

p q

2 2
. (9.11)

j
j j j
2 2 2

We see that this Hamiltonian coincides with that of a 1D harmonic oscillator with
the mass mj formally equal to 1,10 and the eigenfrequency equal to ωj. Next, in order
to use Eq. (9.11) in the general Eq. (4.199) for the time evolution of Heisenberg-
picture operators ˆ ˆp qandj j, we need to know the commutation relation between
these operators. For that, returning to the classical case, let us calculate the Poisson
bracket (4.204) for functions A = qj′ and B = pj″:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑≡

∂
∂

∂
∂

−
∂
∂

∂
∂′ ″

′ ″ ′ ″q p
q

p

p

q

q

q

p

p
a{ , } . (9.12 )

j
j j

j

j

j

j

j

j

j

j

Since in the classical Hamiltonian mechanics, all generalized coordinates qj and the
corresponding generalized momenta pj have to be considered as independent
arguments of H, only one term (with j = j′ = j″) in only one of the sums (9.12)
(namely, with j′ = j″), gives a nonvanishing value (−1), so that

δ= −′ ″ ′ ″q p b{ , } . (9.12 )j j j j

Hence, according to the general quantization rule (4.205), the commutation relation
of the operators corresponding to qj′ and pj″ is

δˆ ˆ = ℏ′ ″ ′ ″q p i[ , ] , (9.13)j j j j

i.e. is exactly the same as for the usual Cartesian components of the radius-vector
and momentum of a mechanical particle—see Eq. (2.14).

As the reader already knows, Eqs. (9.11) and (9.13) open for us several alternative
ways to proceed:

(i) Use the Schrödinger-picture wave mechanics based on wavefunctions Ψj(qj, t).
As we know from section 2.9, this way is inconvenient for most tasks, because
eigenfunctions of the harmonic oscillator are rather clumsy.

(ii) A substantially better way (for the harmonic oscillator case) is to write the
equations of time evolution of the operators q̂ t( )j and p̂ t( )j in the Heisenberg-picture
of quantum dynamics.

(iii) An even more convenient approach is to use equations similar to Eqs. (5.65)
to decompose the Heisenberg operators q̂ t( )j and p̂ t( )j into the creation–annihilation

operators ˆ †a t( )j and â t( )j , and work with these operators.

10With different normalizations of the functions ej(r) and bj(r), we could readily arrange any value of mj, and
the choice corresponding to mj = 1 is the best one just for the notation simplicity.
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In this chapter, I will mostly use the last route. Replacing m with mj ≡ 1, and ω0

with ωj, the last forms of Eqs. (5.65) become

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

ω
ω

ω
ω

ˆ =
ℏ

ˆ +
ˆ

ˆ =
ℏ

ˆ −
ˆ†a q i

p
a q i

p

2
,

2
, (9.14)j

j
j

j

j
j

j
j

j

j

1/2 1/2

and due to Eq. (9.13), the creation–annihilation operators obey the commutation
similar to Eq. (5.68),

⎡⎣ ⎤⎦ δˆ ˆ = ˆ′
†

′a a I, . (9.15)j j jj

As a result, according to Eqs. (9.3) and (9.8), the quantum-mechanical operators
corresponding to the electric and magnetic fields are the sums over all field
oscillators:

⎛
⎝⎜

⎞
⎠⎟EE ∑ ωˆ =

ℏ
ˆ − ˆ†t i a a ar e r( , )

2
( ) ( ) , (9.16 )

j

j
j j j

1/2

⎛
⎝⎜

⎞
⎠⎟BB ∑ ωˆ =

ℏ
ˆ + ˆ†t a a br b r( , )

2
( ) ( ), (9.16 )

j

j
j j j

1/2

and Eq. (9.11) for the jth mode’s Hamiltonian becomes

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ω ωˆ = ℏ ˆ ˆ + ˆ = ℏ ˆ + ˆ ˆ ≡ ˆ ˆ† †H a a I n I n a a

1
2

1
2

, with , (9.17)j j j j j j j j j

absolutely similar to Eq. (5.72) for a mechanical oscillator.
Now comes a very important conceptual step. From section 5.4 we know that the

eigenstates (Fock states) nj of the Hamiltonian (9.17) have energies

⎛
⎝⎜

⎞
⎠⎟ω= ℏ + = …E n n

1
2

, 0, 1, 2, (9.18)j j j j

and, according to Eq. (5.89), the operators ˆ †a j and âj act on the eigenkets of these
partial states as

ˆ ∣ 〉 = ∣ − 〉 ˆ ∣ 〉 = + ∣ + 〉†a n n n a n n n( ) 1 , ( 1) 1 , (9.19)j j j j j j j j
1/2 1/2

regardless of the quantum states of other modes. These rules coincide with the
definitions (8.64) and (8.68) of bosonic creation–annihilation operators, and hence
their action may be considered as the creation/annihilation of certain bosons. Such a
‘particle’ (actually, an excitation, with energy ℏωj, of an electromagnetic field
oscillator) is exactly what is, strictly speaking, called a photon. Note immediately
that according to Eq. (9.16), such an excitation does not change the spatial
distribution of the jth mode of the field. So, such a ‘global’ photon is an excitation
created simultaneously at all points of the field confinement region.
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If this picture is too contrary to the intuitive image of a particle, please recall that
in chapter 2, we discussed a similar situation with the eigenstates of the non-
relativistic Schrödinger equation of a free non-relativistic particle: they represent
sinusoidal de Broglie waves existing simultaneously in all points of the particle
confinement region. The (partial :-) reconciliation with the classical picture of a
moving particle might be obtained by using the linear superposition principle to
assemble a quasi-localized wave packet, as a group of sinusoidal waves with close
wave numbers. Very similarly, we may form a similar wave packet using a linear
superposition of the ‘global’ photons with close values of kj (and hence ωj), to form a
quasi-localized photon. An additional simplification here is that the dispersion
relation for electromagnetic waves (at least in free space) is linear:

ω ω∂
∂

= =
∂
∂

=
k

c
k

const, i. e. 0, (9.20)
j

j

j

j

2

2

so that, according to Eq. (2.39a), the electromagnetic wave packets (i.e. space-
localized photons) do not spread out during their propagation. Note also that due to
the fundamental classical relations p = nE/c for the linear momentum of the
traveling electromagnetic wave packet of energy E, propagating along the direction
n ≡ k/k, and L = ±nE/ωj for its angular momentum11, such a photon may be
prescribed the linear momentum p = nℏωj/c ≡ ℏk and the angular momentum L =
±nℏ, with the sign depending on the direction of its circular polarization (‘helicity’).

This electromagnetic field quantization scheme should look very straightforward,
but it raises an important conceptual issue of the ground-state energy. Indeed,
Eq. (9.18) implies that the total ground-state (i.e. the lowest) energy of the field is

∑ ∑ ω
= =

ℏ
( )E E

2
. (9.21)

j j
j

j
g g

Since for any realistic model of the field-confining volume, either infinite or not, the
density of electromagnetic field modes only grows with frequency12, this sum
diverges on the upper limit, leading to infinite ground-state energy per unit volume.
This infinite-energy paradox cannot be dismissed by declaring the zero-point energy
of field oscillators unobservable, because this would contradict numerous exper-
imental observations—historically, starting perhaps from the famous Casimir
effect13. The conceptually simplest implementation of this effect involves two
parallel, well conducting plates of area A, separated by a vacuum gap of thickness
t ≪ A1/2 (figure 9.1).

11 See, e.g. Part EM sections 7.7 and 9.8.
12 See, e.g. Eq. (1.1), which is similar to Eq. (1.90) for the de Broglie waves, derived in section 1.7.
13 This effect was predicted in 1948 by H Casimir and D Polder, and confirmed semi-quantitatively in
experiments by M Sparnaay [2]. After this, and several other experiments, a decisive error bar reduction (to
about ∼5%), providing a quantitative confirmation of the Casimir formula (9.23), was achieved by S
Lamoreaux [3] and by U Mohideen and A Roy [4]. Note also that there are other experimental confirmations
of the reality of the ground-state electromagnetic field, including, for example, the experiments by R Koch et al
already discussed in section 7.5, and the recent spectacular direct observations by C Riek et al [5].
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Rather counter-intuitively, the plates attract each other with a force F, propor-
tional to the area A and rapidly increasing with the decrease of t, even in the absence
of any explicit electromagnetic field sources. The effect’s explanation is that the
energy of each the electromagnetic field mode, including its ground-state energy,
exerts average pressure,

P〈 〉 = −
∂
∂
E

V
, (9.22)j

j

on the walls constraining it to volume V. While the field’s pressure on the external
surfaces on the plates is due to the contributions (9.22) of all free-space modes, with
arbitrary values of kz (the z-component of the wave vector kj), in the gap between the
plates the spectrum of kz is limited to the multiples of π/t, so that the pressure on the
internal surfaces is lower. This is why the net force exerted on the plates may be
calculated as the sum of the contributions (9.22) from all ‘missing’ low-frequency
modes in the gap, with the minus sign. In the simplest model when the plates are
made of an ideal conductor, which provides boundary conditions E B= =τ 0n on
their surfaces14, such a calculation is rather straightforward (and is hence left for the
reader’s exercise), and its result is

π= − ℏ
F

A c
t240

. (9.23)
2

4

Note that for this calculation, the high-frequency divergence of Eq. (9.21) at high
frequencies is not important, because it participates in the forces exerted on all
surfaces of each plate, and hence cancels out from the net pressure. In this way, the
Casimir effect not only gives a confirmation of Eq. (9.21), but also teaches us an
important lesson how to deal with the divergences of such sums at ωj → ∞. The
lesson is: just get accustomed to the idea that the divergence exists, and ignore this

Figure 9.1. The simplest geometry of the Casimir effect manifestation.

14 For realistic conductors, the reduction of t below ∼1 μm causes significant deviations from this simple model,
and hence from Eq. (9.23). The reason is that for gaps so narrow, the depth of field penetration into the metal
(see, e.g. Part EM section 6.2), at the important frequencies ω ∼ c/t, becomes comparable with t, and an
adequate theory of the Casimir effect has to involve a certain model of the penetration. (It is curious that in-
depth analyses of this problem, pioneered in 1956 by E Lifshitz, have revealed a deep relation between the
Casimir effect and the London dispersion force which was the subject of problems 3.16, 5.15, and 6.18—for a
review see, e.g. either [6], or [7].) Recent experiments in the 100 nm—2 μm range of t, with an accuracy better
than 1%, have allowed not only to observe the effects of field penetration on the Casimir force, but even to
make a selection between some approximate models of the penetration—see [8].
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fact while you can, i.e. if the final result you are interested in is finite. However, for
some more complex problems of quantum electrodynamics (and quantum theory of
any other fields), this simplest approach becomes impossible, and then more
complex, renormalization techniques become necessary. For their study, I have to
refer the reader to a quantum field theory course—see the literature cited in the end
of this chapter.

9.2 Photon absorption and counting
As a matter of principle, the Casimir effect may be used to measure quantum effects
in not only the free-space electromagnetic field, but also that the field arriving from
active sources—lasers, etc. However, usually such studies may be done by simpler
detectors, in which the absorption of a photon by a single atom leads to its
ionization. This ionization, i.e. the emission of a free electron, triggers an avalanche
reaction (e.g. an electric discharge in a Geiger-type counter), which may be readily
registered using appropriate electronic circuitry. In order to discuss the statistics of
such photon counts, it is sufficient to consider the field’s interaction with just one,
‘trigger’ atom.

Here we are essentially dealing with an open, irreversible system, with the trigger
atom, with the continuous spectrum of its final, ionized states, paying the role of an
environment for the quantized electromagnetic field. Such systems were discussed in
detail in chapter 7; however, for our current particular problem that heavy
machinery is not necessary. Indeed, in section 6.6 we have discussed a simpler
approach to the analysis of such problems, based on the Golden Rule of quantum
mechanics—see figure 6.12 and Eq. (6.149). In our current case, we may associate
the system a in this scheme with the electromagnetic field, and system b with the
trigger atom. The atom’s size is typically much smaller that the radiation wavelength
λj = 2π/kj, so that the field–atom interaction may be adequately described in the
electric dipole approximation,

EE ˆˆ = − ˆ ⋅H d, (9.24)int

where d̂ is the dipole moment’s operator15. Hence we may associate this operator
with the operand B̂ in Eq. (6.145), while the electric field operator EÊ is associated
with the operand Â. Let us assume, for simplicity, that our field consists of only one
mode ej(r) of frequency ω.

16 Then we can keep only one term in the sum (9.16a), and
drop the index j, so that Eq. (6.149) for the transition from a certain discrete initial
state to the continuum of final states may be rewritten as

15As a reminder: Eq. (9.24), with the single-particle expression d = qr, has already been used several times in
this course—see, e.g. Eq. (6.29). However, now we have to account for the quantum nature of the
electromagnetic field EE, so in Eq. (9.24) it is represented by the (vector) operator (9.16a), rather than a
c-number vector.
16 In a multimode field with no inter-mode coherence, the total counting rate may be calculated as the sum of
the partial rates of each mode—as will be done below for a certain case.
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E
π ρ

π ω ρ

ˆ

ˆ

Γ =
ℏ

ˆ ⋅

=
ℏ
ℏ ˆ − ˆ ⋅†

t t

a t a t e t

r d n

r d n

2
fin ( , ) ini fin ( ) ini

2
2

fin [ ( ) ( )] ( ) ini fin ( ) ini ,
(9.25)

e

e

2 2
a

2 2
a

where ne ≡ e(r)/e(r) is the local direction of the vector e(r), and the density ρa of the
continuous atomic states should be calculated at its final energy Efin = Eini + ℏω.

As a reminder, in the Heisenberg picture of quantum dynamics, the initial and
final states are time-independent, while the creation–annihilation operators are
functions of time. In the Golden Rule formula (9.25), as in any perturbative result,
this time dependence has to be calculated ignoring the perturbation—in this case the
field–atom interaction. For the field’s creation–annihilation operators, this depend-
ence coincides with that of the usual 1D oscillator—see Eq. (5.141), in which ω0

should be, in our current notation, replaced with ω:

ˆ = ˆ ˆ = ˆω ω− † † +a t a e a t a e( ) (0) , ( ) (0) . (9.26)i t i t

Hence Eq. (9.25) becomes

πω

ρˆ
Γ = ˆ − ˆ

× ⋅

ω ω† −a e a e e

t
a

r

d n

fin [ (0) (0) ] ( ) ini

fin ( ) ini .
(9.27 )

i t i t

e

2

2
a

Now let us multiply the first bracket by exp{iωt}, and the second one by
exp{−iωt}:

πω

ρˆ
Γ = ˆ − ˆ

× ⋅

ω

ω

†

−

a e a e

t e
b

r

d n

fin [ (0) (0)] ( ) ini

fin ( ) ini .
(9.27 )

i t

e
i t

2 2

2
a

The motivation for this, mathematically trivial, step is that at resonant photon
absorption, only the annihilation operator gives a significant time-averaged con-
tribution to the first bracket matrix element. (As a reminder, the quantum-
mechanical Golden Rule for time-dependent perturbations is a result of averaging
over a time interval much larger than 1/ω—see section 6.6.) Similarly, according to
Eq. (4.199), the Heisenberg operator of the dipole moment, corresponding to the
increase of atom’s energy by ℏω, has only the Fourier components that differ from ω
only by ∼Γ ≪ ω, so that its time dependence virtually compensates the additional
factor in the second bracket of Eq. (9.27b), and this bracket is also frequency-
independent and has a substantial time average. Hence, in the first bracket we may
neglect the fast-oscillating term, whose average over time interval ∼1/Γ is very close
to zero17.

Now let us assume that we use the same detector, characterized by the same
matrix element of the quantum transition, i.e. the same second bracket in Eq. (9.27),
and the same final state density ρa, for measurement of various electromagnetic fields

17 This is essentially the same rotating wave approximation (RWA) which was already used in section 6.5 and
beyond—see, e.g. the transition from Eq. (6.90) to the first of Eqs. (6.94).
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—or just of the same field at different points r. Then we are only interested in the
behavior of the first, field-related bracket, and may write

Γ ∝ ˆ ≡ ˆ ˆ
≡ ˆ ˆ

*

† *

ae ae ae

a e ae

r r r
r r

fin ( ) ini fin ( ) ini fin ( ) ini

ini ( ) fin fin ( ) ini ,
(9.28)

2

where the creation–annihilation operators are assumed to be taken at t = 0, i.e. in the
Schrödinger picture, and the initial and final states are those of the field alone. As we
know, any 1D harmonic oscillator (and hence the electromagnetic field oscillator) has
infinitely many equidistant levels, so even if it initially was in a certain quantum state,
it may undergo several coherent transitions to different final Fock states. If we want to
calculate the total photon-absorption rate, we should sum the transition rates into all
final states. Then, since the vectors of these states form a full and orthonormal set in
the Hilbert space of the oscillator, we may use the closure relation (4.44) to get

∑Γ ∝ ˆ ˆ = ˆ ˆ

=

† * † *a e ae a a e e

n e

r r r r

r

ini ( ) fin fin ( ) ini ini ini ( ) ( )

( ) ,
(9.29)fin

ini
2

where, for a given field mode, 〈n〉ini is the expectation value of the operator ˆ ≡ ˆ ˆ†n a a
for the initial state of the electromagnetic field, not affected by the detector.

Let us apply Eq. (9.29) to several possible quantum states of the mode.

(i) First, as a sanity check, the ground initial state (n = 0) gives no photon
absorption at all. The interpretation is easy: the ground state field, cannot emit a
photon that would ionize an atom in the counter. Again, this does not mean that the
ground-state ‘motion’ is not observable (if you still think so, please review the
Casimir effect discussion in the last section), just that it cannot ionize the trigger
atom—because it does not have any spare energy for doing that.

(ii) All other coherent states (Fock, Glauber, squeezed, etc) of the field oscillator
give the same counting rate, provided that their 〈n〉 is the same. This result may be
less evident if we apply Eq. (9.29) to an interference of two light beams from the
same source—say, in the double-slit or the Bragg-scattering configurations. In this
case we may represent the spatial distribution of the field as a sum

= +e e er r r( ) ( ) ( ). (9.30)1 2

Here each term describes one possible wave path, so that the operator product in
Eq. (9.29) may be a rapidly changing function of the detector position. For this
configuration, our result (9.29) means that the interference pattern (and its contrast)
are independent of the particular state of the electromagnetic field’s mode.

(iii) Surprisingly, the last statement is also valid for a classical mixture of the
different eigenstates of the same field mode, for example for its thermal-equilibrium
state. Indeed, in this case we need to average Eq. (9.29) over the corresponding
classical ensemble, but it would only result in a different meaning of averaging n in
that equation; the field part describing the interference pattern is not affected.
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The last result may look a bit counter-intuitive, because common sense tells us
that the stochasticity associated with thermal equilibrium has to suppress the
interference pattern contrast. These expectations are (partly) justified, because a
typical thermal source of radiation produces many field modes j, rather than one
mode we have analyzed. These modes may have different wave numbers kj and
hence different field distribution functions ej(r), resulting in shifted interference
patterns. Their summation would indeed smear the interference, suppressing its
contrast.

So the use of a single photon detector is not a suitable way to distinguish different
quantum states of an electromagnetic field mode. This task, however, may be
achieved using the photon counting correlation technique shown in figure 9.2.18 In
this experiment, the counter rate correlation may be characterized by the so-called
second-order correlation function of the counting rates,

τ τ≡ 〈Γ Γ − 〉
〈Γ 〉〈Γ 〉

g
t t
t t

( )
( ) ( )
( ) ( )

, (9.31)(2) 1 2

1 2

where the averaging may be carried out either over many similar experiments, or
over time t, due to the ergodicity of the system (with a stationary field source). Using
the normalized correlation function (9.31) is very convenient, because the character-
istics of both detectors and the beam splitter (e.g. a semi-transparent mirror, see
figure 9.2) drop our from this fraction.

Very unexpectedly in the mid-1950s, Hanbury Brown and Twiss discovered that
the correlation function depends on time delay τ in the way shown schematically by
the solid line in figure 9.3. It is evident from Eq. (9.31) that if the counting events are
completely independent, g(2)(τ) should be equal 1—which is always the case in the
limit τ → ∞. Hence, the observed behavior at τ → 0 corresponds to a positive
correlation of detector counts at small time delays, i.e. to a higher probability of the

Figure 9.2. Photon counting correlation measurements. (The intensities of the split beams should be
comparable, but not necessarily equal.)

18 It was pioneered as early as in the mid-1950s (i.e. before the advent of lasers!), by R Hanbury Brown and R
Twiss. Their first experiments were also remarkable for the rather unusual light source—the star Sirius! (It was
a part of an attempt to improve astrophysics interferometry techniques.)
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nearly-simultaneous arrival of photons to both counters. This counter-intuitive
effect is called the photon bunching.

Let us use our simple single-mode model to analyze this experiment. Now the
elementary quantum process, characterized by the numerator of Eq. (9.31), is the
correlated, simultaneous ionization of two trigger atoms, at two spatial–temporal
points {r1, t} and (r2, t − τ), by the same field mode, so that we need to make the
following replacement in the first of Eqs. (9.25):

E E E τˆ → × ˆ ˆ −t t tr r r( , ) const ( , ) ( , ). (9.32)1 2

Repeating all the manipulations done above for the single-counter case, we get

τ τ τ〈Γ Γ − 〉 ∝ ˆ ˆ − ˆ − ˆ† † * *t t a t a t a t a t e e e er r r r( ) ( ) ini ( ) ( ) ( ) ( ) ini ( ) ( ) ( ) ( ). (9.33)1 2 1 2 1 2

Plugging this expression, as well as Eq. (9.29) for single-counter rates, into Eq. (9.31),
we see that the field distribution factors (as well as the detector-specific brackets and
the density of states ρa) cancel, giving a very simple final expression:

τ τ τ= 〈 ˆ ˆ − ˆ − ˆ 〉
〈 ˆ ˆ 〉

† †

†g
a t a t a t a t

a t a t
( )

( ) ( ) ( ) ( )
( ) ( )

, (9.34)(2)
2

where the averaging should be carried out, as before, over the initial state of the field.
Still, the calculation of this expression for arbitrary τ may be quite complex,

because the relaxation of the correlation function to the asymptotic value g(2)(∞) in
many cases is due to the interaction of the light source with the environment, and
hence requires the open-system techniques that were discussed in chapter 7.
However, the zero-delay value g(2)(0) may be calculated in a straightforward way,
because the time arguments of all operators are equal, so that we may write

= 〈 ˆ ˆ ˆ ˆ〉
〈 ˆ ˆ〉

† †

†g
a a aa
a a

(0) . (9.35)(2)
2

Let us evaluate this ratio for the simplest states of the field.

(i) The nth Fock state. In this case, it is convenient to act with the annihilation
operators upon the ket-vectors, and by the creation operators, upon the bra-vectors,
using Eqs. (9.19):

Figure 9.3. The photon bunching (solid line) and antibunching for various n (dashed lines). The lines approach
level g(2) = 1 at τ → ∞ (on the time scale depending on the light source).

Quantum Mechanics: Lecture notes

9-12



=
ˆ ˆ ˆ ˆ
ˆ ˆ

= − − − −
− −

= − = −

† †

†g
n a a aa n
n a a n

n n n n n n
n n n n

n n
n n

(0)
2 [ ( 1)] [ ( 1)] 2

1 1
( 1)

1
1

.

(9.36)

(2)
2

1/2 1/2

1/2 1/2 2

2

We see that the correlation function at small delays is suppressed rather than
enhanced—see the dashed lines in figure 9.3. This photon antibunching effect has a
very simple handwaving explanation: a single photon emitted by the wave source
may be absorbed by just one of the detectors. For the initial state n = 1, this is the
only option, and it is very natural that Eq. (9.36) predicts no simultaneous counts at
τ = 0. Despite this theoretical simplicity, reliable observations of the antibunching
have not been carried out until 1977,19 due to the experimental difficulty of driving
electromagnetic field oscillators into their Fock states—see section 9.4 below.

(ii) The Glauber state α. A similar procedure, but now using Eq. (5.124) and its
Hermitian conjugate, α α α〈 ∣ ˆ = 〈 ∣† *a , yields

α α
α α

α α αα
α α

=
ˆ ˆ ˆ ˆ
ˆ ˆ

= =
† †

†

* *

*
g

a a aa
a a

(0)
( )

1, (9.37)(2)
2 2

for any parameter α. We see that the result is a very different result from the Fock
states, unless in the latter case n → ∞. (We know that the Fock and Glauber
properties should also coincide for the ground state, but at that state the correlation
function’s value is uncertain, because there are no photon counts at all.)

(iii) Classical mixture. From chapter 7, we know that such statistical ensembles
cannot be described by single state vectors, and require the density matrix w for their
description. Here, we may combine Eqs. (9.35) and (7.5) to write

=
ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ

† †

†g
wa a aa
wa a

(0)
Tr( )
[Tr( )]

. (9.38)(2)
2

Spelling out this expression is easy for the field in thermal equilibrium at some
temperature T, because then the density matrix is diagonal in the basis of Fock states
n—see Eqs. (7.24):

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭∑

δ λ

λ
λ ω= = − ≡ ≡ − ℏ

=

∞′ ′w W W
Z

E
k T k T

,
1

exp , where exp .
(9.39)

n 0

nn n nn n
n

n

nB B

So, for the operators in the numerator and denominator of Eq. (9.38) we also need just
the diagonal terms of the operator products, which have already been calculated—see
Eq. (9.36). As a result, we get

19 By H Kimble [9]. For a detailed review of phonon antibunching, see, e.g. [10].
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∞

=
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n

n

n n

n

0

0

0 0

0

n

n

n n

n

(2)
2 2

One of the three series involved in this expression is just the geometric progression,

∑λ
λ

=
−=

∞ 1
1

, (9.41)
n 0

n

and the remaining two may be readily calculated by its differentiation over the
parameter λ:
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=

∞
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=

∞

−

−

n n
d
d

d
d

n n n n
d
d

d
d

1
1 (1 )

,
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,
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0 0 0
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2
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2
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2
2

2

2

3

and for the correlation function we get an extremely simple result independent of the
parameter λ and hence of temperature:

λ λ λ
λ λ

= − −
−

≡g (0)
[2 /(1 ) ] [1/(1 )]

[ /(1 ) ]
2. (9.43)(2)

2 3

2 2

This is the exactly the photon bunching effect first observed by Hanbury Brown
and Twiss (figure 9.3). We see that in contrast to antibunching, this is an essentially
classical (statistical) effect. Indeed, Eq. (9.43) allows a purely classical derivation. In
the classical theory, the counting rate (of a single counter) is proportional to the
wave intensity I, so that Eq. (9.31) with τ = 0 is reduced to

= 〈 〉 ∝ ∝ ω ω
*g

I
I

I E t E E(0) , with ( ) . (9.44)(2)
2

2
2

For a sinusoidal field, the intensity is constant, and g(2)(0) = 1. (This is also evident
from Eq. (9.37), because the classical state may be considered as a Glauber state with
α → ∞.) On the other hand, if the intensity fluctuates (either in time, or from one
experiment to another), the averages in Eq. (9.44) should be calculated as

∫ ∫〈 〉 = = =
∞ ∞

I w I I dI w I dI k( ) , with ( ) 1, and 1, 2, (9.45)k k

0 0

where w(I) is the probability density. For the classical (Boltzmann) statistics, the probability
is an exponential function of the electromagnetic field energy, and hence its intensity:
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β= ∝β−w I Ce k T( ) , where 1/ , (9.46)I
B

so that Eqs. (9.45) yield:

⎧⎨⎩

∫
∫ ∫ ∫

β β β

β
β

ξ ξ ξ

β
β

− ≡ = =

= = − = −

=
=
=

∞

∞ ∞ ∞

C I dI C C

I w I I dI C I I dI d

k

k

exp{ } / 1, and hence ,

( ) exp{ }
1

exp{ }

1/ , for 1,

2/ , for 2.

(9.47)
k k k

k
k

0

0 0 0

2

Plugging these results into Eq. (9.44), we get =g (0) 2,(2) in complete agreement with
Eq. (9.43).20

9.3 Photon emission: spontaneous and stimulated
In our simple model of photon counting, considered in the last section, the trigger
atom in the counter absorbed a photon. Now let us have a look at the opposite
process of spontaneous emission of photons by an atom in an excited state, still using
the same electric-dipole approximation (9.24) for the atom-to-field interaction. For
this, we may still use the Golden Rule for the model depicted in figure 6.12, but now
the roles have changed: we have to associate the operator Â with the electric dipole
moment of the atom, while the operator B̂, with the electric field, and the continuous
spectrum of the system b represents the plurality of the electromagnetic field modes
into which the spontaneous radiation may happen. Since now the transition
increases the energy of the electromagnetic field, after the multiplication of the field
bracket in Eq. (9.27a) by exp{iωt}, we may keep only the photon creation operator
whose time evolution compensates this fast ‘rotation’. As a result, the Golden Rule
takes the following form:

πω ρˆΓ = ˆ ⋅†a d e rfin 0 fin ( ) ini , (9.48)s
2 2

f

where all operators and states are again time-independent (i.e. taken in the
Schrödinger picture), and ρf is now the density of final states of the electromagnetic
field—which in this problem plays the role of the atom’s environment. Here the
electromagnetic field oscillator has been assumed to be initially in the ground state—
the assumption that will be altered later in this section.

This relation, together with Eq. (9.19), shows that in order for the field’s matrix
element to be different from zero, the final state of the field has to be the first excited
Fock state, n = 1. (By the way, this is exactly the most practicable way of generating
an excited Fock state of a field oscillator.) With that, Eq. (9.48) yields

20 For some field states, including the squeezed ground states ζ discussed in the end of section 5.5, values g(2)(0)
may be even higher than 2—the so-called super-bunching. Analyses of two cases of such super-bunching are
offered for the reader’s exercise—see the problem list at the chapter’s end.
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πω ρ πω ρˆΓ = ⋅ ≡ d̂ed e r rfin ( ) ini fin ( ) ini , (9.49)ds
2

fin
2

fin

where the density ρfin of excited electromagnetic field states should be calculated at
the energy E = ℏω, and ed is the component of the vector e(r) along the electric
dipole’s direction21. The formula for the density was our first step in this course—see
Eq. (1.1).22 From it, we get

ρ ω
π

≡ =
ℏ

dN
dE

V
c

, (9.50)fin

2

2 3

where the bounding volume V should be large enough to ensure the spectrum’s
virtual continuity: V≫ λ3 = (2πc/ω)3. Because of that, in the normalization condition,
used in section 1 to simplify Eq. (9.9), we may consider e2(r) constant. Let us
represent this square as a sum of squares of the three Cartesian components of the
vector e(r): one of those, ed, aligned with the dipole direction; due to the space
isotropy we may write

≡ + + =⊥ ⊥e e e e e3 . (9.51)d d
2 2

1
2

2
2 2

As a result, the normalization condition yields

ε
=e

V
1

3
. (9.52)d

2

0

and Eq. (9.49) gives the famous (and very important) formula23

πε
ω

πε
ω

ˆ

ˆ ˆ

Γ =
ℏ

≡
ℏ

⋅ *

c

c

d

d d

1
4

4
3

fin ini

1
4

4
3

fin ini ini fin .
(9.53)

s
0

3

3

2

0

3

3

Leaving a comparison of this formula with the classical theory of radiation24, and
the exact evaluation of Γs for a particular transition in the hydrogen atom, for reader’s
exercises, let me just estimate its order of magnitude. Assuming that d ∼ erB ≡
eℏ2/me(e

2/4πε0) and ℏω ∼ EH ≡ me(e
2/4πε0)

2/ℏ2, and taking into account the definition
(6.62) of the fine structure constant α ≈ 1/137, we get

21Here the sum over all electromagnetic field modes j has been smuggled back. Since in the quasistationary
approximation, kja ≪ 1, which is necessary for the interaction representation by Eq. (9.24), the matrix elements in
Eq. (9.49) are virtually independent on kj, the summation is reduced to the calculation of the total ρf for all modes.
22Note the essential dependence of Eq. (9.50), and hence of Eq. (9.53) on the field geometry; all following
formulas of this section are strictly valid for the free 3D space only. If the same atom is placed into a high-Q
resonant cavity (see, e.g. Part EM 7.9), the rate of its photon emission is strongly suppressed at frequencies
between the cavity resonances (where ρf → 0)—see, e.g. the review [11]. On the other hand, the emission is
strongly (by a factor ∼ (λ3/V)Q, where V is cavity’s volume) enhanced at resonance frequencies—the so-called
Purcell effect, discovered by E Purcell already in the 1940s. For a brief discussion of this and other quantum
electrodynamic effects in cavities, see the next section.
23An equivalent expression was first obtained (from more formal arguments) in 1930 by V Weisskopf and
E Wigner, so that the whole calculation is sometimes referred to as the Weisskopf–Wigner theory.
24 See, e.g. Part EM section 8.2, in particular Eq. (8.29).
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≡ ∼ × −e
c4

3 10 . (9.54)
2

0

3
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This estimate shows that the emission lines at atomic transitions are typically very
sharp. With the present-day availability of high-speed electronics, it also makes
sense to evaluate the time scale τ = 1/Γ of the typical quantum transition: for a
typical optical frequency ω ∼ 3 × 1015 s−1, it is close to 1 ns. This is exactly the time
constant that determines the time-delay dependence of the photon counting statistics
of the spontaneously emitted radiation—see figure 9.3. Colloquially, this is the
temporal scale of the photon spontaneously emitted by an atom25.

Note, however, that the above estimate of τ is only valid for a transition with a
non-vanishing electric-dipole matrix element. If it equals zero, i.e. the transition does
not satisfy the selection rules26,—say, due to the initial and final state symmetry—it
is ‘forbidden’. The ‘forbidden’ transition may still take place due to a different,
smaller interaction (say, via a magnetic dipole field of the atom, or its quadrupole
electric field27), but takes much longer. In some cases the increase of τ is
rather dramatic—sometimes to hours! Such long-lasting radiation is called the
luminescence—or the fluorescence if the initial atom’s excitation was due to an
external radiation of a higher frequency, followed first by non-radiative transitions
down the energy level ladder.

Now let us consider a more general case when the electromagnetic field mode of
frequency ω is initially in an arbitrary Fock state n, and from it may either get energy
ℏω from the atomic system (photon emission) or, vice versa, give such energy back to
the atom (photon absorption). For the photon emission rate, an evident general-
ization of Eq. (9.48) gives

Γ
Γ
≡ Γ
Γ

=
ˆ
ˆ

→

→

†

†
a n

a
fin
1 0

, (9.55)ne

s

fin

0 1

2

2

where both brackets should be calculated in the Schrödinger picture, and Γs is the
spontaneous emission rate (9.48) of the same atomic system. According to the
second of Eqs. (9.19), at the photon emission, the final field state has to be the Fock
state with n′ = n + 1, and Eq. (9.55) yields

Γ = + Γn( 1) . (9.56)e s

Thus the initial field increases the photon emission rate; this effect is called the
stimulated emission of radiation. Note that the spontaneous emission may be

25 The scale cτ of the spatial extension of the corresponding wave packet is surprisingly macroscopic—in the
range of a few millimeters. Such ‘human’ size of the spontaneously emitted photons makes the usual optical
table, with its 1 cm-scale components, the key instrument for many optical experiments—see, e.g. figure 9.2.
26As was already discussed in section 5.6, for a single spinless particle moving in a spherically-symmetric
potential (e.g. a hydrogen-like atom), the orbital selection rules are simple: the only allowed electric-dipole
transitions are those with Δl ≡ lfin − lini = ±1 and Δm ≡ mfin − mini = 0 or ±1. The simplest example of the
transition that does not satisfy this rule, i.e. is ‘forbidden’, is that between the s-states (l = 0) with n = 2 and
n = 1; because of that, the lifetime of the lowest excited s-state of a hydrogen atom is as long as ∼0.15 s.
27 See, e.g. Part EM section 8.9.
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considered as a particular case of the stimulated emission for n = 0, and hence
interpreted as the emission stimulated by zero-point fluctuations of the electro-
magnetic field.

On the other hand, in accordance with the arguments of section 9.2,28 for the
description of radiation absorption, the photon creation operator has to be replaced
with the annihilation operator, giving the rate ratio

Γ
Γ
=

ˆ
ˆ†
a n

a
fin
1 0

. (9.57)a

s

2

2

According to this relation and the first of Eqs. (9.19), the final state of the field at the
photon absorption is the Fock state with n′ = n − 1, and Eq. (9.57) yields

Γ = Γn . (9.58)a s

The results (9.56) and (9.58) are usually formulated in terms of between the
Einstein coefficients A and B defined in the way shown in figure 9.4, where the two
energy levels are those of the atom, Γa is the rate of energy absorption from the
electromagnetic field, and Γe is that of the energy emission into the field. In this
notation, Eqs. (9.56) and (9.58) yield29

= =A B B , (9.59)21 21 12

because each of these coefficients equals the spontaneous emission rate Γs.
I cannot resist the temptation to use this point for a small detour—an alternative

derivation of the Bose–Einstein statistics for photons. Indeed, in the thermodynamic
equilibrium, the average probability flows between the levels 1 and 2 (see figure 9.4
again) should be equal30:

〈Γ 〉 = 〈Γ 〉W W , (9.60)2 e 1 a

where W1 and W2 are the probabilities for the atomic system to occupy the
corresponding levels, so that Eqs. (9.56) and (9.58) yield

Figure 9.4. The Einstein coefficients on the atomic quantum transition diagram—cf. figure 7.6.

28Note, however, a major difference between the rate Γ discussed in section 9.2, and Γa in Eq. (9.57). In our
current case, the atomic transition is still between two discrete energy levels (see figure 9.4 below), so that the
rate Γa is proportional to ρf, the density of final states of the electromagnetic field, i.e. the same density as in Eq.
(9.48) and beyond, while the rate (9.27) is proportional to ρa, the density of final (ionized) states of the ‘trigger’
atom, more exactly of its released electron.
29 This relation was conjectured, from very general arguments, by A Einstein as early as in 1916.
30 This is just a particular embodiment of the detailed balance equation (7.198).

Quantum Mechanics: Lecture notes

9-18



Γ + = Γ =
+

W n W n
W
W

n
n

1 , i.e.
1

. (9.61)2 s 1 s
2

1

But, on the other hand, for the atomic subsystem, only weakly coupled to its
electromagnetic environment, we ought to have the Gibbs distribution of these
probabilities:

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭

ω= −
−

= −Δ = − ℏW
W

E k T
E k T

E
k T k T

exp{ / }
exp{ / }

exp exp . (9.62)2

1

2 B

1 B B B

Requiring Eqs. (9.61) and (9.62) to give the same result for the probability ratio, we
get the Bose–Einstein distribution for the electromagnetic field in thermal
equilibrium:

ω
=

ℏ −
n

k T
1

exp{ / } 1
(9.63)

B

—the same as obtained in section 7.1 by other means—see Eq. (7.26b).
Now returning to the discussion of Eqs. (9.56) and (9.58), their very important

implication is the possibility to achieve the stimulated emission of coherent radiation
using the level occupancy inversion. Indeed, if the ratio W2/W1 is larger than that
given by Eq. (9.62), the net power flow from the atomic system into the electro-
magnetic field,

ω= ℏ × Γ + −W n W npower [ ( 1) ], (9.64)s 2 1

may be positive. The necessary inversion may be produced using several ways,
notably by intensive quantum transitions to level 2 from an even higher energy level
(which, in turn, is populated, e.g. by absorption of an external radiation, usually
called pumping, at a higher frequency.)

A less obvious, but crucial feature of the stimulated emission is spelled out by
Eq. (9.55): as was mentioned above, it shows that the final state of the field after the
absorption of energy ℏω from the atom is a pure (coherent) Fock state (n + 1).
Colloquially, one may say that the new, (n + 1)st photon emitted from the atom is
automatically in phase with the n photons that had been in the field mode initially,
i.e. joins them coherently31. The idea of stimulated emission of coherent radiation
using population inversion32 was first implemented in the early 1950s in the
microwave range (masers) and in 1960 in the optical range (lasers). Nowadays,
lasers are ubiquitous components of almost all high-tech systems, and constitute one
of the cornerstones of our technological civilization.

A quantitative discussion of laser operation is well beyond the framework of this
course, and I have to refer the reader to special literature33, but would like to briefly
mention only two key points:

31 It is straightforward to show that this fact is also true if the field is initially in the Glauber state—which is
more typical for modes in practical lasers.
32 This idea may be traced back at least to an obscure 1939 publication by V Fabrikant.
33 I can recommend, for example, [12], and a less technical text by A Yariv [13].
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(i) In a typical laser, each generated electromagnetic field mode is in the Glauber
(rather than the Fock) state, so that Eqs. (9.56) and (9.58) are applicable only for the
n averaged over the Fock-state decomposition of the Glauber state—see Eq. (5.134).

(ii) Since in a typical laser 〈n〉 ≫ 1, its operation may be well described using
quasi-classical theories that use Eq. (9.64) to describe the electromagnetic energy
balance (with the addition of a term describing the energy loss due to field
absorption in external components of the laser, including the useful load), plus
the equation describing the balance of the occupancies W1,2 due to all inter-level
transitions—similar to Eq. (9.60), but including also the contribution(s) from the
particular population inversion mechanism used in the laser. At this approach, the
role of quantum mechanics in laser science is essentially reduced to the calculation
of the parameter Γs for the particular system.

This role becomes more prominent when one needs to describe fluctuations of the
laser field. Here two approaches are possible, following the two options discussed in
chapter 7. If the fluctuations are relatively small, one can linearize the Heisenberg
equations of motion of the field oscillator operators near their stationary-lasing
‘values’, with the Langevin ‘forces’ (also time-dependent operators) describing the
fluctuation sources, and use these Heisenberg–Langevin equations to calculate the
radiation fluctuations, just as was described in section 7.5. On the other hand, near
the lasing threshold the field fluctuations are relatively large, smearing the phase
transition between the no-lasing and lasing states. Here the linearization is not an
option, but one can use the density-matrix approach described in section 7.6, for the
fluctuation analysis34. Note that while the laser radiation fluctuations may look like
a peripheral issue, pioneering research in that field has led to the development of the
general theory of open quantum systems, which was discussed in chapter 7.

9.4 Cavity QED
Now I have to mention, at least in passing, the field of cavity quantum electro-
dynamics (usually called cavity QED for short)—the art and science of creating and
using entanglement between quantum states of an atomic system (either an atom, or
an ion, or a molecule, etc) and the electromagnetic field in a macroscopic volume
called the resonant cavity (or just ‘resonator’, or just ‘cavity’). This field is very
popular nowadays, especially in the context of the quantum computation and
communication research discussed in section 8.5.35

The discussion in the previous section was based on the implicit assumption that
the energy spectrum of the electromagnetic field interacting with an atomic
subsystem is essentially continuous, so that its final state is spread among many
field modes, effectively loosing its coherence with the quantum state of the atomic

34 This path has been developed (also in the mid-1960s), by several researchers, notably including M Sully and
W Lamb—see, e.g. [14].
35 This popularity was demonstrated, for example, by the award of the 2012 Nobel Prize in Physics to cavity
QED experimentalists S Haroche and D Wineland.
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subsystem. This assumption has justified using the quantum-mechanical Golden
Rule for calculation of the spontaneous and stimulated transition rates. However,
the assumption becomes invalid if the electromagnetic field is contained inside a
relatively small volume, with its linear size comparable with the radiation wave-
length. If the walls of such a cavity mostly reflect, rather than absorb, radiation,
then the 0th approximation the power dissipation may be disregarded, and the
particular solutions ej(r) of the Helmholtz equation (9.5) correspond to discrete,
well separated mode wave numbers kj and hence well separated eigenfrequencies
ωj.

36 Due to the energy conservation, an atomic transition corresponding to energy
ΔE = ∣Eini − Efin ∣ may be effective only if the corresponding quantum oscillation
frequency Ω ≡ ΔE/ℏ.37 As a result of such resonant interaction, the quantum states
of the atomic system and the resonant electromagnetic mode may become
entangled.

A very popular approximation for the qualitative description of this effect is the
so-called Rabi model38, in which the atom is treated as a two-level system39

interacting with a single electromagnetic field mode of the resonant cavity. As the
reader knows well from chapters 4–6 (see in particular section 5.1), any two-level
system may be described, just as a spin-½, with the Hamiltonian σ̂ˆ + ⋅bI c . Since
we may always select the energy origin and the state basis in that b = 0 and c = cnz,
the Hamiltonian of the atomic subsystem may be taken in the diagonal form

σ σˆ = ˆ ≡
ℏΩ

ˆH c
2

, (9.65)z za

where ℏΩ ≡ 2c is the difference between the energy levels in the absence of
interaction with the field. Next, according to Eq. (9.17), ignoring the constant
ground-state energy ℏω/2 (which may be added to the energy in the end—if
necessary), the contribution of a single field mode of frequency ω to the total
Hamiltonian of the system is

ωˆ = ℏ ˆ ˆ†H a a. (9.66)f

Finally, according to Eq. (9.16a), the electric field of the mode may be represented as

⎜ ⎟⎛
⎝

⎞
⎠EE

ωˆ = ℏ ˆ − ˆ†t
i

a ar e r( , )
1

2
( )( ), (9.67)

1/2

36 The calculation of such modes and corresponding frequencies for several simple cavity geometries was the
subject of Part EM section 7.8 of this series.
37 Conversely, if Ω is far from any ωj, the interaction is suppressed; in particular, the spontaneous emission rate
may be much lower than that given by Eq. (9.53)—so that this result is not as fundamental as it may look.
38After the pioneering work by I Rabi in 1936–37.
39As was shown in section 6.5, this model is justified, e.g. if transitions between all other energy level pairs have
considerably different frequencies.
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so that in the electric-dipole approximation (9.24), the cavity–atom interaction may
be represented as a product of the field by some (say, y-) Cartesian component40 of
the Pauli spin-½ operator:

⎜ ⎟⎛
⎝

⎞
⎠Eσ σ ω

κσ

ˆ = × ˆ × = × ˆ ×
ℏ ˆ − ˆ

= ℏ ˆ ˆ − ˆ

†

†

H
i

a a

i a a

const const
2

1
( )

( ),

(9.68)y y

y

int

1/2

where κ is a coupling constant (with the dimension of frequency). The sum of these
three terms,

σ ω κσˆ ≡ ˆ + ˆ + ˆ = ℏΩ
ˆ + ℏ ˆ ˆ + ℏ ˆ ˆ − ˆ† †H H H H a a i a a

2
( ). (9.69)z ya f int

giving a very reasonable description of the system, is called the Rabi Hamiltonian.
Despite its apparent simplicity, using this Hamiltonian for calculations is not that
straightforward41. Only in the case when the electromagnetic field is large and hence
may be treated classically, the results following from Eq. (9.69) are reduced to
Eqs. (6.94) describing, in particular, the Rabi oscillations discussed in section 6.3.

The situation becomes simpler in the most important case when the frequencies Ω
and ω are very close, enabling an effective interaction between the cavity field and
the atom even if the coupling constant κ is relatively small. Indeed, if both the κ and
the so-called detuning (defined similarly to the parameter Δ used in section 6.5),

ξ ω≡ Ω − , (9.70)

are much smaller than Ω ≈ ω, the Rabi Hamiltonian may be simplified using the
rotating-wave approximation, already used several times in this course. For this, it is
convenient to use the spin ladder operators, defined absolutely similarly for those of
the orbital angular momentum—see Eqs. (5.153):

σ σ σ σ σ σ
ˆ ≡ ˆ ± ˆ ˆ = ˆ − ˆ
±

+ −i
i

, so that
2

. (9.71)x y y

From Eq. (4.105), it is very easy to find the matrices of these operators in the
standard z-basis,

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠σ = σ =+ −

0 2
0 0

, 0 0
2 0

, (9.72)

and their commutation rules—which turn out to be naturally similar to Eqs. (5.154):

σ σ σ σ σ σˆ ˆ = ˆ ˆ ˆ = ± ˆ+ − ± ±[ , ] 4 , [ , ] 2 . (9.73)z z

40 The exact component is not important, while the intermediate formulas simplify if it is proportional to either
pure σx or pure σy.
41 For example, an exact quasi-analytical expression for its eigenenergies (as zeros of a Taylor series in the
parameter κ, with coefficients determined by a recurrence relation) was found only recently—see [15].
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In this notation, the Rabi Hamiltonian becomes

σ ω κ σ σˆ = ℏΩ
ˆ + ℏ ˆ ˆ + ℏ ˆ − ˆ ˆ − ˆ†

+ −
†H a a a a

2 2
( )( ), (9.74)z

and it is straightforward to use Eqs. (4.199) and (9.73) to derive the Heisenberg-
picture equations of motion for the involved operators. (Doing this, we have to
remember that operators of the ‘spin’ subsystem, on one hand, and of the field mode,
on the other hand, are defined in different Hilbert spaces and hence commute—at
least at coinciding time moments.) The result (so far, exact!) is

ω κ σ σ ω κ σ σ

σ σ κ σ σ κ σ σ

ˆ ̇= − ˆ + ˆ − ˆ ˆ ̇ = ˆ − ˆ − ˆ

ˆ ̇ = ± Ω ˆ + ˆ − ˆ ˆ ˆ ̇ = ˆ − ˆ ˆ + ˆ

+ −
† †

+ −

± ±
† †

+ −

a i a
i

a i a
i

i i a a i a a
2

( ),
2

( ),

2 ( ) , ( )( ) .

(9.75)

z z

At negligible coupling, κ → 0, these equations have simple solutions,

σ σˆ ∝ ˆ ∝ ˆ ∝ ˆ ≈ω ω− †
±

± Ωa t e a t e t e t( ) , ( ) , ( ) , ( ) const, (9.76)i t i t i t
z

and the small terms proportional to κ on the right-hand sides of Eqs. (9.75) cannot
affect these time evolution laws dramatically even if κ is not exactly zero. Of those
terms, ones with frequencies close to the ‘basic’ frequency of each variable would act
in resonance and hence may have a substantial impact on the system’s dynamics,
while non-resonant terms may be ignored. In this rotating-wave approximation,
Eqs. (9.75) are reduced to a much simpler system of equations:

ω κ σ ω κ σ

σ σ κ σ σ σ κ σ σ κ σ σ

ˆ ̇ = − ˆ − ˆ ˆ ̇ = ˆ + ˆ

ˆ ̇ = Ω ˆ + ˆ ˆ ˆ ̇ = − Ω ˆ − ˆ ˆ ˆ ̇ = ˆ ˆ − ˆ ˆ

−
† †

+

+ +
†

− −
†
− +

a i a
i

a i a
i

i i a i i a i a a
2

,
2

,

2 , 2 , ( ) .

(9.77)

z z z

Alternatively, these equations of motion may be obtained exactly from the Rabi
Hamiltonian (9.74), preliminarily cleared of the terms proportional to σ̂ ˆ+ †a and σ̂ ˆ−a,
that oscillate fast and hence self-average to virtually zero:

ω κ σ σ κ ξ ωˆ = ℏΩ σ̂ + ℏ ˆ ˆ + ℏ ˆ ˆ + ˆ ˆ ≪ Ω†
+ −

†H a a a a
2 2

( ), at , , . (9.78)z

This is the famous Janes–Cummings Hamiltonian42, which is the basic model used
in the cavity QED and its applications43. In order to find its eigenstates and
eigenenergies, let us note that at negligible interaction (κ → 0), the spectrum of the
total energy E of the system, which in this limit is the sum of two independent
contributions from the atomic and cavity-field subsystems,

42 It was first proposed and analyzed in 1963 by two engineers, E Janes and F Cummings, and it took the
physics community a while to recognize and acknowledge the fundamental importance of that work (published
in Proceedings of IEEE).
43 For most applications, the baseline Hamiltonian (9.78) has to be augmented by additional term(s)
describing, for example, the incoming radiation and/or the coupling to environment, for example due to the
electromagnetic energy loss in a finite-Q-factor cavity—see Eq. (7.68).
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ω ξ= ±ℏΩ + ℏ ≡ ± ℏ = …κ=E n E n
2 2

, with 1, 2, , (9.79)n0

consists44 of close level pairs (figure 9.5) centered to values

⎛
⎝⎜

⎞
⎠⎟ω≡ ℏ −E n

1
2

. (9.80)n

(At the exact resonance ω = Ω, i.e. at ξ = 0, each pair merges into one double-
degenerate level En.) Since at κ → 0 the two subsystems do not interact, the
eigenstates corresponding to the sublevels of the nth pair may be represented by
direct products of their independent state vectors:

+ ≡ ↑ ⊗ − − ≡ ↓ ⊗n n1 and , (9.81)

where the first ket of each product represents the state of the two-level (spin-½-like)
atomic subsystem, and the second ket, that of the field oscillator.

As we know from chapter 6, even weak interaction may lead to strong coherent
mixing45 of quantum states with close energies (in this case, the two states (9.81)
within each pair with the same n), while their mixing with the states with farther
energies is still negligible. Hence, at 0 < κ, ∣ξ∣ ≪ ω ≈ Ω, a good approximation of an
eigenstate with E ≈ En is given by a linear superposition of the states (9.81):

α = + + − ≡ ↑ ⊗ − + ↓ ⊗+ − + −c c c n c n1 , (9.82)n

with certain c-number coefficients c±. This relation describes the entanglement of the
atomic eigenstates ↑ and ↓ with the Fock states number n and n − 1 of the field mode.
Let me leave the (straightforward) calculation of the coefficients (c±)

± for each of
two entangled states (for each n) for the reader’s exercise. (The result for the
corresponding two eigenenergies (En)

± may be again represented by the same
anticrossing diagram as shown in figures 2.29 and 5.1, now with the detuning ξ as
the argument.) This calculation shows, in particular, that at ξ = 0 (i.e. at ω = Ω),
∣c+∣ = ∣c−∣ = 1/√2 for both states of the pair, in a clear analogy with the entangled

Figure 9.5. The energy spectrum (9.79) of the Janes–Cummings Hamiltonian in the limit κ ≪ ∣ξ∣. Note again
that the energy is referred to the ground-state energy ℏω/2 of the cavity field.

44Only the ground state level Eg = −ℏΩ/2 is non-degenerate—see figure 9.5.
45 In some fields, especially chemistry, such mixing is frequently called hybridization.
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singlet and triplet states (8.18) and (8.21). This fact may be interpreted as a
(coherent!) equal sharing of an energy quantum ℏω = ℏΩ by the atom and the
cavity field at the exact resonance.

A (hopefully, self-evident) by-product of the calculation of c± is the fact that the
dynamics of the state αn described by Eq. (9.82) is similar to that of the generic two-
level system that was repeatedly discussed in this course—first time in section 2.6 and
then in chapters 4–6. In particular, if the composite system had been initially prepared
to be in one component state, for example ∣↑〉 ⊗ ∣0〉 (i.e. the atom excited, while the
cavity in its ground state), and then allowed to evolve on its own, after some time
interval Δt ∼ 1/κ it may be found definitely in the counterpart state ∣↓〉⊗ ∣1〉, including
the first excited Fock state n = 1 of the field mode. If the process is allowed
to continue, after the equal time interval Δt, the system returns to the initial state
∣↑〉 ⊗ ∣0〉, etc46. This most striking prediction of the Janes–Cummings model was
directly observed, by GRempe et al, only in 1987, although less directly this model was
repeatedly confirmed by numerous experiments carried out in the 1960s and 1970s.

Unfortunately, my time/space allowance for the cavity QED is over, and for
further reading I have to refer the reader to special literature47.

9.5 The Klein–Gordon and relativistic Schrödinger equations
Now let me switch gears and discuss the basics of the relativistic quantum mechanics
of particles with a nonvanishing rest mass m. In the ultra-relativistic limit pc ≫ mc2

the quantization scheme of such particles may be essentially the same as for
electromagnetic waves, but for the intermediate energy range, pc ∼ mc2, a more
general approach is necessary. Historically, the first attempts48 to extend the non-
relativistic wave mechanics into the relativistic energy range were based on perform-
ing the same transitions from classical observables to their quantum-mechanical
operators as in the non-relativistic limit:

ˆ ∇→ = − ℏ → ˆ = ℏ ∂
∂

i E H i
t

p p , . (9.83)

The substitution of these operators, acting on the Schrödinger-picture wavefunction
Ψ(r,t), into the classical relation (9.1) between the energy E and momentum p (for of
a free particle) leads to the following formulas:

46 This quantized version of the Rabi oscillations can only persist in time if the inevitable electromagnetic
energy losses (not described by the basic Janes–Cummings Hamiltonian) are somehow replenished—for
example, by a passing a beam of particles, externally excited into the higher-energy state ↑, through the cavity.
If the losses become higher, the dissipation suppresses quantum coherence, in our case the coherence between
two components of each pair (9.82), as was discussed in chapter 7. As a result, the transition from the higher-
energy atomic state ↑ to the lower-energy state ↓, giving energy ℏω to the cavity (n − 1 → n), which is then
rapidly drained into the environment, becomes incoherent, so that the system’s dynamics is reduced to the
Purcell effect, already mentioned in section 9.3. A quantitative analysis of this effect is left for the reader’s
exercise.
47 I can recommend, for example, either [16], or [17].
48 This approach was suggested in 1926–27, i.e. virtually simultaneously, by (at least) V Fock, E Schrödinger,
O Klein and W Gordon, J Kudar, T de Donder and F -H van der Dungen, and L de Broglie.
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The resulting equation for the non-relativistic limit, in the left-bottom cell of the
table 9.1, is just the usual Schrödinger equation (1.28) for a free particle. Its
relativistic generalization, in the right-bottom cell, usually rewritten as

⎛
⎝⎜

⎞
⎠⎟ μ μ∂

∂
−∇ Ψ + Ψ = ≡

ℏc t
mc1

0, with , (9.84)
2

2

2
2 2

is called the Klein–Gordon (or sometimes ‘Klein–Gordon-Fock’) equation. The
fundamental solutions of this equation are the same plane, monochromatic waves

ωΨ ∝ ⋅ −r t i k r t( , ) exp{ ( )} (9.85)

as in the non-relativistic case. Indeed, such waves are eigenstates of the operators
(9.83), with eigenvalues, respectively,

ω= ℏ = ℏEp k, and , (9.86)

so that their substitution into Eq. (9.84) immediately returns us to Eq. (9.1) with the
replacements (9.86):

ω= ℏ = ± ℏ +± ±E ck mc[( ) ( ) ] . (9.87)2 2 2 1/2

Though one may say that this dispersion relation is just a simple combination of
the classical relation (9.1) and the same basic quantum-mechanical relations (9.86)
as in non-relativistic limit, it attracts our attention to the fact that the energy ℏω as a
function of the momentum ℏk has two branches, with E-(p) = −E+(p)—see figure
9.6a. Historically, this fact has played a very important role for spurring the
fundamental idea of particle–antiparticle pairs. In this idea (very similar to the
concept of electrons and holes in semiconductors, which was discussed in section
2.8), what we call the vacuum actually corresponds to all states of the lower branch,
with energies E−(p) < 0, being completely filled, while the states on the upper branch,
with energies E+(p) > 0, being empty. Then an externally supplied energy,

Δ = − ≡ + − ⩾ >+ − + −E E E E E mc( ) 2 0, (9.88)2

may bring the system from the lower branch to the upper one (figure 9.6b). The
resulting excited state is interpreted as a combination of a particle (formally, of the

Table 9.1. Deriving the Klein–Gordon equation for a free relativistic particle49.

Non-relativistic limit Relativistic case

Classical mechanics =E
m

p
1

2
2 = +E c p mc( )2 2 2 2 2

Wave mechanics ∇ℏ ∂
∂
Ψ = − ℏ Ψi

t m
i

1
2

( )2 ⎜ ⎟
⎛
⎝

⎞
⎠ ∇ℏ ∂

∂
Ψ = − ℏ Ψ + Ψi

t
c i mc( ) ( )

2
2 2 2 2

49Note that in the left (non-relativistic) column of table 9.1, the energy is referred to the rest energy mc2, while
in the right (relativistic) column, it is referred to zero—see Eq. (9.1).
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infinite spatial extension) with the energy E+ and the momentum p, and a ‘hole’
(antiparticle) of the positive energy (−E−) and the momentum −p. This idea50 has led
to a search for, and discovery of the positron: the electron’s antiparticle with charge
q = +e, in 1932, and later of the antiproton and other antiparticles.

Free particles of a finite spatial extension may be described, in this approach, just
in the non-relativistic Schrödinger equation, by wave packets, i.e. linear super-
positions of the de Broglie waves (9.85) with close wave vectors k, and the
corresponding values of ω given by Eq. (9.87), with the positive sign for the ‘usual’
particles, and negative sign for antiparticles—see figure 9.6a above. Note that in
order to form, from a particle’s wave packet, a similar wave packet for the
antiparticle, with the same phase and group velocities (2.33a) in each direction,
we need to change the sign not only before ω, but also before k, i.e. to replace all
component wavefunctions (9.85), and hence the full wavefunction, with their
complex conjugates.

Of more formal properties of Eq. (9.84), it is easy to prove that its solutions satisfy
the same continuity equation (1.52), with the probability current density j still given
by Eq. (1.47), but a different expression for the probability density w—which
becomes very similar to that for j:

⎛
⎝⎜

⎞
⎠⎟ ∇= ℏ Ψ ∂Ψ

∂
− = ℏ Ψ Ψ −* *w

i
mc t

i
m

j
2

c.c. ,
2

( c.c.) (9.89)
2

—very much in the spirit of relativity theory, treating space and time on equal
footing. (In the non-relativistic limit p/mc → 0, Eq. (9.84) allows a reduction of this
expression for w the non-relativistic Eq. (1.22): w → ΨΨ*.)

The Klein–Gordon equation may be readily generalized51 to describe a single
particle moving in external fields; for example, the electromagnetic field effects on a
particle with charge q may be described by the same replacement as in the non-
relativistic limit (see section 3.1):

ϕˆ ˆ→ − ˆ → ˆ −q t H H q tp P A r r( , ), ( , ), (9.90)

Figure 9.6. (a) The free-particle dispersion relation resulting from the Klein–Gordon and Dirac equations, and
(b) the scheme of creation of a particle–antiparticle pair from the vacuum.

50Due to the same P A M Dirac!
51After such generalization, it is usually called the relativistic Schrödinger equation.
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where ˆ ∇= − ℏiP is the canonical momentum operator (3.25), and the vector- and
scalar potentials, A and ϕ, should be treated appropriately—either as c-number
functions if the electromagnetic field quantization is not important for the particular
problem, or as operators (see sections 9.1–9.4 above) if it is.

However, the practical value of the relativistic Schrödinger equation is rather
limited, because of two main reasons. First of all, it does not give the correct
description of particles with spin. For example, for the hydrogen-like atom, i.e. the
motion of an electron with the electric charge −e, in the Coulomb central field of an
immobile nucleus with charge +Ze, the equation may be readily solved exactly52 and
yields the following spectrum of (doubly-degenerate) energy levels:

⎛
⎝⎜

⎞
⎠⎟

α
λ

λ α= + ≡ + + ½ − − + ½
−

E mc
Z

n l Z l1 , with [( ) ] ( ), (9.91)2
2 2

2

1/2
2 2 2 1/2

where n = 1, 2,… and l = 0, 1,…, n − 1 are the same quantum numbers as in the non-
relativistic theory (see section 3.6), and α ≈ 1/137 is the fine structure constant (6.62).
The three leading terms of the Taylor expansion of this result in the small parameter
Zα are as follows:

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥

α α≈ − −
+ ½

−E mc
Z

n
Z

n
n

l
1

2 2
3
4

. (9.92)2
2 2

2

4 4

4

The first of these terms is just the rest energy of the particle. The second term,

α
πε

= − ≡ −
ℏ

≡ − =E mc
Z

n
mZ e

n
E
n

E Z E
2 (4 )

1
2 2

, with , (9.93)n
2

2 2

2

2 4

0
2 2 2

0
2 0

2
H

reproduces the non-relativistic Bohr’s formula (3.201). Finally, the third term,

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

α−
+ ½

− ≡ −
+ ½

−mc
Z

n
n

l
E

mc
n

l2
3
4

2 3
4

, (9.94)n2
4 4

4

2

2

is just the perturbative kinetic-relativistic contribution (6.51) to the fine structure of
the Bohr levels (9.93). However, as we already know from section 6.3, for a spin-½
particle such as the electron, the spin–orbit interaction (6.55) gives an additional
contribution to the fine structure, of the same order, so that the net result, confirmed
by experiment, is given by Eq. (6.60), i.e. is different from Eq. (9.94). This is very
natural, because the relativistic Schrödinger equation does not have the very notion
of spin.

Second, even for massive spinless particles (such as the Z0 bosons), for which this
equation is believed to be valid, the most important problems are related to particle
interactions at high energies of the order of ΔΕ ∼ 2mc2 and beyond—see Eq. (9.88).
Due to the possibility of creation and annihilation of particle–antiparticle pairs at
such energies, the number of particles participating in such interactions is typically

52 This task is left for the reader’s exercise.
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considerable (and variable), and its adequate description of the system is given not
by the relativistic Schrödinger equation (which is formulated in single-particle
terms), but by the quantum field theory—to which I will devote only a few sentences
at the very end of this chapter.

9.6 Dirac’s theory
The real breakthrough toward the quantum relativistic theory of electrons (and any
spin-½ fermions) was achieved in 1928 by P A M Dirac. For that time, the structure
of his theory was highly nontrivial. Namely, while formally preserving, in the
coordinate representation, the same Schrödinger-picture equation of quantum
dynamics as in the non-relativistic quantum mechanics53,

ℏ∂Ψ
∂

= ˆ Ψi
t

H , (9.95)

it postulates that the wavefunction Ψ it describes is not a scalar complex function of
time and coordinates, but a four-component column-vector (sometimes called the
bispinor) of such functions, its Hermitian-conjugate bispinor Ψ† being a four-
component row-vector of their complex conjugates:

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
Ψ =

Ψ
Ψ
Ψ
Ψ

Ψ = Ψ Ψ Ψ Ψ† * * * *( )
t
t
t
t

t t t t

r
r
r
r

r r r r

( , )
( , )
( , )
( , )

, ( , ), ( , ), ( , ), ( , ) , (9.96)

1

2

3

4

1 2 3 4

and that the Hamiltonian participating in Eq. (9.95) is a 4 × 4 matrix defined in the
Hilbert space of bispinors Ψ. For a free particle, the postulated Hamiltonian looks
amazingly simple54:

53After the ‘naturally-relativistic’ form of the Klein–Gordon equation (9.84), this apparent return to the non-
relativistic Schrödinger equation may look very counter-intuitive. However, it becomes a bit less surprising
taking into account the fact (whose proof is left for the reader’s exercise) that Eq. (9.84) may be also recast into
the form (9.95) for a two-component column-vector (spinor) Ψ, with a Hamiltonian which may be represented
by a 2 × 2 matrix - and hence expressed via the Pauli matrices (4.105) and the identity matrix I—see Eq. (5.3).
54Moreover, if the time derivative participating in Eq. (9.95), and the three coordinate derivatives participating
(via the momentum operator) in Eq. (9.97), are merged into one four-vector operator ∂/∂xk ≡ {∇, ∂/∂(ct)}, the
Dirac equation (9.95) may be rewritten in an even simpler, manifestly Lorentz-invariant four-vector form (with
the implicit summation over the repeated index k = 1, …, 4—see, e.g. Part EM section 9.4):

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠γ μ γ γ γγ̂ σ̂

σ̂
ˆ ∂
∂

+ Ψ = ≡ ˆ ˆ ˆ = − γ̂ = β̂
x

i
i

0, where { , , } 0
0

, ,k
k

1 2 3 4

where μ ≡ mc/ℏ—just as in Eq. (9.84). Note also that, very counter-intuitively, the Dirac Hamiltonian (9.97) is
linear in the momentum, while the non-relativistic Hamiltonian of a particle, as well as the relativistic
Schrödinger equation, are quadratic in p. In my humble opinion, the Dirac theory (including the concept of
antiparticles it has inspired) may compete for the title of the most revolutionary theoretical idea in physics of
all times, despite such heavy contenders as Newton’s laws, Maxwell’s equations, Gibbs’ statistical distribution,
Bohr’s theory of the hydrogen atom, and Einstein’s general relativity.
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βα̂ ˆˆ = ⋅ + ˆH c mcp . (9.97)2

where p̂ = −iℏ∇ is the same 3D vector operator of momentum as in the non-
relativistic case, while the operators α̂ and β̂ may be represented in the following
shorthand 2 × 2 form:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟βα̂ σ̂

σ̂
≡

ˆ
ˆ

ˆ ≡
ˆ ˆ
ˆ − ˆ
I

I
a0

0
, 0

0
. (9.98 )

The operator α̂, composed of the Pauli vector operators σ̂, is also a vector in the
usual 3D space, so that each of its three Cartesian components is a 4 × 4 matrix. The
particular form of the 2 × 2 matrices corresponding to the operators σ̂ and Î in
Eq. (9.98a) depends on the basis selected for representation of the spin states; for
example, in the standard z-basis, in which the Cartesian components of σ̂ are
represented by the Pauli matrices (4.105), the 4 × 4 matrix form of Eq. (9.98a) is

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

α = α =

−

−

α = −

−

β =
−

−

i
i

i
i

b

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

,

0 0 0
0 0 0
0 0 0

0 0 0

,

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

,

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

(9.98 )

x y

z

It is straightforward to use Eqs. (9.98) to verify that the matrices αx, αy, αz and β
satisfy the following relations:

α = α = α = β = 1, (9.99)x y z
2 2 2 2

α α + α α = α α + α α = α α + α α = α β + βα
= α β + βα = α β + βα = 0,

(9.100)
x y y x y z z y z x x z x x

y y z z

i.e. anticommute. Using these commutation relations, and acting essentially as in
section 1.4, it is straightforward to show that any solution to the Dirac equation
obeys the probability conservation law, i.e. the continuity equation (1.52), with the
probability density,

= Ψ Ψ†w , (9.101)

and the probability current,

α̂= Ψ Ψ†cj , (9.102)

looking almost as in the non-relativistic theory—cf. Eqs. (1.22) and (1.47). Note,
however, the Hermitian conjugation used in these formulas instead of the complex
conjugation, in order to form the scalars w, jx, jy, and jz from the four-component
vectors (9.96).
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This close similarity is extended to the fundamental, plane-wave solutions of the
Dirac equations is free space. Indeed, plugging such solution, in the form

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟Ψ = =ω ω⋅ − ⋅ −e

u
u
u
u

eu , (9.103)i t i tk r k r( )

1

2

3

4

( )

into Eqs. (9.95) and (9.97), we see that they are indeed satisfied, provided that a
system of four coupled, linear algebraic equations for four complex c-number
amplitudes u1,2,3,4 is satisfied. The condition of its consistency yields the same
dispersion relation (9.87), i.e. the same two-branch diagram shown in figure 9.6, as
follows from the Klein–Gordon equation. The difference is that plugging each value
of ω, given by Eq. (9.87), back into the system of the linear equations for four
amplitudes u, we get two solutions for their vector u ≡ (u1, u2, u3, u4) for each of the
two energy branches. In the standard spin z-basis, they may be represented as
follows:

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

= > = +

+

+

=
−

+
−
+

+ +↑ +↑ +

+

+↓ +↓
+

+

( )

( )
E E c

cp

E mc

c p ip

E mc

c
c p ip

E mc
cp

E mc

afor 0: u

1
0

, u

0
1

, (9.104 )
z

x y

x y

z

2

2

2

2

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

= < =

−
+

−
=

−

−
−
−

− −↑ −↑

−

−

−↓ −↓

−

−

( )

( )

E E c

cp

E mc

c p ip

E mc
c

c p ip

E mc
cp

E mc
bfor 0: u

1
0

, u

0
1

, (9.104 )

z

x y

x y

z

2

2

2

2

where c± are normalization coefficients.
The simplest interpretation of these solutions is that Eq. (9.103), with the vectors

u+ given by Eq. (9.104a), represents a spin-½ particle (say, an electron), while with
the vectors u- given by Eq. (9.104b), it represents an antiparticle (a positron), and the
two solutions for each particle, indexed with opposite arrows, correspond to two
possible directions of the spin-½, σz = ±1, i.e. Sz = ±ℏ/2. This interpretation is indeed
solid in the non-relativistic limit, when two last components of the vector (9.104a),
and two first components of the vector (9.104b) are negligibly small:

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
→ → → → →+↑ +↓ −↑ −↓

p

mc
u

1
0
0
0

, u

0
1
0
0

, u

0
0
1
0

, u

0
0
0
1

, at 0. (9.105)k
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In order to show this, let us use the Dirac equation to calculate the Heisenberg-
picture law of time evolution of the operators of the Cartesian component of the
orbital angular momentum L ≡ r × p, for example of Lx = ypz − zpy, taking into
account that the Dirac operators (9.98a) commute with those of r and p, and also the
Heisenberg commutation relations (2.14):

⎡⎣ ⎤⎦ α αα̂ ˆℏ∂
ˆ
∂

= ˆ ˆ = ⋅ ˆ ˆ − ˆ ˆ = − ℏ ˆ ˆ − ˆ ˆi
L
t

L H c yp zp i c p pp[ , ] ( ), ( ), (9.106)x
x z y z y y z

with similar relations for two other Cartesian components. Since the right-hand side
of these equations is different from zero, the orbital momentum is generally not
conserved—even for a free particle! Let us, however, consider the following vector
operator,

⎛
⎝⎜

⎞
⎠⎟

ˆ σ̂
σ̂

≡ ℏ ˆ
ˆ

aS
2

0
0

. (9.107 )

According to Eqs. (4.105), its Cartesian components, in the z-basis, are represented
by 4 × 4 matrices

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
= ℏ = ℏ

−

−
= ℏ −

−

i
i

i
i

bS
2

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

, S
2

0 0 0
0 0 0

0 0 0
0 0 0

, S
2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

. (9.107 )x y z

Let us calculate the Heisenberg-picture law of time evolution of these components,
for example

α α αℏ∂
ˆ

∂
= ˆ ˆ = ˆ ˆ ˆ + ˆ ˆ + ˆ ˆi

S
t

S H c S p p p[ , ] [ , ( )]. (9.108)x
x x x x y y z z

A direct calculation of the commutators of the matrices (9.98) and (9.107) yields

α α α α αˆ ˆ = ˆ ˆ = ℏ ˆ ˆ ˆ = − ℏ ˆS S i S i[ , ] 0, [ , ] , [ , ] , (9.109)x x x y z x z y

so that we finally get

α αℏ∂
ˆ

∂
= ℏ ˆ ˆ − ˆ ˆi

S
t

i c p p( ), (9.110)x
z y y z

with similar expressions for other two components of the operator. Comparing this
result with Eq. (9.106), we see that any Cartesian component of the operator defined
similarly to Eq. (5.170),

ˆ ˆ ˆ≡ +J L S, (9.111)

is an integral of motion55, so that this operator may be interpreted as the one
representing the total angular momentum of the particle. Hence, the operator

55 It is straightforward to show that this result remains valid for a particle in the field of any central
potential U(r).
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(9.107)may be interpreted as the spin operator of a spin-½ particle (e.g. electron). As
follows from the last of Eq. (9.107b), the columns (9.105) represent the eigenkets of
the z-component of that operator, with eigenstates Sz = ±ℏ/2, depending on the
arrow index. So, the Dirac theory provides a justification for spin-½—or, somewhat
more humbly, replaces the Pauli Hamiltonian postulate (4.163) with that of a
simpler (and hence more plausible), Lorentz-invariant Hamiltonian (9.97).

Note, however, that this simple interpretation, fully separating a particle from its
antiparticle, is not valid for the exact solutions (9.103)–(9.104), so that generally the
eigenstates of the Dirac Hamiltonian are certain linear (coherent) superpositions of
the components describing the particle and its antiparticle—each with both
directions of spin. This fact leads to several interesting effects, including the so-
called Klien paradox at reflection of a relativistic electron from a potential barrier56.
It is curious that some of these effects may be reproduced in such non-relativistic
systems as particles moving in a 2D honeycomb lattice (e.g. of the graphene), since
they feature a locally linear dispersion relation—see Eq. (3.122).57

9.7 Low-energy limit
The generalization of Dirac’s theory to the case of a (spin-½) particle with an electric
charge q, moving in a classically-described electromagnetic field, may be obtained
using the same replacement (9.90). As a result, Eq. (9.95) becomes

β ϕα̂ ∇⋅ − ℏ − + ˆ + − ˆ Ψ =c i q mc q HA[ ( ) ( )] 0, (9.112)2

where the Hamiltonian operator Ĥ is understood in the sense of Eq. (9.95), i.e. as the
partial time derivative with the multiplier iℏ. Let us prepare this equation for a low-
energy approximation by acting on its left-hand side by a similar square bracket
(also an operator!), but with the opposite sign before the last parentheses. Using
Eqs. (9.99) and (9.100), and the fact that space- and time-independent operators
α̂ and β̂ commute with the spin-independent, c-number functions tA r( , ) and ϕ tr( , ),
as well as with the Hamiltonian operator iℏ∂/∂t, the result is

ϕ ϕ
α̂ ∇

α̂ ∇
⋅ − ℏ − +

− ⋅ − ℏ − − ˆ − − ˆ Ψ =
c i q mc

c i q q H q H

A

A

{ [ ( )] ( )

[ ( ), ( )] ( ) } 0.
(9.113)

2 2 2 2

2

A direct calculation of the first square bracket, using Eqs. (9.98) and (9.107), yields

α̂ ∇ ∇ ˆ ∇⋅ − ℏ − ≡ − ℏ − − ⋅ ×i q i q qA A S A[ ( )] ( ) 2 . (9.114)2 2

But the last vector product on the right-hand side is just the magnetic field—see, e.g.
Eqs. (3.21):

BB ∇= × A. (9.115)

56 See, e.g. [18].
57 For a review see, e.g. [19].
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Similarly, we may use the first of Eqs. (3.21), for the electric field,

EE ϕ∇= − − ∂
∂t
A

, (9.116)

to simplify the commutator participating in Eq. (9.113):

EE

ϕ ϕ

ϕ

α̂ ∇ α̂ α̂ ∇

α̂ ∇ α̂

⋅ − ℏ − − ˆ ≡ − ⋅ ˆ − ℏ ⋅

≡ − ℏ ∂
∂
− ℏ ⋅ ≡ ℏ ⋅

i q q H q H i q

i q
t

i i q

A A
A

[ ( ), ( )] [ , ] [ , ]

.
(9.117)

As a result, Eq. (9.113) becomes

BB EEϕ∇ ˆ α̂− ℏ − + − ˆ − − ⋅ + ℏ ⋅ Ψ
=
c i q q H mc qc i cqA S{ ( ) ( ) ( ) 2 }

0.
(9.118)

2 2 2 2 2 2

So far, this is an exact result, equivalent to Eq. (9.112), but it is more convenient
for an analysis of the low-energy limit, in which not only the energy offset E − mc2

(which is just the energy used in the non-relativistic mechanics), but also the
electrostatic energy of the particle, ∣q〈ϕ〉∣, are much smaller than the rest energy
mc2. In this limit, the second and third terms of Eq. (9.118) almost cancel, and
introducing the offset Hamiltonian

˜̂ ≡ ˆ − ˆH H mc I . (9.119)2

we may approximate their difference, up to the first nonvanishing term, as

ϕ ϕ

ϕ

ˆ − ˆ − ˆ ≡ ˆ − ˆ − ˜̂ − ˆ

≈ ˜̂ − ˆ
q I H mc I q I mc I H mc I

mc H q I

( ) ( ) ( ) ( )

2 ( ).
(9.120)

2 2 2 2 2 2 2

2

As a result, after the division of all terms by 2mc2, Eq. (9.118) may be approximated as

⎡
⎣⎢

⎤
⎦⎥BB EEϕ∇ ˆ α̂˜̂ Ψ = − ℏ − + − ⋅ + ℏ ⋅ ΨH

m
i q q

q
m

i q
mc

A S
1

2
( )

2
. (9.121)2

Let us discuss this important result. The first two terms in the square brackets give
the non-relativistic Hamiltonian (3.26), which was extensively used in chapter 3 for
the discussion of charged particle motion. Note again that the contribution of the
vector-potential A into that Hamiltonian is essentially relativistic, in the following
sense: when used for the description of magnetic interaction of two charged particles,
due to their orbital motion with speed v ≪ c, the magnetic interaction is a factor of
(v/c)2 smaller than the electrostatic interaction of the particles58. The reason why we
did discuss the effects of A in chapter 3 was that is was used there to describe external
magnetic fields, keeping our analysis valid even for the cases when that field is strong

58 This difference may be traced by classical means—see, e.g. Part EM section 5.1.
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by being produced by relativistic effects—such as aligned spins of a permanent
magnet.

The next, third term in the square brackets of Eq. (9.121) is also familiar to the
reader: this is the Pauli Hamiltonian—see Eqs. (4.3), (4.5), and (4.163). When
justifying this form of interaction in chapter 4, I referred mostly to results of Stern–
Gerlach-type experiments, but it is extremely pleasing that this result59 follows from
such a fundamental relativistic treatment as Dirac’s theory. As we already know
from the discussion of the Zeeman effect in section 6.4, the effects of magnetic field
on the orbital motion of an electron (described by orbital angular momentum L) and
its spin S are of the same order, i.e. represent an essentially relativistic effect.

Finally, the last term in the square brackets of Eq. (9.121) is also not quite new for
us: in particular it describes the spin–orbit interaction. Indeed, in the case of a
classical, spherical-symmetric electric field EE corresponding to the potential ϕ(r) =
U(r)/q, this term may be reduced to Eq. (6.56):

Eˆ ˆ ˆ ˆˆ = ⋅ ≡ − ⋅H
m c r

dU
dr

q
m c r

S L S L
1

2
1

2
1

. (9.122)so 2 2 2 2

The proof of this correspondence requires a bit of additional work, to which we will
now proceed60. In Eq. (9.121), the term responsible for the spin–orbit interaction
acts on four-component wavefunctions, while the Hamiltonian (9.122) is supposed
to act on non-relativistic state vectors with an account of spin, whose coordinate
representation may be given by two-component spinors61:

⎛
⎝⎜

⎞
⎠⎟ψ

ψ
ψ= ↑

↓
. (9.123)

The simplest way to prove the identity of these two expressions is not to use
Eq. (9.121) directly, but to return to the Dirac equation (9.112), for the particular
case of motion in a static electric field and no magnetic field, when Dirac’s
Hamiltonian is reduced to

β ϕα̂ ˆˆ = ⋅ + ˆ + =H c mc U U qp r( ), with . (9.124)2

59Note that in this result, the g-factor is still equal to exactly 2—see Eq. (4.115) and its discussion in section
4.4. In order to describe the small deviation of ge from 2, the electromagnetic field should be quantized (just as
was discussed in sections 9.1–9.4 of this chapter), and its potentials A and ϕ, participating in Eq. (9.121),
should be treated as operators—rather than as c-number functions as was assumed above.
60 The only facts immediately evident from Eq. (9.121) are that the term we are discussing is proportional to
the electric field, as required by Eq. (9.122), and that it is of the proper order of magnitude. Indeed, Eqs. (9.101)
and (9.102) imply that in the Dirac theory, α̂c plays the role of the velocity operator, so that the expectation
values of the term are of the order of Evℏq mc/2 2. Since the expectation values of the operators participating in
the Hamiltonian (9.122) scale as S ∼ ℏ/2 and L ∼ mvr, the spin–orbit interaction energy has the same order of
magnitude.
61 In this course, the notion of spinor (popular in some textbooks) was not used much; it was introduced earlier
only for two-particle states—see Eq. (8.13). For a single particle, this definition is reduced to ψ(r)∣s〉, whose
representation in a particular spin-½ basis is the column (9.123). Note that such spinors may be used as a basis
for expansion of the spin–orbitals ψj(r) defined by Eq. (8.125), where the index j is used for numbering both the
direction of spin (i.e. the particular component of the spinor’s column) and the orbital eigenfunction.
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Since this Hamiltonian is time-independent, we may look for its four-component
eigenfunctions in the form

⎛
⎝⎜

⎞
⎠⎟

ψ
ψ

Ψ = −
ℏ

+

−
{ }t i

E
tr

r
r

( , )
( )

( )
exp , (9.125)

where each of ψ± is a two-component column of the type (9.123), representing two
spin states of the particle (index +) and antiparticle (index −). Plugging Eq. (9.125)
into Eq. (9.95) with the Hamiltonian (9.124), and using Eq. (9.98a), we get the
following system of two linear equations:

ψ ψ
ψ ψ

σ̂ ˆ
σ̂ ˆ

− − − ⋅ =
+ − − ⋅ =

+ −

− +

E mc U c

E mc U c

r p

r p

[ ( )] 0,

[ ( )] 0.
(9.126)

2

2

Expressing ψ- from the latter equation, and plugging the result into the former one,
we get the following single equation for the particle’s spinor:

⎡
⎣⎢

⎤
⎦⎥ ψσ̂ ˆ σ̂ ˆ− − − ⋅

+ −
⋅ =+E mc U c

E mc U
r p

r
p( )

1
( )

0. (9.127)2 2
2

So far, this is an exact equation for eigenstates and eigenvalues of the
Hamiltonian (9.124). It may be substantially simplified in the low-energy limit
when both the potential energy62 and the non-relativistic eigenenergy

˜ ≡ −E E mc (9.128)2

are much lower than mc2. Indeed, in this case the expression in denominator of the
last term in the brackets of Eq. (9.127) is close to 2mc2. Since σ2 = 1, with that
replacement, Eq. (9.127) is reduced to the non-relativistic Schrödinger equation,
similar for both spin components of ψ+, and hence giving spin-degenerate energy
levels. In order to recover small relativistic and spin–orbit effects, we need a slightly
more accurate approximation:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

+ −
≡

+ ˜−
≡ +

˜−

≈ −
˜−

−

E mc U mc E U mc
E U

mc

mc
E U

mc

r r
r

r

1
( )

1
2 ( )

1
2

1
( )

2

1
2

1
( )

2
,

(9.129)
2 2 2 2

1

2 2

in which Eq. (9.127) is reduced to

⎡
⎣⎢

⎤
⎦⎥ ψσ̂ ˆ σ̂ ˆ˜− −

ˆ
+ ⋅

˜− ⋅ =+E U
p
m

E U
mc

r p
r

p( )
2

( )
(2 )

0. (9.130)
2

2 2

62 Strictly speaking, this requirement is imposed on the expectation values of U(r) in the eigenstates to be
found.
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As follows from Eqs. (5.33) and (5.34), the operators of the momentum and of a
function of coordinates commute as

ˆ ∇= − ℏU i Up r[ , ( )] , (9.131)

so that the last term in the square brackets of Eq. (9.130) may be rewritten as

σ̂ ˆ σ̂ ˆ σ̂ ∇ σ̂ ˆ⋅
˜− ⋅ ≡

˜− ˆ − ℏ ⋅ ⋅E U
mc

E U
mc

p
i
mc

Up
r

p
r

p
( )

(2 )
( )

(2 ) (2 )
( )( ). (9.132)

2 2
2

2

Since in the low-energy limit, both terms on the right-hand side of this relation
are much smaller than the three leading terms of Eq. (9.130), we may replace the
first term’s numerator with its non-relativistic value p̂ m/22 . With this replacement,
the term coincides with the first relativistic correction to the kinetic energy
operator—see Eq. (6.47). The second term, proportional to the electric field
EE ϕ∇ ∇= − = − U q/ , may be transformed further on, using a readily verifiable
identity

σ̂ ∇ σ̂ ˆ ∇ ˆ σ̂ ∇ ˆ⋅ ⋅ ≡ ⋅ + ⋅ ×U U i Up p p( )( ) ( ) [( ) ]. (9.133)

Of the two terms on the right-hand side of this relation, only the second one depends
on spin63, giving the following spin–orbital interaction contribution to the
Hamiltonian,

ϕσ̂ ∇ ˆ ˆ ∇ ˆˆ = ℏ ⋅ × ≡ ⋅ ×H
mc

U
q

m c
p S p

(2 )
[( ) ]

2
[( ) ]. (9.134)so 2 2 2

For a central electric field, with potential ϕ(r), its gradient has only the radial
component: ∇ϕ = Eϕ = −d dr r rr r( / ) / / , and with the angular momentum definition
ˆ ˆ≡ ×L r p, Eq. (9.134) is (finally!) reduced to Eq. (9.122).

As was shown in section 6.3, the perturbative treatment of Eq. (9.122), together
with the kinetic-relativistic correction (6.47), in the hydrogen-like atom problem,
leads to the fine structure of each Bohr level En, given by Eq. (6.60):

⎛
⎝⎜

⎞
⎠⎟Δ = − −

+ ½
E

E
mc

n
j

2
3

4
. (9.135)n

fine 2

This result receives a confirmation from the surprising fact that for the hydrogen-like
atom/ion problem, the Dirac equation may be solved exactly—without any
assumptions. I would not have time/space to reproduce the solution64, and will
only list the final result for the energy spectrum:

⎧⎨⎩
⎫⎬⎭

α
α

= +
+ + ½ − − + ½

−
E

mc
Z

n j Z j
1

[ {( ) } ( )]
. (9.136)

2

2 2

2 2 2 1/2 2

1/2

63 The first term gives a small, spin-independent shift of the energy spectrum, which is very difficult to verify
experimentally.
64Good descriptions of the solution are available in many textbooks (the older the better :-), see for example
section 53 in [20].
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Here n = 1, 2, … is the same principal quantum number as in Bohr’s theory, while j
is the quantum number specifying the eigenvalues (5.175) of the total angular
momentum’s square, in our case of a spin-½ particle taking half-integer values:
j = l ± ½ = 1/2, 3/2, 5/2, …—see Eq. (5.189). Such a set of quantum numbers is
rather natural, because due to the spin–orbit interaction, the orbital and spin angular
momenta are not conserved, while their vector sum, J = L + S, is—in the absence of
an external magnetic field. Each energy level (9.136) is doubly-degenerate, with two
eigenstates representing two directions of the spin, i.e. two values of l = j ∓ ½, at
fixed j.

Since according to Eq. (1.13) for EH, the square of the fine-structure constant
α ≡ e2/4πε0ℏc may be represented as the ratio EH/mc2, the low-energy limit (E −mc2 ∼
EH≪mc2) may be pursued by expanding Eq. (9.136) into the Taylor series in (Zα)2≪ 1.
The result,

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥

α α≈ − −
+ ½

−E mc
Z

n
Z

n
n

j
1

2 2
3
4

, (9.137)2
2 2

2

4 4

4

has the same structure, and allows the same interpretation as Eq. (9.92), but with the
last term coinciding with Eq. (6.60)—and with experimental results. Historically,
this correct description of the fine structure of hydrogen atomic levels provided a
decisive proof of Dirac’s theory.

However, even such an impressive theory does not have too many direct
applications. The main reason for that was already discussed in brief at the end
of section 9.5: due to the possibility of creation and annihilation of particle–
antiparticle pairs by an energy influx higher than 2mc2, the number of particles
participating in high-energy interactions is not fixed. An adequate general
description of such a situation is given by the quantum field theory, in which the
particle’s wavefunction is treated as a field to be quantized, using so-called field
operators Ψ̂ tr( , )—very much similar to the electromagnetic field operators (9.16).
The Dirac equation follows from the quantum field theory in the single-particle
approximation.

As was mentioned above on several occasions, the quantum field theory is beyond
the scope of the time/space limits of this course, and I have to stop here, referring the
interested reader to one of several excellent textbooks on this discipline65. However,
I would strongly encourage the student going in this direction to start by playing
with the field operators on his/her own, taking clues from Eqs. (9.16), but replacing
the creation/annihilations operators ˆ ˆ†a aandj j of the field oscillators with those of
the general second quantization formalism outlined in section 8.3.

65 For a gradual introduction see, e.g. either [21] or [22]; on the other hand, [23] and [24], among others, offer a
steeper learning curve.
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9.8 Problems

Problem 9.1. Prove the Casimir formula, given by Eq. (9.23), by calculating the net
force P=F A exerted by the electromagnetic field, in its ground state, on two perfectly
conducting parallel plates of area A, separated by a vacuum gap of width t ≪ A1/2.

Hint: Calculate the field energy in the gap volume with and without the account of
the plate effect, and then apply the Euler–Maclaurin formula66 to the difference of
these two results.

Problem 9.2. Electromagnetic radiation by some single-mode quantum sources may
have such a high degree of coherence that it is possible to observe the interference of
waves from two independent sources with virtually the same frequency, incident on
one detector.

(i) Generalize Eq. (9.29) to this case.
(ii) Use this generalized expression to show that incident waves in different Fock

states do not create an interference pattern.

Problem 9.3. Calculate the zero-delay value g(2)(0) of the second-order correlation
function of a single-mode electromagnetic field in the so-called Schrödinger-cat
state67: a coherent superposition of two Glauber states, with equal amplitudes, equal
but sign-opposite parameters α, and a certain phase shift between them.

Problem 9.4. Calculate the zero-delay value g(2)(0) of the second-order correlation
function of a single-mode electromagnetic field in the squeezed ground state ζ
defined by Eq. (5.142).

Problem 9.5. Calculate the rate of spontaneous photon emission (into unrestricted
free space) by a hydrogen atom, initially in the 2p state (n = 2, l = 1) with m = 0.
Would the result be different for m = ± 1? for the 2s state (n = 2, l = 0, m = 0)?
Discuss the relation between these quantum-mechanical results and those given by
the classical theory of radiation, using the simplest classical model of the atom.

Problem 9.6. An electron has been placed on the lowest excited level of a spheri-
cally-symmetric, quadratic potential well U(r) = meω

2r2/2. Calculate the rate of its
relaxation to the ground state, with the emission of a photon (into unrestricted free
space). Compare the rate with that for a similar transition of the hydrogen atom, for
the case when the radiation frequencies of these two systems are equal.

Problem 9.7. Derive an analog of Eq. (9.53) for the spontaneous photon emission
into the free space, due to a change of the magnetic dipole moment m of a small-size
system.

66 See, e.g. Eq. (A.15a).
67 Its name stems from the well-known Schrödinger cat paradox, which is (very briefly) discussed in
section 10.1.
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Problem 9.8. A spin-½ particle, with gyromagnetic ratio γ, is in its orbital ground
state in dc magnetic field BB0. Calculate the rate of its spontaneous transition from
the higher to the lower energy level, with the emission of a photon into the free
space. Evaluate the rate for an electron in a field of 10 T, and discuss the
implications of this result for laboratory experiments with electron spins.

Problem 9.9. Calculate the rate of spontaneous transitions between the two
sublevels of the ground state of a hydrogen atom, formed as a result of its hyperfine
splitting. Discuss the implications of the result for the width of the 21-cm spectral
line of hydrogen.

Problem 9.10. Find the eigenstates and eigenvalues of the Janes–Cummings
Hamiltonian (9.78), and discuss their behavior near the resonance point ω = Ω.

Problem 9.11. Analyze the Purcell effect, mentioned in sections 9.3 and 9.4,
qualitatively; in particular, calculate the so-called Purcell factor FP, defined as the
ratio of the spontaneous emission rates Γs of an atom to a resonant cavity (tuned
exactly to the quantum transition frequency) and that to the free space.

Problem 9.12. Prove that the Klein–Gordon equation (9.84) may be rewritten in the
form similar to the non-relativistic Schrödinger equation (1.25), but for a two-
component wavefunction, with the Hamiltonian represented (in the usual z-basis) by
the following 2 × 2-matrix:

= − σ + σ ℏ ∇ + σi
m

mcH ( )
2

.z y z

2
2 2

Use your solution to discuss the physical meaning of the wavefunction’s
components.

Problem 9.13. Calculate and discuss the energy spectrum of a relativistic, spinless,
charged particle placed into an external uniform, time-independent magnetic field
BB. Use the result to formulate the condition of validity of the non-relativistic theory
in this situation.

Problem 9.14. Prove Eq. (9.91) for the energy spectrum of a hydrogen-line atom,
starting from the relativistic Schrödinger equation.

Hint: A mathematical analysis of Eq. (3.193) shows that its eigenvalues are given by
Eq. (3.201), εn = −½n2, with n = l + 1 + nr, where nr = 0, 1, 2,…, even if the
parameter l is not integer.

Problem 9.15. Derive the general expression for the differential cross-section of the
elastic scattering of a spinless relativistic particle by a static potential U(r), in the
Born approximation, and formulate the conditions of its validity. Use these results
to calculate the differential cross-section of scattering of a particle with the electric
charge −e by the Coulomb electrostatic potential ϕ(r) = Ze/4πε0r.
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Problem 9.16. Starting from Eqs. (9.95)–(9.98), prove that the probability density w
given by Eq. (9.101) and the probability current density j defined by Eq. (9.102) do
indeed satisfy the continuity equation (1.52): ∂w/∂t + ∇·j = 0.

Problem 9.17. Calculate the commutator of the operator L̂
2 and the Dirac’s

Hamiltonian of a free particle. Compare the result with that for the non-relativistic
Hamiltonian, and interpret the difference.

Problem 9.18. Calculate the commutators of the operators Ŝ
2 and Ĵ

2 with the
Dirac’s Hamiltonian (9.97), and give an interpretation of the results.

Problem 9.19. In the Heisenberg picture of quantum dynamics, derive an equation
describing time evolution of free electron’s velocity in the Dirac theory. Solve the
equation for the simplest state, with definite energy and momentum, and discuss the
solution.

Problem 9.20. Calculate the eigenstates and eigenenergies of a relativistic spin-½
particle with charge q, placed into a uniform, time-independent external magnetic
fieldBB. Compare the calculated energy spectrum with those following from the non-
relativistic theory and the relativistic Schrödinger equation.

Problem 9.21.* Following the discussion in the very end of section 9.7, introduce
quantum field operators ψ̂ that would be related to the usual wavefunctions ψ just as
the electromagnetic field operators (9.16) are related to the classical electromagnetic
fields, and explore the basic properties of these operators. (For this preliminary
study, consider the fixed-time situation.)
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Chapter 10

Making sense of quantum mechanics

This (rather brief) chapter addresses the conceptually important issues of quantum
measurements and quantum state interpretation. Please note that some of these issues
are still subjects of debate1—fortunately not affecting practical results of quantum
mechanics, discussed in the previous chapters.

10.1 Quantum measurements
Now we have got a sufficient background for a (by necessity, very brief) discussion
of quantum measurements2. Let me start with reminding the reader the only
postulate of the quantum theory that relates it to experiment—so far, meaning a
perfect measurement. In the simplest case when the system is in a coherent (pure)
state, its ket-vector may be represented as a linear superposition

∑α α= ∣ 〉a , (10.1)
j

j j

where aj are the eigenstates of the operator of an observable A, related to its
eigenvalues Aj by Eq. (4.68):

ˆ ∣ 〉 = ∣ 〉A a A a . (10.2)j j j

In such state, the outcome of each particular measurement of the observable Amay be
uncertain, but is restricted to the set of eigenvalues Aj, with the jth outcome
probability equal to

1For an excellent review of these controversies, as presented in a few leading textbooks, I highly recommend J
Bell’s paper in the review collection by A Miller [1].
2 ‘Quantum measurements’ is a very unfortunate term; it would be more sensible to speak about ‘measurements
of observables in quantum mechanical systems’. However, the former term is so common and compact that I
will use it—albeit rather reluctantly.
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α=W . (10.3)j j
2

As was discussed in chapter 7, the state of the system (or rather of the statistical
ensemble of similar systems we are using for experiments) may be not coherent, and
hence even more uncertain than the state described by Eq. (10.1). Hence, the
measurement postulate means that even if the system is in the least uncertain state,
the measurement outcomes are still probabilistic3.

If we believe that such measurements may be always made perfectly, and do not
worry too much how exactly, we are subscribing to the mathematical notion of
measurement, that was, rather reluctantly, used in these notes—up to this point.
However, actual (physical) quantum measurements are always imperfect, first of all
because they face a huge gap between the energy-time scale ℏ ∼ 10−34 J s of the
quantum phenomena in ‘microscopic’ quantum systems, such as atoms, and the
‘macroscopic’ scale of direct human perception, so that the role of the instruments
bridging this gap (figure 10.1), is highly nontrivial. These instruments are physical
devices, which also must obey the laws of physics, and for a physicist, it is rather
important to understand the basic laws of their operation, as their contribution (if
any) to the origin of the measurement postulate.

Besides the famous Bohr–Einstein discussion in the mid-1930s, which will be
discussed in section 10.3, the founding fathers of quantum mechanics have not paid
much attention to these issues, apparently because of the following reason. At that
time it looked like the experimental instruments (at least the best of them :-) were
doing exactly what the measurement postulate was telling them. For example, the z-
oriented Stern–Gerlach experiment (figure 4.1) turns two complex coefficients α↑ and
α↓, describing the spin state of the incoming electrons, into a set of particle-counter
clicks, with the rates proportional to, respectively, ∣α↑∣2 and ∣α↓∣2. The crude internal
nature of these instruments makes more detailed questions unnatural. For example,
the electron counting with a Geiger counter involves an effective disappearance of
one observed electron in a zillion-particle electric discharge avalanche it has
triggered. A century ago, it seemed much more important to extend the newly
born quantum mechanics to more complex systems (such as atomic nuclei, etc) than
to think about the physics of such instruments.

However, since that time the experimental techniques, notably including high-
vacuum and low temperature systems, micro- and nano-fabrication, and low-noise

Figure 10.1. The general scheme of a quantum measurement.

3 The outcomes become definite only in the trivial case when the system is definitely in one of the eigenstates aj,
say a0; then αj = δj,0exp{iφ}, and Wj = δj,0.
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electronics, have much improved. In particular, we now may observe quantum-
mechanical behavior of more and more macroscopic objects—such as the micro-
mechanical oscillators mentioned in section 2.9. Moreover, some of ‘macroscopic
quantum systems’ (in particular, special systems of Josephson junctions, see below)
have properties enabling their use as essential parts of measurement setups. Such
developments are making the line separating the ‘micro’ and ‘macro’ worlds more
and more fine, so that more inquisitive inquiries into the physical nature of quantum
measurements are not so hopeless now. In my scheme of things4, these inquiries may
be grouped as follows:

(i) Does a quantum measurement involve any laws besides those of quantum
mechanics? In particular, should it necessarily involve a human/intelligent observer?
(The last question is not as laughable as it may look—see below.)

(ii) What is the state of the measured system just after a single-shotmeasurement—
meaning a measurement process limited to a time interval much shorter than the time
scale of a measured system’s evolution? (This question is a necessary part of the
discussion of repeated measurements and their ultimate form—a continuous monitor-
ing of a certain observable.)

(iii) If a measurement of an observable A has produced a certain outcome Aj, what
statements may be made about the state of the system just before the measurement?
(This question is most closely related to various interpretations of quantum mechanics.)

Let me discuss these issues in the listed order. First of all, I am happy to report
that there is a virtual consensus of physicists on some aspects of these issues.
According to this consensus, any reasonable quantum measurement needs to result
in a certain, distinguishable state of a macroscopic output component of the
measurement instrument—see figure 10.1. (Traditionally, its component is called a
pointer, though its role may be played by a printer or a plotter, an electronic circuit
sending out the result as a number, etc.) This requirement implies that the
measurement process should have the following features:

– provide a large ‘signal gain’, i.e. some means of mapping the quantum state
with its ℏ-scale of action (i.e. of the energy-by-time product) onto a macro-
scopic position of the pointer with a much larger action scale, and

– if we want to approach the fundamental limit of uncertainty, given by
Eq. (10.3), the instrument should introduce as few additional fluctuations
(‘noise’) as permitted by the laws of physics.

Both these requirements are fulfilled in a good Stern–Gerlach experiment—see
figure 4.1 again. Indeed, the magnetic field gradient, splitting the electron beam,
turns the miniscule (microscopic) energy difference (4.167) between two spin-
polarized states into a macroscopic difference between the final positions of two

4Again, this list, and some other issues discussed in the balance of this section, are still controversial.
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sub-beams, where their detectors may be located. However, the internal physics of
the particle detectors (say, Geiger counters) at this measurement is rather complex,
and would not allow us to discuss some aspects of the measurement, in particular to
answer the two inquiries we are working on.

For this reason let me describe the scheme of a virtually similar ‘single-shot’
measurement of a two-level quantum system, which shares the simplicity, high gain,
and low internal noise of the Stern–Gerlach apparatus, but has an advantage that at
its certain implementations5, the measurement process allows a thorough, quanti-
tative theoretical description. Let us measure a coherent state of a particle trapped in
a double-well potential (figure 10.2), where x is some continuous generalized
coordinate—not necessarily a linear displacement. Let the system be in a pure
quantum state, with the energy close to the well’s bottom. Then, as we know from
the discussion of such systems in sections 2.6 and 5.1, the state may be described by
the ket-vector similar to that of spin-½:

α α α= → + ←→ ← , (10.4)

where the component states → and ← are described by wavefunctions localized near
the potential well bottoms at x ∼ ±x0—see the blue line in figure 10.2b. Our goal is to
measure in what well the particle resides at a certain time instant, say t = 0. For that,
let us rapidly change, at that moment, the potential profile of the system, so that at
t > 0, and near the origin, it may be well approximated by an inverted parabola—see
the red line in figure 10.2b:

Figure 10.2. The potential inversion, as viewed on the (a) ‘macroscopic’ and (b) ‘microscopic’ scales of the
generalized coordinate x.

5 The scheme may be implemented, for example, using a simple Josephson-junction circuit called the balanced
comparator—see, e.g. [2] and references therein. Experiments have demonstrated that this system may have a
measurement variance dominated by the theoretically expected quantum-mechanical uncertainty, at practicable
experimental conditions (at temperatures below ∼ 1 K). A conceptual advantage of this system is that it is based
on externally-shunted Josephson junctions, i.e. devices whose quantum-mechanical model, including its part
describing the coupling to environment, is in quantitative agreement with experiment—see, e.g. [3]. Colloquially,
the balanced comparator is a high-gain instrument with a ‘well-documented Hamiltonian’, eliminating the need
for speculations about the environmental effects. In particular, the dephasing process in it, and its time T2, are well
described by Eqs. (7.89) and (7.142), with the coefficient η equal to the Ohmic conductances G of the shunts.
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λ≈ − > ≪U x
m

x t x x( )
2

, for 0, . (10.5)
2

2
f

It is straightforward to verify that the Heisenberg equation of motion in such
inverted potential describes an exponential growth of the operator x̂ in time
(proportional to exp{λt}) and hence a similar, proportional growth of the expect-
ation value 〈x〉 and its rms uncertainty δx.6 At this ‘inflation’ stage, the coherence
between the two component states → and ← is still preserved, i.e. the time evolution
of the system is, in principle, reversible.

Now let the system be weakly coupled, also at t > 0, to a dissipative (e.g. Ohmic)
environment. As we know from chapter 7, such coupling ensures the state’s
dephasing on some time scale T2. If

λ≪x x T xexp{ }, , (10.6)0 0 2 f

then the process, after the potential inversion, consists of two stages, well separated
in time:

– the already discussed ‘inflation’ stage, preserving the component state’s
coherence;

– the dephasing stage, at which the coherence of the component states→ and←
is gradually suppressed, as described by Eq. (7.89), i.e. the density matrix of
the system is reduced to the diagonal form describing a classical mixture of
the probability packets with the probabilities (10.3) equal to, respectively,
W→ = ∣α→∣2 and W← = ∣α←∣2 ≡ 1 − ∣α→∣2.

Besides dephasing, the environment gives the motion a certain kinematic friction,
with the drag coefficient η (7.141), so that the system eventually settles to rest at one
of the macroscopically separated minima x = ±xf of the inverted potential (figure
10.2a), thus ensuring a high ‘signal gain’ xf/x0 ≫ 1. (The time order of these two
processes, dephasing or settling, is not important.) As a result, the final probability
density distribution w(x) along the x-axis has two narrow, well separated peaks. But
this is just the situation that was discussed in section 2.5—see, in particular, figure
2.17. Since that discussion is very important, let me repeat, or rather re-phrase it.
The final state of the system is a classical mixture of two well-separated states, with
the respective probabilities W← and W→, whose sum equals 1. Now let us use some
detector to test whether the system is in one of these states—say the right one. (If xf is
sufficiently large, the noise contribution of this detector into the measurement
uncertainty is negligible7, and its physics is unimportant.) If the system has been

6 Somewhat counter-intuitively, the latter growth plays a positive role for measurement’s fidelity. Indeed, it
does not affect the intrinsic ‘signal-to-noise ratio’ δx/〈x〉, while making the intrinsic (say, quantum-mechanical)
uncertainty much larger than the possible noise contribution by the later measurement stage(s).
7At the balanced-comparator implementation mentioned above, the final state detection may be readily
performed using a ‘SQUID’ magnetometer based on the same Josephson junction technology—see, e.g. Part
EM section 6.5. In this case, the distance between the potential minima ±xf is close to one superconducting flux
quantum (3.38), while the additional uncertainty induced by the SQUID may be as low as a few millionths of
that amount.
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found at this location (again, the probability of this outcome is W→ = ∣α→∣2), the
probability to find it at the counterpart, left location at a consequent detection turns
to zero.

This probability ‘reduction’ is a purely classical (or if you like, mathematical)
effect of the statistical ensemble’s re-definition: W← equals zero not in the initial
ensemble of all similar experiments (where it equals ∣α←∣2), but only in the re-defined
ensemble of experiments in that the system had been found at the right location. Of
course, which ensemble to use, i.e. what probabilities to register/publish is a purely
accounting decision, which should be made by a human (or otherwise intelligent :-)
observer. If we are only interested in an objective recording of results of a pre-fixed
sequence of experiments (i.e. the members of a pre-defined, fixed statistical
ensemble), there is no need to include such an observer in any discussion. In any
case, this detection/registration process, very common in classical statistics, leaves no
space for any mysterious ‘wave packet reduction’—understood as a hypothetical
process that would not obey the regular laws of quantum mechanical evolution.

The ensemble re-definition at measurement is in the core of several paradoxes, of
which the so-called quantum Zeno paradox is perhaps the most spectacular8. Let us
return to a two-level system with the unperturbed Hamiltonian given by Eq. (4.166),
the quantum oscillation period 2π/Ω much longer than the single-shot measurement
time, in which the system initially (at t = 0) is definitely in one of the partial quantum
states—for example, a certain potential well of the double-well potential. Then, as
we know from sections 2.6 and 4.6, the probability to find the system in this initial
state at time t > 0 is

= ΩW t t( ) cos ( /2). (10.7)2

If the time is small enough (t = dt ≪ 1/Ω), we may use the Taylor expansion to write

≈ − Ω
W dt

dt
( ) 1

4
. (10.8)

2 2

Now, let us use some ‘good’ measurement scheme (say, the potential inversion
discussed above) to measure whether the system is still in this partial state. If it is (as
Eq. (10.8) shows, the probability of such an outcome is nearly 100%), then the
system, after the measurement, is in the same partial state. Let us allow it to evolve
again, with the same Hamiltonian. Then the evolution ofW will follow the same law

8This name, coined by E Sudarshan and BMishra in 1997 (though the paradox had been discussed in detail by
A Turing in 1954) is due to its apparent similarity to the classical paradoxes by ancient Greek philosopher
Zeno of Elea. By the way, just for fun, let us have a look at what happens when Mother Nature is discussed by
people to do not understand math and physics. The most famous of the classical Zeno paradoxes is the case of
Achilles and Tortoise: a fast runner Achilles can apparently never overtake a slower Tortoise, because (in
Aristotle’s words) ‘the pursuer must first reach the point whence the pursued started, so that the slower must
always hold a lead’. For a physicist, the paradox has a trivial, obvious resolution, but here is what a
philosopher writes about it—not in some year BC, but in the 2010 AD: ‘Given the history of ‘final resolutions’,
from Aristotle onwards, it’s probably foolhardy to think we’ve reached the end.’ For me personally, this is a
sad symbol of modern philosophy.
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as in Eq. (10.7), but with the initial value given by Eq. (10.8) Thus, when the system
is measured again at time 2dt, the probability to find it in the same partial state is

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟≈ − Ω = − Ω

W dt W dt
dt dt

(2 ) ( ) 1
4

1
4

. (10.9)
2 2 2 2 2

After repeating this cycle N times (with the total time t = Ndt still much less than
N1/2/Ω), the probability that the system is still in its initial state is

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟≡ ≈ − Ω = − Ω ≈ − Ω

W Ndt W t
dt t

N
t

N
( ) ( ) 1

4
1

4
1

4
. (10.10)

N N2 2 2 2

2

2 2

Comparing this result with Eq. (10.7), we see that the process of system’s transfer to
the opposite partial state has been slowed down rather dramatically, and in the limit
N → ∞ (at fixed t), its evolution is virtually stopped by the measurement process.
There is of course nothing mysterious here; the evolution slowdown is due to the
statistical ensemble’s re-definition. Indeed, the slowdown is true only for the
ensemble of experiments in which the system has been found in the initial state at
each moment nt.

This may be the only acceptable occasion for me to mention, very briefly, the
more famous—or rather infamous—Schrödinger cat paradox, so much overplayed
in popular publications9. For this thought experiment, there is no need to discuss the
(rather complicated :-) physics of the cat. As soon as the charged particle, produced
at the radioactive decay, reaches the Geiger counter, the initial coherent super-
position of the two possible quantum states (‘the decay has happened’/‘the decay has
not happened’) of the system is rapidly dephased, i.e. reduced to their classical
mixture, leading, correspondingly, to the classical mixture of the final macroscopic
states ‘cat dead’/‘cat alive’. So, despite attempts by numerous authors, typically
without proper physics background, to present this situation as a mystery whose
discussion needs an involvement of professional philosophers, hopefully by this
point the reader knows enough about dephasing to ignore all this babble.

10.2 QND measurements
I hope that the above discussion has sufficiently illuminated the issues of the group
(i), so let me proceed to the question group (ii), in particular to the general issue of
the back action of the instrument upon the system under measurement—symbolized
with the back arrow in figure 10.1. In instruments like the Geiger counter, such back
action is very large: the instrument essentially destroys (‘demolishes’) the initial state
of the system under measurement. Even the ‘cleaner’ potential-inversion measure-
ment, shown in figure 10.2, fully destroys the initial coherence of the system, i.e.
perturbs it rather substantially.

9 S Hawking has been quoted to say, ‘When I hear about the Schrödinger cat, I reach for my gun.’ The only
good aspect of this popularity is that the formulation of this paradox should be so well known to the reader
that I do not need to waste time/space for repeating it.
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However, in the 1970s it was understood that this is not really necessary. For
example, in section 7.3, we have already discussed an example of a two-level system
coupled with its environment and described by the Hamiltonian (7.68)–(7.70):

λ σ λ σˆ = ˆ + ˆ + ˆ ˆ = ˆ ˆ = − ˆH H H H H a H f{ }, with , { } , (10.11)s e s z zint int

so that

σ σˆ ˆ ∝ ˆ ˆ =H H[ , ] [ , ] 0. (10.12)s z zint

Comparing this equality with Eq. (4.199), applied to the explicitly-time-independent
Hamiltonian Ĥs,

λℏ ˆ ̇ = ˆ ˆ ≡ ˆ ˆ + ˆ + ˆ = ˆ ˆi H H H H H H H H H[ , ] [ , ( { })] [ , ], (10.13)s s s s e sint int

we see that in the Heisenberg picture, the Hamiltonian operator (and hence the
energy) of the system of our interest does not change in time. On the other hand, if
the ‘environment’ in this discussion is the instrument used for the measurement (see
figure 10.1 again), the interaction can change its state, so it may be used to measure
the system’s energy—or another observable whose operator commutes with the
interaction Hamiltonian. Such a trick is called the quantum non-demolition (QND),
or sometimes ‘back-action-evading’ measurements10. Due to the lack of back action
of the instrument on the corresponding variable, such measurements allow its
continuous monitoring. Let me present a fine example of an actual measurement of
this kind—see figure 10.3.11

In this experiment, a single electron is captured in a Penning trap—a combination
of a (virtually) uniform magnetic field BB and a quadrupole electric field12. Such an
electric field stabilizes the cyclotron orbits but does not have any noticeable effect on
electron motion in the plane perpendicular to the magnetic field, and hence on its
Landau level energies—see Eq. (3.50):

⎛
⎝⎜

⎞
⎠⎟

Bω ω= ℏ + =E n
e
m

1
2

, with . (10.14)n c c
e

(In the cited work, withB ≈ 5.3T, the cyclic frequency ωc/2π was about 147 GHz, so
that the Landau level splitting ℏωc was close to 10−22 J, i.e. corresponded to
temperature ∼10 K, while the physical temperature of the system might be reduced
well below that, down to ∼80 mK.) Now note that the analogy between a particle on
a Landau level and a harmonic oscillator goes beyond the energy spectrum (10.14).
Indeed, since the Hamiltonian of a 2D particle in a perpendicular magnetic field may
be reduced to Eq. (3.47), similar to that of a 1D oscillator, we may repeat all
procedures of section 5.4 and rewrite this Hamiltonian in terms of the creation–
annihilation operators—see Eq. (5.72):

10 For a detailed discussion of this field see, e.g. [4]; for an earlier review, see [5].
11 [6]
12 It is similar to the 2D system discussed in Part EM section 2.7, but with additional rotation about one of the
axes.
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⎛
⎝⎜

⎞
⎠⎟ωˆ = ℏ ˆ ˆ +†H a a

1
2

. (10.15)s c

In the Peil and Gabrielse experiment, the trapped electron had one more degree of
freedom—along the magnetic field. The electric field of the Penning trap created a
soft confining potential along this direction (vertical in figure 10.3a; I will take it for
the z-axis), so that small electron oscillations along that axis could be well described
as those of a 1D harmonic oscillator of much lower eigenfrequency, in that
particular experiment with ωz/2π ≈ 64 MHz. This frequency could be measured
very accurately (with error ∼1 Hz) by sensitive electronics whose electric field does
affect the z-motion of the electron, but not its motion in the perpendicular plane. In
an exactly uniform magnetic field, the two modes of electron motion would be
completely uncoupled. However, the experimental setup included two special
superconducting rings made of niobium (see figure 10.3a), which slightly distorted
the magnetic field and created an interaction between the modes, which might be
well approximated by the Hamiltonian13

⎛
⎝⎜

⎞
⎠⎟ˆ = × ˆ ˆ + ˆ†H a a zconst

1
2

, (10.16)int
2

so that the main condition (10.12) of a QND measurement was very closely satisfied.
At the same time, the coupling (10.16) ensured that a change of the Landau level
number n by 1 changed the z-oscillation eigenfrequency by ∼12.4 Hz. Since this shift
was substantially larger than electronics’ noise, spontaneous changes of n (due to an
uncontrolled coupling of the electron to environment) could be readily observed—
moreover, continuously monitored—see figure 10.3b. The record shows spontaneous

Figure 10.3. QND measurements of single electron’s energy by Peil and Gabrielse: (a) the experimental setup
core, and (b) a record of the thermal excitation and spontaneous relaxation of Fock states. Reprinted with
permission from [6]. Copyright 1999 by the American Physical Society.

13Here I have simplified the real situation a bit. Actually, in this experiment there was an electron spin’s
contribution to the interaction Hamiltonian as well, but since the used high magnetic field polarized the spins
quite reliably, their only effect was a constant shift of the frequency ωz, which is not important for our discussion.
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excitations of higher Landau levels, with their sequential relaxation, just as described
by Eqs. (7.208)–(7.210). The detailed data statistics analysis showed that there was
virtually no effect of the measuring instrument on these processes—at least on the
scale of minutes, i.e. as many as ∼1013 cyclotron orbit periods14.

It is important, however, to note that any measurement—QND or not—cannot
avoid the uncertainty relations between incompatible variables; in the particular case
described above, a permanent monitoring of the Landau state number n does not
allow the simultaneous exact monitoring of its quantum phase (which may be
defined exactly as in the harmonic oscillator). In this context, it is natural to wonder
whether the QND measurement concept may be extended from quadratic-form
variables like the energy to the ‘usual’ observables such as coordinates and
momenta. whose uncertainties are bound by the ordinary Heisenberg relation
(1.35). The answer is YES, but the required methods are a bit more tricky.

For example, let us place an electrically charged particle into a uniform electric
field EEE = tn ( )x of the instrument, so that their interaction Hamiltonian is

Eˆ = − ˆ ˆH q t x( ) . (10.17)int

Such interaction may certainly pass information on the time evolution of the
coordinate x to the instrument. However, in this case Eq. (10.12) is not satisfied—at
least for the kinetic-energy part of system’s Hamiltonian; as a result the interaction
distorts the time evolution of the particle’s momentum. Indeed, writing the
Heisenberg equation (4.199) for the x-component of the momentum, we get

EEˆ ̇ − ˆ ̇ = ˆ
=p p q t( ). (10.18)0

Integrating Eq. (5.139) for the coordinate operator evolution15, we get the
expression

∫ˆ = ˆ + ˆ ′ ′x t x t
m

p t dt( ) ( )
1

( ) , (10.19)
t

t

0
0

which shows that the perturbations (10.18) of the momentum would eventually find
their way to the coordinate evolution, not allowing its unperturbed sequential
measurements.

However, for such an important particular system as a harmonic oscillator, the
following trick is possible. For this system, Eqs. (5.139) and (10.18) may be readily
combined to give a second-order differential equation for the coordinate operator,
that is absolutely similar to the classical equation of motion of the system, and has a
similar solution16:

14 See also the conceptually similar experiments, performed by different means: [7].
15 This simple relation is limited to 1D systems with Hamiltonians of the type (1.41), but by now the reader
certainly knows enough to understand that this discussion may be readily generalized to many other systems.
16Note in particular that the function sinω0τ (with τ ≡ t − t′) under the integral, divided by ω0, is nothing more
than the temporal Green’s function G(τ) of a loss-free harmonic oscillator—see, e.g. Part CM section 5.1.
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E
E

∫ω
ωˆ = ˆ + ˆ ′ − ′ ′

= −∞
x t x t

q
m

t t t dt( ) ( ) ( )sin ( ) . (10.20)
t

0 0
0

This formula confirms that generally the external field E t( ) (in our case, the sensing
field of the measurement instrument) affects the time evolution law—of course.
However, Eq. (10.20) shows that if the field is applied only at moments t′n separated
by intervals T /2, where T π ω≡ 2 / 0 is the oscillation period, its effect on the
coordinate vanishes at similarly spaced observation instants T= + +′t t m( 1/2)n n .
This is the idea of stroboscopic QND measurements. Of course, according to Eq.
(10.18), even such measurement strongly perturbs the oscillator momentum, so that
even if the values xn are measured with high accuracy, the Heisenberg’s uncertainty
relation is not violated.

A direct implementation of the stroboscopic measurements is technically com-
plicated, but this initial idea has opened a way to more practicable solutions. For
example, it is straightforward to use the Heisenberg equations of motion to show
that if the coupling of two harmonic oscillators, with coordinates x and X, and
unperturbed eigenfrequencies ω and Ω, is modulated in time as

ωˆ ∝ ˆ ˆ ΩH xX t tcos cos , (10.21)int

then the process in one of the oscillators (say, that with frequency Ω) does not affect
dynamics of one of the quadrature components of the counterpart oscillator, defined
by relations17

ω
ω

ω ω
ω

ωˆ ≡ ˆ −
ˆ ˆ ≡ ˆ +

ˆ
x x t

p
m

t x x t
p

m
tcos sin , sin cos , (10.22)1 2

while this component’s motion does affect the dynamics of one of quadrature
components of the counterpart oscillator. (For the counterpart couple of quadrature
components, the information transfer goes in the opposite direction.) This scheme
has been successfully used for QND measurements18.

Please note that the last two QND measurement examples are based on the idea
of external periodic modulation of a certain parameter in time—either in the short-
pulse form or the sinusoidal form. So, the reader should not be surprised if the only
role of a QND measurement is a sensitive measurement of a weak classical force
acting on a quantum probe system19, i.e. a 1D oscillator of eigenfrequency ω0, it may
be implemented much more simply—just by modulating an oscillator’s parameter

17 The physical sense of these relations should be clear from figure 5.8: they define a system of coordinates
rotating clockwise with the angular velocity equal to ω, so that the point representing unperturbed classical
oscillations with that frequency is at rest in this rotating frame. (The ‘probability cloud’ representing a Glauber
state is also stationary in the coordinates [x1, x2].) The reader familiar with the classical theory oscillations may
notice that the observables x1 and x2 so defined are just the Poincaré plane coordinates (‘RWA variables’)—
see, e.g. Part CM sections 5.3–5.6, and especially figure 5.9, where these coordinates are denoted as u and v.
18 The first, initially imperfect QND experiments were reported by M Levenson et al [8], and other groups soon
after this, using nonlinear interactions of optical waves. Later, the results were much improved—see, e.g. [9]
and references therein. Recently, such experiments were extended to mechanical systems—see, e.g. [10].
19As it is, for example, for gravitational wave detectors.
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with a frequency ω ≈ 2ω0. From the classical dynamics, we know that if the depth of
such modulation exceeds a certain threshold value, it results in the excitation of the
so-called degenerate parametric oscillations with frequency ω/2, and one of two
opposite phases20. In the language of Eq. (10.22), the parametric excitation means
an exponential growth of one of the quadrature components (with its sign depending
on initial conditions), while the counterpart component is suppressed. Close to, but
below the excitation threshold, the parameter modulation boosts all fluctuations of
the almost-excited component, including its quantum-mechanical uncertainty, and
suppresses (squeezes) those of the counterpart component. The result is a squeezed
state, already discussed in section 5.5 of this course (see in particular Eqs. (5.143)
and figure 5.8), which allows one to notice the effect of an external force on the
oscillator on the backdrop of a quantum uncertainty much smaller than the standard
quantum limit (5.99).

In electrical engineering, this fact may be conveniently formulated in terms of
noise parameter ΘN of a linear amplifier—essentially the tool for a continuous
monitoring of an input ‘signal’—e.g. a microwave or optical waveform21. Namely,
ΘN of ‘usual’ (say, transistor or maser) amplifiers which are equally sensitive to both
quadrature components of the signal, ΘN has the minimum value ℏω/2, due to the
quantum uncertainty pertinent to the quantum state of the amplifier itself (which
therefore plays the role of its ‘quantum noise’)22. On the other hand, a degenerate
parametric amplifier, sensitive to just one quadrature component, may have ΘN well
below ℏω/2, due to the squeezing of its ground state23.

Let me note that the parameter-modulation schemes of the QND measurements
are not limited to harmonic oscillators, and may be applied to other important
quantum systems, notably including two-level (i.e. spin-½-like) systems24. Such
measurements may be an important tool for the further progress of quantum
computation and cryptography25.

Finally, let me mention that composite systems consisting of a quantum
subsystem, and a classical subsystem performing its continuous weakly-perturbing
measurement and using its results for providing a specially crafted feedback, may
have some curious properties, in particular mock a quantum system completely
detached from the environment26.

10.3 Hidden variables and local reality
Now we are ready to proceed to the discussion of the last, hardest group (iii) of the
questions posed in the previous section, namely on the state of a quantum system just

20 See, e.g. Part CM section 5.5, and also figure 5.8 and its discussion in section 5.6.
21 For a quantitative definition of the latter parameter, suitable for the quantum sensitivity range (ΘN ∼ ℏω) as
well, see, e.g. [11]. In the classical noise limit (ΘN ≫ ℏω), it coincides with kBTN, where TN is a more popular
measure of electronics noise, called the noise temperature.
22 This fact was recognized very early—see, e.g. [12].
23 See, e.g. the spectacular experiments [13].
24 See, e.g. [14].
25 See, e.g. [15].
26 See, e.g. the monograph by H Wiseman and G Milburn [16], and the recent experiments by R Vijay et al [17].
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before its measurement. After a very important but inconclusive discussion of this
issue by A Einstein and his collaborators on one side, and N Bohr on the other side,
in the mid-1930s, such discussions resumed in the 1950s.27 They led to a key
contribution by J Bell in the early 1960s, and an important experimental work on
verifying Bell’s inequalities, but besides that work, the recent progress has been
marginal, and opinions of even prominent physicists on the problem are still very
much different.

The central controversial issue may be formulated as follows: what had been the
‘real’ state of a quantum-mechanical system just before a virtually-perfect single-
shot measurement was performed on it, and gave a certain outcome? In order to be
specific, let us focus again on the example of Stern–Gerlach measurements of spin-½
particles—because of their conceptual simplicity28. For a single-component system
(in this case a single spin-½) the answer to the posed question may look evident. For
example, if the spin is in a coherent (least-uncertain) state α, i.e. its ket-vector may be
expressed in the form similar to Eq. (10.4),

α α α= ↑ + ↓↑ ↓ , (10.23)

where, as usual, ↑ and ↓ denote the states with the corresponding definite spin
orientations along the z-axis, then the probabilities of the corresponding outcomes
of the z-oriented Stern–Gerlach experiment are W↑ = ∣α↑∣2 and W↓ = ∣α↓∣2. Then it
looks natural to suggest that if a particular experiment gave the outcome corre-
sponding to the state ↑, the spin had been in that state just before the experiment.
For a classical system such an answer would be certainly correct, and the fact that
the probability W↑ = ∣α↑∣2, defined for the statistical ensemble of all experiments
(regardless of their outcome), may be less than 1, would merely reflect our ignorance
about the real state of this particular system before the measurement—which just
reveals this situation.

However, as was first argued in the famous EPR paper published in 1935 by A
Einstein, B Podolsky, and N Rosen, such an answer becomes impossible in the case
of an entangled quantum system, if only one of its components is measured with an
instrument. The original EPR paper discussed thought experiments with a pair of
1D particles prepared in a quantum state in that both the sum of their momenta and
the difference of their coordinates have definite values: p1 + p2 = 0, x1 − x2 = a.29

However, usually this discussion is recast into an equivalent Stern–Gerlach experi-
ment shown in figure 10.4a.30 A source emits rare pairs of spin-½ particles,
propagating in opposite directions, with exactly zero net spin of the pair, but
otherwise in random spin states. After the spatial separation of the particles has

27 See, e.g. the review collection [18].
28As was discussed in section 1, the Stern–Gerlach-type experiments may be readily made virtually perfect,
provided that we do not care about the evolution of the system during the single-shot measurement.
29 This is possible, because the corresponding operators commute: ˆ + ˆ ˆ − ˆ = ˆ ˆ − ˆ ˆ =p p x x p x p x[ , ] [ , ] [ , ] 01 2 1 2 1 1 2 2 .
30A more convenient, frequently used experimental technique for entangled state generation is the parametric
excitation (also called the four-wave mixing, FWM) of optical photon pairs—see, e.g. the publications cited in
the end of this section.
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become sufficiently large (see below), the spin state of each of them is measured with
a Stern–Gerlach detector, with one of them (figure 10.1, SG1) somewhat closer to the
particle source, so it makes the measurement first, at a time t1 < t2.

First, let the detectors be oriented along the same direction, say axis z. Evidently,
the probability of each detector to give any of values Sz = ±ℏ/2 is 50%. However, if
the first detector had given the result Sz = −ℏ/2, then even before the second
detector’s measurement, we know that the latter will give the result Sz = +ℏ/2 with
the 100% probability. So far, this situation still allows for a classical interpretation,
just as for the single-particle measurements: we may fancy that the second particle
really has a definite spin before the measurement, and the first measurement has just
removed our ignorance about that reality. In other words, the change of the
probability of the outcome Sz = +ℏ/2 at the second detection from 50% to 100%
is due to the statistical ensemble re-definition: the 50% probability of this detection
belongs to the ensemble of all experiments, while the 100% probability belongs to the
sub-ensemble of experiments with the Sz = −ℏ/2 outcome of the first experiment.

However, let the source generate the spin pairs in the entangled, singlet state (8.18),

∣ 〉 = ↑↓ − ↓↑s
1

2
( ), (10.24)12

that certainly satisfies the above assumptions: the probability of each Sz value of any
particle is 50%, the sum of both Sz is definitely zero, and if the first detector’s result is
Sz = −ℏ/2, then the state of the remaining particle is ↑, with zero uncertainty. Now
let us use Eqs. (4.123) to represent the same state (10.24) in a different form:

⎡
⎣⎢

⎤
⎦⎥

∣ 〉 = → + ← → − ←

− → − ← → + ←

s
1

2

1

2
( )

1

2
( )

1

2
( )

1

2
( ) .

(10.25)
12

Figure 10.4. (a) General scheme of two-particle Stern–Gerlach experiments, and (b) the orientation of the
detectors, assumed at the deviation of Bell’s inequality (10.36).
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Opening the parentheses (carefully, without swapping the ket-vector order, which
encodes the particle numbers!), we get an expression similar to Eq. (10.24), but now
for the x-basis:

∣ 〉 = → ← − ← →s
1

2
( ). (10.26)12

Hence if we use the first detector (closest to the particle source) to measure Sx rather
than Sz, then after it had given a certain result (say, Sx = −ℏ/2), we know for sure,
before the second particle spin’s measurement, that its Sx component definitely
equals +ℏ/2.

So, depending on the experiment performed on the first particle, the second
particle, before its measurement, may be in one of two states—either with a definite
component Sz or with a definite component Sx, in each case with zero uncertainty.
Evidently, this situation cannot be interpreted in classical terms if the particles (or
instruments) do not interact during the measurements. A Einstein was deeply
unhappy with such a situation, because it did not satisfy what, in his view, was
the general requirement to any theory, which nowadays is called the local reality. His
definition of this requirement was as follows: ‘The real factual situation of system 2
is independent of what is done with system 1 that is spatially separated from the
former’. (Here the term ‘spatially separated’ is not defined, but from the context it is
clear that Einstein meant the detector separation by a superluminal interval, i.e. by
distance

− > −c t tr r , (10.27)1 2 1 2

where the measurement time difference on the right-hand side includes the measure-
ment duration.) In Einstein’s view, since quantum mechanics did not satisfy the local
reality condition, it could not be considered a complete theory of Nature.

This situation naturally raises the question whether something (usually called
hidden variables) may be added to the quantum-mechanical description in order
to enable it to satisfy the local reality requirement. The first definite statement in
this regards was J von Neumann’s ‘proof’31 (first famous, then infamous) that
such variables cannot be introduced; for a while his work satisfied the quantum
mechanics practitioners, who apparently did not pay much attention32. A major
new contribution to the problem was made only in the 1960s by J Bell33. First
of all, he found an elementary (in his words, ‘foolish’) error in von Neumann’s
logic, which voids his ‘proof’. Second, he demonstrated that Einstein’s local
reality condition is incompatible with conclusions of quantum mechanics—that
had been, by that time, confirmed by too many experiments to be seriously
questioned.

31 In his very early book [19].
32 Perhaps, it would not satisfy A Einstein, but reportedly he did not know about the von Neumann’s
publication before signing the EPR paper.
33 See, e. g. either [20], or [21].
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Let me describe a particular version of Bell’s proof (suggested by E Wigner),
using the same EPR pair experiment (figure 10.4a), in that each SG detector may be
oriented in any of three directions: a, b, or c—see figure 10.4b. As we already know
from chapter 4, if a fully-polarized beam of spin-½ particles is passed through a
Stern–Gerlach apparatus forming angle ϕ with the polarization axis, the proba-
bilities of two alternative outcomes of the experiment are

ϕ ϕ ϕ ϕ= =+ −( )W Wcos
2

, ( ) sin
2

. (10.28)2 2

Let us use this formula to calculate all joint probabilities of measurement outcomes,
starting from the detectors 1 and 2 oriented, respectively, in the directions a and c.
Since the angle between the negative direction of the a-axis and the positive direction
of the c-axis is ϕa+,c− = π − φ (see the dashed arrow in figure 10.4b), we get

ϕ

π φ φ

≡ =

= − ≡

+ + + + +
− +W a c W a W c a( , ) ( ) ( )

1
2

cos
2

1
2

cos
2

1
2

sin
2

,
(10.29)

a c2 ,

2 2

where W(x∣y) is the conditional probability of the outcome x if the outcome y has
certainly happened. (The first equality in Eq. (10.29) is the well-known identity of
the probability theory.) Absolutely similarly,

φ≡ =+ + + + +W c b W c W b c( , ) ( ) ( )
1
2

sin
2

, (10.30)2

π φ φ≡ = − ≡+ + + + +W a b W a W b a( , ) ( ) ( )
1
2

cos
2

2
1
2

sin . (10.31)2 2

Now note that for any angle φ smaller than π/2 (as in the case shown in figure 10.4b),
the trigonometry gives

φ φ φ φ⩾ + ≡1
2

sin
1
2

sin
2

1
2

sin
2

sin
2

. (10.32)2 2 2 2

(For example, for φ → 0 the left-hand side of this inequality tends to φ2/2, and
the right-hand side, to φ2/4.) Hence the quantum-mechanical result gives, in
particular,

φ π⩾ + ⩽+ + + + + +W a b W a c W c b( , ) ( , ) ( , ), for /2. (10.33)

On the other hand, we may compose another inequality for the same probabilities
without calculating them from any particular theory, but using the local reality
assumption. Let us list all possible outcomes of detector measurements, taking into
account the zero net spin of the system:
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From the local reality point of view, these measurement options are independent, so
we may write:

= + = +
= +

+ + + +

+ +

W a c W W W c b W W
W a b W W

( , ) , ( , ) ,
( , ) .

(10.34)2 4 3 7

3 4

On the other hand, since no probability may be negative (by its very definition), we
may always write

+ ⩽ + + +W W W W W W( ) ( ). (10.35)3 4 2 4 3 7

Plugging into this inequality the values of these two parentheses, given by
Eq. (10.34), we get

⩽ ++ + + + + +W a b W a c W c b( , ) ( , ) ( , ). (10.36)

This is (one of several possible forms of) Bell’s inequality, which has to be satisfied by
any local-reality theory; it directly contradicts the quantum-mechanical result (10.33).

Though experimental tests of the Bell’s inequalities had been started in the late
1960s, the interpretation of first results was vulnerable to two criticisms:

(i) The detectors were not fast enough and not far enough to have the relation
(10.27) satisfied. This is why, as a matter of principle, there was a chance that
information on one measurement outcome had been transferred (by some, mostly
implausible) means to particles before the second measurement—the so-called
locality loophole.

(ii) The particle/photon detection efficiencies were too low to have sufficiently
small error bars for both parts of the inequality—the detection loophole.

Gradually, these loopholes have been closed34. As expected, substantial violations
of the Bell inequalities (10.36) (or their equivalent forms) have been proved,

34 Important milestones on that way were the experiments [22] and [23]. Detailed reviews of the experimental
situation were given, for example, in [24] and [25]; see also the later paper [26]. Presently, a high-fidelity
demonstration of the Bell inequality violation has become a standard test in virtually each experiment with
entangled qubits used for quantum encryption research—see section 8.5, in particular the paper by J Lin cited
there.
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essentially rejecting any possibility to reconcile quantum mechanics with Einstein’s
local reality requirement.

10.4 Interpretations of quantum mechanics
The fact that quantum mechanics is incompatible with local reality, makes its
reconciliation with our (classically-bred) ‘common sense’ rather challenging. Here is
a brief list of the major interpretations of quantum mechanics, that try to provide at
least a partial reconciliation of this kind:

(i) The so-called Copenhagen interpretation—to which most physicists (myself
including) adhere. This ‘interpretation’ does not really interpret anything; it just
states the intrinsic stochasticity of measurement results in quantum mechanics,
essentially saying: ‘Do not worry; this is just how it is; live with it’. My only remark
on this school of thought is as follows: while this interpretation implies statistical
ensembles (otherwise, how would you define the probability?—see section 1.3), its
most frequently stated formulations do not put a sufficient emphasis on their role, in
particular on the ensemble re-definition as the only possible point of a human
observer’s involvement in the measurement process—see section 10.1 above.
Perhaps the most impressive objection to the Copenhagen interpretation is attrib-
uted to A Einstein: ‘God does not play dice.’ OK, when Einstein speaks, we all
should listen, but perhaps when God speaks (through experimental results), we have
to pay even more attention.

(ii) Non-local reality. Since the dismissal of von Neumann’s ‘proof’ by J Bell, to
the best of my knowledge, there has been no proof that hidden parameters could not
be introduced, provided that they do not imply the local reality. Of constructive
approaches, perhaps the most notable contribution was made by D Bohm35, who
developed the initial L de Broglie’s interpretation of the wavefunction as a ‘pilot
wave’, making it quantitative. In the wave-mechanics version of this concept, the
wavefunction governed by the Schrödinger equation just guides a ‘real’, point-like
classical particle whose coordinates serve as hidden variables. However, this concept
does not satisfy the notion of local reality. For example, the measurement of the
particle’s coordinate at a certain point r1 has to instantly change the wavefunction
everywhere, including the points r2 in the superluminal range (10.27). After A
Einstein’s criticism, D Bohm essentially abandoned his theory36. I also think that
admitting the ‘spooky action on distance’ would be too much of a sacrifice for
regaining the classical determinism.

(iii) The many-world interpretation introduced in 1957 by H Everitt, and
popularized in the 1960s and 1970s by B de Witt. In this interpretation, all possible
measurement outcomes do happen, splitting the Universe into the corresponding

35 [27].
36 See, e.g. section 22.19 of his (generally good) textbook [28].
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number of ‘parallel’ universes (or rather ‘multiverses’), so that from one of them,
other multiverses and hence other outcomes cannot be observed. Let me leave to the
reader an estimate of the rate at which the parallel multiverses have to be constantly
generated (say, per second), taking into account that such generation should take
place not only in explicit lab experiments, but in any quasi-measurement irreversible
process such as a fission of any atomic nucleus or an absorption/emission of a
photon, everywhere in each multiverse—whether its result is recorded or not. N van
Kampen has called the many-world interpretation a ‘mind-boggling fantasy’37.
Even the main proponent of this interpretation, de Witt, has confessed: ‘The idea is
not easy to reconcile with common sense.’ I agree.

(iv) Quantum logic. In desperation, some physicists turned philosophers have
decided to dismiss the formal logic we are using—in science and elsewhere. From
what (admittedly, very little) I have read about this school of thought, it seems that
from its point of view the statements like ‘the SG detector has found the spin to be
directed along the magnetic field’ should not necessarily be either true or false. OK,
if we dismiss the formal logic, I do not know how we can use any scientific theory to
make any predictions—until the quantum logic experts tell us what to replace it
with. To the best of my knowledge, so far they have not done that. I personally trust
the opinion by J Bell, who certainly thought more about these issues: ‘It is my
impression that the whole vast subject of Quantum Logic has arisen […] from the
misuse of a word.’

As far as I know, neither of these interpretations has yet provided a suggestion as
to how it might be tested experimentally to exclude other ones. On the positive side,
there is a consensus that quantum mechanics makes correct (if sometimes proba-
balistic) predictions, which do not contradict any reliable experimental results we are
aware of. Maybe, this is not that bad for a scientific theory38.

References
[1] Miller A (ed) 1989 Sixty-Two Years of Uncertainty (Plenum)
[2] Walls T et al 2007 IEEE Trans. on Appl. Supercond. 17 136
[3] Schwartz D et al 1985 Phys. Rev. Lett. 55 1547
[4] Braginsky V and Khalili F 1992 Quantum Measurement ed K Thorne (Cambridge University

Press)
[5] Braginsky V et al 1980 Science 209 547
[6] Peil S and Gabrielse G 1999 Phys. Rev. Lett. 83 1287
[7] Nogues G et al 1999 Nature 400 239

37 [29]. By the way, I highly recommend the very reasonable summary of the quantum measurement issues,
given in this paper, though believe that the quantitative theory of dephasing, discussed in chapter 7 of this
course, might be used to bring additional clarity in some of its statements.
38 For the reader who is not satisfied with this ‘positivistic’ approach, and wants to improve the situation, my
earnest advice is to start not from square one, but from reading what other (including some very clever!) people
thought about it. The review collection by J Wheeler and W Zurek, cited above, may be a good starting point.

Quantum Mechanics: Lecture notes

10-19

https://doi.org/10.1109/TASC.2007.898632
https://doi.org/10.1103/PhysRevLett.55.1547
https://doi.org/10.1126/science.209.4456.547
https://doi.org/10.1103/PhysRevLett.83.1287
https://doi.org/10.1038/22275


[8] Levenson M et al 1986 Phys. Rev. Lett. 57 2473
[9] Grangier P et al 1998 Nature 396 537
[10] Lecocq F et al 2015 Phys. Rev. X 5 041037
[11] Devyatov I et al 1986 J. Appl. Phys. 60 1808
[12] Haus H and Mullen J 1962 Phys. Rev. 128 2407
[13] Yurke B et al 1988 Phys. Rev. Lett. 60 764
[14] Averin D 2002 Phys. Rev. Lett. 88 207901
[15] Jaeger G 2006 Quantum Information: An Overview (Springer)
[16] Wiseman H and Milburn G 2009 Quantum Measurement and Control (Cambridge University

Press)
[17] Vijay R et al 2012 Nature 490 77
[18] Wheeler J and Zurek W (ed) 1983 Quantum Theory and Measurement (Princeton University

Press)
[19] von Neumann J 1932 Mathematische Grundlagen der Quantenmechanik [Mathematical

Foundations of Quantum Mechanics] (Springer) (The first English translation was published
only in 1955)

[20] Bell J 1966 Rev. Mod. Phys. 38 447
[21] Bell J 1982 Found. Phys. 12 158
[22] Aspect A et al 1982 Phys. Rev. Lett. 49 91
[23] Rowe M et al 2001 Nature 409 791
[24] Genovese M 2005 Phys. Rep. 413 319
[25] Aspect A 2015 Physics 8 123
[26] Handsteiner J et al 2017 Phys. Rev. Lett. 118 060401
[27] Bohm D 1952 Phys. Rev. 85(165) 180
[28] Bohm D 1979 Quantum Theory (Dover)
[29] van Kampen N 1988 Physica A 153 97

Quantum Mechanics: Lecture notes

10-20

https://doi.org/10.1103/PhysRevLett.57.2473
https://doi.org/10.1038/25059
https://doi.org/10.1063/1.337224
https://doi.org/10.1103/PhysRev.128.2407
https://doi.org/10.1103/PhysRevLett.60.764
https://doi.org/10.1103/PhysRevLett.88.207901
https://doi.org/10.1038/nature11505
https://doi.org/10.1103/RevModPhys.38.447
https://doi.org/10.1007/BF01889272
https://doi.org/10.1103/PhysRevLett.49.91
https://doi.org/10.1038/35057215
https://doi.org/10.1016/j.physrep.2005.03.003
https://doi.org/10.1103/Physics.8.123
https://doi.org/10.1103/PhysRevLett.118.060401
https://doi.org/10.1103/PhysRev.85.180
https://doi.org/10.1016/0378-4371(88)90105-7


IOP Publishing

Quantum Mechanics
Lecture notes

Konstantin K Likharev

Appendix A

Selected mathematical formulas

This appendix lists selected mathematical formulas that are used in this lecture course
series, but not always remembered by students (and some instructors :-).

A.1 Constants
• Euclidean circle’s length-to-diameter ratio:

π π= … ≈3.141 592 653 ; 1.77. (A.1)1/2

• Natural logarithm base:

≡ + = …→∞
⎛
⎝⎜

⎞
⎠⎟e

n
alim 1

1
2.718 281 828 ; (A.2 )n

n

from that value, the logarithm base conversion factors are as follows (ξ > 0):

ξ
ξ

ξ
ξ

= ≈ = ≈ b
ln

log
ln 10 2.303,

log

ln
1

ln 10
0.434. (A.2 )

10

10

• The Euler (or ‘Euler–Mascheroni’) constant:

γ ≡ + + + … − = …

≈γ

→∞
⎛
⎝⎜

⎞
⎠⎟n

n

e

lim 1
1
2

1
3

1
ln 0.577 156 649 0 ;

1.781.

(A.3)n

A.2 Combinatorics, sums, and series
(i) Combinatorics
• The number of different permutations, i.e. ordered sequences of k elements
selected from a set of n distinct elements (n ⩾ k), is

≡ ⋅ − ⋯ − + = !
− !

P n n n k
n

n k
a( 1) ( 1)

( )
; (A.4 )k

n
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in particular, the number of different permutations of all elements of the set
(n = k) is

= ⋅ − ⋯ ⋅ = !P k k k b( 1) 2 1 . (A.4 )k
k

• The number of different combinations, i.e. unordered sequences of k
elements from a set of n ⩾ k distinct elements, is equal to the binomial
coefficient

≡ ≡ = !
! − !( )C

n
k

P

P

n
k n k( )

. (A.5)k
n k

n

k
k

In an alternative, very popular ‘ball/box language’, nCk is the number of
different ways to put in a box, in an arbitrary order, k balls selected from n
distinct balls.

• A generalization of the binomial coefficient notion is the multinomial
coefficient,

∑≡ !
! !… !

=
=

…C
n

k k k
n k, with , (A.6)n

j

l

j

1

k k k
l

, ,
1 2

l1 2

which, in the standard mathematical language, is a number of different
permutations in a multiset of l distinct element types from an n-element set
which contains kj ( j = 1, 2,…l ) elements of each type. In the ‘ball/box
language’, the coefficient (A.6) is the number of different ways to distribute
n distinct balls between l distinct boxes, each time keeping the number (kj) of
balls in the jth box fixed, but ignoring their order inside the box. The
binomial coefficient nCk (A.5) is a particular case of the multinomial
coefficient (A.6) for l = 2 - counting the explicit box for the first one, and
the remaining space for the second box, so that if k1 ≡ k, then k2 = n − k.

• One more important combinatorial quantity is the number Mn
(k) of ways to

place n indistinguishable balls into k distinct boxes. It may be readily
calculated from Eq. (A.5) as the number of different ways to select (k − 1)
partitions between the boxes in an imagined linear row of (k − 1 + n)
‘objects’ (balls in the boxes and partitions between them):

= ≡ − + !
− ! !−

− +M C
k n
k n

( 1 )
( 1)

. (A.7)k
n k

1
1

n
k( )

(ii) Sums and series
• Arithmetic progression:

∑+ + ⋯ + ≡ = +

=

r r nr kr
n r nr

a2
( )

2
; (A.8 )

k

n

1

in particular, at r = 1 it is reduced to the sum of n first natural numbers:
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∑+ + ⋯ + ≡ = +

=

n k
n n

b1 2
( 1)

2
. (A.8 )

k

n

1

• Sums of squares and cubes of n first natural numbers:

∑+ + ⋯ + ≡ = + +

=

n k
n n n

a1 2
( 1)(2 1)

6
; (A.9 )

k

n

1

2 2 2 2

∑+ + ⋯ + ≡ = +

=

n k
n n

b1 2
( 1)

4
. (A.9 )

k

n

1

3 3 3 3
2 2

• The Riemann zeta function:

∑ζ ≡ + + + ⋯ ≡
=

∞

s
k

a( ) 1
1
2

1
3

1
; (A.10 )

k 1
s s s

the particular values frequently met in applications are

ζ ζ π ζ

ζ ζ π ζ

≈ = ≈

≈ = ≈

⎜ ⎟⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

b

3
2

2.612, (2)
6

,
5
2

1.341,

(3) 1.202, (4)
90

, (5) 1.037.

(A.10 )

2

4

• Finite geometric progression (for real λ ≠ 1):

∑λ λ λ λ λ
λ

+ + + ⋯ + ≡ = −
−=

−
− a1

1
1

; (A.11 )
k

n

0

1
n k

n
2 1

in particular, if λ 2 < 1, the progression has a finite limit at n→∞ (called the
geometric series):

∑ ∑λ λ
λ

= =
−=

−

=

∞

→∞ blim
1

1
. (A.11 )

k

n

k0

1

0

n
k k

• Binomial sum (or the ‘binomial theorem’):

∑+ =
=

a C a(1 ) , (A.12)
k

n

k
n

0

n k

where nCk are the binomial coefficients defined by Eq. (A.5).

• The Stirling formula:

π! = − + + − + …→∞ n n n n
n n

lim ln ( ) (ln 1)
1
2

ln(2 )
1

12
1

360
; (A.13)n 3
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for most applications in physics, the first term1 is sufficient.
• The Taylor (or ‘Taylor–Maclaurin’) series: for any infinitely differentiable
function f (ξ):

∑

ξ ξ ξ
ξ

ξ ξ
ξ

ξ ξ

ξ
ξ ξ

+ ˜ = + ˜ +
!

˜ + ⋯

=
!

˜

ξ̃ →

=

∞

f f
df
d

d f

d

k
d f

d

a

lim ( ) ( ) ( )
1
2

( )

1
( ) ;

(A.14 )

k

k

k
k

0

2

2
2

0

note that for many functions this series converges only within a limited,
sometimes small range of deviations ξ̃ . For a function of several arguments,
f(ξ1,ξ2,…,ξN), the first terms of the Taylor series are

∑

∑

ξ ξ ξ ξ ξ ξ

ξ
ξ ξ ξ

ξ ξ
ξ ξ

+ ˜ + ˜ ⋯ = ⋯

+ ∂
∂

⋯ ˜

+
!

∂
∂ ∂

˜ ˜ + ⋯

ξ̃ →

=

′= ′
′

f f

f

f

b

lim ( , , ) ( , , )

( , , )

1
2

(A.14 )k

N

k
k

k k

N

k k
k k

0 1 1 2 2 1 2

1
1 2

, 1

2

k

• The Euler–Maclaurin formula, valid for any infinitely differentiable function
f(ξ):

∫∑ ξ ξ
ξ ξ

ξ ξ

ξ ξ

= + − + ⋅
!

−

− ⋅
!

−

+ ⋅
!

− + ⋯

=

⎡
⎣⎢

⎤
⎦⎥

⎡
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⎤
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f k f d f n f
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d
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d f
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( ) ( )
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1
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1
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1
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1
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1
6
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(A.15 )
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n

1

n

0

3

3

3

3

5

5

5

5

the coefficients participating in this formula are the so-called Bernoulli
numbers2:

= = = = =

= = = ⋯

B B B B B

B B B
b

1
2

,
1
6

, 0,
1
30

, 0,

1
42

, 0,
1
30

,
(A.15 )

1 2 3 4 5

6 7 8

1Actually, this leading term was derived by A de Moivre in 1733, before J Stirling’s work.
2Note that definitions of Bk (or rather their signs and indices) vary even among the most popular handbooks.
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A.3 Basic trigonometric functions
• Trigonometric functions of the sum and the difference of two arguments3:

± = ∓a b a b a b acos ( ) cos cos sin sin , (A.16 )

± = ±a b a b a b bsin ( ) sin cos cos sin . (A.16 )

• Sums of two functions of arbitrary arguments:

+ = + −
a b

a b b a
acos cos 2 cos

2
cos

2
, (A.17 )

− = + −
a b

a b b a
bcos cos 2 sin

2
sin

2
, (A.17 )

± = ± ± −
a b

a b b a
csin sin 2 sin

2
cos

2
. (A.17 )

• Trigonometric function products:

= + + −a b a b a b a2 cos cos cos( ) cos( ), (A.18 )

= + + −a b a b a b b2 sin cos sin( ) sin( ), (A.18 )

= − − +a b a b a b c2 sin sin cos( ) cos( ); (A.18 )

For the particular case of equal arguments, b = a, these three formulas yield
the following expressions for the squares of trigonometric functions, and their
product:

= + =

= −

a a a a a

a a

d

cos
1
2

(1 cos 2 ), sin cos
1
2

sin 2 ,

sin
1
2

(1 cos 2 ).

(A.18 )

2

2

• Cubes of trigonometric functions:

= + = −a a a a a acos
3
4

cos
1
4

cos 3 , sin
3
4

sin
1
4

sin 3 . (A.19)3 3

• Trigonometric functions of a complex argument:

+ = +
+ = −

a ib a b i a b
a ib a b i a b

sin( ) sin cosh cos sinh ,
cos ( ) cos cosh sin sinh .

(A.20)

3 I am confident that the reader is quite capable of deriving the relations (A.16) by representing the exponent in
the elementary relation ei(a ± b) = eiae±ib as a sum of its real and imaginary parts, Eqs. (A.18) directly from
Eqs. (A.16), and Eqs. (A.17) from Eqs. (A.18) by variable replacement; however, I am still providing these
formulas to save his or her time. (Quite a few formulas below are included because of the same reason.)
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• Sums of trigonometric functions of n equidistant arguments:

∑ ξ ξ ξ ξ= +

=

⎜ ⎟⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
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⎞
⎠{ } { }k
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1
2
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2
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2

. (A.21)
k

n

1

A.4 General differentiation
• Full differential of a product of two functions:

= +d fg df g f dg( ) ( ) ( ). (A.22)

• Full differential of a function of several independent arguments, f(ξ1, ξ2,…, ξn):

∑
ξ

ξ= ∂
∂=

df
f

d . (A.23)
k

n

1 k
k

• Curvature of the Cartesian plot of a 1D function f(ξ):

κ ξ
ξ

≡ =
+R

d f d

df d

1 /

[1 ( / ) ]
. (A.24)

2 2

2 3/2

A.5 General integration
• Integration by parts - immediately follows from Eq. (A.22):

∫ ∫= −f dg fg g df . (A.25)
g A

g B B

A f A

f B

( )

( )

( )

( )

• Numerical (approximate) integration of 1D functions: the simplest trapezoi-
dal rule,
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h

h f a
h

nh h
b a

N

( )
2

3
2 2

2
, .

(A.26)

n

N

1

a

b

has relatively low accuracy (error of the order of (h3/12)d2f/dξ2 per step), so
that the following Simpson formula,

∫ ξ ξ ≈ + + + + + ⋯ + − +

≡ −

f d
h

f a f a h f a h f b h f b

h
b a

N

( )
3

[ ( ) 4 ( ) 2 ( 2 ) 4 ( ) ( )],

2
,

(A.27)
a

b
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whose error per step scales as (h5/180)d4f/dξ4, is used much more frequently4.

A.6 A few 1D integrals5

(i) Indefinite integrals:
• Integrals with (1 + ξ2)1/2:

∫ ξ ξ ξ ξ ξ ξ+ = + + ∣ + + ∣d(1 )
2

(1 )
1
2

ln (1 ) , (A.28)2 1/2 2 1/2 2 1/2

∫ ξ
ξ

ξ ξ
+

= ∣ + + ∣d
a

(1 )
ln (1 ) , (A.29 )

2 1/2
2 1/2

∫ ξ
ξ

ξ
ξ+

=
+

d
b

(1 ) (1 )
. (A.29 )

2 3/2 2 1/2

• Miscellaneous indefinite integrals:

∫ ξ
ξ ξ ξ

ξ
ξ+ −

= −
+

d
a

a
a

a
( 2 1)

arccos
1

( 1)
, (A.30 )2 1/2 2 1/2

∫ ξ ξ ξ
ξ

ξ ξ ξ ξ ξ
ξ

− = + − −
d b

(sin cos ) 2 sin 2 cos 2 2 1
8

, (A.30 )
2

5

2

4

∫ ξ
ξ

ξ
+

=
−

−
−

>

−
⎡
⎣⎢

⎤
⎦⎥

d
a b a b

a b
a b

a b

ccos
2

( )
tan

( )
( )

tan
2

,

for .

(A.30 )2 2 1/2
1

2 2 1/2

2 2

∫ ξ
ξ

ξ
+

= −d
d

1
tan . (A.30 )

2
1

(ii) Semi-definite integrals:
• Integrals with 1/(eξ ±1):

∫ ξ
+

= +ξ

∞
−d

e
e a

1
ln (1 ), (A.31 )

a

a

4Higher-order formulas (e.g. the Bode rule), and other guidance including ready-for-use codes for computer
calculations may be found, for example, in the popular reference texts by W H Press et al [1]. In addition, some
advanced codes are used as subroutines in the software packages listed in the same section. In some cases, the
Euler–Maclaurin formula (A.15) may also be useful for numerical integration.
5A powerful (and free) interactive online tool for working out indefinite 1D integrals is available at http://
integrals.wolfram.com/index.jsp.
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∫ ξ
−

=
−ξ>

∞

−
d

e e
b

1
ln

1
1

. (A.31 )
a a0

(iii) Definite integrals:
• Integrals with 1/(1 + ξ2):6

∫ ξ
ξ

π
+

=
∞ d

a
1 2

, (A.32 )
0 2

∫ ξ
ξ+

=
∞ d

b
(1 )

1; (A.32 )
0 2 3/2

more generally,

∫ ξ
ξ

π π
+

= − !!
− !!

≡ ⋅ ⋅ … −
⋅ ⋅ … −

= …

∞ d n
n

n
n

n

c(1 ) 2
(2 3)
(2 2) 2

1 3 5 (2 3)
2 4 6 (2 2)

,

for 2, 3,

(A.32 )n
0 2

• Integrals with (1 − ξ2n)1/2:

∫ ξ
ξ

π
−

= Γ Γ +⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

d
n n

n
n

a
(1 ) 2

1
2

1
2

, (A.33 )
n0

1

2 1/2

1/2

∫ ξ ξ π− = Γ Γ +⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟d

n n
n

n
b(1 )

4
1
2

3 1
2

, (A.33 )n

0

1
2 1/2

1/2

where Γ(s) is the gamma-function, which is most often defined (for Re s > 0)
by the following integral:

∫ ξ ξ = Γξ
∞

− −e d s a( ). (A.34 )s

0

1

The key property of this function is the recurrence relation, valid for any
s ≠ 0, −1, −2,…:

Γ + = Γs s s b( 1) ( ). (A.34 )

Since, according to Eq. (A.34a), Γ(1) = 1, Eq. (A.34b) for non-negative
integers takes the form

Γ + = ! = ⋯n n n c( 1) , for 0, 1, 2, (A.34 )

6 Eq. (A.32a) follows immediately from Eq. (A.30d), and Eq. (A.32b) from Eq. (A.29b)—a couple more
examples of the (intentional) redundancy in this list.

Quantum Mechanics: Lecture notes

A-8



(where 0! ≡ 1). Because of this, for integer s = n + 1 ⩾ 1, Eq. (A.34a) is
reduced to

∫ ξ ξ = !ξ
∞

−e d n d. (A.34 )n

0

Other frequently met values of the gamma-function are those for positive
semi-integer arguments:

π π π

π

Γ = Γ = Γ = ⋅

Γ = ⋅ ⋅ …

⎜ ⎟

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

e

1
2

,
3
2

1
2

,
5
2

1
2

3
2

,

7
2

1
2

3
2

5
2

, .

(A.34 )

1/2 1/2 1/2

1/2

• Integrals with 1/(eξ ±1):

∫ ξ ξ ζ
+

= − Γ >ξ

∞ −
−d

e
s s s a

1
(1 2 ) ( ) ( ), for 0, (A.35 )

s
s

0

1
1

∫ ξ ξ ζ
−

= Γ >ξ

∞ − d
e

s s s b
1

( ) ( ), for 1, (A.35 )
s

0

1

where ζ(s) is the Riemann zeta-function—see Eq. (A.10). Particular cases:
for s = 2n,

∫ ξ ξ π
+

= −
ξ

∞ − −d
e n

B c
1

2 1
2

, (A.35 )
n n

n
n

0

2 1 2 1
2

2

∫ ξ ξ π
−

=ξ

∞ − d
e n

B d
1

(2 )
4

. (A.35 )
n n

n
0

2 1 2

2

where Bn are the Bernoulli numbers—see Eq. (A.15). For the particular case
s = 1 (when Eq. (A.35a) yields uncertainty),

∫ ξ
+

=ξ

∞ d
e

e
1

ln 2. (A.35 )
0

• Integrals with exp{−ξ 2}:

∫ ξ ξ = Γ + > −ξ
∞

− ⎛
⎝⎜

⎞
⎠⎟e d

s
s a

1
2

1
2

, for 1; (A.36 )s

0

2

for applications the most important particular values of s are 0 and 2:

∫ ξ π= Γ =ξ
∞

− ⎛
⎝⎜

⎞
⎠⎟e d b

1
2

1
2 2

, (A.36 )
0

1/2
2

Quantum Mechanics: Lecture notes

A-9



∫ ξ ξ π= Γ =ξ
∞

− ⎛
⎝⎜

⎞
⎠⎟e d c

1
2

3
2 4

, (A.36 )
0

2
1/2

2

although we will also run into the cases s = 4 and s = 6:

∫

∫

ξ ξ π

ξ ξ π

= Γ =

= Γ =

ξ

ξ

∞
−

∞
−

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

e d

e d

d

1
2

5
2

3
8

,

1
2

7
2

15
16

;

(A.36 )
0

4
1/2

0

6
1/2

2

2

for odd integer values s = 2n + 1 (with n = 0, 1, 2,…), Eq. (A.36a) takes a
simpler form:

∫ ξ ξ = Γ + = !ξ
∞

+ −e d n
n

e
1
2

( 1)
2

. (A.36 )n

0

2 1 2

• Integrals with cosine and sine functions:

∫ ∫ξ ξ ξ ξ π= =
∞ ∞

⎜ ⎟⎛
⎝

⎞
⎠d dcos ( ) sin ( )

8
. (A.37)

0

2

0

2
1/2

∫ ξ
ξ

ξ π
+

=
∞

−

a
d

a
e

cos
2

. (A.38)a

0 2 2

∫ ξ
ξ

ξ π=
∞ ⎛

⎝⎜
⎞
⎠⎟ d

sin
2

. (A.39)
0

2

• Integrals with logarithms:

∫ ξ
ξ

ξ π+ −
− −

= − − ⩾a

a
d a a aln (1 )

(1 )
[ ( 1) ] , for 1. (A.40)

0

1 2 1/2

2 1/2
2 1/2

∫ ξ
ξ

ξ+ − =dln
1 (1 )

1. (A.41)
0

1 1/2

1/2

• Integral representations of the Bessel functions of integer order:

∫

∑

α
π

ξ

α

=

=

π

π

−

+

=−∞

∞

α ξ ξ

α ξ ξ

−J e d

e J e
a

( )
1

2
,

so that ( ) ;
(A.42 )

k

n
i n

i
k

ik

( sin )

sin

∫α
π

ξ ξ=
π

α ξI e n d b( )
1

cos . (A.42 )n
0

cos
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A.7 3D vector products
(i) Definitions:
• Scalar (‘dot-’) product:

∑⋅ =
=

a ba b , (A.43)
j 1

3

j j

where aj and bj are vector components in any orthogonal coordinate
system. In particular, the vector squared (the same as the norm squared):

∑≡ ⋅ = ≡
=

a aa a a . (A.44)
j 1

3

j
2 2 2

• Vector (‘cross-’) product:

× ≡ − + − + −

=

a b a b a b a b a b a b

a a a
b b b

a b n n n
n n n

( ) ( ) ( )

,
(A.45)

1 2 3 3 2 2 3 1 1 3 3 1 2 2 1

1 2 3

1 2 3

1 2 3

where {nj} is the set of mutually perpendicular unit vectors7 along the
corresponding coordinate system axes8. In particular, Eq. (A.45) yields

× =a a 0. (A.46)

(ii) Corollaries (readily verified by Cartesian components):
• Double vector product (the so-called bac minus cab rule):

× × = ⋅ − ⋅a b c b a c c a b( ) ( ) ( ). (A.47)

• Mixed scalar–vector product (the operand rotation rule):

⋅ × = ⋅ × = ⋅ ×a b c b c a c a b( ) ( ) ( ). (A.48)

• Scalar product of vector products:

× ⋅ × = ⋅ ⋅ − ⋅ ⋅ aa b c d a c b d a d b c( ) ( ) ( )( ) ( )( ); (A.49 )

7Other popular notations for this vector set are {ej} and r̂{ }j .
8 It is easy to use Eq. (A.45) to check that the direction of the product vector corresponds to the well-known
‘right-hand rule’ and to the even more convenient corkscrew rule: if we rotate a corkscrew’s handle from the
first operand toward the second one, its axis moves in the direction of the product.
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in the particular case of two similar operands (say, a = c and b = d), the last
formula is reduced to

× = − ⋅ab ba b a b( ) ( ) ( ) . (A.49 )2 2 2

A.8 Differentiation in 3D Cartesian coordinates
• Definition of the del (or ‘nabla’) vector-operator ∇:9

∑∇ ≡ ∂
∂= r

n , (A.50)
j 1

3

j
j

where rj is a set of linear and orthogonal (Cartesian) coordinates along
directions nj. In accordance with this definition, the operator ∇ acting on a
scalar function of coordinates, f(r),10 gives its gradient, i.e. a new vector:

∑∇ ≡ ∂
∂

≡
=

f
f
r

fn grad . (A.51)
j 1

3

j
j

• The scalar product of del by a vector function of coordinates (a vector field),

∑≡
=

ff r n r( ) ( ), (A.52)
j 1

3

j j

compiled formally following Eq. (A.43), is a scalar function—the divergence
of the initial function:

∑∇ ⋅ ≡
∂
∂

≡
=

f

r
f fdiv , (A.53)

j 1

3
j

j

while the vector product of ∇ and f, formed in a formal accordance with
Eq. (A.45), is a new vector - the curl (in European tradition, called rotor and
denoted rot) of f:

∇ × ≡
∂
∂

∂
∂

∂
∂ =

∂
∂

−
∂
∂

+
∂
∂

−
∂
∂

+
∂
∂

−
∂
∂

≡

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

r r r
f f f

f

r

f

r

f

r

f

r

f

r

f

r

f

n n n

n n

n curl f.

(A.54)

1 2 3

1 2 3

1 2 3

1
3

2

2

3
2

1

3

3

1

3
2

1

1

2

9One can run into the following notation: ∇ ≡ ∂/∂r, which is convenient is some cases, but may be misleading in
quite a few others, so it will be not used in these notes.
10 In this, and four next sections, all scalar and vector functions are assumed to be differentiable.
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• One more frequently met ‘product’ is (f·∇)g, where f and g are two arbitrary
vector functions of r. This product should be also understood in the sense implied
by Eq. (A.43), i.e. as a vector whose jth Cartesian component is

∑∇⋅ =
∂
∂′=

′
′

f
g

r
f g[( ) ] . (A.55)

j 1

3

j j
j

j

A.9 The Laplace operator ∇2 ≡ ∇ · ∇
• Expression in Cartesian coordinates—in the formal accordance with
Eq. (A.44):

∑∇ = ∂
∂= r

. (A.56)
j 1

3

j

2
2

2

• According to its definition, the Laplace operator acting on a scalar function
of coordinates gives a new scalar function:

∑∇ ∇∇ ≡ ⋅ = = ∂
∂=

f f f
f

r
grad( ) div( ) . (A.57)

j 1

3

j

2
2

2

• On the other hand, acting on a vector function (A.52), the operator ∇2 returns
another vector:

∑∇ = ∇
=

ff n . (A.58)
j 1

3

j j
2 2

Note that Eqs. (A.56)–(A.58) are only valid in Cartesian (i.e. orthogonal and
linear) coordinates, but generally not in other (even orthogonal) coordinates—
see, e.g. Eqs. (A.61), (A.64), (A.67) and (A.70) below.

A.10 Operators ∇ and ∇2 in the most important systems of
orthogonal coordinates11

(i) Cylindrical12 coordinates {ρ, φ, z} (see figure below) may be defined by their
relations with the Cartesian coordinates:

ðA:59Þ

11 Some other orthogonal curvilinear coordinate systems are discussed in Part EM, section 2.3.
12 In the 2D geometry with fixed coordinate z, these coordinates are called polar.
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• Gradient of a scalar function:

ρ ρ φ
∇ = ∂

∂
+ ∂

∂
+ ∂

∂ρ φf
f f f

z
n n n

1
. (A.60)z

• The Laplace operator of a scalar function:

ρ ρ
ρ

ρ ρ φ
∇ = ∂

∂
∂
∂

+ ∂
∂

+ ∂
∂

⎛
⎝⎜

⎞
⎠⎟f

f f f
z

1 1
, (A.61)2

2

2

2

2

2

• Divergence of a vector function of coordinates (f = nρ fρ + nφ fφ + nz fz):

ρ

ρ

ρ ρ φ
∇ ⋅ =

∂

∂
+

∂
∂

+
∂
∂

ρ φ( )f f f

z
f

1 1
. (A.62)z

• Curl of a vector function:

ρ φ ρ ρ

ρ

ρ φ
∇ × =

∂
∂

−
∂
∂

+
∂
∂

−
∂
∂

+
∂

∂
−

∂
∂ρ

φ
φ

ρ φ ρ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )f f

z

f

z

f f f
f n n n

1 1
. (A.63)z z

z

• The Laplace operator of a vector function:

ρ ρ φ ρ ρ φ
∇ = ∇ − −

∂
∂

+ ∇ − +
∂
∂

+ ∇ρ ρ ρ
φ

φ φ φ
ρ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟f f

f
f f

f
ff n n n

1 2 1 2
. (A.64)z z

2 2
2 2

2
2 2

2

(ii) Spherical coordinates {r, θ, φ} (see figure below) may be defined as:

ðA:65Þ

• Gradient of a scalar function:

θ θ φ
∇ = ∂

∂
+ ∂

∂
+ ∂

∂θ φf
f
r r

f
r

f
n n n

1 1
sin

. (A.66)r

• The Laplace operator of a scalar function:

θ θ
θ

θ θ φ
∇ = ∂

∂
∂
∂

+ ∂
∂

∂
∂

+ ∂
∂

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟f

r r
r

f
r r

f
r

f1 1
sin

sin
1

( sin )
. (A.67)2

2
2

2 2

2

2
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• Divergence of a vector function f = nrfr + nθ fθ + nφ fφ :

θ
θ

θ θ φ
∇ ⋅ =

∂
∂

+
∂

∂
+

∂
∂

θ φ( ) ( )
r

r f

r r

f

r

f
f

1 1
sin

sin 1
sin

. (A.68)r

2

2

• Curl of a similar vector function:

θ

θ

θ φ θ φ

θ

∇ × =
∂

∂
−

∂
∂

+
∂
∂

−
∂

∂

+
∂

∂
−

∂
∂

φ θ
θ

φ

φ
θ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( ) ( )

( )

r

f f

r

f rf

r

r

rf

r

f

f n n

n

1
sin

sin 1 1
sin

1
.

(A.69)

r
r

r

• The Laplace operator of a vector function:

θ θ
θ

θ φ

θ θ
θ
θ φ

θ θ φ
θ
θ φ

∇ = ∇ − − ∂
∂

−
∂
∂

+ ∇ − +
∂
∂

−
∂
∂

+ ∇ − +
∂
∂

+
∂
∂

θ
φ

θ θ θ
φ

φ φ φ
θ

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )f
r

f
r

f
r

f

f
r

f
r

f

r

f

f
r

f
r

f

r

f

f n

n

n

2 2
sin

sin
2
sin

1
sin

2 2 cos
sin

1
sin

2
sin

2 cos
sin

.

(A.70)

r r r

r

r

2 2
2 2 2

2
2 2 2 2 2

2
2 2 2 2 2

A.11 Products involving ∇
(i) Useful zeros:

• For any scalar function f r( ),

∇ ∇× ≡ =f fcurl grad( ) ( ) 0. (A.71)

• For any vector function f r( ),

∇ ∇⋅ × ≡ =ff curl( ) div( ) 0. (A.72)

(ii) The Laplace operator expressed via the curl of a curl:

∇ ∇ ∇ ∇∇ = ⋅ − × ×f f f( ) ( ). (A.73)2

(iii) Spatial differentiation of a product of a scalar function by a vector
function:x

• The scalar 3D generalization of Eq. (A.22) is

∇ ∇ ∇⋅ = ⋅ + ⋅f f f ag g g( ) ( ) ( ). (A.74 )
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• Its vector generalization is similar:

∇ ∇ ∇× = × + ×f f f bg g g( ) ( ) ( ). (A.74 )

(iv) Spatial differentiation of products of two vector functions:

∇ ∇ ∇ ∇ ∇× × = ⋅ − ⋅ − ⋅ + ⋅f g f g f g f g g f( ) ( ) ( ) ( ) ( ) , (A.75)

∇ ∇ ∇ ∇ ∇⋅ = ⋅ + ⋅ + × × + × ×f g f g g f f g g f( ) ( ) ( ) ( ) ( ), (A.76)

∇ ∇ ∇⋅ × = ⋅ × − ⋅ ×f g g f f g( ) ( ) ( ). (A.77)

A.12 Integro-differential relations
(i) For an arbitrary surface S limited by closed contour C:

• The Stokes theorem, valid for any differentiable vector field f(r):

∫ ∫ ∮ ∮∇ ∇× ⋅ ≡ × = ⋅ ≡ τd d r d f drf r f f r( ) ( ) , (A.78)
S S

n
C C

2 2

where d2r ≡ nd2r is the elementary area vector (normal to the surface), and
dr is the elementary contour length vector (tangential to the contour line).

(ii) For an arbitrary volume V limited by closed surface S:

• Divergence (or ‘Gauss’) theorem, valid for any differentiable vector field f(r):

∫ ∮ ∮∇ ⋅ = ⋅ ≡d r d f d rf f r( ) . (A.79)
V S S

n
3 2 2

• Green’s theorem, valid for two differentiable scalar functions f(r) and g(r):

∫ ∮ ∇ ∇∇ − ∇ = −f g g f d r f g g f d r( ) ( ) . (A.80)
V S

n
2 2 3 2

• An identity valid for any two scalar functions f and g, and a vector field j
with ∇·j = 0 (all differentiable):

∫ ∮∇ ∇⋅ + ⋅ =f g g f d r fgj d rj j[ ( ) ( )] . (A.81)
V S

n
3 2

A.13 The Kronecker delta and Levi-Civita permutation symbols
• The Kronecker delta symbol (defined for integer indices):

δ ≡
′ =

′
⎧⎨⎩

j j1, if ,
0, otherwise.

(A.82)jj
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• The Levi-Civita permutation symbol (most frequently used for 3 integer
indices, each taking one of values 1, 2, or 3):

ε ≡

+

−
→ → → → …

→ → → → …
′ ″

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

1,

1,

0,

if the indices follow in the ‘correct’ (‘even’)
order: 1 2 3 1 2 ,
if the indices follow in the ‘incorrect’ (‘odd’)
order: 1 3 2 1 3 ,
if any two indices coincide.

(A.83)jj j

• Relation between the Levi-Civita and the Kronecker delta products:

∑ε ε
δ δ δ
δ δ δ
δ δ δ

=
′ ″=

′ ″ ′ ″

′ ″

′ ′ ′ ′ ″

″ ″ ′ ″ ″

a; (A.84 )
l l l, , 1

3

jj j kk k

jl jl jl

j l j l j l

j l j l j l

summation of this relation, written for 3 different values of j = k, over these
values yields the so-called contracted epsilon identity:

∑ε ε δ δ δ δ= −
=

′ ″ ′ ″ ′ ′ ″ ″ ′ ″ ″ ′ b. (A.84 )
j 1

3

jj j jk k j k j k j k j k

A.14 Dirac’s delta-function, sign function, and theta-function
• Definition of 1D delta-function (for real a < b):

∫ ξ δ ξ ξ =
< <⎧⎨⎩f d

f a b
( ) ( )

(0), if 0 ,
0, otherwise,

(A.85)
a

b

where f(ξ) is any function continuous near ξ = 0. In particular (if f(ξ) = 1 near
ξ = 0), the definition yields

∫ δ ξ ξ = < <⎧⎨⎩d
a b

( )
1, if 0 ,
0, otherwise.

(A.86)
a

b

• Relation to the theta-function θ(ξ) and sign function sgn(ξ)

δ ξ
ξ

θ ζ
ξ

ξ= =d
d

d
d

a( ) ( )
1
2

sgn( ), (A.87 )

where

θ ξ ξ ξ
ξ

ξ ξ
ξ

ξ
ξ

≡ + =
<
>

≡ =
− <
+ >

⎧⎨⎩
⎧⎨⎩

b

( )
sgn( ) 1

2
0, if 0,
1, if 1,

sgn( )
1, if 0,
1, if 1.

(A.87 )
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• An important integral13:

∫ πδ ξ=ξ

−∞

+∞
e ds 2 ( ). (A.88)is

• 3D generalization of the delta-function of the radius-vector (the 2D general-
ization is similar):

∫ δ =
∈⎧⎨⎩f d r

f V
r r( ) ( )

(0), if 0 ,
0, otherwise;

(A.89)
V

3

it may be represented as a product of 1D delta-functions of Cartesian
coordinates:

δ δ δ δ= r r rr( ) ( ) ( ) ( ). (A.90)1 2 3

A.15 The Cauchy theorem and integral
Let a complex function ( )f z be analytic within a part of the complex plane z , that is
limited by a closed contour C and includes point ′z . Then

∮ =d( ) 0, (A.91)
C

f z z

∮ π
− ′

= ′d
i( ) 2 ( ) (A.92)

C
f z

z

z z
f z

The first of these relations is usually called the Cauchy integral theorem (or the
‘Cauchy–Goursat theorem’), and the second one—the Cauchy integral (or the
‘Cauchy integral formula’).

A.16 Literature
(i) Properties of some special functions are briefly discussed at the relevant

points of the lecture notes; in the alphabetical order:
• Airy functions: Part QM section 2.4;
• Bessel functions: Part EM section 2.7;
• Fresnel integrals: Part EM section 8.6;
• Hermite polynomials: Part QM section 2.9;
• Laguerre polynomials (both simple and associated): Part QM section 3.7;

13 The coefficient in this relation may be readily recalled by considering its left-hand part as the Fourier-
integral representation of function f(s) ≡ 1, and applying Eq. (A.85) to the reciprocal Fourier transform

∫π
πδ ξ ξ≡ = ξ

−∞

+∞
−f s e d( ) 1

1
2

[2 ( )] .is
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• Legendre polynomials, associated Legendre functions: Part EM section
2.8, and Part QM section 3.6;

• Spherical harmonics: Part QM section 3.6;
• Spherical Bessel functions: Part QM sections 3.6 and 3.8.

(ii) For more formulas, and their discussion, I can recommend the following
handbooks14:

• Handbook of Mathematical Formulas [2];
• Tables of Integrals, Series, and Products [3];
• Mathematical Handbook for Scientists and Engineers [4];
• Integrals and Series volumes 1 and 2 [5];
• A popular textbook Mathematical Methods for Physicists [6] may be also
used as a formula manual.

Many formulas are also available from the symbolic calculation modules of
the commercially available software packages listed in section (iv) below.

(iii) Probably the most popular collection of numerical calculation codes are the
twin manuals by W Press et al [1]:

• Numerical Recipes in Fortran 77;
• Numerical Recipes [in C++—KKL].

My lecture notes include very brief introductions to numerical methods of
differential equation solution:

• ordinary differential equations: Part CM, section 5.7;
• partial differential equations: Part CM section 8.5 and Part EM section
2.11, which include references to literature for further reading.

(iv) The following are the most popular software packages for numerical and
symbolic calculations, all with plotting capabilities (in the alphabetical order):

• Maple (www.maplesoft.com/products/maple/);
• MathCAD (www.ptc.com/engineering-math-software/mathcad/);
• Mathematica (www.wolfram.com/mathematica/);
• MATLAB (www.mathworks.com/products/matlab.html).

References
[1] Press W et al 1992 Numerical Recipes in Fortran 77 2nd edn (Cambridge: Cambridge

University Press)
Press W et al 2007 Numerical Recipes 3rd edn (Cambridge: Cambridge University Press)

[2] Abramowitz M and Stegun I (eds) 1965 Handbook of Mathematical Formulas (New York:
Dover), and numerous later printings. An updated version of this collection is now available
online at http://dlmf.nist.gov/.

14On a personal note, perhaps 90% of all formula needs throughout my research career were satisfied by a tiny,
wonderfully compiled old book [7], used copies of which, rather amazingly, are still available on the Web.
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[3] Gradshteyn I and Ryzhik I 1980 Tables of Integrals, Series, and Products 5th edn (New York:
Academic)

[4] Korn G and Korn T 2000 Mathematical Handbook for Scientists and Engineers 2nd edn
(New York: Academic)

[5] Prudnikov A et al 1986 Integrals and Series vol 1 (Boca Raton, FL: CRC Press)
Prudnikov A et al 1986 Integrals and Series vol 2 (Boca Raton, FL: CRC Press)

[6] Arfken G et al 2012 Mathematical Methods for Physicists 7th edn (New York: Academic)
[7] Dwight H 1961 Tables of Integrals and Other Mathematical Formulas 4th edn (London:

Macmillan)
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Appendix B

Selected physical constants

The listed numerical values of the constants are from the most recent (2014)
International CODATA recommendation (see, e.g. http://physics.nist.gov/cuu/
Constants/index.html), besides a newer result for kB—see [1]. Please note the recently
announced (but, by this volume’s press time, not yet official) adjustment of the SI
values - see, e.g. https://www.nist.gov/si-redefinition/meet-constants. In particular, the
Planck constant will also get a definite value (within the interval specified in table
B.1), enabling a new, fundamental standard of the kilogram.

Table B.1.

Symbol Quantity SI value and unit Gaussian value and unit

Relative rms

uncertainty

c speed of light

in free space

2.99 792 458 × 108 m s−1 2.99 792 458 × 1010 cm s−1 0 (defined value)

G gravitation

constant

6.6741 × 10−11 m3 kg−1 s−2 6.6741 × 10−8 cm 3 g−1 s−2 ∼5 × 10−5

ℏ Planck

constant

1.05 457 180 × 10−34 J s 1.05 457 180 × 10−27 erg s ∼2 × 10−8

e elementary

electric charge

1.6 021 762 × 10−19 C 4.803 203 × 10−10 statcoulomb ∼6 × 10−9

me electron’s

rest mass

0.91 093 835 × 10−30 kg 0.91 093 835 × 10−27 g ∼1 × 10−8

mp proton’s

rest mass

1.67 262 190 × 10−27 kg 1.67 262 190 × 10−24 g ∼1 × 10−8

μ0 magnetic

constant

4π × 10−7 N A−2 – 0 (defined value)

ε0 electric

constant

8.854 187 817 × 10−12 F m−1 – 0 (defined value)

kB Boltzmann

constant

1.380 649 × 10−23 J K−1 1.3 806 490 × 10−16 erg K−1 ∼2 × 10−6
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Comments:
1. The fixed value of c was defined by an international convention in 1983, in

order to extend the official definition of the second (as ‘the duration of
9 192 631 770 periods of the radiation corresponding to the transition
between the two hyperfine levels of the ground state of the cesium-133 atom’)
to that of the meter. The values are back-compatible with the legacy
definitions of the meter (initially, as 1/40 000 000th of the Earth’s meridian
length) and the second (for a long time, as 1/(24 × 60 × 60) = 1/86 400th of
the Earth’s rotation period), within the experimental errors of those
measures.

2. ε0 and μ0 are not really the fundamental constants; in the SI system of units
one of them (say, μ0) is selected arbitrarily1, while the other one is defined via
the relation ε0μ0 = 1/c2.

3. The Boltzmann constant kB is also not quite fundamental, because its only
role is to comply with the independent definition of the kelvin (K), as the
temperature unit in which the triple point of water is exactly 273.16 K. If
temperature is expressed in energy units kBT (as is done, for example, in Part
SM of this series), this constant disappears altogether.

4. The dimensionless fine structure (‘Sommerfeld’s’) constant α is numerically
the same in any system of units:

α πε≡ ℏ
ℏ

≈ ×

≈

−e c
e c
/4 in SI units

/ in Gaussian units
7.297 352 566 10

1
137.035 999 14

,

2
0

2
3

⎧⎨⎩
⎫⎬⎭

and is known with a much smaller relative rms uncertainty (currently, ∼3 ×
10−10) than those of the component constants.

References
[1] Gaiser C et al 2017 Metrologia 54 280
[2] Newell D 2014 Phys. Today 67 35–41

1Note that the selected value of μ0 may be changed (a bit) in a few years—see, e.g., [2].
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